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Preface

S ome of the most important scientific accomplishments of the twentieth century 

occurred in the field of genetics, beginning with the rediscovery of Mendel’s 

laws of heredity and ending with the first draft of the complete DNA sequence of 

the human genome. The pace of discoveries has continued to accelerate in the first 

part of the twenty-first century. One of the most dramatic developments in the 

behavioral sciences during the past few decades is the increasing recognition and 

appreciation of the important contribution of genetic factors to behavior. Genetics is 

not a neighbor chatting over the fence with some helpful hints — it is central to the 

behavioral sciences. In fact, genetics is central to all the life sciences and gives the  

behavioral sciences a place in the biological sciences. Genetic research includes 

diverse strategies, such as twin and adoption studies (called quantitative genetics), 

which investigate the influence of genetic and environmental factors, as well as strat-

egies to identify specific genes (called molecular genetics). Behavioral geneticists 

apply these research strategies to the study of behavior in biopsychology, clinical 

psychology, cognitive psychology, developmental psychology, educational psychol-

ogy, neuroscience, psychopharmacology, and social psychology, and increasingly in 

other areas of the social sciences such as behavioral economics and political science.
The goal of this book is to share with you our excitement about behavioral ge-

netics, a field in which we believe some of the most important discoveries in the 
behavioral sciences have been made in recent years. This seventh edition continues 
to emphasize what we know about genetics in the behavioral sciences rather than 
how we know it. Its goal is not to train students to become behavioral geneticists but 
rather to introduce students in the behavioral, social, and life sciences to the field of 
behavioral genetics.
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This seventh edition represents a passing of the baton to the next generation. 
Two new and younger authors (Knopik and Neiderhiser) have joined forces with two 
authors from the previous editions (Plomin and DeFries), which has brought new 
energy and ideas that help to capture developments in this fast-moving and highly  
interdisciplinary field. In addition to updating research with more than 600 new refer-
ences, this edition represents a substantial reorganization. One feature of this edition 
is that it continues to highlight the value of behavioral genetics for understanding 
the environment (Chapter 7) and its interplay with genetics (Chapter 8). At first, 
chapters on the environment might seem odd in a textbook on genetics, but in fact 
the environment is crucial at every step in the pathways between genes, brain, and 
behavior. One of the oldest controversies in the behavioral sciences, the so-called 
nature (genetics) versus nurture (environment) controversy, has given way to a view 
that both nature and nurture are important for complex behavioral traits. Moreover, 
genetic research has made important discoveries about how the environment affects 
behavioral development.

We have also expanded our coverage of genomewide sequencing, gene expres-
sion, and especially epigenetics as pathways between genes and behavior (Chapter 10). 
Our review of cognitive abilities includes a new section on neurocognitive measures 
(Chapter 11). Coverage of psychopathology and substance abuse has been expanded 
(Chapters 13, 14, 15, and 17), a new section on obesity and the microbiome has been 
included (Chapter 18), and a new chapter on aging has been added (Chapter 19), 
reflecting the enormous growth of genetic research in these areas. We have also reor-
ganized the presentation of the history of the field of behavioral genetics (Chapter 2).

We begin with an introductory chapter that will, we hope, whet your appetite for 
learning about genetics in the behavioral sciences. The next few chapters present his-
torical perspectives, the basic rules of heredity, its DNA basis, and the methods used 
to find genetic influence and to identify specific genes. The rest of the book highlights 
what is known about genetics in the behavioral sciences. The areas about which the 
most is known are cognitive abilities and disabilities, psychopathology, personality, 
and substance abuse. We also consider areas of behavioral sciences that were intro-
duced to genetics more recently, such as health psychology and aging. Throughout 
these chapters, quantitative genetics and molecular genetics are interwoven. One of 
the most exciting developments in behavioral genetics is the use of molecular gen-
etics to assess the substantial genetic influence on behavioral traits. The final chapter 
looks to the future of behavioral genetics.

Because behavioral genetics is an interdisciplinary field that combines genetics 
and the behavioral sciences, it is complex. We have tried to write about it as simply 
as possible without sacrificing honesty of presentation. Although our coverage is rep-
resentative, it is by no means exhaustive or encyclopedic. History and methodology 
are relegated to boxes and an appendix to keep the focus on what we now know about 
genetics and behavior. The appendix, by Shaun Purcell, presents an overview of sta-
tistics, quantitative genetic theory, and a type of quantitative genetic analysis called 
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model fitting. In this edition we have retained an interactive website that brings the 
appendix to life with demonstrations: http://pngu.mgh.harvard.edu/purcell/bgim/. 
The website was designed and written by Shaun Purcell. A list of other useful web-
sites, including those of relevant associations, databases, and other resources, is in-
cluded after the appendix. Following the websites list is a glossary; the first time each 
glossary entry appears in the text it is shown in boldface type.

We thank the following individuals, who gave us their very helpful advice for 
this new edition: Avshalom Caspi, Duke University;  Thalia Eley, King’s College London; 
John McGeary, Providence VA Medical Center; Rohan Palmer, Rhode Island Hospital and 
Brown University; Nancy Pedersen, Karolinska Institute; Chandra Reynolds, University of 
California, Riverside;  Helen Tam, Pennsylvania State University. 

We also gratefully acknowledge the important contributions of the coauthors of 
the previous editions of this book: Gerald E. McClearn, Michael Rutter, and Peter 
McGuffin. We especially wish to thank Ashten Bartz, who helped us organize the re-
vision and references and prepare the final manuscript. Finally, we thank our editors 
at Worth Publishers, Sarah Berger and Christine M. Cardone, our Worth editorial as-
sistant, Melissa Rostek, and the Senior Project Editor, Liz Geller, who helped support 
our efforts in this new edition.
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Overview

S ome of the most important recent discoveries about behavior involve genetics. 

For example, autism (Chapter 15) is a severe disorder beginning early in child-

hood in which children withdraw socially, not engaging in eye contact or physical 

contact, with marked communication deficits and stereotyped behavior. Until the 

1980s, autism was thought to be environmentally caused by cold, rejecting parents or 

by brain damage. But genetic studies comparing the risk for identical twins, who are 

identical genetically (like clones), and fraternal twins, who are only 50 percent sim-

ilar genetically, indicate substantial genetic influence. If one member of an identical 

twin pair is autistic, the risk that the other twin is also autistic is very high, about 

60 percent. In contrast, for fraternal twins, the risk is low. Molecular genetic studies 

are attempting to identify the genes* that contribute to the genetic susceptibility to 

autism.
Later in childhood, a very common concern, especially in boys, is a cluster 

of  attention-​deficit and disruptive behavior problems called attention-​deficit /  
hyperactivity disorder (ADHD) (Chapter 15). Results obtained from numerous twin 
studies have shown that ADHD is highly heritable (genetically influenced). ADHD is 
one of the first behavioral areas in which specific genes have been identified. Although 
many other areas of childhood psychopathology show genetic influence, none are as 
heritable as autism and ADHD. Some behavior problems, such as childhood anxiety 
and depression, are only moderately heritable, and others, such as antisocial behavior 
in adolescence, show little genetic influence.

More relevant to college students are personality traits such as risk-​taking (often 
called sensation seeking) (Chapter 16), drug use and abuse (Chapter 17), and learning 
abilities (Chapters 11). All these domains have consistently shown substantial genetic 

1

* Boldface indicates the first appearance in the text of a word or phrase that is in the Glossary.
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influence in twin studies and have recently begun to yield clues concerning indi-
vidual genes that contribute to their heritability. These domains are also examples 
of an important general principle: Not only do genes contribute to disorders such as 
autism and ADHD, they also play an important role in normal variation. For example, 
you might be surprised to learn that differences in weight are almost as heritable as 
differences in height (Chapter 18). Even though we can control how much we eat and 
are free to go on crash diets, differences among us in weight are much more a mat-
ter of nature (genetics) than nurture (environment). Moreover, normal variation in 
weight is as highly heritable as overweight or obesity. The same story can be told for 
behavior. Genetic differences do not just make some of us abnormal; they contribute 
to differences among all of us in normal variation for mental health, personality, and 
cognitive abilities.

One of the greatest genetic success stories involves the most common behav-
ioral disorder in later life, the terrible memory loss and confusion of Alzheimer dis-
ease, which strikes as many as one in five individuals in their eighties (Chapter 19). 
Although Alzheimer disease rarely occurs before the age of 65, some early-​onset 
cases of dementia run in families in a simple manner that suggests the influence of 
single genes. Three genes have been found to be responsible for many of these rare 
early-​onset cases.

These genes for early-​onset Alzheimer disease are not responsible for the much 
more common form of Alzheimer disease that occurs after 65 years of age. Like 
most behavioral disorders, late-​onset Alzheimer disease is not caused by just a few 
genes. Still, twin studies indicate genetic influence. If you have a twin who has late-​
onset  Alzheimer disease, your risk of developing it is twice as great if you are an 
identical twin rather than a fraternal twin. These findings suggest genetic influence.

Even for complex disorders like late-​onset Alzheimer disease, it is now possible 
to identify genes that contribute to the risk for the disorder. For example, a gene has 
been identified that predicts risk for late-​onset Alzheimer disease far better than any 
other known risk factor. If you inherit one copy of a particular form (allele) of the gene, 
your risk for Alzheimer disease is about four times greater than if you have another 
allele. If you inherit two copies of this allele (one from each of your parents), your risk 
is much greater. Finding these genes for early-​onset and late-​onset Alzheimer disease 
has greatly increased our understanding of the brain processes that lead to dementia.

Another example of recent genetic discoveries involves intellectual disabil-
ity (Chapter  12). The single most important cause of intellectual disability is the 
inheritance of an entire extra chromosome 21. (Our DNA, the basic hereditary 
molecule, is packaged as 23 pairs of chromosomes, as explained in Chapter  4.) 
Instead of inheriting only one pair of chromosomes 21, one from the mother and one 
from the father, an entire extra chromosome is inherited, usually from the mother. 
Often called Down syndrome, trisomy-​21 is one of the major reasons why women 
worry about pregnancy later in life. Down syndrome occurs much more frequently 
when mothers are over 40 years old. The extra chromosome can be detected early 
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in pregnancy by a variety of procedures, including amniocentesis, chorionic villus 
sampling, and newer noninvasive methods that examine fetal DNA in the maternal 
bloodstream (Wagner, Mitchell, & Tomita-​Mitchell, 2014).

Another gene has been identified that is the second most common cause of intel-
lectual disability, called fragile X syndrome. The gene that causes the disorder is on 
the X chromosome. Fragile X syndrome occurs nearly twice as often in males as in 
females because males have only one X chromosome. If a boy has the fragile X allele 
on his X chromosome, he will develop the disorder. Females have two X chromo-
somes, and it is necessary to inherit the fragile X allele on both X chromosomes in 
order to develop the disorder. However, females with one fragile X allele can also be 
affected to some extent. The fragile X gene is especially interesting because it involves 
a type of genetic defect in which a short sequence of DNA mistakenly repeats hun-
dreds of times. This type of genetic defect is now also known to be responsible for 
several other previously puzzling diseases (Chapter 12).

Genetic research on behavior goes beyond just demonstrating the importance of 
genetics to the behavioral sciences and allows us to ask questions about how genes 
influence behavior. For example, does genetic influence change during develop-
ment? Consider cognitive ability, for example; you might think that as time goes by 
we increasingly accumulate the effects of Shakespeare’s “slings and arrows of outra-
geous fortune.” That is, environmental differences might become increasingly impor-
tant during one’s life span, whereas genetic differences might become less important. 
However, genetic research shows just the opposite: Genetic influence on cognitive 
ability increases throughout the individual’s life span, reaching levels later in life that 
are nearly as great as the genetic influence on height (Chapter 11). This finding is an 
example of developmental behavioral genetic research.

School achievement and the results of tests you took to apply to college are influ-
enced almost as much by genetics as are the results of tests of cognitive abilities such 
as intelligence (IQ) tests (Chapter 11). Even more interesting, the substantial overlap 
between such achievement and the ability to perform well on tests is nearly all genetic 
in origin. This finding is an example of what is called multivariate genetic analysis.

Genetic research is also changing the way we think about environment 
(Chapters 7 and 8). For example, we used to think that growing up in the same family 
makes brothers and sisters similar psychologically. However, for most behavioral 
dimensions and disorders, it is genetics that accounts for similarity among siblings. 
Although the environment is important, environmental influences can make siblings 
growing up in the same family different, not similar. This genetic research has fos-
tered environmental research looking for the environmental reasons why siblings in 
the same family are so different.

Recent genetic research has also shown a surprising result that emphasizes the 
need to take genetics into account when studying environment: Many environmental 
measures used in the behavioral sciences show genetic influence! For example, research 
in developmental psychology often involves measures of parenting that are, reasonably 
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enough, assumed to be measures of the family environment. However, genetic 
research has convincingly shown genetic influence on parenting measures. How can 
this be? One way is that genetic differences among parents influence their behavior 
toward their children. Genetic differences among children can also make a contribu-
tion. For example, parents who have more books in their home have children who 
do better in school, but this correlation does not necessarily mean that having more 
books in the home is an environmental cause for children performing well in school. 
Genetic factors could affect parental traits that relate both to the number of books 
parents have in their home and to their children’s achievement at school. Genetic 
involvement has also been found for many other ostensible measures of the environ-
ment, including childhood accidents, life events, and social support. To some extent, 
people create their own experiences for genetic reasons (Chapter 8).

These are examples of what you will learn about in this book. The simple mes-
sage is that genetics plays a major role in behavior. Genetics integrates the behavioral 
sciences into the life sciences. Although research in behavioral genetics has been con-
ducted for many years, the field-​defining text was published only in 1960 (Fuller & 
Thompson, 1960). Since that date, discoveries in behavioral genetics have grown at a 
rate that few other fields in the behavioral sciences can match. This growth is accel-
erating following the sequencing of the human genome, that is, identifying each of 
the more than 3 billion steps in the spiral staircase that is DNA, leading to the iden-
tification of the DNA differences among us that are responsible for the heritability of 
normal and abnormal behavior.

Recognition of the importance of genetics is one of the most dramatic changes in 
the behavioral sciences during the past several decades. Over 80 years ago, Watson’s 
(1930) behaviorism detached the behavioral sciences from their budding interest in 
heredity. A preoccupation with the environmental determinants of behavior contin-
ued until the 1970s, when a shift began toward the more balanced contemporary view 
that recognizes genetic as well as environmental influences. This shift toward genetics 
in the behavioral sciences can be seen in the increasing number of publications on 
behavioral genetics. As shown in Figure 1.1, the increase in human behavioral genetic 
publications has been meteoric, with the numbers of publications doubling on aver-
age every five years since the 1990s. During the last five years, more than 2000 papers 
were published each year.



O v er  v i e w   5

Figure 1.1  Numbers of human behavioral genetic papers published in five-​year intervals since 

the field-​defining textbook on behavioral genetics in 1960. Data from a resource of behavioral 

genetic papers (Ayorech et al., 2016).
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Historical Perspective

E veryone can cite some examples in which some degree of talent, quality of tem-

per, or other trait is characteristic of a family. Phrases like “a chip off the old 

block” and “it runs in the family” indicate a notion that behavioral traits, like physio-

logical ones, can be inherited. The concept that “like begets like” has had great prac-

tical importance in the development of domesticated animals, which have been bred 

for behavioral as well as morphological characteristics (see Chapter 5). The notion of 

inheritance, including inheritance of behavioral traits, appeared in human thought 

tens of thousands of years ago, when the domestication of the dog began.
Biological thought during recorded history was dominated by Aristotle in the 

fourth century BC, and by the teachings of Galen, a Roman, concerning anatomy in 
the second century AD. Progress in understanding biological phenomena virtually 
halted during the Middle Ages from the fifth to the fifteenth century. Then came 
the Renaissance and Leonardo da Vinci’s study of anatomy in connection with art. 
Leonardo’s work characterized the far-​ranging inquisitiveness of Renaissance schol-
ars. However, it was the exhaustive work of Andreas Vesalius on human anatomy, 
published in 1543, and the discovery of the circulation of blood by William Harvey in 
1628 that opened the doors to experimentation on the phenomena of life.

THE ERA OF DARWIN

After Harvey’s discovery, the pace of biological research quickened and many funda-
mental developments in technique and theory ensued in the following century. One 
of the cornerstones of biology was laid by the Swede Karl von Linne (better known as 
Linneaus), who, in 1735, published Systema Naturae, in which he established a system 
of taxonomic classification of all known living things. In so doing, Linneaus empha-
sized the separateness and distinctness of species. As a result, the view that species  
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were fixed and unchanging became the prevailing one. This was a view that fit the 
biblical account of creation. However, this was not the only perspective. For example, 
in the latter part of the eighteenth century the Englishman Erasmus Darwin suggested 
that plant and animal species appear capable of improvement, although he believed 
that God had so designed life. Another view was promoted by the Frenchman Jean 
Baptiste Lamarck, who argued that the deliberate efforts of an animal could result in 
modifications of the body parts involved, and that the modifications so acquired could 
be transmitted to the animal’s offspring. Changes of this sort could accumulate, so that 
eventually the characteristics of the species would change. While Lamarck was not the 
first to assume that changes acquired in this manner could be transmitted to the next 
generation, he crystallized the notion. This view became known as Lamarckism, or the 
law of use and disuse. As we shall see, this is an incorrect view of evolution, but it was 
significant in that it questioned the prevailing view that species do not change.

Charles Darwin

One of the most influential books ever written, the 1859 On the Origin of Species, was 
authored by Erasmus Darwin’s grandson, Charles Darwin (Figure 2.1). Darwin’s famous 
1831–1836 voyage around the world on the Beagle led him to observe the remarkable 
adaptations of species to their environments. For example, he made particularly com-
pelling observations about 14 species of finches found in a small area on the Galápagos 
Islands. The principal differences among these finches were in their beaks, and each 
beak was exactly appropriate for the particular eating habits of the species (Figure 2.2).

Figure 2.1  Charles Darwin as a young 

man. (Fine Art / Corbis.)
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Figure 2.2  The 14 species of finches in the Galápagos Islands and Cocos Island.  

(a) A woodpecker-​like finch that uses a twig or cactus spine instead of its tongue to dislodge 

insects from tree-​bark crevices. (b–​e) Insect eaters. (f, g) Vegetarians. (h) The Cocos Island 

finch. (i–​n) The birds on the ground eat seeds. Note the powerful beak of (i), which lives on hard 

seeds. (Reproduced with permission. Copyright © 1953 Scientific American, a division of Nature 

America, Inc. All rights reserved.)
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Theology of the time proposed an “argument from design,” which viewed the 
adaptation of animals and plants to the circumstances of their lives as evidence of the 
Creator’s wisdom. Such exquisite design, so the argument went, implied a “Designer.” 
Darwin was asked to serve as a naturalist on the surveying voyage of the Beagle in 
order to provide more examples for the “argument from design.” However, during 
his voyage, Darwin began to realize that species, such as the Galápagos finches, were 
not designed once and for all. This realization led to his heretical theory that species 
evolve one from another: “Seeing this gradation and diversity of structure in one 
small, intimately related group of birds, one might really fancy that from an original 
paucity of birds in this archipelago, one species had been taken and modified for 
different ends” (Darwin, 1896, p.  380). For over 20 years after his voyage, Darwin 
gradually and systematically marshaled evidence for his theory of evolution.

Darwin’s theory of evolution begins with variation within a population. Varia-
tion exists among individuals in a population due, at least in part, to heredity. If the 
likelihood of surviving to maturity and reproducing is influenced even to a slight 
degree by a particular trait, offspring of the survivors will show more of the trait than 
their parents’ generation. In this way, generation after generation, the characteristics 
of a population can gradually change. Over a sufficiently long period, the cumulative 
changes can be so great that populations become different species, no longer capable 
of interbreeding successfully.

For example, the different species of finches that Darwin saw on the Galápagos 
Islands may have evolved because individuals in a progenitor species differed slightly 
in the size and shape of their beaks. Certain individuals with slightly more powerful 
beaks may have been more able to break open hard seeds. Such individuals could 
survive and reproduce when seeds were the main source of food. The beaks of other 
individuals may have been better at catching insects, and this shape gave those indi-
viduals a selective advantage at certain times. Generation after generation, these 
slight differences led to other differences, such as different habitats. For instance, seed 
eaters made their living on the ground and insect eaters lived in the trees. Eventu-
ally, the differences became so great that offspring of the seed eaters and insect eaters 
rarely interbred. Different species were born. A Pulitzer Prize–​winning account of 
25 years of repeated observations of Darwin’s finches, The Beak of the Finch (Weiner, 
1994), shows natural selection in action (see “Galapagos Finch Evolution”: https://
www.youtube.com/watch?v=mcM23M-CCog).

Although this is the way the story is usually told, another possibility is that 
behavioral differences in habitat preference led the way to the evolution of beaks 
rather than the other way around. That is, heritable individual differences in habitat 
preference may have existed that led some finches to prefer life on the ground and 
others to prefer life in the trees. The other differences, such as beak size and shape, 
may have been secondary to these habitat differences. Although this proposal may 
seem to be splitting hairs, this alternative story makes two points. First, it is difficult 
to know the mechanisms driving evolutionary change. Second, although behavior is 

https://www.youtube.com/watch?v=mcM23M-CCog
https://www.youtube.com/watch?v=mcM23M-CCog
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not as well preserved as physical characteristics, it is likely that behavior is often at 
the cutting edge of natural selection. Artificial selection studies (Chapter 5) show that 
behavior can be changed through selection, as seen in the dramatic behavioral differ-
ences between breeds of dogs (see Figure 5.1), and that form often follows function.

Darwin’s most notable contribution to the theory of evolution was his principle 
of natural selection:

Owing to this struggle [for life], variations, however slight and from whatever cause 
proceeding, if they be in any degree profitable to the individuals of a species, in their 
infinitely complex relations to other organic beings and to their physical conditions 
of life, will tend to the preservation of such individuals, and will generally be inher-
ited by the offspring. The offspring, also, will thus have a better chance of surviving, 
for, of the many individuals of any species which are periodically born, but a small 
number can survive. (Darwin, 1859, pp. 51–52)

Although Darwin used the phrase “survival of the fittest” to characterize this 
principle of natural selection, it could more appropriately be called reproduction of 
the fittest. Mere survival is necessary, but it is not sufficient. Most important is the 
relative number of surviving and reproducing offspring.

Darwin convinced the scientific world that species evolved by means of natural 
selection. Origin of Species is at the top of most scientists’ lists of books of the millennium — ​
his theory has changed how we think about all of the life sciences. Nonetheless, out-
side science, controversy continues (Pinker, 2002). For instance, in the United States, 
boards of education in several states have attempted to curtail the teaching of evolution 
in response to pressure from creationists who believe in a literal biblical interpretation 
of creation. Advocates of creationism have lost every major U.S. federal court case for 
the past 40 years (Berkman & Plutzer, 2010). Nevertheless, recent research investigating 
the evolution-​creationism battle in state governments and classrooms has revealed the 
reluctance of teachers to teach evolutionary biology. In fact, 60 percent of teachers are 
strong advocates neither for evolution nor for nonscientific alternatives. Interestingly, 
much of this hesitancy appears to be due, at least in part, to a lack of confidence in their 
ability to defend evolution, perhaps because of their own lack of exposure to courses on 
evolution (Berkman & Plutzer, 2011). However, most people, but not everyone — ​see, 
for example, Dawkins (2006) versus Collins (2006) — accept the notion that science and 
religion occupy distinctly different realms, with science operating in the realm of verifi-
able facts and religion focused on purpose, meaning, and values. “Respectful noninterfer-
ence” between science and religion is needed (Gould, 2011).

Scientifically, Darwin’s theory of evolution had serious gaps, mainly because the 
mechanism for heredity, the gene, was not yet understood. Gregor Mendel’s work 
on heredity was not published until seven years after the publication of the Origin of 
Species, and even then it was ignored until the turn of the century. Mendel provided 
the answer to the riddle of inheritance, which led to an understanding of how vari-
ability arises through mutations and how genetic variability is maintained genera-
tion after generation (Chapter 3). A rewrite of the Origin of Species points out how 
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evolutionary theory and research have changed since Darwin and shows how pre-
scient Darwin was (Jones, 1999).

Darwin considered behavioral traits to be just as subject to natural selection as 
physical ones. In the Origin of Species, an entire chapter is devoted to instinctive behavior 
patterns. In a later book, The Descent of Man and Selection in Relation to Sex, Darwin (1871) 
discussed intellectual and moral traits in animals and humans, concluding that the dif-
ference between the mind of a human being and the mind of an animal “is certainly one 
of degree and not of kind” (p. 101). Over 150 years after the publication of the Origin of 
Species, Darwin’s influential theory is still highly relevant for the study of human behavior.

Francis Galton

Among the supporters and admirers of Darwin at this time was another one of 
Erasmus Darwin’s grandsons, Francis Galton (see Box 2.1). By the time The Origin 
of Species was published, Galton had already established himself as an inventor and 
explorer; however, upon reading Darwin’s work, Galton’s curiosity and talents were 
directed to biological phenomena. He soon developed what was to be a central and 
abiding interest for the rest of his life: the inheritance of mental characteristics.

In 1865, two articles by Galton, jointly titled “Hereditary Talent and Character,” 
were published in MacMillan’s Magazine. Four years later a greatly expanded dis-
cussion was published under the title Hereditary Genius: An Inquiry into Its Laws and 
Consequences. The general argument presented in this work is that a greater number 
of extremely able individuals are found among the relatives of persons endowed with 
high mental ability than would be expected by chance. Further, Galton discovered 
that the closer the family relatedness, the higher the incidence of individuals with 
high mental ability.

In his work on mental characteristics, Galton realized the importance of proper 
assessment. In a prodigious program of research, he developed apparatus and pro-
cedures for measuring auditory thresholds, visual acuity, color vision, touch, smell, 
judgment of the vertical, judgment of length, weight discrimination, reaction time, 
and memory span. Of course, with all of these data, the problems of properly express-
ing and evaluating the data obtained were formidable, and Galton then turned his 
remarkable energies to statistics. He pioneered the development of the concepts of 
the median, percentiles, and correlation.

Galton introduced (1876) the use of twins to assess the roles of nature (inheri-
tance) and nurture (environment). The essential question in his examination of twins 
was whether twins who were alike at birth became more dissimilar as a consequence 
of any dissimilarities in their nurture. Conversely, did twins who were unlike at birth 
become more similar as a consequence of similar nurture? Galton’s work set the 
stage for the essence of the twin method, which was discovered 50 years later (Rende, 
Plomin, & Vandenberg, 1990) and is the topic of Chapter 6.

The ten years between The Origin of Species and Hereditary Genius had not 
been  sufficient for Darwin’s theory to be completely accepted. However, for those 
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F
rancis Galton’s life (1822–1911) as 

an inventor and explorer changed 

as he read the now-​famous book 

on evolution written by Charles Darwin, 

his half cousin. Galton understood 

that evolution depends on heredity, 

and he began to ask whether hered-

ity affects human behavior. He sug-

gested the major methods of human 

behavioral genetics — ​family, twin, and 

adoption designs — ​and conducted the 

first systematic family studies showing 

that behavioral traits “run in families.” 

Galton invented correlation, one of 

the fundamental statistics in all of 

science, in order to quantify degrees 

of resemblance among family members 

(Gillham, 2001).

One of Galton’s studies on mental 

ability was reported in an 1869 book, 

Hereditary Genius: An Enquiry into 

Its Laws and Consequences. Because 

there was no satisfactory way at the 

time to measure mental ability, Galton 

had to rely on reputation as an index. 

By “reputation,” he did not mean 

notoriety for a single act, nor mere 

social or official position, but “the 

reputation of a leader of opinion, or an 

originator, of a man to whom the world 

deliberately acknowledges itself largely 

indebted” (1869, p. 37). Galton identi-

fied approximately 1000 “eminent” 

men and found that they belonged to 

only 300 families, a finding indicating 

that the tendency toward eminence is 

familial.

Taking the most eminent man in each 

family as a reference point, the other 

individuals who attained eminence were 

tabulated with respect to closeness of 

family relationship. As indicated in the 

diagram on the facing page, eminent 

status was more likely to appear in 

close relatives, with the likelihood of 

eminence decreasing as the degree of 

relationship became more remote.

Box 2.1  Francis Galton

(Mary Evans Picture Library / Alamy.)

who accepted Darwin’s theory, Galton’s work was a natural and logical extension: 
humans differ from animals most strikingly in mental ability; humans, like other 
animals, have evolved; evolution works by inheritance; mental traits are heritable. 
Galton’s conclusion that “nature prevails enormously over nurture” (Galton, 1883, 
p. 241) set the stage for a needless battle by pitting nature against nurture. Nonethe-
less, his work was pivotal in documenting the range of variation in human behavior 
and in suggesting that heredity underlies behavioral variation.
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Galton was aware of the possible 

objection that relatives of eminent men 

share social, educational, and financial 

advantages. One of his counterargu-

ments to this was that many men had 

risen to high rank from humble back-

grounds. Nonetheless, such counterar-

guments do not today justify Galton’s 

assertion that genius is solely a matter 

of nature (heredity) rather than nurture 

(environment). Family studies by them-

selves cannot disentangle genetic and 

environmental influences.

Galton famously argued that “there 

is no escape from the conclusion that 

nature prevails enormously over nurture” 

(Galton, 1883). This exaggerated claim 

launched a century-​long controversy 

about nature versus nurture. Despite 

this needless controversy, Galton was 

a pioneer in documenting the wide 

range of behavioral differences between 

people and in proposing that heredity 

is responsible for these differences. For 

this reason, Galton can be considered 

the father of behavioral genetics.

Great-grandfathers (0.5%)

Grandfathers (7.5%)

FATHERS (26.0%)

300 MOST DISTINGUISHED MEN

SONS (36.0%)

Grandsons (9.5%)

Great-grandsons (1.5%)

Great-uncles (0.5%)

Uncles (4.5%)

BROTHERS (23.0%)

Nephews (4.8%)

Great-nephews (2.0%)

First cousins (1.5%)

Galton’s work was neither completely in step nor completely out of step with 
his times. He lived during a period of great intellectual turmoil in biology. His work 
was both a product and a cause of the advances that were made. He was not the 
first to insist on the importance of heredity in traits of behavior nor was he the first 
to place his conclusions in an evolutionary context. But it was Galton who cham-
pioned the idea of the inheritance of behavior and vigorously consolidated and 
extended it. In effect, we may regard Galton’s efforts as the beginning of behavioral 
genetics.
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PRE-​MENDELIAN CONCEPTS OF HEREDITY 
AND VARIATION

Neither Darwin nor Galton understood the mechanism by which heredity works or 
how heritable variation is maintained.

Heredity

Long before Darwin and Galton, there had been substantial evidence of the importance 
of heredity, although its laws had proved extremely resistant to analysis. In particular, 
a vast amount of data had been accumulated from plant and animal breeding. Many 
offspring bore a closer resemblance to one parent than to the other. It was also common 
for the appearance of offspring to be intermediate between the two parents. But two 
offspring from the same parents could also be quite unlike. As J. L. Lush described the 
situation considerably later, the first rule of breeding is that “like produces like,” while 
the second rule is that “like does not always produce like” (1951, p. 496).

The theory of heredity that seemed to explain most adequately the confusion 
of facts in Darwin’s time was the “provisional hypothesis of pangenesis.” In this 
view, the cells of the body, “besides having the power, as is generally admitted, of 
growing by self-​division, throw off free and minute atoms of their contents, that is 
gemmules. These multiply and aggregate themselves into buds and the sexual ele-
ments” (Darwin, 1868, p.  481). Gemmules, miniature replicas of the parent cells, 
were presumably thrown off by each cell throughout its course of development. In 
embryogenesis and later development, gemmules from the parents, originally thrown 
off during various developmental periods, would come into play at the proper times, 
thus directing the development of a new organ like that of the parents. The theory 
of pangenesis was quite reasonable (although it was wrong). It was particularly com-
pelling because it was compatible with Lamarck’s notion of “use and disuse” as the 
source of variation in evolution.

Variation

The source of heritable variation was the most difficult component of the model of 
evolution for Darwin to explain. Without heritable variation in each generation, evo-
lution could not continue. Because children often express some of the same charac-
teristics of each of their parents, it was commonly accepted that characteristics of 
parents merged or blended in their offspring. The troublesome implication of such a 
“blending” hypothesis was that variation would be greatly reduced (in fact, roughly 
halved) each generation. For example, if one parent were tall and the other short, 
the offspring would be average height. Thus, the blending hypothesis implies that 
variability would rapidly diminish to a trivial level if it were not replenished in some 
manner. Although Darwin worried about this problem, he never resolved it. He sug-
gested two ways in which variability might be induced, but both of these assumed 



H i s t o r i ca  l  P er  s pect    i v e   1 5

that environmental factors altered the stuff of heredity. The theory of pangenesis 
suggested that gemmules could reflect changes in environment. Darwin vaguely con-
cluded that changes in the conditions of life in some way altered gemmules in the 
reproductive systems of animals so that their offspring were more variable than they 
would have been under stable conditions. Ordinarily, this increment in variability 
would be random. Natural selection would then preserve the deviants that by chance 
happened to be better adapted as a consequence of their deviation.

Sometimes, however, an environmental condition might induce systematic change. 
Darwin hesitatingly accepted Lamarckian theory of use and disuse to suggest that 
acquired characteristics can be inherited. In The Descent of Man, Darwin speculated 
about the alleged longer legs and shorter arms of sailors as compared to soldiers: 
“Whether the several foregoing modifications would become hereditary, if the same 
habits of life were followed during many generations, is not known, but it is probable” 
(1871, p.  418). In some of his writings, Darwin seemed sure that variations in life 
experiences would increase genetic variability: “there can be no doubt that use in 
our domestic animals has strengthened and enlarged certain parts, and disuse dimin-
ished them; and that such modifications are inherited” (1859, p.  102). Likewise he 
stated, with respect to behavioral characteristics, that “some intelligent actions, after 
being performed during several generations, become converted into instincts and are 
inherited” (1871, p. 447). However, for the most part, Darwin was unsure of the source 
of variability: “Our ignorance of the laws of variation is profound. Not in one case out 
of a hundred can we pretend to assign any reason why this or that part has varied . . . ​
Habit in producing constitutional peculiarities and use in strengthening and disuse in 
weakening and diminishing organs, appear in many cases to have been potent in their 
effects” (1859, p. 122).

While Darwin struggled with these issues, in his files was an unopened man-
uscript by an Augustinian monk, Gregor Mendel (Allen, 1975). As we will see in 
Chapter 3, Mendel’s research on pea plants in the garden of a monastery at Brunn, 
Moravia, provided the answer to the riddle of inheritance.

Summary

The field of behavioral genetics is said to have a long past but a short history (Loehlin, 
2009). While one cannot specify an exact date that behavioral genetics became a dis-
tinct scientific discipline, the notion of inheritance of behavioral traits appeared in 
ancient times with the domestication of dogs for behavioral as well as physical traits. 
The history of behavioral genetics really began with Darwin, Galton, and as we will 
see in Chapter  3, Mendel. Darwin’s theory of natural selection as an explanation 
for the origin of species made a major impact on scientific thinking. Galton was the 
first to study the inheritance of mental characteristics and to suggest using twins and 
adoptees to study nature-​nurture problems.
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Mendel’s Laws and 
Beyond

MENDEL’S LAWS

Huntington disease (HD) begins with personality changes, forgetfulness, and invol-
untary movements. It typically strikes in middle adulthood; during the next 15 to 
20  years, it leads to complete loss of motor control and intellectual function. No 
treatment has been found to halt or delay the inexorable decline. This is the disease 
that killed the famous Depression-​era folksinger Woody Guthrie. Although it affects 
only about 1 in 20,000 individuals, a quarter of a million people in the world today 
will eventually develop Huntington disease.

When the disease was traced through many generations, it showed a consistent 
pattern of heredity. Afflicted individuals had one parent who also had the disease, 
and approximately half the children of an affected parent developed the disease. (See 
Figure 3.1 for an explanation of symbols traditionally used to describe family trees, 
called pedigrees. Figure  3.2 shows an example of a Huntington disease pedigree.) 

FIGURE 3.1  Symbols used to describe family 

pedigrees.

Male

Female

Parents

Children

Carriers

Mating

Affected

FIGURE 3.2  Huntington disease. HD 

individuals have one HD parent. About 

50 percent of the offspring of HD parents 

will have HD.
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What rules of heredity are at work? Why does this lethal condition persist in the 
population? We will answer these questions in the next section, but first, consider 
another inherited disorder.

In the 1930s, a Norwegian biochemist discovered an excess of phenylpyruvic 
acid in the urine of a pair of mentally disabled siblings and suspected that the con-
dition was due to a disturbance in the metabolism of phenylalanine. Phenylalanine 
is one of the essential amino acids, which are the building blocks of proteins, and is 
present in many foods in the normal human diet. Other intellectually disabled indi-
viduals were soon found with this same excess. This type of mental disability came to 
be known as phenylketonuria (PKU).

Although the frequency of PKU is only about 1 in 10,000, PKU once accounted 
for about 1 percent of the mentally disabled institutionalized population. PKU has a 
pattern of inheritance very different from that of Huntington disease. PKU individu-
als do not usually have affected parents. Although this might make it seem at first 
glance as if PKU is not inherited, PKU does in fact “run in families.” If one child in a 
family has PKU, the risk for siblings to develop it is about 25 percent, even though the 
parents themselves may not be affected (Figure 3.3). One more piece of the puzzle is 
the observation that when parents are genetically related (“blood” relatives), typically 
in marriages between cousins, they are more likely to have children with PKU. How 
does heredity work in this case?

Mendel’s First Law of Heredity

Although Huntington disease and phenylketonuria, two examples of hereditary 
transmission of mental disorders, may seem complicated, they can be explained by a 
simple set of rules about heredity. The essence of these rules was worked out more 
than a century ago by Gregor Mendel (Mendel, 1866).

Mendel studied inheritance in pea plants in the garden of his monastery in what 
is now the Czech Republic (Box 3.1). On the basis of his many experiments, Mendel 
concluded that there are two “elements” of heredity for each trait in each individual 
and that these two elements separate, or segregate, during reproduction. Offspring 
receive one of the two elements from each parent. In addition, Mendel concluded 
that one of these elements can “dominate” the other, so that an individual with just 
one dominant element will display the trait. A nondominant, or recessive, element is 
expressed only if both elements are recessive. These conclusions are the essence of 
Mendel’s first law, the law of segregation.

FIGURE 3.3  Phenylketonuria. PKU individuals do not typically 

have parents with PKU. If one child has PKU, the risk for other 

siblings is 25 percent. As explained later, parents in such 

cases are carriers for one allele of the PKU gene, but a child 

must have two alleles in order to be afflicted with recessive 

disorders such as PKU.
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B
efore Mendel (1822–1884), much 

of the research on heredity 

involved crossing plants of differ-

ent species. But the offspring of these 

matings were usually sterile, which 

meant that succeeding generations 

could not be studied. Another problem 

with research before Mendel was that 

features of the plants investigated were 

complexly determined. Mendel’s suc-

cess can be attributed in large part to 

the absence of these problems.

Mendel crossed different varieties 

of pea plants of the same species; thus 

the offspring were fertile. In addi-

tion, he picked simple either-​or traits, 

qualitative traits, that happened to be 

due to single genes. He was also lucky 

that in the traits he chose, one allele 

completely dominated the expres-

sion of the other allele, which is not 

always the case. However, one feature 

of Mendel’s research was not due to 

luck. Over seven years, while raising 

over 28,000 pea plants, he counted all 

offspring rather than being content, 

as researchers before him had been, 

with a verbal summary of the typical 

results.

Mendel studied seven qualitative 

traits of the pea plant, such as whether 

the seed was smooth or wrinkled. He 

obtained 22 varieties of the pea plant 

that differed in these seven characteris-

tics. All the varieties were ­true-​­breeding 

plants: those that always yield the same 

result when crossed with the same kind 

of plant. Mendel presented the results of 

eight years of research on the pea plant 

in his 1866 paper. This paper, “Experi-

ments with Plant Hybrids,” now forms 

the cornerstone of genetics and is one 

of the most influential publications in 

the history of science.

In one experiment, Mendel crossed 

true-​breeding plants with smooth 

seeds and true-​breeding plants with 

wrinkled seeds. Later in the summer, 

when he opened the pods containing 

their offspring (called the F1, or first filial 

generation), he found that all of them 

had smooth seeds. This result indicated 

that the then-​traditional view of blend-

ing inheritance was not correct. That is, 

the F1 did not have seeds that were even 

moderately wrinkled. These F1 plants 

were fertile, which allowed Mendel to 

take the next step of allowing plants 

of the F1 generation to self-​fertilize 

and then studying their offspring, F2. 

BOX 3.1  Gregor Mendel’s Luck

Gregor Johann Mendel. A photograph taken 

at the time of his research. (Authenticated 

News / Getty Images.)



M e n del   ’ s  L a w s  a n d  B e y o n d   1 9

The results were striking: Of the 7324 

seeds from the F2, 5474 were smooth 

and 1850 were wrinkled. That is, 3 / 4 

of the offspring had smooth seeds and 

1 / 4 had wrinkled seeds. This result 

indicates that the factor responsible 

for wrinkled seeds had not been lost in 

the F1 generation but had merely been 

dominated by the factor causing smooth 

seeds. The figure below summarizes 

Mendel’s results.

Given these observations, Mendel 

deduced a simple explanation involv-

ing two hypotheses. First, each indi-

vidual has two hereditary “elements,” 

now called alleles (alternate forms of a 

gene). For Mendel’s pea plants, these 

alleles determined whether the seed 

was wrinkled or smooth. Thus, each 

parent has two alleles (either the same 

or different) but transmits only one of 

the alleles to each offspring. The second 

hypothesis is that, when an individual’s 

alleles are different, one allele can domi-

nate the other. These two hypotheses 

neatly explain the data (see the figure 

above right).

The true-​breeding parent plant 

with smooth seeds has two alleles for 

smooth seeds (SS). The true-​breeding 

parent plant with wrinkled seeds has 

two alleles for wrinkled seeds (ss). 

First-​generation (F1) offspring receive 

one allele from each parent and are 

therefore Ss. Because S dominates s, 

F1 plants will have smooth seeds. The 

real test is the F2 population. Mendel’s 

theory predicts that when F1 individu-

als are self-​fertilized or crossed with 

other F1 individuals, 1 / 4 of the F2 should 

be SS, 1 / 2 Ss, and 1 / 4 ss. Assuming 

S dominates s, then Ss should have 

smooth seeds like the SS. Thus, 3 / 4 

of the F2 should have smooth seeds 

and 1 / 4 should have wrinkled, which is 

exactly what Mendel’s data indicated. 

Mendel also discovered that the inheri-

tance of one trait is not affected by the 

inheritance of another trait. Each trait is 

inherited in the expected 3:1 ratio.

Mendel was not so lucky in terms of 

acknowledgment of his work during his 

lifetime. When Mendel published the 

paper about his theory of inheritance 

in 1866, reprints were sent to scientists 

and libraries in Europe and the United 

States. However, for 35 years, Mendel’s 

findings on the pea plant were ignored 

by most biologists, who were more 

interested in evolutionary processes 

that could account for change rather 

than continuity. Mendel died in 1884 

without knowing the profound impact 

that his experiments would have during 

the twentieth century.

True-breeding
parents

Smooth

All smooth

Wrinkled

F1

F2
3
4 Smooth 1

4 Wrinkled

True-breeding
parents

SS

Ss (S dominant)

ss

F1

F2

3
4 Smooth Wrinkled1

4

1
4

1
2 ss

1
4 SS Ss
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No one paid any attention to Mendel’s law of heredity for over 30 years. Finally, 
in the early 1900s, several scientists recognized that Mendel’s law is a general 
law of inheritance, not one peculiar to the pea plant. Mendel’s “elements” are now 
known as genes, the basic units of heredity. Some genes may possibly have only one 
form within a population, for example, in all members of a variety of pea plants or 
all members of an inbred strain of mice (see Chapter 5). However, genetic analy-
ses focus on genes that have different forms: differences that cause some pea seeds 
to be wrinkled or smooth, or that cause some people to have Huntington disease 
or  PKU.  The alternative forms of a gene are called alleles. An individual’s combi-
nation of alleles is its genotype, whereas the observed traits are its phenotype. The 
fundamental issue of heredity in the behavioral sciences is the extent to which differ-
ences in genotype account for differences in phenotype, observed differences among 
individuals.

This chapter began with two very different examples of inherited disorders. How 
can Mendel’s law of segregation explain both examples?

Huntington Disease  Figure 3.4 shows how Mendel’s law explains the inheritance 
of Huntington disease. HD is caused by a dominant allele. Affected individuals have 
one dominant allele (H) and one recessive, normal allele (h). (It is rare that an HD 
individual has two H alleles, an event that would require both parents to have HD.) 
Unaffected individuals have two normal alleles.

As shown in Figure  3.4, a parent with HD whose genotype is Hh produces 
gametes (egg or sperm) with either the H or the h allele. The unaffected (hh) parent’s 
gametes all have an h allele. The four possible combinations of these gametes from the 
mother and father result in the offspring genotypes shown at the bottom of Figure 3.4. 
Offspring will always inherit the normal h allele from the unaffected parent, but they 
have a 50 percent chance of inheriting the H allele from the HD parent. This pattern 
of inheritance explains why HD individuals always have a parent with HD and why 
50 percent of the offspring of an HD parent develop the disease.

FIGURE 3.4  Huntington disease is 

due to a single gene, with the allele 

for HD dominant. H represents the 

dominant HD allele, and h is the 

normal recessive allele. Gametes 

are sex cells (eggs and sperm); each 

carries just one allele. The risk of HD 

in the offspring is 50 percent.

Parents Hh

H h h h

Hh Hh hh hh

hh

Gametes

Offspring

50% HD 50% Unaffected
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Why does this lethal condition persist in the population? If HD had its effect 
early in life, HD individuals would not live to reproduce. In one generation, HD 
would no longer exist because any individual with the HD allele would not live long 
enough to reproduce. The dominant allele for HD is maintained from one generation 
to the next because its lethal effect is not expressed until after the reproductive years.

A particularly traumatic feature of HD is that offspring of HD parents know they 
have a 50 percent chance of developing the disease and of passing on the HD gene. 
In 1983, DNA markers were used to show that the gene for HD is on chromosome 4, 
as will be discussed in Chapter 4. In 1993, the HD gene itself was identified. Now it is 
possible to determine for certain whether a person has the HD gene.

This genetic advance raises its own problems. If one of your parents had HD, you 
would be able to find out whether or not you have the HD allele. You would have a 
50 percent chance of finding that you do not have the HD allele, but you would also 
have a 50 percent chance of finding that you do have the HD allele and will eventu-
ally die from it. In fact, most people at risk for HD decide not to take the test (Walker, 
2007). Identifying the gene does, however, make it possible to determine whether a 
fetus has the HD allele and holds out the promise of future interventions that can 
correct the HD defect (Chapter 9).

Phenylketonuria  Mendel’s law also explains the inheritance of PKU. Unlike HD, 
PKU is due to the presence of two recessive alleles. For offspring to be affected, they 
must have two copies of the PKU allele. Those offspring with only one copy of the 
PKU allele are not afflicted with the disorder. They are called carriers because they 
carry the allele and can pass it on to their offspring. Figure 3.5 illustrates the inheri-
tance of PKU from two unaffected carrier parents. Each parent has one PKU allele 
and one normal allele. Offspring have a 50 percent chance of inheriting the PKU 
allele from one parent and a 50 percent chance of inheriting the PKU allele from the 
other parent. The chance of both these things happening is 25 percent. If you flip a 
coin, the chance of heads is 50 percent. The chance of getting two heads in a row is 
25 percent (i.e., 50 percent times 50 percent).

This pattern of inheritance explains why unaffected parents have children with 
PKU and why the risk of PKU in offspring is 25 percent when both parents are carriers. 
For PKU and other recessive disorders, identification of the genes makes it possible to 
determine whether potential parents are carriers. Identification of the PKU gene also 
makes it possible to determine whether a particular pregnancy involves an affected 
fetus. In fact, all newborns in most countries are screened for elevated phenylalanine 
levels in their blood, because early diagnosis of PKU can help parents prevent retar-
dation by serving low-​phenylalanine diets to their affected children.

Figure 3.5 also shows that 50 percent of children born of two carrier parents are 
likely to be carriers, and 25 percent will inherit the normal allele from both parents. 
If you understand how a recessive trait such as PKU is inherited, you should be able 
to work out the risk for PKU in offspring if one parent has PKU and the other parent 
is a carrier. (The risk is 50 percent.)



2 2   C H A P T E R  T H R E E

FIGURE 3.5  PKU is inherited as a 

single gene. The allele that causes 

PKU is recessive. P represents the 

normal dominant allele, and p is 

the recessive allele for PKU. When 

both parents are carriers, the risk of 

PKU for their children is 25 percent.

Parents Pp

P p P p

PP Pp Pp pp

Pp

Gametes

Offspring

25% PKU25% Unaffected

50% Carriers

I
f you randomly mate F2 plants to 

obtain an F3 generation, the frequen-

cies of the S and s alleles will be the 

same as in the F2 generation, as will the 

frequencies of the SS, Ss, and ss geno-

types. Shortly after the rediscovery of 

Mendel’s law in the early 1900s, this 

implication of Mendel’s law was formal-

ized and eventually called the Hardy-​

Weinberg equilibrium: The frequencies 

of alleles and genotypes do not change 

across generations unless forces such 

as natural selection or migration change 

them. This rule is the basis for a disci-

pline called population genetics, whose 

practitioners study forces that change 

allelic frequencies.

Hardy-​Weinberg equilibrium 

also makes it possible to estimate 

frequencies of alleles and genotypes. 

The frequencies of the dominant and 

recessive alleles are usually referred to 

as p and q, respectively. Eggs and sperm 

have just one allele for each gene. The 

chance that any particular egg or sperm 

has the dominant allele is p. Because 

sperm and egg unite at random, the 

chance that a sperm with the dominant 

allele fertilizes an egg with the dominant 

allele is the product of the two frequen-

cies, p 3 p  p2. Thus, p2 is the fre-

quency of offspring with two dominant 

alleles (called the homozygous dominant 

genotype). In the same way, the homo-

zygous recessive genotype has a fre-

quency of q2. As shown in the diagram, 

the frequency of offspring with one 

dominant allele and one recessive allele 

BOX 3.2  How Do We Know That 1 in 50 People  
Are Carriers for PKU?

How does this explain why recessive traits like PKU are seen more often in off-
spring whose parents are genetically related? Although PKU is rare (1 in 10,000), 
about 1 in 50 individuals are carriers of one PKU allele (Box 3.2). If you are a PKU 
carrier, your chance of marrying someone who is also a carrier is 2 percent. However, 
if you marry someone genetically related to you, the PKU allele must be in your 
family, so the chances are much greater than 2 percent that your spouse will also 
carry the PKU allele.
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It is very likely that we all carry at least one harmful recessive gene of some sort. 
However, the risk that our spouses are also carriers for the same disorder is small unless 
we are genetically related to them. In contrast, about half the children born to incestu-
ous relationships between father and daughter show severe genetic abnormalities, often 
including childhood death or mental retardation (Wolf & Durham, 2005). This pattern 
of inheritance explains why most severe genetic disorders are recessive: Because carriers 
of recessive alleles do not show the disorder, they escape eradication by natural selection.

It should be noted that even single-​gene disorders such as PKU are not so simple, 
because many hundreds of different mutations of the gene occur and these have dif-
ferent effects (Mitchell, Trakadis & Scriver, 2011). New PKU mutations emerge in 
individuals with no family history of the disorder. Some single-​gene disorders are 
largely caused by new mutations. In addition, age of onset may vary for single-​gene 
disorders, as it does in the case of HD.

Mendel’s Second Law of Heredity

Not only do the alleles for Huntington disease segregate independently during gam-
ete formation, they are also inherited independently from the alleles for PKU. This 
finding makes sense, because Huntington disease and PKU are caused by different 
genes; each of the two genes is inherited independently. Mendel experimented sys-
tematically with crosses between varieties of pea plants that differed in two or more 

(called the heterozygous genotype) 

is 2pq. In other words, if a population 

is in Hardy-​Weinberg equilibrium, the 

frequency of the offspring genotypes 

is p2 1 2pq 1 q2. In populations with 

random mating, the expected genotypic 

frequencies are merely the product of 

p 1 q for the mothers’ alleles and p 1 q 

for the fathers’ alleles. That is, (p 1 q)2  

p2 1 2pq 1 q2.

For PKU, q2, the frequency of PKU 

individuals (homozygous recessive) is 

0.0001. If you know q2, you can esti-

mate the frequency of the PKU allele 

and PKU carriers, assuming Hardy-​

Weinberg equilibrium. The frequency of 

the PKU allele is q, which is the square 

root of q2. The square root of 0.0001 

is 0.01, so that 1 in 100 alleles in the 

population are the recessive PKU alleles. 

If there are only two alleles at the PKU 

locus, then the frequency of the domi-

nant allele (p) is 1 2 0.01  0.99. What is 

the frequency of carriers? Because car-

riers are heterozygous genotypes with 

one dominant allele and one recessive 

allele, the frequency of carriers of the 

PKU allele is 1 in 50 (that is, 2pq  2 3 

0.99 3 0.01  0.02).

Eggs

Sperm

Frequencies p

p p2 pq

pq q2

q

q
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traits. He found that alleles for the two genes assort independently. In other words, 
the inheritance of one gene is not affected by the inheritance of another gene. This is 
Mendel’s law of independent assortment.

Most important about Mendel’s second law are its exceptions. We now know 
that genes are not just floating around in eggs and sperm. They are carried on chro-
mosomes. The term chromosome literally means “colored body,” because in certain 
laboratory preparations the staining characteristics of these structures are different 
from those of the rest of the nucleus of the cell. Genes are located at places called 
loci (singular, locus, from the Latin, meaning “place”) on chromosomes. Eggs contain 
just one chromosome from each pair of the mother’s set of chromosomes, and sperm 
contain just one from each pair of the father’s set. An egg fertilized by a sperm thus 
has the full chromosome complement, which, in humans, is 23 pairs of chromosomes. 
Chromosomes are discussed in more detail in Chapter 4.

When Mendel studied the inheritance of two traits at the same time (let’s call 
them A and B), he crossed true-​breeding parents that showed the dominant trait for 
both A and B with parents that showed the recessive forms for A and B. He found 
second-​generation (F2) offspring of all four possible types: dominant for A and B, 
dominant for A and recessive for B, recessive for A and dominant for B, and recessive 
for A and B. The frequencies of the four types of offspring were as expected if A and 
B were inherited independently. Mendel’s law is violated, however, when genes for 
two traits are close together on the same chromosome. If Mendel had studied the joint 
inheritance of two such traits, the results would have surprised him. The two traits 
would not have been inherited independently.

Figure 3.6 illustrates what would happen if the genes for traits A and B were 
very close together on the same chromosome. Instead of finding all four types of F2 
offspring, Mendel would have found only two types: dominant for both A and B and 
recessive for both A and B.

The reason why such violations of Mendel’s second law are important is that 
they make it possible to map genes to chromosomes. If the inheritance of a particular 
pair of genes violates Mendel’s second law, then it must mean that they tend to be 

KEY CONCEPTS

Gene: Basic unit of heredity. A sequence of DNA bases that codes for a 

particular product.  

Allele: Alternative form of a gene. 

Genotype: An individual’s combination of alleles at a particular locus. 

Phenotype: Observed or measured traits. 

Dominant allele: An allele that produces the same phenotype in an individual 

regardless of whether one or two copies are present. 

Recessive allele: An allele that produces its phenotype only when two copies 

are present.
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inherited together and thus reside on the same chromosome. This phenomenon is 
called linkage. However, it is actually not sufficient for two linked genes to be on the 
same chromosome; they must also be very close together on the chromosome. Unless 
genes are near each other on the same chromosome, they will recombine by a process 
in which chromosomes exchange parts. Recombination occurs during meiosis in the 
ovaries and testes, when gametes are produced.

Figure 3.7 illustrates recombination for three loci (A, C, B) on a single chromo-
some. The maternal chromosome, carrying the alleles A1, C1, and B2, is represented 
in white; the paternal chromosome with alleles A2, C2, and B1 is blue. During meiosis, 
each chromosome duplicates to form sister chromatids (Figure 3.7b). These sister 
chromatids may cross over one another, as shown in Figure 3.7c. This overlap hap-
pens an average of one time for each chromosome during meiosis. During this stage, 
the chromatids can break and rejoin (Figure 3.7d). Each of the chromatids will be 
transmitted to a different gamete (Figure 3.7e). Consider only the A and B loci for 
the moment. As shown in Figure 3.7e, one gamete will carry the genes A1 and B2, as 
in the mother, and one will carry A2 and B1, as in the father. The other two will carry 

FIGURE 3.6  An exception to Mendel’s second law occurs if two genes are closely linked on 

the same chromosome. The A1 allele and the B1 allele are dominant; the A2 and B2 alleles are 

recessive.
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FIGURE 3.7  Illustration of recombination. The maternal chromosome, carrying the alleles A1, C1, 

and B2, is represented in white; the paternal chromosome, with alleles A2, C2, and B1, is blue. The 

right chromatid (the duplicated chromosome produced during meiosis) of the maternal chromo-

some crosses over (recombines) with the left chromatid of the paternal chromosome.
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A1 with B1 and A2 with B2. For the latter two pairs, recombination has taken place — ​
these combinations were not present on the parental chromosomes. The probability 
of recombination between two loci on the same chromosome is a function of the 
distance between them. In Figure 3.7, for example, the A and C loci have not recom-
bined. All gametes are either A1C1 or A2C2, as in the parents, because the crossover did 
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not occur between these loci. Crossover could occur between the A and C loci, but it 
would happen less frequently than between A and B.

These facts have been used to “map” genes on chromosomes. The distance between 
two loci can be estimated by the number of recombinations per 100 gametes. This dis-
tance is called a map unit or centimorgan, named after T. H. Morgan, who first identified 
linkage groups in the fruit fly Drosophila (Morgan, Sturtevant, Muller, & Bridges, 1915). 
If two loci are far apart, like the A and B loci, recombination will separate the two loci as 
often as if the loci were on different chromosomes, and they will not appear to be linked.

To identify the location of a gene on a particular chromosome, linkage analysis can 
be used. Linkage analysis refers to techniques that use information about violations of 
independent assortment to identify the chromosomal location of a gene. DNA mark-
ers serve as signposts on the chromosomes, as discussed in Chapter 9. Since 1980, the 
power of linkage analysis has greatly increased with the discovery of millions of these 
markers. Linkage analysis looks for a violation of independent assortment between a 
trait and a DNA marker. In other words, linkage analysis assesses whether the DNA 
marker and the trait co-​assort in a family more often than expected by chance.

In 1983, the gene for Huntington disease was shown to be linked to a DNA 
marker near the tip of one of the larger chromosomes (chromosome 4; see Chapter 9) 
(Gusella et al., 1983). This was the first time that the new DNA markers had been used 
to demonstrate a linkage for a disorder for which no chemical mechanism was known. 
DNA markers that are closer to the Huntington gene have since been developed and 
have made it possible to pinpoint the gene. As noted earlier, the gene itself was finally 
located precisely in 1993.

KEY CONCEPTS

Chromosome: A threadlike structure that contains DNA and resides in the 

nucleus of cells. Humans have 23 pairs. 

Locus (plural, loci): The site of a specific gene on a chromosome. Latin for 

“place.” 

Linkage: Loci that are close together on a chromosome and thus inherited 

together within families. Linkage is an exception to Mendel’s second law of 

independent assortment. 

Recombination: A process that occurs during meiosis in which chromosomes 

exchange parts.

Once a gene has been found, two things are possible. First, the DNA variation 
responsible for the disorder can be identified. This identification provides a DNA test 
that is directly associated with the disorder in individuals and is more than just a risk 
estimate calculated on the basis of Mendel’s laws. That is, the DNA test can be used 
to diagnose the disorder in individuals regardless of information about other family 
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members. Second, the protein coded by the gene can be studied; this investigation is 
a major step toward understanding how the gene has its effect and thus can possibly 
lead to a therapy. In the case of Huntington disease, the gene codes for a previously 
unknown protein, called huntingtin. This protein interacts with many other proteins, 
which has hampered efforts to develop drug therapies (Ross et al., 2014).

Although the disease process of the Huntington gene is not yet fully understood, 
Huntington disease, like fragile X syndrome (mentioned in Chapter 1 and discussed in 
detail in Chapter 12), also involves a type of genetic defect in which a short sequence 
of DNA is repeated many times. The defective gene product slowly has its effect over 
the life course by contributing to neural death in the cerebral cortex and basal ganglia. 
This leads to the motoric and cognitive problems characteristic of Huntington disease.

Finding the PKU gene was easier because its enzyme product was known. In 
1984, the gene for PKU was found and shown to be on chromosome 12 (Lidsky et al., 
1984). For decades, PKU infants have been identified by screening for the physio-
logical effect of PKU — ​high blood phenylalanine levels — ​but this test is not highly 
accurate. Developing a DNA test for PKU has been hampered by the discovery that 
there are hundreds of different mutations at the PKU locus and that these mutations 
differ in the magnitude of their effects. This diversity contributes to the variation in 
blood phenylalanine levels among PKU individuals.

Of the several thousand single-​gene disorders known (about half of which involve 
the nervous system), the precise chromosomal location has been identified for most of 
these genes (Rabbani, Mahdieh, Hosomichi, Nakaoka, & Inoue, 2012; Zhang, 2014). 
The gene sequence and the specific mutation have been found for at least half, and this 
number is increasing. One of the goals of the Human Genome Project was to sequence 
the whole genome and identify all genes. Now the challenge to scientists is to discover 
the genetic bases of human health and disease by deciphering the genome sequence, 
understanding how genes work, and eventually developing medicines targeted to an 
individual’s genetic makeup (National Human Genome Research Institute, 2010). 
Rapid progress in these challenging areas holds the promise of identifying genes even 
for complex behaviors influenced by multiple genes as well as environmental factors.

BEYOND MENDEL’S LAWS

Complex Traits

Most psychological traits show patterns of inheritance that are much more complex 
than those of Huntington disease or PKU. Consider schizophrenia and general cogni-
tive ability (intelligence).

Schizophrenia  Schizophrenia (Chapter 13) is a severe mental condition characterized 
by thought disorders. Nearly 1 in 100 people throughout the world are afflicted by this 
disorder at some point in life, 100 times more than is the case with Huntington disease 
or PKU. Schizophrenia shows no simple pattern of inheritance like Huntington disease or 
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PKU, but it is familial (Figure 3.8). A special incidence figure used in genetic studies is 
called a morbidity risk estimate (also called the lifetime expectancy), which is the chance of 
being affected during an entire lifetime. The estimate is “age-​corrected” for the fact that 
some as yet unaffected family members have not yet lived through the period of risk. If 
you have a second-​degree relative (grandparent or aunt or uncle) who is schizophrenic, 
your risk for schizophrenia is about 4 percent, four times greater than the risk in the gen-
eral population. If a first-​degree relative (parent or sibling) is schizophrenic, your risk is 
about 9 percent. If several family members are affected, the risk is greater. If your frater-
nal twin has schizophrenia, your risk is higher than for other siblings, about 17 percent, 
even though fraternal twins are no more similar genetically than are other siblings. Most 
striking, the risk is about 48 percent for an identical twin whose co-​twin is schizophrenic. 
Identical twins develop from one embryo, which in the first few days of life splits into two 
embryos, each with the same genetic material (Chapter 6).

Clearly, the risk of developing schizophrenia increases systematically as a func-
tion of the degree of genetic similarity that an individual has to another who is 
affected. Heredity appears to be implicated, but the pattern of affected individuals 
does not conform to Mendelian proportions. Are Mendel’s laws of heredity at all 
applicable to such a complex outcome?

FIGURE 3.8  Risk for schizophrenia increases with genetic relatedness. (Data from Gottesman, 1991.)
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General Cognitive Ability  Many psychological traits are quantitative dimensions, 
as are physical traits such as height and biomedical traits such as blood pressure. Quan-
titative dimensions are often continuously distributed in the familiar bell-​shaped curve, 
with most people in the middle and fewer people toward the extremes. For example, an 
intelligence test score from a general test of intelligence is a composite of diverse tests 
of cognitive ability and is used to provide an index of general cognitive ability. Intel-
ligence test scores are normally distributed for the most part. (See Chapter 11.)

Because general cognitive ability is a quantitative dimension, it is not possible to 
count “affected” individuals. Nonetheless, it is clear that general cognitive ability runs 
in families. For example, parents with high intelligence test scores tend to have chil-
dren with higher than average scores. As with schizophrenia, transmission of general 
cognitive ability does not seem to follow simple Mendelian rules of heredity.

The statistics of quantitative traits are needed to describe family resemblance 
(see Appendix). Over a hundred years ago, Francis Galton, the father of behavioral 
genetics, tackled this problem of describing family resemblance for quantitative traits. 
He developed a statistic that he called co-​relation and that has become the widely used 
correlation coefficient. More formally, it is called the Pearson product-​moment cor-
relation, named after Karl Pearson, Galton’s colleague. The correlation is an index of 
resemblance that ranges from 21.0, indicating an inverse relationship; to 0.0, indicat-
ing no resemblance; to 1.0, indicating perfect positive resemblance.

Correlations for intelligence test scores show that the resemblance of family mem-
bers depends on the closeness of the genetic relationship (Figure 3.9). The correlation 
of intelligence test scores for pairs of individuals taken at random from the population is 
0.00. The correlation for cousins is about 0.15. For half siblings, who have just one par-
ent in common, the correlation is about 0.30. For full siblings, who have both parents in 
common, the correlation is about 0.45; this correlation is similar to that between parents 
and offspring. Scores for fraternal twins correlate about 0.60, which is higher than the 
correlation of 0.45 for full siblings but lower than the correlation for identical twins, 
which is about 0.85. In addition, husbands and wives correlate about 0.40, a result that has 
implications for interpreting sibling and twin correlations, as discussed in Chapter 11.

How do Mendel’s laws of heredity apply to continuous dimensions such as gen-
eral cognitive ability?

Pea Size  Although pea plants might not seem relevant to schizophrenia or cognitive abil-
ity, they provide a good example of complex traits. A large part of Mendel’s success in work-
ing out the laws of heredity came from choosing simple traits that are either-​or qualitative 
traits. If Mendel had studied, for instance, the size of the pea seed as indexed by its diameter, 
he would have found very different results. First, pea seed size, like most traits, is continu-
ously distributed. If he had taken plants with big seeds and crossed them with plants with 
small seeds, the seed size of their offspring would have been neither big nor small. In fact, the 
seeds would have varied in size from small to large, with most offspring seeds of average size.

Only ten years after Mendel’s report, Francis Galton studied pea seed size and con-
cluded that it is inherited. For example, parents with large seeds were likely to have 
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FIGURE 3.9  Resemblance for general cognitive ability increases with genetic relatedness. (Data 

from Bouchard & McGue, 1981, as modified by Loehlin, 1989.)
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offspring with larger than average seeds. In fact, Galton developed the fundamental 
statistics of regression and correlation in order to describe the quantitative relationship 
between pea seed size in parents and offspring. He plotted parent and offspring seed sizes 
and drew the regression line that best fits the observed data (Figure 3.10). The slope of 
the regression line is 0.33. This means that, for the entire population, as parental size 
increases by one unit, the average offspring size increases one-​third of one unit.

Galton also demonstrated that human height shows the same pattern of inheri-
tance. Children’s height correlates with the average height of their parents. Tall par-
ents have taller than average children. Children with one tall and one short parent 
are likely to be of average height. Inheritance of this trait is quantitative rather than 
qualitative. Quantitative inheritance is the way in which nearly all complex behav-
ioral as well as biological traits are inherited.

Does quantitative inheritance violate Mendel’s laws? When Mendel’s laws were 
rediscovered in the early 1900s, many scientists thought this must be the case. They 
thought that heredity must involve some sort of blending, because offspring resemble 
the average of their parents. Mendel’s laws were dismissed as a peculiarity of pea 
plants or of abnormal conditions. However, recognizing that quantitative inheritance 
does not violate Mendel’s laws is fundamental to an understanding of behavioral 
genetics, as explained in the following section.
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KEY CONCEPTS

Morbidity risk estimate: The chance of being affected during an entire lifetime. 

Correlation: An index of relationship between two variables.

Multiple-​Gene Inheritance

The traits that Mendel studied, as well as Huntington disease and PKU, are examples 
in which a single gene is necessary and sufficient to cause the disorder. That is, you 
will have Huntington disease only if you have the H allele (necessary); if you have the 
H allele, you will have Huntington disease (sufficient). Other genes and environmen-
tal factors have little effect on its inheritance. In such cases, a dichotomous (either-​or) 
disorder is found: You either have the specific allele, or not, and thus you have the 
disorder, or not. More than 3000 such single-​gene disorders are known definitely and 
again as many are considered probable (Zhang, 2014).

In contrast, more than just one gene is likely to affect complex disorders such 
as schizophrenia and continuous dimensions such as general cognitive ability. When 
Mendel’s laws were rediscovered in the early 1900s, a bitter battle was fought between 
so-​called Mendelians and biometricians. Mendelians looked for single-​gene effects, 
and biometricians argued that Mendel’s laws could not apply to complex traits 
because they showed no simple pattern of inheritance. Mendel’s laws seemed espe-
cially inapplicable to quantitative dimensions.

In fact, both sides were right and both were wrong. The Mendelians were correct 
in arguing that heredity works the way Mendel said it worked, but they were wrong in 
assuming that complex traits will show simple Mendelian patterns of inheritance. The 
biometricians were right in arguing that complex traits are distributed quantitatively, 

FIGURE 3.10  First regression line (solid blue line), drawn by Galton in 1877 to describe the 

quantitative relationship between pea seed size in parents and offspring. The dashed blue line 

connects actual data points. (Courtesy of the Galton Laboratory.)
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not qualitatively, but they were wrong in arguing that Mendel’s laws of inheritance 
are particular to pea plants and do not apply to higher organisms.

The battle between the Mendelians and biometricians was resolved when bio-
metricians realized that Mendel’s laws of inheritance of single genes also apply to 
complex traits that are influenced by several genes. Such a complex trait is called a 
polygenic trait. Each of the influential genes is inherited according to Mendel’s laws.

Figure 3.11 illustrates this important point. The top distribution shows the three 
genotypes of a single gene with two alleles that are equally frequent in the population. 
As discussed in Box 3.1, 25 percent of the genotypes are homozygous for the A1 allele 
(A1A1), 50 percent are heterozygous (A1A2), and 25 percent are homozygous for the A2 
allele (A2A2). If the A1 allele were dominant, individuals with the A1A2 genotype would 
look just like individuals with the A1A1 genotype. In this case, 75 percent of individu-
als would have the observed trait (phenotype) of the dominant allele. For example, as 
discussed in Box 3.1, in Mendel’s crosses of pea plants with smooth or wrinkled seeds, 
he found that in the F2 generation, 75 percent of the plants had smooth seeds and 
25 percent had wrinkled seeds.

However, not all alleles operate in a completely dominant or recessive manner. 
Many alleles are additive in that they each contribute something to the phenotype. In 
Figure 3.11a, each A2 allele contributes equally to the phenotype, so if you had two A2 

alleles, you would have a higher score than if you had just one A2 allele. Figure 3.11b 
adds a second gene (B) that affects the trait. Again, each B2 allele makes a contribution. 
Now there are nine genotypes and five phenotypes. Figure 3.11c adds a third gene (C), 
and there are 27 genotypes. Even if we assume that the alleles of the different genes 
equally affect the trait and that there is no environmental variation, there are still 
seven different phenotypes.

So, even with just three genes and two alleles for each gene, the phenotypes 
begin to approach a normal distribution in the population. When we consider envi-
ronmental sources of variability and the fact that the effects of alleles are not likely to 
be equal, it is easy to see that the effects of even a few genes will lead to a quantitative 
distribution. Moreover, the complex traits that interest behavioral geneticists may be 
influenced by hundreds or even thousands of genes. Thus, it is not surprising to find 
continuous variation at the phenotypic level, even though each gene is inherited in 
accord with Mendel’s laws.

Quantitative Genetics

The notion that multiple-​gene effects lead to quantitative traits is the cornerstone of 
a branch of genetics called quantitative genetics.

Quantitative genetics was introduced in papers by R. A. Fisher (1918) and by Sewall 
Wright (1921). Their extension of Mendel’s single-​gene model to the multiple-​gene 
model of quantitative genetics (Falconer & MacKay, 1996) is described in the Appen-
dix. This multiple-​gene model adequately accounts for the resemblance of relatives. If 
genetic factors affect a quantitative trait, phenotypic resemblance of relatives should 
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increase with increasing degrees of genetic relatedness. First-​degree relatives (parents / 
offspring, full siblings) are 50 percent similar genetically. The simplest way to think about 
this is that offspring inherit half their genetic material from each parent. If one sibling 
inherits a particular allele from a parent, the other sibling has a 50 percent chance of 
inheriting that same allele. Other relatives differ in their degree of genetic relatedness.

Figure 3.12 illustrates degrees of genetic relatedness for the most common types 
of relatives, using male relatives as examples. Relatives are listed in relation to an indi-
vidual in the center, the index case (or proband). The illustration goes back three 

FIGURE 3.11  Single-​gene and multiple-​gene distributions for traits with additive gene effects. 

(a) A single gene with two alleles yields three genotypes and three phenotypes. (b) Two genes, 

each with two alleles, yield nine genotypes and five phenotypes. (c) Three genes, each with two 

alleles, yield twenty-​seven genotypes and seven phenotypes. (d) Normal bell-​shaped curve of 

continuous variation.
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generations and forward three generations. First-​degree relatives (e.g., fathers / sons), 
who are 50 percent similar genetically, are each one step removed from the index 
case. Second-​degree relatives (e.g., uncles / nephews) are two steps removed and 
are  only  half as similar genetically (i.e., 25  percent) as first-​degree relatives are. 
Third-​degree relatives (e.g., cousins) are three steps removed and half as similar 
genetically (i.e., 12.5  percent) as second-​degree relatives are. Identical twins are a 
special case, because they are the same person genetically.

For our two examples, schizophrenia and general cognitive ability, phenotypic 
resemblance of relatives increases with genetic relatedness (see Figures 3.8 and 3.9). 
How can there be a dichotomous disorder if many genes cause schizophrenia? One 
possible explanation is that genetic risk is normally distributed but that schizophrenia 
is not seen until a certain threshold is reached. Another explanation is that disorders 
are actually dimensions artificially established on the basis of a diagnosis. That is, 
there may be a continuum between what is normal and abnormal. These alternatives 
are described in Box 3.3.

These data for schizophrenia (Figure 3.8) and general cognitive ability (Figure 3.9) 
are consistent with the hypothesis of genetic influence, but they do not prove that 
genetic factors are important. It is possible that familial resemblance increases with 

FIGURE 3.12  Genetic relatedness: Male relatives of male index case (proband), with degree of 

genetic relatedness in parentheses.
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I
f complex disorders such as schizo-

phrenia are influenced by many genes, 

why are they diagnosed as qualita-

tive disorders rather than assessed as 

quantitative dimensions? Theoretically, 

there should be a continuum of genetic 

risk, from people having none of the 

alleles that increase risk for schizo-

phrenia to those having most of the 

alleles that increase risk. Most people 

should fall between these extremes, 

with only a moderate susceptibility to 

schizophrenia.

One model assumes that risk, or 

liability, is distributed normally but that 

the disorder occurs only when a certain 

threshold of liability is exceeded, as 

represented in the accompanying 

BOX 3.3  Liability-​Threshold Model of Disorders

(a) 

(b) 

Threshold

Liability in the population

Affected
individuals

Affected
individuals

Liability for relatives of affected individuals
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figure by the shaded area in (a). 

Relatives of an affected person have a 

greater liability; that is, their distribu-

tion of liability is shifted to the right, 

as in (b). For this reason, a greater 

proportion of the relatives of affected 

individuals exceed the threshold and 

manifest the disorder. If there is such 

a threshold, familial risk can be high 

only if genetic or shared environmental 

influence is substantial, because many 

of an affected individual’s relatives will 

fall just below the threshold and not be 

affected.

Liability and threshold are hypotheti-

cal constructs. However, it is possible 

to use the liability-​threshold model 

to estimate correlations from family 

risk data (Falconer, 1965; Smith, 1974). 

For example, the correlation estimated 

for first-​degree relatives for schizo-

phrenia is 0.45, an estimate based on 

a population base rate of 1 percent 

and risk to first-​degree relatives of 

9 percent.

Although correlations estimated 

from the liability-​threshold model 

are widely reported for psychologi-

cal disorders, it should be emphasized 

that this statistic refers to hypothetical 

constructs of a threshold and an under-

lying liability derived from diagnoses, 

not to the risk for the actual diagnosed 

disorder. In the previous example, the 

actual risk for schizophrenia for first-​

degree relatives is 9 percent, even 

though the liability-​threshold correla-

tion is 0.45.

Alternatively, a second model 

assumes that disorders are actually 

continuous phenotypically. That is, 

symptoms might increase continuously 

from the normal to the abnormal; a 

diagnosis occurs only when a certain 

level of symptom severity is reached. 

The implication is that common dis-

orders are in fact quantitative traits 

(Plomin, Haworth, & Davis, 2009). A 

continuum from normal to abnormal 

seems likely for common disorders 

such as depression and alcoholism. For 

example, people vary in the frequency 

and severity of their depression. 

Some people rarely get the blues; for 

others, depression completely disrupts 

their lives. Individuals diagnosed as 

depressed might be extreme cases 

that differ quantitatively, not qualita-

tively, from the rest of the population. 

In such cases, it may be possible to 

assess the continuum directly, rather 

than assuming a continuum from 

dichotomous diagnoses using the 

liability-​threshold model. Even for less 

common disorders like schizophre-

nia, there is increasing interest in the 

possibility that there may be no sharp 

threshold dividing the normal from the 

abnormal, but rather a continuum from 

normal to abnormal thought processes. 

A method called DF extremes analysis 

can be used to investigate the links 

between the normal and abnormal 

(see Chapter 12).

The relationship between dimen-

sions and disorders is a key issue, as 

discussed in later chapters. The best 

evidence for genetic links between 

dimensions and disorders will come as 

specific genes are found for behavior. 

For example, will a gene associated with 

diagnosed depression also relate to 

differences in mood within the normal 

range?
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genetic relatedness for environmental reasons. First-​degree relatives might be more 
similar because they live together. Second-​degree and third-​degree relatives might be 
less similar because of less similarity of rearing.

Two experiments of nature are the workhorses of human behavioral genetics that 
help to disentangle genetic and environmental sources of family resemblance. One is 
the twin study, which compares the resemblance within pairs of identical twins, who are 
genetically identical, to the resemblance within pairs of fraternal twins, who, like other 
siblings, are 50 percent similar genetically. The second is the adoption study, which 
separates genetic and environmental influences. For example, when a child is placed 
for adoption at birth, any resemblance between the adopted child and the child’s birth 
parents can be attributed to shared heredity rather than to shared environment if there 
is no selective placement. In addition, any resemblance between the adoptive parents 
and their adopted children can be attributed to shared environment rather than to 
shared heredity. The twin and adoption methods are discussed in Chapter 6.

KEY CONCEPTS

Polygenic: Influenced by multiple genes. 

Genetic relatedness: The extent or degree to which relatives have genes 

in common. ­First-​­degree relatives of the proband (parents and siblings) 

are 50 percent similar genetically. ­Second-​­degree relatives of the pro-

band (grandparents, aunts, and uncles) are 25 percent similar genetically. 

­Third-​­degree ­relatives of the proband (first cousins) are 12.5 percent similar 

genetically. 

Liability-​threshold model: A model that assumes that dichotomous 

disorders are due to underlying genetic liabilities that are distributed normally. 

The disorder appears only when a threshold of liability is exceeded.

The X-​chromosome: An Extension to Mendel’s Laws

Color blindness is a complex trait (Deeb, 2006; Neitz & Neitz, 2011) that shows 
a pattern of inheritance that does not appear to conform to Mendel’s laws. While 
there is quite a bit of variation in the color vision phenotype (Deeb, 2006), there 
are two major types of color blindness: those who have difficulty distinguishing 
between red and green, and those who have difficulty distinguishing between blue 
and yellow. In this section, we will focus on the most common color blindness, which 
involves difficulty in distinguishing red and green, a condition caused by a lack of 
certain color-​absorbing pigments in the retina of the eye. It occurs more frequently 
in males than in females. More interesting, when the mother is color blind and the 
father is not, all of the sons but none of the daughters are color blind (Figure 3.13a). 
When the father is color blind and the mother is not, offspring are seldom affected 
(Figure  3.13b). But  something remarkable happens to these apparently normal 
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daughters of a color-​blind father: Half of their sons are likely to be color blind. This 
is the well-​known skip-​a-​generation phenomenon — ​fathers have it, their daughters 
do not, but some of the grandsons do. What could be going on here in terms of Mendel’s 
laws of heredity?

Genes on the X Chromosome  The 23 pairs of chromosomes mentioned ear-
lier include one pair called the sex chromosomes because they differ for males and 
females. Females have two X chromosomes, and males have one X chromosome and 
a smaller chromosome called Y.

Color blindness, specifically red-​green color blindness, is caused by a recessive 
allele on the X chromosome. But males have only one X chromosome; so, if they 
have one allele for color blindness (c) on their single X chromosome, they are color 
blind. For females to be color blind, they must inherit the c allele on both of their 
X  chromosomes. For this reason, the hallmark of a sex-​linked (meaning X-​linked) 
recessive gene is a greater incidence in males. For example, if the frequency of an 
X-​linked recessive allele (q in Box 3.2) for a disorder is 10 percent, then the expected 
frequency of the disorder in males would be 10 percent, but the frequency in females 
(q2) would be only 1 percent (i.e., 0.102 5 0.01).

Figure 3.14 illustrates the inheritance of the sex chromosomes. Both sons and 
daughters inherit one X chromosome from their mother. Daughters inherit their 
father’s single X chromosome and sons inherit their father’s Y chromosome. Sons 
cannot inherit an allele on the X chromosome from their father. For this reason, 
another sign of an X-​linked recessive trait is that father-​son resemblance is negli-
gible. Daughters inherit an X-​linked allele from their father, but they do not express 
a recessive trait unless they receive another such allele on the X chromosome from 
their mother.

Inheritance of color blindness is further explained in Figure 3.15. In the case of 
a color-​blind mother and unaffected father (Figure 3.15a), the mother has the c allele 
on both of her X chromosomes and the father has the normal allele (C) on his single 

FIGURE 3.13  Inheritance of color 

blindness. (a) A color-​blind mother 

and unaffected father have color-​

blind sons but unaffected daugh-

ters. (b) An unaffected mother and 

color-​blind father have unaffected 

offspring, but daughters have sons 

with 50 percent risk for color blind-

ness. (See Figure 3.1 for symbols 

used to describe family pedigrees).

Parents

Offspring

Parents

Offspring

Grandchildren

(a) 

(b) 
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X chromosome. Thus, sons always inherit an X chromosome with the c allele from 
their mother and are color blind. Daughters carry one c allele from their mother but 
are not color blind because they have inherited a normal, dominant C allele from their 
father. They carry the c allele without showing the disorder, so they are called carriers, 
a status indicated by the two-​toned circles in Figure 3.15.

In the second example (Figure 3.15b), the father is color blind but the mother is 
neither color blind nor a carrier of the c allele. None of the children are color blind, 
but the daughters are all carriers because they must inherit their father’s X chromosome 
with the recessive c allele. You should now be able to predict the risk of color blindness 
for offspring of these carrier daughters. As shown in the bottom row of Figure 3.15b, 
when a carrier daughter (Cc) has children by an unaffected male (C), half of her sons 
but none of her daughters are likely to be color blind. Half of the daughters are car-
riers. This pattern of inheritance explains the skip-​a-​generation phenomenon. Color-​
blind fathers have no color-​blind sons or daughters (assuming normal, noncarrier 
mothers), but their daughters are carriers of the c allele. The daughters’ sons have a 
50 percent chance of being color blind.

The sex chromosomes are inherited differently for males and females, so detect-
ing X linkage is much easier than identifying a gene’s location on other chromo-
somes. Color blindness was the first reported human X linkage. Over 1500 genes have 
been identified on the X chromosome, as well as a disproportionately high number 
of single-​gene diseases (Ross et al., 2005). The Y chromosome has over 200 genes, 
including those for determining maleness, and the smallest number of genes associ-
ated with disease of any chromosome (Bellott et al., 2014; Cortez et al., 2014).

FIGURE 3.14  Inheritance of X and 

Y chromosomes.
Mother Father

Daughter Son
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Several other genetic phenomena also do not appear to conform to Mendel’s 
laws in the sense that they are not inherited in a simple way through the genera-
tions. The most common involve new, or de novo, mutations that do not affect the 
parent because they occur during the formation of the parent’s eggs or sperm. But 
this situation is not really a violation of Mendel’s laws, because the new mutations 
are then passed on to offspring according to Mendel’s laws, even though affected 
individuals have unaffected parents. Many genetic diseases involve such spontaneous 
mutations, which are not inherited from the preceding generation. An example is Rett 
syndrome, an X-linked dominant disorder that has a prevalence of about 1 in 10,000 
in girls. Although girls with Rett syndrome develop normally during the first year of 
life, they later regress and eventually become both mentally and physically disabled. 
Boys with this mutation on their single X chromosome die either before birth or in 
the first two years after birth. (See Chapter 12.)

In addition, DNA mutations frequently occur in cells other than those that pro-
duce eggs or sperm and are not passed on to the next generation. This mutation type 
is the cause of many cancers, for example. Although these mutations affect DNA, they 
are not heritable because they do not occur in the eggs or sperm. Other exceptions to 
Mendel’s laws include chromosomal abnormalities (such as extra copies of chromo-
somes), repeat sequences of parts of chromosomes, and genomic imprinting. These 
will be discussed in later chapters.

FIGURE 3.15  Color blindness is inherited as a recessive gene on the X chromosome. c refers to 

the recessive allele for color blindness, and C is the normal allele. (a) Color-​blind mothers are 

homozygous recessive (cc). (b) Color-​blind fathers have a c allele on their single X chromosome, 

which is transmitted to daughters but not to sons.
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KEY CONCEPTS

Sex-​linked (X-​linked): A phenotype influenced by a gene on the X chromosome. 

X-​linked recessive diseases occur more frequently in males because they only 

have one X chromosome. 

Carrier: An individual who is heterozygous at a given locus, carrying both 

a normal allele and a mutant recessive allele, and who appears normal 

phenotypically.

Summary

Huntington disease (HD) and phenylketonuria (PKU) are examples of dominant and 
recessive disorders, respectively. They follow the basic rules of heredity described by 
Mendel more than a century ago. A gene may exist in two or more different forms 
(alleles). One allele can dominate the expression of the other. The two alleles, one 
from each parent, separate (segregate) during gamete formation. This rule is Mendel’s 
first law, the law of segregation.

Mendel’s second law is the law of independent assortment: The inheritance of 
one gene is not affected by the inheritance of another gene. However, genes that are 
closely linked on the same chromosome can co-​assort, thus violating Mendel’s law of 
independent assortment. Such violations make it possible to map genes to chromosomes 
by using linkage analysis. For Huntington disease and PKU, linkage has been established 
and the genes responsible for the disorders have been identified.

Mendel’s laws of heredity do not, however, explain all genetic phenomena. 
Genes on the X chromosome, such as the gene for red-​green color blindness, require 
an extension of Mendel’s laws. Further, most psychological dimensions and disor-
ders show more complex patterns of inheritance than do single-​gene disorders such 
as Huntington disease, PKU, or X-​linked conditions such as red-​green color blind-
ness. Complex disorders such as schizophrenia and continuous dimensions such as 
cognitive ability are likely to be influenced by multiple genes as well as by multiple 
environmental factors. Quantitative genetic theory extends Mendel’s single-​gene 
rules to multiple-​gene systems. The essence of the theory is that complex traits 
can be influenced by many genes, but each gene is inherited according to Mendel’s 
laws. Quantitative genetic methods, especially adoption and twin studies, can detect 
genetic influence for complex traits.
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The Biological Basis 
of Heredity

M endel was able to deduce the laws of heredity even though he had no idea 

of how heredity works at the chemical or physiological level. Quantitative 

genetics, such as twin and adoption studies, depends on Mendel’s laws of heredity but 

does not require knowledge of the biological basis of heredity. However, it is impor-

tant to understand the biological mechanisms underlying heredity for two reasons. 

First, understanding the biological basis of heredity makes it clear that the processes 

by which genes affect behavior are not mystical. Second, this understanding is crucial 

for appreciating the exciting advances in attempts to identify genes associated with 

behavior. This chapter describes the biological basis of heredity. There are many 

excellent genetics texts that provide great detail about this subject (e.g., Hartwell, 

Goldberg, Fischer, Hood, & Aquadro, 2014). The biological basis of heredity includes 

the fact that genes are contained on structures called chromosomes. The linkage of 

genes that lie close together on a chromosome has made possible the mapping of the 

human genome. Moreover, abnormalities in chromosomes contribute importantly to 

behavioral disorders, especially intellectual disability.

DNA

Nearly a century after Mendel did his experiments, it became apparent that DNA 
(deoxyribonucleic acid) is the molecule responsible for heredity. In 1953, James Watson 
and Francis Crick proposed a molecular structure for DNA that could explain how 
genes are replicated and how DNA codes for proteins. As shown in Figure 4.1, the DNA 
molecule consists of two strands that are held apart by pairs of four bases: adenine, 
thymine, guanine, and cytosine. As a result of the structural properties of these bases, 
adenine always pairs with thymine and guanine always pairs with cytosine. The backbone 
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of each strand consists of sugar and phosphate molecules. The strands coil around each 
other to form the famous double helix of DNA (Figure 4.2).

The specific pairing of bases in these two-​stranded molecules allows DNA to 
carry out its two functions: to replicate itself and to direct the synthesis of proteins. 
Replication of DNA occurs during the process of cell division. The double helix of 
the DNA molecule unzips, separating the paired bases (Figure 4.3). The two strands 
unwind, and each strand attracts the appropriate bases to construct its complement. In 
this way, two complete double helices of DNA are created where there was previously 
only one. This process of replication is the essence of life, which began billions of years 
ago when the first cells replicated themselves. It is also the essence of each of our lives, 
beginning with a single cell and faithfully reproducing our DNA in trillions of cells.

The second major function of DNA is to direct the synthesis of proteins accord-
ing to the genetic information that resides in the particular sequence of bases. DNA 
encodes the various sequences of the 20 amino acids making up the thousands of 
specific enzymes and other proteins that are the stuff of living organisms. Box 4.1 
describes this process, the so-​called central dogma of molecular genetics.

FIGURE 4.1  Flat representation of the four DNA bases in which adenine (A) always pairs with 

thymine (T) and guanine (G) always pairs with cytosine (C). (Information from Heredity, Evolution, 

and Society by I. M. Lerner. W. H. Freeman and Company. ©1968.)
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FIGURE 4.2  A three-​dimensional view of a segment of DNA. (Information from Heredity, Evolution, 

and Society by I. M. Lerner. W. H. Freeman and Company. ©1968.) 
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What is the genetic code contained in the sequence of DNA bases, which is tran-
scribed to messenger RNA (mRNA; see Box 4.1) and then translated into amino acid 
sequences? The code consists of various sequences of three bases, which are called codons 
(Table 4.1). For example, three adenines in a row (AAA) in the DNA molecule will be 
transcribed in mRNA as three uracils (UUU). This mRNA codon codes for the amino 
acid phenylalanine. Although there are 64 possible triplet codons (43 = 64), there are 
only 20 amino acids. Some amino acids are coded by as many as six codons. Any one of 
three particular codons signals the end of a transcribed sequence (stop signals).

FIGURE 4.3  Replication of DNA. (Information from Molecular Biology of Bacterial Viruses 

by G. S. Stent. W. H. Freeman and Company. ©1963.) 
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G
enetic information flows from 

DNA to RNA to protein. These 

protein-​coding genes are DNA 

segments that are a few thousand 

to several million DNA base pairs in 

length. The DNA molecule contains 

a linear message consisting of four 

bases (adenine, thymine, guanine, 

and cytosine); in this two-​stranded 

molecule, A always pairs with T and 

G always pairs with C. The message 

is decoded in two basic steps, shown 

in the figure: (a) transcription of DNA 

into a different sort of nucleic acid 

called ribonucleic acid, or RNA, and 

(b) translation of RNA into proteins.

BOX 4.1  The “Central Dogma” of Molecular  
Genetics
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(b)    mRNA is translated into proteins.

(a)    DNA is transcribed to mRNA.
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tRNA

A
A

C

tRNA

Methionine Leucine Valine Tyrosine

This same genetic code applies to all living organisms. Discovering this code was 
one of the great triumphs of molecular biology. The human set of DNA sequences 
(the genome) consists of about 3  billion base pairs, counting just one chromo-
some from each pair of chromosomes. The 3 billion base pairs contain about 20,000 
protein-​coding genes, which range in size from about 1000 bases to 2 million bases. 
The chromosomal locations of most genes are known. About a third of our protein-​
coding genes are expressed only in the brain; these are likely to be most important for 
behavior. The human genome sequence is like an encyclopedia of genes with 3 billion 
letters, equivalent in length to about 3000 books of 500 pages each. Continuing with 
this simile, the encyclopedia of genes is written in an alphabet consisting of 4 letters 
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In the transcription process, the 

sequence of bases in one strand of 

the DNA double helix is copied to 

RNA, specifically a type of RNA called 

messenger RNA (mRNA) because it 

relays the DNA code. mRNA is single 

stranded and is formed by a process of 

base pairing similar to the replication 

of DNA, except that uracil substitutes 

for thymine (so that A pairs with U 

instead of T). In the figure, one DNA 

strand is being transcribed—​the DNA 

bases ACCA have just been copied 

as UGGU in mRNA. mRNA leaves the 

nucleus of the cell and enters the cell 

body (cytoplasm), where it connects 

with ribosomes, which are the factories 

where proteins are built.

The second step involves translation 

of the mRNA into amino acid sequences 

that form proteins. Another form of 

RNA, called transfer RNA (tRNA), 

transfers amino acids to the ribosomes. 

Each tRNA is specific to 1 of the 

20 amino acids. The tRNA molecules, 

with their attached specific amino acids, 

pair up with the mRNA in a sequence 

dictated by the base sequence of the 

mRNA, as the ribosome moves along 

the mRNA strand. Each of the 20 amino 

acids found in proteins is specified by 

a codon made up of three sequential 

mRNA bases. In the figure, the mRNA 

code has begun to dictate a protein 

that includes the amino acid sequence 

methionine-​leucine-​valine-​tyrosine. 

Valine has just been added to the 

chain that already includes methionine 

and leucine. The mRNA triplet code 

GUA attracts tRNA with the comple-

mentary code CAU. This tRNA trans-

fers its attached amino acid valine, 

which is then bonded to the growing 

chain of amino acids. The next mRNA 

codon, UAC, is attracting tRNA with 

the complementary codon, AUG, for 

tyrosine. Although this process seems 

very complicated, amino acids are 

incorporated into chains at the incred-

ible rate of about 100 per second. 

Proteins consist of particular sequences 

of about 100 to 1000 amino acids. The 

sequence of amino acids determines the 

shape and function of proteins. Protein 

shape is subsequently altered in other 

ways called posttranslational modifica-

tions. These changes affect its function 

and are not controlled by the genetic 

code.

Surprisingly, DNA that is transcribed 

and translated like this represents only 

about 2 percent of the genome. What 

is the other 98 percent doing? See 

Chapter 10 for an answer.

(A, T, G, C), with 3-letter words (codons) organized into 23 volumes (chromosomes). 
This simile, however, does not comfortably extend to the fact that each encyclopedia 
is different; millions of letters (about 1 in 1000) differ for any two people. There is no 
single human genome; we each have a different genome, except for identical twins. 
Most of the life sciences focus on the generalities of the genome, but the genetic 
causes of diseases and disorders lie in these variations in the genome. These varia-
tions on the human theme are the focus of behavioral genetics.

The twentieth century has been called the century of the gene. The century began 
with the re-​discovery of Mendel’s laws of heredity. The word genetics was first coined 
in 1905. Almost 50 years later, Crick and Watson described the double helix of DNA, 
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Table 4 .1

The Genetic Code

Amino Acid* DNA Code

Alanine CGA, CGG, CGT, CGC
Arginine GCA, GCG, GCT, GCC, TCT, TCC
Asparagine TTA, TTG
Aspartic acid CTA, CTG
Cysteine ACA, ACG
Glutamic acid CTT, CTC
Glutamine GTT, GTC
Glycine CCA, CCG, CCT, CCC
Histidine GTA, GTG
Isoleucine TAA, TAG, TAT
Leucine AAT, AAC, GAA, GAG, GAT, GAC
Lysine TTT, TTC
Methionine TAC
Phenylalanine AAA, AAG
Proline GGA, GGG, GGT, GGC
Serine AGA, AGG, AGT, AGC, TCA, TCG
Threonine TGA, TGG, TGT, TGC
Tryptophan ACC
Tyrosine ATA, ATG
Valine CAA, CAG, CAT, CAC
(Stop signals) ATT, ATC, ACT

*The 20 amino acids are organic molecules that are linked together by peptide bonds to form polypeptides, 
which are the building blocks of enzymes and other proteins. The particular combination of amino acids 
determines the shape and function of the polypeptide.

the premier icon of science. The pace of discoveries accelerated greatly during the next 
50 years, culminating at the turn of the twenty-​first century with the sequencing of 
the human genome. Most of the human genome was sequenced by 2001 (International 
Human Genome Sequencing Consortium, 2001; Venter et al., 2001). Subsequent publica-
tions have presented the finished sequence for all chromosomes (e.g., Gregory et al., 2006).

Sequencing of the human genome and the technologies associated with it 
have led to an explosion of new findings in genetics. One of many examples was 
alternative splicing, in which mRNA is spliced to create different transcripts, which 
are then translated into different proteins (Brett, Pospisil, Valcárcel, Reich, & Bork, 
2002). Alternative splicing has a crucial role in the generation of biological complex-
ity, and its disruption can lead to a wide range of human diseases (Barash et al., 2010; 
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Matera & Wang, 2014). The speed of discovery in genetics is now so great that it 
would be impossible to predict what will happen in the next 5 years, let alone the next 
50 years. Most geneticists would agree with Francis Collins (2010, 2015), the director 
of the U.S. National Institutes of Health and leader in the Human Genome Project, 
who expects that the entire genome of all newborns will soon be sequenced to screen 
for genetic problems and that eventually we will each possess an electronic flash drive 
containing our DNA sequence. Individual DNA sequences would herald a revolution 
in personalized medicine in which treatment could be individually tailored rather 
than dependent on our present one-​size-​fits-​all approach. That is, DNA may allow 
us to predict problems and intervene to prevent them. In the near future, physicians 
can look forward to a medical landscape in which the pairing of affordable, efficient 
DNA sequencing and electronic health records could be used to inform a lifetime 
of health care strategies (Collins, 2015). This could involve genetic engineering that 
alters DNA; however, such efforts with regard to gene therapy in the human species 
have been historically difficult, even for single-​gene disorders. Importantly, to pre-
vent complex behavioral problems that are affected by many genes as well as many 
environmental factors, behavioral and environmental engineering will be needed.

We are now in a better position to understand DNA changes in health, behav-
ior, and disease in ways that would not have been thought possible five years ago. 
There are detailed maps of genetic variation, and much is known about the func-
tion of genes and the effects of genetic variation. Thanks to decreasing costs of new 
sequencing technologies (see Chapter 9), researchers are examining genome changes 
that lead to both inherited rare and common diseases. Another new direction for 
research involves efforts to understand the human microbiome (Lepage et al., 2013), the 
genomes of the microbes that live in and on our bodies, as well as the epigenome (see 
Chapter 10), chemical marks on our DNA that regulate gene expression (Rivera & 
Ren, 2013). For behavioral genetics, the most important thing to understand about 
the DNA basis of heredity is that the process by which genes affect behavior is not 
mystical. Genes code for sequences of amino acids that form the thousands of pro-
teins of which organisms are made. Proteins create the skeletal system, muscles, the 
endocrine system, the immune system, the digestive system, and, most important for 
behavior, the nervous system. Genes do not code for behavior directly, but DNA 
variations that create differences in these physiological systems can affect behavior. 
We will discuss DNA variations in Chapter 9.

KEY CONCEPTS

Codon: A sequence of three bases that codes for a particular amino acid or the 

end of a transcribed sequence. 

Transcription: The synthesis of an RNA molecule from DNA in the cell nucleus. 

Translation: Assembly of amino acids into peptide chains on the basis of infor-

mation encoded in messenger RNA. Occurs on ribosomes in the cell cytoplasm.
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Chromosomes

As discussed in Chapter 3, Mendel did not know that genes are grouped together on 
chromosomes, so he assumed that all genes are inherited independently. However, 
Mendel’s second law of independent assortment is violated when two genes are close 
together on the same chromosome. In this case, the two genes are not inherited inde-
pendently; and, on the basis of this nonindependent assortment, linkages between 
DNA markers have been identified and used to produce a map of the genome. With 
the same technique, mapped DNA markers are used to identify linkages with disor-
ders and dimensions, including behavior, as described in Chapter 9.
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FIGURE 4.4  The 23 pairs of human chromosomes. The short arm above the centromere is called 

p, and the long arm below the centromere is called q. The bands, created by staining, are used 

to identify the chromosomes and to describe the location of genes. Chromosomal regions are 

referred to by chromosome number, arm of chromosome, and band. Thus, 1p36 refers to band 

6 in region 3 of the p arm of chromosome 1. For more details about each chromosome and the 

locus of major genetic disorders, see http://www.ornl.gov/sci/techresources/Human_Genome 

/posters/chromosome/chooser.shtml

Our species has 23 pairs of chromosomes, for a total of 46 chromosomes. The 
number of chromosome pairs varies widely from species to species. Fruit flies have 
4, mice have 20, dogs have 39, and butterflies have 190. Our chromosomes are very 
similar to those of the great apes (chimpanzee, gorilla, and orangutan). Although the 
great apes have 24 pairs, two of their short chromosomes have been fused to form one 
of our large chromosomes.

As noted in Chapter  3, one pair of our chromosomes is the sex chromosomes 
X and Y. Females are XX and males are XY. All the other chromosomes are called 
autosomes. As shown in Figure 4.4, chromosomes have characteristic banding patterns 
when stained with a particular chemical. The bands, whose function is not known, 
are used to identify the chromosomes. At some point in each chromosome, there 
is a centromere, a region of the chromosome without genes, where the chromosome 
is attached to its new copy when cells reproduce. The short arm of the chromosome 
above the centromere is called p and the long arm below the centromere is called q. 
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The location of genes is described in relation to the bands. For example, the gene 
for Huntington disease is at 4p16, which means the short arm of chromosome 4 at a 
particular band, number 6 in region 1 (Bobori, 2015).

In addition to providing the basis for gene mapping, chromosomes are important 
in behavioral genetics because mistakes in copying chromosomes during cell divi-
sion affect behavior. There are two kinds of cell division. Normal cell division, called 
mitosis, occurs in all cells not involved in the production of gametes. These cells are 
called somatic cells. The sex cells produce eggs and sperm, the gametes. In mitosis, 
each chromosome in the somatic cell duplicates and divides to produce two identical 
cells. A special type of cell division called meiosis occurs in the sex cells of the ovaries 
and testes to produce eggs and sperm, both of which have only one member of each  
chromosome pair. Each egg and each sperm have 1 of over 8 million (223) possible 
combinations of the 23 pairs of chromosomes. Moreover, crossover (recombination) 
of members of each chromosome pair (see Figure 3.7) occurs about once per meiosis 
and creates even more genetic variability. When a sperm fertilizes an egg to produce 
a zygote, one chromosome of each pair comes from the mother’s egg and the other 
from the father’s sperm, thereby reconstituting the full complement of 23 pairs of 
chromosomes.

KEY CONCEPTS

Centromere: A chromosomal region without genes where the chromatids are 

held together during cell division. 

Mitosis: Cell division that occurs in somatic cells in which a cell duplicates itself 

and its DNA. 

Meiosis: Cell division that occurs during gamete formation and results in 

halving the number of chromosomes, so that each gamete contains only one 

member of each chromosome pair.

A common copying error for chromosomes is an uneven split of the pairs of 
chromosomes during meiosis, called nondisjunction (see Figure 4.5). The most com-
mon form of intellectual disability, Down syndrome, is caused by nondisjunction of 
one of the smallest chromosomes, chromosome 21. Many other chromosomal prob-
lems occur, such as breaks in chromosomes that lead to inversion, deletion, duplica-
tion, and translocation. About half of all fertilized human eggs have a chromosomal 
abnormality. Most of these abnormalities result in early spontaneous abortions (mis-
carriages). At birth, about 1 in 250 babies have an obvious chromosomal abnormality. 
Small abnormalities such as deletions have been difficult to detect but are being made 
much easier to detect by DNA microarrays and sequencing, which are described in 
Chapter  9. Although chromosomal abnormalities occur for all chromosomes, only 
fetuses with the least severe abnormalities survive to birth. Some of these babies die 
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FIGURE 4.5  Nondisjunction of chromo-

somes. (a) When eggs and sperm are 

formed, chromosomes for each pair line up 

and then split, and each new egg or sperm 

has just one member of each chromosome 

pair. (b) Sometimes this division does not 

occur properly, so one egg or sperm has 

both members of a chromosome pair and 

the other egg or sperm has neither.

(a) (b)

soon after they are born. For example, most babies with three chromosomes (trisomy) 
of chromosome 13 die in the first month, and most of those with trisomy-​18 die within 
the first year. Other chromosomal abnormalities are less lethal but result in behavioral 
and physical problems. Nearly all major chromosomal abnormalities influence cog-
nitive ability, as expected if cognitive ability is affected by many genes. Because the 
behavioral effects of chromosomal abnormalities often involve intellectual disability, 
they are discussed in Chapter 12.

Missing a whole chromosome is lethal, except for the X and Y chromosomes. 
Having an entire extra chromosome is also lethal, except for the smallest chro-
mosomes and the X chromosome, which is one of the largest. The reason why the 
X chromosome is the exception is also the reason why half of all chromosomal abnor-
malities that exist in newborns involve the sex chromosomes. In females, one of the 
two X chromosomes is inactivated, in the sense that most of its genes are not tran-
scribed. In males and females with extra X chromosomes, the extra X chromosomes 
also are inactivated. For this reason, even though X is a large chromosome with many 
genes, having an extra X in males or females is not lethal. The most common sex 
chromosome abnormalities are XXY (males with an extra X), XXX (females with an 
extra X), and XYY (males with an extra Y), each with an incidence of about 1 in 1000. 
The incidence of XO (females with just one X) is lower, 1 in 2500 at birth, because 
98 percent of such conceptuses abort spontaneously.
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Summary

One of the most exciting advances in biology has been understanding Mendel’s 
“elements” of heredity. The double helix structure of DNA relates to its dual func-
tions of self-​replication and protein synthesis. The genetic code consists of a sequence 
of three DNA bases that codes for amino acids. DNA is transcribed to mRNA, which 
is translated into amino acid sequences.

Genes are inherited on chromosomes. Linkage between DNA markers and 
behavior can be detected by looking for exceptions to Mendel’s law of indepen-
dent assortment, because a DNA marker and a gene for behavior are not inherited 
independently if they are close together on the same chromosome. Our species has 
23 pairs of chromosomes. Mistakes in duplicating chromosomes often affect behavior 
directly. About 1 in 250 newborns has a major chromosomal abnormality, and about 
half of these abnormalities involve the sex chromosomes.
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Animal Models in 
Behavioral Genetics

B ehavioral genetic research includes both human and animal studies. In this 

chapter we will describe the different ways that animal research has been used 

to help us understand the roles of genes and environments in behavior. The first part 

of the chapter focuses on quantitative genetic designs, while the second describes 

how animal studies help to identify genes and clarify their function.

QUANTITATIVE GENETIC EXPERIMENTS 
TO INVESTIGATE ANIMAL BEHAVIOR

Dogs provide a dramatic yet familiar example of genetic variability within species 
(Figure 5.1). Despite their great variability in size and physical appearance — ​from a 
height of six inches for the Chihuahua to three feet for the Irish wolfhound — ​they 
are all members of the same species. Molecular genetic research suggests that dogs, 
which originated from wolves about 30,000 years ago as they were domesticated, 
may have enriched their supply of genetic variability by repeated intercrossing with 
wolves (vonHoldt et al., 2010). The genome of the domestic dog has been sequenced 
(Lindblad-​Toh et al., 2005), which makes it possible to identify dog breeds on the 
basis of DNA alone and suggests that there are four basic genetic clusters of dogs: 
wolves and Asian dogs (the earliest domesticated dogs, such as Akitas and Lhasa 
Apsos), mastiff-​type dogs (e.g., mastiffs and boxers), working dogs (e.g., collies and 
sheepdogs), and hunting dogs (e.g., hounds and terriers) (Parker et al., 2004). A sur-
prising finding from molecular genetic research on dogs is that only a small number 
of major genes are involved in the high degree of diversity in dog species (Wayne & 
vonHoldt, 2012).

Dogs also illustrate genetic effects on behavior. Although physical differences 
between breeds are most obvious, dogs have been bred for centuries as much for 
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FIGURE 5.1  Dog breeds illustrate genetic diversity within species for behavior as well as physical 

appearance.
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their behavior as for their looks. In 1576, the earliest English-​language book on dogs 
classified breeds primarily on the basis of behavior. For example, terriers (from terra, 
which is Latin for “earth”) were bred to creep into burrows to drive out small animals. 
Another book, published in 1686, described the behavior for which spaniels were 
originally selected. They were bred to creep up on birds and then spring to frighten 
the birds into the hunter’s net, which is the origin of the springer spaniel. With the 
advent of the shotgun, different spaniels were bred to point rather than to spring. 
The author of the 1686 work was especially interested in temperament: “Spaniels by 
Nature are very loveing, surpassing all other Creatures, for in Heat and Cold, Wet 
and Dry, Day and Night, they will not forsake their Master” (cited by Scott & Fuller, 
1965, p. 47). These temperamental characteristics led to the creation of spaniel breeds 
selected specifically to be pets, such as the King Charles spaniel, which is known for 
its loving and gentle temperament.

Behavioral classification of dogs continues today. Sheepdogs herd, retrievers 
retrieve, trackers track, pointers point, and guard dogs guard with minimal training. 
Breeds also differ strikingly in trainability and in temperamental traits such as emo-
tionality, activity, and aggressiveness, although there is also substantial variation in 
these traits within each breed (Coren, 2005). The selection process can be quite fine-​
tuned. For example, in France, where dogs are used chiefly for farm work, there are 
17 breeds of shepherd and stock dogs specializing in aspects of this work. In England, 
dogs have been bred primarily for hunting, and there are 26 recognized breeds of 
hunting dogs. Dogs are unusual in the extent to which different breeds have been 
intentionally bred to accentuate genetic differences in behavior. Studies have also 
examined the heritability of specific behaviors in dogs, especially for social behav-
iors. That is, although there are breed-​specific behaviors, there is also substantial 
individual variation that is heritable (e.g., Persson, Roth, Johnsson, Wright, & Jensen, 
2015), which helps to explain why we see a great deal of variation even within well-​
characterized dog breeds.

An extensive behavioral genetic research program on breeds of dogs was con-
ducted over two decades by J. Paul Scott and John Fuller (1965). They studied the 
development of pure breeds and hybrids of the five breeds pictured in Figure 5.2: 
wire-​haired fox terriers, cocker spaniels, basenjis, sheepdogs, and beagles. These 
breeds are all about the same size, but they differ markedly in behavior. Although 
considerable genetic variability remains within each breed, average behavioral differ-
ences among the breeds reflect their breeding history. For example, as their history 
would suggest, terriers are aggressive scrappers, while spaniels are nonaggressive and 
people-​oriented. Unlike the other breeds, sheepdogs have been bred, not for hunting, 
but for performing complex tasks under close supervision from their masters. They 
are very responsive to training. In short, Scott and Fuller found behavioral breed 
differences just about everywhere they looked — ​in the development of social rela-
tionships, emotionality, and trainability, as well as many other behaviors. They also 
found evidence for interactions between breeds and training. For example, scolding 
that would be brushed off by a terrier could traumatize a sheepdog.
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Selection Studies

Laboratory experiments that select for behavior provide the clearest evidence for genetic 
influence on behavior. As dog breeders and other animal breeders have known for cen-
turies, if a trait is heritable, you can breed selectively for it. Research in Russia aimed to 
understand how our human ancestors had domesticated dogs from wolves by selecting 
for tameness in foxes, which are notoriously wary of humans. Foxes that were the tamest 
when fed or handled were bred for more than 40 generations. The result of this selection 
study is a new breed of foxes that are like dogs in their friendliness and eagerness for 
human contact (Figure 5.3), so much so that these foxes have now become popular house 
pets in Russia (Kukekova et al., 2011; Trut, Oskina, & Kharlamova, 2009).

Laboratory experiments typically select high and low lines in addition to main-
taining an unselected control line. For example, in one of the largest and longest selec-
tion studies of behavior (DeFries, Gervais, & Thomas, 1978), mice were selected for 
activity in a brightly lit box called an open field, a measure of fearfulness (Figure 5.4). 
In the open field, some animals become immobile, defecate, and urinate, whereas 
others actively explore it. Lower activity scores are presumed to index fearfulness.

FIGURE 5.2  J. P. Scott with the five breeds of dogs used in his experiments with J. L. Fuller. 

Left to right: wire-​haired fox terrier, American cocker spaniel, African basenji, Shetland 

sheepdog, and beagle. (From “Genetics and the Social Behavior of the Dog” by J. P. Scott & J. L. Fuller  

© 1965 by The University of Chicago Press. All rights reserved.)
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FIGURE 5.3  Foxes are normally wary of humans and tend to bite. After selecting for tameness 

for 40 years, a program involving 45,000 foxes has developed animals that are not only tame 

but friendly. This one-​month-​old fox pup not only tolerates being held but is licking the woman’s 

face. (Lyudmila N. Trut.)

FIGURE 5.4  Mouse in an open field. The holes near the floor transmit light beams that 

electronically record the mouse’s activity. (Courtesy of E. A. Thomas.)
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The most active mice were selected and mated with other high-​active mice. The 
least active mice were also mated with each other. From the offspring of the high-​
active and low-​active mice, the most and least active mice were again selected and 
mated in a similar manner. This selection process was repeated for 30 generations. 
(In mice, a generation takes only about three months.)

The results are shown in Figures 5.5 and 5.6 for replicated high, low, and control 
lines. Over the generations, selection was successful: The high lines became increas-
ingly more active and the low lines less active (see Figure 5.5). Successful selection can 
occur only if heredity is important. After 30 generations of such selective breeding, a 
30-fold average difference in activity had been achieved. There was no overlap between 
the activity of the low and high lines (see Figure 5.6). Mice from the high-​active line 

FIGURE 5.5  Results of a selection study of open-​field activity. Two lines were selected 

for high open-​field activity (H1 and H2), two lines were selected for low open-​field activity 

(L1 and L2), and two lines were randomly mated within each line to serve as controls (C1 and C2). 

(Data from “Response to 30 generations of selection for open-​field activity in laboratory mice” 

by J. C. DeFries, M. C. Gervais, & E. A. Thomas. Behavior Genetics, 8, 3–13. ©1978 by Plenum Publishing 

Corporation. All rights reserved.)
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boldly ran the equivalent total distance of the length of a football field during the six-​
minute test period, whereas the low-​active mice quivered in the corners.

Another important finding is that the difference between the high and low lines stead-
ily increases each generation. This outcome is a typical finding from selection studies of 
behavioral traits and strongly suggests that many genes contribute to variation in behav-
ior. If just one or two genes were responsible for open-​field activity, the two lines would 
separate after a few generations and would not diverge any further in later generations.

FIGURE 5.6  Distributions of activity scores of lines selected for high and low open-​field activity 

for 30 generations (S0 to S30). Average activity of control lines in each generation is indicated 

by an arrow. (Data from “Response to 30 generations of selection for open-​field activity in laboratory 

mice” by J. C. DeFries, M. C. Gervais, & E. A. Thomas. Behavior Genetics, 8, 3–13. ©1978 by Plenum 

Publishing Corporation. All rights reserved.)
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Despite the major investment required to conduct a selection study, the method 
continues to be used in behavioral genetics, in part because of the convincing evi-
dence it provides for genetic influences on behavior and in part because it produces 
lines of animals that differ as much as possible genetically for a particular behavior 
(e.g., Zombeck, DeYoung, Brzezinska, & Rhodes, 2011).

Inbred Strain Studies

The other major quantitative genetic design for animal behavior compares inbred 
strains, in which brothers have been mated with sisters for at least 20 generations.  
This intensive inbreeding makes each animal within the inbred strain virtually a 
genetic clone of all other members of the strain. Because inbred strains differ genet-
ically from one another, genetically influenced traits will show average differences 
between inbred strains reared in the same laboratory environment. Differences within 
strains are due to environmental influences. In animal behavioral genetic research, 
mice are most often studied (Beck et al., 2000). Some of the most frequently studied 
inbred strains are shown in Figure  5.7. A database cataloging differences between 
inbred mouse strains — ​including behavioral differences such as anxiety, learning 
and memory, and stress reactivity — ​can be found at: http://phenome.jax.org/, which 
includes data for over 3500 different measurements from more than 300 inbred strains 
(Grubb, Bult, & Bogue, 2014).

Inbred strain studies suggest that most mouse behaviors show genetic influence. 
For example, Figure 5.8 shows the average open-​field activity scores of two inbred 
strains called BALB/c and C57BL/6. The C57BL/6 mice are much more active than 
the BALB/c mice, an observation suggesting that genetics contributes to open-​field 
activity. The mean activity scores of several crosses are also shown: F1, F2, and F3 
crosses (explained in Box 2.1) between the inbred strains, the backcross between the 
F1 and the BALB/c strain (B1 in Figure 5.8), and the backcross between the F1 and the 
C57BL/6 strain (B2 in Figure 5.8). There is a strong relationship between the average 
open-​field scores and the percentage of genes obtained from the C57BL/6 parental 
strain, which again points to genetic influence.

Rather than just crossing two inbred strains, the diallel design compares several 
inbred strains and all possible F1 crosses between them. Figure 5.9 shows the open-​
field results of a diallel cross between BALB/c, C57BL/6, and two other inbred strains 
(C3H/2 and DBA/2). C3H/2 is even less active than BALB/c, and DBA/2 is almost 
as active as C57BL/6. The F1 crosses tend to correspond to the average scores of their 
parents. For example, the F1 cross between C3H/2 and BALB/c is intermediate to the 
two parents in open-​field activity.

Studies of inbred strains are also useful for detecting environmental effects. 
First, because members of an inbred strain are genetically identical, individual differ-
ences within a strain must be due to environmental factors. Large differences within 
inbred strains are found for open-​field activity and most other behaviors studied, 
reminding us of the importance of prenatal and postnatal nurture as well as nature. 

http://phenome.jax.org
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Second, inbred strains can be used to assess the net effect of mothering by comparing 
F1 crosses in which the mother is from either one strain or the other. For example, 
the F1  cross between BALB/c mothers and C57BL/6 fathers can be compared to 
the genetically equivalent F1 cross between C57BL/6 mothers and BALB/c fathers. 
In a diallel study like that shown in Figure 5.9, these two hybrids had nearly identi-
cal scores, as was the case for comparisons between the other crosses as well. This 
result suggests that prenatal and postnatal environmental effects of the mother do 
not importantly affect open-​field activity. If maternal effects are found, it is possible 
to separate prenatal and postnatal effects by cross-​fostering pups of one strain with 
mothers of the other strain.

Third, the environments of inbred strains can be manipulated in the labora-
tory to investigate interactions between genotype and environment, as discussed 

FIGURE 5.7  Four common inbred strains of mice: (a) BALB/c; (b) DBA/2; (c) C3H/2; 

(d) C57BL/6. (Courtesy of Professor Robert Plomin.)

(a)

(b)

 (c)

 

(d)



6 4   C H A P T E R  F I V E

C3H
3

BALB

BALB C3H
3

DBA

C3H
3

C57

BALB
3

DBA

BALB
3

C57

DBAC3H
0

10

O
pe

n-
�e

ld
 a

ct
iv

ity

20

30

40

50

60

DBA
3

C57

C57

FIGURE 5.9  Diallel analysis of four inbred mouse strains for open-​field activity. The F1 strains 

are ordered according to the average open-​field activity score of their parental inbred strains. 

(Data from Henderson, 1967.)
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their derived F1, backcross (B1 and B2), F2, and F3 generations. (Data from “Response to 30 genera-

tions of selection for open-​field activity in laboratory mice” by J. C. DeFries, M. C. Gervais, &  

E. A. Thomas. Behavior Genetics, 8, 3–13. ©1978 by Plenum Publishing Corporation. All rights reserved.)
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in Chapter  8. A type of genotype-​environment interaction was reported in an 
influential paper in which genetic influences as assessed by inbred strains differed 
across laboratories for some behaviors, although the results for open-​field activity 
were robust across laboratories (Crabbe, Wahlsten, & Dudek, 1999b). Subsequent 
studies indicated that the rank order between inbred strains for behaviors showing 
large strain differences is stable across laboratories (Wahlsten et al., 2003). For exam-
ple, comparisons over 50 years of research on inbred strains for locomotor activity 
and ethanol preference yield rank-​order correlations of 0.85 to 0.98 across strains  
(Wahlsten, Bachmanov, Finn, & Crabbe, 2006). Another study of more than 2000 out-
bred mice also showed few interactions between open-​field activity and experimen-
tal variables, such as who tests the mice and order of testing (Valdar et al., 2006b). 
Nonetheless, there is value in multi-​laboratory studies in terms of generalizability of 
inbred strain results (Kafkafi, Benjamini, Sakov, Elmer, & Golani, 2005). Inbred strains 
are also being used to test for gene-​environment interactions more generally on a 
wide variety of behavioral phenotypes and environmental conditions. For example, 
mouse strains that mimic the genetics of autism spectrum disorders have been used 
as models to identify whether exposure to environmental toxicants are important in 
the development of autism spectrum and related disorders (Schwartzer, Koenig, & 
Berman, 2013).

More than 1000 behavioral investigations involving genetically defined mouse 
strains were published between 1922 and 1973 (Sprott & Staats, 1975), and the 
pace  accelerated into the 1980s. Studies such as these played an important role 
in demonstrating that genetics contributes to most behaviors. Although inbred 
strain studies now tend to be overshadowed by more sophisticated genetic analy-
ses, inbred strains still provide a simple and highly efficient test for the presence of 
genetic influence. For example, inbred strains have recently been used to screen for 
genetic mediation of associations between genomewide gene expression profiles and 
behavior (Letwin et al., 2006; Nadler et al., 2006), a topic to which we will return in 
Chapter 10.

KEY CONCEPTS

Selective breeding: Breeding for a phenotype over several generations 

by selecting parents with high scores on the phenotype, mating them, 

and assessing their offspring to determine the response to selection. 

Bidirectional selection studies also select in the other direction, that is, 

for low scores. 

Inbred strain: A strain of animal (usually mice) that has been bred by sibling 

matings for at least 20 generations, resulting in individuals that are nearly 

genetically identical. Use of inbred strains allows genetic and environmental 

influences on behavior to be investigated.
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ANIMAL STUDIES FOR IDENTIFYING GENES 
AND GENE FUNCTIONS

The first part of this chapter described how inbred strain and selection studies with 
animals provide direct experiments to investigate genetic influence. In contrast, as we 
will describe in Chapter 6, quantitative genetic research on human behavior is limited 
to less direct designs, primarily adoption, the experiment of nurture, and twinning, 
the experiment of nature. Similarly, animal models provide more powerful means to 
identify genes than are available for our species because genes and genotypes can be 
manipulated experimentally. Chapter 9 will describe methods for identifying genes 
in humans.

Long before DNA markers became available in the 1980s (see Box 9.1 for more 
information on DNA markers), associations were found between single genes and 
behavior. The first example was discovered in 1915 by A. H. Sturtevant, inventor of 
the chromosome map. He found that a single-​gene mutation that alters eye color 
in the fruit fly Drosophila also affects their mating behavior. Another example involves 
the single recessive gene that causes albinism and also affects open-​field activity in 
mice. Albino mice are less active in the open field. It turns out that this effect is largely 
due to the fact that albinos are more sensitive to the bright light of the open field. 
With a red light that reduces visual stimulation, albino mice are almost as active as 
pigmented mice. These relationships are examples of what is called allelic association, 
the association between a particular allele and a phenotype. Rather than using genes 
that are known by their phenotypic effect, like those for eye color and albinism, it 
is now possible to use millions of polymorphisms in DNA itself, either naturally 
occurring DNA polymorphisms, such as those determining eye color or albinism, or 
artificially created mutations.

Creating Mutations

In addition to studying naturally occurring genetic variation, geneticists have long 
used chemicals or X-​irradiation to create mutations in the DNA in order to identify 
genes affecting complex traits, including behavior. This section focuses on the use of 
mutational screening to identify genes that affect behavior in animal models.

Hundreds of behavioral mutants have been created in organisms as diverse as bac-
teria, roundworms, fruit flies, zebrafish, and mice (Figure 5.10). Information about these 
and other animal models for genetic research is available from http://www.nih.gov 
/science/models. This work illustrates that most normal behavior is influenced by 
many genes. Although any one of many single-​gene mutations can seriously disrupt 
behavior, normal development is orchestrated by many genes working together. An 
analogy is an automobile, which requires thousands of parts for its normal functioning. 
If any one part breaks down, the automobile may not run properly. In the same way, 
if the function of any gene breaks down through mutation, it is likely to affect many 
behaviors. In other words, mutations in single genes can drastically affect behavior 

http://www.nih.gov/science/models
http://www.nih.gov/science/models
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that is normally influenced by many genes. An important principle is pleiotropy, the 
effect of a single gene on many traits. The corollary is that any complex trait is likely 
to be polygenic, that is, influenced by many genes. Also, there is no necessary rela-
tionship between naturally occurring genetic variation and experimentally created 
genetic variation. That is, creating a mutation that affects a behavior does not imply 
that naturally occurring variation in that gene is associated with naturally occurring 
variation in the behavior.

Bacteria  Although the behavior of bacteria is by no means attention-​grabbing, they 
do behave. They move toward or away from many kinds of chemicals by rotating their 
propeller-​like flagella. Since the first behavioral mutant in bacteria was isolated in 

FIGURE 5.10  Behavioral mutants have been created in bacteria (shown magnified 25,000 times), 

roundworms (about 1 mm in length), fruit flies (about 2–4 mm), zebrafish (about 4 cm), and mice 

(about 9 cm without the tail). (Bacteria: Scimat Scimat/Science Source/Getty Images. Roundworm:  

Sinclair Stammers/Science Source. Fruit fly: Biosphoto/Bartomeu Borrell. Zebrafish: Mirko_Rosenau/

iStock/Getty Images. Mouse: Redmond Durrell/Alamy.)
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1966, the dozens of mutants that have been created emphasize the genetic complexity 
of an apparently simple behavior in a simple organism. For example, many genes are 
involved in rotating the flagella and controlling the duration of the rotation.

Roundworms  Among the 20,000 species of nematode (roundworm), Caenorhabditis 
elegans is about 1 mm in length and spends its three-​week life span in the soil, espe-
cially in rotting vegetation, where it feeds on microbes such as bacteria. Conveniently, 
it also thrives in laboratory Petri dishes. Once viewed as an uninteresting, featureless 
tube of cells, C. elegans is now studied by thousands of researchers. It has 959 cells, 
of which 302 are nerve cells, including neurons in a primitive brain system called a 
nerve ring. A valuable aspect of C. elegans is that all its cells are visible with a micro-
scope through its transparent body. The development of its cells can be observed, and 
it develops quickly because of its short life span.

Its behavior is more complex than that of single-​celled organisms like bacte-
ria, and many behavioral mutants have been identified (Hobert, 2003). For example, 
investigators have identified mutations that affect locomotion, foraging behavior, 
learning, and memory (Ardiel & Rankin, 2010; Rankin, 2002).  C.  elegans is espe-
cially important for functional genetic analysis because the developmental fate of 
each of its cells and the wiring diagram of its 302 nerve cells are known. In addition, 
most of its 20,000 genes are known, although we have no idea what half of them do 
(http://www.wormbase.org/; Harris et al., 2010). About half of the genes are known 
to match human genes. C. elegans has the distinction of being the first animal to have its 
genome of 100 million base pairs (3 percent of the size of the human genome) com-
pletely sequenced (Wilson, 1999). Despite these huge advantages for the experimen-
tal analysis of behavior, it has been difficult to connect the dots between genes, brain, 
and behavior (Schafer, 2005), which is a lesson to which we will return in Chapter 10.

Fruit flies  The fruit fly Drosophila, with about 2000 species, is the star organism in 
terms of behavioral mutants, with hundreds identified since the pioneering work of 
Seymour Benzer (Weiner, 1999). Its advantages include its small size (2–4 mm), the 
ease of growing it in a laboratory, its short generation time (about two weeks), and its 
high productivity (females can lay 500 eggs in ten days). Its genome was sequenced 
in 2000.

The earliest behavioral research involved responses to light (phototaxis) and 
to gravity (geotaxis). Normal Drosophila move toward light (positive phototaxis) and 
away from gravity (negative geotaxis). Many mutants that were either negatively pho-
totaxic or positively geotaxic were created.

The hundreds of other behavioral mutants included sluggish (generally slow), 
hyperkinetic (generally fast), easily shocked (jarring produces a seizure), and paralyzed 
(collapses when the temperature goes above 28°C). A drop dead mutant walks and flies 
normally for a couple of days and then suddenly falls on its back and dies. More com-
plex behaviors have also been studied, especially courtship and learning. Behavioral 

http://www.wormbase.org
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mutants for various aspects of courtship and copulation have been found. One male 
mutant, called fruitless, courts males as well as females and does not copulate. Another 
male mutant cannot disengage from the female after copulation and is given the dubi-
ous title stuck. The first learning behavior mutant was called dunce and could not learn 
to avoid an odor associated with shock even though it had normal sensory and motor 
behavior.

Drosophila also offer the possibility of creating genetic mosaics, individuals in which 
the mutant allele exists in some cells of the body but not in others (Hotta & Benzer, 
1970). As individuals develop, the proportion and distribution of cells with the mutant 
gene vary across individuals. By comparing individuals with the mutant gene in a 
particular part of the body — ​detected by a cell marker gene that is inherited along 
with the mutant gene — ​it is possible to localize the site where a mutant gene has its 
effect on behavior.

The earliest mosaic mutant studies involved sexual behavior and the X chromo-
some (Benzer, 1973). Drosophila were made mosaic for the X chromosome: Some body 
parts have two X chromosomes and are female, and other body parts have only one 
X chromosome and are male. As long as a small region toward the back of the brain is 
male, courtship behavior is male. Of course, sex is not all in the head. Different parts 
of the nervous system are involved in aspects of courtship behavior such as tapping, 
“singing,” and licking. Successful copulation also requires a male thorax (containing 
the fly’s version of a spinal cord between the head and abdomen) and, of course, male 
genitals (Greenspan, 1995).

Many other gene mutations in Drosophila have been shown to affect behaviors 
(Sokolowski, 2001). The future importance of Drosophila in behavioral research is 
assured by its unparalleled genomic resources (often called bioinformatics) (Matthews, 
Kaufman, & Gelbart, 2005). For example, gene expression data in different tissues of 
Drosophila are available in a Web-​based resource (http://flyatlas.org and http://flyatlas 
.gla.ac.uk; Robinson, Herzyk, Dow, & Leader, 2013).

Zebrafish  Although invertebrates like C. elegans and Drosophila are useful in behavio-
ral genetics, many forms and functions are new to vertebrates. The zebrafish, named 
after its horizontal stripes, is common in many aquaria, grows to about 4 cm, and can 
live for five years. It has become a key vertebrate for studying early development 
because the developing embryo can be observed directly — ​it is not hidden inside the 
mother as are mammalian embryos. In addition, the embryos themselves are translu-
cent. Zebrafish have been useful for behavioral genetic research with studies on sen-
sory and motor development (Guo, 2004), food and opiate preferences (Lau, Bretaud, 
Huang, Lin, & Guo, 2006), social behavior including aggression (Jones & Norton, 2015; 
Miller & Gerlai, 2007), associative learning (Sison & Gerlai, 2010), complex brain dis-
orders (Kalueff, Echevarria, & Stewart, 2014), and alcohol consumption (Sterling, 
Karatayev, Chang, Algava, & Leibowitz, 2015). About 70 percent of human genes are 
similar to zebrafish genes (Howe et al., 2013).

http://flyatlas.org
http://flyatlas.gla.ac.uk
http://flyatlas.gla.ac.uk


7 0   C H A P T E R  F I V E

Mice and rats  The mouse is the main mammalian species used for mutational 
screening (Kile & Hilton, 2005). Hundreds of lines of mice with mutations that affect 
behavior have been created (Godinho & Nolan, 2006). Many of these are preserved 
in frozen embryos that can be “reconstituted” on order. Resources describing the 
behavioral and biological effects of the mutations are available (e.g., http://www 
.informatics.jax.org/). Major initiatives are under way to use chemical mutagene-
sis to  screen mice for mutations on a broad battery of measures of complex traits 
(Kumar  et  al., 2011) and to understand the flow of biological information, from 
molecular to cellular to complex phenotype, and any steps in between, known as 
systems genetics (Civelek & Lusis, 2014). Behavioral screening is an important part 
of these initiatives because behavior can be an especially sensitive indicator of the 
effects of mutations (Crawley, 2003; Crawley, 2007).

After the human, the mouse was the next mammalian target for sequencing 
the entire genome, which was accomplished in 2001 (Venter et  al., 2001). The rat, 
whose larger size makes it the favorite rodent for physiological and pharmacologi-
cal research, is also coming on strong in genomics research (Jacob & Kwitek, 2002; 
Smits & Cuppen, 2006). The rat genome was sequenced in 2004 (Gibbs et al., 2004). 
The bioinformatics resources for rodents are growing rapidly with a genome database 
now also available for rats (http://rgd.mcw.edu/; Shimoyama et al., 2015).

Targeted mutations  In addition to mutational screening, the mouse is also the 
main mammalian species used to create targeted mutations that knock out the expres-
sion of specific genes. A targeted mutation is a process by which a gene is changed in 
a specific way to alter its function (Capecchi, 1994). Most often, genes are “knocked 
out” by deleting key DNA sequences that prevent the gene from being transcribed. 
Many techniques produce more subtle changes that alter the gene’s regulation; these 
changes lead to underexpression or overexpression of the gene rather than knock-
ing it out altogether. In mice, the mutated gene is transferred to embryos (a tech-
nique called transgenics when the mutated gene is from another species). Once mice 
homozygous for the knock-​out gene are bred, the effect of the knock-​out gene on 
behavior can be investigated.

More than 20,000 knock-​out mouse lines have been created, many of which 
affect behavior. For example, over 200 genes have been genetically engineered for 
their effect on alcohol responses (Crabbe, Phillips, & Belknap, 2010; Koscielny et 
al., 2014; also see http://www.mousephenotype.org/). Another example is aggres-
sive behavior in the male mouse, for which genetically engineered genes show 
effects (Maxson, 2009). 250 knock-​out mouse lines created as part of international 
consortium efforts were systematically screened for adult phenotypes replicat-
ing existing work and identifying many new phenotypes for known genes (White 
et al., 2013).

Gene-targeting strategies are not without their limitations (Crusio, 2004). One 
problem with knock-​out mice is that the targeted gene is inactivated throughout the 

http://www.informatics.jax.org
http://rgd.mcw.edu
http://www.mousephenotype.org
http://www.informatics.jax.org
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animal’s life span. During development, the organism copes with the loss of the gene’s 
function by compensating wherever possible. For example, deletion of a gene coding 
for a dopamine transporter protein (which is responsible for inactivating dopami
nergic neurons by transferring the neurotransmitter back into the presynaptic termi-
nal) results in a mouse that is hyperactive in novel environments (Giros, Jaber, Jones, 
Wightman, & Caron, 1996). These knock-​out mutants exhibit complex compensa-
tions throughout the dopaminergic system that are not specifically due to the dopa-
mine transporter itself (Jones et al., 1998). However, in most instances, compensations 
for the loss of gene function are invisible to the researcher, and caution must be taken 
to avoid attributing compensatory changes in the animals to the gene itself. These 
compensatory processes can be overcome by creating conditional knock-​outs of reg-
ulatory elements; these conditional mutations make it possible to turn expression of 
the gene on or off at will at any time during the animal’s life span, or the mutation can 
target specific areas of the brain (e.g., White et al., 2013).

Gene silencing  In contrast to knock-​out studies, which alter DNA, another method 
uses double-​stranded RNA to “knock down” expression of the gene that shares its 
sequence (Hannon, 2002). The gene-silencing technique, which was discovered in 
1997 and won the Nobel Prize in 2006 (Bernards, 2006), is called RNA interference 
(RNAi) or small interfering RNA (siRNA), because it degrades complementary RNA 
transcripts (http://www.ncats.nih.gov/rnai). siRNA kits are now available commer-
cially that target nearly all the genes in the human and mouse genomes. More than 
8000 papers on siRNA were published in 2010 alone, primarily about using cell cul-
tures where delivery of the siRNA to the cells is not a problem. However, in vivo 
animal model research necessary for behavioral analysis has begun. Although deliv-
ery to the brain remains a problem (Gavrilov & Saltzman, 2012; Thakker, Hoyer, & 
Cryan, 2006), injecting siRNA in mouse brains has yielded knock-​down results on 
behavior similar to results expected from knock-​out studies (Salahpour, Medvedev, 
Beaulieu, Gainetdinov, & Caron, 2007). It is hoped that siRNA will soon have thera-
peutic applications (Kim & Rossi, 2007), for example, for prevention of infection by a 
respiratory virus (Yin et al., 2014).

CRISPR gene editing  An exciting new approach to changing the sequence of 
specific genes uses what is called the CRISPR/Cas9 system. CRISPR/Cas (clustered 
regularly interspaced short palindromic repeats) and Cas9 (CRISPR-​associated 
protein 9) is an enzyme system that works somewhat like RNAi to cut foreign DNA 
and insert itself in the invading DNA (Doudna & Charpentier, 2014). CRISPR/
Cas9 has become popular because it can cleave nearly any DNA sequence, which 
makes it relatively easy to use in order to add or delete base pairs for specific genes 
in any species (Haimovich, Muir & Isaacs, 2015). Concern has been raised because 
of research showing that it could be used to change the human germline (Lanphier, 
Urnov, Haecker, Werner, & Smolenski, 2015).

http://www.ncats.nih.gov/rnai
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KEY CONCEPTS

Mutation: A heritable change in DNA base-​pair sequences. 

Targeted mutation: The changing of a gene in a specific way to alter its function, 

such as gene knock-​outs. 

Gene silencing: Suppressing expression of a gene.

Quantitative Trait Loci

Creating a mutation that has a major effect on behavior does not mean that this gene 
is specifically responsible for the behavior. Remember the automobile analogy in 
which any one of many parts can go wrong and prevent the automobile from running 
properly. Although the part that goes wrong has a big effect, that part is only one of 
many parts needed for normal functioning. Moreover, the genes changed by artifi-
cially created mutations are not necessarily responsible for the naturally occurring 
genetic variation detected in quantitative genetic research. Identifying genes respon-
sible for naturally occurring genetic variation that affects behavior has only become 
possible in recent years. The difficulty is that, instead of looking for a single gene with 
a major effect, we are looking for many genes, each having a relatively small effect 
size — ​quantitative trait loci (QTLs), a term that has been used primarily in agri-
cultural genetics (Wallace, Larsson, & Buckler, 2014).

Animal models have been particularly useful in the quest for QTLs because both 
genetics and environment can be manipulated and controlled in the laboratory. Ani-
mal model work on natural genetic variation and behavior has primarily studied the 
mouse and the fruit fly Drosophila (Kendler & Greenspan, 2006). Although this section 
emphasizes research on mice, similar methods have been used in Drosophila (Mackay & 
Anholt, 2006) and have been applied to many behaviors (Anholt & Mackay, 2004), such 
as aggressive behavior (Shorter et al., 2015), alcohol use (Grotewiel & Bettinger, 2015), 
avoidance behavior (Ghosh et al., 2015), mating behavior (Moehring & Mackay, 2004), 
odor-​guided behavior (Sambandan, Yamamoto, Fanara, Mackay, & Anholt, 2006), and 
locomotor behavior (Jordan, Morgan, & Mackay, 2006). In addition, as mentioned in 
the previous section, behavioral genetic research on the rat is also increasing rapidly 
(Smits & Cuppen, 2006).

In animal models, linkage can be identified by using Mendelian crosses to trace 
the cotransmission of a marker whose chromosomal location is known and a single-​
gene trait, as illustrated in Figure 3.6. Linkage, which is also described in Chapter 9, 
is suggested when the results violate Mendel’s second law of independent assortment. 
However, as emphasized in previous chapters, behavioral dimensions and disorders 
are likely to be influenced by many genes; consequently, any one gene is likely to 
have only a small effect. If many genes contribute to behavior, behavioral traits will 
be distributed quantitatively. The goal is to find some of the many genes (QTLs) that 
affect these quantitative traits.
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F2 crosses  Although linkage techniques can be extended to investigate quantita-
tive traits, most QTL analyses with animal models use allelic association, which is 
more powerful for detecting the small effect sizes expected for QTLs. Allelic association 
refers to the correlation or association between an allele and a trait. For example, 
the allelic frequency of DNA markers can be compared for groups of animals high 
or low on a quantitative trait. This approach has been applied to open-​field activity 
in mice (Flint et al., 1995). F2 mice were derived from a cross between high and low 
lines selected for open-​field activity and subsequently inbred by using brother-​sister 
matings for over 30 generations. Each F2 mouse has a unique combination of alleles 
from the original parental strains because there is an average of one recombination 
in each chromosome inherited from the F1 strain (see Figure 3.7). The most active 
and the least active F2 mice were examined for 84 DNA markers spread throughout 
the mouse chromosomes in an effort to identify chromosomal regions that are asso-
ciated with open-​field activity (Flint et al., 1995). The analysis simply compares the 
frequencies of marker alleles for the most active and least active groups. This method 
has been applied to other behaviors such as drug preference (Doyle et al., 2014).

Figure 5.11 shows that regions of chromosomes 1, 12, and 15 harbor QTLs for 
open-​field activity. A QTL on chromosome 15 is related primarily to open-​field activity 
and not to other measures of fearfulness, an observation suggesting the possibility of a 
gene specific to open-​field activity. The QTL regions on chromosomes 1 and 12, on the 
other hand, are related to other measures of fearfulness, associations suggesting that 
these QTLs affect diverse measures of fearfulness. QTLs were subsequently mapped 
in two large (N = 815 and 821) F2 crosses from the replicate inbred lines of mice 
initially selected for open-​field activity (Turri, Henderson, DeFries, & Flint, 2001). 
Results of this study both confirmed and extended the previous findings reported 
by Flint et al. (1995). QTLs for open-​field activity were replicated on chromosomes 1, 
4, 12, and 15, and new evidence for additional QTLs on chromosome 7 and the X chro-
mosome was also obtained. An exception is exploration in an enclosed arm of a maze 
(see Figure 5.11), which was included in the study as a control because other research 
suggests that this measure is not genetically correlated with measures of fearfulness. 
Several studies have also reported associations between markers on the distal end of 
chromosome 1 and quantitative measures of emotional behavior, although it has been 
difficult to identify the specific gene responsible for the association (Fullerton, 2006).

Heterogeneous stocks and commercial outbred strains  Because the chro-
mosomes of F2 mice have an average of only one crossover between maternal and 
paternal chromosomes, the method has little resolving power to pinpoint a locus, 
although it has good power to identify the chromosome on which a QTL resides. That 
is, QTL associations found by using F2 mice refer only to general “neighborhoods,” 
not specific addresses. The QTL neighborhood is usually very large, about 10 million 
to 20 million base pairs of DNA, and thousands of genes could reside there. One way to 
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increase the resolving power is to use animals whose chromosomes are recombined 
to a greater extent, by breeding for many generations animals derived either from two 
inbred strains (an advanced intercross) (Darvasi, 1998) or from multiple inbred strains 
(heterogeneous stocks) (Valdar et al., 2006a). The latter approach was used to increase 
30-fold the resolving power of the QTL study of fearfulness (Talbot et  al., 1999). 
Mice in the top and bottom 20 percent of open-​field activity scores were selected 
from 751 heterogeneous stock mice. The results confirmed the association between 
emotionality and markers on chromosome 1, although the association was closer to 
the 70-cM region than the 100-cM region of chromosome 1 found in the earlier study 
(see Figure 5.11). Some supporting evidence for a QTL on chromosome 12 was also 
found, but none was found for chromosome 15. Even greater mapping resolution is 
possible using commercially available outbred mice (Yalcin et al., 2010). For example, 
using commercial outbred strains, the chromosome 1 association with emotionality 
was mapped to an interval containing a single gene (Yalcin et al., 2004). Commercial 
outbreds are a resource for genomewide association studies in mice and have the 
potential to identify multiple genes involved in behavior. The advanced intercross has 
also been used in other species such as Drosophila (Long, Macdonald, & King, 2014), 
for example, to study aggressive behavior (Shorter et al., 2015).

Much QTL research in mice has been in the area of pharmacogenetics, a field 
in which investigators study genetic effects on responses to drugs. Dozens of QTLs 
have been mapped for drug responses such as alcohol drinking, alcohol-​induced 
loss of righting reflex, acute alcohol and pentobarbital withdrawal, cocaine sei-
zures, and morphine preference and analgesia (Crabbe et al., 2010; Crabbe, Phillips, 
Buck, Cunningham, & Belknap, 1999a). In some instances, the location of a mapped 
QTL is close enough to a previously mapped gene of known function to make studies 
of that gene informative for human studies (Ehlers, Walter, Dick, Buck, & Crabbe, 
2010). Pharmacogenetics QTL-​mapping research also has been extended to rats 
(Spence et al., 2009).

Recombinant inbred strains  Another method used to identify QTLs for behavior 
involves special inbred strains called recombinant inbred (RI) strains. RI strains are 
inbred strains derived from an F2 cross between two inbred strains; this process leads 

FIGURE 5.11  QTLs for open-​field activity and other measures of fearfulness in an F2 cross 

between high and low lines selected for open-​field activity. The five measures are (1) open-​field 

activity (OFA), (2) defecation in the open field, (3) activity in the Y maze, (4) entry in the open 

arms of the elevated plus maze, and (5) entry in the enclosed arms of the elevated plus maze, 

which is not a measure of fearfulness. LOD (logarithm to the base 10 of the odds) scores indicate 

the strength of the effect; a LOD score of 3 or greater is generally accepted as significant. 

Distance in centimorgans (cM) indicates position on the chromosome, with each centimorgan 

roughly corresponding to 1 million base pairs. Below the distance scale are listed the specific 

short-​sequence repeat markers for which the mice were examined and mapped. (Reprinted 

with permission from “A simple genetic basis for a complex psychological trait in laboratory mice” 

by J. Flint et al. Science, 269, 1432–1435. ©1995 American Association for the Advancement of Science. 

All rights reserved.)
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to recombination of parts of chromosomes from the parental strains (Figure 5.12). 
Thousands of DNA markers have been mapped in RI strains, thus enabling investi-
gators to use these markers to identify QTLs associated with behavior without any 
additional genotyping (Plomin & McClearn, 1993). The special value of the RI QTL 
approach is that it enables all investigators to study essentially the same animals 
because the RI strains are extensively inbred. This feature of RI QTL analysis means 
that each RI strain needs to be genotyped only once and that genetic correlations can 
be assessed across measures, across studies, and across laboratories. The QTL anal-
ysis itself is much like the F2 QTL analysis discussed earlier except that, instead of 
comparing individuals with recombined genotypes, the RI QTL approach compares 
means of recombinant inbred strains. RI QTL work has also focused on pharmaco-
genetics. For example, RI QTL research has confirmed some of the associations for 
responses to alcohol found using F2 crosses (Buck, Rademacher, Metten, & Crabbe, 
2002). Research combining RI and F2 QTL approaches is also making progress toward 
identifying genes for alcohol-​related behaviors (Bennett, Carosone-​Link, Zahniser, & 
Johnson, 2006; Bennett et al., 2015).

An initial problem with the RI QTL method was that only a few dozen RI 
strains were available, which means that only associations of large effect size could be 

FIGURE 5.12  Construction of a set of recombinant inbred strains from the cross of two parental 

inbred strains. The F1 is heterozygous at all loci that differ in the parental strains. Crossing 

F1 mice produces an F2 generation in which alleles from the parental strains segregate so that 

each individual is genetically unique. By inbreeding the F2 with brother-​sister matings for many 

generations, recombination continues until each RI strain is fixed homozygously at each gene 

for a single allele inherited from one or the other progenitor inbred strain. Unlike F2 crosses, 

RI strains are genetically stable because each strain has been inbred. This means that a set 

of RI strains needs to be genotyped only once for DNA markers or phenotyped only once for 

behaviors and the data can be used in any other experiment using that set of RI strains. Similar 

to the F2 cross, QTL association can be detected by comparing the quantitative trait scores of 

RI strains that differ genotypically for a particular DNA marker.
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detected. Also, it has been difficult to locate the specific genes responsible for associ-
ations. A major new development is the creation of an RI series that includes as many 
as 1000 RI strains from crosses between eight inbred strains (Chesler et al., 2008). When 
eight inbred strains are crossed, the resulting RI strains will show greater recombina-
tion than seen in the two-​strain RI example shown in Figure 5.12; they will also yield 
sufficient power to detect QTL associations of modest effect size. The Collabora-
tive Cross, as the project is known, is now beginning to provide a valuable resource 
not only for the identification of genes associated with complex traits but also for 
integrative analyses of complex systems that include gene expression as well as neu-
ral, pharmacological, and behavioral data (Aylor et  al., 2011; Buchner & Nadeau, 
2015), as described in Chapter 10. Moreover, the collaborative cross mice have been 
intercrossed at various stages of inbreeding to create mice with varying degrees of 
relatedness (Svenson et  al., 2012). The resulting diversity outcross population was 
designed to be complementary to the collaborative cross population to help increase 
the precision in mapping of QTLs and the correlation of behavioral phenotypes 
(Chesler, 2014).

A strategy similar to using RI strains that has been very useful in helping to 
clarify  the genetics of complex traits in mice is the creation of chromosome 
substitution strains (CSSs). CSSs are created by introducing individual chromo-
somes from a donor inbred strain into a host inbred strain background resulting 
in a panel of 22 mouse strains that vary on a single chromosome from two well-​
characterized inbred strains (Singer et al., 2004). CSSs have proven to be very pow-
erful in identifying QTLs for traits like body weight and activity level (Buchner & 
Nadeau, 2015).

Synteny Homology

QTLs found in mice can be used as candidate QTLs for human research because 
nearly all mouse genes are similar to human genes. Moreover, chromosomal regions 
linked to behavior in mice can be used as candidate regions in human studies because 
parts of mouse chromosomes have the same genes in the same order as parts of human 
chromosomes, a relationship called synteny homology. It is as if about 200 chromosomal 
regions have been reshuffled onto different chromosomes from mouse to human. (See 
http://www.informatics.jax.org/ for details about synteny homology.) For example, 
the region of mouse chromosome 1 shown in Figure 5.11 to be linked with open-​field 
activity has the same order of genes that happen to be part of the long arm of human 
chromosome 1, although syntenic regions are usually on different chromosomes in 
mouse and human. As a result of these findings, this region of human chromosome 
1 has been considered as a candidate QTL region for human anxiety, and linkage 
with the syntenic region in human chromosome 1 has been reported in several large 
studies (e.g., Ashbrook, Williams, Lu, & Hager, 2015; Fullerton et al., 2003; Nash et al., 
2004). QTLs in syntenic regions for mouse and human chromosomes have also been 
reported for alcohol use (Ehlers et al., 2010).

http://www.informatics.jax.org
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Summary

Quantitative genetic studies of animal behavior provide powerful tests of genetic 
influence. These studies include selection studies and studies of inbred strains; 
through their use we have learned a great deal about how genes and environments 
influence behavior. For example, studies of mice have helped to clarify how genes 
are involved in fearful and aggressive behavior, and there have been many studies of 
alcohol-​related behaviors in mice. Studies of animal behavior have also been used to 
identify genes. Many behavioral mutants have been identified from studies of chem-
ically induced mutations in organisms as diverse as single-​celled organisms, round-
worms, fruit flies, and mice. Associations between such single-​gene mutations and 
behavior generally underline the point that disruption of a single gene can drastically 
affect behavior normally influenced by many genes. Experimental crosses of inbred 
strains are powerful tools for identifying linkages, even for complex quantitative traits 
for which many genes are involved. Such quantitative trait loci (QTLs) have been 
identified for several behaviors in mice, such as fearfulness and responses to drugs.
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Nature, Nurture, 
and Human Behavior

M ost behavioral traits are much more complex than single-​gene disorders 

such as Huntington disease and PKU (see Chapter 3). Complex dimensions 

and disorders are influenced by heredity, but not by one gene alone. Multiple genes 

are usually involved, as well as multiple environmental influences. The purpose of 

this chapter is to describe ways in which we can study genetic effects on complex 

behavioral traits in humans. Chapter 5 described how complex behavioral traits are 

examined using animal models. The words nature and nurture have a rich and con-

tentious history in the field, but they are used here simply as broad categories rep-

resenting genetic and environmental influences, respectively. They are not distinct 

categories — ​Chapter 8 discusses the interplay between them, and the importance of 

gene-​environment interplay is woven throughout this book.
The first question that needs to be asked about behavioral traits is whether  

heredity is at all important. For single-​gene disorders, this is not an issue because it is 
usually obvious that heredity is important. For example, for dominant genes, such as 
the gene for Huntington disease, you do not need to be a geneticist to notice that every 
affected individual has an affected parent. Recessive gene transmission is not as easy 
to observe, but the expected pattern of inheritance is clear. For complex behavioral 
traits in the human species, an experiment of nature (twinning) and an experiment of 
nurture (adoption) are widely used to assess the net effect of genes and environments. 
The theory underlying these methods is called quantitative genetics. Quantitative genetics 
estimates the extent to which observed differences among individuals are due to genetic 
differences of any sort and to environmental differences of any sort without specifying 
what the specific genes or environmental factors are. When heredity is important — ​and 
it almost always is for complex traits like behavior — ​it is now possible to identify specific 
genes by using the methods of molecular genetics, the topic of Chapter 9. Behavioral 
genetics uses the methods of both quantitative genetics and molecular genetics to study 
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behavior. Using genetically sensitive designs also facilitates the identification of specific 
environmental factors, which is the topic of Chapter 7.

Investigating the Genetics of Human Behavior

Quantitative genetic methods to study human behavior are not as powerful or direct as 
the animal approaches described in Chapter 5. Rather than using genetically defined 
populations such as inbred strains of mice or manipulating environments experimen-
tally, human research is limited to studying naturally occurring genetic and environ-
mental variation. Nonetheless, adoption and twinning provide experimental situations 
that can be used to test the relative influence of nature and nurture. As mentioned in 
Chapter 1, increasing recognition of the importance of genetics during the past three 
decades is one of the most dramatic shifts in the behavioral sciences. This shift is in 
large part due to the accumulation of adoption and twin research that consistently 
points to the important role played by genetics even for complex psychological traits.

Adoption Designs

Many behaviors “run in families,” but family resemblance can be due either to nature 
or to nurture, or to some combination of both. The most direct way to disentangle 
genetic and environmental sources of family resemblance involves adoption. Adop-
tion creates sets of genetically related individuals who do not share a common family 
environment because they were adopted apart. Their similarity estimates the contri-
bution of genetics to family resemblance.

Adoption also produces adopted-​together family members who share a common 
family environment but are not genetically related. Their resemblance estimates 
the contribution of the family environment to family resemblance. In this way, the 
effects of nature and nurture can be inferred from the adoption design. As mentioned 
earlier, quantitative genetic research does not in itself identify specific genes or envi-
ronments. It is possible to incorporate direct measures of genes and environments 
into quantitative genetic designs, and a few such studies are under way (Chapter 7).

For example, consider parents and offspring. Parents in a family study are 
“genetic-​plus-​environmental” parents in that they share both heredity and environ-
ment with their offspring. The process of adoption results in “genetic” parents and 
“environmental” parents (Figure 6.1). “Genetic” parents are birth parents who place 
their child for adoption shortly after birth. Resemblance between birth parents and 
their adopted offspring directly assesses the genetic contribution to parent-​offspring 
resemblance. “Environmental” parents are adoptive parents who adopt children 
genetically unrelated to them. When children are placed into adoptive families as 
infants, resemblance between adoptive parents and their adopted children directly 
assesses the postnatal environmental contributions to parent-​offspring resemblance. 
Additional environmental influences on the adopted children come from the pre-
natal environment provided by their birth mothers. Genetic influences can also be 
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assessed by comparing “genetic-​plus-​environmental” families with adoptive families 
who share only family environment.

“Genetic” siblings and “environmental” siblings can also be studied. “Genetic” 
siblings are full siblings adopted apart early in life and reared in different homes. 
“Environmental” siblings are pairs of genetically unrelated children reared in the 
same home. This can be due to two children being adopted early in life by the same 
adoptive parents, to adopted children being reared with children who are biological 
to the adoptive parents, or to being part of a stepfamily where each parent brings a 
child from a previous marriage. As described in the Appendix, these adoption designs 
can be depicted more precisely as path models that are used in model fitting to  
test the fit of the model, to compare alternative models, and to estimate genetic and 
environmental influences (see the Appendix; Boker et al., 2011; Boker et al., 2012).

Adoption studies often yield evidence for genetic influence on behavioral traits, 
although results depend on the trait examined and the age of the adopted child. 
Specifically, studies of infants and toddlers examining behavioral outcomes find few 
main effects of genetics (e.g., Natsuaki et  al., 2010), although there is evidence of 
gene-​environment interplay (see Chapter 8). When children are examined later in 
childhood for traits like cognitive ability and other behavioral outcomes, genetic fac-
tors appear to be important (Plomin, Fulker, Corley, & DeFries, 1997).

Figure  6.2 summarizes adoption results for general cognitive ability (see 
Chapter 11 for details). “Genetic” parents and offspring and “genetic” siblings signifi-
cantly resemble each other even though they are adopted apart and do not share family 
environment. You can see that genetics accounts for about half of the resemblance for 
“genetic-​plus-​environmental” parents and siblings. The other half of familial resem-
blance appears to be explained by shared family environment, assessed directly by the 
resemblance between adoptive parents and adopted children, and between adoptive 
siblings. Chapter 7 describes an important finding that the influence of shared envi-
ronment on cognitive ability decreases dramatically from childhood to adolescence.

One of the most surprising results from genetic research is that, for many psy-
chological traits, resemblance between relatives is accounted for by shared heredity 

“Genetic-plus-environmental”
relatives

“Environmental”
  relatives  

“Genetic”
  relatives

Adoption

FIGURE 6.1  Adoption is an experiment of nurture that creates “genetic” relatives (biological 

parents and their adopted-​away offspring; siblings adopted apart) and “environmental” relatives 

(adoptive parents and their adopted children; genetically unrelated children adopted into the 

same adoptive family). Resemblance for these “genetic” and “environmental” relatives can be 

used to test the extent to which resemblance between the usual “genetic-​plus-​environmental” 

relatives is due to either nature or nurture.



rather than by shared environment. For example, the risk of schizophrenia is just as 
great for offspring of schizophrenic parents whether they are reared by their biological 
parents or adopted at birth and reared by adoptive parents. This finding implies that 
sharing a family environment does not contribute importantly to family resemblance 
for these psychological traits. It does not mean that the environment generally or 
even the family environment is unimportant. As discussed in Chapter 7, quantitative 
genetic research, such as adoption studies, provides the best available evidence for the 
importance of environmental influences. The risk for first-​degree relatives of schizo-
phrenic probands who are 50 percent similar genetically is only about 10  percent, 
not 50 percent. Furthermore, although family environment does not contribute to 
the resemblance of family members for many traits, such factors could contribute to 
differences among family members, nonshared environmental influences (Chapter 7).

The first adoption study of schizophrenia, reported by Leonard Heston in 1966, 
is a classic study that was highly influential in turning the tide from assuming that 
schizophrenia was completely caused by early family experiences to recognizing the 
importance of genetics (Box 6.1). Box 6.2 considers some methodological issues in 
adoption studies.

“Genetic-plus-
environmental”

“Genetic”

C
or

re
la

tio
ns

“Environmental”

Parent-offspring Sibling Parent-offspring Sibling Parent-offspring Sibling

0.42

0.47

0.24 0.24

0.20

0.32

0.00

0.10

0.20

0.30

0.40

0.50

FIGURE 6.2  Adoption data indicate that family resemblance for cognitive ability is due both to 

genetic resemblance and to environmental resemblance. “Genetic” relatives refer to genetically 

related relatives adopted apart. “Environmental” relatives refer to genetically unrelated 

individuals adopted together. (Data from Loehlin, 1989.)
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Twin Design

The other major method used to disentangle genetic from environmental sources 
of resemblance between relatives involves twins (Segal, 1999). Identical twins, also 
called monozygotic (MZ) twins because they derive from one fertilized egg (zygote), 
are genetically identical. If genetic factors are important for a trait, these genetically 
identical pairs of individuals must be more similar than first-​degree relatives, who 

BOX 6.1  The First Adoption Study of Schizophrenia

E
nvironmentalism, which 

assumes that we are what we 

learn, dominated the behavioral 

sciences until the 1960s, when a more 

balanced view emerged that recog-

nized the importance of nature as well 

as nurture. One reason for this major 

shift was an adoption study of schizo-

phrenia reported by Leonard Heston 

in 1966. Although twin studies had, for 

decades, suggested genetic influence, 

schizophrenia was generally assumed 

to be environmental in origin, caused 

by early interactions with parents. 

Heston interviewed 47 adult adopted 

offspring of hospitalized schizophrenic 

women. He compared their incidence 

of schizophrenia with that of matched 

adoptees whose birth parents had  

no known mental illness. Of the 

47 adoptees whose birth mothers were 

schizophrenic, 5 had been hospitalized 

for schizophrenia. Three were chronic 

schizophrenics hospitalized for several 

years. None of the adoptees in the 

control group were schizophrenic.

The incidence of schizophrenia in 

these adopted offspring of schizo-

phrenic birth mothers was 10 percent. 

This risk is similar to the risk for 

schizophrenia found when children 

are reared by their schizophrenic birth 

parents. Not only do these findings 

indicate that heredity makes a major 

contribution to schizophrenia, they 

also suggest that rearing environment 

has little effect. When a birth parent is 

schizophrenic, the risk for schizophre-

nia is just as great for the offspring 

when they are adopted at birth as it is 

when the offspring are reared by their 

schizophrenic birth parents.

Several other adoption studies 

have confirmed the results of Heston’s 

study. His study is an example of what 

is called the adoptees’ study method 

because the incidence of schizophrenia  

was investigated in the adopted off-

spring of schizophrenic birth mothers. 

A second major strategy is called the 

adoptees’ family method. Rather than 

beginning with parents, this method 

begins with adoptees who are affected 

(probands) and adoptees who are 

unaffected. The incidence of the  

disorder in the biological and adoptive 

families of the adoptees is assessed. 

Genetic influence is suggested if the 

incidence of the disorder is greater for 

the biological relatives of the affected 

adoptees than for the biological 

relatives of the unaffected control 

adoptees. Environmental influence is 

indicated if the incidence is greater for 

the adoptive relatives of the affected 

adoptees than for the adoptive rela-

tives of the control adoptees.

These adoption methods and their 

results for schizophrenia are described 

in Chapter 13.
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BOX 6.2  Issues in Adoption Studies

T
he adoption design is like an 

experiment that untangles nature 

and nurture as causes of family 

resemblance. The first adoption study, 

which investigated IQ, was reported in 

1924 (Theis, 1924). The first adoption 

study of schizophrenia was reported 

in 1966 (see Box 6.1). Adoption studies 

have become more difficult to conduct 

as the number of domestic adoptions 

has declined over the past 50 years. 

Domestic adoption has become less 

common as contraception and abortion 

have increased and as more unmarried 

mothers have decided to rear their 

infants. However, there has been an 

increase in international adoptions,  

with children typically being adopted  

at age 1 or older.

One issue about adoption studies is 

representativeness. If biological parents, 

adoptive parents, or adopted children 

are not representative of the rest of 

the population, the generalizability of 

adoption results could be affected. 

However, means are more likely to be 

affected than variances, and genetic 

estimates rely primarily on variance. In 

the population-​based Colorado Adop-

tion Project (Petrill, Plomin, DeFries, & 

Hewitt, 2003), for example, biological 

and adoptive parents appear to be quite 

representative of nonadoptive parents, 

and adopted children seem to be rea-

sonably representative of nonadopted 

children. Similar findings of representa-

tiveness have been found for the Early 

Growth and Development Study  

(Leve et al., 2013b). Other adoption 

studies, however, have sometimes shown 

less representativeness. Restriction of  

range in the environments of adoptive 

families can also limit generalizations 

from adoption studies (Stoolmiller, 1999),  

although at least one study has found 

that even though there was some 

restriction of range, this did not have an 

impact on the children’s development 

(McGue et al., 2007).

Another issue concerns prenatal 

environment. Because birth mothers 

provide the prenatal environment for 

the children they place for adoption, the 

resemblance between the birth mother 

and the adopted child might reflect 

prenatal environmental influences as 

well as genetic influences. A strength of 

adoption studies is that prenatal effects 

can be tested independently from  

postnatal environment by comparing 

correlations for birth mothers and birth 

fathers. Although it is more difficult 

to study birth fathers, results for small 

samples of birth fathers show results 

similar to those for birth mothers for 

a wide variety of behaviors including 

executive functioning and internalizing  

problems in young children (Leve 

et al., 2013a; Brooker et al., 2014) and 

educational attainment and substance 

use in adult adoptees (Björklund, 

Lindahl, & Plug, 2006; Kendler, Ohlsson, 

Sundquist, & Sundquist, 2015). Another 

approach to this issue is to compare 

adoptees’ biological half siblings related 

through the mother (maternal half 

siblings) with those related through 

the father (paternal half siblings). For 

schizophrenia, paternal half siblings of 

schizophrenic adoptees show the same 

risk for schizophrenia as maternal half 

siblings do, an observation suggesting 

that prenatal factors may not be of 

great importance for the development 
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of schizophrenia (Kety, 1987). Another 

strategy for disentangling the effects  

of genetic influences from prenatal 

environmental influences is to directly 

measure the prenatal environment,  

such as the birth mother’s depressive 

symptoms during pregnancy. Findings 

from the Early Growth and Development 

Study have found that when prenatal 

environmental influences are included 

in the model, they can have an effect 

on child behavioral outcomes, although 

including genetic influences often 

decrease or eliminate these direct  

prenatal influences (Pemberton et al., 

2010; Marceau et al., 2013; Leve et al., 

2013a). In other words, what look like 

effects of the prenatal environment  

may be due instead to genetic 

influences.

For the past two decades, most 

domestic adoptions in the United States 

have been “open” to some extent.  

This means that the birth parents and 

the adoptive families know or share 

information about each other with the 

other party and the adopted child. 

Ongoing studies of domestic adoption 

have examined the extent to which 

openness in the adoption influences 

the functioning of the adoptive parents 

and the birth parents and found that, 

in general, more open adoptions were 

associated with better mental health 

(Ge et al., 2008). Openness in adoption  

raises some concerns about the extent 

to which the adopted child’s rearing 

environment is truly independent 

of genetic influences from the birth 

parents. The majority of work in this 

area indicates that although there may 

be contact among birth parents, adop-

tive parents, and adopted children, this 

contact is relatively infrequent, and 

when included as an additional variable 

in analyses, openness does not play an 

important role.

Finally, selective placement could 

cloud the separation of nature and nur-

ture by placing adopted-​apart “genetic” 

relatives into correlated environments. 

For example, selective placement 

would occur if the adopted children 

of the brightest biological parents 

are placed with the brightest adoptive 

parents. If selective placement matches 

biological and adoptive parents, genetic 

influences could inflate the correlation 

between adoptive parents and their 

adopted children, and environmental 

influences could inflate the correlation 

between biological parents and their 

adopted children. If data are available 

on biological parents as well as 

adoptive parents, selective placement 

can be assessed directly. If selective 

placement is found in an adoption 

study, its effects need to be considered 

in interpreting genetic and environmental 

results. Although some adoption  

studies show selective placement for 

IQ, other psychological dimensions 

and disorders show little evidence for 

selective placement. The Early Growth 

and Development Study examined  

selective placement effects and  

found that of 132 comparisons  

only 3 were significant suggesting  

that selective placement does not  

occur systematically in domestic 

adoptions in the United States  

(Leve et al., 2013b).
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are only 50 percent similar genetically. Rather than comparing identical twins with 
nontwin siblings or other relatives, nature has provided a better comparison group: 
fraternal (dizygotic, or DZ) twins. Unlike identical twins, fraternal twins develop 
from separately fertilized eggs. They are first-​degree relatives, 50 percent genetically 
related like other siblings. Half of fraternal twin pairs are same-​sex pairs and half are 
opposite-​sex pairs. Twin studies usually focus on same-​sex fraternal twin pairs because 
they are a better comparison group for identical twin pairs, who are always same-​sex 
pairs. If genetic factors are important for a trait, identical twins must be more similar 
than fraternal twins. (See Box 6.3 for more details about the twin method.)

How can you tell whether same-​sex twins are identical or fraternal? DNA markers 
can tell. If a pair of twins differs for DNA markers (excluding laboratory error or new 
mutations, called de novo mutations), they must be fraternal because identical twins are 
nearly identical genetically. If many markers are examined and no differences are 
found, the twin pair has a high probability of being identical. Physical traits such as 
eye color, hair color, and hair texture can be used in a similar way to diagnose whether 
twins are identical or fraternal. Such traits are highly heritable and are affected by 
many genes. If members of a twin pair differ for one of these traits, they are likely 
to be fraternal; if they are the same for many such traits, they are probably identi-
cal. In most cases, it is not difficult to tell whether twins are identical or fraternal 
(Figure 6.3). In fact, a single question works pretty well because it sums up many such 
physical traits: When the twins were young, how difficult was it to tell them apart?  
To be mistaken for another person requires that many heritable physical characteris-
tics be identical. Using physical similarity to determine whether twins are identical or 
fraternal is generally more than 95 percent accurate when compared with the results 
of DNA markers (e.g., Christiansen et al., 2003b; Gao et al., 2006).

If a trait is influenced genetically, identical twins must be more similar than frater-
nal twins. However, it is also possible that the greater similarity of MZ twins is caused 
environmentally rather than genetically because MZ twins are the same sex and age 
and they look alike. The equal environments assumption of the twin method assumes 
that environmentally caused similarity is roughly the same for both types of twins 
reared in the same family. If the assumption were violated because identical twins 
experience more similar environments than fraternal twins, this violation would inflate 
estimates of genetic influence. The equal environments assumption has been tested 
in several ways and appears reasonable for most traits (Bouchard & Propping, 1993; 
Derks, Dolan, & Boomsma, 2006).

Prenatally, identical twins may experience greater environmental differences than 
fraternal twins. For example, identical twins show greater birth weight differences than 
fraternal twins do. The difference may be due to greater prenatal competition, espe-
cially for the majority of identical twins who share the same chorion (see Box 6.3). To 
the extent that identical twins experience less similar environments, the twin method 
will underestimate heritability. Postnatally, the effect of labeling a twin pair as identical 
or fraternal has been studied by using twins who were misclassified by their parents 
or by themselves (e.g., Gunderson et al., 2006; Scarr & Carter-​Saltzman, 1979). When 

8 6   C H A P T E R  S I X



FIGURE 6.3  Twinning is an experiment of nature that produces identical twins, who are genetically 

identical, and fraternal twins, who are only 50 percent similar genetically. If genetic factors are 

important for a trait, identical twins must be more similar than fraternal twins. DNA markers can 

be used to test whether twins are identical or fraternal, although for most pairs it is easy to tell 

because identical twins (top photo) are usually much more similar physically than fraternal twins 

(bottom photo). (Courtesy of Professor Robert Plomin.)
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parents think that twins are fraternal but they really are identical, these mislabeled 
twins are as similar behaviorally as correctly labeled identical twins.

Another way in which the equal environments assumption has been tested takes 
advantage of the fact that differences within pairs of identical twins can only be due to 
environmental influences. The equal environments assumption is supported if identi-
cal twins who are treated more individually than others do not behave more differ-
ently. This is what has been found for most tests of the assumption in research on 
behavioral disorders and dimensions (e.g., Kendler, Neale, Kessler, Heath, & Eaves, 
1994; Mazzeo et al., 2010).

A subtle, but important, issue is that identical twins might have more similar 
experiences than fraternal twins because identical twins are more similar genetically. 
That is, some experiences may be driven genetically. Such differences between iden-
tical and fraternal twins in experience are not a violation of the equal environments 
assumption because the differences are not caused environmentally (Eaves, Foley, & 
Silberg, 2003). This topic is discussed in Chapter 8.

As in any experiment, generalizability is an issue for the twin method. Are twins 
representative of the general population? Two ways in which twins are different are that 
twins are often born three to four weeks prematurely and intrauterine environments 

BOX 6.3  The Twin Method

F
rancis Galton (1876) studied 

developmental changes in twins’ 

similarity, but in one of the first 

real twin studies, conducted in 1924, 

identical and fraternal twins were 

compared in an attempt to estimate 

genetic influence (Merriman, 1924). 

This twin study assessed IQ and found 

that identical twins were markedly 

more similar than fraternal twins, a 

result suggesting genetic influence. 

Dozens of subsequent twin studies of 

IQ confirmed this finding. Twin studies 

have also been conducted for many 

other psychological dimensions and 

disorders; they provide the bulk of the 

evidence for the widespread influence 

of genetics on behavioral traits. 

Although most mammals have large 

litters, primates, including our species, 

tend to have single offspring. However, 

primates occasionally have multiple 

births. Human twins are more common 

than people usually realize — ​about 32 in 

1000 deliveries in the United States are 

twins (i.e., 16 pairs of twins). Surprisingly,  

as many as 20 percent of fetuses are 

twins, but because of the hazards 

associated with twin pregnancies, often 

one member of the pair dies very early 

in pregnancy. Among live births, the 

numbers of identical and same-​sex 

fraternal twins are approximately equal. 

That is, of all twin pairs, about one-​third 

are identical twins, one-​third are same-​

sex fraternal twins, and one-​third are 

opposite-​sex fraternal twins.

Identical twins result from a single 

fertilized egg (called a zygote) that 

splits for unknown reasons, producing 

two (or sometimes more) genetically 

identical individuals. For about a third of 

identical twins, the zygote splits during 

the first five days after fertilization as 
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can be adverse when twins share a womb (Phillips, 1993). Newborn twins are also 
about 30 percent lighter at birth than the average singleton newborn, a difference 
that disappears by middle childhood (MacGillivray, Campbell, & Thompson, 1988). 
There is also the suggestion that brain development differs in twins versus single-
ton children during early infancy (Knickmeyer et al., 2011). In childhood, language 
develops more slowly in twins, and twins also perform less well on tests of verbal 
ability and IQ (Ronalds, De Stavola, & Leon, 2005). These delays are similar for MZ 
and DZ twins and appear to be due to the postnatal environment rather than pre-
maturity (Rutter & Redshaw, 1991). Most of this cognitive deficit is recovered in the 
early school years (Christensen et al., 2006a). Twins do not appear to be importantly 
different from singletons for personality (Johnson, Krueger, Bouchard, & McGue, 
2002), for psychopathology (Robbers et al., 2011), or in motor development (Brouwer, 
van Beijsterveldt, Bartels, Hudziak, & Boomsma, 2006). In addition, a study of ado-
lescent twins and siblings found no evidence of systematic differences between twin 
and nontwin siblings on a wide range of psychological outcomes (Reiss, Neiderhiser, 
Hetherington, & Plomin, 2000).

In summary, the twin method is a valuable tool for screening behavioral dimen-
sions and disorders for genetic influences (Boomsma, Busjahn, & Peltonen, 2002; 

it makes its way down to the womb. 

In this case, the identical twins have 

different sacs (called chorions) within 

the placenta. Two-​thirds of the time, 

the zygote splits after it implants in the 

placenta and the twins share the same 

chorion. Identical twins who share the 

same chorion may be more similar for 

some psychological traits than identical  

twins who do not share the same 

chorion, although there is not much 

support for this in the literature (e.g., 

Hur & Shin, 2008, Marceau et al., 2016). 

When the zygote splits after about  

two weeks, the twins’ bodies may be 

partially fused — ​conjoined twins.  

Fraternal twins occur when two eggs 

are separately fertilized; they have 

different chorions. Like other siblings, 

they are 50 percent similar genetically.

The rate of fraternal twinning 

differs across countries, increases with 

maternal age, and may be inherited in 

some families. Increased use of fertility 

drugs results in greater numbers of 

fraternal twins because these drugs 

make it likely that more than one egg 

will ovulate. The numbers of fraternal 

twins have also increased since the early 

1980s because of in vitro fertilization, 

in which several fertilized eggs are 

implanted and two survive. The rate of 

identical twinning is not affected by any 

of these factors.

Identical twins are nearly identical  

for the sequence of DNA with the 

exception of de novo mutations. 

However, identical twins differ for the 

expression (transcription) of DNA, just 

as we differ from ourselves for gene 

expression from minute to minute. 

These expression differences within pairs 

of identical twins include epigenetic 

differences, discussed in Chapter 10.
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Martin, Boomsma, & Machin, 1997). More than 20,000 papers on twins were pub-
lished during the five years from 2010 to 2014, with more than half of these focused 
on behavior (Ayorech et al., 2016). The value of the twin method explains why most 
developed countries have twin registers (Hur & Craig, 2013). The assumptions 
underlying the twin method are different from those of the adoption method, yet 
both methods converge on the conclusion that genetics is important in the behavioral 
sciences. Recall that for schizophrenia, the risk for a fraternal twin whose co-​twin 
is schizophrenic is about 15 percent; the risk is about 50 percent for identical twins 
(see Figure 3.8). For general cognitive ability, the correlation is about 0.60 for frater-
nal twins and 0.85 for identical twins (see Figure 3.9). The fact that identical twins 
are so much more similar than fraternal twins strongly suggests genetic influences.  
However, on a variety of behaviors fraternal twins are more similar than nontwin sib-
lings, perhaps because twins shared the same uterus at the same time and are exactly 
the same age (Koeppen-​Schomerus, Spinath, & Plomin, 2003; Reiss et al., 2000).

Combination

During the past two decades, behavioral geneticists have begun to use designs that 
combine the family, adoption, and twin methods in order to bring more power to bear 
on these analyses. For example, it is useful to include nontwin siblings in twin studies 
to test whether twins differ statistically from singletons and whether fraternal twins 
are more similar than nontwin siblings.

Two major combination designs bring the adoption design together with the 
family design and with the twin design. The adoption design comparing “genetic” 
and “environmental” relatives is made much more powerful by including the 
“genetic-​plus-​environmental” relatives of a family design. This is the design of two 
of the largest adoption studies of behavioral development, the Colorado Adoption 
Project (Rhea, Bricker, Wadsworth, & Corley, 2013), and the Early Growth and 
Development Study (Leve et al., 2013b). The Colorado Adoption Project, which has 
been following children from infancy to adulthood and is the longest ongoing adop-
tion study, has found, for example, that genetic influences on general cognitive ability 
increase during infancy and childhood (Plomin et al., 1997).

The adoption-​twin combination involves twins adopted apart and compares them 
with twins reared together. Two major studies of this type have been conducted, one 
in Minnesota (Bouchard, Lykken, McGue, Segal, & Tellegen, 1990; Lykken, 2006) and 
one in Sweden (Kato & Pedersen, 2005; Pedersen, McClearn, Plomin, & Nesselroade, 
1992). These studies have found, for example, that identical twins reared apart from 
early in life are almost as similar in terms of general cognitive ability in adulthood as 
are identical twins reared together, an outcome suggesting strong genetic influence 
and little environmental influence caused by growing up together in the same family 
(shared family environmental influence).

An interesting combination of the twin and family methods comes from the 
study of families of twins, which has come to be known as the families-​of-​twins method 
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(Knopik, Jacob, Haber, Swenson, & Howell, 2009; Singh et al., 2011). When identi-
cal twins become adults and have their own children, interesting family relation-
ships emerge. For example, in families of male identical twins, nephews are as related 
genetically to their twin uncle as they are to their own father. That is, in terms of 
their genetic relatedness, it is as if the first cousins have the same father. Furthermore, 
the cousins are as closely related to each other as half siblings are. Using this type of 
design, the effects of the rearing environment within the family can be disentangled 
from genetic influences for examining intergenerational transmission (McAdams et al., 
2015). An extension of the families-​of-​twins method includes the combination of twins 
and their children (children-​of-​twins design) and a sample of children who are twins 
and their parents (Narusyte et al., 2008; Silberg, Maes, & Eaves, 2010). This extended 
children-​of-​twins design allows the effects of parents on children and of children on 
parents to be examined (see Chapter 8 for more discussion about what this means).

Although not as powerful as standard adoption or twin designs, a design that 
has been used by a few research groups takes advantage of the increasing number of 
stepfamilies created as a result of divorce and remarriage (Harris et al., 2009; Reiss 
et al., 2000). Half siblings typically occur in stepfamilies because a woman brings a 
child from a former marriage to her new marriage and then has another child with 
her new husband. These children have only one parent (the mother) in common and 
are 25 percent similar genetically, unlike full siblings, who have both parents in com-
mon and are 50 percent similar genetically. Half siblings can be compared with full 
siblings in stepfamilies to assess genetic influences. Full siblings in stepfamilies occur 
when a mother brings full siblings from her former marriage or when she and her 
new husband have more than one child together. A useful test of whether stepfamilies 
differ from never-​divorced families is the comparison between full siblings in the two 
types of families. This type of design can also include stepsiblings who are geneti-
cally unrelated because each parent brought a child from a previous marriage. In the 
absence of assortative mating (Chapter 11) by the stepparents, the similarity of two 
stepsiblings tests the importance of shared environmental influences.

Summary

Quantitative genetic methods can detect genetic influence for complex traits. Adoption 
and twin studies are the workhorses for human quantitative genetics. They capitalize 
on the quasi-​experimental situations caused by adoption and twinning to assess 
the relative contributions of nature and nurture. For schizophrenia and cognitive 
ability, for example, resemblance of relatives increases with genetic relatedness, an 
observation suggesting genetic influence. Adoption studies show family resemblance 
even when family members are adopted apart. Twin studies show that identical twins 
are more similar than fraternal twins. Results of family, adoption, and twin studies 
converge on the conclusion that genetic factors contribute substantially to complex 
human behavioral traits, among other traits.
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There is a new wave of studies that combine designs, such as including the 
children of twins or nontwin sibling pairs. These combined and extended designs 
help to increase our ability to test different questions about the roles of genes and 
environment in behavior and also increase our confidence that the findings from 
such studies are generalizable beyond the special populations of twins and adoptees. 
In Chapters 7 and 8 the importance of such combination designs will be discussed 
in more detail.
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C H A P T E R  S E V E N

Estimating Genetic and 
Environmental Influences

U p to this point, we have described different concepts and strategies involved 

in identifying genetic and environmental influences on behavior. Chapter 5 

described animal research and Chapter 6 considered human research in this area. 

Although it is useful to be able to indicate that environmental and genetic factors 

contribute to behavior, quantifying those influences allows the relative importance of 

each to be considered. In this chapter, we will describe the techniques used to quan-

tify genetic and environmental influences in human research using the designs pre-

sented in Chapter 6. As noted elsewhere in this book, and in more detail in Chapter 8, 

genes and environments work together to influence behavior, and their influences 

can and do change over time or depending upon circumstances. Therefore, although 

it is possible and useful to quantify relative genetic and environmental influences, it 

is also necessary to recognize that these values can change based on the population 

studied, the age of the sample, and many other factors.

Heritability

For the complex traits that interest behavioral scientists, it is possible to ask not only 
whether genetic influences are important but also how much genetics contributes to the 
trait. The question about whether genetic influences are important involves statistical 
significance, the reliability of the effect. For example, we can ask whether the resem-
blance between “genetic” parents and their adopted offspring is significant or whether 
identical twins are significantly more similar than fraternal twins. Statistical significance 
depends on the size of the effect and the size of the sample. For example, a “genetic” 
parent-​offspring correlation of 0.25 will be statistically significant if the adoption study 
includes at least 45 parent-​offspring pairs. Such a result would indicate that it is highly 
likely (95 percent probability) that the true correlation is greater than zero.
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The question about how much genetics contributes to a trait refers to effect 
size, the extent to which individual differences for the trait in the population can be 
accounted for by genetic differences among individuals. Effect size in this sense refers 
to individual differences for a trait in the entire population, not to certain individuals. 
For example, if PKU were left untreated, it would have a huge effect on the cognitive 
development of individuals homozygous for the recessive allele. However, because 
such individuals represent only 1 in 10,000 individuals in the population, this huge 
effect for these few individuals would have little effect overall on the variation in 
cognitive ability in the entire population. Thus, the size of the effect of PKU in the 
population is very small.

Many statistically significant environmental effects in the behavioral sciences 
involve very small effects in the population. For example, birth order is significantly 
related to intelligence test (IQ) scores (first-​born children have higher IQs). This is 
a small effect in that the mean difference between first-​ and second-​born siblings is 
less than two IQ points and their IQ distributions almost completely overlap. Birth 
order accounts for about 1 percent of the variance of IQ scores when other factors are 
controlled. In other words, if all you know about two siblings is their birth order, then 
you know practically nothing about their IQs.

In contrast, genetic effect sizes are often very large, among the largest effects 
found in the behavioral sciences, accounting for as much as half of the variance. The 
statistic that estimates the genetic effect size is called heritability. Heritability is the 
proportion of phenotypic variance that can be accounted for by genetic differences 
among individuals. As explained in the Appendix, heritability can be estimated from 
the correlations for relatives. For example, if the correlation for “genetic” (adopted-​
apart) relatives is zero, then heritability is zero. For first-​degree “genetic” relatives, 
their correlation reflects half of the effect of genes because they are only 50 percent 
similar genetically. That is, if heritability is 100 percent, their correlation would be 
0.50. In Figure 6.2, the correlation for “genetic” (adopted-​apart) siblings is 0.24 for IQ 
scores. Doubling this correlation yields a heritability estimate of 48 percent, which 
suggests that about half of the variance in IQ scores can be explained by genetic 
differences among individuals.

Heritability estimates, like all statistics, include error of estimation, which is a 
function of the effect size and the sample size. In the case of the IQ correlation of 0.24 
for adopted-​apart siblings, the number of sibling pairs is 203. There is a 95 percent 
chance that the true correlation is between 0.10 and 0.38, which means that the true 
heritability is likely to be between 20 and 76 percent, a very wide range. For this 
reason, heritability estimates based on a single study need to be taken as very rough 
estimates surrounded by a large confidence interval unless the study is very large. 
For example, if the correlation of 0.24 were based on a sample of 2000 instead of 
200, there would be a 95 percent chance that the true heritability is between 40 and 
56  percent. Replication across studies and across designs also allows more precise 
estimates.
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If identical and fraternal twin correlations are the same, heritability is estimated 
as zero. If identical twins correlate 1.0 and fraternal twins correlate 0.50, a heritability 
of 100 percent is implied. In other words, genetic differences among individuals com-
pletely account for their phenotypic differences. A rough estimate of heritability in a 
twin study can be made by doubling the difference between the identical and fraternal 
twin correlations [heritability = 2 (rmz – rdz)]. As explained in the Appendix, because 
identical twins are identical genetically and fraternal twins are 50  percent similar 
genetically, the difference in their correlations reflects half of the genetic effect and 
is doubled to estimate heritability. For example, in Figure  3.9, IQ correlations for 
identical and fraternal twins are 0.85 and 0.60, respectively. Doubling the difference 
between these correlations results in a heritability estimate of 50 percent, which also 
suggests that about half of the variance of IQ scores can be accounted for by genetic 
factors. Because these studies include more than 10,000 pairs of twins, the error of 
estimation is small. There is a 95 percent chance that the true heritability is between 
0.48 and 0.52.

Because disorders are diagnosed as either-​or dichotomies, familial resemblance 
for disorders is assessed by concordances rather than by correlations. As explained 
in the Appendix, concordance is an index of risk. For example, if sibling concordance 
is 10 percent for a disorder, we say that siblings of probands have a 10 percent risk 
for the disorder. The use of concordance to estimate genetic risk for disorders is 
very common in medical genetics for the study of disorders like heart disease and 
cancer (Lichtenstein et al., 2000; Wu, Snieder, & de Geus, 2010) and in psychiatric 
genetics (see Chapters 13 and 14 for more information on behavioral genetic studies 
of psychiatric disorders).

If identical and fraternal twin concordances are the same, heritability must be 
zero. To the extent that identical twin concordances are greater than fraternal twin 
concordances, genetic influences are implied. For schizophrenia (see Figure  3.8),  
the identical twin concordance of 0.48 is much greater than the fraternal twin 
concordance of 0.17, a difference suggesting substantial heritability. The fact that in 
52 percent of the cases identical twins are discordant for schizophrenia, even though 
they are genetically identical, implies that heritability is much less than 100 percent.

One way to estimate heritability for disorders is to use the liability-​threshold 
model (see Box 3.3) to translate concordances into correlations on the assumption 
that a continuum of genetic risk underlies the dichotomous diagnosis. For schizo-
phrenia, the identical and fraternal twin concordances of 0.48 and 0.17 translate into 
liability correlations of 0.86 and 0.57, respectively. Doubling the difference between 
these liability correlations suggests a heritability of about 60 percent. A meta-​analysis 
of 12 published twin studies of schizophrenia found the heritability of liability to 
schizophrenia was 81  percent (Sullivan, Kendler, & Neale, 2003). As explained in  
Box 3.3, this statistic refers to a hypothetical construct of continuous liability as 
derived from a dichotomous diagnosis of schizophrenia rather than to the diagnosis 
of schizophrenia itself.
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Modern genetic studies are typically analyzed by using an approach called 
model fitting. Model fitting tests the significance of the fit between a model of genetic 
and environmental relatedness against the observed data using structural equation 
modeling (SEM). Different models can be compared, and the best-​fitting model is 
used to estimate the effect size of genetic and environmental effects. Model fitting is 
described in the Appendix.

Quantitative genetic designs estimate heritability indirectly from familial resem-
blance. Their great strength is that they can estimate genetic influences regardless of 
the number of genes or magnitude or complexity of the genes’ effects. As discussed in 
Chapter 9, DNA studies to date suggest that the heritability of behavioral disorders  
and dimensions is highly polygenic, that is, due to the relatively small effects of many 
genes. Consequently, it is difficult to identify the specific genes responsible for herita-
bility. However, an exciting new approach estimates heritability directly from DNA 
differences between individuals even though we do not know which genes contribute 
to heritability. This approach estimates a type of heritability called SNP heritability, 
which is described in Box 7.1.

Interpreting Heritability

Heritability refers to the genetic contribution to individual differences, not to the 
phenotype of a single individual. For a single individual, both genotype and environ-
ment are indispensable — ​a person would not exist without both genes and environ-
ment. As noted by Theodosius Dobzhansky (1964), the first president of the Behavior 
Genetics Association:

The nature-​nurture problem is nevertheless far from meaningless. Asking right 
questions is, in science, often a large step toward obtaining right answers. The 
question about the roles of genotype and the environment in human development 
must be posed thus: To what extent are the differences observed among people 
conditioned by the differences of their genotypes and by the differences between the 
environments in which people were born, grew and were brought up? (p. 55)

This issue is critical for the interpretation of heritability (Sesardic, 2005). For 
example, it is nonsensical to ask about the separate contributions of length and width 
to the area of a single rectangle because area is the product of length and width. Area 
does not exist without both length and width. However, if we ask not about a single 
rectangle but about a population of rectangles (Figure 7.1), the variance in areas could 
be due entirely to length (b), entirely to width (c), or to both (d). Obviously, there 
can be no behavior without both an organism and an environment. The scientifically 
useful question concerns the origins of differences among individuals.

For example, the heritability of height is about 90  percent, but this does not 
mean that you grew to 90 percent of your height for reasons of heredity and that the 
other inches were added by the environment. What it means is that most of the height 



E sti   m ating      G enetic       an  d  E nvir    o n m enta    l  I n f l u ences       9 7

differences among individuals are due to the genetic differences among them. Heri-
tability is a statistic that describes the contribution of genetic differences to observed 
differences among individuals in a particular population at a particular time. In differ-
ent populations or at different times, environmental or genetic influences might differ, 
and heritability estimates in such populations could differ.

A counterintuitive example concerns the effects of equalizing environments. If 
environments were made the same for everyone in a particular population, heritability 
would be high in that population because individual differences that remained in the 
population would be due exclusively to genetic differences. Using education as an 
example, if a society were able to give all children the same education, the heritability 
of educational achievement in that society would be high compared to societies in 
which educational opportunity differed.

A related issue concerns average differences between groups, such as average dif-
ferences between males and females, between social classes, or between ethnic groups. 
It should be emphasized that the causes of individual differences within groups have 
no implications for the causes of average differences between groups. Specifically, 
heritability refers to the genetic contribution to differences among individuals within 
a group. High heritability within a group does not necessarily imply that average dif-
ferences between groups are due to genetic differences between groups. The average 
differences between groups could be due solely to environmental differences even 
when heritability within the groups is very high.

This point extends beyond the politically sensitive issues of gender, social class, 
and ethnic differences. As discussed in Chapters 13 and 14, a key issue in psychopa-
thology concerns the links between the normal and the abnormal. Finding heritability 

FIGURE 7.1  Individuals and individual 

differences. Genetic and environ-

mental contributions to behavior 

do not refer to a single individual, 

just as the area of a single rectangle 

(a) cannot be attributed to the 

relative contributions of length and 

width, because area is the product 

of length and width. However, in a 

population of rectangles, the relative 

contribution of length and width  

to differences in area can be 

investigated. It is possible that 

length alone (b), width alone (c),  

or both (d) account for differences  

in area among rectangles.
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A
n exciting new quantitative 

genetic technique estimates 

genetic influences directly 

from measured genotypes rather than 

indirectly from comparisons between 

groups that differ on average geneti-

cally, such as MZ and DZ twins (Yang, 

Lee, Goddard, & Visscher, 2011a). These 

estimates, sometimes called SNP heri-

tability, require thousands of individuals 

who have been genotyped on hundreds 

of thousands of DNA markers called 

single nucleotide polymorphisms 

(SNPs), as described in Chapter 9. Many 

samples meeting these requirements 

have been obtained thanks to SNP 

arrays that can genotype hundreds of 

thousands of SNPs quickly and inex-

pensively. Such studies were created to 

identify specific genes (see Chapter 9), 

but an important by-​product is their 

ability to estimate heritability directly 

from DNA.

The SNP heritability method com-

pares chance genetic similarity across 

hundreds of thousands of SNPs for 

each pair of individuals in a matrix of 

thousands of unrelated individuals. This 

chance genetic similarity is then used 

to predict phenotypic similarity for 

each pair of individuals, as illustrated 

below. That is, instead of comparing 

phenotypic resemblance for groups 

who differ in genetic relatedness such 

as MZ twins (100 percent) and DZ 

twins (~50 percent), SNP heritability 

uses chance genetic resemblance 

pair-​by-​pair for a large sample of 

individuals even though their overall 

genetic resemblance varies by only 1 or 

2 percent, as shown in the distribution 

of chance genetic similarity (opposite  

page). Despite this minuscule variation 

in genetic resemblance, the large 

sample size makes it possible to 

estimate heritability directly from SNPs 

BOX 7.1  Estimating Heritability Directly from DNA
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Estimation of SNP heritability uses genetic similarity assessed on the basis of hundreds of 

thousands of SNPs to predict phenotypic resemblance for pairs of individuals in a matrix of 

thousands of unrelated individuals. This matrix illustrates for just four individuals their genetic 

similarity, which is used to predict their phenotypic similarity, shown here as minuses and pluses.
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measured on the array. For example, 

a sample of 3000 individuals yields 

4.5 million pair-​by-​pair comparisons. 

Analogous to quantitative genetic 

methods for estimating heritability, 

such as the twin method, SNP heri-

tability estimates the extent to which 

phenotypic variance can be explained 

by genetic variance. The major advance 

of SNP estimates of heritability is that 

they come directly from measured 

SNP differences between individu-

als. Recently it has been shown that 

SNP heritability can also be estimated 

merely using association results for 

each SNP in a genomewide association 

study rather than using SNP data for 

individuals (Bulik-​Sullivan et al., 2015). 

It should be noted that SNP heritability  

is a quantitative genetic method and 

does not identify which SNPs are respon-

sible for the heritability of a trait.

SNP heritability has provided direct 

DNA tests of quantitative genetic 

estimates based on twin and adoption 

studies. One problem is that many 

thousands of individuals are required 

to provide reliable estimates. Another 

problem is that SNP heritability is 

limited to the specific SNPs on the SNP 

array, and these arrays have focused on 

common SNPs. As a result, SNP heri

tability estimates are generally about half  

the estimates from twin and adoption 

studies for physical traits (Yang et al., 

2011b) and cognitive abilities (Davies 

et al., 2011; Plomin et al., 2013). The 

value of SNP heritability is that it does 

not require special samples such as 

twins or adoptees: In any large sample 

with DNA genotyped on SNP arrays, 

SNP heritability can be used to estimate 

genetic influence for behavioral traits. 

Multivariate extensions of SNP heritabil-

ity (Bulik-​Sullivan et al., 2015; S. H. Lee 

et al., 2012) can be used to estimate 

genetic overlap between traits or 

across age.

Distribution of chance genetic similarity for pairs of individuals across hundreds of thousands 

of SNPs (from Davies et al., 2011, Supplementary Figure 8). The SNP heritability method 

estimates genetic influence by predicting phenotypic resemblance from genetic resemblance. 

(Data from Macmillan Publishers, Ltd: Molecular Psychiatry, 16, 996–1005, © 2011.)
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for individual differences within the normal range of variation does not necessar-
ily imply that the average difference between an extreme group and the rest of the 
population is also due to genetic factors. For example, if individual differences in 
depressive symptoms for an unselected sample are heritable, this finding does not 
necessarily imply that severe depression is also due to genetic factors. This point is 
worth repeating: The causes of average differences between groups are not necessar-
ily related to the causes of individual differences within groups.

A related point is that heritability describes what is in a particular population at a 
particular time rather than what could be. That is, if either genetic influences change (e.g., 
changes due to migration) or environmental influences change (e.g., changes in edu-
cational opportunity), then the relative impact of genes and environment will change. 
Even for a highly heritable trait such as height, changes in the environment could make 
a big difference, for example, if an epidemic struck or if children’s diets were altered. 
Indeed, the huge increase in children’s heights during the past century is likely to be 
a consequence of improved diet. Conversely, a trait that is largely influenced by envi-
ronmental factors could show a big genetic effect. For example, genetic engineering 
can knock out a gene or insert a new gene that greatly alters the trait’s development, 
something that can now be done in laboratory animals, as discussed in Chapter 5.

Although it is useful to think about what could be, it is important to begin with 
what is — ​the genetic and environmental sources of variance in existing populations. 
Knowledge about what is can sometimes help guide research concerning what could be, 
as in the example of PKU, where the effects of this single-​gene disorder can be blocked 
by a diet low in phenylalanine (Chapter 3). Most important, heritability has nothing to 
say about what should be. Evidence of genetic influence for a behavior is compatible with 
a wide range of social and political views, most of which depend on values, not facts. For 
example, no policies necessarily follow from finding genetic influences or even specific 
genes for cognitive abilities. It does not mean, for example, that we ought to put all our 
resources into educating the brightest children. Depending on our values, we might 
worry more about children falling off the low end of the bell curve in an increasingly 
technological society and decide to devote more public resources to those who are in 
danger of being left behind. For example, we might decide that all citizens need to reach 
basic levels of literacy and numeracy to be empowered to participate in society.

A related point is that heritability does not imply genetic determinism. Just 
because a trait shows genetic influences does not mean that nothing can be done to 
change it. Environmental change is possible even for single-​gene disorders. For exam-
ple, when PKU was found to be a single-​gene cause of intellectual disability, it was 
not treated by means of eugenic (breeding) intervention or genetic engineering. An 
environmental intervention was successful in bypassing the genetic problem of high 
blood levels of phenylalanine: Administer a diet low in phenylalanine. This important 
environmental intervention was made possible by recognition of the genetic basis for 
this type of intellectual disability.

For behavioral disorders and dimensions, the links between specific genes and 
behavior are weaker because behavioral traits are generally influenced by multiple 
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genes and environmental factors. For this reason, genetic influences on behavior 
involve probabilistic propensities rather than predetermined programming. In 
other words, the complexity of most behavioral systems means that genes are not 
destiny. Although specific genes that contribute to complex disorders such as late-​
onset Alzheimer disease are beginning to be identified, these genes only represent 
genetic risk factors in that they increase the probability of occurrence of the disorder but 
do not guarantee that the disorder will occur. An important corollary of the point that 
heritability does not imply genetic determinism is that heritability does not constrain 
environmental interventions such as psychotherapy.

We hasten to note that finding a gene that is associated with a disorder does not 
mean that the gene is “bad” and should be eliminated. For example, a gene associ-
ated with novelty seeking (Chapter 16) may be a risk factor for antisocial behavior, 
but it could also predispose individuals to scientific creativity. The gene that causes 
the flushing response to alcohol in Asian individuals protects them against becoming 
alcoholics (Chapter 17). The classic evolutionary example is a gene that causes sickle-​
cell anemia in the recessive condition but protects carriers against malaria in hetero-
zygotes. As we will see, most complex traits are influenced by multiple genes, so we 
are all likely to be carrying many genes that contribute to risk for some disorders.

Finally, finding genetic influences on complex traits does not mean that the envi-
ronment is unimportant. For single-​gene disorders, environmental factors may have 
little effect. In contrast, for complex traits, environmental influences are usually as 
important as, or in some cases more important than, genetic influences. When one 
member of an identical twin pair is schizophrenic, for example, the other twin is not 
schizophrenic in about half the cases, even though members of identical twin pairs 
are identical genetically. Such differences within pairs of identical twins can only 
be caused by nongenetic factors. Despite its name, behavioral genetics is as useful 
in the study of environment as it is in the study of genetics. In providing a “bottom 
line” estimate of all genetic influences on behavior, genetic research also provides a 
“bottom line” estimate of environmental influences. Indeed, genetic research provides 
the best available evidence for the importance of the environment. Moreover, genetic 
research has made some of the most important discoveries in recent years about how 
the environment works in psychological development (Chapter 8).

KEY CONCEPTS

Heritability: Proportion of phenotypic variance that can be accounted for by 

genetic differences among individuals. 

Effect size: The size of the estimate or effect in the population. 

Twin correlation: Correlation of twin 1 with twin 2. Typically computed 

separately for MZ and DZ twins. Used to estimate genetic and environmental 

influences. 

Concordance: The presence of the same trait in both members of a twin pair. 

Used to estimate risk for disorder. 
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Model fitting: A statistical strategy for testing the significance of the fit 

between a model of genetic and environmental relatedness against the 

observed data. 

Structural equation modeling (SEM): A statistical method for testing a 

conceptual or theoretical model. In behavioral genetics this method is used 

to estimate heritability and environmentality based on the similarity and 

differences among family members. 

SNP heritability: Heritability estimated directly from DNA differences between 

individuals.

Environmentality

From Freud onward, most theories about how the environment works in behavioral 
development have implicitly assumed that offspring resemble their parents because 
parents provide the family environment for their offspring and that siblings resemble 
each other because they share that family environment. Twin and adoption research 
during the past three decades has dramatically altered this view. In fact, genetic 
designs, such as twin and adoption methods, were devised specifically to address the 
possibility that some of this widespread familial resemblance may be due to shared 
heredity rather than to shared environmental influences.

As with heritability, we can estimate how much environmental influences contri
bute to individual differences in complex behaviors. The twin, adoption, sibling, and 
combination designs described in Chapter 6 help to clarify environmental influences 
as much as they help to estimate genetic influences. We can compute the statistical 
significance of such environmentality in the same way as we compute the significance 
of genetic influences.

Shared Environment

Shared environmental influences refer to all nongenetic influences that make family 
members similar to one another. This can include a wide range of factors, includ-
ing neighborhood, parental education, and family factors such as parenting or the 
amount of conflict or chaos in the household. These factors will be shared environ-
mental influences only if they result in greater similarity among individuals living 
in the same household and if they do not vary as a function of genetic relatedness. 
In other words, if fraternal twins are as similar as identical twins, and this similarity 
is not negligible, then shared environmental influences are important. Similarly, if 
“environmental” siblings are as alike as “genetic” siblings, then shared environmental 
influences are indicated. The Appendix provides more detail about how shared envi-
ronmental influences are estimated in twin, sibling, and combination designs.

There has been confusion about shared environmental influences. As will be 
described in Chapters 11 through 19, there is little evidence of shared environmental 
influences on many commonly studied behaviors such as personality and cognitive 
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abilities, especially after adolescence. The shared environmental influences that have been 
found are often significant only during childhood and adolescence (Plomin, 2011; 
Plomin & Daniels, 1987), especially for certain types of behavior problems (Burt, 2009b). 
In other words, residing in the same household does increase the similarity of family 
members, although these effects do not appear to persist once children have moved 
out of the home.

Nonshared Environment

Nonshared environmental influences are all nongenetic influences that are indepen-
dent (or uncorrelated) for family members, including error of measurement. Because 
identical twins living in the same household share all of their genes and share their 
environment, the only thing that can account for differences within pairs of identical 
twins is nonshared environmental influences. Sources of nonshared environmental 
influences include differences in their family experience, such as different treatment 
by parents, or differential experiences outside the family, such as having different 
friends.

Quantitative genetic designs provide an essential starting point in the quantifi-
cation of the net effect of genetic and environmental influences in the populations 
studied. If the net effect of genetic factors is substantial, there will be value in seeking 
to identify the specific genes responsible for that genetic effect. Similarly, if envi-
ronmental influences are largely nonshared rather than shared, this finding should 
deter researchers from relying solely on family-​wide risk factors that pay no attention 
to the ways in which these influences impinge differentially on different children in 
the same family. Current research is trying to identify specific sources of nonshared 
environment and to investigate associations between nonshared environment and 
behavioral traits, as discussed later.

Estimating Shared and Nonshared Environmental Influences

How do genetic designs estimate the net effects of shared and nonshared environ-
ment? Heritability is estimated, for example, by comparing identical and fraternal 
twin resemblance or by using adoption designs. In quantitative genetics, environmen-
tal variance is variance not explained by genetics. Shared environment is estimated 
as family resemblance not explained by genetics. Nonshared environment is the rest 
of the variance: variance not explained by genetics or by shared environment. The 
conclusion that environmental variance in adult behavior is largely nonshared refers 
to this residual component of variance, usually estimated by model-​fitting analyses. 
However, more direct tests of shared and nonshared environments make it easier to 
understand how they can be estimated.

A direct test of shared environment is resemblance among adoptive relatives. 
Why do genetically unrelated adoptive siblings correlate about 0.25 for general cog-
nitive ability in childhood? In the absence of selective placement, the answer must be 
shared environment because adoptive siblings are unrelated genetically. This result 
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fits with the conclusion in Chapter 11 that about one-​quarter of the variance of gen-
eral cognitive ability in childhood is due to shared environment. By adolescence, the 
correlation for adoptive siblings plummets to zero and is the basis for the conclusion 
that shared environment has negligible impact in the long run. For personality and 
some measures of psychopathology in adults, adoptive siblings correlate near zero, 
a value implying that shared environment is unimportant and that environmental 
influences, which are substantial, are of the nonshared variety. For some measures 
of behavior problems in children and adolescents, adoptive siblings correlate signifi-
cantly greater than zero, indicating that shared environmental influences are present 
(Burt, 2009b).

Just as genetically unrelated adoptive siblings provide a direct test of shared 
environment, identical twins reared together provide a direct test of nonshared envi-
ronment. Because they are essentially identical genetically, differences within pairs 
of identical twins can only be due to nonshared environment. For example, for self-​
report personality questionnaires, identical twins typically correlate about 0.45. This 
value means that about 55 percent of the variance is due to nonshared environment 
plus error of measurement. Identical twin resemblance is also only moderate for most 
mental disorders, an observation implying that nonshared environmental influences 
play a major role.

Differences within pairs of identical twins provide a conservative estimate of 
nonshared environment because twins often share special environments that increase 
their resemblance but do not contribute to similarity among “normal” siblings. For 
example, for general cognitive ability, identical twins correlate about 0.85, a result that 
does not seem to leave much room for nonshared environment (i.e., 1 – 0.85 = 0.15).  
However, fraternal twins correlate about 0.60 and nontwin siblings correlate about 0.40, 
implying that twins have a special shared twin environment that accounts for as much 
as 20 percent of the variance (Koeppen-​Schomerus, Spinath, & Plomin, 2003). For 
this reason, the identical twin correlation of 0.85 may be inflated by 0.20 because of 
this special shared twin environment. However, a different study that included twins 
and nontwin siblings in different families found no systematic indication of a special 
shared twin environment for a wide range of adolescent adjustment measures (Reiss, 
Neiderhiser, Hetherington, & Plomin, 2000).

Identifying Specific Nonshared Environment

The next step in research on nonshared environment is to identify specific factors 
that make children growing up in the same family so different. To identify nonshared 
environmental factors, it is necessary to begin by assessing aspects of the environment 
specific to each child, rather than aspects shared by siblings. Many measures of the 
environment used in studies of behavioral development are general to a family rather 
than specific to a child. For example, whether or not their parents have been divorced 
is the same for two children in the family. Assessed in this family-​general way, divorce 
cannot be a source of differences in siblings’ outcomes because it does not differ  
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for two children in the same family. However, research on divorce has shown that 
divorce affects children in a family differently (Hetherington & Clingempeel, 1992). 
If the divorce is assessed in a child-​specific way (e.g., by assessing the children’s 
perceptions about the stress caused by the divorce, which may, in fact, differ among 
siblings), divorce could well be a source of differential sibling outcome.

Some family structure variables, such as birth order and sibling age spacing, are, 
by definition, nonshared environmental factors. However, these factors have generally 
been found to account for only a small portion of variance in behavioral outcomes. 
Research on more dynamic aspects of nonshared environment has found that chil-
dren growing up in the same family lead surprisingly separate lives (Dunn & Plomin, 
1990). Siblings perceive their parents’ treatment of themselves and the other siblings 
as quite different, although parents generally perceive that they treat their children 
similarly, depending on the method of assessment. Observational studies tend to back 
up the children’s perspective.

Table  7.1 shows sibling correlations for measures of family environment in a 
study focused on these issues, called the Nonshared Environment and Adolescent 
Development (NEAD) project (Reiss et al., 2000). During two 2-hour visits to 720 
families with two siblings ranging from 10 to 18 years of age, a large battery of ques-
tionnaire and interview measures of the family environment was administered to 
both parents and both siblings. Parent-​child interactions were videotaped during a 
session when problems in family relationships were discussed. Sibling correlations for 
children’s reports of their family interactions (e.g., children’s reports of their parents’ 
negativity) were modest; they were also modest for observational ratings of child-​to-​
parent interactions and parent-​to-​child interactions. This finding suggests that these 

Type of Data Sibling Correlation

Child reports
Parenting 0.25
Sibling relationship 0.40

Parent reports
Parenting 0.70
Sibling relationship 0.80

Observational data
Child to parent 0.20
Parent to child 0.30

source: Data from Reiss et al. (2000).

Table 7.1

Sibling Correlations for Measures of Family Environment
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experiences are largely nonshared. In contrast, parent reports yielded high sibling 
correlations, for example, when parents reported on their own negativity toward each 
of the children. Although this may be due to a “rater” effect, in that the parent rates 
both children, the high sibling correlations indicate that parent reports of children’s 
environments are not good sources of candidate variables for assessing nonshared 
environmental factors.

As mentioned earlier, nonshared environment is not limited to measures of the 
family environment. Indeed, experiences outside the family, as siblings make their 
own way in the world, are even more likely candidates for nonshared environmental 
influences (Harris, 1998). For example, how similarly do siblings experience peers, 
social support, and life events? The answer is “only to a limited extent”; with shared 
environmental influences accounting for only modest or none of the variance while 
the majority of the variance is due to genetic and nonshared environmental effects 
(Plomin, 1994; Horwitz & Neiderhiser, 2015). It is also possible that nonsystematic 
factors, such as accidents and illnesses, initiate differences between siblings. Com-
pounded over time, small differences in experience might lead to large differences in 
outcome.

Identifying Specific Nonshared Environment That Predicts 
Behavioral Outcomes

Once child-​specific factors are identified, the next question is whether these non-
shared experiences relate to behavioral outcomes. For example, to what extent do 
differences in parental treatment account for the nonshared environmental vari-
ance known to be important for personality and psychopathology? Some success 
has been achieved in predicting differences in adjustment from sibling differences in 
their experiences. The NEAD project mentioned earlier provides an example in that 
negative parental behavior directed specifically to one adolescent sibling (controlling 
for parental treatment of the other sibling) relates strongly to that child’s antisocial 
behavior and, to a lesser extent, to that child’s depression (Reiss et al., 2000). Most of 
these associations involve negative aspects of parenting, such as conflict, and negative 
outcomes, such as antisocial behavior. Associations are generally weaker for positive 
parenting, such as affection.

A meta-​analysis of 43 papers that addressed associations between nonshared 
experiences and siblings’ differential outcomes concluded that “measured nonshared 
environmental variables do not account for a substantial portion of the nonshared vari-
ability” (Turkheimer & Waldron, 2000, p. 78). Looking at the same studies, however, 
an optimist could conclude that this research is off to a good start (Plomin, Asbury, & 
Dunn, 2001). The proportion of total variance accounted for in adjustment, personal-
ity, and cognitive outcomes was 0.01 for family constellation (e.g., birth order), 0.02 for 
differential parental behavior, 0.02 for differential sibling interaction, and 0.05 for dif-
ferential peer or teacher interaction. Moreover, these effects are largely independent 
because they add up in predicting the outcomes — ​incorporating all of these measures 
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of differential environment accounts for about 13 percent of the total variance of the 
outcome measures. If nonshared environment accounts for 40 percent of the variance 
in these domains, we could say the cup is already more than one-​quarter full.

When associations are found between nonshared environment and outcome, 
the question of the direction of effects is raised. That is, is differential parental nega-
tivity the cause or the effect of sibling differences in antisocial behavior? Genetic 
research is beginning to suggest that most differential parental treatment of siblings is 
in fact the effect rather than the cause of sibling differences. One of the reasons why 
siblings differ is genetics. Siblings are 50 percent similar genetically, but this state-
ment implies that siblings are also 50 percent different. Research on nonshared envi-
ronment needs to be embedded in genetically sensitive designs in order to distinguish 
true nonshared environmental effects from sibling differences due to genetics. For this 
reason, the NEAD project included identical and fraternal twins, full siblings, half 
siblings, and genetically unrelated siblings. Multivariate genetic analysis of associa-
tions between parental negativity and adolescent adjustment yielded an unexpected 
finding: Most of these associations were mediated by genetic factors, although some 
nonshared environmental influence was also found (Pike, McGuire, Hetherington, 
Reiss, & Plomin, 1996a). This finding and similar research (Burt, McGue, Krueger, & 
Iacono, 2005; Moberg, Lichtenstein, Forsman, & Larsson, 2011) implies that differ-
ential parental treatment of siblings to a substantial extent reflects genetically influ-
enced differences between the siblings, such as differences in personality. The role 
of genetics in environmental influences is given detailed consideration in the next 
chapter.

Because MZ twins are identical genetically, they provide an excellent test  
of nonshared environmental influences. Nonshared environmental influence is 
implicated if MZ differences in experience correlate with MZ differences in outcome. 
In the NEAD project, analyses of MZ differences confirmed the results of the full 
multivariate genetic analysis mentioned above (Pike et al., 1996a) in showing that MZ 
differences in experiences of parental negativity correlated modestly with MZ differ-
ences in adjustment outcomes (Pike, Reiss, Hetherington, & Plomin, 1996b). Other 
studies of MZ differences have also identified nonshared environmental factors free 
of genetic confound (e.g., Barclay, Eley, Buysse, Maughan, & Gregory, 2011; Hou 
et al., 2013; Viding, Fontaine, Oliver, & Plomin, 2009). A longitudinal study of MZ  
differences that extended from infancy to middle childhood found that MZ differences 
in birth weight and family environment during infancy related to their differences in 
behavior problems and academic achievement as assessed by their teachers at age 7 
(Asbury, Dunn, & Plomin, 2006). Another longitudinal study of MZ differences sug-
gested a pernicious downward spiral of the interplay of nonshared environmental 
influence between negative parenting and children’s behavior problems (Burt et al., 
2005). A different study also using the MZ twin difference method found that more 
differences in friends’ aggression in kindergarten were linked with increased differ-
ences in twin aggression in first grade (Vitaro et al., 2011).
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Support for the hypothesis that chance plays an important role in nonshared envi-
ronment comes from longitudinal genetic analyses of age-​to-​age change and continuity. 
Longitudinal genetic research indicates that nonshared environmental influences  
are age-​specific for psychopathology (Kendler, Neale, Kessler, Heath, & Eaves, 1993; 
Van den Oord & Rowe, 1997), personality (Loehlin, Horn, & Willerman, 1990; McGue, 
Bacon, & Lykken, 1993a), and cognitive abilities (Cherny, Fulker, & Hewitt, 1997). That 
is, nonshared environmental influences at one age are largely different from nonshared 
environmental influences at another age. In an effort to understand if nonshared envi-
ronmental influences are more stable over short periods of time, one study examined 
stability in behavioral affect over seven days and in observer-​rated warmth and con-
trol over seven minutes. Genetic and shared environmental influences were highly 
stable over both time spans, while the nonshared environmental influences were not 
(Burt, Klahr, & Klump, 2015). It is difficult to imagine environmental processes, other 
than chance, that could explain these results. Nonetheless, our view is that chance  
is the null hypothesis — ​systematic sources of nonshared environment need to be 
thoroughly examined before we conclude that chance factors are responsible for 
nonshared environment.

Multivariate Analysis

The estimation of genetic and environmental influences is not limited to examin-
ing the variance of a single behavior. The same model can be applied to investigat-
ing genetic and environmental influences on the covariance between two or more 
traits, which is one of the most important advances in quantitative genetics in the 
past few decades (Martin & Eaves, 1977). Just as univariate genetic analyses estimate 
the relative contributions of genetic and environmental factors to the variance of a 
trait, multivariate genetic analyses estimate the relative contributions of genetic and 
environmental factors to the covariance between traits. In other words, multivariate 
genetic analysis estimates the extent to which the same genetic and environmental 
factors affect different traits. An important developmental application of multivariate 
genetic analysis is to examine genetic and environmental contributions to stability 
and change longitudinally in the same individuals from age to age.

As explained in the Appendix, the essence of multivariate genetic analysis is the 
analysis of cross-​covariance in relatives. That is, instead of asking whether trait X in 
one twin covaries with trait X in the co-​twin, cross-​covariance refers to the covariance 
between trait X in one twin and a different trait, trait Y, in the co-​twin. Two new sta-
tistical constructs in multivariate genetic analysis are the correlation between genetic 
influences on X and Y, and the corresponding correlation between environmental 
influences on the two traits. Focusing on the genetic contribution to the covariance  
between trait X and trait Y, the genetic correlation estimates the extent to which genetic 
deviations that affect X literally correlate with genetic deviations that affect Y. The 
genetic correlation is independent of heritability. That is, traits X and Y could be 
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highly heritable but their genetic correlation could be zero. Or traits X and Y could be 
only slightly heritable yet their genetic correlation could be 1.0. A genetic correlation 
of zero would indicate that the genetic influences on trait X are not associated with 
those on trait Y. In contrast, a genetic correlation of 1.0 would mean that all genetic 
influences on trait X also influence trait Y. Another useful statistic from multivariate 
genetic analysis is bivariate heritability, which estimates the contribution of genetic 
influences to the phenotypic correlation between the two traits.

Multivariate genetic analysis will be featured in many subsequent chapters. The 
most interesting result occurs when the genetic structure between traits differs from 
the phenotypic structure. For example, as explained in Chapter 14, multivariate genetic 
analysis has shown that the genetic structure of psychopathology differs from pheno-
typic diagnoses in that many aspects of psychopathology are correlated genetically. 
The same pattern of general effects of genes is found for specific cognitive abilities 
(Chapter 11). A surprising example is that measures that are ostensibly environmental 
measures often correlate genetically with behavioral measures (Chapter 8). Another 
example is that multivariate genetic analyses across age typically find substantial age-​
to-​age genetic correlations, suggesting that genetic factors contribute largely to stability 
from age to age; environmental factors contribute largely to change.

KEY CONCEPTS

Environmentality: Proportion of phenotypic variance that can be accounted 

for by environmental influences. 

Shared environmental influences: Nongenetic influences that make family 

members similar. 

Nonshared environmental influences: Nongenetic influences that are 

uncorrelated for family members. 

Genetic correlation: A statistic indexing the extent to which genetic influences 

on one trait are correlated with genetic influences on another trait independent 

of the heritabilities of the traits.

Summary

Quantitative genetic methods can detect genetic influences for complex traits. These 
genetic influences are quantified by heritability, a statistic that describes the contri-
bution of genetic differences to observed differences in a particular population at 
a particular time. For most behavioral dimensions and disorders, including cogni-
tive ability and schizophrenia, genetic influences are not only detectable but also 
substantial, often accounting for as much as half of the variance in the population. 
Genetic influence in the behavioral sciences has been controversial in part because of 
misunderstandings about heritability.
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Genetic influence on behavior is just that — ​an influence or contributing factor, 
not something that is preprogrammed and deterministic. Environmental influences 
are usually as important as genetic influences; they are quantified as shared envi-
ronmental influences and nonshared environmental influences. Behavioral genetics 
focuses on why people differ, that is, the genetic and environmental origins of indi-
vidual differences that exist at a particular time in a particular population. Behavioral 
genetic research has helped to increase our understanding of how environmental 
factors influence behavioral outcomes. A major example is that behavioral genetic 
research finds modest evidence for shared environmental influences and often large 
nonshared environmental influences. Understanding how genetic and environmental 
influences can make family members similar and different can help to guide work 
aimed at improving developmental outcomes for individuals. The following chapter 
continues this discussion about how genes and environments work together.
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The Interplay between 
Genes and Environment

P revious chapters described how genetic and environmental influences can be 

assessed and the various designs that are typically used in human and animal 

behavioral genetic research. As described in Chapter 7, behavioral genetic research has 

helped to advance not just our understanding of how genes influence behavior but also 

of how environments influence behavior. Although much remains to be learned about 

the specific mechanisms involved in the pathways between genes and behavior, we know 

much more about genes than we do about the environment. We know that genes are 

located on chromosomes in the nucleus of cells, how their information is stored in the 

four nucleotide bases of DNA, and how they are transcribed and then translated using 

the triplet code. In contrast, we don’t yet know where environmental influences are 

expressed in the brain, how they change in development, and how they cause individual 

differences in behavior. Given these differences in levels of understanding, genetic influ­

ences on behavior may be construed as easier to study than environmental influences.
One thing we know for sure about the environment is that it is important. Quanti­

tative genetic research, reviewed in Chapters  11 to 19, provides the best available 
evidence that the environment is an important source of individual differences 
throughout the domain of behavior. Moreover, quantitative genetic research is chang­
ing the way we think about the environment. Three of the most important discover­
ies from genetic research in the behavioral sciences are about nurture rather than 
nature. The first discovery is that nonshared environmental influences are surpri­
singly large and important in explaining individual differences. The second discovery 
is equally surprising: Many environmental measures widely used in the behavioral 
sciences show genetic influence. This research suggests that people create their own 
experiences, in part for genetic reasons. This topic has been called the nature of nurture, 
although in genetics it is known as genotype-​environment correlation because it refers 
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to experiences that are correlated with genetic propensities. The third discovery at 
the interface between nature and nurture is that the effects of the environment can 
depend on genetics and that the effects of genetics can depend on the environment. 
This topic is called genotype-​environment interaction, genetic sensitivity to environments.

Genotype-​environment correlation and genotype-​environment interaction — ​
often referred to collectively as gene-​environment interplay — ​​are the topics of this 
chapter. The goal of this chapter is to show that some of the most important ques­
tions in genetic research involve the environment, and some of the most important 
questions for environmental research involve genetics. Genetic research will profit if 
it includes sophisticated measures of the environment, environmental research will 
benefit from the use of genetic designs, and behavioral science will be advanced by 
collaboration between geneticists and environmentalists. These are some of the ways 
in which behavioral scientists are bringing nature and nurture together in the study 
of development to understand the processes by which genotypes eventuate in pheno­
types (Rutter, Moffitt, & Caspi, 2006).

Three reminders about the environment are warranted. First, as noted above, 
genetic research provides the best available evidence for the importance of environ­
mental factors. The surprise from genetic research has been the discovery that genetic 
factors are so important throughout the behavioral sciences, often accounting for as 
much as half of the variance. However, the excitement about this discovery should not 
overshadow the fact that environmental factors are at least as important. Heritability 
rarely exceeds 50 percent and thus environmentality is rarely less than 50 percent.

Second, in quantitative genetic theory, the word environment includes all influences 
other than inheritance, a much broader use of the word than is usual in the behavioral 
sciences. By this definition, environment includes, for instance, prenatal events and 
biological events such as nutrition and illness, not just family socialization factors.

Third, as explained in Chapter 7, genetic research describes what is rather than 
predicts what could be. For example, high heritability for height means that height dif­
ferences among individuals are largely due to genetic differences, given the genetic 
and environmental influences that exist in a particular population at a particular time 
(what is). Even for a highly heritable trait such as height, an environmental interven­
tion such as improving children’s diet or preventing illness could affect height (what 
could be). Such environmental factors are thought to be responsible for the average 
increase in height across generations, for example, even though individual differences 
in height are highly heritable in each generation.

BEYOND HERITABILITY

As mentioned in Chapter 1, one of the most dramatic shifts in the behavioral sciences 
during the past few decades has been toward a balanced view that recognizes the 
importance of both nature and nurture in the development of individual differences in 
behavior. Behavioral genetic research has found genetic influence nearly everywhere 
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it has looked. Indeed, it is difficult to find any behavioral dimension or disorder that 
reliably shows no genetic influence. On the other hand, behavioral genetic research 
also provides some of the strongest available evidence for the importance of envi­
ronmental influences for the simple reason that heritabilities are seldom greater than 
50 percent. This means that environmental factors are also important. This message 
of the importance of both nature and nurture is repeated throughout the following 
chapters. It is a message that seems to have gotten through to the public as well as 
academics. For example, a survey of parents and teachers of young children found that 
over 90 percent believed that genetics is at least as important as environment for men­
tal illness, learning difficulties, intelligence, and personality (Walker & Plomin, 2005).

As a result of the increasing acceptance of genetic influence on behavior, most 
behavioral genetic research reviewed in the rest of the book goes beyond merely esti­
mating heritability. Estimating whether and how much genetics influences behavior 
are important first steps in understanding the origins of individual differences. But 
these are only first steps. As illustrated throughout this book, quantitative genetic 
research goes beyond heritability in three ways. First, instead of estimating genetic 
and environmental influence on the variance of one behavior at a time, multivariate 
genetic analysis investigates the origins of the covariance between behaviors. Some 
of the most important advances in behavioral genetics have come from multivariate 
genetic analyses. A second way in which behavioral genetic research goes beyond 
heritability is to investigate the origins of continuity and change in development. 
This is why so much recent behavioral genetic research is developmental, as reflected 
throughout Chapters 11 to 19, most notably in Chapter 15, which addresses develop­
mental psychopathology. Third, behavioral genetics considers the interface between 
nature and nurture, which is the topic of this chapter. Moreover, the rapid advances 
in our ability to identify genes (Chapter 9) and to link genes to behaviors via molecu­
lar genetics have revolutionized our ability to integrate genetic and social science 
research. It is possible to address multivariate, developmental, and gene-​environment 
interplay with much greater precision and ease; as described in Chapter 10, we are 
also making advances in understanding the pathways between genes and behavior. 
In fact, these many advances have resulted in research cutting across multiple and 
diverse areas, including genetics, sociology, family relations, and prevention science, 
to name just a few. The rest of this chapter will focus on how genes and environments 
work together, that is, gene-​environment interplay.

GENOTYPE-​ENVIRONMENT CORRELATION

As illustrated in Chapter 7, behavioral genetic research helps to clarify both genetic 
and environmental influences. Genetic research is also changing the way we think 
about the environment by showing that we create our experiences in part for genetic 
reasons. That is, genetic propensities are correlated with individual differences 
in experiences, an example of a phenomenon known as genotype-​environment 
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correlation. In other words, what seem to be environmental effects can reflect genetic 
influence because these experiences are influenced by genetic differences among 
individuals. This is just what genetic research during the past decade has found: When 
environmental measures are examined as phenotypes in twin and adoption studies, 
the results consistently point to some genetic influence, as discussed later. For this 
reason, genotype-​environment correlation has been described as genetic control of 
exposure to the environment (Kendler & Eaves, 1986).

Genotype-​environment correlation adds to phenotypic variance for a trait (see 
Appendix), but it is difficult to detect the overall extent to which phenotypic vari­
ance is due to the correlation between genetic and environmental effects (Plomin, 
DeFries, & Loehlin, 1977b). Therefore, the following discussion focuses on detection 
of specific genotype-​environment correlations rather than on estimating their overall 
contribution to phenotypic variation.

The Nature of Nurture

The first research on this topic was published over two decades ago, with several 
dozen studies using various genetic designs and measures converging on the conclu­
sion that measures of the environment show genetic influence (Plomin & Bergeman, 
1991). After providing some examples of this research, we will consider how it is 
possible for measures of the environment to show genetic influences.

A widely used measure of the home environment that combines observations and 
interviews is the Home Observation for Measurement of the Environment (HOME; 
Caldwell & Bradley, 1984; Caldwell & Bradley, 2003). HOME assesses aspects of the 
home environment such as parental responsivity, encouragement of developmental 
advance, and provision of toys. In an adoption study, HOME correlations for non­
adoptive and adoptive siblings were compared when each child was 1 year old and 
again when each child was 2 years old (Braungart, Fulker, & Plomin, 1992a). HOME 
scores were more similar for nonadoptive siblings than for adoptive siblings at both 
1 and 2 years (0.58 versus 0.35 at 1 year and 0.57 versus 0.40 at 2 years), results suggest­
ing genetic influence on HOME scores. Genetic factors were estimated to account for 
about 40 percent of the variance of HOME scores.

Other observational studies have found evidence of genetic influences on 
parent-​child interactions during infancy, childhood, and adolescence using a variety 
of genetic designs (see Klahr & Burt, 2014 for a recent meta-​analysis). These other 
studies suggest that genetic effects on family interactions are not solely in the eye of 
the beholder. Most genetic research on the nature of nurture has used questionnaires 
rather than observations. Questionnaires add another source of possible genetic influ­
ence: the subjective processes involved in perceptions of the family environment. The 
pioneering research in this area included two twin studies of adolescents’ perceptions 
of their family environment (Rowe, 1981; Rowe, 1983). Both studies found substan­
tial genetic influence on adolescents’ perceptions of their parents’ acceptance and no 
genetic influence on perceptions of parents’ control.
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The Nonshared Environment in Adolescent Development (NEAD) project, 
mentioned in Chapter 7, was designed in part to investigate genetic contributions to 
diverse measures of family environment. As shown in Table 8.1, significant genetic 
influence was found for adolescents’ ratings of composite variables of their parents’ 
positivity and negativity (Plomin, Reiss, Hetherington, & Howe, 1994). The highest 
heritability of the 12 scales that contributed to these composites was for a measure 
of  closeness (e.g., intimacy, supportiveness), which yielded heritabilities of about 
50 percent for both mothers’ closeness and fathers’ closeness as rated by the adoles­
cents. As found in Rowe’s original studies and in several other studies (Bulik, Sullivan, 
Wade, & Kendler, 2000), measures of parental control showed lower heritability than 
measures of closeness (Kendler & Baker, 2007). The NEAD project also assessed 
parents’ perceptions of their parenting behavior toward the adolescents (lower half 
of Table  8.1). Parents’ ratings of their own behavior yielded heritability estimates 
similar to those for the adolescents’ ratings of their parents’ behavior. Because the 
twins were children in these studies, genetic influence on parenting comes from par­
ents’ response to genetically influenced characteristics of their children. In contrast, 
when the twins are parents, genetic influence on parenting can come from other 
sources, such as the parents’ personality. Nonetheless, studies of twins as parents have 
generally yielded similar results that show widespread genetic influence (Neiderhiser 
et al., 2004; Klahr & Burt, 2014).

More than two dozen other studies of twins and adoptees have reported genetic 
influence on family environment (Plomin, 1994). A recent meta-​analysis of results 
from twin, sibling, and adoption studies of parenting found evidence for genetic 
influence of both parents and children on parental warmth, control, and negativity 
(Avinun & Knafo, 2013; Klahr & Burt, 2014). In addition, there is evidence that shared 
environmental influence on parenting decreases and nonshared environmental 

Rater Ratee Measure Heritability

Adolescent Mother Positivity 0.30
Negativity 0.40

Adolescent Father Positivity 0.56
Negativity 0.23

Mother Mother Positivity 0.38
Negativity 0.53

Father Father Positivity 0.22
Negativity 0.30

Plomin et al. (1994).

TABLE 8 .1

Heritability Estimates for Questionnaire Assessments of Parenting
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influence increases from childhood to adolescence while genetic influence is consis­
tent across child age. Multivariate genetic research suggests that genetic influence on 
perceptions of family environment is mediated in part by personality (Horwitz et al., 
2011; Krueger, Markon, & Bouchard, 2003) and that genetic influence on personality 
can also explain covariation among different aspects of family relations, such as mari­
tal quality and parenting (Ganiban et al., 2009b).

Genetic influence on environmental measures also extends beyond the family envi­
ronment. For example, several studies have found genetic influence on measures of life 
events and stress, especially life events over which we have some control, such as prob­
lems with relationships and financial disruptions (e.g., Federenko et al., 2006; Plomin, 
Lichtenstein, Pedersen, McClearn & Nesselroade, 1990b; Thapar & McGuffin, 1996). As 
is the case for genetic influence on perceptions of family environment, genetic influence 
on life events and stress is also mediated in part by personality (Kendler, Gardner, & 
Prescott, 2003a; Saudino, Pedersen, Lichtenstein, McClearn, & Plomin, 1997).

Genetic influence has also been found for characteristics of children’s friends 
and peer groups (e.g., Brendgen et al., 2009; Iervolino et al., 2002) as well as adults’ 
friends (Rushton & Bons, 2005), with genetic influence increasing during adoles­
cence and young adulthood as children leave their homes and create their own social 
worlds (Kendler et al., 2007a). Several studies have found genetic influences on the 
tendency to be bullied during middle and late childhood and adolescence (e.g., Ball 
et al., 2008; Brendgen et al., 2011) and also on the likelihood of repeatedly being vic­
timized (Beaver, Boutwell, Barnes, & Cooper, 2009). It is important to note that in the 
studies of bullying and peer victimization, heritabilities were somewhat less when peer 
nominations were used (Brendgen et al., 2008; Brendgen et al., 2011) as compared to 
parent and self-​reports (Ball et al., 2008; Beaver et al., 2009; Bowes, Maughan, Caspi, 
Moffitt, & Arseneault, 2010).

The school environment also shows genetic influences. For example, genetic 
influences have been found in children’s perceptions of their classroom environment 
(Walker & Plomin, 2006), in the amount of effort teachers report investing in their 
adolescent students (Houts, Caspi, Pianta, Arseneault, & Moffitt, 2010), and in the 
peer learning environment (Haworth et  al., 2013). Other environmental measures 
that have shown genetic influence include television viewing (Plomin, et al., 1990b), 
school connectedness (Jacobson & Rowe, 1999), work environments (Hershberger, 
Lichtenstein, & Knox, 1994), social support (Agrawal, Jacobson, Prescott, & Kendler, 
2002; Bergeman, Plomin, Pedersen, McClearn, & Nesselroade, 1990), accidents in 
childhood (Phillips & Matheny, 1995), the propensity to marry (Johnson, McGue, 
Krueger, & Bouchard, 2004), marital quality (Spotts, Prescott, & Kendler, 2006), 
divorce (McGue & Lykken, 1992), exposure to drugs (Tsuang et  al., 1992), and 
exposure to trauma (Lyons et al., 1993). In fact, there are few measures of experience 
examined in genetically sensitive designs that do not show genetic influence. It has been 
suggested that other fields, such as demography, also need to consider the impact of 
genotype-​environment correlation (Hobcraft, 2006).
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In summary, diverse genetic designs and measures converge on the conclusion 
that genetic factors contribute to experience. A review of 55 independent genetic 
studies using environmental measures found an average heritability of 0.27 across 
35 different environmental measures (Kendler & Baker, 2007). The large number of 
different environmental measures that have been found to show genetic influences 
demonstrates the key role that genetic influences play in the environments that indi­
viduals experience. A key direction for research on the interplay between genes and 
environment is to investigate the causes and consequences of genetic influence on 
measures of the environment.

Three Types of Genotype-​Environment Correlation

What are the processes by which genetic factors contribute to variations in 
environments that we experience? There are three types of genotype-​environment 
correlation: passive, evocative, and active (Plomin et  al., 1977b). Passive genotype-​
environment correlation occurs when children passively inherit from their parents 
family environments that are correlated with their genetic propensities. Evocative, 
or reactive, genotype-​environment correlation occurs when individuals, on the basis 
of their genetic propensities, evoke reactions from other people. Active genotype-​
environment correlation occurs when individuals select, modify, construct, or recon­
struct experiences that are correlated with their genetic propensities (Table 8.2).

For example, consider musical ability. If musical ability is heritable, musically 
gifted children are likely to have musically gifted parents who provide them with both 
genes and an environment conducive to the development of musical ability (passive 
genotype-​environment correlation). Musically talented children might also be picked 
out at school and given special opportunities (evocative genotype-​environment 

Type Description
Source of Environmental 
Influence

Passive Children receive genotypes 
correlated with their family 
environment

Parents and siblings

Evocative Individuals are reacted to on the  
basis of their genetic propensities

Anybody

Active Individuals seek or create 
environments correlated with their 
genetic proclivities

Anybody or anything

Reprinted with permission of Robert Plomin, Institute for Behavioral Genetics, University of Colorado.

TABLE 8 . 2

Three Types of Genotype-​Environment Correlation
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correlation). Even if no one does anything about their musical talent, gifted children 
might seek out their own musical environments by selecting musical friends or other­
wise creating musical experiences (active genotype-​environment correlation).

Passive genotype-​environment correlation requires interactions between geneti­
cally related individuals. The evocative type can be induced by anyone who reacts 
to individuals on the basis of their genetic proclivities. The active type can involve 
anybody or anything in the environment. We tend to think of positive genotype-​
environment correlation, such as providing a musical environment, as being posi­
tively correlated with children’s musical propensities, but genotype-​environment 
correlation can also be negative. As an example of negative genotype-​environment 
correlation, slow learners might be given special attention to boost their performance.

Three Methods to Detect Genotype-​Environment 
Correlation

Three methods are available to investigate the contribution of genetic factors to the cor­
relation between an environmental measure and a behavioral trait. These methods dif­
fer in the type of genotype-​environment correlation they can detect. The first method 
is limited to detecting the passive type. The second method detects the evocative and 
active types. The third method detects all three types. All three methods can also pro­
vide evidence for environmental influence free of genotype-​environment correlation.

The first method compares correlations between environmental measures and 
traits in nonadoptive and adoptive families (Figure 8.1). In nonadoptive families, a 
correlation between a measure of family environment and a behavioral trait of chil­
dren could be environmental in origin, as is usually assumed. However, genetic factors 
might also contribute to the correlation. Genetic mediation would occur if genetically 
influenced traits of parents are correlated with the environmental measure and with 
the children’s trait. For example, a correlation between HOME scores and children’s 
cognitive abilities could be mediated by genetic factors that affect both the cognitive 
abilities of parents and their scores on the HOME. In contrast, in adoptive families, 

Nonadoptive families

Genetics

Environment

Environment

Measure of
family environment

Adoptive families

Measure of
family environment

Children s
trait

Children s
trait

FIGURE 8.1  Passive genotype-​environment correlation can be detected by comparing correlations 

between family environment and children’s traits in nonadoptive and adoptive families.
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this indirect genetic path between family environment and children’s traits is not pres­
ent because adoptive parents are not genetically related to their adopted children. For 
this reason, a genetic contribution to the covariation between family environment and 
children’s traits is implied if the correlation is greater in nonadoptive families than 
in adoptive families. The genetic contribution reflects passive genotype-​environment 
correlation because children in nonadoptive families passively inherit from their par­
ents both genes and environment that are correlated with the trait. In both nonadop­
tive and adoptive families, the environmental measure might be the consequence 
rather than the cause of the children’s traits, which could involve genetic influence 
of the evocative or active type of genotype-​environment correlation. However, this 
source of genetic influence would contribute equally to environment-​outcome cor­
relations in nonadoptive and adoptive families. Increased correlations in nonadoptive 
families would occur only in the presence of passive genotype-​environment correla­
tion. This method uncovered significant genetic contributions to associations between 
family environment and children’s behavioral development in the Colorado Adop­
tion Project. For example, the correlation between HOME scores and the cognitive 
development of 2-year-​olds is higher in nonadoptive families than in adoptive fami­
lies (Plomin, Loehlin, & DeFries, 1985). The same pattern of results was found for 
correlations between HOME scores and language development.

The children-​of-​twins (COT) method can be used to address similar questions 
(McAdams et al., 2014). As described in Chapter 6, the COT approach provides a pow­
erful pseudo-​adoption design that allows for control of genetic risk of parental vari­
ables, such as family conflict and parental substance use, in order to examine whether 
measures of the family environment have a direct effect on child outcomes or are medi­
ated genetically. For example, a COT analysis looking at a general measure of family 
functioning that included family conflict, marital quality, and agreement about parent­
ing found that family conflict had both a direct and genetically mediated association 
with adolescents’ internalizing and externalizing problems (Schermerhorn et al., 2011). 
Other efforts using the COT design have focused on parental substance use, includ­
ing drug use during pregnancy, and have found that the association between maternal 
alcohol use and child attention-deficit/hyperactivity disorder (ADHD) is genetically 
influenced (Knopik et al., 2006), while the association between paternal alcohol use and 
child ADHD is more likely to be indirect and a result of multiple pathways (Knopik, 
Jacob, Haber, Swenson, & Howell, 2009b). Other maternal variables, such as substance 
use during pregnancy, appeared to have genetically mediated as well as direct environ­
mental effects on child ADHD (Knopik et al., 2006; Knopik et al., 2009b).

Evocative and active genotype-​environment correlations are assumed to affect 
both adopted and nonadopted children and would not be detected using this first 
method. The second method for finding specific genotype-​environment correlations 
involves correlations between birth parents’ traits and adoptive families’ environment 
(Figure 8.2). This method addresses the other two types of genotype-​environment 
correlation, evocative and active. Traits of birth parents can be used as an index of 
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adopted children’s genotype, and can be correlated with any measure of the adopted 
children’s environment. Although birth parents’ traits are a relatively weak index of 
their adopted children’s genotype, finding that birth parents’ traits correlate with 
the environment of their adopted children suggests that the environmental measure 
reflects genetically influenced characteristics of the adopted children. That is, adopted 
children’s genetic propensities evoke reactions from adoptive parents. Attempts to 
use this method in the Colorado Adoption Project yielded only meager evidence 
for evocative and active genotype-​environment correlation (Plomin, 1994), although 
this strategy has proven more successful in recent research from the Early Growth 
and Development Study (Leve et  al., 2013b). For example, evidence for evocative 
genotype-​environment correlation has been found for parenting (Fearon et al., 2014; 
Harold et  al., 2013) and problems with peers (Elam et  al., 2014) during early and 
middle childhood.

The third method to detect genotype-​environment correlation involves multi­
variate genetic analysis of the correlation between an environmental measure and a 
trait (Figure 8.3). This method is the most general in the sense that it detects genotype-​
environment correlation of any kind — ​​passive, evocative, or active. As explained in 
the Appendix, multivariate genetic analysis estimates the extent to which genetic 
effects on one measure overlap with genetic effects on another measure. In this case, 
genotype-​environment correlation is implied if genetic effects on an environmental 
measure overlap with genetic effects on a trait measure.

Multivariate genetic analysis can be used with any genetic design and with any 
type of environmental measure, not just with measures of the family environment. 
However, because all genetic analyses are analyses of individual differences, the envi­
ronmental measure must be specific to each individual. For example, an environmental 
measure that is the same for all family members, such as the family’s socioeconomic 
status, could not be used in these analyses. However, a child-​specific measure, such 
as children’s perceptions of their family’s socioeconomic status, could be analyzed 
in this way. One of the first studies of this type used the sibling adoption design to 

Genetics
Measure of environment

in adoptive family
Biological

parents  trait

FIGURE 8.2  Evocative and active genotype-​environment correlation can be detected by the 

correlation between birth parents’ traits (as an index of adopted children’s genotype) and the 

environment of adoptive families.

Genetics

Environment

Measure of
environment

Measure of
trait

FIGURE 8.3  Passive, evocative, and active genotype-​environment correlation can be detected by 

using multivariate genetic analysis of the correlation between environmental measures and traits.
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compare cross-​correlations between one sibling’s HOME score (a child-​specific rather 
than family-​general measure of the environment) and the other sibling’s general cog­
nitive ability for nonadoptive and adoptive siblings at 2 years of age in the Colorado 
Adoption Project (Braungart et al., 1992a). Multivariate genetic model fitting indicated 
that about half of the phenotypic correlation between HOME scores and children’s 
cognitive ability is mediated genetically. Similar findings have been reported for par­
enting and child prosocial and problem behaviors during childhood and adolescence 
(e.g., Knafo & Plomin, 2006; Reiss, Neiderhiser, Hetherington, & Plomin, 2000; Burt, 
Krueger, McGue, & Iacono, 2003). For each of these correlations, more than half 
of the correlation is mediated genetically. There is also evidence that genetic influ­
ences account for the associations among peer characteristics and adolescent drinking 
(Loehlin, 2010) and young adult smoking (Harakeh et al., 2008). Evidence for genetic 
mediation has also been found in adulthood for a wide variety of environmental 
measures with adult mental and physical health (e.g., Boardman, Alexander, & 
Stallings, 2011; Bergeman, Plomin, Pedersen, & McClearn, 1991; Spotts et al., 2005; 
Lichtenstein, Harris, Pedersen, & McClearn, 1992; Carmelli, Swan, & Cardon, 1995).

Multivariate genetic analysis can be combined with longitudinal analysis 
to disentangle cause and effect in the relationship between environmental mea­
sures and behavioral measures. For example, if negative parenting at one age is 
related to children’s antisocial behavior at a later age, it would seem reasonable to 
assume that the negative parenting caused the children’s antisocial behavior. How­
ever, the first twin study of this type found that this pathway is primarily mediated 
genetically (Neiderhiser, Reiss, Hetherington, & Plomin, 1999), a finding supported 
in subsequent studies using different samples (Burt, McGue, Krueger, Iacono, 2005; 
Moberg, Lichtenstein, Forsman, & Larsson, 2011). In contrast, a longitudinal study 
of twins concerned with the effects of childhood adversity on antisocial behavior 
in adolescence and young adulthood found that although passive genotype-​
environment correlation was significant, the majority of the variance was due to the 
direct environmental effects of childhood adversity (Eaves, Prom, & Silberg, 2010).

Recent studies have attempted to clarify whether associations between parenting 
and child adjustment are due to evocative genotype-​environment correlation, passive 
genotype-​environment correlation, or direct environmental effects of parenting on 
child adjustment. These different mechanisms can be disentangled by combining a 
multivariate genetic analysis of parenting and child adjustment with a combination of 
children-​of-​twins and parents-​of-​twins designs, referred to as extended children-​of-​
twins (ECOT; Narusyte et al., 2008). Studies that have used the ECOT design have 
found evidence for evocative genotype-​environment correlation for parental negativity 
and child internalizing and externalizing behavior (Marceau et al., 2013; Narusyte et al., 
2008; Narusyte et al., 2011). In other words, adolescents’ behavior evoked a particular 
type of response from their parents for genetically influenced reasons. In contrast, two  
reports have found evidence for direct environmental influences but no genotype-​
environment correlation between parental criticism and adolescent somatic symptoms 
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(Horwitz et al., 2015) and between parental monitoring and adolescent externalizing 
behavior (Marceau et  al., 2015b). These findings highlight how multiple strategies 
can be combined to yield novel information about how genes and environments work 
together and also help to illustrate the nuances of environmental influences.

Research on the interplay between genes and environment will be greatly facilitated 
by identifying some of the genes responsible for the heritability of behavior (Jaffee & 
Price, 2007). The conclusion from research reviewed in this section is that we may be 
able to identify genes associated with environmental measures because these are heri­
table. For example, recent research using SNP-​based heritability as well as polygenic 
scores has found significant genetic influence on the socioeconomic status (SES) of chil­
dren’s families and on the association between family SES and children’s educational 
achievement (Krapohl & Plomin, 2015; Plomin, 2014). Of course, environments per se 
are not inherited; genetic influence comes into the picture because these environmental 
measures involve behavior. For example, many life events and stressors are not things 
that happen to us passively — ​​to some extent, we contribute to these experiences.

Implications

Research using diverse genetic designs and measures leads to the conclusion that 
genetic factors often contribute substantially to measures of the environment. The 
most important implication of finding genetic contributions to measures of the envi­
ronment is that the correlation between an environmental measure and a behavio­
ral trait does not necessarily imply exclusively environmental causation. Genetic 
research often shows that genetic factors are substantially involved in correlations 
between environmental measures and behavioral traits. In other words, what appears 
to be an environmental risk might actually reflect genetic factors. Conversely, of 
course, what appears to be a genetic risk might actually reflect environmental factors.

This research does not mean that experience is entirely driven by genes. Widely 
used environmental measures show significant genetic influence, but most of the vari­
ance in these measures is not genetic. Nonetheless, environmental measures cannot 
be assumed to be entirely environmental just because they are called environmental. 
Indeed, research to date suggests that it is safer to assume that measures of the envi­
ronment include some genetic effects. Especially in families of genetically related 
individuals, associations between measures of the family environment and children’s 
developmental outcomes cannot be assumed to be purely environmental in origin. 
Taking this argument to the extreme, two books have concluded that socialization 
research is fundamentally flawed because it has not considered the role of genetics 
(Harris, 1998; Rowe, 1994).

These findings support a current shift from thinking about passive models of how 
the environment affects individuals toward models that recognize the active role we 
play in selecting, modifying, and creating our own environments. Progress in this field 
will be fostered by developing measures of the environment that reflect the active role 
we play in constructing our experience.
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KEY CONCEPTS

Passive genotype-​environment correlation: A correlation between genetic 

and environmental influences that occurs when children inherit genes with 

effects that covary with their family’s environment. 

Evocative genotype-​environment correlation: A correlation between genetic 

and environmental influences that occurs when individuals evoke environmental 

effects that covary with their genetic propensities. 

Active genotype-​environment correlation: A correlation between genetic 

and environmental influences that occurs when individuals select or construct 

environments with effects that covary with their genetic propensities. 

Children-​of-​twins design: A study that includes parents who are twins and the 

children of each twin. 

Extended children-​of-​twins design: A study that combines a children-​of-​twins 

design and a comparable sample of twins who are children and the twins’ parents.

GENOTYPE-​ENVIRONMENT INTERACTION

The previous section focused on correlations between genotype and environment. 
Genotype-​environment correlation refers to the role of genetics in exposure to envi­
ronments. In contrast, genotype-​environment interaction involves genetic sensitivity, 
or susceptibility, to environments. There are many ways of thinking about genotype-​
environment interaction (Rutter, 2006; Reiss, Leve, & Neiderhiser, 2013), but in 
quantitative genetics the term generally means that the effect of the environment on 
a phenotype depends on genotype or, conversely, that the effect of the genotype on a 
phenotype depends on the environment (Kendler & Eaves, 1986; Plomin, DeFries, & 
Loehlin, 1977a). As discussed in Chapter 7, this is quite different from saying that 
genetic and environmental effects cannot be disentangled because they “interact.” 
When considering the variance of a phenotype, genes can affect the phenotype inde­
pendent of environmental effects, and environments can affect the phenotype inde­
pendent of genetic effects. In addition, genes and environments can interact to affect 
the phenotype beyond the independent prediction of genes and environments.

This point can be seen in Figure 8.4, in which scores on a trait are plotted against 
low-​ versus high-​risk genotypes for individuals reared in low-​ versus high-​risk envi­
ronments. Genetic risks can be assessed using animal models, adoption designs, or 
DNA, as discussed below. The figure shows examples in which (a) genes have an 
effect with no environmental effect, (b) environment has an effect with no genetic 
effect, (c) both genes and environment have effects, and (d) both genes and envi­
ronment have effects and there is also an interaction between genetics and environ­
ment. In the last case, the interaction involves a greater effect of genetic risk in a 
high-​risk environment. In psychiatric genetics, this type of interaction is called the 
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diathesis-​stress model (Gottesman, 1991; Paris, 1999). That is, individuals at genetic 
risk for psychopathology (diathesis, or predisposition) are especially sensitive 
to the effects of stressful environments. Although there is evidence for genotype-​
environment interactions of this sort, some studies show greater genetic influence in 
permissive, low-​risk environments (Kendler, 2001).

As was the case for genotype-​environment correlation, genotype-​environment 
interaction adds to phenotypic variance for a trait (see Appendix), but it is difficult 
to detect the overall extent to which phenotypic variance is due to the interaction 
between genetic and environmental effects ( Jinks & Fulker, 1970; Plomin et al., 1977b; 
van der Sluis, Dolan, Neale, Boomsma, & Posthuma, 2006). For this reason, the fol­
lowing discussion focuses on detection of specific genotype-​environment interactions 
rather than on estimating their overall contribution to phenotypic variation.

Animal Models

Genotype-​environment interaction is easier to study in laboratory animals because 
both genotype and environment can be manipulated. Chapter 11 describes one of 
the best-​known examples of genotype-​environment interaction. Maze-​bright and 
maze-​dull selected lines of rats responded differently to “enriched” and “restricted” 
rearing environments when compared to maze-​bright and maze-​dull rats reared in a 
standard laboratory environment (Cooper & Zubek, 1958). The enriched condition 
had no effect on the maze-​bright selected line, but it improved the maze-​running per­
formance of the maze-​dull rats. The restricted environment was detrimental to the 
performance of the maze-​bright rats but had little effect on the maze-​dull rats. This 

High risk E
Low risk E

High risk GLow risk G

(a)
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High risk E
Low risk E

High risk GLow risk G

(b)

QT

High risk E
Low risk E
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(c)
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High risk GLow risk G
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FIGURE 8.4  Genetic (G) and environmental (E) effects and their interaction. QT refers to a 

phenotypic quantitative trait. (a) G can have an effect without an effect of E, (b) E can have an 

effect without G, (c) both G and E can have an effect, and (d) both G and E can have an effect 

and there can also be an interaction between G and E.
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result is an interaction in that the effect of restricted versus enriched environments 
depends on the genotype of the animals. Other examples from animal research in 
which environmental effects on behavior differ as a function of genotype have also 
been found (Erlenmeyer-​Kimling, 1972; Fuller & Thompson, 1978; Mather & Jinks, 
1982). However, a series of learning studies in mice failed to find replicable genotype-​
environment interactions (Henderson, 1972).

As mentioned in Chapter 5, an influential paper reported genotype-​environment 
interaction in which genotype was assessed using inbred strains of mice and envi­
ronment was indexed by different laboratories (Crabbe, Wahlsten, & Dudek, 1999b). 
However, subsequent studies found much less evidence for genotype-​environment 
interaction of this particular type (Valdar et al., 2006a; Wahlsten et al., 2003; Wahlsten, 
Bachmanov, Finn, & Crabbe, 2006). Despite the power of animal model research to 
manipulate genotype and environment, there is surprisingly little systematic research 
on genotype-​environment interaction. (Animal model research in the laboratory is 
less suited to the study of genotype-​environment correlation because such research 
requires that animals be free to select and modify their environment, which rarely 
happens in laboratory experiments.)

Adoption Studies

Although genes and environment cannot be manipulated experimentally in the human 
species as in animal model research, the adoption design can explore genotype-​
environment interaction, as illustrated in Figure 8.4. Chapter 16 describes an example 
of genotype-​environment interaction for criminal behavior found in two adoption 
studies (Bohman, 1996; Brennan, Mednick, & Jacobsen, 1996). Adoptees whose birth 
parents had criminal convictions had an increased risk of criminal behavior, sug­
gesting genetic influence; adoptees whose adoptive parents had criminal convictions 
also had an increased risk of criminal behavior, suggesting environmental influence. 
However, genotype-​environment interaction was also indicated because criminal 
convictions of adoptive parents led to increased criminal convictions of their adopted 
children mainly when the adoptees’ birth parents also had criminal convictions.

Another example of a similar type of genotype-​environment interaction has been 
reported for adolescent conduct disorder (Cadoret, Yates, Troughton, Woodworth, & 
Stewart, 1995b). Genetic risk was indexed by birth parents’ antisocial personality 
diagnosis or drug abuse, and environmental risk was assessed by marital, legal, or 
psychiatric problems in the adoptive family. Adoptees at high genetic risk were more 
sensitive to the environmental effects of stress in the adoptive family. Adoptees at low 
genetic risk were unaffected by stress in the adoptive family. This result confirms pre­
vious research that also showed interactions between genetic risk and family environ­
ment in the development of adolescent antisocial behavior (Cadoret, Cain, & Crowe, 
1983; Crowe, 1974).

The Early Growth and Development Study (EGDS; Leve et al., 2013b) is a lon­
gitudinal adoption study that follows adopted children, their adoptive parents, and 
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their birth mothers and birth fathers. A surprising number of genotype-​environment 
interactions have emerged from the EGDS for child behaviors from infancy to middle 
childhood. For example, for children whose birth parents had more psychopathology 
symptoms (depressive and anxiety symptoms, antisocial behaviors, drug and alcohol 
use), adoptive mothers’ use of more structured parenting when the adopted child was 
18 months old was associated with significantly fewer child behavior problems than 
when less structured parenting was used (Leve et al., 2009). Genotype-​environment 
interactions were also found for children’s behavioral inhibition (Natsuaki et al., 2013), 
internalizing problems (Brooker et al., 2014), externalizing problems (Lipscomb et al., 
2014), and social competence (Van Ryzin et al., 2015).

There are, however, examples in which genotype-​environment interaction could 
not be found, especially for cognitive development. For example, using data from the 
classic adoption study of Skodak and Skeels (1949), researchers compared general 
cognitive ability scores for adopted children whose birth parents were high or low 
in level of education (as an index of genotype) and whose adoptive parents were 
high or low in level of education (as an index of environment) (Plomin et al., 1977b). 
Although the level of education of the birth parents showed a significant effect on the 
adopted children’s general cognitive ability, no environmental effect was found for 
adoptive parents’ education and no genotype-​environment interaction was found. A 
similar adoption analysis using more extreme groups found both genetic and envi­
ronmental effects but, again, no evidence for genotype-​environment interaction 
(Capron & Duyme, 1989; Capron & Duyme, 1996; Duyme, Dumaret, & Tomkiewicz, 
1999). Other attempts that used adoption analyses to find genotype-​environment 
interaction for cognitive ability in infancy and childhood have not been successful 
(Plomin, DeFries, & Fulker, 1988).

Twin Studies

The twin method has also been used to identify genotype-​environment interaction. 
One twin’s phenotype can be used as an index of the co-​twin’s genetic risk in an 
attempt to explore interactions with measured environments. Using this method, 
researchers found that the effect of stressful life events on depression was greater for 
individuals at genetic risk for depression (Kendler et al., 1995). Another study found 
that the effect of physical maltreatment on conduct problems was greater for children 
with high genetic risk (Jaffee et al., 2005). The approach is stronger when twins reared 
apart are studied, an approach that has also yielded some evidence for genotype-​
environment interaction (Bergeman, Plomin, McClearn, Pedersen, & Friberg, 1988).

The most common use of the twin method in studying genotype-​environment 
interaction simply involves asking whether heritability differs in two environments. 
Large samples are needed to detect this type of genotype-​environment interaction. 
About 1000 pairs of each type of twin are needed to detect a heritability difference 
of 60 percent versus 40 percent. For example, Chapter 17 mentions several exam­
ples in which the heritability of alcohol use and abuse is greater in more permissive 
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environments. Analyses of differences in heritability as a function of the environ­
ment can treat the environment as a continuous variable rather than dichotomizing 
it (Purcell, 2002; Purcell & Koenen, 2005; van der Sluis, 2012). In fact, there has been an 
explosion of studies examining moderation of heritability and environmentality (e.g., 
Brendgen et al., 2009; Feinberg, Button, Neiderhiser, Reiss, & Hetherington, 2007; 
Tuvblad, Grann, & Lichtenstein, 2006).

One analysis of this type showed that heritability of general cognitive ability is 
significantly greater in families with more highly educated parents (74 percent) than 
in families with less well-​educated parents (26 percent) (Rowe, Jacobson, & van den 
Oord, 1999). Subsequent studies have produced apparently inconsistent results for 
parental education and socioeconomic status, but a recent meta-​analysis found such 
effects primarily in U.S. studies but not in studies outside the United States. This sug­
gests the intriguing possibility that the genotype-​environment interaction may not  
be found in countries where access to high-​quality education may be more uniform 
than in the United States (Tucker-​Drob & Bates, 2016).

In addition, several twin studies indicate that heritability of behavior problems in 
children is moderated by the social environment, such as parenting (Alexandra Burt, 
Klahr, Neale, & Klump, 2013; Lemery-​Chalfant, Kao, Swann, & Goldsmith, 2013; Samek 
et al., 2015), peer rejection (Brendgen et al., 2009), and a positive relationship with a 
teacher (Brendgen et al., 2011). As the appropriate data for use in genotype-​environment  
interaction analyses continue to become available we will continue to uncover the 
nuances of how genes and environments work together to influence behavioral out­
comes. These processes are also likely to change over time and with the age of the child 
(Marceau et al., 2015a), although longitudinal examinations of genotype-​environment 
interactions are just beginning (Burt & Klump, 2014).

DNA

DNA studies of gene-​environment interaction have yielded exciting results in two 
of the most highly cited papers in behavioral genetics. The first study involved adult 
antisocial behavior, childhood maltreatment, and a functional polymorphism in the 
gene for monoamine oxidase A (MAOA), which is widely involved in metabolizing a 
broad range of neurotransmitters (Caspi et al., 2002). As shown in Figure 8.5, child­
hood maltreatment was associated with adult antisocial behavior, as has been known 
for decades. MAOA was not related to antisocial behavior for most individuals who 
experienced no childhood maltreatment — ​​that is, there was no difference in antiso­
cial behavior between children with low and high MAOA genotypes. However, MAOA 
was strongly associated with antisocial behavior in individuals who suffered severe 
childhood maltreatment, which suggests a genotype-​environment interaction of the 
diathesis-​stress type. The rarer form of the gene, which lowers MAOA levels, made 
individuals especially vulnerable to the effects of childhood maltreatment. Although 
attempts to replicate this finding have been mixed, it is supported by a meta-​analysis 
of all extant studies (Byrd & Manuck, 2014).
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The second study involved depression, stressful life events, and a functional 
polymorphism in the promoter region of the serotonin transporter gene (5-HTTLPR) 
(Caspi et al., 2003). As shown in Figure 8.6, there was no association between the gene 
and depressive symptoms in individuals reporting few stressful life events. An asso­
ciation appeared with increasing number of life events, which is another example of  
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the diathesis-​stress model of genotype-​environment interaction. This interaction has 
been replicated in several studies (e.g., Vrshek-​Schallhorn et  al., 2013). This find­
ing has also received support from mouse and nonhuman primate research in which 
the serotonin transporter gene was found to be involved in emotional reactions to 
environmental threats (Caspi, Hariri, Holmes, Uher, & Moffitt, 2010). There have 
been a series of meta-​analyses and debates in the literature about the interaction 
between stressful life events and the serotonin transporter gene. Two meta-​analyses 
reported in 2009 found that the evidence for such interactions was due to chance 
(Munafo, Durrant, Lewis, & Flint, 2009) or simply not present (Risch et al., 2009). 
Two more recent meta-​analyses, however, found evidence for an interaction between 
stress and the serotonin transporter gene in risk for depression (Karg, Burmeister, 
Shedden, & Sen, 2011; Sharpley, Palanisamy, Glyde, Dillingham, & Agnew, 2014). 
Research continues on this topic and the conditions in which the interaction occurs 
(McGuffin & Rivera, 2015; Dick et al., 2015).

To date, many studies have reported genotype-​environment interactions, most 
focusing on the genes involved in these first studies. There is a need for caution when 
considering the findings of studies examining candidate gene-​by-​environment 
interactions, however. One report examined all published studies of candidate gene-​
by-​environment interactions — ​​103 studies published from 2000 to 2009 — ​and found 
that 96 percent of novel reports were significant, while only 27 percent of replication 
attempts were significant (Duncan & Keller, 2011). A recent report reviews the candi­
date gene-​by-​environment interaction literature and outlines a set of recommenda­
tions for continued research in this area (Dick et al., 2015).

Genomewide approaches, which utilize DNA variation across the genome, 
have also begun to be applied in the search for genomewide gene-​by-​environment 
interaction (Aschard et  al., 2012; Thomas, Lewinger, Murcray, & Gauderman, 
2012). Systematic strategies that can be used in mining data from genomewide asso­
ciation studies in examining genotype-​environment interaction have been proposed 
(Thomas, 2010) and include experimental intervention as a way of manipulating the 
environment (van Ijzendoorn et al., 2011).

KEY CONCEPTS

Genotype-​environment interaction: Genetic sensitivity or susceptibility to 

environments. Genotype-​environment interaction is usually limited to statistical 

interactions, such as genetic effects that differ in different environments. The most 

common use of the twin method in studying genotype-​environment interaction 

involves testing whether heritability differs in different environments. 

Diathesis-​stress: A type of genotype-​environment interaction in which individuals 

at genetic risk for a disorder (diathesis) are especially sensitive to the effects of 

risky (stress) environments. 



1 3 0   C H A P T E R  E I G H T

Candidate gene-​by-​environment interaction: Genotype-​environment 

interaction in which an association between a particular (candidate) gene and a 

phenotype differs in different environments. 

Genomewide gene-​by-​environment interaction: A method for searching for 

genotype-​environment interaction that assesses DNA variation throughout the 

genome.

Summary

The interplay between genes and environment has been the subject of a vast amount 
of research, especially over the past decade. There are two main foci of this work: 
genotype-​environment correlation and genotype-​environment interaction. What is 
clear from this research is that genes and environment operate together to influence 
behavior through genotype-​environment correlations and interactions.

One of the most surprising findings in genetic research was that our experiences are 
influenced in part by genetic factors. This finding is the topic of genotype-​environment 
correlation. Dozens of studies using various genetic designs and measures of the  
environment converge on the conclusion that genetic factors contribute to the variance 
of measures of the environment. Genotype-​environment correlations are of three 
types: passive, evocative, and active. Several different methods are available to assess 
specific genotype-​environment correlations between behavioral traits and measures 
of the environment. These methods have identified several examples of genotype-​
environment correlation and have helped to clarify how genotype-​environment 
correlations may change over time.

Genotype-​environment interaction is the second way that genes and environ­
ments work together. Animal studies, in which both genotype and environment can be 
controlled, have yielded examples in which environmental effects on behavior differ 
as a function of genotype. Examples of genotype-​environment interaction for human 
behavior have also been found in adoption and twin studies and in molecular genetic 
studies using functional polymorphisms in candidate genes. The general form of 
these interactions is that stressful environments primarily have their effect on indi­
viduals who are genetically at risk, a diathesis-​stress type of genotype-​environment 
interaction.

The recognition through behavioral genetic research of genotype-​environment 
correlations and interactions emphasizes the power of genetic research to elucidate 
environmental risk mechanisms. Understanding how nature and nurture correlate 
and interact will be greatly facilitated as more genes are identified that are associated 
with behavior and with experience.
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Identifying Genes

M uch more quantitative genetic research of the kind described in Chapters 6, 7, 

and 8 is needed to identify the most heritable components and constellations 

of behavior, to investigate developmental change and continuity, and to explore the 

interplay between nature and nurture. However, one of the most exciting directions 

for research in behavioral genetics is the coming together of quantitative genetics 

and molecular genetics in attempts to identify specific genes responsible for genetic 

influence on behavior, even for complex behaviors for which many genes as well as 

many environmental factors are at work.
Quantitative genetics and molecular genetics both began around the beginning of 

the twentieth century. The two groups, biometricians (Galtonians) and Mendelians, 
quickly came into contention, as described in Chapter 2. Their ideas and research 
grew apart as quantitative geneticists focused on naturally occurring genetic varia-
tion and complex quantitative traits, and molecular geneticists analyzed single-​gene 
mutations, often those created artificially by chemicals or X-​irradiation (described 
in Chapter 5). Since the 1980s, however, quantitative genetics and molecular gene
tics have begun to come together again to identify genes for complex, quantitative 
traits. Such a gene in multiple-​gene systems is called a quantitative trait locus (QTL). 
Unlike single-​gene effects that are necessary and sufficient for the development of a 
disorder, QTLs contribute like probabilistic risk factors, creating quantitative traits 
rather than qualitative disorders. QTLs are inherited in the same Mendelian manner 
as single-​gene effects; however, if there are many genes that affect a trait, then each 
gene is likely to have a relatively small effect (see Chapter 3).

In addition to producing indisputable evidence of genetic influence, the 
identification of specific genes will revolutionize behavioral genetics by provid-
ing measured genotypes for investigating, with greater precision, the multivariate, 
developmental, and gene-​environment interplay issues that have become the focus 
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of quantitative genetic research. In Chapter 5, we briefly presented various ways of 
identifying genes in animal models. We now turn our attention to identifying genes 
associated with human behavior. Once a gene, or a set of genes, is identified, it is 
possible to begin to explore the pathways between genes and behavior, which is the 
topic of Chapter 10.

Mutations

Behavioral genetics asks why people are different behaviorally — ​for example, why 
people differ in cognitive abilities and disabilities, psychopathology, and personality. 
For this reason, it focuses on genetic and environmental differences that can account 
for these observed differences among people. New DNA differences occur when mis-
takes, called mutations, are made in copying DNA. These mutations result in differ-
ent alleles (called polymorphisms), such as the alleles responsible for the variations 
that Mendel found in pea plants, for Huntington disease and PKU, and for complex 
behavioral traits such as schizophrenia and cognitive abilities. Mutations that occur in 
the creation of eggs and sperm will be transmitted faithfully unless natural selection 
intervenes (Chapter 2). The effects that count in terms of natural selection are effects 
on survival and reproduction. Because evolution has so finely tuned the genetic 
system, most new mutations in regions of DNA that are translated into amino acid 
sequences have deleterious effects. However, sometimes such mutations are neutral 
overall, and once in a great while a mutation will make the system function a bit 
better. In evolutionary terms, this outcome means that individuals with the mutation 
are more likely to survive and reproduce.

A single-​base mutation can result in the insertion of a different amino acid into 
a protein. Such a mutation can alter the function of the protein. For example, in the 
figure in Box 4.1, if the first DNA codon TAC is miscopied as TCC, the amino acid 
arginine will be substituted for methionine. (Table 4.1 indicates that TAC codes for 
methionine and TCC codes for arginine.) This single amino acid substitution in the 
hundreds of amino acids that make up a protein might have no noticeable effect on 
the protein’s functioning; then again, it might have a small effect or it might have a 
major, even lethal, effect. A mutation that leads to the loss of a single base is likely to 
be more damaging than a mutation causing a substitution because the loss of a base 
shifts the reading frame of the triplet code. For example, if the second base in the box 
figure were deleted, TAC-​AAC-​CAT becomes TCA-​ACC-​AT. Instead of the amino 
acid chain containing methionine (TAC) and leucine (AAC), the mutation would 
result in a chain containing serine (TCA) and tryptophan (ACC).

Expanded Triplet Repeats

Mutations are often not so simple. For example, a particular gene can have mutations 
at several locations. As an extreme example, hundreds of different mutations have 
been found in the gene responsible for PKU, and some of these different mutations 
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have different effects (Scriver, 2007). Another example involves repeat sequences 
of DNA. Although we do not know why, some very short segments of DNA — ​two, 
three, or four nucleotide bases of DNA (Chapter 4) — ​repeat a few times or up to a 
few dozen times. Different repeat sequences can be found in more than 50,000 places 
in the human genome. Each repeat sequence has several, often a dozen or more, 
alleles that consist of various numbers of the same repeat sequence; these alleles are 
usually inherited from generation to generation according to Mendel’s laws. For this 
reason, and because there are so many of them, repeat sequences are widely used as 
DNA markers in linkage studies, as we will see later in this chapter.

Most cases of Huntington disease (Chapter  3) are caused by three repeating 
bases (CAG). Normal alleles have from 11 to 34 CAG repeats in a gene that codes 
for a protein found throughout the brain. For individuals with Huntington disease, 
the number of CAG repeats varies from 37 to more than 100. The expanded num-
ber of triplet repeats is unstable and can increase in subsequent generations. This 
phenomenon explains a previously mysterious non-​Mendelian process called genetic 
anticipation, in which symptoms appear at an earlier age and with greater severity 
in successive generations. For Huntington disease, longer expansions lead to earlier 
onset of the disorder and greater severity. Because triplet repeats involve three bases, 
the presence of any number of repeats does not shift the reading frame of transcrip
tion. However, the expanded triplet repeat (CAG) responsible for Huntington dis-
ease is transcribed into mRNA and translated into protein, which means that multiple 
repeats of an amino acid are inserted into the protein. Which amino acid? CAG is the 
mRNA code, so the DNA code is GTC. Table 4.1 shows that GTC codes for the amino 
acid glutamine. Having a protein encumbered with many extra copies of glutamine 
reduces the protein’s normal activity; therefore, the lengthened protein would show 
loss of function. However, although Huntington disease is a dominant disorder, the 
other allele should be operating normally, producing enough of the normal protein to 
avoid trouble. This possibility suggests that the Huntington allele, which adds dozens 
of glutamines to the protein, might confer a new property (such as a gain of function) 
that creates the problems of Huntington disease.

Fragile X syndrome, the most common cause of intellectual disability after 
Down syndrome, is also caused by an expanded triplet repeat. Although this type of 
intellectual disability is known to occur almost twice as often in males as in females, 
its pattern of inheritance does not conform to sex linkage because it is caused by an 
unstable expanded repeat. As explained in Chapter 12, the expanded triplet repeat 
makes the X chromosome fragile in a certain laboratory preparation, which is how 
fragile X received its name. Parents who inherit X chromosomes with a normal num-
ber of repeats (5 to 40 repeats) at a particular locus sometimes produce eggs or sperm 
with an expanded number of repeats (up to 200 repeats), called a premutation. This 
premutation does not cause disability in the offspring, but it is unstable and often 
leads to more expansions (200 or more repeats) in the next generation, which do  
cause disability (Figure 9.1). Unlike the expanded repeat responsible for Huntington 
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disease, the expanded repeat sequence (CGG) for fragile X syndrome interferes 
with transcription of the DNA into messenger RNA (Bassell & Warren, 2008; see 
Chapter 12).

Many of our 3 billion base pairs differ among individuals, and over 2 million 
differ for at least 1 percent of the population. As described in the following section, 
these DNA polymorphisms have made it possible to identify genes responsible for the 
heritability of traits, including complex behavioral traits.

X Chromosome

Normal

Premutation

Fragile X

6 to 54 repeats

55 to 200 repeats

More than 200 repeats FIGURE 9.1  Fragile X syndrome 

involves a triplet repeat sequence of 

DNA on the X chromosome that can 

expand over generations.
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Detecting Polymorphisms

Much of the success of molecular genetics comes from the availability of millions of 
DNA polymorphisms. Previously, genetic markers were limited to the products of 
single genes, such as the red blood cell proteins that define the blood groups. In 1980, 
new genetic markers that are the actual polymorphisms in the DNA were discovered. 
Because millions of DNA base sequences are polymorphic, these DNA polymor-
phisms can be used in genomewide linkage studies to determine the chromosomal 
location of single-​gene disorders, described later in this chapter. In 1983, such DNA 
markers were first used to localize the gene for Huntington disease at the tip of the 
short arm of chromosome 4. Technology has advanced to the point where we can 
now use millions of DNA markers to conduct genomewide association studies to 
identify genes associated with complex disorders, including behavioral disorders 
(Hirschhorn & Daly, 2005).

We are also able to detect every single DNA polymorphism by sequencing each 
individual’s entire genome, called whole-​genome sequencing (Lander, 2011). The 
race is on to determine how to sequence all 3 billion bases of DNA of an individual 
for less than $1000 (Hayden, 2014). There has been some success in this effort to 
reduce costs, but only for very high-​throughput studies (Illumina, 2015; see Sadava, 
Hillis, Heller, & Berenbaum, 2010 and http://bit.ly/1YvWlX5 for animation of high 
throughput sequencing). The evolution of whole-​genome sequencing will allow 
researchers to focus not just on the 2 percent of DNA involved in coding genes but 
also on any DNA sequence variation that might contribute to heritability. The 1000 
Genomes Project, launched in 2008, aims to characterize human genetic variation 
across the world (Altshuler et al., 2010a; 1000 Genomes Project Consortium, 2012). 
More recently, the 10,000 Genomes Project was started with the goal of identifying 
even rarer DNA variants (http://www.uk10k.org/). As mentioned in Chapter 4, with 
the move toward affordable whole-​genome sequencing, there is the very real possibil-
ity that the entire genome of all newborns could be sequenced to screen for genetic 
problems and that eventually we will each have the opportunity to know our own 
DNA sequence (Collins, 2010). Until whole-​genome sequencing becomes affordable, 
sequencing the 2 percent of the genome that contains protein-​coding information 
has become widely used, especially for discovering rare alleles for unsolved Mende-
lian disorders (Bamshad et al., 2011).

Although it is possible that rare alleles of large effect explain some of the heri-
tability of complex traits, two types of common DNA polymorphisms can be geno-
typed affordably in the large samples needed to detect associations of small effect 
size: microsatellite markers, which have many alleles, and single nucleotide polymor-
phisms (SNPs), which have just two alleles (Weir, Anderson, & Hepler, 2006). Box 9.1 
describes how microsatellite markers and SNPs are detected and explains the tech-
nique of polymerase chain reaction (PCR). This is fundamental for detection of all 
DNA markers because PCR makes millions of copies of a small stretch of DNA. The 
triplet repeats mentioned in relation to Huntington disease are an example of a 

http://bit.ly/1YvWlX5
http://www.uk10k.org
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BOX 9.1  DNA Markers

M
icrosatellite repeats and SNPs 

are genetic polymorphisms 

in DNA. They are called DNA 

markers rather than genetic markers 

because they can be identified directly 

in the DNA itself rather than being 

attributed to a gene product, such as 

the red blood cell proteins responsible  

for blood types. Investigations of 

both of these DNA markers are made 

possible by a technique called poly-

merase chain reaction (PCR). In a few 

hours, millions of copies of a particular 

small sequence of DNA a few hundred 

to two thousand base pairs in length 

can be created. To do this copying, 

the sequence of DNA surrounding the 

DNA marker must be known. From this 

DNA sequence, 20 bases on both sides 

of the polymorphism are synthesized. 

These 20-base DNA sequences, called 

primers, are unique in the genome 

and identify the precise location of the 

polymorphism.

Polymerase is an enzyme that 

begins the process of copying DNA. It 

begins to do so on each strand of DNA 

at the point of the primer. One strand 

is copied from the primer on the left in 

the right direction and the other strand 

is copied from the primer on the right 

in the left direction. In this way, PCR 

results in a copy of the DNA between 

the two primers. When this process is 

repeated many times, even the copies 

are copied and millions of copies of 

the double-​stranded DNA between 

the two primers are produced (for an 

animation, see http://www.dnalc.org 

/resources/animations/pcr.html).  

The simplest way to identify a poly-

morphism from the PCR-​amplified DNA 

fragment is to sequence the fragment. 

Sequencing would indicate how many 

repeats are present for microsatellite 

markers and which allele is present for 

SNPs. Because we have two alleles for 

each SNP, we can have two different 

alleles (heterozygous) or two copies  

of the same allele (homozygous). 

For microsatellite markers, a more 

cost-​effective approach that sorts 

DNA fragments by length is used; 

this indicates the number of repeats. 

For SNPs, the DNA fragments can be 

made single-​stranded and allowed 

to find their match (hybridize) to a 

single-​stranded probe for one or the 

other SNP allele. For example, in the 

figure in this box, the target probe 

is ATCATG, with a SNP at the third 

nucleotide base. The PCR-​amplified 

DNA fragment TAGTAC has hybridized  

successfully with the probe. In 

high-​throughput approaches, a 

fluorescent molecule is attached to the 

DNA fragments so that the fragments 

light up if they successfully hybridize 

with the probe. (The TATTAC allele is 

unable to hybridize with the probe.)
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microsatellite marker, which can involve two, three, or four base pairs that are repeated 
up to a hundred times and which have been found at as many as 50,000 loci through-
out the genome. The number of repeats at each locus differs among individuals and 
is inherited in a Mendelian manner. For example, a microsatellite marker might have 
three alleles, in which the two-​base sequence C-​G repeats 14, 15, or 16 times.

SNPs (called “snips”) are by far the most common type of DNA polymorphisms. 
As their name suggests, a SNP involves a mutation in a single nucleotide. As men-
tioned earlier, a mutation that changes the first codon in Box 4.1 from TAC to TCC 
will substitute arginine for methionine when the gene is transcribed and translated 
into a protein. SNPs like this that involve a change in an amino acid sequence are 
called nonsynonymous and are thus likely to be functional: The resulting protein will 
contain a different amino acid. Most SNPs in coding regions are synonymous: They 
do not involve a change in amino acid sequence because the SNP involves one of 
the alternate DNA codes for the same amino acid (see Table 4.1). Although nonsyn-
onymous SNPs are more likely to be functional because they change the amino acid 
sequence of the protein, it is possible that synonymous SNPs might have an effect by 
changing the rate at which mRNA is translated into proteins. The field is just coming 
to grips with the functional effects of other SNPs throughout the genome, such as 
SNPs in non-​coding RNA (ncRNA) regions of the genome (see Chapter 10). More 
than 38  million SNPs have been reported in populations around the world (1000 
Genomes Project Consortium, 2012), and most of these have been validated (http://
www.ncbi.nlm.nih.gov/SNP/). This work is being systematized by the International 
HapMap Consortium (http://hapmap.ncbi.nlm.nih.gov/), which initially genotyped 
more than 3 million SNPs for 270 individuals from four ethnic groups (Frazer et al., 
2007); more recently, the International Hapmap 3 Consortium genotyped 1.6 million 
common SNPs in 1184 individuals from 11 populations and sequenced specific 
regions in 692 of these individuals (Altshuler et al., 2010b). The project is called Hap-
Map because its aim is to create a map of correlated SNPs throughout the genome. 
SNPs close together on a chromosome are unlikely to be separated by recombination, 
but recombination does not occur evenly throughout the genome. There are blocks of 
SNPs that are very highly correlated with one another and are separated by so-​called 
recombinatorial hotspots. These blocks are called haplotype blocks. (In contrast to geno-
type, which refers to a pair of chromosomes, the DNA sequence on one chromosome 
is called a haploid genotype, which has been shortened to haplotype.) By identifying a 
few SNPs that tag a haplotype block, it is necessary to genotype only half a million 
SNPs rather than many millions in order to scan the entire genome for associations 
with phenotypes.

Until recently, only common DNA variants, such as SNPs, occurring at rela-
tively high frequency in the population, were well-​studied. However, rarer SNPs no 
doubt also contribute to genetic risk for common diseases; many SNPs occur in just 
one person (Manolio et al., 2009). Other types of rare polymorphisms have attracted 
considerable attention. One example is copy number variants (CNVs), which involve 

http://www.ncbi.nlm.nih.gov/SNP
http://www.ncbi.nlm.nih.gov/SNP
http://hapmap.ncbi.nlm.nih.gov
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duplication or deletion of long stretches of DNA, often encompassing protein-​coding 
genes as well as non-​coding genes (Conrad et al., 2010; Redon et al., 2006). Recent 
reports suggest a role for rare CNVs in the risk for a range of common diseases, such 
as autism spectrum disorder (Pinto et al., 2014) and schizophrenia (Malhotra & Sebat, 
2012). Many CNVs, like other mutations, are not inherited and appear uniquely in 
an individual (de novo). However, a comprehensive map of 11,700 CNVs suggests that 
4.8 percent of the genome involves CNVs and that 80 to 90 percent of CNVs appear 
at a frequency of at least 5 percent in the population (Zarrei, MacDonald, Merico, & 
Scherer, 2015). Whole-​genome sequencing is greatly adding to the number of rare 
variations found in DNA sequence. These advances concerning genetic variation in 
populations will undoubtedly help to answer questions about the role of genetics in 
human disease and behavior.

KEY CONCEPTS

Quantitative trait loci (QTLs): Genes of various effect sizes in multiple-​gene 

systems that contribute to quantitative (continuous) variation in a phenotype. 

Polymorphism: A locus with two or more alleles; Greek for “multiple forms.” 

Microsatellite markers: Two, three, or four DNA base pairs that are repeated 

up to a hundred times. Unlike SNPs, which generally have just two alleles, 

microsatellite markers often have many alleles that are inherited in a Mendelian 

manner. 

Single nucleotide polymorphism (SNP): The most common type of DNA 

polymorphism, which involves a mutation in a single nucleotide. SNPs 

(pronounced “snips”) can produce a change in an amino acid sequence (called 

nonsynonymous, i.e., not synonymous). 

Polymerase chain reaction (PCR): method to amplify a particular DNA 

sequence. 

Primer: A short (usually 20-base) DNA sequence that marks the starting 

point for DNA replication. Primers on either side of a polymorphism mark the 

boundaries of a DNA sequence that is to be amplified by polymerase chain 

reaction (PCR). 

Recombinatorial hotspot: Chromosomal location subject to much 

recombination; often marks the boundaries of haplotype blocks. 

Haploid genotype (haplotype): The DNA sequence on one chromosome. 

In contrast to genotype, which refers to a pair of chromosomes, the DNA 

sequence on one chromosome is called a haploid genotype, which has been 

shortened to haplotype. 

Haplotype block: A series of SNPs that are very highly correlated (i.e., seldom 

separated by recombination). The HapMap project is systematizing haplotype 

blocks for several ethnic groups (http://hapmap.ncbi.nlm.nih.gov). 

http://hapmap.ncbi.nlm.nih.gov
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Copy number variants (CNVs): A polymorphism that involves duplication or 

deletion of long stretches of DNA, often encompassing protein-​coding genes 

as well as non-​coding genes. Frequently used more broadly to refer to all 

structural variations in DNA, including insertions and deletions.

Human Behavior

In studying our species, we cannot manipulate genes or genotypes as in knock-​out 
studies or minimize environmental variation in a laboratory. Although this prohibi-
tion makes it more difficult to identify genes associated with behavior, this cloud has 
the silver lining of forcing us to deal with naturally occurring genetic and environ-
mental variation. The silver lining is that results of human research will generalize to 
the world outside the laboratory and are more likely to translate to clinically relevant 
advances in diagnosis and treatment.

As described in Chapter 3, linkage has been extremely successful in locating the 
chromosomal neighborhood of single-​gene disorders. For many decades, the actual 
residence of a single-​gene disorder could be pinpointed when a physical marker for 
the disorder was available, as was the case for PKU (high phenylalanine levels), which 
led to identification of the culprit gene in 1984. With the discovery of DNA markers 
in the 1980s, screening the genome for linkage became possible for any single-​gene 
disorder, which in 1993 led to the identification of the gene that causes Huntington 
disease (Bates, 2005).

During the past decade, attempts to identify genes responsible for the heritabil-
ity of complex traits have moved quickly from traditional linkage studies to QTL 
linkage analysis to candidate gene association to genomewide association studies. 
Most recently, researchers are using whole-​genome sequencing to identify all vari-
ants in the genome as it became apparent that genetic influence on complex traits 
is caused by many more genes of much smaller effect size than anticipated. This 
fast-​moving journey is briefly described in this section.

Linkage: Single-​Gene Disorders

For single-​gene disorders, linkage can be identified by using a few large family pedi-
grees, in which cotransmission of a DNA marker allele and a disorder can be traced. 
Because recombination occurs an average of only once per chromosome in the for-
mation of gametes passed from parent to offspring, a marker allele and an allele for a 
disorder on the same chromosome will usually be inherited together within a family. 
In 1984, the first DNA marker linkage was found for Huntington disease in a single 
five-​generation pedigree shown in Figure 9.2. In this family, the allele for Huntington 
disease is linked to the allele labeled C. All but one person with Huntington disease has 
inherited a chromosome that happens to have the C allele in this family. This marker is 
not the Huntington gene itself, because a recombination was found between the marker 
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allele and Huntington disease for one individual; the leftmost woman with an arrow in 
generation IV had Huntington disease but did not inherit the C allele for the marker. 
That is, this woman received that part of her affected mother’s chromosome carry-
ing the gene for Huntington disease, which is normally linked in this family with the 
C allele, but in this woman it is recombined with the A allele from the mother’s other 
chromosome. The farther the marker is from the disease gene, the more recombinations 
will be found within a family. Markers even closer to the Huntington gene were later 
found. Finally, in 1993, a genetic defect was identified as the CAG repeat sequence asso-
ciated with most cases of Huntington disease, as described above. A similar approach 
was used to locate the genes responsible for thousands of other single-​gene disorders, 
such as PKU on chromosome 12 and fragile X syndrome on the X chromosome.

Linkage: Complex Disorders

Although linkage analysis of large pedigrees has been very effective for locating genes 
for single-​gene disorders, it is less powerful when several genes are involved. Another 
linkage approach has greater power to detect genes of smaller effect size and can be 
extended to quantitative traits. Rather than studying a few families with many rela-
tives as in traditional linkage, this method studies many families with a small number 
of relatives, usually siblings. The simplest method examines allele sharing for pairs of 
affected siblings in many different families, as explained in Box 9.2.

Linkage based on allele sharing can also be investigated for quantitative traits by 
correlating allele sharing for DNA markers with sibling differences on a quantitative 
trait. That is, a marker linked to a quantitative trait will show greater than expected 
allele sharing for siblings who are more similar for the trait. The sib-​pair QTL link-
age design was first used to identify and replicate a linkage for reading disability on 
chromosome 6 (6p21; Cardon et al., 1994), a QTL linkage that has been replicated 
in several other studies (see Chapter 12). As seen in the following chapters, many 
genomewide linkage studies have been reported. However, replication of linkage 
results has generally not been as clear as in the case of reading disability, as seen, for 
example, in a review of 101 linkage studies of 31 human diseases (Altmuller, Palmer, 
Fischer, Scherb, & Wjst, 2001).

Association: Candidate Genes

A great strength of linkage approaches is that they systematically scan the genome with 
just a few hundred DNA markers looking for violations of Mendel’s law of independent 
assortment between a disorder and a marker. However, a weakness of linkage approaches 

FIGURE 9.2  Linkage between the Huntington disease gene and a DNA marker at the tip of the 

short arm of chromosome 4. In this pedigree, Huntington disease occurs in individuals who 

inherit a chromosome bearing the C allele for the DNA marker. A single individual shows a 

recombination (marked with an arrow) in which Huntington disease occurred in the absence of 

the C allele.  (Information from “DNA markers for nervous-​system diseases” by J. F. Gusella et al. Science, 

225, 1320–1326. © 1984.)
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is that they cannot detect linkage for genes of small effect size expected for most complex 
disorders (Risch, 2000; Risch & Merikangas, 1996). Using linkage is like using a telescope 
to scan the horizon systematically for distant mountains (large QTL effects). However, 
the telescope goes out of focus when trying to detect nearby hills (small QTL effects).

In contrast to linkage, which is systematic but not powerful, allelic association is 
powerful but, until recently, not systematic. Association is powerful because, rather 
than relying on recombination within families as in linkage, it simply compares allelic 
frequencies for groups such as individuals with the disorder (cases) versus controls, 
or low-​scoring versus high-​scoring individuals on a quantitative trait (Sham, Cherny, 
Purcell, & Hewitt, 2000). For example, a particular allele of a gene (so-​called allele 4 for 
apolipoprotein E on chromosome 19) involved in cholesterol transport is associated with 
late-​onset Alzheimer disease (Corder et al., 1993). In dozens of association studies, the 

BOX 9.2  Affected Sib-​Pair Linkage Design

T
he most widely used linkage 

design in quantitative genetics 

includes families in which two 

siblings are affected. Affected could 

mean that both siblings meet criteria 

for a diagnosis or that both siblings 

have extreme scores on a measure of a 

quantitative trait. The affected sib-​pair  

linkage design is based on allele 

sharing — ​whether affected sibling pairs 

share 0, 1, or 2 alleles for a DNA marker 

(see the figure). For simplicity, assume 

that we can distinguish all four parental 

alleles for a particular marker. Linkage 

analyses require the use of markers 

with many alleles so that, ideally, all four 

parental alleles can be distinguished. 

The father is shown as having alleles 

A and B, and the mother has alleles C 

and D. There are four possibilities for 

sib-​pair allele sharing: They can share 

no parental alleles, they can share 

one allele from the father or one allele 

from the mother, or they can share two 

parental alleles. When a marker is not 

linked to the gene for the disorder, each 

of these possibilities has a probability 

of 25 percent. In other words, the prob-

ability is 25 percent that sibling pairs 

share no alleles, 50 percent that they 

share one allele, and 25 percent that 

they share two alleles. Deviations from 

this expected pattern of allele sharing 

indicate linkage. That is, if a marker 

is linked to a gene that influences the 

disorder, more than 25 percent of the 

affected sibling pairs will share two 

alleles for the marker. Several examples 

of affected sib-​pair linkage analyses are 

mentioned in later chapters.

Parents

Affected
sib pairs

Allele

AB CD

AC BD

AB CD

AC BC

AB CD AB CD

AC AD AC AC

Share 0 Share 1 Share 1 Share 2
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frequency of allele 4 was found to be about 40 percent in individuals with Alzheimer 
disease and about 15 percent in controls. In recent years, allelic associations have been 
reported for all domains of behavior, as discussed in later chapters, although none have 
nearly as large an effect as the association between apolipoprotein E and Alzheimer disease.

The weakness of allelic association is that an association can only be detected 
if a DNA marker is itself the functional gene (called direct association) or very close 
to it (called indirect association or linkage disequilibrium). If linkage is a telescope, 
association is a microscope. As a result, hundreds of thousands of DNA markers 
need to be genotyped to scan the genome thoroughly. For this reason, until very 
recently, allelic association has been used primarily to investigate associations with 
genes thought to be candidates for association. For example, because the drug most 
commonly used to treat hyperactivity, methylphenidate, acts on the dopamine sys-
tem, genes related to dopamine, such as the dopamine transporter and dopamine 
receptors, have been the target of candidate gene association studies of hyperactivity. 
Evidence for QTL associations with hyperactivity involving the D4 dopamine recep-
tor (DRD4) and other dopamine genes is growing (Banaschewski, Becker, Scherag, 
Franke, & Coghill, 2010; Sharp, McQuillin, & Gurling, 2009). For example, a 
meta-​analysis of 27 studies found that the DRD4 7-repeat (DRD4-7r) allele increases 
the risk for attention-​deficit/hyperactivity disorder (ADHD; Smith, 2010). Specifi-
cally, the frequency of the DRD4 allele associated with hyperactivity is about 25 per-
cent for children with hyperactivity and about 15 percent in controls. The problem 
with the candidate gene approach is that we often do not have strong hypotheses as 
to which genes are candidate genes. Indeed, as discussed in Chapter 5, pleiotropy 
makes it possible that any of the thousands of genes expressed in the brain could be 
considered as candidate genes. Moreover, candidate gene studies are limited to the 
2 percent of the DNA that lies in coding regions.

The biggest problem is that reports of candidate gene associations have been 
difficult to replicate (Tabor, Risch, & Myers, 2002). This is a general problem for 
all complex traits, not just for behavioral traits (Ioannidis, Ntzani, Trikalinos, & 
Contopoulos-​Ioannidis, 2001). For example, in a review of 600 reported associations 
with common medical diseases, only six have been consistently replicated (Hirschhorn, 
Lohmueller, Byrne, & Hirschhorn, 2002), although a follow-​up meta-​analysis indi-
cated greater replication for larger studies (Lohmueller, Pearce, Pike, Lander, & 
Hirschhorn, 2003). Essentially, as explained in the next section, the failure to replicate 
is due to the fact that the largest effect sizes are much smaller than expected. In other 
words, these candidate gene studies were underpowered to detect such effects. Few 
candidate gene associations have been replicated in genomewide association studies 
(Siontis, Patsopoulos, & Ioannidis, 2010).

Association: Genomewide

In summary, linkage is systematic but not powerful, and candidate gene allelic asso-
ciation is powerful but not systematic. Allelic association can be made more system-
atic by using a dense map of markers. Historically, the problem with using a dense 
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map of markers for a genome scan has been the amount of genotyping required and 
its expense. For example, 750,000 well-​chosen SNPs genotyped for 1000 individuals 
(500 cases and 500 controls) would require 750 million genotypings. Until recently, 
such an effort would have cost tens of millions of dollars. This is why, in the past, most 
association studies have been limited to considering a few candidate genes.

Technological advances have made genomewide association investigations 
possible (Hirschhorn & Daly, 2005). Microarrays can be used to genotype millions 
of SNPs on a “chip” the size of a postage stamp (Box 9.3). With microarrays, the 

M
icroarrays have made it 

possible to study the entire 

genome (DNA), the entire 

transcriptome (RNA) (Plomin & 

Schalkwyk, 2007), the entire methylome 

(methylation sites across the genome, 

discussed in Chapter 10), and the entire 

exome (or coding regions), covering 

variation seen in as little as 0.1 percent 

of the population. A microarray is a 

glass slide the size of a postage stamp 

dotted with short DNA sequences 

called probes. Microarrays were first 

used to assess gene expression, which 

will be discussed in Chapter 10. In  

2000, microarrays were developed to 

genotype SNPs. Microarrays detect 

SNPs using the same hybridization 

method described in Box 9.1. The  

difference is that microarrays probe for 

millions of SNPs on a platform the size of 

a postage stamp. This miniaturization  

requires little DNA and makes the 

method fast and inexpensive. This is an 

advantage in the interim as we wait for 

whole-​genome sequencing to become 

widely available.

Several types of microarrays are 

available commercially; the figure 

shows one example of a microarray  

manufactured by Illumina called 

BeadChip®. As shown in the figure, 

many copies of a certain target nucle-

otide base sequence surrounding and 

including a SNP are used to probe 

reliably for each allele of the SNP. An 

individual’s DNA is cut with restriction 

enzymes into tiny fragments, which 

are then all amplified by PCR (see Box 

9.1). Using a single PCR to chop up 

and amplify the entire genome, called 

­whole-​­genome amplification, was the 

crucial trick that made microarrays  

possible. The PCR-​amplified DNA 

fragments are made single-​stranded 

and washed over the probes on the 

microarrays so that the individual’s DNA 

fragments will hybridize to the probes if 

they find exact matches. The microarray 

includes probes for both SNP alleles 

to indicate whether an individual is 

homozygous or heterozygous.

Microarrays make it possible to 

conduct genomewide association 

studies with millions of SNPs. However, 

any DNA probes can be selected 

for genotyping on a microarray. As 

mentioned above, microarrays can 

include rare SNPs rather than common 

SNPs or can include probes for CNVs 

(mentioned earlier in this chapter). 

Microarrays are also being custom-

ized for certain diseases, such as 

specialized microarrays now available 

for all DNA variants related to cardio

vascular (CardioChip) and immuno-

logical (ImmunoChip) function and 

dysfunction, as well as for psychiatric 

BOX 9.3  SNP Microarrays
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cost of the experiment described above is less than half a million dollars instead of 
tens of millions. As a result of microarrays, genomewide association analysis began 
to dominate attempts to identify genes for complex traits in recent years. However, 
genomewide studies have found that the largest effects are much smaller than origi-
nally expected, and evidence suggests that genome scans of 500,000 or more SNPs 
are needed on very large samples (tens of thousands of people) to identify replicable 
associations. As of 2016, 2414 genomewide association studies with a total of 16,696 
unique SNP-trait associations have been published (http://www.ebi.ac.uk/gwas/; 
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disorders (PsychChip). The cost of 
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Welter et al., 2014). Reports suggest that combining all known SNP associations for 
any trait explains a small proportion of heritability, ranging from about 1  percent 
(Manolio et al., 2009) to, at most, 20  percent of the known heritability (Park et al., 
2010). This gap between the genomewide identified associations and heritability has 
become known as the missing heritability problem (Maher, 2008; See Chapter 7).

What good will come from identifying genes if they have such small effect sizes? 
One answer is that we can study pathways between each gene and behavior. Even 
for genes with a very small effect on behavior, the road signs are clearly marked in a 
bottom-​up analysis that begins with gene expression, although the pathways quickly 
divide and become more difficult to follow to higher levels of analysis such as the 
brain and behavior. However, even if there are hundreds or thousands of genes that 
have small effects on a particular behavior, this set of genes will be useful in top-​down 
analyses that begin with behavior; proceed to investigate multivariate, developmen-
tal, and genotype-​environment interface issues, and then translate these findings into 
gene-​based diagnosis and treatment as well as prediction and prevention of disorders. 
These issues about pathways between genes and behavior are the topic of Chapter 10. 
With DNA microarrays, it would not matter for top-​down analyses if there were 
hundreds or thousands of genes that predict a particular trait. Indeed, for each trait, 
we can imagine DNA microarrays with thousands of genes that include all the genes 
relevant to that trait’s multivariate heterogeneity and comorbidity, its developmen-
tal changes, and its interactions and correlations with the environment. However, 
whole-​genome sequencing will eliminate the need for such microarrays because it 
identifies all DNA sequence variation throughout the genome.

Recent efforts have considered the possibility of aggregating the small effects of 
many DNA variants associated with a trait (Wray et al., 2014). These composite poly-
genic scores have typically focused on common DNA variants and have been called 
polygenic susceptibility scores (Pharoah et al., 2002), genomic profiles (Khoury, Yang, Gwinn, 
Little, & Flanders, 2004), SNP sets (Harlaar et al., 2005a), and aggregate risk scores (Purcell 
et al., 2009). With the advent of rare variant genotyping, new approaches combine the 
effects of rare and common variants, including variants that are risk-​inducing as well 
as protective (Neale et al., 2011, Ionita-​Laza et al., 2013). It is possible that these poly-
genic composites can aid in explaining more of the genetic variance. Moreover, they 
could also be useful for identifying groups of individuals at high and low genetic risk in 
certain areas of research, such as neuroimaging, where large sample sizes are difficult 
to study. Polygenic scores are often referred to as polygenic risk scores because their 
constituent associations were derived from case-​control studies comparing a group of 
individuals diagnosed with a disorder and controls. However, it is important to keep in 
mind that, because these polygenic scores are distributed normally, their distribution 
has a positive tail as well as a negative tail. This opens up opportunities for consid-
ering positive genetics — ​how children flourish rather than flounder and about resil-
ience rather than vulnerability (Plomin, Haworth, & Davis, 2009; Plomin, DeFries, 
Knopik, & Neiderhiser, 2016). Finally, the inability of association studies to account 
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for most of the reported heritability has also led to a renewed interest in the use of the 
family design, suggesting that the rare variant approach and whole-​genome sequenc-
ing will improve the power of family-​based approaches (Ott, Kamatani, & Lathrop, 
2011; Perdry, Müller-​Myhsok, & Clerget-​Darpoux, 2012).

Although there is currently no definitive answer to the missing heritability prob-
lem, the speed at which the field of behavioral genetics is advancing suggests that the 
gap between known DNA associations and heritability will narrow. Whole-​genome 
sequencing, with its ability to sequence an individual’s entire genome, offers new 
hope for gene identification. However, the significance of the information gained 
by determining the entire genomic sequence is unknown. Each individual genome 
contains millions of genetic variants that are then compared to a reference human 
genome sequence (such as HapMap individuals, described above) in order to find 
where there are differences. Some of these differences might not affect health or 
behavior, while others might be clinically significant. The challenge for research-
ers is how to analyze, interpret, and manage the large amounts of data generated by 
whole-​genome sequencing techniques. Ultimately, understanding how the individual 
causal variants discovered by whole-​genome sequencing affect health and behavior 
will facilitate diagnosis as well as an understanding of the pathways between genes 
and behavior (Dewey et al., 2014).

KEY CONCEPTS

Linkage analysis: A technique that detects linkage between DNA markers and 

traits, used to map genes to chromosomes. 

Allelic association:  An association between allelic frequencies and a 

phenotype. 

Candidate gene: A gene whose function suggests that it might be associated 

with a trait. For example, dopamine genes are considered as candidate genes 

for hyperactivity because the drug most commonly used to treat hyperactivity, 

methylphenidate, acts on the dopamine system. 

Linkage disequilibrium: A violation of Mendel’s law of independent  

assortment. It is most frequently used to describe how close together DNA 

markers are on a chromosome; linkage disequilibrium of 1.0 means that the 

alleles of the DNA markers are perfectly correlated; 0.0 means that there is  

no correlation. 

Genomewide association study: A study that assesses the association between 

individual differences in a quantitative character and DNA variation throughout 

the genome. 

Missing heritability: The difference between results obtained from genomewide- 

identified associations and heritability estimates from quantitative genetic 

studies, such as twin and family designs. 
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Microarray: Commonly known as gene chips, microarrays are slides the size 

of a postage stamp with hundreds of thousands of DNA sequences that serve 

as probes to detect gene expression (RNA microarrays) or single nucleotide 

polymorphisms (DNA microarrays). 

Whole-​genome amplification: The use of a few restriction enzymes in 

polymerase chain reactions (PCRs) to chop up and amplify the entire genome; 

this makes microarrays possible.

Summary

Although much more quantitative genetic research is needed, one of the most excit-
ing directions for genetic research in the behavioral sciences involves harnessing the 
power of molecular genetics to identify specific genes responsible for the widespread 
influence of genetics on behavior.

The two major strategies for identifying genes for human behavioral traits are 
allelic association and linkage. Allelic association is simply a correlation between an 
allele and a trait for individuals in a population. Linkage is like an association within 
families, tracing the co-​inheritance of a DNA marker and a disorder within fami-
lies. Linkage is systematic but not powerful for detecting genes of small effect size; 
association is more powerful but until recently was not systematic and was restricted 
to candidate genes. SNP microarrays have made possible genomewide association 
studies using millions of SNPs and incorporating common as well as rare variation.

For complex human behaviors, many associations and linkages have been 
reported. Ongoing genomewide association studies using SNP microarrays with large 
samples identify genes of small effect size associated with behavior. The results of 
genomewide association have yielded genes accounting for much less of the genetic 
variance than once expected, leaving us with the missing heritability problem. New 
technologies such as whole-​genome sequencing may begin to shed light on this issue; 
however, in the interim, combining the effects of multiple genes of small effect may 
aid in accounting for more of the genetic influence on behavior.

As discussed in the next chapter, the goal is not only finding genes associated with 
behavior but also understanding the pathways between genes and behavior, that is, the 
mechanisms by which genes affect behavior, sometimes called functional genomics.
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Pathways between Genes 
and Behavior

Q uantitative genetic research consistently shows that genetics contributes 

importantly to individual differences in nearly all behaviors, such as learn-

ing abilities and disabilities, psychopathology, and personality. You will see in later 

chapters that quantitative genetics and molecular genetics are coming together in the 

study of complex traits and common disorders. Molecular genetic research, which 

attempts to identify the specific genes responsible for the heritability of these behav-

iors, has begun to identify such genes, although, as noted in Chapter 9, research using 

genomewide association scans with large samples suggests that the heritabilities of 

complex traits and common disorders are due to many genes of small effect. None-

theless, the bottom line for behavioral genetics is this: Heritability means that DNA 

variation creates behavioral variation, and we need to find these DNA sequences to 

understand the mechanisms by which genes affect behavior.
The goal is not only finding genes associated with behavior but also understand-

ing the pathways between genes and behavior, that is, the mechanisms by which 
genes affect behavior, sometimes called functional genomics (Figure 10.1). This chapter 

DNA
Genome

Brain
Neurome

Protein
Proteome

RNA
Transcriptome

Behavior
Phenome

FIGURE 10.1  Functional genomics includes all levels of analysis from genome (DNA) to phenome 

(behavior).
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considers ways in which researchers are attempting to connect the dots between 
genes and behavior. (See Box 10.1 for a discussion of some relevant philosophical 
issues.) We begin with a description of gene expression, including how epigenetics 
relates to expression, and then expand our discussion to consider expression of all 
the genes in the genome, called the transcriptome. The next step along the pathways 
from genes to behavior is all the proteins coded by the transcriptome, called the 
proteome. Next is the brain, which, continuing the –omics theme, has been referred 
to as the neurome. This chapter stops at the brain level of analysis because the mind 
(cognition and emotion) and behavior — sometimes called the phenome — ​will be the 
focus of Chapters 11 to 19.

It should be reiterated that this chapter is about connecting the dots between 
genes and behavior through the epigenome, the transcriptome, the proteome, and 
the brain. It is not meant to describe each of these areas per se, four of the most 
active areas of research in all of the life sciences. Although our focus here is on the 
links between genes and behavior, it should also be kept in mind that the environ-
ment plays a crucial role at each step in the pathways between genes and behavior 
(Chapter 8).

KEY CONCEPTS

Functional genomics: The study of how genes work by tracing pathways among 

genes, brain, and behavior. It usually implies a bottom-​up approach that begins 

with molecules in a cell, in contrast to behavioral genomics. 

Behavioral genomics: The study of how genes throughout the genome func-

tion at the behavioral level of analysis. In contrast to functional genomics, 

behavioral genomics is a top-​down approach to understanding how genes 

work in terms of the behavior of the whole organism. 

Genome: All the DNA sequences of an organism. The human genome contains 

about 3 billion DNA base pairs. 

Epigenome: Epigenetic events throughout the genome that influence gene 

expression. 

Transcriptome: RNA transcribed from all genomic DNA. 

Proteome: All the proteins translated from RNA (transcriptome). 

Neurome: Effects of the genome throughout the brain.

GENE EXPRESSION AND THE ROLE OF EPIGENETICS

Genes do not blindly pump out their protein products. As explained in Box 4.1, 
genetic information flows from DNA to messenger RNA (mRNA) to protein. When 
the gene product is needed, many copies of its mRNA will be present, but otherwise 
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BOX 10.1  Levels of Analysis

T
he relationship between brain 

and “mind” (mental constructs) 

has been a central issue in philos-

ophy for four centuries, since Descartes 

advocated for a mind-​body dualism 

in which the mind was nonphysical. 

Because this dualism of mind and body 

is now generally rejected (see Bolton & 

Hill, 2004; Kendler, 2005), we will 

simply assert the view that all behavior 

is biological in the general sense that 

behavior depends on physical pro-

cesses. Does this mean that behavior 

can be reduced to biology (Bickle, 

2003)? Because all behavior is biologi-

cal, it would seem that the answer must 

logically be “yes.” However, saying 

that all behavior is biological is similar 

to saying that all behavior is genetic 

(because without DNA there can be  

no behavior) or that all behavior is 

environmental (because without  

the environment there can be no 

behavior).

Behavioral genetics’ way out of this 

philosophical conundrum is to focus 

empirically on individual differences in 

behavior and to investigate the extent 

to which genetic and environmental 

differences can account for these 

differences in behavior (see Chapter 7). 

The point of this chapter is to consider 

some of the levels of analysis that lie 

between genes and behavior. The 

ultimate goal of behavioral genetics is 

to understand the links between genes 

and behavior at all levels of analysis.

Different levels of analysis are  

more or less useful for addressing 

different questions, such as questions 

about causes and questions about 

cures (Bolton & Hill, 2004). Functional  

genomics generally assumes a 

bottom-​up approach that begins at the 

level of cells and molecular biology. 

The phrase behavioral genomics 

has been proposed as an antidote 

emphasizing the value of a top-​down 

approach that attempts to under-

stand how genes work at the level of 

the behavior of the whole organism 

(Plomin & Crabbe, 2000). Behavioral 

genomics may be more fruitful than 

other levels of analysis in terms of pre-

dicting, diagnosing, intervening in, and 

preventing behavioral disorders.

Finally, relationships between levels 

of analysis should be considered cor-

relational until proven causal, which is 

why the connections between levels in 

Figure 10.1 are double-​headed arrows. 

For example, associations between 

brain differences and behavioral 

differences are not necessarily caused 

by the brain differences: Behavior can 

cause changes in brain structure and 

function. A striking example is that the 

posterior hippocampus, a part of the 

brain that stores spatial representa-

tions of the environment, is signifi-

cantly larger in London taxi drivers 

(Maguire et al., 2000); the size is cor-

related with the number of years spent 

driving a taxi (Maguire, Woollett, & 

Spiers, 2006). Similarly, correlations 

between gene expression and behav-

ior are not necessarily causal because 

behavior can change gene expression. 

A crucial point is that the only excep-

tion to this rule is DNA: Correlations 

between differences in DNA sequence 

and differences in behavior are causal 

in the sense that behavior does not 

change the nucleotide sequence 

of DNA. In this sense, DNA is in a causal 

class of its own.
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very few copies of the mRNA are transcribed. In fact, you are changing the rates of 
transcription of genes for neurotransmitters by reading this sentence. Because mRNA 
exists for only a few minutes and then is no longer translated into protein, changes in 
the rate of transcription of mRNA are used to control the rate at which genes produce 
proteins. This is what is meant by gene expression.

RNA is no longer thought of as merely the messenger that translates the DNA 
code into proteins. In terms of evolution, RNA was the original genetic code, and it 
still is the genetic code for most viruses. Double-​stranded DNA presumably had a 
selective advantage over RNA because the single strand of RNA left it vulnerable 
to predatory enzymes. DNA became the faithful genetic code that is the same in 
all cells, at all ages, and at all times. In contrast, RNA, which degrades quickly, is 
tissue-​specific, age-​specific, and state-​specific. For these reasons, RNA can respond 
to environmental changes by regulating the transcription and translation of protein-​
coding DNA. This is the basis for the process of gene expression.

An area relevant to gene expression that has seen rapid growth over the past few 
decades is epigenetics. Epigenetics is focused on understanding a type of slow-​motion, 
developmentally stable change in certain mechanisms of gene expression that do not 
alter DNA sequence and can be passed on from one cell to its daughter cells (Bird, 
2007). The prefix epi-​ means “above.” You can think about the epigenome as the cel-
lular material that sits on top, or outside, of the genome. It is these epigenetic marks 
that tell your genes to switch on or off, to scream or whisper. It may be through epi-
genetic marks that environmental factors like diet, stress, and prenatal nutrition can 
change gene expression from one cell to its daughter cells and, in some cases, from 
one generation to the next, called imprinting (see Chapter 12).

There are excellent epigenetics texts that provide great detail about these modes 
of action (e.g., Allis, Caparros, Jenuwein, Reinberg, & Lachlan, 2015). We will focus 
briefly on the most widely studied mechanism of epigenetic regulation of gene 
expression: DNA methylation (Bird, 2007). A methyl group is a basic unit in organic 
chemistry: one carbon atom attached to three hydrogen atoms. When a methyl group 
attaches to a specific DNA sequence in a gene’s promoter region — ​a process called 
DNA methylation — ​it silences the gene’s expression by preventing the gene’s transcrip-
tion. Conversely, when a gene’s promoter is not methylated, that gene will not be 
silenced (Maccani & Marsit, 2009).

There is some evidence to suggest that direct exposure to toxins, such as drug 
use or pollution, is associated with changes in methylation patterns (Zhou, Enoch, & 
Goldman, 2014; Yang & Schwartz, 2012); however, there remains considerable debate 
as to whether epigenetic effects can indeed be transmitted across multiple genera-
tions. Although intergenerational effects (such as effects of maternal exposure to tox-
ins during pregnancy) certainly occur in mammals, the degree to which epigenetic 
effects can be transmitted across generations remains unclear (Heard & Martienssen, 
2014). Thus, as one example, if a mother smoked during her pregnancy, she is 
exposing the developing embryo and its germline (which will eventually produce 
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grandchildren). A transgenerational epigenetic effect would need to be seen in 
the great-​grandchildren who were not exposed to any smoking during pregnancy 
(Daxinger & Whitelaw, 2012). To date, we have not seen robust evidence in support 
of this phenomenon in humans.

Unlike epigenetic marks that effect long-​term developmental changes in gene 
expression, many changes in gene expression are short term, providing quick reac-
tions to changes in the environment. One such recently discovered mechanism of 
gene regulation is called non-​coding  RNA.  As mentioned in Box 4.1, only about 
2 percent of the genome involves protein-​coding DNA as described by the central 
dogma. What is the other 98 percent doing? It had been thought that it is “junk” that 
has just hitched a ride evolutionarily. However, we now know that most human DNA 
is transcribed into RNA that is not the mRNA translated into amino acid sequences. 
This so-​called non-​coding RNA instead plays an important role in regulating the 
expression of protein-​coding DNA, especially in humans.

One type of non-​coding RNA has been known for almost 40 years. Embedded 
in protein-​coding genes are DNA sequences, called introns, that are transcribed into 
RNA but are spliced out before the RNA leaves the nucleus. The remaining parts 
of the RNA are spliced back together, exit the nucleus, and are then translated into 
amino acid sequences. The DNA sequences in protein-​coding genes that are tran-
scribed into mRNA and translated into amino acid sequences are called exons. Exons 
usually consist of only a few hundred base pairs, but introns vary widely in length, 
from 50 to 20,000 base pairs. Only exons are translated into amino acid sequences that 
make up proteins. However, introns are not “junk.” In many cases they regulate the 
transcription of the gene in which they reside, and in some cases they also regulate 
other genes.

Introns account for about one quarter of the human genome. A further quarter of 
the human genome produces non-​coding RNA anywhere in the genome, not just near 
protein-​coding genes. One class of such non-​coding RNA that has attracted much 
attention is called microRNA, small RNAs 21 to 25 nucleotides in length capable 
of posttranscriptionally regulating genes. Even though they are tiny, microRNAs 
play a big role in gene regulation and exhibit tissue-​specific expression and func-
tion. MicroRNAs have also been shown to be responsive to environmental exposures, 
such as cigarette smoke (Maccani & Knopik, 2012). The human genome is thought to 
encode close to 2000 microRNAs, capable of regulating up to 60 percent of protein-​
coding genes by binding to (and thus posttranscriptionally silencing) target mRNA 
(Nair, Pritchard, Tewari, & Ionnidis, 2014). Moreover, microRNAs appear to be just 
the tip of the iceberg of non-​coding RNA effects on gene regulation. The list of novel 
mechanisms by which non-​coding RNA can regulate gene expression is growing rap-
idly (Cech & Steitz, 2014).

Epigenetics and non-​coding RNA are recently discovered mechanisms that 
regulate gene expression. Figure  10.2 shows how regulation works more gener-
ally for classical protein-​coding genes. Many of these genes include regulatory 



1 5 4   C H A P T E R  T E N

sequences that normally block the gene from being transcribed. If a particular 
molecule binds with the regulatory sequence, it will free the gene for transcription. 
Figure  10.2 also illustrates epigenetic regulation. Most gene regulation involves 
several mechanisms that act like a committee voting on increases or decreases in 
transcription. That is, several transcription factors act together to regulate the rate 
of specific mRNA transcription. Non-​coding RNA transcripts can regulate the 
expression of other genes without being translated into proteins. Non-coding RNA 
primarily regulates gene expression by altering the rate of transcription, but other 
factors include changes in the RNA transcript itself and the way the RNA transcript 
interacts with its regulatory targets, which are often messenger RNA transcripts.

Rather than just looking at the expression of a few genes, researchers can now 
use microarrays to assess the degree of expression of all genes in the genome simulta
neously including non-​coding RNA (the transcriptome), and profiles of DNA methylation 
of all coding genes in the genome (called the methylome or epigenome), as described in 
the following section. The importance of microarrays for gene expression and methylome 
profiling for behavioral genetics lies in the fact that the epigenome and the transcriptome 
are the first steps in the correlation between genes and behavior. Because gene expression 
and methylation (which affects gene expression) are sensitive to the environment, the 
transcriptome and epigenome could be useful as biomarkers of environmental change 
(Heard & Martienssen, 2014), including prenatal experiences (Zhang & Meaney, 2010; 
Hochberg et  al., 2010) and mother-​infant interactions (Champagne & Curley, 2009; 
Meaney, 2010).

Regulatory
sequence

Transcribable
DNA sequence

No transcription

Transcription
factor

Transcription

mRNA

Transcription
factor

(a) 

Methylated 
cytosines

No transcription

(c) 

(b) 

FIGURE 10.2  Transcription factors 

can regulate protein-​coding genes 

by controlling mRNA transcription. 

(a) A regulatory sequence normally 

shuts down transcription of its 

gene; (b) but when a particular 

transcription factor binds to the 

regulatory sequence, the gene is 

freed for transcription. (c) One type 

of epigenetic regulation involves 

DNA methylation of cytosine resi-

dues in the gene’s promoter region; 

this can regulate transcription by 

altering the microenvironment so 

that the transcription factor cannot 

bind its regulatory sequence, 

thereby reducing or halting 

transcription.
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THE TRANSCRIPTOME: GENE EXPRESSION
THROUGHOUT THE GENOME

As just outlined, gene expression is the first step on any pathway from genes to behavior: 
A polymorphism in DNA can have an effect only when the gene is expressed. Some 
genes, called housekeeping genes, are expressed at a steady rate in most of our cells. 
Other genes are expressed as their product is needed in response to the environment. 
For protein-​coding genes, expression is most affected by altering the rate of transcrip-
tion initiation, but other factors that affect expression include alteration of the RNA 
transcript, passage of the messenger RNA through the nuclear membrane, protection 
or degradation of the RNA transcript in the cytoplasm, the rate of translation, and 
posttranslational modification of the protein.

Gene Expression Profiles: RNA Microarrays  
and Sequence-​Based Approaches

For both protein-​coding and non-​protein-​coding DNA, gene expression can be 
indexed by the number of RNA transcripts, which is the end result of the various 
processes mentioned, not just the initial transcription process. In contrast to DNA, 
which faithfully preserves the genetic code in all cells, at all ages, and at all times, 
RNA degrades quickly and is tissue-​specific, age-​specific, and state-​specific, as noted 
above. Two of the key aims of “transcriptomics” are to catalog all types of transcripts, 
including mRNA, non-​coding RNA, and small RNAs, and to quantify their chang-
ing expression levels during development and under different conditions (Wang, 
Gerstein, & Snyder, 2009). Various techniques have been developed to examine the 
transcriptome or, in other words, to assess the expression of all genes in the genome 
simultaneously, called gene expression profiling.

Specialized gene expression (RNA) microarrays have been designed that are the 
same as the DNA microarrays described in Box 9.3 except that the probes in RNA 
microarrays detect a particular sequence of RNA, rather than identifying a particular 
SNP allele in a DNA sequence. In addition, the goal of using RNA microarrays is to 
detect the quantity of each of the RNA transcripts; for this reason, each probe is rep-
resented with many copies. In contrast, SNP probes detect the presence or absence 
of SNP alleles; multiple probes for each allele are used only in order to increase the 
accuracy of genotyping. RNA microarrays were originally limited to probes for exons 
that assessed transcription of the 2 percent of the genome that involves protein-​coding 
genes. One of the most important developments in the recent history of genetics is the 
ability to sequence an individual’s entire genome (Chapter 9). This development has 
also provided a new method for quantifying the transcriptome by sequencing RNA 
(Wang et al., 2009). RNA sequencing has resulted in, and will undoubtedly continue 
to drive, many exciting discoveries within the next few years (McGettigan, 2013). For 
example, RNA exome sequencing, which involves sequencing only RNA transcribed 
from exomes, is being widely used to identify rare mutations of large effect in the coding 
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regions of genes (Bamshad et al., 2011). However, similar to whole-​genome sequenc-
ing (Chapter 9), the cost of RNA sequencing in individuals remains quite high. Thus, 
until the costs decrease, a combination of approaches is likely to be used, such as using 
sequencing data that have detected all possible polymorphisms in DNA and RNA to 
guide the creation of custom microarrays that are much less expensive than sequencing.

Transcriptomics, including RNA microarrays and sequencing, makes it possible 
to take snapshots of gene expression throughout the genome at different times 
(e.g., during development, or before and after interventions) and in different tissues 
(e.g., in different brain regions). Scores of studies have investigated changes in gene 
expression profiling in response to drugs (Zhang et  al., 2015) and between groups 
such as psychiatric cases and controls (Torkamani, Dean, Schork, & Thomas, 2010; 
Mistry, Gillis, & Pavlidis, 2013). Gene expression profiling of the brain is like struc-
tural genetic neuroimaging in that it can create an atlas of localized patterns of gene 
expression throughout the brain. Because genetic neuroimaging requires brain tis-
sue, its use in the human species is limited to postmortem brains (Kleinman et al., 
2011), which raises questions about lack of control concerning gene expression at the 
time of death (Konradi, 2005), and to tissue samples removed during surgery, such 
as tumors (Yamasaki et al., 2005). For this reason, structural genetic neuroimaging 
research has historically been conducted in mice rather than humans. Structural brain 
maps of gene expression are fundamental because genes can only function if they 
are expressed. A comprehensive atlas of expression profiles of 20,000 genes in the 
adult mouse brain is publicly accessible via the Allen Brain Atlas (Lein et al., 2007; 
http://mouse.brain-map.org/). Additional brain atlases are available for the adult 
human brain (Hawrylycz et al., 2012; http://human.brain-map.org/) and the prena-
tal human brain (Miller et  al., 2014; www.brainspan.org). These are rich resources 
for understanding abnormal and normal human brain function and development. 
Further efforts involve functional genetic neuroimaging — ​studying changes in gene 
expression in the brain during development, following interventions such as drugs or 
cognitive tasks or following exposures such as sleep deprivation (Havekes, Meerlo, & 
Abel, 2015). In 2011, BrainCloud was announced as the result of efforts to gain a 
global molecular perspective on the role of the human genome in brain develop-
ment, function, and aging. Researchers used an extensive series of postmortem brains 
from fetal development through aging to examine the timing and genetic control of 
transcription in the human prefrontal cortex and discovered a wave of gene expres-
sion changes occurring during fetal development that are reversed in early postnatal 
life (Colantuoni et al., 2011, http://braincloud.jhmi.edu/). An extension of the Brain-
Cloud application characterizes methylation changes that happen over the course of 
development (BrainCloudMethyl; Numata et al., 2012) and results show, as described 
above, that DNA methylation is strongly correlated with gene expression, including 
genes involved in brain development.

Because of the practical and scientific limitations of using postmortem brain 
tissue, RNA microarrays will be much more widely applicable to human research if 
easily available tissue such as blood can be used for gene expression profiling. Some 

http://mouse.brain-map.org
http://human.brain-map.org
http://www.brainspan.org
http://braincloud.jhmi.edu
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similarities between expression in blood and brain have been reported (e.g., Tian et al., 
2009). Although gene expression profiling in blood cannot be used to localize pat-
terns of gene expression in the brain, blood could be used to address some important 
questions, most notably, gene expression profile differences as a function of devel-
opment or interventions. Rather than studying the expression of each gene in isola-
tion, researchers can use RNA microarrays and sequencing to study profiles of gene 
expression across the transcriptome, which leads to understanding the coordination 
of gene expression throughout the genome (Ghazalpour et al., 2006; Schadt, 2006).

Gene Expression and Genetics

So far, we have discussed gene expression from a normative perspective rather than 
considering individual differences. The field of gene expression has also considered 
individual differences as well as their causes and consequences (Cobb et  al., 2005; 
Rockman & Kruglyak, 2006). Much research has been directed toward treating gene 
expression as a phenotypic trait and finding loci (called expression QTLs or eQTLs) 
associated with gene expression in mice (Schadt, 2006; Williams, 2006) and humans 
(Morley et al., 2004). These links have become explicit because research using DNA 
microarrays (see Chapter 9) can scan the genome for SNP associations with genome
wide gene expression assessed on RNA microarrays (Skelly, Ronald, & Akey, 2009; 
Powell et al., 2013).

Research on genomewide gene expression in rodents has profited from the avail-
ability of inbred lines and especially recombinant inbred lines, which facilitate both 
quantitative genetic and molecular genetic research (Chesler et  al., 2005; Letwin 
et al., 2006; Peirce et al., 2006) and provide access to brain tissue. However, for rodent 
research as well as human research, although many eQTL associations have been 
reported, most suffer from low power and few have been replicated (Skelly et  al., 
2009). This is a repeat of the story told in Chapter 9 in which genetic effects on com-
plex traits, including individual differences in gene expression, appear to be caused by 
many QTLs of small effect size. As a result, very large samples will be needed to attain 
adequate statistical power to detect reliable associations with gene expression traits.

Gene Expression as a Biological Basis for 
Environmental Influence

To what extent are individual differences in gene expression genetic in origin? It cannot 
be assumed that individual differences in gene expression are highly heritable because 
gene expression has evolved to be responsive to intracellular and extracellular environ-
mental variation. Indeed, quantitative genetic studies of human RNA transcript levels 
suggest that heritabilities appear to be modest on average across the genome, which 
implies that most of the variability in transcript levels is due to environmental factors 
(Cheung et al., 2003; Correa & Cheung, 2004; McRae et al., 2007; Monks et al., 2004; 
Sharma et al., 2005). Members of identical twin pairs become increasingly different 
in gene expression profiles throughout the life span (Fraga et al., 2005; Petronis, 2006; 
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Zwijnenburg, Meijers-​Heijboer, & Boomsma, 2010). Environmental factors involved 
in gene expression are part of a rapidly expanding area of research. However, it should 
be noted that gene expression is a phenotype; individual differences in expression 
itself or in epigenetic processes that lead to individual differences in expression may 
be due to genetic differences (Richards, 2006; Numata et al., 2012) or environmental 
differences. The transcriptome and methylome (or epigenome) could serve as impor-
tant biomarkers of environmental change because they evolved to be sensitive to the 
environment. Examples of such environments include, but are not limited to, prena-
tal experiences, mother-​infant interaction, and exposure to trauma. This perspective 
could provide a biological foundation upon which to build an understanding of more 
complex levels of environmental analysis typically studied in behavioral research. It 
could also have far-​reaching impact on translational research by providing biomarkers 
for differential diagnosis and providing a biological basis for monitoring environmen-
tal interventions such as drugs and other therapies (Li, Breitling, & Jansen, 2008).

As noted at the outset of this chapter, we cannot hope to provide a review of all 
that is known about gene expression or the role of epigenetics in gene expression. 
Of special interest in terms of pathways between genes and behavior is the extent to 
which DNA associations with behavior are mediated by individual differences in gene 
expression. In the following section, we will continue along the pathways between 
genes and behavior by considering the next level of analysis, the proteome.

KEY CONCEPTS

Gene expression: Transcription of DNA into mRNA. 

Epigenetics: DNA modifications that affect gene expression without changing 

the DNA sequence; involved in long-​term developmental changes in gene 

expression. 

DNA methylation: An epigenetic process by which gene expression is 

inactivated by the addition of a methyl group. 

Non-​coding RNA: RNA that is not translated into amino acid sequences. 

Intron: DNA sequence within a gene that is transcribed into messenger RNA 

but spliced out before the translation into protein. (Compare with exon.) 

Exon: DNA sequence transcribed into messenger RNA and translated into 

protein. (Compare with intron.) 

MicroRNA: A class of non-​coding RNA involving 21 to 25 nucleotides that can 

degrade or silence gene expression by binding with messenger RNA. 

Gene expression profiling: Using microarrays to assess the expression of all 

genes in the genome simultaneously. 

Expression QTL (eQTL): When treating gene expression as a phenotype, QTLs 

can be identified that account for genetic influence on individual differences in 

gene expression.
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THE PROTEOME: PROTEINS CODED THROUGHOUT
THE TRANSCRIPTOME

The proteome, which refers to the entire complement of proteins, brings an increase 
in complexity for three reasons. First, there are many more proteins than genes, in 
part because alternative splicing of genes can produce different messenger RNA tran-
scripts (Brett et  al., 2002). Second, after amino acid sequences are translated from 
messenger RNA, they undergo modifications, called posttranslational modifications, that 
change their structure and thus change their function. Third, proteins do not work 
in isolation; their function is affected by their interactions with other proteins as they 
form protein complexes.

The proteome can be identified using gels in an electrical field (electrophoresis) 
to separate proteins in one dimension on the basis of their charge and in a second 
dimension on the basis of their molecular weight, called two-​dimensional gel electrophore-
sis. The precision of identifying proteins has been greatly improved by the use of mass 
spectrometry, which analyzes mass and charge at an atomic level (Aebersold & Mann, 
2003). Based on these techniques, a proteome atlas of nearly 5000 proteins and 5000 
protein complexes is available for the fruit fly (Giot et al., 2003); similar resources are 
available for the hippocampus of the mouse (Pollak, John, Hoeger, & Lubec, 2006a) 
and the hippocampus of the rat (Fountoulakis, Tsangaris, Maris, & Lubec, 2005). As 
the mass spectrometry techniques have been further refined for higher resolution and 
high-​throughput characterization of proteomic samples, there are now draft maps of 
the human proteome (Kim et  al., 2014, http://humanproteomemap.org/; Wilhelm 
et al., 2014).

In addition to mass and charge, the relative quantity of each protein can also be 
estimated. Individual differences in the quantity of a protein in a particular tissue 
represent a protein trait that is analogous to the RNA transcript traits discussed in 
the previous section. As with the transcriptome, the proteome needs to be considered 
as a phenotype that can be attributed to genetic and environmental factors. Such 
protein traits can be related to individual differences in behavior. For example, 
human studies using cerebrospinal fluid have yielded hundreds of differences in 
protein levels and protein modifications in psychiatric disorders (Fountoulakis  
& Kossida, 2006); neurodegenerative disorders, such as Parkinson disease (Kroksveen, 
Opsahl, Aye, Ulvik, & Berven, 2011); and rheumatic disorders (Cretu, Diamandis, & 
Chandran, 2013). Sophisticated approaches to proteomic characterization of specific 
brain regions implicated in schizophrenia have also suggested differences that may 
influence behavior (Matsumoto et al., 2011; Wesseling et al., 2013).

Historically, the transcriptome has been and still is the target of much more 
genetic research than the proteome; however, the interest in the proteome is gain-
ing momentum. Just as the Human Genome Project revolutionized how biologically 
driven research is performed, there is now a systematic effort under way to charac-
terize the protein products of the human genome — ​the Human Proteome Project 
(http://www.thehpp.org; Legrain et al., 2011). The mission of this project is to provide 

http://humanproteomemap.org
http://www.thehpp.org
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a resource to help elucidate biological and molecular function and advance diagnosis 
and treatment of diseases.

As in research on the transcriptome, the mouse has historically been the focus 
of proteomic work because of the availability of brain tissue. A pioneering study that 
examined 8767 proteins from the mouse brain as well as other tissues found that 
1324 of these proteins showed reliable differences in quantity as well as structure and 
function of the proteins in a large backcross (see Chapter 5) (Klose et al., 2002). Of 
these proteins, 466 were mapped to chromosomal locations. Although such linkages 
need to be replicated, the genetic results are interesting for two reasons: Most pro-
teins showed linkage to several regions, and the chromosomal positions often differed 
from those of the genes that code for the proteins. These results suggest that multiple 
genes affect protein traits. Another study on protein expression in the hippocampus 
yielded similar results (Pollak, John, Schneider, Hoeger, & Lubec, 2006b). As methods 
have become more efficient, they have been applied to human studies of psychiatric 
and behavioral phenotypes (Benoit, Rowe, Menard, Sarret, & Quirion, 2011; Filiou, 
Turck, & Martins-​de-​Souza, 2011; Patel, 2012; Schutzer, 2014).

The Brain

Each step along the pathways from genome to transcriptome to proteome involves 
huge increases in complexity, but these pale in comparison to the complexity of the 
brain. The brain has trillions of junctions between neurons (synapses) instead of bil-
lions of DNA base pairs, and hundreds of neurotransmitters, not just the four bases 
of DNA. Although the three-​dimensional structure of proteins and their interaction 
in protein complexes contribute to the complexity of the proteome, this complexity 
is nothing compared to the complexity of the three-​dimensional structure and inter-
actions among neurons in the brain.

Neuroscience, the study of brain structure and function, is another extremely active 
area of research. This section provides an overview of neurogenetics as it relates to 
behavior. Because the brain is so central in the pathways between genes and behav-
ior, brain phenotypes are sometimes referred to as endophenotypes, as discussed in  
Box 10.2.

As mentioned earlier in this chapter, research on the transcriptome and proteome 
has begun to build bridges to the brain by creating atlases of gene and protein expres-
sion throughout the brain. Most of this research involves animal models because of 
the access to brain tissue in nonhuman animals. A huge advantage for neurogenetic 
research in the human species is the availability of neuroimaging, which, as discussed 
later, makes it possible to assess the structure and function of the human brain. How-
ever, in the section that follows, we describe one major area of neurogenetic research 
on behavior that focuses on animal models, particularly the fruit fly Drosophila and the 
mouse: learning and memory. The advantage of neurogenetic research with animal 
models is the ability to use both natural and induced genetic mutations to dissect 
pathways between neurons and behavior.
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BOX 10.2  Endophenotypes

T
he goal of behavioral genetics is 

to understand pathways between 

genes and behavior at all levels 

of analysis. In addition, each level of 

analysis warrants attention in its own 

right (see Box 10.1). Using the brain 

level of analysis as an example, there 

is much to learn about the brain itself 

regardless of the brain’s relationship 

to genes or to behavior. However, the 

focus of behavioral genetics, and this 

chapter, is on the brain as a pathway 

between genes and behavior.

Levels of analysis lower than 

behavior itself are sometimes called 

endophenotypes, where endo means 

“inside.” The term intermediate pheno-

type has also been used as a syn-

onym for endophenotype. It has been 

suggested that these lower levels of 

analysis, such as the brain level, might 

be more amenable to genetic analysis 

than behavior (Bearden & Freimer, 

2006; Gottesman & Gould, 2003). In 

addition, lower-​level processes, such as 

neurotransmitter levels in the brain, can 

be modeled more closely in animals 

and humans than can behavior itself 

(Gould & Gottesman, 2006). Specif

ically, it is hoped that genes will have 

larger effects on lower levels of analy-

sis and will thus be easier to identify. 

Recent genetic research on the brain 

neuroimaging of phenotypes supports 

this hypothesis (see text), for example, 

in research on alcoholism (Hill, 2010). 

However, caution is warranted until 

these DNA associations are replicated 

because genetic influences are likely 

to be pleiotropic and polygenic for 

brain traits as well as behavioral traits 

(Kovas & Plomin, 2006). Moreover, a 

meta-​analysis of genetic associations 

reported for endophenotypes con-

cluded that genetic effect sizes are 

no greater for endophenotypes than 

for other phenotypes (Flint & Munafo, 

2007). In addition, recent work sug-

gests that careful attention should be 

paid to claims of causality, measure-

ment error, and environmental factors 

that can influence both the endophe-

notype and the final outcome (Kendler &  

Neale, 2010).

Although less complex than behav-

ioral traits, brain traits are nonetheless 

very complex, and complex traits are 

generally influenced by many genes of 

small effect (see Chapter 9). Indeed, 

the most basic level of analysis, gene 

expression, appears to show influence 

by many genes of small effect as well 

as substantial influence by the environ-

ment. One might think that lower levels 

of analysis are more heritable, but this 

does not seem to be the case. Using 

gene expression again as an example 

because it is the most basic level of 

analysis, individual differences in tran-

script levels across the genome do not 

appear to be highly heritable.

Another issue is that the goal of 

behavioral genetics is to understand 

pathways among genes, brain, and 

behavior. Genes found to be associated 

with brain phenotypes are important 

in terms of the brain level of analysis, 

but their usefulness for behavioral 

genetics depends on their relationship 

with behavior (Rasetti & Weinberger, 

2011; Glahn et al., 2014). In other words, 

when genes are found to be associated 

with brain traits, the extent to which 

the genes are associated with behav-

ioral traits needs to be assessed rather 

than assumed.
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KEY CONCEPTS

Posttranslational modification: Chemical change to polypeptides (amino acid 

sequences) after they have been translated from mRNA. 

Electrophoresis: A method used to separate DNA fragments or proteins by 

size. When an electrical charge is applied to DNA fragments or proteins in a 

gel, smaller fragments travel farther. 

Endophenotype: An ‘inside’ or intermediate phenotype that is causally related 

to overt behavior. 

Synapse: A junction between two nerve cells through which impulses pass by 

diffusion of a neurotransmitter, such as dopamine or serotonin.

Learning and Memory

One important area of neurogenetic research has considered learning and memory, 
key functions of the brain. Much of this research involves the fruit fly Drosophila. 
Drosophila can indeed learn and remember, abilities that have been studied primarily 
in relation to spatial learning and olfactory learning (Moressis, Friedrich, Pavlopoulos, 
Davis, & Skoulakis, 2009; Skoulakis & Grammenoudi, 2006). Learning and memory 
in Drosophila constitute one of the first areas to connect the dots among genes, brain, 
and behavior (Davis, 2011; Margulies, Tully, & Dubnau, 2005; McGuire, Deshazer, & 
Davis, 2005). For example, in studies of chemically created mutations in Drosophila 
melanogaster, investigators have identified dozens of genes that, when mutated, disrupt 
learning (Waddell & Quinn, 2001). A model of memory has been built by using these 
mutations to dissect memory processes. Beginning with dozens of mutations that 
affect overall learning and memory, investigators found, on closer examination, that 
some mutations (such as dunce and rutabaga) disrupt early memory processing, called 
short-​term memory (STM). In humans, this is the memory storage system you use when 
you want to remember a telephone number temporarily. Although STM is dimin-
ished in these mutant flies, later phases of memory consolidation, such as long-​term 
memory (LTM), are normal. Other mutations affect LTM but do not affect STM.

Neurogenetic research is now attempting to identify the brain mechanisms 
by which these genes have their effect. Several of the mutations from mutational 
screening were found to affect a fundamental signaling pathway in the cell involv-
ing cyclic AMP (cAMP). Dunce, for example, blocks an early step in the learning 
process by degrading cAMP prematurely. Normally, cAMP stimulates a cascade 
of neuronal changes including production of a protein kinase that regulates a gene 
called cAMP-​responsive element (CRE). CRE is thought to be involved in stabilizing 
memory by changing the expression of a system of genes that can alter the strength 
of the synaptic connection between neurons, called synaptic plasticity, which has been 
the focus of research in mice (see below). In terms of brain regions, a major target 
for research in Drosophila has been a type of neuron, called a mushroom body neuron, 
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that appears to be the major site of olfactory learning in insects (Busto, Cervantes-​
Sandoval, & Davis, 2010; Heisenberg, 2003), although many other neurons are also 
involved (Davis, 2011). Pairing shock with olfactory cues triggers a complex series 
of signals that results in a cascade of expression of different genes. These changes in 
gene expression produce long-​lasting functional and structural changes in the syn-
apse (Liu & Davis, 2006).

Learning and memory also constitute an intense area of research activity in the 
mouse. However, rather than relying on randomly created mutations, neurogenetic 
research on learning and memory in the mouse uses targeted mutations. It also focuses 
on one area of the brain called the hippocampus, which has been shown in studies of 
human brain damage to be crucially involved in memory. In 1992, one of the first gene 
targeting experiments for behavior was reported (Silva, Paylor, Wehner, & Tonegwa, 
1992). Investigators knocked out a gene (a-​CaMKII) that normally codes for the pro-
tein a-​Ca2+-calmodulin kinase II, which is expressed postnatally in the hippocampus 
and other forebrain areas critical for learning and memory. Mutant mice homozygous 
for the knock-​out gene learned a spatial task significantly more poorly than control 
mice did, although otherwise their behavior seemed normal.

In the 1990s, there was an explosion of research using targeted mutations in the 
mouse to study learning and memory (Mayford & Kandel, 1999), with 22 knock-​out 
mutations shown to affect learning and memory in mice (Wahlsten, 1999). Many 
of these targeted mutations involve changes in the strength of connections across 
the synapse and have been the topic of numerous papers focused on the genetics 
of synaptic plasticity. Memories are made of long-​term synaptic changes, called 
long-​term potentiation (Lynch, 2004). The idea that information is stored in neural 
circuits by changing synaptic links between neurons was first proposed in 1949 
(Hebb, 1949).

Although genes drive long-​term potentiation, understanding how this occurs is 
not going to be easy because each synapse is affected by more than a thousand protein 
components. The a-​CaMKII gene, mentioned earlier in relation to the first reported 
knock-​out study of learning and memory, activates CRE-​encoded expression of a pro-
tein called CRE-​binding protein (CREB), which affects long-​term but not short-​term 
memory (Silva, Kogan, Frankland, & Kida, 1998). CREB expression is a critical step in 
cellular changes in the mouse synapse, as it is in Drosophila. In Drosophila, another gene 
that activates CREB was the target of a conditional knock-​out that can be turned on 
and off as a function of temperature. These changes in CREB expression were shown 
to correspond to changes in long-​term memory (Yin, Del Vecchio, Zhou, & Tully, 
1995). A complete knock-​out of CREB in mice is lethal, but deletions that substan-
tially reduce CREB have also been shown to impair long-​term memory (Mayford & 
Kandel, 1999).

A receptor involved in neurotransmission via the basic excitatory neurotransmit-
ter glutamate plays an important role in long-​term potentiation and other behaviors 
in mice as well as humans (Newcomer & Krystal, 2001). The N-​methyl-​D-​aspartate 
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(NMDA) receptor serves as a switch for memory formation by detecting coincident 
firing of different neurons; it affects the cAMP system among others. Overexpressing 
one particular NMDA gene (NMDA receptor 2B) enhanced learning and memory in 
various tasks in mice (Tang et al., 1999). A conditional knock-​out was used to limit 
the mutation to a particular area of the brain — ​in this case, the forebrain. Normally, 
expression of this gene has slowed down by adulthood; this pattern of expression may 
contribute to decreased memory in adults. In this research, the gene was altered so 
that it continued to be expressed in adulthood, resulting in enhanced learning and 
memory. However, this particular NMDA gene is part of a protein complex (N-​methyl-​
D-​aspartate receptor complex) that involves 185 proteins; mutations in many of the genes 
responsible for this protein complex are associated with behavior in mice and humans 
(Grant, Marshall, Page, Cumiskey, & Armstrong, 2005).

Targeted mutations indicate the complexity of brain systems for learning and 
memory. For example, none of the genes and signaling molecules in flies and mice 
found to be involved in learning and memory are specific to learning processes. 
They are involved in many basic cell functions, a finding that raises the question 
of whether they merely modulate the cellular background in which memories are 
encoded (Mayford & Kandel, 1999). It seems likely that learning involves a network 
of interacting brain systems.

Neuroimaging

In humans, the structure and function of brain regions can be assessed using nonin-
vasive neuroimaging techniques. There are many ways to scan the brain, each with a 
different pattern of strengths and weaknesses. As one example, brain structures can be 
seen clearly using magnetic resonance imaging (MRI) (Figure 10.3). Functional MRI 

FIGURE 10.3  Magnetic resonance imaging (MRI) 

scan of the human brain. (DU CANE MEDICAL 

IMAGING LTD/SCIENCE PHOTO LIBRARY/Getty 

Images.)
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(fMRI) is able to visualize changing blood flow in the brain, which is associated with 
neural activity. The spatial resolution of fMRI is good, about two millimeters, but its 
temporal resolution is limited to events that take place over several seconds. Electroen-
cephalography (EEG), using electrodes placed on the scalp, measures voltage differences 
across the brain that index electrical activity. It provides excellent temporal resolu-
tion (less than one millisecond), but its spatial resolution is poor because it averages 
activity across adjacent regions on the brain’s surface. It is possible to combine the 
spatial strength of fMRI and the temporal strength of EEG (Debener, Ullsperger, 
Siegel, & Engel, 2006), which can be accomplished using a different technology, 
magnetoencephalography (MEG; Ioannides, 2006).

Neuroimaging is now often used in genetic research. For example, the IMAGEN 
study was announced as the first multicenter genetic neuroimaging study aimed at 
identifying the genetic and neurobiological basis of individual variability in impul-
sivity, reinforcer sensitivity, and emotional reactivity, and how these affect the devel-
opment of psychiatric disorders (Schumann et al., 2010). Several twin studies using 
structural neuroimaging have shown that individual differences in the volume of 
many brain regions are highly heritable and correlated with general cognitive ability 
(Posthuma et al., 2002; Thompson et al., 2001; Wallace et al., 2006) and vulnerability 
for psychopathic traits (Rijsdijsk et al., 2010). Twin data have recently been used to 
develop the first brain atlas of human cortical surface area based solely on genetically 
informative data (Chen et al., 2012). This atlas, shown in Figure 10.4, was created, in 
part, by using genetic correlations estimated from twin data between different points 
on the cortical surface.

Right HemisphereLeft Hemisphere

1

2

8

4 6

5

9

7 12

10

12

11
3

4
8

FIGURE 10.4  Brain atlas of human cortical surface area (left and right hemispheres) based solely 

on genetically informative data. (Adapted from Chen et al., 2012.) Map of twelve genetic clusters 

of the human cortical surface: 1, motor-​premotor cortex; 2, dorsolateral prefrontal cortex; 

3, dorsomedial frontal cortex; 4, orbitofrontal cortex; 5, pars opercularis and subcentral region; 

6, superior temporal cortex; 7, posterolateral temporal cortex; 8, anteromedial temporal cortex; 

9, inferior parietal cortex; 10, superior parietal cortex; 11, precuneus; and 12, occipital cortex. 

These genetic clusters tend to correspond to traditional cortical structures. (Republished with 

permission of AAAS, from Chen et al. (2012), “Hierarchical genetic organization of human cortical surface 

area,”  335, 1634-1636; permission conveyed through Copyright Clearance Center, Inc.)
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Summary

As genes associated with behavior are identified, genetic research will switch from 
finding genes to using genes to understand the pathways from genes to behavior, that 
is, the mechanisms by which genes affect behavior. Three general levels of analysis 
between genes and behavior are the transcriptome (gene expression throughout the 
genome), the proteome (protein expression throughout the transcriptome), and the 
brain. RNA sequencing and RNA microarrays make it possible to study the expres-
sion of all genes in the genome across the brain, across development, across states, and 
across individuals. All pathways between genes and behavior travel through the brain, 
as can be glimpsed in neurogenetic research on learning and memory.
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Cognitive Abilities

C ognitive abilities, individual differences in performance on tests such as  

reasoning and memory, is one of the oldest and most studied areas of behav­

ioral genetics. In part, interest in cognitive abilities is driven by their importance 

in our increasingly knowledge-​based society in which “intellectual capital” is key 

(Neisser et al., 1996). In addition, cognitive tests predict major social outcomes such 

as educational and occupational success far better than any other trait (Gottfredson, 

1997; Strenze, 2007); they also predict health and longevity (Deary, 2013).
Genetic research is based on a model in which cognitive abilities are organized 

hierarchically (Carroll, 1993; Carroll, 1997), from individual tests to specific cognitive 
abilities to general cognitive ability (Figure 11.1). There are hundreds of tests of diverse 
cognitive abilities. These tests measure several specific cognitive abilities such as verbal 
ability, spatial ability, memory, and speed of processing. These specific cognitive abili­
ties intercorrelate modestly. General cognitive ability (g), that which is in common among 
specific cognitive abilities, was discovered by Charles Spearman over a century ago, the 

General cognitive
ability (g)

Speci�c cognitive
abilities

Tests

FIGURE 11.1 Hierarchical model of 
cognitive abilities.
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same time that Mendel’s laws of inheritance were rediscovered (Spearman, 1904). The 
phrase general cognitive ability is better than the word intelligence because the latter has so 
many different meanings in psychology and in society (Jensen, 1998). General texts on 
g are available (Hunt, 2011; see Deary, 2012, for an overview of other books).

Most people are familiar with intelligence tests, often called IQ tests (intelligence 
quotient tests). These tests typically assess several cognitive abilities and yield total 
scores that are reasonable indices of g. For example, the Wechsler tests of intelligence, 
widely used clinically, include ten subtests such as vocabulary, picture completion 
(indicating what is missing in a picture), analogies, and block design (using colored 
blocks to produce a design that matches a picture). In research contexts, g is usually 
derived by using a technique called factor analysis that weights tests differently, accord­
ing to how much they contribute to g. This weight can be thought of as the average of 
a test’s correlations with every other test. This is not merely a statistical abstraction — ​
one can simply look at a matrix of correlations among such measures and see that all 
the tests intercorrelate positively and that some measures (such as spatial and verbal 
ability) intercorrelate more highly than do other measures (such as nonverbal memory 
tests). A test’s contribution to g is related to the complexity of the cognitive operations 
it assesses. More complex cognitive processes such as abstract reasoning are better indi­
ces of g than less complex cognitive processes such as simple sensory discriminations.

Although g explains about 40 percent of the variance among such tests, most of 
the variance of specific tests is independent of g. Clearly there is more to cognitive 
abilities than g, which is why we will consider specific cognitive abilities and edu­
cationally relevant cognitive skills. Also, there is much more to achievement than 
cognitive abilities. Personality, mental health, and motivation, all play a part in how 
well someone does in life.

In this chapter, we summarize behavioral genetic research on cognitive abilities, 
beginning with a brief overview of animal research.

ANIMAL RESEARCH
Although much animal research has focused on learning, most of this research has 
not considered individual differences in performance, which is the starting point for 
genetic research. In this section, we will describe two classic genetic studies of cogni­
tive abilities in rats. One of the earliest studies, a 20-year study begun in 1924, used 
the selection design to breed rats for their performance in learning to navigate a maze 
in order to find food. As shown in Figure 11.2, after only a few generations of selective 
breeding, there was practically no overlap between the maze-​bright lines (few errors) 
and maze-​dull lines (many errors); all rats in the maze-​bright line were able to learn 
to run through a maze with fewer errors than any of the rats in the maze-​dull line.

Maze-​bright and maze-​dull selected rats were used in one of the best-​known 
psychological studies of genotype-​environment interaction (Cooper & Zubek, 1958). 
Rats from the two selected lines were reared under one of two conditions. One 
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condition was “enriched,” in that the cages were large and contained many movable 
toys. For the second condition, called “restricted,” small gray cages without movable 
objects were used. Rats reared under the two conditions were compared to maze-​
bright and maze-​dull rats reared in a standard laboratory environment.

The results of testing the maze-​bright and maze-​dull rats reared in these condi­
tions are shown in Figure 11.3. Not surprisingly, in the normal environment in which 
the rats had been selected, there was a large difference between the two selected lines. 
A clear genotype-​environment interaction emerged for the enriched and restricted 

FIGURE 11.2 The results of selective breeding for maze brightness and maze dullness in rats. 
(Data from “The inheritance of behavior” by G. E. McClearn. In L. J. Postman (Ed.), Psychology in the 

Making. © 1963.)
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FIGURE 11.3 Genotype-​environment interaction. The effects of rearing in a restricted, normal, 
or enriched environment on maze-​learning errors differ for maze-​bright and maze-​dull selected 
rats. (Data from Cooper & Zubek, 1958.)
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environments. The enriched condition had no effect on the maze-​bright rats, but 
it greatly improved the performance of the maze-​dull rats. On the other hand, the 
restricted environment was detrimental to the maze-​bright rats but had little effect on 
the maze-​dull ones. In other words, there is no simple answer concerning the effect 
of restricted and enriched environments in this study. It depends on the genotype 
of the animals. This example illustrates genotype-​environment interaction, the dif­
ferential response of genotypes to environments, as discussed in Chapter 8. Despite 
this persuasive example, other systematic research on learning generally failed to find 
clear-​cut evidence of genotype-​environment interaction (Henderson, 1972).

In the 1950s and 1960s, studies of inbred strains of mice showed the important 
contribution of genetics to most aspects of learning. Genetic differences have been 
shown for maze learning as well as for other types of learning, such as active avoid­
ance learning, passive avoidance learning, escape learning, lever pressing for reward, 
reversal learning, discrimination learning, and heart rate conditioning (Bovet, 1977).

GENERAL COGNITIVE ABILITY
Highlights in the history of human research on genetics and g include two early 
adoption studies that found that IQ correlations were greater in nonadoptive than 
in adoptive families, suggesting genetic influence (Burks, 1928; Leahy, 1935). The 
first adoption study that included IQ data for birth parents of adopted offspring also 
showed a significant parent-​offspring correlation, again suggesting genetic influence 
(Skodak & Skeels, 1949). Begun in the early 1960s, the Louisville Twin Study was the 
first major longitudinal twin study of IQ that charted the developmental course of 
genetic and environmental influences (Wilson, 1983).

In 1963, a review of genetic research on g was influential in showing the con­
vergence of evidence pointing to genetic influence (Erlenmeyer-​Kimling & Jarvik, 
1963). In 1966, Cyril Burt summarized his decades of research on MZ twins reared 
apart, which added the dramatic evidence that MZ twins reared apart are nearly as 
similar as MZ twins reared together. After his death in 1973, Burt’s work was attacked, 
with allegations that some of his data were fraudulent (Hearnshaw, 1979). Two sub­
sequent books reopened the case (Fletcher, 1990; Joynson, 1989). Although the jury is 
still out on some of the charges (Mackintosh, 1995; Rushton, 2002), it appears that at 
least some of Burt’s data are dubious.

During the 1960s, environmentalism, which had been rampant until then in 
American psychology, was beginning to wane, and the stage was set for increased 
acceptance of genetic influence on g. Then, in 1969, a monograph on the genetics of 
intelligence by Arthur Jensen almost brought the field to a halt because a few pages 
in this lengthy monograph suggested that ethnic differences in IQ might involve 
genetic differences. Twenty-​five years later, this issue was resurrected in The Bell 
Curve (Herrnstein & Murray, 1994) and caused a similar uproar. As we emphasized in 
Chapter 7, the causes of average differences between groups need not be related to 
the causes of individual differences within groups. The former question is much more 
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difficult to investigate than the latter, which is the focus of the vast majority of genetic 
research on IQ. The storm raised by Jensen’s monograph led to intense criticism of all 
behavioral genetic research, especially in the area of cognitive abilities (e.g., Kamin, 
1974). These criticisms of older studies had the positive effect of generating bigger 
and better behavioral genetic studies that used family, adoption, and twin designs. 
These new projects produced much more data on the genetics of g than had been 
obtained in the previous 50 years. The new data contributed in part to a dramatic shift 
that occurred in the 1980s in psychology toward acceptance of the conclusion that 
genetic differences among individuals are significantly associated with differences in g 
(Snyderman & Rothman, 1988).

In the early 1980s, a review of genetic research on g was published that summarized 
results from dozens of studies (Bouchard & McGue, 1981). Figure 11.4 is an expanded 
version of the summary of the review presented earlier in Chapter 3 (see Figure 3.9).

First-​degree relatives living together are moderately correlated for g (about 0.45). 
This resemblance could be due to genetic or to environmental influences because such 

FIGURE 11.4 Average IQ correlations for family, adoption, and twin designs. P-O = Parent-
Offspring. Based on reviews by Bouchard and McGue (1981), as amended by Loehlin (1989). 
“New” data for adopted-​apart MZ twins include Bouchard et al. (1990) and Pedersen et al. (1992).
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relatives share both. Adoption designs disentangle these genetic and environmental 
sources of resemblance. Because birth parents and their offspring who are separated 
by adoption, as well as siblings who are adopted by different families, share heredity 
but not family environment, their similarity indicates that resemblance among family 
members is due in part to genetic factors. For g, the correlation between adopted 
children and their genetic parents is 0.24. The correlation between genetically related 
siblings reared apart is also 0.24. Because first-​degree relatives are only 50 percent 
similar genetically, doubling these correlations gives a rough estimate of heritability 
of 48 percent. As discussed in Chapter 7, this outcome means that about half of the 
variance in IQ scores in the populations sampled in these studies can be accounted for 
by genetic differences among individuals.

The twin method supports this conclusion. Identical twins are nearly as similar 
as the same person tested twice. (Test-​retest correlations for g are generally between 
0.80 and 0.90.) The average twin correlations are 0.86 for identical twins and 0.60 for 
fraternal twins. Doubling the difference between MZ and DZ correlations estimates 
heritability as 52  percent. The most dramatic adoption design involves MZ twins 
who were reared apart. Their correlation provides a direct estimate of heritability. 
For obvious reasons, the number of such twin pairs is small. For several small stud­
ies published before 1981, the average correlation for MZ twins reared apart is 0.72 
(excluding the suspect data of Cyril Burt). This outcome suggests higher heritabil­
ity (72 percent) than do the other designs. This high heritability estimate has been 
confirmed in two other studies of twins reared apart (Bouchard et al., 1990; Pedersen 
et  al., 1992). Although the small sample sizes warrant caution in interpreting this 
higher heritability estimate for adopted-​apart MZ twins, a possible explanation is 
discussed later in a section on developmental changes in heritability.

Model-​fitting analyses that simultaneously analyze all the family, adoption, and 
twin data summarized in Figure 11.4 yield heritability estimates of about 50 percent 
(Chipuer, Rovine, & Plomin, 1990; Loehlin, 1989). It is noteworthy that genetics can 
account for half of the variance of a trait as complex as general cognitive ability. In 
addition, the total variance includes error of measurement. Corrected for unreliabil­
ity of measurement, heritability estimates would be higher. Regardless of the precise 
estimate of heritability, the point is that genetic influence on g is not only statistically 
significant, it is also substantial.

SNP-​based heritability estimates also find evidence for genetic influence on g. As 
explained in Chapter 7, SNP heritability uses hundreds of thousands of SNPs geno­
typed on large samples to estimate heritability directly from DNA. It does not specify 
which SNPs are associated with a phenotype. Instead, it relates chance genetic simi­
larity on SNPs to phenotypic similarity pair by pair in a large sample of conven­
tionally unrelated individuals. SNP heritability estimates are generally about half 
the estimates from twin studies for g as well as other behavioral traits (Plomin et al., 
2013). For example, SNP heritability of g was recently estimated as 28 percent in two 
samples totaling 12,000 individuals (Davies et al., 2015).
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Although heritability could differ in different cultures, it appears that the level of 
heritability of g also applies to populations outside North America and Western Europe, 
where most studies have been conducted. Similar heritabilities have been found in twin 
studies in Russia (Malykh, Iskoldsky, & Gindina, 2005) and in the former East Germany 
(Weiss, 1982), as well as in rural India, urban India, and Japan (Jensen, 1998).

If half of the variance of g can be accounted for by heredity, the other half can 
be attributed to environment (plus errors of measurement). Some of this environ­
mental influence appears to be shared by family members, making them similar to 
one another. Direct estimates of the importance of shared environmental influence 
come from correlations for adoptive parents and children and for adoptive siblings. 
Particularly impressive is the correlation of 0.32 for adoptive siblings (see Figure 11.4). 
Because they are unrelated genetically, what makes adoptive siblings similar is shared 
rearing — ​having the same parents and the same diet, attending the same schools, and 
so on. The adoptive sibling correlation of 0.32 suggests that about a third of the total 
variance can be explained by shared environmental influences. The correlation for 
adoptive parents and their adopted children is lower (r = 0.19) than that for adoptive 
siblings, a result suggesting that shared environment accounts for less resemblance 
between parents and offspring than between siblings.

Shared environmental effects are also suggested because correlations for relatives 
living together are greater than correlations for adopted-​apart relatives. Twin stud­
ies also suggest shared environmental influence. In addition, shared environmental 
effects appear to contribute more to the resemblance of twins than to that of nontwin 
siblings because the correlation of 0.60 for DZ twins exceeds the correlation of 0.47 
for nontwin siblings. Twins may be more similar than other siblings because they 
shared the same womb and are exactly the same age. Because they are the same age, 
twins also tend to be in the same school, sometimes the same class, and share many of 
the same peers (Koeppen-​Schomerus et al., 2003).

Model-​fitting estimates of the role of shared environment for g based on the data 
in Figure 11.4 are about 20 percent for parents and offspring, about 25 percent for 
siblings, and about 40 percent for twins (Chipuer et al., 1990). The rest of the envi­
ronmental variance is attributed to nonshared environment and errors of measure­
ment. However, when these data are examined developmentally, a different picture 
emerges, as discussed later in this chapter.

SPECIFIC COGNITIVE ABILITIES
Specific cognitive abilities generally yield genetic results similar to g, although much 
less research has focused on specific cognitive abilities (Plomin & DeFries, 1998). The 
largest family study of specific cognitive abilities, called the Hawaii Family Study 
of Cognition, included more than a thousand families (DeFries et  al., 1979). Like 
other work in this area, this study used a technique called factor analysis to identify 
the tightest clusters of intercorrelated tests. Four group factors were derived from 
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15 tests: verbal (including vocabulary and fluency), spatial (visualizing and rotating 
objects in two-​ and three-​dimensional space), perceptual speed (simple arithmetic 
and number comparisons), and visual memory (short-​term and longer-​term recog­
nition of line drawings). All factors showed substantial parent-​offspring resemblance, 
although the verbal and spatial factors showed somewhat more familial resemblance 
than the perceptual speed and memory factors.

The results of dozens of early twin studies of specific cognitive abilities are summa­
rized in Figure 11.5 (Nichols, 1978; see also DeFries, Vandenberg, & McClearn, 1976). 
When we double the difference between the correlations for identical and fraternal 
twins to estimate heritability (see Chapter 6), these results suggest that specific cogni­
tive abilities show slightly less genetic influence than general cognitive ability. Memory 
and verbal fluency show lower heritability, about 30 percent; the other abilities yield 
heritabilities of 40 to 50 percent. Verbal and spatial abilities generally show greater 
heritability than do perceptual speed and, especially, memory abilities (Plomin, 1988).

Similar to the results for g, the twin correlations in Figure  11.5 also imply 
moderate influence of shared environment for specific cognitive abilities; however, 
adoption designs show little influence of shared environment. For example, the cor­
relations for adoptive siblings are only about 0.10, suggesting that only 10 percent 
of the variance of verbal and spatial abilities is due to shared environmental factors. 
The results for family, twin, and adoption studies of verbal and spatial ability are 
summarized in Figure 11.6. The results converge on the conclusion that both verbal 
and spatial ability show substantial genetic influence but only modest influence of 
shared environment.
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NEUROCOGNITIVE MEASURES 
OF COGNITIVE ABILITIES
Much research has used laboratory tasks developed by cognitive psycholo­
gists to assess how information is processed, often using reaction time to measure 
information-​processing speed (Deary, 2000). These measures and models have devel­
oped separately from the hierarchical model of cognitive abilities but they have 
evolved in a similar direction. The most widely cited model, called the working memory 
model, assumes a central executive system that regulates other subsystems involved in 
attention, short-​term and long-​term memory, and other processes (Baddeley, 2007). 
Although individual differences in these processes are not often the focus of neuro­
cognitive research (Miyake & Friedman, 2012), twin studies suggest that measures of 
executive function and working memory are highly heritable (Blokland et al., 2011; 
Friedman et al., 2008; Panizzon et al., 2011). Specific tests of these cognitive processes 
are only moderately correlated with g (Ackerman, Beier, & Boyle, 2005; Friedman 
et al., 2006), but composite measures correlate substantially with g (Colom, Rebollo, 
Abad, & Shih, 2006). One study reported a genetic correlation of 0.57 between a 
general executive function factor and IQ (Friedman et  al., 2008). (As explained in 
Chapter 7, a genetic correlation estimates the extent to which genetic differences that 
affect one trait correlate with genetic effects on the other trait.)

Some genetic research has systematically explored elementary information-​
processing tasks assessed using reaction time measures (T. Lee et al., 2012; Neubauer, 
Spinath, Riemann, Borkenau, & Angleitner, 2000; Petrill, Thompson & Detterman, 
1995; Singer, MacGregor, Cherkas, & Spector, 2006; Vinkhuyzen, van der Sluis, 
Boomsma, de Geus, & Posthuma, 2010). These studies generally find that more 
complex tasks are more heritable and more correlated genetically with g (Plomin & 
Spinath, 2002).

Attempts to investigate even more basic neurocognitive processes have led to 
studies of speed of nerve conduction and brain wave (EEG) measures of event-​
related potentials. However, the genetic as well as phenotypic correlations are low 
between cognitive abilities and peripheral nerve conduction (Rijsdijk & Boomsma, 
1997) and these EEG measures (Posthuma, Neale, Boomsma, & de Geus, 2001b; van 
Baal, Boomsma, & de Geus, 2001).

Magnetic resonance imaging (MRI) and other brain imaging techniques provide 
greater resolution of brain regions and stronger correlations with cognitive abilities. 
Combining such brain imaging techniques with genetics has led to a new field called 
imaging genetics (Thompson, Martin, & Wright, 2010). Imaging genetics research began 
with brain structure, which can be assessed more reliably than brain function. One of 
the most robust findings is that total brain volume, as well as the volume of most 
brain regions, correlate moderately (~0.40) with cognitive abilities (Deary, Penke, & 
Johnson, 2010). Twin studies have found strong genetic influences on individual dif­
ferences in the size of many brain regions (Blokland, de Zubicaray, McMahon, & 
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Wright, 2012; Pennington et al., 2000; Thompson et al., 2001). Multivariate genetic 
twin analyses indicate that the correlation between these measures of brain structure 
and cognitive ability is largely genetic in origin (Betjemann et al., 2010; Hulshoff Pol 
et al., 2006; Peper, Brouwer, Boomsma, Kahn, & Hulshoff Pol, 2007; Posthuma et al., 
2002) and that most of these genetic effects are explained by total brain volume rather 
than by the volume of specific brain regions (Schmitt et al., 2010). Twin studies have 
recently mapped the surface and thickness of areas of cortical brain regions in terms 
of the genetic correlations among the regions (Chen et al., 2011; Eyler et al., 2011; 
Rimol et al., 2010). Other more specific measures of brain structure are beginning 
to be explored. For example, individual differences in the degree of thinning of the 
cerebral cortex during adolescence are highly heritable (Joshi et al., 2011; van Soelen 
et al., 2012) and are related to cognitive abilities (Shaw et al., 2006). Structural mea­
sures of connectivity also show high heritability and strong correlations with cogni­
tive abilities (Chiang et al., 2009).

Functional imaging studies identify regions of brain activation in response to 
tasks. A surprising finding is that high cognitive ability is associated with less brain 
activation, presumably because these brains are more efficient (Neubauer & Fink, 
2009). Similar to structural imaging results, functional imaging research suggests that 
activation occurs across diverse brain regions rather than being restricted to a single 
brain region (Deary et al., 2010). Twin studies are beginning to untangle genetic and 
environmental sources of these effects. For example, twin studies using functional 
MRI (fMRI) have found moderate heritability for individual differences in activation 
of several brain regions during cognitive tasks (Blokland et  al., 2011; Koten et  al., 
2009). fMRI twin studies of functional connectivity between regions of the brain also 
indicate moderate heritability (Posthuma et al., 2005). Multivariate genetic analysis 
is beginning to be used to map genetically driven patterns of activity across brain 
regions (Park, Shedden, & Polk, 2012). The goal is to understand the genetic and envi­
ronmental etiologies of individual differences in brain structure and function as they 
relate to cognitive abilities (Karlsgodt, Bachman, Winkler, Bearden, & Glahn, 2011).

SCHOOL ACHIEVEMENT
At first glance, tests of school achievement seem quite different from tests of specific 
cognitive abilities. School achievement tests focus on performance in specific subjects 
taught at school, such as literacy (reading), numeracy (mathematics), and science. 
Although some subjects, such as history, might seem to largely involve memorizing 
facts, doing well in such subjects requires cognitive skills such as extracting complex 
information and reasoning. Other subjects, such as reading, mathematics, and science, 
seem more similar to cognitive abilities because they clearly involve general cognitive 
processes beyond specific content. In the case of reading, most children quickly pro­
gress in the early school years from learning to read to reading to learn, that is, to using 
reading to absorb information. One difference is that the fundamentals of reading and 
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mathematics are taught in school, whereas the cognitive abilities discussed earlier — ​g 
and its verbal, spatial, memory, and perceptual speed components — ​are not taught 
explicitly. Nonetheless, as we shall see, multivariate genetic research finds consider­
able genetic overlap between domains of school achievement and cognitive abilities.

The word achievement itself implies that school achievement is due to dint of 
effort, assumed to be an environmental influence, in contrast to ability, for which 
genetic influence seems more reasonable. For the past half-​century, the focus of edu­
cational research has been on environmental factors, such as characteristics of schools, 
neighborhoods, and parents. Hardly any attention has been given to the possibility 
that genetic influences on the characteristics of children affect learning in school 
(Asbury & Plomin, 2013; Wooldridge, 1994). 

The present discussion considers the normal range of individual differences in 
school achievement; reading and mathematics disabilities and other cognitive dis­
abilities are discussed in Chapter 12. The most well-​studied area by far is reading 
ability (Olson, 2007). As shown in Figure 11.7, a meta-​analysis of a dozen twin stud­
ies indicates that reading-​related processes such as word recognition, spelling, and 
reading comprehension show substantial genetic influence, with all average heritabil­
ity estimates within the narrow range of 0.54 to 0.63 (Harlaar, 2006). An interesting 
analysis across countries suggests that heritability of reading ability in first grade is 
similar in Australia, Scandinavian countries, and the United States (Samuelsson et al., 
2008). General reading composites from such tests yield an average heritability esti­
mate of 0.64. Similar results have been reported for a twin study in China, despite the 
different orthography of Chinese (Chow, Ho, Wong, Waye, & Bishop, 2011).

FIGURE 11.7 Meta-​analysis of heritabilities of reading-​related processes. The circles indicate 
the average heritability, and the lines around the circles indicate the 95 percent confidence 
intervals. (Data from Harlaar, 2006.)
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Although it would be reasonable to expect that learning to read (e.g., word 
recognition) might be less heritable than reading to learn (e.g., reading compre­
hension), reading ability in the early school years is also highly heritable (Harlaar, 
Hayiou-​Thomas, & Plomin, 2005b; Petrill et al., 2007). Even pre-​reading skills such as 
phonological awareness, rapid naming, and verbal memory show substantial genetic 
influence (Hensler, Schatschneider, Taylor, & Wagner, 2010; Samuelsson et al., 2007). 
Another interesting finding concerns genotype-​environment interaction. Twin 
studies of genotype-​environment interaction reported lower heritability of reading 
ability for families in low-​income neighborhoods (Taylor & Schatschneider, 2010b) 
and greater heritability of reading ability for students with better teachers (Taylor, 
Roehrig, Hensler, Connor, & Schatschneider, 2010a).

What about academic subjects other than reading? Early twin studies indicated 
substantial heritability and moderate shared environmental influence for all subjects 
(Husén, 1959; Loehlin & Nichols, 1976). Similar results have been obtained in the 
Netherlands (Bartels, Rietveld, van Baal, & Boomsma, 2002), Australia (Wainwright, 
Wright, Luciano, Geffen, & Martin, 2005), and the United Kingdom (Kovas, Haworth, 
Dale & Plomin, 2007). In the latter study, twin results for English, mathematics, and 
science assessed using criteria based on the UK National Curriculum were remark­
ably consistent across subjects and across ages, suggesting heritabilities of about 0.60 
and shared environment of only about 0.20, despite the fact that the twins grew up 
in the same family, attended the same school, and were often taught by the same 
teacher in the same classroom. Similar results have also recently been reported for 
UK nationwide tests of educational achievement at the end of compulsory education 
at age 16 (Shakeshaft et al., 2013).

THREE SPECIAL GENETIC FINDINGS
ABOUT COGNITIVE ABILITIES
As you will see in the rest of this book, these results for cognitive ability showing 
moderate genetic influence and little influence of shared environment are typical of 
most behavioral traits. However, there are three genetic findings that are special about 
cognitive abilities.

Heritability Increases During Development
Try asking people this question: As you go through life, do you think the effects of 
heredity become more important or less important? Most people will usually guess 
“less important” for two reasons. First, it seems obvious that life events such as 
accidents and illnesses, education and occupation, and other experiences accumu­
late during a lifetime. This fact implies that environmental differences increasingly 
contribute to phenotypic differences, so heritability necessarily decreases. Second, 
most people mistakenly believe that genetic effects never change from the moment 
of conception.
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Because it is so reasonable to assume that genetic differences become less impor­
tant as experiences accumulate during the course of life, one of the most interesting 
findings about cognitive abilities is that the opposite is closer to the truth. Genetic 
factors become increasingly important throughout an individual’s life span.

For example, a longitudinal adoption study called the Colorado Adoption Project 
(Plomin et al., 1997) provides parent-​offspring correlations for general cognitive ability 
from infancy through adolescence. As illustrated in Figure 11.8, correlations between 
parents and children from control (nonadoptive) families increase from less than 0.20 in 
infancy to about 0.20 in middle childhood and to about 0.30 in adolescence. The corre­
lations between birth mothers and their adopted-​away children follow a similar pattern, 
thus indicating that parent-​offspring resemblance for g is due to genetic factors. Parent-​
offspring correlations for adoptive parents and their adopted children hover around 
zero, which suggests that family environment shared by parents and offspring does not 
contribute importantly to parent-​offspring resemblance for g. These parent-​offspring 
correlations for adoptive parents and their adopted children are slightly lower than 
those reported in other adoption studies (see Figure 11.6), possibly because selective 
placement was negligible in the Colorado Adoption Project (Plomin & DeFries, 1985).

FIGURE 11.8 Parent-​offspring correlations between parents’ g scores and children’s g scores for 
adoptive, birth, and control parents and their children at 3, 4, 7, 9, 10, 12, 14, and 16 years. Parent-​
offspring correlations are weighted averages for mothers and fathers to simplify the presenta-
tion. (Data from “Nature, nurture and cognitive development from 1 to 16 years: A parent-​offspring adoption 

study” by R. Plomin, D. W. Fulker, R. Corley, & J. C. DeFries. Psychological Science, 8, 442–447. © 1997.)
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Twin studies also show increases in heritability from childhood to adulthood 
(McCartney, Harris, & Bernieri, 1990; McGue, Bouchard, Iacono, & Lykken, 1993b; 
Plomin, 1986). A recent report on a sample of 11,000 pairs of twins, a larger sample 
than that in all previous studies combined, showed for the first time that the heri­
tability of general cognitive ability increases significantly from about 40 percent in 
childhood (age 9) to 55 percent in adolescence (age 12) and to 65 percent in young 
adulthood (age 17) (Haworth et al., 2010), as shown in Figure 11.9. A meta-​analysis of 
results from longitudinal twin and adoption studies also found increases in heritabil­
ity from infancy through adolescence (Briley & Tucker-​Drob, 2013). This increase 
in heritability is even more remarkable because most traits show a slight decrease in 
heritability across the life span (Polderman et al., 2015).

Although the trend of increasing heritability appears to continue throughout 
adulthood to about 80  percent at age 65 (McGue & Christensen, 2013; Panizzon 
et al., 2014), some research suggests that heritability declines in later life (Reynolds & 
Finkel, 2015). The increase in heritability from childhood to adulthood could explain 
the higher heritability estimate for adopted-​apart MZ twins, mentioned earlier: The 
adopted-​apart MZ twins were much older than subjects in the other twin and adop­
tion studies summarized in Figure 11.4.
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FIGURE 11.9 Twin studies show increasing heritability and decreasing shared environmental 
influence for general cognitive ability from childhood to adulthood. A = additive genetic;  
C = common or shared environment; E = nonshared environment. (Data from Haworth et al., 2010.)
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Why does heritability increase during the life course? Perhaps completely new 
genes come to affect g in adulthood. However, for cognitive abilities as well as most 
behavioral traits, longitudinal genetic studies suggest that the same genes largely 
affect traits across age, contributing to age-​to-​age continuity, whereas age-​to-​age 
change is primarily due to environmental factors (Briley & Tucker-​Drob, 2013). This 
finding creates an apparent paradox: How can the heritability of g increase so sub­
stantially throughout development if genetic effects are mostly stable from age to age? 
The most plausible possibility is that genetic nudges early in development are mag­
nified as time goes by, with the same genetic factors creating larger and larger phe­
notypic effects, a process that has been called genetic amplification (Plomin & DeFries, 
1985). This amplification model has recently been supported in a meta-​analysis of 
11,500 twin and sibling pairs with longitudinal data on intelligence, which found that 
a genetic amplification model fit the data better than a model in which new genetic 
influences arise across time (Briley & Tucker-​Drob, 2013). Genotype-​environment 
correlation seems the most likely explanation in which small genetic differences are 
amplified as children select, modify, and create environments correlated with their 
genetic propensities, as described in Chapter 8.

A related developmental finding is that the effects of shared environment appear 
to decrease. Twin study estimates of shared environment are weak because shared 
environment is estimated indirectly by the twin method; that is, shared environment 
is estimated as twin resemblance that cannot be explained by genetics. Nonetheless, 
the twin study illustrated in Figure 11.9 also found that shared environment effects 
for g decline from adolescence to adulthood.

The most direct evidence comes from the resemblance of adoptive siblings, pairs 
of genetically unrelated children adopted into the same adoptive families. Figure 11.4 
indicates an average IQ correlation of 0.32 for adoptive siblings. However, these stud­
ies assessed adoptive siblings when they were children. In 1978, the first study of 
older adoptive siblings yielded a strikingly different result: The IQ correlation was 
essentially zero (–0.03) for adoptive siblings who were 16 to 22 years of age (Scarr & 
Weinberg, 1978b). Other studies of older adoptive siblings have found similarly low 
IQ correlations. The most impressive evidence comes from a ten-​year longitudinal 
follow-​up study of adoptive siblings. At the average age of 8, the IQ correlation was 
0.26. Ten years later, the IQ correlation was near zero (Loehlin, Horn, & Willerman, 
1989). Figure 11.10 shows the results of studies of adoptive siblings in childhood and 
in adulthood (McGue et al., 1993b). In childhood, the average adoptive sibling cor­
relation is 0.25; but in adulthood, the correlation for adoptive siblings is near zero.

These results represent a dramatic example of the importance of genetic research 
for understanding the environment. Shared environment is an important factor for g 
during childhood, when children are living at home. However, its importance fades 
in adulthood as influences outside the family become more salient. In summary, from 
childhood to adulthood, the heritability of g increases and the importance of shared 
environment decreases (Figure 11.11). Although there is much less developmental 
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research on specific cognitive abilities, results seem to be similar (Plomin et al., 1997). 
However, as mentioned earlier, school achievement such as literacy and numeracy 
is highly heritable (about 60  percent) in the early school years and remains high 
throughout schooling. In contrast, the heritability of g increases during childhood; as 
a result, school achievement is more highly heritable than g in the early school years 
(Kovas et al., 2013; Figure 11.12).
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FIGURE 11.10 The correlation for adoptive siblings provides a direct estimate of the importance 
of shared environment. For g, the correlation is 0.25 in childhood and –0.01 in adulthood, 
a difference suggesting that shared environment becomes less important after childhood. 
(Data from McGue et al., 1993b, p. 67.)

FIGURE 11.11 From childhood to adulthood, heritability of g increases and shared environment 
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Assortative Mating Is Substantial
A second special genetic finding about cognitive abilities is that assortative mating, 
the phenotypic correlation between spouses, is greater for cognitive abilities than for 
other traits. Assortative mating is about 0.10 for personality (Vandenberg, 1972), 0.20 
for height (Keller et al., 2013) and for weight (Whitaker, Jarvis, Beeken, Boniface, & 
Wardle, 2010), and about 0.40 for g (Jensen, 1978). This finding has some real-​world 
significance in that when you choose a spouse, your choice is based much more on 
similarity in cognitive ability than similarity in personality or height and weight. 
Moreover, verbal intelligence shows greater assortative mating (~0.50) than nonver­
bal intelligence (~0.30), perhaps because it is easier to gauge someone’s verbal ability 
such as vocabulary than their nonverbal intelligence such as spatial ability. Assor­
tative mating for g is caused by initial selection of a mate (assortment) rather than 
by couples becoming more similar to each other after living together (convergence) 
(Vinkhuyzen, van der Sluis, Maes, & Posthuma, 2012b). In part, spouses select each 
other for cognitive ability on the basis of education — ​spouses correlate about 0.60 for 
years of education (Jensen, 1998) — which correlates about 0.45 with g (Mackintosh, 
2011). Assortative mating may be greater for a few other traits such as social attitudes, 
smoking, and drinking, although these traits might be affected by convergence.

Assortative mating has important implications for the genetic architecture of 
cognitive abilities because it increases additive genetic variance. Additive genetic vari-
ance refers to the independent effects of alleles or loci that “add up,” in contrast to 
nonadditive effects of dominance within a locus, and epistasis across loci in which 
the effects of alleles or loci interact, as mentioned in Chapter 3 and discussed in the 
Appendix. Assortative mating of parents increases additive genetic variance in their 
offspring because offspring receive a random sampling of half of each parent’s genes 

FIGURE 11.12 Heritabilities of literacy, numeracy, and general cognitive ability from 7 to 12 years 
of age. (Data from Kovas et al., 2013).
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and resemble their parents to the extent that each allele shared with their parents has 
an average additive effect. Because offspring inherit only one of each of the parents’ 
pairs of alleles, offspring do not resemble their parents for nonadditive interactions.

For example, if spouses mated randomly in relation to g, highly intelligent women 
would be just as likely to mate with men of low as high intelligence. Offspring of the 
matings of women of high intelligence and men of low intelligence would generally 
be of average intelligence. However, because there is strong positive assortative mat­
ing, children with highly intelligent mothers are also likely to have highly intelligent 
fathers, and the offspring themselves are likely to be more intelligent than average. 
The same thing happens for less intelligent parents. In this way, assortative mating 
increases additive genetic variance in that the offspring differ more from the average 
than they would if mating were random. The increase in additive genetic variance 
can be substantial because its effects accumulate generation after generation until an 
equilibrium is reached. For example, if the heritability of g with random mating were 
0.40, the additive genetic variance of g would increase by one-​quarter at equilibrium 
given assortative mating of 0.40 (Falconer & MacKay, 1996).

The extra additive genetic variance for g induced by assortative mating is impor­
tant for three genetic reasons. First, parents share only additive genetic variance with 
their offspring, so that genetic predictions from parent to offspring ought to be greater 
for cognitive abilities. Second, because SNP heritability is limited to detecting addi­
tive genetic variance, SNP heritability should be greater for g than for traits that show 
less assortative mating, such as personality. Some evidence supports this prediction in 
that SNP heritability estimates for personality appear to be much lower (about 0.15; 
Genetics of Personality Consortium et al., 2015) than for g (about 0.30; Davies et al., 
2015). Moreover, SNP heritability estimates are greater, although not significantly 
so, for verbal than for nonverbal cognitive abilities (Davies et al., 2011; Plomin et al., 
2013), which is consistent with the greater assortative mating for verbal than for non­
verbal ability. Third, because genomewide association (GWA) is also limited to detect­
ing additive genetic variance, the substantial additive genetic influence on cognitive 
abilities makes them a good target for GWA studies, as discussed later in this chapter.

Assortative mating is also important because it affects estimates of heritability. 
For example, it increases correlations for first-​degree relatives. If assortative mating 
were not taken into account, it could inflate heritability estimates obtained from stud­
ies of parent-​offspring (e.g., birth parents and their adopted-​apart offspring) or sibling 
resemblance. For the twin method, however, assortative mating could result in under­
estimates of heritability. Assortative mating does not affect MZ correlations because 
MZ twins are identical genetically, but it raises DZ correlations because DZ twins are 
first-​degree relatives. In this way, assortative mating lessens the difference between 
MZ and DZ correlations; it is this difference that provides estimates of heritability in 
the twin method. The model-​fitting analyses described above took assortative mating 
into account in estimating the heritability of g to be about 50 percent. If assortative 
mating had not been taken into account, its effects would have been attributed to 
shared environment.
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Finally, assortative mating for cognitive abilities and years of education might con­
tribute to the third special genetic finding, which is discussed in the following section.

The Same Genes Affect Diverse Cognitive 
and Learning Abilities
Another special genetic feature of cognitive abilities is that to a large extent the same 
genes affect cognitive abilities as diverse as, for example, spatial ability, vocabulary, 
processing speed, executive function, and memory. Most of the genetic action lies 
with these general (highly pleiotropic) effects rather than effects specific to each abil­
ity, leading to a Generalist Genes Hypothesis (Plomin & Kovas, 2005). This is a sur­
prising finding because very different neurocognitive processes appear to be involved 
in such cognitive abilities (Deary et al., 2010). Although these genetic correlations put 
g at the pinnacle of the hierarchical model of cognitive abilities, there is also genetic 
specificity that builds the genetic architecture for the rest of the hierarchical structure 
of group factors and specific tests (Figure 11.1). In a meta-​analysis of 322 studies, the 
average correlation among individual diverse cognitive tests is about 0.30 (Carroll, 
1993). The surprising finding is how high the genetic correlations are among diverse 
cognitive abilities such as verbal, spatial, and memory. On average, genetic correla­
tions exceed 0.50 in childhood (Alarcón, Plomin, Fulker, Corley, & DeFries, 1999; 
Cardon, Fulker, DeFries, & Plomin, 1992; LaBuda, DeFries, & Fulker, 1987; Luo, 
Petrill, & Thompson, 1994; Petrill, Luo, Thompson, & Detterman, 1996; Thompson, 
Detterman, & Plomin, 1991), adolescence (Calvin et al., 2012; Luciano et al., 2003; 
Rijsdijk, Vernon, & Boomsma, 2002), adulthood (Finkel & Pedersen, 2000; Martin & 
Eaves, 1977; Pedersen, Plomin, & McClearn, 1994; Tambs, Sundet, & Magnus, 1986), 
and old age (Petrill et al., 1998). These genetic correlations of 0.50 or greater provide 
strong support for genetic g, but they also indicate that there are some genetic effects 
specific to each of the specific cognitive abilities because the genetic correlations are 
far less than 1.0.

These general genetic effects permeate not only cognitive abilities such as spa­
tial ability and vocabulary that are used as part of the assessment of intelligence but 
also extend to education-​related learning abilities such as reading and mathematics. 
Figure 11.13 shows the results of a multivariate genetic analysis of 14 tests that com­
prise four distinct test batteries — ​intelligence, reading, mathematics, and language — ​
for more than 5000 pairs of 12-year-​old twins (Davis, Haworth & Plomin, 2009). The 
genetic correlations between intelligence and learning abilities are uniformly high: 
0.88 with reading, 0.86 with mathematics, and 0.91 with language. Weighting these 
genetic correlations by the heritabilities of the latent factors, it can be shown that 
about two-​thirds of the phenotypic correlations between the factors can be explained 
genetically. One advantage of using such latent factors is that they exclude uncor­
related measurement error. As a result, these genetic correlations are higher than 
those found when uncorrected composite scores rather than latent factors are ana­
lyzed: 0.66 for reading, 0.73 for mathematics, and 0.80 for language (Trzaskowski et al., 
2013). A review of a dozen such studies found average genetic correlations of about 
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0.70 between school achievement measures and about 0.60 between these measures 
and g (Plomin & Kovas, 2005).

Bivariate SNP-​based analyses support the hypothesis of general genetic effects 
on broad cognitive and learning ability-​related differences. The SNP estimates of 
genetic correlation between intelligence and learning abilities are highly similar to 
the twin study estimates just mentioned for composite scores uncorrected for error: 
0.89 for reading, 0.74 for mathematics, and 0.81 for language, estimated from unrelated 
individuals from the same sample (Trzaskowski et al., 2013). An important feature of 
bivariate SNP-​based analysis is that it yields genetic correlations similar to genetic 
correlations estimated from the twin method, even though SNP-​based heritabilities 
are lower than twin heritabilities. The reason is that estimates of genetic correlations 
are functions of both genetic variances and covariances (see the Appendix). Because 
SNP-​based estimates of genetic variances and covariances are underestimated to 
the same extent, these effects cancel out, and the resulting SNP-​based estimates of 
genetic correlation are unbiased (Trzaskowski et al., 2013).
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FIGURE 11.13 Genetic correlations among learning abilities and g. A = additive genetic effects; 
C = shared (common) environmental effects; E = nonshared environmental effects. Squares 
represent measured traits; circles represent latent factors. Multiple tests are used to index 
“latent” factors of g, reading, mathematics, and language. The lower tier of arrows represents 
factor loadings of the tests on the latent factor. The second tier of coefficients represents 
the square roots of the genetic and environmental components of the variance of the latent 
variables. The curved arrows at the top represent correlations between genetic influences. 
(From “Learning abilities and disabilities: Generalist genes in early adolescence” by O. S. P. Davis,  
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This finding of strong genomewide pleiotropy across diverse cognitive and 
learning abilities, indexed by g, is a major finding about the origins of individual dif­
ferences in cognitive abilities. This Generalist Genes Hypothesis is compatible with 
various neurocognitive models of causal pathways. The modularity model of cogni­
tive neuroscience might suggest that genetic correlations among cognitive abilities 
are epiphenomenal in the sense that multiple genetically independent brain mecha­
nisms could affect each ability, creating genetic correlations among abilities. How­
ever, the genetic principles of pleiotropy (each gene affects many traits) and polygenicity 
(many genes affect each trait) suggest that generalist genes may have their effects fur­
ther upstream, creating genetic correlations among brain structures and functions, a 
prediction that supports a network view of brain structure and function (Deary et al., 
2010; Plomin & Kovas, 2005).

In summary, multivariate genetic research — ​from both twin studies and SNP-​
based analyses — ​suggests that most of the genetic action is general across diverse cog­
nitive abilities rather than specific to each ability. g is a good target for gene-​hunting 
because it indexes these generalist genes.

IDENTIFYING GENES
Finding genes associated with cognitive abilities will have far-​reaching ramifications 
at all levels of understanding from DNA to brain to behavior. Despite its complexity, 
cognitive ability is a reasonable candidate for molecular genetic research because it is 
one of the most heritable domains of behavior.

The first attempts to find genes associated with cognitive ability focused on 
genes involved in brain function (Payton, 2009). One problem with such a candidate 
gene approach is that we often do not have strong hypotheses as to which genes are 
true candidate genes. Indeed, the general rule of pleiotropy suggests that most of the 
thousands of genes expressed in the brain could be considered as candidates. More­
over, many genetic associations are in non-​coding regions of DNA rather than in 
traditional genes, as described in Chapter 10. The major problem for candidate gene 
association studies is that reports of associations have failed to replicate, suggesting 
that published reports of associations are false-​positive results caused by the use of 
samples underpowered to detect the small effect sizes that seem to be the source of 
heritability for complex traits. Strong support for this conclusion comes from a recent 
study of nearly 10,000 individuals that was not able to replicate associations for ten 
of the most frequently reported candidate gene associations (Chabris et  al., 2012; 
Franic et al., 2015).

Another candidate gene strategy for identifying associations for cognitive abili­
ties is to focus on intermediate phenotypes — ​often called endophenotypes — ​that are 
presumed to be simpler genetically and thus more likely to yield associations of 
large effect size that can be detected with small samples (Goldberg & Weinberger, 
2004; Winterer & Goldman, 2003). As discussed in Chapter 10, although all levels 
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of analysis from genes to g are important to study in their own right and in terms of 
understanding pathways between genes and behavior, it seems unlikely that brain 
endophenotypes will prove to be simpler genetically or be more useful in identifying 
genes associated with cognitive abilities than studying cognitive abilities themselves 
(Kovas & Plomin, 2006).

As discussed in Chapter 9, attempts to find genes associated with complex traits 
like cognitive ability have gone beyond looking for candidate genes to conducting 
systematic scans of the genome using GWA strategies. SNP arrays have made it 
possible to conduct GWA studies with hundreds of thousands of SNPs. Similar to 
results from other GWA studies of complex traits in the life sciences, the first GWA 
studies of g did not identify replicable associations (Butcher, Davis, Craig, & Plomin, 
2008; Davies et al., 2011; Davis et al., 2010; Need et al., 2009). These GWA studies 
were powered to detect associations that account for as little as 0.5 percent of the vari­
ance, less than a 1 IQ point difference, which suggests that there may be no associa­
tions of large effect on IQ in the population.

A “brute force” strategy to narrow the missing heritability gap is to use the com­
mon SNPs currently available on microarrays with much larger samples in order to 
detect smaller effect sizes. As indicated earlier, SNP heritability estimates indicate 
that the common SNPs on current SNP arrays tag at least half of the heritability of 
cognitive ability. A consortium of studies of childhood intelligence with a total sample 
of nearly 18,000 found no significant associations for individual SNPs even though in 
this study an association that accounted for only 0.25 percent of the variance would be 
detected as statistically significant (Benyamin et al., 2014), suggesting that even larger 
samples will be needed to account for the missing heritability of g. Indeed, a recent 
meta-​analysis of more than 50,000 adults reported 13 genomewide significant SNP 
associations (Davies et al., 2015). Nonetheless, a polygenic score based on these GWA 
results accounted for only 1.2 percent of the variance of g in independent samples, 
indicating again that the effect sizes are extremely small, and that the missing herita­
bility gap remains wide.

The power of a brute force strategy can be seen in a GWA meta-​analysis of a 
“proxy” variable of years of schooling, which correlates moderately with cognitive 
ability. Because this variable is included as part of the demographic description of 
most GWA studies, it was possible to conduct GWA meta-​analysis based on more 
than 329,000 adults. This GWA yielded 74 associations that were significant with 
genomewide correction for multiple testing (Okbay et al., 2016). The largest effect size 
accounted for only 0.02 percent of the variance in years of schooling, which is about 
one month of schooling per allele. A polygenic score accounted for 4 percent of the 
variance in years of schooling. A similar polygenic score from an earlier, smaller GWA 
analysis  also correlated with school achievement (Ward et  al., 2014) and cognitive 
abilities (Krapohl & Plomin, 2015; Rietveld et al., 2014b).

Genomewide association studies have also begun to be reported for other cogni­
tive abilities, including reading ability (Luciano, Montgomery, Martin, Wright, & Bates, 
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2011b; Meaburn, Harlaar, Craig, Schalkwyk & Plomin, 2008), mathematics ability 
(Docherty et al., 2010), memory tasks (Papassotiropoulos et al., 2006), and information-​
processing measures (Cirulli et  al., 2010; Luciano et  al., 2011a; Need et  al., 2009). 
These first GWA studies suggest a familiar refrain: No associations of sufficiently 
large effect size have emerged that reach genomewide significance, suggesting that 
heritability is caused by many genes of small effect. As in other domains, the major 
strategy for identifying these genes of small effect is to increase the sample sizes by 
conducting meta-​analyses across studies. A remarkable example of this approach is a 
meta-​analysis of nearly 20,000 individuals with structural MRI data from 17 studies, 
which identified with genomewide significance a SNP associated with hippocampal 
volume and another SNP associated with intracranial volume (Stein et  al., 2012). 
Although these SNPs accounted for only 0.3 percent of the variance, they also cor­
related significantly with g.

As indicated in Chapter 9, another strategy for finding the elusive genes respon­
sible for missing heritability is to investigate rarer variants than those currently avail­
able on SNP microarray platforms, which use the most common SNPs with minor 
allele frequencies greater than 5  percent because such SNPs are most useful for 
tagging the entire genome. As discussed in Chapter 12, the role of rare variants is 
well-​established in single-​gene syndromes that involve cognitive disability. However, 
it remains unclear to what extent low frequency and rare alleles contribute to the 
genetic architecture of complex traits like cognitive ability in the general popula­
tion. There have been reports of finding no association between cognitive ability 
and low frequency copy number variants (Kirkpatrick et al., 2014; MacLeod et al., 
2012; McRae, Wright, Hansell, Montgomery, & Martin, 2013). Microarrays with rarer 
SNPs in exomes are now available and are being used in GWA studies of the normal 
sample, but initial reports suggest that rarer SNPs will not close much of the miss­
ing heritability gap (Luciano et al., 2015; Marioni et al., 2014; Spain et al., 2015). As 
discussed in Chapter 9, research is moving toward sequencing the entire genome so 
that all DNA variation can be detected — ​common as well as rare DNA variants of all 
kinds, not just SNPs.

Finding genes that account for the heritability of cognitive abilities has impor­
tant implications for society as well as for science (Plomin, 1999). The grandest impli­
cation for science is that these genes will serve as an integrating force across diverse 
disciplines, with DNA as the common denominator, and will open up new scientific 
horizons for understanding learning and memory. In terms of implications for society, 
it should be emphasized that no public policies necessarily follow from finding genes 
associated with cognitive abilities because policy involves values (see Chapter 20). 
For example, finding genes that predict cognitive ability does not mean that we ought 
to put all of our resources into educating the brightest children once we identify them 
genetically. Depending on our values, we might worry more about the children falling 
off the low end of the bell curve in an increasingly technological society and decide 
to devote more public resources to those who are in danger of being left behind. 
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Potential problems related to finding genes associated with cognitive abilities — ​such 
as prenatal and postnatal screening, discrimination in education and employment, 
and group differences — ​have been considered (Newson & Williamson, 1999; Nuf­
field Council on Bioethics, 2002). We need to be cautious and to think carefully about 
societal implications and ethical issues, but there is also much to celebrate here in 
terms of increased potential for understanding our species’ ability to think and learn.

Summary
Animal studies indicate genetic influence on learning, such as the maze-​bright and 
maze-​dull selection study of learning in rats. Human studies of general cognitive 
ability (g) have been conducted for over a century. Family, twin, and adoption studies 
converge on the conclusion that about half of the total variance of measures of g can 
be accounted for by genetic factors. For example, twin correlations for g are about 
0.85 for identical twins and 0.60 for fraternal twins. Specific cognitive abilities such 
as verbal and spatial ability and school achievement such as literacy and numeracy 
are also substantially heritable. Unlike other domains of behavior, these cognitive and 
learning abilities show evidence for shared environmental influence.

Three genetic findings are special for cognitive abilities. The first special find­
ing is that the heritability of g increases during the life course, reaching levels in 
adulthood comparable to the heritability of height. The influence of shared environ­
ment diminishes sharply after adolescence. Although less well studied than g, specific 
cognitive abilities appear to show a similar trend. In contrast, school achievement is 
highly heritable in the early school years and remains high throughout schooling.

The second special finding is that assortative mating is much greater for cog­
nitive abilities than for other traits such as personality and height and weight. This 
finding has important implications for the genetic architecture of cognitive abilities.

The third special finding is that, to a major extent, the same genes affect diverse 
cognitive and learning abilities, referred to as the Generalist Genes Hypothesis. g 
indexes these generalist genes for cognitive abilities.

Attempts to identify some of the genes responsible for the heritability of cog­
nitive abilities have begun, including candidate gene studies and genomewide asso­
ciation studies. This research has demonstrated that many genes of small effect are 
responsible for the heritability of cognitive abilities. Nonetheless, SNP-​based heri­
tability estimates suggest that common SNPs can explain most of the heritability of 
cognitive abilities; thus, the major strategy for finding genes associated with cognitive 
abilities and the genetic correlations among them is to increase the sample size of 
GWA analyses.
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Cognitive Disabilities

I n an increasingly technological world, cognitive disabilities are important 

liabilities. More is known about genetic causes of cognitive disabilities than about 

any other area of behavioral genetics. Many single genes and chromosomal abnor-

malities that contribute to general cognitive disability are known. Although most of 

these are rare, together they account for a substantial amount of cognitive disability, 

especially severe disability, which is often defined as intelligence quotient (IQ ) scores 

below 50. (The average IQ in the population is 100, with a standard deviation of 15, 

which means that about 95 percent of the population have IQ scores between 70 and 

130.) Less is known about mild cognitive disability (IQs from 50 to 70) and specific 

cognitive disabilities, such as reading disability, even though they are much more 

common. In this chapter, we discuss the genetics of these types of cognitive disabil-

ities. Dementia, which is the focus of intense research, is considered in Chapter 19 

on aging.
The American Psychiatric Association’s Diagnostic and Statistical Manual of Mental 

Disorders-​5 (DSM-​5) refers to general cognitive disability as intellectual disability, 
previously called mental retardation. For example, DSM-​5 defines intellectual disability 
as impairments in cognitive abilities that impact adaptive functioning in skills such 
as language and reading, in the social domain such as empathy and social judgment, 
and in the practical domain such as personal care and job responsibilities. We will 
use the term general cognitive disability when referring to low IQ and specific cognitive 
disability when referring to specific learning disabilities such as those in reading or 
mathematics. Four levels of general cognitive disability are considered: mild (IQ 50 to 
70), moderate (IQ 35 to 50), severe (IQ 20 to 35), and profound (IQ below 20). About 
85 percent of all individuals with IQs below 70 are classified as mild, most of whom 
can live independently and hold a job. Individuals with IQs from 35 to 50 usually have 
good self-​care skills and can carry on simple conversations. Although they generally 
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do not live independently and in the past were usually institutionalized, today they 
often live in the community in special residences or with their families. People with 
IQs from 20 to 35 can learn some self-​care skills and understand language, but they 
have trouble speaking and require considerable supervision. Individuals with IQs 
below 20 may understand simple communication but usually cannot speak; they 
remain institutionalized.

GENERAL COGNITIVE DISABILITY:
QUANTITATIVE GENETICS

In the behavioral sciences, it is now widely accepted that genetics substantially influ-
ences general cognitive ability; this belief is based on evidence presented in Chapter 11. 
Although one might expect that low IQ scores are also due to genetic factors, this con-
clusion does not necessarily follow. For example, cognitive disability can be caused by 
environmental trauma, such as birth problems, nutritional deficiencies, or head inju-
ries. A sibling study suggests that moderate and severe cognitive disability may be due 
largely to nonheritable factors. In a study of over 17,000 white children, 0.5 percent 
were moderately to severely disabled (Nichols, 1984). As shown in Figure 12.1, the 
siblings of these children showed no cognitive disability. The siblings’ average IQ was 
103, with a range of 85 to 125. In other words, moderate to severe cognitive disabil-
ity showed no familial resemblance. In contrast, siblings of mildly disabled children 
tend to have lower than average IQ scores (see Figure 12.1), as would be expected 

FIGURE 12.1 S iblings of children with mild cognitive disability tend to have lower than average 

IQs. In contrast, siblings of severely disabled children tend to have normal IQs. These trends 

suggest that mild disability is familial but severe disability is not. (Data from Nichols, 1984.)
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for an inherited trait. The average IQ for these siblings of mildly disabled children 
(1.2  percent of the sample were mildly disabled) was only 85. A similar result was 
found in the largest family study of mild cognitive disability, which considered 80,000 
relatives of 289 mentally disabled individuals (Reed & Reed, 1965). This family study 
showed that mild mental disability is very strongly familial. If one parent is mildly 
disabled, the risk for cognitive disability in the children is about 20 percent. If both 
parents are mildly disabled, the risk is nearly 50 percent.

These findings have been supported in a study involving more than a million 
sibling pairs (Reichenberg et al., 2015). This study also analyzed data for 9000 twin 
pairs using a technique called DF extremes analysis, which is described later in this 
chapter. These analyses led to the conclusion that moderate to severe cognitive dis-
ability is genetically different from the normal distribution of intelligence. In con-
trast, mild cognitive disability is only quantitatively, but not qualitatively, different for 
the normal distribution. In other words, the same genetic and environmental factors 
are responsible for mild cognitive disability and normal variation in cognitive ability. 
As we shall see, most common disabilities (>1 percent frequency), such as reading 
disability, are like mild cognitive disability in that they represent the low quantitative 
end of the same genetic and environmental factors responsible for the normal range 
of individual differences in ability.

As discussed in the following section, there are hundreds of single-​gene causes of 
cognitive disability that are inherited from generation to generation; however, these 
are so rare that they may not appear in large samples that have not been selected for 
severe disability. Although most moderate and severe cognitive disability may not be 
inherited from generation to generation, it can be caused by noninherited (called de 
novo) DNA events, such as new gene mutations and new chromosomal abnormalities, 
as well as by environmental events. DNA sequencing research is discovering many 
new noninherited dominant mutations responsible for such sporadic cases. In fact, 
DNA sequencing promises to be a powerful approach for identifying de novo muta-
tions of any kind — ​from a single nucleotide base pair to deletions and duplications of 
parts of chromosomes — ​responsible for sporadic cases of severe cognitive disability 
(Gilissen et al., 2014).

GENERAL COGNITIVE DISABILITY:
SINGLE-​GENE DISORDERS

The classic single-​gene cause of severe cognitive disability is PKU. A newer discovery 
is fragile X syndrome; both of which are mentioned in Chapter 3. We will first discuss 
these two single-​gene disorders, which are known for their effect on cognitive disabil-
ity, and then we will discuss Rett syndrome, a common cause of cognitive disability 
in females.

Until recently, much of what was known about these disorders, as well as the 
chromosomal disorders described in the next section, came from studies of patients 
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in institutions. These earlier studies painted a gloomy picture. But more recent 
systematic surveys of entire populations show a wide range of individual differences, 
including individuals whose cognitive functioning is in the normal range. These 
genetic disorders shift the IQ distribution downward, but a wide range of individual 
differences remains.

Phenylketonuria

The most well-​known inherited form of moderate cognitive disability is phenylke-
tonuria (PKU), which occurs in about 1 in 10,000 births, although its frequency varies 
widely from a high of 1 in 5000 in Ireland to a low of 1 in 100,000 in Finland. In 
the untreated condition, IQ scores are often below 50, although the range includes 
some near-​normal IQs. As mentioned in Chapter 3, PKU is a single-​gene recessive 
disorder that previously accounted for about 1 percent of mildly disabled individuals 
in institutions. PKU is the best example of the usefulness of finding genes related 
to behavior. Knowledge that PKU is caused by a single gene led to an understand-
ing of how the genetic defect causes cognitive disability. Mutations in the PAH gene 
that produces the enzyme phenylalanine hydroxylase lead to an enzyme that does 
not work properly, that is, one that is less efficient in breaking down phenylalanine. 
Phenylalanine comes from food, especially red meats; if it cannot be broken down 
properly, it builds up and damages the developing brain. The precise brain pathways 
by which the mutation causes cognitive disability are not known (de Groot, Hoeksma, 
Blau, Reijngoud, & van Spronsen, 2010).

Although PKU is inherited as a simple single-​gene recessive disorder, the molec-
ular genetics of PKU is not so simple (Scriver & Waters, 1999). The PAH gene, which 
is on chromosome 12, shows more than 500 different disease-​causing mutations, some 
of which cause milder forms of cognitive disability (Mitchell et  al., 2011). Similar 
findings have emerged for many classic single-​gene disorders. Different mutations 
can do different things to the gene’s product, and this variability makes understand-
ing the disease process more difficult. It also makes DNA diagnosis more difficult, 
although DNA sequencing can identify any mutation. A mouse model of a mutation 
in the PAH gene shows similar phenotypic effects and has been widely used to inves-
tigate effects on brain and behavioral development (Martynyuk, van Spronsen, & Van 
der Zee, 2010).

To allay fears about how genetic information will be used in the future, it is 
important to note that knowledge about the single-​gene cause of PKU did not 
lead to sterilization programs or genetic engineering. Instead, an environmental 
intervention — ​a diet low in phenylalanine — ​was found to prevent the development 
of cognitive disability. Widespread screening at birth for this genetic effect began in 
1961, a program demonstrating that genetic screening can be accepted when a rela-
tively simple intervention is available (Guthrie, 1996). However, despite screening and 
intervention, PKU individuals still tend to have a slightly lower IQ , especially when 
the low phenylalanine diet has not been strictly followed (Brumm & Grant, 2010).  
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It is generally recommended that the diet be maintained as long as possible, at least 
through adolescence, and some suggest throughout life (Gentile, Ten Hoedt, & 
Bosch, 2010). PKU women must return to a strict low-​phenylalanine diet before 
becoming pregnant to prevent their high levels of phenylalanine from damaging the 
fetus (Mitchell et al., 2011).

Fragile X Syndrome

As mentioned in Chapter 3, fragile X syndrome is the second most common cause of 
cognitive disability after Down syndrome and is the most common inherited form. It 
is twice as common in males as in females. The frequency of fragile X is usually given 
as 1 in 5000 males and 1 in 10,000 females (Rooms & Kooy, 2011). At least 2 percent 
of the male residents of schools for cognitively disabled persons have fragile X syn-
drome. Most fragile X males are moderately disabled, but many are only mildly dis-
abled and some have normal intelligence. Only about one-​half of girls with fragile X 
are affected because one of the two X chromosomes for girls inactivates, as mentioned 
in Chapter 4. Although fragile X syndrome is a major source of the greater incidence 
of cognitive disability in boys, more than 90 other genes on the X chromosome have 
been implicated in cognitive disability (Gecz, Shoubridge, & Corbett, 2009).

For fragile X males, IQ declines after childhood. In addition to lowered IQ , about 
three-​quarters of fragile X males show large, often protruding, ears and a long face 
with a prominent jaw. They also often show unusual behaviors such as odd speech, 
poor eye contact (gaze aversion), and flapping movements of the hands. Language 
difficulties range from an absence of speech to mild communication difficulties. Often 
observed is a speech pattern called cluttering, in which talk is fast, with occasional 
garbled, repetitive, and disorganized speech. Spatial ability tends to be affected more 
than verbal ability. Comprehension of language is often better than expression and 
better than expected on the basis of an average IQ of about 70. Parents frequently 
report overactivity, impulsivity, and inattention.

Until the gene for fragile X was found in 1991, the disorder’s inheritance was 
puzzling (Verkerk et  al., 1991). It did not conform to a simple X-​linkage pattern 
because its risk increased across generations. Fragile X syndrome is caused by an 
expanded triplet repeat (CGG) on the X chromosome (Xq27.3). The disorder is 
called fragile X because the many repeats cause the chromosome to be fragile at that 
point and to break during laboratory preparation of chromosomes. The disorder is 
now diagnosed on the basis of DNA sequence. Parents who inherit X chromosomes 
with a normal number of repeats (6 to 40 repeats) can produce eggs or sperm with 
an expanded number of repeats (up to 200 repeats), called a premutation. This pre-
mutation does not cause cognitive disability in their offspring, but it is unstable and 
often leads to much greater expansions (more than 200 repeats) in later generations, 
especially when the premutated X chromosome is inherited through the mother. The 
risk that a premutation will expand to a full mutation increases over four generations 
from 5 to 50 percent, although it is not yet possible to predict when a premutation 
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will expand to a full mutation. The mechanism by which expansion occurs is not 
known. The full mutation causes fragile X in almost all males but in only half of 
the females. Females are mosaics for fragile X in the sense that one X chromosome 
is inactivated, so some cells will have the full mutation and others will be normal 
(Willemsen, Levenga, & Oostra, 2011). As a result, females with the full mutation 
have much more variable symptoms. The triplet repeat is in an untranslated region at 
the beginning of a gene ( fragile X mental retardation-​1, FMR1) that, when expanded to 
a full mutation, prevents that gene from being transcribed. The mechanism by which 
the full mutation prevents transcription is DNA methylation, a developmental mecha-
nism for genetic regulation, as discussed in Chapter 10. DNA methylation prevents 
transcription by binding a methyl group to DNA, usually at CG repeat sites. The full 
mutation for fragile X, with its hundreds of CGG repeats, causes hypermethylation 
and thus shuts down transcription of the FMR1 gene. The gene’s protein product 
(FMRP) binds RNA, which means that the gene product regulates expression of 
other genes. FMRP facilitates translation of hundreds of neuronal RNAs; thus, the 
absence of FMRP causes diverse problems. Research on fragile X is moving rapidly 
from molecular genetics to neurobiology (Cook, Nuro, & Murai, 2014). Researchers 
hope that, once the functions of FMRP are understood, it can be artificially supplied. 
In addition, methods for identifying carriers of premutations have improved; these 
screening tests will help people carrying premutations to avoid producing children 
who have a larger expansion and therefore suffer from fragile X syndrome (Rooms & 
Kooy, 2011).

Rett Syndrome

Rett syndrome is a common single-​gene cause of general cognitive disability that 
occurs only in females (1 in 10,000) (Neul et al., 2010). The disorder shows few effects 
in infancy, although the head, hands, and feet are slow to grow. Cognitive develop-
ment is normal during infancy but, by school age, girls with Rett syndrome are gen-
erally unable to talk and about half are unable to walk, with an average IQ of about 
55 (Neul et al., 2010). Women with Rett syndrome seldom live beyond age 60, and 
are prone to seizures and gastrointestinal disorders. This single-​gene disorder was 
mapped to the long arm of the X chromosome (Xq28) and then to a specific gene 
(MECP2, which encodes methyl-​CpG-​binding protein-​2) (Amir et al., 1999). MECP2 
is a gene involved in the methylation process that silences other genes during devel-
opment and thus has diffuse effects throughout the brain (Lyst & Bird, 2015). For 
example, MECP2 regulates BDNF, which affects many aspects of neuronal develop-
ment and thus has widespread effects when its expression is disrupted in individuals 
with Rett syndrome (Li & Pozzo-​Miller, 2014). The effects are variable in females 
because of random X-​chromosome inactivation in females (see Chapter  4). Males 
with MECP2 mutations usually die before or shortly after birth. Intensive efforts are 
underway to design therapeutic strategies using mouse models and cells from patients 
with Rett syndrome (Liyanage & Rastegar, 2014).
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Other Single-​Gene Disorders

The average IQ scores of individuals with the most common single-​gene causes of 
general cognitive disability are summarized in Figure 12.2. It should be remembered, 
however, that the range of cognitive functioning is very wide for these disorders. The 
defective allele shifts the IQ distribution downward, but a wide range of individual 
IQs remains. More than 250 other single-​gene disorders, whose primary defect is 
something other than cognitive disability, also show effects on IQ (Inlow & Restifo, 
2004; Raymond, 2010). Three of the most common disorders are Duchenne muscular 
dystrophy, Lesch-​Nyhan syndrome, and neurofibromatosis. Duchenne muscular dys-
trophy is a disorder of muscle tissue caused by a recessive gene on the X chromosome 
that occurs in 1 in 3500 males and usually leads to death by age 20. The average IQ of 
males with the disorder is 85, although it is not known how the gene affects the brain 
(D’Angelo et al., 2011). Lesch-​Nyhan syndrome is another rare X-​linked recessive 
disorder, with an incidence of about 1 in 20,000 male births; many medical problems 
occur that lead to death before age 30. The most striking feature of this disorder is 
compulsive self-​injurious behavior, reported in over 85 percent of cases (Anderson & 
Ernst, 1994). In terms of cognitive disability, most individuals have moderate or severe 
learning difficulties, with an average IQ of about 70, and speech is usually impaired, 
although memory for both recent and past events appears to be unaffected. Neurofi-
bromatosis type 1 is caused by a single dominant allele that is surprisingly common 
(about 1 in 3000 births) for a dominant allele, which may be related to the fact that 
most individuals with neurofibromatosis survive until middle age, after the reproduc-
tive years. Although the disorder is known for skin tumors and tumors in nerve tissue, 

FIGURE 12.2 S ingle-​gene causes of general cognitive disability: phenylketonuria (PKU), Rett 

syndrome (RS), fragile X syndrome (FRX), Lesch-​Nyhan syndrome (LNS), Duchenne muscular 

dystrophy (DMD), and neurofibromatosis type 1 (NF1). Despite the lower average IQs, a wide 

range of cognitive functioning is found.
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the majority of affected individuals also have learning difficulties, with an average IQ 
of about 85 (Shilyansky, Lee, & Silva, 2010).

Although there are hundreds of such rare single-​gene disorders, together they 
account for only a small portion of cognitive disability and its heritability. Most cog-
nitive disability is mild; it represents the low end of the normal distribution of general 
cognitive ability and is caused by many genes of small effect as well as multiple envi-
ronmental factors, as discussed in Chapter 11.

GENERAL COGNITIVE DISABILITY:
CHROMOSOMAL ABNORMALITIES

DNA not only affects general cognitive ability at the level of single genes, as 
described in the previous section. It also has effects at the level of the addition 
or deletion of an entire chromosome and everything in between, including inser-
tions and deletions of large and small parts of chromosomes. The visual analysis of 
chromosomes themselves is being replaced by DNA sequencing, which can detect 
insertions and deletions down to the level of a single nucleotide (Ostrer, 2011). 
In general, insertions and deletions of DNA, big or small, are detrimental to cog-
nitive development. The history of the field of cytogenetics — ​a branch of genetics 
concerned with the study of the structure and function of the cell, especially the 
chromosomes — ​is described in an autobiographical account of one of the pioneers 
of the field (Jacobs, 2014).

This section on chromosomal abnormalities begins with descriptions of the 
classic whole-​chromosome abnormalities that affect cognitive development: Down 
syndrome and chromosomal abnormalities involving the X chromosome.

Down Syndrome

Down syndrome is caused by a trisomy of chromosome 21 (Roizen & Patterson, 
2003). It was one of the first identified genetic disorders, and its 150-year history par-
allels the history of genetic research (Patterson & Costa, 2005). It is the single most 
important cause of general cognitive disability and occurs in about 1 in 1000 births. It 
is so common that its general features are probably familiar to everyone (Figure 12.3). 
Although more than 300 abnormal features have been reported for Down syndrome 
children, a handful of specific physical disorders are diagnostic because they occur so 
frequently. These features include increased neck tissue, muscle weakness, speckled 
iris of the eye, open mouth, and protruding tongue. Some symptoms, such as increased 
neck tissue, become less prominent as the child grows, whereas other symptoms, such 
as cognitive disability and short stature, become more prominent. About two-​thirds of 
affected individuals have hearing deficits, and one-​third have heart defects, leading to 
an average life span of 50 years (Zigman, 2013). As first noted by Langdon Down, who 
identified the disorder in 1866, children with Down syndrome appear to be obstinate 
but otherwise generally amiable.
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The most striking feature of Down syndrome is general cognitive disability 
(Lott & Dierssen, 2010). As is the case for all single-​gene and chromosomal effects on 
general cognitive ability, affected individuals show a wide range of IQs. The average 
IQ among children with Down syndrome is 55, with only the top 10 percent falling 
within the lower end of the normal range of IQs. By adolescence, language skills are 
generally at about the level of a 3-year-​old child. Most individuals with Down syn-
drome who reach the age of 45 suffer from the cognitive decline of dementia, which 
was an early clue suggesting that a gene related to dementia might be on chromosome 
21 (see Chapter 19).

Down syndrome is an example of an exception to Mendel’s laws because it does 
not run in families. Most cases are created anew each generation by nondisjunction of 
chromosome 21, as explained in Chapter 4. Another important feature of Down syn-
drome is that it occurs much more often in women giving birth later in life. Nondis-
junction explains why the incidence of Down syndrome is higher among the offspring 
of older mothers. All the immature eggs of a female mammal are present before birth. 
These eggs have both members of each pair of chromosomes. Each month, one of the 
immature eggs goes through the final stage of cell division. Nondisjunction is more 
likely to occur as the female grows older and activates immature eggs that have been 
dormant for decades. In contrast, fresh sperm are produced all the time. For this rea-
son, the incidence of Down syndrome is not affected by the age of the father.

FIGURE 12.3  Three-​year-​old girl with 

Down syndrome. (Monkey Business 

Images / Getty Images.)
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Advances in genetics have stimulated a resurgence of research on Down syn-
drome with the hope of ameliorating at least some of its symptoms (Lana-​Elola, 
Watson-​Scales, Fisher, & Tybulewicz, 2011). The fundamental problem is that 
because there are three copies of chromosome 21, its several hundred genes are over-
expressed. Mouse models have played an important role in understanding cognitive 
deficits in Down syndrome (Das & Reeves, 2011; Guedj, Bianchi, & Delabar, 2014).

Sex Chromosome Abnormalities

Extra X chromosomes also cause cognitive disabilities, although the effect is highly 
variable, which is the reason why many cases remain undiagnosed (Hong & Reiss, 
2014; Lanfranco, Kamischke, Zitzmann, & Nieschlag, 2004). In males, an extra X 
chromosome causes XXY male syndrome, often called Klinefelter syndrome. As indi-
cated in Chapter 4, even though X is a large chromosome with many genes, extra X 
chromosomes are largely inactivated, as happens with normal females, who have two 
X chromosomes; however, some genes on the extra X chromosome escape inactiva-
tion in XXY males (Tuttelmann & Gromoll, 2010). XXY male syndrome is the most 
common chromosomal abnormality in males, occurring in about 1 in 500 male births. 
The major problems involve low testosterone levels after adolescence, leading to 
infertility, small testes, and breast development. Early detection and hormonal ther-
apy are important to alleviate the condition, although infertility remains (Herlihy & 
McLachlan, 2015). Males with XXY male syndrome have an average IQ of about 
85; most have speech and language problems as well as poor school performance 
(Mandoki, Sumner, Hoffman, & Riconda, 1991).

In females, an extra X chromosome (called triple X syndrome) occurs in about 
1 in 1000 births. Females with triple X show an average IQ of about 85 (Tartaglia, 
Howell, Sutherland, Wilson, & Wilson, 2010). Unlike XXY males, XXX females 
have normal sexual development and are able to conceive children; they have so 
few problems that they are rarely detected clinically. Their scores on verbal tests 
(such as on vocabulary) are lower than their scores on nonverbal tests (such as puz-
zles), and many require speech therapy (Bishop et al., 2011). For both XXY and XXX 
individuals, head circumference at birth is smaller than average, a feature suggest-
ing that the cognitive deficits may be prenatal in origin. As is generally the case 
for chromosomal abnormalities, structural brain imaging research indicates diffuse 
effects (Giedd et al., 2007).

In addition to having an extra X chromosome, it is possible for males to have an 
extra Y chromosome (XYY) and for females to have just one X chromosome (XO, 
called Turner syndrome). There is no equivalent syndrome of males with a Y chro-
mosome but no X because this is fatal. XYY males, about 1 in 1000 male births, are 
taller than average after adolescence and have normal sexual development. More 
than 95 percent of XYY males do not even know they have an extra Y chromosome. 
Although XYY males have fewer cognitive problems than XXY males, about half 
have speech difficulties as well as language and reading problems (Leggett, Jacobs, 
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Nation, Scerif, & Bishop, 2010). Their average IQ is about 10 points lower than that 
of their siblings with normal sex chromosomes. Juvenile delinquency is also associ-
ated with XYY. The XYY syndrome was the center of a furor in the 1970s, when it 
was suggested that such males are more violent, a suggestion possibly triggered by 
the notion of a “super male” with exaggerated masculine characteristics caused by an 
extra Y chromosome; however, this idea is not supported by research.

Turner syndrome females (XO) occur in about 1 in 2500 female births, although 
98 percent of XO fetuses miscarry, accounting for 10 percent of the total number of 
spontaneous abortions. The main problems are short stature and abnormal sexual 
development; infertility is common. Puberty rarely occurs without hormone therapy, 
which makes early diagnosis important (Lee & Conway, 2014); even with therapy, 
the individual is infertile because she does not ovulate. Hormonal treatment is now 
standard, and many XO women have conceived with in vitro fertilization (Stratakis & 
Rennert, 2005). Although verbal IQ is about normal, nonverbal IQ is lower, about 90, 
and social cognition is also impaired (Hong, Dunkin, & Reiss, 2011).

Small Chromosomal Deletions

As noted earlier, chromosomal abnormalities do not just involve a whole chromo-
some. Three classic small chromosomal deletions that affect cognitive development 
are Angelman syndrome, Prader-​Willi syndrome, and Williams syndrome. After 
describing these disorders, we will turn to research that uses new DNA techniques to 
identify even smaller deletions.

A small deletion in chromosome 15 (15q11) causes Angelman syndrome (1 in 
20,000 births) if the deletion comes from the mother’s egg or Prader-​Willi syndrome  
(1 in 20,000 births) if it comes from the father’s sperm. In most cases, the deletion occurs 
spontaneously (de novo) in the formation of gametes, although in about 10  percent 
of the cases mutations inherited by the mother or father are responsible (Williams, 
Driscoll, & Dagli, 2010). This region of chromosome 15, usually millions of base pairs 
in length, contains several imprinted genes that are differentially silenced by epigen-
etic methylation of the DNA, depending on whether the deletion comes from the 
mother’s egg or the father’s sperm. This phenomenon in which the expression of a 
gene depends on whether it is inherited from the mother or from the father is called 
genomic imprinting, even though most methylation marks from the parents’ genome 
are erased so that the infant’s epigenome starts with a clean slate (Tang et al., 2015). 
Angelman syndrome results in moderate cognitive disability, abnormal gait, speech 
impairment, seizures, and an inappropriately happy demeanor that includes frequent 
laughing and excitability (Bird, 2014). For one gene in this region (UBE3A), the mater-
nal gene is expressed and the paternal gene is silenced so that a deletion that disrupts 
the maternal gene will cause Angelman syndrome symptoms, whereas a disruption in 
the paternal gene would not have an effect. In contrast, the paternal copy is expressed 
for other genes in this same region (e.g., SNRPN ) and deletions in the paternal cop-
ies of these genes can cause Prader-​Willi syndrome, which most noticeably involves 



C o g n i t i v e  D i s a b i l i t i e s   2 0 3

overeating, temper outbursts, and social problems but also leads to multiple learning 
difficulties and an average IQ of about 55 (Rice & Einfeld, 2015). New techniques 
for understanding epigenetic processes are advancing our understanding of how this 
deletion has its effects on brain development (Mabb, Judson, Zylka, & Philpot, 2011).

Williams syndrome, with an incidence of about 1 in 10,000 births, is caused by 
a small deletion from chromosome 7 (7q11.2), a region that includes about 25 genes. 
Most cases are not inherited (de novo). Williams syndrome involves disorders of con-
nective tissue that lead to growth retardation and multiple medical problems. General 
cognitive disability is common (average IQ of 55), and most affected individuals have 
learning difficulties that require special schooling. Some studies find that language 
development is less affected than nonverbal abilities (Martens, Wilson, & Reutens, 
2008). As adults, most affected individuals are unable to live independently. As is 
typical of chromosomal abnormalities that include several genes, no consistent brain 
pathology is found other than a reduction in cerebral volume.

Figure 12.4 summarizes the average effect on IQ of the most common chromo-
somal causes of general cognitive disability. Again, it should be emphasized that there 
is a wide range of cognitive functioning around the average IQ scores shown in the 
figure. In addition to these classic syndromes, DNA sequencing research has revealed 
that as many as 15 percent of cases of severe cognitive disability may be due to smaller 
deletions or duplications from a thousand to millions of base pairs that can involve a 
few genes, dozens of genes, or no genes (coding regions) at all (Topper, Ober, & Das, 
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FIGURE 12.4  The most common chromosomal causes of general cognitive disability are Down 
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2011). As mentioned in Chapter 9, these structural variations in chromosomes are 
called copy number variants (CNVs). Most CNVs arise de novo during meiosis when a 
DNA segment is deleted on one chromosome and duplicated on the corresponding 
member of the chromosome pair. As with other chromosomal abnormalities, dele-
tions are generally worse than duplications. There are tens of thousands of CNVs; 
we all have CNVs peppered throughout our genome without obvious effect, despite 
all the extra or missing segments of DNA (Zarrei et al., 2015). However, some CNVs, 
usually rare and de novo (i.e., not seen in either parent), affect neurocognitive devel-
opment (Malhotra & Sebat, 2012). Although therapeutic interventions are not yet 
available, there is hope for differential diagnosis of cognitive disabilities with genomic 
sequencing (Willemsen & Kleefstra, 2014) and newborn screening is on the horizon 
(Beckmann, 2015).

SPECIFIC COGNITIVE DISABILITIES

As its name implies, general cognitive disability has general effects on the ability to 
learn, which is reflected in difficulties at school. We use the term specific cognitive disa-
bilities in relation to school-​related difficulties such as those affecting reading, commu-
nication, and mathematics. Behavioral genetic research brings genetics to the field of 
educational psychology, which has been slow to recognize the importance of genetic 
influence (Haworth & Plomin, 2011; Wooldridge, 1994), even though teachers in the 
classroom do (Walker & Plomin, 2005). This section focuses on low performance in 
cognitive processes related to academic achievement, whereas Chapter 11 described 
genetic research on the normal range of variation in these processes. We begin with 
reading disability because reading is the primary problem for about 80 percent of 
children with a diagnosed learning disorder. We then consider communication disor-
ders, mathematics disability, and, finally, the interrelationships of learning disabilities.

Reading Disability

As many as 10 percent of children have difficulty learning to read. Children with read-
ing disability (also known as dyslexia, for example, in DSM-​5) read slowly and often 
with poor comprehension. When reading aloud, they perform poorly. For some, specific 
causes can be identified, such as cognitive disability, brain damage, sensory problems, 
and deprivation. However, many children without such problems find it difficult to read.

Family studies have shown that reading disability runs in families. The largest 
family study included 1044 individuals in 125 families with a reading-​disabled child 
and 125 matched control families (DeFries, Vogler, & LaBuda, 1986). Siblings and 
parents of the reading-​disabled children performed significantly worse on reading 
tests than did siblings and parents of control children. The first major twin study 
indicated that familial resemblance for reading disability involves genetic factors 
(DeFries, Knopik, & Wadsworth, 1999). For more than 250 twin pairs in which at least 
one member of the pair was reading disabled, twin concordances were 66 percent 



C o g n i t i v e  D i s a b i l i t i e s   2 0 5

for identical twins and 36 percent for fraternal twins, a result suggesting substantial 
genetic influence. Large twin studies found similar results in the early school years for 
both reading disability and reading ability in the United Kingdom (Kovas et al., 2007) 
and the United States (Hensler et al., 2010). However, in all of these studies, shared 
environmental influence is modest, typically accounting for less than 20 percent of 
the variance (Willcutt et al., 2010).

As part of DeFries and colleagues’ twin study, a new method was developed 
to estimate the genetic contribution to the mean difference between the reading-​
disabled probands and the mean reading ability of the population. This type of anal-
ysis, called DF extremes analysis after its creators (DeFries & Fulker, 1985), assesses 
the extent to which the quantitative scores of MZ and DZ partners (co-​twins) of 
selected index cases (probands) regress differentially to the population mean. In 
other words, to the extent that genetic influences are responsible for the difference 
between the probands and the rest of the population, co-​twins should be more similar 
to the probands for MZ twins than for DZ twins. This comparison of MZ and DZ 
co-​twin means yields an estimate of group heritability, an index of the extent to which 
the extreme scores of probands is due to genetic influences, in contrast to the usual 
heritability estimate, which refers to differences between individuals rather than to 
mean differences between groups. Finding significant group heritability implies that 
there are genetic links between the disorder, however assessed, and the quantitative 
trait. That is, if the measure of extremes (or a diagnosis) were not linked geneti-
cally to the quantitative trait, group heritability would be zero. DF extremes analysis 
is conceptually similar to the liability-​threshold model described in Box 3.3. The 
major difference is that the liability-​threshold model assumes a continuous dimension 
even though it assesses a dichotomous disorder, usually a diagnosis. In contrast, DF 
extremes analysis assesses rather than assumes a continuum. As described earlier in 
this chapter, moderate to severe general cognitive disability is etiologically distinct 
from the normal distribution of g, as indicated by DF extremes analysis (Nichols, 
1984; Reichenberg et al., 2015). Additional support comes from research finding that 
rare single-​gene mutations and chromosomal abnormalities often cause moderate to 
severe general cognitive disability but do not contribute importantly to variation in 
the normal range of cognitive ability. In contrast, mild cognitive disability appears to 
be quantitatively, not qualitatively, different from normal variation in cognitive ability. 
That is, mild cognitive disability is the low end of the same genetic and environmen-
tal influences responsible for variation in the normal distribution of cognitive ability. 
Results for reading disability and other common disabilities discussed in this section 
are similar to those for mild cognitive disability rather than more severe cognitive 
disability. Phrased more provocatively, these findings from DF extremes analysis sug-
gest that common disorders such as reading disability are not really disorders — ​they 
are merely the low end of the normal distribution (Plomin et al., 2009). This view fits 
with the basic quantitative genetic model, which assumes that genetic influence for 
complex traits is due to many genes of small effect size that contribute to a normal 
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quantitative trait distribution (Chapter 3). What we call disorders and disabilities are 
the low end of these quantitative trait distributions. This hypothesis predicts that 
when genes associated with reading disability are identified, the same genes will be 
associated with normal variation in reading ability.

Early molecular genetic research on reading disability assumed that the target was 
a single major gene rather than many genes of small effect in the population (Bishop, 
2015). Various modes of transmission have been proposed, especially autosomal 
dominant transmission and X-​linked recessive transmission. The autosomal dominant 
hypothesis takes into account the high rate of familial resemblance but fails to account 
for the fact that about a fifth of reading-​disabled individuals do not have affected rela-
tives. An X-​linked recessive hypothesis is suggested when a disorder occurs more often 
in males than in females, as is the case for reading disability. However, the X-​linked 
recessive hypothesis does not work well as an explanation of reading disability. As 
described in Chapter 3, one of the hallmarks of X-​linked recessive transmission is the 
absence of father-​to-​son transmission, since sons inherit their X chromosome only 
from their mother. Contrary to the X-​linked recessive hypothesis, reading disability 
is transmitted from father to son as often as from mother to son. It is now generally 
accepted that, like most complex disorders, reading disability is caused by multiple 
genes as well as by multiple environmental factors (Fisher & DeFries, 2002).

One of the most exciting findings in behavioral genetics in the past two decades 
is that the first quantitative trait locus for a human behavioral disorder was reported 
for reading disability, using sib-​pair QTL linkage analysis (Cardon et  al., 1994). As 
explained in Chapter 9, siblings can share zero, one, or two alleles for a particular DNA 
marker. If siblings who share more alleles are also more similar for a quantitative trait 
such as reading ability, then QTL linkage is likely. QTL linkage analysis is much more 
powerful when one sibling is selected because of an extreme score on the quantitative 
trait. When one sibling was selected for reading disability, the reading ability score of 
the co-​sibling was also lower when the two siblings shared alleles for markers on the 
short arm of chromosome 6 (6p21). Significant linkage was also found for markers in 
this region in an independent sample of fraternal twins and in several replication stud-
ies in the broader region of the short arm of chromosome 6 (Fisher & DeFries, 2002). 
Despite these consistent linkage results, it has been difficult to identify the specific 
genes responsible for the QTL linkage among the hundreds of genes in this gene-​rich 
region of chromosome 6, but the search has narrowed to two genes very close together 
at 6p22: KIAA0319 and DCDC2 (Carrion-​Castillo, Franke, & Fisher, 2013). Genes in this 
region and a dozen other candidate genes reported to be associated with reading dis-
ability provide plausible pathways among genes, brain, and behavior that involve the 
growth and migration of neurons (Poelmans, Buitelaar, Pauls, & Franke, 2011). There 
have been far fewer candidate gene association studies for reading than for other behav-
iors, perhaps because there are no obvious candidate genes and also because linkage 
analysis has dominated reading research. A meta-​analysis of three small genomewide 
association studies of reading and language disability found no significant associations 
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(Gialluisi et  al., 2014), suggesting that the combined influence of many genes with 
relatively small effect are also responsible for reading difficulties.

Reading disability is generally assumed to be preceded by language problems 
(Pennington & Bishop, 2009), and genetic influences on reading disability and on 
language and speech disorders overlap substantially (Haworth et al., 2009a; Newbury, 
Monaco, & Paracchini, 2014). Language and speech disorders are the topic of the 
following section.

Communication Disorders

DSM-​5 includes four types of communication disorders: language, speech, stuttering, 
and social communication. Several family studies, examining communication disor-
ders broadly, indicate that communication disorders are familial (Stromswold, 2001). 
Twin studies suggest that this familial resemblance is genetic in origin. A review of 
twin studies of language disability yields twin concordances of 75 percent for MZ 
twins and 43 percent for DZ twins (Stromswold, 2001). Using DF extremes analy-
sis, the average weighted group heritability was 43 percent for language disabilities 
(Plomin & Kovas, 2005). A large twin study of language delay in infancy found high 
heritability, even at 2 years of age (Dale et  al., 1998). The only adoption study of 
communication disorders confirms the twin results, suggesting substantial genetic 
influence (Felsenfeld & Plomin, 1997).

The high heritability of communication disorders has attracted attention from 
molecular genetics (Smith et al., 2010). A high-​profile paper reported a mutation in 
a gene (FOXP2) that accounted for an unusual type of speech-​language impairment 
that includes deficits in oro-​facial motor control in one family (Lai, Fisher, Hurst, 
Vargha-​Khadem, & Monaco, 2001). In the media, this finding was unfortunately 
trumpeted as “the” gene for language, whereas in fact the mutation has not been 
found outside the original family (Meaburn, Dale, Craig, & Plomin, 2002; Newbury 
et al., 2002). Several linkages and candidate gene associations have been reported with 
communication disorders (Fisher & Vernes, 2015). The first genomewide association 
study found no significant associations (Nudel et al., 2014).

Stuttering affects about 5 percent of preschool children, but most make a full 
recovery. Family studies of stuttering over the past 50 years have shown that about a 
third of stutterers have other stutterers in their families (Kidd, 1983). Twin studies 
indicate that stuttering is highly heritable (Fagnani, Fibiger, Skytthe, & Hjelmborg, 
2011), especially stuttering that persists past early childhood (Dworzynski, Remington, 
Rijsdijk, Howell, & Plomin, 2007). However, genomewide linkage studies have not 
yielded consistent results (Fisher, 2010).

Mathematics Disability

DSM-​5 classifies problems with comprehending numbers as dyscalculia, which means 
“counting badly.” For poor performance on tests of mathematics, the first twin study 
suggested moderate genetic influence (Alarcón, DeFries, Light, & Pennington, 1997).  
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Although different aspects of mathematics performance are highly correlated, 
timed tests, called fluency measures, have been shown to have significant independent 
genetic influence from untimed tests (Petrill et al., 2012). A study using U.K. National 
Curriculum scores of 7-year-​olds reported concordances for mathematics disability 
of about 70 percent for MZ twins and 40 percent for DZ twins and a DF extremes 
group heritability estimate of 65 percent (Oliver et al., 2004). Results obtained from a 
meta-​analysis of twin studies for mathematics disability yielded a highly similar group 
heritability estimate of 0.61 (Plomin & Kovas, 2005). The first genomewide association 
study of mathematics disability found no genetic associations of large effect (Docherty 
et  al., 2010). Similar to reading disability and all common disorders, these results 
suggest that mathematics disability is quantitatively, not qualitatively, different from 
normal variation in mathematics ability. This implies that the heritability of mathe-
matics disability is caused by many genes of small effect, a conclusion that will be seen 
repeatedly in subsequent chapters for all common disorders and complex traits.

Comorbidity among Specific Cognitive Disabilities

Learning disabilities are distinguished from each other and from other cognitive dis-
abilities because they are thought to be distinct disabilities. However, it is increas-
ingly recognized that there is a great deal of comorbidity among these disabilities 
(Butterworth & Kovas, 2013). Two multivariate genetic analyses suggest that there is 
substantial genetic overlap between reading and mathematics disabilities (Knopik, 
Alarcón, & DeFries, 1997; Kovas et al., 2007). Extending DF extremes analysis to bivar-
iate analysis, genetic correlations of 0.53 and 0.67 between reading and mathematics 
disability were reported. In other words, many of the genes that affect reading disability 
also affect mathematics disability. The reach of these general effects of genes for cog-
nitive disabilities extends beyond reading and mathematics disability to communica-
tion disorders and general cognitive disability (Haworth et al., 2009a) and even further 
to other disorders such as hyperactivity, especially inattentiveness (Greven, Kovas, 
Willcutt, Petrill, & Plomin, 2014). These multivariate genetic results for cognitive disa-
bilities, which are similar to those seen for cognitive abilities (Chapter 11), suggest that 
when DNA studies find genes associated with one cognitive or learning disability, most 
of these genes will also be associated with other disabilities (Mascheretti et al., 2014).

Summary

Results of sibling and twin studies suggest that moderate to severe cognitive disability 
is genetically different from the normal distribution of individual differences in gen-
eral cognitive ability. Recent DNA studies confirm this hypothesis by finding many 
new noninherited (de novo) mutations responsible for sporadic cases of moderate to 
severe cognitive disability. Moreover there are more than 250 inherited single-​gene 
disorders, most extremely rare, that include cognitive disability among their symp-
toms. A classic disorder is PKU, caused by a recessive mutation on chromosome 12. 
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The discovery of fragile X syndrome is especially important because it is the most 
common cause of inherited cognitive disability (1 in several thousand males, half as 
common in females). It is caused by a triplet repeat (CGG) on the X chromosome 
that expands over several generations until it reaches more than 200 repeats, when it 
causes cognitive disability in males. A common single-​gene cause of severe cognitive 
disability in females is Rett syndrome. Other single-​gene mutations known primarily 
for other effects also contribute to cognitive disability, such as those for Duchenne 
muscular dystrophy, Lesch-​Nyhan syndrome, and neurofibromatosis.

For all of the single-​gene disorders, the defective allele shifts the IQ distribution 
downward, but a wide range of individual IQs remains. Also, although there are hun-
dreds of such rare single-​gene disorders, together they account for only a tiny portion 
of cognitive disability. Most cognitive disability is mild and appears to be the low end 
of the normal distribution of general cognitive ability and caused by many QTLs of 
small effect as well as multiple environmental factors (see Chapter 11).

Chromosomal abnormalities play an important role in cognitive disability. The 
most common cause of cognitive disability is Down syndrome, caused by the pres-
ence of three copies of chromosome 21. Down syndrome occurs in about 1 in 1000 
births and is responsible for about 10 percent of cognitively disabled individuals in 
institutions. Risk for cognitive disability is also increased by having an extra X chro-
mosome (XXY males, XXX females). An extra Y chromosome (XYY males) or a miss-
ing X chromosome (Turner females) cause less disability. XYY males have speech and 
language problems; Turner females (XO) generally perform less well on nonverbal 
tasks such as spatial tasks. Small deletions of chromosomes can result in cognitive dis-
ability, as in Angelman syndrome, Prader-​Willi syndrome, and Williams syndrome. 
Similar to single-​gene disorders, there is a wide range of cognitive functioning around 
the lowered average IQ scores found for all these chromosomal causes of cognitive 
disability. An exciting area of research uses exome and whole-​genome sequencing to 
detect subtle chromosomal abnormalities, especially de novo (noninherited) deletions 
and duplications called copy number variants (CNVs), that might account for as many as 
15 percent of sporadic cases of severe cognitive disability.

Twin studies suggest genetic influence for specific cognitive disabilities, includ-
ing reading disability, communication disorders, and mathematics disability. For these 
cognitive disabilities, DF extremes analysis suggests that genetic and environmental 
influences have effects at the low end of the normal distribution of cognitive abilities 
that are similar to their effects on the rest of the distribution. For reading disability, a 
replicated linkage on chromosome 6 was the first QTL linkage discovered for human 
behavioral disorders; two genes in this region are the best candidates, although a 
dozen other candidate gene regions have been proposed. Several linkages and can-
didate gene associations have also been proposed for communication disorders and 
mathematics disability. The substantial comorbidity between specific cognitive disa-
bilities is largely due to genetic factors, meaning that the same genes affect different 
learning disabilities although there are also disability-​specific genes.
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Schizophrenia

P sychopathology has been, and continues to be, one of the most active areas of 

behavioral genetic research, largely because of the social importance of mental 

illness. One out of two persons in the United States has some form of disorder dur-

ing their lifetime, and one out of five persons suffered from a disorder within the last 

year (Steel et al., 2014). The costs in terms of suffering to patients and their friends 

and relatives, as well as the economic costs, make psychopathology one of the most 

pressing problems today.
The genetics of psychopathology led the way toward the acceptance of genetic 

influence in psychology and psychiatry. The history of psychiatric genetics is described 
in Box 13.1. This chapter and the next two provide an overview of what is known 
about the genetics of several major categories of psychopathology: schizophrenia, 
mood disorders, and anxiety disorders. Other disorders, such as posttraumatic stress 
disorder, somatic symptom disorders, and eating disorders, are also briefly reviewed, 
as are disorders usually first diagnosed in childhood: autism spectrum disorder, 
attention-​deficit/hyperactivity disorder, and tic disorders. Other major categories in 
the DSM-​5 include personality disorders (Chapter 16), substance-​related disorders 
(Chapter 17), and cognitive disorders such as dementia (Chapter 19). The DSM-​5  
includes several other disorders for which no genetic research is as yet available 
(e.g., dissociative disorders such as amnesia and fugue states). Much has been written 
about the genetics of psychopathology, including several texts (Jang, 2005; Kendler 
& Prescott, 2007) and edited books (e.g., Dodge & Rutter, 2011; Hudziak, 2008; 
MacKillop & Munafò, 2013; Rhee & Ronald, 2014; Ritsner, 2009). Many questions 
remain concerning diagnosis, most notably the extent of comorbidity and hetero
geneity (Cardno et al., 2012). Diagnoses to date depend on symptoms, and it is possible 
that the same symptoms have different causes and that different symptoms could have 
the same causes (Ritsner & Gottesman, 2011). One of the hopes for genetic research is 
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that it can begin to provide diagnoses based on causes rather than symptoms. We will 
return to this issue in Chapter 14.

This chapter focuses on schizophrenia, the most highly studied area in behavioral 
genetic research on psychopathology. Schizophrenia involves persistent abnormal 
beliefs (delusions), hallucinations (especially hearing voices), disorganized speech 
(odd associations and rapid changes of subject), grossly disorganized behavior, and 
so-​called negative symptoms, such as flat affect (lack of emotional response) and avo-
lition (lack of motivation). A diagnosis of schizophrenia requires that such symptoms 
occur for at least six months. It usually strikes in late adolescence or early adulthood. 
Early onset in adolescence tends to be gradual but has a worse prognosis. Although 
it derives from Greek words meaning “split mind,” schizophrenia has nothing to do 
with the notion of a “split personality.”

More genetic research has focused on schizophrenia than on other areas of 
psychopathology for three reasons. First, it is the most severe form of psychopatho
logy and one of the most debilitating of all disorders (Üstün et al., 1999). Second, 
it is so common, with a lifetime risk in nearly 1  percent of the population (Saha, 
Chant, Welham, & McGrath, 2005). Third, it generally lasts a lifetime, although a 
few people recover, especially if they have had just one episode (Robinson, Woerner, 
McMeniman, Mendelowitz, & Bilder, 2004); there are signs, however, that recovery 
rates are improving (AlAqeel & Margolese, 2013). Unlike patients of two decades ago, 
most people with schizophrenia are no longer institutionalized, because drugs can 
control some of their worst symptoms. Nonetheless, schizophrenics still occupy half 
the beds in mental hospitals, and those discharged make up about 10 percent of the 
homeless population (Folsom & Jeste, 2002). It has been estimated that the cost to our 
society of schizophrenia alone rivals that of cancer (Kennedy, Altar, Taylor, Degtiar, 
& Hornberger, 2014).

FAMILY STUDIES
The basic genetic results for schizophrenia were described in Chapter 3 to illustrate 
genetic influence on complex disorders. Family studies consistently show that schizo-
phrenia is familial (Ritsner & Gottesman, 2011). In contrast to the base rate of about 
1 percent lifetime risk in the population, the risk for relatives increases with genetic 
relatedness to the schizophrenic proband: 4 percent for second-​degree relatives and 
9 percent for first-​degree relatives.

The average risk of 9 percent for first-​degree relatives differs for parents, siblings, 
and offspring of schizophrenics. In 14 family studies of over 8000 schizophrenics, the 
median risk was 6 percent for parents, 9 percent for siblings, and 13 percent for off-
spring (Gottesman, 1991; Ritsner & Gottesman, 2011). The low risk for parents of 
schizophrenics (6  percent) is probably due to the fact that schizophrenics are less 
likely to marry and those who do marry have relatively few children. For this reason, 
parents of schizophrenics are less likely than expected to be schizophrenic. When 
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F
ounded in London in 1247, Bethlem 
Hospital is one of the oldest 
institutions in the world caring for 

people with mental disorders. However, 
there have been times in Bethlem’s long 
history when it was associated with 
some of the worst images of mental 
illness, and it gave us the origin of 
the word bedlam. Perhaps the most 
famous portrayal is in the final scene of 
Hogarth’s series of paintings A Rake’s 

Progress, which shows the Rake’s 
decline into madness at Bethlem (see 
figure). Hogarth’s portrayal assumes 
that madness is the consequence of 
high living and therefore, it is implied, a 
wholly environmental affliction.

The observation that mental disorders 
have a tendency to run in families is 
ancient, but among the first efforts to 
record this association systematically 
were those at Bethlem Hospital. 
Records from the 1820s show that one 
of the routine questions that doctors 
had to attempt to answer about the 

illness of a patient they were admitting 
was “whether hereditary?” This, of 
course, predated the development of 
genetics as a science, and it was not 
until a hundred years later that the first 
research group on psychiatric genetics 
was established in Munich, Germany, 
under the leadership of Emil Kraepelin. 
The Munich department attracted 
many visitors and scholars, including a 
mathematically gifted young psychiatrist 
from Maudsley Hospital, Eliot Slater, who 
obtained a fellowship to study psychiatric 
genetics there. In 1935, Slater returned 
to London and started his own research 
group, which led to the creation in 1959 
of the Medical Research Council’s (MRC) 
Psychiatric Genetics Unit at what is now 
the Institute of Psychiatry, Psychology 
and Neuroscience. The Bethlem and 
Maudsley Twin Register, set up by Slater 
in 1948, was among the important 
resources that underpinned a number of 
influential studies, and Slater introduced 
sophisticated statistical approaches to 

BOX 13.1  The Beginnings of Psychiatric Genetics:  
Bethlem Royal and Maudsley Hospitals

schizophrenics do become parents, the rate of schizophrenia in their offspring is high 
(13  percent). The risk is the same regardless of whether the mother or the father 
is schizophrenic. When both parents are schizophrenic, the risk for their offspring 
shoots up to 46 percent. Siblings provide the least biased risk estimate, and their risk 
(9 percent) is in between the estimates for parents and for offspring. Although the risk 
of 9 percent is high, nine times the population risk of 1 percent, it should be remem-
bered that the majority of schizophrenics do not have a schizophrenic first-​degree 
relative.

The family design provides the basis for genetic high-​risk studies of the develop-
ment of children whose mothers were schizophrenic. In one of the first such studies, 
begun in the early 1960s in Denmark, 200 such offspring were followed until their 
forties (Parnas et al., 1993). In the high-​risk group whose mothers were schizophrenic, 
16 percent were diagnosed as schizophrenic (whereas 2 percent in the low-​risk group 
were schizophrenic), and the children who eventually became schizophrenic had 
mothers whose schizophrenia was more severe. These children experienced a less 
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data evaluation. The MRC Psychiatric 
Genetics Unit became one of the key 
centers for training and played a major 
role in the career development of many 
overseas postdoctoral students, includ-
ing Irving Gottesman, Leonard Heston, 
Peter McGuffin, and Ming Tsuang.

In 1971, Slater published the first 
psychiatric genetics textbook in English, 

The Genetics of Mental Disorders (Slater 
& Cowie, 1971). Later in the 1970s, 
following Slater’s retirement, psychiatric 
genetics became temporarily 
unfashionable in the United Kingdom 
but was continued as a scientific 
discipline in North America and 
mainland Europe by researchers trained 
by Slater or influenced by his work.

William Hogarth, A Rake’s Progress, 1735. 
Plate 8. The British Museum. (William Hogarth/

Culture Club/Getty Images.) Eliot Slater. (The Estate of Eliot Slater.)

stable home life and more institutionalization, reminding us that family studies do 
not disentangle nature and nurture in the way adoption studies do. The children who 
became schizophrenic were more likely to have had birth complications, particularly 
prenatal viral infection (Cannon et al., 1993). They also showed attention problems in 
childhood, especially problems in “tuning out” incidental stimuli like the ticking of a 
clock (Hollister, Mednick, Brennan, & Cannon, 1994). Another high-​risk study found 
similar results in childhood and also found more personality disorders in the offspring 
of schizophrenic parents when the offspring were young adults (Erlenmeyer-​Kimling 
et al., 1995).

TWIN STUDIES
Twin studies show that genetics contributes importantly to familial resemblance for 
schizophrenia. As was shown in Figure  3.8, the probandwise concordance for MZ 
twins is 48 percent and the concordance for DZ twins is 17 percent. In a meta-​analysis 
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of 14 twin studies of schizophrenia using a liability-​threshold model (see Chapter 3), 
these concordances suggest a heritability of liability of about 80 percent (Sullivan 
et al., 2003a). More recent studies continue to confirm these earlier findings, yielding 
probandwise concordances of 41 to 65 percent in MZ and 0 to 28 percent in DZ pairs 
(Cardno et al., 2012).

A dramatic case study involved identical quadruplets, called the Genain quadru-
plets, all of whom were schizophrenic, although they varied considerably in severity 
of the disorder (DeLisi et al., 1984) (Figure 13.1). For 14 pairs of reared-​apart identi-
cal twins in which at least one member of each pair became schizophrenic, 9 pairs 
(64 percent) were concordant (Gottesman, 1991).

Despite the strong and consistent evidence for genetic influence provided by 
the twin studies, it should be remembered that the average concordance for identical 
twins is only about 50 percent. In other words, half of the time these genetically iden-
tical pairs of individuals are discordant for schizophrenia, an outcome that provides 
strong evidence for the importance of nongenetic factors.

Because differences within pairs of identical twins cannot be genetic in origin, 
the co-​twin control method can be used to study nongenetic reasons why one identi-
cal twin is schizophrenic and the other is not. One early study of discordant identical 

FIGURE 13.1 Identical quadruplets (known under the fictitious surname Genain), each of whom 
developed symptoms of schizophrenia between the ages of 22 and 24. (©AP Images.)
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twins found few life history differences except that the schizophrenic co-​twins were 
more likely to have had birth complications and some neurological abnormalities 
(Mosher, Polling, & Stabenau, 1971). Follow-​up studies also found differences in brain 
structures and more frequent birth complications for the schizophrenic co-​twin in 
discordant identical twin pairs (Torrey, Bowler, Taylor, & Gottesman, 1994). Recent 
research has found epigenetic (DNA methylation) differences within pairs of identi-
cal twins discordant for schizophrenia (Dempster et  al., 2011); however, there are 
inconsistent findings for copy number variation (CNV) differences between affected 
and unaffected MZ twins (Bloom et al., 2013).

An interesting finding has emerged from another use of discordant twins: study-
ing their offspring or other first-​degree relatives. Discordant identical twins provide 
direct proof of nongenetic influences because the twins are identical genetically yet 
discordant for schizophrenia. Even though one twin in discordant pairs is spared from 
schizophrenia for environmental reasons, that twin still carries the same high genetic 
risk as the twin who is schizophrenic. That is why nearly all studies find rates of 
schizophrenia as high in the families of discordant as in concordant identical twin 
pairs (Gottesman & Bertelsen, 1989; McGuffin, Farmer, & Gottesman, 1987).

ADOPTION STUDIES
Results of adoption studies agree with those of family and twin studies in pointing 
to genetic influence in schizophrenia. As described in Chapter 6, the first adoption 
study of schizophrenia by Leonard Heston in 1966 is a classic study. The results (see 
Box 6.1) showed that the risk of schizophrenia in adopted offspring of schizophrenic 
birth mothers was 11 percent (5 of 47), much greater than the 0 percent risk for 50 
adoptees whose birth parents had no known mental illness. The risk of 11 percent is 
similar to the risk for offspring reared by their schizophrenic biological parents. This 
finding not only indicates that family resemblance for schizophrenia is largely genetic 
in origin, but it also implies that growing up in a family with schizophrenics does not 
increase the risk for schizophrenia beyond the risk due to heredity.

Box 6.1 also mentioned that Heston’s results have been confirmed and extended 
by other adoption studies. Two Danish studies began in the 1960s with 5500 chil-
dren adopted between 1924 and 1947 as well as 10,000 of their 11,000 biological par-
ents. One of the studies (Rosenthal, Wender, Kety, & Schulsinger, 1971; Rosenthal 
et al., 1968) used the adoptees’ study method. This method is the same as that used 
in Heston’s study, but important experimental controls were added. At the time of 
these studies, birth parents were typically teenagers when they placed children for 
adoption. Consequently, because schizophrenia does not usually occur until later in 
life, often neither the adoption agencies nor the adoptive parents were aware of the 
diagnosis. In addition, both schizophrenic fathers and mothers were studied to assess 
whether Heston’s results, which involved only mothers, were influenced by prenatal 
maternal factors.
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This study began by identifying biological parents who had been admitted to 
a psychiatric hospital. Biological mothers or fathers who were diagnosed as schizo-
phrenic and whose children had been placed in adoptive homes were selected. This 
procedure yielded 44 birth parents (32 mothers and 12 fathers) who were diagnosed 
as chronic schizophrenics. Their 44 adopted children were matched to 67 control 
adoptees whose birth parents had no psychiatric history, as indicated by the records 
of psychiatric hospitals. The adoptees, with an average age of 33, were interviewed for 
three to five hours by an interviewer blind to the status of their birth parents.

Three (7  percent) of the 44 proband adoptees were chronic schizophrenics, 
whereas none of the 67 control adoptees were (Figure 13.2). Moreover, 27 percent 
of the probands showed schizophrenic-​like symptoms, whereas 18  percent of the 
controls had similar symptoms. Results were similar for 69 proband adoptees whose 
parents were selected by using broader criteria for schizophrenia. Results were also 
similar regardless of whether the mother or the father was schizophrenic. The unusu-
ally high rates of psychopathology in the Danish control adoptees may have occurred 
because the study relied on hospital records to assess the psychiatric status of the 
birth parents. For this reason, the study may have overlooked psychiatric problems 
of control parents that had not come to the attention of psychiatric hospitals. To 
follow up this possibility, the researchers interviewed the birth parents of the con-
trol adoptees and found that one-​third fell in the schizophrenic spectrum. Thus, the 
researchers concluded that “our controls are a poor control group and our technique 
of selection has minimized the differences between the control and index groups” 
(Wender, Rosenthal, Kety, Schulsinger, & Welner, 1974, p. 127). This bias is conserva-
tive in terms of demonstrating genetic influence.

An adoptees study in Finland confirmed these results (Tienari et al., 2004). About 
10 percent of adoptees who had a schizophrenic biological parent showed some form 
of psychosis, whereas 1 percent of control adoptees had similar disorders. This study 
also suggested genotype-​environment interaction, because adoptees whose biological 
parents were schizophrenic were more likely to have schizophrenia-​related disorders 
when the adoptive families functioned poorly.

FIGURE 13.2 Danish adoption study of schizophrenia: adoptees’ study method.
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The second Danish study (Kety et al., 1994) used the adoptees’ family method, 
focusing on 47 of the 5500 adoptees diagnosed as chronically schizophrenic. A matched 
control group of 47 nonschizophrenic adoptees was also selected. The biological and 
adoptive parents and siblings of the index and control adoptees were interviewed. 
The rate of chronic schizophrenia was 5 percent (14 of 279) for the first-​degree bio-
logical relatives of schizophrenic adoptees and 0 percent (1 of 234) for the biological 
relatives of the control adoptees. The adoptees’ family method also provides a direct 
test of the influence of the environmental effect of having a schizophrenic relative. 
If familial resemblance for schizophrenia is caused by the family environment cre-
ated by schizophrenic parents, schizophrenic adoptees should be more likely to come 
from adoptive families with schizophrenia, relative to the control adoptees. To the 
contrary, 0 percent (0 of 111) of the adoptive parents and siblings of the schizophrenic 
adoptees were schizophrenic — ​like the 0 percent incidence (0 of 117) for the adop-
tive parents and siblings of control adoptees (Figure 13.3).

This study also included many biological half siblings of the adoptees (Kety, 
1987). Such a situation arises when biological parents place a child for adoption and 
then later have another child with a different partner. The comparison of biological 
half siblings who have the same father (paternal half siblings) with those who have the 
same mother (maternal half siblings) is particularly useful for examining the possibility 
that the results of adoption studies may be affected by prenatal factors rather than by 
heredity. The resemblance between paternal half siblings is less likely to be influenced 
by prenatal factors because they were born to different mothers. Among half siblings of 
schizophrenic adoptees, 16 percent (16 of 101) were schizophrenic; among half siblings 
of control adoptees, only 3 percent (3 of 104) were schizophrenic. The results were the 
same for maternal and paternal half siblings, an outcome suggesting that prenatal fac-
tors are not likely to be of major importance in the origin of schizophrenia.

In summary, the adoption studies clearly point to genetic influence. Moreover, 
adoptive relatives of schizophrenic probands do not show increased risk for schizo-
phrenia. These results, similar to the twin results, imply that familial resemblance for 
schizophrenia is due to heredity rather than to shared family environment. Recent 
research estimating heritability directly from DNA provides additional confirmation 
of genetic influence on schizophrenia (S. H. Lee et al., 2012).

FIGURE 13.3 Danish adoption study of schizophrenia: adoptees’ family method.
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SCHIZOPHRENIA OR SCHIZOPHRENIAS?
Is schizophrenia one disorder or is it a heterogeneous collection of disorders? When 
the disorder was named in 1908, it was called “the schizophrenias.” Multivariate 
genetic analysis can address this fundamental issue of heterogeneity. The classic sub-
types of schizophrenia —​ such as catatonic (disturbance in motor behavior), paranoid 
(persecution delusions), and disorganized (both thought disorder and flat affect are 
present) — are not supported by genetic research. That is, although schizophrenia 
runs in families, the particular subtype does not. This result is seen most dramatically 
in a follow-​up of the Genain quadruplets (DeLisi et al., 1984). Although they were all 
diagnosed as schizophrenic, their symptoms varied considerably.

There is evidence that more severe schizophrenia is more heritable than milder 
forms (Gottesman, 1991). Furthermore, the evidence from both early studies and 
more recent work, using multivariate statistical methods such as cluster analysis, 
suggests that the classic “disorganized” subtype of schizophrenia, even if it does not 
“breed true,” shows an especially high rate of affected family members (Cardno et al., 
1999; Farmer, McGuffin, & Gottesman, 1987).

Another approach to the problem of heterogeneity divides schizophrenia on the 
basis of family history (Murray, Lewis, & Reveley, 1985), although there are problems 
with this approach (Eaves, Kendler, & Schulz, 1986) and there is clearly no simple 
dichotomy (Jones & Murray, 1991). These typologies seem more likely to represent 
a continuum from less to more severe forms of the same disorder rather than geneti-
cally distinct disorders (McGuffin et al., 1987).

As discussed in Chapter 10, a related strategy is to search for endophenotypes 
(Gottesman & Gould, 2003). Many potential endophenotypes have been suggested 
for schizophrenia, including various structural and functional markers in the brain, 
olfactory deficits, and attention and memory deficits (Ritsner & Gottesman, 2011). 
One additional example of a behavioral endophenotype in schizophrenia research 
is called smooth-​pursuit eye tracking. This term refers to the ability to follow a moving 
object smoothly with one’s eyes without moving the head (Levy, Holzman, Matthysse, 
& Mendell, 1993). Some studies have shown that schizophrenics whose eye tracking 
is jerky tend to have more negative symptoms and that their relatives with poor eye 
tracking are more likely to show schizophrenic-​like behaviors (Clementz, McDowell, 
& Zisook, 1994). However, other research does not support this hypothesis (Torrey 
et al., 1994). More recent efforts from the Consortium on the Genetics of Schizophre-
nia consider a wide range of neurocognitive and neurophysiological assessments as 
potential endophenotypes (Seidman et al., 2015; Swerdlow, Gur, & Braff, 2015). The 
hope is that such endophenotypes will clarify the inheritance of schizophrenia and 
assist attempts to find specific genes responsible for schizophrenia.

Although some researchers assume that schizophrenia is heterogeneous and 
needs to be split into subtypes, others argue in favor of the opposite approach, 
lumping schizophrenia-​like disorders into a broader spectrum of schizoid disorders 
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(Farmer et al., 1987; McGue & Gottesman, 1989). Because schizophrenia co-​occurs 
with various other disorders, including depression, anxiety, and substance abuse dis-
orders, future analyses of such comorbidity may shed new light on the genetic factors 
that underlie schizophrenia and related disorders (Ritsner & Gottesman, 2011; Cardno 
& Owen, 2014). Recent studies also suggest that schizophrenia and bipolar disorder 
frequently co-​occur (Laursen, Agerbo, & Pedersen, 2009) and that such comorbidity is 
due primarily to genetic influences (Lichtenstein et al., 2009; Pol et al., 2012; Cardno  
& Owen, 2014). This finding, based largely on twin studies, has been strongly supported 
by SNP-​based methods (Bulik-​Sullivan et al., 2015a; Lee et al., 2013).

IDENTIFYING GENES
Before the new DNA markers were available, attempts were made to associate classic 
genetic markers, such as blood groups, with schizophrenia. For example, several early 
studies suggested a weak association of schizophrenia marked by paranoid delusions 
with the major genes encoding human leukocyte antigens (HLAs) of the immune 
response, a gene cluster associated with many diseases (McGuffin & Sturt, 1986).

Although schizophrenia was one of the first behavioral domains put under the 
spotlight of molecular genetic analysis, it has been slow to reveal evidence for specific 
genes. During the euphoria of the 1980s, when the new DNA markers were first being 
used to find genes for complex traits, some claims were made for linkage, but they 
could not be replicated. The first was a claim for linkage with an autosomal dominant 
gene on chromosome 5 for Icelandic and British families (Sherrington et al., 1988). 
However, combined data from five other studies in other countries failed to confirm 
the linkage (McGuffin et al., 1990).

More than 20 genomewide linkage scans (with more than 350 genetic markers) 
have been published, but none have suggested a gene of major effect for schizophrenia 
(Riley & Kendler, 2006). Hundreds of reports of linkage for schizophrenia in the 1990s 
led to a confusing picture because few studies were replicated. However, greater clar-
ity has emerged since around 2000. For example, a meta-​analysis of 20 genomewide 
linkage scans of schizophrenia in diverse populations indicated greater consistency 
of linkage results than previously recognized (Lewis et al., 2003). Significant linkage 
was found on the long arm of chromosome 2 (2q); linkage was suggested for ten other 
regions, including 6p and 8p. It has been difficult to detect linkage signals because 
linkage analysis requires very large samples to discern small effects.

Association studies of schizophrenia have also provided their own challenges. 
Over 1000 genes have been tested for association with schizophrenia, making it one 
of the most studied disorders through a candidate gene approach (Gejman, Sanders, 
& Kendler, 2011). Despite this fact, there is considerable inconsistency in the results. 
Multiple genes have been suggested, such as neuregulin 1 on chromosome 8 (Stefansson 
et al., 2002) and dysbindin at 6p22.3 (Straub et al., 2002), as well as other genes related 
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to neurotransmitters expressed in the brain, such as dopamine. However, many of 
these findings do not replicate across individual studies, possibly due in part to small 
effect sizes, small sample sizes, or the selective reporting of positive results.

More recently, efforts have been made to try to resolve some of these issues. 
Larger samples obtained by combining studies, such as those of the Psychiatric 
Genomics Consortium (PGC; http://www.med.unc.edu/pgc), are showing greater 
power to detect genes that increase risk for schizophrenia. By the end of 2013, 
genomewide association studies (GWAS), which systematically look at the whole 
genome, had detected around 22 nonoverlapping possible loci (Ripke et al., 2011). 
Moreover, as mentioned in Chapter 9, success has also been found when looking at 
the risk across a set of genes. For example, the International Schizophrenia Consor-
tium has found that hundreds of genes, each with small individual effects, contribute 
to the risk for developing the disorder (Purcell et al., 2009). Not only was this poly-
genic score higher in people with schizophrenia, it was also higher in people with 
bipolar disorder than controls (Kavanagh, Tansey, O’Donovan, & Owen, 2015). The 
overall conclusions from these studies were that (i) common variants are important to 
the etiology of schizophrenia but act in a polygenic fashion (i.e., no common variant 
individually contributes substantially to liability) (Bulik-​Sullivan et al., 2015b; Grat-
ten, Wray, Keller, & Visscher, 2014), (ii) larger sample sizes are needed, and (iii) there 
is substantial genetic overlap between adult-​onset disorders, especially schizophrenia 
and bipolar disorder (Bulik-​Sullivan et al., 2015a; Kavanagh et al., 2015).

During the past few years, the PGC sample sizes have more than doubled and 
meta-​analyses of these PGC datasets have resulted in 108 distinct genomic loci 
associations with schizophrenia (Schizophrenia Working Group of the Psychiatric 
Genomics Consortium, 2014). Follow-​up efforts found that some of these associations 
were enriched in brain-​specific gene enhancers (a short 50–1500 bp region of DNA 
that can be bound with proteins to activate transcription of a gene), including those 
involved in immune function. Despite the results of this landmark study, plausible 
functional variants could not be identified for some of the findings, suggesting that 
we are still limited in our understanding of the underlying biology of schizophrenia.

In addition to these efforts within the realm of common genetic variation, there 
is also growing interest in the importance of rare variants on risk for schizophrenia. 
Before exome sequencing became popular (see Chapter 9), there was growing evi-
dence that copy number variants (CNVs, see Chapter 9) were seen more frequently 
in individuals with schizophrenia. Rare and large CNVs associated with schizophre-
nia have been found on several chromosomes, and these investigations, particularly 
of de novo CNVs, have helped to provide an explanation for some of the biological 
processes underlying schizophrenia (see Kavanagh et al., 2015, for a review). This is, 
in part, because CNVs tend to affect many genes and because the effects of CNVs are 
not specific. Many of the CNVs implicated in schizophrenia are also associated with 
at least one other disorder, such as autism spectrum disorder or attention-​deficit/
hyperactivity disorder (ADHD, see Chapter  15). More recent efforts, particularly 

http://www.med.unc.edu/pgc
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those of two exome sequencing studies that screened most of the coding exome for 
rare variants that might affect risk (Fromer et al., 2014; Purcell et al., 2014), suggest 
that de novo single nucleotide variant mutations and small insertions and deletions 
(indels) might play less of a role in schizophrenia than indicated by earlier studies. 
While the exome sequencing studies lacked power to implicate specific genes and 
rare mutations, these results collectively suggest a very complex genetic architecture 
underlying this disorder that includes both rare and common genetic variation.

Summary
Psychopathology is the most active area of research in behavioral genetics. For schizo-
phrenia, lifetime risk is about 1 percent in the general population, 10 percent in first-​
degree relatives whether reared together or adopted apart, 17 percent for fraternal 
twins, and 48 percent for identical twins. This pattern of results indicates substantial 
genetic influence as well as nonshared environmental influence. Genetic high-​risk 
studies and co-​twin control studies suggest that birth complications and attention 
problems in childhood are weak predictors of schizophrenia, which usually strikes in 
early adulthood. Genetic influence has been found utilizing both the adoptees’ study 
method, like that used in the first adoption study by Heston, and the adoptees’ family 
method. More severe schizophrenia may be more heritable than less severe forms. 
Recent research suggests that there is substantial genetic overlap between schizophre-
nia and other psychiatric disorders, especially bipolar disorder.

There has been considerable progress in research on the molecular genetics of 
schizophrenia in the past few years. Linkage studies with schizophrenia have begun 
to yield consistent results and, combined with results from recent genomewide asso-
ciation studies and rare variant studies, have led to the identification of several genes 
or regions that have significant but small associations with schizophrenia. Overall, 
genetic liability to schizophrenia results from multiple genes of small effect.
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Other Adult 
Psychopathology

Although schizophrenia has been the most highly studied disorder in behavioral 

genetics, in recent years the spotlight has turned to mood disorders. In this 

chapter, we provide an overview of genetic research on mood disorders as well as 

other adult psychopathology. The chapter ends with a discussion of the extent to 

which genes that affect one disorder also affect other disorders.

MOOD DISORDERS

Mood disorders involve severe swings in mood, not just the “blues” that all people 
feel on occasion. For example, over 50 percent of all suicides are by people diagnosed 
as having mood disorders (Isometsä, 2014). There are two major categories of mood 
disorders: major depressive disorder, consisting of episodes of depression, and bipolar 
disorder, in which there are episodes of both depression and mania.

Major depressive disorder usually has a slow onset over weeks or even months. 
Each episode typically lasts several months and ends gradually. Characteristic fea-
tures include depressed mood, loss of interest in usual activities, disturbance of 
appetite and sleep, loss of energy, and thoughts of death or suicide. Major depressive 
disorder affects an astounding number of people. In a U.S. survey, the lifetime risk is 
about 17 percent, with about half of these in a severe or very severe category; risk 
is two times greater for women than for men after adolescence (Kessler et al., 2012; 
see National Comorbidity Study at http://www.hcp.med.harvard.edu/ncs/ for more 
information about prevalence of psychopathology). Moreover, the problem is getting 
worse: Each successive generation born since World War II has higher rates of depres-
sion (Burke, Burke, Roe, & Regier, 1991), and prevalence rates more than doubled 
from the early 1990s to the early 2000s (Compton, Conway, Stinson, & Grant, 2006). 
These temporal trends could possibly be due to changes in environmental influences, 
diagnostic criteria, or clinical referral rates. Major depressive disorder is sometimes 

http://www.hcp.med.harvard.edu/ncs


O ther     A d u l t  P s y chopatho        l o g y   2 2 3

called unipolar depression because it involves only depression. In contrast, bipolar dis-
order, also known as manic-​depressive illness, is a disorder in which the mood of the 
affected individual alternates between the depressive pole and the other pole of mood, 
called mania. Mania involves euphoria, inflated self-​esteem, sleeplessness, talkative-
ness, racing thoughts, distractibility, hyperactivity, and reckless behavior. Mania typi-
cally begins and ends suddenly, and it lasts from several days to several months. Mania 
is sometimes difficult to diagnose; for this reason the DSM (the American Psychiatric 
Association’s Diagnostic and Statistical Manual of Mental Disorders) has distinguished 
bipolar I disorder, with a clear manic episode, from bipolar II disorder, with a less clearly 
defined manic episode. Bipolar disorder is much less common than major depression, 
with an incidence of about 4 percent in the adult population and no gender difference 
(Kessler et al., 2012).

Family Studies

For more than 70 years, family studies have shown increased risk for first-​degree relatives 
of individuals with mood disorders (Slater & Cowie, 1971). Since the 1960s, research-
ers have considered major depression and bipolar disorder separately. In seven family 
studies of major depression, the family risk was 9 percent on average, whereas risk in 
control samples was about 3 percent (McGuffin & Katz, 1986). Age-​corrected morbidity 
risk estimates that take into account lifetime risk (see Chapter 3) are about twice as high 
(Sullivan, Neale, & Kendler, 2000). A review of 18 family studies of bipolar I and II dis-
order yielded an average risk of 9 percent, as compared to less than 1 percent in control 
individuals (Smoller & Finn, 2003). (See Figure 14.1.) The risks in these studies are low 
relative to the frequency of the disorder mentioned earlier because these studies focused 
on severe depression and bipolar disorder, cases that often required hospitalization.

It has been hypothesized that the distinction between unipolar major depres-
sion and bipolar disorder is primarily a matter of severity; bipolar disorder may be 
a more severe form of depression (McGuffin & Katz, 1986). The basic multivariate 
finding from family studies is that relatives of unipolar probands are not at increased 
risk for bipolar disorder (less than 1 percent), but relatives of bipolar probands are 
at increased risk (14  percent) for unipolar depression (Smoller & Finn, 2003). If 
we postulate that bipolar disorder is a more severe form of depression, this model 
would explain why familial risk is greater for bipolar disorder, why bipolar probands 
have an excess of unipolar relatives, and why unipolar probands do not have many 
relatives with bipolar disorder. However, a twin study discussed in the next section 
and a recent family study do not provide much support for the hypothesis that 
bipolar disorder is a more severe form of unipolar depression (Axelson et al., 2015; 
McGuffin et al., 2003). Identifying genes associated with these disorders will provide  
crucial evidence for resolving such issues, although to date the findings are mixed. A 
meta-​analysis of gene variants in the methylenetetrahydrofolate reductase (MTHFR) 
gene and schizophrenia, bipolar disorder, and unipolar major depression found an 
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association with the combined disorders for one MTHFR variant, suggesting a shared 
genetic influence on the three disorders (Peerbooms et al., 2011), although at least one 
additional meta-​analysis suggests that these findings are limited to Asian and African 
populations (Hu et al., 2014). Other genes have also been associated with both bipolar 
disorder and unipolar depression, further supporting the likelihood of a common 
genetic liability to these disorders (e.g., Schulze et al., 2014).

Are some forms of depression more familial? For example, there is a long history 
of trying to subdivide depression into reactive (triggered by an event) and endog-
enous (coming from within) subtypes, but family studies provide little support for 
this distinction (Rush & Weissenburger, 1994). However, severity and especially 
recurrence show increased familiality for major depressive disorder (Janzing et  al., 
2009; Milne et al., 2009; Sullivan et al., 2000). Early onset appears to increase familial 
risk for bipolar disorder (Smoller & Finn, 2003). Drug use and suicide attempts are 
also familial features of bipolar disorder (Schulze, Hedeker, Zandi, Rietschel, & 
McMahon, 2006). Another potentially promising direction for subdividing depression 
is in terms of response to drugs (Binder & Holsboer, 2006). For example, there is some 
evidence that the therapeutic response to specific antidepressants tends to run in 
families (Tsuang & Faraone, 1990). A well-​known drug treatment for bipolar disorder 
is lithium; responsiveness to lithium appears to be strongly familial (Grof et al., 2002).
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FIGURE 14.1  Family studies of mood disorders.
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Twin Studies

Twin studies yield evidence for moderate genetic influence for mood disorders. For 
major depressive disorder, six twin studies yielded average twin probandwise con-
cordances of 0.43 for MZ twins and 0.28 for DZ twins (Sullivan et al., 2000). Liability-​
threshold model fitting of these data estimated heritability of liability as 0.37, with 
no shared environmental influence. The largest twin study to date yielded highly 
similar results: 0.38 heritability and no shared environmental influence (Kendler, 
Gatz, Gardner, & Pedersen, 2006a). However, family studies suggest that more severe 
depression might be more heritable. In line with this suggestion, the only clinically 
ascertained major depressive disorder twin sample large enough to perform model-​
fitting analyses estimated heritability of liability as 70  percent (McGuffin, Katz,  
Watkins, & Rutherford, 1996). However, it is also possible that the higher heritability 
of depression in the clinical sample represents higher reliability of clinical assess-
ment. Some have argued that there are multiple forms of major depression and that 
it cannot be considered a homogeneous single disorder (Goldberg, 2011). Findings 
from a large twin study of the DSM symptoms for major depression yielded three 
genetic factors rather than a single underlying genetic factor, supporting the idea that 
there are multiple forms of major depression and that each may have different genetic 
underpinnings (Kendler, Aggen, & Neale, 2013).

For bipolar disorder, average twin concordances were 72 percent for MZ twins 
and 40 percent for DZ twins in early studies (Allen, 1976); three more recent twin 
studies yield average twin concordances of 65 percent and 7 percent, respectively 
(Smoller & Finn, 2003). Two twin studies of bipolar disorder using different samples 
from different countries yield strikingly similar results: MZ and DZ twin concor-
dances were 40 percent and 5 percent in a U.K.  study (McGuffin et al., 2003) and 
43 percent and 6 percent in a Finnish study (Kieseppa, Partonen, Haukka, Kaprio, & 
Lonnqvist, 2004). Model-​fitting liability-​threshold analyses suggest extremely high 
heritabilities of liability (0.89 and 0.93, respectively) and no shared environmental 
influence. The average MZ and DZ twin concordances for the five more recent studies 
described above are 55 percent and 7 percent, respectively (Figure 14.2).

As mentioned earlier, one of the most important goals of genetic research is 
to provide diagnostic classifications based on etiology rather than symptoms. For 
example, are unipolar depression and bipolar disorder genetically distinct? One 
twin study investigated the model described earlier that bipolar disorder is a more 
extreme version of major depressive disorder (McGuffin et  al., 2003). Part of the 
problem in addressing this issue is that conventional diagnostic rules assume that an 
individual has either unipolar or bipolar disorder and that bipolar disorder trumps 
unipolar disorder. However, in this twin study, this diagnostic assumption was relaxed 
and a genetic correlation of 0.65 was found between depression and mania, a finding 
that supports the model that bipolar disorder is a more extreme version of unipolar 
depression. However, 70 percent of the genetic variance on mania was independent 
of depression, a finding that does not support the model. A model that explicitly 
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tested the assumption that bipolar disorder is a more extreme form of unipolar 
depression was rejected, but so was a model in which the two disorders were assumed 
to be genetically distinct. This lack of resolution is probably due to a lack of power. 
Although this was the largest clinically ascertained twin study, there were only 
67 pairs in which at least one twin was diagnosed with bipolar disorder and 244 pairs 
in which at least one twin was diagnosed with unipolar depression. Resolution of this 
important diagnostic issue can be addressed definitively when genes are identified for 
the two disorders.

As in the research on schizophrenia (Chapter 13), a study of offspring of identical 
twins discordant for bipolar disorder has been reported (Bertelsen, 1985). Similar to 
the results for schizophrenia, the same 10 percent risk for mood disorder was found 
in the offspring of the unaffected twin and in the offspring of the affected twin. This 
outcome implies that the identical twin who does not succumb to bipolar disorder 
nonetheless transmits a liability for the illness to offspring to the same extent as does 
the ill twin.

Adoption Studies

Results of adoption research on mood disorders are mixed. The largest study began 
with 71 adoptees with a broad range of mood disorders (Wender et al., 1986). Mood 
disorders were found in 8 percent of the 387 biological relatives of the probands, a 
risk only slightly greater than the risk of 5 percent for the 344 biological relatives of 
control adoptees. The biological relatives of the probands showed somewhat greater 
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rates of alcoholism (5 percent versus 2 percent) and of attempted or actual suicide 
(7 percent versus 1 percent). Two other adoption studies relying on medical records 
of depression found little evidence for genetic influence (Cadoret, O’Gorman, 
Heywood, & Troughton, 1985a; von Knorring, Cloninger, Bohman, & Sigvardsson, 
1983). Although the sample size is necessarily small, 12 pairs of identical twins reared 
apart have been identified in which at least one member of each pair had suffered 
from major depression (Bertelsen, 1985). Eight of the 12 pairs (67 percent) were con-
cordant for major depression, which is consistent with a hypothesis of at least some 
genetic influence on depression.

An adoption study that focused on adoptees with bipolar disorder found stronger 
evidence for genetic influence (Mendlewicz & Rainer, 1977). The rate of bipolar dis-
order in the birth parents of the bipolar adoptees was 7 percent, but it was 0 percent 
for the parents of control adoptees. As in the family studies, birth parents of these 
bipolar adoptees also showed elevated rates of unipolar depression (21 percent) rela-
tive to the rate for birth parents of control adoptees (2 percent), a result suggesting 
that the two disorders are not distinct genetically. Adoptive parents of the bipolar and 
control adoptees differed little in their rates of mood disorders.

SNP-​Based Heritability

As described in Chapter 7, SNP-​based heritability can be estimated from DNA in 
large samples of unrelated individuals. SNP heritability estimates have been reported 
for major depressive disorder (32 percent; Lubke et al., 2012), as well as variability in 
nonsomatic depression (21 percent; Laurin et al., 2015), age at onset (17 to 51 percent, 
depending on the sample; Ferentinos et al., 2015; Power et al., 2012), variability in 
response to pharmacological treatment (42 to 47 percent; Tansey et al., 2013; Palmer 
et al., in press), and symptoms of appetite and insomnia (30 percent; Pearson et al., 
2016). These data suggest that aspects of major depressive disorder can be accounted 
for by the additive aggregate contribution of common SNPs, each contributing a 
small amount of variance to depression-​related phenotypes.

Identifying Genes

For decades, the greater risk of major depression for females led to the hypothesis that 
a dominant gene on the X chromosome might be involved. As explained in Chapter 3, 
females can inherit the gene on either of their two X chromosomes, whereas males 
can only inherit the gene on the X chromosome they receive from their mother. 
Although initially linkage was reported between depression and color blindness, 
which is caused by genes on the X chromosome (Chapter 3), studies of DNA markers 
on the X chromosome failed to confirm linkage (Baron, Freimer, Risch, Lerer, & 
Alexander, 1993). Father-​to-​son inheritance is common for both major depression and 
bipolar disorder, which argues against X-​linkage inheritance. Moreover, as mentioned 
earlier, bipolar disorder shows little sex difference. For these reasons, X linkage seems 
unlikely (Hebebrand, 1992).
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In 1987, researchers reported linkage between bipolar disorder and markers  
on chromosome 11 in a genetically isolated community of Old Order Amish in 
Pennsylvania (Egeland et al., 1987). Unfortunately, this highly publicized finding was 
not replicated in other studies. The original report was withdrawn when follow-​up 
research on the original pedigree with additional data showed that the evidence for 
linkage disappeared (Kelsoe et al., 1989).

These false starts led to greater caution in the search for genes for mood dis-
orders. Linkage studies of major depressive disorder have lagged behind those for 
schizophrenia and bipolar disorder because, as discussed above, major depressive dis-
order appears to be less heritable, at least in community-​based samples (McGuffin, 
Cohen, & Knight, 2007). Three early genomewide linkage studies of major depres-
sive disorder converged on linkage at 15q (Camp et al., 2005; Holmans et al., 2007; 
McGuffin et al., 2005). Follow-​up fine mapping showed modestly positive evidence 
for linkage at 15q25-q26 (Levinson et al., 2007). Recent reviews of genomewide asso-
ciation (GWA) studies of major depression have concluded that no significant asso-
ciations have been found (Cohen-​Woods, Craig, & McGuffin, 2013; Flint & Kendler, 
2014). Two loci on chromosome 10 have been identified for major depressive disorder 
using a highly selected sample with a severe subtype (CONVERGE Consortium, 
2015). Although these new findings did not robustly replicate using a mega-​analysis 
of European studies, they suggest that focusing on subtypes of major depression may 
prove to be an important approach in identifying genes associated with depression.

Genomewide linkage scans of bipolar disorder led to a surprising discovery. A 
meta-​analysis of 11 linkage studies with more than 1200 individuals diagnosed as 
having bipolar disorder found strong evidence for linkage at 13q and 22q (Badner & 
Gershon, 2002). The same study also conducted a meta-​analysis of 18 linkage stud-
ies of schizophrenia and found the strongest evidence for linkage in the same two 
regions, 13q and 22q, in addition to other regions. Subsequent analyses using multiple 
combined datasets support the finding of genes common to both bipolar disorder and 
schizophrenia (e.g., Purcell et al., 2009). More recent GWA studies have supported 
the finding that bipolar disorder and schizophrenia are associated with the same com-
mon SNPs (Cross-​Disorder Group of the Psychiatric Genomics Consortium, 2013a), 
although these associations were in a different region (3p21) and were also associated 
with major depressive disorder. Associations for bipolar disorder at a chromosome 
3p21 locus have been replicated (e.g., Chen et al., 2013) and several studies have identi-
fied new SNPs associated with bipolar disorder using genomewide approaches (e.g.,  
Mühleisen et al., 2015; Chen et al., 2013). Two of the genes that have been associated 
with bipolar disorder in multiple studies are CACNA1C and ANK3 (see Shinozaki & 
Potash, 2014, and Gatt, Burton, Williams, & Schofield, 2015, for reviews).

Because of the large number of genes that have been associated with bipolar 
disorder, with only a handful consistently replicated, it has been difficult to interpret 
these findings. One strategy that has been used is to conduct studies designed to clarify 
the potential functional role of the gene variation on brain activity or psychological 
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functioning. For example, one such study found that healthy subjects carrying the 
form of the gene CACNA1C that has been associated with bipolar disorder had lower 
levels of extraversion and higher harm avoidance, trait anxiety, paranoid ideation, and 
high startle reactivity (Roussos, Giakoumaki, Georgakopoulos, Robakis, & Bitsios, 
2011). More recently, the gene CACNA1C and other genes commonly associated with 
both bipolar disorder and schizophrenia (e.g., ANK3) were examined in regard to their 
impact on human brain structure and function (Gurung & Prata, 2015). Most of the 
genes examined were also related to neuroimaging phenotypes that have been found 
to be important in schizophrenia and bipolar disorder. For example, CACNA1C was 
associated with white and grey matter volume, regional activation and functional  
connectivity during executive tasks, and facial affect recognition. These findings and 
others examining functional relevance of gene variation are critical for understanding 
not just which genes may be associated with disorder, but also why they are associated.

ANXIETY DISORDERS

A wide range of disorders involve anxiety (panic disorder, generalized anxiety dis-
order, and phobias). In panic disorder, recurrent panic attacks come on suddenly and 
unexpectedly, usually lasting for several minutes. Panic attacks often lead to a fear of 
being in a situation that might bring on more panic attacks (e.g., agoraphobia, which 
literally means “fear of the marketplace”). Generalized anxiety refers to a more chronic 
state of diffuse anxiety marked by excessive and uncontrollable worrying. In a phobia, 
the fear is attached to a specific stimulus, such as fear of heights (acrophobia), enclosed 
places (claustrophobia), or social situations (social phobia).

Anxiety disorders are usually not as crippling as schizophrenia or severe depres-
sive disorders. However, they are the most common form of mental illness, with a life-
time prevalence of 29 percent (Kessler et al., 2005a), and can lead to other disorders, 
notably depression and alcoholism. Median age of onset is much earlier for anxiety 
(age 11) than for mood disorders (age 30). The lifetime risks for anxiety disorders are 
5 percent for panic disorder, 6 percent for generalized anxiety disorder, 13 percent for 
specific phobias, and 12 percent for social phobia. Panic disorder, generalized anxiety 
disorder, and specific phobias are twice as common in women as in men.

There has been much less genetic research on anxiety disorders than on schizo-
phrenia and mood disorders. In general, results for anxiety disorders appear to be 
similar to those for depression in suggesting moderate genetic influence, as compared 
to the more substantial genetic influence seen for schizophrenia and bipolar disorder. 
As discussed later, the similarity in results for anxiety and depression may be caused 
by genetic overlap between them. Nonetheless, we will briefly review evidence for 
genetic influence for panic disorder, generalized anxiety disorder, and phobias.

A review of eight family studies of panic disorder yielded an average morbidity 
risk of 13 percent in first-​degree relatives of cases and 2 percent in controls (Shih, 
Belmonte, & Zandi, 2004). In an early twin study of panic disorder, the concordance 
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rates for identical and fraternal twins were 31 percent and 10 percent, respectively 
(Torgersen, 1983). In two large twin studies with nonclinical samples, the heritability 
of liability was about 40 percent, with no evidence of shared environmental influence 
(Kendler, Gardner, & Prescott, 2001; Mosing et al., 2009a); in two other large twin 
studies, heritability was approximately 30  percent, with no shared environmental 
influence (López-​Solà et al., 2014; Tambs et al., 2009). A meta-​analysis of five twin 
studies yielded a similar liability heritability (43 percent), with no shared environ-
mental influence (Hettema, Neale, & Kendler, 2001a). No adoption data are available 
for panic disorder or any other anxiety disorders.

Generalized anxiety disorder appears to be as familial as panic disorder, but 
the evidence for heritability is weaker. A review of family studies indicates an aver-
age risk of about 10 percent among first-​degree relatives as compared to a risk of 
2 percent in controls (Eley, Collier, & McGuffin, 2002). However, two twin studies 
found no evidence for genetic influence (Andrews, Stewart, Allen, & Henderson, 
1990; Torgersen, 1983); three other twin studies suggested modest genetic influence 
of about 20 percent and little shared environmental influence (Hettema, Prescott, & 
Kendler, 2001b; Kendler, Neale, Kessler, Heath, & Eaves, 1992; Scherrer et al., 2000). 
Two additional twin studies found a somewhat higher heritability for generalized 
anxiety disorder of around 30 percent (López-​Solà et al., 2014; Tambs et al., 2009), 
although for one of the studies nearly all of this genetic variance was shared with 
other anxiety disorders. A recent report estimated modest SNP heritability, around 
10 percent, for any anxiety disorder (Otowa et al., 2016).

Phobias show familial resemblance: 30 percent familial risk versus 10 percent 
in controls for specific phobias excluding agoraphobia (Fyer, Mannuzza, Chapman, 
Martin, & Klein, 1995), 5 percent versus 3 percent for agoraphobia (Eley et al., 2002), 
and 20 percent versus 5 percent for social phobia (Stein et al., 1998). A meta-​analysis 
of ten published twin studies of phobias found an average heritability around 0.30 
for phobias of animals, situations, and blood-​injury-​injection, with some evidence 
of modest shared environmental influences only for situational and blood-​injury-​
injection phobias (Van Houtem et  al., 2013). Although there is little evidence of 
shared environmental influence, phobias are learned, even fears of evolutionarily 
fear-​relevant stimuli such as snakes and spiders. An interesting twin study of fear 
conditioning showed moderate genetic influence on individual differences in learning 
and extinguishing fears (Hettema, Annas, Neale, Kendler, & Fredrikson, 2003).

OTHER DISORDERS

As mentioned earlier, the DSM includes many other categories of disorders. We know 
about the genetics of only a handful of these other disorders. These include post-
traumatic stress disorder (PTSD), depressive disorder with seasonal pattern, somatic 
symptom disorders (including chronic fatigue), eating disorders, and obsessive-​
compulsive disorders. Other disorders are discussed in later chapters: impulse-​control 
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disorders such as hyperactivity in Chapter  15, antisocial personality disorder in 
Chapter 16, and substance abuse disorders in Chapter 17.

Several studies have examined the genetics of posttraumatic stress disorder 
(PTSD). Diagnosis of PTSD depends on experiencing a prior traumatic event that 
threatens death or serious injury, such as war, assault, or natural disaster, witnessing 
such an event, or learning that the traumatic event occurred to a close family mem-
ber or close friend. PTSD symptoms include re-​experiencing the trauma (intrusive 
memories and nightmares) and denying the trauma (emotional numbing). One survey 
estimated that the lifetime risk for one PTSD episode is about 1 percent (Davidson, 
Hughes, Blazer, & George, 1991). The risk is much higher, of course, in those who 
have experienced trauma. For example, after a plane crash, as many as one-​half of the 
survivors develop PTSD (Smith, North, McColl, & Shea, 1990). About 10 percent 
of U.S. veterans of the Vietnam War still suffered from PTSD many years later (Weiss 
et al., 1992). Response to trauma appears to show familial resemblance (Eley et al., 
2002). The Vietnam War provided an opportunity to conduct a twin study of PTSD 
because more than 4000 twin pairs were veterans of the war. A series of studies of 
these twins began by dividing the sample into those who served in Southeast Asia 
(who were much more likely to experience trauma) and those who did not (True 
et al., 1993). The results were similar for both groups regardless of the type of trauma 
experienced: Heritabilities of 15 PTSD symptoms were all about 40  percent, and 
there was no evidence of shared environmental influence. A large all-​female twin 
study of PTSD found that genetic influences accounted for 72 percent of the vari-
ance in PTSD with the remaining variance due to nonshared environmental effects 
(Sartor et al., 2011).

Depressive disorder with seasonal pattern (formerly called seasonal affective disorder 
or SAD) is a type of major depression that occurs seasonally, typically in the fall or 
winter (Rosenthal et al., 1984). Family and twin studies suggest results similar to those 
for depression, with modest heritability (about 30  percent) and little shared envi-
ronmental influence (Sher, Goldman, Ozaki, & Rosenthal, 1999). However, one twin 
study reported heritability twice as high (Jang, Lam, Livesley, & Vernon, 1997). It is 
noteworthy that this study was conducted in British Columbia (Canada) and yielded 
very high rates of SAD compared to the other studies, which suggests the possibility 
that the higher heritability and prevalence in the Canadian samples might be due to 
the northern latitude and more severe winters of Canada (Jang, 2005). A recent GWA 
study found overlap in genetic risk for seasonality and bipolar disorder, major depres-
sion, and schizophrenia, providing some support for the seasonal pattern category 
introduced in the DSM-​5 (Byrne et al., 2015).

In somatic symptom and related disorders, psychological conflicts lead to physical 
symptoms such as stomach pains. There are several disorders in this category but 
only somatic symptom disorders have been examined in genetic studies. Somatization 
disorder involves multiple symptoms with no apparent physical cause. Somatic 
symptom disorders show some genetic influence in family, twin, and adoption studies 
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(Guze, 1993). Somatic symptom disorder, which is much more common in women 
than in men, shows strong familial resemblance for women, but for men it is related to 
increased family risk for antisocial personality (Guze, Cloninger, Martin, & Clayton, 
1986; Lilienfeld, 1992). An adoption study suggests that this link between somatic 
symptom disorder in women and antisocial behavior in men may be genetic in origin 
(Bohman, Cloninger, von Knorring, & Sigvardsson, 1984). Biological fathers of 
adopted women with somatic symptom disorder showed increased rates of antisocial 
behavior and alcoholism. A twin study of somatic distress symptoms in an unselected 
sample showed genetic as well as shared environmental influence; it also suggested 
that some of the genetic influence is independent of depression and phobia (Gillespie, 
Zhu, Heath, Hickie, & Martin, 2000).

Chronic fatigue refers to fatigue of more than six months’ duration that cannot 
be explained by a physical or other psychiatric disorder. Family studies suggest that 
chronic fatigue is moderately familial (Albright, Light, Light, Bateman, & Cannon-​
Albright, 2011; Walsh, Zainal, Middleton, & Paykel, 2001). A twin study of diagnosed 
chronic fatigue found concordance rates of 55 percent in MZ twins and 19 percent 
in DZ twins (Buchwald et  al., 2001). Twin studies of chronic fatigue symptoms in 
unselected samples yielded mixed results. Most twin studies found modest genetic 
and shared environmental influences (Sullivan, Evengard, Jacks, & Pedersen, 2005; 
Sullivan, Kovalenko, York, Prescott, & Kendler, 2003b), even in childhood (Farmer, 
Scourfield, Martin, Cardno, & McGuffin, 1999). In another study, fatigue-related 
symptoms were found to be due mostly to shared environmental influences in women 
and to genetic and nonshared environmental influences in men (Schur, Afari, Gold-
berg, Buchwald, & Sullivan, 2007). A set of studies that examined chronic fatigue 
symptoms and other somatic symptoms found that the symptoms could be explained 
by genetic and nonshared environmental influences (Kato, Sullivan, Evengard, & Ped-
ersen, 2009; Kato, Sullivan, & Pedersen, 2010).

Eating disorders include anorexia nervosa (extreme dieting and avoidance of 
food) and bulimia nervosa (binge eating followed by vomiting), both of which occur 
mostly in adolescent girls and young women, and a new category called binge eating  
disorder (binge eating and feelings of lack of control and distress). Both anorexia nervosa 
and bulimia nervosa appear to run in families (Eley et al., 2002); in twin studies, both 
appear to be moderately heritable, with little influence of shared environment (Trace, 
Baker, Peñas-​Lledó, & Bulik, 2013). For example, the largest twin study of anorexia 
found a heritability of liability of 56 percent and no shared environmental influence 
(Bulik et  al., 2006). A sibling adoption study of disordered eating yielded a simi-
lar pattern of findings, with genetic influences accounting for more than half of the 
variance and no shared environmental influences (Klump, Suisman, Burt, McGue, & 
Iacono, 2009). Eating disorders is an area that is especially promising for studies of the 
interplay between genes and environment (Bulik, 2005), including biological factors 
such as puberty and hormone exposure that may moderate genetic and environmen-
tal influences (see Klump, 2013, for a review).
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Obsessive-​compulsive disorders (OCDs) are indicated by intrusive, repetitive, and 
persistent thoughts, urges, or images that cause distress and that result in excessive 
or repetitive ritualistic behaviors, such as repeated hand washing in response to an 
obsession with hygiene. Family studies have tended to yield inconsistent findings for 
OCD because of differences in diagnostic criteria and small sample sizes. A review 
of family studies of OCD reported an average risk of 7 percent for family members 
and 3 percent for controls for studies using consistent criteria and larger sample sizes 
(Shih et al., 2004). Genetic influences accounted for around 40 percent of the variance, 
while shared environmental effects accounted for less than 10 percent of the variance 
in a meta-​analysis of 14 reports of twin studies of obsessive-​compulsive symptoms 
(Taylor, 2011), and two large twin studies of OCD symptoms found heritability of 
around 40 percent with no significant shared environmental influence (López-​Solà 
et  al., 2014; Mataix-​Cols et  al., 2013). SNP heritability estimates for obsessive-​
compulsive symptoms suggest that 14 percent of the variance can be accounted for by 
the additive aggregate contribution of common SNPs (den Braber et al., 2016).

CO-​OCCURRENCE OF DISORDERS

The co-​occurrence, or comorbidity, of psychiatric disorders is striking. People with one 
disorder have almost a 50 percent chance of having more than one disorder during 
a 12-month period (Kessler, Chiu, Demler, Merikangas, & Walters, 2005b). In addi-
tion, more serious disorders are much more likely to involve comorbidity. Are these 
really different disorders that co-​occur, or does the co-​occurrence call into question 
current diagnostic systems? Diagnostic systems are based on phenotypic descriptions 
of symptoms rather than on causes. Genetic research offers the hope of systems of 
diagnosis that take into account evidence on causation. As explained in Chapter 7 and 
the Appendix, multivariate genetic analysis of twin and adoption data can be used to 
ask whether genes that affect one trait also affect another trait.

Hundreds of genetic studies have addressed this key question of comorbidity 
in psychopathology. Earlier in this chapter, we considered the surprising finding of 
genetic overlap between major depressive disorder and bipolar disorder as well as 
the even more surprising possibility of genetic overlap between bipolar disorder and 
schizophrenia. Scores of multivariate family and twin studies have examined comor-
bidity across the many anxiety disorders as well as between anxiety disorders and 
other disorders such as depression and alcoholism. Rather than describe studies that 
compare two or three disorders (see, for example, Jang, 2005; McGuffin, Gottesman, & 
Owen, 2002), we will provide an overview of multivariate genetic results that point to 
a surprising degree of genetic comorbidity.

For example, consider the diverse anxiety disorders. A multivariate genetic 
analysis of lifetime diagnoses of major anxiety disorders indicated substantial genetic 
overlap among generalized anxiety disorder, panic disorder, agoraphobia, and social 
phobia (Hettema, Prescott, Myers, Neale, & Kendler, 2005). The only specific genetic 
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effects were found for specific phobias such as fear of animals. Differences between 
the disorders are largely caused by nonshared environmental factors. Results were 
similar for men and women despite the much greater frequency of anxiety disorders 
in women. A subsequent twin study examined panic disorder, generalized anxiety 
disorder, phobias, OCD, and PTSD (Tambs et  al., 2009). Again, all of the anxiety 
disorders were influenced by a common genetic factor, with only phobias and OCD 
showing some specific genetic influences; no shared environmental influences were 
significant for any of the disorders.

Broadening this multivariate genetic approach beyond anxiety disorders to 
include major depression yields the most surprising finding in this area: Anxiety 
(especially generalized anxiety disorder) and depression are largely the same thing 
genetically. This finding was initially reported in a paper in 1992 for lifetime esti-
mates (Kendler et  al., 1992), with results summarized in Figure  14.3. Heritability 
of liability in this study was 42  percent for major depression and 69  percent for 
generalized anxiety disorder. There was no significant shared environmental influ-
ence; nonshared environment accounted for the remainder of the liability of the two 
disorders. The amazing finding was the genetic correlation of 1.0 between the two 
disorders, indicating that the same genes affect depression and anxiety. Nonshared 
environmental influences correlated 0.51, suggesting that nonshared environmen-
tal factors differentiate the disorders to some extent. These findings for lifetime 
estimates of depression and anxiety were replicated using one-​year prevalences 
obtained from follow-​up interviews (Kendler, 1996). A review of 23 twin studies and 
12 family studies confirms that anxiety and depression are largely the same disor-
der genetically and that the disorders are differentiated by nonshared environmen-
tal factors (Middeldorp, Cath, Van Dyck, & Boomsma, 2005). Chapter 15 describes 
more work in this area that has focused on children and adolescents, rather than 
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FIGURE 14.3  Multivariate genetic results for major depression and generalized anxiety disorder. 

(Data from Kendler, Neale, Kessler, Heath, & Eaves, 1992. Copyright 1992 by the American Medical 

Association.)
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adults, with the aim of understanding how these disorders develop and co-​occur 
across development.

Going beyond depression and anxiety disorders to include drug abuse and antiso-
cial behavior suggests a genetic structure of common psychiatric disorders (not includ-
ing schizophrenia and bipolar disorder) that differs substantially from current diagnostic 
classifications based on symptoms (Kendler, Prescott, Myers, & Neale, 2003b). Genetic 
research suggests two broad categories of disorders, called internalizing and externalizing. 
Internalizing disorders include depression and anxiety disorders; externalizing disor-
ders include alcohol and other drug abuse as well as antisocial behavior in adulthood 
(and conduct disorder in childhood). Internalizing disorders can be separated into an 
anxious/misery factor, which includes depression and anxiety disorders, and a fear fac-
tor, which includes phobias. Both internalizing factors are involved in panic disorder. As 
discussed in Chapter 16, the internalizing disorders might represent the extreme of the 
broad personality trait called neuroticism.

The disparate externalizing disorders (Chapters  15–17) are part of a general 
genetic factor, although both alcohol dependence and other drug abuse include 
some disorder-​specific genetic effects. The genetic structure of internalizing and 
externalizing disorders applies equally to men and women despite the much greater 
risk of internalizing disorders for women and externalizing disorders for men. 
Because few disorders show shared environmental influence, it does not affect the 
structure. Nonshared environment largely contributes to heterogeneity rather than 
comorbidity. Thus, the phenotypic structure of comorbidity is largely driven by the 
genetic structure (Krueger, 1999).

These multivariate genetic results predict that when genes are found that are 
associated with any of the internalizing disorders, the same genes are highly likely to 
be associated with other internalizing disorders. Similarly, genes associated with any 
of the externalizing disorders will likely be associated with the other externalizing 
disorders but not with the internalizing disorders. This result suggests that genetic 
influences are broad in their effect in psychopathology. It mirrors a similar finding 
concerning “generalist genes” in the area of cognitive abilities (see Chapter 11).

Identifying Genes

Although multivariate genetic research suggests that the genetic action lies at the 
level of broad categories of internalizing and externalizing disorders, molecular 
genetic research on anxiety disorders has focused on traditional diagnoses. More-
over, not nearly as much molecular genetic research has been conducted on these 
disorders as compared to the mood disorders. As a result, linkage studies have not 
yet converged, and the “usual suspect” candidate gene studies have not yet revealed 
replicable results (e.g., Eley et al., 2002; Jang, 2005; Smoller, Block, & Young, 2009).

Panic disorder has been studied most, in part because it appears to be more 
heritable than the other anxiety disorders and in part because it can be so debilitating. 
Five early linkage studies of panic disorder did not yield consistent results 
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(Villafuerte & Burmeister, 2003), suggesting that genetic effects may be relatively 
small. However, subsequent reports have yielded more promising results, suggesting 
linkage on 15q and possibly 2q (Fyer et al., 2006) as well as for regions that are specific 
for different forms of panic or phobic disorder (Smoller et al., 2009). As with other 
complex traits, candidate gene associations have largely failed to replicate (e.g., 
Maron, Hettema, & Shlik, 2010; Shimada-​Sugimoto, Otowa & Hettema, 2015). The 
strongest case so far can be made for an association between panic disorder in females 
and a functional polymorphism (Val158Met) in the catechol-​O-​methyltransferase 
(COMT ) gene (McGrath et al., 2004; Rothe et al., 2006), a polymorphism that has 
been reported to be associated with many other common disorders and complex 
traits (Craddock, Owen, & O’Donovan, 2006). Similar mixed results are beginning 
to emerge for candidate gene studies of OCD (Hemmings & Stein, 2006; Stewart 
et al., 2007), although a meta-​analysis of 230 polymorphisms in 113 studies of OCD 
suggests that 20 of the associations identified were significant in one of the two-​stage 
meta-​analyses (Taylor, 2013). Two GWA studies for OCD suggest that genes in  
glutamatergic, serotonergic, and dopaminergic systems may be important (Mattheisen 
et al., 2014; Stewart et al., 2013). Linkage and candidate gene association studies of 
eating disorders have also been mixed (Slof-​Op ‘t Landt et al., 2005); although GWA 
studies have been conducted, they have been underpowered for detecting genome-
wide significance (e.g., Boraska et al., 2014). A GWA study of depression using sets of 
SNPs selected from GWA studies for their association with a particular phenotype 
found evidence for significant associations for many genetic loci of small effect that 
influence both depression and anxiety (Demirkan et al., 2011). Thus, although there is 
some evidence for genes related to specific disorders, there is also emerging evidence 
of substantial overlap in the genes across multiple disorders, a finding supported by 
several studies discussed earlier, including the GWA study reporting associations of 
four SNPs with five psychiatric disorders (Cross-​Disorder Group of the Psychiatric 
Genomics Consortium, 2013a, 2013b). As more studies consider multiple diagnoses, 
it is likely that, consistent with findings from twin studies, genes will be identified that 
are related to broad categories of disorders.

Summary

Moderate genetic influence has been found for major depressive disorder, and sub-
stantial genetic influence has been found for bipolar disorder. More severe and recur-
rent forms of these mood disorders are more heritable. Bipolar disorder may be a 
more severe form of depression. Surprisingly, molecular genetic studies for bipolar 
disorder suggest linkages and associations similar to those found for schizophrenia.

Anxiety disorders yield quantitative genetic results that are similar to depression — 
moderate genetic influence with little evidence of shared environmental influence. 
Some evidence for genetic influence has also been found for depressive disorder with 
seasonal pattern, somatic symptom disorders, chronic fatigue, eating disorders, and 
obsessive-​compulsive disorder.
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Some of the most far-​reaching genetic findings in psychopathology concern 
genetic comorbidity. Genetic research has begun to call into question the fundamen
tal diagnostic distinction between schizophrenia and bipolar disorder, including the 
molecular genetic findings of similar linkages and associations for the two disorders. 
The most striking finding regarding the mood disorders is that major depressive 
disorder and generalized anxiety disorder are the same disorder from a genetic per-
spective. Multivariate genetic research suggests a genetic structure of common psychi-
atric disorders that includes just two broad categories, internalizing and externalizing 
disorders.



2 3 8

C H A P T E R  F I F T E E N

Developmental  
Psychopathology

Schizophrenia is typically diagnosed in adulthood. Other disorders emerge in 

childhood. General cognitive disability, learning disorders, and communi­

cation disorders were discussed in Chapter 12. Other DSM diagnostic categories that 

first appear in childhood include pervasive developmental disorders (e.g., autistic 

disorder), attention-​deficit and disruptive behavior disorders (e.g., attention-deficit/ 

hyperactivity disorder, conduct disorder), anxiety disorders, tic disorders (e.g., 

Tourette disorder), elimination disorders (e.g., enuresis), and, most recently, mood 

disorders. In a nationwide sample of unselected households with children from 8 to 

15 years of age, 12 percent of children met 12-month criteria for diagnosis of disrup­

tive disorders (attention-​deficit/hyperactivity disorder or conduct disorder), mood 

or anxiety disorder (depression, dysthymia, anxiety or panic), or eating disorder 

(Merikangas et al., 2010). Even more surprising is that approximately 14 percent of 

those children met the criteria for two or more of the disorders.
Only in the past two decades has genetic research begun to focus on disorders 

of childhood (Rutter, Silberg, O’Connor, & Simonoff, 1999). Developmental psycho­
pathology is not limited to childhood: It considers change and continuity through­
out the life course, including disorders such as dementia, which develops later in 
life (see Chapters 12 and 19). However, genetic research on childhood disorders has 
blossomed recently, as is reflected in this chapter. One reason to consider childhood 
disorders is that some disorders that emerge in childhood persist into adulthood, 
either in the same form or in a different but related form. Median age of onset is much 
earlier for anxiety disorders (age 11) and impulse-​control disorders (age 11) than for 
mood disorders (age 30). Half of all lifetime cases of diagnosed disorders start by age 
14, which suggests that interventions aimed at prevention or early treatment need to 
focus on childhood and adolescence (Kessler et al., 2005a), especially because only 
half of the children aged 8 to 15 who met criteria for diagnosis for a mental health 
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disorder had sought treatment with a mental health professional (Merikangas et al., 
2010). However, the main reason for the increased interest in the genetics of child­
hood disorders is that the two major childhood disorders — ​autism and attention-​
deficit/hyperactivity disorder — ​have been shown to be among the most heritable of 
all mental disorders, as described in the following sections.

Autism

Autism was once thought to be a childhood version of schizophrenia, but it is now 
known to be a distinct disorder marked by abnormalities in social relationships, 
communication deficits, and restricted interests. As traditionally diagnosed, it is 
relatively uncommon; however, a 2010 survey by the U.S. Centers for Disease Control 
and Prevention found higher rates for autism than previously reported, about 1 in 68 
children, with rates almost five times higher in boys than girls (http://www.cdc.gov 
/ncbddd/autism/data.html). Even higher rates, 1 in 38 children, have been reported 
in a study that screened over 55,000 children in a South Korean community (Kim 
et al., 2011). During the 1990s, there was a fivefold increase in the diagnosis of autism, 
in part because of heightened awareness and changing diagnostic criteria (Muhle, 
Trentacoste, & Rapin, 2004), and the rates have continued to increase in the 2000s. 
The diagnosis of autism has been broadened to autism spectrum disorder (ASD) repre­
senting a continuum of symptoms. Traditionally, a diagnosis of autism was limited to 
children who showed impairments in all three areas (social, communication, inter­
ests) before 3 years of age. In contrast, Asperger syndrome was diagnosed if children 
were impaired in the social and interests domains but appeared to have normal lan­
guage and cognitive development before 3 years of age. The “other” diagnosis was 
used for children who showed severe impairment in just one or two of the domains. 
Most researchers now consider these three disorders as part of a single continuum 
or spectrum of disorder. In the early 2000s, great concern among parents was driven 
by media reports that the supposed increase in ASD was caused environmentally by 
the measles-​mumps-​rubella (MMR) vaccine. However, the evidence on this putative 
environmental cause of ASD has been consistently negative (Taylor, Swerdfeger, & 
Eslick, 2014a).

Family and Twin Studies

When Kanner (1943) first characterized autism in 1943, he assumed it was caused 
“constitutionally.” However, in subsequent decades, autism was thought to be 
environmentally caused, either by cold and rejecting parents or by brain damage 
(Hanson & Gottesman, 1976). Genetics did not seem to be important because there 
were no reported cases of an autistic child having an autistic parent and because the 
risk to siblings was only about 5 percent (Bailey, Phillips, & Rutter, 1996; Smalley, 
Asarnow, & Spence, 1988). However, this rate of 5  percent was 100 times greater 
than the population rate of autism as diagnosed in those original studies, a difference 

http://www.cdc.gov/ncbddd/autism/data.html
http://www.cdc.gov/ncbddd/autism/data.html
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implying strong familial resemblance. The reason why autistic children do not have 
autistic parents is that few severely autistic individuals marry and have children.

In 1977, the first systematic twin study of autism began to change the view that 
autism was environmental in origin (Folstein & Rutter, 1977). Four of 11 pairs of iden­
tical twins were concordant for autism, whereas none of 10 pairs of fraternal twins 
were. These pairwise concordance rates of 36 and 0 percent rose to 92 and 10 percent 
when the diagnosis was broadened to include communication and social problems. 
Co-​twins of autistic children are more likely to have communication problems as well 
as social difficulties. In a follow-​up of the twin sample into adult life, problems with 
social relationships were prominent (Le Couteur et al., 1996). These findings were 
replicated in other twin studies (Ronald & Hoekstra, 2011). A conservative estimate 
of the concordance in MZ pairs is 60 percent. A review of four independent twin 
studies suggests a heritability of liability for autism greater than 90 percent (Freitag, 
2007). Twin and family studies of ASD find similar results, suggesting substantial 
heritability with little evidence of shared environmental influence (e.g., Colvert et al., 
2015; Risch et al., 2014; Sandin et al., 2014; but see Hallmayer et al., 2011, for a con­
trasting view of the role of shared environment).

On the basis of these twin and family findings, views regarding autism have 
changed radically. Instead of being seen as an environmentally caused disorder, it 
is now considered to be one of the most heritable mental disorders (Freitag, 2007; 
Ronald & Hoekstra, 2011). One unusual aspect of genetic research on autism is that, 
as traditionally diagnosed, autism is so severe that it nearly always results in affected 
children being seen by clinical services rather than remaining undetected in the 
community (Thapar & Scourfield, 2002). As a result, nearly all twin studies have been 
based on clinical cases rather than community samples. However, recent research has 
considered ASD as a continuum that extends well into common behavioral problems 
seen in undiagnosed children in the community. This trend was driven in part by the 
results of early family studies in which relatives of autistic individuals were found 
to have some communication and social difficulties (Bailey, Palferman, Heavey, & 
Le Couteur, 1998). Twin studies have also generally supported the hypothesis that  
the genetic and environmental causes of ASD symptoms are distributed continuously 
throughout the population and that the etiology of autistic traits does not differ across 
the full range of severity (e.g., Colvert et al., 2015; Lundstrom et al., 2012; Robinson 
et al., 2011; but see Frazier et al., 2014 for an exception). This is an emerging rule 
in behavioral genetics — ​that disorders are actually the quantitative extreme of a 
continuum of normal variation (see Chapters 13 and 14).

In contrast to the assumption that autism involves a triad of impairments — ​poor 
social interaction, language and communication problems, and restricted range of 
interests and activities — ​twin studies of ASD symptoms in community samples 
have found evidence for genetic heterogeneity, especially between social impair­
ments (interaction and communication) and nonsocial impairments (interests and 
activities). Several multivariate genetic analyses of the triad of symptoms have 
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found high heritability (about 80 percent) for each of the three types of symptoms 
but surprisingly low genetic correlations among them (e.g., Ronald, Happé, Price, 
Baron-​Cohen, & Plomin, 2006; Taylor et  al., 2014b). These findings suggest that, 
although some children by chance have all three types of symptoms, the ASD triad 
of symptoms are different genetically. This surprising conclusion, which contradicts 
the traditional diagnosis of autism, is supported by cognitive and brain data (Happé, 
Ronald, & Plomin, 2006).

Identifying Genes

Quantitative genetic evidence suggesting substantial genetic influence on autism led 
to autism being the early target of affected sib-​pair linkage analysis after the success 
of QTL linkage in the area of reading disability in 1994 (see Chapter 12). In 1998, 
an international collaborative linkage study reported evidence of a locus on chro­
mosome 7 (7q31-q33) in a study of 87 affected sibling pairs (International Molecular 
Genetic Study of Autism Consortium, 1998). This 7q linkage was replicated in other 
studies, although several studies did not replicate the linkage (Trikalinos et al., 2006). 
No specific gene has been implicated reliably (De Rubeis & Buxbaum, 2015). Many 
other linkage regions have been reported in several genomewide linkage studies, but 
none has been replicated in more than two studies (Ma et  al., 2007). Despite the 
sex difference in ASD, no consistent evidence for linkage to the X chromosome has 
emerged.

As with other common disorders, these linkage results could be viewed as 
demonstrating that there are no genes of sufficiently large effect size to be detected 
by sib-​pair linkage analyses with samples of fewer than many hundreds of affected 
sibling pairs. The most straightforward way to address the issue of power to detect 
smaller QTL effect sizes is to increase the sample size, although it is difficult to obtain 
such samples because only about 5 percent of the siblings of autistic children are also 
autistic. One large-​scale collaborative project conducted a sib-​pair linkage analysis of 
more than 1000 families across 19 countries, involving 120 scientists from more than 
50 institutions (Szatmari et al., 2007). Although previously reported linkages were not 
replicated, including the linkage on 7q, linkage was suggested for 11p12-q13. Linkage 
results appeared stronger when families with copy number variants (see Chapter 9) 
were removed from the analysis.

Similar to other disorders, hundreds of candidate gene associations have been 
reported but no consistent associations have as yet been found (Geschwind, 2011; Xu 
et al., 2012). Although many genomewide association (GWA) studies have also been 
conducted, the results of such studies have been similarly inconclusive for finding 
a particular gene or set of genes associated with ASD, with two notable exceptions. 
First, a study of over 50,000 individuals used a genomewide approach to examine 
associations of SNPs with five psychiatric disorders, including ASD (Cross-Disorders 
Group of the Psychiatric Genetics Consortium, 2013a; 2013b). Although none of the 
SNPs were uniquely associated with ASD, three were significantly associated with 
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both ASD and schizophrenia (Kavanagh et al., 2015). Second, a meta-​analysis of 8 
studies examining a susceptibility locus on chromosome 2 (SLC25A12) found evi­
dence for an association between two SNPs in SLC25A12 and susceptibility for ASD 
(Liu et al., 2015).

One explanation for the dearth of findings from GWA and genomewide link­
age studies is their focus on common variants. There is accumulating evidence that 
as many as 10  percent of ASD cases can be accounted for by rare mutations due 
to copy number variants (CNVs) (Levy et  al., 2011). Although CNVs are usually 
de novo mutations, there is evidence that these rare variants may also be inherited as 
recessive mutations that increase risk for ASD when homozygous (e.g., Krumm et al., 
2015). Because autism does run in families, rare CNVs cannot be the only explanation 
for ASD. Instead, common variants as well as CNVs are likely to play a role.

In an effort to organize the vast number of genes identified for autism and to pro­
vide a resource for researchers, a recent review and analysis of existing data identified 
more than 2000 genes, 4500 CNVs, and 158 linkage regions reported to be associ­
ated with ASD (Xu et al., 2012). This information is in an online searchable data­
base (http://autismkb.cbi.pku.edu.cn/). As this work moves forward, the multivariate 
genetic research described above indicating genetic heterogeneity for the three types 
of symptoms suggests that molecular genetic studies might profit by focusing more 
on the three types of symptoms separately rather than beginning with diagnoses of 
autism, which requires the presence of all three impairments.

­Attention-​­Deficit / Hyperactivity Disorder

Attention-​deficit/hyperactivity disorder (ADHD), as defined by DSM-​5, refers to chil­
dren who exhibit very high activity, have a poor attention span, and act impul­
sively. Findings from the National Survey of Children’s Health in the United States 
estimated that 11  percent of children had ever received an ADHD diagnosis by 
adolescence with boys greatly outnumbering girls (Visser et al., 2014; see also: http:// 
www.cdc.gov/ncbddd/adhd/features/key-findings-adhd72013.html). European psychia­
trists have tended to take a more restricted approach to diagnosis, with an emphasis on 
hyperactivity that not only is severe and pervasive across situations but also is of early 
onset and unaccompanied by high anxiety (Polanczyk, de Lima, Horta, Biederman, & 
Rohde, 2007; Taylor, 1995). There is continuing uncertainty about the merits of these nar­
rower and broader approaches to diagnosis (Polanczyk, Willcutt, Salum, Kieling, & Rohde, 
2014). However conceptualized, ADHD usually continues into adolescence and, depend­
ing on the criteria used, may persist into adulthood (Faraone, Biederman, & Mick, 2006).

Twin Studies

ADHD runs in families, with first-​degree relatives five times more likely to be diag­
nosed as compared to controls (Biederman et al., 1992) and with greater familial risk 
when ADHD persists into adulthood (Faraone, Biederman, & Monuteaux, 2000).  

http://autismkb.cbi.pku.edu.cn
http://www.cdc.gov/ncbddd/adhd/features/key-findings-adhd72013.html
http://www.cdc.gov/ncbddd/adhd/features/key-findings-adhd72013.html
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Twin studies have consistently shown a strong genetic effect on hyperactivity 
regardless of whether it is measured by questionnaire (Nikolas & Burt, 2010) or by 
standardized and detailed interviewing (Eaves et al., 1997), regardless of whether it 
is rated by parents or teachers (Saudino, Ronald, & Plomin, 2005), and regardless of 
whether it is treated as a continuously distributed dimension of symptoms (Thapar, 
Langley, O’Donovan, & Owen, 2006) or as a clinical diagnosis (Gillis, Gilger,  
Pennington, & DeFries, 1992; Larsson, Chang, D’Onofrio & Lichtenstein, 2014). A 
heritability estimate of 76 percent was computed for pooled findings across 20 twin 
studies (Faraone et al., 2005), and a more recent meta-​analysis of 21 studies confirmed 
these findings with a heritability estimate of about 70 percent for hyperactivity and 
around 56 percent for inattention (Nikolas & Burt, 2010). These results suggest that 
heritability is greater for ADHD than for other childhood disorders with the exception 
of autism.

As is almost always the case in behavioral genetics, stability of ADHD symp­
toms is largely driven by genetics (e.g., Kan et al., 2013; Larsson, Dilshad, Lichten­
stein, & Barker, 2011; Pingault et al., 2015). As is usually the case for psychopathology, 
heritability appears to be greater for persistent ADHD that extends into adult­
hood (Faraone, 2004). An unusual aspect of ADHD results is that DZ correlations 
are often lower than expected relative to MZ correlations, especially for parental 
ratings. This could be due to a contrast effect in which parents inflate differences 
between their DZ twins, but this pattern of twin results is also consistent with nonad-
ditive genetic variance (e.g., Eaves et al., 1997; Hudziak, Derks, Althoff, Rettew, & 
Boomsma, 2005; Nikolas & Burt, 2010), as discussed in Chapter 16. Although adop­
tion studies to date have been few and quite limited methodologically (McMahon, 
1980), they lend some support to the hypothesis of genetic influence for ADHD (e.g., 
Cantwell, 1975). Two children-​of-​twins studies (Chapter 6) attempted to clarify the 
joint roles of genetic and environmental influences in the development of ADHD 
in children of alcoholics and found that maternal alcohol use disorder and ADHD 
relate to child ADHD largely via genetic effects (Knopik et al., 2006; Knopik et al., 
2009b).

The activity and attention components of ADHD are both highly heritable 
(Greven, Asherson, Rijsdijk, & Plomin, 2011a; Nikolas & Burt, 2010). Multivariate 
genetic twin analyses of the inattention and hyperactivity components of ADHD 
indicate substantial genetic overlap between the two components, providing genetic 
justification for the syndrome of ADHD (e.g., Greven, Rijsdijk, & Plomin, 2011b; 
Larsson, Lichtenstein, & Larsson, 2006; Merwood et  al., 2014). Another multi­
variate issue concerns the genetic overlap between parental and teacher ratings of 
ADHD, both of which are highly heritable. Multivariate genetic analyses suggest 
some genetic overlap but also some genetic effects specific to parents and teachers 
(McLoughlin, Rijsdijk, Asherson, & Kuntsi, 2011; Thapar et al., 2006) with another 
large adolescent twin study finding a similar pattern of results for parent, teacher, 
and self-​ratings of ADHD symptoms (Merwood et al., 2013). In other words, these 
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results predict that to some extent different genes will be associated with ADHD 
viewed by parents in the home and ADHD viewed by teachers in school. In addi­
tion, pervasive ADHD that is seen both at home and in school is more heritable 
than ADHD specific to just one situation (Thapar et al., 2006), and hyperactivity-​
impulsivity and inattention are seen, in part, as distinct by both parents and teachers 
(McLoughlin et al., 2011).

Identifying Genes

As was the case for autism, the consistent evidence of a large genetic contribution to 
ADHD attracted the attention of molecular geneticists. However, this recognition 
came later for ADHD than for autism and at a time when molecular genetic studies 
had moved on from linkage to association studies in an attempt to identify QTLs of 
small effect size. Because GWA was not available at that time, these early studies were 
limited to candidate genes. Interest has centered on genes involved in the dopamine 
pathway because many children with ADHD improve when given psychostimulants, 
such as methylphenidate, which affect dopamine pathways. The dopamine trans­
porter gene DAT1 was an obvious candidate because methylphenidate inhibits the 
dopamine transporter mechanism and DAT1 knock-​out mice are hyperactive (Caron, 
1996). An exciting initial finding of an association for DAT1 (Cook et al., 1998) was 
replicated in three studies but failed to replicate in three other studies (Thapar & 
Scourfield, 2002). Somewhat stronger results were found for two other dopamine 
genes that code for dopamine receptors called DRD4 and DRD5. Two meta-​analyses 
found small (odds ratios of about 1.2 to 1.3) but significant associations for dopamine-​
related genes (DRD4 and DRD5), although only one of the meta-​analyses found DAT1 
to be significant (Gizer, Ficks, & Waldman, 2009; Li, Sham, Owen, & He, 2006). As 
expected from the multivariate genetic results indicating substantial genetic overlap 
between ADHD symptoms, these patterns of associations are similar across symptoms 
(Thapar et al., 2006).

Associations have been reported for more than 30 other candidate genes, but 
none have been consistently replicated (see Li, Chang, Zhang, Gao, & Wang, 2014 for 
a review). Although candidate gene association studies dominated the early genetic 
research on ADHD, genomewide linkage screens have been reported, including a 
meta-​analysis of seven independent linkage scans (Zhou et al., 2008), a bivariate link­
age scan for ADHD and reading disability (Gayán et al., 2005), and a follow-​up fine-​
mapping study of nine candidate linkage regions (Ogdie et al., 2004). No consistent 
linkage regions have been identified.

Similar to ASD, many GWA studies have been conducted for ADHD with no 
clear and consistent findings. One study took a systematic approach to search for 
common variants using both a standard SNP GWA analysis and a more focused, 
hypothesis-​driven approach guided by findings from studies of CNVs (Stergiakouli 
et al., 2012). This study reported convergence between the SNP- and CNV-​guided 
analyses for CHRNA7 and some overlap in regions across the two approaches for 
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cholesterol-​related and central nervous system pathways. Another study focus­
ing on CNVs also found evidence for involvement of the CHRNA7 gene, which is 
also associated with comorbid conduct disorder (Williams et  al., 2012). The find­
ings from the many studies focused on CNVs in individuals with ADHD, includ­
ing at least one genomewide CNV study, have indicated that there is likely to be 
a role for CNVs in understanding how genes contribute to the development of 
ADHD, but more work remains to be done. A database of ADHD genes (ADHDgene:  
http://adhd.psych.ac.cn/) has been created that includes SNPs, CNVs and other 
variants, genes, and chromosomal regions gleaned from published genetic studies of 
ADHD (Zhang et al., 2012).

Disruptive Behavior Disorders

Disruptive behavior disorders include oppositional defiant disorder and conduct dis­
order. In earlier versions of the DSM these disorders were clustered with ADHD, 
but they are now considered a different category of disorders, although they do often 
occur together. Because conduct disorder is the most well-​studied of these disorders 
in genetic research, that is our focus here.

Genetic studies of conduct disorder yield results quite different from those 
for ADHD. DSM-​5 criteria for conduct disorder include aggression, destruction of 
property, deceitfulness or theft, and other serious violations of rules such as running 
away from home. Some 5 to 10  percent of children and adolescents meet these  
diagnostic criteria, with boys again greatly outnumbering girls (Cohen et al., 1993; 
Rutter et al., 1997). In contrast to ADHD, the combined data from several early twin 
studies of juvenile delinquency yield concordance rates of 87 percent for identical 
twins and 72  percent for fraternal twins, rates that suggest only modest genetic  
influence and substantial shared environmental influence (McGuffin & Gottesman, 
1985). This pattern is broadly supported by the results of a twin study of self-​reported 
teenage antisocial behavior in U.S. Army Vietnam-​era veterans (Lyons et al., 1995). 
However, many twin studies of delinquent acts and conduct disorder symptoms in 
normative samples of adolescents have shown greater genetic influence (Thapar et al., 
2006) as well as substantial shared environmental influences (e.g., Bornovalova, Hicks, 
Iacono, & McGue, 2010; Burt, 2009a).

Heterogeneity in antisocial behavior symptoms also contributes to some of the 
inconsistencies in the published research findings on conduct problems. For example, 
there is evidence from several twin studies that aggressive antisocial behavior is more 
heritable than nonaggressive antisocial behavior (e.g., Burt & Neiderhiser, 2009; Eley, 
Lichtenstein, & Stevenson, 1999) (Figure 15.1). Moreover, different genetic factors 
affect aggressive and nonaggressive conduct problems (Burt, 2013; Gelhorn et  al., 
2006). Genetic effects are probably greatest with respect to early-​onset aggressive 
antisocial behavior that is accompanied by hyperactivity and that shows a strong 
tendency to persist into adulthood as antisocial personality disorder (e.g., Moffitt, 

http://adhd.psych.ac.cn
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1993; Robins & Price, 1991; Rutter et al., 1999). (See Chapter 16 for a discussion of 
personality disorders, including antisocial personality disorder.) In addition, antiso­
cial behavior that is persistent across situations (home, school, laboratory) is more 
heritable (Arseneault et al., 2003; Baker, Jacobson, Raine, Lozano, & Bezdjian, 2007a). 
In contrast, environmentally mediated risks are probably strongest with respect to 
nonaggressive juvenile delinquency that has an onset in the adolescent years and 
does not persist into adult life. The development of conduct disorder and antisocial  
behavior is a rich vein for studies of gene-​environment interplay (Jaffee, Strait, & 
Odgers, 2012; Moffitt, 2005), as discussed in Chapter 8.

Another aspect of genetic heterogeneity in childhood antisocial behavior is 
callous-​unemotional personality, which involves psychopathic tendencies such as 
lack of empathy and guilt. In a large twin study of 7-year-​old children rated by 
their teachers, antisocial behavior accompanied by callous-​unemotional tendencies  
was highly heritable (80 percent), with no shared environmental influence, whereas 
antisocial behavior without callous-​unemotional tendencies was only mod­
estly heritable (30 percent) and showed moderate shared environmental influence 
(35  percent) (Viding, Blair, Moffitt, & Plomin, 2005). These findings persisted  
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longitudinally; moreover, children who showed high or increasing levels of callous-​
unemotional traits during middle childhood and high levels of conduct problems 
had the most problematic outcomes at age 12 (Fontaine, McCrory, Boivin, Moffitt, & 
Viding, 2011).

Anxiety Disorders

The median age of onset for anxiety disorders is 11 years (Kessler et al., 2005a); 
for this reason, some genetic research has considered anxiety in childhood, with 
recent work identifying relatively stable anxiety symptoms in preschool-​aged 
children (Edwards, Rapee, & Kennedy, 2010b; Silberg et al., 2015). Several studies 
have used a sample of over 4500 twin pairs from the United Kingdom to exam­
ine anxiety and related symptoms from early childhood to adolescence. In one 
study, this research team found three components of anxiety in 4-year-​old chil­
dren comparable to adult anxiety disorders (see Chapter 14): generalized anxiety, 
fears, and obsessive-​compulsive behaviors (Eley et  al., 2003). Two components 
are specific to childhood: separation anxiety and shyness/inhibition. Heritability  
was greatest for obsessive-​compulsive behaviors and shyness/inhibition (both 
over 60  percent), with no evidence of shared environmental influence. Another 
report examining the same sample of twins during middle childhood found 
moderate stability in parent reports of anxiety symptoms from age 7 to 9, with 
genetic influences accounting for approximately half of the variance in symptoms 
(Trzaskowski, Zavos, Haworth, Plomin, & Eley, 2012). The stability in each type 
of anxiety symptom was due primarily to genetic influences, whereas change from 
one type of symptom to another over time was due mostly to shared environmen­
tal influences. These findings highlight the need for longitudinal research and for 
examining multiple symptoms.

A study of obsessive-​compulsive symptoms in the United States and the 
Netherlands also found high heritability (55 percent) in both countries in twins aged 
7, 10, and 12 (Hudziak et al., 2004). Heritabilities of generalized anxiety and fears 
were about 40 percent in the same study, while for fears, there was some evidence of 
shared environmental influence, which is similar to results for specific fears in adults 
(Chapter  14). Heritability of obsessive-​compulsive behavior symptoms was also 
found to be high from early childhood (4 years) to adolescence (age 16 years), with 
the majority of the stability in symptoms over time due to genetic influences (Krebs, 
Waszczuk, Zavos, Bolton, & Eley, 2015). A similar pattern of findings was found in a 
longitudinal study of fears and phobias for 2490 Swedish twins followed from middle 
childhood (age 8–9) to early adulthood (age 19–20) (Kendler et al., 2008b). For three 
categories of fears — ​animal, blood/injury, and situational — ​this study showed  
relatively stable genetic influence over time, decreasing shared environmental 
influences, and increasing nonshared environmental influences. An interesting 
developmental pattern of genetic effects also emerged, with only a modest amount of 
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genetic influence from middle childhood persisting into young adulthood and with 
new genetic influences (or innovations) emerging at each age, especially during early 
adolescence (age 13–14).

Separation anxiety is interesting because in addition to showing moderate heri­
tability (about 40 percent), substantial shared environmental influence was also found 
(35  percent) (Feigon, Waldman, Levy, & Hay, 2001). It is noteworthy that studies 
of maternal attachment of young children, which is indexed in part by separation 
anxiety, have also found evidence for shared environmental influence (Fearon et al., 
2006; O’Connor & Croft, 2001; Roisman & Fraley, 2006). However, a follow-​up of 
4-year-​old U.K. twins at 6 years of age using DSM-​IV diagnoses of separation anxiety 
disorder found high heritability of liability (73 percent) and no shared environmen­
tal influence (Bolton et  al., 2006), although there were significant shared environ­
mental influences on the covariation between specific phobia and separation anxiety 
symptoms in a subset of the same sample (Eley, Rijsdijk, Perrin, O’Connor, & Bolton, 
2008). These results are not necessarily contradictory: The studies that found shared 
environmental influence and modest heritability analyzed individual differences 
throughout the distribution, whereas the Bolton et al. study focused on the diagnos­
able extreme of separation anxiety.

Multivariate genetic analysis of the study of 4-year-​old twins indicated that 
the five components of anxiety were moderately correlated genetically, although 
obsessive-​compulsive behaviors were least related genetically to the others (Eley 
et  al., 2003). A subsequent analysis of 7- and 9-year-​old twins yielded a similar  
pattern of findings, with anxiety-​related behaviors showing common variance due 
to genetic and shared environmental influences and specific genetic and nonshared 
environmental influences on each subtype (Hallett, Ronald, Rijsdijk, & Eley, 2009). 
These findings were replicated in a study examining 378 pairs of Italian twin children 
(Ogliari et  al., 2010). Specifically, genetic and nonshared environmental influences 
explained the covariation among generalized anxiety, panic, social phobia, and sepa­
ration anxiety.

The strong genetic overlap between anxiety and depression in adulthood (Chap­
ter 14) suggests that depressive symptoms might also be profitably studied in childhood 
(Thapar & Rice, 2006). Two twin studies found differences pre-​ and post-adolescence 
in the etiology of the association between anxiety and depression, with common 
genetic influences for anxiety and depression symptoms present in postadolescence 
but not preadolescence (Silberg, Rutter, & Eaves, 2001; Waszczuk, Zavos, Gregory, & 
Eley, 2014). Several studies have examined genetic and environmental influences on 
depressive symptoms and on the covariation among depressive and anxiety symp­
toms during childhood and adolescence (e.g., Brendgen et al., 2009; Franić, Dolan, 
Borsboom, van Beijsterveldt, & Boomsma, 2014b; Lamb et al., 2010). Many studies 
have found evidence for substantial genetic influences on internalizing behavior — ​a 
construct that includes both depression and anxiety symptoms — ​and that stability 
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in internalizing behavior from childhood through adolescence and adulthood can be 
explained primarily by genetic influences (e.g., Nivard et al., 2015; O’Connor, Nei­
derhiser, Reiss, Hetherington, & Plomin, 1998). A review of this work indicates that 
genes substantially influence stability in both anxiety and depression from age 7 to 
12, but not from age 3 to 7, and that the high degree of comorbidity between these 
disorders is due largely to genetic influences (Franić, Middeldorp, Dolan, Ligthart, & 
Boomsma, 2010).

Other Disorders

Although schizophrenia and bipolar disorder do not generally appear until early 
adulthood, genetic research on possible childhood forms of these disorders has 
been motivated by the principle that more severe forms of disorders are likely to 
have an earlier onset (Nicolson & Rapoport, 1999). In relation to childhood-​onset 
schizophrenia, relatives of affected individuals are at increased risk of schizophre­
nia, suggesting a link between the child and adult forms of the disorder (Nicol­
son et  al., 2003). The only twin study of childhood schizophrenia yielded high 
heritability, although the sample size was small (Kallmann & Roth, 1956). More 
recent work has examined child and adolescent deficits in social adjustment and 
schizotypal personality as precursors of the development of schizophrenia using 
a twin-​family design, finding that schizophrenia was associated with these defi­
cits for primarily genetic reasons (Picchioni et  al., 2010). Psychotic experiences 
(i.e., paranoia, hallucinations, cognitive disorganization) usually precede the onset 
of psychosis and have been shown to be moderately heritable with some shared 
environmental influence in a large adolescent twin sample, suggesting that early 
manifestations of schizophrenia can be detected (Zavos et  al., 2014). Interesting 
results concerning links with adult schizophrenia are emerging from molecular 
genetic research incorporating brain endophenotypes (Addington et al., 2005; Gor­
nick et al., 2005; Mullin et al., 2015).

Childhood bipolar disorder appears to be more likely in families with adult 
bipolar disorder (Pavuluri, Birmaher, & Naylor, 2005). Linkage, candidate gene, and 
GWA studies of childhood bipolar disorder have been reported, but no consistent 
results have emerged (Althoff, Faraone, Rettew, Morley, & Hudziak, 2005; Doyle 
et al., 2010; McGough et al., 2008; Nurnberger et al., 2014). When genes are identi­
fied that are responsible for the high heritabilities of adult schizophrenia and bipolar 
disorder, one of the next research questions will be whether these genes are also asso­
ciated with juvenile forms of these disorders. A recent report used polygenic scores 
derived from adult GWA studies of schizophrenia and bipolar disorder but found 
no associations with a broad range of behavioral problems in adolescents (Krapohl 
et al., 2015).
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Other childhood disorders for which some genetic data are available include 
enuresis (bedwetting) and tics. Enuresis in children after age 4 is common, about 
7 percent for boys and 3 percent for girls. An early family study found substantial 
familial resemblance (Hallgren, 1957). Strong genetic influence was found in three 
small twin studies (Bakwin, 1971; Hallgren, 1957; McGuffin, Owen, O’Donovan, 
Thapar, & Gottesman, 1994). A large study of adult twins reporting retrospectively 
on enuresis in childhood yielded substantial heritability (about 70 percent) for both 
males and females (Hublin, Kaprio, Partinen, & Koskenvuo, 1998). However, an 
equally large study of 3-year-​old twins found only moderate genetic influence on 
nocturnal bladder control as reported by parents for boys (about 30 percent) and an 
even smaller effect in girls (about 10 percent) (Butler, Galsworthy, Rijsdijk, & Plomin, 
2001). A large epidemiological family study found that risk for severe childhood noc­
turnal enuresis was greater when mothers or fathers experienced nocturnal enuresis, 
and urinary incontinence was nearly 10 times higher in children when fathers were 
incontinent (with a lower risk from mothers of only about 3 times higher), indicating 
a strong familial influence (von Gontard, Heron, & Joinson, 2011). Candidate gene 
studies have not yielded replicable results (von Gontard, Schaumburg, Hollmann, 
Eiberg, & Rittig, 2001), although a meta-​analysis suggests a role for the ADRB3 gene 
in women (Cartwright et al., 2015).

Tic disorders involve involuntary twitching of certain muscles, especially of 
the face, that typically begins in childhood. A twin study indicated that heritability 
of tics in children and adolescents was modest (about 30 percent) (Ooki, 2005). The 
same study showed that stuttering was highly heritable (about 80 percent) but that 
tics and stuttering are genetically different. Genetic research has focused on the 
most severe form, called Tourette disorder. Tourette disorder is rare (about 0.4 per­
cent), whereas simple tics are much more common. Although family studies show 
little familial resemblance for simple tics, relatives of probands with chronic, severe 
tics characteristic of Tourette disorder are at increased risk for tics of all kinds 
(Pauls, 1990), for OCD (Pauls, Towbin, Leckman, Zahner, & Cohen, 1986), and 
for ADHD (Pauls, Leckman, & Cohen, 1993). A twin study of Tourette disorder 
found concordances of 53  percent for identical twins and 8  percent for fraternal 
twins (Price, Kidd, Cohen, Pauls, & Leckman, 1985). A family study of Tourette 
disorder patients from the United States and the Netherlands estimated moder­
ate heritability for tics and different levels of heritability based on the types of tics 
(de Haan, Delucchi, Mathews, & Cath, 2015). Molecular genetic studies have so 
far not yielded replicable results. Linkage studies of large family pedigrees have 
been reported (e.g., Verkerk et  al., 2006), but no clear major-​gene linkages have 
been detected. The largest genomewide QTL linkage study of Tourette disorder 
suggested linkage on chromosome 2p (The Tourette Syndrome Association Inter­
national Consortium for Genetics, 2007). Although there have been many candidate 
gene studies of tic disorders, the candidate gene approach has not led to replicable 
associations.
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Overview of Twin Studies of
Childhood Disorders

Genetic research on childhood disorders has increased dramatically, in part fueled 
by the finding of high heritabilities for ASD and  ADHD.  A general summary of 
twin results for the major domains of childhood psychopathology is presented in 
Figure  15.2. In addition to the high heritabilities of ASD and its components and 
of ADHD and its components, heritability is also exceptionally high for aggressive 
conduct disorder, obsessive-​compulsive symptoms, and shyness. Just as interesting, 
however, are the moderate heritabilities for nonaggressive conduct disorder, gener­
alized anxiety, fears, and separation anxiety. Especially noteworthy is the evidence 
for shared environmental influence for nonaggressive conduct disorder and separa­
tion anxiety. Nearly all of these results in childhood are based on parent or teacher 
reports of children’s behavior. Twin studies of psychopathology in adolescence using 

FIGURE 15.2 S ummary of twin study estimates of genetic and environmental variances for major 

domains of childhood psychopathology. The components of autism spectrum disorder (ASD) are 

social relationships, communication deficits, and restricted interests. The five aspects of anxiety 

disorders are generalized anxiety (GA), obsessive-​compulsive behaviors (OC), shyness / inhibition 

(Shy), fears, and separation anxiety (Sep Anx). A = additive genetic variance; C = common  

(shared) environmental variance; E = nonshared environmental variance.
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interviews and self-​reports with the twins themselves yielded quite different results 
(Ehringer, Rhee, Young, Corley, & Hewitt, 2006; Lewis, Haworth & Plomin, 2014).

­SNP-​­Based Heritability Findings 
for Childhood Disorders

To date, relatively few studies of child and adolescent psychopathology have met the 
requirements for estimating SNP heritability (see Box 7.1). Nonetheless, a few studies 
have reported SNP heritability estimates for ASD, ADHD, and oppositional defiant 
disorder symptoms (Cross-​Disorder Group of the Psychiatric Genomics Consor­
tium, 2013a; Pappa et  al., 2015; Yang et  al., 2013). SNP heritability was estimated 
as 0.17 for ASD, 0.28 to 0.45 for ADHD, and 0.20 for oppositional defiant disorder 
symptoms. These estimates are lower than those reported by twin studies, especially 
for ASD and ADHD, although when both common and rare variants were included 
(Yang et al., 2013) the estimates were higher.

Summary

Two decades ago, autism was thought to be an environmental disorder. Now, twin 
studies suggest that it is one of the most heritable disorders. Although the results of 
linkage studies and candidate gene studies have not as yet been successful, there is 
accumulating evidence that rare variants (e.g., CNVs) play an important role. This 
lack of success in finding common variants might be due in part to the possibility that 
the components of the autistic triad — ​abnormalities in social relationships, commu­
nication deficits, and restricted interests — ​are different genetically, even though each 
is highly heritable.

Attention-​deficit and disruptive behavior disorders include attention-​deficit /  
hyperactivity disorder (ADHD), which is highly heritable and shows no shared 
environmental influence. Multivariate genetic research suggests that its components 
of activity and attention overlap genetically, providing support for the construct 
of ADHD. Candidate gene studies of ADHD have yielded two dopamine receptor 
genes that show small but significant associations.

Genetic research suggests that conduct disorder is heterogeneous, with aggres­
sive conduct disorder showing substantial genetic influence and no shared environ­
mental influence, in contrast to nonaggressive conduct disorder, which shows only 
modest genetic influence and moderate shared environmental influence.

Twin studies of parental ratings of anxiety in childhood suggest an interestingly 
diverse pattern of results. The highest heritability emerges for shyness, which is one 
of the most highly heritable personality traits (Chapter 16). Heritability is also very 
high for obsessive-​compulsive symptoms, although results in adulthood are more 
mixed (Chapter  16). Heritability is more modest for generalized anxiety, which is 
comparable to results in adulthood (Chapter 14). These three aspects of anxiety show 
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no evidence for shared environmental influence, which is similar to results for adult 
psychopathology but is even more surprising in childhood because children are living 
with their families. In contrast, fears and especially separation anxiety are notable for 
evidence of shared environmental influence.

Some genetic influence has also been reported for childhood schizophrenia, 
childhood bipolar disorder, enuresis, and chronic tics, although much less genetic 
research has targeted these disorders.
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C H A P T E R  S I X T E E N

Personality and 
Personality Disorders

I f you were asked what someone is like, you would probably describe various per-

sonality traits, especially those depicting extremes of behavior. “Jennifer is full 

of energy, very sociable, and unflappable.” “Steve is conscientious, quiet, but quick 

tempered.” Genetic researchers have been drawn to the study of personality because, 

within psychology, personality has always been the major domain for studying the 

normal range of individual differences, with the abnormal range being the prove-

nance of psychopathology. A general rule emerging from behavioral genetic research 

is that common disorders are the quantitative extreme of the same genetic and envi-

ronmental factors that contribute to the normal range of variation. In other words, 

some psychopathology may be the extreme of normal variation in personality. We 

will return to the links between personality and psychopathology later in this chap-

ter, after we have described basic research on personality.
Personality traits are relatively enduring individual differences in behavior that 

are stable across time and across situations (John, Robins, & Pervin, 2008). In the 1970s, 
there was an academic debate about whether personality exists, a debate reminiscent 
of the nature-​nurture debate. Some psychologists argued that behavior is more a mat-
ter of the situation than of the person, but it is now generally accepted that both are 
important and can interact (Kenrick & Funder, 1988; Rowe, 1987). Cognitive abilities 
(Chapters 11 and 12) also fit the definition of enduring individual differences, but 
they are usually considered separately from personality. Another definitional issue 
concerns temperament, personality traits that emerge early in life and, according to 
some researchers (e.g., Buss & Plomin, 1984), may be more heritable. However, there 
are many different definitions of temperament (Goldsmith et al., 1987), and the sup-
posed distinction between temperament and personality will not be emphasized here.

Genetic research on personality is extensive and is described in several books 
(Benjamin, Ebstein, & Belmaker, 2002; Cattell, 1982; Eaves, Eysenck, & Martin, 1989; 
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Loehlin, 1992; Loehlin & Nichols, 1976; Wright, 1998) and dozens of reviews (e.g., 
Turkheimer, Pettersson & Horn, 2014). We will provide only an overview of this huge 
literature because its basic message is quite simple: Genes make a major contribution 
to individual differences in personality whereas shared environment does not; envi-
ronmental influence on personality is almost entirely of the nonshared variety.

­SELF-​­REPORT QUESTIONNAIRES
The vast majority of genetic research on personality involves self-​report question-
naires administered to adolescents and adults. Such questionnaires include a range of 
dozens to hundreds of items, such as “I am usually shy when meeting people I don’t 
know well” or “I am easily angered.” People’s responses to these questionnaires are 
remarkably stable, even over several decades (Costa & McCrae, 1994).

Forty years ago, a landmark study involving 750 pairs of adolescent twins and 
dozens of personality traits reached two major conclusions that have stood the test 
of time (Loehlin & Nichols, 1976). First, nearly all personality traits show moderate 
heritability. This conclusion might seem surprising because you would expect some 
traits to be highly heritable and other traits not to be heritable at all. Second, although 
environmental variance is also important, virtually all the environmental variance 
makes children growing up in the same family no more similar than children in dif-
ferent families. This category of environmental effects is called nonshared environment. 
The second conclusion is also surprising because theories of personality from Freud 
onward assumed that parenting played a critical shared environmental role in person-
ality development. This important finding is discussed in Chapter 7.

Genetic research on personality has focused on five broad dimensions of per-
sonality, called the Five-​Factor Model (FFM), that encompass many aspects of person-
ality (Goldberg, 1990). The best-​studied of these are extraversion and neuroticism. 
Extraversion includes sociability, impulsiveness, and liveliness. Neuroticism (emotional 
instability) involves moodiness, anxiousness, and irritability. These two traits plus the 
three others included in the FFM create the acronym OCEAN: openness to experi-
ence (culture), conscientiousness (conformity, will to achieve), extraversion, agreeableness 
(likability, friendliness), and neuroticism.

Genetic results for extraversion and neuroticism are summarized in Table 16.1 
(Loehlin, 1992). In five large twin studies in five different countries, with a total sample 
size of 24,000 pairs of twins, results indicate moderate genetic influence. Correlations 
are about 0.50 for identical twins and about 0.20 for fraternal twins. Studies of twins 
reared apart also indicate genetic influence, as do adoption studies of extraversion. 
Adoption results point to less genetic influence than do the twin studies. Heritabil-
ity was estimated as 40 percent across all personality traits in two large-​scale meta-​
analyses (Polderman et al., 2015; Vukasovic & Bratko, 2015). The latter meta-​analysis 
also confirmed the finding suggested in Table 16.1 that twin studies yield higher herita-
bility estimates (47 percent) as compared to family and adoption studies (22 percent). 
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Lower heritability in adoption than in twin studies could be due to nonadditive genetic 
variance, which makes identical twins more than twice as similar as fraternal twins 
and other first-​degree relatives (Eaves et al., 1999b; Eaves, Heath, Neale, Hewitt, & 
Martin, 1998; Keller, Coventry, Heath, & Martin, 2005; Loehlin, Neiderhiser, & Reiss, 
2003; Plomin, Corley, Caspi, Fulker, & DeFries, 1998). It could also be due to a spe-
cial environmental effect that boosts identical twin similarity, which implies that twin 
study estimates of heritability might be inflated (Plomin & Caspi, 1999).

The fact that the heritability estimates are much less than 100 percent implies 
that environmental factors are important, but, as mentioned earlier, this environmen-
tal influence is almost entirely due to nonshared environmental effects. As discussed 
in Chapter 7, the message is not that family experiences are unimportant but rather 
that the relevant experiences are specific to each child in the family. This finding was 
ignored when it was first noted (Loehlin & Nichols, 1976) and controversial when it 
was first highlighted (Plomin & Daniels, 1987), but it is now widely accepted because 
it has consistently replicated (Plomin, 2011; Turkheimer et al., 2014). The acceptance 
is so complete that the focus now is on finding any shared environmental influence for 
personality. For example, it has been suggested that shared environmental influence 
may be more important at the extremes of personality (Pergadia et al., 2006b). It has 
also been suggested that adoption data find more evidence of shared environmental 
influence (Matteson, McGue, & Iacono, 2013), although the results in Table 16.1 pro-
vide little support for this hypothesis because the average correlations are 0.03 between 
adoptive parents and their adopted children and 0.02 between adoptive siblings.

Heritabilities in the 30 to 50  percent range are typical of personality results 
(Figure 16.1), although much less genetic research has been done on the other three 
traits of the FFM. Also, openness to experience, conscientiousness, and agreeableness 

TABLE 16 .1
Twin, Family, and Adoption Results for Extraversion and Neuroticism

  Correlation

Type of Relative  Extraversion  Neuroticism

Identical twins reared together 0.51 0.46
Fraternal twins reared together 0.18 0.20
Identical twins reared apart 0.38 0.38
Fraternal twins reared apart 0.05 0.23
Nonadoptive parents and offspring 0.16 0.13
Adoptive parents and offspring 0.01 0.05
Nonadoptive siblings 0.20 0.09
Adoptive siblings -0.07 0.11

source: Loehlin (1992).
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have been measured differently in different studies because, until recently, no stan-
dard measures were available. A model-​fitting summary of family, twin, and adop-
tion data for scales of personality thought to be related to these three traits yielded 
heritability estimates of 45 percent for openness to experience, 38 percent for consci-
entiousness, and 35 percent for agreeableness, with no evidence of shared environ-
mental influence (Loehlin, 1992). The first genetic study to use a measure specifically 
designed to assess the FFM factors found similar estimates in an analysis of twins 
reared together and twins reared apart, except that agreeableness showed lower heri-
tability (12 percent) (Bergeman et al., 1993). Other twin studies yielded heritabili-
ties of about 40 percent for all of the FFM factors including agreeableness (Franić, 
Borsboom, Dolan, & Boomsma, 2014; Jang, Livesley, & Vernon, 1996). There has been 
recent interest in the FFM dimension of conscientiousness, which has been popular-
ized in education as “grit.” Grit, which predicts academic achievement, is thought to 
be more malleable than other predictors such as intelligence; training grit has been 
set as a priority by the U.S. and U.K. education departments (Duckworth & Gross, 
2014). However, a recent twin study shows that grit is the same trait genetically as 
conscientiousness and yields the same results as other personality traits: moderate 
genetic influence and no shared environmental influence (Rimfeld, Kovas, Dale, & 
Plomin, 2016).

Do these broad FFM factors represent the best level of analysis for genetic 
research? Multivariate genetic research supports the FFM structure in that the genetic 
structure is similar to the phenotypic structure (Turkheimer et al., 2014). Nonetheless, 
subtraits within each FFM factor show significant unique genetic variance not shared 
with other traits in the factor, suggesting that there is more to personality than the FFM 
factors (Franić et al., 2014a; Jang et al., 2006; Jang, McCrae, Angleitner, Riemann, & 
Livesley, 1998; Loehlin, 1992). For example, extraversion includes diverse traits such as 
sociability, impulsiveness, and liveliness, as well as activity, dominance, and sensation 
seeking. Each of these traits has received some attention in genetic research but not 
nearly as much as the more global traits of extraversion and neuroticism.

FIGURE 16.1 Genetic results for personality traits assessed by 
self-​report questionnaires are remarkably similar, suggesting 
that 30 to 50 percent of the variance is due to genetic factors. 
Environmental variance is also important, but hardly any envi-
ronmental variance is due to shared environmental influence.

Nonshared environment
60%

Genetic
40%
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Several theories of personality development have been proposed about other 
ways in which personality should be sliced, and similar results have been found for 
the different traits highlighted in these theories (Kohnstamm, Bates, & Rothbart, 
1989). For example, a neurobiologically oriented theory organizes personality into 
four different domains: novelty seeking, harm avoidance, reward dependence, and 
persistence (Cloninger, 1987). Similar twin study results have been found for these 
dimensions (Heiman, Stallings, Young, & Hewitt, 2004; Stallings, Hewitt, Cloninger, 
Heath, & Eaves, 1996). A study that combined multiple personality scales from dif-
ferent measures using latent factors found three dimensions that showed heritabili-
ties of about 50 to 65 percent and no evidence of shared environmental influences 
(Ganiban et al., 2009a). The heritabilities are somewhat higher than usual for per-
sonality because they are estimated from reliable variance from latent personality 
constructs rather than from estimates of total variance.

One of the most surprising findings from genetic research on personality ques-
tionnaires is that all traits show moderate genetic influence (usually about 40 per-
cent heritability) and little influence of shared environment. It is also surprising that 
studies have not found any personality traits assessed by self-​report questionnaire 
that consistently show low or no heritability in twin studies. Moreover, there is no 
evidence that any traits are consistently more heritable than any others (Turkheimer 
et al., 2014). This is in contrast to childhood psychopathology (Chapter 15), where 
some disorders are more heritable than others and some disorders yield more shared 
environmental influence than others.

The conclusion that heritability is modest for all personality traits is supported 
by SNP-​based heritability estimates of self-​report questionnaires of personality, 
which are about 10 percent (Genetics of Personality Consortium et al., 2015; Rietveld 
et al., 2013a; Verweij et al., 2012; Vinkhuyzen et al., 2012a), including an analysis of 
the FFM factors (Power & Pluess, 2015). As mentioned in previous chapters, SNP 
heritability estimates are usually about half the twin heritability, but for personality, 
the SNP heritability estimates are only about one-​quarter the twin estimates. This 
extra-​wide gap between SNP heritability and twin heritability for personality could 
be due to nonadditive genetic variance or inflated twin estimates, as discussed earlier.

OTHER MEASURES OF PERSONALITY
All of the research described in the previous section relied on self-​report question-
naires. Are the ubiquitous results showing moderate heritability and little shared envi-
ronment somehow due to the use of self-​report questionnaires? A new direction for 
research on personality is to incorporate multiple methods of assessment (Saudino & 
Micalizzi, 2015). A study of more than 1000 adult twin pairs in Germany and Poland 
compared results from self-​report questionnaires and from ratings by peers for meas-
ures of the FFM personality factors (Riemann, Angleitner, & Strelau, 1997). Each 
twin’s personality was rated by two different peers. The average correlation between 
the two peer ratings was 0.61, a result indicating substantial agreement concerning 
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each twin’s personality. The averaged peer ratings correlated 0.55 with the twins’ self-​
report ratings, a result indicating moderate validity of self-​report ratings. Figure 16.2 
shows the results of twin analyses for self-​report data and peer ratings averaged across 
two peers. The results for self-​report ratings are similar to those in other studies. The 
exciting result is that peer ratings also show significant genetic influence, although 
somewhat less than self-​report ratings. For two of the five traits (extraversion and 
agreeableness), peer ratings suggest greater influence of shared environment than do 
self-​report ratings, although these differences are not statistically significant. Impor-
tantly, multivariate genetic analysis indicates that the same genetic factors are largely 
involved in self-​report and peer ratings, a result providing strong evidence for the 
genetic validity of self-​report ratings. An earlier study used twin reports about each 
other, and it also found similar evidence for genetic influence on personality traits, 
whether assessed by self-​report or by the co-​twin (Heath, Neale, Kessler, Eaves, & 
Kendler, 1992).

Genetic researchers interested in personality in childhood were forced to use 
measures other than self-​report questionnaires. For the past 30 years, this research 
has relied primarily on ratings by parents, but twin studies using parent ratings have 
yielded odd results. Correlations for identical twins are high and correlations for fra-
ternal twins are very low, sometimes even negative. It is likely that these results are 
due to contrast effects, which result when parents of fraternal twins contrast the twins 
(Plomin, Chipuer, & Loehlin, 1990). For example, parents might report that one twin 
is the active twin and the other is the inactive twin, even though, relative to other 
children that age, the twins are not really very different from each other (Carey, 1986; 
Eaves, 1976; Neale & Stevenson, 1989).

In contrast to parent ratings in twin studies, which yield inflated estimates of 
heritability, adoption studies using parent ratings in childhood find little evidence 
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for genetic influence (Loehlin, Willerman, & Horn, 1982; Plomin, Coon, Carey, 
DeFries, & Fulker, 1991; Scarr & Weinberg, 1981; Schmitz, 1994). A combined twin 
study and stepfamily study of parent ratings of adolescents found significantly greater 
heritability estimates for twins than for nontwins and confirmed that parent ratings 
are subject to contrast effects (Saudino, McGuire, Reiss, Hetherington, & Plomin, 
1995). As mentioned in relation to self-​report questionnaires, such findings might also 
be due to nonadditive genetic variance. However, the weight of evidence indicates 
that genetic results for parent ratings of personality are due in part to contrast effects 
(Mullineaux, Deater-​Deckard, Petrill, Thompson, & DeThorne, 2009; Saudino, 
Wertz, Gagne, & Chawla, 2004). 

Other measures of children’s personality, such as behavioral ratings by observers, 
show more reasonable patterns of results in both twin and adoption studies (Braungart, 
Plomin, DeFries, & Fulker, 1992; Cherny et  al., 1994; Goldsmith & Campos, 1986; 
Lemery-​Chalfant, Doelger, & Goldsmith, 2008; Matheny, 1980; Plomin et  al., 1993; 
Plomin & Foch, 1980; Plomin, Foch, & Rowe, 1981; Saudino, 2012; Saudino, Plomin, & 
DeFries, 1996; Wilson & Matheny, 1986). For example, genetic influence has been found 
in observational studies of young twins for a dimension of fearfulness called behavioral 
inhibition (Matheny, 1989; Robinson, Kagan, Reznick, & Corley, 1992), for shyness 
(Cherny et al., 1994; Eggum-​Wilkens, Lemery-​Chalfant, Aksan, & Goldsmith, 2015), 
for effortful control during middle childhood (Lemery-​Chalfant et al., 2008), and for 
activity level measured by actometers that record movement (Saudino, 2012; Saudino & 
Eaton, 1991). Because evidence for genetic influence is so widespread, even for observa-
tional measures, it is interesting that observer ratings of personality in the first few days 
of life have found no evidence for genetic influence (Riese, 1990) and that individual 
differences in smiling in infancy also show no genetic influence (Plomin, 1987).

OTHER FINDINGS
Genetic research on personality will be accelerated by research showing the asso-
ciation between personality and psychopathology and by molecular genetic studies 
of personality. Both of these trends will be discussed later in this chapter. As just 
described, another example of new directions for personality research is increasing 
interest in measures other than self-​report questionnaires.

In this section, we highlight three examples of new directions for personality 
research that go beyond the typical personality result, that is, heritabilities of about 
40 percent and little shared environmental influence. These examples are research 
on personality in different situations, studies of developmental change and continu-
ity, and the role of personality in the interplay between nature and nurture. Two 
other relatively new areas of genetic research—​well-​being and self-​esteem—​deserve 
a mention even though they yield the typical result. Although well-​being has only 
recently become a focus for genetic research (Pluess, 2015), a meta-​analysis of well-​
being as well as happiness and life satisfaction based on 10 studies including 56,000 
individuals yielded a heritability estimate of 36 percent and no evidence of shared 
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environmental influence (Bartels, 2015). (Well-​being is also discussed in Chapter 18 
in relation to health psychology.) Self-​esteem, also referred to as a sense of self-​worth, 
is interesting because it was thought to be an aspect of personality due solely to 
family environment and immune from genetic influence (Harter, 1983). However, 
twin and adoption studies yield the typical personality result, with heritabilities of 
about 40 percent but no influence of shared environment in childhood (Neiderhiser & 
McGuire, 1994; Van Ryzin et al., 2015), adolescence (Kamakura, Ando, & Ono, 2007; 
McGuire, Neiderhiser, Reiss, Hetherington, & Plomin, 1994; Neiss, Stevenson, 
Legrand, Iacono, & Sedikides, 2009), and adulthood (Roy, Neale, & Kendler, 1995; 
Svedberg et al., 2014).

Situations
It is interesting, in relation to the person-​situation debate mentioned earlier, that some 
evidence suggests that genetic factors are involved in situational change as well as in 
stability of personality across situations (Phillips & Matheny, 1997). For example, in 
one study, observers rated the adaptability of infant twins in two laboratory settings: 
unstructured free play and test taking (Matheny & Dolan, 1975). Adaptability dif-
fered to some extent across these situations, but identical twins changed in more sim-
ilar ways than fraternal twins did, an observation implying that genetics contributes 
to change as well as to continuity across situations for this personality trait. Similar 
results were found in a more recent study of person-​situation interaction (Borkenau, 
Riemann, Spinath, & Angleitner, 2006). A twin study using a questionnaire to assess 
personality in different situations also found that genetic factors contribute to person-
ality changes across situations (Dworkin, 1979). Even patterns of responding across 
items of personality questionnaires show genetic influence (Eaves & Eysenck, 1976; 
Hershberger, Plomin, & Pedersen, 1995).

Development
Does heritability change during development? Unlike general cognitive ability, 
which shows increases in heritability throughout the life span (Chapter  11), it is 
more difficult to draw general conclusions concerning personality development, in 
part because there are so many personality traits. In general, heritability appears to 
increase during infancy (Goldsmith, 1983; Loehlin, 1992), starting with zero herit-
ability for personality during the first days of life (Riese, 1990). Of course, what is 
assessed as personality during the first few days of life is quite different from what is 
assessed later in development, and the sources of individual differences might also 
be quite different in neonates. In childhood, parent ratings are often used which, as 
indicated earlier, overestimate genetic influence. Throughout the rest of the life span 
using self-​ratings, meta-​analyses indicate that heritability does not change (Briley & 
Tucker-​Drob, 2014; Polderman et al., 2015; Turkheimer et al., 2014).

A second important question about development concerns the genetic contri-
bution to either continuity or change from age to age. For cognitive ability, genetic 
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factors largely contribute to stability from age to age rather than to change, although 
some evidence can be found, especially in childhood, for genetically influenced 
change (Chapter 11). Although less well-​studied than cognitive ability, developmen-
tal findings for personality appear to be similar. The first report of a longitudinal 
genetic analysis over an age span of a decade in adulthood concluded that 80 percent 
of the phenotypic stability of personality was mediated genetically (McGue et al., 
1993a), which has been confirmed in recent meta-​analyses throughout the life span 
(Briley & Tucker-​Drob, 2014; Turkheimer et al., 2014).

Nature-​Nurture Interplay
Another new direction for genetic research on personality involves the role of per-
sonality in explaining a fascinating finding discussed in Chapter 8: Environmental 
measures widely used in psychological research show genetic influence. Genetic 
research consistently shows that family environment, peer groups, social support, and 
life events often show as much genetic influence as measures of personality. Person-
ality is a good candidate to explain some of this genetic influence because personal-
ity can affect how people select, modify, construct, or perceive their environments. 
For example, genetic influence on personality in adulthood has been reported to 
contribute to genetic influence on parenting in three studies (Chipuer & Plomin, 
1992; Losoya, Callor, Rowe, & Goldsmith, 1997; McAdams, Gregory & Eley, 2013), 
although not in another (Vernon, Jang, Harris, & McCarthy, 1997).

Genetic influence on perceptions of life events can be entirely accounted for by 
the FFM personality factors (Saudino et al., 1997). These findings are not limited to 
self-​report questionnaires. For example, genetic influence found on an observational 
measure of home environments can be explained entirely by genetic influence on a 
tester-​rated measure of attention called task orientation (Saudino & Plomin, 1997).

PERSONALITY AND SOCIAL PSYCHOLOGY
Social psychology focuses on the behavior of groups, whereas individual differences 
are in the spotlight for personality research. For this reason, there is not nearly as 
much genetic research relevant to social psychology as there is for personality. How-
ever, some areas of social psychology border on personality, and genetic research has 
begun at these borders. Three examples are relationships, attitudes, and behavioral 
economics.

Relationships
 Genetic research has addressed parent-​offspring relationships, romantic relationships, 
and sexual orientation. As discussed in Chapter 8, relationships between parents and 
offspring, especially their warmth (such as affection and support), consistently show 
genetic influence. Dozens of twin and adoption studies have found similar results 
that point to substantial genetic influences in most aspects of relationships, not just 
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between parents and offspring but also between siblings, peers, friends, and spouses 
(Horwitz & Neiderhiser, 2015; Plomin, 1994). A major area of developmental research 
on parent-​offspring relationships involves attachment between infant and caregiver, 
as assessed in the so-​called Strange Situation, a laboratory-​based assessment in which 
mothers briefly leave their child with an experimenter and then return (Ainsworth, 
Blehar, Waters, & Wall, 1978). Sibling concordance of about 60  percent has been 
reported for attachment classification (van IJzendoorn et al., 2000; Ward, Vaughn, & 
Robb, 1988). The first systematic twin study of attachment using the Strange Situation 
found only modest genetic influence and substantial influence of shared environment 
(O’Connor & Croft, 2001). Three subsequent studies using the Strange Situation also 
found modest heritability and substantial shared environmental influence (Bokhorst 
et al., 2003; Fearon et al., 2006; Roisman & Fraley, 2006), although another twin study 
based on observations rather than the Strange Situation found evidence for greater 
genetic influence (Finkel, Wille, & Matheny, 1998). As described in Chapter 15, twin 
studies of separation anxiety disorder, which is related to attachment, also generally 
show modest heritability and substantial shared environmental influence. In sum-
mary, attachment seems to be an exception to the typical personality findings.

Like parent-​offspring relationships, romantic relationships differ widely in vari-
ous aspects, such as closeness and passion. The first genetic study of styles of romantic 
love is interesting because it showed no genetic influence (Waller & Shaver, 1994). 
The average twin correlations for six scales (for example, companionship and pas-
sion) were 0.26 for identical twins and 0.25 for fraternal twins, results implying some 
shared environmental influence but no genetic influence, which contrasts sharply 
with the typical results for personality. Similar results have been found for initial 
attraction in mate selection (Lykken & Tellegen, 1993). In other words, genetics may 
play no role in the type of romantic relationships we choose. Although more research 
is needed to pin down the role of genetics in initial attraction, research suggests that 
genetic factors are important when the quality of romantic relationships is considered. 
There are now a handful of studies that have examined self-​report, partner report, 
and observational ratings of relationship quality in married and long-​term cohabitat-
ing twins; these studies have yielded heritability estimates ranging from about 15 to 
35 percent and no shared environmental influence (Spotts et al., 2004, 2006). There is 
also some evidence that personality accounts for nearly half of the genetic variance in 
relationship quality (Spotts et al., 2005). Therefore, although genetic factors may not 
influence the type of romantic relationships we choose, they may affect our satisfac-
tion with those relationships.

For sexual orientation, results are not yet clear. An early twin study of male 
homosexuality reported remarkable concordance rates of 100 percent for identical 
twins and 15 percent for fraternal twins (Kallmann, 1952). However, a later twin study 
found less extreme concordances of 52 and 22 percent, respectively, and a concor-
dance of 22  percent for genetically unrelated adoptive brothers (Bailey & Pillard, 
1991); other twin studies found even less genetic influence and more influence of 
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shared environment (Bailey, Dunne, & Martin, 2000; Kendler, Thornton, Gilman, & 
Kessler, 2000). A small twin study of lesbians also yielded evidence for moderate 
genetic influence (Bailey, Pillard, Neale, & Agyei, 1993). A population-​based study of 
nearly 4000 Swedish twins found heritabilities ranging from 34 to 39 percent and no 
shared environmental influences for the total number of same-​sex partners for men 
and much lower heritability, of around 20 percent, and modest shared environmental 
influence (~15 percent) for women (Langstrom, Rahman, Carlstrom, & Lichtenstein, 
2010). This area of research received considerable attention because of reports of 
linkage between homosexuality and a region at the tip of the long arm of the X chro-
mosome (Xq28; Hamer, Hu, Magnuson, Hu, & Pattatucci, 1993; Hu et al., 1995). The 
X chromosome was targeted because it was thought that male homosexuality is more 
likely to be transmitted from the mother’s side of the family, but later studies did not 
find an excess of maternal transmission (Bailey et al., 1999). The X linkage was not 
replicated in a subsequent study (Rice, Anderson, Risch, & Ebers, 1999), although 
a recent follow-​up provides some support for X linkage (Sanders et al., 2015). No 
genomewide association studies have as yet been reported. When genetic research 
touches on especially sensitive issues such as sexual orientation, it is important to 
keep in mind earlier discussions (see Chapter 7) about what it does and does not mean 
to show genetic influence (Bailey et al., 2016; Pillard & Bailey, 1998).

Attitudes and Political Behavior
Social scientists have long been interested in the impact of group processes on change 
and continuity in attitudes and beliefs. Although it is recognized that social factors 
are not solely responsible for attitudes, it has been a surprise to find that genetics 
makes a major contribution to individual differences in attitudes. A core dimension of 
attitudes is traditionalism, which involves conservative versus liberal views on a wide 
range of issues. A measure of this attitudinal dimension was included in an adoption 
study of personality as a control variable because it was not expected to be heritable 
(Scarr & Weinberg, 1981). However, the results indicated that this measure was as 
heritable as the personality measures but also showed shared environmental influ-
ence. A recent meta-​analysis of 12,000 twin pairs from nine studies in five countries 
confirmed these results for various aspects of political ideology, with heritability esti-
mates of about 40  percent and shared environment estimates of about 20  percent 
(Hatemi et al., 2014). Genetic influence on political attitudes correlates with genetic 
influence on traditional personality traits but longitudinal analyses suggest that per-
sonality traits are not causal (Hatemi & Verhulst, 2015).

Genetic research extends beyond political attitudes to political behaviors 
(Fowler & Schreiber, 2008; Hatemi & McDermot, 2011). For example, one study 
in a large American twin sample found that political party identification was due 
mostly to shared environmental influences, while the intensity of party identification 
was equally split between genetic and nonshared environmental influences (Hatemi, 
Alford, Hibbing, Martin, & Eaves, 2009). Other studies have reported that political 
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participation is heritable (Baker, Barton, Lozano, Raine, & Fowler, 2006; Fowler, 
Baker, & Dawes, 2008).

Religious attitudes have also been the focus of genetic research, as seen in a spe-
cial issue of the journal Twin Research (Eaves, D’Onofrio, & Russell, 1999). Research 
suggests that the heritability of religiousness increases and shared environmen-
tal influence decreases from adolescence to adulthood (Kandler & Riemann, 2013; 
Koenig, McGue, Krueger, & Bouchard, 2005).

Sometimes these results are held up for ridicule: How can attitudes about poli-
tics or religion be heritable? We hope that by now you can answer this question (see 
Chapter 8), but it has been put particularly well in the context of social attitudes:

We may view this as a kind of cafeteria model of the acquisition of social atti-
tudes. The individual does not inherit his ideas about fluoridation, royalty, women 
judges, and nudist camps; he learns them from his culture. But his genes may influ-
ence which ones he elects to put on his tray. Different cultural institutions—​family, 
church, school, books, television—​like different cafeterias, serve up somewhat differ-
ent menus, and the choices a person makes will reflect those offered him as well as his 
own biases. (Loehlin, 1997, p. 48)

This theme of nature operating via nurture was discussed in Chapter 8.
Social psychology traditionally uses the experimental approach rather than 

investigating naturally occurring variation. There is a need to bring together these 
two research traditions. For example, Tesser (1993), a social psychologist, separated 
attitudes into those that were more heritable (such as attitudes about the death pen-
alty) and those that were less heritable (such as attitudes about coeducation and the 
truth of the Bible). In standard social psychology experimental situations, the more 
heritable items were found to be less susceptible to social influence and more impor-
tant in interpersonal attraction (Tesser, Whitaker, Martin, & Ward, 1998), a result 
replicated in a recent study (Schwab, 2014).

Behavioral Economics
Another area of genetic research related to personality is behavioral economics. For 
example, results obtained from twin and adoption studies of vocational interests are 
similar to those that have been reported for personality questionnaires (Betsworth 
et  al., 1994; Roberts & Johansson, 1974; Scarr & Weinberg, 1978a). Evidence for 
genetic influence was also found in twin studies of work values (Keller, Bouchard, 
Segal, & Dawes, 1992) and job satisfaction (Arvey, Bouchard, Segal, & Abraham, 1989; 
Judge, Ilies & Zhang, 2012).

Recent genetic research in behavioral economics has also begun to focus on other  
behaviors central to economics, such as investor behavior (Barnea, Cronqvist, &  
Siegel, 2010), financial decision making (Cesarini, Johannesson, Lichtenstein, 
Sandewall, & Wallace, 2010; MacKillop, 2013), philanthropy (Cesarini, Dawes, 
Johannesson, Lichtenstein, & Wallace, 2009), self-​employment and entrepreneur-
ship (van der Loos et  al., 2013), and economic risk-​taking (Le, Miller, Slutske, & 
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Martin, 2010; Zhong et al., 2009; Zyphur, Narayanan, Arvey, & Alexander, 2009). The 
field is moving quickly toward molecular genetic research (Beauchamp et al., 2011; 
Koellinger et al., 2010). For example, SNP-​based heritability estimates support twin 
research in finding significant genetic influence in behavioral economics (Benjamin 
et al., 2012).

PERSONALITY DISORDERS
To what extent is psychopathology the extreme manifestation of normal dimensions 
of personality? It has long been suggested that this is the case for some psychiatric 
disorders (e.g., Cloninger, 2002; Eysenck, 1952; Livesley, Jang, & Vernon, 1998). 
As noted earlier, an important general lesson from behavioral genetic research on 
psychopathology (Chapters  13–15) as well as cognitive disabilities (Chapter  12) 
is that common disorders are the quantitative extreme of the same genetic and 
environmental factors that contribute to the normal range of variation. With cognitive 
disabilities such as reading disability, it is easy to see what normal variation is—​
variation in reading ability is normally distributed, and reading disability is the low 
end of that distribution. However, what are the dimensions of normal variation in 
personality that are associated with depression or other types of psychopathology?

Chapter 14 ended with a multivariate genetic model that proposes two broad 
categories of psychopathology. The internalizing category includes depression and 
anxiety disorders, and the externalizing category includes antisocial behavior and 
drug abuse. One of the most important findings from genetic research on personality 
is the extent of genetic overlap between the internalizing category of psychopathol-
ogy and the personality factor of neuroticism. As mentioned earlier, neuroticism does 
not mean neurotic in the sense of being nervous; neuroticism refers to a general dimen-
sion of emotional instability, which includes moodiness, anxiousness, and irritability. 
Twin studies found that genetic factors shared between neuroticism and internalizing 
disorders accounted for between one-​third and one-​half of the genetic risk (Hettema 
et  al., 2006; Kendler & Gardner, 2011; Mackintosh, Gatz, Wetherell, & Pedersen, 
2006). Another study reported genetic correlations of about 0.50 between neuroti-
cism and major depression (Kendler et al., 2006a). Similar findings had emerged from 
earlier multivariate genetic studies (Eaves et al., 1989).

In summary, the internalizing category of psychopathology is similar geneti-
cally to the personality factor of neuroticism. What about the externalizing category 
of psychopathology? Although it would be wonderfully symmetrical if extraver-
sion predicted externalizing psychopathology, this is not the case (Khan, Jacobson, 
Gardner, Prescott, & Kendler, 2005). However, several studies have shown that aspects 
of extraversion—​especially novelty seeking, impulsivity, and disinhibition—​predict 
externalizing psychopathology (Krueger, Caspi, Moffitt, Silva, & McGee, 1996). Two 
different twin studies have addressed the causes of overlap between disinhibitory 
dimensions of personality and externalizing psychopathology; both found that some 
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of the overlap is genetic in origin, although most of the genetic influence on disin-
hibitory personality is independent of externalizing psychopathology (Krueger et al., 
2002; Young et al., 2009). In contrast, a recent twin study found that FFM personality 
factors can explain all of the genetic influences on behavior problems in adolescence 
(Lewis et al., 2014).

All of this research suggests some genetic overlap between personality and 
psychopathology. Much genetic research on this topic has focused on an area of 
psychopathology called personality disorders. Unlike psychopathology, described in 
Chapters  13–15, personality disorders are personality traits that cause significant 
impairment or distress. People with personality disorders regard their disorder as 
part of who they are, their personality, rather than as a condition that can be treated. 
That is, they do not feel that they were once well and are now ill. Although the reli-
ability, validity, and utility of diagnosing personality disorders have long been ques-
tioned, research has addressed the genetics of personality disorders and their links 
to normal personality and to other psychopathology (Jang, 2005; Nigg & Goldsmith, 
1994; Torgersen, 2009). Increasingly, personality disorders are being considered as 
dimensions rather than categories, which will increase genetic research on their links 
with personality (Zachar & First, 2015).

DSM-​5 recognizes ten personality disorders, but only three have been investi-
gated systematically in genetic research: schizotypal, obsessive-​compulsive, and anti-
social personality disorders. A meta-​analysis of twin studies with measures related 
to personality disorders of any kind yielded results similar to those for personality: 
heritability of about 40 percent and no shared environmental influence (Polderman 
et al., 2015).

Schizotypal Personality Disorder
Schizotypal personality disorder involves less intense schizophrenic-​like symptoms and, 
like schizophrenia, clearly runs in families (Baron, Gruen, Asnis, & Lord, 1985; Siever 
et al., 1990). The results of a small twin study suggested genetic influence, yielding 
33 percent concordance for identical twins and 4 percent for fraternal twins (Torgersen 
et  al., 2000). Twin studies using dimensional measures of schizotypal symptoms in 
unselected samples of twins also found evidence for genetic influence, with heritability 
estimates ranging widely from about 20 to 80 percent (Claridge & Hewitt, 1987; Cool-
idge, Thede, & Jang, 2001; Kendler et al., 2008a; Kendler et al., 2006c; Torgersen, 2009).

Genetic research on schizotypal personality disorder focuses on its relationship 
to schizophrenia and has consistently found an excess of the disorder among first-​
degree relatives of schizophrenic probands. A summary of such studies found that the 
risks of schizotypal personality disorder are 11 percent for the first-​degree relatives of 
schizophrenic probands and 2 percent for control families (Nigg & Goldsmith, 1994).

Adoption studies have played an important role in showing that the disorder 
is part of the genetic spectrum of schizophrenia. For example, in a Danish adop-
tion study (see Chapter 13), the rate of schizophrenia was 5 percent in the biological 
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first-​degree relatives of schizophrenic adoptees but 0 percent in their adoptive rel-
atives and relatives of control adoptees (Kety et  al., 1994). When schizotypal per-
sonality disorder was included in the diagnosis, the rates rose to 24 and 3 percent, 
respectively, implying greater genetic influence for the spectrum of schizophrenia 
that includes schizotypal personality disorder (Kendler, Gruenberg, & Kinney, 1994). 
Twin studies also suggest that schizotypal personality disorder is genetically related 
to schizophrenia (Farmer et al., 1987), especially for the negative (anhedonia) rather 
than the positive (delusions) aspects of schizotypy (Torgersen et al., 2002). Studies 
using community samples of twins suggest that the negative and positive aspects of 
schizotypy differ genetically (Linney et al., 2003) and that schizotypy is genetically 
related to the schizophrenia spectrum (Jang, Woodward, Lang, Honer, & Livesley, 
2005). Recent genetic research considers subclinical psychotic experiences more 
generally as a heritable personality trait that is normally distributed in the popula-
tion (Zavos et al., 2014) and that predicts genetic liability for psychosis (Binbay et al., 
2012), although some research disagrees (Zammit et al., 2014).

Obsessive-​Compulsive Personality Disorder
Obsessive-​compulsive personality disorder sounds as if it is a milder version of the 
obsessive-​compulsive type of anxiety disorder (OCD, described in Chapter 14); family 
studies provide some empirical support for this. However, the diagnostic criteria for 
these two disorders are quite different. The compulsion of OCD is a single sequence 
of specific behaviors, whereas the personality disorder is more pervasive, involving 
a general preoccupation with trivial details that leads to difficulties in making deci-
sions and getting anything accomplished. Only one small twin study of diagnosed 
obsessive-​compulsive personality disorder has been reported, and it found substan-
tial genetic influence (Torgersen et al., 2000). However, twin studies of obsessional 
symptoms in unselected samples of twins suggest modest heritability (Kendler et al., 
2008a; Torgersen, 1980; Young, Fenton, & Lader, 1971). Family studies indicate that 
obsessional traits are more common (about 15 percent) in relatives of probands with 
obsessive-​compulsive disorder than in controls (5  percent) (Rasmussen & Tsuang, 
1984). Furthermore, results obtained from a recent twin study examining symptoms 
of obsessive-​compulsive disorder and obsessive-​compulsive personality traits suggest 
common genetic influences (Taylor, Asmundson, & Jang, 2011). This finding implies 
that obsessive-​compulsive personality disorder might be part of the spectrum of the 
obsessive-​compulsive type of anxiety disorder.

Antisocial Personality Disorder and Criminal Behavior
Much more genetic research has focused on antisocial personality disorder (ASPD) 
than on other personality disorders. ASPD includes such chronic behaviors as break-
ing the law, lying, and conning others for personal profit or pleasure but also includes 
more cognitive and personality-​based criteria such as impulsivity, aggressiveness, dis-
regard for safety of self and others, and lack of remorse for having hurt, mistreated, 
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or stolen from others. Although ASPD shows early roots, the vast majority of juvenile 
delinquents and children with conduct disorders do not develop antisocial personal-
ity disorder (Robins, 1978). For this reason, there is a need to distinguish conduct dis-
order that is limited to adolescence from antisocial behavior that persists throughout 
the life span (Caspi & Moffitt, 1995; Kendler, Aggen, & Patrick, 2012; Moffitt, 1993). 
ASPD affects about 1 percent of females and 4 percent of males from 13 to 30 years of 
age (American Psychiatric Association, 2013; Kessler et al., 1994). The prevalence of 
the disorder is much higher in selected populations, such as prisons, where there is a 
preponderance of violent offenders, with 47 percent of male prisoners and 21 percent 
of female prisoners having ASPD (Fazel & Danesh, 2002). Similarly, the prevalence 
of ASPD is higher among patients in alcohol or other drug abuse treatment programs 
than in the general population, suggesting a link between ASPD and substance abuse 
and dependence (Moeller & Dougherty, 2001).

Family studies show that ASPD runs in families (Nigg & Goldsmith, 1994), and 
an adoption study found that familial resemblance is largely due to genetic rather 
than to shared environmental factors (Schulsinger, 1972). Although no twin studies 
of diagnosed ASPD are available, there are over 100 twin and adoption studies on 
antisocial behavior. A meta-​analysis of 52 independent twin and adoption studies of 
antisocial behavior found evidence for significant shared environmental influences 
(16  percent) as well as significant genetic effects, including additive and nonaddi-
tive influences (41  percent), and nonshared environmental influences (43  percent) 
(Rhee & Waldman, 2002). More recent meta-​analyses, though, suggest slightly higher 
heritabilities of 50 to 60  percent and similar magnitudes of shared environmental 
influences of about 15 percent (Burt, 2009a; Ferguson, 2010). However, both shared 
environmental influences and heritability were lower in parent-​offspring studies than 
in twin and sibling studies, which could signal developmental changes between child-
hood (offspring) and adulthood (parents), in contrast to twins, who are exactly the 
same age. These meta-​analyses agree that, while genetic influences are important to 
antisocial behavior in childhood through adulthood, the magnitude of familial effects 
(genetic and shared environmental influences) decreases somewhat with age and 
nonfamilial influences increase with age (Ferguson, 2010; Rhee & Waldman, 2002). 
Moreover, as is typically found in longitudinal genetic analyses, genetics and shared 
environment largely contribute to stability and nonshared environment contributes 
to change during development (Burt, McGue, & Iacono, 2010).

There have been questions about whether the criteria for ASPD reflect one dis-
order (or a single dimension) or whether ASPD is better represented by multiple 
dimensions that capture variation in this personality domain (Burt, 2009a). A recent 
multivariate twin study of ASPD symptoms suggests that two factors comprise ASPD: 
aggressive-​disregard and disinhibition (Kendler et al., 2012a). Scores on the genetic 
aggressive-​disregard factor are more strongly associated with risk for conduct dis-
order and early and heavy alcohol use; in contrast, scores on the genetic disinhibi-
tion factor are more strongly associated with novelty seeking and major depression 
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(Kendler et al., 2012a). Interestingly, both genetic factors predicted cannabis, cocaine, 
and alcohol dependence, which suggests two potential pathways that might explain 
the association between ASPD and substance use disorders, a topic we turn to shortly.

A type of antisocial personality disorder called psychopathy has recently become 
the target of genetic research because of its prediction of violent crime and recidi-
vism (Viding & McCrory, 2012). Although there is no precise equivalent in DSM-​5, 
psychopathic personality disorder involves a lack of empathy, callousness, irrespon-
sibility, and manipulativeness (Hare, 1993; Viding, 2004). As discussed in Chapter 15, 
psychopathic tendencies appear to be highly heritable in childhood and adolescence, 
with no influence of shared environment. The overlap between psychopathic person-
ality and antisocial behavior is largely genetic in origin (Larsson et al., 2007). Fur-
thermore, psychopathic personality during adolescence predicts antisocial behavior 
in adults, and genetic factors contribute to this association (Forsman, Lichtenstein, 
Andershed, & Larsson, 2010).

ASPD is genetically correlated with both criminal behavior and substance 
use. Two adoption studies of birth parents with criminal records found increased 
rates of ASPD in their adopted offspring (Cadoret & Stewart, 1991; Crowe, 1974), 
suggesting that genetics contributes to the relationship between criminal behavior 
and ASPD. Most genetic research in this area has focused on criminal behavior itself, 
rather than on ASPD, because crime can be assessed objectively by using criminal 
records. However, criminal behavior, although important in its own right, is only 
moderately associated with ASPD. About 40 percent of male criminals and 8 percent 
of female criminals qualify for a diagnosis of ASPD (Robins & Regier, 1991). Clearly, 
breaking the law cannot be equated with psychopathology (Rutter, 1996).

A classic twin study of criminal behavior included male twins born in Denmark 
from 1881 to 1910 (Christiansen, 1977). For more than one thousand twin pairs, 
genetic influence was found for criminal convictions, with an overall concordance 
of 51 percent for male identical twins and 30 percent for male-​male fraternal twins. 
In multiple twin studies of adult criminality, identical twins are consistently more 
similar than fraternal twins (Raine, 1993). The average concordances for identical and 
fraternal twins are 52 and 21 percent, respectively. A recent study based on more than 
20,000 twin pairs in Sweden estimated 45 percent heritability for all criminal convic-
tions, with similar heritabilities for violent, white-​collar, and property convictions 
(Kendler et al., 2015b).

Adoption studies are also consistent with the hypothesis of significant genetic 
influence on adult criminality, although adoption studies point to less genetic influ-
ence than do twin studies. It has been hypothesized that twin studies overestimate 
genetic effects because identical twins are more likely to be partners in crime 
(Carey, 1992). Adoption studies include both the adoptees’ study method (Cloninger, 
Sigvardsson, Bohman, & von Knorring, 1982; Crowe, 1972) and the adoptees’ family 
method (Cadoret et  al., 1985a). One of the best studies used the adoptees’ study 
method, beginning with more than 14,000 adoptions in Denmark between 1924 and 
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1947 (Mednick, Gabrielli, & Hutchings, 1984). Using court convictions as an index 
of criminal behavior, the researchers found evidence for genetic influence and for 
genotype-​environment interaction, as shown in Figure 16.3. Adoptees were at greater 
risk for criminal behavior when their birth parents had criminal convictions, a find-
ing implying genetic influence. Unlike the twin study just described, this adoption 
study (and others) found genetic influence for crimes against property but not for vio-
lent crimes (Bohman, Cloninger, Sigvardsson, & von Knorring, 1982; Brennan et al., 
1996). Evidence for genotype-​environment interaction was also suggested. Adoptive 
parents with criminal convictions had no effect on the criminal behavior of adop-
tees unless the adoptees’ birth parents also had criminal convictions. A more recent 
study of adoptees included in the National Longitudinal Study of Adolescent Health 
found that those adoptees who had a birth father or birth mother who had ever been 
arrested were significantly more likely to be arrested, sentenced to probation, incar-
cerated, and arrested multiple times than adoptees whose birth parents had never 
been arrested (Beaver, 2011).

A Swedish adoption study of criminality using the adoptees’ family method 
found evidence for genotype-​environment interaction as well as interesting inter-
actions with alcohol abuse, which greatly increases the likelihood of violent crimes 
(Bohman, 1996; Bohman et al., 1982). When adoptees’ crimes did not involve alco-
hol abuse, their biological fathers were found to be at increased risk for nonviolent 
crimes. In contrast, when adoptees’ crimes involved alcohol abuse, their biological 
fathers were not at increased risk for crime. These findings suggest that genetics con-
tributes to criminal behavior but not to alcohol-​related crimes, which are likely to be 
more violent.

Evidence from family, twin, and adoption studies consistently suggests a common 
underlying vulnerability to ASPD and substance use disorders. For example, rela-
tives of alcohol-​dependent individuals show significant familial aggregation of ASPD 
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(Nurnberger et  al., 2004), and family history of alcohol use disorder is associated 
with ASPD. Large twin studies indicate that this familiality is due, in part, to genetic 
influences that contribute to the co-​occurrence of ASPD and substance use disorders 
(Agrawal, Jacobson, Prescott, & Kendler, 2004; Fu et al., 2002; Hicks, Krueger, Iacono, 
McGue, & Patrick, 2004). Adoption studies provide additional support for a genetic 
link between ASPD and substance use. Male adoptees who were at increased bio-
logical risk for ASPD showed increased aggressiveness, conduct problems, ASPD, and 
eventual substance dependence (Cadoret, Yates, Troughton, Woodworth, & Stewart, 
1995a), a finding that was replicated in female adoptees (Cadoret, Yates, Troughton, 
Woodworth, & Stewart, 1996).

IDENTIFYING GENES
In contrast to molecular genetic research on psychopathology, molecular genetic 
research on personality has received much less attention. The field began in 1996 
with reports from two studies of an association between a DNA marker for a certain 
neuroreceptor gene (DRD4, dopamine D4 receptor) and the personality trait of nov-
elty seeking in unselected samples (Benjamin et al., 1996; Ebstein et al., 1996). DRD4 
is the gene mentioned in Chapter 15 that has been reported to show an association 
with attention-​deficit/hyperactivity disorder (ADHD). Individuals high in novelty 
seeking are characterized as impulsive, exploratory, fickle, excitable, quick-​tempered, 
and extravagant. However, many studies have failed to replicate the association with 
novelty seeking (Jang, 2005). A meta-​analysis of 17 studies of extraversion rather than 
the narrow trait of novelty seeking also found no significant association (Munafo 
et al., 2003).

As noted in Chapter 12, early reports of an association between XYY males and 
violence were overblown. However, as described in Chapter 8, the MAOA gene on 
the X chromosome has been associated with antisocial behavior in individuals who 
suffered severe childhood maltreatment, a genotype-​environment interaction (Caspi 
et  al., 2002). This finding has held up in a recent meta-​analysis (Byrd & Manuck, 
2014).

Previous chapters (see especially Chapter 9) indicated that candidate gene find-
ings have a poor record of replicating, and this is also the case in the personality 
domain (Munafo & Flint, 2011). A recent review of 369 studies of candidate gene 
associations reported for all personality traits found no clear consensus on any asso-
ciations (Balestri et al., 2014). Several genomewide association (GWA) studies have 
been reported for the FFM factors, which have been summarized and reanalyzed in 
a meta-​analysis that included over 20,000 individuals (de Moor et al., 2012). Three 
SNPs emerged as genomewide significant but these did not replicate in independent 
samples. The largest GWA meta-​analysis for personality, which included more than 
60,000 participants from 29 studies, focused on neuroticism (Genetics of Personal-
ity Consortium et al., 2015). One SNP showed genomewide significance but it did 
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not replicate in independent samples. GWA studies for other traits mentioned in 
this chapter have also come up empty-​handed, for example, for political attitudes 
(Hatemi et  al., 2014), behavioral economics (Benjamin et  al., 2012), and antisocial 
behavior (Tielbeek et al., 2012).

This first wave of GWA studies for personality supports the conclusion reached 
in previous chapters: The heritability of complex traits and common disorders is due 
to many genes of small effect (Plomin, DeFries, Knopik & Neiderhiser, 2016). The 
largest effect sizes are extremely small, generally less than .05 percent (Turkheimer 
et al., 2014), which means that most published studies, especially candidate gene stud-
ies, have been dramatically underpowered to detect such small effects.

Summary
More twin data are available from self-​report personality questionnaires than from 
any other domain of psychology, and they consistently yield evidence for moder-
ate genetic influence for dozens of personality dimensions. Most well-​studied are 
extraversion and neuroticism, with heritability estimates of about 50  percent for 
extraversion and about 40 percent for neuroticism across twin and adoption studies, 
although twin studies yield higher heritability estimates than do adoption studies. 
Other personality traits assessed by personality questionnaire also show heritabilities 
ranging from 30 to 50 percent. There is no replicated example of zero heritability 
for any specific personality trait, nor is there evidence that any personality trait is 
more heritable than others. Environmental influence is almost entirely due to non-
shared environmental factors. These surprising findings are not limited to self-​report 
questionnaires. For example, a twin study using peer ratings yielded similar results. 
Although the degree of genetic influence suggested by twin studies using parent rat-
ings of their children’s personalities appears to be inflated by contrast effects, more 
objective measures, such as behavioral ratings by observers, indicate genetic influence 
in twin and adoption studies.

New directions for genetic research include looking at personality continuity 
and change across situations and across time. Results indicate that genetic factors are 
largely responsible for continuity and that change is largely due to environmental 
factors. Other new findings include the central role that personality plays in produc-
ing genetic influence on measures of the environment. Another new direction for 
research lies at the border with social psychology. For example, genetic influence has 
been found for relationships, such as parent-​offspring relationships, quality of roman-
tic relationships and sexual orientation. Other examples include evidence for genetic 
influence on political attitudes and behavioral economics.

A major new direction for genetic research on personality is to consider its role 
in psychopathology. For example, depression and other internalizing forms of psy-
chopathology are, to a large extent, the genetic extreme of normal variation in the 
major personality dimension of neuroticism. Personality disorders, which are at the 
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border between personality and psychopathology, are another growth area for genetic 
research in personality. It is likely that some personality disorders are part of the 
genetic continuum of psychopathology: schizotypal personality disorder and schiz-
ophrenia, and obsessive-​compulsive personality disorder and obsessive-​compulsive 
anxiety disorder. Most genetic research on personality disorders has focused on 
antisocial personality disorder and its relationship to criminal behavior and sub-
stance abuse. From adolescence to adulthood, genetic influence increases and shared 
environmental influence decreases for symptoms of antisocial personality disorder, 
including juvenile delinquency and adult criminal behavior.

SNP-​based heritability estimates for personality (about 10  percent) are only 
one-​quarter of twin study estimates of heritability (about 40 percent). Early reports 
of candidate gene associations have generally not replicated. The first wave of GWA 
studies for personality suggests that its heritability is due to many genes of small 
effect.
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Substance Use Disorders

A lcohol use disorders, nicotine use, and abuse of other drugs are major health-​

related behaviors. Externalizing behaviors, such as attention-​deficit/hyper-

activity disorder (ADHD) and conduct disorder (see Chapter  15), have long been 

proposed as etiologic predictors of later alcohol and drug problems (Groenman 

et al., 2013; Palmer et al., 2013; Zucker, Heitzeg, & Nigg, 2011). More specifically, 

as discussed in Chapter 15, substance use is part of a general genetic factor of exter-

nalizing disorders, but alcohol and other drugs include significant disorder-​specific 

genetic effects (Kendler et al., 2003b; Vrieze, McGue, Miller, Hicks, & Iacono, 2013). 

Most behavioral genetic research in this area has focused on alcohol dependence or 

alcohol-​related behavior and, to a lesser extent, nicotine dependence. There is also 

an increasing focus on cannabis use research.

Alcohol Dependence
Twin and Adoption Research on Alcohol-​Related  
Phenotypes
There are many steps in the pathway to alcohol dependence, for example: whether or 
not to drink alcohol, the amount one drinks, the way one drinks, and the subsequent 
development of tolerance and dependence. Each of these steps might involve differ-
ent genetic mechanisms. For this reason, alcohol dependence is likely to be highly 
heterogeneous. Nonetheless, numerous family studies have shown that alcohol use 
disorders run in families, although the studies vary widely in the size of the effect 
and in diagnostic criteria. For males, alcohol dependence in a first-​degree relative is 
by far the single best predictor of alcohol dependence. For example, a family study 
of 1212 alcohol-​dependent probands and their 2755 siblings found an average risk 
for lifetime diagnosis of alcohol dependence of about 50 percent in male siblings and 
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25 percent in female siblings (Bierut et al., 1998). According to the U.S. Centers for 
Disease Control and Prevention (CDC), the risk rates in the general population are 
about 17 percent for men and 8 percent for women. Assortative mating for alcohol 
use is substantial (correlation of about 0.40), which is thought to be caused by initial 
selection of the spouse rather than the effect of living with the spouse (Grant et al., 
2007; Hicks, Foster, Iacono, & McGue, 2013). Assortative mating of this magnitude 
could inflate estimates of shared environment and could also create a genotype-​
environment correlation in which children are more likely to experience both genetic 
and environmental risks. (See Chapter 11 for more discussion of assortative mating.)

Twin and adoption studies indicate that genetic factors play a major role in the 
familial aggregation of alcohol dependence. In a Danish adoption study, alcohol depen-
dence in men was associated with alcohol dependence in birth parents but not adop-
tive parents (Goodwin, Schulsinger, Hermansen, Guze, & Winokur, 1973; Goodwin, 
Schulsinger, Knop, Mednick, & Guze, 1977). A similar association between alcohol 
dependence in adopted sons and their birth fathers was reported in Sweden (Cloninger, 
Bohman, & Sigvardsson, 1981; Sigvardsson, Bohman, & Cloninger, 1996). Likewise, the 
Iowa adoption studies (Cadoret, 1994; Cadoret, O’Gorman, Troughton, & Heywood, 
1985a; Cadoret, Troughton, & O’Gorman, 1987) showed a significantly elevated risk 
for alcohol dependence in adopted sons and daughters from an alcoholic birth family 
background, compared to control adoptees, consistent with a genetic influence on 
alcohol dependence. Two recent adoption studies from the United States (Hicks et al., 
2013; McGue et al., 2007) and Sweden (Kendler et al., 2015a) also support the role of 
genetics in parent-​child transmission of alcohol dependence, and further suggest that 
parents pass on to their (biological) offspring a nonspecific, genetic liability to multiple 
externalizing disorders (Hicks et al., 2013; Kendler et al., 2015a). 

Numerous large twin studies on alcohol abuse, alcohol dependence, and other 
alcohol-​related outcomes yield comparable results. The results of adult twin stud-
ies on various drinking-​related behaviors are highly consistent, with genetic effects 
accounting for 40 to 60 percent of the variance across measures of quantity and fre-
quency of use as well as problem use and dependence (Dick, Prescott, & McGue, 
2009a; Hicks et al., 2013). Early twin studies suggested higher heritability for alcohol 
dependence in males (Legrand, McGue, & Iacono, 1999); however, this sex difference 
is not seen in more recent twin studies (Knopik et al., 2004; Prescott, 2002). Twin 
studies of adolescent alcohol-​related variables, however, yield much more variable 
results. Studies of adolescent alcohol use disorders are uncommon because diagnos-
tic criteria are typically not met until early adulthood (Lynskey, Agrawal, & Heath, 
2010). As such, the few genetic studies of adolescent alcohol dependence symptoms 
suggest small and nonsignificant genetic effects (Knopik, Heath, Bucholz, Madden, & 
Waldron, 2009a; Rose, Dick, Viken, Pulkkinen, & Kaprio, 2004), with shared environ-
ment playing a larger role. Regarding alcohol initiation in adolescence, results again 
suggest a large role for shared environment and a small yet significant role for genetic 
effects (Fowler et  al., 2007). An interesting developmental finding is that shared 
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environment appears to be related to the initial use of alcohol in adolescence and 
young adulthood but not to later alcohol abuse (Dick et al., 2014; Pagan et al., 2006).

Consistent with shared environment being important for adolescent alcohol-​
related outcomes, adoption studies yield some evidence for the influence of shared 
environment that is specific to siblings and not shared between parents and offspring 
(Hicks et  al., 2013). For example, in an adoption study of alcohol use and misuse 
among adolescents, the correlation between problem drinking in parents and ado-
lescent alcohol use was 0.30 for biological offspring but only 0.04 for adoptive off-
spring (McGue, Sharma, & Benson, 1996). Despite the lack of resemblance between 
adoptive parents and their adopted offspring, adoptive sibling pairs who were not 
genetically related correlated 0.24. Moreover, the adoptive sibling correlation was 
significantly greater for same-​sex siblings (r = 0.45) than for opposite-​sex siblings (r = 
0.01). These results suggest the reasonable hypothesis that sibling effects (or perhaps 
peer effects) may be more important than parent effects in the use of alcohol in ado-
lescence. However, as mentioned earlier, assortative mating might be responsible, at 
least in part, for apparent shared environmental influences (Grant et al., 2007).

The majority of research discussed to this point has focused on alcohol depen-
dence or alcohol use disorder. As mentioned above, alcohol dependence is a mul-
tifactorial disorder characterized by symptoms that include, but are not limited to, 
tolerance, withdrawal, and using alcohol in larger amounts or for longer periods than 
intended. These symptoms are hypothesized to index vulnerability in biological 
systems that influence alcohol dependence. Recent work using adult twins suggests 
that each of the symptoms that comprise alcohol dependence are heritable (esti-
mates ranging from 36 to 59 percent) (Kendler, Aggen, Prescott, Crabbe, & Neale, 
2012b). Further, these symptoms may not reflect a single dimension of genetic 
liability but rather reflect three underlying dimensions that index risk for: (i) toler-
ance and heavy use; (ii) loss of control with alcohol associated social dysfunction; 
and (iii) withdrawal and continued use despite problems. These results are consistent 
with those for traits that have clear laboratory animal parallels, such as tolerance 
and withdrawal (described below). More recent efforts using SNP-​based heritability 
also find significant genetic influences on a subset of alcohol dependence symptoms 
(tolerance, using longer than intended, continued use despite problems, and activi-
ties given up) as well as overall alcohol dependence diagnosis (Palmer et al., 2015b; 
Vrieze et al., 2013; Yang et al., 2014). SNP-​based genetic correlations across alcohol 
dependence symptoms suggest that the same genes affect multiple symptoms (Palmer 
et al., 2015b).

It is clear that both genes and environment play an important role in alcohol-​
related phenotypes; perhaps unsurprisingly, these genetic and environmental factors 
are likely to coact in a complex fashion (Enoch, 2012; Guerrini, Quadri, & Thomson, 
2014). Quantitative genetic research on alcohol use behaviors has provided several 
examples of genotype-​environment interaction (see Chapter 8; see also Young-​Wolff, 
Enoch, & Prescott, 2011, for a review). Heritability has been reported to be lower for 
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those with later age of onset (Agrawal et al., 2009), for married individuals (Heath, 
Jardine, & Martin, 1989), for individuals with a religious upbringing (Koopmans, 
Slutske, van Baal, & Boomsma, 1999) and from stricter and closer families (Miles, 
Silberg, Pickens, & Eaves, 2005), in regions with lower alcohol sales (Dick, Rose, Viken, 
Kaprio, & Koskenvuo, 2001), and for individuals with peers who are less deviant (Dick 
et al., 2007; Kendler, Gardner, & Dick, 2011). These findings suggest that genetic risk 
for alcohol use is greater in more permissive environments (unmarried, nonreligious 
upbringing, greater alcohol availability, more peers reporting alcohol use). While 
adoption studies are fewer in number, they also suggest genotype-​environment inter-
action. In studies of Swedish adoptees, adopted children who had both genetic risk 
(an alcohol-​dependent birth parent) and environmental risk (an alcohol-​dependent 
adoptive parent) were most likely to abuse alcohol (Sigvardsson et al., 1996). Addition-
ally, having a birth father with a history of criminality (Chapter 16) interacted with 
unstable home environment to increase antisocial alcoholism in males (Cloninger 
et al., 1982). The Iowa adoption studies also suggest that birth family interacted with 
psychopathology in the adoptive parent and parental conflict in the adoptive home 
environment to increase risk for the development of alcoholism in females (Cutrona 
et al., 1994).

Animal Research on Alcohol-​Related Phenotypes
Psychopharmacogenetics, which concerns the genetic effects on behavioral responses 
to drugs, is one of the most prolific areas of behavioral genetic research using ani-
mal models. The larger field of pharmacogenetics (Roses, 2000), often called pharmaco-
genomics in recognition of the ability to examine genetic effects on a genomewide 
basis, focuses on genetic differences in positive and negative effects of drugs in order 
to individualize and optimize drug therapy (Evans & Relling, 2004; Goldstein, 
Tate, & Sisodiya, 2003). Most research in psychopharmacogenetics involves alco-
hol (Bloom & Kupfer, 1995; Broadhurst, 1978; Crabbe & Harris, 1991). For example, 
studies in Drosophila have examined susceptibility to the effects of alcohol by measur-
ing the degree of sensitivity and tolerance to the sedative or motor-​impairing effects 
of alcohol (e.g., Scholz, Ramond, Singh, & Heberlein, 2000). Recent work has also 
demonstrated that Drosophila can model many features of addiction, such as increased 
consumption over time, the overcoming of aversive stimuli in order to consume alco-
hol, and relapse after periods of alcohol deprivation (Devineni & Heberlein, 2013).

Using a mouse model, researchers discovered in 1959 that inbred strains of mice 
differ markedly in their preference for drinking alcohol, an observation that implies 
genetic influence (McClearn & Rodgers, 1959). Studies spanning more than 150 gen-
erations of mice find similar results, suggesting that this is a highly heritable trait that 
is very stable over time (Wahlsten et al., 2006). Moreover, research also suggests that 
preference drinking is a reasonable model for alcohol’s reinforcing effects (Green & 
Grahame, 2008). Inbred strain differences have also been found for other behavioral 
responses to alcohol (see Crabbe, 2012, for a review).
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Selection studies provide especially powerful demonstrations of genetic influ-
ence. For example, one classic study successfully selected for sensitivity to the effects 
of alcohol (McClearn, 1976). When mice are injected with the mouse equivalent of 
several drinks, they will “sleep it off” for various lengths of time. “Sleep time” in 
response to alcohol injections was measured by the time it took mice to right them-
selves after being placed on their backs in a cradle (Figure 17.1). Selection for this 
measure of alcohol sensitivity was successful, an outcome providing a powerful dem-
onstration of the importance of genetic factors (Figure 17.2). After 18 generations of 
selective breeding, the long-​sleep (LS) animals “slept” for an average of two hours. 
Many of the short-​sleep (SS) mice were not even knocked out, and their average 
“sleep time” was only about ten minutes. By generation 15, there was no overlap 
between the LS and SS lines (Figure 17.3). That is, every mouse in the LS line slept 
longer than any mouse in the SS line.

Alcohol has a combination of effects during consumption. Specifically, there are 
stimulatory effects during the first part of a drinking session that are rewarding, but 
after a peak alcohol level is reached, alcohol has sedating properties that are aver-
sive. The extent to which genetic variation may disproportionately alter the balance 
between these effects may have profound implications on drinking behavior. If, due 
to genetic differences, individuals experience the rewarding effects of alcohol but not 
the aversive sedating effects, then they may be more likely to drink excessively in a 

FIGURE 17.1 The “sleep cradle” for measuring loss of righting response after alcohol injections 
in mice. In cradle 2, a long-​sleep mouse is still on its back, sleeping off the alcohol injection. In 
cradle 3, a short-​sleep mouse has just begun to right itself. (Courtesy of E. A. Thomas.)
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FIGURE 17.2 Results of alcohol sleep-​time selection study. Selection was suspended during 
generations 6 through 8. (Data from G. E. McClearn, unpublished.)
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FIGURE 17.3 Distributions of alcohol sleep time after 15 generations of selection.  
(Data from G. E. McClearn, unpublished.)

fashion that may lead to dependence. By contrast, if an individual finds the sedating 
properties of alcohol particularly severe (consistent with the LS mice), this may lead 
to less drinking and a subsequent decrease in the risk for developing alcohol depen-
dence. Since SS and LS mice are selectively bred and provide strong evidence for the 
genetic basis of these alcohol-​related effects, they can serve as a critical translational 
bridge between animal research methods and understanding how genetic differences 
may influence the risk for alcohol dependence.

The steady divergence of the lines over 18 generations indicates that many genes 
affect this measure. If just one or two genes were involved, the lines would completely 
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diverge in a few generations. Other selection studies include successful selection in 
mice for susceptibility to seizures during withdrawal from alcohol dependence and for 
voluntary alcohol consumption in rats (Crabbe, Kosobud, Young, Tam, & McSwigan, 
1985; Green & Grahame, 2008). These are powerful genetic effects. For example, 
mice in the line selected for susceptibility to seizures are so sensitive to withdrawal 
that they show symptoms after a single injection of alcohol. Interestingly, however, 
seizure-​prone and seizure-​resistant selected lines do not differ in their functional tol-
erance to ethanol (Crabbe, Kendler, & Hitzemann, 2013). In functional tolerance, the 
amount of drug that remains in contact with the tissue of interest has not changed, 
but the target tissue no longer responds in the same way. This finding has also been 
found in inbred strains and, to a lesser extent, recombinant inbred strains (see Crabbe 
et al., 2013 for a review) and supports human work suggesting that genetic risk fac-
tors for tolerance to alcohol and alcohol withdrawal are only weakly related (Kendler 
et al., 2012b; Palmer et al., 2015b). Animal genetic models, including mice, rats, and 
Drosophila, continue to be widely used for behavioral genetic research on alcohol-​
related traits as well as for molecular genetic research (Awofala, 2011; Crabbe et al., 
2013; Devineni & Heberlein, 2013).

Molecular Genetic Research on Alcohol-​Related  
Phenotypes
Alcohol dependence in humans has long been a target for molecular genetic studies 
in order to identify genes that contribute to the risk for developing the disorder (see 
Rietschel & Treutlein, 2013, for a review). Whole-​genome linkage studies using var-
ious populations, including Irish (Prescott et al., 2006), African American (Gelernter 
et  al., 2009), and Native American families (Ehlers et  al., 2004; Long et  al., 1998), 
as well as the Collaborative Genetics of Alcoholism (COGA) study (Foroud et al., 
2000; Reich et al., 1998), have consistently reported linkage to a region on the long 
arm of chromosome 4 that contains the alcohol dehydrogenase (ADH) gene cluster 
family. A linkage region on the short arm of chromosome 4, close to the cluster of 
gamma-​aminobutyric acid (GABA) receptors, has also been consistently reported 
(Long et al., 1998; Reich et al., 1998).

As the genes that code for alcohol-​metabolizing enzymes are well-​known 
(Lovinger & Crabbe, 2005), the aldehyde dehydrogenase gene (ALDH2) and the alcohol 
dehydrogenase (ADH) genes are the best-​established genes in which polymorphisms 
may be associated with risk for alcohol dependence (see Kimura & Higuchi, 2011, for a 
review). Figure 17.4 presents a simplified model of these genetic influences on the role 
of alcohol dependence as well as several illustrative candidate genes, which are dis-
cussed below. One particularly interesting and consistent finding based on the results of 
candidate gene studies involves the ALDH2 polymorphism. There is evidence that the 
ALDH2 polymorphism is associated with both the drinking behavior of healthy people 
and the risk for alcohol dependence. An ALDH2 allele (ALDH2*2) that leads to inactiv-
ity of a key enzyme in the metabolism of alcohol occurs in 25 percent of Chinese and 
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40 percent of Japanese but is hardly ever found in Caucasians. The resulting buildup of 
acetaldehyde leads to unpleasant symptoms, such as flushing and nausea, when alcohol 
is consumed. This is an example of a mutant allele that protects against the develop-
ment of alcoholism. This genetic variant results in reduced alcohol consumption and 
has been implicated as the reason why rates of alcoholism are much lower in Asian than 
in Caucasian populations. In fact, being homozygous for the ALDH2*2 allele almost 
completely prevents individuals from becoming alcoholics (Higuchi et  al., 2004). 
The same unpleasant symptoms described here are produced by the drug disulfiram  
(Antabuse), which is the basis for an alcoholism therapy used to deter drinking.

Associations for other candidate genes have been reported (see Rietschel & 
Treutlein, 2013, for a review), especially genes that code for receptors for GABA 
(Enoch et al., 2009), cholinergic muscarinic receptor-​2 (CHRM2; Luo et al., 2005), 
dopamine (McGeary, 2009; van der Zwaluw et  al., 2009), serotonin (Enoch, 
Gorodetsky, Hodgkinson, Roy, & Goldman, 2011), and opioids (Anton et al., 2008). 
Efforts are now underway to test for moderation of specific gene effects by environ-
mental risk factors. For example, three studies looking at three different genes have 
suggested that parental monitoring moderates the association between externalizing 
behavior, including alcohol use and GABRA2 (Dick et al., 2009b), CHRM2 (Dick et al., 
2011), and  a dopaminergic pathway gene, catechol-​O-​methyl transferase (COMT; 
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FIGURE 17.4 A network model of genes involved in alcohol dependence via alterations to 
ethanol’s pharmacokinetics and pharmacodynamics. The left-​hand side of the figure indicates 
the pharmacokinetic pathway that metabolizes ethanol into acetate. The right-​hand side indi-
cates the pharmacodynamic pathways that reflect ethanol’s molecular pharmacological effects 
on multiple neurotransmitter systems. Dashed boxes contain a list of candidate genes that most 
likely affect the respective systems. See Palmer and colleagues (2012) for a review of these 
biological pathways.
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Laucht et al., 2012). More specifically, and supportive of quantitative genetic findings 
of G × E in alcohol use, these three studies suggest that the association between the 
genotype and externalizing behavior is stronger in environments with lower parental 
monitoring. Despite these interesting and encouraging results, the only consistent 
findings from classical genomewide association (GWA) studies of alcohol depen-
dence are those implicating the alcohol-​metabolizing enzyme genes, which have 
shown associations for alcohol dependence and alcohol consumption phenotypes (see 
Hart & Kranzler, 2015, for a review). Specifically, ALDH2 is consistently associated 
with alcohol phenotypes in East Asian populations (Park et al., 2013; Quillen et al., 
2014) and ADH1B in European American and African American populations (Frank 
et al., 2012; Gelernter et al., 2014a). In other words, the SNPs in the genes encoding 
metabolizing enzymes are among the common variants with the largest effects on 
alcohol dependence risk (Hart & Kranzler, 2015). In contrast, associations with other 
candidate genes for alcohol dependence such as DRD2, OPRM1, and COMT have not 
yet been replicated in GWA studies (Olfson and Bierut, 2012).

Pharmacogenomic studies of rodents have been successfully used to identify 
QTLs associated with alcohol-​related behavior (Ehlers et  al., 2010). For example, 
QTLs for alcohol preference drinking have been linked to mouse chromosome 
9 (Phillips, Belknap, Buck, & Cunningham, 1998; Tabakoff et  al., 2008) and to rat 
chromosome 4 (Spence et al., 2009). QTLs for acute alcohol withdrawal and acute 
functional tolerance in mice have been mapped to mouse chromosome 1 (Kozell, 
Belknap, Hofstetter, Mayeda, & Buck, 2008) and chromosome 4 (Bennett et al., 2015), 
respectively. Alcohol-​preference related behaviors have also been mapped to chro-
mosome 4 (Belknap & Atkins, 2001; Saba et al., 2011). Other QTLs have been mapped 
for other alcohol-​related responses in mice, such as alcohol-​induced loss of righting 
reflex (Crabbe et al., 1999a; Lovinger & Crabbe, 2005).

QTL research in animal models is especially exciting because it can nominate 
candidate QTLs that can then be tested in human QTL research (Lovinger & Crabbe, 
2005). For example, over 90  percent of the mouse and human genomes include 
regions of conserved synteny. In other words, there are regions in the mouse and 
human genomes in which the gene order in the most common ancestor has been 
conserved in both species (Ehlers et al., 2010). Knock-​out studies in mice also dem-
onstrate the effects of specific genes on behavioral responses to alcohol. For example, 
knocking out a serotonin receptor gene in mice leads to increased alcohol consump-
tion (Crabbe et  al., 1996). Knocking out certain dopaminergic receptors results in 
supersensitivity to alcohol (Rubinstein et al., 1997) and reduced alcohol preference 
drinking (Savelieva, Caudle, Findlay, Caron, & Miller, 2002). Such differences in 
brain sensitivity to ethanol in human populations could be responsible for addiction 
in general (Martinez & Narendran, 2010) as well as the lethal consequences of binge 
drinking in some individuals (Heath et al., 2003).

Recent studies have used genomic approaches (Chapter  10) to shed light on 
the molecular pathways underlying alcohol response and addiction (Awofala, 2011; 
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Tabakoff et  al., 2009). Such approaches, using mice, rats, and Drosophila, combine 
genetic marker information, gene expression, and complex phenotypes to ascertain 
the candidate genes and gene product interaction pathways that significantly influ-
ence the variation in expression of a particular phenotype in animal models. Findings 
from animal models are then compared to what is known in humans. A more recent 
effort took the opposite approach. Juraeva and colleagues (2015) combined pathway 
analysis with functional follow-​up in Drosophila and a small-​scale human laboratory 
study to identify risk genes for alcohol dependence. Using gene set analysis in a 
human sample (1333 alcohol dependent cases and 2168 controls), they identified  
19 gene sets. Six of these gene sets included the gene XRCC5, which was then knocked 
down in Drosophila. The mutant flies exhibited lower sensitivity to ethanol than con-
trols. The authors subsequently conducted an alcohol intravenous self-​administration 
study in humans and found a significant association between maximum blood-​alcohol 
concentration and XRCC5 genotype, suggesting that XRCC5 may be a possible can-
didate for alcohol dependence. In summary, these approaches collectively suggest 
that human and animal models can be mutually informative in determining candi-
date pathways and networks of genes that play an important role in determining the 
behavioral response to alcohol (Awofala, 2011).

Nicotine Dependence
One of the most common and potentially hazardous environmental exposures that 
negatively influences health and development is exposure to cigarette smoke. The 
CDC (2014) has reported that almost 20 percent of adults in the United States—​
approximately 42 million people—​smoked cigarettes in 2003, and most of them were 
dependent on nicotine. Previous work has found over 4000 chemicals in cigarette 
smoke, including nicotine, benzo[a]pyrene, and carbon monoxide, and more than 40 
of these chemicals have been established as known carcinogens (Thielen, Klus, & 
Mueller, 2008). Cigarette smoking has been linked to several diseases and disabling 
conditions, including heart disease and lung diseases (U.S.  Department of Health 
and Human Services, 2014). Further, for every individual who dies from a disease 
associated with smoking, 30 more people battle at least one major illness attribut-
able to smoking (CDC, 2014). Several studies have singled out tobacco use as the 
world’s leading preventable cause of death (CDC, 2014). By some estimates, up to 
6 million deaths worldwide can be attributed to smoking, and current trend data pre-
dict that tobacco use will cause more than 8 million deaths a year by 2030 (World 
Health Organization, 2011). In the United States, tobacco use has been implicated in 
20 percent of deaths per year, or 480,000 deaths annually, and approximately 41,000 
of these have been attributed to secondhand smoke exposure (U.S. Department of 
Health and Human Services, 2014). On average, smokers die more than a decade ear-
lier than nonsmokers (Jha et al., 2013). Although nicotine is an environmental agent, 
smoking behaviors aggregate in families due to genetic predispositions as well as 
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environmental influences (Rose, Broms, Korhonen, Dick, & Kaprio, 2009). Individual 
differences in susceptibility to nicotine’s addictive properties and harmful effects are 
also influenced by genetic factors.

Twin Research on Smoking-​Related Phenotypes
Multiple phenotypes are associated with smoking and nicotine dependence, includ-
ing smoking initiation, smoking persistence, tolerance to nicotine, smoking cessation, 
regular smoking, number of cigarettes smoked per day, and nicotine withdrawal (see 
Rose et al., 2009, for a detailed review). Considerable genetic research has investi-
gated smoking initiation, which appears to be different from the reasons people per-
sist or continue to smoke. While the heritability of nicotine dependence, smoking 
persistence, and regular smoking, for example, can be assessed only in those who have 
already started to smoke, the genetic effects on smoking initiation can be examined 
among all persons in the population (Rose et al., 2009). A meta-​analysis of 17 twin 
cohorts from six studies of smoking initiation across three countries concluded that 
genetic factors play a significant role (Li, Cheng, Ma, & Swan, 2003). This meta-​
analysis included studies from 1993 to 1999. Since that time, at least ten additional 
twin studies of over 60,000 twin pairs from five countries (Finland, Australia, the 
United States, the Netherlands, and Turkey) have examined genetic effects on smok-
ing initiation (e.g., Broms, Silventoinen, Madden, Heath, & Kaprio, 2006; Do et al., 
2015; Hamilton et al., 2006; Morley et al., 2007; Öncel, Dick, Maes, & Aliev, 2014; 
Vink, Willemsen, & Boomsma, 2005). Among adult twins, genetic influences are sub-
stantial and explain, on average, about 50 percent or more of the variance. However, 
the estimates vary widely across studies. Studies on smoking initiation suggest her-
itabilities of about 0.20 to 0.75 for women and about 0.30 to 0.65 for men (reviewed 
in Rose et al., 2009). This range could be explained by various definitions of smoking 
initiation (e.g., age of first cigarette, age of initiation of regular smoking) as well as the 
likelihood that the magnitude of genetic effects varies with time and place (Chapter 7 
on heritability; Kendler et al., 1999). More recent studies are also investigating genetic 
effects on reactions to first cigarette use, such as dizziness or headache. Evidence 
suggests that how people experience their initial few cigarettes is due to both her-
itable contributions and environmental experiences unique to the person (Agrawal, 
Madden, Bucholz, Heath, & Lynskey, 2014b; Haberstick, Ehringer, Lessem, Hopfer, & 
Hewitt, 2011).

Smoking persistence also shows substantial genetic variance and very little influ-
ence of shared environment (Rose et al., 2009). Most studies that focus on smoking 
persistence test for a genetic correlation between smoking initiation and persistence 
using a special case of the liability-​threshold model (Chapter 3) called a two-​stage 
model. This model estimates the amount of genetic and environmental overlap 
between the first stage of initiation and the second stage of persistence (or depen-
dence) and has been applied to other domains of substance use as well (Heath, Martin, 
Lynskey, Todorov, & Madden, 2002). In a sample of  U.S.  twins, genetic influences 
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that contribute to smoking initiation and persistence differ substantially (Do et al., 
2015; Maes et al., 2004). Similar results were reported in a Finnish twin sample, with 
genetic effects influencing smoking initiation accounting for only about 3 percent of 
the variance in smoking persistence (Broms et al., 2006). Another interesting mul-
tivariate result is that the genetics of persistent smoking appears to be mediated by 
genetic vulnerability to nicotine withdrawal (Pergadia, Heath, Martin, & Madden, 
2006a).

When considering nicotine dependence, as defined by various diagnostic cri-
teria, multiple large twin studies all point to genetic influence on adult nicotine 
dependence. A classic early study including 12,000 twin pairs from Sweden, of whom 
half smoked, suggested that if one twin currently smoked, the probability that the  
co-​twin smoked was 75 percent for identical twins and 63 percent for fraternal twins 
(Medlund, Cederlof, Floderus-​Myrhed, Friberg, & Sorensen, 1977). Subsequent 
heritability estimates are even higher across several cultures, suggesting that about 
60 percent of the risk for nicotine dependence is due to genetic influence. Studies also 
suggest that the time to first cigarette after waking, with a heritability of 55 percent, 
appears to tap a pattern of heavy, uninterrupted, and automatic smoking and may be 
a good single-​item measure of nicotine dependence (Baker et al., 2007b) and genetic 
risk for nicotine dependence (Haberstick et al., 2007). It should be noted that these 
results refer to smoking cigarettes. An interesting study found that smoking tobacco 
in pipes and cigars showed no genetic influence and substantial shared environmental 
influence (Schmitt, Prescott, Gardner, Neale, & Kendler, 2005). More recent stud-
ies using SNP-​heritability approaches report SNP heritability estimates of 36 per-
cent for DSM-​III nicotine dependence (Vrieze et al., 2013) and 26 to 33 percent for 
DSM-​IV nicotine dependence measures (Bidwell et al., 2016), suggesting that com-
mon SNPs account for a relatively large portion of genetic effects detected using 
traditional biometrical twin modeling approaches.

While there are many adult twin studies of smoking behavior, the literature on 
adolescent twin studies is less extensive. Unlike adolescent alcohol-​related behav-
iors, in which shared environment appears significant, there is less evidence for the 
role of shared environmental influences on adolescent smoking-​related behaviors 
(Lynskey et al., 2010). Rather, adolescent twin studies demonstrate the importance of 
genetic factors in smoking behaviors at this earlier developmental stage; however, the 
range of heritability estimates is large (25 to 80 percent) and, similar to adult stud-
ies, dependent on the smoking variable of interest (Do et al., 2015). Nicotine with-
drawal, however, shows remarkable similarity across adolescent and adult smokers, 
with genetic effects accounting for 50 percent of the variance in nicotine withdrawal 
(Pergadia et al., 2010).

Quantitative genetic research on genotype-​environment interaction for 
smoking-​related behaviors has not been as extensive as that for alcohol use. What 
little has been done has primarily focused on adolescents. Genetic influences on 
adolescent smoking decreased at higher levels of parental monitoring (Dick et  al., 
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2007), but increased with self-​reported religiosity (Timberlake et al., 2006). A recent 
study examined whether changes in smoking policies (i.e., more explicit warnings on 
cigarette packages, smoke-​free working and leisure environments, and media cam-
paigns designed to prevent adolescent smoking) led to a change in the contribution of 
genetic influences to smoking behaviors (Vink & Boomsma, 2011). While the preva-
lence of smoking has decreased in recent years, there has been no change in the rela-
tive contribution of genetic and environmental factors, providing little or no evidence 
of genotype-​environment interactions.

Molecular Genetic Research on Smoking-​Related 
Phenotypes
Despite the wide range of heritability estimates, there is consistent support for an 
important role of genetics for most smoking behaviors. However, estimates of herita-
bility provide no information about what specific genes are involved. Early molecular 
genetic studies of smoking-​related outcomes yielded inconsistent results (reviewed 
in Ho & Tyndale, 2007), perhaps because none were specifically designed to study 
nicotine dependence.

The strongest and most consistent genetic contributions to nicotine dependence 
come from genes that are associated with differences in nicotine’s pharmacokinetics 
(i.e., the absorption, distribution, and metabolism of nicotine in the body) and with 
differences in pharmacodynamics (i.e., genetic variation that impacts nicotine’s effects 
on an individual) (Bierut, 2011; MacKillop, Obasi, Amlung, McGeary & Knopik, 
2010). A simplified model of these influences can be seen in Figure  17.5, which 
includes the primary metabolic pathways, neurotransmitter systems, and illustrative 
candidate genes.

Variation in nicotine metabolism plays an important role in cigarette consump-
tion. Twin studies of nicotine metabolism suggest a heritability of 60 percent, and 
the major contributor to genetic variation in this metabolic pathway is the CYP2A6 
gene (Swan et al., 2005), whose enzyme is primarily responsible for the metabolism 
of nicotine to cotinine. Recent GWA meta-​analyses confirm the importance of the 
CYP2A6 region on chromosome 19 as variants in this region were associated with 
number of cigarettes smoked per day (Agrawal et al., 2012; Thorgeirsson et al., 2010; 
Tobacco and Genetics Consortium, 2010). Many of the other genes involved in the 
nicotine metabolism pathway are also promising candidate genes (see MacKillop 
et al., 2010, for a review).

In addition to metabolic pathways, neurotransmitters are another target for 
nicotine, especially nicotinic receptor stimulation, which is involved in nicotine’s 
psychoactive effects on cognitive variables, such as attention, learning, and memory 
(Benowitz, 2008). A robust finding suggests that genetic variation in the nicotinic 
receptor subunit cluster (for example, CHRNA3), located on chromosome 15, alters 
risk for becoming a heavy smoker (Bierut, 2011). There appear to be at least two 
distinct variants that contribute to heavy smoking in this region on chromosome 15 
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(Saccone et al., 2010; Tobacco and Genetics Consortium, 2010) and age of first regu-
lar tobacco use (Stephens et al., 2013). Other neurotransmitter systems, such as the 
endogenous opioid system, are also being investigated, although the effects are small 
and inconclusive (see Agrawal et al., 2012, for a review).

Recent transgenic studies in mice involving the deletion and replacement of 
nicotinic acetylcholine receptor subunits have begun to identify the molecular mech-
anisms underlying nicotine addiction (see Hall, Markou, Levin, & Uhi, 2012, and 
Marks, 2013, for reviews). Just as nicotine stimulates nicotine receptors and enhances 
cognitive functioning (e.g., attention), loss of receptor function impairs cognitive 
performance (Poorthuis, Goriounova, Couey, & Mansvelder, 2009). For example, 
mice lacking one of the subunits of the receptor show abnormalities in certain types 
of memory (Granon, Faure, & Changeux, 2003), social interaction (Granon et  al., 
2003), and decision making (Maubourguet, Lesne, Changeux, Maskos, & Faure, 
2008). Molecular methods designed to turn specific genes “on” and “off” have revealed 
distinct contributions of certain subunits of the nicotinic acetylcholine receptor to 
the short-​term effects of nicotine, including the acute behavioral effects (Changeux, 
2010; Hall et al., 2012).
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FIGURE 17.5 A model of genes involved in nicotine dependence via alterations to nicotine’s 
pharmacokinetics and pharmacodynamics. Solid arrows indicate pharmacokinetic pathways that 
metabolize nicotine and pharmacodynamic pathways that reflect nicotine’s molecular pharma-
cological effects on multiple neurotransmitter systems. Dashed arrows indicate candidate genes 
and their points of putative influence. (From Springer, Current Cardiovascular Risk Reports, The Role 

of Genetics in Nicotine Dependence: Mapping the Pathways from Genome to Syndrome, Volume 4, 2010, 

pp. 446-453, by James MacKillop, Ezemenari M. Obasi, Michael T. Amlung, John E. McGeary, Valerie S. 

Knopik, © Springer Science+Business Media, LLC 2010. With permission of Springer Science+Business Media.)
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Other Drugs
Inbred strain, selection studies, and knock-​out models in mice have documented gen-
etic influence on sensitivity to almost all drugs subject to abuse (Crabbe & Harris, 
1991; Uhl, Drgonova, & Hall, 2014). Human studies are difficult to conduct because 
drugs such as amphetamines, heroin, and cocaine are illegal and exposure to these 
drugs changes over time (Seale, 1991). Although addictions such as cocaine or opiate 
dependence are less common, they have been considered more devastating socially, 
cause more physical illness, and are thought of as extremes of addiction (Bierut, 
2011). Family studies have shown about an eightfold increased risk of drug abuse 
in relatives of probands with drug abuse for a wide range of drugs such as canna-
bis, sedatives, opioids, and cocaine (Merikangas et al., 1998; Merikangas & McClair, 
2012). Two major twin studies of a broad range of drug abuse have been conducted 
in the United States, one involving veterans of the U.S. war in Vietnam (Tsuang, Bar, 
Harley, & Lyons, 2001) and the other involving twins in Virginia (Kendler, Myers, & 
Prescott, 2007b). Both studies yielded evidence of substantial heritabilities of liability 
(about 30 percent to 70 percent) and little evidence of shared environmental influ-
ence across various drugs of abuse. Similar results have been found in a twin study 
in Norway (Kendler, Aggen, Tambs, & Reichborn-​Kjennerud, 2006b). A SNP-​based 
heritability analysis found that common and rare SNPs accounted for 46 percent of 
the variance in illicit drugs (Vrieze et al., 2014). 

A focus of recent research has been on developmental issues (Zucker, 2006). For 
example, as found for alcohol, shared family environmental factors are more impor-
tant for initiation, but genetic factors are largely responsible for subsequent use and 
abuse (Kendler & Prescott, 1998; Rhee et  al., 2003). A slightly different picture is 
seen for cannabis initiation and problematic use in a meta-​analysis of 28 studies of 
cannabis initiation and 24 studies of cannabis use, which found that genetic factors 
contribute to about 50 percent of the vulnerability for both initiation and problem 
use (Verweij et al., 2010). SNPs collectively explain about 25 percent of the variance 
in cannabis initiation (Minică et al., 2015) and 20 percent of the variance in DSM-​5 
cannabis use disorder (Agrawal et al., 2014a).

Multivariate genetic analyses indicate that the same genes largely mediate vul-
nerability across different drugs, with additive genetic factors explaining more than 
60  percent of the common liability to drug dependence (Palmer et  al., 2012) but 
shared environmental influence in adolescence being more drug specific (Young, 
Rhee, Stallings, Corley, & Hewitt, 2006). SNP heritability studies also support an 
additive effect of common SNPs that is shared across multiple indicators of drug 
problems (Palmer et  al., 2015a). A systematic review of the literature also sup-
ports a common liability to multiple facets of substance dependence, particularly 
etiological factors, such as genetics (Vanyukov et al., 2012). This common liability 
model of addiction has gained more consistent support than the gateway hypothesis—​
the theory that the use of less deleterious drugs may lead to a future risk of using 
more dangerous hard drugs (Gelernter & Kranzler, 2010; Vanyukov et  al., 2012). 
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The gateway hypothesis has been tested using various approaches. A novel method,  
called Mendelian randomization (Davey Smith & Ebrahim, 2003), uses Mendel’s second 
law of independent assortment to examine the causal effect of environmental expo-
sure, such as exposure to drugs of abuse. For example, the ALDH2 gene was used in 
a Mendelian randomization test of the gateway hypothesis (Davey Smith & Hemani, 
2014; Irons, McGue, Iacono, & Oetting, 2007). The gateway hypothesis would predict 
that the ALDH2-deficient genotypic group, which was much less exposed to alcohol, 
would be less likely to use other drugs if alcohol exposure is a gateway to the use of 
other drugs. The results of the study strongly disconfirmed this gateway hypothesis 
because the ALDH2-deficient genotypic group was just as likely to use other drugs 
despite using alcohol much less than the ALDH2-normal group.

The molecular genetics of other drug-​related behaviors has been examined in 
mice, especially for transgenic models of responses to opiates, cocaine, and amphet-
amine. More than three dozen transgenic mouse models have been established for 
responses to these drugs (Sora, Li, Igari, Hall, & Ikeda, 2010). Much QTL research 
in mice has also been conducted (Crabbe et al., 2010), including genes involved in 
reward mechanisms as well as drug preference and response (Goldman, Oroszi, & 
Ducci, 2005).

GWA studies of use of drugs other than alcohol and nicotine are beginning to 
be reported. As is the case for alcoholism, GWA studies, including genomewide copy 
number variant (CNV) studies (Li et al., 2014), of addiction to other drugs, such as 
heroin and methamphetamine, report many associations with small effect sizes but no 
large effects (Gelernter & Kranzler, 2010; Yuferov, Levran, Proudnikov, Nielsen, & 
Kreek, 2010). GWA (Agrawal et al., 2011; Agrawal et al., 2014a; Sherva et al., 2016) 
and gene-​based tests (Minică et al., 2015; Verweij et al., 2013) for cannabis use yield 
similar results. However, more recent studies with larger samples and (in some cases) 
built-​in replication datasets have begun to identify putative risk variants for opioid 
dependence (Gelernter et al., 2014b), opioid sensitivity (Nishizawa et al., 2014), and 
cocaine dependence (Gelernter et al., 2014c).

Complexities of Studying the Genetics
of Substance Use
It is often implicitly assumed that there is substantial specificity between genetic fac-
tors and specific types of substance dependence, but there is a growing and strong 
empirical basis for believing that most of the genetic variance is shared (MacKillop 
et al., 2010). For example, nicotine dependence and alcoholism are both comorbid 
with depression, smoking co-​occurs with schizophrenia, alcohol use co-​occurs with 
antisocial behavior, and, as outlined above, various types of substance use tend to 
occur together, such as alcohol use and smoking or cigarette smoking and cannabis 
use (Agrawal et al., 2012). It is both plausible and probable that the pathways from 
genes to substance use and abuse are not a result of independent and additive effects, 
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but rather involve a highly complex system that includes interactions among many 
genes with pleiotropic effects (MacKillop et al., 2010).

Summary
Results of twin and adoption studies of alcohol-​related behaviors suggest moderate 
heritability and little evidence for shared environmental influences. Several examples 
of genotype-​environment interaction have been reported in which genetic risk for 
alcohol-​related outcomes is greater in more permissive environments. As is the case 
for alcohol-​related behaviors, moderate genetic influence and little shared environ-
mental influence have been found for smoking and other drug use, although shared 
environmental influence plays a larger role for initiation of smoking. Multivariate 
studies suggest that common genes mediate vulnerability across various drugs. Phar-
macogenetics has been a very active area of research, using animal models of drug 
use and abuse, especially for alcohol. For example, selection studies have documented 
genetic influence on many behavioral responses to drugs. Many QTLs for alcohol-​
related behavior in mice have been identified. In human populations, GWA studies 
are beginning to yield some consistent findings for alcohol, smoking, and, to a lesser 
extent, other drugs, such as cannabis, methamphetamine, and heroin.
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G enetic research in psychology has focused on cognitive disabilities and abilities 

(Chapters 11–12), psychopathology (Chapters 13–15), personality (Chapter 16), 

and substance use (Chapter 17). The reason for this focus is that these are the areas 

of psychology that have had the longest history of research on individual differences. 

Much less is known about the genetics of other major domains of psychology that 

have not traditionally emphasized individual differences, such as perception, learn-

ing, and language. The purpose of this chapter is to provide an overview of genetic 

research in a relatively newer area, health psychology, sometimes called psychological 

or behavioral medicine because it lies at the intersection between psychology and 

medicine. Specifically, health psychology is concerned with understanding how bio-

logical, psychological, environmental, and cultural factors are involved in physical 

health and illness. Research in this area focuses on the role of behavior in promoting 

health and in preventing and treating disease. Although genetic research in this area 

is relatively new, some conclusions can be drawn about relevant topics such as body 

weight and subjective well-being. Momentum in these areas adds to the relevance of 

genetic counseling for health psychology outcomes.

GENETICS AND HEALTH PSYCHOLOGY
Most of the central issues about the role of behavior in promoting health and in pre-
venting and treating disease have only just begun to be addressed in genetic research. 
For example, the first book on genetics and health psychology was not published until 
1995 (Turner, Cardon, & Hewitt, 1995). However, in the past 20 years, thousands of 
papers have been published related to health psychology, suggesting that this is an 

C H A P T E R  E I G H T E E N

Health Psychology
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area of exponential growth. We will focus on two areas relevant to genetics and health 
psychology: body weight and subjective well-being.

Body Weight and Obesity
Obesity and overweight are becoming more widespread and are worldwide clinical 
and public health burdens (Kelly, Yang, Chen, Reynolds, & He, 2008). In the United 
States, more than one-third of adults and 17 percent of youth are obese (Ogden, 
Carroll, Kit, & Flegal, 2014). Obesity is a major health risk for several medical disor-
ders, including diabetes, heart disease, and cancer, as well as for mortality (Flegal, Kit, 
Orpana, & Graubard, 2013; Gallagher & LeRoith, 2015; Nimptsch & Pischon, 2015). 
Although it is often assumed that individual differences in weight are largely due to 
environmental factors, twin and adoption studies consistently lead to the conclusion 
that genetics accounts for the majority of the variance for weight (Grilo & Pogue-
Geile, 1991), body mass index, and other measures of obesity and regional fat dis-
tribution (such as skinfold thickness and waist circumference) (Herrera, Keildson, & 
Lindgren, 2011; Llewellyn & Wardle, 2015). For example, as illustrated in Figure 18.1, 
twin correlations for weight based on thousands of pairs of twins are 0.80 for identical 
twins and 0.43 for fraternal twins. Identical twins reared apart correlate 0.72. Biologi-
cal parents and their adopted-away offspring are almost as similar in weight (0.23) as 
are nonadoptive parents and their offspring (0.26), who share both nature and nurture. 
Adoptive parents and their offspring, and adoptive siblings, who share nurture but not 
nature, do not resemble each other at all for weight.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

C
or

re
la

tio
n

Adoptive Nonadoptive Adoptive Nonadoptive Adopted-
apart

Fraternal
together

Identical
apart

Identical
together

Siblings Parent-offspring Twins

FIGURE 18.1 Family, adoption, and twin correlations for body weight. (Data from Grilo & 

Pogue-Geile, 1991.)



2 9 4   C H A P T E R  E I G H T E E N

Together, the results in Figure 18.1 imply a heritability of about 70 percent for 
body weight. A heritability of about 70 percent has also been found across eight Euro-
pean countries despite average differences in weight, with some suggestion of greater 
shared environmental influence for women (Schousboe et al., 2003). Similar results 
are also found for body mass index (BMI), which corrects weight on the basis of height 
(i.e., weight [kg]/height [m2]), and for skinfold thickness, which is an index of fatness 
(Grilo & Pogue-Geile, 1991; Maes, Neale, & Eaves, 1997; Nan et al., 2012). There are 
relatively few genetic studies of overweight or obesity, in part because weight shows a 
continuous distribution, a situation rendering diagnostic criteria somewhat arbitrary 
(Bray, 1986). For both children and adults, overweight and obesity classifications are 
typically based on BMI. In general, BMI between the 5th and 85th percentiles is con-
sidered normal, and BMI greater than the 95th percentile is considered overweight 
or, more recently, obese (Krebs et al., 2007).

Using an obesity cutoff based on BMI, twin studies have indicated similarly high 
heritabilities for obesity in childhood (Dubois et al., 2012; Silventoinen, Rokholm, 
Kaprio, & Sorensen, 2010), preadolescence (Nan et al., 2012) and adulthood 
(Silventoinen & Kaprio, 2009). A parent-offspring family study indicates that the risk 
of obesity in adult offspring is 20 percent if both parents are obese, 8 percent if only 
one parent is obese, and only 1 percent if neither parent is obese (Jacobson, Torgerson, 
Sjostrom, & Bouchard, 2007).

The dramatic increase in obesity throughout the world is sometimes thought 
to deny a role for genetics, but, as discussed in Chapter 7, the causes of population 
means and variances are not necessarily related. That is, the mean population increase 
in weight is probably due to the increased availability and reduced costs of energy-
dense food, increased portion sizes, increased consumption of added sugars, and a 
reduction in physical activity (Llewellyn & Wardle, 2015; Skelton, Irby, Grzywacz, 
& Miller, 2011; Skinner & Skelton, 2014). However, despite our increasingly “obe-
sogenic” environments, a wide range of variation in weight remains — many people 
are still thin. Obesogenic environments could shift the entire distribution upward 
while the causes of individual differences, including genetic causes, could remain 
unchanged (Wardle, Carnell, Haworth, & Plomin, 2008b).

As also emphasized in Chapter 7, finding genetic influence does not mean that 
the environment is unimportant. Anyone can lose weight if they stop eating. The 
issue is not what can happen but rather what does happen. That is, to what extent 
are the obvious differences in weight among people due to genetic and environmen-
tal differences that exist in a particular population at a particular time? The answer 
provided by the research summarized in Figure 18.1 (which is consistent with more 
recent studies) is that genetic differences largely account for individual differences 
in weight. If everyone ate the same amount and exercised the same amount, people 
would still differ in weight for genetic reasons.

This conclusion was illustrated dramatically in an interesting study of dietary 
intervention in 12 pairs of identical twins (Bouchard et al., 1990). For three months, 
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the twins were given excess calories and kept in a controlled sedentary environment. 
Individuals differed greatly in how much weight they gained, but members of identi-
cal twin pairs correlated 0.50 in weight gain. Similar twin studies show that the effects 
on weight of physical activity and exercise are also influenced by genetic factors 
(den Hoed et al., 2013; Fagard, Bielen, & Amery, 1991; Heitmann et al., 1997).

Such studies do not indicate the mechanisms by which genetic effects occur. 
For example, even though genetic differences appear when calories and exercise are 
controlled, in the world outside the laboratory, genetic contributions to individual 
differences might be mediated by individual differences in proximal processes such 
as food intake and metabolism (Naukkarinen, Rissanen, Kaprio, & Pietilainen, 2012; 
Silventoinen et al., 2010). In other words, individual differences in eating habits and 
in the tendency to exercise, although typically assumed to be environmental factors 
responsible for body weight, are influenced by genetic factors. Twin studies suggest 
that genetic factors do affect many aspects of eating, such as appetite (Carnell, 
Haworth, Plomin, & Wardle, 2008; van Jaarsveld, Boniface, Llewellyn, & Wardle, 
2014); the number, timing, and composition of meals; degree of hunger and sense 
of fullness after eating (de Castro, 1999; Llewellyn, van Jaarsveld, Johnson, Carnell, 
& Wardle, 2010; Llewellyn & Wardle, 2015); eating styles, such as emotional eating 
and uncontrolled eating (Tholin, Rasmussen, Tynelius, & Karlsson, 2005); speed of 
eating and enjoyment of food (Llewellyn et al., 2010); and food preferences in general 
(Breen, Plomin, & Wardle, 2006).

Previous chapters have indicated that environmental variance is of the nonshared 
variety for most areas of behavioral research. This is also the case for body weight. 
As noted in relation to Figure 18.1, adoptive parents and their adopted children and 
adoptive siblings do not resemble each other at all for weight. This finding is surpris-
ing because theories of weight and obesity have largely focused on weight control by 
means of dieting, yet individuals growing up in the same families do not resemble 
each other for environmental reasons (Grilo & Pogue-Geile, 1991). Attitudes toward 
eating, weight, and appetite also show substantial heritability and no influence of 
shared family environment (Llewellyn & Wardle, 2015; Rutherford, McGuffin, Katz, 
& Murray, 1993). The next step in this research is to identify environmental factors 
that differ for children growing up in the same family. For example, although it is 
reasonable to assume that children in the same family share similar diets, this may 
not be the case. The difficulty lies in the fact that the biological and environmental 
determinants of weight and obesity are intertwined, and include diverse child, family, 
and community characteristics.

The prevalence of overweight and obesity has increased over time and also 
increases with age (Ogden et al., 2014). Thus, it is important to examine the relative 
contributions of genetics and environment to BMI over time, as this could potentially 
provide valuable insight into the causes of the obesity epidemic (Duncan et al., 2009). 
Genetic factors that affect body weight begin to have their effects in early childhood 
(Meyer, 1995). In fact, in a recent study of 23 twin birth cohorts from four countries,  
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BMI was found to be strongly influenced by genetic factors in both males and 
females as early as five months of age (Dubois et al., 2012). Longitudinal genetic 
studies are especially informative. The first longitudinal twin study from birth 
through adolescence found no heritability for birth weight, increasing heritability 
during the first year of life, and stable heritabilities of 60 to 70 percent thereafter  
(see Figure 18.2 for identical and fraternal twin correlations; Matheny, 1990).
These results have consistently been replicated in other twin studies in childhood 
(e.g., Dellava, Lichtenstein, & Kendler, 2012; Estourgie-van Burk, Bartels, van 
Beijsterveldt, Delemarre-van de Waal, & Boomsma, 2006; Pietilainen et al., 1999). A 
recent longitudinal study found that heritability of BMI increased from 43 percent at 
age 4 to 82 percent at age 10, and confirmed these results using genomewide SNP-
heritability and polygenic risk score approaches (Llewellyn, Trzaskowski, Plomin, & 
Wardle, 2014a). In a systematic review and analysis of about 8,000 MZ and 9,900 DZ 
twin pairs from twelve published studies, heritability of BMI was found to be high 
across preadolescence, young adulthood, and late adulthood, ranging from 60 to 80 
percent (Figure 18.3; see Nan et al., 2012). Longitudinal twin studies that examined 
the change in BMI from adolescence to young adulthood also indicate that, while the 
magnitude of genetic influences is largely stable, different sets of genes may underlie 
the rate of change during this developmental period (Ortega-Alonso, Pietilainen,  
Silventoinen, Saarni, & Kaprio, 2012). 

Similar to most other behaviors and phenotypes discussed earlier in this book, 
there is keen interest in the role of gene-environment interplay in the risk for obesity 
(Llewellyn & Wardle, 2015). For example, heritability estimates may vary depend-
ing on certain environmental factors. Heritability of BMI has been reported to be 
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lower among adults with higher income levels (Johnson & Krueger, 2005) and among 
young adults who exercise frequently (Mustelin, Silventoinen, Pietilainen, Rissanen, 
& Kaprio, 2009; Silventoinen et al., 2009). It has also been suggested that genetic 
and common environmental effects on BMI may be moderated by parental educa-
tion level, with lower heritability if parental education was limited (i.e., not having 
completed high school) or mixed (one parent with limited education and one parent 
with a higher educational level). Common environment did not affect variation of 
adolescent BMI in highly educated families but did influence BMI in families with 
limited parental education (Lajunen, Kaprio, Rose, Pulkkinen, & Silventoinen, 2012). 
Recent work has focused on the behavioral susceptibility theory (BST), which proposes 
that individuals who inherit a more avid appetite or lower sensitivity to satiety are 
more likely to overeat in response to the food environment (see Llewellyn & Wardle, 
2015, for a review). 

As mentioned previously, many of these ostensible environmental measures are 
heritable. For example, individual differences in physical activity and appetite during 
adulthood are due in part to genetic influences (Mustelin et al., 2012; van Jaarsveld 
et al., 2014). Thus, despite the increased information that is now available about the 
predictors of BMI, the picture is becoming increasingly complex.

Molecular genetic studies Obesity is the target of intense molecular genetic 
research, initially because of the so-called obese gene in mice. Mouse models have 
historically been very important in uncovering the genetic architecture of obesity 
and related traits, and advances in these models continue to provide insight into the 
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FIGURE 18.3 Genetic and environmental contributions to BMI from preadolescence to adulthood. 
*Lower limit of confidence interval is 0. **Lower limit of confidence interval is 0.20. (Data from 

Nan et al., 2012.)
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etiology of weight-related diseases (see Mathes, Kelly, & Pomp, 2011, for a review). 
In the 1950s, a recessive mutation that caused obesity was discovered in mice. When 
these obese mice were given blood from a normal mouse, they lost weight, a result 
suggesting that the obese mice were missing some factor important in control of 
weight. The gene was cloned and was found to be similar to a human gene (Zhang  
et al., 1994). The gene’s product, a hormone called leptin, was shown to reduce weight in 
mice by decreasing appetite and increasing energy use (Halaas et al., 1995). However, 
with rare exceptions (Montague et al., 1997), obese humans do not appear to have 
defects in the leptin gene. The gene that codes for the leptin receptor in the brain 
has also been cloned from another mouse mutant (Chua et al., 1996). Mutations in 
this gene might contribute to genetic risk for obesity. Up to 3 percent of patients 
with severe obesity have been found to have a loss-of-function mutation in the leptin 
receptor (Farooqi et al., 2007; van der Klaauw & Farooqi, 2015). Interestingly, the 
obesity phenotype in individuals with defects in the leptin gene or its receptor is very 
similar, illustrating that leptin is a key piece of the body weight and obesity puzzle 
(Ramachandrappa & Farooqi, 2011).

Another biological system that has received interest is the melanocortin system 
(van der Klaauw & Farooqi, 2015). Many of the effects of leptin on the body are medi-
ated by the central nervous system, particularly the hypothalamus. When leptin binds 
to leptin receptors in this area of the brain, it stimulates the melanocortin system. It 
is this stimulation that actually suppresses food intake (Ramachandrappa & Farooqi, 
2011). A particular gene in this system, MC4R, has been associated with obesity in 
humans (Vaisse, Clement, Guy-Grand, & Froguel, 1998; Yeo et al., 1998), and tar-
geted disruption of MC4R in mice leads to increased food intake and increased lean 
mass and growth (Huszar et al., 1997). It is believed that these hypothalamic path-
ways interact with other brain centers to coordinate appetite, regulate metabolism, 
and influence energy expenditure (van der Klaauw & Farooqi, 2015). In other words, 
obesity-related traits are highly complex and are likely to be regulated by multiple 
genes that impact many systems, and these genes are likely to interact not only with 
one another but also with environmental stimuli (Mathes et al., 2011).

As with most complex traits, major single-gene effects on human obesity are rare 
and often involve severe disorders. In addition, hundreds of genes in mice have been 
shown to affect body weight when mutated or otherwise altered (Mathes et al., 2011; 
Rankinen et al., 2006). However, multiple genes of various effect sizes are likely to 
be responsible for the substantial genetic contribution to common overweight and 
obesity. Genomewide association (GWA) approaches have identified genes that 
increase risk for common forms (i.e., not due to a single gene) of obesity, as defined 
by BMI, waist circumference, waist:hip ratio, and body fat percentage. To date, more 
than 80 genetic loci have been identified by GWA approaches, and many of these 
have been replicated in different populations and ethnicities (Locke et al., 2015). 
The gene that has been consistently associated with common obesity, FTO, explains 
about 1 percent of the variance of BMI (Frayling et al., 2007) and has been linked 
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to various appetitive  characteristics, such as higher food intake (Cecil, Tavendale, 
Watt, Hetherington, & Palmer, 2008; Wardle, Llewellyn, Sanderson, & Plomin, 2009) 
and lower satiety responsiveness (Wardle et al., 2008a). As predicted by quantitative 
genetic research, the SNP in the FTO gene is associated with body weight throughout 
the distribution, not just with the obese end of the distribution. Also as predicted by 
quantitative genetic research, the SNP is not associated with birth weight but shows 
correlations with body weight beginning at 7 years of age.

MC4R, which was suggested initially through candidate gene studies, has also 
been identified via multiple GWA studies to be associated with BMI (Zeggini et al., 
2007), waist circumference (Chambers et al., 2008), higher energy and fat intake 
(Qi, Kraft, Hunter, & Hu, 2008), and early-onset obesity (Farooqi et al., 2003). A 
meta-analysis of BMI in 250,000 adult individuals confirmed 14 of the previously 
identified obesity genes, including FTO and MC4R, and also identified 18 new loci 
related to obesity (Speliotes et al., 2010). When looking at childhood obesity, a meta- 
analysis of 5530 obese cases and 8318 controls yielded two novel loci (Bradfield et al., 
2012). These loci were also found in a more recent meta-analysis of BMI in 339,224 
individuals (Locke et al., 2015). Researchers have been using findings from meta-
analysis to guide creation of polygenic risk scores. For example, risk scores comprised 
of the 34 loci identified in meta-analyses in adults (Speliotes et al., 2010) and children 
(Bradfield et  al., 2012) were used to examine how satiety plays a role in genetic 
influence on obesity (Llewellyn, Trzaskowski, van Jaarsveld, Plomin, & Wardle, 
2014b). Researchers found that low satiety responsiveness (or appetite regulation) is 
one of the mechanisms through which genetic predisposition leads to weight gain in 
an environment rich with food. 

The message is clear that common variants appear to contribute small, yet 
potentially meaningful, effects to obesity-related phenotypes. However, as discussed 
in Chapter 10, there are other types of genetic variation, including copy number 
variants and rare variants found at lower frequencies in the population (Figure 18.4, 
see van der Klaauw & Farooqi, 2015). Recent evidence integrating CNV and gene 
expression levels in adipose tissue, suggests that a CNV encompassing the salivary 
amylase gene (AMY1), which is involved in carbohydrate metabolism, is associated 
with BMI and obesity (Falchi et al., 2014). 

Epigenetics and obesity-related outcomes Epigenetic modifications, such as 
DNA methylation and imprinting (see Chapter 10), have also been suggested to affect 
obesity through their impact on gene expression (Desai, Jellyman, & Ross, 2015). 
Recall that genomic imprinting influences the genetic expression of alleles as a func-
tion of whether the allele came from the father or the mother. One example is Prader-
Willi syndrome (Chapter 12), which results from a paternal deletion at 15q11-13 and 
is characterized by severe early-onset obesity due to satiety dysfunction (Shapira  
et al., 2005; Williams et al., 2010). Epigenetic variation can also be induced by early 
environmental influences, and DNA methylation has been suggested to affect fetal 
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growth, later metabolism, and risk for other chronic diseases (Herrera et al., 2011; 
Maccani & Marsit, 2009; Zheng, Xiao, Zhang, & Yu, 2014).

Although obese mothers tend to have obese children (Dabelea et al., 2008), 
maternal weight loss prior to pregnancy via clinical intervention can reduce the risk 
of obesity in children by providing a less obesogenic prenatal environment (Smith 
et al., 2009). However, in obese women, it is difficult to distinguish genetic and envi-
ronmental contributions to offspring obesity. Animal models of maternal obesity 
have begun to shed some light on the possible interaction between the environment 
and the epigenetic mechanisms that might affect expression of genes associated with 
increased BMI and other obesity-related traits (see Lavebratt, Almgren, & Ekström, 
2012, for a review). For example, the MC4R gene shows reduced methylation fol-
lowing long-term exposure to a high-fat diet in mice (Widiker, Kaerst, Wagener, & 
Brockmann, 2010). A high-fat diet also modifies methylation of the leptin promoter in 
rats (Milagro et al., 2009). Importantly, genetic and epigenetic factors are intimately 
intertwined. As more becomes known about the role of genetics and epigenetics in 
obesity, that information can be combined with known environmental risks in order 
to gain a more comprehensive picture of the etiology of obesity-related outcomes 
(Smith & Ryckman, 2015, Desai et al., 2015).

FIGURE 18.4 Types of genetic variation contributing to body weight. MAF = minor allele 
frequency. (Information from van der Klaauw AA, Farooqi IS. The hunger genes: pathways to obesity. Cell. 

2015 Mar 26;161(1):119-32. doi: 10.1016/j.cell.2015.03.008. Review. PubMed PMID: 25815990.)
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New directions in genetics of obesity and weight gain The vast majority 
of studies, only a small fraction of which are discussed above, have focused on the 
observable outcome, or phenotype, of weight. Research is now emerging that attempts 
to uncover the effect of our genetic makeup on our gut microbiome (Goodrich et al., 
2014; Mathes et al., 2011). The gut microbiome is a population of microbial species that 
interact with gastrointestinal tissues and may ultimately affect body weight, obesity, 
and other nutritionally relevant traits. The hypothesis is that lean and obese individu-
als have different gut microbial populations that affect energy extraction and later 
deposit of fat stores from consumed food, which could influence the host’s weight 
gain environmentally (Turnbaugh & Gordon, 2009). However, the host’s genome 
could also affect the function of the gut microbiome (Goodrich et al., 2014). Stud-
ies using animal models have begun to investigate these questions and suggest that 
genetic variations found in the host affect the function of the gut microbiome, which 
then influences the development of obesity (see Mathes et al., 2011, for a review). 
Studies of obese and lean twins have begun to dissect the relative contributions of 
host genotype and environmental exposures, such as diet, to shaping the microbial 
and viral landscape of our gut microbiota (Reyes et al., 2010; Turnbaugh et al., 2009). 
Results suggest that, although the human gut microbiome is shared to some extent 
among family members, gut microbiomes also contain a variety of specific (i.e., non-
shared) bacteria that affect individuals’ ability to extract energy from their diet and 
deposit it into fat, in part as a function of the individuals’ genotypes (Hansen et al., 
2011; Turnbaugh et al., 2009). 

Subsequent research has moved beyond the comparison of gut microbiota from 
twin pairs discordant for obesity in order to begin to determine the causal mecha-
nisms underlying the association between the microbiome and obesity. In a trans-
formative study, fecal samples from obese and lean co-twins were transplanted into 
germ-free mice fed with a low-fat diet. Mice who harbored the obese twin’s micro-
biota exhibited increased total-body and fat mass as well as obesity-related metabolic 
phenotypes, which were not related to daily food consumption (Ridaura et al., 2013). 
Further tests suggested that housing the mice harboring the obese twin’s microbiota 
with mice harboring the lean twin’s microbiota could “rescue” or prevent the devel-
opment of increased body mass and obesity-related phenotypes in the obese mice 
(Ridaura et al., 2013). Further work in germ-free mice has identified a particular 
gut bacterium, Christensenella minuta, that can influence obesity-related phenotypes. 
When C. minuta was added to an obese person’s fecal sample that was subsequently 
transplanted into a recipient mouse, the effect was a leaner mouse (Goodrich et al., 
2014). This is consistent with data suggesting that leaner people have a greater abun-
dance of C. minuta in their gut than obese individuals (Ley, 2015). 

Weight loss Epigenetic modifications and the gut microbiome may affect body 
weight, but the results of twin and family studies summarized in this chapter clearly 
indicate that individual differences in body weight are highly heritable. Although 
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this high heritability may have some relevance for the success or failure of individual 
weight-loss efforts, it does not imply that environmental factors are unimportant. 
Obviously, exercise and caloric restriction can result in weight reduction. Unfortu-
nately, however, such intended weight loss is often only temporary (Elfhag & Rössner, 
2005). In fact, in young and middle-age adults, intentional weight loss and strict dieting 
are often correlated with overeating (Keski-Rakhonen et al., 2005; Smith, Williamson, 
Bray, & Ryan, 1999). While intentional weight loss and overeating, on the surface, 
appear to be on opposite ends of the eating behavior spectrum, there is evidence 
to suggest that there is a positive correlation due in part to shared genetic effects. 
Specifically, about a third of the genetic factors between intentional weight loss and 
overeating are shared, while less than 10 percent of environmental risk factors are 
shared (Wade, Treloar, Heath, & Martin, 2009). This genetic correlation between 
intentional weight loss and overeating, coupled with the high heritability for body 
weight, implies that permanent changes in lifestyle may be required to maintain 
reduced body weight (Elfhag & Rossner, 2005).

Subjective Well-Being and Health
Subjective well-being, life satisfaction, and their relation to health constitute a 
growing area of research in behavioral genetics (Pluess, 2015). Research suggests, 
perhaps unsurprisingly, that a lower subjective well-being is associated with chronic 
health problems (Strine, Chapman, Balluz, Moriarty, & Mokdad, 2008), depression 
(Greenspoon & Saklofske, 2001), poorer quality of life, increased health care costs, 
early retirement, and mortality (Gill et al., 2006; Katon et al., 2004). Positive well-
being, on the other hand, is related to longevity and may add several years to the life 
span (Steptoe, Deaton, & Stone, 2015).

Twin studies suggest that about 35 percent of the variance in subjective well-
being is due to genetic influences (Bartels, 2015). Moreover, continuity of subjec-
tive well-being over time also appears to be influenced by genetic factors (Roysamb, 
Tambs, Reichborn-Kjennerud, Neale, & Harris, 2003). The phenotypic relationships 
between subjective well-being and self-reported health, sleep, physical activity, and 
psychopathology are due, at least in part, to genetic overlap (Bartels, Cacioppo, van 
Beijsterveldt, & Boomsma, 2013; Mosing, Zietsch, Shekar, Wright, & Martin, 2009b; 
Paunio et al., 2009; Waller, Kujala, Kaprio, Koskenvuo, & Rantanen, 2010). The posi-
tive effects of exercise on subjective well-being are also thought to be attributable to 
common genetic factors (Bartels, de Moor, van der Aa, Boomsma, & de Geus, 2012).

Less is known about the molecular genetic underpinnings of subjective well-
being or self-rated health. A genomewide linkage scan for subjective happiness sug-
gested QTLs of interest on chromosomes 1 and 19 (Bartels et al., 2010); however, 
replication and additional studies are needed. Recent GWA efforts have yielded no 
significant findings for self-rated health (Mosing et al., 2010b). SNP heritability esti-
mates suggest that only 4% of the variance in subjective well-being, as measured 
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by feelings of happiness and enjoyment of life, can be accounted for by the addi-
tive effects of common SNPs (Okbay et al., in press; Rietveld et al., 2013a). A recent 
GWA study of well-being in nearly 300,000 individuals identified three genome-
wide significant associations; a polygenic score accounted for about one percent of 
the variance (Okbay et al., 2016). Consequently, it appears that self-rated health and 
subjective well-being are likely to be due to the contribution of multiple genes of 
small effect rather than a few genes of major effect.

Increasing interest is being paid to the relationships between subjective well-
being, happiness, and healthy aging (Steptoe et al., 2015). Mental health is increas-
ingly defined not only by the absence of illness but also by the presence of subjective 
well-being (Sadler, Miller, Christensen, & McGue, 2011). It is clear that subjective 
well-being predicts favorable life outcomes, including better mental and somatic 
health, as well as longevity. Further, this body of research has prompted interventions 
and public health initiatives that are focused on increasing happiness and well-being, 
particularly among older adults. This will be discussed more in Chapter 19.

HEALTH PSYCHOLOGY AND GENETIC COUNSELING
It is clear that we are at the dawn of a new era in which behavioral genetic research is 
moving beyond the demonstration of the importance of heredity to the identification 
of specific genes. For example, saliva and blood samples collected in clinics are now 
often sent to laboratories for DNA extraction (even though each of us does not yet 
have a memory key with our complete DNA sequence). As described in Chapter 9,  
hundreds of thousands of DNA polymorphisms can be genotyped on SNP chips  
at a modest cost. In the past, this type of information was available for single-gene 
disorders, such as fragile X syndrome, as well as for the QTL association between 
apolipoprotein E and late-onset dementia. However, there are now companies that 
offer the ease of obtaining genetic risk prediction at a low cost for anyone willing to 
send a saliva sample.

As is the case with most important advances, identifying genes for behavior 
will raise new ethical issues (e.g., Pergament & Ilijic, 2014). These issues are 
already beginning to affect genetic counseling (Box 18.1). Genetic counseling 
is expanding from the diagnosis and prediction of rare, untreatable single-gene 
conditions to the prediction of common, often treatable or preventable condi-
tions (Karanjawala & Collins, 1998). Although there are many unknowns in this 
uncharted terrain, the benefits of identifying genes for understanding the etiology 
of behavioral disorders and dimensions seem likely to outweigh the potential 
abuses. The judicious use of genetic and genomic information has significant, 
but as yet untested, potential to enhance the clinical care and prevention of 
chronic diseases. That is, it can help us to understand the etiology of disease and 
also aid in providing treatment recommendations for patients’ health behaviors  
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BOX 18.1 Genetic Counseling

Genetic counseling is an important 
interface between the behavioral 
sciences and genetics and goes 

well beyond simply conveying informa-
tion about genetic risks and burdens. 
It helps individuals come to terms with 
the information by dispelling mistaken 
beliefs and allaying anxiety in a non-
directive manner that aims to inform 
rather than to advise. In the United 
States, over 3000 health professionals 
have been certified as genetic coun-
selors, and about half of these were 
trained in 2-year master’s programs 
(Mahowald, Verp, & Anderson, 1998). 
For more information about genetic 
counseling as a profession, including 
practice guidelines and perspectives, 
see the National Society of Genetic 
Counselors (http://www.nsgc.org/), 
which sponsors the Journal of Genetic 
Counseling and has a useful link called 
“How to Become a Genetic Counselor.” 
For more general information about 
professional education in genetic coun-
seling, see the National Coalition for 

Health Professional Education in Genetics 
(http://www.nchpeg.org/).

Until recently, most genetic counsel-
ing was requested by parents who had 
an affected child and were concerned 
about risk for other children. Now 
genetic risk is often assessed directly by 
means of DNA testing. As more genes 
are identified for disorders, genetic 
counseling is increasingly involved in 
issues related to prenatal diagnoses, 
prediction, and intervention. This new 
information will create new ethical 
dilemmas. Huntington disease provides 
a good example. It used to be that if you 
had a parent with the disease, you knew 
you would have a 50 percent chance of 
developing the disease. However, with 
the discovery of the gene responsible 
for Huntington disease, in almost all 
cases it is now possible to diagnose 
whether a fetus or an adult will have 
the disease. Would you want to take 
the test? It turns out that the majority 
of people at risk choose not to take the 
test, largely because there is as yet no 

(Cho et al., 2012; Green & Guyer, 2011). Health psychologists are at the forefront 
of research investigating the effects of genetic testing on patient attitudes, beliefs, 
and health-related behaviors (Godino, Turchetti, Jackson, Hennessy, & Skirton, 
2015; McBride, Koehly, Sanderson, & Kaphingst, 2010). For example, there is some 
evidence that when patients are provided with genetic testing results, their preven-
tative behavior increases (Taylor & Wu, 2009). Recent systematic reviews of the 
impact of genetic risk information on chronic adult diseases found some psycholog-
ical benefits of including genetic information in treatment of chronic diseases, but 
it concluded that many gaps in knowledge must be addressed before genetic science 
can be effectively translated into clinical practice (Godino et al., 2015; McBride  
et al., 2010). New studies are being designed that try to address these gaps in order 
to increase the clinical and personal utility of genetic testing (e.g., Cho et al., 2012).

http://www.nsgc.org
http://www.nchpeg.org
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cure (Maat-Kievit et al., 2000). If you 
did take the test, the results would likely 
affect knowledge of risk for your rela-
tives. Do your relatives have the right to 
know, or is their right not to know more 
important? One generally accepted rule 
is that informed consent is required for 
testing; moreover, children should not 
be tested before they become adults 
unless a treatment becomes available.

A growing area is prenatal genetic 
screening, which provides parents with 
information about the health of the 
fetus. Genomewide tests, including 
diagnostic whole-exome and whole-
genome sequencing, have improved 
the ability to detect clinically significant 
findings, but have also increased the 
chance of detecting incidental findings 
and variants of uncertain significance. 
This brings about considerable chal-
lenges surrounding how these results are 
communicated to parents (Westerfield, 
Darilek, van den Veyver, 2014).

Another increasingly important 
problem concerns the availability of 

genetic information to employers and 
insurance companies. These issues  
are most pressing for single-gene  
disorders like Huntington disease, in 
which a single gene is necessary and 
sufficient to develop the disorder. For 
most behavioral disorders, however, 
genetic risks will involve QTLs that are 
probabilistic risk factors rather than  
certain causes of the disorder. A major  
new dilemma concerns the burgeoning  
industry of marketing genetic tests 
directly to consumers (Biesecker & 
Marteau, 1999; Wade & Wilfond, 2006). 
Although genetic counseling has  
traditionally focused on single-gene and 
chromosomal disorders, increasingly  
the field is encompassing complex 
disorders including behavioral disorders 
(Finn & Smoller, 2006). Despite the 
ethical dilemmas that arise with the new 
genetic information, it should also be 
emphasized that these findings have the 
potential for profound improvements in 
the prediction, prevention, and treatment 
of diseases.

Summary
Interesting genetic results are emerging in the domain of health psychology. One 
example of genetic research on health psychology concerns body weight and obesity. 
Although most theories of weight gain are environmental, genetic research consistently 
shows substantial genetic influence on individual differences in body weight, with heri-
tabilities of about 70 percent. Also interesting in light of environmental theories is 
the consistent finding that shared family environment does not affect weight. Longi-
tudinal studies indicate that genetic influences on weight are surprisingly stable after 
infancy, although there is some evidence for genetic change even during adulthood. 
Body weight and obesity are the target of much molecular genetic research in mice 
and humans, with increasing success. Subjective well-being is another example of an 
area where genetic research, both quantitative and molecular, is beginning to expand.
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Aging

U nderstanding the factors that promote healthy aging is an area of great social 

significance. The average age in most societies is increasing, primarily as a 

result of improvements in health care. For example, in the United States, 45 million 

people were age 65 and older in 2013, and this number is expected to rise to nearly 100 

million by 2060, an increase from 14 percent to 22 percent (Administration on Aging, 

2014). Those 85 and older are projected to triple in the United States (Ortman, Velkoff, 

& Hogan, 2014) and worldwide (United Nations, 2013). Although obvious changes 

occur later in life, it is not possible to lump older individuals into a category of “the 

elderly” because older adults differ greatly biologically and psychologically. For the 

purposes of this chapter we define the latter part of the life span as age 50 and older, 

and the “older old” as age 70 and above. The question for genetics is the extent to 

which genetic factors contribute to individual differences in functioning later in life.
This chapter will focus on behavioral genetic research on cognitive aging, physi-

cal health, and longevity. Research in these areas has provided critical insights about 
these aspects of aging that would not have been possible without using the strategies 
available in behavioral genetics (Figure 19.1). The explosion of molecular genetic 
research on cognitive decline, dementia, and longevity in the elderly has added 
momentum to genetic research on behavioral aging, and has provided some of the 
most well-replicated evidence of a specific gene involved in development. 

COGNITIVE AGING

Many twin studies have assessed how cognitive function changes with age across 
the life span, leading to the surprising finding that heritability of general cognitive 
ability increases with age (Chapter 11) with some drop-off in the older old as shown 
in Figure  19.2 (Finkel & Pedersen, 2004). There is also some indication that the 
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patterns of genetic and environmental influences on cognitive aging may differ for 
some specific cognitive abilities (Reynolds & Finkel, 2015; Tucker-Drob & Briley, 
2014). Therefore, examining overall cognitive ability may not capture the nuances of 
cognitive aging, especially in the older old. 

General Cognitive Ability

Twin and adoption studies have found that heritability of general cognitive abil-
ity reaches a peak in later adulthood of about 80 percent (Finkel & Reynolds, 2009; 
Pedersen, 1996). The stability in general cognitive ability throughout adulthood 

FIGURE 19.1  Ninety-three-year-old MZ twins participating in a twin study of cognitive functioning 

late in life and photos of them going back to childhood (McClearn et al., 1997). Not only do MZ 

twins continue to look physically similar late in life, they also continue to perform similarly on 

measures of cognitive ability. (Photo collage of 93-year-old MZ twins from the cover of Science Vol. 276, 

no. 5318, 6 June 1997. Republished with permission of AAAS.)
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is also very high and is due nearly entirely to genetic influences (Tucker-Drob & 
Briley, 2014). Some studies have found that the heritability in general cognitive ability 
decreases slightly in the older old, which seems to be the result of increased nonshared 
environmental influences (Reynolds et al., 2005; Finkel & Reynolds, 2014; Johnson, 
McGue, & Dreary, 2014). In other words, environmental influences unique to each 
member of the twin pair have a greater impact on individual differences in general 
cognitive ability during later adulthood. There are other reports, however, that do 
not find a decrease in heritability in the older old (McGue & Christensen, 2013; Lee, 
Henry, Trollor, & Sachdev, 2010b). Until more data become available for twin samples 
over age 80, it may not be possible to resolve this issue definitively (Reynolds & Finkel,  
2014); however, the findings for increasing heritability on general cognitive ability up 
to age 70 are clear and have been replicated in multiple studies and meta-analyses. 

Specific Cognitive Abilities

As described in Chapter 11, specific cognitive abilities, such as verbal ability, spa-
tial ability, and memory, are the components that make up general cognitive abil-
ity. Not mentioned in the discussion of specific cognitive abilities in Chapter 11 
is a distinction often made in the field of cognitive aging between “fluid” abilities, 
such as spatial ability, which decline with age, and “crystallized” abilities, such as 
vocabulary, which increase with age (Baltes, 1993; Reynolds, Finkel, & Zavala, 2014). 
This finding has led some to hypothesize that fluid abilities are more biologically 
based and crystallized abilities more culturally based (Lindenberger, 2001). How-
ever, genetic research so far has found that fluid and crystallized abilities are equally 

FIGURE 19.2  Summary of heritability estimates for general cognitive ability across the adult life 

span. (Data from Finkel & Reynolds, 2009.)
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heritable (Finkel & Reynolds, 2009; Pedersen, 1996). Interestingly, genetic and envi-
ronmental influences on the stability of fluid and crystalized abilities may differ. One 
meta-analysis found greater genetic stability for fluid than for crystalized abilities 
(Tucker-Drob & Briley, 2014).

Although less is known about specific cognitive abilities throughout the life 
span, evidence suggests that, for many domains, the pattern of genetic and environ-
mental influences over time is similar to that seen for general cognitive ability. Two 
meta-analyses of findings for specific cognitive abilities from twin and family studies 
suggest that heritability tends to increase with age (Reynolds & Finkel, 2015; Tucker-
Drob & Briley, 2014), consistent with the findings for general cognitive ability. There 
is, however, one report that does not find an increase in heritability for adults over age 
65 for cognitive abilities assessed across multiple domains (Polderman et al., 2015).

There are some differences in how genetic and environmental factors influence 
change in specific cognitive abilities depending on the domain examined (Finkel, 
Reynolds, McArdle, & Pedersen, 2005). For example, although verbal ability is highly 
heritable, change in verbal ability with age was due entirely to nonshared environ-
mental influences. In contrast, for processing speed, heritability was high both at base-
line and for change. A different analysis of the same sample across a longer time span 
(up to age 96) found that there was substantial overlap in genetic influences on cogni-
tive change across domains, as well as genetic influences unique to specific cognitive 
abilities, especially for memory change for those age 65 and older (Tucker-Drob, 
Reynolds, Finkel & Pedersen, 2014). This highlights the need to consider both general 
and specific cognitive abilities in order to get a more complete understanding of the 
behavioral genetics of cognitive aging.

Dementia

Although aging is a highly variable process, as many as one quarter of individuals 
over age 85 worldwide suffer severe cognitive decline known as dementia (Gatz, Jang, 
Karlsson, & Pedersen, 2014; Prince et al., 2013). Prior to age 65, the incidence is  
1 percent or less (Figure 19.3). Among the elderly, dementia accounts for more days 
of hospitalization than any other psychiatric disorder (Cumings & Benson, 1992) and 
has a substantial impact on the quality of life both for the individual with demen-
tia and their family and caregivers (Alzheimer’s Disease International, 2015). The 
number of diagnosed dementia patients is projected to nearly double every 20 years 
(Alzheimer’s Disease International, 2015).

More than half of all cases of dementia involve Alzheimer disease (AD), which 
has been studied for more than a century (Gatz et al., 2014). AD occurs very gradually 
over many years, beginning with loss of memory for recent events. This mild mem-
ory loss affects many older individuals but is much more severe in individuals with 
AD. Irritability and difficulty in concentrating are also often noted. Memory gradu-
ally worsens to include simple behaviors, such as forgetting to turn off the stove or 
bath water and wandering off and getting lost. Eventually — sometimes after 3 years, 
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sometimes after 15 years — individuals with AD become bedridden. Biologically, 
AD involves extensive changes in brain nerve cells, including plaques and tangles 
(described later) that build up and result in death of the nerve cells. Although these 
plaques and tangles occur to some extent in most older people, in individuals with 
AD they are much more numerous and widespread.

Another type of dementia is the result of the cumulative effect of multiple small 
strokes in which blood flow to the brain becomes blocked, thus damaging the brain. 
This type of dementia is called multiple-infarct dementia (MID). (An infarct is an area 
damaged as a result of a stroke.) Unlike AD, MID is usually more abrupt and involves 
focal symptoms such as loss of language rather than general cognitive decline. 
Co-occurrence of AD and MID is seen in about one third of all cases. The DSM-5 
recognizes several other kinds of dementias, called neurocognitive disorders, including 
major or mild neurocognitive disorders due to Parkinson disease, AIDS, head trauma, 
and Huntington disease (Chapter 3).

Surprisingly little is known about the quantitative genetics of either AD or MID. 
Family studies of AD probands estimate risk to first-degree relatives of nearly 50 per-
cent by age 85, when the data are adjusted for age of the relatives (McGuffin, Owen, 
O’Donovan, Thapar, & Gottesman, 1994; Green et al., 2002). Until recently, the only 
twin study of dementia was one reported over 60 years ago. That twin study, which 
did not distinguish AD and MID, found concordances of 43 percent for identical 
twins and 8 percent for fraternal twins, results suggesting moderate genetic influence 
(Kallmann & Kaplan, 1955). Although subsequent heritability estimates for demen-
tias like MID have not been significantly different from zero (Ferencz & Gerritsen, 
2015; Gatz, Reynolds, Finkel, Pedersen, & Walters, 2010), more recent twin studies 
find evidence of substantial genetic influence on AD, with concordances two times 
greater for identical than for fraternal twins in Finland (Räihä, Kapiro, Koskenvuo, 
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Rajala, & Sourander, 1996), Norway (Bergem, Engedal, & Kringlen, 1997), Sweden 
(Gatz et al., 1997), and the United States (Plassman & Breitner, 1997). In the largest 
twin study to date, liability to AD yielded a heritability estimate of 0.58 (Gatz et al., 
2006). SNP-based heritability estimates support the findings of genetic influences on 
AD with common SNPs accounting for about 30 percent of the total variance (Ridge 
et al., 2013; Lee et al., 2013). 

Some of the most important molecular genetic findings for behavioral disorders 
have come from research on dementia (Bettens, Sleegers, & Van Broeckhoven, 2013). 
Early research focused on a rare (1 in 10,000) type of Alzheimer disease that appears 
before 65 years of age and shows evidence for autosomal dominant inheritance. Three 
genes have been identified that contribute to this rare form of the disorder (Bekris, 
Yu, Bird, & Tsuang, 2010). However, the great majority of Alzheimer cases occur after 
65 years of age, typically in persons in their seventies and eighties. A major advance 
toward understanding late-onset Alzheimer disease is the discovery of a strong allelic 
association with a gene (for apolipoprotein E) on chromosome 19 (Corder et al., 
1993). This APOE gene has three alleles (confusingly called alleles 2, 3, and 4). The 
frequency of allele 4 is about 40 percent in individuals with Alzheimer disease and 
15 percent in control samples. This result translates to about a sixfold increased risk 
for late-onset Alzheimer disease for individuals who have one or two of these alleles.

Allele 4 of the APOE gene, although a risk factor, is neither necessary nor suf-
ficient for developing dementia. For instance, nearly half of patients with late-onset 
Alzheimer disease do not have that allele. Assuming a liability-threshold model, 
allele 4 accounts for about 15 percent of the variance in liability (Owen, Liddle, & 
McGuffin, 1994). Because apolipoprotein E is known for its role in transporting lipids 
throughout the body, its association with late-onset AD was puzzling at first. How-
ever, the product of allele 4 has multiple effects in the brain that lead to the plaques 
common in AD and, eventually, to the death of nerve cells (Tanzi & Bertram, 2005). 

Because the APOE gene does not account for all the genetic influence on AD, the 
search is on for other genes responsible for the heritability of AD. A meta-analysis of 
over one thousand reports of associations with over 500 candidate genes found evi-
dence for significant associations for more than a dozen susceptibility QTLs, although 
results are often inconsistent (Bertram, McQueen, Mullin, Blacker, & Tanzi, 2007). 
Genomewide association (GWA) studies consistently confirm the association with 
the APOE gene, but more than a dozen studies yielded inconsistent results for other 
associations until three large-scale studies including data from 43,000 individuals 
provided compelling evidence for small effects of variants in four novel susceptibility 
genes that might lead to synaptic disintegration (Hollingworth, Harold, Jones, Owen, 
& Williams, 2011). Subsequent meta-analyses and GWA studies suggested additional 
risk loci (e.g., Lambert et al., 2013), but including risk loci identified in GWA studies 
in genetic risk prediction models found only minimal improvement for predicting 
AD beyond other variables such as age, sex, and the APOE gene (reviewed in Gatz 
et al., 2014). More than a dozen knock-out mouse models of AD-related genes have 



3 1 2   C H A P T E R  NIN   E T E E N

been generated, and several of the mutants show β-amyloid deposits and plaques, 
although no animal model has as yet been shown to have all of the expected AD 
effects, including the critical effects on memory (Bekris et al., 2010). 

Genes and Normal Cognitive Aging

Much less work has been done on the molecular genetics of normal cognitive aging. 
There is, however, an indication that the APOE gene plays an important role, along with 
another gene in the lipid metabolism pathway, SORL1 (Davies et al., 2012; Reynolds 
et al., 2013). GWA studies have found that many of the same genes associated with 
AD are also associated with general cognitive function (Davies et al., 2015; Zhang & 
Pierce, 2014). 

HEALTH AND AGING

As discussed in Chapter 18, there is increasing interest in the relationship between 
subjective well-being and healthy aging. That is, what is important is not just how 
long we live but how well we live — not just adding years to our life but adding life to 
our years. Subjective well-being is also important because it indexes how healthy an 
individual feels and it is related to mental health. In addition, two aspects of physical 
functioning are most often examined in research on aging: physiological function-
ing, which includes things like obesity, cardiovascular health, and lung function; and 
behavioral physical functioning, which includes things like muscle strength that allow 
for independent functioning in daily life. 

Physiological Functioning

Twin studies have found heritabilities of about 40 percent for blood pressure, 
the most common indicator of cardiovascular health included in twin studies 
(Vinck, Fagard, Loos, & Vlietinck, 2001), and similar heritabilities for hyperten-
sion (elevated blood pressure) (McCaffery, Papandonatos, Lyons, & Niaura, 2008; 
Kupper et al., 2005). Interestingly, the handful of longitudinal studies of blood pres-
sure suggest that genetic influences decrease with age (Finkel et al., 2003). More 
sophisticated measures of cardiovascular health, such as heart rate variability, 
show heritabilities similar to those found for blood pressure, ranging from 30 to 
55 percent, depending on how the tests are conducted (Li et al., 2009a; Uusitalo  
et al., 2007). Studies have also looked at serum lipids, indicators of cholesterol lev-
els in the blood, as an indicator of cardiovascular health and find heritabilities for 
serum lipids of around 50 to 60 percent (e.g., Goode, Cherny, Christian, Jarvik, &  
De Andrade, 2007; Nilsson, Read, Berg, & Johansson, 2009). The heritability of 
serum lipids changes after age 50 (Goode et al., 2007; Heller, de Faire, Pedersen, 
Dahlen, & McClearn, 1993), and results obtained from longitudinal studies suggest 
that new genetic influences on serum lipids may emerge at midlife (Middelburg, 
Martin & Whitfield, 2006). 
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Behavioral and Physical Functioning

During adulthood, heritability for upper and lower body strength ranges from 30 to 
60 percent (Finkel et al., 2003; Frederiksen et al., 2002; Tiainen et al., 2004; Tiainen 
et al., 2005) and is stable across adulthood (McGue & Christensen, 2013). Activities 
of daily living are especially important during later adulthood and include behaviors 
like walking, balance, and chair stands (rising from a chair). Heritability estimates 
are generally low to moderate, with no indication that genetic influences contribute 
to change with age (Christensen, Gaist, Vaupel, & McGue, 2002; Christensen, 
Frederiksen, Vaupel, & McGue, 2003a; Finkel, Ernsth-Bravell, & Pedersen, 2014a). 

Self-Rated Health

Self-rated health is a commonly used measure in studies of aging populations as the 
measure captures not only general physical health but also personality and cognitive 
status (Finkel, Pedersen, Berg, & Johansson, 2000). It has also been found to predict 
longevity independent of objective health measures (Idler & Benyamini, 1997). Heri-
tability for self-rated health is moderate, ranging from 25 to 40 percent (Christensen, 
Holm, McGue, Corder, & Vaupel, 1999; Svedberg, Lichtenstein, & Pedersen, 2001). 
A recent report from a consortium of over 12,000 twin pairs found that heritability on 
self-rated health generally was less in late adulthood (Franz et al., 2016). As might be 
expected given the nature of the construct of self-rated health, much of the genetic 
variance is shared with other constructs such as depression (Mosing, Pedersen, 
Martin, & Wright, 2010a) and cognitive function (Svedberg, Gatz, & Pedersen, 2009). 

For psychopathology and personality, the few genetic studies in later life yield 
results similar to those described in Chapters 14–16 for research earlier in life 
(Bergeman, 1997). For example, for depression in later life, twin studies indicate 
modest heritabilities (e.g., Gatz, Pedersen, Plomin, Nesselroade, & McClearn, 1992; 
Johnson, McGue, Gaist, Vaupel, & Christensen, 2002b; McGue & Christensen, 
2013). There are also genetically influenced links between cognitive abilities and 
mental health. For example, in a sample of male twins assessed longitudinally, 
low cognitive ability during early adulthood (age 20) predicted depressive symp-
toms during later life (age 51–60), with most of the correlation due to genetic 
influences (Franz et al., 2011). For personality, Type A behavior — hard-driving and 
competitive behavior that is of special interest because of its reputed link with 
heart attacks — shows moderate heritability typical of other personality measures 
in older twins (Pedersen et al., 1989b). Another interesting personality domain is 
locus of  control, which refers to the extent that outcomes are believed to be due to 
one’s own behavior or chance. For some older individuals, this sense of control 
declines, and this change is related to deterioration in psychological functioning 
and poor health. A twin study later in life found moderate genetic influence for 
two aspects of locus of control: sense of responsibility and life direction (Pedersen, 
Gatz, Plomin, Nesselroade, & McClearn, 1989a). However, the key variable of the 
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perceived role of luck — in other words, a lack of control — in determining life’s 
outcomes showed no genetic influence and substantial shared environmental influ-
ence. Another study of twins in late life (average age 59) was more consistent with 
findings for personality earlier in the life span, finding modest genetic influences 
on locus of control and no shared environmental influences (Mosing et al., 2012). 
This more recent finding of genetic but not shared environmental influences on 
locus of control is not surprising given the high stability of personality throughout 
adulthood. When the stability of personality is examined for genetic and environ-
mental influences, genetic influences are found to account for the majority of the 
stability in later life (Johnson, McGue, & Krueger, 2005; Read, Vogler, Pedersen, 
& Johansson, 2006). GWA studies of self-rated health have been inconclusive (e.g., 
Mosing et al., 2010b), suggesting that this is a construct that is likely to be influenced 
by many genes of small effect.

Molecular Genetics and Physical Health

As described in Chapter 18, the molecular genetics of physical health has been an 
area of intense focus, with many publications of GWA studies and meta-analyses of 
genes related to various aspects of physical health. Interestingly, the genes that have 
been identified as important for BMI and obesity during young adulthood do not 
seem to be important during later adulthood (e.g., Graff et al., 2013), a finding that 
suggests that genetic and environmental factors related to BMI and obesity during 
later adulthood may be different than those for younger adulthood. It is also possible 
that nonshared environmental influences may have increased importance for physical 
health during the latter portion of the life span, as has been found for cognitive aging.

Similar to the quantitative genetic studies discussed above, molecular genetic 
investigations have also examined heart health in adults through the study of serum 
lipids. The APOE gene is associated with serum lipid profiles, with carriers of allele 
4 showing poorer lipid profiles than carriers of the other alleles (Bennet et al., 2007). 
About a quarter of the genetic variance for serum lipid traits was explained by 95 
genes that achieved significance in a GWA study of cholesterol (Teslovich et al., 2010). 

Resting heart rate and lung functioning both are indicators of pulmonary health 
and have been associated with longevity and healthy aging (McClearn, Svartengren, 
Pedersen, Heller, & Plomin, 1994; Stessman, Jacobs, Stessman-Lande, Gilon, &  
Leibowitz, 2013). Two genes have been associated with resting heart rate in GWA 
studies (Deo et al., 2013), both important in processes related to heart function. 
Nearly 50,000 individuals from 23 studies (ages spanning from 17–97 years across 
all studies) were examined in a meta-analysis of GWA studies on lung function-
ing, with 26 significant gene loci identified or confirmed (Soler Artigas et al., 2011). 
Although 14 of the loci identified or confirmed (e.g., MFAP2 on chromosome 1 and 
ZKSCAN3 on chromosome 6) have been associated with other complex traits and 
disease, many of the other loci had not previously been associated with pulmonary 
function. This meta-analysis also found that more than half of the novel loci showed 
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consistent effects on lung function in a different sample of children, suggesting that 
lung function decline in adults and the elderly may be due to the same genes impor-
tant for lung development. 

LONGEVITY

The famous U.S. Supreme Court Justice Oliver Wendell Holmes quipped that 
“those wishing long lives should advertise for a couple of parents, both belonging 
to long-lived families” (cited by Cohen, 1964, p. 133). Research, however, indicates 
only modest genetic influence on longevity, with heritabilities of about 25 percent 
from twin studies (Finkel, Gerritsen, Reynolds, Dahl, & Pedersen, 2014b) and about 
10 percent using common SNPs (Pilling et al., 2016), although genetic influence on 
longevity may increase at the most advanced ages (Hjelmborg et al., 2006). The most 
consistent evidence from molecular genetic studies suggests that polymorphisms in 
the APOE gene (e.g., Novelli et al., 2008) and FOXOA3 gene (Flachsbart et al., 2009;  
Li et al., 2009b; Wilicox et al., 2008) are associated with longer life (see Wheeler & Kim, 
2011, for a review). APOE is hypothesized to be associated with individual differences 
in human longevity, probably because of its links with cardiovascular disease 
(Christensen, Johnson, & Vaupel, 2006b). The FOXOA3 gene is part of the insulin 
signaling pathway. GWA studies have identified a few additional gene associations, 
although additional replication is needed (Brooks-Wilson, 2013; Hindorff et al., 2011; 
Nebel et al., 2011).

Much genetic research in nonhuman species — especially mice, fruit flies, and 
nematode worms — has shown that mutations in the insulin signaling pathway affect 
the life span (reviewed in Martin, 2011; Tissenbaum, 2012; Wheeler & Kim, 2011). 
The insulin signaling pathway is related to processes like oxidative stress resistance 
and metabolism regulation in animals and humans (Barbieri, Bonafè, Franceschi, & 
Paolisso, 2003). Animal models are continuing to aid in efforts to identify genes asso-
ciated with longevity (Kenyon, 2010). For example, according to the Human Aging 
Genomic Resources (http://genomics.senescence.info/), 126 genes in the mouse have 
been identified as being related to aging (Tacutu et al., 2013). In the fruit fly Drosophila 
melanogaster, selective breeding, QTL analysis, and mutational analysis have identified 
170 genes related to the aging process. In the nematode worm (C. elegans), more than 
800 genes have been found to influence life span.

Longevity research also presents an excellent example of gene-by-environment 
interaction. A diet restricted in calories has been shown, across multiple organisms, to 
extend the life span. This finding was first reported in the 1930s, when it was observed 
that rats that were underfed, or had restricted caloric intake, lived significantly longer 
than their normally fed counterparts (McCay, Crowell, & Maynard, 1935). Research 
in this area has expanded so much that dietary restriction is currently considered 
a robust life-extending intervention. However, research suggesting life extension 
due to reduced caloric intake has not been without contradictory findings. Some 

http://genomics.senescence.info
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researchers have reported that restricted diets actually decrease the life span in cer-
tain strains of rodents (Harper, Leathers, & Austad, 2006). Researchers attempted to 
address this inconsistency by examining the efficacy of caloric restriction on life span 
across a range of genotypes (Liao, Rikke, Johnson, Diaz, & Nelson, 2010). Among 41 
recombinant inbred strains of mice (Chapter 5), it was reported that dietary restric-
tion shortened the life span in more strains than it increased the life span. Moreover, 
strain-specific “lengths of life span” under restricted or normal diets were not cor-
related, meaning that genetic determinants of longevity differ under the two dietary 
conditions (Liao et al., 2010). There is also recent evidence that meal timing and 
the microbiome are both crucial to the effectiveness of caloric restriction with some 
genetic variation in response also being indicated (Fontana & Partridge, 2015). Thus, 
it appears that dietary restriction might not be a universal intervention for increas-
ing the life span because it depends on the genetic background of the individual or 
organism.

Summary

With recent dramatic increases in the number of people over age 65, there is a need 
for continued research on healthy aging. Dementia and cognitive decline in later life 
are intense areas of molecular genetic research. For both general and specific cog-
nitive abilities, twin and adoption studies indicate that heritability increases during 
adulthood. To better understand healthy aging, there has been an increased focus 
on physiological functioning and indicators of physical health and activities of daily 
living. Molecular genetic studies of more objective health measures, such as blood 
pressure and serum lipids, have been fruitful in identifying risk genes that account for 
substantial amounts of variance. Genetic influences on longevity are only moderate, 
with much research focusing on molecular genetics and using animal studies. 
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The Future of Behavioral 
Genetics

P redicting the future of behavioral genetics is not a matter of crystal ball gazing. 

The momentum of recent developments makes the field certain to thrive, espe-

cially as behavioral genetics continues to flow beyond psychology and psychiatry 

into the mainstream of research in diverse fields from neuroscience to economics. 

This momentum is propelled by new findings, methods, and projects, both in quan-

titative genetics and in molecular genetics.
Another reason for optimism about the continued growth of genetics in the 

behavioral sciences is that so many more researchers have incorporated genetic strat-
egies into their studies. This trend has grown much stronger now that the price of 
admission to genetic research is just some saliva from which DNA is extracted, not 
difficult-to-obtain samples of twins or adoptees. Although caution is also warranted 
(Chapter 9), this easy access to genetics is important because the best behavioral 
genetic research is likely to be done by behavioral scientists who are not primarily 
geneticists. Experts from behavioral domains will focus on traits and theories that are 
pivotal to those domains and interpret their research findings in ways that will achieve 
the most impact. As described in the Preface, the goal of this book is to share with 
you our excitement about behavioral genetics and to whet your appetite for learning 
about genetics in the behavioral sciences. We hope that this introduction will inspire 
some readers to contribute to the field. Although we believe that the field of behav-
ioral genetics has made some of the most important discoveries in the behavioral 
sciences, there is much left to do. 
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QUANTITATIVE GENETICS

Some of the most important findings in the behavioral sciences have come from 
quantitative genetic studies. Recently, a top-ten list of behavioral genetic findings has 
been proposed (Plomin, DeFries, Knopik & Neiderhiser, 2016). All ten findings have 
been discussed in previous chapters, such as the heritability of intelligence increases 
throughout development (Chapter 11), age-to-age stability is mainly due to genet-
ics (Chapters 11 and 16), and most measures of the “environment” show significant 
genetic influence (Chapter 8). These are “big” findings, both in terms of effect size 
and potential impact on the behavioral sciences. In the context of current concerns 
about replication in science (Pashler & Wagenmakers, 2012), an important feature of 
behavioral genetic research is that it replicates (Plomin et al., 2016).

Quantitative genetic research will continue to make important advances for at 
least three reasons. First, quantitative genetic methods estimate the cumulative effect 
of genetic influence regardless of the number of genes involved or the magnitude or 
complexity of their effects. If we could find all the genes responsible for heritability, 
there would no longer be any need for quantitative genetic research because genetic 
influence could be assessed directly from each individual’s DNA rather than being 
assessed indirectly by genetic relatedness, as in twin and adoption studies. However, it 
seems highly unlikely that most — let alone all — of the genes responsible for the her-
itability for any complex trait will be identified in the foreseeable future (Chapter 9).

The second reason is that quantitative genetics is as much about the environment 
as it is about genetics, whereas molecular genetics is fundamentally about genetics. 
Just as quantitative genetic methods can be used to estimate the cumulative effect of 
genetic influences without identifying the individual genes involved, these methods 
can also estimate the cumulative effect of environmental influences without identifying 
the specific factors that are responsible for the environmental influence. Quantitative 
genetics can investigate environmental influences while controlling for genetics as well 
as study genetic influences while controlling for environmental influences (Chapter 8). 
For this reason, quantitative genetics provides the best available evidence for the impor-
tance of the environment in the behavioral sciences (Chapters 11–19). It has also made 
some of the most important discoveries about how the environment affects behavior. 
One example is the finding that environmental influences typically operate on an 
individual-by-individual basis, not generally on a family-by-family basis (Chapter 7). 
Another example is the finding that many putative environmental measures show 
substantial genetic influence (Chapter 8). In the proposed list of top-ten findings from 
behavioral genetics mentioned above, four of the findings involve the environment, dis-
coveries that could only have been made using genetically sensitive research designs. 

The third reason is that a quantitative genetic technique has been developed 
that estimates genetic influence from chance genetic similarity among unrelated 
individuals as estimated from SNPs. SNP heritability, described in Chapter 7, will be 
increasingly used because it does not require special relatives such as twins or adoptees. 
Although SNP heritability requires thousands of individuals genotyped on hundreds of 
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thousands of SNPs, these are also the requirements of genomewide association analysis 
(Chapter 9), which means that many studies are available that meet these requirements 
for SNP heritability. Multivariate SNP-based quantitative genetics is especially useful 
to estimate genetic correlations between traits (as discussed in Chapters 11 and 17).

The future will no doubt witness the application of quantitative genetic research 
to other behavioral traits. Behavioral genetics has only scratched the surface of possible 
applications, even within the domains of cognitive abilities (Chapter 11), cognitive 
disabilities (Chapter 12), psychopathology (Chapters 13–15), personality (Chapter 16), 
and substance abuse (Chapter 17). For example, for cognitive abilities, most research has 
focused on general cognitive ability and major group factors of specific cognitive abilities. 
The future of quantitative genetic research in this area lies in more fine-grained analyses 
of cognitive abilities and in the use of information-processing, cognitive psychology, 
and neuroimaging approaches to cognition. For psychopathology, genetic research has 
just begun to consider disorders other than schizophrenia, the major mood disorders, 
and substance use disorders. Much remains to be learned about disorders in childhood, 
for example. Approaching psychopathology as quantitative traits rather than qualitative 
disorders is a major new direction for quantitative genetic research. Personality and 
substance abuse are such complex domains that they can keep researchers busy for 
decades, especially as they go beyond self-report questionnaires and interviews to 
other measures such as neuroimaging. A rich territory for future exploration is the link 
between psychopathology and personality.

Cognitive disabilities and abilities, psychopathology, personality, and substance 
abuse have been the targets for the vast majority of genetic research in the behavioral 
sciences because these areas have traditionally considered individual differences. Two 
other areas that are beginning to be explored genetically were described in Chapters 
18 and 19: health psychology and aging. Some of the oldest areas of psychology —  
perception, learning, and language, for example — as well as some of the newest areas 
of research, such as neuroscience, have not emphasized individual differences and, as 
a result, are only beginning to be explored systematically from a genetic perspective. 
Other disciplines in the social and behavioral sciences are beginning to catch on to 
genetics, most notably economics and political science, with other fields — such as 
demography, education, and sociology — sure to follow.

Genetic research in the behavioral sciences will continue to move beyond sim-
ply demonstrating that genetic factors are important. The questions whether and how 
much genetic factors affect behavioral dimensions and disorders represent important 
first steps in understanding the origins of individual differences. But these are only 
first steps. The next steps involve the question how — that is, determining the mecha-
nisms by which genes have their effect. How do genetic effects unfold developmen-
tally? What are the biological pathways between genes and behavior? How do nature 
and nurture interact and correlate? Examples of these three directions for genetic 
research in psychology — developmental genetics, multivariate genetics, and “envi-
ronmental” genetics — have been presented throughout the preceding chapters. The 
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future will see more research of this type as behavioral genetics continues to move 
beyond merely documenting genetic influence.

Developmental genetic analysis considers change as well as continuity during 
development throughout the human life span. Two types of developmental questions 
can be asked. First, do genetic and environmental components of variance change 
during development? The most striking example to date involves intelligence for 
which genetic effects become increasingly important throughout the life span. Shared 
family environment is important in childhood, but its influence becomes negligible 
after adolescence. The second question concerns the role of genetic and environmen-
tal factors in age-to-age change and continuity during development. Using general 
cognitive ability again as an example, we find a surprising degree of genetic con-
tinuity from childhood to adulthood. However, some evidence has been found for 
genetic change as well, for example, during the transition from early to middle child-
hood, when formal schooling begins. Interesting developmental discoveries are not 
likely to be limited to cognitive development or childhood — it just so happens that 
most developmental genetic research so far has focused on children’s cognitive devel-
opment, although aging will increasingly be the target for developmental research 
(Chapter 19).

Multivariate genetic research addresses the covariance between traits rather than 
the variance of each trait considered by itself. A surprising finding in relation to spe-
cific cognitive abilities is that the same genetic factors affect most cognitive abilities 
and disabilities (Chapter 11 and 12). For psychopathology, a key question is why so 
many disorders co-occur. Multivariate genetic research suggests that genetic overlap 
between disorders may be responsible for this comorbidity (Chapter 14). Another 
basic question in psychopathology involves heterogeneity. Are there subtypes of 
disorders that are genetically distinct? Multivariate genetic research is critical for 
investigating the causes of comorbidity and heterogeneity as well as for identifying 
the most heritable constellations (comorbidity) and components (heterogeneity) of 
psychopathology (Chapters 13–15), an area of inquiry that could impact treatment 
efforts such as drug design and discovery as well as diagnosis. Another fundamental 
question is the extent to which genetic and environmental effects on disorders are 
merely the quantitative extremes of the same genetic and environmental factors that 
affect the rest of the distribution. Or are disorders qualitatively different from the 
normal range of behavior? A major goal of future research will be to test the validity 
of current symptom-based diagnostic schemes and ultimately to create an etiology-
based scheme that recognizes quantitative dimensions as well as qualitative diagnoses.

Another general direction for multivariate genetic research is to investigate 
the mechanisms by which genetic factors influence behavior by identifying genetic 
correlations between behavior and biological processes such as those assessed by 
neuroimaging. It cannot be assumed that the nexus of associations between biology 
and behavior is necessarily genetic in origin. Multivariate genetic analysis is needed 
to investigate the extent to which genetic factors mediate these associations.
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“Environmental” genetics will continue to explore the interface between nature 
and nurture. As mentioned earlier, genetic research has made some of the most 
important discoveries about the environment in recent decades, especially non-
shared environment and the role of genetics in experience (Chapter 6). One of the 
major challenges for behavioral genetics is to identify the specific environmental fac-
tors responsible for the widespread influence of nonshared environment. MZ twins 
provide an especially sharp scalpel to dissect nonshared environment because MZ 
co-twins differ only for reasons of nonshared environment. An even broader topic is 
understanding how genes influence experience, which is part of the biggest question 
of all: How do genetic and environmental influences covary and interact to influence 
behavior? More discoveries about environmental mechanisms can be predicted as 
the environment continues to be investigated in the context of genetically sensitive 
designs. New multivariate quantitative genetic methods have recently been devel-
oped that aim to distinguish environmental causation from correlation (Chapter 8). 
Much remains to be learned about interactions and correlations between nature and 
nurture.

In summary, no crystal ball is needed to predict that quantitative genetic research 
will continue to flourish as it turns to other areas of behavior and, especially, as it 
goes beyond the rudimentary questions of whether and how much to ask the question 
how. Such research will become increasingly important as it guides molecular genetic 
research to the most heritable components and constellations throughout the human 
life span as they interact and correlate with the environment. In return, develop-
mental, multivariate, and “environmental” behavioral genetics will be transformed by 
molecular genetics.

MOLECULAR GENETICS 

To answer questions about how genes influence behavior, nothing can be more 
important than identifying specific genes responsible for the widespread genetic 
influence on behavior. However, the quest is to find not the gene for a trait, but rather 
the multiple genes that are associated with the trait in a probabilistic rather than 
a predetermined manner. The breathtaking pace of molecular genetics (Chapter 9) 
leads us to predict that behavioral scientists will increasingly use DNA markers as a 
tool in their research to identify the relevant genetic differences among individuals. 

Even though DNA markers individually predict only a small amount of vari-
ance of a trait (Plomin et al., 2016), they can be used together as polygenic scores 
in any research that considers individual differences, without the need for special 
family-based samples such as twins or adoptees (Wray et al., 2014). Moreover, poly-
genic predictors using DNA markers would have the distinct advantage of making 
predictions for specific individuals rather than a general prediction for all members 
of a family. Aiding this prediction that behavioral scientists will routinely use DNA 
in their research is the fact that DNA is inexpensive to obtain and DNA arrays make 
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genotyping increasingly inexpensive, even for complex traits for which hundreds or 
thousands of DNA markers are genotyped. 

Polygenic predictions will eventually transform quantitative genetic research, 
taking the developmental, multivariate, and gene-environment interplay issues dis-
cussed throughout this book to the next level. As indicated in previous chapters, this 
is already happening in several areas of research (Krapohl et al., 2015). Polygenic 
predictors will also facilitate research on the links among the genome, epigenome, 
transcriptome, proteome, neurome, and eventually behavior (Chapter 10). 

In contrast to bottom-up functional genomics research, top-down behavioral 
genomics research using polygenic scores is likely to pay off more quickly in terms of 
prediction, diagnosis, intervention, and prevention of behavioral disorders. Behavioral 
genomics represents the long-term future of behavioral genetics, when we are likely 
to have polygenic predictors that account for some of the ubiquitous genetic influ-
ence for many behavioral dimensions and disorders. Bottom-up functional genom-
ics will eventually meet top-down behavioral genomics in the brain. The grandest 
implication for science is that DNA will serve as a common denominator integrat-
ing diverse disciplines. Clinically, polygenic predictors will be key to personalized 
genomics, which hopes to predict risk, identify treatment interactions, and propose 
interventions to prevent problems before they appear. A particularly promising area 
is the prediction of responses to drug treatments.

As indicated in Chapter 9, it has been predicted that in the next few years, rather 
than screening newborns for just a few known genetic mutations like phenylketon-
uria, we will sequence all of the 3 billion nucleotide base pairs of their genomes. 
Sequencing whole genomes will yield all DNA variants. We predict that most of these 
variants will be altogether different from traditional ones, deletions and duplications 
of long stretches of DNA being a recent example (Chapter 9); such rare DNA variants 
may have relatively large effects that will account for at least some of the “missing 
heritability.” When whole-genome sequences become available, it will cost little to 
use this information. The promise and problems of these developments were dis-
cussed in the section on genetic counseling in Chapter 18. The impact on behavioral 
genetics is that this same whole-genome sequence information could also be available 
for use in behavioral research.

One of the great strengths of DNA analysis is that it can be used to predict risk 
long before a disorder appears. This predictive ability will allow research on inter-
ventions that can prevent the disorder rather than trying to reverse a disorder once 
it appears and has already caused collateral damage. Molecular genetics may also 
eventually lead to personalized genomics — individualized gene-based diagnoses and 
treatment programs.

For these reasons, it is crucial that behavioral scientists be prepared to take advan-
tage of the exciting developments in molecular genetics. In the same way that we now 
assume that computer literacy is an essential goal to be achieved during elementary 
and secondary education, students in the behavioral sciences must be taught about 
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genetics in order to prepare them for this future. Otherwise, this opportunity for 
behavioral scientists will slip away by default to geneticists, and genetics is much too 
important a topic to be left to geneticists! Clinicians use the acronym “DNA” to note 
that a client “did not attend” — it is critical to the future of the behavioral sciences that 
DNA mean deoxyribonucleic acid rather than “did not attend.”

IMPLICATIONS OF NATURE AND NURTURE

The controversy that swirled around behavioral genetics research during the 1970s 
has largely faded, as indicated, for example, by the dramatic increase in the num-
ber of journal publications (Chapter 1). These new findings from behavioral genetics 
research lead to two general messages. The first message is that genes play a surpris-
ingly important role across all behavioral traits. This has resulted in an increasing 
acceptance of genetic influence in the behavioral sciences that is now growing into a 
tidal wave that that threatens to engulf the equally important second message: Indi-
vidual differences in complex behavioral traits are due at least as much to environ-
mental influences as they are to genetic influences (Plomin et al., 2016).

The first message will become more prominent during the next decade as more 
genes are identified that contribute to the widespread influence of genetics in the 
behavioral sciences. As explained in Chapter 7, it should be emphasized that genetic 
effects on complex traits describe what is. Such findings do not predict what could be or 
prescribe what should be. Genes are not destiny. Genetic effects on complex traits rep-
resent probabilistic propensities, not predetermined programming. A related point 
is that, for complex traits such as behavioral traits, quantitative genetic effects refer 
to average effects in a population, not to a particular individual. For example, one of 
the strongest DNA associations with a complex behavioral disorder is the associa-
tion between allele 4 of the gene encoding apolipoprotein E and late-onset dementia 
(Chapter 19). Unlike simple single-gene disorders, this QTL association does not 
mean that allele 4 is necessary or sufficient for the development of dementia. Many 
people with dementia do not have the allele, and many people with the allele do not 
have dementia. A particular gene may be associated with a large average increase in 
risk for a disorder, but it is likely to be a weak predictor at an individual level. The 
importance of this point concerns the dangers of labeling individuals on the basis of 
population averages.

The relationship between genetics and equality is an issue that lurks in the shad-
ows, causing a sense of unease about genetics. The main point is that finding genetic 
differences among individuals does not compromise the value of social equality. 
The essence of a democracy is that all people should have legal equality despite their 
genetic differences. Knowledge alone by no means accounts for societal and political 
decisions. Values are just as important as knowledge in the decision-making process. 
Decisions, both good and bad, can be made with or without knowledge. Nonetheless, 
scientific findings are often misused, and scientists, like the rest of the population, 
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need to be concerned with reducing such misuse. We firmly believe, however, that 
better decisions can be made with knowledge than without. There is nothing to be 
gained by sticking our heads in the sand and pretending that genetic differences do 
not exist.

Finding widespread genetic influence creates new problems to consider. For exam-
ple, could evidence for genetic influence be used to justify the status quo? Will people 
at genetic risk be labeled and discriminated against? As genetic variants are found that 
predict behavioral traits, will parents use them prenatally to select “designer” chil-
dren? (See Chapter 18.) New knowledge also provides new opportunities. For exam-
ple, identifying genes associated with a particular disorder could make it more likely 
that environmental preventions and interventions that are especially effective for the 
disorder can be found. Knowing that certain children have increased genetic risk for a 
disorder could make it possible to prevent or ameliorate the disorder before it appears, 
rather than trying to treat the disorder after it appears and causes other problems.	

Two other points should be made in this regard. First, most powerful scientific 
advances create new problems. For example, consider prenatal screening for genetic 
defects. This advance has obvious benefits in terms of detecting chromosomal and 
genetic disorders before birth. Combined with abortion, prenatal screening can 
relieve parents and society of the tremendous burden of severe birth defects. How-
ever, it also raises ethical problems concerning abortion and creates the possibility of 
abuses, such as compulsory screening. Despite the problems created by advances in 
science, we would not want to cut off the flow of knowledge and its benefits in order 
to avoid having to confront such problems.

The second point is that it is wrong to assume that environmental explanations 
are good and that genetic explanations are dangerous. Tremendous harm was done 
by the environmentalism that prevailed until the 1960s, when the pendulum swung 
back to a more balanced view that recognized genetic as well as environmental influ-
ences. For example, environmentalism led to blaming children’s problems on what 
their parents did to them in the first few years of life. Imagine that, in the 1950s, you 
were among the 1 percent of parents who had a child who became schizophrenic in 
late adolescence. You faced a lifetime of concern. And then you were told that the 
schizophrenia was caused by what you did to the child in the first few years. The 
sense of guilt would have been overwhelming. Worst of all, such parent blaming was 
not correct. There is no evidence that early parental treatment causes schizophrenia. 
Although the environment is important, whatever the salient environmental factors 
might be, they are not shared family environmental factors. Most important, we now 
know that schizophrenia is substantially influenced by genetic factors and individual-
specific environmental factors.

Our hope for the future is that the next generation of behavioral scientists will 
wonder what the nature-nurture fuss was all about. We hope they will say, “Of course, 
we need to consider nature and nurture to understand behavior.” The conjunction 
between nature and nurture is truly and, not versus.
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The basic message of behavioral genetics is that each of us is an individual. Rec-
ognition of, and respect for, individual differences is essential to the ethic of individual 
worth. Proper attention to individual needs, including provision of the environmental 
circumstances that will optimize the development of each person, is a utopian ideal 
and no more attainable than other utopias. Nevertheless, we can approach this ideal 
more closely if we recognize, rather than ignore, individuality. Acquiring the req-
uisite knowledge regarding the genetic and environmental etiologies of individual 
differences in behavior warrants a high priority because human individuality is the 
fundamental natural resource of our species.
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A P P E N D I X

Statistical Methods in 
Behavioral Genetics

Shaun Purcell

1 INTRODUCTION
Quantitative genetics offers a powerful theory and various methods for investigating 
the genetic and environmental etiology of any characteristic that can be measured, 
including both continuous and discrete traits. As discussed in Chapter 9, quantitative 
genetics and molecular genetics are coming together in the study of complex quan-
titative traits. In both fields, powerful statistical and epidemiological methods have 
been developed to address a series of related questions:

•	 Do genes influence this outcome?
•	 What types of genetic effects are at work?
•	 Can genetic effects explain the relationships between this and other 

outcomes?
•	 Where are the genes located?
•	 What specific form(s) of the genes cause certain outcomes?
•	 Do genetic effects operate similarly across different populations and 

environments?

This Appendix introduces some of the methods behind these research ques-
tions, in a manner designed to provide the rationale behind the methods as well as an 
appreciation of the directions in which the field is developing, including molecular 
genetics. Both quantitative genetics (with an emphasis on the components of variance 
model-​fitting approaches to complex traits) and molecular genetics (with an emphasis 
on linkage and association approaches to gene mapping) are covered.

We begin with a brief overview of some of the statistical tools that are com-
monly used in behavioral genetic research: variance, covariance, correlation, regres-
sion, and matrices. Although one need not be a fully trained statistician to use most 
behavioral genetic methods, understanding the main statistical concepts that underlie 
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T
he Behavioral Genetic Interactive 

Modules are a series of freely 
available interactive computer 

programs with accompanying textual 
guides designed to convey a sense of the 
methods of modern behavioral genetic 
analysis to students and researchers 
new to the field. Currently, 11 modules 
covering the material in this Appendix can 
be accessed from the website at http://
pngu.mgh.harvard.edu/purcell/bgim/.  
Taken together, the modules listed 
below lead from the basic statistical 
foundations of quantitative genetic 
analysis to an introduction to some 
of the more advanced analytical 
techniques.

Variance is designed to introduce the 
concept of variance: what it repre-
sents, how it is calculated, and how 
it can be used to assess individual 
differences in any quantitative 
trait. Standardized scores are also 
introduced.

Covariance demonstrates how the 
covariance statistic can be used to 
represent association between two 
measures.

Correlation & Regression is an explo-
ration of the relationship among 
variance, covariance, correlation, 
and regression coefficients.

Matrices provides a simple matrix 
calculator.

Single Gene Model introduces the 
basic biometrical model used to 
describe the effects of individual 
genes, in terms of additive genetic 
values and dominance deviations.

Variance Components: ACE illustrates  
the partitioning of variance 
into additive genetic, shared 
environmental, and nonshared 

environmental components in the 
context of MZ and DZ twins.

Families demonstrates the relationship 
between additive and dominance 
genetic variance, shared and non-
shared environmental variance, and 
expected familial correlations for 
different types of relatives.

Model Fitting 1 defines a simple path 
diagram to model the covariance 
between observed variables and 
allows the user to manually adjust 
path coefficients to find the best-​
fitting model; it includes a twin 
ACE model and nested models that 
can be compared with the full ACE 
model.

Model Fitting 2 performs a maximum-​
likelihood analysis of univariate twin 
data and presents the parameter 
estimates for nested submodels.

Multivariate Analysis models the 
genetic and environmental etiology 
of two traits.

Extremes Analysis illustrates DF 
extremes analysis as well as indi-
vidual differences analysis, in order 
to explore how these two methods 
can inform us about links between 
normal variation and extreme 
scores.

For individuals wishing to take their 
study of statistical analysis further, 
a guide is provided to help you get 
started on analyzing your own data as 
well as simulated data sets that can be 
used to explore these methods further. 
Behavioral genetic analyses using 
widely available statistics packages 
such as Stata are described, as well 
as an introduction to Mx, a powerful, 
freely available model-​fitting package 
by Mike Neale.

BOX A.1  Behavioral Genetic Interactive Models

http://pngu.mgh.harvard.edu/purcell/bgim
http://pngu.mgh.harvard.edu/purcell/bgim
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quantitative genetic research enables one to appreciate the ideas, assumptions, and 
limitations behind the methods.

Next, the classical quantitative genetic model is introduced, which relates the 
properties of a single gene to variation in a quantitative phenotype. This relatively 
simple model forms the basis for the majority of quantitative genetic methods. 
We then examine how the analysis of familial correlations can be used to infer 
the underlying etiological nature of a trait, given our knowledge of the way genes 
work. The basic model partitions the variance of a single trait into portions attrib-
utable to additive genetic effects, shared environmental effects, and nonshared 
environmental effects. The tools of model fitting and path analysis are introduced 
in this context. Extensions to the basic model are also considered: multivariate 
analysis, analysis of extremes, and interactions between genes and environments, 
for example.

S
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design of genetic studies, the 

detection of gene variants influencing 
complex human traits, and the dissec-
tion of these effects within the larger 
context of other genetic and environ-
mental factors. He is currently an asso-
ciate professor at Mount Sinai School 
of Medicine, in New York, and is on 
the faculty at Harvard Medical School, 
based at the Analytic and Translational 
Genetics Unit, Massachusetts General 
Hospital. He is also an associate mem-
ber of the Broad Institute of Harvard 
and MIT, and the Stanley Center for 
Psychiatric Research. As an under-
graduate from 1992 to 1995, he studied 
experimental psychology at Oxford 
University; in 1996, he had the opportu-
nity to develop an interest in statistical 
methods while working toward a mas-
ter’s of science degree at University 
College London. In 1997, he joined the 
Social, Genetic and Developmental 
Psychiatry (SGDP) Research Centre at 
the Institute of Psychiatry in London, 
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Finally, we see how molecular genetic information on specific loci can be incor-
porated. In this way, the chromosomal positions of genes can be mapped. This work 
leads the way to the study of gene function at a molecular level — ​the vital next step 
if we really want to know how our genes make us what we are.

1.1 Variation and Covariation: Statistical Descriptions  
of Individual Differences
Behavioral genetics is concerned with the study of individual differences: detecting 
the factors that make individuals in a population different from one another. As a first 
step, it is concerned with gauging the relative importance of genetic and environ-
mental factors that cause individual differences. To assess the importance of these 
factors, we need to be able to measure individual differences. This task requires some 
elementary statistical theory.

A population is defined as the complete set of all individuals in a group under 
study. Examples of populations would include sets such as all humans, all female 
Americans aged 20 to 25 in the year 2000, or all the stars in a galaxy. We might 
measure a characteristic, such as talkativeness, intelligence, weight, or temperature, 
for each of the individuals in a population. We are concerned with assessing how 
these characteristics vary both within  populations (e.g., among 2-year-​old males) and 
between them (e.g., male versus female infants).

If all the individuals in a set are studied, population statistics such as the aver-
age or the variance can be calculated exactly. However, it is usually not practical 
to measure every individual in the population, so we resort to sampling individ-
uals from the population. A key concept in sampling is that, ideally, it should be 
conducted at random. A nonrandom sample, such as only the tallest 20 percent of 
11-year-​old girls, would give an inflated (biased) estimate of the average height 
of 11-year-​old girls. An estimate of the average height in the population gathered 
from a random sample would not, on average, be biased. However, it is important 
to recognize that an estimate of the population mean made on the basis of a ran-
dom sample will vary somewhat from the population mean. The amount of this 
variation will depend on the sample size and on chance. We need to know how 
much we expect this variation to be so that we know how accurate estimates of the 
population parameters are. This assessment of accuracy is critical when we want 
to compare populations.

Once we have defined a population, various parameters such as the mean, range, 
and variance can be described for the trait that we wish to study. Similarly, when we 
have a sample of the population, we can calculate statistics from the sample that cor-
respond to the parameters of the population. It is not always the case that the measure 
of the sample statistic is the best estimate of the corresponding population parameter. 
This discrepancy distinguishes descriptive from inferential statistics. Descriptive sta-
tistics simply describe the sample; inferential statistics are used to get estimates of the 
parameters of the entire population.
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1.1.1 The mean  The arithmetic mean is one of the simplest and most useful statis-
tics. It is a measure of the center of a distribution and is the familiar average statistic 
used in everyday speech. It is very simple to compute, being the sum of all observa-
tions’ values divided by the number of observations in the sample:

μ 5 Rx/N

where Rx is the sum of all observations in the set of size N. Strictly speaking, the 
mean is only labeled μ (pronounced “mu”) if it is computed from the entire popula-
tion. Usually, the mean will be calculated from a sample, and the mean of a variable, 
say x, is written as x‒ (read as “x bar”).

The mean is especially useful when comparing groups. Given an estimate of 
how accurate the means are, it becomes possible to compare means for two or more 
groups. Examples might include whether women are more verbally skilled than men, 
whether albino mice are less active than other mice, or whether light moves faster 
than sound.

Some physical measures, such as the number of inches of rainfall per year, are 
obviously well ordered, such that the difference between 15 and 16 inches is the same 
as the difference between 21 and 22 inches — ​namely, 1 inch. Many physical meas-
urements have the same scale throughout the distribution, which is called an interval 
scale. In behavioral research, however, it is often difficult to get measures that are 
on an interval scale. Some measures are binary, consisting simply of the presence or 
absence of a disease or symptom. The mean of a binary variable scored 0 for absent 
and 1 for present indicates the proportion of the sample that has the symptom or dis-
ease present, so again the mean is a useful summary. However, not all measures can be 
effectively summarized as means. The trouble starts when there are several ordered 
categories, such as “Not at all/Sometimes/Quite often/Always.” Even if these items 
are scored 0, 1, 2, and 3, the mean tells us little about the frequencies in each category. 
This problem is even greater when the categories cannot be ordered, such as religious 
affiliation. Here the mean would be of no use at all.

1.1.2 Variance  Variance is a statistic that tells us how spread out scores are. This is 
a measure of individual differences in the population, the focus of most behavioral 
genetic analyses. Variances are also important when assessing differences between 
group means. Behavioral genetic analyses are typically less focused on group differ-
ences, although such analyses are central to most quantitative sciences. For example, 
a researcher may wish to ask whether a control group significantly differs from an 
experimental one on a measure, or whether boys and girls differ in the amount that 
they eat. Testing differences between means is often carried out with a statistical 
method called the analysis of variance (ANOVA). In fact, individual differences are 
treated as the “error” term in ANOVA.

The usual approach to calculating the variance, established by  R.  A.  Fisher 
(1922), one of the founders of quantitative genetics, is to take the average of the 
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squared deviations from the mean. Fisher showed that the squared deviations from 
the mean had more desirable statistical properties than other measures of variance 
that might be considered, such as the average absolute difference. In particular, the 
average squared deviation is the most accurate statistic.

Calculating the variance (often written as s2) is straightforward:

1.	 Calculate the mean.
2.	 Express the scores as deviations from the mean.
3.	 Square the deviations and sum them.
4.	 Divide the sum by the number of observations minus 1.

Or, written as a formula:

s
x x

N
2

2

1
�

�

�

( )∑

A second commonly used approach involves computing the contribution of each 
observation to the variance and correcting for the mean at the end. This alternative 
method produces the same answer, but it can be more efficient for computers to use. 
Note that N 2 1 instead of N is used to calculate the average squared deviation in 
order to produce unbiased estimates of variance — ​for technical, statistical reasons.

Variances range from zero upward: There is no such thing as a negative vari-
ance. A variance of zero would indicate no variation in the sample (i.e., all individuals 
would have to have exactly the same score). The greater the spread in scores, the 
greater the variance.

With binary “yes/no” or “affected/unaffected” traits, measuring the variance is 
difficult. We may imagine that a binary trait is observed because there is an under-
lying normal distribution of liability to the trait, caused by the additive effects of 
a large number of factors, each of small effect. The binary trait that we observe 
arises because there is a threshold, and only those with liability above threshold 
express the trait. We cannot directly observe the underlying liability, so typically we 
assume that it has variance of unity (1). If the variance of the underlying distribution 
were increased, it would simply change the proportion of subjects that are above 
threshold. That is, changing the variance is equivalent to changing the threshold. 
Distinguishing between mean changes and variance changes is not generally possible 
with binary data, but it is possible if the data are ordinal, with at least three ordered 
categories.

Having measured the variance, quantitative genetic analysis aims to partition 
it — ​that is, to divide the total variance into parts attributable to genetic and environ-
mental components. This task requires the introduction of another statistical concept, 
covariance. Before turning to covariance, we will take a brief digression to consider 
another way of expressing scores that facilitates comparisons of means and variances.
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1.1.3 Standardized scores  Different types of measures have different scales, which 
can cause problems when making comparisons between them. For example, differ-
ences in height could be expressed in either metric or common (imperial) terms. 
In a population, the absolute value of variance in height will depend on the scale 
used to measure it — ​the unit of variance will be either centimeters squared or inches 
squared. If we take the square root of variance, we obtain a measure of spread that 
has the same unit of the observed trait, called the standard deviation (s). The standard 
deviation also has several convenient statistical properties. If a trait is normally dis-
tributed (bell-​shaped curve), then 95 percent of all observations will lie within two 
standard deviations on either side of the mean.

The example of measuring height demonstrates the difficulties that may be encoun-
tered when we wish to compare differently scaled measures. In the case of metric and 
common measurements of height, which both measure the same thing, the problem 
of scale can be easily overcome by using standard conversion formulas. In psychology, 
however, measurements often will have no fixed scale. A questionnaire that measures 
extraversion might have a scale from 0 to 12, from 1 to 100, or from 24  to 14. If scale is 
arbitrary, it makes sense to make all measures have the same, standardized scale.

Suppose we have data on two reliable questionnaire measures of extraversion, 
A and B, each from a different population. Say measure A has a range of 0 to 12 and 
a mean score of 6.4, whereas measure B has a range of 0 to 50 with a mean of 24. If 
we were to assess two individuals, one scoring 8 on measure A and the other scoring 
30 on measure B, how could we tell which person is the more extraverted? The most 
commonly used technique is to standardize our measures. The formula for calculating 
a standardized score z from a raw score x is

z
x x

sx

�
�

2

where s2
x is the variance of x. That is, we reexpress the scores in standard deviation 

units. For example, if we calculate that measure A has a variance of 4, then the stand-
ard deviation is 4  5 2. If we express scores as the number of standard deviations 
away from the mean, then a score of 2 raw-​score units above the mean on measure  
A  is 11 standard deviation units. Raw scores equaling the raw-​score mean will 
become 0 in standard deviation units. A raw score of 2 will become (2 2 6.4)/2 5 22.2.  
Therefore, a score of 8 on measure A corresponds to a standardized score of  
(8 2 6.4)/2 5 0.8 standard deviation units above the mean.

We can also do the same for measure B, to be able to make scale-​independent 
comparisons between our two measures of extraversion. If measure B is found to 
have a variance of 8 (and therefore a standard deviation of 8 ), then a raw score 
of 30  corresponds to a standardized score of (30 2 24)/ 8  5 2.1. We can there-
fore conclude that individual B is more extraverted than individual A (i.e., 2.1 . 0.8) 
(Figure A.1). Converting the measures into standardized scores also allows statistical 
tests of the significance of such differences (the z-​test).
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Standardized scores are said to have zero sum property (they will always have a 
mean of 0) and unit standard deviation (i.e., a standard deviation of 1). As we have 
seen, standardizing is useful when comparing different measures of the same thing. 
Indeed, standardizing can be used to compare different measures of different things 
(e.g., whether a particular individual is more extreme in height or in extraversion).

However, there are some situations in which standardized scores can be mislead-
ing. Standardizing within groups (i.e., using the estimates of the mean and standard 
deviation from that group) will destroy between-​group differences. All groups will 
end up with means of zero, which will hide any true between-​group variation. Note 
that it was implicit in the example above that measures A and B are both reliable, 
and that the two populations are equivalent with respect to the distribution of “true” 
extraversion.

1.1.4 Covariance  Another fundamental statistic that underlies behavioral genetic 
theory is covariance. Covariance is a statistic that informs us about the relation-
ship between two characteristics (e.g., height and weight). Such a statistic is called 
a bivariate statistic, in contrast to the mean and variance, which are both univariate 
statistics. If two variables are associated (i.e., they covary together), we may have rea-
son to believe that this covariation occurs because one characteristic influences the 
other. Alternatively, we might suspect that both characteristics have a common cause. 
Covariance, by itself, however, cannot tell us why two variables are associated: It is 
only a measure of the magnitude of association. Figure A.2 shows four possible rela-
tionships between two variables, X and Y, each of which could result in a similar 
covariance between the two variables. For example, it is clearly wrong to think of 
an individual’s weight as causing his or her height, whereas it is fair to say that an 
individual’s height does, in part, determine that person’s weight — ​it should be noted 
that care is needed in the interpretation of all statistics. The methods of path analysis 
(as reviewed later) do offer an opportunity to begin to “tease apart” causation from 

B 

A 

FIGURE A.1 Standardized scores. Raw scores on the two measures cannot be directly equated. 
Standardizing both measures to have a mean of 0 and a standard deviation of 1 facilitates the 
comparison of measures A and B.
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“mere” correlation, especially when applied to data sets that differ in genetic or envi-
ronmental factors.

A sensible first step when investigating the relationship between two continuous 
variables is to begin with a scatterplot. The scatterplot shown in Figure A.3 represents 
200 observations. In this example, it is apparent that the two measures are not inde-
pendent. As X increases (the scale for X increases toward the right), we see that the 
scores on Y also tend to increase. Covariance is a measure that attempts to quantify 
this kind of relationship (as do correlation and regression coefficients, introduced later).

Calculating the covariance proceeds in much the same way as calculating the 
variance. However, instead of squaring the deviations from the mean, we calculate 
the cross-​product of the deviations of the first variable with those of the second. To 
compute the covariance, we would

1.	 Calculate the mean of X.
2.	 Calculate the mean of Y.

FIGURE A.2 Causes of covariation. 
Two variables can covary for a 
number of reasons: (a, b) One 
variable might cause the other, 
or (c) both variables might be 
influenced by a third variable 
(C), or (d) both variables 
might influence the other. The 
covariance statistic cannot by 
itself discriminate among these 
alternatives.
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3.	 Express the scores as deviations from the means.
4.	 Calculate the product of the deviations for each data pair and sum them.
5.	 Divide by N 2 1 to obtain an estimate of the covariance.

Written as a formula, the covariance is

CovXY
X X Y Y

N
�

� �

�

( )( )∑
1

Covariance values can range between plus and minus infinity. Negative values imply 
that high scores on one measure tend to be associated with low scores on the other 
measure. A covariance of 0 implies that there is no linear relationship between the 
two measures.

That covariance measures only linear association is an important issue: Consider 
the two scatterplots in Figure A.4. Neither of these two bivariate data sets displays 
any linear association between the two variables, so both have a covariance of zero. 

y-
A

xi
s 

x-Axis 

FIGURE A.3 Scatterplot representing 
200 observations measured on two 
variables, X and Y. As can be seen, X 
and Y are not independent, because 
observations with higher values for X 
also tend to have higher values for Y.

FIGURE A.4 Covariance and independence. The covariance statistic represents linear associa-
tion. Both scatterplots represent data sets with a covariance of zero. (a) The two variables in this 
data set are truly independent; that is, the average value of one variable is independent of the 
value of the other. (b) The variables in this data set are not linearly related, but they are clearly 
not independent.
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However, there is a clear difference between the two data sets: in one, the observations 
are truly independent, whereas it is clear that the variables in the other are related but 
not in a linear way.

A key to understanding covariance is to understand what the formula for its cal-
culation is really doing. Figure A.5 represents the four quadrants of a scatterplot. The 
lines intersecting in the middle represent the mean value for each variable. When the 
scores are expressed as deviations from the mean, all those to the left of the vertical 
line (or below the horizontal line) will become negative; all values to the right of the 
vertical line (or above the horizontal line) will become positive. As we have seen, 
covariance is calculated by summing the products of these deviations. Therefore, 
because both the product of two positive numbers and the product of two negative 
numbers are positive whereas the product of one positive and one negative number 
is always negative, the contribution each observation makes to the covariance will 
depend on which quadrant it falls in. Observations in the top-​right and bottom-​left 
quadrants (both numbers above the mean and both numbers below the mean, respec-
tively) will make a positive contribution to the covariance. The farther away from the 
origin (the bivariate point where the two means intersect), the larger this contribution 
will be. Observations in the other two quadrants will tend to decrease the covariance. 
If all bivariate data points were evenly distributed across this space, the positive con-
tributions to the covariance would tend to be canceled out by an equal number of 
negative contributions, resulting in a near zero covariance statistic. A large positive 
covariance would imply that the bulk of data points fall in the bottom-​left and top-​
right quadrants; a large negative covariance would imply that the bulk of data points 
fall in the top-​left and bottom-​right quadrants.

1.1.5 Variance of a sum  Covariance is also important for calculating the variance 
of a sum of two variables. This statistic is relevant to our later discussion of the basic 
quantitative genetic model. Say you have variables X and Y and you know their vari-
ances and the covariance between them. What would the variance of (X 1 Y ) be? If all 
the data are available, you may decide to calculate a new variable that is the sum of 

FIGURE A.5 Calculating covariance. The contribution each 
observation makes to the covariance will depend on the 
quadrant in which it falls.
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the two variables and then calculate its variance in the ordinary manner. Alternatively, 
if you know only the summary statistics, you can use the formula:

Var(X 1 Y ) 5 Var(X ) 1 Var(Y ) 1 2Cov(X,Y )

In other words, the variance of a sum is the sum of the two variances plus twice the 
covariance between the two measures. If two variables are uncorrelated, then the covar-
iance term will be zero and the variance of the sum is simply the sum of the variances. As 
will be seen later, the mathematics of variance is critical in the formulation of the genetic 
model for describing complex traits.

1.1.6 Correlation and regression  We have seen how using standardized scores can 
help when working with measures that have different scales. When creating a stan-
dardized score, we use information about the variance of a measure to rescale the raw 
data. As mentioned earlier, the covariance between two measures is dependent on the 
scales of the raw data and can range from plus to minus infinity. We can use informa-
tion about the variance of two measures to standardize their covariance statistic, in a 
manner analogous to creating standardized scores. A covariance statistic standardized 
in this way is called a correlation.

The correlation is calculated by dividing the covariance by the square root of the 
product of the two variances for each measure. Therefore, the correlation between X 
and Y (rXY) is

r
s sXY

XY

X Y

�
Cov

2 2

where CovXY is the covariance and s2
X and s2

Y are the variances. If both X and Y are 
standardized variables (i.e., sX and sY, and therefore also s2

X and s2
Y , both equal 1), then 

the correlation will be the same as the covariance (as can be seen in the formula above).
Correlations (typically labeled r) always range from 11 to 21. A correlation of 

11 indicates a perfect positive linear relationship between two variables. A correla-
tion of 21 represents a perfect negative linear relationship. A correlation of 0 implies 
no linear relationship between the two variables (in the same way that a covariance of 
0 implies no linear relationship). The kind of correlations we might expect to observe 
in the real world are likely to fall somewhere between 0 and 11. How exactly do we 
interpret correlations of intermediate values? Does, for example, a correlation of 0.4 
mean that the two measures are the same 40 percent of the time? In short, no. What 
it reflects, as seen in the equation above, is the proportion of variance that is shared 
by the two measures. (The square of a correlation, r 2, is a commonly used statistic 
that indicates the proportion of variance in one variable that can be predicted by the 
other. For correlations between relatives, the unsquared correlation, representing the 
proportion of variance common to both family members, is more useful.)
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Regression is related to correlation in that it also examines the relationship 
between two variables. Regression is concerned with prediction in that it asks whether 
knowing the value of one variable for an individual helps us to guess what the value 
of another variable will be.

Regression coefficients (often called b) can be calculated by using a method sim-
ilar to that used to calculate correlation coefficients. The regression coefficient of “y 
on x” (i.e., given X, what is our best guess for the value of Y ) divides the covariance 
between X and Y by the variance of the variable (X ) from which we are making the 
prediction (rather than standardizing the covariance by dividing by the product of the 
standard deviations of X and Y ):

b
s

XY

X

�
Cov

2

Given this regression coefficient, an equation relating X and Y can be written:

Ŷ 5 bX 1 c

where c is called the regression constant. As plotted in Figure  A.6, this equation 
describes a straight line (the least squares regression line) that can be drawn through 
the observed points and represents the best prediction of Y given information on  

y-
A
xi
s

x-Axis
FIGURE A.6 Linear regression. The regression of a line of best fit between X and Y is represented by 
the equation Ŷ 5 bX 1 c. For each unit increase in X, we expect Y to increase b units. The two verti-
cal lines represent the deviations between the expected and actual values of Y. The sum of the devi-
ations squared is used to calculate the residual variance of Y, that is, the variance in Y not accounted 
for by X. The regression constant c represents the value of Y when X is zero (at the origin).
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X (Ŷ, pronounced “y hat”). The equation implies that for an increase of one unit in X, 
Y will increase an average of b units.

Regression equations can also be used to analyze more complicated, nonlinear 
relationships between two variables. For example, the variable Y might be a function 
of the square of X as well as of X itself. We would therefore include this higher-​order 
term in the equation to describe the relationship between X and Y:

Ŷ 5 b1X2 1 b2X 1 c

This equation describes a nonlinear least squares regression line (i.e., a parabolic 
curve if b1 doesn’t equal zero).

It is possible to calculate the discrepancy, or error, between the predicted 
values of Y given X and the actual values of Y observed in the sample (Y 2 Ŷ ). 
These discrepancies are called the residuals, and it is often useful to calculate the 
variance of the residuals. From the first regression equation given above, if X and 
Y were totally unrelated, then b would be estimated near zero and c would be the 
mean of Y (because this value represents the best guess of Y if you don’t have any 
other information). In this case, residual error variance would be the same as the 
variance of Y.   To the extent that knowing X actually does help you guess Y, the 
regression coefficient will become significantly nonzero and the error term will 
decrease.

We can partition the variance in a variable, Y, into the part that is associated 
with another variable X and the part that is independent of X. In terms of a regres-
sion of Y on X, this partitioning is reflected in the variance of the predicted Y val-
ues (the variance of Ŷ) as opposed to the variance of the residuals (the variance of  
(Y 2 Ŷ)). The correlation between the two variables can actually be used to estimate 
these values in a straightforward way:

s2
Ŷ 5 r2sY and s2

Y  2Ŷ 5 (1 2 r2)  s2
Ŷ .

A common regression-​based technique can be used to “regress out” or “adjust 
for” the effects of one variable on another. For example, we may wish to study 
the relationship between verbal ability and gender in children. However, we also 
know that verbal ability is age related, and we do not want the effects of age to 
confound this analysis. We can calculate an age-​adjusted measure of verbal ability 
by performing a regression of verbal ability on age. For every individual, we subtract 
their predicted value (given their age) from their observed value to create a new 
variable that reflects verbal ability without the effects of age-​related variation: The 
new variable will not correlate with age. If there were any mean differences in age 
between boys and girls in the sample, then the effects of these on verbal ability have 
been effectively removed.
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1.1.7 Matrices  Reading behavioral genetic journal articles and books, one is likely to 
come across matrices sooner or later: “In QTL linkage the variance-​covariance matrix 
for the sibship is modeled in terms of alleles shared identical-​by-​descent” or “The 
matrix of genotypic means can be observed. . . .” What are matrices and why do we 
use them? This section presents a brief introduction to matrices that will place such 
sentences in context.

Matrices are commonly used in behavioral genetics to represent information in a 
concise and easy-​to-​manipulate manner. A matrix is simply a block of elements organ-
ized in rows and columns. For example,

34 23
56 17
65 38

















is a matrix with three rows and two columns. Typically, a matrix will be organ-
ized such that each row and column has an associated meaning. In this example, the 
matrix might reflect scores for three students (each row representing one student) on 
English and French exams (the first column representing the score for English, the 
second for French). Elements are often indexed by their row and column: sij refers to 
the ith student’s score on the jth test.

The matrix above represents raw data. In a similar way, the spreadsheet of values 
in statistical programs such as SPSS can be thought of as one large matrix. Perhaps 
the most commonly encountered form of matrix is the correlation matrix, which is used 
to represent descriptive statistics of raw data (correlations) in an orderly fashion. In a 
correlation matrix, the element in the ith row and jth column represents the pair-​wise 
correlation between the ith and jth variables.

Here is a correlation matrix between three different variables:

1 00 0 73 0 14
0 73 1 00 0 37
0 14 0 37 1 00

. . .
. . .
. . .

















Correlation matrices have several easily recognizable properties. First, a correla-
tion matrix will always be square — ​having the same number of rows as columns. For 
n variables, the correlation matrix will be an n 3 n matrix. The diagonal of a square 
matrix is the set of elements for which the row number equals the column number,  
so in terms of correlations, these elements represent the correlation of a variable with  
itself, which will always be 1. Additionally, correlation matrices will always be 
symmetric about the diagonal — ​that is, element rij equals rji. This symmetry represents 
the simple fact that the correlation between A and B is the same as the correlation 
between B and A. It is common practice not to write the redundant upper off-​diagonal 
elements if a matrix is known to be symmetric. Our correlation matrix would be 
written
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1 00
0 73 1 00
0 14 0 37 1 00

.
. .
. . .

















Correlation matrices are often presented in journal articles in tabular form to sum-
marize correlational analyses.

A closely related type of matrix that occurs more often in behavioral genetic anal-
ysis is the variance-​covariance matrix. In place of correlations, the elements of an n 3 n 
variance-​covariance matrix are n variances along the diagonal and (n 2 1)n/2 covariances 
in the lower off-​diagonal. A correlation matrix is a standardized variance-​covariance 
matrix, just as a correlation is a standardized covariance. The variance-​covariance matrix 
for the three variables in the correlation matrix above might be

2 32
1 43 1 64
0 43 0 98 4 21

.
. .
. . .

















A variance-​covariance matrix can be transformed into a correlation matrix: rij 5 
vij/ v vii jj , where rij are the new elements of the correlation matrix and vij are the 
elements of the variance-​covariance matrix. (This is essentially a reformulation of 
the equation for calculating correlations given above in matrix notation.) Note that 
information is lost about the relative magnitude of variances among the different 
variables in a correlation matrix (because they are all standardized to 1). As men-
tioned earlier, because correlations are not scale dependent, however, they are easier 
to interpret than covariances and therefore better for descriptive purposes.

Matrices can be added to or subtracted from each other as long as both matrices 
have the same number of rows and the same number of columns:

4 5
1 2

2
0

2 5
1 2

�
�

�
�

�

�



















x
y

x
y

Note that here the elements of the sum matrix are not simple numerical terms — ​
elements of matrices can be as complicated as you want. The beauty of matrix nota-
tion is that we can label matrices so that we can refer to many elements with a simple 
letter, say, A. (Matrices are generally written in bold type.)

A

B

A B

�
�

�
�

� �
� �

�

4 5
1 2

2
0

6 5
1 2


















x
y

x
y
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The other common matrix algebra operations are multiplication, inversion, and 
transposition. Matrix multiplication does not work in the same way as matrix addition 
(that kind of element-​by-​element multiplication is actually called a Kronecker product). 
Unlike normal multiplication, where ab 5 ba, in matrix multiplication AB  BA. For 
A to be multiplied by B, matrix A must have the same number of columns as B has 
rows. The resulting matrix has as many rows as A and as many columns as B. Each 
element is the sum of products across each row of A and each column of B. Following 
are two examples:

a c e
b d f

g i
j k l
m n o

ag cj em a





















h
h

�
� � �cck en ai cl eo

bg dj fm b dk fn bi dl fo
� � �

� � � � � �h































3 3 0
1 2 5

7 2
3 2
8 4

30 12
41 18�

�



The equivalent to division is called matrix inversion and is complex to calculate, 
especially for large matrices. Only square matrices have an inverse, written A21. 
Matrix inversion plays a central role in solving model-​fitting problems.

Finally, the transpose of a matrix, A9, is matrix A but with rows and columns 
swapped. Therefore, if A were a 3 3 2 matrix, then A9 will be a 2 3 3 matrix (note 
that rows are given first):

2 3
0 1
2 1

2 0 2
3 1 1

�

�

�
�

�

















′






There is a great deal more to matrix algebra than the simple examples presented 
here. Basic familiarization with the types of matrices and matrix operations is useful, 
however, if only to realize that when behavioral genetic articles and books refer to 
matrices they are not necessarily talking about anything particularly complicated. 
The main utility of matrices is their convenience of presentation — ​it is the actual 
meaning of the elements that is important.

2 QUANTITATIVE GENETICS
2.1 The Biometric Model
When we say that a trait is heritable  or genetic, we are implying that at least one gene has 
a measurable effect on that trait. Although most behavioral traits appear to depend on 
many genes, it is still important to review the properties of a single gene because the 
more complex models are built upon these foundations. We will begin by examining 
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the basic quantitative genetic model that mathematically describes the genetic and 
environmental underpinnings of a trait.

2.1.1 Allele and genotype  The pair of alleles that an individual carries at a particu-
lar locus constitutes what we call the genotype at that locus. Imagine that, at a particular 
locus, two forms of a gene, labeled A1 and A2 (this would be called a biallelic locus), 
exist in the population. Because individuals have two copies of every gene (one from 
their father, one from their mother), individuals will possess one of three genotypes: 
They may have either two A1 alleles or two A2, in which case they are said to be homo-
zygous for that particular allele. Alternatively, they may carry one copy of each allele, 
in which case they are said to be heterozygous at that locus. We would write the three 
genotypes as A1A1, A1A2, and A2A2 (or, using different notation, AA, Aa, and aa).

For biallelic loci, the two alleles will occur in the population at particular fre-
quencies. If we counted all the alleles in a population and three-​fourths were A1, then 
we say that A1 has an allelic frequency of 0.75. Because these frequencies must sum to 1, 
we know that the A2 allele has a frequency of 0.25. It is common practice to denote the 
allelic frequencies of a biallelic locus as p and q (so here, p is the allelic frequency of 
the A1 allele, 0.75, and q is the frequency of A2, 0.25). Given these, we can predict the 
genotypic frequencies. Formally, if the two alleles A1 and A2 have allelic frequencies 
p and q, then, with random mating, we would expect to observe the three genotypes 
A1A1, A1A2, and A2A2 at frequencies p2, 2pq, and q2, respectively. (See Box 3.2.)

2.1.2 Genotypic values  Next, we need a way to describe any effects of the alleles at 
a locus on whatever trait we are interested in. A locus is said to be associated with a trait 
if some of its alleles are associated with different mean levels of that trait in the popu-
lation. For qualitative diseases (i.e., diseases that are either present or not present), a 
single allele may be necessary and sufficient to develop the disease. In this case, the 
disease-​predisposing allele acts in either a dominant or a recessive manner. Carrying 
a dominant allele will result in the disease irrespective of the other allele at that locus; 
conversely, if the disease-​predisposing allele is recessive, then the disease will only 
develop in individuals homozygous for that allele.

For a quantitative trait, however, we need some way of specifying how much an 
allele affects the trait. Considering only a locus with two alleles, A1 and A2, we define 
the average value of one of the homozygotes (say, A1A1) as a and the average value of 
the other homozygote (A2A2) as 2a. The value of the heterozygote (A1A2) is labeled d 
and is dependent on the mode of gene action. If there is no dominance, d will be zero 
(i.e., the midpoint of the two homozygotes’ scores). If the A1 allele is dominant to A2, 
then d will be greater than zero. If dominance is complete (i.e., if the observed value 
for A1A2 equals that of A1A1), then d 5 1a.

2.1.3 Additive effects  Observed genotypic values for a single locus can be defined in 
terms of an additive genetic value and a dominance deviation. The additive genetic value 
of a locus relates to the average effect of an allele. As illustrated in Figure A.7, the 
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additive genetic value is the genotypic value expected from the number of a particu-
lar allele (say, A1) at that locus, either 0, 1, or 2 (each A1 allele increases an individual’s 
score by A units).

Additive genetic values are important in behavioral genetics because they repre-
sent the extent to which genotypes “breed true” from parents to offspring. If a parent 
has one copy of a certain allele, say, A1, then each offspring has a 50 percent chance of 
receiving an A1 allele. If an offspring receives an A1 allele, then its additive effect will 
contribute to the phenotype to exactly the same extent as it did to the parent’s pheno-
type. That is, it will lead to increased parent-​offspring resemblance on the phenotype, 
irrespective of other alleles at that locus or at other loci.

2.1.4 Dominance deviation  Dominance is the extent to which the effects of alleles 
at a locus do not simply “add up” to produce genotypic values. The dominance devia-
tion is the difference between actual genotypic values and what would be expected 
under a strictly additive model. Figure A.8 represents the deviations (labeled D) of 
the expected (or additive) genotypic values from the actual genotypic values that 
occur if there is an effect of dominance at the locus.

Dominance genetic variance represents genetic influence that does not “breed 
true.” Saying that the effect of a locus involves dominance is equivalent to saying that 
an individual’s genotypic value results from the combination of alleles at that particular 

FIGURE A.7 Additive genetic values. The number of A1 alleles predicts additive genetic values. 
Because there is no dominance (and assuming equal allelic frequency), the additive genetic val-
ues equal the genotypic values. (A, value added by each A1 allele.)
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FIGURE A.8 Dominance deviations. The genotypic values (circles) deviate from the expected 

values under an additive model (crosses) when there is dominance (i.e., d  0). (D, deviation 
from expected attributed to dominance.)

locus. However, offspring receive only one allele from each parent, not a combina-
tion of two alleles. Genetic influence due to dominance will not be transmitted from 
parent to offspring, therefore. In this way, additive and dominance genetic values are 
defined so as to be independent of each other.

2.1.5 Polygenic model  Not only can we consider the additive and nonadditive 
effects at a single locus, we can also sum these effects across loci. This concept is the 
essence of the polygenic extension of the single-​gene model. Just as additive genetic 
values are the summation of the average effects of two alleles at a single locus, they 
can also be summed across the many loci that may influence a particular phenotypic 
character. Similarly, dominance deviations from additive genetic values can also be 
summed for all the loci influencing a character. Thus, it is relatively easy to generalize 
the single-​gene model to a polygenic one with many loci, each with its own additive 
and nonadditive effects. Under an additive polygenic model, the genetic effect G on the 
phenotype represents the sum of effects from different loci.

G 5 G1 1 G2 1 . . . 1 GN

This expression implies that the effects of different alleles simply add up — ​that 
is, there is no interaction between alleles where the effect of one allele, say, G1 is 
modified by the presence of the allele with effect G2. The polygenic model needs to 
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consider the possibility that the effects of different loci do not add up independently 
but interact with each other — ​an interaction called epistasis. For example, imagine 
two loci, each with an allele that increases an individual’s score by one point on a par-
ticular trait. If there were no epistasis, having a risk allele at both loci would increase 
the score by two points. If there were epistasis, however, having risk alleles at both 
loci might possibly lead to a ten-​point increase. Epistasis therefore complicates anal-
ysis, but there is evidence that such phenomena might be quite prevalent for certain 
complex traits. In other words, dominance is intralocus interaction between alleles, 
whereas epistasis is interlocus interaction, that is, between loci.

The total genetic contribution to a phenotype is G, which is the sum of all addi-
tive genetic effects A, all dominance deviations D, and all epistatic interaction effects I:

G 5 A 1 D 1 I

2.1.6 Phenotypic values and variance components model  Quantitative genetic 
theory states that every individual’s phenotype is made up of genetic and envi-
ronmental contributions. No behavioral phenotype will be entirely determined by 
genetic effects, so we should always expect an environmental effect, E, which also 
includes measurement error, on the phenotype P.  In algebraic terms,

P 5 G 1 E

where, for convenience, we assume that P represents an individual’s deviation from 
the population mean rather than an absolute score. In any case, behavioral genetics 
is not primarily interested in the score of any one individual. Rather, the focus is on 
explaining the causes of phenotypic differences in a population — ​why some indi-
viduals are more extraverted than others, or why some individuals are alcoholic, for 
example.

In fact, there is often no direct way of determining the relative magnitude of 
genetic and environmental deviations for any one individual, certainly if one has not 
obtained DNA from individuals. However, in a sample of individuals, especially of 
genetically related individuals, it is possible to estimate the variances of the terms P, 
G, and E. This approach is called the variance components approach, and it relies on the 
equation that showed us how to calculate the variance of a sum.

Recall that

Var(X 1 Y ) 5 Var(X ) 1 Var(Y ) 1 2Cov(X,Y )

Turning this expression around, it gives us a method for partitioning the variance 
of a variable that is a composite of constituent parts. That is, our goal is to “decom-
pose the variance” of a trait into the constituent parts of genetic and environmental 
sources of variation.
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For simplicity, we will assume no epistasis, so P 5 G 1 E 5 A 1 D 1 E. The 
variance of P is equal to the sum of the variance of the separate components, A, D, and 
E, plus twice the covariance between them:

Var(P) �5 Var(A 1 D 1 E) 
5 Var(A) 1 Var(D) 1 Var(E) 1 2Cov(A, D) 1 2Cov(A, E) 1 2Cov(D, E)

which begins to look unmanageable until we realize that we can use some theoretical 
assumptions of our model to constrain this equation. By definition, additive genetic 
influences are independent of dominance deviations. That is, Cov(A, D) will neces-
sarily equal zero, so this term can be dropped from the model. Another assumption 
that we may wish to make (but one that is not necessarily true) is that genetic  
and environmental influences are uncorrelated. This is equivalent to saying that 
Cov(A, E) and Cov(D, E) equal zero and can be dropped from the model. We will 
see later that there are detailed reasons why this assumption might not hold (what is 
called a gene-​environment correlation) (see also Chapter 8). For the time being, however, 
our simplified model reads:

Var(P) 5 Var(A) 1 Var(D) 1 Var(E)

A note on notation: Variances are often written in other ways. For example, above 
we have denoted additive genetic variance as Var(A). As we will see, this term is often 
written differently, depending on the context (mainly for historical reasons). In formal 
model fitting, the lowercase Greek letter sigma squared with a subscript (r2

A) might 
be used. A similar value calculated in the context of comparing familial correlations 
(narrow-​sense heritability, introduced later) is typically labeled h2, whereas it is writ-
ten as a2 in the context of path analysis (also introduced later). Under most circum-
stances, however, these all refer to roughly the same thing.

In conclusion, it might not seem that we have achieved very much in simply 
considering variances instead of values. However, as will be discussed, quantitative 
genetic methods can use these models to estimate the relative contribution of genetic 
and environmental influences to phenotypic variance.

2.1.7 Environmental variation  Because the nature of environmental effects is more 
varied and changeable than the underlying nature of genetic influence, it is not 
possible to decompose this term into constituent parts in a straightforward way. That 
is, if we detect genetic influence, then we know that this effect must result from at 
least one gene — ​and we know something about the properties of genes.

However, if we detect environmental influence on a trait, we cannot assume any 
one mechanism. But behavioral genetics is able to investigate environmental influ-
ences in two main ways. As we will see later, family-​based studies using twins or 
adoptive relatives allow environmental influences to be partitioned into those shared 



3 4 8   A P P E N D I X

between relatives (i.e., those that make relatives resemble each other) and those that 
are nonshared (i.e., those that do not make relatives resemble each other). This type of 
analysis is not at the level of specific, measured environmental variables.

A second approach is to actually measure a specific aspect of the environment 
(e.g., parental socioeconomic status, or nutritional content of diet) and incorporate it 
into genetic analysis. For example, we may wish to partition out the variation in the 
trait due to a measured environmental source if we consider it to represent a cause 
of nuisance or noise variance in the trait (i.e., to treat it as a covariate). Alternatively, 
we may believe that an environment is important in the expression of genetic influ-
ence. For example, we might suspect that stress might bring out genetic vulnerabilities 
toward depression. Therefore, depression might be expected to show greater genetic 
influence for individuals experiencing stress. In this case, we would not want to adjust 
for the effects of the environmental variable. Such a circumstance is named a gene-​
environment interaction (G 3 E interaction). In terms of the quantitative genetic model,

P 5 G 1 E 1 (G 3 E)

where (G 3 E) does not necessarily represent a multiplication effect but rather any 
interactive effect of genes and environment that is independent of their main effects.

2.2 Estimating Variance Components
In the previous section we outlined a simple biometric model, describing the varia-
tion in observed phenotypes in terms of various genetic and environmental sources of 
variation. In this section, we consider how we can use family data to estimate some of 
the key parameters of such models, with a focus on heritability as estimated from the 
classical twin study, introducing maximum likelihood estimation and model fitting.

2.2.1 Genes and families  Until now, we have built a general genetic model of the 
etiology of variation in a trait among individuals. A major step in quantitative genet-
ics is to incorporate knowledge of basic laws of heredity to allow us to extend our 
model to include the covariance between relatives. Conceptually, most behavioral 
genetic analysis contrasts phenotypic similarity between related individuals (which is 
measured) with their genetic similarity (which is known from genetics). If individuals 
who are more closely related genetically also tend to be more similar on a measured 
trait, then this tendency is evidence for that trait being heritable — ​that is, the trait is 
at least partially influenced by genes.

When we study families, we are not only interested in the variance of a trait — ​the 
main focus is on the covariance between relatives. Earlier we saw how we can study two 
variables, such as height and weight, and ask whether they are associated with each other. 
In a similar way, covariances and correlations can also be used to ask whether a single 
variable is associated between family members. For example, do brothers and sisters tend 
to be similar in height or not? If we measured height in sibling pairs, we could calculate 
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the covariance between an individual’s height and the sibling’s height. If the covariance 
equaled zero, this would imply that brothers and sisters are no more likely to have similar 
heights than any two unrelated individuals picked at random from the population. If the 
covariance is greater than zero, this would imply that taller individuals tend to have taller 
brothers and sisters. Quantitative genetic analysis attempts to determine the factors that 
can make relatives similar — ​their shared nature or their shared nurture.

2.2.2 Genetic relatedness in families  An individual has two copies of every gene, 
one paternally inherited and one maternally inherited. When an individual passes 
one copy of each gene to its offspring, there is an equal chance that either the pater-
nally inherited gene or the maternally inherited gene will be transmitted. From these 
two simple facts, we can calculate the expected proportion of gene sharing between 
individuals of different genetic relatedness. Siblings who share both biological par-
ents will share either zero, one, or two alleles at each locus. For autosomal loci, there 
is a 50 percent chance that siblings will share the same paternal allele (two ways of 
sharing, two ways of not sharing, all with equal probability) and, correspondingly, a 
50 percent chance of sharing the same maternal allele. Therefore, siblings stand a 
0.50 3 0.50 5 0.25 (25 percent) chance of sharing both paternal and maternal alleles; 
a (1.00 2 0.50) 3 (1.00 2 0.50) 5 0.25 (25 percent) chance of sharing no alleles; a 
1.00 2 0.25 2 0.25 5 0.50 (50 percent) chance of sharing one allele. The average, 
or expected, alleles shared is therefore (0 3 0.25) 1 (1 3 0.5) 1 (2 3 0.25) 5 1. 
Therefore, in the average case, siblings will share half of the additive genetic variation 
that could potentially contribute to phenotypic variation because they share one out 
of two alleles. Because siblings stand only a 25 percent chance of sharing both alleles, 
in the average case, siblings will share a quarter of the dominance genetic variation 
that could potentially contribute to phenotypic variation.

For other types of relatives, we can work out their expected genetic relatedness 
in terms of genetic components of variance. Parent-​offspring pairs always share pre-
cisely one allele: They will share half of the additive genetic effects that contribute to 
variation in the population but none of the dominance genetic effects. Half siblings, 
who have only one parent in common, share only a quarter of additive genetic var-
iance but no dominance variance (because they can never inherit two alleles at the 
same locus from the same parent).

The majority of behavioral genetic studies focus on twins. Genetically, full sib-
ling pairs and DZ twin pairs are equivalent. So, whereas DZ twins will only share half 
the additive genetic variance and one-​fourth of the dominance variance, MZ twins 
share all their genetic makeup, so additive and dominance genetic variance compo-
nents will be completely shared.

These coefficients of genetic relatedness are summarized in Table A.1. Sharing 
additive and dominance genetic variance contributes to the phenotypic correlation 
between relatives. As mentioned earlier, correlations between relatives directly 
estimate the proportion of variance shared between them. So we can think of the 
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familial correlation as the sum of all the shared components of variance between 
two relatives.

Not only genes are shared between most relatives, however. Individuals that are 
genetically related are more likely to experience similar environments than unre-
lated individuals are. If an environmental factor influences a variable, then sharing 
this environment will also contribute to the phenotypic correlation between rela-
tives. As explained in Chapter 7, behavioral genetics conceptually divides environ-
mental influences into two distinct types with regard to their impact on families. 
Environments that are shared by family members and that tend to make members 
more similar on a particular trait are called shared environmental influences. In contrast, 
nonshared environmental influences do not result in family members becoming more 
alike for a given trait.

Most behavioral genetic analysis focuses on three components of variance: addi-
tive genetic, shared environmental, and nonshared environmental. As we will see, this 
tripartite approach underlies the estimation of heritability by comparing twin corre-
lations and is the basic model used in more sophisticated model-​fitting analysis. This 
model is often referred to as the ACE model. (A stands for additive genetic effects, C 
for common (shared) environment, and E for nonshared environment.)

2.2.3 Heritability  As explained in Chapter 7, heritability is the proportion of phe-
notypic variance that is attributable to genotypic variance. There are two types of 
heritability: broad-​sense heritability refers to all sources of genetic variance, whether 
the genes operate in an additive manner or not. Narrow-​sense heritability refers only 
to the proportion of phenotypic variance explained by additive genetic effects. 
Narrow-​sense heritability therefore gives an indication of the extent to which a trait 
will “breed true” — that is, the degree of parent-​offspring similarity that is expected. 
Broad-​sense heritability, on the other hand, gives an indication of the extent to which 
genetic factors of any kind are responsible for trait variation in the population.

TABLE A .1
Coefficients of Genetic Relatedness

	 Proportion of Additive	 Proportion of Dominance	  
Related Pair	 Genetic Variation Shared	 Genetic Variation Shared

Parent and  
offspring (PO)	 1/2	 0	

Half siblings (HS)	 1/4	 0
Full siblings (FS)	 1/2	 1/4
Nonidentical twins (DZ)	 1/2	 1/4
Identical twins (MZ)	 1	 1
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We are able to estimate the heritability of a trait by comparing correlations 
between certain types of family members. For simplicity, we will assume that the only 
influences on a trait are additive genetic effects and environmental effects that are 
either shared or nonshared between family members. We can describe the correlation 
we observe between different types of relatives in terms of the components of variance 
they share. For example, we expect the correlation between full siblings to represent 
half the additive genetic variance and, by definition, all the shared environmental 
variance but none of the nonshared environmental variance. As mentioned earlier, 
additive genetic variance is typically labeled h2 in this context (representing narrow-​
sense heritability). The shared environmental variance is labeled c2 (nonshared envi-
ronment is e2). Therefore,

r cFS � �
h2

2
2

Suppose we observed for full siblings a correlation of 0.45 for a trait. We would 
not be able to work out what h2 and c2 are from this information alone because, as 
reflected in the equation above, nature and nurture are shared by siblings. However, 
by comparing sets of correlations between certain different types of relatives, we are 
able to estimate the relative balance of genetic and environmental effects. The most 
common study design uses MZ and DZ twin pairs. The correlations expressed in 
terms of shared variance components are therefore
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Subtracting the second equation from the first gives
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That is, narrow-​sense heritability is calculated as twice the difference between 
the correlations observed for MZ and DZ twin pairs. The proportion of variance 
attributable to shared environmental effects can easily be estimated as the difference 
between the MZ correlation and the heritability (c2 5 rMZ 2 h2). Because we have 
estimated these two variance components from correlations, which are standardized, 
h2 and c2 represent proportions of variance. The final component of variance we are 
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interested in is nonshared environmental variance, e2. This statistic does not appear 
in the equations describing the correlations between relatives, of course. However, 
we know that h2, c2, and e2 must sum to 1 if they represent proportions, so

h2 2 2

2

1

2 2
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This conclusion is intuitive: Because MZ twins are genetically identical, any var-
iance that is not shared between them (i.e., the extent to which the MZ twin correla-
tion is not 1) must be due to nonshared environmental sources of variance.

Let’s consider an example: Suppose we observe a correlation of 0.64 in MZ 
twins and 0.44 in DZ twins. Taking twice the difference between the correlations, 
we can conclude that the trait has a heritability of 0.4 [5 2 3 (0.64 2 0.44)]. That 
is, 40 percent of variation in the population from which we sampled is attributable 
to the additive effects of genes. The shared family environment therefore accounts 
for 24 percent (c2 5 0.64 2 0.4 5 0.24) of the variance; the nonshared environment 
accounts for 36 percent (e2 5 1 2 0.64 5 0.36).

A pattern of results such as those just described would suggest that genes play a 
significant role in individual differences for this trait, differences between people being 
roughly half due to nature, half due to nurture. We have made several assumptions, 
however, in order to arrive at this conclusion. These assumptions will be considered 
more fully in the context of model fitting, but we will mention two immediate assump-
tions. First, we have assumed that dominance is not important for this trait (not to 
mention other more complex interactions such as epistasis). We have assumed that all 
genetic effects are additive (which is why h2 represents narrow-​sense heritability). If this 
assumption were not true, the heritability estimate would be biased. Second, we have 
assumed that MZ and DZ twins only differ in terms of the genetic relatedness. That is, 
the same shared environment term, c2, appears in both MZ and DZ equations. If parents 
treat identical twins more similarly than they treat nonidentical twins, this assumption 
could result in higher MZ correlations relative to DZ correlations. This assumption, 
which is in theory testable, is called the equal environments assumption (see Chapter 6). 
Violations of this assumption would overestimate the importance of genetic effects.

Other types of relatives can be studied to calculate heritability; for example, we 
could compare correlations for full siblings and half siblings. Not all comparisons 
will be informative, however. Comparing the correlation for full siblings and the cor-
relation for parent and offspring will not help to estimate heritability (because these 
relatives do not differ in terms of shared additive genetic variance). It is preferable to 
study twins for several reasons. It can be shown that for statistical reasons, twins afford 
greater accuracy in determining heritability because larger proportions of variance 
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are shared by MZ twins. Additionally, twins are more closely matched for age, famil-
ial, and social influences than are half siblings or parents and offspring. The interpre-
tation of the shared environment is much less clear for parents and offspring.

Quantitative genetic studies can also contrast family members who are geneti-
cally similar but have not shared any environmental influences. This comparison is 
the basis of the adoption study. The simplest form of adoption study is that of MZ 
twins reared apart. Because MZ twins reared apart are genetically identical but do 
not share any environmental influences, the correlation directly estimates heritability. 
That is, if there has been no selective placement, any tendency for MZ twins reared 
apart to be similar must be attributable to the influences of shared genes.

2.2.4 Model fitting and the classical twin design  Simple comparisons between 
twin correlations can indicate whether genetic influences are important for a trait. 
This is the important first question that any quantitative genetic analysis must ask. 
Here we will examine some of the more formal statistical techniques that can be used 
to analyze genetically informative data and to ask other, more involved questions.

Model-​fitting approaches involve constructing a model that describes some 
observed data. In the quantitative genetic studies, the observed data that we model 
are typically the variance-​covariance matrices for family members. The model will then 
consist of a variance-​covariance matrix formulated in terms of various parameters. These 
will typically be the variance components (additive genetic and so on) we encoun-
tered earlier. Various combinations of different values for the model parameters will 
generate different expected variance-​covariance matrices. The goal of model fitting 
is twofold: (1) to select the model with the smallest number of parameters that (2) 
generates expectations that match the observed data as closely as possible. As we will 
see, there is a payoff between the number of parameters in a model and the accuracy 
with which it can model the observed data.

If we were to fit the ACE model to observed MZ and DZ twin data, the three 
parameter estimates selected to match the expected variance-​covariance matrices 
with the observed ones would correspond directly to the estimates of heritability, 
and of shared and nonshared environmental influences that we calculated earlier 
in a relatively straightforward manner. Why would we ever want to perform more 
complicated model fitting? There are several good reasons: First, these calculations 
are only valid if the ACE model is a true reflection of reality. Model fitting allows 
different types of models to be explicitly tested and compared. Model fitting also 
facilitates the calculation of confidence intervals around the parameter estimates. It 
is common to read something such as “h2 5 0.35 (0.28 2 0.42),” which means that 
the heritability was estimated at 35 percent, but there is a 95 percent chance that, 
even if it is not exactly 35 percent, it at least lies within the range of 28 to 42 percent. 
Model fitting can also incorporate many different types of family structures, model 
multivariate data, and include any measured genetic or environmental information 
we may have, in order to improve our estimates and explore potential interactions 
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of genetic and environmental effects, or to test whether specific loci are associated 
with the trait or not.

Let’s start from basics. Imagine that we have measured a trait in a population 
of twins. We have not measured any DNA, nor have we measured any other envi-
ronmental factors that might influence the trait. We summarize our data as two 
variance-​covariance matrices, one for MZ twin pairs and one for DZ twin pairs; so 
our “observed data” are six unique statistics:

Var
Cov Var

Var
Cov Var

1
MZ

12
MZ

2
MZ

1
DZ

12
DZ

2
D











Z











Using our knowledge of the quantitative genetic model as outlined earlier, we 
can begin to construct a model that describes the two variance-​covariance matrices 
for the twins. That is, we assume that observed trait variation is due to a certain mix-
ture of additive genetic, dominance genetic, shared environmental, and nonshared 
environmental effects (we will ignore epistasis and other interactions).

Model fitting begins by creating an explicit model for the variance-​covariance 
matrix for families, in terms of genetic and environmental variance components. 
Returning to the basic genetic model, phenotype, P, is a function of additive, A, and 
dominance, D, genetic effects. Additionally, we include environmental effects, which 
are either shared, C, or nonshared, E. (Note: The basic model did not make this dis-
tinction because it is primarily formulated to describe variation in a population of 
unrelated individuals, i.e., E referred to all environmental effects.)

P 5 A 1 D 1 C 1 E

In terms of variances, therefore, remembering all the assumptions outlined under 
the single-​gene model that apply at this step (no gene-​environment correlation, for 
example), we obtain

r2
P 5 r2

A 1 r2
D 1 r2

C 1 r2
E

where, using the model-​fitting notation, r2
A/D/C/E (pronounced “sigma”) stands for 

the components of variance associated with the four types of effect and r2
P is the 

phenotypic variance.
To construct our twin model, we need to explicitly write out every element of 

the variance-​covariance matrices in terms of the parameters of the model. We have 
already defined the trait variance in terms of the variance components:

r2
A 1 r2

D 1 r2
C 1 r2

E
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We will write this term for all four variance elements in the model. Note that 
we are modeling variances and covariances instead of correlations; this is often done 
in model fitting because it captures more information (the variance and covariance) 
than a correlation does. The r2

A parameter will not directly estimate narrow-​sense 
heritability — ​we need to divide the additive genetic variance component by the total 
variance:

r2
A/(r2

A 1 r2
D 1 r2

C 1 r2
E)

We make the assumption that components of variance are identical for all indi-
viduals. That is, we write the same expression for all four variance elements. This 
assumption implies that the effects of genes and environments on an individual are 
not altered by that individual being a member of an MZ or DZ twin pair. Additionally, 
it assumes that individuals were not assigned a Twin 1 or Twin 2 label in a way that 
might make Twin 1’s variance differ from Twin 2’s variance. For example, if the first-​
born twin was always coded as Twin 1, then, depending on the nature of the trait, this 
assumption might not be warranted. (This problem is sometimes avoided by “double-​
entering” twin pairs so that each individual is entered twice, once as Twin 1 and once 
as Twin 2, when calculating the observed variance-​covariance matrices. This method 
will, of course, ensure that Twin 1 and Twin 2 have equal variances.)

The covariance term between twins is also a function of the components of vari-
ance, in terms of the extent to which they are shared between twins, as stated earlier. 
All additive and dominance genetic variance, as well as shared environmental vari-
ance, is shared by MZ twins. These components contribute to the covariance between 
MZ twins fully. DZ twins share one-​half the additive genetic variance, one-​fourth the 
dominance genetic variance, all the shared environmental variance, and none of the 
nonshared environmental variance. The contributions of these components to the DZ 
covariance are in proportion to these coefficients of sharing.

Therefore, for MZ twin pairs, the variance-​covariance matrix is modeled as
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whereas, for DZ twins, it is
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These two matrices represent our model. Different values of r2
A, r2

D, r2
C, and 

r2
E will result in different expected variance-​covariance matrices. These matrices are 
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“expected,” in the sense that, if the values of the model parameters were true, then 
these are the averaged matrices we would expect to observe if we repeated the exper-
iment a very large number of times.

As an example, consider a trait with a variance of 5. Imagine that variation in 
this trait was entirely due to an equal balance of additive genetic effects and non-
shared environmental effects. In terms of the model, this assumption is equivalent 
to saying that r2

A and r2
E both equal 2.5, whereas r2

D and r2
C both equal 0. If this 

were true, then what variance-​covariance matrices would we expect to observe for 
MZ and DZ twins? Simply substituting these values, we would expect to observe 
for MZ twins,

2 5 0 0 2 5
2 5 0 0 2 5 0 0 2 5

5
2 5 5

. .
. . . .
� � �

� � � � �
�













and for DZ twins,

2 5 0 0 2 5

2 5
2

0 0
4

0 2 5 0 0 2 5

. .

. .
. .

� � �

� � � � �

























�
5
1 25 5.

To recap, we have seen how a specific set of parameter values will result in a 
certain expected set of variance-​covariance matrices for twins. This result is, in itself, 
not very useful. We do not know the true values of these parameters — ​these are the 
very values we are trying to discover! Model fitting helps us to estimate the parame-
ter values most likely to be true by evaluating the expected values produced by very 
many sets of parameter values. The set of parameter values that produces expected 
matrices that most closely match the observed matrices are selected as the best-​fit 
parameter estimates. These represent the best estimates of the true parameter values. 
Because of the iterative nature of model fitting (evaluating very many different sets 
of parameter values), it is a computationally intensive technique that can only be 
performed by using computers.

2.2.5 An example of the model-​fitting principle  Suppose that, for a certain trait, 
we observe the following variance-​covariance matrices for MZ and DZ pairs, respec-
tively (note that the observed variances are similar although not identical):

2 81
2 13 3 02

3 17
1 54 3 06

.

. .

.

. .












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The model fitting would start by substituting any set of parameters to generate 
the expected matrices. Suppose we substituted r2

A 5 0.7, r2
D 5 0.2, r2

C 5 1.2, 
and r2

E  5  0.8. These values only represent a “first guess” that will be evaluated  
and improved on by the model-​fitting process. These values imply that 24 percent 
[0.7/(0.7 1 0.2 1 1.2 1 0.8)] of phenotypic variation is attributable to additive genetic 
effects. If these were the true values, the variance-​covariance matrix we would 
expect to observe for MZ twins is

0 7 0 2 1 2 0 8
0 7 0 2 1 2 0 7 0 2 1 2 0 8
. . . .
. . . . . . .
� � �

� � � � �













�
2 9
2 1 2 9
.
. .

whereas, for DZ twins, it is

0 7 0 2 1 2 0 8

0 7
2

0 2
4

1 2 0 7 0 2 1 2 0 8

. . . .

. .
. . . . .

� � �

� � � � �

























�
2 9
1 6 2 9
.
. .

Comparing these expectations with the observed statistics, we can see that they 
are numerically similar but not exactly the same. We need an exact method for deter-
mining how good the fit between the expected and observed matrices is. Model fitting 
can therefore proceed, changing the parameter values to increase the goodness of fit 
between the model-​dependent expected values and the sample-​based observed values. 
When a set of values has been found that cannot be beaten for goodness of fit, these will 
be presented as the “output” from the model-​fitting programs, the best-​fit estimates. 
This process is called optimization. It would be very inefficient to evaluate every possible 
set of parameter values. For most models, evaluating every set would in fact be virtu-
ally impossible, given current computing technology. Rather, optimization will try to 
change the parameters in an intelligent way. One way of thinking about this process is 
as a form of a “hotter-​colder” game: The aim is to increasingly refine your guess as to 
where the hidden object is, rather than exhaustively searching every inch of the room.

There are many indices of fit — ​one simple one is the chi-​squared (v2, pro-
nounced “ki,” as in kite) goodness-​of-​fit statistic. This statistic essentially evaluates 
the magnitude of the discrepancies between expected and observed values by com-
paring how likely the observed data are under the model. The v2 goodness-​of-​fit sta-
tistic can be formally tested for significance in order to indicate whether or not the 
model provides a good approximation of the data. If the v2 goodness-​of-​fit statistic is 
low (i.e., nonsignificant), it indicates that the observed values do not significantly deviate 
from the expected values. However, a low v2 value does not necessarily mean that 
the parameter values being tested are the best-​fit estimates. As we have mentioned, 
different values for the four parameters might provide a better fit (i.e., an even lower 
v2 goodness-​of-​fit-​statistic).
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Just because we can write down a model that we believe to be an accurate 
description of the real-​world processes affecting a trait, it does not necessarily mean 
that we can derive values for its parameters. In the preceding example, we would not 
be able to estimate the four parameters (additive and dominance genetic variances, 
shared and nonshared environmental variances) from our twin data. In simple terms, 
we are asking too many questions of too little information.

Consider what happens when we change the parameter values to see whether 
we can improve the fit of the model. Try substituting r2

A 5 0.1, r2
D 5 0.6, r2

C 5 1.4, 
and r2

E 5 0.8 instead, and you will notice that we obtain the same two expected 
variance-​covariance matrices for both MZ and DZ twins as we did under the previous 
set of parameters. Both sets of parameters would therefore have an identical fit, so 
we would not be able to distinguish these two alternative explanations of the obser-
vations. This phenomenon can make model fitting very difficult or even impossible. 
This is an instance of a model not being identified.

2.2.6 The ACE model  Although we will not follow the proof here, researchers have 
demonstrated that we cannot ask about additive genetic effects, dominance genetic 
effects, and shared environmental effects simultaneously if the only information we 
have is from MZ and DZ twins reared together.

In virtually every circumstance, we will wish to retain the nonshared environ-
mental variance component in the model. We wish to retain it partly because random 
measurement error is modeled as a nonshared environmental effect and we do not 
wish to have a model that assumes no measurement error (it is unlikely to fit very 
well). Most commonly, we would then model additive genetic variance and shared 
environmental variance. As mentioned earlier, such a model is called the ACE model.

If we had reason to suspect that dominance genetic variance might be affecting a 
trait, then we might fit an ADE model instead. If the MZ twin correlation is more than 
twice the DZ twin correlation, one explanation is that dominance genetic effects play 
a large role for that trait (an explanation that might suggest fitting an ADE model).

The ACE model (and the ADE model) is an identified model. That is, the best 
fit between the expected and observed matrices is produced by one and only one set 
of parameter values. As long as the twin covariances are both positive and the MZ 
covariance is not smaller than the DZ covariance (both of which are easily justified 
biologically as reasonable demands), the ACE model will always be able to select a 
unique set of parameters that best account for the observed statistics.

If we were to model standardized scores (so that differences in the observed 
variance elements could not reduce fit), then under the ACE model the best-​fitting 
parameters will always have a v2 goodness of fit of precisely zero. Such a model is 
called a saturated model. Imagine that, for a standardized trait (i.e., one with a variance 
of 1), we found an MZ covariance of 0.6 (this can be considered as the MZ twin corre-
lation, of course) and a DZ covariance of 0.4. There is, in fact, one and only one set of 
values for the three parameters of the ACE model that will produce expected values 
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that exactly match these observed values. In this case, these are r2
A 5 0.4, r2

C 5 0.2, 
and r2

E 5 0.4. Substituting these into the model, we obtain for MZ twins,

0 4 0 2 0 4
0 4 0 2 0 4 0 2 0 4

1 0
0 6 1

. . .
. . . . .

.
.

� �

� � �
�





 ..0







and for DZ twins,

0 4 0 2 0 4

0 4
2

0 2 0 4 0 2 0 4

. . .

.
. . . .

� �

� � �

�



















11 0
0 4 1 0
.
. .







There are no other values that r2
A, r2

C, and r2
E can take to produce the same expected 

variance-​covariance matrices. This property does not mean that these values will 
necessarily reflect the true balance of genetic and environmental effects — ​they will 
only reflect the true values if the model (ACE or ADE or whatever) is a good one. All 
parameter estimates are model dependent: We can only conclude that, if the ACE 
model is a good model, then this result is the balance of genetic and environmental 
effects. We are able to test different models relative to one another, however, in order 
to get a sense of whether or not the model is a fair approximation of the underlying 
reality. We can only compare models if they are nested, however. A model is nested in 
another model if and only if that model results from constraining to zero one or more 
of the variance components in the larger model. For example, we may suspect that the 
shared environment plays no significant role for a given trait. We can test this supposi-
tion by fixing the shared environment variance component to zero and comparing the 
fit of the full model with the fit of this reduced model. Nesting is important because it 
forms the basis for testing and selecting between different models of our data.

A general principle of science is parsimony: to always prefer a simpler theory if it 
accounts equally well for the observations. This concept, often referred to as Occam’s 
razor, is explicit in model fitting. Having derived estimates for genetic and environ-
mental variance components under an ACE model, we might ask whether we could 
drop the shared environment term from the model. Might our simpler AE model 
provide a comparable fit to the data? Instead of estimating the shared environment 
variance component, we assume that it is zero (which is equivalent to ignoring it or 
removing it from the model). The AE model is therefore nested in the ACE model. 
We are able to calculate the goodness of fit of the ACE model, which estimates three 
parameters to explain the data, and the goodness of fit for the AE model, which only 
estimates two parameters to explain the same data. Any model with fewer parameters 
will not fit as well as a sensible model with more parameters. The question is whether 
or not the reduction in fit is significantly worse relative to the “advantage” of having 
fewer parameters in a more parsimonious model.
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In our example, the ACE model will estimate r2
A 5 0.4, r2

C 5 0.2, and r2
E 5 0.4. 

As we saw earlier, substituting these values and only these values will produce 
expected variance-​covariance matrices that match the observed perfectly (because 
we are modeling standardized scores, or correlations). In contrast, consider what 
happens under the AE model with the same data. Table A.2 shows that the AE model 
is unable to account for this particular set of observed values. Such a model is said 
to be underidentified. This condition is not necessarily problematic: In general, under
identified models are to be favored. Because a saturated model will always be able 
to fit the observed data perfectly, the goodness of fit does not really mean anything. 
However, if an underidentified model does fit the data, then we should take notice — ​
it is not fitting out of mere statistical necessity. Perhaps it is a better, more parsimo-
nious model of the data. Table A.2 represents three different sets of the values for 
the two parameters that attempt to explain the observed data. As the table shows, the 
AE model does not seem able to model our observed statistics quite as well as the 
ACE model.

If we run a model-​fitting program such as Mx, we can formally determine which 
values for r2

A and r2
E give the best fit for the AE model and whether or not this fit is 

significantly worse than that of the saturated ACE model. Additionally, we can fit a CE 
model (which implies that any covariation between twins is not due to genetic factors) 
and an E model (which implies that there is no significant covariation between twins 
in any case). The results are presented in Table A.3, showing the optimized parameter 
values for the different models.

Because these models are not saturated, they cannot necessarily guarantee a per-
fect fit to the data. Adjusting one parameter to perfectly fit the MZ twin covariance 
pulls the DZ twin covariance or the variance estimate out of line, and vice versa. 
We see here that the AE model has estimated the variance and MZ covariance quite 

TABLE A . 2
Fit of AE Model to Three Parameter Value Sets

Parameters

Variance
MZ  

Covariance
DZ  

Covariances2
A s2

E

observed

— — 1.0 0.6 0.4

expected
0.6 0.4 1.0 0.6 0.3
0.7 0.3 1.0 0.7 0.35

0.8 0.2 1.0 0.8 0.4
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accurately in selecting the optimized parameters r2
A 5 0.609 and r2

E 5 0.382 but the 
expected DZ covariance departs substantially from the observed value of 0.4. But is 
this departure significant? The last two columns give the v2 and associated degrees of 
freedom (df) of the test. Because we have six observed statistics, from which we are esti-
mating two parameters under the AE model, we say that we have 6 2 2 5 4 degrees 
of freedom. The degrees of freedom therefore represent a measure of how simple or 
complex a model is — ​we need to know this when deciding which is the most parsi-
monious model. The E model, for example, estimates only one parameter and so has 
6 2 1 5 5 degrees of freedom.

The test of whether a nested, simpler model is more parsimonious is quite simple: 
We look at the difference in v2 goodness of fit between the two models. The difference 
in degrees of freedom between the two models is used to determine whether or not 
the difference in fit is significant. If the difference is significant, then we say that the 
nested submodel does not provide a good account of the data when compared with 
the goodness of fit of the fuller model. The v2 statistics calculated in our example in 
Table A.3 are dependent on sample size — ​these figures are based on 150 MZ twins 
and 150 DZ twins.

The ACE model estimates three parameters from the six observed statistics, so 
it has three degrees of freedom; the v2 is always 0.0 because the model is saturated. 
Therefore, the difference in fit between the ACE and AE models is 1.91 2 0 5 1.91 
with 4 2 3 5 1 degree of freedom. Looking up this v2 value in significance tables 
tells us that it is not significant at the p 5 0.05 level (in fact, p 5 0.17). A p value 
lower than 0.05 indicates that the observed results would be expected to arise less 
than 5 percent of the time by chance alone, if there were in reality no effect. This is 
commonly accepted to be sufficient evidence to reject a null hypothesis, which states 

TABLE A .3
Best-Fit Univariate Parameter Estimates

Parameters Variance
MZ  

Covariance
DZ  

Covariance x2 df  a

AE Model
s2

A s2
E

0.609 0.382 0.991 0.609 0.304 1.91 4

CE Model
s2

C s2
E

0.5 0.5 1.000 0.500 0.500 6.75 4

E Model s2
E

1.000 1.000 0.000 0.000 92.47 5
adf, degrees of freedom.
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that no effect is present. Therefore, because the AE model does not show a signifi-
cant reduction in fit relative to the ACE model, this result provides evidence that the 
shared environment is not important (i.e., that r2

C is not substantially greater than 
0.0) for this trait.

What about the CE and E models, though? The CE model fit is reduced by a v2 
value of 6.75, also for a gain of one degree of freedom. This reduction in fit is signif-
icant at the p 5 0.05 level (p 5 0.0093). This significant reduction in goodness of fit 
suggests that additive genetic effects are important for this trait (i.e., that r2

A . 0.0). 
Unsurprisingly, the E model shows an even greater reduction in fit (Dv2 5 92.47 for two 
degrees of freedom: p , 0.00001), thus confirming the obvious fact that the members of 
both types of twins do in fact show a reasonable degree of resemblance to each other.

2.2.7 Path analysis  The kind of model fitting we have described so far is intimately 
related to a field of statistics called path analysis. Path analysis provides a visual and 
intuitive way to describe and explore any kind of model that describes some observed 
data. The paths, drawn as arrows, reflect the statistical effect of one variable on another, 
independent of all the other variables — ​what are called partial regression coefficients. 
The variables can be either measured traits (squares) or the latent (unmeasured; circles) 
variance components of our model. The twin ACE model can be represented as the 
path diagram in Figure A.9.

The curved, double-​headed arrows between latent variables represent the covar-
iance between them. The 1.0/0.5 on the covariance link between the two A latent 
variables indicates that for MZ twins, this covariance link is 1.0; for DZ twins, 0.5. 
The covariance links between the C and E terms therefore represent the previously 

FIGURE A.9 ACE path diagram. This path diagram is equivalent to the matrix formulation of the 
ACE model. Path coefficients (a, c, and e) rather than variance components (which are assumed 
to be 1) are estimated.
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defined sharing of these variance components between twins (i.e., no link implies a 
0 covariance). The double-​headed arrow loops on each latent variable represent the 
variance of that variable. In our previous model fitting, we estimated the variances of 
these latent variables, calling them r2

A, r2
C, and r2

E. In our path diagram, we have 
fixed all the variances to 1.0. Instead, we estimate the path coefficients, which we have 
labeled as a, c, and e. The differences here are largely superficial: The diagram and the 
previous models are mathematically identical.

To understand a path diagram and how it relates to the kind of models we have 
discussed, we need to acquaint ourselves with a few basic rules of path analysis. The 
covariance between two variables is represented by tracing along all the paths that 
connect the two variables. There are certain rules about the directions in which paths 
can or cannot be traced, how loops in paths are dealt with, and so on, but the prin-
ciple is simple. For each path, we multiply all the path coefficients together with the 
variances of any latent variables traced through. We sum these paths to calculate the 
expected covariance. The variance for the first twin is therefore a (up the first path) 
times 1.0 (the variance of latent variable A) times a (back down the path) plus the same 
for the paths to latent variables C and E. This equals (a 3 1.0 3 a) 1 (c 3 1.0 3 c) 1  
(e 3 1.0 3 e) 5 a2 1 c2 1 e2. So instead of estimating the variance components, 
we have written the model to estimate the path coefficients. This approach is used 
for practical reasons (e.g., it means that estimates of variance always remain positive, 
being the square of the path coefficient). The covariance between twins is derived in a 
similar way. When we trace the two paths between the twins, we get (a 3 1.0 3 a) 1  
(c 3 1.0 3 c) for MZ twins and (a 3 0.5 3 a) 1 (c 3 1.0 3 c) for DZ twins. That is, 
a2 1 c2 for MZ twins and 0.5a2 1 c2 for DZ twins, as before.

So we have seen how a properly constructed path diagram implies an expected 
variance-​covariance (or correlation) matrix for the observed variables in the model. As 
noted, it is standard for the parameters in path diagrams to be path coefficients instead 
of variance components, although, for most basic purposes, this substitution makes very 
little difference. Any path diagram can be converted into a model that can be written 
down as algebraic terms in the elements of variance-​covariance matrices, and vice versa.

2.2.8 Multivariate analysis  So far we have focused on the analysis of only one phe-
notype at a time. This method is often called a univariate approach — ​studying the 
genetic-​environmental nature of the variance of one trait. If multiple measures have 
been assessed for each individual, however, a model-​fitting approach easily extends to 
analyze the genetic-​environmental basis of the covariance between multiple traits. Is, for 
example, the correlation between depression and anxiety due to genes that influence 
both traits, or is it largely due to environments that act as risk factors for both depres-
sion and anxiety? If we think of a correlation as essentially reflecting shared causes 
somewhere in the etiological pathways of the two traits, multivariate genetic analysis 
can tell us something about the nature of these shared causes. The development of 
multivariate quantitative genetics is one of the most important advances in behavioral 
genetics during the past two decades.
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The essence of multivariate genetic analysis is the analysis of cross-​covariance in 
relatives. That is, we can ask whether trait X is associated with another family mem-
ber’s trait  Y.  Path analysis provides an easy way to visualize multivariate analysis. 
The path diagram for a multivariate genetic analysis of two measures is shown in 
Figure  A.10. The new parameters in this model are rA, rC, and rE.  These symbols 
represent the genetic correlation, the shared environmental correlation, and the nonshared 
environmental correlation, respectively. A genetic correlation of 1.0 would imply that all 
additive genetic influences on trait X also impact on trait Y. A shared environmental 
correlation of 0 would imply that the environmental influences that make twins more 
similar on measure X are independent of the environmental influences that make 
twins more similar on measure Y. The phenotypic correlation between X and Y can 
therefore be dissected into genetic and environmental constituents. A high genetic 
correlation implies that if a gene were found for one trait, there is a reasonable chance 
that this gene would also influence the second trait.

Multivariate analysis can model more than two variables — ​as many measures 
as we wish can be included. In matrix terms, instead of modeling a 2 3 2 matrix, we 
model a 2n 3 2n matrix, where n is the number of variables in the model. In a bivar-
iate case, if we call the measures X and Y in Twins 1 and 2 (such that X1 represents 
measure X for Twin 1), then the variance-​covariance matrix would be

Var(
Cov( Var(
Cov( Cov( Va

1

1 2

1 1 2 1

X
X X X
X Y X Y

)
) )
) )

2

rr(
Cov( Cov( Cov( Var(

1

1 2 2 2 1 2 2

Y
X Y X Y YY Y

)
) ) ) )
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FIGURE A.10  Multivariate ACE path diagram. This path diagram represents a multivariate ACE 
model. The expected variance-covariance matrix (given in Table A.4) can be derived from this 
diagram by tracing the paths.
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giving us ten unique pieces of information. Along the diagonal, we have four 
variances — ​each measure in each twin. The terms Cov(X1Y1) and Cov(X2Y2) are the 
phenotypic covariances between X and Y for the first and second twin, respectively. 
The terms Cov(X1X2) and Cov(Y1Y2) are the univariate cross-​twin covariances; the 
final two terms Cov(X1Y2) and Cov(X2Y1) are the cross-​twin cross-​trait covariances.

The corresponding multivariate ACE model for the expected variance-​covariance 
matrix would be written in terms of univariate parameters as before (three parameters 
for measure X and three for measure Y ) as well as three parameters for the genetic, 
shared environmental, and nonshared environmental correlations between the two 
measures (where G is the coefficient of relatedness; i.e., either 1.0 or 0.5 for MZ or DZ 
twins). Table A.4 presents the elements of this matrix in tabular form.

The shaded area in Table A.4 represents the cross-​trait part of the model, which 
looks more complex than it really is. In path diagram terms, the phenotypic (within-​
individual) cross-​trait covariance results from three paths. The first path includes the 
additive genetic path for measure X (aX) multiplied by the genetic correlation between 
the two traits (rA) and the additive genetic path for measure Y (aY). The shared envi-
ronmental and nonshared environmental paths are constructed in a similar way. The 
cross-​twin cross-​trait correlations are identical, except that there are no nonshared 
environmental components (by definition) and there is a coefficient of relatedness, G, 
to determine the magnitude of shared additive genetic variance for MZ and DZ twins. 
Be careful in the interpretation of a nonshared environmental correlation; remember that 
this term means nonshared between family members, not trait-​specific. Any environ-
mental effect that family members do not have in common and that influences more 
than one trait will induce a nonshared environmental correlation between these traits.

TABLE A .4
Variance-Covariance Matrix for a Multivariate Genetic Model

Twin 1  
Measure X

Twin 2  
Measure X

Twin 1  
Measure Y

Twin 2  
Measure Y

Twin 1 
Measure X

a2
X 1 c2

X 1 e2
X

Twin 2 
Measure X

Ga2
X 1 c2

X a2
X 1 c2

X 1 e2
X

Twin 1 
Measure Y

rAaXaY 1 
rCcXcY 1 
rEeXeY

GrAaXaY 1 
rCcXcY

a2
Y 1 c2

Y 1 e2
Y

Twin 2 
Measure Y

GrAaXaY 1 
rCcXcY

rAaXaY 1 
rCcXcY 1 
rEeXeY

 
Ga2

Y 1 c2
Y

 
a2

Y 1 c2
Y 1 e2

Y
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Genetic, shared environmental, and nonshared environmental correlations are 
independent of univariate heritabilities. That is, two traits might both have low her-
itabilities but a high genetic correlation. This would mean that, although there are 
probably only a few genes of modest effect that influence both these traits, whichever 
gene influences one trait is very likely to influence the other trait also. In this way, the 
analysis of these three etiological correlations can begin to tell us not just whether two 
traits are correlated but also why they are correlated.

Imagine that we have measured three traits, X, Y, and Z, in a sample of MZ and 
DZ twins (400 MZ pairs, 400 DZ pairs). What might a multivariate genetic analysis be 
able to tell us about the relationships between these traits? Looking at the phenotypic 
correlations, we observe that each trait is moderately correlated with the other two:

1 00
0 42 1 00
0 30 0 45 1 00

.
. .
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Naturally, we would be interested in the twin correlations for these measures — ​
both the univariate and cross-​trait twin correlations. For MZ twins, we might observe
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whereas for DZ twins, we might see
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The twin correlations along the diagonal therefore represent univariate twin 
correlations. For example, we can see that the correlation between MZ twins for trait 
Y is 0.91. The off-​diagonal elements represent the cross-​twin cross-​trait correlations. 
For example, the correlation between an individual’s trait X with their co-​twin’s trait 
Y is 0.23 for DZ twins. Submitting our data to formal model-​fitting analysis gives 
optimized estimates for the univariate parameters (heritability, proportion of variance 
attributable to shared environment, proportion of variance attributable to nonshared 
environment) shown in Table A.5.

That is, traits X and Y both appear to be strongly heritable. Trait Z appears less 
heritable, although one-​fourth of the variation in the population of twins is still due 
to genetic factors. The more interesting results emerge when the multivariate struc-
ture of the data is examined. The best-​fitting parameter estimates for the genetic 
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correlation matrix, the shared environment correlation matrix, and the nonshared 
environment correlation matrix, respectively, are presented in the following matrices:
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These correlations tell an interesting story about the underlying nature of the 
association between the three traits. Although on the surface, traits X, Y, and Z appear 
to be all moderately intercorrelated, behavioral genetic analysis has revealed a nonu-
niform pattern of underlying genetic and environmental sources of association.

The genetic correlation between traits Y and Z is high (rA 5 0.75), so any genes 
impacting on Y are likely to also affect Z, and vice versa. The contribution of shared 
genetic factors to the phenotypic correlation between two traits is called the bivariate 
heritability. This statistic is calculated by tracing the genetic paths that contribute to 
the phenotypic correlation: in this case, aY and rA (Y-​Z correlation) and aZ. In other 
words, the bivariate heritability is the product of the square root of both univariate 
heritabilities multiplied by the genetic correlation. In the case of traits Y and Z, this 
statistic equals 0 60.  3 0.75 3 0 23.  5 0.28. As shown in an earlier matrix, the phe-
notypic correlation between traits Y and Z is 0.45. Therefore, over half (62 percent 5 
0.28/0.45) of the correlation between traits Y and Z can be explained by shared genes. 
Note that we take the square root of the univariate heritabilities because, in path anal-
ysis terms, we only trace up the path once — ​in calculating the univariate heritability, 
we would come back down that path, therefore squaring the estimate.

The same logic can be applied to the environmental influences. Focusing on 
traits Y and Z, tracing the paths for shared and nonshared environmental influences 

TABLE A .5
Best-Fit Univariate Parameter Estimates

Trait

Optimized Estimate (%)a

h2 c2 e2

X 74 4 22
Y 60 31 9
Z 23 47 30
ah2, heritability or additive genetic variance; c2, shared environmental 
variance; e2, nonshared environmental variance.
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yields values of 0.10 ( 0 31.  3 0.26 3 0 47. ) and 0.07 ( 0 09.  3 0.46 3 0 30. ) 
for the bivariate estimates. Note that these add up to the phenotypic correlation, as 
expected (0.28 1 0.10 1 0.07 5 0.45).

In contrast, the correlation between traits X and Z (r 5 0.30) is not predomi-
nantly mediated by shared genetic influence: 0 74.  3 0.11 3 0 23.  5 0.04; only 
13 percent of this phenotypic correlation is due to genes.

An interesting aspect of this kind of analysis is that it could potentially reveal a 
strong genetic overlap between two heritable traits even when the phenotypic correla-
tion is near 0. This scenario could arise if there were, for example, a negative nonshared 
environmental correlation (i.e., certain environments [nonshared between family 
members] tend to make individuals dissimilar for two traits). Consider the following 
example: Two traits both have univariate heritabilities of 0.50 and no shared envi-
ronmental influences, so the nonshared environment will account for the remaining 
50 percent of the variance. If the traits had a genetic correlation of 0.75 but a nonshared 
environmental correlation of 20.75, then the phenotypic correlation would be 0. The 
phenotypic correlation is the sum of the chains of paths ( 0 5.  3 0.75 3 0 5. ) 1  
( 0 5.  3 20.75 3  0 5. ) 5 0.0. This example shows that the phenotypic correlation 
by itself does not necessarily tell you very much about the shared etiologies of traits.

The preceding model is just one form of multivariate model. Different mod-
els that make different assumptions about the underlying nature of the traits can be 
fitted to test whether a more parsimonious explanation fits the data. For example, 
the common-​factor independent-​pathway model assumes that each measure has specific 
(subscript “S”) genetic and environmental effects as well as general (subscript “C”) 
genetic and environmental effects that create the correlations between all the meas-
ures. Figure  A.11 shows a schematic path diagram for a three-​trait version of this 
model. (Note: The diagram represents only one twin for convenience — ​the full model 
would have the three traits for both twins and the A and C latent variables would have 
the appropriate covariance links between twins.) In this path diagram, the general 
factors are at the bottom.

A similar but more restricted model, the common-​factor common-​pathway model, 
assumes that the common genetic and environmental effects load onto a latent 
variable, L, that in turn loads onto all the measures in the model. This model is said 
to be more restricted in that, because fewer parameters are estimated, the expected 
variance-​covariance is not as free to model any pattern of phenotypic, cross-​twin 
same-​trait and cross-​twin cross-​trait, correlations. Figure A.12 represents this model 
(again, for only one twin).

The common-​factor independent-​pathway model is nested in the more general 
multivariate model presented earlier; the common-​factor common-​pathway model 
is nested in both. These models can therefore be tested against each other to see 
which provides the most parsimonious explanation of the observations. Note that 
these multivariate models can also vary in terms of whether they are ACE, ADE, CE, 
AE, or E models.
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FIGURE A.11  Common-factor independent-pathway multivariate path diagram. This is a partial 
diagram, for one twin. A, additive genetic effects; C, shared environmental effects; E, nonshared 
environmental effects; S (subscript), specific effects; C (subscript), general effects.

FIGURE A.12  Common-factor common-pathway multivariate path diagram. This is a partial dia-
gram, for one twin. A, additive genetic effects; C, shared environmental effects; E, nonshared 
environmental effects; S (subscript), specific effects; C (subscript), general effects; L, latent 
variable.
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A more specific form of multivariate model that has received a lot of interest is the 
longitudinal model. This model is appropriate for designs that take repeated measures 
of a trait over a period of time (say, IQ at 5, 10, 15, and 20 years of age). Such models 
can be used to unravel the etiology of continuity and change in a trait over time and are 
especially powerful for studying the interaction of genetic makeup and environment.

2.2.9 Complex effects including gene-​environment interaction  For the sake of 
simplicity (and parsimony), all the ACE-​type models we have looked at so far have 
made various assumptions about the nature of the genetic and environmental influ-
ences that operate on the trait. Nature does not always conform to our expectations, 
however. In this section, we will briefly review some of the “complexities” that can be 
incorporated into models of genetic and environmental influence.

As mentioned earlier, an important feature of the model-​fitting approach is that, 
as well as being flexible, it tends to make the assumptions of the model quite apparent. 
One such assumption is the equal environments assumption that MZ and DZ twins 
receive equally similar environments (see Chapter 6). The assumption is implicit in 
the model — ​we estimate the same parameter for shared environmental effects for 
MZ and DZ twins. This assumption might not always be true in practice. Can we 
account for potential inequalities of environment in our model? Unfortunately, not 
without collecting more information. The model-​fitting approach is flexible, but it 
cannot do everything — ​this problem is an example of how experimental design and 
analysis should work hand-​in-​hand to tackle such questions. For example, research 
has compared MZ twins who have been mistakenly brought up as DZ twins, and vice 
versa, to study whether MZ twins are in fact treated more similarly, as indicated in 
Chapter 6.

Another assumption of the models used so far is random mating in the popu-
lation. When nonrandom (or assortative) mating occurs (Chapter 11), then loci for 
a trait will be correlated between spouses. This unexpected correlation will lead to 
siblings and DZ twins sharing more than half their genetic variation, a situation that 
will bias the estimates derived from our models. In model fitting, the effects of assor-
tative mating can be modeled (and therefore accounted for) if appropriate parental 
information is gathered.

Covariance between relatives on any trait can arise from a number of different 
sources that are not considered in our basic models. As mentioned earlier, shared 
causation is not the only process by which covariation can arise. The phenotype of 
one twin might directly influence the phenotype of the other, for example, because the 
co-​twin is very much part of a twin’s environment. Having an aggressive co-​twin may 
influence levels of aggression as a result of the direct exposure to the co-​twin’s aggres-
sive behavior. Such an effect is called sibling interaction. In the context of multivariate 
analysis, it is possible that trait X actually causes trait Y in the same individual, rather 
than a gene or environment impacting on both. These situations can be modeled by 
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using fairly standard approaches. If such factors are important but are ignored in 
model fitting, they will bias estimates of genetic and environmental influence.

Another way in which the basic model might be extended is to account for 
possible heterogeneity in the sample. Genetic and environmental influences may be dif-
ferent for boys and girls on the same trait, or for young versus old people. Heritability 
is only a sample-​based statistic: A heritability of 70 percent means that 70 percent of 
the variation in the sample can be accounted for by genetic effects. This outcome could 
be because the trait is completely heritable in 70 percent of the sample and not at all 
heritable in 30 percent. Such a sample would be called heterogeneous — ​there is some-
thing different and potentially interesting about the 30 percent that we may wish to 
study. The standard model-​fitting approaches we have studied so far would leave the 
researcher oblivious to such effects.

To uncover heterogeneity, various approaches can be taken. Potential indices of 
heterogeneity (e.g., sex or age) can be incorporated into a model, for example. We 
could ask, Does heritability increase with age? Or we could test a model having sepa-
rate parameter estimates for boys and girls for genetic effects against the nested model 
with only one parameter for both sexes. Same-​sex and opposite-​sex DZ twins can 
be modeled separately to test for quantitative and qualitative etiological differences 
between males and females. This design is called a sex-​limitation model, and it can ask 
whether the magnitude of genetic and environmental effects are similar in males and 
females. Additionally, such designs are potentially able to test whether the same genes 
are important for both sexes, irrespective of magnitude of effect.

Other complications include nonadditivity, such as epistasis, gene-​environment 
interaction, and gene-​environment correlation. These three types of effects were 
defined under the preceding biometric model section. Epistasis is any gene-​gene 
interaction; G 3 E interaction is the interaction between genetic effects and 
environments; G-​E correlation occurs when certain genes are associated with 
certain environments. As an example of epistasis, imagine that an allele at locus 
A only predisposes toward depression if that individual also has a certain allele at 
locus B. As an example of gene-​environment interaction, the allele at locus A may 
have an effect only for individuals living in deprived environments. These types of 
effects complicate model fitting because there are many forms in which they could 
occur. Normal twin study designs do not offer much hope for identifying them. 
An MZ correlation that is much higher than twice the DZ correlation would be 
suggestive of epistasis, but the models cannot really go any further in quantifying 
such effects.

Although model fitting can often be extended to incorporate more complex 
effects, it is not generally possible to include all these “modifications” at the same 
time. Successful approaches will typically select specific types of models that should 
be fitted a priori, on the basis of existing etiological knowledge of the traits under 
study.
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One exciting development in model fitting involves incorporating measured var-
iables for individuals into the analysis. Measuring alleles at specific loci, or specific 
environmental variables, makes the detection of specific, complex, interactive effects 
feasible, as well as forming the basis for modern techniques for mapping genes, as we 
will review in the final section.

2.2.10 Environmental mediation  Behavioral genetic studies have convincingly 
dem​onstrated that genes play a significant role in many complex human traits 
and diseases. As a result, rather than just estimating heritability and other genetic 
quantities of interest, an increasingly important application of genetically informa-
tive designs, such as the twin study, is to shed light on the nature of environmental  
effects.

Although we might know that an environment and an outcome show a statisti-
cal correlation, we often do not understand the true nature of that association. For 
example, an association might be causal if the environment directly affects the out-
come. Alternatively, the association might only arise as a reflection of some other 
underlying shared, possibly genetic, factor that influences both environment and the 
outcome. As illustrated in detail in Chapter 8, many “environmental” measures do 
indeed show genetic influence. By using a genetically informative design to control 
for genetic factors, researchers are able to make stronger inferences about environ-
mental factors. A simple but powerful design is to focus on environmental measures 
that predict phenotypic differences between MZ twins.

2.2.11 Extremes analysis  When we partition the variance of a trait into portions 
attributable to genetic or environmental effects, we are analyzing the sources of indi-
vidual differences across the entire range of the trait. When looking at a quantitative 
trait, we may be more interested in one end, or extreme, of that trait. Instead of asking 
what makes individuals different for a trait, we might want to ask what makes indi-
viduals score high on that trait.

Consider a trait such as reading ability. Low levels of reading ability have clinical 
significance; individuals scoring very low will tend to be diagnosed as having read-
ing disability. We may want to ask what makes people reading disabled, rather than 
what influences individuals’ reading ability. We could perform a qualitative analysis 
where the dependent variable is simply a Yes or a No to indicate whether or not indi-
viduals are reading disabled (i.e., low scoring). If we have used a quantitative trait 
measure (such as a score on a reading ability task) that we believe to be related to 
reading disability, we may wish to retain this extra information. Indeed, we can ask 
whether reading disability is etiologically related to the continuum of reading ability 
or whether it represents a distinct syndrome. In the latter case, the factors that tend 
to make individuals score lower on a reading ability task in the entire population will 
not be the same as the factors that make people reading disabled. A regression-​based 
method for analyzing twin data, DF (DeFries-​Fulker) extremes analysis, addresses 
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such questions, by analyzing means as opposed to variances. The methodology for DF 
extremes analysis is described in Chapter 12.

3 MOLECULAR GENETICS
Mapping genes for quantitative traits (quantitative trait loci, or QTLs) and diseases 
is a fast-​developing area in behavioral genetics. The goal is to identify either the 
chromosomal region in which a QTL resides (via linkage analysis) or to pinpoint the 
specific variants or genes involved (via association analysis). The starting point for both 
of these molecular genetic approaches is to collect DNA, either from families or 
samples of unrelated individuals, and directly measure the genotype (one or more 
variants) to study their relationship with the phenotype. The process of measuring 
genotypes is called genotyping, where we obtain the genotype for one or more markers 
(DNA variants) in each individual. Genotyping technology has evolved rapidly over 
the past few decades: Whereas early studies might have considered only a handful of 
markers, modern molecular genetic studies can now genotype a million variants or 
more in genomewide association studies, the current state-​of-​the-​art.

Here we will briefly review the two complementary techniques of linkage and 
association analysis. Linkage tests whether or not the pattern of inheritance within 
families at a specific locus correlates with the pattern of trait similarity. Association, 
on the other hand, directly tests whether specific alleles at specific markers are cor-
related with increased or decreased scores on a trait or with prevalence of disease.

Although there are other molecular techniques that can be applied to complex 
behavioral traits, we restrict our focus in this section to approaches that correlate 
genotype marker data to phenotype. Other approaches not covered here include 
expression analysis using microarrays (to see whether patterns of gene expression, the 
amount of RNA produced in particular cell types, is related to phenotype), DNA 
sequencing (to study a region’s entire DNA code for each individual, for example, to 
see whether rare mutations, that are not represented by common, polymorphic mark-
ers, are related to phenotype), and epigenetics (looking at features of the genome other 
than the standard inherited variation of DNA bases, such as methylation patterns).

3.1 Linkage Analysis
As described in Chapter 3, Mendel coined two famous “laws,” based on his studies 
with garden peas. His first law, the “law of segregation,” basically states that each 
person gets a paternal and a maternal copy of each gene, and which copy they pass on 
to each of their offspring is random. His second law, the “law of independent assort-
ment,” further states that which copy (i.e., the paternal or maternal) of a particular 
gene an individual passes on to his or her child does not depend on which copy of any 
other gene is passed on. In other words, Mendel believed that the transmission of any 
two genes is statistically independent, in the same way two coin tosses are, implying 
four equally likely possible combinations.



3 7 4   A P P E N D I X

Mendel did not get it 100 percent right, however. There is an important excep-
tion, which is when the two genes, let’s call them A and B, are close to each other on 
the same chromosome. In this case, we would say that A and B are linked or in linkage. 
Importantly, we can exploit the property of linkage (that nearby genes tend to be 
cotransmitted from a parent to its offspring) to localize genes that affect phenotypes, 
in linkage analysis, as described below.

3.1.1 Patterns of gene flow in families  If genes A and B were on different chromo-
somes, then Mendel’s second law would hold. But consider what happens when they 
are not, as shown in Figure A.13. This figure shows a possible set of transmissions 
from a father and mother to their child for a stretch of this chromosome, which con-
tains both genes A and B, very close to each other. For this whole region, the father 

FIGURE A.13  Recombination of chromosomes during meiosis.
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transmits to his child the copy he received from his own father. In contrast, we see 
that during meiosis (the process of forming the sex cells) the mother’s paternal and 
maternal chromosomes have experienced a recombination event, such that the mother 
transmits a mosaic of her own mother’s and father’s chromosomes.

Whether or not a recombination occurs at any one position is more or less a 
random process. Importantly, the farther away two points on a chromosome are, the 
more likely they are to be separated by a recombination event (technically, separated 
by an odd number of recombination events, as more than one can occur per chromosome). 
Two genes that are very close to each other on the same chromosome will tend not 
to be separated by recombination, however, and so they will tend to be cotransmitted 
from parent to offspring (i.e., either both are transmitted, or neither is). As mentioned 
above, this tendency is called linkage.

3.1.2 Genome scans using linkage  But what is the relevance of linkage to gene 
mapping? How does it help us find genes that influence particular phenotypes? First, 
linkage analysis has been centrally important in creating maps of the genome: By 
studying whether or not particular DNA variants are cotransmitted in families, 
researchers were able to infer the relative order and positions of these markers along 
each chromosome. Second, linkage analysis can help to detect genotype-​phenotype 
correlations. Instead of considering markers at two genes, A and B, it is possible to 
consider linkage between a marker and a phenotype. If the marker and the phenotype 
are similarly cotransmitted in families, we can infer the presence of a phenotype-​
influencing gene that is linked to the marker.

A typical linkage analysis might involve genotyping a couple of hundred highly 
informative microsatellite markers (ones with many alleles) spaced across the genome, 
in a collection of families with multiple generations or multiple offspring. Often, the 
markers that are tested are not themselves assumed to be functional for the trait — ​
they are merely selected because they are polymorphic in the population. The mark-
ers are used to statistically reconstruct the pattern of gene flow within these families 
for all positions along a chromosome. Such a study, often called a genome scan, provides 
an elegant way to search the entire genome for regions that might harbor phenotype-​
related genes. For disease traits, the simplest form of linkage analysis is to consider 
families with at least two affected siblings. If a region is linked with disease, we would 
expect the two siblings to have inherited the exact same stretch of chromosome from 
their parents more often than expected by chance, as a consequence of their sharing 
the same disease.

In practice, there are many complexities and many flavors of linkage analy-
sis (e.g., for larger families, for continuous as well as disease traits, using different 
statistical models and assumptions, including variance components frameworks as 
described above that also incorporate marker data). Classical (parametric) linkage 
analysis relies on small numbers of large families (pedigrees) and explicitly models 
the distance between a test marker locus and a putative disease locus. The term disease 
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locus (as opposed to QTL) reflects the fact that classical linkage is primarily concerned 
with mapping genes for dichotomous disease-​like traits. Classical linkage requires 
that a model for the disease locus be specified a priori, in terms of allelic frequencies 
and mode of action (recessive or dominant). Figure A.14 shows an example of a ped-
igree in which a dominant gene is causing disease.

The approach of classical linkage is not so well suited to complex traits, however, 
for it is hard to specify any one model if we expect a large number of loci of small 
effect to impact on a trait. The alternative, nonparametric, or allele sharing, approach 
to linkage simply tests whether allele sharing at a locus correlates with trait similarity, 
as described above for affected sibling pairs. For quantitative traits, linkage analysis is 
often performed in nuclear families using a variance components framework similar to 
that described above for twin analysis. Using marker data, we can partition a sample of 
sibling pairs into those that share 0, 1, or 2 copies of the exact same parental DNA at 
any particular position along each chromosome. If the test locus is linked to the trait, 
then the sibling correlation should increase with the amount of sharing. Considering 
any one position, it is as if we are effectively splitting the siblings into unrelated pairs 
(those sharing 0 at that particular position), parent-​offspring pairs (those sharing 1) and 
MZ twins (those sharing 2) and fitting the kind of quantitative genetic model described 
above, comparing these groups in the same way we compare MZ and DZ twins.

In general, linkage analysis has proven spectacularly successful in mapping many 
rare disease genes of large effect (for example, see Chapters 9 and 12). For many com-
plex traits (which are often highly heritable but not influenced by only one or two 
major genes), linkage analysis has been less directly useful. Although linkage analysis 
can effectively search the entire genome with a relatively small number of markers, it 
lacks power to detect genes of small effect and has limited resolution. In many cases, 
collecting enough informative families might also be difficult.

D/* 

D/* 

D/* 

D/* 

*/* */* 

*/* */* 

*/* 

FIGURE A.14  A pedigree for a dominant disease (D) allele transmitted by the father. The  
asterisks refer to alleles other than D.
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3.2 Association Analysis
Over the past decade, association analysis has become the approach of choice for many 
researchers attempting to map genes of small effect for complex traits. In many ways, 
association analysis asks a simpler question compared to linkage analysis. Whereas 
linkage analysis dissects patterns of genotypic and phenotypic sharing between 
related individuals, association analysis directly tests whether there is a genotype-​
phenotype correlation. Association is typically more powerful than linkage analysis 
to detect small effects, but it is necessary to genotype a much greater number of 
markers to cover the same genomic area. Traditionally, researchers would tend to 
restrict association analysis to a few “candidate” genes, or regions of the genome 
implicated by previous linkage studies. Modern advances in genotyping technology, 
which allow a million or more markers to be genotyped per individual, have made 
very large scale studies feasible.

3.2.1 Population-​based association analysis  Imagine that a particular gene with 
two alleles, A1 and A2, is thought to be a QTL for a quantitative measure of cognitive 
ability. To test this hypothesis, a researcher might collect a sample of unrelated indi-
viduals, measured for this phenotype and genotyped for this particular locus (so we 
know whether an individual has A1A1, A1A2, or A2A2 genotype), and then ask whether 
the phenotype depends on genotype. The actual analysis might be a regression of 
phenotype (the dependent variable) on genotype (the independent variable, coded as 
the number of A1 alleles an individual has, i.e., 0, 1, or 2). Similarly, if the phenotype 
was, instead, a disease, one might perform a case-​control study in which a sample of 
cases (people with a particular disease, for example) are ascertained along with a con-
trol sample (people without the disease, but ideally who are otherwise well-​matched 
to the case sample). If the frequency of a particular allele or genotype is significantly 
higher (or lower) in cases relative to controls, one would conclude that the gene shows 
an association with disease. For example, as discussed in Chapter 19, the frequency 
of the ApoE4 allele of the gene that encodes apolipoprotein E is about 40 percent in 
individuals with Alzheimer disease and about 15 percent in controls.

Consider the following example of a disease-​based association analysis. The 
basic data for a single biallelic marker can be presented in a 3 3 2 contingency table 
of disease status by genotype. In this case, the cell counts refer to the number of indi-
viduals in each of the six categories.

	 Case	 Control

A1A1	 64	 41

A1A2	 86	 88

A2A2	 26	 42

One could perform a test of association based on a chi-​squared test of inde-
pendence for a contingency table. Often, however, such data are instead collapsed 
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into allele counts, as opposed to genotype counts. In this case, each individual con-
tributes twice (if the marker is autosomal): A1A1 individuals contribute two A1 alleles, 
A2A2 individuals contribute two A2 alleles, and A1A2 individuals contribute one of 
each. The 2 3 2 contingency table now represents the number of “case alleles” and 
“control alleles.” A test based on this table implicitly assumes a simple dosage model 
for the effect of each allele, which will be more powerful, if true, than a genotypic 
analysis.

	 Case	 Control

A1	 64 3 2 1 86 5 214	 41 3 2 1 88 5 170

A2	 26 3 2 1 86 5 138	 42 3 2 1 88 5 172

Pearson’s chi-​squared statistic for this table is 8.63 (which has an associated p-​value 
of 0.003, as this is a 1 degree of freedom test). Standard statistical software packages 
can be used to calculate this kind of association statistic. Often the effect will be 
described as an odds ratio, where a value of 1 indicates no effect, a value significantly 
greater than 1 represents a risk effect (of A1 in this case), and a value significantly  
less than 1 represents a protective effect. If the four cells of a 2 3 2 table are labeled 
a, b, c and d :

	 Case	 Control

A1	 a	 c

A2	 b	 d

then the odds ratio is calculated ad/bc. In this example, the odds ratio is therefore 
(214 3 172)/(138 3 170) 5 1.57, indicating that A1 increases risk for disease. For many 
complex traits, researchers expect very small odds ratios, such as 1.2 or 1.1, for indi-
vidual markers; such small effects are statistically hard to detect. If the disease is rare, 
an odds ratio can be interpreted as a relative risk, meaning, in this example, that each 
extra copy of the A1 allele an individual possesses increases his or her risk of disease 
by a factor of 1.57. So if A2A2 individuals have a baseline risk of disease of 1%, then 
A1A2 individuals would have an expected risk of 1.57% and A1A1 individuals would 
have a risk of 1.57% 3 1.57% 5 2.46%.

3.2.2 Population stratification and family-​based association  In the previous sec-
tion, we noted that samples should be well-​matched. In any association study, it is 
particularly critical that samples be well-​matched in terms of ethnicity. Failure to 
adequately match can result in population stratification (a type of confounding) which 
causes spurious results in which between-​group differences confound the search for 
biologically relevant within-​group effects. For example, imagine a case/control study 
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where the sample actually comes from two distinct ethnic groups. Further, imagine 
that one group is overrepresented in cases versus controls (this might be because 
the disease is more prevalent in one group, or it might just reflect differences in how 
cases and controls were ascertained). Any gene that is more common in one of the 
ethnic groups than in the other will now show an obligatory statistical association 
with disease because of this third, confounding variable, ethnicity. Almost always, 
these associations will be completely spurious (i.e., the gene has no causal association 
with disease).

That correlation does not imply causation is, of course, a maxim relevant to any 
epidemiological study. But often in genetics we are less concerned with proving cau-
sality, per se, than we are with having useful correlational evidence (i.e., that could 
be used in locating a nearby causal disease gene, as described below in the section 
on indirect association). The problem with population stratification is that it will 
tend to throw up a very large number of red herrings that have absolutely no useful 
interpretation.

Luckily there are a number of ways to avoid the possible confounding due to 
population stratification in association studies. The most obvious is to apply sound 
experimental and epidemiological principles of randomization and appropriate sam-
pling protocols. Another alternative is to use families to test for association, as most 
family members are necessarily well-​matched for ethnicity. For example, for siblings 
discordant for Alzheimer disease, we would expect that the affected siblings would 
have a higher frequency of the ApoE4 allele of the gene encoding apolipoprotein E 
than would the unaffected members of the sibling pairs. Note that this is distinct from 
linkage analysis, which is based on sharing of chromosomal regions within families 
rather than testing the effects of specific alleles across families.

A common family-​based association design is the transmission/disequilibrium test 
(TDT), which involves sampling affected individuals and their parents; in effect, the 
control individuals are created as “ghost-​siblings” of cases, using the alleles that the 
parents did not transmit to their affected offspring. The test focuses only on parents 
who are heterozygous (e.g., have both an A1 and an A2 allele) and asks whether one 
allele was more often transmitted to affected offspring. If neither allele is associ-
ated with disease, we would expect 50:50 transmission of both alleles, as stated by 
Mendel’s first law.

Although family-​based association designs control against population stratifica-
tion (and allow for some other specific hypotheses to be tested, for example, imprint-
ing effects, in which the parental origin of an allele matters), they are in general 
less efficient, as more individuals must be sampled to achieve the same power as a 
population-​based design. Recently, due to the increasing ability to genotype large 
numbers of markers, another approach to population stratification has emerged. By 
using markers randomly selected from across the genome, it is possible to empirically 
derive and control for ancestry in population-​based studies using statistical methods.
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3.2.3 Indirect association and haplotype analysis  In linkage analysis, the actual 
markers tested are not themselves assumed to be functional; they are merely prox-
ies that provide information on the inheritance patterns of chromosomal regions. 
Similarly, in association analysis we do not necessarily assume the marker being 
tested is the functional, causal variant. This is because when we test any one marker, 
more often than not we are also implicitly testing the effects of surrounding markers, 
as alleles at nearby positions will be correlated at the population level. This phe-
nomenon is closely related to linkage, described above, and is in fact called linkage 
disequilibrium.

A correlation between markers at the population level means that knowing a 
person’s genotype at one marker tells you something about their genotype at a sec-
ond marker. This correlation between markers, or linkage disequilibrium, actually 
reflects our shared ancestry. Over many generations, recombination has rearranged 
the genome, but like an imperfectly shuffled deck of cards, some traces of the previ-
ous order still exist. Because we inherit stretches of chromosomes that contain many 
alleles, certain strings of alleles will tend to be preserved by chance. Unless these 
strings are broken by recombination, the strings of alleles that sit on the same chro-
mosomal stretch of DNA (called haplotypes) may become common at the population 
level. Considering three markers, A, B, and C (each with alleles coded 1 and 2), there 
may be only three common haplotypes in the population

A1 B1 C1	 80%

A2 B2  C2	 12%

A1 B2  C2	 8%

In this example, possessing an A2 allele makes you much more likely also to pos-
sess B2 and C2 alleles (100% of the time, in fact) than if you possess an A1 allele (now 
only 8/(8 1 80) 5 9% of the time). We would, therefore, say that marker A is in link-
age disequilibrium with B and C (and vice versa).

Linkage disequilibrium leads to indirect association; for example, if B were the 
true QTL, then performing an association analysis at A would still recover some of 
the true signal, due to the correlation in alleles, although it would be somewhat atten-
uated. In contrast, genotyping C instead of B would recover all the information, as it 
is a perfect proxy for B.

It is possible to use haplotype information in association analysis, by testing hap-
lotypes instead of genotypes. In the above example, we might ask whether the number 
of copies of the A2B2C2 haplotype that an individual possesses predicts the phenotype. 
By combining multiple markers in this way (called haplotype-​based association analysis), 
one can extract extra information without extra genotyping. For example, imagine a 
fourth, ungenotyped locus, D. In this case, the A1B2C2 haplotype is a perfect proxy for 
D (as it is completely correlated with the D2 allele) whereas none of the three original 
individual markers are.
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A1 B1 C1 D1	 80%

A2 B2  C2 D1	 12%

A1 B2  C2 D2	 8%

Any one individual will possess two of these haplotypes (one paternally, one 
maternally inherited), for example, A1B1C1 and A2B2C2 if we consider just the three 
genotyped markers. We do not usually observe haplotypes directly, however. Instead, 
we observe genotypes, which in this case would be A1A2 for the first marker, B1B2 for 
the second, and C1C2 for the last. As illustrated in Figure A.15, in themselves, geno-
types do not contain information about haplotypes, so it might not always be possible 
to determine unambiguously which haplotypes an individual has. (A particular com-
bination of genotypes might be compatible with more than one pair of haplotypes.) 
However, statistical techniques can be used to estimate the frequencies of the differ-
ent possible haplotypes, which in turn can be used to guess which pair of haplotypes 
is most likely given the genotypes for an individual (this process is called haplotype 
phasing).

3.2.4 The HapMap and genomewide association studies  In the example above, 
wouldn’t it have been great if we knew in advance that markers B and C were perfect 
proxies for each other, or that marker D could be predicted by a haplotype of A, B 
and C? Knowing that, we would probably not want to waste money genotyping all 
the markers, when genotyping a subset would give exactly the same information. In 
fact, now we usually do know in advance, thanks to the HapMap Project (http://www 
.hapmap.org/). This was a large, international survey of patterns of linkage disequi-
librium across the genome, performed in a number of different populations, focusing 
on single nucleotide polymorphisms (SNPs), the most common form of variation in 
the human genome. SNPs are biallelic markers, with the alleles being two of A, C, G 
and T (i.e., the four nucleotide bases of DNA).

For many common variants, the HapMap shows that there are lots of perfect 
proxies in the genome; that is, there is a lot of redundancy. This means that it is 
possible to measure almost all common variation in the human genome using a much 

FIGURE A.15 Observed genotypes and inferred haplotypes.

http://www.hapmap.org
http://www.hapmap.org
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smaller set of SNPs. This concept is called tagging and effectively determines how to 
optimally choose which markers to genotype.

Based on large-​scale genomic efforts such as the HapMap and new genotyping 
technologies, association analysis has recently been taken to its logical conclusion: the 
genomewide association study (GWAS, Chapter 9). As the name suggests, this involves 
genotyping hundreds of thousands of markers, usually in large case/control samples. 
The hope is that such studies combine the power of association analysis with the 
genomewide, unbiased coverage of the previous generation of linkage genome scans.



Websites

Associations

The Behavior Genetics Association, with links to 
its journal, Behavior Genetics:

http://www.bga.org/

The International Society for Twin Studies is an 
international, multidisciplinary scientific organi-
zation whose purpose is to further research and 
public education in all fields related to twins and 
twin studies. Its website is linked to the society’s 
journal, Twin Research and Human Genetics:

http://www.twinstudies.org/

The International Society of Psychiatric Genetics 
is a worldwide organization that aims to promote 
and facilitate research in the genetics of psychiat-
ric disorders, substance use disorders, and allied 
traits. With links to associated journals, Psychiatric 
Genetics and Neuropsychiatric Genetics:

http://www.ispg.net/

The American Society of Human Genetics, with 
links to its journal, American Journal of Human 
Genetics:

http://www.ashg.org/

The European Society of Human Genetics, with 
links to its journal, European Journal of Human 
Genetics:

http://www.eshg.org/

The Human Genome Organization (HUGO), the 
international organization of scientists involved in 
human genetics:

http://www.hugo-international.org/

The International Behavioral and Neural Genetics 
Society (IBANGS) works to promote the field of 
neurobehavioral genetics. With links to its journal 
Genes, Brain and Behavior:

http://www.ibngs.org/

The Psychiatric Genomics Consortium (PGC) 
conducts mega-​analyses of genomewide genetic 
data for psychiatric disorders. This website pro-
vides information about the organization, imple-
mentation, and results of the PGC.

http://www.med.unc.edu/pgc

Databases and Genome Browsers

EMBL-​EBI, the European Molecular Biology 
Laboratory’s (EMBL) European Bioinformatics 
Institute (EBI), is the European node for globally 
coordinated efforts to collect and disseminate bio-
logical data:

http://www.ebi.ac.uk/

NCBI, the National Center for Biotechnology 
Information, is the  U.S.  node of the European 
Bioinformatics Institute:

http://www.ncbi.nlm.nih.gov/

Ensembl, the EBI and Wellcome Trust Sanger 
Institute’s genome browser:

http://www.ensembl.org/

Gene Weaver, powered by the Ontological Discovery 
Environment, is a curated repository of genomic 
experimental results with an accompanying tool set 
for dynamic integration of these data sets, enabling 
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users to interactively address questions about sets of 
biological functions and their relations to sets of genes.

http://www.GeneWeaver.org

The genome browser maintained by the University 
of California Santa Cruz (UCSC) is an interactive 
open source website offering graphical access to 
genome sequence data from a variety of vertebrate 
and invertebrate species and major model organisms:

http://genome.ucsc.edu/

NCBI’s Online Mendelian Inheritance in Man 
(OMIM) database is a catalog of human genes and 
genetic disorders. The database contains textual 
information, pictures, and reference material:

http://www.ncbi.nlm.nih.gov/omim/

Phenotype Based Gene Analyzer (Phenolyzer) is a 
tool focusing on discovering genes based on user-​
specific disease/phenotype terms.

http://phenolyzer.usc.edu/

Resources

Behavioral Genetic Interactive Modules are based 
on the Appendix to this text by Shaun Purcell:
http://pngu.mgh.harvard.edu/purcell/bgim/

The OpenMx forum contains useful information 
on twin model fitting in Mx:

http://openmx.psyc.virginia.edu/forums/

R is a free software environment for statistical com-
puting and graphics. Bioconductor is an open source 
and open development software project for the 
analysis and comprehension of genomic data using 
the R environment:

http://www.r-project.org/

http://www.bioconductor.org/

The Jackson Laboratory, Mouse Genome Informatics, 
is an excellent resource for mouse genetics:

http://www.informatics.jax.org/

National Institutes of Health (NIH) Model 
Organisms for Biomedical Research provides 
the latest information on animal models used in 
genetic research:

http://www.nih.gov/science/models/

The DNA Learning Center of Cold Spring Harbor 
Laboratory is a science center devoted entirely to 
genetics and provides much information online, 
including an animated primer on the basics of 
DNA, genes, and heredity:

http://www.dnalc.org/

The Allen Brain Atlas is a collection of online pub-
lic resources integrating extensive gene expression 
and neuroanatomical data, with a novel suite of 
search and viewing tools:

http://www.brain-map.org/

The GWAS Catalog is a catalog of published 
genomewide association studies:

http://www.ebi.ac.uk/gwas/

Microarray Technology

Affymetrix and Illumina are two of the leading 
suppliers of microarray technology:

http://www.affymetrix.com/estore/

http://www.illumina.com/

Public Understanding of Genetics

Your Genome is a website, curated by the 
Wellcome Trust’s Sanger Institute, that is intended 
to help people understand genetics and genomic 
science and its implications:

http://www.yourgenome.org/

The Genetic Science Learning Center is an out-
reach education program at the University of Utah. 
Its aim is to help people understand how genetics 
affects their lives and society. This is an introduc-
tory guide to molecular genetics:

http://learn.genetics.utah.edu/

The Genetics Home Reference provides 
consumer-​friendly information about the effects of 
genetic variations on human health:

http://ghr.nlm.nih.gov/

Information about genetic counseling is available 
from the website of the National Society of Genetic 
Counselors:

http://www.nsgc.org/
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Glossary

active genotype-​environment corre-
lation A correlation between genetic and 
environmental influences that occurs when 
individuals select or construct environments 
with effects that covary with their genetic 
propensities.

additive genetic variance Individual dif-
ferences caused by the independent effects 
of alleles or loci that “add up.” In contrast 
to nonadditive genetic variance, in which the 
effects of alleles or loci interact.

adoption studies A range of studies that 
use the separation of biological and social 
parentage brought about by adoption to 
assess the relative importance of genetic and 
environmental influences. Most commonly, 
the strategy involves a comparison of adop-
tees’ resemblance to their biological parents, 
who did not rear them, and to their adoptive 
parents. May also involve the comparison of 
genetically related siblings and genetically 
unrelated (adoptive) siblings reared in the 
same family.

adoptive siblings Genetically unrelated 
children adopted by the same family and 
reared together.

affected sib-​pair linkage design A QTL 
linkage design that involves pairs of siblings 
who meet criteria for a disorder. Linkage 
with DNA markers is assessed by allele shar-
ing within the pairs of siblings — whether 

they share 0, 1, or 2 alleles for a DNA marker. 
(See Box 9.2.)

allele An alternative form of a gene at a 
locus, for example, A1 versus A2.

allele sharing Presence of zero, one, or two 
of the parents’ alleles in two siblings (a sib-
ling pair, or sib pair).

allelic association An association between 
allelic frequencies and a phenotype. For 
example, the frequency of allele 4 of the 
gene that encodes apolipoprotein E is about 
40  percent for individuals with Alzheimer 
disease and 15 percent for control individu-
als who do not have the disorder.

allelic frequency Population frequency of 
an alternate form of a gene. For example, the 
frequency of the PKU allele is about 1 per-
cent. (In contrast, see genotypic frequency.)

alternative splicing The process by which 
mRNA is reassembled to create different 
transcripts that are then translated into dif-
ferent proteins. More than half of human 
genes are alternatively spliced.

amino acid One of the 20 building blocks of 
proteins, specified by a triplet code of DNA.

amniocentesis A medical procedure 
used for prenatal diagnosis in which a small 
amount of amniotic fluid is extracted from 
the amnion surrounding a developing fetus. 
Because some of the fluid contains cells from 
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the fetus, fetal chromosomes can be exam-
ined and fetal genes can be tested.

anticipation See genetic anticipation.

assortative mating Nonrandom mating 
that results in similarity between spouses. 
Assortative mating can be negative (“oppo-
sites attract”) but is usually positive.

autosome Any chromosome other than the 
X or Y sex chromosomes. Humans have 22 
pairs of autosomal chromosomes and 1 pair 
of sex chromosomes.

band (chromosomal) A chromosomal 
segment defined by staining characteristics.

base pair (bp) One step in the spiral stair-
case of the double helix of DNA, consisting 
of adenine bonded to thymine, or cytosine 
bonded to guanine.

behavioral genomics The study of how 
genes in the genome function at the behav-
ioral level of analysis. In contrast to functional 
genomics, behavioral genomics is a top-​down 
approach to understanding how genes work in 
terms of the behavior of the whole organism.

bioinformatics Techniques and resources 
to study the genome, transcriptome, and pro-
teome, such as DNA sequences and functions, 
gene expression maps, and protein structures.

candidate gene A gene whose function 
suggests that it might be associated with a 
trait. For example, dopamine genes are con-
sidered as candidate genes for hyperactivity 
because the drug most commonly used to 
treat hyperactivity, methylphenidate, acts on 
the dopamine system.

candidate gene-​by-​environment inter
action Genotype-​environment interaction 
in which an association between a particular 
(candidate) gene and a phenotype differs in 
different environments.

carrier An individual who is heterozygous 
at a given locus, carrying both a normal 
allele and a mutant recessive allele, and who 
appears normal phenotypically.

centimorgan (cM) Measure of genetic dis-
tance on a chromosome. Two loci are 1 cM  

apart if there is a 1 percent chance of recom-
bination due to crossover in a single gen-
eration. In humans, 1 cM corresponds to 
approximately 1 million base pairs.

centromere A chromosomal region with-
out genes where the chromatids are held 
together during cell division.

children-​of-​twins (COT) design A study 
that includes parents who are twins and the 
children of each twin.

chorion Sac within the placenta that sur-
rounds the embryo. Two-​thirds of the time, 
identical twins share the same chorion.

chromatid One of the two copies of DNA 
making up a duplicated chromosome, which 
are joined at their centromeres for the process 
of cell division (mitosis or meiosis). They are 
normally identical but may have slight dif-
ferences in the case of mutations. They are 
called sister chromatids as long as they are 
joined by the centromeres, during which time 
they can recombine. When they separate, the 
strands are called daughter chromosomes.

chromosome A structure that is composed 
mainly of chromatin, which contains DNA, 
and resides in the nucleus of cells. Latin for 
“colored body” because chromosomes stain 
differently from the rest of the cell. (See also 
autosome.)

chromosome substitution strains 
(CSSs) CSSs are created by introducing 
individual chromosomes from a donor inbred 
strain into a host inbred strain resulting in a 
panel of 22 mouse strains that vary on a single 
chromosome from two well-​characterized 
inbred strains.

coding region The portion of a gene’s DNA 
composed of exons that code for proteins.

codon A sequence of three base pairs that 
codes for a particular amino acid or the end 
of a chain.

comorbidity Presence of more than one 
disorder or disease in an individual.

concordance Presence of a particular con-
dition in two family members, such as twins.
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copy number variant (CNV) A structural 
variation that involves duplication or dele-
tion of long stretches of DNA (one thousand 
to many thousands of base pairs in length), 
often encompassing protein-​coding genes as 
well as noncoding genes. CNVs account for 
more than 10 percent of the human genome.

correlation An index of resemblance that 
ranges from -1.00 to 1.00, where 0.00 indi-
cates no resemblance.

crossover See recombination.

developmental genetic analysis Analysis 
of change and continuity of genetic and envi-
ronmental parameters during development. 
Applied to longitudinal data, assesses genetic 
and environmental influences on age-​to-​age 
change and continuity.

DF extremes analysis An analysis of 
familial resemblance that takes advantage of 
quantitative scores of the relatives of pro-
bands rather than just assigning a dichoto-
mous diagnosis to the relatives and assessing 
concordance. (In contrast, see liability-​threshold 
model.)

diallel design Complete intercrossing of 
three or more inbred strains and comparing 
all possible F1 crosses between them.

diathesis-​stress A type of genotype-​
environment interaction in which individu-
als at genetic risk for a disorder (diathesis) 
are especially sensitive to the effects of risky 
(stress) environments.

direct association An association between 
a trait and a DNA marker that is the func-
tional polymorphism that causes the asso-
ciation. In contrast to indirect association, in 
which the DNA marker is not the functional 
polymorphism.

dizygotic (DZ) Fraternal, or nonidentical, 
twins; literally, “two zygotes.”

DNA (deoxyribonucleic acid) The 
double-​stranded molecule that encodes 
genetic information. The two strands are 
held together by hydrogen bonds between 
two of the four bases, with adenine bonded 
to thymine, and cytosine bonded to guanine.

DNA marker A polymorphism in DNA 
itself, such as a single-​nucleotide polymor-
phism (SNP) or copy number variant (CNV).

DNA methylation An epigenetic process 
by which gene expression is inactivated by 
the addition of a methyl group.

DNA sequence The order of base pairs on 
a single chain of the DNA double helix.

dominance The effect of one allele depends 
on that of another. A dominant allele produces 
the same phenotype in an individual regard-
less of whether one or two copies are present. 
(Compare with epistasis, which refers to nonad-
ditive effects between genes at different loci.)

effect size The proportion of individual 
differences for the trait in the population 
accounted for by a particular factor. For 
example, heritability estimates the effect size 
of genetic differences among individuals.

electrophoresis A method used to sepa-
rate DNA fragments by size. When an elec-
trical charge is applied to DNA fragments in 
a gel, smaller fragments travel farther.

endophenotype An “inside” or intermediate 
phenotype that does not involve overt behavior.

environmentality Proportion of pheno-
typic differences among individuals that can 
be attributed to environmental differences in 
a particular population.

epigenetics DNA modifications that affect 
gene expression without changing the DNA 
sequence that can be “inherited” when cells 
divide; can be involved in long-​term devel-
opmental changes in gene expression.

epigenome Epigenetic events throughout 
the genome that influence gene expression.

epistasis Nonadditive interaction between 
genes at different loci. The effect of one gene 
depends on that of another. (Compare with 
dominance, which refers to nonadditive effects 
between alleles at the same locus.)

equal environments assumption In 
twin studies, the assumption that environ-
ments are similar for identical and fraternal 
twins.
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evocative genotype-​environment cor-
relation A correlation between genetic and 
environmental influences that occurs when 
individuals evoke environmental effects that 
covary with their genetic propensities

extended children-​of-​twins (ECOT) 
design A study that combines a children-​
of-​twins design and a comparable sample of 
twins who are children and their parents.

exon DNA sequence transcribed into mes-
senger RNA and translated into protein. 
(Compare with intron.)

expanded triplet repeat A repeating 
sequence of three base pairs, such as the 
CGG repeat responsible for fragile X, that 
increases in number of repeats over several 
generations.

expression QTL (eQTL) Treating gene 
expression as a phenotype, QTLs can be 
identified that account for genetic influence 
on gene expression.

F1, F2 The offspring in the first and second 
generations following mating between two 
inbred strains.

familial Resemblance among family members.

family study Assessing the resemblance 
between genetically related parents and off-
spring, and between siblings living together. 
Resemblance can be due to heredity or to 
shared family environment.

first-​degree relative See genetic relatedness.

fragile X syndrome Fragile sites are 
breaks in chromosomes that occur when 
chromosomes are stained or cultured. Fragile 
X is a fragile site on the X chromosome that is 
the second most important cause after Down 
syndrome of intellectual disability in males, 
and is due to an expanded triplet repeat.

full siblings Individuals who have both bio-
logical (birth) parents in common.

functional genomics The study of gene 
function that traces pathways between genes, 
brain, and behavior. Usually implies a bottom-​
up approach that begins with molecules in a 
cell, in contrast to behavioral genomics.

gamete Mature reproductive cell (sperm 
or ovum) that contains a haploid (half) set of 
chromosomes.

gene The basic unit of heredity. A sequence 
of DNA bases that codes for a particular 
product. Includes DNA sequences that regu-
late transcription. (See also allele; locus.)

gene expression Transcription of DNA 
into mRNA.

gene expression profiling Using micro-
arrays to assess the expression of all genes in 
the genome simultaneously.

gene frequency Refers to frequency of 
alleles (e.g., A1 or A2) in a sample or population.

gene map Visual representation of the 
relative distances between genes or genetic 
markers on chromosomes.

gene set analysis A test for association 
between biologically meaningful sets of 
genes and a phenotype.

gene silencing Suppressing expression of a 
gene but not altering it and, thus, not heritable.

gene targeting Mutations that are created 
in a specific gene and can then be transferred 
to an embryo.

Generalist Genes Hypothesis A term 
referring to the substantial genetic correla-
tions among cognitive abilities.

genetic anticipation The severity of a 
disorder becomes greater or occurs at an ear-
lier age in subsequent generations. In some 
disorders, this phenomenon is known to be 
due to the intergenerational expansion of 
DNA repeat sequences.

genetic correlation A statistic indexing 
the extent to which genetic influences on one 
trait are correlated with genetic influences on 
another trait independent of the heritabili-
ties of the traits.

genetic counseling Conveys information 
about genetic risks and burdens, and helps 
individuals come to terms with the informa-
tion and make their own decisions concern-
ing actions.
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genetic relatedness The extent to which 
relatives have genes in common. First-​degree 
relatives of the proband (parents and siblings) 
are 50 percent similar genetically. Second-​degree 
relatives of the proband (grandparents, aunts, 
and uncles) are 25 percent similar genetically. 
Third-​degree relatives of the proband (first cous-
ins) are 12.5 percent similar genetically.

genome All the DNA sequences of an 
organism. The human genome contains 
about 3 billion DNA base pairs.

genomewide association study (GWAS) 
An association study that assesses DNA varia-
tion throughout the genome.

genomewide gene-​by-​environment 
interaction A method for searching for 
genotype-​environment interaction that assesses 
DNA variation throughout the genome.

genomic imprinting The process by which 
an allele at a given locus is expressed differently 
depending on whether it is inherited from the 
mother or the father.

genotype An individual’s combination of 
alleles at a particular locus.

genotype-​environment correlation 
Experiences that are correlated with genetic 
propensities. In molecular genetic research, 
genotype-​environment correlation refers to 
the actual correlation between genotype and 
an environmental measure.

genotype-​environment interaction 
Genetic sensitivity or susceptibility to envi-
ronments. Genotype-​environment interaction 
is usually limited to statistical interactions, 
such as genetic effects that differ in different 
environments. For example, the association 
between a genotype for a particular gene 
and a phenotype might differ in different 
environments.

genotypic frequency The frequency of 
alleles considered two at a time as they are 
inherited in individuals. The genotypic fre-
quency of PKU individuals (homozygous 
for the recessive PKU allele) is 0.0001. The 
genotypic frequency of PKU carriers (who 
are heterozygous for the PKU allele) is 0.02. 

In contrast, the allelic frequency of the reces-
sive PKU allele is 0.01. (See Box 3.2.)

half siblings Individuals who have just one 
biological (birth) parent in common.

haploid genotype (haplotype) The DNA 
sequence on one chromosome. In contrast to 
genotype, which refers to a pair of chromosomes, 
the DNA sequence on one chromosome is 
called a haploid genotype, which has been short-
ened to haplotype.

haplotype block A series of single-​
nucleotide polymorphisms (SNPs) on a 
chromosome that are very highly corre-
lated (i.e., seldom separated by recombina-
tion). The HapMap Project has systematized 
haplotype blocks for several ethnic groups  
(http://hapmap.ncbi.nlm.nih.gov/).

Hardy-​Weinberg equilibrium Allelic 
and genotypic frequencies remain the same, 
generation after generation, in the absence of 
forces such as natural selection that change 
these frequencies. If a two-​allele locus is in 
Hardy-​Weinberg equilibrium, the frequency 
of genotypes is p2 + 2pq + q2, where p and q 
are the frequencies of the two alleles.

heritability The proportion of phenotypic 
differences among individuals that can be 
attributed to genetic differences in a particu-
lar population. Broad-​sense heritability involves 
all additive and nonadditive sources of genetic 
variance, whereas narrow-​sense heritability is 
limited to additive genetic variance.

heterozygosity The presence of different 
alleles at a given locus on both members of a 
chromosome pair.

homozygosity The presence of the same 
allele at a given locus on both members of a 
chromosome pair.

imprinting See genomic imprinting.

inbred strain A strain of animal that has 
been created by mating brothers and sisters 
for at least 20 generations, resulting in nearly 
genetically identical individuals.

inbred strain study Comparing inbred 
strains, for example on behavioral traits. 

G L O S S A R Y   3 8 9

http://hapmap.ncbi.nlm.nih.gov


Differences between strains can be attributed 
to their genetic differences when the strains 
are reared in the same laboratory environ-
ment. Differences within strains estimate 
environmental influences, because all indi-
viduals within an inbred strain are virtually 
identical genetically.

inbreeding Mating between genetically 
related individuals.

independent assortment Mendel’s sec-
ond law of heredity. It states that the inheri-
tance of genes at one locus is not affected by 
the inheritance of genes at another locus. 
Exceptions to the law occur when genes are 
inherited which are close together on the same 
chromosome. Such linkages make it possible 
to map genes to chromosomes.

index case See proband.

indirect association An association 
between a trait and a DNA marker that is 
not itself the functional polymorphism that 
causes the association. In contrast to direct 
association, in which the DNA marker itself is 
the functional polymorphism.

instinct An innate behavioral tendency.

intron DNA sequence within a gene that is 
transcribed into messenger RNA but spliced 
out before the translation into protein. 
(Compare with exon.)

knock-​out Inactivation of a gene by gene 
targeting.

liability-​threshold model A model that 
assumes that dichotomous disorders are due 
to underlying genetic liabilities that are dis-
tributed normally. The disorder appears only 
when a threshold of liability is exceeded.

lifetime expectancy See morbidity risk 
estimate.

linkage Loci that are close together on a 
chromosome. Linkage is an exception to 
Mendel’s second law of independent assort-
ment, because closely linked loci are not 
inherited independently within families.

linkage analysis A technique that detects 
linkage between DNA markers and traits, 

used to map genes to chromosomes. (See also 
DNA marker; linkage; mapping.)

linkage disequilibrium A violation of 
Mendel’s law of independent assortment in 
which genes are uncorrelated. It is most fre-
quently used to describe how close DNA 
markers are together on a chromosome; link-
age disequilibrium of 1.0 means that the alleles 
of the DNA markers are perfectly correlated; 
0.0 means that there is complete random asso-
ciation (linkage equilibrium).

locus (plural, loci) The site of a specific 
gene on a chromosome. Latin for “place.”

mapping Linkage of DNA markers to 
a chromosome and to specific regions of 
chromosomes.

meiosis Cell division that occurs during 
gamete formation and results in halving the 
number of chromosomes, so that each gam-
ete contains only one member of each chro-
mosome pair.

messenger RNA (mRNA) Processed RNA 
that leaves the nucleus of the cell and serves 
as a template for protein synthesis in the cell 
body cytoplasm.

methylation An epigenetic process by 
which gene expression is inactivated by add-
ing a methyl group to a chromosome region.

microarray Commonly known as gene chips, 
microarrays are slides the size of a postage stamp 
with hundreds of thousands of DNA sequences 
that serve as probes to detect gene expres-
sion (RNA microarrays), methylation (DNA 
methylation microarrays), or single-nucleotide 
polymorphisms (DNA microarrays).

microRNA A class of non-​coding RNA 
with just 21–25 nucleotides that can degrade 
or silence gene expression by binding with 
messenger RNA.

microsatellite marker Two, three, or four 
DNA base pairs that are repeated up to a 
hundred times. Unlike SNPs which generally 
have just two alleles, microsatellite markers 
often have many alleles that are inherited in 
a Mendelian manner.
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missing heritability The difference between 
the genomewide identified associations and 
reported heritability estimates from quantita-
tive genetic studies, such as twin and family 
designs.

mitosis Cell division that occurs in somatic 
cells in which a cell duplicates itself and 
its DNA.

model fitting A technique for testing the 
fit between a model of genetic and environ-
mental relatedness against the observed data. 
Different models can be compared, and the 
best-​fitting model is used to estimate genetic 
and environmental parameters.

molecular genetics The investigation of 
the effects of specific genes at the DNA level. 
In contrast to quantitative genetics, which par-
titions phenotypic variances and covariances 
into genetic and environmental components.

monozygotic (MZ) Identical twins; liter-
ally, “one zygote.”

morbidity risk estimate The chance of 
being affected during one’s lifetime.

multivariate genetic analysis Quan
titative genetic analysis of the covariance 
between traits.

mutation A heritable change in DNA base 
pair sequences.

natural selection The driving force in evo-
lution in which the frequency of alleles change 
as a function of the differential reproduction 
of individuals and survival of their offspring.

neurome Effects of the genome throughout 
the brain.

nonadditive genetic variance Individual 
differences due to nonlinear interactions 
between alleles at the same (dominance) 
or different (epistasis) loci. (In contrast, see 
additive genetic variance.)

non-​coding RNA (ncRNA) DNA that is 
transcribed into RNA but not translated into 
amino acid sequences. Examples include 
introns and microRNA.

nondisjunction Uneven division of mem-
bers of a chromosome pair during meiosis.

nonshared environmental influences 
Environmental influences that do not con-
tribute to resemblance between family 
members.

nucleus The part of the cell that contains 
chromosomes.

odds ratio An effect size statistic for asso-
ciation calculated as the odds of an allele in 
cases divided by the odds of the allele in con-
trols. An odds ratio of 1.0 means that there 
is no difference in allele frequency between 
cases and controls.

passive genotype-​environment cor-
relation A correlation between genetic 
and environmental influences that occurs 
when children inherit genes with effects that 
covary with their parent’s environment.

pedigree A family tree. Diagram depicting 
the genealogical history of a family, espe-
cially showing the inheritance of a particular 
condition in the family members.

pharmacogenetics and -genomics The 
genetics and genomics of responses to drugs.

phenotype An observed characteristic of 
an individual that results from the combined 
effects of genotype and environment.

pleiotropy Multiple effects of a gene.

polygenic trait A trait influenced by many 
genes.

polymerase chain reaction (PCR) A  
method to amplify a particular DNA 
sequence.

polymorphism A locus with two or more 
alleles. Greek for “multiple forms.”

population genetics The study of allelic 
and genotypic frequencies in populations 
and the forces that change these frequencies, 
such as natural selection.

posttranslational modification Chemical 
change to polypeptides (amino acid sequences) 
after they have been translated from mRNA.

premutation Production of eggs or sperm 
with an unstable expanded number of repeats 
(up to 200 repeats for fragile X).
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primer A short (usually 20-base) DNA 
sequence that marks the starting point for 
DNA replication. Primers on either side 
of a polymorphism mark the boundaries of 
a DNA sequence that is to be amplified by 
polymerase chain reaction (PCR).

proband The index case from whom other 
family members are identified.

proteome All the proteins translated from 
RNA (transcriptome).

psychopharmacogenetics The genetics 
of behavioral responses to drugs.

QTL linkage analysis Linkage analysis 
that searches for linkages of small effect size, 
quantitative trait loci (QTLs). Most widely 
used is the affected sib-​pair QTL linkage 
design.

qualitative disorder An either-​or trait, 
usually a diagnosis.

quantitative dimension Traits that are 
continuously distributed within a popula-
tion, for example, general cognitive ability, 
height, and blood pressure.

quantitative genetics A theory of 
multiple-​gene influences that, together with 
environmental variation, result in quantita-
tive (continuous) distributions of phenotypes. 
Quantitative genetic methods (such as the 
twin and adoption methods for human analy-
sis, and inbred strain and selection methods 
for nonhuman analysis) estimate genetic and 
environmental contributions to phenotypic 
variance and covariance in a population.

quantitative trait locus (QTL; plural: 
quantitative trait loci, QTLs) A gene 
in multiple-​gene systems that contributes 
to quantitative (continuous) variation in a 
phenotype.

recessive An allele that produces its effect on 
a phenotype only when two copies are present.

recombinant inbred strains Inbred 
strains derived from brother-​sister matings 
from an initial cross of two inbred progenitor 
strains. Called recombinant because, in the F2 
and subsequent generations, chromosomes 

from the progenitor strains recombine and 
exchange parts. Used to map genes and iden-
tify quantitative trait loci.

recombination During meiosis, chromo-
somes exchange parts by a crossing over of 
chromatids.

recombinatorial hotspot Chromosomal 
location subject to much recombination. Often 
marks the boundaries of haplotype blocks.

repeat sequence Short sequences of 
DNA — two, three, or four nucleotide bases 
of DNA — that repeat a few times to a few 
dozen times. Used as DNA markers.

restriction enzyme Recognizes specific 
short DNA sequences and cuts DNA at that 
site.

ribosome A small dense structure in the cell 
body (cytoplasm) that assembles amino acid 
sequences in the order dictated by mRNA.

RNA interference (RNAi) The use of 
double-​stranded RNA to change the expres-
sion of the gene that shares its sequence. Also 
called small interfering RNA (siRNA) because 
it degrades complementary RNA transcripts.

second-​degree relative See genetic 
relatedness.

segregation The process by which two 
alleles at a locus, one from each parent, sepa-
rate during heredity. Mendel’s law of segre-
gation is his first law of heredity.

selective breeding Breeding for a pheno-
type over several generations by selecting par-
ents with high scores on the phenotype, mating 
them, and assessing their offspring to deter-
mine the response to selection. Bidirectional 
selection studies also select in the other direc-
tion, that is, for low scores.

selective placement Adoption of chil-
dren into families in which the adoptive par-
ents are similar to the children’s biological 
parents.

sex chromosome See autosome.

shared environmental influences 
Environmental factors that make family 
members similar.
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single nucleotide polymorphism (SNP) 
The most common type of DNA polymor-
phism which involves a difference in a single 
nucleotide. SNPs (pronounced “snips”) can 
produce a change in an amino acid sequence 
(called nonsynonymous, i.e., not synonymous).

small interfering RNA (siRNA) See RNA 
interference (RNAi).

SNP-​based heritability analysis A tech-
nique to estimate the extent to which phe-
notypic variance for a trait can potentially 
be explained by all the single-​nucleotide 
polymorphisms (SNPs) on a microarray. For 
a sample of thousands of individuals, overall 
genotypic similarity pair by pair is used to 
predict phenotypic similarity. Does not iden-
tify specific allelic associations.

SNP heritability Heritability estimated 
directly from DNA differences between 
individuals.

somatic cells All cells in the body except 
for the sex cells that produce gametes.

stabilizing selection Selection that main-
tains genetic variation within a population, 
for example, selection for intermediate phe-
notypic values.

structural equation modeling (SEM) A 
statistical method for testing a conceptual or 
theoretical model. In behavioral genetics this 
method is used to estimate heritability and 
environmentality based on the similarity and 
differences among family members.

synapse A junction between two nerve 
cells, through which impulses pass by diffu-
sion of a neurotransmitter, such as dopamine 
or serotonin.

synteny Loci on the same chromosome; 
related to linkage.

synteny homology Similar ordering of loci 
in chromosomal regions in different species.

targeted mutation A process by which a 
gene is changed in a specific way to alter its 
function, such as knock-​outs. Called transgen-
ics when the mutated gene is transferred from 
another species.

third-​degree relative See genetic relatedness.

transcription The synthesis of an RNA 
molecule from DNA in the cell nucleus.

transcriptome RNA transcribed from all 
the DNA in the genome.

transfer RNA (tRNA) A type of RNA 
molecule that helps decode a messenger RNA 
sequence into a protein.

transgenic Containing foreign  DNA.  For 
example, gene targeting can be used to replace 
a gene with a nonfunctional substitute in order 
to knock out the gene’s functioning.

translation Assembly of amino acids into 
peptide chains on the basis of information 
encoded in messenger RNA. Occurs on ribo-
somes in the cell cytoplasm.

triplet codon See codon.

triplet repeat See expanded triplet repeat.

trisomy Having three copies of a particular 
chromosome due to nondisjunction.

twin correlation Correlation of twin 1 with 
twin 2. Typically computed separately for MZ 
and DZ twins. Used to estimate genetic and 
environmental influences.

twin study Comparing the resemblance of 
identical and fraternal twins to estimate genetic 
and environmental components of variance.

whole-​genome amplification Using a 
few restriction enzymes in polymerase chain 
reactions (PCRs) to chop up and amplify 
the entire genome. This makes microarrays 
possible.

whole-​genome sequencing (also 
known as full-​genome sequencing) 
Determining the complete sequence of nucleo-
tide base pairs for a genome.

X-​linked trait A phenotype influenced by a 
gene on the X chromosome. X-​linked reces-
sive diseases occur more frequently in males 
because they only have one X chromosome.

zygote The cell, or fertilized egg, result-
ing  from the union of a sperm and an egg 
(ovum).
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Diallel design, 62, 64f
Diasthesis-stress model, 124
Diet

longevity and, 315–316
weight and. See Body weight and obesity

Differential parental investment, 105–106, 107
Direct association, 143
Disease locus, 375–376
Disorganized schizophrenia, 218
Disruptive behavior disorders, 245–247

heritability estimates for, 252
Disulfiram, 282
Dizygotic twins, 86, 87f. See also Twin(s); Twin 

studies
genetic relatedness of, 349, 350t
rates of, 88b, 89b

DNA, 2, 43–53
functions of, 44
genetic code and, 44–47, 48t
repeat sequences of, 133–134
replication of, 44, 45f
structure of, 43–44, 44f, 45f
transcription of, 45, 46b–47b

DNA markers, 21, 27, 136b. See also DNA 
polymorphisms

allelic frequency of, 73
future applications of, 321–322
identification of, 135–138
in linkage analysis. See Linkage analysis
polygenic predictors using, 321–322
in twins, 86
vs. genetic markers, 135, 136b

DNA methylation, 144b
epigenetics and, 152–153
in fragile X syndrome, 197
in gene expression, 152
in obesity, 299–300

DNA microarrays, 52, 144–145, 144b–145b, 
189, 190

DNA polymorphisms, 66. See also Mutations
definition of, 132
identification of, 135–138
single nucleotide, 137

SNP heritability method and, 96, 98b–99b
DNA probes, 144b–145b
DNA sequences, 45–47

repeat, 133–134
DNA sequencing, 49, 373. See also Genome 

sequencing
DNA studies, of genotype-environment 

interaction, 127–129
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DNA variation. See also Variation
behavioral variation from, 149

Dogs
in animal research, 55–57. See also Animal 

research
genetic variability among, 55–57, 56f, 58f

Dominance, 17–20, 20f, 24, 25f
independent assortment and, 24, 25f
as nonadditive genetic effect, 184

Dominance deviation, 344–345, 344f
Dominance genetic variance, 344–345
Dopamine

in antisocial behavior, 272
in attention-deficit hyperactivity disorder, 

244, 272
in novelty-seeking, 272

Double helix, 43–44, 45f
Down syndrome, 2–3, 199–201

clinical features of, 199–200, 200f
dementia in, 200
extra chromosome in, 201

DRD4 gene
in attention-deficit hyperactivity disorder, 244
in novelty-seeking, 272

DRD5 gene, in attention-deficit hyperactivity 
disorder, 244

Drosophila melanogaster
as animal model, 68–69
learning and memory in, 160–164

Drug abuse, 289–290. See also Substance use 
disorders

Drug development. See Pharmacogenetics; 
Pharmacogenomics

DSM-5 (Diagnostic and Statistical Manual of Mental 
Disorders), 210

Duchenne muscular dystrophy, 198, 198f
dunce gene, 158, 162
dysbindin gene, in schizophrenia, 219
Dyscalculia, 207–208
Dyslexia, 204–207

E
Early Growth and Development Study, 84b, 85b, 

125–126
Eating disorders, 232

gene identification for, 236
Economics, behavioral, 265–266
Effect size, 72, 94, 273

estimation of. See Heritability
small, cumulative effect of, 205–206, 208

Electroencephalography, 165
Electrophoresis, 159
Emotional instability. See Neuroticism
Endophenotypes, 160, 161b, 188

for schizophrenia, 218
Enuresis, 250
Environment

definition of, 112
equal environments assumption and, 86–88

equalizing, 97
genotype and, 111–130. See also Genotype-

environment interaction
nonshared. See Nonshared environment
shared. See Shared environment

Environmental influences
estimation of, multivariate genetic analysis in, 

108–109
future research directions for, 321
gene expression and, 157–158
on general cognitive ability, 169–170, 169f,  

173
prenatal, 84b
quantitative genetics focus on, 318

Environmental measures, personality and, 262
Environmental variance, 104, 347–348

shared vs. nonshared, 351–352
Environmentalism, 83b

limitations of, 324
Environmentality, 102–108

definition of, 109
estimation of, 103–104

Enzymes, restriction
in microarrays, 144b
in polymerase chain reaction, 136b

Epigenetics, 152–154. See also Gene-environment 
interaction

in obesity, 299–300
transgenerational effects of, 152–153

Epigenome, 49, 150, 152, 154
Epistasis, 184, 346
Equal environments assumption, 86–88, 352, 370
Error of estimation, 94
Ethical issues, 323–324

in genetic testing, 304b–305b, 324
Evocative genotype-environment correlation, 

117–118, 117t, 119–121, 120f
Evolution, 6–15

blending hypothesis and, 14–15
Darwinian, 7–12

Galton and, 11–13, 12b–13b
natural selection in, 9–10, 22b
theory of use and disuse and, 15
vs. argument from design, 9

pangenesis hypothesis and, 14, 15
population genetics and, 22b
pre-Mendelian concepts of, 14–15
teaching in public schools, 10

Executive function
IQ and, 176
working memory and, 176

Exons, 153
Expanded triplet repeats, 132–134

in fragile X syndrome, 133–134, 134f, 196
in Huntington disease, 133

Experimental designs. See also Adoption studies; 
Family studies; Twin studies

combined, 90–91
Expression analysis, 373
Expression quantitative trait loci (eQTLs), 157
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Extended children-of-twins design, 91, 121–122
Externalizing psychopathology, 235, 266–267
Extraversion, 255, 256t
Extremes analysis, 37b, 194, 205, 372–373
Eye tracking, in schizophrenia, 218

F
F1 generation, 18b–19b
F2 crosses, 73, 74f

recombinant inbred strains from, 75–77, 76f
F2 generation, 18b–19b
Factor analysis, 168, 173–174
Families of twins method, 90–91
Family resemblance

adoption studies and, 38, 80–82, 81f, 82f, 
83b–85b

for cognitive ability, 81, 82f
for genetic disorders, 96
genetic relatedness and, 30, 33–35, 35f
heritability estimation from, 96

Family studies, 80
with adoption studies, 90
of anxiety disorders, 229–230
of autism, 239–240
of dementia, 310
Galton and, 12b–13b
of general cognitive ability, 172
limitations of, 213
of mood disorders, 223–224, 224f
of schizophrenia, 211–213
of specific cognitive abilities, 173–174,  

175f
of stepfamilies, 91
with twin studies, 90–91
whole genome sequencing and, 146–147

Family-based association studies, 379
Father. See Parent
Fatigue, chronic, 232
Fears. See also Anxiety

in children, 247–249
First-degree relatives, 29, 34
Five-Factor Model, 255–257, 256t
Fluency measures, for mathematics ability, 

207–208
FMR1 gene, 197
Fragile X mental retardation-1 (FMRI), 197
Fragile X syndrome, 3, 196–197, 198f

clinical features of, 196
expanded triplet repeats in, 133–134,  

134f, 196
inheritance of, 133–134, 196–197

Fraternal (dizygotic) twins, 86, 87f, 88b. See also 
Twin(s); Twin studies

Fruit flies, as animal models, 68–69
FTO gene, body weight and, 298–299
Full siblings, 30

genetic relatedness of, 34, 35f, 349, 350t
Functional genetic neuroimaging, 156, 164–165, 

176–177
cognitive ability and, 176–177

Functional genomics, 149–150, 149f. See also Gene 
expression

brain structure and function and, 160–165
environmental influences and, 157–158
epigenetics and, 152–154
proteome and, 159–165
transcriptome and, 155–158

G
g. See Cognitive ability, general
Gain of function mutations, 132
Galápagos finches, evolution of, 7–10, 8f
Gametes, 20, 52
Gateway hypothesis, for substance use disorders, 

289–290
Gemmules, 14, 15
Gender differences

in depression, 227
Gene(s), 2

behavioral effects of, 149–166. See also 
Functional genomics

candidate, 129, 141–143, 188–189, 281–284, 
287–288, 288f

definition of, 20
housekeeping, 155
linked. See Linkage
X-linked, 39–41, 40f, 41f

Gene editing, CRISPR, 71
Gene enhancers, in schizophrenia, 220
Gene expression, 146

as biological basis for environmental influence, 
157–158

in brain, 160–165. See also Neurogenetic 
research

DNA methylation in. See Methylation
environmental influences and, 157–158
epigenetic, 150–154, 154f. See also Epigenetics
expression quantitative trait loci and, 157
inbred strain studies of, 65
individual differences in, 157–158
noncoding RNA in, 153–154
for non–protein-coding genes, 153
overview of, 150
as phenotypic trait, 157
for protein-coding genes, 153–154, 154f
throughout genome, 155–158
transcription factors in, 154, 154f
transcriptomics and, 155–157

Gene expression profiling, 155–157
Gene identification, 51–52, 131–148

adoption studies in. See Adoption studies
for alcohol dependence, 281–284
in animal models, 65
for antisocial behavior, 272–273
for anxiety disorders, 235–236
association studies in, 377–382. See also 

Association studies
for attention-deficit hyperactivity disorder, 

244–245, 272
for autism, 241–242
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for cognitive ability, 188–191
for conduct disorder, 272
of de novo mutations, 194
DNA markers in. See DNA markers
family studies in. See Family studies
genetic counseling and, 303–304, 304b–305b
limitations of, 146–147
linkage analysis in. See Linkage analysis
missing heritability problem and, 146–147, 189
for mood disorders, 227–229
for neuroticism, 272–273
new directions in, 146–147
for nicotine dependence, 287–288
for novelty-seeking, 272
for obsessive-compulsive disorder, 236
for panic disorder, 235–236
for personality disorders, 272–273
for personality traits, 272–273
polygenic predictors for, 321–322
polygenic scores and, 146
for schizophrenia, 219
for substance use disorders, 281–284
twin studies in. See Twin studies

Gene inactivation. See Gene silencing; 
Methylation

Gene locus, 23b, 24
disease, 375–376
identification of. See Gene identification
quantitative trait. See Quantitative trait loci 

(QTLs)
Gene mapping. See Association studies; Gene 

identification; Linkage analysis
Gene networks

in animal research, 283–284
in substance use disorders, 281–282, 282f, 

283–284, 287–288, 288f
Gene set analysis, 284
Gene silencing, 71. See also DNA methylation
Gene targeting

in mice, 70–71, 163–164
in neurogenetic research, 163–164

Gene therapy, 49
Gene-environment correlation, 347. See also 

Genotype-environment correlation
Gene-environment interaction. See also 

Epigenetics; Genotype-environment 
interaction

model fitting and, 370–372
personality and, 262

General cognitive ability. See Cognitive ability, 
general

Generalist Genes Hypothesis, 186–188
Generalized anxiety disorder, 229–230

in children, 247–249, 251, 251f
major depression and, 234–235, 234f

Genetic amplification, 182
Genetic analysis

multivariate. See Multivariate genetic analysis
univariate, 108

Genetic anticipation, 133

Genetic code, 44–47, 48t
central dogma and, 44–45, 46b–47b

Genetic correlation, 108–109
in multivariate genetic model,  

363–370
Genetic counseling, 303–304, 304b
Genetic determinism, heritability and, 100
Genetic disorders. See also specific disorders

anticipation in, 133
carriers of, 21–23, 23b, 40, 41f
concordances for, 95
diagnosis of, 304b–305b, 324
DNA markers for, 21, 27
dominant, 20–21, 20f, 24, 25f
due to many genes of small effect size, 

205–206, 208
ethical issues in, 304b–305b, 324
family resemblance for, 96
frequency of, 22b–23b
genetic counseling for, 303–304,  

304b–305b
inbreeding and, 22–23
inheritance of. See Inheritance
liability-threshold model of, 37b
multiple-gene, 32–38, 34f
new mutations causing, 23, 41
as normal variations, 240
qualitative, 36b–37b
as quantitative traits, 36b–37b
recessive, 21–23, 21f, 24, 25f
single-gene, 23, 32, 34f

heritability of, 100–101
linkage analysis for, 139–140

Genetic effects
additive vs. nonadditive, 184–185
individual vs. population-based, 318, 323

Genetic influences
on environmental measures, personality and, 

262
vs. environmental influences, relative 

importance of, 323–325. See also 
Environmental influences

Genetic markers, 135, 136b. See also DNA  
markers

Genetic mosaics, 69
Genetic neuroimaging

functional, 156, 164–165, 176–177
structural, 156, 164, 164f

Genetic relatedness, 30, 349–350, 350t
cognitive ability and, 30, 31f
definition of, 38
degrees of, 20, 34–35, 35f
family resemblance and, 30, 34–35
in genetic disorders, 22–23
quantitative genetics and, 33–38, 35f
schizophrenia and, 29f
of siblings, 34, 35f, 91, 107, 349–350, 350t

Genetic research
overview of, 1–4

Genetic testing, 303–304, 304b–305b
ethical issues in, 304b–305b, 324
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Genetics

behavioral. See Behavioral genetics
in behavioral sciences, 4, 5f
historical perspective on, 6–15, 47–49, 

212b–213b
imaging, 156, 164–165, 164f
molecular, 44, 46b–47b, 79, 149. See also 

Molecular genetics
population, 22b
positive, 146
psychiatric. See Psychiatric genetics; 

Psychopathology
quantitative, 33–38, 79–92. See also 

Quantitative genetics
Genetics of Mental Disorders (Slater), 213b
Genome, 4

canine, 55
definition of, 150
epigenome and, 150, 152

Genome mapping, 43
Genome scans, 375–376
Genome sequencing, 4, 48–49

DNA, 49, 373
future applications of, 49
in mice and rats, 70
personalized medicine and, 49
RNA, 155–156
whole-genome, 135, 139–141

applications of, 147
family studies and, 146–147

Genomewide association studies, 75, 143–147, 
189–190, 373, 381–382. See also Association 
studies; Gene identification

for cognitive ability, 189–190
for depression, 236
for eating disorders, 236
for general cognitive ability, 189–190
microarrays in, 52, 144–145, 144b–145b, 189, 

190
for mood disorders, 227–228
for obsessive-compulsive disorder, 236
for personality, 272–273
for schizophrenia, 220

Genomewide gene-by-environment interaction, 129
Genomic imprinting, 41, 202
Genomic profiles, 146
Genomics

behavioral, 150
functional, 149–150, 149f

Genotype, 343
definition of, 20
haploid. See Haplotype
heterozygous, 23b, 343
homozygous, 22b, 343

Genotype-environment correlation, 113–123, 
117–118

active, 117–118, 117t, 119–121, 120f
for adoptive vs. nonadoptive families,  

118–120, 118f

definition of, 113–114
detection of, 118–122, 118f, 120f
evocative (reactive), 117–118, 117t, 119–121, 120f
family interactions and, 114–116, 115t
implications of, 122
multivariate analysis of, 120–122
nature of nurture and, 114–117
passive, 117t, 118, 118f, 120, 120f

detection of, 117t, 118–119
phenotypic variance and, 114

Genotype-environment interaction, 3–4, 112, 
123–130. See also Genotype-environment 
correlation

adoption studies of, 125–126. See also Adoption 
studies

in alcohol dependence, 277–278
animal models of, 124–125, 168–170, 169f
candidate gene-by-environment, 129
definition of, 112, 123
diasthesis-stress model and, 124
DNA studies of, 127–129
general cognitive ability and, 170
genomewide gene-by-environment, 129
inbred strain studies of, 65
overview of, 111–112, 123–124, 124f
twin studies of, 126–127. See also Twin studies

Genotypic frequencies, 23b
Genotyping, 373
Glutamate, in long-term potentiation, 163
Goodness-of-fit statistics, 357
Grit, 257
Group heritability, 205
Gut microbiome, 49

obesity and, 301

H
Half siblings, 30, 91

genetic relatedness of, 35f, 349, 350t
schizophrenia in, 217

Haplotype (haploid genotype), 137, 380
Haplotype blocks, 137
Haplotype phasing, 381
Haplotype-based association studies, 380–381
HapMap Project, 137, 381–382
Hardy-Weinberg equilibrium, 22b–23b
Health, subjective well-being and, 302–303. See 

also Well-being
Health psychology, 292–305

aging and, 306–316
body weight and obesity in, 293–302
genetic counseling and, 303–304, 304b–305b

Heart disease, aging and, 312, 314
Height, heritability of, 96–97
Hereditary Genius: An Enquiry into Its Laws and 

Consequences (Galton), 11, 12b–13b
Heredity

biological basis of, 43–53
Mendel’s laws of. See Mendel’s laws
pre-Mendelian concepts of, 14
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bivariate, 109, 367
broad-sense, 350
changes during development, 179–183, 180f, 

181f, 183f, 184f, 261–262
definition of, 94, 96
effect size and, 72, 94, 273
equalizing environments and, 97
estimation of, 94–95

assortive mating and, 185
concordances and, 95
error of estimation and, 94
from family resemblance, 96
indirect, 96
liability-threshold model for, 36b–37b, 95
model fitting in, 96, 353–372
multivariate analysis in, 108–109
for twins, 95

genetic determinism and, 100
group, 205
individual differences and, 96–100
interpretation of, 96–101
narrow-sense, 350
polygenic, 96
of single-gene disorders, 100–101

Heroin, 289–290
Heterogeneous sample, 371
Heterozygous genotype, 23b, 343
Home Observation for Measurement of the 

Environment (HOME), 114
Homosexuality, 263–264
Homozygous genotype, 22b, 343
Housekeeping genes, 155
5-HTTLPR gene, genotype-environment 

interaction and, 128–129, 128f
Human Genome Project, 28, 49, 159
Human Proteome Project, 159–160
Huntington disease

expanded triplet repeats in, 133
genetic testing for, 304b–305b
inheritance of, 16, 16f, 20–21, 20f, 23, 27, 32
linkage analysis for, 27–28, 139–141, 140f
pedigree for, 16, 16f

Hyperlipidemia, aging and, 312, 314
Hypertension, aging and, 312

I
Identical twins. See Twin(s), monozygotic 

(identical)
Imaging genetics, 176–177

functional imaging in, 156, 164–165, 177
structural imaging in, 156, 164, 164f, 176–177

Imprinting, 152
genomic, 41, 202

Inbred strains, 20, 62–65, 63f, 64f
chromosome substitution, 77
quantitative trait loci in, 75–77, 76f
recombinant, 75–77, 76f

Inbreeding, 62–65, 63f, 64f
genetic disorders and, 22–23

Indels, chromosomal, 221
Independent assortment, 24–28, 25f, 26f, 290
Index case, 34–35
Indirect association, 143
Individual differences

in gene expression, 157–158
heritability and, 96–100
measurement of, 329–342
vs. population-based effects, 318, 323

Induced mutations, 66–71
Infants. See also Children

personality in, 261–262
Inferential statistics, 329
Inheritance

dominant. See Dominance
multiple-gene, 32–33, 34f
quantitative, 29–38
recessive. See Recessive traits
single-gene, 23, 32, 34f. See also Single-gene 

disorders
Inhibition/shyness, in children, 247–249
Insertions, chromosomal, 221
Instincts, 15
Insulin signaling pathway, longevity and, 315
Intellectual disability. See also Cognitive  

disability
definition of, 192

Intelligence. See Cognitive ability, general; IQ
Intermediate phenotype, 161b
Internalizing psychopathology, 235, 248–249, 

266–267
International Schizophrenia Consortium, 220
Interpersonal relationships, personality and, 

262–264
Interval scale, 330
Introns, 153
IQ. See also Cognitive ability, general

in cognitive disabilities, 192–193
distribution of, 192
overview of, 167–168

IQ tests, 170–171

J
Juvenile delinquency. See also Antisocial behavior; 

Conduct disorder
vs. antisocial personality disorder, 269

K
Klinefelter syndrome, 201
Knock-out mice, 70, 163–164
Kronecker product, 342

L
Language disorders, 207
Law of independent assortment, 24–28, 25f, 26f
Law of segregation, 17–23, 20f, 21f, 22b–23b
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general cognitive ability and, 170, 186–188, 

187f, 190–191. See also Cognitive ability
genetic influences in, 170
long-term potentiation in, 163
neurogenetic research on, 162–164

Learning disabilities. See Cognitive disability, 
specific

Least squares regression line, 338–339
Leptin, 298
Lesch-Nyhan syndrome, 169f, 198
Levels of analysis, 151b
Liability-threshold model, 36b–37b, 205

for heritability estimation, 95
Life satisfaction. See Well-being
Lifetime expectancy, 29
Linear regression, 338f
Linkage, 25, 25f

affected sib-pair, 141, 142b, 206
X-linked genes, 39–41, 40f, 41f

Linkage analysis, 27–28, 206, 373–376. See also 
Gene identification

affected sib-pair, 106, 141, 142b
allele sharing in, 141, 142b
for complex disorders, 141
gene flow patterns in families and,  

374–375
in genome scans, 375–376
for Huntington disease, 27–28,  

139–141, 140f
limitations of, 141–142
in mood disorders, 227–228
nonparametric, 376
QTL, 72–73, 139–143, 206
in schizophrenia, 219
for single-gene disorders, 139–141

Linkage disequilibrium, 143, 380
Lipids, serum, aging and, 312, 314
Lithium, response to, 224
Locus, 23b, 24

disease, 375–376
identification of. See Gene identification
quantitative trait. See Quantitative trait loci 

(QTLs)
Locus of control, aging and, 313–314
Longevity, 313, 315–316
Longitudinal model, 370
Long-term memory, 162
Long-term potentiation, 163
Loss of function mutations, 132
Lung function, aging and, 314–315

M
Magnetic resonance imaging

functional, 156, 164–165, 176–177
structural, 156, 164, 164f

Magnetoencephalography, 165
Major depressive disorder, 222–229. See also 

Depression; Mood disorders

Manic-depressive illness. See Bipolar disorder; 
Mood disorders

MAOA gene, antisocial behavior and, 127,  
128f, 272

Mapping
association. See Association studies
protein, 159
of single nucleotide polymorphisms, 137, 

139–141
Marijuana, 289–290
Marital satisfaction, 263
Mass spectrometry, 159
Mate selection, 263
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achievement
Mating, assortive, 91, 184–186

alcohol dependence and, 276
Matrices, 340–342

in model fitting, 353–362
MC4R gene, in obesity, 298, 299
Mean, 330
Medicine, personalized, 49
Meiosis, 52

crossovers during, 26–27, 26f
recombination during, 25–27, 26f

Melanocortin, 298
Memory

executive function and, 176
impaired, 2, 309–312. See also Dementia
long-term, 162
long-term potentiation in, 163
neurogenetic research on, 162–164
short-term, 162
working, 176

Mendelian rationalization, 290
Mendel’s laws

exceptions to
expanded triplet repeats, 132–134,  

196
new mutations, 23, 41
nondisjunction, 52–53, 53f
X-linked inheritance, 39–41, 40f, 41f

extension to, 38–40
independent assortment (second law), 24–28, 

25f, 26f, 290
polygenic traits and, 33, 34f
quantitative inheritance and, 29–38
segregation (first law), 17–23, 20f, 21f, 

22b–23b
Mendel’s pea plant experiments, 18b–19b, 30
Mental health, subjective well-being and,  

302–303
Mental institutions, historical perspective on, 

212b–213b
Mental retardation. See Cognitive disability
Messenger RNA (mRNA), 45, 47b, 134.  

See also RNA
alternative splicing of, 48–49
in gene expression, 152
translation of, 46b–47b
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Methamphetamine, 289–290
Methylation, 144b

epigenetics and, 152–153
in fragile X syndrome, 197
in gene expression, 152
in obesity, 299–300

Methylome, 154. See also Epigenome
Mice. See also Animal research

as animal models, 62–65, 63f, 64f, 70–71
inbred strains of, 20, 62–65, 63f, 64f,  

75–77, 76f
knock-out, 70–71, 163–164
obese gene in, 298–299, 301
quantitative trait loci in, 73–77, 76f
targeted mutations in, 70–71

Microarrays
DNA (SNP), 52, 144–145, 144b–145b,  

189, 190
RNA, in gene expression profiling,  

155–157
Microbiome, 49

obesity and, 301
MicroRNA, 153
Microsatellite markers, 135–137, 136b
Missing heritability problem, 146–147, 189
Mitosis, 52
Model fitting, 96, 353–372

adoption studies and, 81
assumptions in, 370–372
complex effects and, 370–372
degrees of freedom in, 363–362
environmental mediation and, 372
equal environments assumption in, 86–88, 

352, 370
example of, 356–358
extremes analysis and, 372–373
gene-environment interaction and, 370–372
goals of, 353–354
for identified models, 358
for multivariate models, 363–370, 364f,  

365t, 369f
nonadditivity and, 371
optimization in, 357
parsimony in, 359–361
path analysis and, 362–363, 362f
sample heterogeneity and, 371
for saturated models, 358–359
sex-limitation model and, 371
for underidentified models, 360
for univariate models, 358–362, 360t, 361t

Molecular genetics, 79, 149. See also Gene 
identification

central dogma of, 44, 46b–47b
DNA markers in. See DNA markers
future directions for, 321–323
in obesity, 297–299
quantitative genetics and, 131–132, 134f
statistical methods in, 373–382

Monoamine oxidase A, antisocial behavior and, 
127, 128f, 272

Monozygotic twins, 83–88, 87f. See also Twin(s); 
Twin studies

genetic relatedness of, 349, 350t
rates of, 88b, 89b
shared chorion of, 86, 89b

Mood disorders, 222–229. See also Bipolar 
disorder; Depression

adoption studies of, 226–227
family studies of, 223–224, 224f
gene identification for, 227–229
overview of, 222–223
twin studies of, 225–226, 226f
types of, 222–223

Morbidity risk estimate, 29
Mosaics, 69
Mother. See Parent
Mouse. See Mice
mRNA. See Messenger RNA (mRNA)
Multi-infarct dementia, 310
Multiple-gene inheritance, 32–38, 34f

quantitative genetics and, 33–38, 35f
Multivariate genetic analysis, 3, 108–109, 363–370

of cognitive ability, 186–187
common-factor common-pathway model and, 

368, 369f
common-factor independent-pathway model 

and, 368, 369f
future directions for, 320
of genotype-environment correlation, 120–122
longitudinal model and, 370
in quantitative genetics, 108–109

Muscular dystrophy, 169f, 198
Mushroom body neuron, 162–163
Mutations, 132–137

definition of, 72
effects of, 132
gain of function, 132
induced, 66–71
loss of function, 132
new (de novo), 23, 41, 194
premutations and, 133, 196–197
single-base, 132
single-gene, pleiotropic effects of, 67
targeted, 70–71, 163–164

N
Narrow-sense heritability, 350
Natural selection, 9–11, 22b. See also Selection
Nature of nurture, 111, 114–117
Nature-nurture interaction. See also 

Environmental influences; Genetic influ-
ences; Genotype-environment interaction

evolving concepts of, 323–325
Galton’s view of, 12, 12b–13b
model fitting and, 370–372
personality and, 262

neuregulin1 gene, in schizophrenia, 219
Neurocognitive disorders, 310. See also Dementia
Neurofibromatosis, 169f, 198–199



5 0 2   S u b j e c t  I n d e x

Neurogenetic research, 160–165
animal models in, 160–164
gene targeting in, 163–164
on learning and memory, 162–164
on psychopathology, 165

Neuroimaging, 175f, 176–177
functional genetic, 156, 164–165, 176–177
structural genetic, 156, 164, 164f

Neurome, 150
Neuron, mushroom body, 162–163
Neuroticism, 235, 255–257, 256t

definition of, 266
gene identification for, 272–273
personality disorders and, 266–267

Nicotine dependence, 284–288
gene identification for, 287–288
health effects of, 284–285
twin studies of, 285–287

Nicotinic acetylcholine receptor, 288
NMDA gene, in memory, 163–164
Nocturnal enuresis, 250
Noise variance, 348
Nonadditive genetic variance, 184–185, 243
Noncoding RNA, 137, 153–154
Nondisjunction, of chromosomes, 52–53, 53f

in Down syndrome, 200
Nonparametric linkage analysis, 376
Nonrandom sample, 329
Nonshared environment, 82, 103, 350. See also 

Environment
definition of, 103
estimating effects of, 103–104
future research directions for, 321
genetic factors in, 107
genotype-environment correlation and, 115–116
identification of, 104–108
in multivariate genetic model, 364–368
predictive of behavior, 106–108
role of chance in, 108
sibling correlations for, 105t, 106–108
twin studies of, 107. See also Twin studies

Nonshared Environment and Adolescent 
Development (NEAD) project, 105, 
106–107, 115, 115t

Nonshared environmental correlation, 364–368
Nonshared environmental influences, 82
Nonshared environmental variance, 351–352
Novelty-seeking, 272
Nucleus, 24
Nuisance variance, 348

O
Obesity. See Body weight and obesity
Observational studies, of personality, 260
Obsessive-compulsive disorder, 229–230

in children, 247–249, 251, 251f
comorbidity and, 233–235
gene identification for, 236

Obsessive-compulsive personality disorder, 268
Occam’s razor, 359

OCEAN mnemonic, 255
Odds ratios, 244, 378
Open-field activity

albinism and, 66
selective breeding and, 58–61, 59f–61f

Openness to experience, 255–257
Opiate dependence, 289–290
The Origin of Species (Darwin), 7, 10–11

P
Pangenesis, 14, 15
Panic disorder, 229–230

comorbidity and, 233–235
COMT gene in, 236
gene identification for, 235–236

Paranoid schizophrenia, 218, 219
Parent, “genetic” vs. “environmental,” 80–81, 81f
Parent ratings, of personality, 259–260
Parenting behavior. See also under Family

differential treatment of offspring and, 
105–106, 107

genotype-environment correlation and, 
118–122

heritability of, 114–116, 115t
personality and, 263

Partial regression coefficient, 362
Passive genotype-environment correlation, 

117–122, 117t, 118f, 120f
Path analysis, 362–363, 362f
Pea plant experiments

of Galton, 30–31
of Mendel, 18b–19b, 30

Pearson product-moment correlation, 30
Pedigrees, 16, 16f, 17f, 376, 376f
Peer ratings, of personality, 258–259, 259f
Personality, 1, 254–274

aging and, 313
attitudes and beliefs and, 264–265
callous-unemotional, 246–247
in children, 259–260, 261–262
developmental studies of, 261–262
dimensions of, 255–258
economic behavior and, 265–266
effects on environmental influences, 262
Five-Factor Model of, 255–257, 256t
gene identification for, 272–273
genetic influences on environmental measures 

and, 262
locus of control and, 313–314
measures of, 255–260
normal variation in, 254, 266–267, 273
observational studies of, 260
parent ratings of, 259–260
parent-offspring relationships and, 263
peer ratings of, 258–259, 259f
perception of life events and, 262
person-situation interaction in, 254, 261
psychopathology and, 254
romantic relationships and, 263
self-esteem and, 261



S u b j e c t  I n d e x   5 0 3

self-report questionnaires on, 255–258, 259f
sexual orientation and, 263–264
situational studies of, 261
social psychology and, 262–266
stability of, 254, 261–262, 313–314
temperament and, 254
twin studies of, 255–257, 256t
Type A, 313
well-being and, 260–261

Personality disorders, 266–267
antisocial, 268–272
as dimensions vs. categories, 267
gene identification for, 272–273
neuroticism and, 266–267
obsessive-compulsive, 268
overview of, 266–267
schizophrenia and, 213
schizotypal, 267–268

in children, 249
vs. psychopathology, 267

Personalized medicine, 49
Pharmacogenetics, 278

quantitative trait loci research in, 75
Pharmacogenomics, 278
Phenome, 150
Phenotype

allelic association and, 66
definition of, 20
intermediate, 161b

Phenotypic values, 346
Phenylketonuria (PKU), 17, 17f, 21–23, 21f, 

22b–23b, 195–196
Phobias, 229–230

in children, 247–249
comorbidity and, 233–235

Pleiotropy, 67, 188
Political psychology, 264–265
Polygenic model, 345–346
Polygenic predictors, using DNA markers, 321–322
Polygenic risk scores, 146
Polygenic susceptibility scores, 146
Polygenic traits, 33, 34f, 67

quantitative genetics and, 33–38, 35f
Polygenicity, 188
Polymerase chain reaction (PCR), 135, 136b, 144b
Polymorphisms, 66. See also Mutations

definition of, 132
identification of, 135–138
single nucleotide. See Single nucleotide 

polymorphisms (SNPs)
Population

definition of, 329
sampling of, 329

Population genetics, 22b
Population stratification, 378–379
Population-based association studies, 377–378
Population-based effects

vs. individual differences, 318
Positive genetics, 146
Posttranslational protein modification, 47b, 159

Posttraumatic stress disorder, 231
comorbidity and, 232–235

Prader-Willi syndrome, 202–203, 203f
Pregnancy

offspring obesity and, 300
Premutations, 133, 196–197
Primers, 136b
Probands, 34–35, 38
Probes, 144b–145b
Processing speed

cognitive ability and, 176
Protein(s). See also Amino acids

identification of
by electrophoresis, 159
by mass spectrometry, 159

measurement of, 159
posttranslational modification of, 47b, 159
synthesis of, 44, 46b–47b

Protein expression
in brain, 160–165. See also Neurogenetic 

research
proteome and, 159

Protein mapping, 159
Proteome, 159–160. See also Protein(s)

definition of, 150, 159
identification of, 159
as phenotype, 159

Psychiatric genetics, 210–211, 212b–213b. See also 
Psychopathology

Psychiatric Genomics Consortium, 220
Psychological traits, as quantitative dimensions, 30
Psychology

evolutionary. See Evolution
health, 292–305
political, 264–265
social, 262–266

Psychopathology. See also specific disorders
age at onset of, 238
aging and, 313
in children. See Developmental 

psychopathology
comorbidity in, 233–235
diagnosis of, 210–211
as extreme of normal variation, 240, 254, 

266–267, 273
genetic counseling for, 304b–305b
genetics of, 210–211, 212b–213b
historical perspective on, 212b–213b
internalizing vs. externalizing, 235, 248–249, 

266–267
neurogenetic research on, 165
personality and, 254, 266–267, 273
schizophrenia, 210–221
substance use disorders and, 235, 290–291
vs. personality disorders, 267

Psychopathy, 270
Psychopharmacogenetics, 278
Psychosis. See also Schizophrenia

in children, 249
Pulmonary function, aging and, 314–315



5 0 4   S u b j e c t  I n d e x

Q
QTL linkage analysis, 72–73, 139–143, 206. 

See also Linkage analysis
Qualitative disorders, 36b–37b
Quality of life. See Well-being
Quantitative dimensions, 30

genetic disorders as, 36b–37b
Quantitative genetics, 33–38, 79–92, 318–323, 

342–373
adoption studies in, 38, 80–82, 83b–85b
animal research in, 55–65
applications of, 318–322
biometric model in, 342–348
definition of, 79
as descriptive vs. predictive, 112
environmentality and, 102–108
future directions for, 318–322
genotype-environment correlation and, 

111–112, 113–123
genotype-environment interaction and, 

112, 123–130
heritability in, 93–102. See also Heritability
molecular genetics and, 131–132, 134f
multivariate analysis in, 108–109
scope of, 113
statistical methods in, 342–373. See also 

Statistical methods
twin studies in, 38
variance components estimation and,  

348–373
variance components model and, 346–347

Quantitative genetics model, 205–206
Quantitative inheritance, 29–38
Quantitative trait, 30
Quantitative trait loci (QTLs), 72–77, 131–132, 134f

in animal models, 72–77, 74f, 76f, 283
conserved synteny and, 283
definition of, 131
expression, 157
in F2 crosses, 73, 74f
in genomewide association studies, 75, 143–147
in heterogeneous stock and commercial 

outbred strains, 73–75
identification of, 73–75, 143–147. See also  

Gene identification
inheritance of, 131
in linkage analysis, 72–73, 139–143, 206. 

See also Linkage analysis
in pharmacogenetics, 75
in recombinant inbred strains, 75–77

Quantitative trait locus hypothesis, 206
Quantitative trait locus linkage analysis. See 

Linkage analysis
Questionnaires, 114

self-report, on personality, 255–258, 259f

R
Random sampling, 329
Rats, as animal models, 70. See also Animal 

research

Reactive genotype-environment correlation, 
117–118, 117t, 119–121, 120f

Reading ability, 204–207. See also School 
achievement

Recessive traits, 17, 21–23, 22f, 24, 25f
independent assortment and, 24, 25f
X-linked (sex-linked), 39–41, 41f, 206

Recombinant inbred (RI) strains, 62–65, 63f, 64f
quantitative trait loci in, 75–77, 76f

Recombination, 25–27, 26f, 374f, 375
Recombinatorial hot spots, 137
Regression, 338–339
Regression coefficient, 334, 338–339

partial, 362
Relatedness. See Genetic relatedness
Relationships, personality and, 262–264
Religious beliefs, 265

teaching of evolution and, 10
Repeat sequences, 133
Replication, 44, 45f
Residuals, 339
Restriction enzymes

in microarrays, 144b
in polymerase chain reaction, 136b

Rett syndrome, 41, 169f, 197
Ribosomes, 47b
RNA

functions of, 152
in gene expression, 152
messenger. See Messenger RNA (mRNA)
micro, 153
noncoding, 137, 153–154
small interfering, 71
synthesis of, 46b–47b
transfer, 47b
translation of, 46b–47b

RNA exome sequencing, 155–156
RNA genome sequencing, 155–156
RNA interference (RNAi), 71
RNA microarrays, 155–157
RNA sequencing, 155–156
Romantic relationships, 263
Roundworms, as animal models, 68. See also 

Animal research
rutabaga gene, 162

S
Sampling, of population, 329, 371
Scatterplots, 334–336, 335f
Schizophrenia, 210–221

adoption studies of, 82, 83b, 215–217, 216f, 217f
association studies of, 219
bipolar disorder and, 219, 220
catatonic, 218
childhood-onset, 249
in children of schizophrenics, 211–217, 

216f, 217f
classification of, 218–219
comorbidity in, 219, 220
copy number variants in, 220–221



S u b j e c t  I n d e x   5 0 5

disorganized, 218
endophenotypes for, 218
environmental influences in, 82
eye tracking in, 218
family studies of, 211–213
in Genain quadruplets, 214, 214f, 218
gene enhancers in, 220
gene identification for, 219–221
genetic relatedness and, 29f
heritability of, 95
heterogeneity of, 218–219
inheritance of, 28–29, 29f
linkage analysis for, 219
morbidity risk estimate for, 29
overview of, 210–211
paranoid, 218, 219
personality disorders and, 213, 267–268
severity of, 218–219
substance use disorders and, 290
subtypes of, 218–219
symptoms of, 211
twin studies of, 90, 214–215, 214f

Schizotypal personality disorder, 267–268
in children, 249

School achievement, 177–179, 183
cognitive ability and, 178. See also Cognitive 

ability
developmental change and, 183
genomewide association studies for, 189–190
mathematics ability and, 179, 190
multivariate analysis of, 186–187
reading ability and, 178–179, 178f

Science achievement, 179
Scores, standardized, variance of, 332–333
Seasonal affective disorder, 231
Second-degree relatives, 29, 35
Segregation, Mendel’s law of, 17–23, 20f, 21f, 

22b–23b
Selection

natural, 22b
Selection studies, 58–62, 59f–61f
Selective breeding, 59f–61f, 60
Selective placement, 38, 85b
Self-esteem, personality, 261
Self-report questionnaires, on personality, 

255–258, 259f
Self-reported health, subjective well-being and, 

302–303
Sensation seeking, 257
Separation anxiety, 247–249, 263
Serotonin, genotype-environment interaction and, 

128–129, 128f
Serum lipids, aging and, 312, 314
Sex cells, 52
Sex chromosomes, 39–41, 51, 52, 53. See also 

X chromosome; Y chromosome
cognitive disability and, 201–204
inheritance of, 39–41, 40f, 41f

Sex-limitation model, 371
Sex-linked genes, 39–41, 40f, 41f
Sexual behavior, 263–264. See also Mating

Sexual orientation, personality and, 263–264
Shared environment, 37b, 102–106, 350. See also 

Environment
adoption studies of, 103–104. See also Adoption 

studies
definition of, 102
estimating effects of, 103–104
genotype-environment correlation and, 

115–116
in multivariate genetic model, 364–368
twin studies of, 104, 115–116. See also 

Twin studies
Shared environmental correlation, 364–368
Shared environmental influences, 102
Shared environmental variance, 351–352
Short-term memory, 162
Shyness/inhibition, in children, 247–249, 251, 251f
Sibling(s)

adoptive, 81. See also Adoption studies
differential parental treatment of, 105–106, 107
full, 30
genetic relatedness of, 35, 35f, 91, 107, 

349–350, 350t
“genetic” vs. “environmental,” 81, 82f
half, 30, 91

genetic relatedness of, 35f, 349, 350t
schizophrenia in, 217

shared/nonshared environment of, 102–109. 
See also Nonshared environment; Shared 
environment

step, 91
twin. See Twin(s)

Sibling correlations, 30
Sibling interaction, 370–371
Sib-pair linkage design, 141, 142b, 206
Single nucleotide polymorphisms (SNPs), 

98b–99b, 137, 146
in bivariate SNP-based analysis, 187
in genomewide complex trait analysis, 

381–382
in heritability estimates. See SNP heritability 

estimates
mapping of, 137, 139–141
microarrays, 52, 144–145, 144b–145b, 189, 190
synonymous vs. nonsynonymous, 137

Single-gene disorders, 23, 32, 34f
heritability of, 100–101
linkage analysis for, 139–141

Single-gene model, polygenic expansion of, 
345–346

Single-gene mutations, pleiotropic effects of, 67
Single-gene traits, 23, 32, 34f
siRNA (small interfering RNA), 71
Sister chromatids, 26–27, 26f
Situational studies, of personality, 261
Situation-person interaction, in personality, 

254, 261
Skinfold thickness, 294
Skip-a-generation phenomenon, 39, 41
Small interfering RNA (siRNA), 71
Smoking. See Nicotine dependence



5 0 6   S u b j e c t  I n d e x

Smooth pursuit eye tracking, in schizophrenia, 
218

SNP heritability estimates, 96, 98b–99b, 172, 
189, 318–319. See also Single nucleotide 
polymorphisms (SNPs)

for alcohol dependence, 277
for Alzheimer’s disease, 310–311
for cannabis use disorder, 289
for childhood disorders, 252
for depression, 227
for nicotine dependence, 286
for personality disorders, 258, 272–273

SNP microarrays, 52, 144–145, 144b–145b, 189, 190
SNP sets, 146
Social attitudes, 264–265
Social equality, behavioral genetics and, 323–324
Social phobia, 229–230

in children, 247–249
comorbidity and, 233–235

Social psychology, 262–266
attitudes and beliefs and, 264–265
behavioral economics and, 265–266
personality and, 262–266
relationships and, 262–264

Somatic cells, 52
Somatic symptom disorders, 231–232
Somatization disorder, 231
Specific cognitive ability. See Cognitive ability, 

specific
Specific phobias, 229–230

in children, 247–249
comorbidity and, 233–235

Speed of processing
cognitive ability and, 176

Splicing, alternative, 48–49
Standard deviation, 332–333
Standardized scores, 332–333
Statistical methods, 326–382

Behavioral Genetics Interactive Modules and, 327b
biometric model and, 342–348
for complex effects, 370–372
correlation and, 337–338
covariance and, 333–336, 334–335, 334f–336f
DF extremes analysis and, 37b, 194, 205, 

372–373
environmental mediation and, 372
Galton and, 11
gene-environment interactions and, 370–372
heritability and, 351–353
matrices and, 340–342
for measuring individual differences, 329–342
model fitting and, 353–362. See also Model 

fitting
in molecular genetics, 373–382
multivariate genetic analysis and, 363–370, 

364f, 365t, 369f. See also Multivariate 
genetic analysis

path analysis and, 362–363
in quantitative genetics, 342–373
regression and, 338–339, 338f

sample heterogeneity and, 371
standardized scores and, 332–333, 333f
variance components estimation and, 348–373, 

350t
variance of a sum and, 336–337

Statistical significance, 93–94
Statistics, descriptive vs. inferential, 329
Stepfamily studies, 91
Strange Situation, 263
Stress, serotonin transporter gene and, 128–129, 128f
Stroke, multi-infarct dementia and, 310
Structural genetic neuroimaging, 156, 164, 164f
Stuttering, 207
Subjective well-being. See Well-being
Substance use disorders, 275–291

alcohol dependence, 275–284. See also Alcohol 
dependence

animal models of, 278–281
antisocial personality disorder and, 270, 

271–272
candidate pathways and gene networks in, 

281–284, 282f, 287–288, 288f
common liability model of, 289–290
comorbidity in, 235, 290–291
drug abuse, 289–290
as externalizing disorder, 235
gateway hypothesis for, 289–290
gene identification for, 278–284
molecular genetic research on, 281–284, 

282f, 287–288, 289–290
nicotine dependence, 284–288
pharmacogenetics and, 278

Suicide, in mood disorders, 222, 224
Synapses, 160
Synaptic plasticity, 162
Synteny, conserved, in animal models, 283
Synteny homology, 77
Systema Naturae (Linneaus), 6–7

T
Targeted mutations, 70–71, 163–164
Task orientation, 262
Taxonomic classification, of Linnaeus, 6–7
Temperament, 254
Theory of use and disuse, 15
Third-degree relatives, 35
Tic disorders, 250
Tourette disorder, 250
Traditionalism, 264
Transcription, 45, 46b–47b. See also Gene 

expression
Transcription factors, 154, 154f
Transcriptome, 144b, 155–165

definition of, 150
gene expression profiling and, 154
as phenotype, 157
protein expression throughout, 159–160

Transcriptomics, 155–157
Transfer RNA (tRNA), 47b



S u b j e c t  I n d e x   5 0 7

Transgenics, 70
Translation, 45, 46b–47b
Transmission/disequilibrium test, 379
Triple X syndrome, 201, 203f
Triplet codons, 45
Triplet repeats, expanded, 132–134

in fragile X syndrome, 133–134, 196
in Huntington disease, 133

Trisomies, 2–3, 53, 199–201, 200f. See also 
Down syndrome

Turner syndrome, 201, 202, 203f
Twin(s)

children of, 91, 119, 121–122
development in, 89
dizygotic (fraternal), 86, 87f

genetic relatedness of, 35, 349, 350t
rates of, 88b, 89b

heritability and, 95
monozygotic (identical), 83–88, 87f

genetic relatedness of, 35, 349, 350t
rates of, 88b, 89b
shared chorion of, 86, 89b

Twin correlations, 30, 95
Twin studies, 38, 83–91

with adoption studies, 90–91
of alcohol dependence, 276–278
of antisocial behavior, 245–247, 251–252,  

251f, 270–272
of anxiety disorders, 229–230

in children, 247–249, 251–252, 251f
applications of, 89–90
of attention-deficit hyperactivity disorder, 

242–244, 246f, 251–252, 251f
of autism, 240–241, 251–252, 251f
children-of-twins method in, 91, 119, 

 121–122
classic design for, 353–362
of cognitive ability, 88b–89b, 89, 90,  

104, 127
general, 171f, 172, 173
specific, 174, 175f

of conduct disorder, 245–247,  
251–252, 251f

of dementia, 310–311
DF extremes analysis in, 205
equal environment assumption in, 86–88
families-of-twins method and, 90–91
with family studies, 90–91
Galton and, 11, 12b–13b
of genotype-environment interaction, 

126–127
of heritability changes during development, 

181, 181f, 182
model fitting and, 353–362
of mood disorders, 225–226, 226f
of nicotine dependence, 285–287
of nonshared environment, 107
peer ratings in, 258–259, 259f
of personality, 255–257, 256t
of reading disability, 204–205

registries for, 212b–213b
of schizophrenia, 90, 213–215, 214f
self-reported questionnaires in,  

255–257, 259f
of shared environment, 104, 115–116
sibling interaction in, 370–371

Two-dimensional gel electrophoresis, 159
Type A personality, 313

U
Unipolar depression, 222–229. See also Mood 

disorders
vs. bipolar depression, 223–226

Univariate genetic analysis, 108
Univariate statistic, 333

V
Values and beliefs, personality and, 264–265
Variables, binary, 330
Variance, 330–331

additive, 184–185
analysis of, 330
assortative mating and, 91, 184–186
calculation of, 330–331
definition of, 330
dominance genetic, 344–345
environmental, 104. See also Environmental 

influences
shared vs. nonshared, 351–352

model fitting and, 353–362
mutations and, 132–134
nonadditive, 184–185, 243
notation for, 347
nuisance (noise), 348
partitioning of, 331, 339
of standardized scores, 332–333
of sum, 336–337

Variance components estimation, 348–402
covariance between relatives and, 349
genetic relatedness and, 349–350
heritability and, 351–353
model fitting and, 353–362
multivariate genetic analysis in, 363–370,  

364f, 365t, 369f
path analysis in, 362–363, 362f
univariate analysis in, 353–362

Variance components model, 346–347
Variance-covariance matrix, 341
Variation, 329–342

behavioral, from DNA variation, 149
environmental, 347–348
normal

genetic disorders as, 240
psychopathology as, 240, 254,  

266–267, 273
in populations, 9
pre-Mendelian concepts of, 14–15

Violence. See Antisocial behavior



5 0 8   S u b j e c t  I n d e x

W
Weight. See Body weight and obesity
Well-being

aging and, 303, 313–314
locus of control and, 313–314
personality and, 260–261
self-reported health and, 302–303

Whole-genome amplification, 144b
Whole-genome sequencing, 135, 139–141.  

See also Genome sequencing; Genomewide 
association studies

applications of, 147
family studies and, 146–147

Williams syndrome, 203–204, 203f
Working memory model, 176

X
X chromosome, 39–41, 51

abnormalities of, 53
cognitive disability and, 201–204, 203f

extra
in females, 201, 203f
in males, 201–202, 203f, 272

homosexuality and, 264
inheritance of, 39–41, 40f, 41f

X-linked genes, 39–41, 40f, 41f
X-linked recessive transmission, 206
XO females, 201
XRCC5, 284
XXX females, 201, 203f
XXY males, 201, 203f
XYY males, 201–202, 272

Y
Y chromosome, 39, 51

abnormalities of, 53
cognitive disability and, 201–204, 203f

extra, 201–202, 203f, 272
inheritance of, 39–41, 40f, 41f

Z
Zebrafish, as animal models, 69
Zero sum property, 333
Zygotes, 52


	Cover
	Half Title Page
	Title Page
	Copyright Page
	Contents
	About the Authors
	Preface
	Chapter One: Overview
	Chapter Two: Historical Perspective
	The Era of Darwin
	Charles Darwin
	Francis Galton
	Box 2.1 Francis Galton

	Pre-Mendelian Concepts of Heredity and Variation
	Heredity
	Variation

	Summary

	Chapter Three: Mendel's Laws and Beyond
	Mendel's Laws
	Mendel's First Law of Heredity
	Box 3.1 Gregor Mendel's Luck
	Box 3.2 How Do We Know That 1 in 50 People Are Carriers for PKU?
	Mendel's Second Law of Heredity

	Beyond Mendel's Laws
	Complex Traits
	Multiple-Gene Inheritance
	Quantitative Genetics
	Box 3.3 Liability-Threshold Model of Disorders
	The X-Chromosome: An Extension to Mendel's Laws

	Summary

	Chapter Four: The Biological Basis of Heredity
	Dna
	Box 4.1 The "Central Dogma" of Molecular Genetics

	Chromosomes
	Summary

	Chapter Five: Animal Models in Behavioral Genetics
	Quantitative Genetic Experiments to Investigate Animal Behavior
	Selection Studies
	Inbred Strain Studies

	Animal Studies for Identifying Genes and Gene Functions
	Creating Mutations
	Quantitative Trait Loci
	Synteny Homology

	Summary

	Chapter Six: Nature, Nurture, and Human Behavior
	Investigating the Genetics of Human Behavior
	Adoption Designs
	Box 6.1 The First Adoption Study of Schizophrenia
	Twin Design
	Box 6.2 Issues in Adoption Studies
	Box 6.3 The Twin Method
	Combination

	Summary

	Chapter Seven: Estimating Genetic and Environmental Influences
	Heritability
	Interpreting Heritability
	Box 7.1 Estimating Heritability Directly from DNA

	Environmentality
	Shared Environment
	Nonshared Environment
	Estimating Shared and Nonshared Environmental Influences
	Identifying Specific Nonshared Environment
	Identifying Specific Nonshared Environment That Predicts Behavioral Outcomes

	Multivariate Analysis
	Summary

	Chapter Eight: The Interplay between Genes and Environment
	Beyond Heritability
	Genotype-Environment Correlation
	The Nature of Nurture
	Three Types of Genotype-Environment Correlation
	Three Methods to Detect Genotype-Environment Correlation
	Implications

	Genotype-Environment Interaction
	Animal Models
	Adoption Studies
	Twin Studies
	DNA

	Summary

	Chapter Nine: Identifying Genes
	Mutations
	Expanded Triplet Repeats

	Detecting Polymorphisms
	Box 9.1 DNA Markers

	Human Behavior
	Linkage: Single-Gene Disorders
	Linkage: Complex Disorders
	Association: Candidate Genes
	Box 9.2 Affected Sib-Pair Linkage Design
	Association: Genomewide
	Box 9.3 SNP Microarrays

	Summary

	Chapter Ten: Pathways between Genes and Behavior
	Gene Expression and the Role of Epigenetics
	Box 10.1 Levels of Analysis

	The Transcriptome: Gene Expression throughout the Genome
	Gene Expression Profiles: RNA Microarrays and Sequence-Based Approaches
	Gene Expression and Genetics
	Gene Expression as a Biological Basis for Environmental Influence

	The Proteome: Proteins Coded throughout the Transcriptome
	The Brain
	Box 10.2 Endophenotypes
	Learning and Memory
	Neuroimaging

	Summary

	Chapter Eleven: Cognitive Abilities
	Animal Research
	General Cognitive Ability
	Specific Cognitive Abilities
	Neurocognitive Measures of Cognitive Abilities
	School Achievement
	Three Special Genetic Findings about Cognitive Abilities
	Heritability Increases During Development
	Assortative Mating Is Substantial
	The Same Genes Affect Diverse Cognitive and Learning Abilities

	Identifying Genes
	Summary

	Chapter Twelve: Cognitive Disabilities
	General Cognitive Disability: Quantitative Genetics
	General Cognitive Disability: Single-Gene Disorders
	Phenylketonuria
	Fragile X Syndrome
	Rett Syndrome
	Other Single-Gene Disorders

	General Cognitive Disability: Chromosomal Abnormalities
	Down Syndrome
	Sex Chromosome Abnormalities
	Small Chromosomal Deletions

	Specific Cognitive Disabilities
	Reading Disability
	Communication Disorders
	Mathematics Disability
	Comorbidity among Specific Cognitive Disabilities

	Summary

	Chapter Thirteen: Schizophrenia
	Family Studies
	Box 13.1 The Beginnings of Psychiatric Genetics: Bethlem Royal and Maudsley Hospitals

	Twin Studies
	Adoption Studies
	Schizophrenia or Schizophrenias?
	Identifying Genes
	Summary

	Chapter Fourteen: Other Adult Psychopathology
	Mood Disorders
	Family Studies
	Twin Studies
	Adoption Studies
	SNP-Based Heritability
	Identifying Genes

	Anxiety Disorders
	Other Disorders
	Co-Occurrence of Disorders
	Identifying Genes

	Summary

	Chapter Fifteen: Developmental Psychopathology
	Autism
	Family and Twin Studies
	Identifying Genes

	Attention-Deficit/Hyperactivity Disorder
	Twin Studies
	Identifying Genes

	Disruptive Behavior Disorders
	Anxiety Disorders
	Other Disorders
	Overview of Twin Studies of Childhood Disorders
	SNP-Based Heritability Findings for Childhood Disorders
	Summary

	Chapter Sixteen: Personality and Personality Disorders
	Self-Report Questionnaires
	Other Measures of Personality
	Other Findings
	Situations
	Development
	Nature-Nurture Interplay

	Personality and Social Psychology
	Relationships
	Attitudes and Political Behavior
	Behavioral Economics
	Personality Disorders
	Schizotypal Personality Disorder
	Obsessive-Compulsive Personality Disorder
	Antisocial Personality Disorder and Criminal Behavior


	Identifying Genes
	Summary

	Chapter Seventeen: Substance Use Disorders
	Alcohol Dependence
	Twin and Adoption Research on Alcohol-Related Phenotypes
	Animal Research on Alcohol-Related Phenotypes
	Molecular Genetic Research on Alcohol-Related Phenotypes

	Nicotine Dependence
	Twin Research on Smoking-Related Phenotypes
	Molecular Genetic Research on Smoking-Related Phenotypes

	Other Drugs
	Complexities of Studying the Genetics of Substance Use
	Summary

	Chapter Eighteen: Health Psychology
	Genetics and Health Psychology
	Body Weight and Obesity
	Subjective Well-Being and Health

	Health Psychology and Genetic Counseling
	BOX 18.1 Genetic Counseling

	Summary

	Chapter Nineteen: Aging
	Cognitive Aging
	General Cognitive Ability
	Specific Cognitive Abilities
	Dementia
	Genes and Normal Cognitive Aging

	Health and Aging
	Physiological Functioning
	Behavioral and Physical Functioning
	Self-Rated Health
	Molecular Genetics and Physical Health

	Longevity
	Summary

	Chapter Twenty: The Future of Behavioral Genetics
	Quantitative Genetics
	Molecular Genetics
	Implications of Nature and Nurture

	Appendix: Statistical Methods in Behavioral Genetics
	1. Introduction
	Box A.1 Behavioral Genetic Interactive Modules
	1.1 Variation and Covariation: Statistical Descriptions of Individual Differences

	2. Quantitative Genetics
	2.1 The Biometric Model
	2.2 Estimating Variance Components

	3. Molecular Genetics
	3.1 Linkage Analysis
	3.2 Association Analysis


	Websites
	Glossary
	References
	Name Index
	Subject Index



