

Android Studio Jellyfish
Essentials
Kotlin Edition
Android Studio Jellyfish Essentials – Kotlin Edition
ISBN: 978-1-951442-92-7
© 2024 Neil Smyth / Payload Media, Inc. All Rights Reserved.
This book is provided for personal use only. Unauthorized use, reproduction
and/or distribution strictly prohibited. All rights reserved.
The content of this book is provided for informational purposes only.
Neither the publisher nor the author offers any warranties or representation,
express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising
from any errors or omissions.
This book contains trademarked terms that are used solely for editorial
purposes and to the benefit of the respective trademark owner. The terms
used within this book are not intended as infringement of any trademarks.
Rev: 1.0

https://www.payloadbooks.com
Copyright
“

https://www.payloadbooks.com/

Contents

Table of Contents
1. Introduction

1.1 Downloading the Code Samples
1.2 Feedback
1.3 Errata

2. Setting up an Android Studio Development Environment
2.1 System requirements
2.2 Downloading the Android Studio package
2.3 Installing Android Studio
2.3.1 Installation on Windows
2.3.2 Installation on macOS
2.3.3 Installation on Linux

2.4 Installing additional Android SDK packages
2.5 Installing the Android SDK Command-line Tools
2.5.1 Windows 8.1
2.5.2 Windows 10
2.5.3 Windows 11
2.5.4 Linux
2.5.5 macOS

2.6 Android Studio memory management
2.7 Updating Android Studio and the SDK
2.8 Summary

3. Creating an Example Android App in Android Studio
3.1 About the Project
3.2 Creating a New Android Project
3.3 Creating an Activity
3.4 Defining the Project and SDK Settings
3.5 Modifying the Example Application
3.6 Modifying the User Interface
3.7 Reviewing the Layout and Resource Files
3.8 Adding Interaction
3.9 Summary

4. Creating an Android Virtual Device (AVD) in Android Studio

4.1 About Android Virtual Devices
4.2 Starting the Emulator
4.3 Running the Application in the AVD
4.4 Running on Multiple Devices
4.5 Stopping a Running Application
4.6 Supporting Dark Theme
4.7 Running the Emulator in a Separate Window
4.8 Removing the Device Frame
4.9 Summary

5. Using and Configuring the Android Studio AVD Emulator
5.1 The Emulator Environment
5.2 Emulator Toolbar Options
5.3 Working in Zoom Mode
5.4 Resizing the Emulator Window
5.5 Extended Control Options
5.5.1 Location
5.5.2 Displays
5.5.3 Cellular
5.5.4 Battery
5.5.5 Camera
5.5.6 Phone
5.5.7 Directional Pad
5.5.8 Microphone
5.5.9 Fingerprint
5.5.10 Virtual Sensors
5.5.11 Snapshots
5.5.12 Record and Playback
5.5.13 Google Play
5.5.14 Settings
5.5.15 Help

5.6 Working with Snapshots
5.7 Configuring Fingerprint Emulation
5.8 The Emulator in Tool Window Mode
5.9 Creating a Resizable Emulator
5.10 Summary

6. A Tour of the Android Studio User Interface
6.1 The Welcome Screen
6.2 The Menu Bar
6.3 The Main Window
6.4 The Tool Windows
6.5 The Tool Window Menus
6.6 Android Studio Keyboard Shortcuts
6.7 Switcher and Recent Files Navigation
6.8 Changing the Android Studio Theme
6.9 Summary

7. Testing Android Studio Apps on a Physical Android Device
7.1 An Overview of the Android Debug Bridge (ADB)
7.2 Enabling USB Debugging ADB on Android Devices
7.2.1 macOS ADB Configuration
7.2.2 Windows ADB Configuration
7.2.3 Linux adb Configuration

7.3 Resolving USB Connection Issues
7.4 Enabling Wireless Debugging on Android Devices
7.5 Testing the adb Connection
7.6 Device Mirroring
7.7 Summary

8. The Basics of the Android Studio Code Editor
8.1 The Android Studio Editor
8.2 Splitting the Editor Window
8.3 Code Completion
8.4 Statement Completion
8.5 Parameter Information
8.6 Parameter Name Hints
8.7 Code Generation
8.8 Code Folding
8.9 Quick Documentation Lookup
8.10 Code Reformatting
8.11 Finding Sample Code
8.12 Live Templates
8.13 Summary

9. An Overview of the Android Architecture
9.1 The Android Software Stack
9.2 The Linux Kernel
9.3 Hardware Abstraction Layer
9.4 Android Runtime – ART
9.5 Android Libraries
9.5.1 C/C++ Libraries

9.6 Application Framework
9.7 Applications
9.8 Summary

10. The Anatomy of an Android App
10.1 Android Activities
10.2 Android Fragments
10.3 Android Intents
10.4 Broadcast Intents
10.5 Broadcast Receivers
10.6 Android Services
10.7 Content Providers
10.8 The Application Manifest
10.9 Application Resources
10.10 Application Context
10.11 Summary

11. An Introduction to Kotlin
11.1 What is Kotlin?
11.2 Kotlin and Java
11.3 Converting from Java to Kotlin
11.4 Kotlin and Android Studio
11.5 Experimenting with Kotlin
11.6 Semi-colons in Kotlin
11.7 Summary

12. Kotlin Data Types, Variables, and Nullability
12.1 Kotlin Data Types
12.1.1 Integer Data Types
12.1.2 Floating-Point Data Types

12.1.3 Boolean Data Type
12.1.4 Character Data Type
12.1.5 String Data Type
12.1.6 Escape Sequences

12.2 Mutable Variables
12.3 Immutable Variables
12.4 Declaring Mutable and Immutable Variables
12.5 Data Types are Objects
12.6 Type Annotations and Type Inference
12.7 Nullable Type
12.8 The Safe Call Operator
12.9 Not-Null Assertion
12.10 Nullable Types and the let Function
12.11 Late Initialization (lateinit)
12.12 The Elvis Operator
12.13 Type Casting and Type Checking
12.14 Summary

13. Kotlin Operators and Expressions
13.1 Expression Syntax in Kotlin
13.2 The Basic Assignment Operator
13.3 Kotlin Arithmetic Operators
13.4 Augmented Assignment Operators
13.5 Increment and Decrement Operators
13.6 Equality Operators
13.7 Boolean Logical Operators
13.8 Range Operator
13.9 Bitwise Operators
13.9.1 Bitwise Inversion
13.9.2 Bitwise AND
13.9.3 Bitwise OR
13.9.4 Bitwise XOR
13.9.5 Bitwise Left Shift
13.9.6 Bitwise Right Shift

13.10 Summary
14. Kotlin Control Flow

14.1 Looping Control flow
14.1.1 The Kotlin for-in Statement
14.1.2 The while Loop
14.1.3 The do ... while loop
14.1.4 Breaking from Loops
14.1.5 The continue Statement
14.1.6 Break and Continue Labels

14.2 Conditional Control Flow
14.2.1 Using the if Expressions
14.2.2 Using if ... else … Expressions
14.2.3 Using if ... else if ... Expressions
14.2.4 Using the when Statement

14.3 Summary
15. An Overview of Kotlin Functions and Lambdas

15.1 What is a Function?
15.2 How to Declare a Kotlin Function
15.3 Calling a Kotlin Function
15.4 Single Expression Functions
15.5 Local Functions
15.6 Handling Return Values
15.7 Declaring Default Function Parameters
15.8 Variable Number of Function Parameters
15.9 Lambda Expressions
15.10 Higher-order Functions
15.11 Summary

16. The Basics of Object Oriented Programming in Kotlin
16.1 What is an Object?
16.2 What is a Class?
16.3 Declaring a Kotlin Class
16.4 Adding Properties to a Class
16.5 Defining Methods
16.6 Declaring and Initializing a Class Instance
16.7 Primary and Secondary Constructors
16.8 Initializer Blocks
16.9 Calling Methods and Accessing Properties

16.10 Custom Accessors
16.11 Nested and Inner Classes
16.12 Companion Objects
16.13 Summary

17. An Introduction to Kotlin Inheritance and Subclassing
17.1 Inheritance, Classes and Subclasses
17.2 Subclassing Syntax
17.3 A Kotlin Inheritance Example
17.4 Extending the Functionality of a Subclass
17.5 Overriding Inherited Methods
17.6 Adding a Custom Secondary Constructor
17.7 Using the SavingsAccount Class
17.8 Summary

18. An Overview of Android View Binding
18.1 Find View by Id
18.2 View Binding
18.3 Converting the AndroidSample project
18.4 Enabling View Binding
18.5 Using View Binding
18.6 Choosing an Option
18.7 View Binding in the Book Examples
18.8 Migrating a Project to View Binding
18.9 Summary

19. Understanding Android Application and Activity Lifecycles
19.1 Android Applications and Resource Management
19.2 Android Process States
19.2.1 Foreground Process
19.2.2 Visible Process
19.2.3 Service Process
19.2.4 Background Process
19.2.5 Empty Process

19.3 Inter-Process Dependencies
19.4 The Activity Lifecycle
19.5 The Activity Stack
19.6 Activity States

19.7 Configuration Changes
19.8 Handling State Change
19.9 Summary

20. Handling Android Activity State Changes
20.1 New vs. Old Lifecycle Techniques
20.2 The Activity and Fragment Classes
20.3 Dynamic State vs. Persistent State
20.4 The Android Lifecycle Methods
20.5 Lifetimes
20.6 Foldable Devices and Multi-Resume
20.7 Disabling Configuration Change Restarts
20.8 Lifecycle Method Limitations
20.9 Summary

21. Android Activity State Changes by Example
21.1 Creating the State Change Example Project
21.2 Designing the User Interface
21.3 Overriding the Activity Lifecycle Methods
21.4 Filtering the Logcat Panel
21.5 Running the Application
21.6 Experimenting with the Activity
21.7 Summary

22. Saving and Restoring the State of an Android Activity
22.1 Saving Dynamic State
22.2 Default Saving of User Interface State
22.3 The Bundle Class
22.4 Saving the State
22.5 Restoring the State
22.6 Testing the Application
22.7 Summary

23. Understanding Android Views, View Groups and Layouts
23.1 Designing for Different Android Devices
23.2 Views and View Groups
23.3 Android Layout Managers
23.4 The View Hierarchy

23.5 Creating User Interfaces
23.6 Summary

24. A Guide to the Android Studio Layout Editor Tool
24.1 Basic vs. Empty Views Activity Templates
24.2 The Android Studio Layout Editor
24.3 Design Mode
24.4 The Palette
24.5 Design Mode and Layout Views
24.6 Night Mode
24.7 Code Mode
24.8 Split Mode
24.9 Setting Attributes
24.10 Transforms
24.11 Tools Visibility Toggles
24.12 Converting Views
24.13 Displaying Sample Data
24.14 Creating a Custom Device Definition
24.15 Changing the Current Device
24.16 Layout Validation
24.17 Summary

25. A Guide to the Android ConstraintLayout
25.1 How ConstraintLayout Works
25.1.1 Constraints
25.1.2 Margins
25.1.3 Opposing Constraints
25.1.4 Constraint Bias
25.1.5 Chains
25.1.6 Chain Styles

25.2 Baseline Alignment
25.3 Configuring Widget Dimensions
25.4 Guideline Helper
25.5 Group Helper
25.6 Barrier Helper
25.7 Flow Helper
25.8 Ratios

25.9 ConstraintLayout Advantages
25.10 ConstraintLayout Availability
25.11 Summary

26. A Guide to Using ConstraintLayout in Android Studio
26.1 Design and Layout Views
26.2 Autoconnect Mode
26.3 Inference Mode
26.4 Manipulating Constraints Manually
26.5 Adding Constraints in the Inspector
26.6 Viewing Constraints in the Attributes Window
26.7 Deleting Constraints
26.8 Adjusting Constraint Bias
26.9 Understanding ConstraintLayout Margins
26.10 The Importance of Opposing Constraints and Bias
26.11 Configuring Widget Dimensions
26.12 Design Time Tools Positioning
26.13 Adding Guidelines
26.14 Adding Barriers
26.15 Adding a Group
26.16 Working with the Flow Helper
26.17 Widget Group Alignment and Distribution
26.18 Converting other Layouts to ConstraintLayout
26.19 Summary

27. Working with ConstraintLayout Chains and Ratios in Android
Studio

27.1 Creating a Chain
27.2 Changing the Chain Style
27.3 Spread Inside Chain Style
27.4 Packed Chain Style
27.5 Packed Chain Style with Bias
27.6 Weighted Chain
27.7 Working with Ratios
27.8 Summary

28. An Android Studio Layout Editor ConstraintLayout Tutorial
28.1 An Android Studio Layout Editor Tool Example

28.2 Preparing the Layout Editor Environment
28.3 Adding the Widgets to the User Interface
28.4 Adding the Constraints
28.5 Testing the Layout
28.6 Using the Layout Inspector
28.7 Summary

29. Manual XML Layout Design in Android Studio
29.1 Manually Creating an XML Layout
29.2 Manual XML vs. Visual Layout Design
29.3 Summary

30. Managing Constraints using Constraint Sets
30.1 Kotlin Code vs. XML Layout Files
30.2 Creating Views
30.3 View Attributes
30.4 Constraint Sets
30.4.1 Establishing Connections
30.4.2 Applying Constraints to a Layout
30.4.3 Parent Constraint Connections
30.4.4 Sizing Constraints
30.4.5 Constraint Bias
30.4.6 Alignment Constraints
30.4.7 Copying and Applying Constraint Sets
30.4.8 ConstraintLayout Chains
30.4.9 Guidelines
30.4.10 Removing Constraints
30.4.11 Scaling
30.4.12 Rotation

30.5 Summary
31. An Android ConstraintSet Tutorial

31.1 Creating the Example Project in Android Studio
31.2 Adding Views to an Activity
31.3 Setting View Attributes
31.4 Creating View IDs
31.5 Configuring the Constraint Set
31.6 Adding the EditText View

31.7 Converting Density Independent Pixels (dp) to Pixels (px)
31.8 Summary

32. A Guide to Using Apply Changes in Android Studio
32.1 Introducing Apply Changes
32.2 Understanding Apply Changes Options
32.3 Using Apply Changes
32.4 Configuring Apply Changes Fallback Settings
32.5 An Apply Changes Tutorial
32.6 Using Apply Code Changes
32.7 Using Apply Changes and Restart Activity
32.8 Using Run App
32.9 Summary

33. A Guide to Gradle Version Catalogs
33.1 Library and Plugin Dependencies
33.2 Project Gradle Build File
33.3 Module Gradle Build Files
33.4 Version Catalog File
33.5 Adding Dependencies
33.6 Library Updates
33.7 Summary

34. An Overview and Example of Android Event Handling
34.1 Understanding Android Events
34.2 Using the android:onClick Resource
34.3 Event Listeners and Callback Methods
34.4 An Event Handling Example
34.5 Designing the User Interface
34.6 The Event Listener and Callback Method
34.7 Consuming Events
34.8 Summary

35. Android Touch and Multi-touch Event Handling
35.1 Intercepting Touch Events
35.2 The MotionEvent Object
35.3 Understanding Touch Actions
35.4 Handling Multiple Touches

35.5 An Example Multi-Touch Application
35.6 Designing the Activity User Interface
35.7 Implementing the Touch Event Listener
35.8 Running the Example Application
35.9 Summary

36. Detecting Common Gestures Using the Android Gesture Detector
Class

36.1 Implementing Common Gesture Detection
36.2 Creating an Example Gesture Detection Project
36.3 Implementing the Listener Class
36.4 Creating the GestureDetector Instance
36.5 Implementing the onTouchEvent() Method
36.6 Testing the Application
36.7 Summary

37. Implementing Custom Gesture and Pinch Recognition on Android
37.1 The Android Gesture Builder Application
37.2 The GestureOverlayView Class
37.3 Detecting Gestures
37.4 Identifying Specific Gestures
37.5 Installing and Running the Gesture Builder Application
37.6 Creating a Gestures File
37.7 Creating the Example Project
37.8 Extracting the Gestures File from the SD Card
37.9 Adding the Gestures File to the Project
37.10 Designing the User Interface
37.11 Loading the Gestures File
37.12 Registering the Event Listener
37.13 Implementing the onGesturePerformed Method
37.14 Testing the Application
37.15 Configuring the GestureOverlayView
37.16 Intercepting Gestures
37.17 Detecting Pinch Gestures
37.18 A Pinch Gesture Example Project
37.19 Summary

38. An Introduction to Android Fragments

38.1 What is a Fragment?
38.2 Creating a Fragment
38.3 Adding a Fragment to an Activity using the Layout XML File
38.4 Adding and Managing Fragments in Code
38.5 Handling Fragment Events
38.6 Implementing Fragment Communication
38.7 Summary

39. Using Fragments in Android Studio - An Example
39.1 About the Example Fragment Application
39.2 Creating the Example Project
39.3 Creating the First Fragment Layout
39.4 Migrating a Fragment to View Binding
39.5 Adding the Second Fragment
39.6 Adding the Fragments to the Activity
39.7 Making the Toolbar Fragment Talk to the Activity
39.8 Making the Activity Talk to the Text Fragment
39.9 Testing the Application
39.10 Summary

40. Modern Android App Architecture with Jetpack
40.1 What is Android Jetpack?
40.2 The “Old” Architecture
40.3 Modern Android Architecture
40.4 The ViewModel Component
40.5 The LiveData Component
40.6 ViewModel Saved State
40.7 LiveData and Data Binding
40.8 Android Lifecycles
40.9 Repository Modules
40.10 Summary

41. An Android ViewModel Tutorial
41.1 About the Project
41.2 Creating the ViewModel Example Project
41.3 Removing Unwanted Project Elements
41.4 Designing the Fragment Layout
41.5 Implementing the View Model

41.6 Associating the Fragment with the View Model
41.7 Modifying the Fragment
41.8 Accessing the ViewModel Data
41.9 Testing the Project
41.10 Summary

42. An Android Jetpack LiveData Tutorial
42.1 LiveData - A Recap
42.2 Adding LiveData to the ViewModel
42.3 Implementing the Observer
42.4 Summary

43. An Overview of Android Jetpack Data Binding
43.1 An Overview of Data Binding
43.2 The Key Components of Data Binding
43.2.1 The Project Build Configuration
43.2.2 The Data Binding Layout File
43.2.3 The Layout File Data Element
43.2.4 The Binding Classes
43.2.5 Data Binding Variable Configuration
43.2.6 Binding Expressions (One-Way)
43.2.7 Binding Expressions (Two-Way)
43.2.8 Event and Listener Bindings

43.3 Summary
44. An Android Jetpack Data Binding Tutorial

44.1 Removing the Redundant Code
44.2 Enabling Data Binding
44.3 Adding the Layout Element
44.4 Adding the Data Element to Layout File
44.5 Working with the Binding Class
44.6 Assigning the ViewModel Instance to the Data Binding Variable
44.7 Adding Binding Expressions
44.8 Adding the Conversion Method
44.9 Adding a Listener Binding
44.10 Testing the App
44.11 Summary

45. An Android ViewModel Saved State Tutorial
45.1 Understanding ViewModel State Saving
45.2 Implementing ViewModel State Saving
45.3 Saving and Restoring State
45.4 Adding Saved State Support to the ViewModelDemo Project
45.5 Summary

46. Working with Android Lifecycle-Aware Components
46.1 Lifecycle Awareness
46.2 Lifecycle Owners
46.3 Lifecycle Observers
46.4 Lifecycle States and Events
46.5 Summary

47. An Android Jetpack Lifecycle Awareness Tutorial
47.1 Creating the Example Lifecycle Project
47.2 Creating a Lifecycle Observer
47.3 Adding the Observer
47.4 Testing the Observer
47.5 Creating a Lifecycle Owner
47.6 Testing the Custom Lifecycle Owner
47.7 Summary

48. An Overview of the Navigation Architecture Component
48.1 Understanding Navigation
48.2 Declaring a Navigation Host
48.3 The Navigation Graph
48.4 Accessing the Navigation Controller
48.5 Triggering a Navigation Action
48.6 Passing Arguments
48.7 Summary

49. An Android Jetpack Navigation Component Tutorial
49.1 Creating the NavigationDemo Project
49.2 Adding Navigation to the Build Configuration
49.3 Creating the Navigation Graph Resource File
49.4 Declaring a Navigation Host
49.5 Adding Navigation Destinations

49.6 Designing the Destination Fragment Layouts
49.7 Adding an Action to the Navigation Graph
49.8 Implement the OnFragmentInteractionListener
49.9 Adding View Binding Support to the Destination Fragments
49.10 Triggering the Action
49.11 Passing Data Using Safeargs
49.12 Summary

50. An Introduction to MotionLayout
50.1 An Overview of MotionLayout
50.2 MotionLayout
50.3 MotionScene
50.4 Configuring ConstraintSets
50.5 Custom Attributes
50.6 Triggering an Animation
50.7 Arc Motion
50.8 Keyframes
50.8.1 Attribute Keyframes
50.8.2 Position Keyframes

50.9 Time Linearity
50.10 KeyTrigger
50.11 Cycle and Time Cycle Keyframes
50.12 Starting an Animation from Code
50.13 Summary

51. An Android MotionLayout Editor Tutorial
51.1 Creating the MotionLayoutDemo Project
51.2 ConstraintLayout to MotionLayout Conversion
51.3 Configuring Start and End Constraints
51.4 Previewing the MotionLayout Animation
51.5 Adding an OnClick Gesture
51.6 Adding an Attribute Keyframe to the Transition
51.7 Adding a CustomAttribute to a Transition
51.8 Adding Position Keyframes
51.9 Summary

52. A MotionLayout KeyCycle Tutorial
52.1 An Overview of Cycle Keyframes

52.2 Using the Cycle Editor
52.3 Creating the KeyCycleDemo Project
52.4 Configuring the Start and End Constraints
52.5 Creating the Cycles
52.6 Previewing the Animation
52.7 Adding the KeyFrameSet to the MotionScene
52.8 Summary

53. Working with the Floating Action Button and Snackbar
53.1 The Material Design
53.2 The Design Library
53.3 The Floating Action Button (FAB)
53.4 The Snackbar
53.5 Creating the Example Project
53.6 Reviewing the Project
53.7 Removing Navigation Features
53.8 Changing the Floating Action Button
53.9 Adding an Action to the Snackbar
53.10 Summary

54. Creating a Tabbed Interface using the TabLayout Component
54.1 An Introduction to the ViewPager2
54.2 An Overview of the TabLayout Component
54.3 Creating the TabLayoutDemo Project
54.4 Creating the First Fragment
54.5 Duplicating the Fragments
54.6 Adding the TabLayout and ViewPager2
54.7 Performing the Initialization Tasks
54.8 Testing the Application
54.9 Customizing the TabLayout
54.10 Summary

55. Working with the RecyclerView and CardView Widgets
55.1 An Overview of the RecyclerView
55.2 An Overview of the CardView
55.3 Summary

56. An Android RecyclerView and CardView Tutorial

56.1 Creating the CardDemo Project
56.2 Modifying the Basic Views Activity Project
56.3 Designing the CardView Layout
56.4 Adding the RecyclerView
56.5 Adding the Image Files
56.6 Creating the RecyclerView Adapter
56.7 Initializing the RecyclerView Component
56.8 Testing the Application
56.9 Responding to Card Selections
56.10 Summary

57. Working with the AppBar and Collapsing Toolbar Layouts
57.1 The Anatomy of an AppBar
57.2 The Example Project
57.3 Coordinating the RecyclerView and Toolbar
57.4 Introducing the Collapsing Toolbar Layout
57.5 Changing the Title and Scrim Color
57.6 Summary

58. An Overview of Android Intents
58.1 An Overview of Intents
58.2 Explicit Intents
58.3 Returning Data from an Activity
58.4 Implicit Intents
58.5 Using Intent Filters
58.6 Automatic Link Verification
58.7 Manually Enabling Links
58.8 Checking Intent Availability
58.9 Summary

59. Android Explicit Intents – A Worked Example
59.1 Creating the Explicit Intent Example Application
59.2 Designing the User Interface Layout for MainActivity
59.3 Creating the Second Activity Class
59.4 Designing the User Interface Layout for SecondActivity
59.5 Reviewing the Application Manifest File
59.6 Creating the Intent
59.7 Extracting Intent Data

59.8 Launching SecondActivity as a Sub-Activity
59.9 Returning Data from a Sub-Activity
59.10 Testing the Application
59.11 Summary

60. Android Implicit Intents – A Worked Example
60.1 Creating the Android Studio Implicit Intent Example Project
60.2 Designing the User Interface
60.3 Creating the Implicit Intent
60.4 Adding a Second Matching Activity
60.5 Adding the Web View to the UI
60.6 Obtaining the Intent URL
60.7 Modifying the MyWebView Project Manifest File
60.8 Installing the MyWebView Package on a Device
60.9 Testing the Application
60.10 Manually Enabling the Link
60.11 Automatic Link Verification
60.12 Summary

61. Android Broadcast Intents and Broadcast Receivers
61.1 An Overview of Broadcast Intents
61.2 An Overview of Broadcast Receivers
61.3 Obtaining Results from a Broadcast
61.4 Sticky Broadcast Intents
61.5 The Broadcast Intent Example
61.6 Creating the Example Application
61.7 Creating and Sending the Broadcast Intent
61.8 Creating the Broadcast Receiver
61.9 Registering the Broadcast Receiver
61.10 Testing the Broadcast Example
61.11 Listening for System Broadcasts
61.12 Summary

62. An Introduction to Kotlin Coroutines
62.1 What are Coroutines?
62.2 Threads vs. Coroutines
62.3 Coroutine Scope
62.4 Suspend Functions

62.5 Coroutine Dispatchers
62.6 Coroutine Builders
62.7 Jobs
62.8 Coroutines – Suspending and Resuming
62.9 Returning Results from a Coroutine
62.10 Using withContext
62.11 Coroutine Channel Communication
62.12 Summary

63. An Android Kotlin Coroutines Tutorial
63.1 Creating the Coroutine Example Application
63.2 Designing the User Interface
63.3 Implementing the SeekBar
63.4 Adding the Suspend Function
63.5 Implementing the launchCoroutines Method
63.6 Testing the App
63.7 Summary

64. An Overview of Android Services
64.1 Intent Service
64.2 Bound Service
64.3 The Anatomy of a Service
64.4 Controlling Destroyed Service Restart Options
64.5 Declaring a Service in the Manifest File
64.6 Starting a Service Running on System Startup
64.7 Summary

65. Android Local Bound Services – A Worked Example
65.1 Understanding Bound Services
65.2 Bound Service Interaction Options
65.3 A Local Bound Service Example
65.4 Adding a Bound Service to the Project
65.5 Implementing the Binder
65.6 Binding the Client to the Service
65.7 Completing the Example
65.8 Testing the Application
65.9 Summary

66. Android Remote Bound Services – A Worked Example
66.1 Client to Remote Service Communication
66.2 Creating the Example Application
66.3 Designing the User Interface
66.4 Implementing the Remote Bound Service
66.5 Configuring a Remote Service in the Manifest File
66.6 Launching and Binding to the Remote Service
66.7 Sending a Message to the Remote Service
66.8 Summary

67. An Introduction to Kotlin Flow
67.1 Understanding Flows
67.2 Creating the Sample Project
67.3 Adding the Kotlin Lifecycle Library
67.4 Declaring a Flow
67.5 Emitting Flow Data
67.6 Collecting Flow Data
67.7 Adding a Flow Buffer
67.8 Transforming Data with Intermediaries
67.9 Terminal Flow Operators
67.10 Flow Flattening
67.11 Combining Multiple Flows
67.12 Hot and Cold Flows
67.13 StateFlow
67.14 SharedFlow
67.15 Summary

68. An Android SharedFlow Tutorial
68.1 About the Project
68.2 Creating the SharedFlowDemo Project
68.3 Adding the Lifecycle Libraries
68.4 Designing the User Interface Layout
68.5 Adding the List Row Layout
68.6 Adding the RecyclerView Adapter
68.7 Adding the ViewModel
68.8 Configuring the ViewModelProvider
68.9 Collecting the Flow Values

68.10 Testing the SharedFlowDemo App
68.11 Handling Flows in the Background
68.12 Summary

69. An Overview of Android SQLite Databases
69.1 Understanding Database Tables
69.2 Introducing Database Schema
69.3 Columns and Data Types
69.4 Database Rows
69.5 Introducing Primary Keys
69.6 What is SQLite?
69.7 Structured Query Language (SQL)
69.8 Trying SQLite on an Android Virtual Device (AVD)
69.9 Android SQLite Classes
69.9.1 Cursor
69.9.2 SQLiteDatabase
69.9.3 SQLiteOpenHelper
69.9.4 ContentValues

69.10 The Android Room Persistence Library
69.11 Summary

70. An Android SQLite Database Tutorial
70.1 About the Database Example
70.2 Creating the SQLDemo Project
70.3 Designing the User interface
70.4 Creating the Data Model
70.5 Implementing the Data Handler
70.6 The Add Handler Method
70.7 The Query Handler Method
70.8 The Delete Handler Method
70.9 Implementing the Activity Event Methods
70.10 Testing the Application
70.11 Summary

71. Understanding Android Content Providers
71.1 What is a Content Provider?
71.2 The Content Provider
71.2.1 onCreate()

71.2.2 query()
71.2.3 insert()
71.2.4 update()
71.2.5 delete()
71.2.6 getType()

71.3 The Content URI
71.4 The Content Resolver
71.5 The <provider> Manifest Element
71.6 Summary

72. An Android Content Provider Tutorial
72.1 Copying the SQLDemo Project
72.2 Adding the Content Provider Package
72.3 Creating the Content Provider Class
72.4 Constructing the Authority and Content URI
72.5 Implementing URI Matching in the Content Provider
72.6 Implementing the Content Provider onCreate() Method
72.7 Implementing the Content Provider insert() Method
72.8 Implementing the Content Provider query() Method
72.9 Implementing the Content Provider update() Method
72.10 Implementing the Content Provider delete() Method
72.11 Declaring the Content Provider in the Manifest File
72.12 Modifying the Database Handler
72.13 Summary

73. An Android Content Provider Client Tutorial
73.1 Creating the SQLDemoClient Project
73.2 Designing the User interface
73.3 Accessing the Content Provider
73.4 Adding the Query Permission
73.5 Testing the Project
73.6 Summary

74. The Android Room Persistence Library
74.1 Revisiting Modern App Architecture
74.2 Key Elements of Room Database Persistence
74.2.1 Repository
74.2.2 Room Database

74.2.3 Data Access Object (DAO)
74.2.4 Entities
74.2.5 SQLite Database

74.3 Understanding Entities
74.4 Data Access Objects
74.5 The Room Database
74.6 The Repository
74.7 In-Memory Databases
74.8 Database Inspector
74.9 Summary

75. An Android TableLayout and TableRow Tutorial
75.1 The TableLayout and TableRow Layout Views
75.2 Creating the Room Database Project
75.3 Converting to a LinearLayout
75.4 Adding the TableLayout to the User Interface
75.5 Configuring the TableRows
75.6 Adding the Button Bar to the Layout
75.7 Adding the RecyclerView
75.8 Adjusting the Layout Margins
75.9 Summary

76. An Android Room Database and Repository Tutorial
76.1 About the RoomDemo Project
76.2 Modifying the Build Configuration
76.3 Building the Entity
76.4 Creating the Data Access Object
76.5 Adding the Room Database
76.6 Adding the Repository
76.7 Adding the ViewModel
76.8 Creating the Product Item Layout
76.9 Adding the RecyclerView Adapter
76.10 Preparing the Main Activity
76.11 Adding the Button Listeners
76.12 Adding LiveData Observers
76.13 Initializing the RecyclerView
76.14 Testing the RoomDemo App

76.15 Using the Database Inspector
76.16 Summary

77. Video Playback on Android using the VideoView and
MediaController Classes

77.1 Introducing the Android VideoView Class
77.2 Introducing the Android MediaController Class
77.3 Creating the Video Playback Example
77.4 Designing the VideoPlayer Layout
77.5 Downloading the Video File
77.6 Configuring the VideoView
77.7 Adding the MediaController to the Video View
77.8 Setting up the onPreparedListener
77.9 Summary

78. Android Picture-in-Picture Mode
78.1 Picture-in-Picture Features
78.2 Enabling Picture-in-Picture Mode
78.3 Configuring Picture-in-Picture Parameters
78.4 Entering Picture-in-Picture Mode
78.5 Detecting Picture-in-Picture Mode Changes
78.6 Adding Picture-in-Picture Actions
78.7 Summary

79. An Android Picture-in-Picture Tutorial
79.1 Adding Picture-in-Picture Support to the Manifest
79.2 Adding a Picture-in-Picture Button
79.3 Entering Picture-in-Picture Mode
79.4 Detecting Picture-in-Picture Mode Changes
79.5 Adding a Broadcast Receiver
79.6 Adding the PiP Action
79.7 Testing the Picture-in-Picture Action
79.8 Summary

80. Making Runtime Permission Requests in Android
80.1 Understanding Normal and Dangerous Permissions
80.2 Creating the Permissions Example Project
80.3 Checking for a Permission

80.4 Requesting Permission at Runtime
80.5 Providing a Rationale for the Permission Request
80.6 Testing the Permissions App
80.7 Summary

81. Android Audio Recording and Playback using MediaPlayer and
MediaRecorder

81.1 Playing Audio
81.2 Recording Audio and Video using the MediaRecorder Class
81.3 About the Example Project
81.4 Creating the AudioApp Project
81.5 Designing the User Interface
81.6 Checking for Microphone Availability
81.7 Initializing the Activity
81.8 Implementing the recordAudio() Method
81.9 Implementing the stopAudio() Method
81.10 Implementing the playAudio() method
81.11 Configuring and Requesting Permissions
81.12 Testing the Application
81.13 Summary

82. An Android Notifications Tutorial
82.1 An Overview of Notifications
82.2 Creating the NotifyDemo Project
82.3 Designing the User Interface
82.4 Creating the Second Activity
82.5 Creating a Notification Channel
82.6 Requesting Notification Permission
82.7 Creating and Issuing a Notification
82.8 Launching an Activity from a Notification
82.9 Adding Actions to a Notification
82.10 Bundled Notifications
82.11 Summary

83. An Android Direct Reply Notification Tutorial
83.1 Creating the DirectReply Project
83.2 Designing the User Interface
83.3 Requesting Notification Permission

83.4 Creating the Notification Channel
83.5 Building the RemoteInput Object
83.6 Creating the PendingIntent
83.7 Creating the Reply Action
83.8 Receiving Direct Reply Input
83.9 Updating the Notification
83.10 Summary

84. Working with the Google Maps Android API in Android Studio
84.1 The Elements of the Google Maps Android API
84.2 Creating the Google Maps Project
84.3 Creating a Google Cloud Billing Account
84.4 Creating a New Google Cloud Project
84.5 Enabling the Google Maps SDK
84.6 Generating a Google Maps API Key
84.7 Adding the API Key to the Android Studio Project
84.8 Testing the Application
84.9 Understanding Geocoding and Reverse Geocoding
84.10 Adding a Map to an Application
84.11 Requesting Current Location Permission
84.12 Displaying the User’s Current Location
84.13 Changing the Map Type
84.14 Displaying Map Controls to the User
84.15 Handling Map Gesture Interaction
84.15.1 Map Zooming Gestures
84.15.2 Map Scrolling/Panning Gestures
84.15.3 Map Tilt Gestures
84.15.4 Map Rotation Gestures

84.16 Creating Map Markers
84.17 Controlling the Map Camera
84.18 Summary

85. Printing with the Android Printing Framework
85.1 The Android Printing Architecture
85.2 The Print Service Plugins
85.3 Google Cloud Print
85.4 Printing to Google Drive

85.5 Save as PDF
85.6 Printing from Android Devices
85.7 Options for Building Print Support into Android Apps
85.7.1 Image Printing
85.7.2 Creating and Printing HTML Content
85.7.3 Printing a Web Page
85.7.4 Printing a Custom Document

85.8 Summary
86. An Android HTML and Web Content Printing Example

86.1 Creating the HTML Printing Example Application
86.2 Printing Dynamic HTML Content
86.3 Creating the Web Page Printing Example
86.4 Removing the Floating Action Button
86.5 Removing Navigation Features
86.6 Designing the User Interface Layout
86.7 Accessing the WebView from the Main Activity
86.8 Loading the Web Page into the WebView
86.9 Adding the Print Menu Option
86.10 Summary

87. A Guide to Android Custom Document Printing
87.1 An Overview of Android Custom Document Printing
87.1.1 Custom Print Adapters

87.2 Preparing the Custom Document Printing Project
87.3 Designing the UI
87.4 Creating the Custom Print Adapter
87.5 Implementing the onLayout() Callback Method
87.6 Implementing the onWrite() Callback Method
87.7 Checking a Page is in Range
87.8 Drawing the Content on the Page Canvas
87.9 Starting the Print Job
87.10 Testing the Application
87.11 Summary

88. An Introduction to Android App Links
88.1 An Overview of Android App Links
88.2 App Link Intent Filters

88.3 Handling App Link Intents
88.4 Associating the App with a Website
88.5 Summary

89. An Android Studio App Links Tutorial
89.1 About the Example App
89.2 The Database Schema
89.3 Loading and Running the Project
89.4 Adding the URL Mapping
89.5 Adding the Intent Filter
89.6 Adding Intent Handling Code
89.7 Testing the App
89.8 Creating the Digital Asset Links File
89.9 Testing the App Link
89.10 Summary

90. An Android Biometric Authentication Tutorial
90.1 An Overview of Biometric Authentication
90.2 Creating the Biometric Authentication Project
90.3 Configuring Device Fingerprint Authentication
90.4 Adding the Biometric Permission to the Manifest File
90.5 Designing the User Interface
90.6 Adding a Toast Convenience Method
90.7 Checking the Security Settings
90.8 Configuring the Authentication Callbacks
90.9 Adding the CancellationSignal
90.10 Starting the Biometric Prompt
90.11 Testing the Project
90.12 Summary

91. Creating, Testing, and Uploading an Android App Bundle
91.1 The Release Preparation Process
91.2 Android App Bundles
91.3 Register for a Google Play Developer Console Account
91.4 Configuring the App in the Console
91.5 Enabling Google Play App Signing
91.6 Creating a Keystore File
91.7 Creating the Android App Bundle

91.8 Generating Test APK Files
91.9 Uploading the App Bundle to the Google Play Developer Console
91.10 Exploring the App Bundle
91.11 Managing Testers
91.12 Rolling the App Out for Testing
91.13 Uploading New App Bundle Revisions
91.14 Analyzing the App Bundle File
91.15 Summary

92. An Overview of Android In-App Billing
92.1 Preparing a Project for In-App Purchasing
92.2 Creating In-App Products and Subscriptions
92.3 Billing Client Initialization
92.4 Connecting to the Google Play Billing Library
92.5 Querying Available Products
92.6 Starting the Purchase Process
92.7 Completing the Purchase
92.8 Querying Previous Purchases
92.9 Summary

93. An Android In-App Purchasing Tutorial
93.1 About the In-App Purchasing Example Project
93.2 Creating the InAppPurchase Project
93.3 Adding Libraries to the Project
93.4 Designing the User Interface
93.5 Adding the App to the Google Play Store
93.6 Creating an In-App Product
93.7 Enabling License Testers
93.8 Initializing the Billing Client
93.9 Querying the Product
93.10 Launching the Purchase Flow
93.11 Handling Purchase Updates
93.12 Consuming the Product
93.13 Restoring a Previous Purchase
93.14 Testing the App
93.15 Troubleshooting
93.16 Summary

94. Accessing Cloud Storage using the Android Storage Access
Framework

94.1 The Storage Access Framework
94.2 Working with the Storage Access Framework
94.3 Filtering Picker File Listings
94.4 Handling Intent Results
94.5 Reading the Content of a File
94.6 Writing Content to a File
94.7 Deleting a File
94.8 Gaining Persistent Access to a File
94.9 Summary

95. An Android Storage Access Framework Example
95.1 About the Storage Access Framework Example
95.2 Creating the Storage Access Framework Example
95.3 Designing the User Interface
95.4 Adding the Activity Launchers
95.5 Creating a New Storage File
95.6 Saving to a Storage File
95.7 Opening and Reading a Storage File
95.8 Testing the Storage Access Application
95.9 Summary

96. An Android Studio Primary/Detail Flow Tutorial
96.1 The Primary/Detail Flow
96.2 Creating a Primary/Detail Flow Activity
96.3 Adding the Primary/Detail Flow Activity
96.4 Modifying the Primary/Detail Flow Template
96.5 Changing the Content Model
96.6 Changing the Detail Pane
96.7 Modifying the ItemDetailFragment Class
96.8 Modifying the ItemListFragment Class
96.9 Adding Manifest Permissions
96.10 Running the Application
96.11 Summary

97. Working with Material Design 3 Theming

97.1 Material Design 2 vs. Material Design 3
97.2 Understanding Material Design Theming
97.3 Material Design 3 Theming
97.4 Building a Custom Theme
97.5 Summary

98. A Material Design 3 Theming and Dynamic Color Tutorial
98.1 Creating the ThemeDemo Project
98.2 Designing the User Interface
98.3 Building a New Theme
98.4 Adding the Theme to the Project
98.5 Enabling Dynamic Color Support
98.6 Previewing Dynamic Colors
98.7 Summary

99. An Overview of Gradle in Android Studio
99.1 An Overview of Gradle
99.2 Gradle and Android Studio
99.2.1 Sensible Defaults
99.2.2 Dependencies
99.2.3 Build Variants
99.2.4 Manifest Entries
99.2.5 APK Signing
99.2.6 ProGuard Support

99.3 The Property and Settings Gradle Build File
99.4 The Top-level Gradle Build File
99.5 Module Level Gradle Build Files
99.6 Configuring Signing Settings in the Build File
99.7 Running Gradle Tasks from the Command Line
99.8 Summary

Index

1. Introduction
This book, fully updated for Android Studio Jellyfish (2023.3.1) and the
new UI, teaches you how to develop Android-based applications using the
Kotlin programming language.
This book begins with the basics and outlines how to set up an Android
development and testing environment, followed by an introduction to
programming in Kotlin, including data types, control flow, functions,
lambdas, and object-oriented programming. Asynchronous programming
using Kotlin coroutines and flow is also covered in detail.
Chapters also cover the Android Architecture Components, including view
models, lifecycle management, Room database access, content providers,
the Database Inspector, app navigation, live data, and data binding.
More advanced topics such as intents are also covered, as are touch screen
handling, gesture recognition, and the recording and playback of audio.
This book edition also covers printing, transitions, and foldable device
support.
The concepts of material design are also covered in detail, including the use
of floating action buttons, Snackbars, tabbed interfaces, card views,
navigation drawers, and collapsing toolbars.
Other key features of Android Studio and Android are also covered in
detail, including the Layout Editor, the ConstraintLayout and ConstraintSet
classes, MotionLayout Editor, view binding, constraint chains, barriers, and
direct reply notifications.
Chapters also cover advanced features of Android Studio, such as App
Links, Gradle build configuration, in-app billing, and submitting apps to the
Google Play Developer Console.
Assuming you already have some programming experience, are ready to
download Android Studio and the Android SDK, have access to a
Windows, Mac, or Linux system, and have ideas for some apps to develop,
you are ready to get started.

1.1 Downloading the Code Samples
The source code and Android Studio project files for the examples

contained in this book are available for download at:
https://www.payloadbooks.com/product/jellyfishkotlin/
The steps to load a project from the code samples into Android Studio are
as follows:
1.From the Welcome to Android Studio dialog, click on the Open button

option.
2.In the project selection dialog, navigate to and select the folder containing

the project to be imported and click on OK.

1.2 Feedback
We want you to be satisfied with your purchase of this book. If you find any
errors in the book, or have any comments, questions or concerns please
contact us at info@payloadbooks.com.

1.3 Errata
While we make every effort to ensure the accuracy of the content of this
book, it is inevitable that a book covering a subject area of this size and
complexity may include some errors and oversights. Any known issues with
the book will be outlined, together with solutions, at the following URL:
https://www.payloadbooks.com/jellyfishkotlin
If you find an error not listed in the errata, please let us know by emailing
our technical support team at info@payloadbooks.com. They are there to
help you and will work to resolve any problems you may encounter.

https://www.payloadbooks.com/product/jellyfishkotlin/
https://www.payloadbooks.com/jellyfishkotlin

2. Setting up an Android Studio
Development Environment
Before any work can begin on developing an Android application, the first
step is to configure a computer system to act as the development platform.
This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE), including the Android
Software Development Kit (SDK), the Kotlin plug-in and the OpenJDK
Java development environment.
This chapter will cover the steps necessary to install the requisite
components for Android application development on Windows, macOS,
and Linux-based systems.

2.1 System requirements
Android application development may be performed on any of the
following system types:
•Windows 8/10/11 64-bit
•macOS 10.14 or later running on Intel or Apple silicon
•Chrome OS device with Intel i5 or higher
•Linux systems with version 2.31 or later of the GNU C Library (glibc)
•Minimum of 8GB of RAM
•Approximately 8GB of available disk space
•1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio package
Most of the work involved in developing applications for Android will be
performed using the Android Studio environment. The content and
examples in this book were created based on Android Studio Jellyfish
2023.3.1 using the Android API 34 SDK (UpsideDownCake), which, at the
time of writing, are the latest stable releases.
Android Studio is, however, subject to frequent updates, so a newer version
may have been released since this book was published.
The latest release of Android Studio may be downloaded from the primary

download page, which can be found at the following URL:
https://developer.android.com/studio/index.html
If this page provides instructions for downloading a newer version of
Android Studio, there may be differences between this book and the
software. A web search for “Android Studio Jellyfish” should provide the
option to download the older version if these differences become a problem.
Alternatively, visit the following web page to find Android Studio Jellyfish
2023.3.1 in the archives:
https://developer.android.com/studio/archive

2.3 Installing Android Studio
Once downloaded, the exact steps to install Android Studio differ
depending on the operating system on which the installation is performed.
2.3.1 Installation on Windows
Locate the downloaded Android Studio installation executable file (named
android-studio-<version>-windows.exe) in a Windows Explorer window
and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.
Once the Android Studio setup wizard appears, work through the various
screens to configure the installation to meet your requirements in terms of
the file system location into which Android Studio should be installed.
When prompted to select the components to install, ensure that the Android
Studio and Android Virtual Device options are both selected.
Although there are no strict rules on where Android Studio should be
installed on the system, the remainder of this book will assume that the
installation was performed into C:\Program Files\Android\Android Studio
and that the Android SDK packages have been installed into the user’s
AppData\Local\Android\sdk sub-folder. Once the options have been
configured, click the Install button to complete the installation process.
2.3.2 Installation on macOS
Android Studio for macOS is downloaded as a disk image (.dmg) file. Once
the android-studio-<version>-mac.dmg file has been downloaded, locate it
in a Finder window and double-click on it to open it, as shown in Figure 2-
1:

https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive

Figure 2-1
To install the package, drag the Android Studio icon and drop it onto the
Applications folder. The Android Studio package will then be installed into
the Applications folder of the system, a process that will typically take a
few seconds to complete.
To launch Android Studio, locate the executable in the Applications folder
using a Finder window and double-click on it.
For future, easier access to the tool, drag the Android Studio icon from the
Finder window and drop it onto the dock.
2.3.3 Installation on Linux
Having downloaded the Linux Android Studio package, open a terminal
window, change directory to the location where Android Studio is to be
installed, and execute the following command:
tar xvfz /<path to package>/android-studio-<version>-linux.tar.gz

Note that the Android Studio bundle will be installed into a subdirectory
named android-studio. Therefore, assuming that the above command was
executed in /home/demo, the software packages will be unpacked into
/home/demo/android-studio.
To launch Android Studio, open a terminal window, change directory to the
android-studio/bin sub-directory, and execute the following command:
./studio.sh

2.4 Installing additional Android SDK packages
When you launch Android Studio, the Welcome to Android Studio screen
will appear as shown below:

Figure 2-2
The steps performed so far have installed the Android Studio IDE and the
current set of default Android SDK packages. Before proceeding, it is worth
taking some time to verify which packages are installed and to install any
missing or updated packages.
This task can be performed by clicking on the More Actions link within the
welcome dialog and selecting the SDK Manager option from the drop-down
menu. Once invoked, the Android SDK screen of the Settings dialog will
appear as shown in Figure 2-3:

Figure 2-3
Google pairs each release of Android Studio with a maximum supported
Application Programming Interface (API) level of the Android SDK. In the
case of Android Studio Jellyfish, this is Android UpsideDownCake (API
Level 34). This information can be confirmed using the following link:
https://developer.android.com/studio/releases#api-level-support
Immediately after installing Android Studio for the first time, it is likely
that only the latest supported version of the Android SDK has been
installed. To install older versions of the Android SDK, select the
checkboxes corresponding to the versions and click the Apply button. The
rest of this book assumes that the Android UpsideDownCake (API Level
34) SDK is installed.
Most of the examples in this book will support older versions of Android as
far back as Android 8.0 (Oreo). This ensures that the apps run on a wide
range of Android devices. Within the list of SDK versions, enable the
checkbox next to Android 8.0 (Oreo) and click the Apply button. Click the
OK button to install the SDK in the resulting confirmation dialog.
Subsequent dialogs will seek the acceptance of licenses and terms before

https://developer.android.com/studio/releases#api-level-support

performing the installation. Click Finish once the installation is complete.
It is also possible that updates will be listed as being available for the latest
SDK. To access detailed information about the packages that are ready to be
updated, enable the Show Package Details option located in the lower right-
hand corner of the screen. This will display information similar to that
shown in Figure 2-4:

Figure 2-4
The above figure highlights the availability of an update. To install the
updates, enable the checkbox to the left of the item name and click the
Apply button.
In addition to the Android SDK packages, several tools are also installed for
building Android applications. To view the currently installed packages and
check for updates, remain within the SDK settings screen and select the
SDK Tools tab as shown in Figure 2-5:

Figure 2-5
Within the Android SDK Tools screen, make sure that the following
packages are listed as Installed in the Status column:
•Android SDK Build-tools
•Android Emulator
•Android SDK Platform-tools

•Google Play Services
•Intel x86 Emulator Accelerator (HAXM installer)*

•Google USB Driver (Windows only)
•Layout Inspector image server for API 31-34
*Note that the Intel x86 Emulator Accelerator (HAXM installer) cannot be
installed on Apple silicon-based Macs.
If any of the above packages are listed as Not Installed or requiring an
update, select the checkboxes next to those packages and click the Apply
button to initiate the installation process. If the HAXM emulator settings
dialog appears, select the recommended memory allocation:

Figure 2-6
Once the installation is complete, review the package list and ensure that
the selected packages are listed as Installed in the Status column. If any are
listed as Not installed, make sure they are selected and click the Apply
button again.

2.5 Installing the Android SDK Command-line Tools
Android Studio includes tools that allow some tasks to be performed from
your operating system command line. To install these tools on your system,
open the SDK Manager, select the SDK Tools tab, and locate the Android
SDK Command-line Tools (latest) package as shown in Figure 2-7:

Figure 2-7
If the command-line tools package is not already installed, enable it and
click Apply, followed by OK to complete the installation. When the
installation completes, click Finish and close the SDK Manager dialog.
For the operating system on which you are developing to be able to find
these tools, it will be necessary to add them to the system’s PATH
environment variable.
Regardless of your operating system, you will need to configure the PATH
environment variable to include the following paths (where
<path_to_android_sdk_installation> represents the file system location
into which you installed the Android SDK):
<path_to_android_sdk_installation>/sdk/cmdline-tools/latest/bin
<path_to_android_sdk_installation>/sdk/platform-tools

You can identify the location of the SDK on your system by launching the
SDK Manager and referring to the Android SDK Location: field located at
the top of the settings panel, as highlighted in Figure 2-8:

Figure 2-8
Once the location of the SDK has been identified, the steps to add this to
the PATH variable are operating system dependent:
2.5.1 Windows 8.1
1.On the start screen, move the mouse to the bottom right-hand corner of

the screen and select Search from the resulting menu. In the search box,
enter Control Panel. When the Control Panel icon appears in the results
area, click on it to launch the tool on the desktop.

2.Within the Control Panel, use the Category menu to change the display to
Large Icons. From the list of icons, select the one labeled System.

3.In the Environment Variables dialog, locate the Path variable in the
System variables list, select it, and click the Edit… button. Using the New
button in the edit dialog, add two new entries to the path. For example,
assuming the Android SDK was installed into
C:\Users\demo\AppData\Local\Android\Sdk, the following entries would
need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\cmdline-tools\latest\bin
C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

4.Click OK in each dialog box and close the system properties control
panel.

Open a command prompt window by pressing Windows + R on the
keyboard and entering cmd into the Run dialog. Within the Command
Prompt window, enter:
echo %Path%

The returned path variable value should include the paths to the Android
SDK platform tools folders. Verify that the platform-tools value is correct
by attempting to run the adb tool as follows:
adb

The tool should output a list of command-line options when executed.
Similarly, check the tools path setting by attempting to run the AVD
Manager command-line tool (don’t worry if the avdmanager tool reports a
problem with Java - this will be addressed later):
avdmanager

If a message similar to the following message appears for one or both of the

commands, it is most likely that an incorrect path was appended to the Path
environment variable:
'adb' is not recognized as an internal or external command,
operable program or batch file.

2.5.2 Windows 10
Right-click on the Start menu, select Settings from the resulting menu and
enter “Edit the system environment variables” into the Find a setting text
field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.
2.5.3 Windows 11
Right-click on the Start icon located in the taskbar and select Settings from
the resulting menu. When the Settings dialog appears, scroll down the list
of categories and select the “About” option. In the About screen, select
Advanced system settings from the Related links section. When the System
Properties window appears, click the Environment Variables... button.
Follow the steps outlined for Windows 8.1 starting from step 3.
2.5.4 Linux
This configuration can be achieved on Linux by adding a command to the
.bashrc file in your home directory (specifics may differ depending on the
particular Linux distribution in use). Assuming that the Android SDK
bundle package was installed into /home/demo/Android/sdk, the export line
in the .bashrc file would read as follows:
export PATH=/home/demo/Android/sdk/platform-
tools:/home/demo/Android/sdk/cmdline-
tools/latest/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to
the PATH variable. This will enable the studio.sh script to be executed
regardless of the current directory within a terminal window.
2.5.5 macOS
Several techniques may be employed to modify the $PATH environment
variable on macOS. Arguably the cleanest method is to add a new file in the
/etc/paths.d directory containing the paths to be added to $PATH. Assuming
an Android SDK installation location of /Users/demo/Library/Android/sdk,
the path may be configured by creating a new file named android-sdk in the

/etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/cmdline-tools/latest/bin
/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory, it will be necessary to use the
sudo command when creating the file. For example:
sudo vi /etc/paths.d/android-sdk

2.6 Android Studio memory management
Android Studio is a large and complex software application with many
background processes. Although Android Studio has been criticized in the
past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to
do so with each new version. These improvements include allowing the
user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows
the software to take advantage of systems with larger amounts of RAM.
If you are running Android Studio on a system with sufficient unused RAM
to increase these values (this feature is only available on 64-bit systems
with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded, it may be worth experimenting with these memory
settings. Android Studio may also notify you that performance can be
increased via a dialog similar to the one shown below:

Figure 2-9
To view and modify the current memory configuration, select the File ->
Settings... main menu option (Android Studio -> Settings... on macOS) and,
in the resulting dialog, select Appearance & Behavior followed by the
Memory Settings option listed under System Settings in the left-hand
navigation panel, as illustrated in Figure 2-10 below:

Figure 2-10
When changing the memory allocation, be sure not to allocate more
memory than necessary or than your system can spare without slowing
down other processes.
The IDE heap size setting adjusts the memory allocated to Android Studio
and applies regardless of the currently loaded project. On the other hand,
when a project is built and run from within Android Studio, several
background processes (referred to as daemons) perform the task of
compiling and running the app. When compiling and running large and
complex projects, build time could be improved by adjusting the
daemon heap settings. Unlike the IDE heap settings, these daemon settings
apply only to the current project and can only be accessed when a project is
open in Android Studio. To display the SDK Manager from within an open
project, select the Tools -> SDK Manager... menu option from the main
menu.

2.7 Updating Android Studio and the SDK
From time to time, new versions of Android Studio and the Android SDK
are released. New versions of the SDK are installed using the Android SDK
Manager. Android Studio will typically notify you when an update is ready
to be installed.
To manually check for Android Studio updates, use the Help -> Check for
Updates... menu option from the Android Studio main window (Android

Studio -> Check for Updates... on macOS).

2.8 Summary
Before beginning the development of Android-based applications, the first
step is to set up a suitable development environment. This consists of the
Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). This chapter covers the steps necessary to
install these packages on Windows, macOS, and Linux.

3. Creating an Example Android App
in Android Studio
The preceding chapters of this book have explained how to configure an
environment suitable for developing Android applications using the
Android Studio IDE. Before moving on to slightly more advanced topics,
now is a good time to validate that all required development packages are
installed and functioning correctly. The best way to achieve this goal is to
create an Android application and compile and run it. This chapter will
cover creating an Android application project using Android Studio. Once
the project has been created, a later chapter will explore using the Android
emulator environment to perform a test run of the application.

3.1 About the Project
The project created in this chapter takes the form of a rudimentary currency
conversion calculator (so simple, in fact, that it only converts from dollars
to euros and does so using an estimated conversion rate). The project will
also use one of the most basic Android Studio project templates. This
simplicity allows us to introduce some key aspects of Android app
development without overwhelming the beginner by introducing too many
concepts, such as the recommended app architecture and Android
architecture components, at once. When following the tutorial in this
chapter, rest assured that the techniques and code used in this initial
example project will be covered in much greater detail later.

3.2 Creating a New Android Project
The first step in the application development process is to create a new
project within the Android Studio environment. Begin, therefore, by
launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1
Once this window appears, Android Studio is ready for a new project to be
created. To create the new project, click on the New Project option to
display the first screen of the New Project wizard.

3.3 Creating an Activity
The next step is to define the type of initial activity to be created for the
application. Options are available to create projects for Phone and Tablet,
Wear OS, Television, or Automotive. A range of different activity types is
available when developing Android applications, many of which will be
covered extensively in later chapters. For this example, however, select the
Phone and Tablet option from the Templates panel, followed by the option
to create an Empty Views Activity. The Empty Views Activity option creates
a template user interface consisting of a single TextView object.

Figure 3-2
With the Empty Views Activity option selected, click Next to continue with
the project configuration.

3.4 Defining the Project and SDK Settings
In the project configuration window (Figure 3-3), set the Name field to
AndroidSample. The application name is the name by which the application
will be referenced and identified within Android Studio and is also the
name that would be used if the completed application were to go on sale in
the Google Play store.
The Package name uniquely identifies the application within the Android
application ecosystem. Although this can be set to any string that uniquely
identifies your app, it is traditionally based on the reversed URL of your
domain name followed by the application’s name. For example, if your
domain is www.mycompany.com, and the application has been named
AndroidSample, then the package name might be specified as follows:
com.mycompany.androidsample

If you do not have a domain name, you can enter any other string into the
Company Domain field, or you may use example.com for testing, though
this will need to be changed before an application can be published:
com.example.androidsample

The Save location setting will default to a location in the folder named
AndroidStudioProjects located in your home directory and may be changed
by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26 (Oreo; Android 8.0). This
minimum SDK will be used in most projects created in this book unless a
necessary feature is only available in a more recent version. The objective
here is to build an app using the latest Android SDK while retaining
compatibility with devices running older versions of Android (in this case,
as far back as Android 8.0). The text beneath the Minimum SDK setting
will outline the percentage of Android devices currently in use on which the
app will run. Click on the Help me choose button (highlighted in Figure 3-
3) to see a full breakdown of the various Android versions still in use:

Figure 3-3
Finally, change the Language menu to Kotlin and select Kotlin DSL
(build.gradle.kts) as the build configuration language before clicking Finish
to create the project.

3.5 Modifying the Example Application
Once the project has been created, the main window will appear containing
our AndroidSample project, as illustrated in Figure 3-4 below:

Figure 3-4
The newly created project and references to associated files are listed in the
Project tool window on the left side of the main project window. The
Project tool window has several modes in which information can be
displayed. By default, this panel should be in Android mode. This setting is
controlled by the menu at the top of the panel as highlighted in Figure 3-5.
If the panel is not currently in Android mode, use the menu to switch mode:

Figure 3-5
3.6 Modifying the User Interface
The user interface design for our activity is stored in a file named

activity_main.xml which, in turn, is located under app -> res -> layout in
the Project tool window file hierarchy. Once located in the Project tool
window, double-click on the file to load it into the user interface Layout
Editor tool, which will appear in the center panel of the Android Studio
main window:

Figure 3-6
In the toolbar across the top of the Layout Editor window is a menu
(currently set to Pixel in the above figure) which is reflected in the visual
representation of the device within the Layout Editor panel. A range of
other device options are available by clicking on this menu.
Use the System UI Mode button () to turn Night mode on and off for the
device screen layout. To change the orientation of the device representation
between landscape and portrait, use the drop-down menu showing the
icon.
As we can see in the device screen, the content layout already includes a
label that displays a “Hello World!” message. Running down the left-hand
side of the panel is a palette containing different categories of user interface
components that may be used to construct a user interface, such as buttons,
labels, and text fields. However, it should be noted that not all user interface
components are visible to the user. One such category consists of layouts.
Android supports a variety of layouts that provide different levels of control
over how visual user interface components are positioned and managed on
the screen. Though it is difficult to tell from looking at the visual

representation of the user interface, the current design has been created
using a ConstraintLayout. This can be confirmed by reviewing the
information in the Component Tree panel, which, by default, is located in
the lower left-hand corner of the Layout Editor panel and is shown in
Figure 3-7:

Figure 3-7
As we can see from the component tree hierarchy, the user interface layout
consists of a ConstraintLayout parent called main and a TextView child
object.
Before proceeding, check that the Layout Editor’s Autoconnect mode is
enabled. This means that as components are added to the layout, the Layout
Editor will automatically add constraints to ensure the components are
correctly positioned for different screen sizes and device orientations (a
topic that will be covered in much greater detail in future chapters). The
Autoconnect button appears in the Layout Editor toolbar and is represented
by a U-shaped icon. When disabled, the icon appears with a diagonal line
through it (Figure 3-8). If necessary, re-enable Autoconnect mode by
clicking on this button.

Figure 3-8
The next step in modifying the application is to add some additional
components to the layout, the first of which will be a Button for the user to
press to initiate the currency conversion.
The Palette panel consists of two columns, with the left-hand column
containing a list of view component categories. The right-hand column lists
the components contained within the currently selected category. In Figure
3-9, for example, the Button view is currently selected within the Buttons

category:

Figure 3-9
Click and drag the Button object from the Buttons list and drop it in the
horizontal center of the user interface design so that it is positioned beneath
the existing TextView widget:

Figure 3-10
The next step is to change the text currently displayed by the Button
component. The panel located to the right of the design area is the
Attributes panel. This panel displays the attributes assigned to the currently
selected component in the layout. Within this panel, locate the text property

in the Common Attributes section and change the current value from
“Button” to “Convert”, as shown in Figure 3-11:

Figure 3-11
The second text property with a wrench next to it allows a text property to
be set, which only appears within the Layout Editor tool but is not shown at
runtime. This is useful for testing how a visual component and the layout
will behave with different settings without running the app repeatedly.
Just in case the Autoconnect system failed to set all of the layout
connections, click on the Infer Constraints button (Figure 3-12) to add any
missing constraints to the layout:

Figure 3-12
It is important to explain the warning button in the top right-hand corner of
the Layout Editor tool, as indicated in Figure 3-13. This warning indicates
potential problems with the layout. For details on any problems, click on
the button:

Figure 3-13
When clicked, the Problems tool window (Figure 3-14) will appear,
describing the nature of the problems:

Figure 3-14
This tool window is divided into two panels. The left panel (marked A in
the above figure) lists issues detected within the layout file. In our example,
only the following problem is listed:
button <Button>: Hardcoded text

When an item is selected from the list (B), the right-hand panel will update
to provide additional detail on the problem (C). In this case, the explanation
reads as follows:
Hardcoded string "Convert", should use @string resource

The tool window also includes a preview editor (D), allowing manual
corrections to be made to the layout file.
This I18N message informs us that a potential issue exists concerning the
future internationalization of the project (“I18N” comes from the fact that
the word “internationalization” begins with an “I”, ends with an “N” and
has 18 letters in between). The warning reminds us that attributes and
values such as text strings should be stored as resources wherever possible
when developing Android applications. Doing so enables changes to the
appearance of the application to be made by modifying resource files
instead of changing the application source code. This can be especially
valuable when translating a user interface to a different spoken language. If
all of the text in a user interface is contained in a single resource file, for
example, that file can be given to a translator, who will then perform the
translation work and return the translated file for inclusion in the
application. This enables multiple languages to be targeted without the
necessity for any source code changes to be made. In this instance, we are
going to create a new resource named convert_string and assign to it the
string “Convert”.
Begin by clicking on the Show Quick Fixes button (E) and selecting the

Extract string resource option from the menu, as shown in Figure 3-15:

Figure 3-15
After selecting this option, the Extract Resource panel (Figure 3-16) will
appear. Within this panel, change the resource name field to convert_string
and leave the resource value set to Convert before clicking on the OK
button:

Figure 3-16
The next widget to be added is an EditText widget, into which the user will
enter the dollar amount to be converted. From the Palette panel, select the
Text category and click and drag a Number (Decimal) component onto the
layout so that it is centered horizontally and positioned above the existing
TextView widget. With the widget selected, use the Attributes tools window
to set the hint property to “dollars”. Click on the warning icon and extract
the string to a resource named dollars_hint.
The code written later in this chapter will need to access the dollar value
entered by the user into the EditText field. It will do this by referencing the
id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from
within the Attributes tool window when the widget is selected in the layout,
as shown in Figure 3-17:

Figure 3-17
Change the id to dollarText and, in the Rename dialog, click on the Refactor
button. This ensures that any references elsewhere within the project to the
old id are automatically updated to use the new id:

Figure 3-18
Repeat the steps to set the id of the TextView widget to textView, if
necessary.
Add any missing layout constraints by clicking on the Infer Constraints
button. At this point, the layout should resemble that shown in Figure 3-19:

Figure 3-19
3.7 Reviewing the Layout and Resource Files
Before moving on to the next step, we will look at some internal aspects of
user interface design and resource handling. In the previous section, we
changed the user interface by modifying the activity_main.xml file using the
Layout Editor tool. In fact, all that the Layout Editor was doing was
providing a user-friendly way to edit the underlying XML content of the
file. In practice, there is no reason why you cannot modify the XML
directly to make user interface changes, and, in some instances, this may
actually be quicker than using the Layout Editor tool. In the top right-hand
corner of the Layout Editor panel are the View Modes buttons marked A
through C in Figure 3-20 below:

Figure 3-20
By default, the editor will be in Design mode (button C), whereby only the
visual representation of the layout is displayed. In Code mode (A), the
editor will display the XML for the layout, while in Split mode (B), both the
layout and XML are displayed, as shown in Figure 3-21:

Figure 3-21
The button to the left of the View Modes button (marked B in Figure 3-20
above) is used to toggle between Code and Split modes quickly.
As can be seen from the structure of the XML file, the user interface
consists of the ConstraintLayout component, which in turn, is the parent of
the TextView, Button, and EditText objects. We can also see, for example,
that the text property of the Button is set to our convert_string resource.
Although complexity and content vary, all user interface layouts are
structured in this hierarchical, XML-based way.
As changes are made to the XML layout, these will be reflected in the
layout canvas. The layout may also be modified visually from within the

layout canvas panel, with the changes appearing in the XML listing. To see
this in action, switch to Split mode and modify the XML layout to change
the background color of the ConstraintLayout to a shade of red as follows:
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/main"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity"
 android:background="#ff2438" >
.
.
</androidx.constraintlayout.widget.ConstraintLayout>

Note that the layout color changes in real-time to match the new setting in
the XML file. Note also that a small red square appears in the XML editor’s
left margin (also called the gutter) next to the line containing the color
setting. This is a visual cue to the fact that the color red has been set on a
property. Clicking on the red square will display a color chooser allowing a
different color to be selected:

Figure 3-22
Before proceeding, delete the background property from the layout file so
that the background returns to the default setting.
Finally, use the Project panel to locate the app -> res -> values ->

strings.xml file and double-click on it to load it into the editor. Currently,
the XML should read as follows:
<resources>
 <string name="app_name">AndroidSample</string>
 <string name="convert_string">Convert</string>
 <string name="dollars_hint">dollars</string>
</resources>

To demonstrate resources in action, change the string value currently
assigned to the convert_string resource to “Convert to Euros” and then
return to the Layout Editor tool by selecting the tab for the layout file in the
editor panel. Note that the layout has picked up the new resource value for
the string.
There is also a quick way to access the value of a resource referenced in an
XML file. With the Layout Editor tool in Split or Code mode, click on the
“@string/convert_string” property setting so that it highlights, and then
press Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will
subsequently open the strings.xml file and take you to the line in that file
where this resource is declared. Use this opportunity to revert the string
resource to the original “Convert” text and to add the following additional
entry for a string resource that will be referenced later in the app code:
<resources>
 <string name="app_name">AndroidSample</string>
 <string name="convert_string">Convert</string>
 <string name="dollars_hint">dollars</string>
 <string name="no_value_string">No Value</string>
</resources>

Resource strings may also be edited using the Android Studio Translations
Editor by clicking on the Open editor link in the top right-hand corner of
the editor window. This will display the Translation Editor in the main
panel of the Android Studio window:

Figure 3-23
This editor allows the strings assigned to resource keys to be edited and for
translations for multiple languages to be managed.

3.8 Adding Interaction
The final step in this example project is to make the app interactive so that
when the user enters a dollar value into the EditText field and clicks the
convert button, the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget.
Specifically, the Button needs to be configured so that a method in the app
code is called when an onClick event is triggered. Event handling can be
implemented in several ways and is covered in a later chapter entitled “An
Overview and Example of Android Event Handling”. Return the layout
editor to Design mode, select the Button widget in the layout editor, refer to
the Attributes tool window, and specify a method named convertCurrency
as shown below:

Figure 3-24
Next, double-click on the MainActivity.kt file in the Project tool window
(app -> kotlin+java -> <package name> -> MainActivity) to load it into
the code editor and add the code for the convertCurrency method to the
class file so that it reads as follows, noting that it is also necessary to import

some additional Android packages:
package com.example.androidsample

import android.os.Bundle
import androidx.activity.enableEdgeToEdge
import androidx.appcompat.app.AppCompatActivity
import androidx.core.view.ViewCompat
import androidx.core.view.WindowInsetsCompat
import android.view.View
import android.widget.EditText
import android.widget.TextView

class MainActivity : AppCompatActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
.
.
 }
 }

 fun convertCurrency(view: View) {
 val dollarText: EditText = findViewById(R.id.dollarText)
 val textView: TextView = findViewById(R.id.textView)

 if (dollarText.text.isNotEmpty()) {
 val dollarValue = dollarText.text.toString().toFloat()
 val euroValue = dollarValue * 0.85f
 textView.text = euroValue.toString()
 } else {
 textView.text = getString(R.string.no_value_string)
 }
 }
}

The method begins by obtaining references to the EditText and TextView
objects by making a call to a method named findViewById, passing through
the id assigned within the layout file. A check is then made to ensure that
the user has entered a dollar value, and if so, that value is extracted,
converted from a String to a floating point value, and converted to euros.
Finally, the result is displayed on the TextView widget.
If any of this is unclear, rest assured that these concepts will be covered in

greater detail in later chapters. In particular, the topic of accessing widgets
from within code using findByViewId and an introduction to an alternative
technique referred to as view binding will be covered in the chapter entitled
“An Overview of Android View Binding”.

3.9 Summary
While not excessively complex, several steps are involved in setting up an
Android development environment. Having performed those steps, it is
worth working through an example to ensure the environment is correctly
installed and configured. In this chapter, we have created an example
application and then used the Android Studio Layout Editor tool to modify
the user interface layout. In doing so, we explored the importance of using
resources wherever possible, particularly string values, and briefly touched
on layouts. Next, we looked at the underlying XML used to store Android
application user interface designs.
Finally, an onClick event was added to a Button connected to a method
implemented to extract the user input from the EditText component, convert
it from dollars to euros and then display the result on the TextView.
With the app ready for testing, the steps necessary to set up an emulator for
testing purposes will be covered in detail in the next chapter.

4. Creating an Android Virtual
Device (AVD) in Android Studio
Although the Android Studio Preview panel allows us to see the layout we
are designing, compiling and running an entire app will be necessary to
thoroughly test that it works. An Android application may be tested by
installing and running it on a physical device or in an Android Virtual
Device (AVD) emulator environment. Before an AVD can be used, it must
first be created and configured to match the specifications of a particular
device model. In this chapter, we will work through creating such a virtual
device using the Pixel 4 phone as a reference example.

4.1 About Android Virtual Devices
AVDs are emulators that allow Android applications to be tested without
needing to install the application on a physical Android-based device. An
AVD may be configured to emulate various hardware features, including
screen size, memory capacity, and the presence or otherwise of features
such as a camera, GPS navigation support, or an accelerometer. Several
emulator templates are installed as part of the standard Android Studio
installation, allowing AVDs to be configured for various devices. Custom
configurations may be created to match any physical Android device by
specifying properties such as processor type, memory capacity, and the size
and pixel density of the screen.
An AVD session can appear as a separate window or embedded within the
Android Studio window.
New AVDs are created and managed using the Android Virtual Device
Manager, which may be used in command-line mode or with a more user-
friendly graphical user interface. To create a new AVD, the first step is to
launch the AVD Manager. This can be achieved from within the Android
Studio environment by clicking the Device Manager button in the right-
hand tool window bar, as indicated in Figure 4-1:

Figure 4-1
Once opened, the manager will appear as a tool window, as shown in Figure
4-2:

Figure 4-2
If you installed Android Studio for the first time on a computer (as opposed
to upgrading an existing Android Studio installation), the installer might
have created an initial AVD instance ready for use, as shown in Figure 4-3:

Figure 4-3
If this AVD is present on your system, you can use it to test apps. If no
AVD was created, or you would like to create AVDs for different device
types, follow the steps in the rest of this chapter.

To add a new AVD, click on the ‘+’ button in the Device Manager toolbar
and select the Create Virtual Device option to open the Virtual Device
Configuration dialog:

Figure 4-4
Within the dialog, perform the following steps to create a Pixel 4-
compatible emulator:
1.Select the Phone option From the Category panel to display the available

Android phone AVD templates.
2.Select the Pixel 4 device option and click Next.
3.On the System Image screen, select the latest version of Android. If the

system image has not yet been installed, a Download link will be
provided next to the Release Name. Click this link to download and
install the system image before selecting it. If the image you need is not
listed, click on the x86 Images (or ARM images if you are running a Mac
with Apple Silicon) and Other images tabs to view alternative lists.

4.Click Next to proceed and enter a descriptive name (for example, Pixel 4
API 34) into the name field or accept the default name.

5.Click Finish to create the AVD.
6.If future modifications to the AVD are necessary, re-open the Device

Manager, select the AVD from the list, and click on the pencil icon in the
Actions column to edit the settings.

4.2 Starting the Emulator
To test the newly created AVD emulator, select the emulator from the
Device Manager and click the triangle shaped Start button. The emulator
will appear embedded into the main Android Studio window and begin the
startup process. The amount of time it takes for the emulator to start will
depend on the configuration of both the AVD and the system on which it is
running:

Figure 4-5
To hide and show the emulator tool window, click the Running Devices tool
window button (marked A above). Click the “x” close button next to the tab
(B) to exit the emulator. The emulator tool window can accommodate
multiple emulator sessions, with each session represented by a tab. Figure
4-6, for example, shows a tool window with two emulator sessions:

Figure 4-6
To switch between sessions, click on the corresponding tab.
Although the emulator probably defaulted to appearing in portrait

orientation, this and other default options can be changed. Within the
Device Manager, select the new Pixel 4 entry and click on the pencil icon in
the Actions column of the device row. In the configuration screen, locate the
Startup orientation section and change the orientation setting. Exit and
restart the emulator session to see this change take effect. More details on
the emulator are covered in the next chapter, “Using and Configuring the
Android Studio AVD Emulator”).
To save time in the next section of this chapter, leave the emulator running
before proceeding.

4.3 Running the Application in the AVD
With an AVD emulator configured, the example AndroidSample application
created in the earlier chapter can now be compiled and run. With the
AndroidSample project loaded into Android Studio, make sure that the
newly created Pixel 4 AVD is displayed in the device menu (marked A in
Figure 4-7 below), then either click the run button represented by a triangle
(B), select the Run -> Run ‘app’ menu option, or use the Ctrl-R keyboard
shortcut:

Figure 4-7
The device menu (A) may be used to select a different AVD instance or
physical device as the run target and also to run the app on multiple devices.
The menu also provides access to the Device Manager as well as device
connection configuration and troubleshooting options:

Figure 4-8
Once the application is installed and running, the user interface for the first
fragment will appear within the emulator (a fragment is a reusable section
of an Android project typically consisting of a user interface layout and
some code, a topic which will be covered later in the chapter entitled “An
Introduction to Android Fragments”):

Figure 4-9
Once the run process begins, the Run tool window will appear. The Run
tool window will display diagnostic information as the application package
is installed and launched. Figure 4-10 shows the Run tool window output
from a typical successful application launch:

Figure 4-10
If problems are encountered during the launch process, the Run tool
window will provide information to help isolate the problem’s cause.
Assuming the application loads into the emulator and runs as expected, we
have safely verified that the Android development environment is correctly
installed and configured. With the app running, try performing a currency
conversion to verify that the app works as intended.

4.4 Running on Multiple Devices
The run target menu shown in Figure 4-8 above includes an option to run
the app on multiple emulators and devices in parallel. When selected, this
option displays the dialog in Figure 4-11, providing a list of the AVDs
configured on the system and any attached physical devices. Enable the
checkboxes next to the emulators or devices to be targeted before clicking
on the Run button:

Figure 4-11
After clicking the Run button, Android Studio will launch the app on the
selected emulators and devices.

4.5 Stopping a Running Application
To stop a running application, click the stop button located in the main

toolbar, as shown in Figure 4-12:

Figure 4-12
An app may also be terminated using the Run tool window. Begin by
displaying the Run tool window using the window bar button that becomes
available when the app is running. Once the Run tool window appears, click
the stop button highlighted in Figure 4-13 below:

Figure 4-13
4.6 Supporting Dark Theme
To test how an app behaves when dark theme is enabled, open the Settings
app within the running Android instance in the emulator, choose the
Display category, and enable the Dark theme option as shown in Figure 4-
14:

Figure 4-14
With dark theme enabled, run the AndroidSample app and note that it
appears using a dark theme, including a black background and a purple
background color on the button, as shown in Figure 4-15:

Figure 4-15
Return to the Settings app and turn off Dark theme mode before continuing.

4.7 Running the Emulator in a Separate Window
So far in this chapter, we have only used the emulator as a tool window
embedded within the main Android Studio window. The emulator can be
configured to appear in a separate window within the Settings dialog, which
can be displayed by clicking on the IDE and Project Settings button located
in the Android Studio toolbar, as highlighted in Figure 4-16:

Figure 4-16
Within the Settings dialog, navigate to Tools -> Emulator in the side panel,
and disable the Launch in the Running Devices tool window option:

Figure 4-17
With the option disabled, click the Apply button followed by OK to commit
the change, then exit the current emulator session by clicking on the close
button on the tab marked B in Figure 4-5 above.
Run the sample app once again, at which point the emulator will appear as a
separate window, as shown below:

Figure 4-18
The choice of standalone or tool window mode is a matter of personal
preference. If you prefer the emulator running in a tool window, return to
the settings screen and re-enable the Launch in the Running Devices tool
window option. Before committing to standalone mode, however, keep in
mind that the Running Devices tool window may also be detached from the
main Android Studio window from within the tool window Options menu,
which is accessed by clicking the button indicated in Figure 4-19:

Figure 4-19

From within the Options menu, select View Mode -> Float to detach the
tool window from the Android Studio main window:

Figure 4-20
To re-dock the Running Devices tool window, click on the Dock button
shown in Figure 4-21:

Figure 4-21
4.8 Removing the Device Frame
The emulator can be configured to appear with or without the device frame.
To change the setting, exit the emulator, open the Device Manager, select
the AVD from the list, and click on the menu button indicated by the arrow
in Figure 4-22:

Figure 4-22
Select the Edit option and, in the settings screen, locate and switch off the
Enable device frame option before clicking the Finish button:

Figure 4-23
Once the device frame has been disabled, the emulator will appear as shown
in Figure 4-24 the next time it is launched:

Figure 4-24
4.9 Summary
A typical application development process follows a coding, compiling, and
running cycle in a test environment. Android applications may be tested on
a physical Android device or an Android Virtual Device (AVD) emulator.
AVDs are created and managed using the Android Studio Device Manager
tool, which may be used as a command-line tool or via a graphical user
interface. When creating an AVD to simulate a specific Android device
model, the virtual device should be configured with a hardware
specification matching that of the physical device.
The AVD emulator session may be displayed as a standalone window or
embedded into the main Android Studio user interface.

5. Using and Configuring the
Android Studio AVD Emulator
Before the next chapter explores testing on physical Android devices, this
chapter will take some time to provide an overview of the Android Studio
AVD emulator and highlight many of the configuration features available to
customize the environment in both standalone and tool window modes.

5.1 The Emulator Environment
When launched in standalone mode, the emulator displays an initial splash
screen during the loading process. Once loaded, the main emulator window
appears, containing a representation of the chosen device type (in the case
of Figure 5-1, this is a Pixel 4 device):

Figure 5-1
The toolbar positioned along the right-hand edge of the window provides
quick access to the emulator controls and configuration options.

5.2 Emulator Toolbar Options

The emulator toolbar (Figure 5-2) provides access to a range of options
relating to the appearance and behavior of the emulator environment.

Figure 5-2
Each button in the toolbar has associated with it a keyboard accelerator
which can be identified either by hovering the mouse pointer over the
button and waiting for the tooltip to appear or via the help option of the
extended controls panel.
Though many of the options contained within the toolbar are self-
explanatory, each option will be covered for the sake of completeness:
•Exit / Minimize – The uppermost ‘x’ button in the toolbar exits the
emulator session when selected, while the ‘-’ option minimizes the entire
window.

•Power – The Power button simulates the hardware power button on a
physical Android device. Clicking and releasing this button will lock the
device and turn off the screen. Clicking and holding this button will
initiate the device “Power off” request sequence.

•Volume Up / Down – Two buttons that control the audio volume of
playback within the simulator environment.

•Rotate Left/Right – Rotates the emulated device between portrait and
landscape orientations.

•Take Screenshot – Takes a screenshot of the content displayed on the
device screen. The captured image is stored at the location specified in the
Settings screen of the extended controls panel, as outlined later in this
chapter.

•Zoom Mode – This button toggles in and out of zoom mode, details of
which will be covered later in this chapter.

•Back – Performs the standard Android “Back” navigation to return to a
previous screen.

•Home – Displays the device’s home screen.
•Overview – Simulates selection of the standard Android “Overview”
navigation, which displays the currently running apps on the device.

•Fold Device – Simulates the folding and unfolding of a foldable device.
This option is only available if the emulator is running a foldable device
system image.

•Extended Controls – Displays the extended controls panel, allowing for
the configuration of options such as simulated location and telephony
activity, battery strength, cellular network type, and fingerprint
identification.

5.3 Working in Zoom Mode
The zoom button located in the emulator toolbar switches in and out of
zoom mode. When zoom mode is active, the toolbar button is depressed,
and the mouse pointer appears as a magnifying glass when hovering over
the device screen. Clicking the left mouse button will cause the display to
zoom in relative to the selected point on the screen, with repeated clicking
increasing the zoom level. Conversely, clicking the right mouse button
decreases the zoom level. Toggling the zoom button off reverts the display
to the default size.
Clicking and dragging while in zoom mode will define a rectangular area
into which the view will zoom when the mouse button is released.
While in zoom mode, the screen’s visible area may be panned using the
horizontal and vertical scrollbars located within the emulator window.

5.4 Resizing the Emulator Window
The emulator window’s size (and the device’s corresponding

representation) can be changed at any time by enabling Zoom mode and
clicking and dragging on any of the corners or sides of the window.

5.5 Extended Control Options
The extended controls toolbar button displays the panel illustrated in Figure
5-3. By default, the location settings will be displayed. Selecting a different
category from the left-hand panel will display the corresponding group of
controls:

Figure 5-3
5.5.1 Location
The location controls allow simulated location information to be sent to the
emulator as decimal or sexigesimal coordinates. Location information can
take the form of a single location or a sequence of points representing the
device’s movement, the latter being provided via a file in either GPS
Exchange (GPX) or Keyhole Markup Language (KML) format.
Alternatively, the integrated Google Maps panel may be used to select
single points or travel routes visually.
5.5.2 Displays
In addition to the main display shown within the emulator screen, the
Displays option allows additional displays to be added running within the
same Android instance. This can be useful for testing apps for dual-screen

devices such as the Microsoft Surface Duo. These additional screens can be
configured to be any required size and appear within the same emulator
window as the main screen.
5.5.3 Cellular
The type of cellular connection being simulated can be changed within the
cellular settings screen. Options are available to simulate different network
types (CSM, EDGE, HSDPA, etc.) in addition to a range of voice and data
scenarios, such as roaming and denied access.
5.5.4 Battery
Various battery state and charging conditions can be simulated on this panel
of the extended controls screen, including battery charge level, battery
health, and whether the AC charger is currently connected.
5.5.5 Camera
The emulator simulates a 3D scene when the camera is active. This takes
the form of the interior of a virtual building through which you can navigate
by holding down the Option key (Alt on Windows) while using the mouse
pointer and keyboard keys when recording video or before taking a photo
within the emulator. This extended configuration option allows different
images to be uploaded for display within the virtual environment.
5.5.6 Phone
The phone extended controls provide two straightforward but helpful
simulations within the emulator. The first option simulates an incoming call
from a designated phone number. This can be particularly useful when
testing how an app handles high-level interrupts.
The second option allows the receipt of text messages to be simulated
within the emulator session. As in the real world, these messages appear
within the Message app and trigger the standard notifications within the
emulator.
5.5.7 Directional Pad
A directional pad (D-Pad) is an additional set of controls either built into an
Android device or connected externally (such as a game controller) that
provides directional controls (left, right, up, down). The directional pad
settings allow D-Pad interaction to be simulated within the emulator.

5.5.8 Microphone
The microphone settings allow the microphone to be enabled and virtual
headset and microphone connections to be simulated. A button is also
provided to launch the Voice Assistant on the emulator.
5.5.9 Fingerprint
Many Android devices are now supplied with built-in fingerprint detection
hardware. The AVD emulator makes it possible to test fingerprint
authentication without the need to test apps on a physical device containing
a fingerprint sensor. Details on configuring fingerprint testing within the
emulator will be covered later in this chapter.
5.5.10 Virtual Sensors
The virtual sensors option allows the accelerometer and magnetometer to be
simulated to emulate the effects of the physical motion of a device, such as
rotation, movement, and tilting through yaw, pitch, and roll settings.
5.5.11 Snapshots
Snapshots contain the state of the currently running AVD session to be
saved and rapidly restored, making it easy to return the emulator to an exact
state. Snapshots are covered later in this chapter.
5.5.12 Record and Playback
Allows the emulator screen and audio to be recorded and saved in WebM or
animated GIF format.
5.5.13 Google Play
If the emulator is running a version of Android with Google Play Services
installed, this option displays the current Google Play version. It also
provides the option to update the emulator to the latest version.
5.5.14 Settings
The settings panel provides a small group of configuration options. Use this
panel to choose a darker theme for the toolbar and extended controls panel,
specify a file system location into which screenshots are to be saved,
configure OpenGL support levels, and configure the emulator window to
appear on top of other windows on the desktop.
5.5.15 Help

The Help screen contains three sub-panels containing a list of keyboard
shortcuts, links to access the emulator online documentation, file bugs and
send feedback, and emulator version information.

5.6 Working with Snapshots
When an emulator starts for the first time, it performs a cold boot, much
like a physical Android device when powered on. This cold boot process
can take some time to complete as the operating system loads and all the
background processes are started. To avoid the necessity of going through
this process every time the emulator is started, the system is configured to
automatically save a snapshot (referred to as a quick-boot snapshot) of the
emulator’s current state each time it exits. The next time the emulator is
launched, the quick-boot snapshot is loaded into memory, and execution
resumes from where it left off previously, allowing the emulator to restart in
a fraction of the time needed for a cold boot to complete.
The Snapshots screen of the extended controls panel can store additional
snapshots at any point during the execution of the emulator. This saves the
exact state of the entire emulator allowing the emulator to be restored to the
exact point in time that the snapshot was taken. From within the screen,
snapshots can be taken using the Take Snapshot button (marked A in Figure
5-4). To restore an existing snapshot, select it from the list (B) and click the
run button (C) located at the bottom of the screen. Options are also
provided to edit (D) the snapshot name and description and to delete (E) the
currently selected snapshot:

Figure 5-4
You can also choose whether to start an emulator using either a cold boot,
the most recent quick-boot snapshot, or a previous snapshot by making a
selection from the run target menu in the main toolbar, as illustrated in
Figure 5-5:

Figure 5-5
5.7 Configuring Fingerprint Emulation
The emulator allows up to 10 simulated fingerprints to be configured and
used to test fingerprint authentication within Android apps. Configuring
simulated fingerprints begins by launching the emulator, opening the
Settings app, and selecting the Security option.

Within the Security settings screen, select the fingerprint option. On the
resulting information screen, click on the Next button to proceed to the
Fingerprint setup screen. Before fingerprint security can be enabled, a
backup screen unlocking method (such as a PIN) must be configured. Enter
and confirm a suitable PIN and complete the PIN entry process by
accepting the default notifications option.
Proceed through the remaining screens until the Settings app requests a
fingerprint on the sensor. At this point, display the extended controls dialog,
select the Fingerprint category in the left-hand panel, and make sure that
Finger 1 is selected in the main settings panel:

Figure 5-6
Click on the Touch Sensor button to simulate Finger 1 touching the
fingerprint sensor. The emulator will report the successful addition of the
fingerprint:

Figure 5-7
To add additional fingerprints, click on the Add Another button and select
another finger from the extended controls panel menu before clicking on the
Touch Sensor button again.

5.8 The Emulator in Tool Window Mode
As outlined in the previous chapter (“Creating an Android Virtual Device
(AVD) in Android Studio”), Android Studio can be configured to launch the
emulator in an embedded tool window so that it does not appear in a
separate window. When running in this mode, the same controls available in
standalone mode are provided in the toolbar, as shown in Figure 5-8:

Figure 5-8
From left to right, these buttons perform the following tasks (details of

which match those for standalone mode):
•Power
•Volume Up
•Volume Down
•Rotate Left
•Rotate Right
•Back
•Home
•Overview
•Screenshot
•Snapshots
•Extended Controls

5.9 Creating a Resizable Emulator
In addition to emulators configured to match specific Android device
models, Android Studio also provides a resizable AVD that allows you to
switch between phone, tablet, and foldable device sizes. To create a
resizable emulator, open the Device Manager and click the ‘+’ toolbar
button. Next, select the Resizable device definition illustrated in Figure 5-9,
and follow the usual steps to create a new AVD:

Figure 5-9
When you run an app on the new emulator within a tool window, the
Display mode option will appear in the toolbar, allowing you to switch
between emulator configurations as shown in Figure 5-10:

Figure 5-10
If the emulator is running in standalone mode, the Display mode option can
be found in the side toolbar, as shown below:

Figure 5-11
Once a foldable display mode has been selected, the Change posture menu
may be used to test the app in open, closed, and half-open configurations:

Figure 5-12
5.10 Summary
Android Studio contains an Android Virtual Device emulator environment
designed to make it easier to test applications without running them on a
physical Android device. This chapter has provided a brief tour of the
emulator and highlighted key features available to configure and customize
the environment to simulate different testing conditions.

6. A Tour of the Android Studio User
Interface
While it is tempting to plunge into running the example application created
in the previous chapter, it involves using aspects of the Android Studio user
interface, which are best described in advance.
Android Studio is a powerful and feature-rich development environment
that is, to a large extent, intuitive to use. That being said, taking the time
now to gain familiarity with the layout and organization of the Android
Studio user interface will shorten the learning curve in later chapters of the
book. With this in mind, this chapter will provide an overview of the
various areas and components of the Android Studio environment.

6.1 The Welcome Screen
The welcome screen (Figure 6-1) is displayed any time that Android Studio
is running with no projects currently open (open projects can be closed at
any time by selecting the File -> Close Project menu option). If Android
Studio was previously exited while a project was still open, the tool will
bypass the welcome screen the next time it is launched, automatically
opening the previously active project.

Figure 6-1
In addition to a list of recent projects, the welcome screen provides options
for performing tasks such as opening and creating projects, along with
access to projects currently under version control. In addition, the
Customize screen provides options to change the theme and font settings
used by both the IDE and the editor. Android Studio plugins may be
viewed, installed, and managed using the Plugins option.
Additional options are available by selecting the More Actions link or using
the menu shown in Figure 6-2 when the list of recent projects replaces the
More Actions link:

Figure 6-2
6.2 The Menu Bar
The Android Studio main window will appear when a new project is

created, or an existing one is opened. When multiple projects are open
simultaneously, each will be assigned its own main window. The precise
configuration of the window will vary depending on the operating system
Android Studio is running on and which tools and panels were displayed
the last time the project was open. The appearance, for example, of the
main menu bar will differ depending on the host operating system. On
macOS, Android Studio follows the standard convention of placing the
menu bar along the top edge of the desktop, as illustrated in Figure 6-3:

Figure 6-3
When Android Studio is running on Windows or Linux, however, the main
menu is accessed via the button highlighted in Figure 6-4:

Figure 6-4
6.3 The Main Window
Once a project is open, the Android Studio main window will typically
resemble that of Figure 6-5:

Figure 6-5
The various elements of the main window can be summarized as follows:
A – Toolbar – A selection of shortcuts to frequently performed actions. The
toolbar buttons provide quick access to a select group of menu bar actions.
The toolbar can be customized by right-clicking on the bar and selecting the
Customize Toolbar… menu option. The toolbar menu shown in Figure 6-6
provides a convenient way to perform tasks such as creating and opening
projects and switching between windows when multiple projects are open:

Figure 6-6
B – Navigation Bar – The navigation bar provides a convenient way to
move around the files and folders that make up the project. Clicking on an

element in the navigation bar will drop down a menu listing the sub-folders
and files at that location, ready for selection. Similarly, clicking on a class
name displays a menu listing methods contained within that class:

Figure 6-7
Select a method from the list to be taken to the corresponding location
within the code editor. You can hide, display, and change the position of this
bar using the View -> Appearance -> Navigation Bar menu option.
C – Editor Window – The editor window displays the content of the file on
which the developer is currently working. When multiple files are open,
each file is represented by a tab located along the top edge of the editor, as
shown in Figure 6-8:

Figure 6-8
D – Status Bar – The status bar displays informational messages about the
project and the activities of Android Studio. Hovering over items in the
status bar will display a description of that field. Many fields are
interactive, allowing users to click to perform tasks or obtain more detailed
status information.

Figure 6-9
The widgets displayed in the status bar can be changed using the View ->
Appearance -> Status Bar Widgets menu.
E – Project Tool Window – The project tool window provides a
hierarchical overview of the project file structure allowing navigation to

specific files and folders to be performed. The toolbar can be used to
display the project in several different ways. The default setting is the
Android view which is the mode primarily used in the remainder of this
book.
The project tool window is just one of many available tools within the
Android Studio environment.

6.4 The Tool Windows
In addition to the project view tool window, Android Studio also includes
many other windows, which, when enabled, are displayed tool window bars
that appear along the left and right edges of the main window and contain
buttons for showing and hiding each of the tool windows. Figure 6-10
shows typical tool window bar configurations, though the buttons and their
positioning may differ for your Android Studio installation.

Figure 6-10
Clicking on a button will display the corresponding tool window, while a
second click will hide the window. The location of a button in a tool

window bar indicates the side of the window against which the window will
appear when displayed. These positions can be changed by clicking and
dragging the buttons to different locations in other window toolbars.
Android Studio offers a wide range of tool windows, the most commonly
used of which are as follows:
•Project (A) – The project view provides an overview of the file structure
that makes up the project allowing for quick navigation between files.
Generally, double-clicking on a file in the project view will cause that file
to be loaded into the appropriate editing tool.

•Resource Manager (B) - A tool for adding and managing resources and
assets within the project, such as images, colors, and layout files.

•More Tool Windows (C) - Displays a menu containing additional tool
windows not currently displayed in a tool window bar. When a tool
window is selected from this menu, it will appear as a button in a tool
window bar.

•Build (D) - Displays a real-time view of each process step while Android
Studio builds the current project.

•Run (E) – The run tool window becomes available when an application is
currently running and provides a view of the results of the run together
with options to stop or restart a running process. If an application fails to
install and run on a device or emulator, this window typically provides
diagnostic information about the problem.

•App Quality Insights (F) - Provides access to the cloud-based Firebase
app quality and crash analytics platform.

•Logcat (G) – The Logcat tool window provides access to the monitoring
log output from a running application and options for taking screenshots
and videos of the application and stopping and restarting a process.

•Problems (H) - A central location to view all of the current errors or
warnings within the project. Double-clicking on an item in the problem list
will take you to the problem file and location.

•Terminal (I) – Provides access to a terminal window on the system on
which Android Studio is running. On Windows systems, this is the
Command Prompt interface, while on Linux and macOS systems, this
takes the form of a Terminal prompt.

•Version Control (J) - This tool window is used when the project files are
under source code version control, allowing access to Git repositories and
code change history.

•Notifications (K) - This tool window is used when the project files are
under source code version control, allowing access to Git repositories and
code change history.

•Gradle (L) – The Gradle tool window provides a view of the Gradle tasks
that make up the project build configuration. The window lists the tasks
involved in compiling the various elements of the project into an
executable application. Right-click on a top-level Gradle task and select
the Open Gradle Config menu option to load the Gradle build file for the
current project into the editor. Gradle will be covered in greater detail later
in this book.

•Device Manager (M) - Provides access to the Device Manager tool
window where physical Android device connections and emulators may be
added, removed, and managed.

•Running Devices (N) - Contains the AVD emulator if the option has been
enabled to run the emulator in a tool window as outlined in the chapter
entitled “Creating an Android Virtual Device (AVD) in Android Studio”.

•Gemini (O) - Android Studio’s AI powered coding assistant. Currently in
preview, this tool helps you develop your app by providing coding
suggestions and solutions.

•Assistant (P) - Display the Assistant panel, the content of which will differ
depending on which Android Studio feature you are currently using.

•App Inspection - Provides access to the Database and Background Task
inspectors. The Database Inspector allows you to inspect, query, and
modify your app’s databases while running. The Background Task
Inspector allows background worker tasks created using WorkManager to
be monitored and managed.

•Bookmarks – The Bookmarks tool window provides quick access to
bookmarked files and code lines. For example, right-clicking on a file in
the project view allows access to an Add to Bookmarks menu option.
Similarly, you can bookmark a line of code in a source file by moving the
cursor to that line and pressing the F11 key (F3 on macOS). All

bookmarked items can be accessed through this tool window.
•Build Variants – The build variants tool window provides a quick way to
configure different build targets for the current application project (for
example, different builds for debugging and release versions of the
application or multiple builds to target different device categories).

•Device File Explorer – Available via the View -> Tool Windows -> Device
File Explorer menu, this tool window provides direct access to the
filesystem of the currently connected Android device or emulator,
allowing the filesystem to be browsed and files copied to the local
filesystem.

•Layout Inspector - Provides a visual 3D rendering of the hierarchy of
components that make up a user interface layout.

•Structure – The structure tool provides a high-level view of the structure
of the source file currently displayed in the editor. This information
includes a list of items such as classes, methods, and variables in the file.
Selecting an item from the structure list will take you to that location in the
source file in the editor window.

•TODO – As the name suggests, this tool provides a place to review items
that have yet to be completed on the project. Android Studio compiles this
list by scanning the source files that make up the project to look for
comments that match specified TODO patterns. These patterns can be
reviewed and changed by opening the Settings dialog and navigating to the
TODO entry listed under Editor.

6.5 The Tool Window Menus
Each tool window has its own toolbar along the top edge. The menu buttons
within these toolbars vary from one tool to the next, though all tool
windows contain an Options menu (marked A in Figure 6-11):

Figure 6-11

The Options menu allows various aspects of the window to be changed.
Figure 6-12, for example, shows the Options menu for the Project tool
window. Settings are available, for example, to undock a window and to
allow it to float outside of the boundaries of the Android Studio main
window, and to move and resize the tool panel:

Figure 6-12
All tool windows also include a far-right button on the toolbar (marked B in
Figure 6-11 above), providing an additional way to hide the tool window
from view. A search of the items within a tool window can be performed by
giving that window focus by clicking on it and then typing the search term
(for example, the name of a file in the Project tool window). A search box
will appear in the window’s toolbar, and items matching the search
highlighted.

6.6 Android Studio Keyboard Shortcuts
Android Studio includes many keyboard shortcuts to save time when
performing common tasks. A complete keyboard shortcut keymap listing
can be viewed and printed from within the Android Studio project window
by selecting the Help -> Keyboard Shortcuts PDF menu option. You may
also list and modify the keyboard shortcuts by opening the Settings dialog
and clicking on the Keymap entry, as shown in Figure 6-13 below:

Figure 6-13
6.7 Switcher and Recent Files Navigation
Another useful mechanism for navigating within the Android Studio main
window involves using the Switcher. Accessed via the Ctrl-Tab keyboard
shortcut, the switcher appears as a panel listing both the tool windows and
currently open files (Figure 6-14).

Figure 6-14
Once displayed, the switcher will remain visible as long as the Ctrl key
remains depressed. Repeatedly tapping the Tab key while holding down the
Ctrl key will cycle through the various selection options while releasing the
Ctrl key causes the currently highlighted item to be selected and displayed

within the main window.
In addition to the Switcher, the Recent Files panel provides navigation to
recently opened files (Figure 6-15). This can be accessed using the Ctrl-E
keyboard shortcut (Cmd-E on macOS). Once displayed, either the mouse
pointer can be used to select an option, or the keyboard arrow keys can be
used to scroll through the file name and tool window options. Pressing the
Enter key will select the currently highlighted item:

Figure 6-15
6.8 Changing the Android Studio Theme
The overall theme of the Android Studio environment may be changed
using the Settings dialog. Once the settings dialog is displayed, select the
Appearance & Behavior option in the left-hand panel, followed by
Appearance. Then, change the setting of the Theme menu before clicking
on the OK button. The themes available will depend on the platform but
usually include options such as Light, IntelliJ, Windows, High Contrast, and
Darcula. Figure 6-16 shows an example of the main window with the Dark
theme selected:

Figure 6-16
To synchronize the Android Studio theme with the operating system light
and dark mode setting, enable the Sync with OS option and use the drop-
down menu to control which theme to use for each mode:

Figure 6-17
Hundreds of additional themes are available for download in the Android
Studio Marketplace, which can be accessed by clicking on the Get more
themes link.

6.9 Summary
The primary elements of the Android Studio environment consist of the
welcome screen and main window. Each open project is assigned its own
main window, which, in turn, consists of a menu bar, toolbar, editing and
design area, status bar, and a collection of tool windows. Tool windows

appear on the sides of the main window.
There are very few actions within Android Studio that cannot be triggered
via a keyboard shortcut. A keymap of default keyboard shortcuts can be
accessed at any time from within the Android Studio main window.

7. Testing Android Studio Apps on a
Physical Android Device
While much can be achieved by testing applications using an Android
Virtual Device (AVD), there is no substitute for performing real-world
application testing on a physical Android device, and some Android
features are only available on physical Android devices.
Communication with both AVD instances and connected Android devices is
handled by the Android Debug Bridge (ADB). This chapter explains how to
configure the adb environment to enable application testing on an Android
device with macOS, Windows, and Linux-based systems.

7.1 An Overview of the Android Debug Bridge
(ADB)
The primary purpose of the ADB is to facilitate interaction between a
development system, in this case, Android Studio, and both AVD emulators
and Android devices to run and debug applications. ADB allows you to
connect to devices via WiFi or USB cable.
The ADB consists of a client, a server process running in the background
on the development system, and a daemon background process running in
either AVDs or real Android devices such as phones and tablets.
The ADB client can take a variety of forms. For example, a client is
provided as a command-line tool named adb in the Android SDK platform-
tools sub-directory. Similarly, Android Studio also has a built-in client.
A variety of tasks may be performed using the adb command-line tool. For
example, active virtual or physical devices may be listed using the devices
command-line argument. The following command output indicates the
presence of an AVD on the system but no physical devices:
$ adb devices
List of devices attached
emulator-5554 device

7.2 Enabling USB Debugging ADB on Android
Devices

Before ADB can connect to an Android device, that device must be
configured to allow the connection. On phone and tablet devices running
Android 6.0 or later, the steps to achieve this are as follows:
1.Open the Settings app on the device and select the About tablet or About

phone option (on some versions of Android, this can be found on the
System page of the Settings app).

2.On the About screen, scroll down to the Build number field (Figure 7-1)
and tap it seven times until a message indicates that developer mode has
been enabled. If the Build number is not listed on the About screen, it
may be available via the Software information option. Alternatively,
unfold the Advanced section of the list if available.

Figure 7-1
3.Return to the main Settings screen and note the appearance of a new

option titled Developer options (on newer versions of Android, this
option is listed on the System settings screen). Select this option, and on
the resulting screen, locate the USB debugging option as illustrated in
Figure 7-2:

Figure 7-2
4.Enable the USB debugging option and tap the Allow button when

confirmation is requested.
If you use a Samsung Galaxy device, you may need to turn off the Auto
Blocker feature in the Settings app before enabling the debugging option.
The device is now configured to accept debugging connections from adb on
the development system over a USB connection. All that remains is to
configure the development system to detect the device when it is attached.

While this is a relatively straightforward process, the steps differ depending
on whether the development system runs Windows, macOS, or Linux. Note
that the following steps assume that the Android SDK platform-tools
directory is included in the operating system PATH environment variable as
described in the chapter entitled “Setting up an Android Studio
Development Environment”.
7.2.1 macOS ADB Configuration
To configure the ADB environment on a macOS system, connect the device
to the computer system using a USB cable, open a terminal window, and
execute the following command to restart the adb server:
$ adb kill-server
$ adb start-server
* daemon not running. starting it now on port 5037 *
* daemon started successfully *

Once the server is successfully running, execute the following command to
verify that the device has been detected:
$ adb devices
List of devices attached
74CE000600000001 offline

If the device is listed as offline, go to the Android device and check for the
dialog shown in Figure 7-3 seeking permission to Allow USB debugging.
Enable the checkbox next to the option that reads Always allow from this
computer before clicking OK.

Figure 7-3
Repeating the adb devices command should now list the device as being
available:
List of devices attached
015d41d4454bf80c device

If the device is not listed, try logging out and back into the macOS desktop

and rebooting the system if the problem persists.
7.2.2 Windows ADB Configuration
The first step in configuring a Windows-based development system to
connect to an Android device using ADB is to install the appropriate USB
drivers on the system. The USB drivers to install will depend on the model
of the Android Device. If you have a Google device such as a Pixel phone,
installing and configuring the Google USB Driver package on your
Windows system will be necessary. Detailed steps to achieve this are
outlined on the following web page:
https://developer.android.com/sdk/win-usb.html
For Android devices not supported by the Google USB driver, it will be
necessary to download the drivers provided by the device manufacturer. A
listing of drivers, together with download and installation information, can
be obtained online at:
https://developer.android.com/tools/extras/oem-usb.html
With the drivers installed and the device now being recognized as the
correct device type, open a Command Prompt window and execute the
following command:
adb devices

This command should output information about the connected device
similar to the following:
List of devices attached
HT4CTJT01906 offline

If the device is listed as offline or unauthorized, go to the device display and
check for the dialog shown in Figure 7-3 seeking permission to Allow USB
debugging. Enable the checkbox next to the option that reads Always allow
from this computer before clicking OK. Repeating the adb devices
command should now list the device as being ready:
List of devices attached
HT4CTJT01906 device

If the device is not listed, execute the following commands to restart the
ADB server:
adb kill-server
adb start-server

If the device is still not listed, try executing the following command:

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/tools/extras/oem-usb.html

android update adb

Note that it may also be necessary to reboot the system.
7.2.3 Linux adb Configuration
For this chapter, we will again use Ubuntu Linux as a reference example in
configuring adb on Linux to connect to a physical Android device for
application testing.
Physical device testing on Ubuntu Linux requires the installation of a
package named android-tools-adb which, in turn, requires the Android
Studio user to be a member of the plugdev group. This is the default for
user accounts on most Ubuntu versions and can be verified by running the
id command. If the plugdev group is not listed, run the following command
to add your account to the group:
sudo usermod -aG plugdev $LOGNAME

After the group membership requirement has been met, the android-tools-
adb package can be installed by executing the following command:
sudo apt-get install android-tools-adb

Once the above changes have been made, reboot the Ubuntu system. Once
the system has restarted, open a Terminal window, start the adb server, and
check the list of attached devices:
$ adb start-server
* daemon not running. starting it now on port 5037 *
* daemon started successfully *
$ adb devices
List of devices attached
015d41d4454bf80c offline

If the device is listed as offline or unauthorized, go to the Android device
and check for the dialog shown in Figure 7-3 seeking permission to Allow
USB debugging.

7.3 Resolving USB Connection Issues
If you are unable to successfully connect to the device using the above
steps, display the run target menu (Figure 7-4) and select the Troubleshoot
Device Connections option:

Figure 7-4
The connection assistant will scan for devices and report problems and
possible solutions.

7.4 Enabling Wireless Debugging on Android
Devices
Follow steps 1 through 3 from section 7.2 above, this time enabling the
Wireless Debugging option as shown in Figure 7-5:

Figure 7-5
Next, tap the above Wireless debugging entry to display the screen shown
in Figure 7-6:

Figure 7-6
If your device has a camera, select Pair device with QR code, otherwise
select the Pair device with pairing code option. Depending on your
selection, the Settings app will either start a camera session or display a
pairing code, as shown in Figure 7-7:

Figure 7-7
With an option selected, return to Android Studio and select the Pair
Devices Using WiFi option from the run target menu as illustrated in Figure
7-8:

Figure 7-8
In the pairing dialog, select either Pair using QR code or Pair using pairing
code depending on your previous selection in the Settings app on the
device:

Figure 7-9
Either scan the QR code using the Android device or enter the pairing code
displayed on the device screen into the Android Studio dialog (Figure 7-10)
to complete the pairing process:

Figure 7-10
If the pairing process fails, try rebooting both the development system and
the Android device and try again.

7.5 Testing the adb Connection
Assuming that the adb configuration has been successful on your chosen
development platform, the next step is to try running the test application
created in the chapter entitled “Creating an Example Android App in
Android Studio” on the device. Launch Android Studio, open the
AndroidSample project, and verify that the device appears in the device
selection menu as highlighted in Figure 7-11:

Figure 7-11
Select the device from the list and click the run button to install and run the
app.

7.6 Device Mirroring
Device mirroring allows you to run an app on a physical device while
viewing the display within Android Studio’s Running Devices tool window.
In other words, although your app is running on a physical device, it
appears within Android Studio in the same way as an AVD instance.
With a device connected to Android Studio, display the Running Devices
tool window and click the Device Mirror settings link to display the
Settings dialog. Within the Settings dialog, enable the mirroring of physical
Android devices and click OK. The next time the app is run, Android Studio
will mirror the display of the physical device in the Running Devices tool

window.

7.7 Summary
While the Android Virtual Device emulator provides an excellent testing
environment, it is essential to remember that there is no real substitute for
ensuring an application functions correctly on a physical Android device.
By default, however, the Android Studio environment is not configured to
detect Android devices as a target testing device. It is necessary, therefore,
to perform some steps to load applications directly onto an Android device
from within the Android Studio development environment via a USB cable
or over a WiFi network. The exact steps to achieve this goal differ
depending on the development platform. In this chapter, we have covered
those steps for Linux, macOS, and Windows-based platforms.

8. The Basics of the Android Studio
Code Editor
Developing applications for Android involves a considerable amount of
programming work which, by definition, involves typing, reviewing, and
modifying lines of code. Unsurprisingly, most of a developer’s time spent
using Android Studio will typically involve editing code within the editor
window.
The modern code editor must go far beyond the basics of typing, deleting,
cutting, and pasting. Today the usefulness of a code editor is generally
gauged by factors such as the amount by which it reduces the typing
required by the programmer, ease of navigation through large source code
files, and the editor’s ability to detect and highlight programming errors in
real-time as the code is being written. As will become evident in this
chapter, these are just a few areas in which the Android Studio editor
excels.
While not an exhaustive overview of the features of the Android Studio
editor, this chapter aims to provide a guide to the tool’s key features.
Experienced programmers will find that some of these features are common
to most code editors today, while a number are unique to this editing
environment.

8.1 The Android Studio Editor
The Android Studio editor appears in the center of the main window when a
Java, Kotlin, XML, or other text-based file is selected for editing. Figure 8-
1, for example, shows a typical editor session with a Kotlin source code file
loaded:

Figure 8-1
The elements that comprise the editor window can be summarized as
follows:
A – Document Tabs – Android Studio can hold multiple files open for
editing at anytime. As each file is opened, it is assigned a document tab
displaying the file name in the tab bar along the editor window’s top edge.
A small drop-down menu will appear in the far right-hand corner of the tab
bar when there is insufficient room to display all of the tabs. Clicking on
this menu will drop down a list of additional open files. A wavy red line
underneath a file name in a tab indicates that the code in the file contains
one or more errors that need to be addressed before the project can be
compiled and run.
Switching between files is a matter of clicking on the corresponding tab or
using the Alt-Left and Alt-Right keyboard shortcuts. Navigation between
files may also be performed using the Switcher mechanism (accessible via
the Ctrl-Tab keyboard shortcut).
To detach an editor panel from the Android Studio main window so that it
appears in a separate window, click on the tab and drag it to an area on the
desktop outside the main window. To return the editor to the main window,
click on the file tab in the separated editor window and drag and drop it

onto the original editor tab bar in the main window.
B – The Editor Gutter Area - The gutter area is used by the editor to
display informational icons and controls. Some typical items in this gutter
area are debugging breakpoint markers, controls to fold and unfold blocks
of code, bookmarks, change markers, and line numbers. Line numbers are
switched on by default but may be disabled by right-clicking in the gutter
and selecting the Appearance -> Show Line Numbers menu option.
C – Code Structure Location - This bar at the bottom of the editor
displays the cursor’s current position as it relates to the overall structure of
the code. In the following figure, for example, the bar indicates that the
convertCurrency method is currently being edited and that this method is
contained within the MainActivity class:

Figure 8-2
Double-clicking an element within the bar will move the cursor to the
corresponding location within the code file. For example, double-clicking
on the convertCurrency entry will move the cursor to the top of the
convertCurrency method within the source code. Similarly, clicking on the
MainActivity entry displays a list of available code navigation points for
selection:

Figure 8-3
D – The Editor Area – The main area where the user reviews, enters, and
edits the code. Later sections of this chapter will cover the key features of
the editing area in detail.
E – The Validation and Marker Sidebar – Android Studio incorporates a
feature called “on-the-fly code analysis”. This essentially means that as you
are typing code, the editor analyzes the code to check for warnings and
syntax errors. The indicators at the top of the validation sidebar will update
in real-time to indicate the number of errors and warnings found as code is

added. Clicking on this indicator will display a popup containing a
summary of the issues found with the code in the editor, as illustrated in
Figure 8-4:

Figure 8-4
The up and down arrows move between the error locations within the code.
A green check mark indicates that no warnings or errors have been
detected.
The sidebar also displays markers at the locations where issues have been
detected using the same color coding. Hovering the mouse pointer over a
marker when the line of code is visible in the editor area will display a
popup containing a description of the issue:

Figure 8-5
Hovering the mouse pointer over a marker for a line of code that is
currently scrolled out of the viewing area of the editor will display a “lens”
overlay containing the block of code where the problem is located (Figure
8-6) allowing it to be viewed without the necessity to scroll to that location
in the editor:

Figure 8-6
It is also worth noting that the lens overlay is not limited to warnings and
errors in the sidebar. Hovering over any part of the sidebar will result in a

lens appearing containing the code present at that location within the source
file.
F – The Status Bar – Though the status bar is part of the main window, as
opposed to the editor, it does contain some information about the currently
active editing session. This information includes the current position of the
cursor in terms of lines and characters and the encoding format of the file
(UTF-8, ASCII, etc.). Clicking on these values in the status bar allows the
corresponding setting to be changed. For example, clicking on the line
number displays the Go to Line:Column dialog. Use the View ->
Appearance -> Status Bar Widgets menu option to add and remove widgets.
For example, the Memory Indicator is a helpful widget if you are
experiencing performance problems with Android Studio.
Having provided an overview of the elements that comprise the Android
Studio editor, the remainder of this chapter will explore the key features of
the editing environment in more detail.

8.2 Splitting the Editor Window
By default, the editor will display a single panel showing the content of the
currently selected file. A useful feature when working simultaneously with
multiple source code files is the ability to split the editor into multiple
panes. To split the editor, right-click on a file tab within the editor window
and select either the Split Right or Split Down menu option. Figure 8-7, for
example, shows the splitter in action with the editor split into three panels:

Figure 8-7
The orientation of a split panel may be changed at any time by right-
clicking on the corresponding tab and selecting the Change Splitter
Orientation menu option. Repeat these steps to unsplit a single panel, this
time selecting the Unsplit option from the menu. All split panels may be
removed by right-clicking on any tab and selecting the Unsplit All menu
option.
Window splitting may be used to display different files or to provide
multiple windows onto the same file, allowing different areas of the same
file to be viewed and edited concurrently.

8.3 Code Completion
The Android Studio editor has a considerable amount of built-in knowledge
of Kotlin programming syntax and the classes and methods that make up
the Android SDK, as well as knowledge of your own code base. As code is
typed, the editor scans what is being typed and, where appropriate, makes

suggestions with regard to what might be needed to complete a statement or
reference. When the editor detects a completion suggestion, a panel
containing a list of suggestions will appear. In Figure 8-8, for example, the
editor is suggesting possibilities for the beginning of a String declaration:

Figure 8-8
If none of the auto-completion suggestions are correct, keep typing, and the
editor will continue to refine the suggestions where appropriate. To accept
the topmost suggestion, press the Enter or Tab key on the keyboard. To
select a different suggestion, use the arrow keys to move up and down the
list, again using the Enter or Tab key to select the highlighted item.
Completion suggestions can be manually invoked using the Ctrl-Space
keyboard sequence. This can be useful when changing a word or
declaration in the editor. When the cursor is positioned over a word in the
editor, that word will automatically highlight. Pressing Ctrl-Space will
display a list of alternate suggestions. Press the Tab key to replace the
current word with the highlighted item in the suggestion list.
In addition to the real-time auto-completion feature, the Android Studio
editor also offers a Smart Completion system. Smart completion is invoked
using the Shift-Ctrl-Space keyboard sequence and, when selected, will
provide more detailed suggestions based on the current context of the code.
Pressing the Shift-Ctrl-Space shortcut sequence a second time will provide
more suggestions from a broader range of possibilities.
Code completion can be a matter of personal preference for many
programmers. In recognition of this fact, Android Studio provides a high
level of control over the auto-completion settings. These can be viewed and
modified by opening the Settings dialog and choosing Editor -> General ->
Code Completion from the settings panel, as shown in Figure 8-9:

Figure 8-9
8.4 Statement Completion
Another form of auto-completion provided by the Android Studio editor is
statement completion. This can be used to automatically fill out the
parentheses and braces for items such as methods and loop statements.
Statement completion is invoked using the Shift-Ctrl-Enter (Shift-Cmd-
Enter on macOS) keyboard sequence. Consider, for example, the following
code:
fun myMethod()

Having typed this code into the editor, triggering statement completion will
cause the editor to add the braces to the method automatically:
fun myMethod() {

}

8.5 Parameter Information
It is also possible to ask the editor to provide information about the
argument parameters a method accepts. With the cursor positioned between
the brackets of a method call, the Ctrl-P (Cmd-P on macOS) keyboard
sequence will display the parameters known to be accepted by that method,
with the most likely suggestion highlighted in bold:

Figure 8-10
8.6 Parameter Name Hints
The code editor may be configured to display parameter name hints within
method calls. Figure 8-11, for example, highlights the parameter name hints
within the calls to the make() and setAction() methods of the Snackbar
class:

Figure 8-11
The settings for this mode may be configured by opening the Settings
dialog and navigating to Editor -> Inlay Hints -> Kotlin in the side panel.
Turn on or off the Parameter names option on the resulting screen for your
chosen programming language. To adjust the hint settings, click on the
Exclude list... link and make any necessary adjustments.

8.7 Code Generation
In addition to completing code as it is typed, the editor can, under certain
conditions, also generate code for you. The list of available code generation
options shown in Figure 8-12 can be accessed using the Alt-Insert (Cmd-N
on macOS) keyboard shortcut when the cursor is at the location in the file
where the code is to be generated.

Figure 8-12
For example, consider a situation where we want to be notified when an
Activity in our project is about to be destroyed by the operating system. As
outlined in a later chapter of this book, this can be achieved by overriding
the onStop() lifecycle method of the Activity superclass. To have Android
Studio generate a stub method for this, select the Override Methods…
option from the code generation list and select the onStop() method from
the resulting list of available methods:

Figure 8-13
Having selected the method to override, clicking on OK will generate the

stub method at the current cursor location in the Kotlin source file as
follows:
override fun onStop() {
 super.onStop()
}

8.8 Code Folding
Once a source code file reaches a certain size, even the most carefully
formatted and well-organized code can become overwhelming and
challenging to navigate. Android Studio takes the view that it is not always
necessary to have the content of every code block visible at all times. Code
navigation can be made easier by using the code folding feature of the
Android Studio editor. Code folding is controlled using disclosure arrows
that appear at the beginning of each code block in a source file when the
mouse pointer hovers in the gutter area. Figure 8-14, for example,
highlights the disclosure arrow for a method declaration that is not currently
folded:

Figure 8-14
Clicking on this marker will fold the statement such that only the signature
line is visible, as shown in Figure 8-15:

Figure 8-15
To unfold a collapsed section of code, click on the disclosure arrow in the
editor gutter. To see the hidden code without unfolding it, hover the mouse
pointer over the “{…}” indicator, as shown in Figure 8-16. The editor will
then display the lens overlay containing the folded code block:

Figure 8-16
All of the code blocks in a file may be folded or unfolded using the Ctrl-
Shift-Plus and Ctrl-Shift-Minus keyboard sequences (Cmd-Shift-Plus and
Cmd-Shift-Minus on macOS).
By default, the Android Studio editor will automatically fold some code
when a source file is opened. To configure the conditions under which this
happens, navigate to the Editor -> General -> Code Folding entry in the
Settings dialog (Figure 8-17):

Figure 8-17
8.9 Quick Documentation Lookup
Context-sensitive Kotlin and Android documentation can be accessed by
placing the cursor over the declaration for which documentation is required
and pressing the Ctrl-Q keyboard shortcut (Ctrl-J on macOS). This will

display a popup containing the relevant reference documentation for the
item. Figure 8-18, for example, shows the documentation for the Android
Menu class.

Figure 8-18
8.10 Code Reformatting
In general, the Android Studio editor will automatically format code in
terms of indenting, spacing, and nesting of statements and code blocks as
they are added. In situations where lines of code need to be reformatted (a
common occurrence, for example, when cutting and pasting sample code
from a website), the editor provides a source code reformatting feature
which, when selected, will automatically reformat code to match the
prevailing code style.
Press the Ctrl-Alt-L (Cmd-Opt-L on macOS) keyboard shortcut sequence to
reformat the source code. To display the Reformat Code dialog (Figure 8-
19) use the Ctrl-Alt-Shift-L (Cmd-Opt-Shift-L on macOS). This dialog
provides the option to reformat only the currently selected code, the entire
source file currently active in the editor, or only code that has changed as a
result of a source code control update:

Figure 8-19
The full range of code style preferences can be changed by opening the
Settings dialog and choosing Code Style in the side panel to access a list of
supported programming and markup languages. Selecting a language will
provide access to a vast array of formatting style options, all of which may
be modified from the Android Studio default to match your preferred code
style. To configure the settings for the Rearrange code option in the above
dialog, for example, unfold the Code Style section, select Kotlin and, from
the Kotlin settings, select the Arrangement tab.

8.11 Finding Sample Code
The Android Studio editor provides a way to access sample code relating to
the currently highlighted entry within the code listing. This feature can be
helpful for learning how a particular Android class or method is used. To
find sample code, highlight a method or class name in the editor, right-click
on it, and select the Find Sample Code menu option. If sample code is
available, the Find Sample Code panel will appear with a list of matching
samples. Selecting a sample from the list will load the corresponding code
into the right-hand panel.

8.12 Live Templates
As you write Android code, you will find that there are common constructs
that are used frequently. For example, a common requirement is to display a
popup message to the user using the Android Toast class. Live templates are
a collection of common code constructs that can be entered into the editor
by typing the initial characters followed by a special key (set to the Tab key

by default) to insert template code. To experience this in action, type toast
in the code editor followed by the Tab key, and Android Studio will insert
the following code at the cursor position ready for editing:
Toast.makeText(, "", Toast.LENGTH_SHORT).show()

To list and edit existing templates, change the special key, or add your own
templates, open the Settings dialog and select Live Templates from the
Editor section of the left-hand navigation panel:

Figure 8-20
Add, remove, duplicate, or reset templates using the buttons marked A in
Figure 8-20 above. To modify a template, select it from the list (B) and
change the settings in the panel marked C.

8.13 Summary
The Android Studio editor goes to great lengths to reduce the typing needed
to write code and make that code easier to read and navigate. This chapter
covered key editor features, including code completion, code generation,
editor window splitting, code folding, reformatting, documentation lookup,
and live templates.

9. An Overview of the Android
Architecture
So far, in this book, steps have been taken to set up an environment suitable
for developing Android applications using Android Studio. An initial step
has also been taken into the application development process by creating an
Android Studio application project.
However, before delving further into the practical matters of Android
application development, it is essential to understand some of the more
abstract concepts of both the Android SDK and Android development in
general. Gaining a clear understanding of these concepts now will provide a
sound foundation on which to build further knowledge.
Starting with an overview of the Android architecture in this chapter and
continuing in the following few chapters of this book, the goal is to provide
a detailed overview of the fundamentals of Android development.

9.1 The Android Software Stack
Android is structured as a software stack comprising applications, an
operating system, a runtime environment, middleware, services, and
libraries. This architecture can best be represented visually, as Figure 9-1
outlines. Each layer of the stack, and the corresponding elements within
each layer, are tightly integrated and carefully tuned to provide the optimal
application development and execution environment for mobile devices.
The remainder of this chapter will work through the different layers of the
Android stack, starting at the bottom with the Linux Kernel.

Figure 9-1
9.2 The Linux Kernel
Positioned at the bottom of the Android software stack, the Linux Kernel
provides a level of abstraction between the device hardware and the upper
layers of the Android software stack. The kernel provides preemptive
multitasking, low-level core system services such as memory, process, and
power management, and a network stack and device drivers for hardware
such as the device display, WiFi, and audio.
The original Linux kernel was developed in 1991 by Linus Torvalds. It was
combined with a set of tools, utilities, and compilers developed by Richard
Stallman at the Free Software Foundation to create a complete operating
system called GNU/Linux. Various Linux distributions have been derived
from these basic underpinnings, such as Ubuntu and Red Hat Enterprise
Linux.
However, it is important to note that Android uses only the Linux kernel.
That said, it is worth noting that the Linux kernel was originally developed
for use in traditional desktop and server computer systems. In fact, Linux is
now most widely deployed in mission-critical enterprise server
environments. It is a testament to both the power of today’s mobile devices
and the efficiency and performance of the Linux kernel that we find this
software at the heart of the Android software stack.

9.3 Hardware Abstraction Layer
The Hardware Abstraction Layer (HAL) comprises a set of library modules
that interface with device components such as the camera, microphone, and
accelerometer. When the Android stack needs to access a hardware
component, it uses the HAL library modules. Each Android device
manufacturer has an abstraction layer for its specific hardware
configuration, allowing the standard Android libraries and frameworks to
run on any device without being altered for specific hardware.

9.4 Android Runtime – ART
When an Android app is built within Android Studio, it is compiled into an
intermediate bytecode format (DEX format). When the application is
subsequently loaded onto the device, the Android Runtime (ART) uses a
process referred to as Ahead-of-Time (AOT) compilation to translate the
bytecode down to the native instructions required by the device processor.
This format is known as Executable and Linkable Format (ELF).
Each time the application is subsequently launched, the ELF executable
version is run, resulting in faster application performance and improved
battery life.
This contrasts with the Just-in-Time (JIT) compilation approach used in
older Android implementations, whereby the bytecode was translated
within a virtual machine (VM) each time the application was launched.

9.5 Android Libraries
In addition to a set of standard Java development libraries (providing
support for such general-purpose tasks as string handling, networking, and
file manipulation), the Android development environment also includes the
Android Libraries. These are a set of Java-based libraries that are specific to
Android development. Examples of libraries in this category include the
application framework libraries in addition to those that facilitate user
interface building, graphics drawing, and database access.
A summary of some key core Android libraries available to the Android
developer is as follows:
•android.app – Provides access to the application model and is the
cornerstone of all Android applications.

•android.content – Facilitates content access, publishing, and messaging
between applications and application components.

•android.database – Used to access data published by content providers
and includes SQLite database management classes.

•android.graphics – A low-level 2D graphics drawing API including
colors, points, filters, rectangles, and canvases.

•android.hardware – Presents an API providing access to hardware such
as the accelerometer and light sensor.

•android.opengl – A Java interface to the OpenGL ES 3D graphics
rendering API.

•android.os – Provides applications with access to standard operating
system services, including messages, system services, and inter-process
communication.

•android.media – Provides classes to enable playback of audio and video.
•android.net – A set of APIs providing access to the network stack.
Includes android.net.wifi, which provides access to the device’s wireless
stack.

•android.print – Includes a set of classes that enable content to be sent to
configured printers from within Android applications.

•android.provider – A set of convenience classes that provide access to
standard Android content provider databases such as those maintained by
the calendar and contact applications.

•android.text – Used to render and manipulate text on a device display.
•android.util – A set of utility classes for performing tasks such as string
and number conversion, XML handling and date and time manipulation.

•android.view – The fundamental building blocks of application user
interfaces.

•android.widget - A rich collection of pre-built user interface components
such as buttons, labels, list views, layout managers, radio buttons etc.

•android.webkit – A set of classes intended to allow web-browsing
capabilities to be built into applications.

Having covered the Java-based libraries in the Android runtime, it is now
time to turn our attention to the C/C++-based libraries in this layer of the

Android software stack.
9.5.1 C/C++ Libraries
The Android runtime core libraries outlined in the preceding section are
Java-based and provide the primary APIs for Android developers. It is
important to note, however, that the core libraries do not perform much of
the actual work and are, in fact, essentially Java “wrappers” around a set of
C/C++-based libraries. When making calls, for example, to the
android.opengl library to draw 3D graphics on the device display, the
library ultimately makes calls to the OpenGL ES C++ library, which, in
turn, works with the underlying Linux kernel to perform the drawing tasks.
C/C++ libraries are included to fulfill a broad and diverse range of
functions, including 2D and 3D graphics drawing, Secure Sockets Layer
(SSL) communication, SQLite database management, audio and video
playback, bitmap and vector font rendering, display subsystem and graphic
layer management and an implementation of the standard C system library
(libc).
In practice, the typical Android application developer will access these
libraries solely through the Java-based Android core library APIs. If direct
access to these libraries is needed, this can be achieved using the Android
Native Development Kit (NDK), the purpose of which is to call the native
methods of non-Java or Kotlin programming languages (such as C and
C++) from within Java code using the Java Native Interface (JNI).

9.6 Application Framework
The Application Framework is a set of services that collectively form the
environment in which Android applications run and are managed. This
framework implements the concept that Android applications are
constructed from reusable, interchangeable, and replaceable components.
This concept is taken a step further in that an application can also publish
its capabilities along with any corresponding data so that other applications
can find and reuse them.
The Android framework includes the following key services:
•Activity Manager – Controls all aspects of the application lifecycle and
activity stack.

•Content Providers – Allows applications to publish and share data with

other applications.
•Resource Manager – Provides access to non-code embedded resources
such as strings, color settings, and user interface layouts.

•Notifications Manager – Allows applications to display alerts and
notifications to the user.

•View System – An extensible set of views used to create application user
interfaces.

•Package Manager – The system by which applications can find
information about other applications currently installed on the device.

•Telephony Manager – Provides information to the application about the
telephony services available on the device, such as status and subscriber
information.

•Location Manager – Provides access to the location services allowing an
application to receive updates about location changes.

9.7 Applications
Located at the top of the Android software stack are the applications. These
comprise the native applications provided with the particular Android
implementation (for example, web browser and email applications) and the
third-party applications installed by the user after purchasing the device.

9.8 Summary
A good Android development knowledge foundation requires an
understanding of the overall architecture of Android. Android is
implemented as a software stack architecture consisting of a Linux kernel, a
runtime environment, corresponding libraries, an application framework,
and a set of applications. Applications are predominantly written in Java or
Kotlin and compiled into bytecode format within the Android Studio build
environment. When the application is subsequently installed on a device,
this bytecode is compiled down by the Android Runtime (ART) to the
native format used by the CPU. The key goals of the Android architecture
are performance and efficiency, both in application execution and in the
implementation of reuse in application design.

10. The Anatomy of an Android App
Regardless of your prior programming experiences, be it Windows, macOS,
Linux, or even iOS based, the chances are good that Android development
is quite unlike anything you have encountered before.
Therefore, this chapter’s objective is to provide an understanding of the
high-level concepts behind the architecture of Android applications. In
doing so, we will explore in detail the various components that can be used
to construct an application and the mechanisms that allow these to work
together to create a cohesive application.

10.1 Android Activities
Those familiar with object-oriented programming languages such as Java,
Kotlin, C++, or C# will be familiar with the concept of encapsulating
elements of application functionality into classes that are then instantiated
as objects and manipulated to create an application. This is still true since
Android applications are written in Java and Kotlin. Android, however, also
takes the concept of reusable components to a higher level.
Android applications are created by combining one or more components
known as Activities. An activity is a single, standalone module of
application functionality that usually correlates directly to a single user
interface screen and its corresponding functionality. An appointment
application might, for example, have an activity screen that displays
appointments set up for the current day. An appointment application might
have an activity screen that displays appointments set up for the current day.
The application might also utilize a second activity consisting of a screen
where the user may enter new appointments.
Activities are intended as fully reusable and interchangeable building
blocks that can be shared amongst different applications. An existing email
application may contain an activity for composing and sending an email
message. A developer might be writing an application that is also required
to send an email message. Rather than develop an email composition
activity specifically for the new application, the developer can use the
activity from the existing email application.
Activities are created as subclasses of the Android Activity class and must

be implemented so as to be entirely independent of other activities in the
application. In other words, a shared activity cannot rely on being called at
a known point in a program flow (since other applications may use the
activity in unanticipated ways), and one activity cannot directly call
methods or access instance data of another activity. This, instead, is
achieved using Intents and Content Providers.
By default, an activity cannot return results to the activity from which it
was invoked. If this functionality is required, the activity must be started
explicitly as a sub-activity of the originating activity.

10.2 Android Fragments
As described above, an activity typically represents a single user interface
screen within an app. One option is constructing the activity using a single
user interface layout and one corresponding activity class file. A better
alternative, however, is to break the activity into different sections. Each
section is a fragment consisting of part of the user interface layout and a
matching class file (declared as a subclass of the Android Fragment class).
In this scenario, an activity becomes a container into which one or more
fragments are embedded.
Fragments provide an efficient alternative to having each user interface
screen represented by a separate activity. Instead, an app can have a single
activity that switches between fragments, each representing a different app
screen.

10.3 Android Intents
Intents are the mechanism by which one activity can launch another and
implement the flow through the activities that make up an application.
Intents consist of a description of the operation to be performed and,
optionally, the data on which it is to be performed.
Intents can be explicit, in that they request the launch of a specific activity
by referencing the activity by class name, or implicit by stating either the
type of action to be performed or providing data of a specific type on which
the action is to be performed. In the case of implicit intents, the Android
runtime will select the activity to launch that most closely matches the
criteria specified by the Intent using a process referred to as Intent
Resolution.

10.4 Broadcast Intents
Another type of Intent, the Broadcast Intent, is a system-wide intent sent
out to all applications that have registered an “interested” Broadcast
Receiver. The Android system, for example, will typically send out
Broadcast Intents to indicate changes in device status, such as the
completion of system start-up, connection of an external power source to
the device, or the screen being turned on or off.
A Broadcast Intent can be normal (asynchronous) in that it is sent to all
interested Broadcast Receivers at more or less the same time or ordered in
that it is sent to one receiver at a time where it can be processed and then
either aborted or allowed to be passed to the next Broadcast Receiver.

10.5 Broadcast Receivers
Broadcast Receivers are the mechanism by which applications can respond
to Broadcast Intents. A Broadcast Receiver must be registered by an
application and configured with an Intent Filter to indicate the types of
broadcast it is interested in. When a matching intent is broadcast, the
receiver will be invoked by the Android runtime regardless of whether the
application that registered the receiver is currently running. The receiver
then has 5 seconds to complete required tasks (such as launching a Service,
making data updates, or issuing a notification to the user) before returning.
Broadcast Receivers operate in the background and do not have a user
interface.

10.6 Android Services
Android Services are processes that run in the background and do not have
a user interface. They can be started and managed from activities, Broadcast
Receivers, or other Services. Android Services are ideal for situations
where an application needs to continue performing tasks but does not
necessarily need a user interface to be visible to the user. Although Services
lack a user interface, they can still notify the user of events using
notifications and toasts (small notification messages that appear on the
screen without interrupting the currently visible activity) and are also able
to issue Intents.
The Android runtime gives Services a higher priority than many other

processes and will only be terminated as a last resort by the system to free
up resources. If the runtime needs to kill a Service, however, it will be
automatically restarted as soon as adequate resources become available. A
Service can reduce the risk of termination by declaring itself as needing to
run in the foreground. This is achieved by making a call to
startForeground(). This is only recommended for situations where
termination would be detrimental to the user experience (for example, if the
user is listening to audio being streamed by the Service).
Example situations where a Service might be a practical solution include, as
previously mentioned, the streaming of audio that should continue when the
application is no longer active or a stock market tracking application that
needs to notify the user when a share hits a specified price.

10.7 Content Providers
Content Providers implement a mechanism for the sharing of data between
applications. Any application can provide other applications with access to
its underlying data by implementing a Content Provider, including the
ability to add, remove and query the data (subject to permissions). Access
to the data is provided via a Universal Resource Identifier (URI) defined by
the Content Provider. Data can be shared as a file or an entire SQLite
database.
The native Android applications include several standard Content Providers
allowing applications to access data such as contacts and media files. The
Content Providers currently available on an Android system may be located
using a Content Resolver.

10.8 The Application Manifest
The Application Manifest file is the glue that pulls together the various
elements that comprise an application. Within this XML-based file, the
application outlines the activities, services, broadcast receivers, data
providers, and permissions that comprise the complete application.

10.9 Application Resources
In addition to the manifest file and the Dex files containing the byte code,
an Android application package typically contains a collection of resource
files. These files contain resources such as strings, images, fonts, and colors

that appear in the user interface, together with the XML representation of
the user interface layouts. These files are stored in the /res sub-directory of
the application project’s hierarchy by default.

10.10 Application Context
When an application is compiled, a class named R is created containing
references to the application resources. The application manifest file and
these resources combine to create what is known as the Application
Context. This context, represented by the Android Context class, may be
used in the application code to gain access to the application resources at
runtime. In addition, a wide range of methods may be called on an
application’s context to gather information and change the application’s
environment at runtime.

10.11 Summary
A number of different elements can be brought together to create an
Android application. In this chapter, we have provided a high-level
overview of Activities, Fragments, Services, Intents, and Broadcast
Receivers and an overview of the manifest file and application resources.
Maximum reuse and interoperability are promoted by creating individual,
standalone functionality modules in the form of activities and intents while
implementing content providers to achieve data sharing between
applications.
While activities are focused on areas where the user interacts with the
application (an activity essentially equating to a single user interface screen
and often made up of one or more fragments), background processing is
typically handled by Services and Broadcast Receivers.
The components that make up the application are outlined for the Android
runtime system in a manifest file which, combined with the application’s
resources, represents the application’s context.
Much has been covered in this chapter that is likely new to the average
developer. Rest assured, however, that extensive exploration and practical
use of these concepts will be made in subsequent chapters to ensure a solid
knowledge foundation on which to build your own applications.

11. An Introduction to Kotlin
Android development is performed primarily using Android Studio which
is, in turn, based on the IntelliJ IDEA development environment created by
a company named JetBrains. Prior to the release of Android Studio 3.0, all
Android apps were written using Android Studio and the Java programming
language (with some occasional C++ code when needed).
Since the introduction of Android Studio 3.0, however, developers now
have the option of creating Android apps using another programming
language called Kotlin. Although detailed coverage of all features of this
language is beyond the scope of this book (entire books can and have been
written covering solely Kotlin), the objective of this and the following six
chapters is to provide enough information to begin programming in Kotlin
and quickly get up to speed developing Android apps using this
programming language.

11.1 What is Kotlin?
Named after an island located in the Baltic Sea, Kotlin is a programming
language created by JetBrains and follows Java in the tradition of naming
programming languages after islands. Kotlin code is intended to be easier to
understand and write and also safer than many other programming
languages. The language, compiler and related tools are all open source and
available for free under the Apache 2 license.
The primary goals of the Kotlin language are to make code both concise
and safe. Code is generally considered concise when it can be easily read
and understood. Conciseness also plays a role when writing code, allowing
code to be written more quickly and with greater efficiency. In terms of
safety, Kotlin includes a number of features that improve the chances that
potential problems will be identified when the code is being written instead
of causing runtime crashes.
A third objective in the design and implementation of Kotlin involves
interoperability with Java.

11.2 Kotlin and Java
Originally introduced by Sun Microsystems in 1995 Java is still by far the

most popular programming language in use today. Until the introduction of
Kotlin, it is quite likely that every Android app available on the market was
written in Java. Since acquiring the Android operating system, Google has
invested heavily in tuning and optimizing compilation and runtime
environments for running Java-based code on Android devices.
Rather than try to re-invent the wheel, Kotlin is designed to both integrate
with and work alongside Java. When Kotlin code is compiled it generates
the same bytecode as that generated by the Java compiler enabling projects
to be built using a combination of Java and Kotlin code. This compatibility
also allows existing Java frameworks and libraries to be used seamlessly
from within Kotlin code and also for Kotlin code to be called from within
Java.
Kotlin’s creators also acknowledged that while there were ways to improve
on existing languages, there are many features of Java that did not need to
be changed. Consequently, those familiar with programming in Java will
find many of these skills to be transferable to Kotlin-based development.
Programmers with Swift programming experience will also find much that
is familiar when learning Kotlin.

11.3 Converting from Java to Kotlin
Given the high level of interoperability between Kotlin and Java it is not
essential to convert existing Java code to Kotlin since these two languages
will comfortably co-exist within the same project. That being said, Java
code can be converted to Kotlin from within Android Studio using a built-in
Java to Kotlin converter. To convert an entire Java source file to Kotlin,
load the file into the Android Studio code editor and select the Code ->
Convert Java File to Kotlin File menu option. Alternatively, blocks of Java
code may be converted to Kotlin by cutting the code and pasting it into an
existing Kotlin file within the Android Studio code editor. Note when
performing Java to Kotlin conversions that the Java code will not always
convert to the best possible Kotlin code and that time should be taken to
review and tidy up the code after conversion.

11.4 Kotlin and Android Studio
Support for Kotlin is provided within Android Studio via the Kotlin Plug-in
which is integrated by default into Android Studio 3.0 or later.

11.5 Experimenting with Kotlin
When learning a new programming language, it is often useful to be able to
enter and execute snippets of code. One of the best ways to do this with
Kotlin is to use the Kotlin Playground (Figure 11-1) located at
https://play.kotlinlang.org:

Figure 11-1
In addition to providing an environment in which Kotlin code may be
quickly entered and executed, the playground also includes a set of
examples and tutorials demonstrating key Kotlin features in action.
Try out some Kotlin code by opening a browser window, navigating to the
playground and entering the following into the main code panel:
fun main() {

 println("Welcome to Kotlin")

 for (i in 1..8) {
 println("i = $i")
 }
}

After entering the code, click on the Run button and note the output in the
console panel:

https://play.kotlinlang.org/

Figure 11-2
11.6 Semi-colons in Kotlin
Unlike programming languages such as Java and C++, Kotlin does not
require semi-colons at the end of each statement or expression line. The
following, therefore, is valid Kotlin code:
val mynumber = 10
println(mynumber)

Semi-colons are only required when multiple statements appear on the same
line:
val mynumber = 10; println(mynumber)

11.7 Summary
For the first time since the Android operating system was introduced,
developers now have an alternative to writing apps in Java code. Kotlin is a
programming language developed by JetBrains, the company that created
the development environment on which Android Studio is based. Kotlin is
intended to make code safer and easier to understand and write. Kotlin is
also highly compatible with Java, allowing Java and Kotlin code to co-exist
within the same projects. This interoperability ensures that most of the
standard Java and Java-based Android libraries and frameworks are
available for use when developing using Kotlin.
Kotlin support for Android Studio is provided via a plug-in bundled with
Android Studio 3.0 or later. This plug-in also provides a converter to
translate Java code to Kotlin.
When learning Kotlin, the online playground provides a useful environment
for quickly trying out Kotlin code.

12. Kotlin Data Types, Variables, and
Nullability
Both this and the following few chapters are intended to introduce the
basics of the Kotlin programming language. This chapter will focus on the
various data types available for use within Kotlin code. This will also
include an explanation of constants, variables, typecasting, and Kotlin’s
handling of null values.
As outlined in the previous chapter, entitled “An Introduction to Kotlin” a
useful way to experiment with the language is to use the Kotlin online
playground environment. Before starting this chapter, therefore, open a
browser window, navigate to https://play.kotlinlang.org and use the
playground to try out the code in both this and the other Kotlin introductory
chapters that follow.

12.1 Kotlin Data Types
When we look at the different types of software that run on computer
systems and mobile devices, from financial applications to graphics-
intensive games, it is easy to forget that computers are really just binary
machines. Binary systems work in terms of 0 and 1, true or false, set and
unset. All the data sitting in RAM, stored on disk drives, and flowing
through circuit boards and buses are nothing more than sequences of 1s and
0s. Each 1 or 0 is referred to as a bit and bits are grouped together in blocks
of 8, each group being referred to as a byte. When people talk about 32-bit
and 64-bit computer systems they are talking about the number of bits that
can be handled simultaneously by the CPU bus. A 64-bit CPU, for example,
can handle data in 64-bit blocks, resulting in faster performance than a 32-
bit based system.
Humans, of course, don’t think in binary. We work with decimal numbers,
letters, and words. For a human to easily (‘easily’ being a relative term in
this context) program a computer, some middle ground between human and
computer thinking is needed. This is where programming languages such as
Kotlin come into play. Programming languages allow humans to express
instructions to a computer in terms and structures we understand and then

https://play.kotlinlang.org/

compile that down to a format that can be executed by a CPU.
One of the fundamentals of any program involves data, and programming
languages such as Kotlin define a set of data types that allow us to work
with data in a format we understand when programming. For example, if
we want to store a number in a Kotlin program we could do so with syntax
similar to the following:
val mynumber = 10

In the above example, we have created a variable named mynumber and
then assigned to it the value of 10. When we compile the source code down
to the machine code used by the CPU, the number 10 is seen by the
computer in binary as:
1010

Similarly, we can express a letter, the visual representation of a digit (‘0’
through to ‘9’), or punctuation mark (referred to in computer terminology
as characters) using the following syntax:
val myletter = 'c'

Once again, this is understandable by a human programmer but gets
compiled down to a binary sequence for the CPU to understand. In this
case, the letter ‘c’ is represented by the decimal number 99 using the ASCII
table (an internationally recognized standard that assigns numeric values to
human-readable characters). When converted to binary, it is stored as:
10101100011

Now that we have a basic understanding of the concept of data types and
why they are necessary we can take a closer look at some of the more
commonly used data types supported by Kotlin.
12.1.1 Integer Data Types
Kotlin integer data types are used to store whole numbers (in other words a
number with no decimal places). All integers in Kotlin are signed (in other
words capable of storing positive, negative, and zero values).
Kotlin provides support for 8, 16, 32, and 64-bit integers (represented by
the Byte, Short, Int, and Long types respectively).
12.1.2 Floating-Point Data Types
The Kotlin floating-point data types can store values containing decimal
places. For example, 4353.1223 would be stored in a floating-point data

type. Kotlin provides two floating-point data types in the form of Float and
Double. Which type to use depends on the size of value to be stored and the
level of precision required. The Double type can be used to store up to 64-
bit floating-point numbers. The Float data type, on the other hand, is limited
to 32-bit floating-point numbers.
12.1.3 Boolean Data Type
Kotlin, like other languages, includes a data type to handle true or false (1
or 0) conditions. Two Boolean constant values (true and false) are provided
by Kotlin specifically for working with Boolean data types.
12.1.4 Character Data Type
The Kotlin Char data type is used to store a single character of rendered text
such as a letter, numerical digit, punctuation mark, or symbol. Internally
characters in Kotlin are stored in the form of 16-bit Unicode grapheme
clusters. A grapheme cluster is made of two or more Unicode code points
that are combined to represent a single visible character.
The following lines assign a variety of different characters to Character type
variables:
val myChar1 = 'f'
val myChar2 = ':'
val myChar3 = 'X'

Characters may also be referenced using Unicode code points. The
following example assigns the ‘X’ character to a variable using Unicode:
val myChar4 = '\u0058'

Note the use of single quotes when assigning a character to a variable. This
indicates to Kotlin that this is a Char data type as opposed to double quotes
which indicate a String data type.
12.1.5 String Data Type
The String data type is a sequence of characters that typically make up a
word or sentence. In addition to providing a storage mechanism, the String
data type also includes a range of string manipulation features allowing
strings to be searched, matched, concatenated, and modified. Double quotes
are used to surround single-line strings during an assignment, for example:
val message = "You have 10 new messages."

Alternatively, a multi-line string may be declared using triple quotes

val message = """You have 10 new messages,
 5 old messages
 and 6 spam messages."""

The leading spaces on each line of a multi-line string can be removed by
making a call to the trimMargin() function of the String data type:
val message = """You have 10 new messages,
 5 old messages
 and 6 spam messages.""".trimMargin()

Strings can also be constructed using combinations of strings, variables,
constants, expressions, and function calls using a concept referred to as
string interpolation. For example, the following code creates a new string
from a variety of different sources using string interpolation before
outputting it to the console:
val username = "John"
val inboxCount = 25
val maxcount = 100
val message = "$username has $inboxCount messages. Message capacity
remaining is ${maxcount - inboxCount} messages"

println(message)

When executed, the code will output the following message:
John has 25 messages. Message capacity remaining is 75 messages.

12.1.6 Escape Sequences
In addition to the standard set of characters outlined above, there is also a
range of special characters (also referred to as escape characters) available
for specifying items such as a new line, tab, or a specific Unicode value
within a string. These special characters are identified by prefixing the
character with a backslash (a concept referred to as escaping). For example,
the following assigns a new line to the variable named newline:
var newline = '\n'

In essence, any character that is preceded by a backslash is considered to be
a special character and is treated accordingly. This raises the question as to
what to do if you actually want a backslash character. This is achieved by
escaping the backslash itself:
var backslash = '\\'

The complete list of special characters supported by Kotlin is as follows:
•\n - Newline

•\r - Carriage return
•\t - Horizontal tab
•\\ - Backslash
•\” - Double quote (used when placing a double quote into a string
declaration)

•\’ - Single quote (used when placing a single quote into a string
declaration)

•\$ - Used when a character sequence containing a $ is misinterpreted as a
variable in a string template.

•\unnnn – Double byte Unicode scalar where nnnn is replaced by four
hexadecimal digits representing the Unicode character.

12.2 Mutable Variables
Variables are essentially locations in computer memory reserved for storing
the data used by an application. Each variable is given a name by the
programmer and assigned a value. The name assigned to the variable may
then be used in the Kotlin code to access the value assigned to that variable.
This access can involve either reading the value of the variable or, in the
case of mutable variables, changing the value.

12.3 Immutable Variables
Often referred to as a constant, an immutable variable is similar to a
mutable variable in that it provides a named location in memory to store a
data value. Immutable variables differ in one significant way in that once a
value has been assigned it cannot subsequently be changed.
Immutable variables are particularly useful if there is a value that is used
repeatedly throughout the application code. Rather than use the value each
time, it makes the code easier to read if the value is first assigned to a
constant which is then referenced in the code. For example, it might not be
clear to someone reading your Kotlin code why you used the value 5 in an
expression. If, instead of the value 5, you use an immutable variable named
interestRate the purpose of the value becomes much clearer. Immutable
values also have the advantage that if the programmer needs to change a
widely used value, it only needs to be changed once in the constant
declaration and not each time it is referenced.

12.4 Declaring Mutable and Immutable Variables
Mutable variables are declared using the var keyword and may be
initialized with a value at creation time. For example:
var userCount = 10

If the variable is declared without an initial value, the type of the variable
must also be declared (a topic that will be covered in more detail in the next
section of this chapter). The following, for example, is a typical declaration
where the variable is initialized after it has been declared:
var userCount: Int
userCount = 42

Immutable variables are declared using the val keyword.
val maxUserCount = 20

As with mutable variables, the type must also be specified when declaring
the variable without initializing it:
val maxUserCount: Int
maxUserCount = 20

When writing Kotlin code, immutable variables should always be used in
preference to mutable variables whenever possible.

12.5 Data Types are Objects
All of the above data types are objects, each of which provides a range of
functions and properties that may be used to perform a variety of different
type-specific tasks. These functions and properties are accessed using so-
called dot notation. Dot notation involves accessing a function or property
of an object by specifying the variable name followed by a dot followed in
turn by the name of the property to be accessed or function to be called.
A string variable, for example, can be converted to uppercase via a call to
the toUpperCase() function of the String class:
val myString = "The quick brown fox"
val uppercase = myString.toUpperCase()

Similarly, the length of a string is available by accessing the length
property:
val length = myString.length

Functions are also available within the String class to perform tasks such as
comparisons and checking for the presence of a specific word. The

following code, for example, will return a true Boolean value since the
word “fox” appears within the string assigned to the myString variable:
val result = myString.contains("fox")

All of the number data types include functions for performing tasks such as
converting from one data type to another such as converting an Int to a
Float:
val myInt = 10
val myFloat = myInt.toFloat()

A detailed overview of all of the properties and functions provided by the
Kotlin data type classes is beyond the scope of this book (there are
hundreds). An exhaustive list for all data types can, however, be found
within the Kotlin reference documentation available online at:
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/

12.6 Type Annotations and Type Inference
Kotlin is categorized as a statically typed programming language. This
essentially means that once the data type of a variable has been identified,
that variable cannot subsequently be used to store data of any other type
without inducing a compilation error. This contrasts to loosely typed
programming languages where a variable, once declared, can subsequently
be used to store other data types.
There are two ways in which the type of a variable will be identified. One
approach is to use a type annotation at the point the variable is declared in
the code. This is achieved by placing a colon after the variable name
followed by the type declaration. The following line of code, for example,
declares a variable named userCount as being of type Int:
val userCount: Int = 10

In the absence of a type annotation in a declaration, the Kotlin compiler
uses a technique referred to as type inference to identify the type of the
variable. When relying on type inference, the compiler looks to see what
type of value is being assigned to the variable at the point that it is
initialized and uses that as the type. Consider, for example, the following
variable declarations:
var signalStrength = 2.231
val companyName = "My Company"

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/

During compilation of the above lines of code, Kotlin will infer that the
signalStrength variable is of type Double (type inference in Kotlin defaults
to Double for all floating-point numbers) and that the companyName
constant is of type String.
When a constant is declared without a type annotation it must be assigned a
value at the point of declaration:
val bookTitle = "Android Studio Development Essentials"

If a type annotation is used when the constant is declared, however, the
value can be assigned later in the code. For example:
val iosBookType = false
val bookTitle: String

if (iosBookType) {
 bookTitle = "iOS App Development Essentials"
} else {
 bookTitle = "Android Studio Development Essentials"
}

12.7 Nullable Type
Kotlin nullable types are a concept that does not exist in most other
programming languages (except for the optional type in Swift). The
purpose of nullable types is to provide a safe and consistent approach to
handling situations where a variable may have a null value assigned to it. In
other words, the objective is to avoid the common problem of code crashing
with the null pointer exception errors that occur when code encounters a
null value where one was not expected.
By default, a variable in Kotlin cannot have a null value assigned to it.
Consider, for example, the following code:
val username: String = null

An attempt to compile the above code will result in a compilation error
similar to the following:
Error: Null cannot be a value of a non-null string type String

If a variable is required to be able to store a null value, it must be
specifically declared as a nullable type by placing a question mark (?) after
the type declaration:
val username: String? = null

The username variable can now have a null value assigned to it without
triggering a compiler error. Once a variable has been declared as nullable, a
range of restrictions is then imposed on that variable by the compiler to
prevent it from being used in situations where it might cause a null pointer
exception to occur. A nullable variable, cannot, for example, be assigned to
a variable of non-null type as is the case in the following code:
val username: String? = null
val firstname: String = username

The above code will elicit the following error when encountered by the
compiler:
Error: Type mismatch: inferred type is String? but String was
expected

The only way that the assignment will be permitted is if some code is added
to check that the value assigned to the nullable variable is non-null:
val username: String? = null

if (username != null) {
 val firstname: String = username
}

In the above case, the assignment will only take place if the username
variable references a non-null value.

12.8 The Safe Call Operator
A nullable variable also cannot be used to call a function or to access a
property in the usual way. Earlier in this chapter, the toUpperCase()
function was called on a String object. Given the possibility that this could
cause a function to be called on a null reference, the following code will be
disallowed by the compiler:
val username: String? = null
val uppercase = username.toUpperCase()

The exact error message generated by the compiler in this situation reads as
follows:
Error: (Only safe (?.) or non-null asserted (!!.) calls are allowed
on a nullable receiver of type String?

In this instance, the compiler is essentially refusing to allow the function
call to be made because no attempt has been made to verify that the variable
is non-null. One way around this is to add some code to verify that

something other than null value has been assigned to the variable before
making the function call:
if (username != null) {
 val uppercase = username.toUpperCase()
}

A much more efficient way to achieve this same verification, however, is to
call the function using the safe call operator (represented by ?.) as follows:
val uppercase = username?.toUpperCase()

In the above example, if the username variable is null, the toUpperCase()
function will not be called and execution will proceed at the next line of
code. If, on the other hand, a non-null value is assigned the toUpperCase()
function will be called and the result assigned to the uppercase variable.
In addition to function calls, the safe call operator may also be used when
accessing properties:
val uppercase = username?.length

12.9 Not-Null Assertion
The not-null assertion removes all of the compiler restrictions from a
nullable type, allowing it to be used in the same ways as a non-null type,
even if it has been assigned a null value. This assertion is implemented
using double exclamation marks after the variable name, for example:
val username: String? = null
val length = username!!.length

The above code will now compile, but will crash with the following
exception at runtime since an attempt is being made to call a function on a
nonexistent object:
Exception in thread "main" kotlin.KotlinNullPointerException

Clearly, this causes the very issue that nullable types are designed to avoid.
Use of the not-null assertion is generally discouraged and should only be
used in situations where you are certain that the value will not be null.

12.10 Nullable Types and the let Function
Earlier in this chapter, we looked at how the safe call operator can be used
when making a call to a function belonging to a nullable type. This
technique makes it easier to check if a value is null without having to write
an if statement every time the variable is accessed. A similar problem

occurs when passing a nullable type as an argument to a function that is
expecting a non-null parameter. As an example, consider the times()
function of the Int data type. When called on an Int object and passed
another integer value as an argument, the function multiplies the two values
and returns the result. When the following code is executed, for example,
the value of 200 will be displayed within the console:
val firstNumber = 10
val secondNumber = 20

val result = firstNumber.times(secondNumber)
print(result)

The above example works because the secondNumber variable is a non-null
type. A problem, however, occurs if the secondNumber variable is declared
as being of nullable type:
val firstNumber = 10
val secondNumber: Int? = 20

val result = firstNumber.times(secondNumber)
print(result)

Now the compilation will fail with the following error message because a
nullable type is being passed to a function that is expecting a non-null
parameter:
Error: Type mismatch: inferred type is Int? but Int was expected

A possible solution to this problem is to write an if statement to verify that
the value assigned to the variable is non-null before making the call to the
function:
val firstNumber = 10
val secondNumber: Int? = 20

if (secondNumber != null) {
 val result = firstNumber.times(secondNumber)
 print(result)
}

A more convenient approach to addressing the issue, however, involves the
use of the let function. When called on a nullable type object, the let
function converts the nullable type to a non-null variable named it which
may then be referenced within a lambda statement.
secondNumber?.let {

 val result = firstNumber.times(it)
 print(result)
}

Note the use of the safe call operator when calling the let function on
secondVariable in the above example. This ensures that the function is only
called when the variable is assigned a non-null value.

12.11 Late Initialization (lateinit)
As previously outlined, non-null types need to be initialized when they are
declared. This can be inconvenient if the value to be assigned to the non-
null variable will not be known until later in the code execution. One way
around this is to declare the variable using the lateinit modifier. This
modifier designates that a value will be initialized with a value later. This
has the advantage that a non-null type can be declared before it is
initialized, with the disadvantage that the programmer is responsible for
ensuring that the initialization has been performed before attempting to
access the variable. Consider the following variable declaration:
var myName: String

Clearly, this is invalid since the variable is a non-null type but has not been
assigned a value. Suppose, however, that the value to be assigned to the
variable will not be known until later in the program execution. In this case,
the lateinit modifier can be used as follows:
lateinit var myName: String

With the variable declared in this way, the value can be assigned later, for
example:
myName = "John Smith"
print("My Name is " + myName)

Of course, if the variable is accessed before it is initialized, the code will
fail with an exception:
lateinit var myName: String

print("My Name is " + myName)

Exception in thread "main"
kotlin.UninitializedPropertyAccessException: lateinit property
myName has not been initialized

To verify whether a lateinit variable has been initialized, check the

isInitialized property on the variable. To do this, we need to access the
properties of the variable by prefixing the name with the ‘::’ operator:
if (::myName.isInitialized) {
 print("My Name is " + myName)
}

12.12 The Elvis Operator
The Kotlin Elvis operator can be used in conjunction with nullable types to
define a default value that is to be returned if a value or expression result is
null. The Elvis operator (?:) is used to separate two expressions. If the
expression on the left does not resolve to a null value that value is returned,
otherwise the result of the rightmost expression is returned. This can be
thought of as a quick alternative to writing an if-else statement to check for
a null value. Consider the following code:
if (myString != null) {
 return myString
} else {
 return "String is null"
}

The same result can be achieved with less coding using the Elvis operator
as follows:
return myString ?: "String is null"

12.13 Type Casting and Type Checking
When compiling Kotlin code, the compiler can typically infer the type of an
object. Situations will occur, however, where the compiler is unable to
identify the specific type. This is often the case when a value type is
ambiguous or an unspecified object is returned from a function call. In this
situation, it may be necessary to let the compiler know the type of object
that your code is expecting or to write code that checks whether the object
is of a particular type.
Letting the compiler know the type of object that is expected is known as
type casting and is achieved within Kotlin code using the as cast operator.
The following code, for example, lets the compiler know that the result
returned from the getSystemService() method needs to be treated as a
KeyguardManager object:
val keyMgr = getSystemService(Context.KEYGUARD_SERVICE) as
KeyguardManager

The Kotlin language includes both safe and unsafe cast operators. The
above cast is unsafe and will cause the app to throw an exception if the cast
cannot be performed. A safe cast, on the other hand, uses the as? operator
and returns null if the cast cannot be performed:
val keyMgr = getSystemService(Context.KEYGUARD_SERVICE) as?
KeyguardManager

A type check can be performed to verify that an object conforms to a
specific type using the is operator, for example:
if (keyMgr is KeyguardManager) {
 // It is a KeyguardManager object
}

12.14 Summary
This chapter has begun the introduction to Kotlin by exploring data types
together with an overview of how to declare variables. The chapter has also
introduced concepts such as nullable types, typecasting and type checking,
and the Elvis operator, each of which is an integral part of Kotlin
programming and designed specifically to make code writing less prone to
error.

13. Kotlin Operators and Expressions
So far we have looked at using variables and constants in Kotlin and also
described the different data types. Being able to create variables is only part
of the story however. The next step is to learn how to use these variables in
Kotlin code. The primary method for working with data is in the form
of expressions.

13.1 Expression Syntax in Kotlin
The most basic expression consists of an operator, two operands and
an assignment. The following is an example of an expression:
val myresult = 1 + 2

In the above example, the (+) operator is used to add two operands (1 and
2) together. The assignment operator (=) subsequently assigns the result of
the addition to a variable named myresult. The operands could just have
easily been variables (or a mixture of values and variables) instead of the
actual numerical values used in the example.
In the remainder of this chapter we will look at the basic types of operators
available in Kotlin.

13.2 The Basic Assignment Operator
We have already looked at the most basic of assignment operators, the =
operator. This assignment operator assigns the result of an expression to a
variable. In essence, the = assignment operator takes two operands. The
left-hand operand is the variable to which a value is to be assigned and the
right-hand operand is the value to be assigned. The right-hand operand is,
more often than not, an expression which performs some type of arithmetic
or logical evaluation or a call to a function, the result of which will be
assigned to the variable. The following examples are all valid uses of the
assignment operator:
var x: Int // Declare a mutable Int variable
val y = 10 // Declare and initialize an immutable Int variable

x = 10 // Assign a value to x
x = x + y // Assign the result of x + y to x
x = y // Assign the value of y to x

13.3 Kotlin Arithmetic Operators
Kotlin provides a range of operators for the purpose of creating
mathematical expressions. These operators primarily fall into the category
of binary operators in that they take two operands. The exception is
the unary negative operator (-) which serves to indicate that a value is
negative rather than positive. This contrasts with the subtraction
operator (-) which takes two operands (i.e. one value to be subtracted from
another). For example:
var x = -10 // Unary - operator used to assign -10 to variable x
x = x - 5 // Subtraction operator. Subtracts 5 from x

The following table lists the primary Kotlin arithmetic operators:

Operator Description

-(unary) Negates the value of a variable or expression

* Multiplication

/ Division

+ Addition

- Subtraction

% Remainder/Modulo

Table 13-1
Note that multiple operators may be used in a single expression.
For example:
x = y * 10 + z - 5 / 4

13.4 Augmented Assignment Operators
In an earlier section we looked at the basic assignment operator (=). Kotlin
provides a number of operators designed to combine an assignment with a
mathematical or logical operation. These are primarily of use when
performing an evaluation where the result is to be stored in one of the
operands. For example, one might write an expression as follows:
x = x + y

The above expression adds the value contained in variable x to the value
contained in variable y and stores the result in variable x. This can be
simplified using the addition augmented assignment operator:
x += y

The above expression performs exactly the same task as x = x + y but saves
the programmer some typing.
Numerous augmented assignment operators are available in Kotlin. The
most frequently used of which are outlined in the following table:

Operator Description

x += y Add x to y and place result in x

x -= y Subtract y from x and place result in x

x *= y Multiply x by y and place result in x

x /= y Divide x by y and place result in x

x %= y Perform Modulo on x and y and place result in x

Table 13-2
13.5 Increment and Decrement Operators
Another useful shortcut can be achieved using the Kotlin increment and
decrement operators (also referred to as unary operators because they
operate on a single operand). Consider the code fragment below:
x = x + 1 // Increase value of variable x by 1
x = x - 1 // Decrease value of variable x by 1

These expressions increment and decrement the value of x by 1. Instead of
using this approach, however, it is quicker to use the ++ and -- operators.
The following examples perform exactly the same tasks as the examples
above:
x++ // Increment x by 1
x-- // Decrement x by 1

These operators can be placed either before or after the variable name. If
the operator is placed before the variable name, the increment or decrement
operation is performed before any other operations are performed on the

variable. For example, in the following code, x is incremented before it is
assigned to y, leaving y with a value of 10:
var x = 9
val y = ++x

In the next example, however, the value of x (9) is assigned to variable y
before the decrement is performed. After the expression is evaluated the
value of y will be 9 and the value of x will be 8.
var x = 9
val y = x--

13.6 Equality Operators
Kotlin also includes a set of logical operators useful for performing
comparisons. These operators all return a Boolean result depending on the
result of the comparison. These operators are binary operators in that they
work with two operands.
Equality operators are most frequently used in constructing program control
flow logic. For example an if statement may be constructed based on
whether one value matches another:
if (x == y) {
 // Perform task
}

The result of a comparison may also be stored in a Boolean variable. For
example, the following code will result in a true value being stored in the
variable result:
var result: Boolean
val x = 10
val y = 20

result = x < y

Clearly 10 is less than 20, resulting in a true evaluation of the x <
y expression. The following table lists the full set of Kotlin comparison
operators:

Operator Description

x == y Returns true if x is equal to y

x > y Returns true if x is greater than y

x >= y Returns true if x is greater than or equal to y

x < y Returns true if x is less than y

x <= y Returns true if x is less than or equal to y

x != y Returns true if x is not equal to y

Table 13-3
13.7 Boolean Logical Operators
Kotlin also provides a set of so called logical operators designed to return
Boolean true or false values. These operators both return Boolean results
and take Boolean values as operands. The key operators are NOT (!), AND
(&&) and OR (||).
The NOT (!) operator inverts the current value of a Boolean variable, or the
result of an expression. For example, if a variable named flag is currently
true, prefixing the variable with a ‘!’ character will invert the value to false:
val flag = true // variable is true
val secondFlag = !flag // secondFlag set to false

The OR (||) operator returns true if one of its two operands evaluates to true,
otherwise it returns false. For example, the following code evaluates to true
because at least one of the expressions either side of the OR operator is
true:
if ((10 < 20) || (20 < 10)) {
 print("Expression is true")
}

The AND (&&) operator returns true only if both operands evaluate to be
true. The following example will return false because only one of the two
operand expressions evaluates to true:
if ((10 < 20) && (20 < 10)) {
 print("Expression is true")
}

13.8 Range Operator
Kotlin includes a useful operator that allows a range of values to be
declared. As will be seen in later chapters, this operator is invaluable when
working with looping in program logic.

The syntax for the range operator is as follows:
x..y

This operator represents the range of numbers starting at x and ending at y
where both x and y are included within the range (referred to as a closed
range). The range operator 5..8, for example, specifies the numbers 5, 6, 7
and 8.

13.9 Bitwise Operators
As previously discussed, computer processors work in binary. These are
essentially streams of ones and zeros, each one referred to as a bit. Bits are
formed into groups of 8 to form bytes. As such, it is not surprising that we,
as programmers, will occasionally end up working at this level in our code.
To facilitate this requirement, Kotlin provides a range of bit operators.
Those familiar with bitwise operators in other languages such as C, C++,
C#, Objective-C and Java will find nothing new in this area of the Kotlin
language syntax. For those unfamiliar with binary numbers, now may be a
good time to seek out reference materials on the subject in order to
understand how ones and zeros are formed into bytes to form numbers.
Other authors have done a much better job of describing the subject than we
can do within the scope of this book.
For the purposes of this exercise we will be working with the binary
representation of two numbers. First, the decimal number 171 is represented
in binary as:
10101011

Second, the number 3 is represented by the following binary sequence:
00000011

Now that we have two binary numbers with which to work, we can begin to
look at the Kotlin bitwise operators:
13.9.1 Bitwise Inversion
The Bitwise inversion (also referred to as NOT) is performed using the
inv() operation and has the effect of inverting all of the bits in a number. In
other words, all the zeros become ones and all the ones become zeros.
Taking our example 3 number, a Bitwise NOT operation has the following
result:
00000011 NOT

========
11111100

The following Kotlin code, therefore, results in a value of -4:
val y = 3
val z = y.inv()

print("Result is $z")

13.9.2 Bitwise AND
The Bitwise AND is performed using the and() operation. It makes a bit by
bit comparison of two numbers. Any corresponding position in the binary
sequence of each number where both bits are 1 results in a 1 appearing in
the same position of the resulting number. If either bit position contains a 0
then a zero appears in the result. Taking our two example numbers, this
would appear as follows:
10101011 AND
00000011
========
00000011

As we can see, the only locations where both numbers have 1s are the last
two positions. If we perform this in Kotlin code, therefore, we should find
that the result is 3 (00000011):
val x = 171
val y = 3
val z = x.and(y)

print("Result is $z")

13.9.3 Bitwise OR
The bitwise OR also performs a bit by bit comparison of two binary
sequences. Unlike the AND operation, the OR places a 1 in the result if
there is a 1 in the first or second operand. Using our example numbers, the
result will be as follows:
10101011 OR
00000011
========
10101011

If we perform this operation in Kotlin using the or() operation the result
will be 171:

val x = 171
val y = 3
val z = x.or(y)

print("Result is $z")

13.9.4 Bitwise XOR
The bitwise XOR (commonly referred to as exclusive OR and performed
using the xor() operation) performs a similar task to the OR operation
except that a 1 is placed in the result if one or other corresponding bit
positions in the two numbers is 1. If both positions are a 1 or a 0 then the
corresponding bit in the result is set to a 0. For example:
10101011 XOR
00000011
========
10101000

The result in this case is 10101000 which converts to 168 in decimal. To
verify this we can, once again, try some Kotlin code:
val x = 171
val y = 3
val z = x.xor(y)

print("Result is $z")

When executed, we get the following output from print:
Result is 168

13.9.5 Bitwise Left Shift
The bitwise left shift moves each bit in a binary number a specified number
of positions to the left. Shifting an integer one position to the left has the
effect of doubling the value.
As the bits are shifted to the left, zeros are placed in the vacated right most
(low order) positions. Note also that once the left most (high order) bits are
shifted beyond the size of the variable containing the value, those high
order bits are discarded:
10101011 Left Shift one bit
========
101010110

In Kotlin the bitwise left shift operator is performed using the shl()
operation, passing through the number of bit positions to be shifted. For

example, to shift left by 1 bit:
val x = 171
val z = x.shl(1)

print("Result is $z")

When compiled and executed, the above code will display a message
stating that the result is 342 which, when converted to binary, equates to
101010110.
13.9.6 Bitwise Right Shift
A bitwise right shift is, as you might expect, the same as a left except that
the shift takes place in the opposite direction. Shifting an integer one
position to the right has the effect of halving the value.
Note that since we are shifting to the right there is no opportunity to retain
the lower most bits regardless of the data type used to contain the result. As
a result the low order bits are discarded. Whether or not the vacated high
order bit positions are replaced with zeros or ones depends on whether
the sign bit used to indicate positive and negative numbers is set or not.
10101011 Right Shift one bit
========
01010101

The bitwise right shift is performed using the shr() operation passing
through the shift count:
val x = 171
val z = x.shr(1)

print("Result is $z")

When executed, the above code will report the result of the shift as being
85, which equates to binary 01010101.

13.10 Summary
Operators and expressions provide the underlying mechanism by which
variables and constants are manipulated and evaluated within Kotlin code.
This can take the simplest of forms whereby two numbers are added using
the addition operator in an expression and the result stored in a variable
using the assignment operator. Operators fall into a range of categories,
details of which have been covered in this chapter.

14. Kotlin Control Flow
Regardless of the programming language used, application development is
largely an exercise in applying logic, and much of the art of programming
involves writing code that makes decisions based on one or more criteria.
Such decisions define which code gets executed, how many times it is
executed and, conversely, which code gets by-passed when the program is
executing. This is often referred to as control flow since it controls the flow
of program execution. Control flow typically falls into the categories of
looping control (how often code is executed) and conditional control flow
(whether or not code is executed). This chapter is intended to provide an
introductory overview of both types of control flow in Kotlin.

14.1 Looping Control flow
This chapter will begin by looking at control flow in the form of loops.
Loops are essentially sequences of Kotlin statements which are to be
executed repeatedly until a specified condition is met. The first looping
statement we will explore is the for loop.
14.1.1 The Kotlin for-in Statement
The for-in loop is used to iterate over a sequence of items contained in a
collection or number range.
The syntax of the for-in loop is as follows:
for variable name in collection or range {
 // code to be executed
}

In this syntax, variable name is the name to be used for a variable that will
contain the current item from the collection or range through which the loop
is iterating. The code in the body of the loop will typically use this name as
a reference to the current item in the loop cycle. The collection or range
references the item through which the loop is iterating. This could, for
example, be an array of string values, a range operator or even a string of
characters.
Consider, for example, the following for-in loop construct:
for (index in 1..5) {
 println("Value of index is $index")

}

The loop begins by stating that the current item is to be assigned to a
constant named index. The statement then declares a closed range operator
to indicate that the for loop is to iterate through a range of numbers, starting
at 1 and ending at 5. The body of the loop prints out a message to the
console indicating the current value assigned to the index constant, resulting
in the following output:
Value of index is 1
Value of index is 2
Value of index is 3
Value of index is 4
Value of index is 5

The for-in loop is of particular benefit when working with collections such
as arrays. In fact, the for-in loop can be used to iterate through any object
that contains more than one item. The following loop, for example, outputs
each of the characters in the specified string:
for (index in "Hello") {
 println("Value of index is $index")
}

The operation of a for-in loop may be configured using the downTo and
until functions. The downTo function causes the for loop to work
backwards through the specified collection until the specified number is
reached. The following for loop counts backwards from 100 until the
number 90 is reached:
for (index in 100 downTo 90) {
 print("$index.. ")
}

When executed, the above loop will generate the following output:
100.. 99.. 98.. 97.. 96.. 95.. 94.. 93.. 92.. 91.. 90..

The until function operates in much the same way with the exception that
counting starts from the bottom of the collection range and works up until
(but not including) the specified end point (a concept referred to as a half
closed range):
for (index in 1 until 10) {
 print("$index.. ")
}

The output from the above code will range from the start value of 1 through

to 9:
1.. 2.. 3.. 4.. 5.. 6.. 7.. 8.. 9..

The increment used on each iteration through the loop may also be defined
using the step function as follows:
for (index in 0 until 100 step 10) {
 print("$index.. ")
}

The above code will result in the following console output:
0.. 10.. 20.. 30.. 40.. 50.. 60.. 70.. 80.. 90..

14.1.2 The while Loop
The Kotlin for loop described previously works well when it is known in
advance how many times a particular task needs to be repeated in a
program. There will, however, be instances where code needs to be repeated
until a certain condition is met, with no way of knowing in advance how
many repetitions are going to be needed to meet that criteria. To address this
need, Kotlin includes the while loop.
Essentially, the while loop repeats a set of tasks while a specified condition
is met. The while loop syntax is defined as follows:
while condition {
 // Kotlin statements go here
}

In the above syntax, condition is an expression that will return either true or
false and the // Kotlin statements go here comment represents the code to be
executed while the condition expression is true. For example:
var myCount = 0

while (myCount < 100) {
 myCount++
 println(myCount)
}

In the above example, the while expression will evaluate whether the
myCount variable is less than 100. If it is already greater than 100, the code
in the braces is skipped and the loop exits without performing any tasks.
If, on the other hand, myCount is not greater than 100 the code in the braces
is executed and the loop returns to the while statement and repeats the
evaluation of myCount. This process repeats until the value of myCount is

greater than 100, at which point the loop exits.
14.1.3 The do ... while loop
It is often helpful to think of the do ... while loop as an inverted while loop.
The while loop evaluates an expression before executing the code contained
in the body of the loop. If the expression evaluates to false on the first
check then the code is not executed. The do ... while loop, on the other
hand, is provided for situations where you know that the code contained in
the body of the loop will always need to be executed at least once. For
example, you may want to keep stepping through the items in an array until
a specific item is found. You know that you have to at least check the first
item in the array to have any hope of finding the entry you need. The syntax
for the do ... while loop is as follows:
do {
 // Kotlin statements here
} while conditional expression

In the do ... while example below the loop will continue until the value of a
variable named i equals 0:
var i = 10

do {
 i--
 println(i)
} while (i > 0)

14.1.4 Breaking from Loops
Having created a loop, it is possible that under certain conditions you might
want to break out of the loop before the completion criteria have been met
(particularly if you have created an infinite loop). One such example might
involve continually checking for activity on a network socket. Once activity
has been detected it will most likely be necessary to break out of the
monitoring loop and perform some other task.
For the purpose of breaking out of a loop, Kotlin provides the break
statement which breaks out of the current loop and resumes execution at the
code directly after the loop. For example:
var j = 10

for (i in 0..100)

{
 j += j

 if (j > 100) {
 break
 }

 println("j = $j")
}

In the above example the loop will continue to execute until the value of j
exceeds 100 at which point the loop will exit and execution will continue
with the next line of code after the loop.
14.1.5 The continue Statement
The continue statement causes all remaining code statements in a loop to be
skipped, and execution to be returned to the top of the loop. In the
following example, the println function is only called when the value of
variable i is an even number:
var i = 1

while (i < 20)
{
 i += 1

 if (i % 2 != 0) {
 continue
 }

 println("i = $i")
}

The continue statement in the above example will cause the println call to
be skipped unless the value of i can be divided by 2 with no remainder. If
the continue statement is triggered, execution will skip to the top of the
while loop and the statements in the body of the loop will be repeated (until
the value of i exceeds 19).
14.1.6 Break and Continue Labels
Kotlin expressions may be assigned a label by preceding the expression
with a label name followed by the @ sign. This label may then be
referenced when using break and continue statements to designate where

execution is to resume. This is particularly useful when breaking out of
nested loops. The following code contains a for loop nested within another
for loop. The inner loop contains a break statement which is executed when
the value of j reaches 10:
for (i in 1..100) {

 println("Outer loop i = $i")

 for (j in 1..100) {
 println("Inner loop j = $j")
 if (j == 10) break
 }
}

As currently implemented, the break statement will exit the inner for loop
but execution will resume at the top of the outer for loop. Suppose,
however, that the break statement is required to also exit the outer loop.
This can be achieved by assigning a label to the outer loop and referencing
that label with the break statement as follows:
outerloop@ for (i in 1..100) {

 println("Outer loop i = $i")

 for (j in 1..100) {

 println("Inner loop j = $j")

 if (j == 10) break@outerloop
 }
}

Now when the value assigned to variable j reaches 10 the break statement
will break out of both loops and resume execution at the line of code
immediately following the outer loop.

14.2 Conditional Control Flow
In the previous chapter we looked at how to use logical expressions in
Kotlin to determine whether something is true or false. Since programming
is largely an exercise in applying logic, much of the art of programming
involves writing code that makes decisions based on one or more criteria.
Such decisions define which code gets executed and, conversely, which

code gets by-passed when the program is executing.
14.2.1 Using the if Expressions
The if expression is perhaps the most basic of control flow options available
to the Kotlin programmer. Programmers who are familiar with C, Swift,
C++ or Java will immediately be comfortable using Kotlin if statements,
although there are some subtle differences.
The basic syntax of the Kotlin if expression is as follows:
if (boolean expression) {
 // Kotlin code to be performed when expression evaluates to
true
}

Unlike some other programming languages, it is important to note that the
braces are optional in Kotlin if only one line of code is associated with the if
expression. In fact, in this scenario, the statement is often placed on the
same line as the if expression.
Essentially if the Boolean expression evaluates to true then the code in the
body of the statement is executed. If, on the other hand, the expression
evaluates to false the code in the body of the statement is skipped.
For example, if a decision needs to be made depending on whether one
value is greater than another, we would write code similar to the following:
val x = 10

if (x > 9) println("x is greater than 9!")

Clearly, x is indeed greater than 9 causing the message to appear in the
console panel.
At this point it is important to notice that we have been referring to the if
expression instead of the if statement. The reason for this is that unlike the
if statement in other programming languages, the Kotlin if returns a result.
This allows if constructs to be used within expressions. As an example, a
typical if expression to identify the largest of two numbers and assign the
result to a variable might read as follows:
if (x > y)
 largest = x
else
 largest = y

The same result can be achieved using the if statement within an expression

using the following syntax:
variable = if (condition) return_val_1 else return_val_2

The original example can, therefore be re-written as follows:
val largest = if (x > y) x else y

The technique is not limited to returning the values contained within the
condition. The following example is also a valid use of if in an expression,
in this case assigning a string value to the variable:
val largest = if (x > y) "x is greatest" else "y is greatest"
println(largest)

For those familiar with programming languages such as Java, this feature
allows code constructs similar to ternary statements to be implemented in
Kotlin.
14.2.2 Using if ... else … Expressions
The next variation of the if expression allows us to also specify some code
to perform if the expression in the if expression evaluates to false. The
syntax for this construct is as follows:
if (boolean expression) {
 // Code to be executed if expression is true
} else {
 // Code to be executed if expression is false
}

The braces are, once again, optional if only one line of code is to be
executed.
Using the above syntax, we can now extend our previous example to
display a different message if the comparison expression evaluates to be
false:
val x = 10

if (x > 9) println("x is greater than 9!")
 else println("x is less than 9!")

In this case, the second println statement will execute if the value of x was
less than 9.
14.2.3 Using if ... else if ... Expressions
So far we have looked at if statements which make decisions based on the
result of a single logical expression. Sometimes it becomes necessary to

make decisions based on a number of different criteria. For this purpose, we
can use the if ... else if ... construct, an example of which is as follows:
var x = 9

if (x == 10) println("x is 10")
 else if (x == 9) println("x is 9")
 else if (x == 8) println("x is 8")
 else println("x is less than 8")
}

14.2.4 Using the when Statement
The Kotlin when statement provides a cleaner alternative to the if ... else if
... construct and uses the following syntax:
when (value) {
 match1 -> // code to be executed on match
 match2 -> // code to be executed on match
 .
 .
 else -> // default code to executed if no match
}

Using this syntax, the previous if ... else if ... construct can be rewritten to
use the when statement:
when (x) {
 10 -> println ("x is 10")
 9 -> println("x is 9")
 8 -> println("x is 8")
 else -> println("x is less than 8")
}

The when statement is similar to the switch statement found in many other
programming languages.

14.3 Summary
The term control flow is used to describe the logic that dictates the
execution path that is taken through the source code of an application as it
runs. This chapter has looked at the two types of control flow provided by
Kotlin (looping and conditional) and explored the various Kotlin constructs
that are available to implement both forms of control flow logic.

15. An Overview of Kotlin Functions
and Lambdas
Kotlin functions and lambdas are a vital part of writing well-structured and
efficient code and provide a way to organize programs while avoiding code
repetition. In this chapter we will look at how functions and lambdas are
declared and used within Kotlin.

15.1 What is a Function?
A function is a named block of code that can be called upon to perform a
specific task. It can be provided data on which to perform the task and is
capable of returning results to the code that called it. For example, if a
particular arithmetic calculation needs to be performed in a Kotlin program,
the code to perform the arithmetic can be placed in a function. The function
can be programmed to accept the values on which the arithmetic is to be
performed (referred to as parameters) and to return the result of the
calculation. At any point in the program code where the calculation is
required the function is called, parameter values passed through as
arguments and the result returned.
The terms parameter and argument are often used interchangeably when
discussing functions. There is, however, a subtle difference. The values that
a function is able to accept when it is called are referred to as parameters.
At the point that the function is actually called and passed those values,
however, they are referred to as arguments.

15.2 How to Declare a Kotlin Function
A Kotlin function is declared using the following syntax:
fun <function name> (<para name>: <para type>, <para name>: <para
type>, ...): <return type> {
 // Function code
}

This combination of function name, parameters and return type are referred
to as the function signature or type. Explanations of the various fields of the
function declaration are as follows:
•fun – The prefix keyword used to notify the Kotlin compiler that this is a

function.
•<function name> - The name assigned to the function. This is the name by
which the function will be referenced when it is called from within the
application code.

•<para name> - The name by which the parameter is to be referenced in the
function code.

•<para type> - The type of the corresponding parameter.
•<return type> - The data type of the result returned by the function. If the
function does not return a result then no return type is specified.

•Function code - The code of the function that does the work.
As an example, the following function takes no parameters, returns no
result and displays a message:
fun sayHello() {
 println("Hello")
}

The following sample function, on the other hand, takes an integer and a
string as parameters and returns a string result:
fun buildMessageFor(name: String, count: Int): String {
 return("$name, you are customer number $count")
}

15.3 Calling a Kotlin Function
Once declared, functions are called using the following syntax:
<function name> (<arg1>, <arg2>, ...)

Each argument passed through to a function must match the parameters the
function is configured to accept. For example, to call a function named
sayHello that takes no parameters and returns no value, we would write the
following code:
sayHello()

In the case of a message that accepts parameters, the function could be
called as follows:
buildMessageFor("John", 10)

15.4 Single Expression Functions
When a function contains a single expression, it is not necessary to include
the braces around the expression. All that is required is an equals sign (=)

after the function declaration followed by the expression. The following
function contains a single expression declared in the usual way:
fun multiply(x: Int, y: Int): Int {
 return x * y
}

Below is the same function expressed as a single line expression:
fun multiply(x: Int, y: Int): Int = x * y

When using single line expressions, the return type may be omitted in
situations where the compiler is able to infer the type returned by the
expression making for even more compact code:
fun multiply(x: Int, y: Int) = x * y

15.5 Local Functions
A local function is a function that is embedded within another function. In
addition, a local function has access to all of the variables contained within
the enclosing function:
fun main(args: Array<String>) {

 val name = "John"
 val count = 5

 fun displayString() {
 for (index in 0..count) {
 println(name)
 }
 }
 displayString()
}

15.6 Handling Return Values
To call a function named buildMessage that takes two parameters and
returns a result, on the other hand, we might write the following code:
val message = buildMessageFor("John", 10)

To improve code readability, the parameter names may also be specified
when making the function call:
val message = buildMessageFor(name = "John", count = 10)

In the above examples, we have created a new variable called message and
then used the assignment operator (=) to store the result returned by the

function.

15.7 Declaring Default Function Parameters
Kotlin provides the ability to designate a default parameter value to be used
in the event that the value is not provided as an argument when the function
is called. This involves assigning the default value to the parameter when
the function is declared.
To see default parameters in action the buildMessageFor function will be
modified so that the string “Customer” is used as a default in the event that
a customer name is not passed through as an argument. Similarly, the count
parameter is declared with a default value of 0:
fun buildMessageFor(name: String = "Customer", count: Int = 0):
String {
 return("$name, you are customer number $count")
}

When parameter names are used when making the function call, any
parameters for which defaults have been specified may be omitted. The
following function call, for example, omits the customer name argument but
still compiles because the parameter name has been specified for the second
argument:
val message = buildMessageFor(count = 10)

If parameter names are not used within the function call, however, only the
trailing arguments may be omitted:
val message = buildMessageFor("John") // Valid
val message = buildMessageFor(10) // Invalid

15.8 Variable Number of Function Parameters
It is not always possible to know in advance the number of parameters a
function will need to accept when it is called within application code.
Kotlin handles this possibility through the use of the vararg keyword to
indicate that the function accepts an arbitrary number of parameters of a
specified data type. Within the body of the function, the parameters are
made available in the form of an array object. The following function, for
example, takes as parameters a variable number of String values and then
outputs them to the console panel:
fun displayStrings(vararg strings: String)
{

 for (string in strings) {
 println(string)
 }
}

displayStrings("one", "two", "three", "four")

Kotlin does not permit multiple vararg parameters within a function and any
single parameters supported by the function must be declared before the
vararg declaration:
fun displayStrings(name: String, vararg strings: String)
{
 for (string in strings) {
 println(string)
 }
}

15.9 Lambda Expressions
Having covered the basics of functions in Kotlin it is now time to look at
the concept of lambda expressions. Essentially, lambdas are self-contained
blocks of code. The following code, for example, declares a lambda, assigns
it to a variable named sayHello and then calls the function via the lambda
reference:
val sayHello = { println("Hello") }
sayHello()

Lambda expressions may also be configured to accept parameters and
return results. The syntax for this is as follows:
{<para name>: <para type>, <para name>: <para type>, ... ->
 // Lambda expression here
}

The following lambda expression, for example, accepts two integer
parameters and returns an integer result:
val multiply = { val1: Int, val2: Int -> val1 * val2 }
val result = multiply(10, 20)

Note that the above lambda examples have assigned the lambda code block
to a variable. This is also possible when working with functions. Of course,
the following syntax will execute the function and assign the result of that
execution to a variable, instead of assigning the function itself to the
variable:

val myvar = myfunction()

To assign a function reference to a variable, remove the parentheses and
prefix the function name with double colons (::) as follows. The function
may then be called by referencing the variable name:
val mavar = ::myfunction
myvar()

A lambda block may be executed directly by placing parentheses at the end
of the expression including any arguments. The following lambda directly
executes the multiplication lambda expression multiplying 10 by 20.
val result = { val1: Int, val2: Int -> val1 * val2 }(10, 20)

The last expression within a lambda serves as the expressions return value
(hence the value of 200 being assigned to the result variable in the above
multiplication examples). In fact, unlike functions, lambdas do not support
the return statement. In the absence of an expression that returns a result
(such as an arithmetic or comparison expression), declaring the value as the
last item in the lambda will cause that value to be returned. The following
lambda returns the Boolean true value after printing a message:
val result = { println("Hello"); true }()

Similarly, the following lambda returns a string literal:
val nextmessage = { println("Hello"); "Goodbye" }()

A particularly useful feature of lambdas and the ability to create function
references is that they can be both passed to functions as arguments and
returned as results. This concept, however, requires an understanding of
function types and higher-order functions.

15.10 Higher-order Functions
On the surface, lambdas and function references do not seem to be
particularly compelling features. The possibilities that these features offer
become more apparent, however, when we consider that lambdas and
function references have the same capabilities of many other data types. In
particular, these may be passed through as arguments to another function, or
even returned as a result from a function.
A function that is capable of receiving a function or lambda as an argument,
or returning one as a result is referred to as a higher-order function.
Before we look at what is, essentially, the ability to plug one function into

another, it is first necessary to explore the concept of function types. The
type of a function is dictated by a combination of the parameters it accepts
and the type of result it returns. A function which accepts an Int and a
Double as parameters and returns a String result for example is considered
to have the following function type:
(Int, Double) -> String

In order to accept a function as a parameter, the receiving function declares
the type of the function it is able to accept.
For the purposes of an example, we will begin by declaring two unit
conversion functions:
fun inchesToFeet (inches: Double): Double {
 return inches * 0.0833333
}

fun inchesToYards (inches: Double): Double {
 return inches * 0.0277778
}

The example now needs an additional function, the purpose of which is to
perform a unit conversion and print the result in the console panel. This
function needs to be as general purpose as possible, capable of performing a
variety of different measurement unit conversions. In order to demonstrate
functions as parameters, this new function will take as a parameter a
function type that matches both the inchesToFeet and inchesToYards
functions together with a value to be converted. Since the type of these
functions is equivalent to (Double) -> Double, our general purpose function
can be written as follows:
fun outputConversion(converterFunc: (Double) -> Double, value:
Double) {
 val result = converterFunc(value)
 println("Result of conversion is $result")
}

When the outputConversion function is called, it will need to be passed a
function matching the declared type. That function will be called to perform
the conversion and the result displayed in the console panel. This means
that the same function can be called to convert inches to both feet and
yards, by “plugging in” the appropriate converter function as a parameter,
keeping in mind that it is the function reference that is being passed as an

argument:
outputConversion(::inchesToFeet, 22.45)
outputConversion(::inchesToYards, 22.45)

Functions can also be returned as a data type by declaring the type of the
function as the return type. The following function is configured to return
either our inchesToFeet or inchesToYards function type (in other words a
function which accepts and returns a Double value) based on the value of a
Boolean parameter:
fun decideFunction(feet: Boolean): (Double) -> Double
{
 if (feet) {
 return ::inchesToFeet
 } else {
 return ::inchesToYards
 }
}

When called, the function will return a function reference which can then be
used to perform the conversion:
val converter = decideFunction(true)
val result = converter(22.4)
println(result)

15.11 Summary
Functions and lambda expressions are self-contained blocks of code that
can be called upon to perform a specific task and provide a mechanism for
structuring code and promoting reuse. This chapter has introduced the basic
concepts of function and lambda declaration and implementation in addition
to the use of higher-order functions that allow lambdas and functions to be
passed as arguments and returned as results.

16. The Basics of Object Oriented
Programming in Kotlin
Kotlin provides extensive support for developing object-oriented
applications. The subject area of object oriented programming is, however,
large. As such, a detailed overview of object oriented software development
is beyond the scope of this book. Instead, we will introduce the basic
concepts involved in object oriented programming and then move on to
explaining the concept as it relates to Kotlin application development.

16.1 What is an Object?
Objects (also referred to as instances) are self-contained modules of
functionality that can be easily used, and re-used as the building blocks for
a software application.
Objects consist of data variables (called properties) and functions (called
methods) that can be accessed and called on the object or instance to
perform tasks and are collectively referred to as class members.

16.2 What is a Class?
Much as a blueprint or architect’s drawing defines what an item or a
building will look like once it has been constructed, a class defines what an
object will look like when it is created. It defines, for example, what the
methods will do and what the properties will be.

16.3 Declaring a Kotlin Class
Before an object can be instantiated, we first need to define the class
‘blueprint’ for the object. In this chapter we will create a bank account class
to demonstrate the basic concepts of Kotlin object oriented programming.
In declaring a new Kotlin class we specify an optional parent class from
which the new class is derived and also define the properties and methods
that the class will contain. The basic syntax for a new class is as follows:
class NewClassName: ParentClass {
 // Properties
 // Methods
}

The Properties section of the declaration defines the variables and constants
that are to be contained within the class. These are declared in the same way
that any other variable would be declared in Kotlin.
The Methods sections define the methods that are available to be called on
the class and instances of the class. These are essentially functions specific
to the class that perform a particular operation when called upon and will be
described in greater detail later in this chapter.
To create an example outline for our BankAccount class, we would use the
following:
class BankAccount {

}

Now that we have the outline syntax for our class, the next step is to add
some properties to it.

16.4 Adding Properties to a Class
A key goal of object oriented programming is a concept referred to as data
encapsulation. The idea behind data encapsulation is that data should be
stored within classes and accessed only through methods defined in that
class. Data encapsulated in a class are referred to as properties or instance
variables.
Instances of our BankAccount class will be required to store some data,
specifically a bank account number and the balance currently held within
the account. Properties are declared in the same way any other variables are
declared in Kotlin. We can, therefore, add these variables as follows:
class BankAccount {
 var accountBalance: Double = 0.0
 var accountNumber: Int = 0
}

Having defined our properties, we can now move on to defining the
methods of the class that will allow us to work with our properties while
staying true to the data encapsulation model.

16.5 Defining Methods
The methods of a class are essentially code routines that can be called upon
to perform specific tasks within the context of that class.

Methods are declared within the opening and closing braces of the class to
which they belong and are declared using the standard Kotlin function
declaration syntax.
For example, the declaration of a method to display the account balance in
our example might read as follows:
class BankAccount {
 var accountBalance: Double = 0.0
 var accountNumber: Int = 0

 fun displayBalance()
 {
 println("Number $accountNumber")
 println("Current balance is $accountBalance")
 }
}

16.6 Declaring and Initializing a Class Instance
So far all we have done is define the blueprint for our class. In order to do
anything with this class, we need to create instances of it. The first step in
this process is to declare a variable to store a reference to the instance when
it is created. We do this as follows:
val account1: BankAccount = BankAccount()

When executed, an instance of our BankAccount class will have been
created and will be accessible via the account1 variable. Of course, the
Kotlin compiler will be able to use inference here, making the type
declaration optional:
val account1 = BankAccount()

16.7 Primary and Secondary Constructors
A class will often need to perform some initialization tasks at the point of
creation. These tasks can be implemented using constructors within the
class. In the case of the BankAccount class, it would be useful to be able to
initialize the account number and balance properties with values when a
new class instance is created. To achieve this, a secondary constructor can
be declared within the class header as follows:
class BankAccount {

 var accountBalance: Double = 0.0

 var accountNumber: Int = 0

 constructor(number: Int, balance: Double) {
 accountNumber = number
 accountBalance = balance
 }
.
.
}

When creating an instance of the class, it will now be necessary to provide
initialization values for the account number and balance properties as
follows:
val account1: BankAccount = BankAccount(456456234, 342.98)

A class can contain multiple secondary constructors allowing instances of
the class to be initiated with different value sets. The following variation of
the BankAccount class includes an additional secondary constructor for use
when initializing an instance with the customer’s last name in addition to
the corresponding account number and balance:
class BankAccount {

 var accountBalance: Double = 0.0
 var accountNumber: Int = 0
 var lastName: String = ""

 constructor(number: Int,
 balance: Double) {
 accountNumber = number
 accountBalance = balance
 }

 constructor(number: Int,
 balance: Double,
 name: String) {
 accountNumber = number
 accountBalance = balance
 lastName = name
 }
.
.
}

Instances of the BankAccount may now also be created as follows:
val account1: BankAccount = BankAccount(456456234, 342.98, "Smith")

It is also possible to use a primary constructor to perform basic
initialization tasks. The primary constructor for a class is declared within
the class header as follows:
class BankAccount (val accountNumber: Int, var accountBalance:
Double) {
.
.
 fun displayBalance()
 {
 println("Number $accountNumber")
 println("Current balance is $accountBalance")
 }
}

Note that now both properties have been declared in the primary
constructor, it is no longer necessary to also declare the variables within the
body of the class. Since the account number will now not change after an
instance of the class has been created, this property is declared as being
immutable using the val keyword.
Although a class may only contain one primary constructor, Kotlin allows
multiple secondary constructors to be declared in addition to the primary
constructor. In the following class declaration the constructor that handles
the account number and balance is declared as the primary constructor
while the variation that also accepts the user’s last name is declared as a
secondary constructor:
class BankAccount (val accountNumber: Int, var accountBalance:
Double) {

 var lastName: String = ""

 constructor(accountNumber: Int,
 accountBalance: Double,
 name: String) : this(accountNumber,
accountBalance) {

 lastName = name
 }
.

.
}

In the above example there are two key points which need to be noted.
First, since the lastName property is referenced by a secondary constructor,
the variable is not handled automatically by the primary constructor and
must be declared within the body of the class and initialized within the
constructor.
var lastName: String = ""
.
.
lastName = name

Second, although the accountNumber and accountBalance properties are
accepted as parameters to the secondary constructor, the variable
declarations are still handled by the primary constructor and do not need to
be declared. To associate the references to these properties in the secondary
constructor with the primary constructor, however, they must be linked back
to the primary constructor using the this keyword:
... this(accountNumber, accountBalance)...

16.8 Initializer Blocks
In addition to the primary and secondary constructors, a class may also
contain initializer blocks which are called after the constructors. Since a
primary constructor cannot contain any code, these methods are a
particularly useful location for adding code to perform initialization tasks
when an instance of the class is created. Initializer blocks are declared using
the init keyword with the initialization code enclosed in braces:
class BankAccount (val accountNumber: Int, var accountBalance:
Double) {

 init {
 // Initialization code goes here
 }
.
.
}

16.9 Calling Methods and Accessing Properties
Now is probably a good time to recap what we have done so far in this
chapter. We have now created a new Kotlin class named BankAccount.

Within this new class we declared primary and secondary constructors to
accept and initialize account number, balance and customer name
properties. In the preceding sections we also covered the steps necessary to
create and initialize an instance of our new class. The next step is to learn
how to call the instance methods and access the properties we built into our
class. This is most easily achieved using dot notation.
Dot notation involves accessing a property, or calling a method by
specifying a class instance followed by a dot followed in turn by the name
of the property or method:
classInstance.propertyname
classInstance.methodname()

For example, to get the current value of our accountBalance instance
variable:
val balance1 = account1.accountBalance

Dot notation can also be used to set values of instance properties:
account1.accountBalance = 6789.98

The same technique is used to call methods on a class instance. For
example, to call the displayBalance method on an instance of the
BankAccount class:
account1.displayBalance()

16.10 Custom Accessors
When accessing the accountBalance property in the previous section, the
code is making use of property accessors that are provided automatically by
Kotlin. In addition to these default accessors it is also possible to implement
custom accessors that allow calculations or other logic to be performed
before the property is returned or set.
Custom accessors are implemented by creating getter and optional
corresponding setter methods containing the code to perform any tasks
before returning the property. Consider, for example, that the
BankAcccount class might need an additional property to contain the
current balance less any recent banking fees. Rather than use a standard
accessor, it makes more sense to use a custom accessor which calculates
this value on request. The modified BankAccount class might now read as
follows:
class BankAccount (val accountNumber: Int, var accountBalance:

Double) {

 val fees: Double = 25.00

 val balanceLessFees: Double
 get() {
 return accountBalance - fees
 }

 fun displayBalance()
 {
 println("Number $accountNumber")
 println("Current balance is $accountBalance")
 }
}

The above code adds a getter that returns a computed property based on the
current balance minus a fee amount. An optional setter could also be
declared in much the same way to set the balance value less fees:
val fees: Double = 25.00

var balanceLessFees: Double
 get() {
 return accountBalance - fees
 }
 set(value) {
 accountBalance = value - fees
 }
.
.
}

The new setter takes as a parameter a Double value from which it deducts
the fee value before assigning the result to the current balance property.
Regardless of the fact that these are custom accessors, they are accessed in
the same way as stored properties using dot-notation. The following code
gets the current balance less the fees value before setting the property to a
new value:
val balance1 = account1.balanceLessFees
account1.balanceLessFees = 12123.12

16.11 Nested and Inner Classes

Kotlin allows one class to be nested within another class. In the following
code, for example, ClassB is nested inside ClassA:
class ClassA {
 class ClassB {
 }
}

In the above example, ClassB does not have access to any of the properties
within the outer class. If access is required, the nested class must be
declared using the inner directive. In the example below ClassB now has
access to the myProperty variable belonging to ClassA:
class ClassA {
 var myProperty: Int = 10

 inner class ClassB {
 val result = 20 + myProperty
 }
}

16.12 Companion Objects
A Kotlin class can also contain a companion object. A companion object
contains methods and variables that are common to all instances of the
class. In addition to being accessible via class instances, these properties are
also accessible at the class level (in other words without the need to create
an instance of the class).
The syntax for declaring a companion object within a class is as follows:
class ClassName: ParentClass {
 // Properties
 // Methods

 companion object {
 // properties
 // methods
 }
}

To experience a companion object example in action, enter the following
into the Kotlin online playground at https://play.kotlinlang.org:
class MyClass {

 fun showCount() {

https://play.kotlinlang.org/

 println("counter = " + counter)
 }

 companion object {
 var counter = 1

 fun counterUp() {
 counter += 1
 }
 }
}

fun main(args: Array<String>) {
 println(MyClass.counter)
}

The class contains a companion object consisting of a counter variable and
a method to increment that variable. The class also contains a method to
display the current counter value. The main() method displays the current
value of the counter variable, but does so by calling the method on the class
itself instead of a class instance:
println(MyClass.counter)

Modify the main() method to also increment the counter, displaying the
current value both before and after:
fun main(args: Array<String>) {
 println(MyClass.counter)
 MyClass.counterUp()
 println(MyClass.counter)
}

Run the code and verify that the following output appears in the console:
1
2

Next, add some code to create an instance of MyClass before making a call
to the showCount() method:
fun main(args: Array<String>) {
 println(MyClass.counter)
 MyClass.counterUp()
 println(MyClass.counter)

 val instanceA = MyClass()
 instanceA.showCount()

}

When executed, the following output will appear in the console:
1
2
counter = 2

Clearly, the class has access to the variables and methods contained within
the companion object.
Another useful aspect of companion objects is that all instances of the
containing class see the same companion object, including current variable
values. To see this in action, create a second instance of MyClass and call
the showCount() method on that instance:
fun main(args: Array<String>) {
 println(MyClass.counter)
 MyClass.counterUp()
 println(MyClass.counter)

 val instanceA = MyClass()
 instanceA.showCount()

 val instanceB = MyClass()
 instanceB.showCount()
}

When run, the code will produce the following console output:
1
2
counter = 2
counter = 2

Note that both instances return the incremented value of 2, showing that the
two class instances are sharing the same companion object data.

16.13 Summary
Object oriented programming languages such as Kotlin encourage the
creation of classes to promote code reuse and the encapsulation of data
within class instances. This chapter has covered the basic concepts of
classes and instances within Kotlin together with an overview of primary
and secondary constructors, initializer blocks, properties, methods,
companion objects and custom accessors.

17. An Introduction to Kotlin
Inheritance and Subclassing
In “The Basics of Object Oriented Programming in Kotlin” we covered the
basic concepts of object-oriented programming and worked through an
example of creating and working with a new class using Kotlin. In that
example, our new class was not specifically derived from a base class
(though in practice, all Kotlin classes are ultimately derived from the Any
class). In this chapter we will provide an introduction to the concepts of
subclassing, inheritance and extensions in Kotlin.

17.1 Inheritance, Classes and Subclasses
The concept of inheritance brings something of a real-world view to
programming. It allows a class to be defined that has a certain set of
characteristics (such as methods and properties) and then other classes to be
created which are derived from that class. The derived class inherits all of
the features of the parent class and typically then adds some features of its
own. In fact, all classes in Kotlin are ultimately subclasses of the Any
superclass which provides the basic foundation on which all classes are
based.
By deriving classes we create what is often referred to as a class hierarchy.
The class at the top of the hierarchy is known as the base class or root class
and the derived classes as subclasses or child classes. Any number of
subclasses may be derived from a class. The class from which a subclass is
derived is called the parent class or superclass.
Classes need not only be derived from a root class. For example, a subclass
can also inherit from another subclass with the potential to create large and
complex class hierarchies.
In Kotlin a subclass can only be derived from a single direct parent class.
This is a concept referred to as single inheritance.

17.2 Subclassing Syntax
As a safety measure designed to make Kotlin code less prone to error,
before a subclass can be derived from a parent class, the parent class must

be declared as open. This is achieved by placing the open keyword within
the class header:
open class MyParentClass {
 var myProperty: Int = 0
}

With a simple class of this type, the subclass can be created as follows:
class MySubClass : MyParentClass() {

}

For classes containing primary or secondary constructors, the rules for
creating a subclass are slightly more complicated. Consider the following
parent class which contains a primary constructor:
open class MyParentClass(var myProperty: Int) {

}

In order to create a subclass of this class, the subclass declaration references
any base class parameters while also initializing the parent class using the
following syntax:
class MySubClass(myProperty: Int) : MyParentClass(myProperty) {

}

If, on the other hand, the parent class contains one or more secondary
constructors, the constructors must also be implemented within the subclass
declaration and include a call to the secondary constructors of the parent
class, passing through as arguments the values passed to the subclass
secondary constructor. When working with subclasses, the parent class can
be referenced using the super keyword. A parent class with a secondary
constructor might read as follows:
open class MyParentClass {
 var myProperty: Int = 0

 constructor(number: Int) {
 myProperty = number
 }
}

The code for the corresponding subclass would need to be implemented as
follows:
class MySubClass : MyParentClass {

 constructor(number: Int) : super(number)
}

If additional tasks need to be performed within the constructor of the
subclass, this can be placed within curly braces after the constructor
declaration:
class MySubClass : MyParentClass {

 constructor(number: Int) : super(number) {
 // Subclass constructor code here
 }
}

17.3 A Kotlin Inheritance Example
As with most programming concepts, the subject of inheritance in Kotlin is
perhaps best illustrated with an example. In “The Basics of Object Oriented
Programming in Kotlin” we created a class named BankAccount designed
to hold a bank account number and corresponding current balance. The
BankAccount class contained both properties and methods. A simplified
declaration for this class is reproduced below and will be used for the basis
of the subclassing example in this chapter:
class BankAccount {

 var accountNumber = 0
 var accountBalance = 0.0

 constructor(number: Int, balance: Double) {
 accountNumber = number
 accountBalance = balance
 }

 open fun displayBalance()
 {
 println("Number $accountNumber")
 println("Current balance is $accountBalance")
 }
}

Though this is a somewhat rudimentary class, it does everything necessary
if all you need it to do is store an account number and account balance.
Suppose, however, that in addition to the BankAccount class you also

needed a class to be used for savings accounts. A savings account will still
need to hold an account number and a current balance and methods will still
be needed to access that data. One option would be to create an entirely new
class, one that duplicates all of the functionality of the BankAccount class
together with the new features required by a savings account. A more
efficient approach, however, would be to create a new class that is a
subclass of the BankAccount class. The new class will then inherit all the
features of the BankAccount class but can then be extended to add the
additional functionality required by a savings account. Before a subclass of
the BankAccount class can be created, the declaration needs to be modified
to declare the class as open:
open class BankAccount {

To create a subclass of BankAccount that we will call SavingsAccount, we
declare the new class, this time specifying BankAccount as the parent class
and add code to call the constructor on the parent class:
class SavingsAccount : BankAccount {
 constructor(accountNumber: Int, accountBalance: Double) :
 super(accountNumber, accountBalance)
}

Note that although we have yet to add any properties or methods, the class
has actually inherited all the methods and properties of the parent
BankAccount class. We could, therefore, create an instance of the
SavingsAccount class and set variables and call methods in exactly the
same way we did with the BankAccount class in previous examples. That
said, we haven’t really achieved anything unless we actually take steps to
extend the class.

17.4 Extending the Functionality of a Subclass
So far we have been able to create a subclass that contains all the
functionality of the parent class. In order for this exercise to make sense,
however, we now need to extend the subclass so that it has the features we
need to make it useful for storing savings account information. To do this,
we add the properties and methods that provide the new functionality, just
as we would for any other class we might wish to create:
class SavingsAccount : BankAccount {
 var interestRate: Double = 0.0

 constructor(accountNumber: Int, accountBalance: Double) :
 super(accountNumber, accountBalance)

 fun calculateInterest(): Double {
 return interestRate * accountBalance
 }
}

17.5 Overriding Inherited Methods
When using inheritance it is not unusual to find a method in the parent class
that almost does what you need, but requires modification to provide the
precise functionality you require. That being said, it is also possible you’ll
inherit a method with a name that describes exactly what you want to do,
but it actually does not come close to doing what you need. One option in
this scenario would be to ignore the inherited method and write a new
method with an entirely new name. A better option is to override the
inherited method and write a new version of it in the subclass.
Before proceeding with an example, there are three rules that must be
obeyed when overriding a method. First, the overriding method in the
subclass must take exactly the same number and type of parameters as the
overridden method in the parent class. Second, the new method must have
the same return type as the parent method. Finally, the original method in
the parent class must be declared as open before the compiler will allow it
to be overridden.
In our BankAccount class we have a method named displayBalance that
displays the bank account number and current balance held by an instance
of the class. In our SavingsAccount subclass we might also want to output
the current interest rate assigned to the account. To achieve this, we declare
a new version of the displayBalance method in our SavingsAccount
subclass, prefixed with the override keyword:
class SavingsAccount : BankAccount {
 var interestRate: Double = 0.0

 constructor(accountNumber: Int, accountBalance: Double) :
super(accountNumber, accountBalance)

 fun calculateInterest(): Double
 {

 return interestRate * accountBalance
 }

 override fun displayBalance()
 {
 println("Number $accountNumber")
 println("Current balance is $accountBalance")
 println("Prevailing interest rate is $interestRate")

 }
}

Before this code will compile, the displayBalance method in the
BankAccount class must be declared as open:
open fun displayBalance()
{
 println("Number $accountNumber")
 println("Current balance is $accountBalance")
}

It is also possible to make a call to the overridden method in the superclass
from within a subclass. The displayBalance method of the superclass could,
for example, be called to display the account number and balance, before
the interest rate is displayed, thereby eliminating further code duplication:
override fun displayBalance()
{
 super.displayBalance()
 println("Prevailing interest rate is $interestRate")
}

17.6 Adding a Custom Secondary Constructor
As the SavingsAccount class currently stands, it makes a call to the
secondary constructor from the parent BankAccount class which was
implemented as follows:
constructor(accountNumber: Int, accountBalance: Double) :
super(accountNumber, accountBalance)

Clearly this constructor takes the necessary steps to initialize both the
account number and balance properties of the class. The SavingsAccount
class, however, contains an additional property in the form of the interest
rate variable. The SavingsAccount class, therefore, needs its own
constructor to ensure that the interestRate property is initialized when
instances of the class are created. Modify the SavingsAccount class one last

time to add an additional secondary constructor allowing the interest rate to
also be specified when class instances are initialized:
class SavingsAccount : BankAccount {

 var interestRate: Double = 0.0

 constructor(accountNumber: Int, accountBalance: Double) :
 super(accountNumber, accountBalance)

 constructor(accountNumber: Int, accountBalance: Double, rate:
Double) :
 super(accountNumber, accountBalance) {
 interestRate = rate
 }
.
.
.
}

17.7 Using the SavingsAccount Class
Now that we have completed work on our SavingsAccount class, the class
can be used in some example code in much the same way as the parent
BankAccount class:
val savings1 = SavingsAccount(12311, 600.00, 0.07)

println(savings1.calculateInterest())
savings1.displayBalance()

17.8 Summary
Inheritance extends the concept of object re-use in object oriented
programming by allowing new classes to be derived from existing classes,
with those new classes subsequently extended to add new functionality.
When an existing class provides some, but not all, of the functionality
required by the programmer, inheritance allows that class to be used as the
basis for a new subclass. The new subclass will inherit all the capabilities of
the parent class, but may then be extended to add the missing functionality.

18. An Overview of Android View
Binding
An essential part of developing Android apps involves the interaction
between the code and the views that make up the user interface layouts.
This chapter will look at the options available for gaining access to layout
views in code, emphasizing an option known as view binding. Once the
basics of view bindings have been covered, the chapter will outline how to
convert the AndroidSample project to use this approach.

18.1 Find View by Id
As outlined in the chapter entitled “The Anatomy of an Android App”, all of
the resources that make up an application are compiled into a class named
R. Amongst those resources are those that define layouts. Within the R class
is a subclass named layout, which contains the layout resources, including
the views that make up the user interface. Most apps will need to implement
interaction between the code and these views, for example, when reading
the value entered into the EditText view or changing the content displayed
on a TextView.
Before the introduction of Android Studio 3.6, the most common option for
gaining access to a view from within the app code involved writing code to
manually find a view based on its id via the findViewById() method. For
example:
val exampleView: TextView = findViewById(R.id.exampleView)

With the reference obtained, the view’s properties can then be accessed. For
example:
exampleView.text = "Hello"

While finding views by id is still a viable option, it has some limitations,
the most significant disadvantage of findViewById() being that it is possible
to obtain a reference to a view that has not yet been created within the
layout, leading to a null pointer exception when an attempt is made to
access the view’s properties.
Since Android Studio 3.6, an alternative way of accessing views from the
app code has been available in the form of view binding.

18.2 View Binding
When view binding is enabled in an app module, Android Studio
automatically generates a binding class for each layout file. The layout
views can be accessed from within the code using this binding class without
using findViewById().
The name of the binding class generated by Android Studio is based on the
layout file name converted to so-called “camel case” with the word
“Binding” appended to the end. For the activity_main.xml file, for example,
the binding class will be called ActivityMainBinding.
Android Studio Jellyfish is inconsistent in using view bindings within
project templates. For example, the Empty Views Activity template used
when we created the AndroidSample project does not use view bindings.
The Basic Views Activity template, on the other hand, is implemented using
view binding. If you use a template that does not use view binding, it is
important to know how to add it to your project.

18.3 Converting the AndroidSample project
In the remainder of this chapter, we will practice migrating to view bindings
by converting the AndroidSample project to use view binding instead of
findViewById().
Begin by launching Android Studio and opening the AndroidSample project
created in the chapter entitled “Creating an Example Android App in
Android Studio”.

18.4 Enabling View Binding
To use view binding, some changes must first be made to the
build.gradle.kts file for each module in which view binding is needed. In
the case of the AndroidSample project, this will require a slight change to
the Gradle Scripts -> build.gradle.kts (Module: app) file. Load this file into
the editor, locate the android section and add an entry to enable the
viewBinding property as follows:
plugins {
 alias(libs.plugins.androidApplication)
 alias(libs.plugins.jetbrainsKotlinAndroid)
}
android {

 buildFeatures {
 viewBinding = true
 }
.
.

Once this change has been made, click on the Sync Now link at the top of
the editor panel, then use the Build menu to clean and rebuild the project to
ensure the binding class is generated. The next step is to use the binding
class within the code.

18.5 Using View Binding
The first step in this process is to “inflate” the view binding class to access
the root view within the layout. This root view will then be used as the
content view for the layout.
The logical place to perform these tasks is within the onCreate() method of
the activity associated with the layout. A typical onCreate() method will
read as follows:
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 enableEdgeToEdge()
 setContentView(R.layout.activity_main)
 ViewCompat.setOnApplyWindowInsetsListener(findViewById(R.id.mai
n)) { v, insets ->
 val systemBars =
insets.getInsets(WindowInsetsCompat.Type.systemBars())
 v.setPadding(systemBars.left, systemBars.top,
systemBars.right,
 systemBars.bottom)
 insets
 }
}

To switch to using view binding, the view binding class will need to be
imported and the class modified as follows. Note that since the layout file is
named activity_main.xml, we can surmise that the binding class generated
by Android Studio will be named ActivityMainBinding. Note that if you
used a domain other than com.example when creating the project, the
import statement below would need to be changed to reflect this:
.

.
import android.widget.EditText
import android.widget.TextView

import com.example.androidsample.databinding.ActivityMainBinding

class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 enableEdgeToEdge()
 setContentView(R.layout.activity_main)
 binding = ActivityMainBinding.inflate(layoutInflater)
 setContentView(binding.root)
 ViewCompat.setOnApplyWindowInsetsListener(binding.main) {
v, insets ->
 val systemBars =
insets.getInsets(WindowInsetsCompat.Type.
 systemBars())
 v.setPadding(systemBars.left, systemBars.top,
systemBars.right,
 systemBars.bottom)
 insets
 }
 }
.
.

Now that we have a reference to the binding, we can access the views by
name as follows:
fun convertCurrency(view: View) {

 val dollarText: EditText = findViewById(R.id.dollarText)
 val textView: TextView = findViewById(R.id.textView)

 if (binding.dollarText.text.isNotEmpty()) {
 val dollarValue =
binding.dollarText.text.toString().toFloat()
 val euroValue = dollarValue * 0.85f
 binding.textView.text = euroValue.toString()
 } else {
 binding.textView.text = getString(R.string.no_value_string)

 }
}

Compile and run the app and verify that the currency conversion process
works as before.

18.6 Choosing an Option
Notwithstanding their failure to adopt view bindings in the Empty Views
Activity project template, Google strongly recommends using view binding
wherever possible. Therefore, view binding should be used when
developing your own projects.

18.7 View Binding in the Book Examples
Any chapters in this book that rely on a project template that does not
implement view binding will first be migrated. Instead of replicating the
steps every time a migration needs to be performed, however, these chapters
will refer you back here to refresh your memory (don’t worry, after a few
chapters, the necessary changes will become second nature). To help with
the process, the following section summarizes the migration steps more
concisely.

18.8 Migrating a Project to View Binding
The process for converting a project module to use view binding involves
the following steps:
1.Edit the module-level Gradle build script file listed in the Project tool

window as Gradle Scripts -> build.gradle.kts (Module :app).
2.Locate the android section of the file and add an entry to enable the

viewBinding property as follows:
android {

 buildFeatures {
 viewBinding = true
 }
.
.

3.Click on the Sync Now link at the top of the editor to resynchronize the
project with these new build settings.

4.Edit the MainActivity.kt file and modify it to read as follows (where

<reverse domain> represents the domain name used when the project
was created and <project name> is replaced by the lowercase name of
the project, for example, androidsample) and <binding name> is the
name of the binding for the corresponding layout resource file (for
example, the binding for activity_main.xml is ActivityMainBinding).

.

.
import <reverse domain>.<project name>.databinding.<binding name>
.
.
class MainActivity : AppCompatActivity() {

 private lateinit var binding: <binding name>

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 binding = <binding name>.inflate(layoutInflater)
 setContentView(binding.root)
 ViewCompat.setOnApplyWindowInsetsListener(binding.main) { v,
insets ->
 val systemBars =
insets.getInsets(WindowInsetsCompat.Type.
 systemBars())
 v.setPadding(systemBars.left, systemBars.top,
systemBars.right,
 systemBars.botto
m)
 insets
 }
 }

5.Access views by name as properties of the binding object.

18.9 Summary
Before the introduction of Android Studio 3.6, access to layout views from
within the code of an app involved using the findViewById() method. An
alternative is now available in the form of view bindings. View bindings
consist of classes Android Studio automatically generates for each XML
layout file. These classes contain bindings to each view in the
corresponding layout, providing a safer option than the findViewById()

method. However, as of Android Studio Jellyfish, view bindings are not
enabled by default in some project templates. Additional steps are required
to enable and configure support within each project module manually.

19. Understanding Android
Application and Activity Lifecycles
In earlier chapters, we learned that Android applications run within
processes and comprise multiple components in the form of activities,
services, and broadcast receivers. This chapter aims to expand on this
knowledge by looking at the lifecycle of applications and activities within
the Android runtime system.
Regardless of the fanfare about how much memory and computing power
resides in the mobile devices of today compared to the desktop systems of
yesterday, it is important to keep in mind that these devices are still
considered to be “resource constrained” by the standards of modern desktop
and laptop-based systems, particularly in terms of memory. As such, a key
responsibility of the Android system is to ensure that these limited
resources are managed effectively and that the operating system and the
applications running on it remain responsive to the user at all times. To
achieve this, Android is given complete control over the lifecycle and state
of the processes in which the applications run and the individual
components that comprise those applications.
An important factor in developing Android applications, therefore, is to
understand Android’s application and activity lifecycle management models
of Android, and how an application can react to the state changes likely to
be imposed upon it during its execution lifetime.

19.1 Android Applications and Resource
Management
The operating system views each running Android application as a separate
process. If the system identifies that resources on the device are reaching
capacity, it will take steps to terminate processes to free up memory.
When determining which process to terminate to free up memory, the
system considers both the priority and state of all currently running
processes, combining these factors to create what is referred to by Google
as an importance hierarchy. Processes are then terminated, starting with the
lowest priority and working up the hierarchy until sufficient resources have

been liberated for the system to function.

19.2 Android Process States
Processes host applications, and applications are made up of components.
Within an Android system, the current state of a process is defined by the
highest-ranking active component within the application it hosts. As
outlined in Figure 19-1, a process can be in one of the following five states
at any given time:

Figure 19-1
19.2.1 Foreground Process
These processes are assigned the highest level of priority. At any one time,
there are unlikely to be more than one or two foreground processes active,
which are usually the last to be terminated by the system. A process must
meet one or more of the following criteria to qualify for foreground status:
•Hosts an activity with which the user is currently interacting.
•Hosts a Service connected to the activity with which the user is interacting.
•Hosts a Service that has indicated, via a call to startForeground(), that
termination would disrupt the user experience.

•Hosts a Service executing either its onCreate(), onResume(), or onStart()
callbacks.

•Hosts a Broadcast Receiver that is currently executing its onReceive()
method.

19.2.2 Visible Process
A process containing an activity that is visible to the user but is not the
activity with which the user is interacting is classified as a “visible
process”. This is typically the case when an activity in the process is visible
to the user, but another activity, such as a partial screen or dialog, is in the
foreground. A process is also eligible for visible status if it hosts a Service
that is, itself, bound to a visible or foreground activity.
19.2.3 Service Process
Processes that contain a Service that has already been started and is
currently executing.
19.2.4 Background Process
A process that contains one or more activities that are not currently visible
to the user and does not host a Service that qualifies for Service Process
status. Processes that fall into this category are at high risk of termination if
additional memory needs to be freed for higher-priority processes. Android
maintains a dynamic list of background processes, terminating processes in
chronological order such that processes that were the least recently in the
foreground are killed first.
19.2.5 Empty Process
Empty processes no longer contain active applications and are held in
memory, ready to serve as hosts for newly launched applications. This is
analogous to keeping the doors open and the engine running on a bus in
anticipation of passengers arriving. Such processes are considered the
lowest priority and are the first to be killed to free up resources.

19.3 Inter-Process Dependencies
Determining the highest priority process is more complex than outlined in
the preceding section because processes can often be interdependent. As
such, when determining the priority of a process, the Android system will
also consider whether the process is in some way serving another process of
higher priority (for example, a service process acting as the content
provider for a foreground process). As a basic rule, the Android
documentation states that a process can never be ranked lower than another
process that it is currently serving.

19.4 The Activity Lifecycle
As we have previously determined, the state of an Android process is
primarily determined by the status of the activities and components that
make up the application it hosts. It is important to understand, therefore,
that these activities also transition through different states during the
execution lifetime of an application. The current state of an activity is
determined, in part, by its position in something called the Activity Stack.

19.5 The Activity Stack
The runtime system maintains an Activity Stack for each application
running on an Android device. When an application is launched, the first of
the application’s activities to be started is placed onto the stack. When a
second activity is started, it is placed on the top of the stack, and the
previous activity is pushed down. The activity at the top of the stack is
called the active (or running) activity. When the active activity exits, it is
popped off the stack by the runtime and the activity located immediately
beneath it in the stack becomes the current active activity. For example, the
activity at the top of the stack might exit because the task for which it is
responsible has been completed. Alternatively, the user may have selected a
“Back” button on the screen to return to the previous activity, causing the
current activity to be popped off the stack by the runtime system and
destroyed. A visual representation of the Android Activity Stack is
illustrated in Figure 19-2.
As shown in the diagram, new activities are pushed onto the top of the stack
when they are started. The current active activity is located at the top of the
stack until it is either pushed down the stack by a new activity or popped off
the stack when it exits or the user navigates to the previous activity. If
resources become constrained, the runtime will kill activities, starting with
those at the bottom of the stack.
The Activity Stack is what is referred to in programming terminology as a
Last-In-First-Out (LIFO) stack in that the last item to be pushed onto the
stack is the first to be popped off.

Figure 19-2
19.6 Activity States
An activity can be in one of several states during the course of its execution
within an application:
•Active / Running – The activity is at the top of the Activity Stack, is the
foreground task visible on the device screen, has focus, and is currently
interacting with the user. This is the least likely activity to be terminated in
the event of a resource shortage.

•Paused – The activity is visible to the user but does not currently have
focus (typically because the current active activity partially obscures this
activity). Paused activities are held in memory, remain attached to the
window manager, retain all state information, and can quickly be restored
to active status when moved to the top of the Activity Stack.

•Stopped – The activity is currently not visible to the user (in other words,
it is obscured on the device display by other activities). As with paused
activities, it retains all state and member information but is at higher risk
of termination in low-memory situations.

•Killed – The runtime system has terminated the activity to free up memory
and is no longer present on the Activity Stack. Such activities must be
restarted if required by the application.

19.7 Configuration Changes
So far in this chapter, we have looked at two causes for the change in the
state of an Android activity, namely the movement of an activity between
the foreground and background and the termination of an activity by the
runtime system to free up memory. In fact, there is a third scenario in which
the state of an activity can dramatically change, which involves a change to
the device configuration.
By default, any configuration change that impacts the appearance of an
activity (such as rotating the orientation of the device between portrait and
landscape or changing a system font setting) will cause the activity to be
destroyed and recreated. The reasoning behind this is that such changes
affect resources such as the layout of the user interface, and destroying and
recreating impacted activities is the quickest way for an activity to respond
to the configuration change. It is, however, possible to configure an activity
so that the system does not restart it in response to specific configuration
changes.

19.8 Handling State Change
It should be clear from this chapter that an application and, by definition,
the components contained therein will transition through many states during
its lifespan. Of particular importance is the fact that these state changes (up
to and including complete termination) are imposed upon the application by
the Android runtime subject to the user’s actions and the availability of
resources on the device.
In practice, however, these state changes are not imposed entirely without
notice, and an application will, in most circumstances, be notified by the
runtime system of the changes and given the opportunity to react
accordingly. This will typically involve saving or restoring both internal
data structures and user interface state, thereby allowing the user to switch
seamlessly between applications and providing at least the appearance of
multiple concurrently running applications.
Android provides two ways to handle the changes to the lifecycle states of

the objects within an app. One approach involves responding to state
change method calls from the operating system and is covered in detail in
the next chapter entitled “Handling Android Activity State Changes”.
A new approach that Google recommends involves the lifecycle classes
included with the Jetpack Android Architecture components, introduced in
“Modern Android App Architecture with Jetpack” and explained in more
detail in the chapter entitled “Working with Android Lifecycle-Aware
Components”.

19.9 Summary
Mobile devices are typically considered to be resource constrained,
particularly in terms of onboard memory capacity. Consequently, a prime
responsibility of the Android operating system is to ensure that applications,
and the operating system in general, remain responsive to the user.
Applications are hosted on Android within processes. Each application, in
turn, comprises components in the form of activities and Services.
The Android runtime system has the power to terminate both processes and
individual activities to free up memory. Process state is considered by the
runtime system when deciding whether a process is a suitable candidate for
termination. The state of a process largely depends upon the status of the
activities hosted by that process.
The key message of this chapter is that an application moves through
various states during its execution lifespan and has very little control over
its destiny within the Android runtime environment. Those processes and
activities not directly interacting with the user run a higher risk of
termination by the runtime system. An essential element of Android
application development, therefore, involves the ability of an application to
respond to state change notifications from the operating system.

20. Handling Android Activity State
Changes
Based on the information outlined in the chapter entitled “Understanding
Android Application and Activity Lifecycles” it is now evident that the
activities and fragments that make up an application pass through various
different states during the application’s lifespan. The Android runtime
system imposes the change from one state to the other and is, therefore,
largely beyond the control of the activity itself. That does not, however,
mean that the app cannot react to those changes and take appropriate
actions.
The primary objective of this chapter is to provide a high-level overview of
how an activity may be notified of a state change and outline the areas
where it is advisable to save or restore state information. Having covered
this information, the chapter will touch briefly on activity lifetimes.

20.1 New vs. Old Lifecycle Techniques
Until recently, there was a standard way to build lifecycle awareness into an
app. This approach is covered in this chapter and involves implementing a
set of methods (one for each lifecycle state) within an activity or fragment
instance that the operating system calls when the lifecycle status of that
object changes. This approach has remained unchanged since the early
years of the Android operating system, and while still a viable option today,
it does have some limitations, which will be explained later in this chapter.
With the introduction of the lifecycle classes with the Jetpack Android
Architecture Components, a better approach to lifecycle handling is now
available. This modern approach to lifecycle management (together with
the Jetpack components and architecture guidelines) will be covered in
detail in later chapters. It is still essential, however, to understand the
traditional lifecycle methods for a couple of reasons. First, as an Android
developer, you will not be completely insulated from the traditional
lifecycle methods and will still use some of them. More importantly,
understanding the older way of handling lifecycles will provide a sound
foundation for learning the new approach later in the book.

20.2 The Activity and Fragment Classes
With few exceptions, an application’s activities and fragments are created as
subclasses of the Android AppCompatActivity class and Fragment classes,
respectively.
Consider, for example, the AndroidSample project created in “Creating an
Example Android App in Android Studio” and subsequently converted to
use view binding. Load this project into the Android Studio environment
and locate the MainActivity.kt file (located in app -> kotlin+java -> <your
domain> -> androidsample). Having located the file, double-click on it to
load it into the editor, where it should read as follows:
package com.example.androidsample
.
.
class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 enableEdgeToEdge()
 binding = ActivityMainBinding.inflate(layoutInflater)
 setContentView(binding.root)

 ViewCompat.setOnApplyWindowInsetsListener(binding.main) {
v, insets ->
 val systemBars = insets.getInsets(
 WindowInsetsCompat.Type.systemBars())
 v.setPadding(systemBars.left, systemBars.top,
systemBars.right,
 systemBars.bottom)
 insets
 }
 }

 fun convertCurrency(view: View) {
.
.
 }
}

When the project was created, we instructed Android Studio also to create

an initial activity named MainActivity.kt As is evident from the above code,
the MainActivity class is a subclass of the AppCompatActivity class.
A review of the reference documentation for the AppCompatActivity class
would reveal that it is itself a subclass of the Activity class. This can be
verified within the Android Studio editor using the Hierarchy tool window.
With the MainActivity.kt file loaded into the editor, click on
AppCompatActivity in the class declaration line and press the Ctrl-H
keyboard shortcut. The hierarchy tool window will subsequently appear,
displaying the class hierarchy for the selected class. As illustrated in Figure
20-1, AppCompatActivity is subclassed from the FragmentActivity class,
which is itself ultimately a subclass of the Activity class:

Figure 20-1
The Activity and Fragment classes contain a range of methods intended to
be called by the Android runtime to notify the object when its state is
changing. For this chapter, we will refer to these as the lifecycle methods.
An activity or fragment class needs to override these methods and
implement the necessary functionality to react accordingly to state changes.
One such method is named onCreate(), and, turning once again to the above
code fragment, we can see that this method has already been overridden and
implemented for us in the MainActivity class. In a later section, we will
explore onCreate() and the other relevant lifecycle methods of the Activity
and Fragment classes.

20.3 Dynamic State vs. Persistent State
A key objective of lifecycle management is ensuring that the state of the
activity is saved and restored at appropriate times. When talking about state
in this context, we mean the data currently being held within the activity

and the appearance of the user interface. The activity might, for example,
maintain a data model in memory that needs to be saved to a database,
content provider, or file. Because it persists from one invocation of the
application to another, such state information is referred to as the persistent
state.
The appearance of the user interface (such as text entered into a text field
but not yet committed to the application’s internal data model) is referred to
as the dynamic state since it is typically only retained during a single
invocation of the application (and also referred to as user interface state or
instance state).
Understanding the differences between these two states is important
because the ways they are saved and the reasons for doing so differ.
The purpose of saving the persistent state is to avoid data loss that may
result from an activity being killed by the runtime system while in the
background. On the other hand, the dynamic state is saved and restored for
slightly more complex reasons.
Consider, for example, that an application contains an activity (which we
will refer to as Activity A) containing a text field and some radio buttons.
During the course of using the application, the user enters some text into the
text field and makes a selection from the radio buttons. However, before
performing an action to save these changes, the user switches to another
activity, causing Activity A to be pushed down the Activity Stack and placed
into the background. After some time, the runtime system ascertains that
memory is low and kills Activity A to free up resources. However, as far as
the user is concerned, Activity A was placed in the background and is ready
to be moved to the foreground at any time. On returning Activity A to the
foreground, the user would reasonably expect the entered text and radio
button selections to have been retained. In this scenario, however, a new
instance of Activity A will have been created, and if the dynamic state is not
saved and restored, the previous user input is lost.
Therefore, the primary purpose of saving dynamic state is to give the
perception of seamless switching between foreground and background
activities, regardless of the fact that activities may have been killed and
restarted without the user’s knowledge.
The mechanisms for saving persistent and dynamic states will become more

apparent in the following sections of this chapter.

20.4 The Android Lifecycle Methods
As previously explained, the Activity and Fragment classes contain several
lifecycle methods which act as event handlers when the state of an instance
changes. The primary methods supported by the Android Activity and
Fragment class are as follows:
•onCreate(savedInstanceState: Bundle?) – The method called when the
activity is first created and the ideal location for most initialization tasks to
be performed. The method is passed an argument in the form of a Bundle
object that may contain dynamic state information (typically relating to the
state of the user interface) from a prior invocation of the activity.

•onRestart() – Called when the activity is about to restart after having
previously been stopped by the runtime system.

•onStart() – Always called immediately after the call to the onCreate() or
onRestart() methods. This method indicates to the activity that it is about
to become visible to the user. This call will be followed by a call to
onResume() if the activity moves to the top of the activity stack, or
onStop() if it is pushed down the stack by another activity.

•onResume() – Indicates that the activity is now at the top of the activity
stack and is the activity with which the user is currently interacting.

•onPause() – Indicates that a previous activity is about to become the
foreground activity. This call will be followed by a call to either the
onResume() or onStop() method, depending on whether the activity moves
back to the foreground or becomes invisible to the user. Steps may be
taken within this method to store persistent state information not yet saved
by the app. To avoid delays in switching between activities, time-
consuming operations such as storing data to a database or performing
network operations should be avoided within this method. This method
should also ensure that any CPU-intensive tasks, such as animation, are
stopped.

•onStop() – The activity is no longer visible to the user. The two possible
scenarios following this call are a call to onRestart() if the activity moves
to the foreground again or onDestroy() if the activity is terminated.

•onDestroy() – The activity is about to be destroyed, either voluntarily

because the activity has completed its tasks and has called the finish()
method or because the runtime is terminating it either to release memory
or due to a configuration change (such as the orientation of the device
changing). It is important to note that a call will not always be made to
onDestroy() when an activity is terminated.

•onConfigurationChanged() – Called when a configuration change occurs
for which the activity has indicated it is not to be restarted. The method is
passed a Configuration object outlining the new device configuration, and
it is then the responsibility of the activity to react to the change.

The following lifecycle methods only apply to the Fragment class:
•onAttach() - Called when the fragment is assigned to an activity.
•onCreateView() - Called to create and return the fragment’s user interface
layout view hierarchy.

•onViewCreated() - Called after onCreateView() returns.
•onViewStatusRestored() - The fragment’s saved view hierarchy has been
restored.

In addition to the lifecycle methods outlined above, there are two methods
intended specifically for saving and restoring the dynamic state of an
activity:
•onRestoreInstanceState(savedInstanceState: Bundle?) – This method is
called immediately after a call to the onStart() method if the activity
restarts from a previous invocation in which the state was saved. As with
onCreate(), this method is passed a Bundle object containing the previous
state data. This method is typically used when it makes more sense to
restore a previous state after the initialization of the activity has been
performed in onCreate() and onStart().

•onSaveInstanceState(outState: Bundle?) – Called before an activity is
destroyed so that the current dynamic state (usually relating to the user
interface) can be saved. The method is passed the Bundle object into
which the state should be saved and which is subsequently passed through
to the onCreate() and onRestoreInstanceState() methods when the activity
is restarted. Note that this method is only called when the runtime
ascertains that dynamic state needs to be saved.

When overriding the above methods, it is important to remember that,

except for onRestoreInstanceState() and onSaveInstanceState(), the method
implementation must include a call to the corresponding method in the
superclass. For example, the following method overrides the onRestart()
method but also includes a call to the superclass instance of the method:
override fun onRestart() {
 super.onRestart()
 Log.i(TAG, "onRestart")
}

Failure to make this superclass call in method overrides will result in the
runtime throwing an exception during execution. While calls to the
superclass in the onRestoreInstanceState() and onSaveInstanceState()
methods are optional (they can, for example, be omitted when
implementing custom save and restoration behavior) there are considerable
benefits to using them, a subject that will be covered in the chapter entitled
“Saving and Restoring the State of an Android Activity”.

20.5 Lifetimes
The final topic to be covered involves an outline of the entire, visible, and
foreground lifetimes through which an activity or fragment will transition
during execution:
•Entire Lifetime –The term “entire lifetime” is used to describe everything
that takes place between the initial call to the onCreate() method and the
call to onDestroy() before the object terminates.

•Visible Lifetime – Covers the periods of execution between the call to
onStart() and onStop(). During this period, the activity or fragment is
visible to the user though it may not be the object with which the user is
currently interacting.

•Foreground Lifetime – Refers to the periods of execution between calls
to the onResume() and onPause() methods.

It is important to note that an activity or fragment may pass through the
foreground and visible lifetimes multiple times during the course of the
entire lifetime.
The concepts of lifetimes and lifecycle methods are illustrated in Figure 20-
2:

Figure 20-2
20.6 Foldable Devices and Multi-Resume
As discussed previously, an activity is considered to be in the resumed state
when it has moved to the foreground and is the activity with which the user
is currently interacting. On standard devices, an app can have one activity
in the resumed state at any one time and all other activities are likely to be
in the paused or stopped state.
For some time now, Android has included multi-window support, allowing
multiple activities to appear simultaneously in either split-screen or
freeform configurations. Although initially used primarily on large-screen
tablet devices, this feature is likely to become more popular with the
introduction of foldable devices.
On devices running Android 10 and on which multi-window support is
enabled (as will be the case for most foldable devices), it will be possible
for multiple app activities to be in the resumed state at the same time (a
concept referred to as multi-resume) allowing those visible activities to
continue functioning (for example streaming content or updating visual
data) even when another activity currently has focus. Although multiple
activities can be in the resumed state, only one of these activities will be
considered the topmost resumed activity (in other words, the activity with
which the user most recently interacted).

An activity can be notified that it has gained or lost the topmost resumed
status by implementing the onTopResumedActivityChanged() callback
method.

20.7 Disabling Configuration Change Restarts
As previously outlined, an activity may indicate that it is not to be restarted
in the event of certain configuration changes. This is achieved by adding an
android:configChanges directive to the activity element within the project
manifest file. The following manifest file excerpt, for example, indicates
that the activity should not be restarted in the event of configuration
changes relating to orientation or device-wide font size:
<activity android:name=".MainActivity"
 android:configChanges="orientation|fontScale"
 android:label="@string/app_name">

20.8 Lifecycle Method Limitations
As discussed at the start of this chapter, lifecycle methods have been in use
for many years and, until recently, were the only mechanism available for
handling lifecycle state changes for activities and fragments. There are,
however, areas for improvement in this approach.
One issue with the lifecycle methods is that they do not provide an easy
way for an activity or fragment to discover its current lifecycle state at any
given point during app execution. Instead, the object must track the state
internally or wait for the next lifecycle method call.
Also, the methods do not provide a simple way for one object to observe the
lifecycle state changes of other objects within an app. This is a serious
consideration since a lifecycle state change in a given activity or fragment
can impact many other objects within an app.
The lifecycle methods are also only available on subclasses of the Fragment
and Activity classes. Therefore, it is impossible to build custom classes that
are genuinely lifecycle aware.
Finally, the lifecycle methods result in most lifecycle handling code being
written within the activity or fragment, which can lead to complex and
error-prone code. Ideally, much of this code should reside in the other
classes impacted by the state change. For example, an app that streams
video might include a class designed specifically to manage the incoming

stream. If the app needs to pause the stream when the main activity is
stopped, the code to do so should reside in the streaming class, not the main
activity.
All these problems and more are resolved using lifecycle-aware
components, a topic that will be covered starting with the chapter entitled
“Modern Android App Architecture with Jetpack”.

20.9 Summary
All activities are derived from the Android Activity class, which, in turn,
contains several lifecycle methods that are designed to be called by the
runtime system when the state of an activity changes. Similarly, the
Fragment class contains several comparable methods. By overriding these
methods, activities and fragments can respond to state changes and, where
necessary, take steps to save and restore the current state of the activity and
the application. Lifecycle state can be thought of as taking two forms. The
persistent state refers to data that needs to be stored between application
invocations (for example, to a file or database). Dynamic state, on the other
hand, relates instead to the current appearance of the user interface.
Although lifecycle methods have some limitations that can be avoided
using lifecycle-aware components, understanding these methods is essential
to fully understand the new approaches to lifecycle management covered
later in this book.
In this chapter, we have highlighted the lifecycle methods available to
activities and covered the concept of activity lifetimes. In the next chapter,
entitled “Android Activity State Changes by Example”, we will implement
an example application that puts much of this theory into practice.

21. Android Activity State Changes
by Example
The previous chapters have discussed in detail the different states and
lifecycles of the activities comprising an Android application. In this
chapter, we will put the theory of handling activity state changes into
practice by creating an example application. The purpose of this example
application is to provide a real-world demonstration of an activity as it
passes through various states within the Android runtime. In the next
chapter, entitled “Saving and Restoring the State of an Android Activity”,
the example project constructed in this chapter will be extended to
demonstrate the saving and restoration of dynamic activity state.

21.1 Creating the State Change Example Project
The first step in this exercise is to create a new project. Launch Android
Studio and, if necessary, close any currently open projects using the File ->
Close Project menu option so that the Welcome screen appears.
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.
Enter StateChange into the Name field and specify
com.ebookfrenzy.statechange as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin. Upon completing the project
creation process, the StateChange project should be listed in the Project tool
window located along the left-hand edge of the Android Studio main
window. Use the steps outlined in section 18.8 Migrating a Project to View
Binding to convert the project to use view binding.
The next action to take involves the design of the user interface for the
activity. This is stored in a file named activity_main.xml which should
already be loaded into the Layout Editor tool. If it is not, navigate to it in
the Project tool window where it can be found in the app -> res -> layout
folder. Once located, double-clicking on the file will load it into the
Android Studio Layout Editor tool.

Figure 21-1
21.2 Designing the User Interface
With the user interface layout loaded into the Layout Editor tool, it is time
to design the user interface for the example application. Instead of the
“Hello World!” TextView currently in the user interface design, the activity
requires an EditText view. Select the TextView object in the Component
Tree panel and press the Delete key on the keyboard to remove it from the
design.
From the Palette located on the left side of the Layout Editor, select the Text
category and, from the list of text components, click and drag a Plain Text
component over to the layout canvas. Move the component to the center of
the display so that the center guidelines appear and drop it into place so that
the layout resembles that of Figure 21-2.

Figure 21-2
When using the EditText widget, it is necessary to specify an input type for
the view. This defines the type of text or data the user will enter. For
example, if the input type is set to Phone, the user will be restricted to
entering numerical digits into the view. Alternatively, if the input type is set
to TextCapCharacters, the input will default to upper-case characters. Input
type settings may also be combined.
For this example, we will use the default input type to support general text
input. To choose a different setting in the future, select the EditText widget
in the layout and locate the inputType entry within the Attributes tool
window. Next, click the flag icon to the left of the current setting to open
the list of options, as shown in Figure 21-3 below. The Type menu provides
options to restrict the input to text, numbers, dates and times, and phone
numbers. The Variations menu provides additional options for the currently
selected input type. For example, a variation is available for the text input
type for email addresses as input.
Once a type and variation have been chosen, the input type may be
customized further using the list of flag checkboxes:

Figure 21-3
Remaining in the Attributes tool window, change the view’s id to editText
and click on the Refactor button in the resulting dialog.
By default, the EditText displays text which reads “Name”. Remaining
within the Attributes panel, delete this from the text property field so that
the view is blank within the layout.
Before continuing, click the Infer Constraints button in the layout editor
toolbar to add any missing constraints.

21.3 Overriding the Activity Lifecycle Methods
At this point, the project contains a single activity named MainActivity,
derived from the Android AppCompatActivity class. The source code for
this activity is contained within the MainActivity.kt file, which should
already be open in an editor session and represented by a tab in the editor
tab bar. If the file is no longer open, navigate to it in the Project tool
window panel (app -> kotlin+java -> com.ebookfrenzy.statechange ->
MainActivity) and double-click on it to load the file into the editor.
So far, the only lifecycle method overridden by the activity is the
onCreate() method which has been implemented to call the superclass
instance of the method before setting up the user interface for the activity.
We will now modify this method to output a diagnostic message in the

Android Studio Logcat panel each time it executes. For this, we will use the
Log class, which requires that we import android.util.Log and declare a tag
that will enable us to filter these messages in the log output:
package com.ebookfrenzy.statechange

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import android.util.Log

import com.ebookfrenzy.statechange.databinding.ActivityMainBinding

class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding
 private val TAG = "StateChange"

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
.
.
 Log.i(TAG, "onCreate")
 }
}
.
.

The next task is to override more methods, each containing a corresponding
log call. These override methods may be added manually or generated using
the Alt-Insert keyboard shortcut as outlined in the chapter entitled “The
Basics of the Android Studio Code Editor”. Note that the Log calls will still
need to be added manually if the methods are being auto-generated:
override fun onStart() {
 super.onStart()
 Log.i(TAG, "onStart")
}

override fun onResume() {
 super.onResume()
 Log.i(TAG, "onResume")
}

override fun onPause() {

 super.onPause()
 Log.i(TAG, "onPause")
}

override fun onStop() {
 super.onStop()
 Log.i(TAG, "onStop")
}

override fun onRestart() {
 super.onRestart()
 Log.i(TAG, "onRestart")
}

override fun onDestroy() {
 super.onDestroy()
 Log.i(TAG, "onDestroy")
}

override fun onSaveInstanceState(outState: Bundle) {
 super.onSaveInstanceState(outState)
 Log.i(TAG, "onSaveInstanceState")
}

override fun onRestoreInstanceState(savedInstanceState: Bundle) {
 super.onRestoreInstanceState(savedInstanceState)
 Log.i(TAG, "onRestoreInstanceState")
}

21.4 Filtering the Logcat Panel
The purpose of the code added to the overridden methods in MainActivity.kt
is to output logging information to the Logcat tool window, which is
displayed using the button shown in Figure 21-4:

Figure 21-4
The Logcat tool window can be configured to display all events relating to
the device or emulator session or restricted to those events that relate to the
currently selected app. The output can also be restricted to only those log
events that match a specified filter.
When displayed while the current app is running, the Logcat tool window
will appear as shown in Figure 21-5 below:

Figure 21-5
The menu marked A in the above figure allows you to select the device or
emulator for which log output will be displayed. This output appears in the
output panel marked C. The log output can be filtered by entering options
into the field marked B. The default key setting, package:mine, restricts the
output to log messages generated by the current app package (in this case
com.ebookfrenzy.statechange). Leaving this field blank will allow log
output from the selected device or emulator to be displayed, including
diagnostic messages generated by the operating system. Keys may also be
combined to filter the output further. For example, we can configure the
Logcat panel to display only messages associated with our StateChange tag
as follows:
package:mine tag:StateChange

We can exclude output by prefixing the key with a minus (-) sign. In
addition to the StateChange tag, we might have diagnostic messages using a
different tag. To filter the log so that output from this second tag is
excluded, we could enter the following key options:
package:mine tag:StateChange -tag:OtherTag

In addition to your own tag values, it is also possible to select from a range
of predefined diagnostic tags built into Android. Logcat will display a list of
matching tags as you type into the filter field, as shown in Figure 21-6:

Figure 21-6
Alternatively, use Ctrl-Space to access a complete list of filtering
suggestions.
The level key may be used to control which messages are displayed based
on severity. To filter out all messages except error messages, the following
key would be used:
level:error

In addition to error, the Logcat panel supports verbose, info, warn, and
assert level settings.
Logcat also supports multiple log panels, each with its own filter settings.
To add another panel, click on the + button marked D in Figure 21-5 above.
Switch between different panels using the corresponding tabs, or display
them side-by-side by right-clicking on the currently displayed panel and
selecting either the Split-Right or Split-Down menu option to arrange the
panels horizontally or vertically. To rename a panel, right-click on the tab
and select the Rename Tab option. Before proceeding, close all but one
Logcat panel and configure the filter as follows:

package:mine tag:StateChange

21.5 Running the Application
For optimal results, the application should be run on a physical Android
device or emulator. With the device configured and connected to the
development computer, click on the run button in the Android Studio
toolbar as shown in Figure 21-7 below:

Figure 21-7
Select the physical Android device or emulator from the Choose Device
dialog if it appears (assuming you have not already configured it as the
default target). After Android Studio has built the application and installed
it on the device, it should start up and be running in the foreground.
A review of the Logcat panel should indicate which methods have so far
been triggered:

Figure 21-8
21.6 Experimenting with the Activity
With the diagnostics working, it is time to exercise the application to
understand the activity lifecycle state changes. To begin with, consider the
initial sequence of log events in the Logcat panel:
onCreate
onStart
onResume

Clearly, the initial state changes are exactly as outlined in “Understanding
Android Application and Activity Lifecycles”. Note, however, that a call

was not made to onRestoreInstanceState() since the Android runtime
detected that there was no state to restore in this situation.
Tap on the Home icon in the bottom status bar on the device display and
note the sequence of method calls reported in the log as follows:
onPause
onStop
onSaveInstanceState

In this case, the runtime has noticed that the activity is no longer in the
foreground, is not visible to the user, and has stopped the activity, but not
without providing an opportunity for the activity to save the dynamic state.
Depending on whether the runtime ultimately destroyed the activity or
restarted it, the activity will either be notified it has been restarted via a call
to onRestart() or will go through the creation sequence again when the user
returns to the activity.
As outlined in “Understanding Android Application and Activity
Lifecycles”, the destruction and recreation of an activity can be triggered by
making a configuration change to the device, such as rotating from portrait
to landscape. To see this in action, rotate the device while the StateChange
application is in the foreground. When using the emulator, device rotation
may be simulated using the rotation button located in the emulator toolbar.
To complete the rotation, it may also be necessary to tap on the rotation
button. This appears at the bottom of the device or emulator screen, as
shown in Figure 21-9:

Figure 21-9
The resulting sequence of method calls in the log should read as follows:
onPause
onStop
onSaveInstanceState
onDestroy
onCreate
onStart
onRestoreInstanceState

onResume

Clearly, the runtime system has allowed the activity to save the state before
being destroyed and restarted.

21.7 Summary
The adage that a picture is worth a thousand words holds just as true for
examples when learning a new programming paradigm. In this chapter, we
created an example Android application to demonstrate the different
lifecycle states an activity will likely pass through. While developing the
project in this chapter, we also looked at a mechanism for generating
diagnostic logging information from within an activity.
In the next chapter, we will extend the StateChange example project to
demonstrate how to save and restore an activity’s dynamic state.

22. Saving and Restoring the State of
an Android Activity
If the previous few chapters have achieved their objective, it should now be
clearer as to the importance of saving and restoring the state of a user
interface at particular points in the lifetime of an activity.
In this chapter, we will extend the example application created in “Android
Activity State Changes by Example” to demonstrate the steps involved in
saving and restoring state when the runtime system destroys and recreates
an activity.
A key component of saving and restoring dynamic state involves using the
Android SDK Bundle class, a topic that will also be covered in this chapter.

22.1 Saving Dynamic State
As we have learned, an activity can save dynamic state information via a
call from the runtime system to the activity’s implementation of the
onSaveInstanceState() method. Passed through as an argument to the
method is a reference to a Bundle object into which the method must store
any dynamic data that needs to be saved. The Bundle object is then stored
by the runtime system on behalf of the activity and subsequently passed
through as an argument to the activity’s onCreate() and
onRestoreInstanceState() methods if and when they are called. The data can
then be retrieved from the Bundle object within these methods and used to
restore the state of the activity.

22.2 Default Saving of User Interface State
In the previous chapter, the diagnostic output from the StateChange
example application showed that an activity goes through several state
changes when the device on which it is running is rotated sufficiently to
trigger an orientation change.
Launch the StateChange application once again and enter some text into the
EditText field before performing the device rotation (on devices or
emulators running Android 9 or later, it may be necessary to tap the rotation
button in the status bar to complete the rotation). Having rotated the device,

the following state change sequence should appear in the Logcat window:
onPause
onStop
onSaveInstanceState
onDestroy
onCreate
onStart
onRestoreInstanceState
onResume

Clearly, this has resulted in the activity being destroyed and re-created. A
review of the user interface of the running application, however, should
show that the text entered into the EditText field has been preserved. Given
that the activity was destroyed and recreated and we did not add any
specific code to ensure the text was saved and restored, this behavior
requires some explanation.
In fact, most view widgets included with the Android SDK already
implement the behavior necessary to save and restore state when an activity
is restarted automatically. The only requirement to enable this behavior is
for the onSaveInstanceState() and onRestoreInstanceState() override
methods in the activity to include calls to the equivalent methods of the
superclass:
override fun onSaveInstanceState(outState: Bundle?) {
 super.onSaveInstanceState(outState)
 Log.i(TAG, "onSaveInstanceState")
}

override fun onRestoreInstanceState(savedInstanceState: Bundle?) {
 super.onRestoreInstanceState(savedInstanceState)
 Log.i(TAG, "onRestoreInstanceState")
}

The automatic saving of state for a user interface view can be disabled in
the XML layout file by setting the android:saveEnabled property to false.
The automatic state saving for a user interface view can be turned off in the
XML layout file by setting the android:saveEnabled property to false. For
this example, we will disable the automatic state-saving mechanism for the
EditText view in the user interface layout and then add code to the
application to manually save and restore the view’s state.
To configure the EditText view such that state will not be saved and

restored if the activity is restarted, edit the activity_main.xml file so that the
entry for the view reads as follows (note that the XML can be edited by
switching the Layout Editor to Code view mode as outlined in “Creating an
Example Android App in Android Studio”):
<EditText
 android:id="@+id/editText"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:ems="10"
 android:inputType="text"
 android:saveEnabled="false"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

After making the change, run the application, enter text, and rotate the
device to verify that the text is no longer saved and restored.

22.3 The Bundle Class
For situations where state needs to be saved beyond the default
functionality provided by the user interface view components, the Bundle
class provides a container for storing data using a key-value pair
mechanism. The keys take the form of string values, while the values
associated with those keys can be a primitive value or any object that
implements the Android Parcelable interface. A wide range of classes
already implements the Parcelable interface. Custom classes may be made
“parcelable” by implementing the set of methods defined in the Parcelable
interface, details of which can be found in the Android documentation at:
https://developer.android.com/reference/android/os/Parcelable.html
The Bundle class also contains a set of methods that can be used to get and
set key-value pairs for various data types, including both primitive types
(including Boolean, char, double, and float values) and objects (such as
Strings and CharSequences).
For this example, having disabled the automatic saving of text for the
EditText view, we need to ensure that the text entered into the EditText field
by the user is saved into the Bundle object and subsequently restored. This
will demonstrate how to manually save and restore state within an Android

http://developer.android.com/reference/android/os/Parcelable.html

application and will be achieved using the putCharSequence() and
getCharSequence() methods of the Bundle class, respectively.

22.4 Saving the State
The first step in extending the StateChange application is to make sure that
the text entered by the user is extracted from the EditText component within
the onSaveInstanceState() method of the MainActivity activity and then
saved as a key-value pair into the Bundle object.
To extract the text from the EditText object, we must first identify that
object in the user interface. Clearly, this involves bridging the gap between
the Kotlin code for the activity (contained in the MainActivity.kt source
code file) and the XML representation of the user interface (contained
within the activity_main.xml resource file). To extract the text entered into
the EditText component, we need to gain access to that user interface
object.
Each component within a user interface has associated with it a unique
identifier. By default, the Layout Editor tool constructs the id for a newly
added component from the object type. If more than one view of the same
type is contained in the layout, the type name is followed by a sequential
number (though this can, and should, be changed to something more
meaningful by the developer). As can be seen by checking the Component
Tree panel within the Android Studio main window when the
activity_main.xml file is selected and the Layout Editor tool displayed, the
EditText component has been assigned the id editText:

Figure 22-1
We can now obtain the text that the editText view contains via the object’s
text property, which, in turn, returns the current text:
val userText = binding.editText.text

Finally, we can save the text using the Bundle object’s putCharSequence()
method, passing through the key (this can be any string value, but in this

instance, we will declare it as “savedText”) and the userText object as
arguments:
outState?.putCharSequence("savedText", userText)

Bringing this all together gives us a modified onSaveInstanceState() method
in the MainActivity.kt file that reads as follows:
override fun onSaveInstanceState(outState: Bundle) {
 super.onSaveInstanceState(outState)
 Log.i(TAG, "onSaveInstanceState")

 val userText = binding.editText.text
 outState.putCharSequence("savedText", userText)
}

Now that steps have been taken to save the state, the next phase is to restore
it when needed.

22.5 Restoring the State
The saved dynamic state can be restored in those lifecycle methods that are
passed the Bundle object as an argument. This leaves the developer with the
choice of using either onCreate() or onRestoreInstanceState(). The method
to use will depend on the nature of the activity. In instances where state is
best restored after the activity’s initialization tasks have been performed, the
onRestoreInstanceState() method is generally more suitable. For this
example, we will add code to the onRestoreInstanceState() method to
extract the saved state from the Bundle using the “savedText” key. We can
then display the text on the editText component using the object’s setText()
method:
override fun onRestoreInstanceState(savedInstanceState: Bundle) {
 super.onRestoreInstanceState(savedInstanceState)
 Log.i(TAG, "onRestoreInstanceState")

 val userText = savedInstanceState.getCharSequence("savedText")
 binding.editText.setText(userText)
}

22.6 Testing the Application
All that remains is once again to build and run the StateChange application.
Once running and in the foreground, touch the EditText component and
enter some text before rotating the device to another orientation. Whereas

the text changes were previously lost, the new text is retained within the
editText component thanks to the code we have added to the activity in this
chapter.
Having verified that the code performs as expected, comment out the
super.onSaveInstanceState() and super.onRestoreInstanceState() calls from
the two methods, re-launch the app and note that the text is still preserved
after a device rotation. The default save and restoration system has
essentially been replaced by a custom implementation, thereby providing a
way to dynamically and selectively save and restore state within an activity.

22.7 Summary
The saving and restoration of dynamic state in an Android application is a
matter of implementing the appropriate code in the appropriate lifecycle
methods. For most user interface views, this is handled automatically by the
Activity superclass. In other instances, this typically consists of extracting
values and settings within the onSaveInstanceState() method and saving the
data as key-value pairs within the Bundle object passed through to the
activity by the runtime system.
State can be restored in either the onCreate() or the
onRestoreInstanceState() methods of the activity by extracting values from
the Bundle object and updating the activity based on the stored values.
In this chapter, we have used these techniques to update the StateChange
project so that the Activity retains changes through the destruction and
subsequent recreation of an activity.

23. Understanding Android Views,
View Groups and Layouts
With the possible exception of listening to streaming audio, a user’s
interaction with an Android device is primarily visual and tactile. All of this
interaction occurs through the user interfaces of the applications installed
on the device, including both the built-in applications and any third-party
applications installed by the user. Therefore, it should come as no surprise
that a critical element of developing Android applications involves
designing and creating user interfaces.
This chapter covers the Android user interface structure, including an
overview of the elements that can be combined to make up a user interface:
Views, View Groups, and Layouts.

23.1 Designing for Different Android Devices
The term “Android device” covers many tablet and smartphone products
with different screen sizes and resolutions. As a result, application user
interfaces must now be carefully designed to ensure correct presentation on
as wide a range of display sizes as possible. A key part of this is ensuring
that the user interface layouts resize correctly when run on different
devices. This can largely be achieved through careful planning and using
the layout managers outlined in this chapter.
It is also essential to remember that most Android-based smartphones and
tablets can be held by the user in both portrait and landscape orientations. A
well-designed user interface should be able to adapt to such changes and
make sensible layout adjustments to utilize the available screen space in
each orientation.

23.2 Views and View Groups
Every item in a user interface is a subclass of the Android View class (to be
precise android.view.View). The Android SDK provides a set of pre-built
views that can be used to construct a user interface. Typical examples
include standard items such as the Button, CheckBox, ProgressBar, and
TextView classes. Such views are also referred to as widgets or components.
For requirements not met by the widgets supplied with the SDK, new views

may be created by subclassing and extending an existing class or creating
an entirely new component by building directly on top of the View class.
A view can also comprise multiple other views (otherwise known as a
composite view). Such views are subclassed from the Android ViewGroup
class (android.view.ViewGroup), which is itself a subclass of View. An
example of such a view is the RadioGroup, which is intended to contain
multiple RadioButton objects such that only one can be in the “on” position
at any one time. Regarding structure, composite views consist of a single
parent view (derived from the ViewGroup class and otherwise known as a
container view or root element) capable of containing other views (known
as child views).
Another category of ViewGroup-based container view is that of the layout
manager.

23.3 Android Layout Managers
In addition to the widget style views discussed in the previous section, the
SDK also includes a set of views referred to as layouts. Layouts are
container views (and, therefore, subclassed from ViewGroup) designed to
control how child views are positioned on the screen.
The Android SDK includes the following layout views that may be used
within an Android user interface design:
•ConstraintLayout – Introduced in Android 7, this layout manager is
recommended for most layout requirements. ConstraintLayout allows the
positioning and behavior of the views in a layout to be defined by simple
constraint settings assigned to each child view. The flexibility of this
layout allows complex layouts to be quickly and easily created without the
necessity to nest other layout types inside each other, resulting in improved
layout performance. ConstraintLayout is also tightly integrated into the
Android Studio Layout Editor tool. Unless otherwise stated, this is the
layout of choice for most of examples in this book.

•LinearLayout – Positions child views in a single row or column
depending on the orientation selected. A weight value can be set on each
child to specify how much of the layout space that child should occupy
relative to other children.

•TableLayout – Arranges child views into a grid format of rows and

columns. Each row within a table is represented by a TableRow object
child, which, in turn, contains a view object for each cell.

•FrameLayout – The purpose of the FrameLayout is to allocate an area of
the screen, typically to display a single view. If multiple child views are
added, they will, by default, appear on top of each other and be positioned
in the top left-hand corner of the layout area. Alternate positioning of
individual child views can be achieved by setting gravity values on each
child. For example, setting a center_vertical gravity value on a child will
cause it to be positioned in the vertical center of the containing
FrameLayout view.

•RelativeLayout – The RelativeLayout allows child views to be positioned
relative to each other and the containing layout view through the
specification of alignments and margins on child views. For example,
child View A may be configured to be positioned in the vertical and
horizontal center of the containing RelativeLayout view. View B, on the
other hand, might also be configured to be centered horizontally within the
layout view but positioned 30 pixels above the top edge of View A, thereby
making the vertical position relative to that of View A. The RelativeLayout
manager can be helpful when designing a user interface that must work on
various screen sizes and orientations.

•AbsoluteLayout – Allows child views to be positioned at specific X and
Y coordinates within the containing layout view. Using this layout is
discouraged since it lacks the flexibility to respond to screen size and
orientation changes.

•GridLayout – A GridLayout instance is divided by invisible lines that
form a grid containing rows and columns of cells. Child views are then
placed in cells and may be configured to cover multiple cells horizontally
and vertically, allowing a wide range of layout options to be quickly and
easily implemented. Gaps between components in a GridLayout may be
implemented by placing a special type of view called a Space view into
adjacent cells or setting margin parameters.

•CoordinatorLayout – Introduced as part of the Android Design Support
Library with Android 5.0, the CoordinatorLayout is designed specifically
for coordinating the appearance and behavior of the app bar across the top
of an application screen with other view elements. When creating a new

activity using the Basic Views Activity template, the parent view in the
main layout will be implemented using a CoordinatorLayout instance. This
layout manager will be covered in greater detail, starting with the chapter
“Working with the Floating Action Button and Snackbar”.

When considering layouts in the user interface for an Android application,
it is worth keeping in mind that, as outlined in the next section, these can be
nested within each other to create a user interface design of just about any
necessary level of complexity.

23.4 The View Hierarchy
Each view in a user interface represents a rectangular area of the display. A
view is responsible for what is drawn in that rectangle and responding to
events within that part of the screen (such as a touch event).
A user interface screen is comprised of a view hierarchy with a root view
positioned at the top of the tree and child views positioned on branches
below. The child of a container view appears on top of its parent view and
is constrained to appear within the bounds of the parent view’s display area.
Consider, for example, the user interface illustrated in Figure 23-1:

Figure 23-1
In addition to the visible button and checkbox views, the user interface
actually includes a number of layout views that control how the visible
views are positioned. Figure 23-2 shows an alternative view of the user
interface, this time highlighting the presence of the layout views in relation

to the child views:

Figure 23-2
As was previously discussed, user interfaces are constructed in the form of
a view hierarchy with a root view at the top. This being the case, we can
also visualize the above user interface example in the form of the view tree
illustrated in Figure 23-3:

Figure 23-3
The view hierarchy diagram gives probably the clearest overview of the
relationship between the various views that make up the user interface
shown in Figure 23-1. When a user interface is displayed to the user, the
Android runtime walks the view hierarchy, starting at the root view and
working down the tree as it renders each view.

23.5 Creating User Interfaces
With a clearer understanding of the concepts of views, layouts and the view
hierarchy, the following few chapters will focus on the steps involved in
creating user interfaces for Android activities. In fact, there are three
different approaches to user interface design: using the Android Studio
Layout Editor tool, handwriting XML layout resource files or writing
Kotlin code, each of which will be covered.

23.6 Summary
Each element within a user interface screen of an Android application is a
view that is ultimately subclassed from the android.view.View class. Each
view represents a rectangular area of the device display and is responsible
both for what appears in that rectangle and for handling events that take
place within the view’s bounds. Multiple views may be combined to create
a single composite view. The views within a composite view are children of
a container view which is generally a subclass of android.view.ViewGroup
(which is itself a subclass of android.view.View). A user interface is
comprised of views constructed in the form of a view hierarchy.
The Android SDK includes a range of pre-built views that can be used to
create a user interface. These include basic components such as text fields
and buttons, in addition to a range of layout managers that can be used to
control the positioning of child views. If the supplied views do not meet a
specific requirement, custom views may be created, either by extending or
combining existing views, or by subclassing android.view.View and creating
an entirely new class of view.
User interfaces may be created using the Android Studio Layout Editor
tool, handwriting XML layout resource files or by writing Kotlin code.
Each of these approaches will be covered in the chapters that follow.

24. A Guide to the Android Studio
Layout Editor Tool
It is challenging to think of an Android application concept that does not
require some form of user interface. Most Android devices come equipped
with a touch screen and keyboard (either virtual or physical), and taps and
swipes are the primary interaction between the user and the application.
Invariably these interactions take place through the application’s user
interface.
A well-designed and implemented user interface, an essential factor in
creating a successful and popular Android application, can vary from
simple to highly complex, depending on the design requirements of the
individual application. Regardless of the level of complexity, the Android
Studio Layout Editor tool significantly simplifies the task of designing and
implementing Android user interfaces.

24.1 Basic vs. Empty Views Activity Templates
As outlined in the chapter entitled “The Anatomy of an Android App”,
Android applications comprise one or more activities. An activity is a
standalone module of application functionality that usually correlates
directly to a single user interface screen. As such, when working with the
Android Studio Layout Editor, we are invariably work on the layout for an
activity.
When creating a new Android Studio project, several templates are
available to be used as the starting point for the user interface of the main
activity. The most basic templates are the Basic Views Activity and Empty
Views Activity templates. Although these seem similar at first glance, there
are considerable differences between the two options. To see these
differences within the layout editor, use the View Options menu to enable
Show System UI, as shown in Figure 24-1 below:

Figure 24-1
The Empty Views Activity template creates a single layout file consisting of
a ConstraintLayout manager instance containing a TextView object, as
shown in Figure 24-2:

Figure 24-2
The Basic Views Activity, on the other hand, consists of multiple layout
files. The top-level layout file has a CoordinatorLayout as the root view, a
configurable app bar (which contains a toolbar) that appears across the top
of the device screen (marked A in Figure 24-3), and a floating action button
(the email button marked B). In addition to these items, the
activity_main.xml layout file contains a reference to a second file named
content_main.xml containing the content layout (marked C):

Figure 24-3
The Basic Views Activity contains layouts for two screens containing a
button and a text view. This template aims to demonstrate how to
implement navigation between multiple screens within an app. If an
unmodified app using the Basic Views Activity template were to be run, the
first of these two screens would appear (marked A in Figure 24-4). Pressing
the Next button would navigate to the second screen (B), which, in turn,
contains a button to return to the first screen:

Figure 24-4

This app behavior uses of two Android features referred to as fragments and
navigation, which will be covered starting with the chapters entitled “An
Introduction to Android Fragments” and “An Overview of the Navigation
Architecture Component” respectively.
The content_main.xml file contains a special fragment, known as a
Navigation Host Fragment which allows different content to be switched in
and out of view depending on the settings configured in the res -> layout ->
nav_graph.xml file. In the case of the Basic Views Activity template, the
nav_graph.xml file is configured to switch between the user interface
layouts defined in the fragment_first.xml and fragment_second.xml files
based on the Next and Previous button selections made by the user.
The Empty Views Activity template is helpful if you need neither a floating
action button nor a menu in your activity and do not need the special app
bar behavior provided by the CoordinatorLayout, such as options to make
the app bar and toolbar collapse from view during certain scrolling
operations (a topic covered in the chapter entitled “Working with the
AppBar and Collapsing Toolbar Layouts”). However, the Basic Views
Activity is helpful because it provides these elements by default. In fact, it
is often quicker to create a new activity using the Basic Views Activity
template and delete the elements you do not require than to use the Empty
Views Activity template and manually implement behavior such as
collapsing toolbars, a menu, or a floating action button.
Since not all of the examples in this book require the features of the Basic
Views Activity template, however, most of the examples in this chapter will
use the Empty Views Activity template unless the example requires one or
other of the features provided by the Basic Views Activity template.
For future reference, if you need a menu but not a floating action button,
use the Basic Views Activity and follow these steps to delete the floating
action button:
1.Double-click on the main activity_main.xml layout file in the Project tool

window under app -> res -> layout to load it into the Layout Editor. With
the layout loaded into the Layout Editor tool, select the floating action
button and tap the keyboard Delete key to remove the object from the
layout.

2.Locate and edit the Kotlin code for the activity (located under app ->

kotlin+java -> <package name> -> <activity class name> and remove
the floating action button code from the onCreate method as follows:

override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 binding = ActivityMainBinding.inflate(layoutInflater)
 setContentView(binding.root)

 setSupportActionBar(binding.toolbar)

 val navController =
findNavController(R.id.nav_host_fragment_content_main)
 appBarConfiguration = AppBarConfiguration(navController.graph)
 setupActionBarWithNavController(navController,
appBarConfiguration)

 binding.fab.setOnClickListener { view ->
 Snackbar.make(view, "Replace with your own action",
Snackbar.LENGTH_LONG)
 .setAnchorView(R.id.fab)
 .setAction("Action", null).show()
 }
}

If you need a floating action button but no menu, use the Basic Views
Activity template and follow these steps:
1.Edit the main activity class file and delete the onCreateOptionsMenu and

onOptionsItemSelected methods.
2.Select the res -> menu item in the Project tool window and tap the

keyboard Delete key to remove the folder and corresponding menu
resource files from the project.

If you need to use the Basic Views Activity template but need neither the
navigation features nor the second content fragment, follow these steps:
1.Within the Project tool window, navigate to and double-click on the app -

> res -> navigation -> nav_graph.xml file to load it into the navigation
editor.

2.Within the editor, select the SecondFragment entry in the graph panel and
tap the keyboard delete key to remove it from the graph.

3.Locate and delete the SecondFragment.kt (app -> kotlin+java ->

<package name> -> SecondFragment) and fragment_second.xml (app -
> res -> layout -> fragment_second.xml) files.

4.The final task is to remove some code from the FirstFragment class so
that the Button view no longer navigates to the now non-existent second
fragment when clicked. Locate the FirstFragment.kt file, double-click on
it to load it into the editor, and remove the code from the
onViewCreated() method so that it reads as follows:

override fun onViewCreated(view: View, savedInstanceState: Bundle?)
{
 super.onViewCreated(view, savedInstanceState)

 binding.buttonFirst.setOnClickListener {
 findNavController().navigate(R.id.action_FirstFragment_to_S
econdFragment)
 }
}

24.2 The Android Studio Layout Editor
As demonstrated in previous chapters, the Layout Editor tool provides a
“what you see is what you get” (WYSIWYG) environment in which views
can be selected from a palette and then placed onto a canvas representing
the display of an Android device. Once a view has been placed on the
canvas, it can be moved, deleted, and resized (subject to the constraints of
the parent view). Moreover, various properties relating to the selected view
may be modified using the Attributes tool window.
Under the surface, the Layout Editor tool constructs an XML resource file
containing the definition of the user interface that is being designed. As
such, the Layout Editor tool operates in three distinct modes: Design, Code,
and Split.

24.3 Design Mode
In design mode, the user interface can be visually manipulated by directly
working with the view palette and the graphical representation of the
layout. Figure 24-5 highlights the key areas of the Android Studio Layout
Editor tool in design mode:

Figure 24-5
A – Palette – The palette provides access to the range of view components
the Android SDK provides. These are grouped into categories for easy
navigation. Items may be added to the layout by dragging a view
component from the palette and dropping it at the desired position on the
layout.
B – Device Screen – The device screen provides a visual “what you see is
what you get” representation of the user interface layout as it is being
designed. This layout allows direct design manipulation by allowing views
to be selected, deleted, moved, and resized. The device model represented
by the layout can be changed anytime using a menu in the toolbar.
C – Component Tree – As outlined in the previous chapter
(“Understanding Android Views, View Groups and Layouts”), user
interfaces are constructed using a hierarchical structure. The component
tree provides a visual overview of the hierarchy of the user interface design.
Selecting an element from the component tree will cause the corresponding
view in the layout to be selected. Similarly, selecting a view from the device
screen layout will select that view in the component tree hierarchy.
D – Attributes – All of the component views listed in the palette have
associated with them a set of attributes that can be used to adjust the

behavior and appearance of that view. The Layout Editor’s attributes panel
provides access to the attributes of the currently selected view in the layout
allowing changes to be made.
E – Toolbar – The Layout Editor toolbar provides quick access to a wide
range of options, including, amongst other options, the ability to zoom in
and out of the device screen layout, change the device model currently
displayed, rotate the layout between portrait and landscape and switch to a
different Android SDK API level. The toolbar also has a set of context-
sensitive buttons which will appear when relevant view types are selected in
the device screen layout.
F – Mode Switching Controls – These three buttons provide a way to
switch back and forth between the Layout Editor tool’s Design, Code, and
Split modes.
G - Zoom and Pan Controls - This control panel allows you to zoom in
and out of the design canvas, grab the canvas, and pan around to find
obscured areas when zoomed in.

24.4 The Palette
The Layout Editor palette is organized into two panels designed to make it
easy to locate and preview view components for addition to a layout design.
The category panel (marked A in Figure 24-6) lists the different categories
of view components supported by the Android SDK. When a category is
selected from the list, the second panel (B) updates to display a list of the
components that fall into that category:

Figure 24-6

To add a component from the palette onto the layout canvas, select the item
from the component list or the preview panel, drag it to the desired location
on the canvas, and drop it into place.
A search for a specific component within the selected category may be
initiated by clicking the search button (marked C in Figure 24-6 above) in
the palette toolbar and typing in the component name. As characters are
typed, matching results will appear in the component list panel. If you are
unsure of the component’s category, select the All Results category before
or during the search operation.

24.5 Design Mode and Layout Views
The layout editor will appear in Design mode by default, as shown in
Figure 24-5 above. This mode provides a visual representation of the user
interface. Design mode can be selected by clicking on the button marked C
in Figure 24-7:

Figure 24-7
When the Layout Editor tool is in Design mode, the layout can be viewed in
two ways. The view shown in Figure 24-5 above is the Design view and
shows the layout and widgets as they will appear in the running app. A
second mode, the Blueprint view, can be shown instead of or concurrently
with the Design view. The toolbar menu in Figure 24-8 provides options to
display the Design, Blueprint, or both views. Settings are also available to
adjust for color blindness. A fifth option, Force Refresh Layout, causes the
layout to rebuild and redraw. This can be useful when the layout enters an
unexpected state or is not accurately reflecting the current design settings:

Figure 24-8
Whether to display the layout view, design view, or both is a matter of
personal preference. A good approach is to begin with both displayed as
shown in Figure 24-9:

Figure 24-9
24.6 Night Mode
To view the layout in night mode during the design work, select the menu
shown in Figure 24-10 below and change the setting to Night:

Figure 24-10
The mode menu also includes options for testing dynamic colors, a topic
covered in the chapter “A Material Design 3 Theming and Dynamic Color
Tutorial”.

24.7 Code Mode
It is important to remember when using the Android Studio Layout Editor
tool that all it is doing is providing a user-friendly approach to creating
XML layout resource files. The underlying XML can be viewed and
directly edited during the design process by selecting the button marked A
in Figure 24-7 above.
Figure 24-11 shows the Android Studio Layout Editor tool in Code mode,
allowing changes to be made to the user interface declaration by modifying
the XML:

Figure 24-11
24.8 Split Mode
In Split mode, the editor shows the Design and Code views side-by-side,
allowing the user interface to be modified visually using the design canvas
and making changes directly to the XML declarations. Split mode is
selected using the button marked B Figure 24-7 above.
Any changes to the XML are automatically reflected in the design canvas
and vice versa. Figure 24-12 shows the editor in Split mode:

Figure 24-12
24.9 Setting Attributes
The Attributes panel provides access to all available settings for the
currently selected component. Figure 24-13, for example, shows some of
the attributes for the TextView widget:

Figure 24-13
The Attributes tool window is divided into the following different sections.

•id - Contains the id property, which defines the name by which the
currently selected object will be referenced in the app’s source code.

•Declared Attributes - Contains all of the properties already assigned a
value.

•Layout - The settings that define how the currently selected view object is
positioned and sized relative to the screen and other objects in the layout.

•Transforms - Contains controls allowing the currently selected object to
be rotated, scaled, and offset.

•Common Attributes - A list of attributes that commonly need to be
changed for the class of view object currently selected.

•All Attributes - A complete list of all the attributes available for the
currently selected object.

A search for a specific attribute may also be performed by selecting the
search button in the toolbar of the attributes tool window and typing in the
attribute name.
Some attributes contain a narrow button to the right of the value field. This
indicates that the Resources dialog is available to assist in selecting a
suitable property value. To display the dialog, click on the button. The
appearance of this button changes to reflect whether or not the
corresponding property value is stored in a resource file or hard-coded. If
the value is stored in a resource file, the button to the right of the text
property field will be filled in to indicate that the value is not hard-coded, as
highlighted in Figure 24-14 below:

Figure 24-14
Attributes for which a finite number of valid options are available will
present a drop-down menu (Figure 24-15) from which a selection may be
made.

Figure 24-15
A dropper icon can be clicked to display the color selection palette.
Similarly, when a flag icon appears, it can be clicked to display a list of
options available for the attribute, while an image icon opens the resource
manager panel allowing images and other resource types to be selected for
the attribute.

24.10 Transforms
The transforms panel within the Attributes tool window (Figure 24-16)
provides a set of controls and properties that control visual aspects of the
currently selected object in terms of rotation, alpha (used to fade a view in
and out), scale (size), and translation (offset from current position):

Figure 24-16
The panel contains a visual representation of the view, which updates as
properties are changed. These changes are also reflected in the view within
the layout canvas.

24.11 Tools Visibility Toggles
When reviewing the content of an Android Studio XML layout file in Code

mode, you will notice that many attributes that define how a view appears
and behaves begin with the android: prefix. This indicates that the attributes
are set within the android namespace and will take effect when the app is
run. The following excerpt from a layout file, for example, sets a variety of
attributes on a Button view:
<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button"
.
.

In addition to the android namespace, Android Studio also provides a tools
namespace. When attributes are set within this namespace, they only take
effect within the layout editor preview. While designing a layout, you might
find it helpful for an EditText view to display some text but require the view
to be blank when the app runs. To achieve this, you would set the text
property of the view using the tools namespace as follows:
<EditText
 android:id="@+id/editTextTextPersonName"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:ems="10"
 android:inputType="textPersonName"
 tools:text="Sample Text"
.
.

A tool attribute of this type is set in the Attributes tool window by entering
the value into the property fields marked by the wrench icon, as shown in
Figure 24-17:

Figure 24-17
Tools attributes are particularly useful for changing the visibility of a view
during the design process. A layout may contain a view that is
programmatically displayed and hidden when the app runs, depending on

user actions. To simulate the hiding of the view, the following tools attribute
could be added to the view XML declaration:
tools:visibility="invisible"

Although the view will no longer be visible when using the invisible
setting, it is still present in the layout and occupies the same space it did
when it was visible. To make the layout behave as though the view no
longer exists, the visibility attribute should be set to gone as follows:
tools:visibility="gone"

In both examples above, the visibility settings only apply within the layout
editor and will have no effect in the running app. To control visibility in
both the layout editor and running app, the same attribute would be set
using the android namespace:
android:visibility="gone"

While these visibility tools attributes are useful, having to manually edit the
XML layout file is a cumbersome process. To make it easier to change these
settings, Android Studio provides a set of toggles within the layout editor
Component Tree panel. To access these controls, click in the margin to the
right of the corresponding view in the panel. Figure 24-18, for example,
shows the tools visibility toggle controls for a Button view named
myButton:

Figure 24-18
These toggles control the visibility of the corresponding view for both the
android and tools namespaces and provide not set, visible, invisible and
gone options. When conflicting attributes are set (for example, an android
namespace toggle is set to visible while the tools value is set to invisible),
the tools namespace takes precedence within the layout preview. When a
toggle selection is made, Android Studio automatically adds the appropriate
attribute to the XML view element in the layout file.
In addition to the visibility toggles in the Component Tree panel, the layout

editor also includes the tools visibility and position toggle button shown
highlighted in Figure 24-19 below:

Figure 24-19
This button toggles the current tools visibility settings. If the Button view
shown above currently has the tools visibility attribute set to gone, for
example, toggling this button will make it visible. This makes it easy to
quickly check the layout behavior as the view is added to and removed from
the layout. This toggle is also useful for checking that the views in the
layout are correctly constrained, a topic covered in the chapter entitled “A
Guide to Using ConstraintLayout in Android Studio”.

24.12 Converting Views
Changing a view in a layout from one type to another (such as converting a
TextView to an EditText) can be performed easily within the Android
Studio layout editor by right-clicking on the view either within the screen
layout or Component tree window and selecting the Convert view... menu
option (Figure 24-20):

Figure 24-20
Once selected, a dialog containing a list of compatible view types to which
the selected object is eligible for conversion will appear. Figure 24-21, for
example, shows the types to which an existing TextView view may be
converted:

Figure 24-21
This technique is also helpful in converting layouts from one type to
another (for example, converting a ConstraintLayout to a LinearLayout).

24.13 Displaying Sample Data
When designing layouts in Android Studio, situations will arise where the
content to be displayed within the user interface will not be available until
the app is completed and running. This can sometimes make it difficult to
assess how the layout will appear at app runtime from within the layout
editor. To address this issue, the layout editor allows sample data to be
specified, which will populate views within the layout editor with sample
images and data. This sample data only appears within the layout editor and
is not displayed when the app runs. Sample data may be configured either
by directly editing the XML for the layout or visually using the design-time
helper by right-clicking on the widget in the design area and selecting the
Set Sample Data menu option. The design-time helper panel will display a
range of preconfigured options for sample data to be displayed on the
selected view item, including combinations of text and images in various
configurations. Figure 24-22, for example, shows the sample data options
displayed when selecting sample data to appear in a RecyclerView list:

Figure 24-22
Alternatively, custom text and images may be provided for display during
the layout design process. Since sample data is implemented as a tools
attribute, the visibility of the data within the preview can be controlled
using the toggle button highlighted in Figure 24-19 above.

24.14 Creating a Custom Device Definition
The device menu in the Layout Editor toolbar (Figure 24-23) provides a list
of pre-configured device types, which, when selected, will appear as the
device screen canvas. In addition to the pre-configured device types, any
AVD instances previously configured within the Android Studio
environment will also be listed within the menu. To add additional device
configurations, display the device menu, select the Add Device Definition
option and follow the steps outlined in the chapter entitled “Creating an
Android Virtual Device (AVD) in Android Studio”.

Figure 24-23
24.15 Changing the Current Device
As an alternative to the device selection menu, the current device format
may be changed by selecting the Custom option from the device menu,
clicking on the resize handle located next to the bottom right-hand corner of
the device screen (Figure 24-24), and dragging to select an alternate device
display format. As the screen resizes, markers will appear indicating the
various size options and orientations available for selection:

Figure 24-24
24.16 Layout Validation
The layout validation option allows the user interface layout to be
previewed simultaneously on a range of Pixel-sized screens. To access the
layout validation tool window, select the View -> Tool Windows -> Layout
Validation menu option. Once loaded, the panel will appear as shown in
Figure 24-25, with the layout rendered on multiple device screen
configurations:

Figure 24-25
24.17 Summary
A key part of developing Android applications involves the creation of the
user interface. This is performed within the Android Studio environment
using the Layout Editor tool, which operates in three modes. In Design
mode, view components are selected from a palette, positioned on a layout
representing an Android device screen, and configured using a list of
attributes. The underlying XML representing the user interface layout can
be directly edited in Code mode. Split mode, on the other hand, allows the
layout to be created and modified both visually and via direct XML editing.
These modes combine to provide an extensive and intuitive user interface
design environment.
The layout validation panel allows user interface layouts to be quickly
previewed on various device screen sizes.

25. A Guide to the Android
ConstraintLayout
As discussed in the chapter entitled “Understanding Android Views, View
Groups and Layouts”, Android provides several layout managers to design
user interfaces. With Android 7, Google introduced a layout that addressed
many of the shortcomings of the older layout managers. This layout, called
ConstraintLayout, combines a simple, expressive, and flexible layout
system with powerful features built into the Android Studio Layout Editor
tool to ease the creation of responsive user interface layouts that adapt
automatically to different screen sizes and changes in device orientation.
This chapter will outline the basic concepts of ConstraintLayout, while the
next chapter will provide a detailed overview of how constraint-based
layouts can be created using ConstraintLayout within the Android Studio
Layout Editor tool.

25.1 How ConstraintLayout Works
In common with all other layouts, ConstraintLayout manages the
positioning and sizing behavior of the visual components (also referred to
as widgets) it contains. It does this based on the constraint connections set
on each child widget.
To fully understand and use ConstraintLayout, it is essential to gain an
appreciation of the following key concepts:
•Constraints
•Margins
•Opposing Constraints
•Constraint Bias
•Chains
•Chain Styles
•Guidelines
•Groups
•Barriers
•Flow

25.1.1 Constraints
Constraints are sets of rules that dictate how a widget is aligned and
distanced relative to other widgets, the sides of the containing
ConstraintLayout, and special elements called guidelines. Constraints also
dictate how the user interface layout of an activity will respond to changes
in device orientation or when displayed on devices of differing screen sizes.
To be adequately configured, a widget must have sufficient constraint
connections such that its position can be resolved by the ConstraintLayout
layout engine in both the horizontal and vertical planes.
25.1.2 Margins
A margin is a form of constraint that specifies a fixed distance. Consider a
Button object that needs to be positioned near the top right-hand corner of
the device screen. This might be achieved by implementing margin
constraints from the top and right-hand edges of the Button connected to the
corresponding sides of the parent ConstraintLayout, as illustrated in Figure
25-1:

Figure 25-1
As indicated in the above diagram, each of these constraint connections has
associated with it a margin value dictating the fixed distances of the widget
from two sides of the parent layout. Under this configuration, regardless of
screen size or the device orientation, the Button object will always be
positioned 20 and 15 device-independent pixels (dp) from the top and right-
hand edges of the parent ConstraintLayout, respectively, as specified by the
two constraint connections.
While the above configuration will be acceptable for some situations, it
does not provide any flexibility in terms of allowing the ConstraintLayout

layout engine to adapt the position of the widget to respond to device
rotation and to support screens of different sizes. To add this responsiveness
to the layout, it is necessary to implement opposing constraints.
25.1.3 Opposing Constraints
Two constraints operating along the same axis on a single widget are
considered opposing constraints. In other words, a widget with constraints
on both its left and right-hand sides is considered to have horizontally
opposing constraints. Figure 25-2, for example, illustrates the addition of
both horizontally and vertically opposing constraints to the previous layout:

Figure 25-2
The key point to understand here is that once opposing constraints are
implemented on a particular axis, the positioning of the widget becomes
percentage rather than coordinate-based. Instead of being fixed at 20dp
from the top of the layout, for example, the widget is now positioned at
30% from the top. In different orientations and when running on larger or
smaller screens, the Button will always be in the same location relative to
the dimensions of the parent layout.
It is now important to understand that the layout outlined in Figure 25-2 has
been implemented using not only opposing constraints, but also by applying
constraint bias.
25.1.4 Constraint Bias
It has now been established that a widget in a ConstraintLayout can
potentially be subject to opposing constraint connections. By default,
opposing constraints are equal, resulting in the corresponding widget being
centered along the axis of opposition. Figure 25-3, for example, shows a
widget centered within the containing ConstraintLayout using opposing

horizontal and vertical constraints:

Figure 25-3
To allow for the adjustment of widget position in the case of opposing
constraints, the ConstraintLayout implements a feature known as constraint
bias. Constraint bias allows the positioning of a widget along the axis of
opposition to be biased by a specified percentage in favor of one constraint.
Figure 25-4, for example, shows the previous constraint layout with a 75%
horizontal bias and 10% vertical bias:

Figure 25-4
The next chapter, entitled “A Guide to Using ConstraintLayout in Android
Studio”, will cover these concepts in greater detail and explain how these
features have been integrated into the Android Studio Layout Editor tool. In
the meantime, however, a few more areas of the ConstraintLayout class
need to be covered.
25.1.5 Chains
ConstraintLayout chains provide a way for the layout behavior of two or

more widgets to be defined as a group. Chains can be declared in either the
vertical or horizontal axis and configured to define how the widgets in the
chain are spaced and sized.
Widgets are chained when connected by bi-directional constraints. Figure
25-5, for example, illustrates three widgets chained in this way:

Figure 25-5
The first element in the chain is the chain head which translates to the top
widget in a vertical chain or, in the case of a horizontal chain, the left-most
widget. The layout behavior of the entire chain is primarily configured by
setting attributes on the chain head widget.
25.1.6 Chain Styles
The layout behavior of a ConstraintLayout chain is dictated by the chain
style setting applied to the chain head widget. The ConstraintLayout class
currently supports the following chain layout styles:
•Spread Chain – The widgets within the chain are distributed evenly
across the available space. This is the default behavior for chains.

Figure 25-6
•Spread Inside Chain – The widgets within the chain are spread evenly
between the chain head and the last widget. The head and last widgets are
not included in the distribution of spacing.

Figure 25-7
•Weighted Chain – Allows the space taken up by each widget in the chain
to be defined via weighting properties.

Figure 25-8
•Packed Chain – The widgets that make up the chain are packed together
without spacing. A bias may be applied to control the horizontal or vertical
positioning of the chain relative to the parent container.

Figure 25-9
25.2 Baseline Alignment
So far, this chapter has only referred to constraints that dictate alignment
relative to the sides of a widget (typically referred to as side constraints). A
common requirement, however, is for a widget to be aligned relative to the
content that it displays rather than the boundaries of the widget itself. To
address this need, ConstraintLayout provides baseline alignment support.
For example, assume that the previous theoretical layout from Figure 25-1
requires a TextView widget to be positioned 40dp to the left of the Button.
In this case, the TextView needs to be baseline aligned with the Button
view. This means that the text within the Button needs to be vertically
aligned with the text within the TextView. The additional constraints for this
layout would need to be connected as illustrated in Figure 25-10:

Figure 25-10
The TextView is now aligned vertically along the baseline of the Button and
positioned 40dp horizontally from the Button object’s left-hand edge.

25.3 Configuring Widget Dimensions
Controlling the dimensions of a widget is a key element of the user
interface design process. The ConstraintLayout provides three options that
can be set on individual widgets to manage sizing behavior. These settings
are configured individually for height and width dimensions:
•Fixed – The widget is fixed to specified dimensions.
•Match Constraint –Allows the widget to be resized by the layout engine
to satisfy the prevailing constraints. Also referred to as the AnySize or
MATCH_CONSTRAINT option.

•Wrap Content – The widget’s size is dictated by its content (i.e., text or
graphics).

25.4 Guideline Helper
Guidelines are special elements available within the ConstraintLayout that
provide an additional target to which constraints may be connected.
Multiple guidelines may be added to a ConstraintLayout instance which
may, in turn, be configured in horizontal or vertical orientations. Once
added, constraint connections may be established from widgets in the layout
to the guidelines. This is particularly useful when multiple widgets must be
aligned along an axis. In Figure 25-11, for example, three Button objects
contained within a ConstraintLayout are constrained along a vertical
guideline:

Figure 25-11
25.5 Group Helper
This feature of ConstraintLayout allows widgets to be placed into logical
groups, and the visibility of those widgets controlled as a single entity. A
Group is a list of references to other widgets in a layout. Once defined,
changing the visibility attribute (visible, invisible, or gone) of the group
instance will apply the change to all group members. This makes hiding and
showing multiple widgets with a single attribute change easy. A single
layout may contain multiple groups, and a widget can belong to more than
one group. If a conflict occurs between groups, the last group to be declared
in the XML file takes priority.

25.6 Barrier Helper
Rather like guidelines, barriers are virtual views that can be used to
constrain views within a layout. As with guidelines, a barrier can be vertical
or horizontal, and one or more views may be constrained to it (to avoid
confusion, these will be referred to as constrained views). Unlike
guidelines, where the guideline remains at a fixed position within the
layout, however, the position of a barrier is defined by a set of so-called
reference views. Barriers were introduced to address an issue that occurs
with some frequency involving overlapping views. Consider, for example,
the layout illustrated in Figure 25-12 below:

Figure 25-12
The key points to note about the above layout are that the width of View 3
is set to match constraint mode, and the left-hand edge of the view is
connected to the right-hand edge of View 1. As currently implemented, an
increase in width of View 1 will have the desired effect of reducing the
width of View 3:

Figure 25-13
A problem arises, however, if View 2 increases in width instead of View 1:

Figure 25-14
Because View 3 is only constrained by View 1, it does not resize to
accommodate the increase in width of View 2, causing the views to overlap.
A solution to this problem is to add a vertical barrier and assign Views 1
and 2 as the barrier’s reference views so that they control the barrier
position. The left-hand edge of View 3 will then be constrained relative to
the barrier, making it a constrained view.
Now when either View 1 or View 2 increases in width, the barrier will
move to accommodate the widest of the two views, causing the width of
View 3 to change relative to the new barrier position:

Figure 25-15
When working with barriers, there is no limit to the number of reference
and constrained views that can be associated with a single barrier.

25.7 Flow Helper
The ConstraintLayout Flow helper allows groups of views to be displayed
in a flowing grid-style layout. As with the Group helper, Flow contains
references to the views it is responsible for positioning and provides various
configuration options, including vertical and horizontal orientations,
wrapping behavior (including the maximum number of widgets before
wrapping), spacing, and alignment properties. Chain behavior may also be
applied to a Flow layout, including spread, spread inside, and packed
options.
Figure 25-16 represents the layout of five uniformly sized buttons
positioned using a Flow helper instance in horizontal mode with no wrap
settings:

Figure 25-16
Figure 25-17 shows the same buttons in a horizontal flow configuration
with wrapping set to occur after every third widget:

Figure 25-17
Figure 25-18, on the other hand, shows the buttons with wrapping set to
chain mode using spread inside (the effects of which are only visible on the
second row since the first row is full). The configuration also has the gap
attribute set to add spacing between buttons:

Figure 25-18
As a final demonstration of the flexibility of the Flow helper, Figure 25-19
shows five buttons of varying sizes configured in horizontal, packed chain
mode with wrapping after each third widget. In addition, the grid content
has been right-aligned by setting a horizontal-bias value of 1.0 (a value of
0.0 would cause left-alignment while 0.5 would center-align the grid
content):

Figure 25-19
25.8 Ratios
The dimensions of a widget may be defined using ratio settings. A widget
could, for example, be constrained using a ratio setting such that, regardless
of any resizing behavior, the width is always twice the height dimension.

25.9 ConstraintLayout Advantages
ConstraintLayout provides a level of flexibility that allows many of the
features of older layouts to be achieved with a single layout instance where
it would previously have been necessary to nest multiple layouts. This can
avoid the problems inherent in layout nesting by allowing so-called “flat” or
“shallow” layout hierarchies to be designed, leading both to less complex
layouts and improved user interface rendering performance at runtime.
ConstraintLayout was also implemented to address the wide range of
Android device screen sizes available today. The flexibility of
ConstraintLayout makes it easier for user interfaces to be designed that
respond and adapt to the device on which the app is running.
Finally, as will be demonstrated in the chapter entitled “A Guide to Using
ConstraintLayout in Android Studio”, the Android Studio Layout Editor
tool has been enhanced specifically for ConstraintLayout-based user
interface design.

25.10 ConstraintLayout Availability
Although introduced with Android 7, ConstraintLayout is provided as a
separate support library from the main Android SDK and is compatible with
older Android versions as far back as API Level 9 (Gingerbread). This
allows apps that use this layout to run on devices running much older
versions of Android.

25.11 Summary

ConstraintLayout is a layout manager introduced with Android 7. It is
designed to ease the creation of flexible layouts that adapt to the size and
orientation of the many Android devices on the market. ConstraintLayout
uses constraints to control the alignment and positioning of widgets relative
to the parent ConstraintLayout instance, guidelines, barriers, and the other
widgets in the layout. ConstraintLayout is the default layout for newly
created Android Studio projects and is recommended when designing user
interface layouts. This simple yet flexible approach to layout management
allows complex and responsive user interfaces to be easily implemented.

26. A Guide to Using
ConstraintLayout in Android Studio
As mentioned more than once in previous chapters, Google has made
significant changes to the Android Studio Layout Editor tool, many of
which were made solely to support user interface layout design using
ConstraintLayout. Now that the basic concepts of ConstraintLayout have
been outlined in the previous chapter, this chapter will explore these
concepts in more detail while also outlining how the Layout Editor tool
allows ConstraintLayout-based user interfaces to be designed and
implemented.

26.1 Design and Layout Views
The chapter entitled “A Guide to the Android Studio Layout Editor Tool”
explained that the Android Studio Layout Editor tool provides two ways to
view the user interface layout of an activity in the form of Design and
Layout (also known as blueprint) views. These views of the layout may be
displayed individually or, as in Figure 26-1, side-by-side:

Figure 26-1
The Design view (positioned on the left in the above figure) presents a
“what you see is what you get” representation of the layout, wherein the

layout appears as it will within the running app. On the other hand, the
Layout view displays a blueprint style of view where shaded outlines
represent the widgets. As shown in Figure 26-1 above, the Layout view also
displays the constraint connections (in this case, opposing constraints used
to center a button within the layout). These constraints are also overlaid
onto the Design view when a specific widget in the layout is selected or
when the mouse pointer hovers over the design area, as illustrated in Figure
26-2:

Figure 26-2
The appearance of constraint connections in both views can be changed
using the View Options menu shown in Figure 26-3:

Figure 26-3
In addition to the two modes of displaying the user interface layout, the
Layout Editor tool provides three ways of establishing the constraints
required for a specific layout design.

26.2 Autoconnect Mode
Autoconnect, as the name suggests, automatically establishes constraint
connections as items are added to the layout. Autoconnect mode may be
turned on and off using the toolbar button indicated in Figure 26-4:

Figure 26-4
Autoconnect mode uses algorithms to decide the best constraints to
establish based on the widget’s position and the widget’s proximity to both
the sides of the parent layout and other elements. If any of the automatic
constraint connections fail to provide the desired behavior, these may be
changed manually, as outlined later in this chapter.

26.3 Inference Mode

Inference mode uses a heuristic approach involving algorithms and
probabilities to automatically implement constraint connections after
widgets have already been added to the layout. This mode is usually used
when the Autoconnect feature has been turned off, and objects have been
added to the layout without any constraint connections. This allows the
layout to be designed by dragging and dropping objects from the palette
onto the layout canvas and making size and positioning changes until the
layout appears as required. Essentially, this involves “painting” the layout
without worrying about constraints. Inference mode may also be used
during the design process to fill in missing constraints within a layout.
Constraints are automatically added to a layout when the Infer constraints
button (Figure 26-5) is clicked:

Figure 26-5
As with Autoconnect mode, there is always the possibility that the Layout
Editor tool will infer incorrect constraints, though these may be modified
and corrected manually.

26.4 Manipulating Constraints Manually
The third option for implementing constraint connections is to do so
manually. When doing so, it will be helpful to understand the various
handles that appear around a widget within the Layout Editor tool.
Consider, for example, the widget shown in Figure 26-6:

Figure 26-6
The spring-like lines (A) represent established constraint connections
leading from the sides of the widget to the targets. The small square
markers (B) in each corner of the object are resizing handles which, when
clicked and dragged, serve to resize the widget. The small circle handles
(C) located on each side of the widget are the side constraint anchors. To
create a constraint connection, click on the handle and drag the resulting
line to the element to which the constraint is to be connected (such as a
guideline or the side of either the parent layout or another widget), as
outlined in Figure 26-7. When connecting to the side of another widget,
drag the line to the side constraint handle of that widget and release the line
when the widget and handle are highlighted:

Figure 26-7
If the constraint line is dragged to a widget and released but not attached to
a constraint handle, the layout editor will display a menu containing a list of
the sides to which the constraint may be attached. In Figure 26-8, for
example, the constraint can be attached to the top or bottom edge of the
destination button widget:

Figure 26-8
An additional marker indicates the anchor point for baseline constraints
whereby the content within the widget (as opposed to outside edges) is used
as the alignment point. To display this marker, right-click on the widget and
select the Show Baseline menu option. To establish a constraint connection
from a baseline constraint handle, hover the mouse pointer over the handle
until it highlights before clicking and dragging to the target (such as the
baseline anchor of another widget, as shown in Figure 26-9).

Figure 26-9
To hide the baseline anchors, right-click on the widget again and select the
Hide Baseline menu option.

26.5 Adding Constraints in the Inspector
Constraints may also be added to a view within the Android Studio Layout
Editor tool using the Inspector panel in the Attributes tool window, as
shown in Figure 26-10. The square in the center represents the currently
selected view, and the areas around the square the constraints, if any,
applied to the corresponding sides of the view:

Figure 26-10
The absence of a constraint on the side of the view is represented by a
dotted line leading to a blue circle containing a plus sign (as is the case with
the view’s bottom edge in the above figure). To add a constraint, click on
this blue circle, and the layout editor will add a constraint connected to
what it considers the most appropriate target within the layout.

26.6 Viewing Constraints in the Attributes Window
A list of constraints configured on the currently selected widget can be
viewed by displaying the Constraints section of the Attributes tool window,
as shown in Figure 26-11 below:

Figure 26-11
Clicking on a constraint in the list will select that constraint within the
design layout.

26.7 Deleting Constraints
To delete an individual constraint, select the constraint either within the
design layout or the Attributes tool window so that it highlights (in Figure
26-12, for example, the right-most constraint has been selected) and tap the
keyboard delete key. The constraint will then be removed from the layout.

Figure 26-12
Another option is to hover the mouse pointer over the constraint anchor
while holding down the Ctrl (Cmd on macOS) key and clicking on the
anchor after it turns red:

Figure 26-13

Alternatively, remove all of the constraints on a widget by right-clicking on
it and selecting the Clear Constraints of Selection menu option.
To remove all of the constraints from every widget in a layout, use the
toolbar button highlighted in Figure 26-14:

Figure 26-14
26.8 Adjusting Constraint Bias
The previous chapter outlined the concept of using bias settings to favor
one opposing constraint over another. Bias within the Android Studio
Layout Editor tool is adjusted using the Inspector located in the Attributes
tool window and shown in Figure 26-15. The two sliders indicated by the
arrows in the figure are used to control the bias of the currently selected
widget’s vertical and horizontal opposing constraints.

Figure 26-15
26.9 Understanding ConstraintLayout Margins
Constraints can be used with margins to implement fixed gaps between a
widget and another element (such as another widget, a guideline, or the side
of the parent layout). Consider, for example, the horizontal constraints
applied to the Button object in Figure 26-16:

Figure 26-16
As currently configured, horizontal constraints run to the left and right
edges of the parent ConstraintLayout. As such, the widget has opposing
horizontal constraints indicating that the ConstraintLayout layout engine
has some discretion in terms of the actual positioning of the widget at
runtime. This allows the layout some flexibility to accommodate different
screen sizes and device orientations. The horizontal bias setting can also
control the widget’s position right up to the right-hand side of the layout.
Figure 26-17, for example, shows the same button with 100% horizontal
bias applied:

Figure 26-17
ConstraintLayout margins can appear at the end of constraint connections
and represent a fixed gap into which the widget cannot be moved, even
when adjusting bias or responding to layout changes elsewhere in the
activity. In Figure 26-18, the right-hand constraint now includes a 50dp
margin into which the widget cannot be moved even though the bias is still
set at 100%.

Figure 26-18
Existing margin values on a widget can be modified from within the

Inspector. As shown in Figure 26-19, a drop-down menu is being used to
change the right-hand margin on the currently selected widget to 16dp.
Alternatively, clicking on the current value also allows a number to be
typed into the field.

Figure 26-19
The default margin for new constraints can be changed at any time using
the option in the toolbar highlighted in Figure 26-20:

Figure 26-20
26.10 The Importance of Opposing Constraints and
Bias
As discussed in the previous chapter, opposing constraints, margins, and
bias form the cornerstone of responsive layout design in Android when
using the ConstraintLayout. When a widget is constrained without opposing
constraint connections, those constraints are essentially margin constraints.
This is indicated visually within the Layout Editor tool by solid straight
lines accompanied by margin measurements, as shown in Figure 26-21.

Figure 26-21
The above constraints fix the widget at that position. The result is that if the
device is rotated to landscape orientation, the widget will no longer be
visible since the vertical constraint pushes it beyond the top edge of the
device screen (as is the case in Figure 26-22). A similar problem will arise
if the app is run on a device with a smaller screen than that used during the
design process.

Figure 26-22

When opposing constraints are implemented, the constraint connection is
represented by the jagged spring-like line (the spring metaphor is intended
to indicate that the position of the widget is not fixed to absolute X and Y
coordinates):

Figure 26-23
In the above layout, vertical and horizontal bias settings have been
configured such that the widget will always be positioned 90% of the
distance from the bottom and 35% from the left-hand edge of the parent
layout. When rotated, therefore, the widget is still visible and positioned in
the same location relative to the dimensions of the screen:

Figure 26-24
When designing a responsive and adaptable user interface layout, it is
important to consider bias and opposing constraints when manually
designing a user interface layout and correcting automatically created
constraints.

26.11 Configuring Widget Dimensions
The inner dimensions of a widget within a ConstraintLayout can also be
configured using the Inspector. As outlined in the previous chapter, widget
dimensions can be set to wrap content, fixed, or match constraint modes.
The prevailing settings for each dimension on the currently selected widget
are shown within the square representing the widget in the Inspector, as
illustrated in Figure 26-25:

Figure 26-25
The above figure sets the horizontal and vertical dimensions to wrap
content mode (indicated by the inward-pointing chevrons). The inspector
uses the following visual indicators to represent the three dimension modes:

Fixed Size

Match Constraint

Wrap Content

Table 26-1
To change the current setting, click on the indicator to cycle through the
three settings.
In addition, a widget’s size can be expanded horizontally or vertically to the
maximum amount allowed by the constraints and other widgets in the
layout using the Expand Horizontally and Expand Vertically options. These
are accessible by right-clicking on a widget within the layout and selecting
the Organize option from the resulting menu (Figure 26-26). When used,
the currently selected widget will increase in size horizontally or vertically
to fill the available space around it.

Figure 26-26
26.12 Design Time Tools Positioning
The chapter entitled “A Guide to the Android Studio Layout Editor Tool”
introduced the concept of the tools namespace and explained how it can be
used to set visibility attributes that only take effect within the layout editor.
Behind the scenes, Android Studio also uses tools attributes to hold widgets
in position when placed on the layout without constraints. Imagine, for
example, a Button placed onto the layout while autoconnect mode is
disabled. While the widget will appear to be in the correct position within
the preview canvas, when the app is run, it will appear in the top left-hand
corner of the screen. This is because the widget has no constraints to tell the

ConstraintLayout parent where to position it.
The widget appears to be in the correct location in the layout editor because
Android Studio has set absolute X and Y positioning tools attributes to keep
it in the correct location until constraints can be added. Within the XML
layout file, this might read as follows:
<Button
 android:id="@+id/button4"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button"
 tools:layout_editor_absoluteX="111dp"
 tools:layout_editor_absoluteY="88dp" />

Once adequate constraints have been added to the widget, the layout editor
will remove these tools attributes. A useful technique to quickly identify
which widgets lack constraints without waiting until the app runs is to click
on the button highlighted in Figure 26-27 to toggle tools position visibility.
Any widgets that jump to the top left-hand corner are not fully constrained
and are being held in place by temporary tools absolute X and Y positioning
attributes.

Figure 26-27
26.13 Adding Guidelines
Guidelines provide additional elements to which constraints may be
anchored. Guidelines are added by right-clicking on the layout and selecting
either the Vertical Guideline or Horizontal Guideline menu option or using
the toolbar menu options as shown in Figure 26-28:

Figure 26-28
Alternatively, horizontal and vertical Guidelines may be dragged from the
Helpers section of the Palette and dropped either onto the layout canvas or
Component Tree panel as indicated by the arrows in Figure 26-29:

Figure 26-29
Once added, a guideline will appear as a dashed line in the layout and may
be moved by clicking and dragging the line. To establish a constraint
connection to a guideline, click on the constraint handler of a widget and
drag it to the guideline before releasing. In Figure 26-30, the left sides of
two Buttons are connected by constraints to a vertical guideline.
The position of a vertical guideline can be specified as an absolute distance
from either the left or the right of the parent layout (or the top or bottom for
a horizontal guideline). For example, the vertical guideline in the figure
below is positioned at 97dp from the left-hand edge of the parent:

Figure 26-30
Alternatively, the guideline may be positioned as a percentage of the overall
width or height of the parent layout. To switch between these three modes,
select the guideline and click on the circle at the bottom or end of the
guideline (depending on whether the guideline is vertical or horizontal).
Figure 26-31, for example, shows a guideline positioned based on
percentage:

Figure 26-31
26.14 Adding Barriers
Barriers are added by right-clicking on the layout and selecting either the
Vertical or Horizontal Barrier option from the Add helpers menu or using

the toolbar menu options, as shown in Figure 26-28. Alternatively, locate
the Barrier types in the Helpers section of the Palette and drag and drop
them either onto the layout canvas or the Component Tree panel.
Once a barrier has been added to the layout, it will appear as an entry in the
Component Tree panel:

Figure 26-32
To add views as reference views (in other words, the views that control the
position of the barrier), drag the widgets from within the Component Tree
onto the barrier entry. In Figure 26-33, for example, widgets named
textView2 and textView3 have been assigned as the reference widgets for
the barrier:

Figure 26-33
After the reference views have been added, the barrier needs to be
configured to specify the direction of the barrier relative to those views.
This is the barrier direction setting and is defined within the Attributes tool
window when the barrier is selected in the Component Tree panel:

Figure 26-34
The following figure shows a layout containing a barrier declared with
textView1 and textView2 acting as the reference views and textview3 as the
constrained view. Since the barrier is pushing from the end of the reference
views towards the constrained view, the barrier direction has been set to
end:

Figure 26-35
26.15 Adding a Group
To add a Group to a layout, right-click on the layout and select the Group
option from the Add helpers menu or use the toolbar menu options shown
in Figure 26-28. Alternatively, locate the Group item in the Helpers section
of the Palette and drag and drop it either onto the layout canvas or
Component Tree panel.
To add widgets to the group, select them in the Component Tree and drag
and drop them onto the Group entry. Figure 26-36, for example, shows
three selected widgets being added to a group:

Figure 26-36
Any widgets referenced by the group will appear italicized beneath the
group entry in the Component Tree, as shown in Figure 26-37. To remove a
widget from the group, select it and tap the keyboard delete key:

Figure 26-37
Once widgets have been assigned to the group, use the Constraints section
of the Attributes tool window to modify the visibility setting:

Figure 26-38
26.16 Working with the Flow Helper
Flow helpers may be added using either the menu or Palette, as outlined
previously for the other helpers. As with the Group helper (Figure 26-36),
widgets are added to a Flow instance by dragging them within the
Component Tree onto the Flow entry. Having added a Flow helper and

assigned widgets to it, select it in the Component Tree and use the Common
Attributes section of the Attribute tool window to configure the flow layout
behavior:

Figure 26-39
26.17 Widget Group Alignment and Distribution
The Android Studio Layout Editor tool provides a range of alignment and
distribution actions that can be performed when two or more widgets are
selected in the layout. Shift-click on each of the widgets to be included in
the action, right-click on the layout and make a selection from the many
options displayed in the Align menu:

Figure 26-40
As shown in Figure 26-41 below, these options are also accessible via the
Align button located in the Layout Editor toolbar:

Figure 26-41
Similarly, the Pack menu (Figure 26-42) can be used to collectively
reposition the selected widgets so that they are packed tightly together,
either vertically or horizontally. It achieves this by changing the widgets’
absolute x and y coordinates but does not apply any constraints. The two
distribution options in the Pack menu, on the other hand, move the selected
widgets so that they are spaced evenly apart in either vertical or horizontal

axis and apply constraints between the views to maintain this spacing:

Figure 26-42
26.18 Converting other Layouts to ConstraintLayout
For existing user interface layouts that use one or more of the other Android
layout classes (such as RelativeLayout or LinearLayout), the Layout Editor
tool provides an option to convert the user interface to use the
ConstraintLayout.
The Component Tree panel is displayed beneath the Palette when the
Layout Editor tool is open and in Design mode. To convert a layout to
ConstraintLayout, locate it within the Component Tree, right-click on it,
and select the Convert <current layout> to Constraint Layout menu option:

Figure 26-43
When this menu option is selected, Android Studio will convert the selected
layout to a ConstraintLayout and use inference to establish constraints

designed to match the layout behavior of the original layout type.

26.19 Summary
A redesigned Layout Editor tool combined with ConstraintLayout makes
designing complex user interface layouts with Android Studio a relatively
fast and intuitive process. This chapter has covered the concepts of
constraints, margins, and bias in more detail while also exploring how
ConstraintLayout-based design has been integrated into the Layout Editor
tool.

27. Working with ConstraintLayout
Chains and Ratios in Android Studio
The previous chapters have introduced the key features of the
ConstraintLayout class and outlined the best practices for
ConstraintLayout-based user interface design within the Android Studio
Layout Editor. Although the concepts of ConstraintLayout chains and ratios
were outlined in the chapter entitled “A Guide to the Android
ConstraintLayout”, we have not yet addressed how to use these features
within the Layout Editor. Therefore, this chapter’s focus is to provide
practical steps on how to create and manage chains and ratios when using
the ConstraintLayout class.

27.1 Creating a Chain
Chains may be implemented by adding a few lines to an activity’s XML
layout resource file or by using some chain-specific features of the Layout
Editor.
Consider a layout consisting of three Button widgets constrained to be
positioned in the top-left, top-center, and top-right of the ConstraintLayout
parent, as illustrated in Figure 27-1:

Figure 27-1
To represent such a layout, the XML resource layout file might contain the
following entries for the button widgets:
<Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="16dp"
 android:text="Button"
 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

<Button
 android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginEnd="8dp"
 android:layout_marginStart="8dp"
 android:layout_marginTop="16dp"
 android:text="Button"
 app:layout_constraintHorizontal_bias="0.5"
 app:layout_constraintEnd_toStartOf="@+id/button3"
 app:layout_constraintStart_toEndOf="@+id/button1"
 app:layout_constraintTop_toTopOf="parent" />

<Button
 android:id="@+id/button3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginEnd="8dp"
 android:layout_marginTop="16dp"
 android:text="Button"
 app:layout_constraintHorizontal_bias="0.5"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

As currently configured, there are no bi-directional constraints to group
these widgets into a chain. To address this, additional constraints need to be
added from the right-hand side of button1 to the left side of button2 and
from the left side of button3 to the right side of button2 as follows:
<Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="16dp"
 android:text="Button"
 app:layout_constraintHorizontal_bias="0.5"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintEnd_toStartOf="@+id/button2" />

<Button
 android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginEnd="8dp"
 android:layout_marginStart="8dp"
 android:layout_marginTop="16dp"
 android:text="Button"
 app:layout_constraintHorizontal_bias="0.5"
 app:layout_constraintEnd_toStartOf="@+id/button3"
 app:layout_constraintStart_toEndOf="@+id/button1"
 app:layout_constraintTop_toTopOf="parent" />

<Button
 android:id="@+id/button3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginEnd="8dp"
 android:layout_marginTop="16dp"
 android:text="Button"
 app:layout_constraintHorizontal_bias="0.5"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintStart_toEndOf="@+id/button2" />

With these changes, the widgets now have bi-directional horizontal
constraints configured. This constitutes a ConstraintLayout chain
represented visually within the Layout Editor by chain connections, as
shown in Figure 27-2 below. Note that the chain has defaulted to the spread
chain style in this configuration.

Figure 27-2
A chain may also be created by right-clicking on one of the views and
selecting the Chains -> Create Horizontal Chain or Chains -> Create
Vertical Chain menu options.

27.2 Changing the Chain Style

If no chain style is configured, the ConstraintLayout will default to the
spread chain style. The chain style can be altered by right-clicking any of
the widgets in the chain and selecting the Cycle Chain Mode menu option.
Each time the menu option is clicked, the style will switch to another
setting in the order of spread, spread inside, and packed.
Alternatively, the style may be specified in the Attributes tool window
unfolding the layout_constraints property and changing either the
horizontal_chainStyle or vertical_chainStyle property depending on the
orientation of the chain:

Figure 27-3
27.3 Spread Inside Chain Style
Figure 27-4 illustrates the effect of changing the chain style to the spread
inside chain style using the above techniques:

Figure 27-4
27.4 Packed Chain Style
Using the same technique, changing the chain style property to packed
causes the layout to change, as shown in Figure 27-5:

Figure 27-5

27.5 Packed Chain Style with Bias
The positioning of the packed chain may be influenced by applying a bias
value. The bias can be between 0.0 and 1.0, with 0.5 representing the
parent’s center. Bias is controlled by selecting the chain head widget and
assigning a value to the layout_constraintHorizontal_bias or
layout_constraintVertical_bias attribute in the Attributes panel. Figure 27-6
shows a packed chain with a horizontal bias setting of 0.2:

Figure 27-6
27.6 Weighted Chain
The final area of chains to explore involves weighting the individual
widgets to control how much space each widget in the chain occupies
within the available space. A weighted chain may only be implemented
using the spread chain style, and any widget within the chain that responds
to the weight property must have the corresponding dimension property
(height for a vertical chain and width for a horizontal chain) configured for
match constraint mode. Match constraint mode for a widget dimension may
be configured by selecting the widget, displaying the Attributes panel, and
changing the dimension to match_constraint (equivalent to 0dp). In Figure
27-7, for example, the layout_width constraint for a button has been set to
match_constraint (0dp) to indicate that the width of the widget is to be
determined based on the prevailing constraint settings:

Figure 27-7
Assuming that the spread chain style has been selected and all three buttons
have been configured such that the width dimension is set to match the
constraints, the widgets in the chain will expand equally to fill the available
space:

Figure 27-8
The amount of space occupied by each widget relative to the other widgets
in the chain can be controlled by adding weight properties to the widgets.
Figure 27-9 shows the effect of setting the
layout_constraintHorizontal_weight property to 4 on button1, and to 2 on
both button2 and button3:

Figure 27-9
As a result of these weighting values, button1 occupies half of the space

(4/8), while button2 and button3 each occupy one-quarter (2/8) of the space.

27.7 Working with Ratios
ConstraintLayout ratios allow one widget dimension to be sized relative to
the widget’s other dimension (also referred to as aspect ratio). For example,
an aspect ratio setting could be applied to an ImageView to ensure that its
width is always twice its height.
A dimension ratio constraint is configured by setting the constrained
dimension to match constraint mode and configuring the
layout_constraintDimensionRatio attribute on that widget to the required
ratio. This ratio value may be specified as a float value or a width:height
ratio setting. The following XML excerpt, for example, configures a ratio of
2:1 on an ImageView widget:
<ImageView
 android:layout_width="0dp"
 android:layout_height="100dp"
 android:id="@+id/imageView"
 app:layout_constraintDimensionRatio="2:1" />

The above example demonstrates how to configure a ratio when only one
dimension is set to match constraint. A ratio may also be applied when both
dimensions are set to match constraint mode. This involves specifying the
ratio preceded with either an H or a W to indicate which of the dimensions
is constrained relative to the other.
Consider, for example, the following XML excerpt for an ImageView
object:
<ImageView
 android:layout_width="0dp"
 android:layout_height="0dp"
 android:id="@+id/imageView"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintDimensionRatio="W,1:3" />

In the above example, the height will be defined subject to the constraints
applied to it. In this case, constraints have been configured such that it is
attached to the top and bottom of the parent view, essentially stretching the

widget to fill the entire height of the parent. On the other hand, the width
dimension has been constrained to be one-third of the ImageView’s height
dimension. Consequently, whatever size screen or orientation the layout
appears on, the ImageView will always be the same height as the parent and
the width one-third of that height.
The same results may also be achieved without manually editing the XML
resource file. Whenever a widget dimension is set to match constraint
mode, a ratio control toggle appears in the Inspector area of the property
panel. Figure 27-10, for example, shows the layout width and height
attributes of a button widget set to match constraint mode and 100dp
respectively, and highlights the ratio control toggle in the widget sizing
preview:

Figure 27-10
By default, the ratio sizing control is toggled off. Clicking on the control
enables the ratio constraint and displays an additional field where the ratio
may be changed:

Figure 27-11
27.8 Summary

Both chains and ratios are powerful features of the ConstraintLayout class
intended to provide additional options for designing flexible and responsive
user interface layouts within Android applications. As outlined in this
chapter, the Android Studio Layout Editor has been enhanced to make it
easier to use these features during the user interface design process.

28. An Android Studio Layout Editor
ConstraintLayout Tutorial
The easiest and most productive way to design a user interface for an
Android application is to use the Android Studio Layout Editor tool. This
chapter will provide an overview of how to create a ConstraintLayout-based
user interface using this approach. The exercise included in this chapter will
also be used as an opportunity to outline the creation of an activity starting
with a “bare-bones” Android Studio project.
Having covered the use of the Android Studio Layout Editor, the chapter
will also introduce the Layout Inspector tool.

28.1 An Android Studio Layout Editor Tool Example
The first step in this phase of the example is to create a new Android Studio
project. Launch Android Studio and close any previously opened projects
by selecting the File -> Close Project menu option.
Select the New Project option from the welcome screen, select the Empty
Views Activity template, and click Next. Enter LayoutSample into the
Name field and specify com.ebookfrenzy.layoutsample as the package
name. Before clicking the Finish button, change the Minimum API level
setting to API 26: Android 8.0 (Oreo) and the Language menu to Kotlin.

28.2 Preparing the Layout Editor Environment
Locate and double-click on the activity_main.xml layout file in the app ->
res -> layout folder to load it into the Layout Editor tool. Since this tutorial
aims to gain experience with the use of constraints, turn off the
Autoconnect feature using the button located in the Layout Editor toolbar.
Once disabled, the button will appear with a line through it, as is the case in
Figure 28-1:

Figure 28-1
If the default margin value to the right of the Autoconnect button is not set
to 8dp, click on it and select 8dp from the resulting panel.
The user interface design will also use the ImageView object to display an
image. Before proceeding, this image should be added to the project, ready
for use later in the chapter. This file is named GalaxyS23.webp and can be
found in the project_icons folder of the sample code download available
from the following URL:
https://www.payloadbooks.com/product/jellyfishkotlin/
Within Android Studio, display the Resource Manager tool window (View -
> Tool Windows -> Resource Manager). Locate the GalaxyS23.webp image
in the file system navigator for your operating system and drag and drop the
image onto the Resource Manager tool window. In the resulting dialog,
click Next, followed by the Import button, to add the image to the project.
The image should now appear in the Resource Manager, as shown in Figure
28-2 below:

https://www.payloadbooks.com/product/jellyfishkotlin/

Figure 28-2
The image will also appear in the res -> drawables section of the Project
tool window:

Figure 28-3
28.3 Adding the Widgets to the User Interface
From within the Common palette category, drag an ImageView object into
the center of the display view. Note that horizontal and vertical dashed lines
appear, indicating the center axes of the display. When centered, release the
mouse button to drop the view into position. Once placed within the layout,
the Resources dialog will appear, seeking the image to be displayed within
the view. In the search bar at the top of the dialog, enter “galaxy” to locate
the galaxys6.png resource, as illustrated in Figure 28-4.

Figure 28-4
Select the image and click OK to assign it to the ImageView object. If
necessary, adjust the size of the ImageView using the resize handles and
reposition it in the center of the layout. At this point, the layout should
match Figure 28-5:

Figure 28-5
Click and drag a TextView object from the Common section of the palette
and position it to appear above the ImageView, as illustrated in Figure 28-6.
Using the Attributes panel, unfold the textAppearance attribute entry in the

Common Attributes section, change the textSize property to 24sp, the
textAlignment setting to center, and the text to “Samsung Galaxy S23”.

Figure 28-6
Next, add three Button widgets along the bottom of the layout and set the
text attributes of these views to “Buy Now”, “Pricing”, and “Details”. The
completed layout should now match Figure 28-7:

Figure 28-7
At this point, the widgets are not sufficiently constrained for the layout
engine to be able to position and size the widgets at runtime. Were the app
to run now, all of the widgets would be positioned in the top left-hand
corner of the display.
With the widgets added to the layout, use the device rotation menu located
in the Layout Editor toolbar (indicated by the arrow in Figure 28-8) to view
the user interface in landscape orientation:

Figure 28-8
The absence of constraints results in a layout that fails to adapt to the
change in device orientation, leaving the content off-center and with part of
the image and all three buttons positioned beyond the screen’s viewable
area. Some work still needs to be done to make this a responsive user
interface.

28.4 Adding the Constraints
Constraints are the key to creating layouts that adapt to device orientation
changes and different screen sizes. Begin by rotating the layout back to
portrait orientation and selecting the TextView widget above the
ImageView. With the widget selected, establish constraints from the left,
right and top sides of the TextView to the corresponding sides of the parent
ConstraintLayout, as shown in Figure 28-9. Set the spacing on the top
constraint to 16:

Figure 28-9
With the TextView widget constrained, select the ImageView instance and
establish opposing constraints on the left and right sides, each connected to
the corresponding sides of the parent layout. Next, establish a constraint
connection from the top of the ImageView to the bottom of the TextView
and from the bottom of the ImageView to the top of the center Button
widget. If necessary, click and drag the ImageView to remain positioned in
the vertical center of the layout.
With the ImageView still selected, use the Inspector in the attributes panel
to change the top and bottom margins on the ImageView to 24 and 8,
respectively, and to change both the widget height and width dimension
properties to match_constraint so that the widget will resize to match the
constraints. These settings will allow the layout engine to enlarge and
reduce the size of the ImageView when necessary to accommodate layout
changes:

Figure 28-10
Figure 28-11 shows the currently implemented constraints for the
ImageView relative to the other elements in the layout:

Figure 28-11
The final task is to add constraints to the three Button widgets. For this
example, the buttons will be placed in a chain. Begin by turning on

Autoconnect within the Layout Editor by clicking the toolbar button
highlighted in Figure 28-1.
Next, click on the Buy Now button and then shift-click on the other two
buttons to select all three. Right-click on the Buy Now button and select the
Chains -> Create Horizontal Chain menu option from the resulting menu.
By default, the chain will be displayed using the spread style, which is the
correct behavior for this example.
Finally, establish a constraint between the bottom of the Buy Now button
and the bottom of the layout with a margin of 8. Repeat this step for the
remaining buttons.
On completion of these steps, the buttons should be constrained as outlined
in Figure 28-12:

Figure 28-12
28.5 Testing the Layout
With the constraints added to the layout, rotate the screen into landscape
orientation and verify that the layout adapts to accommodate the new screen
dimensions.
While the Layout Editor tool provides a good visual environment in which
to design user interface layouts, when it comes to testing, there is no
substitute for testing the running app. Launch the app on a physical Android
device or emulator session and verify that the user interface reflects the
layout created in the Layout Editor. Figure 28-13, for example, shows the
running app in landscape orientation:

Figure 28-13
The user interface design is now complete. Designing a more complex user
interface layout is a continuation of the steps outlined above. Drag and drop
views onto the display, position, constrain and set properties as needed.

28.6 Using the Layout Inspector
The hierarchy of components comprising a user interface layout may be
viewed using the Layout Inspector tool. The app must be running on a
device or emulator running Android API 29 or later to access this
information. Once the app is running, select the Tools -> Layout Inspector
menu option, followed by the process to be inspected using the menu
marked A in Figure 28-14 below).
Once the inspector loads, the leftmost panel (A) shows the hierarchy of
components that make up the user interface layout. The center panel (B)
visually represents the layout design. Clicking on a widget in the visual
layout will cause that item to highlight in the hierarchy list, making it easy
to find where a visual component is situated relative to the overall layout
hierarchy.
The right-most panel (marked C in Figure 28-14) contains all the property
settings for the currently selected component, allowing for an in-depth
analysis of the component’s internal configuration. Where appropriate, the
value cell will contain a link to the location of the property setting within
the project source code.

Figure 28-14
To view the layout in 3D, click on the button labeled D. This displays an
“exploded” representation of the hierarchy so that it can be rotated and
inspected. This can be useful for tasks such as identifying obscured views:

Figure 28-15
Click and drag the rendering to rotate it in three dimensions, using the slider
indicated by the arrow above to increase the spacing between the layers.
Click the button marked D again to return to the 2D view.

28.7 Summary
The Layout Editor tool in Android Studio has been tightly integrated with
the ConstraintLayout class. This chapter has worked through creating an
example user interface intended to outline how a ConstraintLayout-based
user interface can be implemented using the Layout Editor tool to add
widgets and set constraints. This chapter also introduced the Live Layout
Inspector tool, which is useful for analyzing the structural composition of a
user interface layout.

29. Manual XML Layout Design in
Android Studio
While the design of layouts using the Android Studio Layout Editor tool
greatly improves productivity, it is still possible to create XML layouts by
manually editing the underlying XML. This chapter will introduce the
basics of the Android XML layout file format.

29.1 Manually Creating an XML Layout
The structure of an XML layout file is quite straightforward and follows the
hierarchical approach of the view tree. The first line of an XML resource
file should ideally include the following standard declaration:
<?xml version="1.0" encoding="utf-8"?>

This declaration should be followed by the root element of the layout,
typically a container view such as a layout manager. This is represented by
opening and closing tags and any properties that need to be set on the view.
The following XML, for example, declares a ConstraintLayout view as the
root element and sets match_parent attributes such that it fills all the
available space of the device display:
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="16dp"
 android:paddingRight="16dp"
 android:paddingTop="16dp"
 android:paddingBottom="16dp"
 tools:context=".MainActivity">
</androidx.constraintlayout.widget.ConstraintLayout>

In the above example, the layout element is also configured with padding
on each side of 16dp (density-independent pixels). Any specification of
spacing in an Android layout must be specified using one of the following
units of measurement:

•in – Inches.
•mm – Millimeters.
•pt – Points (1/72 of an inch).
•dp – Density-independent pixels. An abstract unit of measurement based
on the physical density of the device display relative to a 160dpi display
baseline.

•sp – Scale-independent pixels. Similar to dp but scaled based on the user’s
font preference.

•px – Actual screen pixels. Use is not recommended since different displays
will have different pixels per inch. Use dp in preference to this unit.

Any children that need to be added to the ConstraintLayout parent must be
nested within the opening and closing tags. In the following example, a
Button widget has been added as a child of the ConstraintLayout:
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <Button
 android:text="My Button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/button" />

</androidx.constraintlayout.widget.ConstraintLayout>

As currently implemented, the button has no constraint connections. At
runtime, therefore, the button will appear in the top left-hand corner of the
screen (though indented 16dp by the padding assigned to the parent layout).
If opposing constraints are added to the sides of the button, however, it will
appear centered within the layout:
<Button
 android:text="My Button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

 android:id="@+id/button"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

To add a second widget to the layout, embed it within the body of the
ConstraintLayout element. The following modification, for example, adds a
TextView widget to the layout:
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="16dp"
 android:paddingTop="16dp"
 android:paddingRight="16dp"
 android:paddingBottom="16dp"
 tools:context=".MainActivity">

 <Button
 android:text="@string/button_string"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/button"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:text="My Text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/textView" />

</androidx.constraintlayout.widget.ConstraintLayout>

Once again, the absence of constraints on the newly added TextView will
cause it to appear in the top left-hand corner of the layout at runtime. The
following modifications add opposing constraints connected to the parent

layout to center the widget horizontally, together with a constraint
connecting the bottom of the TextView to the top of the button:
<TextView
 android:text="My Text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/textView"
 android:layout_marginTop="8dp"
 android:layout_marginBottom="8dp"
 app:layout_constraintBottom_toTopOf="@+id/button"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

Also, note that the Button and TextView views have several attributes
declared. Both views have been assigned IDs and configured to display text
strings represented by string resources named button_string and text_string,
respectively. Additionally, the wrap_content height and width properties
have been declared on both objects so that they are sized to accommodate
the content (in this case, the text referenced by the string resource value).
Viewed from within the Preview panel of the Layout Editor in Design
mode, the above layout will be rendered as shown in Figure 29-1:

Figure 29-1

29.2 Manual XML vs. Visual Layout Design
When to write XML manually as opposed to using the Layout Editor tool in
design mode is a matter of personal preference. There are, however,
advantages to using design mode.
First, design mode will generally be quicker because it avoids the need to
type XML lines. Additionally, design mode avoids the need to learn the
intricacies of the various property values of the Android SDK view classes.
Rather than continually referring to the Android documentation to find the
correct keywords and values, most properties can be located by referring to
the Attributes panel.
All the advantages of design mode aside, it is important to remember that
the two approaches to user interface design are in no way mutually
exclusive. As an application developer, you will likely create user interfaces
within design mode while performing fine-tuning and layout tweaks of the
design by directly editing the generated XML resources. Both views of the
interface design are displayed side-by-side within the Android Studio
environment, making it easy to work seamlessly on both the XML and the
visual layout.

29.3 Summary
The Android Studio Layout Editor tool provides a visually intuitive method
for designing user interfaces. Using a drag-and-drop paradigm combined
with a set of property editors, the tool provides considerable productivity
benefits to the application developer.
User interface designs may also be implemented by manually writing the
XML layout resource files, the format of which is well-structured and easily
understood.
The fact that the Layout Editor tool generates XML resource files means
that these two approaches to interface design can be combined to provide a
“best of both worlds” approach to user interface development.

30. Managing Constraints using
Constraint Sets
Until this point in the book, all user interface design tasks have been
performed using the Android Studio Layout Editor tool, either in text or
design mode. An alternative to writing XML resource files or using the
Android Studio Layout Editor is to write Kotlin code to directly create,
configure and manipulate the view objects comprising an Android activity’s
user interface. This chapter will explore some advantages and
disadvantages of writing Kotlin code to create a user interface before
describing key concepts such as view properties and the creation and
management of layout constraints.
In the next chapter, an example project will be created and used to
demonstrate some of the typical steps involved in this approach to Android
user interface creation.

30.1 Kotlin Code vs. XML Layout Files
There are several advantages to using XML resource files to design a user
interface instead of writing Kotlin code. In fact, Google goes to
considerable lengths in the Android documentation to extol the virtues of
XML resources over Kotlin code. As discussed in the previous chapter, one
key advantage of the XML approach is using the Android Studio Layout
Editor tool, which generates XML resources. A second advantage is that
once an application has been created, changes to user interface screens can
be made by modifying the XML file, thereby avoiding recompiling the
application. Also, even when-hand writing XML layouts, it is possible to
get instant feedback on the appearance of the user interface using the
preview feature of the Android Studio Layout Editor tool. To test the
appearance of a Kotlin-created user interface, the developer will inevitably
cycle through a loop of writing code, compiling, and testing to complete the
design work.
Regarding the strengths of the Kotlin coding approach to layout creation,
the most significant advantage that Kotlin has over XML resource files
comes into play when dealing with dynamic user interfaces. XML resource

files are inherently most useful when defining static layouts, which are
unlikely to change significantly from one invocation of an activity to the
next. Kotlin code, on the other hand, is ideal for creating user interfaces
dynamically at run-time. This is particularly useful when the user interface
may appear differently each time the activity executes, subject to external
factors.
Knowledge of working with user interface components in Kotlin code can
also be useful when dynamic changes to a static XML resource-based
layout must be performed in real-time as the activity is running.
Finally, some developers prefer to write Kotlin code than to use layout tools
and XML, regardless of the advantages offered by the latter approaches.

30.2 Creating Views
As previously established, the Android SDK includes a toolbox of view
classes to meet most basic user interface design needs. The creation of a
view in Kotlin is a matter of creating instances of these classes, passing
through as an argument a reference to the activity with which that view is to
be associated.
The first view (typically a container view to which additional child views
can be added) is displayed to the user via a call to the setContentView()
activity method. Additional views may be added to the root view via calls
to the object’s addView() method.
When working with Kotlin code to manipulate views contained in XML
layout resource files, it is necessary to obtain the ID of the view. The same
rule holds true for views created in Kotlin. As such, it is necessary to assign
an ID to any view for which certain types of access will be required in
subsequent Kotlin code. This is achieved via a call to the setId() method of
the view object in question. In later code, the ID for a view may be obtained
via the object’s id property.

30.3 View Attributes
Each view class has associated with it a range of attributes. These property
settings are set directly on the view instances and generally define how the
view object will appear or behave. Examples of attributes are the text that
appears on a Button object or the background color of a ConstraintLayout

view. Each view class within the Android SDK has a pre-defined set of
methods that allow the user to set and get these property values. The Button
class, for example, has a setText() method, which can be called from within
Kotlin code to set the text displayed on the button to a specific string value.
On the other hand, the background color of a ConstraintLayout object can
be set with a call to the object’s setBackgroundColor() method.

30.4 Constraint Sets
While property settings are internal to view objects and dictate how a view
appears and behaves, constraint sets control how a view appears relative to
its parent view and other sibling views. Every ConstraintLayout instance
has associated with it a set of constraints that define how its child views are
positioned and constrained.
The key to working with constraint sets in Kotlin code is the ConstraintSet
class. This class contains a range of methods that allow tasks such as
creating, configuring, and applying constraints to a ConstraintLayout
instance. In addition, the current constraints for a ConstraintLayout instance
may be copied into a ConstraintSet object and applied to other layouts (with
or without modifications).
A ConstraintSet instance is created just like any other Kotlin object:
val set = ConstraintSet()

Once a constraint set has been created, methods can be called on the
instance to perform a wide range of tasks.
30.4.1 Establishing Connections
The connect() method of the ConstraintSet class is used to establish
constraint connections between views. The following code configures a
constraint set in which the left-hand side of a Button view is connected to
the right-hand side of an EditText view with a margin of 70dp:
set.connect(button1.id, ConstraintSet.LEFT,
 editText1.id, ConstraintSet.RIGHT, 70)

30.4.2 Applying Constraints to a Layout
Once the constraint set is configured, it must be applied to a
ConstraintLayout instance before it will take effect. A constraint set is
applied via a call to the applyTo() method, passing through a reference to
the layout object to which the settings are to be applied:

set.applyTo(myLayout)

30.4.3 Parent Constraint Connections
Connections between a child view and its parent ConstraintLayout may also
be established by referencing the ConstraintSet.PARENT_ID constant. In
the following example, the constraint set is configured to connect the top
edge of a Button view to the top of the parent layout with a margin of
100dp:
set.connect(button1.id, ConstraintSet.TOP,
 ConstraintSet.PARENT_ID, ConstraintSet.TOP, 100)

30.4.4 Sizing Constraints
Several methods are available for controlling the sizing behavior of views.
The following code, for example, sets the horizontal size of a Button view
to wrap_content and the vertical size of an ImageView instance to a
maximum of 250dp:
set.constrainWidth(button1.id, ConstraintSet.WRAP_CONTENT)
set.constrainMaxHeight(imageView1.id, 250)

30.4.5 Constraint Bias
As outlined in the chapter entitled “A Guide to Using ConstraintLayout in
Android Studio”, when a view has opposing constraints, it is centered along
the axis of the constraints (i.e., horizontally or vertically). This centering
can be adjusted by applying a bias along the particular constraint axis.
When using the Android Studio Layout Editor, this is achieved using the
controls in the Attributes tool window. When working with a constraint set,
however, bias can be added using the setHorizontalBias() and
setVerticalBias() methods, referencing the view ID and the bias as a floating
point value between 0 and 1.
The following code, for example, constrains the left and right-hand sides of
a Button to the corresponding sides of the parent layout before applying a
25% horizontal bias:
set.connect(button1.id, ConstraintSet.LEFT,
 ConstraintSet.PARENT_ID, ConstraintSet.LEFT, 0)
set.connect(button1.id, ConstraintSet.RIGHT,
 ConstraintSet.PARENT_ID, ConstraintSet.RIGHT, 0)
set.setHorizontalBias(button1.id, 0.25f)

30.4.6 Alignment Constraints

Alignments may also be applied using a constraint set. The full set of
alignment options available with the Android Studio Layout Editor may
also be configured using a constraint set via the centerVertically() and
centerHorizontally() methods, both of which take various arguments
depending on the alignment being configured. In addition, the center()
method may be used to center a view between two other views.
In the code below, button2 is positioned so that it is aligned horizontally
with button1:
set.centerHorizontally(button2.id, button1.id)

30.4.7 Copying and Applying Constraint Sets
The current constraint set for a ConstraintLayout instance may be copied
into a constraint set object using the clone() method. The following line of
code, for example, copies the constraint settings from a ConstraintLayout
instance named myLayout into a constraint set object:
set.clone(myLayout)

Once copied, the constraint set may be applied directly to another layout or,
as in the following example, modified before being applied to the second
layout:
val set = ConstraintSet()
set.clone(myLayout)
set.constrainWidth(button1.id, ConstraintSet.WRAP_CONTENT)
set.applyTo(mySecondLayout)

30.4.8 ConstraintLayout Chains
Vertical and horizontal chains may also be created within a constraint set
using the createHorizontalChain() and createVerticalChain() methods. The
syntax for using these methods is as follows:
createVerticalChain(int topId, int topSide, int bottomId,
 int bottomSide, int[] chainIds, float[] weights, int style)

Based on the above syntax, the following example creates a horizontal
spread chain that starts with button1 and ends with button4. In between
these views are button2 and button3 with weighting set to zero for both:
val set = ConstraintSet()
val chainViews = intArrayOf(button2.id, button3.id)
val chainWeights = floatArrayOf(0f, 0f)

set.createHorizontalChain(button1.id, ConstraintSet.LEFT,

 button4.id, ConstraintSet.RIGHT,
 chainViews, chainWeights,
 ConstraintSet.CHAIN_SPREAD)

A view can be removed from a chain by passing the ID of the view to be
removed through to either the removeFromHorizontalChain() or
removeFromVerticalChain() methods. A view may be added to an existing
chain using either the addToHorizontalChain() or addToVerticalChain()
methods. In both cases, the methods take as arguments the IDs of the views
between which the new view is to be inserted as follows:
set.addToHorizontalChain(newViewId, leftViewId, rightViewId)

30.4.9 Guidelines
Guidelines are added to a constraint set using the create() method and then
positioned using the setGuidelineBegin(), setGuidelineEnd(), or
setGuidelinePercent() methods. In the following code, a vertical guideline
is created and positioned 50% across the width of the parent layout. The left
side of a button view is then connected to the guideline with no margin:
val set = ConstraintSet()

set.create(R.id.myGuideline, ConstraintSet.VERTICAL_GUIDELINE)
set.setGuidelinePercent(R.id.myGuideline, 0.5f)

set.connect(button.id, ConstraintSet.LEFT,
 R.id.myGuideline, ConstraintSet.RIGHT, 0)

set.applyTo(layout)

30.4.10 Removing Constraints
A constraint may be removed from a view in a constraint set using the
clear() method, passing through as arguments the view ID and the anchor
point for which the constraint is to be removed:
set.clear(button.id, ConstraintSet.LEFT)

Similarly, all of the constraints on a view may be removed in a single step
by referencing only the view in the clear() method call:
set.clear(button.id)

30.4.11 Scaling
The scale of a view within a layout may be adjusted using the ConstraintSet
setScaleX() and setScaleY() methods which take as arguments the view on

which the operation is to be performed together with a float value indicating
the scale. In the following code, a button object is scaled to twice its
original width and half the height:
set.setScaleX(mybutton.id, 2f)
set.setScaleY(myButton.id, 0.5f)

30.4.12 Rotation
A view may be rotated on either the X or Y axis using the setRotationX()
and setRotationY() methods, respectively, both of which must be passed the
ID of the view to be rotated and a float value representing the degree of
rotation to be performed. The pivot point on which the rotation is to take
place may be defined via a call to the setTransformPivot(),
setTransformPivotX(), and setTransformPivotY() methods. The following
code rotates a button view 30 degrees on the Y axis using a pivot point
located at point 500, 500:
set.setTransformPivot(button.id, 500, 500)
set.setRotationY(button.id, 30)
set.applyTo(layout)

Having covered the theory of constraint sets and user interface creation
from within Kotlin code, the next chapter will work through creating an
example application to put this theory into practice. For more details on the
ConstraintSet class, refer to the reference guide at the following URL:
https://developer.android.com/reference/androidx/constraintlayout/widget/C
onstraintSet

30.5 Summary
As an alternative to writing XML layout resource files or using the Android
Studio Layout Editor tool, Android user interfaces may also be dynamically
created in Kotlin code.
Creating layouts in Kotlin code consists of creating instances of view
classes and setting attributes on those objects to define required appearance
and behavior.
How a view is positioned and sized relative to its ConstraintLayout parent
view and any sibling views are defined using constraint sets. A constraint
set is represented by an instance of the ConstraintSet class, which, once
created, can be configured using a wide range of method calls to perform

https://developer.android.com/reference/androidx/constraintlayout/widget/ConstraintSet

tasks such as establishing constraint connections, controlling view sizing
behavior, and creating chains.
With the basics of the ConstraintSet class covered in this chapter, the next
chapter will work through a tutorial that puts these features to practical use.

31. An Android ConstraintSet
Tutorial
The previous chapter introduced the basic concepts of creating and
modifying user interface layouts in Kotlin code using the ConstraintLayout
and ConstraintSet classes. This chapter will put these concepts into practice
by creating an example layout created entirely in Kotlin code and without
using the Android Studio Layout Editor tool.

31.1 Creating the Example Project in Android Studio
Launch Android Studio and select the New Project option from the
welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.
Enter KotlinLayout into the Name field and specify
com.ebookfrenzy.kotlinlayout as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin.
Once the project has been created, the MainActivity.kt file should
automatically load into the editing panel. As we have come to expect,
Android Studio has created a template activity and overridden the
onCreate() method, providing an ideal location for Kotlin code to be added
to create a user interface.

31.2 Adding Views to an Activity
The onCreate() method is currently designed to use a resource layout file
for the user interface. Begin, therefore, by deleting the following lines from
the method:
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 enableEdgeToEdge()
 setContentView(R.layout.activity_main)
 ViewCompat.setOnApplyWindowInsetsListener(findViewById(R.id.mai
n)) {
 v, insets ->
 val systemBars =
insets.getInsets(WindowInsetsCompat.Type.systemBars())

 v.setPadding(systemBars.left, systemBars.top,
 systemBars.right, systemBars.bottom)
 insets
 }
}

The next modification is to add a ConstraintLayout object with a single
Button view child to the activity. This involves the creation of new
instances of the ConstraintLayout and Button classes. The Button view then
needs to be added as a child to the ConstraintLayout view, which, in turn, is
displayed via a call to the setContentView() method of the activity instance:
package com.ebookfrenzy.kotlinlayout
.
.
import androidx.constraintlayout.widget.ConstraintLayout
import android.widget.Button
import android.widget.EditText

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 configureLayout()
 }

 private fun configureLayout() {
 val myButton = Button(this)
 val myLayout = ConstraintLayout(this)
 myLayout.addView(myButton)
 setContentView(myLayout)
 }
}

When new instances of user interface objects are created in this way, the
constructor methods must be passed the context within which the object is
being created, which, in this case, is the current activity. Since the above
code resides within the activity class, the context is referenced by the
standard this keyword:
val myButton = Button(this)

Once the above additions have been made, compile and run the application
(either on a physical device or an emulator). Once launched, the visible

result will be a button containing no text appearing in the top left-hand
corner of the ConstraintLayout view, as shown in Figure 31-1:

Figure 31-1
31.3 Setting View Attributes
For this exercise, we need the background of the ConstraintLayout view to
be blue and the Button view to display text that reads “Press Me” on a
yellow background. These tasks can be achieved by setting attributes on the
views in the Kotlin code as outlined in the following code fragment. To
allow the text on the button to be easily translated to other languages, it will
be added as a String resource. Within the Project tool window, locate the
app -> res -> values -> strings.xml file and modify it to add a resource
value for the “Press Me” string:
<resources>
 <string name="app_name">KotlinLayout</string>
 <string name="press_me">Press Me</string>
</resources>

Although this is the recommended way to handle strings directly referenced
in code, many subsequent code samples will directly enter strings into the
code to avoid repetition of this step throughout the remainder of the book.
Once the string is stored as a resource, it can be accessed from within the
code as follows:
getString(R.string.press_me)

With the string resource created, add code to the configureLayout() method
to set the button text and color attributes:
.
.
import android.graphics.Color
.
.
 private fun configureLayout() {
 val myButton = Button(this)

 myButton.text = getString(R.string.press_me)
 myButton.setBackgroundColor(Color.YELLOW)

 val myLayout = ConstraintLayout(this)
 myLayout.setBackgroundColor(Color.BLUE)

 myLayout.addView(myButton)
 setContentView(myLayout)

 }
}
.
.

When the application is compiled and run, the layout will reflect the
property settings such that the layout will appear with a blue background,
and the button will display the assigned text on a yellow background.

31.4 Creating View IDs
When the layout is complete, it will consist of a Button and an EditText
view. Before these views can be referenced within the methods of the
ConstraintSet class, they must be assigned unique view IDs. The first step
in this process is to create a new resource file containing these ID values.
Right-click on the app -> res -> values folder, select the New -> Values
Resource File menu option, and name the new resource file id.xml. With the
resource file created, edit it so that it reads as follows:
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <item name="myButton" type="id" />
 <item name="myEditText" type="id" />
</resources>

At this point in the tutorial, only the Button has been created, so edit the
configureLayout() method to assign the corresponding ID to the object:
fun configureLayout() {
 val myButton = Button(this)
 myButton.text = getString(R.string.press_me)
 myButton.setBackgroundColor(Color.YELLOW)
 myButton.id = R.id.myButton
.
.

31.5 Configuring the Constraint Set
Without constraints, the ConstraintLayout view has placed the Button view
in the display’s top left corner. To instruct the layout view to place the
button in a different location, in this case, centered both horizontally and
vertically, it will be necessary to create a ConstraintSet instance, initialize it
with the appropriate settings and apply it to the parent layout.
For this example, the button needs to be configured so that the width and
height are constrained to the size of the text it displays and the view
centered within the parent layout. Edit the configureLayout() method once
more to make these changes:
.
.
import androidx.constraintlayout.widget.ConstraintSet
.
.
private fun configureLayout() {
 val myButton = Button(this)
 myButton.text = getString(R.string.press_me)
 myButton.setBackgroundColor(Color.YELLOW)
 myButton.id = R.id.myButton

 val myLayout = ConstraintLayout(this)
 myLayout.setBackgroundColor(Color.BLUE)

 myLayout.addView(myButton)
 setContentView(myLayout)

 val set = ConstraintSet()

 set.constrainHeight(myButton.id,
 ConstraintSet.WRAP_CONTENT)
 set.constrainWidth(myButton.id,
 ConstraintSet.WRAP_CONTENT)

 set.connect(myButton.id, ConstraintSet.START,
 ConstraintSet.PARENT_ID, ConstraintSet.START, 0)
 set.connect(myButton.id, ConstraintSet.END,
 ConstraintSet.PARENT_ID, ConstraintSet.END, 0)
 set.connect(myButton.id, ConstraintSet.TOP,
 ConstraintSet.PARENT_ID, ConstraintSet.TOP, 0)

 set.connect(myButton.id, ConstraintSet.BOTTOM,
 ConstraintSet.PARENT_ID, ConstraintSet.BOTTOM, 0)

 set.applyTo(myLayout)
}

With the initial constraints configured, compile and run the application and
verify that the Button view now appears in the center of the layout:

Figure 31-2
31.6 Adding the EditText View
The next item to be added to the layout is the EditText view. The first step
is to create the EditText object, assign the ID as declared in the id.xml
resource file and add it to the layout. The code changes to achieve these
steps now need to be made to the configureLayout() method as follows:
private fun configureLayout() {
 val myButton = Button(this)
 myButton.text = getString(R.string.press_me)
 myButton.setBackgroundColor(Color.YELLOW)
 myButton.id = R.id.myButton

 val myEditText = EditText(this)
 myEditText.id = R.id.myEditText

 val myLayout = ConstraintLayout(this)
 myLayout.setBackgroundColor(Color.BLUE)

 myLayout.addView(myButton)

 myLayout.addView(myEditText)

 setContentView(myLayout)
.
.
}

The EditText widget is intended to be sized subject to the content it
displays, centered horizontally within the layout, and positioned 70dp above
the existing Button view. Add code to the configureLayout() method so that
it reads as follows:
.
.
set.constrainHeight(myEditText.id,
 ConstraintSet.WRAP_CONTENT)
set.constrainWidth(myEditText.id,
 ConstraintSet.WRAP_CONTENT)

set.connect(myEditText.id, ConstraintSet.LEFT,
 ConstraintSet.PARENT_ID, ConstraintSet.LEFT, 0)
set.connect(myEditText.id, ConstraintSet.RIGHT,
 ConstraintSet.PARENT_ID, ConstraintSet.RIGHT, 0)
set.connect(myEditText.id, ConstraintSet.BOTTOM,
 myButton.id, ConstraintSet.TOP, 70)

set.applyTo(myLayout)

A test run of the application should show the EditText field centered above
the button with a margin of 70dp.

31.7 Converting Density Independent Pixels (dp) to
Pixels (px)
The next task in this exercise is to set the width of the EditText view to
200dp. As outlined in the chapter entitled “An Android Studio Layout
Editor ConstraintLayout Tutorial”, when setting sizes and positions in user
interface layouts, it is better to use density independent-pixels (dp) rather
than pixels (px). To set a position using dp, it is necessary to convert a dp
value to a px value at runtime, considering the density of the device display.
In order, therefore, to set the width of the EditText view to 200dp, the
following code needs to be added to the class:
package com.ebookfrenzy.kotlinlayout

.

.
import android.content.res.Resources
import android.util.TypedValue

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 configureLayout()
 }

 private fun convertToPx(value: Int): Int {
 val r = resources
 return TypedValue.applyDimension(
 TypedValue.COMPLEX_UNIT_DIP, value.toFloat(),
 r.displayMetrics
).toInt()
 }

 private fun configureLayout() {
 val myButton = Button(this)
 myButton.text = getString(R.string.press_me)
 myButton.setBackgroundColor(Color.YELLOW)
 myButton.id = R.id.myButton

 val myEditText = EditText(this)
 myEditText.id = R.id.myEditText

 myEditText.width = convertToPx(200)
.
.

Compile and run the application one more time and note that the width of
the EditText view has changed, as illustrated in Figure 31-3:

Figure 31-3
31.8 Summary
The example activity created in this chapter has created a similar user
interface (the change in background color and view type notwithstanding)
as that created in the earlier “Manual XML Layout Design in Android
Studio” chapter. If nothing else, this chapter should have provided an
appreciation of the level to which the Android Studio Layout Editor tool
and XML resources shield the developer from many of the complexities of
creating Android user interface layouts.
There are, however, instances where it makes sense to create a user
interface in Kotlin. For example, this approach is most useful when creating
dynamic user interface layouts.

32. A Guide to Using Apply Changes
in Android Studio
Now that some of the basic concepts of Android development using
Android Studio have been covered, this is a good time to introduce the
Android Studio Apply Changes feature. As all experienced developers
know, every second spent waiting for an app to compile and run is better
spent writing and refining code.

32.1 Introducing Apply Changes
In early versions of Android Studio, each time a change to a project needed
to be tested, Android Studio would recompile the code, convert it to Dex
format, generate the APK package file, and install it on the device or
emulator. Having performed these steps, the app would finally be launched
and ready for testing. Even on a fast development system, this process takes
considerable time to complete. It is not uncommon for it to take a minute or
more for this process to complete for a large application.
Apply Changes, in contrast, allows many code and resource changes within
a project to be reflected nearly instantaneously within the app while it is
already running on a device or emulator session.
Consider, for example, an app being developed in Android Studio which
has already been launched on a device or emulator. If changes are made to
resource settings or the code within a method, Apply Changes will push the
updated code and resources to the running app and dynamically “swap” the
changes. The changes are then reflected in the running app without the need
to build, deploy and relaunch the entire app. This often allows changes to be
tested in a fraction of the time without Apply Changes.

32.2 Understanding Apply Changes Options
Android Studio provides three options for applying changes to a running
app in the form of Run App, Apply Changes and Restart Activity and Apply
Code Changes. These options can be summarized as follows:
•Run App - Stops the currently running app and restarts it. If no changes
have been made to the project since it was last launched, this option will

restart the app. If, on the other hand, changes have been made to the
project, Android Studio will rebuild and re-install the app onto the device
or emulator before launching it.

•Apply Code Changes - This option can be used when the only changes
made to a project involve modifications to the body of existing methods or
when a new class or method has been added. When selected, the changes
will be applied to the running app without needing to restart the app or the
currently running activity. This mode cannot, however, be used when
changes have been made to any project resources, such as a layout file.
Other restrictions include removing methods, changing a method
signature, renaming classes, and other structural code changes. It is also
impossible to use this option when changes have been made to the project
manifest.

•Apply Changes and Restart Activity - When selected, this mode will
dynamically apply any code or resource changes made within the project
and restart the activity without re-installing or restarting the app. Unlike
the Apply Code changes option, this can be used when changes have been
made to the code and resources of the project. However, the same
restrictions involving some structural code changes and manifest
modifications apply.

32.3 Using Apply Changes
When a project has been loaded into Android Studio but is not yet running
on a device or emulator, it can be launched as usual using either the run
(marked A in Figure 32-1) or debug (B) button located in the toolbar:

Figure 32-1
After the app has launched and is running, a stop button (marked A in
Figure 32-2) will appear, and the Apply Changes and Restart Activity (B)
and Apply Code Changes (C) buttons will be enabled:

Figure 32-2
If the changes cannot be applied when one of the Apply Changes buttons is
selected, Android Studio will display a message indicating the failure and
an explanation. Figure 32-3, for example, shows the message displayed by
Android Studio when the Apply Code Changes option is selected after a
change has been made to a resource file:

Figure 32-3
In this situation, the solution is to use the Apply Changes and Restart
Activity option (for which a link is provided). Similarly, the following
message will appear when an attempt to apply changes that involve the
removal of a method is made:

Figure 32-4
In this case, the only option is to click on the Run App button to re-install
and restart the app. As an alternative to manually selecting the correct
option, Android Studio may be configured to automatically fall back to
performing a Run App operation.

32.4 Configuring Apply Changes Fallback Settings
The Apply Changes fallback settings are located in the Android Studio
Settings dialog. Within the Settings dialog, select the Build, Execution,
Deployment entry in the left-hand panel, followed by Deployment, as shown
in Figure 32-5:

Figure 32-5
Once the required options have been enabled, click on Apply, followed by
the OK button to commit the changes and dismiss the dialog. After these
defaults have been enabled, Android Studio will automatically re-install and
restart the app when necessary.

32.5 An Apply Changes Tutorial
Launch Android Studio, select the New Project option from the welcome
screen, and choose the Basic Views Activity template within the resulting
new project dialog before clicking the Next button.
Enter ApplyChanges into the Name field and specify
com.ebookfrenzy.applychanges as the package name. Before clicking the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin.

32.6 Using Apply Code Changes
Begin by clicking the run button and selecting an emulator or physical
device as the run target. After clicking the run button, track the time before
the example app appears on the device or emulator.
Once running, click on the action button (the button displaying an envelope
icon in the screen’s lower right-hand corner). Note that a Snackbar instance
appears, displaying text which reads “Replace with your own action”, as
shown in Figure 32-6:

Figure 32-6
Once the app is running, the Apply Changes buttons should have been
enabled, indicating that certain project changes can be applied without
reinstalling and restarting the app. To see this in action, edit the
MainActivity.kt file, locate the onCreate method, and modify the action
code so that a different message is displayed when the action button is
selected:
binding.fab.setOnClickListener { view ->
 Snackbar.make(view, "Apply Changes is Amazing!",
Snackbar.LENGTH_LONG)
 .setAnchorView(R.id.fab)
 .setAction("Action", null).show()
}

With the code change implemented, click the Apply Code Changes button
and note that a message appears within a few seconds indicating the app has
been updated. Tap the action button and note that the new message is now
displayed in the Snackbar.

32.7 Using Apply Changes and Restart Activity
Any resource change will require the use of the Apply Changes and Restart
Activity option. Within Android Studio, select the app -> res -> layout ->
fragment_first.xml layout file. With the Layout Editor tool in Design mode,
select the default TextView component and change the text property in the
attributes tool window to “Hello Android”.
Ensure that the fallback options outlined in “Configuring Apply Changes
Fallback Settings” above are turned off before clicking on the Apply Code
Changes button. Note that the request fails because this change involves
project resources. Click on the Apply Changes and Restart Activity button
and verify that the activity restarts and displays the new text on the
TextView widget.

32.8 Using Run App
As previously described, removing a method requires the complete re-
installation and restart of the running app. To experience this, edit the
MainActivity.kt file and add a new method after the onCreate method as
follows:
fun demoMethod() {

}

Use the Apply Code Changes button and confirm that the changes are
applied without re-installing the app.
Next, delete the new method and verify that clicking on either of the two
Apply Changes buttons will result in the request failing. The only way to
run the app after such a change is to click the Run App button.

32.9 Summary
Apply Changes is a feature of Android Studio designed to significantly
accelerate the code, build and run cycle performed when developing an app.
The Apply Changes feature can push updates to the running application, in
many cases, without reinstalling or restarting the app. Apply Changes
provides several different levels of support depending on the nature of the
modification being applied to the project.

33. A Guide to Gradle Version
Catalogs
A newly created Android Studio project will consist of approximately 80
files automatically generated by Android Studio. When you click on the
Run button, Android Studio uses a build system called Gradle to generate
additional files, compile the source code, resolve library dependencies, and
create the installable application package. After the build is completed, the
project folder will contain approximately 700 files.
This chapter explains how the Gradle build system determines which
libraries to include in the build process and how you can use this system to
add library dependencies to your projects.

33.1 Library and Plugin Dependencies
In the earlier chapter titled “An Overview of the Android Architecture” we
talked briefly about the Java API Framework and the libraries that it
contains. When Gradle is building a project, it needs to know which
libraries are required to complete the build and their respective version
numbers. For example, a project might depend on version 2.6.0 of the
Room Database runtime library (androidx.room:room-runtime).
Unfortunately, when we write Room Database code in our project, Gradle
does not automatically add the corresponding library dependency to the
build configuration. Instead, we must add this ourselves via Gradle build
files and the version catalog.

33.2 Project Gradle Build File
Every Android Studio has a project-level Gradle file that you can find by
navigating to Gradle Scripts -> build.gradle.kts (<Project name>) in the
Project tool window. The primary purpose of this file is to define the
plugins that do the work of building the entire project and will typically
read as follows:
plugins {
 alias(libs.plugins.androidApplication) apply false
 alias(libs.plugins.jetbrainsKotlinAndroid) apply false
}

In practice, changes to this file are only necessary on rare occasions.

33.3 Module Gradle Build Files
An Android Studio project will consist of one or more modules, each with
its own build configuration and library dependencies. A new project will
contain a single module, the gradle build file for which will be listed in the
Gradle Scripts folder as build.gradle.kts (Module: app) and will, in part,
read as follows:
plugins {
 alias(libs.plugins.androidApplication)
 alias(libs.plugins.jetbrainsKotlinAndroid)
}

android {
.
.
}

dependencies {
 implementation(libs.androidx.core.ktx)
 implementation(libs.androidx.appcompat)
 implementation(libs.material)
 implementation(libs.androidx.activity)
 implementation(libs.androidx.constraintlayout)
 testImplementation(libs.junit)
 androidTestImplementation(libs.androidx.junit)
 androidTestImplementation(libs.androidx.espresso.core)
}

The plugins section once again contains the plugins needed to build the
project and, in most cases, will mirror those declared in the project-level
build file. When a module needs plugins that are not required by other
modules, they are declared here.
The dependencies section contains a list of the libraries on which the
module depends and which must be resolved for a successful build.

33.4 Version Catalog File
Earlier, we mentioned besides the library names, dependencies must also
include library version numbers. You will have noticed, however, that none
of the configuration files reviewed so far include version information. This

is where the version catalog file comes in. The version catalog can be found
in a file named libs.versions.toml located in the Project tool window’s
Gradle Scripts folder. An example version catalog file is listed below:
[versions]
agp = "8.4.0"
kotlin = "1.9.22"
coreKtx = "1.13.1"
junit = "4.13.2"
junitVersion = "1.1.5"
espressoCore = "3.5.1"
appcompat = "1.6.1"
material = "1.12.0"
activity = "1.9.0"
constraintlayout = "2.1.4"

[libraries]
androidx-core-ktx = { group = "androidx.core", name = "core-ktx",
version.ref = "coreKtx" }
material = { group = "com.google.android.material", name =
"material", version.ref = "material" }
activity = { group = "androidx.activity", name = "activity",
version.ref = "activity" }

[plugins]
androidApplication = { id = "com.android.application", version.ref
= "agp"}
.
.

The catalog is divided into sections labeled [versions], [libraries], and
[plugins]. To help understand how the catalog works, we will use the
material library as an example. In the [libraries] section, the material
library is declared as follows:
material = { group = "com.google.android.material", name =
"material", version.ref = "material" }

The group entry above tells us the actual name of the Material library group
in the Java API framework is com.google.android.material, while the
versions.ref assignment declares how the library will be referenced in the
[versions] catalog section. The declaration is assigned to a value named
“material” which is the name by which the library will be referenced in the
module-level build files.

Referring to the [versions] section, we find that the library has been
assigned version 1.11.0:
material = "1.11.0"

Finally, the library is declared in the dependencies section of the module-
level build file as follows:
dependencies {
.
.
 implementation(libs.material)
}

Note that the syntax for referencing the library in the build file is to prefix
the name used in the [libraries] catalog entry with “libs.”.
Although we have focused on a library for this example, the syntax is the
same for plugins.

33.5 Adding Dependencies
You will need to add dependencies to several projects in this book, and in
each case, we will step you through the process. As an example, we will
demonstrate adding the Room Database runtime library dependency to our
earlier hypothetical project. First, we must add the following entry to the
[libraries] section of the libs.versions.toml version catalog file:
[libraries]
.
.
androidx-roomruntime = { group = "androidx.room", name = "room-
runtime", version.ref = "roomRuntime" }

Next, the version number is added to the [versions] catalog section:
[versions]
.
.
roomRuntime = "2.6.1"

Finally, the library is added to the dependencies section of the module-level
gradle build file:
dependencies {
.
.
 implementation(libs.androidx.room.runtime)
}

Another example is the androidx.navigation:navigation-fragment-ktx
library. In this case, the library group is androidx.navigation and the name
is navigation-fragment-ktx. The library would be declared in the version
catalog as follows:
[versions]
.
.
navigationFragmentKtx = "2.7.7"

[libraries]
.
.
navigation-fragment-ktx = { group = "androidx.navigation", name =
"navigation-fragment-ktx", version.ref = "navigationFragmentKtx" }

Once the library has been added to the catalog, the gradle build file
dependency would read as follows:
dependencies {
.
.
 implementation(libs.navigation.fragment.ktx)
.
.

33.6 Library Updates
While declaring library and plugin dependencies is primarily a manual task,
one thing that Android Studio will do for you is let you know when a more
recent library version is available. It does this by highlighting the version
number while you are editing the catalog file. Hovering the mouse pointer
over the highlighted number will display the panel shown in Figure 33-1,
providing the option to change to the latest version:

Figure 33-1
33.7 Summary
Android Studio projects are built using the Gradle build system in a process

involving several steps. One of these steps is to resolve and include any
required libraries for the project to compile successfully. While a newly
created project will include the basic libraries and plugins necessary for a
simple app, more complex projects will have additional dependencies.
These dependencies are declared in the module-level Gradle build files. To
provide version consistency across project modules and a single location to
add new libraries or update version numbers, Gradle uses a version catalog
file. As your code uses more libraries and plugins, you must edit the build
and catalog files to add these dependencies.

34. An Overview and Example of
Android Event Handling
Much has been covered in the previous chapters relating to the design of
user interfaces for Android applications. However, an area that has yet to be
covered involves how a user’s interaction with the user interface triggers
the underlying activity to perform a task. In other words, from the previous
chapters, we know how to create a user interface containing a button view
but not how to make something happen within the application when the
user touches it.
Therefore, this chapter’s primary objective is to provide an overview of
event handling in Android applications together with an Android Studio-
based example project.

34.1 Understanding Android Events
Android events can take various forms but are usually generated in response
to an external action. The most common form of events, particularly for
devices such as tablets and smartphones, involve some form of interaction
with the touch screen. Such events fall into the category of input events.
The Android framework maintains an event queue into which events are
placed as they occur. Events are then removed from the queue on a first-in,
first-out (FIFO) basis. In the case of an input event, such as a touch on the
screen, the event is passed to the view positioned at the location on the
screen where the touch took place. In addition to the event notification, the
view is also passed a range of information (depending on the event type)
about the nature of the event, such as the coordinates of the point of contact
between the user’s fingertip and the screen.
To handle an event that has been passed, the view must have an event
listener in place. The Android View class, from which all user interface
components are derived, contains a range of event listener interfaces, each
containing an abstract declaration for a callback method. To be able to
respond to an event of a particular type, a view must register the appropriate
event listener and implement the corresponding callback. For example, if a
button is to respond to a click event (the equivalent of the user touching and

releasing the button view as though clicking on a physical button), it must
both register the View.onClickListener event listener (via a call to the target
view’s setOnClickListener() method) and implement the corresponding
onClick() callback method. If a “click” event is detected on the screen at the
location of the button view, the Android framework will call the onClick()
method of that view when that event is removed from the event queue. It is,
of course, within the implementation of the onClick() callback method that
any tasks or other methods called in response to the button click should be
performed.

34.2 Using the android:onClick Resource
Before exploring event listeners in more detail, it is worth noting that a
shortcut is available when all that is required is for a callback method to be
called when a user “clicks” on a button view in the user interface. Consider
a user interface layout containing a button view named button1 with the
requirement that when the user touches the button, a method called
buttonClick() declared in the activity class is called. All that is required to
implement this behavior is to write the buttonClick() method (which takes
as an argument a reference to the view that triggered the click event) and
add a single line to the declaration of the button view in the XML file. For
example:
<Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="buttonClick"
 android:text="Click me" />

This provides a simple way to capture click events. It does not, however,
provide the range of options offered by event handlers, which is the topic of
the rest of this chapter. As outlined in later chapters, the onClick property
also has limitations in layouts involving fragments. When working within
Android Studio Layout Editor, the onClick property can be found and
configured in the Attributes panel when a suitable view type is selected in
the device screen layout.

34.3 Event Listeners and Callback Methods
In the example activity outlined later in this chapter, the steps involved in

registering an event listener and implementing the callback method will be
covered in detail. Before doing so, however, it is worth taking some time to
outline the event listeners available in the Android framework and the
callback methods associated with each one.
•onClickListener – Used to detect click style events whereby the user
touches and then releases an area of the device display occupied by a view.
Corresponds to the onClick() callback method, which is passed a reference
to the view that received the event as an argument.

•onLongClickListener – Used to detect when the user maintains the touch
over a view for an extended period. Corresponds to the onLongClick()
callback method, which is passed as an argument the view that received
the event.

•onTouchListener – Used to detect any contact with the touch screen,
including individual or multiple touches and gesture motions.
Corresponding with the onTouch() callback, this topic will be covered in
greater detail in the chapter entitled “Android Touch and Multi-touch
Event Handling”. The callback method is passed as arguments the view
that received the event and a MotionEvent object.

•onCreateContextMenuListener – Listens for the creation of a context
menu as the result of a long click. Corresponds to the
onCreateContextMenu() callback method. The callback is passed the
menu, the view that received the event and a menu context object.

•onFocusChangeListener – Detects when focus moves away from the
current view due to interaction with a trackball or navigation key.
Corresponds to the onFocusChange() callback method, which is passed
the view that received the event and a Boolean value to indicate whether
focus was gained or lost.

•onKeyListener – Used to detect when a key on a device is pressed while a
view has focus. Corresponds to the onKey() callback method. It is passed
as arguments the view that received the event, the KeyCode of the physical
key that was pressed, and a KeyEvent object.

34.4 An Event Handling Example
In the remainder of this chapter, we will create an Android Studio project
designed to demonstrate the implementation of an event listener and

corresponding callback method to detect when the user has clicked on a
button. The code within the callback method will update a text view to
indicate that the event has been processed.
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking the Next button.
Enter EventExample into the Name field and specify
com.ebookfrenzy.eventexample as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin. Using the steps outlined in
section 18.8 Migrating a Project to View Binding, convert the project to use
view binding.

34.5 Designing the User Interface
The user interface layout for the MainActivity class in this example will
consist of a ConstraintLayout, a Button, and a TextView, as illustrated in
Figure 34-1.

Figure 34-1
Locate and select the activity_main.xml file created by Android Studio
(located in the Project tool window under app -> res -> layouts) and
double-click on it to load it into the Layout Editor tool.

Ensure that Autoconnect is enabled, then drag a Button widget from the
palette and move it so that it is positioned in the horizontal center of the
layout and beneath the existing TextView widget. When correctly
positioned, drop the widget into place so that the autoconnect system adds
appropriate constraints.
Select the “Hello World!” TextView widget and use the Attributes panel to
set the ID to statusText. Repeat this step to change the ID of the Button
widget to myButton.
Add any missing constraints by clicking on the Infer Constraints button in
the layout editor toolbar.
With the Button widget selected, use the Attributes panel to set the text
property to Press Me. Extract the text string on the button to a resource
named press_me.
With the user interface layout completed, the next step is registering the
event listener and callback method.

34.6 The Event Listener and Callback Method
For this example, an onClickListener needs to be registered for the
myButton view. This is achieved by calling the setOnClickListener()
method of the button view, passing through a new onClickListener object as
an argument, and implementing the onClick() callback method. Since this
task only needs to be performed when the activity is created, a good
location is the onCreate() method of the MainActivity class.
If the MainActivity.kt file is already open within an editor session, select it
by clicking on the tab in the editor panel. Alternatively, locate it within the
Project tool window by navigating to (app -> kotlin+java ->
com.ebookfrenzy.eventexample -> MainActivity) and double-click on it to
load it into the code editor. Once loaded, locate the template onCreate()
method and modify it to obtain a reference to the button view, register the
event listener, and implement the onClick() callback method:
package com.ebookfrenzy.eventexample

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import android.view.View

import com.ebookfrenzy.eventexample.databinding.ActivityMainBinding

class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 override fun onCreate(savedInstanceState: Bundle?) {
.
.
 binding.myButton.setOnClickListener(object :
View.OnClickListener {
 override fun onClick(v: View?) {

 }
 })
 }
}

The above code has registered the event listener on the button and
implemented the onClick() method. In fact, the code to configure the
listener can be made more efficient by using a lambda as follows:
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
.
.
 binding.myButton.setOnClickListener(object :
View.OnClickListener {
 override fun onClick(v: View?) {

 }
 })

 binding.myButton.setOnClickListener {
 }
}

If the application were to be run at this point, however, there would be no
indication that the event listener installed on the button was working since
there is, as yet, no code implemented within the body of the lambda. The
goal for the example is to have a message appear on the TextView when the
button is clicked, so some further code changes need to be made:
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

.

.
 binding.myButton.setOnClickListener {
 binding.statusText.text = "Button clicked"
 }
}

Complete this tutorial phase by compiling and running the application on
either an AVD emulator or a physical Android device. On touching and
releasing the button view (otherwise known as “clicking”), the text view
should change to display the “Button clicked” text.

34.7 Consuming Events
The detection of standard clicks (as opposed to long clicks) on views is a
straightforward case of event handling. The example will now be extended
to include the detection of long click events, which occur when the user
clicks and holds a view on the screen and, in doing so, cover the topic of
event consumption.
Consider the code for the onClick listener code in the above section of this
chapter. The lambda code assigned to the listener does not return any value
and is not required to do so.
On the other hand, the code assigned to the onLongClickListener is required
to return a Boolean value to the Android framework. The purpose of this
return value is to indicate to the Android runtime whether or not the
callback has consumed the event. If the callback returns a true value, the
framework discards the event. If, on the other hand, the callback returns a
false value, the Android framework will consider the event still to be active
and pass it along to the next matching event listener registered on the same
view.
As with many programming concepts, this is best demonstrated with an
example. The first step is to add an event listener for long clicks to the
button view in the example activity:
override fun onCreate(savedInstanceState: Bundle?) {
.
.
 binding.myButton.setOnClickListener {
 binding.statusText.text = "Button clicked"
 }

 binding.myButton.setOnLongClickListener {
 binding.statusText.text = "Long button click"
 true
 }
}

When a long click is detected, the lambda code will display “Long button
click” on the text view. Note, however, that the callback method returns a
true value to indicate that it has consumed the event. Run the application
and press and hold the Button view until the “Long button click” text
appears in the text view. On releasing the button, the text view displays the
“Long button click” text indicating that the onClick listener code was not
called.
Next, modify the code so that the onLongClick listener now returns a false
value:
binding.myButton.setOnLongClickListener {
 statusText.text = "Long button click"
 false
}

Once again, compile and run the application and perform a long click on the
button until the long click message appears. However, after releasing the
button this time, note that the onClick listener is also triggered, and the text
changes to “Button clicked”. This is because the false value returned by the
onLongClick listener code indicated to the Android framework that the
event was not consumed by the method and was eligible to be passed on to
the next registered listener on the view. In this case, the runtime ascertained
that the onClickListener on the button was also interested in events of this
type and subsequently called the onClick listener code.

34.8 Summary
A user interface is of little practical use if the views it contains do not do
anything in response to user interaction. Android bridges the gap between
the user interface and the back-end code of the application through the
concepts of event listeners and callback methods. The Android View class
defines a set of event listeners which can be registered on view objects.
Each event listener also has associated with it a callback method.
When an event takes place on a view in a user interface, that event is placed

into an event queue and handled on a first-in, first-out basis by the Android
runtime. If the view on which the event took place has registered a listener
that matches the type of event, the corresponding callback method or
lambda expression is called. This code then performs any tasks required by
the activity before returning. Some callback methods are required to return
a Boolean value to indicate whether the event needs to be passed on to other
event listeners registered on the view or discarded by the system.
Now that the basics of event handling have been covered, the next chapter
will explore touch events with a particular emphasis on handling multiple
touches.

35. Android Touch and Multi-touch
Event Handling
Most Android-based devices use a touch screen as the primary interface
between the user and the device. The previous chapter introduced how a
touch on the screen translates into an action within a running Android
application. There is, however, much more to touch event handling than
responding to a single finger tap on a view object. Most Android devices
can, for example, detect more than one touch at a time. Nor are touches
limited to a single point on the device display. Touches can be dynamic as
the user slides one or more contact points across the screen’s surface.
An application can also interpret touches as a gesture. Consider, for
example, that a horizontal swipe is typically used to turn the page of an
eBook or how a pinching motion can zoom in and out of an image
displayed on the screen.
An application can also interpret touches as a gesture. Consider, for
example, that a horizontal swipe is typically used to turn the page of an
eBook or how a pinching motion can zoom in and out of an image
displayed on the screen.
This chapter will explain the handling of touches that involve motion and
explore the concept of intercepting multiple concurrent touches. The topic
of identifying distinct gestures will be covered in the next chapter.

35.1 Intercepting Touch Events
A view object can intercept touch events by registering an onTouchListener
event listener and implementing the corresponding onTouch() callback
method or lambda. The following code, for example, ensures that any
touches on a ConstraintLayout view instance named myLayout result in a
call to a lambda expression:
binding.myLayout.setOnTouchListener {v: View, m: MotionEvent ->
 // Perform tasks here
 true
}

Of course, the above code could also be implemented by using a function
instead of a lambda as follows, though the lambda approach results in more

compact and readable code:
binding.myLayout.setOnTouchListener(object : View.OnTouchListener {
 override fun onTouch(v: View, m: MotionEvent): Boolean {
 // Perform tasks here
 return true
 }
})

As indicated in the code example, the lambda expression is required to
return a Boolean value indicating to the Android runtime system whether or
not the event should be passed on to other event listeners registered on the
same view or discarded. The method is passed both a reference to the view
on which the event was triggered and an object of type MotionEvent.

35.2 The MotionEvent Object
The MotionEvent object passed through to the onTouch() callback method
is the key to obtaining information about the event. Information within the
object includes the location of the touch within the view and the type of
action performed. The MotionEvent object is also the key to handling
multiple touches.

35.3 Understanding Touch Actions
An important aspect of touch event handling involves identifying the type
of action the user performed. The type of action associated with an event
can be obtained by making a call to the getActionMasked() method of the
MotionEvent object, which was passed through to the onTouch() callback
method. When the first touch on a view occurs, the MotionEvent object will
contain an action type of ACTION_DOWN together with the coordinates of
the touch. When that touch is lifted from the screen, an ACTION_UP event
is generated. Any motion of the touch between the ACTION_DOWN and
ACTION_UP events will be represented by ACTION_MOVE events.
When more than one touch is performed simultaneously on a view, the
touches are referred to as pointers. In a multi-touch scenario, pointers begin
and end with event actions of type ACTION_POINTER_DOWN and
ACTION_POINTER_UP, respectively. To identify the index of the pointer
that triggered the event, the getActionIndex() callback method of the
MotionEvent object must be called.

35.4 Handling Multiple Touches
The chapter entitled “An Overview and Example of Android Event
Handling” began exploring event handling within the narrow context of a
single-touch event. In practice, most Android devices can respond to
multiple consecutive touches (though it is important to note that the number
of simultaneous touches that can be detected varies depending on the
device).
As previously discussed, each touch in a multi-touch situation is considered
by the Android framework to be a pointer. Each pointer, in turn, is
referenced by an index value and assigned an ID. The current number of
pointers can be obtained via a call to the getPointerCount() method of the
current MotionEvent object. The ID for a pointer at a particular index in the
list of current pointers may be obtained via a call to the MotionEvent
getPointerId() method. For example, the following code excerpt obtains a
count of pointers and the ID of the pointer at index 0:
binding.myLayout.setOnTouchListener {v: View, m: MotionEvent ->
 val pointerCount = m.pointerCount
 val pointerId = m.getPointerId(0)
 true
}

Note that the pointer count will always be greater than or equal to 1 when
the onTouch listener is triggered (since at least one touch must have
occurred for the callback to be triggered).
A touch on a view, particularly one involving motion across the screen, will
generate a stream of events before the point of contact with the screen is
lifted. An application will likely need to track individual touches over
multiple touch events. While the ID of a specific touch gesture will not
change from one event to the next, it is important to remember that the
index value will change as other touch events come and go. When working
with a touch gesture over multiple events, the ID value must be used as the
touch reference to ensure the same touch is being tracked. When calling
methods that require an index value, this should be obtained by converting
the ID for a touch to the corresponding index value via a call to the
findPointerIndex() method of the MotionEvent object.

35.5 An Example Multi-Touch Application

The example application created in the remainder of this chapter will track
up to two touch gestures as they move across a layout view. As the events
for each touch are triggered, the coordinates, index, and ID for each touch
will be displayed on the screen.
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.
Enter MotionEvent into the Name field and specify
com.ebookfrenzy.motionevent as the package name. Before clicking the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin.
Adapt the project to use view binding as outlined in section 18.8 Migrating
a Project to View Binding.

35.6 Designing the Activity User Interface
The user interface for the application’s sole activity is to consist of a
ConstraintLayout view containing two TextView objects. Within the Project
tool window, navigate to app -> res -> layout and double-click on the
activity_main.xml layout resource file to load it into the Android Studio
Layout Editor tool.
Select and delete the default “Hello World!” TextView widget and then,
with autoconnect enabled, drag and drop a new TextView widget so that it
is centered horizontally and positioned at the 16dp margin line on the top
edge of the layout:

Figure 35-1
Drag a second TextView widget and position and constrain it so that a 32dp
margin distances it from the bottom of the first widget:

Figure 35-2

Using the Attributes tool window, change the IDs for the TextView widgets
to textView1 and textView2, respectively. Change the text displayed on the
widgets to read “Touch One Status” and “Touch Two Status” and extract the
strings to resources using the warning button in the top right-hand corner of
the Layout Editor.

35.7 Implementing the Touch Event Listener
To receive touch event notification, it will be necessary to register a touch
listener on the layout view within the onCreate() method of the
MainActivity activity class. Select the MainActivity.kt tab from the Android
Studio editor panel to display the source code. Within the onCreate()
method, add code to register the touch listener and implement code which,
in this case, is going to call a second method named handleTouch() to which
is passed the MotionEvent object:
package com.ebookfrenzy.motionevent

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import android.view.MotionEvent

import com.ebookfrenzy.motionevent.databinding.ActivityMainBinding

class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 override fun onCreate(savedInstanceState: Bundle?) {
.
.
 binding.root.setOnTouchListener {_, m: MotionEvent ->
 handleTouch(m)
 true
 }
 }
}

When we designed the user interface, the parent ConstraintLayout was not
assigned an ID that would allow us to access it via the view binding
mechanism. Since this layout component is the topmost component in the
UI layout hierarchy, we have been able to reference it using the root binding

property in the code above.
Before testing the application, the final task is to implement the
handleTouch() method called by the listener. The code for this method reads
as follows:
private fun handleTouch(m: MotionEvent)
{
 val pointerCount = m.pointerCount

 for (i in 0 until pointerCount)
 {
 val x = m.getX(i)
 val y = m.getY(i)
 val id = m.getPointerId(i)
 val action = m.actionMasked
 val actionIndex = m.actionIndex

 val actionString = when (action) {
 MotionEvent.ACTION_DOWN -> "DOWN"
 MotionEvent.ACTION_UP -> "UP"
 MotionEvent.ACTION_POINTER_DOWN -> "PNTR DOWN"
 MotionEvent.ACTION_POINTER_UP -> "PNTR UP"
 MotionEvent.ACTION_MOVE -> "MOVE"
 else -> ""
 }

 val touchStatus =
 "Action: $actionString Index: $actionIndex ID:
$id X: $x Y: $y"

 if (id == 0)
 binding.textView1.text = touchStatus
 else
 binding.textView2.text = touchStatus
 }
}

Before compiling and running the application, it is worth taking the time to
walk through this code systematically to highlight the tasks performed.
The code begins by identifying how many pointers are currently active on
the view:
val pointerCount = m.pointerCount

Next, the pointerCount variable initiates a for loop, which performs tasks
for each active pointer. The first few lines of the loop obtain the X and Y
coordinates of the touch together with the corresponding event ID, action
type, and action index. Lastly, a string variable is declared:
for (i in 0 until pointerCount)
{
 val x = m.getX(i)
 val y = m.getY(i)
 val id = m.getPointerId(i)
 val action = m.actionMasked
 val actionIndex = m.actionIndex
 var actionString: String

Since action types equate to integer values, a when statement is used to
convert the action type to a more meaningful string value, which is stored in
the previously declared actionString variable:
val actionString = when (action) {
 MotionEvent.ACTION_DOWN -> "DOWN"
 MotionEvent.ACTION_UP -> "UP"
 MotionEvent.ACTION_POINTER_DOWN -> "PNTR DOWN"
 MotionEvent.ACTION_POINTER_UP -> "PNTR UP"
 MotionEvent.ACTION_MOVE -> "MOVE"
 else -> ""
}

Finally, the string message is constructed using the actionString value, the
action index, touch ID, and X and Y coordinates. The ID value is then used
to decide whether the string should be displayed on the first or second
TextView object:
val touchStatus =
 "Action: $actionString Index: $actionIndex ID: $id X: $x Y: $y"

if (id == 0)
 binding.textView1.text = touchStatus
else
 binding.textView2.text = touchStatus

35.8 Running the Example Application
Compile and run the application and, once launched, experiment with single
and multiple touches on the screen and note that the text views update to
reflect the events as illustrated in Figure 35-3. When running on an

emulator, multiple touches may be simulated by holding down the Ctrl
(Cmd on macOS) key while clicking the mouse button (note that simulating
multiple touches may not work if the emulator is running in a tool window):

Figure 35-3
35.9 Summary
Activities receive notifications of touch events by registering an
onTouchListener event listener and implementing the onTouch() callback
method, which, in turn, is passed a MotionEvent object when called by the
Android runtime. This object contains information about the touch, such as
the type of touch event, the coordinates of the touch, and a count of the
number of touches currently in contact with the view.
When multiple touches are involved, each point of contact is referred to as a
pointer, with each assigned an index and an ID. While the index of a touch
can change from one event to another, the ID will remain unchanged until
the touch ends.
This chapter has worked through creating an example Android application
designed to display the coordinates and action type of up to two
simultaneous touches on a device display.
Having covered touches in general, the next chapter (entitled “Detecting
Common Gestures Using the Android Gesture Detector Class”) will look
further at touchscreen event handling through gesture recognition.

36. Detecting Common Gestures
Using the Android Gesture Detector
Class
The term “gesture” defines a contiguous sequence of interactions between
the touch screen and the user. A typical gesture begins at the point that the
screen is first touched and ends when the last finger or pointing device
leaves the display surface. When correctly harnessed, gestures can be
implemented to communicate between the user and the application.
Swiping motions to turn the pages of an eBook or a pinching movement
involving two touches to zoom in or out of an image are prime examples of
how gestures can interact with an application.
The Android SDK provides mechanisms for the detection of both common
and custom gestures within an application. Common gestures involve
interactions such as a tap, double tap, long press, or a swiping motion in
either a horizontal or a vertical direction (referred to in Android
nomenclature as a fling).
This chapter explores using the Android GestureDetector class to detect
common gestures performed on the display of an Android device. The next
chapter, “Implementing Custom Gesture and Pinch Recognition on
Android”, will cover detecting more complex, custom gestures such as
circular motions and pinches.

36.1 Implementing Common Gesture Detection
When a user interacts with the display of an Android device, the
onTouchEvent() method of the currently active application is called by the
system and passed MotionEvent objects containing data about the user’s
contact with the screen. This data can be interpreted to identify if the
motion on the screen matches a common gesture such as a tap or a swipe.
This can be achieved with minimal programming effort by using the
Android GestureDetector class. This class is designed to receive motion
event information from the application and trigger method calls based on
the type of common gesture, if any, detected.

The basic steps in detecting common gestures are as follows:
1.Declaration of a class which implements the

GestureDetector.OnGestureListener interface including the required
onFling(), onDown(), onScroll(), onShowPress(), onSingleTapUp() and
onLongPress() callback methods. Note that this can be either an entirely
new or an enclosing activity class. If double-tap gesture detection is
required, the class must also implement the
GestureDetector.OnDoubleTapListener interface and include the
corresponding onDoubleTap() method.

2.Creation of an instance of the Android GestureDetector class, passing
through an instance of the class created in step 1 as an argument.

3.An optional call to the setOnDoubleTapListener() method of the
GestureDetector instance to enable double tap detection if required.

4.Implementation of the onTouchEvent() callback method on the enclosing
activity, which, in turn, must call the onTouchEvent() method of the
GestureDetector instance, passing through the current motion event
object as an argument to the method.

Once implemented, the result is a set of methods within the application
code that will be called when a gesture of a particular type is detected. The
code within these methods can then be implemented to perform any tasks
that need to be performed in response to the corresponding gesture.
In the remainder of this chapter, we will work through creating an example
project intended to put the above steps into practice.

36.2 Creating an Example Gesture Detection Project
This project aims to detect the full range of common gestures currently
supported by the GestureDetector class and to display status information to
the user indicating the type of gesture that has been detected.
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.
Enter CommonGestures into the Name field and specify
com.ebookfrenzy.commongestures as the package name. Before clicking the
Finish button, change the Minimum API level setting to API 26: Android

8.0 (Oreo) and the Language menu to Kotlin.
Adapt the project to use view binding as outlined in section 18.8 Migrating
a Project to View Binding.
Once the new project has been created, navigate to the app -> res -> layout
-> activity_main.xml file in the Project tool window and double-click on it
to load it into the Layout Editor tool.
Within the Layout Editor tool, select the “Hello, World!” TextView
component and, in the Attributes tool window, enter gestureStatusText as
the ID. Finally, set the textSize to 20sp and enable the bold textStyle:

Figure 36-1
36.3 Implementing the Listener Class
As previously outlined, it is necessary to create a class that implements the
GestureDetector.OnGestureListener interface and, if double tap detection is
required, the GestureDetector.OnDoubleTapListener interface. While this
can be an entirely new class, it is also perfectly valid to implement this
within the current activity class. Therefore, we will modify the
MainActivity class to implement these listener interfaces for this example.
Edit the MainActivity.kt file so that it reads as follows:
package com.ebookfrenzy.commongestures

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import android.view.GestureDetector
import android.view.MotionEvent
.
.
class MainActivity : AppCompatActivity(),
 GestureDetector.OnGestureListener,
GestureDetector.OnDoubleTapListener

{
.
.

Declaring that the class implements the listener interfaces mandates that the
corresponding methods also be implemented in the class:
class MainActivity : AppCompatActivity(),
 GestureDetector.OnGestureListener,
GestureDetector.OnDoubleTapListener
{
.
.
 override fun onDown(event: MotionEvent): Boolean {
 binding.gestureStatusText.text = "onDown"
 return true
 }

 override fun onFling(event1: MotionEvent?, event2: MotionEvent,
 velocityX: Float, velocityY: Float):
Boolean {
 binding.gestureStatusText.text = "onFling"
 return true
 }

 override fun onLongPress(event: MotionEvent) {
 binding.gestureStatusText.text = "onLongPress"
 }

 override fun onScroll(e1: MotionEvent?, e2: MotionEvent,
 distanceX: Float, distanceY: Float):
Boolean {
 binding.gestureStatusText.text = "onScroll"
 return true
 }

 override fun onShowPress(event: MotionEvent) {
 binding.gestureStatusText.text = "onShowPress"
 }

 override fun onSingleTapUp(event: MotionEvent): Boolean {
 binding.gestureStatusText.text = "onSingleTapUp"
 return true
 }

 override fun onDoubleTap(event: MotionEvent): Boolean {
 binding.gestureStatusText.text = "onDoubleTap"
 return true
 }

 override fun onDoubleTapEvent(event: MotionEvent): Boolean {
 binding.gestureStatusText.text = "onDoubleTapEvent"
 return true
 }

 override fun onSingleTapConfirmed(event: MotionEvent): Boolean
{
 binding.gestureStatusText.text = "onSingleTapConfirmed"
 return true
 }
}

Note that many of these methods return true. This indicates to the Android
Framework that the method has consumed the event and does not need to be
passed to the next event handler in the stack.

36.4 Creating the GestureDetector Instance
With the activity class now updated to implement the listener interfaces, the
next step is to create an instance of the GestureDetector class. Since this
only needs to be performed once at the point that the activity is created, the
best place for this code is in the onCreate() method. Since we also want to
detect double taps, the code also needs to call the
setOnDoubleTapListener() method of the GestureDetector instance:
.
.
class MainActivity : AppCompatActivity(),
GestureDetector.OnGestureListener,
GestureDetector.OnDoubleTapListener
{
 private lateinit var binding: ActivityMainBinding
 var gDetector: GestureDetector? = null

 override fun onCreate(savedInstanceState: Bundle?) {
.
.
 this.gDetector = GestureDetector(this, this)

 gDetector?.setOnDoubleTapListener(this)
 }
.
.

36.5 Implementing the onTouchEvent() Method
If the application were to be compiled and run at this point, nothing would
happen if gestures were performed on the device display. This is because no
code has been added to intercept touch events and to pass them through to
the GestureDetector instance. To achieve this, it is necessary to override the
onTouchEvent() method within the activity class and implement it such that
it calls the onTouchEvent() method of the GestureDetector instance.
Remaining in the MainActivity.kt file, therefore, implement this method so
that it reads as follows:
override fun onTouchEvent(event: MotionEvent): Boolean {
 this.gDetector?.onTouchEvent(event)
 // Be sure to call the superclass implementation
 return super.onTouchEvent(event)
}

36.6 Testing the Application
Compile and run the application on either a physical Android device or an
AVD emulator. Once launched, experiment with swipes, presses, scrolling
motions, and double and single taps. Note that the text view updates to
reflect the events as illustrated in Figure 36-2:

Figure 36-2
36.7 Summary

Any physical contact between the user and the touchscreen display of a
device can be considered a “gesture”. Lacking the physical keyboard and
mouse pointer of a traditional computer system, gestures are widely used as
a method of interaction between the user and the application. While a
gesture can comprise just about any sequence of motions, there is a widely
used set of gestures with which users of touchscreen devices have become
familiar. Some of these so-called “common gestures” can be easily detected
within an application by using the Android Gesture Detector classes. In this
chapter, the use of this technique has been outlined both in theory and
through the implementation of an example project.
Having covered common gestures in this chapter, the next chapter will look
at detecting a wider range of gesture types, including the ability to design
and detect your own gestures.

37. Implementing Custom Gesture
and Pinch Recognition on Android
The previous chapter covered the detection of what is referred to as
“common gestures” from within an Android application. In practice,
however, a gesture can conceivably involve just about any sequence of
touch motions on the display of an Android device. In recognition of this,
the Android SDK allows custom gestures of just about any nature to be
defined by the application developer and used to trigger events when
performed by the user. This is a multi-stage process, the details of which are
the topic of this chapter.

37.1 The Android Gesture Builder Application
The Android SDK allows developers to design custom gestures stored in a
gesture file bundled with an Android application package. These custom
gesture files are most easily created using the Gesture Builder application.
Creating a gestures file involves launching the Gesture Builder application
on a physical device or emulator and “drawing” the gestures that will need
to be detected by the application. Once the gestures have been designed, the
file containing the gesture data can be downloaded and added to the
application project. Within the application code, the file is loaded into an
instance of the GestureLibrary class, which can be used to search for
matches to any gestures the user performs on the device display.

37.2 The GestureOverlayView Class
To facilitate the detection of gestures within an application, the Android
SDK provides the GestureOverlayView class. This transparent view can be
placed over other views in the user interface to detect gestures.

37.3 Detecting Gestures
Gestures are detected by loading the gestures file created using the Gesture
Builder app and then registering a GesturePerformedListener event listener
on an instance of the GestureOverlayView class. The enclosing class is then
declared to implement both the OnGesturePerformedListener interface and
the corresponding onGesturePerformed callback method required by that

interface. If the listener detects a gesture, the Android runtime system
triggers a call to the onGesturePerformed callback method.

37.4 Identifying Specific Gestures
When a gesture is detected, the onGesturePerformed callback method is
called and passed as arguments a reference to the GestureOverlayView
object on which the gesture was detected, together with a Gesture object
containing information about the gesture.
With access to the Gesture object, the GestureLibrary can compare the
detected gesture to those contained in the gestures file previously loaded
into the application. The GestureLibrary reports the probability that the
gesture performed by the user matches an entry in the gestures file by
calculating a prediction score for each gesture. A prediction score of 1.0 or
greater is generally accepted as a good match between a gesture stored in
the file and that performed by the user on the device display.

37.5 Installing and Running the Gesture Builder
Application
The easiest way to create a gestures file is to use an app allowing gesture
motions to be captured and saved. Although Google originally provided an
app for this purpose, it has not been maintained adequately for use on more
recent versions of Android. Fortunately, an alternative is available in the
form of the Gesture Builder Tool app, which is available from the Google
Play Store at the following URL:
https://play.google.com/store/apps/details?id=migueldp.runeforge

37.6 Creating a Gestures File
Once the Gesture Builder Tool has loaded, click on the Create New Gesture
button at the bottom of the device screen and “draw” a gesture using a
circular motion on the gray canvas, as illustrated in Figure 37-1. Assuming
that the gesture appears as required (represented by the yellow line on the
device screen), click on the save button to add the gesture to the gestures
file, entering “Circle Gesture” when prompted for a name:

https://play.google.com/store/apps/details?id=migueldp.runeforge

Figure 37-1
After the gesture has been saved, the Gesture Builder Tool will display a list
of currently defined gestures that will consist solely of the new Circle
Gesture.

37.7 Creating the Example Project
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.
Enter CustomGestures into the Name field and specify
com.ebookfrenzy.customgestures as the package name. Before clicking the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin. Adapt the project to use view
binding as outlined in section 18.8 Migrating a Project to View Binding.

37.8 Extracting the Gestures File from the SD Card
As each gesture was created within the Gesture Builder application, it was
added to a file named gesture.txt, located in the storage of the emulator or
device on which the app was running. However, before this file can be
added to an Android Studio project, it must be copied off the device storage
and saved to the local file system. This is most easily achieved using the
Android Studio Device File Explorer tool window. Display this tool using

the View -> Tool Windows -> Device File Explorer menu option. Once
displayed, select the device or emulator on which the gesture file was
created from the drop-down menu, then navigate through the filesystem to
the following folder:
/storage/emulated/0/Android/data/migueldp.runeforge/files/gestures.
txt

Locate the gesture.txt file in this folder, right-click on it, select the Save
As… menu option, and save the file to a temporary location as a file named
gestures.

Figure 37-2
Once the gestures file has been created and pulled from the device storage,
it can be added to an Android Studio project as a resource file.

37.9 Adding the Gestures File to the Project
Within the Android Studio Project tool window, locate and right-click on
the res folder (located under app) and select New -> Directory from the
resulting menu. In the New Directory dialog, enter raw as the folder name
and tap the keyboard enter key. Using the appropriate file explorer utility
for your operating system type, locate the gestures file previously pulled
from the device storage and copy and paste it into the new raw folder in the
Project tool window.

37.10 Designing the User Interface
This example application calls for a user interface consisting of a
ConstraintLayout view with a GestureOverlayView layered on it to
intercept any gestures the user performs. Locate the app -> res -> layout ->
activity_main.xml file, double-click on it to load it into the Layout Editor
tool, and select and delete the default TextView widget.
Switch the layout editor Code mode and modify the XML so that it reads as
follows:
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity" >

 <android.gesture.GestureOverlayView
 android:id="@+id/gOverlay"
 android:layout_width="0dp"
 android:layout_height="0dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

</androidx.constraintlayout.widget.ConstraintLayout>

37.11 Loading the Gestures File
Now that the gestures file has been added to the project, the next step is to
write some code to load the file when the activity starts. For this project, the
code to achieve this will be added to the MainActivity class as follows:
package com.ebookfrenzy.customgestures

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import android.gesture.GestureLibraries
import android.gesture.GestureLibrary
import android.gesture.GestureOverlayView
import

android.gesture.GestureOverlayView.OnGesturePerformedListener

import
com.ebookfrenzy.customgestures.databinding.ActivityMainBinding

class MainActivity : AppCompatActivity(),
OnGesturePerformedListener {

 private lateinit var binding: ActivityMainBinding
 private var gLibrary: GestureLibrary? = null

 override fun onCreate(savedInstanceState: Bundle?) {
.
.
 gestureSetup()
 }

 private fun gestureSetup() {
 gLibrary = GestureLibraries.fromRawResource(this,
 R.raw.gestures)
 if (gLibrary?.load() == false) {
 finish()
 }
 }
.
.
}

In addition to some necessary import directives, the above code also creates
a GestureLibrary instance named gLibrary and then loads into it the
contents of the gesture file located in the raw resources folder. The activity
class has also been modified to implement the
OnGesturePerformedListener interface, which requires adding the
onGesturePerformed callback method (which will be created later in this
chapter).

37.12 Registering the Event Listener
For the activity to receive a notification that the user has performed a
gesture on the screen, it is necessary to register the
OnGesturePerformedListener event listener on the gLayout view as
outlined in the following code fragment:

private fun gestureSetup() {
 gLibrary = GestureLibraries.fromRawResource(this,
 R.raw.gesture)
 if (gLibrary?.load() == false) {
 finish()
 }

 binding.gOverlay.addOnGesturePerformedListener(this)
}

37.13 Implementing the onGesturePerformed Method
All that remains before an initial test run of the application can be
performed is to implement the OnGesturePerformed callback method. This
is the method that will be called when a gesture is performed on the
GestureOverlayView instance:
package com.ebookfrenzy.customgestures
.
.
import android.widget.Toast
import android.gesture.Gesture

class MainActivity : AppCompatActivity(),
OnGesturePerformedListener {
.
.
 override fun onGesturePerformed(overlay: GestureOverlayView,
 gesture: Gesture) {

 val predictions = gLibrary?.recognize(gesture)

 predictions?.let {
 if (it.size > 0 && it[0].score > 1.0) {
 val action = it[0].name
 Toast.makeText(this, action,
Toast.LENGTH_SHORT).show()
 }
 }
 }
}

When the Android runtime detects a gesture on the gesture overlay view
object, the onGesturePerformed method is called. Passed through as

arguments are a reference to the GestureOverlayView object on which the
gesture was detected together with an object of type Gesture. The Gesture
class is designed to hold the information that defines a specific gesture
(essentially a sequence of timed points on the screen depicting the path of
the strokes that comprise a gesture).
The Gesture object is passed through to the recognize() method of our
gLibrary instance to compare the current gesture with each gesture loaded
from the gesture file. Once this task is complete, the recognize() method
returns an ArrayList object containing a Prediction object for each
comparison performed. The list is ranked in order from the best match (at
position 0 in the array) to the worst. Contained within each prediction
object is the name of the corresponding gesture from the gesture file and a
prediction score indicating how closely it matches the current gesture.
The code in the above method, therefore, takes the prediction at position 0
(the closest match), makes sure it has a score of greater than 1.0, and then
displays a Toast message (an Android class designed to display notification
pop-ups to the user) displaying the name of the matching gesture.

37.14 Testing the Application
Build and run the application on an emulator or a physical Android device
and perform the circle gesture on the display. When performed, the toast
notification should appear containing the name of the detected gesture. Note
that when a gesture is recognized, it is outlined on the display with a bright
yellow line, while gestures about which the overlay is uncertain appear as a
faint yellow line. While useful during development, this is probably not
ideal for a real-world application. Therefore, there is still some more
configuration work to do.

37.15 Configuring the GestureOverlayView
By default, the GestureOverlayView is configured to display yellow lines
during gestures. The color that draws recognized and unrecognized gestures
can be defined via the android:gestureColor and
android:uncertainGestureColor attributes. For example, to hide the gesture
lines, modify the activity_main.xml file in the example project as follows:
<android.gesture.GestureOverlayView
 android:id="@+id/gOverlay"

 android:layout_width="0dp"
 android:layout_height="0dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 android:gestureColor="#00000000"
 android:uncertainGestureColor="#00000000" />

On re-running the application, gestures should now be invisible (since they
are drawn in white on the white background of the ConstraintLayout view).

37.16 Intercepting Gestures
The GestureOverlayView is, as previously described, a transparent overlay
that may be positioned over the top of other views. This leads to the
question of whether events intercepted by the gesture overlay should be
passed on to the underlying views when a gesture has been recognized. This
is controlled via the android:eventsInterceptionEnabled property of the
GestureOverlayView instance. When set to true, the gesture events are not
passed to the underlying views when a gesture is recognized. This can be a
particularly useful setting when gestures are being performed over a view
that might be configured to scroll in response to certain gestures. Setting
this property to true will avoid gestures also being interpreted as
instructions to the underlying view to scroll in a particular direction.

37.17 Detecting Pinch Gestures
Before moving on from touch handling in general and gesture recognition
in particular, the last topic of this chapter is handling pinch gestures. While
it is possible to create and detect a wide range of gestures using the steps
outlined in the previous sections of this chapter, it is, in fact, not possible to
detect a pinching gesture (where two fingers are used in a stretching and
pinching motion, typically to zoom in and out of a view or image) using the
techniques discussed so far.
The simplest method for detecting pinch gestures is to use the Android
ScaleGestureDetector class. In general terms, detecting pinch gestures
involves the following three steps:
1.Declaration of a new class which implements the

SimpleOnScaleGestureListener interface, including the required

onScale(), onScaleBegin(), and onScaleEnd() callback methods.
2.Creation of an instance of the ScaleGestureDetector class, passing

through an instance of the class created in step 1 as an argument.
3. Implementing the onTouchEvent() callback method on the enclosing

activity, which, in turn, calls the onTouchEvent() method of the
ScaleGestureDetector class.

In the remainder of this chapter, we will create an example designed to
demonstrate the implementation of pinch gesture recognition.

37.18 A Pinch Gesture Example Project
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.
Enter PinchExample into the Name field and specify
com.ebookfrenzy.pinchexample as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin. Convert the project to use
view binding by following the steps in 18.8 Migrating a Project to View
Binding.
Within the activity_main.xml file, select the default TextView object and
use the Attributes tool window to set the ID to myTextView.
Locate and load the MainActivity.kt file into the Android Studio editor and
modify the file as follows:
package com.ebookfrenzy.pinchexample

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import android.view.MotionEvent
import android.view.ScaleGestureDetector
import
android.view.ScaleGestureDetector.SimpleOnScaleGestureListener

import com.ebookfrenzy.pinchexample.databinding.ActivityMainBinding

class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 private var scaleGestureDetector: ScaleGestureDetector? = null

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
.
.
 scaleGestureDetector = ScaleGestureDetector(this,
 MyOnScaleGestureListener())
 }

 override fun onTouchEvent(event: MotionEvent): Boolean {
 scaleGestureDetector?.onTouchEvent(event)
 return true
 }

 inner class MyOnScaleGestureListener :
SimpleOnScaleGestureListener() {
 override fun onScale(detector: ScaleGestureDetector):
Boolean {
 val scaleFactor = detector.scaleFactor
 if (scaleFactor > 1) {
 binding.myTextView.text = "Zooming In"
 } else {
 binding.myTextView.text = "Zooming Out"
 }
 return true
 }

 override fun onScaleBegin(detector: ScaleGestureDetector):
Boolean {
 return true
 }

 override fun onScaleEnd(detector: ScaleGestureDetector) {
 }
 }
}

The code declares a new class named MyOnScaleGestureListener,
extending the Android SimpleOnScaleGestureListener class. This interface
requires that three methods (onScale(), onScaleBegin(), and onScaleEnd())
be implemented. In this instance, the onScale() method identifies the scale
factor and displays a message on the text view indicating the type of pinch

gesture detected.
Within the onCreate() method, a new ScaleGestureDetector instance is
created, passing through a reference to the enclosing activity and an
instance of our new MyOnScaleGestureListener class as arguments. Finally,
an onTouchEvent() callback method is implemented for the activity, which
calls the corresponding onTouchEvent() method of the
ScaleGestureDetector object, passing through the MotionEvent object as an
argument.
Compile and run the application on an emulator or physical Android device
and perform pinching gestures on the screen, noting that the text view
displays either the zoom-in or zoom-out message depending on the
pinching motion. Pinching gestures may be simulated within the emulator
in stand-alone mode by holding down the Ctrl (or macOS Cmd) key and
clicking and dragging the mouse pointer, as shown in Figure 37-3:

Figure 37-3
37.19 Summary
A gesture is the motion of points of contact on a touch screen involving one
or more strokes and can be used as a method of communication between the
user and the application. Android allows gestures to be designed using the
Gesture Builder application. Once created, gestures can be saved to a
gestures file and loaded into an activity at application runtime using the
GestureLibrary.
Gestures can be detected on areas of the display by overlaying existing
views with instances of the transparent GestureOverlayView class and
implementing an OnGesturePerformedListener event listener. Using the
GestureLibrary, a ranked list of matches between a gesture performed by

the user and the gestures stored in a gestures file may be generated, using a
prediction score to decide whether a gesture is a close enough match.
Pinch gestures may be detected by implementing the ScaleGestureDetector
class, an example of which was also provided in this chapter.

38. An Introduction to Android
Fragments
As you progress through the chapters of this book, it will become
increasingly evident that many of the design concepts behind the Android
system were conceived to promote the reuse of and interaction between the
different elements that make up an application. One such area that will be
explored in this chapter involves using Fragments.
This chapter will provide an overview of the basics of fragments in terms of
what they are and how they can be created and used within applications.
The next chapter will work through a tutorial designed to show fragments in
action when developing applications in Android Studio, including the
implementation of communication between fragments.

38.1 What is a Fragment?
A fragment is a self-contained, modular section of an application’s user
interface and corresponding behavior that can be embedded within an
activity. Fragments can be assembled to create an activity during the
application design phase and added to or removed from an activity during
application runtime to create a dynamically changing user interface.
Fragments may only be used as part of an activity and cannot be
instantiated as standalone application elements. However, a fragment can be
considered a functional “sub-activity” with its own lifecycle similar to that
of a full activity.
Fragments are stored in the form of XML layout files. They may be added
to an activity by placing appropriate <fragment> elements in the activity’s
layout file or through code within the activity’s class implementation.

38.2 Creating a Fragment
The two components that make up a fragment are an XML layout file and a
corresponding Kotlin class. The XML layout file for a fragment takes the
same format as a layout for any other activity layout and can contain any
combination and complexity of layout managers and views. The following
XML layout, for example, is for a fragment consisting of a

ConstraintLayout with a red background containing a single TextView with
a white foreground:
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/constraintLayout"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@android:color/holo_red_dark"
 tools:context=".FragmentOne">

 <TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="My First Fragment"
 android:textAppearance="@style/TextAppearance.AppCompat.Lar
ge"
 android:textColor="@color/white"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />
</androidx.constraintlayout.widget.ConstraintLayout>

The corresponding class to go with the layout must be a subclass of the
Android Fragment class. This class should, at a minimum, override the
onCreateView() method, which is responsible for loading the fragment
layout. For example:
package com.example.myfragmentdemo

import android.os.Bundle
import android.view.LayoutInflater
import android.view.View
import android.view.ViewGroup
import androidx.fragment.app.Fragment

class FragmentOne : Fragment() {

 private var _binding: FragmentTextBinding? = null

 private val binding get() = _binding!!

 override fun onCreateView(
 inflater: LayoutInflater, container: ViewGroup?,
 savedInstanceState: Bundle?
): View? {
 _binding = FragmentTextBinding.inflate(inflater, container,
false)
 return binding.root
 }
}

In addition to the onCreateView() method, the class may
also override the standard lifecycle methods.
Once the fragment layout and class have been created, the fragment is ready
to be used within application activities.

38.3 Adding a Fragment to an Activity using the
Layout XML File
Fragments may be incorporated into an activity by writing Kotlin code or
embedding the fragment into the activity’s XML layout file. Regardless of
the approach used, a key point to be aware of is that when the support
library is being used for compatibility with older Android releases, any
activities using fragments must be implemented as a subclass of
FragmentActivity instead of the AppCompatActivity class:
package com.example.myFragmentDemo

import androidx.fragment.app.FragmentActivity
import android.os.Bundle

class MainActivity : FragmentActivity() {
.
.

Fragments are embedded into activity layout files using the
FragmentContainerView class. The following example layout embeds the
fragment created in the previous section of this chapter into an activity
layout:
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <androidx.fragment.app.FragmentContainerView
 android:id="@+id/fragment2"
 android:name="com.ebookfrenzy.myfragmentdemo.FragmentOne"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="32dp"
 android:layout_marginEnd="32dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 tools:layout="@layout/fragment_one" />
</androidx.constraintlayout.widget.ConstraintLayout>

The key properties within the <fragment> element are android:name, which
must reference the class associated with the fragment, and tools:layout,
which must reference the XML resource file containing the fragment’s
layout.
Once added to the layout of an activity, fragments may be viewed and
manipulated within the Android Studio Layout Editor tool. Figure 38-1, for
example, shows the above layout with the embedded fragment within the
Android Studio Layout Editor:

Figure 38-1
38.4 Adding and Managing Fragments in Code
The ease of adding a fragment to an activity via the activity’s XML layout
file comes at the cost of the activity not being able to remove the fragment
at runtime. To achieve full dynamic control of fragments during runtime,
those activities must be added via code. This has the advantage that the
fragments can be added, removed, and even made to replace one another
dynamically while the application is running.
When using code to manage fragments, the fragment will still consist of an
XML layout file and a corresponding class. The difference comes when
working with the fragment within the hosting activity. There is a standard
sequence of steps when adding a fragment to an activity using code:
1.Create an instance of the fragment’s class.
2.Pass any additional intent arguments through to the class instance.
3.Obtain a reference to the fragment manager instance.
4.Call the beginTransaction() method on the fragment manager instance.

This returns a fragment transaction instance.
5.Call the add() method of the fragment transaction instance, passing

through as arguments the resource ID of the view that is to contain the
fragment and the fragment class instance.

6.Call the commit() method of the fragment transaction.

The following code, for example, adds a fragment defined by the
FragmentOne class so that it appears in the container view with an ID of
LinearLayout1:
val firstFragment = FragmentOne()
firstFragment.arguments = intent.extras
val transaction = fragmentManager.beginTransaction()
transaction.add(R.id.LinearLayout1, firstFragment)
transaction.commit()

The above code breaks down each step into a separate statement for clarity.
The last four lines can, however, be abbreviated into a single line of code as
follows:
supportFragmentManager.beginTransaction().add(
 R.id.LinearLayout1, firstFragment).commit()

Once added to a container, a fragment may subsequently be removed via a
call to the remove() method of the fragment transaction instance, passing
through a reference to the fragment instance that is to be removed:
transaction.remove(firstFragment)

Similarly, one fragment may be replaced with another by a call to the
replace() method of the fragment transaction instance. This takes as
arguments the ID of the view containing the fragment and an instance of the
new fragment. The replaced fragment may also be placed on what is
referred to as the back stack so that it can be quickly restored if the user
navigates back to it. This is achieved by making a call to the
addToBackStack() method of the fragment transaction object before making
the commit() method call:
val secondFragment = FragmentTwo()
transaction.replace(R.id.LinearLayout1, secondFragment)
transaction.addToBackStack(null)
transaction.commit()

38.5 Handling Fragment Events
As previously discussed, a fragment is like a sub-activity with its layout,
class, and lifecycle. The view components (such as buttons and text views)
within a fragment can generate events like regular activity. This raises the
question of which class receives an event from a view in a fragment, the
fragment itself, or the activity in which the fragment is embedded. The
answer to this question depends on how the event handler is declared.

In the chapter entitled “An Overview and Example of Android Event
Handling”, two approaches to event handling were discussed. The first
method involved configuring an event listener and callback method within
the activity’s code. For example:
binding.button.setOnClickListener { // Code to be performed on
button click }

In the case of intercepting click events, the second approach involved
setting the android:onClick property within the XML layout file:
<Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="onClick"
 android:text="Click me" />

The general rule for events generated by a view in a fragment is that if the
event listener were declared in the fragment class using the event listener
and callback method approach, the event would be handled first by the
fragment. However, if the android:onClick resource is used, the event will
be passed directly to the activity containing the fragment.

38.6 Implementing Fragment Communication
Once one or more fragments are embedded within an activity, the chances
are good that some form of communication will need to take place between
the fragments and the activity and between one fragment and another. Good
practice dictates that fragments do not communicate directly with one
another. All communication should take place via the encapsulating activity.
To communicate with a fragment, the activity must identify the fragment
object via the ID assigned to it. Once this reference has been obtained, the
activity can call the public methods of the fragment object.
Communicating in the other direction (from fragment to activity) is a little
more complicated. In the first instance, the fragment must define a listener
interface, which is then implemented within the activity class. For example,
the following code declares a ToolbarListener interface on a fragment
named ToolbarFragment. The code also declares a variable in which a
reference to the activity will later be stored:
class ToolbarFragment : Fragment() {

 var activityCallback: ToolbarFragment.ToolbarListener? = null

 interface ToolbarListener {
 fun onButtonClick(fontsize: Int, text: String)
 }
.
.
}

The above code dictates that any class that implements the ToolbarListener
interface must also implement a callback method named onButtonClick
which, in turn, accepts an integer and a String as arguments.
Next, the onAttach() method of the fragment class needs to be overridden
and implemented. This method is called automatically by the Android
system when the fragment has been initialized and associated with an
activity. The method is passed a reference to the activity in which the
fragment is contained. The method must store a local reference to this
activity and verify that it implements the ToolbarListener interface:
override fun onAttach(context: Context?) {
 super.onAttach(context)
 try {
 activityCallback = context as ToolbarListener
 } catch (e: ClassCastException) {
 throw ClassCastException(context?.toString()
 + " must implement ToolbarListener")
 }
}

Upon execution of this example, a reference to the activity will be stored in
the local activityCallback variable, and an exception will be thrown if that
activity does not implement the ToolbarListener interface.
The next step is to call the callback method of the activity from within the
fragment. When and how this happens depends entirely on the
circumstances under which the activity needs to be contacted by the
fragment. The following code, for example, calls the callback method on
the activity when a button is clicked:
override fun onButtonClick(arg1: Int, arg2: String) {
 activityCallback.onButtonClick(arg1, arg2)
}

All that remains is to modify the activity class to implement the

ToolbarListener interface. For example:
class MainActivity : FragmentActivity(),
 ToolbarFragment.ToolbarListener {

 override fun onButtonClick(arg1: Int, arg2: String) {
 // Implement code for callback method
 }
.
.
}

As we can see from the above code, the activity declares that it implements
the ToolbarListener interface of the ToolbarFragment class and then
proceeds to implement the onButtonClick() method as required by the
interface.

38.7 Summary
Fragments provide a powerful mechanism for creating reusable modules of
user interface layout and application behavior, which, once created, can be
embedded in activities. A fragment consists of a user interface layout file
and a class. Fragments may be utilized in an activity by adding the fragment
to the activity’s layout file or writing code to manage the fragments at
runtime. Fragments added to an activity in code can be removed and
replaced dynamically at runtime. All communication between fragments
should be performed via the activity within which the fragments are
embedded.
Having covered the basics of fragments in this chapter, the next chapter will
work through a tutorial designed to reinforce the techniques outlined in this
chapter.

39. Using Fragments in Android
Studio - An Example
As outlined in the previous chapter, fragments provide a convenient
mechanism for creating reusable modules of application functionality
consisting of both sections of a user interface and the corresponding
behavior. Once created, fragments can be embedded within activities.
Having explored the general theory of fragments in the previous chapter,
this chapter aims to create an example Android application using Android
Studio designed to demonstrate the actual steps involved in creating and
using fragments and implementing communication between one fragment
and another within an activity.

39.1 About the Example Fragment Application
The application created in this chapter will consist of a single activity and
two fragments. The user interface for the first fragment will contain a
toolbar consisting of an EditText view, a SeekBar, and a Button, all
contained within a ConstraintLayout view. The second fragment will
consist solely of a TextView object within a ConstraintLayout view.
The two fragments will be embedded within the main activity of the
application and communication implemented such that when the button in
the first fragment is pressed, the text entered into the EditText view will
appear on the TextView of the second fragment using a font size dictated by
the position of the SeekBar in the first fragment.
Since this application is intended to work on earlier versions of Android, we
will need to use the appropriate Android support library.

39.2 Creating the Example Project
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.
Enter FragmentExample into the Name field and specify
com.ebookfrenzy.fragmentexample as the package name. Before clicking the
Finish button, change the Minimum API level setting to API 26: Android

8.0 (Oreo) and the Language menu to Kotlin. Modify the project to use
view binding using the steps outlined in 18.8 Migrating a Project to View
Binding.

39.3 Creating the First Fragment Layout
The next step is to create the user interface for the first fragment used
within our activity.
This user interface will consist of an XML layout file and a fragment class.
While these could be added manually, it is quicker to ask Android Studio to
create them for us. Within the project tool window, locate the app ->
kotlin+java -> com.ebookfrenzy.fragmentexample entry and right-click on
it. From the resulting menu, select the New -> Fragment -> Gallery...
option to display the dialog shown in Figure 39-1 below:

Figure 39-1
Select the Fragment (Blank) template before clicking the Next button. On
the subsequent screen, name the fragment ToolbarFragment with a layout
file named fragment_toolbar:

Figure 39-2
Load the fragment_toolbar.xml file into the layout editor using Design
mode. Next, right-click on the FrameLayout entry in the Component Tree
panel and select the Convert FrameLayout to ConstraintLayout menu
option, accepting the default settings in the confirmation dialog. Change the
id from to constraintLayout. Ensure that Autoconnect mode is enabled, then
select and delete the default TextView and add Plain Text, Seekbar, and
Button widgets to the layout so that their positions match those shown in
Figure 39-3. Finally, change the view ids to editText1, seekBar1, and
button1, respectively.
Change the text on the button to read “Change Text”, extract the text to a
string resource named change_text, and remove the Name text from the
EditText view. Finally, set the layout_width property of the Seekbar to
match_constraint with margins set to 16dp on the left and right edges.
Use the Infer constraints toolbar button to add any missing constraints, at
which point the layout should match that shown in Figure 39-3 below:

Figure 39-3
39.4 Migrating a Fragment to View Binding
As with the Empty Views Activity template, Android Studio does not
enable view binding support when new fragments are added to a project.
Therefore, we will need to perform this migration before moving to the next
step of this tutorial. Begin by editing the ToolbarFragment.kt file and
importing the binding for the fragment as follows:
import
com.ebookfrenzy.fragmentexample.databinding.FragmentToolbarBinding

Next, locate the onCreateView() method and make the following
declarations and changes (which also include adding the onDestroyView()
method to ensure that the binding reference is removed when the fragment
is destroyed):
.
.
private var _binding: FragmentToolbarBinding? = null
private val binding get() = _binding!!
.
.
override fun onCreateView(
 inflater: LayoutInflater, container: ViewGroup?,
 savedInstanceState: Bundle?
): View? {
 return inflater.inflate(R.layout.fragment_toolbar, container,
false)
 _binding = FragmentToolbarBinding.inflate(inflater, container,
false)
 return binding.root
}

override fun onDestroyView() {
 super.onDestroyView()
 _binding = null
}

Once these changes are complete, the fragment is ready to use view
binding.

39.5 Adding the Second Fragment
Repeating the steps to create the toolbar fragment, add another blank
fragment named TextFragment with a layout file named fragment_text.
Once again, convert the FrameLayout container to a ConstraintLayout
(changing the id to constraintLayout2) and remove the default TextView.
Drag a drop a TextView widget from the palette and position it in the center
of the layout, using the Infer constraints button to add any missing
constraints. Change the id of the TextView to textView2, the text to read
“Fragment Two” and modify the textSize attribute to 24sp.
On completion, the layout should match that shown in Figure 39-4:

Figure 39-4
Repeat the steps performed in the previous section to migrate the
TextFragment class to use view binding as follows:
.
.
import
com.ebookfrenzy.fragmentexample.databinding.FragmentTextBinding
.
.

private var _binding: FragmentTextBinding? = null
private val binding get() = _binding!!
.
.
override fun onCreateView(
 inflater: LayoutInflater, container: ViewGroup?,
 savedInstanceState: Bundle?
): View? {
 return inflater.inflate(R.layout.fragment_text, container,
false)
 _binding = FragmentTextBinding.inflate(inflater, container,
false)
 return binding.root
}

39.6 Adding the Fragments to the Activity
The main activity for the application has associated with it an XML layout
file named activity_main.xml. For this example, the fragments will be added
to the activity using the <fragment> element within this file. Using the
Project tool window, navigate to the app -> res -> layout section of the
FragmentExample project and double-click on the activity_main.xml file to
load it into the Android Studio Layout Editor tool.
With the Layout Editor tool in Design mode, select and delete the default
TextView object from the layout and select the Common category in the
palette. Drag the FragmentContainerView component from the list of views
and drop it onto the layout so that it is centered horizontally and positioned
such that the dashed line appears, indicating the top layout margin:

Figure 39-5
On dropping the fragment onto the layout, a dialog will appear displaying a
list of Fragments available within the current project, as illustrated in Figure
39-6:

Figure 39-6
Select the ToolbarFragment entry from the list and click OK to dismiss the
Fragments dialog. Once added, click the red warning button in the top right-
hand corner of the layout editor to display the Problems tool window. An
unknown fragments message will indicate that the Layout Editor tool needs
to know which fragment to display during the preview session. Select the
Unknown fragment item, then click on the Pick Layout... link in the right-
hand panel as shown in Figure 39-7:

Figure 39-7
In the resulting dialog (Figure 39-8), select the fragment_toolbar entry and
then click OK:

Figure 39-8
With the fragment selected, change the layout_width property to
match_constraint so that it occupies the full width of the screen. Click and
drag another FragmentContainerView entry from the palette and position it
so that it is centered horizontally and located beneath the bottom edge of the
first fragment. When prompted, select the TextFragment entry from the
fragment dialog before clicking OK. Display the Problems tool window and
repeat the previous steps, this time selecting the fragment_text layout. Use
the Infer constraints button to establish any missing layout constraints.
Note that the fragments are now visible in the layout, as demonstrated in
Figure 39-9:

Figure 39-9
Before proceeding to the next step, select the TextFragment instance in the
layout and, within the Attributes tool window, change the ID of the
fragment to text_fragment.

39.7 Making the Toolbar Fragment Talk to the
Activity
When the user touches the button in the toolbar fragment, the fragment
class will need to extract the text from the EditText view and the current
value of the SeekBar and send them to the text fragment. As outlined in
“An Introduction to Android Fragments”, fragments should not
communicate with each other directly, instead using the activity in which
they are embedded as an intermediary.
The first step in this process is ensuring that the toolbar fragment responds

to the clicked button. We also need to implement some code to keep track
of the value of the SeekBar view. For this example, we will implement
these listeners within the ToolbarFragment class. Select the
ToolbarFragment.kt file and modify it so that it reads as shown in the
following listing:
package com.ebookfrenzy.fragmentexample
.
.
import android.widget.SeekBar
import android.content.Context
.
.
class ToolbarFragment : Fragment(), SeekBar.OnSeekBarChangeListener
{
.
.
 var seekvalue = 10
.
.
 override fun onViewCreated(view: View, savedInstanceState:
Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 binding.seekBar1.setOnSeekBarChangeListener(this)
 binding.button1.setOnClickListener { v: View ->
buttonClicked(v) }
 }

 private fun buttonClicked(view: View) {

 }

 override fun onProgressChanged(seekBar: SeekBar, progress: Int,
 fromUser: Boolean) {
 seekvalue = progress
 }

 override fun onStartTrackingTouch(arg0: SeekBar) {
 }

 override fun onStopTrackingTouch(arg0: SeekBar) {
 }

.

.
}

Before moving on, we need to take some time to explain the above code
changes. First, the class is declared as implementing the
OnSeekBarChangeListener interface. This is because the user interface
contains a SeekBar instance, and the fragment needs to receive notifications
when the user slides the bar to change the font size. Implementation of the
OnSeekBarChangeListener interface requires that the
onProgressChanged(), onStartTrackingTouch(), and onStopTrackingTouch()
methods be implemented. These methods have been implemented, but only
the onProgressChanged() method is required to perform a task, in this case,
storing the new value in a variable named seekvalue, which was declared at
the start of the class. Also declared is a variable to store a reference to the
EditText object.
The onViewCreated() method has been added to set up an onClickListener
on the button, which is configured to call a method named buttonClicked()
when a click event is detected. This method is also then implemented,
though it does not do anything at this point.
The next phase of this process is to set up the listener that will allow the
fragment to call the activity when the button is clicked. This follows the
mechanism outlined in the previous chapter:
class ToolbarFragment : Fragment(), SeekBar.OnSeekBarChangeListener
{
.
.
 var seekvalue = 10

 var activityCallback: ToolbarFragment.ToolbarListener? = null

 interface ToolbarListener {
 fun onButtonClick(fontSize: Int, text: String)
 }

 override fun onAttach(context: Context) {
 super.onAttach(context)
 try {
 activityCallback = context as ToolbarListener

 } catch (e: ClassCastException) {
 throw ClassCastException(context.toString()
 + " must implement
ToolbarListener")
 }
 }
.
.
 private fun buttonClicked(view: View) {
 activityCallback?.onButtonClick(seekvalue,
 binding.editText1.text.toString())
 }
.
.
}

The above implementation will result in a method named onButtonClick()
belonging to the activity class being called when the user clicks the button.
All that remains, therefore, is to declare that the activity class implements
the newly created ToolbarListener interface and to implement the
onButtonClick() method.
Since the Android Support Library is being used for fragment support in
earlier Android versions, the activity also needs to be changed to subclass
from FragmentActivity instead of AppCompatActivity. Bringing these
requirements together results in the following modified MainActivity.kt file:
package com.ebookfrenzy.fragmentexample
.
.
import androidx.appcompat.app.AppCompatActivity
import androidx.fragment.app.FragmentActivity
.
.
class MainActivity : FragmentActivity(),
 ToolbarFragment.ToolbarListener {
.
.
 override fun onButtonClick(fontSize: Int, text: String) {

 }
}

With the code changes as they currently stand, the toolbar fragment will

detect when the user clicks the button and call a method on the activity
passing through the content of the EditText field and the current setting of
the SeekBar view. It is now the job of the activity to communicate with the
Text Fragment and to pass along these values so that the fragment can
update the TextView object accordingly.

39.8 Making the Activity Talk to the Text Fragment
As “An Introduction to Android Fragments” outlined, an activity can
communicate with a fragment by obtaining a reference to the fragment class
instance and then calling public methods on the object. As such, within the
TextFragment class, we will now implement a public method named
changeTextProperties() which takes as arguments an integer for the font
size and a string for the new text to be displayed. The method will then use
these values to modify the TextView object. Within the Android Studio
editing panel, locate and modify the TextFragment.kt file to add this new
method:
package com.ebookfrenzy.fragmentexample
.
.
class TextFragment : Fragment() {
.
.
 fun changeTextProperties(fontSize: Int, text: String)
 {
 binding.textView2.textSize = fontSize.toFloat()
 binding.textView2.text = text
 }
.
.
}

When the TextFragment fragment was placed in the activity’s layout, it was
given an ID of text_fragment. Using this ID, it is now possible for the
activity to obtain a reference to the fragment instance and call the
changeTextProperties() method on the object. Edit the MainActivity.kt file
and modify the onButtonClick() method as follows:
override fun onButtonClick(fontSize: Int, text: String) {

 val textFragment = supportFragmentManager.findFragmentById(

R.id.text_fragment) as TextFragment

 textFragment.changeTextProperties(fontSize, text)
}

39.9 Testing the Application
With the coding for this project now complete, the last remaining task is to
run the application. When the application is launched, the main activity will
start and will, in turn, create and display the two fragments. When the user
touches the button in the toolbar fragment, the onButtonClick() method of
the activity will be called by the toolbar fragment and passed the text from
the EditText view and the current value of the SeekBar. The activity will
then call the changeTextProperties() method of the second fragment, which
will modify the TextView to reflect the new text and font size:

Figure 39-10
39.10 Summary
The goal of this chapter was to work through creating an example project to
demonstrate the steps involved in using fragments within an Android
application. Topics covered included using the Android Support Library for
compatibility with Android versions predating the introduction of
fragments, including fragments within an activity layout, and implementing
inter-fragment communication.

40. Modern Android App
Architecture with Jetpack
For many years, Google did not recommend a specific approach to building
Android apps other than to provide tools and development kits while letting
developers decide what worked best for a particular project or individual
programming style. That changed in 2017 with the introduction of the
Android Architecture Components, which, in turn, became part of Android
Jetpack when it was released in 2018.
This chapter provides an overview of the concepts of Jetpack, Android app
architecture recommendations, and some key architecture components.
Once the basics have been covered, these topics will be covered in more
detail and demonstrated through practical examples in later chapters.

40.1 What is Android Jetpack?
Android Jetpack consists of Android Studio, the Android Architecture
Components, the Android Support Library, and a set of guidelines
recommending how an Android App should be structured. The Android
Architecture Components are designed to make it quicker and easier to
perform common tasks when developing Android apps while also
conforming to the key principle of the architectural guidelines.
While all Android Architecture Components will be covered in this book,
this chapter will focus on the key architectural guidelines and the
ViewModel, LiveData, and Lifecycle components while introducing Data
Binding and Repositories.
Before moving on, it is important to understand that the Jetpack approach to
app development is optional. While highlighting some of the shortcomings
of other techniques that have gained popularity over the years, Google
stopped short of completely condemning those approaches to app
development. Google is taking the position that while there is no right or
wrong way to develop an app, there is a recommended way.

40.2 The “Old” Architecture
In the chapter entitled “Creating an Example Android App in Android

Studio”, an Android project was created consisting of a single activity that
contained all of the code for presenting and managing the user interface
together with the back-end logic of the app. Until the introduction of
Jetpack, the most common architecture followed this paradigm with apps
consisting of multiple activities (one for each screen within the app), with
each activity class to some degree mixing user interface and back-end code.
This approach led to a range of problems related to the lifecycle of an app
(for example, an activity is destroyed and recreated each time the user
rotates the device leading to the loss of any app data that had not been saved
to some form of persistent storage) as well as issues such as inefficient
navigation involving launching a new activity for each app screen accessed
by the user.

40.3 Modern Android Architecture
At the most basic level, Google now advocates single-activity apps where
different screens are loaded as content within the same activity.
Modern architecture guidelines also recommend separating different areas
of responsibility within an app into entirely separate modules (a concept
referred to as “separation of concerns”). One of the keys to this approach is
the ViewModel component.

40.4 The ViewModel Component
The purpose of ViewModel is to separate the user interface-related data
model and logic of an app from the code responsible for displaying and
managing the user interface and interacting with the operating system.
When designed this way, an app will consist of one or more UI Controllers,
such as an activity, together with ViewModel instances responsible for
handling the data those controllers need.
The ViewModel only knows about the data model and corresponding logic.
It knows nothing about the user interface and does not attempt to directly
access or respond to events relating to views within the user interface.
When a UI controller needs data to display, it asks the ViewModel to
provide it. Similarly, when the user enters data into a view within the user
interface, the UI controller passes it to the ViewModel for handling.
This separation of responsibility addresses the issues relating to the

lifecycle of UI controllers. Regardless of how often the UI controller is
recreated during the lifecycle of an app, the ViewModel instances remain in
memory, thereby maintaining data consistency. For example, a ViewModel
used by an activity will remain in memory until the activity finishes, which,
in the single activity app, is not until the app exits.

Figure 40-1
40.5 The LiveData Component
Consider an app that displays real-time data, such as the current price of a
financial stock. The app could use a stock price web service to continuously
update the data model within the ViewModel with the latest information.
This real-time data is of use only if it is displayed to the user promptly.
There are only two ways that the UI controller can ensure that the latest
data is displayed in the user interface. One option is for the controller to
continuously check with the ViewModel to determine if the data has
changed since it was last displayed. However, the problem with this
approach is that it could be more efficient. To maintain the real-time nature
of the data feed, the UI controller would have to run on a loop, continuously
checking for the data to change.
A better solution would be for the UI controller to receive a notification
when a specific data item within a ViewModel changes. This is made
possible by using the LiveData component. LiveData is a data holder that
allows a value to become observable. In basic terms, an observable object
can notify other objects when changes to its data occur, thereby solving the
problem of ensuring that the user interface always matches the data within

the ViewModel.
This means, for example, that a UI controller interested in a ViewModel
value can set up an observer, which will, in turn, be notified when that value
changes. In our hypothetical application, for example, the stock price would
be wrapped in a LiveData object within the ViewModel, and the UI
controller would assign an observer to the value, declaring a method to be
called when the value changes. When triggered by data change, this method
will read the updated value from the ViewModel and use it to update the
user interface.

Figure 40-2
A LiveData instance may also be declared as mutable, allowing the
observing entity to update the underlying value held within the LiveData
object. The user might, for example, enter a value in the user interface that
needs to overwrite the value stored in the ViewModel.
Another of the key advantages of using LiveData is that it is aware of the
lifecycle state of its observers. If, for example, an activity contains a
LiveData observer, the corresponding LiveData object will know when the
activity’s lifecycle state changes and respond accordingly. If the activity is
paused (perhaps the app is put into the background), the LiveData object
will stop sending events to the observer. Suppose the activity has just
started or resumes after being paused. In that case, the LiveData object will
send a LiveData event to the observer so that the activity has the most up-
to-date value. Similarly, the LiveData instance will know when the activity
is destroyed and remove the observer to free up resources.

So far, we’ve only talked about UI controllers using observers. In practice,
however, an observer can be used within any object that conforms to the
Jetpack approach to lifecycle management.

40.6 ViewModel Saved State
Android allows the user to place an active app in the background and return
to it after performing other tasks on the device (including running other
apps). When a device runs low on resources, the operating system will
rectify this by terminating background app processes, starting with the least
recently used app. However, when the user returns to the terminated
background app, it should appear in the same state as when it was placed in
the background, regardless of whether it was terminated. In terms of the
data associated with a ViewModel, this can be implemented using the
ViewModel Saved State module. This module allows values to be stored in
the app’s saved state and restored in case of system-initiated process
termination. This topic will be covered later in the “An Android ViewModel
Saved State Tutorial” chapter.

40.7 LiveData and Data Binding
Android Jetpack includes the Data Binding Library, which allows data in a
ViewModel to be mapped directly to specific views within the XML user
interface layout file. In the AndroidSample project created earlier, code had
to be written to obtain references to the EditText and TextView views and to
set and get the text properties to reflect data changes. Data binding allows
the LiveData value stored in the ViewModel to be referenced directly
within the XML layout file avoiding the need to write code to keep the
layout views updated.

Figure 40-3
Data binding will be covered in greater detail, starting with the chapter “An
Overview of Android Jetpack Data Binding”.

40.8 Android Lifecycles
The duration from when an Android component is created to the point that
it is destroyed is called the lifecycle. During this lifecycle, the component
will change between different lifecycle states, usually under the operating
system’s control and in response to user actions. An activity, for example,
will begin in the initialized state before transitioning to the created state.
Once the activity runs, it will switch to the started state, from which it will
cycle through various states, including created, started, resumed, and
destroyed.
Many Android Framework classes and components allow other objects to
access their current state. Lifecycle observers may also be used so that an
object receives a notification when the lifecycle state of another object
changes. The ViewModel component uses this technique behind the scenes
to identify when an observer has restarted or been destroyed. This
functionality is not limited to Android framework and architecture
components. It may also be built into any other classes using a set of
lifecycle components included with the architecture components.
Objects that can detect and react to lifecycle state changes in other objects
are said to be lifecycle-aware. In contrast, objects that provide access to
their lifecycle state are called lifecycle owners. The chapter entitled

“Working with Android Lifecycle-Aware Components” will cover
Lifecycles in greater detail.

40.9 Repository Modules
If a ViewModel obtains data from one or more external sources (such as
databases or web services, it is important to separate the code involved in
handling those data sources from the ViewModel class. Failure to do this
would, after all, violate the separation of concerns guidelines. To avoid
mixing this functionality with the ViewModel, Google’s architecture
guidelines recommend placing this code in a separate Repository module.
A repository is not an Android architecture component but a Kotlin class
created by the app developer that is responsible for interfacing with the
various data sources. The class then provides an interface to the
ViewModel, allowing that data to be stored in the model.

Figure 40-4
40.10 Summary
Until recently, Google has tended not to recommend any particular
approach to structuring an Android app. That has now changed with the
introduction of Android Jetpack, consisting of tools, components, libraries,

and architecture guidelines. Google now recommends that an app project be
divided into separate modules, each responsible for a particular area of
functionality, otherwise known as “separation of concerns”.
In particular, the guidelines recommend separating the view data model of
an app from the code responsible for handling the user interface. In
addition, the code responsible for gathering data from data sources such as
web services or databases should be built into a separate repository module
instead of being bundled with the view model.
Android Jetpack includes the Android Architecture Components, designed
to make developing apps that conform to the recommended guidelines
easier. This chapter has introduced the ViewModel, LiveData, and Lifecycle
components. These will be covered in more detail, starting with the next
chapter. Other architecture components not mentioned in this chapter will
be covered later in the book.

41. An Android ViewModel Tutorial
The previous chapter introduced the fundamental concepts of Android
Jetpack and outlined the basics of modern Android app architecture. Jetpack
defines a set of recommendations describing how an Android app project
should be structured while providing a set of libraries and components that
make it easier to conform to these guidelines to develop reliable apps with
less coding and fewer errors.
To help reinforce and clarify the information provided in the previous
chapter, this chapter will step through creating an example app project that
uses the ViewModel component. The next chapter will further enhance this
example by including LiveData and data binding support.

41.1 About the Project
In the chapter entitled “Creating an Example Android App in Android
Studio”, a project named AndroidSample was created in which all of the
code for the app was bundled into the main Activity class file. In the
following chapter, an AVD emulator was created and used to run the app.
While the app was running, we experienced first-hand the problems that
occur when developing apps in this way when the data displayed on a
TextView widget was lost during a device rotation.
This chapter will implement the same currency converter app, using the
ViewModel component and following the Google app architecture
guidelines to avoid Activity lifecycle complications.

41.2 Creating the ViewModel Example Project
When the AndroidSample project was created, the Empty Views Activity
template was chosen as the basis for the project. However, the Basic Views
Template template will be used for this project.
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Basic Views Activity template
before clicking on the Next button.
Enter ViewModelDemo into the Name field and specify
com.ebookfrenzy.viewmodeldemo as the package name. Before clicking on
the Finish button, change the Minimum API level setting to API 26:

Android 8.0 (Oreo) and the Language menu to Kotlin.

41.3 Removing Unwanted Project Elements
As outlined in the “A Guide to the Android Studio Layout Editor Tool”, the
Basic Views Activity template includes features not required by all projects.
Before adding the ViewModel to the project, we first need to remove the
navigation features, the second content fragment, and the floating action
button as follows:
1.Double-click on the activity_main.xml layout file in the Project tool

window, select the floating action button, and tap the keyboard delete key
to remove the object from the layout.

2.Edit the MainActivity.kt file and remove the floating action button code
from the onCreate method as follows:

override fun onCreate(savedInstanceState: Bundle?) {
.
.
 binding.fab.setOnClickListener { view ->
 Snackbar.make(view, "Replace with your own action",
Snackbar.LENGTH_LONG)
 .setAnchorView(R.id.fab)
 .setAction("Action", null).show()
 }
}

3.Within the Project tool window, navigate to and double-click on the app -
> res -> navigation -> nav_graph.xml file to load it into the navigation
editor.

4.Within the editor, select the SecondFragment entry in the graph panel and
tap the keyboard delete key to remove it from the graph.

5.Locate and delete the SecondFragment.kt and fragment_second.xml files.
6.The final task is to remove some code from the FirstFragment class so

that the Button view no longer navigates to the now non-existent second
fragment when clicked. Edit the FirstFragment.kt file and remove the
code from the onViewCreated() method so that it reads as follows:

override fun onViewCreated(view: View, savedInstanceState: Bundle?)
{
 super.onViewCreated(view, savedInstanceState)

 binding.buttonFirst.setOnClickListener {
 findNavController().navigate(R.id.action_FirstFragment_to_S
econdFragment)
 }

}

41.4 Designing the Fragment Layout
The next step is to design the layout of the fragment. First, locate the
fragment_first.xml file in the Project tool window and double-click on it to
load it into the layout editor. Once the layout has loaded, select and delete
the existing Button, TextView, and ConstraintLayout components. Next,
right-click on the NestedScrollView instance in the Component Tree panel
and select the Convert NestedScrollView to ConstraintLayout menu option
as shown in Figure 41-1, and accept the default settings in the resulting
dialog:

Figure 41-1
Select the converted ConstraintLayout component and use the Attributes
tool window to change the id to constraintLayout.
Add a new TextView, position it in the center of the layout, and change the
id to resultText. Next, drag a Number (Decimal) view from the palette and
position it above the existing TextView. With the view selected in the
layout, refer to the Attributes tool window and change the id to dollarText.
Drag a Button widget onto the layout to position it below the TextView, and
change the text attribute to read “Convert”. With the button still selected,
change the id property to convertButton. At this point, the layout should
resemble that illustrated in Figure 41-2 (note that the three views have been
constrained using a vertical chain):

Figure 41-2
Finally, click on the warning icon in the top right-hand corner of the layout
editor and convert the hard-coded strings to resources.

41.5 Implementing the View Model
With the user interface layout completed, the data model for the app needs
to be created within the view model. Begin by locating the
com.ebookfrenzy.viewmodeldemo entry in the Project tool window, right-
clicking on it, and selecting the New -> Kotlin Class/File menu option.
Name the new class MainViewModel and press the keyboard enter key. Edit
the new class file so that it reads as follows:
package com.ebookfrenzy.viewmodeldemo

import androidx.lifecycle.ViewModel

class MainViewModel : ViewModel() {

 private val rate = 0.74f
 private var dollarText = ""
 private var result: Float = 0f

 fun setAmount(value: String) {
 this.dollarText = value
 result = value.toFloat() * rate
 }

 fun getResult(): Float {
 return result
 }
}

The class declares variables to store the current dollar string value and the
converted amount together with getter and setter methods to provide access
to those data values. When called, the setAmount() method takes the current
dollar amount as an argument and stores it in the local dollarText variable.
The dollar string value is converted to a floating point number, multiplied
by a fictitious exchange rate, and the resulting euro value is stored in the
result variable. The getResult() method, on the other hand, returns the
current value assigned to the result variable.

41.6 Associating the Fragment with the View Model
There needs to be some way for the fragment to obtain a reference to the
ViewModel to access the model and observe data changes. A Fragment or
Activity maintains references to the ViewModels on which it relies for data
using an instance of the ViewModelProvider class.
A ViewModelProvider instance is created using the ViewModelProvider
class from within the Fragment. When called, the class initializer is passed
a reference to the current Fragment or Activity and returns a
ViewModelProvider instance as follows:
val viewModelProvider = ViewModelProvider(this)

Once the ViewModelProvider instance has been created, an index value can
be used to request a specific ViewModel class. The provider will then either
create a new instance of that ViewModel class or return an existing
instance, for example:
val viewModel = ViewModelProvider(this)[MyViewModel::class.java]

Edit the FirstFragment.kt file and override the onCreate() method to set up
the ViewModelProvider:
.
.
import androidx.lifecycle.ViewModelProvider
.
.
class FirstFragment : Fragment() {
.

.
 private lateinit var viewModel: MainViewModel

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 viewModel = ViewModelProvider(this)
[MainViewModel::class.java]
 }
.
.

With access to the model view, code can now be added to the Fragment to
begin working with the data model.

41.7 Modifying the Fragment
The fragment class needs to be updated to react to button clicks and interact
with the data values stored in the ViewModel. The class will also need
references to the three views in the user interface layout to react to button
clicks, extract the current dollar value, and display the converted currency
amount.
In the chapter entitled “Creating an Example Android App in Android
Studio”, the onClick property of the Button widget was used to designate
the method to be called when the user clicks the button. Unfortunately, this
property can only call methods on an Activity and cannot be used to call a
method in a Fragment. To overcome this limitation, we must add some code
to the Fragment class to set up an onClick listener on the button. This can
be achieved in the onViewCreated() lifecycle method in the
FirstFragment.kt file as outlined below:
override fun onViewCreated(view: View, savedInstanceState: Bundle?)
{
 super.onViewCreated(view, savedInstanceState)

 binding.convertButton.setOnClickListener {

 }
}

With the listener added, any code placed within the onClick() method will
be called whenever the user clicks the button.

41.8 Accessing the ViewModel Data

When the button is clicked, the onClick() method needs to read the current
value from the EditText view, confirm that the field is not empty, and then
call the setAmount() method of the ViewModel instance. The method will
then need to call the ViewModel’s getResult() method and display the
converted value on the TextView widget.
Since LiveData has yet to be used in the project, it will also be necessary to
get the latest result value from the ViewModel each time the Fragment is
created.
Remaining in the FirstFragment.kt file, implement these requirements as
follows in the onViewCreated() method:
.
.
override fun onViewCreated(view: View, savedInstanceState: Bundle?)
{
 super.onViewCreated(view, savedInstanceState)

 binding.resultText.text = viewModel.getResult().toString()

 binding.convertButton.setOnClickListener {
 if (binding.dollarText.text.isNotEmpty()) {
 viewModel.setAmount(binding.dollarText.text.toString())
 binding.resultText.text =
viewModel.getResult().toString()
 } else {
 binding.resultText.text = "No Value"
 }
 }
}

41.9 Testing the Project
With this project development phase completed, build and run the app on
the simulator or a physical device, enter a dollar value, and click the
Convert button. The converted amount should appear on the TextView,
indicating that the UI controller and ViewModel re-structuring is working
as expected.
When the original AndroidSample app was run, rotating the device caused
the value displayed on the resultText TextView widget to be lost. Repeat
this test now with the ViewModelDemo app and note that the current euro

value is retained after the rotation. This is because the ViewModel remained
in memory as the Fragment was destroyed and recreated, and code was
added to the onViewCreated() method to update the TextView with the
result data value from the ViewModel each time the Fragment re-started.
While this is an improvement on the original AndroidSample app, much
more can be done to simplify the project by using LiveData and data
binding, both of which are the topics of the next chapters.

41.10 Summary
In this chapter, we revisited the AndroidSample project created earlier in
the book and created a new version of the project structured to comply with
the Android Jetpack architectural guidelines. The example project also
demonstrated the use of ViewModels to separate data handling from user
interface-related code. Finally, the chapter showed how the ViewModel
approach avoids problems handling Fragment and Activity lifecycles.

42. An Android Jetpack LiveData
Tutorial
The previous chapter began building an app to conform to the
recommended Jetpack architecture guidelines. These initial steps involved
implementing the data model for the app user interface within a ViewModel
instance.
This chapter will further enhance the app design using the LiveData
architecture component. Once LiveData support has been added to the
project in this chapter, the next chapters (starting with “An Overview of
Android Jetpack Data Binding”) will use the Jetpack Data Binding library
to eliminate even more code from the project.

42.1 LiveData - A Recap
LiveData was previously introduced in the “Modern Android App
Architecture with Jetpack” chapter. As described earlier, the LiveData
component can be used as a wrapper around data values within a view
model. Once contained in a LiveData instance, those variables become
observable to other objects within the app, typically UI controllers such as
Activities and Fragments. This allows the UI controller to receive a
notification whenever the underlying LiveData value changes. An observer
is set up by creating an instance of the Observer class and defining an
onChange() method to be called when the LiveData value changes. Once
the Observer instance has been created, it is attached to the LiveData object
via a call to the LiveData object’s observe() method.
LiveData instances can be declared mutable using the MutableLiveData
class, allowing both the ViewModel and UI controller to change the
underlying data value.

42.2 Adding LiveData to the ViewModel
Launch Android Studio, open the ViewModelDemo project created in the
previous chapter, and open the MainViewModel.kt file, which should
currently read as follows:
package com.ebookfrenzy.viewmodeldemo

import androidx.lifecycle.ViewModel

class MainViewModel : ViewModel() {

 private val rate = 0.74f
 private var dollarText = ""
 private var result: Float = 0f

 fun setAmount(value: String) {
 this.dollarText = value
 result = value.toFloat() * rate
 }

 fun getResult(): Float {
 return result
 }
}

This stage in the chapter aims to wrap the result variable in a
MutableLiveData instance (the object will need to be mutable so that the
value can be changed each time the user requests a currency conversion).
Begin by modifying the class so that it now reads as follows, noting that an
additional package needs to be imported when making use of LiveData:
package com.ebookfrenzy.viewmodeldemo

import androidx.lifecycle.ViewModel
import androidx.lifecycle.MutableLiveData

class MainViewModel : ViewModel() {

 private val rate = 0.74f
 private var dollarText = ""
 private var result: Float = 0f
 private var result: MutableLiveData<Float> = MutableLiveData()

 fun setAmount(value: String) {
 this.dollarText = value
 result = value.toFloat() * rate
 }

 fun getResult(): Float {
 return result
 }

}

Now that the result variable is contained in a mutable LiveData instance,
both the setAmount() and getResult() methods must be modified. In the case
of the setAmount() method, a value can no longer be assigned to the result
variable using the assignment (=) operator. Instead, the LiveData setValue()
method must be called, passing through the new value as an argument. As
currently implemented, the getResult() method is declared to return a Float
value and must be changed to return a MutableLiveData object. Making
these remaining changes results in the following class file:
package com.ebookfrenzy.viewmodeldemo

import androidx.lifecycle.ViewModel
import androidx.lifecycle.MutableLiveData

class MainViewModel : ViewModel() {

 private val rate = 0.74f
 private var dollarText = ""
 private var result: MutableLiveData<Float> = MutableLiveData()

 fun setAmount(value: String) {
 this.dollarText = value
 result = value.toFloat() * rate
 result.value = value.toFloat() * rate
 }
 fun getResult(): Float {
 fun getResult(): MutableLiveData<Float> {
 return result
 }
}

42.3 Implementing the Observer
Now that the conversion result is contained within a LiveData instance, the
next step is configuring an observer within the UI controller, which, in this
example, is the FirstFragment class. Locate the FirstFragment.kt class (app
-> kotlin+java -> <package name> -> FirstFragment), double-click on it
to load it into the editor, and modify the onViewCreated() method to create
a new Observer instance named resultObserver:
.
.

import androidx.lifecycle.Observer
.
.
override fun onViewCreated(view: View, savedInstanceState: Bundle?)
{
 super.onViewCreated(view, savedInstanceState)

 binding.resultText.text = viewModel.getResult().toString()

 val resultObserver = Observer<Float> {
 result -> binding.resultText.text = result.toString()
 }
.
.
}

The resultObserver instance declares lambda code which, when called, is
passed the current result value, which it then converts to a string and
displays on the resultText TextView object. The next step is to add the
observer to the result LiveData object, a reference that can be obtained via a
call to the getResult() method of the ViewModel object. Since updating the
result TextView is now the responsibility of the onChanged() callback
method, the existing lines of code to perform this task can now be deleted:
override fun onViewCreated(view: View, savedInstanceState: Bundle?)
{
 super.onViewCreated(view, savedInstanceState)

 binding.resultText.text = viewModel.getResult().toString()

 val resultObserver = Observer<Float> {
 result -> binding.resultText.text = result.toString()
 }

 viewModel.getResult().observe(viewLifecycleOwner,
resultObserver)

 binding.convertButton.setOnClickListener {
 if (binding.dollarText.text.isNotEmpty()) {
 viewModel.setAmount(binding.dollarText.text.toString())
 binding.resultText.text =
viewModel.getResult().toString()
 } else {
 binding.resultText.text = "No Value"

 }
 }
}

Compile and run the app, enter a value into the dollar field, click on the
Convert button, and verify that the converted euro amount appears on the
TextView. This confirms that the observer received notification that the
result value had changed and called the onChanged() method to display the
latest data.
Note in the above implementation of the onViewCreated() method that the
line of code responsible for displaying the current result value each time the
method was called was removed. This was originally put in place to ensure
that the displayed value was recovered if the Fragment was recreated for
any reason. Because LiveData monitors the lifecycle status of its observers,
this step is no longer necessary. When LiveData detects that the UI
controller was recreated, it automatically triggers any associated observers
and provides the latest data. Verify this by rotating the device while a euro
value is displayed on the TextView object and confirming that the value is
not lost.
Before moving on to the next chapter, close the project, copy the
ViewModelDemo project folder, and save it as ViewModelDemo_LiveData
to be used later when saving the ViewModel state.

42.4 Summary
This chapter demonstrated the use of the Android LiveData component to
ensure that the data displayed to the user always matches that stored in the
ViewModel. This relatively simple process consisted of wrapping a
ViewModel data value within a LiveData object and setting up an observer
within the UI controller subscribed to the LiveData value. Each time the
LiveData value changes, the observer is notified, and the onChanged()
method is called and passed the updated value.
Adding LiveData support to the project has gone some way towards
simplifying the design of the project. Additional and significant
improvements are also possible using the Data Binding Library, details of
which will be covered in the next chapter.

43. An Overview of Android Jetpack
Data Binding
In the chapter entitled “Modern Android App Architecture with Jetpack”,
we introduced the concept of Android Data Binding. We explained how it is
used to directly connect the views in a user interface layout to the methods
and data located in other objects within an app without the need to write
code. This chapter will provide more details on data binding, emphasizing
how data binding is implemented within an Android Studio project. The
tutorial in the next chapter (“An Android Jetpack Data Binding Tutorial”)
will provide a practical example of data binding in action.

43.1 An Overview of Data Binding
The Android Jetpack Data Binding Library provides data binding support,
primarily providing a simple way to connect the views in a user interface
layout to the data stored within the app’s code (typically within ViewModel
instances). Data binding also provides a convenient way to map user
interface controls, such as Button widgets, to event and listener methods
within other objects, such as UI controllers and ViewModel instances.
Data binding becomes particularly powerful when used in conjunction with
the LiveData component. Consider, for example, an EditText view bound to
a LiveData variable within a ViewModel using data binding. When
connected in this way, any changes to the data value in the ViewModel will
automatically appear within the EditText view, and when using two-way
binding, any data typed into the EditText will automatically be used to
update the LiveData value. Perhaps most impressive is that this can be
achieved with no code beyond that necessary to initially set up the binding.
Connecting an interactive view, such as a Button widget, to a method within
a UI controller traditionally required that the developer write code to
implement a listener method to be called when the button is clicked. Data
binding makes this as simple as referencing the method to be called within
the Button element in the layout XML file.

43.2 The Key Components of Data Binding
An Android Studio project is not configured for data binding support by

default. Several elements must be combined before an app can begin using
data binding. These involve the project build configuration, the layout XML
file, data binding classes, and the use of the data binding expression
language. While this may appear overwhelming at first, when taken
separately, these are quite simple steps that, once completed, are more than
worthwhile in terms of saved coding effort. Each element will be covered in
detail in the remainder of this chapter. Once these basics have been covered,
the next chapter will work through a detailed tutorial demonstrating these
steps.
43.2.1 The Project Build Configuration
Before a project can use data binding, it must be configured to use the
Android Data Binding Library and to enable support for data binding
classes and the binding syntax. Fortunately, this can be achieved with just a
few lines added to the module level build.gradle.kts file (the one listed as
build.gradle.kts (Module: app) under Gradle Scripts in the Project tool
window). The following lists a partial build file with data binding enabled:
.
.
android {

 buildFeatures {
 dataBinding = true
 }
.
.

43.2.2 The Data Binding Layout File
As we have seen in previous chapters, the user interfaces for an app are
typically contained within an XML layout file. Before the views contained
within one of these layout files can take advantage of data binding, the
layout file must be converted to a data binding layout file.
As outlined earlier in the book, XML layout files define the hierarchy of
components in the layout, starting with a top-level or root view. Invariably,
this root view takes the form of a layout container such as a
ConstraintLayout, FrameLayout, or LinearLayout instance, as is the case in
the fragment_main.xml file for the ViewModelDemo project:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/main"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".ui.main.MainFragment">
.
.
</androidx.constraintlayout.widget.ConstraintLayout>

To use data binding, the layout hierarchy must have a layout component as
the root view, which, in turn, becomes the parent of the current root view.
In the case of the above example, this would require that the following
changes be made to the existing layout file:
<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/andro
id"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/main"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".ui.main.MainFragment">
.
.
 </androidx.constraintlayout.widget.ConstraintLayout>
</layout>

43.2.3 The Layout File Data Element
The data binding layout file needs some way to declare the classes within
the project to which the views in the layout are to be bound (for example, a
ViewModel or UI controller). Having declared these classes, the layout file
will need a variable name to reference those instances within binding
expressions.

This is achieved using the data element, an example of which is shown
below:
<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <data>
 <variable
 name="myViewModel"
 type="com.ebookfrenzy.myapp.ui.main.MainViewModel" />
 </data>

 <androidx.constraintlayout.widget.ConstraintLayout
 android:id="@+id/main"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".ui.main.MainFragment">
.
.
</layout>

The above data element declares a new variable named myViewModel of
type MainViewModel (note that it is necessary to declare the full package
name of the MyViewModel class when declaring the variable).
The data element can import other classes that may then be referenced
within binding expressions elsewhere in the layout file. For example, if you
have a class containing a method that needs to be called on a value before it
is displayed to the user, the class could be imported as follows:
<data>
 <import type="com.ebookfrenzy.MyFormattingTools" />
 <variable
 name="viewModel"
 type="com.ebookfrenzy.myapp.ui.main.MainViewModel" />
 </data>

43.2.4 The Binding Classes
For each class referenced in the data element within the binding layout file,
Android Studio will automatically generate a corresponding binding class.
This subclass of the Android ViewDataBinding class will be named based

on the layout filename using word capitalization and the Binding suffix.
Therefore, the binding class for a layout file named fragment_main.xml file
will be named FragmentMainBinding. The binding class contains the
bindings specified within the layout file and maps them to the variables and
methods within the bound objects.
Although the binding class is generated automatically, code must be written
to create an instance of the class based on the corresponding data binding
layout file. Fortunately, this can be achieved by making use of the
DataBindingUtil class.
The initialization code for an Activity or Fragment will typically set the
content view or “inflate” the user interface layout file. This means that the
code opens the layout file, parses the XML, and creates and configures all
of the view objects in memory. In the case of an existing Activity class, the
code to achieve this can be found in the onCreate() method and will read as
follows:
setContentView(R.layout.activity_main)

In the case of a Fragment, this takes place in the onCreateView() method:
return inflater.inflate(R.layout.fragment_main, container, false)

All that is needed to create the binding class instances within an Activity
class is to modify this initialization code as follows:
lateinit var binding: ActivityMainBinding

binding = DataBindingUtil.inflate(
 inflater, R.layout.activity_main, container, false)

In the case of a Fragment, the code would read as follows:
lateinit var binding: FragmentMainBinding

binding = DataBindingUtil.inflate(
 inflater, R.layout.fragment_main, container, false)

binding.setLifecycleOwner(this)

return binding.root

43.2.5 Data Binding Variable Configuration
As outlined above, the data binding layout file contains the data element,
which contains variable elements consisting of variable names and the class

types to which the bindings are to be established. For example:
<data>
 <variable
 name="viewModel"
 type="com.ebookfrenzy.viewmodeldemo.ui.main.MainViewModel"
/>
 <variable
 name="uiController"
 type="com.ebookfrenzy.viewmodeldemo_databinding.ui.main
.MainFragment" />
</data>

In the above example, the first variable knows that it will be binding to an
instance of a ViewModel class of type MainViewModel but has yet to be
connected to an actual MainViewModel object instance. This requires the
additional step of assigning the MainViewModel instance used within the
app to the variable declared in the layout file. This is performed via a call to
the setVariable() method of the data binding instance, a reference to which
was obtained in the previous chapter:
var MainViewModel mViewModel =
 ViewModelProvider(this).get(MainViewModel::class.java)
binding.setVariable(mViewModel, viewModel)

The second variable in the above data element references a UI controller
class in the form of a Fragment named MainFragment. In this situation, the
code within a UI controller (be it an Activity or Fragment) would need to
assign itself to the variable as follows:
binding.setVariable(uiController, this)

43.2.6 Binding Expressions (One-Way)
Binding expressions define how a particular view interacts with bound
objects. For example, a binding expression on a Button might declare which
method on an object is called in response to a click. Alternatively, a binding
expression might define which data value stored in a ViewModel is to
appear within a TextView and how it is to be presented and formatted.
Binding expressions use a declarative language that allows logic and access
to other classes and methods to decide how bound data is used. Expressions
can, for example, include mathematical expressions, method calls, string
concatenations, access to array elements, and comparison operations. In
addition, all standard Java language libraries are imported by default, so

many things that can be achieved in Java or Kotlin can also be performed in
a binding expression. As already discussed, the data element may also be
used to import custom classes to add more capability to expressions.
A binding expression begins with an @ symbol followed by the expression
enclosed in curly braces ({}).
Consider, for example, a ViewModel instance containing a variable named
result. Assume that this class has been assigned to a variable named
viewModel within the data binding layout file and needs to be bound to a
TextView object so that the view always displays the latest result value. If
this value were stored as a String object, this would be declared within the
layout file as follows:
<TextView
 android:id="@+id/resultText"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@{viewModel.result}"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

In the above XML, the text property is set to the value stored in the result
LiveData property of the viewModel object.
Consider, however, that the result is stored within the model as a Float
value instead of a String. That being the case, the above expression would
cause a compilation error. Clearly, the Float value must be converted to a
string before the TextView can display it. To resolve issues such as this, the
binding expression can include the necessary steps to complete the
conversion using the standard Java language classes:
android:text="@{String.valueOf(viewModel.result)}"

When running the app after making this change, it is important to be aware
that the following warning may appear in the Android Studio console:
warning: myViewModel.result.getValue() is a boxed field but needs
to be un-boxed to execute
String.valueOf(viewModel.result.getValue()).

Values in Java can take the form of primitive values such as the boolean
type (referred to as being unboxed) or wrapped in a Java object such as the
Boolean type and accessed via reference to that object (i.e., boxed). The

unboxing process involves unwrapping the primitive value from the object.
To avoid this message, wrap the offending operation in a safeUnbox() call
as follows:
android:text="@{String.valueOf(safeUnbox(myViewModel.result))}"

String concatenation may also be used. For example, to include the word
“dollars” after the result string value, the following expression would be
used:
android:text='@{String.valueOf(safeUnbox(myViewModel.result)) + "
dollars"}'

Note that since the appended result string is wrapped in double quotes, the
expression is now encapsulated with single quotes to avoid syntax errors.
The expression syntax also allows ternary statements to be declared. In the
following expression, the view will display different text depending on
whether or not the result value is greater than 10.
@{myViewModel.result > 10 ? "Out of range" : "In range"}

Expressions may also be constructed to access specific elements in a data
array:
@{myViewModel.resultsArray[3]}

43.2.7 Binding Expressions (Two-Way)
The type of expression covered so far is called one-way binding. In other
words, the layout is constantly updated as the corresponding value changes,
but changes to the value from within the layout do not update the stored
value.
A two-way binding, on the other hand, allows the data model to be updated
in response to changes in the layout. An EditText view, for example, could
be configured with a two-way binding so that when the user enters a
different value, that value is used to update the corresponding data model
value. When declaring a two-way expression, the syntax is similar to a one-
way expression except that it begins with @=. For example:
android:text="@={myViewModel.result}"

43.2.8 Event and Listener Bindings
Binding expressions may also trigger method calls in response to events on
a view. A Button view, for example, can be configured to call a method
when clicked. In the chapter entitled “Creating an Example Android App in

Android Studio”, for example, the onClick property of a button was
configured to call a method within the app’s main activity named
convertCurrency(). Within the XML file, this was represented as follows:
android:onClick="convertCurrency"

The convertCurrency() method was declared along the following lines:
fun convertCurrency(view: View) {
.
.
}

Note that this type of method call is always passed a reference to the view
on which the event occurred. The same effect can be achieved in data
binding using the following expression (assuming the layout has been
bound to a class with a variable name of uiController):
android:onClick="@{uiController::convertCurrency}"

Another option, and one which provides the ability to pass parameters to the
method, is referred to as a listener binding. The following expression uses
this approach to call a method on the same viewModel instance with no
parameters:
android:onClick='@{() -> myViewModel.methodOne()}'

The following expression calls a method that expects three parameters:
android:onClick='@{() -> myViewModel.methodTwo(viewModel.result,
10, "A String")}'

Binding expressions provide a rich and flexible language to bind user
interface views to data and methods in other objects. This chapter has only
covered the most common use cases. To learn more about binding
expressions, review the Android documentation online at:
https://developer.android.com/topic/libraries/data-
binding/expressions

43.3 Summary
Android data bindings provide a system for creating connections between
the views in a user interface layout and the data and methods of other
objects within the app architecture without writing code. Once some initial
configuration steps have been performed, data binding involves using
binding expressions within the view elements of the layout file. These
binding expressions can be either one-way or two-way and may also be
used to bind methods to be called in response to events such as button

clicks within the user interface.

44. An Android Jetpack Data Binding
Tutorial
So far in this book, we have covered the basic concepts of modern Android
app architecture and looked in more detail at the ViewModel and LiveData
components. The concept of data binding was also covered in the previous
chapter and will now be used in this chapter to modify the
ViewModelDemo app further.

44.1 Removing the Redundant Code
If you still need to, copy the ViewModelDemo project folder and save it as
ViewModelDemo_LiveData for the next chapter. Once copied, open the
original ViewModelDemo project, ready to implement data binding.
Before implementing data binding within the ViewModelDemo app, the
power of data binding will be demonstrated by deleting all of the code
within the project that will no longer be needed by the end of this chapter.
Launch Android Studio, open the ViewModelDemo project, edit the
FirstFragment.kt file, and modify the code as follows:
package com.ebookfrenzy.viewmodeldemo
.
.
import androidx.lifecycle.Observer

class FirstFragment : Fragment() {
.
.
 override fun onViewCreated(view: View, savedInstanceState:
Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 val resultObserver = Observer<Float> {
 result -> binding.resultText.text =
result.toString()
 }

 viewModel.getResult().observe(viewLifecycleOwner,
resultObserver)

 binding.convertButton.setOnClickListener {
 if (binding.dollarText.text.isNotEmpty()) {
 viewModel.setAmount(binding.dollarText.text.toStrin
g())
 } else {
 binding.resultText.text = "No Value"
 }
 }
 }
}

Next, edit the MainViewModel.kt file and continue deleting code as follows
(note also the conversion of the dollarText variable to LiveData):
package com.ebookfrenzy.viewmodeldemo

import androidx.lifecycle.ViewModel
import androidx.lifecycle.MutableLiveData

class MainViewModel : ViewModel() {

 private val rate = 0.74f
 private var dollarText = ""
 var dollarValue: MutableLiveData<String> = MutableLiveData()
 private var result: MutableLiveData<Float> = MutableLiveData()

 fun setAmount(value: String) {
 this.dollarText = value
 result.value = value.toFloat() * rate
 }

 fun getResult(): MutableLiveData<Float> {
 return result
 }
}

Though we‘ll add a few additional lines of code in implementing data
binding, data binding has significantly reduced the amount of code that
needs to be written.

44.2 Enabling Data Binding
The first step in using data binding is to enable it within the Android Studio
project. This involves adding a new property to the Gradle Scripts ->
build.gradle.kts (Module :app) file.

Within the build.gradle.kts file, add the element below to enable data
binding within the project, and apply the Kotlin kapt plugin. This plugin is
required to process the data binding annotations that will be added to the
fragment XML layout file later in the chapter:
plugins {
 alias(libs.plugins.androidApplication)
 alias(libs.plugins.jetbrainsKotlinAndroid)
 id ("kotlin-kapt")
}

android {
.
.
 buildFeatures {
 viewBinding = true
 dataBinding = true
 }
.
.
}

Once the entry has been added, a bar will appear across the top of the editor
screen containing a Sync Now link. Click this to resynchronize the project
with the new build configuration settings.

44.3 Adding the Layout Element
As described in “An Overview of Android Jetpack Data Binding”, the
layout hierarchy must have a layout component as the root view to use data
binding. This requires that the following changes be made to the
fragment_first.xml layout file (app -> res -> layout -> fragment_first.xml).
Open this file in the layout editor tool, switch to Code mode, and make
these changes:
<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/andro
id"

 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/main"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".FirstFragment">
.
.
 </androidx.constraintlayout.widget.ConstraintLayout>
</layout>

Once these changes have been made, switch back to Design mode and note
that the new root view, though invisible in the layout canvas, is now listed
in the component tree, as shown in Figure 44-1:

Figure 44-1
Build and run the app to verify that adding the layout element has not
changed the user interface appearance.

44.4 Adding the Data Element to Layout File
The next step in converting the layout file to a data binding layout file is to
add the data element. For this example, the layout will be bound to
MainViewModel, so edit the fragment_first.xml file to add the data element
as follows:
<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <data>
 <variable
 name="myViewModel"
 type="com.ebookfrenzy.viewmodeldemo.MainViewModel" />

 </data>

 <androidx.constraintlayout.widget.ConstraintLayout
 android:id="@+id/main"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".FirstFragment">
.
.
</layout>

Build and rerun the app to ensure these changes take effect.

44.5 Working with the Binding Class
The next step is to modify the FirstFragment.kt file code to inflate the data
binding. This is best achieved by rewriting the onCreateView() method:
.
.
import androidx.databinding.DataBindingUtil
.
.
class FirstFragment : Fragment() {

 private var _binding: FragmentMainBinding? = null
 private val binding get() = _binding!!

 private lateinit var viewModel: MainViewModel
 lateinit var binding: FragmentFirstBinding

 override fun onCreateView(inflater: LayoutInflater, container:
ViewGroup?,
 savedInstanceState: Bundle?): View {

 _binding = FragmentMainBinding.inflate(inflater, container,
false)
 binding = DataBindingUtil.inflate(
 inflater, R.layout.fragment_first, container,
false)

 binding.lifecycleOwner = this
 return binding.root
 }

 override fun onDestroyView() {
 super.onDestroyView()
 _binding = null
 }
.
.

The old code inflated the fragment_first.xml layout file (in other words,
created the layout containing all of the view objects) and returned a
reference to the root view (the top-level layout container). The Data
Binding Library contains a utility class that provides a special inflation
method which, in addition to constructing the UI, also initializes and returns
an instance of the layout‘s data binding class. The new code calls this
method and stores a reference to the binding class instance in a variable:
binding = DataBindingUtil.inflate(
 inflater, R.layout.fragment_first, container,
false)

The binding object must only remain in memory for as long as the fragment
is present. To ensure that the instance is destroyed when the fragment goes
away, the current fragment is declared as the lifecycle owner for the binding
object.
binding.lifecycleOwner = this
return binding.getRoot

44.6 Assigning the ViewModel Instance to the Data
Binding Variable
At this point, the data binding knows it will be binding to an instance of a
class of type MainViewModel but has yet to be connected to an actual
MainViewModel object. This requires the additional step of assigning the
MainViewModel instance used within the app to the viewModel variable
declared in the layout file. Add this code to the onViewCreated() method in
the FirstFragment.kt file as follows:
.
.
import com.ebookfrenzy.viewmodeldemo.BR.myViewModel
.
.
override fun onViewCreated(view: View, savedInstanceState: Bundle?)
{

 super.onViewCreated(view, savedInstanceState)
 binding.setVariable(myViewModel, viewModel)
}
.
.

If Android Studio reports myViewModel as undefined, rebuild the project
using the Build -> Make Project menu option to force the class to be
generated. With these changes made, the next step is to insert some binding
expressions into the view elements of the data binding layout file.

44.7 Adding Binding Expressions
The first binding expression will bind the resultText TextView to the result
value within the model view. Edit the fragment_first.xml file, locate the
resultText element, and modify the text property so that the element reads
as follows:
<TextView
 android:id="@+id/resultText"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="TextView"
 android:text='@{safeUnbox(myViewModel.result) == 0.0 ? "Enter
value" : String.valueOf(safeUnbox(myViewModel.result)) + " euros"}'
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

The expression begins by checking if the result value is currently zero and,
if it is, displays a message instructing the user to enter a value. However, if
the result is not zero, the value is converted to a string and concatenated
with the word “euros” before being displayed to the user.
The result value only requires a one-way binding in that the layout does not
ever need to update the value stored in the ViewModel. The dollarValue
EditText view, on the other hand, needs to use two-way binding so that the
data model can be updated with the latest value entered by the user and to
allow the current value to be redisplayed in the view in the event of a
lifecycle event such as that triggered by a device rotation. The dollarText
element should now be declared as follows:
<EditText

 android:id="@+id/dollarText"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="96dp"
 android:ems="10"
 android:importantForAutofill="no"
 android:inputType="numberDecimal"
 android:text="@={myViewModel.dollarValue}"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintHorizontal_bias="0.502"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

Now that these initial binding expressions have been added, a method must
be written to perform the conversion when the user clicks on the Button
widget.

44.8 Adding the Conversion Method
When the Convert button is clicked, it will call a method on the ViewModel
to perform the conversion calculation and place the euro value in the result
LiveData variable. Add this method now within the MainViewModel.kt file:
.
.
class MainViewModel : ViewModel() {

 private val rate = 0.74f
 var dollarValue: MutableLiveData<String> = MutableLiveData()
 var result: MutableLiveData<Float> = MutableLiveData()

 fun convertValue() {
 dollarValue.let {
 if (!it.value.equals("")) {
 result.value = it.value?.toFloat()?.times(rate)
 } else {
 result.value = 0f
 }
 }
 }
}

Note that a zero value is assigned to the result LiveData variable in the
absence of a valid dollar value. This ensures that the binding expression

assigned to the resultText TextView displays the “Enter value” message if
no value has been entered by the user.

44.9 Adding a Listener Binding
The final step before testing the project is to add a listener binding
expression to the Button element within the layout file to call the
convertValue() method when the button is clicked. Edit the
fragment_first.xml file in Code mode once again, locate the convertButton
element, and add an onClick entry as follows:
<Button
 android:id="@+id/convertButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="@{() -> myViewModel.convertValue()}"
 android:text="@string/convert_text"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintHorizontal_bias="0.5"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/resultText" />

44.10 Testing the App
Compile and run the app and test that entering a value into the dollar field
and clicking on the Convert button displays the correct result on the
TextView (together with the “euros” suffix) and that the “Enter value”
prompt appears if a conversion is attempted while the dollar field is empty.
Also, verify that information displayed in the user interface is retained
through a device rotation.

44.11 Summary
The primary goal of this chapter has been to work through the steps
involved in setting up a project to use data binding and to demonstrate the
use of one-way, two-way, and listener binding expressions. The chapter also
provided a practical example of how much code writing is saved by using
data binding in conjunction with LiveData to connect the user interface
views with the back-end data and logic of the app.

45. An Android ViewModel Saved
State Tutorial
The preservation and restoration of app state is about presenting the user
with continuity in appearance and behavior after an app is placed in the
background. Users expect to be able to switch from one app to another and,
on returning to the original app, find it in the exact state it was in before the
switch took place.
As outlined in the chapter entitled “Understanding Android Application
and Activity Lifecycles”, when the user places an app in the background,
that app becomes eligible for termination by the operating system if
resources become constrained. When the user attempts to return the
terminated app to the foreground, Android relaunches the app in a new
process. Since this is all invisible to the user, it is the app’s responsibility to
restore itself to the same state it was in when it was originally placed in the
background instead of presenting itself in its “initial launch” state. In the
case of ViewModel-based apps, much of this behavior can be achieved
using the ViewModel Saved State module.

45.1 Understanding ViewModel State Saving
As outlined in the previous chapters, the ViewModel brings many benefits
to app development, including UI state restoration in the event of
configuration changes such as a device rotation. To see this in action, run
the ViewModelDemo app (or, if you still need to create the project, load
into Android Studio the ViewModelDemo_LiveData project from the
sample code download accompanying the book).
Once running, enter a dollar value and convert it to euros. With both the
dollar and euro values displayed, rotate the device or emulator and note that
both values are still visible once the app has responded to the orientation
change.
Unfortunately, this behavior does not extend to the termination of a
background app process. With the app still running, tap the device home
button to place the ViewModelDemo app in the background, then terminate
it by opening the Terminal tool window and running the following

command (where <package name> is the name you used when the project
was created, for example, com.ebookfrenzy.viewmodeldemo):
adb shell am kill <package name>

If the adb command is not found, refer to the chapter “Setting up an
Android Studio Development Environment” for steps to set up your Android
Studio environment.
Once the app has been terminated, return to the device or emulator and
select the app from the launcher (do not re-run the app from within Android
Studio). Once the app appears, it will do so as if it was just launched, with
the last dollar and euro values lost. From the user’s perspective, however,
the app was restored from the background and should still have contained
the original data. In this case, the app has failed to provide the continuity
that users have come to expect from Android apps.

45.2 Implementing ViewModel State Saving
Basic ViewModel state saving is made possible through the introduction of
the ViewModel Saved State library. This library extends the ViewModel
class to include support for maintaining state through the termination and
subsequent relaunch of a background process.
The key to saving state is the SavedStateHandle class which is used to save
and restore the state of a view model instance. A SavedStateHandle object
contains a key-value map that allows data values to be saved and restored
by referencing corresponding keys.
To support state saving, a different kind of ViewModel subclass needs to be
declared, in this case containing a constructor which can receive a
SavedStateHandle instance. Once declared, ViewModel instances of this
type can be created by including a SavedStateViewModelFactory object at
creation time. Consider the following code excerpt from a standard
ViewModel declaration:
package com.ebookfrenzy.viewmodeldemo

import androidx.lifecycle.ViewModel
import androidx.lifecycle.MutableLiveData

class MainViewModel : ViewModel() {
.

.
}

The code to create an instance of this class would likely resemble the
following:
private lateinit var viewModel: MainViewModel

viewModel = ViewModelProvider(this).get(MainViewModel::class.java)

A ViewModel subclass designed to support saved state, on the other hand,
would need to be declared as follows:
package com.ebookfrenzy.viewmodeldemo

import androidx.lifecycle.ViewModel
import androidx.lifecycle.MutableLiveData
import androidx.lifecycle.SavedStateHandle

class MainViewModel(private val savedStateHandle: SavedStateHandle)
: ViewModel() {
.
.
}

When instances of the above ViewModel are created, the
ViewModelProvider class initializer must be passed a
SavedStateViewModelFactory instance as follows:
private lateinit var viewModel: MainViewModel

val factory = SavedStateViewModelFactory(activity.application,
this)
viewModel = ViewModelProvider(this,
factory).get(MainViewModel::class.java)

45.3 Saving and Restoring State
An object or value can be saved from within the ViewModel by passing it
through to the set() method of the SavedStateHandle instance, providing the
key string by which it is to be referenced when performing a retrieval:
val NAME_KEY = "Customer Name"

savedStateHandle.set(NAME_KEY, customerName)

When used with LiveData objects, a previously saved value may be
restored using the getLiveData() method of the SavedStateHandle instance,

once again referencing the corresponding key as follows:
var restoredName: LiveData<String> =
savedStateHandle.getLiveData(NAME_KEY)

To restore a normal (non-LiveData) object, use the SavedStateHandle get()
method:
var restoredName: String? = savedStateHandle.get(NAME_KEY)

Other useful SavedStateHandle methods include the following:
•contains(String key) - Returns a boolean value indicating whether the
saved state contains a value for the specified key.

•remove(String key) - Removes the value and key from the saved state.
Returns the value that was removed.

•keys() - Returns a String set of all keys contained within the saved state.

45.4 Adding Saved State Support to the
ViewModelDemo Project
With the basics of ViewModel Saved State covered, the ViewModelDemo
app can be extended to include this support. Begin by loading the
ViewModelDemo_LiveData project created in “An Android Jetpack
LiveData Tutorial” into Android Studio (a copy of the project is also
available in the sample code download).
Next, modify the MainViewModel.kt file so the constructor accepts a
SavedStateHandle instance. Also, import
androidx.lifecycle.SavedStateHandle, declare a key string constant, and
modify the result LiveData variable so that the value is now obtained from
the saved state:
package com.ebookfrenzy.viewmodeldemo

import androidx.lifecycle.ViewModel
import androidx.lifecycle.MutableLiveData
import androidx.lifecycle.SavedStateHandle

const val RESULT_KEY = "Euro Value"

class MainViewModel(private val savedStateHandle: SavedStateHandle)
: ViewModel() {

 private val rate = 0.74f

 private var dollarText = ""
private var result: MutableLiveData<Float> =
 savedStateHandle.getLiveData(RESULT_KEY)
.
.

Remaining within the MainViewModel.kt file, modify the setAmount()
method to include code to save the result value each time a new euro
amount is calculated:
fun setAmount(value: String) {
 this.dollarText = value
 val convertedValue = value.toFloat() * rate
 result.value = convertedValue
 savedStateHandle[RESULT_KEY]
}

With the changes to the ViewModel complete, open the FirstFragment.kt
file and make the following alterations to include a Saved State factory
instance during the ViewModel creation process:
.
.
import androidx.lifecycle.SavedStateViewModelFactory
.
.
override fun onCreate(savedInstanceState: Bundle?) {
.
.
 activity?.application?.let {
 val factory = SavedStateViewModelFactory(it, this)
 viewModel =
 ViewModelProvider(this, factory)
[MainViewModel::class.java]
 }
 }
.
.
}

With the screen UI populated with dollar and euro values, place the app into
the background, terminate it using the adb tool, and then relaunch it from
the device or emulator screen. After restarting, the previous currency
amounts should still be visible in the TextView and EditText components,
confirming that the state was successfully saved and restored.

45.5 Summary
A well-designed app should always present the user with the same state
when brought forward from the background, regardless of whether the
operating system terminated the process containing the app in the interim.
When working with ViewModels, this can be achieved by taking advantage
of the ViewModel Saved State module. This involves modifying the
ViewModel constructor to accept a SavedStateHandle instance which, in
turn, can be used to save and restore data values via a range of method calls.
When the ViewModel instance is created, it must be passed a
SavedStateViewModelFactory instance. Once these steps have been
implemented, the app will automatically save and restore state during a
background termination.

46. Working with Android Lifecycle-
Aware Components
The earlier chapter, “Understanding Android Application and Activity
Lifecycles” described the use of lifecycle methods to track lifecycle state
changes within a UI controller such as an activity or fragment. One of the
main problems with these methods is that they place the burden of handling
lifecycle changes onto the UI controller. On the surface, this might seem
like the logical approach since the UI controller is, after all, the object going
through the state change. However, the fact is that the code typically
impacted by the state change invariably resides in other classes within the
app. This led to complex code appearing in the UI controller that needed to
manage and manipulate other objects in response to changes in the lifecycle
state. This scenario is best avoided when following the Android
architectural guidelines.
A much cleaner and more logical approach would be for the objects within
an app to be able to observe the lifecycle state of other objects and to be
responsible for taking any necessary actions in response to the changes. For
example, the class responsible for tracking a user’s location could observe
the lifecycle state of a UI controller and suspend location updates when the
controller enters a paused state. Tracking would then be restarted when the
controller enters the resumed state. This is made possible by the classes and
interfaces provided by the Lifecycle package bundled with the Android
architecture components.
This chapter will introduce the terminology and key components that enable
lifecycle awareness to be built into Android apps.

46.1 Lifecycle Awareness
An object is said to be lifecycle-aware if it can detect and respond to
changes in the lifecycle state of other objects within an app. Some Android
components, LiveData being a prime example, are already lifecycle-aware.
Configuring any class to be lifecycle-aware is also possible by
implementing the LifecycleObserver interface within the class.

46.2 Lifecycle Owners

Lifecycle-aware components can only observe the status of objects that are
lifecycle owners. Lifecycle owners implement the LifecycleOwner interface
and are assigned a companion Lifecycle object responsible for storing the
current state of the component and providing state information to lifecycle
observers. Most standard Android Framework components (such as activity
and fragment classes) are lifecycle owners. Custom classes may also be
configured as lifecycle owners using the LifecycleRegistry class and
implementing the LifecycleObserver interface. For example:
class SampleOwner(override val lifecycle: Lifecycle):
LifecycleOwner {

 private val lifecycleRegistry: LifecycleRegistry

 init {
 lifecycleRegistry = LifecycleRegistry(this)
 lifecycle.addObserver(DemoObserver())
 }
}

Unless the lifecycle owner is a subclass of another lifecycle-aware
component, the class will need to trigger lifecycle state changes via calls to
methods of the LifecycleRegistry class. The markState() method can be
used to trigger a lifecycle state change passing through the new state value:
fun resuming() {
 lifecycleRegistry.markState(Lifecycle.State.RESUMED)
}

The above call will also result in a call to the corresponding event handler.
Alternatively, the LifecycleRegistry handleLifecycleEvent() method may be
called and passed the lifecycle event to be triggered (which will also result
in the lifecycle state changing). For example:
lifecycleRegistry.handleLifecycleEvent(Lifecycle.Event.ON_START)

46.3 Lifecycle Observers
To observe the state of a lifecycle owner, a lifecycle-aware component must
implement the DefaultLifecycleObserver interface and override methods for
any lifecycle change events it needs to observe.
class DemoObserver: DefaultLifecycleObserver {
 // Lifecycle event methods go here
}

An instance of this observer class is then created and added to the list of
observers maintained by the Lifecycle object.
lifecycle.addObserver(DemoObserver())

An observer may be removed from the Lifecycle object anytime if it no
longer needs to track the lifecycle state.
Figure 46-1 illustrates the relationship between the key elements that
provide lifecycle awareness:

Figure 46-1
46.4 Lifecycle States and Events
When the status of a lifecycle owner changes, the assigned Lifecycle object
will be updated with the new state. At any given time, a lifecycle owner
will be in one of the following five states:
•Lifecycle.State.INITIALIZED
•Lifecycle.State.CREATED
•Lifecycle.State.STARTED
•Lifecycle.State.RESUMED
•Lifecycle.State.DESTROYED
The Lifecycle object will trigger events on any observers added to the list as
the component transitions through the different states. The following event
methods are available to be overridden within the lifecycle observer:
•onCreate()
•onResume()
•onPause()
•onStop()
•onStart()
•onDestroy()

The following code, for example, overrides the DefaultLifecycleObserver
onResume() method:
override fun onResume(owner: LifecycleOwner) {
 // Perform tasks in response to Resume status event
}

The flowchart in Figure 46-2 illustrates the sequence of state changes for a
lifecycle owner and the lifecycle events that will be triggered on observers
between each state transition:

Figure 46-2
46.5 Summary
This chapter has introduced the basics of lifecycle awareness and the
classes and interfaces of the Android Lifecycle package included with
Android Jetpack. The package contains several classes and interfaces for
creating lifecycle owners, observers, and lifecycle-aware components. A
lifecycle owner has assigned to it a Lifecycle object that maintains a record
of the owner’s state and a list of subscribed observers. When the owner’s
state changes, the observer is notified via lifecycle event methods to
respond to the change.
The next chapter will create an Android Studio project that demonstrates
how to work with and create lifecycle-aware components, including the
creation of both lifecycle observers and owners and the handling of
lifecycle state changes and events.

47. An Android Jetpack Lifecycle
Awareness Tutorial
The previous chapter provided an overview of lifecycle awareness and
outlined the key classes and interfaces that make this possible within an
Android app project. This chapter will build on this knowledge base by
building an Android Studio project to highlight lifecycle awareness in
action.

47.1 Creating the Example Lifecycle Project
Select the New Project quick start option from the welcome screen and,
within the resulting new project dialog, choose the Empty Views Activity
template before clicking on the Next button.
Enter LifecycleDemo into the Name field and specify
com.ebookfrenzy.lifecycledemo as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin.

47.2 Creating a Lifecycle Observer
As previously discussed, activities and fragments already implement the
LifecycleOwner interface and are ready to be observed by other objects. To
see this in practice, the next step in this tutorial is to add a new class to the
project that will be able to observe the MainActivity instance.
To add the new class, right-click on app -> kotlin+java ->
com.ebookfrenzy.lifecycledemo in the Project tool window and select New -
> Kotlin Class/File... from the resulting menu. In the New Class dialog,
name the class DemoObserver, select Class from the list, and press the
keyboard Return key to create the DemoObserver.kt file. The new file
should automatically open in the editor, where it will read as follows:
package com.ebookfrenzy.lifecycledemo

class DemoObserver {
}

Remaining in the editor, modify the class file to declare that it will be
implementing the DefaultLifecycleObserver interface:

package com.ebookfrenzy.lifecycledemo

import androidx.lifecycle.DefaultLifecycleObserver

class DemoObserver: DefaultLifecycleObserver {
}

The next step is to override the lifecycle methods of the
DefaultLifecycleObserver class. For this example, all events will be
handled, each outputting a message to the Logcat panel displaying the event
type. Update the observer class as outlined in the following listing:
package com.ebookfrenzy.lifecycledemo

import android.util.Log
import androidx.lifecycle.DefaultLifecycleObserver
import androidx.lifecycle.LifecycleOwner

class DemoObserver: DefaultLifecycleObserver {

 private val TAG = "DemoObserver"

 override fun onCreate(owner: LifecycleOwner) {
 Log.i(TAG, "onCreate")
 }

 override fun onResume(owner: LifecycleOwner) {
 Log.i(TAG, "onResume")
 }

 override fun onPause(owner: LifecycleOwner) {
 Log.i(TAG, "onPause")
 }

 override fun onStart(owner: LifecycleOwner) {
 Log.i(TAG, "onStart")
 }

 override fun onStop(owner: LifecycleOwner) {
 Log.i(TAG, "onStop")
 }

 override fun onDestroy(owner: LifecycleOwner) {
 Log.i(TAG, "onDestroy")

 }
}

With the DemoObserver class completed, the next step is to add it as an
observer on the MainActivity class.

47.3 Adding the Observer
Observers are added to lifecycle owners via calls to the addObserver()
method of the owner’s Lifecycle object, a reference to which is obtained via
a call to the getLifecycle() method. Edit the MainActivity.kt class file and
edit the onCreate() method to add an observer:
.
.
import com.ebookfrenzy.lifecycledemo.DemoObserver
.
.
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
.
.
 lifecycle.addObserver(DemoObserver())
}

With the observer class created and added to the lifecycle owner’s Lifecycle
object, the app is ready to be tested.

47.4 Testing the Observer
Since the DemoObserver class outputs diagnostic information to the Logcat
console, it will be easier to see the output if a filter is configured to display
only the DemoObserver messages. Using the steps outlined previously in
“Android Activity State Changes by Example”, display the Logcat panel
and enter the following keys into the filter field:
package:mine tag:DemoObserver

On successful launch of the app, the Logcat output should indicate the
following lifecycle state changes and events:
onCreate
onStart
onResume

With the app still running, perform a device rotation to trigger the
destruction and recreation of the activity, generating the following

additional output:
onPause
onStop
onDestroy
onCreate
onStart
onResume

Before moving to the next section in this chapter, take some time to
compare the output from the app with the flow chart in Figure 46-2 of the
previous chapter.

47.5 Creating a Lifecycle Owner
The final task in this chapter is to create a custom lifecycle owner class and
demonstrate how to trigger events and modify the lifecycle state from
within that class.
Add a new class by right-clicking on the app -> kotlin+java ->
com.ebookfrenzy.lifecycledemo entry in the Project tool window and
selecting the New -> Kotlin Class/File... menu option. Name the class
DemoOwner in the Create Class dialog and select the Class option before
tapping the keyboard Return key. With the new DemoOwner.kt file loaded
into the code editor, modify it as follows:
package com.ebookfrenzy.lifecycledemo

import androidx.lifecycle.Lifecycle
import androidx.lifecycle.LifecycleOwner
import androidx.lifecycle.LifecycleRegistry

class DemoOwner(override val lifecycle: Lifecycle): LifecycleOwner
{
}

The class will need a LifecycleRegistry instance initialized with a reference
to itself and a getLifecycle() method configured to return the
LifecycleRegistry instance. Declare a variable to store the
LifecycleRegistry reference and a constructor to initialize the
LifecycleRegistry instance:
package com.ebookfrenzy.lifecycledemo

import androidx.lifecycle.Lifecycle

import androidx.lifecycle.LifecycleOwner
import androidx.lifecycle.LifecycleRegistry

class DemoOwner(override val lifecycle: Lifecycle): LifecycleOwner
{

 private val lifecycleRegistry: LifecycleRegistry =
LifecycleRegistry(this)

 init {

 }
}

Next, the class must notify the registry of lifecycle state changes. This can
be achieved by marking the state with the markState() method of the
LifecycleRegistry object or by triggering lifecycle events using the
handleLifecycleEvent() method. What constitutes a state change within a
custom class will depend on the purpose of the class. For this example, we
will add some methods that trigger lifecycle events when called:
.
.
fun startOwner() {
 lifecycleRegistry.handleLifecycleEvent(Lifecycle.Event.ON_START
)
}

fun stopOwner() {
 lifecycleRegistry.handleLifecycleEvent(Lifecycle.Event.ON_STOP)
}
.
.

The last change within the DemoOwner class is to add the DemoObserver
class as the observer. This call will be made by adding the following to the
class constructor:
init {
 lifecycle.addObserver(DemoObserver())
}

Load the MainActivity.kt file into the code editor, locate the onCreate()
method, and add code to create an instance of the DemoOwner class and to
call the startOwner() and stopOwner() methods. Note also that the call to

add the DemoObserver as an observer has been removed. Although a single
observer can be used with multiple owners, it is removed in this case to
avoid duplicated and confusing output within the Logcat tool window:
.
.
import com.ebookfrenzy.lifecycledemo.DemoOwner
.
.
private lateinit var demoOwner: DemoOwner

override fun onCreate(savedInstanceState: Bundle?) {
.
.
 demoOwner = DemoOwner(this.lifecycle)
 demoOwner.startOwner()
 demoOwner.stopOwner()
}

47.6 Testing the Custom Lifecycle Owner
Build and run the app one final time, refer to the Logcat tool window, and
confirm that the observer detected the create, start, and stop lifecycle events
in the following order:
onCreate
onStart
onStop

Note that the “created” state changes were triggered even though code was
not added to the DemoOwner class to do this manually. These were
triggered automatically when the owner instance was first created and when
the ON_STOP event was handled.

47.7 Summary
This chapter has provided a practical demonstration of implementing
lifecycle awareness within an Android app, including creating a lifecycle
observer and designing and implementing a basic lifecycle owner class.

48. An Overview of the Navigation
Architecture Component
Very few Android apps today consist of just a single screen. In reality, most
apps comprise multiple screens through which the user navigates using
screen gestures, button clicks, and menu selections. Before the introduction
of Android Jetpack, implementing navigation within an app was largely a
manual coding process with no easy way to view and organize potentially
complex navigation paths. However, this situation has improved
considerably with the introduction of the Android Navigation Architecture
Component combined with support for navigation graphs in Android
Studio.

48.1 Understanding Navigation
Every app has a home screen that appears after the app has launched and
after any splash screen has appeared (a splash screen being the app
branding screen that appears temporarily while the app loads). The user will
typically perform tasks from this home screen, resulting in other screens
appearing. These screens will usually take the form of other activities and
fragments within the app. For example, a messaging app may have a home
screen listing current messages from which users can navigate to another
screen to access a contact list or a settings screen. The contacts list screen,
in turn, might allow the user to navigate to other screens where new users
can be added or existing contacts updated. Graphically, the app’s navigation
graph might be represented as shown in Figure 48-1:

Figure 48-1
Each screen that makes up an app, including the home screen, is referred to
as a destination and is usually a fragment or activity. The Android
navigation architecture uses a navigation stack to track the user’s path
through the destinations within the app. When the app first launches, the
home screen is the first destination placed onto the stack and becomes the
current destination. When the user navigates to another destination, that
screen becomes the current destination and is pushed onto the stack above
the home destination. As the user navigates to other screens, they are also
pushed onto the stack. Figure 48-2, for example, shows the current state of
the navigation stack for the hypothetical messaging app after the user has
launched the app and is navigating to the “Add Contact” screen:

Figure 48-2

As the user navigates back through the screens using the system back
button, each destination is popped off the stack until the home screen is
once again the only destination on the stack. In Figure 48-3, the user has
navigated back from the Add Contact screen, popping it off the stack and
making the Contacts List screen the current destination:

Figure 48-3
All of the work involved in navigating between destinations and managing
the navigation stack is handled by a navigation controller, represented by
the NavController class.
Adding navigation to an Android project using the Navigation Architecture
Component is a straightforward process involving a navigation host,
navigation graph, navigation actions, and minimal code writing to obtain a
reference to, and interact with, the navigation controller instance.

48.2 Declaring a Navigation Host
A navigation host is a special fragment (NavHostFragment) embedded into
the user interface layout of an activity and serves as a placeholder for the
destinations through which the user will navigate. Figure 48-4, for example,
shows a typical activity screen and highlights the area represented by the
navigation host fragment:

Figure 48-4
A NavHostFragment can be placed into an activity layout within the
Android Studio layout editor either by dragging and dropping an instance
from the Containers section of the palette or by manually editing the XML
as follows:
<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/container"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity" >

 <androidx.fragment.app.FragmentContainerView
 android:id="@+id/demo_nav_host_fragment"
 android:name="androidx.navigation.fragment.NavHostFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:defaultNavHost="true"
 app:navGraph="@navigation/navigation_graph" />
</FrameLayout>

The points of note in the above navigation host fragment element are the
reference to the NavHostFragment in the name property, the setting of
defaultNavHost to true, and the assignment of the file containing the

navigation graph to the navGraph property.
When the activity launches, this navigation host fragment is replaced by the
home destination designated in the navigation graph. As the user navigates
through the app screens, the host fragment will be replaced by the
appropriate fragment for the destination.

48.3 The Navigation Graph
A navigation graph is an XML file that contains the destinations that will be
included in the app navigation. In addition to these destinations, the file
contains navigation actions that define navigation between destinations and
optional arguments for passing data from one destination to another.
Android Studio includes a navigation graph editor that can be used to
design graphs and implement actions either visually or by manually editing
the XML.
Figure 48-5 shows the Android Studio navigation graph editor in Design
mode:

Figure 48-5
The destinations list (A) lists all destinations within the graph. Selecting a
destination from the list will locate and select the corresponding destination
in the graph (particularly useful for locating specific destinations in a large
graph). The navigation graph panel (B) contains a dialog for each
destination representing the user interface layout. In this example, this
graph contains two destinations named mainFragment and secondFragment.
Arrows between destinations (C) represent navigation action connections.
Actions are added by hovering the mouse pointer over the edge of the origin

until a circle appears, then clicking and dragging from the circle to the
destination. The Attributes panel (D) allows the properties of the currently
selected destination or action connection to be viewed and modified. In the
above figure, the attributes for the action are displayed. New destinations
are added by clicking on the button marked E and selecting options from a
menu. Options are available to add existing fragments or activities as
destinations or to create new blank fragment destinations. The Component
Tree panel (F) provides a hierarchical overview of the navigation graph.
The underlying XML for the navigation graph can be viewed and modified
by switching the editor into Code mode. The following XML listing
represents the navigation graph for the destinations and action connection
shown in Figure 48-5 above:
<?xml version="1.0" encoding="utf-8"?>
<navigation
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/navigation_graph"
 app:startDestination="@id/mainFragment">

 <fragment
 android:id="@+id/mainFragment"
 android:name="com.ebookfrenzy.navigationdemo.ui.main.MainFr
agment"
 android:label="fragment_main"
 tools:layout="@layout/fragment_main" >
 <action
 android:id="@+id/mainToSecond"
 app:destination="@id/secondFragment" />
 </fragment>
 <fragment
 android:id="@+id/secondFragment"
 android:name="com.ebookfrenzy.navigationdemo.SecondFragment
"
 android:label="fragment_second"
 tools:layout="@layout/fragment_second" >
 </fragment>
</navigation>

Navigation graphs can also be split over multiple files to improve
organization and promote reuse. When structured in this way, nested graphs

are embedded into root graphs. To create a nested graph, shift-click on the
destinations to be nested, right-click over the first destination and select the
Move to Nested Graph -> New Graph menu option. The nested graph will
then appear as a new node in the graph. Double-click on the nested graph
node to load the graph file into the editor to access the nested graph.

48.4 Accessing the Navigation Controller
Navigating from one destination to another usually occurs in response to an
event within an app, such as a button click or menu selection. Before a
navigation action can be triggered, the code must first obtain a reference to
the navigation controller instance. This requires a call to the
findNavController() method of the Navigation or NavHostFragment classes.
The following code, for example, can be used to access the navigation
controller of an activity. Note that for the code to work, the activity must
contain a navigation host fragment:
val controller: NavController =
 Navigation.findNavController(activity,
R.id.demo_nav_host_fragment)

In this case, the method call is passed a reference to the activity and the id
of the NavHostFragment embedded in the activity’s layout.
Alternatively, the navigation controller associated with any view may be
identified by passing that view to the method:
val controller: NavController =
Navigation.findNavController(button)

The final option finds the navigation controller for a fragment by calling the
findNavController() method of the NavHostFragment class, passing through
a reference to the fragment:
val controller: NavController =
NavHostFragment.findNavController(fragment)

48.5 Triggering a Navigation Action
Once the navigation controller has been found, a navigation action is
triggered by calling the controller’s navigate() method and passing through
the resource id of the action to be performed. For example:
controller.navigate(R.id.goToContactsList)

The id of the action is defined within the Attributes panel of the navigation
graph editor when an action connection is selected.

48.6 Passing Arguments
Data may be passed from one destination to another during a navigation
action by using arguments declared within the navigation graph file. An
argument consists of a name, type, and an optional default value and may
be added manually within the XML or using the Attributes panel when an
action arrow or destination is selected within the graph. In Figure 48-6, for
example, an integer argument named contactsCount has been declared with
a default value of 0:

Figure 48-6
Once added, arguments are placed within the XML element of the receiving
destination, for example:
<fragment
 android:id="@+id/secondFragment"
 android:name="com.ebookfrenzy.navigationdemo.SecondFragment"
 android:label="fragment_second"
 tools:layout="@layout/fragment_second" >
 <argument
 android:name="contactsCount"
 android:defaultValue=0
 app:type="integer" />
</fragment>

The Navigation Architecture Component provides two techniques for
passing data between destinations. One approach involves placing the data
into a Bundle object that is passed to the destination during an action, where
it is then unbundled and the arguments extracted.
The main drawback to this particular approach is that it is not “type safe”.
In other words, if the receiving destination treats an argument as a different
type than it was declared (for example, treating a string as an integer) this
error will not be caught by the compiler and will likely cause problems at
runtime.
A better option, which is used in this book, is safeargs. Safeargs is a plugin
for the Android Studio Gradle build system which automatically generates
special classes that allow arguments to be passed in a type-safe way. The

safeargs approach to argument passing will be described and demonstrated
in the next chapter (“An Android Jetpack Navigation Component
Tutorial”).

48.7 Summary
Navigation within the context of an Android app user interface refers to the
ability of a user to move back and forth between different screens. Once
time-consuming to implement and difficult to organize, Android Studio and
the Navigation Architecture Component now make it easier to implement
and manage navigation within Android app projects.
The different screens within an app are referred to as destinations and are
usually represented by fragments or activities. All apps have a home
destination, including the screen displayed when the app first loads. The
content area of this layout is replaced by a navigation host fragment which
is swapped out for other destination fragments as the user navigates the app.
The navigation path is defined by the navigation graph file consisting of
destinations and the actions that connect them together with any arguments
to be passed between destinations. Navigation is handled by navigation
controllers, which, in addition to managing the navigation stack, provide
methods to initiate navigation actions from within app code.

49. An Android Jetpack Navigation
Component Tutorial
The previous chapter described the Android Jetpack Navigation Component
and how it integrates with the navigation graphing features of Android
Studio to provide an easy way to implement navigation between the screens
of an Android app. In this chapter, a new Android Studio project will be
created that uses these navigation features to implement an example app
containing multiple screens. In addition to demonstrating the use of the
Android Studio navigation graph editor, the example project will also
implement the passing of data between origin and destination screens using
type-safe arguments.

49.1 Creating the NavigationDemo Project
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.
Enter NavigationDemo into the Name field and specify
com.ebookfrenzy.navigationdemo as the package name. Before clicking on
the Finish button, change the Minimum API level setting to API 26:
Android 8.0 (Oreo) and the Language menu to Kotlin.

49.2 Adding Navigation to the Build Configuration
A new Empty Views Activity project does not include the Navigation
component libraries in the build configuration files by default. The next
step is to add the navigation library to the build configuration. Start by
editing the Gradle Scripts -> libs.version.tomi file and modify it as follows
(keeping in mind that a more recent version of the library may now be
available):
[versions]
.
.
navigationFragmentKtx = "2.7.7"

[libraries]
.

.
androidx-navigation-fragment-ktx = { group = "androidx.navigation",
name = "navigation-fragment-ktx", version.ref =
"navigationFragmentKtx" }

Next, open the Gradle Scripts -> build.gradle.kts (Module :app) file and
add the following directive to the dependencies section. Also, take this
opportunity to enable view binding for this module:
.
.
android {

 buildFeatures {
 viewBinding = true
 }
.
.
dependencies {
 implementation(libs.androidx.navigation.fragment.ktx)
.
.

After adding the navigation dependencies to the file, click on the Sync Now
link to resynchronize the build configuration for the project.

49.3 Creating the Navigation Graph Resource File
With the navigation libraries added to the build configuration, the
navigation graph resource file can now be added to the project. As outlined
in “An Overview of the Navigation Architecture Component”, this is an
XML file containing the fragments and activities through which the user
will be able to navigate, together with the actions to perform the transitions
and any data to be passed between destinations.
Within the Project tool window, locate the res folder (app -> res), right-
click on it, and select the New ->Android Resource File menu option:

Figure 49-1

After selecting the menu item, the New Resource File dialog will appear. In
this dialog, name the file navigation_graph and change the Resource type
menu to Navigation as outlined in Figure 49-2 before clicking on the OK
button to create the file.

Figure 49-2
After the navigation graph resource file has been added to the project, it
will appear in the main panel, ready for adding new destinations. Switch the
editor to Code mode and review the XML for the graph before any
destinations are added:
<?xml version="1.0" encoding="utf-8"?>
<navigation
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/navigation_graph">

</navigation>

Switch back to Design mode within the editor and note that the Host section
of the Destinations panel indicates that no navigation host fragments have
been detected within the project:

Figure 49-3
Before adding any destinations to the navigation graph, the next step is to
add a navigation host fragment to the project.

49.4 Declaring a Navigation Host
For this project, the navigation host fragment will be contained within the
user interface layout of the main activity. First, locate the main activity
layout file in the Project tool window (app -> res -> layout ->
activity_main.xml), load it into the layout editor tool, and delete the default
TextView component.
With the layout editor in Design mode, drag a NavHostFragment element
from the Containers section of the Palette and drop it onto the container
area of the activity layout, as indicated by the arrow in Figure 49-4:

Figure 49-4
Select the navigation_graph.xml file created in the previous section from
the resulting Navigation Graphs dialog and click on the OK button.

With the newly added NavHostFragment instance selected in the layout, use
the Attributes tool window to change the element’s ID to
demo_nav_host_fragment before clicking on the Infer constraints button.
Switch the layout editor to Code mode and review the XML file. Note that
the editor has correctly configured the navigation graph property to
reference the navigation_graph.xml file and that the defaultNavHost
property has been set to true:
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <androidx.fragment.app.FragmentContainerView
 android:id="@+id/demo_nav_host_fragment"
 android:name="androidx.navigation.fragment.NavHostFragment"
 android:layout_width="409dp"
 android:layout_height="729dp"
 app:defaultNavHost="true"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:navGraph="@navigation/navigation_graph" />
</androidx.constraintlayout.widget.ConstraintLayout>

Return to the navigation_graph.xml file and confirm that the
NavHostFragment instance has been detected (it may be necessary to close
and reopen the file before the change appears):

Figure 49-5
49.5 Adding Navigation Destinations
Remaining in the navigation graph, it is time to add the first destination.

Click on the new destination button as shown in Figure 49-6 to select or
create a destination:

Figure 49-6
Next, select the Create new destination option from the menu. In the
resulting dialog, select the Fragment (Blank) template, name the new
fragment FirstFragment and the layout fragment_first before clicking on
the Finish button. After a short delay while the project rebuilds, the new
fragment will appear as a destination within the graph, as shown in Figure
49-7:

Figure 49-7
The home icon above the destination node indicates this is the start
destination. This means the destination will be the first displayed when the

NavHostFragment activity is created. To change the start destination to
another, select that node in the graph and click on the home button in the
toolbar.
Review the XML content of the navigation graph by switching the editor to
Code mode:
<?xml version="1.0" encoding="utf-8"?>
<navigation
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/navigation_graph"
 app:startDestination="@id/firstFragment">

 <fragment
 android:id="@+id/firstFragment"
 android:name="com.ebookfrenzy.navigationdemo.FirstFragment"
 android:label="fragment_first"
 tools:layout="@layout/fragment_first" />
</navigation>

Before any navigation can be performed, the graph needs at least one more
destination. Repeat the above steps to add a fragment named
SecondFragment with the layout file named fragment_second. The new
fragment will appear as another destination within the graph, as shown in
Figure 49-8:

Figure 49-8
49.6 Designing the Destination Fragment Layouts
Before adding actions to navigate between destinations, now is a good time
to add some user interface components to the two destination fragments in
the graph. Begin by double-clicking on the firstFragment destination so that
the fragment_first.xml file loads into the layout editor, then select and delete
the default TextView instance. Within the Component Tree panel, right-
click on the FrameLayout entry and select the Convert from FrameLayout
to ConstraintLayout menu option, accepting the default settings in the
resulting conversion dialog:

Figure 49-9
Using the Attributes tool window, change the ID of the ConstraintLayout to
constraintLayout, then drag and drop Button and Plain Text EditText
widgets onto the layout so that it resembles that shown in Figure 49-10
below:

Figure 49-10
Once the views are correctly positioned, click on the Infer constraints
button in the toolbar to add any missing constraints to the layout. Select the
EditText view and use the Attributes tool window to delete the default
“Name” text and change the widget’s ID to userText. Next, change the
button text property to read “Navigate” and extract it to a string resource.
Return to the navigation_graph.xml file and double-click on the
secondFragment destination to load the fragment_second.xml file into the
layout editor. Select and delete the default TextView instance and repeat the
above steps to convert the FrameLayout to a ConstraintLayout, changing
the id to constraintLayout2. Next, drag and drop a new TextView widget to
position it in the center of the layout and click on the Infer constraints
button to add any missing constraints. With the new TextView selected, use
the Attributes panel to change the ID to argText.

49.7 Adding an Action to the Navigation Graph
Now that the two destinations have been added to the graph and the
corresponding user interface layouts are designed, the project needs a way
for the user to navigate from the first fragment to the second. This will be
achieved by adding an action to the graph, which can then be referenced

from within the app code.
To establish an action connection with the first fragment as the origin and
the second fragment as the destination, open the navigation graph and hover
the mouse pointer over the vertical center of the right-hand edge of the
firstFragment destination so that a circle appears as highlighted in Figure
49-11:

Figure 49-11
Click within the circle and drag the resulting line to the secondFragment
destination:

Figure 49-12
Release the line to establish the action connection between the origin and
destination, at which point the line will change into an arrow, as shown in
Figure 49-13:

Figure 49-13
An action connection may be deleted anytime by selecting it and pressing
the keyboard Delete key. With the arrow selected, review the properties
available within the Attributes tool window and change the ID to
mainToSecond. This is the ID by which the action will be referenced within
the code. Switch the editor to Code mode and note that the action is now
included within the XML:
<?xml version="1.0" encoding="utf-8"?>
<navigation
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/navigation_graph"
 app:startDestination="@id/firstFragment">

 <fragment
 android:id="@+id/firstFragment"
 android:name="com.ebookfrenzy.navigationdemo.FirstFragment"
 android:label="fragment_first"
 tools:layout="@layout/fragment_first" >
 <action
 android:id="@+id/mainToSecond"
 app:destination="@id/secondFragment" />
 </fragment>
 <fragment
 android:id="@+id/secondFragment"
 android:name="com.ebookfrenzy.navigationdemo.SecondFragment
"
 android:label="fragment_second"
 tools:layout="@layout/fragment_second" />
</navigation>

49.8 Implement the OnFragmentInteractionListener
Before adding code to trigger the action, the MainActivity class must be
modified to implement the OnFragmentInteractionListener interface. This
interface was generated within the Fragment classes when the blank
fragments were created within the navigation graph editor. To conform to
the interface, the activity needs a method named onFragmentInteraction()
to implement communication between the fragment and the activity.
Edit the MainActivity.kt file and modify it so that it reads as follows:

.

.
import android.net.Uri
.
.
class MainActivity : AppCompatActivity(),
 SecondFragment.OnFragmentInteractionListener {
.
.
 override fun onFragmentInteraction(uri: Uri) {
 }
}

If Android Studio reports that OnFragmentInteractionListener is undefined
(some versions of Android Studio add it automatically, while others do not),
edit the SecondFragment.kt file and add the following:
.
.
import android.net.Uri
.
.
class SecondFragment : Fragment() {
.
.
 interface OnFragmentInteractionListener {
 // TODO: Update argument type and name
 fun onFragmentInteraction(uri: Uri)
 }
.
.

49.9 Adding View Binding Support to the
Destination Fragments
Since we will access some views in the fragment layouts, we must modify
the current code to enable view binding support. Begin by editing the
FirstFragment.kt file and making the following changes:
.
.
import
com.ebookfrenzy.navigationdemo.databinding.FragmentFirstBinding

class FirstFragment : Fragment() {

.

.
 private var _binding: FragmentFirstBinding? = null
 private val binding get() = _binding!!

 override fun onCreateView(
 inflater: LayoutInflater, container: ViewGroup?,
 savedInstanceState: Bundle?
): View {

 return inflater.inflate(R.layout.fragment_first, container,
false)
 _binding = FragmentFirstBinding.inflate(inflater,
container, false)
 return binding.root
 }

 override fun onDestroyView() {
 super.onDestroyView()
 _binding = null
 }
.
.

Repeat the above steps for the SecondFragment.kt file, referencing
FragmentSecondBinding.

49.10 Triggering the Action
Now that the action has been added to the navigation graph, the next step is
to add some code within the first fragment to trigger the action when the
Button widget is clicked. Locate the FirstFragment.kt file, load it into the
code editor, and override the onViewCreated() method to obtain a reference
to the button instance and to configure an onClickListener instance to be
called when the user clicks the button:
.
.
import androidx.navigation.Navigation
.
.
class FirstFragment : Fragment() {
.
.

 override fun onViewCreated(view: View, savedInstanceState:
Bundle?) {
 super.onViewCreated(view, savedInstanceState)

 binding.button.setOnClickListener {
 Navigation.findNavController(it).navigate(
 R.id.mainToSecond)
 }
 }
}

The above code obtains a reference to the navigation controller and calls the
navigate() method on that instance, passing through the resource ID of the
navigation action as an argument.
Compile and run the app and verify that clicking the button in the first
fragment transitions to the second fragment.
As an alternative to this approach to setting up a listener, the Navigation
class also includes a method named createNavigateOnClickListener()
which provides a more efficient way of setting up a listener and navigating
to a destination. The same result can be achieved, therefore, using the
following single line of code to initiate the transition:
binding.button.setOnClickListener(Navigation.createNavigateOnClickL
istener(
 R.id.mainToSecond, null))

49.11 Passing Data Using Safeargs
The next objective is to pass the text entered into the EditText view in the
first fragment to the second fragment, where it will be displayed on the
TextView widget. As outlined in the previous chapter, the Android
Navigation component supports two approaches to passing data. This
chapter will make use of type-safe argument passing.
The first step in using safeargs is to add the safeargs plugin to the Gradle
build configuration. Using the Project tool window, locate and edit the
Gradle Scripts -> libs.versions.toml file as follows:
.
.
[libraries]
androidx-navigation-safe-args-gradle-plugin = { module =
"androidx.navigation:navigation-safe-args-gradle-plugin",
version.ref = "navigationFragmentKtx" }

.

.

Next, edit project-level build.gradle.kts file (Gradle Scripts ->
build.gradle.kts (Project: NavigationDemo)) to add the plugin dependency
as follows:
// Top-level build file where you can add configuration options
common to all sub-projects/modules.
buildscript {
 dependencies {
 classpath(libs.androidx.navigation.safe.args.gradle.plugin)
 }
}
.
.

Next, edit the module level build.gradle.kts file (Gradle Scripts ->
build.gradle.kts (Module :app)) to apply the plugin as follows and resync
the project:
plugins {
 alias(libs.plugins.androidApplication)
 alias(libs.plugins.jetbrainsKotlinAndroid)
 id ("androidx.navigation.safeargs")
}

The next step is to define any arguments that will be received by the
destination, which, in this case, is the second fragment. Edit the navigation
graph, select the secondFragment destination, and locate the Arguments
section within the Attributes tool window. Click on the + button
(highlighted in Figure 49-14) to add a new argument to the destination:

Figure 49-14

After the + button has been clicked, a dialog will appear into which the
argument name, type, and default value need to be entered. Name the
argument message, set the type to String, enter No Message into the default
value field, and click the Add button:

Figure 49-15
The newly configured argument will appear in the secondFragment element
of the navigation_graph.xml file as follows:
<fragment
 android:id="@+id/secondFragment"
 android:name="com.ebookfrenzy.navigationdemo.SecondFragment"
 android:label="fragment_second"
 tools:layout="@layout/fragment_second" >
 <argument
 android:name="message"
 app:argType="string"
 android:defaultValue="No Message" />
</fragment>

The next step is to add code to the FirstFragment.kt file to extract the text
from the EditText view and pass it to the second fragment during the
navigation action. This will involve using some special navigation classes
generated automatically by the safeargs plugin. Currently, the navigation
involves the FirstFragment class, the SecondFragment class, a navigation
action named mainToSecond, and an argument named message.
When the project is built, the safeargs plugin will generate the following
additional classes that can be used to pass and receive arguments during
navigation.
•FirstFragmentDirections - This class represents the origin for the

navigation action (named using the class name of the navigation origin
with “Directions” appended to the end) and provides access to the action
object.

•ActionMainToSecond - The class representing the action used to perform
the transition (named based on the ID assigned to the action within the
navigation graph file prefixed with “Action”). This class contains a setter
method for each argument configured on the destination. For example,
since the second fragment destination contains an argument named
message, the class includes a method named setMessage(). Once
configured, an instance of this class is then passed to the navigate()
method of the navigation controller to navigate to the destination.

•SecondFragmentArgs - The class used in the destination fragment to
access the arguments passed from the origin (named using the class name
of the navigation destination with “Args” appended to the end). This class
includes a getter method for each of the arguments passed to the
destination (i.e., getMessage())

Using these classes, the onClickListener code within the onViewCreated()
method of the FirstFragment.kt file can be modified as follows to extract
the current text from the EditText widget, apply it to the action and initiate
the transition to the second fragment:
binding.button.setOnClickListener {
 val action: FirstFragmentDirections.MainToSecond =
 FirstFragmentDirections.mainToSecond()

 action.message = binding.userText.text.toString()
 Navigation.findNavController(it).navigate(action)
}

The above code obtains a reference to the action object, sets the message
argument string using the setMessage() method, and then calls the
navigate() method of the navigation controller, passing through the action
object. If Android Studio reports FirstFragmentDirections as undefined,
rebuild the project using the Build -> Make Project menu option to generate
the class.
All that remains is to modify the SecondFragment.kt class file to receive the
argument after the navigation has been performed and display it on the
TextView widget. For this example, the code to achieve these tasks will be

added using an onStart() lifecycle method. Edit the SecondFragment.kt file
and add this method so that it reads as follows:
override fun onStart() {
 super.onStart()
 arguments?.let {
 val args = SecondFragmentArgs.fromBundle(it)
 binding.argText.text = args.message
 }
}

The code in the above method begins by obtaining a reference to the
TextView widget. Next, the fromBundle() method of the
SecondFragmentArgs class is called to extract the SecondFragmentArgs
object received from the origin. Since the argument in this example was
named message in the navigation_graph.xml file, the corresponding
getMessage() method is called on the args object to obtain the string value.
This string is then displayed on the TextView widget.
Compile and run the app and enter some text before clicking on the Button
widget. When the second fragment destination appears, the TextView
should display the text entered in the first fragment, indicating that the data
was successfully passed between navigation destinations.

49.12 Summary
This chapter has provided a practical example of implementing Android
app navigation using the Navigation Architecture Component and the
Android Studio navigation graph editor. Topics covered included the
creation of a navigation graph containing both existing and new destination
fragments, embedding a navigation host fragment within an activity layout,
writing code to trigger navigation events, and passing arguments between
destinations using the safeargs plugin.

50. An Introduction to MotionLayout
The MotionLayout class provides an easy way to add animation effects to
the views of a user interface layout. This chapter will begin by providing an
overview of MotionLayout and introduce the concepts of MotionScenes,
Transitions, and Keyframes. Once these basics have been covered, the next
two chapters (entitled “An Android MotionLayout Editor Tutorial” and “A
MotionLayout KeyCycle Tutorial”) will provide additional detail and
examples of MotionLayout animation in action through the creation of
example projects.

50.1 An Overview of MotionLayout
MotionLayout is a layout container, the primary purpose of which is to
animate the transition of views within a layout from one state to another.
MotionLayout could, for example, animate the motion of an ImageView
instance from the top left-hand corner of the screen to the bottom right-hand
corner over a specified time. In addition to the position of a view, other
attribute changes may also be animated, such as the color, size, or rotation
angle. These state changes can also be interpolated (such that a view moves,
rotates, and changes size throughout the animation).
The motion of a view using MotionLayout may be performed in a straight
line between two points or implemented to follow a path comprising
intermediate points at different positions between the start and end points.
MotionLayout also supports using touches and swipes to initiate and control
animation.
MotionLayout animations are declared entirely in XML and do not
typically require writing code. These XML declarations may be
implemented manually in the Android Studio code editor, visually using the
MotionLayout editor, or combining both approaches.

50.2 MotionLayout
When implementing animation, the ConstraintLayout container typically
used in a user interface must first be converted to a MotionLayout instance
(a task which can be achieved by right-clicking on the ConstraintLayout in
the layout editor and selecting the Convert to MotionLayout menu option).
MotionLayout also requires at least version 2.0.0 of the ConstraintLayout

library.
Unsurprisingly since it is a subclass of ConstraintLayout, MotionLayout
supports all of the layout features of the ConstraintLayout. Therefore, a user
interface layout can be similarly designed when using MotionLayout for
views that do not require animation.
For views that are to be animated, two ConstraintSets are declared, defining
the appearance and location of the view at the start and end of the
animation. A transition declaration defines keyframes to apply additional
effects to the target view between these start and end states and click and
swipe handlers used to start and control the animation.
The start and end ConstraintSets and the transitions are declared within a
MotionScene XML file.

50.3 MotionScene
As we have seen in earlier chapters, an XML layout file contains the
information necessary to configure the appearance and layout behavior of
the static views presented to the user, and this is still the case when using
MotionLayout. For non-static views (in other words, the views that will be
animated), those views are still declared within the layout file, but the start,
end, and transition declarations related to those views are stored in a
separate XML file referred to as the MotionScene file (so called because all
of the declarations are defined within a MotionScene element). This file is
imported into the layout XML file and contains the start and end
ConstraintSets and Transition declarations (a single file can contain
multiple ConstraintSet pairs and Transition declarations, allowing different
animations to be targeted to specific views within the user interface layout).
The following listing shows a template for a MotionScene file:
<?xml version="1.0" encoding="utf-8"?>
<MotionScene
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:motion="http://schemas.android.com/apk/res-auto">

 <Transition
 motion:constraintSetEnd="@+id/end"
 motion:constraintSetStart="@id/start"
 motion:duration="1000">
 <KeyFrameSet>

 </KeyFrameSet>
 </Transition>

 <ConstraintSet android:id="@+id/start">
 </ConstraintSet>

 <ConstraintSet android:id="@+id/end">
 </ConstraintSet>
</MotionScene>

In the above XML, ConstraintSets named start and end (though any name
can be used) have been declared, which, at this point, are yet to contain any
constraint elements. The Transition element defines that these
ConstraintSets represent the animation start and end points and contain an
empty KeyFrameSet element ready to be populated with additional
animation keyframe entries. The Transition element also includes a
millisecond duration property to control the running time of the animation.
ConstraintSets do not have to imply the motion of a view. It is possible to
have the start and end sets declare the same location on the screen and then
use the transition to animate other property changes, such as scale and
rotation angle.
ConstraintSets do not have to imply the motion of a view. It is possible, for
example, to have the start and end sets declare the same location on the
screen and then use the transition to animate other property changes, such
as scale and rotation angle.

50.4 Configuring ConstraintSets
The ConstraintSets in the MotionScene file allow the full set of
ConstraintLayout settings to be applied to a view regarding positioning,
sizing, and relation to the parent and other views. In addition, the following
attributes may also be included within the ConstraintSet declarations:
•alpha
•visibility
•elevation
•rotation
•rotationX
•rotationY

•translationX
•translationY
•translationZ
•scaleX
•scaleY
For example, to rotate the view by 180° during the animation, the following
could be declared within the start and end constraints:
<ConstraintSet android:id="@+id/start">
 <Constraint
.
.
 motion:layout_constraintStart_toStartOf="parent"
 android:rotation="0">
 </Constraint>
</ConstraintSet>

<ConstraintSet android:id="@+id/end">
 <Constraint
.
.
 motion:layout_constraintBottom_toBottomOf="parent"
 android:rotation="180">
 </Constraint>
</ConstraintSet>

The above changes tell MotionLayout that the view is to start at 0° and
then, during the animation, rotate a full 180° before coming to rest upside-
down.

50.5 Custom Attributes
In addition to the standard attributes listed above, it is possible to specify a
range of custom attributes (declared using CustomAttribute). In fact, just
about any property available on the view type can be specified as a custom
attribute for inclusion in an animation. To identify the attribute’s name, find
the getter/setter name from the documentation for the target view class,
remove the get/set prefix, and lower the case of the first remaining
character. For example, to change the background color of a Button view in
code, we might call the setBackgroundColor() setter method as follows:
myButton.setBackgroundColor(Color.RED)

When setting this attribute in a constraint set or keyframe, the attribute
name will be backgroundColor. In addition to the attribute name, the value
must also be declared using the appropriate type from the following list of
options:
•motion:customBoolean - Boolean attribute values.
•motion:customColorValue - Color attribute values.
•motion:customDimension - Dimension attribute values.
•motion:customFloatValue - Floating point attribute values.
•motion:customIntegerValue - Integer attribute values.
•motion:customStringValue - String attribute values
For example, a color setting will need to be assigned using the
customColorValue type:
<CustomAttribute
 motion:attributeName="backgroundColor"
 motion:customColorValue="#43CC76" />

The following excerpt from a MotionScene file, for example, declares start
and end constraints for a view in addition to changing the background color
from green to red:
.
.
 <ConstraintSet android:id="@+id/start">
 <Constraint
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 motion:layout_editor_absoluteX="21dp"
 android:id="@+id/button"
 motion:layout_constraintTop_toTopOf="parent"
 motion:layout_constraintStart_toStartOf="parent" >
 <CustomAttribute
 motion:attributeName="backgroundColor"
 motion:customColorValue="#33CC33" />
 </Constraint>
 </ConstraintSet>

 <ConstraintSet android:id="@+id/end">
 <Constraint
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

 motion:layout_editor_absoluteY="21dp"
 android:id="@+id/button"
 motion:layout_constraintEnd_toEndOf="parent"
 motion:layout_constraintBottom_toBottomOf="parent" >
 <CustomAttribute
 motion:attributeName="backgroundColor"
 motion:customColorValue="#F80A1F" />
 </Constraint>
 </ConstraintSet>
.
.

50.6 Triggering an Animation
Without some event to tell MotionLayout to start the animation, none of the
settings in the MotionScene file will affect the layout (except that the view
will be positioned based on the setting in the start ConstraintSet).
The animation can be configured to start in response to either screen tap
(OnClick) or swipe motion (OnSwipe) gesture. The OnClick handler causes
the animation to start and run until completion, while OnSwipe will
synchronize the animation to move back and forth along the timeline to
match the touch motion. The OnSwipe handler will also respond to
“flinging” motions on the screen. The OnSwipe handler also provides
options to configure how the animation reacts to dragging in different
directions and the side of the target view to which the swipe is to be
anchored. This allows, for example, left-ward dragging motions to move a
view in the corresponding direction while preventing an upward motion
from causing a view to move sideways (unless, of course, that is the
required behavior).
The OnSwipe and OnClick declarations are contained within the Transition
element of a MotionScene file. In both cases, the view id must be specified.
For example, to implement an OnSwipe handler responding to downward
drag motions anchored to the bottom edge of a view named button, the
following XML would be placed in the Transition element:
.
.
<Transition
 motion:constraintSetEnd="@+id/end"
 motion:constraintSetStart="@id/start"

 motion:duration="1000">
 <KeyFrameSet>
 </KeyFrameSet>
 <OnSwipe
 motion:touchAnchorId="@+id/button"
 motion:dragDirection="dragDown"
 motion:touchAnchorSide="bottom" />
</Transition>
.
.

Alternatively, to add an OnClick handler to the same button:
<OnClick motion:targetId="@id/button"
 motion:clickAction="toggle" />

In the above example, the action has been set to toggle mode. This mode
and the other available options can be summarized as follows:
•toggle - Animates to the opposite state. For example, if the view is
currently at the transition start point, it will transition to the end point, and
vice versa.

•jumpToStart - Changes immediately to the start state without animation.
•jumpToEnd - Changes immediately to the end state without animation.
•transitionToStart - Transitions with animation to the start state.
•transitionToEnd - Transitions with animation to the end state.

50.7 Arc Motion
By default, a movement of view position will travel in a straight line
between the start and end points. To change the motion to an arc path, use
the pathMotionArc attribute as follows within the start constraint,
configured with either a startHorizontal or startVertical setting to define
whether the arc is to be concave or convex:
<ConstraintSet android:id="@+id/start">
 <Constraint
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 motion:layout_editor_absoluteX="21dp"
 android:id="@+id/button"
 motion:layout_constraintTop_toTopOf="parent"
 motion:layout_constraintStart_toStartOf="parent"
 motion:pathMotionArc="startVertical" >

Figure 50-1 illustrates startVertical and startHorizontal arcs in comparison
to the default straight line motion:

Figure 50-1
50.8 Keyframes
All of the ConstraintSet attributes outlined so far only apply to the start and
end points of the animation. In other words, if the rotation property were set
to 180° on the end point, the rotation would begin when the animation starts
and complete when the end point is reached. It is not, therefore, possible to
configure the rotation to reach the full 180° at a point 50% of the way
through the animation and then rotate back to the original orientation by the
end. Fortunately, this type of effect is available using Keyframes.
Keyframes are used to define intermediate points during the animation at
which state changes are to occur. Keyframes could, for example, be
declared such that the background color of a view is to have transitioned to
blue at a point 50% of the way through the animation, green at the 75%
point, and then back to the original color by the end of the animation.
Keyframes are implemented within the Transition element of the
MotionScene file embedded into the KeyFrameSet element.
MotionLayout supports several types of Keyframe which can be
summarized as follows:
50.8.1 Attribute Keyframes
Attribute Keyframes (declared using KeyAttribute) allow view attributes to
be changed at intermediate points in the animation timeline. KeyAttribute
supports the attributes listed above for ConstraintSets combined with the
ability to specify where the change will take effect in the animation

timeline. For example, the following Keyframe declaration will gradually
cause the button view to double in size horizontally (scaleX) and vertically
(scaleY), reaching full size at 50% through the timeline. For the remainder
of the timeline, the view will decrease in size to its original dimensions:
<Transition
 motion:constraintSetEnd="@+id/end"
 motion:constraintSetStart="@id/start"
 motion:duration="1000">
 <KeyFrameSet>
 <KeyAttribute
 motion:motionTarget="@+id/button"
 motion:framePosition="50"
 android:scaleX="2.0" />
 <KeyAttribute
 motion:motionTarget="@+id/button"
 motion:framePosition="50"
 android:scaleY="2.0" />
 </KeyFrameSet>

50.8.2 Position Keyframes
Position keyframes (KeyPosition) modify the path followed by a view as it
moves between the start and end locations. By placing key positions at
different points on the timeline, a path of just about any level of complexity
can be applied to an animation. Positions are declared using x and y
coordinates combined with the corresponding points in the transition
timeline. These coordinates must be declared relative to one of the
following coordinate systems:
•parentRelative - The x and y coordinates are relative to the parent
container where the coordinates are specified as a percentage (represented
as a value between 0.0 and 1.0):

Figure 50-2
•deltaRelative - Instead of relative to the parent, the x and y coordinates
are relative to the start and end positions. For example, the start point is (0,
0) the end point (1, 1). Keep in mind that the x and y coordinates can be
negative values):

Figure 50-3
•pathRelative - The x and y coordinates are relative to the path, where the
straight line between the start and end points serves as the graph’s X-axis.

Once again, coordinates are represented as a percentage (0.0 to 1.0). This
is similar to the deltaRelative coordinate space but takes into consideration
the angle of the path. Once again coordinates may be negative:

Figure 50-4
As an example, the following ConstraintSets declare start and end points on
either side of a device screen. By default, a view transition using these
points would move in a straight line across the screen, as illustrated in
Figure 50-5:

Figure 50-5
Suppose, however, that the view is required to follow a path similar to that
shown in Figure 50-6 below:

Figure 50-6
To achieve this, keyframe position points could be declared within the
transition as follows:
<KeyPosition
 motion:motionTarget="@+id/button"
 motion:framePosition="25"
 motion:keyPositionType="pathRelative"
 motion:percentY="0.3"
 motion:percentX="0.25"/>

<KeyPosition
 motion:motionTarget="@+id/button"
 motion:framePosition="75"
 motion:keyPositionType="pathRelative"
 motion:percentY="-0.3"
 motion:percentX="0.75"/>

The above elements create keyframe position points 25% and 75% through
the path using the pathRelative coordinate system. The first position is
placed at coordinates (0.25, 0.3) and the second at (0.75, -0.3). These
position keyframes can be visualized as illustrated in Figure 50-7 below:

Figure 50-7
50.9 Time Linearity
Without additional settings, the animations outlined above will be
performed at a constant speed. To vary the animation speed (for example, so
that it accelerates and then decelerates), the transition easing attribute
(transitionEasing) can be used within a ConstraintSet or Keyframe.
For complex easing requirements, the linearity can be defined by plotting
points on a cubic Bézier curve, for example:
.
.
 motion:layout_constraintBottom_toBottomOf="parent"
 motion:transitionEasing="cubic(0.2, 0.7, 0.3, 1)"
 android:rotation="360">
.
.

If you are unfamiliar with Bézier curves, consider using the curve generator
online at the following URL:
https://cubic-bezier.com/
For most requirements, however, easing can be specified using the built-in
standard, accelerate and decelerate values:
.
.
 motion:layout_constraintBottom_toBottomOf="parent"
 motion:transitionEasing="decelerate"
 android:rotation="360">
.

https://cubic-bezier.com/

.

50.10 KeyTrigger
The trigger keyframe (KeyTrigger) allows a method on a view to be called
when the animation reaches a specified frame position within the animation
timeline. This also takes into consideration the direction of the animations.
For example, different methods can be called depending on whether the
animation runs forward or backward. Consider a button that is to be made
visible when the animation moves beyond 20% of the timeline. The
KeyTrigger would be implemented within the KeyFrameSet of the
Transition element as follows using the onPositiveCross property:
.
.
 <KeyFrameSet>
 <KeyTrigger
 motion:framePosition="20"
 motion:onPositiveCross="show"
 motion:motionTarget="@id/button"/>
.
.

Similarly, if the same button is to be hidden when the animation is reversed
and drops below 10%, a second key trigger could be added using the
onNegativeCross property:
<KeyTrigger
 motion:framePosition="10"
 motion:onNegativeCross="show"
 motion:motionTarget="@id/button2"/>

If the animation is using toggle action, use the onCross property:
<KeyTrigger
 motion:framePosition="10"
 motion:onCross="show"
 motion:motionTarget="@id/button2"/>

50.11 Cycle and Time Cycle Keyframes
While position keyframes can be used to add intermediate state changes
into the animation, this would quickly become cumbersome if large
numbers of repetitive positions and changes needed to be implemented. For
situations where state changes need to be performed repetitively with
predictable changes, MotionLayout includes the Cycle and Time Cycle

keyframes. The chapter entitled “A MotionLayout KeyCycle Tutorial” will
cover this topic in detail.

50.12 Starting an Animation from Code
So far in this chapter, we have only looked at controlling an animation
using the OnSwipe and OnClick handlers. It is also possible to start an
animation from within code by calling methods on the MotionLayout
instance. The following code, for example, runs the transition from start to
end with a duration of 2000ms for a layout named motionLayout:
motionLayout.setTransitionDuration(2000)

motionLayout.transitionToEnd()

In the absence of additional settings, the start and end states used for the
animation will be those declared in the Transition declaration of the
MotionScene file. To use specific start and end constraint sets, reference
them by id in a call to the setTransition() method of the MotionLayout
instance:
motionLayout.setTransition(R.id.myStart, R.id.myEnd)
motionLayout.transitionToEnd()

To monitor the state of an animation while it is running, add a transition
listener to the MotionLayout instance as follows:

motionLayout.setTransitionListener(
 object: MotionLayout.TransitionListener {

 override fun onTransitionTrigger(motionLayout:
MotionLayout?,
 triggerId: Int, positive: Boolean, progress:
Float) {
// Called when a trigger keyframe threshold is crossed
 }

 override fun onTransitionStarted(motionLayout:
MotionLayout?,
 startId: Int, endId: Int) {
// Called when the transition starts
 }

 override fun onTransitionChange(motionLayout:
MotionLayout?,

 startId: Int, endId: Int, progress: Float) {
// Called each time a property changes. Track progress value to
find
// current position
 }

 override fun onTransitionCompleted(motionLayout:
MotionLayout?,
 currentId: Int) {
// Called when the transition is complete
 }
 })

50.13 Summary
MotionLayout is a subclass of ConstraintLayout designed specifically to
add animation effects to the views in user interface layouts. MotionLayout
works by animating the transition of a view between two states defined by
start and end constraint sets. Additional animation effects may be added
between these start and end points using keyframes.
Animations may be triggered via OnClick or OnSwipe handlers or
programmatically via method calls on the MotionLayout instance.

51. An Android MotionLayout Editor
Tutorial
Now that the basics of MotionLayout have been covered, this chapter will
provide an opportunity to try out MotionLayout in an example project. In
addition to continuing to explore the main features of MotionLayout, this
chapter will also introduce the MotionLayout editor and explore how it can
be used to construct and modify MotionLayout animations visually.
The project created in this chapter will use start and end ConstraintSets,
gesture handlers, and Attribute and Position Keyframes.

51.1 Creating the MotionLayoutDemo Project
Click the New Project button in the welcome screen and choose the Empty
Views Activity template within the resulting new project dialog before
clicking the Next button.
Enter MotionLayoutDemo into the Name field and specify
com.ebookfrenzy.motionlayoutdemo as the package name. Before clicking
on the Finish button, change the Minimum API level setting to API 26:
Android 8.0 (Oreo) and the Language menu to Kotlin.

51.2 ConstraintLayout to MotionLayout Conversion
Android Studio will have placed a ConstraintLayout container as the parent
view within the activity_main.xml layout file. The next step is to convert
this container to a MotionLayout instance. Within the Component Tree,
right-click on the ConstraintLayout entry and select the Convert to
MotionLayout menu option:

Figure 51-1
After making the selection, click the Convert button in the confirmation
dialog. Once the conversion is complete, the MotionLayout editor will
appear within the main Android Studio window, as illustrated in Figure 51-
2:

Figure 51-2
As part of the conversion process, Android Studio will create a new folder
named res -> xml and place within it a MotionLayout scene file named
activity_main_scene.xml:

Figure 51-3
This file contains a top-level MotionScene element containing the
ConstraintSet and Transition entries that will define the animations within
the main layout. By default, the file will contain empty elements for the
start and end constraint sets and an initial transition:
<?xml version="1.0" encoding="utf-8"?>
<MotionScene
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:motion="http://schemas.android.com/apk/res-auto">

 <Transition
 motion:constraintSetEnd="@+id/end"
 motion:constraintSetStart="@id/start"
 motion:duration="1000">
 <KeyFrameSet>
 </KeyFrameSet>
 </Transition>

 <ConstraintSet android:id="@+id/start">
 </ConstraintSet>

 <ConstraintSet android:id="@+id/end">
 </ConstraintSet>
</MotionScene>

Any changes made within the MotionLayout editor will be stored within
this file. Similarly, this file may be edited directly to implement and modify
animation settings outside the MotionLayout editor.
The animations will be implemented primarily using the MotionLayout
editor interface in this tutorial. However, we will review how these changes

are reflected in the underlying MotionScene file at each stage. As we
progress through the chapter, it will become clear that the MotionScene
XML syntax is simple and easy to learn.
The first phase of this tutorial will demonstrate the use of MotionLayout to
animate a Button object, including motion (including following a path),
rotation, and size scaling.

51.3 Configuring Start and End Constraints
With the activity_main.xml file loaded into the MotionLayout editor, make
sure that the Motion Layout box (marked E in Figure 51-5 below) is
selected, then delete the default TextView before dragging and dropping a
Button view from the palette to the top left-hand corner of the layout canvas
as shown in Figure 51-4:

Figure 51-4
With the button selected, use the Attributes tool window to change the id to
myButton.
As outlined in the previous chapter, MotionLayout animation is primarily a
case of specifying how a view transitions between two states. Therefore, the
first step in implementing animation is to specify the constraints that define
these states.
For this example, the start point will be the top center of the layout view. To
configure these constraints, select the start constraint set entry in the editor
window (marked A in Figure 51-5):

Figure 51-5
When the start box is selected, all constraint and layout changes will be
made to the start point constraint set. To return to the standard constraints
and properties for the entire layout, click on the Motion Layout box (E).
Next, select the myButton entry within the ConstraintSet list (B). Note that
the Source column shows that the button is positioned based on constraints
within the layout file. Instead, we want the button positioned based on the
start constraint set. With the myButton entry still selected, click on the Edit
button (C) and select Create Constraint from the menu, after which the
button entry will indicate that the view is to be positioned based on the start
constraint set:

Figure 51-6
The start constraint set must position the button at the top of the layout with
an 8dp offset and centered horizontally. With myButton still selected, use
the Attributes tool window to set constraints on the top, left, and right sides
of the view as follows:

Figure 51-7
Select the end constraint set entry (marked D in Figure 51-5 above) and
repeat the steps to create a new constraint, this time placing the button in
the horizontal center of the layout but with an 8p offset from the bottom
edge of the layout:

Figure 51-8
With the start and end constraints configured, open the
activity_main_scene.xml file and note that the constraints have been added
to the file:
<?xml version="1.0" encoding="utf-8"?>
<MotionScene
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:motion="http://schemas.android.com/apk/res-auto">
.
.
 <ConstraintSet android:id="@+id/start">
 <Constraint
 android:id="@+id/myButton"
 android:layout_width="wrap_content"

 android:layout_height="wrap_content"
 motion:layout_constraintTop_toTopOf="parent"
 android:layout_marginTop="8dp"
 motion:layout_constraintStart_toStartOf="parent"
 motion:layout_constraintEnd_toEndOf="parent" />
 </ConstraintSet>

 <ConstraintSet android:id="@+id/end">
 <Constraint
 android:id="@+id/myButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 motion:layout_constraintStart_toStartOf="parent"
 motion:layout_constraintEnd_toEndOf="parent"
 motion:layout_constraintBottom_toBottomOf="parent"
 android:layout_marginBottom="8dp" />
 </ConstraintSet>
</MotionScene>

Note also that the Transition element has already been preconfigured to
animate the transition between the start and end points over 1000
milliseconds. Although we have yet to add an action to initiate the
transition, previewing the animation from within the MotionLayout editor is
still possible.

51.4 Previewing the MotionLayout Animation
To preview the animation without building and running the app, select the
transition arrow within the MotionLayout editor marked A in Figure 51-9
below. This will display the animation timeline panel (marked B):

Figure 51-9
To test the animation, click on the slider (C) and drag it along the timeline.
As the slider moves, the button in the layout canvas will move along the
dashed path line (D). Use the toolbar button (E) to perform a full animation
to repeat the animation continuously at different speeds (either forwards,
backward or toggling back and forth).

51.5 Adding an OnClick Gesture
Although a simple MotionLayout animation transition has been created, we
still need a way to start the animation from within the running app. This can
be achieved by assigning either a click or swipe handler. For this example,
we will configure the animation to start when the user clicks the button.
Within the MotionLayout editor, pause the timeline animation if it runs on a
loop setting. Next, select the Transition arrow (marked A in Figure 51-9
above), locate the OnClick attribute section in the Attributes tool window
and click on the + button indicated by the arrow in Figure 51-10 below:

Figure 51-10
An empty row will appear in the OnClick panel for the first property. For
the property name, enter targetId; for the value field, enter the button’s id
(@id/myButton). In the next empty row, enter app:clickAction into the
property name field. In the value field, click the down arrow to display a
menu of valid options:

Figure 51-11
For this example, select the toggle action. This will cause the view to
animate to the opposite position when clicked. Once these settings have
been entered, they should match those shown in Figure 51-12:

Figure 51-12
Once again, open the activity_main_scene.xml file and review the OnClick
property defined within the Transition entry:

.

.
 <Transition
 motion:constraintSetEnd="@+id/end"
 motion:constraintSetStart="@id/start"
 motion:duration="1000">
 <KeyFrameSet>
 </KeyFrameSet>
 <OnClick motion:targetId="@id/myButton"
 motion:clickAction="toggle" />
 </Transition>
.
.

Compile and run the app on a device or emulator and confirm that clicking
on the button causes it to transition back and forth between the start and end
points as defined in the MotionScene file.

51.6 Adding an Attribute Keyframe to the Transition
So far, the example project is only animating the motion of the button view
from one location on the screen to another. Attribute keyframes
(KeyAttribute) provide a way to specify points within the transition
timeline at which other attribute changes are to have taken effect. A
KeyAttribute could, for example, be defined such that the view must have
increased in size by 50% by the time the view has moved 30% through the
timeline. For this example, we will add a rotation effect positioned at the
mid-point of the animation.
Begin by opening the activity_main.xml file in the MotionLayout Editor,
selecting the transition connector arrow to display the timeline, then click
on the button highlighted in Figure 51-13:

Figure 51-13
From the menu, select the KeyAttribute option:

Figure 51-14
Once selected, the dialog shown in Figure 51-15 will appear. Within the
dialog, make sure the ID option is selected and that myButton is referenced.
In the position field, enter 50 (this is specified as a percentage where 0 is
the start point and 100 is the end). Finally, select the rotation entry from the
Attribute drop-down menu before clicking on the Add button:

Figure 51-15
Once the KeyAttribute has been added, a row will appear within the
timeline for the attribute. Click on the row to highlight it, then click on the
disclosure arrow on the far left edge of the row to unfold the attribute
transition graph. Note that a small diamond marker appears in the timeline
(as indicated in Figure 51-16 below), indicating the location of the key. The
graph indicates the linearity of the effect. In this case, the button will rotate
steadily up to the specified number of degrees, reaching maximum rotation
at the location of the keyframe. The button will then rotate back to 0

degrees by the time it reaches the end point:

Figure 51-16
To change the properties of a KeyAttribute, select it in the timeline and then
refer to the Attributes tool window. Within the KeyAttribute panel, change
the rotation property to 360 degrees:

Figure 51-17
Check that the attribute works by moving the slider back and forth and
watching the button rotate as it traverses the animation path in the layout
canvas. Refer to the activity_main_scene.xml file, which should appear as
follows:
.
.
 <Transition
 motion:constraintSetEnd="@+id/end"
 motion:constraintSetStart="@id/start"
 motion:duration="1000">
 <KeyFrameSet>
 <KeyAttribute
 motion:motionTarget="@+id/myButton"
 motion:framePosition="50"
 android:rotation="360" />
 </KeyFrameSet>

 <OnClick motion:targetId="@id/myButton"
 motion:clickAction="toggle" />
 </Transition>
.
.

Test the animation using the transition slider or by compiling and running
the app and verify that the button now rotates during the animation.

51.7 Adding a CustomAttribute to a Transition
The KeyAttribute property is limited to built-in effects such as resizing and
rotation. Additional changes are also possible by declaring
CustomAttributes. Unlike KeyAttributes, which are stored in the Transition
element, CustomAttributes are located in the start and end constraint sets.
As such, these attributes can only be declared to take effect at start and end
points (in other words, you cannot specify an attribute keyframe at a
position partway through a transition timeline).
For this example, we will configure the button to gradually change color
from red to green. Begin by selecting the start box marked A in Figure 51-
18, followed by the myButton view constraint set (B):

Figure 51-18
Referring to the Attributes tool window, click on the + button in the
CustomAttributes section as highlighted below:

Figure 51-19
In the resulting dialog (Figure 51-20), change the attribute type to Color
and enter backgroundColor into the Attribute Name field. Finally, set the
value to #F80A1F:

Figure 51-20
Click on OK to commit the changes, then select the end constraint set
(marked C in Figure 51-18 above) and repeat the steps to add a custom
attribute, this time specifying #33CC33 as the RGB value for the color.
Using the timeline slider or running the app, make sure the button changes
color during the animation.
The addition of these CustomAttributes will be reflected in the
activity_main_scene.xml file as follows:
.
.
 <ConstraintSet android:id="@+id/start">
 <Constraint
.
.
 <CustomAttribute
 motion:attributeName="backgroundColor"
 motion:customColorValue="#F80A1F" />
 </Constraint>
 </ConstraintSet>

 <ConstraintSet android:id="@+id/end">
 <Constraint
.
.
 <CustomAttribute
 motion:attributeName="backgroundColor"
 motion:customColorValue="#33CC33" />
 </Constraint>
 </ConstraintSet>
.
.

51.8 Adding Position Keyframes
The final task for this tutorial is to add two position keyframes
(KeyPosition) to the animation path to introduce some lateral movement
into the animation. With the transition timeline visible in the MotionLayout
editor, click on the button to create a keyframe as highlighted in Figure 51-
13 above, and select the KeyPosition option from the menu, as shown in
Figure 51-21 below:

Figure 51-21
In the resulting dialog, set the properties as illustrated in Figure 51-22:

Figure 51-22
Click on the Add button to commit the change, then repeat the above steps
to add a second position keyframe configured as follows:
•Position: 75
•Type: parentRelative
•PercentX: 0.85
•PercentY: 0.75
On completion of these changes, the following keyframe entries will have
been added to the transition element in the activity_main_scene.xml file:
<KeyFrameSet>
.
.
 <KeyPosition
 motion:motionTarget="@+id/myButton"
 motion:framePosition="25"
 motion:keyPositionType="parentRelative"
 motion:percentX="0.15"
 motion:percentY="0.25" />
 <KeyPosition
 motion:motionTarget="@+id/myButton"
 motion:framePosition="75"
 motion:keyPositionType="parentRelative"
 motion:percentX="0.85"
 motion:percentY="0.75" />
</KeyFrameSet>
.

.

Test the app one last time and verify that the button now follows the path
shown below while still rotating and changing color:

Figure 51-23
Position keyframes are represented by diamond-shaped markers on the
dotted line representing the motion path within the preview canvas as
indicated in Figure 51-24 (if the markers are not visible, make sure that the
Button view is selected in the preview):

Figure 51-24
To visually adjust the position of a keyframe, click on the marker and drag
it to a new position. As the marker moves, the Motion Layout editor will

display a grid together with the current x and y coordinates:

Figure 51-25
51.9 Summary
This chapter has introduced the MotionLayout editor built into Android Studio and explored how it
can be used to add animation to the user interface of an Android app without having to write XML
declarations manually. Examples covered in this chapter included the conversion of a
ConstraintLayout container to MotionLayout, creating start and end constraint sets and transitions in
the MotionScene file, and adding an OnClick handler. The animation previewer, custom attributes,
and position keyframes were also covered.

52. A MotionLayout KeyCycle
Tutorial
The previous chapters introduced and demonstrated the concepts of integrating
animation into Android app user interfaces using the MotionLayout container
combined with the features of the Android Studio MotionLayout editor. The
chapter entitled “An Introduction to MotionLayout” briefly mentioned the
cycle (KeyCycle) and time cycle (KeyTimeCycle) keyframes and explained
how these can be used to implement animations involving large numbers of
repetitive state changes.
This chapter will cover cycle keyframes in more detail before demonstrating
how to make them in an example project using Android Studio and the Cycle
Editor.

52.1 An Overview of Cycle Keyframes
Position keyframes can add intermediate state changes to the animation
timeline. While this works well for small numbers of state changes, it would be
cumbersome to implement in larger quantities. To make a button shake 50
times when tapped to indicate that an error occurred, for example, would
involve manually creating 100 position keyframes to perform small clockwise
and anti-clockwise rotations. Similarly, implementing a bouncing effect on a
view as it moves across the screen would be equally time-consuming.
For situations where state changes need to be performed repetitively,
MotionLayout includes the Cycle and Time Cycle keyframes. Both perform
the same tasks, except that KeyCycle frames are based on frame positions
within an animation path, while KeyTimeCycles are time-based in cycles per
second (Hz).
Using these KeyCycle frames, the animation timeline is essentially divided
into subsections (called cycles), each containing one or more waves that define
how a property of a view is to be modified throughout the timeline. The
following information is required when creating a KeyCycle cycle:
•target view - The id of the view on which the changes will be made.
•frame position - The position in the timeline at which the cycle is to start.
•wave period - The number of waves to be included in the cycle.
•attribute - The property of the view to be modified by the waves.

•wave offset - Offsets the cycle by the specified amount from the keyframe
baseline.

•wave shape - The shape of the wave (sin, cos, sawtooth, square, triangle,
bounce or reverse sawtooth)

Consider the following cycle keyframe set:
<KeyFrameSet>
 <KeyCycle
 motion:framePosition="0"
 motion:motionTarget="@+id/button"
 motion:wavePeriod="1"
 motion:waveOffset="0dp"
 motion:waveShape="sin"
 android:translationY="50dp"/>

 <KeyCycle
 motion:framePosition="25"
 motion:motionTarget="@+id/button"
 motion:wavePeriod="1"
 motion:waveOffset="0dp"
 motion:waveShape="sin"
 android:translationY="50dp"/>

 <KeyCycle
 motion:framePosition="50"
 motion:motionTarget="@+id/button"
 motion:wavePeriod="1"
 motion:waveOffset="0dp"
 motion:waveShape="sin"
 android:translationY="50dp"/>

 <KeyCycle
 motion:framePosition="75"
 motion:motionTarget="@+id/button"
 motion:wavePeriod="1"
 motion:waveOffset="0dp"
 motion:waveShape="sin"
 android:translationY="50dp"/>

 <KeyCycle
 motion:framePosition="100"
 motion:motionTarget="@+id/button"
 motion:wavePeriod="1"
 motion:waveOffset="0dp"

 motion:waveShape="sin"
 android:translationY="50dp"/>
</KeyFrameSet>

The above keyframe set divides the timeline into four equal cycles. Each cycle
is configured to contain a sin wave shape which adjusts the translationY
property of a button 50dp. This animation will cause the button to oscillate
vertically multiple times within the specified range when executed. This
keyframe set can be visualized as shown in Figure 52-1, where the five dots
represent the keyframe positions:

Figure 52-1
As currently implemented, each cycle contains a single wave. Suppose we
need four waves within the last cycle instead of these evenly distributed waves.
This can easily be achieved by increasing the wavePeriod property for the last
KeyCycle element as follows:
.
.
 <KeyCycle
 motion:framePosition="75"
 motion:motionTarget="@+id/button"
 motion:wavePeriod="4"
 motion:waveOffset="0dp"
 motion:waveShape="sin"
 android:translationY="50dp"/>
.
.

After making this change, the frame set can be rendered in wave form as
follows:

Figure 52-2
So far, the examples in this chapter have been using sin waves. Several other
wave shapes are available when working with cycle keyframes in
MotionLayout. Figure 52-3, for example, illustrates the effect of changing the
waveShape property for all the cycle keyframes to the sawtooth wave shape:

Figure 52-3
In addition to sin and sawtooth, MotionLayout also supports triangle, square,
bounce, and reverseSawtooth wave shapes.
In the above examples, each cycle moves the button within the same range
along the Y-axis. However, suppose we need the second cycle to move the
button a greater distance along the positive Y-axis. This involves adjusting the
waveOffset property of the second cycle as follows:
<KeyCycle
 motion:framePosition="25"
 motion:target="@+id/button"
 motion:wavePeriod="1"
 motion:waveOffset="100dp"
 motion:waveShape="sin"
 android:translationY="50dp"/>

By making this change, we end up with a timeline that resembles Figure 52-4:

Figure 52-4
The movement of the button during the second cycle will now range between
approximately 0 and 150dp on the Y-axis. If we still need the lower end of the
range to match the other waves, we can, of course, add 100dp to the
translationY value:
<KeyCycle
 motion:framePosition="25"
 motion:target="@+id/button"
 motion:wavePeriod="1"
 motion:waveOffset="100dp"
 motion:waveShape="sin"
 android:translationY="150dp"/>

This change now gives us the following waveform:

Figure 52-5
52.2 Using the Cycle Editor
Although not particularly complicated, getting the exact cycle configuration
you need can take some time by directly editing XML KeyCycle entries in the
MotionScene file. In recognition, the Android engineers at Google have
developed the Cycle Editor. This separate Java-based utility is not yet part of
Android Studio. The Cycle Editor allows you to design and test cycle
keyframe sets visually.
The Cycle Editor tool is a Java archive (jar) file requiring the Java runtime to
be installed on your development system.

Once you have Java installed, the CycleEditor.jar file can be downloaded from
the following URL:
https://github.com/googlesamples/android-
ConstraintLayoutExamples/releases/download/1.0/CycleEditor.jar
Once downloaded, open a command prompt or terminal window, change
directory to the location of the jar file, and run the following command:
java -jar CycleEditor.jar

Once the tool has loaded, the screen shown in Figure 52-6 will appear:

Figure 52-6
The panel marked A in the above figure displays the XML for the keyframe set
and can be edited directly or using the controls in panel B. Panel C displays the
rendering of the cycles in wave form. Unfortunately, this is not redrawn in real
time as changes are made. Instead, it must be refreshed by selecting the File ->
parse xml menu option. The panel marked D will show a live rendering of the
cycle animations when the play button in panel B is clicked. The Examples
menu provides access to a collection of example keyframe sets that can be
used both for learning purposes and as the basis for your own animations.
The remainder of this chapter will create a sample project that implements a
KeyCycle-based animation effect to demonstrate the use of the Cycle
Keyframe and the Cycle Editor.

52.3 Creating the KeyCycleDemo Project

https://github.com/googlesamples/android-ConstraintLayoutExamples/releases/download/1.0/CycleEditor.

Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template before
clicking on the Next button.
Enter KeyCycleDemo into the Name field and specify
com.ebookfrenzy.keycycledemo as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android 8.0
(Oreo) and the Language menu to Kotlin.
With the layout editor in Design mode and the activity_main.xml file open,
right-click on the ConstraintLayout entry and select the Convert to
MotionLayout menu option:

Figure 52-7
After making the selection, click the Convert button in the confirmation dialog.

52.4 Configuring the Start and End Constraints
This tutorial aims to animate a button’s movement from one side of the device
screen to the other, including KeyCycle effects that cause the view to also
move up and down along the Y-axis. The first step is to configure the start and
end constraints.
With the activity_main.xml file loaded into the MotionLayout editor, select and
delete the default TextView widget. Make sure the Motion Layout box (marked
E in Figure 52-9 below) is selected before dragging and dropping a Button
view from the palette so that it is centered vertically and positioned along the
left-hand edge of the layout canvas:

Figure 52-8
To configure the constraints for the start point, select the start constraint set
entry in the editor window (marked A in Figure 52-9):

Figure 52-9
Next, select the button entry within the ConstraintSet list (B). With the button
entry still selected, click the edit button (C) and select Create Constraint from
the menu.
With the button still selected, use the Attributes tool window to set constraints
on the top, left, and bottom sides of the view as follows:

Figure 52-10
Select the end constraint set entry (marked D in Figure 52-9 above) and repeat
the steps to create a new constraint, this time with constraints on the top,
bottom, and right-hand edges of the button:

Figure 52-11
52.5 Creating the Cycles
The next step is to use the Cycle Editor to generate the cycle keyframes for the
animation. With the Cycle Editor running, refer to the control panel shown in
Figure 52-12 below:

Figure 52-12
Using the menu marked A, change the property to be modified from rotation to
translationY.
Next, use the KeyCycle control (B) to select cycle 0 so that changes made
elsewhere in the panel will be applied to the first cycle. Move the Period slider
to 1 and the translationY slider to 60 as shown in Figure 52-13 (refer to the
XML panel to see the precise setting for the translationY value as you move
the slider):

Figure 52-13
Select the File -> Parse XML menu option to see the changes in the graph.
Using the values listed in Table 52-1, configure the settings for KeyFrames 1
through 4 (keeping in mind that you have already configured the settings in the
KeyCycle 0 column):

KeyCycle
0

KeyCycle
1

KeyCycle
2

KeyCycle
3

KeyCycle
4

Position 0 25 50 75 100

Period 1 2 3 2 1

translationY 60 60 150 60 60
Table 52-1

On completion of these changes, the keyframe set XML should read as
follows:
<KeyFrameSet>
 <KeyCycle
 motion:framePosition="0"
 motion:motionTarget="@+id/button"
 motion:wavePeriod="1"
 motion:waveOffset="0dp"
 motion:waveShape="sin"
 android:translationY="60dp"/>

 <KeyCycle
 motion:framePosition="25"
 motion:motionTarget="@+id/button"
 motion:wavePeriod="2"
 motion:waveOffset="0dp"
 motion:waveShape="sin"
 android:translationY="60dp"/>

 <KeyCycle
 motion:framePosition="50"
 motion:motionTarget="@+id/button"

 motion:wavePeriod="3"
 motion:waveOffset="0dp"
 motion:waveShape="sin"
 android:translationY="150dp"/>

 <KeyCycle
 motion:framePosition="75"
 motion:motionTarget="@+id/button"
 motion:wavePeriod="2"
 motion:waveOffset="0dp"
 motion:waveShape="sin"
 android:translationY="60dp"/>

 <KeyCycle
 motion:framePosition="100"
 motion:motionTarget="@+id/button"
 motion:wavePeriod="1"
 motion:waveOffset="0dp"
 motion:waveShape="sin"
 android:translationY="60dp"/>
</KeyFrameSet>

To view the graph with the new cycles, select the File -> Parse XML menu
option to refresh the wave pattern, which should now appear as illustrated in
Figure 52-14:

Figure 52-14
52.6 Previewing the Animation
The cycle-based animation may now be previewed from within the Cycle
Editor tool. Start the animation by clicking the play button (marked A in
Figure 52-15). To combine the cycles with horizontal movement, change the
second menu (B) from Stationary to West to East. Also, take some time to
experiment with the time and linearity settings (C and D).

Figure 52-15
52.7 Adding the KeyFrameSet to the MotionScene
Within the Cycle Editor, highlight and copy only the KeyCycle elements from
the XML panel and paste them into the Transition section of the res -> xml ->
activity_main_scene.xml file within Android Studio so that they are placed
between the existing KeyFrameSet markers. Note also the increased duration
setting and the addition of an OnClick handler to initiate the animation:
<Transition
 motion:constraintSetEnd="@+id/end"
 motion:constraintSetStart="@id/start"
 motion:duration="7000">
 <KeyFrameSet>
 <KeyCycle
 motion:framePosition="0"
 motion:motionTarget="@+id/button"
 motion:wavePeriod="1"
 motion:waveOffset="0dp"
 motion:waveShape="sin"
 android:translationY="60dp"/>

 <KeyCycle
 motion:framePosition="25"
.
.
 </KeyFrameSet>

 <OnClick motion:targetId="@id/button"
 motion:clickAction="toggle" />
.
.

Before proceeding, check that each target property is correctly declared. At the
time of writing, the Cycle Editor was using the outdated motion:target tag. For
example:
motion:target="@+id/button"

This will need to be changed for each of the five KeyCycle entries to read as
follows:

motion:motionTarget="@+id/button"

Once these changes have been made, compile and run the app on a device or
emulator and click the button to start and view the animation.
Note that the KeyCycle wave formation can also be viewed within the Android
Studio MotionLayout editor, as shown in Figure 52-16 below:

Figure 52-16
KeyCycle frame sets are not limited to one per animation. For example, add
the following KeyFrameSet to the Transition section of the
activity_main_scene.xml file to add some rotation effects to the button as it
moves:
<KeyFrameSet>
 <KeyCycle
 motion:framePosition="0"
 motion:motionTarget="@+id/button"
 motion:wavePeriod="1"
 motion:waveOffset="0dp"
 motion:waveShape="sin"
 android:translationY="60dp"
 android:rotation="45"/>

 <KeyCycle
 motion:framePosition="25"
 motion:motionTarget="@+id/button"
 motion:wavePeriod="2"
 motion:waveOffset="0dp"
 motion:waveShape="sin"
 android:translationY="60dp"
 android:rotation="80"/>

 <KeyCycle
 motion:framePosition="50"
 motion:motionTarget="@+id/button"
 motion:wavePeriod="3"
 motion:waveOffset="0dp"

 motion:waveShape="sin"
 android:translationY="150dp"
 android:rotation="45"/>

 <KeyCycle
 motion:framePosition="75"
 motion:motionTarget="@+id/button"
 motion:wavePeriod="2"
 motion:waveOffset="0dp"
 motion:waveShape="sin"
 android:translationY="60dp"
 android:rotation="80"/>

 <KeyCycle
 motion:framePosition="100"
 motion:motionTarget="@+id/button"
 motion:wavePeriod="1"
 motion:waveOffset="0dp"
 motion:waveShape="sin"
 android:translationY="60dp"
 android:rotation="45"/>
</KeyFrameSet>

52.8 Summary
Cycle keyframes provide a useful way to build frame animations that involve
potentially large numbers of state changes that match wave patterns. As this
chapter outlines, generating these cycle keyframes can be eased significantly
using the Cycle Editor application.

53. Working with the Floating Action
Button and Snackbar
One of the objectives of this chapter is to provide an overview of the
concepts of material design. Originally introduced as part of Android 5.0,
material design is a set of design guidelines that dictate how the Android
user interface, and that of the apps running on Android, appear and behave.
As part of implementing the material design concepts, Google also
introduced the Android Design Support Library. This library contains
several components that allow many of the key features of material design
to be built into Android applications. Two of these components, the floating
action button and the Snackbar, will also be covered in this chapter before
introducing many of the other components in subsequent chapters.

53.1 The Material Design
The principles of material design define the overall appearance of the
Android environment. Material design was created by the Android team at
Google and dictates that the elements that make up the user interface of
Android and the apps that run on it appear and behave in a certain way in
terms of behavior, shadowing, animation, and style. One of the tenets of the
material design is that the elements of a user interface appear to have
physical depth and a sense that items are constructed in layers of physical
material. A button, for example, appears to be raised above the surface of
the layout where it resides through shadowing effects. Pressing the button
causes the button to flex and lift as though made of a thin material that
ripples when released.
Material design also dictates the layout and behavior of many standard user
interface elements. A key example is how the app bar located at the top of
the screen should appear and how it should behave in relation to scrolling
activities taking place within the main content of the activity.
Material design covers a wide range of areas, from recommended color
styles to how objects are animated. A full description of the material design
concepts and guidelines can be found online at the following link and is
recommended reading for all Android developers:

https://material.io/design/introduction

53.2 The Design Library
Many of the building blocks needed to implement Android applications that
adopt material design principles are contained within the Android Design
Support Library. This library contains a collection of user interface
components that can be included in Android applications to implement
much of the look, feel, and behavior of material design. Two of the
components from this library, the floating action button and Snackbar, will
be covered in this chapter, while others will be introduced in later chapters.

53.3 The Floating Action Button (FAB)
The floating action button appears to float above the surface of the user
interface of an app. It generally promotes the most common action within a
user interface screen. A floating action button could be placed on a screen
to allow the user to add an entry to a list of contacts or to send an email
from within the app. Figure 53-1, for example, highlights the floating action
button that allows the user to add a new contact within the standard Android
Contacts app:

Figure 53-1
Several rules should be followed when using floating action buttons to

https://material.io/design/introduction

conform with the material design guidelines. Floating action buttons must
be circular and can be either 56 x 56dp (Default) or 40 x 40dp (Mini) in
size. The button should be positioned a minimum of 16dp from the edge of
the screen on phones and 24dp on desktops and tablet devices. Regardless
of the size, the button must contain an interior icon that is 24x24dp in size,
and it is recommended that each user interface screen have only one
floating action button.
Floating action buttons can be animated or designed to morph into other
items when touched. For example, a floating action button could rotate
when tapped or morph into another element, such as a toolbar or panel
listing related actions.

53.4 The Snackbar
The Snackbar component provides a way to present the user with
information as a panel at the bottom of the screen, as shown in Figure 53-2.
Snackbar instances contain a brief text message and an optional action
button that will perform a task when tapped by the user. Once displayed, a
Snackbar will either timeout automatically or can be removed manually by
the user via a swiping action. During the appearance of the Snackbar, the
app will continue to function and respond to user interactions normally.

Figure 53-2
In the remainder of this chapter, an example application will be created that
uses the basic features of the floating action button and Snackbar to add
entries to a list of items.

53.5 Creating the Example Project
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Basic Views Activity template
before clicking on the Next button.
Enter FabExample into the Name field and specify

com.ebookfrenzy.fabexample as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin.

53.6 Reviewing the Project
Since the Basic Views Activity template was selected, the activity contains
four layout files. The activity_main.xml file consists of a CoordinatorLayout
manager containing entries for an app bar, a Material toolbar, and a floating
action button.
The content_main.xml file represents the layout of the content area of the
activity and contains a NavHostFragment instance. This file is embedded
into the activity_main.xml file via the following include directive:
<include layout="@layout/content_main" />

The floating action button element within the activity_main.xml file reads as
follows:
<com.google.android.material.floatingactionbutton.FloatingActionBut
ton
 android:id="@+id/fab"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|end"
 android:layout_marginEnd="@dimen/fab_margin"
 android:layout_marginBottom="16dp"
 app:srcCompat="@android:drawable/ic_dialog_email" />

This declares that the button is to appear in the bottom right-hand corner of
the screen with margins represented by the fab_margin identifier in the
values/dimens.xml file (which, in this case, is set to 16dp). The XML
further declares that the interior icon for the button is to take the form of the
standard drawable built-in email icon.
The blank template has also configured the floating action button to display
a Snackbar instance when tapped by the user. The code to implement this
can be found in the onCreate() method of the MainActivity.kt file and reads
as follows:
binding.fab.setOnClickListener { view ->
 Snackbar.make(view, "Replace with your own action",
Snackbar.LENGTH_LONG)
 .setAction("Action", null).show()
}

The code accesses the floating action button via the view binding and adds
an onClickListener handler to be called when the button is tapped. This
method displays a Snackbar instance configured with a message but no
actions.
When the project is compiled and run, the floating action button will appear
at the bottom of the screen, as shown in Figure 53-3:

Figure 53-3
Tapping the floating action button will trigger the onClickListener handler
method causing the Snackbar to appear at the bottom of the screen:

Figure 53-4
53.7 Removing Navigation Features
As “A Guide to the Android Studio Layout Editor Tool” outlines, the Basic
Views Activity template contains multiple fragments and buttons to
navigate from one fragment to the other. These features are unnecessary for
this tutorial and will cause problems later if not removed. Before moving
ahead with the tutorial, modify the project as follows:
1.Within the Project tool window, navigate to and double-click on the app -

> res -> navigation -> nav_graph.xml file to load it into the navigation
editor.

2.Select the SecondFragment entry in the Component Tree panel within the
editor and tap the keyboard delete key to remove it from the graph.

3.Locate and delete the SecondFragment.kt (app -> kotlin+java ->
<package name> -> SecondFragment) and fragment_second.xml (app -

> res -> layout -> fragment_second.xml) files.
4.Locate the FirstFragment.kt file, double-click on it to load it into the

editor, and remove the code from the onViewCreated() method so that it
reads as follows:

override fun onViewCreated(view: View, savedInstanceState: Bundle?)
{
 super.onViewCreated(view, savedInstanceState)

 binding.buttonFirst.setOnClickListener {
 findNavController().navigate(R.id.action_FirstFragment_to_S
econdFragment)
 }
}

53.8 Changing the Floating Action Button
Since the objective of this example is to configure the floating action button
to add entries to a list, the email icon currently displayed on the button
needs to be changed to something more indicative of the action being
performed. The icon that will be used for the button is named
ic_add_entry.png and can be found in the project_icons folder of the sample
code download available from the following URL:
https://www.payloadbooks.com/product/jellyfishkotlin/
Locate this image in the file system navigator for your operating system and
copy the image file. Right-click on the app -> res -> drawable entry in the
Project tool window and select Paste from the menu to add the file to the
folder:

Figure 53-5
Next, edit the activity_main.xml file and change the image source for the
icon from @android:drawable/ic_dialog_email to
@drawable/ic_add_entry as follows:
<com.google.android.material.floatingactionbutton.FloatingActionBut
ton

https://www.payloadbooks.com/product/jellyfishkotlin/

 android:id="@+id/fab"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|end"
 android:layout_margin="@dimen/fab_margin"
 android:layout_marginBottom="16dp"
 app:srcCompat="@drawable/ic_add_entry" />

Within the layout preview, the interior icon for the button will have changed
to a plus sign.
We can also make the floating action button do just about anything when
clicked by adding code to the OnClickListener. The following changes to
the MainActivity.kt file, for example, calls a method named
displayMessage() to display a toast message each time the button is clicked:
.
.
import android.widget.Toast
.
.
binding.fab.setOnClickListener { view ->
 displayMessage("Fab clicked")
 Snackbar.make(view, "Replace with your own action",
Snackbar.LENGTH_LONG)
 .setAction("Action", null).show()
}
.
.
fun displayMessage(message: String) {
 Toast.makeText(this@MainActivity,message,Toast.LENGTH_SHORT).sh
ow()
}

53.9 Adding an Action to the Snackbar
An action may also be added to the Snackbar, which performs a task when
tapped by the user. Edit the MainActivity.kt file and modify the Snackbar
creation code to add an action titled “My Action” configured with an
onClickListener named actionOnClickListener which, in turn, displays a
toast message:
binding.fab.setOnClickListener { view ->
 displayMessage("FAB clicked")
 Snackbar.make(view, "Action complete", Snackbar.LENGTH_LONG)

 .setAction("My Action", actionOnClickListener).show()
}

Within the MainActivity.kt file, add the listener handler:
.
.
import android.view.View
.
.
var actionOnClickListener: View.OnClickListener =
View.OnClickListener { view ->
 displayMessage("Action clicked")
 Snackbar.make(view, "Action complete", Snackbar.LENGTH_LONG)
 .setAction("My Action", null).show()
}

Run the app and tap the floating action button, at which point both the toast
message and Snackbar should appear. While the Snackbar is visible, tap the
My Action button in the Snackbar and verify that the text on the Snackbar
changes to “Action Complete”:

Figure 53-6
53.10 Summary
Before working through an example project that uses these features, this
chapter has provided a general overview of material design, the floating
action button, and the Snackbar.
The floating action button and the Snackbar are part of Android’s material
design approach to user interface implementation. The floating action
button provides a way to promote the most common action within a
particular screen of an Android application. The Snackbar provides a way
for an application to present information to the user and allow the user to
act upon it.

54. Creating a Tabbed Interface using
the TabLayout Component
The previous chapter outlined the concept of material design in Android. It
introduced two of the components provided by the design support library in
the form of the floating action button and the Snackbar. This chapter will
demonstrate how to use another of the design library components, the
TabLayout, which can be combined with the ViewPager class to create a
tab-based interface within an Android activity.

54.1 An Introduction to the ViewPager2
Although not part of the design support library, ViewPager2 is a useful
companion class when used with the TabLayout component to implement a
tabbed user interface. The primary role of ViewPager2 is to allow the user
to flip through different pages of information where a layout fragment most
typically represents each page. The fragments associated with ViewPager2
are managed by an instance of the FragmentStateAdapter class.
At a minimum, the pager adapter assigned to ViewPager2 must implement
two methods. The first, named getItemCount(), must return the total number
of page fragments to be displayed to the user. The second method,
createFragment(), is passed a page number and must return the
corresponding fragment object ready to be presented to the user.

54.2 An Overview of the TabLayout Component
As previously discussed, TabLayout is one of the components introduced in
material design and is included in the design support library. The purpose of
the TabLayout is to present the user with a row of tabs that can be selected
to display different pages to the user. The tabs can be fixed or scrollable,
whereby the user can swipe left or right to view more tabs than will
currently fit on the display. The information displayed on a tab can be text-
based, an image, or a combination of text and images. Figure 54-1, for
example, shows the tab bar for an app consisting of four tabs displaying
images:

Figure 54-1
Figure 54-2, on the other hand, shows a TabLayout configuration consisting
of four tabs displaying text in a scrollable configuration:

Figure 54-2
The remainder of this chapter will work through creating an example
project that demonstrates the TabLayout component together with a
ViewPager2 and four fragments.

54.3 Creating the TabLayoutDemo Project
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Basic Views Activity template
before clicking on the Next button.
Enter TabLayoutDemo into the Name field and specify
com.ebookfrenzy.tablayoutdemo as the package name. Before clicking on
the Finish button, change the Minimum API level setting to API 26:
Android 8.0 (Oreo) and the Language menu to Kotlin.
Once the project has been created, load the content_main.xml file into the
Layout Editor tool, select the NavHostFragment object, and then delete it.
Since we will not be using the navigation features of the Basic Views
Activity template, edit the MainActivity.kt file and modify the onCreate()
method to remove the navigation code:
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 binding = ActivityMainBinding.inflate(layoutInflater)
 setContentView(binding.root)

 setSupportActionBar(binding.toolbar)

 val navController =
findNavController(R.id.nav_host_fragment_content_main)

 appBarConfiguration = AppBarConfiguration(navController.graph)
 setupActionBarWithNavController(navController,
appBarConfiguration)

 binding.fab.setOnClickListener { view ->
 Snackbar.make(view, "Replace with your own action",
Snackbar.LENGTH_LONG)
 .setAnchorView(R.id.fab)
 .setAction("Action", null).show()
 }
}

Finally, delete the onSupportNavigateUp() method:
override fun onSupportNavigateUp(): Boolean {
 val navController =
findNavController(R.id.nav_host_fragment_content_main)
 return navController.navigateUp(appBarConfiguration)
 || super.onSupportNavigateUp()
}

54.4 Creating the First Fragment
Each tab on the TabLayout will display a different fragment when selected.
Create the first of these fragments by right-clicking on the app ->
kotlin+java -> com.ebookfrenzy.tablayoutdemo entry in the Project tool
window and selecting the New -> Fragment -> Fragment (Blank) option. In
the resulting dialog, enter Tab1Fragment into the Fragment Name: field
and fragment_tab1 into the Fragment Layout Name: field. Click on the
Finish button to create the new fragment:

Figure 54-3
Edit the Tab1Fragment.kt file, and if Android Studio has not added one
automatically, add an OnFragmentInteractionListener interface declaration
as follows:
.
.
import android.net.Uri
.
.
 interface OnFragmentInteractionListener {
 fun onFragmentInteraction(uri: Uri)
 }
.
.

Load the newly created fragment_tab1.xml file (located under app -> res ->
layout) into the Layout Editor tool, right-click on the FrameLayout entry in
the Component Tree panel, and select the Convert FrameLayout to
ConstraintLayout menu option. In the resulting dialog, verify that all
conversion options are selected before clicking on OK. Change the ID of
the layout to constraintLayout.
Once the layout has been converted to a ConstraintLayout, delete the

TextView from the layout. From the Palette, locate the TextView widget
and drag and drop it so it is positioned in the center of the layout. Edit the
object’s text property to read “Tab 1 Fragment”, extract the string to a
resource named tab_1_fragment, and click the Infer Constraints toolbar
button. At this point, the layout should match that of Figure 54-4:

Figure 54-4
54.5 Duplicating the Fragments
So far, the project contains one of the four required fragments. It would be
quicker to duplicate the first fragment instead of creating the remaining
three fragments using the previous steps. Each fragment consists of a layout
XML file and a Kotlin class file, each needing to be duplicated.
Right-click on the fragment_tab1.xml file in the Project tool window and
select the Copy option from the resulting menu. Right-click on the layout
entry, this time selecting the Paste option. Name the new layout file
fragment_tab2.xml in the resulting dialog before clicking the OK button.
Edit the new fragment_tab2.xml file and change the text on the Text View
to “Tab 2 Fragment”, following the usual steps to extract the string to a
resource named tab_2_fragment.
To duplicate the Tab1Fragment class file, right-click on the class listed
under app -> kotlin+java -> com.ebookfrenzy.tablayoutdemo and select
Copy. Right-click on the com.ebookfrenzy.tablayoutdemo entry and select
Paste. In the Copy Class dialog, enter Tab2Fragment into the New name:

field and click OK. If a dialog appears reporting issues with ARG_PARAM
values, click Continue to complete the copying.
Edit the new Tab2Fragment.kt file and modify the onCreateView() method
to inflate the fragment_tab2 layout file (only add the ARG_PARAM
declarations if Android Studio reported them as inaccessible during the
copying process):
.
.
private const val ARG_PARAM1 = "param1"
private const val ARG_PARAM2 = "param2"
class Tab2Fragment : Fragment() {
.
.
override fun onCreateView(inflater: LayoutInflater, container:
ViewGroup?,
 savedInstanceState: Bundle?): View? {
 // Inflate the layout for this fragment
 return inflater.inflate(R.layout.fragment_tab2, container,
false)
}

Perform the above duplication steps twice to create the fragment layout and
class files for the remaining two fragments. On completion of these steps,
the project structure should match that of Figure 54-5:

Figure 54-5
54.6 Adding the TabLayout and ViewPager2
With the fragment creation process now complete, the next step is to add
the TabLayout and ViewPager2 to the main activity layout file. Edit the
activity_main.xml file and add these elements as outlined in the following
XML listing. Note that the TabLayout component is embedded into the
AppBarLayout element while the ViewPager2 is placed after the
AppBarLayout:
<?xml version="1.0" encoding="utf-8"?>
<androidx.coordinatorlayout.widget.CoordinatorLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 tools:context=".MainActivity">

 <com.google.android.material.appbar.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:fitsSystemWindows="true">

 <com.google.android.material.appbar.MaterialToolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize" />

 <com.google.android.material.tabs.TabLayout
 android:id="@+id/tabLayout"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:tabMode="fixed"
 app:tabGravity="fill"/>

 </com.google.android.material.appbar.AppBarLayout>

 <androidx.viewpager2.widget.ViewPager2
 android:id="@+id/view_pager"
 android:layout_width="match_parent"

 android:layout_height="match_parent"
 app:layout_behavior="@string/appbar_scrolling_view_behavior
" />

 <include layout="@layout/content_main" />

 <com.google.android.material.floatingactionbutton.FloatingActio
nButton
 android:id="@+id/fab"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|end"
 android:layout_marginEnd="@dimen/fab_margin"
 android:layout_marginBottom="16dp"
 app:srcCompat="@android:drawable/ic_dialog_email" />

</androidx.coordinatorlayout.widget.CoordinatorLayout>

Creating the Pager Adapter
This example will use the ViewPager2 approach to handling the fragments
assigned to the TabLayout tabs, with ViewPager2 added to the layout
resource file, a new class which subclasses FragmentStateAdapter needs to
be added to the project to manage the fragments that will be displayed when
the user selects the tab items.
Add a new class to the project by right-clicking on the
com.ebookfrenzy.tablayoutdemo entry in the Project tool window and
selecting the New -> Kotlin Class/File menu option. In the new class
dialog, enter TabPagerAdapter into the Name: field, select the Class item in
the list, and press the keyboard Return key.
Edit the TabPagerAdapter.kt file so that it reads as follows:
package com.ebookfrenzy.tablayoutdemo

import androidx.fragment.app.*
import androidx.viewpager2.adapter.FragmentStateAdapter

class TabPagerAdapter(fa: FragmentActivity,
 private var tabCount: Int):
FragmentStateAdapter(fa) {

 override fun createFragment(position: Int): Fragment {

 return when (position) {
 0 -> Tab1Fragment()
 1 -> Tab2Fragment()
 2 -> Tab3Fragment()
 3 -> Tab4Fragment()
 else -> Tab1Fragment()
 }
 }

 override fun getItemCount(): Int {
 return tabCount
 }
}

The class is declared as extending the FragmentStateAdapter class, and a
primary constructor is implemented, allowing the number of pages required
to be passed to the class when an instance is created. The createFragment()
method will be called when a specific page is required. A switch statement
is used to identify the page number being requested and to return a
corresponding fragment instance. Finally, the getItemCount() method
returns the count value passed through when the object instance was
created.

54.7 Performing the Initialization Tasks
The remaining tasks involve initializing the TabLayout, ViewPager2, and
TabPagerAdapter instances and declaring the main activity class as
implementing fragment interaction listeners for each of the four tab
fragments. Edit the MainActivity.kt file so that it reads as follows:
package com.ebookfrenzy.tablayoutdemo
.
.
import android.net.Uri
import com.google.android.material.tabs.TabLayoutMediator

class MainActivity : AppCompatActivity(),
 Tab1Fragment.OnFragmentInteractionListener,
 Tab2Fragment.OnFragmentInteractionListener,
 Tab3Fragment.OnFragmentInteractionListener,
 Tab4Fragment.OnFragmentInteractionListener {

 override fun onCreate(savedInstanceState: Bundle?) {

.

.
 configureTabLayout()
 }

 private fun configureTabLayout() {
 repeat (4) {
 binding.tabLayout.addTab(binding.tabLayout.newTab())
 }

 val adapter = TabPagerAdapter(this,
binding.tabLayout.tabCount)
 binding.viewPager.adapter = adapter

 TabLayoutMediator(binding.tabLayout, binding.viewPager) {
tab, position ->
 tab.text = "Tab ${(position + 1)} Item"
 }.attach()
 }

 override fun onFragmentInteraction(uri: Uri) {
 }
.
.
}

The code begins by creating four tabs and adding them to the TabLayout
instance as follows:
.
.
repeat (4) {
 binding.tabLayout.addTab(binding.tabLayout.newTab())
}
.
.

Next, an instance of the TabPagerAdapter class is created. Note that the
code to create the TabPagerAdapter instance passes through the number of
tabs assigned to the TabLayout component. The TabPagerAdapter instance
is then assigned as the adapter for the ViewPager2 instance:
.
.
val adapter = TabPagerAdapter(this, binding.tabLayout.tabCount)

binding.viewPager.adapter = adapter
.
.

Finally, an instance of the TabLayoutMediator class is used to connect the
TabLayout with the ViewPager2 object:
.
.
TabLayoutMediator(binding.tabLayout, binding.viewPager) { tab,
position ->
 tab.text = "Tab ${(position + 1)} Item"
}.attach()
.
.

This class ensures that the TabLayout tabs remain synchronized with the
currently selected fragment. This process involves ensuring that the correct
text is displayed on each tab. In this case, the text is configured to read “Tab
<n> Item” where <n> is replaced by the number of the currently selected
tab.

54.8 Testing the Application
Compile and run the app on a device or emulator and make sure that
selecting a tab causes the corresponding fragment to appear in the content
area of the screen:

Figure 54-6
54.9 Customizing the TabLayout
The TabLayout in this example project is configured using fixed mode. This
mode works well for a limited number of tabs with short titles. A greater
number of tabs or longer titles can quickly become a problem when using
fixed mode, as illustrated by Figure 54-7:

Figure 54-7
To fit the tabs into the available display width, the TabLayout has used
multiple lines of text. Even so, the second line is truncated, making it
impossible to see the full title. The best solution to this problem is to switch
the TabLayout to scrollable mode. In this mode, the titles appear in full-
length, single-line format allowing the user to swipe to scroll horizontally
through the available items, as demonstrated in Figure 54-8:

Figure 54-8
To switch a TabLayout to scrollable mode, change the app:tabMode
property in the activity_main.xml layout resource file from “fixed” to
“scrollable”:
<android.support.design.widget.TabLayout
 android:id="@+id/tabLayout"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:tabMode="scrollable"
 app:tabGravity="fill"/>

</android.support.design.widget.AppBarLayout>

When in fixed mode, the TabLayout may be configured to control how the
tab items are displayed to take up the available space on the screen. This is
controlled via the app:tabGravity property, the results of which are more
noticeable on wider displays such as tablets in landscape orientation. When
set to “fill”, for example, the items will be distributed evenly across the
width of the TabLayout, as shown in Figure 54-9:

Figure 54-9
Changing the property value to “center” will cause the items to be
positioned relative to the center of the tab bar:

Figure 54-10
54.10 Summary
TabLayout is one of the components introduced in the Android material
design implementation. The purpose of the TabLayout component is to
present a series of tab items that display different content to the user when
selected. The tab items can display text, images, or a combination. When
combined with the ViewPager2 class and fragments, tab layouts can be
created relatively easily, with each tab item selection displaying a different
fragment.

55. Working with the RecyclerView
and CardView Widgets
The RecyclerView and CardView widgets work together to provide
scrollable lists of information to the user in which the information is
presented as individual cards. Details of both classes will be covered in this
chapter before working through the design and implementation of an
example project.

55.1 An Overview of the RecyclerView
Much like the ListView class outlined in the chapter entitled “Working with
the Floating Action Button and Snackbar”, the RecyclerView’s purpose is
to allow information to be presented to the user as a scrollable list. The
RecyclerView, however, provides several advantages over the ListView. In
particular, the RecyclerView is significantly more efficient in managing the
views that make up a list, reusing existing views that makeup list items as
they scroll off the screen instead of creating new ones (hence the name
“recycler”). This increases the performance and reduces the resources a list
uses, a feature of particular benefit when presenting large amounts of data
to the user.
Unlike the ListView, the RecyclerView also provides a choice of three built-
in layout managers to control how the list items are presented to the user:
•LinearLayoutManager – The list items are presented as horizontal or
vertical scrolling lists.

Figure 55-1
•GridLayoutManager – The list items are presented in grid format. This
manager is best used when the list items are of uniform size.

Figure 55-2
•StaggeredGridLayoutManager - The list items are presented in a
staggered grid format. This manager is best used when the list items are of
different sizes.

Figure 55-3
For situations where none of the three built-in managers provide the
necessary layout, custom layout managers may be implemented by
subclassing the RecyclerView.LayoutManager class.
Each list item displayed in a RecyclerView is created as an instance of the
ViewHolder class. The ViewHolder instance contains everything necessary
for the RecyclerView to display the list item, including the information to
be displayed and the view layout used to display the item.
As with the ListView, the RecyclerView depends on an adapter to act as the
intermediary between the RecyclerView instance and the data to be
displayed to the user. The adapter is created as a subclass of the
RecyclerView.Adapter class and must, at a minimum, implement the
following methods, which will be called at various points by the
RecyclerView object to which the adapter is assigned:
•getItemCount() – This method must return a count of the number of items
to be displayed in the list.

•onCreateViewHolder() – This method creates and returns a ViewHolder
object initialized with the view that is to be used to display the data. This

view is typically created by inflating the XML layout file.
•onBindViewHolder() – This method is passed the ViewHolder object
created by the onCreateViewHolder() method together with an integer
value indicating the list item that is about to be displayed. Contained
within the ViewHolder object is the layout assigned by the
onCreateViewHolder() method. The onBindViewHolder() method is
responsible for populating the views in the layout with the text and
graphics corresponding to the specified item and returning the object to the
RecyclerView, where it will be presented to the user.

Adding a RecyclerView to a layout is a matter of adding the appropriate
element to the XML content layout file of the activity in which it is to
appear. For example:
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"
 tools:context=".MainActivity"
 tools:showIn="@layout/activity_card_demo">

 <androidx.recyclerview.widget.RecyclerView
 android:id="@+id/recycler_view"
 android:layout_width="0dp"
 android:layout_height="0dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 tools:listItem="@layout/card_layout" />

</androidx.constraintlayout.widget.ConstraintLayout>
.
.

The RecyclerView has been embedded into the CoordinatorLayout of a
main activity layout file along with the AppBar and Toolbar in the above
example. This provides some additional features, such as configuring the

Toolbar and AppBar to scroll off the screen when the user scrolls up within
the RecyclerView (a topic covered in more detail in the chapter entitled
“Working with the AppBar and Collapsing Toolbar Layouts”).

55.2 An Overview of the CardView
The CardView class is a user interface view that allows information to be
presented in groups using a card metaphor. Cards are usually presented in
lists using a RecyclerView instance and may be configured to appear with
shadow effects and rounded corners. Figure 55-4, for example, shows three
CardView instances configured to display a layout consisting of an
ImageView and two TextViews:

Figure 55-4
The user interface layout to be presented with a CardView instance is
defined within an XML layout resource file and loaded into the CardView
at runtime. The CardView layout can contain a layout of any complexity
using the standard layout managers such as RelativeLayout and
LinearLayout. The following XML layout file represents a card view layout
consisting of a RelativeLayout and a single ImageView. The card is
configured to be elevated to create a shadowing effect and to appear with
rounded corners:
<?xml version="1.0" encoding="utf-8"?>
 <androidx.cardview.widget.CardView
 xmlns:card_view="http://schemas.android.com/apk/res-auto"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/card_view"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="5dp"
 card_view:cardCornerRadius="12dp"

 card_view:cardElevation="3dp"
 card_view:contentPadding="4dp">

 <RelativeLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:padding="16dp" >

 <ImageView
 android:layout_width="100dp"
 android:layout_height="100dp"
 android:id="@+id/item_image"
 android:layout_alignParentLeft="true"
 android:layout_alignParentTop="true"
 android:layout_marginRight="16dp" />
 </RelativeLayout>
</androidx.cardview.widget.CardView>

When combined with the RecyclerView to create a scrollable list of cards,
the onCreateViewHolder() method of the recycler view inflates the layout
resource file for the card, assigns it to the ViewHolder instance and returns
it to the RecyclerView instance.

55.3 Summary
This chapter has introduced the Android RecyclerView and CardView
components. The RecyclerView provides a resource-efficient way to
display scrollable lists of views within an Android app. The CardView is
useful when presenting groups of data (such as a list of names and
addresses) in the form of cards. As previously outlined and demonstrated in
the tutorial contained in the next chapter, RecyclerView and CardView are
particularly useful when combined.

56. An Android RecyclerView and
CardView Tutorial
This chapter will create an example project that uses both the CardView and
RecyclerView components to create a scrollable list of cards. The
completed app will display a list of cards containing images and text. In
addition to displaying the list of cards, the project will be implemented such
that selecting a card causes messages to be displayed to the user indicating
which card was tapped.

56.1 Creating the CardDemo Project
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Basic Views Activity template
before clicking on the Next button.
Enter CardDemo into the Name field and specify
com.ebookfrenzy.carddemo as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin.

56.2 Modifying the Basic Views Activity Project
Since the Basic Views Activity was selected, the layout includes a floating
action button which is not required for this project. Load the
activity_main.xml layout file into the Layout Editor tool, select the floating
action button, and tap the keyboard delete key to remove the object from
the layout. Edit the MainActivity.kt file and remove the floating action
button and navigation controller code from the onCreate method as follows:
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 binding = ActivityMainBinding.inflate(layoutInflater)
 setContentView(binding.root)

 setSupportActionBar(binding.toolbar)

 val navController =
findNavController(R.id.nav_host_fragment_content_main)
 appBarConfiguration = AppBarConfiguration(navController.graph)

 setupActionBarWithNavController(navController,
appBarConfiguration)

 binding.fab.setOnClickListener { view ->
 Snackbar.make(view, "Replace with your own action",
Snackbar.LENGTH_LONG)
 .setAnchorView(R.id.fab)
 .setAction("Action", null).show()
 }
}

Also, remove the onSupportNavigateUp() method, then open the
content_main.xml file and delete the nav_host_fragment_content_main
object from the layout so that only the ConstraintLayout parent remains.

56.3 Designing the CardView Layout
The layout of the views contained within the cards will be defined within a
separate XML layout file. Within the Project tool window, right-click on the
app -> res -> layout entry and select the New -> Layout Resource File
menu option. In the New Resource Dialog, enter card_layout into the File
name: field and androidx.cardview.widget.CardView into the root element
field before clicking on the OK button.
Load the card_layout.xml file into the Layout Editor tool, switch to Code
mode, and modify the layout so that it reads as follows:
<?xml version="1.0" encoding="utf-8"?>
<androidx.cardview.widget.CardView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:id="@+id/card_view"
 android:layout_margin="5dp"
 app:cardBackgroundColor="#80B3EF"
 app:cardCornerRadius="12dp"
 app:cardElevation="3dp"
 app:contentPadding="4dp" >

 <androidx.constraintlayout.widget.ConstraintLayout
 android:id="@+id/relativeLayout"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"

 android:padding="16dp">

 <ImageView
 android:id="@+id/itemImage"
 android:layout_width="100dp"
 android:layout_height="100dp"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:id="@+id/itemTitle"
 android:layout_width="236dp"
 android:layout_height="39dp"
 android:layout_marginStart="16dp"
 android:textSize="30sp"
 app:layout_constraintLeft_toRightOf="@+id/itemImage"
 app:layout_constraintStart_toEndOf="@+id/itemImage"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:id="@+id/itemDetail"
 android:layout_width="236dp"
 android:layout_height="16dp"
 android:layout_marginStart="16dp"
 android:layout_marginTop="8dp"
 app:layout_constraintLeft_toRightOf="@+id/itemImage"
 app:layout_constraintStart_toEndOf="@+id/itemImage"
 app:layout_constraintTop_toBottomOf="@+id/itemTitle" />
 </androidx.constraintlayout.widget.ConstraintLayout>
</androidx.cardview.widget.CardView>

56.4 Adding the RecyclerView
Select the content_main.xml layout file and drag a RecyclerView object
from the Containers section of the palette onto the layout so that it is
positioned in the center of the screen, where it should automatically resize
to fill the entire screen. Use the Infer constraints toolbar button to add any
missing layout constraints to the view. Using the Attributes tool window,
change the ID of the RecyclerView instance to recyclerView and the
layout_width and layout_height properties to match_constraint.

56.5 Adding the Image Files

In addition to the two TextViews, the card layout contains an ImageView on
which the Recycler adapter has been configured to display images. Before
the project can be tested, these images must be added. The images that will
be used for the project are named android_image_<n>.jpg and can be
found in the project_icons folder of the sample code download available
from the following URL:
https://www.payloadbooks.com/product/jellyfishkotlin/
Locate these images in the file system navigator for your operating system
and select and copy the eight images. Right click on the app -> res ->
drawable entry in the Project tool window and select Paste to add the files
to the folder:

Figure 56-1
56.6 Creating the RecyclerView Adapter
As outlined in the previous chapter, the RecyclerView needs to have an
adapter to handle the creation of the list items. Add this new class to the
project by right-clicking on the app -> kotlin+java ->
com.ebookfrenzy.carddemo entry in the Project tool window and selecting
the New -> Kotlin Class/File menu option. In the new class dialog, enter
RecyclerAdapter into the Name field and select Class from the list before
tapping the Return keyboard key to create the new Kotlin class file.
Edit the new RecyclerAdapter.kt file to add some import directives and to
declare that the class now extends RecyclerView.Adapter. Rather than create
a separate class to provide the data to be displayed, some basic arrays will
also be added to the adapter to act as the data for the app:
package com.ebookfrenzy.carddemo

import android.view.LayoutInflater
import android.widget.ImageView

https://www.payloadbooks.com/product/jellyfishkotlin/

import android.widget.TextView
import android.view.View
import android.view.ViewGroup

import androidx.recyclerview.widget.RecyclerView

class RecyclerAdapter :
RecyclerView.Adapter<RecyclerAdapter.ViewHolder>() {

 private val titles = arrayOf("Chapter One",
 "Chapter Two", "Chapter Three", "Chapter Four",
 "Chapter Five", "Chapter Six", "Chapter Seven",
 "Chapter Eight")

 private val details = arrayOf("Item one details", "Item two
details",
 "Item three details", "Item four details",
 "Item five details", "Item six details",
 "Item seven details", "Item eight details")

 private val images = intArrayOf(R.drawable.android_image_1,
 R.drawable.android_image_2,
R.drawable.android_image_3,
 R.drawable.android_image_4,
R.drawable.android_image_5,
 R.drawable.android_image_6,
R.drawable.android_image_7,
 R.drawable.android_image_8)
}

Within the RecyclerAdapter class, we now need our own implementation of
the ViewHolder class configured to reference the view elements in the
card_layout.xml file. Remaining within the RecyclerAdapter.kt, file
implement this class as follows:
.
.
class RecyclerAdapter :
RecyclerView.Adapter<RecyclerAdapter.ViewHolder>() {
.
.
 inner class ViewHolder(itemView: View) :
RecyclerView.ViewHolder(itemView) {

 var itemImage: ImageView
 var itemTitle: TextView
 var itemDetail: TextView

 init {
 itemImage = itemView.findViewById(R.id.itemImage)
 itemTitle = itemView.findViewById(R.id.itemTitle)
 itemDetail = itemView.findViewById(R.id.itemDetail)
 }
 }
.
.
}
.
.

The ViewHolder class contains an ImageView and two TextView variables
together with a constructor method that initializes those variables with
references to the three view items in the card_layout.xml file.
The next item to be added to the RecyclerAdapter.kt file is the
implementation of the onCreateViewHolder() method:
override fun onCreateViewHolder(viewGroup: ViewGroup, i: Int):
ViewHolder {
 val v = LayoutInflater.from(viewGroup.context)
 .inflate(R.layout.card_layout, viewGroup, false)
 return ViewHolder(v)
}

This method will be called by the RecyclerView to obtain a ViewHolder
object. It inflates the view hierarchy card_layout.xml file and creates an
instance of our ViewHolder class initialized with the view hierarchy before
returning it to the RecyclerView.
The purpose of the onBindViewHolder() method is to populate the view
hierarchy within the ViewHolder object with the data to be displayed. It is
passed the ViewHolder object and an integer value indicating the list item
that is to be displayed. This method should now be added, using the item
number as an index into the data arrays. This data is then displayed on the
layout views using the references created in the constructor method of the
ViewHolder class:
override fun onBindViewHolder(viewHolder: ViewHolder, i: Int) {
 viewHolder.itemTitle.text = titles[i]

 viewHolder.itemDetail.text = details[i]
 viewHolder.itemImage.setImageResource(images[i])
}

The final requirement for the adapter class is an implementation of the
getItem() method which, in this case, returns the number of items in the
titles array:
override fun getItemCount(): Int {
 return titles.size
}

56.7 Initializing the RecyclerView Component
At this point, the project consists of a RecyclerView instance, an XML
layout file for the CardView instances and an adapter for the RecyclerView.
The last step before testing the progress so far is to initialize the
RecyclerView with a layout manager, create an instance of the adapter and
assign that instance to the RecyclerView object. For the purposes of this
example, the RecyclerView will be configured to use the
LinearLayoutManager layout option.
There is a slight complication here because we need to be able to use view
binding to access the recyclerView component from within the
MainActivity class. The problem is that recyclerView is contained within
the content_main.xml layout file which is, in turn, included in the
activity_main.xml file. To be able to reach down into the content_main.xml
file, we need to assign it an id at the point that it is included. To do this, edit
the activity_main.xml file and modify the include element so that it reads as
follows:
.
.
 <include
 android:id="@+id/contentMain"
 layout="@layout/content_main" />
.
.

With an id assigned to the included file, the recyclerView component can be
accessed using the following binding:
binding.contentMain.recyclerView

Now edit the MainActivity.kt file and modify the onCreate() method to

implement the initialization code:
package com.ebookfrenzy.carddemo
.
.
import androidx.recyclerview.widget.LinearLayoutManager
import androidx.recyclerview.widget.RecyclerView

class MainActivity : AppCompatActivity() {
.
.
 private var layoutManager: RecyclerView.LayoutManager? = null
 private var adapter:
RecyclerView.Adapter<RecyclerAdapter.ViewHolder>? = null

 override fun onCreate(savedInstanceState: Bundle?) {
.
.
 layoutManager = LinearLayoutManager(this)
 binding.contentMain.recyclerView.layoutManager =
layoutManager
 adapter = RecyclerAdapter()
 binding.contentMain.recyclerView.adapter = adapter
 }
.
.
}

56.8 Testing the Application
Compile and run the app on a physical device or emulator session and scroll
through the different card items in the list:

Figure 56-2
56.9 Responding to Card Selections
The last phase of this project is to make the cards in the list selectable so
that clicking on a card triggers an event within the app. For this example,
the cards will be configured to present a message on the display when
tapped by the user. To respond to clicks, the ViewHolder class needs to be
modified to assign an onClickListener on each item view. Edit the
RecyclerAdapter.kt file and modify the ViewHolder class declaration so that
it reads as follows:
.
.
 inner class ViewHolder(itemView: View) :
RecyclerView.ViewHolder(itemView) {

 var itemImage: ImageView
 var itemTitle: TextView
 var itemDetail: TextView

 init {
 itemImage = itemView.findViewById(R.id.item_image)
 itemTitle = itemView.findViewById(R.id.item_title)
 itemDetail = itemView.findViewById(R.id.item_detail)

 itemView.setOnClickListener { v: View ->

 }
 }
 }
.
.
}

Within the body of the onClick handler, code can now be added to display a
message indicating that the card has been clicked. Given that the actions
performed as a result of a click will likely depend on which card was
tapped, it is also important to identify the selected card. This information
can be obtained via a call to the getAdapterPosition() method of the
RecyclerView.ViewHolder class. Remaining within the RecyclerAdapter.kt
file, add code to the onClick handler so it reads as follows:
.
.
import com.google.android.material.snackbar.Snackbar
.
.
itemView.setOnClickListener { v: View ->
 val position: Int = adapterPosition

 Snackbar.make(v, "Click detected on item $position",
 Snackbar.LENGTH_LONG).setAction("Action", null).show()
}

The last task is to enable the material design ripple effect that appears when
items are tapped within Android applications. This involves the addition of
some properties to the declaration of the CardView instance in the
card_layout.xml file as follows:
<?xml version="1.0" encoding="utf-8"?>
<androidx.cardview.widget.CardView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:card_view="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/card_view"
 android:layout_margin="5dp"
 app:cardBackgroundColor="#80B3EF"
 app:cardCornerRadius="12dp"
 app:cardElevation="3dp"
 app:contentPadding="4dp"

 android:foreground="?selectableItemBackground"
 android:clickable="true" >

Run the app once again and verify that tapping a card in the list triggers
both the standard ripple effect at the point of contact and the appearance of
a Snackbar reporting the number of the selected item.

56.10 Summary
This chapter has worked through the steps involved in combining the
CardView and RecyclerView components to display a scrollable list of
card-based items. The example also covered the detection of clicks on list
items, including the identification of the selected item and the enabling of
the ripple effect visual feedback on the tapped CardView instance.

57. Working with the AppBar and
Collapsing Toolbar Layouts
In this chapter, we will explore how the app bar within an activity layout
can be customized and made to react to the scrolling events occurring
within other screen views. Using the CoordinatorLayout in conjunction
with the AppBarLayout and CollapsingToolbarLayout containers, the app
bar can be configured to display an image and to animate in and out of
view. For example, an upward scrolling motion on a list can be configured
so that the app bar recedes from view and reappears when a downward
scrolling motion is performed.
Beginning with an overview of the elements that can comprise an app bar,
this chapter will work through various examples of app bar configuration.

57.1 The Anatomy of an AppBar
The app bar is the area that appears at the top of the display when an app is
running and can be configured to contain various items, including the status
bar, toolbar, tab bar, and a flexible space area. Figure 57-1, for example,
shows an app bar containing a status bar, toolbar, and tab bar:

Figure 57-1
A blank background color can fill the flexible space area, or as shown in
Figure 57-2, an image displayed on an ImageView object:

Figure 57-2

As will be demonstrated in the remainder of this chapter, if the main content
area of the activity user interface layout contains scrollable content, the
elements of the app bar can be configured to expand and contract as the
content on the screen is scrolled.

57.2 The Example Project
For this example, changes will be made to the CardDemo project created in
the earlier chapter entitled “An Android RecyclerView and CardView
Tutorial”. Begin by launching Android Studio and loading this project.
Once the project has loaded, run the app and note when scrolling the list
upwards that the toolbar remains visible, as shown in Figure 57-3:

Figure 57-3
The first step is to make configuration changes so the toolbar contracts
during an upward scrolling motion and then expands on a downward scroll.

57.3 Coordinating the RecyclerView and Toolbar
Load the activity_main.xml file into the Layout Editor tool, switch to Code
mode, and review the XML layout design, the hierarchy of which is
represented by the diagram in Figure 57-4:

Figure 57-4
At the top level of the hierarchy is the CoordinatorLayout, which, as the
name suggests, coordinates the interactions between the various child view
elements it contains. As highlighted in “Working with the Floating Action
Button and Snackbar” for example, the CoordinatorLayout automatically
slides the floating action button upwards to accommodate the appearance of
a Snackbar when it appears, then moves the button back down after the bar
is dismissed.
The CoordinatorLayout can similarly be used to cause elements of the app
bar to slide in and out of view based on the scrolling action of certain views
within the view hierarchy. One element within the layout hierarchy shown
in Figure 57-4 is the ConstraintLayout. To achieve this coordinated
behavior, it is necessary to set properties on the element on which scrolling
takes place and the elements with which the scrolling is to be coordinated.
On the scrolling element (in this case, the RecyclerView), the
android:layout_behavior property must be set to
appbar_scrolling_view_behavior. Within the content_main.xml file, locate
the top-level ConstraintLayout element and note that this property has been
set by default:
<androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_behavior="@string/appbar_scrolling_view_behavior" >

Next, open the activity_main.xml file in the layout editor, switch to Code

mode, and locate the AppBarLayout element. Note that the only child of
AppBarLayout in the view hierarchy is the Toolbar. To make the toolbar
react to the scroll events occurring in the RecyclerView, the
app:layout_scrollFlags property must be set on this element. The value
assigned to this property will depend on the nature of the interaction
required and must consist of one or more of the following:
•scroll – Indicates that the view is to be scrolled off the screen. If this is not
set, the view will remain pinned at the top of the screen during scrolling
events.

•enterAlways – When used with the scroll option, an upward scrolling
motion will cause the view to retract. Any downward scrolling motion in
this mode will cause the view to reappear.

•enterAlwaysCollapsed – When set on a view, that view will not expand
from the collapsed state until the downward scrolling motion reaches the
limit of the list. If the minHeight property is set, the view will appear
during the initial scrolling motion but only until the minimum height is
reached. It will then remain at that height and will not expand fully until
the top of the list is reached. Note that this option only works when used
with both the enterAlways and scroll options. For example:
app:layout_scrollFlags="scroll|enterAlways|enterAlwaysCollapsed"
android:minHeight="20dp"

•exitUntilCollapsed – When set, the view will collapse during an upward
scrolling motion until the minHeight threshold is met. At that point, it will
remain at that height until the scroll direction changes.

For this example, the scroll and enterAlways options will be set on the
Toolbar as follows:
<com.google.android.material.appbar.MaterialToolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 app:layout_scrollFlags="scroll|enterAlways" />

With the appropriate properties set, rerun the app and make an upward
scrolling motion in the RecyclerView list. This should cause the toolbar to
collapse out of view (Figure 57-5). A downward scrolling motion should
cause the toolbar to reappear.

Figure 57-5
57.4 Introducing the Collapsing Toolbar Layout
The CollapsingToolbarLayout container enhances the standard toolbar by
providing a greater range of options and control over the collapsing of the
app bar and its children in response to coordinated scrolling actions. The
CollapsingToolbarLayout class is intended to be added as a child of the
AppBarLayout. It provides features such as automatically adjusting the font
size of the toolbar title as the toolbar collapses and expands. A parallax
mode allows designated content in the app bar to fade from view as it
collapses, while a pin mode allows elements of the app bar to remain in a
fixed position during the contraction.
A scrim option is also available to designate the color to which the toolbar
should transition during the collapse sequence.
To see these features in action, the app bar contained in the
activity_main.xml file will be modified to use the CollapsingToolbarLayout
class together with the addition of an ImageView to demonstrate the effect
of parallax mode better. The new view hierarchy that makes use of the
CollapsingToolbarLayout is represented by the diagram in Figure 57-6:

Figure 57-6
Load the activity_main.xml file into the Layout Editor tool in Code mode
and modify the layout so that it reads as follows:
<?xml version="1.0" encoding="utf-8"?>
<androidx.coordinatorlayout.widget.CoordinatorLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:fitsSystemWindows="true"
 tools:context=".MainActivity">

 <com.google.android.material.appbar.AppBarLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:fitsSystemWindows="true">

 <com.google.android.material.appbar.CollapsingToolbarLayout
 android:id="@+id/collapsing_toolbar"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_scrollFlags="scroll|enterAlways"
 android:fitsSystemWindows="true"
 app:expandedTitleMarginBottom="30dp"
 app:expandedTitleMarginStart="15dp"
 app:expandedTitleMarginEnd="64dp">

 <ImageView
 android:id="@+id/backdrop"

 android:layout_width="match_parent"
 android:layout_height="200dp"
 android:scaleType="centerCrop"
 android:fitsSystemWindows="true"
 app:layout_collapseMode="parallax"
 android:src="@drawable/appbar_image" />

 <com.google.android.material.appbar.MaterialToolbar
 android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 app:layout_scrollFlags="scroll|enterAlways"
 app:layout_collapseMode="pin" />
 </com.google.android.material.appbar.CollapsingToolbarLayou
t>

 </com.google.android.material.appbar.AppBarLayout>

 <include
 android:id="@+id/contentMain"
 layout="@layout/content_main" />

</androidx.coordinatorlayout.widget.CoordinatorLayout>

Using the file system navigator for your operating system, locate the
appbar_image.jpg image file in the project_icons folder of the code sample
download for the book and copy it. Right-click on the app -> res ->
drawable entry in the Project tool window and select Paste from the
resulting menu.
When run, the app bar should appear as illustrated in Figure 57-7:

Figure 57-7
Scrolling the list upwards will cause the app bar to collapse gradually.

During the contraction, the image will fade to the color defined by the scrim
property while the title text font size reduces at a corresponding rate until
only the toolbar is visible:

Figure 57-8
The toolbar has remained visible during the initial stages of the scrolling
motion (the toolbar will also recede from view if the upward scrolling
motion continues) as the flexible area collapses because the toolbar element
in the activity_main.xml file was configured to use pin mode:
app:layout_collapseMode="pin"

Had the collapse mode been set to parallax, the toolbar would have
retracted along with the image view.
Continuing the upward scrolling motion will cause the toolbar also to
collapse, leaving only the status bar visible:

Figure 57-9
Since the scroll flags property for the CollapsingToolbarLayout element
includes the enterAlways option, a downward scrolling motion will cause
the app bar to expand again.
To fix the toolbar in place so that it no longer recedes from view during the

upward scrolling motion, replace enterAlways with exitUntilCollapsed in
the layout_scrollFlags property of the CollapsingToolbarLayout element in
the activity_main.xml file as follows:
<com.google.android.material.appbar.CollapsingToolbarLayout
 android:id="@+id/collapsing_toolbar"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_scrollFlags="scroll|exitUntilCollapsed"
 android:fitsSystemWindows="true"
 app:expandedTitleMarginBottom="30dp"
 app:expandedTitleMarginStart="15dp"
 app:expandedTitleMarginEnd="64dp">

57.5 Changing the Title and Scrim Color
As a final task, edit the MainActivity.kt file and add some code to the
onCreate() method to change the title text on the collapsing layout manager
instance and to set a different scrim color (note that the scrim color may
also be set within the layout resource file):
package com.ebookfrenzy.carddemo
.
.
import android.graphics.Color
.
.
class MainActivity : AppCompatActivity() {
.
.
 override fun onCreate(savedInstanceState: Bundle?) {
 WindowCompat.setDecorFitsSystemWindows(window, false)
 super.onCreate(savedInstanceState)

 binding = ActivityMainBinding.inflate(layoutInflater)
 setContentView(binding.root)

 setSupportActionBar(binding.toolbar)

 binding.collapsingToolbar.title = "My Toolbar Title"
 binding.collapsingToolbar.setContentScrimColor(Color.GREEN)

 layoutManager = LinearLayoutManager(this)
 binding.contentMain.recyclerView.layoutManager =

layoutManager
 adapter = RecyclerAdapter()
 binding.contentMain.recyclerView.adapter = adapter
 }
.
.
}

Run the app one last time and note that the new title appears in the app bar
and that scrolling now causes the toolbar to transition to green as it retracts
from view.

57.6 Summary
The app bar at the top of most Android apps can consist of several
elements, including a toolbar, tab layout, and image view. When embedded
in a CoordinatorLayout parent, several different options are available to
control how the app bar behaves in response to scrolling events in the main
content of the activity. For greater control over this behavior, the
CollapsingToolbarLayout manager provides a range of additional levels of
control over how the app bar content expands and contracts relative to
scrolling activity.

58. An Overview of Android Intents
By this stage of the book, it should be clear that Android applications
comprise one or more activities, among other things. However, an area that
has yet to be covered in extensive detail is the mechanism by which one
activity can trigger the launch of another activity. As outlined briefly in the
chapter entitled “The Anatomy of an Android App”, this is achieved
primarily using Intents.
Before working through some Android Studio-based example
implementations of intents in the following chapters, this chapter aims to
provide an overview of intents in the form of explicit intents and implicit
intents, together with an introduction to intent filters.

58.1 An Overview of Intents
Intents (android.content.Intent) are the messaging system by which one
activity can launch another activity. An activity can, for example, issue an
intent to request the launch of another activity contained within the same
application. Intents also go beyond this concept by allowing an activity to
request the services of any other appropriately registered activity on the
device for which permissions are configured. Consider, for example, an
activity contained within an application that requires a web page to be
loaded and displayed to the user. Rather than the application having to
contain a second activity to perform this task, the code can send an intent to
the Android runtime requesting the services of any activity that has
registered the ability to display a web page. The runtime system will match
the request to available activities on the device and either launch the
activity that matches or, in the event of multiple matches, allow the user to
decide which activity to use.
Intents also allow data transfer from the sending to the receiving activity. In
the previously outlined scenario, for example, the sending activity would
need to send the URL of the web page to be displayed to the second
activity. Similarly, the receiving activity may be configured to return data to
the sending activity when the required tasks are completed.
Though not covered until later chapters, it is also worth highlighting that, in
addition to launching activities, intents are also used to launch and

communicate with services and broadcast receivers.
Intents are categorized as either explicit or implicit.

58.2 Explicit Intents
An explicit intent requests the launch of a specific activity by referencing
the target activity’s component name (which is the class name). This
approach is most common when launching an activity residing in the same
application as the sending activity (since the class name is known to the
developer).
An explicit intent is issued by creating an instance of the Intent class,
passing through the activity context and the component name of the activity
to be launched. A call is then made to the startActivity() method, passing
the intent object as an argument. For example, the following code fragment
issues an intent for the activity with the class name ActivityB to be
launched:
val i = Intent(this, ActivityB::class.java)
startActivity(i)

Data may be transmitted to the receiving activity by adding it to the intent
object before it is started via calls to the putExtra() method of the intent
object. Data must be added in the form of key-value pairs. The following
code extends the previous example to add String and integer values with the
keys “myString” and “myInt” respectively, to the intent:
val i = Intent(this, ActivityB::class.java)
i.putExtra("myString", "This is a message for ActivityB")
i.putExtra("myInt", 100)

startActivity(i)

The target activity receives the data as part of a Bundle object which can be
obtained via a call to getIntent().getExtras(). The getIntent() method of the
Activity class returns the intent that started the activity, while the
getExtras() method (of the Intent class) returns a Bundle object containing
the data. For example, to extract the data values passed to ActivityB:
val extras = intent.extras ?: return

val myString = extras.getString("myString")
int myInt = extras.getInt("MyInt")

When using intents to launch other activities within the same application,

those activities must be listed in the application manifest file. The following
AndroidManifest.xml contents are correctly configured for an application
containing activities named ActivityA and ActivityB:
<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.ebookfrenzy.intent1.intent1" >

 <application
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:label="@string/app_name"
 android:name="com.ebookfrenzy.intent1.intent1.ActivityA
" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category
android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name="ActivityB"
 android:label="ActivityB" >
 </activity>
 </application>
</manifest>

58.3 Returning Data from an Activity
As the example in the previous section stands, while data is transferred to
ActivityB, there is no way for data to be returned to the first activity (which
we will call ActivityA). This can, however, be achieved by launching
ActivityB as a sub-activity of ActivityA. An activity is started as a sub-
activity by creating an ActivityResultLauncher instance. An
ActivityResultLauncher instance is created by a call to the
registerForActivityResult() method and is passed a callback handler in the
form of a lambda. This handler will be called and passed return data when
the sub-activity returns. Once an ActivityResultLauncher instance has been
created, it can be called with an intent parameter to launch the sub-activity.
The code to create an ActivityResultLauncher instance typically reads as

follows:
val startForResult = registerForActivityResult(
 ActivityResultContracts.StartActivityForResult())
{
 result: ActivityResult ->
 if (result.resultCode == Activity.RESULT_OK) {
 val data = result.data
 data?.let {
 // Code to handle returned data
 }
 }
}

Once the launcher is ready, it can be called and passed the intent to be
launched as follows:
val i = Intent(this, ActivityB::class.java)
.
.
startForResult(intent)

To return data to the parent activity, the sub-activity must implement the
finish() method, the purpose of which is to create a new intent object
containing the data to be returned and then call the setResult() method of
the enclosing activity, passing through a result code and the intent
containing the return data. The result code is typically RESULT_OK, or
RESULT_CANCELED, but it may also be a custom value subject to the
developer’s requirements. If a sub-activity crashes, the parent activity will
receive a RESULT_CANCELED result code.
The following code, for example, illustrates the code for a typical sub-
activity finish() method:
override fun finish() {
 val data = Intent()

 data.putExtra("returnString1", "Message to parent activity")

 setResult(RESULT_OK, data)
 super.finish()
}

58.4 Implicit Intents
Unlike explicit intents, which reference the class name of the activity to be

launched, implicit intents identify the activity to be launched by specifying
the action to be performed and the type of data to be handled by the
receiving activity. For example, an action type of ACTION_VIEW
accompanied by the URL of a web page in the form of a URI object will
instruct the Android system to search for and, subsequently, launch a web
browser-capable activity. The following implicit intent will, when executed
on an Android device, result in the designated web page appearing in a web
browser activity:
val intent = Intent(Intent.ACTION_VIEW,
 Uri.parse("http://www.ebookfrenzy.com"))

startActivity(intent)

When an activity issues the above implicit intent, the Android system will
search for activities on the device that have registered the ability to handle
ACTION_VIEW requests on HTTP scheme data using a process referred to
as intent resolution. Before the system launches an activity using an implicit
intent, the user must either verify or enable that activity. If neither of these
conditions has been met, the activity will not be launched by the intent.
Before exploring these two options, we first need to talk about intent filters.

58.5 Using Intent Filters
Intent filters are the mechanism by which activities “advertise” supported
actions and data handling capabilities to the Android intent resolution
process. These declarations also include the settings required to perform the
link verification process. The following AndroidManifest.xml file illustrates
a configuration for an activity named WebActivity within an app named
MyWebView with an appropriately configured intent filter:
<?xml version="1.0" encoding="utf-8"?>
.
.
 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.MyWebView">
 <activity

 android:name="WebActivity"
 android:exported="true">
 <intent-filter android:autoVerify="true">
 <action android:name="android.intent.action.VIEW"
/>
 <category
android:name="android.intent.category.BROWSABLE" />
 <category
android:name="android.intent.category.DEFAULT" />
 <data android:scheme="https" />
 <data android:host="www.ebookfrenzy.com"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

This manifest file configures the WebActivity activity to be launched in
response to an implicit intent from another activity when the intent contains
the https://www.ebookfrenzy.com URL. The following code, for example,
would launch the WebActivity activity (assuming that the MyWebView app
has been verified or enabled by the user as a support link):
val intent = Intent(Intent.ACTION_VIEW,
 Uri.parse("https://www.ebookfrenzy.com"))
startActivity(intent)

58.6 Automatic Link Verification
Using a web link to launch an activity on an Android device is considered a
potential security hazard. To minimize this risk, the link used to launch an
intent must either be automatically verified or manually added as a
supported link on the device by the user. To enable automatic verification,
the corresponding intent declaration in the target activity must set
autoVerify to true as follows:
<intent-filter android:autoVerify="true">
.
.
</intent-filter>

Next, the link URL must be associated with the website on which the app
link is based. This is achieved by creating a Digital Assets Link file named
assetlinks.json and installing it within the website’s .well-known folder.
A digital asset link file comprises a relation statement granting permission

for a target app to be launched using the website’s link URLs and a target
statement declaring the companion app package name and SHA-256
certificate fingerprint for that project. A typical asset link file might, for
example, read as follows:
[{
 "relation": ["delegate_permission/common.handle_all_urls"],
 "target": {
 "namespace": "android_app",
 "package_name": "com.ebookfrenzy.mywebview",
 "sha256_cert_fingerprints":
 ["<your certificate fingerprint here>"]
 }
}]

Note that you can either create this file manually or generate it using the
online tool available at the following URL:
https://developers.google.com/digital-asset-links/tools/generator
When working with Android, the namespace value is always set to
“android_app”, while the package name corresponds to the app package to
be launched by the intent. Finally, the certificate fingerprint is the hash code
used to build the app. When you are testing an app, this will be the debug
certificate contained within the debug.keystore file. On Windows systems,
Android Studio stores this file at the following location:
\Users\<your user name>\.android\debug.keystore

On macOS and Linux systems, the file can be found at:
$HOME/.android/debug.keystore

Once you have located the file, the SHA 256 fingerprint can be obtained by
running the following command in a terminal or command prompt window:
keytool -list -v -keystore <path to debug.keystore file here>

When prompted for a password, enter “android” after which output will
appear, including the SHA 256 fingerprint:
Certificate fingerprints:
SHA1: 11:E8:66:11:B6:94:3D:AA:7E:50:63:99:77:B8:6A:90:FF:B6:9C:6D
SHA256:
7F:EE:E3:C8:38:41:C3:EA:11:56:83:94:2A:4C:D2:EA:A0:69:F8:96:D1:17:7
7:02:46:EC:AD:6E:3C:64:A9:29

When you are ready to build your app’s release version, you must ensure
you add the release SHA 256 fingerprint to the asset file. Details on

https://developers.google.com/digital-asset-links/tools/generator

generating release keystore files are covered in the chapter entitled
“Creating, Testing, and Uploading an Android App Bundle”. Once you
have a release keystore file, run the above keytool command to access the
fingerprint.
Once you have placed the digital asset file in the correct location on the
website, install the app on a device or emulator and wait 30 seconds for the
link to be verified. To check the verification status, run the following at a
command or terminal prompt:
adb shell pm get-app-links --user cur com.example.mywebview

The resulting output should include confirmation that the link has been
verified:
com.example.mywebview:
 ID: 0e399bca-bf58-4cfc-8c7b-d1a6c3b065ec
 Signatures:
[7F:EE:E3:C8:38:41:C3:EA:11:56:83:94:2A:4C:D2:EA:A0:69:F8:96:D1:17:
77:02:46:EC:AD:6E:3C:64:A9:29]
 Domain verification state:
 www.ebookfrenzy.com: verified
 User 0:
 Verification link handling allowed: true
 Selection state:
 Disabled:
 www.ebookfrenzy.com

You can also check the status from within the Settings app on the device or
emulator using the following steps:
1.Launch the Settings app.
2.Select Apps from the main list.
3.Locate and select your app from the list of installed apps.
4.On the settings page for your app, choose the Open by Default option.
Choose the Open by Default option on your app’s settings page.
Once displayed, the page should indicate that a link has been verified, as
shown in Figure 58-1:

Figure 58-1
To review which links have been verified, tap on the info button indicated
by the arrow in the above figure to display the following panel:

Figure 58-2
The assetlinks.json file can contain multiple digital asset links, allowing a
single website to be associated with more than one app. If you cannot use
auto link verification, add code to your app to prompt the user to enable the
link manually.

58.7 Manually Enabling Links
Where it is not possible to auto-verify links using the steps outlined above,
the only option is to request that the user manually enable app links. This
involves launching the Open by Default screen of the Settings app for the
target app where the user can enable the link.
Since the sudden appearance of the Open by Default screen may be

confusing to the average user, it is recommended that an explanatory dialog
be displayed before launching the Settings app.
To provide the user with the option to enable a link manually, the following
code needs to be executed before attempting to launch the intent:
.
.
// Code here to display a dialog explaining that the link needs to
be enabled
.
.
val intent = Intent(
 Settings.ACTION_APP_OPEN_BY_DEFAULT_SETTINGS,
 Uri.parse("package:com.ebookfrenzy.mywebview"))

startActivity(intent)
.
.

The above example code will display the Open by Default settings screen
for our target MyWebView app, where the user can click on the Add Link
button:

Figure 58-3
Once clicked, a dialog will appear initialized with the link passed in the
intent. This can be enabled by setting the checkbox as shown in Figure 58-
4:

Figure 58-4
58.8 Checking Intent Availability
It is generally unwise to assume that an activity will be available for a
particular intent, especially since the absence of a matching action typically
results in the application crashing. Fortunately, it is possible to identify the
availability of an activity for a specific intent before it is sent to the runtime
system. The following method can be used to identify the availability of an
activity for a specified intent action type:
fun isIntentAvailable(context: Context, action: String): Boolean {
 val packageManager = context.packageManager
 val intent = Intent(action)
 val list = packageManager.queryIntentActivities(intent,
 PackageManager.MATCH_DEFAULT_ONLY)
 return list.size > 0
}

58.9 Summary
Intents are the messaging mechanism by which one Android activity can
launch another. An explicit intent references a specific activity to be
launched by referencing the receiving activity by class name. Explicit
intents are typically, though not exclusively, used when launching activities
within the same application. An implicit intent specifies the action to be
performed and the type of data to be handled and lets the Android runtime
find a matching activity to launch. Implicit intents are generally used when
launching activities that reside in different applications.
When working with implicit intents, security restrictions require the user to

automatically verify or manually enable the app containing the intent
activity target before launching the intent. Automatic verification involves
the placement of a Digital Assets Link file on the website corresponding to
the link URL.
An activity can send data to the receiving activity by bundling data into the
intent object as key-value pairs. Data can only be returned from an activity
if it is started as a sub-activity of the sending activity.
Activities advertise capabilities to the Android intent resolution process by
specifying intent filters in the application manifest file. Both sending and
receiving activities must also request appropriate permissions to perform
tasks such as accessing the device contact database or the internet.
Having covered the theory of intents, the next few chapters will work
through creating some examples in Android Studio that put both explicit
and implicit intents into action.

59. Android Explicit Intents – A
Worked Example
The chapter entitled “An Overview of Android Intents” covered the theory
of using intents to launch activities. This chapter will put that theory into
practice by creating an example application.
The example Android Studio application project created in this chapter will
demonstrate the use of an explicit intent to launch an activity, including the
transfer of data between sending and receiving activities. The next chapter
(“Android Implicit Intents – A Worked Example”) will demonstrate using
implicit intents.

59.1 Creating the Explicit Intent Example
Application
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.
Enter ExplicitIntent into the Name field and specify
com.ebookfrenzy.explicitintent as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin. Using the steps outlined in
section 18.8 Migrating a Project to View Binding, convert the project to use
view binding.

59.2 Designing the User Interface Layout for
MainActivity
The user interface for MainActivity will consist of a ConstraintLayout view
containing EditText (Plain Text), TextView, and Button views named
editText1, textView1, and button1, respectively. Using the Project tool
window, locate the activity_main.xml resource file for MainActivity (under
app -> res -> layout) and double-click on it to load it into the Android
Studio Layout Editor tool. Select the default “Hello World!” TextView and
use the Attributes tool window to assign an ID of textView1.
Drag a Button object from the palette and position it to be horizontally

centered and located beneath the bottom edge of the TextView. Change the
text property to read “Send Text” and configure the onClick property to call
a method named sendText.
Next, add a Plain Text object to be centered horizontally and positioned
above the top edge of the TextView. Using the Attributes tool window,
remove the “Name” string assigned to the text property and set the ID to
editText1. With the layout completed, click on the toolbar Infer constraints
button to add appropriate constraints:

Figure 59-1
Finally, click the red warning button in the top right-hand corner of the
Layout Editor window and use the resulting panel to extract the “Send
Text” string to a resource named send_text. Once the layout is complete, the
user interface should resemble that illustrated in Figure 59-2:

Figure 59-2
59.3 Creating the Second Activity Class

When the “Send Text” button is touched by the user, an intent will be issued
requesting that a second activity be launched into which the user can enter a
response. The next step, therefore, is to create the second activity. Within
the Project tool window, right-click on the com.ebookfrenzy.explicitintent
package name located in app -> kotlin+java and select the New -> Activity
-> Empty Views Activity menu option to display the New Android Activity
dialog as shown in Figure 59-3:

Figure 59-3
Enter SecondActivity into the Activity Name and Title fields, name the
layout file activity_second, and change the Language menu to Kotlin. Since
this activity will not be started when the application is launched (it will
instead be launched via an intent by MainActivity when the button is
pressed), ensure the Launcher Activity option is disabled before clicking the
Finish button.

59.4 Designing the User Interface Layout for
SecondActivity
The elements required for the second activity’s user interface are a Plain
Text EditText, TextView, and Button view. With these requirements in
mind, load the activity_second.xml layout into the Layout Editor tool, and
add the views.
During the design process, note that the onClick property on the button
view has been configured to call a method named returnText, and the
TextView and EditText views have been assigned IDs textView2 and

editText2, respectively. Once completed, the layout should resemble Figure
59-4. Note that the text on the button (“Return Text”) has been extracted to
a string resource named return_text.
With the layout complete, click on the Infer constraints toolbar button to
add the necessary constraints to the layout:

Figure 59-4
59.5 Reviewing the Application Manifest File
For MainActivity to be able to launch SecondActivity using an intent, an
entry for SecondActivity needs to be present in the AndroidManifest.xml
file. Locate this file within the Project tool window (app -> manifests),
double-click on it to load it into the editor, and verify that Android Studio
has automatically added an entry for the activity:
<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools">

 <application
 android:allowBackup="true"
 android:dataExtractionRules="@xml/data_extraction_rules"
 android:fullBackupContent="@xml/backup_rules"

 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.ExplicitIntent"
 tools:targetApi="31">

 <activity
 android:name=".SecondActivity"
 android:exported="false" />
 <activity
 android:name=".MainActivity"
 android:exported="true">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"
/>

 <category
android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

With the second activity created and listed in the manifest file, it is time to
write some code in the MainActivity class to issue the intent.

59.6 Creating the Intent
The objective for MainActivity is to create and start an intent when the user
touches the “Send Text” button. As part of the intent creation process, the
question string entered by the user into the EditText view will be added to
the intent object as a key-value pair. When the user interface layout was
created for MainActivity, the button object was configured to call a method
named sendText() when “clicked” by the user. This method now needs to be
added to the MainActivity class MainActivity.kt source file as follows:
package com.ebookfrenzy.explicitintent
.
.
import android.view.View
import android.content.Intent

class MainActivity : AppCompatActivity() {
.
.
 fun sendText(view: View) {

 val i = Intent(this, SecondActivity::class.java)

 val myString = binding.editText1.text.toString()
 i.putExtra("qString", myString)
 startActivity(i)
 }
}

The code for the sendText() method follows the techniques outlined in “An
Overview of Android Intents”. First, a new Intent instance is created,
passing through the current activity and the class name of SecondActivity
as arguments. Next, the text entered into the EditText object is added to the
intent object as a key-value pair, and the intent started via a call to
startActivity(), passing through the intent object as an argument.
Compile and run the application and touch the “Send Text” button to launch
SecondActivity. Return to the MainActivity screen using either the back
button (located in the toolbar along the bottom of the display) or by swiping
right from the edge of the screen on newer Android versions.

59.7 Extracting Intent Data
Now that SecondActivity is being launched from MainActivity, the next
step is to extract the String data value included in the intent and assign it to
the TextView object in the SecondActivity user interface. This involves
adding some code to the onCreate() method of SecondActivity in the
SecondActivity.kt source file in addition to adapting the activity to use view
binding:
package com.ebookfrenzy.explicitintent

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import android.view.View
import android.content.Intent

import
com.ebookfrenzy.explicitintent.databinding.ActivitySecondBinding

class SecondActivity : AppCompatActivity() {

 private lateinit var binding: ActivitySecondBinding

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 enableEdgeToEdge()
 setContentView(R.layout.second_activity)
 binding = ActivitySecondBinding.inflate(layoutInflater)
 setContentView(binding.root)
 ViewCompat.setOnApplyWindowInsetsListener(binding.main) {
v, insets ->
 val systemBars =
insets.getInsets(WindowInsetsCompat.Type.
 systemBars())
 v.setPadding(systemBars.left, systemBars.top,
systemBars.right,
 systemBars.bottom)
 insets
}
 val extras = intent.extras ?: return

 val qString = extras.getString("qString")
 binding.textView2.text = qString
 }
}

Compile and run the application either within an emulator or on a physical
Android device. Enter some text into the text box in MainActivity before
touching the “Send Text” button. The message should now appear on the
TextView component in the SecondActivity user interface.

59.8 Launching SecondActivity as a Sub-Activity
For SecondActivity to be able to return data to MainActivity,
SecondActivity must be started as a sub-activity of MainActivity. This
means we need to call registerForActivityResult() and declare a callback
handler to be called when SecondActivity returns. This callback will extract
the data returned by SecondActivty and display it on textView1.
The call to registerForActivityResult() returns an ActivtyResultLauncher
instance which can be called from within sendText() to launch the intent.

Edit the MainActivity.kt file so that it reads as follows:
.
.
import android.app.Activity
import androidx.activity.result.ActivityResult
import androidx.activity.result.contract.ActivityResultContracts
.
.
class MainActivity : AppCompatActivity() {
.
.
 val startForResult = registerForActivityResult(
 ActivityResultContracts.StartActivityForResult
()) {
 result: ActivityResult ->
 if (result.resultCode == Activity.RESULT_OK) {
 val data = result.data
 data?.let {
 if (it.hasExtra("returnData")) {
 val returnString =
it.extras?.getString("returnData")
 binding.textView1.text = returnString
 }
 }
 }
 }

 fun sendText(view: View) {
 val i = Intent(this, SecondActivity::class.java)

 val myString = binding.editText1.text.toString()
 i.putExtra("qString", myString)
 startActivity(i)
 startForResult.launch(i)
 }
}
.
.

59.9 Returning Data from a Sub-Activity
SecondActivity is now launched as a sub-activity of MainActivity, which
has, in turn, been modified to handle data returned from SecondActivity.

All that remains is to modify SecondActivity.kt to implement the finish()
method and to add a method named returnText(). The finish() method is
triggered when an activity exits (for example, when the user selects the
back button on the device):
fun returnText(view: View) {
 finish()
}

override fun finish() {
 val data = Intent()

 val returnString = binding.editText2.text.toString()
 data.putExtra("returnData", returnString)

 setResult(RESULT_OK, data)
 super.finish()
}

The finish() method creates a new intent, adds the return data as a key-value
pair, and then calls the setResult() method, passing through a result code
and the intent object. The returnText() method calls the finish() method.
Open the activity_second.xml file, select the button widget, and configure
the onClick attribute to call the returnText() method.

59.10 Testing the Application
Compile and run the application, enter a question into the text field on
MainActivity, and touch the “Send Text” button. When SecondActivity
appears, enter the text to the EditText view and use either the back button or
the “Return Text” button to return to MainActivity where the response
should appear in the text view object.

59.11 Summary
Having covered the basics of intents in the previous chapter, the goal of this
chapter was to work through the creation of an application project in
Android Studio designed to demonstrate the use of explicit intents together
with the concepts of data transfer between a parent activity and sub-activity.
The next chapter will use an example to demonstrate implicit intents in
action.

60. Android Implicit Intents – A
Worked Example
This chapter will create an example application in Android Studio designed
to demonstrate a practical implementation of implicit intents. The goal will
be to create and send an intent requesting that the content of a particular
web page be loaded and displayed to the user. Since the example
application itself will not contain an activity capable of performing this
task, an implicit intent will be issued so that the Android intent resolution
algorithm can be engaged to identify and launch a suitable activity from
another application. This will likely be an activity from the Chrome web
browser bundled with the Android operating system.
Having successfully launched the built-in browser, a new project will be
created with an activity capable of displaying web pages. This will be
installed onto the device or emulator to demonstrate implicit intents and
link verification.

60.1 Creating the Android Studio Implicit Intent
Example Project
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.
Enter ImplicitIntent into the Name field and specify
com.ebookfrenzy.implicitintent as the package name. Since this example
will use features only available in recent Android versions, change the
Minimum API level setting to API 31: Android 12.0 (S) and the Language
menu to Kotlin before clicking the Finish button.

60.2 Designing the User Interface
The user interface for the MainActivity class is straightforward, consisting
solely of a ConstraintLayout and two Button objects. Within the Project tool
window, locate the app -> res -> layout -> activity_main.xml file and
double-click on it to load it into the Layout Editor tool.
Delete the default TextView and, with Autoconnect mode enabled, position

Button widgets within the layout so that it appears as shown below:

Figure 60-1
Set the text on the buttons to Show Web Page and Enable Links and extract
the text to string resources.
Select each Button and use the Attributes tool window to configure the
onClick property to call methods named showWebPage and enableLink,
respectively.

60.3 Creating the Implicit Intent
As outlined above, the implicit intent will be created and issued from within
a method named showWebPage(), which, in turn, needs to be implemented
in the MainActivity class, the code for which resides in the MainActivity.kt
source file. Locate this file in the Project tool window and double-click on
it to load it into an editing pane. Once loaded, modify the code to add the
showWebPage() and enableLink() methods together with a few requisite
imports:
package com.ebookfrenzy.implicitintent

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import android.content.Intent
import android.view.View
import android.net.Uri

class MainActivity : AppCompatActivity() {
.
.
 fun showWebPage(view: View) {

 val intent = Intent(Intent.ACTION_VIEW,
 Uri.parse("https://www.ebookfrenzy.com"))

 startActivity(intent)
 }

 fun enableLink(view: View) {

 }
}

The tasks performed by the showWebPage() method are very simple. First,
a new intent object is created. Instead of specifying the class name of the
intent, however, the code indicates the nature of the intent (to display
something to the user) using the ACTION_VIEW option. The intent object
also includes a URI containing the URL to be displayed. This indicates to
the Android intent resolution system that the activity is requesting that a
web page be displayed. The intent is then issued via a call to the
startActivity() method.
Compile and run the application on either an emulator or a physical
Android device, and once running, touch the Show Web Page button. When
touched, a web browser view should appear and load the web page
designated by the URL. A successful implicit intent has now been executed.

60.4 Adding a Second Matching Activity
The remainder of this chapter will demonstrate the effect of more than one
activity installed on the device matching the requirements for an implicit
intent. A second application will be created and installed on the device or
emulator to achieve this. Begin by creating a new project within Android
Studio with the application name set to MyWebView, using the same SDK
configuration options used when creating the ImplicitIntent project earlier
in this chapter and once again selecting an Empty Views Activity.
If you have a website to host a Digital Asset Links file and want to try out
auto verification, use your website URL when specifying the package
name. For example, if your website is hosted at www.mycompany.com, the
package name needs to be set as follows:
com.mycompany.mywebview

If you do not have a website or do not plan on using auto verification, use

the following package name:
com.ebookfrenzy.mywebview

Click Finish to create the project, then convert the project to use view
bindings as outlined in section 18.8 Migrating a Project to View Binding.

60.5 Adding the Web View to the UI
The user interface for the sole activity contained within the new
MyWebView project will consist of an instance of the Android WebView
widget. Within the Project tool window, locate the activity_main.xml file,
which contains the user interface description for the activity, and double-
click on it to load it into the Layout Editor tool.
With the Layout Editor tool in Design mode, select the default TextView
widget and remove it from the layout using the keyboard delete key.
Drag and drop a WebView object from the Widgets section of the palette
onto the existing ConstraintLayout view, as illustrated in Figure 60-2:

Figure 60-2
Before continuing, change the ID of the WebView instance to webView1
and use the Infer constraints button to add any missing constraints.

60.6 Obtaining the Intent URL
When the implicit intent object is created to display a web browser window,
the web page URL will be bundled into the intent object within a Uri object.
The task of the onCreate() method within the MainActivity class is to

extract this Uri from the intent object, convert it into a URL string and
assign it to the WebView object. To implement this functionality, modify
the MainActivity.kt file so that it reads as follows:
package com.ebookfrenzy.mywebview
.
.
import java.net.URL

class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 override fun onCreate(savedInstanceState: Bundle?) {
.
.
 handleIntent()
 }

 private fun handleIntent() {

 val intent = this.intent
 val data = intent.data
 var url: URL? = null

 try {
 url = URL(data?.scheme,
 data?.host,
 data?.path)
 } catch (e: Exception) {
 e.printStackTrace()
 }

 binding.webView1.loadUrl(url.toString())
 }
.
.
}

The new code added to the onCreate() method performs the following
tasks:
•Obtains a reference to the intent which caused this activity to be launched
•Extracts the Uri data from the intent object

•Converts the Uri data to a URL object
•Loads the URL into the web view, converting the URL to a String in the
process

The coding part of the MyWebView project is now complete. All that
remains is to modify the manifest file.

60.7 Modifying the MyWebView Project Manifest
File
A number of changes must be made to the MyWebView manifest file before
it can be tested. In the first instance, the activity will need to seek
permission to access the internet (since it will be required to load a web
page). This is achieved by adding the appropriate permission line to the
manifest file:
<uses-permission android:name="android.permission.INTERNET" />

Further, a review of the contents of the intent filter section of the
AndroidManifest.xml file for the MyWebView project will reveal the
following settings:
<intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER"
/>
</intent-filter>

In the above XML, the android.intent.action.MAIN entry indicates that this
activity is the application’s entry point when launched without data input -
the android.intent.category.LAUNCHER directive, on the other hand,
indicates that the activity should be listed within the application launcher
screen of the device.
Since the activity is not required to be launched as the entry point to an
application, cannot be run without data input (in this case, a URL), and is
not required to appear in the launcher, neither the MAIN nor LAUNCHER
directives are required in the manifest file for this activity.
The intent filter for the MainActivity activity does, however, need to be
modified to indicate that it is capable of handling ACTION_VIEW intent
actions for HTTP data schemes.
Android also requires that activities that handle implicit intents that do not

include MAIN and LAUNCHER entries include the so-called browsable
and default categories in the intent filter. The modified intent filter section
should therefore read as follows where <website url> is replaced either by
your website address or www.ebookfrenzy.com, depending on the package
name you used when the MyWebView project was created:
<intent-filter android:autoVerify="true">
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.BROWSABLE" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="https" />
 <data android:host="<website url>"/>
</intent-filter>

Bringing these requirements together results in the following complete
AndroidManifest.xml file:
<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.ebookfrenzy.mywebview">

 <uses-permission android:name="android.permission.INTERNET" />

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.MyWebView">
 <activity
 android:name=".MainActivity"
 android:exported="true">
 <intent-filter android:autoVerify="true">
 <action android:name="android.intent.action.VIEW"
/>
 <category
android:name="android.intent.category.BROWSABLE" />
 <category
android:name="android.intent.category.DEFAULT" />
 <data android:scheme="https" />
 <data android:host="<website url>"/>
 </intent-filter>

 </activity>
 </application>

</manifest>

Load the AndroidManifest.xml file into the manifest editor by double-
clicking on the file name in the Project tool window. Once loaded, modify
the XML to match the above changes, remembering to enter the correct
website URL.
Having made the appropriate modifications to the manifest file, the new
activity is ready to be installed on the device.

60.8 Installing the MyWebView Package on a Device
Before the MyWebView main activity can be used as the recipient of an
implicit intent, it must first be installed onto the device. This is achieved by
running the application in the normal manner. Because the manifest file
contains neither the android.intent.action.MAIN nor the
android.intent.category.LAUNCHER settings, Android Studio must be
instructed to install but not launch the app. To configure this behavior,
select the app -> Edit configurations… menu from the toolbar as illustrated
in Figure 60-3:

Figure 60-3
Within the Run/Debug Configurations dialog, change the Launch option
located in the Launch Options section of the panel to Nothing and click on
Apply followed by OK:

Figure 60-4
With this setting configured, run the app as usual. With this setting
configured, run the app as usual. Note that the app is installed on the device
but has yet to launch.

60.9 Testing the Application
With the MyWebView app installed, rerun ImplicitIntent and click the
Show Web Page button. Note that the web page is still loaded into the
Chrome browser instead of the main activity of the MyWebView app. This
is because the MyWebView activity has not been verified or enabled to
open the link contained in the launch intent. Some code must be added to
the enableLink() method to enable the link manually.

60.10 Manually Enabling the Link
Within the enableLink() method, we need to create and launch an intent to
display the Open by Default settings screen for the MyWebView app. Load
the MainActivity.kt file into the code editor and modify the enableLink()
method so that it reads as follows, making sure to replace <reverse
domain> with either com.ebookfrenzy or your own reverse domain
depending on the package name you chose when creating the MyWebView
project:
.
.
import android.provider.Settings
.
.
fun enableLink(view: View) {
 val intent = Intent(
 Settings.ACTION_APP_OPEN_BY_DEFAULT_SETTINGS,

 Uri.parse("package:<reverse domain>.mywebview"))

 startActivity(intent)
}
.

.

Rerun the ImpicitIntent app and click on the Enable Link button to display
the Open by Default settings screen for the MyWebView app:

Figure 60-5
Click on the Add Link button (marked A above), enable the checkbox next
to your URL, and click the Add button:

Figure 60-6
Confirm that the link is now listed as being supported before clicking on the

back arrow (marked B in Figure 60-5 above) to return to the ImplicitIntent
app. Clicking the Open Web Page should now load the page into the
MyWebView app instead of the Chrome browser:

Figure 60-7
60.11 Automatic Link Verification
If you chose to use your own website URL for the MyWebView package
name, you can now take the additional step of using automatic link
verification. Begin by uninstalling the MyWebView app from the device or
emulator on which you have been testing. After placing the Digital Asset
Links file on the website, we will reinstall the app to trigger the verification
process.
Using the steps outlined in the chapter entitled “An Overview of Android
Intents”, locate your debug.keystore file and obtain your SHA-256
certificate fingerprint using the keytool utility as follows:
keytool -list -v -keystore <path to debug.keystore file here>

Next, open the following page in a web browser:
https://developers.google.com/digital-asset-links/tools/generator
Once the page has loaded, enter your website URL into the Hosting site
domain field, com.<domain here>.mywebview as the App package name,
and your SHA-256 fingerprint into the App package fingerprint (SHA256)
field:

Figure 60-8
Click the Generate statement button to display the generated statement and
place it in a file named assetlinks.json in a folder named .well-known on
your web server. Return to the generator page and click on the Test
statement button to verify that the file is valid and in the correct location.
Assuming a successful test, we are ready to try out the app link, reinstall the
MyWebView app on your device or emulator and use the Settings app to
navigate to the Open by Default page for MyWebView. The page should
indicate that a link has been verified:

file:///tmp/calibre_4.99.5_tmp_v361xj3g/9y02jxql_pdf_out/OEBPS/Implicit_Intents.xhtml

Figure 60-9
Run the ImplicitIntent app again, click the Open Web Page button, and
verify that the page content appears in the MyWebView app instead of the
Chrome browser.

60.12 Summary
Implicit intents provide a mechanism by which one activity can request the
service of another by specifying an action type and, optionally, the data on
which that action is to be performed. To be eligible as a target candidate for
an implicit intent, however, an activity must be configured to extract the
appropriate data from the inbound intent object and be included in a
correctly configured manifest file, including appropriate permissions and
intent filters. The app containing the target activity must also be verified
using a Digital Asset Links file or manually enabled by the user.
Within this chapter, an example was created to demonstrate both the issuing
of an implicit intent, the creation of an example activity capable of handling
such an intent, and the link verification process.

61. Android Broadcast Intents and
Broadcast Receivers
In addition to providing a mechanism for launching application activities,
intents are also used to broadcast system-wide messages to other
components on the system. This involves the implementation of Broadcast
Intents and Broadcast Receivers, both of which are the topic of this chapter.

61.1 An Overview of Broadcast Intents
Broadcast intents are Intent objects that are broadcast via a call to the
sendBroadcast(), sendStickyBroadcast(), or sendOrderedBroadcast()
methods of the Activity class (the latter being used when results are
required from the broadcast). In addition to providing a messaging and
event system between application components, broadcast intents are also
used by the Android system to notify interested applications about key
system events (such as the external power supply or headphones being
connected or disconnected).
When a broadcast intent is created, it must include an action string, optional
data, and a category string. As with standard intents, data is added to a
broadcast intent using key-value pairs in conjunction with the putExtra()
method of the intent object. The optional category string may be assigned to
a broadcast intent via a call to the addCategory() method.
The action string, which identifies the broadcast event, must be unique and
typically uses the application’s package name syntax. For example, the
following code fragment creates and sends a broadcast intent, including a
unique action string and data:
val intent = Intent()
intent.action = "com.example.Broadcast"
intent.putExtra("MyData", 1000)
sendBroadcast(intent)

The above code would successfully launch the corresponding broadcast
receiver on an Android device earlier than 3.0. On more recent versions of
Android, however, the broadcast receiver would not receive the intent. This
is because Android 3.0 introduced a launch control security measure that
prevents components of stopped applications from being launched via an

intent. An application is considered to be in a stopped state if the
application has either just been installed and not previously launched or
been manually stopped by the user using the application manager on the
device. To get around this, however, a flag can be added to the intent before
it is sent to indicate that the intent is to be allowed to start a component of a
stopped application. This flag is
FLAG_INCLUDE_STOPPED_PACKAGES and would be used as outlined
in the following adaptation of the previous code fragment:
val intent = Intent()
intent.action = "com.example.Broadcast"
intent.putExtra("MyData", 1000)
intent.flags = Intent.FLAG_INCLUDE_STOPPED_PACKAGES
sendBroadcast(intent)

61.2 An Overview of Broadcast Receivers
An application listens for specific broadcast intents by registering a
broadcast receiver. Broadcast receivers are implemented by extending the
Android BroadcastReceiver class and overriding the onReceive() method.
The broadcast receiver may then be registered within code (for example,
within an activity) or a manifest file. Part of the registration implementation
involves the creation of intent filters to indicate the specific broadcast
intents the receiver is required to listen for. This is achieved by referencing
the action string of the broadcast intent. When a matching broadcast is
detected, the onReceive() method of the broadcast receiver is called, at
which point the method has 5 seconds to perform any necessary tasks
before returning. It is important to note that a broadcast receiver does not
need to run continuously. If a matching intent is detected, the Android
runtime system automatically starts the broadcast receiver before calling the
onReceive() method.
The following code outlines a template Broadcast Receiver subclass:
package com.ebookfrenzy.sendbroadcast

import android.content.BroadcastReceiver
import android.content.Context
import android.content.Intent

class MyReceiver : BroadcastReceiver() {

 override fun onReceive(context: Context, intent: Intent) {
 // TODO: This method is called when the BroadcastReceiver
is receiving
 // an Intent broadcast.
 throw UnsupportedOperationException("Not yet implemented")
 }
}

When registering a broadcast receiver within a manifest file, a <receiver>
entry must be added for the receiver.
The following example manifest file registers the above example broadcast
receiver:
<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.broadcastdetector.broadcastdetector"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="33" />

 <application
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name" >
 <receiver android:name="MyReceiver" >
 </receiver>
 </application>
</manifest>

When running on versions of Android older than Android 8.0, the intent
filters associated with a receiver can be placed within the receiver element
of the manifest file as follows:
<receiver android:name="MyReceiver" >
 <intent-filter>
 <action android:name="com.example.Broadcast" >
 </action>
 </intent-filter>
</receiver>

On Android 8.0 or later, the receiver must be registered in code using the
registerReceiver() method of the Activity class together with an
appropriately configured IntentFilter object:
val filter = IntentFilter()

filter.addAction("com.example.Broadcast")
val receiver: MyReceiver = MyReceiver()

registerReceiver(receiver, filter, RECEIVER_EXPORTED)When a
broadcast receiver registered in code is no longer required, it may be
unregistered via a call to the unregisterReceiver() method of the activity
class, passing through a reference to the receiver object as an argument. For
example, the following code will unregister the above broadcast receiver:
unregisterReceiver(receiver)

It is important to remember that some system broadcast intents can only be
detected by a broadcast receiver if it is registered in code rather than in the
manifest file. Check the Android Intent class documentation for a detailed
overview of the system broadcast intents and corresponding requirements
online at:
https://developer.android.com/reference/android/content/Intent

61.3 Obtaining Results from a Broadcast
When a broadcast intent is sent using the sendBroadcast() method, there is
no way for the initiating activity to receive results from any broadcast
receivers that pick up the broadcast. If return results are required, it is
necessary to use the sendOrderedBroadcast() method instead. When a
broadcast intent is sent using this method, it is delivered sequentially to
each broadcast receiver with a registered interest.
The sendOrderedBroadcast() method is called several arguments, including
a reference to another broadcast receiver (known as the result receiver)
which is to be notified when all other broadcast receivers have handled the
intent, together with a set of data references into which those receivers can
place result data. When all broadcast receivers have been given the
opportunity to handle the broadcast, the onReceive() method of the result
receiver is called and passed the result data.

61.4 Sticky Broadcast Intents
By default, broadcast intents disappear once they have been sent and
handled by interested broadcast receivers. A broadcast intent can, however,
be defined as being “sticky”. A sticky intent and the data contained therein
remain in the system after it has completed. The data stored within a sticky
broadcast intent can be obtained via the return value of a call to the

https://developer.android.com/reference/android/content/Intent

registerReceiver() method using the usual arguments (references to the
broadcast receiver and intent filter object). Many of the Android system
broadcasts are sticky, a prime example being those broadcasts relating to
battery level status.
A sticky broadcast may be removed at any time via a call to the
removeStickyBroadcast() method, passing through as an argument a
reference to the broadcast intent to be removed.

61.5 The Broadcast Intent Example
The remainder of this chapter will work through creating an Android
Studio-based example of broadcast intents in action. In the first instance, a
simple application will be created to issue a custom broadcast intent. A
corresponding broadcast receiver will then be created to display a message
on the display of the Android device when the broadcast is detected.
Finally, the broadcast receiver will be modified to detect notification by the
system that external power has been disconnected from the device.

61.6 Creating the Example Application
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.
Enter SendBroadcast into the Name field and specify
com.ebookfrenzy.sendbroadcast as the package name. Before clicking on
the Finish button, change the Minimum API level setting to API 33:
Android 13.0 (Tiramisu) and the Language menu to Kotlin.
Once the new project has been created, locate and load the
activity_main.xml layout file located in the Project tool window under app -
> res -> layout and, with the Layout Editor tool in Design mode, replace
the TextView object with a Button view and set the text property so that it
reads “Send Broadcast”. Once the text value has been set, follow the usual
steps to extract the string to a resource named send_broadcast.
With the button still selected in the layout, locate the onClick property in
the Attributes panel and configure it to call a method named
broadcastIntent.

61.7 Creating and Sending the Broadcast Intent

Having created the framework for the SendBroadcast application, it is now
time to implement the code to send the broadcast intent. This involves
implementing the broadcastIntent() method specified previously as the
onClick target of the Button view in the user interface. Locate and double-
click on the MainActivity.kt file and modify it to add the code to create and
send the broadcast intent. Once modified, the source code for this class
should read as follows:
package com.ebookfrenzy.sendbroadcast
.
.
import android.content.Intent
import android.view.View

class MainActivity : AppCompatActivity() {
.
.
 fun broadcastIntent(view: View) {
 val intent = Intent()
 intent.action = "com.ebookfrenzy.sendbroadcast"
 intent.flags = Intent.FLAG_INCLUDE_STOPPED_PACKAGES
 sendBroadcast(intent)
 }
}

Note that in this instance, the action string for the intent is
com.ebookfrenzy.sendbroadcast. When the broadcast receiver class is
created in later sections of this chapter, the intent filter declaration must
match this action string.
This concludes the creation of the application to send the broadcast intent.
All that remains is to build a matching broadcast receiver.

61.8 Creating the Broadcast Receiver
To create the broadcast receiver, a new class needs to be created, which
subclasses the BroadcastReceiver superclass. Within the Project tool
window, navigate to app -> kotlin+java and right-click on the package
name. Select the New -> Other -> Broadcast Receiver menu option from
the resulting menu, name the class MyReceiver, and ensure the Exported
and Enabled options are selected. These settings allow the Android system
to launch the receiver when needed and ensure that the class can receive

messages sent by other applications. With the class configured, click on
Finish.
Once created, Android Studio will automatically load the new
MyReceiver.kt class file into the editor, where it should read as follows:
package com.ebookfrenzy.sendbroadcast

import android.content.BroadcastReceiver
import android.content.Context
import android.content.Intent

class MyReceiver : BroadcastReceiver() {

 override fun onReceive(context: Context, intent: Intent) {
 // This method is called when the BroadcastReceiver is
receiving an Intent broadcast.
 TODO("MyReceiver.onReceive() is not implemented")
 }
}

As seen in the code, Android Studio generated a template for the new class
and a stub for the onReceive() method. Some changes now need to be made
to the class to implement the required behavior. Remaining in the
MyReceiver.kt file, therefore, modify the code so that it reads as follows:
package com.ebookfrenzy.sendbroadcast

import android.content.BroadcastReceiver
import android.content.Context
import android.content.Intent
import android.widget.Toast

class MyReceiver : BroadcastReceiver() {

 override fun onReceive(context: Context, intent: Intent) {
 // TODO: This method is called when the BroadcastReceiver
is receiving
 // an Intent broadcast.
 throw UnsupportedOperationException("Not yet implemented")

 Toast.makeText(context, "Broadcast Intent Detected.",
 Toast.LENGTH_LONG).show()
 }
}

The code for the broadcast receiver is now complete.

61.9 Registering the Broadcast Receiver
The project needs to publicize the presence of the broadcast receiver and
must include an intent filter to specify the broadcast intents in which the
receiver is interested. When the BroadcastReceiver class was created in the
previous section, Android Studio automatically added a <receiver> element
to the manifest file. All that remains, therefore, is to add code within the
MainActivity.kt file to create an intent filter and to register the receiver:
package com.ebookfrenzy.sendbroadcast

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import android.content.Intent
import android.view.View
import android.content.IntentFilter
import android.content.BroadcastReceiver

class MainActivity : AppCompatActivity() {

 private var receiver: BroadcastReceiver? = null

 override fun onCreate(savedInstanceState: Bundle?) {
.
.
 configureReceiver()
 }

 private fun configureReceiver() {
 val filter = IntentFilter()
 filter.addAction("com.ebookfrenzy.sendbroadcast")
 receiver = MyReceiver()
 registerReceiver(receiver, filter, RECEIVER_EXPORTED)
 }
.
.
}

It is also important to unregister the broadcast receiver when it is no longer
needed:
override fun onDestroy() {

 super.onDestroy()
 unregisterReceiver(receiver)
}

61.10 Testing the Broadcast Example
To test the broadcast sender and receiver, run the SendBroadcast app on a
device or AVD and wait for it to appear on the display. Once running, touch
the button, at which point the toast message reading “Broadcast Intent
Detected.” should pop up for a few seconds before fading away.

61.11 Listening for System Broadcasts
The final stage of this example is to modify the intent filter for the
broadcast receiver to listen for the system intent that is broadcast when
external power is disconnected from the device. That action is
android.intent.action.ACTION_POWER_DISCONNECTED. Modify the
configureReceiver() method in the MainActivity.kt file to add this additional
filter:
private fun configureReceiver() {
 val filter = IntentFilter()
 filter.addAction("com.ebookfrenzy.sendbroadcast")
 filter.addAction("android.intent.action.ACTION_POWER_DISCONNECT
ED")
 receiver = MyReceiver()
 registerReceiver(receiver, filter)
}

Since the onReceive() method in the MyReceiver.kt file will now be
listening for two types of broadcast intent, it is worthwhile to modify the
code so that the action string of the current intent is also displayed in the
toast message. This string can be obtained via a call to the getAction()
method of the intent object passed as an argument to the onReceive()
method:
override fun onReceive(context: Context, intent: Intent) {

 val message = "Broadcast intent detected " + intent.action

 Toast.makeText(context, message,
 Toast.LENGTH_LONG).show()
}

Test the receiver by re-installing the modified SendBroadcast package.

Touching the button in the SendBroadcast application should now result in
a new message containing the custom action string:
Broadcast intent detected com.ebookfrenzy.sendbroadcast

Next, remove the USB connector currently supplying power to the Android
device, at which point the receiver should report the following in the toast
message (the message may be truncated on devices in portrait orientation).
If the app is running on an emulator, display the extended controls, select
the Battery option and change the Charger connection setting to None.
Broadcast intent detected
android.intent.action.ACTION_POWER_DISCONNECTED

To avoid this message appearing whenever the device is disconnected from
a power supply, launch the Settings app and select the Apps option. Select
the SendBroadcast app from the resulting list and tap the Uninstall button.

61.12 Summary
Broadcast intents are a mechanism by which an intent can be issued for
consumption by multiple components on an Android system. Broadcasts are
detected by registering a Broadcast Receiver, which, in turn, is configured
to listen for intents that match particular action strings. In general, broadcast
receivers remain dormant until woken up by the system when a matching
intent is detected. The Android system also uses broadcast intents to issue
notifications of events such as a low battery warning or the connection or
disconnection of external power to the device.
In addition to providing an overview of Broadcast intents and receivers, this
chapter has also worked through an example of sending broadcast intents
and implementing a broadcast receiver to listen for both custom and system
broadcast intents.

62. An Introduction to Kotlin
Coroutines
When an Android application is first started, the runtime system creates a
single thread in which all components will run by default. This thread is
generally referred to as the main thread. The primary role of the main
thread is to handle the user interface in terms of event handling and
interaction with views in the user interface. Any additional components
started within the application will, by default, also run on the main thread.
Any code within an application that performs a time-consuming task using
the main thread will cause the entire application to appear to lock up until
the task is completed. This typically results in the operating system
displaying an “Application is not responding” warning to the user. This is
far from the desired behavior for any application. Fortunately, Kotlin
provides a lightweight alternative in the form of Coroutines. This chapter
will introduce Coroutines, including terminology such as dispatchers,
coroutine scope, suspend functions, coroutine builders, and structured
concurrency. The chapter will also explore channel-based communication
between coroutines.

62.1 What are Coroutines?
Coroutines are blocks of code that execute asynchronously without
blocking the thread from which they are launched. Coroutines can be
implemented without worrying about building complex AsyncTask
implementations or directly managing multiple threads. Because of the way
they are implemented, coroutines are much more efficient and less resource
intensive than using traditional multi-threading options. Coroutines also
make for code that is much easier to write, understand and maintain since it
allows code to be written sequentially without having to write callbacks to
handle thread-related events and results.
Although a relatively recent addition to Kotlin, there is nothing new or
innovative about coroutines. Coroutines, in one form or another, have
existed in programming languages since the 1960s and are based on a
model known as Communicating Sequential Processes (CSP). Though it

does so efficiently, Kotlin still uses multi-threading behind the scenes.

62.2 Threads vs. Coroutines
A problem with threads is that they are a finite resource and expensive in
terms of CPU capabilities and system overhead. In the background, much
work is involved in creating, scheduling, and destroying a thread. Although
modern CPUs can run large numbers of threads, the actual number of
threads that can be run in parallel at any one time is limited by the number
of CPU cores (though newer CPUs have 8 cores, most Android devices
contain CPUs with 4 cores). When more threads are required than there are
CPU cores, the system has to perform thread scheduling to decide how the
execution of these threads is to be shared between the available cores.
To avoid these overheads, instead of starting a new thread for each
coroutine and destroying it when the coroutine exits, Kotlin maintains a
pool of active threads and manages how coroutines are assigned to those
threads. When an active coroutine is suspended, the Kotlin runtime saves it,
and another coroutine resumes to take its place. When the coroutine is
resumed, it is restored to an existing unoccupied thread within the pool to
continue executing until it either completes or is suspended. Using this
approach, a limited number of threads are used efficiently to execute
asynchronous tasks with the potential to perform large numbers of
concurrent tasks without the inherent performance degeneration that would
occur using standard multi-threading.

62.3 Coroutine Scope
All coroutines must run within a specific scope, allowing them to be
managed as groups instead of as individual ones. This is particularly
important when canceling and cleaning up coroutines, for example, when a
Fragment or Activity is destroyed, and ensuring that coroutines do not
“leak” (in other words, continue running in the background when the app no
longer needs them). By assigning coroutines to a scope, they can, for
example, all be canceled in bulk when they are no longer needed.
Kotlin and Android provide built-in scopes and the option to create custom
scopes using the CoroutineScope class. The built-in scopes can be
summarized as follows:
•GlobalScope – GlobalScope is used to launch top-level coroutines tied to

the entire application lifecycle. Since this has the potential for coroutines
in this scope to continue running when not needed (for example, when an
Activity exits), use of this scope is not recommended for Android
applications. Coroutines running in GlobalScope are considered to be
using unstructured concurrency.

•ViewModelScope – Provided specifically for ViewModel instances when
using the Jetpack architecture ViewModel component. Coroutines
launched in this scope from within a ViewModel instance are
automatically canceled by the Kotlin runtime system when the
corresponding ViewModel instance is destroyed.

•LifecycleScope - Every lifecycle owner has associated with it a
LifecycleScope. This scope is canceled when the corresponding lifecycle
owner is destroyed, making it particularly useful for launching coroutines
from within activities and fragments.

For all other requirements, a custom scope will likely be used. The
following code, for example, creates a custom scope named
myCoroutineScope:
private val myCoroutineScope = CoroutineScope(Dispatchers.Main)

The coroutineScope declares the dispatcher that will be used to run
coroutines (though this can be overridden) and must be referenced each
time a coroutine is started if it is to be included within the scope. All of the
running coroutines in a scope can be canceled via a call to the cancel()
method of the scope instance:
myCoroutineScope.cancel()

62.4 Suspend Functions
A suspend function is a special type of Kotlin function that contains the
code of a coroutine. It is declared using the Kotlin suspend keyword, which
indicates to Kotlin that the function can be paused and resumed later,
allowing long-running computations to execute without blocking the main
thread.
The following is an example suspend function:
suspend fun mySlowTask() {
 // Perform long-running tasks here
}

62.5 Coroutine Dispatchers
Kotlin maintains threads for different types of asynchronous activity, and
when launching a coroutine, it will be necessary to select the appropriate
dispatcher from the following options:
•Dispatchers.Main – Runs the coroutine on the main thread and is suitable
for coroutines that need to make changes to the UI and as a general-
purpose option for performing lightweight tasks.

•Dispatchers.IO – Recommended for coroutines that perform network,
disk, or database operations.

•Dispatchers.Default – Intended for CPU-intensive tasks such as sorting
data or performing complex calculations.

The dispatcher is responsible for assigning coroutines to appropriate threads
and suspending and resuming the coroutine during its lifecycle. In addition
to the predefined dispatchers, it is also possible to create dispatchers for
your own custom thread pools.

62.6 Coroutine Builders
The coroutine builders bring together all of the components covered so far
and launch the coroutines so that they start executing. For this purpose,
Kotlin provides the following six builders:
•launch – Starts a coroutine without blocking the current thread and does
not return a result to the caller. Use this builder when calling a suspend
function from within a traditional function and when the results of the
coroutine do not need to be handled (sometimes referred to as “fire and
forget” coroutines).

•async – Starts a coroutine and allows the caller to wait for a result using
the await() function without blocking the current thread. Use async when
you have multiple coroutines that need to run in parallel. The async builder
can only be used from within another suspend function.

•withContext – Allows a coroutine to be launched in a different context
from that used by the parent coroutine. Using this builder, a coroutine
running using the Main context could launch a child coroutine in the
Default context. The withContext builder also provides a useful alternative
to async when returning results from a coroutine.

•coroutineScope – The coroutineScope builder is ideal for situations where
a suspend function launches multiple coroutines that will run in parallel
and where some action must occur only when all the coroutines reach
completion. If those coroutines are launched using the coroutineScope
builder, the calling function will not return until all child coroutines have
completed. When using coroutineScope, a failure in any coroutine will
cancel all other coroutines.

•supervisorScope – Similar to the coroutineScope outlined above, except
that a failure in one child does not result in the cancellation of the other
coroutines.

•runBlocking - Starts a coroutine and blocks the current thread until the
coroutine reaches completion. This is typically the exact opposite of what
is wanted from coroutines but is useful for testing code and when
integrating legacy code and libraries. Otherwise to be avoided.

62.7 Jobs
Each call to a coroutine builder, such as launch or async, returns a Job
instance which can, in turn, be used to track and manage the lifecycle of the
corresponding coroutine. Subsequent builder calls from within the coroutine
create new Job instances, which will become children of the immediate
parent Job, forming a parent-child relationship tree where canceling a
parent Job will recursively cancel all its children. Canceling a child does
not, however, cancel the parent, though an uncaught exception within a
child created using the launch builder may result in the cancellation of the
parent (this is not the case for children created using the async builder,
which encapsulates the exception in the result returned to the parent).
The status of a coroutine can be identified by accessing the isActive,
isCompleted, and isCancelled properties of the associated Job object. In
addition to these properties, several methods are also available on a Job
instance. For example, a Job and all of its children may be canceled by
calling the cancel() method of the Job object, while a call to the
cancelChildren() method will cancel all child coroutines.
The join() method can be called to suspend the coroutine associated with
the job until all of its child jobs have completed. To perform this task and
cancel the Job once all child jobs have completed, call the cancelAndJoin()

method.
This hierarchical Job structure, together with coroutine scopes, form the
foundation of structured concurrency, which aims to ensure that coroutines
do not run longer than required without manually keeping references to
each coroutine.

62.8 Coroutines – Suspending and Resuming
It helps to see some coroutine examples in action to understand coroutine
suspension better. To start with, let’s assume a simple Android app
containing a button that, when clicked, calls a function named startTask().
This function calls a suspend function named performSlowTask() using the
Main coroutine dispatcher. The code for this might read as follows:
private val myCoroutineScope = CoroutineScope(Dispatchers.Main)

fun startTask(view: View) {
 myCoroutineScope.launch(Dispatchers.Main) {
 performSlowTask()
 }
}

In the above code, a custom scope is declared and referenced in the call to
the launch builder, which, in turn, calls the performSlowTask() suspend
function. Since startTask() is not a suspend function, the coroutine must be
started using the launch builder instead of the async builder.
Next, we can declare the performSlowTask() suspend function as follows:
suspend fun performSlowTask() {
 Log.i(TAG, "performSlowTask before")
 delay(5_000) // simulates long-running task
 Log.i(TAG, "performSlowTask after")
}

As implemented, all the function does is output diagnostic messages before
and after performing a 5-second delay, simulating a long-running task.
While the 5-second delay is in effect, the user interface will continue to be
responsive because the main thread is not being blocked. To understand
why it helps to explore what is happening behind the scenes.
First, the startTask() function is executed and launches the
performSlowTask() suspend function as a coroutine. This function then calls
the Kotlin delay() function passing through a time value. The built-in Kotlin

delay() function is implemented as a suspend function, so it is also launched
as a coroutine by the Kotlin runtime environment. The code execution has
now reached what is referred to as a suspend point which will cause the
performSlowTask() coroutine to be suspended while the delay coroutine is
running. This frees up the thread on which performSlowTask() was running
and returns control to the main thread so that the UI is unaffected.
Once the delay() function reaches completion, the suspended coroutine will
be resumed and restored to a thread from the pool where it can display the
Log message and return to the startTask() function.
When working with coroutines in Android Studio suspend points within the
code editor are marked as shown in the figure below:

Figure 62-1
62.9 Returning Results from a Coroutine
The above example ran a suspend function as a coroutine but did not
demonstrate how to return results. However, suppose the
performSlowTask() function is required to return a string value to be
displayed to the user via a TextView object.
To do this, we must rewrite the suspend function to return a Deferred
object. A Deferred object is a commitment to provide a value at some point
in the future. By calling the await() function on the Deferred object, the
Kotlin runtime will deliver the value when the coroutine returns it. The
code in our startTask() function might, therefore, be rewritten as follows:
fun startTask(view: View) {

 coroutineScope.launch(Dispatchers.Main) {
 statusText.text = performSlowTask().await()

 }
}

The problem now is that we are having to use the launch builder to start the
coroutine since startTask() is not a suspend function. As outlined earlier in
this chapter, it is only possible to return results when using the async
builder. To get around this, we have to adapt the suspend function to use the
async builder to start another coroutine that returns a Deferred result:
suspend fun performSlowTask(): Deferred<String> =
 coroutineScope.async(Dispatchers.Default) {
 Log.i(TAG, "performSlowTask before")
 delay(5_000)
 Log.i(TAG, "performSlowTask after")
 return@async "Finished"
}

When the app runs, the “Finished” result string will be displayed on the
TextView object when the performSlowTask() coroutine completes. Once
again, the wait for the result will occur in the background without blocking
the main thread.

62.10 Using withContext
As we have seen, coroutines are launched within a specified scope and
using a specific dispatcher. By default, any child coroutines will inherit the
same dispatcher as that used by the parent. Consider the following code
designed to call multiple functions from within a suspend function:
fun startTask(view: View) {

 coroutineScope.launch(Dispatchers.Main) {
 performTasks()
 }
}

suspend fun performTasks() {
 performTask1()
 performTask2()
 performTask3()
}

suspend fun performTask1() {
 Log.i(TAG, "Task 1 ${Thread.currentThread().name}")
}

suspend fun performTask2() {
 Log.i(TAG, "Task 2 ${Thread.currentThread().name}")
}

suspend fun performTask3 () {
 Log.i(TAG, "Task 3 ${Thread.currentThread().name}")
}

Since the performTasks() function was launched using the Main dispatcher,
all three functions will default to the main thread. To prove this, the
functions have been written to output the name of the thread in which they
are running. On execution, the Logcat panel will contain the following
output:
Task 1 main
Task 2 main
Task 3 main

However, imagine that the performTask2() function performs network-
intensive operations more suited to the IO dispatcher. This can easily be
achieved using the withContext launcher, which allows the context of a
coroutine to be changed while still staying in the same coroutine scope. The
following change switches the performTask2() coroutine to an IO thread:
suspend fun performTasks() {
 performTask1()
 withContext(Dispatchers.IO) { performTask2() }
 performTask3()
}

When executed, the output will read as follows, indicating that the Task 2
coroutine is no longer on the main thread:
Task 1 main
Task 2 DefaultDispatcher-worker-1
Task 3 main

The withContext builder also provides an interesting alternative to using the
async builder and the Deferred object await() call when returning a result.
Using withContext, the code from the previous section can be rewritten as
follows:
fun startTask(view: View) {

 coroutineScope.launch(Dispatchers.Main) {

 statusText.text = performSlowTask()
 }
}

suspend fun performSlowTask(): String =
 withContext(Dispatchers.Main) {
 Log.i(TAG, "performSlowTask before")
 delay(5_000)
 Log.i(TAG, "performSlowTask after")

 return@withContext "Finished"
 }
}

62.11 Coroutine Channel Communication
Channels provide a simple way to implement communication between
coroutines, including streams of data. In the simplest form, this involves the
creation of a Channel instance and calling the send() method to send the
data. Once sent, transmitted data can be received in another coroutine via a
call to the receive() method of the same Channel instance.
The following code, for example, passes six integers from one coroutine to
another:
.
.
import kotlinx.coroutines.channels.*
.
.
val channel = Channel<Int>()

suspend fun channelDemo() {
 coroutineScope.launch(Dispatchers.Main) { performTask1() }
 coroutineScope.launch(Dispatchers.Main) { performTask2() }
}

suspend fun performTask1() {
 (1..6).forEach {
 channel.send(it)
 }
}

suspend fun performTask2() {

 repeat(6) {
 Log.d(TAG, "Received: ${channel.receive()}")
 }
}

When executed, the following logcat output will be generated:
Received: 1
Received: 2
Received: 3
Received: 4
Received: 5
Received: 6

62.12 Summary
Kotlin coroutines provide a simpler and more efficient approach to
performing asynchronous tasks than traditional multi-threading. Coroutines
allow asynchronous tasks to be implemented in a structured way without
implementing the callbacks associated with typical thread-based tasks. This
chapter has introduced the basic concepts of coroutines, including jobs,
scope, builders, suspend functions, structured concurrency, and channel-
based communication.

63. An Android Kotlin Coroutines
Tutorial
The previous chapter introduced the key concepts of performing
asynchronous tasks within Android apps using Kotlin coroutines. This
chapter will build on this knowledge to create an example app that launches
thousands of coroutines at the touch of a button.

63.1 Creating the Coroutine Example Application
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.
Enter CoroutineDemo into the Name field and specify
com.ebookfrenzy.coroutinedemo as the package name. Before clicking on
the Finish button, change the Minimum API level setting to API 26:
Android 8.0 (Oreo) and the Language menu to Kotlin. Migrate the project
to view binding using the steps outlined in section 18.8 Migrating a Project
to View Binding.

63.2 Designing the User Interface
The user interface will consist of a button to launch coroutines and a
Seekbar to specify how many coroutines will be launched asynchronously
each time the button is clicked. As the coroutines execute, a TextView will
update when individual coroutines start and end.
Begin by loading the activity_main.xml layout file and add the Button,
TextView, and SeekBar objects so that the layout resembles that shown in
Figure 63-1:

Figure 63-1
To implement the layout constraints shown above, begin by clearing all
constraints on the layout using the toolbar button. Shift-click on the four
objects so all are selected, right-click over the top-most TextView, and
select the Center -> Horizontally menu option. Right-click again, this time
selecting the Chains -> Create Vertical Chain option.
Select the SeekBar and change the layout_width property to 0dp
(match_constraint) before adding a 24dp margin on the left and right-hand
sides, as shown in Figure 63-2:

Figure 63-2
Modify the onClick attribute for the Button to call a method named
launchCoroutines and change the ids of the top-most TextView, the

SeekBar, and the lower TextView to countText, seekBar, and statusText
respectively. Finally, change the text on the Button to read “Launch
Coroutines” and extract the text to a string resource.

63.3 Implementing the SeekBar
The SeekBar controls the number of asynchronous coroutines, ranging from
1 to 2000, launched each time the button is clicked. In the activity_main.xml
file, select the SeekBar and use the Attributes tool window to change the
max property to 2000. Next, edit the MainActivity.kt file, add a variable in
which to store the current slider setting, and modify the onCreate() method
to add a SeekBar listener:
.
.
import android.widget.SeekBar
.
.
class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding
 private var count: Int = 1

 override fun onCreate(savedInstanceState: Bundle?) {
.
.
 binding.seekBar.setOnSeekBarChangeListener(object :
 SeekBar.OnSeekBarChangeListener {
 override fun onProgressChanged(seek: SeekBar,
 progress: Int, fromUser:
Boolean) {
 count = progress
 val message = "${count} coroutines"
 binding.countText.text = message
 }

 override fun onStartTrackingTouch(seek: SeekBar) {
 }

 override fun onStopTrackingTouch(seek: SeekBar) {
 }
 })
 }

.

.

When the seekbar slides, the current value will be stored in the count
variable and displayed on the countText view.

63.4 Adding the Suspend Function
When the user taps the button, the app will launch the number of coroutines
selected in the SeekBar. The launchCoroutines() onClick method will
achieve this using the coroutine launch builder to execute a suspend
function. Since the suspend function will return a status string to be
displayed on the statusText TextView object, it must be implemented using
the async builder. All of these actions will need to be performed within a
coroutine scope which must be declared. Within the MainActivity.kt file,
make the following changes:
.
.
import kotlinx.coroutines.*
.
.
class MainActivity : AppCompatActivity() {

 private val coroutineScope = CoroutineScope(Dispatchers.Main)
.
.
 private suspend fun performTaskAsync(tasknumber: Int):
Deferred<String> =
 coroutineScope.async(Dispatchers.Main) {
 delay(5_000)
 return@async "Finished Coroutine $tasknumber"
 }
.
.
}

Given that the function only performs a small task and involves changes to
the user interface, the coroutine is executed using the Main dispatcher. It is
passed the sequence number of the coroutine to be launched, delays for 5
seconds, and then returns a string indicating that the numbered coroutine
has finished.

63.5 Implementing the launchCoroutines Method

The final task before testing the app is to add the launchCoroutines()
method, which is called when the Button object is clicked. This method
should be added to the MainActivity.kt file as follows:
.
.
import android.view.View
.
.
 fun launchCoroutines(view: View) {

 (1..count).forEach {
 val message = "Started Coroutine ${it}"
 binding.statusText.text = message
 coroutineScope.launch(Dispatchers.Main) {
 binding.statusText.text =
performTaskAsync(it).await()
 }
 }
 }
.
.

The method implements a loop to launch the requested number of
coroutines. It updates the status TextView each time a result is returned
from a completed coroutine via an await() method call.

63.6 Testing the App
Build and run the app on a device or emulator and move the SeekBar to a
low number (for example, 10) before tapping the launch button. The status
text will update when a coroutine is launched until the maximum is reached.
After each coroutine completes the 5-second delay, the status text will
update until all ten have completed (in practice, these status updates will
happen so quickly that it will be difficult to see the status changes).
Repeat the process with the SeekBar set to 2000, sliding the Seekbar back
and forth as the coroutines run to verify that the main thread is still running
and has not been blocked.
Finally, with the Logcat panel displayed, set the SeekBar to 2000 and
repeatedly click on the launch button. After about 15 clicks, the Logcat
panel will begin displaying messages similar to the following:

I/Choreographer: Skipped 52 frames! The application may be doing
too much work on its main thread.

Although the app continues to function, the volume of coroutines running
within the app is beginning to overload the main thread. The fact that this
only occurs when tens of thousands of coroutines are executing
concurrently is a testament to the efficiency of Kotlin coroutines. However,
when this message appears in your own apps, it may be a sign that too
many coroutines are running or that the asynchronous workload is too
heavy for the main thread. That being the case, a different dispatcher may
need to be used, perhaps using the withContext builder.

63.7 Summary
Building on the information covered in “An Introduction to Kotlin
Coroutines”, this chapter has created an example app that demonstrates the
use of Kotlin Coroutines within an Android app. The example demonstrated
the use of the Main dispatcher to launch thousands of asynchronous
Coroutines, including returning results.

64. An Overview of Android Services
The Android Service class is designed to allow applications to initiate and
perform background tasks. Unlike broadcast receivers, which are intended
to perform a task quickly and then exit, services are designed to perform
tasks that take a long time to complete (such as downloading a file over an
internet connection or streaming music to the user) but do not require a user
interface.
This chapter will provide an overview of the services available, including
bound and intent services. Once these basics have been covered, subsequent
chapters will work through some examples of services in action.

64.1 Intent Service
As previously outlined, services run by default within the same main thread
as the component from which they are launched. As such, any CPU-
intensive tasks that need to be performed by the service should occur within
a new thread, thereby avoiding impacting the performance of the calling
application.
The JobIntentService class is a convenience class (subclassed from the
Service class) that sets up a worker thread for handling background tasks
and handles each request asynchronously. Once the service has handled all
queued requests, it exits. All that is required when using the
JobIntentService class is to implement the onHandleWork() method,
containing the code to be executed for each request.
For services that do not require synchronous processing of requests,
JobIntentService is the recommended option. However, services requiring
synchronous handling of requests will need to subclass from the Service
class and manually implement and manage threading to handle any CPU-
intensive tasks efficiently.

64.2 Bound Service
A bound service allows a launching component to interact with and receive
results from the service. This interaction can also occur across process
boundaries through the implementation of interprocess communication
(IPC). An activity might, for example, start a service to handle audio

playback. The activity will, in all probability, include a user interface
providing controls to the user to pause playback or skip to the next track.
Similarly, the service will likely need to communicate information to the
calling activity to indicate that the current audio track has ended and
provide details of the next track that is about to start playing.
A component (referred to in this context as a client) starts and binds to a
bound service via a call to the bindService() method. Also, multiple
components may bind to a service simultaneously. When a client no longer
requires the service binding, a call should be made to the unbindService()
method. When the last bound client unbinds from a service, the Android
runtime system will terminate the service. It is important to remember that a
bound service may also be started via a call to startService(). Once started,
components may then bind to it via bindService() calls. When a bound
service is launched via a call to startService(), it will continue to run even
after the last client unbinds from it.
A bound service must include an implementation of the onBind() method,
which is called both when the service is initially created and when other
clients subsequently bind to the running service. The purpose of this
method is to return to binding clients an object of type IBinder containing
the information needed by the client to communicate with the service.
When implementing the communication between a client and a bound
service, the recommended technique depends on whether the client and
service reside in the same or different processes and whether or not the
service is private to the client. Local communication can be achieved by
extending the Binder class and returning an instance from the onBind()
method. Interprocess communication, on the other hand, requires
Messenger and Handler implementation. Details of both of these
approaches will be covered in later chapters.

64.3 The Anatomy of a Service
As has already been mentioned, a service must be created as a subclass of
the Android Service class (more specifically, android.app.Service) or a sub-
class thereof (such as android.app.IntentService). As part of the subclassing
procedure, one or more of the following superclass callback methods must
be overridden, depending on the exact nature of the service being created:

•onStartCommand() – This method is called when another component
starts the service via a call to the startService() method. This method does
not need to be implemented for bound services.

•onBind() – Called when a component binds to the service via a call to the
bindService() method. When implementing a bound service, this method
must return an IBinder object facilitating communication with the client.

•onCreate() – Intended as a location to perform initialization tasks, this
method is called immediately before the call to either onStartCommand()
or the first call to the onBind() method.

•onDestroy() – Called when the service is being destroyed.
•onHandleWork() – Applies only to JobIntentService subclasses. This
method is called to handle the processing for the service. It is executed in a
separate thread from the main application.

Note that the IntentService class includes its own implementations of the
onStartCommand() and onBind() callback methods, so these do not need to
be implemented in subclasses.

64.4 Controlling Destroyed Service Restart Options
The onStartCommand() callback method is required to return an integer
value to define what should happen with regard to the service if the Android
runtime system destroys it. Possible return values for these methods are as
follows:
•START_NOT_STICKY – Indicates to the system that the service should
not be restarted if it is destroyed unless there are pending intents awaiting
delivery.

•START_STICKY – Indicates that the service should be restarted as soon
as possible after it has been destroyed if the destruction occurred after the
onStartCommand() method returned. If no pending intents are waiting to
be delivered, the onStartCommand() callback method is called with a
NULL intent value. The intent being processed when the service was
destroyed is discarded.

•START_REDELIVER_INTENT – Indicates that if the service was
destroyed after returning from the onStartCommand() callback method, the
service should be restarted with the current intent redelivered to the

onStartCommand() method followed by any pending intents.

64.5 Declaring a Service in the Manifest File
For a service to be usable, it must first be declared within a manifest file.
This involves embedding an appropriately configured <service> element
into an existing <application> entry. At a minimum, the <service> element
must contain a property declaring the class name of the service, as
illustrated in the following XML fragment:
.
.
 <application
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:label="@string/app_name"
 android:name=".MainActivity" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category
android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <service android:name=".MyService>
 </service>
 </application>
</manifest>

By default, services are declared public in that they can be accessed by
components outside the application package in which they reside. To make
a service private, the android:exported property must be declared as false
within the <service> element of the manifest file. For example:
<service android:name="MyService"
 android:exported="false">
</service>

When working with JobIntentService, the manifest Service declaration must
also request the BIND_JOB_SERVICE permission as follows:
<service
 android:name=".MyJobIntentService"
 android:permission="android.permission.BIND_JOB_SERVICE" />

As previously discussed, services run within the same process as the calling

component by default. To force a service to run within its own process, add
an android:process property to the <service> element, declaring a name for
the process prefixed with a colon (:):
<service android:name=".MyService"
 android:exported="false"
 android:process=":myprocess">
</service>

The colon prefix indicates that the new process is private to the local
application. If the process name begins with a lowercase letter instead of a
colon, however, the process will be global and available for use by other
components.
Finally, using the same intent filter mechanisms outlined for activities, a
service may also advertise capabilities to other applications running on the
device. For more details on intent filters, refer to the chapter “An Overview
of Android Intents”.

64.6 Starting a Service Running on System Startup
Given the background nature of services, it is not uncommon for a service
to need to be started when an Android-based system first boots up. This can
be achieved by creating a broadcast receiver with an intent filter configured
to listen for the system android.intent.action.BOOT_COMPLETED intent.
When such an intent is detected, the broadcast receiver would invoke the
necessary service and then return. Note that, to function, such a broadcast
receiver must request the
android.permission.RECEIVE_BOOT_COMPLETED permission.

64.7 Summary
Android services are a powerful mechanism that allows applications to
perform tasks in the background. A service, once launched, will continue to
run regardless of whether the calling application is the foreground task or
not and even if the component that initiated the service is destroyed.
Services are subclassed from the Android Service class. Bound services
provide a communication interface to other client components and generally
run until the last client unbinds from the service.
By default, services run locally within the same process and main thread as
the calling application. A new thread should, therefore, be created within

the service to handle CPU-intensive tasks. Remote services may be started
within a separate process by making a minor configuration change to the
corresponding <service> entry in the application manifest file.
The IntentService class (a subclass of the Android Service class) provides a
convenient mechanism for handling asynchronous service requests within a
separate worker thread.

65. Android Local Bound Services –
A Worked Example
As outlined in the previous chapter, Bound services provide a mechanism
for implementing communication between an Android service and one or
more client components. This chapter builds on the overview of bound
services provided in “An Overview of Android Services” before embarking
on an example implementation of a local bound service.

65.1 Understanding Bound Services
Bound services are provided to allow applications to perform tasks in the
background. Multiple client components may bind to a bound service and,
once bound, interact with that service using various mechanisms.
Bound services are created as sub-classes of the Android Service class and
must, at a minimum, implement the onBind() method. Client components
bind to a service via a call to the bindService() method. The first bind
request to a bound service will result in a call to that service’s onBind()
method (subsequent bind requests do not trigger an onBind() call). Clients
wishing to bind to a service must also implement a ServiceConnection
subclass containing onServiceConnected() and onServiceDisconnected()
methods, which will be called once the client-server connection has been
established or disconnected, respectively. In the case of the
onServiceConnected() method, this will be passed an IBinder object
containing the information needed by the client to interact with the service.

65.2 Bound Service Interaction Options
Two recommended mechanisms for implementing interaction between
client components and a bound service exist. Suppose the bound service is
local and private to the same application as the client component (in other
words, it runs within the same process and is not available to components in
other applications). In that case, the recommended method is to create a
subclass of the Binder class and extend it to provide an interface to the
service. An instance of this Binder object is then returned by the onBind()
method and subsequently used by the client component to access methods
and data held within the service directly.

When the bound service is not local to the application (in other words, it is
running in a different process from the client component), interaction is best
achieved using a Messenger/Handler implementation.
In the remainder of this chapter, an example will be created to demonstrate
the steps involved in creating, starting, and interacting with a local, private
bound service.

65.3 A Local Bound Service Example
The example application created in the remainder of this chapter will
consist of a single activity and a bound service. The purpose of the bound
service is to obtain the current time from the system and return that
information to the activity, where it will be displayed to the user. The bound
service will be local and private to the same application as the activity.
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.
Enter LocalBound into the Name field and specify
com.ebookfrenzy.localbound as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin. Use the steps in section 18.8
Migrating a Project to View Binding to migrate the project to view binding.
Once the project has been created, the next step is to add a new class to act
as the bound service.

65.4 Adding a Bound Service to the Project
To add a new class to the project, right-click on the package name (located
under app -> kotlin+java -> com.ebookfrenzy.localbound) within the
Project tool window and select the New -> Service -> Service menu option.
Specify BoundService as the class name and make sure that both the
Exported and Enabled options are selected before clicking on Finish to
create the class. Android Studio will load the BoundService.kt file into the
editor, where it will read as follows:
package com.ebookfrenzy.localbound

import android.app.Service
import android.content.Intent

import android.os.IBinder

class BoundService : Service() {

 override fun onBind(intent: Intent): IBinder {
 TODO("Return the communication channel to the service.")
 }
}

65.5 Implementing the Binder
As previously outlined, local bound services can communicate with bound
clients by passing an appropriately configured Binder object to the client.
This is achieved by creating a Binder subclass within the bound service
class and extending it by adding one or more new methods the client can
call. This usually involves implementing a method that returns a reference
to the bound service instance. With a reference to this instance, the client
can then access data and call methods within the bound service directly.
For this example, some changes are needed to the template BoundService
class created in the preceding section. In the first instance, a Binder
subclass needs to be declared. This class will contain a single method
named getService() which will return a reference to the current service
object instance (represented by the this keyword). With these requirements
in mind, edit the BoundService.kt file and modify it as follows:
package com.ebookfrenzy.localbound

import android.app.Service
import android.content.Intent
import android.os.IBinder
import android.os.Binder

class BoundService : Service() {

 private val myBinder = MyLocalBinder()

 override fun onBind(intent: Intent): IBinder {
 TODO("Return the communication channel to the service.")
 }

 inner class MyLocalBinder : Binder() {
 fun getService() : BoundService {

 return this@BoundService
 }
 }
}

Having made the changes to the class, it is worth taking a moment to recap
the steps performed here. First, a new subclass of Binder (named
MyLocalBinder) is declared. This class contains a single method to return a
reference to the current instance of the BoundService class. A new instance
of the MyLocalBinder class is created and assigned to the myBinder IBinder
reference (since Binder is a subclass of IBinder, there is no type mismatch
in this assignment).
Next, the onBind() method needs to be modified to return a reference to the
myBinder object, and a new public method implemented to return the
current time when called by any clients that bind to the service:
package com.ebookfrenzy.localbound

import android.app.Service
import android.content.Intent
import android.os.IBinder
import android.os.Binder
import java.text.SimpleDateFormat
import java.util.*

class BoundService : Service() {

 private val myBinder = MyLocalBinder()

 override fun onBind(intent: Intent): IBinder {
 return myBinder
 }

 fun getCurrentTime(): String {
 val dateformat = SimpleDateFormat("HH:mm:ss MM/dd/yyyy",
 Locale.US)
 return dateformat.format(Date())
 }

 inner class MyLocalBinder : Binder() {
 fun getService() : BoundService {
 return this@BoundService

 }

 }
}

At this point, the bound service is complete and is ready to be added to the
project manifest file. Locate and double-click on the AndroidManifest.xml
file for the LocalBound project in the Project tool window and, once loaded
into the Manifest Editor, verify that Android Studio has already added a
<service> entry for the service as follows:
<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.ebookfrenzy.localbound.localbound" >

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <service
 android:name=".BoundService"
 android:enabled="true"
 android:exported="true" >
 </service>
 <activity
 android:name=".MainActivity" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN"
/>

 <category
android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

The next phase is writing the code within the activity to bind to the service
and call the getCurrentTime() method.

65.6 Binding the Client to the Service

For this tutorial, the client is the MainActivity instance of the running
application. As previously noted, to successfully bind to a service and
receive the IBinder object returned by the service’s onBind() method, it is
necessary to create a ServiceConnection subclass and implement
onServiceConnected() and onServiceDisconnected() callback methods. Edit
the MainActivity.kt file and modify it as follows:
package com.ebookfrenzy.localbound

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import android.content.ComponentName
import android.content.Context
import android.content.ServiceConnection
import android.os.IBinder
import android.content.Intent

class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding
 var myService: BoundService? = null
 var isBound = false
.
.
 private val myConnection = object : ServiceConnection {
 override fun onServiceConnected(className: ComponentName,
 service: IBinder) {
 val binder = service as BoundService.MyLocalBinder
 myService = binder.getService()
 isBound = true
 }

 override fun onServiceDisconnected(name: ComponentName) {
 isBound = false
 }
 }
}

The onServiceConnected() method will be called when the client binds
successfully to the service. The method is passed as an argument the
IBinder object returned by the onBind() method of the service. This
argument is cast to an object of type MyLocalBinder. Then the getService()

method of the binder object is called to obtain a reference to the service
instance, which, in turn, is assigned to myService. A Boolean flag indicates
that the connection has been successfully established.
The onServiceDisconnected() method is called when the connection ends
and sets the Boolean flag to false.
Having established the connection, the next step is to modify the activity to
bind to the service. This involves the creation of an intent and a call to the
bindService() method, which can be performed in the onCreate() method of
the activity:
override fun onCreate(savedInstanceState: Bundle?) {
.
.
 val intent = Intent(this, BoundService::class.java)
 bindService(intent, myConnection, Context.BIND_AUTO_CREATE)
}

65.7 Completing the Example
All that remains is to add a mechanism for calling the getCurrentTime()
method and displaying the result to the user. As is now customary, Android
Studio will have created a template activity_main.xml file for the activity
containing only a TextView. Load this file into the Layout Editor tool and,
using Design mode, select the TextView component and change the ID to
myTextView. Add a Button view beneath the TextView and change the text
on the button to read “Show Time”, extracting the text to a string resource
named show_time. On completion of these changes, the layout should
resemble that illustrated in Figure 65-1. If any constraints are missing, click
on the Infer Constraints button in the Layout Editor toolbar.

Figure 65-1
Complete the user interface design by selecting the Button and configuring
the onClick property to call a method named showTime.
Finally, edit the MainActivity.kt file code to implement the showTime()
method. This method calls the getCurrentTime() method of the service
(which, thanks to the onServiceConnected() method, is now available from
within the activity via the myService reference) and assigns the resulting
string to the TextView:
package com.ebookfrenzy.localbound
.
.
class MainActivity : AppCompatActivity() {

 var myService: BoundService? = null
 var isBound = false

 fun showTime(view: View) {
 val currentTime = myService?.getCurrentTime()
 binding.myTextView.text = currentTime
 }
.
.
}

65.8 Testing the Application
With the code changes complete, perform a test run of the application. Once

visible, touch the button and note that the text view changes to display the
current date and time. The example has successfully started and bound to a
service and then called a method of that service to cause a task to be
performed, and the results returned to the activity.

65.9 Summary
When a bound service is local and private to an application, components
within that application can interact with the service without resorting to
inter-process communication (IPC). In general terms, the service’s onBind()
method returns an IBinder object containing a reference to the running
service instance. The client component implements a ServiceConnection
subclass containing callback methods that are called when the service is
connected and disconnected. The former method is passed the IBinder
object returned by the onBind() method, allowing public methods within the
service to be called.
Having covered the implementation of local bound services, the next
chapter will focus on using IPC to interact with remote bound services.

66. Android Remote Bound Services
– A Worked Example
In this final chapter dedicated to Android services, an example application
will be developed to demonstrate the use of a messenger and handler
configuration to facilitate interaction between a client and remote bound
service of a messenger and handler configuration to facilitate interaction
between a client and a remote bound service.

66.1 Client to Remote Service Communication
As outlined in the previous chapter, the interaction between a client and a
local service can be implemented by returning to the client an IBinder
object containing a reference to the service object. In the case of remote
services, however, this approach does not work because the remote service
is running in a different process and, as such, cannot be reached directly
from the client.
In the case of remote services, a Messenger and Handler configuration must
be created, which allows messages to be passed across process boundaries
between client and service.
Specifically, the service creates a Handler instance that will be called when
a message is received from the client. In terms of initialization, it is the job
of the Handler to create a Messenger object which, in turn, creates an
IBinder object to be returned to the client in the onBind() method. The
client uses This IBinder object to create an instance of the Messenger object
and, subsequently, to send messages to the service handler. Each time a
message is sent by the client, the handleMessage() method of the handler is
called, passing through the message object.
The example created in this chapter will consist of an activity and a bound
service running in separate processes. The Messenger/Handler mechanism
will send a string to the service, which will display in the Logcat output.

66.2 Creating the Example Application
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template

before clicking on the Next button.
Enter RemoteBound into the Name field and specify
com.ebookfrenzy.remotebound as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin.

66.3 Designing the User Interface
Locate the activity_main.xml file in the Project tool window and double-
click on it to load it into the Layout Editor tool. With the Layout Editor tool
in Design mode, right-click on the default TextView instance, choose the
Convert view... menu option, select the Button view from the resulting
dialog and click Apply. Change the button’s text property to read “Send
Message” and extract the string to a new resource named send_message.
Finally, configure the onClick property to call a method named
sendMessage.

66.4 Implementing the Remote Bound Service
To implement the remote bound service for this example, add a new class to
the project by right-clicking on the package name (located under app ->
kotlin+java) within the Project tool window and selecting the New ->
Service -> Service menu option. Specify RemoteService as the class name
and make sure that both the Exported and Enabled options are selected
before clicking on Finish to create the class.
The next step is to implement the handler class for the new service. This is
achieved by extending the Handler class and implementing the
handleMessage() method. This method will be called when a message is
received from the client. It will be passed a Message object as an argument
containing any data that the client needs to pass to the service. In this
instance, this will be a Bundle object containing a string to be displayed to
the user. The modified class in the RemoteService.kt file should read as
follows once this has been implemented:
package com.ebookfrenzy.remotebound

import android.app.Service
import android.content.Intent
import android.os.IBinder
import android.os.Handler

import android.os.Looper
import android.os.Message
import android.os.Messenger
import android.util.Log

class RemoteService : Service() {

 class IncomingHandler : Handler(Looper.getMainLooper()) {

 val TAG = "RemoteService"

 override fun handleMessage(msg: Message) {
 val data = msg.data
 val dataString = data.getString("MyString")
 Log.i(TAG, "Message = $dataString")
 }
 }

 override fun onBind(intent: Intent): IBinder? {
 TODO("Return the communication channel to the service.")
 }
}

With the handler implemented, the only remaining task in terms of the
service code is to modify the onBind() method such that it returns an
IBinder object containing a Messenger object which, in turn, contains a
reference to the handler:
.
.
private val myMessenger = Messenger(IncomingHandler())

override fun onBind(intent: Intent): IBinder {
 return myMessenger.binder
}

The first line of the above code fragment creates a new instance of our
handler class and passes it through to the constructor of a new Messenger
object. Within the onBind() method, the getBinder() method of the
messenger object is called to return the messenger’s IBinder object.

66.5 Configuring a Remote Service in the Manifest
File

To accurately portray the communication between a client and remote
service, it will be necessary to configure the service to run separately from
the rest of the application. This is achieved by adding an android:process
property within the <service> tag for the service in the manifest file. To
launch a remote service, it is also necessary to provide an intent filter for
the service. To implement this change, modify the AndroidManifest.xml file
to add the required entry:
<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.ebookfrenzy.remotebound" >

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:supportsRtl="true"
 android:theme="@style/AppTheme" >
 <service
 android:name=".RemoteService"
 android:enabled="true"
 android:exported="true"
 android:process=":my_process" >
 </service>

 <activity
 android:name=".MainActivity" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN"
/>

 <category
android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

66.6 Launching and Binding to the Remote Service
As with a local bound service, the client component needs to implement an

instance of the ServiceConnection class with onServiceConnected() and
onServiceDisconnected() methods. Also, in common with local services, the
onServiceConnected() method will be passed the IBinder object returned by
the onBind() method of the remote service, which will be used to send
messages to the server handler. In the case of this example, the client is
MainActivity, the code for which is located in MainActivity.kt. Load this file
and modify it to add the ServiceConnection class and a variable to store a
reference to the received Messenger object together with a Boolean flag to
indicate whether or not the connection is established:
package com.ebookfrenzy.remotebound

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import android.content.ComponentName
import android.content.ServiceConnection
import android.os.*
import android.view.View

class MainActivity : AppCompatActivity() {

 var myService: Messenger? = null
 var isBound: Boolean = false
.
.
 private val myConnection = object : ServiceConnection {
 override fun onServiceConnected(
 className: ComponentName,
 service: IBinder) {
 myService = Messenger(service)
 isBound = true
 }

 override fun onServiceDisconnected(
 className: ComponentName) {
 myService = null
 isBound = false
 }
 }
}

Next, some code must be added to bind to the remote service. This involves

creating an intent that matches the intent filter for the service as declared in
the manifest file and then making a call to the bindService() method,
providing the intent and a reference to the ServiceConnection instance as
arguments. For this example, this code will be implemented in the activity’s
onCreate() method:
.
.
import android.content.Context
import android.content.Intent
.
.
override fun onCreate(savedInstanceState: Bundle?) {
.
.
 val intent = Intent(applicationContext,
RemoteService::class.java)
 bindService(intent, myConnection, Context.BIND_AUTO_CREATE)
}

66.7 Sending a Message to the Remote Service
Before testing the application, all that remains is to implement the
sendMessage() method in the MainActivity class, which is configured to be
called when the user touches the button in the user interface. This method
needs to check that the service is connected, create a bundle object
containing the string to be displayed by the server, add it to a Message
object, and send it to the server:
fun sendMessage(view: View) {

 if (!isBound) return

 val msg = Message.obtain()

 val bundle = Bundle()
 bundle.putString("MyString", "Message Received")

 msg.data = bundle

 try {
 myService?.send(msg)
 } catch (e: RemoteException) {

 e.printStackTrace()
 }
}

With the code changes complete, compile and run the application. Once
loaded, open the Logcat tool window and enter the following into the filter
field:
package:mine tag:RemoteService

With the Logcat tool window still visible, tap the button in the user
interface, at which point the log message should appear as follows:
Message = Message Received

66.8 Summary
To implement interaction between a client and remote bound service, an app
must implement a handler/message communication framework. The basic
concepts behind this technique have been covered in this chapter, together
with the implementation of an example application designed to demonstrate
communication between a client and a bound service, each running in a
separate process.

67. An Introduction to Kotlin Flow
The earlier chapter, “An Introduction to Kotlin Coroutines” taught us about
Kotlin Coroutines and explained how they can perform multiple tasks
concurrently without blocking the main thread. As we have seen, coroutine
suspend functions are ideal for performing tasks that return a single result
value. In this chapter, we will introduce Kotlin Flows and explore how
these can be used to return sequential streams of results from coroutine-
based tasks.
By the end of the chapter, you should understand the Flow, StateFlow, and
SharedFlow Kotlin types and appreciate the difference between hot and
cold flow streams. In the next chapter (“An Android SharedFlow Tutorial”),
we will look more closely at using SharedFlow within the context of
Android app development.

67.1 Understanding Flows
Flows are a part of the Kotlin programming language and are designed to
allow multiple values to be returned sequentially from coroutine-based
asynchronous tasks. A stream of data arriving over time via a network
connection is ideal for using a Kotlin flow.
Flows are comprised of producers, intermediaries, and consumers.
Producers are responsible for providing the data that makes up the flow. For
example, the code that retrieves the stream of data from our hypothetical
network connection would be considered a producer. As each data value
becomes available, the producer emits that value to the flow. The consumer
sits at the opposite end of the flow stream and collects the values as the
producer emits them.
Intermediaries may be placed between the producer and consumer to
perform additional operations on the data, such as filtering the stream,
performing additional processing, or transforming the data in other ways
before it reaches the consumer. Figure 67-1 illustrates the typical structure
of a Kotlin flow:

Figure 67-1
The flow shown in the above diagram consists of a single producer and a
consumer. In practice, multiple consumers can collect emissions from a
single producer, and a single consumer can collect data from multiple
producers.
The remainder of this chapter will demonstrate many of the key features of
Kotlin flows.

67.2 Creating the Sample Project
Select the New Project option from the Android Studio welcome screen
and, within the resulting new project dialog, choose the Empty Views
Activity template before clicking on the Next button.
Enter FlowDemo into the Name field and specify
com.ebookfrenzy.flowdemo as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin.
Once the new project has been created, locate and load the
activity_main.xml layout file located in the Project tool window under app -
> res -> layout and, with the Layout Editor tool in Design mode, replace
the TextView object with a Button view and set the text property so that it
reads “Start”. Once the text value has been set, follow the usual steps to
extract the string to a resource.
With the button still selected in the layout, locate the onClick property in
the Attributes panel and configure it to call a method named handleFlow.

67.3 Adding the Kotlin Lifecycle Library
Kotlin flow requires that the Kotlin extensions lifecycle library is included
as a dependency, so edit the Gradle Scripts -> libs.versions.toml version
catalog file and add an entry for the lifecycle runtime library as follows:
[versions]
.

.
lifecycleRuntimeKtx = "2.7.0"
[libraries]
.
.
androidx-lifecycle-runtime-ktx = { group = "androidx.lifecycle",
name = "lifecycle-runtime-ktx", version.ref = "lifecycleRuntimeKtx"
}
.
.

Next, edit the build.gradle.kts (Module :app) file and add the lifecycle
library to the dependencies section as follows before clicking on the Sync
Now link at the top of the editor panel:
dependencies {
.
.
 implementation(libs.androidx.lifecycle.runtime.ktx)
.
.

When prompted, click the Sync Now button at the top of the editor panel to
commit to the change.

67.4 Declaring a Flow
The Kotlin Flow type represents the most basic form of flow. Each flow can
only emit data of a single type which must be specified when the flow is
declared. The following declaration, for example, declares a Flow instance
designed to stream String-based data:
Flow<String>

When declaring a flow, we need to assign to it the code that will generate
the data stream. This code is referred to as the producer block. This can be
achieved using the flow builder, which takes a coroutine suspend block
containing the producer block code as a parameter. Add the following code
to the MainActivity.kt file to declare a flow named myFlow designed to emit
a stream of integer values:
.
.
import kotlinx.coroutines.*
import kotlinx.coroutines.flow.*
.

.
fun myFlow(): Flow<Int> = flow {
 // Producer block
}

As an alternative to the flow builder, the flowOf() builder can be used to
convert a fixed set of values into a flow:
val myFlow2 = flowOf(2, 4, 6, 8)

Also, many Kotlin collection types now include an asFlow() extension
function that can be called to convert the contained data to a flow. The
following code, for example, converts an array of string values to a flow:
val myArrayFlow = arrayOf<String>("Red", "Green", "Blue").asFlow()

67.5 Emitting Flow Data
Once a flow has been built, the next step is to make sure the data is emitted
to reach any consumers observing the flow. Of the three flow builders we
looked at in the previous section, only the flowOf() and asFlow() builders
create flows that automatically emit the data as soon as a consumer starts
collecting. In the case of the flow builder, however, we need to write code
to emit each value as it becomes available manually. We achieve this by
making calls to the emit() function and passing through as an argument the
current value to be streamed. The following changes to our myFlow
declaration implement a loop that emits the value of an incrementing
counter. To demonstrate the asynchronous nature of flow streams, a two-
second delay is performed on each loop iteration:
fun myFlow(): Flow<Int> = flow {
 var counter = 1

 while (counter < 6) {
 emit(counter)
 counter++
 delay(2000)
 }
}

67.6 Collecting Flow Data
A consumer can collect the streaming data within a flow by calling the
collect() method on the flow instance. This will continue to collect data
from the stream either until the stream ends or the lifecycle scope in which

the collection is being performed is destroyed. For example, we can collect
the data from the myFlow stream and output each value by adding the
handleFlow() onClick function:
.
.
import android.view.View
import androidx.lifecycle.lifecycleScope
.
.
fun handleFlow(view: View) {
 lifecycleScope.launch {
 myFlow().collect() { value ->
 println("Collected value = $value")
 }
 }
}

Note that collect() is a suspend function, so it must be called from within a
coroutine scope.
Compile and run the app on a device or emulator and display the Logcat
tool window. When the Start button is clicked in the running app, the
following output should appear with a two-second delay between each
output:
Collected value = 1
Collected value = 2
Collected value = 3
Collected value = 4
Collected value = 5

To add code to be executed when the stream ends, the collection can be
performed in a try/finally construct, for example:
fun handleFlow(view: View) {
 lifecycleScope.launch {
 try {
 myFlow().collect() { value ->
 println("Collected value = $value")
 }
 } finally {
 println("Flow stream ended.")
 }
 }
}

The collect() operator will collect every value the producer emits, even if
new values are emitted while the consumer is still processing the last value.
For example, our producer is configured to emit a new value every two
seconds. Suppose, however, that we simulate our consumer taking 2.5
seconds to process each collected value as follows:
fun handleFlow(view: View) {
 lifecycleScope.launch {
 myFlow().collect() { value ->
 println("Collected value = $value")
 delay(2500)
 }
 }
}

When executed, we will still see all the values listed in the output because
collect() does not discard any uncollected values, regardless of whether
more recent ones have been emitted since the last collection. This type of
behavior is essential to avoid data loss within the flow. In some situations,
however, the consumer may be uninterested in any intermediate values
emitted between the most recently processed value and the latest emitted
value. In this case, the collectLatest() operator can be called on the flow
instance. This operator works by canceling the current collection if a new
value arrives before processing completes on the previous value and restarts
the process on the latest value.
The conflate() operator is similar to the collectLatest() operator except that
instead of canceling the current collection operation when a new value
arrives, conflate() allows the current operation to complete but discards
intermediate values that arrive during this process. When the current
operation completes, the most recent value is then collected.
Another collection operator is the single() operator. This operator collects a
single value from the flow and throws an exception if it finds another value
in the stream. This operator is generally only useful where the appearance
of a second stream value indicates that something else has gone wrong
somewhere in the app or data source.

67.7 Adding a Flow Buffer
When a consumer takes time to process the values emitted by a producer,
there is the potential for execution time inefficiencies. Suppose, for

example, that in addition to the two-second delay between each emission
from our myFlow producer, the collection process in our consumer takes an
additional second to complete. We can simulate this behavior as follows:
.
.
import kotlin.system.measureTimeMillis
.
.
fun handleFlow(view: View) {
 lifecycleScope.launch {
 val elapsedTime = measureTimeMillis {
 myFlow()
 .collect() { value ->
 println("Collected value = $value")
 delay(1000)
 }
 }
 println("Duration = $elapsedTime")
 }
}

To allow us to measure the total time to process the flow fully, the
consumer code has been placed in the closure of a call to the Kotlin
measureTimeMillis() function. After execution completes, a duration similar
to the following will be reported:
Duration = 15024

This accounts for approximately ten seconds to process the five values
within myFlow and another five seconds to collect those values. There is an
inefficiency here because the producer waits for the consumer to process
each value before starting on the next value. This would be much more
efficient if the producer did not have to wait for the consumer. We could use
the collectLatest() or conflate() operators, but only if the loss of
intermediate values is not a concern. To speed up the processing while
collecting emitted values, we can use the buffer() operator. This operator
buffers values as they are emitted and passes them to the consumer when it
is ready to receive them. This allows the producer to continue emitting
values while the consumer processes preceding values while ensuring that
every emitted value is collected. The buffer() operator may be applied to a
flow as follows:

val elapsedTime = measureTimeMillis {
 myFlow()
 .buffer()
 .collect() { value ->
 println("Collected value = $value")
 delay(1000)
 }
}
println("Duration = $elapsedTime")

Execution of the above code indicates that we have now reclaimed the five
seconds previously lost in the collection code:
Duration = 10323

67.8 Transforming Data with Intermediaries
All of the examples we have looked at in this chapter have passed the data
values to the consumer without any modifications. Changes to the data can
be made between the producer and consumer by applying one or more
intermediate flow operators. In this section, we will look at some of these
operators.
The map() operator can convert the value to some other value. We can use
map(), for example, to convert our integer value to a string:
fun handleFlow(view: View) {
 lifecycleScope.launch {
 myFlow()
 .map {
 "Collected value = $it"
 }
 .collect() {
 println(it)
 }
 }
 }
}

When the code is executed, it will give us the following output:
Collected value = 1
Collected value = 2
Collected value = 3
Collected value = 4
Collected value = 5

The map() operator will perform the conversion on every collected value.

The filter() operator can control which values get collected. The filter code
block must contain an expression that returns a Boolean value. Only if the
expression evaluates to true does the value pass through to the collection.
The following code filters odd numbers out of the data flow (note that
we’ve left the map() operator in place to demonstrate the chaining of
operators):
fun handleFlow(view: View) {
 lifecycleScope.launch {
 myFlow()
 .filter {
 it % 2 == 0
 }
 .map {
 "Collected value $it"
 }
 .collect() {
 println(it)
 }
 }
 }
}

The above changes will generate the following output:
Collected value = 2
Collected value = 4

The transform() operator serves a similar purpose to map() but provides
more flexibility. The transform() operator also needs to emit the modified
result manually. A particular advantage of transform() is that it can emit
multiple values, as demonstrated below:
.
.
myFlow()
 .transform {
 emit("Value = $it")
 var doubled = it * 2
 emit("Value doubled = $doubled")
 }
 .collect {
 println(it)
 }
}

.

.
// Output
Value = 1
Value doubled = 2
Value = 2
Value doubled = 4
Value = 3
Value doubled = 6
Value = 4
Value doubled = 8
Value = 5
Value doubled = 10

67.9 Terminal Flow Operators
All the collection operators covered previously are referred to as terminal
flow operators. The reduce() operator is one of several other terminal flow
operators that can be used in place of a collection operator to make changes
to the flow data. The reduce() operator takes two parameters in the form of
an accumulator and a value. The first flow value is placed in the
accumulator, and a specified operation is performed between the
accumulator and the current value (with the result stored in the
accumulator):
.
.
myFlow()
 .reduce { accumulator, value ->
 println("accumulator = $accumulator, value = $value")
 accumulator + value
 }
}
.
.
// Output
accumulator = 1, value = 2
accumulator = 3, value = 3
accumulator = 6, value = 4
accumulator = 10, value = 5

The fold() operator works similarly to the reduce() operator, with the
exception that it is passed an initial accumulator value:

.

.
myFlow()
 .fold(10) { accumulator, value ->
 println("accumulator = $accumulator, value = $value")
 accumulator * value
 }
}
.
.
// Output
accumulator = 10, value = 1
accumulator = 10, value = 2
accumulator = 20, value = 3
accumulator = 60, value = 4
accumulator = 240, value = 5

67.10 Flow Flattening
As we have seen in earlier examples, we can use operators to perform tasks
on values collected from a flow. However, an interesting situation occurs
when that task creates one or more flows resulting in a “flow of flows”. In
such situations, these streams can be flattened into a single stream.
Consider the following example code, which declares two flows:
fun myFlow(): Flow<Int> = flow {
 for (i in 1..5) {
 emit(i)
 }
}

fun doubleIt(value: Int) = flow {
 emit(value)
 delay(1000)
 emit(value + value)
}

If we were to call doubleIt() for each value in the myFlow stream, we would
end up with a separate flow for each value. This problem can be solved by
concatenating the doubleIt() streams into a single flow using the
flatMapConcat() operator as follows:
.
.

myFlow()
 .flatMapConcat { doubleIt(it) }
 .collect { println(it) }
.
.

When this modified code executes, we will see the following output from
the collect() operator:
1
2
2
4
3
6
4
8
5
10

As we can see from the output, the doubleIt() flow has emitted the value
provided by myFlow, followed by the doubled value. When using the
flatMapConcat() operator, the doubleIt() calls are being performed
synchronously, causing execution to wait until doubleIt() has emitted both
values before processing the next flow value. The emitted values can
instead be collected asynchronously using the flatMapMerge() operator as
follows:
myFlow()
 .flatMapMerge { doubleIt(it) }
 .collect { println(it) }
}

When executed, the following output will appear:
1
2
3
4
5
2
4
6
8
10

67.11 Combining Multiple Flows
Multiple flows can be combined into a single flow using the zip() and
combine() operators. The following code demonstrates the zip() operator
being used to convert two flows into a single flow:
fun handleFlow(view: View) {
 lifecycleScope.launch {
 val flow1 = (1..5).asFlow()
 .onEach { delay(1000) }
 val flow2 = flowOf("one", "two", "three", "four")
 .onEach { delay(1500) }
 flow1.zip(flow2) { value, string -> "$value, $string" }
 .collect { println(it) }
 }
}
// Output
1, one
2, two
3, three
4, four

We have applied the onEach() operator to both flows in the above code.
This is a useful operator for performing a task on receipt of each stream
value.
The zip() operator will wait until both flows have emitted a new value
before performing the collection. The combine() operator works slightly
differently in that it proceeds as soon as either flow emits a new value,
using the last value emitted by the other flow in the absence of a new value:
.
.
val flow1 = (1..5).asFlow()
 .onEach { delay(1000) }
val flow2 = flowOf("one", "two", "three", "four")
 .onEach { delay(1500) }
flow1.combine(flow2) { value, string -> "$value, $string" }
 .collect { println(it) }
.
.
// Output
1, one
2, one

3, one
3, two
4, two
4, three
5, three
5, four

As we can see from the output, multiple instances have occurred where the
last value was reused on one flow because a new value was emitted on the
other.

67.12 Hot and Cold Flows
So far, in this chapter, we have looked exclusively at the Kotlin Flow type.
Kotlin also provides additional types in the form of StateFlow and
SharedFlow. Before exploring these, however, it is important to understand
the concept of hot and cold flows.
A stream declared using the Flow type is called a cold flow because the
code within the producer does not begin executing until a consumer begins
collecting values. StateFlow and SharedFlow, on the other hand, are
referred to as hot flows because they begin emitting values immediately,
regardless of whether consumers are collecting the values.
Once a consumer begins collecting from a hot flow, it will receive the latest
value emitted by the producer, followed by any subsequent values. Any
previous values emitted before the collection starts will be lost unless steps
are taken to implement caching.
Another important difference between Flow, StateFlow, and SharedFlow is
that a Flow-based stream cannot have multiple collectors. Each Flow
collector launches a new flow with its own independent data stream. With
StateFlow and SharedFlow, on the other hand, multiple collectors share
access to the same flow.

67.13 StateFlow
StateFlow, as the name suggests, is primarily used to observe a state change
within an app, such as the current setting of a counter, toggle button, or
slider. Each StateFlow instance stores a single value likely to change over
time and notifies all consumers when those changes occur. This enables you
to write code that reacts to changes in the state instead of code that checks
whether or not a state value has changed continually. StateFlow behaves the

same way as LiveData except that LiveData has lifecycle awareness and
does not require an initial value (LiveData was covered previously
beginning with the chapter titled “Modern Android App Architecture with
Jetpack”).
To create a StateFlow stream, create an instance of MutableStateFlow,
passing through a mandatory initial value. This is the variable that will be
used to change the current state value from within the app code:
private val _stateFlow = MutableStateFlow(0)

Next, call asStateFlow() on the MutableStateFlow instance to convert it into
a StateFlow from which changes in state can be collected:
val stateFlow = _stateFlow.asStateFlow()

Once created, any changes to the state are made via the value property of
the mutable state instance. The following code, for example, increments the
state value:
_stateFlow.value += 1

Once the flow is active, the state can be consumed in the usual ways,
though it is generally recommended to collect from StateFlow using the
collectLatest() operator, for example:
stateFlow.collectLatest {
 println("Counter = $it")
}

To try out this example, make the following modifications to the
MainActivity.kt file:
.
.
class MainActivity : AppCompatActivity() {

 private val _stateFlow = MutableStateFlow(0)
 val stateFlow = _stateFlow.asStateFlow()

 override fun onCreate(savedInstanceState: Bundle?) {
.
.
 lifecycleScope.launch {
 stateFlow.collectLatest {
 println("Counter = $it")
 }
 }

 }

 fun handleFlow(view: View) {
 _stateFlow.value += 1
 }
}

Run the app and verify that the Start button outputs the incremented counter
value each time it is clicked.

67.14 SharedFlow
SharedFlow provides a more general-purpose streaming option than that
offered by StateFlow. Some of the key differences between StateFlow and
SharedFlow are as follows:
•Consumers are generally referred to as subscribers.
•An initial value is not provided when creating a SharedFlow instance.
•SharedFlow allows values emitted before collection started to be
“replayed” to the collector.

•SharedFlow emits values instead of using a value property.
SharedFlow instances are created using MutableSharedFlow as the backing
property on which we call the asSharedFlow() to obtain a SharedFlow
reference:
.
.
import kotlinx.coroutines.channels.BufferOverflow
.
.
class MainActivity : AppCompatActivity() {

private val _sharedFlow = MutableSharedFlow<Int>(
 replay = 10, onBufferOverflow = BufferOverflow.DROP_OLDEST)
val sharedFlow = _sharedFlow.asSharedFlow()
.
.

As configured above, new flow subscribers will receive the last ten values
before receiving any new values. The above flow is configured to discard
the oldest value when more than ten values are buffered. The full set of
options for handling buffer overflows is as follows:

•DROP_LATEST - The latest value is dropped when the buffer is full,
leaving the buffer unchanged as new values are processed.

•DROP_OLDEST - Treats the buffer as a “last-in, first-out” stack where
the oldest value is dropped to make room for a new value when the buffer
is full.

•SUSPEND - The flow is suspended when the buffer is full.
Values are emitted on a SharedFlow stream by calling the emit() method of
the MutableSharedFlow instance:
fun handleFlow(view: View) {

 var counter = 1

 lifecycleScope.launch {
 while (counter < 6) {
 _sharedFlow.emit(counter)
 counter++
 delay(2000)
 }
 }
}

Once the flow is active, subscribers can collect values using the usual
techniques on the SharedFlow instance. For example, we can add the
following collection code to the onCreate() method of our example project
to output the flow values:
override fun onCreate(savedInstanceState: Bundle?) {
.
.
 lifecycleScope.launch {
 sharedFlow.collect {
 println("$it")
 }
 }
}

Also, the current number of subscribers to a SharedFlow stream can be
obtained via the subscriptionCount property of the mutable instance:
val subCount = _sharedFlow.subscriptionCount

67.15 Summary

Kotlin flows allow sequential data or state changes to be returned over time
from asynchronous tasks. A flow consists of a producer that emits a
sequence of values and consumers that collect and process those values.
The flow stream can be manipulated between the producer and consumer by
applying one or more intermediary operators, including transformations and
filtering. Flows are created based on the Flow, StateFlow, and SharedFlow
types. A Flow-based stream can only have a single collector, while
StateFlow and SharedFlow can have multiple collectors.
Flows are categorized as being hot or cold. A cold flow does not begin
emitting values until a consumer begins collection. On the other hand, hot
flows begin emitting values as soon as they are created, regardless of
whether or not the values are being collected. In the case of SharedFlow, a
predefined number of values may be buffered and replayed to new
subscribers when they begin collecting values.

68. An Android SharedFlow Tutorial
The previous chapter introduced Kotlin flows and explored how these can
be used to return multiple sequential values from within coroutine-based
asynchronous code. This tutorial will look at a more detailed flow
implementation, this time using SharedFlow within a ViewModel. The
tutorial will also demonstrate how to ensure that flow collection responds
correctly to an app switching between background and foreground modes.

68.1 About the Project
The app created in this chapter will consist of a RecyclerView located in the
user interface layout of the main fragment. A shared flow located within a
ViewModel will be activated as soon as the view model is created and will
emit an integer value every two seconds. Code within the main fragment
will collect the values from the flow and list them in the RecyclerView. The
project will then be modified to suspend the collection process while the
app is placed in the background.

68.2 Creating the SharedFlowDemo Project
Begin by launching Android Studio, selecting the New Project option from
the welcome screen, and, within the new project dialog, choose the Empty
Views Activity template before clicking the Next button.
Enter SharedFlowDemo into the Name field and specify
com.ebookfrenzy.sharedflowdemo as the package name. Before clicking on
the Finish button, change the Minimum API level setting to API 26:
Android 8.0 (Oreo) and the Language menu to Kotlin. Migrate the project
to view binding using the steps outlined in section 18.8 Migrating a Project
to View Binding.

68.3 Adding the Lifecycle Libraries
Edit the Gradle Scripts -> libs.versions.toml version catalog file and add
entries for the lifecycle runtime and viewmodel libraries as follows:
[versions]
.
.
lifecycleRuntimeKtx = "2.7.0"
lifecycleViewmodelKtx = "2.7.0"

[libraries]
.
.
androidx-lifecycle-runtime-ktx = { group = "androidx.lifecycle",
name = "lifecycle-runtime-ktx", version.ref = "lifecycleRuntimeKtx"
}
androidx-lifecycle-viewmodel-ktx = { group = "androidx.lifecycle",
name = "lifecycle-viewmodel-ktx", version.ref =
"lifecycleViewmodelKtx" }

Next, edit the build.gradle.kts (Module :app) file and add the lifecycle
libraries to the dependencies section as follows before clicking on the Sync
Now link at the top of the editor panel:
dependencies {
.
.
 implementation(libs.androidx.lifecycle.runtime.ktx)
 implementation(libs.androidx.lifecycle.viewmodel.ktx)
.
.
}

68.4 Designing the User Interface Layout
Locate the res -> layout -> activity_main.xml file, load it into the layout
editor, and delete the default TextView component. From the Containers
section of the widget palette, drag and drop a RecyclerView onto the center
of the layout canvas. Add constraints so the view fills the entire canvas, and
each side is attached to the corresponding side of the parent container. With
the RecyclerView selected, refer to the Attributes tool window, change the
id to recyclerView if it does not already have this id, and set layout_height
and layout_width to match_constraint.

68.5 Adding the List Row Layout
We now need to add a layout resource file containing a TextView to be used
for each row in the list. Add this file now by right-clicking on the app ->
res -> layout entry in the Project tool window and selecting the New ->
Layout resource file menu option. Name the file list_row and change the
root element to LinearLayout before clicking OK to create the file and load
it into the layout editor. With the layout editor in Design mode, drag a
TextView object from the palette onto the layout, where it will appear by

default at the top of the layout:

Figure 68-1
With the TextView selected in the layout, use the Attributes tool window to
set the view id to itemText, the layout_height to 50dp, and the textSize
attribute to 20sp. With the text view still selected, unfold the gravity
settings and set center to true and all other values to false:

Figure 68-2
Select the LinearLayout entry in the Component Tree window and set the
layout_height attribute to wrap_content.

68.6 Adding the RecyclerView Adapter
Add the RecyclerView adapter class to the project by right-clicking on the
app -> kotlin+java -> com.ebookfrenzy.sharedflowdemo entry in the
Project tool window and selecting the New -> Kotlin Class/File... menu. In
the dialog, name the class ListAdapter and choose Class from the list before
pressing the keyboard Return key. With the resulting ListAdapter.kt class
file loaded into the editor, implement the class as follows:
package com.ebookfrenzy.sharedflowdemo

import android.view.LayoutInflater
import android.view.View
import android.view.ViewGroup
import android.widget.TextView
import androidx.annotation.NonNull

import androidx.recyclerview.widget.RecyclerView
import com.ebookfrenzy.sharedflowdemo.R

class ListAdapter(private var itemsList: List<String>) :
 RecyclerView.Adapter<ListAdapter.MyViewHolder>() {

 class MyViewHolder(view: View) : RecyclerView.ViewHolder(view)
{
 var itemText: TextView = view.findViewById(R.id.itemText)
 }

 override fun onCreateViewHolder(parent: ViewGroup,
 viewType: Int): MyViewHolder {
 val itemView = LayoutInflater.from(parent.context)
 .inflate(R.layout.list_row, parent, false)
 return MyViewHolder(itemView)
 }

 override fun onBindViewHolder(holder: MyViewHolder, position:
Int) {
 val item = itemsList[position]
 holder.itemText.text = item
 }

 override fun getItemCount(): Int {
 return itemsList.size
 }
}

68.7 Adding the ViewModel
The next step is to add the view model and write some code to create and
start the SharedFlow instance. Begin by locating the
com.ebookfrenzy.sharedflowdemo entry in the Project tool window, right-
clicking on it, and selecting the New -> Kotlin Class/File menu option.
Name the new class MainViewModel and press the keyboard enter key. Edit
the new class file so that it reads as follows:
package com.ebookfrenzy.sharedflowdemo

import androidx.lifecycle.ViewModel
import androidx.lifecycle.viewModelScope
import kotlinx.coroutines.delay
import kotlinx.coroutines.flow.MutableSharedFlow

import kotlinx.coroutines.flow.asSharedFlow
import kotlinx.coroutines.launch

class MainViewModel : ViewModel() {

 init {
 sharedFlowInit()
 }

 private fun sharedFlowInit() {
 }
}

When the ViewModel instance is created, the initializer will call the
sharedFlowInit() function. The purpose of this function is to launch a new
coroutine containing a loop in which new values are emitted using a shared
flow. Before adding this code, we first need to declare the flow as follows:
.
.
class MainViewModel : ViewModel() {

 private val _sharedFlow = MutableSharedFlow<Int>()
 val sharedFlow = _sharedFlow.asSharedFlow()
.
.

With the flow declared, code can now be added to the sharedFlowInit()
function to launch the flow using the view model’s own scope. This will
ensure that the flow ends when the view model is destroyed:
fun sharedFlowInit() {
 viewModelScope.launch {
 for (i in 1..1000) {
 delay(2000)
 _sharedFlow.emit(i)
 }
 }
}

68.8 Configuring the ViewModelProvider
Later in this chapter, we will require access to the view model from within
the MainActivity.kt file. As outlined in “An Android ViewModel Tutorial”,
this is achieved using a ViewModelProvider instance. Edit the

MainActivity.kt file and modify it as follows to access the view model:
.
.
import androidx.lifecycle.ViewModelProvider
.
.
class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding
 private lateinit var viewModel: MainViewModel

 override fun onCreate(savedInstanceState: Bundle?) {
.
.
 viewModel = ViewModelProvider(this)
[MainViewModel::class.java]
}

68.9 Collecting the Flow Values
Before testing the app for the first time, we need to add some code to
perform the flow collection and display those values in the RecyclerView
list. The intention is for collection to start automatically when the app
launches, so this code will be placed in the onCreate() method of the
MainActivity.kt file.
Start by adding some variables to store a reference to our list adapter and
the array of items to be displayed in the RecyclerView. Now is also a good
time to add the imports we will need to complete the app:
.
.
import androidx.lifecycle.Lifecycle
import kotlinx.coroutines.flow.*
import kotlinx.coroutines.launch
import androidx.lifecycle.repeatOnLifecycle
import androidx.lifecycle.lifecycleScope
import androidx.recyclerview.widget.LinearLayoutManager
.
.
class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding
 private lateinit var viewModel: MainViewModel

 private val itemList = ArrayList<String>()
 private lateinit var listAdapter: ListAdapter
.
.

Next, add a new method named collectFlow() and call if from the
onCreate() method:
override fun onCreate(savedInstanceState: Bundle?) {
.
.
 collectFlow()
}

fun collectFlow() {

}

Add code to the collectFlow() method to create a list adapter instance and
assign it to the RecyclerView. We also need to configure the RecyclerView
to use a LinearLayout manager:
fun collectFlow() {
 listAdapter = ListAdapter(itemList)
 val layoutManager = LinearLayoutManager(this)
 binding.recyclerView.layoutManager = layoutManager
 binding.recyclerView.adapter = listAdapter
}

With these changes, we are ready to collect the values emitted by the shared
flow and add them to the RecyclerView. Add code to the collectFlow()
method so that it now reads as follows:
fun collectFlow() {
 listAdapter = ListAdapter(itemList)
 val layoutManager = LinearLayoutManager(this)
 binding.recyclerView.layoutManager = layoutManager
 binding.recyclerView.adapter = listAdapter

 lifecycleScope.launch {
 viewModel.sharedFlow.collect { value ->
 itemList.add(value.toString())
 listAdapter.notifyItemInserted(itemList.lastIndex)
 binding.recyclerView.smoothScrollToPosition(listAdapter
.itemCount)

 }
 }
}

This code accesses the shared flow instance within the view model and
begins collecting values from the stream. Each collected value is added to
the itemList array used when the ListAdapter was initialized. We then notify
the adapter that a new item has been added to the end of the list. This will
cause the RecyclerView to update so that the new value appears in the list.
We have also added code to instruct the RecyclerView to scroll smoothly to
the last position in the list so that the most recent values are automatically
visible.

68.10 Testing the SharedFlowDemo App
Compile and run the app on a device or emulator and verify that values
appear within the RecyclerView list as the shared flow emits them. Rotate
the device into landscape orientation to trigger a configuration change and
confirm that the sequence of values continues without restarting from zero:

Figure 68-3
With the app now working, it is time to look at what happens when it is
placed in the background.

68.11 Handling Flows in the Background
Our app has a shared flow that feeds values to the user interface in the form
of a RecyclerView. By performing the collection in a coroutine scope, the
user interface remains responsive while the flow is being collected (you can
verify this by scrolling up and down within the list of values while the list is

updating). This raises the question of what happens when the app is placed
in the background. We can add some diagnostic output to the emitter and
collector code to find out. First, edit the MainViewModel.kt file and add a
Log() call within the body of the emission for loop:
.
.
import android.util.Log
.
.
class MainViewModel : ViewModel() {
 private val TAG = "SharedFlowDemo"
.
.
 private fun sharedFlowInit() {
 viewModelScope.launch {
 for (i in 1..1000) {
 delay(2000)
 Log.i(TAG, "Emitting $i")
 _sharedFlow.emit(i)
 }
 }
 }
.
.

Make a similar change to the collection code block in the MainActivity.kt
file as follows:
.
.
import android.util.Log
.
.
class MainActivity : AppCompatActivity() {
 private val TAG = "SharedFlowDemo"
.
.
 fun collectFlow() {
.
.
 lifecycleScope.launch {
 viewModel.sharedFlow.collect { value ->
 Log.i(TAG, "Collecting $value")

 itemList.add(value.toString())
 listAdapter.notifyItemInserted(itemList.lastIndex)
 binding.recyclerView.smoothScrollToPosition(
 listAdapter.itemCount)
 }
 }
 }
}

Once these changes have been made, display the Logcat tool window and
enter the following keys into the filter field:
package:mine tag:SharedFlowDemo

Run the app, and as the list of values updates, output similar to the
following should appear in the Logcat panel:
Emitting 1
Collecting 1
Emitting 2
Collecting 2
Emitting 3
Collecting 3
.
.

Now place the app in the background and note that both the emission and
collection operations continue to run, even though the app is no longer
visible to the user. The continued emission is to be expected and is the
correct behavior for a shared flow residing within a view model. However,
it is wasteful of resources to collect data and update a user interface that is
not currently visible to the user. We can resolve this problem by executing
the collection using the repeatOnLifecycle function.
The repeatOnLifecycle function is a suspend function that runs a specified
block of code each time the current lifecycle reaches or exceeds one of the
following states (a topic covered previously in the “Working with Android
Lifecycle-Aware Components” chapter):
•Lifecycle.State.INITIALIZED
•Lifecycle.State.CREATED
•Lifecycle.State.STARTED
•Lifecycle.State.RESUMED
•Lifecycle.State.DESTROYED

Conversely, the coroutine is canceled when the lifecycle drops below the
target state.
In this case, we want the collection to start each time Lifecycle.State.START
is reached and to stop when the lifecycle is suspended. To implement this,
modify the collection code as follows:
lifecycleScope.launch {
 repeatOnLifecycle(Lifecycle.State.STARTED) {
 viewModel.sharedFlow.collect { value ->
 Log.i(TAG, "Collecting $value")
 itemList.add(value.toString())
 listAdapter.notifyDataSetChanged()
 binding.recyclerView.smoothScrollToPosition(listAdapter
.itemCount)
 }
 }
}

Rerun the app, place it in the background, and note that only the emission
diagnostic messages appear in the Logcat output, confirming that the main
fragment is no longer collecting values and adding them to the
RecyclerView list. When the app is brought to the foreground, the
collection will resume at the latest emitted value since replay was not
configured on the shared flow.

68.12 Summary
In this chapter, we created a SharedFlow instance within a view model. We
then collected the streamed values within the main fragment and used that
data to update the user interface. We also outlined the importance of
avoiding unnecessary flow-driven user interface updates when an app is
placed in the background. This problem can easily be resolved using the
repeatOnLifecycle function. This function can be used to cancel and restart
asynchronous tasks such as flow collection when the containing lifecycle
reaches a target lifecycle state.

69. An Overview of Android SQLite
Databases
Mobile applications that do not need to store at least some persistent data
are few and far between. The use of databases is an essential aspect of most
applications, ranging from almost entirely data-driven applications to those
that need to store small amounts of data, such as the prevailing game score.
The importance of persistent data storage becomes even more evident when
considering the transient lifecycle of the typical Android application. With
the ever-present risk that the Android runtime system will terminate an
application component to free up resources, a comprehensive data storage
strategy to avoid data loss is a key factor in designing and implementing
any application development strategy.
This chapter will cover the SQLite database management system bundled
with the Android operating system and outline the Android SDK classes
that facilitate persistent SQLite-based database storage within an Android
application. Before delving into the specifics of SQLite in the context of
Android development, however, a brief overview of databases and SQL will
be covered.

69.1 Understanding Database Tables
Database Tables provide the most basic level of data structure in a database.
Each database can contain multiple tables, each designed to hold
information of a specific type. For example, a database may contain a
customer table that contains the name, address, and telephone number of
each of the customers of a particular business. The same database may also
include a products table used to store the product descriptions with
associated product codes for the items sold by the business.
Each table in a database is assigned a name that must be unique within that
particular database. A table name, once assigned to a table in one database,
may not be used for another table except within the context of another
database.

69.2 Introducing Database Schema

Database Schemas define the characteristics of the data stored in a database
table. For example, the table schema for a customer database table might
define the customer name as a string of no more than 20 characters long and
the customer phone number is a numerical data field of a certain format.
Schemas are also used to define the structure of entire databases and the
relationship between the various tables in each database.

69.3 Columns and Data Types
It is helpful at this stage to begin viewing a database table as similar to a
spreadsheet where data is stored in rows and columns.
Each column represents a data field in the corresponding table. For
example, a table’s name, address, and telephone data fields are all columns.
Each column, in turn, is defined to contain a certain type of data. Therefore,
a column designed to store numbers would be defined as containing
numerical data.

69.4 Database Rows
Each new record saved to a table is stored in a row. Each row, in turn,
consists of the columns of data associated with the saved record.
Once again, consider the spreadsheet analogy described earlier in this
chapter. Each entry in a customer table is equivalent to a row in a
spreadsheet, and each column contains the data for each customer (name,
address, telephone, etc.). When a new customer is added to the table, a new
row is created, and the data for that customer is stored in the corresponding
columns of the new row.
Rows are also sometimes referred to as records or entries, and these terms
can generally be used interchangeably.

69.5 Introducing Primary Keys
Each database table should contain one or more columns that can be used to
identify each row in the table uniquely. This is known in database
terminology as the Primary Key. For example, a table may use a bank
account number column as the primary key. Alternatively, a customer table
may use the customer’s social security number as the primary key.
Primary keys allow the database management system to uniquely identify a

specific row in a table. Without a primary key, retrieving or deleting a
specific row in a table would not be possible because there can be no
certainty that the correct row has been selected. For example, suppose a
table existed where the customer’s last name had been defined as the
primary key. Imagine the problem if more than one customer named
“Smith” were recorded in the database. Without some guaranteed way to
identify a specific row uniquely, ensuring the correct data was being
accessed at any given time would be impossible.
Primary keys can comprise a single column or multiple columns in a table.
To qualify as a single column primary key, no two rows can contain
matching primary key values. When using multiple columns to construct a
primary key, individual column values do not need to be unique, but all the
columns’ values combined must be unique.

69.6 What is SQLite?
SQLite is an embedded, relational database management system (RDBMS).
Most relational databases (Oracle, SQL Server, and MySQL being prime
examples) are standalone server processes that run independently and
cooperate with applications requiring database access. SQLite is referred to
as embedded because it is provided in the form of a library that is linked
into applications. As such, there is no standalone database server running in
the background. All database operations are handled internally within the
application through calls to functions in the SQLite library.
The developers of SQLite have placed the technology into the public
domain with the result that it is now a widely deployed database solution.
SQLite is written in the C programming language, so the Android SDK
provides a Java-based “wrapper” around the underlying database interface.
This consists of classes that may be utilized within an application’s Java or
Kotlin code to create and manage SQLite-based databases.
For additional information about SQLite, refer to https://www.sqlite.org.

69.7 Structured Query Language (SQL)
Data is accessed in SQLite databases using a high-level language known as
Structured Query Language. This is usually abbreviated to SQL and
pronounced sequel. SQL is a standard language used by most relational

http://www.sqlite.org/

database management systems. SQLite conforms mostly to the SQL-92
standard.
SQL is a straightforward and easy-to-use language designed specifically to
enable the reading and writing of database data. Because SQL contains a
small set of keywords, it can be learned quickly. In addition, SQL syntax is
more or less identical between most DBMS implementations, so having
learned SQL for one system, your skills will likely transfer to other
database management systems.
While some basic SQL statements will be used within this chapter, a
detailed overview of SQL is beyond the scope of this book. However, many
other resources provide a far better overview of SQL than we could ever
hope to provide in a single chapter here.

69.8 Trying SQLite on an Android Virtual Device
(AVD)
For readers unfamiliar with databases and SQLite, diving right into creating
an Android application that uses SQLite may seem intimidating.
Fortunately, Android is shipped with SQLite pre-installed, including an
interactive environment for issuing SQL commands from within an adb
shell session connected to a running Android AVD emulator instance. This
is a useful way to learn about SQLite and SQL and an invaluable tool for
identifying problems with databases created by applications running in an
emulator.
To launch an interactive SQLite session, begin by running an AVD session.
This can be achieved within Android Studio by launching the Android
Virtual Device Manager (Tools -> Device Manager), selecting a previously
configured AVD, and clicking on the start button.
Once the AVD is up and running, open a Terminal or Command-Prompt
window and connect to the emulator using the adb command-line tool as
follows:
adb shell

Once connected, the shell environment will provide a command prompt at
which commands may be entered. Begin by obtaining superuser privileges
using the su command:
Generic_x86:/ su

root@android:/ #

If a message indicates that superuser privileges are not allowed, the AVD
instance likely includes Google Play support. To resolve this, create a new
AVD and, on the “Choose a device definition” screen, select a device that
does not have a marker in the “Play Store” column.
The data in SQLite databases are stored in database files on the file system
of the Android device on which the application is running. By default, the
file system path for these database files is as follows:
/data/data/<package name>/databases/<database filename>.db

For example, if an application with the package name
com.example.MyDBApp creates a database named mydatabase.db, the path
to the file on the device would read as follows:
/data/data/com.example.MyDBApp/databases/mydatabase.db

For this exercise, therefore, change directory to /data/data within the adb
shell and create a sub-directory hierarchy suitable for some SQLite
experimentation:
cd /data/data
mkdir com.example.dbexample
cd com.example.dbexample
mkdir databases
cd databases

With a suitable location created for the database file, launch the interactive
SQLite tool as follows:
root@android:/data/data/databases # sqlite3 ./mydatabase.db
sqlite3 ./mydatabase.db
SQLite version 3.8.10.2 2015-05-20 18:17:19
Enter ".help" for usage hints.
sqlite>

At the sqlite> prompt, commands may be entered to perform tasks such as
creating tables and inserting and retrieving data. For example, to create a
new table in our database with fields to hold ID, name, address, and phone
number fields, the following statement is required:
create table contacts (_id integer primary key autoincrement, name
text, address text, phone text);

Note that each row in a table should have a primary key that is unique to
that row. In the above example, we have designated the ID field as the
primary key, declared it as being of type integer, and asked SQLite to

increment the number automatically each time a row is added. This is a
common way to ensure that each row has a unique primary key. On most
other platforms, the primary key’s name choice is arbitrary. In the case of
Android, however, the key must be named _id for the database to be fully
accessible using all Android database-related classes. The remaining fields
are each declared as being of type text.
To list the tables in the currently selected database, use the .tables
statement:
sqlite> .tables
contacts

To insert records into the table:
sqlite> insert into contacts (name, address, phone) values ("Bill
Smith", "123 Main Street, California", "123-555-2323");
sqlite> insert into contacts (name, address, phone) values ("Mike
Parks", "10 Upping Street, Idaho", "444-444-1212");

To retrieve all rows from a table:
sqlite> select * from contacts;
1|Bill Smith|123 Main Street, California|123-555-2323
2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To extract a row that meets specific criteria:
sqlite> select * from contacts where name="Mike Parks";
2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To exit from the sqlite3 interactive environment:
sqlite> .exit

When running an Android application in the emulator environment, any
database files will be created on the emulator’s file system using the
previously discussed path convention. This has the advantage that you can
connect with adb, navigate to the location of the database file, load it into
the sqlite3 interactive tool, and perform tasks on the data to identify
possible problems occurring in the application code.
It is also important to note that while connecting with an adb shell to a
physical Android device is possible, the shell is not granted sufficient
privileges by default to create and manage SQLite databases. Therefore,
database problem debugging is best performed using an AVD session.

69.9 Android SQLite Classes

As previously mentioned, SQLite is written in the C programming
language, while Android applications are primarily developed using Java or
Kotlin. To bridge this “language gap”, the Android SDK includes a set of
classes that provide a programming layer on top of the SQLite database
management system. The remainder of this chapter will provide a basic
overview of each of the major classes within this category.
69.9.1 Cursor
A class provided specifically to access the results of a database query. For
example, a SQL SELECT operation performed on a database will
potentially return multiple matching rows from the database. A Cursor
instance can be used to step through these results, which may then be
accessed from within the application code using a variety of methods. Some
key methods of this class are as follows:
•close() – Releases all resources used by the cursor and closes it.
•getCount() – Returns the number of rows contained within the result set.
•moveToFirst() – Moves to the first row within the result set.
•moveToLast() – Moves to the last row in the result set.
•moveToNext() – Moves to the next row in the result set.
•move() – Moves by a specified offset from the current position in the
result set.

•get<type>() – Returns the value of the specified <type> contained at the
specified column index of the row at the current cursor position (variations
consist of getString(), getInt(), getShort(), getFloat(), and getDouble()).

69.9.2 SQLiteDatabase
This class provides the primary interface between the application code and
underlying SQLite databases including the ability to create, delete, and
perform SQL-based operations on databases. Some key methods of this
class are as follows:
•insert() – Inserts a new row into a database table.
•delete() – Deletes rows from a database table.
•query() – Performs a specified database query and returns matching
results via a Cursor object.

•execSQL() – Executes a single SQL statement that does not return result

data.
•rawQuery() – Executes a SQL query statement and returns matching
results in the form of a Cursor object.

69.9.3 SQLiteOpenHelper
A helper class designed to make it easier to create and update databases.
This class must be subclassed within the code of the application seeking
database access and the following callback methods implemented within
that subclass:
•onCreate() – Called when the database is created for the first time. This
method is passed the SQLiteDatabase object as an argument for the newly
created database. This is the ideal location to initialize the database in
terms of creating a table and inserting any initial data rows.

•onUpgrade() – Called in the event that the application code contains a
more recent database version number reference. This is typically used
when an application is updated on the device and requires that the database
schema also be updated to handle storage of additional data.

In addition to the above mandatory callback methods, the onOpen()
method, called when the database is opened, may also be implemented
within the subclass.
The constructor for the subclass must also be implemented to call the super
class, passing through the application context, the name of the database and
the database version.
Notable methods of the SQLiteOpenHelper class include:
•getWritableDatabase() – Opens or creates a database for reading and
writing. Returns a reference to the database in the form of a
SQLiteDatabase object.

•getReadableDatabase() – Creates or opens a database for reading only.
Returns a reference to the database in the form of a SQLiteDatabase
object.

•close() – Closes the database.
69.9.4 ContentValues
ContentValues is a convenience class that allows key/value pairs to be
declared consisting of table column identifiers and the values to be stored in

each column. This class is of particular use when inserting or updating
entries in a database table.

69.10 The Android Room Persistence Library
A limitation of the Android SDK SQLite classes is that they require
moderate coding effort and don’t take advantage of the new architecture
guidelines and features such as LiveData and lifecycle management. The
Android Jetpack Architecture Components include the Room persistent
library to address these shortcomings. This library provides a high-level
interface on top of the SQLite database system, making it easy to store data
locally on Android devices with minimal coding while also conforming to
the recommendations for modern application architecture.
The following chapters will provide an overview and tutorial on SQLite
database management using SQLite and the Room persistence library.

69.11 Summary
SQLite is a lightweight, embedded relational database management system
included in the Android framework and provides a mechanism for
implementing organized persistent data storage for Android applications.
When combined with the Room persistence library, Android provides a
modern way to implement data storage from within an Android app.
This chapter provided an overview of databases in general and SQLite in
particular within the context of Android application development.

70. An Android SQLite Database Tutorial

The chapter entitled “An Overview of Android SQLite Databases” covered
the basic principles of integrating relational database storage into Android
applications using the SQLite database management system. In this chapter,
we will create a project using SQLite databases to store and retrieve data.

70.1 About the Database Example

The example project is a simple data entry and retrieval application that
allows users to add, query, and delete database entries. The idea behind this
application is a simple contact database containing customer names and
phone numbers.

The name of the database file will be customerDB.db, which, in turn, will
contain a single table named customers. Each record in the database table
will contain a unique customer ID, a customer name, and the customer’s
phone number, corresponding to column names “customername” and
“customerphone”, respectively. The customer ID column will act as the
primary key and automatically be assigned and incremented by the
database management system.

70.2 Creating the SQLDemo Project

Start Android Studio, select the New Project option from the welcome
screen, and, within the resulting new project dialog, choose the Empty
Views Activity template before clicking the Next button.

Enter SQLDemo into the Name field and specify com.ebookfrenzy.sqldemo
as the package name. Before clicking on the Finish button, change the
Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Kotlin. Use the steps in section 18.8 Migrating a Project
to View Binding, to enable view binding for the project.

70.3 Designing the User interface

Open the activity_main.xml file and delete the default TextView
component. Add two Plain Text fields, three Buttons, and a TextView to the
layout and position them as shown in Figure 70-1:

Figure 70-1

Change the hint property of the Plain Text views to “name” and “phone”
respectively, and remove the default “Name” text property. Modify the
buttons so that they read “Add”, “Find,” and “Delete”, and the TextView
text to “Database Ready,” extract all the string values to resources, and
apply layout constraints either manually or using the Infer constraints
button.

Change the IDs of the Plain Text views and TextView to customerName,
customerPhone, and statusText, respectively. Finally, configure the buttons
to call methods named addCustomer, findCustomer, and deleteCustomer.

70.4 Creating the Data Model

Once completed, the application will consist of an activity and a database
handler class. The database handler will be a subclass of
SQLiteOpenHelper and will provide an abstract layer between the
underlying SQLite database and the activity class, with the activity calling
on the database handler to interact with the database (adding, removing,
and querying database entries). To implement this interaction in a
structured way, a third class will need to be implemented to hold the
database entry data as it is passed between the activity and the handler. This
is actually a very simple class capable of holding customer ID, name, and
phone values, together with getter and setter methods for accessing these
values. Instances of this class can then be created within the activity and
database handler and passed back and forth as needed. Essentially, this
class represents the database model.

Navigate within the Project tool window to app -> kotlin+java and right-
click on the package name. From the popup menu, choose the New ->
Kotlin File/Class option and, in the Create New Class dialog, name the

class Customer and change the Kind menu to Class before tapping Enter on
your keyboard.

Once created, the Customer.kt source file will automatically load into the
Android Studio editor. Once loaded, modify the code to add the appropriate
constructors:

package com.ebookfrenzy.sqldemo

class Customer {

 var id: Int = 0

 var customerName: String? = null

 var customerPhone: String? = null

 constructor(id: Int, name: String, phone: String) {

 this.id = id

 this.customerName = name

 this.customerPhone = phone

 }

 constructor(name: String, phone: String) {

 this.customerName = name

 this.customerPhone = phone

 }

}

The completed class contains data members for the internal storage of data
columns from database entries.

70.5 Implementing the Data Handler

The data handler will be implemented by subclassing from the Android
SQLiteOpenHelper class and, as outlined in “An Overview of Android
SQLite Databases”, adding the constructor, onCreate() and onUpgrade()
methods. Since the handler will be required to add, query, and delete data
on behalf of the activity component, corresponding methods will also need
to be added to the class.

Begin by adding a second new class to the project to act as the handler,
named MyDBHandler. Once the new class has been created, modify it so
that it reads as follows:

package com.ebookfrenzy.sqldemo

import android.database.sqlite.SQLiteDatabase

import android.database.sqlite.SQLiteOpenHelper

import android.content.Context

import android.content.ContentValues

class MyDBHandler(context: Context, name: String?,

 factory: SQLiteDatabase.CursorFactory?, version: Int) :

 SQLiteOpenHelper(context, DATABASE_NAME, factory,
DATABASE_VERSION) {

 override fun onCreate(db: SQLiteDatabase) {

 }

 override fun onUpgrade(db: SQLiteDatabase, oldVersion: Int,

 newVersion: Int) {

 }

}

Having now pre-populated the source file with template onCreate() and
onUpgrade() methods, the next task is to modify the code to declare
constants for the database name, table name, table columns, and database
version as follows:

.

.

class MyDBHandler(context: Context?, name: String?,

 factory: SQLiteDatabase.CursorFactory?, version: Int) :

 SQLiteOpenHelper(context, DATABASE_NAME, factory,
DATABASE_VERSION) {

 override fun onCreate(db: SQLiteDatabase) {

 }

 override fun onUpgrade(db: SQLiteDatabase, oldVersion: Int,

 newVersion: Int) {

 }

 companion object {

 private val DATABASE_VERSION = 1

 private val DATABASE_NAME = "customerDB.db"

 val TABLE_CUSTOMERS = "customers"

 val COLUMN_ID = "_id"

 val COLUMN_CUSTOMERNAME = "customername"

 val COLUMN_CUSTOMERPHONE = "customerphone"

 }

}

Next, the onCreate() method needs to be implemented so that the customers
table is created when the database is first initialized. This involves
constructing a SQL CREATE statement containing instructions to create a
new table with the appropriate columns and then passing that through to the
execSQL() method of the SQLiteDatabase object passed as an argument to
onCreate():

override fun onCreate(db: SQLiteDatabase) {

 val CREATE_CUSTOMERS_TABLE = ("CREATE TABLE " +

 TABLE_CUSTOMERS + "("

 + COLUMN_ID + " INTEGER PRIMARY KEY," +

 COLUMN_CUSTOMERNAME

 + " TEXT," + COLUMN_CUSTOMERPHONE + " TEXT" + ")")

 db.execSQL(CREATE_CUSTOMERS_TABLE)

}

The onUpgrade() method is called when the handler is invoked with a
greater database version number than the one previously used. The exact
steps to be performed in this instance will be application-specific, so for
this example, we will remove the old database and create a new one:

override fun onUpgrade(db: SQLiteDatabase, oldVersion: Int,

 newVersion: Int) {

 db.execSQL("DROP TABLE IF EXISTS " + TABLE_CUSTOMERS)

 onCreate(db)

}

All that remains to be implemented in the MyDBHandler.kt handler class
are the methods to add, query, and remove database table entries.

70.6 The Add Handler Method

The method to insert database records will be named addCustomer() and
will take an instance of our Customer data model class as an argument. A
ContentValues object will be created in the method’s body and primed with

key-value pairs for the data columns extracted from the Customer object.
Next, a reference to the database will be obtained via a call to
getWritableDatabase() followed by a call to the insert() method of the
returned database object. Finally, once the insertion has been performed,
the database needs to be closed:

fun addCustomer(customer: Customer) {

 val values = ContentValues()

 values.put(COLUMN_CUSTOMERNAME, customer.customerName)

 values.put(COLUMN_CUSTOMERPHONE, customer.customerPhone)

 val db = this.writableDatabase

 db.insert(TABLE_CUSTOMERS, null, values)

 db.close()

}

70.7 The Query Handler Method

The method to query the database will be named findCustomer() and will
take a String object containing the customer’s name to be located as an
argument. Using this string, a SQL SELECT statement will be constructed
to find all matching records in the table. For this example, only the first
match will then be returned, contained within a new instance of our
Customer data model class:

fun findCustomer(customername: String): Customer? {

 val query =

 "SELECT * FROM $TABLE_CUSTOMERS WHERE
$COLUMN_CUSTOMERNAME = \"$customername\""

 val db = this.writableDatabase

 val cursor = db.rawQuery(query, null)

 var customer: Customer? = null

 if (cursor.moveToFirst()) {

 cursor.moveToFirst()

 val id = Integer.parseInt(cursor.getString(0))

 val name = cursor.getString(1)

 val phone = cursor.getString(2)

 customer = Customer(id, name, phone)

 cursor.close()

 }

 db.close()

 return customer

}

70.8 The Delete Handler Method

The deletion method will be named deleteCustomer() and will accept the
entry to be deleted in the form of a Customer object as an argument. The
method will use a SQL SELECT statement to search for the entry based on
the customer name and, if located, delete it from the table. The success or
otherwise of the deletion will be reflected in a Boolean return value:

fun deleteCustomer(customername: String): Boolean {

 var result = false

 val query =

 "SELECT * FROM $TABLE_CUSTOMERS WHERE
$COLUMN_CUSTOMERNAME = \"$customername\""

 val db = this.writableDatabase

 val cursor = db.rawQuery(query, null)

 if (cursor.moveToFirst()) {

 val id = Integer.parseInt(cursor.getString(0))

 db.delete(

 TABLE_CUSTOMERS, COLUMN_ID + " = ?",

 arrayOf(id.toString()))

 cursor.close()

 result = true

 }

 db.close()

 return result

}

70.9 Implementing the Activity Event Methods

The final task before testing the application is to write the onClick event
handlers for the three buttons in the user interface. Load the
MainActivity.kt source file into the editor and add the onClick target
methods as follows:

package com.ebookfrenzy.sqldemo

.

.

import android.view.View

.

.

class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 private lateinit var dbHandler: MyDBHandler

.

.

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

.

.

 dbHandler = MyDBHandler(this, null, null, 1)

 }

 fun addCustomer(view: View) {

 val name = binding.customerName.text.toString()

 val phone = binding.customerPhone.text.toString()

 val customer = Customer(name, phone)

 dbHandler.addCustomer(customer)

 binding.customerName.setText("")

 binding.customerPhone.setText("")

 }

 fun findCustomer(view: View) {

 val customer =

 dbHandler.findCustomer(binding.customerName.text.toString())

 if (customer != null) {

 binding.customerPhone.setText(

 customer.customerPhone)

 binding.statusText.text = "Match Found"

 } else {

 binding.statusText.text = "No Match Found"

 }

 }

 fun deleteCustomer(view: View) {

 val result = dbHandler.deleteCustomer(

 binding.customerName.text.toString())

 if (result) {

 binding.statusText.text = "Record Deleted"

 binding.customerName.setText("")

 binding.customerPhone.setText("")

 } else

 binding.statusText.text = "No Match Found"

 }

}

70.10 Testing the Application

With the coding changes completed, compile and run the application either
in an AVD session or on a physical Android device. Once the application
runs, enter a customer name and phone number into the user interface form
and touch the Add button. Once the record has been added, the text boxes
will clear. Repeat these steps to add a second customer to the database.

Next, enter the name of one of the newly added customers into the
customer name field and touch the Find button. The form should update
with the customer ID and phone number for the selected customer. Touch
the Delete button to delete the selected record. A subsequent search by
customer name should indicate that the record no longer exists.

70.11 Summary

This chapter worked step by step through a practical application of SQLite-
based database storage in Android applications. To develop your new
database skill set further, consider extending the example to include the
ability to update existing records in the database table.

71. Understanding Android Content Providers

The previous chapter worked on creating an example application designed
to store data using a SQLite database. When implemented this way, the data
is private to the application and, as such, inaccessible to other applications
running on the same device. While this may be the desired behavior for
many application types, situations will inevitably arise whereby the data
stored on behalf of an application could benefit other applications. A prime
example is the data stored by the built-in Contacts application on an
Android device. While the Contacts application is primarily responsible for
managing the user’s address book details, this data is also made accessible
to any other applications needing access. This data sharing between
Android applications is achieved through implementing content providers.

71.1 What is a Content Provider?

A content provider provides access to structured data between different
Android applications. This data is exposed to applications either as tables
of data (in much the same way as a SQLite database) or as a handle to a
file. This essentially involves the implementation of a client/server
arrangement whereby the application seeking access to the data is the client
and the content provider is the server, performing actions and returning
results on behalf of the client.

A successful content provider implementation involves several elements,
each of which will be covered in detail in the remainder of this chapter.

71.2 The Content Provider

A content provider is created as a subclass of the
android.content.ContentProvider class. Typically, the application
responsible for managing the data to be shared will implement a content
provider to facilitate sharing of that data with other applications.

Creating a content provider involves implementing methods to manage the
data on behalf of other client applications. These methods are as follows:

71.2.1 onCreate()

This method is called when the content provider is first created and should
be used to perform any initialization tasks required by the content provider.

71.2.2 query()

This method will be called when a client requests that data be retrieved
from the content provider. This method identifies the data to be retrieved
(single or multiple rows), performs the data extraction, and returns the
results wrapped in a Cursor object.

71.2.3 insert()

This method is called when a new row needs to be inserted into the
provider database. This method must identify the destination for the data,
perform the insertion and return the full URI of the newly added row.

71.2.4 update()

The method called when existing rows need to be updated on behalf of the
client. The method uses the arguments passed through to update the
appropriate table rows and return the number of rows updated as a result of
the operation.

71.2.5 delete()

Called when rows are to be deleted from a table. This method deletes the
designated rows and returns a count of the number of rows deleted.

71.2.6 getType()

Returns the MIME type of the data stored by the content provider.

It is important when implementing these methods in a content provider to
keep in mind that, with the exception of the onCreate() method, they can be
called from many processes simultaneously and must, therefore, be thread
safe.

Once a content provider has been implemented, the issue that then arises is
how the provider is identified within the Android system. This is where the
content URI comes into play.

71.3 The Content URI

An Android device will potentially contain several content providers. The
system must, therefore, provide some way of identifying one provider from
another. Similarly, a single content provider may provide access to multiple
forms of content (typically in the form of database tables). Client
applications, therefore, need a way to specify the underlying data for which
access is required. This is achieved using content URIs.

The content URI is used to identify specific data within a specific content
provider. The Authority section of the URI identifies the content provider
and usually takes the form of the package name of the content provider. For
example:

com.example.mydbapp.myprovider

A specific database table within the provider data structure may be
referenced by appending the table name to the authority. For example, the
following URI references a table named products within the content
provider:

com.example.mydbapp.myprovider/products

Similarly, a specific row within the specified table may be referenced by
appending the row ID to the URI. The following URI, for example,
references the row in the products table in which the value stored in the ID
column equals 3:

com.example.mydbapp.myprovider/products/3

When implementing the insert, query, update and delete methods in the
content provider, it will be the responsibility of these methods to identify
whether the incoming URI is targeting a specific row in a table, or
references multiple rows, and act accordingly. This can potentially be a

complex task given that a URI can extend to multiple levels. This process
can, however, be eased significantly using the UriMatcher class, as will be
outlined in the next chapter.

71.4 The Content Resolver

Access to a content provider is achieved via a ContentResolver object. An
application can obtain a reference to its content resolver by calling the
getContentResolver() method of the application context.

The content resolver object contains a set of methods that mirror those of
the content provider (insert, query, delete etc.). The application simply
makes calls to the methods, specifying the URI of the content on which the

operation is to be performed. The content resolver and content provider
objects then communicate to perform the requested task on behalf of the
application.

71.5 The <provider> Manifest Element

For a content provider to be visible within an Android system, it must be
declared within the Android manifest file for the application in which it
resides. This is achieved using the <provider> element, which must contain
the following items:

•android:authority – The full authority URI of the content provider. For
example com.example.mydbapp.mydbapp.myprovider.

•android:name – The name of the class that implements the content
provider. In most cases, this will use the same value as the authority.

Similarly, the <provider> element may be used to define the permissions
that must be held by client applications in order to qualify for access to the
underlying data. If no permissions are declared, the default behavior is for
permission to be allowed for all applications.

Permissions can be set to cover the entire content provider, or limited to
specific tables and records.

71.6 Summary

The data belonging to an application is typically private to the application
and inaccessible to other applications. Setting up a content provider is
necessary when the data needs to be shared. This chapter has covered the
basic elements that combine to enable data sharing between applications
and outlined the concepts of the content provider, content URI, and content
resolver.

In the next chapter, the SQLDemo project created previously will be
extended to make the underlying customer data available via a content
provider.

72. An Android Content Provider Tutorial

As outlined in the previous chapter, content providers provide a mechanism
through which the data stored by one Android application can be made
accessible to other applications. Having provided a theoretical overview of
content providers, this chapter will continue the coverage of content
providers by extending the SQLDemo project created in the chapter entitled
“An Android SQLite Database Tutorial” to implement content provider-
based access to the database.

72.1 Copying the SQLDemo Project

To keep the original SQLDemo project intact, we will make a backup copy
of the project before modifying it to implement content provider support
for the application. If the SQLDemo project is currently open within
Android Studio, close it using the File -> Close Project menu option.

Using the file system explorer for your operating system type, navigate to
the directory containing your Android Studio projects and copy the
SQLDemo project folder to a new folder named SQLDemo_provider.

Within the Android Studio welcome screen, open the SQLDemo_provider
project so that it loads into the main window.

72.2 Adding the Content Provider Package

The next step is to add a new package to the SQLDemo project to contain
the content provider class. Add this new package by navigating within the
Project tool window to app -> kotlin+java, right-clicking on it, and
selecting the New -> Package menu option. When the Choose Destination
Directory dialog appears, select the ..\app\src\main\java option from the
Directory Structure panel and click OK.

In the New Package dialog, enter the following package name into the
name field before pressing the enter key:

com.ebookfrenzy.sqldemo.provider

The new package should now be listed within the Project tool window, as
illustrated in Figure 38-1:

Figure 72-1

72.3 Creating the Content Provider Class

As discussed in “Understanding Android Content Providers”, content
providers are created by subclassing the android.content.ContentProvider
class. Consequently, the next step is to add a class to the new provider
package to serve as the content provider for this application. Locate the
new package in the Project tool window, right-click on it and select the
New -> Other -> Content Provider menu option. In the Configure
Component dialog, enter MyContentProvider into the Class Name field and
the following into the URI Authorities field:

com.ebookfrenzy.sqldemo.provider.MyContentProvider

Ensure that the new content provider class is exported and enabled before
clicking on Finish to create the new class.

Once the new class has been created, the MyContentProvider.kt file should
be listed beneath the provider package in the Project tool window and
automatically loaded into the editor, where it will appear as outlined in the
following listing:

package com.ebookfrenzy.sqldemo.provider

import android.content.ContentProvider

import android.content.ContentValues

import android.database.Cursor

import android.net.Uri

class MyContentProvider : ContentProvider() {

 override fun delete(uri: Uri, selection: String?,

 selectionArgs: Array<String>?): Int {

 TODO("Implement this to handle requests to delete one or more
rows")

 }

 override fun getType(uri: Uri): String? {

 TODO(

 "Implement this to handle requests for the MIME type of the data"
+

 "at the given URI"

)

 }

 override fun insert(uri: Uri, values: ContentValues?): Uri? {

 TODO("Implement this to handle requests to insert a new row.")

 }

 override fun onCreate(): Boolean {

 TODO("Implement this to initialize your content provider on
startup.")

 }

 override fun query(

 uri: Uri, projection: Array<String>?, selection: String?,

 selectionArgs: Array<String>?, sortOrder: String?

): Cursor? {

 TODO("Implement this to handle query requests from clients.")

 }

 override fun update(

 uri: Uri, values: ContentValues?, selection: String?,

 selectionArgs: Array<String>?

): Int {

 TODO("Implement this to handle requests to update one or more
rows.")

 }

}

As is evident from a quick review of the code in this file, Android Studio
has already populated the class with stubs for each of the methods that a
subclass of ContentProvider is required to implement. It will soon be
necessary to begin implementing these methods, but first some constants
relating to the provider’s content authority and URI need to be declared.

72.4 Constructing the Authority and Content URI

As outlined in the previous chapter, all content providers must have
associated with them an authority and a content uri. In practice, the
authority is typically the full package name of the content provider class
itself, in this case com.ebookfrenzy.sqldemo.provider.MyContentProvider
as declared when the new Content Provider class was created in the
previous section.

The content URI will vary depending on application requirements, but for
this example it will comprise the authority with the name of the database
table appended at the end. Within the MyContentProvider.kt file, make the
following modifications:

package com.ebookfrenzy.sqldemo.provider

.

.

class MyContentProvider : ContentProvider() {

.

.

 companion object {

 val AUTHORITY =
"com.ebookfrenzy.sqldemo.provider.MyContentProvider"

 private val CUSTOMERS_TABLE = "customers"

 val CONTENT_URI : Uri = Uri.parse("content://" + AUTHORITY +
"/" +

 CUSTOMERS_TABLE)

 }

}

The above statements begin by creating a new String object named
AUTHORITY and assigning the authority string to it. Similarly, a second
String object named CUSTOMERS_TABLE is created and initialized with
the name of our database table (customers).

Finally, these two string elements are combined, prefixed with content://
and converted to a Uri object using the parse() method of the Uri class. The
result is assigned to a variable named CONTENT_URI.

72.5 Implementing URI Matching in the Content Provider

When the methods of the content provider are called, they will be passed as
an argument a URI indicating the data on which the operation is to be
performed. This URI may take the form of a reference to a specific row in a
specific table. It is also possible that the URI will be more general, for
example specifying only the database table. It is the responsibility of each
method to identify the Uri type and to act accordingly. This task can be
eased considerably by making use of a UriMatcher instance. Once a
UriMatcher instance has been created, it can be configured to return a
specific integer value corresponding to the type of URI it detects when
asked to do so. For this tutorial, we will be configuring our UriMatcher
instance to return a value of 1 when the URI references the entire
customers table, and a value of 2 when the URI references the ID of a
specific row in the customers table. Before working on creating the
URIMatcher instance, we will first create two integer variables to represent
the two URI types:

package com.ebookfrenzy.sqldemo.provider

import android.content.ContentProvider

import android.content.ContentValues

import android.database.Cursor

import android.net.Uri

import android.content.UriMatcher

import android.database.sqlite.SQLiteDatabase

import android.database.sqlite.SQLiteQueryBuilder

import android.text.TextUtils

import com.ebookfrenzy.sqldemo.MyDBHandler

class MyContentProvider : ContentProvider() {

 private val CUSTOMERS = 1

 private val CUSTOMER_ID = 2

.

.

With the Uri type variables declared, it is now time to add code to create a
UriMatcher instance and configure it to return the appropriate variables:

class MyContentProvider : ContentProvider() {

 private var myDB: MyDBHandler? = null

 private val CUSTOMERS = 1

 private val CUSTOMER_ID = 2

 private val sURIMatcher = UriMatcher(UriMatcher.NO_MATCH)

 init {

 sURIMatcher.addURI(AUTHORITY, CUSTOMERS_TABLE,
CUSTOMERS)

 sURIMatcher.addURI(AUTHORITY, CUSTOMERS_TABLE + "/#",

 CUSTOMER_ID)

 }

.

.

The UriMatcher instance (named sURIMatcher) is now primed to return the
value of CUSTOMER when just the customers table is referenced in a URI,
and CUSTOMER_ID when the URI includes the ID of a specific row in the
table.

72.6 Implementing the Content Provider onCreate() Method

When the content provider class is created and initialized, a call will be
made to the onCreate() method of the class. Within this method, any
initialization tasks for the class must be performed. For this example, all

that needs to be performed is for an instance of the MyDBHandler class
implemented in “An Android SQLite Database Tutorial” to be created.
Once this instance has been created, it will need to be accessible from the
other methods in the class, so a declaration for the database handler also
needs to be declared, resulting in the following code changes to the
MyContentProvider.kt file:

class MyContentProvider : ContentProvider() {

.

.

 override fun onCreate(): Boolean {

 myDB = context?.let { MyDBHandler(it, null, null, 1) }

 return false

 }

.

.

72.7 Implementing the Content Provider insert() Method

When a client application or activity requests that data be inserted into the
underlying database, the insert() method of the content provider class will
be called. At this point, however, all that exists in the
MyContentProvider.kt file of the project is a stub method, which reads as
follows:

override fun insert(uri: Uri, values: ContentValues?): Uri? {

 TODO("Implement this to handle requests to insert a new row.")

}

Passed as arguments to the method are a URI specifying the destination of
the insertion and a ContentValues object containing the data to be inserted.

This method now needs to be modified to perform the following tasks:

•Use the sUriMatcher object to identify the URI type.

•Throw an exception if the URI is not valid.

•Obtain a reference to a writable instance of the underlying SQLite
database.

•Perform a SQL insert operation to insert the data into the database table.

•Notify the corresponding content resolver that the database has been
modified.

•Return the URI of the newly added table row.

Bringing these requirements together results in a modified insert() method,
which reads as follows:

override fun insert(uri: Uri, values: ContentValues?): Uri? {

 val uriType = sURIMatcher.match(uri)

 val sqlDB = myDB!!.writableDatabase

 val id: Long

 when (uriType) {

 CUSTOMERS -> id =
sqlDB.insert(MyDBHandler.TABLE_CUSTOMERS, null, values)

 else -> throw IllegalArgumentException("Unknown URI: " + uri)

 }

 context?.contentResolver?.notifyChange(uri, null)

 return Uri.parse(CUSTOMERS_TABLE + "/" + id)

}

72.8 Implementing the Content Provider query() Method

When a content provider is called upon to return data, the query() method
of the provider class will be called. When called, this method is passed
some or all of the following arguments:

•URI – The URI specifying the data source on which the query is to be
performed. This can take the form of a general query with multiple results,
or a specific query targeting the ID of a single table row.

•Projection – A row within a database table can comprise multiple columns
of data. In the case of this application, for example, these correspond to the
ID, customer name and phone number. The projection argument is simply a
String array containing the name for each column that is to be returned in
the result data set.

•Selection – The “where” element of the selection to be performed as part
of the query. This argument controls which rows are selected from the
specified database. For example, if the query was required to select only
customers named “John Andrews” then the selection string passed to the
query() method would read customername = “John Andrews”.

•Selection Args – Any additional arguments that need to be passed to the
SQL query operation to perform the selection.

•Sort Order – The sort order for the selected rows.

When called, the query() method is required to perform the following
operations:

•Use the sUriMatcher to identify the Uri type.

•Throw an exception if the URI is not valid.

•Construct a SQL query based on the criteria passed to the method. For
convenience, the SQLiteQueryBuilder class can be used to construct the
query.

•Execute the query operation on the database.

•Notify the content resolver of the operation.

•Return a Cursor object containing the results of the query.

With these requirements in mind, the code for the query() method in the
MyContentProvider.kt file should now read as outlined in the following
listing:

override fun query(

 uri: Uri, projection: Array<String>?, selection: String?,

 selectionArgs: Array<String>?, sortOrder: String?

): Cursor? {

 val queryBuilder = SQLiteQueryBuilder()

 queryBuilder.tables = MyDBHandler.TABLE_CUSTOMERS

 val uriType = sURIMatcher.match(uri)

 when (uriType) {

 CUSTOMER_ID ->
queryBuilder.appendWhere(MyDBHandler.COLUMN_ID + "="

 + uri.lastPathSegment)

 CUSTOMERS -> {

 }

 else -> throw IllegalArgumentException("Unknown URI")

 }

 val cursor = queryBuilder.query(myDB?.readableDatabase,

 projection, selection, selectionArgs, null, null,

 sortOrder)

 cursor.setNotificationUri(context?.contentResolver, uri)

 return cursor

}

72.9 Implementing the Content Provider update() Method

The update() method of the content provider is called when changes are
being requested to existing database table rows. The method is passed a
URI with the new values in the form of a ContentValues object and the
usual selection argument strings.

When called, the update() method would typically perform the following
steps:

•Use the sUriMatcher to identify the URI type.

•Throw an exception if the URI is not valid.

•Obtain a reference to a writable instance of the underlying SQLite
database.

•Perform the appropriate update operation on the database, depending on
the selection criteria and the URI type.

•Notify the content resolver of the database change.

•Return a count of the number of rows that were changed due to the update
operation.

A general-purpose update() method, and the one we will use for this
project, would read as follows:

override fun update(

 uri: Uri, values: ContentValues?, selection: String?,

 selectionArgs: Array<String>?

): Int {

 val uriType = sURIMatcher.match(uri)

 val sqlDB: SQLiteDatabase = myDB!!.writableDatabase

 val rowsUpdated: Int

 when (uriType) {

 CUSTOMERS -> rowsUpdated =
sqlDB.update(MyDBHandler.TABLE_CUSTOMERS,

 values,

 selection,

 selectionArgs)

 CUSTOMER_ID -> {

 val id = uri.lastPathSegment

 rowsUpdated = if (TextUtils.isEmpty(selection)) {

 sqlDB.update(MyDBHandler.TABLE_CUSTOMERS,

 values,

 MyDBHandler.COLUMN_ID + "=" + id, null)

 } else {

 sqlDB.update(MyDBHandler.TABLE_CUSTOMERS,

 values,

 MyDBHandler.COLUMN_ID + "=" + id

 + " and "

 + selection,

 selectionArgs)

 }

 }

 else -> throw IllegalArgumentException("Unknown URI: " + uri)

 }

 context?.contentResolver?.notifyChange(uri, null)

 return rowsUpdated

}

72.10 Implementing the Content Provider delete() Method

In common with a number of other content provider methods, the delete()
method is passed a URI, a selection string and an optional set of selection
arguments. A typical delete() method will also perform the following, and
by now largely familiar, tasks when called:

•Use the sUriMatcher to identify the URI type.

•Throw an exception if the URI is not valid.

•Obtain a reference to a writable instance of the underlying SQLite
database.

•Perform the appropriate delete operation on the database depending on the
selection criteria and the Uri type.

•Notify the content resolver of the database change.

•Return a count of the number of rows that were changed due to the update
operation.

A typical delete() method is in many ways similar to the update() method
and may be implemented as follows:

override fun delete(uri: Uri, selection: String?, selectionArgs:
Array<String>?): Int {

 val uriType = sURIMatcher.match(uri)

 val sqlDB = myDB!!.writableDatabase

 val rowsDeleted: Int

 when (uriType) {

 CUSTOMERS -> rowsDeleted =
sqlDB.delete(MyDBHandler.TABLE_CUSTOMERS,

 selection,

 selectionArgs)

 CUSTOMER_ID -> {

 val id = uri.lastPathSegment

 rowsDeleted = if (TextUtils.isEmpty(selection)) {

 sqlDB.delete(MyDBHandler.TABLE_CUSTOMERS,

 MyDBHandler.COLUMN_ID + "=" + id,

 null)

 } else {

 sqlDB.delete(MyDBHandler.TABLE_CUSTOMERS,

 MyDBHandler.COLUMN_ID + "=" + id

 + " and " + selection,

 selectionArgs)

 }

 }

 else -> throw IllegalArgumentException("Unknown URI: " + uri)

 }

 context?.contentResolver?.notifyChange(uri, null)

 return rowsDeleted

}

With these methods implemented, the content provider class, in terms of
the requirements for this example, is complete. The next step is to ensure
that the content provider is declared in the project manifest file to be visible
to any content resolvers seeking access.

72.11 Declaring the Content Provider in the Manifest File

Unless a content provider is declared in the manifest file of the application
to which it belongs, it will not be possible for a content resolver to locate
and access it. As outlined, content providers are declared using the
<provider> tag and the manifest entry must correctly reference the content
provider authority and content URI.

For this project, therefore, locate the manifests -> AndroidManifest.xml file
within the Project tool window and double-click on it to load it into the
editing panel. Within the editing panel, make sure that the content provider
declaration has already been added by Android Studio when the
MyContentProvider class was added to the project:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools">

 <application

 android:allowBackup="true"

 android:dataExtractionRules="@xml/data_extraction_rules"

 android:fullBackupContent="@xml/backup_rules"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/Theme.SQLDemo"

 tools:targetApi="31">

 <provider

 android:name=".provider.MyContentProvider"

 android:authorities="com.ebookfrenzy.sqldemo.provider.MyConten
tProvider"

 android:enabled="true"

 android:exported="true"></provider>

 <activity

 android:name=".MainActivity"

 android:exported="true">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"
/>

 </intent-filter>

 </activity>

 </application>

</manifest>

All that remains before testing the application is to modify the database
handler class to use the content provider instead of directly accessing the
database.

72.12 Modifying the Database Handler

When this application was originally created, it was designed to use a
database handler to access the underlying database directly. Now that a
content provider has been implemented, the database handler needs to be
modified to perform all database operations using the content provider via a
content resolver.

The first step is to modify the MyDBHandler.kt class so that it obtains a
reference to a ContentResolver instance. This can be achieved in the
constructor method of the class:

.

.

import android.content.ContentResolver

import com.ebookfrenzy.sqldemo.provider.MyContentProvider

.

.

class MyDBHandler(context: Context, name: String?,

 factory: SQLiteDatabase.CursorFactory?, version: Int) :

 SQLiteOpenHelper(context, DATABASE_NAME,

 factory, DATABASE_VERSION) {

 private val myCR: ContentResolver

 init {

 myCR = context.contentResolver

 }

.

.

Next, the addCustomer(), findCustomer(), and removeCustomer() methods
need to be rewritten to use the content resolver and content provider for
data management purposes:

fun addCustomer(customer: Customer) {

 val values = ContentValues()

 values.put(COLUMN_CUSTOMERNAME, customer.customerName)

 values.put(COLUMN_CUSTOMERPHONE, customer.customerPhone)

 myCR.insert(MyContentProvider.CONTENT_URI, values)

}

fun findCustomer(customername: String): Customer? {

 val projection = arrayOf(COLUMN_ID,
COLUMN_CUSTOMERNAME,

 COLUMN_CUSTOMERPHONE)

 val selection = "customername = \"" + customername + "\""

 val cursor = myCR.query(MyContentProvider.CONTENT_URI,

 projection, selection, null, null)

 var customer: Customer? = null

 if (cursor != null) {

 if (cursor.moveToFirst()) {

 cursor.moveToFirst()

 val id = Integer.parseInt(cursor.getString(0))

 val customerName = cursor.getString(1)

 val customerPhone = cursor.getString(2)

 customer = Customer(id, customername, customerPhone)

 cursor.close()

 }

 }

 return customer

}

fun deleteCustomer(customername: String): Boolean {

 var result = false

 val selection = "customername = \"" + customername + "\""

 val rowsDeleted = myCR.delete(MyContentProvider.CONTENT_URI,

 selection, null)

 if (rowsDeleted > 0)

 result = true

 return result

}

With the database handler class updated to use a content resolver and
content provider, the application is now ready to be tested. Compile and run
the application and perform operations to add, find, and remove customer
entries. In terms of operation and functionality, the application should
behave exactly as it did when directly accessing the database, except it now
uses the content provider.

As we will see in the next chapter, with the content provider now
implemented and declared in the manifest file, any other applications can
potentially access that data (since no permissions were declared, the default
full access is in effect). The only information the other applications need to
know to gain access is the content URI and the names of the columns in the
customers table.

72.13 Summary

The goal of this chapter was to provide a more detailed overview of the
exact steps involved in implementing an Android content provider with a
particular emphasis on the structure and implementation of the query,
insert, delete, and update methods of the content provider class. Practical
use of the content resolver class to access data in the content provider was
also covered, and the Database project was modified to use both a content
provider and a content resolver.

73. An Android Content Provider Client Tutorial

In this final chapter devoted to Content Providers, we will build an app that
accesses the data contained in our SQLDemo content provider and displays
the list of customer contacts.

73.1 Creating the SQLDemoClient Project

Start Android Studio, select the New Project option from the welcome
screen, and choose the Empty Views Activity template within the resulting
new project dialog before clicking on the Next button.

Enter SQLDemoClient into the Name field and specify
com.ebookfrenzy.sqldemoclient as the package name. Before clicking on
the Finish button, change the Minimum API level setting to API 26:
Android 8.0 (Oreo) and the Language menu to Kotlin. Use the steps in
section 18.8 Migrating a Project to View Binding to enable view binding
for the project.

73.2 Designing the User interface

Open the activity_main.xml file and remove the default TextView. Add a
button and a TextView to the layout, change the button text to read
“Reload”, and position the views so that the layout resembles Figure 73-1:

Figure 73-1

Use the Infer constraints button to configure the layout constraints, change
the textAppearance property of the TextView to Display1 and set the
onClick attribute on the button to a method named reload().

73.3 Accessing the Content Provider

The code to access the content provider will be contained in the reload()
method. The first step is to obtain a Cursor object by calling the query()
method of the Content Resolver instance. When calling query(), we need to

provide the content URI for the customers table managed by SQLDemo’s
content provider, which will read as follows:

content://com.ebookfrenzy.sqldemo.provider.MyContentProvider/customer
s

Once we have a reference to the Cursor object, we can step through the
database records and display the data using our TextView component. Edit
the MainActivity.kt file and add the reload() method as follows:

.

.

import android.net.Uri

import android.view.View

.

.

class MainActivity : AppCompatActivity() {

.

.

 fun reload(view: View?) {

 val cursor = contentResolver.query(

 Uri.parse(

 "content://com.ebookfrenzy.sqldemo.provider.MyContentProvider/custo
mers"),

 null, null, null, null)

 if (cursor != null) {

 if (cursor.moveToFirst()) {

 val stringBldr = StringBuilder()

 while (!cursor.isAfterLast) {

 val nameindex = cursor.getColumnIndex("customername")

 val phoneindex = cursor.getColumnIndex("customerphone")

 if ((nameindex != -1) && (phoneindex != -1)) {

 val string = cursor.getString(nameindex) + " " +

 cursor.getString(phoneindex)

 stringBldr.append("""

 ${string}

 """.trimIndent())

 binding.textView.text = stringBldr

 }

 cursor.moveToNext()

 }

 }

 cursor.close()

 }

 }

}

73.4 Adding the Query Permission

Before we can test the app, the final task is to request permission to query
the content provider. To request permission, edit the manifests ->
AndroidManifest.xml file and modify it as follows:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools">

 <queries>

 <provider
android:authorities="com.ebookfrenzy.sqldemo.provider.MyContentProvid
er" />

 </queries>

.

.

73.5 Testing the Project

Build and run the app on the device or emulator you used to test the
SQLDemo app and tap the Reload button. The app should query the
records in the customers database and display them on the TextView:

Figure 73-2

73.6 Summary

In this chapter, we created a simple app to demonstrate accessing the data
stored in a content provider from a client app. This involved passing the
provider’s content URI to the query() method of the content resolver
instance and requesting query permission from the content provider in the
project manifest file. The query() call returned a Cursor object we used to
step through the database records.

74. The Android Room Persistence
Library
Included with the Android Architecture Components, the Room persistence
library is designed to make it easier to add database storage support to
Android apps in a way consistent with the Android architecture guidelines.
With the basics of SQLite databases covered in the previous chapters, this
chapter will explore Room-based database management, the key elements
that work together to implement Room support within an Android app, and
how these are implemented in terms of architecture and coding. Having
covered these topics, the next two chapters will put this theory into practice
with an example Room database project.

74.1 Revisiting Modern App Architecture
The chapter entitled “Modern Android App Architecture with Jetpack”
introduced the concept of modern app architecture and stressed the
importance of separating different areas of responsibility within an app. The
diagram illustrated in Figure 74-1 outlines the recommended architecture
for a typical Android app:

Figure 74-1
With the top three levels of this architecture covered in some detail in
earlier chapters of this book, it is time to explore the repository and

database architecture levels in the context of the Room persistence library.

74.2 Key Elements of Room Database Persistence
Before going into greater detail later in the chapter, it is first worth
summarizing the key elements involved in working with SQLite databases
using the Room persistence library:
74.2.1 Repository
As previously discussed, the repository module contains all of the code
necessary for directly handling all data sources used by the app. This avoids
the need for the UI controller and ViewModel to contain code directly
accessing sources such as databases or web services.
74.2.2 Room Database
The room database object provides the interface to the underlying SQLite
database. It also provides the repository with access to the Data Access
Object (DAO). An app should only have one room database instance, which
may be used to access multiple database tables.
74.2.3 Data Access Object (DAO)
The DAO contains the SQL statements required by the repository to insert,
retrieve and delete data within the SQLite database. These SQL statements
are mapped to methods which are then called from within the repository to
execute the corresponding query.
74.2.4 Entities
An entity is a class that defines the schema for a table within the database,
defines the table name, column names, and data types, and identifies which
column is to be the primary key. In addition to declaring the table schema,
entity classes contain getter and setter methods that provide access to these
data fields. The data returned to the repository by the DAO in response to
the SQL query method calls will take the form of instances of these entity
classes. The getter methods will then be called to extract the data from the
entity object. Similarly, when the repository needs to write new records to
the database, it will create an entity instance, configure values on the object
via setter calls, then call insert methods declared in the DAO, passing
through entity instances to be saved.
74.2.5 SQLite Database

The SQLite database is responsible for storing and providing access to the
data. The app code, including the repository, should never directly access
this underlying database. All database operations are performed using a
combination of the room database, DAOs, and entities.
The architecture diagram in Figure 74-2 illustrates how these different
elements interact to provide Room-based database storage within an
Android app:

Figure 74-2
The numbered connections in the above architecture diagram can be
summarized as follows:
1.The repository interacts with the Room Database to get a database

instance which, in turn, is used to obtain references to DAO instances.
2.The repository creates entity instances and configures them with data

before passing them to the DAO for use in search and insertion
operations.

3.The repository calls methods on the DAO passing through entities to be
inserted into the database and receives entity instances back in response
to search queries.

4.When a DAO has results to return to the repository, it packages them into
entity objects.

5.The DAO interacts with the Room Database to initiate database
operations and handle results.

6.The Room Database handles all low-level interactions with the

underlying SQLite database, submitting queries and receiving results.
With a basic outline of the key elements of database access using the Room
persistent library covered, it is time to explore entities, DAOs, room
databases, and repositories in more detail.

74.3 Understanding Entities
Each database table will have associated with it an entity class. This class
defines the schema for the table and takes the form of a standard Kotlin
class interspersed with some special Room annotations. An example Kotlin
class declaring the data to be stored within a database table might read as
follows:
class Customer {

 var id: Int = 0
 var name: String? = null
 var address: String? = null

 constructor() {}

 constructor(id: Int, name: String, address: String) {
 this.id = id
 this.name = name
 this.address = address
 }
 constructor(name: String, address: String) {
 this.name = name
 this.address = address
 }
}

As currently implemented, the above code declares a basic Kotlin class
containing several variables representing database table fields and a
collection of getter and setter methods. This class, however, is not yet an
entity. To make this class into an entity and to make it accessible within
SQL statements, some Room annotations need to be added as follows:
@Entity(tableName = "customers")
class Customer {

 @PrimaryKey(autoGenerate = true)
 @NonNull

 @ColumnInfo(name = "customerId")
 var id: Int = 0

 @ColumnInfo(name = "customerName")
 var name: String? = null
 var address: String? = null

 constructor() {}

 constructor(id: Int, name: String, address: String) {
 this.id = id
 this.name = name
 this.address = address
 }

 constructor(name: String, address: String) {
 this.name = name
 this.address = address
 }
}

The above annotations begin by declaring that the class represents an entity
and assigns a table name of “customers”. This is the name by which the
table will be referenced in the DAO SQL statements:
@Entity(tableName = "customers")

Every database table needs a column to act as the primary key. In this case,
the customer id is declared as the primary key. Annotations have also been
added to assign a column name to be referenced in SQL queries and to
indicate that the field cannot be used to store null values. Finally, the id
value is configured to be auto-generated. This means the system
automatically generates the id assigned to new records to avoid duplicate
keys:
@PrimaryKey(autoGenerate = true)
@NonNull
@ColumnInfo(name = "customerId")
var id: Int = 0

A column name is also assigned to the customer name field. Note, however,
that no column name was assigned to the address field. This means that the
address data will still be stored within the database but is not required to be
referenced in SQL statements. If a field within an entity is not required to

be stored within a database, use the @Ignore annotation:
@Ignore
var MyString: String? = null

Annotations may also be included within an entity class to establish
relationships with other entities using a relational database concept referred
to as foreign keys. Foreign keys allow a table to reference the primary key
in another table. For example, a relationship could be established between
an entity named Purchase and our existing Customer entity as follows:
@Entity(foreignKeys = arrayOf(ForeignKey(entity = Customer::class,
 parentColumns = arrayOf("customerId"),
 childColumns = arrayOf("buyerId"),
 onDelete = ForeignKey.CASCADE,
 onUpdate = ForeignKey.RESTRICT)))

class Purchase {

 @PrimaryKey(autoGenerate = true)
 @NonNull
 @ColumnInfo(name = "purchaseId")
 var purchaseId: Int = 0

 @ColumnInfo(name = "buyerId")
 var buyerId: Int = 0
.
.
}

Note that the foreign key declaration also specifies the action to be taken
when a parent record is deleted or updated. Available options are
CASCADE, NO_ACTION, RESTRICT, SET_DEFAULT, and SET_NULL.

74.4 Data Access Objects
A Data Access Object allows access to the data stored within a SQLite
database. A DAO is declared as a standard Kotlin interface with additional
annotations that map specific SQL statements to methods that the repository
may then call.
The first step is to create the interface and declare it as a DAO using the
@Dao annotation:
@Dao
interface CustomerDao {

}

Next, entries are added consisting of SQL statements and corresponding
method names. The following declaration, for example, allows all of the
rows in the customers table to be retrieved via a call to a method named
getAllCustomers():
@Dao
interface CustomerDao {
 @Query("SELECT * FROM customers")
 fun getAllCustomers(): LiveData<List<Customer>>
}

The getAllCustomers() method returns a List object containing a Customer
entity object for each record retrieved from the database table. The DAO is
also using LiveData so that the repository can observe changes to the
database.
Arguments may also be passed into the methods and referenced within the
corresponding SQL statements. Consider the following DAO declaration,
which searches for database records matching a customer’s name (note that
the column name referenced in the WHERE condition is the name assigned
to the column in the entity class):
@Query("SELECT * FROM customers WHERE name = :customerName")
fun findCustomer(customerName: String): List<Customer>

In this example, the method is passed a string value which is, in turn,
included within an SQL statement by prefixing the variable name with a
colon (:).
A basic insertion operation can be declared as follows using the @Insert
convenience annotation:
@Insert
fun addCustomer(Customer customer)

This is referred to as a convenience annotation because the Room
persistence library can infer that the Customer entity passed to the
addCustomer() method is to be inserted into the database without the need
for the SQL insert statement to be provided. Multiple database records may
also be inserted in a single transaction as follows:
@Insert
fun insertCustomers(Customer... customers)

The following DAO declaration deletes all records matching the provided

customer name:
@Query("DELETE FROM customers WHERE name = :name")
fun deleteCustomer(String name)

As an alternative to using the @Query annotation to perform deletions, the
@Delete convenience annotation may also be used. In the following
example, all of the Customer records that match the set of entities passed to
the deleteCustomers() method will be deleted from the database:
@Delete
fun deleteCustomers(Customer... customers)

The @Update convenience annotation provides similar behavior when
updating records:
@Update
fun updateCustomers(Customer... customers)

The DAO methods for these types of database operations may also be
declared to return an int value indicating the number of rows affected by the
transaction, for example:
@Delete
fun deleteCustomers(Customer... customers): int

74.5 The Room Database
The Room database class is created by extending the RoomDatabase class
and acts as a layer on top of the actual SQLite database embedded into the
Android operating system. The class is responsible for creating and
returning a new room database instance and providing access to the
database’s associated DAO instances.
The Room persistence library provides a database builder for creating
database instances. Each Android app should only have one room database
instance, so it is best to implement defensive code within the class to
prevent more than one instance from being created.
An example Room Database implementation for use with the example
customer table is outlined in the following code listing:
import android.content.Context
import android.arch.persistence.room.Database
import android.arch.persistence.room.Room
import android.arch.persistence.room.RoomDatabase

@Database(entities = [(Customer::class)], version = 1)

abstract class CustomerRoomDatabase: RoomDatabase() {
 abstract fun customerDao(): CustomerDao

 companion object {

 private var INSTANCE: CustomerRoomDatabase? = null

 internal fun getDatabase(context: Context):
CustomerRoomDatabase? {
 if (INSTANCE == null) {
 synchronized(CustomerRoomDatabase::class.java) {
 if (INSTANCE == null) {
 INSTANCE =
 Room.databaseBuilder(
 context.applicationContext,
 CustomerRoomDatabase::class.java,
 "customer_database").build()
 }
 }
 }
 return INSTANCE
 }
 }
}

Important areas to note in the above example are the annotation above the
class declaration declaring the entities with which the database is to work,
the code to check that an instance of the class has not already been created
and the assignment of the name “customer_database” to the instance.

74.6 The Repository
The repository is responsible for getting a Room Database instance, using
that instance to access associated DAOs, and then making calls to DAO
methods to perform database operations. A typical constructor for a
repository designed to work with a Room Database might read as follows:
class CustomerRepository(application: Application) {

 private var customerDao: CustomerDao?

 init {
 val db: CustomerRoomDatabase? =
 CustomerRoomDatabase.getDatabase(application)

 customerDao = db?.customerDao()
 }
.
.

Once the repository can access the DAO, it can call the data access
methods. The following code, for example, calls the getAllCustomers()
DAO method:
val allCustomers: LiveData<List<Customer>>?
allCustomers = customerDao.getAllCustomers()

When calling DAO methods, it is important to note that unless the method
returns a LiveData instance (which automatically runs queries on a separate
thread), the operation cannot be performed on the app’s main thread.
Attempting to do so will cause the app to crash with the following
diagnostic output:
Cannot access database on the main thread since it may potentially
lock the UI for a long period of time

Since some database transactions may take a longer time to complete,
running the operations on a separate thread avoids the app appearing to lock
up. As will be demonstrated in the chapter entitled “An Android Room
Database and Repository Tutorial”, this problem can be easily resolved by
making use of coroutines (for more information or a reminder of how to use
coroutines, refer back to the chapter entitled “An Introduction to Kotlin
Coroutines”).

74.7 In-Memory Databases
The examples outlined in this chapter use a SQLite database that exists as a
database file on the persistent storage of an Android device. This ensures
that the data persists even after the app process is terminated.
The Room database persistence library also supports in-memory databases.
These databases reside entirely in memory and are lost when the app
terminates. The only change necessary to work with an in-memory database
is to call the Room.inMemoryDatabaseBuilder() method of the Room
Database class instead of Room.databaseBuilder(). The following code
shows the difference between the method calls (note that the in-memory
database does not require a database name):
// Create a file storage-based database
INSTANCE = Room.databaseBuilder<CustomerRoomDatabase>

(context.applicationContext,
 CustomerRoomDatabase::class.java, "customer_database")
 .build()
// Create an in-memory database
INSTANCE = Room.inMemoryDatabaseBuilder<CustomerRoomDatabase>(
 context.getApplicationContext(),
 CustomerRoomDatabase.class)
 .build()

74.8 Database Inspector
Android Studio includes a Database Inspector tool window which allows
the Room databases associated with running apps to be viewed, searched,
and modified, as shown in Figure 74-3:

Figure 74-3
The Database Inspector will be covered in the chapter “An Android Room
Database and Repository Tutorial”.

74.9 Summary
The Android Room persistence library is bundled with the Android
Architecture Components and acts as an abstract layer above the lower-
level SQLite database. The library is designed to make it easier to work
with databases while conforming to the Android architecture guidelines.
This chapter has introduced the elements that interact to build Room-based
database storage into Android app projects, including entities, repositories,
data access objects, annotations, and Room Database instances.
With the basics of SQLite and the Room architecture component covered,
the next step is to create an example app that puts this theory into practice.
Since the user interface for the example application will require a forms-
based layout, the next chapter, entitled “An Android TableLayout and
TableRow Tutorial”, will detour slightly from the core topic by introducing
the basics of the TableLayout and TableRow views.

75. An Android TableLayout and
TableRow Tutorial
When the work began on the next chapter of this book (“An Android Room
Database and Repository Tutorial”), it was originally intended to include
the steps to design the user interface layout for the Room database example
application. It quickly became evident, however, that the best way to
implement the user interface was to use the Android TableLayout and
TableRow views and that this topic area deserved a self-contained chapter.
As a result, this chapter will focus solely on the user interface design of the
database application to be completed in the next chapter, and in doing so,
take some time to introduce the basic concepts of table layouts in Android
Studio.

75.1 The TableLayout and TableRow Layout Views
The TableLayout container view allows user interface elements to be
organized on the screen in a table format consisting of rows and columns.
Each row within a TableLayout is occupied by a TableRow instance which,
in turn, is divided into cells, with each cell containing a single child view
(which may be a container with multiple view children).
The number of columns in a table is dictated by the row with the most
columns, and, by default, the width of each column is defined by the widest
cell in that column. Columns may be configured to be shrinkable or
stretchable (or both) such that they change in size relative to the parent
TableLayout. In addition, a single cell may be configured to span multiple
columns.
Consider the user interface layout shown in Figure 75-1:

Figure 75-1
From the visual appearance of the layout, it is difficult to identify the
TableLayout structure used to design the interface. The hierarchical tree
illustrated in Figure 75-2, however, makes the structure a little easier to
understand:

Figure 75-2
The layout comprises a parent LinearLayout view with TableLayout,
LinearLayout, and RecyclerView children. The TableLayout contains three
TableRow children representing three rows in the table. The TableRows
contain two child views, each representing the contents of a table column
cell. The LinearLayout child view contains three Button children.

The layout shown in Figure 75-2 is the exact layout required for the
database example that will be completed in the next chapter. Therefore, the
remainder of this chapter will be used to work step by step through the
design of this user interface using the Android Studio Layout Editor tool.

75.2 Creating the Room Database Project
Select the New Project menu option from the welcome screen and, within
the resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.
Enter RoomDemo into the Name field and specify
com.ebookfrenzy.roomdemo as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin.
Migrate the project to view binding using the steps outlined in section 18.8
Migrating a Project to View Binding.

75.3 Converting to a LinearLayout
Locate the activity_main.xml file in the Project tool window (app -> res ->
layout) and double-click on it to load it into the Layout Editor tool. By
default, Android Studio has used a ConstraintLayout as the root layout
element in the user interface. This needs to be converted to a vertically
oriented LinearLayout.
With the Layout Editor tool in Design mode, locate the ConstraintLayout
component in the Component Tree panel, right-click on it to display the
menu shown in Figure 75-3, and select the Convert view... option:

Figure 75-3
In the resulting dialog (Figure 75-4), select the option to convert to a
LinearLayout before clicking on the Apply button:

Figure 75-4
By default, the layout editor will have converted the ConstraintLayout to a
horizontal LinearLayout, so select the layout component in the Component
Tree window, refer to the Attributes tool window, and change the
orientation property to vertical:

Figure 75-5
With the conversion complete, select and delete the default TextView
widget from the layout.

75.4 Adding the TableLayout to the User Interface
Remaining in the activity_main.xml file and referring to the Layouts
category of the Palette, drag a TableLayout view to position it at the top of
the LinearLayout canvas area.
Once these initial steps are complete, the Component Tree for the layout
should resemble that shown in Figure 75-6.

Figure 75-6
Android Studio has automatically added four TableRow instances to the
TableLayout. Since only three rows are required for this example, select and
delete the fourth TableRow instance. Additional rows may be added to the
TableLayout at any time by dragging the TableRow object from the palette
and dropping it onto the TableLayout entry in the Component Tree tool
window.
With the TableLayout selected, use the Attributes tool window to change
the layout_height property to wrap_content and layout_width to
match_parent.

75.5 Configuring the TableRows
From within the Text section of the palette, drag two TextView objects onto
the uppermost TableRow entry in the Component Tree (Figure 75-7):

Figure 75-7
Select the left-most TextView within the screen layout and change the text
property to “Product ID” in the Attributes tool window. Repeat this step for
the rightmost TextView, changing the text to “Not assigned” and specifying
an ID value of productID.
Drag and drop another TextView widget onto the second TableRow entry in
the Component Tree and change the text on the view to read “Product
Name”. Locate the Plain Text object in the palette and drag and drop it to
position it beneath the Product Name TextView within the Component Tree
as outlined in Figure 75-8. Next, delete the “Name” string from the text
property and set the ID to productName.

Figure 75-8
Drag and drop another TextView and a Number (Decimal) Text Field onto
the third TableRow to position the TextView above the EditText in the
hierarchy. Change the text on the TextView to “Product Quantity” and the
ID of the EditText object to productQuantity.
Shift-click to select all of the widgets in the layout as shown in Figure 75-9
below, and use the Attributes tool window to set the textSize property on all
of the objects to 18sp:

Figure 75-9
75.6 Adding the Button Bar to the Layout
The next step is to add a LinearLayout (Horizontal) view to the parent
LinearLayout view, positioned immediately below the TableLayout view.
Begin by clicking on the small disclosure arrow to the left of the
TableLayout entry in the Component Tree so that the TableRows are folded
away from view. Drag a LinearLayout (horizontal) instance from the
Layouts section of the Layout Editor palette, drop it immediately beneath
the TableLayout entry in the Component Tree panel, and change the
layout_height property to wrap_content:

Figure 75-10
Drag three Button objects onto the new LinearLayout and assign string
resources for each button that read “Add”, “Find” and “Delete”
respectively. Buttons in this type of button bar arrangement should
generally be displayed with a borderless style. Use the Attributes tool
window for each button to change the style setting to
Widget.AppCompat.Button.Borderless and the textColor attribute to ?
attr/colorPrimary. Change the IDs for the buttons to addButton, findButton,
and deleteButton, respectively.

Figure 75-11
With the new horizontal LinearLayout view selected in the Component
Tree, change the gravity property to center_horizontal so that the buttons
are centered horizontally within the display. Before proceeding, extract all
of the text properties added in the above steps to string resources.

75.7 Adding the RecyclerView
In the Component Tree, click on the disclosure arrow to the left of the
newly added horizontal LinearLayout entry to fold all the children from
view.
From the Containers section of the Palette, drag a RecyclerView instance
onto the Component Tree to position it beneath the button bar LinearLayout
as shown in Figure 75-12. Ensure the RecyclerView is added as a direct
child of the parent vertical LinearLayout view and not as a child of the
horizontal button bar LinearLayout.

Figure 75-12
With the RecyclerView selected in the layout, change the ID of the view to
product_recycler and set the layout_height property to match_parent.

Before proceeding, check that the hierarchy of the layout in the Component
Tree panel matches that shown in the following figure:

Figure 75-13
75.8 Adjusting the Layout Margins
All that remains is to adjust some of the layout settings. Begin by clicking
on the first TableRow entry in the Component Tree panel so that it is
selected. Hold down the Cmd/Ctrl-key on the keyboard and click on the
second and third TableRows, the horizontal LinearLayout, and the
RecyclerView so that all five items are selected. In the Attributes panel,
locate the layout_margin attributes category and, once located, change the
value to 10dp as shown in Figure 75-14:

Figure 75-14
With margins set, the user interface should appear as illustrated in Figure

75-1.

75.9 Summary
The Android TableLayout container view provides a way to arrange view
components in a row and column configuration. While the TableLayout
view provides the overall container, each row and the cells contained
therein are implemented via instances of the TableRow view. In this
chapter, a user interface has been designed in Android Studio using the
TableLayout and TableRow containers. The next chapter will add the
functionality behind this user interface to implement the SQLite database
capabilities using a repository and the Room persistence library.

76. An Android Room Database and
Repository Tutorial
This chapter will combine the knowledge gained in “The Android Room
Persistence Library” with the initial project created in the previous chapter
to provide a detailed tutorial demonstrating how to implement SQLite-
based database storage using the Room persistence library. In keeping with
the Android architectural guidelines, the project will use a view model and
repository. The tutorial will use all the elements covered in “The Android
Room Persistence Library” including entities, a Data Access Object, a
Room Database, and asynchronous database queries.

76.1 About the RoomDemo Project
The user interface layout created in the previous chapter was the first step in
creating a rudimentary inventory app to store product names and quantities.
When completed, the app will provide the ability to add, delete and search
for database entries while displaying a scrollable list of all products
currently stored in the database. This product list will update automatically
as database entries are added or deleted.

76.2 Modifying the Build Configuration
Launch Android Studio and open the RoomDemo project started in the
previous chapter. Before adding any new classes to the project, the first step
is to add some additional libraries and plugins to the build configuration,
including the Room persistence library. The first step is to add the ksp
plugin and additional libraries to the Gradle build configuration. Using the
Project tool window, locate and edit the Gradle Scripts -> libs.versions.toml
file as follows (keeping in mind that a more recent version of the plugin and
libraries may now be available):
[versions]
.
.
roomRuntime = "2.6.1"
fragmentKtx = "1.7.0"
ksp = "1.9.22-1.0.17"
[libraries]

.

.
androidx-room-compiler = { module = "androidx.room:room-compiler",
version.ref = "roomRuntime" }
androidx-room-runtime = { group = "androidx.room", name = "room-
runtime", version.ref = "roomRuntime" }
androidx-fragment-ktx = { group = "androidx.fragment", name =
"fragment-ktx", version.ref = "fragmentKtx" }
[plugins]
.
.
devtoolsKsp = { id = "com.google.devtools.ksp", version.ref =
"ksp"}

Click the Sync Now link to commit the changesNext, make the following
changes to the module level build.gradle.kts file (app -> Gradle Scripts ->
build.gradle.kts (Module :app)):
plugins {
 alias(libs.plugins.androidApplication)
 alias(libs.plugins.jetbrainsKotlinAndroid)
 alias(libs.plugins.devtoolsKsp)
}
android {
.
.
dependencies {
.
.
 implementation(libs.androidx.room.runtime)
 implementation(libs.androidx.fragment.ktx)
 ksp(libs.androidx.room.compiler)
.
.
}

76.3 Building the Entity
This project will begin by creating the entity defining the database table
schema. The entity will consist of an integer for the product id, a string
column to hold the product name, and another integer value to store the
quantity.
The product id column will serve as the primary key and will be auto-
generated. Table 76-1 summarizes the structure of the entity:

Column Data Type

productid Integer / Primary Key / Auto Increment

productname String

productquantity Integer

Table 76-1
Add a class file for the entity by right-clicking on the app -> kotlin+java ->
com.ebookfrenzy.roomdemo entry in the Project tool window and selecting
the New -> Kotlin Class/File menu option. In the new class dialog, name
the class Product, select the Class entry in the list, and press the keyboard
return key to generate the file.
When the Product.kt file opens in the editor, modify it so that it reads as
follows:
package com.ebookfrenzy.roomdemo

class Product {

 var id: Int = 0
 var productName: String? = null
 var quantity: Int = 0

 constructor() {}

 constructor(id: Int, productname: String, quantity: Int) {
 this.productName = productname
 this.quantity = quantity
 }
 constructor(productname: String, quantity: Int) {
 this.productName = productname
 this.quantity = quantity
 }
}

The class now has variables for the database table columns and matching
getter and setter methods. Of course, this class does not become an entity
until it has been annotated. With the class file still open in the editor, add
annotations and corresponding import statements:
package com.ebookfrenzy.roomdemo

import androidx.room.ColumnInfo
import androidx.room.Entity
import androidx.room.PrimaryKey

@Entity(tableName = "products")
class Product {

 @PrimaryKey(autoGenerate = true)
 @ColumnInfo(name = "productId")
 var id: Int = 0

 @ColumnInfo(name = "productName")
 var productName: String? = null
 var quantity: Int = 0

 constructor() {}

 constructor(id: Int, productname: String, quantity: Int) {
 this.id = id
 this.productName = productname
 this.quantity = quantity
 }
 constructor(productname: String, quantity: Int) {
 this.productName = productname
 this.quantity = quantity
 }
}

These annotations declare this as the entity for a table named products and
assign column names for the id and name variables. The id column is also
configured to be the primary key and auto-generated. Since it will not be
necessary to reference the quantity column in SQL queries, a column name
has not been assigned to the quantity variable.

76.4 Creating the Data Access Object
With the product entity defined, the next step is to create the DAO interface.
Referring again to the Project tool window, right-click on the app ->
kotlin+java -> com.ebookfrenzy.roomdemo entry and select the New ->
Kotlin Class/File menu option. In the new class dialog, enter ProductDao
into the Name field and select Interface from the list as highlighted in

Figure 76-1:

Figure 76-1
Press the Return key to generate the new interface and, with the
ProductDao.kt file loaded into the code editor, make the following changes:
package com.ebookfrenzy.roomdemo

import androidx.lifecycle.LiveData
import androidx.room.Dao
import androidx.room.Insert
import androidx.room.Query

@Dao
interface ProductDao {

 @Insert
 fun insertProduct(product: Product)

 @Query("SELECT * FROM products WHERE productName = :name")
 fun findProduct(name: String): List<Product>

 @Query("DELETE FROM products WHERE productName = :name")
 fun deleteProduct(name: String)

 @Query("SELECT * FROM products")
 fun getAllProducts(): LiveData<List<Product>>
}

The DAO implements methods to insert, find and delete records from the

products database. The insertion method is passed a Product entity object
containing the data to be stored, while the methods to find and delete
records are passed a string containing the name of the product on which to
perform the operation. The getAllProducts() method returns a LiveData
object containing all of the records within the database. This method will be
used to keep the RecyclerView product list in the user interface layout
synchronized with the database.

76.5 Adding the Room Database
The last task before adding the repository to the project is implementing the
Room Database instance. Add a new class to the project named
ProductRoomDatabase, this time with the Class option selected.
Once the file has been generated, modify it as follows using the steps
outlined in the “The Android Room Persistence Library” chapter:
package com.ebookfrenzy.roomdemo

import android.content.Context
import androidx.room.Database
import androidx.room.Room
import androidx.room.RoomDatabase

@Database(entities = [(Product::class)], version = 1)
abstract class ProductRoomDatabase: RoomDatabase() {

 abstract fun productDao(): ProductDao

 companion object {

 private var INSTANCE: ProductRoomDatabase? = null

 internal fun getDatabase(context: Context):
ProductRoomDatabase? {
 if (INSTANCE == null) {
 synchronized(ProductRoomDatabase::class.java) {
 if (INSTANCE == null) {
 INSTANCE =
 Room.databaseBuilder(
 context.applicationContext,
 ProductRoomDatabase::class.java,
 "product_database").build()

 }
 }
 }
 return INSTANCE
 }
 }
}

76.6 Adding the Repository
Add a new class named ProductRepository to the project, with the Class
option selected.
The repository class will be responsible for interacting with the Room
database on behalf of the ViewModel. It must provide methods that use the
DAO to insert, delete, and query product records. Except for the
getAllProducts() DAO method (which returns a LiveData object), these
database operations must be performed on separate threads from the main
thread.
Remaining within the ProductRepository.kt file, make the following
changes :
package com.ebookfrenzy.roomdemo

import android.app.Application
import androidx.lifecycle.LiveData
import androidx.lifecycle.MutableLiveData
import kotlinx.coroutines.*

class ProductRepository(application: Application) {

 val searchResults = MutableLiveData<List<Product>>()
}

The above declares a MutableLiveData variable named searchResults into
which the results of a search operation are stored whenever an
asynchronous search task completes (later in the tutorial, an observer within
the ViewModel will monitor this live data object).
The repository class must now provide some methods the ViewModel can
call to initiate these operations. However, the repository needs to obtain the
DAO reference via a ProductRoomDatabase instance to do this. Add a
constructor method to the ProductRepository class to perform these tasks:

.

.
class ProductRepository(application: Application) {

 val searchResults = MutableLiveData<List<Product>>()
 private var productDao: ProductDao?

 init {
 val db: ProductRoomDatabase? =
 ProductRoomDatabase.getDatabase(application)
 productDao = db?.productDao()
 }
.
.

The repository will use coroutines to avoid performing database operations
on the main thread (a topic covered in the chapter entitled “An Introduction
to Kotlin Coroutines”). As such, some additional libraries must be added to
the project before work on the repository class can continue. Start by
editing the Gradle Scripts -> build.gradle.kts (Module :app) file to add the
following lines to the dependencies section:
dependencies {
.
.
 implementation ("org.jetbrains.kotlinx:kotlinx-coroutines-
core:1.6.4")
 implementation ("org.jetbrains.kotlinx:kotlinx-coroutines-
android:1.6.4")
.
.
}

After making the change, click on the Sync Now link at the top of the editor
panel to commit the changes.
With a reference to DAO stored and the appropriate libraries added, the
methods are ready to be added to the ProductRepository class file as
follows:
.
.
val searchResults = MutableLiveData<List<Product>>()
private var productDao: ProductDao?
private val coroutineScope = CoroutineScope(Dispatchers.Main)

.

.
fun insertProduct(newproduct: Product) {
 coroutineScope.launch(Dispatchers.IO) {
 asyncInsert(newproduct)
 }
}

private fun asyncInsert(product: Product) {
 productDao?.insertProduct(product)
}

fun deleteProduct(name: String) {
 coroutineScope.launch(Dispatchers.IO) {
 asyncDelete(name)
 }
}

private fun asyncDelete(name: String) {
 productDao?.deleteProduct(name)
}

fun findProduct(name: String) {

 coroutineScope.launch(Dispatchers.Main) {
 searchResults.value = asyncFind(name).await()
 }
}

private fun asyncFind(name: String): Deferred<List<Product>?> =

 coroutineScope.async(Dispatchers.IO) {
 return@async productDao?.findProduct(name)
 }
.
.

For the add and delete database operations, the above code adds two
methods: a standard method and a coroutine suspend method. In each case,
the standard method calls the suspend method to execute the coroutine
outside of the main thread (using the IO dispatcher) so as not to block the
app while the task is being performed. In the case of the find operation, the

asyncFind() suspend method uses a deferred value to return the search
results to the findProduct() method. Because the findProduct() method
needs access to the searchResults variable, the call to the asyncFind()
method is dispatched to the main thread, which, in turn, performs the
database operation using the IO dispatcher.
One final task remains to complete the repository class. The RecyclerView
in the user interface layout must keep up to date with the current list of
products stored in the database. The ProductDao class already includes a
method named getAllProducts() which uses a SQL query to select all of the
database records and return them wrapped in a LiveData object. The
repository needs to call this method once on initialization and store the
result within a LiveData object that can be observed by the ViewModel and,
in turn, by the UI controller. Once this has been set up, the UI controller
observer will be notified each time a change occurs to the database table,
and the RecyclerView can be updated with the latest product list.
Remaining within the ProductRepository.kt file, add a LiveData variable
and call to the DAO getAllProducts() method within the constructor:
.
.
class ProductRepository(application: Application) {
.
.
 val allProducts: LiveData<List<Product>>?

 init {
 val db: ProductRoomDatabase? =
 ProductRoomDatabase.getDatabase(application)
 productDao = db?.productDao()
 allProducts = productDao?.getAllProducts()
 }
.
.

76.7 Adding the ViewModel
The ViewModel is responsible for creating an instance of the repository and
providing methods, and LiveData objects that the UI controller can utilize
to keep the user interface synchronized with the underlying database. As
implemented in ProductRepository.kt, the repository constructor requires

access to the application context to get a Room Database instance. To make
the application context accessible within the ViewModel so it can be passed
to the repository, the ViewModel needs to subclass AndroidViewModel
instead of ViewModel.
Begin by locating the com.ebookfrenzy.viewmodeldemo entry in the Project
tool window, right-clicking it, and selecting the New -> Kotlin Class/File
menu option. Next, name the new class MainViewModel and press the
keyboard Enter key. Finally, edit the new class file to change the class to
extend AndroidViewModel and implement the default constructor:
package com.ebookfrenzy.roomdemo

import android.app.Application
import androidx.lifecycle.AndroidViewModel
import androidx.lifecycle.LiveData
import androidx.lifecycle.MutableLiveData

class MainViewModel(application: Application) :
AndroidViewModel(application) {

 private val repository: ProductRepository =
ProductRepository(application)
 private val allProducts: LiveData<List<Product>>?
 private val searchResults: MutableLiveData<List<Product>>

 init {
 allProducts = repository.allProducts
 searchResults = repository.searchResults
 }
}

The constructor creates a repository instance and then uses it to get
references to the results and live data objects so that the UI controller can
observe them. All that now remains within the ViewModel is to implement
the methods that will be called from within the UI controller in response to
button clicks and when setting up observers on the LiveData objects:
fun insertProduct(product: Product) {
 repository.insertProduct(product)
}

fun findProduct(name: String) {
 repository.findProduct(name)

}

fun deleteProduct(name: String) {
 repository.deleteProduct(name)
}

fun getSearchResults(): MutableLiveData<List<Product>> {
 return searchResults
}

fun getAllProducts(): LiveData<List<Product>>? {
 return allProducts
}

76.8 Creating the Product Item Layout
The name of each product in the database will appear within the
RecyclerView list in the main user interface. This will require a layout
resource file containing a TextView for each row in the list. Add this file
now by right-clicking on the app -> res -> layout entry in the Project tool
window and selecting the New -> Layout Resource File menu option. Name
the file product_list_item and change the root element to a vertical
LinearLayout before clicking on OK to create the file and load it into the
layout editor. With the layout editor in Design mode, drag a TextView
object from the palette onto the layout, where it will appear by default at the
top of the layout:

Figure 76-2
With the TextView selected in the layout, use the Attributes tool window to
set the ID of the view to product_row and the layout_height to 30dp. Select
the LinearLayout entry in the Component Tree window and set the
layout_height attribute to wrap_content.

76.9 Adding the RecyclerView Adapter
As outlined in detail in the chapter entitled “Working with the RecyclerView
and CardView Widgets”, a RecyclerView instance requires an adapter class
to provide the data to be displayed. Add this class by right-clicking on the

app -> kotlin+java -> com.ebookfrenzy.roomdemo entry in the Project tool
window and selecting the New -> Kotlin Class menu. In the dialog, name
the class ProductListAdapter and choose Class from the list before pressing
the keyboard Return key. With the resulting ProductListAdapter.kt class
loaded into the editor, implement the class as follows:
package com.ebookfrenzy.roomdemo

import android.view.LayoutInflater
import android.view.View
import android.view.ViewGroup
import android.widget.TextView
import androidx.recyclerview.widget.RecyclerView
import com.ebookfrenzy.roomdemo.Product
import com.ebookfrenzy.roomdemo.R

class ProductListAdapter(private val productItemLayout: Int) :
 RecyclerView.Adapter<ProductListAdapter.ViewHolder>
() {

 private var productList: List<Product>? = null

 override fun onBindViewHolder(holder: ViewHolder, listPosition:
Int) {
 val item = holder.item
 productList.let {
 item.text = it!![listPosition].productName
 }
 }

 override fun onCreateViewHolder(parent: ViewGroup, viewType:
Int):
 ViewHo
lder {
 val view = LayoutInflater.from(parent.context).inflate(
 productItemLayout, parent,
false)
 return ViewHolder(view)
 }

 fun setProductList(products: List<Product>) {
 productList = products
 notifyDataSetChanged()

 }

 override fun getItemCount(): Int {
 return if (productList == null) 0 else productList!!.size
 }

 class ViewHolder(itemView: View) :
RecyclerView.ViewHolder(itemView) {
 var item: TextView =
itemView.findViewById(R.id.product_row)
 }
}

76.10 Preparing the Main Activity
The last remaining component to modify is the MainActivity class which
needs to configure listeners on the Button views and observers on the live
data objects in the ViewModel class. Before adding this code, some
preparation work must be performed to add some imports and variables.
Edit the MainActivity.kt file and modify it as follows:
package com.ebookfrenzy.roomdemo
.
.
import androidx.activity.viewModels
import androidx.recyclerview.widget.LinearLayoutManager
import com.ebookfrenzy.roomdemo.Product
import java.util.*
.
.
class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding
 private var adapter: ProductListAdapter? = null
 private val viewModel: MainViewModel by viewModels()

 override fun onCreate(savedInstanceState: Bundle?) {
.
.
 listenerSetup()
 observerSetup()
 recyclerSetup()
 }
.

.

At various stages in the code, the app will need to clear the product
information displayed in the user interface. To avoid code repetition, add
the following clearFields() convenience function:
private fun clearFields() {
 binding.productID.text = ""
 binding.productName.setText("")
 binding.productQuantity.setText("")
}

Before the app can be built and tested, the three setup methods called from
the onCreate() method above need to be added to the class.

76.11 Adding the Button Listeners
The user interface layout for the main fragment contains three buttons, each
needing to perform a specific task when clicked by the user. Edit the
MainActivity.kt file and add the listenerSetup() method:
private fun listenerSetup() {

 binding.addButton.setOnClickListener {
 val name = binding.productName.text.toString()
 val quantity = binding.productQuantity.text.toString()

 if (name != "" && quantity != "") {
 val product = Product(name, Integer.parseInt(quantity))
 viewModel.insertProduct(product)
 clearFields()
 } else {
 binding.productID.text = "Incomplete information"
 }
 }

 binding.findButton.setOnClickListener { viewModel.findProduct(
 binding.productName.text.toString())
}

 binding.deleteButton.setOnClickListener {
 viewModel.deleteProduct(binding.productName.text.toString()
)
 clearFields()
 }
}

The addButton listener performs some basic validation to ensure that the
user has entered a product name and quantity and uses this data to create a
new Product entity object (note that the quantity string is converted to an
integer to match the entity data type). The ViewModel insertProduct()
method is then called and passed the Product object before the fields are
cleared.
The findButton and deleteButton listeners pass the product name to either
the ViewModel findProduct() or deleteProduct() method.

76.12 Adding LiveData Observers
The user interface now needs to add observers to remain synchronized with
the searchResults and allProducts live data objects within the ViewModel.
Remaining in the MainActivity.kt file, implement the observer setup method
as follows:
private fun observerSetup() {

 viewModel.getAllProducts()?.observe(this) { products ->
 products?.let {
 adapter?.setProductList(it)
 }
 }

 viewModel.getSearchResults().observe(this) { products ->

 products?.let {
 if (it.isNotEmpty()) {
 binding.productID.text = String.format(Locale.US,
"%d", it[0].id)
 binding.productName.setText(it[0].productName)
 binding.productQuantity.setText(
 String.format(
 Locale.US, "%d",
 it[0].quantity
)
)
 } else {
 binding.productID.text = "No Match"
 }
 }
 }

}

The “all products” observer passes the current list of products to the
setProductList() method of the RecyclerAdapter where the displayed list
will be updated.
The “search results” observer checks that at least one matching result has
been located in the database, extracts the first matching Product entity
object from the list, gets the data from the object, converts it where
necessary, and assigns it to the TextView and EditText views in the layout.
If the product search fails, the user is notified via a message displayed on
the product ID TextView.

76.13 Initializing the RecyclerView
Add the final setup method to initialize and configure the RecyclerView and
adapter as follows:
private fun recyclerSetup() {
 adapter = ProductListAdapter(R.layout.product_list_item)
 binding.productRecycler.layoutManager =
LinearLayoutManager(this)
 binding.productRecycler.adapter = adapter
}

76.14 Testing the RoomDemo App
Compile and run the app on a device or emulator, add some products, and
ensure they appear automatically in the RecyclerView. Perform a search for
an existing product and verify that the product ID and quantity fields update
accordingly. Finally, enter the name of an existing product, delete it from
the database, and confirm that it is removed from the RecyclerView product
list.

76.15 Using the Database Inspector
As previously outlined in “The Android Room Persistence Library”, the
Database Inspector tool may be used to inspect the content of Room
databases associated with a running app and to perform minor data changes.
After adding some database records using the RoomDemo app, display the
Database Inspector tool using the View -> Tool Windows -> App Inspection
menu option:
From within the inspector window, select the running app from the menu

marked A in Figure 76-3 below:

Figure 76-3
From the Databases panel (B), double-click on the products table to view
the table rows currently stored in the database. Enable the Live updates
option (C) and then use the running app to add more records to the
database. Note that the Database Inspector updates the table data (D) in
real-time to reflect the changes.
Turn off Live updates so that the table is no longer read-only, double-click
on the quantity cell for a table row, and change the value before pressing the
keyboard Enter key. Return to the running app and search for the product to
confirm that the change made to the quantity in the inspector was saved to
the database table.
Finally, click on the table query button (indicated by the arrow in Figure 76-
4 below) to display a new query tab (A), make sure that product_database
is selected (B), and enter a SQL statement into the query text field (C) and
click the Run button(D):

Figure 76-4
The list of rows should update to reflect the SQL query (E) results.

76.16 Summary
This chapter has demonstrated the use of the Room persistence library to

store data in a SQLite database. The finished project used a repository to
separate the ViewModel from all database operations. It demonstrated the
creation of entities, a DAO, and a room database instance, including the use
of asynchronous tasks when performing some database operations.

77. Video Playback on Android using
the VideoView and MediaController
Classes
One of the primary uses for smartphones and tablets is to provide access to
online content. Video is a key form of content widely used, especially on
tablet devices.
The Android SDK includes two classes that make implementing video
playback on Android devices extremely easy to implement when
developing applications. This chapter will provide an overview of these two
classes, VideoView and MediaController, creating a video playback
application.

77.1 Introducing the Android VideoView Class
The simplest way to display video within an Android application is to use
the VideoView class. This visual component provides a surface on which a
video may be played when added to the layout of an activity. Android
currently supports the following video formats:
•H.263
•H.264 AVC
•H.265 HEVC
•MPEG-4 SP
•VP8
•VP9
The VideoView class has a wide range of methods that may be called to
manage video playback. Some of the more commonly used methods are as
follows:
•setVideoPath(String path) – Specifies the video media path (as a string)
to be played. This can be either a remote video file URL or a video file
local to the device.

•setVideoUri(Uri uri) – Performs the same task as the setVideoPath()
method but takes a Uri object as an argument instead of a string.

•start() – Starts video playback.
•stopPlayback() – Stops the video playback.
•pause() – Pauses video playback.
•isPlaying() – Returns a Boolean value indicating whether a video is
playing.

•setOnPreparedListener(MediaPlayer.OnPreparedListener) – Allows a
callback method to be called when the video is ready to play.

•setOnErrorListener(MediaPlayer.OnErrorListener) - Allows a
callback method to be called when an error occurs during the video
playback.

•setOnCompletionListener(MediaPlayer.OnCompletionListener) -
Allows a callback method to be called when the end of the video is
reached.

•getDuration() – Returns the duration of the video. Will typically return -1
unless called from within the OnPreparedListener() callback method.

•getCurrentPosition() – Returns an integer value indicating the current
position of playback.

•setMediaController(MediaController) – Designates a MediaController
instance allowing playback controls to be displayed to the user.

77.2 Introducing the Android MediaController Class
If a video is played using the VideoView class, the user will not be given
any control over the playback, which will run until the end of the video is
reached. This issue can be addressed by attaching an instance of the
MediaController class to the VideoView instance. The MediaController will
then provide a set of controls allowing the user to manage the playback
(such as pausing and seeking backward/forwards in the video timeline).
The position of the controls is designated by anchoring the controller
instance to a specific view in the user interface layout. Once attached and
anchored, the controls will appear briefly when playback starts and may
subsequently be restored at any point by the user tapping on the view to
which the instance is anchored.
Some of the key methods of this class are as follows:
•setAnchorView(View view) – Designates the view to which the controller

will be anchored. This designates the location of the controls on the
screen.

•show() – Displays the controls.
•show(int timeout) – Controls are displayed for the designated duration (in
milliseconds).

•hide() – Hides the controller from the user.
•isShowing() – Returns a Boolean value indicating whether the controls are
currently visible to the user.

77.3 Creating the Video Playback Example
The remainder of this chapter will create an example application that uses
the VideoView and MediaController classes to play an MPEG-4 video file.
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.
Enter VideoPlayer into the Name field and specify
com.ebookfrenzy.videoplayer as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 33: Android
13 (Tiramisu) and the Language menu to Kotlin. Use the steps in section
18.8 Migrating a Project to View Binding to enable view binding for the
project.

77.4 Designing the VideoPlayer Layout
The user interface for the main activity will consist solely of an instance of
the VideoView class. Use the Project tool window to locate the app -> res -
> layout -> activity_main.xml file, double-click on it, switch the Layout
Editor tool to Design mode, and delete the default TextView widget.
From the Widgets category of the Palette panel, drag and drop a VideoView
instance onto the layout to fill the available canvas area, as shown in Figure
77-1. Using the Attributes panel, change the layout_width and
layout_height attributes to match_constraint and wrap_content,
respectively. Also, remove the constraint connecting the bottom of the
VideoView to the bottom of the parent ConstraintLayout. Finally, change
the ID of the component to videoView1.

Figure 77-1
77.5 Downloading the Video File
The video that will be played by the VideoPlayer app is a short animated
movie clip encoded in MPEG-4 format. Using a web browser, navigate to
the following URL to play the video:
https://www.ebookfrenzy.com/android_book/demo.mp4
Staying within the browser window, right-click on the video playback,
select the option to save or download the video to a local file, and choose a
suitable temporary filesystem location, naming the file demo.mp4.
Within Android Studio, locate the res folder in the Project tool window,
right-click on it, select the New -> Directory menu option, and enter raw
into the name field before pressing the Return key. Using the filesystem
navigator for your operating system, locate the demo.mp4 file downloaded
above and copy it. Returning to Android Studio, right-click on the newly
created raw directory and select the Paste option to copy the video file into
the project. Once added, the raw folder should match Figure 77-2 within the
Project tool window:

Figure 77-2
77.6 Configuring the VideoView
The next step is configuring the VideoView with the video path to be played
and then starting the playback. This will be performed when the main
activity has initialized, so load the MainActivity.kt file into the editor and
modify it as outlined in the following listing:

https://www.ebookfrenzy.com/android_book/demo.mp4

package com.ebookfrenzy.videoplayer
.
.
import android.net.Uri

class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 override fun onCreate(savedInstanceState: Bundle?) {
.
.
 configureVideoView()
 }

 private fun configureVideoView() {

 binding.videoView1.setVideoURI(Uri.parse("android.resource:
//"
 + packageName + "/" + R.raw.demo))

 binding.videoView1.start()
 }
}

This code obtains a reference to the VideoView instance in the layout,
assigns to it a URI object referencing the movie file located in the raw
resource directory, and then starts the video playing.
Test the application by running it on an emulator or physical Android
device. After the application launches, there may be a short delay while
video content is buffered before the playback begins (Figure 77-3).

Figure 77-3
This shows how easy it can be to integrate video playback into an Android
application. Everything in this example has been achieved using a
VideoView instance and three lines of code.

77.7 Adding the MediaController to the Video View
As the VideoPlayer application currently stands, there is no way for the user
to control playback. As previously outlined, this can be achieved using the

MediaController class. To add a controller to the VideoView, modify the
configureVideoView() method once again:
package com.ebookfrenzy.videoplayer
.
.
import android.widget.MediaController
.
.
class MainActivity : AppCompatActivity() {

 private var mediaController: MediaController? = null
.
.
 private fun configureVideoView() {

 binding.videoView1.setVideoURI(Uri.parse("android.resource:
//"
 + packageName + "/" + R.raw.demo))

 mediaController = MediaController(this)
 mediaController?.setAnchorView(binding.videoView1)
 binding.videoView1.setMediaController(mediaController)
 binding.videoView1.start()
 }
}

When the application is launched with these changes implemented, tapping
the VideoView canvas will cause the media controls to appear over the
video playback. These controls should include a Seekbar and fast forward,
rewind, and play/pause buttons. After the controls recede from view, they
can be restored anytime by tapping on the VideoView canvas again. With
just three more lines of code, our video player application now has media
controls, as shown in Figure 77-4:

Figure 77-4
77.8 Setting up the onPreparedListener
As a final example of working with video-based media, the activity will be
extended further to demonstrate the mechanism for configuring a listener. In
this case, a listener will be implemented that is intended to output the

duration of the video as a message in the Android Studio Logcat panel. The
listener will also configure video playback to loop continuously:
package com.ebookfrenzy.videoplayer
.
.
import android.util.Log
.
.
class MainActivity : AppCompatActivity() {

 private var TAG = "VideoPlayer"
.
.
 private fun configureVideoView() {

 binding.videoView1.setVideoURI(Uri.parse("android.resource:
//"
 + packageName + "/" + R.raw.demo))

 mediaController = MediaController(this)
 mediaController?.setAnchorView(binding.videoView1)
 binding.videoView1.setMediaController(mediaController)

 binding.videoView1.setOnPreparedListener { mp ->
 mp.isLooping = true
 Log.i(TAG, "Duration = " + binding.videoView1.duration)
 }
 binding.videoView1.start()
 }
}

Now just before the video playback begins, a message will appear in the
Android Studio Logcat panel that reads along the lines of the following, and
the video will restart after playback ends:
2023-06-27 09:25:41.313 3050-3050 VideoPlayer
com.ebookfrenzy.videoplayer I Duration = 25365

77.9 Summary
Android devices make excellent platforms for the delivery of content to
users, particularly in the form of video media. As outlined in this chapter,
the Android SDK provides two classes, namely VideoView and
MediaController, which combine to make video playback integration into

Android applications quick and easy, often involving just a few lines of
Kotlin code.

78. Android Picture-in-Picture Mode

When multitasking in Android was covered in earlier chapters, Picture-in-
picture (PiP) mode was mentioned briefly but not covered in any detail.
Intended primarily for video playback, PiP mode allows an activity screen
to be reduced in size and positioned at any location on the screen. While in
this state, the activity continues to run, and the window remains visible
regardless of any other activities running on the device. This allows the
user to, for example, continue watching video playback while performing
tasks such as checking email or working on a spreadsheet.

This chapter will provide an overview of Picture-in-Picture mode before
Picture-in-Picture support is added to the VideoPlayer project in the next
chapter.

78.1 Picture-in-Picture Features

As explained later in the chapter and demonstrated in the next chapter, an
activity is placed into PiP mode via an API call from within the running
app. When placed into PiP mode, configuration options may be specified
that control the aspect ratio of the PiP window and also define the area of
the activity screen to be included. Figure 78-1, for example, shows a video
playback activity in PiP mode:

Figure 78-1

Figure 78-2 shows a PiP mode window after the user has tapped it. When
in this mode, the window appears larger and includes a full-screen action in
the center which, when tapped, restores the window to full-screen mode
and an exit button in the top right-hand corner to close the window and
place the app in the background. When displayed in this mode, any custom
actions added to the PiP window will appear on the screen. In the case of
Figure 78-2, the PiP window includes custom play and pause action
buttons:

Figure 78-2

The remainder of this chapter will outline how PiP mode is enabled and
managed from within an Android app.

78.2 Enabling Picture-in-Picture Mode

PiP mode is currently only supported on devices running API 26: Android
8.0 (Oreo) or newer. The first step in implementing PiP mode is to enable it
within the project’s manifest file. PiP mode is configured on a per-activity
basis by adding the following lines to each activity element for which PiP
support is required:

<activity android:name=".MyActivity"

 android:supportsPictureInPicture="true"

 android:configChanges=

 "screenSize|smallestScreenSize|screenLayout|orientation"

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

</activity>

The android:supportsPictureInPicture entry enables PiP for the activity,
while the android:configChanges property notifies Android that the activity
can handle layout configuration changes. Without this setting, each time the
activity moves in and out of PiP mode, the activity will be restarted,
resulting in playback restarting from the beginning of the video during the
transition.

78.3 Configuring Picture-in-Picture Parameters

PiP behavior is defined through the use of the PictureInPictureParams
class, instances of which can be created using the Builder class as follows:

val params = PictureInPictureParams.Builder().build()

The above code creates a default PictureInPictureParams instance with
special parameters defined. The following optional method calls may also
be used to customize the parameters:

•setActions() – Used to define actions that can be performed within the PiP
window while the activity is in PiP mode. Actions will be covered in more
detail later in this chapter.

•setAspectRatio() – Declares the preferred aspect ratio for the appearance
of the PiP window. This method takes as an argument a Rational object
containing the height width/height ratio.

•setSourceRectHint() – Takes as an argument a Rect object defining the
area of the activity screen to be displayed within the PiP window.

The following code, for example, configures aspect ratio and action
parameters within a PictureInPictureParams object. In the case of the aspect
ratio, this is defined using the width and height dimensions of a VideoView
instance:

val rational = Rational(videoView.width,

 videoView.height)

val params = PictureInPictureParams.Builder()

 .setAspectRatio(rational)

 .setActions(actions)

 .build()

Once defined, PiP parameters may be set at any time using the setPictureIn
PictureParams() method as follows:

setPictureInPictureParams(params)

Parameters may also be specified when entering PiP mode.

78.4 Entering Picture-in-Picture Mode

An activity is placed into Picture-in-Picture mode via a call to the
enterPictureInPictureMode() method, passing through a
PictureInPictureParams object:

enterPictureInPictureMode(params)

If no parameters are required, create a default PictureInPictureParams
object as outlined in the previous section. If parameters have previously
been set using the setPictureInPictureParams() method, these parameters
are combined with those specified during the enterPictureInPictureMode()
method call.

78.5 Detecting Picture-in-Picture Mode Changes

When an activity enters PiP mode, it is important to hide unnecessary
views so that only the video playback is visible within the PiP window.
When the activity re-enters full-screen mode, hidden user interface
components must be reinstated. These and other app-specific tasks can be
performed by overriding theonPictureInPictureModeChanged() method.
When added to the activity, this method is called each time the activity
transitions between PiP and full-screen modes and is passed a Boolean
value indicating whether the activity is currently in PiP mode:

override fun onPictureInPictureModeChanged(

 isInPictureInPictureMode: Boolean, newConfig: Configuration) {

 super.onPictureInPictureModeChanged(isInPictureInPictureMode,
newConfig)

 if (isInPictureInPictureMode) {

 // Activity entered Picture-in-Picture mode

 } else {

 // Activity entered full-screen mode

 }

}

78.6 Adding Picture-in-Picture Actions

Picture-in-Picture actions appear as icons within the PiP window when the
user taps it. Implementing PiP actions is a multi-step process that begins
with implementing a way for the PiP window to notify the activity that an
action has been selected. This is achieved by setting up a broadcast receiver
within the activity and then creating a pending intent within the PiP action,
which, in turn, is configured to broadcast an intent for which the broadcast
receiver is listening. When the intent triggers the broadcast receiver, the
data stored in the intent can be used to identify the action performed and to
take the necessary action within the activity.

PiP actions are declared using the RemoteAction instances, initialized with
an icon, a title, a description, and the PendingIntent object. Once one or
more actions have been created, they are added to an ArrayList and passed
through to the setActions() method while building a
PictureInPictureParams object.

The following code fragment demonstrates the creation of the Intent,
PendingIntent, and RemoteAction objects together with a
PictureInPictureParams instance which is then applied to the activity’s PiP
settings:

val actions = ArrayList<RemoteAction>()

val actionIntent = Intent("MY_PIP_ACTION")

val pendingIntent = PendingIntent.getBroadcast(this@MyActivity,

 REQUEST_CODE, actionIntent,

 FLAG_IMMUTABLE)

val icon = Icon.createWithResource(this, R.drawable.action_icon)

val remoteAction = RemoteAction(icon,

 "My Action Title",

 "My Action Description",

 pendingIntent)

actions.add(remoteAction)

val params = PictureInPictureParams.Builder()

 .setActions(actions)

 .build()

setPictureInPictureParams(params)

78.7 Summary

Picture-in-Picture mode is a multitasking feature introduced with Android
8.0 designed specifically to allow video playback to continue in a small
window while the user performs tasks in other apps and activities. Before
PiP mode can be used, it must first be enabled within the manifest file for
those activities that require PiP support.

PiP mode behavior is configured using instances of the
PictureInPictureParams class and initiated via a call to the
enterPictureInPictureMode() method from within the activity. When in PiP
mode, only the video playback should be visible, requiring that any other
user interface elements be hidden until full-screen mode is selected. These
and other mode transition-related tasks can be performed by overriding the
onPictureInPictureModeChanged() method.

PiP actions appear as icons overlaid onto the PiP window when the user
taps it. When selected, these actions trigger behavior within the activity.
The PiP window uses broadcast receivers and pending intents to notify the
activity of an action.

79. An Android Picture-in-Picture Tutorial

Following the previous chapters, this chapter will take the existing
VideoPlayer project and enhance it to add Picture-in-Picture support,
including detecting PiP mode changes and adding a PiP action designed to
display information about the currently running video.

79.1 Adding Picture-in-Picture Support to the Manifest

The first step in adding PiP support to an Android app project is to enable it
within the project Manifest file. Open the manifests ->
AndroidManifest.xml file and modify the activity element to enable PiP
support:

.

.

<activity

 android:name=".MainActivity"

 android:supportsPictureInPicture="true"

 android:configChanges="screenSize|smallestScreenSize|screenLayout|ori
entation"

 android:exported="true">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

</activity>

.

.

79.2 Adding a Picture-in-Picture Button

As currently designed, the layout for the VideoPlayer activity consists
solely of a VideoView instance. As currently designed, the layout for the
VideoPlayer activity consists solely of a VideoView instance. A button will
now be added to the layout to switch to PiP mode. Load the
activity_main.xml file into the layout editor and drag a Button object from
the palette onto the layout so that it is positioned as shown in Figure 79-1:

Figure 79-1

Change the text on the button to read “Enter PiP Mode” and extract the
string to a resource named enter_pip_mode. Before moving on to the next
step, change the ID of the button to pipButton and configure the onClick
attribute to call a method named enterPipMode.

79.3 Entering Picture-in-Picture Mode

The enterPipMode onClick callback method must now be added to the
MainActivity.kt class file. Locate this file, open it in the code editor, and
add this method as follows:

.

.

import android.app.PictureInPictureParams

import android.util.Rational

import android.view.View

import android.content.res.Configuration

.

.

fun enterPipMode(view: View) {

 val rational = Rational(binding.videoView1.width,

 binding.videoView1.height)

 val params = PictureInPictureParams.Builder()

 .setAspectRatio(rational)

 .build()

 binding.pipButton.visibility = View.INVISIBLE

 binding.videoView1.setMediaController(null)

 enterPictureInPictureMode(params)

}

The method begins by obtaining a reference to the Button view, then
creates a Rational object containing the width and height of the VideoView.
A set of Picture-in-Picture parameters is then created using the
PictureInPictureParams Builder, passing through the Rational object as the
aspect ratio for the video playback. Since the button does not need to be
visible while the video is in PiP mode, it is invisible. The video playback
controls are also hidden, so the video view will be unobstructed while in
PiP mode.

Compile and run the app on a device or emulator running Android version
8 or newer and wait for video playback to begin before clicking on the PiP
mode button. The video playback should minimize and appear in the PiP
window as shown in Figure 79-2:

Figure 79-2

Click in the PiP window, then click within the full-screen mode markers
that appear in the center of the window. Although the activity returns to
full-screen mode, the button and media playback controls remain hidden.

Clearly, some code must be added to the project to detect when PiP mode
changes occur within the activity.

79.4 Detecting Picture-in-Picture Mode Changes

As discussed in the previous chapter, PiP mode changes are detected by
overriding the onPictureInPictureModeChanged() method within the
affected activity. n this case, the method must be written to detect whether
the activity is entering or exiting PiP mode and to take appropriate action to
re-activate the PiP button and the playback controls. Remaining within the
MainActivity.kt file, add this method now:

override fun onPictureInPictureModeChanged(

 isInPictureInPictureMode: Boolean, newConfig: Configuration) {

 super.onPictureInPictureModeChanged(isInPictureInPictureMode,
newConfig)

 if (isInPictureInPictureMode) {

 } else {

 binding.pipButton.visibility = View.VISIBLE

 binding.videoView1.setMediaController(mediaController)

 }

}

When the method is called, it is passed a Boolean value indicating whether
the activity is now in PiP mode. The code in the above method checks this
value to decide whether to show the PiP button and to re-activate the
playback controls.

79.5 Adding a Broadcast Receiver

The final step in the project is to add an action to the PiP window. The
purpose of this action is to display a Toast message containing the name of
the currently playing video. This will require some communication between
the PiP window and the activity. One of the simplest ways to achieve this is
to implement a broadcast receiver within the activity and use a pending
intent to broadcast a message from the PiP window to the activity. Each
time the activity enters PiP mode, these steps must be performed, so code
must be added to the onPictureInPictureModeChanged() method. Locate
this method now and begin by adding some code to create an intent filter
and initialize the broadcast receiver:

.

.

import android.content.BroadcastReceiver

import android.content.Context

import android.content.Intent

import android.content.IntentFilter

import android.widget.Toast

class MainActivity : AppCompatActivity() {

.

.

 private val receiver: BroadcastReceiver? = null

.

.

override fun onPictureInPictureModeChanged(

 isInPictureInPictureMode: Boolean, newConfig: Configuration) {

 super.onPictureInPictureModeChanged(isInPictureInPictureMode,
newConfig)

 if (isInPictureInPictureMode) {

 val filter = IntentFilter()

 filter.addAction(

 "com.ebookfrenzy.videoplayer.VIDEO_INFO")

 val receiver = object : BroadcastReceiver() {

 override fun onReceive(context: Context,

 intent: Intent) {

 Toast.makeText(context,

 "Favorite Home Movie Clips",

 Toast.LENGTH_LONG).show()

 }

 }

 registerReceiver(receiver, filter, Context.RECEIVER_EXPORTED)

 } else {

 binding.pipButton.visibility = View.VISIBLE

 binding.videoView1.setMediaController(mediaController)

 receiver?.let {

 unregisterReceiver(it)

 }

 }

}

79.6 Adding the PiP Action

With the broadcast receiver implemented, the next step is to create a
RemoteAction object configured with an image to represent the action
within the PiP window.

For this example, an image icon file named ic_info_24dp.xml will be used.
This file can be found in the project_icons folder of the source code
download archive available from the following URL:

https://www.payloadbooks.com/product/jellyfishkotlin/

https://www.payloadbooks.com/product/jellyfishkotlin/

Locate this icon file and copy and paste it into the app -> res -> drawables
folder within the Project tool window:

Figure 79-3

The next step is to create an Intent that will be sent to the broadcast
receiver. This intent then needs to be wrapped up within a PendingIntent
object, allowing the intent to be triggered later when the user taps the action
button in the PiP window.

Edit the MainActivity.kt file to add a method to create the Intent and
PendingIntent objects as follows:

.

.

import android.app.PendingIntent

import android.app.PendingIntent.FLAG_IMMUTABLE

.

.

class MainActivity : AppCompatActivity() {

 private val REQUEST_CODE = 101

.

.

 private fun createPipAction() {

 val actionIntent =
Intent("com.ebookfrenzy.videoplayer.VIDEO_INFO")

 val pendingIntent = PendingIntent.getBroadcast(this@MainActivity,

 REQUEST_CODE, actionIntent, FLAG_IMMUTABLE)

 }

}

Now that both the Intent object and the PendingIntent instance in which it
is contained have been created, a RemoteAction object needs to be created
containing the icon to appear in the PiP window and the PendingIntent
object. Remaining within the createPipAction() method, add this code as
follows:

.

.

import android.app.RemoteAction

import android.graphics.drawable.Icon

.

.

private fun createPipAction() {

 val actions = ArrayList<RemoteAction>()

 val actionIntent = Intent("com.ebookfrenzy.videoplayer.VIDEO_INFO")

 val pendingIntent = PendingIntent.getBroadcast(this@MainActivity,

 REQUEST_CODE, actionIntent, FLAG_IMMUTABLE)

 val icon = Icon.createWithResource(this, R.drawable.ic_info_24dp)

 val remoteAction = RemoteAction(icon, "Info", "Video Info",
pendingIntent)

 actions.add(remoteAction)

}

Now a PictureInPictureParams object containing the action needs to be
created and the parameters applied so that the action appears within the PiP
window:

private fun createPipAction() {

 val actions = ArrayList<RemoteAction>()

 val actionIntent = Intent("com.ebookfrenzy.videoplayer.VIDEO_INFO")

 val pendingIntent = PendingIntent.getBroadcast(this@MainActivity,

 REQUEST_CODE, actionIntent, FLAG_IMMUTABLE)

 val icon =

 Icon.createWithResource(this,

 R.drawable.ic_info_24dp)

 val remoteAction = RemoteAction(icon, "Info",

 "Video Info", pendingIntent)

 actions.add(remoteAction)

 val params = PictureInPictureParams.Builder()

 .setActions(actions)

 .build()

 setPictureInPictureParams(params)

}

The final task before testing the action is to make a call to the
createPipAction() method when the activity enters PiP mode:

override fun onPictureInPictureModeChanged(

 isInPictureInPictureMode: Boolean, newConfig: Configuration) {

 super.onPictureInPictureModeChanged(isInPictureInPictureMode,
newConfig)

.

.

 registerReceiver(receiver, filter, Context.RECEIVER_EXPORTED)

 createPipAction()

 } else {

 pipButton.visibility = View.VISIBLE

 videoView1.setMediaController(mediaController)

.

.

79.7 Testing the Picture-in-Picture Action

Rerun the app and place the activity into PiP mode. Tap on the PiP window
so that the new action button appears, as shown in Figure 79-4:

Figure 79-4

Click on the action button and wait for the Toast message to appear,
displaying the name of the video:

Figure 79-5

79.8 Summary

This chapter has demonstrated the addition of Picture-in-Picture support to
an Android Studio app project, including enabling and entering PiP mode
and implementing a PiP action. This included using a broadcast receiver
and pending intents to implement communication between the PiP window
and the activity.

80. Making Runtime Permission Requests in Android

In a number of the example projects created in preceding chapters, changes
have been made to the AndroidManifest.xml file to request permission for
the app to perform a specific task. In a couple of instances, for example,
internet access permission has been requested to allow the app to download
and display web pages. In each case up until this point, adding the request
to the manifest was all that was required for the app to obtain permission
from the user to perform the designated task.

However, there are several permissions for which additional steps are
required for the app to function when running on Android 6.0 or later. The
first of these so-called “dangerous” permissions will be encountered in the
next chapter. Before reaching that point, however, this chapter will outline
the steps involved in requesting such permissions when running on the
latest generations of Android.

80.1 Understanding Normal and Dangerous Permissions

Android enforces security by requiring the user to grant permission for an
app to perform certain tasks. Before the introduction of Android 6,
permission was always sought when the app was installed on the device.
Figure 80-1, for example, shows a typical screen seeking a variety of
permissions while installing an app via Google Play.

Figure 80-1

For many types of permissions, this scenario still applies to apps on
Android 6.0 or later. These permissions are referred to as normal
permissions and are still required to be accepted by the user at the point of
installation. A second type of permission, called dangerous permissions,
must also be declared within the manifest file in the same way as a normal
permission but must also be requested from the user when the application is
first launched. When such a request is made, it appears in the form of a
dialog box, as illustrated in Figure 80-2:

Figure 80-2

The full list of permissions that fall into the dangerous category is
contained in Table 80-1:

Permission Group Permission

Calendar
READ_CALENDAR

WRITE_CALENDAR

Camera CAMERA

Contacts

READ_CONTACTS

WRITE_CONTACTS

GET_ACCOUNTS

Location
ACCESS_FINE_LOCATION

ACCESS_COARSE_LOCATION

Microphone RECORD_AUDIO

Notifications POST_NOTIFICATIONS

Phone READ_PHONE_STATE

CALL_PHONE

READ_CALL_LOG

WRITE_CALL_LOG

ADD_VOICEMAIL

USE_SIP

PROCESS_OUTGOING_CALLS

Sensors BODY_SENSORS

SMS

SEND_SMS

RECEIVE_SMS

READ_SMS

RECEIVE_WAP_PUSH

RECEIVE_MMS

Storage

MANAGE_EXTERNAL_STORAGE

READ_EXTERNAL_STORAGE

WRITE_EXTERNAL_STORAGE

Table 80-1

The MANAGE_EXTERNAL_STORAGE permission gives the app access
to all files on the device’s external storage, including those belonging to
other apps. Consequently, permission will only be enabled for your app

once Google has verified during the review process that this level of access
is needed. To test your app in advance of submitting it to the Google Play
store, the following adb command can be executed to enable access for the
app on the testing device temporarily:

adb shell appops set --uid <package name>
MANAGE_EXTERNAL_STORAGE allow

This mode can be turned off as follows:

adb shell appops set --uid <package name>
MANAGE_EXTERNAL_STORAGE default

80.2 Creating the Permissions Example Project

Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.

Enter PermissionDemo into the Name field and specify
com.ebookfrenzy.permissiondemo as the package name. Before clicking on
the Finish button, change the Minimum API level setting to API 26:
Android 8.0 (Oreo) and the Language menu to Kotlin.

80.3 Checking for a Permission

The Android Support Library contains several methods that can be used to
seek and manage dangerous permissions within the code of an Android
app. These API calls can be made safely regardless of the version of
Android on which the app is running but will only perform meaningful
tasks when executed on Android 6.0 or later.

Before an app attempts to use a feature that requires approval of a
dangerous permission, and regardless of whether or not permission was
previously granted, the code must check that the permission has been
granted. This can be achieved via a call to the checkSelfPermission()
method of the ContextCompat class, passing through as arguments a
reference to the current activity and the requested permission. The method

will check whether the permission has been previously granted and return
an integer value matching PackageManager.PERMISSION_GRANTED or
PackageManager.PERMISSION_DENIED.

Within the MainActivity.kt file of the example project, modify the code to
check whether permission has been granted for the app to record audio:

package com.ebookfrenzy.permissiondemo

.

.

import android.Manifest

import android.content.pm.PackageManager

import androidx.core.content.ContextCompat

import android.util.Log

class MainActivity : AppCompatActivity() {

 private val TAG = "PermissionDemo"

 override fun onCreate(savedInstanceState: Bundle?) {

.

.

 setupPermissions()

 }

 private fun setupPermissions() {

 val permission = ContextCompat.checkSelfPermission(this,

 Manifest.permission.RECORD_AUDIO)

 if (permission != PackageManager.PERMISSION_GRANTED) {

 Log.i(TAG, "Permission to record denied")

 }

 }

}

Edit the AndroidManifest.xml file (located in the Project tool window
under app -> manifests) and add a line to request recording permission as
follows:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.permissiondemoactivity" >

 <uses-permission
android:name="android.permission.RECORD_AUDIO" />

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@sxtring/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme" >

 <activity android:name=".MainActivity" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category

 android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Run the app on a device or emulator and open the Logcat tool window.
Note that even though the permission has been added to the manifest file,
the permission denied message appears. This is because Android requires
that in addition to adding the request to the manifest file, the app must also
request dangerous permissions at runtime.

80.4 Requesting Permission at Runtime

A permission request is made via a call to the requestPermissions() method
of the ActivityCompat class. When this method is called, the permission
request is handled asynchronously, and a method named
onRequestPermissionsResult() is called when the task is completed.

The requestPermissions() method takes as arguments a reference to the
current activity, the identifier of the requested permission, and a request
code. The request code can be any integer value and will be used to identify
which request has triggered the call to the onRequestPermissionsResult()
method. Modify the MainActivity.kt file to declare a request code and
request recording permission if the permission check fails:

.

.

import androidx.core.app.ActivityCompat

class MainActivity : AppCompatActivity() {

 private val TAG = "PermissionDemo"

 private val RECORD_REQUEST_CODE = 101

.

.

 private fun setupPermissions() {

 val permission = ContextCompat.checkSelfPermission(this,

 Manifest.permission.RECORD_AUDIO)

 if (permission != PackageManager.PERMISSION_GRANTED) {

 Log.i(TAG, "Permission to record denied")

 makeRequest()

 }

 }

 private fun makeRequest() {

 ActivityCompat.requestPermissions(this,

 arrayOf(Manifest.permission.RECORD_AUDIO),

 RECORD_REQUEST_CODE)

 }

}

Next, implement the onRequestPermissionsResult() method so that it reads
as follows:

override fun onRequestPermissionsResult(requestCode: Int,

 permissions: Array<String>, grantResults: IntArray) {

 super.onRequestPermissionsResult(requestCode, permissions,
grantResults)

 when (requestCode) {

 RECORD_REQUEST_CODE -> {

 if (grantResults.isEmpty() || grantResults[0] !=

 PackageManager.PERMISSION_GRANTED) {

 Log.i(TAG, "Permission has been denied by user")

 } else {

 Log.i(TAG, "Permission has been granted by user")

 }

 }

 }

}

Compile and run the app on an emulator or device and note that a dialog
seeking permission to record audio appears as shown in Figure 80-3:

Figure 80-3

Tap the While using the app button and check that the “Permission has been
granted by user” message appears in the Logcat panel.

Once the user has granted the requested permission, the
checkSelfPermission() method call will return a
PERMISSION_GRANTED result on future app invocations until the user
uninstalls and re-installs the app or changes the permissions for the app in
Settings.

80.5 Providing a Rationale for the Permission Request

As evident from Figure 80-3, the user can deny the requested permission.
In this case, the app will continue to request permission each time the user
launches it unless the user selects the “Never ask again” option before
clicking the Deny button. Repeated denials by the user may indicate that
the user doesn’t understand why the app requires permission. The user
might, therefore, be more likely to grant permission if the reason for the
requirements is explained when the request is made. Unfortunately, it is not
possible to change the content of the request dialog to include such an
explanation.

An explanation is best included in a separate dialog which can be displayed
before the request dialog is presented to the user. This raises the question of
when to display this explanation dialog. The Android documentation
recommends that an explanation dialog only be shown if the user has
previously denied the permission and provides a method to identify when
this is the case.

A call to the shouldShowRequestPermissionRationale() method of the
ActivityCompat class will return a true result if the user has previously
denied a request for the specified permission and a false result if the request
has not previously been made. In the case of a true result, the app should
display a dialog containing a rationale for needing permission, and once the
dialog has been read and dismissed by the user, the permission request
should be repeated.

To add this functionality to the example app, modify the onCreate() method
so that it reads as follows:

.

.

import android.app.AlertDialog

.

.

private fun setupPermissions() {

 val permission = ContextCompat.checkSelfPermission(this,

 Manifest.permission.RECORD_AUDIO)

 if (permission != PackageManager.PERMISSION_GRANTED) {

 Log.i(TAG, "Permission to record denied")

 if (ActivityCompat.shouldShowRequestPermissionRationale(this,

 Manifest.permission.RECORD_AUDIO)) {

 val builder = AlertDialog.Builder(this)

 builder.setMessage("Permission to access the microphone is
required

for this app to record audio.")

 .setTitle("Permission required")

 builder.setPositiveButton("OK") { dialog, id ->

 makeRequest()

 }

 val dialog = builder.create()

 dialog.show()

 } else {

 makeRequest()

 }

 }

}

The method still checks whether or not the permission has been granted but
now also identifies whether a rationale needs to be displayed. If the user
has previously denied the request, a dialog is displayed containing an
explanation and an OK button on which a listener is configured to call the
makeRequest() method when the button is tapped. If the permission request
has not previously been made, the code moves directly to seeking
permission.

80.6 Testing the Permissions App

On the device or emulator session on which testing is being performed,
launch the Settings app, select the Apps option, and scroll to and select the
PermissionDemo app. On the app settings screen, tap the uninstall button to
remove the app.

Rerun the app, and click on the Don’t allow button when the permission
request dialog appears. Stop and restart the app and verify that the rationale
dialog appears. Tap the OK button, and tap the While using the app button
when the permission request dialog appears.

Return to the Settings app, select the Apps option, and choose the
PermissionDemo app again from the list. Once the settings for the app are
listed, verify that the Permissions section lists the Microphone permission.

Return to the Settings app, select the Apps option, and choose the
PermissionDemo app again from the list. Once the settings for the app are
listed, verify that the Permissions section lists the Microphone permission:

Figure 80-4

80.7 Summary

Before the introduction of Android 6.0, the only step necessary for an app
to request permission to access certain functionality was to add an
appropriate line to the application’s manifest file. The user would then be
prompted to approve the permission when installing the app. This is still
the case for most permissions, except for a set of permissions considered
dangerous. Permissions that are considered dangerous usually have the
potential to allow an app to violate the user’s privacy, such as allowing
access to the microphone, contacts list, or external storage.

As outlined in this chapter, apps based on Android 6 or later must now
request dangerous permission approval from the user when the app
launches and include the permission request in the manifest file.

81. Android Audio Recording and Playback using MediaPlayer and
MediaRecorder

This chapter will provide an overview of the MediaRecorder class and
explain how this class can be used to record audio or video. The use of the
MediaPlayer class to play back audio will also be covered. Having covered
the basics, an example application will be created to demonstrate these
techniques. In addition to looking at audio and video handling, this chapter
will also touch on saving files to the SD card.

81.1 Playing Audio

In terms of audio playback, most implementations of Android support AAC
LC/LTP, HE-AACv1 (AAC+), HE-AACv2 (enhanced AAC+), AMR-NB,
AMR-WB, MP3, MIDI, Ogg Vorbis, and PCM/WAVE formats.

Audio playback can be performed using either the MediaPlayer or the
AudioTrack classes. AudioTrack is a more advanced option that uses
streaming audio buffers and provides greater control over the audio. The
MediaPlayer class, on the other hand, provides an easier programming
interface for implementing audio playback and will meet the needs of most
audio requirements.

The MediaPlayer class has associated with it a range of methods that can be
called by an application to perform certain tasks. A subset of some of the
key methods of this class is as follows:

•create() – Called to create a new instance of the class, passing through the
Uri of the audio to be played.

•setDataSource() – Sets the source from which the audio is to play.

•prepare() – Instructs the player to prepare to begin playback.

•start() – Starts the playback.

•pause() – Pauses the playback. Playback may be resumed via a call to the
resume() method.

•stop() – Stops playback.

•setVolume() – Takes two floating-point arguments specifying the playback
volume for the left and right channels.

•resume() – Resumes a previously paused playback session.

•reset() – Resets the state of the media player instance. Essentially sets the
instance back to the uninitialized state. At a minimum, a reset player will
need to have the data source set again, and the prepare() method called.

•release() – To be called when the player instance is no longer needed. This
method ensures that any resources held by the player are released.

In a typical implementation, an application will instantiate an instance of
the MediaPlayer class, set the source of the audio to be played, and then
call prepare() followed by start(). For example:

val mediaPlayer = MediaPlayer()

mediaPlayer?.setDataSource("https://www.yourcompany.com/myaudio.mp
3")

mediaPlayer?.prepare()

mediaPlayer?.start()

81.2 Recording Audio and Video using the MediaRecorder Class

As with audio playback, recording can be performed using several different
techniques. One option is to use the MediaRecorder class, which, as with
the MediaPlayer class, provides several methods that are used to record
audio:

•setAudioSource() – Specifies the audio source to be recorded (typically,
this will be MediaRecorder.AudioSource.MIC for the device microphone).

•setVideoSource() – Specifies the source of the video to be recorded (for
example MediaRecorder.VideoSource.CAMERA).

•setOutputFormat() – Specifies the format into which the recorded audio or
video is to be stored (for example
MediaRecorder.OutputFormat.AAC_ADTS).

•setAudioEncoder() – Specifies the audio encoder for the recorded audio
(for example MediaRecorder.AudioEncoder.AAC).

•setOutputFile() – Configures the path to the file into which the recorded
audio or video will be stored.

•prepare() – Prepares the MediaRecorder instance to begin recording.

•start() - Begins the recording process.

•stop() – Stops the recording process. Once a recorder has been stopped, it
must be completely reconfigured and prepared before restarting.

•reset() – Resets the recorder. The instance will need to be completely
reconfigured and prepared before being restarted.

•release() – Should be called when the recorder instance is no longer
needed. This method ensures that all resources held by the instance are
released.

A typical implementation using this class will set the source, output,
encoding format, and output file. Calls will then be made to the prepare()
and start() methods. The stop() method will then be called when the
recording ends, followed by the reset() method. When the application no
longer needs the recorder instance, a call to the release() method is
recommended:

val mediaRecorder = MediaRecorder(context)

mediaRecorder?.setAudioSource(MediaRecorder.AudioSource.MIC)

mediaRecorder?.setOutputFormat(MediaRecorder.OutputFormat.THREE_
GPP)

mediaRecorder?.setAudioEncoder(MediaRecorder.AudioEncoder.AMR_N
B)

mediaRecorder?.setOutputFile(audioFilePath)

mediaRecorder?.prepare()

mediaRecorder?.start()

.

.

mediaRecorder?.stop()

mediaRecorder?.reset()

mediaRecorder?.release()

To record audio, the manifest file for the application must include the
android.permission.RECORD_AUDIO permission:

<uses-permission android:name="android.permission.RECORD_AUDIO"
/>

As outlined in the chapter entitled “Making Runtime Permission Requests
in Android”, access to the microphone falls into the category of dangerous
permissions. To support Android 6, therefore, a specific request for
microphone access must also be made when the application launches, the
steps for which will be covered later in this chapter.

81.3 About the Example Project

The remainder of this chapter will create an example application to
demonstrate the use of the MediaPlayer and MediaRecorder classes to
implement the recording and playback of audio on an Android device.

When developing applications that use specific hardware features, the
microphone being a case in point, it is important to check the feature’s
availability before attempting to access it in the application code. The
application created in this chapter will, therefore, also include code to
detect the presence of a microphone on the device.

Once completed, this application will provide a straightforward interface
allowing the user to record and play audio. The recorded audio will be
stored within an audio file on the device. That being the case, this tutorial
will also briefly explore the mechanism for using SD Card storage.

81.4 Creating the AudioApp Project

Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.

Enter AudioApp into the Name field and specify
com.ebookfrenzy.audioapp as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 31: Android
12.0 and the Language menu to Kotlin. Add view binding support to the
project using the steps outlined in section 18.8 Migrating a Project to View
Binding.

81.5 Designing the User Interface

Once the new project has been created, select the activity_main.xml file
from the Project tool window, and with the Layout Editor tool in Design
mode, select the “Hello World!” TextView and delete it from the layout.

Drag and drop three Button views onto the layout. The positioning of the
buttons is not paramount to this example, though Figure 81-1 shows a
suggested layout using a vertical chain.

Configure the buttons to display string resources that read Play, Record,
and Stop and give them view IDs of playButton, recordButton, and
stopButton, respectively.

Select the Play button and, within the Attributes panel, configure the
onClick property to call a method named playAudio when selected by the
user. Repeat these steps to configure the remaining buttons to call methods
named recordAudio and stopAudio, respectively.

Figure 81-1

81.6 Checking for Microphone Availability

Attempting to record audio on a device without a microphone will cause
the Android system to throw an exception. It is vital, therefore, that the
code checks for the presence of a microphone before making such an
attempt. There are several ways of doing this, including checking for the
physical presence of the device. An easier approach that is more likely to
work on different Android devices is to ask the Android system if it has a
package installed for a particular feature. This involves creating an instance
of the Android PackageManager class and then calling the object’s
hasSystemFeature() method. PackageManager.FEATURE_MICROPHONE
is the feature of interest in this case.

For this example, we will create a method named hasMicrophone() that
may be called upon to check for the presence of a microphone. Within the
Project tool window, locate and double-click on the MainActivity.kt file
and modify it to add this method:

package com.ebookfrenzy.audioapp

.

.

import android.content.pm.PackageManager

class MainActivity : AppCompatActivity() {

.

.

 private fun hasMicrophone(): Boolean {

 val pmanager = this.packageManager

 return pmanager.hasSystemFeature(

 PackageManager.FEATURE_MICROPHONE)

 }

}

81.7 Initializing the Activity

The next step is to modify the activity to perform several initialization
tasks. Remaining within the MainActivity.kt file, modify the code as
follows:

.

.

import android.media.MediaRecorder

import android.os.Environment

import android.view.View

import android.media.MediaPlayer

import java.io.File

.

.

class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 private var mediaRecorder: MediaRecorder? = null

 private var mediaPlayer: MediaPlayer? = null

 private var audioFilePath: String? = null

 private var isRecording = false

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

.

.

 audioSetup()

 }

 private fun audioSetup() {

 if (!hasMicrophone()) {

 binding.stopButton.isEnabled = false

 binding.playButton.isEnabled = false

 binding.recordButton.isEnabled = false

 } else {

 binding.playButton.isEnabled = false

 binding.stopButton.isEnabled = false

 }

 val audioFile = File(this.filesDir, "myaudio.3gp")

 audioFilePath = audioFile.absolutePath

 }

.

.

}

The added code calls hasMicrophone() method to ascertain whether the
device includes a microphone. If it does not, all the buttons are disabled;
otherwise, only the Stop and Play buttons are disabled.

The next line of code needs a little more explanation:

val audioFile = File(this.filesDir, "myaudio.3gp")

audioFilePath = audioFile.absolutePath

This code creates a new file named myaudio.3gp within the app’s internal
storage to store the audio recording.

81.8 Implementing the recordAudio() Method

The recordAudio() method will be called when the user touches the Record
button. This method will need to turn the appropriate buttons on and off
and configure the MediaRecorder instance with information about the
source of the audio, the output format and encoding, and the file’s location
into which the audio is to be stored. Finally, the prepare() and start()
methods of the MediaRecorder object will need to be called. Combined,
these requirements result in the following method implementation in the
MainActivity.kt file:

fun recordAudio(view: View) {

 isRecording = true

 binding.stopButton.isEnabled = true

 binding.playButton.isEnabled = false

 binding.recordButton.isEnabled = false

 try {

 mediaRecorder = MediaRecorder(this)

 mediaRecorder?.setAudioSource(MediaRecorder.AudioSource.MIC)

 mediaRecorder?.setOutputFormat(

 MediaRecorder.OutputFormat.THREE_GPP)

 mediaRecorder?.setOutputFile(audioFilePath)

 mediaRecorder?.setAudioEncoder(MediaRecorder.AudioEncoder.AM
R_NB)

 mediaRecorder?.prepare()

 } catch (e: Exception) {

 e.printStackTrace()

 }

 mediaRecorder?.start()

}

81.9 Implementing the stopAudio() Method

The stopAudio() method enables the Play button, turning off the Stop
button, and then stopping and resetting the MediaRecorder instance. The
code to achieve this reads as outlined in the following listing and should be
added to the MainActivity.kt file:

fun stopAudio(view: View) {

 binding.stopButton.isEnabled = false

 binding.playButton.isEnabled = true

 if (isRecording) {

 binding.recordButton.isEnabled = false

 mediaRecorder?.stop()

 mediaRecorder?.release()

 mediaRecorder = null

 isRecording = false

 } else {

 mediaPlayer?.release()

 mediaPlayer = null

 binding.recordButton.isEnabled = true

 }

}

81.10 Implementing the playAudio() method

The playAudio() method will create a new MediaPlayer instance, assign the
audio file located on the SD card as the data source and then prepare and
start the playback:

fun playAudio(view: View) {

 binding.playButton.isEnabled = false

 binding.recordButton.isEnabled = false

 binding.stopButton.isEnabled = true

 mediaPlayer = MediaPlayer()

 mediaPlayer?.setDataSource(audioFilePath)

 mediaPlayer?.prepare()

 mediaPlayer?.start()

}

81.11 Configuring and Requesting Permissions

Before testing the application, the appropriate permissions must be
requested within the manifest file for the application. Specifically, the
application will require permission to access the microphone. Within the
Project tool window, locate and double-click on the AndroidManifest.xml
file to load it into the editor and modify the XML to add the permission
tags:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools">

 <uses-permission
android:name="android.permission.RECORD_AUDIO" />

 <application

.

.

The above steps will be adequate to ensure that the user enables
microphone access permission when the app is installed on devices running
versions of Android predating Android 6.0. Microphone access is
categorized in Android as being a dangerous permission because it allows
the app to compromise the user’s privacy. For the example app to function
on Android 6 or later devices, code needs to be added to request permission
at app runtime.

Edit the MainActivity.kt file and begin by adding some additional import
directives and a constant to act as request identification codes for the
permissions being requested:

.

.

import android.Manifest

import android.widget.Toast

import androidx.core.app.ActivityCompat

import androidx.core.content.ContextCompat

.

.

class MainActivity : AppCompatActivity() {

.

.

 private val RECORD_REQUEST_CODE = 101

.

.

Next, a method needs to be added to the class, the purpose of which is to
take as arguments the permission to be requested and the corresponding
request identification code. Remaining with the MainActivity.kt class file,
implement this method as follows:

private fun requestPermission(permissionType: String, requestCode: Int) {

 val permission = ContextCompat.checkSelfPermission(this,

 permissionType)

 if (permission != PackageManager.PERMISSION_GRANTED) {

 ActivityCompat.requestPermissions(this,

 arrayOf(permissionType), requestCode

)

 }

}

Using the steps outlined in the “Making Runtime Permission Requests in
Android” chapter of this book, the above method verifies that the specified
permission has not already been granted before making the request, passing
through the identification code as an argument.

When the request has been handled, the onRequestPermissionsResult()
method will be called on the activity, passing through the identification
code and the request results. The next step, therefore, is to implement this
method within the MainActivity.kt file as follows:

override fun onRequestPermissionsResult(requestCode: Int,

 permissions: Array<String>, grantResults: IntArray) {

 super.onRequestPermissionsResult(requestCode, permissions,
grantResults)

 when (requestCode) {

 RECORD_REQUEST_CODE -> {

 if (grantResults.isEmpty() || grantResults[0]

 != PackageManager.PERMISSION_GRANTED

) {

 binding.recordButton.isEnabled = false

 Toast.makeText(

 this,

 "Record permission required",

 Toast.LENGTH_LONG

).show()

 }

 }

 }

}

The above code checks the request identifier code to identify which
permission request has returned before checking whether or not the
corresponding permission was granted. If permission is denied, a message
is displayed to the user indicating that the app will not function and the
record button is disabled.

Before testing the app, all that remains is to call the newly added
requestPermission() method for microphone access when the app launches.
Remaining in the MainActivity.kt file, modify the audioSetup() method as
follows:

private fun audioSetup() {

.

.

 audioFilePath = audioFile.absolutePath

 requestPermission(Manifest.permission.RECORD_AUDIO,

 RECORD_REQUEST_CODE)

}

81.12 Testing the Application

Compile and run the application on an Android device containing a
microphone, allow microphone access, and tap the Record button. After
recording, touch Stop followed by Play. At this point, the recorded audio
should play back through the device speakers.

81.13 Summary

The Android SDK provides several mechanisms to implement audio
recording and playback. This chapter has looked at two of these: the
MediaPlayer and MediaRecorder classes. Having covered the theory of
using these techniques, this chapter worked through creating an example
application designed to record and then play back audio. While working
with audio in Android, this chapter also looked at the steps involved in
ensuring that the device on which the application is running has a
microphone before attempting to record audio.

82. An Android Notifications Tutorial

Notifications provide a way for an app to convey a message to the user
when the app is either not running or is currently in the background. For
example, a messaging app might notify the user that a new message has
arrived from a contact. Notifications can be categorized as being either
local or remote. A local notification is triggered by the app itself on the
device on which it is running. On the other hand, remote notifications are
initiated by a remote server and delivered to the device for presentation to
the user.

Notifications appear in the notification drawer that is pulled down from the
screen’s status bar, and each notification can include actions such as a
button to open the app that sent the notification. Android also supports
Direct Reply notifications, a feature that allows the user to type in and
submit a response to a notification from within the notification panel.

This chapter outlines the implementation of local notifications within an
Android app. The next chapter (“An Android Direct Reply Notification
Tutorial”) will cover the implementation of direct reply notifications.

82.1 An Overview of Notifications

When a notification is initiated on an Android device, it appears as an icon
in the status bar. Figure 82-1, for example, shows a status bar with several
notification icons:

Figure 82-1

To view the notifications, the user makes a downward swiping motion
starting at the status bar to pull down the notification drawer, as shown in
Figure 82-2:

Figure 82-2

In devices running Android 8 or newer, performing a long press on an app
launcher icon will display any pending notifications associated with that
app, as shown in Figure 82-3:

Figure 82-3

Android 8 and later also supports notification dots that appear on app
launcher icons when a notification is waiting to be seen by the user.

A typical notification will display a message and, when tapped, launch the
app responsible for issuing the notification. Notifications may also contain
action buttons that perform a task specific to the corresponding app when
tapped. Figure 82-4, for example, shows a notification containing two
action buttons allowing the user to delete or save an incoming message:

Figure 82-4

It is also possible for the user to enter an in-line text reply into the
notification and send it to the app, as is the case in Figure 82-5 below. This
allows the user to respond to a notification without launching the
corresponding app into the foreground:

Figure 82-5

The remainder of this chapter will work through creating and issuing a
simple notification containing actions. The topic of direct reply support will
be covered in the next chapter entitled “An Android Direct Reply
Notification Tutorial”.

82.2 Creating the NotifyDemo Project

Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template

before clicking on the Next button.

Enter NotifyDemo into the Name field and specify
com.ebookfrenzy.notifydemo as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 33: Android
13 (Tiramisu) and the Language menu to Kotlin.

82.3 Designing the User Interface

The main activity will contain a single button, the purpose of which is to
create and issue an intent. Locate and load the activity_main.xml file into
the Layout Editor tool and delete the default TextView widget.

With Autoconnect enabled, drag and drop a Button object from the panel
onto the center of the layout canvas, as illustrated in Figure 82-6.

With the Button widget selected in the layout, use the Attributes panel to
configure the onClick property to call a method named sendNotification.

Figure 82-6

Select the Button widget, change the text property in the Attributes tool
window to “Notify” and extract the property value to a string resource.

82.4 Creating the Second Activity

In this example, the app will contain a second activity which will be
launched by the user from within the notification. Add this new activity to
the project by right-clicking on the com.ebookfrenzy.notifydemo package
name located in app -> kotlin+java and selecting the New -> Activity ->
Empty Views Activity menu option to display the New Android Activity
dialog.

Enter ResultActivity into the Activity Name field and name the layout file
activity_result. Since this activity will not be started when the application is
launched (it will instead be launched via an intent from within the

notification), it is important to make sure that the Launcher Activity option
is disabled before clicking on the Finish button.

Open the layout for the second activity (app -> res -> layout ->
activity_result.xml) and drag and drop a TextView widget so that it is
positioned in the center of the layout. Edit the text of the TextView so that
it reads “Result Activity” and extract the property value to a string
resource.

82.5 Creating a Notification Channel

Before an app can send a notification, it must create a notification channel.
A notification channel consists of an ID that uniquely identifies the channel
within the app, a channel name, and a channel description (only the latter
two will be seen by the user). Channels are created by configuring a
NotificationChannel instance and then passing that object through to the
createNotificationChannel() method of the NotificationManager class. For
this example, the app will contain a single notification channel named
“NotifyDemo News”. Edit the MainActivity.kt file and implement code to
create the channel when the app starts:

.

.

import android.app.NotificationChannel

import android.app.NotificationManager

import android.content.Context

import android.graphics.Color

class MainActivity : AppCompatActivity() {

 private var notificationManager: NotificationManager? = null

 override fun onCreate(savedInstanceState: Bundle?) {

.

.

 notificationManager =

 getSystemService(

 Context.NOTIFICATION_SERVICE) as NotificationManager

 createNotificationChannel(

 "com.ebookfrenzy.notifydemo.news",

 "NotifyDemo News",

 "Example News Channel")

 }

 private fun createNotificationChannel(id: String, name: String,

 description: String) {

 val importance = NotificationManager.IMPORTANCE_LOW

 val channel = NotificationChannel(id, name, importance)

 channel.description = description

 channel.enableLights(true)

 channel.lightColor = Color.RED

 channel.enableVibration(true)

 channel.vibrationPattern =

 longArrayOf(100, 200, 300, 400, 500, 400, 300, 200, 400)

 notificationManager?.createNotificationChannel(channel)

 }

}

The code declares and initializes a NotificationManager instance and then
creates the new channel with a low importance level (other options are
high, max, min, and none) configured with the name and description
properties. A range of optional settings are also added to the channel to
customize how the user is alerted to the arrival of a notification. These
settings apply to all notifications sent to this channel. Finally, the channel is
created by passing the notification channel object through to the
createNotificationChannel() method of the notification manager instance.

82.6 Requesting Notification Permission

Before testing the application, the appropriate permissions must be
requested within the manifest file for the application. Specifically, the
application will require permission to post notifications to the user. Within
the Project tool window, locate and double-click on the
AndroidManifest.xml file to load it into the editor and modify the XML to
add the permission:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.audioapp" >

 <uses-permission
android:name="android.permission.POST_NOTIFICATIONS" />

.

.

The above step will be adequate to ensure that the user enables notification
permission when the app is installed on devices running versions of
Android predating Android 6.0. Notification access is categorized in
Android as a dangerous permission because it gives the app the potential to
compromise the user’s privacy. For the example app to function on Android
6 or later devices, code must be added to request permission at app runtime.

Edit the MainActivity.kt file and begin by adding some additional import
directives and a constant to act as request identification codes for the
permission being requested:

.

.

import android.Manifest

import android.content.pm.PackageManager

import android.widget.Toast

import androidx.core.app.ActivityCompat

import androidx.core.content.ContextCompat

.

.

class MainActivity : AppCompatActivity() {

.

.

 private val NOTIFICATION_REQUEST_CODE = 101

.

.

Next, a method needs to be added to the class, the purpose of which is to
take as arguments the permission to be requested and the corresponding
request identification code. Remaining with the MainActivity.kt class file,
implement this method as follows:

private fun requestPermission(permissionType: String, requestCode: Int) {

 val permission = ContextCompat.checkSelfPermission(this,

 permissionType)

 if (permission != PackageManager.PERMISSION_GRANTED) {

 ActivityCompat.requestPermissions(this,

 arrayOf(permissionType), requestCode

)

 }

}

Using the steps outlined in the “Making Runtime Permission Requests in
Android” chapter of this book, the above method verifies that the specified
permission has not already been granted before making the request, passing
through the identification code as an argument.

When the request has been handled, the onRequestPermissionsResult()
method will be called on the activity, passing through the identification
code and the request results. The next step, therefore, is to implement this
method within the MainActivity.kt file as follows:

override fun onRequestPermissionsResult(requestCode: Int,

 permissions: Array<String>, grantResults: IntArray) {

 super.onRequestPermissionsResult(requestCode, permissions,
grantResults)

 when (requestCode) {

 NOTIFICATION_REQUEST_CODE -> {

 if (grantResults.isEmpty() || grantResults[0]

 != PackageManager.PERMISSION_GRANTED

) {

 Toast.makeText(

 this,

 "Notification permission required",

 Toast.LENGTH_LONG

).show()

 }

 }

 }

}

The above code checks the request identifier code to identify which
permission request has returned before checking whether or not the
corresponding permission was granted. If permission is denied, a message
is displayed to the user indicating that the app will not function and the
record button is disabled.

Before testing the app, all that remains is to call the newly added
requestPermission() method when the app launches. Remaining in the
MainActivity.kt file, modify the onCreate() method as follows:

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

.

.

 requestPermission(Manifest.permission.POST_NOTIFICATIONS,

 NOTIFICATION_REQUEST_CODE)

 notificationManager =

 getSystemService(

 Context.NOTIFICATION_SERVICE) as NotificationManager

.

.

With the code changes complete, compile and run the app on a device or
emulator running Android 13 or later. When the dialog shown in Figure 82-
7 appears, click on the Allow button to enable notifications:

Figure 82-7

After launching the app, place it in the background and open the Settings
app. Within the Settings app, select the Apps option, select the NotifyDemo
project, and, on the subsequent screen, tap the Notifications entry. The
notification screen should list the NotifyDemo News category as being
active for the user:

Figure 82-8

Before proceeding, ensure that notification dots are enabled for the app.

Although not a requirement for this example, it is worth noting that a
channel can be deleted from within the app via a call to the
deleteNotificationChannel() method of the notification manager, passing
through the ID of the channel to be deleted:

val channelID = "com.ebookfrenzy.notifydemo.news"

notificationManager?.deleteNotificationChannel(channelID)

82.7 Creating and Issuing a Notification

Notifications are created using the Notification.Builder class and must
contain an icon, title, and content. Open the MainActivity.kt file and
implement the sendNotification() method as follows to build a basic
notification:

.

.

import android.app.Notification

import android.view.View

.

.

fun sendNotification(view: View) {

 val channelID = "com.ebookfrenzy.notifydemo.news"

 val notification = Notification.Builder(this@MainActivity,

 channelID)

 .setContentTitle("Example Notification")

 .setContentText("This is an example notification.")

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setChannelId(channelID)

 .build()

}

Once a notification has been built, it needs to be issued using the notify()
method of the NotificationManager instance. The code to access the

NotificationManager and issue the notification needs to be added to the
sendNotification() method as follows:

fun sendNotification(view: View) {

 val notificationID = 101

 val channelID = "com.ebookfrenzy.notifydemo.news"

 val notification = Notification.Builder(this@MainActivity,

 channelID)

 .setContentTitle("Example Notification")

 .setContentText("This is an example notification.")

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setChannelId(channelID)

 .build()

 notificationManager?.notify(notificationID, notification)

}

Note that when the notification is issued, it is assigned a notification ID.
This can be any integer and may be used later when updating the
notification.

Compile and run the app and tap the button on the main activity. When the
notification icon appears in the status bar, touch and drag down from the

status bar to view the full notification:

Figure 82-9

Click and hold on the notification to view additional information:

Figure 82-10

Next, place the app in the background, navigate to the home screen
displaying the launcher icons for all of the apps, and note that a notification
dot has appeared on the NotifyDemo launcher icon as indicated by the
arrow in Figure 82-11:

Figure 82-11

If the dot is not present, check the notification options for NotifyDemo in
the Settings app to confirm that notification dots are enabled, as outlined
earlier in the chapter. If the dot still does not appear, touch and hold over a
blank area of the device home screen, select the Home Settings option from
the resulting menu, and enable the Notification dots option.

Performing a long press over the launcher icon will display a popup
containing the notification:

Figure 82-12

If more than one notification is pending for an app, the long press menu
popup will contain a count of notifications (highlighted in the above
figure). This number may be configured from within the app by making a
call to the setNumber() method when building the notification:

val notification = Notification.Builder(this@MainActivity,

 channelID)

 .setContentTitle("Example Notification")

 .setContentText("This is an example notification.")

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setChannelId(channelID)

 .setNumber(10)

 .build()

As currently implemented, tapping on the notification has no effect
regardless of where it is accessed. The next step is configuring the
notification to launch an activity when tapped.

82.8 Launching an Activity from a Notification

A notification should allow the user to perform some action, such as
launching the corresponding app or taking another action in response to the
notification. A common requirement is to launch an activity belonging to
the app when the user taps the notification.

This approach requires an activity to be launched and an Intent configured
to launch that activity. Assuming an app that contains an activity named
ResultActivity, the intent would be created as follows:

val resultIntent = Intent(this, ResultActivity::class.java)

This intent needs to then be wrapped in a PendingIntent instance.
PendingIntent objects are designed to allow an intent to be passed to other
applications, essentially granting those applications permission to perform
the intent at some point in the future. In this case, the PendingIntent object
is being used to provide the Notification system with a way to launch the
ResultActivity activity when the user taps the notification panel:

val pendingIntent = PendingIntent.getActivity(

 this,

 0,

 resultIntent,

 PendingIntent.FLAG_IMMUTABLE)

All that remains is to assign the PendingIntent object during the notification
build process using the setContentIntent() method.

Bringing these changes together results in a modified sendNotification()
method, which reads as follows:

.

.

import android.app.PendingIntent

import android.content.Intent

import android.graphics.drawable.Icon

.

.

class MainActivity : AppCompatActivity() {

 fun sendNotification(view: View) {

 val notificationID = 101

 val channelID = "com.ebookfrenzy.notifydemo.news"

 val resultIntent = Intent(this, ResultActivity::class.java)

 val pendingIntent = PendingIntent.getActivity(

 this,

 0,

 resultIntent,

 PendingIntent.FLAG_IMMUTABLE

)

 val notification = Notification.Builder(this@MainActivity,

 channelID)

 .setContentTitle("Example Notification")

 .setContentText("This is an example notification.")

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setChannelId(channelID)

 .setContentIntent(pendingIntent)

 .build()

 notificationManager?.notify(notificationID, notification)

 }

.

.

Compile and rerun the app, tap the button, and display the notification
drawer. This time, however, tapping the notification will cause the
ResultActivity to launch.

82.9 Adding Actions to a Notification

Another way to add interactivity to a notification is to create actions. These
appear as buttons beneath the notification message and are programmed to
trigger specific intents when tapped by the user. The following code, if
added to the sendNotification() method, will add an action button labeled
“Open” which launches the referenced pending intent when selected:

val icon: Icon = Icon.createWithResource(this,
android.R.drawable.ic_dialog_info)

val action: Notification.Action =

 Notification.Action.Builder(icon, "Open", pendingIntent).build()

val notification = Notification.Builder(this@MainActivity,

 channelID)

 .setContentTitle("Example Notification")

 .setContentText("This is an example notification.")

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setChannelId(channelID)

 .setContentIntent(pendingIntent)

 .setActions(action)

 .build()

notificationManager?.notify(notificationID, notification)

Add the above code to the method and run the app. Issue the notification
and note the appearance of the Open action within the notification
(depending on the Android version, it may be necessary to pull down on the
notification panel to reveal the Open action):

Figure 82-13

Tapping the action will trigger the pending intent and launch the
ResultActivity.

82.10 Bundled Notifications

If an app tends to issue notifications regularly, there is a danger that those
notifications will rapidly clutter both the status bar and the notification
drawer providing a less-than-optimal experience for the user. This can be

particularly true of news or messaging apps that send a notification every
time a breaking news story or a new message arrives from a contact.
Consider, for example, the notifications in Figure 82-14:

Figure 82-14

Now imagine if ten or even twenty new messages had arrived. To avoid this
problem, Android allows notifications to be bundled into groups.

To bundle notifications, each notification must be designated as belonging
to the same group via the setGroup() method, and an additional notification
must be issued and configured as the summary notification. The following
code, for example, creates and issues the three notifications shown in
Figure 82-14 above but bundles them into the same group. The code also
issues a notification to act as the summary:

val GROUP_KEY_NOTIFY = "group_key_notify"

var builderSummary: Notification.Builder = Notification.Builder(this,
channelID)

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setContentTitle("A Bundle Example")

 .setContentText("You have 3 new messages")

 .setGroup(GROUP_KEY_NOTIFY)

 .setGroupSummary(true)

var builder1: Notification.Builder = Notification.Builder(this, channelID)

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setContentTitle("New Message")

 .setContentText("You have a new message from Kassidy")

 .setGroup(GROUP_KEY_NOTIFY)

var builder2: Notification.Builder = Notification.Builder(this, channelID)

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setContentTitle("New Message")

 .setContentText("You have a new message from Caitlyn")

 .setGroup(GROUP_KEY_NOTIFY)

var builder3: Notification.Builder = Notification.Builder(this, channelID)

 .setSmallIcon(android.R.drawable.ic_dialog_info)

 .setContentTitle("New Message")

 .setContentText("You have a new message from Jason")

 .setGroup(GROUP_KEY_NOTIFY)

var notificationId0 = 100

var notificationId1 = 101

var notificationId2 = 102

var notificationId3 = 103

notificationManager?.notify(notificationId1, builder1.build())

notificationManager?.notify(notificationId2, builder2.build())

notificationManager?.notify(notificationId3, builder3.build())

notificationManager?.notify(notificationId0, builderSummary.build())

When the code is executed, a single notification icon will appear in the
status bar even though the app has issued four notifications. Within the
notification drawer, a single summary notification is displayed listing the
information in each of the bundled notifications:

Figure 82-15

Pulling further downward on the notification entry expands the panel to
show the details of each of the bundled notifications:

Figure 82-16

82.11 Summary

Notifications provide a way for an app to deliver a message to the user
when the app is not running or is currently in the background. Notifications
appear in the status bar and notification drawer. Local notifications are
triggered on the device by the running app, while remote notifications are
initiated by a remote server and delivered to the device. Local notifications
are created using the NotificationCompat.Builder class and issued using the
NotificationManager service.

As demonstrated in this chapter, notifications can be configured to provide
users with options (such as launching an activity or saving a message) by
using actions, intents, and the PendingIntent class. Notification bundling
provides a mechanism for grouping notifications to provide an improved
experience for apps that issue more notifications.

83. An Android Direct Reply
Notification Tutorial
Direct reply is an Android feature that allows the user to enter text into a
notification and send it to the app associated with that notification. This
allows the user to reply to a message in the notification without launching
an activity within the app. This chapter will build on the knowledge gained
in the previous chapter to create an example app that uses this notification
feature.

83.1 Creating the DirectReply Project
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.
Enter DirectReply into the Name field and specify
com.ebookfrenzy.directreply as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 33: Android
13 and the Language menu to Kotlin. Modify the project to support view
binding using the steps outlined in section 18.8 Migrating a Project to View
Binding.

83.2 Designing the User Interface
Load the activity_main.xml layout file into the layout tool. With
Autoconnect enabled, add a Button object beneath the existing “Hello
World!” label, as shown in Figure 83-1. With the Button widget selected in
the layout, use the Attributes tool window to set the onClick property to call
a method named sendNotification. Use the Infer Constraints button to add
any missing constraints to the layout if necessary. Before continuing, select
the “Hello World!” TextView, change the id attribute to textView, and
modify the text on the button to read “Notify”:

Figure 83-1
83.3 Requesting Notification Permission
Within the Project tool window, locate and double-click on the
AndroidManifest.xml file to load it into the editor and modify the XML to
add the permission element:
<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.ebookfrenzy.audioapp" >

 <uses-permission
android:name="android.permission.POST_NOTIFICATIONS" />
.
.

Edit the MainActivity.kt file and begin by adding some additional import
directives and a constant to act as request identification codes for the
permission being requested:
.
.
import android.Manifest
import android.content.pm.PackageManager
import android.widget.Toast
import androidx.core.app.ActivityCompat
import androidx.core.content.ContextCompat
.

.
class MainActivity : AppCompatActivity() {
.
.
 private val NOTIFICATION_REQUEST_CODE = 101
.
.

Next, a method needs to be added to the class, the purpose of which is to
take as arguments the permission to be requested and the corresponding
request identification code. Remaining with the MainActivity.kt class file,
implement this method as follows:
private fun requestPermission(permissionType: String, requestCode:
Int) {
 val permission = ContextCompat.checkSelfPermission(this,
 permissionType)

 if (permission != PackageManager.PERMISSION_GRANTED) {
 ActivityCompat.requestPermissions(this,
 arrayOf(permissionType), requestCode
)
 }
}

When the request has been handled, the onRequestPermissionsResult()
method will be called on the activity, passing through the identification
code and the request results. The next step, therefore, is to implement this
method within the MainActivity.kt file as follows:
override fun onRequestPermissionsResult(requestCode: Int,
 permissions: Array<String>, grantResults: IntArray)
{
 super.onRequestPermissionsResult(requestCode, permissions,
grantResults)

 when (requestCode) {
 NOTIFICATION_REQUEST_CODE -> {
 if (grantResults.isEmpty() || grantResults[0]
 != PackageManager.PERMISSION_GRANTED
) {

 Toast.makeText(
 this,
 "Notification permission required",

 Toast.LENGTH_LONG
).show()
 }
 }
 }
}

Before testing the app, all that remains is to call the newly added
requestPermission() method when the app launches. Remaining in the
MainActivity.kt file, modify the onCreate() method as follows:
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
.
.
 requestPermission(Manifest.permission.POST_NOTIFICATIONS,
 NOTIFICATION_REQUEST_CODE)
}

83.4 Creating the Notification Channel
As with the example in the previous chapter, a channel must be created
before a notification can be sent. Edit the MainActivity.kt file and add code
to create a new channel as follows:
.
.
import android.app.NotificationChannel
import android.app.NotificationManager
import android.content.Context
import android.graphics.Color
.
.
class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding
 private val NOTIFICATION_REQUEST_CODE = 101
 private var notificationManager: NotificationManager? = null
 private val channelID = "com.ebookfrenzy.directreply.news"

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 binding = ActivityMainBinding.inflate(layoutInflater)
 setContentView(binding.root)
 requestPermission(Manifest.permission.POST_NOTIFICATIONS,

 NOTIFICATION_REQUEST_CODE)

 notificationManager =
 getSystemService(
 Context.NOTIFICATION_SERVICE) as
NotificationManager

 createNotificationChannel(channelID,
 "DirectReply News", "Example News Channel")
 }

 private fun createNotificationChannel(id: String,
 name: String,
description: String) {

 val importance = NotificationManager.IMPORTANCE_HIGH
 val channel = NotificationChannel(id, name, importance)

 channel.description = description
 channel.enableLights(true)
 channel.lightColor = Color.RED
 channel.enableVibration(true)
 channel.vibrationPattern =
 longArrayOf(100, 200, 300, 400, 500, 400, 300,
200, 400)

 notificationManager?.createNotificationChannel(channel)
 }
.
.
}

83.5 Building the RemoteInput Object
The key element that makes direct reply in-line text possible within a
notification is the RemoteInput class. The previous chapters introduced the
PendingIntent class and explained how it allows one application to create an
intent and then grant other applications or services the ability to launch that
intent from outside the original app. In that chapter, entitled “An Android
Notifications Tutorial”, a pending intent was created that allowed an
activity in the original app to be launched from within a notification. The
RemoteInput class allows a request for user input to be included in the

PendingIntent object along with the intent. When the intent within the
PendingIntent object is triggered, for example, launching an activity, that
activity is also passed any input provided by the user.
The first step in implementing a direct reply within a notification is to
create the RemoteInput object. This is achieved using the
RemoteInput.Builder() method. To build a RemoteInput object, a key string
is required that will be used to extract the input from the resulting intent.
The object also needs a label string that will appear within the text input
field of the notification. Edit the MainActivity.kt file and add the
sendNotification() method. Note also the addition of some import directives
and variables that will be used later as the chapter progresses:
package com.ebookfrenzy.directreply
.
.
import android.content.Intent
import android.app.RemoteInput
import android.view.View
import android.app.PendingIntent

class MainActivity : AppCompatActivity() {

 private val notificationId = 101
 private val KEY_TEXT_REPLY = "key_text_reply"
.
.
 fun sendNotification(view: View) {

 val replyLabel = "Enter your reply here"
 val remoteInput = RemoteInput.Builder(KEY_TEXT_REPLY)
 .setLabel(replyLabel)
 .build()
 }
.
.
}

Now that the RemoteInput object has been created and initialized with a
key and a label string, it will need to be placed inside a notification action
object. Before that step can be performed, however, the PendingIntent
instance needs to be created.

83.6 Creating the PendingIntent
The steps to creating the PendingIntent are the same as those outlined in the
“An Android Notifications Tutorial” chapter, except that the intent will be
configured to launch MainActivity. Remaining within the MainActivity.kt
file, add the code to create the PendingIntent as follows:
fun sendNotification(view: View) {
.
.
 val resultIntent = Intent(this, MainActivity::class.java)

 val resultPendingIntent = PendingIntent.getActivity(
 this,
 0,
 resultIntent,
 PendingIntent.FLAG_MUTABLE
)
}

83.7 Creating the Reply Action
The in-line reply will be accessible within the notification via an action
button. This action needs to be created and configured with an icon, a label
to appear on the button, the PendingIntent object, and the RemoteInput
object. Modify the sendNotification() method to add the code to create this
action:
.
.
import android.graphics.drawable.Icon
import android.app.Notification
.
.
fun sendNotification(view: View) {
.
.
 val icon = Icon.createWithResource(this@MainActivity,
 android.R.drawable.ic_dialog_info)

 val replyAction = Notification.Action.Builder(
 icon,
 "Reply", resultPendingIntent)
 .addRemoteInput(remoteInput)

 .build()
}
.
.

At this stage in the tutorial, we have the RemoteInput, PendingIntent, and
Notification Action objects built and ready to be used. The next stage is to
build the notification and issue it:
.
.
import com.google.android.material.R.color
.
.
fun sendNotification(view: View) {
.
.
 val newMessageNotification = Notification.Builder(this,
channelID)
 .setColor(ContextCompat.getColor(this,
 color.design_default_color_primary))
 .setSmallIcon(
 android.R.drawable.ic_dialog_info)
 .setContentTitle("My Notification")
 .setContentText("This is a test message")
 .addAction(replyAction).build()

 val notificationManager = getSystemService(
 Context.NOTIFICATION_SERVICE) as NotificationManager

 notificationManager.notify(notificationId,
 newMessageNotification)
}

With the changes made, compile and run the app, allow notifications, and
test that tapping the button issues the notification successfully. When
viewing the notification drawer, the notification should appear as shown in
Figure 83-2:

Figure 83-2
Tap the Reply action button so that the text input field appears, displaying
the reply label embedded into the RemoteInput object when it was created.

Figure 83-3
Enter some text and tap the send arrow button at the end of the input field.

83.8 Receiving Direct Reply Input
Now that the notification is successfully seeking input from the user, the
app needs to do something with that input. This tutorial’s objective is to
have the text entered by the user into the notification appear on the
TextView widget in the activity user interface.
When the user enters text and taps the send button, the MainActivity is
launched via the intent in the PendingIntent object. Embedded in this intent
is the text entered by the user via the notification. Within the onCreate()
method of the activity, a call to the getIntent() method will return a copy of
the intent that launched the activity. Passing this through to the
RemoteInput.getResultsFromIntent() method will, in turn, return a Bundle
object containing the reply text, which can be extracted and assigned to the
TextView widget. This results in a modified onCreate() method within the
MainActivity.kt file, which reads as follows:
.
.

override fun onCreate(savedInstanceState: Bundle?) {
.
.
 handleIntent()
}

private fun handleIntent() {

 val intent = this.intent

 val remoteInput = RemoteInput.getResultsFromIntent(intent)

 if (remoteInput != null) {

 val inputString = remoteInput.getCharSequence(
 KEY_TEXT_REPLY).toString()

 binding.textView.text = inputString
 }
}
.
.

After making these code changes build and run the app once again. Click
the button to issue the notification and enter and send some text from within
the notification panel. Note that the TextView widget in the MainActivity is
updated to display the in-line text that was entered.

83.9 Updating the Notification
After sending the reply within the notification, you may have noticed that
the progress indicator continues to spin within the notification panel, as
highlighted in Figure 83-4:

Figure 83-4
The notification shows this indicator because it is waiting for a response
from the activity confirming receipt of the sent text. The recommended
approach to performing this task is to update the notification with a new
message indicating that the reply has been received and handled. Since the
original notification was assigned an ID when it was issued, it can be used
again to perform an update. Add the following code to the handleIntent()
method to perform this task:
private fun handleIntent() {
.
.
 if (remoteInput != null) {

 val inputString = remoteInput.getCharSequence(
 KEY_TEXT_REPLY).toString()

 binding.textView.text = inputString

 val repliedNotification = Notification.Builder(this,
channelID)
 .setSmallIcon(
 android.R.drawable.ic_dialog_info)
 .setContentText("Reply received")
 .build()

 notificationManager?.notify(notificationId,
 repliedNotification)
 }
}

Test the app one last time and verify that the progress indicator goes away

after the in-line reply text has been sent and that a new panel appears,
indicating that the reply has been received:

Figure 83-5
83.10 Summary
The direct reply notification feature allows text to be entered by the user
within a notification and passed via an intent to an activity of the
corresponding application. Direct reply is made possible by the
RemoteInput class, an instance of which can be embedded within an action
and bundled with the notification. When working with direct reply
notifications, it is important to let the NotificationManager service know
that the reply has been received and processed. The best way to achieve this
is to update the notification message using the notification ID provided
when the notification was first issued.

84. Working with the Google Maps Android API in Android Studio

When Google introduced a map service many years ago, it is hard to say
whether or not they ever anticipated having a version available for
integration into mobile applications. When the first web-based version of
what would eventually be called Google Maps was introduced in 2005, the
iPhone had yet to ignite the smartphone revolution, and Google would not
acquire the company that was developing the Android operating system for
another six months. Whatever aspirations Google had for the future of
Google Maps, it is remarkable to consider that all of the power of Google
Maps can now be accessed directly via Android applications using the
Google Maps Android API.

This chapter is intended to provide an overview of the Google Maps system
and Google Maps Android API. The chapter will provide an overview of the
different elements that make up the API, detail the steps necessary to
configure a development environment to work with Google Maps, and then
work through some code examples demonstrating some of the basics of
Google Maps Android integration.

84.1 The Elements of the Google Maps Android API

The Google Maps Android API consists of a core set of classes that combine
to provide mapping capabilities in Android applications. The key elements
of a map are as follows:

•GoogleMap – The main class of the Google Maps Android API. This class
is responsible for downloading and displaying map tiles and for displaying
and responding to map controls. The GoogleMap object is not created
directly by the application but is created when MapView or MapFragment
instances are created. A reference to the GoogleMap object can be obtained
within application code via a call to the getMap() method of a MapView,
MapFragment, or SupportMapFragment instance.

•MapView - A subclass of the View class, this class provides the view
canvas onto which the map is drawn by the GoogleMap object, allowing a
map to be placed in the user interface layout of an activity.

•SupportMapFragment – A subclass of the Fragment class, this class allows
a map to be placed within a Fragment in an Android layout.

•Marker – The purpose of the Marker class is to allow locations to be
marked on a map. Markers are added to a map by obtaining a reference to
the GoogleMap object associated with a map and then making a call to the
addMarker() method of that object instance. The position of a marker is
defined via Longitude and Latitude. Markers can be configured in various
ways, including specifying a title, text, and an icon. Markers may also be
“draggable” allowing the user to move the marker to different positions on a
map.

•Shapes – Drawing lines and shapes on a map is achieved using the Polyline,
Polygon, and Circle classes.

•UiSettings – The UiSettings class customizes which controls appear on a
map. Using UiSettings, for example, the application can control whether or
not the zoom, current location, and compass controls appear on a map. This
class can also configure which touchscreen gestures are recognized by the
map.

•My Location Layer – When enabled, the My Location Layer displays a
button on the map which, when selected by the user, centers the map on the
user’s current geographical location. If the user is stationary, a blue marker
represents this location on the map. If the user is in motion, the location is
represented by a chevron indicating the user’s direction of travel.

The best way to gain familiarity with the Google Maps Android API is to
work through an example. The remainder of this chapter will create a
Google Maps-based application while highlighting the key areas of the API.

84.2 Creating the Google Maps Project

Select the New Project option from the welcome screen and choose the No
Activity template within the resulting new project dialog before clicking on
the Next button.

Enter MapDemo into the Name field and specify
com.ebookfrenzy.mapdemo as the package name. Before clicking on the

Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin.

Next, right-click on the app -> kotlin+java -> com.ebookfrenzy.mapdemo
entry in the Project tool window and select the New -> Google -> Google
Maps Views Activity menu option. Finally, enable the Launcher Activity
checkbox in the New Android Activity dialog before clicking the Finish
button:

Figure 84-1

84.3 Creating a Google Cloud Billing Account

Before using the Google Map APIs, you must create a Google Cloud billing
account (if you already have one, you can skip to the next section). To do
this, open a browser and use the following link to navigate to the Google
Cloud Console:

https://console.cloud.google.com/

Next, click on the menu button in the top left-hand corner of the console
page and select the Billing entry as illustrated in Figure 84-2 below:

Figure 84-2

On the Billing page, select the option to add a new billing account and then
follow the steps to start a free trial. You must provide a credit card to open
the account, but Google won’t charge you when the free trial ends without
your consent.

84.4 Creating a New Google Cloud Project

The next step is to create a Google Cloud project to be associated with the
MapDemo app. To do this, return to the Google Cloud Console dashboard
by using the following URL:

https://console.cloud.google.com/

https://console.cloud.google.com/home/dashboard

Within the dashboard, click the Select a project button located in the top
toolbar:

Figure 84-3

When the project selection dialog appears, click on the New Project button
(highlighted in Figure 84-4):

Figure 84-4

When the new project screen appears, provide a name for the project. The
console will display a default id for the project beneath the project name
field. If you don’t like the default id, click the Edit button to change it:

Figure 84-5

Click the Create button, and after a brief pause, you will be returned to the
dashboard where your new project will be listed.

84.5 Enabling the Google Maps SDK

Now that we have created a new Google Cloud project, the next step is to
allow the project to use the Google Maps SDK. To enable Google Maps
support, select your project in the Google Cloud Console, click the menu
button in the top left-hand corner, and select the Google Maps Platform
entry. Then, from the resulting menu, select the APIs option as shown in
Figure 84-6:

Figure 84-6

On the APIs screen, click on the Maps SDK for Android option and, on the
resulting screen, click the Enable button:

Figure 84-7

Repeat the above steps to enable the Geocoding API credential, which will
be needed later in the chapter to allow our app to display the user’s current
location.

Once you have enabled the credentials for your project, click the back arrow
to return to the product details page in preparation for the next step.

84.6 Generating a Google Maps API Key

Before an application can use the Google Maps Android SDK, it must be
configured with an API key to associate it with a Maps-enabled Google
Cloud project. To generate an API key, select the Credentials menu option
(marked A in Figure 84-8) followed by Create Credentials button (B):

Figure 84-8

After the credential is created, a dialog displaying the API key will appear:

Figure 84-9

84.7 Adding the API Key to the Android Studio Project

Now that we have generated an API key allowing our app to use the Google
Maps SDK, we must add it to our project. Return to Android Studio, edit the
manifests -> AndroidManifest.xml file, and locate the API key entry, which
will read as follows:

<meta-data

 android:name="com.google.android.geo.API_KEY"

 android:value="YOUR_API_KEY" />

Delete the text “YOUR_API_KEY” and replace it with the API key created
in the Google Play Console.

Next, edit the Gradle Scripts -> local.properties file and add a new line that
reads as follows (where the API key for your project replaces
YOUR_API_KEY):

MAPS_API_KEY=YOUR_API_KEY

84.8 Testing the Application

Perform a test run of the application to verify that the API key is correctly
configured. The application will run and display a map on the screen if the
configuration is correct.

If a map is not displayed, check the following areas:

•If the application is running on an emulator, make sure that the emulator is
running a version of Android that includes the Google APIs. The current
operating system can be changed for an AVD configuration by selecting the
Tools -> Android -> AVD Manager menu option, clicking on the pencil icon
in the Actions column of the AVD, followed by the Change… button next to
the current Android version. Select a target within the system image dialog
that includes the Google APIs.

•Check the Logcat output for any areas relating to Google Maps API
authentication problems. This usually means the API key was entered
incorrectly. Ensure that the API key in the AndroidManifest.xml and
local.properties files matches the key generated in the Google Cloud
console.

•Verify within the Google API Console that Maps SDK for Android has
been enabled in the Credentials panel.

84.9 Understanding Geocoding and Reverse Geocoding

It is impossible to talk about maps and geographical locations without first
covering the subject of Geocoding. Geocoding converts a textual-based
geographical location (such as a street address) into geographical
coordinates expressed as longitude and latitude.

Geocoding can be achieved using the Android Geocoder class. For example,
an instance of the Geocoder class can be passed a string representing a
location, such as a city name, street address, or airport code. The Geocoder
will attempt to find a match for the location and return a list of Address
objects that potentially match the location string, ranked in order with the
closest match at position 0 in the list. A variety of information can then be
extracted from the Address objects, including the longitude and latitude of
the potential matches.

The following code, for example, requests the location of the National Air
and Space Museum in Washington, D.C.:

import android.location.Geocoder

import android.location.Address

import java.io.IOException

.

.

val latitude: Double

val longitude: Double

var geocodeMatches: List<Address>? = null

try {

 geocodeMatches = Geocoder(this).getFromLocationName(

 "600 Independence Ave SW, Washington, DC 20560", 1)

} catch (e: IOException) {

 e.printStackTrace()

}

if (geocodeMatches != null) {

 latitude = geocodeMatches[0].latitude

 longitude = geocodeMatches[0].longitude

}

Note that the value of 1 is passed through as the second argument to the
getFromLocationName() method. This tells the Geocoder to return only one
result in the array. Given the specific nature of the address provided, there
should only be one potential match. For more vague location names,
however, requesting more potential matches and allowing the user to choose
the correct one may be necessary.

The above code is an example of forward-geocoding in that coordinates are
calculated based on a text location description. Reverse-geocoding, as the
name suggests, involves the translation of geographical coordinates into a
human-readable address string. Consider, for example, the following code:

import android.location.Geocoder

import android.location.Address

import java.io.IOException

.

.

var geocodeMatches: List<Address>? = null

val Address1: String?

val Address2: String?

val State: String?

val Zipcode: String?

val Country: String?

try {

 geocodeMatches = Geocoder(this).getFromLocation(38.8874245,
-77.0200729, 1)

} catch (e: IOException) {

 e.printStackTrace()

}

if (geocodeMatches != null) {

 Address1 = geocodeMatches[0].getAddressLine(0)

 Address2 = geocodeMatches[0].getAddressLine(1)

 State = geocodeMatches[0].adminArea

 Zipcode = geocodeMatches[0].postalCode

 Country = geocodeMatches[0].countryName

}

The Geocoder object is initialized with latitude and longitude values via the
getFromLocation() method. Once again, only a single matching result is
requested. The text-based address information is then extracted from the
resulting Address object.

The geocoding is not performed on the Android device but rather on a server
to which the device connects when a translation is required, and the results
are returned when the translation is complete. Geocoding can only occur
when the device has an active internet connection.

84.10 Adding a Map to an Application

The simplest way to add a map to an application is to specify it in the user
interface layout XML file for an activity. The following example layout file
shows the SupportMapFragment instance added to the activity_maps.xml
file created by Android Studio:

<fragment xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:id="@+id/map"

 tools:context=".MapsActivity"

 android:name="com.google.android.gms.maps.SupportMapFragment"/>

84.11 Requesting Current Location Permission

As outlined in the chapter entitled “Making Runtime Permission Requests in
Android”, certain permissions are considered dangerous and require special
handling for Android 6.0 or later. One set of permissions allows applications
to identify the user’s current location. Edit the AndroidManifest.xml file

located under app -> manifests in the Project tool window and add the
following permission lines:

<uses-permission

 android:name="android.permission.ACCESS_FINE_LOCATION" />

<uses-permission

 android:name="android.permission.ACCESS_COARSE_LOCATION" />

These settings will ensure that the app can provide permission to obtain
location information when installed on older versions of Android. To
support Android 6.0 or later, however, we need to add some code to the
MapsActivity.kt file to request this permission at runtime.

Begin by adding some import directives and a constant to act as the
permission request code:

package com.ebookfrenzy.mapdemo

.

.

import androidx.core.content.ContextCompat

import androidx.core.app.ActivityCompat

import android.Manifest

import android.widget.Toast

import android.content.pm.PackageManager

.

.

class MapsActivity : FragmentActivity(), OnMapReadyCallback {

 private val LOCATION_REQUEST_CODE = 101

 private lateinit var mMap: GoogleMap? = null

.

.

}

Next, a method must be added to the class to request a specified permission
from the user. Remaining within the MapsActivity.kt class file, implement
this method as follows:

private fun requestPermission(permissionType: String,

 requestCode: Int) {

 ActivityCompat.requestPermissions(this,

 arrayOf(permissionType), requestCode

)

}

When the user has responded to the permission request, the
onRequestPermissionsResult() method will be called on the activity.
Remaining in the MapsActivity.kt file, implement this method now so that it
reads as follows:

override fun onRequestPermissionsResult(requestCode: Int,

 permissions: Array<String>, grantResults: IntArray) {

 super.onRequestPermissionsResult(requestCode, permissions,
grantResults)

 when (requestCode) {

 LOCATION_REQUEST_CODE -> {

 if (grantResults.isEmpty() || grantResults[0] !=

 PackageManager.PERMISSION_GRANTED) {

 Toast.makeText(this,

 "Unable to show location - permission required",

 Toast.LENGTH_LONG).show()

 } else {

 val mapFragment = supportFragmentManager

 .findFragmentById(R.id.map) as SupportMapFragment

 mapFragment.getMapAsync(this)

 }

 }

 }

}

If the user has not granted permission, the app displays a message indicating
that the current location cannot be displayed. If, on the other hand,
permission was granted, the map is refreshed to provide an opportunity for
the location marker to be displayed.

84.12 Displaying the User’s Current Location

Once the appropriate permission has been granted, the user’s current
location may be displayed on the map by obtaining a reference to the
GoogleMap object associated with the displayed map and calling the
setMyLocationEnabled() method of that instance, passing through a true
value.

When the map is ready to display, the onMapReady() method of the activity
is called. This method will also be called when the map is refreshed within
the onRequestPermissionsResult() method above. By default, Android
Studio has implemented this method and added some code to orient the map
over Australia with a marker positioned over the city of Sidney. Locate and
edit the onMapReady() method in the MapsActivity.kt file to remove this
template code and add code to check that the location permission has been
granted before enabling the display of the user’s current location. If
permission has not been granted, a request is made to the user via a call to
the previously added requestPermission() method:

override fun onMapReady(googleMap: GoogleMap) {

 mMap = googleMap

 // Add a marker in Sydney and move the camera

 val sydney = LatLng(-34.0, 151.0)

 mMap.addMarker(MarkerOptions().position(sydney).title("Marker in
Sydney"))

 mMap.moveCamera(CameraUpdateFactory.newLatLng(sydney))

 val permission = ContextCompat.checkSelfPermission(this,

 Manifest.permission.ACCESS_FINE_LOCATION)

 if (permission == PackageManager.PERMISSION_GRANTED) {

 mMap.isMyLocationEnabled = true

 } else {

 requestPermission(

 Manifest.permission.ACCESS_FINE_LOCATION,

 LOCATION_REQUEST_CODE)

 }

}

When the app is now run, the dialog shown in Figure 84-10 will appear
requesting location permission. If permission is granted, a blue dot will
appear on the map indicating the device’s location.

Figure 84-10

84.13 Changing the Map Type

The type of map displayed can be modified dynamically by making a call to
the setMapType() method of the corresponding GoogleMap object, passing
through one of the following values:

·GoogleMap.MAP_TYPE_NONE – An empty grid with no mapping tiles
displayed.

·GoogleMap.MAP_TYPE_NORMAL – The standard view consisting of the
classic road map.

·GoogleMap.MAP_TYPE_SATELLITE – Displays the satellite imagery of
the map region.

·GoogleMap.MAP_TYPE_HYBRID – Displays satellite imagery with the
road map superimposed.

·GoogleMap.MAP_TYPE_TERRAIN – Displays topographical information
such as contour lines and colors.

The following code change to the onMapReady() method, for example,
switches a map to Satellite mode:

.

.

 } else {

 requestPermission(

 Manifest.permission.ACCESS_FINE_LOCATION,

 LOCATION_REQUEST_CODE)

 }

 mMap.mapType = GoogleMap.MAP_TYPE_SATELLITE

 }

.

.

Alternatively, the map type may be specified in the XML layout file where
the map is embedded using the map:mapType property together with a value
of none, normal, hybrid, satellite, or terrain. For example:

<?xml version="1.0" encoding="utf-8"?>

<fragment xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:map="http://schemas.android.com/apk/res-auto"

 android:id="@+id/map"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 map:mapType="hybrid"

 android:name="com.google.android.gms.maps.SupportMapFragment"
/>

84.14 Displaying Map Controls to the User

The Google Maps Android API provides several controls that may be
optionally displayed to the user consisting of zoom-in and out buttons, a
“my location” button, and a compass.

Whether or not the zoom and compass controls are displayed may be
controlled programmatically or within the map element in XML layout
resources. To programmatically configure the controls, a reference to the
UiSettings object associated with the GoogleMap object must be obtained:

val mapSettings = mMap.uiSettings

The zoom controls are turned on and off via the isZoomControlsEnabled
property of the UiSettings object. For example:

mapSettings.isZoomControlsEnabled = true

Alternatively, the map:uiZoomControls property may be set within the map
element of the XML resource file:

map:uiZoomControls="false"

The compass may be displayed via a call to the setCompassEnabled()
method of the UiSettings instance or through XML resources using the
map:uiCompass property. Note that the compass icon only appears when the
map camera is tilted or rotated away from the default orientation.

As outlined earlier in this chapter, the “My Location” button will only
appear when My Location mode is enabled. The button may be prevented
from appearing even in this mode via a call to the
setMyLocationButtonEnabled() method of the UiSettings instance.

84.15 Handling Map Gesture Interaction

The Google Maps Android API can respond to various user interactions.
These interactions can be used to change the map area displayed, the zoom
level, and even the angle of view (such that a 3D representation of the map
area is displayed for certain cities).

84.15.1 Map Zooming Gestures

Support for gestures relating to zooming in and out of a map may be turned
on or off using the isZoomGesturesEnabled property of the UiSettings
object associated with the GoogleMap instance. For example, the following
code turns off zoom gestures for our example map:

val mapSettings = mMap.uiSettings

mapSettings.isZoomGesturesEnabled = true

The same result can be achieved within an XML resource file by setting the
map:uiZoomGestures property to true or false.

When enabled, zooming will occur when the user makes pinching gestures
on the screen. Similarly, a double tap will zoom in, while a two-finger tap
will zoom out. On the other hand, one-finger zooming gestures are
performed by tapping twice but not releasing the second tap and then sliding
the finger up and down on the screen to zoom in and out, respectively.

84.15.2 Map Scrolling/Panning Gestures

A scrolling or panning gesture allows the user to move around the map by
dragging the map around the screen with a single-finger motion. Scrolling
gestures may be enabled within code via a call to the
isScrollGesturesEnabled property of the UiSettings instance:

val mapSettings = mMap.uiSettings

mapSettings.isScrollGesturesEnabled = true

Alternatively, scrolling on a map instance may be enabled in an XML
resource layout file using the map:uiScrollGestures property.

84.15.3 Map Tilt Gestures

Tilt gestures allow the user to tilt the map’s projection angle by placing two
fingers on the screen and moving them up and down to adjust the tilt angle.
Tilt gestures may be turned on or off via the isTiltGesturesEnabled property
of the UiSettings instance, for example:

val mapSettings = mMap.uiSettings

mapSettings.isTiltGesturesEnabled = true

Tilt gestures may also be turned on and off using the map:uiTiltGestures
property in an XML layout resource file.

84.15.4 Map Rotation Gestures

By placing two fingers on the screen and rotating them in a circular motion,
the user may rotate the orientation of a map when map rotation gestures are
enabled. This gesture support is turned on and off in code via the
isRotateGesturesEnabled property of the UiSettings instance, for example:

val mapSettings = mMap.uiSettings

mapSettings.isRotateGesturesEnabled = true

Rotation gestures may also be turned on and off using the
map:uiRotateGestures property in an XML layout resource file.

84.16 Creating Map Markers

Markers notify the user of locations on a map and take the form of either a
standard or custom icon. Markers may also include a title and optional text
(called a snippet) and may be configured to be dragged to different locations
on the map by the user. When the user taps a marker, an info window will
appear, displaying additional information about the marker’s location.

Markers are represented by instances of the Marker class and are added to a
map via a call to the addMarker() method of the corresponding GoogleMap
object. A MarkerOptions class instance containing the various options
required for the marker, such as the title and snippet text, is passed through
as an argument to this method. The location of a marker is defined by
specifying latitude and longitude values, also included as part of the
MarkerOptions instance. For example, the following code adds a marker,
including a title, snippet, and a position to a specific location on the map:

import com.google.android.gms.maps.model.LatLng

import com.google.android.gms.maps.model.MarkerOptions

.

.

val position = LatLng(38.8874245, -77.0200729)

mMap.addMarker(MarkerOptions()

 .position(position)

 .title("Museum")

 .snippet("National Air and Space Museum"))

When executed, the above code will mark the location specified, which,
when tapped, will display an info window containing the title and snippet, as
shown in Figure 84-11:

Figure 84-11

84.17 Controlling the Map Camera

Because Android device screens are flat and the world is a sphere, the
Google Maps Android API uses the Mercator projection to represent Earth
on a flat surface. The map’s default view is presented to the user as though
through a camera suspended above the map and pointing directly down at
the map. The Google Maps Android API allows the target, zoom, bearing,
and tilt of this camera to be changed in real time from within the application:

•Target – The location of the center of the map within the device display
specified using longitude and latitude.

•Zoom – The zoom level of the camera specified in levels. Increasing the
zoom level by 1.0 doubles the width of the amount of the map displayed.

•Tilt – The camera’s viewing angle specified as a position on an arc
spanning directly over the center of the viewable map area measured in
degrees from the top of the arc (this being the nadir of the arc where the
camera points directly down to the map).

•Bearing – The orientation of the map in degrees measured in a clockwise
direction from North.

Camera changes are made by creating an instance of the CameraUpdate
class with the appropriate settings. CameraUpdate instances are created by
making method calls to the CameraUpdateFactory class. Once a
CameraUpdate instance has been created, it is applied to the map via a call
to the moveCamera() method of the GoogleMap instance. To obtain a
smooth animated effect as the camera changes, the animateCamera() method
may be called instead of moveCamera().

A summary of CameraUpdateFactory methods is as follows:

•CameraUpdateFactory.zoomIn() – Provides a CameraUpdate instance
zoomed in by one level.

•CameraUpdateFactory.zoomOut() - Provides a CameraUpdate instance
zoomed out by one level.

•CameraUpdateFactory.zoomTo(float) - Generates a CameraUpdate instance
that changes the zoom level to the specified value.

•CameraUpdateFactory.zoomBy(float) – Provides a CameraUpdate instance
with a zoom level increased or decreased by the specified amount.

•CameraUpdateFactory.zoomBy(float, Point) - Creates a CameraUpdate
instance that increases or decreases the zoom level by the specified value.

•CameraUpdateFactory.newLatLng(LatLng) - Creates a CameraUpdate
instance that changes the camera’s target latitude and longitude.

•CameraUpdateFactory.newLatLngZoom(LatLng, float) - Generates a
CameraUpdate instance that changes the camera’s latitude, longitude, and
zoom.

•CameraUpdateFactory.newCameraPosition(CameraPosition) - Returns a
CameraUpdate instance that moves the camera to the specified position. A
CameraPosition instance can be obtained using CameraPosition.Builder().

The following code, for example, zooms in the camera by one level using
animation:

mMap.animateCamera(CameraUpdateFactory.zoomIn())

The following code, on the other hand, moves the camera to a new location
and adjusts the zoom level to 10 without animation:

val position = LatLng(38.8874245, -77.0200729)

mMap.moveCamera(CameraUpdateFactory.newLatLngZoom(position,
10f))

Finally, the next code example uses CameraPosition.Builder() to create a
CameraPosition object with changes to the target, zoom, bearing, and tilt.
This change is then applied to the camera using animation:

import com.google.android.gms.maps.model.CameraPosition

import com.google.android.gms.maps.CameraUpdateFactory

.

.

val cameraPosition = CameraPosition.Builder()

 .target(position)

 .zoom(50f)

 .bearing(70f)

 .tilt(25f)

 .build()

mMap.animateCamera(CameraUpdateFactory.newCameraPosition(

 cameraPosition))

84.18 Summary

This chapter has provided an overview of the key classes and methods that
make up the Google Maps Android API and outlined how to prepare both
the development environment and an application project to use the API.

85. Printing with the Android Printing Framework

Android Printing Framework is used to print content from within Android
applications. While subsequent chapters will explore in more detail the
options for adding printing support to your applications, this chapter will
focus on the various printing options now available in Android and the
steps involved in enabling those options.

The chapter will then provide an overview of the various printing features
available to Android developers to build printing support into applications.

85.1 The Android Printing Architecture

The Printing framework provides printing in Android. In basic terms, this
framework consists of a Print Manager and a number of print service
plugins.

It is the responsibility of the Print Manager to handle the print requests
from applications on the device and to interact with the print service
plugins installed on the device, thereby ensuring that print requests are
fulfilled.

By default, many Android devices have print service plugins installed to
enable printing using the Google Cloud Print and Google Drive services.
Print Services Plugins for other printer types, if not already installed, may
also be obtained from the Google Play store.

Print Service Plugins are currently available for HP, Epson, Samsung, and
Canon printers, and plugins from other printer manufacturers will most
likely be released in the future. However, the Google Cloud Print service
plugin can print from Android to just about any printer type and model.

This book will use the HP Print Services Plugin as a reference example.

85.2 The Print Service Plugins

The purpose of the Print Service plugins is to enable applications to print to
compatible printers that are visible to the Android device via a local area

wireless network or Bluetooth.

The presence of the Print Service Plugin on an Android device can be
verified by loading the Google Play app and performing a search for “Print
Service Plugin”.

Once the plugin is listed in the Play Store, and if it is not already installed,
it can be installed by selecting the Install button. Figure 85-1, for example,
shows the HP Print Service plugin within Google Play.

The Print Services plugins will automatically detect compatible printers on
the network to which the Android device is currently connected and list
them as options when printing from an application.

Figure 85-1

85.3 Google Cloud Print

Google Cloud Print is a service provided by Google that enables you to
print content onto your printer over the web from anywhere with internet
connectivity. Google Cloud Print supports many devices and printer models
in both Cloud Ready and Classic printers. A Cloud Ready printer has
technology built-in that enables printing via the web. Manufacturers that
provide cloud-ready printers include Brother, Canon, Dell, Epson, HP,
Kodak, and Samsung. To identify if your printer is both cloud-ready and
supported by Google Cloud Print, review the list of printers at the
following URL:

https://www.google.com/cloudprint/learn/printers.html

In the case of classic, non-Cloud Ready printers, Google Cloud Print
provides support for cloud printing by installing software on the computer
system to which the classic printer is connected (either directly or over a
home or office network).

https://www.google.com/cloudprint/learn/printers.html

To set up Google Cloud Print, visit the following web page and log in using
the same Google account ID that you use when logging in to your Android
devices:

https://www.google.com/cloudprint/learn/index.html

Once printers have been added to your Google Cloud Print account, they
will be listed as printer destination options when you print from within
Android applications.

85.4 Printing to Google Drive

In addition to supporting physical printers, it is also possible to save printed
output to your Google Drive account. When printing from a device, select
the Save to Google Drive option in the printing panel. The content to be
printed will then be converted to a PDF file and saved to the Google Drive
cloud-based storage associated with the currently active Google Account
ID on the device.

85.5 Save as PDF

The final printing option provided by Android allows the printed content to
be saved locally as a PDF file on the Android device. Once selected, this
option will request a name for the PDF file and a location on the device to
which the document will be saved.

Both the Save as PDF and Google Drive options can be invaluable in terms
of saving paper when testing the printing functionality of your own
Android applications.

85.6 Printing from Android Devices

Google recommends that applications that can print content do so by
placing the print option in the Overflow menu. Many applications bundled
with Android now include “Print…” menu options. Figure 85-2, for
example, shows the Print option accessed by selecting the “Share…” option
in the Overflow menu of the Chrome browser application:

https://www.google.com/cloudprint/learn/index.html

Figure 85-2

Once the print option has been selected from within an application, the
standard Android print screen will appear, showing a preview of the content
to be printed, as illustrated in Figure 85-3:

Figure 85-3

Tapping the panel along the top of the screen will display the full range of
printing options:

Figure 85-4

The Android print panel provides standard printing options, such as paper
size, color, orientation, and number of copies. Other print destination
options may be accessed by tapping on the current printer or PDF output
selection.

85.7 Options for Building Print Support into Android Apps

The Printing framework provides several options for incorporating print
support into Android applications. These options can be categorized as
follows:

85.7.1 Image Printing

As the name suggests, this option allows image printing to be incorporated
into Android applications. When adding this feature to an application, the
first step is to create a new instance of the PrintHelper class:

val imagePrinter = PrintHelper(context)

Next, the scale mode for the printed image may be specified via a call to
the setScaleMode() method of the PrintHelper instance. Options are as
follows:

•SCALE_MODE_FIT – The image will be scaled to fit within the paper
size without cropping or changes to the aspect ratio. This will typically
result in white space appearing in one dimension.

•SCALE_MODE_FILL – The image will be scaled to fill the paper size
with cropping performed where necessary to avoid the appearance of white
space in the printed output.

Without a scale mode setting, the system will default to
SCALE_MODE_FILL. The following code, for example, sets scale to fit
mode on the previously declared PrintHelper instance:

imagePrinter.setScaleMode(PrintHelper.SCALE_MODE_FIT)

Similarly, the color mode may also be configured to indicate whether the
print output is to be in color or black and white. This is achieved by passing
one of the following options through to the setColorMode() method of the
PrintHelper instance:

•COLOR_MODE_COLOR – Indicates that the image is to be printed in
color.

•COLOR_MODE_MONOCHROME – Indicates that the image will be
printed in black and white.

The printing framework will default to color printing unless the
monochrome option is specified as follows:

imagePrinter.colorMode = PrintHelper.COLOR_MODE_MONOCHROME

All that is required to complete the printing operation is an image to be
printed and a call to the printBitmap() method of the PrintHelper instance,
passing through a string representing the name to be assigned to the print

job and a reference to the image (in the form of either a Bitmap object or a
Uri reference to the image):

val bitmap = BitmapFactory.decodeResource(resources,

 R.drawable.oceanscene)

imagePrinter.printBitmap("My Test Print Job", bitmap)

Once the print job has been started, the Printing framework will display the
print dialog and handle both the subsequent interaction with the user and
the printing of the image on the user-selected print destination.

85.7.2 Creating and Printing HTML Content

The Android Printing framework also provides an easy way to print
HTML-based content within an application. This content can either be
HTML content referenced by the URL of a page hosted on a website or
HTML content dynamically created within the application.

To enable HTML printing, the WebView class has been extended to include
support for printing with minimal coding requirements.

When dynamically creating HTML content (as opposed to loading and
printing an existing web page), the process involves the creation of a
WebView object and associating with it a WebViewClient instance. The
web view client is then configured to start a print job when the HTML has
finished being loaded into the WebView. With the web view client
configured, the HTML is loaded into the WebView, and the print process is
triggered.

Consider, for example, the following code:

private fun printWebView() {

 val webView = WebView(this)

 webView.webViewClient = object : WebViewClient() {

 override fun shouldOverrideUrlLoading(view: WebView,

 request: WebResourceRequest): Boolean {

 return false

 }

 override fun onPageFinished(view: WebView, url: String) {

 createWebPrintJob(view)

 myWebView = null

 }

 }

 val htmlDocument = "<html><body><h1>Android Print Test</h1><p>"
+

 "This is some sample content.</p></body></html>"

 webView.loadDataWithBaseURL(null, htmlDocument,

 "text/HTML", "UTF-8", null)

 myWebView = webView

}

The code in this method begins by declaring a variable named myWebView
in which will be stored a reference to the WebView instance created in the
method. Within the printContent() method, an instance of the WebView
class is created to which a WebViewClient instance is assigned.

The WebViewClient assigned to the web view object is configured to
indicate that the loading of the HTML content is to be handled by the
WebView instance (by returning false from the
shouldOverrideUrlLoading()) method. More importantly, an
onPageFinished() handler method is declared and implemented to call the
createWebPrintJob() method. The onPageFinished() callback method will
be called automatically when all HTML content is loaded into the web
view. This ensures that the print job is not started until the content is ready,
ensuring that all content is printed.

Next, a string is created containing some HTML to serve as the content.
This is then loaded into the web view. Once the HTML is loaded, the
onPageFinished() method will trigger. Finally, the method stores a
reference to the web view object. Without this vital step, there is a
significant risk that the Java runtime system will assume that the
application no longer needs the web view object and will discard it to free
up memory (a concept referred to in Java terminology as garbage
collection), resulting in the print job terminating before completion.

All that remains in this example is to implement the createWebPrintJob()
method as follows:

private fun createWebPrintJob(webView: WebView) {

 val printManager = this

 .getSystemService(Context.PRINT_SERVICE) as PrintManager

 val printAdapter =
webView.createPrintDocumentAdapter("MyDocument")

 val jobName = getString(R.string.app_name) + " Document"

 printManager.print(jobName, printAdapter,

 PrintAttributes.Builder().build())

}

This method obtains a reference to the PrintManager service and instructs
the web view instance to create a print adapter. A new string is created to
store the name of the print job (which, in this case, is based on the name of
the application and the word “Document”).

Finally, the print job is started by calling the print() method of the print
manager, passing through the job name, print adapter, and a set of default
print attributes. If required, the print attributes could be customized to
specify resolution (dots per inch), margin, and color options.

85.7.3 Printing a Web Page

The steps involved in printing a web page are similar to those outlined
above, with the exception that the web view is passed the URL of the web
page to be printed in place of the dynamically created HTML, for example:

myWebView?.loadUrl("https://developer.android.com/google/index.html")

It is also important to note that the WebViewClient configuration is only
necessary if a web page is to automatically print as soon as it has loaded. If
the printing is to be initiated by the user selecting a menu option after the
page has loaded, only the code in the createWebPrintJob() method outlined
above needs to be included in the application code. The next chapter, “An

Android HTML and Web Content Printing Example”, will demonstrate
such a scenario.

85.7.4 Printing a Custom Document

While the HTML and web printing features introduced by the Printing
framework provide an easy path to printing content from within an Android
application, it is clear that these options will be overly simplistic for more
advanced printing requirements. The Printing framework also provides
custom document printing support for more complex printing tasks. This
allows content in the form of text and graphics to be drawn onto a canvas
and then printed.

Unlike HTML and image printing, which can be implemented with relative
ease, custom document printing is a more complex, multi-stage process
which will be outlined in the “A Guide to Android Custom Document
Printing” chapter of this book. These steps can be summarized as follows:

•Connect to the Android Print Manager

•Create a Custom Print Adapter sub-classed from the
PrintDocumentAdapter class

•Create a PdfDocument instance to represent the document pages

•Obtain a reference to the pages of the PdfDocument instance, each of
which has associated with it a Canvas instance

•Draw the content on the page canvases

•Notify the print framework that the document is ready to print

The custom print adapter outlined in the above steps must implement
several methods that the Android system will call upon to perform specific
tasks during printing. The most important of these are the onLayout()
method, responsible for re-arranging the document layout in response to the
user changing settings such as paper size or page orientation, and the
onWrite() method which is responsible for rendering the pages to be

printed. The chapter entitled “A Guide to Android Custom Document
Printing” will cover this topic in detail.

85.8 Summary

The Android SDK can print content from within a running app. Print output
can be directed to suitably configured printers, a local PDF file, or to the
cloud via Google Drive. From the perspective of the Android application
developer, these capabilities are available for use in applications by making
use of the Printing framework. By far, the easiest printing options to
implement are those involving content in the form of images and HTML.
More advanced printing may, however, be implemented using the custom
document printing features of the framework.

86. An Android HTML and Web Content Printing Example

As outlined in the previous chapter, entitled “Printing with the Android
Printing Framework”, the Android Printing framework can print both web
pages and dynamically created HTML content. While there is much
similarity between these two approaches to printing, there are also some
subtle differences that need to be considered. This chapter will work
through the creation of two example applications to bring some clarity to
these two printing options.

86.1 Creating the HTML Printing Example Application

Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.

Enter HTMLPrint into the Name field and specify
com.ebookfrenzy.htmlprint as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin.

86.2 Printing Dynamic HTML Content

The first stage of this tutorial is to add code to the project to create some
HTML content and send it to the Printing framework as a print job.

Begin by locating the MainActivity.kt file (located in the Project tool
window under app -> kotlin+java -> com .ebookfrenzy.htmlprint) and
loading it into the editing panel. Once loaded, modify the code so that it
reads as outlined in the following listing:

package com.ebookfrenzy.htmlprint

import androidx.appcompat.app.AppCompatActivity

import android.os.Bundle

import android.print.PrintAttributes

import android.print.PrintManager

import android.webkit.WebResourceRequest

import android.webkit.WebView

import android.webkit.WebViewClient

import android.content.Context

class MainActivity : AppCompatActivity() {

 private var myWebView: WebView? = null

 override fun onCreate(savedInstanceState: Bundle?) {

.

.

 printWebView()

 }

 private fun printWebView() {

 val webView = WebView(this)

 webView.webViewClient = object : WebViewClient() {

 override fun shouldOverrideUrlLoading(view: WebView,

 request: WebResourceRequest): Boolean {

 return false

 }

 override fun onPageFinished(view: WebView, url: String) {

 createWebPrintJob(view)

 myWebView = null

 }

 }

 val htmlDocument = "<html><body><h1>Android Print Test</h1>
<p>" +

 "This is some sample content.</p></body></html>"

 webView.loadDataWithBaseURL(null, htmlDocument,

 "text/HTML", "UTF-8", null)

 myWebView = webView

 }

}

The code changes begin by declaring a variable named myWebView in
which will be stored a reference to the WebView instance used for the
printing operation. Within the printWebView() method, an instance of the
WebView class is created to which a WebViewClient instance is assigned.

The WebViewClient assigned to the web view object is configured to
indicate that loading the HTML content is to be handled by the WebView
instance (by returning false from the shouldOverrideUrlLoading() method).
More importantly, an onPageFinished() handler method is declared and
implemented to call the createWebPrintJob() method. The
onPageFinished() method will be called automatically when all HTML
content has been loaded into the web view. As outlined in the previous
chapter, this step is necessary when printing dynamically created HTML
content to ensure that the print job is only started once the content has fully
loaded into the WebView.

Next, a String object is created containing some HTML to serve as the
content and subsequently loaded into the web view. Once the HTML is
loaded, the onPageFinished() callback method will trigger. Finally, the
method stores a reference to the web view object in the previously declared
myWebView variable. Without this vital step, there is a significant risk that
the Java runtime system will assume that the application no longer needs
the web view object and will discard it to free up memory resulting in the
print job terminating before completion.

All that remains in this example is to implement the createWebPrintJob()
method, which is currently configured to be called by the onPageFinished()
callback method. Remaining within the MainActivity.kt file, therefore,
implement this method so that it reads as follows:

private fun createWebPrintJob(webView: WebView) {

 val printManager = this

 .getSystemService(Context.PRINT_SERVICE) as PrintManager

 val printAdapter =
webView.createPrintDocumentAdapter("MyDocument")

 val jobName = getString(R.string.app_name) + " Print Test"

 printManager.print(jobName, printAdapter,

 PrintAttributes.Builder().build())

}

This method obtains a reference to the PrintManager service and instructs
the web view instance to create a print adapter. A new string is created to
store the name of the print job (in this case, based on the name of the
application and the word “Print Test”).

Finally, the print job is started by calling the print() method of the print
manager, passing through the job name, print adapter, and a set of default
print attributes.

Compile and run the application on a device or emulator running Android
5.0 or later. Once launched, the standard Android printing page should
appear as illustrated in Figure 86-1.

Figure 86-1

Print to a physical printer if you have one configured, save to Google
Drive, or select the option to save to a PDF file. Once the print job has been
initiated, check the generated output on your chosen destination. Note that
the system will request a name and location for the PDF file when using the
Save to PDF option. The Downloads folder makes a good option, the
contents of which can be viewed by selecting the Downloads icon
(renamed Files on Android 8) located amongst the other app icons on the
device

86.3 Creating the Web Page Printing Example

The second example application created in this chapter will provide the
user an Overflow menu option to print the web page currently displayed
within a WebView instance.

Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Basic Views Activity template
before clicking on the Next button.

Enter WebPrint into the Name field and specify com.ebookfrenzy.webprint
as the package name. Before clicking on the Finish button, change the
Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Kotlin.

86.4 Removing the Floating Action Button

Selecting the Basic Views Activity template provided a context menu and a
floating action button. Since the app does not require the floating action
button, it can be removed before proceeding. Load the activity_main.xml
layout file into the Layout Editor, select the floating action button, and tap
the keyboard Delete key to remove the object from the layout. Edit the
MainActivity.kt file and remove the floating action button code from the
onCreate method as follows:

override fun onCreate(savedInstanceState: Bundle?) {

.

.

 binding.fab.setOnClickListener { view ->

 Snackbar.make(view, "Replace with your own action",
Snackbar.LENGTH_LONG)

 .setAction("Action", null).show()

 }

}

86.5 Removing Navigation Features

As “A Guide to the Android Studio Layout Editor Tool” outlines, the Basic
Views Activity template contains multiple fragments and buttons to
navigate from one fragment to the other. These features are unnecessary for
this tutorial and will cause problems later if not removed. Before moving
ahead with the tutorial, modify the project as follows:

1. Within the Project tool window, navigate to and double-click on the app -
> res -> navigation -> nav_graph.xml file to load it into the navigation
editor.

2. Within the editor, select the SecondFragment entry in the graph panel
and tap the keyboard delete key to remove it from the graph.

3. Locate and delete the SecondFragment.kt (app -> kotlin+java ->
<package name> -> SecondFragment) and fragment_second.xml (app ->
res -> layout -> fragment_second.xml) files.

4. Locate the FirstFragment.kt file, double-click on it to load it into the
editor, and remove the code from the onViewCreated() method so that it
reads as follows:

override fun onViewCreated(view: View, savedInstanceState: Bundle?) {

 super.onViewCreated(view, savedInstanceState)

 binding.buttonFirst.setOnClickListener {

 findNavController().navigate(R.id.action_FirstFragment_to_SecondFr
agment)

 }

}

5. Edit the MainActivity.kt file and remove the following navigation code:

.

.

private lateinit var appBarConfiguration: AppBarConfiguration

.

.

override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

.

.

 val navController =
findNavController(R.id.nav_host_fragment_content_main)

 appBarConfiguration = AppBarConfiguration(navController.graph)

 setupActionBarWithNavController(navController, appBarConfiguration)

}

.

.

override fun onSupportNavigateUp(): Boolean {

 val navController =
findNavController(R.id.nav_host_fragment_content_main)

 return navController.navigateUp(appBarConfiguration)

 || super.onSupportNavigateUp()

}

86.6 Designing the User Interface Layout

Load the content_main.xml layout resource file into the Layout Editor tool
if it has not already been loaded and, in Design mode, select and delete the
nav_host_fragment_content_main object. From the Widgets section of the
palette, drag and drop a WebView object onto the center of the device
screen layout. Click the Infer constraints toolbar button and, using the
Attributes tool window, change the layout_width and layout_height
properties of the WebView to match constraint so that it fills the entire
layout canvas, as outlined in Figure 86-2 below.

Select the newly added WebView instance and change the ID of the view to
myWebView.

Before proceeding to the next step of this tutorial, an additional permission
must be added to the project to enable the WebView object to access the
Internet and download a web page for printing. Add this permission by
locating the AndroidManifest.xml file in the Project tool window and
double-clicking on it to load it into the editing panel. Once loaded, edit the
XML content to add the appropriate permission line, as shown in the
following listing:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.webprint" >

 <uses-permission android:name="android.permission.INTERNET" />

 <application

 android:allowBackup="true"

.

.

</manifest>

Figure 86-2

86.7 Accessing the WebView from the Main Activity

As with the project in the chapter entitled “An Android RecyclerView and
CardView Tutorial” we need to be able to use view binding to access a
component (in this case myWebView) contained in the content_main.xml
file from within the MainActivity class. To access views within the
content_main.xml file, we again need to assign it an id at the point it is
included. Edit the activity_main.xml file and modify the include element so
that it reads as follows:

.

.

 <include

 android:id="@+id/contentMain"

 layout="@layout/content_main" />

.

.

86.8 Loading the Web Page into the WebView

Before the web page can be printed, it must loaded into the WebView
instance. For this tutorial, this will be performed by a call to the loadUrl()
method of the WebView instance, which will be placed in a method named
configureWebView() and called from within the onStart() method of the
MainActivity class. Edit the MainActivity.kt file, therefore, and modify it
as follows:

package com.ebookfrenzy.webprint

.

.

import android.webkit.WebView

import android.webkit.WebViewClient

import android.webkit.WebResourceRequest

import android.content.Context

class MainActivity : AppCompatActivity() {

.

.

 override fun onStart() {

 super.onStart()

 configureWebView()

 }

 private fun configureWebView() {

 binding.contentMain.myWebView.webViewClient = object :
WebViewClient() {

 override fun shouldOverrideUrlLoading(

 view: WebView, request: WebResourceRequest): Boolean {

 return super.shouldOverrideUrlLoading(

 view, request)

 }

 }

 binding.contentMain.myWebView.loadUrl(

 "https://www.payloadbooks.com")

 }

.

.

}

86.9 Adding the Print Menu Option

The option to print the web page will now be added to the Overflow menu.
The first requirement is a string resource to label the menu option. Within
the Project tool window, locate the app -> res -> values -> strings.xml file,
double-click on it to load it into the editor, and modify it to add a new
string resource:

<resources>

 <string name="app_name">WebPrint</string>

 <string name="action_settings">Settings</string>

 <string name="print_string">Print</string>

.

.

</resources>

Next, load the app -> res -> menu -> menu_main.xml file into the menu
editor, switch to Code mode, and replace the Settings menu option with the
print option:

<menu xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 tools:context="com.ebookfrenzy.webprint.MainActivity" >

 <item

 android:id="@+id/action_settings"

 android:title="@string/action_settings"

 android:orderInCategory="100"

 app:showAsAction="never" />

 <item

 android:id="@+id/action_print"

 android:orderInCategory="100"

 app:showAsAction="never"

 android:title="@string/print_string"/>

</menu>

All that remains in terms of configuring the menu option is to modify the
onOptionsItemSelected() handler method within the MainActivity.kt file:

override fun onOptionsItemSelected(item: MenuItem): Boolean {

 if (item.itemId == R.id.action_print) {

 createWebPrintJob(binding.contentMain.myWebView)

 }

 return super.onOptionsItemSelected(item)

}

With the onOptionsItemSelected() method implemented, the activity will
call a method named createWebPrintJob() when the print menu option is
selected from the overflow menu. The implementation of this method is

identical to that used in the previous HTMLPrint project and may now be
added to the MainActivity.kt file such that it reads as follows:

.

.

import android.print.PrintAttributes

import android.print.PrintManager

.

.

class MainActivity : AppCompatActivity() {

.

.

 private fun createWebPrintJob(webView: WebView?) {

 val printManager = this

 .getSystemService(Context.PRINT_SERVICE) as PrintManager

 val printAdapter =
webView?.createPrintDocumentAdapter("MyDocument")

 val jobName = getString(R.string.app_name) + " Print Test"

 printAdapter?.let {

 printManager.print(

 jobName, it,

 PrintAttributes.Builder().build()

)

 }

 }

.

.

}

With the code changes complete, run the application on a physical Android
device or emulator. Once successfully launched, the WebView should be
visible with the designated web page loaded. Once the page has loaded,
select the Print option from the Overflow menu and use the resulting print
panel to print the web page to a suitable destination.

Figure 86-3

86.10 Summary

The Android Printing framework includes extensions to the WebView class
that allow printing HTML-based content from within an Android
application. This content can be HTML created dynamically within the
application at runtime or a pre-existing web page loaded into a WebView
instance. In the case of dynamically created HTML, it is important to use a
WebViewClient instance to ensure that printing does not start until the
HTML has been fully loaded into the WebView.

87. A Guide to Android Custom
Document Printing
As we have seen in the preceding chapters, the Android Printing framework
makes it relatively easy to build printing support into applications if the
content is in the form of an image or HTML markup. More advanced
printing requirements can be met by using the custom document printing
feature of the Printing framework.

87.1 An Overview of Android Custom Document
Printing
In simplistic terms, custom document printing uses canvases to represent
the pages of the document to be printed. The application draws the content
to be printed onto these canvases as shapes, colors, text, and images. The
canvases are represented by instances of the Android Canvas class,
providing access to a rich selection of drawing options. Once all the pages
have been drawn, the document is then printed.
While this sounds simple enough, some steps need to be performed to make
this happen, which can be summarized as follows:
•Implement a custom print adapter sub-classed from the
PrintDocumentAdapter class.

•Obtain a reference to the Print Manager Service.
•Create an instance of the PdfDocument class to store the document pages.
•Add pages to the PdfDocument in the form of PdfDocument.Page
instances.

•Obtain references to the Canvas objects associated with the document
pages.

•Draw content onto the canvases.
•Write the PDF document to a destination output stream provided by the
Printing framework.

•Notify the Printing framework that the document is ready to print.
This chapter will provide an overview of these steps, followed by a detailed
tutorial designed to demonstrate the implementation of custom document

printing within Android applications.
87.1.1 Custom Print Adapters
The role of the print adapter is to provide the Printing framework with the
content to be printed and to ensure that it is formatted correctly for the
user’s chosen preferences (considering factors such as paper size and page
orientation).
Much of this work is performed by the print adapters provided as part of the
Android Printing framework and designed for these specific printing tasks
when printing HTML and images. When printing a web page, for example,
a print adapter is created for us when a call is made to the
createPrintDocumentAdapter() method of an instance of the WebView
class.
In the case of custom document printing, however, it is the responsibility of
the application developer to design the print adapter and implement the
code to draw and format the content in preparation for printing.
Custom print adapters are created by sub-classing the
PrintDocumentAdapter class and overriding a set of callback methods
within that class which will be called by the Printing framework at various
stages in the print process. These callback methods can be summarized as
follows:
· onStart() – This method is called when the printing process begins and is

provided so that the application code can perform any necessary tasks to
create the print job. Implementation of this method within the
PrintDocumentAdapter sub-class is optional.

· onLayout() – This callback method is called after the call to the onStart()
method and then again each time the user makes changes to the print
settings (such as changing the orientation, paper size, or color settings).
This method should adapt the content and layout to accommodate these
changes. Once these changes are completed, the method must return the
number of pages to be printed. Implementation of the onLayout() method
within the PrintDocumentAdapter sub-class is mandatory.

· onWrite() – This method is called after each call to onLayout() and is
responsible for rendering the content on the canvases of the pages to be
printed. Amongst other arguments, this method is passed a file descriptor

to which the resulting PDF document must be written once rendering is
complete. A call is then made to the onWriteFinished() callback method
passing through an argument containing information about the page
ranges to be printed. Implementation of the onWrite() method within the
PrintDocumentAdapter sub-class is mandatory.

· onFinish() – An optional method which, if implemented, is called once by
the Printing framework when the printing process is completed, thereby
providing the application the opportunity to perform any clean-up
operations that may be necessary.

87.2 Preparing the Custom Document Printing
Project
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.
Enter CustomPrint into the Name field and specify
com.ebookfrenzy.customprint as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin.

87.3 Designing the UI
Load the activity_main.xml layout file into the Layout Editor tool and, in
Design mode, select and delete the “Hello World!” TextView object. Drag
and drop a Button view from the Common section of the palette and
position it in the center of the layout view. With the Button view selected,
change the text property to “Print Document” and extract the string to a new
resource. On completion, the user interface layout should match that shown
in Figure 87-1.
When the button is selected within the application, it will be required to call
a method to initiate the document printing process. Remaining within the
Attributes tool window, set the onClick property to call a method named
printDocument.

Figure 87-1
87.4 Creating the Custom Print Adapter
Most of the work involved in printing a custom document from within an
Android application involves the implementation of the custom print
adapter. This example will require a print adapter with the onLayout() and
onWrite() callback methods implemented. Within the MainActivity.kt file,
add the template for this new class so that it reads as follows:
package com.ebookfrenzy.customprint

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import android.os.ParcelFileDescriptor
import android.print.PageRange
import android.print.PrintAttributes
import android.print.PrintDocumentAdapter
import android.os.CancellationSignal
import android.content.Context

class MainActivity : AppCompatActivity() {

 inner class MyPrintDocumentAdapter(private var context:
Context)
 :
PrintDocumentAdapter() {

 override fun onLayout(oldAttributes: PrintAttributes,
 newAttributes: PrintAttributes,
 cancellationSignal:
CancellationSignal?,
 callback: LayoutResultCallback?,
 metadata: Bundle?) {
 }

 override fun onWrite(pageRanges: Array<out PageRange>?,
 destination: ParcelFileDescriptor?,
 cancellationSignal:
CancellationSignal?,
 callback: WriteResultCallback?) {

 }
 }
.
.
}

As the new class currently stands, it contains a constructor method to be
called when a new class instance is created. The constructor takes the
context of the calling activity as an argument, which is then stored so that it
can be referenced later in the two callback methods.
With the class outline established, the next step is implementing the two
callback methods, beginning with onLayout().

87.5 Implementing the onLayout() Callback Method
Remaining within the MainActivity.kt file, begin by adding some import
directives that will be required by the code in the onLayout() method:
package com.ebookfrenzy.customprint
.
.
import android.print.PrintDocumentInfo
import android.print.pdf.PrintedPdfDocument
import android.graphics.pdf.PdfDocument

class MainActivity : AppCompatActivity() {
.
.
}

Next, modify the MyPrintDocumentAdapter class to declare variables to be
used within the onLayout() method:
inner class MyPrintDocumentAdapter(private var context: Context) :
 PrintDocumentAdapter() {
 private var pageHeight: Int = 0
 private var pageWidth: Int = 0
 private var myPdfDocument: PdfDocument? = null
 private var totalpages = 4
.
.
}

Note that for this example, a four-page document will be printed. In more
complex situations, the application will most likely need to dynamically
calculate the number of pages to be printed based on the quantity and layout
of the content in relation to the user’s paper size and page orientation
selections.
With the variables declared, implement the onLayout() method as outlined
in the following code listing:
override fun onLayout(oldAttributes: PrintAttributes?,
 newAttributes: PrintAttributes?,
 cancellationSignal: CancellationSignal?,
 callback: LayoutResultCallback?,
 metadata: Bundle?) {

 myPdfDocument = PrintedPdfDocument(context, newAttributes)

 val height = newAttributes.mediaSize?.heightMils
 val width = newAttributes.mediaSize?.heightMils

 height?.let {
 pageHeight = it / 1000 * 72
 }

 width?.let {
 pageWidth = it / 1000 * 72
 }

 cancellationSignal?.let {
 if (it.isCanceled) {
 callback?.onLayoutCancelled()

 return
 }
 }

 if (totalpages > 0) {
 val builder =
 PrintDocumentInfo.Builder("print_output.pdf").setCo
ntentType(
 PrintDocumentInfo.CONTENT_TYPE_DOCUMENT)
 .setPageCount(totalpages)

 val info = builder.build()
 callback?.onLayoutFinished(info, true)
 } else {
 callback?.onLayoutFailed("Page count is zero.")
 }
}

This method performs quite a few tasks, each requiring some detailed
explanation.
To begin with, a new PDF document is created as a PdfDocument class
instance. One of the arguments passed into the onLayout() method when the
Printing framework calls it is an object of type PrintAttributes containing
details about the paper size, resolution, and color settings the user selects
for the print output. These settings are used when creating the PDF
document, along with the context of the activity previously stored for us by
our constructor method:
myPdfDocument = PrintedPdfDocument(context, newAttributes)

The method then uses the PrintAttributes object to extract the height and
width values for the document pages. These dimensions are stored in the
object as thousandths of an inch. Since the methods that will use these
values later in this example work in units of 1/72 of an inch, these numbers
are converted before they are stored:
val height = newAttributes?.mediaSize?.heightMils
val width = newAttributes?.mediaSize?.heightMils

height?.let {
 pageHeight = it / 1000 * 72
}

width?.let {
 pageWidth = it / 1000 * 72
}

Although this example does not make use of the user’s color selection, this
property can be obtained via a call to the getColorMode() method of the
PrintAttributes object, which will return a value of either
COLOR_MODE_COLOR or COLOR_MODE_MONOCHROME.
When the onLayout() method is called, it is passed an object of type
LayoutResultCallback. This object provides a way for the method to
communicate status information back to the Printing framework via a set of
methods. For example, the onLayout() method will be called if the user
cancels the print process. The fact that the process has been canceled is
indicated via a setting within the CancellationSignal argument. If a
cancellation is detected, the onLayout() method must call the
onLayoutCancelled() method of the LayoutResultCallback object to notify
the Print framework that the cancellation request was received and that the
layout task has been canceled:
cancellationSignal?.let {
 if (it.isCanceled) {
 callback?.onLayoutCancelled()
 return
 }
}

When the layout work is complete, the method is required to call the
onLayoutFinished() method of the LayoutResultCallback object, passing
through two arguments. The first argument is a PrintDocumentInfo object
containing information about the document to be printed. This information
consists of the name of the PDF document, the type of content (in this case,
a document rather than an image), and the page count. The second argument
is a Boolean value indicating whether or not the layout has changed since
the last call made to the onLayout() method:
if (totalpages > 0) {
 val builder =
PrintDocumentInfo.Builder("print_output.pdf").setContentType(
 PrintDocumentInfo.CONTENT_TYPE_DOCUMENT)
 .setPageCount(totalpages)

 val info = builder.build()

 callback?.onLayoutFinished(info, true)
} else {
 callback?.onLayoutFailed("Page count is zero.")
}

If the page count is zero, the code reports this failure to the Printing
framework via a call to the onLayoutFailed() method of the
LayoutResultCallback object.
The call to the onLayoutFinished() method notifies the Printing framework
that the layout work is complete, triggering a call to the onWrite() method.

87.6 Implementing the onWrite() Callback Method
The onWrite() callback method is responsible for rendering the pages of the
document and then notifying the Printing framework that the document is
ready to be printed. When completed, the onWrite() method reads as
follows:
package com.ebookfrenzy.customprint

import java.io.FileOutputStream
import java.io.IOException
.
.
override fun onWrite(pageRanges: Array<out PageRange>?,
 destination: ParcelFileDescriptor,
 cancellationSignal:
android.os.CancellationSignal?,
 callback: WriteResultCallback?) {

 for (i in 0 until totalpages) {
 if (pageInRange(pageRanges, i)) {
 val newPage = PdfDocument.PageInfo.Builder(pageWidth,
 pageHeight, i).create()

 val page = myPdfDocument?.startPage(newPage)

 cancellationSignal?.let {
 if (it.isCanceled) {
 callback?.onWriteCancelled()
 myPdfDocument?.close()
 myPdfDocument = null
 return
 }

 }
 page?.let {
 drawPage(it, i)
 }
 myPdfDocument?.finishPage(page)
 }
 }

 try {
 myPdfDocument?.writeTo(FileOutputStream(
 destination?.fileDescriptor))
 } catch (e: IOException) {
 callback?.onWriteFailed(e.toString())
 return
 } finally {
 myPdfDocument?.close()
 myPdfDocument = null
 }

 callback?.onWriteFinished(pageRanges)
}

The onWrite() method starts by looping through each page in the document.
However, it is important to consider that the user may have requested that
only some of the pages that make up the document be printed. The Printing
framework user interface panel provides the option to specify specific pages
or ranges of pages to be printed. Figure 87-2, for example, shows the print
panel configured to print pages 1-4, page 9, and pages 11-13 of a document.

Figure 87-2
When writing the pages to the PDF document, the onWrite() method must
take steps to ensure that only those pages specified by the user are printed.

To make this possible, the Printing framework passes through as an
argument an array of PageRange objects indicating the ranges of pages to
be printed. In the above onWrite() implementation, the pageInRange()
method is called for each page to verify that the page is within the specified
ranges. The code for the pageInRange() method will be implemented later
in this chapter.
for (i in 0 until totalpages) {
 if (pageInRange(pageRanges, i)) {

For each page that is within any specified ranges, a new PdfDocument.Page
object is created. When creating a new page, the height and width values
previously stored by the onLayout() method are passed through as
arguments so that the page size matches the print options selected by the
user:
val newPage = PageInfo.Builder(pageWidth, pageHeight, i).create()

val page = myPdfDocument?.startPage(newPage)

As with the onLayout() method, the onWrite() method is required to
respond to cancellation requests. In this case, the code notifies the Printing
framework that the cancellation has been performed before closing and de-
referencing the myPdfDocument variable:
cancellationSignal?.let {
 if (it.isCanceled) {
 callback?.onWriteCancelled()
 myPdfDocument?.close()
 myPdfDocument = null
 return
 }
}

As long as the print process has not been canceled, the method calls a
method to draw the content on the current page before calling the
finishedPage() method on the myPdfDocument object.
page?.let {
 drawPage(it, i)
}
myPdfDocument?.finishPage(page)

The drawPage() method is responsible for drawing the content onto the
page and will be implemented once the onWrite() method is complete.

When the required number of pages have been added to the PDF document,
the document is then written to the destination stream using the file
descriptor, which is passed through as an argument to the onWrite() method.
If, for any reason, the write operation fails, the method notifies the
framework by calling the onWriteFailed() method of the
WriteResultCallback object (also passed as an argument to the onWrite()
method).
try {
 myPdfDocument?.writeTo(FileOutputStream(
 destination?.fileDescriptor))
} catch (e: IOException) {
 callback?.onWriteFailed(e.toString())
 return
} finally {
 myPdfDocument?.close()
 myPdfDocument = null
}

Finally, the onWriteFinish() method of the WriteResultsCallback object is
called to notify the Printing framework that the document is ready to be
printed.

87.7 Checking a Page is in Range
As previously outlined, when the onWrite() method is called, it is passed an
array of PageRange objects indicating the ranges of pages within the
document to be printed. The PageRange class is designed to store the start
and end pages of a page range which, in turn, may be accessed via the
getStart() and getEnd() methods of the class.
When the onWrite() method was implemented in the previous section, a call
was made to a method named pageInRange(), which takes as arguments an
array of PageRange objects and a page number. The role of the
pageInRange() method is to identify whether the specified page number is
within the ranges specified and may be implemented within the
MyPrintDocumentAdapter class in the MainActivity.kt class as follows:
inner class MyPrintDocumentAdapter(private var context: Context) :
 PrintDocumentAdapter() {
.
.
 private fun pageInRange(pageRanges: Array<out PageRange>?, page:

Int):
 Boolean {
 pageRanges?.let {
 for (i in it.indices) {
 if (page >= it[i].start && page <= it[i].end)
 return true
 }
 }
 return false
 }
.
.
}

87.8 Drawing the Content on the Page Canvas
We have now reached the point where some code needs to be written to
draw the content on the pages so that they are ready for printing. The
content that gets drawn is completely application specific and limited only
by what can be achieved using the Android Canvas class. In this example,
however, some simple text and graphics will be drawn on the canvas.
The onWrite() method has been designed to call a method named
drawPage() which takes as arguments the PdfDocument.Page object
representing the current page, and an integer, representing the page number.
Within the MainActivity.kt file, this method should now be implemented as
follows:
package com.ebookfrenzy.customprint
.
.
import android.graphics.Color
import android.graphics.Paint

class MainActivity : AppCompatActivity() {
.
.
 inner class MyPrintDocumentAdapter(private var context: Context)
:
 PrintDocumentAdapter() {

 private fun drawPage(page: PdfDocument.Page,
 pagenumber: Int) {
 var pagenum = pagenumber

 val canvas = page.canvas

 pagenum++ // Make sure page numbers start at 1

 val titleBaseLine = 72
 val leftMargin = 54

 val paint = Paint()
 paint.color = Color.BLACK
 paint.textSize = 40f
 canvas.drawText(
 "Test Print Document Page " + pagenum,
 leftMargin.toFloat(),
 titleBaseLine.toFloat(),
 paint)

 paint.textSize = 14f
 canvas.drawText("This is some test content to verify
that custom document printing works", leftMargin.toFloat(),
(titleBaseLine + 35).toFloat(), paint)

 if (pagenum % 2 == 0)
 paint.color = Color.RED
 else
 paint.color = Color.GREEN

 val pageInfo = page.info

 canvas.drawCircle((pageInfo.pageWidth / 2).toFloat(),
 (pageInfo.pageHeight / 2).toFloat(),
 150f,
 paint)
 }
.
.
}

Page numbering within the code starts at 0. Since documents traditionally
start at page 1, the method begins by incrementing the stored page number.
A reference to the Canvas object associated with the page is then obtained,
and some margin and baseline values are declared:
var pagenum = pagenumber
val canvas = page.canvas

pagenum++ // Make sure page numbers start at 1

val titleBaseLine = 72
val leftMargin = 54

Next, the code creates Paint and Color objects to be used for drawing, sets a
text size, and draws the page title text, including the current page number:
val paint = Paint()
paint.color = Color.BLACK
paint.textSize = 40f
canvas.drawText(
 "Test Print Document Page " + pagenum,
 leftMargin.toFloat(),
 titleBaseLine.toFloat(),
 paint)

The text size is then reduced, and some body text is drawn beneath the title:
paint.textSize = 14f
canvas.drawText("This is some test content to verify that custom
document printing works", leftMargin.toFloat(), (titleBaseLine +
35).toFloat(), paint)

The last task performed by this method involves drawing a circle (red on
even-numbered pages and green on odd). Having ascertained whether the
page is odd or even, the method obtains the height and width of the page
before using this information to position the circle in the center of the page:
if (pagenum % 2 == 0)
 paint.color = Color.RED
else
 paint.color = Color.GREEN

val pageInfo = page.info

canvas.drawCircle((pageInfo.pageWidth / 2).toFloat(),
 (pageInfo.pageHeight / 2).toFloat(),
 150f, paint)

Having drawn on the canvas, the method returns control to the onWrite()
method.
With the completion of the drawPage() method, the
MyPrintDocumentAdapter class is now finished.

87.9 Starting the Print Job

When the user touches the “Print Document” button, the printDocument()
onClick event handler method will be called. All that now remains before
testing can commence, therefore, is to add this method to the
MainActivity.kt file, taking particular care to ensure that it is placed outside
of the MyPrintDocumentAdapter class:
package com.ebookfrenzy.customprint
.
.
import android.print.PrintManager
import android.view.View

class MainActivity : AppCompatActivity() {

 fun printDocument(view: View) {
 val printManager = this
 .getSystemService(Context.PRINT_SERVICE) as
PrintManager

 val jobName = this.getString(R.string.app_name) + "
Document"

 printManager.print(jobName, MyPrintDocumentAdapter(this),
null)
 }
.
.
}

This method obtains a reference to the Print Manager service running on the
device before creating a new String object to serve as the job name for the
print task. Finally, the print() method of the Print Manager is called to start
the print job, passing through the job name and an instance of our custom
print document adapter class.

87.10 Testing the Application
Compile and run the application on an Android device or emulator. When
the application has loaded, touch the “Print Document” button to initiate the
print job and select a suitable target for the output (the Save to PDF option
is useful for avoiding wasting paper and printer ink).
Check the printed output, which should consist of 4 pages, including text

and graphics. Figure 87-3, for example, shows the four pages of the
document viewed as a PDF file ready to be saved on the device.
Experiment with other print configuration options, such as changing the
paper size, orientation, and page settings within the print panel. The printed
output should reflect each setting change, indicating that the custom print
document adapter functions correctly.

Figure 87-3
87.11 Summary
Although more complex to implement than the Android Printing framework
HTML and image printing options, custom document printing provides
considerable flexibility in printing complex content within an Android
application. Most of the work in implementing custom document printing
involves the creation of a custom Print Adapter class that not only draws the
content on the document pages but also responds correctly as the user
changes print settings, such as the page size and range of pages to be
printed.

88. An Introduction to Android App
Links
As technology evolves, the traditional distinction between web and mobile
content is beginning to blur. One area where this is particularly true is the
growing popularity of progressive web apps, where web apps look and
behave much like traditional mobile apps.
Another trend involves making the content within mobile apps discoverable
through web searches and via URL links. In the context of Android app
development, the App Links feature is designed to make it easier for users
to discover and access content stored within an Android app, even if the
user does not have the app installed.

88.1 An Overview of Android App Links
An app link is a standard HTTP URL that is an easy way to link directly to
a particular place in your app from an external source such as a website or
app. App links (also called deep links) are used primarily to encourage users
to engage with an app and to allow users to share app content.
App link implementation is a multi-step process that involves the addition
of intent filters to the project manifest, implementing link handling code
within the associated app activities, and the use of digital asset links files to
associate app and web-based content.
These steps can be performed manually by making project changes or
automatically using the Android Studio App Links Assistant.
The remainder of this chapter will outline app links implementation in
terms of the changes that must be made to a project. The next chapter (“An
Android Studio App Links Tutorial”) will demonstrate the use of the App
Links Assistant to achieve the same results.

88.2 App Link Intent Filters
An app link URL needs to be mapped to a specific activity within an app
project. This is achieved by adding intent filters to the project’s
AndroidManifest.xml file designed to launch an activity in response to an
android.intent.action.VIEW action. The intent filters are declared within the

element for the activity to be launched and must contain the data outlining
the scheme, host, and path of the app link URL. The following manifest
fragment, for example, declares an intent filter to launch an activity named
MyActivity when an app link matching http://www.example.com/welcome
is detected:
<activity android:name="com.ebookfrenzy.myapp.MyActivity">

 <intent-filter android:autoVerify="true">
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE"
/>

 <data
 android:scheme="http"
 android:host="www.example.com"
 android:pathPrefix="/welcome" />
 </intent-filter>
</activity>

The order in which ambiguous intent filters are handled can be specified
using the order property of the intent filter tag as follows:
<application>
 <activity android:name=" com.ebookfrenzy.myapp.MyActivity">
 <intent-filter android:autoVerify="true" android:order="1">
.
.

The intent filter will cause the app link to launch the correct activity, but
code must still be added to the target activity to handle the intent
appropriately.

88.3 Handling App Link Intents
In most cases, the launched activity will need to gain access to the app link
URL and take specific action based on how the URL is structured.
Continuing from the above example, the activity will likely display
different content when launched via a URL containing a path of
/welcome/newuser than one with the path set to /welcome/existinguser.
When the link launches the activity, it is passed an intent object containing
data about the action which launched the activity, including a Uri object

containing the app link URL. Within the initialization stages of the activity,
code can be added to extract this data as follows:
val appLinkIntent = intent
val appLinkAction = appLinkIntent.action
val appLinkData = appLinkIntent.data

Having obtained the Uri for the app link, the various components that make
up the URL path can be used to decide the actions to perform within the
activity. In the following code example, the last component of the URL is
used to identify whether content should be displayed for a new or existing
user:
val userType = appLinkData.lastPathSegment

if (userType == "newuser") {
 // display new user content
} else {
 // display existing user content
}

88.4 Associating the App with a Website
Before an app link will work, an app link URL must be associated with the
website on which the app link is based. This is achieved by creating a
Digital Asset Links file named assetlinks.json and installing it within the
website’s .well-known folder. Note that digital asset linking is only possible
for websites that are HTTPS based.
A digital asset links file comprises a relation statement granting permission
for a target app to be launched using the website’s link URLs and a target
statement declaring the companion app package name and SHA-256
certificate fingerprint for that project. A typical asset link file might, for
example, read as follows:
[{
 "relation": ["delegate_permission/common.handle_all_urls"],
 "target" : { "namespace": "android_app",
 "package_name": "<app package name here>",
 "sha256_cert_fingerprints": ["<app certificate
here>"] }
}]

The assetlinks.json file can contain multiple digital asset links, allowing a
single website to be associated with more than one companion app.

88.5 Summary
Android App Links allow app activities to be launched via URL links from
external websites and other apps. App links are implemented using intent
filters within the project manifest file and intent handling code within the
launched activity. Using a Digital Asset Links file, it is also possible to
associate the domain name used in an app link with the corresponding
website. Once the association has been established, Android no longer
needs to ask the user to select the target app when an app link is used.

89. An Android Studio App Links
Tutorial
This chapter will provide a practical demonstration of Android app links
and the Android Studio App Link Assistant.
This chapter will add app linking support to an existing Android app,
allowing an activity to be launched via an app link URL. In addition to
launching the activity, the content displayed will be specified within the
URL’s path.

89.1 About the Example App
The project used in this chapter is named AppLinking and is a basic app
designed to allow users to find information about landmarks in London.
The app uses a SQLite database accessed through a standard Android
content provider class. The app has an existing database containing records
for some popular tourist attractions in London. In addition to the existing
database entries, the app lets the user add and delete landmark descriptions.
Currently, the app allows the existing records to be searched and new
records to be added and deleted.
The project consists of two activities named AppLinkingActivity and
LandmarkActivity. AppLinkingActivity is the main activity launched at app
startup. This activity allows the user to enter search criteria and add records
to the database. When a search locates a matching record,
LandmarkActivity launches and displays the information for the related
landmark.
This chapter will enhance the app to support app linking so that URLs can
be used to display specific landmark records within the app.

89.2 The Database Schema
The data for the example app is contained within a file named landmarks.db
located in the app -> assets –> databases folder of the project hierarchy.
The database contains a single table named locations, the structure of which
is outlined in Table 89-1:

Column Type Description

_id String The primary index, this column contains string
values that uniquely identify the landmarks in the
database.

title String The name of the landmark (e.g., London Bridge).

description String A description of the landmark.

personal Boolean Indicates whether the record is personal or public.
This value is set to true for all records added by the
user. Existing records provided with the database are
set to false.

Table 89-1
89.3 Loading and Running the Project
The project is contained within the AppLinking folder of the sample source
code download archive located at the following URL:
https://www.payloadbooks.com/product/jellyfishkotlin/
Having located the folder, open it within Android Studio and run the app on
a device or emulator. Once the app is launched, the screen illustrated in
Figure 89-1 below will appear:

https://www.payloadbooks.com/product/jellyfishkotlin/

Figure 89-1
As currently implemented, landmarks are located using the ID for the
location. The default database configuration currently contains two records
referenced by the IDs “londonbridge” and “toweroflondon”. Test the search
feature by entering londonbridge into the ID field and clicking the Find
button. When a matching record is found, the second activity
(LandmarkActivity) is launched and passed information about the record to
be displayed. This information takes the form of extra data added to the
Intent object. LandmarkActivity uses this information to extract the record
from the database and display it to the user using the screen shown in
Figure 89-2:

Figure 89-2
89.4 Adding the URL Mapping
Now that the app has been loaded into Android Studio and tested, we can
add app link support. The objective is for the LandmarkActivity screen to
launch and display information in response to an app link click. This is
achieved by mapping a URL to LandmarkActivity. For this example, the
format of the URL will be as follows:
http://<website domain>/landmarks/<landmarkId>

When all of the steps have been completed, the following URL should, for
example, cause the app to display information about the Tower of London:
http://www.yourdomain.com/landmarks/toweroflondon

To add a URL mapping to the project, begin by opening the App Links
Assistant using the Tools -> App Links Assistant menu option. Once open,
the assistant should appear as shown in Figure 89-3:

Figure 89-3
Next, click the Create Applink button to display the panel shown below:

Figure 89-4
Click on the Open URL Mapping Editor button to map a URL to an activity.
Within the mapping screen, click on the ‘+’ button (highlighted in Figure
89-5) to add a new URL:

Figure 89-5
In the Host field of the Add URL Mapping dialog, enter either the URL for
your own website. If you do not have a website to use for this tutorial, you
can still follow most of this chapter using http://www.example.com, though
it will not be possible to test features that require the presence of a Digital
Asset Links file.
The Path field (marked B in Figure 89-6 below) is where the path
component of the URL is declared. The path must be prefixed with / so
enter /landmarks into this field.
The Path menu (B) provides the following three path-matching options:
•path – The URL must match the path component of the URL exactly to
launch the activity. For example, if the path is set to /landmarks,
http://www.example.com/landmarks will be considered a match. A URL of
http://www.example.com/landmarks/londonbridge, however, will not be
considered a match.

•pathPrefix – The specified path is only considered as the prefix.
Additional path components may be included after the /landmarks
component (for example,
http://www.example.com/landmarks/londonbridge will still be considered a
match).

•pathPattern – Allows the path to be specified using pattern matching in
the form of basic regular expressions and wildcards, for example,
landmarks/*/[l-L]ondon/*

Since the path in this example is a prefix to the landmark ID component,
select the pathPrefix menu option.

Finally, use the Activity menu (C) to select LandmarkActivity as the
activity to be launched in response to the app link:

Figure 89-6
After completing the settings in the dialog, click the OK button to commit
the changes. Check that the URL is correctly formatted and assigned to the
appropriate activity by entering the following URL into the Check URL
Mapping field of the mapping screen (where <your domain> is set to the
domain specified in the Host field above) :
http://<your domain>/landmarks/toweroflondon

If the mapping is configured correctly, LandmarkActivity will be listed as
the mapped activity:

Figure 89-7
The latest version of Android requires that App Links be declared for HTTP
and HTTPS protocols, even if only one is being used. Therefore, before
proceeding to the next step, repeat the above steps to add the HTTPS
version of the URL to the list.
The next step will also be performed in the URL mapping screen of the App
Links Assistant, so leave the screen selected.

89.5 Adding the Intent Filter
As explained in the previous chapter, an intent filter is needed to launch the

target activity in response to an app link click. In fact, when the URL
mapping was added, the intent filter was automatically added to the project
manifest file. With the URL mapping selected in the App Links Assistant
URL mapping list, scroll down the screen until the intent filter Preview
section comes into view. The preview should contain the modified
AndroidManifest.xml file with the newly added intent filters included:

Figure 89-8
Although App Links Assistant has added intent filters for us, it may not
have included the autoVerify setting needed when working with app links.
Open the manifests -> AndroidManifest.xml file and add this setting to the
two intent filters as follows:
<intent-filter android:autoVerify="true">
.
.
 <data android:scheme="http" />
 <data android:host="www.example.com" />
 <data android:pathPrefix="/landmarks" />
</intent-filter>
<intent-filter android:autoVerify="true">
.
.
 <data android:scheme="https" />
 <data android:host="www.example.com" />
 <data android:pathPrefix="/landmarks" />
</intent-filter>

89.6 Adding Intent Handling Code
The steps taken so far ensure that the correct activity is launched in
response to an appropriately formatted app link URL. The next step is to
handle the intent within the LandmarkActivity class so that the correct
record is extracted from the database and displayed to the user. Before

making any changes to the code within the LandmarkActivity.kt file, it is
worthwhile reviewing some areas of the existing code. Open the
LandmarkActivity.kt file in the code editor and locate the onCreate() and
handleIntent() methods which should currently read as follows:
override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
.
.
 handleIntent(intent)
}

private fun handleIntent(intent: Intent) {

 val landmarkId =
intent.getStringExtra(AppLinkingActivity.LANDMARK_ID)

 landmarkId?.let {
 displayLandmark(it)
 }
}

In its current form, the code expects to find the landmark ID within the
extra data of the Intent bundle. Since the activity can now be launched by
an app link, this code must be changed to handle both scenarios. Begin by
deleting the call to handleIntent() in the onCreate() method:
override fun onCreate(savedInstanceState: Bundle?) {
.
.
 handleIntent(intent)
}

To add the initial app link intent handling code, return to the App Links
Assistant panel and click on the Select Activity button listed under step 2.
Within the activity selection dialog, select the LandmarkActivity entry
before clicking on the Insert Code button:

Figure 89-9
Return to the LandmarkActivity.kt file and note that the following code has
been inserted into the onCreate() method (note that you can manually add
this code if Android Studio is unable to complete the request):
// ATTENTION: This was auto-generated to handle app links.
val appLinkIntent: Intent = intent
val appLinkAction: String? = appLinkIntent.action
val appLinkData: Uri? = appLinkIntent.data

This code accesses the Intent object and extracts the Action string and Uri.
If the activity launch results from an app link, the action string will be set to
android.intent.action.VIEW, which matches the action declared in the intent
filter added to the manifest file. If, on the other hand, the activity was
launched by the standard intent launching code in the findLandmark()
method of the main activity, the action string will be null. By checking the
value assigned to the action string, code can be written to identify how the
activity was launched and take appropriate action:
override fun onCreate(savedInstanceState: Bundle?) {
.
.
 // ATTENTION: This was auto-generated to handle app links.
 val appLinkIntent: Intent = intent
 val appLinkAction: String? = appLinkIntent.action
 val appLinkData: Uri? = appLinkIntent.data

 val landmarkId = appLinkData?.lastPathSegment

 if (landmarkId != null) {
 displayLandmark(landmarkId)
 }
}

All that remains is to add some additional code to the method to identify the
last component in the app link URL path and to use that as the landmark ID
when querying the database:
override fun onCreate(savedInstanceState: Bundle?) {
.
.
 // ATTENTION: This was auto-generated to handle app links.
 val appLinkIntent = intent
 val appLinkAction = appLinkIntent.action
 val appLinkData = appLinkIntent.data

 if (appLinkAction != null) {

 if (appLinkAction == "android.intent.action.VIEW") {

 val landmarkId = appLinkData?.lastPathSegment

 if (landmarkId != null) {
 displayLandmark(landmarkId)
 }
 }
 } else {
 handleIntent(appLinkIntent)
 }
}

If the action string is not null, a check is made to verify that it is set to
android.intent.action.VIEW before extracting the last component of the Uri
path. This component is then used as the landmark ID when making the
database query. If, on the other hand, the action string is null, the existing
handleIntent() method is called to extract the ID from the intent data.

89.7 Testing the App
Run the app on a device or emulator and make sure it is still possible to
search for the example landmarks. We have now successfully added app
link support to the app. If you specified your own website URL for the app
links, we can now take the example one step further by creating and
installing a Digital Asset Links file.

89.8 Creating the Digital Asset Links File
As outlined in the chapter entitled “An Overview of Android Intents”, to

fully support app links, we need to install a Digital Asset Links file on the
website referenced in the app link. Begin by following the steps outlined in
“An Overview of Android Intents” to locate your debug.keystore file and
identify your SHA256 fingerprint.
Next, open the following page in a web browser:
https://developers.google.com/digital-asset-links/tools/generator
Once the page has loaded, enter your website URL into the Hosting site
domain field, com.ebookfrenzy.applinking as the App package name, and
your SHA256 fingerprint into the App package fingerprint (SHA256) field:

Figure 89-10
Click the Generate statement button to display the generated statement and
place it in a file named assetlinks.json in a folder named .well-known on
your web server. Return to the generator page and click on the Test
statement button to verify that the file is in the correct location. On a
successful test, output similar to the following will appear:

Figure 89-11
Assuming a successful test, we are now ready to try out the app link.

89.9 Testing the App Link
Test that the intent handling works by returning to the App Links Assistant
panel and clicking on the Test App Links button. When prompted for a URL
to test, enter the URL (using the domain referenced in the app link
mapping) for the londonbridge landmark ID before clicking on the Run Test

https://developers.google.com/digital-asset-links/tools/generator

button:

Figure 89-12
Once the button has been clicked, the Landmark activity should launch on
the device or emulator and display information about London Bridge.

89.10 Summary
This chapter has demonstrated the steps for implementing App Link support
within an Android app project, including using the App Link Assistant in
Android Studio, App Link URL mapping, intent filters, handling website
association using Digital Asset Links file entries, and App Link testing.

90. An Android Biometric
Authentication Tutorial
Touch sensors are now built into many Android devices to identify the user
and provide access to the device and application functionality, such as in-
app payment options using fingerprint recognition. Fingerprint recognition
is just one of several authentication methods, including passwords, PINs,
and, more recently, facial recognition.
Although only a few Android devices currently on the market provide facial
recognition, this will likely become more common in the future. In
recognition of this, Google has begun to transition away from a fingerprint-
centric approach to adding authentication to apps to a less specific approach
called biometric authentication.
This chapter provides an overview of biometric authentication and a
detailed, step-by-step tutorial demonstrating a practical approach to
implementing biometric authentication within an Android app project.

90.1 An Overview of Biometric Authentication
The key biometric authentication component is the BiometricPrompt class.
This class performs much of the work that previously had to be performed
by writing code in earlier Android versions, including displaying a standard
dialog to guide the user through the authentication process, performing the
authentication, and reporting the results to the app. The class also handles
excessive failed authentication attempts and enforces a timeout before the
user can try again.
The BiometricPrompt class includes a companion Builder class that can be
used to configure and create BiometricPrompt instances, including defining
the text that is to appear within the biometric authentication dialog and the
customization of the cancel button (also referred to as the negative button)
that appears in the dialog.
The BiometricPrompt instance is also assigned a set of authentication
callbacks that will be called to provide the app with the results of an
authentication operation. A CancellationSignal instance is also used to
allow the app to cancel the authentication while it is in process.

With these basics covered, the remainder of this chapter will implement
fingerprint-based biometric authentication within an example project.

90.2 Creating the Biometric Authentication Project
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.
Enter BiometricDemo into the Name field and specify
com.ebookfrenzy.biometricdemo as the package name. Before clicking on
the Finish button, change the Minimum API level setting to API 29:
Android (Q) and the Language menu to Kotlin.

90.3 Configuring Device Fingerprint Authentication
Fingerprint authentication is only available on devices containing a touch
sensor and on which the appropriate configuration steps have been taken to
secure the device and enroll at least one fingerprint. For steps on
configuring an emulator session to test fingerprint authentication, refer to
the chapter “Using and Configuring the Android Studio AVD Emulator”.
Configure fingerprint authentication on a physical device by opening the
Settings app and selecting the Security option. Within the Security settings
screen, select the Fingerprint option. Tap the Next button on the resulting
information screen to proceed to the Fingerprint setup screen. Before
fingerprint security can be enabled, a backup screen unlocking method
(such as a PIN) must be configured. If the lock screen is not secured, follow
the steps to configure PIN, pattern, or password security.
With the lock screen secured, proceed to the fingerprint detection screen
and touch the sensor when prompted lock screen secured, proceed to the
fingerprint detection screen and touch the sensor when prompted (Figure
90-1), repeating the process to add additional fingerprints if required.

Figure 90-1
90.4 Adding the Biometric Permission to the
Manifest File
Biometric authentication requires that the app request the
USE_BIOMETRIC permission within the project manifest file. Within the
Android Studio Project tool window, locate and edit the app -> manifests -
> AndroidManifest.xml file to add the permission request as follows:
<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.ebookfrenzy.biometricdemo">

 <uses-permission
 android:name="android.permission.USE_BIOMETRIC" />
.
.

90.5 Designing the User Interface
To keep the example as simple as possible, the only visual element within
the user interface will be a Button view. Locate and select the
activity_main.xml layout resource file to load it into the Layout Editor tool.
Delete the sample TextView object, drag and drop a Button object from the
Common category of the palette and position it in the center of the layout
canvas. Using the Attributes tool window, change the text property on the

button to “Authenticate” and extract the string to a resource. Finally,
configure the onClick property to call a method named authenticateUser.
On completion of the above steps, the layout should match that shown in
Figure 90-2:

Figure 90-2
90.6 Adding a Toast Convenience Method
At various points throughout the code in this example, the app will be
designed to display information to the user via Toast messages. Rather than
repeat the same Toast code multiple times, a convenience method named
notifyUser() will be added to the main activity. This method will accept a
single String value and display it to the user as a Toast message. Edit the
MainActivity.kt file now and add this method as follows:
.
.
import android.widget.Toast
.
.
private fun notifyUser(message: String) {
 Toast.makeText(this,
 message,
 Toast.LENGTH_LONG).show()
}

90.7 Checking the Security Settings
Earlier in this chapter, steps were taken to configure the lock screen and
register fingerprints on the device or emulator on which the app will be
tested. It is important, however, to include defensive code in the app to
ensure these requirements have been met before attempting to seek
fingerprint authentication. These steps will be performed within the
onCreate method residing in the MainActivity.kt file, using the Keyguard
and PackageManager manager services. Note that code has also been added
to verify that the USE_BIOMETRIC permission has been configured for
the app:
.
.
import androidx.core.app.ActivityCompat
import android.Manifest
import android.app.KeyguardManager
import android.content.Context
import android.content.pm.PackageManager
.
.
class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
.
.
 checkBiometricSupport()
 }

 private fun checkBiometricSupport(): Boolean {

 val keyguardManager =
getSystemService(Context.KEYGUARD_SERVICE)
 as KeyguardManager

 if (!keyguardManager.isKeyguardSecure) {

 notifyUser("Lock screen security not enabled in
Settings")
 return false
 }

 if (ActivityCompat.checkSelfPermission(this,
 Manifest.permission.USE_BIOMETRIC) !=
 PackageManager.PERMISSION_GRANTED)
{

 notifyUser("Fingerprint authentication permission not
enabled")
 return false
 }

 return if (packageManager.hasSystemFeature(
 PackageManager.FEATURE_FINGERPRINT)) {
 true
 } else true
 }
.
.
}

The above code changes begin by using the Keyguard manager to verify
that a backup screen unlocking method has been configured (in other
words, a PIN or other authentication method can be used as an alternative to
fingerprint authentication to unlock the screen). If the lock screen is not
secured, the code reports the problem to the user and returns from the
method.
The method then checks that the user has biometric authentication
permission enabled for the app before using the package manager to verify
that fingerprint authentication is available on the device.

90.8 Configuring the Authentication Callbacks
When the biometric prompt dialog is configured, it will need to be assigned
a set of authentication callback methods that can be called to notify the app
of the success or failure of the authentication process. These methods need
to be wrapped in a BiometricPrompt.AuthenticationCallback class instance.
Remaining in the MainActivity.kt file, add a method to create and return an
instance of this class with the appropriate methods implemented:
.
.
import android.hardware.biometrics.BiometricPrompt

.

.
private val authenticationCallback:
BiometricPrompt.AuthenticationCallback
 get() = object : BiometricPrompt.AuthenticationCallback() {
 override fun onAuthenticationError(errorCode: Int,
 errString: CharSequence)
{
 super.onAuthenticationError(errorCode, errString)
 notifyUser("Authentication error: $errString")
 }

 override fun onAuthenticationHelp(helpCode: Int,
 helpString: CharSequence) {
 super.onAuthenticationHelp(helpCode, helpString)
 }

 override fun onAuthenticationFailed() {
 super.onAuthenticationFailed()
 notifyUser("Authentication Failed")
 }

 override fun onAuthenticationSucceeded(result:
 BiometricPrompt.AuthenticationResult) {
 super.onAuthenticationSucceeded(result)
 notifyUser("Authentication Succeeded")

 }
 }
.
.

90.9 Adding the CancellationSignal
Once initiated, the biometric authentication process is performed
independently of the app. To provide the app with a way to cancel the
operation, an instance of the CancellationSignal class is created and passed
to the biometric authentication process. This CancellationSignal instance
can then be used to cancel the process if necessary. The cancellation signal
instance may be configured with a listener, which will be called when the
cancellation is completed. Add a new method to the activity class to
configure and return a CancellationSignal object as follows:

.

.
import android.os.CancellationSignal
.
.
private var cancellationSignal: CancellationSignal? = null
.
.
private fun getCancellationSignal(): CancellationSignal {

 cancellationSignal = CancellationSignal()
 cancellationSignal?.setOnCancelListener {
 notifyUser("Canceled via signal")
 }
 return cancellationSignal as CancellationSignal
}
.
.

90.10 Starting the Biometric Prompt
All that remains is to add code to the authenticateUser() method to create
and configure a BiometricPrompt instance and initiate the authentication.
Add the authenticateUser() method as follows:
.
.
import android.view.View
.
.
fun authenticateUser(view: View) {
 val biometricPrompt = BiometricPrompt.Builder(this)
 .setTitle("Biometric Demo")
 .setSubtitle("Authentication is required to continue")
 .setDescription("This app uses biometric authentication
to protect your data.")
 .setNegativeButton("Cancel", this.mainExecutor)
 { _, _ ->
 notifyUser("Authentication canceled") }.build()

 biometricPrompt.authenticate(getCancellationSignal(),
mainExecutor,
 authenticationCallback)
}

The BiometricPrompt.Builder class creates a new BiometricPrompt
instance configured with title, subtitle, and description text to appear in the
prompt dialog. The negative button is configured to display text which
reads “Cancel” and a listener is configured to display a message when this
button is clicked. Finally, the authenticate() method of the BiometricPrompt
instance is called and passed the AuthenticationCallback and
CancellationSignal instances. The Biometric prompt also needs to know
which thread to perform the authentication on. This is defined by passing
through an Executor object configured for the required thread. In this case,
the getMainExecutor() method is used to pass a main Executor object to the
BiometricPrompt instance so that the authentication process occurs on the
app’s main thread.

90.11 Testing the Project
With the project now complete, run the app on a physical Android device or
emulator session and click on the Authenticate button to display the
BiometricPrompt dialog as shown in Figure 90-3:

Figure 90-3
Once running, either touch the fingerprint sensor or use the extended
controls panel within the emulator to simulate a fingerprint touch as
outlined in the chapter entitled “Using and Configuring the Android Studio
AVD Emulator”. Assuming a registered fingerprint is detected, the prompt
dialog will return to the main activity, where the toast message from the
successful authentication callback method will appear.

Click the Authenticate button again, using an unregistered fingerprint to
attempt the authentication. This time the biometric prompt dialog will
indicate that the fingerprint was not recognized:

Figure 90-4
Verify that the error handling callback works by clicking on the activity
outside the biometric prompt dialog. The prompt dialog will disappear, and
the toast message will appear with the following message:
Authentication error: Fingerprint operation canceled by user.

Check that canceling the prompt dialog using the Cancel button triggers the
“Authentication Canceled” toast message. Finally, attempt to authenticate
multiple times using an unregistered fingerprint and note that after several
attempts, the prompt dialog indicates that too many failures have occurred
and that future attempts cannot be made until later.

90.12 Summary
This chapter has outlined how to integrate biometric authentication into an
Android app project. This involves using the BiometricPrompt class, which
automatically handles most of the authentication process once configured
with appropriate message text and callbacks.

91. Creating, Testing, and Uploading
an Android App Bundle
Once the development work on an Android application is complete and
tested on a wide range of Android devices, the next step is to prepare the
application for submission to Google Play. Before submission can take
place, however, the application must be packaged for release and signed
with a private key. This chapter will work through obtaining a private key,
preparing the Android App Bundle for the project, and uploading it to
Google Play.

91.1 The Release Preparation Process
Up until this point in the book, we have been building application projects
in a mode suitable for testing and debugging. On the other hand, building an
application package for release to customers via Google Play requires
additional steps. The first requirement is to compile the application in
release mode instead of debug mode. Secondly, the application must be
signed with a private key that uniquely identifies you as the application’s
developer. Finally, the application must be packaged into an Android App
Bundle.
While these tasks can be performed outside of the Android Studio
environment, the procedures can more easily be performed using the
Android Studio build mechanism, as outlined in the remainder of this
chapter. First, however, it is important to understand more about Android
App Bundles.

91.2 Android App Bundles
When a user installs an app from Google Play, the app is downloaded in the
form of an APK file. This file contains everything needed to install and run
the app on the user’s device. Before the introduction of Android Studio 3.2,
the developer would generate one or more APK files using Android Studio
and upload them to Google Play. Supporting multiple device types, screen
sizes, and locales would require creating and uploading multiple APK files
customized for each target device and locale or generating a large universal
APK containing all of the different configuration resources and platform

binaries within a single package.
Creating multiple APK files involved a significant amount of work that had
to be repeated each time the app was updated, imposing a considerable time
overhead on the app release process.
Creating multiple APK files involved a significant amount of work that had
to be repeated each time the app needed to be updated imposing a
considerable time overhead to the app release process.
The universal APK option, while less of a burden to the developer, caused
an entirely unexpected problem. By analyzing app installation metrics,
Google discovered that the larger an installation APK file becomes
(resulting in longer download times and increased storage use), the fewer
conversions the app receives. The conversion rate is calculated as a
percentage of the users who completed the installation of an app after
viewing that app on Google Play. Google estimates that the conversion rate
for an app drops by 1% for each 6MB increase in APK file size.
Android App Bundles solve these problems by allowing the developer to
create a single package from within Android Studio and have custom APK
files automatically generated by Google Play for each individual supported
configuration (a concept called Dynamic Delivery).
An Android App Bundle is a ZIP file containing all the files necessary to
build APK files for the devices and locales for which support has been
provided within the app project. The project might, for example, include
resources and images for different screen sizes. When a user installs the
app, Google Play receives information about the device, including the
display, processor architecture, and locale. Using this information, the
appropriate pre-generated APK files are transferred onto the user’s device.
An additional benefit of Dynamic Delivery is the ability to split an app into
multiple modules, referred to as dynamic feature modules, where each
module contains the code and resources for a particular area of functionality
within the app. Each dynamic feature module is contained within a separate
APK file from the base module and is downloaded to the device only when
the user requires that feature. Dynamic Delivery and app bundles also allow
for the creation of instant dynamic feature modules which can be run
instantly on a device without the need to install an entire app.

Although it is still possible to generate APK files from Android Studio, app
bundles are now the recommended way to upload apps to Google Play.

91.3 Register for a Google Play Developer Console
Account
The first step in the application submission process is to create a Google
Play Developer Console account. To do so, navigate to
https://play.google.com/apps/publish/signup/ and follow the instructions to
complete the registration process. Note that there is a one-time $25 fee to
register. Once an application goes on sale, Google will keep 30% of all
revenues associated with the application. After creating the account, the
developer console can be accessed at https://play.google.com/console.
The next step is to gather together information about the application. To
bring your application to market, the following information will be
required:
•Title – The title of the application.
•Short Description - Up to 80 words describing the application.
•Full Description – Up to 4000 words describing the application.
•Screenshots – Up to 8 screenshots of your application running (a
minimum of two is required). Google recommends submitting screenshots
of the application running on a 7” or 10” tablet.

•Language – The language of the application (the default is US English).
•Promotional Text – The text that will be used when your application
appears in special promotional features within the Google Play
environment.

•Application Type – Whether your application is considered a game or an
application.

•Category – The category that best describes your application (for
example, finance, health and fitness, education, sports, etc.).

•Locations – The geographical locations into which you wish your
application to be made available for purchase.

•Contact Details – Methods by which users may contact you for support
relating to the application. Options include web, email, and phone.

https://play.google.com/apps/publish/signup
https://play.google.com/console

•Pricing & Distribution – Information about the price of the application
and the geographical locations where it is to be marketed and sold.

Having collected the above information, click the Create app button within
the Google Play Console to begin the creation process.

91.4 Configuring the App in the Console
When the Create app button is first clicked, the app details and declarations
screen will appear as shown in Figure 91-1 below:

Figure 91-1
Once the app entry has been fully configured, click on the Create app
button (highlighted in the above figure) to add the app and display the
dashboard screen. Within the dashboard, locate the Set up your app section
and unfold the list of tasks to configure the app store listing:

Figure 91-2
Work through the list of links and provide the requested information for
your app, making sure to save the changes at each step.

91.5 Enabling Google Play App Signing
Until recently, Google Play uploads were signed with a release app signing
key from within Android Studio and then uploaded to the Google Play
console. While this option is still available, the recommended way to
upload files is to use a process called Google Play App Signing. For a newly
created app, this involves opting into Google Play App Signing and
generating an upload key to sign the app bundle file within Android Studio.
When the app bundle file generated by Android Studio is uploaded, the
Google Play console removes the upload key and signs the file with an app
signing key stored securely within the Google Play servers. For existing
apps, some additional steps are required to enable Google Play Signing and
will be covered at the end of this chapter.
Within the Google Play console, select the newly added app entry from the
All Apps screen (accessed via the option located at the top of the left-hand
navigation panel), unfold the Setup section (Marked A in Figure 91-3), and
select the App Signing option (B).

Figure 91-3
Opt into Google Play app signing by clicking on the Create release button
(C). The console is now ready to create the first release of your app for
testing. Before doing so, however, the next step is to generate the upload
key from within Android Studio. This is performed as part of the process of
generating a signed app bundle. Leave the current Google Play Console
screen loaded into the browser, as we will be returning to this later in the
chapter.

91.6 Creating a Keystore File
To create a keystore file, select the Android Studio Build -> Generate
Signed Bundle / APK… menu option to display the Generate Signed Bundle
or APK Wizard dialog as shown in Figure 91-4:

Figure 91-4
Verify that the Android App Bundle option is selected before clicking the
Next button.
If you have an existing release keystore file, click on the Choose existing…
button on the next screen and navigate to and select the file. If you have not
created a keystore file, click the Create new… button to display the New
Key Store dialog (Figure 91-5). Click on the button to the right of the Key

store path field and navigate to a suitable location on your file system, enter
a name for the keystore file (for example, release.keystore.jks) and click the
OK button.
The New Key Store dialog is divided into two sections. The top section
relates to the keystore file. In this section, enter a strong password to protect
the keystore file into both the Password and Confirm fields. The lower
section of the dialog relates to the upload key that will be stored in the key
store file.

Figure 91-5
Within the Key section of the New Key Store dialog, enter the following
details:
•An alias by which the key will be referenced. This can be any sequence of
characters, though the system uses only the first eight.

•A suitably strong password to protect the key.
•The number of years for which the key is to be valid (Google recommends
a duration in excess of 25 years).

In addition, information must be provided for at least one of the remaining
fields (for example, your first and last name or organization name).
Once the information has been entered, click the OK button to create the
bundle.

91.7 Creating the Android App Bundle
The next step is instructing Android Studio to build the application app
bundle file in release mode and sign it with the newly created private key.
At this point, the Generate Signed Bundle or APK dialog should still be
displayed with the keystore path, passwords, and key alias fields populated
with information:

Figure 91-6
Ensure that the Export Encrypted Key option is enabled and, assuming the
other settings are correct, click on the Next button to proceed to the app
bundle generation screen (Figure 91-7). Within this screen, review the
Destination Folder: setting to verify that the location into which the app
bundle file will be generated is acceptable. If another location is preferred,
click on the button to the right of the text field and navigate to the desired
file system location.

Figure 91-7
Click the Create button and wait for the Gradle system to build the app

bundle. Once the build is complete, a dialog will appear providing the
option to open the folder containing the app bundle file in an explorer
window or to load the file into the APK Analyzer:

Figure 91-8
At this point, the application is ready to be submitted to Google Play. Click
on the locate link to open a filesystem browser window. The file should be
named bundle.aab and located in the project folder’s app/release sub-
directory unless another location is specified.
The private key generated as part of this process should be used when
signing and releasing future applications and, as such, should be kept in a
safe place and securely backed up.

91.8 Generating Test APK Files
An optional step at this stage is to generate APK files from the app bundle
and install and run them on devices or emulator sessions. Google provides a
command-line tool called bundletool designed specifically for this purpose
which can be downloaded from the following URL:
https://github.com/google/bundletool/releases
At the time of writing, bundletool is provided as a .jar file which can be
executed from the command line as follows (noting that the version number
may have changed since this book was published):
java -jar bundletool-all-0.9.0.jar

Running the above command will list all of the options available within the
tool. To generate the APK files from the app bundle, the build-apks option
is used. The files will also need to be signed to generate APK files that can
be installed onto a device or emulator. To achieve this, include the --ks
option specifying the path of the keystore file created earlier in the chapter
and the --ks-key-alias option specifying the alias provided when the key

https://github.com/google/bundletool/releases

was generated.
Finally, the --output flag must be used to specify the path of the file (called
the APK Set) into which the APK files will be generated. This file must not
already exist and is required to have a .apks filename extension. Bringing
these requirements together results in the following command line
(allowing for differences in your operating system path structure):
java -jar bundletool-all-0.9.0.jar build-apks --
bundle=/tmp/MyApps/app/release/bundle.aab --output=/tmp/MyApks.apks
--ks=/MyKeys/release.keystore.jks --ks-key-alias=MyReleaseKey

When this command is executed, a prompt will appear requesting the
keystore password before the APK files are generated into the specified
APK Set file. The APK Set file is a ZIP file containing all the APK files
generated from the app bundle.
To install the appropriate APK files onto a connected device or emulator,
use a command similar to the following:
java -jar bundletool-all-0.9.0.jar install-apks --
apks=/tmp/MyApks.apks

This command will instruct the tool to identify the appropriate APK files
for the connected device and install them so that the app can be launched
and tested.
It is also possible to extract the APK files from the APK Set for the
connected device without installing them. The first step in this process is to
obtain the specification of the connected device as follows:
java -jar bundletool-all-0.9.0.jar get-device-spec --
output=/tmp/device.json

The above command will generate a JSON file similar to the following:
{
 "supportedAbis": ["x86"],
 "supportedLocales": ["en-US"],
 "screenDensity": 420,
 "sdkVersion": 27
}

Next, this specification file is used to extract the matching APK files from
the APK Set:
java -jar bundletool-all-0.9.0.jar extract-apks --
apks=/tmp/MyApks.apks --output-dir=/tmp/nexus5_apks --device-
spec=/tmp/device.json

When executed, the directory specified via the --output-dir flag will contain
the correct APK files for the specified device configuration.
The next step in bringing an Android application to market involves
submitting it to the Google Play Developer Console o make it available for
testing.

91.9 Uploading the App Bundle to the Google Play
Developer Console
Return to the Google Play Console and select the Internal testing option
(marked A in Figure 91-9) located in the Testing section of the navigation
panel before clicking on the Create new release button (B):

Figure 91-9
On the resulting screen, click on the Continue button (marked A below) to
confirm the use of Google Play app signing, then drag and drop the bundle
file generated by Android Studio onto the upload drop point (B):

Figure 91-10
When the upload is complete, scroll down the screen and enter the release
name and optional release notes. The release name can be any information

you need to help you recognize the release, and it is not visible to users.
After the app bundle file is uploaded, Google Play will generate all the
necessary APK files ready for testing. Once the APK files have been
generated, scroll down to the bottom of the screen and click on the Save
button. Once the settings have been saved, click on the Review release
button.

91.10 Exploring the App Bundle
On the review screen, click on the arrow to the right of the uploaded bundle
as indicated in Figure 91-11:

Figure 91-11
In the resulting panel, click on the Explore bundle link to load the app
bundle explorer. This provides summary information relating to the API
levels, screen layouts, and platforms supported by the app bundle:

Figure 91-12
Clicking on the Go to device catalog link will display the devices that are
supported by the APK file:

Figure 91-13
Currently, the app is ready for testing but can only be rolled out once some

testers have been set up within the console.

91.11 Managing Testers
If the app is still in the Internal, Alpha, or Beta testing phase, a list of
authorized testers may be specified by selecting the app from within the
Google Play console, clicking on Internal testing in the navigation panel,
and selecting the Testers tab as shown in Figure 91-14:

Figure 91-14
To add testers, click on the Create email list button, name the list, and
specify the test users’ email addresses manually or by uploading a CSV file.
The “Join on the web” URL may now be copied from the screen and
provided to the test users so that they accept the testing invitation and
download the app.

91.12 Rolling the App Out for Testing
Now that an internal release has been created and a list of testers added, the
app is ready to be rolled out for testing. Remaining within the Internal
testing screen, select the Releases tab before clicking on the Edit button for
the recently created release:

Figure 91-15
On the review screen, scroll to the bottom and click on the Start rollout to
Internal testing button. After a short delay while the release is processed,

the app will be ready to be downloaded and tested by the designated users.

91.13 Uploading New App Bundle Revisions
The first app bundle file uploaded for your application will invariably have
a version code of 1. If an attempt is made to upload another bundle file with
the same version code number, the console will reject the file with the
following error:
You need to use a different version code for your APK because you
already have one with version code 1.

To resolve this problem, the version code embedded into the bundle file
needs to be increased. This is performed in the module level
build.gradle.kts file of the project, shown highlighted in Figure 91-16:

Figure 91-16
This file will typically read as follows:
plugins {
 id("com.android.application")
 id("org.jetbrains.kotlin.android")
}
android {
 namespace = "com.ebookfrenzy.biometricdemo"
 compileSdk = 34
 defaultConfig {
 applicationId = "com.ebookfrenzy.biometricdemo"
 minSdk = 33
 targetSdk = 34
 versionCode = 1
 versionName = "1.0"
.
.

}

To change the version code, change the number declared next to
versionCode. To also change the version number displayed to users of your
application, change the versionName string. For example:
versionCode 2
versionName "2.0"

After making these changes, rebuild the APK file and perform the upload
again.

91.14 Analyzing the App Bundle File
Android Studio provides the ability to analyze the content of an app bundle
file. To analyze a bundle file, select the Android Studio Build -> Analyze
APK… menu option and navigate to and choose the bundle file to be
reviewed. Once loaded into the tool, information will be displayed about the
raw and download size of the package together with a listing of the file
structure of the package as illustrated in Figure 91-17:

Figure 91-17
Selecting the classes.dex file will display the class structure of the file in the
lower panel. Within this panel, details of the individual classes may be
explored down to the level of the methods within a class:

Figure 91-18
Similarly, selecting a resource or image file within the file list will display
the file content within the lower panel. The size differences between two

bundle files may be reviewed by clicking on the Compare with previous
APK… button and selecting a second bundle file.

91.15 Summary
Once an app project is complete or ready for user testing, it can be uploaded
to the Google Play console and published for production, internal, alpha, or
beta testing. Before the app can be uploaded, an app entry must be created
within the console, including information about the app and screenshots for
use within the Play Store. A release Android App Bundle file is generated
and signed with an upload key within Android Studio. After the bundle file
has been uploaded, Google Play removes the upload key and replaces it
with the securely stored app signing key, and the app is ready to be
published.
The content of a bundle file can be reviewed at any time by loading it into
the Android Studio APK Analyzer tool.

92. An Overview of Android In-App
Billing
n the early days of mobile applications for operating systems such as
Android and iOS, the most common method for earning revenue was to
charge an upfront fee to download and install the application. Another
revenue opportunity was soon introduced by embedding advertising within
applications. The most common and lucrative option is to charge the user
for purchasing items from within the application after installing it. This
typically takes the form of access to a higher level in a game, acquiring
virtual goods or currency, or subscribing to premium content in the digital
edition of a magazine or newspaper.
Google supports integrating in-app purchasing through the Google Play In-
App Billing API and the Play Console. This chapter will provide an
overview of in-app billing and outline how to integrate in-app billing into
your Android projects. Once these topics have been explored, the next
chapter will walk you through creating an example app that includes in-app
purchasing features.

92.1 Preparing a Project for In-App Purchasing
Building in-app purchasing into an app will require a Google Play
Developer Console account, details of which were covered previously in the
“Creating, Testing and Uploading an Android App Bundle” chapter. You
must also register a Google merchant account. These settings can be found
by navigating to Setup -> Payments profile in the Play Console. Note that
merchant registration is not available in all countries. For details, refer to
the following page:
https://support.google.com/googleplay/android-developer/answer/9306917
The app must then be uploaded to the console and enabled for in-app
purchasing. However, the console will not activate in-app purchasing
support for an app unless the Google Play Billing Library has been added to
the module-level build.gradle.kts file:
dependencies {
.
.

https://support.google.com/googleplay/android-developer/answer/9306917

 implementation(libs.billingclient.ktx)
.
.
}

Once the build file has been modified and the app bundle uploaded to the
console, the next step is to add in-app products or subscriptions for the user
to purchase.

92.2 Creating In-App Products and Subscriptions
Products and subscriptions are created and managed using the options listed
beneath the Monetize section of the Play Console navigation panel, as
highlighted in Figure 92-1 below:

Figure 92-1
Each product or subscription needs an ID, title, description, and pricing
information. Purchases fall into the categories of consumable (the item must
be purchased each time it is required by the user, such as virtual currency in
a game), non-consumable (only needs to be purchased once by the user,
such as content access), and subscription-based. Consumable and non-
consumable products are collectively referred to as managed products.
Subscriptions are useful for selling an item that needs to be renewed
regularly, such as access to news content or the premium features of an app.
When creating a subscription, a base plan specifies the price, renewal
period (monthly, annually, etc.), and whether the subscription auto-renews.
Users can also be given discount offers and the option of pre-purchasing a
subscription.

92.3 Billing Client Initialization

Communication between your app and the Google Play Billing Library is
handled by a BillingClient instance. In addition, BillingClient includes a set
of methods that can be called to perform both synchronous and
asynchronous billing-related activities. When the billing client is initialized,
it will need to be provided with a reference to a PurchasesUpdatedListener
callback handler. The client will call this handler to notify your app of the
results of any purchasing activity. To avoid duplicate notifications, it is
recommended to have only one BillingClient instance per app.
A BillingClient instance can be created using the newBuilder() method,
passing through the current activity or fragment context. The purchase
update handler is then assigned to the client via the setListener() method:
private val purchasesUpdatedListener =
 PurchasesUpdatedListener { billingResult, purchases ->
 if (billingResult.responseCode ==
 BillingClient.BillingResponseCode.OK
 && purchases != null
) {
 for (purchase in purchases) {
 // Process the purchases
 }
 } else if (billingResult.responseCode ==
 BillingClient.BillingResponseCode.USER_CANCELED
) {
 // Purchase canceled by the user
 } else {
 // Handle errors here
 }
 }

billingClient = BillingClient.newBuilder(this)
 .setListener(purchasesUpdatedListener)
 .enablePendingPurchases()
 .build()

92.4 Connecting to the Google Play Billing Library
After successfully creating the Billing Client, the next step is initializing a
connection to the Google Play Billing Library. A call must be made to the
startConnection() method of the billing client instance to establish this
connection. Since the connection is performed asynchronously, a

BillingClientStateListener must be implemented to receive a callback
indicating whether the connection was successful. Code should also be
added to override the onBillingServiceDisconnected() method. This is
called if the connection to the Billing Library is lost and can be used to
report the problem to the user and retry the connection.
Once the setup and connection tasks are complete, the BillingClient
instance will make a call to the onBillingSetupFinished() method, which
can be used to check that the client is ready:
billingClient.startConnection(object : BillingClientStateListener {
 override fun onBillingSetupFinished(
 billingResult: BillingResult
) {
 if (billingResult.responseCode ==
 BillingClient.BillingResponseCode.OK
) {
 // Connection successful
 } else {
 // Connection failed
 }
 }

 override fun onBillingServiceDisconnected() {
 // Connection to billing service lost
 }
})

92.5 Querying Available Products
Once the billing environment is initialized and ready to go, the next step is
to request the details of the products or subscriptions available for purchase.
This is achieved by making a call to the queryProductDetailsAsync()
method of the BillingClient and passing through an appropriately
configured QueryProductDetailsParams instance containing the product ID
and type (ProductType.SUBS for a subscription or ProductType.INAPP for
a managed product):
val queryProductDetailsParams =
QueryProductDetailsParams.newBuilder()
 .setProductList(
 ImmutableList.of(
 QueryProductDetailsParams.Product.newBuilder()

 .setProductId(productId)
 .setProductType(
 BillingClient.ProductType.INAPP
)
 .build()
)
)
 .build()

billingClient.queryProductDetailsAsync(
 queryProductDetailsParams
) { billingResult, productDetailsList ->
 if (!productDetailsList.isEmpty()) {
 // Process list of matching products
 } else {
 // No product matches found
 }
}

The queryProductDetailsAsync() method is passed a
ProductDetailsResponseListener handler (in this case, in the form of a
lambda code block) which, in turn, is called and passed a list of
ProductDetail objects containing information about the matching products.
For example, we can call methods on these objects to get information such
as the product name, title, description, price, and offer details.

92.6 Starting the Purchase Process
Once a product or subscription has been queried and selected for purchase
by the user, the purchase process is ready to be launched. We do this by
calling the launchBillingFlow() method of the BillingClient, passing
through as arguments the current activity and a BillingFlowParams instance
configured with the ProductDetail object for the purchased item.
val billingFlowParams = BillingFlowParams.newBuilder()
 .setProductDetailsParamsList(
 ImmutableList.of(
 BillingFlowParams.ProductDetailsParams.newBuilder()
 .setProductDetails(productDetails)
 .build()
)
)
 .build()

billingClient.launchBillingFlow(this, billingFlowParams)

The success or otherwise of the purchase operation will be reported via a
call to the PurchasesUpdatedListener callback handler outlined earlier in the
chapter.

92.7 Completing the Purchase
When purchases are successful, the PurchasesUpdatedListener handler will
be passed a list containing a Purchase object for each item. You can verify
that the item has been purchased by calling the getPurchaseState() method
of the Purchase instance as follows:
if (purchase.getPurchaseState() ==
Purchase.PurchaseState.PURCHASED) {
 // Purchase completed.
} else if (purchase.getPurchaseState() ==
Purchase.PurchaseState.PENDING) {
 // Payment is still pending
}

Note that your app will only support pending purchases if a call is made to
the enablePendingPurchases() method during initialization. A pending
purchase will remain so until the user completes the payment process.
When the purchase of a non-consumable item is complete, it must be
acknowledged to prevent a refund from being issued to the user. This
requires the purchase token for the item, which is obtained via a call to the
getPurchaseToken() method of the Purchase object. This token is used to
create an AcknowledgePurchaseParams instance and an
AcknowledgePurchaseResponseListener handler. Managed product
purchases and subscriptions are acknowledged by calling the BillingClient’s
acknowledgePurchase() method as follows:
billingClient.acknowledgePurchase(acknowledgePurchaseParams,
 acknowledgePurchaseResponseListener);
val acknowledgePurchaseParams =
AcknowledgePurchaseParams.newBuilder()
 .setPurchaseToken(purchase.purchaseToken)
 .build()

val acknowledgePurchaseResponseListener =
AcknowledgePurchaseResponseListener {
 // Check acknowledgement result

}

billingClient.acknowledgePurchase(
 acknowledgePurchaseParams,
 acknowledgePurchaseResponseListener
)

For consumable purchases, you will need to notify Google Play when the
item has been consumed so that it is available to be repurchased by the user.
This requires a configured ConsumeParams instance containing a purchase
token and a call to the billing client’s consumePurchase() method:
val consumeParams = ConsumeParams.newBuilder()
 .setPurchaseToken(purchase.purchaseToken)
 .build()

coroutineScope.launch {
 val result = billingClient.consumePurchase(consumeParams)

 if (result.billingResult.responseCode ==
 BillingClient.BillingResponseCode.OK) {
 // Purchase successfully consumed
 }
}

92.8 Querying Previous Purchases
When working with in-app billing, checking whether a user has already
purchased a product or subscription is a common requirement. A list of all
the user’s previous purchases of a specific type can be generated by calling
the queryPurchasesAsync() method of the BillingClient instance and
implementing a PurchaseResponseListener. The following code, for
example, obtains a list of all previously purchased items that have not yet
been consumed:
val queryPurchasesParams = QueryPurchasesParams.newBuilder()
 .setProductType(BillingClient.ProductType.INAPP)
 .build()

billingClient.queryPurchasesAsync(
 queryPurchasesParams,
 purchasesListener
)
.

.
private val purchasesListener =
 PurchasesResponseListener { billingResult, purchases ->

 if (!purchases.isEmpty()) {
 // Access existing active purchases
 } else {
 // No
 }
 }

To obtain a list of active subscriptions, change the ProductType value from
INAPP to SUBS.
Alternatively, to obtain a list of the most recent purchases for each product,
make a call to the BillingClient queryPurchaseHistoryAsync() method:
val queryPurchaseHistoryParams =
QueryPurchaseHistoryParams.newBuilder()
 .setProductType(BillingClient.ProductType.INAPP)
 .build()

billingClient.queryPurchaseHistoryAsync(queryPurchaseHistoryParams)
{ billingResult, historyList ->
 // Process purchase history list
}

92.9 Summary
In-app purchases provide a way to generate revenue from within Android
apps by selling virtual products and subscriptions to users. This chapter
explored managed products and subscriptions and explained the difference
between consumable and non-consumable products. In-app purchasing
support is added to an app using the Google Play In-app Billing Library. It
involves creating and initializing a billing client on which methods are
called to perform tasks such as making purchases, listing available
products, and consuming existing purchases. The next chapter contains a
tutorial demonstrating the addition of in-app purchases to an Android
Studio project.

93. An Android In-App Purchasing Tutorial

In the previous chapter, we explored how to integrate in-app purchasing into
an Android project and also looked at some code samples that can be used
when working on your own projects. This chapter will put this theory into
practice by creating an example project demonstrating how to add a
consumable in-app product to an Android app. The tutorial will also show
how in-app products are added and managed within the Google Play
Console and explain how to enable test payments to make purchases during
testing without having to spend real money.

93.1 About the In-App Purchasing Example Project

The simple concept behind this project is an app in which an in-app product
must be purchased before a button can be clicked. This in-app product is
consumed each time the button is clicked, requiring the user to repurchase
the product each time they want to be able to click the button. On
initialization, the app will connect to the app store, obtain product details,
and display the product name. Once the app has established that the product
is available, a purchase button will be enabled, which will step through the
purchase process when clicked. Upon completion of the purchase, a second
button will be enabled so the user can click on it and consume the purchase.

93.2 Creating the InAppPurchase Project

The first step in this exercise is to create a new project. Launch Android
Studio and select the New Project option from the welcome screen. Choose
the Empty Views Activity template in the new project dialog before clicking
the Next button.

Enter InAppPurchase into the Name field and specify a package name that
uniquely identifies your app within the Google Play ecosystem (for example,
com.<your company> InAppPurchase). Before clicking on the Finish
button, change the Minimum API level setting to API 26: Android 8.0
(Oreo) and the Language menu to Kotlin. Once the project has been created,
use the steps outlined in section 18.8 Migrating a Project to View Binding to
convert the project to use view binding.

93.3 Adding Libraries to the Project

Before writing code, some libraries must be added to the project build
configuration, including the standard Android billing client library. Later in
the project, we will also need to use the ImmutableList class, part of
Google’s Guava Core Java libraries. Edit the version catalog (Gradle Scripts
-> libs.versions.toml) and make the following additions:

[versions]

.

.

billing = "6.2.1"

billingKtx = "6.2.0"

gauvaJre = "24.1-jre"

gauvaAndroid = "32.0.1-android"

[libraries]

.

.

billingclient = { group = "com.android.billingclient", name = "billing",
version.ref = "billing" }

billingclient-ktx = { group = "com.android.billingclient", name = "billing-
ktx", version.ref = "billingKtx" }

guava-jre = { group = "com.google.guava", name="guava", version.ref =
"gauvaJre"}

guava-android = { group = "com.google.guava", name="guava", version.ref
= "gauvaAndroid"}

.

.

After making the changes, click on the Sync Now link at the top of the
editor panel before modifying the Gradle Scripts -> build.gradle.kts
(Module: app) file as follows:

.

.

dependencies {

.

.

 implementation(libs.billingclient)

 implementation(libs.billingclient.ktx)

 implementation(libs.guava.jre)

 implementation(libs.guava.android)

.

.

}

Click on the Sync Now link at the top of the editor panel again to commit
these changes.

93.4 Designing the User Interface

The user interface will consist of the existing TextView and two Buttons.
With the activity_main.xml file loaded into the editor, drag and drop two

Button views onto the layout so that one is above and the other below the
TextView. Select the TextView and change the id attribute to statusText.

Click on the Clear all Constraints button in the toolbar and shift-click to
select all three views. Right-click on the top-most Button view and select the
Center -> Horizontally in Parent menu option. Repeat this step once more,
selecting Chains -> Create Vertical Chain. Change the text attribute of the
top button so that it reads “Consume Purchase” and the id to
consumeButton. Also, configure the onClick property to call a method
named consumePurchase.

Select the bottom-most button and repeat the above steps, setting the text to
“Buy Product”, the id to buyButton, and the onClick callback to
makePurchase. Once completed, the layout should match that shown in
Figure 93-1:

Figure 93-1

93.5 Adding the App to the Google Play Store

Using the steps outlined in the chapter entitled “Creating, Testing, and
Uploading an Android App Bundle”, sign into the Play Console, create a
new app, and set up a new internal testing track, including the email
addresses of designated testers. Return to Android Studio and generate a
signed release app bundle for the project. Once the bundle file has been
generated, upload it to the internal testing track and roll it out for testing.

Now that the app is in the Google Play Store, we are ready to create an in-
app product for the project.

93.6 Creating an In-App Product

With the app selected in the Play Console, scroll down the list of options in
the left-hand panel until the Monetize section appears. Within this section,
select the In-app products option listed under Products, as shown in Figure
93-2:

Figure 93-2

On the In-app products page, click on the Create product button:

Figure 93-3

On the new product screen, enter the following information before saving
the new product:

•Product ID: one_button_click

•Name: A Button Click

•Description: This is a test in-app product that allows a button to be clicked
once.

•Default price: Set to the lowest possible price in your preferred currency.

93.7 Enabling License Testers

When testing in-app billing, it is useful to make test purchases without
spending any money. This can be achieved by enabling license testing for
the internal track testers. License testers can use a test payment card when
making purchases so that they are not charged.

Within the Play Console, return to the main home screen and select the
Setup -> License testing option:

Figure 93-4

Within the license testing screen, add the testers that were added for the
internal testing track, change the License response setting to
RESPOND_NORMALLY, and save the changes:

Figure 93-5

Now that the app and the in-app product have been set up in the Play
Console, we can add code to the project.

93.8 Initializing the Billing Client

Edit the MainActivity.kt file and make the following changes to begin
implementing the in-app purchase functionality:

.

.

import android.util.Log

import com.android.billingclient.api.*

.

.

class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 private lateinit var billingClient: BillingClient

 private lateinit var productDetails: ProductDetails

 private lateinit var purchase: Purchase

 private val demo_product = "one_button_click"

 val TAG = "InAppPurchaseTag"

 override fun onCreate(savedInstanceState: Bundle?) {

.

.

 billingSetup()

 }

 private fun billingSetup() {

 billingClient = BillingClient.newBuilder(this)

 .setListener(purchasesUpdatedListener)

 .enablePendingPurchases()

 .build()

 billingClient.startConnection(object : BillingClientStateListener {

 override fun onBillingSetupFinished(

 billingResult: BillingResult

) {

 if (billingResult.responseCode ==

 BillingClient.BillingResponseCode.OK

) {

 Log.i(TAG, "OnBillingSetupFinish connected")

 queryProduct(demo_product)

 } else {

 Log.i(TAG, "OnBillingSetupFinish failed")

 }

 }

 override fun onBillingServiceDisconnected() {

 Log.i(TAG, "OnBillingSetupFinish connection lost")

 }

 })

 }

.

.

When the app starts, the onCreate() method will now call billingSetup(),
which will, in turn, create a new billing client instance and attempt to
connect to the Google Play Billing Library. The onBillingSetupFinished()
listener will be called when the connection attempt completes and output
Logcat messages indicating the success or otherwise of the connection
attempt. Finally, we have also implemented the
onBillingServiceDisconnected() callback which will be called if the Google
Play Billing Library connection is lost.

If the connection is successful, queryProduct() is called. This method and
the purchasesUpdatedListener assigned to the billing client must be added.

93.9 Querying the Product

To make sure the product is available for purchase, we need to create a
QueryProductDetailsParams instance configured with the product ID that
was specified in the Play Console and pass it to the
queryProductDetailsAsync() method of the billing client. This will require
that we also add the onProductDetailsResponse() callback method, where
we will check that the product exists, extract the product name, and display
it on the status TextView. Now that we have obtained the product details, we
can also safely enable the buy button. Within the MainActivity.kt file, add
the queryProduct() method so that it reads as follows:

.

.

import com.android.billingclient.api.QueryProductDetailsParams.Product

import com.google.common.collect.ImmutableList

.

.

private fun queryProduct(productId: String) {

 val queryProductDetailsParams =
QueryProductDetailsParams.newBuilder()

 .setProductList(

 ImmutableList.of(

 Product.newBuilder()

 .setProductId(productId)

 .setProductType(

 BillingClient.ProductType.INAPP

)

 .build()

)

)

 .build()

 billingClient.queryProductDetailsAsync(

 queryProductDetailsParams

) { billingResult, productDetailsList ->

 if (productDetailsList.isNotEmpty()) {

 productDetails = productDetailsList[0]

 runOnUiThread {

 binding.statusText.text = productDetails.name

 }

 } else {

 Log.i(TAG, "onProductDetailsResponse: No products")

 }

 }

}

Much of the code used here should be familiar from the previous chapter.
The listener code checks that at least one product matches the query criteria.
The ProductDetails object is then extracted from the first matching product,
stored in the productDetails variable, and the product name property is
displayed on the TextView.

One point of note is that when we display the product name on the status
TextView, we do so by calling runOnUiThread(). This is necessary because
the listener is not running on the main thread, so it cannot safely make direct
changes to the user interface. The runOnUiThread() method provides a
quick and convenient way to execute code on the main thread without using
coroutines.

93.10 Launching the Purchase Flow

When the user clicks the buy button, makePurchase() will be called to start
the purchase process. We can now add this method as follows:

.

.

import
com.android.billingclient.api.BillingFlowParams.ProductDetailsParams

import android.view.View

.

.

fun makePurchase(view: View?) {

 val billingFlowParams = BillingFlowParams.newBuilder()

 .setProductDetailsParamsList(

 ImmutableList.of(

 ProductDetailsParams.newBuilder()

 .setProductDetails(productDetails)

 .build()

)

)

 .build()

 billingClient.launchBillingFlow(this, billingFlowParams)

}

93.11 Handling Purchase Updates

The results of the purchase process will be reported to the app via the
PurchaseUpdatedListener assigned to the billing client during the
initialization phase. Add this handler now as follows:

private val purchasesUpdatedListener =

 PurchasesUpdatedListener { billingResult, purchases ->

 if (billingResult.responseCode ==

 BillingClient.BillingResponseCode.OK

 && purchases != null

) {

 for (purchase in purchases) {

 completePurchase(purchase)

 }

 } else if (billingResult.responseCode ==

 BillingClient.BillingResponseCode.USER_CANCELED

) {

 Log.i(TAG, "onPurchasesUpdated: Purchase Canceled")

 } else {

 Log.i(TAG, "onPurchasesUpdated: Error")

 }

 }

The handler will output log messages if the user cancels the purchase or
another error occurs. However, a successful purchase results in a call to the
completePurchase() method, which is passed the current Purchase object.
Add this method as outlined below:

private fun completePurchase(item: Purchase) {

 purchase = item

 if (purchase.purchaseState == Purchase.PurchaseState.PURCHASED) {

 runOnUiThread {

 binding.consumeButton.isEnabled = true

 binding.statusText.text = "Purchase Complete"

 binding.buyButton.isEnabled = false

 }

 }

}

This method stores the purchase before verifying that the product has indeed
been purchased and that payment is not still pending. The “consume” button
is enabled, and the user is notified of the successful purchase. The buy
button is also disabled to prevent the user from repurchasing before
consuming the purchase.

93.12 Consuming the Product

With the user now able to click on the “consume” button, the next step is to
ensure the product is consumed so that only one click can be performed
before another button click is purchased. This requires that we now write the
consumePurchase() method:

.

.

import kotlinx.coroutines.*

.

.

class MainActivity : AppCompatActivity() {

 private val coroutineScope = CoroutineScope(Dispatchers.IO)

.

.

 fun consumePurchase(view: View?) {

 val consumeParams = ConsumeParams.newBuilder()

 .setPurchaseToken(purchase.purchaseToken)

 .build()

 coroutineScope.launch {

 val result = billingClient.consumePurchase(consumeParams)

 if (result.billingResult.responseCode ==

 BillingClient.BillingResponseCode.OK) {

 runOnUiThread() {

 binding.consumeButton.isEnabled = false

 binding.statusText.text = "Purchase consumed"

 binding.buyButton.isEnabled = true

 }

 }

 }

 }

.

.

This method creates a ConsumeParams instance and configures it with the
purchase token for the current purchase (obtained from the Purchase object
previously saved in the completePurchase() method). This is passed to the
consumePurchase() method, which is launched within a coroutine using the

IO dispatcher. If the product is successfully consumed, code is executed in
the main thread to disable the consume button, enable the buy button, and
update the status text.

93.13 Restoring a Previous Purchase

With the code added so far, we can purchase and consume a product within a
single session. If we were to make a purchase and exit the app before
consuming it, the purchase would be lost when the app restarts. We can
solve this problem by configuring a QueryPurchasesParams instance to
search for the unconsumed In-App product and passing it to the
queryPurchasesAsync() method of the billing client together with a
reference to a listener that will be called with the results. Add a new function
and the listener to the MainActivity.kt file as follows:

private fun reloadPurchase() {

 val queryPurchasesParams = QueryPurchasesParams.newBuilder()

 .setProductType(BillingClient.ProductType.INAPP)

 .build()

 billingClient.queryPurchasesAsync(

 queryPurchasesParams,

 purchasesListener

)

}

private val purchasesListener =

 PurchasesResponseListener { billingResult, purchases ->

 if (purchases.isNotEmpty()) {

 purchase = purchases.first()

 binding.consumeButton.isEnabled = true

 binding.buyButton.isEnabled = false

 } else {

 binding.consumeButton.isEnabled = false

 }

 }

If the list of purchases passed to the listener is not empty, the first purchase
in the list is assigned to the purchase variable, and the consume button is
enabled (in a more complete implementation, code should be added to check
this is the correct product by comparing the product id and to handle the
return of multiple purchases). If no purchases are found, the consume button
is disabled until another purchase is made. All that remains is to call our new
reloadPurchase() method during the billing setup process as follows:

private fun billingSetup() {

.

.

 if (billingResult.responseCode ==

 BillingClient.BillingResponseCode.OK

) {

 Log.i(TAG, "OnBillingSetupFinish connected")

 queryProduct(demo_product)

 reloadPurchase()

 } else {

 Log.i(TAG, "OnBillingSetupFinish failed")

 }

.

.

}

93.14 Testing the App

Before we can test the app, we need to upload this latest version to the Play
Console. As we already have version 1 uploaded, we need to increase the
version number in the build.gradle.kts (Module: app) file:

.

.

defaultConfig {

 applicationId "com.ebookfrenzy.inapppurchase"

 minSdk 26

 targetSdk 32

 versionCode 2

 versionName "2.0"

.

.

Sync the build configuration, then follow the steps in the “Creating, Testing,
and Uploading an Android App Bundle” chapter to generate a new app
bundle, upload it to the internal test track, and roll it out to the testers. Next,
using the internal testing link, install the app on a device or emulator where
one of the test accounts is signed in. To locate the testing link, select the app
in the Google Play Console and choose the Internal testing option from the
navigation panel followed by the Testers tab, as shown in Figure 93-6:

Figure 93-6

Scroll to the “How testers join your test” section of the screen and click on
Copy link:

Figure 93-7

Open the Chrome browser on the testing device or emulator, enter the
testing link, and follow the instructions to install the app from the Play
Store. After the app starts, it should, after a short delay, display the product
name on the TextView. Clicking the buy button will begin the purchase flow,
as shown in Figure 93-8:

Figure 93-8

Tap the buy button to complete the purchase using the test card and wait for
the Consume Purchase button to be enabled. Before tapping this button,
attempt to purchase the product again and verify that it is not possible
because you already own the product.

Tap the Consume Purchase button and wait for the “Purchase consumed”
message to appear on the TextView. With the product consumed, it should
now be possible to purchase it again. Make another purchase, then terminate
and restart the app. The app should locate the previous unconsumed
purchase and enable the consume button.

93.15 Troubleshooting

If you encounter problems with the purchase, make sure the device is
attached to Android Studio via a USB cable or WiFi, and select it from
within the Logcat panel. Enter InAppPurchaseTag into the Logcat search bar
and check the diagnostic output, adding additional Log calls in the code if
necessary. For additional information about failures, a useful trick is to
access the debug message from BillingResult instances, for example:

.

.

} else if (billingResult.responseCode ==

 BillingClient.BillingResponseCode.USER_CANCELED

) {

 Log.i(TAG, "onPurchasesUpdated: Purchase Canceled")

} else {

 Log.i(TAG, billingResult.getDebugMessage())

}

Note that as long as you leave the app version number unchanged in the
module-level build.gradle.kts file, you should now be able to run modified
versions of the app directly on the device or emulator without having to re-
bundle and upload it to the console.

If the test payment card is not listed, ensure the device user account has been
added to the license testers list. If the app is running on a physical device, try
it on an emulator. If all else fails, you can enter a valid payment method to
make test purchases and then refund yourself using the Order Management
screen accessible from the Play Console home page.

93.16 Summary

In this chapter, we created a project demonstrating adding an in-app product
to an Android app. This included the creation of the product within the
Google Play Console and writing code to initialize and connect to the billing
client, querying available products, and purchasing and consuming the
product. We also explained how to add license testers using the Play
Console to make purchases during testing without spending money.

94. Accessing Cloud Storage using the Android Storage Access Framework

Recent years have seen the wide adoption of remote storage services
(otherwise known as “cloud storage”) to store user files and data. Driving
this growth are two key factors. One is that most mobile devices now
provide continuous, high speed internet connectivity, thereby making the
transfer of data fast and affordable. The second factor is that, relative to
traditional computer systems (such as desktops and laptops), these mobile
devices are constrained in terms of internal storage resources. A high-
specification Android tablet today, for example, typically comes with 256
GB of storage capacity. When compared with a mid-range laptop system
with a 1 TB disk drive, the need for the seamless remote storage of files is a
key requirement for many mobile applications today.

In recognition of this fact, Google introduced the Storage Access
Framework as part of the Android 4.4 SDK. This chapter will provide a
high level overview of the storage access framework in preparation for the
more detail-oriented tutorial contained in the next chapter, entitled “An
Android Storage Access Framework Example”.

94.1 The Storage Access Framework

From the perspective of the user, the Storage Access Framework provides
an intuitive user interface that allows the user to browse, select, delete and
create files hosted by storage services (also referred to as document
providers) from within Android applications. Using this browsing interface
(also referred to as the picker), users can, for example, browse through the
files (such as documents, audio, images and videos) hosted by their chosen
document providers. Figure 94-1, for example, shows the picker user
interface displaying a collection of files hosted by a document provider
service:

Figure 94-1

Document providers can range from cloud-based services to local
document providers running on the same device as the client application.
At the time of writing, the most prominent document providers compatible
with the Storage Access Framework are Box and, unsurprisingly, Google
Drive. It is highly likely that other cloud storage providers and application
developers will soon also provide services that conform to the Android
Storage Access Framework.

In addition to cloud-based document providers the picker also provides
access to internal storage on the device, providing a range of file storage
options to the application user.

Through a set of Intents, Android application developers can incorporate
these storage capabilities into applications with just a few lines of code. A
particularly compelling aspect of the Storage Access Framework from the
point of view of the developer is that the underlying document provider
selected by the user is completely transparent to the application. Once the
storage functionality has been implemented using the framework within an
application, it will work with all document providers without any code
modifications.

94.2 Working with the Storage Access Framework

Android includes a set of Intents designed to integrate the features of the
Storage Access Framework into Android applications. These intents
display the Storage Access Framework picker user interface to the user and
return the results of the interaction to the application via a call to the
onActivityResult() method of the activity that launched the intent. When
the onActivityResult() method is called, it is passed the Uri of the selected
file together with a value indicating the success or otherwise of the
operation.

The Storage Access Framework intents can be summarized as follows:

•ACTION_OPEN_DOCUMENT – Provides the user with access to the
picker user interface so that files may be selected from the document
providers configured on the device. Selected files are passed back to the
application in the form of Uri objects.

•ACTION_CREATE_DOCUMENT – Allows the user to select a document
provider, a location on that provider’s storage and a file name for a new
file. Once selected, the file is created by the Storage Access Framework
and the Uri of that file returned to the application for further processing.

94.3 Filtering Picker File Listings

The files listed within the picker user interface when an intent is started
may be filtered using a variety of options. Consider, for example, the
following code to configure an ACTION_OPEN_DOCUMENT intent:

val intent = Intent(Intent.ACTION_OPEN_DOCUMENT)

When launched, the above intent will cause the picker user interface to be
displayed, allowing the user to browse and select any files hosted by
available document providers. Once a file has been selected by the user, a
reference to that file will be provided to the application in the form of a Uri
object. The application can then open the file using the
openFileDescriptor(Uri, String) method. There is some risk, however, that
not all files listed by a document provider can be opened in this way. The
exclusion of such files within the picker can be achieved by modifying the
intent using the CATEGORY_OPENABLE option. For example:

val intent = Intent(Intent.ACTION_OPEN_DOCUMENT)

intent.addCategory(Intent.CATEGORY_OPENABLE)

When the intent is now displayed, files that cannot be opened using the
openFileDescriptor() method will be listed but not selectable by the user.

Another useful approach to filtering allows the files available for selection
to be restricted by file type. This involves specifying the types of files the
application is able to handle. An image editing application might, for
example, only want to provide the user with the option of selecting image
files from the document providers. This is achieved by configuring the
intent object with the MIME types of the files that are to be selectable by

the user. The following code, for example, specifies that only image files
are suitable for selection in the picker:

val intent = Intent(Intent.ACTION_OPEN_DOCUMENT)

intent.addCategory(Intent.CATEGORY_OPENABLE)

intent.type = "image/*"

This could be further refined to limit selection to JPEG images:

intent.type = "image/jpeg"

Alternatively, an audio player app might only be able to handle audio files:

intent.type = "audio/*"

The audio app might be limited even further in only supporting the
playback of MP4-based audio files:

intent.type = "audio/mp4"

A wide range of MIME type settings are available for use when working
with the Storage Access Framework, the more common of which can be
found listed online at:

https://en.wikipedia.org/wiki/Internet_media_type#List_of_common_medi
a_types

94.4 Handling Intent Results

Since we are launching intents which will return a result, the
registerForActivityResult() method (covered in the chapter entitled
“Android Explicit Intents – A Worked Example”) needs to be used to create
a launcher and declare a lambda to handle the returned data, for example:

val startOpenForResult = registerForActivityResult(

 ActivityResultContracts.StartActivityForResult()) {

 result: ActivityResult ->

 if (result.resultCode == Activity.RESULT_OK) {

 result.data?.let {

 val currentUri = it.data

 currentUri?.let {

 // Read file content from Uri here

 }

 }

 }

}

Once declared, the intent can be configured and launched as follows:

val intent = Intent(Intent.ACTION_OPEN_DOCUMENT)

intent.addCategory(Intent.CATEGORY_OPENABLE)

intent.type = "text/plain"

startOpenForResult.launch(intent)

94.5 Reading the Content of a File

The exact steps required to read the content of a file hosted by a document
provider will depend to a large extent on the type of the file. The steps to
read lines from a text file, for example, differ from those for image or audio
files.

An image file can be assigned to a Bitmap object by extracting the file
descriptor from the Uri object and then decoding the image into a
BitmapFactory instance. For example:

val pFileDescriptor = contentResolver.openFileDescriptor(uri, "r")

val fileDescriptor = pFileDescriptor.fileDescriptor

val image = BitmapFactory.decodeFileDescriptor(fileDescriptor)

pFileDescriptor.close()

val myImageView = ImageView(this)

myImageView.setImageBitmap(image)

Note that the file descriptor is opened in “r” mode. This indicates that the
file is to be opened for reading. Other options are “w” for write access and
“rwt” for read and write access, where existing content in the file is
truncated by the new content.

Reading the content of a text file requires slightly more work and the use of
an InputStream object. The following code, for example, reads the lines
from a text file:

val inputStream = contentResolver.openInputStream(uri)

val reader = BufferedReader(InputStreamReader(inputStream))

var currentline = reader.readLine()

while (currentline != null) {

 // Do something with each line in the file

}

inputStream.close()

94.6 Writing Content to a File

Writing to an open file hosted by a document provider is similar to reading
with the exception that an output stream is used instead of an input stream.
The following code, for example, writes text to the output stream of the
storage-based file referenced by the specified Uri:

try {

 val pfd = contentResolver.openFileDescriptor(uri, "w")

 val fileOutputStream = FileOutputStream(

 pfd.fileDescriptor)

 val textContent = fileText.text.toString()

 fileOutputStream.write(textContent.toByteArray())

 fileOutputStream.close()

 pfd.close()

} catch (e: FileNotFoundException) {

 e.printStackTrace()

} catch (e: IOException) {

 e.printStackTrace()

}

First, the file descriptor is extracted from the Uri, this time requesting write
permission to the target file. The file descriptor is subsequently used to
obtain a reference to the file’s output stream. The content (in this example,
some text) is then written to the output stream before the file descriptor and
output stream are closed.

94.7 Deleting a File

Whether a file can be deleted from storage depends on whether or not the
file’s document provider supports the deletion of the file. Assuming
deletion is permitted, it may be performed on a designated Uri as follows:

if (DocumentsContract.deleteDocument(contentResolver, uri))

 // Deletion was successful

else

 // Deletion failed

94.8 Gaining Persistent Access to a File

When an application gains access to a file via the Storage Access
Framework, the access will remain valid until the Android device on which
the application is running is restarted. Persistent access to a specific file can
be obtained by “taking” the necessary permissions for the Uri. The

following code, for example, persists read and write permissions for the file
referenced by the fileUri Uri instance:

val takeFlags = (intent.flags and
(Intent.FLAG_GRANT_READ_URI_PERMISSION

 or
Intent.FLAG_GRANT_WRITE_URI_PERMISSION)

contentResolver.takePersistableUriPermission(fileUri, takeFlags)

Once the application has taken the permissions for the file, and assuming
the application has saved the Uri, the user should be able to continue
accessing the file after a device restart without the user having to reselect
the file from the picker interface.

If, at any time, the persistent permissions are no longer required, they can
be released via a call to the releasePersistableUriPermission() method of
the content resolver:

val takeFlags = (intent.flags and
(Intent.FLAG_GRANT_READ_URI_PERMISSION

 or
Intent.FLAG_GRANT_WRITE_URI_PERMISSION)

contentResolver.releasePersistableUriPermission(fileUri, takeFlags)

94.9 Summary

It is interesting to consider how perceptions of storage have changed in
recent years. Once synonymous with high-capacity internal hard disk
drives, the term “storage” is now just as likely to refer to storage space
hosted remotely in the cloud and accessed over an internet connection. This

is increasingly the case with the wide adoption of resource-constrained,
“always-connected” mobile devices with minimal internal storage capacity.

The Android Storage Access Framework provides a simple mechanism for
both users and application developers to gain access to files stored in the
cloud seamlessly. Through a set of intents and a built-in user interface for
selecting document providers and files, comprehensive cloud-based storage
can now be integrated into Android applications with minimal coding.

95. An Android Storage Access
Framework Example
As previously discussed, the Storage Access Framework considerably eases
the process of integrating cloud-based storage access into Android
applications. Consisting of a picker user interface and a set of new intents,
access to files stored on document providers such as Google Drive and Box
can now be built into Android applications with relative ease.
With the basics of the Android Storage Access Framework covered in the
preceding chapter, this chapter will work through the creation of an
example application that uses the Storage Access Framework to store and
manage files.

95.1 About the Storage Access Framework Example
The Android application created in this chapter will take the form of a
rudimentary text editor designed to create and store text files remotely onto
a cloud-based storage service. In practice, the example will work with any
cloud-based document storage provider that is compatible with the Storage
Access Framework, though for the purpose of this example the use of
Google Drive is assumed.
In functional terms, the application will present the user with a multi-line
text view into which text may be entered and edited, together with a set of
buttons allowing storage-based text files to be created, opened and saved.

95.2 Creating the Storage Access Framework
Example
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.
Enter StorageDemo into the Name field and specify
com.ebookfrenzy.storagedemo as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin.
Follow the usual steps in section 18.8 Migrating a Project to View Binding

to add view binding support to the project.

95.3 Designing the User Interface
The user interface will need to be comprised of three Button views and a
single EditText view. Within the Project tool window, navigate to the
activity_main.xml layout file located in app -> res -> layout and double-
click on it to load it into the Layout Editor tool. With the tool in Design
mode, select and delete the Hello World! TextView object.
Drag and position a Button widget in the top left-hand corner of the layout
so that both the left and top dotted margin guidelines appear before
dropping the widget in place. Position a second Button such that the center
and top margin guidelines appear. The third Button widget should then be
placed so that the top and right-hand margin guidelines appear.
Change the text attributes on the three buttons to “New”, “Open” and
“Save” respectively. Next, position a Plain Text widget so that it is centered
horizontally and positioned beneath the center Button so that the user
interface layout matches that shown in Figure 95-1. Use the Infer
Constraints button in the Layout Editor toolbar to add any missing
constraints.
Select the Plain Text widget in the layout, delete the current text property
setting, so the field is initially blank, and set the ID to fileText. Next, extract
the string attributes to resource values named string, open_string, and
save_string, respectively.

Figure 95-1
Using the Attributes tool window, configure the onClick property on the
Button widgets to call methods named newFile, openFile and saveFile

respectively.

95.4 Adding the Activity Launchers
Following the steps outlined in the chapter entitled “Android Explicit
Intents – A Worked Example”, we need to begin by registering activity
launchers to handle the creation, opening and saving of file content.
Within the MainActivity.kt file, add a launcher for each of the three actions
as follows:
.
.
import android.app.Activity
import androidx.activity.result.ActivityResult
import androidx.activity.result.contract.ActivityResultContracts
import android.content.Intent
import android.view.View
import android.net.Uri
.
.
 val startOpenForResult = registerForActivityResult(
 ActivityResultContracts.StartActivityForResult()) {
 result: ActivityResult ->
 if (result.resultCode == Activity.RESULT_OK) {
 result.data?.let {
 val currentUri = it.data
 currentUri?.let {
 try {
 val content = readFileContent(it)
 binding.fileText.setText(content)
 } catch (e: IOException) {
 // Handle error here
 }
 }
 }
 }
 }

 val startCreateForResult = registerForActivityResult(
 ActivityResultContracts.StartActivityForResult()) {
 result: ActivityResult ->
 if (result.resultCode == Activity.RESULT_OK) {
 if (result.data != null) {

 binding.fileText.setText("")
 }
 }
 }

 val startSaveForResult = registerForActivityResult(
 ActivityResultContracts.StartActivityForResult()) {
 result: ActivityResult ->
 result.data?.let {
 val currentUri = it.data
 currentUri?.let {
 writeFileContent(it)
 }
 }
 }
.
.
}

95.5 Creating a New Storage File
When the New button is selected, the application will need to trigger an
ACTION_CREATE_DOCUMENT intent configured to create a file with a
plain-text MIME type. When the user interface was designed, the New
button was configured to call a method named newFile(). It is within this
method that the appropriate intent needs to be launched.
Remaining in the MainActivity.kt file, implement this method as follows:
package com.ebookfrenzy.storagedemo
.
.
class MainActivity : AppCompatActivity() {
.
.
 fun newFile(view: View) {
 val intent = Intent(Intent.ACTION_CREATE_DOCUMENT)

 intent.addCategory(Intent.CATEGORY_OPENABLE)
 intent.type = "text/plain"
 intent.putExtra(Intent.EXTRA_TITLE, "newfile.txt")

 startCreateForResult.launch(intent)
 }

.

.
}

This code creates a new ACTION_CREATE_INTENT Intent object. This
intent is then configured so that only files that can be opened with a file
descriptor are returned (via the Intent.CATEGORY_OPENABLE category
setting).
Next the code specifies that the file to be opened is to have a plain text
MIME type and a placeholder filename is provided (which can be changed
by the user in the picker interface).
When this method is executed and the intent has completed the assigned
task, a call will be made to the startCreateForResult() lambda and passed
the Uri of the newly created document.

95.6 Saving to a Storage File
Now that the application is able to create new storage-based files, the next
step is to add the ability to save any text entered by the user to a file. The
user interface is configured to call the saveFile() method when the Save
button is selected by the user. This method will be responsible for starting a
new intent of type ACTION_OPEN_DOCUMENT which will result in the
picker user interface appearing so that the user can choose the file to which
the text is to be stored.
Since we are only working with plain text files, the intent needs to be
configured to restrict the user’s selection options to existing files that match
the text/plain MIME type. Having identified the actions to be performed by
the saveFile() method, this can now be added to the MainActivity.kt class
file as follows:
fun saveFile(view: View) {
 val intent = Intent(Intent.ACTION_OPEN_DOCUMENT)
 intent.addCategory(Intent.CATEGORY_OPENABLE)
 intent.type = "text/plain"

 startSaveForResult.launch(intent)
}

The lambda assigned to startSaveForResult() calls a method named
writeFileContent(), passing through the Uri of the file to which the text is to
be written.

Remaining in the MainActivity.kt file, implement this method now so that it
reads as follows:
package com.ebookfrenzy.storagedemo

import java.io.FileOutputStream
import java.io.IOException
.
.
class MainActivity : AppCompatActivity() {

 private fun writeFileContent(uri: Uri) {
 try {
 val pfd = contentResolver.openFileDescriptor(uri, "w")

 val fileOutputStream = FileOutputStream(
 pfd?.fileDescriptor)

 val textContent = binding.fileText.text.toString()

 fileOutputStream.write(textContent.toByteArray())

 fileOutputStream.close()
 pfd?.close()
 } catch (e: Throwable) {
 e.printStackTrace()
 } catch (e: IOException) {
 e.printStackTrace()
 }
 }
.
.
}

The method begins by obtaining and opening the file descriptor from the
Uri of the file selected by the user. Since the code will need to write to the
file, the descriptor is opened in write mode (“w”). The file descriptor is then
used as the basis for creating an output stream that will enable the
application to write to the file.
The text entered by the user is extracted from the edit text object and
written to the output stream before both the file descriptor and stream are
closed. Code is also added to handle any IO exceptions encountered during

the file writing process.

95.7 Opening and Reading a Storage File
Having written the code to create and save text files, the final task is to add
some functionality to open and read a file from the storage. This will
involve writing the openFile() onClick event handler method and
implementing it so that it starts an ACTION_OPEN_DOCUMENT intent:
.
.
fun openFile(view: View) {
 val intent = Intent(Intent.ACTION_OPEN_DOCUMENT)
 intent.addCategory(Intent.CATEGORY_OPENABLE)
 intent.type = "text/plain"

 startOpenForResult.launch(intent)
}
.
.

The next task is to implement the readFileContent() method called by the
startOpenForResult() lambda:
package com.ebookfrenzy.storagedemo

import java.io.BufferedReader
import java.io.InputStreamReader
.
.
class MainActivity : AppCompatActivity() {

 private fun readFileContent(uri: Uri): String {

 val inputStream = contentResolver.openInputStream(uri)
 val reader = BufferedReader(InputStreamReader(
 inputStream))
 val stringBuilder = StringBuilder()

 var currentline = reader.readLine()

 while (currentline != null) {
 stringBuilder.append(currentline + "\n")
 currentline = reader.readLine()
 }

 inputStream?.close()
 return stringBuilder.toString()
 }
.
.
}

This method begins by extracting the file descriptor for the selected text file
and opening it for reading. The input stream associated with the Uri is then
opened and used as the input source for a BufferedReader instance.
Each line within the file is then read and stored in a StringBuilder object.
Once all the lines have been read, the input stream and file descriptor are
both closed, and the file content is returned as a String object.

95.8 Testing the Storage Access Application
With the coding phase complete the app is ready to be tested. Compile and
run the application and select the New button. The Storage Access
Framework should subsequently display the Downloads user interface as
illustrated in Figure 95-2:

Figure 95-2
Click the menu button highlighted above and select the Drive option
followed by My Drive and navigate to a suitable location on your Google
Drive storage into which to save the file. In the text field at the bottom of
the picker interface, change the name from “newfile.txt” to a suitable name
(but keeping the .txt extension) before selecting the Save option.

Figure 95-3
Once the new file has been created, the app should return to the main
activity and a notification may appear within the notifications panel which
reads “1 file uploaded”.

Figure 95-4
At this point, it should be possible to log into your Google Drive account in
a browser window and find the newly created file in the requested location.
If the file is missing, make sure that the Android device on which the

application is running has an active internet connection. Access to Google
Drive on the device may also be verified by running the Google Drive app,
which is installed by default on many Android devices, and available for
download from the Google Play store.
Now that we have created a file, enter some text into the text area before
clicking the “Save” button. Select the previously created text file from the
picker to save the content to the file. On returning to the application, delete
the text and select the “Open” button, once again choosing your saved file.
When control is returned to the application, the text view should have been
populated with the content of the text file.
It is important to note that the Storage Access Framework will cache
storage files locally if the Android device lacks an active internet
connection. Once connectivity is re-established, however, any cached data
will be synchronized with the remote storage service. As a final test of the
application, therefore, log into your Google Drive account in a browser
window, navigate to the saved file and click on it to view the content which
should, all being well, contain the text saved by the application.

95.9 Summary
This chapter has worked through the creation of an example Android Studio
application in the form of a very rudimentary text editor designed to use
cloud-based storage to create, save and open files using the Android
Storage Access Framework.

96. An Android Studio
Primary/Detail Flow Tutorial
This chapter will explain the concept of the Primary/Detail user interface
design before exploring, in detail, the elements that make up the
Primary/Detail Flow template included with Android Studio. An example
application will then be created that demonstrates the steps involved in
modifying the template to meet the specific needs of the application
developer.

96.1 The Primary/Detail Flow
A primary/detail flow is an interface design concept whereby a list of items
(referred to as the primary list) is displayed to the user. On selecting an item
from the list, additional information relating to that item is then presented to
the user within a detail pane. An email application might, for example,
consist of a primary list of received messages consisting of the address of
the sender and the subject of the message. Upon selection of a message
from the primary list, the body of the email message would appear within
the detail pane.
On tablet sized Android device displays in landscape orientation, the
primary list appears in a narrow vertical panel along the left-hand edge of
the screen. The remainder of the display is devoted to the detail pane in an
arrangement referred to as two-pane mode. Figure 96-1, for example, shows
the primary/detail, two-pane arrangement with primary items listed and the
content of item one displayed in the detail pane:

Figure 96-1
On smaller, phone sized Android devices, the primary list takes up the
entire screen and the detail pane appears on a separate screen which appears
when a selection is made from the primary list. In this mode, the detail
screen includes an action bar entry to return to the primary list. Figure 96-2
for example, illustrates both the primary and detail screens for the same
item list on a 4” phone screen:

Figure 96-2
96.2 Creating a Primary/Detail Flow Activity
In the next section of this chapter, the different elements that comprise the
Primary/Detail Flow template will be covered in some detail. This is best
achieved by creating a project using the Primary/Detail Views Flow
template to use while working through the information. This project will
subsequently be used as the basis for the tutorial at the end of the chapter.
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the No Activity template before
clicking on the Next button.
Enter PrimaryDetailFlow into the Name field and specify
com.ebookfrenzy.primarydetailflow as the package name. Before clicking
on the Finish button, change the Minimum API level setting to API 26:
Android 8.0 (Oreo) and the Language menu to Kotlin.

96.3 Adding the Primary/Detail Flow Activity
In the Project tool window, right-click on the app -> kotlin+java ->
com.ebookfrenzy.primarydetailflow entry and select the New -> Activity ->

Primary/Detail Views Flow menu option. In the new activity dialog (Figure
96-3), make sure the Launcher Activity checkbox is enabled before clicking
the Finish button:

Figure 96-3
96.4 Modifying the Primary/Detail Flow Template
While the structure of the Primary/Detail Flow template can appear
confusing at first, as will become evident, much of the functionality
provided by the template can remain unchanged for many primary/detail
implementation requirements.
In the rest of this chapter, the PrimaryDetailFlow project will be modified
such that the primary list displays a list of website names and the detail
pane altered to contain a WebView object instead of the current TextView.
When a website is selected by the user, the corresponding web page will
subsequently load and display in the detail pane.

96.5 Changing the Content Model
The content for the example as it currently stands is defined by the
PlaceholderContent class file. Begin, therefore, by selecting the
PlaceholderContent.kt file (located in the Project tool window in the app ->
kotlin+java -> com.ebookfrenzy.primarydetailflow -> placeholder folder)
and reviewing the code. At the bottom of the file is a declaration for a class

named PlaceholderItem which is currently able to store three String objects
representing content and details strings and an ID. The updated project, on
the other hand, will need each item object to contain an ID string, a string
for the website name, and a string for the corresponding URL of the
website. To add these features, modify the PlaceholderItem class so that it
reads as follows:
data class PlaceholderItem(val id: String, val website_name:
String,
 val website_url: String) {
 override fun toString(): String = website_name
}

Note that the encapsulating PlaceholderContent class currently contains a
for loop that adds 25 items by making multiple calls to methods named
createPlaceholderItem() and makeDetails(). Much of this code will no
longer be required and should be deleted from the class as follows:
object PlaceholderContent {

 /**
 * An array of sample (placeholder) items.
 */
 val ITEMS: MutableList<PlaceholderItem> = ArrayList()

 /**
 * A map of sample (placeholder) items, by ID.
 */
 val ITEM_MAP: MutableMap<String, PlaceholderItem> = HashMap()

 private val COUNT = 25

 init {
 // Add some sample items.
 for (i in 1..COUNT) {
 addItem(createPlaceholderItem(i))
 }
 }

 private fun addItem(item: PlaceholderItem) {
 ITEMS.add(item)
 ITEM_MAP.put(item.id, item)
 }

 /**
 * A placeholder item representing a piece of content.
 */
 data class PlaceholderItem(val id: String, val website_name:
String,
 val website_url: String) {
 override fun toString(): String = website_name
 }
}

This code needs to be modified to initialize the data model with the required
website data:
val ITEM_MAP: MutableMap<String, PlaceholderItem> = HashMap()

init {
 // Add 3 sample items.
 addItem(PlaceholderItem("1", "Payload Publishing",
 "https://www.payloadbooks.com"))
 addItem(PlaceholderItem("2", "Amazon",
 "https://www.amazon.com"))
 addItem(PlaceholderItem("3", "New York Times",
 "https://www.nytimes.com"))
}

The code now takes advantage of the modified PlaceholderItem class to
store an ID, website name and URL for each item.

96.6 Changing the Detail Pane
The layout for the detail pane (the screen that is displayed when the user
selects an item from the primary list) is contained within the
activity_item_detail.xml file which, in turn, contains a FrameContainerView
instance which is used to display the actual detail pane content. If the app is
displaying in single-pane mode, the frame container will display the layout
contained in the fragment_item_detail.xml file, while multi-pane mode will
display the fragment_item_detail.xml (sw600dp) layout.
The template layout provided by Android Studio for the
fragment_item_detail.xml comprises a Coordinator layout containing an app
bar, toolbar, floating action button, and a text view. For this example, all we
need to display is a WebView, so open this file and delete all of the views
from the layout with the exception of the item_detail_container view. The

easiest way to do this is to select all of the unwanted views in the
Component Tree as shown in below before tapping the keyboard delete key:

Figure 96-4
Drag a WebView object from the Widgets section of the Palette and drop it
onto the center of the layout canvas and change the id to website_detail.
Next, edit the fragment_item_detail.xml (sw600dp) file and delete the
default TextView instance before dragging and dropping a WebView onto
the layout, once again changing the id to website_detail. The layout for both
files should now resemble Figure 96-5:

Figure 96-5
96.7 Modifying the ItemDetailFragment Class
At this point the user interface detail pane has been modified but the
corresponding Kotlin class is still designed for working with a TextView
object instead of a WebView. Load the source code for this class by double-
clicking on the ItemDetailFragment.kt file in the Project tool window.
To load the web page URL corresponding to the currently selected item

only a few lines of code need to be changed. Once this change has been
made, the code should read as follows:
package com.ebookfrenzy.PrimaryDetailflow
.
.
import android.webkit.WebResourceRequest
import android.webkit.WebView
import android.webkit.WebViewClient
.
.
class ItemDetailFragment : Fragment() {
.
.
 lateinit var itemDetailTextView: TextView
 private var toolbarLayout: CollapsingToolbarLayout? = null
.
.
 override fun onCreateView(
 inflater: LayoutInflater, container: ViewGroup?,
 savedInstanceState: Bundle?
): View? {

 _binding = FragmentItemDetailBinding.inflate(inflater,
container, false)
 val rootView = binding.root

 toolbarLayout = binding.toolbarLayout
 itemDetailTextView = binding.itemDetail

 updateContent()
 rootView.setOnDragListener(dragListener)
 return rootView
 }

 private fun updateContent() {
 toolbarLayout?.title = item?.website_name

 // Show the placeholder content as text in a TextView.
 item?.let {
 binding.websiteDetail.webViewClient = object :
WebViewClient() {
 override fun shouldOverrideUrlLoading(

 view: WebView, request: WebResourceRequest):
Boolean {
 return super.shouldOverrideUrlLoading(
 view, request)
 }
 }
 binding.websiteDetail.loadUrl(it.website_url)
 }
 }
}

In the above code, changes are made to delete references to the toolbar
layout and item detail text elements which were previously removed from
the fragment_item_detail.xml file.
Next, updateContent() is modified to access the website_detail view (this
was formally the TextView but is now a WebView) and extract the URL of
the website from the selected item. An instance of the WebViewClient class
is created and assigned the shouldOverrideUrlLoading() callback method.
This method is implemented so as to force the system to use the WebView
instance to load the page instead of the Chrome browser.

96.8 Modifying the ItemListFragment Class
A minor change also needs to be made to the ItemListFragment.kt file to
make sure that the website names appear in the primary list. Edit this file,
locate the onBindViewHolder() method and modify the setText() method
call to reference the website name as follows:
override fun onBindViewHolder(holder: ViewHolder, position: Int) {
 val item = mValues[position]
 holder.mIdView.text = item.id
 holder.mContentView.text = item.website_name
.
.
}

96.9 Adding Manifest Permissions
The final step is to add internet permission to the application via the
manifest file. This will enable the WebView object to access the internet
and download web pages. Navigate to, and load the AndroidManifest.xml
file in the Project tool window (app -> manifests), and double-click on it to
load it into the editor. Once loaded, add the appropriate permission line to

the file:
<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.ebookfrenzy.PrimaryDetailflow" >

 <uses-permission android:name="android.permission.INTERNET" />

 <application
 android:allowBackup="true"
.
.

96.10 Running the Application
Compile and run the application on a suitably configured emulator or an
attached Android device. Depending on the size of the display, the
application will appear either in small screen or two-pane mode.
Regardless, the primary list should appear primed with the names of the
three websites defined in the content model. Selecting an item should cause
the corresponding website to appear in the detail pane as illustrated in two-
pane mode in Figure 96-6:

Figure 96-6
96.11 Summary
A primary/detail user interface consists of a primary list of items which,
when selected, displays additional information about that selection within a

detail pane. The Primary/Detail Flow is a template provided with Android
Studio that allows a primary/detail arrangement to be created quickly and
with relative ease. As demonstrated in this chapter, with minor
modifications to the default template files, a wide range of primary/detail
based functionality can be implemented with minimal coding and design
effort.

97. Working with Material Design 3
Theming
The appearance of an Android app is intended to conform to a set of
guidelines defined by Material Design. Google developed Material Design
to provide a level of design consistency between different apps while also
allowing app developers to include their own branding in terms of color,
typography, and shape choices (a concept referred to as Material theming).
In addition to design guidelines, Material Design also includes a set of UI
components for use when designing user interface layouts, many of which
we have used throughout this book.
This chapter will provide an overview of how theming works within an
Android Studio project and explore how the default design configurations
provided for newly created projects can be modified to meet your branding
requirements.

97.1 Material Design 2 vs. Material Design 3
Before beginning, it is important to note that Google is transitioning from
Material Design 2 to Material Design 3 and that Android Studio Jellyfish
projects default to Material Design 3. Material Design 3 provides the basis
for Material You, a feature introduced in Android 12 that allows an app to
automatically adjust theme elements to complement preferences configured
by the user on the device. For example, dynamic color support provided by
Material Design 3 allows the colors used in apps to adapt automatically to
match the user’s wallpaper selection.

97.2 Understanding Material Design Theming
We know that Android app user interfaces are created by assembling
components such as layouts, text fields, and buttons. These components
appear using default colors unless we specifically override a color attribute
in the XML layout resource file or by writing code. The project’s theme
defines these default colors. The theme consists of a set of color slots
(declared in themes.xml files) which are assigned color values (declared in
the colors.xml file). Each UI component is programmed internally to use
theme color slots as the default color for specific attributes (such as the

foreground and background colors of the Text widget). It follows, therefore,
that we can change the application-wide theme of an app by changing the
colors assigned to specific theme slots. When the app runs, the new default
colors will be used for all widgets when the user interface is rendered.

97.3 Material Design 3 Theming
Before exploring Material Design 3, we must consider how it is used in an
Android Studio project. The theme used by an application project is
declared as a property of the application element within the
AndroidManifest.xml file, for example:
<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools">

 <application
.
.
 android:supportsRtl="true"
 android:theme="@style/Theme.MyDemoApp"
 tools:targetApi="31">
 <activity
.
.

As previously discussed, all of the files associated with the project theme
are contained within the colors.xml and themes.xml files located in the res -
> values folder, as shown in Figure 97-1:

Figure 97-1
The theme itself is declared in the two themes.xml files located in the
themes folder. These resource files declare different color palettes
containing Material Theme color slots for use when the device is in light or
dark (night) mode. Note that the style name property in each file must
match that referenced in the AndroidManifest.xml file, for example:
<resources xmlns:tools="http://schemas.android.com/tools">
 <!-- Base application theme. -->
 <style name="Base.Theme.MyDemoApp"
parent="Theme.Material3.DayNight.NoActionBar">
 <!-- Customize your light theme here. -->
 <!-- <item
name="colorPrimary">@color/my_light_primary</item> -->
 </style>

 <style name="Theme.MyDemoApp" parent="Base.Theme.MyDemoApp" />
</resources>

These color slots (also referred to as color attributes) are used by the
Material components to set colors when they are rendered on the screen.
For example, the colorPrimary color slot is used as the background color
for the Material Button component.
Color slots in MD3 are grouped as Primary, Secondary, Tertiary, Error,
Background, and Surface. These slots are further divided into pairs
consisting of a base color and an “on” base color. This generally translates
to the background and foreground colors of a Material component.

The particular group used for coloring will differ between widgets. A
Material Button widget, for example, will use the colorPrimary base color
for the background color and colorOnPrimary for its content (i.e., the text
or icon it displays). The FloatingActionButton component, on the other
hand, uses colorPrimaryContainer as the background color and
colorOnPrimaryContainer for the foreground. The correct group for a
specific widget type can usually be identified quickly by changing color
settings in the theme files and reviewing the rendering in the layout editor.
Suppose that we need to change colorPrimary to red. We achieve this by
adding a new entry to the colors.xml file for the red color and then
assigning it to the colorPrimary slot in the themes.xml file. The
colorPrimary slot in an MD3 theme night, therefore, read as follows:
<resources xmlns:tools="http://schemas.android.com/tools">
 <!-- Base application theme. -->
 <style name="Base.Theme.MyDemoApp"
parent="Theme.Material3.DayNight.NoActionBar">
 <item name="colorPrimary">@color/my_bright_primary</item>
 </style>

 <style name="Theme.MyDemoApp" parent="Base.Theme.MyDemoApp" />
</resources>

This color is then declared in the colors.xml file:
<?xml version="1.0" encoding="utf-8"?>
<resources>
.
.
 <color name="my_bright_primary">#FC0505</color>
</resources>

97.4 Building a Custom Theme
As we have seen, the coding work in implementing a theme is relatively
simple. The difficult part, however, is often choosing complementary colors
to make up the theme. Fortunately, Google has developed a tool that makes
it easy to design custom color themes for your apps. This tool is called the
Material Theme Builder and is available at:
https://m3.material.io/theme-builder#/custom
On the custom screen (Figure 97-2), make a color selection for the primary
color key (A) by clicking on the color circle to display the color selection

https://m3.material.io/theme-builder#/dynamic

dialog. Once a color has been selected, the preview (B) will change to
reflect the recommended colors for all MD3 color slots, along with example
app interfaces and widgets. In addition, you can override the generated
colors for the Secondary, Tertiary, and Neutral slots by clicking on the
corresponding color circles to display the color selection dialog.
The area marked B displays example app interfaces, light and dark color
scheme charts, and widgets that update to preview your color selections.
Since the panel is longer than the typical browser window, you must scroll
down to see all the information.
To incorporate the theme into your design, click the Export button (C) and
select the Android View (XML) option. Once downloaded, the colors.xml
and themes.xml files can be used to replace the existing files in your project.
Note that the theme name in the two exported themes.xml files must be
changed to match your project.

Figure 97-2
97.5 Summary
Material Design provides guidelines and components defining how Android
apps appear. Individual branding can be applied to an app by designing
themes that specify the colors, fonts, and shapes used when displaying the
app. Google recently introduced Material Design 3, which replaces Material
Design 2 and supports the new features of Material You, including dynamic
colors. Google also provides the Material Theme Builder for designing your
own themes, which eases the task of choosing complementary theme colors.
Once this tool has been used to design a theme, the corresponding files can
be exported and used within an Android Studio project.

98. A Material Design 3 Theming and
Dynamic Color Tutorial
This chapter will show you how to create a new Material Design 3 theme
using the Material Theme Builder tool and integrate it into an Android
Studio project. The tutorial will also demonstrate how to add support for
and test dynamic theme colors to an app.

98.1 Creating the ThemeDemo Project
Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.
Enter ThemeDemo into the Name field and specify
com.ebookfrenzy.themedemo as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin.

98.2 Designing the User Interface
The main activity will consist of a simple layout containing some user
interface components that will enable us to see the effects of the theming
work performed later in the chapter. For information on MD3 components,
refer to the following web page:
https://material.io/blog/migrating-material-3
The layout will be designed within the activity_main.xml file, which
currently contains a single Text view. Open this file in the layout editor,
delete the Text view, turn off Autoconnect mode (marked A in Figure 98-1),
and click on the button to clear all constraints from the layout (B).

Figure 98-1

https://material.io/blog/migrating-material-3

From the Buttons section of the Palette, drag Chip, CheckBox, Switch, and
Button views onto the layout canvas. Next, drag a FloatingActionButton
onto the layout canvas to position it beneath the Button component. When
prompted to choose an icon to appear on the FloatingActionButton, select
the ic_lock_power_off icon from within the resource tool window, as
illustrated in Figure 98-2:

Figure 98-2
Change the text attribute for the Chip widget to “This is my chip” and set
the chipIcon attribute to @android:drawable/ic_btn_speak_now so that the
layout resembles that shown to the left in Figure 98-3:

Figure 98-3
To set up the constraints, select all the components, right-click on the Chip
view, and select Chains -> Create Vertical Chain from the resulting menu.
Repeat this step, this time selecting the Center -> Horizontally in Parent
menu option.
Compile and run the app on a device or emulator and verify that the user
interface matches that shown in Figure 98-3 above. The next step is to
create a custom theme and apply it to the project.

98.3 Building a New Theme
Begin by opening a browser window and navigating to the following URL

to access the builder tool:
https://m3.material.io/theme-builder#/custom
Once you have loaded the builder, select a wallpaper followed by the
Custom button at the top of the screen, and then click on the Primary color
circle in the Core Colors section to display the color selector. From the
color selector, choose any color as the basis for your theme:

Figure 98-4
Review the color scheme in the Your Theme panel and make any necessary
color adjustments using the Core colors settings until you are happy with
the color slots. Once the theme is ready, click the Export button in the top
right-hand corner and select the Android Views (XML) option. When
prompted, save the file to a suitable location on your computer filesystem.
The theme will be saved as a compressed file named material-theme.zip.
Using the appropriate tool for your operating system, unpack the theme file,
which should contain the following folders and files in a folder named
material-theme:
•values/colors.xml - The color definitions.
•values/themes.xml - The theme for the light mode.
•values-night/themes.xml - The theme for dark mode.
Now that the theme files have been generated, they need to be integrated
into the Android Studio project.

98.4 Adding the Theme to the Project
Before adding the new theme to the project, we first need to remove the old
theme files. This is easier if the Project tool window is in Project Files
mode. To switch mode, use the menu at the top of the tool Project tool
window as shown below and select the Project Files option:

Figure 98-5
With Project Files mode selected, navigate to the app -> src -> main -> res
-> values folder and select and delete the colors.xml and themes.xml files.
Also, delete the themes.xml file located in the values-night folder.

https://m3.material.io/theme-builder#/custom

Open the filesystem navigation tool for your operating system, locate the
colors.xml and themes.xml files in the values folder of the new material
theme, and copy and paste them into the values folder within the Project
tool window. Repeat this step to copy the themes.xml file in the values-night
folder, this time pasting it into the values-night folder.
Switch the Project tool window back to Android mode, at which point the
value resource files section should match Figure 98-6:

Figure 98-6
Next, modify the light themes.xml file to match the current project as
follows:
<resources>
 <style name="Base.Theme.ThemeDemo"
parent="Theme.Material3.Light.NoActionBar">
 <item
name="colorPrimary">@color/md_theme_light_primary</item>
 <item
name="colorOnPrimary">@color/md_theme_light_onPrimary</item>
.
.
 </style>

 <style name="Theme.ThemeDemo" parent="Base.Theme.ThemeDemo" />

</resources>

Repeat these steps to make the same modifications to the themes.xml (night)
file.
Return to the activity_main.xml file or rerun the app to confirm that the user
interface is rendered using the custom theme colors.

98.5 Enabling Dynamic Color Support
The app will need to be run on a device or emulator running Android 12 or
later with the correct Wallpaper settings to test dynamic colors. On the
device or emulator, launch the Settings app and select Wallpaper & style
from the list of options. On the wallpaper settings screen, click the option to
change the wallpaper (marked A in Figure 98-7) and select a wallpaper
image containing colors that differ significantly from the colors in your

theme. Once selected, assign the wallpaper to the Home screen.
Return to the Wallpaper & styles screen and make sure that the Wallpaper
colors option is selected (B) before choosing an option from the color
scheme buttons (C). As each option is clicked, the wallpaper example will
change to reflect the selection:

Figure 98-7
To enable dynamic colors, we need to call the applyToActivitiesIfAvailable()
method of the DynamicColors class. To enable dynamic color support for
the entire app, this needs to be called from within the onCreate() method of
a custom Application instance. Begin by adding a new Kotlin class file to
the project under app -> kotlin+java -> com.ebookfrenzy.themedemo
named ThemeDemoApplication.kt and modifying it so that it reads as
follows:
package com.ebookfrenzy.themedemo

import android.app.Application
import com.google.android.material.color.DynamicColors

class ThemeDemoApplication: Application() {
 override fun onCreate() {
 super.onCreate()
 DynamicColors.applyToActivitiesIfAvailable(this)
 }
}

With the custom Application class created, we must configure the project to
use this class instead of the default Application instance. To do this, edit the
AndroidManifest.xml file and add an android:name element referencing the
new class:
<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.ebookfrenzy.themedemo">

 <application
 android:name=".ThemeDemoApplication"
 android:allowBackup="true"
.

.

Build and run the app and note that the layout uses a theme matching the
wallpaper color. Place the ThemeDemo app into the background, return to
the Wallpaper & styles settings screen, and choose a different wallpaper.
Bring the ThemeDemo app to the foreground again. At this point, it will
have dynamically adapted to match the new wallpaper.

98.6 Previewing Dynamic Colors
Dynamic color behavior can also be previewed within the Android Studio
layout editor. To try this, open the activity_main.xml file, click on the theme
menu, and select the More Themes option, as shown in Figure 98-8:

Figure 98-8
Next, use the search field in the theme selection dialog to list dynamic
themes:

Figure 98-9
Select the Material3.DynamicColors.DayNight theme before clicking on
the OK button. On returning to the layout editor, select the System UI Mode
menu and choose one of the wallpaper options as highlighted in Figure 98-
10:

Figure 98-10
Once a wallpaper has been selected, the colors of the components in the
layout will change accordingly.

98.7 Summary
In this chapter, we have used the Material Theme Builder to design a new
theme and explained the steps to integrate the generated theme files into an
Android Studio project. Finally, the chapter demonstrated how to
implement and use the Material You dynamic colors feature.

99. An Overview of Gradle in
Android Studio
In the “A Guide to Gradle Version Catalogs” chapter, we introduced the
library version catalog and explained how the Gradle build system relies on
it to ensure that projects are built using the correct libraries and versions.
Aside from some modifications to the version catalog and library decencies
in the intervening chapters, it has been taken for granted that Android
Studio will take the necessary steps to compile and run the application
projects that have been created. Android Studio has been achieving this in
the background using a system known as Gradle.
It is time to look at how Gradle is used to compile and package an
application project’s various elements and begin exploring how to configure
this system when more advanced requirements are needed for building
projects in Android Studio.

99.1 An Overview of Gradle
Gradle is an automated build toolkit that allows how projects are built to be
configured and managed through a set of build configuration files. This
includes defining how a project will be built, what dependencies need to be
fulfilled to build successfully, and what the build process’s end result (or
results) should be.
The strength of Gradle lies in the flexibility that it provides to the
developer. The Gradle system is a self-contained, command-line-based
environment that can be integrated into other environments using plugins.
In the case of Android Studio, Gradle integration is provided through the
appropriately named Android Studio Plugin.
Although the Android Studio Plug-in allows Gradle tasks to be initiated and
managed from within Android Studio, the Gradle command-line wrapper
can still be used to build Android Studio-based projects, including on
systems on which Android Studio is not installed.
The configuration rules to build a project are declared in Gradle build files
and scripts based on the Groovy programming language.

99.2 Gradle and Android Studio
Gradle brings many powerful features to building Android application
projects. Some of the key features are as follows:
99.2.1 Sensible Defaults
Gradle implements a concept referred to as convention over configuration.
This means that Gradle has a predefined set of sensible default
configuration settings that will be used unless settings in the build files
override them. This means that builds can be performed with the minimum
configuration required by the developer. Changes to the build files are only
needed when the default configuration does not meet your build needs.
99.2.2 Dependencies
Another key area of Gradle functionality is that of dependencies. Consider,
for example, a module within an Android Studio project which triggers an
intent to load another module in the project. The first module has, in effect,
a dependency on the second module since the application will fail to build if
the second module cannot be located and launched at runtime. This
dependency can be declared in the Gradle build file for the first module so
that the second module is included in the application build, or an error
flagged if the second module cannot be found or built. Other examples of
dependencies are libraries and JAR files on which the project depends to
compile and run.
Gradle dependencies can be categorized as local or remote. A local
dependency references an item that is present on the local file system of the
computer system on which the build is being performed. A remote
dependency refers to an item that is present on a remote server (typically
referred to as a repository).
Remote dependencies are handled for Android Studio projects using
another project management tool named Maven. If a remote dependency is
declared in a Gradle build file using Maven syntax, then the dependency
will be downloaded automatically from the designated repository and
included in the build process. The following dependency declaration, for
example, causes the AppCompat library to be added to the project from the
Google repository:
implementation(libs.androidx.appcompat)

99.2.3 Build Variants
In addition to dependencies, Gradle also provides build variant support for
Android Studio projects. This allows multiple variations of an application to
be built from a single project. Android runs on many different devices
encompassing a range of processor types and screen sizes. To target as wide
a range of device types and sizes as possible, it will often be necessary to
build several variants of an application (for example, one with a user
interface for phones and another for tablet-sized screens). Through the use
of Gradle, this is now possible in Android Studio.
99.2.4 Manifest Entries
Each Android Studio project has associated with it an AndroidManifest.xml
file containing configuration details about the application. Several manifest
entries can be specified in Gradle build files which are then auto-generated
into the manifest file when the project is built. This capability complements
the build variants feature, allowing elements such as the application version
number, application ID, and SDK version information to be configured
differently for each build variant.
99.2.5 APK Signing
The chapter “Creating, Testing, and Uploading an Android App Bundle”
covered creating a signed release APK file using the Android Studio
environment. It is also possible to include the signing information entered
through the Android Studio user interface within a Gradle build file to
generate signed APK files from the command line.
99.2.6 ProGuard Support
ProGuard is a tool included with Android Studio that optimizes, shrinks,
and obfuscates Java byte code to make it more efficient and harder to
reverse engineer (the method by which others can identify the logic of an
application through analysis of the compiled Java byte code). The Gradle
build files allow you to control whether or not ProGuard is run on your
application when it is built.

99.3 The Property and Settings Gradle Build File
The gradle build configuration consists of configuration, property, and
settings files. The gradle.properties file, for example, contains mostly

esoteric settings relating to the command-line flags used by the Java Virtual
Machine (JVM), whether or not the project uses the AndroidX libraries and
Kotlin coding style support. As a typical user, it is unlikely that you will
need to change any of these settings in this file.
The settings.gradle.kts file, on the other hand, defines which online
repositories are to be searched when the build system needs to download
and install any additional libraries and plugins required to build the project
and the project name. A typical settings.gradle.kts file will read as follows:
pluginManagement {
 repositories {
 google()
 mavenCentral()
 gradlePluginPortal()
 }
}
dependencyResolutionManagement {
 repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
 repositories {
 google()
 mavenCentral()
 }
}
rootProject.name = "ThemeDemo"
include(":app")

As with the gradle.properties file, it is unlikely that changes will need to be
made to this file.

99.4 The Top-level Gradle Build File
A completed Android Studio project contains everything needed to build an
Android application and consists of modules, libraries, manifest files, and
Gradle build files.
Each project contains one top-level Gradle build file. This file is listed as
build.gradle.kts (Project: <project name>) and can be found in the project
tool window as highlighted in Figure 99-1:

Figure 99-1
By default, the contents of the top-level Gradle build file reads as follows:

plugins {
 alias(libs.plugins.androidApplication) apply false
 alias(libs.plugins.jetbrainsKotlinAndroid) apply false
}

In most situations, making any changes to this build file is unnecessary.

99.5 Module Level Gradle Build Files
An Android Studio application project is made up of one or more modules.
Take, for example, a hypothetical application project named GradleDemo
which contains modules named Module1 and Module2, respectively. In this
scenario, each module will require its own Gradle build file. In terms of the
project structure, these would be located as follows:
•Module1/build.gradle.kts
•Module2/build.gradle.kts
By default, the Module1 build.gradle.kts file would resemble that of the
following listing:
plugins {
 alias(libs.plugins.androidApplication)
 alias(libs.plugins.jetbrainsKotlinAndroid)
}

android {
 namespace = "com.example.gradlesample"
 compileSdk = 34

 defaultConfig {
 applicationId = "com.example.gradlesample"
 minSdk = 26
 targetSdk = 34
 versionCode = 1
 versionName = "1.0"

 testInstrumentationRunner =
"androidx.test.runner.AndroidJUnitRunner"
 }

 buildTypes {
 release {
 isMinifyEnabled = false
 proguardFiles(

 getDefaultProguardFile("proguard-android-
optimize.txt"),
 "proguard-rules.pro"
)
 }
 }
 compileOptions {
 sourceCompatibility = JavaVersion.VERSION_1_8
 targetCompatibility = JavaVersion.VERSION_1_8
 }
 kotlinOptions {
 jvmTarget = "1.8"
 }
}

dependencies {
 implementation(libs.androidx.core.ktx)
 implementation(libs.androidx.appcompat)
 implementation(libs.material)
 implementation(libs.androidx.activity)
 implementation(libs.androidx.constraintlayout)
 testImplementation(libs.junit)
 androidTestImplementation(libs.androidx.junit)
 androidTestImplementation(libs.androidx.espresso.core)
}

As is evident from the file content, the build file begins by declaring the use
of the Gradle Android application and Kotlin plug-ins:
plugins {
 alias(libs.plugins.androidApplication)
 alias(libs.plugins.jetbrainsKotlinAndroid)
}

The android section of the file declares the project namespace and then
states the version of the SDK to be used when building Module1.
android {
 namespace = "com.example.gradlesample"
 compileSdk = 34

The items declared in the defaultConfig section define elements to be
generated into the module’s AndroidManifest.xml file during the build.
These settings, which may be modified in the build file, are taken from the
settings entered within Android Studio when the module was first created:

defaultConfig {
 applicationId = "com.example.gradlesample"
 minSdk = 26
 targetSdk = 34
 versionCode = 1
 versionName = "1.0"

 testInstrumentationRunner =
"androidx.test.runner.AndroidJUnitRunner"
}

The buildTypes section contains instructions on whether and how to run
ProGuard on the APK file when a release version of the application is built:
buildTypes {
 release {
 isMinifyEnabled = false
 proguardFiles(
 getDefaultProguardFile("proguard-android-
optimize.txt"),
 "proguard-rules.pro"
)
 }
}

As currently configured, ProGuard will not be run when Module1 is built.
To enable ProGuard, the minifyEnabled entry must be changed from false to
true. The proguard-rules.pro file can be found in the module directory of
the project. Changes made to this file override the default settings in the
proguard-android.txt file, which is located in the Android SDK installation
directory under sdk/tools/proguard.
Since no debug buildType is declared in this file, the defaults will be used
(built without ProGuard, signed with a debug key, and debug symbols
enabled).
An additional section, entitled productFlavors, may also be included in the
module build file to enable multiple build variants to be created.
Next, directives are included to specify the version of the Java compiler to
be used when building the project:
compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
}

kotlinOptions {
 jvmTarget = "1.8"
}

Finally, the dependencies section lists any local and remote dependencies
on which the module depends. The dependency lines in the above example
file designate the Android libraries that need to be included from the
Android Repository:
dependencies {
 implementation(libs.androidx.core.ktx)
 implementation(libs.androidx.appcompat)
 implementation(libs.material)
.
.
}

Note that the dependency declarations include version numbers to indicate
which library version should be included.

99.6 Configuring Signing Settings in the Build File
The “Creating, Testing, and Uploading an Android App Bundle” chapter of
this book covered the steps involved in setting up keys and generating a
signed release APK file using the Android Studio user interface. These
settings may also be declared within a signingConfigs section of the
build.gradle.kts file. For example:
.
.
 defaultConfig {
.
.
 }
 signingConfigs {
 release {
 storeFile file("keystore.release")
 storePassword "your keystore password here"
 keyAlias "your key alias here"
 keyPassword "your key password here"
 }
 }
 buildTypes {
.
.

}

The above example embeds the key password information directly into the
build file. An alternative to this approach is to extract these values from
system environment variables:
signingConfigs {
 release {
 storeFile file("keystore.release")
 storePassword System.getenv("KEYSTOREPASSWD")
 keyAlias "your key alias here"
 keyPassword System.getenv("KEYPASSWD")
 }
}

Yet another approach is to configure the build file so that Gradle prompts
for the passwords to be entered during the build process:
signingConfigs {
 release {
 storeFile file("keystore.release")
 storePassword System.console().readLine
 ("\nEnter Keystore password: ")
 keyAlias "your key alias here"
 keyPassword System.console().readLIne("\nEnter Key
password: ")
 }
}

99.7 Running Gradle Tasks from the Command Line
Each Android Studio project contains a Gradle wrapper tool to invoke
Gradle tasks from the command line. This tool is located in the root
directory of each project folder. While this wrapper is executable on
Windows systems, it may need to have execute permission enabled on
Linux and macOS before it can be used. To enable execute permission,
open a terminal window, change directory to the project folder for which
the wrapper is needed, and execute the following command:
chmod +x gradlew

Once the file has execute permissions, the location of the file will either
need to be added to your $PATH environment variable or the name prefixed
by ./ to run. For example:
./gradlew tasks

Gradle views project building in terms of several different tasks. A full

listing of tasks that are available for the current project can be obtained by
running the following command from within the project directory
(remembering to prefix the command with a ./ if running on macOS or
Linux):
gradlew tasks

To build a debug release of the project suitable for device or emulator
testing, use the assembleDebug option:
gradlew assembleDebug

Alternatively, to build a release version of the application:
gradlew assembleRelease

99.8 Summary
For the most part, Android Studio performs application builds in the
background without any intervention from the developer. This build process
is handled using the Gradle system, an automated build toolkit designed to
allow how projects are built to be configured and managed through a set of
build configuration files. While the default behavior of Gradle is adequate
for many basic project build requirements, the need to configure the build
process is inevitable with more complex projects. This chapter has provided
an overview of the Gradle build system and configuration files within the
context of an Android Studio project.

Index
Symbols
?. 97
<application> 504
<fragment> 295
<fragment> element 295
<provider> 561
<receiver> 482
<service> 504, 510, 517
:: operator 99
.well-known folder 455, 478, 722

A
AbsoluteLayout 172
ACCESS_COARSE_LOCATION permission 632
ACCESS_FINE_LOCATION permission 632
acknowledgePurchase() method 761
ACTION_CREATE_DOCUMENT 783
ACTION_CREATE_INTENT 784
ACTION_DOWN 272
ACTION_MOVE 272
ACTION_OPEN_DOCUMENT intent 776
ACTION_POINTER_DOWN 272
ACTION_POINTER_UP 272
ACTION_UP 272
ACTION_VIEW 473
Active / Running state 148
Activity 83, 151
adding views in Java code 249
class 151
creation 14
Entire Lifetime 155
Foreground Lifetime 155
lifecycle methods 153
lifecycles 145

returning data from 452
state change example 159
state changes 151
states 148
Visible Lifetime 155

Activity Lifecycle 147
Activity Manager 82
ActivityResultLauncher 453
Activity Stack 147
Actual screen pixels 240
adb
command-line tool 59
connection testing 65
device pairing 63
enabling on Android devices 59
Linux configuration 62
list devices 59
macOS configuration 60
overview 59
restart server 60
testing connection 65
WiFi debugging 63
Windows configuration 61
Wireless debugging 63
Wireless pairing 63

addCategory() method 481
addMarker() method 685
addView() method 243
ADD_VOICEMAIL permission 632
android
exported 505
gestureColor 288
layout_behavior property 445
onClick 297
process 505, 517
uncertainGestureColor 288

Android

Activity 83
architecture 79
events 265
intents 84
onClick Resource 265
runtime 80
SDK Packages 5

android.app 80
Android Architecture Components 311
android.content 80
android.content.Intent 451
android.database 80

Android Debug Bridge. See ADB
Android Development
System Requirements 3

Android Devices
designing for different 171

android.graphics 81
android.hardware 81
android.intent.action 487
android.intent.action.BOOT_COMPLETED 505
android.intent.action.MAIN 473
android.intent.category.LAUNCHER 473
Android Libraries 80
android.media 81
Android Monitor tool window 32
Android Native Development Kit 81
android.net 81
android.opengl 81
android.os 81
android.permission.RECORD_AUDIO 641
android.print 81
Android Project
create new 13

android.provider 81
Android SDK Location
identifying 9

Android SDK Manager 7, 9
Android SDK Packages
version requirements 7

Android SDK Tools
command-line access 8
Linux 10
macOS 10
Windows 7 9
Windows 8 9

Android Software Stack 79
Android Storage Access Framework 776
Android Studio
changing theme 57
downloading 3
Editor Window 52
installation 4
Linux installation 5
macOS installation 4
Navigation Bar 51
Project tool window 52
Status Bar 52
Toolbar 51
Tool window bars 52
tool windows 52
updating 11
Welcome Screen 49
Windows installation 4

android.text 81
android.util 81
android.view 81
android.view.View 174
android.view.ViewGroup 171, 174

Android Virtual Device. See AVD
overview 27

Android Virtual Device Manager 27
android.webkit 81
android.widget 81

AndroidX libraries 810
API Key 677
APK analyzer 754
APK file 747
APK File
analyzing 754

APK Signing 810
APK Wizard dialog 746
App Architecture
modern 311

AppBar
anatomy of 443

appbar_scrolling_view_behavior 445
App Bundles 743
creating 747
overview 743
revisions 753
uploading 750

AppCompatActivity class 152
App Inspector 53
Application
stopping 32

Application Context 85
Application Framework 82
Application Manifest 85
Application Resources 85
App Link
Adding Intent Filter 730
Digital Asset Links file 722, 455
Intent Filter Handling 730
Intent Filters 721
Intent Handling 722
Testing 734
URL Mapping 727

App Links 721
auto verification 454
autoVerify 455

file:///tmp/calibre_4.99.5_tmp_v361xj3g/9y02jxql_pdf_out/OEBPS/Index.xhtml

overview 721
Apply Changes 257
Apply Changes and Restart Activity 257
Apply Code Changes 257
fallback settings 259
options 257
Run App 257
tutorial 259

applyToActivitiesIfAvailable() method 805
Architecture Components 311
ART 80
as 99
as? 99
asFlow() builder 523
assetlinks.json , 722, 455
asSharedFlow() 532
asStateFlow() 531
async 491
Attribute Keyframes 382
Audio
supported formats 639

Audio Playback 639
Audio Recording 639
Auto Blocker 60
Autoconnect Mode 205
Automatic Link Verification 454, 477
autoVerify 455, 730
AVD
Change posture 47
cold boot 44
command-line creation 27
creation 27
device frame 36
Display mode 46
launch in tool window 36
overview 27
quickboot 44

file:///tmp/calibre_4.99.5_tmp_v361xj3g/9y02jxql_pdf_out/OEBPS/Index.xhtml

Resizable 46
running an application 30
Snapshots 43
standalone 33
starting 29
Startup size and orientation 30

B
Background Process 146
Barriers 198
adding 217
constrained views 198

Baseline Alignment 197
beginTransaction() method 296
BillingClient 762
acknowledgePurchase() method 761
consumeAsync() method 761
getPurchaseState() method 760
initialization 758, 767
launchBillingFlow() method 760
queryProductDetailsAsync() method 759
queryPurchasesAsync() method 762

BillingResult 774
getDebugMessage() 774

Binding Expressions 331
one-way 331
two-way 332

BIND_JOB_SERVICE permission 505
bindService() method 503, 507, 511
Biometric Authentication 735
callbacks 739
overview 735
tutorial 735

Biometric Prompt 740
BitmapFactory 778
Bitwise AND 105
Bitwise Inversion 104
Bitwise Left Shift 106

Bitwise OR 105
Bitwise Right Shift 106
Bitwise XOR 105
black activity 14
Blank template 175
Blueprint view 203
BODY_SENSORS permission 632
Boolean 92
Bound Service 503, 507
adding to a project 508
Implementing the Binder 508
Interaction options 507

BoundService class 509
Broadcast Intent 481
example 483
overview 84, 481
sending 484
Sticky 483

Broadcast Receiver 481
adding to manifest file 486
creation 485
overview 84, 482

BroadcastReceiver class 482
BroadcastReceiver superclass 485
BufferedReader object 786
buffer() operator 525
Build Variants , 54
tool window 54

Bundle class 168
Bundled Notifications 660

C
Calendar permissions 632
CALL_PHONE permission 632
CAMERA permission 632
Camera permissions 632
CameraUpdateFactory class
methods 686

file:///tmp/calibre_4.99.5_tmp_v361xj3g/9y02jxql_pdf_out/OEBPS/Index.xhtml

cancelAndJoin() 491
cancelChildren() 491
CancellationSignal 740
Canvas class 716
CardView
layout file 433
responding to selection of 441

CardView class 433
CATEGORY_OPENABLE 776
C/C++ Libraries 81
Chain bias 226
chain head 196
chains 196
Chains
creation of 223

Chain style
changing 225

chain styles 196
Char 92
CheckBox 171
checkSelfPermission() method 636
Circle class 673
Code completion 70
Code Editor
basics 67
Code completion 70
Code Generation 72
Code Reformatting 75
Document Tabs 68
Editing area 68
Gutter Area 68
Live Templates 76
Splitting 70
Statement Completion 72
Status Bar 69

Code Generation 72
Code Reformatting 75

code samples
download 1

cold boot 44
Cold flows 531
CollapsingToolbarLayout
example 446
introduction 446
parallax mode 446
pin mode 446
setting scrim color 449
setting title 449
with image 446

collectLatest() operator 524
Color class 717
COLOR_MODE_COLOR 692, 712
COLOR_MODE_MONOCHROME 692, 712
combine() operator 530
Common Gestures 277
detection 277

Communicating Sequential Processes 489
Companion Objects 129
Component tree 17
conflate() operator 525
Constraint Bias 195
adjusting 209

ConstraintLayout
advantages of 201
Availability 202
Barriers 198
Baseline Alignment 197
chain bias 226
chain head 196
chains 196
chain styles 196
Constraint Bias 195
Constraints 193
conversion to 221

convert to MotionLayout 389
deleting constraints 208
guidelines 215
Guidelines 198
manual constraint manipulation 205
Margins 194, 209
Opposing Constraints 194, 211
overview of 193
Packed chain 197, 226
ratios 201, 227
Spread chain 196
Spread inside 226
Spread inside chain 196
tutorial 231
using in Android Studio 203
Weighted chain 196, 226
Widget Dimensions 197, 213
Widget Group Alignment 219

ConstraintLayout chains
creation of 223
in layout editor 223

ConstraintLayout Chain style
changing 225

Constraints
deleting 208

ConstraintSet
addToHorizontalChain() method 246
addToVerticalChain() method 246
alignment constraints 245
apply to layout 244
applyTo() method 244
centerHorizontally() method 245
centerVertically() method 245
chains 245
clear() method 246
clone() method 245
connect() method 244

connect to parent 244
constraint bias 245
copying constraints 245
create 244
create connection 244
createHorizontalChain() method 245
createVerticalChain() method 245
guidelines 246
removeFromHorizontalChain() method 246
removeFromVerticalChain() method 246
removing constraints 246
rotation 247
scaling 246
setGuidelineBegin() method 246
setGuidelineEnd() method 246
setGuidelinePercent() method 246
setHorizonalBias() method 245
setRotationX() method 247
setRotationY() method 247
setScaleX() method 246
setScaleY() method 246
setTransformPivot() method 247
setTransformPivotX() method 247
setTransformPivotY() method 247
setVerticalBias() method 245
sizing constraints 245
tutorial 249
view IDs 251

ConstraintSet class 243, 244
Constraint Sets 244
ConstraintSets
configuring 378

consumeAsync() method 761
ConsumeParams 771
Contacts permissions 632
container view 171
Content Provider 82, 559, 575

<provider> 561
accessing 575
Authority 565
client tutorial 575
ContentProvider class 559
Content Resolver 560
ContentResolver 572
content URI 560
Content URI 565, 575
ContentValues 567
delete() 560, 570
getType() 560
insert() 559, 567
onCreate() 559, 567
overview 85
query() 559, 568
tutorial 563
update() 560, 569
UriMatcher 566
UriMatcher class 560

ContentProvider class 559
Content Resolver 560
getContentResolver() 560

ContentResolver 572
getContentResolver() 560

content URI 560
Content URI 560, 565
ContentValues 567
Context class 85
CoordinatorLayout 172, 445
Coroutine Builders 491
async 491
coroutineScope 491
launch 491
runBlocking 491
supervisorScope 491
withContext 491

Coroutine Dispatchers 490
Coroutines 489, 521
channel communication 495
GlobalScope 490
returning results 493
Suspend Functions 490
suspending 492
tutorial 497
ViewModelScope 490
vs. Threads 489

coroutineScope 491
Coroutine Scope 490
createPrintDocumentAdapter() method 707
Custom Accessors 127
Custom Attribute 379
Custom Document Printing 695, 707
Custom Gesture
recognition 283

Custom Print Adapter
implementation 709

Custom Print Adapters 707
Custom Theme
building 799

Cycle Editor 407
Cycle Keyframe 387
Cycle Keyframes
overview 403

D
dangerous permissions
list of 632

Dark Theme 32
enable on device 32

Data Access Object (DAO) 580
Database Inspector 586, 610
live updates 610
SQL query 610

Database Rows 546

Database Schema 545
Database Tables 545
Data binding
binding expressions 331

Data Binding 313
binding classes 330
enabling 336
event and listener binding 332
key components 327
overview 327
tutorial 335
variables 330
with LiveData 313

DDMS 32
Debugging
enabling on device 59

debug.keystore file 455, 477
Default Function Parameters 119
DefaultLifecycleObserver 348, 351
deltaRelative 384
Density-independent pixels 239
Density Independent Pixels
converting to pixels 254

Device Definition
custom 189

Device File Explorer 54
device frame 36
Device Mirroring 65
enabling 65

device pairing 63
Digital Asset Links file 722, 455, 455
Direct Reply Input 669
Dispatchers.Default 491
Dispatchers.IO 490
Dispatchers.Main 490
document provider 775
dp 239

file:///tmp/calibre_4.99.5_tmp_v361xj3g/9y02jxql_pdf_out/OEBPS/Index.xhtml

DROP_LATEST 533
DROP_OLDEST 533
Dynamic Colors
applyToActivitiesIfAvailable() method 805
enabling in Android 805

Dynamic State 153
saving 167

E
Elvis Operator 99
Empty Process 147
Empty template 175
Emulator
battery 42
cellular configuration 42
configuring fingerprints 44
directional pad 42
extended control options 41
Extended controls 41
fingerprint 42
location configuration 42
phone settings 42
Resizable 46
resize 41
rotate 40
Screen Record 43
Snapshots 43
starting 29
take screenshot 40
toolbar 39
toolbar options 39
tool window mode 45
Virtual Sensors 43
zoom 40

enablePendingPurchases() method 761
enabling ADB support 59
Escape Sequences 93
Event Handling 265

example 266
Event Listener 267
Event Listeners 266
Events
consuming 269

execSQL() 554
explicit
intent 84

explicit intent 451
Explicit Intent 451
Extended Control
options 41

F
Files
switching between 68

filter() operator 526
findPointerIndex() method 272
findViewById() 139
Fingerprint
emulation 44

Fingerprint authentication
device configuration 736
permission 736
steps to implement 735

Fingerprint Authentication
overview 735
tutorial 735

FLAG_INCLUDE_STOPPED_PACKAGES 481
flatMapConcat() operator 529
flatMapMerge() operator 529
flexible space area 443
Float 92
floating action button 14, 176
changing appearance of 418
margins 416
removing 177
sizes 416

Flow 521
asFlow() builder 523
asSharedFlow() 532
asStateFlow() 531
background handling 541
buffering 525
buffer() operator 525
cold 531
collect() 523
collecting data 523
collectLatest() operator 524
combine() operator 530
conflate() operator 525
declaring 522
emit() 523
emitting data 523
filter() operator 526
flatMapConcat() operator 529
flatMapMerge() operator 529
flattening 528
flowOf() builder 523
flow of flows 528
fold() operator 528
hot 531
intermediate operators 526
library requirements 522
map() operator 526
MutableSharedFlow 532
MutableStateFlow 531
onEach() operator 530
reduce() operator 528
repeatOnLifecycle 542
SharedFlow 532
single() operator 525
StateFlow 531
terminal flow operators 528
transform() operator 527

try/finally 524
zip() operator 530

flowOf() builder 523
flow of flows 528
Flow operators 526
Flows
combining 530
Introduction to 521

Foldable Devices 156
multi-resume 156

Foreground Process 146
Forward-geocoding 679
Fragment
creation 293
event handling 297
XML file 294

FragmentActivity class 152
Fragment Communication 297
Fragments 293
adding in code 296
duplicating 424
example 301
overview 293

FragmentStateAdapter class 427
FrameLayout 172
Function Parameters
variable number of 119

Functions 117

G
Geocoder object 680
Geocoding 678
Gesture Builder Application 283
building and running 283

Gesture Detector class 277
GestureDetectorCompat
instance creation 280

GestureDetectorCompat class 277

GestureDetector.OnDoubleTapListener 277, 278
GestureDetector.OnGestureListener 278
GestureLibrary 283
GestureOverlayView 283
configuring color 288
configuring multiple strokes 288

GestureOverlayView class 283
GesturePerformedListener 283
Gestures
interception of 288

Gestures File
creation 284
extract from SD card 284
loading into application 286

GET_ACCOUNTS permission 632
getAction() method 487
getContentResolver() 560
getDebugMessage() 774
getFromLocation() method 680
getId() method 244
getIntent() method 452
getPointerCount() method 272
getPointerId() method 272
getPurchaseState() method 760
getService() method 511
getWritableDatabase() 554
GlobalScope 490
GNU/Linux 80
Google Cloud
billing account 674
new project 675

Google Cloud Print 690
Google Drive 776
printing to 690

GoogleMap 673
map types 683

GoogleMap.MAP_TYPE_HYBRID 683

GoogleMap.MAP_TYPE_NONE 683
GoogleMap.MAP_TYPE_NORMAL 683
GoogleMap.MAP_TYPE_SATELLITE 683
GoogleMap.MAP_TYPE_TERRAIN 683
Google Maps Android API 673
Controlling the Map Camera 686
displaying controls 684
Map Markers 685
overview 673

Google Maps SDK 673
API Key 677
Credentials 677
enabling 676
Maps SDK for Android 677

Google Play App Signing 746
Google Play Console 765
Creating an in-app product 765
License Testers 766

Google Play Developer Console 744
Gradle
APK signing settings 814
Build Variants 810
command line tasks 815
dependencies 809
Manifest Entries 810
overview 809
sensible defaults 809

Gradle Build File
top level 811

Gradle Build Files
module level 812

gradle.properties file 810
GridLayout 172
GridLayoutManager 431

H
HAL 80
Handler class 516

Hardware Abstraction Layer 80
Higher-order Functions 121
Hot flows 531
HP Print Services Plugin 689
HTML printing 693
HTML Printing
example 697

I
IBinder 503, 509
IBinder object 507, 516
Image Printing 692
Immutable Variables 94
implicit
intent 84

implicit intent 451
Implicit Intent 453
Implicit Intents
example 469

importance hierarchy 145
in 239
INAPP 762
In-App Products 757
In-App Purchasing 763
acknowledgePurchase() method 761
BillingClient 758
BillingResult 774
consumeAsync() method 761
ConsumeParams 771
Consuming purchases 771
enablePendingPurchases() method 761
getPurchaseState() method 760
launchBillingFlow() method 760
Libraries 763
newBuilder() method 758
onBillingServiceDisconnected() callback 768
onBillingServiceDisconnected() method 759
onBillingSetupFinished() listener 768

onProductDetailsResponse() callback 768
Overview 757
ProductDetail 760
ProductDetails 769
products 757
ProductType 762
Purchase Flow 769
PurchaseResponseListener 762
PurchasesUpdatedListener 760
PurchaseUpdatedListener 770
purchase updates 770
queryProductDetailsAsync() 768
queryProductDetailsAsync() method 759
queryPurchasesAsync() 772
queryPurchasesAsync() method 762
runOnUiThread() 769
subscriptions 757
tutorial 763

Initializer Blocks 127
In-Memory Database 586
Inner Classes 128
IntelliJ IDEA 87
Intent 84
explicit 84
implicit 84

Intent Availability
checking for 458

Intent.CATEGORY_OPENABLE 784
Intent Filters 454
App Link 721

Intents 451
ActivityResultLauncher 453
overview 451
registerForActivityResult() 453, 466

Intent Service 503
Intent URL 471
intermediate flow operators 526

is 99
isInitialized property 99

J
Java
convert to Kotlin 87

Java Native Interface 81
JetBrains 87
Jetpack 311
overview 311

JobIntentService 503
BIND_JOB_SERVICE permission 505
onHandleWork() method 503

join() 491

K
KeyAttribute 382
Keyboard Shortcuts 56
KeyCycle 403
Cycle Editor 407
tutorial 403

Keyframe 396
Keyframes 382
KeyFrameSet 412
KeyPosition 383
deltaRelative 384
parentRelative 383
pathRelative 384

Keystore File
creation 746

KeyTimeCycle 403
keytool 455
KeyTrigger 386
Killed state 148
Kotlin
accessing class properties 127
and Java 87
arithmetic operators 101

assignment operator 101
augmented assignment operators 102
bitwise operators 104
Boolean 92
break 112
breaking from loops 111
calling class methods 127
Char 92
class declaration 123
class initialization 124
class properties 124
Companion Objects 129
conditional control flow 113
continue labels 112
continue statement 112
control flow 109
convert from Java 87
Custom Accessors 127
data types 91
decrement operator 102
Default Function Parameters 119
defining class methods 124
do ... while loop 111
Elvis Operator 99
equality operators 103
Escape Sequences 93
expression syntax 101
Float 92
Flow 521
for-in statement 109
function calling 118
Functions 117
Higher-order Functions 121
if ... else ... expressions 114
if expressions 113
Immutable Variables 94
increment operator 102

inheritance 133
Initializer Blocks 127
Inner Classes 128
introduction 87
Lambda Expressions 120
let Function 97
Local Functions 118
logical operators 103
looping 109
Mutable Variables 94
Not-Null Assertion 97
Nullable Type 96
Overriding inherited methods 136
playground 88
Primary Constructor 124
properties 127
range operator 104
Safe Call Operator 96
Secondary Constructors 124
Single Expression Functions 118
String 92
subclassing 133
Type Annotations 95
Type Casting 99
Type Checking 99
Type Inference 95
variable parameters 119
when statement 114
while loop 110

L
Lambda Expressions 120
lateinit 98
Late Initialization 98
launch 491
launchBillingFlow() method 760
layout_collapseMode
parallax 448

pin 448
layout_constraintDimentionRatio 228
layout_constraintHorizontal_bias 226
layout_constraintVertical_bias 226
layout editor
ConstraintLayout chains 223

Layout Editor 16, 231
Autoconnect Mode 205
code mode 182
Component Tree 179
design mode 179
device screen 179
example project 231
Inference Mode 205
palette 179
properties panel 180
Sample Data 188
Setting Properties 183
toolbar 180
user interface design 231
view conversion 187

Layout Editor Tool
changing orientation 17
overview 179

Layout Inspector 54
Layout Managers 171
LayoutResultCallback object 713
Layouts 171
layout_scrollFlags
enterAlwaysCollapsed mode 445
enterAlways mode 445
exitUntilCollapsed mode 445
scroll mode 445

Layout Validation 190
let Function 97
libc 81
libs.versions.toml file 262

License Testers 766
Lifecycle
awareness 347
components 314
observers 348
owners 347
states and events 348
tutorial 351

Lifecycle-Aware Components 347
Lifecycle library 522
Lifecycle Methods 153
Lifecycle Observer 351
creating a 351

Lifecycle Owner
creating a 353

Lifecycles
modern 314

Lifecycle.State.CREATED 543
Lifecycle.State.DESTROYED 543
Lifecycle.State.INITIALIZED 543
Lifecycle.State.RESUMED 543
Lifecycle.State.STARTED 543
LinearLayout 172
LinearLayoutManager 431
LinearLayoutManager layout 439
Linux Kernel 80
list devices 59
LiveData 312, 323
adding to ViewModel 323
observer 325
tutorial 323

Live Templates 76
Local Bound Service 507
example 507

Local Functions 118
Location Manager 82
Location permission 632

Logcat
tool window 54

LogCat
enabling 163

M
MANAGE_EXTERNAL_STORAGE 633
adb enabling 633
testing 633

Manifest File
permissions 473

map() operator 526
Maps 673
MapView 673
adding to a layout 680

Marker class 673
Master/Detail Flow
creation 790
two pane mode 789

match_parent properties 239
Material design 415
Material Design 2 797
Material Design 2 Theming 797
Material Design 3 797
Material Theme Builder 799
Material You 797
measureTimeMillis() function 525
MediaController
adding to VideoView instance 617

MediaController class 614
methods 614

MediaPlayer class 639
methods 639

MediaRecorder class 639
methods 640
recording audio 640

Memory Indicator 69
Messenger object 516

Microphone
checking for availability 642

Microphone permissions 632
mm 239
MotionEvent 271, 272, 291
getActionMasked() 272

MotionLayout 377
arc motion 382
Attribute Keyframes 382
ConstraintSets 378
Custom Attribute 398
Custom Attributes 379
Cycle Editor 407
Editor 389
KeyAttribute 382
KeyCycle 403
Keyframes 382
KeyFrameSet 412
KeyPosition 383
KeyTimeCycle 403
KeyTrigger 386
OnClick 381, 394
OnSwipe 381
overview 377
Position Keyframes 383
previewing animation 394
Trigger Keyframe 386
Tutorial 389

MotionScene
ConstraintSets 378
Custom Attributes 379
file 378
overview 377
transition 378

moveCamera() method 686
multiple devices
testing app on 31

Multiple Touches
handling 272

multi-resume 156
Multi-Touch
example 273

Multi-touch Event Handling 271
multi-window support 156
MutableSharedFlow 532
MutableStateFlow 531
Mutable Variables 94
My Location Layer 673

N
Navigation 357
adding destinations 366
overview 357
pass data with safeargs 373
passing arguments 362
stack 357
tutorial 363

Navigation Action
triggering 361

Navigation Architecture Component 357
Navigation Component
tutorial 363

Navigation Controller
accessing 361

Navigation Graph 360, 364
adding actions 370
creating a 364

Navigation Host 358
declaring 365

newBuilder() method 758
normal permissions 631
Notification
adding actions 660
Direct Reply Input 669
issuing a basic 656

launch activity from a 658
PendingIntent 666
Reply Action 668
updating direct reply 670

Notifications
bundled 660
overview 649

Notifications Manager 82
Not-Null Assertion 97
Nullable Type 96

O
Observer
implementing a LiveData 325

onAttach() method 298
onBillingServiceDisconnected() callback 768
onBillingServiceDisconnected() method 759
onBillingSetupFinished() listener 768
onBind() method 504, 507, 515
onBindViewHolder() method 439
OnClick 381
onClickListener 266, 267, 270
onClick() method 265
onCreateContextMenuListener 266
onCreate() method 146, 153, 504
onCreateView() method 154
onDestroy() method 154, 504
onDoubleTap() method 277
onDown() method 277
onEach() operator 530
onFling() method 277
onFocusChangeListener 266
OnFragmentInteractionListener
implementation 371

onGesturePerformed() method 283
onHandleWork() method 504
onKeyListener 266
onLayoutFailed() method 713

onLayoutFinished() method 713
onLongClickListener 266
onLongPress() method 277
onMapReady() method 682
onPageFinished() callback 698
onPause() method 154
onProductDetailsResponse() callback 768
onReceive() method 146, 482, 483, 485
onRequestPermissionsResult() method 635, 646, 654, 664
onRestart() method 153
onRestoreInstanceState() method 154
onResume() method 146, 154
onSaveInstanceState() method 154
onScaleBegin() method 289
onScaleEnd() method 289
onScale() method 289
onScroll() method 277
OnSeekBarChangeListener 308
onServiceConnected() method 507, 510, 517
onServiceDisconnected() method 507, 510, 517
onShowPress() method 277
onSingleTapUp() method 277
onStartCommand() method 504
onStart() method 154
onStop() method 154
onTouchEvent() method 277, 289
onTouchListener 266
onTouch() method 272
onUpgrade() 554
onViewCreated() method 154
onViewStatusRestored() method 154
openFileDescriptor() method 776
OpenJDK 3

P
Package Explorer 15
Package Manager 82
PackageManager class 642

PackageManager.FEATURE_MICROPHONE 642
PackageManager.PERMISSION_DENIED 633
PackageManager.PERMISSION_GRANTED 633
Package Name 14
Packed chain 197, 226
PageRange 714, 715
Paint class 717
parentRelative 383
parent view 173
pathRelative 384
Paused state 148
PdfDocument 695
PdfDocument.Page 707, 714
PendingIntent class 666
Permission
checking for 633

permissions
normal 631

Persistent State 153
Phone permissions 632
picker 775
Pinch Gesture
detection 289
example 289

Pinch Gesture Recognition 283
Position Keyframes 383
POST_NOTIFICATIONS permission 632, 664
Primary Constructor 124
PrintAttributes 712
PrintDocumentAdapter 695, 707
Printing
color 692
monochrome 692

Printing framework
architecture 689

Printing Framework 689
Print Job

starting 718
PrintManager service 699
Problems
tool window 54, 55

process
priority 145
state 145

PROCESS_OUTGOING_CALLS permission 632
Process States 145
ProductDetail 760
ProductDetails 769
ProductType 762
Profiler
tool window 55

ProgressBar 171
proguard-rules.pro file 814
ProGuard Support 810
Project Name 14
Project tool window 15, 53
pt 239
PurchaseResponseListener 762
PurchasesUpdatedListener 760
PurchaseUpdatedListener 770
putExtra() method 451, 481
px 240

Q
queryProductDetailsAsync() 768
queryPurchasesAsync() 772
quickboot snapshot 44
Quick Documentation 75

R
RadioButton 171
Range Operator 104
ratios 227
READ_CALENDAR permission 632
READ_CALL_LOG permission 632

READ_CONTACTS permission 632
READ_EXTERNAL_STORAGE permission 633
READ_PHONE_STATE permission 632
READ_SMS permission 632
RECEIVE_MMS permission 632
RECEIVE_SMS permission 632
RECEIVE_WAP_PUSH permission 632
Recent Files Navigation 56
RECORD_AUDIO permission 632
Recording Audio
permission 641

RecyclerView 431
adding to layout file 432
GridLayoutManager 431
initializing 439
LinearLayoutManager 431
StaggeredGridLayoutManager 431

RecyclerView Adapter
creation of 437

RecyclerView.Adapter 432, 438
getItemCount() method 432
onBindViewHolder() method 432
onCreateViewHolder() method 432

RecyclerView.ViewHolder
getAdapterPosition() method 442

reduce() operator 528
registerForActivityResult() 453
registerForActivityResult() method 452, 466
registerReceiver() method 483
RelativeLayout 172
releasePersistableUriPermission() method 779
Release Preparation 743
Remote Bound Service 515
client communication 515
implementation 515
manifest file declaration 517

RemoteInput.Builder() method 666

RemoteInput Object 666
Remote Service
launching and binding 517
sending a message 519

repeatOnLifecycle 542
Repository
tutorial 597

Repository Modules 314
Resizable Emulator 46
Resource
string creation 20

Resource File 22
Resource Management 145
Resource Manager 53, 82
result receiver 483
Reverse-geocoding 679
Reverse Geocoding 678
Room
Data Access Object (DAO) 580
entities 580, 581
In-Memory Database 586
Repository 580

Room Database 580
tutorial 597

Room Database Persistence 579
Room Persistence Library 550, 579
root element 171
root view 173
Run
tool window 53

runBlocking 491
Running Devices
tool window 65

runOnUiThread() 769

S
safeargs 373
Safe Call Operator 96

Sample Data 188
Saved State 313, 343
SavedStateHandle 344
contains() method 345
keys() method 345
remove() method 345

Saved State module 343
SavedStateViewModelFactory 344
ScaleGestureDetector class 289
Scale-independent 239
SDK Packages 5
Secondary Constructors 124
Secure Sockets Layer (SSL) 81
SeekBar 301
sendBroadcast() method 481, 483
sendOrderedBroadcast() method 481, 483
SEND_SMS permission 632
sendStickyBroadcast() method 481
Sensor permissions 632
Service
anatomy 504
launch at system start 505
manifest file entry 504
overview 84
run in separate process 505

ServiceConnection class 517
Service Process 146
Service Restart Options 504
setAudioEncoder() method 640
setAudioSource() method 640
setBackgroundColor() 244
setCompassEnabled() method 684
setContentView() method 243, 249
setId() method 244
setMyLocationButtonEnabled() method 684
setOnClickListener() method 265, 267
setOnDoubleTapListener() method 277, 280

setOutputFile() method 640
setOutputFormat() method 640
setResult() method 453
setText() method 170
settings.gradle file 810
settings.gradle.kts file 810
setTransition() 387
setVideoSource() method 640
SHA-256 certificate fingerprint 455
SharedFlow 532, 535
backgroudn handling 541
DROP_LATEST 533
DROP_OLDEST 533
in ViewModel 537
repeatOnLifecycle 542
SUSPEND 533
tutorial 535

shouldOverrideUrlLoading() method 698
SimpleOnScaleGestureListener 289
SimpleOnScaleGestureListener class 290
single() operator 525
SMS permissions 632
Snackbar 415, 416, 417
Snapshots
emulator 43

sp 239
Spread chain 196
Spread inside 226
Spread inside chain 196
SQL 546
SQL CREATE 554
SQLite 545
AVD command-line use 547
Columns and Data Types 545
overview 546
Primary keys 546
tutorial 551

SQLiteDatabase 554
SQLiteOpenHelper 552
SQL SELECT 555
StaggeredGridLayoutManager 431
startActivity() method 451
startForeground() method 146
START_NOT_STICKY 504
START_REDELIVER_INTENT 504
START_STICKY 504
State
restoring 170

State Change
handling 149

StateFlow 531
Statement Completion 72
Status Bar Widgets 69
Memory Indicator 69

Sticky Broadcast Intents 483
Stopped state 148
Storage Access Framework 775
ACTION_CREATE_DOCUMENT 776
ACTION_OPEN_DOCUMENT 776
deleting a file 779
example 781
file creation 783
file filtering 776
file reading 777
file writing 778
intents 776
MIME Types 777
Persistent Access 779
picker 775

Storage permissions 633
String 92
StringBuilder object 786
strings.xml file 24
Structure

tool window 55
Structured Query Language 546
Structure tool window 55
SUBS 762
subscriptions 757
supervisorScope 491
SupportMapFragment class 673
SUSPEND 533
Suspend Functions 490
Switcher 56
System Broadcasts 487
system requirements 3

T
TabLayout
adding to layout 425
app
tabGravity property 430
tabMode property 430

example 422
fixed mode 429
getItemCount() method 421
overview 421

TableLayout 172, 589
TableRow 589
Telephony Manager 82
Templates
blank vs. empty 175

Terminal
tool window 54

terminal flow operators 528
Theme
building a custom 799

Theming 797
tutorial 801

Time Cycle Keyframes 387
TODO
tool window 55

ToolbarListener 298
tools
layout 295

Tool window bars 52
Tool windows 52
Touch Actions 272
Touch Event Listener
implementation 273

Touch Events
intercepting 271

Touch handling 271
transform() operator 527
try/finally 524
Type Annotations 95
Type Casting 99
Type Checking 99
Type Inference 95

U
UiSettings class 673
unbindService() method 503
unregisterReceiver() method 483
upload key 746
UriMatcher 560, 566
UriMatcher class 560
URL Mapping 727
USB connection issues
resolving 62

USE_BIOMETRIC 736
user interface state 153
USE_SIP permission 632

V
Version catalog 261
dependencies 263
libraries 263
libs.versions.toml file 262
plugins 263

versions 263
Video Playback 613
VideoView class 613
methods 613
supported formats 613

view bindings
enabling 140
using 140

View class
setting properties 250

view conversion 187
ViewGroup 171
View Groups 171
View Hierarchy 173
ViewHolder class 432
sample implementation 438

ViewModel
adding LiveData 323
data access 321
overview 312
saved state 343
Saved State 313, 343
tutorial 317

ViewModelProvider 320
ViewModel Saved State 343
ViewModelScope 490
ViewPager
adding to layout 425
example 422

Views 171
Java creation 243

View System 82
Virtual Device Configuration dialog 28
Virtual Sensors 43
Visible Process 146

W
WebViewClient 693, 698

WebView view 471
Weighted chain 196, 226
Welcome screen 49
while Loop 110
Widget Dimensions 197
Widget Group Alignment 219
Widgets palette 232
WiFi debugging 63
Wireless debugging 63
Wireless pairing 63
withContext 491, 493
wrap_content properties 241
WRITE_CALENDAR permission 632
WRITE_CALL_LOG permission 632
WRITE_CONTACTS permission 632
WRITE_EXTERNAL_STORAGE permission 633

X
XML Layout File
manual creation 239
vs. Java Code 243

Z
zip() operator 530

	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 Installing additional Android SDK packages
	2.5 Installing the Android SDK Command-line Tools
	2.5.1 Windows 8.1
	2.5.2 Windows 10
	2.5.3 Windows 11
	2.5.4 Linux
	2.5.5 macOS

	2.6 Android Studio memory management
	2.7 Updating Android Studio and the SDK
	2.8 Summary

	3. Creating an Example Android App in Android Studio
	3.1 About the Project
	3.2 Creating a New Android Project
	3.3 Creating an Activity
	3.4 Defining the Project and SDK Settings
	3.5 Modifying the Example Application
	3.6 Modifying the User Interface
	3.7 Reviewing the Layout and Resource Files
	3.8 Adding Interaction
	3.9 Summary

	4. Creating an Android Virtual Device (AVD) in Android Studio
	4.1 About Android Virtual Devices
	4.2 Starting the Emulator
	4.3 Running the Application in the AVD
	4.4 Running on Multiple Devices
	4.5 Stopping a Running Application
	4.6 Supporting Dark Theme
	4.7 Running the Emulator in a Separate Window
	4.8 Removing the Device Frame
	4.9 Summary

	5. Using and Configuring the Android Studio AVD Emulator
	5.1 The Emulator Environment
	5.2 Emulator Toolbar Options
	5.3 Working in Zoom Mode
	5.4 Resizing the Emulator Window
	5.5 Extended Control Options
	5.5.1 Location
	5.5.2 Displays
	5.5.3 Cellular
	5.5.4 Battery
	5.5.5 Camera
	5.5.6 Phone
	5.5.7 Directional Pad
	5.5.8 Microphone
	5.5.9 Fingerprint
	5.5.10 Virtual Sensors
	5.5.11 Snapshots
	5.5.12 Record and Playback
	5.5.13 Google Play
	5.5.14 Settings
	5.5.15 Help

	5.6 Working with Snapshots
	5.7 Configuring Fingerprint Emulation
	5.8 The Emulator in Tool Window Mode
	5.9 Creating a Resizable Emulator
	5.10 Summary

	6. A Tour of the Android Studio User Interface
	6.1 The Welcome Screen
	6.2 The Menu Bar
	6.3 The Main Window
	6.4 The Tool Windows
	6.5 The Tool Window Menus
	6.6 Android Studio Keyboard Shortcuts
	6.7 Switcher and Recent Files Navigation
	6.8 Changing the Android Studio Theme
	6.9 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling USB Debugging ADB on Android Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Resolving USB Connection Issues
	7.4 Enabling Wireless Debugging on Android Devices
	7.5 Testing the adb Connection
	7.6 Device Mirroring
	7.7 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Live Templates
	8.13 Summary

	9. An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Hardware Abstraction Layer
	9.4 Android Runtime – ART
	9.5 Android Libraries
	9.5.1 C/C++ Libraries

	9.6 Application Framework
	9.7 Applications
	9.8 Summary

	10. The Anatomy of an Android App
	10.1 Android Activities
	10.2 Android Fragments
	10.3 Android Intents
	10.4 Broadcast Intents
	10.5 Broadcast Receivers
	10.6 Android Services
	10.7 Content Providers
	10.8 The Application Manifest
	10.9 Application Resources
	10.10 Application Context
	10.11 Summary

	11. An Introduction to Kotlin
	11.1 What is Kotlin?
	11.2 Kotlin and Java
	11.3 Converting from Java to Kotlin
	11.4 Kotlin and Android Studio
	11.5 Experimenting with Kotlin
	11.6 Semi-colons in Kotlin
	11.7 Summary

	12. Kotlin Data Types, Variables, and Nullability
	12.1 Kotlin Data Types
	12.1.1 Integer Data Types
	12.1.2 Floating-Point Data Types
	12.1.3 Boolean Data Type
	12.1.4 Character Data Type
	12.1.5 String Data Type
	12.1.6 Escape Sequences

	12.2 Mutable Variables
	12.3 Immutable Variables
	12.4 Declaring Mutable and Immutable Variables
	12.5 Data Types are Objects
	12.6 Type Annotations and Type Inference
	12.7 Nullable Type
	12.8 The Safe Call Operator
	12.9 Not-Null Assertion
	12.10 Nullable Types and the let Function
	12.11 Late Initialization (lateinit)
	12.12 The Elvis Operator
	12.13 Type Casting and Type Checking
	12.14 Summary

	13. Kotlin Operators and Expressions
	13.1 Expression Syntax in Kotlin
	13.2 The Basic Assignment Operator
	13.3 Kotlin Arithmetic Operators
	13.4 Augmented Assignment Operators
	13.5 Increment and Decrement Operators
	13.6 Equality Operators
	13.7 Boolean Logical Operators
	13.8 Range Operator
	13.9 Bitwise Operators
	13.9.1 Bitwise Inversion
	13.9.2 Bitwise AND
	13.9.3 Bitwise OR
	13.9.4 Bitwise XOR
	13.9.5 Bitwise Left Shift
	13.9.6 Bitwise Right Shift

	13.10 Summary

	14. Kotlin Control Flow
	14.1 Looping Control flow
	14.1.1 The Kotlin for-in Statement
	14.1.2 The while Loop
	14.1.3 The do ... while loop
	14.1.4 Breaking from Loops
	14.1.5 The continue Statement
	14.1.6 Break and Continue Labels

	14.2 Conditional Control Flow
	14.2.1 Using the if Expressions
	14.2.2 Using if ... else … Expressions
	14.2.3 Using if ... else if ... Expressions
	14.2.4 Using the when Statement

	14.3 Summary

	15. An Overview of Kotlin Functions and Lambdas
	15.1 What is a Function?
	15.2 How to Declare a Kotlin Function
	15.3 Calling a Kotlin Function
	15.4 Single Expression Functions
	15.5 Local Functions
	15.6 Handling Return Values
	15.7 Declaring Default Function Parameters
	15.8 Variable Number of Function Parameters
	15.9 Lambda Expressions
	15.10 Higher-order Functions
	15.11 Summary

	16. The Basics of Object Oriented Programming in Kotlin
	16.1 What is an Object?
	16.2 What is a Class?
	16.3 Declaring a Kotlin Class
	16.4 Adding Properties to a Class
	16.5 Defining Methods
	16.6 Declaring and Initializing a Class Instance
	16.7 Primary and Secondary Constructors
	16.8 Initializer Blocks
	16.9 Calling Methods and Accessing Properties
	16.10 Custom Accessors
	16.11 Nested and Inner Classes
	16.12 Companion Objects
	16.13 Summary

	17. An Introduction to Kotlin Inheritance and Subclassing
	17.1 Inheritance, Classes and Subclasses
	17.2 Subclassing Syntax
	17.3 A Kotlin Inheritance Example
	17.4 Extending the Functionality of a Subclass
	17.5 Overriding Inherited Methods
	17.6 Adding a Custom Secondary Constructor
	17.7 Using the SavingsAccount Class
	17.8 Summary

	18. An Overview of Android View Binding
	18.1 Find View by Id
	18.2 View Binding
	18.3 Converting the AndroidSample project
	18.4 Enabling View Binding
	18.5 Using View Binding
	18.6 Choosing an Option
	18.7 View Binding in the Book Examples
	18.8 Migrating a Project to View Binding
	18.9 Summary

	19. Understanding Android Application and Activity Lifecycles
	19.1 Android Applications and Resource Management
	19.2 Android Process States
	19.2.1 Foreground Process
	19.2.2 Visible Process
	19.2.3 Service Process
	19.2.4 Background Process
	19.2.5 Empty Process

	19.3 Inter-Process Dependencies
	19.4 The Activity Lifecycle
	19.5 The Activity Stack
	19.6 Activity States
	19.7 Configuration Changes
	19.8 Handling State Change
	19.9 Summary

	20. Handling Android Activity State Changes
	20.1 New vs. Old Lifecycle Techniques
	20.2 The Activity and Fragment Classes
	20.3 Dynamic State vs. Persistent State
	20.4 The Android Lifecycle Methods
	20.5 Lifetimes
	20.6 Foldable Devices and Multi-Resume
	20.7 Disabling Configuration Change Restarts
	20.8 Lifecycle Method Limitations
	20.9 Summary

	21. Android Activity State Changes by Example
	21.1 Creating the State Change Example Project
	21.2 Designing the User Interface
	21.3 Overriding the Activity Lifecycle Methods
	21.4 Filtering the Logcat Panel
	21.5 Running the Application
	21.6 Experimenting with the Activity
	21.7 Summary

	22. Saving and Restoring the State of an Android Activity
	22.1 Saving Dynamic State
	22.2 Default Saving of User Interface State
	22.3 The Bundle Class
	22.4 Saving the State
	22.5 Restoring the State
	22.6 Testing the Application
	22.7 Summary

	23. Understanding Android Views, View Groups and Layouts
	23.1 Designing for Different Android Devices
	23.2 Views and View Groups
	23.3 Android Layout Managers
	23.4 The View Hierarchy
	23.5 Creating User Interfaces
	23.6 Summary

	24. A Guide to the Android Studio Layout Editor Tool
	24.1 Basic vs. Empty Views Activity Templates
	24.2 The Android Studio Layout Editor
	24.3 Design Mode
	24.4 The Palette
	24.5 Design Mode and Layout Views
	24.6 Night Mode
	24.7 Code Mode
	24.8 Split Mode
	24.9 Setting Attributes
	24.10 Transforms
	24.11 Tools Visibility Toggles
	24.12 Converting Views
	24.13 Displaying Sample Data
	24.14 Creating a Custom Device Definition
	24.15 Changing the Current Device
	24.16 Layout Validation
	24.17 Summary

	25. A Guide to the Android ConstraintLayout
	25.1 How ConstraintLayout Works
	25.1.1 Constraints
	25.1.2 Margins
	25.1.3 Opposing Constraints
	25.1.4 Constraint Bias
	25.1.5 Chains
	25.1.6 Chain Styles

	25.2 Baseline Alignment
	25.3 Configuring Widget Dimensions
	25.4 Guideline Helper
	25.5 Group Helper
	25.6 Barrier Helper
	25.7 Flow Helper
	25.8 Ratios
	25.9 ConstraintLayout Advantages
	25.10 ConstraintLayout Availability
	25.11 Summary

	26. A Guide to Using ConstraintLayout in Android Studio
	26.1 Design and Layout Views
	26.2 Autoconnect Mode
	26.3 Inference Mode
	26.4 Manipulating Constraints Manually
	26.5 Adding Constraints in the Inspector
	26.6 Viewing Constraints in the Attributes Window
	26.7 Deleting Constraints
	26.8 Adjusting Constraint Bias
	26.9 Understanding ConstraintLayout Margins
	26.10 The Importance of Opposing Constraints and Bias
	26.11 Configuring Widget Dimensions
	26.12 Design Time Tools Positioning
	26.13 Adding Guidelines
	26.14 Adding Barriers
	26.15 Adding a Group
	26.16 Working with the Flow Helper
	26.17 Widget Group Alignment and Distribution
	26.18 Converting other Layouts to ConstraintLayout
	26.19 Summary

	27. Working with ConstraintLayout Chains and Ratios in Android Studio
	27.1 Creating a Chain
	27.2 Changing the Chain Style
	27.3 Spread Inside Chain Style
	27.4 Packed Chain Style
	27.5 Packed Chain Style with Bias
	27.6 Weighted Chain
	27.7 Working with Ratios
	27.8 Summary

	28. An Android Studio Layout Editor ConstraintLayout Tutorial
	28.1 An Android Studio Layout Editor Tool Example
	28.2 Preparing the Layout Editor Environment
	28.3 Adding the Widgets to the User Interface
	28.4 Adding the Constraints
	28.5 Testing the Layout
	28.6 Using the Layout Inspector
	28.7 Summary

	29. Manual XML Layout Design in Android Studio
	29.1 Manually Creating an XML Layout
	29.2 Manual XML vs. Visual Layout Design
	29.3 Summary

	30. Managing Constraints using Constraint Sets
	30.1 Kotlin Code vs. XML Layout Files
	30.2 Creating Views
	30.3 View Attributes
	30.4 Constraint Sets
	30.4.1 Establishing Connections
	30.4.2 Applying Constraints to a Layout
	30.4.3 Parent Constraint Connections
	30.4.4 Sizing Constraints
	30.4.5 Constraint Bias
	30.4.6 Alignment Constraints
	30.4.7 Copying and Applying Constraint Sets
	30.4.8 ConstraintLayout Chains
	30.4.9 Guidelines
	30.4.10 Removing Constraints
	30.4.11 Scaling
	30.4.12 Rotation

	30.5 Summary

	31. An Android ConstraintSet Tutorial
	31.1 Creating the Example Project in Android Studio
	31.2 Adding Views to an Activity
	31.3 Setting View Attributes
	31.4 Creating View IDs
	31.5 Configuring the Constraint Set
	31.6 Adding the EditText View
	31.7 Converting Density Independent Pixels (dp) to Pixels (px)
	31.8 Summary

	32. A Guide to Using Apply Changes in Android Studio
	32.1 Introducing Apply Changes
	32.2 Understanding Apply Changes Options
	32.3 Using Apply Changes
	32.4 Configuring Apply Changes Fallback Settings
	32.5 An Apply Changes Tutorial
	32.6 Using Apply Code Changes
	32.7 Using Apply Changes and Restart Activity
	32.8 Using Run App
	32.9 Summary

	33. A Guide to Gradle Version Catalogs
	33.1 Library and Plugin Dependencies
	33.2 Project Gradle Build File
	33.3 Module Gradle Build Files
	33.4 Version Catalog File
	33.5 Adding Dependencies
	33.6 Library Updates
	33.7 Summary

	34. An Overview and Example of Android Event Handling
	34.1 Understanding Android Events
	34.2 Using the android:onClick Resource
	34.3 Event Listeners and Callback Methods
	34.4 An Event Handling Example
	34.5 Designing the User Interface
	34.6 The Event Listener and Callback Method
	34.7 Consuming Events
	34.8 Summary

	35. Android Touch and Multi-touch Event Handling
	35.1 Intercepting Touch Events
	35.2 The MotionEvent Object
	35.3 Understanding Touch Actions
	35.4 Handling Multiple Touches
	35.5 An Example Multi-Touch Application
	35.6 Designing the Activity User Interface
	35.7 Implementing the Touch Event Listener
	35.8 Running the Example Application
	35.9 Summary

	36. Detecting Common Gestures Using the Android Gesture Detector Class
	36.1 Implementing Common Gesture Detection
	36.2 Creating an Example Gesture Detection Project
	36.3 Implementing the Listener Class
	36.4 Creating the GestureDetector Instance
	36.5 Implementing the onTouchEvent() Method
	36.6 Testing the Application
	36.7 Summary

	37. Implementing Custom Gesture and Pinch Recognition on Android
	37.1 The Android Gesture Builder Application
	37.2 The GestureOverlayView Class
	37.3 Detecting Gestures
	37.4 Identifying Specific Gestures
	37.5 Installing and Running the Gesture Builder Application
	37.6 Creating a Gestures File
	37.7 Creating the Example Project
	37.8 Extracting the Gestures File from the SD Card
	37.9 Adding the Gestures File to the Project
	37.10 Designing the User Interface
	37.11 Loading the Gestures File
	37.12 Registering the Event Listener
	37.13 Implementing the onGesturePerformed Method
	37.14 Testing the Application
	37.15 Configuring the GestureOverlayView
	37.16 Intercepting Gestures
	37.17 Detecting Pinch Gestures
	37.18 A Pinch Gesture Example Project
	37.19 Summary

	38. An Introduction to Android Fragments
	38.1 What is a Fragment?
	38.2 Creating a Fragment
	38.3 Adding a Fragment to an Activity using the Layout XML File
	38.4 Adding and Managing Fragments in Code
	38.5 Handling Fragment Events
	38.6 Implementing Fragment Communication
	38.7 Summary

	39. Using Fragments in Android Studio - An Example
	39.1 About the Example Fragment Application
	39.2 Creating the Example Project
	39.3 Creating the First Fragment Layout
	39.4 Migrating a Fragment to View Binding
	39.5 Adding the Second Fragment
	39.6 Adding the Fragments to the Activity
	39.7 Making the Toolbar Fragment Talk to the Activity
	39.8 Making the Activity Talk to the Text Fragment
	39.9 Testing the Application
	39.10 Summary

	40. Modern Android App Architecture with Jetpack
	40.1 What is Android Jetpack?
	40.2 The “Old” Architecture
	40.3 Modern Android Architecture
	40.4 The ViewModel Component
	40.5 The LiveData Component
	40.6 ViewModel Saved State
	40.7 LiveData and Data Binding
	40.8 Android Lifecycles
	40.9 Repository Modules
	40.10 Summary

	41. An Android ViewModel Tutorial
	41.1 About the Project
	41.2 Creating the ViewModel Example Project
	41.3 Removing Unwanted Project Elements
	41.4 Designing the Fragment Layout
	41.5 Implementing the View Model
	41.6 Associating the Fragment with the View Model
	41.7 Modifying the Fragment
	41.8 Accessing the ViewModel Data
	41.9 Testing the Project
	41.10 Summary

	42. An Android Jetpack LiveData Tutorial
	42.1 LiveData - A Recap
	42.2 Adding LiveData to the ViewModel
	42.3 Implementing the Observer
	42.4 Summary

	43. An Overview of Android Jetpack Data Binding
	43.1 An Overview of Data Binding
	43.2 The Key Components of Data Binding
	43.2.1 The Project Build Configuration
	43.2.2 The Data Binding Layout File
	43.2.3 The Layout File Data Element
	43.2.4 The Binding Classes
	43.2.5 Data Binding Variable Configuration
	43.2.6 Binding Expressions (One-Way)
	43.2.7 Binding Expressions (Two-Way)
	43.2.8 Event and Listener Bindings

	43.3 Summary

	44. An Android Jetpack Data Binding Tutorial
	44.1 Removing the Redundant Code
	44.2 Enabling Data Binding
	44.3 Adding the Layout Element
	44.4 Adding the Data Element to Layout File
	44.5 Working with the Binding Class
	44.6 Assigning the ViewModel Instance to the Data Binding Variable
	44.7 Adding Binding Expressions
	44.8 Adding the Conversion Method
	44.9 Adding a Listener Binding
	44.10 Testing the App
	44.11 Summary

	45. An Android ViewModel Saved State Tutorial
	45.1 Understanding ViewModel State Saving
	45.2 Implementing ViewModel State Saving
	45.3 Saving and Restoring State
	45.4 Adding Saved State Support to the ViewModelDemo Project
	45.5 Summary

	46. Working with Android Lifecycle-Aware Components
	46.1 Lifecycle Awareness
	46.2 Lifecycle Owners
	46.3 Lifecycle Observers
	46.4 Lifecycle States and Events
	46.5 Summary

	47. An Android Jetpack Lifecycle Awareness Tutorial
	47.1 Creating the Example Lifecycle Project
	47.2 Creating a Lifecycle Observer
	47.3 Adding the Observer
	47.4 Testing the Observer
	47.5 Creating a Lifecycle Owner
	47.6 Testing the Custom Lifecycle Owner
	47.7 Summary

	48. An Overview of the Navigation Architecture Component
	48.1 Understanding Navigation
	48.2 Declaring a Navigation Host
	48.3 The Navigation Graph
	48.4 Accessing the Navigation Controller
	48.5 Triggering a Navigation Action
	48.6 Passing Arguments
	48.7 Summary

	49. An Android Jetpack Navigation Component Tutorial
	49.1 Creating the NavigationDemo Project
	49.2 Adding Navigation to the Build Configuration
	49.3 Creating the Navigation Graph Resource File
	49.4 Declaring a Navigation Host
	49.5 Adding Navigation Destinations
	49.6 Designing the Destination Fragment Layouts
	49.7 Adding an Action to the Navigation Graph
	49.8 Implement the OnFragmentInteractionListener
	49.9 Adding View Binding Support to the Destination Fragments
	49.10 Triggering the Action
	49.11 Passing Data Using Safeargs
	49.12 Summary

	50. An Introduction to MotionLayout
	50.1 An Overview of MotionLayout
	50.2 MotionLayout
	50.3 MotionScene
	50.4 Configuring ConstraintSets
	50.5 Custom Attributes
	50.6 Triggering an Animation
	50.7 Arc Motion
	50.8 Keyframes
	50.8.1 Attribute Keyframes
	50.8.2 Position Keyframes

	50.9 Time Linearity
	50.10 KeyTrigger
	50.11 Cycle and Time Cycle Keyframes
	50.12 Starting an Animation from Code
	50.13 Summary

	51. An Android MotionLayout Editor Tutorial
	51.1 Creating the MotionLayoutDemo Project
	51.2 ConstraintLayout to MotionLayout Conversion
	51.3 Configuring Start and End Constraints
	51.4 Previewing the MotionLayout Animation
	51.5 Adding an OnClick Gesture
	51.6 Adding an Attribute Keyframe to the Transition
	51.7 Adding a CustomAttribute to a Transition
	51.8 Adding Position Keyframes
	51.9 Summary

	52. A MotionLayout KeyCycle Tutorial
	52.1 An Overview of Cycle Keyframes
	52.2 Using the Cycle Editor
	52.3 Creating the KeyCycleDemo Project
	52.4 Configuring the Start and End Constraints
	52.5 Creating the Cycles
	52.6 Previewing the Animation
	52.7 Adding the KeyFrameSet to the MotionScene
	52.8 Summary

	53. Working with the Floating Action Button and Snackbar
	53.1 The Material Design
	53.2 The Design Library
	53.3 The Floating Action Button (FAB)
	53.4 The Snackbar
	53.5 Creating the Example Project
	53.6 Reviewing the Project
	53.7 Removing Navigation Features
	53.8 Changing the Floating Action Button
	53.9 Adding an Action to the Snackbar
	53.10 Summary

	54. Creating a Tabbed Interface using the TabLayout Component
	54.1 An Introduction to the ViewPager2
	54.2 An Overview of the TabLayout Component
	54.3 Creating the TabLayoutDemo Project
	54.4 Creating the First Fragment
	54.5 Duplicating the Fragments
	54.6 Adding the TabLayout and ViewPager2
	54.7 Performing the Initialization Tasks
	54.8 Testing the Application
	54.9 Customizing the TabLayout
	54.10 Summary

	55. Working with the RecyclerView and CardView Widgets
	55.1 An Overview of the RecyclerView
	55.2 An Overview of the CardView
	55.3 Summary

	56. An Android RecyclerView and CardView Tutorial
	56.1 Creating the CardDemo Project
	56.2 Modifying the Basic Views Activity Project
	56.3 Designing the CardView Layout
	56.4 Adding the RecyclerView
	56.5 Adding the Image Files
	56.6 Creating the RecyclerView Adapter
	56.7 Initializing the RecyclerView Component
	56.8 Testing the Application
	56.9 Responding to Card Selections
	56.10 Summary

	57. Working with the AppBar and Collapsing Toolbar Layouts
	57.1 The Anatomy of an AppBar
	57.2 The Example Project
	57.3 Coordinating the RecyclerView and Toolbar
	57.4 Introducing the Collapsing Toolbar Layout
	57.5 Changing the Title and Scrim Color
	57.6 Summary

	58. An Overview of Android Intents
	58.1 An Overview of Intents
	58.2 Explicit Intents
	58.3 Returning Data from an Activity
	58.4 Implicit Intents
	58.5 Using Intent Filters
	58.6 Automatic Link Verification
	58.7 Manually Enabling Links
	58.8 Checking Intent Availability
	58.9 Summary

	59. Android Explicit Intents – A Worked Example
	59.1 Creating the Explicit Intent Example Application
	59.2 Designing the User Interface Layout for MainActivity
	59.3 Creating the Second Activity Class
	59.4 Designing the User Interface Layout for SecondActivity
	59.5 Reviewing the Application Manifest File
	59.6 Creating the Intent
	59.7 Extracting Intent Data
	59.8 Launching SecondActivity as a Sub-Activity
	59.9 Returning Data from a Sub-Activity
	59.10 Testing the Application
	59.11 Summary

	60. Android Implicit Intents – A Worked Example
	60.1 Creating the Android Studio Implicit Intent Example Project
	60.2 Designing the User Interface
	60.3 Creating the Implicit Intent
	60.4 Adding a Second Matching Activity
	60.5 Adding the Web View to the UI
	60.6 Obtaining the Intent URL
	60.7 Modifying the MyWebView Project Manifest File
	60.8 Installing the MyWebView Package on a Device
	60.9 Testing the Application
	60.10 Manually Enabling the Link
	60.11 Automatic Link Verification
	60.12 Summary

	61. Android Broadcast Intents and Broadcast Receivers
	61.1 An Overview of Broadcast Intents
	61.2 An Overview of Broadcast Receivers
	61.3 Obtaining Results from a Broadcast
	61.4 Sticky Broadcast Intents
	61.5 The Broadcast Intent Example
	61.6 Creating the Example Application
	61.7 Creating and Sending the Broadcast Intent
	61.8 Creating the Broadcast Receiver
	61.9 Registering the Broadcast Receiver
	61.10 Testing the Broadcast Example
	61.11 Listening for System Broadcasts
	61.12 Summary

	62. An Introduction to Kotlin Coroutines
	62.1 What are Coroutines?
	62.2 Threads vs. Coroutines
	62.3 Coroutine Scope
	62.4 Suspend Functions
	62.5 Coroutine Dispatchers
	62.6 Coroutine Builders
	62.7 Jobs
	62.8 Coroutines – Suspending and Resuming
	62.9 Returning Results from a Coroutine
	62.10 Using withContext
	62.11 Coroutine Channel Communication
	62.12 Summary

	63. An Android Kotlin Coroutines Tutorial
	63.1 Creating the Coroutine Example Application
	63.2 Designing the User Interface
	63.3 Implementing the SeekBar
	63.4 Adding the Suspend Function
	63.5 Implementing the launchCoroutines Method
	63.6 Testing the App
	63.7 Summary

	64. An Overview of Android Services
	64.1 Intent Service
	64.2 Bound Service
	64.3 The Anatomy of a Service
	64.4 Controlling Destroyed Service Restart Options
	64.5 Declaring a Service in the Manifest File
	64.6 Starting a Service Running on System Startup
	64.7 Summary

	65. Android Local Bound Services – A Worked Example
	65.1 Understanding Bound Services
	65.2 Bound Service Interaction Options
	65.3 A Local Bound Service Example
	65.4 Adding a Bound Service to the Project
	65.5 Implementing the Binder
	65.6 Binding the Client to the Service
	65.7 Completing the Example
	65.8 Testing the Application
	65.9 Summary

	66. Android Remote Bound Services – A Worked Example
	66.1 Client to Remote Service Communication
	66.2 Creating the Example Application
	66.3 Designing the User Interface
	66.4 Implementing the Remote Bound Service
	66.5 Configuring a Remote Service in the Manifest File
	66.6 Launching and Binding to the Remote Service
	66.7 Sending a Message to the Remote Service
	66.8 Summary

	67. An Introduction to Kotlin Flow
	67.1 Understanding Flows
	67.2 Creating the Sample Project
	67.3 Adding the Kotlin Lifecycle Library
	67.4 Declaring a Flow
	67.5 Emitting Flow Data
	67.6 Collecting Flow Data
	67.7 Adding a Flow Buffer
	67.8 Transforming Data with Intermediaries
	67.9 Terminal Flow Operators
	67.10 Flow Flattening
	67.11 Combining Multiple Flows
	67.12 Hot and Cold Flows
	67.13 StateFlow
	67.14 SharedFlow
	67.15 Summary

	68. An Android SharedFlow Tutorial
	68.1 About the Project
	68.2 Creating the SharedFlowDemo Project
	68.3 Adding the Lifecycle Libraries
	68.4 Designing the User Interface Layout
	68.5 Adding the List Row Layout
	68.6 Adding the RecyclerView Adapter
	68.7 Adding the ViewModel
	68.8 Configuring the ViewModelProvider
	68.9 Collecting the Flow Values
	68.10 Testing the SharedFlowDemo App
	68.11 Handling Flows in the Background
	68.12 Summary

	69. An Overview of Android SQLite Databases
	69.1 Understanding Database Tables
	69.2 Introducing Database Schema
	69.3 Columns and Data Types
	69.4 Database Rows
	69.5 Introducing Primary Keys
	69.6 What is SQLite?
	69.7 Structured Query Language (SQL)
	69.8 Trying SQLite on an Android Virtual Device (AVD)
	69.9 Android SQLite Classes
	69.9.1 Cursor
	69.9.2 SQLiteDatabase
	69.9.3 SQLiteOpenHelper
	69.9.4 ContentValues

	69.10 The Android Room Persistence Library
	69.11 Summary

	70. An Android SQLite Database Tutorial
	70.1 About the Database Example
	70.2 Creating the SQLDemo Project
	70.3 Designing the User interface
	70.4 Creating the Data Model
	70.5 Implementing the Data Handler
	70.6 The Add Handler Method
	70.7 The Query Handler Method
	70.8 The Delete Handler Method
	70.9 Implementing the Activity Event Methods
	70.10 Testing the Application
	70.11 Summary

	71. Understanding Android Content Providers
	71.1 What is a Content Provider?
	71.2 The Content Provider
	71.2.1 onCreate()
	71.2.2 query()
	71.2.3 insert()
	71.2.4 update()
	71.2.5 delete()
	71.2.6 getType()

	71.3 The Content URI
	71.4 The Content Resolver
	71.5 The <provider> Manifest Element
	71.6 Summary

	72. An Android Content Provider Tutorial
	72.1 Copying the SQLDemo Project
	72.2 Adding the Content Provider Package
	72.3 Creating the Content Provider Class
	72.4 Constructing the Authority and Content URI
	72.5 Implementing URI Matching in the Content Provider
	72.6 Implementing the Content Provider onCreate() Method
	72.7 Implementing the Content Provider insert() Method
	72.8 Implementing the Content Provider query() Method
	72.9 Implementing the Content Provider update() Method
	72.10 Implementing the Content Provider delete() Method
	72.11 Declaring the Content Provider in the Manifest File
	72.12 Modifying the Database Handler
	72.13 Summary

	73. An Android Content Provider Client Tutorial
	73.1 Creating the SQLDemoClient Project
	73.2 Designing the User interface
	73.3 Accessing the Content Provider
	73.4 Adding the Query Permission
	73.5 Testing the Project
	73.6 Summary

	74. The Android Room Persistence Library
	74.1 Revisiting Modern App Architecture
	74.2 Key Elements of Room Database Persistence
	74.2.1 Repository
	74.2.2 Room Database
	74.2.3 Data Access Object (DAO)
	74.2.4 Entities
	74.2.5 SQLite Database

	74.3 Understanding Entities
	74.4 Data Access Objects
	74.5 The Room Database
	74.6 The Repository
	74.7 In-Memory Databases
	74.8 Database Inspector
	74.9 Summary

	75. An Android TableLayout and TableRow Tutorial
	75.1 The TableLayout and TableRow Layout Views
	75.2 Creating the Room Database Project
	75.3 Converting to a LinearLayout
	75.4 Adding the TableLayout to the User Interface
	75.5 Configuring the TableRows
	75.6 Adding the Button Bar to the Layout
	75.7 Adding the RecyclerView
	75.8 Adjusting the Layout Margins
	75.9 Summary

	76. An Android Room Database and Repository Tutorial
	76.1 About the RoomDemo Project
	76.2 Modifying the Build Configuration
	76.3 Building the Entity
	76.4 Creating the Data Access Object
	76.5 Adding the Room Database
	76.6 Adding the Repository
	76.7 Adding the ViewModel
	76.8 Creating the Product Item Layout
	76.9 Adding the RecyclerView Adapter
	76.10 Preparing the Main Activity
	76.11 Adding the Button Listeners
	76.12 Adding LiveData Observers
	76.13 Initializing the RecyclerView
	76.14 Testing the RoomDemo App
	76.15 Using the Database Inspector
	76.16 Summary

	77. Video Playback on Android using the VideoView and MediaController Classes
	77.1 Introducing the Android VideoView Class
	77.2 Introducing the Android MediaController Class
	77.3 Creating the Video Playback Example
	77.4 Designing the VideoPlayer Layout
	77.5 Downloading the Video File
	77.6 Configuring the VideoView
	77.7 Adding the MediaController to the Video View
	77.8 Setting up the onPreparedListener
	77.9 Summary

	78. Android Picture-in-Picture Mode
	78.1 Picture-in-Picture Features
	78.2 Enabling Picture-in-Picture Mode
	78.3 Configuring Picture-in-Picture Parameters
	78.4 Entering Picture-in-Picture Mode
	78.5 Detecting Picture-in-Picture Mode Changes
	78.6 Adding Picture-in-Picture Actions
	78.7 Summary

	79. An Android Picture-in-Picture Tutorial
	79.1 Adding Picture-in-Picture Support to the Manifest
	79.2 Adding a Picture-in-Picture Button
	79.3 Entering Picture-in-Picture Mode
	79.4 Detecting Picture-in-Picture Mode Changes
	79.5 Adding a Broadcast Receiver
	79.6 Adding the PiP Action
	79.7 Testing the Picture-in-Picture Action
	79.8 Summary

	80. Making Runtime Permission Requests in Android
	80.1 Understanding Normal and Dangerous Permissions
	80.2 Creating the Permissions Example Project
	80.3 Checking for a Permission
	80.4 Requesting Permission at Runtime
	80.5 Providing a Rationale for the Permission Request
	80.6 Testing the Permissions App
	80.7 Summary

	81. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	81.1 Playing Audio
	81.2 Recording Audio and Video using the MediaRecorder Class
	81.3 About the Example Project
	81.4 Creating the AudioApp Project
	81.5 Designing the User Interface
	81.6 Checking for Microphone Availability
	81.7 Initializing the Activity
	81.8 Implementing the recordAudio() Method
	81.9 Implementing the stopAudio() Method
	81.10 Implementing the playAudio() method
	81.11 Configuring and Requesting Permissions
	81.12 Testing the Application
	81.13 Summary

	82. An Android Notifications Tutorial
	82.1 An Overview of Notifications
	82.2 Creating the NotifyDemo Project
	82.3 Designing the User Interface
	82.4 Creating the Second Activity
	82.5 Creating a Notification Channel
	82.6 Requesting Notification Permission
	82.7 Creating and Issuing a Notification
	82.8 Launching an Activity from a Notification
	82.9 Adding Actions to a Notification
	82.10 Bundled Notifications
	82.11 Summary

	83. An Android Direct Reply Notification Tutorial
	83.1 Creating the DirectReply Project
	83.2 Designing the User Interface
	83.3 Requesting Notification Permission
	83.4 Creating the Notification Channel
	83.5 Building the RemoteInput Object
	83.6 Creating the PendingIntent
	83.7 Creating the Reply Action
	83.8 Receiving Direct Reply Input
	83.9 Updating the Notification
	83.10 Summary

	84. Working with the Google Maps Android API in Android Studio
	84.1 The Elements of the Google Maps Android API
	84.2 Creating the Google Maps Project
	84.3 Creating a Google Cloud Billing Account
	84.4 Creating a New Google Cloud Project
	84.5 Enabling the Google Maps SDK
	84.6 Generating a Google Maps API Key
	84.7 Adding the API Key to the Android Studio Project
	84.8 Testing the Application
	84.9 Understanding Geocoding and Reverse Geocoding
	84.10 Adding a Map to an Application
	84.11 Requesting Current Location Permission
	84.12 Displaying the User’s Current Location
	84.13 Changing the Map Type
	84.14 Displaying Map Controls to the User
	84.15 Handling Map Gesture Interaction
	84.15.1 Map Zooming Gestures
	84.15.2 Map Scrolling/Panning Gestures
	84.15.3 Map Tilt Gestures
	84.15.4 Map Rotation Gestures

	84.16 Creating Map Markers
	84.17 Controlling the Map Camera
	84.18 Summary

	85. Printing with the Android Printing Framework
	85.1 The Android Printing Architecture
	85.2 The Print Service Plugins
	85.3 Google Cloud Print
	85.4 Printing to Google Drive
	85.5 Save as PDF
	85.6 Printing from Android Devices
	85.7 Options for Building Print Support into Android Apps
	85.7.1 Image Printing
	85.7.2 Creating and Printing HTML Content
	85.7.3 Printing a Web Page
	85.7.4 Printing a Custom Document

	85.8 Summary

	86. An Android HTML and Web Content Printing Example
	86.1 Creating the HTML Printing Example Application
	86.2 Printing Dynamic HTML Content
	86.3 Creating the Web Page Printing Example
	86.4 Removing the Floating Action Button
	86.5 Removing Navigation Features
	86.6 Designing the User Interface Layout
	86.7 Accessing the WebView from the Main Activity
	86.8 Loading the Web Page into the WebView
	86.9 Adding the Print Menu Option
	86.10 Summary

	87. A Guide to Android Custom Document Printing
	87.1 An Overview of Android Custom Document Printing
	87.1.1 Custom Print Adapters

	87.2 Preparing the Custom Document Printing Project
	87.3 Designing the UI
	87.4 Creating the Custom Print Adapter
	87.5 Implementing the onLayout() Callback Method
	87.6 Implementing the onWrite() Callback Method
	87.7 Checking a Page is in Range
	87.8 Drawing the Content on the Page Canvas
	87.9 Starting the Print Job
	87.10 Testing the Application
	87.11 Summary

	88. An Introduction to Android App Links
	88.1 An Overview of Android App Links
	88.2 App Link Intent Filters
	88.3 Handling App Link Intents
	88.4 Associating the App with a Website
	88.5 Summary

	89. An Android Studio App Links Tutorial
	89.1 About the Example App
	89.2 The Database Schema
	89.3 Loading and Running the Project
	89.4 Adding the URL Mapping
	89.5 Adding the Intent Filter
	89.6 Adding Intent Handling Code
	89.7 Testing the App
	89.8 Creating the Digital Asset Links File
	89.9 Testing the App Link
	89.10 Summary

	90. An Android Biometric Authentication Tutorial
	90.1 An Overview of Biometric Authentication
	90.2 Creating the Biometric Authentication Project
	90.3 Configuring Device Fingerprint Authentication
	90.4 Adding the Biometric Permission to the Manifest File
	90.5 Designing the User Interface
	90.6 Adding a Toast Convenience Method
	90.7 Checking the Security Settings
	90.8 Configuring the Authentication Callbacks
	90.9 Adding the CancellationSignal
	90.10 Starting the Biometric Prompt
	90.11 Testing the Project
	90.12 Summary

	91. Creating, Testing, and Uploading an Android App Bundle
	91.1 The Release Preparation Process
	91.2 Android App Bundles
	91.3 Register for a Google Play Developer Console Account
	91.4 Configuring the App in the Console
	91.5 Enabling Google Play App Signing
	91.6 Creating a Keystore File
	91.7 Creating the Android App Bundle
	91.8 Generating Test APK Files
	91.9 Uploading the App Bundle to the Google Play Developer Console
	91.10 Exploring the App Bundle
	91.11 Managing Testers
	91.12 Rolling the App Out for Testing
	91.13 Uploading New App Bundle Revisions
	91.14 Analyzing the App Bundle File
	91.15 Summary

	92. An Overview of Android In-App Billing
	92.1 Preparing a Project for In-App Purchasing
	92.2 Creating In-App Products and Subscriptions
	92.3 Billing Client Initialization
	92.4 Connecting to the Google Play Billing Library
	92.5 Querying Available Products
	92.6 Starting the Purchase Process
	92.7 Completing the Purchase
	92.8 Querying Previous Purchases
	92.9 Summary

	93. An Android In-App Purchasing Tutorial
	93.1 About the In-App Purchasing Example Project
	93.2 Creating the InAppPurchase Project
	93.3 Adding Libraries to the Project
	93.4 Designing the User Interface
	93.5 Adding the App to the Google Play Store
	93.6 Creating an In-App Product
	93.7 Enabling License Testers
	93.8 Initializing the Billing Client
	93.9 Querying the Product
	93.10 Launching the Purchase Flow
	93.11 Handling Purchase Updates
	93.12 Consuming the Product
	93.13 Restoring a Previous Purchase
	93.14 Testing the App
	93.15 Troubleshooting
	93.16 Summary

	94. Accessing Cloud Storage using the Android Storage Access Framework
	94.1 The Storage Access Framework
	94.2 Working with the Storage Access Framework
	94.3 Filtering Picker File Listings
	94.4 Handling Intent Results
	94.5 Reading the Content of a File
	94.6 Writing Content to a File
	94.7 Deleting a File
	94.8 Gaining Persistent Access to a File
	94.9 Summary

	95. An Android Storage Access Framework Example
	95.1 About the Storage Access Framework Example
	95.2 Creating the Storage Access Framework Example
	95.3 Designing the User Interface
	95.4 Adding the Activity Launchers
	95.5 Creating a New Storage File
	95.6 Saving to a Storage File
	95.7 Opening and Reading a Storage File
	95.8 Testing the Storage Access Application
	95.9 Summary

	96. An Android Studio Primary/Detail Flow Tutorial
	96.1 The Primary/Detail Flow
	96.2 Creating a Primary/Detail Flow Activity
	96.3 Adding the Primary/Detail Flow Activity
	96.4 Modifying the Primary/Detail Flow Template
	96.5 Changing the Content Model
	96.6 Changing the Detail Pane
	96.7 Modifying the ItemDetailFragment Class
	96.8 Modifying the ItemListFragment Class
	96.9 Adding Manifest Permissions
	96.10 Running the Application
	96.11 Summary

	97. Working with Material Design 3 Theming
	97.1 Material Design 2 vs. Material Design 3
	97.2 Understanding Material Design Theming
	97.3 Material Design 3 Theming
	97.4 Building a Custom Theme
	97.5 Summary

	98. A Material Design 3 Theming and Dynamic Color Tutorial
	98.1 Creating the ThemeDemo Project
	98.2 Designing the User Interface
	98.3 Building a New Theme
	98.4 Adding the Theme to the Project
	98.5 Enabling Dynamic Color Support
	98.6 Previewing Dynamic Colors
	98.7 Summary

	99. An Overview of Gradle in Android Studio
	99.1 An Overview of Gradle
	99.2 Gradle and Android Studio
	99.2.1 Sensible Defaults
	99.2.2 Dependencies
	99.2.3 Build Variants
	99.2.4 Manifest Entries
	99.2.5 APK Signing
	99.2.6 ProGuard Support

	99.3 The Property and Settings Gradle Build File
	99.4 The Top-level Gradle Build File
	99.5 Module Level Gradle Build Files
	99.6 Configuring Signing Settings in the Build File
	99.7 Running Gradle Tasks from the Command Line
	99.8 Summary

	Index

