Android Studio
Jellyfish
Essentials

Kotlin Edition ¢

Neil Smyth o v






Android Studio Jellyfish
Essentials

Kotlin Edition

Android Studio Jellyfish Essentials — Kotlin Edition
ISBN: 978-1-951442-92-7
© 2024 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction
and/or distribution strictly prohibited. All rights reserved.

The content of this book is provided for informational purposes only.
Neither the publisher nor the author offers any warranties or representation,
express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising
from any errors or omissions.

This book contains trademarked terms that are used solely for editorial
purposes and to the benefit of the respective trademark owner. The terms
used within this book are not intended as infringement of any trademarks.

Rev: 1.0

£ Payload

https://www.payloadbooks.com



https://www.payloadbooks.com/

Table of Contents

1. Introduction

1.1 Downloading the Code Samples
1.2 Feedback
1.3 Errata

2. Setting up an Android Studio Development Environment

2.1 System requirements
2.2 Downloading the Android Studio package
2.3 Installing_Android Studio
2.3.1 Installation on Windows
2.3.2 Installation on macOS
2.3.3 Installation on Linux
2.4 Installing additional Android SDK packages
2.5 Installing the Android SDK Command-line Tools
2.5.1 Windows 8.1
2.5.2 Windows 10
2.5.3 Windows 11
2.5.4 Linux
2.5.5 macOS
2.6 Android Studio memory management
2.7 Updating Android Studio and the SDK
2.8 Summary

3. Creating an Example Android App in Android Studio

3.1 About the Project

3.2 Creating a New Android Project

3.3 Creating an Activity

3.4 Defining the Project and SDK Settings
3.5 Modifying the Example Application

3.6 Modifying the User Interface

3.7 Reviewing the Layout and Resource Files
3.8 Adding Interaction

3.9 Summary

4. Creating an Android Virtual Device (AVD) in Androeid Studio




4.1 About Android Virtual Devices

4.2 Starting the Emulator

4.3 Running the Application in the AVD
4.4 Running on Multiple Devices

4.6 Supporting Dark Theme

4.7 Running the Emulator in a Separate Window
4.8 Removing the Device Frame

4.9 Summary

. Using and Configuring the Androeid Studio AVD Emulator

5.1 The Emulator Environment
5.2 Emulator Toolbar Options
5.3 Working in Zoom Mode
5.4 Resizing the Emulator Window
5.5 Extended Control Options
5.5.1 Location
5.5.2 Displays
5.5.3 Cellular
5.5.4 Battery
5.5.> Camera
5.5.6 Phone
5.5.7 Directional Pad
5.5.8 Microphone
5.5.9 Fingerprint
5.5.10 Virtual Sensors
5.5.11 Snapshots
5.5.12 Record and Playback
5.5.13 Google Play
5.5.14 Settings
5.5.15 Help
5.6 Working with Snapshots
5.7 Configuring Fingerprint Emulation
5.8 The Emulator in Tool Window Mode
5.9 Creating a Resizable Emulator
5.10 Summary




6. A Tour of the Android Studio User Interface

6.1 The Welcome Screen

6.2 The Menu Bar

6.3 The Main Window

6.4 The Tool Windows

6.5 The Tool Window Menus

6.6 Android Studio Keyboard Shortcuts
6.7 Switcher and Recent Files Navigation
6.8 Changing the Android Studio Theme
6.9 Summary

7. Testing Android Studio Apps on a Physical Android Device

7.1 An Overview of the Android Debug Bridge (ADB)
7.2 Enabling USB Debugging ADB on Android Devices
7.2.1 macOS ADB Configuration
7.2.2 Windows ADB Configuration
7.2.3 Linux adb Configuration
7.3 Resolving USB Connection Issues
7.4 Enabling Wireless Debugging on Android Devices
7.5 Testing the adb Connection
7.6 Device Mirroring
7.7 Summary

8. The Basics of the Android Studio Code Editor

8.1 The Android Studio Editor
8.2 Splitting the Editor Window
8.3 Code Completion

8.4 Statement Completion

8.5 Parameter Information

8.6 Parameter Name Hints

8.7 Code Generation

8.8 Code Folding

8.9 Quick Documentation L.ookup
8.10 Code Reformatting

8.11 Finding Sample Code

8.12 Live Templates

8.13 Summary




9. An Overview of the Android Architecture

9.1 The Android Software Stack
9.2 The Linux Kernel
9.3 Hardware Abstraction Layer
9.4 Android Runtime — ART
9.5 Android Libraries
9.5.1 C/C++ Libraries
9.6 Application Framework
9.7 Applications
9.8 Summary

10. The Anatomy of an Android App

10.1 Android Activities
10.2 Android Fragments
10.3 Android Intents

10.4 Broadcast Intents

10.5 Broadcast Receivers
10.6 Android Services

10.7 Content Providers
10.8 The Application Manifest
10.9 Application Resources
10.10 Application Context
10.11 Summary

11. An Introduction to Kotlin

11.1 What is Kotlin?

11.2 Kotlin and Java

11.3 Converting from Java to Kotlin
11.4 Kotlin and Android Studio
11.5 Experimenting with Kotlin
11.6 Semi-colons in Kotlin

11.7 Summary

12. Kotlin Data Types, Variables, and Nullability

12.1 Kotlin Data Types
12.1.1 Integer Data Types
12.1.2 Floating-Point Data Types




12.1.3 Boolean Data Type

12.1.4 Character Data Type

12.1.5 String Data Type

12.1.6 Escape Sequences
12.2 Mutable Variables
12.3 Immutable Variables
12.4 Declaring Mutable and Immutable Variables
12.5 Data Types are Objects
12.6 Type Annotations and Type Inference
12.7 Nullable Type
12.8 The Safe Call Operator
12.9 Not-Null Assertion
12.10 Nullable Types and the let Function
12.11 Late Initialization (lateinit)
12.12 The Elvis Operator
12.13 Type Casting and Type Checking
12.14 Summary

13. Kotlin Operators and Expressions

13.1 Expression Syntax in Kotlin
13.2 The Basic Assignment Operator
13.3 Kotlin Arithmetic Operators
13.4 Augmented Assignment Operators
13.5 Increment and Decrement Operators
13.6 Equality Operators
13.7 Boolean L.ogical Operators
13.8 Range Operator
13.9 Bitwise Operators
13.9.1 Bitwise Inversion
13.9.2 Bitwise AND
13.9.3 Bitwise OR
13.9.4 Bitwise XOR
13.9.5 Bitwise Left Shift
13.9.6 Bitwise Right Shift
13.10 Summary

14. Kotlin Control Flow




14.1 Looping Control flow
14.1.1 The Kotlin for-in Statement
14.1.2 The while L.oop
14.1.3 The do ... while loop
14.1.4 Breaking from Loops
14.1.5 The continue Statement
14.1.6 Break and Continue Labels
14.2 Conditional Control Flow
14.2.1 Using the if Expressions
14.2.2 Using if ... else ... Expressions
14.2.3 Using if ... else if ... Expressions
14.2.4 Using the when Statement
14.3 Summary

15. An Overview of Kotlin Functions and L.ambdas

15.1 What is a Function?

15.2 How to Declare a Kotlin Function

15.3 Calling a Kotlin Function

15.4 Single Expression Functions

15.5 Local Functions

15.6 Handling Return Values

15.7 Declaring Default Function Parameters
15.8 Variable Number of Function Parameters
15.9 Lambda Expressions

15.10 Higher-order Functions

15.11 Summary

16. The Basics of Object Oriented Programming in Kotlin

16.1 What is an Object?

16.2 What is a Class?

16.3 Declaring a Kotlin Class

16.4 Adding Properties to a Class

16.5 Defining Methods

16.6 Declaring and Initializing a Class Instance
16.7 Primary and Secondary Constructors

16.8 Initializer Blocks

16.9 Calling Methods and Accessing Properties




16.10 Custom Accessors

16.11 Nested and Inner Classes
16.12 Companion Objects
16.13 Summary

17. An Introduction to Kotlin Inheritance and Subclassing

17.1 Inheritance, Classes and Subclasses

17.2 Subclassing Syntax

17.3 A Kotlin Inheritance Example

17.4 Extending the Functionality of a Subclass
17.5 Overriding Inherited Methods

17.6 Adding a Custom Secondary Constructor
17.7 Using the SavingsAccount Class

17.8 Summary

18. An Overview of Android View Binding

18.1 Find View by Id

18.2 View Binding

18.3 Converting the AndroidSample project
18.4 Enabling View Binding

18.5 Using View Binding

18.6 Choosing an Option

18.7 View Binding in the Book Examples
18.8 Migrating a Project to View Binding
18.9 Summary

19. Understanding Android Application and Activity Lifecycles

19.1 Android Applications and Resource Management
19.2 Android Process States
19.2.1 Foreground Process
19.2.2 Visible Process
19.2.3 Service Process
19.2.4 Background Process
19.2.5 Empty Process
19.3 Inter-Process Dependencies
19.4 The Activity Lifecycle
19.5 The Activity Stack
19.6 Activity States




19.7 Configuration Changes
19.8 Handling State Change
19.9 Summary

20. Handling Androeid Activity State Changes

20.1 New vs. Old Lifecycle Techniques

20.2 The Activity and Fragment Classes

20.3 Dynamic State vs. Persistent State

20.4 The Android Lifecycle Methods

20.5 Lifetimes

20.6 Foldable Devices and Multi-Resume
20.7 Disabling Configuration Change Restarts
20.8 Lifecycle Method Limitations

20.9 Summary

21. Android Activity State Changes by Example

21.1 Creating the State Change Example Project
21.2 Designing the User Interface

21.3 Overriding the Activity Lifecycle Methods
21.4 Filtering the Logcat Panel

21.5 Running the Application

21.6 Experimenting with the Activity

21.7 Summary

22. Saving and Restoring the State of an Android Activity

22.1 Saving Dynamic State

22.2 Default Saving of User Interface State
22.3 The Bundle Class

22.4 Saving the State

22.5 Restoring the State

22.6 Testing the Application

22.7 Summary

23. Understanding Android Views, View Groups and Layouts

23.1 Designing for Different Android Devices
23.2 Views and View Groups

23.3 Android Layout Managers

23.4 The View Hierarchy




23.5 Creating User Interfaces
23.6 Summary

24. A Guide to the Android Studio Layout Editor Tool

24.1 Basic vs. Empty Views Activity Templates
24.2 The Android Studio Layout Editor
24.3 Design Mode

24.4 The Palette

24.5 Design Mode and Layout Views

24.6 Night Mode

24.7 Code Mode

24.8 Split Mode

24.9 Setting_Attributes

24.10 Transforms

24.11 Tools Visibility Toggles

24.12 Converting Views

24.13 Displaying Sample Data

24.14 Creating a Custom Device Definition
24.15 Changing the Current Device

24.16 Layout Validation

24.17 Summary

25. A Guide to the Android ConstraintL.ayout

25.1 How ConstraintLayout Works
25.1.1 Constraints
25.1.2 Margins
25.1.3 Opposing Constraints
25.1.4 Constraint Bias
25.1.5 Chains
25.1.6 Chain Styles
25.2 Baseline Alignment
25.3 Configuring Widget Dimensions
25.4 Guideline Helper
25.5 Group Helper
25.6 Barrier Helper
25.7 Flow Helper
25.8 Ratios




25.9 ConstraintL.ayout Advantages
25.10 Constraintl.ayout Availability
25.11 Summary

26. A Guide to Using Constraintl.ayout in Androeid Studio

26.1 Design and Layout Views

26.2 Autoconnect Mode

26.3 Inference Mode

26.4 Manipulating Constraints Manually

26.5 Adding Constraints in the Inspector

26.6 Viewing Constraints in the Attributes Window
26.7 Deleting Constraints

26.8 Adjusting Constraint Bias

26.9 Understanding Constraintl.ayout Margins
26.10 The Importance of Opposing Constraints and Bias
26.11 Configuring Widget Dimensions

26.12 Design Time Tools Positioning

26.13 Adding Guidelines

26.14 Adding Barriers

26.15 Adding a Group

26.16 Working with the Flow Helper

26.17 Widget Group Alignment and Distribution
26.18 Converting other Layouts to ConstraintL.ayout
26.19 Summary

27. Working with Constraintl.ayout Chains and Ratios in Android
Studio

27.1 Creating a Chain

27.2 Changing the Chain Style
27.3 Spread Inside Chain Style
27.4 Packed Chain Style

27.5 Packed Chain Style with Bias
27.6 Weighted Chain

27.7 Working with Ratios

27.8 Summary

28. An Android Studio Layout Editor ConstraintL.ayout Tutorial
28.1 An Android Studio Layout Editor Tool Example




28.2 Preparing the Layout Editor Environment
28.3 Adding the Widgets to the User Interface
28.4 Adding the Constraints

28.5 Testing the L.ayout

28.6 Using the Layout Inspector

28.7 Summary

29. Manual XML ILayout Design in Android Studio

29.1 Manually Creating an XML Layout

29.2 Manual XML vs. Visual Layout Design
29.3 Summary

30. Managing Constraints using Constraint Sets

30.1 Kotlin Code vs. XML Layout Files
30.2 Creating Views
30.3 View Attributes
30.4 Constraint Sets
30.4.1 Establishing Connections
30.4.2 Applying Constraints to a Layout
30.4.3 Parent Constraint Connections
30.4.4 Sizing Constraints
30.4.5 Constraint Bias
30.4.6 Alignment Constraints

30.4.8 Constraintl.ayout Chains
30.4.9 Guidelines
30.4.10 Removing Constraints
30.4.11 Scaling
30.4.12 Rotation

30.5 Summary

31. An Android ConstraintSet Tutorial

31.1 Creating the Example Project in Android Studio
31.2 Adding Views to an Activity

31.3 Setting View Attributes

31.4 Creating View IDs

31.5 Configuring the Constraint Set

31.6 Adding the EditText View




31.7 Converting Density Independent Pixels (dp)_to Pixels (px)
31.8 Summary

32. A Guide to Using Apply Changes in Android Studio
32.1 Introducing Apply Changes

32.2 Understanding Apply Changes Options

32.3 Using Apply Changes

32.4 Configuring Apply Changes Fallback Settings
32.5 An Apply Changes Tutorial

32.6 Using Apply Code Changes

32.7 Using Apply Changes and Restart Activity
32.8 Using Run App

32.9 Summary
33. A Guide to Gradle Version Catalogs

33.1 Library and Plugin Dependencies
33.2 Project Gradle Build File

33.3 Module Gradle Build Files

33.4 Version Catalog File

33.5 Adding Dependencies

33.6 Library Updates

33.7 Summary

34. An Overview and Example of Android Event Handling

34.1 Understanding Android Events

34.2 Using the android:onClick Resource
34.3 Event Listeners and Callback Methods
34.4 An Event Handling Example

34.5 Designing the User Interface

34.6 The Event Listener and Callback Method
34.7 Consuming Events

34.8 Summary

35. Android Touch and Multi-touch Event Handling
35.1 Intercepting Touch Events
35.2 The MotionEvent Object

35.3 Understanding Touch Actions
35.4 Handling Multiple Touches




35.5 An Example Multi-Touch Application
35.6 Designing the Activity User Interface
35.7 Implementing the Touch Event Listener
35.8 Running the Example Application

35.9 Summary

36. Detecting Common Gestures Using the Android Gesture Detector
Class

36.1 Implementing Common Gesture Detection
36.2 Creating an Example Gesture Detection Project
36.3 Implementing the Listener Class

36.4 Creating the GestureDetector Instance

36.5 Implementing the onTouchEvent()_ Method
36.6 Testing the Application

36.7 Summary

37. Implementing Custom Gesture and Pinch Recognition on Android

37.1 The Android Gesture Builder Application

37.2 The GestureOverlayView Class

37.3 Detecting Gestures

37.4 Identifying Specific Gestures

37.5 Installing and Running the Gesture Builder Application
37.6 Creating a Gestures File

37.7 Creating the Example Project

37.8 Extracting the Gestures File from the SD Card
37.9 Adding the Gestures File to the Project

37.10 Designing the User Interface

37.11 Loading the Gestures File

37.12 Registering the Event Listener

37.13 Implementing the onGesturePerformed Method
37.14 Testing the Application

37.15 Configuring the GestureOverlayView

37.16 Intercepting Gestures

37.17 Detecting Pinch Gestures

37.18 A Pinch Gesture Example Project

37.19 Summary

38. An Introduction to Android Fragments




38.1 What is a Fragment?

38.2 Creating a Fragment

38.3 Adding a Fragment to an Activity using the Layout XML File
38.4 Adding and Managing Fragments in Code

38.5 Handling Fragment Events

38.6 Implementing Fragment Communication

38.7 Summary

39. Using Fragments in Android Studio - An Example

39.1 About the Example Fragment Application

39.2 Creating the Example Project

39.3 Creating the First Fragment Layout

39.4 Migrating a Fragment to View Binding

39.5 Adding the Second Fragment

39.6 Adding the Fragments to the Activity

39.7 Making the Toolbar Fragment Talk to the Activity
39.8 Making the Activity Talk to the Text Fragment
39.9 Testing the Application

39.10 Summary

40. Modern Android App Architecture with Jetpack

40.1 What is Android Jetpack?
40.2 The “Old” Architecture

40.3 Modern Android Architecture
40.4 The ViewModel Component
40.5 The LiveData Component
40.6 ViewModel Saved State

40.7 LiveData and Data Binding
40.8 Android Lifecycles

40.9 Repository Modules

40.10 Summary

41. An Android ViewModel Tutorial

41.1 About the Project

41.2 Creating the ViewModel Example Project
41.3 Removing Unwanted Project Elements
41.4 Designing the Fragment L.ayout

41.5 Implementing the View Model




41.6 Associating the Fragment with the View Model
41.7 Modifying the Fragment

41.8 Accessing the ViewModel Data

41.9 Testing the Project

41.10 Summary

42. An Android Jetpack LiveData Tutorial

42.1 LiveData - A Recap

42.2 Adding LiveData to the ViewModel
42.3 Implementing the Observer

42.4 Summary

43. An Overview of Android Jetpack Data Binding

43.1 An Overview of Data Binding

43.2 The Key Components of Data Binding
43.2.1 The Project Build Configuration
43.2.2 The Data Binding Layout File
43.2.3 The Layout File Data Element
43.2.4 The Binding Classes
43.2.5 Data Binding Variable Configuration
43.2.6 Binding Expressions (One-Way)
43.2.7 Binding Expressions (Two-Way)
43.2.8 Event and Listener Bindings

43.3 Summary

44. An Android Jetpack Data Binding Tutorial

44.1 Removing the Redundant Code

44.2 Enabling Data Binding

44.3 Adding the Layout Element

44.4 Adding the Data Element to Layout File
44.5 Working with the Binding Class

44.6 Assigning the ViewModel Instance to the Data Binding Variable
44.7 Adding Binding Expressions

44.8 Adding the Conversion Method

44.9 Adding a Listener Binding

44.10 Testing the App

44.11 Summary




45. An Android ViewModel Saved State Tutorial

45.1 Understanding ViewModel State Saving

45.2 Implementing ViewModel State Saving

45.3 Saving and Restoring State

45.4 Adding Saved State Support to the ViewModelDemo Project
45.5 Summary

46. Working with Android Lifecycle-Aware Components

46.1 Lifecycle Awareness

46.2 Lifecycle Owners

46.3 Lifecycle Observers

46.4 Lifecycle States and Events
46.5 Summary

47. An Android Jetpack Lifecycle Awareness Tutorial

47.1 Creating the Example Lifecycle Project
47.2 Creating a Lifecycle Observer

47.3 Adding the Observer

47.4 Testing the Observer

47.5 Creating a Lifecycle Owner

47.6 Testing the Custom Lifecycle Owner
47.7 Summary

48. An Overview of the Navigation Architecture Component

48.1 Understanding Navigation

48.2 Declaring a Navigation Host

48.3 The Navigation Graph

48.4 Accessing the Navigation Controller
48.5 Triggering a Navigation Action
48.6 Passing Arguments

48.7 Summary

49. An Android Jetpack Navigation Component Tutorial

49.1 Creating the NavigationDemo Project

49.2 Adding Navigation to the Build Configuration
49.3 Creating the Navigation Graph Resource File
49.4 Declaring a Navigation Host

49.5 Adding Navigation Destinations




49.6 Designing the Destination Fragment [.ayouts

49.7 Adding an Action to the Navigation Graph

49.8 Implement the OnFragmentInteractionListener

49.9 Adding View Binding Support to the Destination Fragments
49.10 Triggering the Action

49.11 Passing Data Using Safeargs

49.12 Summary

50. An Introduction to MotionL.ayout

50.1 An Overview of MotionLayout
50.2 MotionL.ayout
50.3 MotionScene
50.4 Configuring ConstraintSets
50.5 Custom Attributes
50.6 Triggering an Animation
50.7 Arc Motion
50.8 Keyframes
50.8.1 Attribute Keyframes
50.8.2 Position Keyframes
50.9 Time Linearity
50.10 KeyTrigger
50.11 Cycle and Time Cycle Keyframes
50.12 Starting an Animation from Code
50.13 Summary
51. An Android Motionl.ayout Editor Tutorial
51.1 Creating the MotionLayoutDemo Project
51.2 Constraintl.ayout to MotionL.ayout Conversion
51.3 Configuring Start and End Constraints
51.4 Previewing the MotionLayout Animation
51.5 Adding an OnClick Gesture
51.6 Adding an Attribute Keyframe to the Transition
51.7 Adding a CustomAttribute to a Transition
51.8 Adding Position Keyframes
51.9 Summary

52. A MotionLayout KeyCycle Tutorial
52.1 An Overview of Cycle Keyframes




52.2 Using the Cycle Editor

52.3 Creating the KeyCycleDemo Project

52.4 Configuring the Start and End Constraints
52.5 Creating the Cycles

52.6 Previewing the Animation

52.7 Adding the KeyFrameSet to the MotionScene
52.8 Summary

53. Working with the Floating Action Button and Snackbar

53.1 The Material Design

53.2 The Design Library

53.3 The Floating Action Button (EAB)
53.4 The Snackbar

53.5 Creating the Example Project

53.6 Reviewing the Project

53.7 Removing Navigation Features

53.8 Changing the Floating Action Button
53.9 Adding an Action to the Snackbar
53.10 Summary

54. Creating a Tabbed Interface using the TabL.ayout Component

54.1 An Introduction to the ViewPager2

54.2 An Overview of the TablL.ayout Component
54.3 Creating the TabL.ayoutDemo Project

54.4 Creating the First Fragment

54.5 Duplicating the Fragments

54.6 Adding the TabL.ayout and ViewPager2
54.7 Performing the Initialization Tasks

54.8 Testing the Application

54.9 Customizing the TablL.ayout

54.10 Summary

55. Working with the RecyclerView and CardView Widgets

55.1 An Overview of the RecyclerView
55.2 An Overview of the CardView
55.3 Summary

56. An Android RecyclerView and CardView Tutorial




56.1 Creating the CardDemo Project
56.2 Modifying the Basic Views Activity Project
56.3 Designing the CardView Layout
56.4 Adding the RecyclerView
56.5 Adding the Image Files
56.6 Creating the RecyclerView Adapter
56.7 Initializing the RecyclerView Component
56.8 Testing the Application
56.9 Responding to Card Selections
56.10 Summary

57. Working with the AppBar and Collapsing Toolbar Layouts
57.1 The Anatomy of an AppBar
57.2 The Example Project
57.3 Coordinating the RecyclerView and Toolbar
57.4 Introducing the Collapsing Toolbar Layout
57.5 Changing the Title and Scrim Color
57.6 Summary

58. An Overview of Android Intents

58.1 An Overview of Intents

58.2 Explicit Intents

58.3 Returning Data from an Activity
58.4 Implicit Intents

58.5 Using Intent Filters

58.6 Automatic Link Verification
58.7 Manually Enabling Links

58.8 Checking Intent Availability
58.9 Summary

59. Android Explicit Intents — A Worked Example

59.1 Creating the Explicit Intent Example Application

59.2 Designing the User Interface Layout for MainActivity
59.3 Creating the Second Activity Class

59.4 Designing the User Interface Layout for SecondActivity
59.5 Reviewing the Application Manifest File

59.6 Creating the Intent

59.7 Extracting Intent Data




59.8 Launching SecondActivity as a Sub-Activity
59.9 Returning Data from a Sub-Activity

59.10 Testing the Application

59.11 Summary

60. Android Implicit Intents — A Worked Example

60.1 Creating the Android Studio Implicit Intent Example Project
60.2 Designing the User Interface

60.3 Creating the Implicit Intent

60.4 Adding a Second Matching Activity

60.5 Adding the Web View to the Ul

60.6 Obtaining the Intent URL,

60.7 Modifying the MyWebView Project Manifest File
60.8 Installing the MyWebView Package on a Device
60.9 Testing the Application

60.10 Manually Enabling the Link

60.11 Automatic Link Verification

60.12 Summary

61. Android Broadcast Intents and Broadcast Receivers

61.1 An Overview of Broadcast Intents
61.2 An Overview of Broadcast Receivers
61.3 Obtaining Results from a Broadcast
61.4 Sticky Broadcast Intents

61.5 The Broadcast Intent Example

61.6 Creating the Example Application
61.7 Creating and Sending the Broadcast Intent
61.8 Creating the Broadcast Receiver
61.9 Registering the Broadcast Receiver
61.10 Testing the Broadcast Example
61.11 Listening for System Broadcasts
61.12 Summary

62. An Introduction to Kotlin Coroutines

62.1 What are Coroutines?
62.2 Threads vs. Coroutines
62.3 Coroutine Scope

62.4 Suspend Functions




62.5 Coroutine Dispatchers

62.6 Coroutine Builders

62.7 Jobs

62.8 Coroutines — Suspending and Resuming
62.9 Returning Results from a Coroutine
62.10 Using withContext

62.11 Coroutine Channel Communication
62.12 Summary

63. An Android Kotlin Coroutines Tutorial

63.1 Creating the Coroutine Example Application
63.2 Designing the User Interface

63.3 Implementing the SeekBar

63.4 Adding the Suspend Function

63.5 Implementing the launchCoroutines Method
63.6 Testing the App

63.7 Summary

64. An Overview of Android Services

64.1 Intent Service

64.2 Bound Service

64.3 The Anatomy of a Service

64.4 Controlling Destroyed Service Restart Options
64.5 Declaring a Service in the Manifest File

64.6 Starting a Service Running on System Startup
64.7 Summary

65. Android L.ocal Bound Services — A Worked Example

65.1 Understanding Bound Services

65.2 Bound Service Interaction Options
65.3 A Local Bound Service Example

65.4 Adding a Bound Service to the Project
65.5 Implementing the Binder

65.6 Binding the Client to the Service

65.7 Completing the Example

65.8 Testing the Application

65.9 Summary




66. Android Remote Bound Services — A Worked Example

66.1 Client to Remote Service Communication

66.2 Creating the Example Application

66.3 Designing the User Interface

66.4 Implementing the Remote Bound Service

66.5 Configuring a Remote Service in the Manifest File
66.6 Launching and Binding to the Remote Service
66.7 Sending a Message to the Remote Service

66.8 Summary

67. An Introduction to Kotlin Flow

67.1 Understanding Flows

67.2 Creating the Sample Project

67.3 Adding the Kotlin Lifecycle Library
67.4 Declaring a Flow

67.5 Emitting Flow Data

67.6 Collecting Flow Data

67.7 Adding a Flow Buffer

67.8 Transforming Data with Intermediaries
67.9 Terminal Flow Operators

67.10 Flow Flattening

67.11 Combining Multiple Flows

67.12 Hot and Cold Flows

67.13 StateFlow

67.14 SharedFlow

67.15 Summary

68. An Android SharedFlow Tutorial

68.1 About the Project

68.2 Creating the SharedFlowDemo Project
68.3 Adding the Lifecycle Libraries

68.4 Designing the User Interface Layout
68.5 Adding the List Row Layout

68.6 Adding the RecyclerView Adapter
68.7 Adding the ViewModel

68.8 Configuring the ViewModelProvider
68.9 Collecting the Flow Values




68.10 Testing the SharedFlowDemo App
68.11 Handling Flows in the Background
68.12 Summary

69. An Overview of Android SQLite Databases

69.1 Understanding Database Tables
69.2 Introducing Database Schema
69.3 Columns and Data Types
69.4 Database Rows
69.5 Introducing Primary Keys
69.6 What is SQL.ite?
69.7 Structured Query Language (SQL)
69.8 Trying SQLite on an Android Virtual Device (AVD)
69.9 Android SQLite Classes
69.9.1 Cursor
69.9.2 SQLiteDatabase
69.9.3 SQLiteOpenHelper
69.9.4 ContentValues
69.10 The Android Room Persistence Library
69.11 Summary

70. An Android SQLite Database Tutorial

70.1 About the Database Example
70.2 Creating the SQLDemo Project
70.3 Designing the User interface
70.4 Creating the Data Model

70.5 Implementing the Data Handler
70.6 The Add Handler Method

70.7 The Query Handler Method
70.8 The Delete Handler Method
70.9 Implementing the Activity Event Methods
70.10 Testing the Application

70.11 Summary

71. Understanding Android Content Providers

71.1 What is a Content Provider?
71.2 The Content Provider
71.2.1 onCreate()




71.2.2 query(),
71.2.3 insert()
71.2.4 update(),
71.2.5 delete()
71.2.6 getType()
71.3 The Content URI
71.4 The Content Resolver
71.5 The <provider> Manifest Element
71.6 Summary

72. An Android Content Provider Tutorial

72.1 Copying the SQLDemo Project
72.2 Adding the Content Provider Package
72.3 Creating the Content Provider Class
72.4 Constructing the Authority and Content URI
72.5 Implementing URI Matching in the Content Provider
72.6 Implementing the Content Provider onCreate()_Method
72.7 Implementing the Content Provider insert()_Method
72.8 Implementing the Content Provider query()_Method
72.9 Implementing the Content Provider update()_Method
72.10 Implementing the Content Provider delete() Method
72.11 Declaring the Content Provider in the Manifest File
72.12 Modifying the Database Handler
72.13 Summary

73. An Android Content Provider Client Tutorial
73.1 Creating the SQLDemoClient Project
73.2 Designing the User interface
73.3 Accessing the Content Provider
73.4 Adding the Query Permission
73.5 Testing the Project
73.6 Summary

74. The Android Room Persistence Library

74.1 Revisiting Modern App Architecture

74.2 Key Elements of Room Database Persistence
74.2.1 Repository
74.2.2 Room Database




74.2.3 Data Access Object (DAQO)
74.2.4 Entities
74.2.5 SQLite Database

74.3 Understanding Entities

74.4 Data Access Objects

74.5 The Room Database

74.6 The Repository

74.7 In-Memory Databases

74.8 Database Inspector

74.9 Summary

75. An Android TableLayout and TableRow Tutorial

75.1 The TableLayout and TableRow Layout Views
75.2 Creating the Room Database Project

75.3 Converting to a LinearL.ayout

75.4 Adding the TableLayout to the User Interface
75.5 Configuring the TableRows

75.6 Adding the Button Bar to the Layout

75.7 Adding the RecyclerView

75.8 Adjusting the Layout Margins

75.9 Summary

76. An Android Room Database and Repository Tutorial

76.1 About the RoomDemo Project
76.2 Modifying the Build Configuration
76.3 Building the Entity

76.4 Creating the Data Access Object
76.5 Adding the Room Database

76.6 Adding the Repository

76.7 Adding the ViewModel

76.8 Creating the Product Item Layout
76.9 Adding the RecyclerView Adapter
76.10 Preparing the Main Activity
76.11 Adding the Button Listeners
76.12 Adding LiveData Observers
76.13 Initializing the RecyclerView
76.14 Testing the RoomDemo App




76.15 Using the Database Inspector
76.16 Summary

77. Video Playback on Android using the VideoView and
MediaController Classes

77.1 Introducing the Android VideoView Class

77.2 Introducing the Android MediaController Class
77.3 Creating the Video Playback Example

77.4 Designing the VideoPlayer Layout

77.5 Downloading the Video File

77.6 Configuring the VideoView

77.7 Adding the MediaController to the Video View
77.8 Setting up the onPreparedListener

77.9 Summary

78. Android Picture-in-Picture Mode

78.1 Picture-in-Picture Features

78.2 Enabling Picture-in-Picture Mode

78.3 Configuring Picture-in-Picture Parameters
78.4 Entering Picture-in-Picture Mode

78.5 Detecting Picture-in-Picture Mode Changes
78.6 Adding Picture-in-Picture Actions

78.7 Summary

79. An Android Picture-in-Picture Tutorial

79.1 Adding Picture-in-Picture Support to the Manifest
79.2 Adding a Picture-in-Picture Button

79.3 Entering Picture-in-Picture Mode

79.4 Detecting Picture-in-Picture Mode Changes

79.5 Adding a Broadcast Receiver

79.6 Adding the PiP Action

79.7 Testing the Picture-in-Picture Action

79.8 Summary

80. Making Runtime Permission Requests in Android

80.1 Understanding Normal and Dangerous Permissions
80.2 Creating the Permissions Example Project
80.3 Checking for a Permission




80.4 Requesting Permission at Runtime

80.5 Providing a Rationale for the Permission Request
80.6 Testing the Permissions App

80.7 Summary

81. Android Audio Recording_and Playback using_MediaPlayer and
MediaRecorder

81.1 Playing Audio

81.2 Recording Audio and Video using the MediaRecorder Class
81.3 About the Example Project

81.4 Creating the AudioApp Project

81.5 Designing the User Interface

81.6 Checking for Microphone Availability
81.7 Initializing the Activity

81.8 Implementing the recordAudio()_Method
81.9 Implementing the stopAudio() Method
81.10 Implementing the playAudio() method
81.11 Configuring and Requesting Permissions
81.12 Testing the Application

81.13 Summary

82. An Android Notifications Tutorial

82.1 An Overview of Notifications

82.2 Creating the NotifyDemo Project
82.3 Designing the User Interface

82.4 Creating the Second Activity

82.5 Creating a Notification Channel
82.6 Requesting Notification Permission
82.7 Creating and Issuing a Notification
82.8 Launching an Activity from a Notification
82.9 Adding Actions to a Notification
82.10 Bundled Notifications

82.11 Summary

83. An Android Direct Reply Notification Tutorial

83.1 Creating the DirectReply Project
83.2 Designing the User Interface
83.3 Requesting Notification Permission




83.4 Creating the Notification Channel
83.5 Building the Remotelnput Object
83.6 Creating the Pendinglntent

83.7 Creating the Reply Action

83.8 Receiving Direct Reply Input
83.9 Updating the Notification

83.10 Summary

84. Working with the Google Maps Android API in Androeid Studio

84.1 The Elements of the Google Maps Android API
84.2 Creating the Google Maps Project
84.3 Creating a Google Cloud Billing Account
84.4 Creating a New Google Cloud Project
84.5 Enabling the Google Maps SDK
84.6 Generating a Google Maps API Key
84.7 Adding the API Key to the Android Studio Project
84.8 Testing the Application
84.9 Understanding Geocoding and Reverse Geocoding
84.10 Adding a Map to an Application
84.11 Requesting Current L.ocation Permission
84.12 Displaying the User’s Current L.ocation
84.13 Changing the Map Type
84.14 Displaying Map Controls to the User
84.15 Handling Map Gesture Interaction
84.15.1 Map Zooming Gestures
84.15.2 Map Scrolling/Panning Gestures
84.15.3 Map Tilt Gestures
84.15.4 Map Rotation Gestures
84.16 Creating Map Markers
84.17 Controlling the Map Camera
84.18 Summary
85. Printing with the Android Printing Framework
85.1 The Android Printing Architecture
85.2 The Print Service Plugins

85.3 Google Cloud Print
85.4 Printing to Google Drive




85.5 Save as PDE
85.6 Printing from Android Devices
85.7 Options for Building Print Support into Android Apps
85.7.1 Image Printing
85.7.2 Creating and Printing HTML Content
85.7.3 Printing a Web Page
85.7.4 Printing a Custom Document
85.8 Summary

86. An Android HTML and Web Content Printing Example

86.1 Creating the HTML Printing Example Application
86.2 Printing Dynamic HT'ML Content

86.3 Creating the Web Page Printing Example

86.4 Removing the Floating Action Button

86.5 Removing Navigation Features

86.6 Designing the User Interface Layout

86.7 Accessing the WebView from the Main Activity
86.8 L.oading the Web Page into the WebView

86.9 Adding the Print Menu Option

86.10 Summary

87. A Guide to Android Custom Document Printing

87.1 An Overview of Android Custom Document Printing
87.1.1 Custom Print Adapters

87.2 Preparing the Custom Document Printing Project

87.3 Designing the Ul

87.4 Creating the Custom Print Adapter

87.5 Implementing the onLayout()_Callback Method

87.6 Implementing the onWrite()_Callback Method

87.7 Checking a Page is in Range

87.8 Drawing the Content on the Page Canvas

87.9 Starting the Print Job

87.10 Testing the Application

87.11 Summary

88. An Introduction to Android App Links

88.1 An Overview of Android App Links
88.2 App Link Intent Filters




88.3 Handling App Link Intents
88.4 Associating the App with a Website
88.5 Summary

89. An Android Studio App Links Tutorial

89.1 About the Example App

89.2 The Database Schema

89.3 Loading and Running the Project
89.4 Adding the URL. Mapping

89.5 Adding the Intent Filter

89.6 Adding Intent Handling Code

89.7 Testing the App

89.8 Creating the Digital Asset Links File
89.9 Testing the App Link

89.10 Summary

90. An Android Biometric Authentication Tutorial

90.1 An Overview of Biometric Authentication
90.2 Creating the Biometric Authentication Project
90.3 Configuring Device Fingerprint Authentication
90.4 Adding the Biometric Permission to the Manifest File
90.5 Designing the User Interface

90.6 Adding a Toast Convenience Method

90.7 Checking the Security Settings

90.8 Configuring the Authentication Callbacks

90.9 Adding the CancellationSignal

90.10 Starting the Biometric Prompt

90.11 Testing the Project

90.12 Summary

91. Creating, Testing, and Uploading an Andreid App Bundle

91.1 The Release Preparation Process

91.2 Android App Bundles

91.3 Register for a Google Play Developer Console Account
91.4 Configuring the App_in the Console

91.5 Enabling Google Play App Signing

91.6 Creating a Keystore File

91.7 Creating the Android App Bundle




91.8 Generating Test APK Files

91.9 Uploading the App Bundle to the Google Play Developer Console
91.10 Exploring the App Bundle

91.11 Managing Testers

91.12 Rolling the App Out for Testing

91.13 Uploading New App Bundle Revisions

91.14 Analyzing the App Bundle File

91.15 Summary

92. An Overview of Android In-App Billing

92.1 Preparing a Project for In-App Purchasing
92.2 Creating In-App Products and Subscriptions
92.3 Billing Client Initialization

92.4 Connecting to the Google Play Billing Library
92.5 Querying Available Products

92.6 Starting the Purchase Process

92.7 Completing the Purchase

92.8 Querying Previous Purchases

92.9 Summary

93. An Androeid In-App Purchasing Tutorial

93.1 About the In-App Purchasing Example Project
93.2 Creating the InAppPurchase Project

93.3 Adding Libraries to the Project

93.4 Designing the User Interface

93.5 Adding the App to the Google Play Store
93.6 Creating an In-App Product

93.7 Enabling License Testers

93.8 Initializing the Billing Client

93.9 Querying the Product

93.10 Launching the Purchase Flow

93.11 Handling Purchase Updates

93.12 Consuming the Product

93.13 Restoring a Previous Purchase

93.14 Testing the App

93.15 Troubleshooting

93.16 Summary




94. Accessing_Cloud Storage using_the Android Storage Access
Framework

94.1 The Storage Access Framework

94.2 Working with the Storage Access Framework
94.3 Filtering Picker File Listings

94.4 Handling Intent Results

94.5 Reading the Content of a File

94.6 Writing Content to a File

94.7 Deleting a File

94.8 Gaining Persistent Access to a File

94.9 Summary

95. An Android Storage Access Framework Example

95.1 About the Storage Access Framework Example
95.2 Creating the Storage Access Framework Example
95.3 Designing the User Interface

95.4 Adding the Activity Launchers

95.5 Creating a New Storage File

95.6 Saving to a Storage File

95.7 Opening and Reading a Storage File

95.8 Testing the Storage Access Application

95.9 Summary

96. An Android Studio Primary/Detail Flow Tutorial

96.1 The Primary/Detail Flow

96.2 Creating a Primary/Detail Flow Activity
96.3 Adding the Primary/Detail Flow Activity
96.4 Modifying the Primary/Detail Flow Template
96.5 Changing the Content Model

96.6 Changing the Detail Pane

96.7 Modifying the ItemDetailFragment Class
96.8 Modifying the ItemListFragment Class
96.9 Adding Manifest Permissions

96.10 Running the Application

96.11 Summary

97. Working with Material Design 3 Theming




97.1 Material Design 2 vs. Material Design 3
97.2 Understanding Material Design Theming
97.3 Material Design 3 Theming

97.4 Building a Custom Theme

97.5 Summary

98. A Material Design 3 Theming and Dynamic Color Tutorial

98.1 Creating the ThemeDemo Project
98.2 Designing the User Interface
98.3 Building a New Theme

98.4 Adding the Theme to the Project
98.5 Enabling Dynamic Color Support
98.6 Previewing Dynamic Colors

98.7 Summary

99. An Overview of Gradle in Android Studio

99.1 An Overview of Gradle
99.2 Gradle and Android Studio

99.2.1 Sensible Defaults

99.2.2 Dependencies

99.2.3 Build Variants

99.2.4 Manifest Entries

99.2.5 APK Signing

99.2.6 ProGuard Support
99.3 The Property and Settings Gradle Build File
99.4 The Top-level Gradle Build File
99.5 Module Level Gradle Build Files
99.6 Configuring Signing Settings in the Build File
99.7 Running Gradle Tasks from the Command Line
99.8 Summary

Index



1. Introduction

This book, fully updated for Android Studio Jellyfish (2023.3.1) and the
new UI, teaches you how to develop Android-based applications using the
Kotlin programming language.

This book begins with the basics and outlines how to set up an Android
development and testing environment, followed by an introduction to
programming in Kotlin, including data types, control flow, functions,
lambdas, and object-oriented programming. Asynchronous programming
using Kotlin coroutines and flow is also covered in detail.

Chapters also cover the Android Architecture Components, including view
models, lifecycle management, Room database access, content providers,
the Database Inspector, app navigation, live data, and data binding.

More advanced topics such as intents are also covered, as are touch screen
handling, gesture recognition, and the recording and playback of audio.
This book edition also covers printing, transitions, and foldable device
support.

The concepts of material design are also covered in detail, including the use
of floating action buttons, Snackbars, tabbed interfaces, card views,
navigation drawers, and collapsing toolbars.

Other key features of Android Studio and Android are also covered in
detail, including the Layout Editor, the ConstraintLayout and ConstraintSet
classes, MotionLayout Editor, view binding, constraint chains, barriers, and
direct reply notifications.

Chapters also cover advanced features of Android Studio, such as App
Links, Gradle build configuration, in-app billing, and submitting apps to the
Google Play Developer Console.

Assuming you already have some programming experience, are ready to
download Android Studio and the Android SDK, have access to a
Windows, Mac, or Linux system, and have ideas for some apps to develop,
you are ready to get started.

1.1 Downloading the Code Samples

The source code and Android Studio project files for the examples



contained in this book are available for download at:
https://www.payloadbooks.com/product/jellyfishkotlin/

The steps to load a project from the code samples into Android Studio are
as follows:

1.From the Welcome to Android Studio dialog, click on the Open button
option.

2.In the project selection dialog, navigate to and select the folder containing
the project to be imported and click on OK.

1.2 Feedback

We want you to be satisfied with your purchase of this book. If you find any
errors in the book, or have any comments, questions or concerns please
contact us at info@payloadbooks.com.

1.3 Errata

While we make every effort to ensure the accuracy of the content of this
book, it is inevitable that a book covering a subject area of this size and
complexity may include some errors and oversights. Any known issues with
the book will be outlined, together with solutions, at the following URL:

https://www.payloadbooks.com/jellyfishkotlin

If you find an error not listed in the errata, please let us know by emailing
our technical support team at info@payloadbooks.com. They are there to
help you and will work to resolve any problems you may encounter.


https://www.payloadbooks.com/product/jellyfishkotlin/
https://www.payloadbooks.com/jellyfishkotlin

2. Setting up an Android Studio
Development Environment

Before any work can begin on developing an Android application, the first
step is to configure a computer system to act as the development platform.
This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE), including the Android
Software Development Kit (SDK), the Kotlin plug-in and the OpenJDK
Java development environment.

This chapter will cover the steps necessary to install the requisite
components for Android application development on Windows, macOS,
and Linux-based systems.

2.1 System requirements

Android application development may be performed on any of the
following system types:

*Windows 8/10/11 64-bit

*macOS 10.14 or later running on Intel or Apple silicon

*Chrome OS device with Intel i5 or higher

Linux systems with version 2.31 or later of the GNU C Library (glibc)
*Minimum of 8GB of RAM

* Approximately 8GB of available disk space

+1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio package

Most of the work involved in developing applications for Android will be
performed using the Android Studio environment. The content and
examples in this book were created based on Android Studio Jellyfish
2023.3.1 using the Android API 34 SDK (UpsideDownCake), which, at the
time of writing, are the latest stable releases.

Android Studio is, however, subject to frequent updates, so a newer version
may have been released since this book was published.

The latest release of Android Studio may be downloaded from the primary



download page, which can be found at the following URL.:
https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of
Android Studio, there may be differences between this book and the
software. A web search for “Android Studio Jellyfish” should provide the
option to download the older version if these differences become a problem.
Alternatively, visit the following web page to find Android Studio Jellyfish
2023.3.1 in the archives:

https://developer.android.com/studio/archive

2.3 Installing Android Studio

Once downloaded, the exact steps to install Android Studio differ
depending on the operating system on which the installation is performed.

2.3.1 Installation on Windows

Locate the downloaded Android Studio installation executable file (named
android-studio-<version>-windows.exe) in a Windows Explorer window
and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various
screens to configure the installation to meet your requirements in terms of
the file system location into which Android Studio should be installed.
When prompted to select the components to install, ensure that the Android
Studio and Android Virtual Device options are both selected.

Although there are no strict rules on where Android Studio should be
installed on the system, the remainder of this book will assume that the
installation was performed into C:\Program Files\Android\Android Studio
and that the Android SDK packages have been installed into the user’s
AppData\Local\Android\sdk sub-folder. Once the options have been
configured, click the Install button to complete the installation process.

2.3.2 Installation on macOS

Android Studio for macOS is downloaded as a disk image (.dmg) file. Once
the android-studio-<version>-mac.dmg file has been downloaded, locate it
in a Finder window and double-click on it to open it, as shown in Figure 2-
1:


https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive

eoeo [2) Android Studio 4.3.0

androidstudio

Figure 2-1
To install the package, drag the Android Studio icon and drop it onto the
Applications folder. The Android Studio package will then be installed into
the Applications folder of the system, a process that will typically take a
few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder
using a Finder window and double-click on it.

For future, easier access to the tool, drag the Android Studio icon from the
Finder window and drop it onto the dock.

2.3.3 Installation on Linux

Having downloaded the Linux Android Studio package, open a terminal
window, change directory to the location where Android Studio is to be
installed, and execute the following command:

tar xvfz /<path to package>/android-studio-<version>-linux.tar.gz
Note that the Android Studio bundle will be installed into a subdirectory
named android-studio. Therefore, assuming that the above command was
executed in /home/demo, the software packages will be unpacked into
/home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the

android-studio/bin sub-directory, and execute the following command:
./studio.sh

2.4 Installing additional Android SDK packages

When you launch Android Studio, the Welcome to Android Studio screen
will appear as shown below:



[ J Q@ Welcome to Android Studio

‘A Android Studio
23.3

Jellyfish | 2023.3.1

Projects

SN Welcome to Android Studio
Plugins Create a new project to start from scratch
Learn Open existing project from disk or version control.
ST (B 154
New Project Open Get from VCS
More Actions v
i
Figure 2-2

The steps performed so far have installed the Android Studio IDE and the
current set of default Android SDK packages. Before proceeding, it is worth
taking some time to verify which packages are installed and to install any
missing or updated packages.

This task can be performed by clicking on the More Actions link within the
welcome dialog and selecting the SDK Manager option from the drop-down
menu. Once invoked, the Android SDK screen of the Settings dialog will
appear as shown in Figure 2-3:



o o Settings

Q- Languages & Frameworks » Android SDK
Appearance & Behavior Manager for the Android SDK and Tools used by the IDE
Keymap Android SDK Location:  /Users/neilsmyth/Library/Android/sdk Edit Optimize disk space
Editor
Build, Execution, Deployment SDK Platforms SDK Tools SDK Update Sites

Languages & Frameworks Each Android SDK Platform package includes the Android platform and sources pertaining to

Android SDK an API level by default. Once installed, the IDE will automatically check for updates. Check

Kotlin "show package details" to display individual SDK components.

Tools Name API Level Revision  Status
Advanced Settings Android UpsideDownCakePrivacySandbox Preview
Layout Inspector Android SDK Platform UpsideDownCakePrivacySandbox ~ UpsideDownCakePriva... 2 Not installed
Google Play ARM 64 v8a System Image UpsideDownCakePriva... 2 Not installed
Google Play Intel x86_64 Atom System Image UpsideDownCakePriva... 2 Not installed
& Android 14.0 (“UpsideDownCake")
Android SDK Platform 34 34 2 Installed
Sources for Android 34 34 2 Installed
Android TV ARM 64 v8a System Image 34 2 Not installed
Android TV Intel x86 Atom System Image 34 2 Not installed
ARM 64 v8a System Image 34 2 Not installed
Intel x86_64 Atom System Image 34 2 Not installed
Google TV ARM 64 v8a System Image 34 2 Not installed
Google TV Intel x86 Atom System Image 34 2 Not installed
Google APIs ARM 64 v8a System Image 34 10 Installed
Gooale APIs Intel x86 64 Atom Svstem Imaae 34 10 Not installed

Hide Obsolete Packages Show Package Details

Figure 2-3
Google pairs each release of Android Studio with a maximum supported
Application Programming Interface (API) level of the Android SDK. In the
case of Android Studio Jellyfish, this is Android UpsideDownCake (API
Level 34). This information can be confirmed using the following link:

https://developer.android.com/studio/releases#api-level-support

Immediately after installing Android Studio for the first time, it is likely
that only the latest supported version of the Android SDK has been
installed. To install older versions of the Android SDK, select the
checkboxes corresponding to the versions and click the Apply button. The
rest of this book assumes that the Android UpsideDownCake (API Level
34) SDK is installed.

Most of the examples in this book will support older versions of Android as
far back as Android 8.0 (Oreo). This ensures that the apps run on a wide
range of Android devices. Within the list of SDK versions, enable the
checkbox next to Android 8.0 (Oreo) and click the Apply button. Click the
OK button to install the SDK in the resulting confirmation dialog.
Subsequent dialogs will seek the acceptance of licenses and terms before


https://developer.android.com/studio/releases#api-level-support

performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest
SDK. To access detailed information about the packages that are ready to be
updated, enable the Show Package Details option located in the lower right-
hand corner of the screen. This will display information similar to that
shown in Figure 2-4:

Name API Level Revision Status
Android TV ARM 64 v8a System Image 33 5 Not installed
Android TV Intel x86 Atom System Image 33 5 Not installed
Google TV ARM 64 v8a System Image 33 5 Not installed
Google TV Intel x86 Atom System Image 33 5 Not installed
Google APIs ARM 64 v8a System Image 33 8 pdate Available: 9
Google APIs Intel x86 Atom_64 System Image 33 9 Not installed
[ Google Play ARM 64 v8a System Image 33 7 Installed
Figure 2-4

The above figure highlights the availability of an update. To install the
updates, enable the checkbox to the left of the item name and click the
Apply button.

In addition to the Android SDK packages, several tools are also installed for
building Android applications. To view the currently installed packages and
check for updates, remain within the SDK settings screen and select the
SDK Tools tab as shown in Figure 2-5:

[ ] [ ] Settings
Languages & Frameworks > Android SDK
Appearance & Behavior Manager for the Android SDK and Tools used by the IDE
Keymap
Editor

Build, Execution, Deployment SDK Platforms SDK Update Sites

Languages & Frameworks Below are the available SDK developer tools. Once installed, the IDE will automatically check
Android SDK for updates. Check "show package details" to display available versions of an SDK Tool.

Android SDK Location:  /Users/neilsmyth/Library/Android/sdk Edit Optimize disk space

Kotlin Name Version Status
[ocks Android SDK Build-Tools 34 Installed
Advanced Settings NDK (Side by side) Not Installed
Layout Inspector Android SDK Command-line Tools (latest) Not Installed

CMake Not Installed
Android Auto API Simulators 1 Not installed
Android Auto Desktop Head Unit Emulator 21 Not installed
Android Emulator 33.1.20 Installed
Figure 2-5

Within the Android SDK Tools screen, make sure that the following
packages are listed as Installed in the Status column:

* Android SDK Build-tools
* Android Emulator
* Android SDK Platform-tools



*Google Play Services

*Intel x86 Emulator Accelerator (HAXM installer)’

*Google USB Driver (Windows only)

Layout Inspector image server for API 31-34

“Note that the Intel x86 Emulator Accelerator (HAXM installer) cannot be
installed on Apple silicon-based Macs.

If any of the above packages are listed as Not Installed or requiring an
update, select the checkboxes next to those packages and click the Apply
button to initiate the installation process. If the HAXM emulator settings
dialog appears, select the recommended memory allocation:

000 HAXM

0 Emulator Settings
/e have detected that your system can run the Android emulator in an accelerated performance mode.
Hardware Accelerated Execution Manager (HAXM) to use for all x86 emulator instances. You can

512.0 MB 2.0GB 3368 4.6 GB 6.0GB

Figure 2-6
Once the installation is complete, review the package list and ensure that
the selected packages are listed as Installed in the Status column. If any are
listed as Not installed, make sure they are selected and click the Apply
button again.

2.5 Installing the Android SDK Command-line Tools

Android Studio includes tools that allow some tasks to be performed from
your operating system command line. To install these tools on your system,
open the SDK Manager, select the SDK Tools tab, and locate the Android
SDK Command-line Tools (latest) package as shown in Figure 2-7:



® o Settings

Q- Languages & Frameworks > Android SDK Reset
Appearance & Behavior Manager for the Android SDK and Tools used by the IDE
Keymep Android SDK Location:  /Users/neilsmyth/Library/Android/sdk Edit Optimize disk space
Editor
Build, Execution, Deployment SDK Platforms SDK Tools SDK Update Sites

~ Languages & Frameworks Below are the available SDK developer tools. Once installed, the IDE will automatically check

Android SDK for updates. Check "show package details" to display available versions of an SDK Tool.

Kotlin Name Version Status
flocle Android SDK Build-Tools 34 Installed
Advanced Settings PPN Not Installed
Layout Inspector & ommand-line Tools (latest) ) Not Installed

CMal Not Installed
Android Auto API Simulators 1 Not installed
Android Auto Desktop Head Unit Emulator 21 Not installed
Android Emulator 33.1.20 Installed
Android SDK Platform-Tools 34.0.5 Installed
Google Play APK Expansion library 1 Not installed
Google Play Instant Development SDK 1.9.0 Not installed
Google Play Licensing Library 1 Not installed
Google Play services 49 Installed
Google Web Driver 2 Not installed
Layout Inspector image server for APl 29-30 6 Not installed

Layout Inspector image server for API 31-34 3 Installed
. . . ST 2 Nint inetallan

Hide Obsolete Packages Show Package Details

? Cancel Apply “

Figure 2-7
If the command-line tools package is not already installed, enable it and

click Apply, followed by OK to complete the installation. When the
installation completes, click Finish and close the SDK Manager dialog.

For the operating system on which you are developing to be able to find
these tools, it will be necessary to add them to the system’s PATH
environment variable.

Regardless of your operating system, you will need to configure the PATH
environment variable to include the following paths (where
<path_to_android_sdk_installation> represents the file system location

into which you installed the Android SDK):
<path_to_android_sdk_installation>/sdk/cmdline-tools/latest/bin

<path_to_android_sdk_installation>/sdk/platform-tools

You can identify the location of the SDK on your system by launching the
SDK Manager and referring to the Android SDK Location: field located at
the top of the settings panel, as highlighted in Figure 2-8:

Languages & Frameworks > Android SDK

Manager for the Android SDK and Tools used by the IDE

Android SDK Location®_/Users/neilsmyth/Library/Android/sdk Edit Optimize disk space

SDK Platforms SDK Tools SDK Update Sites



Figure 2-8
Once the location of the SDK has been identified, the steps to add this to
the PATH variable are operating system dependent:

2.5.1 Windows 8.1

1.0n the start screen, move the mouse to the bottom right-hand corner of
the screen and select Search from the resulting menu. In the search box,
enter Control Panel. When the Control Panel icon appears in the results
area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to
Large Icons. From the list of icons, select the one labeled System.

3.In the Environment Variables dialog, locate the Path variable in the
System variables list, select it, and click the Edit... button. Using the New
button in the edit dialog, add two new entries to the path. For example,
assuming the Android SDK was installed into
C:\Users\demo\AppData\Local\Android\Sdk, the following entries would
need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\cmdline-tools\latest\bin

C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

4.Click OK in each dialog box and close the system properties control
panel.

Open a command prompt window by pressing Windows + R on the
keyboard and entering cmd into the Run dialog. Within the Command
Prompt window, enter:

echo %Path%

The returned path variable value should include the paths to the Android
SDK platform tools folders. Verify that the platform-tools value is correct
by attempting to run the adb tool as follows:

adb

The tool should output a list of command-line options when executed.

Similarly, check the tools path setting by attempting to run the AVD
Manager command-line tool (don’t worry if the avdmanager tool reports a
problem with Java - this will be addressed later):

avdmanager

If a message similar to the following message appears for one or both of the



commands, it is most likely that an incorrect path was appended to the Path

environment variable:
'adb' is not recognized as an internal or external command,
operable program or batch file.

2.5.2 Windows 10

Right-click on the Start menu, select Settings from the resulting menu and
enter “Edit the system environment variables” into the Find a setting text
field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.5.3 Windows 11

Right-click on the Start icon located in the taskbar and select Settings from
the resulting menu. When the Settings dialog appears, scroll down the list
of categories and select the “About” option. In the About screen, select
Advanced system settings from the Related links section. When the System
Properties window appears, click the Environment Variables... button.
Follow the steps outlined for Windows 8.1 starting from step 3.

2.5.4 Linux

This configuration can be achieved on Linux by adding a command to the
.bashrc file in your home directory (specifics may differ depending on the
particular Linux distribution in use). Assuming that the Android SDK
bundle package was installed into /home/demo/Android/sdk, the export line

in the .bashrc file would read as follows:

export PATH=/home/demo/Android/sdk/platform-
tools:/home/demo/Android/sdk/cmdline-
tools/latest/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to
the PATH variable. This will enable the studio.sh script to be executed
regardless of the current directory within a terminal window.

2.5.5 macOS

Several techniques may be employed to modify the $PATH environment
variable on macOS. Arguably the cleanest method is to add a new file in the
/etc/paths.d directory containing the paths to be added to $PATH. Assuming
an Android SDK installation location of /Users/demo/Library/Android/sdk,
the path may be configured by creating a new file named android-sdk in the



/etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/cmdline-tools/latest/bin
/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory, it will be necessary to use the

sudo command when creating the file. For example:
sudo vi /etc/paths.d/android-sdk

2.6 Android Studio memory management

Android Studio is a large and complex software application with many
background processes. Although Android Studio has been criticized in the
past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to
do so with each new version. These improvements include allowing the
user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows
the software to take advantage of systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM
to increase these values (this feature is only available on 64-bit systems
with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded, it may be worth experimenting with these memory
settings. Android Studio may also notify you that performance can be
increased via a dialog similar to the one shown below:

© Studio performance could be improved

Increasing the maximum heap size from 1280MB
to 2048MB could make the IDE perform better,
based on the available memory and your project
size.

Actions v Don't show again

Figure 2-9
To view and modify the current memory configuration, select the File ->
Settings... main menu option (Android Studio -> Settings... on macOS) and,
in the resulting dialog, select Appearance & Behavior followed by the
Memory Settings option listed under System Settings in the left-hand
navigation panel, as illustrated in Figure 2-10 below:



Q- Appearance & Behavior > System Settings > Memory Settings

Appearance & Behavior Configure the maximum amount of RAM the OS should allocate for Android Studio processes,
Appearance such as the core IDE or Gradle daemon. Similar to allocating too little memory, allocating too
much memory might degrade performance.
New Ul (Beta
Menus and Toolbars IDE Heap Size Settings
System Settings
HTTP Proxy IDE max heap size: 2048 MB - current

Data Sharin - . ; " . 5
9 This is a global setting that applies to all projects you open using Android Studio.

Date Formats You need to restart the IDE before any changes to its heap size take effect.

Updates

Process Elevation Daemon Heap Size Settings

RESSWOIdS These settings apply only to the current project, and changes take effect only after you
Memory Settings rebuild your project (by selecting Build > Rebuild Project from the menu bar). After changing
the heap size and rebuilding your project, you may find daemons with old settings and stop
them manually.

Find existing Gradle daemon(s)

File Colors
Scopes
Notifications
Quick Lists Gradle daemon max heap size: 2048 MB - current

Path Variables

Keymap Kotlin daemon max heap size: 2048 MB - current

Figure 2-10
When changing the memory allocation, be sure not to allocate more

memory than necessary or than your system can spare without slowing
down other processes.

The IDE heap size setting adjusts the memory allocated to Android Studio
and applies regardless of the currently loaded project. On the other hand,
when a project is built and run from within Android Studio, several
background processes (referred to as daemons) perform the task of
compiling and running the app. When compiling and running large and
complex projects, build time could be improved by adjusting the

daemon heap settings. Unlike the IDE heap settings, these daemon settings
apply only to the current project and can only be accessed when a project is
open in Android Studio. To display the SDK Manager from within an open
project, select the Tools -> SDK Manager... menu option from the main
menu.

2.7 Updating Android Studio and the SDK

From time to time, new versions of Android Studio and the Android SDK
are released. New versions of the SDK are installed using the Android SDK
Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, use the Help -> Check for
Updates... menu option from the Android Studio main window (Android



Studio -> Check for Updates... on macOS).
2.8 Summary

Before beginning the development of Android-based applications, the first
step is to set up a suitable development environment. This consists of the
Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). This chapter covers the steps necessary to
install these packages on Windows, macOS, and Linux.



3. Creating an Example Android App
in Android Studio

The preceding chapters of this book have explained how to configure an
environment suitable for developing Android applications using the
Android Studio IDE. Before moving on to slightly more advanced topics,
now is a good time to validate that all required development packages are
installed and functioning correctly. The best way to achieve this goal is to
create an Android application and compile and run it. This chapter will
cover creating an Android application project using Android Studio. Once
the project has been created, a later chapter will explore using the Android
emulator environment to perform a test run of the application.

3.1 About the Project

The project created in this chapter takes the form of a rudimentary currency
conversion calculator (so simple, in fact, that it only converts from dollars
to euros and does so using an estimated conversion rate). The project will
also use one of the most basic Android Studio project templates. This
simplicity allows us to introduce some key aspects of Android app
development without overwhelming the beginner by introducing too many
concepts, such as the recommended app architecture and Android
architecture components, at once. When following the tutorial in this
chapter, rest assured that the techniques and code used in this initial
example project will be covered in much greater detail later.

3.2 Creating a New Android Project

The first step in the application development process is to create a new
project within the Android Studio environment. Begin, therefore, by
launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:



o [ ] Welcome to Android Studio
Android Studio
o e

Projects

e, Welcome to Android Studio

Plugins Create a new project to start from scratch

YT Open existing project from disk or version control

ol D ¥

New Project Open Get from VCS

&

Figure 3-1
Once this window appears, Android Studio is ready for a new project to be

created. To create the new project, click on the New Project option to
display the first screen of the New Project wizard.

3.3 Creating an Activity

The next step is to define the type of initial activity to be created for the
application. Options are available to create projects for Phone and Tablet,
Wear OS, Television, or Automotive. A range of different activity types is
available when developing Android applications, many of which will be
covered extensively in later chapters. For this example, however, select the
Phone and Tablet option from the Templates panel, followed by the option
to create an Empty Views Activity. The Empty Views Activity option creates
a template user interface consisting of a single TextView object.



[« ] [ ]
J—
[]
[}
eeeee ' U
[ — )
(-]
No Activity Empty Activity Basic Views Activity
[« [« .lln
- . ®
tion Views Activi
— &
[
CCCCCC [ hexc |
Figure 3-2

With the Empty Views Activity option selected, click Next to continue with
the project configuration.

3.4 Defining the Project and SDK Settings

In the project configuration window (Figure 3-3), set the Name field to
AndroidSample. The application name is the name by which the application
will be referenced and identified within Android Studio and is also the
name that would be used if the completed application were to go on sale in
the Google Play store.

The Package name uniquely identifies the application within the Android
application ecosystem. Although this can be set to any string that uniquely
identifies your app, it is traditionally based on the reversed URL of your
domain name followed by the application’s name. For example, if your
domain is www.mycompany.com, and the application has been named
AndroidSample, then the package name might be specified as follows:
com.mycompany .androidsample

If you do not have a domain name, you can enter any other string into the
Company Domain field, or you may use example.com for testing, though
this will need to be changed before an application can be published:
com.example.androidsample

The Save location setting will default to a location in the folder named
AndroidStudioProjects located in your home directory and may be changed
by clicking on the folder icon to the right of the text field containing the
current path setting.



Set the minimum SDK setting to API 26 (Oreo; Android 8.0). This
minimum SDK will be used in most projects created in this book unless a
necessary feature is only available in a more recent version. The objective
here is to build an app using the latest Android SDK while retaining
compatibility with devices running older versions of Android (in this case,
as far back as Android 8.0). The text beneath the Minimum SDK setting
will outline the percentage of Android devices currently in use on which the
app will run. Click on the Help me choose button (highlighted in Figure 3-
3) to see a full breakdown of the various Android versions still in use:

[ ] @ New Project
Empty Views Activity
Creates a new empty activity
Name AndroidSample

Package name com.example.androidsample

Save location [User h/Dropbox/D Books/Giraffe_Kotlin/Androidsample

Language Kotlin

Minimum SDK API 26 ("Oreo"; Android 8.0)

@ Your app will run on approximately 92.4% of devices.
Help me choose

Build configuration language Kotlin DSL (build.gradle.kts) [Recommended]

Figure 3-3
Finally, change the Language menu to Kotlin and select Kotlin DSL

(build.gradle.kts) as the build configuration language before clicking Finish
to create the project.

3.5 Modifying the Example Application

Once the project has been created, the main window will appear containing
our AndroidSample project, as illustrated in Figure 3-4 below:



[ ] AndroidSample Version control [ Pixel 4 API 34

@ Android @ o X i — @ MainActivity.kt A+

qu v C3app package com.example.androidsample 1 A v ﬁ

> [ manifests

v [Dkotlin+java Anport fER &
- Bcom.e?(ampfe‘.andro|dsample [></> class MainActivity : AppCompatActivity() { &
=3 (GMainACtVitY @' override fun onCreate(savedInstanceState: Bundle?) {
> 3 com.example.androidsample super.onCreate(savedInstanceState) +
T > [ com.example.androidsample enableEdgeToEdge()
> [2res setContentView(R.layout.activity main)
ke > &7 Gradle Scripts ViewCompat.setOnApplyWindowInsetsListener (findViewById(R.id.main)) { v, insets ->
@ val systemBars = insets.getInsets(WindowInsetsCompat.Type.systemBars())
v.setPadding(systemBars.left, systemBars.top, systemBars.right, systemBars.bottom)
insets “setOnApplyWindowlnsetsListener
}
o4 ¥
0 AndroidSample > Oapp > src > Omain > java > com > example > androidsample > (@ MainActivity 30:1 LF UTF-8 (@ 4 4spaces

Figure 3-4
The newly created project and references to associated files are listed in the
Project tool window on the left side of the main project window. The
Project tool window has several modes in which information can be
displayed. By default, this panel should be in Android mode. This setting is
controlled by the menu at the top of the panel as highlighted in Figure 3-5.
If the panel is not currently in Android mode, use the menu to switch mode:

AndroidSample Version d
B @ oon =

.;?a Project

Packages

Project Files

Production roidsampli
Tests
Project Source Files ‘oidsampls

Project Non-Source Files ~ [oidsampli
Open Files

Scratches and Consoles

Android

~rracuvity_rman.xml
Figure 3-5
3.6 Modifying the User Interface

The user interface design for our activity is stored in a file named



activity_main.xml which, in turn, is located under app -> res -> layout in
the Project tool window file hierarchy. Once located in the Project tool
window, double-click on the file to load it into the user interface Layout
Editor tool, which will appear in the center panel of the Android Studio
main window:

</> activity_main.xml = 10 ®

Palette Q @ —  activitymainxmlv & Q) &, [ Pixel 34v > O Auibutes Q& —

Common Ab TextView o, ¥ 0dp, 2 ¢ :‘ ? %, ConstraintLayout <unnamed>
Text [ Button ]
Buttons 2] ImageView Declared Attributes I =

= RecyclerView
Widgets 4 - Layout

[C] FragmentCon...
[ ScrollView

Containers =® Switch

Layouts layout_width match_parent
layout_height match_parent
visibility v
Component Tree @ = £ visibility v
°, ConstraintLayout

Ab TextView "Hello World!

~ Transforms

View

Figure 3-6
In the toolbar across the top of the Layout Editor window is a menu
(currently set to Pixel in the above figure) which is reflected in the visual

representation of the device within the Layout Editor panel. A range of
other device options are available by clicking on this menu.

Use the System UI Mode button ( “-) to turn Night mode on and off for the
device screen layout. To change the orientation of the device representation
between landscape and portrait, use the drop-down menu showing the ©
icon.

As we can see in the device screen, the content layout already includes a
label that displays a “Hello World!” message. Running down the left-hand
side of the panel is a palette containing different categories of user interface
components that may be used to construct a user interface, such as buttons,
labels, and text fields. However, it should be noted that not all user interface
components are visible to the user. One such category consists of layouts.
Android supports a variety of layouts that provide different levels of control
over how visual user interface components are positioned and managed on
the screen. Though it is difficult to tell from looking at the visual



representation of the user interface, the current design has been created
using a ConstraintLayout. This can be confirmed by reviewing the
information in the Component Tree panel, which, by default, is located in
the lower left-hand corner of the Layout Editor panel and is shown in
Figure 3-7:

Component Tree ICIE

1, main

Ab TextView "Hello World!"

Figure 3-7
As we can see from the component tree hierarchy, the user interface layout

consists of a ConstraintLayout parent called main and a TextView child
object.

Before proceeding, check that the Layout Editor’s Autoconnect mode is
enabled. This means that as components are added to the layout, the Layout
Editor will automatically add constraints to ensure the components are
correctly positioned for different screen sizes and device orientations (a
topic that will be covered in much greater detail in future chapters). The
Autoconnect button appears in the Layout Editor toolbar and is represented
by a U-shaped icon. When disabled, the icon appears with a diagonal line
through it (Figure 3-8). If necessary, re-enable Autoconnect mode by
clicking on this button.

© W [0dp, & F

Figure 3-8
The next step in modifying the application is to add some additional
components to the layout, the first of which will be a Button for the user to
press to initiate the currency conversion.

The Palette panel consists of two columns, with the left-hand column
containing a list of view component categories. The right-hand column lists
the components contained within the currently selected category. In Figure
3-9, for example, the Button view is currently selected within the Buttons



category:

Palette Q @ —
Common [] Button
Text (2] ImageButton

ChipGroup
@ Chip

Buttons

Widgets

v/ CheckBox
LEVEHtS @ RadioGroup
Containers @ RadioButton
Helpers [N ToggleButton
Eanl =® Switch

Legacy @ FloatingActionButton
Figure 3-9
Click and drag the Button object from the Buttons list and drop it in the

horizontal center of the user interface design so that it is positioned beneath
the existing TextView widget:

Hello World!

Figure 3-10
The next step is to change the text currently displayed by the Button
component. The panel located to the right of the design area is the
Attributes panel. This panel displays the attributes assigned to the currently
selected component in the layout. Within this panel, locate the text property



in the Common Attributes section and change the current value from
“Button” to “Convert”, as shown in Figure 3-11:

strokeWidth

cornerRadius @null

rippleColor R @color/m3_button_rig
text Convert

52 text

contentDescription

Figure 3-11

The second text property with a wrench next to it allows a text property to
be set, which only appears within the Layout Editor tool but is not shown at
runtime. This is useful for testing how a visual component and the layout
will behave with different settings without running the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout
connections, click on the Infer Constraints button (Figure 3-12) to add any
missing constraints to the layout:

activity_main.xml ¢ & G, 0OPixel 34 @ AndroidSample @ Default (en-us)

© U 0, 5 & I§ I3 I,

Figure 3-12

It is important to explain the warning button in the top right-hand corner of
the Layout Editor tool, as indicated in Figure 3-13. This warning indicates
potential problems with the layout. For details on any problems, click on
the button:

@) Default (en-us) -

-

Figure 3-13

When clicked, the Problems tool window (Figure 3-14) will appear,
describing the nature of the problems:



Problems File Project Errors Layout and Qualifiers 3 =

N activity_main.xml ~/Dropbox/Documents/Books/Giraffe_Ko
<, & £ Hardcoded text
@ button <Button>: Hardcoded text

Hardcoded string "Convert", should use @string resource

G Hardcoding text attributes directly in layout files is bad for several reasons:

(and keep it up to date when making changes)
<Button
android:id="@+id/button"

android:layout_width="wrap_content"
android:layout_height="wrap_content" Q
android:layout_marginTop="106dp"
android:text="Convert"

Figure 3-14
This tool window is divided into two panels. The left panel (marked A in

the above figure) lists issues detected within the layout file. In our example,

only the following problem is listed:
button <Button>: Hardcoded text

Q * When creating configuration variations (for example for landscape or portrait) you have to repeat the actual text

When an item is selected from the list (B), the right-hand panel will update
to provide additional detail on the problem (C). In this case, the explanation
reads as follows:

Hardcoded string "Convert", should use @string resource

The tool window also includes a preview editor (D), allowing manual
corrections to be made to the layout file.

This 118N message informs us that a potential issue exists concerning the
future internationalization of the project (“I18N” comes from the fact that
the word “internationalization” begins with an “I”, ends with an “N” and
has 18 letters in between). The warning reminds us that attributes and
values such as text strings should be stored as resources wherever possible
when developing Android applications. Doing so enables changes to the
appearance of the application to be made by modifying resource files
instead of changing the application source code. This can be especially
valuable when translating a user interface to a different spoken language. If
all of the text in a user interface is contained in a single resource file, for
example, that file can be given to a translator, who will then perform the
translation work and return the translated file for inclusion in the
application. This enables multiple languages to be targeted without the
necessity for any source code changes to be made. In this instance, we are
going to create a new resource named convert_string and assign to it the
string “Convert”.

Begin by clicking on the Show Quick Fixes button (E) and selecting the



Extract string resource option from the menu, as shown in Figure 3-15:
® button <Button>: Hardcoded text

=" Extract string resource

X Suppress: Add tools:ignore="HardcodedText" attribute

Figure 3-15
After selecting this option, the Extract Resource panel (Figure 3-16) will
appear. Within this panel, change the resource name field to convert_string
and leave the resource value set to Convert before clicking on the OK
button:

( J Extract Resource

Resource name: | convert_string

Convert
Resource value:

Source set: main src/main/res v

File name: strings.xml v
Create the resource in directories:
+ — & B
values
values-night

Figure 3-16
The next widget to be added is an EditText widget, into which the user will
enter the dollar amount to be converted. From the Palette panel, select the
Text category and click and drag a Number (Decimal) component onto the
layout so that it is centered horizontally and positioned above the existing
TextView widget. With the widget selected, use the Attributes tools window
to set the hint property to “dollars”. Click on the warning icon and extract
the string to a resource named dollars_hint.

The code written later in this chapter will need to access the dollar value
entered by the user into the EditText field. It will do this by referencing the
id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from
within the Attributes tool window when the widget is selected in the layout,
as shown in Figure 3-17:



Attributes Q ©@ —

Ab editTextNumberDecimal
id editTextNumberDecimal
~ Declared Attributes aF =

Figure 3-17
Change the id to dollarText and, in the Rename dialog, click on the Refactor
button. This ensures that any references elsewhere within the project to the

old id are automatically updated to use the new id:

-
o (] Rename

Rename ID Resource 'editTextNumberDecimal' and its usages to:

dollarText]

Search in comments and strings

Scope:
Project Files v
? Cancel Preview

Figure 3-18
Repeat the steps to set the id of the TextView widget to textView, if
necessary.

Add any missing layout constraints by clicking on the Infer Constraints
button. At this point, the layout should resemble that shown in Figure 3-19:



Hello World!

Figure 3-19
3.7 Reviewing the Layout and Resource Files

Before moving on to the next step, we will look at some internal aspects of
user interface design and resource handling. In the previous section, we
changed the user interface by modifying the activity_main.xml file using the
Layout Editor tool. In fact, all that the Layout Editor was doing was
providing a user-friendly way to edit the underlying XML content of the
file. In practice, there is no reason why you cannot modify the XML
directly to make user interface changes, and, in some instances, this may
actually be quicker than using the Layout Editor tool. In the top right-hand
corner of the Layout Editor panel are the View Modes buttons marked A
through C in Figure 3-20 below:



T G &2 Q 8 @

08 @ L3

> |3
F &
3

Figure 3-20
By default, the editor will be in Design mode (button C), whereby only the
visual representation of the layout is displayed. In Code mode (A), the
editor will display the XML for the layout, while in Split mode (B), both the
layout and XML are displayed, as shown in Figure 3-21:

activity_main.xml

<?xml version="1.0" encoding="utf-8"2> Yl 2 A v 2 activity_main.xml ~ @ S ¢ 0 Pixel v 33 N e
@a <androidx.constraintlayout.widget.ConstraintLayout xmlns el
& 0 -
xmlns:app="http://schemas.android.com/apk/res-auto" & QU 0, K F I, ?

xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">

9 <TextView
android:id="@+id/textView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello World!"
app:layout_constraintBottom_toBottom0f="parent"
app:layout_constraintEnd_toEnd0f="parent"
app:layout_constraintStart_toStart0f="parent"
app:layout_constraintTop_toTop0f="parent" />

<Button
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"

Figure 3-21

The button to the left of the View Modes button (marked B in Figure 3-20
above) is used to toggle between Code and Split modes quickly.

As can be seen from the structure of the XML file, the user interface
consists of the ConstraintL.ayout component, which in turn, is the parent of
the TextView, Button, and EditText objects. We can also see, for example,
that the text property of the Button is set to our convert_string resource.
Although complexity and content vary, all user interface layouts are
structured in this hierarchical, XML-based way.

As changes are made to the XML layout, these will be reflected in the
layout canvas. The layout may also be modified visually from within the



layout canvas panel, with the changes appearing in the XML listing. To see
this in action, switch to Split mode and modify the XML layout to change

the background color of the ConstraintLayout to a shade of red as follows:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/main"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity"
android:background="#ff2438" >

</androidx.constraintlayout.widget.ConstraintLayout>

Note that the layout color changes in real-time to match the new setting in
the XML file. Note also that a small red square appears in the XML editor’s
left margin (also called the gutter) next to the line containing the color
setting. This is a visual cue to the fact that the color red has been set on a
property. Clicking on the red square will display a color chooser allowing a
different color to be selected:

Resources Custom

5 & . :.-.-.-_

255 36 56 FFFF2438

Material 500 v

t

Figure 3-22

Before proceeding, delete the background property from the layout file so
that the background returns to the default setting.

Finally, use the Project panel to locate the app -> res -> values ->



strings.xml file and double-click on it to load it into the editor. Currently,
the XML should read as follows:

<resources>

<string name="app_name">AndroidSample</string>

<string name="convert_string">Convert</string>

<string name="dollars_hint'">dollars</string>
</resources>
To demonstrate resources in action, change the string value currently
assigned to the convert_string resource to “Convert to Euros” and then
return to the Layout Editor tool by selecting the tab for the layout file in the
editor panel. Note that the layout has picked up the new resource value for
the string.

There is also a quick way to access the value of a resource referenced in an
XML file. With the Layout Editor tool in Split or Code mode, click on the
“@string/convert_string” property setting so that it highlights, and then
press Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will
subsequently open the strings.xml file and take you to the line in that file
where this resource is declared. Use this opportunity to revert the string
resource to the original “Convert” text and to add the following additional

entry for a string resource that will be referenced later in the app code:
<resources>

<string name="app_name">AndroidSample</string>

<string name="convert_string">Convert</string>

<string name="dollars_hint">dollars</string>

<string name="no_value_string">No Value</string>
</resources>

Resource strings may also be edited using the Android Studio Translations
Editor by clicking on the Open editor link in the top right-hand corner of

the editor window. This will display the Translation Editor in the main
panel of the Android Studio window:



activity_main.xml strings.xml @ Translations Editor

+ @  Show AllKeys ¥ Show All Locales v = ¥ ?
Key Resource Folder Untranslatable Default Value
app_name app/src/main/res AndroidSample
convert_string app/src/main/res Convert
dollars_hint app/src/main/res dollars
no_value_string app/src/main/res No Value
XML:
Key:
Default value: L4}
Translation:
Figure 3-23

This editor allows the strings assigned to resource keys to be edited and for
translations for multiple languages to be managed.

3.8 Adding Interaction

The final step in this example project is to make the app interactive so that
when the user enters a dollar value into the EditText field and clicks the
convert button, the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget.
Specifically, the Button needs to be configured so that a method in the app
code is called when an onClick event is triggered. Event handling can be
implemented in several ways and is covered in a later chapter entitled “An
Overview _and Example of Android Event Handling”. Return the layout
editor to Design mode, select the Button widget in the layout editor, refer to
the Attributes tool window, and specify a method named convertCurrency
as shown below:

v Common Attributes

style @style/Widget.Material3.B | «

stateListAnimator @animator/m3_btn_state_list_ar

~ | convertCurrency ‘

onClick

elevation

Figure 3-24
Next, double-click on the MainActivity.kt file in the Project tool window
(app -> kotlin+java -> <package name> -> MainActivity) to load it into
the code editor and add the code for the convertCurrency method to the
class file so that it reads as follows, noting that it is also necessary to import



some additional Android packages:
package com.example.androidsample

import
import
import
import
import
import
import
import

android.os.Bundle
androidx.activity.enableEdgeToEdge
androidx.appcompat.app.AppCompatActivity
androidx.core.view.ViewCompat
androidx.core.view.WindowInsetsCompat
android.view.View
android.widget.EditText
android.widget.TextView

class MainActivity : AppCompatActivity() {
override fun onCreate(savedInstanceState: Bundle?) {

}

super.onCreate(savedInstanceState)

fun convertCurrency(view: View) {

}

val dollarText: EditText = findViewById(R.id.dollarText)
val textView: TextView = findViewById(R.id.textView)

if (dollarText.text.isNotEmpty()) {
val dollarvValue = dollarText.text.toString().toFloat()
val eurovValue = dollarValue * 0.85f
textView.text = euroValue.toString()

} else {
textView. text

getString(R.string.no_value_string)

}

The method begins by obtaining references to the EditText and TextView
objects by making a call to a method named findViewByld, passing through
the id assigned within the layout file. A check is then made to ensure that
the user has entered a dollar value, and if so, that value is extracted,
converted from a String to a floating point value, and converted to euros.
Finally, the result is displayed on the TextView widget.

If any of this is unclear, rest assured that these concepts will be covered in



greater detail in later chapters. In particular, the topic of accessing widgets
from within code using findByViewld and an introduction to an alternative
technique referred to as view binding will be covered in the chapter entitled
“An Qverview of Android View Binding”.

3.9 Summary

While not excessively complex, several steps are involved in setting up an
Android development environment. Having performed those steps, it is
worth working through an example to ensure the environment is correctly
installed and configured. In this chapter, we have created an example
application and then used the Android Studio Layout Editor tool to modify
the user interface layout. In doing so, we explored the importance of using
resources wherever possible, particularly string values, and briefly touched
on layouts. Next, we looked at the underlying XML used to store Android
application user interface designs.

Finally, an onClick event was added to a Button connected to a method
implemented to extract the user input from the EditText component, convert
it from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for
testing purposes will be covered in detail in the next chapter.



4. Creating an Android Virtual
Device (AVD) in Android Studio

Although the Android Studio Preview panel allows us to see the layout we
are designing, compiling and running an entire app will be necessary to
thoroughly test that it works. An Android application may be tested by
installing and running it on a physical device or in an Android Virtual
Device (AVD) emulator environment. Before an AVD can be used, it must
first be created and configured to match the specifications of a particular
device model. In this chapter, we will work through creating such a virtual
device using the Pixel 4 phone as a reference example.

4.1 About Android Virtual Devices

AVDs are emulators that allow Android applications to be tested without
needing to install the application on a physical Android-based device. An
AVD may be configured to emulate various hardware features, including
screen size, memory capacity, and the presence or otherwise of features
such as a camera, GPS navigation support, or an accelerometer. Several
emulator templates are installed as part of the standard Android Studio
installation, allowing AVDs to be configured for various devices. Custom
configurations may be created to match any physical Android device by
specifying properties such as processor type, memory capacity, and the size
and pixel density of the screen.

An AVD session can appear as a separate window or embedded within the
Android Studio window.

New AVDs are created and managed using the Android Virtual Device
Manager, which may be used in command-line mode or with a more user-
friendly graphical user interface. To create a new AVD, the first step is to
launch the AVD Manager. This can be achieved from within the Android
Studio environment by clicking the Device Manager button in the right-
hand tool window bar, as indicated in Figure 4-1:



Figure 4-1
Once opened, the manager will appear as a tool window, as shown in Figure
4-2:

Device Manager 5 =
CE

~ Name APl Type

No devices connected.

Add a new device...

Figure 4-2
If you installed Android Studio for the first time on a computer (as opposed

to upgrading an existing Android Studio installation), the installer might
have created an initial AVD instance ready for use, as shown in Figure 4-3:

Device Manager 2 =
B+ B
Name API Type

- Pixel_3a_API_34_extension_level_7_arm64-v8a : .
r‘g Android 14.0 ("UpsideDownCake") | arm64 S llbegl >

Figure 4-3
If this AVD is present on your system, you can use it to test apps. If no

AVD was created, or you would like to create AVDs for different device
types, follow the steps in the rest of this chapter.



To add a new AVD, click on the ‘+’ button in the Device Manager toolbar
and select the Create Virtual Device option to open the Virtual Device
Configuration dialog:

e @ Virtual Device Configuration

@ Select Hardware

Choose a device definition

Q

Category Name Play Store  Size Resolution  Density

[ Pixeld

Phone Pixel 6 Pro 6.7" 1440x3120  560dpi
1080px

Tablet Pixel 6 64" 1080x2400  420dpi =3 B0

Density: 4400pi
Wear 0S Pixel 5 6.0" 1080x2340  440dpi

5.7" 2280px
Desktop Pixel 4a 5.8" 1080x2340  440dpi

™ Pixel 4 XL 6.3" 1440x3040  560dpi

Automotive Pixel 4 > 57" 1080x2280  440dpi

Pixel 3a XL 6.0" 1080x2160  400dpi

New Hardware Profile Import Hardware Profiles & Clone Device

Figure 4-4
Within the dialog, perform the following steps to create a Pixel 4-
compatible emulator:

1.Select the Phone option From the Category panel to display the available
Android phone AVD templates.

2.Select the Pixel 4 device option and click Next.

3.0n the System Image screen, select the latest version of Android. If the
system image has not yet been installed, a Download link will be
provided next to the Release Name. Click this link to download and
install the system image before selecting it. If the image you need is not
listed, click on the x86 Images (or ARM images if you are running a Mac
with Apple Silicon) and Other images tabs to view alternative lists.

4.Click Next to proceed and enter a descriptive name (for example, Pixel 4
API 34) into the name field or accept the default name.

5.Click Finish to create the AVD.

6.1f future modifications to the AVD are necessary, re-open the Device

Manager, select the AVD from the list, and click on the pencil icon in the
Actions column to edit the settings.



4.2 Starting the Emulator

To test the newly created AVD emulator, select the emulator from the
Device Manager and click the triangle shaped Start button. The emulator
will appear embedded into the main Android Studio window and begin the
startup process. The amount of time it takes for the emulator to start will
depend on the configuration of both the AVD and the system on which it is
running:

() AndroidSample Version control [ Pixel 4 APl 34 = app > & B 05 &
(] activity_main.xml (@ MainActivity.kt : Running Devices & Pixel 4 API 34 e [} — | 22
o 1 V O DU O D@D EH P4

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle

import android.view.View

import android.widget.EditText

import android.widget.TextView

/> class MainActivity : AppCompatActivity() {
of override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.octivity main)
}

fun convertCurrency(view: View) {

val dollarText: EditText = findViewById(R.id.dollarText)

7? val textView: TextView = findViewById(R.id.textView)
E| if (dollarText.text.isNotEmpty()) {
® val dollarValue = dollarText.text.toString().toFLloat()
N4 val euroValue = dollarValue x 0.85f
e
textView.text = euroValue.toString()
?_9 } else {
28 textView.text = getString(R.string.no value string) —
oidSample > Dapp > src > Omain > java > com > example androidsample (@ MainActivity > @ convertCurrency 28:58 LF UTF-8 [J 4spaces

Figure 4-5
To hide and show the emulator tool window, click the Running Devices tool
window button (marked A above). Click the “x” close button next to the tab
(B) to exit the emulator. The emulator tool window can accommodate
multiple emulator sessions, with each session represented by a tab. Figure
4-6, for example, shows a tool window with two emulator sessions:

Running Devices [4 Pixel 4 API 33 Resizable API 34

O D PP 9 O O @ ™D

Figure 4-6
To switch between sessions, click on the corresponding tab.
Although the emulator probably defaulted to appearing in portrait



orientation, this and other default options can be changed. Within the
Device Manager, select the new Pixel 4 entry and click on the pencil icon in
the Actions column of the device row. In the configuration screen, locate the
Startup orientation section and change the orientation setting. Exit and
restart the emulator session to see this change take effect. More details on
the emulator are covered in the next chapter, “Using_and Configuring_the
Android Studio AVD Emulator”).

To save time in the next section of this chapter, leave the emulator running
before proceeding.

4.3 Running the Application in the AVD

With an AVD emulator configured, the example AndroidSample application
created in the earlier chapter can now be compiled and run. With the
AndroidSample project loaded into Android Studio, make sure that the
newly created Pixel 4 AVD is displayed in the device menu (marked A in
Figure 4-7 below), then either click the run button represented by a triangle
(B), select the Run -> Run ‘app’ menu option, or use the Ctrl-R keyboard
shortcut:

[& Pixel 4 API 34 ~ X app v

Figure 4-7
The device menu (A) may be used to select a different AVD instance or
physical device as the run target and also to run the app on multiple devices.
The menu also provides access to the Device Manager as well as device
connection configuration and troubleshooting options:



[], samsung SM-T290 = app DI ¢ 3
[, samsung SM-T290

[& Pixel 4 API 34
[& Resizable API 34

[0 Select Multiple Devices...
@ Pair Devices Using Wi-Fi

i= Troubleshoot Device Connections

Figure 4-8
Once the application is installed and running, the user interface for the first
fragment will appear within the emulator (a fragment is a reusable section
of an Android project typically consisting of a user interface layout and
some code, a topic which will be covered later in the chapter entitled “An
Introduction to Android Fragments”):

902 & O v4n

Hello World!

T —

Figure 4-9
Once the run process begins, the Run tool window will appear. The Run
tool window will display diagnostic information as the application package

is installed and launched. Figure 4-10 shows the Run tool window output
from a typical successful application launch:



app

& =z
F
O

2023-11-06 12:48:21: Launching app on 'Pixel 4 API 34'.
Starting: Intent { act=android.intent.action.MAIN cat=[android.intent.category.LAUNCHER] cmp=com.example.androidsample/.M

Je o>

v H 90 e
G @ [

Figure 4-10
If problems are encountered during the launch process, the Run tool
window will provide information to help isolate the problem’s cause.
Assuming the application loads into the emulator and runs as expected, we
have safely verified that the Android development environment is correctly
installed and configured. With the app running, try performing a currency
conversion to verify that the app works as intended.

4.4 Running on Multiple Devices

The run target menu shown in Figure 4-8 above includes an option to run
the app on multiple emulators and devices in parallel. When selected, this
option displays the dialog in Figure 4-11, providing a list of the AVDs
configured on the system and any attached physical devices. Enable the
checkboxes next to the emulators or devices to be targeted before clicking
on the Run button:

o [ ] Select Multiple Devices

Available devices

Type Device

[, Pixel 4 API33
[, samsung SM-T290

[& Resizable API 34

Cancel

Figure 4-11

After clicking the Run button, Android Studio will launch the app on the
selected emulators and devices.

4.5 Stopping a Running Application

To stop a running application, click the stop button located in the main



toolbar, as shown in Figure 4-12:

[ Pixel 4 API 34 =app- NCH O B

Figure 4-12

An app may also be terminated using the Run tool window. Begin by
displaying the Run tool window using the window bar button that becomes
available when the app is running. Once the Run tool window appears, click
the stop button highlighted in Figure 4-13 below:

Run app

@& O
-11-06 12:48:21: Launching app on 'Pixel 4 API 34'.
StaM@ing: Intent { act=android.intent.action.MAIN cat=[android.intent.category.L

Open logcat panel for emulator Pixel 4 API 34
Connected to process 9114 on device 'Pixel_4_API_34 [emulator-5554]'.

Jl <« =

G @ [

Figure 4-13
4.6 Supporting Dark Theme

To test how an app behaves when dark theme is enabled, open the Settings
app within the running Android instance in the emulator, choose the
Display category, and enable the Dark theme option as shown in Figure 4-
14:

Appearance

Dark theme
Will never turn off automatically

Figure 4-14
With dark theme enabled, run the AndroidSample app and note that it

appears using a dark theme, including a black background and a purple
background color on the button, as shown in Figure 4-15:



dollars

Hello World!

Figure 4-15
Return to the Settings app and turn off Dark theme mode before continuing.

4.7 Running the Emulator in a Separate Window

So far in this chapter, we have only used the emulator as a tool window
embedded within the main Android Studio window. The emulator can be
configured to appear in a separate window within the Settings dialog, which
can be displayed by clicking on the IDE and Project Settings button located
in the Android Studio toolbar, as highlighted in Figure 4-16:



1 APl 34

1@ ™D

+ ™ &9 Run Anything...

T}, SDK Manager...
(.: Project Structure...
5 Settings...

el

Plugins...

Theme...
Keymap...
View Mode...

Switch to Classic UL...

Figure 4-16

Within the Settings dialog, navigate to Tools -> Emulator in the side panel,
and disable the Launch in the Running Devices tool window option:

Qv

Appearance & Behavior
Quick Lists
Path Variables
Keymap
Editor
Plugins
Version Control
Build, Execution, Deployment
Languages & Frameworks
Tools
Actions on Save
Web Browsers and Preview
External Tools
Terminal
Database Inspector

Device Explorer

Tools > Emulator &~
—

Launch in the Running Devices tool window >
:—, . Mched from Device Manager or when

running an app will appear in the Running Devices tool window. Otherwise virtual
devices will launch in a standalone Android Emulator application. Virtual ices

1the Running C ces window will always appear in that win
regardless of this setting

Open the Running Devices tool window when launching an app

Open the Running Devices tool window when launching a test
Enable clipboard sharing

Show camera control prompts

Velocity control keys for virtual scene camera:

WASDQE (for QWERTY keyboard)

When encountering snapshots incompatible with the current configuration:

Ask before deleting

Figure 4-17

With the option disabled, click the Apply button followed by OK to commit
the change, then exit the current emulator session by clicking on the close
button on the tab marked B in Figure 4-5 above.

Run the sample app once again, at which point the emulator will appear as a
separate window, as shown below:



Hello World!

Figure 4-18

The choice of standalone or tool window mode is a matter of personal
preference. If you prefer the emulator running in a tool window, return to
the settings screen and re-enable the Launch in the Running Devices tool
window option. Before committing to standalone mode, however, keep in
mind that the Running Devices tool window may also be detached from the
main Android Studio window from within the tool window Options menu,
which is accessed by clicking the button indicated in Figure 4-19:

Running Devices [ Pixel 4 API 34 + m - 2

O PN DDA O D@D E : c?

Figure 4-19



From within the Options menu, select View Mode -> Float to detach the
tool window from the Android Studio main window:

G &€ Q&8 QO

~& |

v/ Show Zoom Controls

v/ Show Toolbar

View Mode > v/ Dock Pinned
Move to > Dock Unpinned
Resize > Undock

Remove from Sidebar floatk

Window

Figure 4-20

To re-dock the Running Devices tool window, click on the Dock button
shown in Figure 4-21:

[ NN ) Running Devices

Running Devices [, Pixel 4 API 33 e =

O DO OOD @D
10:02 & Q v4n

Figure 4-21
4.8 Removing the Device Frame

The emulator can be configured to appear with or without the device frame.
To change the setting, exit the emulator, open the Device Manager, select
the AVD from the list, and click on the menu button indicated by the arrow
in Figure 4-22:



£

Device Manager

8 + %
Name API Type

- Pixel 4 API 34 . . .
e Android UpsideDownCakePrivacySandbox Preview | a... Upsi... Virtual  [>

&?
Cold Boot
Pair Wearable

¢ Edit

& Duplicate
@) Wipe Data
i Delete

View Details
@ Show on Disk

Figure 4-22

Select the Edit option and, in the settings screen, locate and switch off the
Enable device frame option before clicking the Finish button:

Verify Configuration

AVD Name  Pixel 4 APl 34
Ch pixel 4 5.7 1080x2280 440dpi

UpsideDownCakePrivacySandbox Android APl UpsideDownCake PrivacySandbox

0 O

Portrait Landscape

Startup orientation

Emulated
Performance

Device Framd Enable device frame

Figure 4-23

Once the device frame has been disabled, the emulator will appear as shown
in Figure 4-24 the next time it is launched:

Graphics:



1:44 v4i

Hello World!

T —
Figure 4-24
4.9 Summary

A typical application development process follows a coding, compiling, and
running cycle in a test environment. Android applications may be tested on
a physical Android device or an Android Virtual Device (AVD) emulator.
AVDs are created and managed using the Android Studio Device Manager
tool, which may be used as a command-line tool or via a graphical user
interface. When creating an AVD to simulate a specific Android device
model, the virtual device should be configured with a hardware
specification matching that of the physical device.

The AVD emulator session may be displayed as a standalone window or
embedded into the main Android Studio user interface.



5. Using and Configuring the
Android Studio AVD Emulator

Before the next chapter explores testing on physical Android devices, this
chapter will take some time to provide an overview of the Android Studio
AVD emulator and highlight many of the configuration features available to
customize the environment in both standalone and tool window modes.

5.1 The Emulator Environment

When launched in standalone mode, the emulator displays an initial splash
screen during the loading process. Once loaded, the main emulator window
appears, containing a representation of the chosen device type (in the case
of Figure 5-1, this is a Pixel 4 device):

Android Emulator - Pixel_4_API_34...

Figure 5-1
The toolbar positioned along the right-hand edge of the window provides
quick access to the emulator controls and configuration options.

5.2 Emulator Toolbar Options



The emulator toolbar (Figure 5-2) provides access to a range of options
relating to the appearance and behavior of the emulator environment.

X e Exit / Minimize
Power =———»( (1)

o) | Volume Up
Volume Down =———=p
{3 | Rotate Left
Rotate Right =————p|

= Take Screenshot

= Back

0]

Zoom Mode =————p G,
<

Home =—=p O

O

= Overview

Fold Device =

+ | Extended Controls

Figure 5-2
Each button in the toolbar has associated with it a keyboard accelerator
which can be identified either by hovering the mouse pointer over the
button and waiting for the tooltip to appear or via the help option of the
extended controls panel.

Though many of the options contained within the toolbar are self-
explanatory, each option will be covered for the sake of completeness:

*Exit / Minimize — The uppermost ‘x’ button in the toolbar exits the
emulator session when selected, while the ‘-> option minimizes the entire
window.

*Power — The Power button simulates the hardware power button on a
physical Android device. Clicking and releasing this button will lock the
device and turn off the screen. Clicking and holding this button will
initiate the device “Power off” request sequence.

*Volume Up / Down — Two buttons that control the audio volume of
playback within the simulator environment.

*Rotate Left/Right — Rotates the emulated device between portrait and
landscape orientations.



*Take Screenshot — Takes a screenshot of the content displayed on the
device screen. The captured image is stored at the location specified in the
Settings screen of the extended controls panel, as outlined later in this
chapter.

*Zoom Mode — This button toggles in and out of zoom mode, details of
which will be covered later in this chapter.

*Back — Performs the standard Android “Back” navigation to return to a
previous screen.

*Home — Displays the device’s home screen.

*Overview — Simulates selection of the standard Android “Overview”
navigation, which displays the currently running apps on the device.

*Fold Device — Simulates the folding and unfolding of a foldable device.
This option is only available if the emulator is running a foldable device
system image.

*Extended Controls — Displays the extended controls panel, allowing for
the configuration of options such as simulated location and telephony
activity, battery strength, cellular network type, and fingerprint
identification.

5.3 Working in Zoom Mode

The zoom button located in the emulator toolbar switches in and out of
zoom mode. When zoom mode is active, the toolbar button is depressed,
and the mouse pointer appears as a magnifying glass when hovering over
the device screen. Clicking the left mouse button will cause the display to
zoom in relative to the selected point on the screen, with repeated clicking
increasing the zoom level. Conversely, clicking the right mouse button
decreases the zoom level. Toggling the zoom button off reverts the display
to the default size.

Clicking and dragging while in zoom mode will define a rectangular area
into which the view will zoom when the mouse button is released.

While in zoom mode, the screen’s visible area may be panned using the
horizontal and vertical scrollbars located within the emulator window.

5.4 Resizing the Emulator Window

The emulator window’s size (and the device’s corresponding



representation) can be changed at any time by enabling Zoom mode and
clicking and dragging on any of the corners or sides of the window.

5.5 Extended Control Options

The extended controls toolbar button displays the panel illustrated in Figure
5-3. By default, the location settings will be displayed. Selecting a different
category from the left-hand panel will display the corresponding group of
controls:

(] Extended Controls - Pixel_4_API_33:5554
Q Single points Routes
o i point
Search 18
4
(%2) @9 Verc
u Union City Sunc
o -
e . Fremont =
. Bair.Island Newark
an Carlos - 43804
© Redwood City
East Palo Alto
) Palo Alto he i
Woodside  gianord llpita:
JOB )| \ Points that you save shall appear here
(R Mountain @
Portola Valley. View,
~
2 G 2 San J
Cupertino
- ] R Fruitdale -
@
Campbell
@ lar. Saratoga
o (D)~—Ala
- (35) Los Gatos
+
. _ -
= B‘@%ES'CUA Sierram
eGWOUS 8 MapData Terms of Use | Report a map error
Em“" SESk e Import GPX/KML
Figure 5-3

5.5.1 Location

The location controls allow simulated location information to be sent to the
emulator as decimal or sexigesimal coordinates. Location information can
take the form of a single location or a sequence of points representing the
device’s movement, the latter being provided via a file in either GPS
Exchange (GPX) or Keyhole Markup Language (KML) format.
Alternatively, the integrated Google Maps panel may be used to select
single points or travel routes visually.

5.5.2 Displays

In addition to the main display shown within the emulator screen, the
Displays option allows additional displays to be added running within the
same Android instance. This can be useful for testing apps for dual-screen



devices such as the Microsoft Surface Duo. These additional screens can be
configured to be any required size and appear within the same emulator
window as the main screen.

5.5.3 Cellular

The type of cellular connection being simulated can be changed within the
cellular settings screen. Options are available to simulate different network
types (CSM, EDGE, HSDPA, etc.) in addition to a range of voice and data
scenarios, such as roaming and denied access.

5.5.4 Battery

Various battery state and charging conditions can be simulated on this panel
of the extended controls screen, including battery charge level, battery
health, and whether the AC charger is currently connected.

5.5.5 Camera

The emulator simulates a 3D scene when the camera is active. This takes
the form of the interior of a virtual building through which you can navigate
by holding down the Option key (Alt on Windows) while using the mouse
pointer and keyboard keys when recording video or before taking a photo
within the emulator. This extended configuration option allows different
images to be uploaded for display within the virtual environment.

5.5.6 Phone

The phone extended controls provide two straightforward but helpful
simulations within the emulator. The first option simulates an incoming call
from a designated phone number. This can be particularly useful when
testing how an app handles high-level interrupts.

The second option allows the receipt of text messages to be simulated
within the emulator session. As in the real world, these messages appear
within the Message app and trigger the standard notifications within the
emulator.

5.5.7 Directional Pad

A directional pad (D-Pad) is an additional set of controls either built into an
Android device or connected externally (such as a game controller) that
provides directional controls (left, right, up, down). The directional pad
settings allow D-Pad interaction to be simulated within the emulator.



5.5.8 Microphone

The microphone settings allow the microphone to be enabled and virtual
headset and microphone connections to be simulated. A button is also
provided to launch the Voice Assistant on the emulator.

5.5.9 Fingerprint

Many Android devices are now supplied with built-in fingerprint detection
hardware. The AVD emulator makes it possible to test fingerprint
authentication without the need to test apps on a physical device containing
a fingerprint sensor. Details on configuring fingerprint testing within the
emulator will be covered later in this chapter.

5.5.10 Virtual Sensors

The virtual sensors option allows the accelerometer and magnetometer to be
simulated to emulate the effects of the physical motion of a device, such as
rotation, movement, and tilting through yaw, pitch, and roll settings.

5.5.11 Snapshots

Snapshots contain the state of the currently running AVD session to be
saved and rapidly restored, making it easy to return the emulator to an exact
state. Snapshots are covered later in this chapter.

5.5.12 Record and Playback

Allows the emulator screen and audio to be recorded and saved in WebM or
animated GIF format.

5.5.13 Google Play

If the emulator is running a version of Android with Google Play Services
installed, this option displays the current Google Play version. It also
provides the option to update the emulator to the latest version.

5.5.14 Settings

The settings panel provides a small group of configuration options. Use this
panel to choose a darker theme for the toolbar and extended controls panel,
specify a file system location into which screenshots are to be saved,
configure OpenGL support levels, and configure the emulator window to
appear on top of other windows on the desktop.

5.5.15 Help



The Help screen contains three sub-panels containing a list of keyboard
shortcuts, links to access the emulator online documentation, file bugs and
send feedback, and emulator version information.

5.6 Working with Snapshots

When an emulator starts for the first time, it performs a cold boot, much
like a physical Android device when powered on. This cold boot process
can take some time to complete as the operating system loads and all the
background processes are started. To avoid the necessity of going through
this process every time the emulator is started, the system is configured to
automatically save a snapshot (referred to as a quick-boot snapshot) of the
emulator’s current state each time it exits. The next time the emulator is
launched, the quick-boot snapshot is loaded into memory, and execution
resumes from where it left off previously, allowing the emulator to restart in
a fraction of the time needed for a cold boot to complete.

The Snapshots screen of the extended controls panel can store additional
snapshots at any point during the execution of the emulator. This saves the
exact state of the entire emulator allowing the emulator to be restored to the
exact point in time that the snapshot was taken. From within the screen,
snapshots can be taken using the Take Snapshot button (marked A in Figure
5-4). To restore an existing snapshot, select it from the list (B) and click the
run button (C) located at the bottom of the screen. Options are also
provided to edit (D) the snapshot name and description and to delete (E) the
currently selected snapshot:



[ ] Extended Controls - Pixel_4_API_33:5554

Snapshots Settings

[=] Quickboot
snap_2023-06-13_10-56-47 | B

\.\

O

snap_2023-06-13_10-56-47
808 MB, captured 6/13/23 10:56 AM
File: snap_2023-06-13_10-56-47

. 0006
PN > 2 B 0 TAKE SNAPSHOT
Figure 5-4
You can also choose whether to start an emulator using either a cold boot,
the most recent quick-boot snapshot, or a previous snapshot by making a
selection from the run target menu in the main toolbar, as illustrated in
Figure 5-5:

[ Pixel 4 API 34 - Quick Boot = app > O o

Runnina Devices
[ Pixel 4 API 34

Cold Boot
(0 Select Multiple Devices... Quick Boot
% Pair Devices Using Wi-Fi snap_2023-11-06_13-58-08
¢= Troubleshoot Device Connections
Figure 5-5

5.7 Configuring Fingerprint Emulation

The emulator allows up to 10 simulated fingerprints to be configured and
used to test fingerprint authentication within Android apps. Configuring
simulated fingerprints begins by launching the emulator, opening the
Settings app, and selecting the Security option.



Within the Security settings screen, select the fingerprint option. On the
resulting information screen, click on the Next button to proceed to the
Fingerprint setup screen. Before fingerprint security can be enabled, a
backup screen unlocking method (such as a PIN) must be configured. Enter
and confirm a suitable PIN and complete the PIN entry process by
accepting the default notifications option.

Proceed through the remaining screens until the Settings app requests a
fingerprint on the sensor. At this point, display the extended controls dialog,
select the Fingerprint category in the left-hand panel, and make sure that
Finger 1 is selected in the main settings panel:

Fingerprint

Finger 1

1]

Touch Sensor

Figure 5-6
Click on the Touch Sensor button to simulate Finger 1 touching the

fingerprint sensor. The emulator will report the successful addition of the
fingerprint:



11:08 & © \ |

o

Fingerprint added

Now you can use your fingerprint to
unlock your phone or verify it's you, like
when you sign in to apps

@

ADD ANOTHER m

Figure 5-7
To add additional fingerprints, click on the Add Another button and select
another finger from the extended controls panel menu before clicking on the
Touch Sensor button again.

5.8 The Emulator in Tool Window Mode

As outlined in the previous chapter (“Creating_an Android Virtual Device
(AVD) in Android Studio”), Android Studio can be configured to launch the
emulator in an embedded tool window so that it does not appear in a
separate window. When running in this mode, the same controls available in
standalone mode are provided in the toolbar, as shown in Figure 5-8:

Running Devices [&, Pixel 4 API 33 (IR
O M DDA <Q O 0B D

Figure 5-8
From left to right, these buttons perform the following tasks (details of



which match those for standalone mode):

*Power
*Volume Up
*Volume Down
*Rotate Left
*Rotate Right
*Back

*Home
*Overview
*Screenshot
*Snapshots
*Extended Controls

5.9 Creating a Resizable Emulator

In addition to emulators configured to match specific Android device
models, Android Studio also provides a resizable AVD that allows you to
switch between phone, tablet, and foldable device sizes. To create a
resizable emulator, open the Device Manager and click the ‘+’ toolbar
button. Next, select the Resizable device definition illustrated in Figure 5-9,

and follow the usual steps to create a new AVD:

Choose a device definition

Q-

Category Name v Play Store Size Resolution

Density

Phone Resizable (Experimental) 6.0" 1080x2340  420dpi
Tablet Pixel XL 554 1440x2560  560dpi
Wear OS Pixel 7 Pro > 6.71" 1440x3120 560dpi
Desktop Pixel 7 > 6.31" 1080x2400  420dpi
v Pixel 6a 3 6.13" 1080x2400  420dpi
Automotive Pixel 6 Pro 6.7" 1440x3120  560dpi
Figure 5-9

E‘D Resizable (Experimental)

1080px

2340px

Size: large
Ratio: long
Density: 420dpi
Folded: 884x2208

This device resizes to:

Phone (1080 x 2340 @ 420dpi)
Foldable (1768 x 2208 @ 420dpi)
Tablet (1920 x 1200 @ 240dpi)
Desktop (1920 x 1080 @ 160dpi)

When you run an app on the new emulator within a tool window, the
Display mode option will appear in the toolbar, allowing you to switch
between emulator configurations as shown in Figure 5-10:



Running Devices [&, Resizable API 34 m o -

O WD < OO : <P
‘ [l Phone 40
[ Unfolded Foldable "4
] Tablet {2
Figure 5-10

If the emulator is running in standalone mode, the Display mode option can
be found in the side toolbar, as shown below:

Figure 5-11

Once a foldable display mode has been selected, the Change posture menu
may be used to test the app in open, closed, and half-open configurations:



Figure 5-12
5.10 Summary

Android Studio contains an Android Virtual Device emulator environment
designed to make it easier to test applications without running them on a
physical Android device. This chapter has provided a brief tour of the
emulator and highlighted key features available to configure and customize
the environment to simulate different testing conditions.



6. A Tour of the Android Studio User
Interface

While it is tempting to plunge into running the example application created
in the previous chapter, it involves using aspects of the Android Studio user
interface, which are best described in advance.

Android Studio is a powerful and feature-rich development environment
that is, to a large extent, intuitive to use. That being said, taking the time
now to gain familiarity with the layout and organization of the Android
Studio user interface will shorten the learning curve in later chapters of the
book. With this in mind, this chapter will provide an overview of the
various areas and components of the Android Studio environment.

6.1 The Welcome Screen

The welcome screen (Figure 6-1) is displayed any time that Android Studio
is running with no projects currently open (open projects can be closed at
any time by selecting the File -> Close Project menu option). If Android
Studio was previously exited while a project was still open, the tool will
bypass the welcome screen the next time it is launched, automatically
opening the previously active project.



o [ ) Welcome to Android Studio

‘A Android Studio
Jellyfish | 2023.3

Projects

T Welcome to Android Studio

Plugins

Learn

T (B 7o
New Project Open Get from VCS
More Actions v
@
Figure 6-1

In addition to a list of recent projects, the welcome screen provides options
for performing tasks such as opening and creating projects, along with
access to projects currently under version control. In addition, the
Customize screen provides options to change the theme and font settings
used by both the IDE and the editor. Android Studio plugins may be
viewed, installed, and managed using the Plugins option.

Additional options are available by selecting the More Actions link or using
the menu shown in Figure 6-2 when the list of recent projects replaces the
More Actions link:

New Project Open Get from VCS
Import an Android Code Sample
[“ Profile or Debug APK
[L Virtual Device Manager
1 SDK Manager
Figure 6-2
6.2 The Menu Bar

The Android Studio main window will appear when a new project is



created, or an existing one is opened. When multiple projects are open
simultaneously, each will be assigned its own main window. The precise
configuration of the window will vary depending on the operating system
Android Studio is running on and which tools and panels were displayed
the last time the project was open. The appearance, for example, of the
main menu bar will differ depending on the host operating system. On
macOS, Android Studio follows the standard convention of placing the
menu bar along the top edge of the desktop, as illustrated in Figure 6-3:

& Android Studio File Edit View Navigate Code Refactor Build Run Tools VCS Window Help

[ J AndroidSample Version control [], samsung SM-T290

[ Android </> activity_main.xml

E(IDA L&l app Palette (@Y @ — activity_main.xml @‘

Figure 6-3
When Android Studio is running on Windows or Linux, however, the main
menu is accessed via the button highlighted in Figure 6-4:

\

® = [AS AndroidSample Version control

@ Android e ¢ X

S v [Bapp
> [ manifests
> [Djava

Figure 6-4
6.3 The Main Window

Once a project is open, the Android Studio main window will typically
resemble that of Figure 6-5:



AndroidSample Version control [ Pixel 4 APl 34 - Quick Boot = app

[ Android (@ MainActivity.kt o
\:\Oﬂ ~ Coapp package com.example.androidsample 1 A v ﬁ?
> [ manifests
v [ kotlin+java SREOH &
[ com.example.ar " ) . :
5 /> class MainActivity : AppCompatActivity() { &

(@ MainActivity

ot override fun onCreate(savedInstanceState: Bundle?) {
R=lceEanh e super.onCreate(savedInstanceState)
> [ com.example.ar setContentView(R.layout.activity main)
v [2res ﬁ }

> [2) drawabl
> [2) layout fun convertCurrency(view: View) {

[5) mipmap
~ [7values val dollarText: EditText = findViewById(R.id.dollarText) O

ool val textView: TextView = findViewById(R.id.textView)

</> strings.xml
> [ themes (2)

if (dollarText.text.isNotEmpty()) {

»
@ xml val dollarValue = dollarText.text.toString().toFloat()
(2res (generated)
) "
» (&7 Gradle Scripts val euroValue = dollarValue * 8.85f
textView.text = euroValue.toString()
® } else {
28 textView.text = getString(R.string.no value string)
!
%9 }

}
0 AndroidSample > Oapp > src > Omain > java > com > example > androidsample > (@ MainActivity > @cunvertCurrEncye 28:58 LF UTF-8 ([0 4spaces f
Figure 6-5
The various elements of the main window can be summarized as follows:

A — Toolbar — A selection of shortcuts to frequently performed actions. The
toolbar buttons provide quick access to a select group of menu bar actions.
The toolbar can be customized by right-clicking on the bar and selecting the
Customize Toolbar... menu option. The toolbar menu shown in Figure 6-6
provides a convenient way to perform tasks such as creating and opening
projects and switching between windows when multiple projects are open:

[ ] AndroidSample Version control Sa
] An New Project...
[ Open...
O N
oa 7% Get from Version Control...

Open Projects

@ MySecondProject
~(Dropbox/Documents/Books/Giraffe_Kotlin/WORK/MySecondProject

S | AndroidSample
~/Dropbox/Documents/Books/Giraffe_Kotlin/WORK/AndroidSample

vTEETes
Figure 6-6
B — Navigation Bar — The navigation bar provides a convenient way to
move around the files and folders that make up the project. Clicking on an



element in the navigation bar will drop down a menu listing the sub-folders
and files at that location, ready for selection. Similarly, clicking on a class
name displays a menu listing methods contained within that class:

(M convertCurrency

w9 @ onCreate

0 AndroidSample > oapp > src > Omain > java > com > example > androidsample > (& MainActivity > @ convertCurrency

Figure 6-7
Select a method from the list to be taken to the corresponding location

within the code editor. You can hide, display, and change the position of this
bar using the View -> Appearance -> Navigation Bar menu option.

C - Editor Window — The editor window displays the content of the file on
which the developer is currently working. When multiple files are open,
each file is represented by a tab located along the top edge of the editor, as
shown in Figure 6-8:

(@ MainActivity.kt activity_main.xml build.gradle.kts (:app)

package com.example.androidsample 1 ~ ~

import ...

Figure 6-8
D — Status Bar — The status bar displays informational messages about the
project and the activities of Android Studio. Hovering over items in the
status bar will display a description of that field. Many fields are
interactive, allowing users to click to perform tasks or obtain more detailed
status information.

Gradle Build Running — X 13:6 LF UTF-8 4spaces & L[]

Figure 6-9
The widgets displayed in the status bar can be changed using the View ->
Appearance -> Status Bar Widgets menu.

E - Project Tool Window — The project tool window provides a
hierarchical overview of the project file structure allowing navigation to



specific files and folders to be performed. The toolbar can be used to
display the project in several different ways. The default setting is the
Android view which is the mode primarily used in the remainder of this
book.

The project tool window is just one of many available tools within the
Android Studio environment.

6.4 The Tool Windows

In addition to the project view tool window, Android Studio also includes
many other windows, which, when enabled, are displayed tool window bars
that appear along the left and right edges of the main window and contain
buttons for showing and hiding each of the tool windows. Figure 6-10
shows typical tool window bar configurations, though the buttons and their
positioning may differ for your Android Studio installation.

) . AndroidSample Version control

O AndroidSample > Oapp > src > Omain > res > la- o

Figure 6-10

Clicking on a button will display the corresponding tool window, while a
second click will hide the window. The location of a button in a tool



window bar indicates the side of the window against which the window will
appear when displayed. These positions can be changed by clicking and
dragging the buttons to different locations in other window toolbars.

Android Studio offers a wide range of tool windows, the most commonly
used of which are as follows:

*Project (A) — The project view provides an overview of the file structure
that makes up the project allowing for quick navigation between files.
Generally, double-clicking on a file in the project view will cause that file
to be loaded into the appropriate editing tool.

*Resource Manager (B) - A tool for adding and managing resources and
assets within the project, such as images, colors, and layout files.

*More Tool Windows (C) - Displays a menu containing additional tool
windows not currently displayed in a tool window bar. When a tool
window is selected from this menu, it will appear as a button in a tool
window bar.

*Build (D) - Displays a real-time view of each process step while Android
Studio builds the current project.

*Run (E) — The run tool window becomes available when an application is
currently running and provides a view of the results of the run together
with options to stop or restart a running process. If an application fails to
install and run on a device or emulator, this window typically provides
diagnostic information about the problem.

*App Quality Insights (F) - Provides access to the cloud-based Firebase
app quality and crash analytics platform.

*Logcat (G) — The Logcat tool window provides access to the monitoring
log output from a running application and options for taking screenshots
and videos of the application and stopping and restarting a process.

*Problems (H) - A central location to view all of the current errors or
warnings within the project. Double-clicking on an item in the problem list
will take you to the problem file and location.

*Terminal (I) — Provides access to a terminal window on the system on

which Android Studio is running. On Windows systems, this is the
Command Prompt interface, while on Linux and macOS systems, this
takes the form of a Terminal prompt.



*Version Control (J) - This tool window is used when the project files are
under source code version control, allowing access to Git repositories and
code change history.

*Notifications (K) - This tool window is used when the project files are
under source code version control, allowing access to Git repositories and
code change history.

*Gradle (L) — The Gradle tool window provides a view of the Gradle tasks
that make up the project build configuration. The window lists the tasks
involved in compiling the various elements of the project into an
executable application. Right-click on a top-level Gradle task and select
the Open Gradle Config menu option to load the Gradle build file for the
current project into the editor. Gradle will be covered in greater detail later
in this book.

*Device Manager (M) - Provides access to the Device Manager tool
window where physical Android device connections and emulators may be
added, removed, and managed.

*Running Devices (N) - Contains the AVD emulator if the option has been
enabled to run the emulator in a tool window as outlined in the chapter
entitled “Creating an Android Virtual Device (AVD) in Android Studio”.

*Gemini (O) - Android Studio’s Al powered coding assistant. Currently in

preview, this tool helps you develop your app by providing coding
suggestions and solutions.

*Assistant (P) - Display the Assistant panel, the content of which will differ
depending on which Android Studio feature you are currently using.

*App Inspection - Provides access to the Database and Background Task
inspectors. The Database Inspector allows you to inspect, query, and
modify your app’s databases while running. The Background Task
Inspector allows background worker tasks created using WorkManager to
be monitored and managed.

*Bookmarks — The Bookmarks tool window provides quick access to
bookmarked files and code lines. For example, right-clicking on a file in
the project view allows access to an Add to Bookmarks menu option.
Similarly, you can bookmark a line of code in a source file by moving the
cursor to that line and pressing the F11 key (F3 on macOS). All



bookmarked items can be accessed through this tool window.

*Build Variants — The build variants tool window provides a quick way to
configure different build targets for the current application project (for
example, different builds for debugging and release versions of the
application or multiple builds to target different device categories).

*Device File Explorer — Available via the View -> Tool Windows -> Device

File Explorer menu, this tool window provides direct access to the
filesystem of the currently connected Android device or emulator,
allowing the filesystem to be browsed and files copied to the local
filesystem.

*Layout Inspector - Provides a visual 3D rendering of the hierarchy of
components that make up a user interface layout.

Structure — The structure tool provides a high-level view of the structure
of the source file currently displayed in the editor. This information
includes a list of items such as classes, methods, and variables in the file.
Selecting an item from the structure list will take you to that location in the
source file in the editor window.

*TODO - As the name suggests, this tool provides a place to review items
that have yet to be completed on the project. Android Studio compiles this
list by scanning the source files that make up the project to look for
comments that match specified TODO patterns. These patterns can be
reviewed and changed by opening the Settings dialog and navigating to the
TODO entry listed under Editor.

6.5 The Tool Window Menus

Each tool window has its own toolbar along the top edge. The menu buttons
within these toolbars vary from one tool to the next, though all tool
windows contain an Options menu (marked A in Figure 6-11):

B Android £ ¢ X i =
S v Coapp a 6
> [J manifests

v [Djava

v [ com.example.androidsample

Figure 6-11



The Options menu allows various aspects of the window to be changed.
Figure 6-12, for example, shows the Options menu for the Project tool
window. Settings are available, for example, to undock a window and to
allow it to float outside of the boundaries of the Android Studio main
window, and to move and resize the tool panel:

Android
Tree Appearance

[ app Enable Preview Tab

2 manifests Open Files with Single Click

O kotlin+java Always Select Opened File

[) com.example.andro
@ MainActivity Edit Scopes...

[57 com.example.andro v Group Tabs

[57 com.example.andro
[2res

[:] drawable

layout

[=] mipmap Remove from Sidebar

values

colors.xml

Figure 6-12
All tool windows also include a far-right button on the toolbar (marked B in
Figure 6-11 above), providing an additional way to hide the tool window
from view. A search of the items within a tool window can be performed by
giving that window focus by clicking on it and then typing the search term
(for example, the name of a file in the Project tool window). A search box

will appear in the window’s toolbar, and items matching the search
highlighted.

6.6 Android Studio Keyboard Shortcuts

Android Studio includes many keyboard shortcuts to save time when
performing common tasks. A complete keyboard shortcut keymap listing
can be viewed and printed from within the Android Studio project window
by selecting the Help -> Keyboard Shortcuts PDF menu option. You may
also list and modify the keyboard shortcuts by opening the Settings dialog
and clicking on the Keymap entry, as shown in Figure 6-13 below:

View Mode
Move to

Resize

? Help



[ JON } Settings
Q:

Keymap
> Appearance & Behavior ~
mac0S v| &
Keymap
N Get more keymaps in Preferences | Plugins
> Editor
Plugins S X oM Q- 2

> Version Control - .
1 Editor Actions

> Build, Execution, Deploy Add or Remove Caret X £rClick

> Languages & Framework = .
sy Add Rectangular Selection on Mouse Drag X £ 38Click

> Tools Backspace a oa

Advanced Settings Move Caret Backward a Paragraph
Kotlin Compiler Move Caret Backward a Paragraph with Selection
> Experimental Choose Lookup Iltem 8
Choose Lookup Item and Invoke Complete Statement inherited from Complete Current Statement %+

Choose Lookup Item and Insert Dot
Choose Lookup Item Replace [}
Clone Caret Above
Clone Caret Below

Move Caret to Code Block End ]
Move Caret to Code Block End with Selection X0s]
Move Caret to Code Block Start %[
Move Caret to Code Block Start with Selection X0l
Complete Current Statement o#a
@ Conv inherited from Conv %C

Select Next Tab in multi-editor file, Select Next Tab, Select Previous Tab and 9 more shortcuts conflict with the mac(
Assign custom shortcuts or change the macOS system settings.

s Cancel [ o |
Figure 6-13
6.7 Switcher and Recent Files Navigation

Another useful mechanism for navigating within the Android Studio main
window involves using the Switcher. Accessed via the Ctrl-Tab keyboard
shortcut, the switcher appears as a panel listing both the tool windows and
currently open files (Figure 6-14).

Switcher

[ Notifications strings.xml
[ Project activity_main.xml
() Profiler (@ MainActivity.kt
[Z Running Devices

[> Run

(7 Problems

%9 Version Control

€ App Quality Insights

[}, Device Manager

&7 Gradle

#J Logcat

&» Resource Manager

Terminal

- W @ U >» © O b W N = O

~/Dropbox/Documents/Books/Giraffe_Kotlin/WORK/AndroidSample/app/src/main/res/layout

Figure 6-14
Once displayed, the switcher will remain visible as long as the Ctrl key
remains depressed. Repeatedly tapping the Tab key while holding down the
Ctrl key will cycle through the various selection options while releasing the
Ctrl key causes the currently highlighted item to be selected and displayed



within the main window.

In addition to the Switcher, the Recent Files panel provides navigation to
recently opened files (Figure 6-15). This can be accessed using the Ctrl-E
keyboard shortcut (Cmd-E on macOS). Once displayed, either the mouse
pointer can be used to select an option, or the keyboard arrow keys can be
used to scroll through the file name and tool window options. Pressing the
Enter key will select the currently highlighted item:

Recent Files Show edited only #E

[ Project activity_main.xml

[> Run strings.xml

(15 Problems (@ MainActivity.kt

2 Version Control &2 build.gradle.kts (:app)

< App Quality Insights @ Translations Editor

[ Device Manager © Button.java

&7 Gradle

43 Logcat

[? Notifications

(@ Profiler

& Resource Manager

[& Running Devices

Terminal

Recent Locations
~/Dropbox/Documents/Books/Giraffe_Kotlin/WORK/AndroidSample/app/src/main/res/values

Figure 6-15

6.8 Changing the Android Studio Theme

The overall theme of the Android Studio environment may be changed
using the Settings dialog. Once the settings dialog is displayed, select the
Appearance & Behavior option in the left-hand panel, followed by
Appearance. Then, change the setting of the Theme menu before clicking
on the OK button. The themes available will depend on the platform but
usually include options such as Light, IntelliJ, Windows, High Contrast, and
Darcula. Figure 6-16 shows an example of the main window with the Dark
theme selected:



AndroidSample

Android v

Version control ~ [ Pixel 4 API 34 - Quick Boot v

MainA

C3app

Palette activity_main.xml v QS &, DOPixel v

Common

Text
4 ple.androidsamplc
MainActivity uttons
> BJcom.example.androidsamplc Widgets

> [J com.example.androidsampl¢ Layouts

Ab TextView © U

[ Button

(=) ImageView

= RecyclerView
[ FragmentCon...
3 ScrollView

L0dp | o 5

~ Cares
[ drawable
(3 layout
[E3 mipmap
v [(Dvalues

colors.xml

</> strings.xml

(D themes
& xml

Containers -8 Switch
Helpers
Google
Legacy

Component Tree

°\, ConstraintLayout

Ab textView

O button

Cares Ab dollarText

> @ Gradle Scripts

B 4 0 & v 9

o Q

Figure 6-16
To synchronize the Android Studio theme with the operating system light

and dark mode setting, enable the Sync with OS option and use the drop-
down menu to control which theme to use for each mode:

Appearance & Behavior > Appearance

Theme: Sync with 0S 3, Get more themes
Preferred Theme
Zoom: 100% -
- 2 - Light
Change with ~"\C= or ~"\_-. Set to 100% with ~\_0
v Light
Use custom font: Light with Light Header
IntelliJ Light
Accessibility Dark
Support screen readers  Requires restart v Dark
~=1and ~ £+ will navigate Ul controls in dialogs and will not k Darcula

switching editor tabs or other IDE actions. Tooltips on mouse h¢ High Contrast

Use contrast scrollbars

Figure 6-17
Hundreds of additional themes are available for download in the Android

Studio Marketplace, which can be accessed by clicking on the Get more
themes link.

6.9 Summary

The primary elements of the Android Studio environment consist of the
welcome screen and main window. Each open project is assigned its own
main window, which, in turn, consists of a menu bar, toolbar, editing and
design area, status bar, and a collection of tool windows. Tool windows



appear on the sides of the main window.

There are very few actions within Android Studio that cannot be triggered
via a keyboard shortcut. A keymap of default keyboard shortcuts can be
accessed at any time from within the Android Studio main window.



7. Testing Android Studio Apps on a
Physical Android Device

While much can be achieved by testing applications using an Android
Virtual Device (AVD), there is no substitute for performing real-world
application testing on a physical Android device, and some Android
features are only available on physical Android devices.

Communication with both AVD instances and connected Android devices is
handled by the Android Debug Bridge (ADB). This chapter explains how to
configure the adb environment to enable application testing on an Android
device with macOS, Windows, and Linux-based systems.

7.1 An Overview of the Android Debug Bridge
(ADB)

The primary purpose of the ADB is to facilitate interaction between a
development system, in this case, Android Studio, and both AVD emulators
and Android devices to run and debug applications. ADB allows you to
connect to devices via WiFi or USB cable.

The ADB consists of a client, a server process running in the background
on the development system, and a daemon background process running in
either AVDs or real Android devices such as phones and tablets.

The ADB client can take a variety of forms. For example, a client is
provided as a command-line tool named adb in the Android SDK platform-
tools sub-directory. Similarly, Android Studio also has a built-in client.

A variety of tasks may be performed using the adb command-line tool. For
example, active virtual or physical devices may be listed using the devices
command-line argument. The following command output indicates the

presence of an AVD on the system but no physical devices:
$ adb devices

List of devices attached

emulator-5554 device

7.2 Enabling USB Debugging ADB on Android
Devices



Before ADB can connect to an Android device, that device must be
configured to allow the connection. On phone and tablet devices running
Android 6.0 or later, the steps to achieve this are as follows:

1.Open the Settings app on the device and select the About tablet or About
phone option (on some versions of Android, this can be found on the
System page of the Settings app).

2.0n the About screen, scroll down to the Build number field (Figure 7-1)
and tap it seven times until a message indicates that developer mode has
been enabled. If the Build number is not listed on the About screen, it
may be available via the Software information option. Alternatively,
unfold the Advanced section of the list if available.

Wi-Fi MAC address
02:00:00:44:55:66

Build number
PPP2.180412.012

Figure 7-1
3.Return to the main Settings screen and note the appearance of a new
option titled Developer options (on newer versions of Android, this
option is listed on the System settings screen). Select this option, and on
the resulting screen, locate the USB debugging option as illustrated in
Figure 7-2:
Debugging

USB debugging ‘)

Debug mode when USB is connected

Figure 7-2
4.Enable the USB debugging option and tap the Allow button when
confirmation is requested.
If you use a Samsung Galaxy device, you may need to turn off the Auto
Blocker feature in the Settings app before enabling the debugging option.

The device is now configured to accept debugging connections from adb on
the development system over a USB connection. All that remains is to
configure the development system to detect the device when it is attached.



While this is a relatively straightforward process, the steps differ depending
on whether the development system runs Windows, macOS, or Linux. Note
that the following steps assume that the Android SDK platform-tools
directory is included in the operating system PATH environment variable as
described in the chapter entitled “Setting up an Android _Studio
Development Environment”.

7.2.1 macOS ADB Configuration

To configure the ADB environment on a macOS system, connect the device
to the computer system using a USB cable, open a terminal window, and
execute the following command to restart the adb server:

$ adb kill-server

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

Once the server is successfully running, execute the following command to
verify that the device has been detected:

$ adb devices

List of devices attached

74CEQ00600000001 offline

If the device is listed as offline, go to the Android device and check for the
dialog shown in Figure 7-3 seeking permission to Allow USB debugging.
Enable the checkbox next to the option that reads Always allow from this
computer before clicking OK.

Allow USB debugging?

The computer's RSA key fingerprint is:
6E:BF:56:13:95:F8:9B:7E:12:CF:C5:67

|:| Always allow from this computer

CANCEL OK

Figure 7-3
Repeating the adb devices command should now list the device as being

available:
List of devices attached
015d41d4454bf80c device

If the device is not listed, try logging out and back into the macOS desktop



and rebooting the system if the problem persists.
7.2.2 Windows ADB Configuration

The first step in configuring a Windows-based development system to
connect to an Android device using ADB is to install the appropriate USB
drivers on the system. The USB drivers to install will depend on the model
of the Android Device. If you have a Google device such as a Pixel phone,
installing and configuring the Google USB Driver package on your
Windows system will be necessary. Detailed steps to achieve this are
outlined on the following web page:

https://developer.android.com/sdk/win-usb.html

For Android devices not supported by the Google USB driver, it will be
necessary to download the drivers provided by the device manufacturer. A
listing of drivers, together with download and installation information, can
be obtained online at:

https://developer.android.com/tools/extras/oem-usb.html

With the drivers installed and the device now being recognized as the
correct device type, open a Command Prompt window and execute the

following command:
adb devices

This command should output information about the connected device
similar to the following:

List of devices attached

HT4CTJTO1906 offline

If the device is listed as offline or unauthorized, go to the device display and
check for the dialog shown in Figure 7-3 seeking permission to Allow USB
debugging. Enable the checkbox next to the option that reads Always allow
from this computer before clicking OK. Repeating the adb devices

command should now list the device as being ready:
List of devices attached
HT4CTJT0O1906 device

If the device is not listed, execute the following commands to restart the
ADB server:

adb kill-server
adb start-server

If the device is still not listed, try executing the following command:


http://developer.android.com/sdk/win-usb.html
http://developer.android.com/tools/extras/oem-usb.html

android update adb
Note that it may also be necessary to reboot the system.
7.2.3 Linux adb Configuration

For this chapter, we will again use Ubuntu Linux as a reference example in
configuring adb on Linux to connect to a physical Android device for
application testing.

Physical device testing on Ubuntu Linux requires the installation of a
package named android-tools-adb which, in turn, requires the Android
Studio user to be a member of the plugdev group. This is the default for
user accounts on most Ubuntu versions and can be verified by running the
id command. If the plugdev group is not listed, run the following command
to add your account to the group:

sudo usermod -aG plugdev $LOGNAME

After the group membership requirement has been met, the android-tools-

adb package can be installed by executing the following command:
sudo apt-get install android-tools-adb

Once the above changes have been made, reboot the Ubuntu system. Once
the system has restarted, open a Terminal window, start the adb server, and

check the list of attached devices:

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

$ adb devices

List of devices attached

015d41d4454bf80c offline

If the device is listed as offline or unauthorized, go to the Android device
and check for the dialog shown in Figure 7-3 seeking permission to Allow

USB debugging.
7.3 Resolving USB Connection Issues

If you are unable to successfully connect to the device using the above
steps, display the run target menu (Figure 7-4) and select the Troubleshoot
Device Connections option:



[, samsung SM-T290 X app b &
[], samsung SM-T290

[& Pixel 4 AP1 34
[& Resizable API 34

[ Select Multiple Devices...

% Pair Devices Using Wi-Fi

:= Troubleshoot Device Connections

Figure 7-4
The connection assistant will scan for devices and report problems and
possible solutions.

7.4 Enabling Wireless Debugging on Android

Devices

Follow steps 1 through 3 from section 7.2 above, this time enabling the
Wireless Debugging option as shown in Figure 7-5:

Wireless debugging ()

Debug mode when Wi-Fi is connected

Figure 7-5
Next, tap the above Wireless debugging entry to display the screen shown
in Figure 7-6:



Wireless debugging

Use wireless debugging ‘)

Device name
sdk_gphone64_arm64

IP address & Port
10.0.2.16:38159

mim Pair device with QR code
" Pair new devices using QR code scanner

Pair device with pairing code
Pair new devices using six digit code

Figure 7-6
If your device has a camera, select Pair device with QR code, otherwise
select the Pair device with pairing code option. Depending on your
selection, the Settings app will either start a camera session or display a
pairing code, as shown in Figure 7-7:

Pair with device

Wi-Fi pairing code
909814

IP address & Port
10.0.2.16:43967

Cancel

A

Figure 7-7
With an option selected, return to Android Studio and select the Pair

Devices Using WiFi option from the run target menu as illustrated in Figure
7-8:



[], samsung SM-T290 = app b O
[, samsung SM-T290

[& Pixel 4 API 34
[& Resizable API 34

[[ Select Multiple Devices...

@ Pair Devices Using Wi-Fi

i= Troubleshoot Device Connections

Figure 7-8
In the pairing dialog, select either Pair using QR code or Pair using pairing
code depending on your previous selection in the Settings app on the

device:

-
[ ] ([ ] Pair devices over Wi-Fi

Pair new devices over Wi-Fi

Pair devices to enable wireless debugging. Pair camera-enabled devices using a QR code.
Other devices can be paired using a pairing code. Learn more

Pairusing QR code  Pair using pairing code

To pair an Android 11+ device
scan the QR code from your device

QRscanner available at:
Developer options > Wireless debugging > Pair using QR code

Figure 7-9
Either scan the QR code using the Android device or enter the pairing code
displayed on the device screen into the Android Studio dialog (Figure 7-10)
to complete the pairing process:

[ ] [ ] Enter pairing code

Enter the 6 digit code shown on the device at
10.0.2.15:43967 to pair.



Figure 7-10
If the pairing process fails, try rebooting both the development system and
the Android device and try again.

7.5 Testing the adb Connection

Assuming that the adb configuration has been successful on your chosen
development platform, the next step is to try running the test application
created in the chapter entitled ‘“Creating_an Example Android App in
Android _Studio” on the device. Launch Android Studio, open the
AndroidSample project, and verify that the device appears in the device
selection menu as highlighted in Figure 7-11:

[]. samsung SM-T290 - = appvy D L
[, samsung SM-T290

[& Pixel 4 API 34
[& Resizable APl 34

([ Select Multiple Devices...

@ Pair Devices Using Wi-Fi

¢= Troubleshoot Device Connections

Figure 7-11
Select the device from the list and click the run button to install and run the
app.
7.6 Device Mirroring

Device mirroring allows you to run an app on a physical device while
viewing the display within Android Studio’s Running Devices tool window.
In other words, although your app is running on a physical device, it
appears within Android Studio in the same way as an AVD instance.

With a device connected to Android Studio, display the Running Devices
tool window and click the Device Mirror settings link to display the
Settings dialog. Within the Settings dialog, enable the mirroring of physical
Android devices and click OK. The next time the app is run, Android Studio
will mirror the display of the physical device in the Running Devices tool



window.

7.7 Summary

While the Android Virtual Device emulator provides an excellent testing
environment, it is essential to remember that there is no real substitute for
ensuring an application functions correctly on a physical Android device.

By default, however, the Android Studio environment is not configured to
detect Android devices as a target testing device. It is necessary, therefore,
to perform some steps to load applications directly onto an Android device
from within the Android Studio development environment via a USB cable
or over a WiFi network. The exact steps to achieve this goal differ
depending on the development platform. In this chapter, we have covered
those steps for Linux, macOS, and Windows-based platforms.



8. The Basics of the Android Studio
Code Editor

Developing applications for Android involves a considerable amount of
programming work which, by definition, involves typing, reviewing, and
modifying lines of code. Unsurprisingly, most of a developer’s time spent
using Android Studio will typically involve editing code within the editor
window.

The modern code editor must go far beyond the basics of typing, deleting,
cutting, and pasting. Today the usefulness of a code editor is generally
gauged by factors such as the amount by which it reduces the typing
required by the programmer, ease of navigation through large source code
files, and the editor’s ability to detect and highlight programming errors in
real-time as the code is being written. As will become evident in this
chapter, these are just a few areas in which the Android Studio editor
excels.

While not an exhaustive overview of the features of the Android Studio
editor, this chapter aims to provide a guide to the tool’s key features.
Experienced programmers will find that some of these features are common
to most code editors today, while a number are unique to this editing
environment.

8.1 The Android Studio Editor

The Android Studio editor appears in the center of the main window when a
Java, Kotlin, XML, or other text-based file is selected for editing. Figure 8-
1, for example, shows a typical editor session with a Kotlin source code file
loaded:



(D] activity_main.xml (@ MainActivity.kt e s
ackage com.example.androidsample 1 A v

E?A P 9 P P =7
import ... X
class MainActivity : AppCompatActivity() { [_?]g

of override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity main)

' EJ|
fun convertCurrency(view: View) { 0

val dollarText: EditText = findViewById(R.id.dollarText)

e val textView: TextView = findViewById(R.id.textView)
if (dollarText.text.isNotEmpty()) {

D val dollarValue = dollarText.text.toString().toFloat()
e val euroValue = dollarValue * 0.85f
@ textView.text = euroValue.toString()

lse {
@ e

textView.text = "No Value"
¥

+

154 3
O AndroidSample > Capp > src > Omain > java > com > example > androidsample > (@ MainActivity e 3311 LF UTF-8 4spaces & O

The elements that comprise the editor window can be summarized as
follows:

A — Document Tabs — Android Studio can hold multiple files open for
editing at anytime. As each file is opened, it is assigned a document tab
displaying the file name in the tab bar along the editor window’s top edge.
A small drop-down menu will appear in the far right-hand corner of the tab
bar when there is insufficient room to display all of the tabs. Clicking on
this menu will drop down a list of additional open files. A wavy red line
underneath a file name in a tab indicates that the code in the file contains
one or more errors that need to be addressed before the project can be
compiled and run.

Switching between files is a matter of clicking on the corresponding tab or
using the Alt-Left and Alt-Right keyboard shortcuts. Navigation between
files may also be performed using the Switcher mechanism (accessible via
the Ctrl-Tab keyboard shortcut).

To detach an editor panel from the Android Studio main window so that it
appears in a separate window, click on the tab and drag it to an area on the
desktop outside the main window. To return the editor to the main window,
click on the file tab in the separated editor window and drag and drop it



onto the original editor tab bar in the main window.

B — The Editor Gutter Area - The gutter area is used by the editor to
display informational icons and controls. Some typical items in this gutter
area are debugging breakpoint markers, controls to fold and unfold blocks
of code, bookmarks, change markers, and line numbers. Line numbers are
switched on by default but may be disabled by right-clicking in the gutter
and selecting the Appearance -> Show Line Numbers menu option.

C - Code Structure Location - This bar at the bottom of the editor
displays the cursor’s current position as it relates to the overall structure of
the code. In the following figure, for example, the bar indicates that the
convertCurrency method is currently being edited and that this method is

contained within the MainActivity class:
¥

132 }

0 AndroidSample > Oapp > sfrc > Omain > java > com > example > androidsample > (@ MainActivity > @ convertCurrency

Figure 8-2
Double-clicking an element within the bar will move the cursor to the
corresponding location within the code file. For example, double-clicking
on the convertCurrency entry will move the cursor to the top of the
convertCurrency method within the source code. Similarly, clicking on the
MainActivity entry displays a list of available code navigation points for
selection:
i

} (™ convertCurrency

14 @ onCreate

O AndroidSample > Oapp > src > Omain > java > com > example > androidsample > (@ MainActivity

Figure 8-3
D — The Editor Area — The main area where the user reviews, enters, and

edits the code. Later sections of this chapter will cover the key features of
the editing area in detail.

E — The Validation and Marker Sidebar — Android Studio incorporates a
feature called “on-the-fly code analysis”. This essentially means that as you
are typing code, the editor analyzes the code to check for warnings and
syntax errors. The indicators at the top of the validation sidebar will update
in real-time to indicate the number of errors and warnings found as code is



added. Clicking on this indicator will display a popup containing a
summary of the issues found with the code in the editor, as illustrated in
Figure 8-4:

01 A1 ~ ~

1 error, 1 warning

Highlight: All Problems v

Figure 8-4
The up and down arrows move between the error locations within the code.

A green check mark indicates that no warnings or errors have been
detected.

The sidebar also displays markers at the locations where issues have been
detected using the same color coding. Hovering the mouse pointer over a
marker when the line of code is visible in the editor area will display a
popup containing a description of the issue:

Unresolved reference: textView1

Create id value resource 'textView1' {4+ More actions... 0«

Figure 8-5
Hovering the mouse pointer over a marker for a line of code that is
currently scrolled out of the viewing area of the editor will display a “lens”
overlay containing the block of code where the problem is located (Figure
8-6) allowing it to be viewed without the necessity to scroll to that location
in the editor:

setContentView(R.layout.agctivity main)
+

fun convertCurrency(view: View) { |Parameter 'view' is never used

val dollarText: EditText = findViewById(R.id.dollarText)
val textView: TextView = findViewById(R.id.textViewl) [Unresolved reference: textViewl]

if (dollarText.text.isNotEmpty()) {

Figure 8-6
It is also worth noting that the lens overlay is not limited to warnings and
errors in the sidebar. Hovering over any part of the sidebar will result in a



lens appearing containing the code present at that location within the source
file.

F — The Status Bar — Though the status bar is part of the main window, as
opposed to the editor, it does contain some information about the currently
active editing session. This information includes the current position of the
cursor in terms of lines and characters and the encoding format of the file
(UTF-8, ASCII, etc.). Clicking on these values in the status bar allows the
corresponding setting to be changed. For example, clicking on the line
number displays the Go to Line:Column dialog. Use the View ->
Appearance -> Status Bar Widgets menu option to add and remove widgets.
For example, the Memory Indicator is a helpful widget if you are
experiencing performance problems with Android Studio.

Having provided an overview of the elements that comprise the Android
Studio editor, the remainder of this chapter will explore the key features of
the editing environment in more detail.

8.2 Splitting the Editor Window

By default, the editor will display a single panel showing the content of the
currently selected file. A useful feature when working simultaneously with
multiple source code files is the ability to split the editor into multiple
panes. To split the editor, right-click on a file tab within the editor window
and select either the Split Right or Split Down menu option. Figure 8-7, for
example, shows the splitter in action with the editor split into three panels:



activity_main.xml strings.xml 0 v &2 build.gradle.kts (:app)

il <?xml version="1.0" encoding="utf-8"?> (Y] 4 A v

©® You can use the Project Structure dialog t... Open (38;) Hide notification
© <androidx.constraintlayout.widget.ConstraintLayout xmlns:a
i . v
xmlns:app:"http://schemas.andr‘oid.com/apk/r‘es-auto” 1 plugins { this: PluginDependenciesSpecScope X
xmlns:tools="http://schemas.android.com/tools" id("com.android.application")
android:layout_width="match_parent" +

android:layout_height="match_parent"

tools:context=".MainActivity"> android { this: BaseAppModuleExtension

namespace = "com.example.androidsample"
<TextView compileSdk = 33
android:id="@+id/textView"
android:layout_width="wrap_content" defaultConfig { this: ApplicationDefaultConfig
android:layout_height="wrap_content" applicationId = "com.example.androidsample"”
android:text="Hello World!" minSdk = 26
app:layout_constraintBottom_toBottomOf="parent" largetSdk = 33
app:layout_constraintEnd_toEndOf="parent" versionCode = 1
app:layout_constraintStart_toStart0f="parent" versionName = "1.0"
testInstrumentationRunner = "androidx.test.runner.And
activity_main.xml 0 v 3
1 |<?xrnl version="1.0" encoding="utf-8"?> @2 bha ~ v

buildTypes { this: NamedDomainObjectContainer<ApplicationBuildType>
© <androidx.constraintlayout.widget.ConstraintLayout xmlns:ai

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">

release { this: ApplicationBuildType
isMinifyEnabled = false
proguardFiles(
getDefaultProguardFile("proguard-android-opti
"proguard-rules.pro"

}
}
compileOptions { this: CompileOptions

<TextView
android:id="@+id/textView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello World!"
app:layout_constraintBottom_toBottom0f="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStart0f="parent"

sourceCompatibility = JavaVersion.VERSION_1_8
targetCompatibility = JavaVersion.VERSION_1_8
}
}

dependencies { this: DependencyHandlerScope

Figure 8-7

The orientation of a split panel may be changed at any time by right-
clicking on the corresponding tab and selecting the Change Splitter
Orientation menu option. Repeat these steps to unsplit a single panel, this
time selecting the Unsplit option from the menu. All split panels may be
removed by right-clicking on any tab and selecting the Unsplit All menu
option.

Window splitting may be used to display different files or to provide
multiple windows onto the same file, allowing different areas of the same
file to be viewed and edited concurrently.

8.3 Code Completion

The Android Studio editor has a considerable amount of built-in knowledge
of Kotlin programming syntax and the classes and methods that make up
the Android SDK, as well as knowledge of your own code base. As code is
typed, the editor scans what is being typed and, where appropriate, makes



suggestions with regard to what might be needed to complete a statement or
reference. When the editor detects a completion suggestion, a panel
containing a list of suggestions will appear. In Figure 8-8, for example, the

editor is suggesting possibilities for the beginning of a String declaration:
class MainActivity : AppCompatActivity() {

var name: Strin

© stringBuffer (java.lang)
overrid @ stping (kotlin)

| © stringBuilder (java.lang)
s

et
N (% stringIndex0ut0fBoundsException (java.lang)

Figure 8-8
If none of the auto-completion suggestions are correct, keep typing, and the
editor will continue to refine the suggestions where appropriate. To accept
the topmost suggestion, press the Enter or Tab key on the keyboard. To
select a different suggestion, use the arrow keys to move up and down the
list, again using the Enter or Tab key to select the highlighted item.

Completion suggestions can be manually invoked using the Ctrl-Space
keyboard sequence. This can be useful when changing a word or
declaration in the editor. When the cursor is positioned over a word in the
editor, that word will automatically highlight. Pressing Ctrl-Space will
display a list of alternate suggestions. Press the Tab key to replace the
current word with the highlighted item in the suggestion list.

In addition to the real-time auto-completion feature, the Android Studio
editor also offers a Smart Completion system. Smart completion is invoked
using the Shift-Ctrl-Space keyboard sequence and, when selected, will
provide more detailed suggestions based on the current context of the code.
Pressing the Shift-Ctrl-Space shortcut sequence a second time will provide
more suggestions from a broader range of possibilities.

Code completion can be a matter of personal preference for many
programmers. In recognition of this fact, Android Studio provides a high
level of control over the auto-completion settings. These can be viewed and
modified by opening the Settings dialog and choosing Editor -> General ->
Code Completion from the settings panel, as shown in Figure 8-9:



[ NON ) Settings
Q- Editor > General > Code Completion
> Appearance & Behavior Match case: @ First letter only All letters
Keymap
v Editor
~ General

Automatically insert single suggestions for:
Basic Completion ~Space

Type-Matching Completion ~{:Space

Auto Import
Appearance Sort suggestions alphabetically
Breadcrumbs Show suggestions as you type
Code Completion Insert selected suggestion by pressing space, dot, or other context-dependent keys
Coceliolding Show the documentation popup in ms
Console
Insert p: ically when

Editor Tabs

Gutter lcons Configure classes excluded from completion

Postfix Completion

Smart Keys Machine Learning-Assisted Completion

Code Editing Sort completion suggestions based on machine learning
Font
Color Scheme
> Code Style
Inspections
File and Code Templates

File Encodings
. Compose
Live Templates

File Types Enable enhanced auto-completion when using Jetpack Compose

? Cancel [ oc |
Figure 8-9
8.4 Statement Completion

Another form of auto-completion provided by the Android Studio editor is
statement completion. This can be used to automatically fill out the
parentheses and braces for items such as methods and loop statements.
Statement completion is invoked using the Shift-Ctrl-Enter (Shift-Cmd-
Enter on macOS) keyboard sequence. Consider, for example, the following
code:

fun myMethod()

Having typed this code into the editor, triggering statement completion will

cause the editor to add the braces to the method automatically:
fun myMethod() {

)
8.5 Parameter Information

It is also possible to ask the editor to provide information about the
argument parameters a method accepts. With the cursor positioned between
the brackets of a method call, the Ctrl-P (Cmd-P on macOS) keyboard
sequence will display the parameters known to be accepted by that method,
with the most likely suggestion highlighted in bold:



locale: Locale?, vararg args: Any?
vararg args: Any?

val myButton: String = myString.format()
Figure 8-10
8.6 Parameter Name Hints

The code editor may be configured to display parameter name hints within
method calls. Figure 8-11, for example, highlights the parameter name hints
within the calls to the make() and setAction() methods of the Snackbar
class:

binding.fab.setOnClickListener { view ->
Snackbar.make (view, "Replace with your own action", Snackbar.LENGTH_LONG)

.setAction ("Action" , null) .show()

Figure 8-11
The settings for this mode may be configured by opening the Settings
dialog and navigating to Editor -> Inlay Hints -> Kotlin in the side panel.
Turn on or off the Parameter names option on the resulting screen for your
chosen programming language. To adjust the hint settings, click on the
Exclude list... link and make any necessary adjustments.

8.7 Code Generation

In addition to completing code as it is typed, the editor can, under certain
conditions, also generate code for you. The list of available code generation
options shown in Figure 8-12 can be accessed using the Alt-Insert (Cmd-N
on macOS) keyboard shortcut when the cursor is at the location in the file
where the code is to be generated.



Generate

Secondary Constructor

equals() and hashCode()

toString()
Override Methods... ~0
Implement Methods... I
Test...
Copyright

Figure 8-12

For example, consider a situation where we want to be notified when an
Activity in our project is about to be destroyed by the operating system. As
outlined in a later chapter of this book, this can be achieved by overriding
the onStop() lifecycle method of the Activity superclass. To have Android
Studio generate a stub method for this, select the Override Methods...
option from the code generation list and select the onStop() method from
the resulting list of available methods:

[ ] O Override/Implement Members

dispatchKeyEvent(event: KeyEvent!): Boolean
onMenuOpened(featureld: Int, menu: Menu): Bool
onContentChanged(): Unit
onPanelClosed(featureld: Int, menu: Menu): Unit
onKeyDown(keyCode: Int, event: KeyEvent!): Bool
onConfigurationChanged(newConfig: Configuratio
onPostCreate (savedinstanceState: Bundle?): Unit
onStart(): Unit

onPostResume(): Unit

onStop(): Unit

onDestroy(): Unit

findViewByld(id: Int): T!

setContentView (layoutResID: Int): Unit
setContentView (view: View!): Unit
setContentView (view: View!, params: ViewGroup.|
addContentView(view: View!, params: ViewGroup.
invalidateOptionsMenu(): Unit
openOptionsMenu(): Unit

DRONENENONONENONONONENONONEONEONONONENE)

closeOntionsMenu(): Unit

Copy JavaDoc | gelect None Cancel m

Figure 8-13
Having selected the method to override, clicking on OK will generate the



stub method at the current cursor location in the Kotlin source file as

follows:
override fun onStop() {
super.onStop()

}
8.8 Code Folding

Once a source code file reaches a certain size, even the most carefully
formatted and well-organized code can become overwhelming and
challenging to navigate. Android Studio takes the view that it is not always
necessary to have the content of every code block visible at all times. Code
navigation can be made easier by using the code folding feature of the
Android Studio editor. Code folding is controlled using disclosure arrows
that appear at the beginning of each code block in a source file when the
mouse pointer hovers in the gutter area. Figure 8-14, for example,
highlights the disclosure arrow for a method declaration that is not currently
folded:

‘ private fun createOptionsMenu(menu: Menu): Boolean {
menuInflater.inflate(R.menu.menu main, menu)
return true

Figure 8-14
Clicking on this marker will fold the statement such that only the signature
line is visible, as shown in Figure 8-15:

private fun createOptionsMenu(menu: Menu): Boolean {...}

Figure 8-15
To unfold a collapsed section of code, click on the disclosure arrow in the
editor gutter. To see the hidden code without unfolding it, hover the mouse
pointer over the “{...}” indicator, as shown in Figure 8-16. The editor will
then display the lens overlay containing the folded code block:



38 = private fun createOptionsMenu(menu: Menu): Boolean {...}

38 private fun createOptionsMenu(menu: Menu): Boolean {
menuInflater.inflate(R.menu.menu _main, menu)
return true

Figure 8-16

All of the code blocks in a file may be folded or unfolded using the Ctrl-
Shift-Plus and Ctrl-Shift-Minus keyboard sequences (Cmd-Shift-Plus and
Cmd-Shift-Minus on macOS).

By default, the Android Studio editor will automatically fold some code
when a source file is opened. To configure the conditions under which this
happens, navigate to the Editor -> General -> Code Folding entry in the
Settings dialog (Figure 8-17):

[ ] Settings
Q- Editor > General 5> Code Folding <

> Appearance & Behavior Show code folding outline

Keymap
v Editor Fold by default:
~ General General
Auto Import File header
Appearance Imports

Breadcrumbs 4
Documentation comments

Code Completio
SmPeon Method bodies

Code Folding
Custom folding regions
Console
Editor Tabs Android
Gutter Icons String References
Postfix Completion
C/C++
> Smart Keys
Code Editing Multiline comments
Font Lambdas
> Color Scheme Template parameters
> Code Style Conditionally non-compiled code
Inspections Space instead of new line before '{', if collapsed

File and Code Templates
Java
File Encodings

7 =
TaT [ One-line methods

File Types Simple property accessors

Design Tools Inner classes

? Cancel [ ok |
Figure 8-17
8.9 Quick Documentation Lookup

Context-sensitive Kotlin and Android documentation can be accessed by
placing the cursor over the declaration for which documentation is required
and pressing the Ctrl-Q keyboard shortcut (Ctrl-J on macOS). This will



display a popup containing the relevant reference documentation for the
item. Figure 8-18, for example, shows the documentation for the Android
Menu class.

override fun onCreateOptionsMenu(menu: Menu): Boolean {

" public open fun onCreateOptionsMenu(
menuInflater.inflate( menu: Menu

createOptionsMenu(men ): Boolean
return true

2

android.app.Activity

Initialize the contents of the Activity's standard options
menu. You should place your menu items in to menu.
override fun onOptionsIte This is only called once, the first time the options menu is
displayed. To update the menu every time it is displayed, see
onPrepareOptionsMenu.

The default implementation populates the menu with

Figure 8-18
8.10 Code Reformatting

In general, the Android Studio editor will automatically format code in
terms of indenting, spacing, and nesting of statements and code blocks as
they are added. In situations where lines of code need to be reformatted (a
common occurrence, for example, when cutting and pasting sample code
from a website), the editor provides a source code reformatting feature
which, when selected, will automatically reformat code to match the
prevailing code style.

Press the Ctrl-Alt-L. (Cmd-Opt-L on macOS) keyboard shortcut sequence to
reformat the source code. To display the Reformat Code dialog (Figure 8-
19) use the Ctrl-Alt-Shift-L. (Cmd-Opt-Shift-L. on macOS). This dialog
provides the option to reformat only the currently selected code, the entire
source file currently active in the editor, or only code that has changed as a
result of a source code control update:

nd



[ ) Reformat File: MainActivity.kt

Scope

© Whole file

Options

Optimize imports

Code cleanup Do not keep line breaks
Figure 8-19

The full range of code style preferences can be changed by opening the
Settings dialog and choosing Code Style in the side panel to access a list of
supported programming and markup languages. Selecting a language will
provide access to a vast array of formatting style options, all of which may
be modified from the Android Studio default to match your preferred code
style. To configure the settings for the Rearrange code option in the above
dialog, for example, unfold the Code Style section, select Kotlin and, from
the Kotlin settings, select the Arrangement tab.

8.11 Finding Sample Code

The Android Studio editor provides a way to access sample code relating to
the currently highlighted entry within the code listing. This feature can be
helpful for learning how a particular Android class or method is used. To
find sample code, highlight a method or class name in the editor, right-click
on it, and select the Find Sample Code menu option. If sample code is
available, the Find Sample Code panel will appear with a list of matching
samples. Selecting a sample from the list will load the corresponding code
into the right-hand panel.

8.12 Live Templates

As you write Android code, you will find that there are common constructs
that are used frequently. For example, a common requirement is to display a
popup message to the user using the Android Toast class. Live templates are
a collection of common code constructs that can be entered into the editor
by typing the initial characters followed by a special key (set to the Tab key



by default) to insert template code. To experience this in action, type toast
in the code editor followed by the Tab key, and Android Studio will insert
the following code at the cursor position ready for editing:
Toast.makeText(, "", Toast.LENGTH_SHORT).show()

To list and edit existing templates, change the special key, or add your own
templates, open the Settings dialog and select Live Templates from the
Editor section of the left-hand navigation panel:

[ BON ]
Q-
Editor
Code Completion
Code Folding
Console
Editor Tabs

Gutter Icons
Postfix Completion
> Smart Keys
Code Editing
Font
> Color Scheme
> Code Style
Inspections
File and Code Templates
File Encodings

Live Templates

Settings
Editor 5 Live Templates <
By default expand with  Tab hd
v [ Android W

const (Define android style int constant) —
fbe (findViewByld with cast) @
foreach (Create a for each loop)

gone (Set view visibility to GONE)

IntentView (Creates an Intent with ACTION_VIEW)

® key (Key for a bundle) e

newlinstance (create a new Fragment instance with arguments)

nolnstance (private empty constructor to prohibit instance creation)

rg$S (get a String from resources)

rouiT (runOnUIThread)

Abbreviation: | const Description:  Define android style int constant

Template text:

File Types Edit Variables...
. private static final int $name$ = $value$;
Design Tools o
Options
> Copyright e

Inlay Hints Expand with Default (Tab) ~
Emmet Reformat according to style

" Use static import if possible
Intentions

Applicable in Java: declaration. Shorten FQ names

> language Injectians
guage Injecti Change v

Live Edit

Figure 8-20
Add, remove, duplicate, or reset templates using the buttons marked A in

Figure 8-20 above. To modify a template, select it from the list (B) and
change the settings in the panel marked C.

8.13 Summary

The Android Studio editor goes to great lengths to reduce the typing needed
to write code and make that code easier to read and navigate. This chapter
covered key editor features, including code completion, code generation,
editor window splitting, code folding, reformatting, documentation lookup,
and live templates.



9. An Overview of the Android
Architecture

So far, in this book, steps have been taken to set up an environment suitable
for developing Android applications using Android Studio. An initial step
has also been taken into the application development process by creating an
Android Studio application project.

However, before delving further into the practical matters of Android
application development, it is essential to understand some of the more
abstract concepts of both the Android SDK and Android development in
general. Gaining a clear understanding of these concepts now will provide a
sound foundation on which to build further knowledge.

Starting with an overview of the Android architecture in this chapter and
continuing in the following few chapters of this book, the goal is to provide
a detailed overview of the fundamentals of Android development.

9.1 The Android Software Stack

Android is structured as a software stack comprising applications, an
operating system, a runtime environment, middleware, services, and
libraries. This architecture can best be represented visually, as Figure 9-1
outlines. Each layer of the stack, and the corresponding elements within
each layer, are tightly integrated and carefully tuned to provide the optimal
application development and execution environment for mobile devices.
The remainder of this chapter will work through the different layers of the
Android stack, starting at the bottom with the Linux Kernel.



p

J

Application Framework

D
¥

Runtime and Platform Libraries

a
&

D
J

Hardware Abstraction Layer

\

&

Figure 9-1
9.2 The Linux Kernel

Positioned at the bottom of the Android software stack, the Linux Kernel
provides a level of abstraction between the device hardware and the upper
layers of the Android software stack. The kernel provides preemptive
multitasking, low-level core system services such as memory, process, and
power management, and a network stack and device drivers for hardware
such as the device display, WiFi, and audio.

The original Linux kernel was developed in 1991 by Linus Torvalds. It was
combined with a set of tools, utilities, and compilers developed by Richard
Stallman at the Free Software Foundation to create a complete operating
system called GNU/Linux. Various Linux distributions have been derived
from these basic underpinnings, such as Ubuntu and Red Hat Enterprise
Linux.

However, it is important to note that Android uses only the Linux kernel.
That said, it is worth noting that the Linux kernel was originally developed
for use in traditional desktop and server computer systems. In fact, Linux is
now most widely deployed in mission-critical enterprise server
environments. It is a testament to both the power of today’s mobile devices
and the efficiency and performance of the Linux kernel that we find this
software at the heart of the Android software stack.



9.3 Hardware Abstraction Layer

The Hardware Abstraction Layer (HAL) comprises a set of library modules
that interface with device components such as the camera, microphone, and
accelerometer. When the Android stack needs to access a hardware
component, it uses the HAL library modules. Each Android device
manufacturer has an abstraction layer for its specific hardware
configuration, allowing the standard Android libraries and frameworks to
run on any device without being altered for specific hardware.

9.4 Android Runtime — ART

When an Android app is built within Android Studio, it is compiled into an
intermediate bytecode format (DEX format). When the application is
subsequently loaded onto the device, the Android Runtime (ART) uses a
process referred to as Ahead-of-Time (AOT) compilation to translate the
bytecode down to the native instructions required by the device processor.
This format is known as Executable and Linkable Format (ELF).

Each time the application is subsequently launched, the ELF executable
version is run, resulting in faster application performance and improved
battery life.

This contrasts with the Just-in-Time (JIT) compilation approach used in
older Android implementations, whereby the bytecode was translated
within a virtual machine (VM) each time the application was launched.

9.5 Android Libraries

In addition to a set of standard Java development libraries (providing
support for such general-purpose tasks as string handling, networking, and
file manipulation), the Android development environment also includes the
Android Libraries. These are a set of Java-based libraries that are specific to
Android development. Examples of libraries in this category include the
application framework libraries in addition to those that facilitate user
interface building, graphics drawing, and database access.

A summary of some key core Android libraries available to the Android
developer is as follows:

eandroid.app — Provides access to the application model and is the
cornerstone of all Android applications.



eandroid.content — Facilitates content access, publishing, and messaging
between applications and application components.

eandroid.database — Used to access data published by content providers
and includes SQLite database management classes.

eandroid.graphics — A low-level 2D graphics drawing API including
colors, points, filters, rectangles, and canvases.

eandroid.hardware — Presents an API providing access to hardware such
as the accelerometer and light sensor.

eandroid.opengl — A Java interface to the OpenGL ES 3D graphics
rendering API.

eandroid.os — Provides applications with access to standard operating
system services, including messages, system services, and inter-process
communication.

eandroid.media — Provides classes to enable playback of audio and video.

eandroid.net — A set of APIs providing access to the network stack.
Includes android.net.wifi, which provides access to the device’s wireless
stack.

eandroid.print — Includes a set of classes that enable content to be sent to
configured printers from within Android applications.

eandroid.provider — A set of convenience classes that provide access to
standard Android content provider databases such as those maintained by
the calendar and contact applications.

eandroid.text — Used to render and manipulate text on a device display.

eandroid.util — A set of utility classes for performing tasks such as string
and number conversion, XML handling and date and time manipulation.

eandroid.view — The fundamental building blocks of application user
interfaces.

eandroid.widget - A rich collection of pre-built user interface components
such as buttons, labels, list views, layout managers, radio buttons etc.

eandroid.webkit — A set of classes intended to allow web-browsing
capabilities to be built into applications.

Having covered the Java-based libraries in the Android runtime, it is now

time to turn our attention to the C/C++-based libraries in this layer of the



Android software stack.
9.5.1 C/C++ Libraries

The Android runtime core libraries outlined in the preceding section are
Java-based and provide the primary APIs for Android developers. It is
important to note, however, that the core libraries do not perform much of
the actual work and are, in fact, essentially Java “wrappers” around a set of
C/C++-based libraries. When making calls, for example, to the
android.opengl library to draw 3D graphics on the device display, the
library ultimately makes calls to the OpenGL ES C++ library, which, in
turn, works with the underlying Linux kernel to perform the drawing tasks.

C/C++ libraries are included to fulfill a broad and diverse range of
functions, including 2D and 3D graphics drawing, Secure Sockets Layer
(SSL) communication, SQLite database management, audio and video
playback, bitmap and vector font rendering, display subsystem and graphic
layer management and an implementation of the standard C system library
(libc).

In practice, the typical Android application developer will access these
libraries solely through the Java-based Android core library APIs. If direct
access to these libraries is needed, this can be achieved using the Android
Native Development Kit (NDK), the purpose of which is to call the native
methods of non-Java or Kotlin programming languages (such as C and
C++) from within Java code using the Java Native Interface (JNI).

9.6 Application Framework

The Application Framework is a set of services that collectively form the
environment in which Android applications run and are managed. This
framework implements the concept that Android applications are
constructed from reusable, interchangeable, and replaceable components.
This concept is taken a step further in that an application can also publish
its capabilities along with any corresponding data so that other applications
can find and reuse them.

The Android framework includes the following key services:

*Activity Manager — Controls all aspects of the application lifecycle and
activity stack.

*Content Providers — Allows applications to publish and share data with



other applications.

*Resource Manager — Provides access to non-code embedded resources
such as strings, color settings, and user interface layouts.

*Notifications Manager — Allows applications to display alerts and
notifications to the user.

*View System — An extensible set of views used to create application user
interfaces.

*Package Manager — The system by which applications can find
information about other applications currently installed on the device.

*Telephony Manager — Provides information to the application about the
telephony services available on the device, such as status and subscriber
information.

*Location Manager — Provides access to the location services allowing an
application to receive updates about location changes.

9.7 Applications

Located at the top of the Android software stack are the applications. These
comprise the native applications provided with the particular Android
implementation (for example, web browser and email applications) and the
third-party applications installed by the user after purchasing the device.

9.8 Summary

A good Android development knowledge foundation requires an
understanding of the overall architecture of Android. Android is
implemented as a software stack architecture consisting of a Linux kernel, a
runtime environment, corresponding libraries, an application framework,
and a set of applications. Applications are predominantly written in Java or
Kotlin and compiled into bytecode format within the Android Studio build
environment. When the application is subsequently installed on a device,
this bytecode is compiled down by the Android Runtime (ART) to the
native format used by the CPU. The key goals of the Android architecture
are performance and efficiency, both in application execution and in the
implementation of reuse in application design.



10. The Anatomy of an Android App

Regardless of your prior programming experiences, be it Windows, macOS,
Linux, or even iOS based, the chances are good that Android development
is quite unlike anything you have encountered before.

Therefore, this chapter’s objective is to provide an understanding of the
high-level concepts behind the architecture of Android applications. In
doing so, we will explore in detail the various components that can be used
to construct an application and the mechanisms that allow these to work
together to create a cohesive application.

10.1 Android Activities

Those familiar with object-oriented programming languages such as Java,
Kotlin, C++, or C# will be familiar with the concept of encapsulating
elements of application functionality into classes that are then instantiated
as objects and manipulated to create an application. This is still true since
Android applications are written in Java and Kotlin. Android, however, also
takes the concept of reusable components to a higher level.

Android applications are created by combining one or more components
known as Activities. An activity is a single, standalone module of
application functionality that usually correlates directly to a single user
interface screen and its corresponding functionality. An appointment
application might, for example, have an activity screen that displays
appointments set up for the current day. An appointment application might
have an activity screen that displays appointments set up for the current day.
The application might also utilize a second activity consisting of a screen
where the user may enter new appointments.

Activities are intended as fully reusable and interchangeable building
blocks that can be shared amongst different applications. An existing email
application may contain an activity for composing and sending an email
message. A developer might be writing an application that is also required
to send an email message. Rather than develop an email composition
activity specifically for the new application, the developer can use the
activity from the existing email application.

Activities are created as subclasses of the Android Activity class and must



be implemented so as to be entirely independent of other activities in the
application. In other words, a shared activity cannot rely on being called at
a known point in a program flow (since other applications may use the
activity in unanticipated ways), and one activity cannot directly call
methods or access instance data of another activity. This, instead, is
achieved using Intents and Content Providers.

By default, an activity cannot return results to the activity from which it
was invoked. If this functionality is required, the activity must be started
explicitly as a sub-activity of the originating activity.

10.2 Android Fragments

As described above, an activity typically represents a single user interface
screen within an app. One option is constructing the activity using a single
user interface layout and one corresponding activity class file. A better
alternative, however, is to break the activity into different sections. Each
section is a fragment consisting of part of the user interface layout and a
matching class file (declared as a subclass of the Android Fragment class).
In this scenario, an activity becomes a container into which one or more
fragments are embedded.

Fragments provide an efficient alternative to having each user interface
screen represented by a separate activity. Instead, an app can have a single
activity that switches between fragments, each representing a different app
screen.

10.3 Android Intents

Intents are the mechanism by which one activity can launch another and
implement the flow through the activities that make up an application.
Intents consist of a description of the operation to be performed and,
optionally, the data on which it is to be performed.

Intents can be explicit, in that they request the launch of a specific activity
by referencing the activity by class name, or implicit by stating either the
type of action to be performed or providing data of a specific type on which
the action is to be performed. In the case of implicit intents, the Android
runtime will select the activity to launch that most closely matches the
criteria specified by the Intent using a process referred to as Intent
Resolution.



10.4 Broadcast Intents

Another type of Intent, the Broadcast Intent, is a system-wide intent sent
out to all applications that have registered an “interested” Broadcast
Receiver. The Android system, for example, will typically send out
Broadcast Intents to indicate changes in device status, such as the
completion of system start-up, connection of an external power source to
the device, or the screen being turned on or off.

A Broadcast Intent can be normal (asynchronous) in that it is sent to all
interested Broadcast Receivers at more or less the same time or ordered in
that it is sent to one receiver at a time where it can be processed and then
either aborted or allowed to be passed to the next Broadcast Receiver.

10.5 Broadcast Receivers

Broadcast Receivers are the mechanism by which applications can respond
to Broadcast Intents. A Broadcast Receiver must be registered by an
application and configured with an Intent Filter to indicate the types of
broadcast it is interested in. When a matching intent is broadcast, the
receiver will be invoked by the Android runtime regardless of whether the
application that registered the receiver is currently running. The receiver
then has 5 seconds to complete required tasks (such as launching a Service,
making data updates, or issuing a notification to the user) before returning.
Broadcast Receivers operate in the background and do not have a user
interface.

10.6 Android Services

Android Services are processes that run in the background and do not have
a user interface. They can be started and managed from activities, Broadcast
Receivers, or other Services. Android Services are ideal for situations
where an application needs to continue performing tasks but does not
necessarily need a user interface to be visible to the user. Although Services
lack a user interface, they can still notify the user of events using
notifications and toasts (small notification messages that appear on the
screen without interrupting the currently visible activity) and are also able
to issue Intents.

The Android runtime gives Services a higher priority than many other



processes and will only be terminated as a last resort by the system to free
up resources. If the runtime needs to kill a Service, however, it will be
automatically restarted as soon as adequate resources become available. A
Service can reduce the risk of termination by declaring itself as needing to
run in the foreground. This is achieved by making a call to
startForeground(). This is only recommended for situations where
termination would be detrimental to the user experience (for example, if the
user is listening to audio being streamed by the Service).

Example situations where a Service might be a practical solution include, as
previously mentioned, the streaming of audio that should continue when the
application is no longer active or a stock market tracking application that
needs to notify the user when a share hits a specified price.

10.7 Content Providers

Content Providers implement a mechanism for the sharing of data between
applications. Any application can provide other applications with access to
its underlying data by implementing a Content Provider, including the
ability to add, remove and query the data (subject to permissions). Access
to the data is provided via a Universal Resource Identifier (URI) defined by
the Content Provider. Data can be shared as a file or an entire SQLite
database.

The native Android applications include several standard Content Providers
allowing applications to access data such as contacts and media files. The
Content Providers currently available on an Android system may be located
using a Content Resolver.

10.8 The Application Manifest

The Application Manifest file is the glue that pulls together the various
elements that comprise an application. Within this XML-based file, the
application outlines the activities, services, broadcast receivers, data
providers, and permissions that comprise the complete application.

10.9 Application Resources

In addition to the manifest file and the Dex files containing the byte code,
an Android application package typically contains a collection of resource
files. These files contain resources such as strings, images, fonts, and colors



that appear in the user interface, together with the XML representation of
the user interface layouts. These files are stored in the /res sub-directory of
the application project’s hierarchy by default.

10.10 Application Context

When an application is compiled, a class named R is created containing
references to the application resources. The application manifest file and
these resources combine to create what is known as the Application
Context. This context, represented by the Android Context class, may be
used in the application code to gain access to the application resources at
runtime. In addition, a wide range of methods may be called on an
application’s context to gather information and change the application’s
environment at runtime.

10.11 Summary

A number of different elements can be brought together to create an
Android application. In this chapter, we have provided a high-level
overview of Activities, Fragments, Services, Intents, and Broadcast
Receivers and an overview of the manifest file and application resources.

Maximum reuse and interoperability are promoted by creating individual,
standalone functionality modules in the form of activities and intents while
implementing content providers to achieve data sharing between
applications.

While activities are focused on areas where the user interacts with the
application (an activity essentially equating to a single user interface screen
and often made up of one or more fragments), background processing is
typically handled by Services and Broadcast Receivers.

The components that make up the application are outlined for the Android
runtime system in a manifest file which, combined with the application’s
resources, represents the application’s context.

Much has been covered in this chapter that is likely new to the average
developer. Rest assured, however, that extensive exploration and practical
use of these concepts will be made in subsequent chapters to ensure a solid
knowledge foundation on which to build your own applications.



11. An Introduction to Kotlin

Android development is performed primarily using Android Studio which
is, in turn, based on the IntelliJ IDEA development environment created by
a company named JetBrains. Prior to the release of Android Studio 3.0, all
Android apps were written using Android Studio and the Java programming
language (with some occasional C++ code when needed).

Since the introduction of Android Studio 3.0, however, developers now
have the option of creating Android apps using another programming
language called Kotlin. Although detailed coverage of all features of this
language is beyond the scope of this book (entire books can and have been
written covering solely Kotlin), the objective of this and the following six
chapters is to provide enough information to begin programming in Kotlin
and quickly get up to speed developing Android apps using this
programming language.

11.1 What is Kotlin?

Named after an island located in the Baltic Sea, Kotlin is a programming
language created by JetBrains and follows Java in the tradition of naming
programming languages after islands. Kotlin code is intended to be easier to
understand and write and also safer than many other programming
languages. The language, compiler and related tools are all open source and
available for free under the Apache 2 license.

The primary goals of the Kotlin language are to make code both concise
and safe. Code is generally considered concise when it can be easily read
and understood. Conciseness also plays a role when writing code, allowing
code to be written more quickly and with greater efficiency. In terms of
safety, Kotlin includes a number of features that improve the chances that
potential problems will be identified when the code is being written instead
of causing runtime crashes.

A third objective in the design and implementation of Kotlin involves
interoperability with Java.

11.2 Kotlin and Java

Originally introduced by Sun Microsystems in 1995 Java is still by far the



most popular programming language in use today. Until the introduction of
Kotlin, it is quite likely that every Android app available on the market was
written in Java. Since acquiring the Android operating system, Google has
invested heavily in tuning and optimizing compilation and runtime
environments for running Java-based code on Android devices.

Rather than try to re-invent the wheel, Kotlin is designed to both integrate
with and work alongside Java. When Kotlin code is compiled it generates
the same bytecode as that generated by the Java compiler enabling projects
to be built using a combination of Java and Kotlin code. This compatibility
also allows existing Java frameworks and libraries to be used seamlessly
from within Kotlin code and also for Kotlin code to be called from within
Java.

Kotlin’s creators also acknowledged that while there were ways to improve
on existing languages, there are many features of Java that did not need to
be changed. Consequently, those familiar with programming in Java will
find many of these skills to be transferable to Kotlin-based development.
Programmers with Swift programming experience will also find much that
is familiar when learning Kotlin.

11.3 Converting from Java to Kotlin

Given the high level of interoperability between Kotlin and Java it is not
essential to convert existing Java code to Kotlin since these two languages
will comfortably co-exist within the same project. That being said, Java
code can be converted to Kotlin from within Android Studio using a built-in
Java to Kotlin converter. To convert an entire Java source file to Kotlin,
load the file into the Android Studio code editor and select the Code ->
Convert Java File to Kotlin File menu option. Alternatively, blocks of Java
code may be converted to Kotlin by cutting the code and pasting it into an
existing Kotlin file within the Android Studio code editor. Note when
performing Java to Kotlin conversions that the Java code will not always
convert to the best possible Kotlin code and that time should be taken to
review and tidy up the code after conversion.

11.4 Kotlin and Android Studio

Support for Kotlin is provided within Android Studio via the Kotlin Plug-in
which is integrated by default into Android Studio 3.0 or later.



11.5 Experimenting with Kotlin

When learning a new programming language, it is often useful to be able to
enter and execute snippets of code. One of the best ways to do this with
Kotlin is to use the Kotlin Playground (Figure 11-1) located at
https://play.kotlinlang.org:

Kotlin Solutions  Docs  Community  Teach Play Q

1.9.24 v JVM ¥ Program arguments ¢? Copy link <> Share code P Run

main() {
val name: String? =

name?.let {
print(

}
¥

Figure 11-1
In addition to providing an environment in which Kotlin code may be

quickly entered and executed, the playground also includes a set of
examples and tutorials demonstrating key Kotlin features in action.

Try out some Kotlin code by opening a browser window, navigating to the

playground and entering the following into the main code panel:
fun main() {

println("welcome to Kotlin")

for (1 in 1..8) {
println("i = $i")
}
¥

After entering the code, click on the Run button and note the output in the
console panel:


https://play.kotlinlang.org/

elcome to Kotlin

1l

W
i
i
i
i
i
i
i
i

oNoOTUVhWNEREO

Figure 11-2
11.6 Semi-colons in Kotlin

Unlike programming languages such as Java and C++, Kotlin does not
require semi-colons at the end of each statement or expression line. The
following, therefore, is valid Kotlin code:

val mynumber = 10

println(mynumber)

Semi-colons are only required when multiple statements appear on the same
line:

val mynumber = 10; println(mynumber)

11.7 Summary

For the first time since the Android operating system was introduced,
developers now have an alternative to writing apps in Java code. Kotlin is a
programming language developed by JetBrains, the company that created
the development environment on which Android Studio is based. Kotlin is
intended to make code safer and easier to understand and write. Kotlin is
also highly compatible with Java, allowing Java and Kotlin code to co-exist
within the same projects. This interoperability ensures that most of the
standard Java and Java-based Android libraries and frameworks are
available for use when developing using Kotlin.

Kotlin support for Android Studio is provided via a plug-in bundled with
Android Studio 3.0 or later. This plug-in also provides a converter to
translate Java code to Kotlin.

When learning Kotlin, the online playground provides a useful environment
for quickly trying out Kotlin code.



12. Kotlin Data Types, Variables, and
Nullability

Both this and the following few chapters are intended to introduce the
basics of the Kotlin programming language. This chapter will focus on the
various data types available for use within Kotlin code. This will also
include an explanation of constants, variables, typecasting, and Kotlin’s
handling of null values.

As outlined in the previous chapter, entitled “An Introduction to Kotlin” a
useful way to experiment with the language is to use the Kotlin online
playground environment. Before starting this chapter, therefore, open a
browser window, navigate to https:/play.kotlinlang.org and use the
playground to try out the code in both this and the other Kotlin introductory
chapters that follow.

12.1 Kotlin Data Types

When we look at the different types of software that run on computer
systems and mobile devices, from financial applications to graphics-
intensive games, it is easy to forget that computers are really just binary
machines. Binary systems work in terms of 0 and 1, true or false, set and
unset. All the data sitting in RAM, stored on disk drives, and flowing
through circuit boards and buses are nothing more than sequences of 1s and
0s. Each 1 or 0 is referred to as a bit and bits are grouped together in blocks
of 8, each group being referred to as a byte. When people talk about 32-bit
and 64-bit computer systems they are talking about the number of bits that
can be handled simultaneously by the CPU bus. A 64-bit CPU, for example,
can handle data in 64-bit blocks, resulting in faster performance than a 32-
bit based system.

Humans, of course, don’t think in binary. We work with decimal numbers,
letters, and words. For a human to easily (‘easily’ being a relative term in
this context) program a computer, some middle ground between human and
computer thinking is needed. This is where programming languages such as
Kotlin come into play. Programming languages allow humans to express
instructions to a computer in terms and structures we understand and then


https://play.kotlinlang.org/

compile that down to a format that can be executed by a CPU.

One of the fundamentals of any program involves data, and programming
languages such as Kotlin define a set of data types that allow us to work
with data in a format we understand when programming. For example, if
we want to store a number in a Kotlin program we could do so with syntax
similar to the following:

val mynumber = 10

In the above example, we have created a variable named mynumber and
then assigned to it the value of 10. When we compile the source code down
to the machine code used by the CPU, the number 10 is seen by the
computer in binary as:

1010

Similarly, we can express a letter, the visual representation of a digit (‘0
through to ‘9’), or punctuation mark (referred to in computer terminology
as characters) using the following syntax:

val myletter = 'c'

Once again, this is understandable by a human programmer but gets
compiled down to a binary sequence for the CPU to understand. In this
case, the letter ‘c’ is represented by the decimal number 99 using the ASCII
table (an internationally recognized standard that assigns numeric values to
human-readable characters). When converted to binary, it is stored as:
10101160011

Now that we have a basic understanding of the concept of data types and
why they are necessary we can take a closer look at some of the more
commonly used data types supported by Kotlin.

12.1.1 Integer Data Types

Kotlin integer data types are used to store whole numbers (in other words a
number with no decimal places). All integers in Kotlin are signed (in other
words capable of storing positive, negative, and zero values).

Kotlin provides support for 8, 16, 32, and 64-bit integers (represented by
the Byte, Short, Int, and Long types respectively).

12.1.2 Floating-Point Data Types

The Kotlin floating-point data types can store values containing decimal
places. For example, 4353.1223 would be stored in a floating-point data



type. Kotlin provides two floating-point data types in the form of Float and
Double. Which type to use depends on the size of value to be stored and the
level of precision required. The Double type can be used to store up to 64-
bit floating-point numbers. The Float data type, on the other hand, is limited
to 32-bit floating-point numbers.

12.1.3 Boolean Data Type

Kotlin, like other languages, includes a data type to handle true or false (1
or 0) conditions. Two Boolean constant values (true and false) are provided
by Kotlin specifically for working with Boolean data types.

12.1.4 Character Data Type

The Kotlin Char data type is used to store a single character of rendered text
such as a letter, numerical digit, punctuation mark, or symbol. Internally
characters in Kotlin are stored in the form of 16-bit Unicode grapheme
clusters. A grapheme cluster is made of two or more Unicode code points
that are combined to represent a single visible character.

The following lines assign a variety of different characters to Character type
variables:

val myCharl1 = 'f'
val myChar2 = ":'
val myChar3 = 'X'

Characters may also be referenced using Unicode code points. The
following example assigns the ‘X’ character to a variable using Unicode:
val myChar4 = '\u0058'

Note the use of single quotes when assigning a character to a variable. This
indicates to Kotlin that this is a Char data type as opposed to double quotes
which indicate a String data type.

12.1.5 String Data Type

The String data type is a sequence of characters that typically make up a
word or sentence. In addition to providing a storage mechanism, the String
data type also includes a range of string manipulation features allowing
strings to be searched, matched, concatenated, and modified. Double quotes
are used to surround single-line strings during an assignment, for example:
val message = "You have 10 new messages."

Alternatively, a multi-line string may be declared using triple quotes



val message = """You have 10 new messages,
5 old messages
and 6 spam messages."""
The leading spaces on each line of a multi-line string can be removed by
making a call to the trimMargin() function of the String data type:
val message = """You have 10 new messages,
5 old messages
and 6 spam messages.""".trimMargin()
Strings can also be constructed using combinations of strings, variables,
constants, expressions, and function calls using a concept referred to as
string interpolation. For example, the following code creates a new string
from a variety of different sources using string interpolation before

outputting it to the console:
val username = "John"
val inboxCount = 25

val maxcount = 100

val message = "$username has $inboxCount messages. Message capacity
remaining is ${maxcount - inboxCount} messages"

println(message)

When executed, the code will output the following message:
John has 25 messages. Message capacity remaining is 75 messages.

12.1.6 Escape Sequences

In addition to the standard set of characters outlined above, there is also a
range of special characters (also referred to as escape characters) available
for specifying items such as a new line, tab, or a specific Unicode value
within a string. These special characters are identified by prefixing the
character with a backslash (a concept referred to as escaping). For example,
the following assigns a new line to the variable named newline:

var newline = '\n'

In essence, any character that is preceded by a backslash is considered to be
a special character and is treated accordingly. This raises the question as to
what to do if you actually want a backslash character. This is achieved by
escaping the backslash itself:

var backslash = "\\'

The complete list of special characters supported by Kotlin is as follows:

*\n - Newline



*\r - Carriage return
*\t - Horizontal tab
*\\ - Backslash

*\” - Double quote (used when placing a double quote into a string
declaration)

*\’ - Single quote (used when placing a single quote into a string
declaration)

*\$ - Used when a character sequence containing a $ is misinterpreted as a
variable in a string template.

“\unnnn — Double byte Unicode scalar where nnnn is replaced by four
hexadecimal digits representing the Unicode character.

12.2 Mutable Variables

Variables are essentially locations in computer memory reserved for storing
the data used by an application. Each variable is given a name by the
programmer and assigned a value. The name assigned to the variable may
then be used in the Kotlin code to access the value assigned to that variable.
This access can involve either reading the value of the variable or, in the
case of mutable variables, changing the value.

12.3 Immutable Variables

Often referred to as a constant, an immutable variable is similar to a
mutable variable in that it provides a named location in memory to store a
data value. Immutable variables differ in one significant way in that once a
value has been assigned it cannot subsequently be changed.

Immutable variables are particularly useful if there is a value that is used
repeatedly throughout the application code. Rather than use the value each
time, it makes the code easier to read if the value is first assigned to a
constant which is then referenced in the code. For example, it might not be
clear to someone reading your Kotlin code why you used the value 5 in an
expression. If, instead of the value 5, you use an immutable variable named
interestRate the purpose of the value becomes much clearer. Immutable
values also have the advantage that if the programmer needs to change a
widely used value, it only needs to be changed once in the constant
declaration and not each time it is referenced.



12.4 Declaring Mutable and Immutable Variables

Mutable variables are declared using the var keyword and may be
initialized with a value at creation time. For example:

var userCount = 10

If the variable is declared without an initial value, the type of the variable
must also be declared (a topic that will be covered in more detail in the next
section of this chapter). The following, for example, is a typical declaration

where the variable is initialized after it has been declared:
var userCount: Int
userCount = 42

Immutable variables are declared using the val keyword.

val maxUserCount = 20

As with mutable variables, the type must also be specified when declaring
the variable without initializing it:

val maxUserCount: Int

maxUserCount = 20

When writing Kotlin code, immutable variables should always be used in
preference to mutable variables whenever possible.

12.5 Data Types are Objects

All of the above data types are objects, each of which provides a range of
functions and properties that may be used to perform a variety of different
type-specific tasks. These functions and properties are accessed using so-
called dot notation. Dot notation involves accessing a function or property
of an object by specifying the variable name followed by a dot followed in
turn by the name of the property to be accessed or function to be called.

A string variable, for example, can be converted to uppercase via a call to

the toUpperCase() function of the String class:
val myString = "The quick brown fox"
val uppercase = myString.toUpperCase()

Similarly, the length of a string is available by accessing the length

property:
val length = myString.length

Functions are also available within the String class to perform tasks such as
comparisons and checking for the presence of a specific word. The



following code, for example, will return a true Boolean value since the
word “fox™ appears within the string assigned to the myString variable:

val result = myString.contains("fox")

All of the number data types include functions for performing tasks such as
converting from one data type to another such as converting an Int to a
Float:

val myInt = 10

val myFloat = myInt.toFloat()

A detailed overview of all of the properties and functions provided by the
Kotlin data type classes is beyond the scope of this book (there are
hundreds). An exhaustive list for all data types can, however, be found
within the Kotlin reference documentation available online at:

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/
12.6 Type Annotations and Type Inference

Kotlin is categorized as a statically typed programming language. This
essentially means that once the data type of a variable has been identified,
that variable cannot subsequently be used to store data of any other type
without inducing a compilation error. This contrasts to loosely typed
programming languages where a variable, once declared, can subsequently
be used to store other data types.

There are two ways in which the type of a variable will be identified. One
approach is to use a type annotation at the point the variable is declared in
the code. This is achieved by placing a colon after the variable name
followed by the type declaration. The following line of code, for example,
declares a variable named userCount as being of type Int:

val userCount: Int = 10

In the absence of a type annotation in a declaration, the Kotlin compiler
uses a technique referred to as type inference to identify the type of the
variable. When relying on type inference, the compiler looks to see what
type of value is being assigned to the variable at the point that it is
initialized and uses that as the type. Consider, for example, the following

variable declarations:
var signalStrength = 2.231
val companyName = "My Company"


https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/

During compilation of the above lines of code, Kotlin will infer that the
signalStrength variable is of type Double (type inference in Kotlin defaults
to Double for all floating-point numbers) and that the companyName
constant is of type String.

When a constant is declared without a type annotation it must be assigned a

value at the point of declaration:
val bookTitle = "Android Studio Development Essentials"

If a type annotation is used when the constant is declared, however, the

value can be assigned later in the code. For example:
val iosBookType = false
val bookTitle: String

if (iosBookType) {
bookTitle = "i0OS App Development Essentials"

} else {

bookTitle = "Android Studio Development Essentials"
}
12.7 Nullable Type

Kotlin nullable types are a concept that does not exist in most other
programming languages (except for the optional type in Swift). The
purpose of nullable types is to provide a safe and consistent approach to
handling situations where a variable may have a null value assigned to it. In
other words, the objective is to avoid the common problem of code crashing
with the null pointer exception errors that occur when code encounters a
null value where one was not expected.

By default, a variable in Kotlin cannot have a null value assigned to it.

Consider, for example, the following code:
val username: String = null

An attempt to compile the above code will result in a compilation error

similar to the following:
Error: Null cannot be a value of a non-null string type String

If a variable is required to be able to store a null value, it must be

specifically declared as a nullable type by placing a question mark (?) after

the type declaration:
val username: String? = null



The username variable can now have a null value assigned to it without
triggering a compiler error. Once a variable has been declared as nullable, a
range of restrictions is then imposed on that variable by the compiler to
prevent it from being used in situations where it might cause a null pointer
exception to occur. A nullable variable, cannot, for example, be assigned to
a variable of non-null type as is the case in the following code:

val username: String? = null

val firstname: String = username

The above code will elicit the following error when encountered by the
compiler:

Error: Type mismatch: inferred type is String? but String was
expected

The only way that the assignment will be permitted is if some code is added

to check that the value assigned to the nullable variable is non-null:
val username: String? = null

if (username != null) {
val firstname: String = username

}
In the above case, the assignment will only take place if the username
variable references a non-null value.

12.8 The Safe Call Operator

A nullable variable also cannot be used to call a function or to access a
property in the usual way. Earlier in this chapter, the toUpperCase()
function was called on a String object. Given the possibility that this could
cause a function to be called on a null reference, the following code will be
disallowed by the compiler:

val username: String? = null

val uppercase = username.toUpperCase()

The exact error message generated by the compiler in this situation reads as

follows:
Error: (Only safe (?.) or non-null asserted (!!.) calls are allowed

on a nullable receiver of type String?

In this instance, the compiler is essentially refusing to allow the function
call to be made because no attempt has been made to verify that the variable
is non-null. One way around this is to add some code to verify that



something other than null value has been assigned to the variable before

making the function call:
if (username != null) {
val uppercase = username.toUpperCase()

}

A much more efficient way to achieve this same verification, however, is to
call the function using the safe call operator (represented by ?.) as follows:
val uppercase = username?.toUpperCase()

In the above example, if the username variable is null, the toUpperCase()
function will not be called and execution will proceed at the next line of
code. If, on the other hand, a non-null value is assigned the toUpperCase()
function will be called and the result assigned to the uppercase variable.

In addition to function calls, the safe call operator may also be used when

accessing properties:
val uppercase = username?.length

12.9 Not-Null Assertion

The not-null assertion removes all of the compiler restrictions from a
nullable type, allowing it to be used in the same ways as a non-null type,
even if it has been assigned a null value. This assertion is implemented
using double exclamation marks after the variable name, for example:

val username: String? = null

val length = username!!.length

The above code will now compile, but will crash with the following
exception at runtime since an attempt is being made to call a function on a
nonexistent object:

Exception in thread "main" kotlin.KotlinNullPointerException

Clearly, this causes the very issue that nullable types are designed to avoid.
Use of the not-null assertion is generally discouraged and should only be
used in situations where you are certain that the value will not be null.

12.10 Nullable Types and the let Function

Earlier in this chapter, we looked at how the safe call operator can be used
when making a call to a function belonging to a nullable type. This
technique makes it easier to check if a value is null without having to write
an if statement every time the variable is accessed. A similar problem



occurs when passing a nullable type as an argument to a function that is
expecting a non-null parameter. As an example, consider the times()
function of the Int data type. When called on an Int object and passed
another integer value as an argument, the function multiplies the two values
and returns the result. When the following code is executed, for example,

the value of 200 will be displayed within the console:
val firstNumber = 10
val secondNumber = 20

val result = firstNumber.times(secondNumber)

print(result)

The above example works because the secondNumber variable is a non-null
type. A problem, however, occurs if the secondNumber variable is declared
as being of nullable type:

val firstNumber = 10
val secondNumber: Int? = 20

val result = firstNumber.times(secondNumber)

print(result)

Now the compilation will fail with the following error message because a
nullable type is being passed to a function that is expecting a non-null
parameter:

Error: Type mismatch: inferred type is Int? but Int was expected

A possible solution to this problem is to write an if statement to verify that
the value assigned to the variable is non-null before making the call to the

function:
val firstNumber = 10
val secondNumber: Int? = 20

if (secondNumber != null) {
val result = firstNumber.times(secondNumber)
print(result)

}

A more convenient approach to addressing the issue, however, involves the
use of the let function. When called on a nullable type object, the let
function converts the nullable type to a non-null variable named it which

may then be referenced within a lambda statement.
secondNumber?.let {



val result = firstNumber.times(it)
print(result)

}

Note the use of the safe call operator when calling the let function on
secondVariable in the above example. This ensures that the function is only
called when the variable is assigned a non-null value.

12.11 Late Initialization (lateinit)

As previously outlined, non-null types need to be initialized when they are
declared. This can be inconvenient if the value to be assigned to the non-
null variable will not be known until later in the code execution. One way
around this is to declare the wvariable using the lateinit modifier. This
modifier designates that a value will be initialized with a value later. This
has the advantage that a non-null type can be declared before it is
initialized, with the disadvantage that the programmer is responsible for
ensuring that the initialization has been performed before attempting to
access the variable. Consider the following variable declaration:

var myName: String

Clearly, this is invalid since the variable is a non-null type but has not been
assigned a value. Suppose, however, that the value to be assigned to the
variable will not be known until later in the program execution. In this case,
the lateinit modifier can be used as follows:

lateinit var myName: String

With the variable declared in this way, the value can be assigned later, for
example:

myName = "John Smith"

print("My Name is " + myName)

Of course, if the variable is accessed before it is initialized, the code will

fail with an exception:
lateinit var myName: String

print("My Name is " + myName)

Exception in thread "main"
kotlin.UninitializedPropertyAccessException: lateinit property
myName has not been initialized

To verify whether a lateinit variable has been initialized, check the



isInitialized property on the variable. To do this, we need to access the

properties of the variable by prefixing the name with the ‘::” operator:
if (::myName.isInitialized) {
print("My Name is " + myName)

}
12.12 The Elvis Operator

The Kotlin Elvis operator can be used in conjunction with nullable types to
define a default value that is to be returned if a value or expression result is
null. The Elvis operator (?:) is used to separate two expressions. If the
expression on the left does not resolve to a null value that value is returned,
otherwise the result of the rightmost expression is returned. This can be
thought of as a quick alternative to writing an if-else statement to check for

a null value. Consider the following code:
if (myString != null) {

return myString
} else {

return "String is null"

}
The same result can be achieved with less coding using the Elvis operator

as follows:
return myString ?: "String is null"

12.13 Type Casting and Type Checking

When compiling Kotlin code, the compiler can typically infer the type of an
object. Situations will occur, however, where the compiler is unable to
identify the specific type. This is often the case when a value type is
ambiguous or an unspecified object is returned from a function call. In this
situation, it may be necessary to let the compiler know the type of object
that your code is expecting or to write code that checks whether the object
is of a particular type.

Letting the compiler know the type of object that is expected is known as
type casting and is achieved within Kotlin code using the as cast operator.
The following code, for example, lets the compiler know that the result
returned from the getSystemService() method needs to be treated as a

KeyguardManager object:

val keyMgr = getSystemService(Context.KEYGUARD_SERVICE) as
KeyguardManager



The Kotlin language includes both safe and unsafe cast operators. The
above cast is unsafe and will cause the app to throw an exception if the cast
cannot be performed. A safe cast, on the other hand, uses the as? operator

and returns null if the cast cannot be performed:
val keyMgr = getSystemService(Context.KEYGUARD_SERVICE) as?

KeyguardManager
A type check can be performed to verify that an object conforms to a

specific type using the is operator, for example:
if (keyMgr is KeyguardManager) {

// It is a KeyguardManager object
3

12.14 Summary

This chapter has begun the introduction to Kotlin by exploring data types
together with an overview of how to declare variables. The chapter has also
introduced concepts such as nullable types, typecasting and type checking,
and the Elvis operator, each of which is an integral part of Kotlin
programming and designed specifically to make code writing less prone to
erTor.



13. Kotlin Operators and Expressions

So far we have looked at using variables and constants in Kotlin and also
described the different data types. Being able to create variables is only part
of the story however. The next step is to learn how to use these variables in
Kotlin code. The primary method for working with data is in the form
of expressions.

13.1 Expression Syntax in Kotlin

The most basic expression consists of an operator, two operands and
an assignment. The following is an example of an expression:

val myresult = 1 + 2

In the above example, the (+) operator is used to add two operands (1 and
2) together. The assignment operator (=) subsequently assigns the result of
the addition to a variable named myresult. The operands could just have
easily been variables (or a mixture of values and variables) instead of the
actual numerical values used in the example.

In the remainder of this chapter we will look at the basic types of operators
available in Kotlin.

13.2 The Basic Assignment Operator

We have already looked at the most basic of assignment operators, the =
operator. This assignment operator assigns the result of an expression to a
variable. In essence, the = assignment operator takes two operands. The
left-hand operand is the variable to which a value is to be assigned and the
right-hand operand is the value to be assigned. The right-hand operand is,
more often than not, an expression which performs some type of arithmetic
or logical evaluation or a call to a function, the result of which will be
assigned to the variable. The following examples are all valid uses of the

assignment operator:
var x: Int // Declare a mutable Int variable
val y = 10 // Declare and initialize an immutable Int variable

X
X
X

10 // Assign a value to X
X + vy // Assign the result of x + y to x
y // Assign the value of y to x



13.3 Kotlin Arithmetic Operators

Kotlin provides a range of operators for the purpose of creating
mathematical expressions. These operators primarily fall into the category
of binary operators in that they take two operands. The exception is
the unary negative operator (-) which serves to indicate that a value is
negative rather than positive. This contrasts with the subtraction
operator (-) which takes two operands (i.e. one value to be subtracted from

another). For example:
var x = -10 // Unary - operator used to assign -10 to variable x
X = X - 5 // Subtraction operator. Subtracts 5 from X

The following table lists the primary Kotlin arithmetic operators:

Operator |Description
-(unary) |Negates the value of a variable or expression
* Multiplication
/ Division
+ Addition
- Subtraction
% Remainder/Modulo
Table 13-1

Note that multiple operators may be used in a single expression.

For example:
X =y *10 +z -5/ 4

13.4 Augmented Assignment Operators

In an earlier section we looked at the basic assignment operator (=). Kotlin
provides a number of operators designed to combine an assignment with a
mathematical or logical operation. These are primarily of use when
performing an evaluation where the result is to be stored in one of the

operands. For example, one might write an expression as follows:
X =X +y



The above expression adds the value contained in variable x to the value
contained in variable y and stores the result in variable x. This can be
simplified using the addition augmented assignment operator:

X t=Yy

The above expression performs exactly the same task as x = x + y but saves
the programmer some typing.

Numerous augmented assignment operators are available in Kotlin. The
most frequently used of which are outlined in the following table:

Operator | Description

X+=y Add x to y and place result in x

X-=y Subtract y from x and place result in x

X *=y Multiply x by y and place result in x

X/=y Divide x by y and place result in x

X %=y |Perform Modulo on x and y and place result in x

Table 13-2
13.5 Increment and Decrement Operators

Another useful shortcut can be achieved using the Kotlin increment and
decrement operators (also referred to as unary operators because they

operate on a single operand). Consider the code fragment below:
X = x + 1 // Increase value of variable x by 1
X X - 1 // Decrease value of variable x by 1

These expressions increment and decrement the value of x by 1. Instead of
using this approach, however, it is quicker to use the ++ and -- operators.
The following examples perform exactly the same tasks as the examples
above:

X++ // Increment x by 1

x-- // Decrement x by 1

These operators can be placed either before or after the variable name. If
the operator is placed before the variable name, the increment or decrement
operation is performed before any other operations are performed on the



variable. For example, in the following code, x is incremented before it is
assigned to y, leaving y with a value of 10:

var x = 9

val y = ++x

In the next example, however, the value of x (9) is assigned to variable y
before the decrement is performed. After the expression is evaluated the

value of y will be 9 and the value of x will be 8.
var x = 9
val y = x--

13.6 Equality Operators

Kotlin also includes a set of logical operators useful for performing
comparisons. These operators all return a Boolean result depending on the
result of the comparison. These operators are binary operators in that they
work with two operands.

Equality operators are most frequently used in constructing program control
flow logic. For example an if statement may be constructed based on
whether one value matches another:

if (x ==vy) {
// Perform task

}
The result of a comparison may also be stored in a Boolean variable. For
example, the following code will result in a true value being stored in the

variable result:

var result: Boolean
val x = 10

val y = 20

result = x <y

Clearly 10 is less than 20, resulting in a true evaluation of the x <
y expression. The following table lists the full set of Kotlin comparison
operators:

Operator | Description

X == Returns true if x is equal to y

X>y Returns true if x is greater than y




X>=y Returns true if x is greater than or equal to y

X<y Returns true if x is less than y

X <=y Returns true if x is less than or equal to y

x!=y Returns true if x is not equal to y

Table 13-3
13.7 Boolean Logical Operators

Kotlin also provides a set of so called logical operators designed to return
Boolean true or false values. These operators both return Boolean results
and take Boolean values as operands. The key operators are NOT (!), AND
(&&) and OR ().

The NOT (!) operator inverts the current value of a Boolean variable, or the
result of an expression. For example, if a variable named flag is currently

true, prefixing the variable with a ‘!’ character will invert the value to false:
val flag = true // variable is true
val secondFlag = !flag // secondFlag set to false

The OR (||) operator returns true if one of its two operands evaluates to true,
otherwise it returns false. For example, the following code evaluates to true
because at least one of the expressions either side of the OR operator is

true:
if ((10 < 20) || (20 < 10)) {
print("Expression is true")

}
The AND (&&) operator returns true only if both operands evaluate to be
true. The following example will return false because only one of the two

operand expressions evaluates to true:
if ((10 < 20) && (20 < 10)) {
print("Expression is true'")

}
13.8 Range Operator

Kotlin includes a useful operator that allows a range of values to be
declared. As will be seen in later chapters, this operator is invaluable when
working with looping in program logic.



The syntax for the range operator is as follows:

X..y

This operator represents the range of numbers starting at x and ending at y
where both x and y are included within the range (referred to as a closed
range). The range operator 5..8, for example, specifies the numbers 5, 6, 7
and 8.

13.9 Bitwise Operators

As previously discussed, computer processors work in binary. These are
essentially streams of ones and zeros, each one referred to as a bit. Bits are
formed into groups of 8 to form bytes. As such, it is not surprising that we,
as programmers, will occasionally end up working at this level in our code.
To facilitate this requirement, Kotlin provides a range of bit operators.

Those familiar with bitwise operators in other languages such as C, C++,
C#, Objective-C and Java will find nothing new in this area of the Kotlin
language syntax. For those unfamiliar with binary numbers, now may be a
good time to seek out reference materials on the subject in order to
understand how ones and zeros are formed into bytes to form numbers.
Other authors have done a much better job of describing the subject than we
can do within the scope of this book.

For the purposes of this exercise we will be working with the binary
representation of two numbers. First, the decimal number 171 is represented
in binary as:

10101011

Second, the number 3 is represented by the following binary sequence:
00000011

Now that we have two binary numbers with which to work, we can begin to
look at the Kotlin bitwise operators:

13.9.1 Bitwise Inversion

The Bitwise inversion (also referred to as NOT) is performed using the
inv() operation and has the effect of inverting all of the bits in a number. In
other words, all the zeros become ones and all the ones become zeros.
Taking our example 3 number, a Bitwise NOT operation has the following

result:
00000011 NOT



11111100

The following Kotlin code, therefore, results in a value of -4:
val y 3
val z = y.inv()

print("Result is $z")
13.9.2 Bitwise AND

The Bitwise AND is performed using the and() operation. It makes a bit by
bit comparison of two numbers. Any corresponding position in the binary
sequence of each number where both bits are 1 results in a 1 appearing in
the same position of the resulting number. If either bit position contains a 0
then a zero appears in the result. Taking our two example numbers, this

would appear as follows:
10101011 AND
00000011

000000611

As we can see, the only locations where both numbers have 1s are the last
two positions. If we perform this in Kotlin code, therefore, we should find
that the result is 3 (00000011):

val x = 171
val y = 3
val z = x.and(y)

print("Result is $z")
13.9.3 Bitwise OR

The bitwise OR also performs a bit by bit comparison of two binary
sequences. Unlike the AND operation, the OR places a 1 in the result if
there is a 1 in the first or second operand. Using our example numbers, the

result will be as follows:
10101011 OR
00000011

10101611

If we perform this operation in Kotlin using the or() operation the result
will be 171:



val x = 171
val y = 3
val z = x.or(y)

print("Result is $z")
13.9.4 Bitwise XOR

The bitwise XOR (commonly referred to as exclusive OR and performed
using the xor() operation) performs a similar task to the OR operation
except that a 1 is placed in the result if one or other corresponding bit
positions in the two numbers is 1. If both positions are a 1 or a 0 then the

corresponding bit in the result is set to a 0. For example:
10101011 XOR
00000011

10101000

The result in this case is 10101000 which converts to 168 in decimal. To
verify this we can, once again, try some Kotlin code:

val x = 171
val y = 3
val z = x.xor(y)

print("Result is $z")

When executed, we get the following output from print:
Result is 168

13.9.5 Bitwise Left Shift

The bitwise left shift moves each bit in a binary number a specified number
of positions to the left. Shifting an integer one position to the left has the
effect of doubling the value.

As the bits are shifted to the left, zeros are placed in the vacated right most
(low order) positions. Note also that once the left most (high order) bits are
shifted beyond the size of the variable containing the value, those high

order bits are discarded:
10101011 Left Shift one bit

101010110

In Kotlin the bitwise left shift operator is performed using the shl()
operation, passing through the number of bit positions to be shifted. For



example, to shift left by 1 bit:
val x = 171
val z = x.shl(1)

print("Result is $z")

When compiled and executed, the above code will display a message
stating that the result is 342 which, when converted to binary, equates to
101010110.

13.9.6 Bitwise Right Shift

A bitwise right shift is, as you might expect, the same as a left except that
the shift takes place in the opposite direction. Shifting an integer one
position to the right has the effect of halving the value.

Note that since we are shifting to the right there is no opportunity to retain
the lower most bits regardless of the data type used to contain the result. As
a result the low order bits are discarded. Whether or not the vacated high
order bit positions are replaced with zeros or ones depends on whether

the sign bit used to indicate positive and negative numbers is set or not.
10101011 Right Shift one bit

01010101

The bitwise right shift is performed using the shr() operation passing

through the shift count:
val x 171
val z x.shr(1)

print("Result is $z")

When executed, the above code will report the result of the shift as being
85, which equates to binary 01010101.

13.10 Summary

Operators and expressions provide the underlying mechanism by which
variables and constants are manipulated and evaluated within Kotlin code.
This can take the simplest of forms whereby two numbers are added using
the addition operator in an expression and the result stored in a variable
using the assignment operator. Operators fall into a range of categories,
details of which have been covered in this chapter.



14. Kotlin Control Flow

Regardless of the programming language used, application development is
largely an exercise in applying logic, and much of the art of programming
involves writing code that makes decisions based on one or more criteria.
Such decisions define which code gets executed, how many times it is
executed and, conversely, which code gets by-passed when the program is
executing. This is often referred to as control flow since it controls the flow
of program execution. Control flow typically falls into the categories of
looping control (how often code is executed) and conditional control flow
(whether or not code is executed). This chapter is intended to provide an
introductory overview of both types of control flow in Kotlin.

14.1 Looping Control flow

This chapter will begin by looking at control flow in the form of loops.
Loops are essentially sequences of Kotlin statements which are to be
executed repeatedly until a specified condition is met. The first looping
statement we will explore is the for loop.

14.1.1 The Kotlin for-in Statement

The for-in loop is used to iterate over a sequence of items contained in a
collection or number range.
The syntax of the for-in loop is as follows:

for variable name in collection or range {
// code to be executed

}

In this syntax, variable name is the name to be used for a variable that will
contain the current item from the collection or range through which the loop
is iterating. The code in the body of the loop will typically use this name as
a reference to the current item in the loop cycle. The collection or range
references the item through which the loop is iterating. This could, for
example, be an array of string values, a range operator or even a string of
characters.

Consider, for example, the following for-in loop construct:

for (index in 1..5) {
println("value of index is $index")



}

The loop begins by stating that the current item is to be assigned to a
constant named index. The statement then declares a closed range operator
to indicate that the for loop is to iterate through a range of numbers, starting
at 1 and ending at 5. The body of the loop prints out a message to the
console indicating the current value assigned to the index constant, resulting

in the following output:
Value of index is 1
Value of index is 2
Value of index is 3
Value of index is 4
Value of index is 5

The for-in loop is of particular benefit when working with collections such
as arrays. In fact, the for-in loop can be used to iterate through any object

that contains more than one item. The following loop, for example, outputs

each of the characters in the specified string:
for (index in "Hello") {
println("value of index is $index")

}

The operation of a for-in loop may be configured using the downTo and
until functions. The downTo function causes the for loop to work
backwards through the specified collection until the specified number is
reached. The following for loop counts backwards from 100 until the

number 90 is reached:
for (index in 100 downTo 90) {
print("$index.. ")

}

When executed, the above loop will generate the following output:
100.. 99.. 98.. 97.. 96.. 95.. 94.. 93.. 92.. 91.. 90..

The until function operates in much the same way with the exception that
counting starts from the bottom of the collection range and works up until
(but not including) the specified end point (a concept referred to as a half

closed range):
for (index in 1 until 10) {
print("$index.. ")

}
The output from the above code will range from the start value of 1 through



t0 9:
1.. 2.. 3.. 4..5..6..7..8..09..

The increment used on each iteration through the loop may also be defined

using the step function as follows:
for (index in O until 100 step 10) {
print("$index.. ")

}

The above code will result in the following console output:
0.. 10.. 20.. 30.. 40.. 50.. 60.. 70.. 80.. 90..

14.1.2 The while Loop

The Kotlin for loop described previously works well when it is known in
advance how many times a particular task needs to be repeated in a
program. There will, however, be instances where code needs to be repeated
until a certain condition is met, with no way of knowing in advance how
many repetitions are going to be needed to meet that criteria. To address this
need, Kotlin includes the while loop.

Essentially, the while loop repeats a set of tasks while a specified condition

is met. The while loop syntax is defined as follows:
while condition {
// Kotlin statements go here

}
In the above syntax, condition is an expression that will return either true or
false and the // Kotlin statements go here comment represents the code to be

executed while the condition expression is true. For example:
var myCount = 0

while (myCount < 100) {

myCount++

println(myCount)
}
In the above example, the while expression will evaluate whether the
myCount variable is less than 100. If it is already greater than 100, the code
in the braces is skipped and the loop exits without performing any tasks.

If, on the other hand, myCount is not greater than 100 the code in the braces
is executed and the loop returns to the while statement and repeats the
evaluation of myCount. This process repeats until the value of myCount is



greater than 100, at which point the loop exits.
14.1.3 The do ... while loop

It is often helpful to think of the do ... while loop as an inverted while loop.
The while loop evaluates an expression before executing the code contained
in the body of the loop. If the expression evaluates to false on the first
check then the code is not executed. The do ... while loop, on the other
hand, is provided for situations where you know that the code contained in
the body of the loop will always need to be executed at least once. For
example, you may want to keep stepping through the items in an array until
a specific item is found. You know that you have to at least check the first
item in the array to have any hope of finding the entry you need. The syntax
for the do ... while loop is as follows:
do {

// Kotlin statements here
} while conditional expression
In the do ... while example below the loop will continue until the value of a

variable named i equals O:
var 1 = 10

do {
i--
println(i)
} while (i > 0)
14.1.4 Breaking from Loops

Having created a loop, it is possible that under certain conditions you might
want to break out of the loop before the completion criteria have been met
(particularly if you have created an infinite loop). One such example might
involve continually checking for activity on a network socket. Once activity
has been detected it will most likely be necessary to break out of the
monitoring loop and perform some other task.

For the purpose of breaking out of a loop, Kotlin provides the break
statement which breaks out of the current loop and resumes execution at the

code directly after the loop. For example:
var j = 10

for (i in 0..100)



J+=7]

if (j > 100) {
break

}

println("j = $j")
}
In the above example the loop will continue to execute until the value of j
exceeds 100 at which point the loop will exit and execution will continue
with the next line of code after the loop.

14.1.5 The continue Statement

The continue statement causes all remaining code statements in a loop to be
skipped, and execution to be returned to the top of the loop. In the
following example, the println function is only called when the value of

variable i is an even number:
var i = 1

while (i < 20)

{
i+=1
if (1% 2 '=0) {
continue
}
println("i = $i")
}

The continue statement in the above example will cause the printin call to
be skipped unless the value of i can be divided by 2 with no remainder. If
the continue statement is triggered, execution will skip to the top of the
while loop and the statements in the body of the loop will be repeated (until
the value of i exceeds 19).

14.1.6 Break and Continue Labels

Kotlin expressions may be assigned a label by preceding the expression
with a label name followed by the @ sign. This label may then be
referenced when using break and continue statements to designate where



execution is to resume. This is particularly useful when breaking out of
nested loops. The following code contains a for loop nested within another
for loop. The inner loop contains a break statement which is executed when

the value of j reaches 10:
for (1 in 1..100) {

println("Outer loop i = $i")

for (j in 1..100) {
println("Inner loop j = $j")
if (j == 10) break

}

As currently implemented, the break statement will exit the inner for loop
but execution will resume at the top of the outer for loop. Suppose,
however, that the break statement is required to also exit the outer loop.
This can be achieved by assigning a label to the outer loop and referencing

that label with the break statement as follows:
outerloop@ for (i in 1..100) {

println("Outer loop i = $i")

for (j in 1..100) {
println("Inner loop j = $j")
if (j == 10) break@outerloop

}

Now when the value assigned to variable j reaches 10 the break statement
will break out of both loops and resume execution at the line of code
immediately following the outer loop.

14.2 Conditional Control Flow

In the previous chapter we looked at how to use logical expressions in
Kotlin to determine whether something is true or false. Since programming
is largely an exercise in applying logic, much of the art of programming
involves writing code that makes decisions based on one or more criteria.
Such decisions define which code gets executed and, conversely, which



code gets by-passed when the program is executing.
14.2.1 Using the if Expressions

The if expression is perhaps the most basic of control flow options available
to the Kotlin programmer. Programmers who are familiar with C, Swift,
C++ or Java will immediately be comfortable using Kotlin if statements,
although there are some subtle differences.

The basic syntax of the Kotlin if expression is as follows:

if (boolean expression) {

// Kotlin code to be performed when expression evaluates to
true

}

Unlike some other programming languages, it is important to note that the
braces are optional in Kotlin if only one line of code is associated with the if
expression. In fact, in this scenario, the statement is often placed on the
same line as the if expression.

Essentially if the Boolean expression evaluates to true then the code in the
body of the statement is executed. If, on the other hand, the expression
evaluates to false the code in the body of the statement is skipped.

For example, if a decision needs to be made depending on whether one

value is greater than another, we would write code similar to the following:
val x = 10

if (x > 9) println("x is greater than 9!")

Clearly, x is indeed greater than 9 causing the message to appear in the
console panel.

At this point it is important to notice that we have been referring to the if
expression instead of the if statement. The reason for this is that unlike the
if statement in other programming languages, the Kotlin if returns a result.
This allows if constructs to be used within expressions. As an example, a
typical if expression to identify the largest of two numbers and assign the
result to a variable might read as follows:

if (x > vy)
largest = x
else
largest = vy

The same result can be achieved using the if statement within an expression



using the following syntax:
variable = if (condition) return_val 1 else return_val 2

The original example can, therefore be re-written as follows:

val largest = if (x > y) x else y

The technique is not limited to returning the values contained within the
condition. The following example is also a valid use of if in an expression,
in this case assigning a string value to the variable:

val largest = if (x > y) "x is greatest" else "y is greatest"
println(largest)

For those familiar with programming languages such as Java, this feature
allows code constructs similar to ternary statements to be implemented in
Kotlin.

14.2.2 Using if ... else ... Expressions

The next variation of the if expression allows us to also specify some code
to perform if the expression in the if expression evaluates to false. The

syntax for this construct is as follows:
if (boolean expression) {

// Code to be executed if expression is true
} else {

// Code to be executed if expression is false

}

The braces are, once again, optional if only one line of code is to be
executed.

Using the above syntax, we can now extend our previous example to
display a different message if the comparison expression evaluates to be

false:
val x = 10

if (x > 9) println("x is greater than 9!")
else println("x is less than 9!")

In this case, the second println statement will execute if the value of x was
less than 9.

14.2.3 Using if ... else if ... Expressions

So far we have looked at if statements which make decisions based on the
result of a single logical expression. Sometimes it becomes necessary to



make decisions based on a number of different criteria. For this purpose, we

can use the if ... else if ... construct, an example of which is as follows:
var x = 9

if (x == 10) println("x is 10")
else if (x == 9) println("x is 9")
else if (x == 8) println("x is 8")
else println("x is less than 8")

¥
14.2.4 Using the when Statement

The Kotlin when statement provides a cleaner alternative to the if ... else if

... construct and uses the following syntax:

when (value) {
matchl -> // code to be executed on match
match2 -> // code to be executed on match

else -> // default code to executed if no match
}
Using this syntax, the previous if ... else if ... construct can be rewritten to

use the when statement:
when (x) {
10 -> println ("x is 10")
9 -> println("x is 9")
8 -> println("x is 8")
else -> println("x is less than 8")
}
The when statement is similar to the switch statement found in many other

programming languages.

14.3 Summary

The term control flow is used to describe the logic that dictates the
execution path that is taken through the source code of an application as it
runs. This chapter has looked at the two types of control flow provided by
Kotlin (looping and conditional) and explored the various Kotlin constructs
that are available to implement both forms of control flow logic.



15. An Overview of Kotlin Functions
and L.ambdas

Kotlin functions and lambdas are a vital part of writing well-structured and
efficient code and provide a way to organize programs while avoiding code
repetition. In this chapter we will look at how functions and lambdas are
declared and used within Kotlin.

15.1 What is a Function?

A function is a named block of code that can be called upon to perform a
specific task. It can be provided data on which to perform the task and is
capable of returning results to the code that called it. For example, if a
particular arithmetic calculation needs to be performed in a Kotlin program,
the code to perform the arithmetic can be placed in a function. The function
can be programmed to accept the values on which the arithmetic is to be
performed (referred to as parameters) and to return the result of the
calculation. At any point in the program code where the calculation is
required the function is called, parameter values passed through as
arguments and the result returned.

The terms parameter and argument are often used interchangeably when
discussing functions. There is, however, a subtle difference. The values that
a function is able to accept when it is called are referred to as parameters.
At the point that the function is actually called and passed those values,
however, they are referred to as arguments.

15.2 How to Declare a Kotlin Function

A Kaotlin function is declared using the following syntax:
fun <function name> (<para name>: <para type>, <para name>: <para
type>, ... ): <return type> {

// Function code
}
This combination of function name, parameters and return type are referred
to as the function signature or type. Explanations of the various fields of the

function declaration are as follows:
«fun — The prefix keyword used to notify the Kotlin compiler that this is a



function.

«<function name> - The name assigned to the function. This is the name by
which the function will be referenced when it is called from within the
application code.

*<para name> - The name by which the parameter is to be referenced in the
function code.

*<para type> - The type of the corresponding parameter.

«<return type> - The data type of the result returned by the function. If the
function does not return a result then no return type is specified.

*Function code - The code of the function that does the work.

As an example, the following function takes no parameters, returns no

result and displays a message:
fun sayHello() {
println("Hello")

}
The following sample function, on the other hand, takes an integer and a

string as parameters and returns a string result:
fun buildMessageFor(name: String, count: Int): String {
return("$name, you are customer number $count")

}
15.3 Calling a Kotlin Function

Once declared, functions are called using the following syntax:

<function name> (<argl>, <arg2>, ... )

Each argument passed through to a function must match the parameters the
function is configured to accept. For example, to call a function named
sayHello that takes no parameters and returns no value, we would write the
following code:

sayHello()

In the case of a message that accepts parameters, the function could be

called as follows:
buildMessageFor ("John", 10)

15.4 Single Expression Functions

When a function contains a single expression, it is not necessary to include
the braces around the expression. All that is required is an equals sign (=)



after the function declaration followed by the expression. The following

function contains a single expression declared in the usual way:
fun multiply(x: Int, y: Int): Int {
return x * vy

}

Below is the same function expressed as a single line expression:

fun multiply(x: Int, y: Int): Int = x * vy

When using single line expressions, the return type may be omitted in
situations where the compiler is able to infer the type returned by the

expression making for even more compact code:
fun multiply(x: Int, y: Int) = x * vy

15.5 Local Functions

A local function is a function that is embedded within another function. In
addition, a local function has access to all of the variables contained within

the enclosing function:
fun main(args: Array<String>) {

val name = "John"
val count =5

fun displayString() {
for (index in 0..count) {
println(name)

}

}
displayString()

}
15.6 Handling Return Values

To call a function named buildMessage that takes two parameters and
returns a result, on the other hand, we might write the following code:

val message = buildMessageFor("John", 10)

To improve code readability, the parameter names may also be specified
when making the function call:

val message = buildMessageFor(name = "John", count = 10)

In the above examples, we have created a new variable called message and
then used the assignment operator (=) to store the result returned by the



function.

15.7 Declaring Default Function Parameters

Kotlin provides the ability to designate a default parameter value to be used
in the event that the value is not provided as an argument when the function
is called. This involves assigning the default value to the parameter when
the function is declared.

To see default parameters in action the buildMessageFor function will be
modified so that the string “Customer” is used as a default in the event that
a customer name is not passed through as an argument. Similarly, the count

parameter is declared with a default value of 0:

fun buildMessageFor(name: String = "Customer", count: Int = 0):
String {

return("$name, you are customer number $count")
}
When parameter names are used when making the function call, any
parameters for which defaults have been specified may be omitted. The
following function call, for example, omits the customer name argument but
still compiles because the parameter name has been specified for the second
argument:
val message = buildMessageFor(count = 10)
If parameter names are not used within the function call, however, only the

trailing arguments may be omitted:
val message = buildMessageFor("John") // Vvalid
val message buildMessageFor(10) // Invalid

15.8 Variable Number of Function Parameters

It is not always possible to know in advance the number of parameters a
function will need to accept when it is called within application code.
Kotlin handles this possibility through the use of the vararg keyword to
indicate that the function accepts an arbitrary number of parameters of a
specified data type. Within the body of the function, the parameters are
made available in the form of an array object. The following function, for
example, takes as parameters a variable number of String values and then

outputs them to the console panel:
fun displayStrings(vararg strings: String)

{



for (string in strings) {
println(string)
}
by

displayStrings("one", "two", "three", "four")

Kotlin does not permit multiple vararg parameters within a function and any
single parameters supported by the function must be declared before the

vararg declaration:
fun displayStrings(name: String, vararg strings: String)
{
for (string in strings) {
println(string)
}
¥

15.9 Lambda Expressions

Having covered the basics of functions in Kotlin it is now time to look at
the concept of lambda expressions. Essentially, lambdas are self-contained
blocks of code. The following code, for example, declares a lambda, assigns
it to a variable named sayHello and then calls the function via the lambda
reference:

val sayHello = { println("Hello") }

sayHello()

Lambda expressions may also be configured to accept parameters and

return results. The syntax for this is as follows:
{<para name>: <para type>, <para name>: <para type>, ... ->
// Lambda expression here

}

The following lambda expression, for example, accepts two integer
parameters and returns an integer result:

val multiply = { vall: Int, val2: Int -> vall * val2 }

val result = multiply(10, 20)

Note that the above lambda examples have assigned the lambda code block
to a variable. This is also possible when working with functions. Of course,
the following syntax will execute the function and assign the result of that
execution to a variable, instead of assigning the function itself to the
variable:



val myvar = myfunction()

To assign a function reference to a variable, remove the parentheses and
prefix the function name with double colons (::) as follows. The function
may then be called by referencing the variable name:

val mavar = ::myfunction

myvar ()

A lambda block may be executed directly by placing parentheses at the end
of the expression including any arguments. The following lambda directly
executes the multiplication lambda expression multiplying 10 by 20.

val result = { vall: Int, val2: Int -> vall * val2 }(10, 20)

The last expression within a lambda serves as the expressions return value
(hence the value of 200 being assigned to the result variable in the above
multiplication examples). In fact, unlike functions, lambdas do not support
the return statement. In the absence of an expression that returns a result
(such as an arithmetic or comparison expression), declaring the value as the
last item in the lambda will cause that value to be returned. The following
lambda returns the Boolean true value after printing a message:

val result = { println("Hello"); true }()

Similarly, the following lambda returns a string literal:

val nextmessage = { println("Hello"); "Goodbye" }()

A particularly useful feature of lambdas and the ability to create function
references is that they can be both passed to functions as arguments and
returned as results. This concept, however, requires an understanding of
function types and higher-order functions.

15.10 Higher-order Functions

On the surface, lambdas and function references do not seem to be
particularly compelling features. The possibilities that these features offer
become more apparent, however, when we consider that lambdas and
function references have the same capabilities of many other data types. In
particular, these may be passed through as arguments to another function, or
even returned as a result from a function.

A function that is capable of receiving a function or lambda as an argument,
or returning one as a result is referred to as a higher-order function.

Before we look at what is, essentially, the ability to plug one function into



another, it is first necessary to explore the concept of function types. The
type of a function is dictated by a combination of the parameters it accepts
and the type of result it returns. A function which accepts an Int and a
Double as parameters and returns a String result for example is considered
to have the following function type:

(Int, Double) -> String

In order to accept a function as a parameter, the receiving function declares
the type of the function it is able to accept.

For the purposes of an example, we will begin by declaring two unit

conversion functions:
fun inchesToFeet (inches: Double): Double {
return inches * 0.0833333

}

fun inchesToYards (inches: Double): Double {
return inches * 0.0277778

¥

The example now needs an additional function, the purpose of which is to
perform a unit conversion and print the result in the console panel. This
function needs to be as general purpose as possible, capable of performing a
variety of different measurement unit conversions. In order to demonstrate
functions as parameters, this new function will take as a parameter a
function type that matches both the inchesToFeet and inchesToYards
functions together with a value to be converted. Since the type of these
functions is equivalent to (Double) -> Double, our general purpose function

can be written as follows:

fun outputConversion(converterFunc: (Double) -> Double, value:
Double) {

val result = converterFunc(value)
println("Result of conversion is $result")

}

When the outputConversion function is called, it will need to be passed a
function matching the declared type. That function will be called to perform
the conversion and the result displayed in the console panel. This means
that the same function can be called to convert inches to both feet and
yards, by “plugging in” the appropriate converter function as a parameter,
keeping in mind that it is the function reference that is being passed as an



argument:

outputConversion(::inchesToFeet, 22.45)
outputConversion(::inchesToYards, 22.45)

Functions can also be returned as a data type by declaring the type of the
function as the return type. The following function is configured to return
either our inchesToFeet or inchesToYards function type (in other words a
function which accepts and returns a Double value) based on the value of a

Boolean parameter:
fun decideFunction(feet: Boolean): (Double) -> Double

{

if (feet) {
return ::inchesToFeet
} else {

return ::inchesToYards

b
¥

When called, the function will return a function reference which can then be

used to perform the conversion:

val converter = decideFunction(true)
val result = converter(22.4)
println(result)

15.11 Summary

Functions and lambda expressions are self-contained blocks of code that
can be called upon to perform a specific task and provide a mechanism for
structuring code and promoting reuse. This chapter has introduced the basic
concepts of function and lambda declaration and implementation in addition
to the use of higher-order functions that allow lambdas and functions to be
passed as arguments and returned as results.



16. The Basics of Object Oriented
Programming in Kotlin

Kotlin provides extensive support for developing object-oriented
applications. The subject area of object oriented programming is, however,
large. As such, a detailed overview of object oriented software development
is beyond the scope of this book. Instead, we will introduce the basic
concepts involved in object oriented programming and then move on to
explaining the concept as it relates to Kotlin application development.

16.1 What is an Object?

Objects (also referred to as instances) are self-contained modules of
functionality that can be easily used, and re-used as the building blocks for
a software application.

Objects consist of data variables (called properties) and functions (called
methods) that can be accessed and called on the object or instance to
perform tasks and are collectively referred to as class members.

16.2 What is a Class?

Much as a blueprint or architect’s drawing defines what an item or a
building will look like once it has been constructed, a class defines what an
object will look like when it is created. It defines, for example, what the
methods will do and what the properties will be.

16.3 Declaring a Kotlin Class

Before an object can be instantiated, we first need to define the class
‘blueprint’ for the object. In this chapter we will create a bank account class
to demonstrate the basic concepts of Kotlin object oriented programming.

In declaring a new Kotlin class we specify an optional parent class from
which the new class is derived and also define the properties and methods
that the class will contain. The basic syntax for a new class is as follows:
class NewClassName: ParentClass {

// Properties
// Methods



The Properties section of the declaration defines the variables and constants
that are to be contained within the class. These are declared in the same way
that any other variable would be declared in Kotlin.

The Methods sections define the methods that are available to be called on
the class and instances of the class. These are essentially functions specific
to the class that perform a particular operation when called upon and will be
described in greater detail later in this chapter.

To create an example outline for our BankAccount class, we would use the

following:
class BankAccount {

}

Now that we have the outline syntax for our class, the next step is to add
some properties to it.

16.4 Adding Properties to a Class

A key goal of object oriented programming is a concept referred to as data
encapsulation. The idea behind data encapsulation is that data should be
stored within classes and accessed only through methods defined in that
class. Data encapsulated in a class are referred to as properties or instance
variables.

Instances of our BankAccount class will be required to store some data,
specifically a bank account number and the balance currently held within
the account. Properties are declared in the same way any other variables are

declared in Kotlin. We can, therefore, add these variables as follows:
class BankAccount {

var accountBalance: Double = 0.0

var accountNumber: Int = 0

}

Having defined our properties, we can now move on to defining the
methods of the class that will allow us to work with our properties while
staying true to the data encapsulation model.

16.5 Defining Methods

The methods of a class are essentially code routines that can be called upon
to perform specific tasks within the context of that class.



Methods are declared within the opening and closing braces of the class to
which they belong and are declared using the standard Kotlin function
declaration syntax.

For example, the declaration of a method to display the account balance in

our example might read as follows:
class BankAccount {
var accountBalance: Double = 0.0
var accountNumber: Int = 0

fun displayBalance()
{

println("Number $accountNumber")
println("Current balance is $accountBalance")

}
16.6 Declaring and Initializing a Class Instance

So far all we have done is define the blueprint for our class. In order to do
anything with this class, we need to create instances of it. The first step in
this process is to declare a variable to store a reference to the instance when
it is created. We do this as follows:

val accountl: BankAccount = BankAccount()

When executed, an instance of our BankAccount class will have been
created and will be accessible via the accountl variable. Of course, the
Kotlin compiler will be able to use inference here, making the type

declaration optional:
val accountl = BankAccount()

16.7 Primary and Secondary Constructors

A class will often need to perform some initialization tasks at the point of
creation. These tasks can be implemented using constructors within the
class. In the case of the BankAccount class, it would be useful to be able to
initialize the account number and balance properties with values when a
new class instance is created. To achieve this, a secondary constructor can

be declared within the class header as follows:
class BankAccount {

var accountBalance: Double = 0.0



var accountNumber: Int = 0

constructor (number: Int, balance: Double) {
accountNumber = number
accountBalance = balance

}
When creating an instance of the class, it will now be necessary to provide
initialization values for the account number and balance properties as

follows:
val accountl: BankAccount = BankAccount (456456234, 342.98)

A class can contain multiple secondary constructors allowing instances of
the class to be initiated with different value sets. The following variation of
the BankAccount class includes an additional secondary constructor for use
when initializing an instance with the customer’s last name in addition to

the corresponding account number and balance:
class BankAccount {

var accountBalance: Double = 0.0
var accountNumber: Int = 0
var lastName: String = ""

constructor (number: Int,
balance: Double) {
accountNumber = number
accountBalance = balance

constructor (number: Int,
balance: Double,
name: String ) {
accountNumber = number
accountBalance = balance
lastName = name



Instances of the BankAccount may now also be created as follows:
val accountl: BankAccount = BankAccount (456456234, 342.98, "Smith")

It is also possible to use a primary constructor to perform basic
initialization tasks. The primary constructor for a class is declared within

the class header as follows:

class BankAccount (val accountNumber: Int, var accountBalance:
Double) {

fun displayBalance()
{

println("Number $accountNumber")
println("Current balance is $accountBalance")

}

Note that now both properties have been declared in the primary
constructor, it is no longer necessary to also declare the variables within the
body of the class. Since the account number will now not change after an
instance of the class has been created, this property is declared as being
immutable using the val keyword.

Although a class may only contain one primary constructor, Kotlin allows
multiple secondary constructors to be declared in addition to the primary
constructor. In the following class declaration the constructor that handles
the account number and balance is declared as the primary constructor
while the variation that also accepts the user’s last name is declared as a

secondary constructor:

class BankAccount (val accountNumber: Int, var accountBalance:
Double) {

var lastName: String = ""
constructor (accountNumber: Int,

accountBalance: Double,

name: String ) : this(accountNumber,
accountBalance) {

lastName = name



}

In the above example there are two key points which need to be noted.
First, since the lastName property is referenced by a secondary constructor,
the variable is not handled automatically by the primary constructor and
must be declared within the body of the class and initialized within the

constructor.
var lastName: String = ""

lastName = name

Second, although the accountNumber and accountBalance properties are
accepted as parameters to the secondary constructor, the variable
declarations are still handled by the primary constructor and do not need to
be declared. To associate the references to these properties in the secondary
constructor with the primary constructor, however, they must be linked back

to the primary constructor using the this keyword:
. this(accountNumber, accountBalance)...

16.8 Initializer Blocks

In addition to the primary and secondary constructors, a class may also
contain initializer blocks which are called after the constructors. Since a
primary constructor cannot contain any code, these methods are a
particularly useful location for adding code to perform initialization tasks
when an instance of the class is created. Initializer blocks are declared using

the init keyword with the initialization code enclosed in braces:

class BankAccount (val accountNumber: Int, var accountBalance:
Double) {

init {
// Initialization code goes here

}

)
16.9 Calling Methods and Accessing Properties

Now is probably a good time to recap what we have done so far in this
chapter. We have now created a new Kotlin class named BankAccount.



Within this new class we declared primary and secondary constructors to
accept and initialize account number, balance and customer name
properties. In the preceding sections we also covered the steps necessary to
create and initialize an instance of our new class. The next step is to learn
how to call the instance methods and access the properties we built into our
class. This is most easily achieved using dot notation.

Dot notation involves accessing a property, or calling a method by
specifying a class instance followed by a dot followed in turn by the name
of the property or method:

ClassInstance.propertyname

classInstance.methodname()

For example, to get the current value of our accountBalance instance

variable:
val balancel = accountl.accountBalance

Dot notation can also be used to set values of instance properties:
accountl.accountBalance = 6789.98

The same technique is used to call methods on a class instance. For

example, to call the displayBalance method on an instance of the

BankAccount class:
accountl.displayBalance()

16.10 Custom Accessors

When accessing the accountBalance property in the previous section, the
code is making use of property accessors that are provided automatically by
Kotlin. In addition to these default accessors it is also possible to implement
custom accessors that allow calculations or other logic to be performed
before the property is returned or set.

Custom accessors are implemented by creating getter and optional
corresponding setter methods containing the code to perform any tasks
before returning the property. Consider, for example, that the
BankAcccount class might need an additional property to contain the
current balance less any recent banking fees. Rather than use a standard
accessor, it makes more sense to use a custom accessor which calculates
this value on request. The modified BankAccount class might now read as

follows:
class BankAccount (val accountNumber: Int, var accountBalance:



Double) {
val fees: Double = 25.00
val balanceLessFees: Double

get() {

return accountBalance - fees

}
fun displayBalance()
{
println("Number $accountNumber")
println("Current balance is $accountBalance")
3

}

The above code adds a getter that returns a computed property based on the
current balance minus a fee amount. An optional setter could also be

declared in much the same way to set the balance value less fees:
val fees: Double = 25.00

var balancelLessFees: Double

get() {
return accountBalance - fees

}

set(value) {
accountBalance = value - fees

}

}

The new setter takes as a parameter a Double value from which it deducts
the fee value before assigning the result to the current balance property.
Regardless of the fact that these are custom accessors, they are accessed in
the same way as stored properties using dot-notation. The following code
gets the current balance less the fees value before setting the property to a

new value:
val balancel = accountl.balancelLessFees
accountl.balancelLessFees = 12123.12

16.11 Nested and Inner Classes



Kotlin allows one class to be nested within another class. In the following

code, for example, ClassB is nested inside ClassA:
class ClassA {
class ClassB {

b
¥

In the above example, ClassB does not have access to any of the properties
within the outer class. If access is required, the nested class must be
declared using the inner directive. In the example below ClassB now has

access to the myProperty variable belonging to ClassA:
class ClassA {
var myProperty: Int = 10

inner class ClassB {
val result = 20 + myProperty

3
b

16.12 Companion Objects

A Kotlin class can also contain a companion object. A companion object
contains methods and variables that are common to all instances of the
class. In addition to being accessible via class instances, these properties are
also accessible at the class level (in other words without the need to create
an instance of the class).

The syntax for declaring a companion object within a class is as follows:
class ClassName: ParentClass {

// Properties
// Methods

companion object {
// properties
// methods

}

To experience a companion object example in action, enter the following

into the Kotlin online playground at https://play.kotlinlang.org:
class MyClass {

fun showCount() {


https://play.kotlinlang.org/

println("counter = " + counter)

}

companion object {
var counter = 1

fun counterUp() {
counter += 1

¥
¥

fun main(args: Array<String>) {
println(MyClass.counter)
3

The class contains a companion object consisting of a counter variable and
a method to increment that variable. The class also contains a method to
display the current counter value. The main() method displays the current
value of the counter variable, but does so by calling the method on the class

itself instead of a class instance:
println(MyClass.counter)

Modify the main() method to also increment the counter, displaying the

current value both before and after:

fun main(args: Array<String>) {
println(MyClass.counter)
MyClass.counteruUp()
println(MyClass.counter)

}

Run the code and verify that the following output appears in the console:
1
2

Next, add some code to create an instance of MyClass before making a call

to the showCount() method:

fun main(args: Array<String>) {
println(MyClass.counter)
MyClass.counterUp()
println(MyClass.counter)

val instanceA = MyClass()
instanceA.showCount()



}

When executed, the following output will appear in the console:
1

2

counter = 2

Clearly, the class has access to the variables and methods contained within
the companion object.

Another useful aspect of companion objects is that all instances of the
containing class see the same companion object, including current variable
values. To see this in action, create a second instance of MyClass and call
the showCount() method on that instance:
fun main(args: Array<String>) {

println(MyClass.counter)

MyClass.counterUp()
println(MyClass.counter)

val instanceA = MyClass()
instanceA.showCount ()

val instanceB = MyClass()
instanceB.showCount()

}

When run, the code will produce the following console output:
1

2
counter = 2
counter = 2

Note that both instances return the incremented value of 2, showing that the
two class instances are sharing the same companion object data.

16.13 Summary

Object oriented programming languages such as Kotlin encourage the
creation of classes to promote code reuse and the encapsulation of data
within class instances. This chapter has covered the basic concepts of
classes and instances within Kotlin together with an overview of primary
and secondary constructors, initializer blocks, properties, methods,
companion objects and custom accessors.



17. An Introduction to Kotlin
Inheritance and Subclassing

In “The Basics of Object Oriented Programming_in Kotlin” we covered the
basic concepts of object-oriented programming and worked through an
example of creating and working with a new class using Kotlin. In that
example, our new class was not specifically derived from a base class
(though in practice, all Kotlin classes are ultimately derived from the Any
class). In this chapter we will provide an introduction to the concepts of
subclassing, inheritance and extensions in Kotlin.

17.1 Inheritance, Classes and Subclasses

The concept of inheritance brings something of a real-world view to
programming. It allows a class to be defined that has a certain set of
characteristics (such as methods and properties) and then other classes to be
created which are derived from that class. The derived class inherits all of
the features of the parent class and typically then adds some features of its
own. In fact, all classes in Kotlin are ultimately subclasses of the Any
superclass which provides the basic foundation on which all classes are
based.

By deriving classes we create what is often referred to as a class hierarchy.
The class at the top of the hierarchy is known as the base class or root class
and the derived classes as subclasses or child classes. Any number of
subclasses may be derived from a class. The class from which a subclass is
derived is called the parent class or superclass.

Classes need not only be derived from a root class. For example, a subclass
can also inherit from another subclass with the potential to create large and
complex class hierarchies.

In Kotlin a subclass can only be derived from a single direct parent class.
This is a concept referred to as single inheritance.

17.2 Subclassing Syntax

As a safety measure designed to make Kotlin code less prone to error,
before a subclass can be derived from a parent class, the parent class must



be declared as open. This is achieved by placing the open keyword within

the class header:

open class MyParentClass {
var myProperty: Int = 0

by

With a simple class of this type, the subclass can be created as follows:
class MySubClass : MyParentClass() {

}

For classes containing primary or secondary constructors, the rules for
creating a subclass are slightly more complicated. Consider the following

parent class which contains a primary constructor:
open class MyParentClass(var myProperty: Int) {

}

In order to create a subclass of this class, the subclass declaration references
any base class parameters while also initializing the parent class using the

following syntax:
class MySubClass(myProperty: Int) : MyParentClass(myProperty) {

}

If, on the other hand, the parent class contains one or more secondary
constructors, the constructors must also be implemented within the subclass
declaration and include a call to the secondary constructors of the parent
class, passing through as arguments the values passed to the subclass
secondary constructor. When working with subclasses, the parent class can
be referenced using the super keyword. A parent class with a secondary

constructor might read as follows:
open class MyParentClass {
var myProperty: Int = 0

constructor(number: Int) {
myProperty = number

}
}
The code for the corresponding subclass would need to be implemented as

follows:
class MySubClass : MyParentClass {



constructor(number: Int) : super(number)
¥
If additional tasks need to be performed within the constructor of the
subclass, this can be placed within curly braces after the constructor

declaration:
class MySubClass : MyParentClass {

constructor(number: Int) : super(number) {
// Subclass constructor code here

3
b

17.3 A Kotlin Inheritance Example

As with most programming concepts, the subject of inheritance in Kotlin is
perhaps best illustrated with an example. In “The Basics of Object Oriented
Programming_in Kotlin” we created a class named BankAccount designed
to hold a bank account number and corresponding current balance. The
BankAccount class contained both properties and methods. A simplified
declaration for this class is reproduced below and will be used for the basis

of the subclassing example in this chapter:
class BankAccount {

var accountNumber = 0
var accountBalance = 0.0

constructor(number: Int, balance: Double) {
accountNumber = number
accountBalance = balance

}

open fun displayBalance()

{

println("Number $accountNumber")
println("Current balance is $accountBalance")

}

Though this is a somewhat rudimentary class, it does everything necessary
if all you need it to do is store an account number and account balance.
Suppose, however, that in addition to the BankAccount class you also



needed a class to be used for savings accounts. A savings account will still
need to hold an account number and a current balance and methods will still
be needed to access that data. One option would be to create an entirely new
class, one that duplicates all of the functionality of the BankAccount class
together with the new features required by a savings account. A more
efficient approach, however, would be to create a new class that is a
subclass of the BankAccount class. The new class will then inherit all the
features of the BankAccount class but can then be extended to add the
additional functionality required by a savings account. Before a subclass of
the BankAccount class can be created, the declaration needs to be modified

to declare the class as open:
open class BankAccount {

To create a subclass of BankAccount that we will call SavingsAccount, we
declare the new class, this time specifying BankAccount as the parent class

and add code to call the constructor on the parent class:
class SavingsAccount : BankAccount {
constructor(accountNumber: Int, accountBalance: Double)
super (accountNumber, accountBalance)

}

Note that although we have yet to add any properties or methods, the class
has actually inherited all the methods and properties of the parent
BankAccount class. We could, therefore, create an instance of the
SavingsAccount class and set variables and call methods in exactly the
same way we did with the BankAccount class in previous examples. That
said, we haven’t really achieved anything unless we actually take steps to
extend the class.

17.4 Extending the Functionality of a Subclass

So far we have been able to create a subclass that contains all the
functionality of the parent class. In order for this exercise to make sense,
however, we now need to extend the subclass so that it has the features we
need to make it useful for storing savings account information. To do this,
we add the properties and methods that provide the new functionality, just

as we would for any other class we might wish to create:
class SavingsAccount : BankAccount {
var interestRate: Double = 0.0



constructor(accountNumber: Int, accountBalance: Double)
super (accountNumber, accountBalance)

fun calculateInterest(): Double {
return interestRate * accountBalance

}
¥

17.5 Overriding Inherited Methods

When using inheritance it is not unusual to find a method in the parent class
that almost does what you need, but requires modification to provide the
precise functionality you require. That being said, it is also possible you’ll
inherit a method with a name that describes exactly what you want to do,
but it actually does not come close to doing what you need. One option in
this scenario would be to ignore the inherited method and write a new
method with an entirely new name. A better option is to override the
inherited method and write a new version of it in the subclass.

Before proceeding with an example, there are three rules that must be
obeyed when overriding a method. First, the overriding method in the
subclass must take exactly the same number and type of parameters as the
overridden method in the parent class. Second, the new method must have
the same return type as the parent method. Finally, the original method in
the parent class must be declared as open before the compiler will allow it
to be overridden.

In our BankAccount class we have a method named displayBalance that
displays the bank account number and current balance held by an instance
of the class. In our SavingsAccount subclass we might also want to output
the current interest rate assigned to the account. To achieve this, we declare
a new version of the displayBalance method in our SavingsAccount

subclass, prefixed with the override keyword:
class SavingsAccount : BankAccount {
var interestRate: Double = 0.0

constructor(accountNumber: Int, accountBalance: Double)
super (accountNumber, accountBalance)

fun calculateInterest(): Double

{



return interestRate * accountBalance

}

override fun displayBalance()

{

println("Number $accountNumber")
println("Current balance is $accountBalance")
println("Prevailing interest rate is $interestRate")

}
}

Before this code will compile, the displayBalance method in the

BankA ccount class must be declared as open:
open fun displayBalance()

{

println("Number $accountNumber")
println("Current balance is $accountBalance")

}

It is also possible to make a call to the overridden method in the superclass
from within a subclass. The displayBalance method of the superclass could,
for example, be called to display the account number and balance, before

the interest rate is displayed, thereby eliminating further code duplication:
override fun displayBalance()

{

super .displayBalance()
println("Prevailing interest rate is $interestRate")

}
17.6 Adding a Custom Secondary Constructor

As the SavingsAccount class currently stands, it makes a call to the
secondary constructor from the parent BankAccount class which was
implemented as follows:

constructor(accountNumber: Int, accountBalance: Double)

super (accountNumber, accountBalance)

Clearly this constructor takes the necessary steps to initialize both the
account number and balance properties of the class. The SavingsAccount
class, however, contains an additional property in the form of the interest
rate variable. The SavingsAccount class, therefore, needs its own
constructor to ensure that the interestRate property is initialized when
instances of the class are created. Modify the SavingsAccount class one last



time to add an additional secondary constructor allowing the interest rate to

also be specified when class instances are initialized:
class SavingsAccount : BankAccount {

var interestRate: Double = 0.0

constructor (accountNumber: Int, accountBalance: Double)
super (accountNumber, accountBalance)

constructor (accountNumber: Int, accountBalance: Double, rate:
Double)
super (accountNumber, accountBalance) {
interestRate = rate

}
17.7 Using the SavingsAccount Class
Now that we have completed work on our SavingsAccount class, the class

can be used in some example code in much the same way as the parent

BankAccount class:
val savingsl = SavingsAccount(12311, 600.00, 0.07)

println(savingsl.calculateInterest())
savingsl.displayBalance()

17.8 Summary

Inheritance extends the concept of object re-use in object oriented
programming by allowing new classes to be derived from existing classes,
with those new classes subsequently extended to add new functionality.
When an existing class provides some, but not all, of the functionality
required by the programmer, inheritance allows that class to be used as the
basis for a new subclass. The new subclass will inherit all the capabilities of
the parent class, but may then be extended to add the missing functionality.



18. An Overview of Android View
Binding

An essential part of developing Android apps involves the interaction
between the code and the views that make up the user interface layouts.
This chapter will look at the options available for gaining access to layout
views in code, emphasizing an option known as view binding. Once the

basics of view bindings have been covered, the chapter will outline how to
convert the AndroidSample project to use this approach.

18.1 Find View by Id

As outlined in the chapter entitled “The Anatomy of an Android App”, all of
the resources that make up an application are compiled into a class named
R. Amongst those resources are those that define layouts. Within the R class
is a subclass named layout, which contains the layout resources, including
the views that make up the user interface. Most apps will need to implement
interaction between the code and these views, for example, when reading
the value entered into the EditText view or changing the content displayed
on a TextView.

Before the introduction of Android Studio 3.6, the most common option for
gaining access to a view from within the app code involved writing code to
manually find a view based on its id via the findViewByld() method. For
example:

val exampleView: TextView = findViewById(R.id.exampleView)

With the reference obtained, the view’s properties can then be accessed. For
example:

exampleView.text = "Hello"

While finding views by id is still a viable option, it has some limitations,
the most significant disadvantage of findViewByld() being that it is possible
to obtain a reference to a view that has not yet been created within the
layout, leading to a null pointer exception when an attempt is made to
access the view’s properties.

Since Android Studio 3.6, an alternative way of accessing views from the
app code has been available in the form of view binding.



18.2 View Binding

When view binding is enabled in an app module, Android Studio
automatically generates a binding class for each layout file. The layout
views can be accessed from within the code using this binding class without
using findViewBylId().

The name of the binding class generated by Android Studio is based on the
layout file name converted to so-called “camel case” with the word
“Binding” appended to the end. For the activity_main.xml file, for example,
the binding class will be called ActivityMainBinding.

Android Studio Jellyfish is inconsistent in using view bindings within
project templates. For example, the Empty Views Activity template used
when we created the AndroidSample project does not use view bindings.
The Basic Views Activity template, on the other hand, is implemented using
view binding. If you use a template that does not use view binding, it is
important to know how to add it to your project.

18.3 Converting the AndroidSample project

In the remainder of this chapter, we will practice migrating to view bindings
by converting the AndroidSample project to use view binding instead of
findViewByld().

Begin by launching Android Studio and opening the AndroidSample project
created in the chapter entitled “Creating_an Example Android App in
Android Studio”.

18.4 Enabling View Binding

To use view binding, some changes must first be made to the
build.gradle.kts file for each module in which view binding is needed. In
the case of the AndroidSample project, this will require a slight change to
the Gradle Scripts -> build.gradle.kts (Module: app) file. Load this file into
the editor, locate the android section and add an entry to enable the

viewBinding property as follows:

plugins {
alias(libs.plugins.androidApplication)
alias(libs.plugins.jetbrainskKotlinAndroid)

}

android {



buildFeatures {
viewBinding = true

}

Once this change has been made, click on the Sync Now link at the top of
the editor panel, then use the Build menu to clean and rebuild the project to
ensure the binding class is generated. The next step is to use the binding
class within the code.

18.5 Using View Binding

The first step in this process is to “inflate” the view binding class to access
the root view within the layout. This root view will then be used as the
content view for the layout.

The logical place to perform these tasks is within the onCreate() method of
the activity associated with the layout. A typical onCreate() method will

read as follows:
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
enableEdgeToEdge()
setContentView(R.layout.activity main)
ViewCompat.setOnApplyWindowInsetsListener (findViewById(R.id.mai
n)) { v, insets ->
val systemBars =
insets.getInsets(WindowInsetsCompat.Type.systemBars())
v.setPadding(systemBars.left, systemBars.top,
systemBars.right,
systemBars.bottom)
insets

}

To switch to using view binding, the view binding class will need to be
imported and the class modified as follows. Note that since the layout file is
named activity_main.xml, we can surmise that the binding class generated
by Android Studio will be named ActivityMainBinding. Note that if you
used a domain other than com.example when creating the project, the
import statement below would need to be changed to reflect this:



: L Y
il oid. 'Ig . :

import com.example.androidsample.databinding.ActivityMainBinding
class MainActivity : AppCompatActivity() {
private lateinit var binding: ActivityMainBinding

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
enableEdgeToEdge()
Lew(R ] _ ity main
binding = ActivityMainBinding.inflate(layoutInflater)
setContentView(binding.root)
ViewCompat.setOnApplyWindowInsetsListener (binding.main) {
v, insets ->
val systemBars =
insets.getInsets(WindowInsetsCompat.Type.
systemBars())
v.setPadding(systemBars.left, systemBars.top,
systemBars.right,
systemBars.bottom)
insets

Now that we have a reference to the binding, we can access the views by

name as follows:
fun convertCurrency(view: View) {

——val-dollarText: EditText = findViewById{R. id-dollarText)
1 o . — findvi (R id. Lo

if (binding.dollarText.text.isNotEmpty()) {

val dollarValue =
binding.dollarText.text.toString().toFloat()

val eurovValue = dollarValue * 0.85f
binding.textView.text = euroValue.toString()
} else {
binding.textView.text = getString(R.string.no_value_string)



}
¥

Compile and run the app and verify that the currency conversion process
works as before.

18.6 Choosing an Option

Notwithstanding their failure to adopt view bindings in the Empty Views
Activity project template, Google strongly recommends using view binding
wherever possible. Therefore, view binding should be used when
developing your own projects.

18.7 View Binding in the Book Examples

Any chapters in this book that rely on a project template that does not
implement view binding will first be migrated. Instead of replicating the
steps every time a migration needs to be performed, however, these chapters
will refer you back here to refresh your memory (don’t worry, after a few
chapters, the necessary changes will become second nature). To help with
the process, the following section summarizes the migration steps more
concisely.

18.8 Migrating a Project to View Binding

The process for converting a project module to use view binding involves

the following steps:

1.Edit the module-level Gradle build script file listed in the Project tool
window as Gradle Scripts -> build.gradle.kts (Module :app).

2.Locate the android section of the file and add an entry to enable the

viewBinding property as follows:
android {

buildFeatures {
viewBinding = true

}

3.Click on the Sync Now link at the top of the editor to resynchronize the
project with these new build settings.

4.Edit the MainActivity.kt file and modify it to read as follows (where



<reverse domain> represents the domain name used when the project
was created and <project name> is replaced by the lowercase name of
the project, for example, androidsample) and <binding name> is the
name of the binding for the corresponding layout resource file (for
example, the binding for activity_main.xml is ActivityMainBinding).

import <reverse domain>.<project name>.databinding.<binding name>

class MainActivity : AppCompatActivity() {
private lateinit var binding: <binding name>

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R—1ayout—activity mainy
binding = <binding name>.inflate(layoutInflater)
setContentView(binding.root)
ViewCompat.setOnApplyWindowInsetsListener (binding.main) { v,
insets ->
val systemBars =
insets.getInsets(WindowInsetsCompat.Type.
systemBars())
v.setPadding(systemBars.left, systemBars.top,

systemBars.right,
systemBars.botto

m)
insets

}
5. Access views by name as properties of the binding object.

18.9 Summary

Before the introduction of Android Studio 3.6, access to layout views from
within the code of an app involved using the findViewByld() method. An
alternative is now available in the form of view bindings. View bindings
consist of classes Android Studio automatically generates for each XML
layout file. These classes contain bindings to each view in the
corresponding layout, providing a safer option than the findViewByld()



method. However, as of Android Studio Jellyfish, view bindings are not
enabled by default in some project templates. Additional steps are required
to enable and configure support within each project module manually.



19. Understanding Android
Application and Activity Lifecycles

In earlier chapters, we learned that Android applications run within
processes and comprise multiple components in the form of activities,
services, and broadcast receivers. This chapter aims to expand on this
knowledge by looking at the lifecycle of applications and activities within
the Android runtime system.

Regardless of the fanfare about how much memory and computing power
resides in the mobile devices of today compared to the desktop systems of
yesterday, it is important to keep in mind that these devices are still
considered to be “resource constrained” by the standards of modern desktop
and laptop-based systems, particularly in terms of memory. As such, a key
responsibility of the Android system is to ensure that these limited
resources are managed effectively and that the operating system and the
applications running on it remain responsive to the user at all times. To
achieve this, Android is given complete control over the lifecycle and state
of the processes in which the applications run and the individual
components that comprise those applications.

An important factor in developing Android applications, therefore, is to
understand Android’s application and activity lifecycle management models
of Android, and how an application can react to the state changes likely to
be imposed upon it during its execution lifetime.

19.1 Android Applications and Resource
Management

The operating system views each running Android application as a separate
process. If the system identifies that resources on the device are reaching
capacity, it will take steps to terminate processes to free up memory.

When determining which process to terminate to free up memory, the
system considers both the priority and state of all currently running
processes, combining these factors to create what is referred to by Google
as an importance hierarchy. Processes are then terminated, starting with the
lowest priority and working up the hierarchy until sufficient resources have



been liberated for the system to function.

19.2 Android Process States

Processes host applications, and applications are made up of components.
Within an Android system, the current state of a process is defined by the
highest-ranking active component within the application it hosts. As
outlined in Figure 19-1, a process can be in one of the following five states
at any given time:

Foreground Process | Highest Priority
Visible Process
Service Process

Background Process

Empty Process Lowest Priority

Figure 19-1
19.2.1 Foreground Process

These processes are assigned the highest level of priority. At any one time,
there are unlikely to be more than one or two foreground processes active,
which are usually the last to be terminated by the system. A process must
meet one or more of the following criteria to qualify for foreground status:

*Hosts an activity with which the user is currently interacting.
*Hosts a Service connected to the activity with which the user is interacting.

*Hosts a Service that has indicated, via a call to startForeground(), that
termination would disrupt the user experience.

*Hosts a Service executing either its onCreate(), onResume(), or onStart()
callbacks.

*Hosts a Broadcast Receiver that is currently executing its onReceive()
method.



19.2.2 Visible Process

A process containing an activity that is visible to the user but is not the
activity with which the user is interacting is classified as a “visible
process”. This is typically the case when an activity in the process is visible
to the user, but another activity, such as a partial screen or dialog, is in the
foreground. A process is also eligible for visible status if it hosts a Service
that is, itself, bound to a visible or foreground activity.

19.2.3 Service Process

Processes that contain a Service that has already been started and is
currently executing.

19.2.4 Background Process

A process that contains one or more activities that are not currently visible
to the user and does not host a Service that qualifies for Service Process
status. Processes that fall into this category are at high risk of termination if
additional memory needs to be freed for higher-priority processes. Android
maintains a dynamic list of background processes, terminating processes in
chronological order such that processes that were the least recently in the
foreground are killed first.

19.2.5 Empty Process

Empty processes no longer contain active applications and are held in
memory, ready to serve as hosts for newly launched applications. This is
analogous to keeping the doors open and the engine running on a bus in
anticipation of passengers arriving. Such processes are considered the
lowest priority and are the first to be killed to free up resources.

19.3 Inter-Process Dependencies

Determining the highest priority process is more complex than outlined in
the preceding section because processes can often be interdependent. As
such, when determining the priority of a process, the Android system will
also consider whether the process is in some way serving another process of
higher priority (for example, a service process acting as the content
provider for a foreground process). As a basic rule, the Android
documentation states that a process can never be ranked lower than another
process that it is currently serving.



19.4 The Activity Lifecycle

As we have previously determined, the state of an Android process is
primarily determined by the status of the activities and components that
make up the application it hosts. It is important to understand, therefore,
that these activities also transition through different states during the
execution lifetime of an application. The current state of an activity is
determined, in part, by its position in something called the Activity Stack.

19.5 The Activity Stack

The runtime system maintains an Activity Stack for each application
running on an Android device. When an application is launched, the first of
the application’s activities to be started is placed onto the stack. When a
second activity is started, it is placed on the top of the stack, and the
previous activity is pushed down. The activity at the top of the stack is
called the active (or running) activity. When the active activity exits, it is
popped off the stack by the runtime and the activity located immediately
beneath it in the stack becomes the current active activity. For example, the
activity at the top of the stack might exit because the task for which it is
responsible has been completed. Alternatively, the user may have selected a
“Back” button on the screen to return to the previous activity, causing the
current activity to be popped off the stack by the runtime system and
destroyed. A visual representation of the Android Activity Stack is
illustrated in Figure 19-2.

As shown in the diagram, new activities are pushed onto the top of the stack
when they are started. The current active activity is located at the top of the
stack until it is either pushed down the stack by a new activity or popped off
the stack when it exits or the user navigates to the previous activity. If
resources become constrained, the runtime will kill activities, starting with
those at the bottom of the stack.

The Activity Stack is what is referred to in programming terminology as a
Last-In-First-Out (LIFO) stack in that the last item to be pushed onto the
stack is the first to be popped off.



[ Starting Activity 1

* Push
r ™y

Activity exits or

-~ ~, Po .
Active Activity user navigates
q y to "Previous Active
Activity"
e *%‘ Previous Active
S |3 Activity
n o
> [ h
= Activity
g1 ¢ :
L ]
[ ]
L ]
5 Killed  Terminated
g [ Oldest Activity }——)— to free
3 ) memory
Figure 19-2
19.6 Activity States

An activity can be in one of several states during the course of its execution
within an application:

*Active / Running — The activity is at the top of the Activity Stack, is the
foreground task visible on the device screen, has focus, and is currently
interacting with the user. This is the least likely activity to be terminated in
the event of a resource shortage.

*Paused — The activity is visible to the user but does not currently have
focus (typically because the current active activity partially obscures this
activity). Paused activities are held in memory, remain attached to the
window manager, retain all state information, and can quickly be restored
to active status when moved to the top of the Activity Stack.

*Stopped — The activity is currently not visible to the user (in other words,
it is obscured on the device display by other activities). As with paused
activities, it retains all state and member information but is at higher risk
of termination in low-memory situations.



*Killed — The runtime system has terminated the activity to free up memory
and is no longer present on the Activity Stack. Such activities must be
restarted if required by the application.

19.7 Configuration Changes

So far in this chapter, we have looked at two causes for the change in the
state of an Android activity, namely the movement of an activity between
the foreground and background and the termination of an activity by the
runtime system to free up memory. In fact, there is a third scenario in which
the state of an activity can dramatically change, which involves a change to
the device configuration.

By default, any configuration change that impacts the appearance of an
activity (such as rotating the orientation of the device between portrait and
landscape or changing a system font setting) will cause the activity to be
destroyed and recreated. The reasoning behind this is that such changes
affect resources such as the layout of the user interface, and destroying and
recreating impacted activities is the quickest way for an activity to respond
to the configuration change. It is, however, possible to configure an activity
so that the system does not restart it in response to specific configuration
changes.

19.8 Handling State Change

It should be clear from this chapter that an application and, by definition,
the components contained therein will transition through many states during
its lifespan. Of particular importance is the fact that these state changes (up
to and including complete termination) are imposed upon the application by
the Android runtime subject to the user’s actions and the availability of
resources on the device.

In practice, however, these state changes are not imposed entirely without
notice, and an application will, in most circumstances, be notified by the
runtime system of the changes and given the opportunity to react
accordingly. This will typically involve saving or restoring both internal
data structures and user interface state, thereby allowing the user to switch
seamlessly between applications and providing at least the appearance of
multiple concurrently running applications.

Android provides two ways to handle the changes to the lifecycle states of



the objects within an app. One approach involves responding to state
change method calls from the operating system and is covered in detail in
the next chapter entitled “Handling Android Activity State Changes”.

A new approach that Google recommends involves the lifecycle classes
included with the Jetpack Android Architecture components, introduced in
“Modern Android App Architecture with Jetpack” and explained in more
detail in the chapter entitled “Working with Android Lifecycle-Aware
Components”.

19.9 Summary

Mobile devices are typically considered to be resource constrained,
particularly in terms of onboard memory capacity. Consequently, a prime
responsibility of the Android operating system is to ensure that applications,
and the operating system in general, remain responsive to the user.

Applications are hosted on Android within processes. Each application, in
turn, comprises components in the form of activities and Services.

The Android runtime system has the power to terminate both processes and
individual activities to free up memory. Process state is considered by the
runtime system when deciding whether a process is a suitable candidate for
termination. The state of a process largely depends upon the status of the
activities hosted by that process.

The key message of this chapter is that an application moves through
various states during its execution lifespan and has very little control over
its destiny within the Android runtime environment. Those processes and
activities not directly interacting with the user run a higher risk of
termination by the runtime system. An essential element of Android
application development, therefore, involves the ability of an application to
respond to state change notifications from the operating system.



20. Handling Android Activity State
Changes

Based on the information outlined in the chapter entitled “Understanding
Android_Application _and _Activity Lifecycles” it is now evident that the
activities and fragments that make up an application pass through various
different states during the application’s lifespan. The Android runtime
system imposes the change from one state to the other and is, therefore,
largely beyond the control of the activity itself. That does not, however,
mean that the app cannot react to those changes and take appropriate
actions.

The primary objective of this chapter is to provide a high-level overview of
how an activity may be notified of a state change and outline the areas
where it is advisable to save or restore state information. Having covered
this information, the chapter will touch briefly on activity lifetimes.

20.1 New vs. Old Lifecycle Techniques

Until recently, there was a standard way to build lifecycle awareness into an
app. This approach is covered in this chapter and involves implementing a
set of methods (one for each lifecycle state) within an activity or fragment
instance that the operating system calls when the lifecycle status of that
object changes. This approach has remained unchanged since the early
years of the Android operating system, and while still a viable option today,
it does have some limitations, which will be explained later in this chapter.

With the introduction of the lifecycle classes with the Jetpack Android
Architecture Components, a better approach to lifecycle handling is now
available. This modern approach to lifecycle management (together with
the Jetpack components and architecture guidelines) will be covered in
detail in later chapters. It is still essential, however, to understand the
traditional lifecycle methods for a couple of reasons. First, as an Android
developer, you will not be completely insulated from the traditional
lifecycle methods and will still use some of them. More importantly,
understanding the older way of handling lifecycles will provide a sound
foundation for learning the new approach later in the book.



20.2 The Activity and Fragment Classes

With few exceptions, an application’s activities and fragments are created as
subclasses of the Android AppCompatActivity class and Fragment classes,
respectively.

Consider, for example, the AndroidSample project created in “Creating_an
Example Android App_in_Android Studio” and subsequently converted to
use view binding. Load this project into the Android Studio environment
and locate the MainActivity.kt file (located in app -> kotlin+java -> <your
domain> -> androidsample). Having located the file, double-click on it to

load it into the editor, where it should read as follows:
package com.example.androidsample

class MainActivity : AppCompatActivity() {
private lateinit var binding: ActivityMainBinding

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
enableEdgeToEdge()
binding = ActivityMainBinding.inflate(layoutInflater)
setContentView(binding.root)

ViewCompat.setOnApplyWindowInsetsListener(binding.main) {
v, insets ->

val systemBars = insets.getInsets(
WindowInsetsCompat.Type.systemBars())

v.setPadding(systemBars.left, systemBars.top,
systemBars.right,

systemBars.bottom)
insets

}

fun convertCurrency(view: View) {

}
When the project was created, we instructed Android Studio also to create



an initial activity named MainActivity.kt As is evident from the above code,
the MainActivity class is a subclass of the AppCompatActivity class.

A review of the reference documentation for the AppCompatActivity class
would reveal that it is itself a subclass of the Activity class. This can be
verified within the Android Studio editor using the Hierarchy tool window.
With the MainActivity.kt file loaded into the editor, click on
AppCompatActivity in the class declaration line and press the Ctrl-H
keyboard shortcut. The hierarchy tool window will subsequently appear,
displaying the class hierarchy for the selected class. As illustrated in Figure
20-1, AppCompatActivity is subclassed from the FragmentActivity class,
which is itself ultimately a subclass of the Activity class:

A W A 12 scope: Aly S F C X R 12X

v © = Object (java.lang)
v © = Context (android.content)
© = ContextWrapper (android.content)
v (© = ContextThemeWrapper (android.view)
v © % Activity (android.app)
v (© %= ComponentActivity (androidx.core.app)

v © = ComponentActivity (andro

v © = FragmentActivity (androidx yment.app)
© = AppCompatActivity (androidx.appcompat.app)
(G2 MainActivity (com.example.androidsample)

Figure 20-1
The Activity and Fragment classes contain a range of methods intended to
be called by the Android runtime to notify the object when its state is
changing. For this chapter, we will refer to these as the lifecycle methods.
An activity or fragment class needs to override these methods and
implement the necessary functionality to react accordingly to state changes.

One such method is named onCreate(), and, turning once again to the above
code fragment, we can see that this method has already been overridden and
implemented for us in the MainActivity class. In a later section, we will
explore onCreate() and the other relevant lifecycle methods of the Activity
and Fragment classes.

20.3 Dynamic State vs. Persistent State

A key objective of lifecycle management is ensuring that the state of the
activity is saved and restored at appropriate times. When talking about state
in this context, we mean the data currently being held within the activity



and the appearance of the user interface. The activity might, for example,
maintain a data model in memory that needs to be saved to a database,
content provider, or file. Because it persists from one invocation of the
application to another, such state information is referred to as the persistent
state.

The appearance of the user interface (such as text entered into a text field
but not yet committed to the application’s internal data model) is referred to
as the dynamic state since it is typically only retained during a single
invocation of the application (and also referred to as user interface state or
instance state).

Understanding the differences between these two states is important
because the ways they are saved and the reasons for doing so differ.

The purpose of saving the persistent state is to avoid data loss that may
result from an activity being killed by the runtime system while in the
background. On the other hand, the dynamic state is saved and restored for
slightly more complex reasons.

Consider, for example, that an application contains an activity (which we
will refer to as Activity A) containing a text field and some radio buttons.
During the course of using the application, the user enters some text into the
text field and makes a selection from the radio buttons. However, before
performing an action to save these changes, the user switches to another
activity, causing Activity A to be pushed down the Activity Stack and placed
into the background. After some time, the runtime system ascertains that
memory is low and kills Activity A to free up resources. However, as far as
the user is concerned, Activity A was placed in the background and is ready
to be moved to the foreground at any time. On returning Activity A to the
foreground, the user would reasonably expect the entered text and radio
button selections to have been retained. In this scenario, however, a new
instance of Activity A will have been created, and if the dynamic state is not
saved and restored, the previous user input is lost.

Therefore, the primary purpose of saving dynamic state is to give the
perception of seamless switching between foreground and background
activities, regardless of the fact that activities may have been killed and
restarted without the user’s knowledge.

The mechanisms for saving persistent and dynamic states will become more



apparent in the following sections of this chapter.

20.4 The Android Lifecycle Methods

As previously explained, the Activity and Fragment classes contain several
lifecycle methods which act as event handlers when the state of an instance
changes. The primary methods supported by the Android Activity and
Fragment class are as follows:

*onCreate(savedInstanceState: Bundle?) — The method called when the
activity is first created and the ideal location for most initialization tasks to
be performed. The method is passed an argument in the form of a Bundle
object that may contain dynamic state information (typically relating to the
state of the user interface) from a prior invocation of the activity.

eonRestart() — Called when the activity is about to restart after having
previously been stopped by the runtime system.

eonStart() — Always called immediately after the call to the onCreate() or
onRestart() methods. This method indicates to the activity that it is about
to become visible to the user. This call will be followed by a call to
onResume() if the activity moves to the top of the activity stack, or
onStop() if it is pushed down the stack by another activity.

*onResume() — Indicates that the activity is now at the top of the activity
stack and is the activity with which the user is currently interacting.

*onPause() — Indicates that a previous activity is about to become the
foreground activity. This call will be followed by a call to either the
onResume() or onStop() method, depending on whether the activity moves
back to the foreground or becomes invisible to the user. Steps may be
taken within this method to store persistent state information not yet saved
by the app. To avoid delays in switching between activities, time-
consuming operations such as storing data to a database or performing
network operations should be avoided within this method. This method
should also ensure that any CPU-intensive tasks, such as animation, are
stopped.

*onStop() — The activity is no longer visible to the user. The two possible
scenarios following this call are a call to onRestart() if the activity moves
to the foreground again or onDestroy() if the activity is terminated.

*onDestroy() — The activity is about to be destroyed, either voluntarily



because the activity has completed its tasks and has called the finish()
method or because the runtime is terminating it either to release memory
or due to a configuration change (such as the orientation of the device
changing). It is important to note that a call will not always be made to
onDestroy() when an activity is terminated.

*onConfigurationChanged() — Called when a configuration change occurs
for which the activity has indicated it is not to be restarted. The method is
passed a Configuration object outlining the new device configuration, and
it is then the responsibility of the activity to react to the change.

The following lifecycle methods only apply to the Fragment class:
*onAttach() - Called when the fragment is assigned to an activity.

*onCreateView() - Called to create and return the fragment’s user interface
layout view hierarchy.

*onViewCreated() - Called after onCreateView() returns.

*onViewStatusRestored() - The fragment’s saved view hierarchy has been
restored.

In addition to the lifecycle methods outlined above, there are two methods
intended specifically for saving and restoring the dynamic state of an
activity:

*onRestorelnstanceState(savedInstanceState: Bundle?) — This method is
called immediately after a call to the onStart() method if the activity
restarts from a previous invocation in which the state was saved. As with
onCreate(), this method is passed a Bundle object containing the previous
state data. This method is typically used when it makes more sense to
restore a previous state after the initialization of the activity has been
performed in onCreate() and onStart().

eonSavelnstanceState(outState: Bundle?) — Called before an activity is

destroyed so that the current dynamic state (usually relating to the user
interface) can be saved. The method is passed the Bundle object into
which the state should be saved and which is subsequently passed through
to the onCreate() and onRestorelnstanceState() methods when the activity
is restarted. Note that this method is only called when the runtime
ascertains that dynamic state needs to be saved.

When overriding the above methods, it is important to remember that,



except for onRestorelnstanceState() and onSavelnstanceState(), the method
implementation must include a call to the corresponding method in the
superclass. For example, the following method overrides the onRestart()

method but also includes a call to the superclass instance of the method:
override fun onRestart() {

super.onRestart()

Log.1(TAG, "onRestart")

}

Failure to make this superclass call in method overrides will result in the
runtime throwing an exception during execution. While calls to the
superclass in the onRestorelnstanceState() and onSavelnstanceState()
methods are optional (they can, for example, be omitted when
implementing custom save and restoration behavior) there are considerable
benefits to using them, a subject that will be covered in the chapter entitled
“Saving_and Restoring_the State of an Android Activity”.

20.5 Lifetimes

The final topic to be covered involves an outline of the entire, visible, and
foreground lifetimes through which an activity or fragment will transition
during execution:

*Entire Lifetime —The term “entire lifetime” is used to describe everything
that takes place between the initial call to the onCreate() method and the
call to onDestroy() before the object terminates.

*Visible Lifetime — Covers the periods of execution between the call to
onStart() and onStop(). During this period, the activity or fragment is
visible to the user though it may not be the object with which the user is
currently interacting.

*Foreground Lifetime — Refers to the periods of execution between calls
to the onResume() and onPause() methods.

It is important to note that an activity or fragment may pass through the
foreground and visible lifetimes multiple times during the course of the
entire lifetime.

The concepts of lifetimes and lifecycle methods are illustrated in Figure 20-
2:



e N

onCreate()
e Y )
( onstart) A onRestar() )

v )

| onRestorelnstanceState() l

~

onResume()

i

| onSavelnstanceState() |

Entire Lifetime
Visible Lifetime

( Foreground Lifetime

onPause()

‘|

J

onDestroy()

- /

Figure 20-2
20.6 Foldable Devices and Multi-Resume

As discussed previously, an activity is considered to be in the resumed state
when it has moved to the foreground and is the activity with which the user
is currently interacting. On standard devices, an app can have one activity
in the resumed state at any one time and all other activities are likely to be
in the paused or stopped state.

For some time now, Android has included multi-window support, allowing
multiple activities to appear simultaneously in either split-screen or
freeform configurations. Although initially used primarily on large-screen
tablet devices, this feature is likely to become more popular with the
introduction of foldable devices.

On devices running Android 10 and on which multi-window support is
enabled (as will be the case for most foldable devices), it will be possible
for multiple app activities to be in the resumed state at the same time (a
concept referred to as multi-resume) allowing those visible activities to
continue functioning (for example streaming content or updating visual
data) even when another activity currently has focus. Although multiple
activities can be in the resumed state, only one of these activities will be
considered the topmost resumed activity (in other words, the activity with
which the user most recently interacted).



An activity can be notified that it has gained or lost the topmost resumed
status by implementing the onTopResumedActivityChanged() callback
method.

20.7 Disabling Configuration Change Restarts

As previously outlined, an activity may indicate that it is not to be restarted
in the event of certain configuration changes. This is achieved by adding an
android:configChanges directive to the activity element within the project
manifest file. The following manifest file excerpt, for example, indicates
that the activity should not be restarted in the event of configuration

changes relating to orientation or device-wide font size:

<activity android:name=".MainActivity"
android:configChanges="orientation|fontScale"
android:label="@string/app_name">

20.8 Lifecycle Method Limitations

As discussed at the start of this chapter, lifecycle methods have been in use
for many years and, until recently, were the only mechanism available for
handling lifecycle state changes for activities and fragments. There are,
however, areas for improvement in this approach.

One issue with the lifecycle methods is that they do not provide an easy
way for an activity or fragment to discover its current lifecycle state at any
given point during app execution. Instead, the object must track the state
internally or wait for the next lifecycle method call.

Also, the methods do not provide a simple way for one object to observe the
lifecycle state changes of other objects within an app. This is a serious
consideration since a lifecycle state change in a given activity or fragment
can impact many other objects within an app.

The lifecycle methods are also only available on subclasses of the Fragment
and Activity classes. Therefore, it is impossible to build custom classes that
are genuinely lifecycle aware.

Finally, the lifecycle methods result in most lifecycle handling code being
written within the activity or fragment, which can lead to complex and
error-prone code. Ideally, much of this code should reside in the other
classes impacted by the state change. For example, an app that streams
video might include a class designed specifically to manage the incoming



stream. If the app needs to pause the stream when the main activity is
stopped, the code to do so should reside in the streaming class, not the main
activity.

All these problems and more are resolved using lifecycle-aware
components, a topic that will be covered starting with the chapter entitled
“Modern Android App Architecture with Jetpack”.

20.9 Summary

All activities are derived from the Android Activity class, which, in turn,
contains several lifecycle methods that are designed to be called by the
runtime system when the state of an activity changes. Similarly, the
Fragment class contains several comparable methods. By overriding these
methods, activities and fragments can respond to state changes and, where
necessary, take steps to save and restore the current state of the activity and
the application. Lifecycle state can be thought of as taking two forms. The
persistent state refers to data that needs to be stored between application
invocations (for example, to a file or database). Dynamic state, on the other
hand, relates instead to the current appearance of the user interface.

Although lifecycle methods have some limitations that can be avoided
using lifecycle-aware components, understanding these methods is essential
to fully understand the new approaches to lifecycle management covered
later in this book.

In this chapter, we have highlighted the lifecycle methods available to
activities and covered the concept of activity lifetimes. In the next chapter,
entitled “Android Activity State Changes by Example”, we will implement
an example application that puts much of this theory into practice.




21. Android Activity State Changes
by Example

The previous chapters have discussed in detail the different states and
lifecycles of the activities comprising an Android application. In this
chapter, we will put the theory of handling activity state changes into
practice by creating an example application. The purpose of this example
application is to provide a real-world demonstration of an activity as it
passes through various states within the Android runtime. In the next
chapter, entitled “Saving _and Restoring the State of an Android Activity”,
the example project constructed in this chapter will be extended to
demonstrate the saving and restoration of dynamic activity state.

21.1 Creating the State Change Example Project

The first step in this exercise is to create a new project. Launch Android
Studio and, if necessary, close any currently open projects using the File ->
Close Project menu option so that the Welcome screen appears.

Select the New Project option from the welcome screen and, within the
resulting new project dialog, choose the Empty Views Activity template
before clicking on the Next button.

Enter  StateChange into the Name field and  specify
com.ebookfrenzy.statechange as the package name. Before clicking on the
Finish button, change the Minimum API level setting to API 26: Android
8.0 (Oreo) and the Language menu to Kotlin. Upon completing the project
creation process, the StateChange project should be listed in the Project tool
window located along the left-hand edge of the Android Studio main
window. Use the steps outlined in section 18.8 Migrating_a Project to View
Binding to convert the project to use view binding.

The next action to take involves the design of the user interface for the
activity. This is stored in a file named activity_main.xml which should
already be loaded into the Layout Editor tool. If it is not, navigate to it in
the Project tool window where it can be found in the app -> res -> layout
folder. Once located, double-clicking on the file will load it into the
Android Studio Layout Editor tool.



activity_main.xml

pppppp

nnnnnnn

Containers

@ MainActivity.kt

Qs —
Ab TextView

[ Button

(=] ImageView

= RecyclerVi...
[CJ Fragment...
3 ScrollView

= Switch

activity_mainxmi -

@

Q &, 0OPixelv

®© U 0, S F I,

33 (@ stateChange - >

id

 Declared Attributes

layout_width
layout_height
£ context
~ Layout

layout_width

match_parent v
match_parent v
.MainActivity

match_parent v

match_parent v

Figure 21-1
21.2 Designing the User Interface

With the user interface layout loaded into the Layout Editor tool, it is time
to design the user interface for the example application. Instead of the
“Hello World!” TextView currently in the user interface design, the activity
requires an EditText view. Select the TextView object in the Component
Tree panel and press the Delete key on the keyboard to remove it from the
design.

From the Palette located on the left side of the Layout Editor, select the Text
category and, from the list of text components, click and drag a Plain Text
component over to the layout canvas. Move the component to the center of
the display so that the center guidelines appear and drop it into place so that
the layout resembles that of Figure 21-2.



Name NV editTextText VWAV

/fff//fff//ff//ff///fff//IV//f///fff//ff///f///f/‘f/f

Figure 21-2
When using the EditText widget, it is necessary to specify an input type for
the view. This defines the type of text or data the user will enter. For
example, if the input type is set to Phone, the user will be restricted to
entering numerical digits into the view. Alternatively, if the input type is set
to TextCapCharacters, the input will default to upper-case characters. Input
type settings may also be combined.

For this example, we will use the default input type to support general text
input. To choose a different setting in the future, select the EditText widget
in the layout and locate the inputType entry within the Attributes tool
window. Next, click the flag icon to the left of the current setting to open
the list of options, as shown in Figure 21-3 below. The Type menu provides
options to restrict the input to text, numbers, dates and times, and phone
numbers. The Variations menu provides additional options for the currently
selected input type. For example, a variation is available for the text input
type for email addresses as input.

Once a type and variation have been chosen, the input type may be
customized further using the list of flag checkboxes:



Attributes Q ©® —

Ab editTextText
Type: text v
Variation: text v
Flags: textAutoComplete

textAutoCorrect
textCapCharacters
textCapSentences
textCapWords

textEnableTextConversio...
textimeMultiLine
textMultiLine
textNoSuggestions

inputType H text
text Name
Figure 21-3

Remaining in the Attributes tool window, change the view’s id to editText
and click on the Refactor button in the resulting dialog.

By default, the EditText displays text which reads “Name”. Remaining
within the Attributes panel, delete this from the text property field so that
the view is blank within the layout.

Before continuing, click the Infer Constraints button in the layout editor
toolbar to add any missing constraints.

21.3 Overriding the Activity Lifecycle Methods

At this point, the project contains a single activity named MainActivity,
derived from the Android AppCompatActivity class. The source code for
this activity is contained within the MainActivity.kt file, which should
already be open in an editor session and represented by a tab in the editor
tab bar. If the file is no longer open, navigate to it in the Project tool
window panel (app -> kotlin+java -> com.ebookfrenzy.statechange ->
MainActivity) and double-click on it to load the file into the editor.

So far, the only lifecycle method overridden by the activity is the
onCreate() method which has been implemented to call the superclass
instance of the method before setting up the user interface for the activity.
We will now modify this method to output a diagnostic message in the



Android Studio Logcat panel each time it executes. For this, we will use the
Log class, which requires that we import android.util.Log and declare a tag

that will enable us to filter these messages in the log output:
package com.ebookfrenzy.statechange

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import android.util.Log

import com.ebookfrenzy.statechange.databinding.ActivityMainBinding
class MainActivity : AppCompatActivity() {

private lateinit var binding: ActivityMainBinding
private val TAG = "StateChange"

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

Log.i(TAG, "onCreate")

The next task is to override more methods, each containing a corresponding
log call. These override methods may be added manually or generated using
the Alt-Insert keyboard shortcut as outlined in the chapter entitled “The
Basics of the Android Studio Code Editor”. Note that the Log calls will still

need to be added manually if the methods are being auto-generated:
override fun onStart() {

super.onStart()

Log.i(TAG, "onStart")

}

override fun onResume() {
super .onResume()
Log.i(TAG, "onResume'")

}

override fun onPause() {



super.onPause()
Log.1(TAG, "onPause")

}

override fun onStop() {
super.onStop()
Log.i(TAG, "onStop")
3

override fun onRestart() {
super.onRestart()
Log.1(TAG, "onRestart")

}

override fun onDestroy() {
super.onDestroy()
Log.i(TAG, "onDestroy")

}

override fun onSaveInstanceState(outState: Bundle) {
super.onSavelInstanceState(outState)
Log.1(TAG, "onSaveInstanceState")

}

override fun onRestoreInstanceState(savedInstanceState: Bundle) {
super.onRestoreInstanceState(savedInstanceState)
Log.i(TAG, "onRestoreInstanceState")

}
21.4 Filtering the Logcat Panel

The purpose of the code added to the overridden methods in MainActivity.kt
is to output logging information to the Logcat tool window, which is
displayed using the button shown in Figure 21-4:



T Logcat Logcat +
D ’ [ Pixel 4 API 33 (emulator-5554) Andro
) 2023-06-15 10:40:56.580 602
2023-06-15 10:40:56.589 602
c 2023-06-15 10:40:56.589 602

©

A7 =3 2023-06-15 10:40:56.606 602
- 2023-06-15 10:40:56.631 602

2023-06-15 10:40:56.734 602

19 2023-06-15 10:41:19.013 602
>

Figure 21-4
The Logcat tool window can be configured to display all events relating to
the device or emulator session or restricted to those events that relate to the
currently selected app. The output can also be restricted to only those log
events that match a specified filter.

When displayed while the current app is running, the Logcat tool window
will appear as shown in Figure 21-5 below:

Logcat  Logcat + Q
[& Pixel 4 API 33 (emulator-5554) Android 103 v V- package:mine e % @

CULU UV 4u AVLTMULUVeUIs wUEY wUeE HUoLUUIIGU Cau Cums SRR vrey s tu ey

HostConnection::get() New Host Connect

@ 2023-86-15 10:40:56.580 6023-6052 HostConnection com.ebookfrenzy.statechange D

00 2023-06-15 10:40:56.589 6023-6052 goldfish-address-space com.ebookfrenzy.statechange D allocate: Ask for block of size 0x100

c 2023-06-15 10:40:56.589 6023-6052 goldfish-address-space com.ebookfrenzy.statechange D allocate: ioctl allocate returned offcs

S0 2023-06-15 10:40:56.606 6023-6052 Gralloc4 cum.ehénzy.statechange W allocator 4.x is not supported
2023-06-15 10:40:56.631 6023-6052 HostConnection com.ebo enzy.statechange D HostComposition ext ANDROID_EMU_CHECKS
2023-06-15 10:40:56.734 6023-6052 Parcel com.ebookfrenzy.statechange W Expecting binder but got null!
2023-06-15 10:41:19.013 6023-6038 System com.ebookfrenzy.statechange W A resource failed to call close.

Figure 21-5
The menu marked A in the above figure allows you to select the device or
emulator for which log output will be displayed. This output appears in the
output panel marked C. The log output can be filtered by entering options
into the field marked B. The default key setting, package:mine, restricts the
output to log messages generated by the current app package (in this case
com.ebookfrenzy.statechange). Leaving this field blank will allow log
output from the selected device or emulator to be displayed, including
diagnostic messages generated by the operating system. Keys may also be
combined to filter the output further. For example, we can configure the
Logcat panel to display only messages associated with our StateChange tag

as follows:
package:mine tag:StateChange



We can exclude output by prefixing the key with a minus (-) sign. In
addition to the StateChange tag, we might have diagnostic messages using a
different tag. To filter the log so that output from this second tag is

excluded, we could enter the following key options:
package:mine tag:StateChange -tag:0therTag

In addition to your own tag values, it is also possible to select from a range
of predefined diagnostic tags built into Android. Logcat will display a list of
matching tags as you type into the filter field, as shown in Figure 21-6:

V- package:mine tag:Net Gy I

NetworkMonitor/100
(6023) for package

. s NetworkRecognitionRnr |
curityConfig com L
curityConfig  com NetworkScheduler.ATC L

NetworkScheduler.Stats
NetworkScheduler. TED
NetworkScheduler

NetworkSecurityConfig
NetworkStatsObservers
BugleNetwork
MobileNetworkUtils
OemPaidWifiNetworkFactory

TheandhatiaiaviAAailalnib

anzy > statechange >

User parenthesis and logical operations: "tag:Foo (message:Bar \ level:ERROR)" Next Tip

Figure 21-6

Alternatively, use Ctrl-Space to access a complete list of filtering
suggestions.

The level key may be used to control which messages are displayed based
on severity. To filter out all messages except error messages, the following
key would be used:

level:error

In addition to error, the Logcat panel supports verbose, info, warn, and
assert level settings.

Logcat also supports multiple log panels, each with its own filter settings.
To add another panel, click on the + button marked D in Figure 21-5 above.
Switch between different panels using the corresponding tabs, or display
them side-by-side by right-clicking on the currently displayed panel and
selecting either the Split-Right or Split-Down menu option to arrange the
panels horizontally or vertically. To rename a panel, right-click on the tab
and select the Rename Tab option. Before proceeding, close all but one
Logcat panel and configure the filter as follows:



package:mine tag:StateChange

21.5 Running the Application

For optimal results, the application should be run on a physical Android
device or emulator. With the device configured and connected to the
development computer, click on the run button in the Android Studio
toolbar as shown in Figure 21-7 below:

[0, samsung SM-T290

Figure 21-7

Select the physical Android device or emulator from the Choose Device
dialog if it appears (assuming you have not already configured it as the
default target). After Android Studio has built the application and installed
it on the device, it should start up and be running in the foreground.

A review of the Logcat panel should indicate which methods have so far

.
been triggered:
.
Logcat  Logcat I g —
I [ Pixel 4 API 33 (emulator-5554) Android 13, APl 33 v V- package:mine tag:StateChange | @
@ CTTTTTTTTTTTTmTmomemeoees PROCESS STARTED (6023) for package com.ebookfrenzy.statechange ------------------oocooooooo
o 2023-06-15 10:40:56.131 6023-6023 nzy.statechange com.ebookfrenzy.statechange W Accessing hidden method Landroid/view,
2023-06-15 10:40:56.157 6023-6023 nzy.statechange com.ehookfrenzy.statechange W Accessing hidden method Landroid/view,
c 2023-06-15 10:40:56.158 6023-6023 StateChange com.ebookfrenzy.statechange I onCreate
=V 2023-86-15 10:40:56.169 6023-6023 StateChange com.ebookfrenzy.statechange I onStart
2023-06-15 10:40:56.171 6023-6023 StateChange com.ebookfrenzy.statechange I onResume
L b e L LR DL L LR PROCESS ENDED (6023) for package com.ebookfrenzy.statechange ----------------------------

Figure 21-8
21.6 Experimenting with the Activity

With the diagnostics working, it is time to exercise the application to
understand the activity lifecycle state changes. To begin with, consider the

initial sequence of log events in the Logcat panel:
onCreate

onStart

onResume

Clearly, the initial state changes are exactly as outlined in “Understanding
Android Application _and Activity Lifecycles”. Note, however, that a call




was not made to onRestorelnstanceState() since the Android runtime
detected that there was no state to restore in this situation.

Tap on the Home icon in the bottom status bar on the device display and
note the sequence of method calls reported in the log as follows:

onPause

onStop

onSaveInstanceState

In this case, the runtime has noticed that the activity is no longer in the
foreground, is not visible to the user, and has stopped the activity, but not
without providing an opportunity for the activity to save the dynamic state.
Depending on whether the runtime ultimately destroyed the activity or
restarted it, the activity will either be notified it has been restarted via a call
to onRestart() or will go through the creation sequence again when the user
returns to the activity.

As outlined in “Understanding Android Application _and _Activity
Lifecycles”, the destruction and recreation of an activity can be triggered by
making a configuration change to the device, such as rotating from portrait
to landscape. To see this in action, rotate the device while the StateChange
application is in the foreground. When using the emulator, device rotation
may be simulated using the rotation button located in the emulator toolbar.
To complete the rotation, it may also be necessary to tap on the rotation
button. This appears at the bottom of the device or emulator screen, as
shown in Figure 21-9:

Figure 21-9

The resulting sequence of method calls in the log should read as follows:
onPause

onStop

onSaveInstanceState

onDestroy

onCreate

onStart

onRestoreInstanceState



onResume

Clearly, the runtime system has allowed the activity to save the state before
being destroyed and restarted.

21.7 Summary

The adage that a picture is worth a thousand words holds just as true for
examples when learning a new programming paradigm. In this chapter, we
created an example Android application to demonstrate the different
lifecycle states an activity will likely pass through. While developing the
project in this chapter, we also looked at a mechanism for generating
diagnostic logging information from within an activity.

In the next chapter, we will extend the StateChange example project to
demonstrate how to save and restore an activity’s dynamic state.



22. Saving and Restoring the State of
an Android Activity

If the previous few chapters have achieved their objective, it should now be
clearer as to the importance of saving and restoring the state of a user
interface at particular points in the lifetime of an activity.

In this chapter, we will extend the example application created in “Android
Activity State Changes by Example” to demonstrate the steps involved in
saving and restoring state when the runtime system destroys and recreates
an activity.

A key component of saving and restoring dynamic state involves using the
Android SDK Bundle class, a topic that will also be covered in this chapter.

22.1 Saving Dynamic State

As we have learned, an activity can save dynamic state information via a
call from the runtime system to the activity’s implementation of the
onSavelnstanceState() method. Passed through as an argument to the
method is a reference to a Bundle object into which the method must store
any dynamic data that needs to be saved. The Bundle object is then stored
by the runtime system on behalf of the activity and subsequently passed
through as an argument to the activity’s onCreate() and
onRestorelnstanceState() methods if and when they are called. The data can
then be retrieved from the Bundle object within these methods and used to
restore the state of the activity.

22.2 Default Saving of User Interface State

In the previous chapter, the diagnostic output from the StateChange
example application showed that an activity goes through several state
changes when the device on which it is running is rotated sufficiently to
trigger an orientation change.

Launch the StateChange application once again and enter some text into the
EditText field before performing the device rotation (on devices or
emulators running Android 9 or later, it may be necessary to tap the rotation
button in the status bar to complete the rotation). Having rotated the device,



the following state change sequence should appear in the Logcat window:
onPause

onStop

onSaveInstanceState

onDestroy

onCreate

onStart

onRestoreInstanceState

onResume

Clearly, this has resulted in the activity being destroyed and re-created. A
review of the user interface of the running application, however, should
show that the text entered into the EditText field has been preserved. Given
that the activity was destroyed and recreated and we did not add any
specific code to ensure the text was saved and restored, this behavior

requires some explanation.

In fact, most view widgets included with the Android SDK already
implement the behavior necessary to save and restore state when an activity
is restarted automatically. The only requirement to enable this behavior is
for the onSavelnstanceState() and onRestorelnstanceState() override
methods in the activity to include calls to the equivalent methods of the

superclass:

override fun onSaveInstanceState(outState: Bundle?) {
super.onSavelInstanceState(outState)
Log.i(TAG, "onSavelInstanceState")

}

override fun onRestoreInstanceState(savedInstanceState: Bundle?) {
super.onRestoreInstanceState(savedInstanceState)
Log.1i(TAG, "onRestoreInstanceState")

}

The automatic saving of state for a user interface view can be disabled in
the XML layout file by setting the android:saveEnabled property to false.
The automatic state saving for a user interface view can be turned off in the
XML layout file by setting the android:saveEnabled property to false. For
this example, we will disable the automatic state-saving mechanism for the
EditText view in the user interface layout and then add code to the
application to manually save and restore the view’s state.

To configure the EditText view such that state will not be saved and



restored if the activity is restarted, edit the activity_main.xml file so that the
entry for the view reads as follows (note that the XML can be edited by
switching the Layout Editor to Code view mode as outlined in “Creating_an

Example Android App_in Android Studio”):

<EditText
android:id="@+id/editText"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:ems="10"
android:inputType="text"
android:saveEnabled="false"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />

After making the change, run the application, enter text, and rotate the
device to verify that the text is no longer saved and restored.

22.3 The Bundle Class

For situations where state needs to be saved beyond the default
functionality provided by the user interface view components, the Bundle
class provides a container for storing data using a key-value pair
mechanism. The keys take the form of string values, while the values
associated with those keys can be a primitive value or any object that
implements the Android Parcelable interface. A wide range of classes
already implements the Parcelable interface. Custom classes may be made
“parcelable” by implementing the set of methods defined in the Parcelable
interface, details of which can be found in the Android documentation at:

https://developer.android.com/reference/android/os/Parcelable.html

The Bundle class also contains a set of methods that can be used to get and
set key-value pairs for various data types, including both primitive types
(including Boolean, char, double, and float values) and objects (such as
Strings and CharSequences).

For this example, having disabled the automatic saving of text for the
EditText view, we need to ensure that the text entered into the EditText field
by the user is saved into the Bundle object and subsequently restored. This
will demonstrate how to manually save and restore state within an Android


http://developer.android.com/reference/android/os/Parcelable.html

application and will be achieved using the putCharSequence() and
getCharSequence() methods of the Bundle class, respectively.

22.4 Saving the State

The first step in extending the StateChange application is to make sure that
the text entered by the user is extracted from the EditText component within
the onSavelnstanceState() method of the MainActivity activity and then
saved as a key-value pair into the Bundle object.

To extract the text from the EditText object, we must first identify that
object in the user interface. Clearly, this involves bridging the gap between
the Kotlin code for the activity (contained in the MainActivity.kt source
code file) and the XML representation of the user interface (contained
within the activity_main.xml resource file). To extract the text entered into
the EditText component, we need to gain access to that user interface
object.

Each component within a user interface has associated with it a unique
identifier. By default, the Layout Editor tool constructs the id for a newly
added component from the object type. If more than one view of the same
type is contained in the layout, the type name is followed by a sequential
number (though this can, and should, be changed to something more
meaningful by the developer). As can be seen by checking the Component
Tree panel within the Android Studio main window when the
activity_main.xml file is selected and the Layout Editor tool displayed, the
EditText component has been assigned the id editText:

Component Tree @ —

1, ConstraintLayout

Ab editText (Plain Text)

Figure 22-1
We can now obtain the text that the editText view contains via the object’s
text property, which, in turn, returns the current text:
val userText = binding.editText.text
Finally, we can save the text using the Bundle object’s putCharSequence()
method, passing through the key (this can be any string value, but in this



instance, we will declare it as “savedText”) and the userText object as
arguments:

outState?.putCharSequence("savedText", userText)

Bringing this all together gives us a modified onSavelnstanceState() method

in the MainActivity.kt file that reads as follows:

override fun onSaveInstanceState(outState: Bundle) {
super.onSaveInstanceState(outState)
Log.i(TAG, "onSavelInstanceState")

val userText = binding.editText.text
outState.putCharSequence("savedText", userText)

}
Now that steps have been taken to save the state, the next phase is to restore
it when needed.

22.5 Restoring the State

The saved dynamic state can be restored in those lifecycle methods that are
passed the Bundle object as an argument. This leaves the developer with the
choice of using either onCreate() or onRestorelnstanceState(). The method
to use will depend on the nature of the activity. In instances where state is
best restored after the activity’s initialization tasks have been performed, the
onRestorelnstanceState() method is generally more suitable. For this
example, we will add code to the onRestorelnstanceState() method to
extract the saved state from the Bundle using the “savedText” key. We can
then display the text on the editText component using the object’s setText()

method:

override fun onRestorelInstanceState(savedInstanceState: Bundle) {
super.onRestoreInstanceState(savedInstanceState)
Log.i(TAG, "onRestoreInstanceState'")

val userText = savedInstanceState.getCharSequence("savedText")
binding.editText.setText(userText)

}
22.6 Testing the Application

All that remains is once again to build and run the StateChange application.
Once running and in the foreground, touch the EditText component and
enter some text before rotating the device to another orientation. Whereas



the text changes were previously lost, the new text is retained within the
editText component thanks to the code we have added to the activity in this
chapter.

Having verified that the code performs as expected, comment out the
super.onSavelnstanceState() and super.onRestorelnstanceState() calls from
the two methods, re-launch the app and note that the text is still preserved
after a device rotation. The default save and restoration system has
essentially been replaced by a custom implementation, thereby providing a
way to dynamically and selectively save and restore state within an activity.

22.7 Summary

The saving and restoration of dynamic state in an Android application is a
matter of implementing the appropriate code in the appropriate lifecycle
methods. For most user interface views, this is handled automatically by the
Activity superclass. In other instances, this typically consists of extracting
values and settings within the onSavelnstanceState() method and saving the
data as key-value pairs within the Bundle object passed through to the
activity by the runtime system.

State can be restored in either the onCreate() or the
onRestorelnstanceState() methods of the activity by extracting values from
the Bundle object and updating the activity based on the stored values.

In this chapter, we have used these techniques to update the StateChange
project so that the Activity retains changes through the destruction and
subsequent recreation of an activity.



23. Understanding Android Views,
View Groups and Layouts

With the possible exception of listening to streaming audio, a user’s
interaction with an Android device is primarily visual and tactile. All of this
interaction occurs through the user interfaces of the applications installed
on the device, including both the built-in applications and any third-party
applications installed by the user. Therefore, it should come as no surprise
that a critical element of developing Android applications involves
designing and creating user interfaces.

This chapter covers the Android user interface structure, including an
overview of the elements that can be combined to make up a user interface:
Views, View Groups, and Layouts.

23.1 Designing for Different Android Devices

The term “Android device” covers many tablet and smartphone products
with different screen sizes and resolutions. As a result, application user
interfaces must now be carefully designed to ensure correct presentation on
as wide a range of display sizes as possible. A key part of this is ensuring
that the user interface layouts resize correctly when run on different
devices. This can largely be achieved through careful planning and using
the layout managers outlined in this chapter.

It is also essential to remember that most Android-based smartphones and
tablets can be held by the user in both portrait and landscape orientations. A
well-designed user interface should be able to adapt to such changes and
make sensible layout adjustments to utilize the available screen space in
each orientation.

23.2 Views and View Groups

Every item in a user interface is a subclass of the Android View class (to be
precise android.view.View). The Android SDK provides a set of pre-built
views that can be used to construct a user interface. Typical examples
include standard items such as the Button, CheckBox, ProgressBar, and
TextView classes. Such views are also referred to as widgets or components.
For requirements not met by the widgets supplied with the SDK, new views



may be created by subclassing and extending an existing class or creating
an entirely new component by building directly on top of the View class.

A view can also comprise multiple other views (otherwise known as a
composite view). Such views are subclassed from the Android ViewGroup
class (android.view.ViewGroup), which is itself a subclass of View. An
example of such a view is the RadioGroup, which is intended to contain
multiple RadioButton objects such that only one can be in the “on” position
at any one time. Regarding structure, composite views consist of a single
parent view (derived from the ViewGroup class and otherwise known as a
container view or root element) capable of containing other views (known
as child views).

Another category of ViewGroup-based container view is that of the layout
manager.

23.3 Android Layout Managers

In addition to the widget style views discussed in the previous section, the
SDK also includes a set of views referred to as layouts. Layouts are
container views (and, therefore, subclassed from ViewGroup) designed to
control how child views are positioned on the screen.

The Android SDK includes the following layout views that may be used
within an Android user interface design:

*ConstraintLayout — Introduced in Android 7, this layout manager is
recommended for most layout requirements. ConstraintLayout allows the
positioning and behavior of the views in a layout to be defined by simple
constraint settings assigned to each child view. The flexibility of this
layout allows complex layouts to be quickly and easily created without the
necessity to nest other layout types inside each other, resulting in improved
layout performance. ConstraintLayout is also tightly integrated into the
Android Studio Layout Editor tool. Unless otherwise stated, this is the
layout of choice for most of examples in this book.

eLinearLayout — Positions child views in a single row or column
depending on the orientation selected. A weight value can be set on each
child to specify how much of the layout space that child should occupy
relative to other children.

*TableLayout — Arranges child views into a grid format of rows and



columns. Each row within a table is represented by a TableRow object
child, which, in turn, contains a view object for each cell.

*FrameLayout — The purpose of the FrameLayout is to allocate an area of
the screen, typically to display a single view. If multiple child views are
added, they will, by default, appear on top of each other and be positioned
in the top left-hand corner of the layout area. Alternate positioning of
individual child views can be achieved by setting gravity values on each
child. For example, setting a center_vertical gravity value on a child will
cause it to be positioned in the vertical center of the containing
FrameLayout view.

*RelativeLayout — The RelativeLayout allows child views to be positioned
relative to each other and the containing layout view through the
specification of alignments and margins on child views. For example,
child View A may be configured to be positioned in the vertical and
horizontal center of the containing RelativeLayout view. View B, on the
other hand, might also be configured to be centered horizontally within the
layout view but positioned 30 pixels above the top edge of View A, thereby
making the vertical position relative to that of View A. The RelativeLayout
manager can be helpful when designing a user interface that must work on
various screen sizes and orientations.

*AbsoluteLayout — Allows child views to be positioned at specific X and
Y coordinates within the containing layout view. Using this layout is
discouraged since it lacks the flexibility to respond to screen size and
orientation changes.

*GridLayout — A GridLayout instance is divided by invisible lines that
form a grid containing rows and columns of cells. Child views are then
placed in cells and may be configured to cover multiple cells horizontally
and vertically, allowing a wide range of layout options to be quickly and
easily implemented. Gaps between components in a GridLayout may be
implemented by placing a special type of view called a Space view into
adjacent cells or setting margin parameters.

*CoordinatorLayout — Introduced as part of the Android Design Support
Library with Android 5.0, the CoordinatorLayout is designed specifically
for coordinating the appearance and behavior of the app bar across the top
of an application screen with other view elements. When creating a new



activity using the Basic Views Activity template, the parent view in the
main layout will be implemented using a CoordinatorLayout instance. This
layout manager will be covered in greater detail, starting with the chapter
“Working with the Floating Action Button and Snackbar”.

When considering layouts in the user interface for an Android application,
it is worth keeping in mind that, as outlined in the next section, these can be
nested within each other to create a user interface design of just about any
necessary level of complexity.

23.4 The View Hierarchy

Each view in a user interface represents a rectangular area of the display. A
view is responsible for what is drawn in that rectangle and responding to
events within that part of the screen (such as a touch event).

A user interface screen is comprised of a view hierarchy with a root view
positioned at the top of the tree and child views positioned on branches
below. The child of a container view appears on top of its parent view and
is constrained to appear within the bounds of the parent view’s display area.
Consider, for example, the user interface illustrated in Figure 23-1:

13:00 hd |

O CheckBox O CheckBox

O CheckBox [ CheckBox

< o o
Figure 23-1

In addition to the visible button and checkbox views, the user interface
actually includes a number of layout views that control how the visible
views are positioned. Figure 23-2 shows an alternative view of the user
interface, this time highlighting the presence of the layout views in relation



to the child views:

ConstraintLayout

| Button | | Button |

LinearLayout

| CheckBox | | CheckBox |
TableRow

| CheckBox | | CheckBox |
TableRow

TableLayout

Figure 23-2
As was previously discussed, user interfaces are constructed in the form of
a view hierarchy with a root view at the top. This being the case, we can
also visualize the above user interface example in the form of the view tree
illustrated in Figure 23-3:

[ConstraintLayout]

[ LinearLayout ] [ TableLayout ]

[ Button ] [ Button ] [ TableRow ] [ TableRow ]

[ CheckBox ] [ CheckBox ] [ CheckBox ] [ CheckBox ]

Figure 23-3
The view hierarchy diagram gives probably the clearest overview of the
relationship between the various views that make up the user interface
shown in Figure 23-1. When a user interface is displayed to the user, the
Android runtime walks the view hierarchy, starting at the root view and
working down the tree as it renders each view.



23.5 Creating User Interfaces

With a clearer understanding of the concepts of views, layouts and the view
hierarchy, the following few chapters will focus on the steps involved in
creating user interfaces for Android activities. In fact, there are three
different approaches to user interface design: using the Android Studio
Layout Editor tool, handwriting XML layout resource files or writing
Kotlin code, each of which will be covered.

23.6 Summary

Each element within a user interface screen of an Android application is a
view that is ultimately subclassed from the android.view.View class. Each
view represents a rectangular area of the device display and is responsible
both for what appears in that rectangle and for handling events that take
place within the view’s bounds. Multiple views may be combined to create
a single composite view. The views within a composite view are children of
a container view which is generally a subclass of android.view.ViewGroup
(which is itself a subclass of android.view.View). A user interface is
comprised of views constructed in the form of a view hierarchy.

The Android SDK includes a range of pre-built views that can be used to
create a user interface. These include basic components such as text fields
and buttons, in addition to a range of layout managers that can be used to
control the positioning of child views. If the supplied views do not meet a
specific requirement, custom views may be created, either by extending or
combining existing views, or by subclassing android.view.View and creating
an entirely new class of view.

User interfaces may be created using the Android Studio Layout Editor
tool, handwriting XML layout resource files or by writing Kotlin code.
Each of these approaches will be covered in the chapters that follow.



24. A Guide to the Android Studio
Layout Editor Tool

It is challenging to think of an Android application concept that does not
require some form of user interface. Most Android devices come equipped
with a touch screen and keyboard (either virtual or physical), and taps and
swipes are the primary interaction between the user and the application.
Invariably these interactions take place through the application’s user
interface.

A well-designed and implemented user interface, an essential factor in
creating a successful and popular Android application, can vary from
simple to highly complex, depending on the design requirements of the
individual application. Regardless of the level of complexity, the Android
Studio Layout Editor tool significantly simplifies the task of designing and
implementing Android user interfaces.

24.1 Basic vs. Empty Views Activity Templates

As outlined in the chapter entitled “The Anatomy of an Android App”,
Android applications comprise one or more activities. An activity is a
standalone module of application functionality that usually correlates
directly to a single user interface screen. As such, when working with the
Android Studio Layout Editor, we are invariably work on the layout for an
activity.

When creating a new Android Studio project, several templates are
available to be used as the starting point for the user interface of the main
activity. The most basic templates are the Basic Views Activity and Empty
Views Activity templates. Although these seem similar at first glance, there
are considerable differences between the two options. To see these
differences within the layout editor, use the View Options menu to enable
Show System Ul, as shown in Figure 24-1 below:



activity_mainxml~ < Q) &, [ Pixel v

(YW TN o WS Y -
v/ Show All Constraints
v/ Show Margins
Fade Unselected Views
Live Rendering

v/ Show System Ul
Show Tooltips

Figure 24-1
The Empty Views Activity template creates a single layout file consisting of
a ConstraintLayout manager instance containing a TextView object, as
shown in Figure 24-2:

13:00 hd |

Hello World!

< o o
Figure 24-2
The Basic Views Activity, on the other hand, consists of multiple layout
files. The top-level layout file has a CoordinatorLayout as the root view, a
configurable app bar (which contains a toolbar) that appears across the top
of the device screen (marked A in Figure 24-3), and a floating action button
(the email button marked B). In addition to these items, the

activity_main.xml layout file contains a reference to a second file named
content_main.xml containing the content layout (marked C):



241 @ M

First Fragment o H

Next

Lorem ipsum delor sit amet, consectetur adipiscing
elit. Nam in scelerisque sem. Mauris volutpat, dolor id
interdum ullamcorper, risus dolor egestas lectus, sit amet
mattis purus dui nec risus. Maecenas non sodales nisi,
vel dictum dolor. Class aptent taciti sociosqu ad litora
torquent per conubia nostra, per inceptos himenaeos.
Suspendisse blandit eleifend diam, vel rutrum tellus
vulputate quis. Aliquam eget libero aliquet, imperdiet

nisl a, ornare ex. Sed rhoncus est ut libero porta lobortis.
Fusce in dictum tellus.

Suspendisse interdum ornare ante. Aliquam nec cursus
lorem. Morbi id magna felis. Vivamus egestas, est a
condimentum egestas, turpis nisl iaculis ipsum, in dictum
tellus dolor sed neque. Morfitellus erat, dapibus ut sem
a, iaculis tincidunt dui. Int et malesuada fames ac
ante ipsum primis in fauci abitur et eros porttitor,
ultricies urna vitae, molestie nibh. Phasellus at commodo
€ros, non aliquet metus. Sed maxirgus nisl nec dolor
bibendum, vel congue leo egestas.

Sed interdum tortor nibh, in sagittis risus mollis quis.
Curabitur mi odio, condimentum sit amet auctor at,
mollis non turpis. Nullam pretium libero vestibulum,
finibus orci vel, molestie quam. Fusce blandit tincidunt
nulla, quis sollicitudin libero facilisis et. Integer interdum
nunc ligula, et fermentum metus hendrerit id. Vestibulum
lectus felis, dictum at lacinia sit amet, tristique id quam.
Cras eu consequat dui. Suspendisse sodales nunc ligula,
in lobortis sem porta sed. Integer id ultrices magna, in
luctus elit. Sed a pellentesque est.

Aenean nunc velit, lacinia sed dolor sed, ultrices viverra
nulla. Etiam a venenatis nibh. Morbi laoreet, tortor sed
facilisis varius, nibh orei rhoncus nulla, id element
leo dui non lorem. Nam mollis ipsum qui or g
Quisque elementum eu libero sed comm [
nisl, imperdiet vel imperdiet et, scelerisque @ mauris.
Pellentesque varius ex nunc, quis imperdiet eros placerat

Figure 24-3
The Basic Views Activity contains layouts for two screens containing a
button and a text view. This template aims to demonstrate how to
implement navigation between multiple screens within an app. If an
unmodified app using the Basic Views Activity template were to be run, the
first of these two screens would appear (marked A in Figure 24-4). Pressing
the Next button would navigate to the second screen (B), which, in turn,
contains a button to return to the first screen:

2418 ™M *4 2:44 % 4 *an

First Fragment g & Second Fragment

Lorem ipsum dolor sit amet, consectetur adipiscing

Lorem ipsum dolor sit amet, consectetur adipiscing

elit. Nam in scelerisque sem. Mauris volutpat, dolor id
interdum ullamcorper, risus dolor egestas lectus, sit amet
mattis purus dui nec risus. Maecenas non sodales nisi,
vel dictum dolor. Class aptent taciti sociosqu ad litora
torquent per conubia nostra, per inceptos himenaeos.
Suspendisse blandit eleifend diam, vl rutrum tellus
wulputate quis. Aliquam eget libera aliquet, imperciet

nisl a, ornare ex. Sed rhoncus est ut libero porta lobortis.
Fusce in dictum tellus.

Suspendisse Interdum ornare ante. Aliquam nec cursus
lorem. Morbi id magna felis. Vivamus egestas, est a
condimenturn egestas, tugicl iaculis ipsum, in dictum
tellus dolor sed neque. MAgWIlus erat, dapibus ut sem
a, iaculis tincidunt dui. Interdum et malesuada fames ac
ante ipsum primis in faucibus. Curabitur et eros porttitor,
ultricies uma vitae, molestie nibh. Phasellus at commodo
eros, non aliquet metus. Sed maxirgus nis! nec dolor
bibendumn, vel congue leo egestas.

Sed interdum tortor nibh, in sagittis risus mollis quis.
Curabitur mi odio, condimentum sit amet auctor at,
mollis non turpis. Nullam pretium libero vestibulum,
finibus orci vel, molestie quam. Fusce blandit tincidunt
nulla, quis sollicitudin libero facilisis et. Integer interdum
nunc ligula, et fermentum metus hendreritid. Vestibulum
lectus felis, dictum at lacinia it amet, tristique id quam
Cras eu consequat dui. Suspendisse sodales nunc ligula,
in lobortis sem porta sed. Integer id ultrices magna, in
luctus elt. Sed a pellentesque est.

Aenean nunc velit, lacinia sed dolor sed, ultrices viverra
nulla. Etiam a venenatis nibh. Morbi laoreet, tortor sed
facilisis varius, nibh orci rhoncus nulla id element

leo dui non lorem. Nam moliis ipsum quis auctor
Quisque elementum eu libero sed commodo. In ¢

nisl, imperdiet vel imperdiet et, scelerisque a mauns.
Pellentesque varius ex nunc, quis imperdiet efos placerat

elit. Nam in scelerisque sem. Mauris volutpat, dolor id
interdum ullamcorper, risus dolor egestas lectus, sit amet
mattis purus dui nec risus. Maecenas non sodales nisi,
vel dictum dolor. Class aptent thcii sociosqu ad litora
torquent per conubia nostra, per inceptos himenaeos.
Suspendisse blandit eleifend diam, vel rutrum tellus
wulputate quis Aliquam eget libero aliquet, imperdiet

nisl a, ornare ex. Sed rhoncus est ut libero porta lobortis.
Fusce in dictum tellus.

Suspendisse Interdum ornare ante. Aliquam nec cursus
lorem. Morbi id magna felis. Vivamus egestas, est a
condimentum egestas, turpignis! iaculis ipsum, in dictum
tellus dolor sed neque. Mﬁ\uus erat, dapibus ut sem
a, iaculis tincidunt dui. Int et malesuada fames ac
ante ipsum primis in faucibus. Curabitur et eros porttitor,
ultricies uma vitae, molestie nibh. Phasellus at commodo
eros, non aliquet metus. Sed maximus nisl nec dolor
bibendum, vel congue leo egestas.

Sed interdum tortor nibh, in sagittis risus mollis quis.
Curabitur mi odio, condimentum sit amet auctor at,
mollis non turpis. Nullam pretium libero vestibulum,
finibus orei vel, molestie quam. Fusce blandit tincidunt
nulla, quis sollicitudin libero facilisis ct. Integer interdum
nunc ligula, et fermentum metus hendrerit id. Vestibulum
lectus felis, dictum at lacinia sit amet, tristique id quam
Cras eu consequat dui. Suspendisse sodales nunc ligula,
inlobortis sem porta sed. Integer id ultrices magna, in
luctus elit. Sed a pellentesque est.

Aenean nunc velit, lacinia sed dolor sed, ultrices viverra
nula. Etiam a venenatis nibh. Morbi laoreet, tortor sed
facilisis varius, nibh orci thoncus nulla, id element
leo dui non lorem. Nam mollis ipsum quis auctor
Quisque elementum eu libero sed commodo. In «
nisl, imperdiet vel imperdiet et, scelerisque a mauns.
Pellentesque varius ex nunc, quis imperdiet eros placerat

Figure 24-4



This app behavior uses of two Android features referred to as fragments and
navigation, which will be covered starting with the chapters entitled “An
Introduction to Android Fragments” and “An_Overview of_the Navigation
Architecture Component” respectively.

The content_main.xml file contains a special fragment, known as a
Navigation Host Fragment which allows different content to be switched in
and out of view depending on the settings configured in the res -> layout ->
nav_graph.xml file. In the case of the Basic Views Activity template, the
nav_graph.xml file is configured to switch between the user interface
layouts defined in the fragment_first.xml and fragment_second.xml files
based on the Next and Previous button selections made by the user.

The Empty Views Activity template is helpful if you need neither a floating
action button nor a menu in your activity and do not need the special app
bar behavior provided by the CoordinatorLayout, such as options to make
the app bar and toolbar collapse from view during certain scrolling
operations (a topic covered in the chapter entitled “Working with the
AppBar_and Collapsing_Toolbar Layouts”). However, the Basic Views
Activity is helpful because it provides these elements by default. In fact, it
is often quicker to create a new activity using the Basic Views Activity
template and delete the elements you do not require than to use the Empty
Views Activity template and manually implement behavior such as
collapsing toolbars, a menu, or a floating action button.

Since not all of the examples in this book require the features of the Basic
Views Activity template, however, most of the examples in this chapter will
use the Empty Views Activity template unless the example requires one or
other of the features provided by the Basic Views Activity template.

For future reference, if you need a menu but not a floating action button,
use the Basic Views Activity and follow these steps to delete the floating
action button:

1.Double-click on the main activity_main.xml layout file in the Project tool
window under app -> res -> layout to load it into the Layout Editor. With
the layout loaded into the Layout Editor tool, select the floating action
button and tap the keyboard Delete key to remove the object from the
layout.

2.Locate and edit the Kotlin code for the activity (located under app ->



kotlin+java -> <package name> -> <activity class name> and remove

the floating action button code from the onCreate method as follows:
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

binding = ActivityMainBinding.inflate(layoutInflater)
setContentView(binding.root)

setSupportActionBar(binding. toolbar)

val navController =
findNavController(R.id.nav_host_fragment_content_main)
appBarConfiguration = AppBarConfiguration(navController.graph)

setupActionBarWithNavController(navController,
appBarConfiguration)

bindina fab. LieklLi i

SnaekbaFTLENGIH:LGNG}
—setAnchorView{R-3d-fab)

—
}

If you need a floating action button but no menu, use the Basic Views
Activity template and follow these steps:

1.Edit the main activity class file and delete the onCreateOptionsMenu and
onOptionsltemSelected methods.

2.Select the res -> menu item in the Project tool window and tap the
keyboard Delete key to remove the folder and corresponding menu
resource files from the project.

If you need to use the Basic Views Activity template but need neither the
navigation features nor the second content fragment, follow these steps:

1. Within the Project tool window, navigate to and double-click on the app -
> res -> navigation -> nav_graph.xml file to load it into the navigation
editor.

2. Within the editor, select the SecondFragment entry in the graph panel and
tap the keyboard delete key to remove it from the graph.

3.Locate and delete the SecondFragment.kt (app -> kotlin+java ->



<package name> -> SecondFragment) and fragment_second.xml (app -
> res -> layout -> fragment_second.xml) files.

4.The final task is to remove some code from the FirstFragment class so
that the Button view no longer navigates to the now non-existent second
fragment when clicked. Locate the FirstFragment.kt file, double-click on
it to load it into the editor, and remove the code from the

onViewCreated() method so that it reads as follows:
override fun onViewCreated(view: View, savedInstanceState: Bundle?)

{

super.onViewCreated(view, savedInstanceState)

24.2 The Android Studio Layout Editor

As demonstrated in previous chapters, the Layout Editor tool provides a
“what you see is what you get” (WYSIWYG) environment in which views
can be selected from a palette and then placed onto a canvas representing
the display of an Android device. Once a view has been placed on the
canvas, it can be moved, deleted, and resized (subject to the constraints of
the parent view). Moreover, various properties relating to the selected view
may be modified using the Attributes tool window.

Under the surface, the Layout Editor tool constructs an XML resource file
containing the definition of the user interface that is being designed. As
such, the Layout Editor tool operates in three distinct modes: Design, Code,
and Split.

24.3 Design Mode

In design mode, the user interface can be visually manipulated by directly
working with the view palette and the graphical representation of the
layout. Figure 24-5 highlights the key areas of the Android Studio Layout
Editor tool in design mode:



</> activity_main.xml ez N e

Palette Qa8 — activity_mainxml~ ¢, O, &, O Pixel 34 © Attributes Q@ —

Common Ab TextView © U b, o2 & 18I T e o AbTextView <unnameds>
Text [J Button id
Buttons 2l ImageView - Declared Attributes
Widgets = RecyclerView H layout_width wrap_content
PR [LJ FragmentContai... 3 layout_height  wrap_content
1 ScrollView layout_constr...  parent
Containers i
=® Switch 3 e layout_constr..  parent
Helpers 3 layout_constr... parent
Google layout_constr... parent
Legacy 3 text Hello World!
Layout
Constraint Widget
c t T @ — 0

°L, ConstraintLayout

Ab TextView "Hello World!" 0 |v |- -0
Q s 0

Constraints

layout_width wrap_content
layout_height wrap_content

visibility

£ visibilit
@ e :
~ Transforms

androidx.constraintlayout.widget.ConstraintLayout TextView

Figure 24-5
A — Palette — The palette provides access to the range of view components
the Android SDK provides. These are grouped into categories for easy
navigation. Items may be added to the layout by dragging a view
component from the palette and dropping it at the desired position on the
layout.

B — Device Screen — The device screen provides a visual “what you see is
what you get” representation of the user interface layout as it is being
designed. This layout allows direct design manipulation by allowing views
to be selected, deleted, moved, and resized. The device model represented
by the layout can be changed anytime using a menu in the toolbar.

C - Component Tree — As outlined in the previous chapter
(“Understanding__Android _Views, View Groups and Layouts”), user
interfaces are constructed using a hierarchical structure. The component
tree provides a visual overview of the hierarchy of the user interface design.
Selecting an element from the component tree will cause the corresponding
view in the layout to be selected. Similarly, selecting a view from the device
screen layout will select that view in the component tree hierarchy.

D — Attributes — All of the component views listed in the palette have
associated with them a set of attributes that can be used to adjust the



behavior and appearance of that view. The Layout Editor’s attributes panel
provides access to the attributes of the currently selected view in the layout
allowing changes to be made.

E — Toolbar — The Layout Editor toolbar provides quick access to a wide
range of options, including, amongst other options, the ability to zoom in
and out of the device screen layout, change the device model currently
displayed, rotate the layout between portrait and landscape and switch to a
different Android SDK API level. The toolbar also has a set of context-
sensitive buttons which will appear when relevant view types are selected in
the device screen layout.

F — Mode Switching Controls — These three buttons provide a way to
switch back and forth between the Layout Editor tool’s Design, Code, and
Split modes.

G - Zoom and Pan Controls - This control panel allows you to zoom in
and out of the design canvas, grab the canvas, and pan around to find
obscured areas when zoomed in.

24.4 The Palette

The Layout Editor palette is organized into two panels designed to make it
easy to locate and preview view components for addition to a layout design.
The category panel (marked A in Figure 24-6) lists the different categories
of view components supported by the Android SDK. When a category is
selected from the list, the second panel (B) updates to display a list of the
components that fall into that category:

Palette OQ @ —

Common Ab TextView

Text 0 ] Button
Buttons [2] ImageView

) = RecyclerView
Widgets
[[] FragmentContainerView

Layouts i

Yy [7 ScrollView
Containers =8 Switch
Helpers

Google

Legacy

Figure 24-6



To add a component from the palette onto the layout canvas, select the item
from the component list or the preview panel, drag it to the desired location
on the canvas, and drop it into place.

A search for a specific component within the selected category may be
initiated by clicking the search button (marked C in Figure 24-6 above) in
the palette toolbar and typing in the component name. As characters are
typed, matching results will appear in the component list panel. If you are
unsure of the component’s category, select the All Results category before
or during the search operation.

24.5 Design Mode and Layout Views

The layout editor will appear in Design mode by default, as shown in
Figure 24-5 above. This mode provides a visual representation of the user
interface. Design mode can be selected by clicking on the button marked C
in Figure 24-7:

T G £ Q8 ©®

=x08 : L
406 -
2§

Figure 24-7

When the Layout Editor tool is in Design mode, the layout can be viewed in
two ways. The view shown in Figure 24-5 above is the Design view and
shows the layout and widgets as they will appear in the running app. A
second mode, the Blueprint view, can be shown instead of or concurrently
with the Design view. The toolbar menu in Figure 24-8 provides options to
display the Design, Blueprint, or both views. Settings are also available to
adjust for color blindness. A fifth option, Force Refresh Layout, causes the
layout to rebuild and redraw. This can be useful when the layout enters an
unexpected state or is not accurately reflecting the current design settings:



activity_mainxml~ < & [IPixelv =33+ @

oo Design

® U 0, S M &
Blueprint

+/ Design and Blueprint

Color Blind Modes >
Force Refresh Layout R
Figure 24-8

Whether to display the layout view, design view, or both is a matter of
personal preference. A good approach is to begin with both displayed as
shown in Figure 24-9:

Figure 24-9
24.6 Night Mode

To view the layout in night mode during the design work, select the menu
shown in Figure 24-10 below and change the setting to Night:



activity_mainxml~ € & &, 0 Pixel v 33+ @ MyApplication v

© U 0dp, o ¥ [§ IS

4

v/ Not Night
Night

t.C @

Figure 24-10

The mode menu also includes options for testing dynamic colors, a topic
covered in the chapter “A Material Design 3 Theming_and Dynamic Color
Tutorial”.

24.7 Code Mode

It is important to remember when using the Android Studio Layout Editor
tool that all it is doing is providing a user-friendly approach to creating
XML layout resource files. The underlying XML can be viewed and
directly edited during the design process by selecting the button marked A
in Figure 24-7 above.

Figure 24-11 shows the Android Studio Layout Editor tool in Code mode,
allowing changes to be made to the user interface declaration by modifying
the XML:

activity_main.xml 0 v

<?xml version="1.8" encoding="utf-8"?> ©®1 A2 ~ ~
(@ <androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.con/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">

9 kTextview
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello World!"
app:layout_constraintBottom_toBottom0f="parent"
app:layout_constraintEnd_toEnd0f="parent"

Figure 24-11
24.8 Split Mode

In Split mode, the editor shows the Design and Code views side-by-side,
allowing the user interface to be modified visually using the design canvas
and making changes directly to the XML declarations. Split mode is
selected using the button marked B Figure 24-7 above.

Any changes to the XML are automatically reflected in the design canvas
and vice versa. Figure 24-12 shows the editor in Split mode:



</> activity_main.xmi

i
<

<7xml version="1.0" encoding="utf-8"?> v Palette Q @ —  actvitymanxmlv ¢, O C  OPixelv =33 > @ =
@ <androidx.constraintlayout.widget.ConstraintLayout xmlr & N .. e z
xmlns:app="http://schemas.android.com/apk/res-auto" S gjioxtyiow) Q@ U M, & F I, ? §
xmlns:tools="http://schemas.android.com/tools" Text =l g
android:layout_width="natch_parent" Buttons =] ImageView
android:layout_height="match_parent" Widgets i= RecyclerView
tools:context=".MainActivity"> [ FragmentCon...
Ry 3 ScrollView
<TextView Contalnets) = Switch
android:id="@+id/textView" Helpers
android:layout_width="wrap_content" D

android:layout_height="wrap_content"

id:text=" " Legacy
android:text="Hello World!
app:layout_constraintBottom_toBottom0f="parent" Component Tree © —
app:layout_constraintEnd_toEndof="parent" oo

: ConstraintLayout
app:layout_constraintStart_toStart0f="parent" % I

. A i World!"
app:layout_constraintTop_toTopOf="parent" /> pjtextViewaneloiond

19 </androidx.constraintlayout.widget.ConstraintLayout>

androidx.constraintlayout.widget.ConstraintLayout

Figure 24-12
24.9 Setting Attributes

The Attributes panel provides access to all available settings for the
currently selected component. Figure 24-13, for example, shows some of
the attributes for the TextView widget:

Attributes Q @ —
Ab textView
id textView

> Declared Attributes P =
~ Layout

Constraint Widget

v Constraints

1, Start - StartOf parent (0dp)

“1, End > EndOf parent (Odp)

1, Top > TopOf parent (0dp)

“1, Bottom - BottomOf parent (Oclp)

layout_width wrap_content v
layout_height wrap_content v
visibility v

Figure 24-13
The Attributes tool window is divided into the following different sections.



*id - Contains the id property, which defines the name by which the
currently selected object will be referenced in the app’s source code.

*Declared Attributes - Contains all of the properties already assigned a
value.

*Layout - The settings that define how the currently selected view object is
positioned and sized relative to the screen and other objects in the layout.

*Transforms - Contains controls allowing the currently selected object to
be rotated, scaled, and offset.

Common Attributes - A list of attributes that commonly need to be
changed for the class of view object currently selected.

*All Attributes - A complete list of all the attributes available for the
currently selected object.

A search for a specific attribute may also be performed by selecting the
search button in the toolbar of the attributes tool window and typing in the
attribute name.

Some attributes contain a narrow button to the right of the value field. This
indicates that the Resources dialog is available to assist in selecting a
suitable property value. To display the dialog, click on the button. The
appearance of this button changes to reflect whether or not the
corresponding property value is stored in a resource file or hard-coded. If
the value is stored in a resource file, the button to the right of the text
property field will be filled in to indicate that the value is not hard-coded, as
highlighted in Figure 24-14 below:

v Common Attributes

text @string/some_text @

9 text
contentDescription

v textAppearance @android:style/Text/ | =

Figure 24-14

Attributes for which a finite number of valid options are available will
present a drop-down menu (Figure 24-15) from which a selection may be
made.



typeface [ v ]

textSize normal

lineSpacingExtra sans

textColor serif

textStyle Toqosp.ace

Figure 24-15

A dropper icon can be clicked to display the color selection palette.
Similarly, when a flag icon appears, it can be clicked to display a list of
options available for the attribute, while an image icon opens the resource
manager panel allowing images and other resource types to be selected for
the attribute.

24.10 Transforms

The transforms panel within the Attributes tool window (Figure 24-16)
provides a set of controls and properties that control visual aspects of the
currently selected object in terms of rotation, alpha (used to fade a view in
and out), scale (size), and translation (offset from current position):

~ Transforms

/7

Rotation
52

X

y v, 5
z -69
rotation -69

rotationX 52

rotationY 5

scaleX

scaleY

translationX

translationY

translationZ

alpha

Figure 24-16

The panel contains a visual representation of the view, which updates as
properties are changed. These changes are also reflected in the view within
the layout canvas.

24.11 Tools Visibility Toggles

When reviewing the content of an Android Studio XML layout file in Code



mode, you will notice that many attributes that define how a view appears
and behaves begin with the android: prefix. This indicates that the attributes
are set within the android namespace and will take effect when the app is
run. The following excerpt from a layout file, for example, sets a variety of

attributes on a Button view:

<Button
android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Button"

In addition to the android namespace, Android Studio also provides a tools
namespace. When attributes are set within this namespace, they only take
effect within the layout editor preview. While designing a layout, you might
find it helpful for an EditText view to display some text but require the view
to be blank when the app runs. To achieve this, you would set the text

property of the view using the tools namespace as follows:

<EditText
android:id="@+id/editTextTextPersonName"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:ems="10"
android:inputType="textPersonName"
tools:text="Sample Text"

A tool attribute of this type is set in the Attributes tool window by entering
the value into the property fields marked by the wrench icon, as shown in
Figure 24-17:

text @string/click_string |

# & text

contentDescription

Figure 24-17

Tools attributes are particularly useful for changing the visibility of a view
during the design process. A layout may contain a view that is
programmatically displayed and hidden when the app runs, depending on



user actions. To simulate the hiding of the view, the following tools attribute
could be added to the view XML declaration:
tools:visibility="invisible"

Although the view will no longer be visible when using the invisible
setting, it is still present in the layout and occupies the same space it did
when it was visible. To make the layout behave as though the view no
longer exists, the visibility attribute should be set to gone as follows:
tools:visibility="gone"

In both examples above, the visibility settings only apply within the layout
editor and will have no effect in the running app. To control visibility in
both the layout editor and running app, the same attribute would be set
using the android namespace:

android:visibility="gone"

While these visibility tools attributes are useful, having to manually edit the
XML layout file is a cumbersome process. To make it easier to change these
settings, Android Studio provides a set of toggles within the layout editor
Component Tree panel. To access these controls, click in the margin to the
right of the corresponding view in the panel. Figure 24-18, for example,
shows the tools visibility toggle controls for a Button view named
myButton:

Component Tree o —
o android:visibility
ConstraintLayout
d — o ® 0
Ab textView "Hello World!" T
tools:visibility
- & & &

Figure 24-18

These toggles control the visibility of the corresponding view for both the
android and tools namespaces and provide not set, visible, invisible and
gone options. When conflicting attributes are set (for example, an android
namespace toggle is set to visible while the tools value is set to invisible),
the tools namespace takes precedence within the layout preview. When a
toggle selection is made, Android Studio automatically adds the appropriate
attribute to the XML view element in the layout file.

In addition to the visibility toggles in the Component Tree panel, the layout



editor also includes the tools visibility and position toggle button shown

highlighted in Figure 24-19 below:
‘ ¥

"l
AN @ @ NVWWANAAA

Figure 24-19

This button toggles the current tools visibility settings. If the Button view
shown above currently has the tools visibility attribute set to gone, for
example, toggling this button will make it visible. This makes it easy to
quickly check the layout behavior as the view is added to and removed from
the layout. This toggle is also useful for checking that the views in the
layout are correctly constrained, a topic covered in the chapter entitled “A
Guide to Using ConstraintLayout in Android Studio”.

24.12 Converting Views

Changing a view in a layout from one type to another (such as converting a
TextView to an EditText) can be performed easily within the Android
Studio layout editor by right-clicking on the view either within the screen
layout or Component tree window and selecting the Convert view... menu
option (Figure 24-20):

Component Tree £§3 —

“1, ConstraintLayout
[ button3

Ab Show Baseline
Ab textViey =

© chip oJ% Clear Constraints of Selection
Constrain >

Organize >

Chains >
Center >
Add helpers >

@ Convert to MotionLayout

Convert view...

Refactor >



Figure 24-20

Once selected, a dialog containing a list of compatible view types to which
the selected object is eligible for conversion will appear. Figure 24-21, for
example, shows the types to which an existing TextView view may be
converted:

Convert View to:  Button

Ab TextView [C] Button
[2] ImageView Ab EditText
+/ CheckBox (® RadioButton

[N ToggleButton

Apply

Figure 24-21

This technique is also helpful in converting layouts from one type to
another (for example, converting a ConstraintLayout to a LinearLayout).

24.13 Displaying Sample Data

When designing layouts in Android Studio, situations will arise where the
content to be displayed within the user interface will not be available until
the app is completed and running. This can sometimes make it difficult to
assess how the layout will appear at app runtime from within the layout
editor. To address this issue, the layout editor allows sample data to be
specified, which will populate views within the layout editor with sample
images and data. This sample data only appears within the layout editor and
is not displayed when the app runs. Sample data may be configured either
by directly editing the XML for the layout or visually using the design-time
helper by right-clicking on the widget in the design area and selecting the
Set Sample Data menu option. The design-time helper panel will display a
range of preconfigured options for sample data to be displayed on the
selected view item, including combinations of text and images in various
configurations. Figure 24-22, for example, shows the sample data options
displayed when selecting sample data to appear in a RecyclerView list:



- Ted w =

Design-time View Attributes

Item template
Default >

Item count

10

O

Figure 24-22

Alternatively, custom text and images may be provided for display during
the layout design process. Since sample data is implemented as a tools
attribute, the visibility of the data within the preview can be controlled
using the toggle button highlighted in Figure 24-19 above.

24.14 Creating a Custom Device Definition

The device menu in the Layout Editor toolbar (Figure 24-23) provides a list
of pre-configured device types, which, when selected, will appear as the
device screen canvas. In addition to the pre-configured device types, any
AVD instances previously configured within the Android Studio
environment will also be listed within the menu. To add additional device
configurations, display the device menu, select the Add Device Definition
option and follow the steps outlined in the chapter entitled “Creating_an
Android Virtual Device (AVD) in Android Studio”.

&, [ Pixel v 33~ @) MvAoplication v & Default (en-us)
- [
B Medium Phone (4711 x 891 dp, 420dpi)

Foldable (673 x 841 dp, 420dpi)

Medium Tablet (1280 x 800 dp, hdpi)

Desktop (1920 x 1080 dp, mdpi)

Phones
Tablets
Desktop

Wear OS Small Round (192 x 192 dp, xhdpi)
Wear OS Rectangular (201 x 238 dp, xhdpi)
Wear OS Square (180 x 180 dp, xhdpi)

Wear OS Large Round (227 x 227 dp, xhdpi)

Television (4K) (960 x 540 dp, xhdpi)
Television (1080p) (960 x 540 dp, xhdpi)
Television (720p) (962 x 541 dp, tvdpi)

Automotive (1024p landscape) (1024 x 768 dp, mdpi)

Custom

AVD: Resizable API 34
AVD: Pixel 4 API 33

Generic Devices

Add Device Definition



Figure 24-23
24.15 Changing the Current Device

As an alternative to the device selection menu, the current device format
may be changed by selecting the Custom option from the device menu,
clicking on the resize handle located next to the bottom right-hand corner of
the device screen (Figure 24-24), and dragging to select an alternate device
display format. As the screen resizes, markers will appear indicating the
various size options and orientations available for selection:

Pixel 3

Figure 24-24
24.16 Layout Validation

The layout validation option allows the user interface layout to be
previewed simultaneously on a range of Pixel-sized screens. To access the
layout validation tool window, select the View -> Tool Windows -> Layout
Validation menu option. Once loaded, the panel will appear as shown in
Figure 24-25, with the layout rendered on multiple device screen
configurations:



Layout Validation

Reference Devicesv @, [y

Medium Phone Foldable

Medium Tablet

Figure 24-25
24.17 Summary

A key part of developing Android applications involves the creation of the
user interface. This is performed within the Android Studio environment
using the Layout Editor tool, which operates in three modes. In Design
mode, view components are selected from a palette, positioned on a layout
representing an Android device screen, and configured using a list of
attributes. The underlying XML representing the user interface layout can
be directly edited in Code mode. Split mode, on the other hand, allows the
layout to be created and modified both visually and via direct XML editing.
These modes combine to provide an extensive and intuitive user interface
design environment.

The layout validation panel allows user interface layouts to be quickly
previewed on various device screen sizes.



25. A Guide to the Android
ConstraintLayout

As discussed in the chapter entitled “Understanding Android Views, View
Groups and Layouts”, Android provides several layout managers to design
user interfaces. With Android 7, Google introduced a layout that addressed
many of the shortcomings of the older layout managers. This layout, called
ConstraintLayout, combines a simple, expressive, and flexible layout
system with powerful features built into the Android Studio Layout Editor
tool to ease the creation of responsive user interface layouts that adapt
automatically to different screen sizes and changes in device orientation.

This chapter will outline the basic concepts of ConstraintLayout, while the
next chapter will provide a detailed overview of how constraint-based
layouts can be created using ConstraintLayout within the Android Studio
Layout Editor tool.

25.1 How ConstraintL.ayout Works

In common with all other layouts, ConstraintLayout manages the
positioning and sizing behavior of the visual components (also referred to
as widgets) it contains. It does this based on the constraint connections set
on each child widget.

To fully understand and use ConstraintLayout, it is essential to gain an
appreciation of the following key concepts:

*Constraints

*Margins

*Opposing Constraints
*Constraint Bias
*Chains

*Chain Styles
*Guidelines

*Groups

*Barriers

*Flow



25.1.1 Constraints

Constraints are sets of rules that dictate how a widget is aligned and
distanced relative to other widgets, the sides of the containing
ConstraintLayout, and special elements called guidelines. Constraints also
dictate how the user interface layout of an activity will respond to changes
in device orientation or when displayed on devices of differing screen sizes.
To be adequately configured, a widget must have sufficient constraint
connections such that its position can be resolved by the ConstraintLayout
layout engine in both the horizontal and vertical planes.

25.1.2 Margins

A margin is a form of constraint that specifies a fixed distance. Consider a
Button object that needs to be positioned near the top right-hand corner of
the device screen. This might be achieved by implementing margin
constraints from the top and right-hand edges of the Button connected to the
corresponding sides of the parent ConstraintLayout, as illustrated in Figure
25-1:

ConstraintLayout Constraint
Connections
A i

N\ N

Button EREE
15dp

Figure 25-1

As indicated in the above diagram, each of these constraint connections has
associated with it a margin value dictating the fixed distances of the widget
from two sides of the parent layout. Under this configuration, regardless of
screen size or the device orientation, the Button object will always be
positioned 20 and 15 device-independent pixels (dp) from the top and right-
hand edges of the parent ConstraintLayout, respectively, as specified by the
two constraint connections.

While the above configuration will be acceptable for some situations, it
does not provide any flexibility in terms of allowing the ConstraintLayout



layout engine to adapt the position of the widget to respond to device
rotation and to support screens of different sizes. To add this responsiveness
to the layout, it is necessary to implement opposing constraints.

25.1.3 Opposing Constraints

Two constraints operating along the same axis on a single widget are
considered opposing constraints. In other words, a widget with constraints
on both its left and right-hand sides is considered to have horizontally
opposing constraints. Figure 25-2; for example, illustrates the addition of

both horizontally and vertically opposing constraints to the previous layout:

Harizontally Opposing
Constraints

—\
/ 30% E

-------------------------- Button  [---
80% 20%

~
]
®

Figure 25-2

The key point to understand here is that once opposing constraints are
implemented on a particular axis, the positioning of the widget becomes
percentage rather than coordinate-based. Instead of being fixed at 20dp
from the top of the layout, for example, the widget is now positioned at
30% from the top. In different orientations and when running on larger or
smaller screens, the Button will always be in the same location relative to
the dimensions of the parent layout.

It is now important to understand that the layout outlined in Figure 25-2 has
been implemented using not only opposing constraints, but also by applying
constraint bias.

25.1.4 Constraint Bias

It has now been established that a widget in a ConstraintLayout can
potentially be subject to opposing constraint connections. By default,
opposing constraints are equal, resulting in the corresponding widget being
centered along the axis of opposition. Figure 25-3, for example, shows a
widget centered within the containing ConstraintLayout using opposing



horizontal and vertical constraints:

Button

Widget Centered by Opposing Constraints
Figure 25-3

To allow for the adjustment of widget position in the case of opposing
constraints, the ConstraintLayout implements a feature known as constraint
bias. Constraint bias allows the positioning of a widget along the axis of
opposition to be biased by a specified percentage in favor of one constraint.
Figure 25-4, for example, shows the previous constraint layout with a 75%
horizontal bias and 10% vertical bias:

90%

----------------------- Button f-------

' 10%

Widget Offset using Constraint Bias
Figure 25-4

The next chapter, entitled “A Guide to Using ConstraintLayout in Android
Studio”, will cover these concepts in greater detail and explain how these
features have been integrated into the Android Studio Layout Editor tool. In
the meantime, however, a few more areas of the ConstraintLayout class
need to be covered.

25.1.5 Chains

ConstraintLayout chains provide a way for the layout behavior of two or




more widgets to be defined as a group. Chains can be declared in either the
vertical or horizontal axis and configured to define how the widgets in the
chain are spaced and sized.

Widgets are chained when connected by bi-directional constraints. Figure
25-5, for example, illustrates three widgets chained in this way:

Bi-Directional
Constraints

/N
/ \

Button | | Button | "| Button

x

-

~

L J

Figure 25-5
The first element in the chain is the chain head which translates to the top
widget in a vertical chain or, in the case of a horizontal chain, the left-most
widget. The layout behavior of the entire chain is primarily configured by
setting attributes on the chain head widget.

25.1.6 Chain Styles

The layout behavior of a ConstraintLayout chain is dictated by the chain
style setting applied to the chain head widget. The ConstraintLayout class
currently supports the following chain layout styles:

*Spread Chain — The widgets within the chain are distributed evenly
across the available space. This is the default behavior for chains.

Button Button Button

Figure 25-6

*Spread Inside Chain — The widgets within the chain are spread evenly
between the chain head and the last widget. The head and last widgets are
not included in the distribution of spacing.

Button Button Button




Figure 25-7

*Weighted Chain — Allows the space taken up by each widget in the chain
to be defined via weighting properties.

Button Button Button

Figure 25-8

*Packed Chain — The widgets that make up the chain are packed together
without spacing. A bias may be applied to control the horizontal or vertical
positioning of the chain relative to the parent container.

Button Button Button

Figure 25-9
25.2 Baseline Alignment

So far, this chapter has only referred to constraints that dictate alignment
relative to the sides of a widget (typically referred to as side constraints). A
common requirement, however, is for a widget to be aligned relative to the
content that it displays rather than the boundaries of the widget itself. To
address this need, ConstraintLayout provides baseline alignment support.

For example, assume that the previous theoretical layout from Figure 25-1
requires a TextView widget to be positioned 40dp to the left of the Button.
In this case, the TextView needs to be baseline aligned with the Button
view. This means that the text within the Button needs to be vertically
aligned with the text within the TextView. The additional constraints for this
layout would need to be connected as illustrated in Figure 25-10:



. Horizontal
ConstraintLayout

\ Constraint
\ :
1
20dp |
:

. 40dp 25dp
TextView  ___ _fF-----z-z Button  |---"--
f .
Baseline
Constraint

Figure 25-10

The TextView is now aligned vertically along the baseline of the Button and
positioned 40dp horizontally from the Button object’s left-hand edge.

25.3 Configuring Widget Dimensions

Controlling the dimensions of a widget is a key element of the user
interface design process. The ConstraintL.ayout provides three options that
can be set on individual widgets to manage sizing behavior. These settings
are configured individually for height and width dimensions:

*Fixed — The widget is fixed to specified dimensions.

*Match Constraint —Allows the widget to be resized by the layout engine
to satisfy the prevailing constraints. Also referred to as the AnySize or
MATCH_CONSTRAINT option.

*Wrap Content — The widget’s size is dictated by its content (i.e., text or
graphics).

25.4 Guideline Helper

Guidelines are special elements available within the ConstraintLayout that
provide an additional target to which constraints may be connected.
Multiple guidelines may be added to a ConstraintLayout instance which
may, in turn, be configured in horizontal or vertical orientations. Once
added, constraint connections may be established from widgets in the layout
to the guidelines. This is particularly useful when multiple widgets must be
aligned along an axis. In Figure 25-11, for example, three Button objects
contained within a ConstraintLayout are constrained along a vertical
guideline:



Guideline

7

== Button

e Button

Fog Button

Figure 25-11
25.5 Group Helper

This feature of ConstraintLayout allows widgets to be placed into logical
groups, and the visibility of those widgets controlled as a single entity. A
Group is a list of references to other widgets in a layout. Once defined,
changing the visibility attribute (visible, invisible, or gone) of the group
instance will apply the change to all group members. This makes hiding and
showing multiple widgets with a single attribute change easy. A single
layout may contain multiple groups, and a widget can belong to more than
one group. If a conflict occurs between groups, the last group to be declared
in the XML file takes priority.

25.6 Barrier Helper

Rather like guidelines, barriers are virtual views that can be used to
constrain views within a layout. As with guidelines, a barrier can be vertical
or horizontal, and one or more views may be constrained to it (to avoid
confusion, these will be referred to as constrained views). Unlike
guidelines, where the guideline remains at a fixed position within the
layout, however, the position of a barrier is defined by a set of so-called
reference views. Barriers were introduced to address an issue that occurs
with some frequency involving overlapping views. Consider, for example,
the layout illustrated in Figure 25-12 below:



aa View 1 o
< View 2 View 3 >

v
Figure 25-12

The key points to note about the above layout are that the width of View 3
is set to match constraint mode, and the left-hand edge of the view is
connected to the right-hand edge of View 1. As currently implemented, an
increase in width of View 1 will have the desired effect of reducing the
width of View 3:

A T
a3 View 1 -
4
aw View 2 View 3 Ea

Figure 25-13
A problem arises, however, if View 2 increases in width instead of View 1:
T 0
- View 1 [

*

< View 2 View 3 —>




Figure 25-14

Because View 3 is only constrained by View 1, it does not resize to
accommodate the increase in width of View 2, causing the views to overlap.

A solution to this problem is to add a vertical barrier and assign Views 1
and 2 as the barrier’s reference views so that they control the barrier
position. The left-hand edge of View 3 will then be constrained relative to
the barrier, making it a constrained view.

Now when either View 1 or View 2 increases in width, the barrier will

move to accommodate the widest of the two views, causing the width of
View 3 to change relative to the new barrier position:

A ' !

: t : t
1 1
1 1
1 1
1
€ View 1 €« Viewl f------- -:
i
i
4 : \ "

y View 2 - 1:4— View 3 —>» & View 2 View 3 >
1

1 1
1 1
1 1
1 1
1 1
Barrier — 7 1 Barrier —
: :
1 1

1 ‘ 1 ¢

Figure 25-15

When working with barriers, there is no limit to the number of reference
and constrained views that can be associated with a single barrier.

25.7 Flow Helper

The ConstraintLayout Flow helper allows groups of views to be displayed
in a flowing grid-style layout. As with the Group helper, Flow contains
references to the views it is responsible for positioning and provides various
configuration options, including vertical and horizontal orientations,
wrapping behavior (including the maximum number of widgets before
wrapping), spacing, and alignment properties. Chain behavior may also be
applied to a Flow layout, including spread, spread inside, and packed
options.

Figure 25-16 represents the layout of five uniformly sized buttons
positioned using a Flow helper instance in horizontal mode with no wrap
settings:



Button Button Button Button Button

Figure 25-16

Figure 25-17 shows the same buttons in a horizontal flow configuration
with wrapping set to occur after every third widget:

Button Button Button

Button Button

Figure 25-17

Figure 25-18, on the other hand, shows the buttons with wrapping set to
chain mode using spread inside (the effects of which are only visible on the
second row since the first row is full). The configuration also has the gap
attribute set to add s