Cy4acHi TEXHOJIOTII MOOIJIBHOTO
[IporpaMmyBaHHA

Safe-type Navigation in Compose

Cnaugu fo JeKuin

The Evolution of Navigation in Compose

» Before the introduction of type-safe navigation, Jetpack
Compose developers relied heavily on string-based route
definitions to manage navigation between screens. This
approach required manually constructing routes, embedding
parameters within strings, and parsing these strings in
destination composables. While functional, this method
introduced several challenges:

// Navigating to a profile screen with an ID
navController.navigate("profile/123")

» In this example, "profile/123" is a string that encodes
the route and its parameter. However, this simplicity
comes with several drawbacks:

Challenges with String-Based Navigation:

I. Lack of Type Safety: Parameters are passed as strings,
requiring manual extraction and conversion. If a parameter
was expected to be an Int, but a String was passed, this
mismatch wouldn’t be caught until runtime, potentially
causing crashes.

// Extracting the ID from the route string

val profileId = backStackEntry.arguments?
.getString("id")?.toIntOrNull() ?: ©

If the conversion fails (e.g., due to a non-numeric string), the
app could behave unexpectedly or crash.

Challenges with String-Based Navigation:

2. Manual String Construction: Developers had to
manually concatenate and interpolate strings to create
routes, leading to errors if route formatting was incorrect.

// Incorrectly formatted route
val userId = "123" navController.navigate("profile/userId")
// Should be "$userId"

Such issues were common, especially in larger apps with many
parameters, making the navigation logic error-prone and
harder to maintain.

Challenges with String-Based Navigation:

3. Runtime Errors: Since the navigation routes were
constructed as strings, errors in route names or parameter
types weren’t caught until the app was running, making
debugging difficult.

// Navigation failure due to typo
navController.navigate("profiles/123") // Incorrect route name

This error would only surface at runtime, making it harder to
trace and fix issues.

Challenges with String-Based Navigation:

4. Limited Scalability: As apps grew in complexity, managing
multiple routes and parameters through strings became
cumbersome, with the risk of inconsistencies increasing.
This was especially challenging when maintaining navigation
across different modules or features within an app.

In summary, while string-based navigation worked, it
lacked the robustness required for larger, more

complex applications.
The need for a more reliable and maintainable

approach led to the development of type-safe
navigation.

Add dependencies

A Add Library Dependency

(2 Module 'app’

Step 1.
Use the form below to find the library to add. This form uses the repositories specified in the project's build files (Google, Maven Central)

navigation-compose Search

Enter a search query or fully-qualified coordinates (e.g. guava* or com.google.*:guava* or com.google.guava:guava:26.0)

Group ID Artifact Name Repository Versions
androidx.hilt hilt-navigation-compose Google 2.9.0-alpha01
androidx.navigation navigation-compose Google 283

2.8.2
2.8.1
2.8.0

Library: androidx.navigation:navigation-compose:2.8.3
Step 2.
Assign your dependency to a configuration by selecting one of the configurations below.

Open Documentation

implementation

Add dependencies

* Add Library Dependency

(2 Module 'app'
Step 1.
Use the form below to find the library to add. This form uses the repositories specified in the project's build files (Google, Maven Central)

org.jetbrains.kotlinx:kotlinx-serialization-json Search

Enter a search query or fully-qualified coordinates (e.g. guava* or com.google.*:guava* or com.google.guava:guava:26.0)

Group ID Artifact Name Repository Versions

org.jetbrains.kotlinx |kotlinx—serialization—json Maven Central 1.7.3

Library: org.jetbrains.kotlinx:kotlinx-serialization-json:1.7.3

Step 2.
Assign your dependency to a configuration by selecting one of the configurations below.
Open Documentation

implementation

Add plugin org.jetbrains.kotlin.plugin.serialization

Project - &) & X

» [app
> [build
v~ [Dgradle
> [J wrapper
libs.versions.toml

@) .gitignore

Project -

> [Rapp
> [build
v [gradle
> [wrapper

libs.versions.toml

) .gitignore
&7 build.gradle kts

) —om e e o e e

Project -

v [2app
> [build
> [Dsre
) .gitignore
(% build.gradle.kts

= proguard-rules.pro

36

libs.versions.toml

[plugins] v
android-application = { id = "com.android.application®, version.ref = "agp" }

kotlin-android = { id = "org.jetbrains.kotlin.android", version.ref = "kotlin" }
kotlin-compose = { id = "org.jetbrains.kotlin.plugin.compose”, version.ref = "kotlin" }
serialization = { id = "org.jetbrains.kotlin.plugin.serialization”, version.ref = "kotlin" }

libs.versions.toml &2 build.gradle kts (TypeSafeNavigationStudy)

// Top-level build file where you can add configuration o
plugins {
alias(libs.plugins.android.application) apply false
alias(libs.plugins.kotlin.android) apply false
alias(libs.plugins.kotlin.compose) apply false

6 alias(libs.plugins.serialization) apply false
! =
libs.versions.toml| &2 build.gradle kts (TypeSafeNavigationStudy) £2 build.gradle.kts (:app)
plugins {

alias(libs.plugins.android.application)
alias(libs.plugins.kotlin.android)
- alias(libs.plugins.kotlin.compose)
5 alias(libs.plugins.serializationﬂ

Navigation component parts

» Navigation Graph - a resource that collects all navigation-
related data in one place. This includes all of the locations in your
app, referred to as destinations, as well as the possible paths a
user could take through your app.

» NavHost - a unique composable that you can include in your
layout. It shows various destinations from your Navigation Graph
and links the NavController with a navigation graph that specifies
the composable destinations that you should be able to navigate
between.As you navigate between composables, the content of
the NavHost is automatically recomposed. Each composable
destination in your navigation graph is associated with a route.

» NavController - is the central API for the Navigation
component. It is stateful and keeps track of the back stack of
composables that make up the screens in your app and the
state of each screen.

https://developer.android.com/jetpack/compose/mental-model#recomposition

Navigation between 2 screens - Ul

P SM-)730FM O

0925 20 &

First Screen

Enter custom primitive

HeIIo;

* |
el 100% 0 |

See simplenav branch:

Pass primitive

type value

li.screens.FirstScr

O X
=l 100%

™ SM-)730FM
0926 20 &

Second Screen - Hello

een.kt & SecondScreen.k

€

Navigation between 2 screens - Routes

» Kotlin Serialization is at the core of this Type Safe Navigation,
allowing developers to define destination using
@Serializable classes.

» We need to make our classes serializable, so the arguments can be
passed around.

// data class with custom primitive
@Serializable
data class SecondScreen(val customPrimitive: String) : Routes()

&
composable<SecondScreen> { ... }

Instead of
composable("secondScreen/{customPrimitive}") { ... }

See simplenav branch: Routes.kt

Navigation between 2 screens - Navigation
Graph

I. In the new version NavHost constructors accept as
startDestionation custom types, not only strings.

NavHost(
navController = navController,
/*!1constructors accept custom types, not only strings!!!*/
startDestination = FirstScreen,
){...}
Instead of
NavHost(

navController = navController,
startDestination = "firstScreen",

) {onn)

Navigation between 2 screens - Navigation
Graph

. In the new version NavHost to declare the path in the host, the
composable is used a generic type, which determines, which class
belongs to the destinations.

composable<FirstScreen> {

}

Instead of

composable("firstScreen") {

}

Navigation between 2 screens - Navigation
Graph & Navigation Controller

3. In the new version NavHost to call another screen, invoke the
controller as usual, but pass your data class with the values, which
you need.

composable<FirstScreen> {

navController.navigate(SecondScreen(customPrimitive))

)

Instead of

composable("firstScreen") {

navController.navigate("secondScreen/S{customPrimitive}");

Navigation between 2 screens - Navigation
Graph

4. In the new version NavHost to get your values back, use
the backStackEntry to get your value and use the value for your
next screen.

composable<SecondScreen> { backStackEntry ->
val route = backStackEntry.toRoute<SecondScreen>()
val customPrimitive = route.customPrimitive

Instead of

composable("secondScreen/{customPrimitive}") { backStackEntry ->
val customPrimitive = backStackEntry.arguments?
.getString(" customPrimitive ")

See simplenav branch: MainActivity.kt

Navigation with custom type pass

» There might be need to pass custom type instances between
the screens then primitives only.

» There is a data class, instance of which will be the input for
the second screen.

» We add enum element as a field of the class to demonstrate
serialization-deserialization of the such values.

See customtypenav branch: model.Question.kt
& model.QuestionRepository.kt

Navigation with custom type pass - Ul

P SM-J730FM —
111220 8

X
Al 100% W

9 0O

Canberra is the capital of Australia -
true - CAPITALS

The Pacific Ocean is larger than the
Atlantic Ocean - true - OCEANS

The Suez Canal connects the Red Sea
and the Indian Ocean - false - OCEANS

The source of the Nile River is in Egypt
- false - RIVERS

The Amazon River is the longest river
in the Americas - true - RIVERS

Lake Baikal is the world\'s oldest and
deepest freshwater lake - true - LAKES

See customtypenav br:

Pass custom

type value

& QuestionDetaiIScre?n.kt

P SM-)730FM
111320 B

Question text

A 0O

X
Al 100% W

The Pacific Ocean is larger than the
Atlantic Ocean

Choose a category:
e CAPITALS

® OCEANS
@) RIVERS

@) LAKES

Update question

anch: ui.screens.QuestionListScreen.kt

Navigation with custom type pass - Routes

» Kotlin Serialization is at the core of this Type Safe
Navigation, allowing developers to define destination using
@Serializable classes.

» We need to make our classes serializable, so the arguments
can be passed around.

» We use data class with custom type instance as a parameter

@Serializable
data class QuestionDetailRoute(val question: Question) : Routes()

See customtypenav branch: nav.Routes.kt

Navigation with custom type pass - NavType

» We need to define androidx.navigation.NavType<Question>

instance with implementation of the serialization and deserialization
rules of the custom type.

» Also we implements the methods for put-get the serialized custom
type to Bundle. NavIype <Question> instance will be used by

compose internally to put it into a Bundle instance and later retrieve
it.

» There are built-in NavTypes for primitive types, such as int, long,
boolean, float, and strings, parcelable, and serializable classes
(including Enums), as well as arrays of each supported type.

See customtypenav branch: nav.CustomNav Type.kt

Navigation with custom type pass -
Navigation Graph

» Now we use defined custom Nav Iype instance with Navigation
Graph as element of the Map<KType, NavType<*>> of
NavGraphBuilder.composable typeMap argument.

NavHost(
navController = navController,
startDestination = Routes.QuestionListRoute,
modifier = Modifier.padding(innerPadding)

)1

composable<Routes.QuestionDetailRoute>(
/*Custom type map for the custom type*/
typeMap = mapOf(typeOf<Question>() to CustomNavType.questionType

)
}

See customtypenav branch: MainActivity.kt

Navigation with custom type pass - Navigation
Graph - WITHOUT CUSTOM NAV TYPE

@ Android € £ X ¢ — (@ MainActivity kt (@ CustomNavType.kt = 30 =8
o v [Dapp class MainActivity : ComponentActivity() { 36T ~ v
> [Jmanifests override fun onCreate(savedInstanceState: Bundle?) {
ga ~ [Jkotlin+java setContent {
& ~ [3) ua.edu.znu.typesafe TypeSa'FeNavi’gaT:?'.Pr_m.SEL_ld\{IP?m?.f ____________ L
@ > [ED model composable<Routes.QuestionDetailRoutes(
> [nav /*Custom type map for the custom typex/
> D & // typeMap = mapOf(

(@ MainActivity // typeOf<Question>() to CustomNavType.questionType, |—|
> [2) ua.edu.znu.typesafe [/ /*Enum type map for the enum type, when enum element is not a field
> [2J va.edu.znu.typesafe /! of the Question, but value of the Map<Question, Category)x/

> [2res /11 typeOf<Category>() to NavType.EnumType(Category::class.java)
IS Y
Logcat Logcat
T [1 samsung SM-J730FM (52001a65fe66c45d) Android 9 ~ Y/~ levelerror Cec | ¥r
QL ® [ERROR:gpu_process_host.cc(982)] GPU process exited unexpectedly: exit_code=0
00 App trying to use insecure INPUT_FEATURE_NO_INPUT_CHANNEL flag. Ignoring
E) e FATAL EXCEPTION: main
® 0 Process: ua.edu.znu.typesafenavigationstudy, PID: 16714
java.lang.IllegalArgumentException: Route va.edu.znu.typesafenavigationstudy.nav.Routes.QuestionDetailRoute could not find any NavTyf
I at androidx.navigation.serialization.RouteSerializerKt.forEachIndexedKType(RouteSerializer.kt:188)
at androidx.navigation.serialization.RouteSerializerKt.generateRoutePattern(RouteSerializer.kt:62)
?—9 > at androidx.navigation.serialization.RouteSerializerKt.generateRoutePattern$default(RouteSerializer.kt:45)

0 TypeSafeNavigationStudy > Oapp > src > omain > [Jjava

64:32 (428 chars, 5 line breaks) CRLF UTF-8 [] & 4 spaces

java.lang.lllegal ArgumentException: Route QuestionDetailRoute could not find
any NavType for argument question of type Question
- typeMap received was {}

Navigation with two types pass

» There might be need to pass more than one type instances
between the screens.

» Eq.we use Category enum as separate data structure, that will
use with Question instance in the map<Question, Category>

See twotypesnav branch: model.Question.kt
& model.QuestionRepository.kt

Navigation with two types pass - Ul

P SM-J730FM — O e
132490 8 Sl 100% W

Canberra is the capital of Australia -
true - CAPITALS

The Pacific Ocean is larger than the
Atlantic Ocean - true - OCEANS

The Suez Canal connects the Red Sea
and the Indian Ocean - false - OCEANS

The source of the Nile River is in Egypt
- false - RIVERS

The Amazon River is the longest river
in the Americas - true - RIVERS

Lake Baikal is the world\'s oldest and
deepest freshwater lake - true - LAKES

=

Pass two types

values

P SM-J730FM — O X
13:25 @ 2l 100% i

Question(id=2, text=The Pacific Ocean
is larger than the Atlantic Ocean,
answer=true) - OCEANS

See twotypesnav bran¢h: ui.screens.QugstionListScreen.kt
& QuestionDetailScreen.kt

Navigation with two types pass - Routes

» We need to make our classes serializable, so the arguments
can be passed around.

» We use data class with two types instances as parameters.

@Serializable

data class QuestionDetailRoute(
val question: Question,
val category: Category

)

See twotypesnav branch: nav.Routes.kt

Navigation with two types pass - NavType

» We need to define androidx.navigation.NavType<Question>
instance with implementation of the serialization and
deserialization rules.

» The second QuestionDetailRoute argument is enum, that
has standard defined NavType.

See twotypesnav branch: nav.CustomNavType.kt

Navigation with two types pass - Navigation
Graph

» Now we use defined custom Nav Iype instance with Navigation
Graph as element of the Map<KType, NavType<*>> of
NavGraphBuilder.composable typeMap argument.

NavHost(
navController = navController,
startDestination = Routes.QuestionListRoute,
modifier = Modifier.padding(innerPadding)

)1

composable<Routes.QuestionDetailRoute>(
/*Custom type map for the custom types*/
typeMap = mapOf{
typeOf<Question>() to CustomNavType.questionType,
typeOf<Category>() to NavType.EnumType(Category::class.java)

} See twotypesnav branch: MainActivity.kt

Serializable vs Parcelable object passed with
Navigation

» Serializable is a Java interface that enables an object to be
serialized, meaning that it can be converted into a byte
stream and stored in a file, transmitted over a network or
passed between Android components (Activities, Fragments,
Bundle, Composable) as serialized string.

» Parcelable is an Android-specific interface that enables an
object to be passed as a parameter from one Android
component to another. This is a more efficient method
compared to serialization, as it doesn’t require the object to
be converted into a byte stream (or string for Android).
When an object is passed using parcelable, it is passed
directly from one component to another. (eg. from
Composable to Bundle and vice versa).

Navigation with Serializable complex type
pass - data classes

» Eg. we use Category as separate data class, that will used as
a Question field.

See sercomplextypenav branch:
model.Question.kt & model.QuestionRepository.kt

Navigation with Serializable complex type
pass - Ul

P SM-J730FM — O e
132490 8 Sl 100% W

P SM-J730FM —
i 0925 @ @

X
Jll 100% @

2 O

Canberra is the capital of Australia -
true - CAPITALS

The Pacific Ocean is larger than the
Atlantic Ocean - true - OCEANS

The Suez Canal connects the Red Sea
and the Indian Ocean - false - OCEANS

Question(id=2, text=The Pacific Ocean
is larger than the Atlantic Ocean,
answer=true, category=Category(id=2,
name=0ceans))

The Amazon River is the longest river
Go back
in the Americas - true - RIVERS
Lake Baikal is the world\'s oldest and
deepest freshwater lake - true - LAKES

The source of the Nile River is in Egypt P |
- false - RIVERS ass compiex

type values

T

See sercomplextypeniv branch: ui.screeps.QuestionListScreen.kt
& QuestionDetailScreen.kt

Navigation with Serializable complex type
pass - Routes

» We need to make both our classes serializable, so the
Question argument can be passed around.

package ua.edu.znu.typesafenavigationstudy.nav

import kotlinx.serialization.Serializable
import ua.edu.znu.typesafenavigationstudy.model.Question

sealed interface Routes {

@Serializable
data object QuestionListRoute

@Serializable
data class QuestionDetailRoute(
val question: Question

)
)

See sercomplextypenav branch: nav.Routes.kt

Navigation with Serializable complex type
pass - NavType

» We need to define androidx.navigation.NavType<Question>
instance with implementation of the serialization and

deserialization rules and put to and get from the Bundle
methods.

Put to and get from the Bundle |[SON-serialized Question instance

override
return Json.

et(bundle: Bu key: String): Question? {
deFromString(bundle.getString(key) ?: return null)

override fun put(bundle: Bundle, key: String, value: Question) {
bundle.putString(key, Json.encodeToString(value))

)

See sercomplextypenav branch: nav.CustomNav Type.kt

Navigation with Serializable complex type
pass - Navigation Graph

» Now we use defined custom NavType instance with Navigation
Graph as element of the Map<KType, NavType<*>> of
NavGraphBuilder.composable typeMap argument.

See sercomplextypenav branch: MainActivity.kt

Navigation with Serializable complex type
pass - Logcat records

Android [Question.kt (G CustomNavType.kkt * (2 Routes.kt [QuestionListScreen.kt (G MainActivity.kt Ko v = 20 B
> [app * */ v
> Gradle Scripts object CustomNavType {
val questionType = object : NavType<Question>(
/* Nullable Question is not allowed */
isNullableAllowed = false
) 4
at override fun get(bundle: Bundle, key: String): Question? {
Log.d(TAG, msa: "get: key = $key")
return Json.decodeFromString(string: bundle.getString(key) ?: return null)
}
Logcat Logcat =
[] samsung SM-J730FM (52001a65fe66c45d) Android 9 ~ Y~ tag=:CustomNavType X Cc w| @
7 CustomNavType D serializeAsValue: value = Question(id=2, text=The Pacific Ocean is larger than the Atlantic Ocean, answel
00 CustomNavType D parseValue: value = {"id":2,"text":"The Pacific Ocean is larger than the Atlantic Ocean","answer":true, !t
c CustomNavType D put: key = question, value = Question(id=2, text=The Pacific Ocean is larger than the Atlantic Ocean, ans
- CustomNavType D get: key = question
CustomNavType D get: key = question
CustomNavType D get: key = question
CustomNavType D get: key = question
D

CustomNavType
|

get: key = question

Add plugin org.jetbrains.kotlin.plugin.parcelize

Project €3 < X © — [O libs.versions.toml *
ek 32 [plugins]
- e android-application = { id = "com.android.application", version.ref = "agp" }
’ Eaap‘p kotlin-android = { id = "org.jetbrains.kotlin.android", version.ref = "kotlin" }
- Ll kotlin-compose = { id = "org.jetbrains.kotlin.plugin.compose", version.ref = "kotlin" }
v erea serialization = { id = "org.jetbrains.kotlin.plugin.serialization", version.ref = "kotlin" }
> (B0 wrappef kotlin-parcelize = { id = "org.jetbrains.kotlin.plugin.parcelize", version.ref = "kotlin" }
libs.versions.toml
Project > £ X 1 — libs.versions.toml &2 build.gradle.kts (TypeSafeNavigationStudy)
> [Idea // Top-level build file where you can add configuration c
> [kotlin plugins {
> Loapp alias(libs.plugins.android.application) apply false
> [build alias(libs.plugins.kotlin.android) apply false
v Dgradle alias(libs.plugins.kotlin.compose) apply false
> [wrapper

- alias(libs.plugins.serialization) apply false

@ libs.versions.toml | 7 alias(libs.plugins.kotlin.parcelize) apply false

@ .gitignore }
&2 build.gradle.kts
Project - libs.versions.toml &2 build.gradle kts (TypeSafeNavigationStudy) €2 build.gradle kts (:app) *
v BRapp plugins {
> D build alias(libs.plugins.android.application)
s D sre alias(libs.plugins.kotlin.android)
@ .gitignore alias(libs.plugins.kotlin.compose)

alias(libs.plugins.serialization)

E‘ﬁ‘; build.gradle.kts

= s hEs En alias(libs.plugins.kotlin.parcelize)

Navigation with Parcelable complex type
pass - data classes

» We need use both @Serialize and @Parcelize.

» We need extends both classes from the Parcelable
interface.

@Serializable

@Parcelize @Serializable

data class Question(@Parcelize
val id: Int, data class Category(
val text: String, val id: Int,
val answer: Boolean, val name: String
val category: Category) : Parcelable

): Parcelable

See parcomplextypenav branch:
model.Question.kt & model.QuestionRepository.kt

Navigation with Parcelable complex type
pass - Ul

P SM-J730FM — O e
132490 8 Sl 100% W

P SM-J730FM —
i 0925 @ @

X
Jll 100% @

2 O

Canberra is the capital of Australia -
true - CAPITALS

The Pacific Ocean is larger than the
Atlantic Ocean - true - OCEANS

The Suez Canal connects the Red Sea
and the Indian Ocean - false - OCEANS

Question(id=2, text=The Pacific Ocean
is larger than the Atlantic Ocean,
answer=true, category=Category(id=2,
name=0ceans))

The Amazon River is the longest river
Go back
in the Americas - true - RIVERS
Lake Baikal is the world\'s oldest and
deepest freshwater lake - true - LAKES

The source of the Nile River is in Egypt P |
- false - RIVERS ass compiex

type values

T

See parcomplextypengv branch: ui.screens.QuestionListScreen.kt
& QuestionDetailScreen.kt

Navigation with Parcelable complex type
pass - Routes

» We need to make both our classes serializable, so the
Question argument can be passed around.

package ua.edu.znu.typesafenavigationstudy.nav

import kotlinx.serialization.Serializable
import ua.edu.znu.typesafenavigationstudy.model.Question

sealed interface Routes {

@Serializable
data object QuestionListRoute

@Serializable
data class QuestionDetailRoute(
val question: Question

)
)

See parcomplextypenav branch: nav.Routes.kt

Navigation with Parcelable complex type
pass - NavType

» We need to define androidx.navigation.NavType<Question>
instance with implementation of the serialization and deserialization
rules and put to and get from the Bundle methods.

Put to and get from the Bundle Question instance (without J[SON serialization)

override fun put(bundle: Bundle, key: String, value: Question) {
bundle.putParcelable(key, value)

} See parcomplextypenav branch: nav.CustomNav Type.kt

Navigation with Parcelable complex type
pass - Navigation Graph

» Now we use defined custom NavType instance with Navigation
Graph as element of the Map<KType, NavType<*>> of
NavGraphBuilder.composable typeMap argument.

See parcomplextypenav branch: MainActivity.kt

Navigation with Parcelable complex type
pass - Logcat records

Android €3 O X [Question.kt (D Parcelable java (32 Routes.kt (G5 CustomNavTypekt * [QuestionListScreen.kt @ v = =0 8
> Capp 18 object CustomNavType { v
> &7 Gradle Scripts 19 val questionType = object : NavType<Question>(
20 /* Nullable Question is not allowed */
21 isNullableAllowed = false
22) A
23 @ @ override fun get(bundle: Bundle, key: String): Question? {
24 Log.d(TAG, msg: "get: bundle = $hundle, key = $key")
25 return if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.TIRAMISU) {
26 bundle.getParcelable(key, Question::class.java)
27 } else {
28 @Suppress(..names: "DEPRECATION") // for backwards compatibility
Logcat Logcat + —
[[1 samsung SM-J730FM (52001a65fe66c45d) Android 9 v] V- tag=:CustomNavType X Cc | ®
0] CustomNavType D serializeAsValue: value = Question(id=2, text=The Pacific Ocean is larger than the Atlantic Ocean, answer
00 CustomNavType D parseValue: value = {"id":2,"text":"The Pacific Ocean is larger than the Atlantic Ocean","answer":true, "t
e CustomNavType D put: bundle = Bundle[{}], key = question, value = Question(id=2, text=The Pacific Ocean is larger than tt
- CustomNavType D get: bundle = Bundle[{question=Question(id=2, text=The Pacific Ocean is larger than the Atlantic Ocean, ¢
CustomNavType D get: bundle = Bundle[{android-support-nav:controller:deepLinkIntent=Intent { dat=android-app://androidx.r
CustomNavType D get: bundle = Bundle[{android-support-nav:controller:deepLinkIntent=Intent { dat=android-app://androidx.rt
CustomNavType D get: bundle = Bundle[{android-support-nav:controller:deepLinkIntent=Intent { dat=android-app://androidx.r
= CustomNavType D get: bundle = Bundle[{android-support-nav:controller:deepLinkIntent=Intent { dat=android-app://androidx.rt

Navigation with Serializable vs Parcelable
complex type pass

Serializable Parcelable

Serializable is the standard Java Parcelable is the Android-specific

Overview . . . :
interface for persistence. interface for persistence.

.« re e Obijects are serialized using Obijects are serialized using the
Serialization

the Java Serialization API. Android Parcelable API.
Serializable objects are stored Parcelable objects are stored in
Memory Usage in memory and can be an Android application bundle
retrieved quickly. and require more time to access.
Serializable is slower than Parcelable is faster than
Speed s
Parcelable. Serializable.
. Serializable objects are larger ~ Parcelable objects are smaller
Size : s :
than Parcelable objects. than Serializable objects.
Serializable objects are Parcelable objects are

Implementation implemented by implementing implemented by extending the
the Serializable interface. Parcelable class.

Navigation with Serializable vs Parcelable
complex type pass

Serializable

Parcelable

Serializable supports class

Parcelable does not support

Hierarch) :
y hierarchy. class hierarchy.
Serializable objects can be Parcelable objects cannot be
Reflection accessed using Java’s reflection accessed using Java’s reflection

API.

API.

Thread Safety

Serializable objects are not
thread-safe

Parcelable objects are thread-
safe

