
Сучасні технології мобільного
програмування

Safe-type Navigation in Compose

Слайди до лекцій

The Evolution of Navigation in Compose

 Before the introduction of type-safe navigation, Jetpack
Compose developers relied heavily on string-based route
definitions to manage navigation between screens. This
approach required manually constructing routes, embedding
parameters within strings, and parsing these strings in
destination composables. While functional, this method
introduced several challenges:

 In this example, "profile/123" is a string that encodes
the route and its parameter. However, this simplicity
comes with several drawbacks:

// Navigating to a profile screen with an ID
navController.navigate("profile/123")

Challenges with String-Based Navigation:

1. Lack of Type Safety: Parameters are passed as strings,

requiring manual extraction and conversion. If a parameter

was expected to be an Int, but a String was passed, this

mismatch wouldn’t be caught until runtime, potentially

causing crashes.

If the conversion fails (e.g., due to a non-numeric string), the

app could behave unexpectedly or crash.

// Extracting the ID from the route string
val profileId = backStackEntry.arguments?

.getString("id")?.toIntOrNull() ?: 0

Challenges with String-Based Navigation:

2. Manual String Construction: Developers had to

manually concatenate and interpolate strings to create

routes, leading to errors if route formatting was incorrect.

Such issues were common, especially in larger apps with many

parameters, making the navigation logic error-prone and

harder to maintain.

// Incorrectly formatted route
val userId = "123" navController.navigate("profile/userId")

// Should be "$userId"

Challenges with String-Based Navigation:

3. Runtime Errors: Since the navigation routes were

constructed as strings, errors in route names or parameter

types weren’t caught until the app was running, making

debugging difficult.

This error would only surface at runtime, making it harder to

trace and fix issues.

// Navigation failure due to typo
navController.navigate("profiles/123") // Incorrect route name

Challenges with String-Based Navigation:

4. Limited Scalability: As apps grew in complexity, managing

multiple routes and parameters through strings became

cumbersome, with the risk of inconsistencies increasing.

This was especially challenging when maintaining navigation

across different modules or features within an app.

In summary, while string-based navigation worked, it

lacked the robustness required for larger, more

complex applications.

The need for a more reliable and maintainable

approach led to the development of type-safe

navigation.

Add dependencies

Add dependencies

Add plugin org.jetbrains.kotlin.plugin.serialization

Navigation component parts

 Navigation Graph - a resource that collects all navigation-
related data in one place. This includes all of the locations in your
app, referred to as destinations, as well as the possible paths a
user could take through your app.

 NavHost - a unique composable that you can include in your
layout. It shows various destinations from your Navigation Graph
and links the NavController with a navigation graph that specifies
the composable destinations that you should be able to navigate
between. As you navigate between composables, the content of
the NavHost is automatically recomposed. Each composable
destination in your navigation graph is associated with a route.

 NavController - is the central API for the Navigation
component. It is stateful and keeps track of the back stack of
composables that make up the screens in your app and the
state of each screen.

https://developer.android.com/jetpack/compose/mental-model#recomposition

Navigation between 2 screens - UI

Pass primitive

type value

See simplenav branch: ui.screens.FirstScreen.kt & SecondScreen.kt

Navigation between 2 screens - Routes

 Kotlin Serialization is at the core of this Type Safe Navigation,
allowing developers to define destination using
@Serializable classes.

 We need to make our classes serializable, so the arguments can be
passed around.

See simplenav branch: Routes.kt

// data class with custom primitive
@Serializable
data class SecondScreen(val customPrimitive: String) : Routes()

composable("secondScreen/{customPrimitive}") { ... }

&
composable<SecondScreen> { ... }

Instead of

Navigation between 2 screens - Navigation

Graph

1. In the new version NavHost constructors accept as
startDestionation custom types, not only strings.

Instead of

NavHost(
navController = navController,
/*!!!constructors accept custom types, not only strings!!!*/
startDestination = FirstScreen,
...

) { ... }

NavHost(
navController = navController,
startDestination = "firstScreen",
...

) { ... }

Navigation between 2 screens - Navigation

Graph

2. In the new version NavHost to declare the path in the host, the
composable is used a generic type, which determines, which class
belongs to the destinations.

Instead of

composable<FirstScreen> {
...

}

composable("firstScreen") {
...
}

Navigation between 2 screens - Navigation

Graph & Navigation Controller

3. In the new version NavHost to call another screen, invoke the
controller as usual, but pass your data class with the values, which
you need.

Instead of

composable<FirstScreen> {
...
navController.navigate(SecondScreen(customPrimitive))
...

}

composable("firstScreen") {
...
navController.navigate("secondScreen/${customPrimitive}");
...

}

Navigation between 2 screens - Navigation

Graph

4. In the new version NavHost to get your values back, use
the backStackEntry to get your value and use the value for your
next screen.

Instead of

composable<SecondScreen> { backStackEntry ->
val route = backStackEntry.toRoute<SecondScreen>()
val customPrimitive = route.customPrimitive
...

}

composable("secondScreen/{customPrimitive}") { backStackEntry ->
val customPrimitive = backStackEntry.arguments?

.getString(" customPrimitive ")
...

}

See simplenav branch: MainActivity.kt

Navigation with custom type pass

 There might be need to pass custom type instances between

the screens then primitives only.

 There is a data class, instance of which will be the input for

the second screen.

 We add enum element as a field of the class to demonstrate

serialization-deserialization of the such values.

See customtypenav branch: model.Question.kt

& model.QuestionRepository.kt

Navigation with custom type pass - UI

Pass custom

type value

See customtypenav branch: ui.screens.QuestionListScreen.kt

& QuestionDetailScreen.kt

Navigation with custom type pass - Routes

 Kotlin Serialization is at the core of this Type Safe

Navigation, allowing developers to define destination using
@Serializable classes.

 We need to make our classes serializable, so the arguments

can be passed around.

 We use data class with custom type instance as a parameter

See customtypenav branch: nav.Routes.kt

@Serializable
data class QuestionDetailRoute(val question: Question) : Routes()

Navigation with custom type pass - NavType

 We need to define androidx.navigation.NavType<Question>
instance with implementation of the serialization and deserialization
rules of the custom type.

 Also we implements the methods for put-get the serialized custom
type to Bundle. NavType <Question> instance will be used by
compose internally to put it into a Bundle instance and later retrieve
it.

 There are built-in NavTypes for primitive types, such as int, long,
boolean, float, and strings, parcelable, and serializable classes
(including Enums), as well as arrays of each supported type.

See customtypenav branch: nav.CustomNavType.kt

Navigation with custom type pass -

Navigation Graph

 Now we use defined custom NavType instance with Navigation

Graph as element of the Map<KType, NavType<*>> of

NavGraphBuilder.composable typeMap argument.

See customtypenav branch: MainActivity.kt

NavHost(
navController = navController,
startDestination = Routes.QuestionListRoute,
modifier = Modifier.padding(innerPadding)

) {
...

composable<Routes.QuestionDetailRoute>(
/*Custom type map for the custom type*/
typeMap = mapOf(typeOf<Question>() to CustomNavType.questionType

)
}

Navigation with custom type pass - Navigation

Graph - WITHOUT CUSTOM NAV TYPE

java.lang.IllegalArgumentException: Route QuestionDetailRoute could not find

any NavType for argument question of type Question

- typeMap received was {}

Navigation with two types pass

 There might be need to pass more than one type instances

between the screens.

 Eq. we use Category enum as separate data structure, that will

use with Question instance in the map<Question, Category>

See twotypesnav branch: model.Question.kt

& model.QuestionRepository.kt

Navigation with two types pass - UI

Pass two types

values

See twotypesnav branch: ui.screens.QuestionListScreen.kt

& QuestionDetailScreen.kt

Navigation with two types pass - Routes

 We need to make our classes serializable, so the arguments

can be passed around.

 We use data class with two types instances as parameters.

See twotypesnav branch: nav.Routes.kt

@Serializable
data class QuestionDetailRoute(

val question: Question,
val category: Category

)

Navigation with two types pass - NavType

 We need to define androidx.navigation.NavType<Question>
instance with implementation of the serialization and

deserialization rules.

 The second QuestionDetailRoute argument is enum, that
has standard defined NavType.

See twotypesnav branch: nav.CustomNavType.kt

NavHost(
navController = navController,
startDestination = Routes.QuestionListRoute,
modifier = Modifier.padding(innerPadding)

) {
...

composable<Routes.QuestionDetailRoute>(
/*Custom type map for the custom types*/
typeMap = mapOf(

typeOf<Question>() to CustomNavType.questionType,
typeOf<Category>() to NavType.EnumType(Category::class.java)

)
}

Navigation with two types pass - Navigation

Graph

 Now we use defined custom NavType instance with Navigation

Graph as element of the Map<KType, NavType<*>> of

NavGraphBuilder.composable typeMap argument.

See twotypesnav branch: MainActivity.kt

Serializable vs Parcelable object passed with

Navigation

 Serializable is a Java interface that enables an object to be

serialized, meaning that it can be converted into a byte

stream and stored in a file, transmitted over a network or

passed between Android components (Activities, Fragments,

Bundle, Composable) as serialized string.

 Parcelable is an Android-specific interface that enables an

object to be passed as a parameter from one Android

component to another. This is a more efficient method

compared to serialization, as it doesn’t require the object to

be converted into a byte stream (or string for Android).

When an object is passed using parcelable, it is passed

directly from one component to another. (eg. from

Composable to Bundle and vice versa).

Navigation with Serializable complex type

pass - data classes

 Eg. we use Category as separate data class, that will used as

a Question field.

See sercomplextypenav branch:

model.Question.kt & model.QuestionRepository.kt

Navigation with Serializable complex type

pass - UI

Pass complex

type values

See sercomplextypenav branch: ui.screens.QuestionListScreen.kt

& QuestionDetailScreen.kt

package ua.edu.znu.typesafenavigationstudy.nav

import kotlinx.serialization.Serializable
import ua.edu.znu.typesafenavigationstudy.model.Question

sealed interface Routes {

@Serializable
data object QuestionListRoute

@Serializable
data class QuestionDetailRoute(

val question: Question
)

}

Navigation with Serializable complex type

pass - Routes

 We need to make both our classes serializable, so the

Question argument can be passed around.

See sercomplextypenav branch: nav.Routes.kt

override fun get(bundle: Bundle, key: String): Question? {
return Json.decodeFromString(bundle.getString(key) ?: return null)

}

override fun put(bundle: Bundle, key: String, value: Question) {
bundle.putString(key, Json.encodeToString(value))

}

Navigation with Serializable complex type

pass - NavType

 We need to define androidx.navigation.NavType<Question>
instance with implementation of the serialization and

deserialization rules and put to and get from the Bundle

methods.

See sercomplextypenav branch: nav.CustomNavType.kt

Put to and get from the Bundle JSON-serialized Question instance

Navigation with Serializable complex type

pass - Navigation Graph

See sercomplextypenav branch: MainActivity.kt

 Now we use defined custom NavType instance with Navigation

Graph as element of the Map<KType, NavType<*>> of

NavGraphBuilder.composable typeMap argument.

Navigation with Serializable complex type

pass - Logcat records

Add plugin org.jetbrains.kotlin.plugin.parcelize

@Serializable
@Parcelize
data class Question(

val id: Int,
val text: String,
val answer: Boolean,
val category: Category

): Parcelable

...

Navigation with Parcelable complex type

pass - data classes

 We need use both @Serialize and @Parcelize.

 We need extends both classes from the Parcelable

interface.

See parcomplextypenav branch:

model.Question.kt & model.QuestionRepository.kt

...

@Serializable
@Parcelize
data class Category(

val id: Int,
val name: String

) : Parcelable

Navigation with Parcelable complex type

pass - UI

Pass complex

type values

See parcomplextypenav branch: ui.screens.QuestionListScreen.kt

& QuestionDetailScreen.kt

package ua.edu.znu.typesafenavigationstudy.nav

import kotlinx.serialization.Serializable
import ua.edu.znu.typesafenavigationstudy.model.Question

sealed interface Routes {

@Serializable
data object QuestionListRoute

@Serializable
data class QuestionDetailRoute(

val question: Question
)

}

Navigation with Parcelable complex type

pass - Routes

 We need to make both our classes serializable, so the

Question argument can be passed around.

See parcomplextypenav branch: nav.Routes.kt

override fun get(bundle: Bundle, key: String): Question? {
return if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.TIRAMISU) {

bundle.getParcelable(key, Question::class.java)
} else {

@Suppress("DEPRECATION") // for backwards compatibility
bundle.getParcelable(key)

}

}

override fun put(bundle: Bundle, key: String, value: Question) {
bundle.putParcelable(key, value)

}

Navigation with Parcelable complex type

pass - NavType

 We need to define androidx.navigation.NavType<Question>
instance with implementation of the serialization and deserialization

rules and put to and get from the Bundle methods.

See parcomplextypenav branch: nav.CustomNavType.kt

Put to and get from the Bundle Question instance (without JSON serialization)

Navigation with Parcelable complex type

pass - Navigation Graph

See parcomplextypenav branch: MainActivity.kt

 Now we use defined custom NavType instance with Navigation

Graph as element of the Map<KType, NavType<*>> of

NavGraphBuilder.composable typeMap argument.

Navigation with Parcelable complex type

pass - Logcat records

Navigation with Serializable vs Parcelable

complex type pass

Factor Serializable Parcelable

Overview
Serializable is the standard Java

interface for persistence.

Parcelable is the Android-specific

interface for persistence.

Serialization
Objects are serialized using

the Java Serialization API.

Objects are serialized using the

Android Parcelable API.

Memory Usage

Serializable objects are stored

in memory and can be

retrieved quickly.

Parcelable objects are stored in

an Android application bundle

and require more time to access.

Speed
Serializable is slower than

Parcelable.

Parcelable is faster than

Serializable.

Size
Serializable objects are larger

than Parcelable objects.

Parcelable objects are smaller

than Serializable objects.

Implementation

Serializable objects are

implemented by implementing

the Serializable interface.

Parcelable objects are

implemented by extending the

Parcelable class.

Navigation with Serializable vs Parcelable

complex type pass

Factor Serializable Parcelable

Hierarchy
Serializable supports class

hierarchy.

Parcelable does not support

class hierarchy.

Reflection

Serializable objects can be

accessed using Java’s reflection

API.

Parcelable objects cannot be

accessed using Java’s reflection

API.

Thread Safety
Serializable objects are not

thread-safe

Parcelable objects are thread-

safe

