
Сучасні технології мобільного
програмування

Room API in Compose

Слайди до лекцій

The Room library

 The Room library acts as an abstraction layer over SQLite,

- embedding to the Android database - simplifying database

management in Android applications. While direct usage of

SQLite can lead to potential errors during SQL query

execution, Room enhances safety and efficiency.

 It offers compile-time verification of SQL queries,

significantly reducing the risk of errors.

 Also it offers convenience annotations that minimize

repetitive and error-prone boilerplate code.

 It’s generally recommended to utilize the Room library for

local data storage in SQLite, unless there are specific reasons

not to.

Add dependencies -

lifecycle-viewmodel-compose

Add dependencies - room-runtime

Add dependencies - room-compiler

There is no annotationProcessor configuration in the list -

we need replace implementation to annotationProcessor manually

Add dependencies - room-ktx

Kotlin Extensions and Coroutines support for Room

Add plugin com.google.devtools.ksp

Add plugin com.google.devtools.ksp

Add plugin com.google.devtools.ksp

App Overview

 The "list-detail" type app was choose. List screen contains
questions from geographic area and has button to add a new
question.

 Tap on the list question open detail screen, where user can edit
question properties or delete the question.

 Question properties include question text and boolean type right
answer.

 App uses type safe compose navigation to pass question from the
list screen to the detail screen.

See data.Question.kt & data.QuestionRepository.kt

Pass question

See ui.screens.QuestionListScreen.kt &

QuestionDetailScreen.kt

App Overview

FAB

Defining the Entity

See data.Question.kt

 As we begin implementing the Room library, let’s first set up our data
structure by adding annotation to data.Question members:

 The @Entity annotation is used to denote a Room entity. This
annotation requires a table name, which is set to "questions" in our
example.

 The @PrimaryKey annotation marks a column as the primary key.
Setting autoGenerate = true means that Room will automatically
generate unique IDs for each entry.

 Use the @ColumnInfo annotation to specify a custom column name.
Here, the column for storing question text is named "question."

 We can omit @ColumnInfo annotation if column name should be
equal the class property name.

 We use not-null types as the class field type, so we must define
values of the types for class instances.

Defining the DAO
 The next step is to define the Data Access Object (DAO) - is a

pattern you can use to separate the persistence layer from the
rest of the application by providing an abstract interface.
Through the DAO, we can simplify database operations.

 For the sample app, we require such fundamental operations
(Room provides correspondent annotations for the Dao
interface functions):

1. Inserting new question

2. Update existing question

3. Deleting existing question

4. Retrieving all questions

 Room API provides @Dao annotation.

See data.QuestionDao.kt

Defining the DAO - cont.

See data.QuestionDao.kt

 The insert and update operations can be combined by upsert
operation.

@Upsert
suspend fun upsertQuestion(question: Question)

 The upsert and delete functions are suspend - to ensure they're
executed asynchronously, respecting coroutine best practices
@Delete
suspend fun deleteQuestion(question: Question)

 The getQuestions() method returns a Flow type to make list of
question observable. This does not require the suspend modifier
because it provides a continuous stream of data.
@Query("SELECT * FROM questions")
fun getQuestions(): Flow<List<Question>>

Defining the Database
 The next step is to define the database class that uses Entity and DAO.

Room API provides @Database annotation.

 We have to define this annotation parameters: entities that contains Entity

classes, database version and exportSchema flag. Whenever you change

the schema of the database table, you have to increase the version number.

Set exportSchema to false so as not to keep schema version history
backups .

@Database(entities = [Question::class], version = 1, exportSchema = false)

 Our database class extends RoomDatabase class and is abstract. Room

takes care of its implementation:

abstract class QuestionDatabase : RoomDatabase()

 The questionDao() method exposes the Dao, enabling database operations
through it (Room generates the implementation):

abstract fun questionDao(): QuestionDao

See data.QuestionDatabase.kt

Defining the Database - cont.
 The Instance variable, declared for the database within a companion

object, ensures that QuestionDatabase adheres to the singleton pattern.

 Marking Instance with @Volatile guarantees that its value is always read
from and written to the main memory, avoiding caching issues:
companion object {

@Volatile
private var Instance: QuestionDatabase? = null ...

 Multiple threads can potentially ask for a database instance at the same
time, which results in two databases instead of one (race condition).
Wrapping the code to get the database inside a synchronized block
prevents such issue.

 Use Room.databaseBuilder to create your ("question_database") database
only if it doesn't exist. Otherwise, return the existing database.

 After build(), add an also block and assign Instance = it to keep a reference
to the recently created database instance.

See data.QuestionDatabase.kt

The Room API components interaction

Defining the Repository
 The QuestionRepository class takes QuestionDao as parameter and

implements Dao functions. This class will serve as an intermediary
between our database operations defined in the DAO and the UI or
business logic of our application.

class QuestionRepository(private val questionDao: QuestionDao) {...}

 In the QuestionRepository, we define methods that correspond to
the DAO's operations.

 Notice the us of suspend for upsertQuestion and deleteQuestion to
support coroutines for asynchronous operations.

See data.QuestionRepository.kt

Defining the Container class
 To instantiate QuestionRepository, we require an instance

of QuestionDao. This dependency chain necessitates a structured

approach to ensure that all components are correctly instantiated.

We'll address this by introducing a container class -

QuestionContainer, which will manage the instantiation

of QuestionRepository.

 The QuestionContainer class uses a lazy delegate to ensure

that QuestionRepository is instantiated only when needed, using the

appropriate Dao obtained from QuestionDatabase.

val questionRepository by lazy {
QuestionRepository(QuestionDatabase.getQuestionDatabase(context).ques
tionDao()) }

See data.QuestionContainer.kt

Defining the Application class
 To supply the necessary context for our QuestionContainer, we'll

create a custom QuestionApplication class in the root of the project:

 To ensure our Application class is recognized, modify
the AndroidManifest.xml (add android:name attribute):

<application
android:name=".QuestionApplication"

...

 This configuration ensures that our custom application class is used,
allowing us to access QuestionContainer across our application.

 We are now ready to integrate the Room database within our app’s
architecture.

See QuestionApplication.kt

See manifests.AndroidManifest.xml

companion object {
val Factory: ViewModelProvider.Factory = viewModelFactory {

initializer {
val application = (this[APPLICATION_KEY] as QuestionApplication)
QuestionViewModel(application.questionContainer.questionRepository)

} } }

Defining ViewModel
 ViewModels interact with the database via the DAO and provide data to

the UI.

 QuestionViewModel takes a QuestionRepository as a parameter:

 QuestionViewModel utilizes methods from QuestionRepository to perform
data operations ().

 To solve the dependency issue, we provide a Factory instance within the
QuestionViewModel to ensure it's instantiated with the necessary
repository.

See viewmodel.QuestionViewModel.kt

class QuestionViewModel(
private val questionRepository: QuestionRepository) : ViewModel() {...}

A CreationExtras. Key to query an application

in which ViewModel is being created

Defining QuestionListScreen Composable

 The QuestionListScreen takes QuestionViewModel and onNavigate To
QuestionUpsert callback.

 We get List<Question> questionBank from the viewModel in several
stages:

1. QuestionViewModel's getQuestions() function returns a
Flow<List<Question>>.

2. From the FLow instance we call collectAsState() function that returns
a State<List<Question>>.

3. Operator by is used to get the value of the State object - List<Question>.
See ui.screens.QuestionListScreen.kt

@Composable
fun QuestionListScreen(

viewModel: QuestionViewModel =
viewModel(factory = QuestionViewModel.Factory),

onNavigateToQuestionUpsert: (Question) -> Unit
) { .. }

Defining QuestionListScreen - cont.
 We use Material's Scaffold Composable to define Floating Action Button.

 The FAB's onClick handler creates an empty Question and pass it to
Navigation Route to QuestionDetailScreen.

 In the LazyColumn Composable we iterate questionBank list items as Card
component instances that display question text and correct answer.

See ui.screens.QuestionListScreen.kt

Scaffold(
modifier = Modifier.fillMaxSize(),
floatingActionButton = {

FloatingActionButton(
onClick = {

val question = Question(text = "", answer = false)
onNavigateToQuestionUpsert(question)

}) { ... }
{ ... }

Defining QuestionDetailScreen
 The QuestionDetailScreen takes passed Question instance,

QuestionViewModel and onQuestionUpdate callback.

 We define vals for the passed question text and correct answer. We need to
make them mutable to be able to update them. We use remember function
to make the fields remember their state between recompositions.

 The vals states values changed by TextField's onValueChanged and
Checkbox's onCheckedChange handlers.

See ui.screens.QuestionDetailScreen.kt

@Composable
fun QuestionDetailScreen(

question: Question,
viewModel: QuestionViewModel,
onQuestionUpdate: () -> Unit

) { ... }

val questionText = remember { mutableStateOf(question.text) }
val checkedState = remember { mutableStateOf(question.answer) }

Defining QuestionDetailScreen - cont.
 In the Insert/Update question Button onClick handler we create an updated

Question as a copy of the passed with changed text and answer values. Also
QuestionViewModel is updated with inserted/updated Question and
onQuestionUpdate callback function is invoked (used for navigation).

 In the Delete question Button onClick handler we call QuestionViewModel's
delete function with passed question as argument and also invoke
onQuestionUpdate callback function .

See ui.screens.QuestionDetailScreen.kt

Button(onClick = {
val updatedQuestion = question.copy(

text = questionText.value,
answer = checkedState.value,

)
viewModel.upsertQuestion(updatedQuestion)
onQuestionUpdate()

}) { ... }

MainActivity
 MainActivity has defined QuestionViewModel in the Scaffold Composable,

that passed to the QuestionListScreen and QuestionDetailScreen in the
NavHost component.

See MainActivity.kt

Prepopulate database with Room
 Sometimes, you might want your app to start with a database that is

already loaded with a specific set of data. This is called prepopulating a
database. In Room 2.2.0 and higher, you can use API methods to
prepopulate a Room database at initialization with contents from a
prepackaged database file.

1. Create prepackaged database in DB Browser for SQLite and save it to file.

https://sqlitebrowser.org/

Prepopulate database with Room

https://sqlitebrowser.org/

Prepopulate database with Room
2. Add assets folder to project File-New-Folder-Assets Folder with default

settings.

3. Create database subdirectory in the assets folder.

4. Copy file with prepackaged database in this subdirectory.

Prepopulate database with Room
2. Add assets folder to project File-New-Folder-Assets Folder with default

settings.

3. Create database subdirectory in the assets folder.

4. Copy file with prepackaged database in this subdirectory.

Prepopulate database with Room
5. In the getQuestionDatabase(context: Context) function of the

QuestionDatabase class add for RoomDatabase. Builder
.createFromAsset("database/question_database.db") call:

fun getQuestionDatabase(context: Context): QuestionDatabase {
return Instance ?: synchronized(this) {

Room.databaseBuilder(
context,
QuestionDatabase::class.java,
"question_database"

)
/* Uncomment this line to use a pre-populated database */
.createFromAsset("database/question_database.db")
.build()
.also { Instance = it }

}
} See data.QuestionDatabase.kt

Prepopulate database with Room
 To check this technology You should delete app data and remove app from

the phone.

 You can check app database absence with Android Studio Device Explorer:
the package with name of the app package must be missing in the device
file structure in data/data folder.

Prepopulate database with Room
 Instead of creating prepackaged database in DB Browser for SQLite You can

save populated database from the app package in data/data.

