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Introduction

This companion book contains the solutions of the tutorial exercises which are found at the
end of each chapter. Additional materials (datasets, codes, figures and slides) concerning
the Handbook of Risk Management are available at the following internet web page:

http://www.thierry-roncalli.com/RiskManagementBook.html
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Part I

Risk Management in the
Financial Sector





Chapter 2
Market Risk

2.4.1 Calculating regulatory capital with the Basel I standardized mea-
surement method

1. (a) In the maturity approach, long and short positions are slotted into a maturity-
based ladder comprising fifteen time-bands. The time bands are defined by dis-
joint intervals ]M−,M+]. The risk weights depend on the time band t and the
value of the coupon1:

K (t) 0.00% 0.20% 0.40% 0.70% 1.25% 1.75% 2.25%
M+

BC 1M 3M 6M 1Y 2Y 3Y 4Y
M+

SC 1M 3M 6M 1Y 1.9Y 2.8Y 3.6Y
K (t) 2.75% 3.25% 3.75% 4.50% 5.25% 6.00% 8.00%
M+

BC 5Y 7Y 10Y 15Y 20Y +∞
M+

SC 4.3Y 5.7Y 7.3Y 9.3Y 10.6Y 12Y 20Y

These risk weights apply to the net exposure on each time band. For reflecting
basis and gap risks, the bank must also include a 10% capital charge to the
smallest exposure of the matched positions. This adjustment is called the ‘vertical
disallowance’. The Basel Committee considers a second adjustment for horizontal
offsetting (the ‘horizontal disallowance’). For that, it defines 3 zones (less than
1 year, one year to four years and more than four years). The offsetting can
be done within and between the zones. The adjustment coefficients are 30%
within the zones 2 and 3, 40% within the zone 1, between the zones 1 and
2, and between the zones 2 and 3, and 100% between the zones 1 and 3. To
compute mathematically the required capital, we note L? (t) and S? (t) the long
and short nominal positions for the time band t. t = 1 corresponds to the first
time band [0, 1M], t = 2 corresponds to the second time band ]1M, 3M[, etc. The
risk weighted positions for the time band t are defined as L (t) = K (t) × L? (t)
and S (t) = K (t)×S? (t). The required capital for the overall net open position
is then equal to:

KOP =

∣∣∣∣∣
15∑
t=1
L (t)−

15∑
t=1
S (t)

∣∣∣∣∣
The matched positionM (t) for the time band t is equal to min (L (t) ,S (t)). We
deduce that the additional capital for the vertical disallowance is:

KVD = 10%×
13∑
t=1
M (t)

1Coupons 3% or more are called big coupons (or BC) and coupons less than 3% are called small coupons
(SC). When the maturity is greater than 20Y, K (t) is equal to 6.00% for big coupons and 12.50% for small
coupons.

3
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N (t) = L (t)−S (t) is the net exposure for the time band t. We then define the
net long and net short exposures for the three zones as follows:

Li =
∑
t∈∆i

max (N (t) , 0)

Si = −
∑
t∈∆i

min (N (t) , 0)

where ∆1 = [0, 1Y], ∆2 = ]1Y, 4Y] and ∆3 = ]4Y,+∞]. We define CF i,j as
the exposure of the zone i that can be carried forward to the zone j. We then
compute the additional capital for the horizontal disallowance:

KHD = 0.4×min (L1,S1) + 0.3×min (L2,S2) + 0.3×min (L3,S3) +
0.4× CF1,2 + 0.4× CF2,3 + CF1,3

The regulatory capital for the general market risk is the sum of the three com-
ponents:

K = KOP + KVD + KHD

(b) For each time band, we report the long, short, matched and net exposures:

Time band L? (t) S? (t) K (t) L (t) S (t) M (t) N (t)
3M-6M 100 50 0.40% 0.40 0.20 0.20 0.20
7Y-10Y 10 50 3.75% 0.45 2.25 0.45 −1.80

The capital charge for the overall open position is:

KOP = |0.40 + 0.45− 0.20− 2.25|
= 1.6

whereas the capital for the vertical disallowance is:

KVD = 10%× (0.20 + 0.45)
= 0.065

We now compute the net long and net short exposures for the three zones:

zone 1 2 3
Li 0.20 0.00 0.00
Si 0.00 0.00 1.80

It follows that there is no horizontal offsetting within the zones. Moreover, we
notice that we can only carry forward the long exposure L1 to the zone 3 meaning
that:

KHD = 40%× 0.00 + 30%× 0.00 + 30%× 0.00 +
40%× 0.00 + 40%× 0.00 + 100%× 0.20

= 0.20

We finally deduce that the required capital is:

K = 1.6 + 0.065 + 0.20
= $1.865 mn
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2. (a) We have:

Stock 3M Exxon IBM Pfizer AT&T Cisco Oracle
Li 100 100 10 50 60 90
Si 50 80
Ni 100 50 10 50 60 90 −80

We deduce that the capital charge for the specific risk is equal to $35.20 mn:

KSpecific = 8%×
7∑
i=1
|Ni| = 8%× 440 = 35.20

(b) The total net exposure
∑7
i=1Ni is equal to $280 mn, meaning that the capital

charge for the general market risk is equal to $22.40 mn:

KGeneral = 8%× 280 = 22.40

(c) To hedge the market risk of the portfolio, the investor can sell $280 mn of S&P
500 futures contracts2. In this case, the capital charge for the general market risk
is equal to zero. However, this new exposure implies an additional capital charge
for the specific risk:

KSpecific = 35.20 + 4%× 280 = 35.20 + 11.20 = 46.40

Let S be the short exposure on S&P 500 futures contracts. We have:

K = KSpecific + KGeneral

= (35.20 + 4%× S) + 8%× |280− S|

We notice that there is a trade-off between the capital charge for the specific
risk which is an increasing function of S and the capital charge for the general
market risk which is a decreasing function of S for S ≤ 280. Another expression
of K(total) is:

K =
{

57.60− 4%× S if S ≤ 280
12.80 + 12%× S otherwise

We verify that the minimum is reached when S is exactly equal to 280 (see Figure
2.1).

3. (a) Under SMM, we have:
KSMM = 8%×Nw

(b) The 10-day Gaussian value-at-risk is equal to:

VaR99% (w; ten days) = 2.33× Nw × σ (w)√
260

×
√

10

= 0.457×Nw × σ (w)

We deduce that the required capital is approximately equal to:

KIMA ≈ (3 + ξ)×VaR99% (w; ten days)
= (3 + ξ)× 0.457×Nw × σ (w)

Because ξ ≤ 1, it follows that:

KIMM ≤ 1.828×Nw × σ (w)
2We assume that the beta of the portfolio with respect to the S&P 500 index is equal to one.
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FIGURE 2.1: Capital charge K with respect to S

(c) A sufficient condition for KIMM ≤ KSMM is:

1.828×Nw × σ (w) ≤ 8%×Nw

⇔ σ (w) ≤ 8%
1.828

⇔ σ (w) ≤ 4.37%

(d) The annualized volatility of the portfolio must be lower than 4.37%. This im-
plies that long equity exposures induce more required capital under IMM than
under SMM. Indeed, the volatility of directional equity portfolios is generally
higher than 12%. In order to obtain equity portfolios with such lower volatil-
ity, the portfolio must be long/short, meaning that the directional risk must be
(partially) hedged.

4. (a) The bank is exposed to foreign exchange and commodity risks with spot and
forward positions. Contrary to stocks or many equity products, these exposures
include a maturity pattern. For instance, the $100 mn EUR long position has
not the same maturity than the $100 mn EUR short position, implying that the
bank cannot match the two positions.

(b) We first consider the FX risk. We haveNEUR = 100−100 = 0,NJPY = 50−100 =
−50, NCAD = 0 − 50 = −50 and NGold = 50 − 0 = 50. We deduce that the
aggregated long and short positions are LFX = 0 and SFX = 100. It follows that
the required capital is:

KFX = 8%× (max (LFX,SFX) + |NGold|)
= 8%× (100 + 50)
= $12 mn
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For the commodity risk, we exclude the Gold position, because it is treated as a
foreign exchange risk. We have:

KCommodity = 15%×
7∑
i=5
|Li − Si|+ 3%×

7∑
i=5

(Li + Si)

= 15%× (50 + 20 + 20) + 3%× 390
= 13.50 + 11.70
= $25.20 mn

We finally obtain:

K = KFX + KCommodity

= $33.20 mn

5. (a) Under the maturity ladder approach, the bank should spread long and short ex-
posures of each currency to seven time bands: 0-1M, 1M-3M, 3M-6M, 6M-1Y,
1Y-2Y, 2Y-3Y, 3Y+. For each time band, the capital charge for the basis risk
is equal to 1.5% of the matched positions (long and short). Nevertheless, the
residual net position of previous time bands may be carried forward to offset
exposures in next time bands. In this case, a surcharge of 0.6% of the residual
net position is added at each time band to cover the time spread risk. Finally,
a capital charge of 15% is applied to the global net exposure (or the resid-
ual unmatched position) for directional risk. To compute mathematically the
required capital, we note Li (t) and Si (t) the long and short positions of the
commodity i for the time band t. t = 1 corresponds to the first time band
[0, 1M] and t = 7 corresponds to the last time band ]3Y,+∞[. The cumulative
long and short exposures are L+

i (t) = L+
i (t− 1) + Li (t) with L+

i (0) = 0 and
S+
i (t) = S+

i (t− 1) +Si (t) with S+
i (0) = 0. The cumulative matched position is

M+
i (t) = min

(
L+
i (t) ,S+

i (t)
)
. We deduce that the matched exposition for the

time band t is equal to Mi (t) = M+
i (t) −M+

i (t− 1) with M+
i (0) = 0. The

value of the carried forward CF i (t) can be obtained recursively by reporting the
unmatched positions at time t which can be offset in the times bands τ with
τ > t. The residual unmatched position is Ni = max

(
L+
i (7) ,S+

i (7)
)
−M+

i (t).
We finally deduce that the required capital is the sum of the individual capital
charges:

Ki = 1.5%×
( 7∑
t=1

2×Mi (t)
)

+ 0.6%×
( 6∑
t=1
CF i (t)

)
+ 15%×Ni

We notice that the matched positionMi (t) is multiplied by 2, because we apply
the capital charge 1.5% to the long and short matched positions.

(b) We compute the cumulative positions L+
i (t) and S+

i (t) and deduce the matched
expositionsMi (t):

Time band t Li (t) Si (t) L+
i (t) S+

i (t) Mi (t) CF i (t)
0−1M 1 500 300 500 300 300 200
1M−3M 2 0 900 500 1 200 200 700
3M−6M 3 0 0 500 1 200 0 700
6M−1Y 4 1 800 100 2 300 1 300 800 600
1Y−2Y 5 300 600 2 600 1 900 600 300
2Y−3Y 6 0 100 2 600 2 000 100 200
3Y+ 7 0 200 2 600 2 200 200 0
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The sum of matched positions is equal to 2 200. This means that the residual
unmatched position is 400 (2 600 − 2 200). At time band t = 1, we can carry
forward 200 of long position in the next time band. At time band t = 2, we can
carry forward 700 of short position in the times band t = 4. This implies that
CF i (3) = 700 and CF i (4) = 700. At time band t = 4, the residual unmatched
position is equal to 1 000 (1 800 − 100 − 700). However, we can only carry 600
of this long position in the next time bands (300 for t = 5, 100 for t = 6 and
200 for t = 1). At the end, we verify that the residual position is 400, that is the
part of the long position at time band t = 4 which can not be carried forward
(1 000− 600). We also deduce that the sum of carried forward positions is 2 700.
It follows that the required capital is3:

Ki = 1.5%× 4 400 + 0.6%× 2 700 + 15%× 400
= $142.20

2.4.2 Covariance matrix
1. (a) We have:

σA =
√

Σ1,1 =
√

4% = 20%

For the other stocks, we obtain σB = 22.36% and σC = 24.49%.
(b) The correlation is the covariance divided by the product of volatilities:

ρ (RA, RB) = Σ1,2√
Σ1,1 × Σ2,2

= 3%
20%× 22.36% = 67.08%

We obtain:

ρ =

 100.00%
67.08% 100.00%
40.82% −18.26% 100.00%


2. (a) Using the formula Σi,j = ρi,jσiσj , it follows that:

Σ =

 1.00%
1.00% 4.00%
0.75% 0.00% 9.00%


(b) We deduce that:

σ2 (w) = 0.52 × 1% + 0.52 × 4% + 2× 0.5× 0.5× 1%
= 1.75%

and σ (w) = 13.23%.
(c) It follows that:

σ2 (w) = 0.62 × 1% + (−0.4)2 × 4% + 2× 0.6× (−0.4)× 1%
= 0.52%

and σ (w) = 7.21%. This long/short portfolio has a lower volatility than the
previous long-only portfolio, because part of the risk is hedged by the positive
correlation between stocks A and B.

3The total matched position is equal to 2× 2 200 = 4 400 (long + short).
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(d) We have:

σ2 (w) = 1502 × 1% + 5002 × 4% + (−200)2 × 9% +
2× 150× 500× 1% +
2× 150× (−200)× 0.75% +
2× 500× (−200)× 0%

= 14 875

The volatility is equal to $121.96 and is measured in USD contrary to the two
previous results which were expressed in %.

3. (a) We have:
E [R] = βE [F ] + E [ε]

and:
R− E [R] = β (F−E [F ]) + ε− E [ε]

It follows that:

cov (R) = E
[
(R− E [R]) (R− E [R])>

]
= E

[
β (F−E [F ]) (F−E [F ])β>

]
+

2× E
[
β (F−E [F ]) (ε− E [ε])>

]
+

E
[
(ε− E [ε]) (ε− E [ε])>

]
= σ2

Fββ
> +D

We deduce that:

σ (Ri) =
√
σ2
Fβ

2
i + σ̃2

i

We obtain σ (RA) = 18.68%, σ (RB) = 26.48% and σ (RC) = 15.13%.

(b) The correlation between stocks i and j is defined as follows:

ρ (Ri, Rj) = σ2
Fβiβj

σ (Ri)σ (Rj)

We obtain:

ρ =

 100.00%
94.62% 100.00%
12.73% 12.98% 100.00%


4. (a) We have:

µ (Zi) = E [XiYi]
= E [Xi]E [Yi]
= µi (X)µi (Y )



10 Handbook of Financial Risk Management

because Xi and Yi are independent. For the covariance, we obtain:

cov (Zi, Zj) = E [(XiYi) (XjYj)]− E [XiYi]E [XjYj ]
= E [XiXj ]E [YiYj ]− E [Xi]E [Xj ]E [Yi]E [Yj ]
= (cov (Xi, Xj) + E [Xi]E [Xj ])×

(cov (Yi, Yj) + E [Yi]E [Yj ])−
E [Xi]E [Xj ]E [Yi]E [Yj ]

= cov (Xi, Xj) cov (Yi, Yj) +
cov (Xi, Xj)E [Yi]E [Yj ] +
cov (Yi, Yj)E [Xi]E [Xj ]

= Σi,j (X) Σi,j (Y ) + Σi,j (X)µi (Y )µj (Y ) +
Σi,j (Y )µi (X)µj (X)

To obtain this formula, we use the fact that XiXj and YiYj are independent. In
a matrix form, we find that:

µ (Z) = µ (X) ◦ µ (Y )
Σ (Z) = Σ (X) ◦ Σ (Y ) +

Σ (X) ◦ µ (Y ) ◦ µ (Y )> +
Σ (Y ) ◦ µ (X) ◦ µ (X)>

(b) Using the numerical values, we obtain4 µ (Z) = 0 and:

Σ (Z) =

 0.333%
0.250% 1.333%
0.188% 0.000% 3.000%


The expression of the P&L is:

Π (w) = 150Z1 + 500Z2 − 200Z3

We find that µ (Π) = 0 and σ (Π) = 69.79. We deduce that the Gaussian VaR
with a 99% confidence level is equal to $162.36. For the Monte Carlo method,
we use the following steps: (i) we first simulate the random variate X with the
Cholesky algorithm; (ii) we then simulate Y with a uniform random generator;
(iii) we calculate the components Zi = XiYi; (iv) we finally deduce the P&L.
With one million of simulations, we find that the Monte Carlo VaR is equal to
$182.34. We explain this result because the distribution of Π (w) is far to be
normal as illustrated in Figure 2.2.

2.4.3 Risk measure
1. (a) We have:

VaRα (L) = inf {` : Pr {L ≥ `} ≥ α}

and:
ESα (L) = E [L | L ≥ VaRα (L)]

4We remind that the mean and the variance of the distribution U (0, 1) is 1/2 and 1/12.



Market Risk 11

FIGURE 2.2: Probability distribution of the P&L

(b) We assume that F is continuous. It follows that VaRα (L) = F−1 (α). We deduce
that:

ESα (L) = E
[
L | L ≥ F−1 (α)

]
=

∫ ∞
F−1(α)

x
f (x)

1− F (F−1 (α)) dx

= 1
1− α

∫ ∞
F−1(α)

xf (x) dx

We consider the change of variable t = F (x). Because dt = f (x) dx and F (∞) =
1, we obtain:

ESα (L) = 1
1− α

∫ 1

α

F−1 (t) dt

(c) We have:

f (x) = θ
x−(θ+1)

x−θ−

The non-centered moment of order n is5:
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E [Ln] =
∫ ∞
x−

xnθ
x−(θ+1)

x−θ−
dx

= θ

x−θ−

∫ ∞
x−

xn−θ−1 dx

= θ

x−θ−

[
xn−θ

n− θ

]∞
x−

= θ

θ − n
xn−

We deduce that:
E [L] = θ

θ − 1x−

and:
E
[
L2] = θ

θ − 2x
2
−

The variance of the loss is then:

var (L) = E
[
L2]− E2 [L] = θ

(θ − 1)2 (θ − 2)
x2
−

x− is a scale parameter whereas θ is a parameter to control the distribution tail.
We have:

1−
(

F−1 (α)
x−

)−θ
= α

We deduce that:

VaRα (L) = F−1 (α) = x− (1− α)−θ
−1

We also obtain:

ESα (L) = 1
1− α

∫ 1

α

x− (1− t)−θ
−1

dt

= x−
1− α

[
− 1

1− θ−1 (1− t)1−θ−1
]1

α

= θ

θ − 1x− (1− α)−θ
−1

= θ

θ − 1 VaRα

Because θ > 1, we have θ
θ−1 > 1 and:

ESα (L) > VaRα (L)

(d) We have:

ESα (L) = 1
1− α

∫ ∞
µ+σΦ−1(α)

x
1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

dx

5The moment exists if n 6= θ.
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By considering the change of variable t = σ−1 (x− µ), we obtain:

ESα (L) = 1
1− α

∫ ∞
Φ−1(α)

(µ+ σt) 1√
2π

exp
(
−1

2 t
2
)

dt

= µ

1− α [Φ (t)]∞Φ−1(α) +

σ

(1− α)
√

2π

∫ ∞
Φ−1(α)

t exp
(
−1

2 t
2
)

dt

= µ+ σ

(1− α)
√

2π

[
− exp

(
−1

2 t
2
)]∞

Φ−1(α)

= µ+ σ

(1− α)
√

2π
exp

(
−1

2
[
Φ−1 (α)

]2)
= µ+ σ

(1− α)φ
(
Φ−1 (α)

)
Because φ′ (x) = −xφ (x), we have:

1− Φ (x) =
∫ ∞
x

φ (t) dt

=
∫ ∞
x

(
−1
t

)
(−tφ (t)) dt

=
∫ ∞
x

(
−1
t

)
φ′ (t) dt

We consider the integration by parts with u (t) = −t−1 and v′ (t) = φ′ (t):

1− Φ (x) =
[
−φ (t)

t

]∞
x

−
∫ ∞
x

1
t2
φ (t) dt

= φ (x)
x

+
∫ ∞
x

1
t3

(−tφ (t)) dt

= φ (x)
x

+
∫ ∞
x

1
t3
φ′ (t) dt

We consider another integration by parts with u (t) = t−3 and v′ (t) = φ′ (t):

1− Φ (x) = φ (x)
x

+
[
φ (t)
t3

]∞
x

−
∫ ∞
x

− 3
t4
φ (t) dt

= φ (x)
x
− φ (x)

x3 −
∫ ∞
x

3
t5
φ′ (t) dt

We continue to use the integration by parts with v′ (t) = φ (t). At the end, we
obtain:

1− Φ (x) = φ (x)
x
− φ (x)

x3 + 3φ (x)
x5 − 3 · 5φ (x)

x7 +

3 · 5 · 7φ (x)
x9 − . . .

= φ (x)
x

+ 1
x2

∞∑
n=1

(−1)n
(

n∏
i=1

(2i− 1)
)
φ (x)
x2n−1

= φ (x)
x

+ Ψ (x)
x2
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FIGURE 2.3: Approximation of 1− Φ (x)

We have represented the approximation in Figure 2.3. We finally deduce that:

φ (x) = x (1− Φ (x))− Ψ (x)
x

By using the previous expression of ESα (L), we obtain with x = Φ−1 (α):

ESα (L) = µ+ σ

(1− α)φ
(
Φ−1 (α)

)
= µ+ σ

(1− α)φ (x)

= µ+ σ

(1− α)

(
Φ−1 (α) (1− α)−

Ψ
(
Φ−1 (α)

)
Φ−1 (α)

)

= µ+ σΦ−1 (α)− σ
Ψ
(
Φ−1 (α)

)
(1− α) Φ−1 (α)

= VaRα (L)− σ
Ψ
(
Φ−1 (α)

)
(1− α) Φ−1 (α)

We deduce that ESα (L)→ VaRα (L) because:

lim
α→1

Ψ
(
Φ−1 (α)

)
(1− α) Φ−1 (α) = 0

(e) For the Gaussian distribution, the expected shortfall and the value-at-risk coin-
cide for high confidence level α. It is not the case with the Pareto distribution,
which has a fat tail. The use of the Pareto distribution can then produce risk
measures which may be much higher than those based on the Gaussian distribu-
tion.
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2. (a) We have:

R (L1 + L2) = E [L1 + L2] = E [L1] + E [L2] = R (L1) +R (L2)
R (λL) = E [λL] = λE [L] = λR (L)

R (L+m) = E [L−m] = E [L]−m = R (L)−m

We notice that:

E [L] =
∫ ∞
−∞

x dF (x) =
∫ 1

0
F−1 (t) dt

We deduce that if F1 (x) ≥ F2 (x), then F−1
1 (t) ≤ F−1

2 (t) and E [L1] ≤ E [L2].
We conclude that R is a coherent risk measure.

(b) We have:

R (L1 + L2) = E [L1 + L2] + σ (L1 + L2)
= E [L1] + E [L2] +√

σ2 (L1) + σ2 (L2) + 2ρ (L1, L2)σ (L1)σ (L2)

Because ρ (L1, L2) ≤ 1, we deduce that:

R (L1 + L2) ≤ E [L1] + E [L2] +√
σ2 (L1) + σ2 (L2) + 2σ (L1)σ (L2)

≤ E [L1] + E [L2] + σ (L1) + σ (L2)
≤ R (L1) +R (L2)

We have:

R (λL) = E [λL] + σ (λL)
= λE [L] + λσ (L)
= λR (L)

and:

R (L+m) = E [L−m] + σ (L−m)
= E [L]−m+ σ (L)
= R (L)−m

If we consider the convexity property, we notice that:

R (λL1 + (1− λ)L2) ≤ R (λL1) +R ((1− λ)L2)
≤ λR (L1) + (1− λ)R (L2)

We conclude that R is a convex risk measure.

3. We have:

`i 0 1 2 3 4 5 6 7 8
Pr {L = `i} 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Pr {L ≤ `i} 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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(a) We have VaR50% (L) = 3, VaR75% (L) = 6, VaR90% (L) = 7 and:

ES50% (L) = 3× 10% + . . .+ 8× 10%
60% = 5.5

ES75% (L) = 6× 10% + . . .+ 8× 10%
30% = 7.0

ES90% (L) = 7× 10% + 8× 10%
20% = 7.5

(b) We have to build a bivariate distribution such that:

F−1
1 (α) + F−1

2 (α) < F−1
1+2 (α)

To this end, we may use the Makarov inequalities. For instance, we may consider
an ordinal sum of the copula C+ for (u1, u2) ≤ (α, α) and another copula Cα

for (u1, u2) > (α, α) to produce a bivariate distribution which does not satisfy
the subadditivity property. By taking for example α = 70% and Cα = C−, we
obtain the following bivariate distribution6:

`i 0 1 2 3 4 5 6 7 8 p2,i
0 0.2 0.2
1 0.1 0.1
2 0.1 0.1
3 0.1 0.1
4 0.1 0.1
5 0.1 0.1
6 0.1 0.1
7 0.1 0.1
8 0.1 0.1
p1,i 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

We then have:
`i 0 2 4 6 8 10 14

Pr {L1 + L2 = `i} 0.2 0.1 0.1 0.1 0.1 0.1 0.3
Pr {L1 + L2 ≤ `i} 0.2 0.3 0.4 0.5 0.6 0.7 1.0

Because F−1
1 (80%) = F−1

2 (80%) = 6 and F−1
1+2 (80%) = 14, we obtain:

F−1
1 (80%) + F−1

2 (80%) < F−1
1+2 (80%)

2.4.4 Value-at-risk of a long/short portfolio
We note SA,t (resp. SB,t) the price of stock A (resp. B) at time t. The portfolio value

is:
Pt (w) = wASA,t + wBSB,t

where wA and wB are the number of stocks A and B. We deduce that the P&L between t
and t+ 1 is:

Π (w) = Pt+1 − Pt
= wA (SA,t+1 − SA,t) + wB (SB,t+1 − SB,t)
= wASA,tRA,t+1 + wBSB,tRB,t+1

= WA,tRA,t+1 +WB,tRB,t+1

6We have p1,i = Pr {L1 = `i} and p2,i = Pr {L2 = `i}.
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where RA,t+1 and RB,t+1 are the asset returns of A and B between t and t+ 1, and WA,t

and WB,t are the nominal wealth invested in stocks A and B at time t.

1. We have WA,t = +2 and WB,t = −1. The P&L (expressed in USD million) has the
following expression:

Π (w) = 2RA,t+1 −RB,t+1

We have Π (w) ∼ N
(
0, σ2 (Π)

)
with:

σ (Π) =
√

(2σA)2 + (−σB)2 + 2ρA,B × (2σA)× (−σB)

=
√

4× 0.202 + (−0.20)2 − 4× 0.5× 0.202

=
√

3× 20%
' 34.64%

The annual volatility of the long/short portfolio is then equal to $346 400. We consider
the square-root-of-time rule to calculate the daily value-at-risk:

VaR99% (w; one day) = 1√
260
× Φ−1 (0.99)×

√
3× 20%

= 5.01%

The 99% value-at-risk is then equal to $50 056.

2. We use the historical data to calculate the scenarios of asset returns (RA,t+1, RB,t+1).
We then deduce the empirical distribution of the P&L with the formula Π (w) =
2RA,t+1 − RB,t+1. Finally, we calculate the empirical quantile. With 250 scenarios,
the 1% decile is between the second and third worst cases:

VaR99% (w; one day) = −
[
−56 850 + 1

2 (−54 270− (−56 850))
]

= 55 560

The probability to lose $55 560 per day is equal to 1%. We notice that the difference
between the historical VaR and the Gaussian VaR is equal to 11%.

3. If we assume that the average of the last 60 VaRs is equal to the current VaR, we
obtain:

KIMA = mc ×
√

10×VaR99% (w; one day)
KIMA is respectively equal to $474 877 and $527 088 for the Gaussian and historical
VaRs. In the case of the standardized measurement method, we have:

KSpecific = 2× 8% + 1× 8%
= $240 000

and:

KGeneral = |2− 1| × 8%
= $80 000

We deduce that:

KSMM = KSpecific + KGeneral

= $320 000
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The internal model-based approach does not achieve a reduction of the required capital
with respect to the standardized measurement method. Moreover, we have to add the
stressed VaR under Basel 2.5 and the IMA regulatory capital is at least multiplied by
a factor of 2.

4. If ρA,B = −0.50, the volatility of the P&L becomes:

σ (Π) =
√

4× 0.202 + (−0.20)2 − 4× (−0.5)× 0.202

=
√

7× 20%

We deduce that:

VaRα (ρA,B = −50%)
VaRα (ρA,B = +50%) = σ (Π; ρA,B = −50%)

σ (Π; ρA,B = +50%) =
√

7
3 = 1.53

The value-at-risk increases because the hedging effect of the positive correlation van-
ishes. With a negative correlation, a long/short portfolio becomes more risky than a
long-only portfolio.

5. The P&L formula becomes:

Π (w) = WA,tRA,t+1 +WB,tRB,t+1 − (CA,t+1 − CA,t)

where CA,t is the call option price. We have:

CA,t+1 − CA,t '∆t (SA,t+1 − SA,t)

where ∆t is the delta of the option. If the nominal of the option is USD 2 million, we
obtain:

Π (w) = 2RA −RB − 2× 0.5×RA
= RA −RB (2.1)

and:

σ (Π) =
√

0.202 + (−0.20)2 − 2× 0.5× 0.202

= 20%

If the nominal of the option is USD 4 million, we obtain:

Π (w) = 2RA −RB − 4× 0.5×RA
= −RB (2.2)

and σ (Π) = 20%. In both cases, we have:

VaR99% (w; one day) = 1√
260
× Φ−1 (0.99)× 20%

= $28 900

The value-at-risk of the long/short portfolio (2.1) is then equal to the value-at-risk of
the short portfolio (2.2) because of two effects: the absolute exposure of the long/short
portfolio is higher than the absolute exposure of the short portfolio, but a part of the
risk of the long/short portfolio is hedged by the positive correlation between the two
stocks.
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6. We have:
Π (w) = WA,tRA,t+1 − (CB,t+1 − CB,t)

and:
CB,t+1 − CB,t '∆t (SB,t+1 − SB,t)

where ∆t is the delta of the option. We note x the nominal of the option expressed
in USD million. We obtain:

Π (w) = 2RA − x×∆t ×RB
= 2RA −

x

2RB

We have7:

σ2 (Π) = 4σ2
A + x2σ2

B

4 + 2ρA,B × (2σA)×
(
−x2σB

)
= σ2

A

4
(
x2 − 8ρA,Bx+ 16

)
Minimizing the Gaussian value-at-risk is equivalent to minimizing the variance of the
P&L. We deduce that the first-order condition is:

∂ σ2 (Π)
∂ x

= σ2
A

4 (2x− 8ρA,B) = 0

We deduce that the minimum VaR is reached when the nominal of the option is
x = 4ρA,B . We finally obtain:

σ (Π) = σA
2

√
16ρ2

A,B − 32ρ2
A,B + 16

= 2σA
√

1− ρ2
A,B

and:

VaR99% (w; one day) = 1√
260
× 2.33× 2× 20%×

√
1− ρ2

A,B

' 5.78%×
√

1− ρ2
A,B

If ρA,B is negative (resp. positive), the exposure x is negative meaning that we have
to buy (resp. to sell) a call option on stock B in order to hedge a part of the risk
related to stock A. If ρA,B is equal to zero, the exposure x is equal to zero because a
position on stock B adds systematically a supplementary risk to the portfolio.

2.4.5 Value-at-risk of an equity portfolio hedged with put options
1. Let R = (RA, RB) be the random vector of stock returns. We remind that8:

cov (R) = σ2 (RI)ββ> +D

where β = (βA, βB) and D is the covariance matrix of idiosyncratic risks.

7Because σA = σB = 20%.
8See Exercise 2.4.2 on page 8.
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(a) We deduce that σ (Rj) =
√
β2
jσ

2 (RI) + σ̃2
j . We obtain

σ (RA) =
√

0.52 × 4% + 3% = 20%

and:
σ (RB) =

√
1.52 × 4% + 7% = 40%

The cross-correlation is:

ρ (RA, RB) = σ2 (RI)βAβB
σ (RA)σ (RB) = 4%× 0.5× 1.5

20%× 40% = 37.5%

(b) To find the correlation between the stocks and the index, we can proceed in two
different ways.
i. We consider the random vector R = (RA, RB , RI). The formula cov (R) =
σ2 (RI)ββ> + D is still valid with β3 = βI = 1 and D3,3 = σ̃2

I = 0%. We
obtain:

ρ (RA, RI) = σ2 (RI)βAβI
σ (RA)σ (RI)

= 4%× 0.5× 1
20%× 20% = 50%

and:
ρ (RB , RI) = σ2 (RI)βBβI

σ (RB)σ (RI)
= 4%× 1.5× 1

40%× 20% = 75%

ii. The definition of beta βj is:

βj = cov (Rj , RI)
σ2 (RI)

= ρ (Rj , RI)σ (Rj)σ (RI)
σ2 (RI)

It follows that:
ρ (Rj , RI) = σ (RI)

σ (Rj)
βj

We retrieve the previous formula.
(c) The correlation matrix is then equal to:

ρ =

 100.0%
37.5% 100.0%
50.0% 75.0% 100.0%


We deduce that the covariance matrix Σ is:

Σ =

 4%
3% 16%
2% 6% 4%


2. Let w = (wA, wB , wI) be the composition of the portfolio. The expression of the P&L

between t and t+ h is:

Π (w) = wA (SA,t+h − SA,t) + wB (SB,t+h − SB,t) + wA (SI,t+h − SI,t)
= wASA,tRA,t+h + wBSB,tRB,t+h + wISI,tRI,t+h

= WARA,t+h +WBRB,t+h +WIRI,t+h

= W>Rt+h

where Wj is the current wealth invested in asset j, W = (WA,WB ,WI) is the vector
of dollar notionals and Rt+h = (RA,t+h, RB,t+h, RI,t+h) is the random vector of asset
returns.
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(a) We have WA = 400, WB = 500 and WI = 250. We deduce that:

σ2 (Π) = W>ΣW
= 4002 × 4% + 5002 × 16% + 2502 × 4% +

2× 400× 500× 3% + 2× 400× 250× 2% +
2× 500× 250× 6%

We find that σ (Π) is equal to $282 67. Using the square-root-of-time rule9, it
follows that:

VaR99% (w; ten days) = Φ−1 (99%)× 282.67×
√

2
52

= $128.96

(b) The 99% quantile corresponds to the 2.6th order statistic of the sample. The
historical value-at-risk is then the interpolated value between the second and
third largest losses:

VaR99% (w; one day) = 55.23− (2.6− 2)× (55.23− 52.06)
= $53.33

We deduce that the 10-day VaR is:

VaR99% (w; ten days) =
√

10×VaR99% (w; one day)
= $168.64

(c) If we assume that the average of the last 60 VaRs is equal to the current VaR,
we obtain:

KIMA = mc ×VaR99% (w; ten days)

KIMA is respectively equal to $387 and $506 for the Gaussian and historical
VaRs. In the case of the standardized measurement method, we have10:

KSpecific = (WA +WB)× 8% +WI × 4%
= 900× 8% + 250× 4%
= $82

and:

KGeneral = |WA +WB +WI | × 8%
= $92

We deduce that:

KSMM = KSpecific + KGeneral

= $174

9We use the following correspondence: 10 days is equivalent to 2 weeks and one year is equivalent to 52
weeks.

10We assume that the specific capital charge for an equity index is 4%.
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3. Let x be the number of put options. The expression of the P&L becomes:

Π (w) = WARA,t+h +WBRB,t+h +WIRI,t+h + x (Pt+h −Pt)

where Pt is the value of the put option at time t. Under the delta approach, we have:

Pt+h −Pt ' ∆t (SI,t+h − SI,t)
= ∆tSI,tRI,t+h

We deduce that:

Π (w) = WARA,t+h +WBRB,t+h + (WI + x∆tSI,t)RI,t+h

Using the numerical values, we obtain:

Π (w) = 400RA,t+h + 500RB,t+h + (250− 12.5x)×RI,t+h

(a) To hedge 50% of the index exposure, the number of put options must satisfy the
following equation:

250− 12.5x = 125

The portfolio manager must purchase 10 put options. In this case, the expression
of the P&L becomes:

Π (w) = 400RA,t+h + 500RB,t+h + 125RI,t+h

and the 10-day Gaussian VaR is equal to $119.43.
(b) We have:

Π (w) = 400RA,t+h + 500RB,t+h + (250− 12.5x)×RI,t+h
= 400 (βARI,t+h + εA,t+h) + 500 (βBRI,t+h + εB,t+h) +

(250− 12.5x)×RI,t+h
= (1200− 12.5x)×RI,t+h + 400× εA,t+h + 500× εB,t+h

As the index return is not correlated with the idiosyncratic risks, minimizing the
VaR is equivalent to minimizing the beta exposure in the index:

x = 1200
12.5 = 96

The purchase of 96 put options is required to remove the directional risk. In this
case, the P&L reduces to:

Π (w) = 400× εA,t+h + 500× εB,t+h

and its volatility becomes:

σ (Π) =
√

4002 × 3% + 5002 × 7% = $149.33

We deduce that the minimum 10-day VaR is equal to $68.13. In Figure 2.4, we
show the evolution of the VaR with the number of purchased options. We verify
that the minimum is reached for x = 96.
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FIGURE 2.4: Value of the 10-day VaR with respect to the number of purchased options

2.4.6 Risk management of exotic derivatives
Let Ct be the option price at time t. The P&L of the trader between t and t+ 1 is:

Π = − (Ct+1 − Ct)

The formulation of the exercise suggests that there are two main risk factors: the price of
the underlying asset St and the implied volatility Σt. We then obtain:

Π = Ct (St,Σt)− Ct+1 (St+1,Σt+1)

1. We have:

Π = Ct (St,Σt)− Ct+1 (St+1,Σt+1)

≈ −∆t (St+1 − St)−
1
2Γt (St+1 − St)2 − υt (Σt+1 − Σt)

Using the numerical values of ∆t, Γt and υt, we obtain:

Π ≈ −0.49× (97− 100)− 1
2 × 0.02× (97− 100)2

= 1.47− 0.09
= 1.38

We explain the P&L by the sensitivities very well.

2. We have:

Π = Ct+1 (St+1,Σt+1)− Ct+2 (St+2,Σt+2)

≈ −∆t+1 (St+2 − St+1)− 1
2Γt+1 (St+2 − St+1)2 −

υt+1 (Σt+2 − Σt+1)
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Using the numerical values of ∆t+1, Γt+1 and υt+1, we obtain:

Π ≈ −0.49× 0− 1
2 × 0.02× 02 − 0.38× (22− 20)

= −0.76

To compare this value with the true P&L, we have to calculate Ct+1:

Ct+1 = Ct − (Ct − Ct+1)
= 6.78− 1.37
= 5.41

We deduce that:

Π = Ct+1 − Ct+2

= 5.41− 6.17
= −0.76

Again, the sensitivities explain the P&L very well.

3. We have:

Π = Ct+2 (St+2,Σt+2)− Ct+3 (St+3,Σt+3)

≈ −∆t+2 (St+3 − St+2)− 1
2Γt+2 (St+3 − St+2)2 −

υt+2 (Σt+3 − Σt+2)

Using the numerical values of ∆t+2, Γt+2 and υt+2, we obtain:

Π ≈ −0.44× (95− 97)− 1
2 × 0.018× (95− 97)2 −

0.38× (19− 22)
= 0.88− 0.036 + 1.14
= 1.984

The P&L approximated by the Greek coefficients largely overestimate the true value
of the P&L.

4. We notice that the approximation using the Greek coefficients works very well when
one risk factor remains constant:

(a) Between t and t+1, the price of the underlying asset changes, but not the implied
volatility;

(b) Between t + 1 and t + 2, this is the implied volatility that changes whereas the
price of the underlying asset is constant.

Therefore, we can assume that the bad approximation between t+ 2 and t+ 3 is due
to the cross effect between St and Σt. In terms of model risk, the P&L is then exposed
to the vanna risk, meaning that the Black-Scholes model is not appropriate to price
and hedge this exotic option.
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2.4.7 P&L approximation with Greek sensitivities
1. We note Ct = Ct (St,Σt, T ) meaning that the option price depends on the current

price St, the implied volatility Σt and the maturity date T . The delta of the option is
the first derivative of Ct with respect to St.

∆t = ∂ Ct (St,Σt, T )
∂ St

whereas the gamma is the second derivative:

Γt = ∂2 Ct (St,Σt, T )
∂ S2

t

The theta of the option is the first derivative of Ct with respect to the time t. We
have:

Θt = ∂t Ct (St,Σt, T )
For the vega coefficient, we have:

υt = ∂ Ct (St,Σt, T )
∂ Σt

2. Let rt and bt be the interest rate and the cost-of-carry parameter. We note τ = T − t
the residual maturity. The Black-Scholes formula is:

Ct = Ste
(bt−rt)τΦ (d1)−Ke−rtτΦ (d2)

with:

d1 = 1
Σt
√
τ

(
ln St
K

+ btτ

)
+ 1

2Σt
√
τ

d2 = d1 − Σt
√
τ

To calculate the Greek coefficients, we need the following preliminary result:

Ke−rtτφ (d2) = Ste
(bt−rt)τφ (d1) (2.3)

Indeed, we have:

φ (d2) = φ
(
d1 − Σt

√
τ
)

= 1√
2π

exp
(
−1

2
(
d1 − Σt

√
τ
)2)

= 1√
2π

exp
(
−1

2
(
d2

1 − 2d1Σt
√
τ + Σ2

t τ
))

= φ (d1) exp
(
d1Σt

√
τ − 1

2Σ2
t τ

)
= φ (d1) exp

(
ln St
K

+ btτ

)
= St

K
ebtτφ (d1)

The derivation of Equation (2.3) is then straightforward. We deduce that:

∆t = e(bt−rt)τΦ (d1) + Ste
(bt−rt)τφ (d1) ∂ d1

∂ St
−Ke−rtτφ (d2) ∂ d2

∂ St

= e(bt−rt)τΦ (d1) + Ste
(bt−rt)τφ (d1) ∂ d1

∂ St
−Ke−rtτφ (d2) ∂ d2

∂ St
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We have:
∂ d1

∂ St
= ∂ d2

∂ St
= 1
StΣt

√
τ

We finally obtain:

∆t = e(bt−rt)τΦ (d1) + Ste
(bt−rt)τφ (d1)−Ke−rtτφ (d2)

StΣt
√
τ

= e(bt−rt)τΦ (d1)

The expression of the gamma is therefore:

Γt = e(bt−rt)τφ (d1)
StΣt

√
τ

To calculate the theta, we first calculate the derivative of d1 and d2 with respect to τ :

∂ d1

∂ τ
= − 1

2Σtτ
√
τ

ln St
K

+ bt
2Σt
√
τ

+ Σt
4
√
τ

∂ d2

∂ τ
= − 1

2Σtτ
√
τ

ln St
K

+ bt
2Σt
√
τ
− Σt

4
√
τ

We deduce then:

∂τ Ct (St,Σt, T ) = (bt − rt)Ste(bt−rt)τΦ (d1) + rtKe
−rtτΦ (d2) +

Ste
(bt−rt)τφ (d1) ∂ d1

∂ τ
−Ke−rtτφ (d2) ∂ d2

∂ τ

= (bt − rt)Ste(bt−rt)τΦ (d1) + rtKe
−rtτΦ (d2) +

Ste
(bt−rt)τφ (d1)

(
∂ d1

∂ τ
− ∂ d2

∂ τ

)
= (bt − rt)Ste(bt−rt)τΦ (d1) + rtKe

−rtτΦ (d2) +

Ste
(bt−rt)τφ (d1)

(
Σt

4
√
τ

+ Σt
4
√
τ

)
= (bt − rt)Ste(bt−rt)τΦ (d1) + rtKe

−rtτΦ (d2) +
1

2
√
τ
StΣte(bt−rt)τφ (d1)

The expression of the theta coefficient is then the opposite of ∂τ Ct (St,Σt, T ). For the
vega coefficient, we obtain:

υt = Ste
(bt−rt)τφ (d1) ∂ d1

∂ Σt
−Ke−rtτφ (d2) ∂ d2

∂ Σt

= Ste
(bt−rt)τφ (d1)

(
∂ d1

∂ Σt
− ∂ d2

∂ Σt

)
We have:

∂ d1

∂ Σt
= − 1

Σ2
t

√
τ

(
ln St
K

+ btτ

)
+ 1

2
√
τ

∂ d2

∂ Σt
= − 1

Σ2
t

√
τ

(
ln St
K

+ btτ

)
− 1

2
√
τ

It follows that:
υt = St

√
τe(bt−rt)τφ (d1)
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3. (a) To calculate C0, ∆0, Γ0 and Θ0, we consider the Back-Scholes formulas with bt =
rt. We have Ct = StΦ (d1)−Ke−rtτΦ (d2), ∆t = Φ (d1), Γt = φ (d1)/ (StΣt

√
τ),

Θt = −rtKe−rtτΦ (d2)− StΣtφ (d1)/ (2
√
τ) with the following numerical values:

St = 100, Σt = 20%, τ = 1 and rt = 5%. We notice that the option price is a
decreasing function of the strike, because it is a convex function of the strike.
The delta and gamma coefficients are positive. The delta is a decreasing function
with respect to K. This is not the case of the gamma. The theta of the call option
is negative, because the time value decreases with the residual maturity.

(b) We apply the Black-Scholes formula Ct = StΦ (d1)−Ke−rtτΦ (d2) with St = 102,
Σt = 20%, rt = 5% and τ = 1− 1/252 because the residual maturity is one year
minus one trading day. We deduce that the P&L of a long position on this option
is Π = C1 − C0:

K 80 95 100 105 120
Π 1.852 1.464 1.285 1.099 0.589

(c) We obtain the following results:

K 80 95 100 105 120
Π∆ 1.857 1.456 1.274 1.084 0.574
Π∆+Γ 1.871 1.489 1.311 1.124 0.608
Π∆+Θ 1.839 1.432 1.249 1.060 0.556
Π∆+Γ+Θ 1.853 1.465 1.287 1.100 0.590

The approximation of the P&L by the Greek sensitivities is very accurate.

(d) We obtain the following results:

K 80 95 100 105 120
Π 45.386 42.001 40.026 37.596 28.090
Π∆ 44.575 34.939 30.568 26.027 13.785
Π∆+Γ 52.424 54.058 52.182 48.877 33.412
Π∆+Θ 42.186 31.793 27.361 22.888 11.445
Π∆+Γ+Θ 50.036 50.912 48.975 45.739 31.071

In this case, the approximation of the P&L by the Greek sensitivities is not very
good. Indeed, the remaining maturity is now six months meaning that (1) the
theta effect is not well measured and (2) the price of the underlying asset has
changed significantly. In this situation, the delta P&L is overestimated.

2.4.8 Calculating the non-linear quadratic value-at-risk

1. We have:

E
[
X2n] =

∫ +∞

−∞
x2nφ (x) dx

=
∫ +∞

−∞
x2n−1xφ (x) dx
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Using the integration by parts formula, we obtain11:

E
[
X2n] =

[
−x2n−1φ (x)

]+∞
−∞ + (2n− 1)

∫ +∞

−∞
x2n−2φ (x) dx

= (2n− 1)
∫ +∞

−∞
x2n−2φ (x) dx

= (2n− 1)E
[
X2n−2]

We deduce that E
[
X2] = 1, E

[
X4] = (2× 2− 1)E

[
X2] = 3, E

[
X6] =

(2× 3− 1)E
[
X4] = 15 and E

[
X8] = (2× 4− 1)E

[
X4] = 105. For the odd mo-

ments, we obtain:

E
[
X2n+1] =

∫ +∞

−∞
x2n+1φ (x) dx

= 0

because x2n+1φ (x) is an odd function.

2. Let Ct be the value of the call option at time t. The P&L is equal to:

Π (w) = Ct+h − Ct
where h is the holding period12. We also have St+h = (1 +Rt+h)St where Rt+h is the
asset return. We notice that the daily volatility is equal to:

σ = 32.25%√
260

= 2%

We deduce that Rt+h ∼ N (0, 4 bps).

(a) We have:

Π (w) ≈ ∆t (St+h − St)
= ∆tStRt+h

It follows that Π (w) ∼ N
(
0,∆2

tσ
2S2

t

)
where σ is the volatility of Rt+h and:

VaRα (w;h) = Φ−1 (α) |∆t|σSt

The numerical application gives VaRα (w;h) = 2.33 dollars.
(b) In the case of the delta-gamma approximation, we obtain:

Π (w) ≈ ∆t (St+h − St) + 1
2Γt (St+h − St)2

= ∆tRt+hSt + 1
2ΓtR2

t+hS
2
t

We deduce that:

E [Π] = E
[
∆tRt+hSt + 1

2ΓtR2
t+hS

2
t

]
= 1

2ΓtE
[
R2
t+h
]
S2
t

= 1
2Γtσ2S2

t

11because φ′ (x) = −xφ (x).
12Here, h is equal to one day.
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and:

E
[
Π2] = E

[(
∆tRt+hSt + 1

2ΓtR2
t+hS

2
t

)2
]

= E
[
∆2
tR

2
t+hS

2
t + ∆tΓtR3

t+hS
3
t + 1

4Γ2
tR

4
t+hS

4
t

]
We have Rt+h = σX with X ∼ N (0, 1). It follows that:

E
[
Π2] = ∆2

tσ
2S2

t + 3
4Γ2

tσ
4S4

t

because E [X] = 0, E
[
X2] = 1, E

[
X3] = 0 and E

[
X4] = 3. The standard

deviation of the P&L is then:

σ (Π) =

√
∆2
tσ

2S2
t + 3

4Γ2
tσ

4S4
t −

(
1
2Γtσ2S2

t

)2

=
√

∆2
tσ

2S2
t + 1

2Γ2
tσ

4S4
t

Therefore, the Gaussian approximation of the P&L is:

Π (w) ∼ N
(

1
2Γtσ2S2

t ,∆2
tσ

2S2
t + 1

2Γ2
tσ

4S4
t

)
We deduce that the Gaussian value-at-risk is:

VaRα (w;h) = −1
2Γtσ2S2

t + Φ−1 (α)
√

∆2
tσ

2S2
t + 1

2Γ2
tσ

4S4
t

The numerical application gives VaRα (w;h) = 2.29 dollars.
(c) Let L = −Π be the loss. We recall that the Cornish-Fisher value-at-risk is equal

to (FRM, page 88):

VaRα (w;h) = µ (L) + z (α; γ1 (L) , γ2 (L)) · σ (L)

with:

z (α; γ1, γ2) = zα + 1
6
(
z2
α − 1

)
γ1 + 1

24
(
z3
α − 3zα

)
γ2 −

1
36
(
2z3
α − 5zα

)
γ2

1 + · · ·

and zα = Φ−1 (α). γ1 et γ2 are the skewness and excess kurtosis of the loss L.
We have seen that:

Π (w) = ∆tσStX + 1
2Γtσ2S2

tX
2

with X ∼ N (0, 1). Using the results in Question 1, we have E [X] = E
[
X3] =

E
[
X5] = E

[
X7] = 0, E

[
X2] = 1, E

[
X4] = 3, E

[
X6] = 15 and E

[
X8] = 105.

We deduce that:

E
[
Π3] = E

[
∆3
tσ

3S3
tX

3 + 3
2∆2

tΓtσ4S4
tX

4
]

+

E
[

3
4∆tΓ2

tσ
5S5

tX
5 + 1

8Γ3
tσ

6S6
tX

6
]

= 9
2∆2

tΓtσ4S4
t + 15

8 Γ3
tσ

6S6
t
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and:

E
[
Π4] = E

[(
∆tσStX + 1

2Γtσ2S2
tX

2
)4
]

= 3∆4
tσ

4S4
t + 45

2 ∆2
tΓ2

tσ
6S6

t + 105
16 Γ4

tσ
8S8

t

The centered moments are then:

E
[
(Π− E [Π])3

]
= E

[
Π3]− 3E [Π]E

[
Π2]+ 2E3 [Π]

= 9
2∆2

tΓtσ4S4
t + 15

8 Γ3
tσ

6S6
t −

3
2∆2

tΓtσ4S4
t −

9
8Γ3

tσ
6S6

t + 2
8Γ3

tσ
6S6

t

= 3∆2
tΓtσ4S4

t + Γ3
tσ

6S6
t

and:

E
[
(Π− E [Π])4

]
= E

[
Π4]− 4E [Π]E

[
Π3]+ 6E2 [Π]E

[
Π2]−

3E4 [Π]

= 3∆4
tσ

4S4
t + 45

2 ∆2
tΓ2

tσ
6S6

t + 105
16 Γ4

tσ
8S8

t −

9∆2
tΓ2

tσ
6S6

t −
15
4 Γ4

tσ
8S8

t +
3
2∆2

tΓ2
tσ

6S6
t + 9

8Γ4
tσ

8S8
t −

3
16Γ4

tσ
8S8

t

= 3∆4
tσ

4S4
t + 15∆2

tΓ2
tσ

6S6
t + 15

4 Γ4
tσ

8S8
t

It follows that the skewness is:

γ1 (L) = −γ1 (Π)

= −
E
[
(Π− E [Π])3

]
σ3 (Π)

= − 3∆2
tΓtσ4S4

t + Γ3
tσ

6S6
t(

∆2
tσ

2S2
t + 1

2Γ2
tσ

4S4
t

)3/2
= −6

√
2∆2

tΓtσ4S4
t + 2

√
2Γ3

tσ
6S6

t

(2∆2
tσ

2S2
t + Γ2

tσ
4S4

t )3/2

whereas the excess kurtosis is:

γ2 (L) = γ2 (Π)

=
E
[
(Π− E [Π])4

]
σ4 (Π) − 3

=
3∆4

tσ
4S4

t + 15∆2
tΓ2

tσ
6S6

t + 15
4 Γ4

tσ
8S8

t(
∆2
tσ

2S2
t + 1

2Γ2
tσ

4S4
t

)2 − 3

= 12∆2
tΓ2

tσ
6S6

t + 3Γ4
tσ

8S8
t(

∆2
tσ

2S2
t + 1

2Γ2
tσ

4S4
t

)2
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Using the numerical values, we obtain µ (L) = −0.0400, σ (L) = 1.0016, γ1 (L) =
−0.2394, γ2 (L) = 0.0764, z (α; γ1, γ2) = 2.1466 and VaRα (w;h) = 2.11 dollars.
The value-at-risk is reduced with the Cornish-Fisher approximation because the
skewness is negative whereas the excess kurtosis is very small.

3. (a) We have:

Y = X>AX

=
(

Σ−1/2X
)>

Σ1/2AΣ1/2
(

Σ−1/2X
)

= X̃>ÃX̃

with Ã = Σ1/2AΣ1/2, X̃ ∼ N
(
µ̃, Σ̃

)
, µ̃ = Σ−1/2µ and Σ̃ = I. We deduce that:

E [Y ] = µ̃>Ãµ̃+ tr
(
Ã
)

= µ>Aµ+ tr
(

Σ1/2AΣ1/2
)

= µ>Aµ+ tr (AΣ)

and:

var (Y ) = E
[
Y 2]− E2 [Y ]

= 4µ̃>Ã2µ̃+ 2 tr
(
Ã2)

= 4µ>AΣAµ+ 2 tr
(

Σ1/2AΣAΣ1/2
)

= 4µ>AΣAµ+ 2 tr
(

(AΣ)2
)

(b) For the moments, we obtain:

E [Y ] = tr (AΣ)

E
[
Y 2] = (tr (AΣ))2 + 2 tr

(
(AΣ)2

)
E
[
Y 3] = (tr (AΣ))3 + 6 tr (AΣ) tr

(
(AΣ)2

)
+ 8 tr

(
(AΣ)3

)
E
[
Y 4] = (tr (AΣ))4 + 32 tr (AΣ) tr

(
(AΣ)3

)
+

12
(

tr
(

(AΣ)2
))2

+ 12 (tr (AΣ))2 tr
(

(AΣ)2
)

+

48 tr
(

(AΣ)4
)

It follows that the first and second centered moments are µ (Y ) = tr (AΣ) and
var (Y ) = 2 tr

(
(AΣ)2

)
. For the third centered moment, we have:

E
[
(Y − E [Y ])3

]
= E

[
Y 3]− 3E

[
Y 2]E [Y ] + 2E3 [Y ]

= (tr (AΣ))3 + 6 tr (AΣ) tr
(

(AΣ)2
)

+

8 tr
(

(AΣ)3
)
− 3 (tr (AΣ))3 −

6 tr
(

(AΣ)2
)

tr (AΣ) + 2 (tr (AΣ))3

= 8 tr
(

(AΣ)3
)
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The skewness is then equal to:

γ1 (Y ) =
8 tr

(
(AΣ)3

)
(

2 tr
(

(AΣ)2
))3/2

=
2
√

2 tr
(

(AΣ)3
)

(
tr
(

(AΣ)2
))3/2

We obtain for the fourth centered moment:

E
[
(Y − E [Y ])4

]
= E

[
Y 4]− 4E

[
Y 3]E [Y ] + 6E

[
Y 2]E2 [Y ]−

3E4 [Y ]

= (tr (AΣ))4 + 32 tr (AΣ) tr
(

(AΣ)3
)

+

12
(

tr
(

(AΣ)2
))2

+ 48 tr
(

(AΣ)4
)

12 (tr (AΣ))2 tr
(

(AΣ)2
)
− 4 (tr (AΣ))4 −

24 (tr (AΣ))2 tr
(

(AΣ)2
)
−

32 tr
(

(AΣ)3
)

tr (AΣ) + 6 (tr (AΣ))4 +

12 tr
(

(AΣ)2
)

(tr (AΣ))2 − 3 (tr (AΣ))4

= 12
(

tr
(

(AΣ)2
))2

+ 48 tr
(

(AΣ)4
)

It follows that the excess kurtosis is:

γ2 (Y ) =
12
(

tr
(

(AΣ)2
))2

+ 48 tr
(

(AΣ)4
)

(
2 tr

(
(AΣ)2

))2 − 3

=
12 tr

(
(AΣ)4

)
(

tr
(

(AΣ)2
))2

4. We have:
Π (w) = w> (Ct+h − Ct)

where Ct is the vector of option prices.

(a) The expression of the P&L is:

Π (w) ≈ w> (∆t ◦ (St+h − St))
= w> ((∆t ◦ St) ◦Rt+h)
= ∆̃>t Rt+h

where ∆̃t is the vector of delta exposures in dollars:

∆̃i,t = wi∆i,tSi,t
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Because Rt+h ∼ N (0,Σ), it follows that Π ∼ N
(
0, ∆̃>t Σ∆̃t

)
. We deduce that

the Gaussian value-at-risk is:

VaRα (w;h) = Φ−1 (α)
√

∆̃>t Σ∆̃t

The risk contribution of option i is then equal to:

RCi = wi
Φ−1 (α)

(
Σ∆̃t

)
i
∆i,tSi,t√

∆̃>t Σ∆̃t

= Φ−1 (α)
∆̃i,t ·

(
Σ∆̃t

)
i√

∆̃>t Σ∆̃t

(b) In the case of the delta-gamma approximation, we obtain:

Π (w) ≈ w> (∆t ◦ (St+h − St)) +
1
2w
>
(
Γt ◦ (St+h − St) ◦ (St+h − St)>

)
w

= ∆̃>t Rt+h + 1
2R
>
t+hΓ̃tRt+h

where Γ̃t is the matrix of gamma exposures in dollars:

Γ̃i,j,t = wiwjΓi,j,tSi,tSj,t
We deduce that:

E [Π] = E
[
∆̃>t Rt+h + 1

2R
>
t+hΓ̃tRt+h

]
= 1

2E
[
R>t+hΓ̃tRt+h

]
= 1

2 tr
(
Γ̃tΣ

)
and:

var (Π) = E
[
(Π− E [Π])2

]
= E

[(
∆̃>t Rt+h + 1

2R
>
t+hΓ̃tRt+h −

1
2 tr

(
Γ̃tΣ

))2
]

= E
[(

∆̃>t Rt+h
)2]+ 1

4E
[(
R>t+hΓ̃tRt+h − tr

(
Γ̃tΣ

))2]+

E
[(

∆̃>t Rt+h
) (
R>t+hΓ̃tRt+h − tr

(
Γ̃tΣ

))]
= E

[(
∆̃>t Rt+h

)2]+ 1
4 var

(
R>t+hΓ̃tRt+h

)
= ∆̃>t Σ∆̃t + 1

2 tr
((

Γ̃tΣ
)2)

Therefore, the Gaussian approximation of the P&L is:

Π (w) ∼ N
(

1
2 tr

(
Γ̃tΣ

)
, ∆̃>t Σ∆̃t + 1

2 tr
((

Γ̃tΣ
)2))

We deduce that the Gaussian value-at-risk is:

VaRα (w;h) = −1
2 tr

(
Γ̃tΣ

)
+ Φ−1 (α)

√
∆̃>t Σ∆̃t + 1

2 tr
((

Γ̃tΣ
)2)
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(c) If the portfolio is delta neutral, ∆t is equal to zero and we have:

Π ' 1
2R
>
t+hΓ̃tRt+h

Let L = −Π be the loss. Using the formulas of Question 3(b), we obtain:

µ (L) = −1
2 tr

(
Γ̃tΣ

)
σ (L) =

√
1
2 tr

((
Γ̃tΣ

)2)

γ1 (L) = −
2
√

2 tr
((

Γ̃tΣ
)3)

(
tr
((

Γ̃tΣ
)2))3/2

γ2 (L) =
12 tr

((
Γ̃tΣ

)4)(
tr
((

Γ̃tΣ
)2))2

We have all the statistics to compute the Cornish-Fisher value-at-risk.
(d) We notice that the previous formulas obtained in the multivariate case are per-

fectly coherent with those obtained in the univariate case. When the portfolio is
not delta neutral, we could then postulate that the skewness is13:

γ1 (L) = −
6
√

2∆̃>t ΣΓtΣ∆̃t + 2
√

2 tr
((

Γ̃tΣ
)3)

(
2∆̃>t Σ∆̃t + tr

((
Γ̃tΣ

)2))3/2

In fact, it is the formula obtained by Britten-Jones and Schaeffer (1999).

5. (a) Using the numerical values, we obtain µ (L) = −78.65, σ (L) = 88.04, γ1 (L) =
−2.5583 and γ2 (L) = 10.2255. The value-at-risk is then equal to 0 for the delta
approximation, 126.16 for the delta-gamma approximation and −45.85 for the
Cornish-Fisher approximation. We notice that we obtain an absurd result in the
last case, because the distribution is far from the Gaussian distribution (high
skewness and kurtosis). If we consider a smaller order expansion:

z (α; γ1, γ2) = zα + 1
6
(
z2
α − 1

)
γ1 + 1

24
(
z3
α − 3zα

)
γ2

the value-at-risk is equal to 171.01.
(b) In this case, we obtain 126.24 for the delta approximation, 161.94 for the delta-

gamma approximation and −207.84 for the Cornish-Fisher approximation. For
the delta approximation, the risk decomposition is:

Option wi MRi RCi RC?i
1 50.00 0.86 42.87 33.96%
2 20.00 0.77 15.38 12.19%
3 30.00 2.27 67.98 53.85%

R (w) 126.24

13You may easily verify that we obtained this formula in the case n = 2 by developing the different
polynomials.
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For the delta-gamma approximation, we have:

Option wi MRi RCi RC?i
1 50.00 4.06 202.92 125.31%
2 20.00 1.18 23.62 14.59%
3 30.00 1.04 31.10 19.21%

R (w) 161.94

We notice that the delta-gamma approximation does not satisfy the Euler de-
composition.

2.4.9 Risk decomposition of the expected shortfall
1. We have:

L (w) = −R (w) = −w>R

It follows that:
L (w) ∼ N

(
−µ (w) , σ2 (w)

)
with µ (w) = w>µ and σ (w) =

√
w>Σw.

2. The expected shortfall ESα (w;h) is the average of value-at-risks at level α and higher:

ESα (w;h) = E [L | L ≥ VaRα (w;h)]

We know that the value-at-risk is:

VaRα (w;h) = −w>µ+ Φ−1 (α)
√
w>Σw

We deduce that:

ESα (w;h) = 1
1− α

∫ ∞
x−

x

σ (w)
√

2π
exp

(
−1

2

(
x+ µ (w)
σ (w)

)2
)

dx

where x− = −µ (w) + Φ−1 (α)σ (w). With the change of variable t =
σ (w)−1 (x+ µ (w)), we obtain:

ESα (w;h) = 1
1− α

∫ ∞
Φ−1(α)

(−µ (w) + σ (w) t) 1√
2π

exp
(
−1

2 t
2
)

dt

= −µ (w)
1− α [Φ (t)]∞Φ−1(α) +

σ (w)
(1− α)

√
2π

∫ ∞
Φ−1(α)

t exp
(
−1

2 t
2
)

dt

= −µ (w) + σ (w)
(1− α)

√
2π

[
− exp

(
−1

2 t
2
)]∞

Φ−1(α)

= −µ (w) + σ (w)
(1− α)

√
2π

exp
(
−1

2
[
Φ−1 (α)

]2)
The expected shortfall of portfolio w is then:

ESα (w;h) = −w>µ+
φ
(
Φ−1 (α)

)
(1− α)

√
w>Σw



36 Handbook of Financial Risk Management

3. The vector of marginal risk is defined as follows:

MR = ∂ ESα (w;h)
∂ w

= −µ+
φ
(
Φ−1 (α)

)
(1− α)

Σw√
w>Σw

We deduce that the risk contribution RCi of the asset i is:

RCi = wi ×MRi

= −wiµi +
φ
(
Φ−1 (α)

)
(1− α)

wi × (Σw)i√
w>Σw

It follows that:
n∑
i=1
RCi =

n∑
i=1
−wiµi +

φ
(
Φ−1 (α)

)
(1− α)

wi × (Σw)i√
x>Σx

= −w>µ+
φ
(
Φ−1 (α)

)
(1− α)

w> (Σw)√
w>Σw

= ESα (w;h)

The expected shortfall then verifies the Euler allocation principle.

4. We have:

L (w) = −
n∑
i=1

wiRi =
n∑
i=1

Li

with Li = −wiRi. We know that:

RCi = E [Li | L ≥ VaRα (w;h)]

= E [Li · 1 {L ≥ VaRα (w;h)}]
E [1 {L ≥ VaRα (w;h)}]

= E [Li · 1 {L ≥ VaRα (w;h)}]
1− α

We deduce that:

RCi = − wi
1− αE [Ri · 1 {R (w) ≤ −VaRα (w;h)}]

We know that the random vector (R,R (w)) has a multivariate normal distribution:(
R

R (w)

)
∼ N

((
µ

w>µ

)
,

(
Σ Σw
w>Σ w>Σw

))
We deduce that:(

Ri
R (w)

)
∼ N

((
µi
w>µ

)
,

(
Σi,i (Σw)i
(Σw)i w>Σw

))
Let I = E [Ri · 1 {R (w) ≤ −VaRα (w;h)}]. We note f the density function of the
random vector (Ri, R (w)) and ρ = Σ−1/2

i,i

(
w>Σw

)−1/2 (Σw)i the correlation between
Ri and R (w). It follows that:

I =
∫ +∞

−∞

∫ +∞

−∞
1 {s ≤ −VaRα (w;h)} · rf (r, s) dr ds

=
∫ +∞

−∞

∫ −VaRα(w)

−∞
rf (r, s) dr ds
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Let t = (r − µi) /
√

Σi,i and u =
(
s− w>µ

)
/
√
w>Σw. We deduce that14:

I =
∫ +∞

−∞

∫ Φ−1(1−α)

−∞

µi +
√

Σi,it
2π
√

1− ρ2
exp

(
− t

2 + u2 − 2ρtu
2 (1− ρ2)

)
dtdu

By considering the change of variables (t, u) = ϕ (t, v) such that u = ρt +
√

1− ρ2v,
we obtain15:

I =
∫ +∞

−∞

∫ g(t)

−∞

µi +
√

Σi,it
2π exp

(
− t

2 + v2

2

)
dtdv

= µi

∫ +∞

−∞

∫ g(t)

−∞

1
2π exp

(
− t

2 + v2

2

)
dtdv +

√
Σi,i

∫ +∞

−∞

∫ g(t)

−∞

t

2π exp
(
− t

2 + v2

2

)
dtdv +

= µiI1 +
√

Σi,iI2

where the bound g (t) is defined as follows:

g (t) = Φ−1 (1− α)− ρt√
1− ρ2

For the first integral, we have16:

I1 =
∫ +∞

−∞

1√
2π

exp
(
− t

2

2

)(∫ g(t)

−∞

1√
2π

exp
(
−v

2

2

)
dv
)

dt

=
∫ +∞

−∞
Φ
(

Φ−1 (1− α)− ρt√
1− ρ2

)
φ (t) dt

= 1− α

The computation of the second integral I2 is a little bit more tedious. Integration by
parts with the derivative function tφ (t) gives:

I2 =
∫ +∞

−∞
Φ
(

Φ−1 (1− α)− ρt√
1− ρ2

)
tφ (t) dt

= − ρ√
1− ρ2

∫ +∞

−∞
φ

(
Φ−1 (1− α)− ρt√

1− ρ2

)
φ (t) dt

= − ρ√
1− ρ2

φ
(
Φ−1 (1− α)

) ∫ +∞

−∞
φ

(
t− ρΦ−1 (1− α)√

1− ρ2

)
dt

= −ρφ
(
Φ−1 (1− α)

)
14Because we have Φ−1 (1− α) = −Φ−1 (α).
15We use the fact that dt dv =

√
1− ρ2 dt du because the determinant of the Jacobian matrix containing

the partial derivatives Dϕ is
√

1− ρ2.
16We use the fact that:

E

[
Φ

(
Φ−1 (p)− ρT√

1− ρ2

)]
= p

where T ∼ N (0, 1).
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We could then deduce the value of I:

I = µi (1− α)− ρ
√

Σi,iφ
(
Φ−1 (1− α)

)
= µi (1− α)−

(Σw)i√
w>Σw

φ
(
Φ−1 (α)

)
We finally obtain that:

RCi = −wiµi +
φ
(
Φ−1 (α)

)
(1− α)

wi × (Σw)i√
w>Σw

We obtain the same expression as found in Question 3. Nevertheless, the conditional
representation is more general than the Gaussian formula, because it is valid for any
probability distribution.

2.4.10 Expected shortfall of an equity portfolio
1. We have:

Π = 4 (PA,t+h − PA,t) + 3 (PB,t+h − PB,t)
= 4PA,tRA,t+h + 3PB,tRB,t+h
= 400×RA,t+h + 600×RB,t+h

where RA,t+h and RB,t+h are the stock returns for the period [t, t+ h]. We deduce
that the variance of the P&L is:

σ2 (Π) = 400× (25%)2 + 600× (20%)2 +
2× 400× 600× (−20%)× 25%× 20%

= 19 600

We deduce that σ (Π) = $140. We know that the one-year expected shortfall is a linear
function of the volatility:

ESα (w; one year) =
φ
(
Φ−1 (α)

)
1− α × σ (Π)

= 2.34× 140
= $327.60

The 10-day expected shortfall is then equal to $64.25:

ESα (w; ten days) =
√

10
260 × 327.60

= $64.25

2. We have:
Πs = 400×RA,s + 600×RB,s

We deduce that the value Πs of the daily P&L for each scenario s is:

s 1 2 3 4 5 6 7 8
Πs −36 −10 −24 −26 −12 −30 −14 −16

Πs:250 −36 −30 −26 −24 −16 −14 −12 −10
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The value-at-risk at the 97.5% confidence level correspond to the 6.25th order statis-
tic17. We deduce that the historical expected shortfall for a one-day time horizon is
equal to:

ESα (w; one day) = −E [Π | Π ≤ −VaRα (Π)]

= −1
6

6∑
s=1

Πs:250

= 1
6 (36 + 30 + 26 + 24 + 16 + 14)

= 24.33

By considering the square-root-of-time rule, it follows that the 10-day expected short-
fall is equal to $76.95.

2.4.11 Risk measure of a long/short portfolio
We have:

Πt,t+h = 2 (PA,t+h − PA,t)− 5 (PB,t+h − PB,t)
= 2PA,tRA,t+h − 5PB,tRB,t+h
= 100× (RA,t+h −RB,t+h)

where RA,t+h and RB,t+h are the stock returns for the period [t, t+ h].

1. We deduce that the (annualized) variance of the P&L is:

σ2 (Πt,t+260) = 1002 × (25%)2 + 1002 × (20%)2 −
2× 1002 × 12.5%× 25%× 20%

= 900

We have σ (Πt,t+260) = $30. It follows that the 10-day standard deviation is equal to:

σ (Πt,t+10) =
√

10
260 × σ (Πt,t+260)

= $5.883

(a) We obtain:

VaR99% (w; ten days) = Φ−1 (99%)× σ (Πt,t+10)
= $13.69

(b) We have:

ESα (w; ten days) =
φ
(
Φ−1 (α)

)
1− α × σ (Πt,t+10)

and:

φ
(
Φ−1 (97.5%)

)
1− 97.5% = 2.3378

≈ 2.34

The 10-day expected shortfall is then equal to $13.75.
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TABLE 2.1: Order statistic Πs:250 of the daily P&L
s 1 2 3 4 5 6 7 8 9 10

Πs:250 −6.3 −6.0 −5.1 −4.8 −4.6 −4.5 −4.3 −4.3 −4.0 −3.9

2. Given the historical scenario s, the one-day simulated P&L is equal to:

Πs = 100× (RA,s −RB,s)
= 100×Ds

The order statistic Πs:250 of the daily P&L is given in Table 2.1.

(a) We deduce that the one-day value-at-risk at the 99% confidence level corresponds
to the 2.5nd order statistic:

VaR99% (w; one day) = −
(
−6.0− 5.1

2

)
= $5.55

It follows that:

VaR99% (w; ten days) =
√

10×VaR99% (w, one day) = $17.55

(b) The value-at-risk at the 97.5% confidence level correspond to the 6.25th order
statistic. We deduce that the historical expected shortfall for a one-day time
horizon is equal to:

ES97.5% (w; one day) = −1
6

6∑
s=1

Πs:250

= 1
6 (6.3 + 6.0 + 5.1 + 4.8 + 4.6 + 4.5)

= $5.22

By considering the square-root-of-time rule, it follows that the 10-day expected
shortfall is equal to $16.50.

(c) In Basel II, the capital charge is equal to:

K = 3×VaR99% (w; ten days)
= $52.65

In Basel 2.5, the capital charge becomes:

K = 3×VaR99% (w; ten days) + 3× SVaR99% (w; ten days)
= $157.96

where SVaR is the stressed value-at-risk. In Basel III, we obtain:

K = 2× SES99% (w; ten days)
= $65.99

where SES is the stressed expected shortfall.
17We have 2.5%× 250 = 6.25.
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2.4.12 Kernel estimation of the expected shortfall
1. We have:

E [X · 1 {X ≤ x}] =
∫ ∞
−∞

t · 1 {t ≤ x} · 1
nh

n∑
i=1
K
(
t− xi
hhh

)
dt

= 1
n

n∑
i=1

∫ x

−∞

t

h
K
(
t− xi
hhh

)
dt

We consider the change of variable u = hhh−1 (t− xi):∫ x

−∞

t

h
K
(
t− xi
hhh

)
dt =

∫ x−xi
hhh

−∞
(xi + hhhu)K (u) du

=
∫ x−xi

hhh

−∞
xiK (u) du+

∫ x−xi
hhh

−∞
hhhuK (u) du

We deduce that:

E [X · 1 {X ≤ x}] = 1
n

n∑
i=1

∫ x−xi
hhh

−∞
xiK (u) du+

1
n

n∑
i=1

∫ x−xi
hhh

−∞
hhhuK (u) du

2. We have:

1
n

n∑
i=1

∫ x−xi
hhh

−∞
xiK (u) du = 1

n

n∑
i=1

xi

(∫ x−xi
hhh

−∞
K (u) du

)

= 1
n

n∑
i=1

xiI
(
x− xi
hhh

)
3. Since we have: ∫ x−xi

hhh

−∞
uK (u) du =

[
uI (u)

] x−xi
hhh

−∞
−
∫ x−xi

hhh

−∞
I (u) du

we deduce that: ∣∣∣∣∣
∫ x−xi

hhh

−∞
uK (u) du

∣∣∣∣∣ ≤
(
x− xi
hhh

)
· I
(
x− xi
hhh

)
It follows that: ∫ x−xi

hhh

−∞
hhhuK (u) du = hhh

∫ x−xi
hhh

−∞
uK (u) du

→ 0 when hhh→ 0

4. Finally, we obtain the result:

E [X · 1 {X ≤ x}] ≈ 1
n

n∑
i=1

xiI
(
x− xi
hhh

)
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We conclude that:

ES α (w;h) = 1
(1− α)E [L (w) · 1 {L (w) ≥ VaRα (w;h)}]

= − 1
(1− α)E [Π (w) · 1 {Π (w) ≤ −VaRα (w;h)}]

≈ − 1
(1− α)

(
1
nS

nS∑
s=1

ΠsI
(
−VaRα (w;h)−Πs

hhh

))

because we have Π (w) = −L (w).



Chapter 3
Credit Risk

3.4.1 Single and multi-name credit default swaps
1. We have F (t) = 1−e−λt, S (t) = e−λt and f (t) = λe−λt. We know that S (τ ) ∼ U[0,1].

Indeed, we have:

Pr {U ≤ u} = Pr {S (τ ) ≤ u}
= Pr

{
τ ≥ S−1 (u)

}
= S

(
S−1 (u)

)
= u

It follows that τ = S−1 (U) with U ∼ U[0,1]. Let u be a uniform random variate.
Simulating τ is then equivalent to transform u into t:

t = − 1
λ

ln u

2. (a) The premium leg is paid quarterly. The coupon payment is then equal to:

PL (tm) = ∆tm × s ×N

= 1
4 × 150× 10−4 × 106

= $3 750

In case of default, the default leg paid by protection seller is equal to:

DL = (1−R)×N
= (1− 40%)× 106

= $600 000

The corresponding cash flow chart is given in Figure 3.1. If the reference entity
does not default, the P&L of the protection seller is the sum of premium interests:

Πseller = 8× 3 750 = $30 000

If the reference entity defaults in one year and two months, the P&L of the
protection buyer is1:

Πbuyer = (1−R)×N −
∑
tm<τ

∆tm × s ×N

= (1− 40%)× 106 −
(

4 + 2
3

)
× 3 750

= $582 500

1We include the accrued premium.
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&

$

%

τ time

The protection buyer pays $3 750
each quarter if the defaults does not occur

The protection buyer receives $600 000
if the defaults occurs before the maturity

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

FIGURE 3.1: Cash flow chart of the CDS contract

(b) Using the credit triangle relationship, we have:

s ' (1−R)× λ

We deduce that2:

PD ' λ

' s
1−R

= 150× 10−4

1− 40%
= 2.50%

(c) We denote by s ′ the new CDS spread. The default probability becomes:

PD = s ′
1−R

= 450× 10−4

1− 40%
= 7.50%

The protection buyer is short credit and benefits from the increase of the default
probability. His mark-to-market is therefore equal to:

Πbuyer = N × (s ′ − s)× RPV01

= 106 × (450− 150)× 10−4 × 1.189
= $35 671

2We recall that the one-year default probability is approximately equal to λ:
PD = 1− S (1)

= 1− e−λ

' 1− (1− λ)
' λ
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The offsetting mechanism is then the following: the protection buyer B transfers
the agreement to C, who becomes the new protection buyer; C continues to
pay a premium of 150 bps to the protection seller A; in return, C pays a cash
adjustment of $35 671 to B.

3. (a) For a given date t, the credit curve is the relationship between the maturity T
and the spread st (T ). The credit curve of the reference entity #1 is almost flat.
For the entity #2, the spread is very high in the short-term, meaning that there is
a significative probability that the entity defaults. However, if the entity survive,
the market anticipates that it will improve its financial position in the long-run.
This explains that the credit curve #2 is decreasing. For reference entity #3, we
obtain opposite conclusions. The company is actually very strong, but there are
some uncertainties in the future3. The credit curve is then increasing.

(b) If we consider a standard recovery rate (40%), the implied default probability is
2.50% for #1, 10% for #2 and 1.33% for #3. We can consider a short credit posi-
tion in #2. In this case, we sell the 5Y protection on #2 because the model tells
us that the market default probability is over-estimated. In place of this direc-
tional bet, we could consider a relative value strategy: selling the 5Y protection
on #2 and buying the 5Y protection on #3.

4. (a) Let τk:n be the kth default among the basket. FtD, StD and LtD are three CDS
products, whose credit event is related to the default times τ1:n, τ2:n and τn:n.

(b) The default correlation ρ measures the dependence between two default times
τi and τj . The spread of the FtD (resp. LtD) is a decreasing (resp. increasing)
function with respect to ρ.

(c) To fully hedge the credit portfolio of the 3 entities, we can buy the 3 CDS.
Another solution is to buy the FtD plus the StD and the LtD (or the third-to-
default). Because these two hedging strategies are equivalent, we deduce that:

sCDS
1 + sCDS

2 + sCDS
3 = sFtD + sStD + sLtD

(d) We notice that the default correlation does not affect the value of the CDS
basket, but only the price distribution between FtD, StD and LtD. We obtain a
similar result for CDO4. In the case of the subprime crisis, all the CDO tranches
have suffered, meaning that the price of the underlying basket has dropped. The
reasons were the underestimation of default probabilities.

3.4.2 Risk contribution in the Basel II model

1. (a) The portfolio loss L follows a Gaussian probability distribution:

L (w) ∼ N
(

0,
√
w>Σw

)
We deduce that:

VaRα (w) = Φ−1 (α)
√
w>Σw

3An example is a company whose has a monopoly because of a strong technology, but faces a hard
competition because technology is evolving fast in its domain (e.g. Blackberry at the end of 2000s).

4The junior, mezzanine and senior tranches can be viewed as FtD, StD and LtD.
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(b) We have:

∂ VaRα (w)
∂ w

= ∂

∂ w

(
Φ−1 (α)

(
w>Σw

) 1
2
)

= Φ−1 (α) 1
2
(
w>Σw

)− 1
2 (2Σw)

= Φ−1 (α) Σw√
w>Σw

The marginal value-at-risk of the ith credit is then:

MRi = ∂ VaRα (w)
∂ wi

= Φ−1 (α)
(Σw)i√
w>Σw

The risk contribution of the ith credit is the product of the exposure by the
marginal risk:

RCi = wi ×MRi

= Φ−1 (α)
wi × (Σw)i√

x>Σx

(c) By construction, the random vector (ε, L (w)) is Gaussian with:(
ε

L (w)

)
∼ N

((
0
0

)
,

(
Σ Σw

w>Σ w>Σw

))
We deduce that the conditional distribution function of ε given that L (w) = `
is Gaussian and we have:

E [ε | L (w) = `] = 0 + Σw
(
w>Σw

)−1 (`− 0)

We finally obtain:

E
[
ε | L (w) = F−1 (α)

]
= Σw

(
w>Σw

)−1 Φ−1 (α)
√
w>Σw

= Φ−1 (α) Σw√
w>Σw

= ∂ VaRα (w)
∂ w

The marginal VaR of the ith credit is then equal to the conditional mean of the
individual loss εi given that the portfolio loss is exactly equal to the value-at-risk.

2. (a) EADi is the exposure at default, LGDi is the loss given default, τi is the default
time and Ti is the maturity of the credit i. We have:{

wi = EADi

εi = LGDi×1 {τi < Ti}

The exposure at default is not random, which is not the case of the loss given
default.

(b) We have to make the following assumptions:
i. the loss given default LGDi is independent from the default time τi;
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ii. the portfolio is infinitely fine-grained meaning that there is no exposure
concentration:

EADi∑n
i=1 EADi

' 0

iii. the default times depend on a common risk factor X and the relationship is
monotonic (increasing or decreasing).

In this case, we have:

E
[
εi | L = F−1 (α)

]
= E [LGDi]× E

[
Di | L = F−1 (α)

]
with Di = 1 {τi < Ti}.

(c) It follows that:

RCi = wi ×MRi
= EADi×E [LGDi]× E

[
Di | L = F−1 (α)

]
The expression of the value-at-risk is then:

VaRα (w) =
n∑
i=1
RCi

=
n∑
i=1

EADi×E [LGDi]× E
[
Di | L = F−1 (α)

]
(d) i. We have

E [ZiZj ] = E
[(√

ρX +
√

1− ρεi
)(√

ρX +
√

1− ρεj
)]

= ρ

ρ is the constant correlation between assets Zi and Zj .
ii. We have:

pi = Pr {τi ≤ Ti}
= Pr {Zi ≤ Bi}
= Φ (Bi)

iii. It follows that:

pi (x) = Pr {Zi ≤ Bi | X = x}

= Pr
{√

ρX +
√

1− ρεi ≤ Bi | X = x
}

= Pr
{
εi ≤

Bi −
√
ρX

√
1− ρ

∣∣∣∣X = x

}
= Φ

(
Bi −

√
ρx

√
1− ρ

)
= Φ

(Φ−1 (pi)−
√
ρx

√
1− ρ

)
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(e) Under the assumptions (H), we know that:

L =
n∑
i=1

EADi×E [LGDi]× pi (X)

=
n∑
i=1

EADi×E [LGDi]× Φ
(Φ−1 (pi)−

√
ρX

√
1− ρ

)
= g (X)

with g′ (x) < 0. We deduce that:

VaRα (w) = F−1 (α) ⇔ Pr {g (X) ≤ VaRα (w)} = α

⇔ Pr
{
X ≥ g−1 (VaRα (w))

}
= α

⇔ Pr
{
X ≤ g−1 (VaRα (w))

}
= 1− α

⇔ g−1 (VaRα (w)) = Φ−1 (1− α)
⇔ VaRα (w) = g

(
Φ−1 (1− α)

)
It follows that:

VaRα (w) = g
(
Φ−1 (1− α)

)
=

n∑
i=1

EADi×E [LGDi]× pi
(
Φ−1 (1− α)

)
The risk contribution RCi of the ith credit is then:

RCi = EADi×E [LGDi]× pi
(
Φ−1 (1− α)

)
= EADi×E [LGDi]× Φ

(Φ−1 (pi)−
√
ρΦ−1 (1− α)

√
1− ρ

)
= EADi×E [LGDi]× Φ

(Φ−1 (pi) +√ρΦ−1 (α)
√

1− ρ

)

3. (a) We note Ω the event X ≤ g−1 (VaRα (w)) or equivalently X ≤ Φ−1 (1− α). We
have:

ESα (w) = E [L | L ≥ VaRα (w)]
= E [L | g (X) ≥ VaRα (w)]
= E

[
L | X ≤ g−1 (VaRα (w))

]
= E

[
n∑
i=1

EADi×E [LGDi]× pi (X) | Ω
]

=
n∑
i=1

EADi×E [LGDi]× E [pi (X) | Ω]
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(b) It follows that:

E [pi (X) | Ω] = E
[

Φ
(Φ−1 (pi)−

√
ρX

√
1− ρ

)∣∣∣∣Ω]
=

∫ Φ−1(1−α)

−∞
Φ
(

Φ−1 (pi)√
1− ρ

+
−√ρ
√

1− ρ
x

)
×

φ (x)
Φ (Φ−1 (1− α)) dx

=
Φ2
(
Φ−1 (1− α) ,Φ−1 (pi) ;√ρ

)
1− α

=
C
(
1− α, pi;

√
ρ
)

1− α
where C is the Gaussian copula. We deduce that:

RCi = EADi×E [LGDi]×
C
(
1− α, pi;

√
ρ
)

1− α

(c) If ρ = 0, we have:

Φ
(Φ−1 (pi) +√ρΦ−1 (α)

√
1− ρ

)
= Φ

(
Φ−1 (pi)

)
= pi

and:
C
(
1− α, pi;

√
ρ
)

1− α = (1− α) pi
1− α

= pi

The risk contribution is the same for the value-at-risk and the expected shortfall:

RCi = EADi×E [LGDi]× pi
= E [Li]

It corresponds to the expected loss of the credit. If ρ = 1 and α > 50%, we have:

Φ
(Φ−1 (pi) +√ρΦ−1 (α)

√
1− ρ

)
= lim

ρ→1
Φ
(

Φ−1 (pi) + Φ−1 (α)√
1− ρ

)
= 1

If ρ = 1 and α is high (α > 1− supi pi), we have:

C
(
1− α, pi;

√
ρ
)

1− α = min (1− α; pi)
1− α

= 1

In this case, the risk contribution is the same for the value-at-risk and the ex-
pected shortfall:

RCi = EADi×E [LGDi]
However, it does not depend on the unconditional probability of default pi.

4. Pillar 2 concerns the non-compliance of assumptions (H). In particular, we have to
understand the impact on the credit risk measure if the portfolio is not infinitely
fine-grained or if asset correlations are not constant.
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3.4.3 Calibration of the piecewise exponential model

1. We have:
S (t) = Pr {τ ≥ t} = 1− F (t)

and:
f (t) = ∂t F (t) = −∂t S (t)

2. The function λ (t) is the instantaneous default rate:

λ (t) = lim
∆→0+

1
∆ Pr {t ≤ τ ≤ t+ ∆ | τ ≥ t}

= lim
∆→0+

1
∆

Pr {t ≤ τ ≤ t+ ∆}
Pr {τ ≥ t}

= 1
Pr {τ ≥ t} lim

∆→0+

Pr {t ≤ τ ≤ t+ ∆}
∆

= f (t)
S (t)

In the case of the exponential model, we obtain:

λ (t) = λe−λt

e−λt
= λ

3. Since τ ∼ E (λ), it follows that:

s (T ) =
(1−R)×

∫ T
0 e−rtf (t) dt∫ T

0 e−rtS (t) dt

=
(1−R)×

∫ T
0 e−rtλe−λt dt∫ T

0 e−rte−λt dt
= λ× (1−R)

4. (a) We define the survival function as follows:

S (t) =


e−λ1t if t ≤ 3
e−3λ1−λ2(t−3) if 3 < t ≤ 5
e−3λ1−2λ2−λ3(t−5) if t > 5

We deduce that:

f (t) =


λ1e
−λ1t if t ≤ 3

λ2e
−3λ1−λ2(t−3) if 3 < t ≤ 5

λ3e
−3λ1−2λ2−λ3(t−5) if t > 5

We verify that the hazard rate is a piecewise constant function:

λ (t) = f (t)
S (t) =

 λ1 if t ≤ 3
λ2 if 3 < t ≤ 5
λ3 if t > 5
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(b) Let (t?1, t?2, t?3) be the knots of the piecewise exponential model5. We note that
S (t) = S

(
t?m−1

)
e−λm(t−t?m−1) and f (t) = λmS

(
t?m−1

)
e−λm(t−t?m−1). When T ∈[

t?m−1, t
?
m

[
, it follows that:

s (T ) =
(1−R)×

∫ T
0 e−rtf (t) dt∫ T

0 e−rtS (t) dt

=
(1−R)×

(∫ t?m−1
0 e−rtf (t) dt+

∫ T
t?
m−1

e−rtf (t) dt
)

(∫ t?
m−1

0 e−rtS (t) dt+
∫ T
t?
m−1

e−rtS (t) dt
)

We introduce the following notation with T ≤ t?m:

I
(
t?m−1, T

)
=

∫ T

t?
m−1

e−rtS (t) dt

= S
(
t?m−1

) ∫ T

t?
m−1

e−rte−λm(t−t?m−1) dt

= S
(
t?m−1

)
eλmt

?
m−1

∫ T

t?
m−1

e−(r+λm)t dt

= S
(
t?m−1

)
eλmt

?
m−1

[
e−(r+λm)t

− (r + λm)

]T
t?
m−1

= S
(
t?m−1

)
eλmt

?
m−1

e−(r+λm)t?m−1 − e−(r+λm)T

(r + λm)

= S
(
t?m−1

) e−rt?m−1 − e−rT e−λm(T−t?m−1)
(r + λm)

We obtain the following cases:
i. If T ≤ 3, we have:

s (T ) =
(1−R)×

∫ T
0 e−rtf (t) dt∫ T

0 e−rtS (t) dt

= (1−R)× λ1 × I (0, T )
I (0, T )

= (1−R)× λ1

ii. If 3 < T ≤ 5, we have:

s (T ) =
(1−R)×

(∫ 3
0 e
−rtf (t) dt+

∫ T
3 e−rtf (t) dt

)
(∫ 3

0 e
−rtS (t) dt+

∫ T
3 e−rtS (t) dt

)
= (1−R)× λ1I (0, 3) + λ2I (3, T )

I (0, 3) + I (3, T )

iii. If T > 5, we have:

s (T ) = (1−R)× λ1I (0, 3) + λ2I (3, 5) + λ3I (5, T )
I (0, 3) + I (3, 5) + I (5, T )

5We use the convention t?0 = 0.
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(c) The parameters (λ1, λ2, λ3) satisfy the following set of equations:
s (3) = (1−R)× λ1

s (5) = (1−R)× λ1I(0,3)+λ2I(3,5)
I(0,3)+I(3,5)

s (7) = (1−R)× λ1I(0,3)+λ2I(3,5)+λ3I(5,7)
I(0,3)+I(3,5)+I(5,7)

(3.1)

From the first equation, we estimate λ̂1:

λ̂1 = s (3)
(1−R)

We can now solve numerically the second equation and we obtain λ̂2. Finally,
we solve the nonlinear third equation to obtain λ̂3. This iterative approach of
calibration is known as the bootstrapping method.

(d) When r is equal to zero and λm is small, the function I
(
t?m−1, T

)
becomes:

I
(
t?m−1, T

)
= S

(
t?m−1

) 1− e−λm(T−t?m−1)
λm

≈ S
(
t?m−1

) (
T − t?m−1

)
≈ T − t?m−1

We introduce the following notation:

λ (T ) = s (T )
(1−R)

Using Equation (3.1), we deduce that:

λ̂1 = λ (3)

λ̂2 =
(
I (0, 3) + I (3, 5)

I (3, 5)

)
λ (5)− I (0, 3)

I (3, 5) λ̂1

≈ 5λ (5)− 3λ (3)
2

λ̂3 =
(
I (0, 3) + I (3, 5) + I (5, 7)

I (5, 7)

)
λ (7)− λ̂1I (0, 3) + λ̂2I (3, 5)

I (5, 7)

≈ 7λ (7)− 5λ (5)
2

We notice that:

s (3) = (1−R)× λ̂1

s (5) = (1−R)×
(

3λ̂1 + 2λ̂2

5

)

s (7) = (1−R)×
(

3λ̂1 + 2λ̂2 + 2λ̂3

7

)

The spread is then a weighted average of the different hazard rates, whose weights
are proportional to the interval time between two knots.
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(e) Using a numerical solver, we obtain λ̂1 = 166.7 bps, λ̂2 = 401.2 bps and λ̂3 =
322.4 bps6.

(f) Since S (τ ) ∼ U[0,1], the simulated default time t is S−1 (u) where u is a uniform
random number. If u > S (3), we have e−λ1t = u or t = −λ−1

1 ln u. If S (5) < u ≤
S (3), it follows that S (3) e−λ2(t−3) = u or t = 3 + λ−1

2 (ln S (3)− ln u). Finally,
we obtain t = 5 + λ−1

3 (ln S (5)− ln u) if u < S (5). Using the previous numerical
values, we find that S (3) = 0.951 and S (5) = 0.878. The simulated default times
are then:

t =


2.449 for u = 0.96
46.54 for u = 0.23
4.380 for u = 0.90
7.881 for u = 0.80

3.4.4 Modeling loss given default
1. The loss given default is equal to:

LGD = 1−R + c

where c is the recovery (or litigation) cost. Consider for example a $200 credit and
suppose that the borrower defaults. If we recover $140 and the litigation cost is $20,
we obtain R = 70% and LGD = 40%, but not LGD = 30%.

2. The amounts outstanding of credit is:

EAD = 250 000× 50 000
= $12.5 bn

The annual loss after recovery is equal to:

L = EAD× (1−R)× PD +C
= 43.75 + 12.5
= $56.25 mn

where C is the litigation cost. We deduce that:

LGD = L

EAD×PD

= 54
12.5× 103 × 1%

= 45%

This figure is larger than 35%, which is the loss given default without taking into
account the recovery cost.

3. (a) The Beta distribution allows to obtain all the forms of LGD (bell curve, inverted-
U shaped curve, etc.). The uniform distribution corresponds to the case α = 1
and β = 1. Indeed, we have:

f (x) = xα−1 (1− x)β−1∫ 1
0 u

α−1 (1− u)β−1 du
= 1

6If we consider the approximated formulas, the solutions are λ̂1 = 166.7 bps, λ̂2 = 375.0 bps and
λ̂3 = 308.3 bps.
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(b) We have:

` (α, β) =
n∑
i=1

ln f (xi)

= −n ln B (α, β) + (α− 1)
n∑
i=1

ln xi + (β − 1)
n∑
i=1

ln (1− xi)

The first-order conditions are:

∂ ` (α, β)
∂ α

= −n∂αB (α, β)
B (α, β) +

n∑
i=1

ln xi = 0

and:
∂ ` (α, β)
∂ β

= −n∂βB (α, β)
B (α, β) +

n∑
i=1

ln (1− xi) = 0

(c) Let µLGD and σLGD be the mean and standard deviation of the LGD parameter.
The method of moments consists in estimating α and β such that:

α

α+ β
= µLGD

and:
αβ

(α+ β)2 (α+ β + 1)
= σ2

LGD

We have:
β = α

(1− µLGD)
µLGD

and:
(α+ β)2 (α+ β + 1)σ2

LGD = αβ

It follows that:

(α+ β)2 =
(
α+ α

(1− µLGD)
µLGD

)2

= α2

µ2
LGD

and:
αβ = α2

µ2
LGD

(
α+ α

(1− µLGD)
µLGD

+ 1
)
σ2

LGD = α2 (1− µLGD)
µLGD

We deduce that:

α

(
1 + (1− µLGD)

µLGD

)
= (1− µLGD)µLGD

σ2
LGD

− 1

We finally obtain:

α̂MM = µ2
LGD (1− µLGD)

σ2
LGD

− µLGD (3.2)

β̂MM = µLGD (1− µLGD)2

σ2
LGD

− (1− µLGD) (3.3)
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4. (a) The mean of the loss given default is equal to:

µLGD = 100× 0% + 100× 25% + 600× 50% + . . .

1000
= 50%

The expression of the expected loss is:

EL =
100∑
i=1

EADi×E [LGDi]× PDi

where PDi is the default probability of credit i. We finally obtain:

EL =
100∑
i=1

10 000× 50%× 1%

= $5 000

(b) We have µLGD = 50% and:

σLGD =

√
100× (0− 0.5)2 + 100× (0.25− 0.5)2 + . . .

1000

=
√

2× 0.52 + 2× 0.252

10

=
√

0.625
10

= 25%

Using Equations (3.2) and (3.3), we deduce that:

α̂MM = 0.52 × (1− 0.5)
0.252 − 0.5 = 1.5

β̂MM = 0.5× (1− 0.5)2

0.252 − (1− 0.5) = 1.5

(c) The previous portfolio is homogeneous and infinitely fine-grained. In this case,
we know that the unexpected loss depends on the mean of the loss given default
and not on the entire probability distribution. Because the expected value of
the calibrated Beta distribution is 50%, there is no difference with the uniform
distribution, which has also a mean equal to 50%. This result holds for the Basel
model with one factor, and remains true when they are more factors.

3.4.5 Modeling default times with a Markov chain
1. We have P (4) = P (2)P (2) and P (6) = P (4)P (2).

2. In a piecewise exponential model, the survival function has the following expression:

S (t) = S
(
t?m−1

)
e−λm(t−t?m−1) if t ∈

]
t?m−1, t

?
m

]
We deduce that:

λm =
ln S

(
t?m−1

)
− ln S (t?m)

t?m − t?m−1
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with S (t?0) = S (0) = 1. Here, the knots of the piecewise function are t?1 = 2, t?2 = 4
and t?3 = 6. If we consider the risk class A, we deduce that:

λ1 = ln 1− ln (1− 1%)
2− 0 = 50.3 bps

λ2 = ln (1− 1%)− ln (1− 2.49%)
4− 2 = 75.8 bps

λ3 = ln (1− 2.49%)− ln (1− 4.296%)
6− 4 = 93.5 bps

We finally obtain the following results:

Rating A B C

λ1 50.3 256.5 1115.7
λ2 75.8 275.9 856.9
λ3 93.5 277.8 650.2

3. Let P (t) be the transition matrix between 0 and t. The Markov generator of P (t) is
the matrix Λ = (λi,j) defined by:

P (t) = exp (tΛ)

where eM is the matrix exponential of the matrix M . We deduce that:

Λ = lnP (t)
t

In this example, the direct estimator is given by:

Λ̂ = lnP (2)
2

We verify that Λ̂ is a Markov generator because
∑4
j=1 λi,j = 0 and λi,j ≥ 0 when

i 6= j.

4. For the piecewise exponential model, we proceed as in Question 2 by adding the knots
t?m = 2m with m ≥ 4. In this case, we have:

λi (t) = λm if t ∈ ]2m− 2, 2m]

with:
λm = ln Si (2m− 2)− ln Si (2m)

2
and Si (2m) = 1− Pi,4 (2m). For the Markov generator, we have:

Si (t) = 1− e>i P (t) e4

= 1− e>i etΛ̂e4

We deduce that:

λi (t) = −∂tSi (t)
Si (t)

= e>i Λ̂etΛ̂e4

1− e>i etΛ̂e4
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In the long-run, the markov chain is stationary. This means that the default probability
of the different risk classes is the same when t tends to ∞ and we have:

λA (∞) = λB (∞) = λC (∞) = 147.6 bps

In the short-run, the hazard rate are ranked with respect to the risk class:

λA (0) < λB (0) < λC (0)

We deduce that the function λA (t) is increasing whereas the function λC (t) is de-
creasing. For the rating B, the behavior of the hazard function is more complex. It
first increases like λA (t) and reaches a maximum at t = 4.2, because the transition
probability to risk classes C and D is very high. Then, it decreases because of the
stationarity property.

3.4.6 Continuous-time modeling of default risk
1. The Chapman-Kolmogorov equation is:

P (n) = P (n− 1)P

We deduce that:

P (n) = P (0)
n∏
t=1

P

= Pn

because P (0) = I4. We have:

P (10) =


62.60% 13.14% 5.53% 18.73%
38.42% 20.74% 6.81% 34.03%
21.90% 12.29% 4.35% 61.46%
0.00% 0.00% 0.00% 100.00%


2. (a) The eigendecomposition of P is equal to P = V DV −1, meaning that:

PV = V D

We deduce that:

P (2)V = PV D

= V DD

= V D2

By recursion, we obtain:
P (n)V = V Dn

We can then calculate P (n) as follows:

P (n) = V DnV −1

The eigendecomposition of P (n) is similar to the eigendecomposition of P : the
eigenvectors are the same, only the eigenvalues are different.
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(b) We have:

V =


0.4670 −0.2808 −0.0264 1.0000
0.3561 0.8486 −0.2373 1.0000
0.2065 0.5363 0.8609 1.0000
0.0000 0.0000 0.0000 1.0000


and

D =


0.9717 0.0000 0.0000 0.0000
0.0000 0.8111 0.0000 0.0000
0.0000 0.0000 0.5571 0.0000
0.0000 0.0000 0.0000 1.0000


We deduce that:

D10 =


0.7506 0.0000 0.0000 0.0000
0.0000 0.1233 0.0000 0.0000
0.0000 0.0000 0.0029 0.0000
0.0000 0.0000 0.0000 1.0000


We verify that:

V D10V −1 =


62.60% 13.14% 5.53% 18.73%
38.42% 20.74% 6.81% 34.03%
21.90% 12.29% 4.35% 61.46%
0.00% 0.00% 0.00% 100.00%


= P (10)

3. Let Ri (n) be the rating of a firm at time n whose initial rating is the state i. We
have:

Si (n) = 1− Pr {Ri (n) = D}
= 1− e>i P (n) e4

= 1− e>i Pne4

= 1− (Pn)i,4

In the piecewise exponential model, we recall that the survival function has the fol-
lowing expression:

Si (n) = Si (n− 1) e−λi(n)

We deduce that:

λi (n) = ln Si (n− 1)− ln Si (n)

= ln
(

1− e>i Pn−1e4

1− e>i Pne4

)
We verify that:

λi (1) = ln
(

1
1− e>i Pne4

)
= − ln

(
1− e>i Pne4

)
because Si (0) = 1. Numerical values of Si (n) and λi (n) are given in Table 3.1.
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TABLE 3.1: Numerical values of Si (n) and λi (n)

n SA (n) SB (n) SC (n) λA (n) λB (n) λC (n)
0 1.0000 1.0000 1.0000
1 0.7914 0.6360 0.3708 0.2339 0.4526 0.9921
2 0.7704 0.6139 0.3575 0.0269 0.0354 0.0367
3 0.7498 0.5932 0.3451 0.0272 0.0343 0.0352
4 0.7295 0.5737 0.3335 0.0274 0.0334 0.0341
5 0.7096 0.5552 0.3226 0.0276 0.0327 0.0332
6 0.6901 0.5377 0.3123 0.0278 0.0320 0.0324
7 0.6711 0.5211 0.3026 0.0280 0.0315 0.0318
8 0.6525 0.5051 0.2933 0.0281 0.0310 0.0313
9 0.6344 0.4899 0.2843 0.0282 0.0307 0.0308

10 0.6167 0.4752 0.2758 0.0283 0.0303 0.0305
50 0.1962 0.1496 0.0868 0.0287 0.0287 0.0287

100 0.0468 0.0357 0.0207 0.0287 0.0287 0.0287

4. Let P (t) be the transition matrix between 0 and t. The Markov generator of P (t) is
the matrix Λ = (λi,j) defined by:

P (t) = exp (tΛ)

where eM is the matrix exponential of the matrix M . We deduce that:

Λ = t−1 lnP (t)

In particular, we have:

Λ̂ = lnP (n)
n

= lnPn

n
= lnP

We obtain:

Λ̂ =


−6.4293 3.2282 2.4851 0.7160
11.3156 −23.5006 9.9915 2.1936
5.3803 21.6482 −52.3649 25.3364
0.0000 0.0000 0.0000 0.0000

× 10−2

We verify that Λ̂ is a Markov generator because
∑4
j=1 λi,j = 0 and λi,j ≥ 0 when

i 6= j.

5. We have:
P (t) = exp (tΛ)

We remind that:
eM = I +M + M2

2! + M3

3! + . . .

We deduce that:

P (t) = I4 + tΛ + t2

2 Λ2 + t3

6 Λ3 + t4

24Λ4 + . . .
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The 6-month transition probability matrix is equal to:

P

(
1
2

)
= exp

(
Λ
2

)

=


96.90% 1.56% 1.11% 0.43%
5.32% 89.19% 4.17% 1.33%
2.60% 8.99% 77.20% 11.21%
0.00% 0.00% 0.00% 100.00%


6. We have:

Si (t) = 1− Pr {Ri (t) = D}
= 1− e>i P (t) e4

= 1− e>i etΛe4

We know that:
λi (t) = fi (t)

Si (t) = −∂t Si (t)
Si (t)

We deduce that:
λi (t) = e>i ΛetΛe4

1− e>i etΛe4

3.4.7 Derivation of the original Basel granularity adjustment
1. We deduce that:

µ (x) = E [Li | X = x]
= E [LGDi] pi (x)
= Eipi (1 +$i (x− 1))

and:

υ (x) = σ2 (Li | X = x)
= Ai

= E2 [LGDi] pi (x) (1− pi (x)) + σ2 (LGDi) pi (x)
=

(
E2 [LGDi] + σ2 (LGDi)

)
pi (x)− E2 [LGDi] p2

i (x)

If we assume that p2
i (x) ≈ 0, it follows that:

υ (x) ≈
(
E2 [LGDi] + σ2 (LGDi)

)
pi (x)

=
(
E2
i + σ2 (LGDi)

)
pi (1 +$i (x− 1))

We have:

E2
i + σ2 (LGDi) = E2

i + 1
4Ei (1− Ei)

= Ei

(
1
4 + 3

4Ei
)

We conclude that:

υ (x) = Ei

(
1
4 + 3

4Ei
)
pi (1 +$i (x− 1))
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2. The computation of the derivatives of µ (x) gives:

∂ µ (x)
∂ x

= Eipi$i

and:
∂2 µ (x)
∂ x2 = 0

For the variance, we obtain:

∂ υ (x)
∂ x

= Ei

(
1
4 + 3

4Ei
)
pi$i

Since we have:
h (x) = β

αg
g xαg−1e−βgx

Γ (αg)
and:

ln h (x) = − ln Γ (αg) + αg ln βg + (αg − 1) ln x− βgx
We deduce that:

∂x ln h (x) = (αg − 1)
x

− 1
βg

The granularity adjustment function is:

β (x) = 1
2υ (x) ∂2

xµ (x)
(∂xµ (x))2 −

1
2
∂xυ (x)
∂xµ (x) −

1
2υ (x) ∂x ln h (x)

∂xµ (x)

= −1
2Ei

(
1
4 + 3

4Ei
)
pi$i ×

1
Eipi$i

−

1
2Ei

(
1
4 + 3

4Ei
)
pi (1 +$i (x− 1))

(
(αg − 1)

x
− 1
βg

)
× 1
Eipi$i

= −1
2

(
1
4 + 3

4Ei
)((

αg − 1
x

− 1
βg

)(
1
$i

+ (x− 1)
)

+ 1
)

3. In order to maintain the coherency with the IRB formula, we must have:

Φ
(Φ−1 (pi) +√ρΦ−1 (α)

√
1− ρ

)
= pi (1 +$i (x− 1))

This implies that the factor weight $i is equal to:

$i = 1
(x− 1)

Fi
pi

where:
Fi = Φ

(Φ−1 (pi) +√ρΦ−1 (α)
√

1− ρ

)
− pi

Finally, we obtain the following expression for β (x):

β (x) = 1
2

(
1
4 + 3

4Ei
)(
−
(
αg − 1
x

− 1
βg

)(
pi
Fi

(x− 1) + (x− 1)
)
− 1
)

= 1
2 (0.25 + 0.75Ei)

(
A− 1 +A

pi
Fi

)
where:

A = −
(
αg − 1
x

− 1
βg

)
(x− 1)
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4. Since we have E [X] = αgβg and σ (X) = √αgβg, the parameters of the Gamma
distribution are α = 0.25 and β = 4. Since the confidence level α of the value at
risk is equal to 99.5%, the quantile of the Gamma distribution G (0.25; 4) is equal to7

xα = 12.007243 and the value of A is 3.4393485. We deduce that:

β (xα) = 1
2 (0.25 + 0.75Ei)

(
2.4393485 + 3.4393485 pi

Fi

)
= (0.4 + 1.2Ei)

(
0.76229640 + 1.0747964 pi

Fi

)
We retrieve almost the Basel formula given in BCBS (2001a, §456):

β (xα) = (0.4 + 1.2× LGD)
(

0.76 + 1.10 pi
Fi

)
In order to find exactly the Basel formula, we do not use the approximation p2

1 (x) ≈ 0
for calculating υ (x). In this case, we have:

υ (x) = Ei

(
1
4 + 3

4Ei
)
pi (1 +$i (x− 1))− E2

i p
2
i (1 +$i (x− 1))2

and:
∂ υ (x)
∂ x

= Ei

(
1
4 + 3

4Ei
)
pi$i − 2E2

i p
2
i$i (1 +$i (x− 1))

We deduce that:

β (x) = 1
2 (0.25 + 0.75Ei)

(
−
(
αg − 1
x

− 1
βg

)(
$−1

1 + (x− 1)
)
− 1
)

+

Eipi (1 +$i (x− 1))
(

1 + 1
2$
−1
i

(
αg − 1
x

− 1
βg

))
︸ ︷︷ ︸

Correction term

When the expected LGD Ei varies from 5% to 95%, the probability of default pi varies
from 10 bps to 15% and the asset correlation ρ varies from 10% to 30%, the relative
error between the exact formula and the approximation is lower than 1%.

5. We deduce that:

GA = 1
8%

(
1.5× EAD?×β (xα)

n?

)
− 0.04× RWANR

= EAD?

n?
(0.6 + 1.8× E?)

(
9.5 + 13.75× p?

F ?

)
− 0.04× RWANR

= EAD?

n?
×GSF−0.04× RWANR

where:

GSF = (0.6 + 1.8× E?)
(

9.5 + 13.75× p?

F ?

)
7Contrary to the Vasicek model, the conditional probability of default pi (X) is an increasing function

of X in the CreditRisk+ model. Therefore, we have xα = H−1 (α) and not xα = H−1 (1− α).
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6. Following Wilde (2001b) and Gordy (2003), the portfolio loss is equal to:

L =
nC∑
j=1

∑
i∈Cj

EADi×LGDi×Di

where Cj is the jth class of risk. The goal is to build an equivalent homogeneous
portfolio w? such that:

L? = EAD∗×LGD∗×D∗

First, it is obvious to impose that:

EAD? =
nC∑
j=1

∑
i∈Cj

EADi

Wilde and Gordy also propose to equalize the default rates weighted by exposures:

E [EAD?×D?] = E

 nC∑
j=1

∑
i∈Cj

EADi×Di


This implies that:

p? =
∑nC
j=1

∑
i∈Cj EADi×pCj
EAD∗

=
nC∑
j=1

sCj × pCj

where pCj is the default probability associated to Class Cj and sCj is the corresponding
relative exposure:

sCj =
∑
i∈Cj EADi∑nC

j=1
∑
i′∈Cj EADi′

We also have:

E [EAD∗×LGD∗×D∗] = E

 nC∑
j=1

∑
i∈Cj

EADi×LGDi×Di


 nC∑
j=1

∑
i∈Cj

EADi

× E? × p? =
nC∑
j=1

∑
i∈Cj

EADi×Ei × pCj

=
nC∑
j=1

pCj
∑
i∈Cj

EADi×Ei

Let ECj be the average loss given default for Class Cj :

ECj =
∑
i∈Cj EADi×Ei∑
i∈Cj EADi

We deduce that: nC∑
j=1

∑
i∈Cj

EADi

× E? × p? =
nC∑
j=1

pCj × ECj ×
∑
i∈Cj

EADi
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or:

E? =
nC∑
j=1

pCj
p?
× ECj ×

∑
i∈Cj EADi∑nC

j′=1
∑
i′∈Cj′

EADi′

=
nC∑
j=1

sCj × pCj∑nC
j′=1 sCj′ × pCj′

× ECj

We remind that the conditional variance of the portfolio loss is equal to:

σ2 (L | X) =
nC∑
j=1

∑
i∈Cj

EAD2
i ×
(
E2
i pi (X) (1− pi (X)) + σ2 (LGDi) pi (X)

)
It follows that the expression of the unconditional variance is:

σ2 (L) = σ2 (E [L | X]) + E
[
σ2 (L | X)

]
= σ2

 nC∑
j=1

∑
i∈Cj

EADiEipi (X)


︸ ︷︷ ︸
Contribution of the systematic risk

+

E

 nC∑
j=1

∑
i∈Cj

EAD2
i

(
E2
i pi (X) (1− pi (X)) + σ2 (LGDi) pi (X)

)
︸ ︷︷ ︸

Contribution of the idiosyncratic risk

and:

σ2 (L) = σ2

 nC∑
j=1

EAD? sCjECjpCj (X)


︸ ︷︷ ︸

Contribution of the systematic risk

+

nC∑
j=1

(
pCj (X)

(
1− pCj (X)

)
− σ2 (pCj (X)

))∑
i∈Cj

EAD2
i E

2
i


︸ ︷︷ ︸

Contribution of the idiosyncratic default risk

+

nC∑
j=1

pCj

∑
i∈Cj

EAD2
i σ

2 (LGDi)


︸ ︷︷ ︸
Contribution of the idiosyncratic LGD

For the homogenous portfolio w?, we have:

σ2 (L?) = σ2 (EAD?E?p? (X)) + (EAD?)2

n?
×(

(E?)2 (
p? (1− p?)− σ2 (p? (X))

)
+ σ2 (LGD?) p?

)
In the CreditRisk+ model, we have:

pi (X) = pi (1 +$i (X − 1))
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We have already used the property that E [pi (X)] = pi, which implies that E [X] = 1.
For the variance, we have:

σ2 (pi (X)) = p2
i$

2
i σ

2 (X)

The calibration of the systematic risk implies that the factor weight $? is equal to:

$? =
∑nC
j=1 pCj$CjECjsCj

p?E?

=
∑nC
j=1 pCj$CjECjsCj∑nC
j=1 pCjECjsCj

For the idiosyncratic default risk, we have:

n? = E?
2
p? (1− p?)− (p?$?σ (X))2

∑nC
j=1E

2
Cj

(
pCj
(
1− pCj

)
−
(
pCj$Cjσ (X)

)2) ∑i∈Cj
(EADi Ei)2(

EAD? ECj

)2

We use the following equalities:∑
i∈Cj (EADiEi)2(
EAD?ECj

)2 =
∑
i∈Cj (EADiEi)2(

EAD?

∑
i∈Cj

Ei EADi∑
i∈Cj

EADi

)2

=
∑
i∈Cj (EADiEi)2(∑
i∈Cj Ei × EADi

)2

( ∑
i∈Cj EADi∑nC

j′=1
∑
i∈Cj′

EADi

)2

= HCs
2
C

where HC is the Herfindahl defined by the following expression8:

HC =
∑
i∈C (EADi×Ei)2(∑
i∈C EADi×Ei

)2
Finally, the expression of n? is equal to:

n? = 1∑nC
j=1 ΛCjHCjs2

Cj

where:

ΛCj =
E2
Cj

(
pCj
(
1− pCj

)
−
(
pCj$Cjσ (X)

)2)
(E?)2

(
p? (1− p?)− (p?$?σ (X))2

)
We retrieve the expression of n? given by the Basel Committee (BCBS, 2001a, §445).

8We do not obtained the same result than Gordy (2003), who finds that:

HCj =

∑
i∈Cj

EAD2
i(∑

i∈Cj
EADi

)2
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However, there is a difference between the analysis of Gordy (2003) and the formula
ΛCj proposed by the Basel Committee. In BCBS (2001a), the calibration of n? uses
both the idiosyncratic default risk and the idiosyncratic loss given default. In this
case, we have:

ΛCj =
E2
Cj

(
pCj
(
1− pCj

)
−
(
pCj$Cjσ (X)

)2)+ pCjσ
2 (LGDCj

)
(E?)2

(
p? (1− p?)− (p?$?σ (X))2

)
+ p?σ2 (LGD?)

Using the hypothesis of the Basel Committee – σ (X) = 2, we have:

(pi$iσ (X))2 =
(

σ (X)
(xα − 1)Fi

)2
= 4F 2

i

(xα − 1)2

For X ∼ G (0.25; 4), we have already shown that xα = 12.007243. We obtain:

(pi$iσ (X))2 = 0.033014360× F 2
i

We remind that:
σ (LGDi) = 1

2
√
Ei (1− Ei)

Finally, we obtain the expression of the Basel Committee:

ΛCj =
E2
Cj

(
pCj
(
1− pCj

)
− 0.033× F 2

Cj

)
+ 0.25× pCjECj

(
1− ECj

)
(E?)2

(
p? (1− p?)− 0.033× (F ?)2

)
+ 0.25× p?E? (1− E?)

where:

FCj = Φ
(

Φ−1 (pCj)+√ρΦ−1 (α)
√

1− ρ

)
− pCj

and F ? =
∑nC
j=1 sCjFCj .

7. For calculating the granularity adjustment, we proceed in two steps:

• In the first step, we transform the current portfolio into an equivalent homoge-
nous portfolio:

sCj =
∑
i∈Cj EADi∑nC

j=1
∑
i∈Cj EADi

PDAG =
nC∑
j=1

sCj × PDCj

LGDAG =
∑nC
j=1 sCj × PDCj ×LGDCj∑nC

j=1 sCj × PDCj

where PDCj is the default probability of Class Cj and LGDCj is the average loss
given default of Class Cj :

LGDCj =
∑
i∈Cj EADi×LGDi∑

i∈Cj EADi
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Then, we calculate

FAG =
nC∑
j=1

sCj × FCj

where FCj is the unit unexpected loss of Class Cj :

FCj = Φ
(

Φ−1 (PDCj
)

+√ρΦ−1 (α)
√

1− ρ

)
− PDCj

The equivalent number of loans n? is the inverse of the Herfindahl H? index:

n? = 1
H?

= 1∑nC
j=1ACj ×HCj × s2

Cj

where:

HCj =
∑
i∈Cj EAD2

i(∑
i∈Cj EADi

)2

ACj is calculated as follows:

ACj =
LGD2

Cj

(
BCj − 0.033F 2

Cj

)
+ 1

4BCj LGDCj
LGD2

AG (BAG − 0.033F 2
AG) + 1

4BAG

where:
Bi = PDi (1− PDi)

• In the second step, we calculate the granularity scale factor:

GSF = (0.6 + 1.8× LGDAG)×
(

9.5 + 13.75× PDAG

FAG

)
Finally, the granularity adjustment is equal to:

GA = TNRE×GSF
n?

− 0.04× RWANR

where TNRE is the total non-retail exposure and RWANR is the total non-retail
risk-weighted assets.

3.4.8 Variance of the conditional portfolio loss
1. Di (X) is a Bernoulli random variable with parameter pi (X). We have E [Di (X)] =
pi (X). By definition, the probability distribution of D2

i (X) is the same than the prob-
ability distribution of Di (X). It follows that D2

i (X) is a Bernoulli random variable
with parameter pi (X). Since Di (X) and Dj (X) are independent because the default
times are conditionally independent in the Basel II model, we obtain:

E [Di (X)Dj (X)] = E [Di (X)]E [Dj (X)]
= pi (X) pj (X)

2. We have:

L (X) =
n∑
i=1

wi LGDiDi (X)
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3. We have:

E [L (X)] = E

[
n∑
i=1

wi LGDiDi (X)
]

=
n∑
i=1

wiE [LGDi]E [Di (X)]

=
n∑
i=1

wiE [LGDi] pi (X)

4. We have:(
n∑
i=1

wi LGDiDi (X)
)2

=
n∑
i=1

w2
i LGD2

i D
2
i (X) +

∑
i6=j

wiwi LGDi LGDj Di (X)Dj (X)

and:

E
[
L2 (X)

]
= E

( n∑
i=1

wi LGDiDi (X)
)2


=
n∑
i=1

w2
iE
[
LGD2

i

]
E
[
D2
i (X)

]
+
∑
i6=j

wiwiE [LGDi]E [LGDj ]E [Di (X)]E [Dj (X)]

We also have:

E2 [L (X)] =
(

n∑
i=1

wiE [LGDi] pi (X)
)2

=
n∑
i=1

w2
iE2 [LGDi] p2

i (X) +
∑
i 6=j

wiwjE [LGDi]E [LGDj ] pi (X) pj (X)

We deduce that:

σ2 (L (X)) = E
[
L2 (X)

]
− E2 [L (X)]

=
n∑
i=1

w2
iE
[
LGD2

i

]
E
[
D2
i (X)

]
−

n∑
i=1

w2
iE2 [LGDi] p2

i (X) +∑
i 6=j

wiwiE [LGDi]E [LGDj ]E [Di (X)]E [Dj (X)]−

∑
i 6=j

wiwjE [LGDi]E [LGDj ] pi (X) pj (X)

=
n∑
i=1

w2
iE
[
LGD2

i

]
E
[
D2
i (X)

]
−

n∑
i=1

w2
iE2 [LGDi] p2

i (X) +∑
i 6=j

wiwjE [LGDi]E [LGDj ] cov (Di (X) , Dj (X))

=
n∑
i=1

w2
i

(
E
[
LGD2

i

]
E
[
D2
i (X)

]
− E2 [LGDi] p2

i (X)
)
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because cov (Di (X) , Dj (X)) = 0. It follows that:

σ2 (L (X)) =
n∑
i=1

w2
i

(
E
[
LGD2

i

]
pi (X)− E2 [LGDi] p2

i (X)
)

If we note E
[
LGD2

i

]
= σ2 (LGDi) + E2 [LGDi], we obtain:

E
[
LGD2

i

]
pi (X) = σ2 (LGDi) pi (X) + E2 [LGDi] pi (X)

and:

σ2 (L (X)) =
n∑
i=1

w2
i

(
σ2 (LGDi) pi (X) + E2 [LGDi] pi (X) (1− pi (X))

)
Another expression is:

σ2 (L (X)) =
n∑
i=1

w2
i

(
E [Di (X)]σ2 (LGDi) + E2 [LGDi]σ2 (Di (X))

)
because E [Di (X)] = pi (X) and σ2 (Di (X)) = pi (X) (1− pi (X)).





Chapter 4
Counterparty Credit Risk and Collateral
Risk

4.4.1 Impact of netting agreements in counterparty credit risk
1. (a) Let MtMA (C) and MTMB (C) be the MtM values of Bank A and Bank B for

the contract C. We must theoretically verify that:

MtMA+B (C) = MTMA (C) + MTMB (C)
= 0 (4.1)

In the case of listed products, the previous relationship is verified. In the case of
OTC products, there are no market prices, forcing the bank to use pricing models
for the valuation. The MTM value is then a mark-to-model price. Because the
two banks do not use the same model with the same parameters, we note a
discrepancy between the two mark-to-market prices:

MTMA (C) + MTMB (C) 6= 0

For instance, we obtain:

MTMA+B (C1) = 10− 11 = −1
MTMA+B (C2) = −5 + 6 = 1
MTMA+B (C3) = 6− 3 = 3
MTMA+B (C4) = 17− 12 = 5
MTMA+B (C5) = −5 + 9 = 4
MTMA+B (C6) = −5 + 5 = 0
MTMA+B (C7) = 1 + 1 = 2

Only the contract C6 satisfies the relationship (4.1).
(b) We have:

EAD =
7∑
i=1

max (MTM (Ci) , 0)

We deduce that:

EADA = 10 + 6 + 17 + 1 = 34
EADB = 6 + 9 + 5 + 1 = 21

(c) If there is a global netting agreement, the exposure at default becomes:

EAD = max
( 7∑
i=1

MTM (Ci) , 0
)
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Using the numerical values, we obtain:

EADA = max (10− 5 + 6 + 17− 5− 5 + 1, 0)
= max (19, 0)
= 19

and:

EADB = max (−11 + 6− 3− 12 + 9 + 5 + 1, 0)
= max (−5, 0)
= 0

(d) If the netting agreement only concerns equity contracts, we have:

EAD = max
( 3∑
i=1

MTM (Ci) , 0
)

+
7∑
i=4

max (MTM (Ci) , 0)

It follows that:

EADA = max(10− 5 + 6, 0) + 17 + 1 = 29
EADB = max(−11 + 6− 3, 0) + 9 + 5 + 1 = 15

2. (a) The potential future exposure e1 (t) is defined as follows:

e1 (t) = max (x1 + σ1W1 (t) , 0)

We deduce that:

E [e1 (t)] =
∫ ∞
−∞

max (x, 0) f (x) dx

=
∫ ∞

0
xf (x) dx

where f (x) is the density function of MtM1 (t). As we have MtM1 (t) ∼
N
(
x1, σ

2
1t
)
, we deduce that:

E [e1 (t)] =
∫ ∞

0

x

σ1
√

2πt
exp

(
−1

2

(
x− x1

σ1
√
t

)2
)

dx

With the change of variable y = σ−1
1 t−1/2 (x− x1), we obtain:

E [e1 (t)] =
∫ ∞
−x1
σ1
√
t

x1 + σ1
√
ty√

2π
exp

(
−1

2y
2
)

dy

= x1

∫ ∞
−x1
σ1
√
t

φ (y) dy + σ1
√
t

∫ ∞
−x1
σ1
√
t

yφ (y) dy

= x1Φ
(

x1

σ1
√
t

)
+ σ1

√
t
[
− φ (y)

]∞
−x1
σ1
√
t

= x1Φ
(

x1

σ1
√
t

)
+ σ1

√
tφ

(
x1

σ1
√
t

)
because φ (−x) = φ (x) and Φ (−x) = 1− Φ (x).
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(b) When there is no netting agreement, we have:

e (t) = e1 (t) + e2 (t)

We deduce that:

E [e (t)] = E [e1 (t)] + E [e2 (t)]

= x1Φ
(

x1

σ1
√
t

)
+ σ1

√
tφ

(
x1

σ1
√
t

)
+

x2Φ
(

x2

σ2
√
t

)
+ σ2

√
tφ

(
x2

σ2
√
t

)
(c) In the case of a netting agreement, the potential future exposure becomes:

e (t) = max (MtM1 (t) + MtM2 (t) , 0)
= max (MtM1+2 (t) , 0)
= max (x1 + x2 + σ1W1 (t) + σ2W2 (t) , 0)

We deduce that:

MtM1+2 (t) ∼ N
(
x1 + x2,

(
σ2

1 + σ2
2 + 2ρσ1σ2

)
t
)

Using results of Question 2(a), we finally obtain:

E [e (t)] = (x1 + x2) Φ
(

x1 + x2√
(σ2

1 + σ2
2 + 2ρσ1σ2) t

)
+

√
(σ2

1 + σ2
2 + 2ρσ1σ2) tφ

(
x1 + x2√

(σ2
1 + σ2

2 + 2ρσ1σ2) t

)

(d) We have represented the expected exposure E [e (t)] in Figure 4.1 when x1 =
x2 = 0 and σ1 = σ2. We note that it is an increasing function of the time t
and the volatility σ. We also observe that the netting agreement may have a big
impact, especially when the correlation is low or negative.

4.4.2 Calculation of the effective expected positive exposure
1. We have e (t) = max (MTM (t) , 0) where MTM (t) is the mark-to-market price of the

OTC contract at the future date t. We note F[0,t] the cumulative distribution function
of the random variable e (t). The peak exposure is the quantile α of F[0,t]:

PEα (t) = F−1
[0,t] (α)

The maximum peak exposure is the maximum value of PEα (t):

MPEα (0; t) = sup
s

PEα (s)

The expected exposure is the average of the potential future exposure:

EE (t) = E [e (t)] =
∫
xdF[0,t] (x)
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FIGURE 4.1: Expected exposure E [e (t)] when there is a netting agreement

We define the expected positive exposure as the weighted average over time of the
expected exposure for a given holding period [0, t]:

EPE (0; t) = 1
t

∫ t

0
EE (s) ds

The effective expected exposure is the maximum expected exposure which occurs
before the date t:

EEE (t) = sup
s≤t

EE (s)

= max
(
EEE

(
t−
)
,EE (t)

)
The effective expected positive exposure is the weighted average of effective expected
exposure for a given time period [0, t]:

EEPE (0; t) = 1
t

∫ t

0
EEE (s) ds

2. We have:

F[0,t] (x) = Pr {e (t) ≤ x}

= Pr
{
σ
√
tX ≤ x

}
= Pr

{
X ≤ x

σ
√
t

}
= x

σ
√
t
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with x ∈
[
0, σ
√
t
]
. We deduce that:

PEα (0; t) = ασ
√
t

MPEα (0;T ) = ασ
√
T

EE (t) =
∫ σ
√
t

0
x

1
σ
√
t

dx = σ
√
t

2

EPE (0; t) = 1
t

∫ t

0

σ
√
s

2 ds = σ
√
t

3

EEE (t) = σ
√
t

2

EEPE (0; t) = 1
t

∫ t

0

σ
√
s

2 ds = σ
√
t

3

3. We have:

F[0,t] (x) = Pr
{
eσ
√
tX ≤ x

}
= Φ

(
ln x
σ
√
t

)
with x ∈ [0,∞]. We deduce that:

PEα (t) = exp
(
σΦ−1 (α)

√
t
)

MPEα (0;T ) = exp
(
σΦ−1 (α)

√
T
)

EE (t) = exp
(

1
2σ

2t

)
EPE (0; t) =

(
exp

(
1
2σ

2t

)
− 1
)/(

1
2σ

2t

)
EEE (t) = exp

(
1
2σ

2t

)
EEPE (0; t) =

(
exp

(
1
2σ

2t

)
− 1
)/(

1
2σ

2t

)
4. We have:

F[0,t] (x) = x

σ
(
t3 − 7

3Tt
2 + 4

3T
2t
)

with x ∈
[
0, σ

(
t3 − 7

3Tt
2 + 4

3T
2t
)]
. We deduce that:

PEα (0) = ασ

(
t3 − 7

3Tt
2 + 4

3T
2t

)
MPEα (0; t) = 1 {t < t?} × PFEα (0; t) + 1 {t ≥ t?} × PFEα (0; t?)

EE (t) = 1
2σ
(
t3 − 7

3Tt
2 + 4

3T
2t

)
EPE (0; t) = σ

(
9t3 − 28Tt2 + 24T 2t

72

)
EEE (t) = 1 {t < t?} × EE (t) + 1 {t ≥ t?} × EE (t?)
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EEPE (0; t) = 1
t

∫ t

0
EEE (s) ds

with:
t? =

(
7−
√

13
9

)
T

This question is more difficult than the previous ones, because e (t) is not a mono-
tonically increasing function. It is increasing when t < t?1 and then decreasing1. This
explains that MPEα (0; t) and EEE (t) depends on the parameter t?.

5. The cumulative distribution function of X is:

F (x) = Pr {X ≤ x}

=
∫ x

0

ua

a+ 1du

= xa+1

We deduce that:

F[0,t] (x) = Pr {e (t) ≤ x}

= Pr
{
σ
√
tX ≤ x

}
= Pr

{
X ≤ x

σ
√
t

}
=

(
x

σ
√
t

)a+1

and:
f[0,t] (x) = (a+ 1)xa(

σ
√
t
)a+1

It follows that:
PEα (t) = α1/(a+1)σ

√
t

and:
MPEα (0;T ) = α1/(a+1)σ

√
T

The expected exposure is:

EE (t) =
∫ σ
√
t

0
x

(a+ 1)xa(
σ
√
t
)a+1 de = (a+ 1)σ

√
t

a+ 2

We deduce that:
EEE (t) = (a+ 1)σ

√
t

a+ 2
and:

EEPE (0; t) = 1
t

∫ t

0

(a+ 1)σ
√
s

a+ 2 ds = 2 (a+ 1)σ
√
t

3 (a+ 2)
1In fact, there is a second root:

t?2 =
(

7 +
√

13
9

)
T

We observe that e (t) can take a negative value when t is in the neighborhood of this solution. We ignore
this problem to calculate the different measures.
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6. In Figures 4.2 and 4.3, we have reported the functions EE (t), EPE (0; t), EEE (t)
and EEPE (0; t) for the two exposures given in Questions 3 and 5. We notice that
the second exposure has the profile of an amortizing swap where the first exposure is
more like an option profile.

FIGURE 4.2: Credit exposure when e (t) = exp
(
σ
√
tN (0, 1)

)

4.4.3 Calculation of the required capital for counterparty credit risk

1. We have:

F[0,t] (x) = Pr {e (t) ≤ x}

= Pr
{
Nσ
√
tU ≤ x

}
= Pr

{
U ≤ x

Nσ
√
t

}
=

(
x

Nσ
√
t

)γ

with x ∈
[
0, Nσ

√
t
]
. We deduce that:

PEα (t) = F−1
[0,t] (α)

= Nσ
√
tα1/γ
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FIGURE 4.3: Credit exposure when e (t) = σ
(
t3 − 7

3Tt
2 + 4

3T
2t
)
U[0,1]

For the expected exposure, we obtain:

EE (t) = E [e (t)]

=
∫ Nσ

√
t

0
x

γ(
Nσ
√
t
)γ xγ−1 dx

= γ(
Nσ
√
t
)γ [ xγ+1

γ + 1

]Nσ√t
0

= γ

γ + 1Nσ
√
t

We deduce that:
EEE (t) = γ

γ + 1Nσ
√
t

and:

EEPE (0; t) = 1
t

∫ t

0
EEE (s) ds

= 1
t

∫ t

0

γ

γ + 1Nσ
√
sds

= γ

γ + 1Nσ
1
t

[
2
3s

3/2
]t

0

= 2γ
3 (γ + 1)Nσ

√
t

2. (a) When the bank uses an internal model, the regulatory exposure at default is:

EAD = α× EEPE (0; 1)
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Using the standard value α = 1.4, we obtain:

EAD = 1.4× 4
9 × 3× 106 × 0.20

= $373 333

(b) While the bank uses the FIRB approach, the required capital is:

K = EAD×E [LGD]×
(

Φ
(Φ−1 (PD) +√ρΦ−1 (99.9%)

√
1− ρ

)
− PD

)
When ρ is equal to 20%, we have:

Φ−1 (PD) +√ρΦ−1 (99.9%)
√

1− ρ
= −2.33 +

√
0.20× 3.09√

1− 0.20
= −1.06

By using the approximations −1.06 ' 1 and Φ (−1) ' 0.16, we obtain:

K = 373 333× 0.70× (0.16− 0.01)
= $39 200

The required capital of this OTC product for counterparty credit risk is then
equal to $39 200.

4.4.4 Calculation of CVA and DVA measures
1. The positive exposure e+ (t) is the maximum between zero and the mark-to-market

value:

e+ (t) = max (0,MtM (t))

= max
(

0, Nσ
√
tX
)

We have:

F[0,t] (x) = Pr
{
e+ (t) ≤ x

}
= Pr

{
max

(
0, Nσ

√
tX
)
≤ x

}
We notice that:

max
(

0, Nσ
√
tX
)

=
{

0 if X ≤ 0
Nσ
√
tX otherwise

By assuming that x ∈
[
0, Nσ

√
t
]
, we deduce that:

F[0,t] (x) = Pr
{
e+ (t) ≤ x,X ≤ 0

}
+ Pr

{
e+ (t) ≤ x,X > 0

}
= Pr {0 ≤ x,X ≤ 0}+ Pr

{
Nσ
√
tX ≤ x,X > 0

}
= 1

2 + 1
2 Pr

{
Nσ
√
tU ≤ x

}
= 1

2 + 1
2 Pr

{
U ≤ x

Nσ
√
t

}
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where U is the standard uniform random variable. We finally obtain the following
expression:

F[0,t] (x) = 1
2 + x

2Nσ
√
t

If x ≤ 0 or x ≥ Nσ
√
t, it is easy to show that F[0,t] (x) = 0 and F[0,t] (x) = 1.

2. The expected positive exposure EpE (t) is defined as follows:

EpE (t) = E
[
e+ (t)

]
Using the expression of F[0,t] (x), it follows that the density function of e+ (t) is equal
to:

f[0,t] (x) =
∂ F[0,t] (x)

∂ x

= 1
2Nσ

√
t

We deduce that:

EpE (t) =
∫ Nσ

√
t

0
xf[0,t] (x) dx

=
∫ Nσ

√
t

0

x

2Nσ
√
t

dx

=
[

x2

4Nσ
√
t

]Nσ√t
0

= Nσ
√
t

4
3. By definition, we have:

CVA = (1−RB)×
∫ T

0
−B0 (t) EpE (t) dSB (t)

4. The interest rates are equal to zero meaning that B0 (t) = 1. Moreover, we have
SB (t) = e−λBt. We deduce that:

CVA = (1−RB)×
∫ T

0

Nσ
√
t

4 λBe
−λBt dt

= NλB (1−RB)σ
4

∫ T

0

√
te−λBt dt

The definition of the incomplete gamma function is:

γ (s, x) =
∫ x

0
ts−1e−t dt

By considering the change of variable y = λBt, we obtain:∫ T

0

√
te−λBt dt =

∫ λBT

0

√
y

λB
e−y

dy
λB

= 1
λ

3/2
B

∫ λBT

0
y

3/2−1e−y dy

=
γ
( 3

2 , λBT
)

λ
3/2
B
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It follows that:
CVA =

N (1−RB)σγ
( 3

2 , λBT
)

4
√
λB

5. The CVA is proportional to the notional N of the OTC contract, the loss given
default (1−RB) of the counterparty and the volatility σ of the underlying asset. It is
an increasing function of the maturity T because we have γ

( 3
2 , λBT2

)
> γ

( 3
2 , λBT1

)
when T2 > T1. If the maturity is not very large (less than 10 years), the CVA is an
increasing function of the default intensity λB . The limit cases are2:

lim
λB→∞

CVA = lim
λB→∞

N (1−RB)σγ
( 3

2 , λBT
)

4
√
λB

= 0

and:
lim
T→∞

CVA =
N (1−RB)σΓ

( 3
2
)

4
√
λB

When the counterparty has a high default intensity, meaning that the default is im-
minent, the CVA is equal to zero because the mark-to-market value is close to zero.
When the maturity is large, the CVA is a decreasing function of the intensity λB . In-
deed, the probability to observe a large mark-to-market in the future increases when
the default time is very far from the current date. We have illustrated these proper-
ties in Figure 4.4 with the following numerical values: N = $1 mn, RB = 40% and
σ = 30%.

FIGURE 4.4: Evolution of the CVA with respect to maturity T and intensity λB

6. We notice that the mark-to-market is perfectly symmetric about 0. We deduce that

2We have limx→∞ γ (s, x) = Γ (s).
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the expected negative exposure EnE (t) is equal to the expected positive exposure
EpE (t). It follows that the DVA is equal to:

DVA =
N (1−RA)σγ

( 3
2 , λAT

)
4
√
λA

4.4.5 Approximation of the CVA for an interest rate swap
1. We have:

Aex −B ≥ 0⇔ x ≥ x? = lnB − lnA

It follows that:

E
[
max

(
AeX −B, 0

)]
=

∫ ∞
−∞

max (Aex −B, 0) 1
σX

φ

(
x− µX
σX

)
dx

= A

∫ ∞
x?

ex
1
σX

φ

(
x− µX
σX

)
dx−

B

∫ ∞
x?

1
σX

φ

(
x− µX
σX

)
dx

By considering the change of variable y = σ−1
X (x− µX), we deduce that:

EpE (t) = A

∫ ∞
y?

eµX+σXyφ (y) dy −B
∫ ∞
y?

φ (y) dy

where y? = σ−1
X (x? − µX). We have:

A

∫ ∞
y?

eµX+σXyφ (y) dy = AeµX
∫ ∞
y?

1√
2π
e−

1
2y

2+σXy dy

= AeµX+ 1
2σ

2
X

∫ ∞
y?

1√
2π
e−

1
2 (y−σX)2

dy

= AeµX+ 1
2σ

2
X

∫ ∞
y?−σX

1√
2π
e−

1
2 z

2
dz

= AeµX+ 1
2σ

2
X (1− Φ (y? − σX))

= AeµX+ 1
2σ

2
XΦ

(
µX + σ2

X + lnA− lnB
σX

)
and:

B

∫ ∞
y?

φ (y) dy = BΦ (−y?)

= BΦ
(
µX + lnA− lnB

σX

)
Finally, we obtain:

EpE (t) = AeµX+ 1
2σ

2
XΦ

(
µX + σ2

X + lnA− lnB
σX

)
−

BΦ
(
µX + lnA− lnB

σX

)
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2. The mark-to-market is an approximation of a fixed-float IRS in continuous time by
assuming that the floating leg is constant, implying that the term structure of the
float rate is flat (Syrkin and Shirazi, 2015). The first term of the mark-to-market is
the floating leg, because the cash flows change with the time t, whereas the second
term is the fixed leg3:

MtM (t) = N

∫ T

t

f (t, T )Bt (s) ds︸ ︷︷ ︸
Floating leg

−N
∫ T

t

f (0, T )Bt (s) ds︸ ︷︷ ︸
Fixed leg

Since the instantaneous forward rate follows a geometric Brownian motion, we deduce
that:

f (0, T ) = f (0, T ) e(µ−
1
2σ

2)t+σW (t)

and:
f (0, T ) ∼ LN

(
ln f (0, T ) +

(
µ− 1

2σ
2
)
t, σ2t

)
We also have:

ϕ (t, T ) =
∫ T

t

Bt (s) ds

=
∫ T

t

e−r(s−t) ds

=
[
−e
−r(s−t)

r

]T
t

= 1− e−r(T−t)

r

It follows that:

MtM (t) = N (f (t, T )− f (0, T ))
∫ T

t

Bt (s) ds

= Nf (0, T )ϕ (t, T )
(
e(µ−

1
2σ

2)t+σW (t) − 1
)

The confidence interval of MtM (t) with confidence level α is defined by:

MtM (t) ∈ [q− (t;α) , q− (t;α)]

where:
q± (t;α) = Nf (0, T )ϕ (t, T )

(
e(µ−

1
2σ

2)t±σ√tΦ−1( 1−α
2 ) − 1

)
3. For the expected mark-to-market, we have:

E [MtM (t)] = Nf (0, T )ϕ (t, T )
(
e(µ−

1
2σ

2)tE
[
eσW (t)

]
− 1
)

= Nf (0, T )ϕ (t, T )
(
e(µ−

1
2σ

2)teσ
2t − 1

)
= Nf (0, T )ϕ (t, T )

(
eµt − 1

)
3f (0, T ) is known at time t = 0.
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For the expected counterparty exposure, we have:

E [e (t)] = E
[
max

(
f (0, T )

(
e(µ−

1
2σ

2)t+σW (t) − 1
)
, 0
)]

= E
[
max

((
f (0, T ) e(µ−

1
2σ

2)teσW (t) − f (0, T )
)
, 0
)]

= E
[
max

(
AeX −B, 0

)]
where A = Nf (0, T )ϕ (t, T ) e(µ−

1
2σ

2)t, B = Nf (0, T )ϕ (t, T ) and X ∼ N
(
0, σ2t

)
.

Since lnA− lnB =
(
µ− 1

2σ
2) t, we obtain:

EpE (t) = Ae
1
2σ

2tΦ
(
σ2t+ lnA− lnB

σ
√
t

)
−BΦ

(
lnA− lnB

σ
√
t

)
= Nf (0, T )ϕ (t, T )

(
eµtΦ (δ (t))− Φ

(
δ (t)− σ

√
t
))

where:
δ (t) =

(
µ

σ
+ 1

2σ
)√

t

4. We have:

CVA (t) = (1−R)×
∫ T

t

−Bt (u) EpE (u) dS (u)

= (1−R)×
∫ T

t

λe−(r+λ)(u−t) EpE (u) du

= s ×
∫ T

t

e−(r+λ)(u−t) EpE (u) du

where s is the credit spread of the counterparty.

5. Syrkin and Shirazi (2015) propose the following approximations: eµt − 1 ≈ µt,

Φ
((

µ

σ
+ 1

2σ
)√

t

)
≈ Φ

(
µ
√
t

σ

)
and:

Φ
((

µ

σ
+ 1

2σ
)√

t

)
− Φ

((
µ

σ
− 1

2σ
)√

t

)
≈ σ
√
tφ

(
µ
√
t

σ

)
We have:

(∗) = eµtΦ
((

µ

σ
+ 1

2σ
)√

t

)
− Φ

((
µ

σ
− 1

2σ
)√

t

)
=

(
eµt − 1

)
Φ
((

µ

σ
+ 1

2σ
)√

t

)
+

Φ
((

µ

σ
+ 1

2σ
)√

t

)
− Φ

((
µ

σ
− 1

2σ
)√

t

)
≈ µtΦ

(
µ
√
t

σ

)
+ σ
√
tφ

(
µ
√
t

σ

)
Therefore, an approximation of the CVA is:

CVA (t) ≈ s ×N × f (0, T )×
∫ T

t

g (u) du
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where:

g (u) = e−(r+λ)(u−t)ϕ (u, T )
(
µΦ
(
µ
√
u

σ

)
u+ σφ

(
µ
√
u

σ

)√
u

)
To calculate this approximation, we use a numerical integration method. Syrkin and
Shirazi (2015) provide a second approximation that does not require any integration,
but it seems to be less accurate.

FIGURE 4.5: Confidence interval of the mark-to-market

6. All the computations are done using a Gauss-Legendre quadrature of order 128.

(a) We have reported the 90% confidence interval of MtM (t) in Figure 4.5.
(b) The time profile of EpE (t) and E [MtM (t)] is shown in Figure 4.6. We verify that

EpE (t) > E [MtM (t)] and we retrieve the bell-shaped curve of IRS counterparty
exposure.

(c) In Figure 4.7, we observe that the approximation of the CVA gives good results.
(d) When we calculate the CVA, we consider a risk-neutral probability distribution

Q. This implies that µ = 0% is a more realistic value than µ = 2%.

4.4.6 Risk contribution of CVA with collateral
1. Since we have MtMi (t) = µi (t) + σi (t)Xi, we deduce that:

MtM (t) =
n∑
i=1

wi (µi (t) + σi (t)Xi)

=
n∑
i=1

wiµi (t) +
n∑
i=1

wiσi (t)Xi
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FIGURE 4.6: Comparison of EpE (t) and E [MtM (t)]

FIGURE 4.7: Approximation of the CVA
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Let µ (t) = (µ1 (t) , . . . , µn (t)) be the mean vector of (MtM1 (t) , . . . ,MtMn (t)). It
follows that the expected value µw (t) of the portfolio mark-to-market is equal to:

µw (t) = E [MtM (t)]

=
n∑
i=1

wiµi (t)

= w>µ (t)

We define the volatility σw (t) of the portfolio mark-to-market:

σ2
w (t) = var (MtM (t))

= var
(

n∑
i=1

wiσi (t)Xi

)

=
n∑
i=1

w2
i σ

2
i (t)E

[
X2
i

]
+
∑
j>i

wiwjσi (t)σj (t)E [XiXj ]

=
n∑
i=1

w2
i σ

2
i (t) +

∑
j>i

wiwjσi (t)σj (t) ρi,j

= w>Σ (t)w

where Σ (t) is the covariance matrix of (MtM1 (t) , . . . ,MtMn (t)) such that:

Σi,j (t) = ρi,jσi (t)σj (t)

It follows that:

MtM (t) =
n∑
i=1

wiµi (t) +
n∑
i=1

wiσi (t)Xi

= µw (t) + σw (t)X

where X ∼ N (0, 1). We deduce that the portfolio mark-to-market is a Gaussian
random variable:

MtM (t) ∼ N
(
µ2
w (t) , σ2

w (t)
)

2. We have:

γi (t) = cov (MtMi (t) ,MtM (t))√
var (MtMi (t)) var (MtM (t))

=
E
[
σi (t)Xi

∑n
j=1 wjσj (t)Xj

]
σi (t)σ (t)

=
E
[∑n

j=1 wjσj (t)XiXj

]
σ (t)

=
n∑
j=1

wjσj (t)
σ (t) ρi,j

It follows that:
Xi = γi (t)X +

√
1− γ2

i (t) εi (4.2)
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where the idiosyncratic risks εi ∼ N (0, 1) are independent and satisfy εi ⊥ X. We
verify that E [Xi] = 0 and:

σ2 (Xi) = γ2
i (t)σ2 (X) +

(
1− γ2

i (t)
)
σ2 (εi)

= γ2
i (t) + 1− γ2

i (t)
= 1

3. If we note e+ (t) = max (MtM (t)− C (t) , 0) and C (t) = max (MtM (t)−H, 0), the
expression of the counterparty exposure is equal to:

e+ (t) = max (MtM (t)−max (MtM (t)−H, 0) , 0)
= MtM (t) · 1 {0 ≤ MtM (t) < H}+H · 1 {MtM (t) ≥ H}

We have:

MtM (t) ≥ H ⇔ µw (t) + σw (t)x ≥ H

⇔ x ≥ x? (H) = H − µw (t)
σw (t)

and:
MtM (t) ≥ 0⇔ x ≥ x? (0) = −µw (t)

σw (t)
We deduce that:

EpE (t;w) =
∫ x?(H)

x?(0)
(µw (t) + σw (t)x)φ (x) dx+

H

∫ ∞
x?(H)

φ (x) dx

We have:

(∗) =
∫ x?(H)

x?(0)
(µw (t) + σw (t)x)φ (x) dx

= µw (t)
∫ x?(H)

x?(0)
φ (x) dx+ σw (t)

∫ x?(H)

x?(0)
xφ (x) dx

= µw (t) (Φ (x? (H))− Φ (x? (0))) + σw (t)
[
− 1√

2π
e−

1
2x

2
]x?(H)

x?(0)

= µw (t) (Φ (x? (H))− Φ (x? (0))) + σw (t) (φ (x? (0))− φ (x? (H)))

and: ∫ ∞
x?(H)

φ (x) dx = 1− Φ (x? (H))

Using the fact that Φ (x) + Φ (−x) = 1, we finally obtain the following expression:

EpE (t;w) = µw (t)
(

Φ
(
µw (t)
σw (t)

)
− Φ

(
µw (t)−H
σw (t)

))
+

σw (t)
(
φ

(
µw (t)
σw (t)

)
− φ

(
µw (t)−H
σw (t)

))
+

HΦ
(
µw (t)−H
σw (t)

)
(4.3)
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4. C (t) = 0 is equivalent to impose H = +∞. Indeed, we verify that:

C (t) = max (MtM (t)−H, 0)
= max (MtM (t)−∞, 0)
= 0

It follows that:

EpE (t;w) = µw (t) Φ
(
µw (t)
σw (t)

)
+ σw (t)φ

(
µw (t)
σw (t)

)
(4.4)

We have:
∂ µw (t)
∂ wi

= µi (t)

and:
∂ σw (t)
∂ wi

=
(Σ (t)w)i
σ (t)

= γi (t)σi (t)

because we have the following relationship between (Σ (t)w)i and γi (t):

(Σ (t)w)i =
n∑
j=1

ρi,jσi (t)σj (t)wj

= σi (t)σ (t)
n∑
j=1

wj
σj (t)
σ (t) ρi,j

= γi (t)σi (t)σ (t)

It follows that:
∂

∂ wi

(
µw (t)
σw (t)

)
= µi (t)

σw (t) −
µw (t)
σ3
w (t) (Σ (t)w)i

= µi (t)
σw (t) − γi (t)σi (t) µw (t)

σ2
w (t)

We deduce that:
∂

∂ wi
Φ
(
µw (t)
σw (t)

)
= φ

(
µw (t)
σw (t)

)
∂

∂ wi

(
µw (t)
σw (t)

)
and:

∂

∂ wi
φ

(
µw (t)
σw (t)

)
= −µw (t)

σw (t)φ
(
µw (t)
σw (t)

)
∂

∂ wi

(
µw (t)
σw (t)

)
because φ (x)′ = −xφ (x). Therefore, the expression of the marginal risk is equal to:

∂ EpE (t;w)
∂ wi

= µi (t) Φ
(
µw (t)
σw (t)

)
+

µw (t)φ
(
µw (t)
σw (t)

)
∂

∂ wi

(
µw (t)
σw (t)

)
+

γi (t)σi (t)φ
(
µw (t)
σw (t)

)
−

σw (t) µw (t)
σw (t)φ

(
µw (t)
σw (t)

)
∂

∂ wi

(
µw (t)
σw (t)

)
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Finally, the expression of the risk contribution is given by:

RCi = wi ·
∂ EpE (t;w)

∂ wi

= wi

(
µi (t) Φ

(
µw (t)
σw (t)

)
+ γi (t)σi (t)φ

(
µw (t)
σw (t)

))
(4.5)

We have:
n∑
i=1
RCi =

n∑
i=1

wiµi (t) Φ
(
µw (t)
σw (t)

)
+

n∑
i=1

wiγi (t)σi (t)φ
(
µw (t)
σw (t)

)

= Φ
(
µw (t)
σw (t)

) n∑
i=1

wiµi (t) + φ

(
µw (t)
σw (t)

) n∑
i=1

wiγi (t)σi (t)

= Φ
(
µw (t)
σw (t)

)
µw (t) + φ

(
µw (t)
σw (t)

)
σw (t)

= EpE (t;w)

because:

n∑
i=1

wiγi (t)σi (t) =
n∑
i=1

wi

 n∑
j=1

wjσj (t)
σ (t) ρi,j

σi (t)

=
∑n
i=1
∑n
j=1 wiwjρi,jσj (t)σi (t)

σ (t)

= σ2 (t)
σ (t)

= σ (t)

We conclude that the risk measure EpE (t;w) satisfies the Euler allocation principle.

5. We can write:
EpE (t;w) = E1 (t;w)− E2 (t;w) + E3 (t;w)

where:

E1 (t;w) = µw (t) Φ
(
µw (t)
σw (t)

)
+ σw (t)φ

(
µw (t)
σw (t)

)
E2 (t;w) = µw (t) Φ

(
µw (t)−H
σw (t)

)
+ σw (t)φ

(
µw (t)−H
σw (t)

)
E3 (t;w) = HΦ

(
µw (t)−H
σw (t)

)
We have:

∂

∂ wi

(
µw (t)−H
σw (t)

)
= ∂

∂ wi

(
µw (t)
σw (t)

)
−H ∂

∂ wi

(
1

σw (t)

)
= ∂

∂ wi

(
µw (t)
σw (t)

)
+H

(
γi (t)σi (t)
σ2
w (t)

)
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We deduce that:

∂

∂ wi
Φ
(
µw (t)−H
σw (t)

)
= φ

(
µw (t)−H
σw (t)

)
∂

∂ wi

(
µw (t)−H
σw (t)

)
= φ

(
µw (t)−H
σw (t)

)
∂

∂ wi

(
µw (t)
σw (t)

)
+

H

(
γi (t)σi (t)
σ2
w (t)

)
φ

(
µw (t)−H
σw (t)

)
and:

∂

∂ wi
φ

(
µw (t)−H
σw (t)

)
= −

(
µw (t)−H
σw (t)

)
φ

(
µw (t)−H
σw (t)

)
·

∂

∂ wi

(
µw (t)−H
σw (t)

)
We have:

∂ E2 (t;w)
∂ wi

= µi (t) Φ
(
µw (t)−H
σw (t)

)
+

µw (t)φ
(
µw (t)−H
σw (t)

)
∂

∂ wi

(
µw (t)−H
σw (t)

)
+

γi (t)σi (t)φ
(
µw (t)−H
σw (t)

)
−

(µw (t)−H)φ
(
µw (t)−H
σw (t)

)
∂

∂ wi

(
µw (t)−H
σw (t)

)
or:

∂ E2 (t;w)
∂ wi

= µi (t) Φ
(
µw (t)−H
σw (t)

)
+ γi (t)σi (t)φ

(
µw (t)−H
σw (t)

)
+

Hφ

(
µw (t)−H
σw (t)

)
∂

∂ wi

(
µw (t)−H
σw (t)

)
We have:

∂ E3 (t;w)
∂ wi

= Hφ

(
µw (t)−H
σw (t)

)
∂

∂ wi

(
µw (t)−H
σw (t)

)
It follows that the marginal is equal to:

∂ EpE (t;w)
∂ wi

= ∂ E1 (t;w)
∂ wi

− ∂ E2 (t;w)
∂ wi

+ ∂ E3 (t;w)
∂ wi

= µi (t) Φ
(
µw (t)
σw (t)

)
+ γi (t)σi (t)φ

(
µw (t)
σw (t)

)
−

µi (t) Φ
(
µw (t)−H
σw (t)

)
− γi (t)σi (t)φ

(
µw (t)−H
σw (t)

)
= µi (t)

(
Φ
(
µw (t)
σw (t)

)
− Φ

(
µw (t)−H
σw (t)

))
+

γi (t)σi (t)
(
φ

(
µw (t)
σw (t)

)
− φ

(
µw (t)−H
σw (t)

))
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The expression of the risk contribution is given by:

RCi = wiµi (t)
(

Φ
(
µw (t)
σw (t)

)
− Φ

(
µw (t)−H
σw (t)

))
+

wiγi (t)σi (t)
(
φ

(
µw (t)
σw (t)

)
− φ

(
µw (t)−H
σw (t)

))
(4.6)

We have:
n∑
i=1
RCi =

n∑
i=1

µi (t)
(

Φ
(
µw (t)
σw (t)

)
− Φ

(
µw (t)−H
σw (t)

))
+

n∑
i=1

wiγi (t)σi (t)
(
φ

(
µw (t)
σw (t)

)
− φ

(
µw (t)−H
σw (t)

))
+

= µw (t)
(

Φ
(
µw (t)
σw (t)

)
− Φ

(
µw (t)−H
σw (t)

))
+

σw (t)
(
φ

(
µw (t)
σw (t)

)
− φ

(
µw (t)−H
σw (t)

))
= EpE (t;w)−HΦ

(
µw (t)−H
σw (t)

)
These risk contributions do not satisfy the Euler allocation principle, meaning that it
is not possible to allocate the CVA capital according to Equation (4.6).

6. Type A Euler allocation is given by:

RCi = E [wi MtMi (t) · 1 {0 ≤ MtM (t) < H}] +

H · E [1 {MtM (t) ≥ H}] · E [wi MtMi (t) · 1 {MtM (t) ≥ H}]
E [MtM (t) · 1 {MtM (t) ≥ H}]

Using Equation (4.2), we have:

wi MtMi (t) = wiµi (t) + wiσi (t)Xi

= wiµi (t) + wiσi (t) γi (t)X + wiσi (t)
√

1− γ2
i (t) εi

Since εi ⊥ X, it follows that:

(∗) = E [wi MtMi (t) · 1 {0 ≤ MtM (t) < H}]
= E [wi (µi (t) + σi (t)Xi) · 1 {0 ≤ µw (t) + σw (t)X < H}]

=
∫ x?(H)

x?(0)
wiµi (t)φ (x) dx+

∫ x?(H)

x?(0)
wiσi (t) γi (t)xφ (x) dx+∫ x?(H)

x?(0)
E
[
wiσi (t)

√
1− γ2

i (t) εi
]

︸ ︷︷ ︸
=0

φ (x) dx

= wiµi (t)
(

Φ
(
µw (t)
σw (t)

)
− Φ

(
µw (t)−H
σw (t)

))
+

wiσi (t) γi (t)
(
φ

(
µw (t)
σw (t)

)
− φ

(
µw (t)−H
σw (t)

))
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and:

(∗) = E [1 {MtM (t) ≥ H}]
= E [1 {µw (t) + σw (t)X ≥ H}]

=
∫ ∞
x?(H)

φ (x) dx

= Φ
(
µw (t)−H
σw (t)

)
We also have:

(∗) = E [MtM (t) · 1 {MtM (t) ≥ H}]
= E [(µw (t) + σw (t)X) · 1 {µw (t) + σw (t)X ≥ H}]

=
∫ ∞
x?(H)

(µw (t) + σw (t)x)φ (x) dx

= µw (t) Φ
(
µw (t)−H
σw (t)

)
+ σw (t)φ

(
µw (t)−H
σw (t)

)
and:

(∗) = E [wi MtMi (t) · 1 {MtM (t) ≥ H}]
= E [wi (µi (t) + σi (t)Xi) · 1 {µw (t) + σw (t)X ≥ H}]

=
∫ ∞
x?(H)

wiµi (t)φ (x) dx+
∫ ∞
x?(H)

wiσi (t) γi (t)xφ (x) dx

= wiµi (t) Φ
(
µw (t)−H
σw (t)

)
+ wiσi (t) γi (t)φ

(
µw (t)−H
σw (t)

)
Finally, we obtain:

RCi = wiµi (t)
(

Φ
(
µw (t)
σw (t)

)
− Φ

(
µw (t)−H
σw (t)

))
+

wiγi (t)σi (t)
(
φ

(
µw (t)
σw (t)

)
− φ

(
µw (t)−H
σw (t)

))
+

HΦ
(
µw (t)−H
σw (t)

)
ψi
ψw

(4.7)

where:
ψi = wiµi (t) Φ

(
µw (t)−H
σw (t)

)
+ wiγi (t)σi (t)φ

(
µw (t)−H
σw (t)

)
and4:

ψw = µw (t) Φ
(
µw (t)−H
σw (t)

)
+ σw (t)φ

(
µw (t)−H
σw (t)

)
7. The type B Euler allocation is given by:

RCi = E [wi MtMi (t) · 1 {0 ≤ MtM (t) < H}] +

H · E
[
wi MtMi (t)

MtM (t) · 1 {MtM (t) ≥ H}
]

4We notice that ψw =
∑n

i=1 ψi.
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We have:

wi MtMi (t)
MtM (t) = wiµi (t) + wiσi (t) γi (t)X

µw (t) + σw (t)X + wiσi (t)
√

1− γ2
i (t)

µw (t) + σw (t)X εi

Since εi ⊥ X, it follows that:

(∗) = E
[
wi MtMi (t)

MtM (t) · 1 {MtM (t) ≥ H}
]

= E
[
wi (µi (t) + γi (t)σi (t)X)

µw (t) + σw (t)X · 1 {µw (t) + σw (t)X ≥ H}
]

+

E

[
wiσi (t)

√
1− γ2

i (t)
µw (t) + σw (t)X · 1 {µw (t) + σw (t)X ≥ H}

]
E [εi]

=
∫ ∞
x?(H)

wi

(
µi (t) + γi (t)σi (t)x
µw (t) + σw (t)x

)
φ (x) dx

Finally, we obtain:

RCi = wiµi (t)
(

Φ
(
µw (t)
σw (t)

)
− Φ

(
µw (t)−H
σw (t)

))
+

wiγi (t)σi (t)
(
φ

(
µw (t)
σw (t)

)
− φ

(
µw (t)−H
σw (t)

))
+

H

∫ ∞
x?(H)

wi

(
µi (t) + γi (t)σi (t)x
µw (t) + σw (t)x

)
φ (x) dx (4.8)

8. It follows that:

MtM (t) =
n∑
i=1

wi MtMi (t)

=
n∑
i=1

wiµi (t) +
n∑
i=1

wiσi (t)Xi

= µw (t) + σw (t)X

where X ∼ N (0, 1). The correlation between X and XB is given by:

%w (t) = cov (MtM (t) , XB)√
var (MtM (t)) var (XB)

=
E [
∑n
i=1 wiσi (t)XiXB ]

σ (t)

=
E [
∑n
i=1 wiσi (t) %iXBXB ]

σ (t) +
E
[∑n

i=1 wiσi (t)
√

1− %2
i ηiXB

]
σ (t)

=
n∑
i=1

wiσi (t)
σ (t) %i

We deduce that:
X = %w (t)XB +

√
1− %2

w (t) η (4.9)

where the idiosyncratic risk η ∼ N (0, 1) is independent from XB .
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9. Pykhtin and Rosen (2010) notice that all previous computations involve unconditional
expectations, implying that we can derive easily the expected counterparty exposure
E [e (t)] and the corresponding risk contributions RCi by replacing all unconditional
expectations E [Y ] where Y is a random variable (MtMi (t), MtM (t) and e (t)) by
conditional expectations E [Y | τ = t] where τ is the default time of the counterparty.
Following Redon (2006), this is equivalent to calculate the conditional expectation
with respect to the random variable XB :

E [Y | τ = t] = E [Y | XB = B (t)]

where B (t) = Φ−1 (1− S (t)) is the default barrier and S (t) is the survival function
of the counterparty. For conditional means, we have:

µi (t | τ = t) = µi (t) + %iσw (t)B (t)

and:
µw (t | τ = t) = µw (t) + %w (t)σw (t)B (t)

For conditional volatilities, it follows that:

σi (t | τ = t) =
√

1− %2
iσi (t)

and:
σw (t | τ = t) =

√
1− %2

w (t)σw (t)

Since the unconditional correlation γi (t) is equal to cov (Xi, X), we have:

γi (t) = E [Xi, X]

= E
[(
%iXB +

√
1− %2

i ηi

)(
%w (t)XB +

√
1− %2

w (t) η
)]

= %i%w (t) +
√

1− %2
i

√
1− %2

w (t)γi (t | τ = t)

where γi (t | τ = t) is the correlation between ηi and η or the conditional correlation:

γi (t | τ = t) = γi (t)− %i%w (t)√
1− %2

i

√
1− %2

w (t)

To compute EpE (t;w) = E [e+ (t) | τ = t] and RCi, we replace µi (t), µw (t), σi (t),
σw (t) and γi (t) by µi (t | τ = t), µw (t | τ = t), σi (t | τ = t), σw (t | τ = t) and
γi (t | τ = t) in Equations (4.3), (4.4) (4.5), (4.7) and (4.8).





Chapter 5
Operational Risk

5.4.1 Estimation of the severity distribution
1. (a) The density of the Gaussian distribution Y ∼ N

(
µ, σ2) is:

g (y) = 1
σ
√

2π
exp

(
−1

2

(
y − µ
σ

)2
)

Let X ∼ LN
(
µ, σ2). We have X = expY . It follows that:

f (x) = g (y)
∣∣∣∣dydx

∣∣∣∣
with y = ln x. We deduce that:

f (x) = 1
σ
√

2π
exp

(
−1

2

(
y − µ
σ

)2
)
× 1
x

= 1
xσ
√

2π
exp

(
−1

2

(
ln x− µ

σ

)2
)

(b) For m ≥ 1, the non-centered moment is equal to:

E [Xm] =
∫ ∞

0
xm

1
xσ
√

2π
exp

(
−1

2

(
ln x− µ

σ

)2
)

dx

By considering the change of variables y = σ−1 (ln x− µ) and z = y −mσ, we
obtain:

E [Xm] =
∫ ∞
−∞

emµ+mσy 1√
2π
e−

1
2y

2
dy

= emµ ×
∫ ∞
−∞

1√
2π
e−

1
2y

2+mσy dy

= emµ × e 1
2m

2σ2
×
∫ ∞
−∞

1√
2π
e−

1
2 (y−mσ)2

dy

= emµ+ 1
2m

2σ2
×
∫ ∞
−∞

1√
2π

exp
(
−1

2z
2
)

dz

= emµ+ 1
2m

2σ2

We deduce that:
E [X] = eµ+ 1

2σ
2

97
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and:

var (X) = E
[
X2]− E2 [X]

= e2µ+2σ2
− e2µ+σ2

= e2µ+σ2
(
eσ

2
− 1
)

We can estimate the parameters µ and σ with the generalized method of moments
by using the following empirical moments: hi,1 (µ, σ) = xi − eµ+ 1

2σ
2

hi,2 (µ, σ) =
(
xi − eµ+ 1

2σ
2
)2
− e2µ+σ2

(
eσ

2 − 1
)

(c) The log-likelihood function of the sample {x1, . . . , xn} is:

` (µ, σ) =
n∑
i=1

ln f (xi)

= −n2 ln σ2 − n

2 ln 2π −
n∑
i=1

ln xi −
1
2

n∑
i=1

(
ln xi − µ

σ

)2

To find the ML estimators µ̂ and σ̂, we can proceed in two different ways:
#1 X ∼ LN

(
µ, σ2) implies that Y = lnX ∼ N

(
µ, σ2). We know that the ML

estimators µ̂ and σ̂ associated to Y are:

µ̂ = 1
n

n∑
i=1

yi

σ̂ =

√√√√ 1
n

n∑
i=1

(yi − µ̂)2

We deduce that the ML estimators µ̂ and σ̂ associated to the sample
{x1, . . . , xn} are:

µ̂ = 1
n

n∑
i=1

ln xi

σ̂ =

√√√√ 1
n

n∑
i=1

(ln xi − µ̂)2

#2 We maximize the log-likelihood function:

{µ̂, σ̂} = arg max ` (µ, σ)

The first-order conditions are ∂µ ` (µ, σ) = 0 and ∂σ ` (µ, σ) = 0. We deduce
that:

∂µ ` (µ, σ) = 1
σ2

n∑
i=1

(ln xi − µ) = 0

and:

∂σ ` (µ, σ) = −n
σ

+
n∑
i=1

(ln xi − µ)2

σ3 = 0



Operational Risk 99

We finally obtain:

µ̂ = 1
n

n∑
i=1

ln xi

and:

σ̂ =

√√√√ 1
n

n∑
i=1

(ln xi − µ̂)2

2. (a) The probability density function is:

f (x) = ∂ Pr {X ≤ x}
∂ x

= α
x−(α+1)

x−α−

For m ≥ 1, we have:

E [Xm] =
∫ ∞
x−

xmα
x−(α+1)

x−α−
dx

= α

x−α−

∫ ∞
x−

xm−α−1 dx

= α

x−α−

[
xm−α

m− α

]∞
x−

= α

α−m
xm−

We deduce that:
E [X] = α

α− 1x−

and:

var (X) = E
[
X2]− E2 [X]

= α

α− 2x
2
− −

(
α

α− 1x−
)2

= α

(α− 1)2 (α− 2)
x2
−

We can then estimate the parameter α by considering the following empirical
moments:

hi,1 (α) = xi −
α

α− 1x−

hi,2 (α) =
(
xi −

α

α− 1x−
)2
− α

(α− 1)2 (α− 2)
x2
−

The generalized method of moments can consider either the first moment hi,1 (α),
the second moment hi,2 (α) or the joint moments (hi,1 (α) , hi,2 (α)). In the first
case, the estimator is:

α̂ =
∑n
i=1 xi∑n

i=1 xi − nx−
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(b) The log-likelihood function is:

` (α) =
n∑
i=1

ln f (xi)

= n lnα− (α+ 1)
n∑
i=1

ln xi + nα ln x−

The first-order condition is:

∂α ` (α) = n

α
−

n∑
i=1

ln xi +
n∑
i=1

ln x− = 0

We deduce that:

n = α

n∑
i=1

ln xi
x−

The ML estimator is then:

α̂ = n∑n
i=1 (ln xi − ln x−)

3. The probability density function of (iii) is:

f (x) = ∂ Pr {X ≤ x}
∂ x

= βαxα−1e−βx

Γ (α)
It follows that the log-likelihood function is:

` (α, β) =
n∑
i=1

ln f (xi)

= −n ln Γ (α) + nα ln β + (α− 1)
n∑
i=1

ln xi − β
n∑
i=1

xi

The first-order conditions ∂α ` (α, β) = 0 and ∂β ` (α, β) = 0 imply that:

n

(
ln β − Γ′ (α)

Γ (α)

)
+

n∑
i=1

ln xi = 0

and:

n
α

β
−

n∑
i=1

xi = 0

4. Let Y ∼ Γ (α, β) and X = expY . We have:

fX (x) |dx| = fY (y) |dy|

where fX and fY are the probability density functions of X and Y . We deduce that:

fX (x) = βαyα−1e−βy

Γ (α) × 1
ey

= βα (ln x)α−1
e−β ln x

xΓ (α)

= βα (ln x)α−1

Γ (α)xβ+1
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The support of this probability density function is [0,+∞). The log-likelihood function
associated to the sample of individual losses {x1, . . . , xn} is:

` (α, β) =
n∑
i=1

ln f (xi)

= −n ln Γ (α) + nα ln β + (α− 1)
n∑
i=1

ln (ln xi)− (β + 1)
n∑
i=1

ln xi

5. (a) Using Bayes’ formula, we have:

Pr {X ≤ x | X ≥ H} = Pr {H ≤ X ≤ x}
Pr {X ≥ H}

= F (x)− F (H)
1− F (H)

where F is the cdf of X. We deduce that the conditional probability density
function is:

f (x | X ≥ H) = ∂x Pr {X ≤ x | X ≥ H}

= f (x)
1− F (H) × 1 {x ≥ H}

For the log-normal probability distribution, we obtain:

f (x | X ≥ H) = 1
1− Φ

(
lnH−µ

σ

) × 1
σ
√

2π
e−

1
2 ( ln x−µ

σ )2

dx

= ϕ× 1
σ
√

2π
e−

1
2 ( ln x−µ

σ )2

dx

We noteMm (µ, σ) the conditional moment E [Xm | X ≥ H]. We have:

Mm (µ, σ) = ϕ×
∫ ∞
H

xm−1

σ
√

2π
e−

1
2 ( ln x−µ

σ )2

dx

= ϕ×
∫ ∞

lnH

1
σ
√

2π
e−

1
2 ( x−µσ )2+mx dx

= ϕ× emµ+ 1
2m

2σ2
×
∫ ∞

lnH

1
σ
√

2π
e−

1
2

(x−(µ+mσ2))2

σ2 dx

=
1− Φ

(
lnH−µ−mσ2

σ

)
1− Φ

(
lnH−µ

σ

) emµ+ 1
2m

2σ2

The two first moments of X | X ≥ H are then:

M1 (µ, σ) = E [X | X ≥ H] =
1− Φ

(
lnH−µ−σ2

σ

)
1− Φ

(
lnH−µ

σ

) eµ+ 1
2σ

2

and:

M2 (µ, σ) = E
[
X2 | X ≥ H

]
=

1− Φ
(

lnH−µ−2σ2

σ

)
1− Φ

(
lnH−µ

σ

) e2µ+2σ2
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We can therefore estimate µ and σ by considering the following empirical mo-
ments: {

hi,1 (µ, σ) = xi −M1 (µ, σ)
hi,2 (µ, σ) = (xi −M1 (µ, σ))2 −

(
M2 (µ, σ)−M2

1 (µ, σ)
)

(b) We have:

f (x | X ≥ H) = f (x)
1− F (H) × 1 {x ≥ H}

=
(
α
x−(α+1)

x−α−

)/(
H−α

x−α−

)

= α
x−(α+1)

H−α

The conditional probability function is then a Pareto distribution with the same
parameter α but with a new threshold x− = H. We can then deduce that the
ML estimator α̂ is:

α̂ = n

(
∑n
i=1 ln xi)− n lnH

(c) The conditional probability density function is:

f (x | X ≥ H) = f (x)
1− F (H) × 1 {x ≥ H}

=
(
βαxα−1e−βx

Γ (α)

)/∫ ∞
H

βαtα−1e−βt

Γ (α) dt

= βαxα−1e−βx∫∞
H
βαtα−1e−βt dt

We deduce that the log-likelihood function is:

` (α, β) = nα ln β − n ln
(∫ ∞

H

βαtα−1e−βt dt
)

+

(α− 1)
n∑
i=1

ln xi − β
n∑
i=1

xi

5.4.2 Estimation of the frequency distribution

1. We have:
Pr {N = n} = e−λY

λnY
n!

We deduce that the expression of the log-likelihood function is:

` (λY ) =
T∑
t=1

ln Pr {N = NYt}

= −λY T +
(

T∑
t=1

NYt

)
lnλY −

T∑
t=1

ln (NYt !)
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The first-order condition is:

∂ ` (λY )
∂ λY

= −T + 1
λY

(
T∑
t=1

NYt

)
= 0

We deduce that the ML estimator is:

λ̂Y = 1
T

T∑
t=1

NYt = n

T

2. Using the same arguments, we obtain:

λ̂Q = 1
4T

4T∑
t=1

NQt = n

4T = λ̂Y
4

3. Considering a quarterly or annual basis has no impact on the capital charge. Indeed,
the capital charge is computed with a one-year time horizon. If we use a quarterly
basis, we have to find the distribution of the annual loss number. In this case, the
annual loss number is the sum of the four quarterly loss numbers:

NY = NQ1 +NQ2 +NQ3 +NQ4

We know that each quarterly loss number follows a Poisson distribution P
(
λ̂Q

)
and

that they are independent. Because the Poisson distribution is infinitely divisible, we
obtain:

NQ1 +NQ2 +NQ3 +NQ4 ∼ P
(

4λ̂Q
)

We deduce that the annual loss number follows a Poisson distribution P
(
λ̂Y

)
in both

cases.

4. This result remains valid if we consider the first moment because the MM estimator
is exactly the ML estimator.

5. Since we have var (P (λ)) = λ, the MM estimator in the case of annual loss numbers
is:

λ̂Y = 1
T

T∑
t=1

N2
Yt −

n2

T 2

If we use a quarterly basis, we obtain:

λ̂Q = 1
4

(
1
T

4T∑
t=1

N2
Qt −

n2

4T 2

)

6= λ̂Y
4

There is no reason that λ̂Y = 4λ̂Q meaning that the capital charge will not be the
same.
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5.4.3 Using the method of moments in operational risk models
1. (a) By definition, we have Pr {N (t) = n} = e−λλn/n!. We deduce that:

E [N (t)] =
∞∑
n=0

n× Pr {N (t) = n}

=
∞∑
n=0

ne−λ
λn

n!

= λe−λ
∞∑
n=0

λn

n!
= λ

(b) We have:

E

[
m∏
i=0

(N (t)− i)
]

=
∞∑
n=0

m∏
i=0

(n− i) e−λλ
n

n!

=
∞∑
n=0

(n (n− 1) · · · (n−m)) e−λλ
n

n!

The term of the sum is equal to zero when n = 0, 1, . . . ,m. We obtain:

E

[
m∏
i=0

(N (t)− i)
]

=
∞∑

n=m+1
(n (n− 1) · · · (n−m)) e−λλ

n

n!

= e−λ
∞∑

n=m+1

λn

(n−m− 1)!

= λm+1e−λ
∞∑

n=m+1

λn−m−1

(n−m− 1)!

= λm+1e−λ
∞∑
n′=0

λn′

n′!

with n′ = n− (m+ 1). It follows that:

E

[
m∏
i=0

(N (t)− i)
]

= λm+1e−λeλ

= λm+1 (5.1)

We deduce that:

var (N (t)) = E
[
N (t)2

]
− E2 [N (t)]

= E
[
N (t)2 −N (t)

]
+ E [N (t)]− E2 [N (t)]

= E [N (t) (N (t)− 1)] + E [N (t)]− E2 [N (t)]

Using the formula (5.1) with m = 1, we finally obtain:

var (N (t)) = λ1+1 + λ− λ2

= λ
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(c) The estimator based on the first moment is:

λ̂ = 1
T

T∑
t=1

Nt

whereas the estimator based on the second moment is:

λ̂ = 1
T

T∑
t=1

(
Nt −

1
T

T∑
t=1

Nt

)2

2. (a) We have:

E [S] = E

N(t)∑
i=0

Xi


= E [N (t)]E [Xi]

= λ exp
(
µ+ 1

2σ
2
)

(b) Because (
∑n
i=1 xi)

2 =
∑n
i=1 x

2
i +

∑
i6=j xixj , it follows that:

E
[
S2] = E

N(t)∑
i=0

X2
i +

N(t)∑ N(t)∑
i 6=j

XiXj


= E [N (t)]E

[
X2
i

]
+ E [N (t) (N (t)− 1)]E [XiXj ]

= E [N (t)]E
[
X2
i

]
+
(
E
[
N (t)2

]
− E [N (t)]

)
E [Xi]E [Xj ]

We have:

E [N (t)] = λ

E
[
N (t)2

]
= var (N (t)) + E2 [N (t)] = λ+ λ2

and:

E
[
X2
i

]
= var (Xi) + E2 [Xi]

= e2µ+σ2
(
eσ

2
− 1
)

+
(
eµ+ 1

2σ
2
)2

= e2µ+2σ2

E [Xi]E [Xj ] = eµ+ 1
2σ

2
eµ+ 1

2σ
2

= e2µ+σ2

We deduce that:

E
[
S2] = λE

[
X2
i

]
+
(
λ+ λ2 − λ

)
E [Xi]E [Xj ]

= λE
[
X2
i

]
+ λ2E [Xi]E [Xj ]

= λe2µ+2σ2
+ λ2e2µ+σ2
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and:

var (S) = E
[
S2]− E2 [S]

= λe2µ+2σ2
+ λ2e2µ+σ2

− λ2
(
eµ+ 1

2σ
2
)2

= λe2µ+2σ2

(c) We have: {
E [S] = λeµ+ 1

2σ
2

var (S) = λe2µ+2σ2

We deduce that:
var (S)
E2 [S] = λe2µ+2σ2

λ2e2µ+σ2 = eσ
2

λ

It follows that:
σ2 = lnλ+ ln (var (S))− ln

(
E2 [S]

)
and:

µ = lnE [S]− lnλ− 1
2σ

2

= lnE [S] + 1
2 ln

(
E2 [S]

)
− 3

2 lnλ− 1
2 ln (var (S))

Let λ̂ be an estimated value of λ. We finally obtain:

µ̂ = lnmS + 1
2 lnm2

S −
3
2 ln λ̂− 1

2 ln vS

and
σ̂ =

√
ln λ̂+ ln vS − lnm2

S

where mS and vS are the empirical mean and variance of aggregated losses.

3. (a) We know that the duration d between two consecutive losses that are larger than
` is exponentially distributed with parameter λ (1− F (`)). We deduce that:

d ∼ E

(
λ

(
`

x_

)−α)

(b) We can ask experts to estimate the return time dj for several scenarios `j and
then calibrate the parameters λ and α using the method of moments and the
following moment conditions:

E [dj ]−
`αj
λxα−

= 0

5.4.4 Calculation of the Basel II required capital
1. In order to implement the historical value-at-risk, we first calculate the daily stock

returns:
Rt = Pt

Pt−1
− 1
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TABLE 5.1: Stock returns RA,s and RB,s (24 first historical scenarios)

RA,s
−2.01 −0.01 −0.73 −0.71 1.79 2.27 −0.15 −0.55
−0.43 1.01 0.05 0.32 2.08 −2.37 −0.55 2.57

0.29 −2.54 −0.03 0.00 −0.90 −0.03 1.96 −0.35
RB,s

0.35 −0.84 0.85 1.40 1.35 1.36 −1.45 −1.95
2.17 1.51 −0.69 1.87 −0.06 −1.61 −1.25 2.20
−1.07 −2.85 −0.99 −0.06 −2.34 −1.31 3.79 −1.46

where Pt is the stock price at time t. We report the return values for stocks A and B
in Table 5.1. These data are used to simulate the future P&L defined as follows:

Πs = 10 000× 105.5×RA,s +
25 000× 353.0×RB,s

where RA,s and RB,s are the stock returns of A and B for the sth historical scenario.
Table 5.2 gives the values taken by Πs. We then calculate the order statistics Πs:250
and deduce that the value-at-risk is equal to:

VaR99% (w) = 1
2 (323 072 + 314 695)

= $318 883

It follows that the required capital is equal to:

KMR = (3 + ξ)×
√

10×VaR99% (w)
= $3.53 mn

TABLE 5.2: Daily P&L (24 first historical scenarios)

Daily P&L Πs

9 972 −74 339 67 520 115 824 137 790 144 032
−129 857 −178 339 186 837 143 722 −60 767 168 780

16 234 −166 679 −116 117 221 553 −91 336 −278 402
−87 357 −5 671 −215 517 −116 172 354 813 −132 741

Order statistic Πs:250
−340 656 −323 072 −314 695 −278 402 −277 913 −275 118
−268 632 −259 781 −255 936 −252 509 −250 117 −249 523
−243 502 −218 295 −217 514 −217 327 −215 517 −211 382
−211 018 −208 061 −192 950 −192 603 −190 993 −189 410

2. We apply the IRB formulas with the right asset class exposure. For the bank meta-
credit, we have:

ρ (PD) = 12%× 1− e−50×1%

1− e−50 + 24%×
1−

(
1− e−50×1%)
1− e−50

= 19.28%
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Because the maturity of the meta-credit is one year, the maturity adjustment is equal
to 1. We deduce that:

K? = 75%× Φ
(

Φ−1 (1%) +
√

0.1928Φ−1 (99.9%)√
1− 0.1928

)
− 75%× 1%

= 9.77%

It follows that:
RW = 12.5× 9.77% = 122.13%

and:
RWA = 80× 122.13% = $97.70 mn

We finally obtain:
K = 8%× 97.70 = $7.82 mn

For the corporate meta-credit, we proceed in the same way, except that we have to
incorporate the maturity adjustment. We have:

b (PD) = (0.11852− 0.05478× ln (5%))2 = 7.99%

and:
ϕ (M) = 1 + (2− 2.5)× 0.0799

1− 1.5× 0.0799 = 1.0908

Using the IRB formula, we obtain K? = 15.35% and K = 30.69%. For the SME meta-
credit, we have to be careful when we calculate the correlation. Indeed, we have1:

ρSME (PD) = 12%× 1− e−50×2%

1− e−50 + 24%×
1−

(
1− e−50×2%)
1− e−50 −

4%×
(

1− (max (30, 5)− 5)
45

)
For mortgage and retail exposures, we use a one-year maturity. The default correlation
is set equal to 15% for the mortgage meta-credit whereas we consider the following
formula for the retail meta-credit:

ρ (PD) = 3%× 1− e−35×4%

1− e−35 + 16%×
1−

(
1− e−35×4%)
1− e−35

= 6.21%

All the results are reported in Table 5.3. At the bank level, we then obtain:

RWA = 97.70 + 383.65 + 55.95 + 97.87 + 122.80
= $757.98

and:

KCR = 7.82 + 30.69 + 4.48 + 7.83 + 9.82
= $60.64

1In order to simplify the calculation, we assume that the USD/EUR exchange rate is equal to 1.
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TABLE 5.3: Calculation of capital requirements for credit exposures
Exposure b (PD) ϕ (M) ρ (PD) K? RW RWA K
Bank 0.14 1.00 19.28% 9.77% 122.13% 97.70 7.82
Corporate 0.08 1.09 12.99% 15.35% 191.83% 383.65 30.69
SME 0.11 1.46 14.64% 8.95% 111.91% 55.95 4.48
Mortgage 15.00% 15.66% 195.74% 97.87 7.83
Retail 6.21% 9.82% 122.80% 122.80 9.82

3. We calculate the capital charge for operational risk by Monte Carlo methods. The loss
is equal to:

L =
N∑
i=1

Li

where Li ∼ LN (8, 4) and N can take two values (N = 5 or N = 10) with:

Pr {N = 5} = 60%
Pr {N = 10} = 40%

We first simulate the yearly number of operational lossesN by inverting the cumulative
density function:

Pr {N ≤ 5} = 60%
Pr {N ≤ 10} = 100%

Let us be a uniform random variate for the sth simulation. The simulated variate Ns
is defined as follows:

Ns =
{

5 if us ≤ 0.6
10 otherwise

Then, we have to simulate the operational losses L(s)
i using the probability integral

transform:

U = F (Li)

= Φ
(

lnLi − 8
2

)
It follows that:

Li = exp
(
8 + 2× Φ−1 (U)

)
Let u(s)

i be a uniform random variate. We have:

L
(s)
i = exp

(
8 + 2× Φ−1

(
u

(s)
i

))
Another way to simulate L(s)

i is to notice that Φ−1 (U) ∼ N (0, 1), meaning that:

L
(s)
i = exp

(
8 + 2× n(s)

i

)
where n(s)

i is a normal random variate N (0, 1). The simulated value of the aggregated
loss is then:

Ls =
Ns∑
i=1

L
(s)
i
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Let us consider an example. We assume that us = 0.2837. It follows that Ns = 5.
This means that we have to simulate five operational losses in the year. We obtain
the following figures:

i 1 2 3 4 5
u

(s)
i 0.4351 0.0387 0.2209 0.3594 0.5902

Φ−1
(
u

(s)
i

)
−0.1633 −1.7666 −0.7692 −0.3600 0.2282

L
(s)
i 2,150.26 8 7.09 6 40.05 1 451.02 4 704.84

The first loss experienced by the bank is $2 150.26, the second loss is equal to $87.09,
etc. We deduce that the yearly total loss is equal to $9 033.25:

Ls = 2 150.26 + 87.09 + 640.05 + 1 451.02 + 4 704.84
= $9 033.25

By considering nS simulated values of Ls, the capital charge for operational risk is
given by the 99.9% quantile:

VaR99.9% = L0.999nS :nS

For instance, if we consider one-million simulation runs, the capital charge corresponds
to the 999 000th order statistic. In our case, we estimate the capital charge with 250
millions of simulation runs and obtain:

KOR = $4.39 mn

Because the required capital is estimated using Monte Carlo methods, there is an
uncertainty on this number. For instance, we have reported the histogram of the VaR
estimator with one-million simulation runs in Figure 5.1. In this case, we obtain:

Pr {4.27 ≤ VaR99.9% ≤ 4.50} = 90%

4. We deduce that the capital ratio of the bank is equal to:

Cooke ratio = CBank

RWA +12.5×KMR + 12.5×KOR

= 70
757.98 + 12.5× 3.53 + 12.5× 4.39

= 8.17%

5.4.5 Parametric estimation of the loss severity distribution

1. We consider that the losses follow a log-logistic distribution.

(a) By definition, the probability density function is equal to:

f (x;α, β) = ∂ F (x;α, β)
∂ x
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FIGURE 5.1: Histogram of the VaR99.9% estimator with nS = 106

We deduce that:

f (x;α, β) =
(β/α) (x/α)β−1

(
1 + (x/α)β

)
(

1 + (x/α)β
)2 −

(x/α)β (β/α) (x/α)β−1(
1 + (x/α)β

)2

= (β/α) (x/α)β−1(
1 + (x/α)β

)2

(b) The definition of the log-likelihood function is:

` (α, β) =
n∑
i=1

ln f (xi;α, β)

We deduce that:

` (α, β) = n ln (β/α) + (β − 1)
n∑
i=1

ln (xi/α)− 2
n∑
i=1

ln
(

1 + (xi/α)β
)

= n ln β − nβ lnα+ (β − 1)
n∑
i=1

ln xi −

2
n∑
i=1

ln
(

1 + (xi/α)β
)
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(c) Maximizing the log-likelihood function leads the first-order conditions:

∂ ` (α, β)
∂ α

= −nβ
α

+ 2β
α

n∑
i=1

(xi/α)β

1 + (xi/α)β
= 0

and:

∂ ` (α, β)
∂ β

= n

β
− n lnα+

n∑
i=1

ln xi − 2
n∑
i=1

(xi/α)β ln (xi/α)
1 + (xi/α)β

= 0

By assuming that β 6= 0, we deduce that:
n∑
i=1

F (xi;α, β) = n

2

and:

n

β
− n lnα+

n∑
i=1

ln xi − 2
n∑
i=1

(xi/α)β ln xi
1 + (xi/α)β

+ 2 lnα
n∑
i=1

(xi/α)β

1 + (xi/α)β
= 0

We then obtain:

n

β
+

n∑
i=1

ln xi − 2
n∑
i=1

F (xi;α, β) ln xi = 0

or equivalently:
n∑
i=1

(2F (xi;α, β)− 1) ln xi = n

β

It follows that the ML estimators α̂ and β̂ satisfy the following conditions:
∑n
i=1 F

(
xi; α̂, β̂

)
= n/2∑n

i=1

(
2F
(
xi; α̂, β̂

)
− 1
)

ln xi = n/β̂

(d) Using the sample of loss data, we obtain:

2
10∑
i=1

F
(
xi; α̂, β̂

)
= 10.000

and:

β̂

10∑
i=1

(
2F
(
xi; α̂, β̂

)
− 1
)

ln xi = 9.999

Because the two mathematical terms are equal to n = 10, the first-order condi-
tions of the ML optimization program are satisfied.

(e) We have:

` (α, β) =
n∑
i=1

ln f (xi;α, β)−
n∑
i=1

ln (1− F (H;α, β))

= n ln β − nβ lnα+ (β − 1)
n∑
i=1

ln xi −

2
n∑
i=1

ln
(

1 + (xi/α)β
)

+ n ln
(

1 + (H/α)β
)
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5.4.6 Mixed Poisson processes
1. We recall that E [P (λ)] = var (P (λ)) = λ. We deduce that:

E [N (t)] = E [E [N (t) | Λ]]
= E [Λ] (5.2)

and:

var (N (t)) = E
[
N (t)2

]
− E2 [N (t)]

= E
[
E
[
N (t)2 | Λ

]]
− E2 [E [N (t) | Λ]]

= E
[
var (N (t) | Λ) + E2 [N (t) | Λ]

]
− E2 [E [N (t) | Λ]]

= E [var (N (t) | Λ)] + E
[
E2 [N (t) | Λ]

]
− E2 [E [N (t) | Λ]]

= E [var (N (t) | Λ)] + var (E [N (t) | Λ])
= E [Λ] + var (Λ)
= E [N (t)] + var (Λ) (5.3)

2. By definition, we have var (Λ) ≥ 0, which implies that:

var (N (t)) ≥ E [N (t)]

The equality holds if and only if var (Λ) = 0. We deduce that Λ must be constant and
we obtain the Dirac distribution:

Pr {Λ = λ} = 1

Since we have N (t) ∼ P (λ), we deduce that:

p (n) = Pr {N (t) = n}

= e−λλn

n!
It follows that:

ϕ (n) = (n+ 1) · p (n+ 1)
p (n)

= (n+ 1) · e
−λλn+1

(n+ 1)! ·
n!

e−λλn

= λ

3. (a) We reiterate that:
E [G (α, β)] = α

β

and:
var (G (α, β)) = α

β2

Using Equations (5.2) and (5.3), we obtain:

E [N (t)] = E [Λ]
= E [G (α, β)]

= α

β
(5.4)
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and:

var (N (t)) = E [Λ] + var (Λ)
= E [G (α, β)] + var (G (α, β))

= α

β
+ α

β2

= α (β + 1)
β2 (5.5)

(b) By definition of the compound distribution, we have:

p (n) =
∫ ∞

0
p (n | P (λ)) f (λ | G (α, β)) dλ

=
∫ ∞

0

e−λλn

n!
βαλα−1e−βλ

Γ (α) dλ

= βα

n!Γ (α)

∫ ∞
0

e−λ(β+1)λn+α−1 dλ (5.6)

We know that: ∫ ∞
0

ta−1e−t dt = Γ (a)

We deduce that2: ∫ ∞
0

ta−1e−bt dt =
∫ ∞

0
ta−1e−bt dt

=
∫ ∞

0

(x
b

)a−1
e−x

dx
b

=
∫ ∞

0
xa−1e−x dx

= Γ (a)
ba

From Equation (5.6), we obtain:

p (n) = βα

n!Γ (α)
Γ (n+ α)

(β + 1)n+α

= Γ (n+ α)
n!Γ (α) ·

βα

(β + 1)n+α (5.7)

We notice that:
Γ (n+ α)
n!Γ (α) = (n+ α− 1)!

n! (α− 1)!

=
(
n+ α− 1

n

)
and:

βα

(β + 1)n+α =
(

β

β + 1

)α( 1
β + 1

)n
=

(
1− 1

β + 1

)α( 1
β + 1

)n
2We use the change of variable x = bt.



Operational Risk 115

Therefore, Equation (5.7) becomes:

p (n) =
(
n+ α− 1

n

)(
1− 1

β + 1

)α( 1
β + 1

)n
=

(
n+ r − 1

n

)
(1− p)r pn

This is the probability mass function of the negative binomial distribution
NB (r, p) where3 r = α and p = 1/ (β + 1).

(c) We have:

ϕ (n) = (n+ 1) · p (n+ 1)
p (n)

= (n+ 1)

(
n+ r

n+ 1

)
(
n+ r − 1

n

) (1− p)r pn+1

(1− p)r pn

= (n+ r)!
(n+ r − 1)!p

= pn+ pr

4. (a) Since we have E [E (λ)] = λ−1 and var (E (λ)) = λ−2, we obtain:

E [N (t)] = 1
λ

and:

var (N (t)) = 1
λ

+ 1
λ2

= λ+ 1
λ2

3An alternative approach to find the values of r and p consists in match the first two moments. Indeed,
we know that:

E [NB (r, p)] =
pr

1− p
and:

var (NB (r, p)) =
pr

(1− p)2

We deduce that: 
α

β
=

pr

1− p
α (β + 1)

β2 =
pr

(1− p)2

⇔


α

β
=

pr

1− p
β + 1
β

=
1

1− p

⇔

 α = β
pr

1− p
β−1 =

1
1− p

− 1

⇔

{
α = r

β =
1− p
p

⇔

{
r = α

p =
1

1 + β
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(b) We have E (λ) = G (1, λ). We deduce that the compound Poisson distribution is
the negative binomial distribution NB (r, p) where r = 1 and p = 1/ (λ+ 1). In
this case, the expression of the probability mass function becomes:

p (n) =
(
n+ r − 1

n

)
(1− p)r pn

= (1− p) pn

We conclude that N (t) has a geometric distribution G (1/ (λ+ 1)).
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Chapter 7
Asset/Liability Management Risk

7.4.1 Constant amortization of a loan

1. We have:

C0 =
n∑
t=1

A

(1 + i)t

= A

(1 + i)

n−1∑
t=0

1
(1 + i)t

= A

(1 + i) ×
1− 1

(1+i)n

1− 1
(1+i)

=
(

1− 1
(1 + i)n

)
A

i

= c(n)A

where c(n) is the capitalization factor:

c(n) = 1− (1 + i)−n

i

2. Since C0 = N0, we have: (
1− 1

(1 + i)n
)
A

i
= N0

We deduce that the value of the constant annuity is equal to:

A =
(

1− 1
(1 + i)n

)−1
iN0

= (1 + i)n

(1 + i)n − 1
iN0

= i

1− (1 + i)−n
N0

It follows that the constant annuity rate a(n) is given by the following formula:

a(n) = i

1− (1 + i)−n
= 1
c(n)

3. At time t = 1, we pay A. The interest payment is equal to I (1) = iN0 while the
principal payment is equal to the difference between the annuity and the interest

119
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payment:

P (1) = A− I (1)
=

(
a(n) − i

)
N0

=
(

i

1− (1 + i)−n
− i
)
N0

We deduce that the amount outstanding (or remaining capital) is equal to:

N (1) = N0 − P (1)
= N0 −

(
a(n) − i

)
N0

=
(

1 + i− i

1− (1 + i)−n

)
N0

=
(

1− (1 + i)−n+1

1− (1 + i)−n

)(
1− 1

(1 + i)n
)
A

i

=
(

1− (1 + i)−n+1

1− (1 + i)−n

)(
(1 + i)n − 1

(1 + i)n
)
A

i

=
(

(1 + i)n − 2− i+ (1 + i)−n+1

(1 + i)n − 1

)
A

i

=
(

1− (1 + i)− (1 + i)−n+1

(1 + i)n − 1

)
A

i

We also have:

C (1) =
n−1∑
t=1

A

(1 + i)t

=
(

1− 1
(1 + i)n−1

)
A

i

Since we have:

(1 + i)− (1 + i)−n+1

(1 + i)n − 1
= (1 + i)n−1

(1 + i)n−1

(
(1 + i)− (1 + i)−n+1

(1 + i)n − 1

)

= 1
(1 + i)n−1

(
(1 + i)n − (1 + i)0

(1 + i)n − 1

)

= 1
(1 + i)n−1

we conclude that the amount outstanding N (1) is equal to the present value of the
annuity at time t = 1:

N (1) = C (1)

4. More generally, we have:

N (t) = C (t)
= c(n−t)A

=
(

1− (1 + i)−(n−t)

i

)
A
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It follows that:

I (t) = iN (t− 1)

=
(

1− 1
(1 + i)n−t+1

)
A

and:

P (t) = A− I (t)

= 1
(1 + i)n−t+1A

7.4.2 Computation of the amortization functions S (t, u) and S? (t, u)
1. By definition, we have:

S (t, u) = 1 {t ≤ u < t+m}

=
{

1 if u ∈ [t, t+m[
0 otherwise

This means that the survival function is equal to one when u is between the current
date t and the maturity date T = t+m. When u reaches T , the outstanding amount
is repaid, implying that S (t, T ) is equal to zero. It follows that:

S? (t, u) =
∫ t
−∞NP (s) S (s, u) ds∫ t
−∞NP (s) S (s, t) ds

=
∫ t
−∞NP (s) · 1 {s ≤ u < s+m} ds∫ t
−∞NP (s) · 1 {s ≤ t < s+m} ds

For the numerator, we have:

1 {s ≤ u < s+m} = 1 ⇒ u < s+m

⇔ s > u−m

and: ∫ t

−∞
NP (s) · 1 {s ≤ u < s+m} ds =

∫ t

u−m
NP (s) ds

For the denominator, we have:

1 {s ≤ t < s+m} = 1 ⇒ t < s+m

⇔ s > t−m

and: ∫ t

−∞
NP (s) · 1 {s ≤ t < s+m} ds =

∫ t

t−m
NP (s) ds

We deduce that:

S? (t, u) = 1 {t ≤ u < t+m} ·
∫ t
u−m NP (s) ds∫ t
t−m NP (s) ds
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In the case where the new production is a constant, we have NP (s) = c and:

S? (t, u) = 1 {t ≤ u < t+m} ·
∫ t
u−m ds∫ t
t−m ds

= 1 {t ≤ u < t+m} ·
[
s
]t
u−m[

s
]t
t−m

= 1 {t ≤ u < t+m} ·
(
t− u+m

t− t+m

)
= 1 {t ≤ u < t+m} ·

(
1− u− t

m

)
The survival function S? (t, u) corresponds to the case of a linear amortization.

2. If the amortization is linear, we have:

S (t, u) = 1 {t ≤ u < t+m} ·
(

1− u− t
m

)
We deduce that:

S? (t, u) = 1 {t ≤ u < t+m} ·

∫ t

u−m
NP (s)

(
1− u− s

m

)
ds∫ t

t−m
NP (s)

(
1− t− s

m

)
ds

In the case where the new production is a constant, we obtain:

S? (t, u) = 1 {t ≤ u < t+m} ·

∫ t

u−m

(
1− u− s

m

)
ds∫ t

t−m

(
1− t− s

m

)
ds

For the numerator, we have:∫ t

u−m

(
1− u− s

m

)
ds =

[
s− su

m
+ s2

2m

]t
u−m

=
(
t− tu

m
+ t2

2m

)
−(

u−m− u2 −mu
m

+ (u−m)2

2m

)

=
(
t− tu

m
+ t2

2m

)
−
(
u− m

2 −
u2

2m

)
= m2 + u2 + t2 + 2mt− 2mu− 2tu

2m

= (m− u+ t)2

2m
For the denominator, we use the previous result and we set u = t:∫ t

t−m

(
1− t− s

m

)
ds = (m− t+ t)2

2m

= m

2
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We deduce that:

S? (t, u) = 1 {t ≤ u < t+m} ·

(m− u+ t)2

2m
m

2

= 1 {t ≤ u < t+m} · (m− u+ t)2

m2

= 1 {t ≤ u < t+m} ·
(

1− u− t
m

)2

The survival function S? (t, u) corresponds to the case of a parabolic amortization.

3. If the amortization is exponential, we have:

S (t, u) = e
−
∫ u
t
λ ds = e−λ(u−t)

It follows that:

S? (t, u) =
∫ t
−∞NP (s) e−λ(u−s) ds∫ t
−∞NP (s) e−λ(t−s) ds

In the case where the new production is a constant, we obtain:

S? (t, u) =
∫ t
−∞ e−λ(u−s) ds∫ t
−∞ e−λ(t−s) ds

=
[
λ−1e−λ(u−s)]t

−∞[
λ−1e−λ(t−s)

]t
−∞

= e−λ(u−t)

= S (t, u)

The stock amortization function is equal to the flow amortization function.

4. We recall that the liquidity duration is equal to:

D (t) =
∫ ∞
t

(u− t) f (t, u) du

where f (t, u) is the density function associated to the survival function S (t, u). For
the stock, we have:

D? (t) =
∫ ∞
t

(u− t) f? (t, u) du

where f? (t, u) is the density function associated to the survival function S? (t, u):

f? (t, u) =
∫ t
−∞NP (s) f (s, u) ds∫ t
−∞NP (s) S (s, t) ds

In the case where the new production is constant, we obtain:

D? (t) =
∫∞
t

(u− t)
∫ t
−∞ f (s, u) dsdu∫ t

−∞ S (s, t) ds
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Since we have
∫ t
−∞ f (s, u) ds = S (t, u), we deduce that:

D? (t) =
∫∞
t

(u− t) S (t, u) du∫ t
−∞ S (s, t) ds

5. (a) In the case of the bullet repayment debt, we have:

D (t) = m

and:

D? (t) =
∫ t+m
t

(u− t) du∫ t
t−m ds

=

[
1
2 (u− t)2

]t+m
t[

s
]t
t−m

= m

2

(b) In the case of the linear amortization, we have:

f (t, u) = 1 {t ≤ u < t+m} · 1
m

and:

D (t) =
∫ t+m

t

(u− t)
m

du

= 1
m

[
1
2 (u− t)2

]t+m
t

= m

2

For the stock duration, we deduce that

D? (t) =

∫ t+m

t

(u− t)
(

1− u− t
m

)
du∫ t

t−m

(
1− t− s

m

)
ds

=

∫ t+m

t

(
u− t− u2

m
+ 2 tu

m
− t2

m

)
du∫ t

t−m

(
1− t

m
+ s

m

)
ds

=

[
u2

2 − tu−
u3

3m + tu2

m
− t2u

m

]t+m
t[

s− st

m
+ s2

2m

]t
t−m
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The numerator and denominator are equal to:

(∗) =
[
u2

2 − tu−
u3

3m + tu2

m
− t2u

m

]t+m
t

= 1
6m

[
3mu2 − 6mtu− 2u3 + 6tu2 − 6t2u

]t+m
t

= 1
6m

(
m3 − 3mt2 − 2t3

)
+ 1

6m
(
3mt2 + 2t3

)
= m2

6

and:

(∗) =
[
s− st

m
+ s2

2m

]t
t−m

= 1
2m

[
s2 − 2s (t−m)

]t
t−m

= 1
2m

(
t2 − 2t (t−m)− (t−m)2 + 2 (t−m)2

)
= 1

2m
(
t2 − 2t2 + 2mt+ t2 − 2mt+m2)

= m

2

We deduce that:
D? (t) = m

3
(c) For the exponential amortization, we have:

f (t, u) = λe−λ(u−t)

and1:

D (t) =
∫ ∞
t

(u− t)λe−λ(u−t) du

=
∫ ∞

0
vλe−λv dv

= 1
λ

For the stock duration, we deduce that:

D? (t) =
∫∞
t

(u− t) e−λ(u−t) du∫ t
−∞ e−λ(t−s) ds

=
∫∞

0 ve−λv dv∫∞
0 e−λv dv

= 1
λ

We verify that D (t) = D? (t) since we have demonstrated that S? (t, u) = S (t, u).

1We use the change of variable v = u− t.
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6. (a) By definition, we have:

dN (t) = (NP (t)−NP (t−m)) dt

(b) We have:

f (s, t) = 1 {s ≤ t < s+m}
m

It follows that:∫ t

−∞
NP (s) f (s, t) ds = 1

m

∫ t

−∞
1 {s ≤ t < s+m} ·NP (s) ds

= 1
m

∫ t

t−m
NP (s) ds

We deduce that:

dN (t) =
(

NP (t)− 1
m

∫ t

t−m
NP (s) ds

)
dt

(c) We have:
f (s, t) = λe−λ(t−s)

and: ∫ t

−∞
NP (s) f (s, t) ds =

∫ t

−∞
NP (s)λe−λ(t−s) ds

= λ

∫ t

−∞
NP (s) e−λ(t−s) ds

= λN (t)

We deduce that:
dN (t) = (NP (t)− λN (t)) dt

7.4.3 Continuous-time analysis of the constant amortization mortgage
(CAM)

1. We have dN (t) = −P (t) dt where A (t) = I (t) +P (t) and I (t) = iN (t). We deduce
that:

dN (t) = (iN (t)−A) dt

We know that the solution has the following form2:

N (t) = Ceit + A

i

where C is a constant. Since N (0) = N0, we have:

C = N0 −
A

i

2The solution of y′ (t) = ay (t) + b is equal to:

y (t) = Ceat −
b

a
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and:

N (t) =
(
N0 −

A

i

)
eit + A

i

At the maturity m, we have N (m) = 0, implying that:(
N0 −

A

i

)
eim + A

i
= 0 ⇔ A

i
= N0e

im

eim − 1

⇔ A = iN0

1− e−im

We deduce that:

N (t) = 1 {t < m} ·
((

N0 −
N0

1− e−im

)
eit + N0

1− e−im

)
= 1 {t < m} ·N0

1− e−i(m−t)

1− e−im

because N (t) = 0 when t ≥ m.

2. More generally, we have:

N (t, u) = 1 {t ≤ u < t+m} ·N (t) 1− e−i(t+m−u)

1− e−im

This implies that:

S (t, u) = 1 {t ≤ u < t+m} · 1− e−i(t+m−u)

1− e−im

and:

S? (t, u) =
∫ t
u−m NP (s)

(
1− e−i(s+m−u)) ds∫ t

t−m NP (s)
(
1− e−i(s+m−t)

)
ds

If we assume that NP (s) is constant, we have:

S? (t, u) =

[
s+ 1

i
e−i(s+m−u)

]t
u−m[

s+ 1
i
e−i(s+m−t)

]t
t−m

=
t+m− u+ e−i(t+m−u) − 1

i

m+ e−im − 1
i

= i (t+m− u) + e−i(t+m−u) − 1
im+ e−im − 1

3. We have:

f (t, u) = 1 {t ≤ u < t+m} · ie
−i(t+m−u)

1− e−im
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It follows that:

D (t) = ie−im

1− e−im

∫ t+m

t

(u− t) ei(u−t) du

= ie−im

1− e−im

∫ m

0
veiv dv

= ie−im

1− e−im

(
meim

i
− eim − 1

i2

)
= 1

1− e−im

(
m− 1− e−im

i

)
= m

1− e−im −
1
i

because we have: ∫ m

0
veiv dv =

[
veiv

i

]m
0
−
∫ m

0

eiv

i
dv

=
[
veiv

i

]m
0
−
[
eiv

i2

]m
0

= meim

i
− eim − 1

i2

7.4.4 Valuation of non-maturity deposits
1. The current market value of liabilities is the expected discounted value of future cash

flows, which are made up of interest payments i (t)D (t) and deposit inflows ∂tD (t):

L0 = E
[∫ ∞

0
e−r(t)t (i (t)D (t)− ∂tD (t)) dt

]
(7.1)

2. Since we have:∫ ∞
0

e−r(t)t (i (t)D (t)− ∂tD (t)) dt =
∫ ∞

0
e−r(t)ti (t)D (t) dt−∫ ∞

0
e−r(t)t∂tD (t) dt

and: ∫ ∞
0

e−r(t)t∂tD (t) dt =
[
e−r(t)tD (t)

]∞
0

+
∫ ∞

0
e−r(t)tr (t)D (t) dt

= −D0 +
∫ ∞

0
e−r(t)tr (t)D (t) dt

we deduce that:

L0 = E
[∫ ∞

0
e−r(t)t (i (t)D (t)− ∂tD (t)) dt

]
= D0 + E

[∫ ∞
0

e−r(t)t (i (t)− r (t))D (t) dt
]

(7.2)
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3. The current value of deposit accounts is the difference between the current value of
deposits D0 and the current value of liabilities L0:

V0 = D0 − L0

= E
[∫ ∞

0
e−r(t)t (r (t)− i (t))D (t) dt

]
= E

[∫ ∞
0

e−r(t)tm (t)D (t) dt
]

(7.3)

where m (t) = r (t) − i (t) is the margin of the bank. This is the equation obtained
by Jarrow and Van Deventer (1998), who notice that V0 is “the net present value of
an exotic interest rate swap paying floating at i (t) and receiving floating at r (t) on a
random principal of D (t)”.

4. If the margin m (t) is constant, we obtain:

V0 = E
[∫ ∞

0
e−r(t)tm (t)D (t) dt

]
= m0E

[∫ ∞
0

e−r(t)t dt
]
D∞

= m0r
−1
∞ D∞ (7.4)

where r∞ can be interpreted as the average market rate3:

r∞ = 1
E
[∫∞

0 e−r(t)t dt
]

5. The variation of i (t) is equal to a constant α plus a linear correction term
β (r (t)− i (t)):

di (t)
dt = α+ β (r (t)− i (t))

= βr (t) + (α− βi (t))

It follows that i (t) is an increasing function of r (t). Moreover, i (t) decreases (resp.
increases) if α − βi (t) ≤ 0 (resp. α − βi (t) > 0). This implies that i (t) is a mean-
reverting process, where the steady state is i∞ = β−1α. The variation of D (t) is
explained by two components:

dD (t)
dt = γ (D∞ −D (t))︸ ︷︷ ︸

C1(t)

− δ (r (t)− i (t))︸ ︷︷ ︸
C2(t)

3In the case where r (t) is constant, we notice that:

E

[∫ ∞
0

e−r(t)t dt
]

=
∫ ∞

0
e−rt dt

=
[
−
e−rt

r

]∞
0

=
1
r

This justifies that r∞ is an average interest rate.
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The first component C1 (t) is the traditional mean-reverting adjustment between the
deposit D (t) and its long-term value D∞, whereas the second component C2 (t) is the
negative impact of the excess of the market rate over the savings rate. It follows that:

i (t) = e−βti0 + β

∫ t

0
e−β(t−s)

(
r (s) + α

β

)
ds (7.5)

and:

D (t) = e−γtD0 +
(
1− e−γt

)
D∞ − δ

∫ t

0
e−γ(t−s) (r (s)− i (s)) ds (7.6)

6. In the case where r (t) is constant and equal to r0, we obtain:

i (t) = e−βti0 + (α+ βr0)
∫ t

0
e−β(t−s) ds

= e−βti0 + (α+ βr0)
[
e−β(t−s)

β

]t
0

= e−βti0 +
(
1− e−βt

)(
r0 + α

β

)
= i0 +

(
1− e−βt

)(
r0 + α

β
− i0

)
(7.7)

It follows that:

r (t)− i (t) = r0 −
(
e−βti0 +

(
1− e−βt

)(
r0 + α

β

))
= e−βt (r0 − i0)− α

β

(
1− e−βt

)
(7.8)

and:

D (t) = D∞ + e−γt (D0 −D∞)− δ (r0 − i0)
∫ t

0
e−γ(t−s)e−βs ds+

αδ

β

∫ t

0
e−γ(t−s) (1− e−βs) ds (7.9)

Since we have: ∫ t

0
e−γ(t−s)e−βs ds =

[
e−γ(t−s)−βs

γ − β

]t
0

and: ∫ t

0
e−γ(t−s) (1− e−βs) ds =

[
e−γ(t−s)

γ
− e−γ(t−s)−βs

γ − β

]t
0

we deduce that:

D (t) = D∞ + e−γt (D0 −D∞)−
δ
(
e−βt − e−γt

)
γ − β

(r0 − i0) +

αδ

β

(
1− e−γt

γ
− e−βt − e−γt

γ − β

)
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7. If α is equal to zero and we combine Equations (7.8) and (7.9), we obtain:

e−r0t (r (t)− i (t))D (t) = e−(r0+β)t (r0 − i0)D∞ +
e−(r0+β+γ)t (r0 − i0) (D0 −D∞)−
δ
(
e−(r0+2β)t − e−(r0+β+γ)t)

γ − β
(r0 − i0)2

It follows that:

V0 =
∫ ∞

0
e−(r0+β)t (r0 − i0)D∞ dt+∫ ∞

0
e−(r0+γ+β)t (r0 − i0) (D0 −D∞) dt−∫ ∞

0

δe−(r0+2β)t

γ − β
(r0 − i0)2 dt+∫ ∞

0

δe−(r0+γ+β)t

γ − β
(r0 − i0)2 dt

We also have:

V0 =
[
e−(r0+β)t (r0 − i0)D∞

− (r0 + β)

]∞
0

+[
e−(r0+γ+β)t (r0 − i0) (D0 −D∞)

− (r0 + γ + β)

]∞
0
−[

δe−(r0+2β)t (r0 − i0)2

− (r0 + 2β) (γ − β)

]∞
0

+
[
δe−(r0+γ+β)t (r0 − i0)2

− (r0 + γ + β) (γ − β)

]∞
0

Therefore, the net asset value is equal to:

V0 = (r0 − i0)D∞
(r0 + β) + (r0 − i0) (D0 −D∞)

(r0 + γ + β) +

δ (r0 − i0)2

(r0 + γ + β) (γ − β) −
δ (r0 − i0)2

(r0 + 2β) (γ − β) (7.10)

We deduce that the sensitivity of V0 with respect to r0 is equal to:

∂ V0

∂ r0
= (i0 + β)D∞

(r0 + β)2 + (D0 −D∞) (i0 + γ + β)
(r0 + γ + β)2 +

δ (r0 − i0) (r0 + i0 + 2 (γ + β))
(r0 + γ + β)2 (γ − β)

−

δ (r0 − i0) (r0 + +i0 + 4β)
(r0 + 2β)2 (γ − β)

(7.11)

8. From Equation (7.3), we deduce that:

∂ V0

∂ r (t) = E
[
−
∫ ∞

0
te−r(t)t (r (t)− i (t))D (t) dt

]
+

E
[∫ ∞

0
e−r(t)t

∂ (r (t)− i (t))
∂ r (t) D (t) dt

]
+

E
[∫ ∞

0
e−r(t)t (r (t)− i (t)) ∂ D (t)

∂ r (t) dt
]

(7.12)
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De Jong and Wielhouwer (2003) observe that the sensitivity of the net asset value is
the sum of three components: the interest rate sensitivity of the expected discount
margins, the margin sensitivity with respect to the market rate, and the impact of
r (t) on the deposit balance D (t). Since we have:

∂ (r (t)− i (t))
∂ r0

= e−βt

and:
∂ D (t)
∂ r0

= −
δ
(
e−βt − e−γt

)
γ − β

we deduce that:

∂ V0

∂ r0
= − (r0 − i0)

∫ ∞
0

te−(r0+β)tD (t) dt+

α

∫ ∞
0

te−r0t
(

1− e−βt

β

)
D (t) dt+

∫ ∞
0

e−(r0+β)tD (t) dt−

δ (r0 − i0)
γ − β

∫ ∞
0

(
e−(r0+2β)t − e−(r0+β+γ)t

)
dt+

αδ

γ − β

∫ ∞
0

(
e−(r0+β)t − e−(r0+γ)t

)(1− e−βt

β

)
dt (7.13)

This sensitivity can be computed analytically, but it is a complex formula with many
terms. This is why it is better to calculate it using the Gauss-Legendre numerical
integration method. The duration of deposits is then defined as:

DD = − 1
V0

∂ V0

∂ r0

9. In Figure 7.1, we have represented the deposit rate i (t) with respect to the time t.
We notice that:

lim
t→∞

i (t) = lim
t→∞

i0 +
(
1− e−βt

)(
r0 + α

β
− i0

)
= r0 + α

β

Since the margin is equal to r (t)− i (t), it is natural to assume that α < 0 in order
to verify the condition4 i (t) < r (t). The dynamics of D (t) is given in Figure 7.2. It
depends on the relative position between D0 and D∞. Another important parameter
is the mean-reverting coefficient γ. In Figure 7.3, we have represented the mark-to-
market V0, its sensitivity with respect to r0 and the corresponding duration. We notice
that the normal case where i0 < r0 corresponds to a negative duration, because the
sensitivity is positive. We explain this result because α = 0 is not realistic, meaning
that the margin is equal to zero on average. If we assume that α is negative or the
margin is positive, we obtain a positive duration (see Figure 7.4). In particular, we
verify that the duration of deposits is higher when market rates are low.

4This is the arbitrage condition found by Jarrow and van Deventer (1998).
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FIGURE 7.1: Dynamics of the deposit rate i (t)

FIGURE 7.2: Dynamics of the deposit balance D (t)
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FIGURE 7.3: Duration of deposits when α is equal to zero

FIGURE 7.4: Duration of deposits when the margin is positive
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7.4.5 Impact of prepayment on the amortization scheme of the CAM
1. We deduce that the dynamics of N (t) is equal to:

dN (t) = 1 {t < m} ·N0
−ie−i(m−t)

1− e−im dt

= −ie−i(m−t)
(
1 {t < m} ·N0

1
1− e−im

)
dt

= − ie−i(m−t)

1− e−i(m−t)
N (t) dt

2. The prepayment rate has a negative impact on dN (t) because it reduces the out-
standing amount N (t):

dÑ (t) = − ie−i(m−t)

1− e−i(m−t)
Ñ (t) dt− λp (t) Ñ (t) dt

3. It follows that:

d lnÑ (t) = −
(

ie−i(m−t)

1− e−i(m−t)
+ λp (t)

)
dt

and:

lnÑ (t)− lnÑ (0) =
∫ t

0

−ie−i(m−s)

1− e−i(m−s)
ds−

∫ t

0
λp (s) ds

=
[

ln
(

1− e−i(m−s)
)]t

0
−
∫ t

0
λp (s) ds

= ln
(

1− e−i(m−t)

1− e−im

)
−
∫ t

0
λp (s) ds

and:

Ñ (t) =
(
N0

1− e−i(m−t)

1− e−im

)
e
−
∫ t

0
λp(s) ds

= N (t) Sp (t)

where Sp (t) is the survival function associated to the hazard rate λp (t).

4. We have:

Ñ (t, u) = 1 {t ≤ u < t+m} ·N (t) 1− e−i(t+m−u)

1− e−im e−λp(u−t)

this implies that:

S̃ (t, u) = 1 {t ≤ u < t+m} · e
−λp(u−t) − e−im+(i−λp)(u−t)

1− e−im

and:

f̃ (t, u) = 1 {t ≤ u < t+m} · λpe
−λp(u−t) + (i− λp) e−im+(i−λp)(u−t)

1− e−im
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It follows that:

D̃ (t) = λp
1− e−im

∫ t+m

t

(u− t) e−λp(u−t) du+

(i− λp) e−im

1− e−im

∫ t+m

t

(u− t) e(i−λp)(u−t) du

= λp
1− e−im

∫ m

0
ve−λpv dv + (i− λp) e−im

1− e−im

∫ m

0
ve(i−λp)v dv

= λp
1− e−im

(
me−λpm

−λp
− e−λpm − 1

λ2
p

)
+

(i− λp) e−im

1− e−im

(
me(i−λp)m

(i− λp)
− e(i−λp)m − 1

(i− λp)2

)

= 1
1− e−im

(
e−im − e−λpm

i− λp
+ 1− e−λpm

λp

)
because we have: ∫ m

0
veαv dv =

[
veαv

α

]m
0
−
∫ m

0

eαv

α
dv

=
[
veαv

α

]m
0
−
[
eαv

α2

]m
0

= meαm

α
− eαm − 1

α2
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Chapter 9
Model Risk of Exotic Derivatives

9.4.1 Option pricing and martingale measure
1. Since we have:

V (t) = φ (t)S (t) + ψ (t)B (t)
we deduce that:

ψ (t) = V (t)− φ (t)S (t)
B (t)

It follows that:

dV (t) = φ (t) dS (t) + ψ (t) dB (t)
= φ (t) dS (t) + r (V (t)− φ (t)S (t)) dt
= rV (t) dt+ φ (t) (dS (t)− rS (t) dt)

2. We have:

dS̃ (t) = −re−rtS (t) dt+ e−rt dS (t)
= e−rt (dS (t)− rS (t) dt)

It follows that:

dV (t) = rV (t) dt+ φ (t) (dS (t)− rS (t) dt)
= rV (t) dt+ ertφ (t) dS̃ (t)

Finally, we deduce that:

dṼ (t) = −re−rtV (t) dt+ e−rt dV (t)
= −re−rtV (t) dt+ e−rt

(
rV (t) dt+ ertφ (t) dS̃ (t)

)
= φ (t) dS̃ (t)

3. Under the probability measure Q, we remind that:

dS (t) = rS (t) dt+ σS (t) dWQ (t)

Then, we have:

dS̃ (t) = e−rt (dS (t)− rS (t) dt)
= e−rtσS (t) dWQ (t)
= σS̃ (t) dWQ (t)

We conclude that S̃ (t) is a martingale. Since dṼ (t) = φ (t) dS̃ (t), Ṽ (t) is also a
martingale. We deduce that:

Ṽ (t) = EQ [ Ṽ (T )
∣∣Ft]

141
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and:

V (t) = ertEQ [e−rTV (T )
∣∣Ft]

= e−r(T−t)EQ [V (T )| Ft]

4. We have:
dS (t) = µS (t) dt+ σS (t) dW (t)

and:

dS̃ (t) = e−rt (dS (t)− rS (t) dt)
= (µ− r) S̃ (t) dt+ σS̃ (t) dW (t)

We set:

WQ (t) = W (t) +
(
µ− r
σ

)
t

Using Girsanov’s theorem, we know that WQ (t) is a Brownian motion under the
probability measure Q defined by:

dQ
dP = M (t)

= exp
(
−1

2

∫ t

0

(
µ− r
σ

)2
ds−

∫ t

0

(
µ− r
σ

)
dW (s)

)

Moreover, we know that M (t) is an Ft-martingale.

5. We have:
V (T ) = 1 {S (T ) ≥ K}

and:

S (T ) ≥ K ⇔ S0e
(r− 1

2σ
2)T+σWQ(T ) ≥ K

⇔ WQ (T ) ≥ 1
σ

(
lnK − lnS0 −

(
r − 1

2σ
2
)
T

)
We deduce that:

V (0) = e−rTEQ [1 {S (T ) ≥ K}]
= e−rT Pr {S (T ) ≥ K}

= e−rT Pr
{
WQ (T ) ≥ 1

σ

(
lnK − lnS0 −

(
r − 1

2σ
2
)
T

)}
= e−rTΦ

(
− 1
σ
√
T

(
lnK − lnS0 −

(
r − 1

2σ
2
)
T

))
Therefore, the price of the binary option is:

V (0) = e−rTΦ
(

1
σ
√
T

(
ln S0

K
+ rT

)
− 1

2σ
√
T

)
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9.4.2 The Vasicek model
1. We have:

1
2σ

2 ∂
2B (t, r)
∂ r2 + (a (b− r (t))− λ (t)σ) ∂ B (t, r)

∂ r
+ ∂ B (t, r)

∂ t
− r (t)B (t, r) = 0

and:
B (T, r (T )) = 1

2. We remind that the solution of the Ornstein-Uhlenbeck process is:

r (t) = r0e
−at + b

(
1− e−at

)
+ σ

∫ t

0

ea(s−t) dW (s)

It follows that:

Z =
∫ T

0

(
r0e
−at + b

(
1− e−at

)
+ σ

∫ t

0

ea(s−t) dW (s)
)

dt

= r0

[
−e
−at

a

]T
0

+ b

[
t+ e−at

a

]T
0

+ σ

∫ T

0

∫ t

0
ea(s−t) dW (s) dt

= bT + (r0 − b)
(

1− e−aT

a

)
+ σ

∫ T

0

∫ t

0
ea(s−t) dW (s) dt

We note I =
∫ T

0
∫ t

0 e
a(s−t) dW (s) dt. Using Fubini’s theorem for stochastic integrals,

we have:

I =
∫ T

0

∫ T

t

ea(t−s) dsdW (t)

=
∫ T

0

1− e−a(T−t)

a
dW (t)

Since I is a sum of independent Gaussian random variables, it follows that Z is also
a Gaussian random variable.

3. We have:
E [Z] = bT + (r0 − b)

(
1− e−aT

a

)
and:

var (Z) = E

[
σ

∫ T

0

1− e−a(T−t)

a
dW (t)

]2

= σ2

a2

∫ T

0

(
1− e−a(T−t)

)2
dt

= σ2

a2

∫ T

0

(
1− 2e−a(T−t) + e−2a(T−t)

)
dt

= σ2

a2

(
T − 2

a

(
1− e−aT

)
+ 1

2a
(
1− e−2aT ))

Another expression is:

var (Z) = σ2

a2

(
T − β − aβ2

2

)
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where:

β = 1− e−aT

a

4. We have:

B (0, r0) = EQ
[
e
−
∫ T

0
r(t) dt

∣∣∣∣F0

]
= EQ [e−Z∣∣F0

]
Under the probability measure Q, r (t) is an Ornstein-Uhlenbeck process:

dr (t) = a (b− r (t)) dt+ σ dW (t)
= a (b− r (t)) dt+ σ

(
dWQ (t)− λ dt

)
= (a (b− r (t))− λσ) dt+ σ dWQ (t)
= a (b′ − r (t)) dt+ σ dWQ (t)

where:
b′ = b− λσ

a

It follows that:
B (0, r0) = e−E

Q[Z]+ 1
2 varQ(Z)

and:

−EQ [Z] + 1
2 varQ (Z) = −b′T − (r0 − b′)β + σ2

2a2

(
T − β − aβ2

2

)
= −r0β − b′ (T − β) + σ2

2a2 (T − β)− σ2β2

4a

= −r0β −
(
b′ − σ2

2a2

)
(T − β)− σ2β2

4a

Finally, we obtain:

B (0, r0) = exp
(
−r0β −

(
b′ − σ2

2a2

)
(T − β)− σ2β2

4a

)

9.4.3 The Black model

1. We have: { 1
2σ

2F 2∂2
FC (t, F ) + ∂tC (t, F )− rC (t, F ) = 0

C (T, S (T )) = max (F (T )−K, 0)

2. The Feynman-Kac formula is:

C (0) = e−rTE [max (F (T )−K, 0)| F0]

We know that F (T ) is a log-normal random variable:

F (T ) = F0e
− 1

2σ
2T+σ(W (T )−W (0))
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We note I = E [max (F (T )−K, 0)| F0]. We obtain:

I =
∫ ∞
−∞

(
F0e
− 1

2σ
2T+σ

√
Tu −K

)+
φ (u) du

=
∫ ∞
d

(
F0e
− 1

2σ
2T+σ

√
Tu −K

)
φ (u) du

= F0e
− 1

2σ
2T

∫ ∞
d

eσ
√
Tuφ (u) du−K

∫ ∞
d

φ (u) du

where:
d = − 1

σ
√
T

ln F0

K
+ 1

2σ
√
T

We have: ∫ ∞
d

φ (u) du = 1− Φ (d)

= Φ (−d)

and: ∫ ∞
d

eσ
√
Tuφ (u) du =

∫ ∞
d

1√
2π
eσ
√
Tu− 1

2u
2

du

= e
1
2σ

2T

∫ ∞
d

1√
2π
e−

1
2 (u−σ√T)2

du

= e
1
2σ

2T

∫ ∞
d−σ
√
T

1√
2π
e−

1
2 v

2
dv

= e
1
2σ

2T
(

1− Φ
(
d− σ

√
T
))

= e
1
2σ

2TΦ
(
−d+ σ

√
T
)

Finally, we deduce that:

C (0) = e−rT
(
F0e
− 1

2σ
2T e

1
2σ

2TΦ
(
−d+ σ

√
T
)
−KΦ (−d)

)
= F0e

−rTΦ (d1)−Ke−rTΦ (d2)

where:
d1 = 1

σ
√
T

ln F0

K
+ 1

2σ
√
T

and:
d2 = 1

σ
√
T

ln F0

K
− 1

2σ
√
T

3. Under the risk-neutral probability measure Q, we have:

dS (t) = rS (t) dt+ σS (t) dWQ (t)

The price of a future contract on this stock is equal to:

F (t) = e−rtS (t)
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Using Ito’s lemma, we deduce that:

dF (t) = −re−rtS (t) dt+ e−rt dS (t)
= σe−rtS (t) dWQ (t)
= σF (t) dWQ (t)

We can then apply the Black formula to price an European option on F (t).

4. In this case, the PDE representation becomes:

1
2σ

2F 2∂2
FC (t, F ) + ∂tC (t, F )− r (t)C (t, F ) = 0

It follows that the Feynman-Kac formula is:

C (0) = E
[
e
−
∫ T

0
r(s) ds max (F (T )−K, 0)

∣∣∣∣F0

]
Since r (t) and F (t) are independent, we obtain:

C (0) = E
[
e
−
∫ T

0
r(s) ds

∣∣∣∣F0

]
· E [max (F (T )−K, 0)| F0]

= B (0, T ) · (F0Φ (d1)−KΦ (d2))

We deduce that the discount factor e−rT is replaced by the current bond price B (0, T ).

5. If r (t) and F (t) are not independent, the stochastic discount exp
(
−
∫ T

0 r (s) ds
)
is

not independent from the forward price F (T ) and we cannot separate the two terms
in the mathematical expectation.

6. We remind that the price of the zero-coupon bond is given by:

B (t, T ) = EQ
[
e
−
∫ T
t
r(s) ds

∣∣∣∣Ft]
The instantaneous forward rate f (t, T ) is defined as follows:

f (t, T ) = −∂ lnB (t, T )
∂ T

We consider that the numéraire is the bond price B (t, T ) and we note Q? the associ-
ated forward probability measure.

(a) We have:

∂ B (t, T )
∂ T

= ∂

∂ T
EQ
[
e
−
∫ T
t
r(s) ds

∣∣∣∣Ft]

= EQ

 ∂ e−∫ Tt r(s) ds

∂ T

∣∣∣∣∣∣Ft


= −EQ
[
e
−
∫ T
t
r(s) ds

r (T )
∣∣∣∣Ft]

= −EQ
[
M (t)
M (T )r (T )

∣∣∣∣Ft]
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where M (t) = exp
(∫ t

0 r (s) ds
)
is the spot numéraire. We consider the change

of numéraire (M (t) −→ N (t) = B (t, T )) and we obtain:

∂ B (t, T )
∂ T

= −EQ?
[
N (t)
N (T )r (T )

∣∣∣∣Ft]
= −N (t)EQ? [r (T )| Ft]

because N (T ) = B (T, T ) = 1. Since r (T ) = f (T, T ), we deduce that:

∂ B (t, T )
∂ T

= −B (t, T )EQ? [f (T, T )| Ft]

(b) We have:

f (t, T ) = −∂ lnB (t, T )
∂ T

= − 1
B (t, T )

∂ B (t, T )
∂ T

= EQ? [f (T, T )| Ft]

f (t, T ) is then an Ft-martingale under the forward probability measure Q?.
(c) We know that:

C (0) = EQ
[
e
−
∫ T

0
r(s) ds max (f (T, T )−K, 0)

∣∣∣∣F0

]
= EQ

[
M (t)
M (T ) max (f (T, T )−K, 0)

∣∣∣∣F0

]
Using the change of numéraire N (t) = B (t, T ), we obtain:

C (0) = EQ?
[
N (t)
N (T ) max (f (T, T )−K, 0)

∣∣∣∣F0

]
= B (t, T )EQ? [max (f (T, T )−K, 0)| F0]

Using the Black model, we deduce that the price of the option is1:

C (0) = B (0, T ) · (r0Φ (d1)−KΦ (d2))

where d1 and d2 are the two values defined previously.

9.4.4 Change of numéraire and the Girsanov theorem
Part one

1. Using Itô’s lemma, we obtain:

d (X (t)Y (t)) = X (t) dY (t) + Y (t) dX (t) + 〈dX (t) ,dY (t)〉

and:
d
(

1
Y (t)

)
= −dY (t)

Y 2 (t) + 〈dY (t) ,dY (t)〉
Y 3 (t)

1We have f (0, 0) = r0.
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2. Let Z (t) be the ratio of X (t) and Y (t):

Z (t) = X (t)
Y (t)

We deduce that:

dZ (t) = X (t) d
(

1
Y (t)

)
+ 1
Y (t)dX (t) +

〈
dX (t) ,d

(
1

Y (t)

)〉
= dX (t)

Y (t) +X (t)
(
−dY (t)
Y 2 (t) + 〈dY (t) ,dY (t)〉

Y 3 (t)

)
+〈

dX (t) ,−dY (t)
Y 2 (t) + 〈dY (t) ,dY (t)〉

Y 3 (t)

〉
= dX (t)

Y (t) −
X (t)
Y 2 (t)dY (t) +X (t) 〈dY (t) ,dY (t)〉

Y 3 (t) −

〈dX (t) ,dY (t)〉
Y 2 (t)

and:
dZ (t)
Z (t) = dX (t)

X (t) −
dY (t)
Y (t) + 〈dY (t) ,dY (t)〉

Y 2 (t) − 〈dX (t) ,dY (t)〉
X (t)Y (t) (9.1)

Part two

1. The Girsanov theorem states that the change of probability only affects the drift and
not the diffusion.

2. We have:

dS (t) = µ?S (t)S (t) dt+ σS (t)S (t) dWQ? (t)
= µ?S (t)S (t) dt+ σS (t)S (t)

(
dWQ (t)− g (t) dt

)
= (µ?S (t)− g (t)σS (t))S (t) dt+ σS (t)S (t) dWQ (t)

If follows that:
µ?S (t)− g (t)σS (t) = µS (t)

or:

g (t) = µ?S (t)− µS (t)
σS (t)

Using Girsanov’s theorem, we deduce that the Radon-Nikodym derivative is equal to:

Z (t) = dQ?

dQ

= exp
(∫ t

0
g (s) dWQ (s)− 1

2

∫ t

0
g2 (s) ds

)
We know that Z (t) is an Ft-martingale and we have:

dZ (t)
Z (t) = g (t) dWQ (t)
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3. We have:
Z (t) = M (0)

N (0)
N (t)
M (t)

Using Equation (9.1), we have:
dZ (t)
Z (t) = µN (t) dt+ σN (t) dWQ (t)−(

µM (t) dt+ σM (t) dWQ (t)
)

+
σ2
M (t) dt− σN (t)σM (t) dt

= (µN (t)− µM (t)) dt− σM (t) (σN (t)− σM (t)) dt+
(σN (t)− σM (t)) dWQ (t)

We deduce that:
g (t) = σN (t)− σM (t)

and:
µN (t) = µM (t) + σM (t) (σN (t)− σM (t))

4. Since g (t) = σN (t)− σM (t), it follows that:

µ?S (t) = µS (t) + g (t)σS (t)
= µS (t) + σS (t) (σN (t)− σM (t)) (9.2)

5. We have: 〈
dS (t)
S (t) ,

dN (t)
N (t)

〉
= σS (t)σN (t) dt

and: 〈
dS (t)
S (t) ,

dM (t)
M (t)

〉
= σS (t)σM (t) dt

We conclude that Equation (9.2) is equivalent to:

µ?S (t) dt−
〈

dS (t)
S (t) ,

dN (t)
N (t)

〉
= µS (t) dt−

〈
dS (t)
S (t) ,

dM (t)
M (t)

〉
We also notice that:〈

dS (t)
S (t) ,d lnN (t)

M (t)

〉
=

〈
dS (t)
S (t) ,

dZ (t)
Z (t)

〉
= σS (t) (σN (t)− σM (t)) dt

and:
µ?S (t) dt = µS (t) dt+

〈
dS (t)
S (t) ,d lnN (t)

M (t)

〉
Part three

1. Using Equation (9.1), we obtain:

dS̃ (t)
S̃ (t)

= dS (t)
S (t) −

dN (t)
N (t) + 〈dN (t) ,dN (t)〉

N2 (t) − 〈dS (t) ,dN (t)〉
S (t)N (t)

= r (t) dt+ σS (t) dWQ
S (t)−

(
r (t) dt+ σN (t) dWQ

N (t)
)

+

σ2
N (t) dt− ρσS (t)σN (t) dt

=
(
σ2
N (t)− ρσS (t)σN (t)

)
dt+ σS (t) dWQ

S (t)−
σN (t) dWQ

N (t)
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(a) We have:
dN (t) = r (t)N (t) dt

and:
N (t) = e

∫ t
0
r(s) ds

We deduce that the discounted asset price is:

S̃ (t) = S (t)
N (t)

= e
−
∫ t

0
r(s) ds

S (t)

Since σN (t) is equal to zero, it follows that:

dS̃ (t)
S̃ (t)

= σS (t) dWQ
S (t)

We conclude that S̃ (t) is an Ft-martingale under the risk-neutral probability
measure Q.

(b) We note:
WQ (t) = WQ

S (t) = WQ
N (t)

The Girsanov theorem gives2:

dWQ? (t) = dWQ (t)− σN (t) dt

and:
dWQ (t) = dWQ? (t) + σN (t) dt

We deduce that:

dS̃ (t)
S̃ (t)

=
(
σ2
N (t)− σS (t)σN (t)

)
dt+ (σS (t)− σN (t)) dWQ (t)

=
(
σ2
N (t)− σS (t)σN (t)

)
dt+ (σS (t)− σN (t))σN (t) dt

(σS (t)− σN (t)) dWQ? (t)
= σ̃ (t) dWQ? (t)

where:
σ̃ (t) = σS (t)− σN (t)

(c) Let us introduce the Brownian motion W̃Q (t) such that:

σ̃ (t) dW̃Q (t) = σS (t) dWQ
S (t)− σN (t) dWQ

N (t)

We have:
σ̃2 (t) = σ2

S (t)− 2ρσS (t)σN (t) + σ2
N (t)

We conclude that the risk-neutral dynamics of S̃ (t) is given by:

dS̃ (t)
S̃ (t)

=
(
σ2
N (t)− ρσS (t)σN (t)

)
dt+ σ̃ (t) dW̃Q (t)

2In Part two, we have shown that dWQ? (t) = dWQ (t)− g (t) dt where g (t) = σN (t)−σM (t). Here, we
assume that M (t) = 1, implying that σM (t) = 0.
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We now consider the following decomposition:

WQ
S (t) = ρWQ

N (t) +
√

1− ρ2W⊥S (t)

where W⊥S (t) ⊥WQ
S (t). We deduce that:

dS̃ (t)
S̃ (t)

=
(
σ2
N (t)− ρσS (t)σN (t)

)
dt+

(ρσS (t)− σN (t)) dWQ
N (t) + σS (t)

√
1− ρ2 dW⊥S (t)

Since we have:
dWQ? (t) = dWQ

N (t)− σN (t) dt

we obtain:

dS̃ (t)
S̃ (t)

= (ρσS (t)− σN (t)) dWQ? (t) + σS (t)
√

1− ρ2 dW⊥S (t)

We notice that:

σ̃ (t) dW̃Q? (t) = (ρσS (t)− σN (t)) dWQ? (t) + σS (t)
√

1− ρ2 dW⊥S (t)

We deduce that:
dS̃ (t)
S̃ (t)

= σ̃ (t) dW̃Q? (t)

9.4.5 The HJM model and the forward probability measure

1. Since we have:

N (t) = B(t, T2) = e
−
∫ T2
t

f(t,u) du

we deduce that the Radon-Nikodym derivative is given by:

dQ?

dQ = M (0)N (T2)
N (T2)N (0)

= e
−
∫ T2

0
r(t) dtN (T2)

N (0)

= e
−
∫ T2

0
(r(t)−f(0,t)) dt

2. We have seen that the dynamics of the instantaneous spot rate is:

r (t) = r (0) +
∫ t

0

(
σ (s, t)

∫ t

s

σ (s, u) du
)

ds+
∫ t

0
σ (s, t) dWQ (s)

It follows that:

r (t)− f (0, t) =
∫ t

0

(
σ (s, t)

∫ t

s

σ (s, u) du
)

ds+
∫ t

0
σ (s, t) dWQ (s)
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Using Fubini’s theorem, we have:∫ T2

0
(r (t)− f (0, t)) dt =

∫ T2

0

(∫ t

0

(
σ (s, t)

∫ t

s

σ (s, u) du
)

ds
)

dt+∫ T2

0

(∫ t

0
σ (s, t) dWQ (s)

)
dt

=
∫ T2

0

(∫ T2

s

(
σ (s, t)

∫ t

v

σ (s, u) du
)

dt
)

ds+

∫ T2

0

(∫ T2

s

σ (s, t) dt
)

dWQ (s)

We remind that:

a (t, T2) = −
∫ T2

t

α (t, v) dv

= −
∫ T2

t

(
σ (t, v)

∫ v

t

σ (t, u) du
)

dv

and:

b (t, T2) = −
∫ T2

t

σ (t, v) dv

We deduce that:∫ T2

0
(r (t)− f (0, t)) dt = −

∫ T2

0
a (t, T2) dt−

∫ T2

0
b (t, T2) dWQ (t)

Finally, we conclude that:

dQ?

dQ = e

∫ T2
0

a(t,T2) dt+
∫ T2

0
b(t,T2) dWQ(t)

3. Since the no-arbitrage condition in the HJM model is:

a (t, T2) + 1
2b

2 (t, T2) = 0

we obtain:
dQ?

dQ = e

∫ T2
0

g(t) dWQ(t)− 1
2

∫ T2
0

g2(t) dt

where:
g (t) = b (t, T2)

The Girsanov theorem states that:

WQ?(T2) (t) = WQ (t)−
∫ t

0
g (s) ds

is a Brownian motion under the forward probability measure Q? (T2). We deduce that:

WQ?(T2) (t) = WQ (t)−
∫ t

0
b (s, T2) ds
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4. We have:
dWQ?(T2) (t) = dWQ (t)− b (t, T2) dt

It follows that:

df (t, T1) = α (t, T1) dt+ σ (t, T1) dWQ (t)

= α (t, T1) dt+ σ (t, T1)
(

dWQ? (t) + b (t, T2) dt
)

= (α (t, T1) + σ (t, T1) b (t, T2)) dt+ σ (t, T1) dWQ?(T2) (t)

Since we have:

α (t, T1) + σ (t, T1) b (t, T2) = σ (t, T1)
∫ T1

t

σ (t, u) du−

σ (t, T1)
∫ T2

t

σ (t, u) du

We conclude that:

df (t, T1) = −
(
σ (t, T1)

∫ T2

T1

σ (t, u) du
)

dt+ σ (t, T1) dWQ?(T2) (t)

5. When T2 is equal to T1, we have:∫ T1

T1

σ (t, u) du = 0

and:
df (t, T1) = σ (t, T1) dWQ?(T1) (t)

We deduce that f (t, T1) is a martingale under the forward probability measure
Q? (T1).

6. (a) Let s ≤ t. We have:

B (t, T )
B (s, T ) = e

∫ t
s
(r(u)− 1

2 b
2(u,T )) du+b(u,T ) dWQ(u)

and:

B (t, T2)
B (t, T1) = B (s, T2) e

∫ t
s
(r(u)− 1

2 b
2(u,T2)) du+b(u,T2) dWQ(u)

B (s, T1) e
∫ t
s
(r(u)− 1

2 b
2(u,T1)) du+b(u,T1) dWQ(u)

= B (s, T2)
B (s, T1)e

X(s,t)

where:

X (s, t) = −1
2

∫ t

s

(
b2 (u, T2)− b2 (u, T1)

)
du+∫ t

s

(b (u, T2)− b (u, T1)) dWQ (u)
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(b) We have:
dWQ?(T1) (t) = dWQ (t)− b (t, T1) dt

We deduce that:

X (s, t) = −1
2

∫ t

s

(
b2 (u, T2)− b2 (u, T1)

)
du+∫ t

s

(b (u, T2)− b (u, T1)) dWQ?(T1) (u) +∫ t

s

(b (u, T2)− b (u, T1)) b (u, T1) du

= −1
2

∫ t

s

(b (u, T2)− b (u, T1))2 du+∫ t

s

(b (u, T2)− b (u, T1)) dWQ?(T1) (u)

We notice that eX(s,t) is an exponential martingale:

E
[
eX(s,t) Fs

]
= eX(s,s) = 1

We conclude that:

E
[
B (t, T2)
B (t, T1) Fs

]
= E

[
B (s, T2)
B (s, T1)e

X(s,t) Fs
]

= B (s, T2)
B (s, T1)

9.4.6 Equivalent martingale measure in the Libor market model
1. Since we have:

B (t, Tj)
B (t, Tj+1) = 1 + (Tj+1 − Tj)L (t, Tj , Tj+1)

= 1 + δjLj (t)

we obtain:
B (t, Tj+1)
B (t, Tj)

= 1
1 + δjLj (t)

It follows that:

B (t, Tk+1)
B (t, Ti+1) = B (t, Tk+1)

B (t, Tk) ×
B (t, Tk)
B (t, Tk−1) × · · · ×

B (t, Ti+2)
B (t, Ti+1)

=
k∏

j=i+1

B (t, Tj+1)
B (t, Tj)

=
k∏

j=i+1

1
1 + δjLj (t)

2. We remind that:
M (t) = B (t, Ti+1)
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and:
N (t) = B (t, Tk+1)

We have:

Z (t) = dQ? (Tk+1)
dQ? (Ti+1)

= N (t) /N (0)
M (t) /M (0)

We deduce that:

Z (t) = B (0, Ti+1)B (t, Tk+1)
B (0, Tk+1)B (t, Ti+1)

= B (0, Ti+1)
B (0, Tk+1)

k∏
j=i+1

1
1 + δjLj (t)

3. We have:

d lnZ (t) = d

B (0, Ti+1)
B (0, Tk+1)

k∏
j=i+1

1
1 + δjLj (t)


= −

k∑
j=i+1

d ln (1 + δjLj (t))

= −
k∑

j=i+1

d (1 + δjLj (t))
1 + δjLj (t)

= −
k∑

j=i+1

δj dLj (t)
1 + δjLj (t)

= −
k∑

j=i+1

γj (t) δjLj (t)
1 + δjLj (t) dWQ?(Tj+1)

j (t)

4. We obtain:

ζ =
〈

dLi (t)
Li (t) ,d lnZ (t)

〉
=

〈
γi (t) dWQ?

i (t) ,−
k∑

j=i+1

γj (t) δjLj (t)
1 + δjLj (t) dWQ?(Tj+1)

j (t)
〉

= −γi (t)
k∑

j=i+1

γj (t) δjLj (t)
1 + δjLj (t)

〈
dWQ?(Ti+1)

i (t) ,dWQ?(Tj+1)
j (t)

〉

= −γi (t)
k∑

j=i+1

γj (t) δjLj (t)
1 + δjLj (t) ρi,j dt

5. Under the probability measure Q? (Ti+1), we have:

dLi (t)
Li (t) = µi (t) dt+ γi (t) dWQ?(Ti+1)

i (t)
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where µi (t) = 0. In Question 5, Part two, Exercise 9.4.4, we have shown that:

dLi (t)
Li (t) = µi,k (t) dt+ γi (t) dWQ?(Tk+1)

k (t)

where:
µi,k (t) dt = µi (t) dt+

〈
dLi (t)
Li (t) ,d lnZ (t)

〉
We deduce that:

µi,k (t) = µi (t)− γi (t)
k∑

j=i+1
ρi,jγj (t) δjLj (t)

1 + δjLj (t)

= −γi (t)
k∑

j=i+1
ρi,jγj (t) (Tj+1 − Tj)L (t, Tj , Tj+1)

1 + (Tj+1 − Tj)L (t, Tj , Tj+1)

6. If Tk+1 < Ti+1, we have:

B (t, Tk+1)
B (t, Ti+1) = B (t, Tk+1)

B (t, Tk+2) ×
B (t, Tk+2)
B (t, Tk+3) × · · · ×

B (t, Ti)
B (t, Ti+1)

=
i∏

j=k+1

B (t, Tj)
B (t, Tj+1)

=
i∏

j=k+1
(1 + δjLj (t))

We deduce that:

Z (t) = B (0, Ti+1)
B (0, Tk+1)

i∏
j=k+1

(1 + δjLj (t))

It follows that:

d lnZ (t) =
i∑

j=k+1

γj (t) δjLj (t)
1 + δjLj (t) dWQ?(Tj+1)

j (t)

and:

ζ = γi (t)
i∑

j=k+1

γj (t) δjLj (t)
1 + δjLj (t) ρi,j dt

We conclude that:

dLi (t)
Li (t) = γi (t)

i∑
j=k+1

ρi,jγj (t) δjLj (t)
1 + δjLj (t) dt+ γi (t) dWQ?(Tk+1)

k (t)

9.4.7 Displaced diffusion option pricing
1. We have:

dS (t) = (∂tα (t) + ∂tβ (t)X (t) + β (t)µ (t,X (t))) dt+
β (t)σ (t,X (t)) dWQ (t)
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We deduce that:

bS (t) = ∂tα (t) + ∂tβ (t)X (t) + β (t)µ (t,X (t))

= ∂tα (t) + ∂tβ (t)
(
S (t)− α (t)

β (t)

)
+ β (t)µ

(
t,
S (t)− α (t)

β (t)

)
2. We have:

bS (t) = ∂tα (t) + ∂tβ (t)
(
S (t)− α (t)

β (t)

)
+ µ (t)β (t)

(
S (t)− α (t)

β (t)

)
= ∂tα (t)−

(
∂tβ (t)
β (t) + µ (t)

)
α (t) +

(
∂tβ (t)
β (t) + µ (t)

)
S (t)

meaning that: {
∂tα (t)−

(
β (t)−1

∂tβ (t) + µ (t)
)
α (t) = 0

β (t)−1
∂tβ (t) + µ (t) = b

We deduce that:
∂tα (t)− bα (t) = 0

and:
α (t) = α0e

bt

We also have:
∂tβ (t)
β (t) = b− µ (t)

and:
β (t) = β0e

∫ t
0

(b−µ(s)) ds

3. We deduce that:

dS (t) = bS (t) dt+ β (t)1−γ
σ (t) (S (t)− α (t))γ dWQ (t) (9.3)

4. We have:
dX (t) = µ (t)X (t) dt+ σ (t)X (t) dWQ (t)

and:
X (t) = X0e

∫ t
0
(µ(s)− 1

2σ
2(s)) ds+

∫ t
0
σ(s) dWQ(s)

By noticing that S0 = α0 + β0X0, it follows that:

S (t) = α (t) + β (t)X0e

∫ t
0
(µ(s)− 1

2σ
2(s)) ds+

∫ t
0
σ(s) dWQ(s)

= α0e
bt + (S0 − α0) e

∫ t
0
(b− 1

2σ
2(s)) ds+

∫ t
0
σ(s) dWQ(s)

5. The payoff of the European call option is:

f (S (T )) = (S (T )−K)+

=
((
S (T )− α0e

bT
)
−
(
K − α0e

bT
))+

It follows that the option price is equal to:

C (t0, S0) = CBS

S0 − α0,K − α0e
bT ,

√∫ t

0
σ2 (s) ds, T, b, r
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9.4.8 Dupire local volatility model

We assume that:

dS (t) = bS (t) dt+ σ (t, S (t))S (t) dWQ (t)

1. Let C (T,K) be the price of the European call option, whose maturity is T and strike
is K. We remind that:

1
2σ

2 (T,K)K2∂2
KC (T,K)− bK∂KC (T,K)−

∂TC (T,K) + (b− r)C (T,K) = 0

We deduce that:

σ2 (T,K) = A′ (T,K)
B′ (T,K)

where:

A′ (T,K) = 2bK∂KC (T,K) + 2∂TC (T,K)− 2 (b− r)C (T,K)

and:

B′ (T,K) = K2∂2
KC (T,K)

2. We have:

C (T,K) = S0e
(b−r)TΦ (d1)−Ke−rTΦ (d2)

where:

d1 = 1
Σ (T,K)

√
T

(
ln
(
S0

K

)
+ bT

)
+ 1

2Σ (T,K)
√
T

and d2 = d1 − Σ (T,K)
√
T . We note CBS (T,K,Σ) the Black-Scholes formula. We

have:

∂KC (T,K) = ∂KCBS (T,K,Σ (T,K)) +
∂KΣ (T,K) ∂ΣCBS (T,K,Σ (T,K))

and:

∂2
KC (T,K) = ∂2

KCBS (T,K,Σ (T,K)) +
2∂KΣ (T,K) ∂2

Σ,KCBS (T,K,Σ (T,K)) +
∂2
KΣ (T,K) ∂ΣCBS (T,K,Σ (T,K)) +

(∂KΣ (T,K))2
∂2

ΣCBS (T,K,Σ (T,K))

The derivative of C (T,K) with respect to the maturity T is equal to:

∂TC (T,K) = ∂TCBS (T,K,Σ (T,K)) +
∂TΣ (T,K) ∂ΣCBS (T,K,Σ (T,K))
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The different Black-Scholes derivatives are3:

∂KCBS (T,K,Σ) = −e−rTΦ (d2)
∂ΣCBS (T,K,Σ) = S0e

(b−r)T
√
Tφ (d1) = Ke−rT

√
Tφ (d2)

∂2
KCBS (T,K,Σ) = e−rT

φ (d2)
KΣ
√
T

∂2
ΣCBS (T,K,Σ) = e−rT

K
√
Tφ (d2) d1d2

Σ

∂2
Σ,KCBS (T,K,Σ) = e−rT

d1φ (d2)
Σ

∂TCBS (T,K,Σ) = (b− r)S0e
(b−r)TΦ (d1) +

Ke−rT
(
rΦ (d2) + Σφ (d2)

2
√
T

)
We deduce that:

A′ (T,K) = −2bKe−rTΦ (d2) + 2bK2e−rT
√
Tφ (d2) ∂KΣ (T,K) +

2 (b− r)S0e
(b−r)TΦ (d1) +

2Ke−rT
(
rΦ (d2) + Σ (T,K)φ (d2)

2
√
T

)
+

2Ke−rT
√
Tφ (d2) ∂TΣ (T,K)−

2 (b− r)
(
S0e

(b−r)TΦ (d1)−Ke−rTΦ (d2)
)

= 2bK2e−rT
√
Tφ (d2) ∂KΣ (T,K) +

Ke−rTΣ (T,K)φ (d2)√
T

+ 2Ke−rT
√
Tφ (d2) ∂TΣ (T,K)

= e−rT
Kφ (d2)

Σ (T,K)
√
T
A (T,K)

where:

A (T,K) = Σ2 (T,K) + 2bKTΣ (T,K) ∂KΣ (T,K) +
2TΣ (T,K) ∂TΣ (T,K) (9.4)

We also have:

B′ (T,K) = e−rT
Kφ (d2)

Σ (T,K)
√
T

+ 2e−rT K
2d1φ (d2)

Σ (T,K) ∂KΣ (T,K) +

e−rTK3
√
Tφ (d2) ∂2

KΣ (T,K) +

e−rT
K3
√
Tφ (d2) d1d2

Σ (T,K) (∂KΣ (T,K))2

= e−rT
Kφ (d2)

Σ (T,K)
√
T
B (T,K)

3We use the fact that:
S0φ (d1) = Ke−bTφ (d2)
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where:

B (T,K) = 1 + 2K
√
Td1∂KΣ (T,K) +K2TΣ (T,K) ∂2

KΣ (T,K) +
K2Td1d2 (∂KΣ (T,K))2 (9.5)

We conclude that:

σ2 (T,K) = A′ (T,K)
B′ (T,K)

= A (T,K)
B (T,K)

where A (T,K) and B (T,K) are given by Equations (9.4) and (9.5).

3. We follow the proof given by van der Kamp (2009)4. Let f̃ denote the discounted
payoff function:

f̃ (T, S (T )) = e−r(T−t) (S (T )−K)+

Itô’s lemma gives:

df̃ (T, S) = −re−r(T−t) (S −K)+ dT + bSe−r(T−t)1 {S > K} dT +
1
2σ

2 (T, S)S2e−r(T−t)δ (S −K) dT +

σ (T, S)Se−r(T−t)1 {S > K} dWQ (t)

where δ (x) is the Dirac delta function. We deduce that:

∂TC (T,K) =
E
[
df̃ (T, S (T ))

∣∣Ft]
dT

= re−r(T−t)KE [1 {S (T ) > K}| Ft] +
(b− r) e−r(T−t)E [S (T )1 {S (T ) > K}| Ft] +
1
2e
−r(T−t)E

[
σ2 (T, S (T ))S2 (T ) δ (S (T )−K)

∣∣Ft]
4. We have:

C (T,K) = E
[
f̃ (T, S (T ))

∣∣Ft]
= e−r(T−t)E [ (S (T )−K)1 {S (T ) > K}| Ft]

It follows that:

∂KC (T,K) = −e−r(T−t)E [1 {S (T ) > K}| Ft]−
e−r(T−t)E [ (S (T )−K) δ (S (T )−K)| Ft]

= −e−r(T−t)E [1 {S (T ) > K}| Ft]

and:
∂2
KC (T,K) = e−r(T−t)E [δ (S (T )−K)| Ft]

We notice that:

∂TC (T,K) =
E
[
df̃ (T, S (T ))

∣∣Ft]
dT

4van der Kamp, R. (2009), Local Volatility Modeling, Master of Science Dissertation, University of
Twente.
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Since we have:

E [S (T )1 {S (T ) > K}] = er(T−t)C (T,K) +K1 {S (T ) > K}

we obtain:

∂TC (T,K) = re−r(T−t)KE [1 {S (T ) > K}| Ft] +

(b− r)E
[
C (T,K) + e−r(T−t)K1 {S (T ) > K}

∣∣∣Ft]+
1
2e
−r(T−t)Q (T,K)

We also have:

Q (T,K) = E
[
σ2 (T, S (T ))S2 (T )

∣∣S (T ) = K
]
· E [δ (S (T )−K)| Ft]

= E
[
σ2 (T, S (T ))

∣∣S (T ) = K
]
K2er(T−t)∂2

KC (T,K)

We conclude that:

∂TC (T,K) = rK∂KC (T,K) + (b− r)C (T,K)−
(b− r)K∂KC (T,K) +
1
2E
[
σ2 (T, S (T ))

∣∣S (T ) = K
]
K2∂2

KC (T,K)

and:

1
2σ

2 (T,K)K2∂2
KC (T,K)− bK∂KC (T,K)−

∂TC (T,K) + (b− r)C (T,K) = 0

5. (a) Since we have:

x = ln S0

K
+ bT

we deduce that:
d1 = x

Σ (T,K)
√
T

+ 1
2Σ (T,K)

√
T

and:
d2 = x

Σ (T,K)
√
T
− 1

2Σ (T,K)
√
T

We also notice that:

d1d2 = x2

Σ2 (T,K)T −
1
4Σ2 (T,K)T

(b) The first derivatives of x = ϕ (T,K) are equal to:

∂Kϕ (T,K) = − 1
K

and:
∂Tϕ (T,K) = b
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It follows that:

∂KΣ (T,K) = ∂KΣ̃ (T, ϕ (T,K))
= ∂xΣ̃ (T, x) ∂Kϕ (T,K)

= − 1
K
∂xΣ̃ (T, x)

and

∂TΣ (T,K) = ∂T Σ̃ (T, ϕ (T,K))
= ∂T Σ̃ (T, x) + b∂xΣ̃ (T, x)

We also have:

∂2
KΣ (T,K) = 1

K2 ∂xΣ̃ (T, x) + 1
K2 ∂

2
xΣ̃ (T, x)

(c) We deduce that:

σ̃ (T, x) =

√
Ã (T, x)
B̃ (T, x)

where Ã (T, x) = A (T,K) and B̃ (T, x) = B (T,K). Using Equations (9.4) and
(9.5), we obtain:

Ã (T, x) = Σ̃2 (T, x)− 2bT Σ̃ (T, x) ∂xΣ̃ (T, x) +
2T Σ̃ (T, x)

(
∂T Σ̃ (T, x) + b∂xΣ̃ (T, x)

)
= Σ̃2 (T, x) + 2T Σ̃ (T, x) ∂T Σ̃ (T, x)

and:

B̃ (T, x) = 1− 2
(
xΣ̃−1 (T, x) + 1

2T Σ̃ (T, x)
)
∂xΣ̃ (T, x) +

T Σ̃ (T, x)
(
∂xΣ̃ (T, x) + ∂2

xΣ̃ (T, x)
)

+(
x2Σ̃−2 (T, x)− 1

4T
2Σ̃2 (T, x)

)(
∂xΣ̃ (T, x)

)2
=

(
1− xΣ̃−1 (T, x) ∂xΣ̃ (T, x)

)2 +
T Σ̃ (T, x) ∂2

xΣ̃ (T, x)−
1
4
(
T Σ̃ (T, x) ∂xΣ̃ (T, x)

)2
(d) When T is equal to zero, we obtain:

σ̃2 (0, x) = Σ̃2 (0, x)(
1− xΣ̃−1 (0, x) ∂xΣ̃ (0, x)

)2
and:

Σ̃ (0, x) =
(

1− x∂xΣ̃ (0, x)
Σ̃ (0, x)

)
σ̃ (0, x)

The explicit solution of this equation is:

Σ̃ (0, x) =
(∫ 1

0
σ̃−1 (0, xy) dy

)−1
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We deduce that:

∂xΣ̃ (0, x) =
∫ 1

0 yσ̃
−2 (0, xy) ∂xσ̃ (0, xy) dy(∫ 1

0 σ̃
−1 (0, xy) dy

)2

It follows that:

∂xΣ̃ (0, 0) =
∫ 1

0 y dy(∫ 1
0 dy

)2 ∂xσ̃ (0, 0)

= 1
2∂xσ̃ (0, 0)

9.4.9 The stochastic normal model
1. We have5:

ΣN (T,K) = ΣB (T,K)
√
F0K ×
1 + 1

24 ln2 F0/K + 1
1920 ln4 F0/K

1 + 1
24
(
1− 1

120 ln2 F0/K
)

Σ2
B (T,K)T + 1

5760Σ4
B (T,K)T 2

2. We have6:

ΣN (T,K) = α (F0K)β/2
(

z

χ (z)

)
×(

1 + 1
24 ln2 F0/K + 1

1920 ln4 F0/K

1 + 1
24 (1− β)2 ln2 F0/K + 1

1920 (1− β)4 ln4 F0/K

)
×(

1 +
(
−β (2− β)α2

24 (F0K)1−β + ρανβ

4 (F0K)(1−β)/2 + 2− 3ρ2

24 ν2

)
T

)
where:

z = ν

α
(F0K)(1−β)/2 ln F0

K

and

χ (z) = ln
(√

1− 2ρz + z2 + z − ρ
1− ρ

)
In the sequel, we introduce the notation ϕ (z) =

√
1− 2ρz + z2.

3. When β is equal to 0, we obtain:

ΣN (T,K) = α

(
z

χ (z)

)(
1 + 2− 3ρ2

24 ν2T

)
where:

z = ν

α

√
F0K ln F0

K

and:

χ (z) = ln
(√

1− 2ρz + z2 + z − ρ
1− ρ

)
5Hagan et al. (2002), Equation (A.64) on page 101.
6Hagan et al. (2002), Equation (A.69) on page 102.
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4. Since we have:
lim
K→F0

z

χ (z) = 1

we deduce the expression of the ATM volatility:

ΣN (T, F0) = α

(
1 + 2− 3ρ2

24 ν2T

)
5. We notice that z is a function of K. By introducing the notation z = z (K), we have:

∂Kχ (z (K)) =

−2ρ∂Kz(K)+2z(K)∂Kz(K)
2
√

1−2ρz(K)+z2(K)
+ ∂Kz (K)√

1− 2ρz (K) + z2 (K) + z (K)− ρ

= ∂Kz (K)√
1− 2ρz (K) + z2 (K)

and:

∂Kz (K) = ν

α

√
F0∂K

(√
K (lnF0 − lnK)

)
= ν

α

√
F0

(
lnF0

2
√
K
−
√
K

K
− lnK

2
√
K

)

= ν

α

√
F0

K

(
ln
√
F0

K
− 1
)

It follows that:

∂K

(
z (K)

χ (z (K))

)
= χ (z (K)) ∂Kz (K)− z (K) ∂Kχ (z (K))

χ2 (z (K))

=
(
χ (z (K))ϕ (z (K))− z (K)

χ2 (z (K))ϕ (z (K))

)
∂Kz (K)

=
(

1
χ (z (K)) −

z (K)
χ2 (z)ϕ (z (K))

)
∂Kz (K)

where:
ϕ (z (K)) =

√
1− 2ρz (K) + z2 (K)

We deduce that:

∂KΣN (T,K) = α

(
1 + 2− 3ρ2

24 ν2T

)
∂K

(
z (K)

χ (z (K))

)
= ν

(
1 + 2− 3ρ2

24 ν2T

)√
F0

K

(
ln
√
F0

K
− 1
)
·(

1
χ (z) −

z

χ2 (z)
√

1− 2ρz + z2

)
(9.6)

6. We have:
C (T,K) = (F0 −K) Φ (d) + σN

√
Tφ (d)

where:
d = F0 −K

σN
√
T
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7. Using the results of Breeden and Litzenberger (1978), we have:

Q (T,K) = Pr {F (T ) ≤ K}

= 1 + ∂ Ct (T,K)
∂ K

When σN is equal to the function ΣN (T,K), we deduce that:

Q (T,K) = 1− Φ (d) + (F0 −K)φ (d) · ∂Kd+
√
Tφ (d) · ∂KΣN (T,K)− ΣN (T,K)

√
Tdφ (d) · ∂Kd

= 1− Φ (d) + φ (d)
√
T · ∂KΣN (T,K)

where ∂KΣN (T,K) is given by Equation (9.6).

8. For the density function, we have:

q (T,K) = −φ (d) · ∂Kd− dφ (d)
√
T · ∂Kd · ∂KΣN (T,K) +

φ (d)
√
T · ∂2

KΣN (T,K)

We notice that:

∂Kd = −ΣN (T,K)
√
T − (F0 −K)

√
T · ∂KΣN (T,K)

Σ2
N (T,K)T

= −1 + d
√
T · ∂KΣN (T,K)

ΣN (T,K)
√
T

It follows that:

q (T,K) = φ (d)
ΣN (T,K)

√
T

(
1 + d

√
T · ∂KΣN (T,K)

)2
+

φ (d)
√
T · ∂2

KΣN (T,K)

To calculate the probability density function of F (T ), we need to calculate
∂KΣN (T,K) and ∂2

KΣN (T,K). If we use the approximation z = να−1 (F0 −K),
we have ∂Kz = −να−1. We deduce that:

∂KΣN (T,K) = −ν
(

1 + 2− 3ρ2

24 ν2T

)(
1

χ (z) −
z

χ2 (z)
√

1− 2ρz + z2

)
and:

∂2
KΣN (T,K) = ν2

α

(
1 + 2− 3ρ2

24 ν2T

)
D

where:

D = 2
χ2 (z) (1− 2ρz + z2)

(
z

χ (z)
√

1− 2ρz + z2
− 1
)

+

z (z − ρ)
χ2 (z) (1− 2ρz + z2)3/2

9. When β = 0, the SABR model becomes:{
dF (t) = α (t) dWQ

1 (t)
dα (t) = να (t) dWQ

2 (t)
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Since we have α (0) = α, we obtain:

α (t) = αe−
1
2ν

2t+νWQ
2 (t)

and:
dF (t) = αe−

1
2ν

2t+νWQ
2 (t) dWQ

1 (t)

It follows that:

F (t) = F0 + α

∫ t

0
e−

1
2ν

2s+νWQ
2 (s) dWQ

1 (s)

Using the scaling property, we deduce that:

F (t) = F0 + α

ν

∫ ν2t

0
e−

1
2 s+W2(s) dW1 (s)

where W1 (t) and W2 (t) have the same properties WQ
1 (t) and WQ

2 (t).

10. We note:

X (t) =
∫ t

0
e−

1
2 s+W2(s) dW1 (s)

Ma (t) = e−
1
2at+aW2(t)

M (t) = e−
1
2 t+W2(t)

We have:
dX (t) = e−

1
2 t+W2(t) dW1 (t) = M (t) dW1 (t)

and:
d 〈X (t)〉 = e−t+2W2(t) dt = M (t)2 dt

Using Itô’s lemma, we deduce that:

dXn (t) = nXn−1 (t) dX (t) + n (n− 1)
2 Xn−2 (t) d 〈X (t)〉

= nXn−1 (t)M (t) dW1 (t) + n (n− 1)
2 Xn−2 (t)M (t)2 dt

Since we have:

dMa (t) = a (a− 1)
2 Ma (t) dt+ aMa (t) dW2 (t)

we obtain:

d (Xn (t)Ma (t)) = Xn (t) dMa (t) +Ma (t) dXn (t) + d 〈Xn (t) ,Ma (t)〉

= a (a− 1)
2 Xn (t)Ma (t) dt+ aXn (t)Ma (t) dW2 (t) +

nXn−1 (t)Ma (t)M (t) dW1 (t) +
n (n− 1)

2 Xn−2 (t)Ma (t)M (t)2 dt+

nρaXn−1 (t)Ma (t)M (t) dt
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It follows that:
E [d (Xn (t)Ma (t))]

dt = a (a− 1)
2 E [Xn (t)Ma (t)] +

n (n− 1)
2 E

[
Xn−2 (t)Ma (t)M (t)2

]
+

nρaE
[
Xn−1 (t)Ma (t)M (t)

]
We notice that Ma (t)M (t) = Ma+1 (t) and Ma (t)M (t)2 = Ma+2 (t). We conclude
that:

dΨn,a (t)
dt = a(a− 1)

2 Ψn,a (t) + n(n− 1)
2 Ψn−2,a+2 (t) + nρaΨn−1,a+1 (t)

where:
Ψn,a (t) = E [Xn (t)Ma (t)]

Therefore, the relationship between Ψn,a (t) and the moments of F (t) is:

E [(F (t)− F0)n] =
(α
ν

)n
Ψn,0 (ν2t

)
11. For n = 0, we have:

Ψ0,a (t) = E
[
X0 (t)Ma (t)

]
= E

[
e−

1
2at+aW2(t)

]
= e−

1
2ate

1
2a

2t

= e
1
2a(a−1)t

For n = 1, we have:

dΨ1,a (t)
dt = a(a− 1)

2 Ψ1,a (t) + ρaΨ0,a+1 (t)

= a(a− 1)
2 Ψ1,a (t) + ρae

1
2a(a+1)t

We deduce that7:

Ψ1,a (t) = e
1
2a(a−1)t

∫ t

0
e−

1
2a(a−1)sρae

1
2a(a+1)s ds

= ρe
1
2a(a−1)t [eas]t0

= ρe
1
2a(a−1)t (eat − 1

)
For n = 2, we solve the ODE:

dΨ2,a (t)
dt = a(a− 1)

2 Ψ2,a (t) + 2ρaΨ1,a+1 (t) + Ψ0,a+2 (t)

= a(a− 1)
2 Ψ2,a (t) + h (t)

7We remind that the solution of the ODE:
df (t)

dt
= αf (t) + β (t)

is equal to:

f (t) = eat
∫ t

0
e−asβ (s) ds
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where:
h (t) = 2ρ2ae

a(a+1)
2 t

(
e(a+1)t − 1

)
+ e

(a+1)(a+2)
2 t

The solution is given by:

Ψ2,a (t) = e
a(a−1)

2 t

∫ t

0
e−

a(a−1)
2 sh (s) ds

= e
a(a−1)

2 t

((
2ρ2a+ 1
2a+ 1

)(
e(2a+1)t − 1

)
− 2ρ2 (eat − 1

))
For n = 3 and a = 0, the ODE becomes:

dΨ3,0 (t)
dt = 3Ψ1,2 (t)

= 3ρet
(
e2t − 1

)
The solution is then:

Ψ3,0 (t) = ρ
(
e3t − 3et + 2

)
For n = 4 and a = 0, we obtain:

dΨ4,0 (t)
dt = 6Ψ2,2 (t)

= 6et
((

4ρ2 + 1
5

)(
e5t − 1

)
− 2ρ2 (e2t − 1

))
and:

Ψ4,0 (t) = 4ρ2 + 1
5 e6t − 4ρ2e3t − 6

5
(
4ρ2 + 1

)
et + 12ρ2et − 4ρ2 + 1

We deduce that:

E [F (t)− F0] =
(α
ν

)1
Ψ1,0 (ν2t

)
= 0

and:

E
[
(F (t)− F0)2

]
=

(α
ν

)2
Ψ2,0 (ν2t

)
= α2

ν2

(
eν

2t − 1
)

For the third moment, we obtain:

E
[
(F (t)− F0)3

]
=

(α
ν

)3
Ψ3,0 (ν2t

)
= ρ

α3

ν3

(
e3ν2t − 3eν

2t + 2
)

Finally, the fourth moment is equal to:

E
[
(F (t)− F0)4

]
=

(α
ν

)4
Ψ4,0 (ν2t

)
= α4

ν4

(
1
5
(
4ρ2 + 1

)
e6ν2t − 4ρ2e3ν2t

)
+

α4

ν4

(
6
5
(
6ρ2 − 1

)
eν

2t − 4ρ2 + 1
)
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12. We have:

σ2 (F (t)) = α2

ν2

(
eν

2t − 1
)

' α2

ν2

(
1 + ν2t+ 1

2ν
4t2 + 1

6ν
6t3 − 1

)
= α2

(
t+ 1

2ν
2t2 + 1

6ν
4t3
)

Using the same approximation method, the skewness coefficient is:

γ1 (F (t)) =
ρ
(
e3ν2t − 3eν2t + 2

)
(eν2t − 1)

3
2

' 3ρν
√
t+ 4ρν3t

√
t

whereas the expression of the kurtosis is:

γ2 (F (t)) =

(
4ρ2 + 1

)
e6ν2t − 20ρ2

(
e3ν2t + 1

)
+
(
36ρ2 − 6

)
eν

2t + 5

5 (eν2t − 1)2

'
3 +

(
7 + 11ρ2) ν2t(

1 + 1
2ν

2t+ 1
6ν

4t2
)2

13. (a) Using the formula given in Question (1), we obtain the following equivalent nor-
mal volatility:

K 7% 10% 13%
ΣB (T,K) 30% 20% 30%
ΣN (T,K) 2.51389% 1.99667% 3.41753%

(b) The method of least squares gives α = 0.017573, β = 0, ν = 1.448791 and
ρ = 0.383867. We verify that the fitted smile adjust perfectly the three observed
volatilities.

(c) The cumulative distribution function is shown in Figure 9.1. We notice that
the cdf is not an increasing function when the forward rate is close to zero.
As a result, the density function takes negative value. We deduce that there is
arbitrage opportunities.

(d) Using the formula calculated in Question (8), we obtain Figure 9.2. With the
approximation

√
F0K ln F0

K ' F0 −K, the probability density function becomes
always positive.

(e) The skewness is equal to 10.43, whereas the kurtosis is equal to 1822.60. These
values are very high, meaning that the stochastic normal model is far to be
Gaussian. This result is surprising. However, we can show that the long-term
probability distribution of F (t) in the SABR model is non-degenerate contrary
to Black and normal models. For instance, when ρ is equal to zero, we obtain:

F (∞) law= F0 + α

ν
N (0, 1)

√
1

2Z1/2

where Zk is a Gamma random variable with parameter k.
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FIGURE 9.1: Cumulative distribution function of F (1)

FIGURE 9.2: Probability density function of F (1)
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Remark 1 To find the distribution of F (∞), we use the following result8 of Donati-Martin
et al. (2001): Let ξ (t) = − (ct+ σB (t) +N+ (t)−N− (t)) where N+ (t) and N− (t) are two
independent Poisson processes and B (t) is a Brownian motion. Let A (t) =

∫ t
0 exp (ξ (s)) ds,

X (t) = exp (ξ (t))
∫ t

0 exp (−ξ (s)) ds and Tα denotes an exponential variable of parameter
α independent of ξ (t). The law µα of A (Tα) satisfies µα = α−1L?µα where L denotes
the infinitesimal generator of the Markov process X (t). Let us consider the special case
ξ (t) = σB (t)− ct. We have:

dX (t) = σX (t) dB (t) +
((

σ2

2 − c
)
X (t) + 1

)
dt

and:
L =

((
σ2

2 − c
)
x+ 1

)
∂x + 1

2σ
2x2∂2

x

We deduce that the density function of A (∞) is equal to:

fA(∞) (u) = θk

Γ (k)uk+1 exp
(
− θ
u

)
where θ = 2/σ2 and k = 2c/σ2. Therefore, we have:

A (∞) law= θ

Zk

where Zk is the Gamma random variable with parameter k. In the stochastic Gaussian model
with ρ = 0, we have: {

dF (t) = α (t)F (t)β dWQ
1 (t)

dα (t) = να (t) dWQ
2 (t)

where WQ
1 (t) and WQ

2 (t) are independent. It follows that:

α (t) = α exp
(
−1

2ν
2t+ ν dWQ

2 (t)
)

and:
F (t) = F0 + α

∫ t

0
exp

(
−1

2ν
2s+ ν dWQ

2 (s)
)

dWQ
1 (s)

We deduce that F (t) law= F0 + αWQ
1 (〈F (t)〉) where:

〈F (t)〉 =
∫ t

0
exp

(
2νWQ

2 (s)− ν2s
)

ds

We have:
〈F (∞)〉 law= θ

Zk

where θ = 2/ (2ν)2 = 1/
(
2ν2) and k = 2ν2/ (2ν)2 = 1/2. Since we have WQ

1 (t) law=
N (0, 1)

√
t, we conclude that:

F (∞) law= F0 + αN (0, 1)
√

1
2ν2Z1/2

8Donati-Martin, C., Ghomrasni, R., and Yor, M. (2001), On Certain Markov Processes Attached to Ex-
ponential Functionals of Brownian Motion; Applications to Asian Options, Revista Matematica Iberoamer-
icana, 17(1), pp. 179-193.
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9.4.10 The quadratic Gaussian model
1. We know that the bond price:

B (t, T ) = EQ
[
e
−
∫ T
t
r(s) ds

]
is the solution of the following PDE:

1
2 tr

(
Σ (t) ∂2

XB (t, T ) Σ (t)>
)

+

∂XB (t, T )> (a (t) +B (t)X (t)) +
∂tB (t, T )− r (t)B (t, T ) = 0 (9.7)

with B (T, T ) = 1.

2. We assume that the solution of B (t, T ) has the following form:

B (t, T ) = exp
(
−α̂ (t, T )− β̂ (t, T )>X (t)−X (t)> Γ̂ (t, T )X (t)

)
where Γ̂ (t, T ) is a symmetric matrix. We obtain:

∂tB (t, T )
B (t, T ) = −∂tα̂ (t, T )− ∂tβ̂ (t, T )>X (t)−X (t)> ∂tΓ̂ (t, T )X (t)

and:
∂XB (t, T )
B (t, T ) = −β̂ (t, T )− 2Γ̂ (t, T )X (t)

We deduce that:

∂2
XB (t, T )
B (t, T ) =

∂X

(
∂XB (t, T )>

)
B (t, T )

= −2Γ̂ (t, T ) +(
β̂ (t, T ) + 2Γ̂ (t, T )X (t)

)(
β̂ (t, T ) + 2Γ̂ (t, T )X (t)

)>
= −2Γ̂ (t, T ) + β̂ (t, T ) β̂ (t, T )> +

2Γ̂ (t, T )X (t) β̂ (t, T )> +
2β̂ (t, T )X (t)> Γ̂ (t, T ) +
4Γ̂ (t, T )X (t)X (t)> Γ̂ (t, T )

By using the matrix property tr (AB) = tr (BA) if the product BA makes a sense, we
can write Equation (9.7) as follows:

− tr
(

Σ (t) Γ̂ (t, T ) Σ (t)>
)

+
1
2 tr

(
Σ (t) β̂ (t, T ) β̂ (t, T )>Σ (t)>

)
+

+2X (t)> Γ̂ (t, T ) Σ (t) Σ (t)> β̂ (t, T ) +
2X (t)> Γ̂ (t, T ) Σ (t) Σ (t)> Γ̂ (t, T )X (t)−(

β̂ (t, T ) + 2Γ̂ (t, T )X (t)
)>

(a (t) +B (t)X (t))−

∂tα̂ (t, T )−X (t)> ∂tβ̂ (t, T )−X (t)> ∂tΓ̂ (t, T )X (t)−(
α (t) +X (t)> β (t) +X (t)> Γ (t)X (t)

)
= 0
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We regroup the terms by the polynomial degree in X. For degree 0, we obtain:

− tr
(

Σ (t) Γ̂ (t, T ) Σ (t)>
)

+
1
2 tr

(
Σ (t) β̂ (t, T ) β̂ (t, T )>Σ (t)>

)
−

β̂ (t, T )> a (t)− ∂tα̂ (t, T )− α (t) = 0

or:

∂tα̂ (t, T ) = − tr
(

Σ (t) Σ (t)> Γ̂ (t, T )
)
− β̂ (t, T )> a (t) +

1
2 β̂ (t, T )> Σ (t) Σ (t)> β̂ (t, T )− α (t)

For degree 1, we obtain:

2Γ̂ (t, T ) Σ (t) Σ (t)> β̂ (t, T )−B (t)> β̂ (t, T )−
2Γ̂ (t, T ) a (t)− ∂tβ̂ (t, T )− β (t) = 0

or:

∂tβ̂ (t, T ) = −B (t)> β̂ (t, T ) + 2Γ̂ (t, T ) Σ (t) Σ (t)> β̂ (t, T )−
2Γ̂ (t, T ) a (t)− β (t)

For degree 2, we obtain:

2Γ̂ (t, T ) Σ (t) Σ (t)> Γ̂ (t, T )− 2Γ̂ (t, T )B (t)−
∂tΓ̂ (t, T )− Γ (t) = 0

or:

∂tΓ̂ (t, T ) = 2Γ̂ (t, T ) Σ (t) Σ (t)> Γ̂ (t, T )−
2Γ̂ (t, T )B (t)− Γ (t)

3. B (t) must be a diagonal matrix in order to ensure that Γ̂ (t, T ) is a symmetric matrix.
Indeed, if we do not consider this hypothesis, we obtain:

∂tΓ̂ (t, T ) = 1
2

(
Γ̂ (t, T ) + Γ̂ (t, T )>

)
Σ (t) Σ (t)>

(
Γ̂ (t, T ) + Γ̂ (t, T )>

)
−(

Γ̂ (t, T ) + Γ̂ (t, T )>
)
B (t)− Γ (t)

It follows that the term
(

Γ̂ (t, T ) + Γ̂ (t, T )>
)
B (t) is not symmetric.

4. We recall that:

dX (t) =
(
ã (t) + B̃ (t)X (t)

)
dt+ Σ (t) dWQ?(T ) (t)

where:
ã (t) = a (t)− Σ (t) Σ (t)> β̂ (t, T )

and:
B̃ (t) = B (t)− 2Σ (t) Σ (t)> Γ̂ (t, T )
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It follows that:

X (t) = eB̃(t)X0 + eB̃(t)
∫ t

0
e−B̃(s)ã (s) ds+

eB̃(t)
∫ t

0
e−B̃(s)Σ (s) dWQ?(T ) (s)

We conclude that X (t) is Gaussian under the forward probability measure Q? (T ):

X (t) ∼ N (m (0, t) , V (0, t))

We have:
m (0, t) = eB̃(t)X0 + eB̃(t)

∫ t

0
e−B̃(s)ã (s) ds

that is the solution of the following EDO:

∂tm (0, t) = ã (t) + B̃ (t)m (0, t)
= a (t)− Σ (t) Σ (t)> β̂ (t, T ) +

B (t)m (0, t)− 2Σ (t) Σ (t)> Γ̂ (t, T )m (0, t)

We also have:

V (0, t) =
∫ t

0
eB̃(t)e−B̃(s)Σ (s) Σ (s)> e−B̃(s)>eB̃(t)> ds

or:
e−B̃(t)V (0, t) e−B̃(t)> =

∫ t

0
e−B̃(s)Σ (s) Σ (s)> e−B̃(s)> ds

It follows that:

−B̃ (t) e−B̃(t)V (0, t) e−B̃(t)>+
e−B̃(t)∂tV (0, t) e−B̃(t)>−

e−B̃(t)V (0, t) B̃ (t)> e−B̃(t)> = e−B̃(t)Σ (t) Σ (t)> e−B̃(t)>

or:

∂tV (0, t) = B̃ (t)V (0, t) + V (0, t) B̃ (t)> + Σ (t) Σ (t)>

= B (t)V (0, t) + V (0, t)B (t)> −
4V (0, t) Γ̂ (t, T )> Σ (t) Σ (t)> + Σ (t) Σ (t)>

In our approach, the dynamics of m (0, t) and V (0, t) are obtained under the forward
probability measure Q? (T ). In the paper of El Karoui et al. (1992a), the dynamics of
m (t, T ) and V (t, T ) are obtained under the probability measure Q? (t, T ):

∂Tm (t, T ) = a (T ) +B (T )m (t, T )− 2V (t, T ) Γ (T )m (t, T )−
V (t, T )β (T )

∂TV (t, T ) = V (t, T )B (T )> +B (T )V (t, T )−
2V (t, T ) Γ (T )V (t, T ) + Σ (T ) Σ (T )>

5. The Libor rate L (t, Ti−1, Ti) at time t between the dates Ti−1 and Ti is defined by:

L (t, Ti−1, Ti) = 1
δi−1

(
B (t, Ti−1)
B (t, Ti)

− 1
)

where δi−1 = Ti − Ti−1.
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6. The payoff of the caplet is given by:

f (X) = δi−1 (L (t, Ti−1, Ti)−K)+

=
(
B (t, Ti−1)
B (t, Ti)

− (1 + δi−1K)
)+

= 1
B (t, Ti)

(B (t, Ti−1)− (1 + δi−1K)B (t, Ti))+

It follows that the price of the caplet is given by:

Caplet = EQ

e−∫ Ti0
r(s) ds

B (t, Ti)
(B (t, Ti−1)− (1 + δi−1K)B (t, Ti))+


= B (0, t)EQ?(t)

[
(B (t, Ti−1)− (1 + δi−1K)B (t, Ti))+

]
= B (0, t)EQ?(t) [max (0, g (X))]

where:

g (x) = exp
(
−α̂ (t, Ti−1)− β̂ (t, Ti−1)x− Γ̂ (t, Ti−1)x2

)
−

(1 + δi−1K) exp
(
−α̂ (t, Ti)− β̂ (t, Ti)x− Γ̂ (t, Ti)x2

)
7. We have:

Caplet = B (0, t)
∫ +∞

−∞
f (x)φ (x;m (0, t) , V (0, t)) dx

= B (0, t)
∫ +∞

−∞
max (0, g (x))φ (x;m (0, t) , V (0, t)) dx

= B (0, t)
∫
E
g (x)φ (x;m (0, t) , V (0, t)) dx

= B (0, t)
∫
E
h (x) dx

where E = {x : g (x) ≥ 0} is the exercise domain of the option and:

h (x) = g (x)φ (x;m (0, t) , V (0, t))

We note ai = Γ̂ (t, Ti), bi = β̂ (t, Ti), ci = α̂ (t, Ti) and d = 1 + δi−1K. It follows that:

g (x) ≥ 0 ⇔ exp
(
−ai−1x

2 − bi−1x− ci−1
)
≥ d exp

(
−aix2 − bix− ci

)
⇔ ai−1x

2 + bi−1x+ ci−1 ≤ aix2 + bix+ ci − ln d
⇔ ax2 + bx+ c ≥ 0

where a = ai − ai−1, b = bi − bi−1, c = ci − ci−1 − ln d. Let ∆ = b2 − 4ac be the
discriminant of the quadratic polynomial. If ∆ ≤ 0 and a > 0, E = (−∞,+∞). If
∆ ≤ 0 and a < 0, E = ∅. If ∆ > 0 and a > 0, E = (−∞, x1] ∪ [x2,+∞) where:

x1 = −b−
√
b2 − 4ac

2a
and:

x2 = −b+
√
b2 − 4ac

2a
If ∆ > 0 and a ≤ 0, E = [x1, x2].
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8. We have:

J =
∫ x2

x1

e−ax
2−bx−c
√

2πV
e−

1
2V (x−m)2

dx

=
∫ x2

x1

1√
2πV

eP (x) dx

where P (x) is a quadratic polynomial:

P (x) = − 1
2V (x−m)2 − ax2 − bx− c

= − 1
2V x

2 + m

V
x− m2

2V − ax
2 − bx− c

= −
(

1
2V + a

)
x2 +

(m
V
− b
)
x−

(
m2

2V + c

)
= −1

2

(
1 + 2aV

V

)
x2 +

(
m− bV
V

)
x−

(
m2 + 2cV

2V

)
We can write P (x) as follows:

P (x) = − 1
2Ṽ

x2 + m̃

Ṽ
x− m̃2

2Ṽ
− c̃

= − 1
2Ṽ

(x− m̃)2 − c̃

where:

Ṽ = V

1 + 2aV

m̃ = m− bV
1 + 2aV

c̃ =
(
m2 + 2cV

2V

)
− m̃2

2Ṽ
We deduce that:

J =
∫ x2

x1

1√
2πV

e−
1

2Ṽ (x−m̃)2−c̃ dx

=

√
Ṽ

V
e−c̃

∫ x2

x1

1√
2πṼ

e−
1

2Ṽ (x−m̃)2
dx

=
√

1
1 + 2aV e

−c̃
(

Φ
(
x2 − m̃√

Ṽ

)
− Φ

(
x1 − m̃√

Ṽ

))
We also have:

x− m̃√
Ṽ

=
√

1 + 2aV
V

x+
√
V
b−m/V√

1 + 2aV
and:

c̃ =
(
m2 + 2cV

2V

)
− m̃2

2Ṽ

= c+ m2 (1 + 2aV )
2V (1 + 2aV ) −

(m− bV )2

2V (1 + 2aV )

= c+ 2am2 + 2bm− b2V
2 (1 + 2aV )
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9. The price of the caplet is equal to:

Caplet = B (0, t)
∫
E
h (x) dx

= B (0, t) Ii−1 (E)−B (0, t) (1 + δi−1K) Ii (E)

where:
Ii (E) =

∫
E
e−α̂(t,Ti)−β̂(t,Ti)x−Γ̂(t,Ti)x2

φ (x;m (0, t) , V (0, t)) dx

Since we can write Ii (E) in terms of J , we obtain an analytical formula of the caplet
price. For instance, if E = (−∞, x1] ∪ [x2,+∞), we have:

Ii (E) = J
(
α̂ (t, Ti) , β̂ (t, Ti) , Γ̂ (t, Ti) ,m (0, t) , V (0, t) ,−∞, x1

)
+

J
(
α̂ (t, Ti) , β̂ (t, Ti) , Γ̂ (t, Ti) ,m (0, t) , V (0, t) , x2,+∞

)
If E = [x1, x2], Ii (E) becomes:

Ii (E) = J
(
α̂ (t, Ti) , β̂ (t, Ti) , Γ̂ (t, Ti) ,m (0, t) , V (0, t) , x1, x2

)
9.4.11 Pricing two-asset basket options

1. Let f (S1 (T ) , S2 (T )) = (α1S1 (T ) + α2S2 (T )−K)+ be the payoff of the option.
Using Feynman-Kac representation, we know that:

C0 = EQ
[
e
−
∫ T

0
r dt

f (S1 (T ) , S2 (T ))
]

where: {
S1 (T ) = S1 (0) e(b1−

1
2σ

2
1)T+σ1

√
Tε1

S2 (T ) = S2 (0) e(b2−
1
2σ

2
2)T+σ2

√
Tε2

and (ε1, ε2) is a standardized Gaussian random vector with ρ (ε1, ε2) = ρ. Since the
probability density function of (ε1, ε2) is equal to:

h (x1, x2) = 1
2π
√

1− ρ2
e
− 1

2(1−ρ2) (x2
1+x2

2−2ρx1x2)

we have:
C0 = e−rT

∫∫
R2
g (x1, x2)h (x1, x2) dx1 dx2

where: 
g (x1, x2) = (g1 (x1) + g2 (x2)−K)+

g1 (x1) = α1S1 (0) e(b1−
1
2σ

2
1)T+σ1

√
Tx1

g2 (x2) = α2S2 (0) e(b2−
1
2σ

2
2)T+σ2

√
Tx2

2. (a) Since we have:

Aeb+cx −D ≥ 0⇔ x ≥ 1
c

ln D
A
− b

c
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we deduce that9:

E
[(
Aeb+cε −D

)+] =
∫
R

(
Aeb+cx −D

)+
φ (x) dx

= Aeb
∫ ∞

1
c ln D

A−
b
c

ecxφ (x) dx−

D

∫ ∞
1
c ln D

A−
b
c

φ (x) dx

= Aeb+
1
2 c

2
∫ ∞

1
c ln D

A−
b
c−c

ecxφ (x) dx−

D

∫ ∞
1
c ln D

A−
b
c

φ (x) dx

= Aeb+
1
2 c

2
Φ (d1)−DΦ (d1 + c)

where:
d1 = 1

c

(
ln A

D
+ b

)
(b) If A < 0 and D > 0, we have: (

Aeb+cε −D
)+ = 0

and:
E
[(
Aeb+cε −D

)+] = 0

If A < 0 and D < 0, we have:(
Aeb+cε −D

)+ =
(
−D +Aeb+cε

)+
and:

E
[(
Aeb+cε −D

)+] = −DΦ (−d1 − c) +Aeb+
1
2 c

2
Φ (−d1)

If A > 0 and D < 0, we have:(
Aeb+cε −D

)+ = Aeb+cε −D

and:
E
[(
Aeb+cε −D

)+] = Aeb+
1
2 c

2
−D

3. Using the Cholesky decomposition, we have:

ε2 = ρε1 +
√

1− ρ2ε3

where (ε1, ε3) is a standardized Gaussian random vector with ρ (ε1, ε3) = 0. We deduce
that the pdf of (ε1, ε3) is given by:

h′ (x1, x3) = 1
2π e

− 1
2 (x2

1+x2
3)

9We recall that:
ecxφ (x) = e

1
2 c

2
e−

1
2 (x−c)2
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Therefore, we have:

C0 = e−rT
∫∫

R2
g′ (x1, x3)h′ (x1, x3) dx1 dx3

where: 
g′ (x1, x3) = (g′1 (x1) + g′2 (x1, x3)−K)+

g′1 (x1) = α1S1 (0) e(b1−
1
2σ

2
1)T+σ1

√
Tx1

g′2 (x1, x3) = α2S2 (0) e(b2−
1
2σ

2
2)T+ρσ2

√
Tx1+

√
1−ρ2σ2

√
Tx3

It follows that:

C0 =
∫
R
e−rT

(∫
R

(g′2 (x1, x3)− (K − g′1 (x1)))+
φ (x3) dx3

)
φ (x1) dx1

where:

g′2 (x1, x3) =
(
α2S2 (0) eρσ2

√
Tx1
)
×

e(b2−
1
2ρ

2σ2
2− 1

2 (1−ρ2)σ2
2)T+
√

1−ρ2σ2
√
Tx3

Since we have S?2 > 0 and K? > 0, we deduce that:

C0 =
∫
R

BS (S?,K?, σ?, T, b?, r)φ (x1) dx1

where: 
S? = α2S2 (0) eρσ2

√
Tx1

K? = K − α1S1 (0) e(b1−
1
2σ

2
1)T+σ1

√
Tx1

σ? = σ2
√

1− ρ2

b? = b2 − 1
2ρ

2σ2
2

In this case, the Black-Scholes formula is equal to:

BS (S?,K?, σ?, T, b?, r) = S?e(b?−r)TΦ (d1)−K?e−rTΦ (d2)

where:
d1 = 1

σ?
√
T

(
ln S?

K?
+ b?T

)
+ 1

2σ
?
√
T

and:
d2 = d1 − σ?

√
T

4. If α1 > 0, α2 < 0 and K > 0, we obtain the same formula:

C0 =
∫
R

BS (S?,K?, σ?, T, b?, r)φ (x1) dx1

with:
BS (S,K, σ, T, b, r) = −S?e(b?−r)TΦ (−d1) +K?e−rTΦ (−d2)

5. In the general case, we can obtain the following options:

E
[
(α1S1 (T ) + α2S2 (T )−K)+

]
=


E
[
(S? −K?)+

]
(call)

E
[
(K? − S?)+

]
(put)

E [S?] +K? (e)
0 (0)

where S? > 0 and K? > 0. Table 9.1 shows that we cannot always transform the
two-dimensional integral into a one-dimensional integral.



TABLE 9.1: Pricing basket options with one-dimensional integration
Case α1 α2 K Type S? K? 1D
#1 + + + (call) α1S1 (T ) + α2S2 (T ) K
#2 + + − (e) α1S1 (T ) + α2S2 (T ) −K X
#3 + − + (call) α1S1 (T ) K − α2S2 (T ) X
#4 + − − (call) α1S1 (T )−K −α2S2 (T )
#5 − + + (call) α2S2 (T ) K − α1S1 (T ) X
#6 − + − (call) α2S2 (T )−K −α1S1 (T )
#7 − − + (0) X
#8 − − − (put) α1S1 (T ) + α2S2 (T ) K



Chapter 10
Statistical Inference and Model Estimation

10.3.1 Probability distribution of the t-statistic in the case of the linear
regression model

1. We verify that H> =
(
X
(
X>X

)−1 X>
)>

= X
(
X>X

)−1 X> = H and:

H2 = X
(
X>X

)−1 X>X
(
X>X

)−1 X>

= X
(
X>X

)−1 X>

= H

Since In is symetric, we also deduce that L = In −H is symetric and idempotent:

L2 = (In −H) (In −H)
= In − 2H + H2

= In − 2H + H
= In −H

2. We have:
LX =

(
In −X

(
X>X

)−1 X>
)

X = X−X = 0

and:
X>L =

(
L>X

)> = (LX)> = 0
We notice that:

Ŷ = Xβ̂ = X
(
X>X

)−1 X>Y = HY
and:

Û = Y− Ŷ = Y−HY = LY
We deduce that:

Û = LY = L (Xβ + U) = LXβ + LU = LU

3. We have:

trace (L) = trace
(
In −X

(
X>X

)−1 X>
)

= trace (In)− trace
(
X
(
X>X

)−1 X>
)

= trace (In)− trace
((

X>X
)−1 X>X

)
= trace (In)− trace (IK)
= n−K

We know that the rank of an idempotent matrix is equal to its trace. We deduce that
rank (L) = trace (L) = n−K.
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4. We have:
RSS

(
β̂
)

= Û>Û = (LU)> (LU) = U>L>LU = U>LU

It follows that:

E
[
RSS

(
β̂
)]

= E
[
U>LU

]
= E

[
trace

(
U>LU

)]
= E

[
trace

(
LU>U

)]
= trace

(
E
[
LU>U

])
= trace

(
LE
[
U>U

])
= σ2 trace (L)
= (n−K)σ2

and:

E
[
σ̂2] = E

RSS
(
β̂
)

n−K

 = σ2

5. We have:

U>LU = σ2
(

(σIn)−1 U
)>

L
(

(σIn)−1 U
)

= σ2V>LV

Since V>LV is a normalized Gaussian quadratic form, we have:

V>LV ∼ χ2
ν

because ν = rank L = n−K. We deduce that:

σ̂2 =
RSS

(
β̂
)

n−K

= U>LU
n−K

= σ2

n−K
V>LV

∼ σ2

n−K
χ2
n−K

6. We have:

cov
(
β̂, Û

)
= E

[(
β̂ − β

)(
Û− 0

)>]
= E

[(
β̂ − β

)
Û>
]

= E
[
β̂Û>

]
− βE

[
Û>
]

= E
[(
β +

(
X>X

)−1 X>U
)

(LU)>
]

= βE [U]> L> +
(
X>X

)−1 X>E
[
UU>

]
L>

= σ2 (X>X
)−1 X>L

= 0
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7. We deduce that β̂ and σ̂2 are independent, because σ̂2 is a function of Û. Moreover,
we have:

β̂j − βj√
σ2
(

(X>X)−1
)
j,j

∼ N (0, 1)

and:
(n−K) σ̂2

σ2 ∼ χ2
n−K

It follows that:

t
(
β̂j

)
= β̂j − βj

σ̂
(
β̂j

)
= β̂j − βj√

σ̂2
(

(X>X)−1
)
j,j

=

β̂j−βj√
σ2((X>X)−1)

j,j√
(n−K)σ̂2

(n−K)σ2

∼ N (0, 1)√
χ2
n−K
n−K

∼ tn−K

10.3.2 Linear regression without a constant
1. We have:

Y =

 y1
...
yn

 , X =

 x1,1 x1,K
. . .

xn,1 xn,K

 ,

β =

 β1
...
βn

 , ε =

 ε1
...
εn


where ε ∼ N

(
0, σ2In

)
. The sum of squared residuals ε>ε is1 :

ε>ε = (Y−Xβ)> (Y−Xβ)
= Y>Y− β>X>Y−Y>Xβ + β>X>Xβ
= Y>Y− 2β>X>Y + β>X>Xβ

It follows that:

β̂ = arg min ε>ε

= arg min 1
2β
> (X>X

)
β − β>

(
X>Y

)
β̂ is the solution of a QP problem with Q = X>X and R = X>Y.

1We have Y>Xβ =
(

Y>Xβ
)>

= β>X>Y because Y>Xβ is a scalar.
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2. (a) We consider that there is a constant in the explanatory variables and we note
X =

(
1 X?

)
where X? is the matrix of exogenous data without the constant.

We write the coefficient β as follows:

β =
(
β0
β?

)
The first-order condition of the previous optimization problem is Qβ̂ = R or
X>Xβ̂ = X>Y. We deduce that:{

1>1β̂0 + 1>X?β̂? = 1>Y
X>? 1β̂0 + X>? X?β̂? = X>? Y

If the residuals are centered, we must verify that 1>ε̂ = 0 or 1>
(
Y− β̂01−β̂?X?

)
=

0. We have2 :

1>
(
Y− β̂01−β̂?X?

)
= 1>Y− 1>β̂01− 1>β̂?X?

= 1>1β̂0 + 1>X?β̂? − 1>β̂01− 1>β̂?X?

= trace
(
1>1β̂0

)
+ trace

(
1>X?β̂?

)
−

1>β̂01− 1>β̂?X?

= trace
(
1>β̂01

)
+ trace

(
1>β̂?X?

)
−

1>β̂01− 1>β̂?X?

= 1>β̂01 + 1>β̂?X? − 1>β̂01− 1>β̂?X?

= 0

Adding a constant in the explanatory variables allows to center the residuals. If
there is no intercept in the linear model, there is no reason that the residuals are
centered.

(b) To center the residuals, we must add the constraint 1>ε = 0. We have 1>ε =
1>Y− 1>Xβ, which implies that 1>Xβ = 1>Y. The QP problem becomes:

β̂ = arg min 1
2β
> (X>X

)
β − β>

(
X>Y

)
s.t.

(
1>X

)
β =

(
1>Y

)
We obtain a new QP problem with Q = X>X, R = X>Y, A = 1>X et B =
1>Y.

(c) To transform the implicit constraints, we consider the explicit parametrization:

β = Cγ +D

where C is the orthonormal basis for the kernel of the matrix A = 1>X and D
is defined as follows:

D =
(
A>A

)?
A>B

=
(
X>11>X

)? X>11>Y

2We use the following properties:
• trace (a) = a if a is a scalar;
• trace (AB) = trace (BA) if the matrix multiplication BA is defined.
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where
(
A>A

)? is the Moore-Penrose inverse of the matrix A>A. As the dimension
of β isK×1, the matrices C, γ and D have the following dimensionsK×(K − 1),
(K − 1)× 1 and K × 1. The objective function becomes then:

f (β) = 1
2β
> (X>X

)
β − β>

(
X>Y

)
= 1

2 (Cγ +D)>
(
X>X

)
(Cγ +D)− (Cγ +D)>

(
X>Y

)
= 1

2γ
>C>X>XCγ + 1

2D
>X>XCγ + 1

2γ
>C>X>XD +

1
2D
>X>XD − γ>C>X>Y−D>X>Y

= 1
2γ
> (C>X>XC

)
γ + γ>

(
C>X>XD − C>X>Y

)
+(

1
2D
>X>XD −D>X>Y

)
We deduce that:

γ̂ =
(
C>X>XC

)−1
C>X> (Y−XD)

and:
β̂ = C

(
C>X>XC

)−1
C>X> (Y−XD) +D

The analytical solution consists in computing C, D and finally β̂.

10.3.3 Linear regression with linear constraints
1. (a) We have:

RSS (β) = U>U
= (Y−Xβ)> (Y−Xβ)
=

(
Y> − β>X>

)
(Y−Xβ)

= Y>Y− β>X>Y−Y>Xβ + β>X>Xβ
= β>X>Xβ − 2β>X>Y + Y>Y

(b) The first-order condition is:
∂ RSS (β)

∂ β
= 2X>Xβ − 2>X>Y = 0

We deduce that:
β̂ =

(
X>X

)−1 X>Y
(c) We have:

β̂ =
(
X>X

)−1 X>Y

=
(
X>X

)−1 X> (Xβ + U)

= β +
(
X>X

)−1 X>U

Since X ⊥ U, β̂ is an unbiased estimator of β:

E
[
β̂
]

= E
[
β +

(
X>X

)−1 X>U
]

= β +
(
X>X

)−1 E
[
X>U

]
= β
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and the variance of β̂ is:

cov
(
β̂
)

= E
[(
β̂ − β

)(
β̂ − β

)>]
= E

[(
X>X

)−1 X>UU>X
(
X>X

)−1]
=

(
X>X

)−1 X>E
[
UU>

]
X
(
X>X

)−1

= σ2 (X>X
)−1 X>InX

(
X>X

)−1

= σ2 (X>X
)−1

2. (a) We have:

β̃ = arg min RSS (β)

s.t.
{
Aβ = B
Cβ ≥ D

We deduce that:

β̃ = arg min 1
2β
> (2X>X

)
β − β>

(
2X>Y

)
s.t.

{
Aβ = B
Cβ ≥ D

We obtain a QP program with Q = 2X>X and R = 2X>Y.
(b) We obtain β̂1 = −1.01, β̂2 = 0.95, β̂3 = 2.04, β̂4 = 3.10 and β̂5 = −0.08.

i. If
∑5
i=1 βi = 1, we have:

A =
(

1 1 1 1 1
)

and B = 1

We obtain β̃1 = −2.40, β̃2 = 1.08, β̃3 = 0.49, β̃4 = 2.43 and β̃5 = −0.60.
ii. If β1 = β2 = β5, we have:

A =
(

1 −1 0 0 0
1 0 0 0 −1

)
and B =

(
0
0

)
We obtain β̃1 = β̃2 = β̃5 = −0.08, β̃3 = 2.22 and β̃4 = 3.17.

iii. If β1 ≥ β2 ≥ β3 ≥ β4 ≥ β5, we have:

C =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

 and D =


0
0
0
0


We obtain β̃1 = 1.33, β̃2 = 1.33, β̃3 = 1.33, β̃4 = 1.33 and β̃5 = −0.23.

iv. If β1 ≤ β2 ≤ β3 ≤ β4 ≤ β5 and
∑5
i=1 βi = 1, we have:

A =
(

1 1 1 1 1
)
, B = 1,

and:

C =


−1 1 0 0 0

0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

 and D =


0
0
0
0
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We obtain β̃1 = −2.63, β̃2 = 0.91, β̃3 = 0.91, β̃4 = 0.91 and β̃5 = 0.91. The
first-order condition of the QP program is:

Qβ̃ −R−A>λA + C>λC = 0

where λA is the Lagrange coefficient associated to the equality constraint and
λC is a vector of dimension 4× 1 corresponding to the Lagrange coefficient
associated to inequality constraints. Moreover, they verify the Kuhn-Tucker
conditions:

min
(
λC , Cβ̃ −D

)
= 0

Since λA = −192.36304, we have:

C>λC = −
(
Qβ̃ −R−A>λA

)
=


0.0000
3.7244
−2.8742
24.7449
−25.5951


We deduce that:

λC =


0.0000
3.7244
0.8501

25.5951


3. (a) We have:

f (β;λ) = 1
2β
> (X>X

)
β − β>

(
X>Y

)
− λ> (Aβ −B)

The first-order condition is:

∂ f (β;λ)
∂ β

=
(
X>X

)
β −

(
X>Y

)
−A>λ = 0

We have then:
β̃ =

(
X>X

)−1 (X>Y
)
−
(
X>X

)−1
A>λ

Since Aβ = B, we have:

A
(
X>X

)−1 (X>Y
)
−A

(
X>X

)−1
A>λ = B

or:
λ =

(
A
(
X>X

)−1
A>
)−1 (

A
(
X>X

)−1 (X>Y
)
−B

)
We deduce that:

β̃ =
(
X>X

)−1 (X>Y
)
−(

X>X
)−1

A>
(
A
(
X>X

)−1
A>
)−1 (

A
(
X>X

)−1 (X>Y
)
−B

)
= β̂ −

(
X>X

)−1
A>

(
A
(
X>X

)−1
A>
)−1 (

Aβ̂ −B
)

(b) To transform the explicit constraints into implicit constraints, we consider the
parametrization:

β = Cγ +D
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where C is the orthonormal basis associated to the kernel of A and D =(
A>A

)?
A>B where

(
A>A

)? is the Moore-Penrose inverse of A>A. The objective
function becomes:

RSS (β) = 1
2β
> (X>X

)
β − β>

(
X>Y

)
= 1

2 (Cγ +D)>
(
X>X

)
(Cγ +D)− (Cγ +D)>

(
X>Y

)
= 1

2
(
γ>C>X>XCγ +D>X>XCγ

)
+

1
2
(
γ>C>X>XD +D>X>XD

)
−

γ>C>X>Y−D>X>Y

= 1
2γ
> (C>X>XC

)
γ + γ>

(
C>X>XD − C>X>Y

)
+(

1
2D
>X>XD −D>X>Y

)
Therefore we deduce that:

γ̂ =
(
C>X>XC

)−1
C>X> (Y−XD)

and:
β̃ = C

(
C>X>XC

)−1
C>X> (Y−XD) +D

(c) The expression of the estimator under explicit constraints is:

β̃ = β̂ −
(
X>X

)−1
A>

(
A
(
X>X

)−1
A>
)−1 (

Aβ̂ −B
)

=
(
X>X

)−1
(
I −A>

(
A
(
X>X

)−1
A>
)−1

A
(
X>X

)−1
)
·

(
X>Y

)
+
(
X>X

)−1
A>

(
A
(
X>X

)−1
A>
)−1

B

whereas the expression of the estimator under implicit constraints is:

β̃ = C
(
C>X>XC

)−1
C>X> (Y−XD) +D

= C
(
C>X>XC

)−1
C>

(
X>Y

)
+(

I − C
(
C>X>XC

)−1
C>X>X

)
D

We also have AC = 0 and D =
(
A>A

)?
A>B. For any positive definite matrix

M , we have:

M−1
(
I −A>

(
AM−1A>

)−1
AM−1

)
= C

(
C>MC

)−1
C>

and: (
X>X

)−1
A>

(
A
(
X>X

)−1
A>
)−1

=(
I − C

(
C>X>XC

)−1
C>X>X

) (
A>A

)?
A>

We deduce that the two estimators are equivalent.
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(d) If β1 = β2 and β1 = β5 + 1, we have:

A =
(

1 −1 0 0 0
1 0 0 0 −1

)
and B =

(
0
1

)
We deduce that the estimator under explicit constraints is:

β̃ =
(
X>X

)−1
(
I −A>

(
A
(
X>X

)−1
A>
)−1

A
(
X>X

)−1
)
·

(
X>Y

)
+
(
X>X

)−1
A>

(
A
(
X>X

)−1
A>
)−1

B

=


0.28040
0.28040
2.08942
3.21265
−0.71960


We can write the explicit constraints into implicit constraints:

β = Cγ +D

=


0 0 1√

3
0 0 1√

3
1 0 0
0 1 0
0 0 1√

3


 γ1

γ2
γ3

+


1
31
3
0
0
− 2

3


We deduce that:

γ̃ =
(
C>X>XC

)−1
C>

(
X>Y−X>XD

)
=

 2.08942
3.21265
−0.09168


We obtain the same solution:

β̃ = Cγ̃ +D

=


0.28040
0.28040
2.08942
3.21265
−0.71960


Remark 2 The matrices C and D of the previous β = Cγ+D correspond to the orthonor-
mal matrix of A and the matrix

(
A>A

)?
A>B. However, there exist many decomposition

β = Cγ+D because the only restriction is that C is an orthogonal matrix of A. For instance,
if we choose:

β = Cγ +D

=


1 0 0
1 0 0
0 1 0
0 0 1
1 0 0


 γ1

γ2
γ3

+


0
0
0
0
−1
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we obtain:

γ̃ =
(
C>X>XC

)−1
C>

(
X>Y−X>XD

)
=

 0.28040
2.08942
3.21265


and:

β̃ = Cγ̃ +D

=


0.28040
0.28040
2.08942
3.21265
−0.71960


10.3.4 Maximum likelihood estimation of the Poisson distribution

1. We have:

` (λ) =
n∑
i=1

ln Pr {Yi = yi}

=
n∑
i=1

ln
(
e−λλyi

yi!

)

= −nλ+ ln (λ)
n∑
i=1

yi −
n∑
i=1

ln (yi!)

It follows that:
∂ ` (λ)
∂ λ

= 0 ⇔ −n+
∑n
i=1 yi

λ̂
= 0

⇔ λ̂ =
∑n
i=1 yi
n

= ȳ

2. We have:
∂2 ` (λ)
∂ λ2 = −

∑n
i=1 yi
λ2

We deduce that:

I (λ) = E
[∑n

i=1 Yi
λ2

]
= n

λ

The variance based on the Information matrix is then:

var
(
λ̂
)

= λ̂

n

If we use the Hessian matrix, we obtain:

var
(
λ̂
)

= λ̂2∑n
i=1 yi

= λ̂2

nȳ
= λ̂

n

We obtain the same expression.
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10.3.5 Maximum likelihood estimation of the Exponential distribution
1. We have:

` (λ) =
n∑
i=1

lnλe−λyi

= n lnλ− λ
n∑
i=1

yi

It follows that:

∂ ` (λ)
∂ λ

= 0 ⇔ n

λ̂
−

n∑
i=1

yi = 0

⇔ λ̂ = n∑n
i=1 yi

= 1
ȳ

2. We have:
∂2 ` (λ)
∂ λ2 = − n

λ2

We deduce that:
I (λ) = n

λ2

The variance based on the Information matrix is then:

var
(
λ̂
)

= λ̂2

n

It is equal to the variance based on the Hessian matrix.

10.3.6 Relationship between the linear regression, the maximum likeli-
hood method and the method of moments

1. We have:

` (θ) = −n2 ln 2π − n

2 ln σ2 − 1
2

n∑
i=1

(
yi − x>i β

σ

)2

= −n2 ln 2π − n

2 ln σ2 − (Y−Xβ)> (Y−Xβ)
2σ2

The vector of parameters θ is:

θ =
(
β
σ

)
2. It follows that:

∂ ` (θ)
∂ β

= 2X> (Y−Xβ)
2σ2

= X>Y−X>Xβ
σ2

and:
∂ ` (θ)
∂ σ2 = − n

2σ2 + (Y−Xβ)> (Y−Xβ)
2σ4
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We deduce that:

∂ ` (θ)
∂ β

= 0 ⇔ X>Y−X>Xβ̂ = 0

⇔ β̂ =
(
X>X

)−1 X>Y

and:

∂ ` (θ)
∂ σ2 = 0 ⇔ − n

2σ̂2 +

(
Y−Xβ̂

)> (
Y−Xβ̂

)
2σ̂4 = 0

⇔ σ̂2 =

(
Y−Xβ̂

)> (
Y−Xβ̂

)
n

We verify that β̂ML = β̂OLS and σ̂2
ML < σ̂2

OLS because:

σ̂2
OLS =

(
Y−Xβ̂

)> (
Y−Xβ̂

)
n−K

3. We have:

∂2 ` (θ)
∂ β ∂ β>

= −X>X
σ2

∂2 ` (θ)
∂ β ∂ σ2 = −X> (Y−Xβ)

σ4

= −X>U
σ4

∂2 ` (θ)
∂ σ2 ∂ σ2 = n

2σ4 −
(Y−Xβ)> (Y−Xβ)

σ6

= n

2σ4 −
U>U
σ6

It follows that:

H (θ) =
(
−X>X/σ2 −X>U/σ4

−X>U/σ4 n/
(
2σ4)−U>U/σ6

)
and:

I (θ) = −E [H (θ)]

=
(

X>X/σ2 E
[
X>U

]
/σ4

E
[
X>U

]
/σ4 E

[
U>U

]
/σ6 − n

2 /σ
4

)
=

(
X>X/σ2 0

0 n
2 /σ

4

)
because we have E

[
X>U

]
= 0 and E

[
U>U

]
= E

[∑n
i=1 u

2
i

]
= nσ2. We deduce that:

var (θ) = I (θ)−1

=
(
σ2 (X>X

)−1 0
0 2σ4/n

)
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Finally, we obtain:
var
(
β̂
)

= σ̂2 (X>X
)−1

and:
var
(
σ̂2) = 2σ̂4

n

We notice that the expressions of var
(
β̂ML

)
and var

(
β̂OLS

)
are similar, but they do

not use the same standard deviation of residuals σ̂.

10.3.7 The Gaussian mixture model
1. We can write Y as follows:

Y = BY1 + (1−B)Y2

where B is a Bernoulli random variable independent from Y1 and Y2, and whose
parameter is π1. We have:

E
[
Y k
]

= E
[
(BY1 + (1−B)Y2)k

]
= E

[
k∑
i=0

(
k

i

)
(BY1)k−i ((1−B)Y2)i

]

=
k∑
i=0

(
k

i

)
E
[
(BY1)k−i ((1−B)Y2)i

]
Since Y1 and Y2 are independent, we have E

[
(BY1)k−i ((1−B)Y2)i

]
when i 6= 0 or

i 6= k. It follows that:

E
[
Y k
]

= E
[
BkY k1

]
+ E

[
(1−B)k Y k2

]
= E

[
Bk
]
E
[
Y k1
]

+ E
[
(1−B)k

]
E
[
Y k2
]

= π1E
[
Y k1
]

+ π2E
[
Y k2
]

because B is independent from Y1 and Y2, Bk ∼ B (π1) and (1−B)k ∼ B (π2).

2. We deduce that:

E [Y ] = π1E [Y1] + π2E [Y2]
= π1µ1 + π2µ2

and:

var (Y ) = E
[
Y 2]− E2 [Y ]

= π1E
[
Y 2

1
]

+ π2E
[
Y 2

2
]
− E2 [Y ]

Since we know that E
[
Y 2
i

]
= µ2

i + σ2
i , we obtain:

var (Y ) = π1
(
µ2

1 + σ2
1
)

+ π2
(
µ2

2 + σ2
2
)
− (π1µ1 + π2µ2)2

= π1σ
2
1 + π2σ

2
2 + π1 (1− π1)

(
µ2

1 + µ2
2
)
− 2π1π2µ1µ2

= π1σ
2
1 + π2σ

2
2 + π1π2 (µ1 − µ2)2

because π2 = 1− π1.
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3. We remind that E
[
Y 3
i

]
= µ3

i + 3µiσ2
i . It follows that:

E
[
(Y − E [Y ])3

]
= E

[
Y 3]− 3E [Y ] var (Y )− E3 [Y ]

= π1
(
µ3

1 + 3µ1σ
2
1
)

+ π2
(
µ3

2 + 3µ2σ
2
2
)
−

3 (π1µ1 + π2µ2)
(
π1σ

2
1 + π2σ

2
2 + π1π2 (µ1 − µ2)2

)
−

(π1µ1 + π2µ2)3

= π1π2 (π2 − π1) (µ1 − µ2)3 + 3π1π2 (µ1 − µ2)
(
σ2

1 − σ2
2
)

We deduce that the skewness coefficient is equal to:

γ1 (Y ) =
π1π2

(
(π2 − π1) (µ1 − µ2)3 + 3 (µ1 − µ2)

(
σ2

1 − σ2
2
))

(
π1σ2

1 + π2σ2
2 + π1π2 (µ1 − µ2)2

)3/2

10.3.8 Parameter estimation of diffusion processes

1. The solution is:
X (t) = X (s) e(µ−

1
2σ

2)(t−s)+σ(W (t)−W (s))

It follows that:

lnX (t)− lnX (s) =
(
µ− 1

2σ
2
)

(t− s) + σ (W (t)−W (s))

Since W (t)−W (s) ∼ N (0, t− s), we deduce that the log-likelihood function of the
sample X is:

` (µ, σ) = −1
2

T∑
i=1

(
ln 2π + ln

(
σ2∆ti

)
+ ε2

i

σ2∆ti

)

= −T2 ln 2π − T

2 ln σ2 − 1
2

T∑
i=1

ln ∆ti −
1
2

T∑
i=1

ε2
i

σ2∆ti

where ∆ti = ti − ti−1 and εi is the innovation process:

εi = ln xi − ln xi−1 −
(
µ− 1

2σ
2
)

∆ti

2. The solution is:

X (t) = X (s) e−a(t−s) + b
(

1− e−a(t−s)
)

+ σ

∫ t

s

e−a(t−u) dW (u)

where: ∫ t

s

e−a(t−u) dW (u) ∼ N
(

0, σ
2

2a

(
1− e−2a(t−s)

))
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We deduce that:

` (a, b, σ) = −1
2

T∑
i=1

(
ln 2π + ln

(
σ2

2a
(
1− e−2a∆ti

)))
−

1
2

T∑
i=1

2aε2
i

σ2 (1− e−2a∆ti)

= −T2 ln 2π − T

2 ln σ
2

2a −
1
2

T∑
i=1

ln
(
1− e−2a∆ti

)
−

aε2
i

σ2 (1− e−2a∆ti)

where:
εi = xi − xi−1e

−a∆ti − b
(
1− e−a∆ti

)
3. We have:

X (t)−X (s) ≈ µ (s,X (s)) (t− s) + σ (s,X (s)) (W (t)−W (s))

We deduce that:

` (θ) = −1
2

T∑
i=1

(
ln 2π + ln

(
σ2 (ti−1, xi−1) ∆ti

)
+ ε2

i

σ2 (ti−1, xi−1) ∆ti

)
where:εi = xi − xi−1 − µ (ti−1, xi−1) ∆ti. In the case of the CIR process, we obtain:

` (a, b, σ) = −T2 ln 2π − T

2 ln σ2 − 1
2

T∑
i=1

ln (xi−1∆ti)

−1
2

T∑
i=1

ε2
i

σ2xi−1∆ti
(10.1)

where:
εi = xi − xi−1 − a (b− xi−1) ∆ti

We assume that X (s, t) = X (t) | X (s) is normally-distributed N (m1 (s, t) ,m2 (s, t))
where m1 (s, t) = E [X (s, t)] and m2 (s, t) = E

[
(X (s, t)−m1 (s, t))2

]
.Then, we have:

` (θ) = −1
2

T∑
i=1

(
ln 2π + lnm2 (ti−1, ti) + (xi −m1 (ti−1, ti))2

m2 (ti−1, ti)

)

In the case of the CIR process, we have:

m1 (ti−1, ti) = xi−1e
−a∆ti + b

(
1− e−a∆ti

)
and:

m2 (ti−1, ti) = σ2

(
xi−1

(
e−a∆ti − e−2a∆ti

)
a

+ b

(
1− e−a∆ti

)2
2a

)
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We deduce that:

` (a, b, σ) = −T2 ln 2π − T

2 ln σ2 −

1
2

T∑
i=1

ln
(
xi−1

(
e−a∆ti − e−2a∆ti

)
a

+ b

(
1− e−a∆ti

)2
2a

)
−

1
2

T∑
i=1

ε2
i

σ2xi−1∆ti
(10.2)

where:
εi = xi − xi−1e

−a∆ti − b
(
1− e−a∆ti

)
When ∆ti → 0, we have e−a∆ti ≈ 1− a∆ti and e−2a∆ti ≈ 1− 2a∆ti. It follows that:(

e−a∆ti − e−2a∆ti
)

a
≈ (1− a∆ti)− (1− 2a∆ti)

a
≈ ∆ti

and: (
1− e−a∆ti

)2
2a ≈ 1− 2 (1− a∆ti) + (1− 2a∆ti)

2a
≈ 0

We deduce that m1 (ti−1, ti) ≈ xi−1 (1− a∆ti)+ab∆ti, m2 (ti−1, ti) ≈ σ2xi−1∆ti and

εi ≈ xi − xi−1 (1− a∆ti)− ab∆ti
≈ xi − xi−1 − a (b− xi−1) ∆ti

We conclude that the log-likelihood functions (10.1) and (10.2) converge to the same
expression when ∆ti → 0.

4. For the geometric Brownian motion, we have Eti−1 [εi] = 0 and Eti−1

[
ε2
i − σ2∆ti

]
= 0.

We deduce that:{
hi,1 (µ, σ) = ln xi − ln xi−1 −

(
µ− 1

2σ
2)∆ti

hi,2 (µ, σ) =
(
ln xi − ln xi−1 −

(
µ− 1

2σ
2)∆ti

)2 − σ2∆ti
For the Ornstein-Uhlenbeck process, we can use the same two moment conditions and
the orthogonal condition Eti−1 [εixi−1] = 0. Finally, we obtain:

hi,1 (θ) = xi − xi−1e
−a∆ti − b

(
1− e−a∆ti

)
hi,2 (θ) =

(
xt − xt−1e

−a∆ti − b
(
1− e−a∆ti

))2 − σ2
(

1−e−2a∆ti

2a

)
hi,3 (θ) =

(
xi − xi−1e

−a∆ti − b
(
1− e−a∆ti

))
xi−1

For the CIR process, we proceed as for the OU process:
hi,1 (θ) = xi −m1 (ti−1, ti)
hi,2 (θ) = (xi −m1 (ti−1, ti))2 −m2 (ti−1, ti)
hi,3 (θ) = (xi −m1 (ti−1, ti))xi−1

where:
m1 (ti−1, ti) = xi−1e

−a∆ti + b
(
1− e−a∆ti

)
and:

m2 (ti−1, ti) = σ2

(
xi−1

(
e−a∆ti − e−2a∆ti

)
a

+ b

(
1− e−a∆ti

)2
2a

)
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5. If we use the Euler-Maruyama scheme:

X (t)−X (s) ≈ a (b−X (s)) (t− s) + σ |X (s)|γ (W (t)−W (s))

we obtain: 
hi,1 (θ) = xi −m1 (ti−1, ti)
hi,2 (θ) = (xi −m1 (ti−1, ti))2 −m2 (ti−1, ti)
hi,3 (θ) = (xi −m1 (ti−1, ti))xi−1

hi,4 (θ) =
(

(xi −m1 (ti−1, ti))2 −m2 (ti−1, ti)
)
xi−1

where:
m1 (ti−1, ti) = xi−1 + a (b− xi−1) ∆ti

and:
m2 (ti−1, ti) = σ2 |xi−1|2γ ∆ti

10.3.9 The Tobit model
1. We note X̃ = X | X ≥ c the truncated random variable. The probability density

function of X̃ is equal to:

f (x) = 1
σ (1− Φ (α))φ

(
x− µ
σ

)
where α = σ−1 (c− µ). We have3:

E
[
X̃
]

= 1
1− Φ (α)

∫ ∞
c

x
1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

dx

= 1
1− Φ (α)

∫ ∞
α

(µ+ σy) 1√
2π

exp
(
−1

2y
2
)

dy

= 1
1− Φ (α)

(
µ

∫ ∞
α

φ (y) dy + σ [−φ (y)]∞α
)

= µ+ σλ (α) (10.3)

where λ (α) is the inverse Mills ratio:

λ (α) = φ (α)
1− Φ (α) = φ (−α)

Φ (−α)

3We use the change of variable y = σ−1 (x− µ).
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We have:

E
[
X̃2] = 1

1− Φ (α)

∫ ∞
c

x2 1
σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

dx

= 1
1− Φ (α)

∫ ∞
α

(µ+ σy)2 1√
2π

exp
(
−1

2y
2
)

dy

= 1
1− Φ (α)

(
µ2
∫ ∞
α

φ (y) dy + 2µσ [−φ (y)]∞α +

σ2
∫ ∞
α

y2φ (y) dy
)

= µ2 + 2µσλ (α) + σ2

1− Φ (α)

(
[−yφ (y)]∞α +

∫ ∞
α

φ (y) dy
)

= µ2 + 2µσλ (α) + σ2 (1 + αλ (α))

We deduce that:

var
(
X̃
)

= E
[
X̃2]− E2 [X̃]

= µ2 + 2µσλ (α) +
σ2 (1 + αλ (α))− µ2 − 2µσλ (α)− σ2λ2 (α)

= σ2 (1− δ (α))

where:

δ (α) = λ (α) (λ (α)− α)

We can show that truncation reduces variance because we have 0 ≤ δ (α) ≤ 1.

2. The censured random variable Ỹ can be written as follows:

Ỹ =
{
X if X ≥ c
c if X < c

We have:

E
[
Ỹ
]

= Pr {Y = c}E
[
Ỹ | X < c

]
+ Pr {Y 6= c}E [X | X ≥ c]

= Pr {X < c} c+ Pr {X ≥ c}E
[
X̃
]

= Φ (α) c+ (1− Φ (α)) (µ+ σλ (α))

We also have:

E
[
Ỹ 2] = Pr {Y = c}E

[
Ỹ 2 | X < c

]
+ Pr {Y 6= c}E

[
X2 | X ≥ c

]
= Φ (α) c2 + (1− Φ (α))E

[
X̃2]

= Φ (α) c2 + (1− Φ (α))
(
µ2 + 2µσλ (α) + σ2 (1 + αλ (α))

)
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We deduce that:

var
(
Ỹ
)

= E
[
Ỹ 2]− E2 [Ỹ ]

= Φ (α) c2 + (1− Φ (α))
(
µ2 + 2µσλ (α) + σ2 (1 + αλ (α))

)
−

Φ2 (α) c2 − 2Φ (α) (1− Φ (α)) (µc+ σcλ (α))−
(1− Φ (α))2 (

µ2 + 2µσλ (α) + σ2λ2 (α)
)

= Φ (α) (1− Φ (α)) c2 + Φ (α) (1− Φ (α))µ2 +
2Φ (α)φ (α)µσ + (φ (α) (α− φ (α)) + 1− Φ (α))σ2 −
2Φ (α) (1− Φ (α))µc− 2Φ (α)φ (α)σc

= Φ (α) (1− Φ (α)) (c− µ)2 − 2Φ (α)φ (α) (c− µ)σ +
(1− Φ (α)) (1 + λ (α) (α− φ (α)))σ2

= Φ (α) (1− Φ (α))α2σ2 − 2Φ (α)φ (α)ασ2 +
(1− Φ (α))

(
1− δ (α)− λ (α)φ (α) + λ2 (α)

)
σ2

= σ2 (1− Φ (α))
(
Φ (α)α2 − 2Φ (α)λ (α)α+

1− δ (α)− λ (α)φ (α) + λ2 (α)
)

= σ2 (1− Φ (α))
(

(1− δ (α)) + (α− λ (α))2 Φ (α)
)

because we have:
−Φ (α)λ2 (α)− λ (α)φ (α) + λ2 (α) = 0

3. In Figures 10.1 and 10.2, we have reported the corresponding probability density
function of the truncated random variable X̃ and the censored random variable Ỹ . We
obtain E

[
X̃
]

= 3.7955, E
[
X̃2] = 18.3864, σ

(
X̃
)

= 1.9952, E
[
Ỹ
]

= 2.7627, E
[
Ỹ 2] =

11.9632 and σ
(
Ỹ
)

= 2.0810. We verify that truncation reduces variance: σ
(
X̃
)
≤

σ (X). In the case of truncation, some observations are excluded, implying that we
observe only a part of the probability density function. In the case od censoring, the
probability density function is a mixture of continuous and discrete distributions. In
particular, we observe a probability mass at the censoring point X = c.

4. We have:

Pr {Y = 0} = Pr {Y ? ≤ 0}
= Pr

{
x>β + U ≤ 0

}
= Pr

{
U ≤ −x>β

}
= Φ

(
−x
>β

σ

)
= 1− Φ

(
x>β

σ

)
We deduce that the log-likelihood function is equal to:

` (θ) =
n∑
i=1

(1− di) ln
(

1− Φ
(
x>i β

σ

))
−

1
2

n∑
i=1

di

(
ln 2π + ln σ2 +

(
yi − x>i β

σ

)2)
where di is a dummy variable that is equal to 1 if yi > 0.
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FIGURE 10.1: Frequency (in %) of the truncated random variable

FIGURE 10.2: Frequency (in %) of the censored random variable
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5. We have:
∂

∂ x
ln (1− Φ (f (x))) = − φ (f (x))

1− Φ (f (x))f
′ (x)

and:
∂

∂ β

(
x>i β

σ

)
= xi

σ

We also have:
∂

∂ σ2

(
1
σ

)
= − 1

2σ3

We deduce that the ML estimator satisfies the following first-order conditions:

∂ ` (θ)
∂ β

= − 1
σ

∑
di=0

(
φi

1− Φi

)
xi + 1

σ2

∑
di=1

(
yi − x>i β

)
xi = 0 (10.4)

and:

∂ ` (θ)
∂ σ2 = 1

2σ3

∑
di=0

(
φi

1− Φi

)
x>i β + 1

2σ4

∑
di=1

(
yi − x>i β

)2 − n1

2σ2 = 0 (10.5)

where φi = φ

(
x>i β

σ

)
, Φi = Φ

(
x>i β

σ

)
and n1 =

∑n
i=1 di.

6. Since ∂xφ (x) = −xφ (x), we have:

∂

∂ x

(
φ (f (x))

1− Φ (f (x))

)
= φ (f (x)) (φ (f (x))− f (x) (1− Φ (f (x)))) f ′ (x)

(1− Φ (f (x)))2

It follows that:

∂

∂ β>

(
φi

1− Φi

)
= φi

(1− Φi)2

(
φi − (1− Φi)

(
x>i β

σ

))
xi
σ

and:
∂

∂ σ2

(
φi

1− Φi

)
= − 1

2σ3
φi

(1− Φi)2

(
φi − (1− Φi)

(
x>i β

σ

))
x>i β

For the Hessian matrix, we obtain:

∂2 ` (θ)
∂ β ∂ β>

= − 1
σ2

∑
di=0

φi

(1− Φi)2

(
φi − (1− Φi)

(
x>i β

σ

))
xix
>
i −

1
σ2

∑
di=1

xix
>
i

and:

∂2 ` (θ)
∂ β ∂ σ2 = 1

2σ3

(∑
di=0

φi

(1− Φi)2 (1− Φi) +

∑
di=0

φi

(1− Φi)2

(
φi

(
x>i β

σ

)
− (1− Φi)

(
x>i β

σ

)2))
xi −

1
σ4

∑
di=1

(
yi − x>i β

)
xi
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We also have:
∂

∂ σ2

(
1
σ3

)
= − 3

2σ5

and:

∂2 ` (θ)
∂ σ2 ∂ σ2 = − 1

4σ4

∑
di=0

φi

(1− Φi)2

(
3 (1− Φi)

(
x>i β

σ

)
+

φi

(
x>i β

σ

)2

− (1− Φi)
(
x>i β

σ

)3)
−

1
σ6

∑
di=1

(
yi − x>i β

)2 + n1

2σ4

7. By multiplying the system of equations (10.4) by β>/
(
2σ2), we obtain:

− 1
2σ3

∑
di=0

(
φi

1− Φi

)
x>i β + 1

2σ4

∑
di=1

(
yi − x>i β

)
x>i β = 0

Combining this result with Equation (10.5) gives:

1
2σ4

∑
di=1

(
yi − x>i β

)
x>i β + 1

2σ4

∑
di=1

(
yi − x>i β

)2 − n1

2σ2 = 0

We deduce that:

σ2 = 1
n1

∑
di=1

((
yi − x>i β

)
x>i β +

(
yi − x>i β

)2)
= 1

n1

∑
di=1

(
yi − x>i β

)
yi

Let Di be the Bernouilli random variable such that:

Pr {Di = 1} = Pr {Y ?i > 0}
= Pr

{
Ui ≥ −x>i β

}
= Φ

(
x>i β

σ

)
Let Ωi be a random variable that is independent from Di. We have:

E

[∑
di=0

Ωi

]
= E

[
n∑
i=1

(1−Di) Ωi

]
=

n∑
i=1

(1− Φi)E [Ωi]

and:

E

[∑
di=1

Ωi

]
= E

[
n∑
i=1

DiΩi

]
=

n∑
i=1

ΦiE [Ωi]

By introducting the notation:

zi = x>i β

σ
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we obtain:

E
[
∂2 ` (θ)
∂ β ∂ β>

]
= − 1

σ2

n∑
i=1

(1− Φi)φi
(1− Φi)2 (φi − (1− Φi) zi)xix>i −

1
σ2

n∑
i=1

Φixix>i

= −
n∑
i=1

aixix
>
i

where:
ai = − 1

σ2

(
φizi −

φ2
i

1− Φi
− Φi

)
Using Equation (10.3), we have:

E
[
Di

(
yi − x>i β

)]
= E [DiUi]

= E [Di]σ
φi
Φi

= σφi

It follows that:

E

[
1
σ4

∑
di=1

(
yi − x>i β

)
xi

]
= 1
σ3

n∑
i=1

φixi

and:

E
[
∂2 ` (θ)
∂ β σ2

]
= −

n∑
i=1

bixi

where:

bi = 1
2σ3

(
−φi −

φ2
i zi

1− Φi
+ φiz

2
i

)
+ 1
σ4σφi

= 1
2σ3

(
φiz

2
i + φi −

φ2
i zi

1− Φi

)
We have: ∑

di=1

(
yi − x>i β

)2 =
∑
di=1

(
yi − x>i β

) (
yi − x>i β

)
= n1σ

2 −
∑
di=1

(
yi − x>i β

)
x>i β

and:

E

[
n1

2σ4 −
1
σ6

∑
di=1

(
yi − x>i β

)2] = E

[
− n1

2σ4 + 1
σ6

∑
di=1

(
yi − x>i β

)
x>i β

]

= − 1
2σ4

n∑
i=1

Φi + 1
σ4

n∑
i=1

φizi

We deduce that:

E
[
∂2 ` (θ)
∂ β ∂ β>

]
= −

n∑
i=1

ci
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where:

ci = − 1
4σ4

(
−3φizi −

φ2
i z

2
i

1− Φi
+ φiz

3
i

)
+ 1

2σ4 Φi −
1
σ4φizi

= − 1
4σ4

(
φiz

3
i + φizi −

φ2
i z

2
i

1− Φi
− 2Φi

)
We conclude that the information matrix is equal to:

I (θ) = −E
[
∂2 ` (θ)
∂ θ ∂ θ>

]
=

( ∑n
i=1 aixix

>
i

∑n
i=1 bixi∑n

i=1 bixi
∑n
i=1 ci

)
We retrieve the formula obtained by Amemiya (1973).

8. We note Y1 the n1 × 1 vector of the explained variable and X1 the n1 ×K matrices
of explanatory variables when the data are not censured. We also notice that:

φi
1− Φi

= λ
(
x>i β

)
where λ is the inverse Mills ratio. The first-order condition (10.4) becomes:

−σ̂X>0 Λ0 + X>1
(
Y1 −X1β̂

)
= 0

where Λ0 is (n− n1) × 1 vector of inverse Mills ratio and X0 is the (n− n1) × K
matrices of explanatory variables when the data are censured. We deduce that:

β̂ =
(
X>1 X1

)−1 X>1 Y1 − σ̂
(
X>1 X1

)−1 X>0 Λ0

= β̂1 − σ̂
(
X>1 X1

)−1 X>0 Λ0 (10.6)

It follows that the OLS estimator β̂1 based on non-censured data is biased.

9. We apply results obtained in Question 1 to the random variable U with µ = 0,
c = −x>β and α = σ−1 (c− µ). We have:

E [Y | Y > 0] = E
[
x>β + U | U > −x>β

]
= x>β + E

[
U | U > −x>β

]
= x>β + σλ

(
−x
>β

σ

)
(10.7)

and:

E [Y | Y ≤ 0] = E
[
x>β + U | U ≤ −x>β

]
= x>β + E

[
U | U ≤ −x>β

]
= x>β − σλ

(
x>β

σ

)
(10.8)
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Using Question 2, we obtain:

E [Y ] = E
[
max

(
x>β + U, 0

)]
= x>β + E

[
max

(
U,−x>β

)]
= x>β + Φ

(
−x
>β

σ

)
x>β + σ

(
1− Φ

(
−x
>β

σ

))
λ

(
−x
>β

σ

)
= Φ

(
x>β

σ

)(
x>β + σλ

(
−x
>β

σ

))
= Φ

(
x>β

σ

)
E [Y | Y > 0]

From Equation (10.7), we deduce that the corresponding linear model is:

Y1 = X1β̃ + σΛ1

and:

β̃ =
(
X>1 X1

)−1 X>1 Y1 − σ̂
(
X>1 X1

)−1 X>1 Λ1

= β̂1 − σ̂
(
X>1 X1

)−1 X>1 Λ1 (10.9)

The difference between the estimators (10.6) and (10.9) is the term X>Λ which is
calculated with censored data in the maximum likelihood and non-censored data in the
last approach. However, the estimators (10.6) and (10.9) can not be used in practice
because they depend on σ̂ and on the inverse Mills ratio that is a function of β̂ and
σ̂.

10. The ML estimates are β̂(ML)
0 = 2.8467, β̂(ML)

1 = 1.0843, β̂(ML)
2 = 0.9869 and σ̂(ML) =

5.5555. The OLS estimates based on the non-censored data are β̂(OLS)
0 = 6.2002,

β̂
(OLS)
1 = 0.6757, β̂(OLS)

2 = 0.7979. We verify that:

β̂(OLS) − σ̂(ML) (X>1 X1
)−1 X>0 Λ(ML)

0 =

 2.8467
1.0843
0.9869

 = β̂(ML)

and:

β̂(OLS) − σ̂(ML) (X>1 X1
)−1 X>1 Λ(ML)

1 =

 2.7095
1.0065
1.0522

 6= β̂(ML)

The ML estimator combines the non-censored data – β̂(OLS) – and the censored data
– X>0 Λ(ML)

0 . This is not the case of the second estimator, which is only based on
non-censored data – β̂(OLS) and X>1 Λ(ML)

1 . The second estimator is then less efficient
than the ML estimator since it does not use all the information provided by the data.

11. The conditional predicted value of y̆?i is:

y̆?i =


x>i β̂

(ML) − σ̂(ML)λ

(
x>i β̂

(ML)

σ̂(ML)

)
if yi ≤ 0

x>i β̂
(ML) + σ̂(ML)λ

(
−x
>
i β̂

(ML)

σ̂(ML)

)
if yi > 0

whereas the unconditional expectation is ŷ?i = x>i β̂
(ML). These values are reported in

Table 10.1.
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TABLE 10.1: Predicted values y̆?i and ŷ?i
i 1 2 3 4 5 6 7 8 9 10
yi 4.0 0.0 0.5 0.0 0.0 17.4 18.0 0.0 0.0 9.7
y̆?i 3.5 −12.7 5.1 −5.9 −5.9 14.3 17.6 −4.2 −5.4 4.0
ŷ?i −3.0 −12.6 1.6 −3.4 −3.4 14.2 17.6 0.8 −2.4 −1.4
i 11 12 13 14 15 16 17 18 19 20
yi 9.7 1.8 6.5 26.1 0.0 5.0 21.6 6.2 9.9 1.4
y̆?i 9.3 5.1 6.2 16.3 −15.1 3.6 19.6 5.9 9.3 6.4
ŷ?i 8.6 1.6 3.9 16.3 −15.1 −2.5 19.6 3.4 8.6 4.3
i 21 22 23 24 25 26 27 28 29 30
yi 5.0 0.0 0.0 18.1 0.0 7.7 0.0 0.0 0.0 4.0
y̆?i 4.1 −5.8 −9.4 15.7 −3.3 17.3 −6.2 −5.4 −3.4 12.2
ŷ?i −0.8 −3.2 −8.8 15.7 3.8 17.3 −3.9 −2.3 3.2 12.0

10.3.10 Derivation of Kalman filter equations
1. We have:

α̂t|t−1 = Et−1 [αt]
= Et−1 [Ttαt−1 + ct +Rtηt]
= TtEt−1 [αt−1] + ct

= Ttα̂t−1|t−1 + ct

We introduce the notation δt = αt − α̂t|t−1. It follows that:

δt = Ttαt−1 + ct +Rtηt −
(
Ttα̂t−1|t−1 + ct

)
= Tt

(
αt−1 − α̂t−1|t−1

)
+Rtηt

and:

δtδ
>
t = Tt

(
αt−1 − α̂t−1|t−1

) (
αt−1 − α̂t−1|t−1

)>
T>t +

2Tt
(
αt−1 − α̂t−1|t−1

)
η>t R

>
t +

Rtηtη
>
t R
>
t

We deduce that:

Pt|t−1 = Et−1

[(
αt − α̂t|t−1

) (
αt − α̂t|t−1

)>]
= TtEt−1

[(
αt−1 − α̂t−1|t−1

) (
αt−1 − α̂t−1|t−1

)>]
T>t +

2TtEt−1
[(
αt−1 − α̂t−1|t−1

)
η>t
]
R>t +

RtEt−1
[
ηtη
>
t

]
R>t

= TtPt−1|t−1T
>
t +RtQtR

>
t

2. We have:

vt = yt − Et−1 [yt]
= yt − Et−1 [Ztαt + dt + εt]
= yt − Ztα̂t|t−1 − dt
= Zt

(
αt − α̂t|t−1

)
+ εt
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Since α̂t|t−1 is a Gaussian vector, vt is also Gaussian with:

Et−1 [vt] = Et−1
[
yt − Ztα̂t|t−1 − dt

]
= ZtEt−1

[
αt − α̂t|t−1

]
+ Et−1 [εt]

= 0

and:

Ft = Et−1

[
(vt − 0) (vt − 0)>

]
= Et−1

[(
Zt
(
αt − α̂t|t−1

)
+ εt

) (
Zt
(
αt − α̂t|t−1

)
+ εt

)>]
= ZtEt−1

[(
αt − α̂t|t−1

) (
αt − α̂t|t−1

)>]
Z>t + Et−1

[
εtε
>
t

]
= ZtPt|t−1Z

>
t +Ht

3. We have:

Et−1
[
αtv
>
t

]
= Et−1

[
αt
(
Zt
(
αt − α̂t|t−1

)
+ εt

)>]
= Et−1

[
αt

(
α>t − α̂>t|t−1

)
Z>t

]
+ Et−1

[
αtε
>
t

]
= Et−1

[(
αt − α̂t|t−1

) (
α>t − α̂>t|t−1

)]
Z>t +

α̂t|t−1Et−1

[
α>t − α̂>t|t−1

]
Z>t

= Pt|t−1Z
>
t

and: (
αt
vt

)
=

(
αt

Zt
(
αt − α̂t|t−1

)
+ εt

)
=

(
Im 0
Zt In

)(
αt
εt

)
+
(

0
−Ztα̂t|t−1

)
= At

(
αt
εt

)
+Bt

Conditionally to the filtration Ft−1, the random vector (αt, vt) is a linear combination
AtXt+Bt of the independent Gaussian random vector Xt = (αt, εt). We deduce that:(

αt
vt

)
∼ N

((
α̂t|t−1

0

)
,

(
Pt|t−1 Pt|t−1Z

>
t

ZtPt|t−1 Ft

))
4. We deduce that:

α̂t|t = Et [αt]
= E

[
αt | vt = yt − Ztα̂t|t−1 − dt

]
Using the standard results of the conditional distribution, we obtain:

α̂t|t = α̂t|t−1 + Pt|t−1Z
>
t F
−1
t

(
yt − Ztα̂t|t−1 − dt

)
and:

Pt|t = Pt|t−1 − Pt|t−1Z
>
t F
−1
t ZtPt|t−1
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5. The Kalman filter corresponds to the following recursive equations:

α̂t|t−1 = Ttα̂t−1|t−1 + ct
Pt|t−1 = TtPt−1|t−1T

>
t +RtQtR

>
t

vt = yt − Ztα̂t|t−1 − dt
Ft = ZtPt|t−1Z

>
t +Ht

α̂t|t = α̂t|t−1 + Pt|t−1Z
>
t F
−1
t vt

Pt|t = Pt|t−1 − Pt|t−1Z
>
t F
−1
t ZtPt|t−1

We have:

α̂t+1|t = Tt+1α̂t|t + ct+1

= Tt+1
(
α̂t|t−1 + Pt|t−1Z

>
t F
−1
t vt

)
+ ct+1

= Tt+1α̂t|t−1 + ct+1 +Ktvt

where Kt is the gain matrix:

Kt = Tt+1Pt|t−1Z
>
t F
−1
t

Since we have vt = yt − Ztα̂t|t−1 − dt, we can write the state space model as follows:{
yt = Ztα̂t|t−1 + dt + vt
α̂t+1|t = Tt+1α̂t|t−1 + ct+1 +Ktvt

If vt = 0, then α̂t+1|t = Tt+1α̂t|t−1 + ct+1. Kt indicates how the filter changes the
classical estimation Tt+1α̂t|t−1 + ct+1 when it takes into account innovation errors.
Therefore, Kt is the correction matrix of the prediction-correction method.

6. We introduce the process γt = γt−1 with γ0 = 1. Another representation of the state
space model is:  yt = Ztαt + dtγt + εt

αt = Ttαt−1 + ctγt +Rtηt
γt = γt−1

We obtain: {
yt = Z?t α

?
t

α?t = T ?t α
?
t−1 +R?t η

?
t

where:
Z?t =

(
Zt dt In

)
T ?t =

 Tt ct 0
0 1 0
0 0 0



R?t =

 Rt 0
0 0
0 In


The state vector becomes α?t = (αt, γt, εt) whereas the noise process η?t = (ηt, εt) is a
Gaussian random vector N (0, Q?t ) where:

Q?t =
(
Qt C>t
Ct Ht

)
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7. If we apply the Kalman filter to the augmented state space model, we obtain:

α̂?t|t−1 = T ?t α̂
?
t−1|t−1

P ?t|t−1 = T ?t P
?
t−1|t−1T

?>
t +R?tQ

?
tR

?>
t

ŷ?t|t−1 = Z?t α̂
?
t|t−1

v?t = yt − ŷ?t|t−1
F ?t = Z?t P

?
t|t−1Z

?>
t

α̂?t|t = α̂?t|t−1 + P ?t|t−1Z
?>
t F ?−1

t v?t
P ?t|t = P ?t|t−1 − P

?
t|t−1Z

?>
t F ?−1

t Z?t P
?
t|t−1

We have α̂?0 = (α̂0, 0,0) and:

P ?0 =

 P0 0 0
0 0 0
0 0 0


We assume that P ?t|t has the following structure:

P ?t|t =

 Pt|t 0 Vt
0 0 0
V >t 0 Wt


We deduce that Vt = RtC

>
t and Wt = Ht. Finally, we obtain:

α̂t|t−1 = Ttα̂t−1|t−1 + ct
Pt|t−1 = TtPt−1|t−1T

>
t +RtQtR

>
t

ŷt|t−1 = Ztα̂t|t−1 + dt
vt = yt − ŷt|t−1
Ft = ZtPt|t−1Z

>
t + 2ZtRtC>t +Ht

Gt = Pt|t−1Z
>
t +RtC

>
t

α̂t|t = α̂t|t−1 +GtF
−1
t vt

Pt|t = Pt|t−1 −GtF−1
t G>t

10.3.11 Steady state of time-invariant state space model
1. We have αt = (yt, εt) and:

αt =
(
φ1 0
0 0

)
αt−1 +

(
µ
0

)
+
(

1
1

)
ηt

Using the standard SSM notations, we have c = (µ, 0), R = (1, 1), Q = σ2
ε and:

T =
(
φ1 0
0 0

)
It follows that:

I2 − T =
(

1− φ1 0
0 1

)
and:

(I2 − T )−1 = 1
1− φ1

(
1 0
0 1− φ1

)
=

( 1
1−φ1

0
0 1

)
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The steady state α̂∞ is then equal to:

α̂∞ = (I2 − T )−1
c

= 1
1− φ1

(
1 0
0 1− φ1

)(
µ
0

)
=

( µ
1−φ1

0

)
We also have:

RQR> = σ2
ε

(
1 1
1 1

)
and:

T ⊗ T =


φ2

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


We obtain:

(I4 − T ⊗ T )−1 =


1

1−φ2
1

0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and:

vec (P∞) = (I4 − T ⊗ T )−1 vec
(
RQR>

)
=


1

1−φ2
1
σ2
ε

σ2
ε

σ2
ε

σ2
ε


We finally deduce that:

P∞ =
(

σ2
ε

1−φ2
1

σ2
ε

σ2
ε σ2

ε

)

2. We have αt = (yt, εt) and:

αt =
(

0 −θ1
0 0

)
αt−1 +

(
µ
0

)
+
(

1
1

)
ηt

Using the standard SSM notations, we have c = (µ, 0), R = (1, 1), Q = σ2
ε and:

T =
(

0 −θ1
0 0

)
We obtain:

(I2 − T )−1 =
(

1 −θ1
0 1

)
and:

α̂∞ =
(

1 −θ1
0 1

)(
µ
0

)
=
(
µ
0

)
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We have:

I4 − T ⊗ T =


1 0 0 −θ2

1
0 1 0 0
0 0 1 0
0 0 0 1


and:

vec (P∞) =


1 0 0 θ2

1
0 1 0 0
0 0 1 0
0 0 0 1




σ2
ε

σ2
ε

σ2
ε

σ2
ε

 =


σ2
ε

(
1 + θ2

1
)

σ2
ε

σ2
ε

σ2
ε


Finally, we obtain:

P∞ = σ2
ε

(
1 + θ2

1 1
1 1

)
3. We have αt = (yt, εt) and:

αt =
(
φ1 −θ1
0 0

)
αt−1 +

(
µ
0

)
+
(

1
1

)
ηt

Using the standard SSM notations, we have c = (µ, 0), R = (1, 1), Q = σ2
ε and:

T =
(
φ1 −θ1
0 0

)
We obtain:

(I2 − T )−1 = 1
1− φ1

(
1 −θ1
0 1− φ1

)
and:

α̂∞ = 1
1− φ1

(
1 −θ1
0 1− φ1

)(
µ
0

)
=
( µ

1−φ1

0

)
We also have:

T ⊗ T =


φ2

1 −φ1θ1 −φ1θ1 θ2
1

0 0 0 0
0 0 0 0
0 0 0 0


It follows that:

vec (P∞) =


1

1−φ2
1
− φ1θ1

1−φ2
1
− φ1θ1

1−φ2
1

θ2
1

1−φ2
1

0 1 0 0
0 0 1 0
0 0 0 1




σ2
ε

σ2
ε

σ2
ε

σ2
ε


and:

P∞ = σ2
ε

(
1−2φ1θ1+θ2

1
1−φ2

1
1

1 1

)

4. We have αt = (yt, ut) and:

αt =
(

0 θ1
0 θ1

)
αt−1 +

(
µ
0

)
+
(

1
1

)
ηt
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Using the standard SSM notations, we have c = (µ, 0), R = (1, 1), Q = σ2
ε and:

T =
(

0 θ1
0 θ1

)
We obtain:

α̂∞ = 1
1− θ1

(
1− θ1 θ1

0 1

)(
µ
0

)
=
(
µ
0

)
and:

vec (P∞) =


1 0 0 θ2

1
1−θ2

1

0 1 0 θ2
1

1−θ2
1

0 0 1 θ2
1

1−θ2
1

0 0 0 1
1−θ2

1




σ2
ε

σ2
ε

σ2
ε

σ2
ε

 =


1

1−θ2
11

1−θ2
11

1−θ2
11

1−θ2
1

σ2
ε

We deduce that:

P∞ = σ2
ε

( 1
1−θ2

1

1
1−θ2

11
1−θ2

1

1
1−θ2

1

)

10.3.12 Kalman information filter versus Kalman covariance filter
In what follows, X−1 defines the inverse of the square matrix X and Y −1 defines the

Moore-Penrose pseudo-inverse of the non-square matrix Y .

1. We have: (
Im +AB>C−1B

)−1
A =

(
Im +AB>C−1B

)−1 (
A−1)−1

=
(
A−1 (Im +AB>C−1B

))−1

=
(
A−1 +B>C−1B

)−1

2. If the relationship
(
Im +AB>C−1B

)−1 = Im − AB>
(
C +BAB>

)−1
B is true, we

must verify that:

(∗) =
(
Im +AB>C−1B

) (
Im −AB>

(
C +BAB>

)−1
B
)

= Im

We have:

(∗) =
(
Im +AB>C−1B

) (
Im −AB>

(
C +BAB>

)−1
B
)

=
(
Im +AB>C−1B

)
−
(
Im +AB>C−1B

)
AB>

(
C +BAB>

)−1
B

=
(
Im +AB>C−1B

)
−
(
Im +AB>C−1B

)
AB>

(
B−1C +AB>

)−1

=
(
Im +AB>C−1B

)
−
(
Im +AB>C−1B

) (
B−1CB>

−1
A−1 + Im

)−1

Since we have:

Im +AB>C−1B =
(
AB>C−1B

) ((
AB>C−1B

)−1 + Im

)
=

(
AB>C−1B

) (
B−1CB>

−1
A−1 + Im

)
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We deduce that:

(∗) =
(
Im +AB>C−1B

)
−(

AB>C−1B
) (
B−1CB>

−1
A−1 + Im

)(
B−1CB>

−1
A−1 + Im

)−1

=
(
Im +AB>C−1B

)
−
(
AB>C−1B

)
= Im

3. Using Questions 1 and 2, we have:(
Im +AB>C−1B

)−1
A =

(
A−1 +B>C−1B

)−1

and: (
Im +AB>C−1B

)−1 = Im −AB>
(
C +BAB>

)−1
B

We deduce that:(
A−1 +B>C−1B

)−1 =
(
Im −AB>

(
C +BAB>

)−1
B
)
A

= A−AB>
(
C +BAB>

)−1
BA

and:

(∗) =
(
Im +AB>C−1B

)−1
AB>C−1

=
(
A−1 +B>C−1B

)−1
B>C−1

=
(
A−AB>

(
C +BAB>

)−1
BA
)
B>C−1

= AB>C−1 −AB>
(
C +BAB>

)−1
BAB>C−1

= AB>C−1 −AB>
(
C +BAB>

)−1 ((
BAB> + C

)
C−1 − I

)
= AB>C−1 −AB>

(
C +BAB>

)−1 (
BAB> + C

)
C−1 +

AB>
(
C +BAB>

)−1

= AB>C−1 −AB>C−1 +AB>
(
C +BAB>

)−1

Finally, we obtain the expected result:(
Im +AB>C−1B

)−1
AB>C−1 = AB>

(
C +BAB>

)−1

4. We have:

(∗) =
(
Im +D−1A

)
(A+D)−1

= (A+D)−1 +D−1A (A+D)−1

= (A+D)−1 +D−1 (Im +DA−1)−1

= (A+D)−1 +D−1
(
Im −

(
Im +DA−1)−1

DA−1
)

= (A+D)−1 +D−1 −D−1 (AD−1 + Im
)−1

= (A+D)−1 +D−1 − (A+D)−1

= D−1
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5. Let V be a covariance matrix. The information matrix I is the inverse of the covariance
matrix V :

I = V −1

This matrix is used in the method of maximum likelihood.

6. The state α̂?t|t (resp. α̂?t|t−1) is the estimator of αt normalized by the covariance matrix
given the filtration Ft (resp. Ft−1).

7. We have:

It|tPt|t−1 = P−1
t|t Pt|t−1

= P−1
t|t−1

(
Im − Pt|t−1Z

>
t F
−1
t Zt

)−1
Pt|t−1

= P−1
t|t−1

(
Im + Pt|t−1Z

>
t H

−1
t Zt

)
Pt|t−1

= Im + Z>t H
−1
t ZtPt|t−1

because:

(∗) =
(
Im − Pt|t−1Z

>
t F
−1
t Zt

)−1

= Im − Pt|t−1Z
>
t

(
−Ft + ZtPt|t−1Z

>
t

)−1
Zt

= Im − Pt|t−1Z
>
t (−Ht)−1

Zt

= Im + Pt|t−1Z
>
t H

−1
t Zt

We also have:

(∗) = It|tPt|t−1Z
>
t

(
ZtPt|t−1Z

>
t +Ht

)−1

=
(
Im + Z>t H

−1
t ZtPt|t−1

)
Z>t

(
ZtPt|t−1Z

>
t +Ht

)−1

= Z>t
(
In +H−1

t ZtPt|t−1Z
>
t

) (
ZtPt|t−1Z

>
t +Ht

)−1

By using Question 4 with A = ZtPt|t−1Z
>
t and D = Ht, we obtain:

It|tPt|t−1Z
>
t

(
ZtPt|t−1Z

>
t +Ht

)−1 = Z>t H
−1
t

8. We have:

(a)

It|t−1 = P−1
t|t−1

=
(
TtPt−1T

>
t +RtQtR

>
t

)−1

=
(
TtI−1

t−1|t−1T
>
t +RtQtR

>
t

)−1

(b)

α̂?t|t−1 = It|t−1α̂t|t−1

= It|t−1Ttα̂t−1|t−1

= It|t−1TtI−1
t−1|t−1α̂

?
t−1|t−1
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(c)

It|t = P−1
t|t

= P−1
t|t−1

(
Im − Pt|t−1Z

>
t F
−1
t Zt

)−1

= P−1
t|t−1

(
Im + Pt|t−1Z

>
t H

−1
t Zt

)
= It|t−1 + Z>t H

−1
t Zt

(d)

α̂?t|t = It|tα̂t|t
= It|t

(
α̂t|t−1 + Pt|t−1Z

>
t F
−1
t

(
yt − Ztα̂t|t−1

))
= It|t

(
Im − Pt|t−1Z

>
t F
−1
t Zt

)
α̂t|t−1 +

It|tPt|t−1Z
>
t F
−1
t yt

= α̂?t|t−1 + Z>t H
−1
t yt

We deduce that the recursive equations of the Kalman information filter are:
It|t−1 =

(
TtI−1

t−1|t−1T
>
t +RtQtR

>
t

)−1

α̂?t|t−1 = It|t−1TtI−1
t−1|t−1α̂

?
t−1|t−1

It|t = It|t−1 + Z>t H
−1
t Zt

α̂?t|t = α̂?t|t−1 + Z>t H
−1
t yt

From a numerical point of views, the number of matrix operations is:

• 5 additions, 10 multiplications and 1 inverse for the covariance filter;

• 3 additions, 10 multiplications and 2 inverses for the information filter;

It is not obvious that the computational time is reduced when using the information
filter. Its advantage may be due to the inverse of It−1|t−1 that can be more stable
than F−1

t in some cases.

9. We have:

` (θ) = −nT2 ln (2π)− 1
2

T∑
t=1

ln |Ft| −
1
2

T∑
t=1

v>t F
−1
t vt

In the case of the Kalman information matrix, we have:
Ft = ZtI−1

t|t−1Z
>
t +Ht

vt = yt − ZtI−1
t|t−1α̂

?
t|t−1

α̂?0 = 0
I0 = 0

In the case of the Kalman covariance matrix, we set α0 ∼ N (0, κIm) where κ is a
scalar sufficiently high such that I0 = κ−1Im ' 0.
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10.3.13 Granger representation theorem
1. We have:

yt = µt + Φ′1yt−1 + εt

We deduce that:
yt − yt−1 = µt + Φ′1yt−1 − yt−1 + εt

and:
∆yt = µt + (Φ′1 − In) yt−1 + εt

2. We have:
yt = µt + Φ′1yt−1 + Φ′2yt−2 + εt

We deduce that:

∆yt = µt + (Φ′1 − In) yt−1 + Φ′2yt−2 + εt

= µt + (Φ′1 + Φ′2 − In) yt−1 − Φ′2∆yt−1 + εt

3. The relationship is true for p = 1 and p = 2. We note:

Π(p) =
∑p

i=1
Φ′i − In

and
Φ(p)
i = −

∑p

j=i+1
Φ′j

We notice that:

Π(p) =
∑p

i=1
Φ′i − In

=
(∑p−1

i=1
Φ′i − In

)
+ Φ′p

= Π(p−1) + Φ′p

and:

Φ(p)
i = −

∑p

j=i+1
Φ′j

= −
∑p−1

j=i+1
Φ′j − Φ′p

= Φ(p−1)
i − Φ′p

We prove the relationship by induction. Let us assume that it holds for the order p−1.
We have:

∆yt = yt − yt−1

= µt +
∑p

i=1
Φ′iyt−i + εt − yt−1

= µt +
∑p−1

i=1
Φ′iyt−i + εt − yt−1 + Φ′pyt−p

= µt + Π(p−1)yt−1 +
∑p−1

i=1
Φ(p−1)
i ∆yt−i + εt + Φ′pyt−p

= µt +
(

Π(p) − Φ′p
)
yt−1 +

∑p−1

i=1

(
Φ(p)
i + Φ′p

)
∆yt−i +

εt + Φ′pyt−p

= µt + Π(p)yt−1 +
∑p

i=1
Φ(p)
i ∆yt−i + εt + ηt
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Since Φ(p)
p = 0, the value of ηt is equal to:

ηt = −Φ′pyt−1 +
p−1∑
i=1

Φ′p∆yt−i − Φ(p)
p ∆yt−p + Φ′pyt−p

= −Φ′pyt−1 +
p−1∑
i=1

Φ′p (yt−i − yt−i−1) + Φ′pyt−p

= −Φ′pyt−1 + Φ′pyt−1 − Φ′pyt−2 + Φ′pyt−2 +
. . .− Φ′pyt−p + Φ′pyt−p

= 0

It follows that the statement also holds for the order p.

10.3.14 Probability distribution of the periodogram

1. Since a (λj) and b (λj) are the sums of Gaussian random variables, they are also
Gaussian. We have:

E [a (λj)] = E

[
1√
n

n∑
t=1

yt cos (λjt)
]

= 1√
n

n∑
t=1

E [yt] cos (λjt)

= 0

and E [b (λj)] = 0. For the variance, we have:

var (a (λj)) = E

( 1√
n

n∑
t=1

yt cos (λjt)
)2


= 1
n

n∑
t=1

E
[
y2
t

]
cos2 (λjt) +

1
n

∑
s6=t

E [ysyt] cos (λjs) cos (λjt)

= σ2

n

n∑
t=1

cos2 (λjt) + 0

= σ2

n

n∑
t=1

(
cos (2λjt) + 1

2

)

If λj 6= 0, we obtain:

lim
n→∞

var (a (λj)) = σ2

2 + σ2

2 lim
n→∞

n∑
t=1

cos (2λjt)
n

= σ2

2
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We also have:

var (b (λj)) = E

( 1√
n

n∑
t=1

yt sin (λjt)
)2


= σ2

n

n∑
t=1

sin2 (λjt)

= σ2

n

n∑
t=1

(
1− cos (2λjt)

2

)
f λj 6= 0, we obtain:

lim
n→∞

var (b (λj)) = σ2

2

We deduce that a (λj) ∼ N
(

0, σ
2

2

)
and b (λj) ∼ N

(
0, σ

2

2

)
.

2. We have:

lim
n→∞

cov (a (λj) , b (λj)) = lim
n→∞

E

[
1
n

n∑
s=1

ys cos (λjs)
n∑
t=1

yt sin (λjt)
]

= lim
n→∞

σ2

n

n∑
t=1

cos (λjt) sin (λjt)

= 0

It follows that a (λj) and b (λj) are asymptotically independent. We conclude that:

2
σ2

(
a2 (λj) + b2 (λj)

)
∼ χ2

2

and:
4π
σ2 Iy (λj) ∼ χ2

2

3. We verify that:

E [Iy (λj)] = fy (λj)
2 E

[
χ2

2
]

= fy (λj)

and:

var (Iy (λj)) =
f2
y (λj)

4 var
(
χ2

2
)

= f2
y (λj)

Since we have:
Pr
{

0.0506 ≤ χ2
2 ≤ 7.3778

}
= 95%

we deduce that:

Pr
{

0.0506 ≤ 2 Iy (λj)
fy (λj)

≤ 7.3778
}

= 95%

Finally, we obtain:

Pr {0.27 · Iy (λj) ≤ fy (λj) ≤ 39.5 · Iy (λj)} = 95%
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4. If λj = 0, we obtain:

lim
n→∞

var (a (0)) = σ2

n

n∑
t=1

(
1 + 1

2

)
= σ2

and:
var (b (0)) = 0

It follows that:
1
σ2

(
a2 (0) + b2 (0)

)
∼ χ2

1

and:
2π
σ2 Iy (0) ∼ χ2

1

For a white noise process, we have fy (0) = (2π)−1
σ2. Therefore, we can make the

hypothesis that:
lim
n→∞

Iy (0)
fy (0) ∼ χ

2
1

We notice that:
lim
n→∞

E [Iy (0)] = fy (0) · E
[
χ2

1
]

= fy (0)

and:
lim
n→∞

var (Iy (0)) = f2
y (0) · var

(
χ2

1
)

= 2f2
y (0)

10.3.15 Spectral density function of structural time series models
1. We use the canonical representation of state space models. For Model (M1), we have
Zt = 1, αt = µt, dt = 0, Ht = σ2

ε , Tt = 1, ct = 0, Rt = 1 and Qt = σ2
η. For model

(M2), we obtain Zt =
(

1 0
)
, αt =

(
µt
βt

)
, dt = 0, Ht = σ2

ε , Tt =
(

1 1
0 1

)
,

ct =
(

0
0

)
, Rt = I and Qt =

(
σ2
η 0

0 σ2
ζ

)
.

2. For Model (M1), we have:
(1− L) yt = (µt + εt)− (µt−1 + εt−1)

= (µt − µt−1) + (εt − εt−1)
= ηt + (1− L) εt

Since the sum of two stationary processes is stationary, it follows that ηt + (1− L) εt
is stationary. We deduce that the stationary form is S (yt) = (1− L) yt. The spectral
density function is equal to:

fS(y) (λ) = (2π)−1
(
σ2
η +

∣∣1− e−iλ∣∣2 σ2
ε

)
= (2π)−1

(
σ2
η + |1− (cos (−λ) + i sin (−λ))|2 σ2

ε

)
= (2π)−1

(
σ2
η + |1− (cosλ− i sinλ)|2 σ2

ε

)
= (2π)−1

(
σ2
η + |(1− cosλ) + i sinλ|2 σ2

ε

)
= (2π)−1

(
σ2
η +

(
(1− cosλ)2 + sin2 λ

)
σ2
ε

)
= (2π)−1 (

σ2
η +

(
1− 2 cosλ+ cos2 λ+ sin2 λ

)
σ2
ε

)
= (2π)−1 (

σ2
η + 2 (1− cosλ)σ2

ε

)
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For Model (M2), we have:

(1− L) yt = (µt + εt)− (µt−1 + εt−1)
= (µt − µt−1) + (εt − εt−1)
= βt−1 + ηt + (εt − εt−1)

(1− L) yt is not stationary because the process βt is integrated of order 1. We have:

(1− L)2
yt = (1− L) (βt−1 + ηt + (εt − εt−1))

= (βt−1 − βt−2) + (ηt − ηt−1) + (1− L)2
εt

= ζt−1 + (1− L) ηt + (1− L)2
εt

Since this is the sum of three independent stationary processes, the stationary form
of yt is equal to S (yt) = (1− L)2

yt. We have4:∣∣∣(1− e−iλ)2∣∣∣2 =
∣∣1− e−iλ∣∣2 ∣∣1− e−iλ∣∣2

= (2 (1− cosλ))2

= 4 (1− cosλ)2

We conclude that:

fS(y) (λ) =
σ2
ζ + 2 (1− cosλ)σ2

η + 4 (1− cosλ)2
σ2
ε

2π

3. In Figure 10.3, we have represented the spectral density functions of Models (M1) and
(M2) when σε = ση = σζ = 1. We observe that they are similar for low frequencies, and
the difference between the two processes comes from the dynamics on high frequencies.

4. µt is the stochastic trend, βt is an AR(1) process that can be viewed as a mean-
reverting component when φ < 0 and γt is a stochastic seasonal process. When σω = 0,
we have:

γt−s+1 + . . .+ γt−1 + γt = 0

4Another way to find this result is to notice that (1− L)2 = 1− 2L+ L2. Therefore, we have:∣∣∣(1− e−iλ)2
∣∣∣2 =

∣∣∣1− 2e−iλ +
(
e−iλ

)2
∣∣∣2

=
∣∣1− 2e−iλ + e−2iλ

∣∣2
= |(1− 2 cosλ+ cos 2λ) + i (2 sinλ− sin 2λ)|2

= (1− 2 cosλ+ cos 2λ)2 + (2 sinλ− sin 2λ)2

= 1− 4 cosλ+ 4 cos2 λ+ 2 cos 2λ− 4 cosλ cos 2λ+ cos2 2λ+
4 sin2 λ− 4 sinλ sin 2λ+ sin2 2λ

= 6− 4 cosλ+ 2 cos 2λ− 4 (cosλ cos 2λ+ sinλ sin 2λ)
= 6− 4 cosλ+ 2 cos 2λ− 4 cos (λ− 2λ)
= 6− 8 cosλ+ 2 cos 2λ
= 4− 8 cosλ+ 2 (1 + cos 2λ)

= 4− 8 cosλ+ 2
(
1 + cos2 λ− sin2 λ

)
= 4− 8 cosλ+ 4 cos2 λ

= 4 (1− cosλ)2
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FIGURE 10.3: Spectral density function of Models (M1) and (M2)

Since we have γt−s + . . .+ γt−2 + γt−1 = 0, we deduce that:

γt = − (γt−s+1 + . . .+ γt−1)
= γt−s

We obtain a deterministic seasonal time series, where s represents the period length
of a season. For example, if s = 4, we obtain:

γt = γt−4 = γt−8 = . . .
γt+1 = γt−3 = γt−7 = . . .
γt+2 = γt−2 = γt−6 = . . .
γt+3 = γt−1 = γt−5 = . . .

The process repeats every four time periods. If σω 6= 0, we have γt−s+1 + . . .+ γt−1 +
γt = ωt and γt−s + . . .+ γt−2 + γt−1 = ωt−1. Therefore, we have:

γt = ωt − (γt−s+1 + . . .+ γt−1)
= ωt − (ωt−1 − γt−s)
= γt−s + (ωt − ωt−1)

We deduce that:

Et−s [γt] = Et−s [γt−s + (ωt − ωt−1)]
= γt−s

It follows that γt is a stochastic seasonal process.
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5. We have:

zt = (1− L) (1− Ls) yt
= (1− Ls) ηt + (1− L) (1− Ls)βt + (1− L) (1− Ls) εt +

(1− L) (1− Ls) γt

and:

(1− L) (1− Ls) γt = (γt − γt−1)− (γt−s − γt−s−1)
= (γt − γt−s)− (γt−1 − γt−s−1)
= (ωt − ωt−1)− (ωt−1 − ωt−2)
= ωt − 2ωt−1 + ωt−2

= (1− L)2
ωt

We deduce that:

zt = (1− Ls) ηt + (1− L) (1− Ls)βt +
(1− L) (1− Ls) εt + (1− L)2

ωt

If we assume that |φ| < 1, then βt is stationary. Moreover, we know that ηt, εt and
ωt are stationary. We conclude that zt is stationary and S (yt) = (1− L) (1− Ls) yt
is a stationary form of yt.

6. Another stationary form of yt is (1− Ls) yt. Indeed, we have:

(1− Ls) yt = (1− Ls)µt + (1− Ls)βt + (1− Ls) εt + (1− L)ωt

and:

(1− Ls)µt = µt − µt−s
= (µt−1 + ηt)− µt−s
= ηt + (µt−2 + ηt−1)− µt−s
= ηt + ηt−1 + . . .+ ηt−s−1

We deduce that (1− Ls)µt and (1− Ls) yt are stationary.

7. We note gλ (ϕ (L)) =
∣∣ϕ (e−iλ)∣∣2. We have:

gλ (1− Ls) =
∣∣∣1− (e−iλ)s∣∣∣2

=
∣∣1− e−isλ∣∣2

= (1− cos sλ)2 + sin2 sλ

= 2 (1− cos sλ)

and:

gλ ((1− L) (1− Ls)) = gλ (1− L) · gλ (1− Ls)
= 4 (1− cosλ) (1− cos sλ)
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We remind that

gλ

(
(1− φL)−1

)
= 1
|1− φe−iλ|2

= 1
(1− φ cosλ)2 + φ2 sin2 λ

= 1
1− 2φ cosλ+ φ2

We deduce that:

2πfS(y) (λ) = gλ (1− Ls)σ2
η + gλ

(
(1− L) (1− Ls)

1− φL

)
σ2
ζ +

gλ ((1− L) (1− Ls))σ2
ε + gλ

(
(1− L)2

)
σ2
ω

= 2 (1− cos sλ)σ2
η +(

4 (1− cosλ) (1− cos sλ)
1− 2φ cosλ+ φ2

)
σ2
ζ +

4 (1− cosλ) (1− cos sλ)σ2
ε(

4− 8 cosλ+ 4 cos2 λ
)
σ2
ω

We have seen that:

gλ ((1− L) (1− Ls)) = gλ
(
1− L− Ls + Ls+1)

= 4− 4 cosλ− 4 cos sλ+
2 cos (s− 1)λ+ 2 cos (s− 1)λ

By using the properties of trigonometric functions, we obtain:

gλ ((1− L) (1− Ls)) = 4− 4 cosλ− 4 cos sλ+
2 (cos sλ cosλ− sin sλ sinλ) +
2 (cos sλ cosλ+ sin sλ sinλ)

= 4− 4 cosλ− 4 cos sλ+ 4 cos sλ cosλ
= 4 (1− cosλ) (1− cos sλ)

The spectral density function is then defined as follows:

fS(y) (λ) = π−1 (1− cos sλ)σ2
η +

π−1

(
2− 2 cosλ+

∑1
j=−1 (3 |j| − 2) cos (s+ j)λ

1− 2φ cosλ+ φ2

)
σ2
ζ +

2π−1 (1− cosλ) (1− cos sλ)σ2
ε

2π−1 (1− 2 cosλ+ cos2 λ
)
σ2
ω

10.3.16 Spectral density function of some processes

We note gλ (ϕ (L)) =
∣∣ϕ (e−iλ)∣∣2.
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1. We have:

gλ (1− Ls) =
∣∣∣1− (e−iλ)s∣∣∣2

=
∣∣1− e−isλ∣∣2

= (1− cos sλ)2 + sin2 sλ

= 2 (1− cos sλ)

Since we have (1− Ls) yt = εt, we deduce that:

fy (λ) = σ2
ε

2πgλ (1− Ls)

= σ2
ε

4π (1− cos (sλ))

2. We have:

f (λ) = σ2
ε

2π
∣∣∣(1− e−iλ)d

∣∣∣2
= σ2

ε

2π
∣∣1− e−iλ∣∣−2d

= σ2
ε

2π

(
(1− cosλ)2 + sin2 λ

)−d
= σ2

ε

2π (2 (1− cosλ))−d

= σ2
ε

2π

(
4 sin2 λ

2

)−d
= σ2

ε

2π

(
2 sin λ2

)−2d

because5:

sin2 λ

2 = 1
2

(
cos
(
λ

2 −
λ

2

)
− cos

(
λ

2 + λ

2

))
= 1

2 (1− cosλ)

3. We have:
zt = (1− φL)−1

ut + (1− θL)−1
vt

We deduce that:

fz (λ) = σ2
u

2π (1− 2φ cosλ+ φ2) +
(
1− 2θ cosλ+ θ2)σ2

u

2π
5We use the following trigonometric identity:

sinα sinβ =
1
2

(cos (α− β)− cos (α+ β))
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(a) The simulated time series z is represented in the first panel Figure 10.4. In the
second panel, we also give the periodogram of z:

Iz (λj) = |dz (λj)|2

2πn = 1
2πn

∣∣∣∣∣
n∑
t=1

zte
−iλjt

∣∣∣∣∣
2

where λj = 2π (j − 1) /n and j ∈ {1, . . . , n}.

FIGURE 10.4: The AR(1) + MA(1) stochastic process

(b) The Whittle log-likelihood is equal to:

` (φ, σu, θ, σv) ' −n ln 2π − 1
2

n∑
j=1

ln fz (λj)−
1
2

n∑
j=1

Iz (λj)
fz (λj)

where λj = 2πj/n et j ∈ {0, 1, . . . , n− 1}. With the simulation in Figure 10.4, we
obtain the following estimates: φ̂ = 0.755, σ̂u = 0.896, θ̂ = 0.120 and σ̂v = 0.595.
The true and estimation spectral density functions are given in the third panel
in 10.4.





Chapter 11
Copulas and Dependence

11.4.1 Gumbel logistic copula

1. We recall that the expression of the Gumbel logistic copula is:

C (u1, u2) = u1u2

u1 + u2 − u1u2

We have:

∂1 C (u1, u2) = u2 (u1 + u2 − u1u2)− u1u2 (1− u2)
(u1 + u2 − u1u2)2

= u2
2

(u1 + u2 − u1u2)2

We deduce that the copula density is:

c (u1, u2) = ∂2
1,2 C (u1, u2)

= 2u2 (u1 + u2 − u1u2)2 − 2u2
2 (u1 + u2 − u1u2) (1− u1)

(u1 + u2 − u1u2)4

= 2u1u2

(u1 + u2 − u1u2)3

2. We have:

λ+ (u) = 1− 2u+ C (u, u)
1− u

= (1− 2u) (2− u) + u

(1− u) (2− u)

= 2u2 − 4u+ 2
u2 − 3u+ 2

Using L’Hospital’s rule, it follows that:

λ+ = lim
u→1

2u2 − 4u+ 2
u2 − 3u+ 2

= lim
u→1

4u− 4
2u− 3

= 0

The Gumbel logistic copula has then no upper tail dependence. For the lower tail

227
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dependence, we obtain:

λ+ = lim
u→0

C (u, u)
u

= lim
u→0

u

2u− u2

= lim
u→0

1
2− 2u

= 1
2

We verify that it has a lower tail dependence.

11.4.2 Farlie-Gumbel-Morgenstern copula
1. We have:

C (u, 0) = C (0, u) = 0
C (u, 1) = C (1, u) = u

∂2 C (u1, u2)
∂ u1∂ u2

= 1 + θ (1− 2u1) (1− 2u2)

As we have −1 ≤ 1 + θ (1− 2u1) (1− 2u2) ≤ 1, it follows that:

∂2C (u1, u2)
∂ u1∂ u2

≥ 0

We deduce that C is a copula function.

2. We have:

λ = lim
u→1−

1− 2u+ C (u, u)
1− u

= lim
u→1−

1− 2u+ u2
(

1 + θ (1− u)2
)

1− u
= lim

u→1−
(1− u)

(
1 + θu2)

= 0

For the Kendall’s tau, we obtain:
τ =

The Spearman’s rho is equal to:
% =

3. We calculate the conditional copula:

We simulate (U1, U2) in the following way:

By applying the PIT method, we obtain:

x1 = µ+ σΦ−1 (u1)

x2 = − 1
λ

ln (1− u2)
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4. We have:

c (u1, u2) = ∂2 C (u1, u2)
∂ u1∂ u2

= 1 + θ (1− 2u1) (1− 2u2)

It follows that:

f (x1, x2) = c (F1 (x1) ,F2 (x2))× f2 (x1)× f1 (x1)

= λ

σ

(
1 + θ

(
1− 2Φ

(
x1 − µ
σ

))(
2e−λx2 − 1

))
×

φ

(
x1 − µ
σ

)
× e−λx2

We deduce that :

` = n lnλ− n

2 ln σ2 − n

2 ln 2π +
n∑
i=1

ln
(

1 + θ

(
1− 2Φ

(
x1,i − µ

σ

))(
2e−λx2,i − 1

))
−

1
2

n∑
i=1

(
x1,i − µ

σ

)2
− λ

n∑
i=1

x2,i

11.4.3 Survival copula
1. We have S (0, 0) = 1 and S (∞,∞) = 0. We notice that:

∂2
1,2S (x1, x2) =

≤ 0

We conclude that S is a survival function.

2. We have:

S1 (x1) = S (x1, 0)
= exp (−x1)

By noting U1 = S1 (X1), we deduce the expression of the survival copula:

C (u1, u2) = exp
(
−
(
− ln u1 − ln u2 + θ

ln u1 ln u2

ln u1 + ln u2

))
= u1u2 exp

(
θ
ũ1ũ2

ũ1 + ũ2

)
with ũ = − ln u.

11.4.4 Method of moments

C〈X1,X2〉 = θC− + (1− θ) C+
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1. We have:

F (x1, x2) = θ ×max (Φ (x1) + Φ (x2)− 1, 0) + (1− θ)×min (Φ (x1) ,Φ (x2))

It follows that:

E [X1X2] =
∫∫

x1x2 dF (x1, x2)

= θ ×
∫∫

x1x2 dC− (Φ (x1) ,Φ (x1)) +

(1− θ)×
∫∫

x1x2 dC+ (Φ (x1) ,Φ (x1))

= θ × (−1) + (1− θ)× (+1)
= 1− 2θ

We deduce that:
ρ 〈X1, X2〉 = E [X1X2] = 1− 2θ

The linear correlation between X1 and X2 is equal to zero when θ takes the value 1/2.

2. Using the notations N1 ∼ N (0, 1) and N2 ∼ N (0, 1), we obtain:

ρ 〈X1, X2〉 = ρ 〈µ1 + σ1N1, µ2 + σ2N2〉
= ρ 〈N1, N2〉
= 1− 2θ

3. We have:
θ = 1− ρ 〈X1, X2〉

2

The MM estimator θ̂MM is then equal to:

θ̂MM = 1− ρ̂
2

where ρ̂ is the empirical correlation between X1 and X2.

11.4.5 Correlated loss given default rates
1. As we have x ∈ [0, 1], the parameter γ must be positive or equal to zero in order to

have F (0) = 0, F (1) = 1 and f (x) = γxγ−1 ≥ 0.

2. The expression of the log-likelihood function is:

` (γ) =
n∑
i=1

ln f (xi)

=
n∑
i=1

ln
(
γxγ−1

i

)
= n ln γ + (γ − 1)

n∑
i=1

ln xi
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We deduce the first-order condition:

∂ ` (γ)
∂ γ

= 0⇔ n

γ
+

n∑
i=1

ln xi = 0

We finally obtain the ML estimator:

γ̂ML = − 1
(n−1∑n

i=1 ln xi)

3. We have:

E [LGD] =
∫ 1

0
xγxγ−1 dx

= γ

∫ 1

0
xγ dx

= γ

[
xγ+1

γ + 1

]1

0

= γ

γ + 1

Let x̄ be the empirical mean of the sample {x1, . . . , xn}. The MM estimator γ̂MM
satisfies the following equation:

γ̂MM

γ̂MM + 1 = x̄

We deduce that:

γ̂MM = x̄

1− x̄

=
∑n
i=1 xi

n−
∑n
i=1 xi

4. In the case xi = 50%, we obtain:

γ̂ML = − 1
ln 0.5 = ln 2 = 1.44

and:
γ̂MM = 0.5/ (1− 0.5) = 1.00

The numerical results are different. For example, we have reported the density function
of the two probability distributions in Figure 11.1.

5. We have:
∂C (u1, u2)

∂ u1
= u2e

−θ lnu1 lnu2 − θu2 ln u2e
−θ lnu1 lnu2

and:

∂2 C (u1, u2)
∂ u1∂ u2

= e−θ lnu1 lnu2 − θ ln u1e
−θ lnu1 lnu2 − θ ln u2e

−θ lnu1 lnu2−

θe−θ lnu1 lnu2 + θ2 ln u1 ln u2e
−θ lnu1 lnu2

=
(
1− θ − θ ln (u1u2) + θ2 ln u1 ln u2

)
e−θ lnu1 lnu2
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FIGURE 11.1: Density functions associated to ML and MM estimators

6. The bivariate density function is the equal to:

f (x, y) = c (F (x) ,F (y))× f (x)× f (y)
=

(
1− θ − θ (γ1 ln x+ γ2 ln y) + θ2γ1γ2 ln x ln y

)
×

e−θγ1γ2 ln x ln y × γ1x
γ1−1 × γ2y

γ2−1

where γ1 and γ2 are the parameters associated to the risk classes C1 and C2. It follows
that the log-likelihood function is equal to:

` = n ln γ1 + n ln γ2 + (γ1 − 1)
n∑
i=1

ln xi + (γ2 − 1)
n∑
i=1

ln yi +

n∑
i=1

ln
(
1− θ − θ (γ1 ln xi + γ2 ln yi) + θ2γ1γ2 ln xi ln yi

)
−

θγ1γ2

n∑
i=1

ln xi ln yi
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7. The first-order conditions are:

∂ `

∂ γ1
= n

γ1
+

n∑
i=1

ln xi + g1 (γ1, γ2, θ)

∂ `

∂ γ2
= n

γ2
+

n∑
i=1

ln yi + g2 (γ1, γ2, θ)

∂ `

∂ θ
= −

n∑
i=1

1 + (γ1 ln xi + γ2 ln yi)− 2θγ1γ2 ln xi ln yi
1− θ − θ (γ1 ln xi + γ2 ln yi) + θ2γ1γ2 ln xi ln yi

−

γ1γ2

n∑
i=1

ln xi ln yi

with:

g1 (γ1, γ2, θ) =
n∑
i=1

(
θ2γ2 ln yi − θ

)
ln xi

1− θ − θ (γ1 ln xi + γ2 ln yi) + θ2γ1γ2 ln xi ln yi
−

θγ2

n∑
i=1

ln xi ln yi

g2 (γ1, γ2, θ) =
n∑
i=1

(
θ2γ1 ln xi − θ

)
ln yi

1− θ − θ (γ1 ln xi + γ2 ln yi) + θ2γ1γ2 ln xi ln yi
−

θγ1

n∑
i=1

ln xi ln yi

When θ̂ is equal to zero, we have g1 (γ1, γ2, 0) = 0. In this case, the estimator γ̂1
corresponds to the ML estimator γ̂ML. When we have θ̂ 6= 0, we obtain g1 (γ1, γ2, θ) 6=
0 and γ̂1 6= γ̂ML. We obtain this result because more information is available in
the bivariate case. The ML method can then correct the estimator γ̂ML by taking
into account the dependence function between LGD1 and LGD2. For instance, if the
estimated copula is equal to the Fréchet upper copula C+, it is obvious that the two
estimators γ̂1 and γ̂2 are equal, even if the unidimensional ML estimators are not
necessarily equal. Let us consider the following sample:

LGD1 (in %) 50 40 60 50 80 90 70 10 40 40
LGD2 (in %) 60 50 80 70 80 90 80 30 50 70

We obtain γ̂ML = 1.31 for C1 and γ̂ML = 2.18 for C2. With the bivariate ML method,
we obtain γ̂1 = 0.88, γ̂2 = 1.44 and θ̂ = 1.71.

11.4.6 Calculation of correlation bounds
1. We have:

C− (u1, u2) = max (u1 + u2 − 1, 0)
C⊥ (u1, u2) = u1u2

C+ (u1, u2) = min (u1, u2)

Let X1 and X2 be two random variables. We have:



234 Handbook of Financial Risk Management

(i) C 〈X1, X2〉 = C− if and only if there exists a non-increasing function f such that
we have X2 = f (X1);

(ii) C 〈X1, X2〉 = C⊥ if and only if X1 and X2 are independent;
(iii) C 〈X1, X2〉 = C+ if and only if there exists a non-decreasing function f such

that we have X2 = f (X1).

2. We note U1 = 1− exp (−λτ ) and U2 = LGD.

(a) The dependence between τ and LGD is maximum when we have C 〈τ ,LGD〉 =
C+. Since we have U1 = U2, we conclude that:

LGD +e−λτ − 1 = 0

(b) We know that:

ρ 〈τ ,LGD〉 ∈ [ρmin 〈τ ,LGD〉 , ρmax 〈τ ,LGD〉]

where ρmin 〈τ ,LGD〉 (resp. ρmax 〈τ ,LGD〉) is the linear correlation corresponding
to the copula C− (resp. C+). It comes that:

E [τ ] = σ (τ ) = 1
λ

and:

E [LGD] = 1
2

σ (LGD) =
√

1
12

In the case C 〈τ ,LGD〉 = C−, we have U1 = 1−U2. It follows that LGD = e−λτ .
We have:

E [τ LGD] = E
[
τe−λτ

]
=

∫ ∞
0

te−λtλe−λt dt

=
∫ ∞

0
tλe−2λt dt

=
[
− te

−2λt

2

]∞
0

+ 1
2

∫ ∞
0

e−2λt dt

= 0 + 1
2

[
−e
−2λt

2λ

]∞
0

= 1
4λ

We deduce that:

ρmin 〈τ ,LGD〉 =
(

1
4λ −

1
2λ

)/(
1
λ

√
1
12

)

= −
√

3
2
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In the case C 〈τ ,LGD〉 = C+, we have LGD = 1− e−λτ . We have:

E [τ LGD] = E
[
τ
(
1− e−λτ

)]
=

∫ ∞
0

t
(
1− e−λt

)
λe−λt dt

=
∫ ∞

0
tλe−λt dt−

∫ ∞
0

tλe−2λt dt

=
([
−te−λt

]∞
0 +

∫ ∞
0

e−λt dt
)
− 1

4λ

= 0 +
[
−e
−λt

λ

]∞
0
− 1

4λ

= 3
4λ

We deduce that:

ρmax 〈τ ,LGD〉 =
(

3
4λ −

1
2λ

)/(
1
λ

√
1
12

)

=
√

3
2

We finally obtain the following result:

|ρ 〈τ ,LGD〉| ≤
√

3
2

(c) We notice that |ρ 〈τ ,LGD〉| is lower than 86.6%, implying that the bounds −1
and +1 can not be reached.

3. (a) If the copula function of (τ1, τ2) is the Fréchet upper bound copula, τ1 and τ2
are comonotone. We deduce that:

U1 = U2 ⇐⇒ 1− e−λ1τ1 = 1− e−λ2τ2

and:
τ1 = λ2

λ1
τ2

(b) We have U1 = 1− U2. It follows that S1 (τ1) = 1− S2 (τ2). We deduce that:

e−λ1τ1 = 1− e−λ2τ2

and:
τ1 =

− ln
(
1− e−λ2τ2

)
λ1

There exists then a function f such that τ1 = f (τ2) with:

f (t) =
− ln

(
1− e−λ2t

)
λ1

(c) Using Question 2(b), we known that ρ ∈ [ρmin, ρmax] where ρmin and ρmax are
the correlations of (τ1, τ2) when the copula function is respectively C− and C+.
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We also know that ρ = 1 (resp. ρ = −1) if there exists a linear and increasing
(resp. decreasing) function f such that τ1 = f (τ2). When the copula is C+, we
have f (t) = λ2

λ1
t and f ′ (t) = λ2

λ1
> 0. As it is a linear and increasing function,

we deduce that ρmax = 1. When the copula is C−, we have:

f (t) =
− ln

(
1− e−λ2t

)
λ1

and:
f ′ (t) = −

λ2e
−λ2t ln

(
1− e−λ2t

)
λ1 (1− e−λ2t) < 0

The function f (t) is decreasing, but it is not linear. We deduce that ρmin 6= −1
and:

−1 < ρ ≤ 1

(d) When the copula is C−, we know that there exists a decreasing function f such
that X2 = f (X1). We also know that the linear correlation reaches the lower
bound −1 if the function f is linear:

X2 = a+ bX1

This implies that b < 0. When X1 takes the value +∞, we obtain:

X2 = a+ b×∞

As the lower bound of X2 is equal to zero 0, we deduce that a = +∞. This
means that the function f (x) = a + bx does not exist. We conclude that the
lower bound ρ = −1 can not be reached.

4. (a) X1 +X2 is a Gaussian random variable because it is a linear combination of the
Gaussian random vector (X1, X2). We have:

E [X1 +X2] = µ1 + µ2

and:
var (X1 +X2) = σ2

1 + 2ρσ1σ2 + σ2
2

We deduce that:

X1 +X2 ∼ N
(
µ1 + µ2, σ

2
1 + 2ρσ1σ2 + σ2

2
)

(b) We have:

cov (Y1, Y2) = E [Y1Y2]− E [Y2]E [Y2]
= E

[
eX1+X2

]
− E [Y2]E [Y2]

We know that eX1+X2 is a lognormal random variable. We deduce that:

E
[
eX1+X2

]
= exp

(
E [X1 +X2] + 1

2 var (X1 +X2)
)

= exp
(
µ1 + µ2 + 1

2
(
σ2

1 + 2ρσ1σ2 + σ2
2
))

= eµ1+ 1
2σ

2
1eµ2+ 1

2σ
2
2eρσ1σ2

We finally obtain:

cov (Y1, Y2) = eµ1+ 1
2σ

2
1eµ2+ 1

2σ
2
2 (eρσ1σ2 − 1)
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(c) We have:

ρ 〈Y1, Y2〉 = eµ1+ 1
2σ

2
1eµ2+ 1

2σ
2
2 (eρσ1σ2 − 1)√

e2µ1+σ2
1
(
eσ

2
1 − 1

)√
e2µ2+σ2

2
(
eσ

2
2 − 1

)
= eρσ1σ2 − 1√

eσ
2
1 − 1

√
eσ

2
2 − 1

(d) ρ 〈Y1, Y2〉 is an increasing function with respect to ρ. We deduce that:

ρ 〈Y1, Y2〉 = 1⇐⇒ ρ = 1 and σ1 = σ2

The lower bound of ρ 〈Y1, Y2〉 is reached if ρ is equal to −1. In this case, we have:

ρ 〈Y1, Y2〉 = e−σ1σ2 − 1√
eσ

2
1 − 1

√
eσ

2
2 − 1

> −1

It follows that ρ 〈Y1, Y2〉 6= −1.
(e) It is evident that:

ρ 〈S1 (t) , S2 (t)〉 = eρσ1σ2t − 1√
eσ

2
1t − 1

√
eσ

2
2t − 1

In the case σ1 = σ2 and ρ = 1, we have ρ 〈S1 (t) , S2 (t)〉 = 1. Otherwise, we
obtain:

lim
t→∞

ρ 〈S1 (t) , S2 (t)〉 = 0

(f) In the case of lognormal random variables, the linear correlation does not neces-
sarily range between −1 and +1.

11.4.7 The bivariate Pareto copula
1. We have:

F1 (x1) = Pr {X1 ≤ x1}
= Pr {X1 ≤ x1, X2 ≤ ∞}
= F (x1,∞)

We deduce that:

F1 (x1) = 1−
(
θ1 + x1

θ1

)−α
−
(
θ2 +∞
θ2

)−α
+(

θ1 + x1

θ1
+ θ2 +∞

θ2
− 1
)−α

= 1−
(
θ1 + x1

θ1

)−α
We conclude that F1 (and F2) is a Pareto distribution.

2. We have:
C (u1, u2) = F

(
F−1

1 (u1) ,F−1
2 (u2)

)
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It follows that:

1−
(
θ1 + x1

θ1

)−α
= u1

⇔
(
θ1 + x1

θ1

)−α
= 1− u1

⇔ θ1 + x1

θ1
= (1− u1)−1/α

We deduce that:

C (u1, u2) = 1− (1− u1)− (1− u2) +(
(1− u1)−1/α + (1− u2)−1/α − 1

)−α
= u1 + u2 − 1 +

(
(1− u1)−1/α + (1− u2)−1/α − 1

)−α
3. We have:

∂C (u1, u2)
∂ u1

= 1− α
(

(1− u1)−1/α + (1− u2)−1/α − 1
)−α−1

×(
− 1
α

)
(1− u1)−1/α−1 × (−1)

= 1−
(

(1− u1)−1/α + (1− u2)−1/α − 1
)−α−1

×

(1− u1)−1/α−1

We deduce that the probability density function of the copula is1:

c (u1, u2) = ∂2 C (u1, u2)
∂ u1 ∂ u2

= − (−α− 1)
(

(1− u1)−1/α + (1− u2)−1/α − 1
)−α−2

×(
− 1
α

)
(1− u2)−1/α−1 × (−1)× (1− u1)−1/α−1

=
(
α+ 1
α

)(
(1− u1)−1/α + (1− u2)−1/α − 1

)−α−2
×

(1− u1 − u2 + u1u2)−1/α−1

In Figure 11.2, we have reported the density of the Pareto copula when α is equal to
1 and 10.

1Another expression of c (u1, u2) is:

c (u1, u2) =
(
α+ 1
α

)
((1− u1) (1− u2))1/α ×(

(1− u1)1/α + (1− u2)1/α − (1− u1)1/α (1− u2)1/α)−α−2
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FIGURE 11.2: The Pareto copula

4. We have:

λ− = lim
u→0+

C (u, u)
u

= 2 lim
u→0+

∂C (u, u)
∂ u1

= 2 lim
u→0+

1−
(

(1− u)−1/α + (1− u)−1/α − 1
)−α−1

(1− u)−1/α−1

= 2 lim
u→0+

(1− 1)

= 0

and:

λ+ = lim
u→1−

1− 2u+ C (u, u)
1− u

= lim
u→1−

(
(1− u)−1/α + (1− u)−1/α − 1

)−α
1− u

= lim
u→1−

(
1 + 1− (1− u)1/α

)−α
= 2−α

The tail dependence coefficients λ− and λ+ are given with respect to the parameter
α in Figure 11.2. We deduce that the bivariate Pareto copula function has no lower
tail dependence (λ− = 0), but an upper tail dependence (λ+ = 2−α).

5. The bivariate Pareto copula family cannot reach C− because λ− is never equal to 1.
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We notice that:
lim
α→∞

λ+ = 0

and
lim
α→0

λ+ = 1

This implies that the bivariate Pareto copula may reach C⊥ and C+ for these two
limit cases: α→∞ and α→ 0. In fact, α→ 0 does not correspond to the copula C+

because λ− is always equal to 0.

6. (a) We note U1 = F1 (X1) and U2 = F2 (X2). X1 and X2 are comonotonic if and
only if:

U2 = U1

We deduce that:

1−
(
θ2 +X2

θ2

)−α2

= 1−
(
θ1 +X1

θ1

)−α1

⇔
(
θ2 +X2

θ2

)−α2

=
(
θ1 +X1

θ1

)−α1

⇔ X2 = θ2

((
θ1 +X1

θ1

)α1/α2

− 1
)

We know that ρ 〈X1, X2〉 = 1 if and only if there is an increasing linear relation-
ship between X1 and X2. This implies that:

α1

α2
= 1

(b) X1 and X2 are countermonotonic if and only if:

U2 = 1− U1

We deduce that: (
θ2 +X2

θ2

)−α2

= 1−
(
θ1 +X1

θ1

)−α1

⇔
(
θ2 +X2

θ2

)−α2

= 1−
(
θ1 +X1

θ1

)−α1

⇔ X2 = θ2

(1−
(
θ1 +X1

θ1

)−α1
)1/α2

− 1


It is not possible to obtain a decreasing linear function between X1 and X2. This
implies that ρ 〈X1, X2〉 > −1.

(c) We have:

F′ (x1, x2) = C (F1 (x1) ,F2 (x2))

= 1−
(
θ1 + x1

θ1

)−α1

−
(
θ2 + x2

θ2

)−α2

+((
θ1 + x1

θ1

)α1/α

+
(
θ2 + x2

θ2

)α2/α

− 1
)−α
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The traditional bivariate Pareto distribution F (x1, x2) is a special case of
F′ (x1, x2) when:

α1 = α2 = α

Using F′ instead of F, we can control the tail dependence, but also the univariate
tail index of the two margins.





Chapter 12
Extreme Value Theory

12.4.1 Uniform order statistics
1. Since we have f (x) = 1 and F (x) = x, we deduce that:

fi:n (x) = n!
(i− 1)! (n− i)! · x

i−1 · (1− x)n−1 · 1

= Γ (n+ 1)
Γ (i) Γ (n− i+ 1)x

i−1 (1− x)n−i

This is the probability density function of the Beta distribution B (α, β) where α = i
and β = n− i+ 1.

2. We have:

E [Xi:n] = E [B (i, n− i+ 1)]

= α

α+ β

= i

n+ 1

3. We have:

var (Xi:n) = var (B (i, n− i+ 1))

= αβ

(α+ β)2 (α+ β + 1)

= i (n− i+ 1)
(n+ 1)2 (n+ 2)

4. We have:

Sample Xi:8
1 2 3 4 5 6 7 8

1 0.04 0.14 0.24 0.34 0.45 0.55 0.72 0.94
2 0.12 0.25 0.31 0.32 0.57 0.64 0.69 0.97
3 0.11 0.17 0.17 0.26 0.50 0.50 0.69 0.85
4 0.00 0.03 0.15 0.53 0.58 0.77 0.98 0.98
5 0.15 0.25 0.46 0.62 0.65 0.74 0.85 0.89
6 0.05 0.07 0.15 0.25 0.65 0.74 0.86 0.93
7 0.12 0.16 0.33 0.34 0.55 0.61 0.63 0.95
8 0.01 0.11 0.14 0.47 0.57 0.82 0.87 0.96
9 0.27 0.55 0.57 0.68 0.73 0.78 0.83 0.85
10 0.28 0.40 0.68 0.89 0.91 0.94 0.99 0.99

The empirical and theoretical mean and standard deviation of Xi:8 are reported in
Table 12.1.

243
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TABLE 12.1: Empirical and theoretical mean and standard deviation of Xi:8

i X̄i:8 E [Xi:n] σ̂ (Xi:n) σ (Xi:n)
1 0.1150 0.1111 0.0981 0.0994
2 0.2130 0.2222 0.1584 0.1315
3 0.3200 0.3333 0.1918 0.1491
4 0.4700 0.4444 0.2096 0.1571
5 0.6160 0.5556 0.1302 0.1571
6 0.7090 0.6667 0.1333 0.1491
7 0.8110 0.7778 0.1241 0.1315
8 0.9310 0.8889 0.0511 0.0994

5. We reiterate that Xi:n ∼ B (i, n− i+ 1). We deduce that the median statistic follows
a symmetric Beta distribution:

Xk+1:n ∼ B (k + 1, k + 1)

Moreover, we have:
Xi:n ∼ B (i, 2k − i)

It follows that the density function of Xi:n is right asymmetric if i ≤ k, symmetric
about .5 if i = k + 1 and left asymmetric otherwise.

6. We consider the change of variable: U = F (X). It follows that U follows a uniform
distribution. Using the previous results, we can deduce that the density function of
Ui:n is right asymmetric if i ≤ k, symmetric about .5 if i = k+ 1 and left asymmetric
otherwise. Because F (x) is a symmetric function about x? = F−1 (0.5), we conclude
that the density function of Xi:n is right asymmetric if i ≤ k, symmetric about x? if
i = k + 1 and left asymmetric otherwise.

12.4.2 Order statistics and return period

1. We have:

Fn:n (x) = Pr {max (X1, . . . , Xn) ≤ x}
= Pr {X1 ≤ x, . . . ,Xn ≤ x}

=
n∏
i=1

Pr {Xi ≤ x}

= Φ
(
x− µ
σ

)n

2. The density function of Xn:n is equal to:

fn:n (x) = ∂x Fn:n (x)

= n

σ
φ

(
x− µ
σ

)
Φ
(
x− µ
σ

)n−1

We deduce that the log-likelihood function of a sample (x1, . . . , xm) of the order
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statistic Xn:n is equal to:

`n:n = m lnn− m

2 ln (2π)− m

2 ln σ2 −
m∑
i=1

1
2

(
xi − µ
σ

)2
−

(n− 1) ln Φ
(
xi − µ
σ

)
For each time period n, we calculate `n:n and find the estimates µ̂n:n and σ̂n:n. Then
we test the joint hypothesis:

H0 =
{
µ̂1:1 = µ̂2:2 = µ̂3:3 = . . . = µ
σ̂1:1 = σ̂2:2 = σ̂3:3 = . . . = σ

3. The return period is the average period between two consecutive events. It is equal
to:

T = n

p

where p is the occurrence probability of the event and n is the unit period measured
in days. We have:

T
(
F−1
n:n (α)

)
= 1

1− α × n

We deduce that the return periods are respectively equal to 100, 100, 500 and 2 200
days.

4. We would like to find the value α that satisfies the following equation:

T
(
F−1

20:20 (α)
)

= T
(
F−1 (99.9%)

)
We have:

1
1− α × 20 = 1

1− 0.999 × 1

We deduce that:
α = 1− 20× 0.001 = 98%

12.4.3 Extreme order statistics of exponential random variables
1. Using the Bayes formula, we have:

Pr {τ > t | τ > s} = Pr {τ > t
⋂
τ > s}

Pr {τ > s}

= Pr {τ > t}
Pr {τ > s}

= S (t)
S (s)

= e−λt

e−λs

= e−λ(t−s)

= Pr {τ > t− s}

This implies that the survival function does not depend on the initial time. This
Markov property is especially useful in credit models, because the default time of the
counterparty does not on the past history, for instance the age of the company.
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2. We have:

Pr {min (τ1, . . . , τn) ≥ t} = Pr
{
τ1 ≥ t

⋂
. . .
⋂
τn ≥ t

}
=

n∏
i=1

Pr {τi ≥ t}

= exp
(
−

n∑
i=1

λit

)

and:

Pr {max (τ1, . . . , τn) ≤ t} = Pr
{
τ1 ≤ t

⋂
. . .
⋂
τn ≤ t

}
=

n∏
i=1

Pr {τi ≤ t}

=
n∏
i=1

(
1− e−λit

)
We deduce that:

min (τ1, . . . , τn) ∼ E
(

n∑
i=1

λi

)

The distribution of max (τ1, . . . , τn) is not a known probability distribution. Let us
consider the case n = 2. We have:

Pr {min (τ1, τ2) = τ2} = Pr {τ2 ≤ τ1}

=
∫ ∞

0

∫ t1

0
λ1e
−λ1t1λ2e

−λ2t2 dt1 dt2

=
∫ ∞

0
λ1e
−λ1t1

(∫ t1

0
λ2e
−λ2t2 dt2

)
dt1

=
∫ ∞

0
λ1e
−λ1t1

(
1− e−λ2t1

)
dt1

=
∫ ∞

0
λ1e
−λ1t1 dt1 − λ1

∫ ∞
0

e−(λ1+λ2)t1 dt1

= 1− λ1

λ1 + λ2

= λ2

λ1 + λ2

We can generalize this result to the case n > 2 and we finally obtain:

Pr {min (τ1, . . . , τn) = τi} = λi∑n
j=1 λj

3. When τ1 and τi are comonotone, we have S1 (τ1) = Si (τi). It follows that:

τi = λ1

λi
τ1
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We note λ+ = max (λ1, . . . , λn) and λ− = min (λ1, . . . , λn). We deduce that:

Pr {min (τ1, . . . , τn) ≥ t} = Pr
{

min
(

1
λ1
,

1
λ2
, . . . ,

1
λn

)
λ1τ1 ≥ t

}
= Pr

{
λ1

λ+ τ1 ≥ t
}

= Pr
{
τ1 ≥

λ+

λ1
t

}
= exp

(
−λ1

λ+

λ1
t

)
= exp

(
−λ+t

)
and:

Pr {max (τ1, . . . , τn) ≤ t} = Pr
{
λ1

λ−
τ1 ≤ t

}
= 1− exp

(
−λ1

λ−

λ1
t

)
= 1− exp

(
−λ−t

)
We finally obtain:

min (τ1, . . . , τn) ∼ E
(
λ+)

and:
max (τ1, . . . , τn) ∼ E

(
λ−
)

12.4.4 Extreme value theory in the bivariate case
1. An extreme value copula C satisfies the following relationship:

C
(
ut1, u

t
2
)

= Ct (u1, u2)

for all t > 0.

2. The product copula C⊥ is an EV copula because we have:

C⊥
(
ut1, u

t
2
)

= ut1u
t
2

= (u1u2)t

=
[
C⊥ (u1, u2)

]t
For the copula C+, we obtain:

C+ (ut1, ut2) = min
(
ut1, u

t
2
)

=
{
ut1 if u1 ≤ u2
ut2 otherwise

= (min (u1, u2))t

=
[
C+ (u1, u2)

]t
However, the EV property does not hold for the Fréchet lower bound copula C−:

C−
(
ut1, u

t
2
)

= max
(
ut1 + ut2 − 1, 0

)
6= max (u1 + u2 − 1, 0)t
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Indeed, we have C− (0.5, 0.8) = max (0.5 + 0.8− 1, 0) = 0.3 and:

C−
(
0.52, 0.82) = max (0.25 + 0.64− 1, 0)

= 0
6= 0.32

3. We have:

C
(
ut1, u

t
2
)

= exp
(
−
[(
− ln ut1

)θ +
(
− ln ut2

)θ]1/θ)
= exp

(
−
[
(−t ln u1)θ + (−t ln u2)θ

]1/θ)
= exp

(
−t
[
(− ln u1)θ + (− ln u2)θ

]1/θ)
=

(
e−[(− lnu1)θ+(− lnu2)θ]1/θ

)t
= Ct (u1, u2)

4. The upper tail dependence λ is defined as follows:

λ = lim
u→1+

1− 2u+ C (u1, u2)
1− u

It measures the probability to have an extreme in one direction knowing that we have
already an extreme in the other direction. If λ is equal to 0, extremes are independent
and the EV copula is the product copula C⊥. If λ is equal to 1, extremes are comono-
tonic and the EV copula is the Fréchet upper bound copula C+. Moreover, the upper
tail dependence of the copula between the random variables is equal to the upper tail
dependence of the copula between the extremes.

5. Using L’Hospital’s rule, we have:

λ = lim
u→1+

1− 2u+ e−[(− lnu)θ+(− lnu)θ]1/θ

1− u

= lim
u→1+

1− 2u+ e−[2(− lnu)θ]1/θ

1− u

= lim
u→1+

1− 2u+ u21/θ

1− u

= lim
u→1+

0− 2 + 21/θu21/θ−1

−1
= lim

u→1+
2− 21/θu21/θ−1

= 2− 21/θ

If θ is equal to 1, we obtain λ = 0. It comes that the EV copula is the product
copula. Extremes are then not correlated. This result is not surprising because the
Gumbel-Houggard copula is equal to the product copula when θ = 1:

e−[(− lnu1)1+(− lnu2)1]1 = u1u2 = C⊥ (u1, u2)
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6. (a) We have:

C
(
ut1, u

t
2
)

= u
t(1−θ1)
1 u

t(1−θ2)
2 min

(
utθ11 , utθ22

)
=

(
u1−θ1

1

)t (
u1−θ2

2

)t (
min

(
uθ11 , u

θ2
2

))t
=

(
u1−θ1

1 u1−θ2
2 min

(
uθ11 , u

θ2
2

))t
= Ct (u1, u2)

(b) If θ1 > θ2, we obtain:

λ = lim
u→1+

1− 2u+ u1−θ1u1−θ2 min
(
uθ1 , uθ2

)
1− u

= lim
u→1+

1− 2u+ u1−θ1u1−θ2uθ1

1− u

= lim
u→1+

1− 2u+ u2−θ2

1− u

= lim
u→1+

0− 2 + (2− θ2)u1−θ2

−1
= lim

u→1+
2− 2u1−θ2 + θ2u

1−θ2

= θ2

If θ2 > θ1, we have λ = θ1. We deduce that the upper tail dependence of the
Marshall-Olkin copula is min (θ1, θ2).

(c) If θ1 = 0 or θ2 = 0, we obtain λ = 0. It comes that the copula of the extremes is
the product copula. Extremes are then not correlated.

(d) Two extremes are perfectly correlated when we have θ1 = θ2 = 1. In this case,
we obtain:

C (u1, u2) = min (u1, u2) = C+ (u1, u2)

12.4.5 Max-domain of attraction in the bivariate case
1. Let (X1,X2) be a bivariate random variable whose probability distribution is:

F (x1, x2) = C〈X1,X2〉 (F1 (x1) ,F2 (x2))

We know that the corresponding EV probability distribution is:

G (x1, x2) = C?
〈X1,X2〉 (G1 (x1) ,G2 (x2))

where G1 and G2 are the two univariate EV probability distributions and C?
〈X1,X2〉

is the EV copula associated to C〈X1,X2〉.

(a) We deduce that:

G (x1, x2) = C⊥ (G1 (x1) ,G2 (x2))
= Λ (x1) Ψ1 (x2 − 1)
= exp

(
−e−x1 + x2 − 1

)
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(b) We have:

G (x1, x2) = Λ (x1) Φα

(
1 + x2

α

)
= exp

(
−e−x1 −

(
1 + x2

α

)−α)
(c) We have:

G (x1, x2) = Ψ1 (x1 − 1) Φα

(
1 + x2

α

)
= exp

(
x1 − 1−

(
1 + x2

α

)−α)
2. We know that the upper tail dependence is equal to zero for the Normal copula when
ρ < 1. We deduce that the EV copula is the product copula. We then obtain the same
results as previously.

3. When the parameter ρ is equal to 1, the Normal copula is the Fréchet upper bound
copula C+, which is an EV copula. We deduce the following results:

G (x1, x2) = min (Λ (x1) ,Ψ1 (x2 − 1))
= min

(
exp

(
−e−x1

)
, exp (x2 − 1)

)
(a)

G (x1, x2) = min
(
Λ (x1) ,Φα

(
1 + x2

α

))
= min

(
exp

(
−e−x1

)
, exp

(
−
(

1 + x2

α

)−α))
(b)

G (x1, x2) = min
(
Ψ1 (x1 − 1) ,Φα

(
1 + x2

α

))
= min

(
exp (x2 − 1) , exp

(
−
(

1 + x2

α

)−α))
(c)

4. In the previous exercise, we have shown that the Gumbel-Houggard copula is an EV
copula.

(a) We deduce that:

G (x1, x2) = e−[(− ln Λ(x1))θ+(− ln Ψ1(x2−1))θ]1/θ

= exp
(
−
[
e−θx1 + (1− x2)θ

]1/θ)
(b) We obtain:

G (x1, x2) = e
−
[
(− ln Λ(x1))θ+(− ln Φα(1+ x2

α ))θ
]1/θ

= exp
(
−
[
e−θx1 +

(
1 + x2

α

)−αθ]1/θ
)

(c) We have:

G (x1, x2) = e
−
[
(− ln Ψ1(x1−1))θ+(− ln Φα(1+ x2

α ))θ
]1/θ

= exp
(
−
[
(1− x1)θ +

(
1 + x2

α

)−αθ]1/θ
)



Chapter 13
Monte Carlo Simulation Methods

13.4.1 Simulating random numbers using the inversion method
1. Let ui be a uniform random variate.

(a) We have seen that the quantile function of the distribution function GEV (µ, σ, ξ)
has the following expression:

G−1 (α) = µ− σ

ξ

(
1− (− lnα)−ξ

)
It follows that:

xi ← µ− σ

ξ

(
1− (− ln ui)−ξ

)
(b) The cumulative density function of the log-normal distribution LN

(
µ, σ2) is

equal to:

F (x) = Φ
(

ln x− µ
σ

)
We deduce that:

F−1 (u) = exp
(
µ+ σΦ−1 (u)

)
To simulate a log-normal random variate, we then use the following algorithm:

xi ← exp
(
µ+ σΦ−1 (ui)

)
(c) We have:

F (x) = 1
1 + (x/α)−β

and:

F−1 (u) = α

(
u

1− u

)1/β

To simulate a log-logistic random variate LL (α, β), we use the following trans-
formation:

xi ← α

(
ui

1− ui

)1/β

2. (a) Let xi be a random variate simulated from the probability distribution of X. A
straightforward algorithm is to keep all the random variates xi’s that are higher
than the threshold H:

li ←
{
xi if xi ≥ H
a missing value otherwise

251
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(b) We have:

FL (x) = Pr {X ≤ x | X ≥ H}

= Pr {X ≤ x,X ≥ H}
Pr {X ≥ H}

= FX (x)− FX (H)
1− FX (H)

(c) We have:

FL (x) = u ⇔ FX (x)− FX (H)
1− FX (H) = u

⇔ FX (x) = u+ FX (H) (1− u)
⇔ x = F−1

X (u+ FX (H) (1− u))

It follows that:
F−1
L (u) = F−1

X (u+ FX (H) (1− u))

We deduce that the algorithm to simulate the random variate li is:

li ← F−1
X (ui + FX (H) (1− ui))

(d) Concerning the first algorithm, we simulate nX values of X, but we only kept on
average nL = nX (1− FX (H)) values of L, meaning that the acceptance ratio
is equal to 1− FX (H). For the second algorithm, all the simulated values of ui
are kept. For instance, if FX (H) is equal to 90% and we would like to simulate
one million of random numbers for L, we have to simulate approximatively 10
millions of random numbers in the first algorithm, that is 10 more times than
for the second algorithm. In this case, the acceptance ratio is only equal to 10%.

(e) When X follows a log-normal distribution LN
(
µ, σ2), Algorithm (a) becomes:

li ← exp
(
µ+ σΦ−1 (ui)

)
with the condition ui ≥ FX (H) = 95.16%. For Algorithm (b), we have:

li ← exp
(
µ+ σΦ−1

(
ui + (1− ui) Φ

(
lnH − µ

σ

)))
In Figure 13.1, we have represented the random numbers li generated with the
two algorithms. We observe that only 4 simulated values are higher than H in the
case of Algorithm (a). With Algorithm (c), all the simulated values are higher
than H and it is easier to simulate a random loss located in the distribution tail.

3. (a) Let xi be a simulated value of Xi.We have:

x1:n = min (x1, . . . , xn)

and:
xn:n = max (x1, . . . , xn)

(b) We have:
F1:n (x) = 1− (1− F (x))n
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FIGURE 13.1: Simulation of conditional losses L = X | X ≥ H

and:
F−1

1:n (u) = F−1
(

1− (1− u)1/n
)

We deduce that a simulated value x−i of X1:n is given by:

x−i ← F−1
(

1− (1− ui)1/n
)

For the maximum order statistic Xn:n, we have F1:n (x) = F (x)n and:

x+
i ← F−1

(
u

1/n
i

)
(c) In Figure 13.2, we report 1 000 simulated values of X1:50 and X50:50 when Xi ∼
N (0, 1).

13.4.2 Simulating random numbers using the transformation method
1. The density function of Y = h (X) is given by the following relationship:

g (y) = f (x)
∣∣∣∣dxdy

∣∣∣∣
We obtain:

g (y) = βαx−α−1e−β/x

Γ (α) x2

= βαx−α+1e−β/x

Γ (α)

= βαyα−1e−βy

Γ (α)
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FIGURE 13.2: Simulation of X1:50 and X50:50 when Xi ∼ N (0, 1)

It follows that Y ∼ G (α, β). To simulate X, we draw a gamma random variate Y and
set X = 1/Y .

2. (a) The density function of X ∼ G (α, β) is equal to:

f (x) = βαxα−1e−βx

Γ (α)

In the case α = 1, we obtain:

f (x) = βe−βx

This is the density function of E (β). To simulate X, we apply the following
transformation:

x← − ln u
β

where u is a uniform random number.
(b) We know that:

G (n, β) =
n∑
j=1
G (1, β)

We deduce that:

G (n, β) =
n∑
i=1

Ei

where Ei ∼ E (β) are iid exponential random variables. We deduce that the
probability distribution G (n, β) can be simulated by:

x← − 1
β

n∑
i=1

ln ui



Monte Carlo Simulation Methods 255

or:

x← − 1
β

ln
(

n∏
i=1

ui

)
where u1, . . . , un are iid uniform random variates.

3. (a) Let Y ∼ G (α, δ) and Z ∼ G (β, δ) be two independent gamma-distributed ran-
dom variables. We have:

fY,Z (y, z) = δα+β

Γ (α) Γ (β)y
α−1zβ−1e−δ(y+z)

We note:
X = Y

Y + Z

and:
S = Y + Z

It follows that Y = XS and Z = (1−X)S. The Jacobian of (y, z) = ϕ (x, s) is
then equal to:

Jϕ =
(

s x
−s 1− x

)
Since we have det Jϕ = s, we deduce that:

fX,S (x, s) = fY,Z (y, z)× |s|

= δα+β

Γ (α) Γ (β) (xs)α−1 ((1− x) s)β−1
e−δss

=
(

Γ (α+ β)
Γ (α) Γ (β)x

α−1 (1− x)β−1
)
×(

δα+β

Γ (α+ β)s
α+β−1e−δs

)
= fX (x) fS (s)

It follows that the random variables X and S are independent, X ∼ B (α, β) and
S ∼ G (α+ β, δ).

(b) To simulate a beta-distributed random variate, we consider the following trans-
formation:

x← y

y + z

where y and z are two independent random variates from G (α, δ) and G (β, δ).

4. (a) We remind that:

fX,Y (x, y) = fR,Θ (r, θ)
∣∣∣∣ 1
det Jϕ

∣∣∣∣
where Jϕ is the Jacobian associated to the change of variables (x, y) = ϕ (r, θ).
We have:

Jϕ =
(

cos θ −r sin θ
sin θ r cos θ

)
and:

det Jϕ = r cos2 θ + r sin2 θ = r
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Since R and Θ are independent, we have fR,Θ (r, θ) = fR (r) fΘ (θ). Moreover, Θ
is a uniform random variable and we have:

fΘ (θ) = 1
2π

We deduce that:
fX,Y (x, y) = fR (r)

2πr
We also notice that:

X2 + Y 2 = R2 cos2 Θ +R2 sin2 Θ
= R2

Finally, we obtain the following result:

fX,Y (x, y) =
fR

(√
x2 + y2

)
2π
√
x2 + y2

Concerning the density function of X, we have:

fX (x) =
∫ ∞
−∞

fR

(√
x2 + y2

)
2π
√
x2 + y2

dy

(b) We assume that R =
√

2E where E ∼ E (1).
i. We have:

FR (r) = Pr
{√

2E ≤ r
}

= Pr
{
E ≤ r2

2

}
= 1− e−r

2/2

We deduce that:

fR (r) = ∂r FR (r)
= re−r

2/2

ii. We have:

fX (x) =
∫ ∞
−∞

fR

(√
x2 + y2

)
2π
√
x2 + y2

dy

=
∫ ∞
−∞

e−(x2+y2)/2

2π dy

= e−x
2/2

√
2π

∫ ∞
−∞

e−y
2/2

√
2π

dy

= e−x
2/2

√
2π

= φ (x)
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We deduce that X ∼ N (0, 1). By symmetry, we also have Y ∼ N (0, 1).
Moreover, we notice that X and Y are independent:

fX,Y (x, y) = e−(x2+y2)/2

2π

= e−x
2/2

√
2π
· e
−y2/2
√

2π
= fX (x) fY (y)

iii. We have R =
√

2E =
√
−2 lnU1 and Θ = 2πU2 where U1 and U2 are two

standard uniform random variables. It follows that X and Y defined by:{
X =

√
−2 lnU1 cos (2πU2)

Y =
√
−2 lnU1 sin (2πU2)

are two independent standard Gaussian random variables.
(c) We assume that:

FR (r) = 1−
(

1 + r2

ν

)−ν/2
i. It follows that the density function of R is equal to:

fR (r) = r

(
1 + r2

ν

)−ν/2−1

ii. We deduce that the joint density of (X,Y ) is:

fX,Y (x, y) = r

2πr

(
1 + r2

ν

)−ν/2−1

= 1
2π

(
1 + x2 + y2

ν

)−ν/2−1

iii. We notice that fX,Y (x, y) is an even function of y. We deduce that:

fX (x) =
∫ +∞

−∞

1
2π

(
1 + x2 + y2

ν

)−ν/2−1

dy

=
∫ +∞

0

1
π

((
1 + x2

ν

)(
1 + y2

ν + x2

))−ν/2−1

dy

We consider the following change of variable:

u =
(

1 + y2

ν + x2

)−1

We have:

y =

√(
1
u
− 1
)

(ν + x2)

and:

dy = −1
2

(
ν + x2)

u2
√

(u−1 − 1) (ν + x2)
du

= −1
2

√
ν + x2

u2
√
u−1 − 1

du
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We obtain:

fX (x) = −
∫ 0

1

1
2π

((
1 + x2

ν

)
1
u

)−ν/2−1 √
ν + x2

u2
√
u−1 − 1

du

=
∫ 1

0

1
2π

((
1 + x2

ν

)
1
u

)−ν/2−1 √
ν + x2

u2
√
u−1 − 1

du

=
√
ν

2π

(
1 + x2

ν

)−(ν+1)/2 ∫ 1

0
u(ν−1)/2 (1− u)−1/2 du

= B
(
ν + 1

2 ,
1
2

) √
ν

2π

(
1 + x2

ν

)−(ν+1)/2

We have:

B
(
ν + 1

2 ,
1
2

) √
ν

2π =
Γ
(
ν+1

2
)

Γ
( 1

2
)

Γ
(
ν
2 + 1

) √
ν

2π

=
Γ
(
ν+1

2
)√

π
ν
2 Γ
(
ν
2
) √

ν

2π

=
Γ
(
ν+1

2
)

√
πνΓ

(
ν
2
)

We finally deduce that:

fX (x) =
Γ
(
ν+1

2
)

Γ
(
ν
2
)√

νπ

(
1 + x2

ν

)−(ν+1)/2

This is the probability density function of the tν random variable.
iv. We have:

F−1
R (u) =

√
ν
(

(1− u)−2/ν − 1
)

We deduce that the random variate ri can be simulated using the inversion
method:

ri ←
√
ν
(

(1− ui)−2/ν − 1
)

where ui is a uniform random variate.
v. It follows that: 

X =
√
ν
(

(1− U1)−2/ν − 1
)

cos (2πU2)

Y =
√
ν
(

(1− U1)−2/ν − 1
)

sin (2πU2)

where U1 and U2 are two independent uniform random variables.
vi. In the Box-Muller algorithm, X and Y are independent. In the Bailey algo-

rithm, this property is not satisfied because:

fX,Y (x, y) 6= fX(x)fY (y)
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13.4.3 Simulating random numbers using rejection sampling
1. (a) It follows that:

h (x) = f (x)
g (x)

= xα−1 (1− x)β−1

B (α, β)

We deduce that:

h′ (x) = (α− 1)xα−2 (1− x)β−1 + (β − 1)xα−1 (1− x)β−2

B (α, β)

= ((α− 1) (1− x) + (β − 1)x) x
α−2 (1− x)β−2

B (α, β)

and:

h′ (x) = 0 ⇔ (α− 1) (1− x) + (β − 1)x = 0

⇔ x? = α− 1
α+ β − 2

The supremum of h (x) is equal to:

h (x?) = 1
B (α, β)

(
α− 1

α+ β − 2

)α−1(
β − 1

α+ β − 2

)β−1

We deduce that:

c = Γ (α+ β) (α− 1)α−1 (β − 1)β−1

Γ (α) Γ (β) (α+ β − 2)α+β−2

(b) We have reported the functions f (x) and cg (x) in Figure 13.3. c takes the value
1.27, 1.78, 8.00 and 2.76. The acceptance ratio is minimum in the third case
when α = 1 and β = 8. In fact, it corresponds to the worst situation for the
acceptance-rejection algorithm. Indeed, when one parameter is equal to 1, we
obtain:

c = Γ (1 + β) (β − 1)β−1

Γ (1) Γ (β) (β − 1)β−1 = β

The acceptance ratio p tends to zero when the second parameter tends to infinity:

lim
β→∞

p = lim
β→∞

1
c

= 0

(c) The acceptance-rejection algorithm becomes:

i. Generate two independent uniform random variates u1 and u2;
ii. Calculate v such that:

v = (α+ β − 2)α+β−2

(α− 1)α−1 (β − 1)β−1u
α−1
1 (1− u1)β−1

iii. If u2 ≤ v, accept u1; otherwise, reject u1.
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FIGURE 13.3: Rejection sampling applied to the beta distribution

2. (a) It follows that:

h (x) = f (x)
g (x)

= (1− x)β−1

αB (α, β)

Its maximum is reached at point x? = 0. We deduce that:

c = 1
αB (α, β)

(b) We have G (x) = xα. We use the inversion method to simulate X:

x← u1/α

where u is a uniform random variate.
(c) The acceptance-rejection algorithm becomes:

i. Generate two independent uniform random variates u1 and u2;
ii. Calculate x = u

1/α
1 ;

iii. Calculate v such that:

v = f (x)
cg (x)

=
(

1− u1/α
1

)β−1

iv. If u2 ≤ v, accept x; otherwise, reject x.
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3. (a) We have:

G (x) =
∫ x

−∞

1
2e
−|t| dt

If x ≤ 0, we obtain:

G (x) =
∫ x

−∞

1
2e

t dt

= 1
2e

x

= 1
2 −

1
2 (1− ex)

If x > 0, we obtain:

G (x) = 1
2e

0 +
∫ x

0

1
2e
−t dt

= 1
2 + 1

2 (1− ex)

We deduce that:
G (x) = 1

2 + 1
2 sign (x)

(
1− e−x

)
and:

G−1 (u) = − sign
(
u− 1

2

)
ln
(

1− 2
∣∣∣∣u− 1

2

∣∣∣∣)
To simulate the Laplace distribution, we consider the following transformation:

x← − sign
(
u− 1

2

)
ln
(

1− 2
∣∣∣∣u− 1

2

∣∣∣∣)
where u is a uniform random variate.

(b) We have:

h (x) = f (x)
g (x)

=
√

2
π
e−0.5x2+|x|

We have:
h′ (x) =

{
− (x+ 1)h (x) if x < 0
− (x− 1)h (x) if x ≥ 0

There are two maxima: x? = ±1. We deduce that:

c = max (h (−1) , h (1))

=
√

2
π
e0.5

≈ 1.32

The functions f (x) and cg (x) are reported in Figure 13.4.
(c) The acceptance-rejection algorithm becomes:

i. Generate two independent uniform random variates u1 and u2;



262 Handbook of Financial Risk Management

FIGURE 13.4: Rejection sampling applied to the normal distribution

ii. Calculate x = sign (u1 − 0.5) ln (1− 2 |u1 − 0.5|);
iii. Calculate v such that:

v = f (x)
cg (x)

= e−0.5(x2−1)+|x|

iv. If u2 ≤ v, accept x; otherwise, reject x.

4. (a) We have:

h (x) = f (x)
g (x)

=
π
(
1 + x2)
Γ (α) xα−1e−x

= π

Γ (α)
(
xα−1 + xα+1) e−x

= π

Γ (α)

(
e(α−1) ln x + e(α+1) ln x

)
e−x

We deduce that:

h (x) ≤ π

Γ (α)

(
e(α+1) ln x + e(α+1) ln x

)
e−x

= 2π
Γ (α)e

(α+1) ln xe−x

= 2π
Γ (α)x

α+1e−x
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We have: (
xα+1e−x

)′ = ((α+ 1)− x)xαe−x

The maximum is reached at the point x? = α+ 1. We deduce that:

c = 2π
Γ (α) (α+ 1)α+1

e−(α+1)

(b) We have:

g (x) = Γ (3/2)
Γ (1)

√
2π

(
1 + x

2
2
)−3/2

= 1
2
√

2

(
1 + x2

2

)−3/2

=
(
2 + x2)−3/2

and:

G (x) =
∫ x

−∞

(
2 + t2

)−3/2 dt

=
[

t

2
√

2 + t2

]x
−∞

= 1
2

(
1 + x√

2 + x2

)
We calculate the inverse function G−1 (u):

1
2

(
1 + x√

2 + x2

)
= u ⇔ x2

2 + x2 = (2u− 1)2

⇔ x2 = 2 (2u− 1)2 + x2 (2u− 1)2

⇔ x2 = 2 (2u− 1)2 + x2 (2u− 1)2

⇔ x2 = 2 (2u− 1)2

(4u2 − 4u)

⇔ G−1 (u) =
√

2 (u− 0.5)√
u2 − u

It follows that we can simulate the Student t distribution with 2 degrees of
freedom by using the following transformation:

x←
√

2 (u− 0.5)√
u2 − u

(c) In Figure 13.5, we show the acceptance ratio p = 1/c for the two algorithms. It is
obvious that algorithm (b) dominates algorithm (a). In particular, the acceptance
ratio tends to 0 when α tends to infinity when we use the Cauchy distribution
as the proposal distribution.

5. (a) We have:

c = sup p (k)
q (k)

= K ×max p (k)
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FIGURE 13.5: Acceptance ratio for the Gamma distribution

(b) We obtain c = 5× 40% = 2. Therefore, the acceptance ratio is equal to 50% and
we reject one simulation in two. This is confirmed by Figure 13.6, which shows
the number of accepted and rejected values. However, the acceptance ratio is not
the same for each states. For instance, it is equal to 100% for the state, which
has the highest probability, but it can be low for states with small probabilities.
In our experiment, we obtain the following results:

k fA (k) f?A (k) fR (k) f?R (k)
1 4.9% 9.7% 16.1% 32.5%
2 9.9% 19.6% 8.5% 17.1%
3 19.6% 38.9% 0.0% 0.0%
4 10.2% 20.2% 9.2% 18.5%
5 5.8% 11.5% 15.8% 31.9%

sum 50.4% 100.0% 49.6% 100.0%

where fA (k) and fR (k) are the frequencies of accepted and rejected values, and
f?A (k) and f?R (k) are the normalized frequencies. We have rejected 49.6% of
simulated values on average. Among these rejected values, 32.5% comes from the
first state, 17.1% from the second state, etc. We also verify that the empirical
frequencies f?A (k) are close to the theoretical probabilities p (k).
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FIGURE 13.6: Histogram of accepted and rejected values

13.4.4 Simulation of Archimedean copulas
1. Let f be a function. We note y = f (x). We have dy = ∂x f (x) dx, x = f−1 (y) and

dx = ∂y f
−1 (y) dy. We deduce that:

∂y f
−1 (y) = 1

∂x f (x)

= 1
∂x f (f−1 (y))

We then obtain the conditional copula function:

C2|1 (u2 | u1) = ϕ′ (u1)
ϕ′ (ϕ−1 (ϕ (u1) + ϕ (u2)))

Let v1 and v2 be two independent uniform random variates. The simulation algorithm
based on the conditional distribution is:{

u1 = v1
C2|1 (u2 | u1) = v2

We deduce that: {
u1 = v1

u2 = ϕ−1
(
ϕ
(
ϕ′−1

(
ϕ′(v1)
v2

))
− ϕ (v1)

)
This is the Genest-MacKay algorithm.

2. We obtain the Gumbel-Hougaard copula:

C (u1, u2) = exp
(
−
[
(− ln u1)θ + (− ln u2)θ

]1/θ)
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3. Using the Gumbel-Hougaard copula, we have ϕ (u) = (− ln u)θ, ϕ−1 (u) = exp
(
−u1/θ)

and ϕ′ (u) = −θu−1 (− ln u)θ−1. However, it is not possible to obtain an explicit
formula for ϕ′−1 (u). This is why we use a numerical solution ψ (u) for ϕ′−1 (u). Finally,
we obtain the following simulation algorithm:

u1 = v1

u2 = exp
(
−
[(
− ln

(
ψ
(
−θ(− ln v1)θ−1

v1v2

)))θ
− (− ln v1)θ

]1/θ
)

4. We have:

C2|1 (u2 | u1) = ∂1 C (u1, u2) =
e−θu1

(
e−θu2 − 1

)
(e−θ − 1) + (e−θu1 − 1) (e−θu2 − 1)

We deduce that:

C2|1 (u2 | u1) = v

⇔ e−θu1e−θu2 − e−θu1 = ve−θ − ve−θu1 + v
(
e−θu1 − 1

)
e−θu2

⇔ e−θu2
(
(1− v) e−θu1 + v

)
= (1− v) e−θu1 + ve−θ

⇔ u2 = −1
θ

ln
(

1 +
v
(
e−θ − 1

)
v + (1− v) e−θu1

)
Finally, we obtain the following simulation algorithm:

u1 = v1

u2 = −1
θ

ln
(

1 +
v2
(
e−θ − 1

)
v2 + (1− v2) e−θv1

)

5. We have:

ϕ (u) = v

⇔ ln 1− θ (1− u)
u

= v

⇔ 1− θ (1− u) = uev

⇔ ϕ−1 (v) = u = 1− θ
ev − θ

It follows that:

ϕ−1 (ϕ (u1) + ϕ (u2)) = 1− θ
exp

(
ln 1−θ(1−u1)

u1
+ ln 1−θ(1−u2)

u2

)
− θ

= (1− θ)u1u2

(1− θ (1− u1)) (1− θ (1− u2))− θu1u2

The denominator is equal to:

D = (1− θ (1− u1)) (1− θ (1− u2))− θu1u2

= 1− θ (1− u1)− θ (1− u2) + θ2 (1− u1) (1− u2)− θu1u2

= 1− 2θ + θu1 + θu2 − θu1u2 + θ2 (1− u1) (1− u2)
= (1− θ)− (1− θ) θ (1− u1) (1− u2)
= (1− θ) (1− θ (1− u1) (1− u2))
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We finally obtain:

ϕ−1 (ϕ (u1) + ϕ (u2)) = u1u2

1− θ (1− u1) (1− u2)

The conditional copula is given by:

C2|1 (u2 | u1) = ∂1 C (u1, u2)

= u2 (1− θ (1− u1) (1− u2))− θu1u2 (1− u2)
(1− θ (1− u1) (1− u2))2

= (1− θ)u2 + θu2
2

(1− θ (1− u1) (1− u2))2

= (1− θ)u2 + θu2
2

(1− θ + θu1 + θu2 (1− u1))2

To find the inverse conditional copula C−1
2|1, we have to solve the equation

C2|1 (u2 | u1) = v. It follows that:

(1− θ)u2 + θu2
2 = v (1− θ + θu1 + θu2 (1− u1))2

or:

(1− θ)u2 + θu2
2 = v (1− θ + θu1)2 +

2θvu2 (1− θ + θu1) (1− u1) +
vθ2u2

2 (1− u1)2

We obtain:
aθ (v, u1)u2

2 + bθ (v, u1)u2 + cθ (v, u1) = 0
where:

aθ (v, u1) = vθ2 (1− u1)2 − θ
bθ (v, u1) = 2θv (1− θ + θu1) (1− u1)− (1− θ) ≤ 0
cθ (v, u1) = v (1− θ + θu1)2 ≥ 0

We deduce that the solution is equal to:

u2 = Ψθ (v, u1) =
−bθ (v, u1)−

√
b2θ (v, u1)− 4aθ (v, u1) cθ (v, u1)

2aθ (v, u1)

Finally, we obtain the following simulation algorithm:{
u1 = v1
u2 = Ψθ (v2, v1)

6. Using the previous algorithms, we obtain the following simulated random vectors:

Gumbel Frank AMH
θ = 1.8 θ = 2.1 θ = 0.6
u1 u2 u1 u2 u1 u2

0.117 0.240 0.117 0.321 0.117 0.351
0.607 0.478 0.607 0.459 0.607 0.452
0.168 0.141 0.168 0.171 0.168 0.185
0.986 0.993 0.986 0.951 0.986 0.930
0.765 0.299 0.765 0.192 0.765 0.169
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13.4.5 Simulation of conditional random variables
1. Z = (X,Y ) is a Gaussian random vector defined as follows:(

X
Y

)
∼ N

((
µx
µy

)
,

(
Σxx Σxy
Σyx Σyy

))
We have:

µt = E [T ]
= µy + ΣyxΣ−1

xx (x? − µx)

and:

Σtt = cov (T )
= Σyy − ΣyxΣ−1

xxΣxy

It follows that:

T ∼ N
(
µy + ΣyxΣ−1

xx (x? − µx) ,Σyy − ΣyxΣ−1
xxΣxy

)
Let Ptt be the Cholesky decomposition of Σyy − ΣyxΣ−1

xxΣxy. We have:

T = µy + ΣyxΣ−1
xx (x? − µx) + PttU

where U ∼ N (0, I). We deduce the following algorithm to simulate the random vector
T :

(a) We simulate the vector u =
(
u1, . . . , uny

)
of independent Gaussian random vari-

ates N (0, 1);
(b) We calculate Ptt the Cholesky decomposition of Σyy − ΣyxΣ−1

xxΣxy;
(c) The simulation of the random vector T is given by:

t← µy + ΣyxΣ−1
xx (x? − µx) + Pttu

2. We have:

E
[
T̃
]

= E
[
Y − ΣyxΣ−1

xx (X − x?)
]

= E [Y ]− ΣyxΣ−1
xx (E [X]− x?)

= µy − ΣyxΣ−1
xx (µx − x?)

We deduce that:
T̃ − E

[
T̃
]

= (Y − µy)− ΣyxΣ−1
xx (X − µx)

and:

cov
(
T̃
)

= E
[
(Y − µy) (Y − µy)>

]
+

ΣyxΣ−1
xxE

[
(X − µx) (X − µx)>

]
Σ−1
xxΣ>yx −

2E
[
(Y − µy) (X − µx)>

]
Σ−1
xxΣ>yx

= Σyy + ΣyxΣ−1
xxΣxxΣ−1

xxΣxy − 2ΣyxΣ−1
xxΣxy

= Σyy − ΣyxΣ−1
xxΣxy
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As T̃ is a linear transformation of the Gaussian random vector Z, we obtain:

T̃ ∼ N
(
µy + ΣyxΣ−1

xx (x? − µx) ,Σyy − ΣyxΣ−1
xxΣxy

)
We conclude that T̃ = T . We deduce the following algorithm to simulate the random
vector T :

(a) We simulate the vector u = (u1, . . . , unz ) of independent Gaussian random vari-
ates N (0, 1);

(b) We calculate Pzz the Cholesky decomposition of Σzz;
(c) We simulate the random vector Z:

z ← µz + Pzzu

(d) We set x = (z1, . . . , znx) and y =
(
znx+1, . . . , znx+ny

)
.

(e) The simulation of the random vector T is given by:

t← y − ΣyxΣ−1
xx (x− x?)

3. We note Z = (Z1, Z2, . . . , Znz ) and Zi (z1, . . . , zi−1) = Zi | Z1 = z1, . . . , Zi−1 =
zi−1. Let u = (u1, u2, . . . , unz ) be a vector of independent Gaussian random variates
N (0, 1). To simulate Zi (z1, . . . , zi−1), we consider the following iteration from i = 2
to i = nz:

zi ← µi + Σi,1:i−1Σ−1
1:i−1,1:i−1 (z1:i−1 − µ1:i−1) +√

Σi,i − Σi,1:i−1Σ−1
1:i−1,1:i−1Σ1:i−1,iui

with:
z1 ← µ1 +

√
Σ1,1u1

4. We obtain the following results:

z1 −0.562 0.437 0.427 0.404 1.984
z2 1.963 2.225 2.234 1.287 2.059
z3 −0.808 4.013 7.643 −3.471 3.236

13.4.6 Simulation of the bivariate Normal copula
1. P is a lower triangular matrix such that we have Σ = PP>. We know that:

P =
(

1 0
ρ
√

1− ρ2

)
We verify that:

PP> =
(

1 0
ρ
√

1− ρ2

)(
1 ρ

0
√

1− ρ2

)
=

(
1 ρ
ρ 1

)
We deduce that: (

X1
X2

)
=
(

1 0
ρ
√

1− ρ2

)(
N1
N2

)
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where N1 and N2 are two independent standardized Gaussian random variables. Let
n1 and n2 be two independent random variates, whose probability distribution is
N (0, 1). Using the Cholesky decomposition, we deduce that can simulate X in the
following way: {

x1 ← n1
x2 ← ρn1 +

√
1− ρ2n2

2. We have

C 〈X1, X2〉 = C 〈Φ (X1) ,Φ (X2)〉
= C 〈U1, U2〉

because the function Φ (x) is non-decreasing. The copula of U = (U1, U2) is then the
copula of X = (X1, X2).

3. We deduce that we can simulate U with the following algorithm:{
u1 ← Φ (x1) = Φ (n1)
u2 ← Φ (x2) = Φ

(
ρn1 +

√
1− ρ2n2

)
4. Let X3 be a Gaussian random variable, which is independent from X1 and X2. Using

the Cholesky decomposition, we know that:

X2 = ρX1 +
√

1− ρ2X3

It follows that:

Pr {X2 ≤ x2|X1 = x} = Pr
{
ρX1 +

√
1− ρ2X3 ≤ x2

∣∣∣X1 = x
}

= Pr
{
X3 ≤

x2 − ρx√
1− ρ2

}

= Φ
(
x2 − ρx√

1− ρ2

)
Then we deduce that:

Φ2 (x1, x2; ρ) = Pr {X1 ≤ x1, X2 ≤ x2}

= Pr
{
X1 ≤ x1, X3 ≤

x2 − ρX1√
1− ρ2

}

= E

[
Pr
{
X1 ≤ x1, X3 ≤

x2 − ρX1√
1− ρ2

∣∣∣∣∣X1

}]

=
∫ x1

−∞
Φ
(
x2 − ρx√

1− ρ2

)
φ (x) dx

5. Using the relationships u1 = Φ (x1), u2 = Φ (x2) and Φ2 (x1, x2; ρ) =
C (Φ (x1) ,Φ (x2) ; ρ), we obtain:

C (u1, u2; ρ) =
∫ Φ−1(u1)

−∞
Φ
(

Φ−1 (u2)− ρx√
1− ρ2

)
φ (x) dx

=
∫ u1

0
Φ
(

Φ−1 (u2)− ρΦ−1 (u)√
1− ρ2

)
du
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6. We have:

C2|1 (u2 | u1) = ∂u1 C (u1, u2)

= Φ
(

Φ−1 (u2)− ρΦ−1 (u1)√
1− ρ2

)
Let v1 and v2 be two independent uniform random variates. The simulation algorithm
corresponds to the following steps:{

u1 = v1
C2|1 (u1, u2) = v2

We deduce that: {
u1 ← v1

u2 ← Φ
(
ρΦ−1 (v1) +

√
1− ρ2Φ−1 (v2)

)
7. We obtain the same algorithm, because we have the following correspondence:{

v1 = Φ (n1)
v2 = Φ (n2)

The algorithm described in Question 6 is then a special case of the Cholesky algorithm
if we take n1 = Φ−1 (v1) and n2 = Φ−1 (v2). Whereas n1 and n2 are directly simulated
in the Cholesky algorithm with a Gaussian random generator, they are simulated using
the inverse transform in the conditional distribution method.

13.4.7 Computing the capital charge for operational risk
1. We obtain the following results:

α E
[
ĈaR1 (α)

]
σ
(

ĈaR1 (α)
)

IC95%

(
ĈaR1 (α)

)
90% 251 660 180 0.28%
95% 294 030 280 0.37%
99% 414 810 885 0.84%

99.9% 708 840 5 410 2.99%

where IC95%

(
ĈaR1 (α)

)
is the 95% confidence interval ratio:

IC
95%

(
ĈaR1 (α)

)
= 2× Φ−1 (97.5%)×

σ
(

ĈaR1 (α)
)

E
[
ĈaR1 (α)

]
Because this ratio is lower than 5%, we conclude that one million of simulations is
sufficient even if α is equal to 99.9%.

2. The results become:

α E
[
ĈaR2 (α)

]
σ
(

ĈaR2 (α)
)

IC95%

(
ĈaR2 (α)

)
90% 183 560 128 0.27%
95% 218 950 223 0.40%
99% 332 870 916 1.08%

99.9% 662 420 6 397 3.79%

We conclude that one million of simulations is sufficient to calculate the capital-at-risk.
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FIGURE 13.7: probability density function of ln (S1 + S2)

3. In Figure 13.7, we have represented the probability density function of ln (S1 + S2)
when the aggregate losses S1 and S2 are independent (copula C⊥) and perfectly
dependent (copula C+). We obtain the following capital-at-risk:

α C⊥ C+ DR
(
C⊥ | C+)

90% 400 240 435 220 8.04%
95% 453 864 512 980 11.52%
99% 605 927 747 680 18.96%

99.9% 993 535 1 371 260 27.55%

where DR
(
C⊥ | C+) is the diversification ratio.

4. In Figure 13.8, we have reported the capital-at-risk calculated with the Normal copula
and the Gaussian approximation defined as:

ĈaR (α) = S̄1 + S̄2 +
√(

ĈaR1 (α)− S̄1

)2
+
(

ĈaR2 (α)− S̄2

)2
+ . . .

. . .+ 2ρ
(

ĈaR1 (α)− S̄1

)(
ĈaR2 (α)− S̄2

)
5. Results are given in Figure 13.9.

6. Results are given in Figure 13.10.

7. For a high value of the quantile (α = 99.9%), the Gaussian approximation overes-
timates (resp. underestimates) the capital-at-risk when the dependence function is
the Normal (resp. t1) copula. We obtain this result, because the Student t1 copula
produces strong dependence when the correlation parameter ρ is equal to zero. We
conclude that the Gaussian approximation is good in this example, except if the copula
function highly correlates the extreme losses.
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FIGURE 13.8: Capital-at-risk with the Normal copula

FIGURE 13.9: Capital-at-risk with the t4 copula
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FIGURE 13.10: Capital-at-risk with the t1 copula

13.4.8 Simulating a Brownian bridge

1. We remind that:
E [W (s)W (t)] = min (s, t)

We deduce that:  W (s)
W (t)
W (u)

 ∼ N
 0

0
0

 ,

 s s s
s t t
s t u


2. We rearrange the terms of the random vector in the following way: W (s)

W (u)
W (t)

 ∼ N
 0

0
0

 ,

 s s s
s u t
s t t


We note:

B (t) = {W (t) |W (s) = ws,W (u) = wu}

We know that the conditional distribution ofW (t) given thatW (s) = ws andW (u) =
wu is Gaussian with:

E [B (t)] = 0 +
(
s t

)( s s
s u

)−1((
ws
wu

)
−
(

0
0

))
= u− t

u− s
ws + t− s

u− s
wu
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and:

var (B (t)) = t−
(
s t

)( s s
s u

)−1(
s
t

)
= (t− s) (u− t)

u− s

3. We deduce that:

B (t) = u− t
u− s

ws + t− s
u− s

wu +
√

(t− s) (u− t)
u− s

ε

where ε is a standard Gaussian random variable. To simulate B (t), we then use the
iterative algorithm based on filling the path and moving the starting point (s,B (s))
at each iteration.

13.4.9 Optimal importance sampling
1. Let X be a random variate from the distribution N (0, 1). We have p̂MC = ϕ (X)

where ϕ = 1 {X ≥ c}. We deduce that:

E [p̂MC] = E [ϕ (X)]

=
∫ ∞
−∞

1 {x ≥ c}φ (x) dx

=
∫ ∞
c

φ (x) dx

= 1− Φ (c)
= p

Recall that var (p̂MC) = E
[
p̂2

MC
]
− E2 [p̂MC]. We have1:

E
[
p̂2

MC
]

=
∫ ∞
−∞

ϕ2 (x)φ (x) dx

=
∫ ∞
−∞

1 {x ≥ c}φ (x) dx

= p

It follows that:

var (p̂MC) = p− p2

= p (1− p)
= Φ (c) (1− Φ (c))

We notice that p̂MC is a Bernoulli random variable B (Φ (c)).

2. We note Z the random variate from the distribution N
(
µ, σ2). We have:

p̂IS = ϕ (Z)L (Z)

1We notice that ϕ2 (x) = 1 {x ≥ c}.
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where L (Z) is the likelihood ratio:

L (Z) = f (Z)
g (Z)

= φ (Z)
1
σ
φ

(
Z − µ
σ

)
= σ exp

(
1
2

(
Z − µ
σ

)2
− 1

2Z
2

)
It follows that:

p̂IS = 1 {Z ≥ c}σe
1
2 (Z−µσ )2− 1

2Z
2

We deduce that:

E [p̂IS] = E
[
1 {Z ≥ c}σe

1
2 (Z−µσ )2− 1

2Z
2
]

=
∫ ∞
−∞

1 {z ≥ c} e
1
2 ( z−µσ )2− 1

2 z
2
φ

(
z − µ
σ

)
dz

=
∫ ∞
c

1√
2π
e−

1
2 z

2
dz

= 1− Φ (c)
= p

and:

E
[
p̂2

IS
]

= E
[
1 {Z ≥ c}σ2e(

Z−µ
σ )2−Z2

]
=

∫ ∞
c

σ√
2π
e(

z−µ
σ )2−z2

e−
1
2 ( z−µσ )2

dz

=
∫ ∞
c

σ√
2π
e

1
2 ( z−µσ )2−z2

dz

We have:

1
2

(
z − µ
σ

)2
− z2 = z2 − 2µz + µ2 − 2σ2z2

2σ2

=
(

1− 2σ2

2σ2

)(
z2 − 2µ

1− 2σ2 z + µ2

1− 2σ2

)
=

(
1− 2σ2

2σ2

)((
z − µ

1− 2σ2

)2
− 2 µ2σ2

(1− 2σ2)2

)

=
(

1− 2σ2

2σ2

)(
z − µ

1− 2σ2

)2
− µ2

1− 2σ2

We note2:
µ̃ = µ

1− 2σ2

and
σ̃ = σ√

2σ2 − 1
2We assume that 2σ2 − 1 > 0.
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It follows that:

E
[
p̂2

IS
]

= e
− µ2

1−2σ2

∫ ∞
c

σ√
2π
e

(
1−2σ2

2σ2

)(
z− µ

1−2σ2

)2

dz

= e
− µ2

1−2σ2

∫ ∞
c

σσ̃

σ̃
√

2π
e−

1
2 ( z−µ̃σ̃ )2

dz

= σ2
√

2σ2 − 1
e
− µ2

1−2σ2

∫ ∞
c

1
σ̃
√

2π
e−

1
2 ( z−µ̃σ̃ )2

dz

= σ2
√

2σ2 − 1
e
− µ2

1−2σ2

(
1− Φ

(
c− µ̃
σ̃

))
We conclude that3:

var (p̂IS) = σ2
√

2σ2 − 1
e
− µ2

1−2σ2

(
1− Φ

(
c
(
2σ2 − 1

)
+ µ

σ
√

2σ2 − 1

))
− (1− Φ (c))2

The probability distribution of p̂IS is no longer a Bernoulli distribution.

3. We have var (p̂MC) = 13.48 × 10−4. In Figure 13.11, we report the relationship be-
tween µ and var (p̂IS) for different values of σ. We find that the minimum value is
approximately obtained for the same value of µ:

σ µ? var (p̂IS)× 10−4 var (p̂IS) / var (p̂MC)
0.80 3.158 0.05 0.34%
1.00 3.154 0.06 0.45%
2.00 3.151 0.14 1.03%
3.00 3.151 0.22 1.60%

Therefore, we can make the hypothesis that the optimal value of µ does not highly
depend on the parameter σ.

4. When σ is equal to 1, we obtain:

var (p̂IS) = eµ
2

(1− Φ (c+ µ))− (1− Φ (c))2

The IS scheme is optimal if the variance var (p̂IS) is minimum. The first-order condition
is then:

∂ var (p̂IS)
∂ µ

= 2µeµ
2

(1− Φ (c+ µ))− eµ
2
φ (c+ µ) = 0

We deduce that the optimal value µ? satisfies the following nonlinear equation:

2µ? (1− Φ (c+ µ?)) = φ (c+ µ?)

In Figure 13.12, we draw the relationship between c and µ?. We notice that:

lim
c→∞

µ? = c

We can then consider µ = c. In Figure 13.12, we also report the variance ratio
var (p̂IS) / var (p̂MC) for the two schemes µ = µ? and µ = c. We conclude that we
obtain similar variance reduction with the heuristic scheme when c > 1.

3In the case where µ = 0 and σ = 1, we retrieve the formula of the MC estimator:
var (p̂IS) = (1− Φ (c))− (1− Φ (c))2

= Φ (c)− Φ2 (c)
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FIGURE 13.11: Variance of the IS estimator p̂IS (×104)

FIGURE 13.12: Optimal value µ? with respect to c



Chapter 14
Stress Testing and Scenario Analysis

14.3.1 Construction of a stress scenario with the GEV distribution
1. We recall that:

Pr
{
Xn:n − bn

an
≤ x

}
= Pr {Xn:n ≤ anx+ bn}

= Fn (anx+ bn)

and:
G (x) = lim

n→∞
Fn (anx+ bn)

(a) We have:

Fn (anx+ bn) =
(

1− e−λ(λ
−1x+λ−1 lnn)

)n
=

(
1− 1

n
e−x

)n
We deduce that:

G (x) = lim
n→∞

(
1− 1

n
e−x

)n
= e−e

−x
= Λ (x)

(b) We have:

Fn (anx+ bn) =
(
n−1x+ 1− n−1)n

=
(

1 + 1
n

(x− 1)
)n

We deduce that:

G (x) = lim
n→∞

(
1 + 1

n
(x− 1)

)n
= ex−1 = Ψ1 (x− 1)

(c) We have:

Fn (anx+ bn) =
(

1−
(

θ

θ + θα−1n1/αx+ θn1/α − θ

)α)n
=

(
1−

(
1

α−1n1/αx+ n1/α

)α)n
=

(
1− 1

n

(
1 + x

α

)−α)n
We deduce that:

G (x) = lim
n→∞

(
1− 1

n

(
1 + x

α

)−α)n
= e−(1+ x

α )−α = Φα

(
1 + x

α

)
279
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2. The GEV distribution encompasses the three EV probability distributions. This is an
interesting property, because we have not to choose between the three EV distribu-
tions. We have:

g (x) = 1
σ

[
1 + ξ

(
x− µ
σ

)]−( 1+ξ
ξ )

exp
{
−
[
1 + ξ

(
x− µ
σ

)]− 1
ξ

}
We deduce that:

` = −n2 ln σ2 −
(

1 + ξ

ξ

) n∑
i=1

ln
(

1 + ξ

(
xi − µ
σ

))
−

n∑
i=1

[
1 + ξ

(
xi − µ
σ

)]− 1
ξ

3. We notice that:
lim
ξ→0

(1 + ξx)−1/ξ = e−x

Then we obtain:

lim
ξ→0

G (x) = lim
ξ→0

exp
{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ
}

= exp
{
− lim
ξ→0

[
1 + ξ

(
x− µ
σ

)]−1/ξ
}

= exp
(
− exp

(
−
(
x− µ
σ

)))
4. (a) We have:

G−1 (α) = µ− σξ−1
[
1− (− lnα)−ξ

]
When the parameter ξ is equal to 1, we obtain:

G−1 (α) = µ− σ
(

1− (− lnα)−1
)

By definition, we have T = (1− α)−1
n. The return period T is then associate

to the confidence level α = 1− n/T . We deduce that:

R (T ) ≈ −G−1 (1− n/t)

= −
(
µ− σ

(
1− (− ln (1− n/T ))−1

))
= −

(
µ+

(
T
n
− 1
)
σ

)
We then replace µ and σ by their ML estimates µ̂ and σ̂.

(b) For Portfolio #1, we obtain:

r (1Y) = −
(

1% +
(

252
21 − 1

)
× 3%

)
= −34%

For Portfolio #2, the stress scenario is equal to:

r (1Y) = −
(

10% +
(

252
21 − 1

)
× 2%

)
= −32%

We conclude that Portfolio #1 is more risky than Portfolio #2 if we consider a
stress scenario analysis.
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14.3.2 Conditional expectation and linearity

1. Using the conditional distribution theorem, we have:(
Y − µy
σy

)
= ρxy

(
X − µx
σx

)
+
√

1− ρ2
xyU

where U ∼ N (0, 1). It follows that:

Y =
(
µy − ρxy

σy
σx
µx

)
+ ρxy

σy
σx
X + σy

√
1− ρ2

xyU

We deduce that: 
β0 = µy − ρxyσy

σx
µx

β = ρxyσy
σx

σ = σy
√

1− ρ2
xy

2. We have:

m (x) = E [Y | X = x]
= E [β0 + βX + σU | X = x]
= β0 + βx+ σE [U | X = x]
= β0 + βx

because U and X are independent.

3. Since we have Y = β0 + βX + σU , we deduce that:

Ỹ = eY

= eβ0+βX+σU

= eβ0X̃βŨσ

where Ũ = eU ∼ LN (0, 1). It follows that:

m̃ (x) = E
[
Ỹ | X̃ = x

]
= eβ0xβE

[
Ũσ
]

= eβ0+ 1
2σ

2
xβ

because we have E
[
Ũσ
]

= E
[
eσU

]
= e

1
2σ

2 . Finally, we obtain:

m̃ (x) = exp
(
β0 + 1

2σ
2
)
· xβ

= exp
(
µy −

ρxyσy
σx

µx + 1
2σ

2
y

(
1− ρ2

xy

))
· x

ρxyσy
σx

4. In the Gaussian case, we notice that the conditional expectation is a linear function.
This is not the case for the lognormal case. The use of ordinary least squares to
compute a conditional stress scenario assumes that the distribution of risk factors are
Gaussian.
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14.3.3 Conditional quantile and linearity
1. Using the conditional distribution theorem, we know that:

F (y | X = x) = N
(
µy|x,Σyy|x

)
where:

µy|x = µy + ΣyxΣ−1
xx (x− µx)

and:
Σyy|x = Σyy − ΣyxΣ−1

xxΣxy
We deduce that:

qα (x) = µy|x + Φ−1 (α)
√

Σyy|x

2. We have:

qα (x) = µy + ΣyxΣ−1
xx (x− µx) + Φ−1 (α)

√
Σyy − ΣyxΣ−1

xxΣxy
= β0 (α) + β>x

where:
β0 (α) = µy − ΣyxΣ−1

xxµx + Φ−1 (α)
√

Σyy − ΣyxΣ−1
xxΣxy

and:
β = Σ−1

xxΣxy

3. We reiterate that the conditional expectation is:

m (x) = β0 + β>x

where:
β0 = µy − ΣyxΣ−1

xxµx

and:
β = Σ−1

xxΣxy
It follows that linear regression and quantile regression produce the same estimate β,
but not the same intercept. Indeed, we have:

β0 (α) = β0 + Φ−1 (α)
√

Σyy − ΣyxΣ−1
xxΣxy

If α > 50%, the intercept of the quantile regression is larger than the intercept of the
linear regression:  β0 (α) > β0 If α > 50%

β0 (α) = β0 If α = 50%
β0 (α) < β0 If α < 50%

We conclude that the median regression coincides with the linear regression if (X,Y )
is Gaussian.

4. We know that Z = Φ−1 (Fτ (τ)) ∼ N (0, 1). It follows that (X,Z) is Gaussian. The
expression of the conditional quantile of Z is then:

qZα (x) = β0 (α) + β>x
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Since we have Z = Φ−1 (1− e−λτ) and:
τ = − ln (1− Φ (Z))

λ

we conclude that the conditional quantile of the default time is:

qτα (x) = −
ln
(
1− Φ

(
β0 (α) + β>x

))
λ

5. By definition, we have PD = Fτ (τ). We deduce that:

qPD
α (x) = Φ

(
β0 (α) + β>x

)
6. By construction, ρ is the correlation between Z = Φ−1 (Fτ (τ)) and X. We note µz

and Σzz = σ2
z the mean and variance of Z. Since, we have Σxz = ρσxσz, we deduce

that:

β0 (α) = µz − ΣzxΣ−1
xxµx + Φ−1 (α)

√
Σzz − ΣzxΣ−1

xxΣxz

= µz − ρ
σz
σx
µx + Φ−1 (α)

√
σ2
z −

(ρσxσz)2

σ2
x

= µz − ρ
σz
σx
µx + Φ−1 (α)σz

√
1− ρ2

and:

β = Σ−1
xxΣxz

= ρσxσz
σ2
x

= ρ
σz
σx

Because1 µz = 0 and σz = 1, we finally obtain:

qPD
α (x) = Φ

(
β0 (α) + β>x

)
= Φ

(
µz + ρ

σz
σx

(x− µx) + Φ−1 (α)σz
√

1− ρ2
)

= Φ
(

Φ−1 (α)
√

1− ρ2 + ρ
(x− µx)
σx

)
7. We observe that the conditional quantile of the default probability is not linear with

respect to the risk factor X. However, we notice that Φ−1 (qPD
α (x)

)
is a linear function

of X. This is why we may use the following quantile regression in order to stress the
default probability:

Φ−1 (PD) = β0 + β>X + U

where X is a set of risk factors.

1Indeed, Fτ (τ) ∼ U[0,1] and Φ−1
(
U[0,1]

)
∼ N (0, 1).





Chapter 15
Credit Scoring Models

15.4.1 Elastic net regression
1. (a) Let f (β) be the objective function. We have:

f (β) = 1
2 (Y−Xβ)> (Y−Xβ) + λ

2

K∑
k=1

β2
k

= 1
2β
>X>Xβ − β>X>Y + 1

2Y>Y + λ

2β
>β

= 1
2β
> (X>X + λIK

)
β − β>X>Y + 1

2Y>Y

We deduce that:
∂ f (β)
∂ β

=
(
X>X + λIK

)
β −X>Y

The first order condition ∂β f (β) = 0 implies that:

β̂ridge =
(
X>X + λIK

)−1 X>Y

(b) We recall that β̂ols =
(
X>X

)−1 X>Y. We deduce that:(
X>X + λIK

)
β̂ridge =

(
X>X

)
β̂ols = X>Y

and:

β̂ridge =
(
X>X + λIK

)−1 ((X>X
)−1)−1

β̂ols

=
((

X>X
)−1 (X>X + λIK

))−1
β̂ols

=
(
IK + λ

(
X>X

)−1)−1
β̂ols (15.1)

(c) It follows that:

E
[
β̂ridge

]
= E

[(
IK + λ

(
X>X

)−1)−1
β̂ols

]
=

(
IK + λ

(
X>X

)−1)−1
β

where β is the true value. If E
[
β̂ridge

]
= β, we obtain:(

IK + λ
(
X>X

)−1)−1
= IK ⇔ IK + λ

(
X>X

)−1 = IK

⇔ λ
(
X>X

)−1 = 0
⇔ λ = 0

285
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(d) From Equation (15.1), we deduce that:

var
(
β̂ridge

)
=

(
IK + λ

(
X>X

)−1)−1
var
(
β̂ols

)(
IK + λ

(
X>X

)−1)−1

= σ2
(
IK + λ

(
X>X

)−1)−1 (
X>X

)−1 (
IK + λ

(
X>X

)−1)−1

= σ2 (X>X + λIK
)−1 (

IK + λ
(
X>X

)−1)−1

= σ2
((
IK + λ

(
X>X

)−1) (X>X + λIK
))−1

= σ2
(
X>X + λ2 (X>X

)−1 + 2λIK
)−1

= σ2 (X>X +Q
)−1

where:
Q = λ2 (X>X

)−1 + 2λIK
Since Q is a symmetric positive definite matrix, we have:(

X>X +Q
)
�
(
X>X

)
where � is the positive definite ordering. Finally, we obtain:

var
(
β̂ols

)
� var

(
β̂ridge

)
(e) We have:

Ŷ = Xβ̂ridge

= X
(
X>X + λIK

)−1 X>Y
= HY

where H = X
(
X>X + λIK

)−1 X>. We deduce that:

df(model) = tr
(
X
(
X>X + λIK

)−1 X>
)

= tr
((

X>X + λIK
)−1 X>X

)
We consider the singular value decomposition X = USV > where U and V are
two orthonormal matrices, and S is a diagonal matrix that is composed of the
singular values (s1, . . . , sK). We have X>X = V S2V > and:

X>X + λIK = V S2V > + λV V >

= V
(
S2 + λIK

)
V >

It follows that
(
X>X + λIK

)−1 = V
(
S2 + λIK

)−1
V > and:(

X>X + λIK
)−1 X>X = V

(
S2 + λIK

)−1
V >V S2V >

= V
(
S2 + λIK

)−1
S2V >

We finally obtain:

df(model) =
K∑
k=1

s2
k

s2
k + λ
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(f) If X is an orthonormal matrix, we have X>X = IK and:

β̂ridge = (IK + λIK)−1
β̂ols

= β̂ols

1 + λ

Since we have var
(
β̂ridge

)
= σ2 (IK +Q)−1 and Q = λ2IK + 2λIK , we deduce

that:

var
(
β̂ridge

)
= σ2

(1 + 2λ+ λ2)IK

= 1
(1 + λ)2 var

(
β̂ols

)
Concerning the model degree of freedom, we obtain:

df(model) =
K∑
k=1

1
1 + λ

= K

1 + λ

2. (a) We have:

f (β) = 1
2 (Y−Xβ)> (Y−Xβ) +

λ

2

(
α

K∑
k=1
|βk|+ (1− α)

K∑
k=1

β2
k

)

= 1
2β
> (X>X + λ (1− α) IK

)
β − β>X>Y + 1

2Y>Y+

λα

2

K∑
k=1
|βk|

We note A =
(
IK −IK

)
. We introduce the parameter vector θ = (β+, β−)

such that β = β+ − β−, β+ ≥ 0 and β− ≥ 0. We notice that:
K∑
k=1
|βk| =

K∑
k=1

∣∣β+
k − β

−
k

∣∣
=

K∑
k=1

β+
k +

K∑
k=1

β−k

= 1>θ

Since we have β = Aθ, it follows that:

f (β) = 1
2θ
>A>

(
X>X + λ (1− α) IK

)
Aθ −

θ>A>X>Y + 1
2Y>Y+λα

2
(
θ>1

)
The corresponding QP program is then:

θ̂ = arg min 1
2θ
>Qθ − θ>R

u.c. θ ≥ 0

where Q = A>
(
X>X + λ (1− α) IK

)
A and R = A>X>Y + λα

2 1.
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(b) Results are given in Figure 15.1.

FIGURE 15.1: Comparison of lasso, ridge and elastic net estimates

15.4.2 Cross-validation of the ridge linear regression

1. The objective function is equal to:

L (β;λ) = 1
2 (Y−Xβ)> (Y−Xβ) + λ

2β
>β

= 1
2
(
Y>Y− 2β>X>Y + β>

(
X>X + λIK

)
β
)

The first order condition ∂β L (β;λ) = 0 is equivalent to:

−X>Y+
(
X>X + λIK

)
β = 0

We deduce that:

β̂ =
(
X>X + λIK

)−1 X>Y

2. We have:

β̂−i =
(
X>−iX−i + λIK

)−1 X>−iY−i
=

(
X>X− xix>i + λIK

)−1 (X>Y− xiyi
)

=
(
Q− xix>i

)−1 (X>Y− xiyi
)
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where Q = X>X + λIK . The Sherman-Morrison-Woodbury formula1 leads to:

(
Q− xix>i

)−1 = Q−1 +
(

1
1− x>i Q−1xi

)
Q−1xix

>
i Q
−1

= Q−1 +
(

1
1− hi

)
Q−1xix

>
i Q
−1

where hi = x>i Q
−1xi = x>i

(
X>X + λIK

)−1
xi. We can now obtain a formula that

relates the ridge estimators β̂−i and β̂. Indeed, we have:

β̂−i = Q−1X>Y−Q−1xiyi +
Q−1xix

>
i Q
−1

1− hi
X>Y− Q−1xix

>
i Q
−1

1− hi
xiyi

= β̂ −Q−1xi

(
yi −

x>i
1− hi

β̂ + hi
1− hi

yi

)
= β̂ − Q−1xi

1− hi

(
(1− hi) yi − x>i β̂ + hiyi

)
= β̂ −

(
X>X + λIK

)−1
xiûi

1− hi

where ûi = yi − x>i β̂.

3. We notice that:

ûi,−i = yi − ŷi,−i
= yi − x>i β̂−i

= yi − x>i

(
β̂ −

(
X>X + λIK

)−1
xiûi

1− hi

)

= yi − x>i β̂ +
x>i
(
X>X + λIK

)−1
xiûi

1− hi

= ûi + hiûi
1− hi

= ûi
1− hi

4. We deduce that the PRESS statistic is equal to:

Press = 1
n

n∑
i=1

(yi − ŷi,−i)2

= 1
n

n∑
i=1

û2
i

(1− hi)2

1Suppose u and v are two vectors and A is an invertible square matrix. It follows that:(
A+ uv>

)−1
= A−1 −

1
1 + v>A−1u

A−1uv>A−1
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5. Let H (λ) = X
(
X>X + λIn

)−1 X> be the hat matrix2. By considering the singular
value decomposition X = USV >, we obtain:

X>X = V SU>USV >

= V S2V >

and:
X>X + λIn = V

(
S2 + λIK

)
V >

It follows that:

df(model) (λ) = trace H (λ)

= trace
(
X
(
X>X + λIK

)−1 X>
)

= trace
((

X>X + λIK
)−1 X>X

)
Since we have:(

X>X + λIn
)−1 X>X =

(
V
(
S2 + λIK

)
V >
)−1

V S2V >

=
(
V >
)−1 (

S2 + λIK
)−1

V −1V S2V >

= V
(
S2 + λIK

)−1
S2V >

we finally obtain:

df(model) (λ) = trace
((
V >
)−1 (

S2 + λIK
)−1

S2V >
)

= trace
((
S2 + λIK

)−1
S2V >

(
V >
)−1)

= trace
((
S2 + λIK

)−1
S2
)

=
K∑
k=1

s2
k

s2
k + λ

We verify the properties df(model) (0) = K and df(model) (∞) = 0.

6. Since we have Ŷ = H (λ) Y and Û = (In −H (λ)) Y, we can express the PRESS
statistic as:

Press = 1
n

n∑
i=1

(
((In −H (λ)) Y)i

(In −H (λ))i,i

)2

whereas the generalized cross-validation statistic is defined by:

GCV = 1
n

n∑
i=1

(
((In −H (λ)) Y)i

1− h̄

)2

where h̄ = n−1∑n
i=1 H (λ)i,i. We verify that the generalized cross-validation statistic

corresponds to the PRESS statistic where the elements H (λ)i,i are replaced by their

2H transforms Y into Ŷ (pronounced “y-hat”).
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mean h̄. We have:

1− h̄ = 1
n

n∑
i=1

(In −H (λ))i,i

= 1
n

trace (In −H (λ))

= 1
n

K∑
k=1

(
n

K
− s2

k

s2
k + λ

)

= 1
n

K∑
k=1

n
(
s2
k + λ

)
−Ks2

k

K (s2
k + λ)

= 1
nK

K∑
k=1

(n−K) s2
k + nλ

s2
k + λ

The GCV statistic is then equal to:

GCV = 1
n

∑n
i=1

(
yi − x>i β̂

)2

(
1
nK

∑K

k=1

(n−K) s2
k + nλ

s2
k + λ

)2

= nK2

(
K∑
k=1

(n−K) s2
k + nλ

s2
k + λ

)−2

RSS
(
β̂ (λ)

)
(15.2)

The effect of λ on the GCV statistic is not obvious since we have:

λ↗ ⇒ RSS
(
β̂ (λ)

)
↗

and:

λ↗ ⇒
K∑
k=1

(n−K) s2
k + nλ

s2
k + λ

↗

7. Since we have 1− h̄ = n−1 trace (In −H (λ)), the GCV statistic is equal to:

GCV = 1
n

(
1

n−1 trace (In −H (λ))

)2
RSS

(
β̂ (λ)

)
= n (trace (In −H (λ)))−2 RSS

(
β̂ (λ)

)
From the Woodbury formula, we have3:

In −H (λ) = In −X
(
X>X + λIK

)−1 X>

=
(
In + XX>

λ

)−1

3The Woodbury matrix identity is:

(A+BCD)−1 = A−1 −A−1B
(
C−1 +DA−1B

)−1
DA−1
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Let λi be the eigenvalues of the (n× n) symmetric real matrix XX>. We have:

trace (In −H (λ)) =
n∑
i=1

(
1 + λi

λ

)−1

=
n∑
i=1

λ

λ+ λi

=
K∑
i=1

λ

λ+ λi
+

n∑
i=K+1

λ

λ+ λi

=
K∑
i=1

λ

λ+ λi
+ (n−K)

because the last n − K eigenvalues λi are equal to 0. Moreover, we have λk = s2
k.

Finally, we obtain4:

GCV = n

(
n−K +

K∑
k=1

λ

s2
k + λ

)−2

RSS
(
β̂ (λ)

)
(15.3)

8. The values of β̂−i when λ is equal to 3 are reported in Table 15.1. In the last row,
we have also given the ridge estimate β̂ calculated with the full sample. Using the
values of ŷi,−i, ûi,−i, ûi and hi (see Table 15.2), we obtain5 Press = 0.29104 and
GCV = 0.28059.

15.4.3 K-means and the Lloyd’s algorithm

1. We have:

‖xi − xj‖2 =
K∑
k=1

(xi,k − xj,k)2

=
K∑
k=1

x2
i,k +

K∑
k=1

x2
j,k − 2

K∑
k=1

xi,kxj,k

and:

‖xi − x̄‖2 =
K∑
k=1

x2
i,k +

K∑
k=1

x̄2
(k) − 2

K∑
k=1

xi,kx̄(k)

4We verify that Equations (15.2) and (15.3) are equivalent, because we have:

1
K

K∑
k=1

(n−K) s2
k + nλ

s2
k

+ λ
=

1
K

K∑
k=1

(n−K)
(
s2
k + λ

)
+Kλ

s2
k

+ λ

= (n−K) +
K∑
k=1

λ

s2
k

+ λ

5We have h̄ = 0.24951, s1 = 58.71914, s2 = 51.42980, s3 = 45.83216, s4 = 37.91501 and s5 = 26.61791.
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TABLE 15.1: LOOCV ridge estimates β̂−i
i β̂1,−i β̂2,−i β̂3,−i β̂4,−i β̂5,−i
1 1.2274 −0.9805 0.1298 −0.4923 0.0398
2 1.2307 −0.9865 0.1357 −0.4946 0.0415
3 1.2335 −0.9827 0.1362 −0.4925 0.0410
4 1.2303 −0.9876 0.1355 −0.4957 0.0417
5 1.2296 −0.9849 0.1358 −0.4948 0.0420
6 1.2300 −0.9851 0.1361 −0.4941 0.0422
7 1.2335 −0.9870 0.1287 −0.4898 0.0476
8 1.2219 −0.9838 0.1357 −0.5047 0.0463
9 1.2281 −0.9844 0.1382 −0.5005 0.0445

10 1.2319 −0.9889 0.1401 −0.4912 0.0444
11 1.2299 −0.9856 0.1353 −0.4938 0.0430
12 1.2300 −0.9849 0.1355 −0.4950 0.0411
13 1.2280 −0.9817 0.1320 −0.4974 0.0407
14 1.2307 −0.9855 0.1365 −0.4965 0.0427
15 1.2314 −0.9839 0.1360 −0.4937 0.0426
16 1.2285 −0.9861 0.1390 −0.4944 0.0393
17 1.2289 −0.9843 0.1346 −0.4958 0.0390
18 1.2246 −0.9855 0.1370 −0.4892 0.0426
19 1.2267 −0.9878 0.1356 −0.4920 0.0443
20 1.2459 −0.9890 0.1386 −0.4830 0.0358
β̂ 1.2301 −0.9854 0.1358 −0.4941 0.0420

TABLE 15.2: Computation of ŷi,−i, ûi,−i, ûi and hi
i yi ŷi,−i ûi,−i ûi hi
1 −23.0 −22.3270 −0.6730 −0.5130 0.2378
2 −21.0 −21.2041 0.2041 0.1796 0.1201
3 −5.0 −5.4804 0.4804 0.3950 0.1778
4 −39.6 −39.7745 0.1745 0.0857 0.5091
5 5.8 5.7076 0.0924 0.0828 0.1040
6 13.6 13.5376 0.0624 0.0525 0.1582
7 14.0 14.7404 −0.7404 −0.4168 0.4371
8 −5.2 −4.3994 −0.8006 −0.5534 0.3087
9 6.9 7.5607 −0.6607 −0.5306 0.1970

10 −5.2 −5.6244 0.4244 0.3106 0.2681
11 0.0 −0.0913 0.0913 0.0595 0.3483
12 3.0 3.2119 −0.2119 −0.1974 0.0682
13 9.2 8.9014 0.2986 0.1664 0.4428
14 26.1 26.3478 −0.2478 −0.1842 0.2568
15 −6.3 −6.4835 0.1835 0.1192 0.3506
16 11.5 10.9309 0.5691 0.4763 0.1631
17 4.8 4.3120 0.4880 0.4360 0.1065
18 35.2 34.4379 0.7621 0.5531 0.2742
19 14.0 13.2528 0.7472 0.6633 0.1123
20 −21.4 −22.5438 1.1438 0.7438 0.3497
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where x̄(k) = n−1∑n
i=1 xi,k. We note S1 = 1

2
∑n
i=1
∑n
j=1 ‖xi − xj‖

2 and S2 =
n
∑n
i=1 ‖xi − x̄‖

2. We deduce that:

S1 = 1
2

n∑
i=1

n∑
j=1

(
K∑
k=1

x2
i,k +

K∑
k=1

x2
j,k − 2

K∑
k=1

xi,kxj,k

)

=
K∑
k=1

1
2

n∑
i=1

n∑
j=1

(
x2
i,k + x2

j,k − 2xi,kxj,k
)

=
K∑
k=1

1
2

n n∑
i=1

x2
i,k + n

n∑
j=1

x2
j,k − 2

n∑
i=1

xi,k

 n∑
j=1

xj,k


=

K∑
k=1

(
n

n∑
i=1

x2
i,k −

n∑
i=1

xi,knx̄(k)

)

=
K∑
k=1

(
n

n∑
i=1

x2
i,k − n2x̄2

(k)

)

and:

S2 = n

n∑
i=1

K∑
k=1

x2
i,k + n

n∑
i=1

K∑
k=1

x̄2
(k) − 2n

n∑
i=1

K∑
k=1

xi,kx̄(k)

=
K∑
k=1

(
n

n∑
i=1

x2
i,k + n

n∑
i=1

x̄2
(k) − 2nx̄(k)

n∑
i=1

xi,k

)

=
K∑
k=1

(
n

n∑
i=1

x2
i,k + n2x̄2

(k) − 2n2x̄2
(k)

)

=
K∑
k=1

(
n

n∑
i=1

x2
i,k − n2x̄2

(k)

)

We conclude that S1 = S2.

2. Using the previous result, we have:

1
2
∑
C(i)=j

∑
C(i′)=j

‖xi − xi′‖2 = nj
∑
C(i)=j

‖xi − x̄j‖2

where x̄j and nj is the mean vector and the number of observations of Cluster Cj .

3. The first-order conditions are:

∂ f (µ1, . . . , µnC )
∂ µj

= 0 for j = 1, . . . , nC

where:

f (µ1, . . . , µnC ) =
nC∑
j=1

nj
∑
C(i)=j

‖xi − µj‖2

Since we have:
∂

∂ µj
‖xi − µj‖2 = −2 (xi − µj)
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it follows that:
∂ f (µ1, . . . , µnC )

∂ µj
= −2nj

∑
C(i)=j

(xi − µj) = 0

We deduce that µ?j =
(
µ?j,1, . . . , µ

?
j,K

)
where:

µ?j,k = 1
nj

∑
C(i)=j

xi,k

Finally, we verify that the optimal solution is µ?j = x̄j . The Llyod’s algorithm exploits
this result in order to find the optimal partition.

4. In Figure 15.2, we have reported the classification operated by K-means, LDA and
QDA. We notice that the unsupervised K-means algorithm gives the same result as
the supervised LDA algorithm.

FIGURE 15.2: Comparison of LDA, QDA and K-means classification

15.4.4 Derivation of the principal component analysis6

1. We have:

var (Z1) = var
(
β>1 X

)
= β>1 Σβ1

6The following exercise is taken from Chapters 1 and 2 of Jolliffe (2002).
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The objective function is to maximize the variance of Z1 under a normalization con-
straint7:

β1 = arg max β>Σβ
s.t. β>β = 1

The Lagrange function is then equal to:

L (β;λ1) = β>Σβ − λ1
(
β>β − 1

)
Since, the first derivative ∂β L (β;λ1) is equal to 2Σβ − 2λ1β, we deduce that the
first-order condition is:

Σβ1 = λ1β1 (15.4)

or:
(Σ− λ1IK)β1 = 0

It follows that β1 is an eigenvector of Σ and λ1 is the associated eigenvalue. Moreover,
we have:

var (Z1) = β>1 Σβ1

= λ1

Maximizing var (Z1) is then equivalent to consider the eigenvector β1 that corresponds
to the largest eigenvalue.

2. We have:

var (Z2) = var
(
β>2 X

)
= β>2 Σβ2

Using Equation (15.4), we deduce that the covariance is:

cov (Z1, Z2) = β>1 Σβ2

= λ1β
>
1 β2 (15.5)

The objective function is then to maximize the variance of Z2 under the constraints
of normalization and independence between Z1 and Z2:

β2 = arg max β>Σβ

s.t.
{
β>β = 1
β>1 β = 0

The Lagrange function has the following expression:

L (β;λ2, ϕ) = β>Σβ − λ2
(
β>β − 1

)
− ϕβ>1 β

We deduce that the first-order condition is:

2Σβ2 − 2λ2β2 − ϕβ1 = 0

It follows that:
β>1 (2Σβ2 − 2λ2β2 − ϕβ1) = β>1 0 = 0

7Joliffe (2002) notices that the solution is β1 =∞ without this normalization.
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or:

2β>1 Σβ2 − 2λ2β
>
1 β2 − ϕβ>1 β1 = 0

Since the 1st and 2nd PCs are uncorrelated, Equation (15.5) implies that β>1 Σβ2 = 0
and β>1 β2 = 0. We deduce that −ϕβ>1 β1 = 0 or ϕ = 0 because β>1 β1 = 1. In this case,
the first-order condition becomes:

Σβ2 = λ2β2

Again, β2 is an eigenvector of Σ and λ2 is the associated eigenvalue. Maximizing
the variance of the second PC is then equivalent to consider the eigenvector β2 that
corresponds to the second largest eigenvalue8.

15.4.5 Two-class separation maximization

1. The total scatter matrix is equal to:

S =
n∑
i=1

(xi − µ̂) (xi − µ̂)>

=
n∑
i=1

xix
>
i − 2µ̂

n∑
i=1

x>i + nµ̂µ̂>

=
n∑
i=1

xix
>
i − nµ̂µ̂>

For the within-class scatter matrix, we obtain:

SW =
J∑
j=1

Sj

=
J∑
j=1

∑
i∈Cj

(xi − µ̂j) (xi − µ̂j)>

=
J∑
j=1

∑
i∈Cj

xix
>
i − nj µ̂jµ̂>j


=

J∑
j=1

∑
i∈Cj

xix
>
i −

J∑
j=1

nj µ̂j µ̂
>
j

=
n∑
i=1

xix
>
i −

J∑
j=1

njµ̂j µ̂
>
j

8We cannot use the first eigenvector because β>1 β2 must be equal to zero.
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Concerning the between-class scatter matrix, we deduce that:

SB =
J∑
j=1

nj (µ̂j − µ̂) (µ̂j − µ̂)>

=
J∑
j=1

(
njµ̂j µ̂

>
j − 2nj µ̂µ̂>j + nj µ̂µ̂

>)
=

J∑
j=1

nj µ̂j µ̂
>
j − 2µ̂

J∑
j=1

nj µ̂
>
j + nµ̂µ̂>

=
J∑
j=1

nj µ̂j µ̂
>
j − 2µ̂

(
nµ̂>

)
+ nµ̂µ̂>

=
J∑
j=1

nj µ̂j µ̂
>
j − nµ̂µ̂>

because nµ̂ =
∑J
j=1 nj µ̂j . It follows that:

SW + SB =

 n∑
i=1

xix
>
i −

J∑
j=1

nj µ̂j µ̂
>
j

+

 J∑
j=1

nj µ̂j µ̂
>
j − nµ̂µ̂>


=

n∑
i=1

xix
>
i − nµ̂µ̂>

= S

2. We have:
µ̂ = n1µ̂1 + n2µ̂2

n1 + n2

It follows that:

µ̂1 − µ̂ = n1µ̂1 + n2µ̂1

n1 + n2
− n1µ̂1 + n2µ̂2

n1 + n2

= n1µ̂1 + n2µ̂1 − n1µ̂1 − n2µ̂2

n1 + n2

= n2

n1 + n2
(µ̂1 − µ̂2)

and:
µ̂2 − µ̂ = n1

n1 + n2
(µ̂2 − µ̂1)

We deduce that:

SB = n1 (µ̂1 − µ̂) (µ̂1 − µ̂)> + n2 (µ̂2 − µ̂) (µ̂2 − µ̂)>

= n1

(
n2

n1 + n2

)2
(µ̂1 − µ̂2) (µ̂1 − µ̂2)> +

n2

(
n1

n1 + n2

)2
(µ̂2 − µ̂1) (µ̂2 − µ̂1)>

= n1n2

n1 + n2
(µ̂1 − µ̂2) (µ̂1 − µ̂2)>
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and9:

β>SBβ = n1n2

n1 + n2
β> (µ̂1 − µ̂2) (µ̂1 − µ̂2)> β

= n1n2

n1 + n2

(
β>µ̂1 − β>µ̂2

) (
β>µ̂1 − β>µ̂2

)>
= n1n2

n1 + n2

(
β>µ̂1 − β>µ̂2

)2
= n1n2

n1 + n2
(µ̃1 − µ̃2)2

where µ̃j is defined as:

µ̃j = 1
nj

∑
i∈Cj

yi = 1
nj

∑
i∈Cj

β>xi = β>

 1
nj

∑
i∈Cj

xi

 = β>µ̂j

3. We have:
Sj =

∑
i∈Cj

(xi − µ̂j) (xi − µ̂j)>

and:

β>Sjβ = β>
∑
i∈Cj

(xi − µ̂j) (xi − µ̂j)> β

=
∑
i∈Cj

(
β>xi − β>µ̂j

)2
=

∑
i∈Cj

(yi − µ̃j)2

= S̃j
= s̃2

j

We deduce that:

β>SWβ = β> (S1 + S2)β
= β>S1β + β>S2β

= s̃2
1 + s̃2

2

4. We have:

J (β) = β>SBβ
β>SWβ

= n1n2

n1 + n2

(µ̃1 − µ̃2)2

s̃2
1 + s̃2

2

We finally obtain the following optimization program:

β? = arg max (µ̃1 − µ̃2)2

s̃2
1 + s̃2

2

In order to separate the class C1 and C2, we would like that (µ̃1 − µ̃2)2 is the largest,
meaning that the projected means must be as far away as possible. At the same time,
we would like that the scatters s̃2

1 and s̃2
2 are the smallest, meaning that the samples

of each class are close to the corresponding projected mean.
9because β>µ̂1 − β>µ̂2 is a scalar.



300 Handbook of Financial Risk Management

5. At the optimum, we know that:

SBβ = λSWβ

We have:

SBβ = n1n2

n1 + n2
(µ̂1 − µ̂2) (µ̂1 − µ̂2)> β

= n1n2

n1 + n2
(µ̂1 − µ̂2)

(
β>µ̂1 − β>µ̂2

)
= γ (µ̂1 − µ̂2)

where:
γ = n1n2

n1 + n2

(
β>µ̂1 − β>µ̂2

)
We deduce that:

λSWβ = γ (µ̂1 − µ̂2)

or:
β = γ

λ
S−1
W (µ̂1 − µ̂2)

It follows that the decision boundary is linear and depends on the direction µ̂1 − µ̂2.
Since we have J (β′) = J (β) if β′ = cβ, we can choose the following optimal value:

β? = S−1
W (µ̂1 − µ̂2)

6. We have:

SW = S1 + S2

=
(

16.86 8.00
8.00 18.00

)
+
(

21.33 18.33
18.33 18.83

)
=

(
38.19 26.33
26.33 36.83

)
and:

SB =
(

0.89 −3.10
−3.10 10.86

)
The equation SBβ = λSWβ is equivalent to S−1

W SBβ = λβ. The largest eigen-
value of the matrix S−1

W SB is equal to 0.856, and the associated eigenvector is
β? = (0.755,−0.936). We deduce that the scores of the 13 observations are −1.117,
−2.990, −3.352, −0.544, 1.147, −1.843, −0.907, 0.755, 0.573, 2.083, 0.392, 0.784, and
−0.152. We have µ̄1 = −1.372 and µ̄1 = 0.739. It follows that µ̄ = −0.317. The
assignment decision is then: {

si < −0.317⇒ i ∈ C1
si > −0.317⇒ i ∈ C2

We observe that the 5th observation is incorrectly assigned to Class C2, because its
score 1.147 is larger than −0.317.
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15.4.6 Maximum likelihood estimation of the probit model
1. The probit model is defined by:

p = Pr {Y = 1 | X = x} = Φ
(
x>β

)
We deduce that the log-likelihood function is equal to:

` (β) =
n∑
i=1

ln Pr {Yi = yi}

=
n∑
i=1

ln
(

(1− pi)1−yi pyii

)
=

n∑
i=1

(1− yi) ln (1− pi) + yi ln pi

=
n∑
i=1

(1− yi) ln
(
1− Φ

(
x>i β

))
+ yi ln Φ

(
x>i β

)
2. We have:

Ji,k (β) = ∂ `i (β)
∂ βk

= − (1− yi)
φ
(
x>i β

)
xi,k

1− Φ
(
x>i β

) + yi
φ
(
x>i β

)
xi,k

Φ
(
x>i β

)
We deduce that:

Ji,k (β) =
− (1− yi) Φ

(
x>i β

)
+ yi

(
1− Φ

(
x>i β

))
Φ
(
x>i β

) (
1− Φ

(
x>i β

)) φ
(
x>i β

)
xi,k

=
(
yi − Φ

(
x>i β

))
φ
(
x>i β

)
Φ
(
x>i β

) (
1− Φ

(
x>i β

)) xi,k
It follows that the score vector is equal to:

S (β) =
n∑
i=1

(
yi − Φ

(
x>i β

))
φ
(
x>i β

)
Φ
(
x>i β

) (
1− Φ

(
x>i β

)) xi
3. The (k, j) element of the Hessian matrix is:

Hk,j (β) =
n∑
i=1

∂2 `i (β)
∂ βk∂ βj

We have φ′ (z) = −zφ (z) and:

(∗) = ∂

∂ βj
Φ
(
x>i β

) (
1− Φ

(
x>i β

))
= φ

(
x>i β

)
xi,j

(
1− Φ

(
x>i β

))
− Φ

(
x>i β

)
φ
(
x>i β

)
xi,j

=
(
1− 2Φ

(
x>i β

))
φ
(
x>i β

)
xi,j

(∗) = ∂

∂ βj

(
yi − Φ

(
x>i β

))
φ
(
x>i β

)
= −

(
yi − Φ

(
x>i β

))
φ
(
x>i β

) (
x>i β

)
xi,j − φ2 (x>i β)xi,j

=
(
−yix>i β + Φ

(
x>i β

)
x>i β − φ

(
x>i β

))
φ
(
x>i β

)
xi,j
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We note:

Ai =
Φ
(
x>i β

)2 (1− Φ
(
x>i β

))2
φ
(
x>i β

)
xi,jxi,k

∂2 `i (β)
∂ βk∂ βj

and:

Bi =
Φ
(
x>i β

)2 (1− Φ
(
x>i β

))2
φ
(
x>i β

) ci

We obtain:
Ai =

(
−yix>i β + Φ

(
x>i β

)
x>i β − φ

(
x>i β

))
Φ
(
x>i β

) (
1− Φ

(
x>i β

))
−(

yi − Φ
(
x>i β

)) (
1− 2Φ

(
x>i β

))
φ
(
x>i β

)
= −yiΦ

(
x>i β

)
x>i β + Φ2 (x>i β)x>i β − Φ

(
x>i β

)
φ
(
x>i β

)
+

yiΦ2 (x>i β)x>i β − Φ3 (x>i β)x>i β + Φ2 (x>i β)φ (x>i β)−
yiφ

(
x>i β

)
+ Φ

(
x>i β

)
φ
(
x>i β

)
+ 2yiΦ

(
x>i β

)
φ
(
x>i β

)
−

2Φ2 (x>i β)φ (x>i β)
= Φ3 (x>i β) (−x>i β)+ Φ2 (x>i β) ((1 + yi)x>i β − φ

(
x>i β

))
+

Φ
(
x>i β

)
yi
(
−x>i β + 2φ

(
x>i β

))
− yiφ

(
x>i β

)
and:

Bi = yi
(
φ
(
x>i β

)
+ x>i βΦ

(
x>i β

)) (
1− Φ

(
x>i β

))2 +

(1− yi)φ
(
x>i β

)
− x>i β

(
1− Φ

(
x>i β

))
Φ
(
x>i β

)2
= yiφ

(
x>i β

)
+ yiΦ

(
x>i β

) (
x>i β

)
− 2yiΦ

(
x>i β

)
φ
(
x>i β

)
−

2yiΦ2 (x>i β) (x>i β)+ yiΦ2 (x>i β)φ (x>i β)+
yiΦ3 (x>i β) (x>i β)+ Φ2 (x>i β)φ (x>i β)−
yiΦ2 (x>i β)φ (x>i β)− Φ2 (x>i β) (x>i β)+
Φ3 (x>i β) (x>i β)+ yiΦ2 (x>i β) (x>i β)− yiΦ3 (x>i β) (x>i β)

= Φ3 (x>i β) (x>i β)+ Φ2 (x>i β) (− (1 + yi)x>i β + φ
(
x>i β

))
+

Φ
(
x>i β

)
yi
(
x>i β − 2φ

(
x>i β

))
+ yiφ

(
x>i β

)
Since Bi = −Ai, we deduce that:

H (β) =
n∑
i=1

∂2 `i (β)
∂ β∂ β>

=
n∑
i=1

Ai
φ
(
x>i β

)
Φ
(
x>i β

)2 (1− Φ
(
x>i β

))2 · (xix>i )
= −

n∑
i=1

Bi
φ
(
x>i β

)
Φ
(
x>i β

)2 (1− Φ
(
x>i β

))2 · (xix>i )
= −

n∑
i=1

Hi ·
(
xix
>
i

)
4. The Newton-Raphson algorithm becomes:

β(s+1) = β(s) −H−1 (β(s)
)
S
(
β(s)

)
where β(s) is the value of β at the step s. We may initialize the algorithm with the
OLS solution β(0) =

(
X>X

)−1
X>Y .
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15.4.7 Computation of feed-forward neural networks
1. We have ui,h =

∑nx
k=1 βh,kxi,k or U = Xβ> where U is a n × nz matrix, X is a

n × nx matrix and β is a nz × nx matrix. Then, we apply the non-linear transform
zi,h = fx,z (ui,h) or we perform the element-by-element function Z = fx,z (U) where
Z is a n×nz matrix. The calculation of vi,j =

∑nz
h=1 γj,hzi,h is equivalent to compute

V = Zγ> where V is a n × ny matrix and γ is a ny × nz matrix. Finally, we have
yj (xi) = fz,y (vi,j) or Ŷ = fz,y (V ) where Ŷ is a n× ny matrix. It follows that:

Ŷ = fz,y (V )
= fz,y

(
Zγ>

)
= fz,y

(
fx,z (U) γ>

)
= fz,y

(
fx,z

(
Xβ>

)
γ>
)

2. If fx,z (z) = fz,y (z) = z, we deduce that:

Ŷ = Xβ>γ> = XA

where A = (γβ)> is a nx × ny matrix. The least squares loss is then equal to:

L (θ) =
n∑
i=1

ny∑
j=1
Li,j (θ)

=
n∑
i=1

ny∑
j=1

1
2 (yj (xi)− yi,j)2

= 1
2 trace

((
Ŷ − Y

)ᵀ (
Ŷ − Y

))
= 1

2 trace ((XA− Y )ᵀ (XA− Y ))

We deduce that:

Â = arg min 1
2 trace ((XA− Y )ᵀ (XA− Y ))

= (XᵀX)−1
XᵀY

and:
γ̂β̂ = Â> = Y >X (XᵀX)−1

We conclude that it is not possible to estimate β and γ separately because it depends
on the rank of the different matrices. Indeed, A has nx × ny parameters whereas the
product γβ has nz (nx + ny) parameters. In particular, the model is overidentified
when:

nz >
nx × ny
nx + ny

Otherwise, we obtain a constrained linear regression:(
β̂, γ̂

)
= arg min 1

2 trace ((XA− Y )ᵀ (XA− Y ))

s.t. γβ = A>
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3. Using chain rule, we have:

∂ Li,j′ (θ)
∂ γj,h

= ∂ ξ (yj′ (xi) , yi,j′)
∂ yj′ (xi)

∂ yj′ (xi)
∂ vi,j′

∂ vi,j′

∂ γj,h

We notice that:
∂ vi,j′

∂ γj,h
=
{
zi,h if j = j′

0 otherwise
It follows that:

∂ Li,j (θ)
∂ γj,h

= ξ′ (yj (xi) , yi,j) f ′z,y (vi,j) zi,h

and:
∂ Li,j′ (θ)
∂ γj,h

= 0

We also have:

∂ Li,j (θ)
∂ βh,k

= ∂ ξ (yj (xi) , yi,j)
∂ yj (xi)

∂ yj (xi)
∂ vi,j

∂ vi,j
∂ zi,h

∂ zi,h
∂ ui,h

∂ ui,h
∂ βh,k

= ξ′ (yj (xi) , yi,j) f ′z,y (vi,j) γj,hf ′x,z (ui,h)xi,k

Finally, we deduce that:
∂ L (θ)
∂ γ

= (Gy,y �Gy,v)> Z

and:
∂ L (θ)
∂ β

= (((Gy,y �Gy,v) γ)�Gz,u)>X

where ∂γL (θ) is a ny×nz matrix, Gy,y = ξ′
(
Ŷ , Y

)
is a n×ny matrix, Gy,v = f ′z,y (V )

is a n×ny matrix, ∂βL (θ) is a nz×nx matrix and Gz,u = f ′x,z (U) is a n×nz matrix.

4. We have:
f (z) = 1

1 + e−z

and:

f ′ (z) = e−z

(1 + e−z)2

= 1
1 + e−z

(
1− 1

1 + e−z

)
= f (z) (1− f (z))

It follows that f ′z,y (vi,j) = fz,y (vi,j) (1− fz,y (vi,j)) = yj (xi) (1− yj (xi)) and
f ′x,z (ui,h) = fx,z (ui,h) (1− fx,z (ui,h)) = zi,h (1− zi,h). We also have:

ξ (ŷ, y) = 1
2 (ŷ − y)2

and:
ξ′ (ŷ, y) = ŷ − y

We deduce that:

∂ Li,j (θ)
∂ γj,h

= (yj (xi)− yi,j) yj (xi) (1− yj (xi)) zi,h
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and:
∂ Li,j (θ)
∂ βh,k

= (yj (xi)− yi,j) yj (xi) (1− yj (xi)) γj,hzi,h (1− zi,h)xi,k

The matrix forms are:
∂ L (θ)
∂ γ

=
((
Ŷ − Y

)
�G

(
Ŷ
))>

Z

and:
∂ L (θ)
∂ β

=
((((

Ŷ − Y
)
�G

(
Ŷ
))

γ
)
�G (Z)

)>
X

where G
(
Ŷ
)

= Ŷ �
(
1n×ny − Ŷ

)
and G (Z) = Z � (1n×nz − Z).

5. We have:
ξ (ŷ, y) = − (y ln ŷ + (1− y) ln (1− ŷ))

and:

ξ′ (ŷ, y) = −y
ŷ

+ (1− y)
(1− ŷ)

= ŷ (1− y)− y (1− ŷ)
ŷ (1− ŷ)

= ŷ − y
ŷ (1− ŷ)

We deduce that:
∂ Li (θ)
∂ γh

= (y (xi)− yi)
y (xi) (1− y (xi))

y (xi) (1− y (xi)) zi,h

= (y (xi)− yi) zi,h
and:

∂ Li (θ)
∂ βh,k

= (y (xi)− yi)
y (xi) (1− y (xi))

y (xi) (1− y (xi)) γhzi,h (1− zi,h)xi,k

= (y (xi)− yi) γhzi,h (1− zi,h)xi,k
The matrix forms are:

∂ L (θ)
∂ γ

=
(
Ŷ − Y

)>
Z

and:
∂ L (θ)
∂ β

=
(((

Ŷ − Y
)
γ
)
� Z � (1− Z)

)ᵀ
X

6. In the case of the softmax activation function, the value of yj (xi) is equal to:

yj (xi) = fz,y (vi,j)

= evi,j∑nC
j′=1 e

vi,j′

This implies that yj (xi) depends on yj′ (xi):
nC∑
j=1

yj (xi) =
nC∑
j=1

evi,j∑nC
j′=1 e

vi,j′
=
∑nC
j=1 e

vi,j∑nC
j′=1 e

vi,j′
= 1

The loss function is additive with respect to the index i, but not with respect to the
index j.
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7. We have:
ξ (ŷ, y) = −y ln ŷ

It follows that:
ξ′ (ŷ, y) = −y

ŷ

We also have:
f (zj) = ezj∑nC

j′=1 e
zj′

We deduce that:

∂ f (zj)
∂ zj

=
ezj
∑nC
j′=1 e

zj′ − e2zj(∑nC
j′=1 e

zj′
)2

=
ezj
(∑nC

j′=1 e
zj′ − ezj

)
∑nC
j′=1 e

zj′
∑nC
j′=1 e

zj′

= ezj∑nC
j′=1 e

zj′

(
1− ezj∑nC

j′=1 e
zj′

)
= f (zj) (1− f (zj))

and:

∂ f (zj)
∂ zj′

= − ezj+zj′(∑nC
j′′=1 e

zj′′
)2

= − ezj∑nC
j′′=1 e

zj′′

ezj′∑nC
j′′=1 e

zj′′

= −f (zj) f (zj′)

We notice that:

(∗) =
nC∑
j′=1

∂ ξ (yj′ (xi) , yi,j′)
∂ yj′ (xi)

∂ yj′ (xi)
∂ vi,j

= −

 yi,j
yj (xi)

∂ yj (xi)
∂ vi,j

+
∑
j′ 6=j

yi,j′

yj′ (xi)
∂ yj′ (xi)
∂ vi,j


= −

 yi,j
yj (xi)

f (vi,j) (1− f (vi,j))−
∑
j′ 6=j

yi,j′

yj′ (xi)
f (vi,j) f (vi,j′)


= −

 yi,j
yj (xi)

yj (xi) (1− yj (xi))−
∑
j′ 6=j

yi,j′

yj′ (xi)
yj (xi) yj′ (xi)


= −yi,j (1− yj (xi)) + yj (xi)

∑
j′ 6=j

yi,j′

= −yi,j + yj (xi)
nC∑
j′=1

yi,j′

= yj (xi)− yi,j
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because10 ∑nC
j′=1 yi,j′ = 1. We deduce that:

∂ Li (θ)
∂ γj,h

=
nC∑
j′=1

∂ ξ (yj′ (xi) , yi,j′)
∂ yj′ (xi)

nC∑
j′′=1

∂ yj′ (xi)
∂ vi,j′′

∂ vi,j′′

∂ γj,h

=
nC∑
j′=1

∂ ξ (yj′ (xi) , yi,j′)
∂ yj′ (xi)

∂ yj′ (xi)
∂ vi,j

zi,h

=

 nC∑
j′=1

∂ ξ (yj′ (xi) , yi,j′)
∂ yj′ (xi)

∂ yj′ (xi)
∂ vi,j

 zi,h

= (yj (xi)− yi,j) zi,h

and:

∂ Li (θ)
∂ βh,k

=
nC∑
j′=1

∂ ξ (yj′ (xi) , yi,j′)
∂ yj′ (xi)

nC∑
j′′=1

∂ yj′ (xi)
∂ vi,j′′

∂ vi,j′′

∂ zi,h

∂ zi,h
∂ ui,h

∂ ui,h
∂ βh,k

=
nC∑
j′=1

∂ ξ (yj′ (xi) , yi,j′)
∂ yj′ (xi)

nC∑
j′′=1

∂ yj′ (xi)
∂ vi,j′′

γj′′,hxi,k

=
nC∑
j′′=1

 nC∑
j′=1

∂ ξ (yj′ (xi) , yi,j′)
∂ yj′ (xi)

∂ yj′ (xi)
∂ vi,j′′

 γj′′,hxi,k

=

 nC∑
j′′=1

(yj′′ (xi)− yi,j′′) γj′′,h

xi,k

=

 nC∑
j=1

(yj (xi)− yi,j) γj,h

xi,k

The matrix forms are then:
∂ L (θ)
∂ γ

=
(
Ŷ − Y

)ᵀ
Z

and:
∂ L (θ)
∂ β

=
((
Ŷ − Y

)
γ
)>

X

8. We have ∂βh,0ui,h = 1, ∂γj,0vi,j = 1 and ∂γj,nz+k vi,j = xi,k. We note β0 the vector of
dimension nz × 1, γ0 the vector of dimension ny × 1 and γx the matrix of dimension
ny × nx. If there is a constant between the x’s and the z’s or between the z’s and the
y’s, we have:

∂ L (θ)
∂ β0

= (((Gy,y �Gy,v) γ)�Gz,u)> 1n×1

and:
∂ L (θ)
∂ γ0

= (Gy,y �Gy,v)> 1n×1

In the case of direct links between the x’s and the y’s, we obtain:

∂ L (θ)
∂ γx

= (Gy,y �Gy,v)>X

10All values yi,j′ are equal to zero except one value that is equal to one.



308 Handbook of Financial Risk Management

15.4.8 Primal and dual problems of support vector machines
Hard margin classification

1. We note θ = (β0, β) the (1 +K) × 1 vector of parameters. The objective function is
equal to:

f (θ) = 1
2 ‖β‖

2
2

= 1
2θ
>Qθ − θ>R

where:
Q =

(
0 0>K

0K IK

)
and R = 01+K . The constraints yi

(
β0 + x>i β

)
≥ 1 are equivalent to yiβ0 +yix>i β ≥ 1.

The matrix form Cθ ≥ D is defined by:

C =

 y1 y1x1,1 · · · y1x1,K
...

...
...

yn ynxn,1 · · · ynxn,K


and D = 1n.

2. The associated Lagrange function is:

L (β0, β;α) = 1
2 ‖β‖

2
2 − α

> (yβ0 + y �Xβ − 1n)

= 1
2 ‖β‖

2
2 −

(
α>y

)
β0 − α> (y �Xβ) + α>1n

= 1
2 ‖β‖

2
2 − β0

(
n∑
i=1

αiyi

)
− β>

(
n∑
i=1

αiyixi

)
+

n∑
i=1

αi

where α ≥ 0n is the vector of Lagrange multipliers. The first-order conditions are:

∂ L (β0, β;α)
∂ β0

= −
n∑
i=1

αiyi = 0

and:
∂ L (β0, β;α)

∂ β
= β −

n∑
i=1

αiyixi = 0K

3. At the optimum, we deduce that β =
∑n
i=1 αiyixi and the objective function of the

dual problem is:

L∗ (α) = 1
2

(
n∑
i=1

αiyixi

)>( n∑
i=1

αiyixi

)
− β0

(
n∑
i=1

αiyi

)
−

(
n∑
i=1

αiyixi

)>( n∑
i=1

αiyixi

)
+

n∑
i=1

αi

=
n∑
i=1

αi −
1
2

(
n∑
i=1

αiyixi

)>( n∑
i=1

αiyixi

)

=
n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj
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Then, we have:

α̂ = arg max
n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj

s.t. α ≥ 0n

because the Lagrange multipliers αi are positive.

4. It follows that:

α̂ = arg min 1
2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj −

n∑
i=1

αi

Since we have
∑n
i=1 αi = α>1n and:

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj = α>Γα

where Γi,j = yiyjx
>
i xj , we deduce that:

α̂ = arg min 1
2α
>Γα− α>1n

s.t. α ≥ 0n

5. We notice that:
Cθ ≥ D ⇔ −Cθ ≤ −D

By applying the direct computation, we deduce that:

α̂ = arg min 1
2α
>Q∗α− α>R∗

s.t. α ≥ 0n

where:

Q∗ = CQ−1C>

= C

(
0 0>K

0K IK

)−1

C>

=

 y1 y1x1,1 · · · y1x1,K
...

...
...

yn ynxn,1 · · · ynxn,K

 · ( ∞ 0>K
0K IK

)
·

 y1 y1x1,1 · · · y1x1,K
...

...
...

yn ynxn,1 · · · ynxn,K


>

= ∞
(
y>y

)
+ Γ

where Γi,j = yiyjx
>
i xj and:

R∗ = −CQ−1R+D

= −CQ−10 + 1n
= 1n
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Finally, we obtain:

α̂ = arg min 1
2α
> (∞ (y>y)+ Γ

)
α− α>1n

s.t. α ≥ 0n

The singularity of the matrix Q does not allow to define a proper dual problem. In
particular, we observe a scaling issue of the Lagrange coefficients. This is why we
reintroduce the constraint

∑n
i=1 αiyi = 0, and replace the previous dual problem by:

α̂ = arg min 1
2α
>Γα− α>1n

s.t.
{
y>α = 0
α ≥ 0n

Soft margin classification with binary hinge loss

1. We note θ = (β0, β, ξ) the (1 +K + n)×1 vector of parameters. The objective function
is equal to:

f (θ) = 1
2 ‖β‖

2
2 + C

n∑
i=1

ξi

= 1
2θ
>Qθ − θ>R

where:

Q =

 0 0>K 0>n
0K IK 0K×n
0n 0n×K 0n×n


and:

R =
(

0K+1
−C · 1n

)
The constraints yi

(
β0 + x>i β

)
≥ 1− ξi are equivalent to yiβ0 + yix

>
i β + ξi ≥ 1. The

matrix form Cθ ≥ D is defined by:

C =

 y1 y1x1,1 · · · y1x1,K 1 0
...

...
...

. . .
yn ynxn,1 · · · ynxn,K 0 1


and D = 1n. The bounds ξi ≥ 0 can be written as θ ≥ θ− where:

θ− =
(
−∞ · 11+K

0n

)
2. The associated Lagrange function is:

L (β0, β, ξ;α, λ) = 1
2 ‖β‖

2
2 + C

n∑
i=1

ξi −

n∑
i=1

αi
(
yi
(
β0 + x>i β

)
− 1 + ξi

)
−

n∑
i=1

λiξi
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where αi ≥ 0 and λi ≥ 0. The first-order conditions for β0 and β are the same:

∂ L (β0, β;α)
∂ β0

= −
n∑
i=1

αiyi = 0

and:
∂ L (β0, β;α)

∂ β
= β −

n∑
i=1

αiyixi = 0K

The first-order condition for ξ is:

∂ L (β0, β;α)
∂ ξ

= C · 1n − α− λ = 0n

It follows that:

L∗ (α, λ) = L∗ (α) + C

n∑
i=1

ξi −
n∑
i=1

αiξi −
n∑
i=1

λiξi

= L∗ (α) +
n∑
i=1

ξi (C − αi − λi)

= L∗ (α)

because of the first-order condition for ξi. The objective function of the dual problem
is then the same as previously, and does not depend on the Lagrange multipliers λ.
However, λi ≥ 0 and C − αi − λi = 0 implies that C − αi ≥ 0 or αi ≤ C. Finally, we
obtain the following dual problem:

α̂ = arg min 1
2α
>Γα− α>1n

s.t.
{
y>α = 0
0n ≤ α ≤ C · 1n

3. Previously, the support vectors correspond to observations such that αi 6= 0. Here,
the support vectors must also verify that ξi = 0, implying that λi 6= 0 or αi 6= C.
Therefore, support vectors corresponds to training points such that 0 < αi < C.

4. The Kuhn-Tucker conditions are min (λi, ξi) = 0. We also have λi = C−αi. If αi = C,
then λi = 0 and ξi > 0. Otherwise, we have λi > 0 and ξi = 0 in the case where αi < C.
The two constraints yi

(
β0 + x>i β

)
≥ 1− ξi and ξi ≥ 0 implies that:

ξi ≥ 1− yi
(
β0 + x>i β

)
At the optimum, we deduce that:

ξ̂i = max
(

0, 1− yi
(
β̂0 + x>i β̂

))
5. In Figure 15.3, we have represented the optimal values of β0, β1, β2,

∑n
i=1 ξi and the

marginM with respect to C. We notice that the paths are not smooth. We verify that
the soft margin classifier tends to the hard margin classifier when C →∞. In Figure
15.4, we show the optimal hyperplane when C = 0.07. We verify that the soft margin
classifier has a larger margin than the hard margin classifier.
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FIGURE 15.3: Optimal values of β0, β1, β2,
∑n
i=1 ξi and M

FIGURE 15.4: The hard margin classifier when C = 0.07
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Soft margin classification with squared hinge loss

1. We note θ = (β0, β, ξ) the (1 +K + n)×1 vector of parameters. The objective function
is equal to:

f (θ) = 1
2 ‖β‖

2
2 + C

n∑
i=1

ξ2
i

= 1
2θ
>Qθ − θ>R

where:

Q =

 0 0>K 0>n
0K IK 0K×n
0n 0n×K 2C · In


and R = 01+K+n. The inequality and bound constraints are the same as the ones we
have found for the binary hinge loss.

2. The associated Lagrange function is:

L (β0, β, ξ;α, λ) = 1
2 ‖β‖

2
2 + C

n∑
i=1

ξ2
i −

n∑
i=1

αi
(
yi
(
β0 + x>i β

)
− 1 + ξi

)
−

n∑
i=1

λiξi

where αi ≥ 0 and λi ≥ 0. The first-order conditions for β0 and β are:

∂ L (β0, β;α)
∂ β0

= −
n∑
i=1

αiyi = 0

and:
∂ L (β0, β;α)

∂ β
= β −

n∑
i=1

αiyixi = 0K

The first-order condition for ξ is:
∂ L (β0, β;α)

∂ ξ
= 2 · Cξ − α− λ = 0n

The Kuhn-Tucker conditions are min (λi, ξi) = 0, implying that λiξi = 0. This is
equivalent to impose that 2C · ξ − α = 0n or ξi = αi

2C . It follows that:

Cξ2
i − αiξi − λiξi = C

( αi
2C

)2
− αi

αi
2C − 0 · ξi

= α2
i

4C −
α2
i

2C

= − α
2
i

4C
and:

L∗ (α, λ) = L∗ (α)− 1
4C

n∑
i=1

α2
i

= α>1n −
1
2α
>Γα− 1

4Cα
>α

= α>1n −
1
2α
>
(

Γ + 1
2C In

)
α
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Finally, we obtain the following dual problem:

α̂ = arg min 1
2α
>
(

Γ + 1
2C In

)
α− α>1n

s.t.
{
y>α = 0
α ≥ 0n

This is a hard margin dual problem with a ridge regularization of the Γ matrix.

3. In Figure 15.5, we have represented the optimal values of β0, β1, β2,
∑n
i=1 ξi and the

margin M with respect to C. We notice that the paths are smooth. We verify that
the soft margin classifier tends to the hard margin classifier when C →∞.

FIGURE 15.5: Convergence of soft margin classification with squared hinge loss

4. We obtain β̂0 = 0.853, β̂1 = −0.371 and β̂1 = 0.226. The optimal values of αi and ξi
are given in Table 15.3.

TABLE 15.3: Soft margin classification with squared hinge loss (C = 1)

i 1 2 3 4 5 6 7 8
α̂i 0.00 0.40 1.39 0.00 1.09 0.00 0.14 0.99
ξ̂i 0.00 0.20 0.70 0.00 0.55 0.00 0.07 0.50
i 9 10 11 12 13 14 15 16 17
α̂i 0.00 0.00 1.16 0.00 0.00 0.00 0.22 2.48 3.13
ξ̂i 0.00 0.00 0.58 0.00 0.00 0.00 0.11 1.24 1.56

Soft margin classification with ramp loss

1. We have represented the four loss functions in Figure 15.6. The 0-1 loss function is not
convex. The binary hinge loss function is convex, but not always differentiable. The
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squared hinge loss function is convex and everywhere differentiable. Finally, the ramp
loss function is bounded. The last three functions can be viewed as an approximation
of the 0-1 loss function. Graphically, the ramp loss function is the best approximation.

FIGURE 15.6: Comparison of SVM loss functions

2. We have:

Lramp (xi, yi) = min
(
1,Lhinge (xi, yi)

)
= min

(
1,max

(
0, 1− yi

(
β0 + x>i β

)))
= max

(
0, 1− yi

(
β0 + x>i β

))
−

max
(
0,−yi

(
β0 + x>i β

))
= Lhinge (xi, yi)− Lconvex (xi, yi)

It follows that Lramp is not convex, making the optimization problem tricky.

LS-SVM regression

1. We note θ = (β0, β, ξ) the (1 +K + n)×1 vector of parameters. The objective function
is equal to:

f (θ) = 1
2 ‖β‖

2
2 + C

n∑
i=1

ξ2
i

= 1
2θ
>Qθ − θ>R

where:

Q =

 0 0>K 0>n
0K IK 0K×n
0n 0n×K 2C · In
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and R = 01+K+n. Let Y = (yi) and X = (xi,k) be the output vector and the design
matrix. The equality constraint is Aθ = B where:

A =
(

1n X In
)

and B = Y .

2. The associated Lagrange function is:

L (β0, β, ξ;α) = 1
2 ‖β‖

2
2 + C

n∑
i=1

ξ2
i +

n∑
i=1

αi
(
yi − β0 − x>i β − ξi

)
The first-order conditions for β0 and β are:

∂ L (β0, β;α)
∂ β0

= −
n∑
i=1

αi = 0

and:
∂ L (β0, β;α)

∂ β
= β −

n∑
i=1

αixi = 0K

The first-order condition for ξ is:

∂ L (β0, β;α)
∂ ξ

= 2C · ξ − α = 0n

Since we have α>1n = 0, β = X>α and ξ = α/ (2C), the objective function of the
dual problem is equal to:

L∗ (α) = 1
2 ‖β‖

2
2 + C

n∑
i=1

ξ2
i +

n∑
i=1

αiyi − β0

n∑
i=1

αi −

(
n∑
i=1

αix
>
i

)
β −

n∑
i=1

αiξi

= 1
2β
>β + C · ξ>ξ + α>Y − β0 · α>1n − β>β − α>ξ

= −1
2β
>β + C

4C2α
>α+ α>Y − α>α

2C

= α>Y − 1
2
(
α>XX>α

)
− α>α

4C

Finally, we obtain the following dual problem:

α̂ = arg min 1
2α
>
(
XX> + 1

2C In
)
α− α>Y

s.t. α>1n = 0

3. We also have β̂ = X>α̂. In this problem, all the training points are support vectors.
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We deduce that β̂0 = n−1∑n
i=1

(
yi − x>i β̂

)
and ξ̂i = yi − β̂0 − x>i β̂. We verify that

the residuals are centered:

1
n

n∑
i=1

ξ̂i = 1
n

n∑
i=1

(
yi − β̂0 − x>i β̂

)
= 1

n

n∑
i=1

(
yi − x>i β̂

)
− β̂0

= 0

ε-SVM regression

1. We note θ = (β0, β, ξ
−, ξ+) the (1 +K + 2n)× 1 vector of parameters. The objective

function is equal to:

f (θ) = 1
2 ‖β‖

2
2 + C

n∑
i=1

(
ξ−i + ξ+

i

)
= 1

2θ
>Qθ − θ>R

where:

Q =

 0 0>K 0>2n
0K IK 0K×2n
02n 02n×K 02n×2n


and:

R =


0

0K
−C · 1n
−C · 1n


The constraints β0 + x>i β − yi ≤ ε+ ξ−i and yi− β0− x>i β ≤ ε+ ξ+

i are equivalent to
−β0 − x>i β + ξ−i ≥ −yi − ε and β0 + x>i β + ξ+

i ≥ yi − ε. The matrix form Cθ ≥ D is
defined by:

C =
(
−1n −X In 0n×n

1n X 0n×n In

)
and:

D =
(
−Y − ε · 1n
Y − ε · 1n

)

The bounds ξ−i ≥ 0 and ξ+
i ≥ 0 can be written as θ ≥ θ− where θ− =

(−∞ · 11+K ,0n,0n).

2. We introduce the Lagrange multipliers α−i ≥ 0, α+
i ≥ 0, λ−i ≥ 0 and λ+

i ≥ 0 associated
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the four inequality constraints. The associated Lagrange function is:

L (·) = 1
2 ‖β‖

2
2 + C

n∑
i=1

(
ξ−i + ξ+

i

)
−

n∑
i=1

α−i
(
ε+ ξ−i − β0 − x>i β + yi

)
−

n∑
i=1

α+
i

(
ε+ ξ+

i + β0 + x>i β − yi
)
−

n∑
i=1

λ−i ξ
−
i −

n∑
i=1

λ+
i ξ

+
i

The first-order conditions for β0 and β are:

∂ L (·)
∂ β0

=
n∑
i=1

α−i −
n∑
i=1

α+
i = 0

and:
∂ L (·)
∂ β

= β +
n∑
i=1

α−i xi −
n∑
i=1

α+
i xi = 0K

We deduce that:
1>n
(
α− − α+) = 0

and:
β = X>

(
α+ − α−

)
The first-order condition for ξ− and ξ+ are:

∂ L (·)
∂ ξ−

= C · 1n − α− − λ− = 0n

and:
∂ L (·)
∂ ξ+ = C · 1n − α+ − λ+ = 0n

This implies that:
C = α−i + λ−i = α+

i + λ+
i

It follows that:

(∗) =
n∑
i=1

α−i
(
ε+ ξ−i − β0 − x>i β + yi

)
+

n∑
i=1

α+
i

(
ε+ ξ+

i + β0 + x>i β − yi
)

= ε
(
α− + α+)> 1n − β0

(
α− − α+)> 1n −(

α− − α+)>Xβ +
(
α− − α+)> Y +

n∑
i=1

α−i ξ
−
i +

n∑
i=1

α+
i ξ

+
i
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We also have:

C

n∑
i=1

(
ξ−i + ξ+

i

)
= C

n∑
i=1

ξ−i + C

n∑
i=1

ξ+
i

=
n∑
i=1

(
α−i + λ−i

)
ξ−i +

n∑
i=1

(
α+
i + λ+

i

)
ξ+
i

Since (α− − α+)>X = β>, the objective function of the dual problem becomes:

L∗ (·) = 1
2 ‖β‖

2
2 − ε

(
α− + α+)> 1n + β>β −

(
α− − α+)> Y

= −1
2β
>β − ε

(
α− + α+)> 1n −

(
α− − α+)> Y

Since we have λ−i ≥ 0, λ+
i ≥ 0, C · 1n − α− − λ− = 0n and C · 1n − α+ − λ+ = 0n,

we deduce that α−i ≤ C and α+
i ≤ C. Finally, we obtain the following dual problem:{

α̂−, α̂+} = arg min 1
2
(
α− − α+)>XX> (α− − α+)+

ε
(
α− + α+)> 1n +

(
α− − α+)> Y

s.t.

 1>n (α− − α+) = 0
0n ≤ α− ≤ C · 1n
0n ≤ α+ ≤ C · 1n

3. We note θ = (α−, α+) the 2n× 1 vector of parameters. The QP objective function is
equal to:

f (θ) = 1
2θ
>Qθ − θ>R

where:
Q =

(
XX> −XX>
−XX> XX>

)
and:

R =
(
−Y − ε · 1n
Y − ε · 1n

)
The equality constraint is Aθ = B where A =

(
1>n −1>n

)
and B = 0. The bounds

are θ− = 02n and θ+ = C · 12n.

4. We have:

β̂ = X>
(
α̂+ − α̂−

)
=

n∑
i=1

(
α̂+
i − α̂

−
i

)
xi

The Kuhn-Tucker conditions are:
min

(
α−i , ε+ ξ−i − β0 − x>i β + yi

)
= 0

min
(
α+
i , ε+ ξ+

i + β0 + x>i β − yi
)

= 0
min

(
λ−i , ξ

−
i

)
= 0

min
(
λ+
i , ξ

+
i

)
= 0

We also remind that C = α−i + λ−i = α+
i + λ+

i . The set SV− of negative support



320 Handbook of Financial Risk Management

vectors corresponds then to the observations such that 0 < α−i < C. In this case, we
have ε+ ξ−i −β0−x>i β+ yi = 0 and ξ−i = 0. We deduce that β̂0 = yi + ε−x>i β̂ when
i ∈ SV−. The set SV+ of positive support vectors corresponds to the observations
such that 0 < α+

i < C. In this case, we have ε+ ξ+
i + β0 + x>i β − yi = 0 and ξ+

i = 0.
We deduce that β̂0 = yi − ε− x>i β̂ when i ∈ SV+. Finally, we obtain:

β̂0 =

∑
i∈SV−

(
yi + ε− x>i β̂

)
+
∑
i∈SV+

(
yi − ε− x>i β̂

)
nSV− + nSV+

where nSV− and nSV+ are the number of negative and positive support vectors.

5. If α−i < C, we have λ−i > 0 and ξ−i = 0. Otherwise, we have λ−i = 0 and ξ−i > 0.
More precisely, we have ε+ ξ−i − β0 − x>i β + yi = 0 or:

ξ̂−i = −
(
yi + ε− β̂0 − x>i β̂

)
If α+

i < C, we have λ+
i > 0 and ξ+

i = 0. Otherwise, we have λ+
i = 0 and ξ+

i > 0.
More precisely, we have ε+ ξ+

i + β0 + x>i β − yi = 0 or:

ξ̂+
i = yi − ε− β̂0 − x>i β̂

6. When ε is equal to zero, the term ε (α− + α+)> 1n disappears in the objective function
of the dual problem:

−L∗ (·) = 1
2
(
α− − α+)XX> (α− − α+)+

(
α− − α+)> Y

By setting δ = α+ − α−, we obtain the following QP problem:

δ̂ = arg min 1
2δXX

>δ − δ>Y

s.t.
{

1>n δ = 0
−C · 1n ≤ δ ≤ C · 1n

The bounds are obtained by combining the inequalities 0n ≤ α− ≤ C · 1n and 0n ≤
α+ ≤ C · 1n. We have β̂ = X>δ̂. The set SV of support vectors corresponds to the
observations such that −C < δi < C. It follows that:

β̂0 = 1
nSV

∑
i∈SV

(
yi − x>i β̂

)
where nSV is the number of support vectors. Moreover, we have:

ξ̂−i = 1
{
δ̂i = −C

}
·max

(
0,−

(
yi − β̂0 − x>i β̂

))
and:

ξ̂+
i = 1

{
δ̂i = C

}
·max

(
0, yi − β̂0 − x>i β̂

)
15.4.9 Derivation of the AdaBoost algorithm as the solution of the ad-

ditive logit model
The following derivation comes from Section 10.4 in Hastie et al. (2009).
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1. The objective function is equal to:

L
(
β(s), f(s)

)
=

n∑
i=1
L
(
yi, ĝ(s−1) (xi) + β(s)f(s) (xi)

)
=

n∑
i=1

e−yi(ĝ(s−1)(xi)+β(s)f(s)(xi))

=
n∑
i=1

wi,se
−yiβ(s)f(s)(xi)

where the expression of wi,s is equal to:

wi,s = e−yiĝ(s−1)(xi)

2. Since we have yif(s) (xi) = 1 if yi = yi,s and yif(s) (xi) = −1 if yi 6= yi,s, we obtain:

L
(
β(s), f(s)

)
=

n∑
i=1

wi,se
−yiβ(s)f(s)(xi) · 1 {yi = yi,s}+

n∑
i=1

wi,se
−yiβ(s)f(s)(xi) · 1 {yi 6= yi,s}

= e−β(s)

n∑
i=1

wi,s · 1 {yi = yi,s}+

eβ(s)

n∑
i=1

wi,s · 1 {yi 6= yi,s}

We notice that:
n∑
i=1

wi,s · 1 {yi = yi,s} =
n∑
i=1

wi,s −
n∑
i=1

wi,s · 1 {yi 6= yi,s}

It follows that:

L
(
β(s), f(s)

)
= e−β(s)

n∑
i=1

wi,s +
(
eβ(s) − e−β(s)

) n∑
i=1

wi,s · 1 {yi 6= yi,s}

=
(
e−β(s) +

(
eβ(s) − e−β(s)

) ∑n
i=1 wi,s · 1 {yi 6= yi,s}∑n

i=1 wi,s

) n∑
i=1

wi,s

=
((
eβ(s) − e−β(s)

)
L(s) + e−β(s)

) n∑
i=1

wi,s

where L(s) is the error rate:

L(s) =
∑n
i=1 wi,s · 1 {yi 6= yi,s}∑n

i=1 wi,s

3. It follows that the minimum is reached when:

∂ L
(
β(s), f(s)

)
∂ β

= 0
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We have:
∂ L

(
β(s), f(s)

)
∂ β

=
((
eβ(s) + e−β(s)

)
L(s) − e−β(s)

) n∑
i=1

wi,s

We deduce that: (
eβ(s) + e−β(s)

)
L(s) − e−β(s) = 0

If we consider the change of variable α = eβ(s) > 0, we obtain:(
α+ 1

α

)
L(s) −

1
α

= 0

or:
α2 =

1− L(s)

L(s)

The solution is:

α? =

√
1− L(s)

L(s)

The optimal value of β(s) is then:

β̂(s) = ln
(1− L(s)

L(s)

)1/2

= 1
2 ln

(1− L(s)

L(s)

)
4. We have:

ĝ(s) (x) =
s−1∑
s′=1

β̂(s′)f̂(s′) (x) + β̂(s)f̂(s) (x)

= ĝ(s−1) (x) + β̂(s)f̂(s) (x)

It follows that:

wi,s+1 = e−yiĝ(s)(xi)

= e−yiĝ(s−1)(x)−yiβ̂(s)f̂(s)(xi)

= wi,se
−yiβ̂(s)f̂(s)(xi)

Using the fact that −yif̂(s) (xi) = 2·1 {yi 6= ŷi,s}−1, the expression of wi,s+1 becomes:

wi,s+1 = wi,se
2β̂(s)1{yi 6=ŷi,s}e−β̂(s)

= wi,se
ws·1{yi 6=ŷi,s}e−β̂(s)

where:
ws = 2β̂(s) = ln

(1− L(s)

L(s)

)
The normalized weights are then:

wi,s+1 = wi,se
ws·1{yi 6=ŷi,s}e−β̂(s)∑n

i′=1 wi′,se
ws·1{yi′ 6=ŷi′,s}e−β̂(s)

= wi,se
ws·1{yi 6=ŷi,s}∑n

i′=1 wi′,se
ws·1{yi′ 6=ŷi′,s}
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5. The AdaBoost model can be viewed as an additive model, which is estimated using the
forward stagewise method and the softmax loss function. However, there is a strong
difference. Indeed, the solution f̂(s) is given by:

f̂(s) = arg min
n∑
i=1

wi,se
−ws·1{yi 6=fs(xi)}

because −yiβ̂(s)f(s) (xi) = 2β̂(s) · 1 {yi 6= yi,s} − β̂(s) and:

L
(
β̂(s), f(s)

)
= e−β̂(s)

n∑
i=1

wi,se
−ws·1{yi 6=yi,s}

In the AdaBoost algorithm, the objective function for finding f̂(s) is exogenous.

15.4.10 Weighted estimation
1. (a) We have:

θ̂ = arg max `w (θ)

(b) The Jacobian matrix is:
Jw (θ) = w> � J (θ)

where J (θ) is the Jacobian matrix associated to the unweighted log-likelihood
function ` (θ) =

∑n
i=1 `i (θ). For the Hessian matrix, we have:

Hw (θ) =
n∑
i=1

wiHi (θ)

where Hi (θ) is the unweighted Hessian matrix:

Hi (θ) =



∂2`i (θ)
∂ θ1 ∂ θ1

∂2`i (θ)
∂ θ1 ∂ θ2`i (θ) · · · ∂2`i (θ)

∂ θ1 ∂ θK
∂2`i (θ)
∂ θ2 ∂ θ1

∂2`i (θ)
∂ θ2 ∂ θ2

∂2`i (θ)
∂ θ2 ∂ θK

. . .
∂2`i (θ)
∂ θK ∂ θ1

∂2`i (θ)
∂ θK ∂ θ2

∂2`i (θ)
∂ θK ∂ θK


2. (a) The least squares loss function becomes:

Lw (θ) =
n∑
i=1

wi

ny∑
j=1

1
2 (yj (xi)− yi,j)2

We also have:
∂ Lw (θ)
∂ γ

= (Gy,y �Gy,v)> (w � Z)

and:
∂ Lw (θ)
∂ β

= (((Gy,y �Gy,v) γ)�Gz,u)> (w �X)

where the matrices Gy,y, Gy,v, Gz,u, Z, X and γ are those defined in Exercise
15.4.7 on page 303.
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(b) The cross-entropy loss function becomes:

Lw (θ) = −
n∑
i=1

wi (yi ln yj (xi) + (1− yi) (1− ln yj (xi)))

We also have:
∂ Lw (θ)
∂ γ

=
(
Ŷ − Y

)>
(w � Z)

and:
∂ Lw (θ)
∂ β

=
(((

Ŷ − Y
)
γ
)
� Z � (1− Z)

)ᵀ
(w �X)

where the matrices Ŷ , Y , Z, X and γ are those defined in Exercise 15.4.7 on
page 303.

3. (a) The soft margin classification problem becomes:

{
β̂0, β̂, ξ̂

}
= arg min 1

2 ‖β‖
2
2 + C

n∑
i=1

wiξi

s.t.
{
yi
(
β0 + x>i β

)
≥ 1− ξi

ξi ≥ 0 for i = 1, . . . , n

(b) For the primal problem, the difference concerns the vector R:

R =
(

0K+1
−Cw

)
For the dual problem, the difference concerns the bounds:

α̂ = arg min 1
2α
>Γα− α>1n

s.t.
{
y>α = 0
0n ≤ α ≤ Cw

It follows that the support vectors corresponds to training points such that 0 <
αi < Cwi.

(c) Hard margin classification assumes that the training set is linearly separable.
So, there is no impact of weights on the solution. This is why it is impossible
to introduce weights in the objective function of the hard margin classification
problem.



Appendix A
Technical Appendix

A.4.1 Discrete-time random process
1. (a) We have x0 ∈ {0} and F0 = {0}. For t = 1, x1 can take the value 0 or 1. We

deduce that x1 ∈ {0, 1} and F1 = {{0} , {1} , {0, 0} , {0, 1}}. Similarly, we have
x2 ∈ {0, 1, 2} and:

F2 =
{
{0} , {1} , {2} , {0, 0} , {0, 1} , {0, 2} , {1, 1} , {1, 2} ,

{0, 0, 0} , {0, 0, 1} , {0, 1, 1} , {0, 1, 2}

}
(b) We have1 E [|X (t)|] = t

√
2/π <∞. It s < t, we have:

E [Xt | Fs] = E [Xt−1 + εt | Fs]

= E
[
Xs +

∑t−s+1
n=0 εt−n | Fs

]
= E [Xs | Fs] + E

[∑t−s+1
n=0 εt−n | Fs

]
= xs + 0
= xs

We deduce that Xt is a martingale.

2. We have:

Xt = φXt−1 + εt

= φ (φXt−2 + εt−1) + εt

= φ2Xt−2 + φεt−1 + εt

=
∞∑
n=0

φnεt−n

because limn→∞ φn = 0.

(a) We have:

E
[
X2
t

]
=

∞∑
n=0

φ2nE
[
ε2
t−n
]

= σ2
∞∑
n=0

φ2n

= σ2

1− φ2

< ∞
1See Question 1(c) of Exercise A.4.2.
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∀t ∈ Z, we have E [Xt] = E [
∑∞
n=0 φ

nεt−n] = 0. We deduce that:

E [Xt] = E [Xs]

∀ (s, t) ∈ Z with t ≥ s and ∀u ≥ 0, we have:

E [Xs+uXt+u] = E

[ ∞∑
n=0

φnεs+u−n

∞∑
n=0

φnεt+u−n

]

= E

[ ∞∑
n=0

φnεs+u−n

∞∑
n=t−s

φnεt+u−n

]

= E

[ ∞∑
n=0

φnεs+u−n

∞∑
n=0

φt−s+nεs+u−n

]

= φt−sE

[ ∞∑
n=0

φ2nε2
s+u−n

]

= φt−s

1− φ2σ
2

= E [XsXt]

We deduce that Xt is a weak-sense stationary process.
(b) We have:

P {Xt ∈ A} =
∫
A

√
1− φ2

σ2
√

2π
exp

(
−
(
1− φ2)x2

2σ2

)
dx

The probability P {Xt ∈ A} does not depend on t. We deduce that:

P {Xt ∈ A} = P {Xs ∈ A}

(c) We have:

E [Xt | Ft−1] = E [φXt−1 + εt | Ft−1]
= φxt−1

6= xt−1

It follows that Xt is a Markov process only if φ is equal to 0.
(d) We have:

E
[
X2
t

]
= E

[
(εt + θεt−1)2

]
=

(
1 + θ2)σ2

< ∞

∀t ∈ Z, we have E [Xt] = E [εt + θεt−1] = 0. We deduce that E [Xt] = E [Xs].
∀ (s, t) ∈ Z with t ≥ s and ∀u ≥ 0, we have:

E [Xs+uXt+u] = E [(εs+u + θεs+u−1) (εt+u + θεt+u−1)]
= E [εs+uεt+u] + θE [εs+u−1εt+u] +

θE [εs+uεt+u−1] + θ2E [εs+u−1εt+u−1]

=


(
1 + θ2)σ2 if t = s
θσ2 if |t− s| = 1
0 if |t− s| > 1
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Since we have E [Xs+uXt+u] = E [XsXt], we conclude that Xt is a weak-sense
stationary process. It is easy to show that the probability P {Xt ∈ A} does not
depend on t. This implies that Xt is a strong-sense stationary process. We have:

E [Xt | Ft−1] = E [εt + θεt−1 | Ft−1]
= θet−1

6= et−1 + θet−2

6= xt−1

The MA(1) process is not a Markov process.

A.4.2 Properties of Brownian motion

1. (a) We have:

E [W (t)] = E [W (t)−W (0)]
= 0

(b) We assume that s < t. We have:

cov (W (s)W (t)) = E [W (s)W (t)]
= E [W (s) (W (t)−W (s) +W (s))]
= E [W (s) (W (t)−W (s))] + E

[
W 2 (s)

]
= E [(W (s)−W (0)) (W (t)−W (s))] +

E
[
(W (s)−W (0))2

]
= 0 + s

= s

(c) We have:

E [|W (t)|] =
∫ ∞
−∞

|x|√
2πt

e−
1
2tx

2
dx

= 2
∫ ∞

0

x√
2πt

e−
1
2tx

2
dx

=
√

2
πt

[
−te− 1

2tx
2
]∞

0

=
√

2t
π

< ∞

and:

E [W (t) | Fs] = E [W (s) + (W (t)−W (s)) | Fs]
= E [W (s) | Fs] + E [W (t)−W (s) | Fs]
= ws + 0
= ws
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2. We only consider h→ 0+ because the case h→ 0− is symmetric. We have2:

P {|W (t+ h)−W (t)| > ε} = 2
∫ −ε
−∞

1√
2πh

exp
(
− 1

2hx
2
)

dx

= 2
∫ 0

−∞

1√
2πh

e−
1

2h (√hy+ε)2√
hdy

=
√

2
π

exp
(
− ε

2

2h

)∫ 0

−∞
e
− y

2
2 −

yε√
h dy

We note f (y) = −y
2

2 −
yε√
h
. We have:

f ′ (y) = −y − ε√
h

Therefore, f (y) is an increasing function on
]
−∞,−h−1/2ε

]
and a decreasing function

on
[
−h−1/2ε, 0

]
. We deduce that:

0 ≤ f (y) ≤ ε2

2h

and: ∫ 0

−∞
exp

(
−y

2

2 −
yε√
h

)
dy ≤ C

where C ∈ R+. It follows that:

0 ≤ P {|W (t+ h)−W (t)| > ε} ≤ C
√

2
π

exp
(
− ε

2

2h

)
and:

0 ≤ lim
h→0+

P {|W (t+ h)−W (t)| > ε} ≤ C
√

2
π

lim
h→0+

exp
(
− ε

2

2h

)
Since limh→0+ exp

(
− ε2

2h

)
= 0, we deduce that:

lim
h→0+

P {|W (t+ h)−W (t)| > ε} = 0

3. We have:
E
[
W 2 (t)

]
= t

and:

E
[
W 2 (t)

∣∣Fs] = E
[

(W (t)−W (s) +W (s))2
∣∣∣Fs]

= E
[
W (s)2 | Fs

]
+ 2E [ (W (t)−W (s))W (s)| Fs] +

E
[

(W (t)−W (s))2
∣∣∣Fs]

= 0 + 0 + (t− s)
= t− s

2We use the change of variable y = h−1/2 (x− ε).
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If X ∼ N (0, 1), we know that E
[
X3] = 0 and E

[
X4] = 3. We deduce that

E
[
W 3 (t)

]
= 0 and:

E
[
W 4 (t)

]
= E

[(
t1/2N (0, 1)

)4
]

= 3t2

We remind that E
[
exp

(
N
(
µ, σ2))] = exp

(
µ+ 0.5σ2). We deduce that:

E
[
eW (t)

]
= e

1
2 t

and:

E
[
eW (t)

∣∣∣Fs] = E
[
eW (s)+W (t)−W (s)

∣∣∣Fs]
= eW (s)E

[
eW (t)−W (s)

∣∣∣Fs]
= eW (s)e

1
2 (t−s)

= e
1
2 (t−s)W (s)

4. If X ∼ N (0, 1) and n ∈ N?, we have:

E
[
X2n] = (2n− 1)E

[
X2(n−1)

]
= (2n− 1) (2n− 3)E

[
X2(n−2)

]
= (2n− 1) (2n− 3) · · · 5 · 3 · 1 · E

[
X2]

= (2n− 1)!!

and:
E
[
Xn+1] = 0

where n!! denotes the double factorial. We can also show that:

(2n− 1)!! = (2n)!
2nn!

It follows that:

E
[
W 2n (t)

]
= (2n)!

2nn! t
n

and:
E
[
Wn+1 (t)

]
= 0

For an even integer n, we deduce that:

E [Wn (t)] = n!
2n/2 (n/2)!

t
n/2

whereas for an odd integer n, E [Wn (t)] is equal to 0.
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A.4.3 Stochastic integral for random step functions

1. We note (∗) =
∫ b
a

(αf + βg) (t) dW (t). We have:

(∗) =
n−1∑
i=0

(αf + βg) (ti) (W (ti+1)−W (ti))

=
n−1∑
i=0

(αf (ti) + βg (ti)) (W (ti+1)−W (ti))

= α

n−1∑
i=0

f (ti) (W (ti+1)−W (ti)) +

β

n−1∑
i=0

g (ti) (W (ti+1)−W (ti))

= α

∫ b

a

f (t) dW (t) + β

∫ b

a

g (t) dW (t)

We conclude that the stochastic integral verifies the linearity property. We now intro-
duce the following partition:

a = t0 < t1 < · · · < tk = c < · · · < tn < b

We deduce that:∫ b

a

f (t) dW (t) =
n−1∑
i=0

f (ti) (W (ti+1)−W (ti))

=
k−1∑
i=0

f (ti) (W (ti+1)−W (ti)) +

n−1∑
i=k

f (ti) (W (ti+1)−W (ti))

=
∫ c

a

f (t) dW (t) +
∫ b

c

f (t) dW (t)

It follows that the Chasles decomposition property holds.

2. We have:

E

[∫ b

a

f (t) dW (t)
]

= E

[
n−1∑
i=0

f (ti) (W (ti+1)−W (ti))
]

=
n−1∑
i=0

E [f (ti) (W (ti+1)−W (ti))]

=
n−1∑
i=0

E [f (ti)] · E [W (ti+1)−W (ti)]

= 0



Technical Appendix 331

We note (∗) = E
[∫ b
a
f (t) dW (t)

∫ b
a
g (t) dW (t)

]
. We have:

(∗) = E

[
n−1∑
i=0

f (ti) (W (ti+1)−W (ti))
n−1∑
i=0

g (ti) (W (ti+1)−W (ti))
]

= E

n−1∑
i=0

n−1∑
j=0

f (ti) g (tj) (W (ti+1)−W (ti)) (W (tj+1)−W (tj))


=

n−1∑
i=0

E
[
f (ti) g (tj) (W (ti+1)−W (ti))2

]
+

2
∑
i>j

E [f (ti) g (tj) (W (ti+1)−W (ti)) (W (tj+1)−W (tj))]

We deduce that:

(∗) =
n−1∑
i=0

E [f (ti) g (tj)] · E
[
(W (ti+1)−W (ti))2

]
+

2
∑
i>j

E [f (ti) g (tj)] · E [(W (ti+1)−W (ti)) (W (tj+1)−W (tj))]

=
n−1∑
i=0

E [f (ti) g (tj)] (ti+1 − ti)

= E

[
n−1∑
i=0

f (ti) g (tj) (ti+1 − ti)
]

= E

[∫ b

a

f (t) g (t) dt
]

This result is known as the Itô isometry property. It is particularly useful for comput-
ing the covariance between two Itô processes X1 (t) and X2 (t):

cov (X1 (t) , X1 (t)) = E

[∫ b

a

σ1 (t) dW (t)
∫ b

a

σ2 (t) dW (t)
]

= E

[∫ b

a

σ1 (t)σ2 (t) dt
]

where σ1 (t) and σ2 (t) are the diffusion coefficients of X1 (t) and X2 (t).

3. We remind that:

var
(∫ b

a

f (t) dW (t)
)

= E

(∫ b

a

f (t) dW (t)
)2
−

E2

[∫ b

a

f (t) dW (t)
]
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It follows that:

var
(∫ b

a

f (t) dW (t)
)

= E

[∫ b

a

f (t)2 dt
]
− 02

Since the mathematical expectation and the Riemann-Stieltjes are both linear, we
conclude that:

var
(∫ b

a

f (t) dW (t)
)

=
∫ b

a

E
[
f2 (t)

]
dt

A.4.4 Power of Brownian motion
1. We apply the Itô formula with µ (t, x) = 0, σ (t, x) = 1 and f (t, x) = x2. Since we

have ∂tf (t, x) = 0, ∂xf (t, x) = 2x and ∂2
xf (t, x) = 2, we deduce that:

dW 2 (t) = df (t,W (t))

=
(

0 + 2W (t)× 0 + 1
2 × 2× 1

)
dt+ (2W (t)× 1) dW (t)

= dt+ 2W (t) dW (t)

2. It follows that: ∫ t

0
dW 2 (s) =

∫ t

0
ds+ 2

∫ t

0
W (s) dW (s)

and:
W 2 (t) = t+ 2

∫ t

0
W (s) dW (s)

Therefore, we obtain:

I (t) =
∫ t

0
W (s) dW (s)

= 1
2
(
W 2 (t)− t

)
If follows that the expected value is equal to:

E
[∫ t

0
W (s) dW (s)

]
= E

[
1
2
(
W 2 (t)− t

)]
=

E
[
W 2 (t)

]
− t

2
= 0

Concerning the variance, we obtain:

var
(∫ t

0
W (s) dW (s)

)
= var

(
1
2
(
W 2 (t)− t

))
= 1

4 var
(
W 2 (t)

)
= 1

4
(
E
[
W 4 (t)

]
− E2 [W 2 (t)

])
= 1

4
(
3t2 − t2

)
= t2

2
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We also notice that we can directly find this result by using the Itô isometry property:

var
(∫ t

0
W (s) dW (s)

)
= E

[(∫ t

0
W (s) dW (s)

)2]

=
∫ t

0
E
[
W 2 (s)

]
ds

=
∫ t

0
sds

= t2

2

3. We use the function f (t, x) = xn. We have ∂tf (t, x) = 0, ∂xf (t, x) = nxn−1 and
∂2
xf (t, x) = n (n− 1)xn−2. The Itô formula gives:

dWn (t) = df (t,W (t))

= 1
2n (n− 1)W (t)n−2 dt+ nWn−1 (t) dW (t) (A.1)

4. Since In (t) is an Itô integral, we have:

E [In (t)] = 0

and3:

var (In (t)) =
∫ t

0
E
[
W 2n (s)

]
ds

=
∫ t

0

(2n)!
2nn! s

n ds

= (2n)!
2nn!

∫ t

0
sn ds

= (2n)!
2n (n+ 1)! t

n+1

Finally, we obtain the following values of var (In (t)):

n 1 2 3 4 5 6
var (In (t)) 1

2 t
2 t3 15

4 t
4 21t5 315

2 t5 1485t5

5. In Question 4 of Exercise A.4.2, we have shown that:

E [Jn (t)] = E [Wn (t)]

=
{ n!

2n/2(n/2)! t
n/2 if n is even

0 if n is odd

Let us assume that n is odd. We have:

var (Jn (t)) = E
[
W 2n (t)

]
= (2n)!

2nn! t
n

3We use the result obtained in Question 4 of Exercise A.4.2.
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In the case where n is even, we deduce that:

var (Jn (t)) = E
[
W 2n (t)

]
− E2 [Wn (t)]

=
(

(2n)!
(n)! −

(
n!

(n/2)!

)2
)
tn

2n

6. We have:

E [Kn (t)] = E
[∫ t

0
Wn (s) ds

]
=

∫ t

0
E [Wn (s)] ds

If n is odd, we deduce that:

E [Kn (t)] =
∫ t

0
0 ds

= 0

If n is even, we deduce that:

E [Kn (t)] =
∫ t

0

n!
2n/2 (n/2)!

s
n/2 ds

= n!
2n/2 (n/2)!

∫ t

0
s
n/2 ds

= n!
2n/2 (n/2)!

[
sn/2+1

n/2 + 1

]t
0

= n!
2n/2 (n/2 + 1)!

t
n/2+1

7. Concerning the second non-central moment, we have:

E
[
K2
n (t)

]
= E

[(∫ t

0
Wn (s) ds

)2]

= E
[(∫ t

0
Wn (s) ds

)(∫ t

0
Wn (u) du

)]
= E

[∫ t

0

∫ t

0
Wn (s)Wn (u) dsdu

]
=

∫ t

0

∫ t

0
E [Wn (s)Wn (u)] dsdu

by using Fubini’s theorem. The challenge lies in computing the term E [Wn (s)Wn (u)].
We face two difficulties. First,Wn (s) andWn (u) are not independent. Therefore, the
covariance involves the power series of W (s). Second, we must distinguish the case
s < u and u ≥ u. This is why it is long and tedious to compute the variance for high
order n.
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8. In the case n = 1, we obtain:

E
[
K2

1 (t)
]

=
∫ t

0

∫ t

0
E [W (s)W (u)] dsdu

=
∫ t

0

(∫ t

0
min (s, u) ds

)
du

=
∫ t

0

(∫ u

0
min (s, u) ds+

∫ t

u

min (s, u) ds
)

du

=
∫ t

0

(∫ u

0
sds+

∫ t

u

uds
)

du

=
∫ t

0

(
u2

2 + u (t− u)
)

du

=
[
u3

6 + u2

2 t−
u3

3

]t
0

= t3

3
and:

var (K1 (t)) = E
[
K2

1 (t)
]
− E2 [K1 (t)]

= 1
3 t

3

For n = 2 and s < u, we have:

W 2 (s)W 2 (u) = (W (s)−W (0))2 (W (u)−W (0))2

= (W (s)−W (0))2 (W (s)−W (0) +W (u)−W (s))2

= (W (s)−W (0))4 + 2 (W (s)−W (0))3 (W (u)−W (s)) +
(W (s)−W (0))2 (W (u)−W (s))2

Since W (s) −W (0) and W (u) −W (s) are two independent random variables, we
obtain:

E
[
W 2 (s)W 2 (u)

]
= 3s2 + 2 · 0 + s (u− s)
= 2s2 + us

We deduce that:

E
[
K2

2 (t)
]

=
∫ t

0

∫ t

0
E
[
W 2 (s)W 2 (u)

]
dsdu

=
∫ t

0

(∫ u

0

(
2s2 + us

)
ds+

∫ t

u

(
2u2 + us

)
ds
)

du

=
∫ t

0

([
2
3s

3 + 1
2us

2
]u

0
+
[
2u2s+ 1

2us
2
]t
u

)
du

=
∫ t

0

(
2u2t+ 1

2ut
2 − 4

3u
3
)

du

=
[

2
3u

3t+ 1
4u

2t2 − 1
3u

4
]t

0

= 7
12 t

4
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and:

var (K2 (t)) = E
[
K2

2 (t)
]
− E2 [K2 (t)]

= 7
12 t

4 −
(

2!
2 · 2! t

2
)2

= 1
3 t

4

For n = 3 and s < u, we have:

W 3 (s)W 3 (u) = (W (s)−W (0))3 (W (u)−W (0))3

= (W (s)−W (0))3 (W (s)−W (0) +W (u)−W (s))3

= (W (s)−W (0))6 + 3 (W (s)−W (0))5 (W (u)−W (s)) +
3 (W (s)−W (0))4 (W (u)−W (s))2 +
(W (s)−W (0))3 (W (u)−W (s))3

It follows that:

E
[
W 3 (s)W 3 (u)

]
=

(
6!

23 · 3!s
3
)

+ 3 · 0 + 3 ·
(

4!
22 · 2!s

2
)

(u− s) + 0

= 6s3 + 9us2

We deduce that:

E
[
K2

3 (t)
]

=
∫ t

0

∫ t

0
E
[
W 3 (s)W 3 (u)

]
dsdu

=
∫ t

0

(∫ u

0

(
6s3 + 9us2) ds+

∫ t

u

(
6u3 + 9u2s

)
ds
)

du

=
∫ t

0

([
3
2s

4 + 3us3
]u

0
+
[
6u3s+ 9

2u
2s2
]t
u

)
du

=
∫ t

0

(
−6u4 + 6u3t+ 9

2u
2t2
)

du

=
[
−6

5u
5 + 3

2u
4t+ 3

2u
3t2
]t

0

= 9
5 t

5

and:

var (K3 (t)) = E
[
K2

3 (t)
]
− E2 [K3 (t)]

= 9
5 t

5

9. Using Equation (A.1), we deduce that:

In (t) =
∫ t

0
Wn (s) dW (s)

= 1
n+ 1W

n+1 (t)− n

2

∫ t

0
Wn−1 (s) ds

= 1
n+ 1Jn+1 (t)− n

2Kn−1 (t)
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and:

Jn (t) = Wn (t)

= 1
2n (n− 1)

∫ t

0
Wn−2 (s) ds+ n

∫ t

0
Wn−1 (s) dW (s)

= n (n− 1)
2 Kn−2 (t) + nIn−1 (t)

We also have:

Kn (t) =
∫ t

0
Wn (s) ds

= 2
(n+ 2) (n+ 1)Jn+2 (t)− 2

(n+ 1)In+1 (t)

A.4.5 Exponential of Brownian motion

1. We apply the Itô formula with µ (t, x) = 0, σ (t, x) = 1 and f (t, x) = ex. Since we
have ∂tf (t, x) = 0, ∂xf (t, x) = ex and ∂2

xf (t, x) = ex, we deduce that:

deW (t) = df (t,W (t))

= 1
2e

W (t) dt+ eW (t) dW (t)

and: ∫ t

0
deW (s) = 1

2

∫ t

0
eW (s) ds+

∫ t

0
eW (s) dW (s)

It follows that:

eW (t) = 1 + 1
2

∫ t

0
eW (s) ds+

∫ t

0
eW (s) dW (s)

or:

X (t) = 1 + 1
2Y (t) + Z (t) (A.2)

2. X (t) = eW (t) is lognormal random variable with E [X (t)] = e
1
2 t and var (X (t)) =

e2t − et. In the case Z (t) =
∫ t

0 e
W (s) dW (s), we have:

E [Z (t)] = 0

and:

var (Z (t)) =
∫ t

0
E
[
e2W (s)

]
ds

=
∫ t

0
e2s ds

= 1
2
(
e2t − 1

)
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In the case of Y (t) =
∫ t

0 e
W (s) ds, we have:

E [Y (t)] =
∫ t

0
E
[
eW (s)

]
ds

=
∫ t

0
e

1
2 s ds

=
[
2e 1

2 s
]t

0

= 2
(
e

1
2 t − 1

)
and4:

E
[
Y 2 (t)

]
= E

[(∫ t

0
eW (s) ds

)(∫ t

0
eW (u) du

)]
=

∫ t

0

∫ t

0
E
[
eW (s)+W (u)

]
dsdu

=
∫ t

0

∫ t

0
e

1
2 (s+u+2 min(s,u)) dsdu

=
∫ t

0

(∫ u

0
e

1
2 (3s+u) ds+

∫ t

u

e
1
2 (s+3u) ds

)
du

=
∫ t

0

([
2
3e

1
2 (3s+u)

]u
0

+
[
2e 1

2 (s+3u)
]t
u

)
du

=
∫ t

0

(
2e 1

2 (t+3u) − 2
3e

2u − 2
3e

1
2u

)
du

=
[

4
3e

1
2 (t+3u) − 4

6e
2u − 4

3e
1
2u

]t
0

= 2
3e

2t − 8
3e

1
2 t + 2

It follows that:

var (Y (t)) = E

[(∫ t

0
eW (s) ds

)2]
− E2

[∫ t

0
eW (s) ds

]
=

(
2
3e

2t − 8
3e

1
2 t + 2

)
− 4

(
e

1
2 t − 1

)2

= 2
3e

2t − 4et + 16
3 e

1
2 t − 2

4We have E [W (s) +W (u)] = 0 and:

var (W (s) +W (u)) = s+ u+ 2 min (s, u)
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3. From Equation (A.2), we deduce that:

cov (Y (t) , Z (t)) = 1
4 var (Y (t)) + var (Z (t))− var (X (t))

= 1
4

(
2
3e

2t − 4et + 16
3 e

1
2 t − 2

)
+ 1

2
(
e2t − 1

)
−(

e2t − et
)

= −1
3e

2t + 4
3e

1
2 t − 1

Finally, we obtain:

ρ (Y (t) , Z (t)) = −1/3e2t + 4/3et/2 − 1√(
1/3e2t − 2et + 8/3et/2 − 1

)
(e2t − 1)

In Figure A.1, we have reported the correlation ρ (Y (t) , Z (t)) with respect to the
time.

FIGURE A.1: Correlation between
∫ t

0 e
W (s) ds and

∫ t
0 e

W (s) dW (s)

A.4.6 Exponential martingales
1. We have xs = X (s) = eW (s) and:

E
[
eW (t) | Fs

]
= E

[
eW (s)+W (t)−W (s) | Fs

]
= eW (s)E

[
eW (t)−W (s) | Fs

]
= eW (s)e

1
2 (t−s)

6= xs
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Therefore, X (t) is not a martingale.

2. The previous question suggests that m (t) is equal to e− 1
2 t. We have:

M (t) = e−
1
2 teW (t)

= eW (t)− 1
2 t

It follows that:

E [M (t) | Fs] = E
[
eW (t)− 1

2 t | Fs
]

= E
[
eW (s)+W (t)−W (s)− 1

2 t | Fs
]

= eW (s)e
1
2 (t−s)e−

1
2 t

= eW (s)− 1
2 s

= M (s)

3. By applying Itô’s lemma with f (t, y) = ey, we obtain:

dM (t) =
(
−1

2e
Y (t)g2 (t) + 1

2e
Y (t)g2 (t)

)
dt+ eY (t)g (t) dW (t)

= M (t) g (t) dW (t)

It follows that:

M (t)−M (0) =
∫ t

0
dM (s)

=
∫ t

0
M (s) g (s) dW (s) (A.3)

Since g (t) is not random, we deduce that Y (t) is a Gaussian process. We have:

E [Y (t)] = −1
2

∫ t

0
g2 (s) ds

and:

var (Y (t)) = E

[(∫ t

0
g (s) dW (s)

)2]

=
∫ t

0
g2 (s) ds

We deduce that:

E [M (t) | Fs] = E
[
e
− 1

2

∫ t
0
g2(u) du+

∫ t
0
g(u) dW (u) | Fs

]
= e

− 1
2

∫ s
0
g2(u) du+

∫ s
0
g(u) dW (u) ·

E
[
e
− 1

2

∫ t
s
g2(u) du+

∫ t
s
g(u) dW (u) | Fs

]
= M (s) e−

1
2

∫ t
s
g2(u) du+ 1

2

∫ t
s
g2(u) du

= M (s)

We conclude that M (t) is a martingale.
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4. We notice that M (0) = 1. From Equation (A.3), we have:

M (t) = 1 +
∫ t

0
M (s) g (s) dW (s) (A.4)

Since
∫ t

0 M (s) g (s) dW (s) is an Itô integral, we deduce thatM (t) is a Ft-martingale.
We say that M (t) is the exponential martingale of X (t) = g (t) and we have:

E [M (t)] = 1

We also notice that Equation (A.4) is related to the martingale representation theo-
rem:

M (t) = E [M (0)] +
∫ t

0
f (s) dW (s)

where f (s) = M (s) g (s).

A.4.7 Existence of solutions to stochastic differential equations
1. We have µ (t, x) = 1 + x and σ (t, x) = 4. It follows that:

|µ (t, x)− µ (t, y)| = |1 + x− 1− y|
≤ 1 · |x− y|

and:

|σ (t, x)− σ (t, y)| = |4− 4| = 0
≤ 1 · |x− y|

We deduce that K1 = 1. Using the Cauchy-Schwarz inequality, we also have:

|µ (t, x)| = |1 + x| ≤ |1|+ |x|
≤ 4 · (1 + |x|)

and:

|σ (t, x)| = 4
≤ 4 · (1 + |x|)

We deduce that K2 = 2. We deduce that there exists a solution to the SDE and this
solution is unique.

2. We have:

|µ (t, x)− µ (t, y)| = |a (b− x)− a (b− y)|
= |a| · |x− y|

and:

|σ (t, x)− σ (t, y)| = |cx− cy|
= |c| · |x− y|

By applying the Yamada-Watanabe theorem with K = |a| and h (u) = |c|u, we
conclude that the solution exists and is unique.
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A.4.8 Itô calculus and stochastic integration
1. We consider the transform function:

Y (t) = f (t,X (t))
= (1 + t)X (t)−X (0)

We have ∂tf (t, x) = x, ∂xf (t, x) = 1 + t and ∂2
xf (t, x) = 0. It follows that:

dY (t) =
(
X (t)− (1 + t) X (t)

1 + t

)
dt+ (1 + t) 1

1 + t
dW (t)

= dW (t)

and Y (0) = X (0)−X (0) = 0. We deduce that Y (t) = W (t) and:

X (t) = X (0) +W (t)
1 + t

2. Using f (t, x) = x−1
0 − x−1, we have ∂tf (t, x) = 0, ∂xf (t, x) = x−2 and ∂2

xf (t, x) =
−2x−3. It follows that:

dY (t) =
(
X (t)
X2 (t) −

1
2

2X2 (t)
X3 (t)

)
dt+ X2 (t)

X2 (t) dW (t)

= dW (t)

and Y (0) = 0. We deduce that Y (t) = W (t) and:

X (t) = 1
X−1 (0)−W (t)

3. We have:

dX (t) = −
(∫ t

0

1
1− s dW (s)

)
dt+

(
1− t
1− t

)
dW (t)

= − 1
1− t

(∫ t

0

1− t
1− s dW (s)

)
dt+ dW (t)

= −X (t)
1− t dt+ dW (t)

4. We have f (t, x) = (1− t)−1
x, ∂tf (t, x) = (1− t)−2

x, ∂xf (t, x) = (1− t)−1 and
∂2
xf (t, x) = 0. It follows that:

dY (t) =
(

X (t)
(1− t)2 −

X (t)
(1− t)2

)
dt+ 1

1− t dW (t)

= 1
1− t dW (t)

We deduce that:
Y (t)− Y (0) =

∫ t

0

1
1− s dW (s)

Since we have X (0) = 0, it follows that Y (0) = 0 and:

Y (t) =
∫ t

0

1
1− s dW (s)
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5. Using Ito’s lemma, we have:

dX (t) =
(
∂tf (t,W (t)) + 1

2∂
2
xf (t,W (t))

)
dt+ ∂xf (t,W (t)) dW (t)

Since X (t) is a martingale, it satisfies the martingale representation theorem:

X (t) = E [X (0)] +
∫ t

0
Z (s) dW (s)

where Z (t) is a Ft-adapted process. We deduce that:

Z (t) = ∂xf (t,W (t))

and:
∂ f (t,W (t))

∂ t
+ 1

2
∂2 f (t,W (t))

∂ x2 = 0

Then, X (t) is a Ft-martingale if this condition is satisfied.

6. In the case of the cubic martingale, we have f (t, x) = x3 − 3tx, ∂tf (t, x) = −3x,
∂xf (t, x) = 3x2 − 3t, ∂2

xf (t, x) = 6x and:

∂ f (t,W (t))
∂ t

+ 1
2
∂2 f (t,W (t))

∂ x2 = −3W (t) + 1
26W (t)

= 0

In the case of the quartic martingale, we have f (t, x) = x4 − 6tx2 + 3t2, ∂tf (t, x) =
−6x2 + 6t, ∂xf (t, x) = 4x3 − 12tx, ∂2

xf (t, x) = 12x2 − 12t and:

∂ f (t,W (t))
∂ t

+ 1
2
∂2 f (t,W (t))

∂ x2 = −6W 2 (t) + 6t+ 1
2
(
12W 2 (t)− 12t

)
= 0

We conclude that the necessary condition is satisfied for the cubic and quartic mar-
tingales.

7. We note f (t, x) = et/2 cos (x). Since we have ∂tf (t, x) = 1
2e
t/2 cos (x), ∂xf (t, x) =

−et/2 sin (x), ∂2
xf (t, x) = −et/2 cos (x), we obtain:

dX (t) =
(

1
2e

t/2 cosW (t)− 1
2e

t/2 cosW (t)
)

dt− et/2 sinW (t) dW (t)

It follows that:
X (t) = 1−

∫ t

0
es/2 sinW (s) dW (s)

X (t) is an Itô integral. Moreover, we verify the condition:

E
[∫ t

0

∣∣∣es/2 sinW (s)
∣∣∣2 ds

]
≤ E

[∫ t

0
es ds

]
≤ tet

< ∞

Then, we deduce that X (t) = et/2 cosW (t) is a martingale.
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A.4.9 Solving a PDE with the Feynman-Kac formula
1. The function g (t) = 1 satisfies the Novikov condition:

E
[
exp

(
1
2

∫ t

0
g2 (s) ds

)]
= e

t
2 <∞

We deduce that Z (t) = W (t) −
∫ t

0 ds is a Brownian motion under the probability
measure Q defined by:

dQ
dP = exp

(∫ t

0
dW (s)− 1

2

∫ t

0
ds
)

= eW (t)− t2

Since we have dZ (t) = dW (t)− dt, we finally obtain that:

dX (t) = dt+ dZ (t) + dt
= 2 dt+ dZ (t)

2. Under the natural filtration Ft, we have:

X (5) = X (t) + (5− t) + (W (5)−W (t))

and5:
E [X (5)| Ft] = x+ (5− t)

If we now consider the filtration Gt generated by the Brownian motion Z (t), we obtain:

X (5) = X (t) + 2 (5− t) + (Z (5)− Z (t))

and:
E [X (5)| Gt] = x+ 2 (5− t)

We deduce that:

E [X (5)| G0] = x+ 2 (5− 0)
= x+ 10

3. We notice that:
−∂tV (t, x) + 10V (t, x) 6= AtV (t, x) + 4

where At is the infinitesimal generator of X (t) with respect to the filtration Ft.
Therefore, we cannot apply the Feynman-Kac formula. However, by changing the
probability measure, we have:

−∂tV (t, x) + 3V (t, x) = 1
2∂

2
xV (t, x) + 2∂xV (t, x) + 4

= A′tV (t, x) + 4

where A′t is the infinitesimal generator of X (t) with respect to the filtration Gt. We

5We note X (t) = x.
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can then apply the Feynman-Kac formula and we have6:

V (t, x) = E
[
X (5) e−

∫ 5

t
3 ds +

∫ 5

t

4
(
e
−
∫ s
t

3 du
)

ds
∣∣∣∣Gt]

= e−3(5−t) · E [X (5)| Gt] +
∫ 5

t

4e−3(s−t) ds

= e−3(5−t) · E [X (5)| Gt] +
[
−4

3e
−3(s−t)

]5

t

= (x+ 10− 2t) e3t−15 + 4
3
(
1− e3t−15)

given that X (t) = x. We check the terminal condition:

V (5, x) = (x+ 10− 2× 5) e3×5−15 + 4
3
(
1− e3×5−15)

= x

We also have:

∂tV (t, x) = 3 (x+ 8− 2t) e3t−15

∂xV (t, x) = e3t−15

∂2
xV (t, x) = 0

It follows that V (t, x) satisfies the PDE:

−∂tV (t, x) + 3V (t, x) = −3 (x+ 8− 2t) e3t−15 + 4
(
1− e3t−15)+

3 (x+ 10− 2t) e3t−15

= 2e3t−15 + 4

= 1
2∂

2
xV (t, x) + 2∂xV (t, x) + 4

4. If the terminal value is V (T, x) = ex, we obtain:

V (t, x) = E
[
eX(5)e

−
∫ 5

t
3 ds +

∫ 5

t

4
(
e
−
∫ s
t

3 du
)

ds
∣∣∣∣Gt]

= e−3(5−t) · E
[
eX(5)

∣∣∣Gt]+ 4
3

(
1− e−3(5−t)

)
We have:

X (5) | Gt ∼ N (x+ 10− 2t, 5− t)

We deduce that:

E
[
eX(5)

∣∣∣Gt] = ex+10−2t+ 1
2 (5−t)

= ex+12.5−2.5t

6At the initial date t = 0, we have:

V (0, x) = (x+ 10) e−15 +
4
3
(
1− e−15

)



346 Handbook of Financial Risk Management

We finally obtain the following solution7:

V (t, x) = e−3(5−t) · ex+12.5−2.5t + 4
3

(
1− e−3(5−t)

)
= ex−2.5+0.5t + 4

3
(
1− e3t−15)

We check the terminal condition:

V (5, x) = ex−2.5+0.5×5 + 4
3
(
1− e3×5−15)

= ex

We also have:

∂tV (t, x) = 0.5ex−2.5+0.5t − 4e3t−15

∂xV (t, x) = ex−2.5+0.5t

∂2
xV (t, x) = ex−2.5+0.5t

It follows that V (t, x) satisfies the PDE:

−∂tV (t, x) + 3V (t, x) = 2.5ex−2.5+0.5t + 4
= 0.5ex−2.5+0.5t + 2ex−2.5+0.5t + 4

= 1
2∂

2
xV (t, x) + 2∂xV (t, x) + 4

A.4.10 Fokker-Planck equation
1. If we consider the following PDE:{

−∂tV (t, x) = 1
2σ

2∂2
xV (t, x) + (a (b− x)) ∂xV (t, x)

V (T, x) = 1 {x = xT }

the solution is given by the Feynman-Kac formula:

V (t, x) = E [1 {X (T ) = xT } | X (t) = x]
= P {X (T ) = xT | X (t) = x}

We have:
∂x [a (b− x)U (t, x)] = −aU (t, x) + a (b− x) ∂xU (t, x)

and:
∂2
x

[
σ2U (t, x)

]
= σ2∂2

xU (t, x)

We deduce that the Fokker-Planck equation is:{
∂tU (t, x) = aU (t, x)− a (b− x) ∂xU (t, x) + 1

2σ
2∂2
xU (t, x)

U (0, x) = 1 {x = x0}

7At the initial date t = 0, we have:

V (0, x) = ex−2.5 +
4
3
(
1− e−15

)
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In Figure A.2, we have represented the probability density function P {X (1) = x | X (0) = 0}
using the two approaches. For that, we solve the two PDE using finite difference meth-
ods. Let uim be the numerical solution of U (ti, xm). By construction, we have:

uim = P {X (ti) = xm | X (0) = 0} · dx
= P {X (ti) = xm | X (0) = 0} · h

where h is the spatial mesh spacing meaning. Therefore, we have to divide the numer-
ical solution by h in order to obtain the density.

FIGURE A.2: Density function of the Ornstein-Uhlenbeck process

2. The solution is given by the Feynman-Kac PDE:{
−∂tV (t, x) = 1

2σ
2x2∂2

xV (t, x) + µx∂xV (t, x)
V (T, x) = 1 {x = xT }

and the Fokker-Planck equation:{
∂tU (t, x) = 1

2σ
2x2∂2

xU (t, x) +
(
2σ2x− µx

)
∂xU (t, x) +

(
σ2 − µ

)
U (t, x)

U (0, x) = 1 {x = x0}

because:
∂x [µxU (t, x)] = µU (t, x) + µx∂xU (t, x)

and:
∂2
x

[
σ2x2U (t, x)

]
= 2σ2U (t, x) + 4σ2x∂xU (t, x) + σ2x2∂2

xU (t, x)

In Figure A.3, we have represented the probability density function P {X (1) = x | X (0) = 0}
using the two approaches.
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FIGURE A.3: Density function of the Geometric Brownian motion

A.4.11 Dynamic strategy based on the current asset price

1. We have:

dV (t) = n (t) dS (t)
= f (S (t))µ (t, S (t)) dt+ f (S (t))σ (t, S (t)) dW (t)

2. We notice that ∂xF (x) = f (x) and ∂2
xF (x) = f ′ (x). Using Itô’s lemma, we have:

dY (t) =
(
∂ F

∂ S
µ (t, S (t)) + 1

2
∂2 F

∂ S2 σ
2 (t, S (t))

)
dt+

∂ F

∂ S
σ (t, S (t)) dW (t)

We deduce that:

dY (t) = f (S (t))µ (t, S (t)) dt+ f (S (t))σ (t, S (t)) dW (t) +
1
2f
′ (S (t))σ2 (t, S (t)) dt

3. Since we have:

dY (t) = dV (t) + 1
2f
′ (S (t))σ2 (t, S (t)) dt

it follows that:

dV (t) = dY (t)− 1
2f
′ (S (t))σ2 (t, S (t)) dt



Technical Appendix 349

We deduce that:

V (T )− V (0) = Y (T )− Y (0)− 1
2

∫ T

0
f ′ (S (t))σ2 (t, S (t)) dt

= F (S (T ))− F (S (0))− 1
2

∫ T

0
f ′ (S (t))σ2 (t, S (t)) dt

Finally, we obtain:

V (T ) = V (0) +
∫ S(T )

S(0)
f (x) dx− 1

2

∫ T

0
f ′ (S (t))σ2 (t, S (t)) dt

= G (T ) + C (T )

where:

G (T ) = V (0) +
∫ S(T )

S(0)
f (x) dx

and:

C (T ) = −1
2

∫ T

0
f ′ (S (t))σ2 (t, S (t)) dt

The first term G (T ) can be interpreted as the option profile of the dynamic strategy
at the maturity date, whereas C (T ) is the cost associated to the continuous trading
strategy.

4. If f (S (t)) = 1 {S (t) > S?}, we have:∫ S(T )

S(0)
1 {x > S?} dx =

{
S (T )− S (0) if S? ≤ S (T )
S? − S (0) if S (T ) < S?

and:
f ′ (x) = −δ (x− S?)

where δ (x) is the Dirac delta function. By assuming that V (0) = S (0), we deduce
that:

V (T ) = S (T ) + (S? − S (T ))+ −
1
2

∫ T

0
δ (S (t)− S?)σ2 (t, S (t)) dt

The option profile of this strategy is the underlying asset plus a put option where the
strike is equal to S?. The cost of the stop-loss strategy is equal to:

C (T ) = −1
2

∫ T

0
δ (S (t)− S?)σ2 (t, S (t)) dt

< 0

5. If f (S (t)) = 1 {S (t) < S?}, we have:∫ S(T )

S(0)
1 {x < S?} dx =

{
S (T )− S (0) if S (T ) ≤ S?
S? − S (0) if S (T ) > S?

and:
f ′ (x) = δ (x− S?)
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Use the results of the previous question, we have:

V (T ) = S (T )− (S (T )− S?)+ + 1
2

∫ T

0
δ (S (t)− S?)σ2 (t, S (t)) dt

The option profile of the stop-gain strategy is the underlying asset minus un call
option where the strike is equal to S?. The cost of the strategy is positive, because
if we cross the gain level (S (t) > S?), we obtain an additional positive P&L that is
equal to S (t)− S?.

6. (a) We buy the asset (n (t) > 0) when the asset price S (t) is below the price target
S?. And we sell the asset (n (t) < 0) when the asset price S (t) is above the price
target S?. This is a contrarian or mean-reverting strategy.

(b) We have: ∫ S(T )

S(0)
m
S? − x
x

dx = mS?

[
ln x− x

S?

]S(T )

S(0)

= mS? ln S (T )
S (0) −m (S (T )− S (0))

and:
f ′ (x) = −mS?

x2

We deduce that:

V (T )− V (0) = mS? (lnS (T )− lnS (0))−m (S (T )− S (0)) +
m

2 S?
∫ T

0

σ2 (t, S (t))
S2 (t) dt

(c) When we have σ (t, S (t)) = σ (t)S (t), we obtain:

V (T )− V (0) = mS? ln S (T )
S (0) −m (S (T )− S (0)) + m

2 S?
∫ T

0
σ2 (t) dt

and:
C (T ) = m

2 S? IV (T )

where IV (T ) is the integrated variance:

IV (T ) =
∫ T

0
σ2 (t) dt

(d) When the asset volatility σ (t) is low, the trend of the asset price is strong. It
means that the asset price can continuously increase or decrease. This is the bad
scenario for the strategy. The good scenario is when the asset price crosses many
times the target price S?. This is why the strategy is more performing when the
realized volatility is high. In Figure A.4, we have illustrated the strategy when
the asset price follows a geometric Brownian motion and the target price is equal
to the initial price8. We notice that the number of times that S (t) crosses S?
increases with the volatility. Therefore, the vega of the strategy is positive.

8We have S? = S (0) = 100.
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FIGURE A.4: Impact of the volatility on the mean-reverting strategy

A.4.12 Strong Markov property and maximum of Brownian motion
1. We have:

Pr {W (t) ≥ x} = Pr {W (t) ≥ x,M (t) ≥ x}+ Pr {W (t) ≥ x,M (t) < x}

Since M (t) ≥W (t), we have Pr {W (t) ≥ x,M (t) < x} = 0 and:

Pr {W (t) ≥ x} = Pr {W (t) ≥ x,M (t) ≥ x}
= Pr {W (t) ≥ x |M (t) ≥ x} · Pr {M (t) ≥ x}
= Pr {W (t) ≥ x | τx ≤ t} · Pr {M (t) ≥ x}

Using the strong Markov property, we also have:

Pr {W (t) ≥ x | τx ≤ t} = Pr {W (t)−W (τx) ≥ 0 | τx ≤ t}
= Pr {W (τx + t− τx)−W (τx) ≥ 0 | τx ≤ t}
= Pr {W (t− τx) ≥ 0 | τx ≤ t}

= 1
2

We deduce that:
Pr {W (t) ≥ x} = 1

2 Pr {M (t) ≥ x}

and:

Pr {M (t) ≥ x} = 2 Pr {W (t) ≥ x}

= 2
(

1− Φ
(
x√
t

))
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2. Let z = x− y ≥ 0. We have:

Pr {W (t) ≥ 2x− y} = Pr {W (t) ≥ x+ z,M (t) ≥ x}+
Pr {W (t) ≥ x+ z,M (t) < x}

= Pr {W (t) ≥ x+ z,M (t) ≥ x}

Indeed, we have:
Pr {W (t) ≥ x+ z,M (t) < x} = 0

because z ≥ 0. It follows that:

Pr {W (t) ≥ 2x− y} = Pr {W (t) ≥ x+ z,M (t) ≥ x}
= Pr {W (τx + t− τx)−W (τx) ≥ z |M (t) ≥ x} ·

Pr {M (t) ≥ x}

Using the strong Markov property and the symmetry of the Brownian motion, we
deduce that:

Pr {W (τx + t− τx)−W (τx) ≥ z |M (t) ≥ x}
= Pr {W (τx + t− τx)−W (τx) ≥ z | τx ≤ t}
= Pr {W (t− τx) ≥ z | τx ≤ t}
= Pr {W (t− τx) ≤ −z | τx ≤ t}
= Pr {W (t) ≤ x− z |M (t) ≥ x}

We conclude that:

Pr {W (t) ≥ 2x− y} = Pr {W (t) ≤ x− z |M (t) ≥ x} · Pr {M (t) ≥ x}
= Pr {W (t) ≤ x− z,M (t) ≥ x}
= Pr {W (t) ≤ y,M (t) ≥ x}

3. The joint density function of (M (t) ,W (t)) is defined as follows:

f (x, y) = −∂
2 Pr {W (t) ≤ y,M (t) ≥ x}

∂ x ∂ y

We have:

Pr {W (t) ≤ y,M (t) ≥ x} = Pr {W (t) ≥ 2x− y}

= 1− Φ
(

2x− y√
t

)
We deduce that:

∂ Pr {W (t) ≤ y,M (t) ≥ x}
∂ x

= − 2√
t
φ

(
2x− y√

t

)
It follows that:

f (x, y) = − ∂

∂ y

(
− 2√

t
φ

(
2x− y√

t

))
= 2√

2πt
∂

∂ y

(
exp

(
− (2x− y)2

2t

))

= (2x− y)
t3/2

√
2
π

exp
(
− (2x− y)2

2t

)
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4. WQ (t) = µt + W (t) is a standard Wiener process under the probability measure Q
defined by9:

dQ
dP = exp

(
−µW (t)− 1

2µ
2t

)
= exp

(
−µWQ (t) + 1

2µ
2t

)
It follows that:

f(MX ,X) (x, y) = f(MWQ ,WQ) (x, y)
∣∣∣∣ dPdQ

∣∣∣∣
= exp

(
µy − 1

2µ
2t

)
(2x− y)
t3/2

√
2
π

exp
(
− (2x− y)2

2t

)

= (2x− y)
t3/2

√
2
π

exp
(
µy − 1

2µ
2t− (2x− y)2

2t

)

5. To compute the density of MX (t), we use the fact that it is the marginal10 of
f(MX ,X) (x, y):

fMX
(x) =

∫ x

−∞
f(MX ,X) (x, y) dy

=
√

2
πt

∫ x

−∞

(2x− y)
t

eµy−
1
2µ

2t− (2x−y)2
2t dy

=
√

2
πt

([
eµy−

1
2µ

2t− (2x−y)2
2t

]x
−∞
− µ

∫ x

−∞
eµy−

1
2µ

2t− (2x−y)2
2t dy

)

=
√

2
πt
eµx−

1
2µ

2t− (2x−x)2
2t − µ

∫ x

−∞

√
2
πt
eµy−

1
2µ

2t− (2x−y)2
2t dy

= 2√
2πt

e−
(x−µt)2

2t − µ
∫ x

−∞

√
2
πt
eµy−

1
2µ

2t− (2x−y)2
2t dy

Using the change of variable z = t−1/2 (y − µt− 2x), we have:∫ x

−∞

√
2
πt
eµy−

1
2µ

2t− (2x−y)2
2t dy = 2

∫ −x−µt√
t

−∞

1√
2π
e2µx− 1

2 z
2

dz

= 2e2µxΦ
(
−x− µt√

t

)
Finally, we obtain:

fMX
(x) = 2√

t
φ

(
x− µt√

t

)
− 2µe2µxΦ

(
−x− µt√

t

)
9Using notations used to state the Girsanov theorem, we have g (t) = µ.

10We have:
d
dy
eµy−

1
2µ

2t− (2x−y)2
2t = µeµy−

1
2µ

2t− (2x−y)2
2t +

(2x− y)
t

eµy−
1
2µ

2t− (2x−y)2
2t
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6. We verify that:
∂ F (x)
∂ x

= ∂ Pr {MX (t) ≤ x}
∂ x

= 1√
t
φ

(
x− µt√

t

)
+ e2µx 1√

t
φ

(
−x− µt√

t

)
−2µe2µxΦ

(
−x− µt√

t

)
= 2√

t
φ

(
x− µt√

t

)
− 2µe2µxΦ

(
−x− µt√

t

)
= fMX

(x)

Moreover, we have F (0) = 1 and F (∞) = 1. We conclude that F (x) is the probability
distribution of MX (t).

A.4.13 Moments of the Cox-Ingersoll-Ross process
1. We recall that:

E [Y (ν, ζ)] = ν + ζ

We deduce that:

E [X (t)] = 1
c

(
4ab
σ2 + cx0e

−at
)

= (1− e−at)σ2

4a

(
4ab
σ2 + 4a

(1− e−at)σ2x0e
−at
)

= x0e
−at + b

(
1− e−at

)
2. We recall that:

var (Y (ν, ζ)) = 2 (ν + 2ζ)
We deduce that:

var (X (t)) = 2
c2

(
4ab
σ2 + 2cx0e

−at
)

= (1− e−at)2
σ4

8a2

(
4ab
σ2 + 8a

(1− e−at)σ2x0e
−at
)

=
(
1− e−at

)2
σ2
(
b

2a + 1
(1− e−at) ax0e

−at
)

= σ2x0

a

(
e−at − e−2at)+ σ2b

a

(1− e−at)2

2

3. We recall that:

γ1 (Y (ν, ζ)) = (ν + 3ζ)
√

8
(ν + 2ζ)3

We deduce that:

γ1 (X (t)) =
(

4ab
σ2 + 3cx0e

−at
)√

8
(4abσ−2 + 2cx0e−at)3

= σ (3x0e
−at + b (1− e−at))√

a

√
2 (1− e−at)

(2x0e−at + b (1− e−at))3
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The excess kurtosis coefficients of Y (ν, ζ) is equal to:

γ2 (Y (ν, ζ)) = 12 (ν + 4ζ)
(ν + 2ζ)2

It follows that:

γ2 (X (t)) =
12σ2 (4ab+ 4cσ2x0e

−at)
(4ab+ 2cσ2x0e−at)2

= 3σ2 (1− e−at) (4x0e
−at + b (1− e−at))

a (x0e−at + b (1− e−at))2

A.4.14 Probability density function of Heston and SABR models
1. The Fokker-Planck equation is:

∂tU (t, x1, x2) = −∂x1 [µx1U (t, x1, x2)]− ∂x2 [a (b− x2)U (t, x1, x2)] +
1
2∂

2
x1

[
x2

1x2U (t, x1, x2)
]

+ 1
2∂

2
x2

[
σ2x2U (t, x1, x2)

]
+

ρ∂2
x1,x2

[σx1x2U (t, x1, x2)]

The first-order derivatives are:

∂x1 [µx1U (t, x1, x2)] = µx1∂x1U (t, x1, x2) + µU (t, x1, x2)
∂x2 [a (b− x2)U (t, x1, x2)] = a (b− x2) ∂x2U (t, x1, x2)− aU (t, x1, x2)

The second-order derivatives are:

∂2
x1

[
x2

1x2U (t, x1, x2)
]

= x2
1x2∂

2
x1
U (t, x1, x2) + 4x1x2∂x1U (t, x1, x2) +

2x2U (t, x1, x2)
∂2
x2

[
σ2x2U (t, x1, x2)

]
= σ2x2∂

2
x2
U (t, x1, x2) + 2σ2∂x2U (t, x1, x2)

and:

∂2
x1,x2

[σx1x2U (t, x1, x2)] = σx1x2∂
2
x1,x2

U (t, x1, x2) +
σx1∂x1U (t, x1, x2) +
σx2∂x2U (t, x1, x2) + σU (t, x1, x2)

We deduce that:

∂tU (t, x1, x2) = 1
2x

2
1x2∂

2
x1
U (t, x1, x2) + 1

2σ
2x2∂

2
x2
U (t, x1, x2) +

ρσx1x2∂
2
x1,x2

U (t, x1, x2) +
(2x2 + ρσ − µ)x1∂x1U (t, x1, x2) +(
σ2 + ρσx2 − a (b− x2)

)
∂x2U (t, x1, x2) +

(a+ x2 + ρσ − µ)U (t, x1, x2)

2. The Fokker-Planck equation is:

∂tU (t, x1, x2) = 1
2∂

2
x1

[
x2β

1 x2
2U (t, x1, x2)

]
+ 1

2∂
2
x2

[
ν2x2

2U (t, x1, x2)
]

+

ρ∂2
x1,x2

[
νxβ1x

2
2U (t, x1, x2)

]
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The second-order derivatives are:

∂2
x1

[
x2β

1 x2
2U (t, x1, x2)

]
= x2β

1 x2
2∂

2
x1
U (t, x1, x2) +

4βx2β−1
1 x2

2∂x1U (t, x1, x2) +
2β (2β − 1)x2β−2

1 x2
2U (t, x1, x2)

∂2
x2

[
ν2x2

2U (t, x1, x2)
]

= ν2x2
2∂

2
x2
U (t, x1, x2) +

4ν2x2∂x2U (t, x1, x2) +
2ν2U (t, x1, x2)

and:

∂2
x1,x2

[
νxβ1x

2
2U (t, x1, x2)

]
= νxβ1x

2
2∂

2
x1,x2

U (t, x1, x2) +

2νxβ1x2∂x1U (t, x1, x2) +
βνxβ−1

1 x2
2∂x2U (t, x1, x2) +

2βνxβ−1
1 x2U (t, x1, x2)

We deduce that:

∂tU (t, x1, x2) = 1
2x

2β
1 x2

2∂
2
x1
U (t, x1, x2) + 1

2ν
2x2

2∂
2
x2
U (t, x1, x2) +

ρνxβ1x
2
2∂

2
x1,x2

U (t, x1, x2) +

2
(
βxβ−1

1 x2 + ρν
)
xβ1x2∂x1U (t, x1, x2) +(

2ν2 + ρβνxβ−1
1 x2

)
x2∂x2U (t, x1, x2) +(

β (2β − 1)x2β−2
1 x2

2 + ν2 + 2ρβνxβ−1
1 x2

)
U (t, x1, x2)

When β is equal to 1, we obtain:

∂tU (t, x1, x2) = 1
2x

2
1x

2
2∂

2
x1
U (t, x1, x2) + 1

2ν
2x2

2∂
2
x2
U (t, x1, x2) +

ρνx1x
2
2∂

2
x1,x2

U (t, x1, x2) +
2 (x2 + ρν)x1x2∂x1U (t, x1, x2) +(
2ν2 + ρνx2

)
x2∂x2U (t, x1, x2) +(

x2
2 + ν2 + 2ρνx2

)
U (t, x1, x2)

3. We have reported the probability density function of Heston and SABR models in
Figures A.5 and A.6.

A.4.15 Discrete dynamic programming
1. (a) We have five states s (k) ∈ {1, 1.5, 2, 2.5} and eight control values c (k) ∈

{1, 2, 3, 4, 5, 6, 7, 8}. We deduce that:

J =


1.141 1.108 1.075 1.038 1.000
1.121 1.343 1.563 1.782 2.000
1.842 2.134 2.425 2.714 3.000
2.759 3.071 3.382 3.691 4.000
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FIGURE A.5: Probability density function of the Heston model

FIGURE A.6: Probability density function of the SABR model
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and:

C =


1 1 2 2
2 2 2 2
2 2 3 3
3 3 3 3


For instance, we have J (2, 2) = (J)3,2 = 2.134 because s3 = 2 and k = 2.

(b) We deduce that J (1, 1) = 1.141.

(c) We notice that c? (1) = 1 if s (1) = 1, c? (1) = 2 if s (1) = 1.5 or s (1) = 2,
c? (1) = 3 if s (1) = 2.5, c? (2) = 1 if s (1) = 1, c? (2) = 2 if s (1) = 1.5, etc.
When k is small, the objective function is mainly explained by−αk (c (k)− s (k))2.
Therefore, maximizing f (k, s (k) , c (k)) implies that c? (k) ≈ s (k). This is why
c? (k) cannot be greater than or equal to 4.

FIGURE A.7: Values taken by J (k, s (k)) and c? (k)

2. (a) We have represented J (k, s (k)) in the first panel in Figure A.7.

(b) In the second panel, we have reported J (1, s (k)). The maximum is reached for
s (k) = 39.

(c) In the third panel, we have reported the optimal control c? (k) when s (k) is
equal to 3, 13 and 22. We notice that c? (k) ≈ s (k) when k = 1 and c? (k) = 25
when k = 100. The case k = 1 has been explained in Question 1(c). In the case
k = 100, we have:

f (k, s (k) , c (k)) ≈ − 1
s (k) ln s (k) + βc (k) + γ

√
s (k)esin s(k)

Therefore, maximizing f (k, s (k) , c (k)) implies that c? (k) = max cj = 25.
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A.4.16 Matrix computation
1. (a) We have A = QTQ∗ where:

Q =

 0.737 −0.553 −0.390
0.526 0.107 0.844
0.425 0.826 −0.370


et :

T =

 1.761 0.000 0.000
0.000 −0.143 0.000
0.000 0.000 0.581


(b) We obtain:

eA =

 3.693 1.617 1.682
1.617 2.895 0.820
1.682 0.820 1.887


and:

lnA =

 −0.371 + 0.961i 0.512− 0.185i 0.989− 1.435i
0.512− 0.185i −0.251 + 0.036i 0.124 + 0.277i
0.989− 1.435i 0.124 + 0.277i −1.302 + 2.145i


(c) We have:

cosA = eiA + e−iA

2
and:

sinA = ie−iA − ieiA

2
Therefore, we can calculate cosA and sinA from the matrix exponential. We
obtain:

cosA =

 0.327 −0.406 −0.391
−0.406 0.554 −0.216
−0.391 −0.216 0.756


and:

sinA =

 0.573 0.209 0.451
0.209 0.661 0.036
0.451 0.036 0.155


We have:

cos2A+ sin2A = I3

(d) For transcendental functions f (x), we have f (A) = Qf (T )Q∗. Using f (x) =√
x, we obtain:

A1/2 =

 0.836 + 0.115i 0.264− 0.022i 0.525− 0.173i
0.264− 0.022i 0.910 + 0.004i 0.059 + 0.033i
0.525− 0.173i 0.059 + 0.033i 0.344 + 0.258i


2. The eigenvalues of Σ are −0.00038, 0.00866, 0.01612 and 0.05060. Σ is not a positive

semi-definite matrix because one eigenvalue is negative. We have Σ = (A1 + iA2)2

where:

A1 =


0.19378 0.04539 0.01365 −0.01440
0.04539 0.13513 −0.03221 −0.03445
0.01365 −0.03221 0.02740 −0.02833
−0.01440 −0.03445 −0.02833 0.08866
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and:

A2 =


0.00024 −0.00073 −0.00184 −0.00083
−0.00073 0.00224 0.00563 0.00255
−0.00184 0.00563 0.01417 0.00642
−0.00083 0.00255 0.00642 0.00291


We deduce that the nearest covariance matrix is:

Σ̃ = A2
1 =


0.04000 0.01499 0.00196 −0.00602
0.01499 0.02254 −0.00364 −0.00745
0.00196 −0.00364 0.00278 −0.00237
−0.00602 −0.00745 −0.00237 0.01006


3. We obtain ρ (B) = C5 (−25%). This is the lower bound of constant correlation matrix.

More generally, we have:
ρ (Cn (r)) = Cn (r?)

where r? = max (r,−1/ (n− 1)). If r < −1/ (n− 1), the nearest correlation matrix is
then the lower bound.

4. We obtain:

ρ (C) =


1.0000
0.6933 1.0000
0.6147 0.4571 1.0000
0.2920 0.7853 0.0636 1.0000
0.7376 0.2025 0.7876 −0.0901 1.0000
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