[bookmark: _GoBack]Допоміжні матеріали для виконання роботи 1

Робота 1 Тема Алгоритми та програми. Показники обчислювальної складності алгоритмів
Мета: Сфокусувати увагу на базових питаннях теорії алгоритмів та програм з використанням різних базових алгоритмічних структур, мов програмування, середовищ розробки. Визначити підходи до створення швидких алгоритмів та програм.
	
	Ключові поняття:
Алгоритм.
Розгалуження.
Цикл.
Комп'ютерна програма.
Реалізація алгоритму.
Елементарна операція.
Складність алгоритму.
Час виконання алгоритму

Під поняттям алгоритм традиційно розуміють кінцеву послідовність точних, зрозумілих виконавцю, елементарних команд (інструкцій), яка визначає процес переведення вхідних даних в необхідний підсумковий результат. Термін алгоритм походить від слова algorithmi - латинської транслітерації арабського імені хорезмійського математика IX століття аль-Хорезмі (Мухаммед бен Муса аль-Маджус аль-Хорезмі, який в одній зі своїх робіт описав правила виконання дій при розв’язуванні арифметичних задач).
Стосовно комп’ютера алгоритм визначає певний обчислювальний процес, який спрямований на обробку певної сукупності вхідних даних для подальшого одержання визначених цими даними результатів. Якщо цей процес закінчується одержанням результатів, то кажуть, що відповідний алгоритм може бути застосований до розглянутої сукупності даних. У протилежному випадку - алгоритм не може бути застосований до цієї сукупності даних.
Лише за наявності наступних ознак (властивостей) послідовність інструкцій можна вважати алгоритмом:
	властивість
	пояснення властивості

	Скінченність
	результат буде отримано після виконання кінцевої кількості елементарних дій

	Результативність
	обов’язкове одержання необхідного результату після виконання алгоритму

	Визначеність (однозначність)
	результати, незалежно від виконавця (користувача) алгоритму, мають бути однаковими

	Масовість
	можливість застосування алгоритму до цілого класу однотипних задач, що різняться значеннями вхідних даних

	Зрозумілість
	алгоритм має бути поданий елементарними інструкціями мови виконавця алгоритму (людини, автомата, комп’ютера)

	Дискретність
	можливість розбиття алгоритму, на відокремлені етапи (кроки)

Очевидно, що при невиконанні хоча б однієї властивості з наведеного списку, послідовність інструкції може не відповідати визначенню алгоритму.
Для побудови алгоритму необхідно конкретизувати та описати наступні його елементи:
· набір об'єктів, що складають сукупність вхідних даних, проміжних і кінцевих результатів;
· правило початку;
· правило переробки (опрацювання) інформації;
· правило виведення результатів;
· правило закінчення.
Алгоритм завжди розрахований (орієнтований) на конкретного виконавця. У нашому випадку таким виконавцем є комп’ютер.
До основних способів опису (подання) алгоритму слід віднести: словесно-формульний, графічний, з використанням мови програмування.
Словесно-формульний спосіб - це запис по пунктах алгоритму у виді тексту з формулами.
Наприклад, необхідно визначити значення виразу Y=3a-(x+2). Словесно-формульним способом алгоритм розв’язування цієї задачі може бути записаний наступним чином:
1. Початок
2. Увести значення змінних а та х.
3. Додати константу 2 до значення змінної х.
4. Збільшити значення змінної а у 3 рази.
5. Зменшити значення добутку 3а (отриманому командою 4) на величину х+2 (отриманою командою 3) та зробити результат значенням змінної Y.
6. Вивести Y як результат обчислення всього виразу.
7. Кінець
Графічний спосіб використовує послідовно з’єднані спеціальні зображення дій із заздалегідь відомим змістом. Різновидом графічного подання алгоритмів є блок-схема алгоритму (лінії зі стрільцями, якими зв'язані блоки, вказують послідовність виконання дій, обумовлених цими блоками). Головною відмінністю такого способу подання алгоритмів є наочність (що робить цей спосіб більш універсальним): кожна операція обчислювального процесу має окреме зображення; повне графічне зображення алгоритму показує розгалуження шляхів отримання розв’язку задачі в залежності від різних умов, повторення окремих етапів обчислювального процесу, інші важливі деталі.
Існує так звана єдина система програмної документації (ЄСПД), що встановлює правила розробки, оформлення програм і супутньої документації. Правила оформлення блок-схем алгоритмів визначені ДСТ 10.002-80 ЄСПД, ДСТ 10.003-80 ЄСПД.
Операції обробки даних зображуються на схемі відповідними блоками. У межах однієї схеми рекомендується зображувати блоки однакових розмірів. Усі блоки нумеруються. Лінії зі стрілками, що з'єднують блоки, визначають послідовність дій. З блоку (крім логічного) має виходити тільки одна лінія. Логічний блок має як продовження два блоки, тобто з нього виходять дві лінії. Місця на схемі, де лінії зливаються, виділяються крапкою.
Схему алгоритму варто виконувати як єдине ціле, однак у разі потреби допускається обривати лінії, що з'єднують блоки. Якщо при обриві лінії продовження схеми знаходиться на тому ж аркуші, то на першому та другому кінці лінії зображується спеціальний символ - з'єднувач - коло з ідентифікатором усередині. Усередині парних кіл указується однаковий ідентифікатор. Ідентифікатором, як правило, є порядковий номер блоку, до якого спрямована сполучна лінія або велика латинська літера. Блок-схема повинна містити всі розгалуження, цикли і виклики допоміжних програм.
	Блок
Початок
	Початок

	Блок
Кінець
	Кінець

	Блок
Уведення інформації
	Уведення

	Блок
Виведення інформації
	Виведення

	Блок
Обчислення
	Змінна:=Вираз

	Блок
Перевірка умови (логічний)
	Умова
[image:]
Ні

	Блок
Виклик допоміжного процесу
	Ім’я допом. процесу

	Лінія
з’єднання блоків
	

Таблиця. Вигляд типових елементів блок-схем

Можна виділити 3 найпростіші (базові) алгоритмічні структури: послідовність двох або більше операцій (конструкція послідовного виконання); вибір напрямку (умовна конструкція або конструкція розгалуження); повторення (циклічна конструкція). Будь-який обчислювальний процес може бути представлений (поданий) як комбінація цих елементарних алгоритмічних структур.
Лінійним прийнято називати обчислювальний процес, у якому операції виконуються послідовно, у порядку їхнього запису, без альтернативних гілок та повторень. Кожна операція є самостійною, незалежною від яких-небудь умов. На схемі блоки, що відображають ці операції, розташовуються в лінійній послідовності.
[image:]

Рис.1.1 Зображення лінійного алгоритму

Обчислювальний процес називається розгалуженим, якщо для його реалізації передбачено кілька напрямків (варіантів). Розгалуження в програмі - це вибір однієї з декількох послідовностей команд при виконанні програми. Вибір напрямку залежить від раніше визначеної ознаки (умови). Розгалужені процеси, що складаються з двох гілок, називають простими, інші - складними. Складний розгалужений процес можна подати за допомогою простих розгалужених процесів. Один з напрямків розгалуження вибирається перевіркою умови, в результаті якої можливі дві відповіді: “так” - умова виконана, “ні” - умова не виконана. Варто мати на увазі, що, хоча на схемі алгоритму повинні бути показані всі можливі напрямки обчислення в залежності від виконання визначеної умови (або умов), при однократному проходженні програми процес реалізується тільки по одній гілці, а інші виключаються. Будь-яка гілка алгоритму повинна приводити до завершення обчислювального процесу.
[image:] [image:]
Рис.1.2 Зображення повного та неповного розгалуження

Цикл - це багаторазово повторювана ділянка алгоритму або програми. В організації циклу можна виділити наступні етапи:
· підготовка (ініціалізація) циклу;
· виконання обчислень циклу (тіло циклу);
· модифікація параметрів;
· перевірка умови завершення (продовження) циклу.
Порядок виконання цих етапів може змінюватися.
У структурі циклу завжди виокремлюються дві частини: умова циклу, тіло циклу. У залежності від їх взаємного розташування розрізняють цикли з нижнім і верхнім закінченнями або, іншими словами, цикли з передумовою та післяумовою. Для циклу з нижнім закінченням тіло циклу виконується як мінімум один раз, тому що спочатку виконуються обчислення, а потім перевіряється умова виходу з циклу. У випадку з циклом з верхнім закінченням тіло циклу може не виконатися жодного разу, якщо відразу задовольняється умова виходу.
Логічний вираз, який називають умовою циклу і який має значення «істина» при будь-якому виконанні циклу також називається інваріантом циклу.
Цикл називається детермінованим, якщо число повторень його тіла є заздалегідь відомим (вже визначеним, або його можна визначити за потреби). Цикл називається ітераційним, якщо число повторень тіла циклу заздалегідь є невідомим, залежить від значень параметрів (деяких змінних), що беруть участь в обчисленнях.
[image:]
Рис.1.3 Зображення циклів з параметром, з передумовою, з післяумовою

У програмах часто використовуються вкладені цикли - цикл зовнішній вміщує у собі цикл внутрішній. Допускається декілька рівнів вкладення.
[image:] [image:]
Рис.1.4 Приклади зображень вкладених циклів

import turtle
t=turtle.Pen()
for i in range(8):
 for i in range (10):
 t.forward(15)
 t.left(45)
 t.forward(15)
 t.backward(15)
 t.right(90)
 t.forward(15)
 t.backward(15)
 t.left(45)
 t.backward(150)
 t.left(45)
Перед програмною реалізацією важливим питанням є також виправлення недосконалостей розроблених алгоритмів.
Має сенс виділити наступні класи недосконалості алгоритмів та програм.
Операції, що доповнюють одне одного. Найбільш очевидна недосконалість, яка полягає в послідовному застосуванні двох доповнюючих один одного операторів до одного і того ж операнду. Компілятори з функцією оптимізації коду для більшості мов програмування видаляють такі конструкції, якщо вони зустрічаються.
Приклад:

F+S Т

T*T+T-T R
після вдосконалення одержимо

F+S T

T*T R

Неоднозначні операнди. Ім'я операнду використовується для позначення різних об'єктів в різних місцях програми кожен раз, коли попереднє входження імені вже не потрібне. Такий підхід дозволяє економити пам'ять в машинному коді, де відсутня можливість вказівки еквівалентності двох імен операндів. Проте, неоднозначне використання імен операндів веде до погіршення сприйняття програм.
Приклад:

F+S R

R*R R
після вдосконалення одержимо

F+S T

T*T R

Синонімічні операнди. Протилежністю неоднозначності імен операндів є використання двох різних імен для одного і того ж об'єкту. Якщо дві і більш змінних використовуються так, що їх значення завжди повинні бути однаковими, то очевидна наявність синонімічних операндів.
Приклад:

F+S TI

F+S T2

Tl * Т2 R
після вдосконалення одержимо

F+S TI

TI*TI R

Загальні підвирази. У тих випадках, коли певна комбінація членів виразу повинна використовуватися більше одного разу, їй звичайно призначають нове ім'я і надалі посилаються на нього. При відхиленні від цього правила програма буде містити загальні підвирази.
Приклад:

(F+S)*(F+S) R
після вдосконалення одержимо

F+S T

T*T R

Непотрібне присвоєння. Попередній недосконалості протиставляється випадок, коли комбінації членів виразу приписується окреме ім'я, але використовується воно надалі тільки один раз. Нове ім'я не служить якій-небудь корисній меті, оскільки відповідний підвираз не входить в інші частини програми.
Приклад:

F+S T

T2 R
після вдосконалення одержимо

(P+Q) 2 R

Вирази, не представлені у вигляді добутку множників. Як відомо, вираз сприймається легше, якщо воно представлене у вигляді добутку множників.
Приклад:

F*F+2*F*S+S*S R
після вдосконалення одержимо

(F+S) 2 R

Програми написані програмістами-початківцями звичайно містять досить велику кількість недосконалостей, зростання досвіду поступово веде до розробки більш досконалих алгоритмів і програм.

‼ Завдання
1. Знайдіть і процитуйте (з вказанням джерела інформації) або дайте власне визначення ключових понять теми

 Зверніть основну увагу на наступний перелік ключових понять
Алгоритм.
Розгалуження.
Цикл.
Комп'ютерна програма.
Реалізація алгоритму.
Елементарна операція.
Складність алгоритму.
Час виконання алгоритму.
Наведіть кілька прикладів зазначених понять.

2. Запропонуйте вашу версію визначення часу виконання наступних зразків фрагментів алгоритмів (програм), визначте та вкажіть умовний час виконання. Надайте власні коментарі стосовно того, що саме знаходить програма.
Зразок 1

1 i = 0
2 while i < n:
3	 k += 1
4	 i += 1

Зразок 2

1 i = 0
2 while i < n:
3 	if i % 2 == 0:
4 		k += 1
5 	i += 1

Зразок 3

1 i = 0
2 while i < n:
3 	j = n
4 	while j != 0:
5 		k += 1
6 		j //= 3
7 	i += 1

(Підказка : результат не число секунд або хвилин, це математичний вираз, у цьому завданні він залежить від числа n.
Наприклад, є такий алгоритм:
i = 0
while i < n:
	 i += 1
Ми бачимо, що у ньому використано операції додавання, порівняння та доступу (читання або запис) до комірок пам’яті, де зберігаються дані
i = 0		у цьому рядку 2 операції, отримати доступ до комірки, та розмістити туди 0
while i < n: 	у цьому рядку, оскільки тут записано початок циклу, маємо n раз *(отримати доступ до двох комірок, прочитати їх вміст та виконати порівняння), тобто 5n
	 i += 1 	у цьому рядку, оскільки він належить тілу циклу маємо n раз *(отримати доступ до 1 комірки, прочитати її вміст, виконати додавання одиниці та розмістити результат як нове значення знов до комірки), тобто 4n.
Таким чином, остаточно маємо 2+5n+4n=9n+2.

Звичайно, що такі підрахунки досить умовні, але вони дозволяють побачити загальну картину залежності часу роботи алгоритму від того, наскільки економно ми його записали та скільки використали даних.

3. Складіть 3 (три) різні алгоритми та тексти програм для визначення всіх цифр цілого (4-значного) числа та перевірки факту чи є це число паліндромом. Проранжуйте алгоритми (програми) у порядку від повільного до швидкого. Поясніть отримані вами результати. Мова програмування та середовище розробки обирається вами самостійно.
(Наприклад, ми обрали онлайн середовище onlinegdb.com та мову програмування с++. Тоді один з варіантів програми може виглядати так:
#include <iostream>
using namespace std;

int main() {
 int number;

 //std::cout<<"Hello"<< endl;
 // Введення чотиризначного числа
 cout << "Введіть чотиризначне число: ";
 cin >> number;

 // Виокремлення цифр
 int d1 = number / 1000; // Перша цифра
 int d2 = (number / 100) % 10; // Друга цифра
 int d3 = (number / 10) % 10; // Третя цифра
 int d4 = number % 10; // Четверта цифра

 // Виведення цифр
 cout << d1 << endl;
 cout << d2 << endl;
 cout << d3 << endl;
 cout << d4 << endl;

 // Перевірка на паліндром
 if (d1 == d4 && d2 == d3) {
 cout << "Число є паліндромом." << endl;
 } else {
 cout << "Число не є паліндромом." << endl;
 }

 return 0;
}
А для визначення швидкості можна виокремити основу програми
 cin >> number;
 int d1 = number / 1000;
 int d2 = (number / 100) % 10;
 int d3 = (number / 10) % 10;
 int d4 = number % 10;
 cout << d1 << endl;
 cout << d2 << endl;
 cout << d3 << endl;
 cout << d4 << endl;
 if (d1 == d4 && d2 == d3) {
 cout << "Число є паліндромом." << endl;
 } else {
 cout << "Число не є паліндромом." << endl;
 }
Та застосувати прийом, що описаний раніше.

Або можна використати метод, описаний у наступній статті
https://programming.in.ua/programming/c-plus-plus/323-time-to-program-run-c-plus-plus
[image:]

[image:])

4. Складіть 3 (три) різні алгоритми та тексти програм для визначення суми всіх натуральних чисел на проміжку від 1 до 100. Проранжуйте алгоритми (програми) у порядку від повільного до швидкого. Поясніть отримані вами результати. Мова програмування та середовище розробки обирається вами самостійно.

Студент має детально зі скріншотами та коментарями описати виконання всіх завдань роботи у Звіті про виконання лабораторної роботи.
Цей Звіт надсилається на перевірку викладачу до системи moodle. Максимальна оцінка за роботу 6 балів. При оцінюванні викладачем враховується якість виконання роботи та звіту, активність на занятті під час обговорення роботи та її захисту.

image6.jpg
Komargu Tina
BHYTPILIHBOTO LMKy

image7.jpg
Tak

A4

IHCTpyKUiT
Tina ynkny

IHcTpyK
Tina ynkny

image8.wmf
®

oleObject1.bin

oleObject2.bin

oleObject3.bin

oleObject4.bin

oleObject5.bin

oleObject6.bin

oleObject7.bin

oleObject8.bin

oleObject9.bin

oleObject10.bin

oleObject11.bin

oleObject12.bin

oleObject13.bin

oleObject14.bin

oleObject15.bin

oleObject16.bin

oleObject17.bin

image9.wmf
­

oleObject18.bin

oleObject19.bin

oleObject20.bin

oleObject21.bin

oleObject22.bin

oleObject23.bin

oleObject24.bin

image10.png
M flaBopatopra pobota 13kypc. X | 38 PWA - Axagemin “Parok’ x x GDB online Debugger | Compll X | G akyce+ susmaunmi vac wo e X

c

programming.in.ua/programming/c-plus-plus/323-time-to-program-run-c-plus-plus By L8

o 179 45070 34AA0GUTLCH CXYHAOND. BCe 5K Y XUTT. BISSMEND CopTCHess, sk
‘BPATYEMO KPATHY! noBUHeH NDOGITY OfHe Komo HaBKoMo CTagiowy. [cns KoMz «CTAPT» sMukaeMO
(. S cqraon 1 o s nepere iy oy i sy i Sy

‘Tenep 32 poSory! MoTpi6o nigkouT 6ioTexy
#include <ctime>

T aopucraty cyriuio clock(), 7k He Mpwiiuac napamerpis.

#include <iostream>
#include <ctime>
using nanespace std;

int main()

i
cout << "Hello world!
int a = clock();

<< endl;

cout << a << endl;
cout << ((float)a/CLOCKS_PER_SEC) << endl;

return 03

clock() roseprac s Mpouecopa Ha OMpaLosaHA MpOTpaM. Ane wMcno
npecTasnexe y uacosvx Tikax. LUIoG nepeiim Ao Cekywa TDeGa A0 MPOTpaMY AOAATH
‘33KOMeHTOBZHMI PSAOK.

U | 5ce. TaKum uiHOM MOXH3 SYSH3UTY | 43C POGOTY He DI, 3 Mule BparviexTa
KoRY. [11A L0r0 NoTPIGHo BkopUCTaTH G-Liro clock Asidi. Ha NowaTky Toro dparmesTy,
43 K0T NOTPIBHO MADaXYSaTH | KinLl. BIAHABLLY BIA Kinties0l GyHKLIO MouaTKOSY 1K
OTPUMAEMO DISHULIO, K3 AOPIBHIOE HACY BUKOHAHHA (BDarMeHTa.

Ocs npyknan Taol mporpany:

11 big array

#include <iostream>
#include <iomanip>
#include <vectors
#include <time.h>
#include <cstdlib>
#include <conio.h>
#include <cstring>
#include <cmathy
#include <algorithm>
#include <ctime>
using nanespace std;

typedef unsigned int ui;

int main ()

i
11 system ("color B7);
const short int size = 200;
srand(tine(NULL))
11 cout < size << endl;

int arfsizellsize];

17 input
for (it i=0; icsize; ++i)

for (int j=0; jesize; ++d)

ar(i103] = 100 + rand() % 290;

E =3
H £ Mouck B 18°C Mostly sunny D) e o B

image11.png
x | 8 c waanns X+ -

et PRI [e N PR R R~

M Nabopatopra pobora 1 3kype, X | 8 PWA - Axaaewin

c programming.in.ua/programming/c-plus-plus/323-time-to-program-run-c-plus-plus. Bax &8

L T ce. Taxums wnon noxera susHa-aTH | 4ac pOSOTH He LinD), 3 e SparvenTa o
Xoy. /17 usoro norpiHo swkopucra d-uio clock asid. Ha nosarey Toro GparenTy,
43€ SK0FO NOTPIBHD MApXYERTH |y K. BUEHRELIN SIA KiUSEOl ByHKLIO MOSaTKORY M
OTpuMaEHD pisHIL, K2 AOpIBHOE Sacy BHKOKaKS BparTENTa

Ocs Apkaa Takol nporpa

17 big array &

(]
©

sinclude <lostream>
sinclude ciomanip>
sinclude cvectors
sinclude <ctine.hs
sinclude ccstdlib>
sinclude <conio.h>
sinclude <ccstrings
sinclude <cnath>
#include <algorith>
sinclude cctine>
using namespace 5td;

typedef unsigned int ui;
int main ()
17 systen ("color 8%);
const short int size = 209

Srand(tine(WLL));
11 cout << size <& endl;

int arfsize]lsizel;

17 imput
For (int 1-0; icsize; ++1)

for (int =85 Jesize; +43)

arl31(3] = -160 + rand() % 208;
cout <@ ar[4][3] << ME'3

3
Cout << endl;

¥

Ui a = clock();

ant dax.
win

arfelle],
arle]fe];

1/ search,
For (int 1=0; icsize; ++1)

for (int J=8; Jesize; +43)

i (uin > arf31[3])
#in'= arlili3l;
i (hax < ar[3i13)
ax = arl11(33;

<< Hax << endl;
< in < endl;
inssnit 1% e endl;

Ui b - clock();

double t1 = ((double)b/CLOCKS_PER_SEC),
2 = ((double)a/cLoCKS_PER SEC);

\n" << "all progran -
< 51 - t2 << endl;

<t << endl;

1040
H £ Mouck Mostly sunny YR e B

image1.wmf
Так

image2.jpeg
OsHa4eHHs NiHIUHOrO anropuTmy

ol el

image3.jpeg
Takuii qparmeHn B anropummi HAa3MBaramb MOBHUM
posranyxeHHam. Brok-cxema MOBHOro posranyxeHHs
BUrnspae mk:

Tlocigosmicts, Tlocainosmicrs,
KoManz 2 xomana 1

image4.jpg
B anropumuax _suxopucnosyiams maxox i Heroswe

posranysess. Bnox-cxema enosworo posranywensa
ournsace max:

image5.png
Onepatop

