Creating a data

This chapter covers

= Exploring R data structures
= Using data entry

= |mporting data

= Annotating datasets

The first step in any data analysis is the creation of a dataset containing the infor-
mation to be studied, in a format that meets your needs. In R, this task involves the
following:

= Selecting a data structure to hold your data
= Entering or importing your data into the data structure

The first part of this chapter (sections 2.1-2.2) describes the wealth of structures
that R can use for holding data. In particular, section 2.2 describes vectors, fac-
tors, matrices, data frames, and lists. Familiarizing yourself with these structures
(and the notation used to access elements within them) will help you tremendously
in understanding how R works. You might want to take your time working through
this section.

The second part of this chapter (section 2.3) covers the many methods available
for importing data into R. Data can be entered manually, or imported from an

21

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

22

2.1

CHAPTER 2 Creating a dataset

external source. These data sources can include text files, spreadsheets, statistical
packages, and database management systems. For example, the data that I work with
typically comes from SQL databases. On occasion, though, I receive data from legacy
DOS systems, and from current SAS and SPSS databases. It’s likely that you’ll only have
to use one or two of the methods described in this section, so feel free to choose those
that fit your situation.

Once a dataset is created, you'll typically annotate it, adding descriptive labels for
variables and variable codes. The third portion of this chapter (section 2.4) looks
at annotating datasets and reviews some useful functions for working with datasets
(section 2.5). Let’s start with the basics.

Understanding datasets

A dataset is usually a rectangular array of data with rows representing observations
and columns representing variables. Table 2.1 provides an example of a hypothetical
patient dataset.

Table 2.1 A patient dataset

PatientID AdmDate Diabetes Status
1 10/15,/2009 25 Typel Poor
2 11/01/2009 34 Type2 Improved
3 10/21/2009 28 Typel Excellent
4 10/28/2009 52 Typel Poor

Different traditions have different names for the rows and columns of a dataset. Statisti-
cians refer to them as observations and variables, database analysts call them records and
fields, and those from the data mining/machine learning disciplines call them examples
and attributes. We’ll use the terms observations and variables throughout this book.

You can distinguish between the structure of the dataset (in this case a rectangular
array) and the contents or data types included. In the dataset shown in table 2.1,
PatientID is a row or case identifier, AdmDate is a date variable, Age is a continuous
variable, Diabetes is a nominal variable, and Status is an ordinal variable.

R contains a wide variety of structures for holding data, including scalars, vectors,
arrays, data frames, and lists. Table 2.1 corresponds to a data frame in R. This diversity
of structures provides the R language with a great deal of flexibility in dealing with data.

The data types or modes that R can handle include numeric, character, logical
(TRUE/FALSE), complex (imaginary numbers), and raw (bytes). In R, PatientID,
AdmDate, and Age would be numeric variables, whereas Diabetes and Status would
be character variables. Additionally, you’ll need to tell R that PatientID is a case
identifier, that AdmDate contains dates, and that Diabetes and Status are nominal

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

2.2

Data structures 23

and ordinal variables, respectively. R refers to case identifiers as rownames and
categorical variables (nominal, ordinal) as factors. We’ll cover each of these in the
next section. You’ll learn about dates in chapter 3.

Data structures

R has a wide variety of objects for holding data, including scalars, vectors, matrices,
arrays, data frames, and lists. They differ in terms of the type of data they can hold,
how they’re created, their structural complexity, and the notation used to identify and
access individual elements. Figure 2.1 shows a diagram of these data structures.

Let’s look at each structure in turn, starting with vectors.

(b) Matrix (c) Array
(a) Vector
(d) Data frame —
Vectors
Arrays
(e) List == Y
Data frames
Lists
Columns can be different modes — Figure 2.1 R data
structures

Some definitions
There are several terms that are idiosyncratic to R, and thus confusing to new users.

In R, an objectis anything that can be assigned to a variable. This includes constants,
data structures, functions, and even graphs. Objects have a mode (which describes
how the object is stored) and a class (which tells generic functions like print how
to handle it).

A data frame is a structure in R that holds data and is similar to the datasets found
in standard statistical packages (for example, SAS, SPSS, and Stata). The columns
are variables and the rows are observations. You can have variables of different
types (for example, numeric, character) in the same data frame. Data frames are the
main structures you’ll use to store datasets.

(continued)

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

24

221

2.2.2

CHAPTER 2 Creating a dataset

Factors are nominal or ordinal variables. They’'re stored and treated specially in R.
You'll learn about factors in section 2.2.5.

Most other terms should be familiar to you and follow the terminology used in
statistics and computing in general.

Vectors

Vectors are one-dimensional arrays that can hold numeric data, character data, or logi-
cal data. The combine function c () is used to form the vector. Here are examples of
each type of vector:

a<-c(l, 2,5 3,6, -2, 4)

b <- c("one", "two", "three")

c <- c(TRUE, TRUE, TRUE, FALSE, TRUE, FALSE)

Here, a is numeric vector, b is a character vector, and c is a logical vector. Note that the
data in a vector must only be one type or mode (numeric, character, or logical). You
can’t mix modes in the same vector.

NOTE Scalars are one-elementvectors. Examplesinclude £ <- 3, g <- "US" and
h <- TRUE. They're used to hold constants.

You can refer to elements of a vector using a numeric vector of positions within brack-
ets. For example, a[c (2, 4)] refers to the 2nd and 4th element of vector a. Here are
additional examples:

>a<-c(l, 2, 5 3,6, -2, 4)

> al3]

(11 5

> alc(l, 3, 5)]

[11 1 56

> al2:6]

(11 2 5 3 6 -2

The colon operator used in the last statement is used to generate a sequence of num-
bers. For example, a <- ¢(2:6) is equivalent to a <- c(2, 3, 4, 5, 6).

Matrices

A matrix is a two-dimensional array where each element has the same mode (numeric,
character, or logical). Matrices are created with the matrix function. The general for-
mat is

myymatrix <- matrix(vector, nrow=number_ of_rows, ncol=number of_columns,
byrow=logical_value, dimnames=1list (
char_vector_rownames, char_vector_colnames))

where vector contains the elements for the matrix, nrow and ncol specify the row and
column dimensions, and dimnames contains optional row and column labels stored in

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

Data structures 25

character vectors. The option byrow indicates whether the matrix should be filled in
by row (byrow=TRUE) or by column (byrow=FALSE). The default is by column. The
following listing demonstrates the matrix function.

Listing 2.1 Creating matrices

> y <- matrix(1:20, nrow=5, ncol=4) <._o Create a 5x4 matrix
>y
[,11 [,21 [,31 [,4]
1,1 1 6 11 16
2,1 2 7 12 17
[3,] 3 8 13 18
[4,] 4 9 14 19
(5,1 5 10 15 20
> cells <- c(1,26,24,68) 2x2 matrix filled
> rnames <- c("Rl", "R2") 4} by rows
> cnames <- c("Cc1i", n"c2m")
> mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=TRUE,

dimnames=1list (rnames, cnames))
> mymatrix
Cl C2
R1 1 26
R2 24 68
> mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=FALSE,
dimnames=1list (rnames, cnames)) 2x2 matrix filled
> mymatrix by columns
Cl C2
R1 1 24
R2 26 68

First, you create a 5x4 matrix @. Then you create a 2x2 matrix with labels and fill the
matrix by rows @. Finally, you create a 2x2 matrix and fill the matrix by columns €.

You can identify rows, columns, or elements of a matrix by using subscripts and
brackets. X[4,] refers to the ith row of matrix X, X[,j] refers to jth column, and X[3, j]
refers to the éjth element, respectively. The subscripts ¢and j can be numeric vectors in
order to select multiple rows or columns, as shown in the following listing.

Listing 2.2 Using matrix subscripts

> x <- matrix(1:10, nrow=2)

> x
[,11 [,21 [,31 [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> x[2,]
[11 2 4 6 8 10
> x[,2]
[1] 3 4
> x[1,4]
[11 7
> x[1, c(4,5)]
[11 7 9

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

26

2.2.3

CHAPTER 2 Creating a dataset

First a 2 x 5 matrix is created containing numbers 1 to 10. By default, the matrix is
filled by column. Then the elements in the 2nd row are selected, followed by the ele-
ments in the 2nd column. Next, the element in the 1st row and 4th column is selected.
Finally, the elements in the 1st row and the 4th and 5th columns are selected.

Matrices are two-dimensional and, like vectors, can contain only one data type.
When there are more than two dimensions, you’ll use arrays (section 2.2.3). When
there are multiple modes of data, you’ll use data frames (section 2.2.4).

Arrays

Arrays are similar to matrices but can have more than two dimensions. They’re created
with an array function of the following form:

myarray <- array(vector, dimensions, dimnames)

where vector contains the data for the array, dimensions is a numeric vector giving
the maximal index for each dimension, and dimnames is an optional list of dimension
labels. The following listing gives an example of creating a three-dimensional (2x3x4)
array of numbers.

Listing 2.3 Creating an array

> diml <- c("Al", "A2")

> dim2 <- c("B1", "B2", "B3")

> dim3 <- c¢c("C1l", "C2", "C3", "C4")

> z <- array(1:24, c(2, 3, 4), dimnames=list(diml, dim2, dim3))

> z
, . Cl

Bl B2 B3
Al 1 3 5
A2 2 4 6

Bl B2 B3
Al 7 9 11
A2 8 10 12

. C3
Bl B2 B3

Al 13 15 17
A2 14 16 18

.. C4

Bl B2 B3
Al 19 21 23
A2 20 22 24

As you can see, arrays are a natural extension of matrices. They can be useful in
programming new statistical methods. Like matrices, they must be a single mode.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

2.2.4

Data structures 27

Identifying elements follows what you’ve seen for matrices. In the previous example,
the z[1,2,3] elementis 15.

Data frames

A data frame is more general than a matrix in that different columns can contain
different modes of data (numeric, character, etc.). It’s similar to the datasets you’d
typically see in SAS, SPSS, and Stata. Data frames are the most common data structure
you’ll deal with in R.

The patient dataset in table 2.1 consists of numeric and character data. Because
there are multiple modes of data, you can’t contain this data in a matrix. In this case,
a data frame would be the structure of choice.

A data frame is created with the data. frame () function:

mydata <- data.frame(coll, col2, col3,..)

where coll, col2, col3, ...are column vectors of any type (such as character, nu-
meric, or logical). Names for each column can be provided with the names function.
The following listing makes this clear.

Listing 2.4 Creating a data frame

> patientID <- c(1, 2, 3, 4)
> age <- c (25, 34, 28, 52)
> diabetes <- c("Typel", "Type2", "Typel", "Typel")
> status <- c("Poor", "Improved", "Excellent", "Poor")
> patientdata <- data.frame(patientID, age, diabetes, status)
> patientdata
patientID age diabetes status
1 1 25 Typel Poor
2 2 34 Type2 Improved
3 3 28 Typel Excellent
4 4 52 Typel Poor

Each column must have only one mode, but you can put columns of different modes
together to form the data frame. Because data frames are close to what analysts typi-
cally think of as datasets, we’ll use the terms columns and variables interchangeably
when discussing data frames.

There are several ways to identify the elements of a data frame. You can use the
subscript notation you used before (for example, with matrices) or you can specify
column names. Using the patientdata data frame created earlier, the following
listing demonstrates these approaches.

Listing 2.5 Specifying elements of a data frame

> patientdata[l:2]
patientID age

1 1 25
2 2 34
3 3 28
4 4 52
> patientdatal[c("diabetes", "status")]

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

28

CHAPTER 2 Creating a dataset

diabetes status
1 Typel Poor
2 Type2 Improved
3 Typel Excellent Indicates age
4 Typel Poor variable in patient
> patientdataSage data frame
[1] 25 34 28 52

The $ notation in the third example is new @. It’s used to indicate a particular variable
from a given data frame. For example, if you want to cross tabulate diabetes type by
status, you could use the following code:

> table(patientdata$diabetes, patientdata$status)

Excellent Improved Poor
Typel 1 0 2
Type2 0 1 0

It can get tiresome typing patientdata$ at the beginning of every variable name, so
shortcuts are available. You can use either the attach() and detach() or with()
functions to simplify your code.

ATTACH, DETACH, AND WITH

The attach() function adds the data frame to the R search path. When a variable
name is encountered, data frames in the search path are checked in order to locate
the variable. Using the mtcars data frame from chapter 1 as an example, you could use
the following code to obtain summary statistics for automobile mileage (mpg), and plot
this variable against engine displacement (disp), and weight (wt):

summary (mtcars$mpg)

plot (mtcarsSmpg, mtcarssdisp)
plot (mtcarsSmpg, mtcarssSwt)

This could also be written as

attach (mtcars)

summary (mpg)

plot (mpg, disp)

plot (mpg, wt)
detach (mtcars)
The detach() function removes the data frame from the search path. Note that
detach () does nothing to the data frame itself. The statement is optional but is good
programming practice and should be included routinely. (I'll sometimes ignore this
sage advice in later chapters in order to keep code fragments simple and short.)

The limitations with this approach are evident when more than one object can have
the same name. Consider the following code:

> mpg <- c (25, 36, 47)
> attach(mtcars)

The following object(s) are masked _by_‘'.GlobalEnv’: mpg

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

Data structures 29

> plot (mpg, wt)

Error in xy.coords(x, y, xlabel, ylabel, log)
‘x’ and ‘y’ lengths differ

> mpg

[1] 25 36 47
Here we already have an object named mpg in our environment when the mtcars data
frame is attached. In such cases, the original object takes precedence, which isn’t what
you want. The plot statement fails because mpg has 3 elements and disp has 32 ele-
ments. The attach() and detach () functions are best used when you’re analyzing a
single data frame and you’re unlikely to have multiple objects with the same name. In
any case, be vigilant for warnings that say that objects are being masked.

An alternative approach is to use the with () function. You could write the previous
example as
with (mtcars, {

summary (mpg, disp, wt)

plot (mpg, disp)

plot (mpg, wt)
}
In this case, the statements within the {} brackets are evaluated with reference to the
mtcars data frame. You don’t have to worry about name conflicts here. If there’s only
one statement (for example, summary (mpg)), the {} brackets are optional.

The limitation of the with () function is that assignments will only exist within the
function brackets. Consider the following:

> with(mtcars, {
stats <- summary (mpg)

stats

}

Min. 1lst Qu. Median Mean 3rd Qu. Max.

10.40 15.43 19.20 20.09 22.80 33.90
> stats

Error: object ‘stats’ not found

If you need to create objects that will exist outside of the with() construct, use the
special assignment operator <<- instead of the standard one (<-). It will save the object
to the global environment outside of the with () call. This can be demonstrated with
the following code:

> with(mtcars, {
nokeepstats <- summary (mpg)
keepstats <<- summary (mpg)
}
> nokeepstats
Error: object ‘nokeepstats’ not found
> keepstats
Min. 1lst Qu. Median Mean 3rd Qu. Max.
10.40 15.43 19.20 20.09 22.80 33.90

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

30

2.2.5

CHAPTER 2 Creating a dataset

Most books on R recommend using with () over attach (). I think that ultimately the
choice is a matter of preference and should be based on what you’re trying to achieve
and your understanding of the implications. We’ll use both in this book.

CASE IDENTIFIERS

In the patient data example, patientIDis used to identify individuals in the dataset. In
R, case identifiers can be specified with a rowname option in the data frame function.
For example, the statement

patientdata <- data.frame(patientID, age, diabetes, status,
row.names=patientID)

specifies patientID as the variable to use in labeling cases on various printouts and
graphs produced by R.

Factors

As you’ve seen, variables can be described as nominal, ordinal, or continuous. Nomi-
nal variables are categorical, without an implied order. Diabetes (Typel, Type2) is
an example of a nominal variable. Even if Typel is coded as a 1 and Type2 is coded
as a 2 in the data, no order is implied. Ordinal variables imply order but not amount.
Status (poor, improved, excellent) isa good example of an ordinal variable. You
know that a patient with a poor status isn’t doing as well as a patient with an improved
status, but not by how much. Continuous variables can take on any value within some
range, and both order and amount are implied. Age in years is a continuous variable
and can take on values such as 14.5 or 22.8 and any value in between. You know that
someone who is 15 is one year older than someone who is 14.

Categorical (nominal) and ordered categorical (ordinal) variables in R are called
factors. Factors are crucial in R because they determine how data will be analyzed and
presented visually. You’ll see examples of this throughout the book.

The function factor () stores the categorical values as a vector of integers in the
range [1... k] (where k£ is the number of unique values in the nominal variable), and
an internal vector of character strings (the original values) mapped to these integers.

For example, assume that you have the vector

diabetes <- c("Typel", "Type2", "Typel", "Typel")

The statement diabetes <- factor (diabetes) stores this vector as (1,2, 1, 1) and
associates it with 1=Typel and 2=Type2 internally (the assignment is alphabetical).
Any analyses performed on the vector diabetes will treat the variable as nominal and
select the statistical methods appropriate for this level of measurement.

For vectors representing ordinal variables, you add the parameter ordered=TRUE to
the factor () function. Given the vector

status <- c("Poor", "Improved", "Excellent", "Poor")

the statement status <- factor(status, ordered=TRUE) will encode the vector
as (3, 2, 1, 3) and associate these values internally as 1=Excellent, 2=Improved, and

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

Data structures 31

3=Poor. Additionally, any analyses performed on this vector will treat the variable as
ordinal and select the statistical methods appropriately.

By default, factor levels for character vectors are created in alphabetical order. This
worked for the status factor, because the order “Excellent,” “Improved,” “Poor” made
sense. There would have been a problem if “Poor” had been coded as “Ailing” instead,
because the order would be “Ailing,” “Excellent,” “Improved.” A similar problem
exists if the desired order was “Poor,” “Improved,” “Excellent.” For ordered factors,
the alphabetical default is rarely sufficient.

You can override the default by specifying a 1levels option. For example,
status <- factor(status, order=TRUE,

levels=c("Poor", "Improved", "Excellent"))
would assign the levels as 1=Poor, 2=Improved, 3=Excellent. Be sure that the specified
levels match your actual data values. Any data values not in the list will be set to missing.

The following listing demonstrates how specifying factors and ordered factors
impact data analyses.

Listing 2.6 Using factors

> patientID <- c(1, 2, 3, 4) <@ Enter data as vectors
> age <- c(25, 34, 28, 52)

> diabetes <- c("Typel", "Type2", "Typel", "Typel")

> status <- c("Poor", "Improved", "Excellent", "Poor")

> diabetes <- factor(diabetes)

> status <- factor(status, order=TRUE)
> patientdata <- data.frame(patientID, age, diabetes, status)
> str(patientdata) 41 Display object
‘data.frame’ : 4 obs. of 4 variables: structure

S patientID: num 1 2 3 4

$ age : num 25 34 28 52

$ diabetes : Factor w/ 2 levels "Typel","Type2": 1 2 1 1

$ status : Ord.factor w/ 3 levels "Excellent"<"Improved"<..: 3 2 1 3
> summary (patientdata) kahyowed

patientID age diabetes status summary

Min. :1.00 Min. :25.00 Typel:3 Excellent:1

1st Qu.:1.75 1st Qu.:27.25 Type2:1 Improved :1

Median :2.50 Median :31.00 Poor 12

Mean :2.50 Mean :34.75

3rd Qu.:3.25 3rd Qu.:38.50

Max. :4.00 Max. :52.00

First, you enter the data as vectors @. Then you specify that diabetes is a factor
and status is an ordered factor. Finally, you combine the data into a data frame. The
function str(object) provides information on an object in R (the data frame in this
case) @. It clearly shows that diabetes is a factor and status is an ordered factor,
along with how it’s coded internally. Note that the summary () function treats the vari-
ables differently (30 provides the minimum, maximum, mean, and quartiles for the
continuous variable age, and frequency counts for the categorical variables diabetes
and status.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

32

CHAPTER 2 Creating a dataset

2.2.6 Lists

Lists are the most complex of the R data types. Basically, a list is an ordered collection
of objects (components). A list allows you to gather a variety of (possibly unrelated)
objects under one name. For example, a list may contain a combination of vectors,
matrices, data frames, and even other lists. You create a list using the 1ist () function:

mylist <- list(objectl, object2, ..)

where the objects are any of the structures seen so far. Optionally, you can name the
objects in a list:

mylist <- list(namel=objectl, name2=object2, ..)

The following listing shows an example.

Listing 2.7 Creating a list

> g <- "My First List"
> h <- c(25, 26, 18, 39)
> j <- matrix(1:10, nrow=5)

> k <- c("one", "two", "three")

> mylist <- list(title=g, ages=h, j, k) <—— Create list

> mylist < Print entire list
Stitle

[1] "My First List"

Sages
[1] 25 26 18 39

[[311]

[,11 [,2]
[1,] 1 6
[2,1 2 7
[3,1 3 8
[4,] 4 9
[5,] 5 10
[[4]]
[1] "one" "two" "three"

> mylist[[2]]

[1] 25 26 18 39

> mylist[["ages"]]
[[1] 25 26 18 39

Print second
component

In this example, you create a list with four components: a string, a numeric vector, a
matrix, and a character vector. You can combine any number of objects and save them
as a list.

You can also specify elements of the list by indicating a component number or a
name within double brackets. In this example, mylist[[2]] and mylist[["ages"]]
both refer to the same four-element numeric vector. Lists are important R structures

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

2.3

Data input 33

for two reasons. First, they allow you to organize and recall disparate information in a
simple way. Second, the results of many R functions return lists. It’s up to the analyst to
pull out the components that are needed. You’ll see numerous examples of functions
that return lists in later chapters.

A note for programmers

Experienced programmers typically find several aspects of the R language unusual.
Here are some features of the language you should be aware of:

= The period (.) has no special significance in object names. But the dollar sign
($) has a somewhat analogous meaning, identifying the parts of an object. For
example, Asx refers to variable x in data frame A.

= R doesn’t provide multiline or block comments. You must start each
line of a multiline comment with #. For debugging purposes, you can
also surround code that you want the interpreter to ignore with the state-
ment if (FALSE) {..}. Changing the FALSE to TRUE allows the code to be
executed.

= Assigning a value to a nonexistent element of a vector, matrix, array, or list will
expand that structure to accommodate the new value. For example, consider
the following:
> x <- c(8, 6, 4)
> x[7] <- 10
> X
[1] 8 6 4 NA NA NA 10

The vector x has expanded from three to seven elements through the
assignment.
x <- x[1:3] would shrink it back to three elements again.

= R doesn’t have scalar values. Scalars are represented as one-element
vectors.

= |ndices in R start at 1, not at 0. In the vector earlier, x[1] is 8.

= Variables can’t be declared. They come into existence on first assignment.

To learn more, see John Cook’s excellent blog post, R programming for those coming
from other languages (www.johndcook.com/R_language_for_programmers.html).

Programmers looking for stylistic guidance may also want to check out Google’s
R Style Guide (http://google-styleguide.googlecode.com/svn/trunk/google-r-style
.html).

Data input

Now that you have data structures, you need to put some data in them! As a data ana-
lyst, you're typically faced with data that comes to you from a variety of sources and in
a variety of formats. Your task is to import the data into your tools, analyze the data,

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

34

23.1

CHAPTER 2 Creating a dataset

| Statistical Packages |

SAS SPSS Stata

~ «— Excel

XML — «— netCFD
—
Webscraping/' / \i HDF5
SQ

L MySQL Oracle Access

ASCII
Text Files

Figure 2.2 Sources of data

‘ Database Management Systems ‘ that can be imported into R

and report on the results. R provides a wide range of tools for importing data. The
definitive guide for importing data in R is the R Data Import/Export manual available at
http://cran.r-project.org/doc/manuals/R-data.pdf.

As you can see in figure 2.2, R can import data from the keyboard, from flat files,
from Microsoft Excel and Access, from popular statistical packages, from specialty
formats, and from a variety of relational database management systems. Because you
never know where your data will come from, we’ll cover each of them here. You only
need to read about the ones you’re going to be using.

Entering data from the keyboard

Perhaps the simplest method of data entry is from the keyboard. The edit () function
in R will invoke a text editor that will allow you to enter your data manually. Here are
the steps involved:

1 Create an empty data frame (or matrix) with the variable names and modes
you want to have in the final dataset.

2 Invoke the text editor on this data object, enter your data, and save the results
back to the data object.

In the following example, you’ll create a data frame named mydata with three vari-
ables: age (numeric), gender (character), and weight (numeric). You’ll then invoke
the text editor, add your data, and save the results.
mydata <- data.frame (age=numeric(0),

gender=character (0), weight=numeric(0))
mydata <- edit (mydata)
Assignments like age=numeric (0) create a variable of a specific mode, but without
actual data. Note that the result of the editing is assigned back to the object itself. The
edit () function operates on a copy of the object. If you don’t assign it a destination,
all of your edits will be lost!

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

2.3.2

Data input 35

R R console (54-bit) | |=] = |

File Edit Misc Packages Windows Help

-
> mydata <- data.frame (age=numeric(0), gender=character(0), weight=numeric(0)})
> mydata <- edit(mydata)

IR Data Editor ===
File Edit Help

age gender |weight
25 m 166
30 £ 115
18 E 120

IR Vvariable editor [ﬁ
variable

type @ numeric (©) character

[T R== i N - R B R PSR S

fiery
o

fiery
(i

fiery
8]

l

Figure 2.3 Entering data via the built-in editor on a Windows platform

The results of invoking the edit() function on a Windows platform can be seen in
figure 2.3.

In this figure, I've taken the liberty of adding some data. If you click on a column
title, the editor gives you the option of changing the variable name and type (numeric,
character). You can add additional variables by clicking on the titles of unused columns.
When the text editor is closed, the results are saved to the object assigned (mydata in
this case). Invoking mydata <- edit (mydata) again allows you to edit the data you’ve
entered and to add new data. A shortcut for mydata <- edit(mydata) is simply
fix (mydata).

This method of data entry works well for small datasets. For larger datasets, you’ll
probably want to use the methods we’ll describe next: importing data from existing
text files, Excel spreadsheets, statistical packages, or database management systems.

Importing data from a delimited text file

You can import data from delimited text files using read.table (), a function that
reads a file in table format and saves it as a data frame. Here’s the syntax:

mydataframe <- read.table(file, header=logical_value,
sep="delimiter", row.names="name")

where file is a delimited ASCII file, header is a logical value indicating whether
the first row contains variable names (TRUE or FALSE), sep specifies the delimiter

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

36

2.3.3

CHAPTER 2 Creating a dataset

separating data values, and row.names is an optional parameter specifying one or
more variables to represent row identifiers.
For example, the statement

grades <- read.table("studentgrades.csv", header=TRUE, sep=",",
row.names="STUDENTID")

reads a comma-delimited file named studentgrades.csv from the current working
directory, gets the variable names from the first line of the file, specifies the variable
STUDENTID as the row identifier, and saves the results as a data frame named grades.

Note that the sep parameter allows you to import files that use a symbol other than
a comma to delimit the data values. You could read tab-delimited files with sep="\t".
The default is sep="", which denotes one or more spaces, tabs, new lines, or carriage
returns.

By default, character variables are converted to factors. This behavior may not
always be desirable (for example, a variable containing respondents’ comments).
You can suppress this behavior in a number of ways. Including the option stringsAs
Factors=FALSE will turn this behavior off for all character variables. Alternatively,
you can use the colClasses option to specify a class (for example, logical, numeric,
character, factor) for each column.

The read.table() function has many additional options for fine-tuning the data
import. See help (read. table) for details.

NOTE Many of the examples in this chapter import data from files that exist
on the user’s computer. R provides several mechanisms for accessing data via
connections as well. For example, the functions file (),gzfile (), bzfile(),
xzfile(), unz (),andurl () can be used in place of the filename. The file ()
function allows the user to access files, the clipboard, and C-level standard input.
The gzfile(),bzfile(), xzfile (), and unz () functions let the user read
compressed files. The url () function lets you access internet files through a
complete URL that includes http://, ftp://,or £file://. For HTTP and FTP,
proxies can be specified. For convenience, complete URLs (surrounded by "
marks) can usually be used directly in place of filenames as well. See help (file)
for details.

Importing data from Excel

The best way to read an Excel file is to export it to a comma-delimited file from within
Excel and import it to R using the method described earlier. On Windows systems you
can also use the RODBC package to access Excel files. The first row of the spreadsheet
should contain variable/column names.

First, download and install the RODBC package.

install.packages ("RODBC")

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

2.3.4

2.3.5

Data input 37

You can then use the following code to import the data:

library (RODBC)

channel <- odbcConnectExcel ("myfile.xls")

mydataframe <- sglFetch(channel, "mysheet")

odbcClose (channel)

Here, myfile.x1s is an Excel file, mysheet is the name of the Excel worksheet

to read from the workbook, channel is an RODBC connection object returned by

odbcConnectExcel (), and mydataframe is the resulting data frame. RODBC can

also be used to import data from Microsoft Access. See help (RODBC) for details.
Excel 2007 uses an XLSX file format, which is essentially a zipped set of XML files. The

x1lsx package can be used to access spreadsheets in this format. Be sure to download

and install it before first use. The read.x1sx () function imports a worksheet from an

XLSX file into a data frame. The simplest format is read.xlsx (file, n) where file

is the path to an Excel 2007 workbook and n is the number of the worksheet to be

imported. For example, on a Windows platform, the code

library (x1lsx)

workbook <- "c:/myworkbook.xlsx"

mydataframe <- read.xlsx(workbook, 1)

imports the first worksheet from the workbook myworkbook.x1lsx stored on the C:

drive and saves it as the data frame mydataframe. The x1sx package can do more than

import worksheets. It can create and manipulate Excel XLSX files as well. Program-

mers who need to develop an interface between R and Excel should check out this

relatively new package.

Importing data from XML

Increasingly, data is provided in the form of files encoded in XML. R has several pack-
ages for handling XML files. For example, the XML package written by Duncan Temple
Lang allows users to read, write, and manipulate XML files. Coverage of XML is beyond
the scope of this text. Readers interested in the accessing XML documents from within
R are referred to the excellent package documentation at www.omegahat.org/RSXML.

Webscraping

In webscraping, the user extracts information embedded in a web page available over
the internet and saves it into R structures for further analysis. One way to accomplish
this is to download the web page using the readLines () function and manipulate it
with functions such as grep () and gsub (). For complex web pages, the RCurl and
XML packages can be used to extract the information desired. For more information,
including examples, see “Webscraping using readLines and RCurl,” available from the
website Programming with R (www.programmingr.com).

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

38

2.3.6

2.3.7

2.3.8

CHAPTER 2 Creating a dataset

Importing data from SPSS

SPSS datasets can be imported into R via the read.spss () function in the foreign
package. Alternatively, you can use the spss.get () function in the Hmisc package.
spss.get () is a wrapper function that automatically sets many parameters of read.
spss () for you, making the transfer easier and more consistent with what data analysts
expect as a result.

First, download and install the Hmisc package (the foreign package is already
installed by default):

install.packages ("Hmisc")

Then use the following code to import the data:

library (Hmisc)

mydataframe <- spss.get("mydata.sav", use.value.labels=TRUE)

In this code, mydata.sav is the SPSS data file to be imported, use.value.
labels=TRUE tells the function to convert variables with value labels into R factors
with those same levels, and mydataframe is the resulting R data frame.

Importing data from SAS

A number of functions in R are designed to import SAS datasets, including read.
ssd () in the foreign package and sas.get () in the Hmisc package. Unfortunately,
if you’re using a recent version of SAS (SAS 9.1 or higher), you're likely to find that
these functions don’t work for you because R hasn’t caught up with changes in SAS file
structures. There are two solutions that I recommend.

You can save the SAS dataset as a comma-delimited text file from within SAS using
PROC EXPORT, and read the resulting file into R using the method described in section
2.3.2. Here’s an example:

SAS program:

proc export data=mydata
outfile="mydata.csv"
dbms=csv;

run;

R program:

mydata <- read.table("mydata.csv", header=TRUE, sep=",")

Alternatively, a commercial product called Stat Transfer (described in section 2.3.12)
does an excellent job of saving SAS datasets (including any existing variable formats)
as R data frames.

Importing data from Stata

Importing data from Stata to R is straightforward. The necessary code looks
like this:

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

2.3.9

Data input 39

library (foreign)
mydataframe <- read.dta("mydata.dta")

Here, mydata.dta is the Stata dataset and mydataframe is the resulting R data frame.

Importing data from netCDF

Unidata’s netCDF (network Common Data Form) open source software contains ma-
chine-independent data formats for the creation and distribution of array-oriented sci-
entific data. netCDF is commonly used to store geophysical data. The ncdf and ncdf4
packages provide high-level R interfaces to netCDF data files.

The ncdf package provides support for data files created with Unidata’s netCDF library
(version 3 or earlier) and is available for Windows, Mac OS X, and Linux platforms. The
ncdf4 package supports version 4 or earlier, but isn’t yet available for Windows.

Consider this code:
library (ncdf)
nc <- nc_open ("mynetCDFfile")
myarray <- get.var.ncdf(nc, myvar)

In this example, all the data from the variable myvar, contained in the netCDF file
mynetCDFfile, is read and saved into an R array called myarray.

Note that both ncdf and ncdf4 packages have received major recent upgrades and
may operate differently than previous versions. Additionally, function names in the two
packages differ. Read the online documentation for details.

2.3.10 Importing data from HDF5

HDF5 (Hierarchical Data Format) is a software technology suite for the management
of extremely large and complex data collections. The hdf5 package can be used to
write R objects into a file in a form that can be read by software that understands
the HDF5 format. These files can be read back into R at a later time. The package is
experimental and assumes that the user has the HDF5 library (version 1.2 or higher)
installed. At present, support for the HDF5 format in R is extremely limited.

2.3.11 Accessing database management systems (DBMSs)

R can interface with a wide variety of relational database management systems (DBMSs),
including Microsoft SQL Server, Microsoft Access, MySQL, Oracle, PostgreSQL, DB2,
Sybase, Teradata, and SQLite. Some packages provide access through native database
drivers, whereas others offer access via ODBC or JDBC. Using R to access data stored in
external DMBSs can be an efficient way to analyze large datasets (see appendix G), and
leverages the power of both SQL and R.

THE ODBC INTERFACE

Perhaps the most popular method of accessing a DBMS in R is through the RODBC pack-
age, which allows R to connect to any DBMS that has an ODBC driver. This includes all
of the DBMSs listed.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

40

CHAPTER 2 Creating a dataset

The first step is to install and configure the appropriate ODBC driver for your
platform and database—they’re not part of R. If the requisite drivers aren’t already
installed on your machine, an internet search should provide you with options.

Once the drivers are installed and configured for the database(s) of your choice,
install the RODBC package. You can do so by using the install.packages ("RODBC")
command.

The primary functions included with the RODBC package are listed in table 2.2.

Table 2.2 RODBC functions

Function Description

odbcConnect (dsn,uid="",pwd="") Open a connection to an ODBC database

sqlFetch (channel, sgltable) Read a table from an ODBC database into a data
frame

sglQuery (channel, query) Submit a query to an ODBC database and return
the results

sglSave (channel, mydf, tablename = Write or update (append=TRUE) a data frame

sqgtable, append=FALSE) to a table in the ODBC database

sqlDrop (channel, sgtable) Remove a table from the ODBC database

close (channel) Close the connection

The RODBC package allows two-way communication between R and an ODBC-connect-
ed SQL database. This means that you can not only read data from a connected data-
base into R, but you can use R to alter the contents of the database itself. Assume that
you want to import two tables (Crime and Punishment) from a DBMS into two R data
frames called crimedat and pundat, respectively. You can accomplish this with code
similar to the following:

library (RODBC)

myconn <-odbcConnect ("mydsn", uid="Rob", pwd="aardvark")
crimedat <- sglFetch(myconn, Crime)

pundat <- sglQuery (myconn, "select * from Punishment")
close (myconn)

Here, you load the RODBC package and open a connection to the ODBC database
through a registered data source name (mydsn) with a security UID (rob) and pass-
word (aardvark). The connection string is passed to sglFetch, which copies the
table Crime into the R data frame crimedat. You then run the SQL select statement
against the table Punishment and save the results to the data frame pundat. Finally,
you close the connection.

The sqlouery () function is very powerful because any valid SQL statement can be
inserted. This flexibility allows you to select specific variables, subset the data, create
new variables, and recode and rename existing variables.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

Data input 41

DBI-RELATED PACKAGES

The DBI package provides a general and consistent client-side interface to DBMS. Build-
ing on this framework, the RIDBC package provides access to DBMS via a JDBC driver.
Be sure to install the necessary JDBC drivers for your platform and database. Other use-
ful DBI-based packages include RMySQL, ROracle, RPostgreSQL, and RSQLite. These
packages provide native database drivers for their respective databases but may not be
available on all platforms. Check the documentation on CRAN (http://cran.r-project.
org) for details.

2.3.12 Importing data via Stat/Transfer

Before we end our discussion of importing data, it’s worth mentioning a commercial
product that can make the task significantly easier. Stat/Transfer (www.stattransfer.
com) is a stand-alone application that can transfer data between 34 data formats, in-
cluding R (see figure 2.4).

B Stat/Transfer

Transfer |Variables | Observations | Options | Run Program | Log |About |

Input File Type: [SAS -
1-2-3 -
Access B
File Specification: ASCII/Text - Delimited ~|[Browse
ASCII/Text - Stat/Transfer Schema
dBASE or Compatible
Epi Info
Excel
FoxPro
Gauss 1
JMP - Version 3
JMP - Versions 4+
LIMDEP
Output File Type: Matlab -l ?
put File Type: Mallab |]
Minitab
File Specification: NLOGIT -
ODBC Data Source
OSIRIS
Paradox
Quattro Pro
R Workspace

SAS for Unix
Tra SAS CPORT -Exit
SAS Transport Lp
S-PLUS
SPSS Data File -
SPSS Portable File

View

11

Table: Save Program

Figure 2.4 Stat/Transfer’s main dialog on Windows

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

42

2.4

24.1

2.4.2

2.5

CHAPTER 2 Creating a dataset

It’s available for Windows, Mac, and Unix platforms and supports the latest versions of
the statistical packages we’ve discussed so far, as well as ODBC-accessed DBMSs such as
Oracle, Sybase, Informix, and DB/2.

Annotating datasets

Data analysts typically annotate datasets to make the results easier to interpret. Typi-
cally annotation includes adding descriptive labels to variable names and value labels
to the codes used for categorical variables. For example, for the variable age, you
might want to attach the more descriptive label “Age at hospitalization (in years).” For
the variable gender coded 1 or 2, you might want to associate the labels “male” and
“female.”

Variable Iabels

Unfortunately, R’s ability to handle variable labels is limited. One approach is to use
the variable label as the variable’s name and then refer to the variable by its position
index. Consider our earlier example, where you have a data frame containing patient
data. The second column, named age, contains the ages at which individuals were first
hospitalized. The code

names (patientdata) [2] <- "Age at hospitalization (in years)"

renames age to "Age at hospitalization (in years)". Clearly this new name is
too long to type repeatedly. Instead, you can refer to this variable as patientdatal2]
and the string "Age at hospitalization (in years)" will print wherever age
would’ve originally. Obviously, this isn’t an ideal approach, and you may be better off
trying to come up with better names (for example, admissionage).

Value labels

The factor () function can be used to create value labels for categorical variables.
Continuing our example, say that you have a variable named gender, which is coded 1
for male and 2 for female. You could create value labels with the code

patientdatasSgender <- factor (patientdataS$gender,
levels = c(1,2),
labels = c("male", "female"))

Here 1evels indicate the actual values of the variable, and 1abels refer to a character
vector containing the desired labels.

Useful functions for working with data objects

We’ll end this chapter with a brief summary of useful functions for working with data
objects (see table 2.3).

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

2.6

Summary 43

Table 2.3 Useful functions for working with data objects

Function Purpose

length (object) Number of elements/components.

dim(object) Dimensions of an object.

str (object) Structure of an object.

class (object) Class or type of an object.

mode (object) How an object is stored.

names (object) Names of components in an object.

c(object, object,...) Combines objects into a vector.

cbind(object, object, ...) Combines objects as columns.

rbind (object, object, ...) Combines objects as rows.

object Prints the object.

head (object) Lists the first part of the object.

tail (object) Lists the last part of the object.

1s() Lists current objects.

rm(object, object, ...) Deletes one or more objects. The statement
rm(list = 1s()) will remove most objects
from the working environment.

newobject <- edit (object) Edits object and saves as newobject.

fix (object) Edits in place.

We’ve already discussed most of these functions. The functions head () and tail()
are useful for quickly scanning large datasets. For example, head(patientdata)
lists the first six rows of the data frame, whereas tail (patientdata) lists the last six.
We’ll cover functions such as length(), cbind (), and rbind() in the next chapter.
They’re gathered here as a reference.

Summary

One of the most challenging tasks in data analysis is data preparation. We’ve made a
good start in this chapter by outlining the various structures that R provides for hold-
ing data and the many methods available for importing data from both keyboard and
external sources. In particular, we’ll use the definitions of a vector, matrix, data frame,
and list again and again in later chapters. Your ability to specify elements of these struc-
tures via the bracket notation will be particularly important in selecting, subsetting,
and transforming data.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

44

CHAPTER 2 Creating a dataset

As you’ve seen, R offers a wealth of functions for accessing external data. This
includes data from flat files, web files, statistical packages, spreadsheets, and databases.
Although the focus of this chapter has been on importing data into R, you can also
export data from R into these external formats. Exporting data is covered in appendix
C, and methods of working with large datasets (in the gigabyte to terabyte range) are
covered in appendix G.

Once you get your datasets into R, it’s likely that you’ll have to manipulate them into
a more conducive format (actually, I find guilt works well). In chapter 4, we’ll explore
ways of creating new variables, transforming and recoding existing variables, merging
datasets, and selecting observations.

But before turning to data management tasks, let’s spend some time with R graphics.
Many readers have turned to R out of an interest in its graphing capabilities, and I
don’t want to make you wait any longer. In the next chapter, we’ll jump directly into
the creation of graphs. Our emphasis will be on general methods for managing and
customizing graphs that can be applied throughout the remainder of this book.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

	2 Creating a dataset
	2.1 Understanding datasets
	2.2 Data structures
	2.2.1 Vectors
	2.2.2 Matrices
	2.2.3 Arrays
	2.2.4 Data frames
	2.2.5 Factors
	2.2.6 Lists

	2.3 Data input
	2.3.1 Entering data from the keyboard
	2.3.2 Importing data from a delimited text file
	2.3.3 Importing data from Excel
	2.3.4 Importing data from XML
	2.3.5 Webscraping
	2.3.6 Importing data from SPSS
	2.3.7 Importing data from SAS
	2.3.8 Importing data from Stata
	2.3.9 Importing data from netCDF
	2.3.10 Importing data from HDF5
	2.3.11 Accessing database management systems (DBMSs)
	2.3.12 Importing data via Stat/Transfer

	2.4 Annotating datasets
	2.4.1 Variable labels
	2.4.2 Value labels

	2.5 Useful functions for working with data objects
	2.6 Summary

