Getting started with

This chapter covers

= Creating and saving graphs

= Customizing symbols, lines, colors, and axes
= Annotating with text and titles

= Controlling a graph’s dimensions

= Combining multiple graphs into one

On many occasions, I've presented clients with carefully crafted statistical results in
the form of numbers and text, only to have their eyes glaze over while the chirping
of crickets permeated the room. Yet those same clients had enthusiastic “Ah-hal!”
moments when I presented the same information to them in the form of graphs.
Many times I was able to see patterns in data or detect anomalies in data values by
looking at graphs—patterns or anomalies that I completely missed when conduct-
ing more formal statistical analyses.

Human beings are remarkably adept at discerning relationships from visual
representations. A well-crafted graph can help you make meaningful comparisons
among thousands of pieces of information, extracting patterns not easily found
through other methods. This is one reason why advances in the field of statistical
graphics have had such a major impact on data analysis. Data analysts need to look at
their data, and this is one area where R shines.

45

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

46

3.1

CHAPTER 3 Getting started with graphs

In this chapter, we’ll review general methods for working with graphs. We’ll start
with how to create and save graphs. Then we’ll look at how to modify the features that
are found in any graph. These features include graph titles, axes, labels, colors, lines,
symbols, and text annotations. Our focus will be on generic techniques that apply
across graphs. (In later chapters, we’ll focus on specific types of graphs.) Finally, we’ll
investigate ways to combine multiple graphs into one overall graph.

Working with graphs
R is an amazing platform for building graphs. I'm using the term “building” intention-
ally. In a typical interactive session, you build a graph one statement at a time, adding
features, until you have what you want.

Consider the following five lines:

attach (mtcars)

plot (wt, mpg)

abline (1lm(mpg~wt))

title("Regression of MPG on Weight")
detach (mtcars)

The first statement attaches the data frame mtcars. The second statement opens a
graphics window and generates a scatter plot between automobile weight on the hori-
zontal axis and miles per gallon on the vertical axis. The third statement adds a line of
best fit. The fourth statement adds a title. The final statement detaches the data frame.
In R, graphs are typically created in this interactive fashion (see figure 3.1).

You can save your graphs via code or through GUI menus. To save a graph via
code, sandwich the statements that produce the graph between a statement that sets
a destination and a statement that closes that destination. For example, the following

IR R Console (64-bit) (=13 2 I R & Graphics: Device 2 (ACTIVE)

File Edit Misc Packages Windows Help File History Resize

> attach{mtcars)
plot (wt, mpg)
(1m (mpg~wt))
("Regression of MPG on Weight")
detach (mtcars)

Regression of MPG on Weight

Lo}

VoV VY Y
iz
:rf.
o

o}

15 20 25 30

10

Figure 3.1 Creating a graph

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

Working with graphs 47

will save the graph as a PDF document named mygraph.pdf in the current working
directory:

pdf ("mygraph.pdf")

attach (mtcars)

plot(wt, mpg)

abline (1m (mpg~wt))

title("Regression of MPG on Weight")

detach (mtcars)
dev.off ()

In addition to pdf (), you can use the functions win.metafile(), png (), jpeg(),
bmp (), tiff (), xfig(), and postscript () to save graphs in other formats. (Note:
The Windows metafile format is only available on Windows platforms.) See chapter 1,
section 1.3.4 for more details on sending graphic output to files.

Saving graphs via the GUI will be platform specific. On a Windows platform, select
File > Save As from the graphics window, and choose the format and location desired
in the resulting dialog. On a Mac, choose File > Save As from the menu bar when the
Quartz graphics window is highlighted. The only output format provided is PDF. On
a Unix platform, the graphs must be saved via code. In appendix A, we’ll consider
alternative GUISs for each platform that will give you more options.

Creating a new graph by issuing a high-level plotting command such as plot (),
hist () (for histograms), or boxplot () will typically overwrite a previous graph. How
can you create more than one graph and still have access to each? There are several
methods.

First, you can open a new graph window before creating a new graph:
dev.new ()

statements to create graph 1
dev.new ()

Sstatements to create a graph 2
etc.

Each new graph will appear in the most recently opened window.

Second, you can access multiple graphs via the GUI. On a Mac platform, you can
step through the graphs at any time using Back and Forward on the Quartz menu. On
a Windows platform, you must use a two-step process. After opening the first graph
window, choose History > Recording. Then use the Previous and Next menu items to
step through the graphs that are created.

Third and finally, you can use the functions dev.new (), dev.next (), dev.prev(),
dev.set (), and dev.off () to have multiple graph windows open at one time and
choose which output are sent to which windows. This approach works on any platform.
See help (dev.cur) for details on this approach.

R will create attractive graphs with a minimum of input on our part. But you can also
use graphical parameters to specify fonts, colors, line styles, axes, reference lines, and
annotations. This flexibility allows for a wide degree of customization.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

48

3.2

CHAPTER 3 Getting started with graphs

In this chapter, we’ll start with a simple graph and explore the ways you can modify
and enhance it to meet your needs. Then we’ll look at more complex examples that
illustrate additional customization methods. The focus will be on techniques that you
can apply to a wide range of the graphs that you’ll create in R. The methods discussed
here will work on all the graphs described in this book, with the exception of those
created with the lattice package in chapter 16. (The lattice package has its own
methods for customizing a graph’s appearance.) In other chapters, we’ll explore each
specific type of graph and discuss where and when they’re most useful.

A simple example

Let’s start with the simple fictitious dataset given in table 3.1. It describes patient re-
sponse to two drugs at five dosage levels.

Table 3.1 Patient response to two drugs at five dosage levels

Dosage Response to Drug A Response to Drug B
20 16 15
30 20 18
40 27 25
45 40 31
60 60 40

You can input this data using this code:

dose <- c(20, 30, 40, 45, 60)
drugA <- c(16, 20, 27, 40, 60)
drugB <- c(15, 18, 25, 31, 40)

A simple line graph relating dose to response for drug A can be created using
plot (dose, drugA, type="b")

plot () is a generic function that plots objects in R (its output will vary according to
the type of object being plotted). In this case, plot (x, y, type="b") places x on
the horizontal axis and y on the vertical axis, plots the (x, y) data points, and connects
them with line segments. The option type="b" indicates that both points and lines
should be plotted. Use help (plot) to view other options. The graph is displayed in
figure 3.2.

Line plots are covered in detail in chapter 11. Now let’s modify the appearance of
this graph.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

3.3

Graphical parameters 49

50 60
|
o

drugA
40

!

(]

20
|
o

T T T T T
20 30 40 50 60

dose

Figure 3.2 Line plot of dose vs. response for drug A

Graphical parameters

You can customize many features of a graph (fonts, colors, axes, titles) through options
called graphical parameters.

One way is to specify these options through the par () function. Values set in this
manner will be in effect for the rest of the session or until they're changed. The
format is par (optionname=value, optionname=value, ...). Specifying par()
without parameters produces a list of the current graphical settings. Adding the
no.readonly=TRUE option produces a list of current graphical settings that can be
modified.

Continuing our example, let’s say that you’d like to use a solid triangle rather than
an open circle as your plotting symbol, and connect points using a dashed line rather
than a solid line. You can do so with the following code:
opar <- par (no.readonly=TRUE)
par (lty=2, pch=17)
plot (dose, drugA, type="b")
par (opar)

The resulting graph is shown in figure 3.3.

The first statement makes a copy of the current settings. The second statement

changes the default line type to dashed (1ty=2) and the default symbol for plotting

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

50

3.3.1

CHAPTER 3 Getting started with graphs

o
S A
o _| ,
[T9) e
o _l a
< < A
(=) .
> ’
2 ,
o ;
o _J)
(<] /
K
°
& A
-
T T T T T
20 30 40 50 60
dose

Figure 3.3 Line plot of dose vs. response for drug A with modified line type and symbol

points to a solid triangle (pch=17). You then generate the plot and restore the original
settings. Line types and symbols are covered in section 3.3.1.

You can have as many par () functions as desired, so par (1ty=2, pch=17) could
also have been written as
par (1lty=2)
par (pch=17)
A second way to specify graphical parameters is by providing the optionname=value
pairs directly to a high-level plotting function. In this case, the options are only in ef-
fect for that specific graph. You could’ve generated the same graph with the code

plot (dose, drugA, type="b", lty=2, pch=17)

Not all high-level plotting functions allow you to specify all possible graphical parame-
ters. See the help for a specific plotting function (such as ?plot, ?hist, or ?boxplot)
to determine which graphical parameters can be set in this way. The remainder of sec-
tion 3.3 describes many of the important graphical parameters that you can set.

Symbols and lines

As you’ve seen, you can use graphical parameters to specify the plotting symbols and
lines used in your graphs. The relevant parameters are shown in table 3.2.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

Graphical parameters 51

Table 3.2 Parameters for specifying symbols and lines

Parameter Description

pch Specifies the symbol to use when plotting points (see figure 3.4).

cex Specifies the symbol size. cex is a humber indicating the amount by which
plotting symbols should be scaled relative to the default. 1=default, 1.5 is 50%
larger, 0.5 is 50% smaller, and so forth.

1ty Specifies the line type (see figure 3.5).

1wd Specifies the line width. 1wd is expressed relative to the default (default=1).
For example, 1lwd=2 generates a line twice as wide as the default.

The pch= option specifies the symbols to use when plotting points. Possible values are
shown in figure 3.4.

For symbols 21 through 25 you can also specify the border (col=) and fill (bg=)
colors.

Use 1lty= to specify the type of line desired. The option values are shown in
figure 3.5.

Taking these options together, the code

plot (dose, drugA, type="b", 1lty=3, 1lwd=3, pch=15, cex=2)

would produce a plot with a dotted line that was three times wider than the default
width, connecting points displayed as filled squares that are twice as large as the default
symbol size. The results are displayed in figure 3.6.

Next, let’s look at specifying colors.

plot symbols: pch= line types: Ity=
0O0<C5 e10m1520v25 6 e —
01ve6xiiel16021 S T T
4 e iemimimimimim i m i mim- -
A2XRT7 B12A17022
L2 T e
+ 3% 8 ®13¢18423)
X 49014019424 1
Figure 3.4 Plotting symbols specified Figure 3.5 Line types specified with the 1ty
with the pch parameter parameter

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

52

3.3.2

o
o©
o
n
o

< <

(=2}

5

=

el
o
(<]
o
Al

CHAPTER 3 Getting started with graphs

. |
- [|
N |
- N A
|’
T T T T T
20 30 40 50 60
dose

Figure 3.6 Line plot of dose vs. response for drug A with modified line type,
line width, symbol, and symbol width

Colors

There are several colorrelated parameters in R. Table 3.3 shows some of the common

ones.

Table 3.3 Parameters for specifying color

Parameter Description

col

col.

col.

col.

col.

fg

bg

axis

lab

main

sub

Default plotting color. Some functions (such as lines and pie) accept a vector
of values that are recycled. For example, if col=c (“*red”, “blue”)and
three lines are plotted, the first line will be red, the second blue, and the
third red.

Color for axis text.

Color for axis labels.

Color for titles.

Color for subtitles.

The plot’s foreground color.

The plot’s background color.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

3.3.3

Graphical parameters 53

You can specify colors in R by index, name, hexadecimal, RGB, or HSV. For example,
col=1, col="white", col="#FFFFFF", col=rgb(1,1,1), and col=hsv(0,0,1) are
equivalent ways of specifying the color white. The function rgb () creates colors based
on red-green-blue values, whereas hsv () creates colors based on hue-saturation values.
See the help feature on these functions for more details.

The function colors () returns all available color names. Earl F. Glynn has created
an excellent online chart of R colors, available at http://research.stowers-institute.
org/efg/R/Color/Chart. R also has a number of functions that can be used to create
vectors of contiguous colors. These include rainbow (), heat.colors (), terrain.
colors(), topo.colors (), and cm.colors (). For example, rainbow (10) produces
10 contiguous “rainbow" colors. Gray levels are generated with the gray () function. In
this case, you specify gray levels as a vector of numbers between 0 and 1. gray (0:10/10)
would produce 10 gray levels. Try the code
n <- 10
mycolors <- rainbow(n)
pie(rep(l, n), labels=mycolors, col=mycolors)
mygrays <- gray(0:n/n)
pie(rep(l, n), labels=mygrays, col=mygrays)
to see how this works. You’ll see examples that use color parameters throughout this
chapter.

Text characteristics

Graphic parameters are also used to specify text size, font, and style. Parameters con-
trolling text size are explained in table 3.4. Font family and style can be controlled with
font options (see table 3.5).

Table 3.4 Parameters specifying text size

Parameter Description

cex Number indicating the amount by which plotted text should be scaled relative
to the default. 1=default, 1.5 is 50% larger, 0.5 is 50% smaller, etc.

cex.axis Magnification of axis text relative to cex.

cex.lab Magpnification of axis labels relative to cex.

cex.main Magnification of titles relative to cex.

cex.sub Magnification of subtitles relative to cex.

For example, all graphs created after the statement
par (font.lab=3, cex.lab=1.5, font.main=4, cex.main=2)

will have italic axis labels that are 1.5 times the default text size, and bold italic titles
that are twice the default text size.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

54

3.3.4

CHAPTER 3 Getting started with graphs

Table 3.5 Parameters specifying font family, size, and style

Parameter Description

font Integer specifying font to use for plotted text.. 1=plain, 2=bold, 3=italic,
4=bold italic, 5=symbol (in Adobe symbol encoding).

font.axis Font for axis text.

font.lab Font for axis labels.

font.main Font for titles.

font.sub Font for subtitles.

ps Font point size (roughly 1/72 inch).

The text size = ps*cex.

family Font family for drawing text. Standard values are serif, sans, and mono.

Whereas font size and style are easily set, font family is a bit more complicated. This is
because the mapping of serif, sans, and mono are device dependent. For example, on
Windows platforms, mono is mapped to TT Courier New, serif is mapped to TT Times
New Roman, and sans is mapped to TT Arial (TT stands for True Type). If you're satis-
fied with this mapping, you can use parameters like family="serif" to get the results
you want. If not, you need to create a new mapping. On Windows, you can create this
mapping via the windowsFont () function. For example, after issuing the statement

windowsFonts (
A=windowsFont ("Arial Black"),
B=windowsFont ("Bookman 0ld Style"),
C=windowsFont ("Comic Sans MS")

)

you can use A, B, and C as family values. In this case, par (family="A") will specify an
Arial Black font. (Listing 3.2 in section 3.4.2 provides an example of modifying text
parameters.) Note that the windowsFont () function only works for Windows. On a
Mac, use quartzFonts () instead.

If graphs will be output in PDF or PostScript format, changing the font
family is relatively straightforward. For PDFs, use names (pdfFonts())to find
out which fonts are available on your system and pdf (file="myplot.pdf",
family="rfontname") to generate the plots. For graphs that are output in PostScript
format, use names (postscriptFonts()) and postscript(file="myplot.ps",
family="rfontname"). See the online help for more information.

Graph and margin dimensions

Finally, you can control the plot dimensions and margin sizes using the parameters
listed in table 3.6.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

Graphical parameters 55

Table 3.6 Parameters for graph and margin dimensions

Parameter Description

pin Plot dimensions (width, height) in inches.

mai Numerical vector indicating margin size where c(bottom, left, top, right) is
expressed in inches.

mar Numerical vector indicating margin size where c(bottom, left, top, right) is
expressed in lines. The default is ¢(5, 4, 4, 2) + 0.1.

The code
par (pin=c(4,3), mai=c(1,.5, 1, .2))

produces graphs that are 4 inches wide by 3 inches tall, with a l-inch margin on the
bottom and top, a 0.5-inch margin on the left, and a 0.2-inch margin on the right.
For a complete tutorial on margins, see Earl F. Glynn’s comprehensive online tutorial
(http:/ /research.stowers-institute.org/efg/R/Graphics/Basics/mar-oma/).

Let’s use the options we’ve covered so far to enhance our simple example. The code
in the following listing produces the graphs in figure 3.7.

Listing 3.1 Using graphical parameters to control graph appearance

dose <- c(20, 30, 40, 45, 60)

drugA <- c (16, 20, 27, 40, 60)

drugB <- c(15, 18, 25, 31, 40)

opar <- par (no.readonly=TRUE)

par (pin=c(2, 3))

par (lwd=2, cex=1.5)

par (cex.axis=.75, font.axis=3)

plot (dose, drugA, type="b", pch=19, 1lty=2, col="red")

plot (dose, drugB, type="b", pch=23, 1lty=6, col="blue", bg="green")

par (opar)

First you enter your data as vectors, then save the current graphical parameter settings
(so that you can restore them later). You modify the default graphical parameters so
that graphs will be 2 inches wide by 3 inches tall. Additionally, lines will be twice the
default width and symbols will be 1.5 times the default size. Axis text will be set to italic
and scaled to 75 percent of the default. The first plot is then created using filled red
circles and dashed lines. The second plot is created using filled green filled diamonds
and a blue border and blue dashed lines. Finally, you restore the original graphical
parameter settings.

Note that parameters set with the par () function apply to both graphs, whereas
parameters specified in the plot functions only apply to that specific graph. Looking
at figure 3.7 you can see some limitations in your presentation. The graphs lack titles
and the vertical axes are not on the same scale, limiting your ability to compare the two
drugs directly. The axis labels could also be more informative.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

56

3.4

CHAPTER 3 Getting started with graphs

8 - ° § Ay
p)
/ o/
/ /
o _| / % — /'
's) / .
/ R4
/ 8 ,
L ° b !
g ' g j
1 & <
S ! /
o« ! .
° o /
/7 —
/ N ’/
/7
& ° g
- 7
e~ e o’
T T T T T T T T T T
20 30 40 50 60 20 30 40 50 60
dose dose

Figure 3.7 Line plot of dose vs. response for both drug A and drug B

In the next section, we’ll turn to the customization of text annotations (such as titles
and labels) and axes. For more information on the graphical parameters that are avail-
able, take a look at help (par).

Adding text, customized axes, and legends

Many high-level plotting functions (for example, plot, hist, boxplot) allow you to
include axis and text options, as well as graphical parameters. For example, the follow-
ing adds a title (main), subtitle (sub), axis labels (x1ab, ylab), and axis ranges (x1im,
y1lim). The results are presented in figure 3.8:
plot (dose, drugA, type="b",

col="red", lty=2, pch=2, lwd=2,

main="Clinical Trials for Drug A",

sub="This is hypothetical data",

xlab="Dosage", ylab="Drug Response",

xlim=c (0, 60), ylim=c(0, 70))
Again, not all functions allow you to add these options. See the help for the function
of interest to see what options are accepted. For finer control and for modularization,
you can use the functions described in the remainder of this section to control titles,
axes, legends, and text annotations.

NOTE Some high-level plotting functions include default titles and labels. You

can remove them by adding ann=FALSE in the plot () statement or in a
separate par () statement.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

3.4.1

3.4.2

Adding text, customized axes, and legends 57

Clinical Trials for Drug A

o

R

8 A

4
.
.
o d
n 7| //
d
4

° ,
5 % o
Q /
3 ’
o 7
g’ 8 //
a A

S _aT

a- -
o _|
o
T T T T T T T Figure 3.8 Line plot of dose
0 10 20 30 40 50 60 versus response for drug
Dosage A with title, subtitle, and
This is hypothetical data modified axes

Titles

Use the title() function to add title and axis labels to a plot. The format is

title(main="main title", sub="sub-title",

xlab="x-axis label", ylab="y-axis label")
Graphical parameters (such as text size, font, rotation, and color) can also be specified
in the title() function. For example, the following produces a red title and a blue
subtitle, and creates green x and y labels that are 25 percent smaller than the default
text size:
title(main="My Title", col.main="red",

sub="My Sub-title", col.sub="blue",

xlab="My X label", ylab="My Y label",
col.lab="green", cex.lab=0.75)

Axes

Rather than using R’s default axes, you can create custom axes with the axis () func-
tion. The format is

axis(side, at=, labels=, pos=, 1lty=, col=, las=, tck=, ...)

where each parameter is described in table 3.7.

When creating a custom axis, you should suppress the axis automatically generated by
the high-level plotting function. The option axes=FALSE suppresses all axes (including
all axis frame lines, unless you add the option frame.plot=TRUE). The options
xaxt="n" and yaxt="n" suppress the x- and y-axis, respectively (leaving the frame

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

58

Table 3.7 Axis options

CHAPTER 3 Getting started with graphs

Option Description

side

at

labels

pos

1ty

col

las

tck

An integer indicating the side of the graph to draw the axis
(1=bottom, 2=left, 3=top, 4=right).

A numeric vector indicating where tick marks should be drawn.

A character vector of labels to be placed at the tick marks
(if NULL, the at values will be used).

The coordinate at which the axis line is to be drawn
(that is, the value on the other axis where it crosses).

Line type.

The line and tick mark color.

Labels are parallel (=0) or perpendicular (=2) to the axis.

Length of tick mark as a fraction of the plotting region (a negative number is
outside the graph, a positive number is inside, O suppresses ticks, 1 creates

gridlines); the default is —0.01.

Other graphical parameters.

lines, without ticks). The following listing is a somewhat silly and overblown example
that demonstrates each of the features we’ve discussed so far. The resulting graph is
presented in figure 3.9.

An Example of Creative Axes

o
o
o
©
~
x ©
Q
>
0
<
™
~
°

y=10/x

o

L —
= 5
&

6 8 10 Figure 3.9 A demonstration of

X values axis options

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

Adding text, customized axes, and legends 59

Listing 3.2 An example of custom axes

x <- c(1:10) <—— Specify data
Yy <- X
z <- 10/x

opar <- par (no.readonly=TRUE)

par (mar=c(5, 4, 4, 8) + 0.1) <—— Increase margins

plot(x, y, type="b", <—— Plot x versus y
pch=21, col="red",
yvaxt="n", lty=3, ann=FALSE)
Add x versus
lines(x, z, type="b", pch=22, col="blue", lty=2) I/x line

axis (2, at=x, labels=x, col.axis="red", las=2) <r44—DrmNyouraxes

axis (4, at=z, labels=round(z, digits=2),
col.axis="blue", las=2, cex.axis=0.7, tck=-.01)

mtext ("y=1/x", side=4, line=3, cex.lab=1, las=2, col="blue") Add titles
and text
title("An Example of Creative Axes",
xlab="X values",
ylab="v=X")

par (opar)

At this point, we’ve covered everything in listing 3.2 except for the 1line()and the
mtext () statements. A plot () statement starts a new graph. By using the line()
statement instead, you can add new graph elements to an existing graph. You’ll use
it again when you plot the response of drug A and drug B on the same graph in sec-
tion 3.4.4. The mtext () function is used to add text to the margins of the plot. The
mtext () function is covered in section 3.4.5, and the 1ine () function is covered more
fully in chapter 11.

MINOR TICK MARKS

Notice that each of the graphs you’ve created so far have major tick marks but not mi-
nor tick marks. To create minor tick marks, you’ll need the minor. tick() function in
the Hmisc package. If you don’t already have Hmisc installed, be sure to install it first
(see chapter 1, section 1.4.2). You can add minor tick marks with the code

library (Hmisc)

minor.tick (nx=n, ny=n, tick.ratio=n)

where nx and ny specify the number of intervals in which to divide the area between
major tick marks on the x-axis and y-axis, respectively. tick.ratio is the size of the
minor tick mark relative to the major tick mark. The current length of the major tick
mark can be retrieved using par ("tck"). For example, the following statement will
add one tick mark between each major tick mark on the x-axis and two tick marks be-
tween each major tick mark on the y-axis:

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

60

3.4.3

3.4.4

CHAPTER 3 Getting started with graphs

minor.tick (nx=2, ny=3, tick.ratio=0.5)

The length of the tick marks will be 50 percent as long as the major tick marks. An
example of minor tick marks is given in the next section (listing 3.3 and figure 3.10).

Reference lines
The abline () function is used to add reference lines to our graph. The format is
abline (h=yvalues, v=xvalues)

Other graphical parameters (such as line type, color, and width) can also be specified
in the abline () function. For example:

abline(h=c(1,5,7))
adds solid horizontal lines aty = 1, 5, and 7, whereas the code
abline(v=seqg(l, 10, 2), 1lty=2, col="blue")

adds dashed blue vertical lines atx =1, 3,5, 7, and 9. Listing 3.3 creates a reference line
for our drug example aty = 30. The resulting graph is displayed in figure 3.10.

Legend

When more than one set of data or group is incorporated into a graph, a legend can
help you to identify what’s being represented by each bar, pie slice, or line. A legend
can be added (not surprisingly) with the legend () function. The format is

legend(location, title, legend, ...)

The common options are described in table 3.8.

Table 3.8 Legend options

Option Description

location There are several ways to indicate the location of the legend. You can

give an x,y coordinate for the upper-left corner of the legend. You can use
locator (1), in which case you use the mouse to indicate the location of
the legend. You can also use the keywords bottom, bottomleft, left,
topleft, top, topright, right, bottomright, or center to place
the legend in the graph. If you use one of these keywords, you can also use
inset= to specify an amount to move the legend into the graph (as fraction
of plot region).

title A character string for the legend title (optional).

legend A character vector with the labels.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

Adding text, customized axes, and legends 61

Table 3.8 Legend options (continued)

Description

Other options. If the legend labels colored lines, specify col= and a
vector of colors. If the legend labels point symbols, specify pch= and a
vector of point symbols. If the legend labels line width or line style, use
1lwd= or 1ty= and a vector of widths or styles. To create colored boxes for
the legend (common in bar, box, or pie charts), use £i11= and a vector of
colors.

Other common legend options include bty for box type, bg for background color, cex
for size, and text . col for text color. Specifying horiz=TRUE sets the legend horizon-
tally rather than vertically. For more on legends, see help (legend). The examples in
the help file are particularly informative.

Let’s take a look at an example using our drug data (listing 3.3). Again, you’ll use
a number of the features that we’ve covered up to this point. The resulting graph is
presented in figure 3.10.

Listing 3.3 Comparing Drug A and Drug B response by dose

dose <- c(20, 30, 40, 45, 60)
drugA <- c(16, 20, 27, 40, 60)
drugB <- c (15, 18, 25, 31, 40)

opar <- par (no.readonly=TRUE)
Increase line, text,
par (lwd=2, cex=1.5, font.lab=2) symbol, label size

plot (dose, drugA, type="b", <—— Generate graph
pch=15, 1lty=1, col="red", ylim=c(0, 60),
main="Drug A vs. Drug B",
xlab="Drug Dosage", ylab="Drug Response")

lines (dose, drugB, type="b",
pch=17, 1lty=2, col="blue")

abline (h=c(30), 1lwd=1.5, 1lty=2, col="gray")

library (Hmisc) Add minor tick

minor.tick(nx=3, ny=3, tick.ratio=0.5) marks

legend("topleft", inset=.05, title="Drug Type", c("A","B"), <—— Add legend
lty=c(1l, 2), pch=c(15, 17), col=c("red", "blue"))

par (opar)

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

62

3.4.5

CHAPTER 3 Getting started with graphs

Drug Avs. Drug B

o
©
] =
3 1 |Drug Type 7
- | = A //
@ S A- B //
s n’ A
a2 3] / o
g - o
[~ A
oqm— "
o
I I I I
20 30 40 50 60
Figure 3.10 An annotated
Drug Dosage comparison of Drug A and Drug B

Almost all aspects of the graph in figure 3.10 can be modified using the options dis-
cussed in this chapter. Additionally, there are many ways to specify the options desired.
The final annotation to consider is the addition of text to the plot itself. This topic is
covered in the next section.

Text annotations

Text can be added to graphs using the text () and mtext () functions. text () places
text within the graph whereas mtext () places text in one of the four margins. The
formats are

text (location, "text to place", pos, ...)
mtext ("text to place", side, line=n, ...)

and the common options are described in table 3.9.

Table 3.9 Options for the text () and mtext () functions

Option Description

location Location can be an x,y coordinate. Alternatively, the text can be placed
interactively via mouse by specifying location as locator (1).

pos Position relative to location. 1 = below, 2 = left, 3 = above, 4 = right. If you
specify pos, you can specify of fset= in percent of character width.

side Which margin to place text in, where 1 = bottom, 2 = left, 3 = top, 4 = right.
You can specify 1ine= to indicate the line in the margin starting with O (closest
to the plot area) and moving out. You can also specify adj=0 for left/bottom
alignment or adj=1 for top/right alignment.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

Adding text, customized axes, and legends 63

Other common options are cex, col, and font (for size, color, and font style,
respectively).

The text () function is typically used for labeling points as well as for adding other
text annotations. Specify location as a set of X, y coordinates and specify the text to
place as a vector of labels. The x, y, and label vectors should all be the same length. An
example is given next and the resulting graph is shown in figure 3.11.

attach (mtcars)
plot(wt, mpg,
main="Mileage vs. Car Weight",
xlab="Weight", ylab="Mileage",
pch=18, col="blue")
text (wt, mpg,
row.names (mtcars) ,
cex=0.6, pos=4, col="red")
detach (mtcars)

Mileage vs. Car Weight

4 Toyota Corolla
¢ Fiat 128
o * botttoRtadpivic
[sp]
4 Fiat X1-9
Porsche 914-2
o _|
N 4 Merc 240D
()
% # Datsun 710 ¢ Merc 230
o
= * Toyo1acovmab142% Hornet 4 Drive
= & Mazda R¥azda RX4 Wag
o _|
[s\] # Ferrari Dino
4 Merc 2804 Pontiac Firebird
4 Hornet Sportabout
& VEeskoc
4 Merc 450SL
¢ Merc 450SE
4 Ford Pantea L alle
0 | o WS
— 4 Chry,
4 Duster 360
4 Camaro 228
o _| ¢ Caglillai]
—
I I I I
2 3 4 5
Weight

Figure 3.11 Example of a scatter plot (car weight vs. mileage) with labeled points (car make)

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

64

CHAPTER 3 Getting started with graphs

Here we’ve plotted car mileage versus car weight for the 32 automobile makes pro-
vided in the mtcars data frame. The text () function is used to add the car makes to
the right of each data point. The point labels are shrunk by 40 percent and presented
in red.

As a second example, the following code can be used to display font families:
opar <- par (no.readonly=TRUE)
par (cex=1.5)
plot(1:7,1:7,type="n")
text (3,3, "Example of default text")
text (4,4, family="mono", "Example of mono-spaced text")
text (5,5, family="serif", "Example of serif text")
par (opar)
The results, produced on a Windows platform, are shown in figure 3.12. Here the
par () function was used to increase the font size to produce a better display.

The resulting plot will differ from platform to platform, because plain, mono, and
serif text are mapped to different font families on different systems. What does it look
like on yours?

MATH ANNOTATIONS
Finally, you can add mathematical symbols and formulas to a graph using TEX-like rules.
See help (plotmath) for details and examples. You can also try demo (plotmath) to
see this in action. A portion of the results is presented in figure 3.13. The plotmath ()
function can be used to add mathematical symbols to titles, axis labels, or text annota-
tion in the body or margins of the graph.

You can often gain greater insight into your data by comparing several graphs at one
time. So, we’ll end this chapter by looking at ways to combine more than one graph
into a single image.

0 Example of serif text

17

< Example of mono-spaced text

3
\

Example of default text

Figure 3.12 Examples of font
17 families on a Windows platform

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

Combining graphs 65

Arithmetic Operators Radicals
X+Yy X+Y sqrt(x) N3
x-y X-y sart(x, y) X
X*y Xy Relations
xly x/y X==y x=y
X %o+=%y Xx Xl=y x1y
X%/%Y xVy X<y X<y
X %*% y XxYy X<=Yy x"y
X %.% Yy X-y X>y X>y
—X -X X>=y Xz
+X +X X Yo~~% Yy X ®y
Sub/Superscripts X %=~% Yy X=Yy
X[i] X X %==% Yy X=y
XAD X2 X %prop% y LS
Juxtaposition Typeface
Xy Xy plain(x) X
paste(x, y, z) Xyz italic(x) X
Lists bold(x) X
list(x, y,) X, Y,Z bolditalic(x) X
underline(x)

Figure 3.13 Partial results from demo (plotmath)

Combining graphs

R makes it easy to combine several graphs into one overall graph, using either the
par () or layout () function. At this point, don’t worry about the specific types of
graphs being combined; our focus here is on the general methods used to com-
bine them. The creation and interpretation of each graph type is covered in later
chapters.

With the par () function, you can include the graphical parameter mfrow=c (nrows,
ncols) to create a matrix of nrows x ncols plots that are filled in by row. Alternatively,
you can use mfcol=c (nrows, ncols) to fill the matrix by columns.

For example, the following code creates four plots and arranges them into two rows
and two columns:

attach (mtcars)

opar <- par (no.readonly=TRUE)

par (mfrow=c(2,2))

plot (wt,mpg, main="Scatterplot of wt vs. mpg")
plot(wt,disp, main="Scatterplot of wt vs disp")
hist(wt, main="Histogram of wt")

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

66

CHAPTER 3 Getting started with graphs

boxplot (wt, main="Boxplot of wt")
par (opar)
detach (mtcars)

The results are presented in figure 3.14.
As a second example, let’s arrange 3 plots in 3 rows and 1 column. Here’s the code:

attach (mtcars)

opar <- par (no.readonly=TRUE)
par (mfrow=c(3,1))

hist(wt)

hist (mpg)

hist(disp)

par (opar)

detach (mtcars)

The graph is displayed in figure 3.15. Note that the high-level function hist () includes

a default title (use main="" to suppress it, or ann=FALSE to suppress all titles and
labels).
Scatterplot of wt vs. mpg Scatterplot of wt vs disp
o ° Ooo
g @ g -
o o
0 _| o
2 ° o g 2 § T &%
g 002 g o @°
& o g o o o
o < 1
w0] o%oo ° oL
o o 0,0 ©
S —o
o | 00 . oo
- T T T T T T T T
2 3 4 5 2 3 4 5
wt wt
Histogram of wt Boxplot of wt
— 8
© - o - '
2 |
T < 4
g ° 1
=]
N :
o .

wt

Figure 3.14 Graph combining four figures through par (mfrow=c(2,2))

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

Combining graphs 67

Histogram of wt

Frequency

wt

Histogram of mpg

12

Frequency

02 46 8

[

r T T T T 1
10 15 20 25 30 35

mpg

Histogram of disp

Frequency

:]
r T T T 1
100 200 300 400 500

disp

Figure 3.15 Graph combining with three figures through par (mfrow=c(3,1))

The layout () function has the form layout (mat) where mat is a matrix object speci-
fying the location of the multiple plots to combine. In the following code, one figure
is placed in row 1 and two figures are placed in row 2:

attach (mtcars)

layout (matrix(c(1,1,2,3), 2, 2, byrow = TRUE))

hist (wt)

hist (mpg)

hist (disp)

detach (mtcars)

The resulting graph is presented in figure 3.16.

Optionally, you can include widths= and heights= options in the layout ()
function to control the size of each figure more precisely. These options have the
form

widths = avector of values for the widths of columns

heights =a vector of values for the heights of rows
Relative widths are specified with numeric values. Absolute widths (in centimeters) are
specified with the 1em() function.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

68

CHAPTER 3 Getting started with graphs

Histogram of wt

Frequency

Histogram of mpg Histogram of disp

12
J

8 10
1 1

Frequency
6
|
Frequency

2 3 4 5 6 7
1

o - ﬂ

I T T T T 1 I T T T 1
10 15 20 25 30 35 100 200 300 400 500

mpg disp

Figure 3.16 Graph combining three figures using the layout () function with
default widths

In the following code, one figure is again placed in row 1 and two figures are placed
in row 2. But the figure in row 1 is one-third the height of the figures in row 2. Addi-
tionally, the figure in the bottom-right cell is one-fourth the width of the figure in the
bottom-left cell:
attach (mtcars)
layout (matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE),
widths=c (3, 1), heights=c(1, 2))

hist(wt)
hist (mpg)
hist(disp)
detach (mtcars)
The graph is presented in figure 3.17.

As you can see, the layout () function gives you easy control over both the number
and placement of graphs in a final image and the relative sizes of these graphs. See
help (layout) for more details.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

3.5.1

Combining graphs 69

Histogram of wt

Frequency
4

wt

Histogram of mpg Histogram of disp

12
]

[N

10
|

Frequency
6
1
Frequency

I T T T T 1
10 15 20 25 30 35 100 400

mpg disp

Figure 3.17 Graph combining three figures using the layout () function with
specified widths

Creating a figure arrangement with fine control

There are times when you want to arrange or superimpose several figures to create
a single meaningful plot. Doing so requires fine control over the placement of the
figures. You can accomplish this with the fig= graphical parameter. In the following
listing, two box plots are added to a scatter plot to create a single enhanced graph. The
resulting graph is shown in figure 3.18.

Listing 3.4 Fine placement of figures in a graph

opar <- par (no.readonly=TRUE)
par (fig=c(0, 0.8, 0, 0.8)) <—— Set up scatter plot
plot (mtcarsSwt, mtcarsSmpg,

xlab="Miles Per Gallon",

yvlab="Car Weight")

par (fig=c (0, 0.8, 0.55, 1), new=TRUE) 4 Add box plot above
boxplot (mtcars$wt, horizontal=TRUE, axes=FALSE)

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

70

CHAPTER 3 Getting started with graphs

par (fig=c(0.65, 1, 0, 0.8), new=TRUE) <—— Add box plot to right
boxplot (mtcarsSmpg, axes=FALSE)

mtext ("Enhanced Scatterplot", side=3, outer=TRUE, line=-3)

par (opar)

To understand how this graph was created, think of the full graph area as going from
(0,0) in the lower-left corner to (1,1) in the upperright corner. Figure 3.19 will help
you visualize this. The format of the £ig= parameter is a numerical vector of the form
c(xl, x2, v1, yv2).

The first £ig= sets up the scatter plot going from 0 to 0.8 on the x-axis and 0 to 0.8
on the y-axis. The top box plot goes from 0 to 0.8 on the x-axis and 0.55 to 1 on the
y-axis. The right-hand box plot goes from 0.65 to 1 on the x-axis and 0 to 0.8 on the
y-axis. f£ig= starts a new plot, so when adding a figure to an existing graph, include
the new=TRUE option.

I chose 0.55 rather than 0.8 so that the top figure would be pulled closer to the
scatter plot. Similarly, I chose 0.65 to pull the right-hand box plot closer to the scatter
plot. You have to experiment to get the placement right.

Enhanced Scatterplot

,
.
|
'

o _| oo ,
(] i
|
,
o i
.
o 1
Q .
- o .
ey '
[=)] 1
g o o -
o
= 0% ©
(@] 8_ °
o) o
e}
8
o
o o
o 0% o o T
o .
o |
|
,
|
o | o o o
T T T T
2 3 4 5

Miles Per Gallon

Figure 3.18 A scatter plot with two box plots added to the margins

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

3.6

Summary 71

(1L,1)

y2

yl

x1 X2

(0,0)

Figure 3.19 Specifying locations using the £ig= graphical parameter

NOTE The amount of space needed for individual subplots can be device
dependent. If you get “Error in plot.new(): figure margins too large,” try
varying the area given for each portion of the overall graph.

You can use fig= graphical parameter to combine several plots into any arrangement
within a single graph. With a little practice, this approach gives you a great deal of
flexibility when creating complex visual presentations.

Summary

In this chapter, we reviewed methods for creating graphs and saving them in a variety
of formats. The majority of the chapter was concerned with modifying the default
graphs produced by R, in order to arrive at more useful or attractive plots. You learned
how to modify a graph’s axes, fonts, symbols, lines, and colors, as well as how to add
titles, subtitles, labels, plotted text, legends, and reference lines. You saw how to specify
the size of the graph and margins, and how to combine multiple graphs into a single
useful image.

Our focus in this chapter was on general techniques that you can apply to all graphs
(with the exception of lattice graphs in chapter 16). Later chapters look at specific
types of graphs. For example, chapter 7 covers methods for graphing a single variable.
Graphing relationships between variables will be described in chapter 11. In chapter
16, we discuss advanced graphic methods, including lattice graphs (graphs that display
the relationship between variables, for each level of other variables) and interactive
graphs. Interactive graphs let you use the mouse to dynamically explore the plotted
relationships.

In other chapters, we’ll discuss methods of visualizing data that are particularly
useful for the statistical approaches under consideration. Graphs are a central part of

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

72

CHAPTER 3 Getting started with graphs

modern data analysis, and I’ll endeavor to incorporate them into each of the statistical
approaches we discuss.

In the previous chapter we discussed a range of methods for inputting or importing
data into R. Unfortunately, in the real world your data is rarely usable in the format in
which you first get it. In the next chapter we look at ways to transform and massage our
data into a state that’s more useful and conducive to analysis.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

	3 Getting started with graphs
	3.1 Working with graphs
	3.2 A simple example
	3.3 Graphical parameters
	3.3.1 Symbols and lines
	3.3.2 Colors
	3.3.3 Text characteristics
	3.3.4 Graph and margin dimensions

	3.4 Adding text, customized axes, and legends
	3.4.1 Titles
	3.4.2 Axes
	3.4.3 Reference lines
	3.4.4 Legend
	3.4.5 Text annotations

	3.5 Combining graphs
	3.5.1 Creating a figure arrangement with fine control

	3.6 Summary

