
4

73

Basic data management

This chapter  covers

 Manipulating dates and missing values■

 Understanding data type conversions■

 Creating and recoding variables■

 Sorting, merging, and subsetting datasets■

 Selecting and dropping variables■

In chapter 2, we covered a variety of methods for importing data into R. Unfortu-

nately, getting our data in the rectangular arrangement of a matrix or data frame is 

the first step in preparing it for analysis. To paraphrase Captain Kirk in the Star Trek 

episode “A Taste of Armageddon” (and proving my geekiness once and for all): 

“Data is a messy business—a very, very messy business.” In my own work, as much 

as 60 percent of the time I spend on data analysis is focused on preparing the data 

for analysis. I’ll go out a limb and say that the same is probably true in one form or 

another for most real-world data analysts. Let’s take a look at an example.

4.1  A working example

One  of the topics that I study in my current job is how men and women differ in the 

ways they lead their organizations. Typical questions might be

 Do men and women in management positions differ in the degree to which ■

they defer to superiors?
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 Does this vary from country to country, or are these gender differences universal?■

One way to address these questions is to have bosses in multiple countries rate their 

managers on deferential behavior, using questions like the following:

This manager asks my opinion before making personnel decisions.
1 2 3 4 5
strongly

disagree

disagree neither agree

nor disagree

agree strongly

agree

The resulting data might resemble those in table 4.1. Each row represents the ratings 

given to a manager by his or her boss.

Table 4.1 Gender differences in leadership behavior

Manager Date Country Gender Age q1 q2 q3 q4 q5

1 10/24/08 US M 32 5 4 5 5 5

2 10/28/08 US F 45 3 5 2 5 5

3 10/01/08 UK F 25 3 5 5 5 2

4 10/12/08 UK M 39 3 3 4  

5 05/01/09 UK F 99 2 2 1 2 1

Here, each manager is rated by their boss on five statements (q1 to q5) related to def-

erence to authority. For example, manager 1 is a 32-year-old male working in the US 

and is rated deferential by his boss, while manager 5 is a female of unknown age (99 

probably indicates missing) working in the UK and is rated low on deferential behavior. 

The date column captures when the ratings were made.

Although a dataset might have dozens of variables and thousands of observations, 

we’ve only included 10 columns and 5 rows to simplify the examples. Additionally, we’ve 

limited the number of items pertaining to the managers’ deferential behavior to 5. In 

a real-world study, you’d probably use 10–20 such items to improve the reliability and 

validity of the results. You can create a data frame containing the data in table 4.1 using 

the following code.

Listing 4.1 Creating the leadership data frame

manager <- c(1, 2, 3, 4, 5)
date <- c("10/24/08", "10/28/08", "10/1/08", "10/12/08", "5/1/09")
country <- c("US", "US", "UK", "UK", "UK")
gender <- c("M", "F", "F", "M", "F")
age <- c(32, 45, 25, 39, 99)
q1 <- c(5, 3, 3, 3, 2)
q2 <- c(4, 5, 5, 3, 2)
q3 <- c(5, 2, 5, 4, 1)
q4 <- c(5, 5, 5, NA, 2)
q5 <- c(5, 5, 2, NA, 1)
leadership <- data.frame(manager, date, country, gender, age, 
                         q1, q2, q3, q4, q5, stringsAsFactors=FALSE)

Licensed to Mark  Jacobson <jacobson@cs.uni.edu>



 Creating new variables 75

In order to address the questions of interest, we must first address several data manage-

ment issues. Here’s a partial list:

 The five ratings (q1 to q5) will need to be combined, yielding a single mean ■

deferential score from each manager.

 In surveys, respondents often skip questions. For example, the boss rating man-■

ager 4 skipped questions 4 and 5. We’ll need a method of handling incomplete 

data. We’ll also need to recode values like 99 for age to missing.

 There may be hundreds of variables in a dataset, but we may only be interested ■

in a few. To simplify matters, we’ll want to create a new dataset with only the vari-

ables of interest. 

 Past research suggests that leadership behavior may change as a function of the ■

manager’s age. To examine this, we may want to recode the current values of age 

into a new categorical age grouping (for example, young, middle-aged, elder).

 Leadership behavior may change over time. We might want to focus on deferen-■

tial behavior during the recent global financial crisis. To do so, we may want to 

limit the study to data gathered during a specific period of time (say, January 1, 

2009 to December 31, 2009).

We’ll work through each of these issues in the current chapter, as well as other basic 

data management tasks such as combining and sorting datasets. Then in chapter 5 

we’ll look at some advanced  topics.

4.2 Creating new variables

In   a typical research project, you’ll need to create new variables and transform existing 

ones. This is accomplished with statements of the form

variable <- expression 

A wide array of operators and functions can be included in the expression portion of 

the statement. Table 4.2 lists R’s arithmetic operators . Arithmetic operators are used 

when developing formulas. 

Table 4.2 Arithmetic operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

^ or ** Exponentiation

x%%y Modulus (x mod y) 5%%2 is 1

x%/%y Integer division 5%/%2 is 2
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Let’s say that you have a data frame named mydata, with variables x1 and x2, and you 

want to create a new variable sumx that adds these two variables and a new variable 

called meanx that averages the two variables. If you use the code 

sumx  <-  x1 + x2
meanx <- (x1 + x2)/2

you’ll get an error, because R doesn’t know that x1 and x2 are from data frame mydata. 

If you use this code instead

sumx  <-  mydata$x1 + mydata$x2
meanx <- (mydata$x1 + mydata$x2)/2

the statements will succeed but you’ll end up with a data frame (mydata) and two 

separate vectors (sumx and meanx). This is probably not what you want. Ultimately, you 

want to incorporate new variables into the original data frame. The following listing 

provides three separate ways to accomplish this goal. The one you choose is up to you; 

the results will be the same.

Listing 4.2 Creating new variables

mydata<-data.frame(x1 = c(2, 2, 6, 4), 
                   x2 = c(3, 4, 2, 8))

mydata$sumx  <-  mydata$x1 + mydata$x2
mydata$meanx <- (mydata$x1 + mydata$x2)/2

attach(mydata)
mydata$sumx  <-  x1 + x2
mydata$meanx <- (x1 + x2)/2
detach(mydata)

mydata <- transform(mydata,
                    sumx  =  x1 + x2,
                    meanx = (x1 + x2)/2)

Personally, I prefer the third method, exemplified by the use of the transform() func-

tion . It simplifies inclusion of as many new variables as desired and saves the results to 

the data   frame.

4.3  Recoding variables

Recoding   involves creating new values of a variable conditional on the existing values 

of the same and/or other variables. For example, you may want to

 Change a continuous variable into a set of categories ■

 Replace miscoded values with correct values ■

 Create a pass/fail variable based on a set of cutoff scores■

To recode data, you can use one or more of R’s logical operators  (see table 4.3). Logi-

cal operators are expressions that return TRUE or FALSE. 
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Table 4.3 Logical operators

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Exactly equal to

!= Not equal to

!x Not x

x | y x or y

x & y x and y

isTRUE(x) Test if x is TRUE

Let’s say that you want to recode the ages of the managers in our leadership dataset from 

the continuous variable age to the categorical variable agecat (Young, Middle Aged, 

Elder). First, you must recode the value 99 for age to missing with code such as

leadership$age[leadership$age  == 99]     <- NA

The statement variable[condition] <- expression  will only make the assignment 

when condition is TRUE.

Once missing values for age have been specified, you can then use the following 

code to create the agecat variable:

leadership$agecat[leadership$age  > 75]   <- "Elder"
leadership$agecat[leadership$age >= 55 & 
                  leadership$age <= 75]   <- "Middle Aged"
leadership$agecat[leadership$age  < 55]   <- "Young"

You include the data frame names in leadership$agecat to ensure that the new 

variable is saved back to the data frame. You define middle aged as 55 to 75 so that I 

won’t feel so old. Note that if you hadn’t recoded 99 as missing for age first, manager 

5 would’ve erroneously been given the value “Elder” for agecat.

This code can be written more compactly as

leadership <- within(leadership,{
                     agecat <- NA
                     agecat[age > 75]              <- "Elder"
                     agecat[age >= 55 & age <= 75] <- "Middle Aged"
                     agecat[age < 55]              <- "Young" })

The within() function  is similar to the with() function  (section 2.2.4), but allows 

you to modify the data frame. First, the variable agecat variable is created and set 

to missing for each row of the data frame. Then the remaining statements within the 
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braces are executed in order. Remember that agecat is a character variable; you’re 

likely to want to turn it into an ordered factor, as explained in section 2.2.5.

Several packages offer useful recoding functions; in particular, the car package’s 

recode() function  recodes numeric and character vectors and factors very simply. 

The package doBy offers recodevar() , another popular function. Finally, R ships 

with cut() , which allows you to divide the range of a numeric variable into intervals, 

returning a   factor.

4.4  Renaming variables

If   you’re not happy with your variable names, you can change them interactively or pro-

grammatically. Let’s say that you want to change the variables manager to managerID 

and date to testDate. You can use the statement

fix(leadership) 

to invoke an interactive editor, click on the variable names, and rename them in the 

dialogs that are presented (see figure 4.1).

Programmatically, the reshape package  has a rename() function  that’s useful for 

altering the names of variables. The format of the rename() function  is

rename(dataframe, c(oldname="newname", oldname="newname",…))

Here’s an example:

library(reshape)
leadership <- rename(leadership, 
                     c(manager="managerID", date="testDate")
)

Figure 4.1 Renaming variables interactively using the fix() function 
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The reshape package  isn’t installed by default, so you’ll need to install it on first use 

using the install.packages("reshape") command . The reshape package  has a 

powerful set of functions for altering the structure of a dataset. We’ll explore several 

in chapter 5.

Finally, you can rename variables via the names() function . For example:

names(leadership)[2] <- "testDate"

would rename date to testDate as demonstrated in the following code:

> names(leadership)
 [1] "manager" "date"    "country" "gender"  "age"     "q1"      "q2"     

 [8] "q3"      "q4"      "q5"    
> names(leadership)[2] <- "testDate"
> leadership
  manager testDate country gender age q1 q2 q3 q4 q5
1       1 10/24/08      US      M  32  5  4  5  5  5
2       2 10/28/08      US      F  45  3  5  2  5  5
3       3  10/1/08      UK      F  25  3  5  5  5  2
4       4 10/12/08      UK      M  39  3  3  4 NA NA

5       5   5/1/09      UK      F  99  2  2  1  2  1

In a similar fashion, 

names(leadership)[6:10] <- c("item1", "item2", "item3", "item4", "item5")

would rename q1 through q5 to item1 through   item5.  

4.5  Missing values

In   a project of any size, data is likely to be incomplete because of missed questions, 

faulty equipment, or improperly coded data. In R, missing values are represented by 

the symbol NA (not available) . Impossible values (for example, dividing by 0) are rep-

resented by the symbol NaN (not a number) . Unlike programs such as SAS, R uses the 

same missing values symbol for character and numeric data. 

R provides a number of functions for identifying observations that contain missing 

values. The function is.na()  allows you to test for the presence of missing values. 

Assume that you have a vector:

y <- c(1, 2, 3, NA)

then the function

is.na(y) 

returns c(FALSE, FALSE, FALSE, TRUE).

Notice how the is.na() function  works on an object. It returns an object of the 

same size, with the entries replaced by TRUE if the element is a missing value, and 

FALSE if the element is not a missing value. Listing 4.3 applies this to our leadership 

example. 
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Listing 4.3 Applying the is.na() function

> is.na(leadership[,6:10])
        q1    q2    q3    q4    q5
[1,] FALSE FALSE FALSE FALSE FALSE
[2,] FALSE FALSE FALSE FALSE FALSE
[3,] FALSE FALSE FALSE FALSE FALSE
[4,] FALSE FALSE FALSE  TRUE  TRUE
[5,] FALSE FALSE FALSE FALSE FALSE

Here, leadership[,6:10] limited the data frame to columns 6 to 10, and is.na() 

identified which values are missing. 

NOTE Missing values are considered noncomparable, even to themselves. 
This means that you can’t use comparison operators to test for the presence 
of missing values. For example, the logical test myvar == NA is never TRUE. 
Instead, you have to use missing values functions, like those in this section, to 
identify the missing values in R data objects.

4.5.1  Recoding values to missing

As    demonstrated in section 4.3, you can use assignments to recode values to missing. 

In our leadership example, missing age values were coded as 99. Before analyzing this 

dataset, you must let R know that the value 99 means missing in this case (otherwise 

the mean age for this sample of bosses will be way off!). You can accomplish this by 

recoding the variable:

leadership$age[leadership$age == 99] <- NA

Any value of age that’s equal to 99 is changed to NA. Be sure that any missing data is 

properly coded as missing before analyzing the data or the results will be    meaningless.

4.5.2  Excluding missing values from analyses

Once     you’ve identified the missing values, you need to eliminate them in some way 

before analyzing your data further. The reason is that arithmetic expressions and func-

tions that contain missing values yield missing values. For example, consider the fol-

lowing code:

x <- c(1, 2, NA, 3)

y <- x[1] + x[2] + x[3] + x[4]
z <- sum(x)

Both y and z will be NA (missing) because the third element of x is missing.

Luckily, most numeric functions have a na.rm=TRUE option  that removes missing 

values prior to calculations and applies the function to the remaining values:

x <- c(1, 2, NA, 3)
y <- sum(x, na.rm=TRUE)

Here, y is equal to 6. 

When using functions with incomplete data, be sure to check how that function 

handles missing data by looking at its online help (for example, help(sum)). The 
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sum() function  is only one of many functions we’ll consider in chapter 5. Functions 

allow you to transform data with flexibility and ease.

You can remove any observation with missing data by using the na.omit() function . 

na.omit() deletes any rows with missing data. Let’s apply this to our leadership dataset 

in the following listing.

Listing 4.4 Using na.omit() to delete incomplete observations 

> leadership 
  manager     date country gender age q1 q2 q3 q4 q5        
1       1 10/24/08      US      M  32  5  4  5  5  5        

2       2 10/28/08      US      F  40  3  5  2  5  5
3       3 10/01/08      UK      F  25  3  5  5  5  2
4       4 10/12/08      UK      M  39  3  3  4 NA NA
5       5 05/01/09      UK      F  99  2  2  1  2  1

> newdata <- na.omit(leadership) 

> newdata 
  manager     date country gender age q1 q2 q3 q4 q5       

1       1 10/24/08      US      M  32  5  4  5  5  5
2       2 10/28/08      US      F  40  3  5  2  5  5
3       3 10/01/08      UK      F  25  3  5  5  5  2
5       5 05/01/09      UK      F  99  2  2  1  2  1

Any rows containing missing data are deleted from leadership before the results are 

saved to newdata.

Deleting all observations with missing data (called listwise deletion ) is one of several 

methods of handling incomplete datasets. If there are only a few missing values or 

they’re concentrated in a small number of observations, listwise deletion can provide 

a good solution to the missing values problem. But if missing values are spread 

throughout the data, or there’s a great deal of missing data in a small number of 

variables, listwise deletion can exclude a substantial percentage of your data. We’ll 

explore several more sophisticated methods of dealing with missing values in chapter 

15. Next, let’s take a     look at   dates.

4.6  Date values

Dates   are typically entered into R as character strings and then translated into date vari-

ables that are stored numerically. The function as.Date()  is used to make this transla-

tion. The syntax is as.Date(x, "input_format") , where x is the character data and 

input_format gives the appropriate format for reading the date (see table 4.4). 

Table 4.4 Date formats

Symbol Meaning Example

%d Day as a number (0–31) 01–31

%a 
%A 

Abbreviated weekday 

Unabbreviated weekday

Mon

Monday

%m Month (00–12) 00–12

Data frame with 
missing data

Data frame with 
complete cases only
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Table 4.4 Date formats (continued)

Symbol Meaning Example

%b 
%B 

Abbreviated month

Unabbreviated month

Jan

January

%y 
%Y 

2-digit year 

4-digit year

07

2007

The default format for inputting dates is yyyy-mm-dd. The statement

mydates <- as.Date(c("2007-06-22", "2004-02-13"))

converts the character data to dates using this default format. In contrast,

strDates <- c("01/05/1965", "08/16/1975")
dates <- as.Date(strDates, "%m/%d/%Y")

reads the data using a mm/dd/yyyy format.

In our leadership dataset, date is coded as a character variable in mm/dd/yy format. 

Therefore: 

myformat <- "%m/%d/%y"
leadership$date <- as.Date(leadership$date, myformat)

uses the specified format to read the character variable and replace it in the data frame 

as a date variable. Once the variable is in date format, you can analyze and plot the 

dates using the wide range of analytic techniques covered in later chapters.

Two functions are especially useful for time-stamping data  . Sys.Date()  returns 

today’s date and date()  returns the current date and time. As I write this, it’s December 

12, 2010 at 4:28pm. So executing those functions produces

> Sys.Date()
[1] "2010-12-01"
> date()
[1] "Wed Dec 01 16:28:21 2010"

You can use the format(x, format="output_format") function  to output dates in a 

specified format, and to extract portions of dates: 

> today <- Sys.Date()
> format(today, format="%B %d %Y")
[1] "December 01 2010"
> format(today, format="%A")
[1] "Wednesday"

The format() function  takes an argument (a date in this case) and applies an output 

format (in this case, assembled from the symbols in table 4.4). The important result 

here is that there are only two more days until the weekend!

When R stores dates internally, they’re represented as the number of days since 

January 1, 1970, with negative values for earlier dates. That means you can perform 

arithmetic operations on them. For example: 

> startdate <- as.Date("2004-02-13")
> enddate   <- as.Date("2011-01-22")
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> days      <- enddate - startdate
> days
Time difference of 2535 days

displays the number of days between February 13, 2004 and January 22, 2011.

Finally, you can also use the function difftime()  to calculate a time interval and 

express it as seconds, minutes, hours, days, or weeks. Let’s assume that I was born on 

October 12, 1956. How old am I?

> today <- Sys.Date()
> dob   <- as.Date("1956-10-12")
> difftime(today, dob, units="weeks")
Time difference of 2825 weeks                              

Apparently, I am 2825 weeks old. Who knew? Final test: On which day of the week was 

I born?

4.6.1  Converting dates to character variables

Although    less commonly used, you can also convert date variables to character vari-

ables. Date values can be converted to character values using the as.character() 

function : 

strDates <- as.character(dates)

The conversion allows you to apply a range of character functions to the data values 

(subsetting, replacement, concatenation, etc.). We’ll cover character functions in de-

tail in    chapter 5.

4.6.2  Going further 

To   learn more about converting character data to dates, take a look at help(as.

Date)  and help(strftime) . To learn more about formatting dates and times, see 

help(ISOdatetime) . The lubridate package  contains a number of functions that 

simplify working with dates, including functions to identify and parse date-time data, 

extract date-time components (for example, years, months, days, etc.), and perform 

arithmetic calculations on date-times. If you need to do complex calculations with 

dates, the fCalendar package  can also help. It provides a myriad of functions for deal-

ing with dates, can handle multiple time zones at once, and provides sophisticated 

calendar manipulations that recognize business days, weekends,   and   holidays.

4.7  Type conversions

In    the previous section, we discussed how to convert character data to date values, and 

vice versa. R provides a set of functions to identify an object’s data type and convert it 

to a different data type.

Type conversions in R work in a similar fashion to those in other statistical 

programming languages. For example, adding a character string to a numeric vector 

converts all the elements in the vector to character values. You can use the functions 

listed in table 4.5 to test for a data type and to convert it to a given type.
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Table 4.5 Type conversion functions 

Test Convert

is.numeric() as.numeric()

is.character() as.character()

is.vector() as.vector()

is.matrix() as.matrix()

is.data.frame() as.data.frame()

is.factor() as.factor()

is.logical() as.logical()

Functions of the form is.datatype()return TRUE or FALSE, whereas as.datatype()  

converts the argument to that type. The following listing provides an example.

Listing 4.5 Converting from one data type  to another

> a <- c(1,2,3)
> a
[1] 1 2 3
> is.numeric(a)
[1] TRUE
> is.vector(a)
[1] TRUE

> a <- as.character(a)
> a
[1] "1" "2" "3"
> is.numeric(a)
[1] FALSE
> is.vector(a)
[1] TRUE
> is.character(a)
[1] TRUE

When combined with the flow controls (such as if-then) that we’ll discuss in chapter 

5, the is.datatype() function  can be a powerful tool, allowing you to handle data in 

different ways, depending on its type. Additionally, some R functions require data of 

a specific type (character or numeric, matrix or data frame) and the as.datatype()  

will let you transform your data into the format required prior to    analyses.

4.8  Sorting data

Sometimes,   viewing a dataset in a sorted order can tell you quite a bit about the data. 

For example, which managers are most deferential? To sort a data frame in R, use 

the order() function . By default, the sorting order is ascending. Prepend the sorting 

variable with a minus sign to indicate a descending order. The following examples il-

lustrate sorting with the leadership data frame.
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The statement 

newdata <- leadership[order(leadership$age),]

creates a new dataset containing rows sorted from youngest manager to oldest man-

ager. The statement

attach(leadership)
newdata <- leadership[order(gender, age),]
detach(leadership) 

sorts the rows into female followed by male, and youngest to oldest within each gender.

Finally,

attach(leadership)
newdata <-leadership[order(gender, -age),]
detach(leadership)

sorts the rows by gender, and then from oldest to youngest manager within each 

  gender.

4.9  Merging datasets

If    your data exist in multiple locations, you’ll need to combine them before moving 

forward. This section shows you how to add columns (variables) and rows (observa-

tions) to a data frame.

4.9.1  Adding columns 

To    merge two data frames (datasets) horizontally, you use the merge() function. In 

most cases, two data frames are joined by one or more common key variables (that is 

an inner join). For example:

total <- merge(dataframeA, dataframeB, by="ID")

merges dataframeA and dataframeB by ID. Similarly,

total <- merge(dataframeA, dataframeB, by=c("ID","Country")) 

merges the two data frames by ID and Country. Horizontal joins like this are typically 

used to add variables to a data frame.

NOTE If you’re joining two matrices or data frames horizontally and don’t 
need to specify a common key, you can use the cbind() function :

total <- cbind(A, B)

This function will horizontally concatenate the objects A and B. For the function to work properly, 
each object has to have the same number of rows and be sorted in the same    order.

4.9.2  Adding rows 

To    join two data frames (datasets) vertically, use the rbind() function : 
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total <- rbind(dataframeA, dataframeB) 

The two data frames must have the same variables, but they don’t have to be in the 

same order. If dataframeA has variables that dataframeB doesn’t, then before joining 

them do one of the following:

 Delete the extra variables in ■ dataframeA 

 Create the additional variables in ■ dataframeB and set them to NA (missing) 

Vertical concatenation is typically used to add observations to a    data    frame.

4.10  Subsetting datasets

R    has powerful indexing features for accessing the elements of an object. These features 

can be used to select and exclude variables, observations, or both. The following sec-

tions demonstrate several methods for keeping or deleting variables and observations. 

4.10.1  Selecting (keeping) variables 

It’s     a common practice to create a new dataset from a limited number of variables cho-

sen from a larger dataset. In chapter 2, you saw that the elements of a data frame are 

accessed using the notation dataframe[row indices, column indices] . You can 

use this to select variables. For example: 

newdata <- leadership[, c(6:10)] 

selects variables q1, q2, q3, q4, and q5 from the leadership data frame  and saves 

them to the data frame newdata . Leaving the row indices blank (,) selects all the rows 

by default.

The statements

myvars <- c("q1", "q2", "q3", "q4", "q5") 
newdata <-leadership[myvars]

accomplish the same variable selection. Here, variable names (in quotes) have been 

entered as column indices, thereby selecting the same columns. 

Finally, you could’ve used

myvars <- paste("q", 1:5, sep="") 
newdata <- leadership[myvars]

This example uses the paste() function  to create the same character vector as in the 

previous example. The paste() function will be covered in     chapter 5. 

4.10.2  Excluding (dropping) variables 

There     are many reasons to exclude variables. For example, if a variable has several 

missing values, you may want to drop it prior to further analyses. Let’s look at some 

methods of excluding variables.

You could exclude variables q3 and q4 with the statements

myvars <- names(leadership) %in% c("q3", "q4") 
newdata <- leadership[!myvars]
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In order to understand why this works, you need to break it down:

1 names(leadership) produces a character vector containing the variable 

names. c("managerID","testDate","country","gender","age","q1",

"q2","q3","q4","q5").

2 names(leadership) %in% c("q3", "q4") returns a logical vector with TRUE 

for each element in names(leadership)that matches q3 or q4 and FALSE 

otherwise. c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 

TRUE, TRUE, FALSE).

3 The not (!) operator reverses the logical values

c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE).

4 leadership[c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, 

FALSE, TRUE)] selects columns with TRUE logical values, so q3 and q4 are 

excluded.

Knowing that q3 and q4 are the 8th and 9th variable, you could exclude them with the 

statement

newdata <- leadership[c(-8,-9)]

This works because prepending a column index with a minus sign (-)  excludes that 

column.

Finally, the same deletion can be accomplished via

leadership$q3 <- leadership$q4 <- NULL

Here you set columns q3 and q4 to undefined (NULL). Note that NULL isn’t the same 

as NA (missing).

Dropping variables is the converse of keeping variables. The choice will depend on 

which is easier to code. If there are many variables to drop, it may be easier to keep the 

ones that remain, or     vice versa.

4.10.3  Selecting observations

Selecting     or excluding observations (rows) is typically a key aspect of successful data 

preparation and analysis. Several examples are given in the following listing.

Listing 4.6 Selecting observations

newdata <- leadership[1:3,]                               

newdata <- leadership[which(leadership$gender=="M" &      
                            leadership$age > 30),]

attach(leadership)
newdata <- leadership[which(gender=='M' & age > 30),]     
detach(leadership) 

In each of these examples, you provide the row indices and leave the column indi-

ces blank (therefore choosing all columns). In the first example, you ask for rows 1 

through 3 (the first three observations). 
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In the second example, you select all men over 30. Let’s break down this line of 

code in order to understand it:

1 The logical comparison leadership$gender=="M" produces the vector

c(TRUE, FALSE, FALSE, TRUE, FALSE).

2 The logical comparison leadership$age > 30 produces the vector

c(TRUE, TRUE, FALSE, TRUE, TRUE).

3 

TRUE, FALSE, TRUE, TRUE) produces the vector c(TRUE, FALSE, FALSE, 

TRUE, FALSE).

4 The function which()  gives the indices of a vector that are TRUE. Thus, 

which(c(TRUE, FALSE, FALSE, TRUE, FALSE)) produces the vector

c(1, 4).

5 leadership[c(1,4),] selects the first and fourth observations from the data 

frame. This meets our selection criteria (men over 30).

In the third example, the attach() function  is used so that you don’t have to prepend 

the variable names with the data frame names. 

At the beginning of this chapter, I suggested that you might want to limit your 

analyses to observations collected between January 1, 2009 and December 31, 2009. 

How can you do this? Here’s one solution:

leadership$date <- as.Date(leadership$date, "%m/%d/%y")     
startdate <- as.Date("2009-01-01")   
enddate   <- as.Date("2009-10-31")
newdata <- leadership[which(leadership$date >= startdate &
leadership$date <= enddate),]

Convert the date values read in originally as character values to date values using the 

format mm/dd/yy. Then, create starting and ending dates. Because the default for 

the as.Date() function  is yyyy-mm-dd, you don’t have to supply it here. Finally, select 

cases meeting your desired criteria as you did in the previous     example. 

4.10.4  The subset() function 

The    examples in the previous two sections are important because they help describe 

the ways in which logical vectors and comparison operators are interpreted within R. 

Understanding how these examples work will help you to interpret R code in general.  

Now that you’ve done things the hard way, let’s look at a shortcut. 

The subset function is probably the easiest way to select variables and observations. 

Here are two examples: 

newdata <- subset(leadership, age >= 35 | age < 24, 
                  select=c(q1, q2, q3, q4)) 

newdata <- subset(leadership, gender=="M" & age > 25,                                       
                  select=gender:q4) 

In the first example, you select all rows that have a value of age greater than or equal 

to 35 or age less than 24. You keep the variables q1 through q4. In the second example, 

The logical comparison c(TRUE, FALSE, FALSE, TRUE, FALSE) & c(TRUE, 
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you select all men over the age of 25 and you keep variables gender through q4 (gen-

der, q4, and all columns between them). You’ve seen the colon operator from:to in 

chapter 2. Here, it provides all variables in a data frame between the from variable and 

the to variable,    inclusive.

4.10.5  Random samples

Sampling     from larger datasets is a common practice in data mining and machine learn-

ing. For example, you may want to select two random samples, creating a predictive 

model from one and validating its effectiveness on the other. The sample() function  

enables you to take a random sample (with or without replacement) of size n from a 

dataset. 

You could take a random sample of size 3 from the leadership dataset using the 

statement

mysample <- leadership[sample(1:nrow(leadership), 3, replace=FALSE),] 

The first argument to the sample() function  is a vector of elements to choose from. 

Here, the vector is 1 to the number of observations in the data frame. The second 

argument is the number of elements to be selected, and the third argument indicates 

sampling without replacement. The sample() function  returns the randomly sampled 

elements, which are then used to select rows from the data frame.

GOING FURTHER 

R   has extensive facilities for sampling, including drawing and calibrating survey sam-

ples (see the sampling package) and analyzing complex survey data (see the survey 

package). Other methods that rely on sampling, including bootstrapping  and resam-

pling statistics , are   described     in    chapter 11.

4.11  Using SQL statements to manipulate data frames

Until     now, you’ve been using R statements to manipulate data. But many data analysts 

come to R well versed in Structured Query Language  (SQL). It would be a shame to 

lose all that accumulated knowledge. Therefore, before we end, let me briefly mention 

the existence of the sqldf package. (If you’re unfamiliar with SQL, please feel free to 

skip this section.)

After downloading and installing the package (install.packages("sqldf")) , 

you can use the sqldf() function  to apply SQL SELECT statements  to data frames. Two 

examples are given in the following listing. 

Listing 4.7 Using SQL statements to manipulate data frames

> library(sqldf)
> newdf <- sqldf("select * from mtcars where carb=1 order by mpg",
                  row.names=TRUE)
> newdf
                mpg cyl  disp  hp drat   wt qsec vs am gear carb
Valiant        18.1   6 225.0 105 2.76 3.46 20.2  1  0    3    1
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Hornet 4 Drive 21.4   6 258.0 110 3.08 3.21 19.4  1  0    3    1
Toyota Corona  21.5   4 120.1  97 3.70 2.46 20.0  1  0    3    1
Datsun 710     22.8   4 108.0  93 3.85 2.32 18.6  1  1    4    1
Fiat X1-9      27.3   4  79.0  66 4.08 1.94 18.9  1  1    4    1
Fiat 128       32.4   4  78.7  66 4.08 2.20 19.5  1  1    4    1
Toyota Corolla 33.9   4  71.1  65 4.22 1.83 19.9  1  1    4    1

> sqldf("select avg(mpg) as avg_mpg, avg(disp) as avg_disp, gear 
              from mtcars where cyl in (4, 6) group by gear")
  avg_mpg avg_disp gear
1    20.3      201    3
2    24.5      123    4

3    25.4      120    5

In the first example, you selected all the variables (columns) from the data frame mt-

cars, kept only automobiles (rows) with one carburetor (carb), sorted the automo-

biles in ascending order by mpg, and saved the results as the data frame newdf. The 

option row.names=TRUE carried the row names from the original data frame over to 

the new one. In the second example, you printed the mean mpg and disp within each 

level of gear for automobiles with four or six cylinders (cyl). 

Experienced SQL users will find the sqldf package  a useful adjunct to data 

management in R. See the project home page (http://code.google.com/p/sqldf/) 

for more details.

4.12  Summary

We covered a great deal of ground in this chapter. We looked at the way R stores miss-

ing and date values and explored various ways of handling them. You learned how to 

determine the data type of an object and how to convert it to other types. You used 

simple formulas to create new variables and recode existing variables. I showed you 

how to sort your data and rename your variables. You learned how to merge your data 

with other datasets both horizontally (adding variables) and vertically (adding observa-

tions). Finally, we discussed how to keep or drop variables and how to select observa-

tions based on a variety of criteria. 

In the next chapter, we’ll look at the myriad of arithmetic, character, and 

statistical functions that R makes available for creating and transforming variables. 

After exploring ways of controlling program flow, you’ll see how to write your own 

functions. We’ll also explore how you can use these functions to aggregate and 

summarize your data. 

By the end of chapter 5 you’ll have most of the tools necessary to manage complex 

datasets. (And you’ll be the envy of data analysts      everywhere!)
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