Basic data mana

This chapter covers

= Manipulating dates and missing values

= Understanding data type conversions

= Creating and recoding variables

= Sorting, merging, and subsetting datasets
= Selecting and dropping variables

In chapter 2, we covered a variety of methods for importing data into R. Unfortu-
nately, getting our data in the rectangular arrangement of a matrix or data frame is
the first step in preparing it for analysis. To paraphrase Captain Kirk in the Star Trek
episode “A Taste of Armageddon” (and proving my geekiness once and for all):
“Data is a messy business—a very, very messy business.” In my own work, as much
as 60 percent of the time I spend on data analysis is focused on preparing the data
for analysis. I'll go out a limb and say that the same is probably true in one form or
another for most real-world data analysts. Let’s take a look at an example.

4.1 A working example

One of the topics that I study in my current job is how men and women differ in the
ways they lead their organizations. Typical questions might be

= Do men and women in management positions differ in the degree to which

they defer to superiors?
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= Does this vary from country to country, or are these gender differences universal?

One way to address these questions is to have bosses in multiple countries rate their
managers on deferential behavior, using questions like the following:

This manager asks my opinion before making personnel decisions.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

The resulting data might resemble those in table 4.1. Each row represents the ratings
given to a manager by his or her boss.

Table 4.1 Gender differences in leadership behavior

Manager Date Country Gender Age ql q2 q3 q4 q5
1 10/24,/08 us M 32 5 4 5 5 5
2 10/28/08 us F 45 3 5 2 5 5
3 10/01/08 UK F 25 3 5 5 5 2
4 10/12/08 UK M 39 3 3 4
5 05/01/09 UK F 99 2 2 1 2 1

Here, each manager is rated by their boss on five statements (ql to q5) related to def-
erence to authority. For example, manager 1 is a 32-year-old male working in the US
and is rated deferential by his boss, while manager 5 is a female of unknown age (99
probably indicates missing) working in the UK and is rated low on deferential behavior.
The date column captures when the ratings were made.

Although a dataset might have dozens of variables and thousands of observations,
we’ve only included 10 columns and 5 rows to simplify the examples. Additionally, we’ve
limited the number of items pertaining to the managers’ deferential behavior to 5. In
a real-world study, you’d probably use 10-20 such items to improve the reliability and
validity of the results. You can create a data frame containing the data in table 4.1 using
the following code.

Listing 4.1 Creating the leadership data frame

manager <- c(1, 2, 3, 4, 5)
date <- c("10/24/08", "10/28/08", "10/1,/08", "10/12/08", "5/1/09")

country <- c("Us", "Us", "UK", "UK", "UK")
gender <- c("M", "F", "F", "M", "F")

age <- c (32, 45, 25, 39, 99)

gl <- c(5, 3, 3, 3, 2)

g2 <- c(4, 5, 5, 3, 2)

a3 <- c(5, 2, 5, 4, 1)

g4 <- c(5, 5, 5, NA, 2)

g5 <- c¢(5, 5, 2, NA, 1)

leadership <- data.frame (manager, date, country, gender, age,
gl, a2, a3, g4, g5, stringsAsFactors=FALSE)
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In order to address the questions of interest, we must first address several data manage-
ment issues. Here’s a partial list:

The five ratings (ql to gb) will need to be combined, yielding a single mean
deferential score from each manager.

In surveys, respondents often skip questions. For example, the boss rating man-
ager 4 skipped questions 4 and 5. We’ll need a method of handling incomplete
data. We’ll also need to recode values like 99 for age to missing.

There may be hundreds of variables in a dataset, but we may only be interested
in a few. To simplify matters, we’ll want to create a new dataset with only the vari-
ables of interest.

Past research suggests that leadership behavior may change as a function of the
manager’s age. To examine this, we may want to recode the current values of age
into a new categorical age grouping (for example, young, middle-aged, elder).
Leadership behavior may change over time. We might want to focus on deferen-
tial behavior during the recent global financial crisis. To do so, we may want to
limit the study to data gathered during a specific period of time (say, January 1,
2009 to December 31, 2009).

We’ll work through each of these issues in the current chapter, as well as other basic
data management tasks such as combining and sorting datasets. Then in chapter 5
we’ll look at some advanced topics.

Creating new variables

In a typical research project, you’ll need to create new variables and transform existing
ones. This is accomplished with statements of the form

variable <- expression

A wide array of operators and functions can be included in the expression portion of

the statement. Table 4.2 lists R’s arithmetic operators. Arithmetic operators are used

when developing formulas.

Table 4.2 Arithmetic operators

Operator Description

+

Addition
Subtraction
Multiplication

Division

or ** Exponentiation

Modulus (x mod y) 5%%2 is 1

v Integer division 5% /%2 is 2
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Let’s say that you have a data frame named mydata, with variables x1 and x2, and you
want to create a new variable sumx that adds these two variables and a new variable
called meanx that averages the two variables. If you use the code

sumx <- x1 + x2
meanx <- (x1 + x2)/2

you’ll get an error, because R doesn’t know that x1 and x2 are from data frame mydata.
If you use this code instead

sumx <- mydata$xl + mydata$x2

meanx <- (mydatas$xl + mydata$x2) /2

the statements will succeed but you’ll end up with a data frame (mydata) and two
separate vectors (sumx and meanx). This is probably not what you want. Ultimately, you
want to incorporate new variables into the original data frame. The following listing
provides three separate ways to accomplish this goal. The one you choose is up to you;
the results will be the same.

Listing 4.2 Creating new variables

mydata<-data.frame(xl = c(2, 2, 6, 4),
x2 = c(3, 4, 2, 8))

mydatasSsumx <- mydata$xl + mydata$x2
mydata$meanx <- (mydatas$xl + mydata$x2) /2

attach (mydata)

mydata$sumx <- x1 + x2
mydatas$meanx <- (x1 + x2)/2
detach (mydata)

mydata <- transform(mydata,
sumx = x1 + x2,
meanx = (x1 + x2)/2)

Personally, I prefer the third method, exemplified by the use of the transform() func-
tion. It simplifies inclusion of as many new variables as desired and saves the results to
the data frame.

Recoding variables

Recoding involves creating new values of a variable conditional on the existing values
of the same and/or other variables. For example, you may want to

= Change a continuous variable into a set of categories
= Replace miscoded values with correct values
= Create a pass/fail variable based on a set of cutoff scores

To recode data, you can use one or more of R’s logical operators (see table 4.3). Logi-
cal operators are expressions that return TRUE or FALSE.
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Table 4.3 Logical operators

Operator Description

< Less than
<= Less than or equal to
> Greater than

4
1l

Greater than or equal to

Exactly equal to

I= Not equal to

Ix Not x

x | v xory

X &Yy xand y
1sTRUE (x) Test if x is TRUE

Let’s say that you want to recode the ages of the managers in our leadership dataset from
the continuous variable age to the categorical variable agecat (Young, Middle Aged,
Elder). First, you must recode the value 99 for age to missing with code such as

leadershipS$Sage[leadershipSage == 99] <- NA

The statement variable[condition] <- expression will only make the assignment
when condition is TRUE.

Once missing values for age have been specified, you can then use the following
code to create the agecat variable:
leadership$agecat [leadership$age > 75] <- "Elder"
leadershipS$Sagecat|[leadership$Sage >= 55 &

leadership$age <= 75] <- "Middle Aged"

leadershipS$agecat[leadership$Sage < 55] <- "Young"
You include the data frame names in leadership$agecat to ensure that the new
variable is saved back to the data frame. You define middle aged as 55 to 75 so that I
won’t feel so old. Note that if you hadn’t recoded 99 as missing for age first, manager
5 would’ve erroneously been given the value “Elder” for agecat.

This code can be written more compactly as

leadership <- within(leadership, {
agecat <- NA

agecat[age > 75] <- "Elder"
agecat[age >= 55 & age <= 75] <- "Middle Aged"
agecat[age < 55] <- "Young" })

The within () function is similar to the with () function (section 2.2.4), but allows
you to modify the data frame. First, the variable agecat variable is created and set
to missing for each row of the data frame. Then the remaining statements within the
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braces are executed in order. Remember that agecat is a character variable; you’re
likely to want to turn it into an ordered factor, as explained in section 2.2.5.

Several packages offer useful recoding functions; in particular, the car package’s
recode () function recodes numeric and character vectors and factors very simply.
The package doBy offers recodevar (), another popular function. Finally, R ships
with cut (), which allows you to divide the range of a numeric variable into intervals,
returning a factor.

Renaming variables

If you’re not happy with your variable names, you can change them interactively or pro-
grammatically. Let’s say that you want to change the variables manager to managerID
and date to testDate. You can use the statement

fix(leadership)

to invoke an interactive editor, click on the variable names, and rename them in the
dialogs that are presented (see figure 4.1).

Programmatically, the reshape package has a rename () function that’s useful for
altering the names of variables. The format of the rename () function is

rename (dataframe, c(oldname="newname", oldname="newname",..))

Here’s an example:

library (reshape)
leadership <- rename (leadership,
c (manager="managerID", date="testDate")

| 4
IR R Console (64-bit) =5 X

File Edit Misc Packages Windows Help

> fix(leadership)

IR Data Editor
File Edit Help

variable managerlD

type @ numeric () character

managerID |date country |gender q q q.

a1 10/24/2008|US M 32 5 4 5 5
292 10/28/2008|US E 45 3 =) 2 5
2 |Ed 10/1/2008 |UK F 25 3 5 5 5
4 (4 10/12/2008|UK M 39 3 3 4 NA
505 5/1/2009 UK E 99 2 2 i 2
S IR Variable editor (o

8

9

0

-

N

Figure 4.1 Renaming variables interactively using the £ix () function
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The reshape package isn’t installed by default, so you’ll need to install it on first use
using the install.packages ("reshape") command. The reshape package has a
powerful set of functions for altering the structure of a dataset. We’ll explore several
in chapter 5.

Finally, you can rename variables via the names () function. For example:

names (leadership) [2] <- "testDate"

would rename date to testDate as demonstrated in the following code:

> names (leadership)

[l] ||manager|| " date" ||COuntry|| " gender" " age " " ql " " q2 "
[8] Hq3 n Hq4" Hq5"
> names (leadership) [2] <- "testDate"

> leadership
manager testDate country gender age gl g2 g3 g4 g5

1 1 10/24/08 Uus M 32 5 4 5 5 5

2 2 10/28/08 us F 45 3 5 2 5 5

3 3 10/1/08 UK F 25 3 5 5 5 2

4 4 10/12/08 UK M 39 3 3 4 NA NA

5 5 5/1/09 UK F 99 2 2 1 2 1

In a similar fashion,

names (leadership) [6:10] <- c("iteml", "item2", "item3", "item4", "item5")

would rename g1 through g5 to iteml through item5.

Missing values

In a project of any size, data is likely to be incomplete because of missed questions,
faulty equipment, or improperly coded data. In R, missing values are represented by
the symbol NA (not available). Impossible values (for example, dividing by 0) are rep-
resented by the symbol NaN (not a number). Unlike programs such as SAS, R uses the
same missing values symbol for character and numeric data.

R provides a number of functions for identifying observations that contain missing
values. The function is.na() allows you to test for the presence of missing values.
Assume that you have a vector:

y <- c(1, 2, 3, NA)
then the function
is.na(y)

returns ¢ (FALSE, FALSE, FALSE, TRUE).

Notice how the is.na() function works on an object. It returns an object of the
same size, with the entries replaced by TRUE if the element is a missing value, and
FALSE if the element is not a missing value. Listing 4.3 applies this to our leadership
example.
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Listing 4.3 Applying the is.na () function

> is.na(leadership[,6:10])

gl q2 a3 g4 ab
[1,] FALSE FALSE FALSE FALSE FALSE
[2,] FALSE FALSE FALSE FALSE FALSE
[3,] FALSE FALSE FALSE FALSE FALSE
[4,] FALSE FALSE FALSE TRUE TRUE
[5,] FALSE FALSE FALSE FALSE FALSE

Here, leadership[,6:10] limited the data frame to columns 6 to 10, and is.na ()
identified which values are missing.

NOTE Missing values are considered noncomparable, even to themselves.
This means that you can’t use comparison operators to test for the presence
of missing values. For example, the logical test myvar == NA is never TRUE.
Instead, you have to use missing values functions, like those in this section, to
identify the missing values in R data objects.

Recoding values to missing

As demonstrated in section 4.3, you can use assignments to recode values to missing.
In our leadership example, missing age values were coded as 99. Before analyzing this
dataset, you must let R know that the value 99 means missing in this case (otherwise
the mean age for this sample of bosses will be way off!). You can accomplish this by
recoding the variable:

leadership$age[leadership$Sage == 99] <- NA

Any value of age that’s equal to 99 is changed to NA. Be sure that any missing data is
properly coded as missing before analyzing the data or the results will be meaningless.

Excluding missing values from analyses

Once you’ve identified the missing values, you need to eliminate them in some way
before analyzing your data further. The reason is that arithmetic expressions and func-
tions that contain missing values yield missing values. For example, consider the fol-
lowing code:
x <- c(1l, 2, NA, 3)
y <- x[1] + x[2] + x[3] + x[4]
z <- sum(x)
Both y and z will be NA (missing) because the third element of x is missing.

Luckily, most numeric functions have a na.rm=TRUE option that removes missing
values prior to calculations and applies the function to the remaining values:
x <- c(1, 2, NA, 3)
Yy <- sum(x, na.rm=TRUE)
Here, v is equal to 6.

When using functions with incomplete data, be sure to check how that function
handles missing data by looking at its online help (for example, help (sum)). The
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sum() function is only one of many functions we’ll consider in chapter 5. Functions
allow you to transform data with flexibility and ease.

You can remove any observation with missing data by using the na.omit () function.
na.omit () deletes any rows with missing data. Let’s apply this to our leadership dataset
in the following listing.

Listing 4.4 Using na.omit () to delete incomplete observations

> leadership Data frame with

manager date country gender age gl g2 g3 g4 g5 nﬁsﬁngdata

1 1 10/24/08 us M 32 5 4 5 5 5

2 2 10/28/08 us F 40 3 5 2 5 5

3 3 10/01/08 UK F 25 3 5 5 5 2

4 4 10/12/08 UK M 39 3 3 4 NA NA

5 5 05/01/09 UK F 99 2 2 1 2 1

> newdata <- na.omit (leadership) Data frame with

> newdata complete cases only
manager date country gender age gl g2 g3 g4 g5

1 1 10/24/08 us M 32 5 4 5 5 5

2 2 10/28/08 us F 40 3 5 2 5 5

3 3 10/01/08 UK F 25 3 5 5 5 2

5 5 05/01/09 UK F 99 2 2 1 2 1

Any rows containing missing data are deleted from leadership before the results are
saved to newdata.

Deleting all observations with missing data (called listwise deletion) is one of several
methods of handling incomplete datasets. If there are only a few missing values or
they’re concentrated in a small number of observations, listwise deletion can provide
a good solution to the missing values problem. But if missing values are spread
throughout the data, or there’s a great deal of missing data in a small number of
variables, listwise deletion can exclude a substantial percentage of your data. We’ll
explore several more sophisticated methods of dealing with missing values in chapter
15. Next, let’s take a look at dates.

Date values

Dates are typically entered into R as character strings and then translated into date vari-
ables that are stored numerically. The function as.Date () is used to make this transla-
tion. The syntax is as.Date(x, "input_format"), where x is the character data and
input_format gives the appropriate format for reading the date (see table 4.4).

Table 4.4 Date formats

Meaning Example
%d Day as a number (0-31) 01-31
%a Abbreviated weekday Mon
%A Unabbreviated weekday Monday
gm Month (00-12) 00-12
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Table 4.4 Date formats (continued)

Meaning Example
%b Abbreviated month Jan
$B Unabbreviated month January
Sy 2-digit year 07
%Y 4-digit year 2007

The default format for inputting dates is yyyy-mm-dd. The statement
mydates <- as.Date(c("2007-06-22", "2004-02-13"))

converts the character data to dates using this default format. In contrast,

strDates <- ¢ ("01/05/1965", "08/16/1975")
dates <- as.Date(strDates, "%m/%$d/%Y")

reads the data using a mm/dd/yyyy format.
In our leadership dataset, date is coded as a character variable in mm/dd/yy format.
Therefore:

myformat <- "%m/%d/%y"
leadership$date <- as.Date(leadership$date, myformat)

uses the specified format to read the character variable and replace it in the data frame
as a date variable. Once the variable is in date format, you can analyze and plot the
dates using the wide range of analytic techniques covered in later chapters.

Two functions are especially useful for time-stamping data. Sys.Date () returns
today’s date and date () returns the current date and time. As I write this, it’s December
12, 2010 at 4:28pm. So executing those functions produces
> Sys.Date ()

[1] "2010-12-01"

> date()
[1] "Wed Dec 01 16:28:21 2010"

You can use the format (x, format="output_format") function to output datesin a
specified format, and to extract portions of dates:

> today <- Sys.Date()

> format (today, format="%B %$d %Y")

[1] "December 01 2010"

> format (today, format="%A")
[1] "Wednesday"

The format () function takes an argument (a date in this case) and applies an output
format (in this case, assembled from the symbols in table 4.4). The important result
here is that there are only two more days until the weekend!

When R stores dates internally, they’re represented as the number of days since
January 1, 1970, with negative values for earlier dates. That means you can perform
arithmetic operations on them. For example:

> startdate <- as.Date("2004-02-13")
> enddate <- as.Date("2011-01-22")
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> days <- enddate - startdate

> days

Time difference of 2535 days

displays the number of days between February 13, 2004 and January 22, 2011.

Finally, you can also use the function difftime () to calculate a time interval and
express it as seconds, minutes, hours, days, or weeks. Let’s assume that I was born on
October 12, 1956. How old am I?
> today <- Sys.Date()
> dob <- as.Date("1956-10-12")
> difftime(today, dob, units="weeks")

Time difference of 2825 weeks
Apparently, I am 2825 weeks old. Who knew? Final test: On which day of the week was
I born?

Converting dates to character variables

Although less commonly used, you can also convert date variables to character vari-
ables. Date values can be converted to character values using the as.character ()
function:

strDates <- as.character (dates)

The conversion allows you to apply a range of character functions to the data values
(subsetting, replacement, concatenation, etc.). We’ll cover character functions in de-
tail in chapter 5.

Going further

To learn more about converting character data to dates, take a look at help (as.
Date) and help(strftime). To learn more about formatting dates and times, see
help (ISOdatetime). The lubridate package contains a number of functions that
simplify working with dates, including functions to identify and parse date-time data,
extract date-time components (for example, years, months, days, etc.), and perform
arithmetic calculations on date-times. If you need to do complex calculations with
dates, the £Calendar package can also help. It provides a myriad of functions for deal-
ing with dates, can handle multiple time zones at once, and provides sophisticated
calendar manipulations that recognize business days, weekends, and holidays.

Type conversions

In the previous section, we discussed how to convert character data to date values, and
vice versa. R provides a set of functions to identify an object’s data type and convert it
to a different data type.

Type conversions in R work in a similar fashion to those in other statistical
programming languages. For example, adding a character string to a numeric vector
converts all the elements in the vector to character values. You can use the functions
listed in table 4.5 to test for a data type and to convert it to a given type.
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Table 4.5 Type conversion functions

Test Convert

is.numeric () as.numeric ()
is.character () as.character ()
is.vector () as.vector ()
is.matrix() as.matrix()
is.data.frame() as.data. frame ()
is.factor () as.factor ()
is.logical () as.logical ()

Functions of the form is.datatype () return TRUE or FALSE, whereas as . datatype ()
converts the argument to that type. The following listing provides an example.

Listing 4.5 Converting from one data type to another

> a <-c(1,2,3)
> a

[1]1 1 2 3

> is.numeric(a)
[1] TRUE

> is.vector(a)
[1] TRUE

> a <- as.character(a)
> a

1y "1 2™ "3n

> is.numeric(a)

[1] FALSE

> is.vector(a)

[1] TRUE

> is.character (a)

[1] TRUE

When combined with the flow controls (such as i£-then) that we’ll discuss in chapter
5, the is.datatype () function can be a powerful tool, allowing you to handle data in
different ways, depending on its type. Additionally, some R functions require data of

a specific type (character or numeric, matrix or data frame) and the as.datatype()
will let you transform your data into the format required prior to analyses.

Sorting data

Sometimes, viewing a dataset in a sorted order can tell you quite a bit about the data.
For example, which managers are most deferential? To sort a data frame in R, use
the order () function. By default, the sorting order is ascending. Prepend the sorting
variable with a minus sign to indicate a descending order. The following examples il-
lustrate sorting with the leadership data frame.
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The statement
newdata <- leadership[order (leadershipSage), ]
creates a new dataset containing rows sorted from youngest manager to oldest man-
ager. The statement

attach(leadership)
newdata <- leadership[order (gender, age),]
detach (leadership)

sorts the rows into female followed by male, and youngest to oldest within each gender.
Finally,

attach(leadership)
newdata <-leadershipl[order (gender, -age),]
detach (leadership)

sorts the rows by gender, and then from oldest to youngest manager within each
gender.

Merging datasets

If your data exist in multiple locations, you’ll need to combine them before moving
forward. This section shows you how to add columns (variables) and rows (observa-
tions) to a data frame.

Adding columns

To merge two data frames (datasets) horizontally, you use the merge () function. In
most cases, two data frames are joined by one or more common key variables (that is
an inner join). For example:

total <- merge(dataframeA, dataframeB, by="ID")

merges dataframeA and dataframeB by ID. Similarly,

total <- merge(dataframeA, dataframeB, by=c("ID", "Country"))

merges the two data frames by ID and Country. Horizontal joins like this are typically

used to add variables to a data frame.

NOTE If you’re joining two matrices or data frames horizontally and don’t
need to specify a common key, you can use the cbind () function:

total <- cbind(a, B)

This function will horizontally concatenate the objects A and B. For the function to work properly,
cach object has to have the same number of rows and be sorted in the same order.

4.9.2 Adding rows

To join two data frames (datasets) vertically, use the rbind() function:
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total <- rbind(dataframeA, dataframeB)

The two data frames must have the same variables, but they don’t have to be in the
same order. If dataframea has variables that dataframeB doesn’t, then before joining
them do one of the following:

= Delete the extra variables in dataframeA

= Create the additional variables in dataframeB and set them to NA (missing)

Vertical concatenation is typically used to add observations to a data frame.

Subsetting datasets

R has powerful indexing features for accessing the elements of an object. These features
can be used to select and exclude variables, observations, or both. The following sec-
tions demonstrate several methods for keeping or deleting variables and observations.

4.10.1 Selecting (keeping) variables

It’s a common practice to create a new dataset from a limited number of variables cho-
sen from a larger dataset. In chapter 2, you saw that the elements of a data frame are
accessed using the notation dataframe[row indices, column indices].You can
use this to select variables. For example:

newdata <- leadership[, c(6:10)]

selects variables gl, g2, g3, g4, and g5 from the leadership data frame and saves
them to the data frame newdata. Leaving the row indices blank (,) selects all the rows
by default.

The statements
myvars <- C ( "ql v, q2 v, q3 v, q4 ", "q5 " )
newdata <-leadership[myvars]
accomplish the same variable selection. Here, variable names (in quotes) have been
entered as column indices, thereby selecting the same columns.

Finally, you could’ve used
myvars <- paste("g", 1:5, sep="")
newdata <- leadership[myvars]
This example uses the paste () function to create the same character vector as in the
previous example. The paste () function will be covered in chapter 5.

4.10.2 Excluding (dropping) variables

There are many reasons to exclude variables. For example, if a variable has several
missing values, you may want to drop it prior to further analyses. Let’s look at some
methods of excluding variables.

You could exclude variables g3 and g4 with the statements

myvars <- names (leadership) %in% c("qg3", "q4")
newdata <- leadership[!myvars]
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In order to understand why this works, you need to break it down:

1 names (leadership) produces a character vector containing the variable
names. c ("managerID", "testDate", "country", "gender", "age", "ql",
"q2","g3", "g4", "g5").

2 names (leadership) %in% c("g3", "g4") returns a logical vector with TRUE
for each element in names (leadership) that matches g3 or g4 and FALSE
otherwise. ¢ (FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
TRUE, TRUE, FALSE).

3 The not (!) operator reverses the logical values
c (TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE).

4 leadership[c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE,
FALSE, TRUE) ] selects columns with TRUE logical values, so g3 and g4 are
excluded.

Knowing that g3 and g4 are the 8th and 9th variable, you could exclude them with the
statement

newdata <- leadership[c(-8,-9)]

This works because prepending a column index with a minus sign (-) excludes that
column.
Finally, the same deletion can be accomplished via

leadership$g3 <- leadership$g4 <- NULL

Here you set columns g3 and g4 to undefined (NULL). Note that NULL isn’t the same
as NA (missing).

Dropping variables is the converse of keeping variables. The choice will depend on
which is easier to code. If there are many variables to drop, it may be easier to keep the
ones that remain, or vice versa.

4.10.3 Selecting observations

Selecting or excluding observations (rows) is typically a key aspect of successful data
preparation and analysis. Several examples are given in the following listing.

Listing 4.6 Selecting observations

newdata <- leadership[1l:3,]

newdata <- leadership[which(leadershipSgender=="M" &
leadershipS$Sage > 30),]

attach(leadership)
newdata <- leadership[which(gender=='M' & age > 30),]
detach (leadership)

In each of these examples, you provide the row indices and leave the column indi-
ces blank (therefore choosing all columns). In the first example, you ask for rows 1
through 3 (the first three observations).
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In the second example, you select all men over 30. Let’s break down this line of
code in order to understand it:

1 The logical comparison leadership$gender=="M" produces the vector
c (TRUE, FALSE, FALSE, TRUE, FALSE).

2 The logical comparison leadership$age > 30 produces the vector
c(TRUE, TRUE, FALSE, TRUE, TRUE).

3 The logical comparison ¢ (TRUE, FALSE, FALSE, TRUE, FALSE) & c (TRUE,
TRUE, FALSE, TRUE, TRUE) produces the vector c (TRUE, FALSE, FALSE,
TRUE, FALSE).

4 The function which () gives the indices of a vector that are TRUE. Thus,
which(c (TRUE, FALSE, FALSE, TRUE, FALSE)) produces the vector
c(l, 4).

5 leadershiplc(1,4),] selects the first and fourth observations from the data
frame. This meets our selection criteria (men over 30).

In the third example, the attach () function is used so that you don’t have to prepend
the variable names with the data frame names.

At the beginning of this chapter, I suggested that you might want to limit your
analyses to observations collected between January 1, 2009 and December 31, 2009.
How can you do this? Here’s one solution:
leadership$date <- as.Date(leadership$date, "%m/%d/%y")
startdate <- as.Date("2009-01-01")
enddate <- as.Date("2009-10-31")
newdata <- leadership[which(leaderships$date >= startdate &
leadership$date <= enddate), ]

Convert the date values read in originally as character values to date values using the
format mm/dd/yy. Then, create starting and ending dates. Because the default for
the as.Date () function is yyyy-mm-dd, you don’t have to supply it here. Finally, select
cases meeting your desired criteria as you did in the previous example.

The subset() function

The examples in the previous two sections are important because they help describe
the ways in which logical vectors and comparison operators are interpreted within R.
Understanding how these examples work will help you to interpret R code in general.
Now that you’ve done things the hard way, let’s look at a shortcut.

The subset function is probably the easiest way to select variables and observations.
Here are two examples:

newdata <- subset (leadership, age >= 35 | age < 24,
select=c(qgl, 42, 43, a4))

newdata <- subset(leadership, gender=="M" & age > 25,
select=gender:q4)

In the first example, you select all rows that have a value of age greater than or equal
to 35 orage less than 24. You keep the variables g1 through g4. In the second example,
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you select all men over the age of 25 and you keep variables gender through g4 (gen-
der, g4, and all columns between them). You’ve seen the colon operator from:to in
chapter 2. Here, it provides all variables in a data frame between the from variable and
the to variable, inclusive.

4.10.5 Random samples

4.11

Sampling from larger datasets is a common practice in data mining and machine learn-
ing. For example, you may want to select two random samples, creating a predictive
model from one and validating its effectiveness on the other. The sample () function
enables you to take a random sample (with or without replacement) of size n from a
dataset.

You could take a random sample of size 3 from the leadership dataset using the
statement

mysample <- leadership[sample(l:nrow(leadership), 3, replace=FALSE), ]

The first argument to the sample () function is a vector of elements to choose from.
Here, the vector is 1 to the number of observations in the data frame. The second
argument is the number of elements to be selected, and the third argument indicates
sampling without replacement. The sample () function returns the randomly sampled
elements, which are then used to select rows from the data frame.

GOING FURTHER

R has extensive facilities for sampling, including drawing and calibrating survey sam-
ples (see the sampling package) and analyzing complex survey data (see the survey
package). Other methods that rely on sampling, including bootstrapping and resam-
pling statistics, are described in chapter 11.

Using SQL statements to manipulate data frames

Until now, you’ve been using R statements to manipulate data. But many data analysts
come to R well versed in Structured Query Language (SQL). It would be a shame to
lose all that accumulated knowledge. Therefore, before we end, let me briefly mention
the existence of the sqldf package. (If you’re unfamiliar with SQL, please feel free to
skip this section.)

After downloading and installing the package (install.packages("sqldf")),
you can use the sqldf () function to apply SQL SELECT statements to data frames. Two
examples are given in the following listing.

Listing 4.7 Using SQL statements to manipulate data frames

> library (sqgldf)
> newdf <- sqgldf("select * from mtcars where carb=1 order by mpg",
row.names=TRUE)
> newdf
mpg cyl disp hp drat wt gsec vs am gear carb
Valiant 18.1 6 225.0 105 2.76 3.46 20.2 1 O 3 1
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Hornet 4 Drive 21.4 6 258.0 110 3.08 3.21 19.4 1 O 3 1
Toyota Corona 21.5 4 120.1 97 3.70 2.46 20.0 1 O 3 1
Datsun 710 22.8 4 108.0 93 3.85 2.32 18.6 1 1 4 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.94 18.9 1 1 4 1
Fiat 128 32.4 4 78.7 66 4.08 2.20 19.5 1 1 4 1
Toyota Corolla 33.9 4 71.1 65 4.22 1.83 19.9 1 1 4 1

> sqgldf ("select avg(mpg) as avg_mpg, avg(disp) as avg_disp, gear
from mtcars where cyl in (4, 6) group by gear")
avg_mpg avg_disp gear

1 20.3 201 3
2 24.5 123 4
3 25.4 120 5

In the first example, you selected all the variables (columns) from the data frame mt-
cars, kept only automobiles (rows) with one carburetor (carb), sorted the automo-
biles in ascending order by mpg, and saved the results as the data frame newdf. The
option row.names=TRUE carried the row names from the original data frame over to
the new one. In the second example, you printed the mean mpg and disp within each
level of gear for automobiles with four or six cylinders (cyl).

Experienced SQL users will find the sgldf package a useful adjunct to data
management in R. See the project home page (http://code.google.com/p/sqldf/)
for more details.

Summary

We covered a great deal of ground in this chapter. We looked at the way R stores miss-
ing and date values and explored various ways of handling them. You learned how to
determine the data type of an object and how to convert it to other types. You used
simple formulas to create new variables and recode existing variables. I showed you
how to sort your data and rename your variables. You learned how to merge your data
with other datasets both horizontally (adding variables) and vertically (adding observa-
tions). Finally, we discussed how to keep or drop variables and how to select observa-
tions based on a variety of criteria.

In the next chapter, we’ll look at the myriad of arithmetic, character, and
statistical functions that R makes available for creating and transforming variables.
After exploring ways of controlling program flow, you’ll see how to write your own
functions. We’ll also explore how you can use these functions to aggregate and
summarize your data.

By the end of chapter 5 you’ll have most of the tools necessary to manage complex
datasets. (And you’ll be the envy of data analysts everywhere!)
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