
5

91

Advanced data management

This chapter covers

 Mathematical and statistical functions■

 Character functions■

 Looping and conditional execution■

 User-written functions■

 Ways to aggregate and reshape data■

In chapter 4, we reviewed the basic techniques used for managing datasets within R.

In this chapter, we’ll focus on advanced topics. The chapter is divided into three ba-

sic parts. In the first part we’ll take a whirlwind tour of R’s many functions for math-

ematical, statistical, and character manipulation. To give this section relevance, we

begin with a data management problem that can be solved using these functions.

After covering the functions themselves, we’ll look at one possible solution to the

data management problem.

Next, we cover how to write your own functions to accomplish data management

and analysis tasks. First, you’ll explore ways of controlling program flow, including

looping and conditional statement execution. Then we’ll investigate the structure

of user-written functions and how to invoke them once created.

Then, we’ll look at ways of aggregating and summarizing data, along with

methods of reshaping and restructuring datasets. When aggregating data, you

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

92 CHAPTER 5 Advanced data management

can specify the use of any appropriate built-in or user-written function to accomplish

the summarization, so the topics you learned in the first two parts of the chapter will

provide a real benefit.

5.1 A data management challenge

To begin our discussion of numerical and character functions, let’s consider a data

management problem. A group of students have taken exams in Math, Science, and

English. You want to combine these scores in order to determine a single performance

indicator for each student. Additionally, you want to assign an A to the top 20 percent

of students, a B to the next 20 percent, and so on. Finally, you want to sort the students

alphabetically. The data are presented in table 5.1.

Table 5.1 Student exam data

Student Math Science English

John Davis 502 95 25

Angela Williams 600 99 22

Bullwinkle Moose 412 80 18

David Jones 358 82 15

Janice Markhammer 495 75 20

Cheryl Cushing 512 85 28

Reuven Ytzrhak 410 80 15

Greg Knox 625 95 30

Joel England 573 89 27

Mary Rayburn 522 86 18

Looking at this dataset, several obstacles are immediately evident. First, scores on the

three exams aren’t comparable. They have widely different means and standard devia-

tions, so averaging them doesn’t make sense. You must transform the exam scores into

comparable units before combining them. Second, you’ll need a method of determin-

ing a student’s percentile rank on this score in order to assign a grade. Third, there’s

a single field for names, complicating the task of sorting students. You’ll need to break

apart their names into first name and last name in order to sort them properly.

Each of these tasks can be accomplished through the judicious use of R’s numerical

and character functions. After working through the functions described in the next

section, we’ll consider a possible solution to this data management challenge.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

 Numerical and character functions 93

5.2 Numerical and character functions

In this section, we’ll review functions in R that can be used as the basic building blocks

for manipulating data. They can be divided into numerical (mathematical, statistical,

probability) and character functions. After we review each type, I’ll show you how to

apply functions to the columns (variables) and rows (observations) of matrices and

data frames (see section 5.2.6).

5.2.1 Mathematical functions

Table 5.2 lists common mathematical functions along with short examples.

Table 5.2 Mathematical functions

Function Description

abs(x) Absolute value

abs(-4) returns 4.

sqrt(x) Square root

sqrt(25) returns 5.

This is the same as 25^(0.5).

ceiling(x) Smallest integer not less than x

ceiling(3.475) returns 4.

floor(x) Largest integer not greater than x

floor(3.475) returns 3.

trunc(x) Integer formed by truncating values in x toward 0

trunc(5.99) returns 5.

round(x, digits=n) Round x to the specified number of decimal places

round(3.475, digits=2) returns 3.48.

signif(x, digits=n) Round x to the specified number of significant digits

signif(3.475, digits=2) returns 3.5.

cos(x) , sin(x) , tan(x) Cosine, sine, and tangent

cos(2) returns –0.416.

acos(x) , asin(x) , atan(x) Arc-cosine, arc-sine, and arc-tangent

acos(-0.416) returns 2.

cosh(x) , sinh(x) , tanh(x) Hyperbolic cosine, sine, and tangent

sinh(2) returns 3.627.

acosh(x) , asinh(x) , atanh(x) Hyperbolic arc-cosine, arc-sine, and arc-tangent

asinh(3.627) returns 2.

log(x,base=n)

log(x)

log10(x)

Logarithm of x to the base n

For convenience

log(x) is the natural logarithm.

log10(x) is the common logarithm.

log(10) returns 2.3026.

log10(10) returns 1.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

94 CHAPTER 5 Advanced data management

Table 5.2 Mathematical functions (continued)

Function Description

exp(x) Exponential function

exp(2.3026) returns 10.

Data transformation is one of the primary uses for these functions. For example, you

often transform positively skewed variables such as income to a log scale before further

analyses. Mathematical functions will also be used as components in formulas, in plot-

ting functions (for example, x versus sin(x)) and in formatting numerical values

prior to printing.

 The examples in table 5.2 apply mathematical functions to scalars (individual

numbers). When these functions are applied to numeric vectors, matrices, or data

frames, they operate on each individual value. For example, sqrt(c(4, 16, 25))

returns c(2, 4, 5).

5.2.2 Statistical functions

Common statistical functions are presented in table 5.3. Many of these functions have

optional parameters that affect the outcome. For example:

y <- mean(x)

provides the arithmetic mean of the elements in object x, and

z <- mean(x, trim = 0.05, na.rm=TRUE)

provides the trimmed mean, dropping the highest and lowest 5 percent of scores and

any missing values. Use the help() function to learn more about each function and

its arguments.

Table 5.3 Statistical functions

Function Description

mean(x) Mean

mean(c(1,2,3,4)) returns 2.5.

median(x) Median

median(c(1,2,3,4)) returns 2.5.

sd(x) Standard deviation

sd(c(1,2,3,4)) returns 1.29.

var(x) Variance

var(c(1,2,3,4)) returns 1.67.

mad(x) Median absolute deviation

mad(c(1,2,3,4)) returns 1.48.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

 Numerical and character functions 95

Table 5.3 Statistical functions (continued)

Function Description

quantile(x, probs) Quantiles where x is the numeric vector where quantiles are desired

and probs is a numeric vector with probabilities in [0,1].

30th and 84th percentiles of x

y <- quantile(x, c(.3,.84))

range(x) Range

x <- c(1,2,3,4)

range(x) returns c(1,4).

diff(range(x)) returns 3.

sum(x) Sum

sum(c(1,2,3,4)) returns 10.

diff(x, lag=n) Lagged differences, with lag indicating which lag to use. The default

lag is 1.

x<- c(1, 5, 23, 29)

diff(x) returns c(4, 18, 6).

min(x) Minimum

min(c(1,2,3,4)) returns 1.

max(x) Maximum

max(c(1,2,3,4)) returns 4.

scale(x,

 center=TRUE,

 scale=TRUE)

Column center (center=TRUE) or standardize (center=TRUE,

scale=TRUE) data object x. An example is given in listing 5.6.

To see these functions in action, look at the next listing. This listing demonstrates two

ways to calculate the mean and standard deviation of a vector of numbers.

Listing 5.1 Calculating the mean and standard deviation

> x <- c(1,2,3,4,5,6,7,8)

> mean(x)

[1] 4.5

> sd(x)

[1] 2.449490

> n <- length(x)

> meanx <- sum(x)/n

> css <- sum((x - meanx)^2)

> sdx <- sqrt(css / (n-1))

> meanx

[1] 4.5

> sdx

[1] 2.449490

It’s instructive to view how the corrected sum of squares (css) is calculated in the

second approach:

Short way

Long way

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

96 CHAPTER 5 Advanced data management

1 x equals c(1, 2, 3, 4, 5, 6, 7, 8) and mean x equals 4.5 (length(x)

returns the number of elements in x).

2 (x – meanx) subtracts 4.5 from each element of x, resulting in

c(-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5).

3 (x – meanx)^2 squares each element of (x - meanx), resulting in

c(12.25, 6.25, 2.25, 0.25, 0.25, 2.25, 6.25, 12.25).

4 sum((x - meanx)^2) sums each of the elements of (x - meanx)^2),

resulting in 42.

Writing formulas in R has much in common with matrix manipulation languages such as

MATLAB (we’ll look more specifically at solving matrix algebra problems in appendix E).

STANDARDIZING DATA

By default, the scale() function standardizes the specified columns of a matrix or

data frame to a mean of 0 and a standard deviation of 1:

newdata <- scale(mydata)

To standardize each column to an arbitrary mean and standard deviation, you can use

code similar to the following:

newdata <- scale(mydata)*SD + M

where M is the desired mean and SD is the desired standard deviation. Using the

scale() function on non-numeric columns will produce an error. To standardize a

specific column rather than an entire matrix or data frame, you can use code such as

newdata <- transform(mydata, myvar = scale(myvar)*10+50)

This code standardizes the variable myvar to a mean of 50 and standard deviation of

10. We’ll use the scale() function in the solution to the data management challenge

in section 5.3.

5.2.3 Probability functions

You may wonder why probability functions aren’t listed with the statistical functions (it

was really bothering you, wasn’t it?). Although probability functions are statistical by

definition, they’re unique enough to deserve their own section. Probability functions

are often used to generate simulated data with known characteristics and to calculate

probability values within user-written statistical functions.

In R, probability functions take the form

[dpqr]distribution_abbreviation()

where the first letter refers to the aspect of the distribution returned:

d = density

p = distribution function

q = quantile function

r = random generation (random deviates)

The common probability functions are listed in table 5.4.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

 Numerical and character functions 97

Table 5.4 Probability distributions

Distribution Abbreviation Distribution Abbreviation

Beta beta Logistic logis

Binomial binom Multinomial multinom

Cauchy cauchy Negative binomial nbinom

Chi-squared (noncentral) chisq Normal norm

Exponential exp Poisson pois

F f Wilcoxon Signed Rank signrank

Gamma gamma T t

Geometric geom Uniform unif

Hypergeometric hyper Weibull weibull

Lognormal lnorm Wilcoxon Rank Sum wilcox

To see how these work, let’s look at functions related to the normal distribution. If you

don’t specify a mean and a standard deviation, the standard normal distribution is as-

sumed (mean=0, sd=1). Examples of the density (dnorm), distribution (pnorm), quan-

tile (qnorm) and random deviate generation (rnorm) functions are given in table 5.5.

Table 5.5 Normal distribution functions

Problem Solution

Plot the standard normal curve on the interval [–3,3]

(see below)

−3 −2 −1 0 1 2 3

0
.1

0
.2

0
.3

Normal Deviate

D
e
n
s
it
y

x <- pretty(c(-3,3), 30)

y <- dnorm(x)

plot(x, y,

 type = "l",

 xlab = "Normal Deviate",

 ylab = "Density",

 yaxs = "i"

)

What is the area under the standard normal curve to

the left of z=1.96?

pnorm(1.96)equals 0.975

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

98 CHAPTER 5 Advanced data management

Table 5.5 Normal distribution functions (continued)

Problem Solution

What is the value of the 90th percentile of a normal

distribution with a mean of 500 and a standard

deviation of 100?

qnorm(.9, mean=500, sd=100)

equals 628.16

Generate 50 random normal deviates with a mean of

50 and a standard deviation of 10.

rnorm(50, mean=50, sd=10)

Don’t worry if the plot function options are unfamiliar. They’re covered in detail in

chapter 11; pretty() is explained in table 5.7 later in this chapter.

SETTING THE SEED FOR RANDOM NUMBER GENERATION

Each time you generate pseudo-random deviates, a different seed, and therefore dif-

ferent results, are produced. To make your results reproducible, you can specify the

seed explicitly, using the set.seed() function . An example is given in the next listing.

Here, the runif() function is used to generate pseudo-random numbers from a uni-

form distribution on the interval 0 to 1.

Listing 5.2 Generating pseudo-random numbers from a uniform distribution

> runif(5)

[1] 0.8725344 0.3962501 0.6826534 0.3667821 0.9255909

> runif(5)

[1] 0.4273903 0.2641101 0.3550058 0.3233044 0.6584988

> set.seed(1234)

> runif(5)

[1] 0.1137034 0.6222994 0.6092747 0.6233794 0.8609154

> set.seed(1234)

> runif(5)

[1] 0.1137034 0.6222994 0.6092747 0.6233794 0.8609154

By setting the seed manually, you’re able to reproduce your results. This ability can be

helpful in creating examples you can access at a future time and share with others.

GENERATING MULTIVARIATE NORMAL DATA

In simulation research and Monte Carlo studies, you often want to draw data from

multivariate normal distribution with a given mean vector and covariance matrix. The

mvrnorm() function in the MASS package makes this easy. The function call is

mvrnorm(n, mean, sigma)

where n is the desired sample size, mean is the vector of means, and sigma is the vari-

ance-covariance (or correlation) matrix. In listing 5.3 you’ll sample 500 observations

from a three-variable multivariate normal distribution with

Mean Vector 230.7 146.7 3.6

Covariance Matrix 15360.8 6721.2 -47.1

 6721.2 4700.9 -16.5

 -47.1 -16.5 0.3

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

 Numerical and character functions 99

Listing 5.3 Generating data from a multivariate normal distribution

> library(MASS)

> options(digits=3)

> set.seed(1234) q

> mean <- c(230.7, 146.7, 3.6)

> sigma <- matrix(c(15360.8, 6721.2, -47.1, w
 6721.2, 4700.9, -16.5,

 -47.1, -16.5, 0.3), nrow=3, ncol=3)

> mydata <- mvrnorm(500, mean, sigma) e
> mydata <- as.data.frame(mydata)

> names(mydata) <- c("y","x1","x2")

> dim(mydata) r
[1] 500 3

> head(mydata, n=10)

 y x1 x2

1 98.8 41.3 4.35

2 244.5 205.2 3.57

3 375.7 186.7 3.69

4 -59.2 11.2 4.23

5 313.0 111.0 2.91

6 288.8 185.1 4.18

7 134.8 165.0 3.68

8 171.7 97.4 3.81

9 167.3 101.0 4.01

10 121.1 94.5 3.76

In listing 5.3, you set a random number seed so that you can reproduce the results at a

later time q. You specify the desired mean vector and variance-covariance matrix w,

and generate 500 pseudo-random observations e. For convenience, the results are

converted from a matrix to a data frame, and the variables are given names. Finally,

you confirm that you have 500 observations and 3 variables, and print out the first 10

observations r. Note that because a correlation matrix is also a covariance matrix, you

could’ve specified the correlations structure directly.

The probability functions in R allow you to generate simulated data, sampled from

distributions with known characteristics. Statistical methods that rely on simulated data

have grown exponentially in recent years, and you’ll see several examples of these in

later chapters.

5.2.4 Character functions

Although mathematical and statistical functions operate on numerical data, character

functions extract information from textual data, or reformat textual data for printing

and reporting. For example, you may want to concatenate a person’s first name and

last name, ensuring that the first letter of each is capitalized. Or you may want to count

the instances of obscenities in open-ended feedback. Some of the most useful charac-

ter functions are listed in table 5.6.

Set random number seed

Specify mean vector,
covariance matrix

Generate data

View results

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

100 CHAPTER 5 Advanced data management

Table 5.6 Character functions

Function Description

nchar(x) Counts the number of characters of x

x <- c("ab", "cde", "fghij")

length(x) returns 3 (see table 5.7).

nchar(x[3]) returns 5.

substr(x, start, stop) Extract or replace substrings in a character vector.

x <- "abcdef"

substr(x, 2, 4) returns “bcd”.
substr(x, 2, 4) <- "22222" (x is now

"a222ef").

grep(pattern, x, ignore.

case=FALSE, fixed=FALSE)

Search for pattern in x. If fixed=FALSE, then

pattern is a regular expression. If fixed=TRUE,

then pattern is a text string. Returns matching

indices.

grep("A", c("b","A","c"), fixed=TRUE)

returns 2.

sub(pattern, replacement, x,

ignore.case=FALSE, fixed=FALSE)

Find pattern in x and substitute with

replacement text. If fixed=FALSE then

pattern is a regular expression. If fixed=TRUE

then pattern is a text string.

sub("\\s",".","Hello There") returns

Hello.There. Note "\s" is a regular expression

for finding whitespace; use "\\s" instead

because "\" is R’s escape character (see section

1.3.3).

strsplit(x, split, fixed=FALSE) Split the elements of character vector x at split.

If fixed=FALSE, then pattern is a regular

expression. If fixed=TRUE, then pattern is a

text string.

y <- strsplit("abc", "") returns a

1-component, 3-element list containing

"a" "b" "c".

unlist(y)[2] and sapply(y, "[", 2)

both return “b”.

paste(..., sep="") Concatenate strings after using sep string to

separate them.

paste("x", 1:3, sep="") returns

c("x1", "x2", "x3").

paste("x",1:3,sep="M") returns

c("xM1","xM2" "xM3").

paste("Today is", date()) returns

Today is Thu Jun 25 14:17:32 2011

 (I changed the date to appear more current.)

toupper(x) Uppercase

toupper("abc") returns “ABC”.

tolower(x) Lowercase

tolower("ABC") returns “abc”.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

 Numerical and character functions 101

Note that the functions grep(), sub(), and strsplit() can search for a text string

(fixed=TRUE) or a regular expression (fixed=FALSE) (FALSE is the default). Regular

expressions provide a clear and concise syntax for matching a pattern of text. For ex-

ample, the regular expression

^[hc]?at

matches any string that starts with 0 or one occurrences of h or c, followed by at. The

expression therefore matches hat, cat, and at, but not bat. To learn more, see the regu-

lar expression entry in Wikipedia.

5.2.5 Other useful functions

The functions in table 5.7 are also quite useful for data management and manipula-

tion, but they don’t fit cleanly into the other categories.

Table 5.7 Other useful functions

Function Description

length(x) Length of object x.

x <- c(2, 5, 6, 9)

length(x) returns 4.

seq(from, to, by) Generate a sequence.

indices <- seq(1,10,2)

indices is c(1, 3, 5, 7, 9).

rep(x, n) Repeat x n times.

y <- rep(1:3, 2)

y is c(1, 2, 3, 1, 2, 3).

cut(x, n) Divide continuous variable x into factor with n levels.

To create an ordered factor, include the option ordered_result =

TRUE.

pretty(x, n) Create pretty breakpoints. Divides a continuous variable x into n

intervals, by selecting n+1 equally spaced rounded values. Often used

in plotting.

cat(… , file =

"myfile", append =

FALSE)

Concatenates the objects in … and outputs them to the screen or to a

file (if one is declared) .

firstname <- c("Jane")

cat("Hello" , firstname, "\n").

The last example in the table demonstrates the use of escape characters in printing.

Use \n for new lines, \t for tabs, \' for a single quote, \b for backspace, and so forth

(type ?Quotes for more information). For example, the code

name <- "Bob"

cat("Hello", name, "\b.\n", "Isn\'t R", "\t", "GREAT?\n")

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

102 CHAPTER 5 Advanced data management

produces

Hello Bob.

 Isn't R GREAT?

Note that the second line is indented one space. When cat concatenates objects for

output, it separates each by a space. That’s why you include the backspace (\b) escape

character before the period. Otherwise it would have produced “Hello Bob .”

How you apply the functions you’ve covered so far to numbers, strings, and vectors is

intuitive and straightforward, but how do you apply them to matrices and data frames?

That’s the subject of the next section.

5.2.6 Applying functions to matrices and data frames

One of the interesting features of R functions is that they can be applied to a variety of

data objects (scalars, vectors, matrices, arrays, and data frames). The following listing

provides an example.

Listing 5.4 Applying functions to data objects

> a <- 5

> sqrt(a)

[1] 2.236068

> b <- c(1.243, 5.654, 2.99)

> round(b)

[1] 1 6 3

> c <- matrix(runif(12), nrow=3)

> c

 [,1] [,2] [,3] [,4]

[1,] 0.4205 0.355 0.699 0.323

[2,] 0.0270 0.601 0.181 0.926

[3,] 0.6682 0.319 0.599 0.215

> log(c)

 [,1] [,2] [,3] [,4]

[1,] -0.866 -1.036 -0.358 -1.130

[2,] -3.614 -0.508 -1.711 -0.077

[3,] -0.403 -1.144 -0.513 -1.538

> mean(c)

[1] 0.444

Notice that the mean of matrix c in listing 5.4 results in a scalar (0.444). The mean()

function took the average of all 12 elements in the matrix. But what if you wanted the

3 row means or the 4 column means?

R provides a function, apply() , that allows you to apply an arbitrary function to

any dimension of a matrix, array, or data frame. The format for the apply function is

apply(x, MARGIN, FUN, ...)

where x is the data object, MARGIN is the dimension index, FUN is a function you

specify, and ... are any parameters you want to pass to FUN. In a matrix or data

frame MARGIN=1 indicates rows and MARGIN=2 indicates columns. Take a look at the

examples in listing 5.5.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

 A solution for our data management challenge 103

Listing 5.5 Applying a function to the rows (columns) of a matrix

> mydata <- matrix(rnorm(30), nrow=6) q
> mydata

 [,1] [,2] [,3] [,4] [,5]

[1,] 0.71298 1.368 -0.8320 -1.234 -0.790

[2,] -0.15096 -1.149 -1.0001 -0.725 0.506

[3,] -1.77770 0.519 -0.6675 0.721 -1.350

[4,] -0.00132 -0.308 0.9117 -1.391 1.558

[5,] -0.00543 0.378 -0.0906 -1.485 -0.350

[6,] -0.52178 -0.539 -1.7347 2.050 1.569

> apply(mydata, 1, mean) w
[1] -0.155 -0.504 -0.511 0.154 -0.310 0.165

> apply(mydata, 2, mean) e
[1] -0.2907 0.0449 -0.5688 -0.3442 0.1906

> apply(mydata, 2, mean, trim=0.2)

[1] -0.1699 0.0127 -0.6475 -0.6575 0.2312 r

You start by generating a 6 x 5 matrix containing random normal variates q. Then you

calculate the 6 row means w, and 5 column means e. Finally, you calculate trimmed

column means (in this case, means based on the middle 60 percent of the data, with

the bottom 20 percent and top 20 percent of values discarded) r.

Because FUN can be any R function, including a function that you write yourself (see

section 5.4), apply() is a powerful mechanism. While apply() applies a function over

the margins of an array, lapply() and sapply() apply a function over a list. You’ll

see an example of sapply (which is a user-friendly version of lapply) in the next

section.

You now have all the tools you need to solve the data challenge in section 5.1, so

let’s give it a try.

5.3 A solution for our data management challenge

Your challenge from section 5.1 is to combine subject test scores into a single perfor-

mance indicator for each student, grade each student from A to F based on their rela-

tive standing (top 20 percent, next 20 percent, etc.), and sort the roster by students’

last name, followed by first name. A solution is given in the following listing.

Listing 5.6 A solution to the learning example

> options(digits=2)

> Student <- c("John Davis", "Angela Williams", "Bullwinkle Moose",

 "David Jones", "Janice Markhammer", "Cheryl Cushing",

 "Reuven Ytzrhak", "Greg Knox", "Joel England",

 "Mary Rayburn")

> Math <- c(502, 600, 412, 358, 495, 512, 410, 625, 573, 522)

> Science <- c(95, 99, 80, 82, 75, 85, 80, 95, 89, 86)

> English <- c(25, 22, 18, 15, 20, 28, 15, 30, 27, 18)

> roster <- data.frame(Student, Math, Science, English,

 stringsAsFactors=FALSE)

> z <- scale(roster[,2:4])

> score <- apply(z, 1, mean)

> roster <- cbind(roster, score)

Generate data

Calculate row means

Calculate column means

Calculate trimmed
column means

Obtain performance
scores

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

104 CHAPTER 5 Advanced data management

> y <- quantile(score, c(.8,.6,.4,.2))

> roster$grade[score >= y[1]] <- "A"

> roster$grade[score < y[1] & score >= y[2]] <- "B"

> roster$grade[score < y[2] & score >= y[3]] <- "C"

> roster$grade[score < y[3] & score >= y[4]] <- "D"

> roster$grade[score < y[4]] <- "F"

> name <- strsplit((roster$Student), " ")

> lastname <- sapply(name, "[", 2)

> firstname <- sapply(name, "[", 1)

> roster <- cbind(firstname,lastname, roster[,-1])

> roster <- roster[order(lastname,firstname),]

> roster

 Firstname Lastname Math Science English score grade

6 Cheryl Cushing 512 85 28 0.35 C

1 John Davis 502 95 25 0.56 B

9 Joel England 573 89 27 0.70 B

4 David Jones 358 82 15 -1.16 F

8 Greg Knox 625 95 30 1.34 A

5 Janice Markhammer 495 75 20 -0.63 D

3 Bullwinkle Moose 412 80 18 -0.86 D

10 Mary Rayburn 522 86 18 -0.18 C

2 Angela Williams 600 99 22 0.92 A

7 Reuven Ytzrhak 410 80 15 -1.05 F

The code is dense so let’s walk through the solution step by step:

Step 1. The original student roster is given. The options(digits=2) limits the num-

ber of digits printed after the decimal place and makes the printouts easier to read.

> options(digits=2)

> roster

 Student Math Science English

1 John Davis 502 95 25

2 Angela Williams 600 99 22

3 Bullwinkle Moose 412 80 18

4 David Jones 358 82 15

5 Janice Markhammer 495 75 20

6 Cheryl Cushing 512 85 28

7 Reuven Ytzrhak 410 80 15

8 Greg Knox 625 95 30

9 Joel England 573 89 27

10 Mary Rayburn 522 86 18

Step 2. Because the Math, Science, and English tests are reported on different scales

(with widely differing means and standard deviations), you need to make them compa-

rable before combining them. One way to do this is to standardize the variables so that

each test is reported in standard deviation units, rather than in their original scales.

You can do this with the scale() function :

> z <- scale(roster[,2:4])

> z

 Math Science English

Grade students

Extract last and
first names

Sort by last and
first names

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

 A solution for our data management challenge 105

 [1,] 0.013 1.078 0.587

 [2,] 1.143 1.591 0.037

 [3,] -1.026 -0.847 -0.697

 [4,] -1.649 -0.590 -1.247

 [5,] -0.068 -1.489 -0.330

 [6,] 0.128 -0.205 1.137

 [7,] -1.049 -0.847 -1.247

 [8,] 1.432 1.078 1.504

 [9,] 0.832 0.308 0.954

[10,] 0.243 -0.077 -0.697

Step 3. You can then get a performance score for each student by calculating the

row means using the mean() function and adding it to the roster using the cbind()

function :

> score <- apply(z, 1, mean)

> roster <- cbind(roster, score)

> roster

 Student Math Science English score

1 John Davis 502 95 25 0.559

2 Angela Williams 600 99 22 0.924

3 Bullwinkle Moose 412 80 18 -0.857

4 David Jones 358 82 15 -1.162

5 Janice Markhammer 495 75 20 -0.629

6 Cheryl Cushing 512 85 28 0.353

7 Reuven Ytzrhak 410 80 15 -1.048

8 Greg Knox 625 95 30 1.338

9 Joel England 573 89 27 0.698

10 Mary Rayburn 522 86 18 -0.177

Step 4. The quantile() function gives you the percentile rank of each student’s per-

formance score. You see that the cutoff for an A is 0.74, for a B is 0.44, and so on.

> y <- quantile(roster$score, c(.8,.6,.4,.2))

> y

 80% 60% 40% 20%

 0.74 0.44 -0.36 -0.89

Step 5. Using logical operators, you can recode students’ percentile ranks into a new

categorical grade variable. This creates the variable grade in the roster data frame.

> roster$grade[score >= y[1]] <- "A"

> roster$grade[score < y[1] & score >= y[2]] <- "B"

> roster$grade[score < y[2] & score >= y[3]] <- "C"

> roster$grade[score < y[3] & score >= y[4]] <- "D"

> roster$grade[score < y[4]] <- "F"

> roster

 Student Math Science English score grade

1 John Davis 502 95 25 0.559 B

2 Angela Williams 600 99 22 0.924 A

3 Bullwinkle Moose 412 80 18 -0.857 D

4 David Jones 358 82 15 -1.162 F

5 Janice Markhammer 495 75 20 -0.629 D

6 Cheryl Cushing 512 85 28 0.353 C

7 Reuven Ytzrhak 410 80 15 -1.048 F

8 Greg Knox 625 95 30 1.338 A

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

106 CHAPTER 5 Advanced data management

9 Joel England 573 89 27 0.698 B

10 Mary Rayburn 522 86 18 -0.177 C

Step 6. You’ll use the strsplit() function to break student names into first name

and last name at the space character. Applying strsplit() to a vector of strings re-

turns a list:

> name <- strsplit((roster$Student), " ")

> name

[[1]]

[1] "John" "Davis"

[[2]]

[1] "Angela" "Williams"

[[3]]

[1] "Bullwinkle" "Moose"

[[4]]

[1] "David" "Jones"

[[5]]

[1] "Janice" "Markhammer"

[[6]]

[1] "Cheryl" "Cushing"

[[7]]

[1] "Reuven" "Ytzrhak"

[[8]]

[1] "Greg" "Knox"

[[9]]

[1] "Joel" "England"

[[10]]

[1] "Mary" "Rayburn"

Step 7. You can use the sapply() function to take the first element of each compo-

nent and put it in a firstname vector, and the second element of each component and

put it in a lastname vector. "[" is a function that extracts part of an object—here the

first or second component of the list name. You’ll use cbind() to add them to the

roster. Because you no longer need the student variable, you’ll drop it (with the –1 in

the roster index).

> Firstname <- sapply(name, "[", 1)

> Lastname <- sapply(name, "[", 2)

> roster <- cbind(Firstname, Lastname, roster[,-1])

> roster

 Firstname Lastname Math Science English score grade

1 John Davis 502 95 25 0.559 B

2 Angela Williams 600 99 22 0.924 A

3 Bullwinkle Moose 412 80 18 -0.857 D

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

 Control flow 107

4 David Jones 358 82 15 -1.162 F

5 Janice Markhammer 495 75 20 -0.629 D

6 Cheryl Cushing 512 85 28 0.353 C

7 Reuven Ytzrhak 410 80 15 -1.048 F

8 Greg Knox 625 95 30 1.338 A

9 Joel England 573 89 27 0.698 B

10 Mary Rayburn 522 86 18 -0.177 C

Step 8. Finally, you can sort the dataset by first and last name using the order()

function :

> roster[order(Lastname,Firstname),]

 Firstname Lastname Math Science English score grade

6 Cheryl Cushing 512 85 28 0.35 C

1 John Davis 502 95 25 0.56 B

9 Joel England 573 89 27 0.70 B

4 David Jones 358 82 15 -1.16 F

8 Greg Knox 625 95 30 1.34 A

5 Janice Markhammer 495 75 20 -0.63 D

3 Bullwinkle Moose 412 80 18 -0.86 D

10 Mary Rayburn 522 86 18 -0.18 C

2 Angela Williams 600 99 22 0.92 A

7 Reuven Ytzrhak 410 80 15 -1.05 F

Voilà! Piece of cake!

There are many other ways to accomplish these tasks, but this code helps capture

the flavor of these functions. Now it’s time to look at control structures and user-written

 functions.

5.4 Control flow

In the normal course of events, the statements in an R program are executed sequen-

tially from the top of the program to the bottom. But there are times that you’ll want to

execute some statements repetitively, while only executing other statements if certain

conditions are met. This is where control-flow constructs come in.

R has the standard control structures you’d expect to see in a modern programming

language. First you’ll go through the constructs used for conditional execution,

followed by the constructs used for looping.

For the syntax examples throughout this section, keep the following in mind:

 statement■ is a single R statement or a compound statement (a group of R state-

ments enclosed in curly braces { } and separated by semicolons).

 cond■ is an expression that resolves to true or false.

 expr■ is a statement that evaluates to a number or character string.

 seq■ is a sequence of numbers or character strings.

After we discuss control-flow constructs, you’ll learn how to write your functions.

5.4.1 Repetition and looping

Looping constructs repetitively execute a statement or series of statements until a con-

dition isn’t true. These include the for and while structures.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

108 CHAPTER 5 Advanced data management

FOR

The for loop executes a statement repetitively until a variable’s value is no longer con-

tained in the sequence seq. The syntax is

for (var in seq) statement

In this example

for (i in 1:10) print("Hello")

the word Hello is printed 10 times.

WHILE

A while loop executes a statement repetitively until the condition is no longer true.

The syntax is

while (cond) statement

In a second example, the code

i <- 10

while (i > 0) {print("Hello"); i <- i - 1}

once again prints the word Hello 10 times. Make sure that the statements inside the

brackets modify the while condition so that sooner or later it’s no longer true—other-

wise the loop will never end! In the previous example, the statement

i <- i - 1

subtracts 1 from object i on each loop, so that after the tenth loop it’s no longer larger

than 0. If you instead added 1 on each loop, R would never stop saying Hello. This is

why while loops can be more dangerous than other looping constructs.

Looping in R can be inefficient and time consuming when you’re processing the

rows or columns of large datasets. Whenever possible, it’s better to use R’s built-

in numerical and character functions in conjunction with the apply family of

 functions.

5.4.2 Conditional execution

In conditional execution, a statement or statements are only executed if a specified

condition is met. These constructs include if-else, ifelse, and switch.

IF-ELSE

The if-else control structure executes a statement if a given condition is true. Op-

tionally, a different statement is executed if the condition is false. The syntax is

if (cond) statement

if (cond) statement1 else statement2

Here are examples:

if (is.character(grade)) grade <- as.factor(grade)

if (!is.factor(grade)) grade <- as.factor(grade) else print("Grade already

 is a factor")

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

 User-written functions 109

In the first instance, if grade is a character vector, it’s converted into a factor. In the

second instance, one of two statements is executed. If grade isn’t a factor (note the !

symbol), it’s turned into one. If it is a factor, then the message is printed.

IFELSE

The ifelse construct is a compact and vectorized version of the if-else construct .

The syntax is

ifelse(cond, statement1, statement2)

The first statement is executed if cond is TRUE. If cond is FALSE, the second statement

is executed. Here are examples:

ifelse(score > 0.5, print("Passed"), print("Failed"))

outcome <- ifelse (score > 0.5, "Passed", "Failed")

Use ifelse when you want to take a binary action or when you want to input and out-

put vectors from the construct.

SWITCH

switch chooses statements based on the value of an expression. The syntax is

switch(expr, ...)

where ... represents statements tied to the possible outcome values of expr. It’s easiest

to understand how switch works by looking at the example in the following listing.

Listing 5.7 A switch example

> feelings <- c("sad", "afraid")

> for (i in feelings)

 print(

 switch(i,

 happy = "I am glad you are happy",

 afraid = "There is nothing to fear",

 sad = "Cheer up",

 angry = "Calm down now"

)

)

[1] "Cheer up"

[1] "There is nothing to fear"

This is a silly example but shows the main features. You’ll learn how to use switch in

user-written functions in the next section.

5.5 User-written functions

One of R’s greatest strengths is the user’s ability to add functions. In fact, many of the

functions in R are functions of existing functions. The structure of a function looks

like this:

myfunction <- function(arg1, arg2, ...){

 statements

 return(object)

}

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

110 CHAPTER 5 Advanced data management

Objects in the function are local to the function. The object returned can be any data

type, from scalar to list. Let’s take a look at an example.

Say you’d like to have a function that calculates the central tendency and spread

of data objects. The function should give you a choice between parametric (mean

and standard deviation) and nonparametric (median and median absolute deviation)

statistics. The results should be returned as a named list. Additionally, the user should

have the choice of automatically printing the results, or not. Unless otherwise specified,

the function’s default behavior should be to calculate parametric statistics and not

print the results. One solution is given in the following listing.

Listing 5.8 mystats() : a user-written function for summary statistics

mystats <- function(x, parametric=TRUE, print=FALSE) {

 if (parametric) {

 center <- mean(x); spread <- sd(x)

 } else {

 center <- median(x); spread <- mad(x)

 }

 if (print & parametric) {

 cat("Mean=", center, "\n", "SD=", spread, "\n")

 } else if (print & !parametric) {

 cat("Median=", center, "\n", "MAD=", spread, "\n")

 }

 result <- list(center=center, spread=spread)

 return(result)

}

To see your function in action, first generate some data (a random sample of size 500

from a normal distribution):

set.seed(1234)

x <- rnorm(500)

After executing the statement

y <- mystats(x)

y$center will contain the mean (0.00184) and y$spread will contain the standard

deviation (1.03). No output is produced. If you execute the statement

y <- mystats(x, parametric=FALSE, print=TRUE)

y$center will contain the median (–0.0207) and y$spread will contain the median

absolute deviation (1.001). In addition, the following output is produced:

Median= -0.0207

MAD= 1

Next, let’s look at a user-written function that uses the switch construct . This function

gives the user a choice regarding the format of today’s date. Values that are assigned

to parameters in the function declaration are taken as defaults. In the mydate() func-

tion , long is the default format for dates if type isn’t specified:

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

 User-written functions 111

mydate <- function(type="long") {

 switch(type,

 long = format(Sys.time(), "%A %B %d %Y"),

 short = format(Sys.time(), "%m-%d-%y"),

 cat(type, "is not a recognized type\n")

)

}

Here’s the function in action:

> mydate("long")

[1] "Thursday December 02 2010"

> mydate("short")

[1] "12-02-10"

> mydate()

[1] "Thursday December 02 2010"

> mydate("medium")

medium is not a recognized type

Note that the cat() function is only executed if the entered type doesn’t match "long"

or "short". It’s usually a good idea to have an expression that catches user-supplied

arguments that have been entered incorrectly.

Several functions are available that can help add error trapping and correction to

your functions. You can use the function warning() to generate a warning message,

message() to generate a diagnostic message, and stop() to stop execution of the

current expression and carry out an error action. See each function’s online help for

more details.

TIP Once you start writing functions of any length and complexity, access to
good debugging tools becomes important. R has a number of useful built-
in functions for debugging, and user-contributed packages are available that
provide additional functionality. An excellent resource on this topic is Duncan
Murdoch’s “Debugging in R” (http://www.stats.uwo.ca/faculty/murdoch/
software/debuggingR).

After creating your own functions, you may want to make them available in every ses-

sion. Appendix B describes how to customize the R environment so that user-written

functions are loaded automatically at startup. We’ll look at additional examples of

user-written functions in chapters 6 and 8.

You can accomplish a great deal using the basic techniques provided in this section.

If you’d like to explore the subtleties of function writing, or want to write professional-

level code that you can distribute to others, I recommend two excellent books that

you’ll find in the References section at the end of this book: Venables & Ripley (2000)

and Chambers (2008). Together, they provide a significant level of detail and breadth

of examples.

Now that we’ve covered user-written functions, we’ll end this chapter with a

discussion of data aggregation and reshaping.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

112 CHAPTER 5 Advanced data management

5.6 Aggregation and restructuring

R provides a number of powerful methods for aggregating and reshaping data. When

you aggregate data, you replace groups of observations with summary statistics based

on those observations. When you reshape data, you alter the structure (rows and col-

umns) determining how the data is organized. This section describes a variety of meth-

ods for accomplishing these tasks.

In the next two subsections, we’ll use the mtcars data frame that’s included

with the base installation of R. This dataset, extracted from Motor Trend magazine

(1974), describes the design and performance characteristics (number of cylinders,

displacement, horsepower, mpg, and so on) for 34 automobiles. To learn more about

the dataset, see help(mtcars) .

5.6.1 Transpose

The transpose (reversing rows and columns) is perhaps the simplest method of reshap-

ing a dataset. Use the t() function to transpose a matrix or a data frame. In the latter

case, row names become variable (column) names. An example is presented in the

next listing.

Listing 5.9 Transposing a dataset

> cars <- mtcars[1:5,1:4]

> cars

 mpg cyl disp hp

Mazda RX4 21.0 6 160 110

Mazda RX4 Wag 21.0 6 160 110

Datsun 710 22.8 4 108 93

Hornet 4 Drive 21.4 6 258 110

Hornet Sportabout 18.7 8 360 175

> t(cars)

 Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabout

mpg 21 21 22.8 21.4 18.7

cyl 6 6 4.0 6.0 8.0

disp 160 160 108.0 258.0 360.0

hp 110 110 93.0 110.0 175.0

Listing 5.9 uses a subset of the mtcars dataset in order to conserve space on the page.

You’ll see a more flexible way of transposing data when we look at the shape package

later in this section.

5.6.2 Aggregating data

It’s relatively easy to collapse data in R using one or more by variables and a defined

function. The format is

aggregate(x, by, FUN)

where x is the data object to be collapsed, by is a list of variables that will be crossed to

form the new observations, and FUN is the scalar function used to calculate summary

statistics that will make up the new observation values.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

 Aggregation and restructuring 113

As an example, we’ll aggregate the mtcars data by number of cylinders and gears,

returning means on each of the numeric variables (see the next listing).

Listing 5.10 Aggregating data

> options(digits=3)

> attach(mtcars)

> aggdata <-aggregate(mtcars, by=list(cyl,gear), FUN=mean, na.rm=TRUE)

> aggdata

 Group.1 Group.2 mpg cyl disp hp drat wt qsec vs am gear carb

1 4 3 21.5 4 120 97 3.70 2.46 20.0 1.0 0.00 3 1.00

2 6 3 19.8 6 242 108 2.92 3.34 19.8 1.0 0.00 3 1.00

3 8 3 15.1 8 358 194 3.12 4.10 17.1 0.0 0.00 3 3.08

4 4 4 26.9 4 103 76 4.11 2.38 19.6 1.0 0.75 4 1.50

5 6 4 19.8 6 164 116 3.91 3.09 17.7 0.5 0.50 4 4.00

6 4 5 28.2 4 108 102 4.10 1.83 16.8 0.5 1.00 5 2.00

7 6 5 19.7 6 145 175 3.62 2.77 15.5 0.0 1.00 5 6.00

8 8 5 15.4 8 326 300 3.88 3.37 14.6 0.0 1.00 5 6.00

In these results, Group.1 represents the number of cylinders (4, 6, or 8) and Group.2

represents the number of gears (3, 4, or 5). For example, cars with 4 cylinders and 3

gears have a mean of 21.5 miles per gallon (mpg).

When you’re using the aggregate() function , the by variables must be in a

list (even if there’s only one). You can declare a custom name for the groups from

within the list, for instance, using by=list(Group.cyl=cyl, Group.gears=gear) .

The function specified can be any built-in or user-provided function. This gives the

aggregate command a great deal of power. But when it comes to power, nothing beats

the reshape package.

5.6.3 The reshape package

The reshape package is a tremendously versatile approach to both restructuring and

aggregating datasets. Because of this versatility, it can be a bit challenging to learn.

We’ll go through the process slowly and use a small dataset so that it’s clear what’s hap-

pening. Because reshape isn’t included in the standard installation of R, you’ll need

to install it one time, using install.packages("reshape") .

Basically, you’ll “melt” data so that each row is a unique ID-variable combination.

Then you’ll “cast” the melted data into any shape you desire. During the cast, you can

aggregate the data with any function you wish.

The dataset you’ll be working with is shown in

table 5.8.

In this dataset, the measurements are the

values in the last two columns (5, 6, 3, 5, 6,

1, 2, and 4). Each measurement is uniquely

identified by a combination of ID variables

(in this case ID, Time, and whether the

measurement is on X1 or X2). For example,

the measured value 5 in the first row is

Table 5.8 The original dataset (mydata)

ID Time X1 X2

1 1 5 6

1 2 3 5

2 1 6 1

2 2 2 4

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

114 CHAPTER 5 Advanced data management

uniquely identified by knowing that it’s from observation (ID) 1, at Time 1, and on

variable X1.

MELTING

When you melt a dataset, you restructure it into a format where each measured vari-

able is in its own row, along with the ID variables needed to uniquely identify it. If you

melt the data from table 5.8, using the following code

library(reshape)

md <- melt(mydata, id=(c("id", "time")))

you end up with the structure shown in table 5.9.

Note that you must specify the

variables needed to uniquely identify each

measurement (ID and Time) and that

the variable indicating the measurement

variable names (X1 or X2) is created for

you automatically.

Now that you have your data in a melted

form, you can recast it into any shape, using

the cast() function.

CASTING

The cast() function starts with melted

data and reshapes it using a formula that

you provide and an (optional) function

used to aggregate the data. The format is

newdata <- cast(md, formula, FUN)

where md is the melted data, formula describes the desired end result, and FUN is the

(optional) aggregating function. The formula takes the form

rowvar1 + rowvar2 + … ~ colvar1 + colvar2 + …

In this formula, rowvar1 + rowvar2 + … define the set of crossed variables that de-

fine the rows, and colvar1 + colvar2 + … define the set of crossed variables that

define the columns. See the examples in figure 5.1.

Because the formulas on the right side (d, e, and f) don’t include a function, the

data is reshaped. In contrast, the examples on the left side (a, b, and c) specify the

mean as an aggregating function. Thus the data are not only reshaped but aggregated

as well. For example, (a) gives the means on X1 and X2 averaged over time for each

observation. Example (b) gives the mean scores of X1 and X2 at Time 1 and Time 2,

averaged over observations. In (c) you have the mean score for each observation at

Time 1 and Time 2, averaged over X1 and X2.

As you can see, the flexibility provided by the melt() and cast() functions is

amazing. There are many times when you’ll have to reshape or aggregate your data

prior to analysis. For example, you’ll typically need to place your data in what’s called

Table 5.9 The melted dataset

ID Time Variable Value

1 1 X1 5

1 2 X1 3

2 1 X1 6

2 2 X1 2

1 1 X2 6

1 2 X2 5

2 1 X2 1

2 2 X2 4

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

A

ggrega
tion

 a
n
d
 restru

ctu
rin

g
1

1
5

ID Time X1 X2

1 1 5 6

1 2 3 5

2 1 6 1

2 2 2 4

ID Time Variable Value

1 1 X1 5

1 2 X1 3

2 1 X1 6

2 2 X1 2

1 1 X2 6

1 2 X2 5

2 1 X2 1

2 2 X2 4

ID Time X1 X2

1 1 5 6

1 2 3 5

2 1 6 1

2 2 2 4

ID Variable Time1 Time 2

1 X1 5 3

1 X2 6 5

2 X1 6 2

2 X2 1 4

ID X1

Time1

X1

Time2

X2

Time1

X2

Time2

1 5 3 6 5

2 6 2 1 4

ID X1 X2

1 4 5.5

2 4 2.5

Time X1 X2

1 5.5 3.5

2 2.5 4.5

ID Time1 Time2

1 5.5 4

2 3.5 3

With Aggregation Without Aggregation

cast(md, id+time~variable)

cast(md, id+variable~time)

cast(md, id~variable+time)

cast(md, id~variable, mean)

cast(md, time~variable, mean)

cast(md, id~time, mean)

mydata

md <- melt(mydata, id=c("id", "time"))

Reshaping a Dataset

(c)

(b)

(a)

(d)

(e)

(f)

Figure 5.1 Reshaping data with the melt() and cast() function s

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

116 CHAPTER 5 Advanced data management

“long format ” resembling table 5.9 when analyzing repeated measures data (data

where multiple measures are recorded for each observation). See section 9.6 for an

example.

5.7 Summary

This chapter reviewed dozens of mathematical, statistical, and probability func-

tions that are useful for manipulating data. We saw how to apply these functions

to a wide range of data objects, including vectors, matrices, and data frames. We

learned to use control-flow constructs for looping and branching to execute some

statements repetitively and execute other statements only when certain conditions

are met. You then had a chance to write your own functions and apply them to

data. Finally, we explored ways of collapsing, aggregating, and restructuring your

data.

Now that you’ve gathered the tools you need to get your data into shape (no pun

intended), we’re ready to bid part 1 goodbye and enter the exciting world of data

analysis! In upcoming chapters, we’ll begin to explore the many statistical and graphical

methods available for turning data into information.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

	5 Advanced data management
	5.1 A data management challenge
	5.2 Numerical and character functions
	5.2.1 Mathematical functions
	5.2.2 Statistical functions
	5.2.3 Probability functions
	5.2.4 Character functions
	5.2.5 Other useful functions
	5.2.6 Applying functions to matrices and data frames

	5.3 A solution for our data management challenge
	5.4 Control flow
	5.4.1 Repetition and looping
	5.4.2 Conditional execution

	5.5 User-written functions
	5.6 Aggregation and restructuring
	5.6.1 Transpose
	5.6.2 Aggregating data
	5.6.3 The reshape package

	5.7 Summary

