Advanced data managem

This chapter covers

= Mathematical and statistical functions
= Character functions

= Looping and conditional execution

= User-written functions

= Ways to aggregate and reshape data

In chapter 4, we reviewed the basic techniques used for managing datasets within R.
In this chapter, we’ll focus on advanced topics. The chapter is divided into three ba-
sic parts. In the first part we’ll take a whirlwind tour of R’s many functions for math-
ematical, statistical, and character manipulation. To give this section relevance, we
begin with a data management problem that can be solved using these functions.
After covering the functions themselves, we’ll look at one possible solution to the
data management problem.

Next, we cover how to write your own functions to accomplish data management
and analysis tasks. First, you’ll explore ways of controlling program flow, including
looping and conditional statement execution. Then we’ll investigate the structure
of user-written functions and how to invoke them once created.

Then, we’ll look at ways of aggregating and summarizing data, along with
methods of reshaping and restructuring datasets. When aggregating data, you

91

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

92

5.1

CHAPTER 5 Advanced data management

can specify the use of any appropriate built-in or user-written function to accomplish
the summarization, so the topics you learned in the first two parts of the chapter will
provide a real benefit.

A data management challenge

To begin our discussion of numerical and character functions, let’s consider a data
management problem. A group of students have taken exams in Math, Science, and
English. You want to combine these scores in order to determine a single performance
indicator for each student. Additionally, you want to assign an A to the top 20 percent
of students, a B to the next 20 percent, and so on. Finally, you want to sort the students
alphabetically. The data are presented in table 5.1.

Table 5.1 Student exam data

Student Math Science English
John Davis 502 95 25
Angela Williams 600 99 22
Bullwinkle Moose 412 80 18
David Jones 358 82 15
Janice Markhammer 495 75 20
Cheryl Cushing 512 85 28
Reuven Ytzrhak 410 80 15
Greg Knox 625 95 30
Joel England 573 89 27
Mary Rayburn 522 86 18

Looking at this dataset, several obstacles are immediately evident. First, scores on the
three exams aren’t comparable. They have widely different means and standard devia-
tions, so averaging them doesn’t make sense. You must transform the exam scores into
comparable units before combining them. Second, you’ll need a method of determin-
ing a student’s percentile rank on this score in order to assign a grade. Third, there’s
a single field for names, complicating the task of sorting students. You’ll need to break
apart their names into first name and last name in order to sort them properly.

Each of these tasks can be accomplished through the judicious use of R’s numerical
and character functions. After working through the functions described in the next
section, we’ll consider a possible solution to this data management challenge.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

5.2

521

Numerical and character functions 93

Numerical and character functions

In this section, we’ll review functions in R that can be used as the basic building blocks
for manipulating data. They can be divided into numerical (mathematical, statistical,
probability) and character functions. After we review each type, I'll show you how to
apply functions to the columns (variables) and rows (observations) of matrices and
data frames (see section 5.2.6).

Mathematical functions

Table 5.2 lists common mathematical functions along with short examples.

Table 5.2 Mathematical functions

Function Description

abs (x) Absolute value
abs (-4) returns 4.

sgrt (x) Square root
sqgrt (25) returns 5.
This is the same as 25~ (0.5).

ceiling (x) Smallest integer not less than x
ceiling (3.475) returns 4.

floor (x) Largest integer not greater than x
floor(3.475) returns 3.

trunc (x) Integer formed by truncating values in x toward O
trunc(5.99) returns 5.

round (x, digits=n) Round x to the specified number of decimal places
round(3.475, digits=2) returns 3.48.

signif (x, digits=n) Round x to the specified number of significant digits
signif (3.475, digits=2) returns 3.5.

cos(x), sin(x), tan(x) Cosine, sine, and tangent
cos (2) returns -0.416.

acos (x), asin(x), atan(x) Arc-cosine, arc-sine, and arc-tangent
acos (-0.416) returns 2.

cosh(x), sinh(x), tanh(x) Hyperbolic cosine, sine, and tangent
sinh(2) returns 3.627.

acosh(x), asinh(x), atanh(x) Hyperbolic arc-cosine, arc-sine, and arc-tangent
asinh(3.627) returns 2.

log(x,base=n) Logarithm of x to the base n
log (x) For convenience
1o0g10 (x) log (x) is the natural logarithm.

1logl0 (x) is the common logarithm.
log (10) returns 2.3026.
1og10(10) returns 1.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

94

522

CHAPTER 5 Advanced data management

Table 5.2 Mathematical functions (continued)

Function Description

exp (x) Exponential function
exp(2.3026) returns 10.

Data transformation is one of the primary uses for these functions. For example, you
often transform positively skewed variables such as income to a log scale before further
analyses. Mathematical functions will also be used as components in formulas, in plot-
ting functions (for example, x versus sin(x)) and in formatting numerical values
prior to printing.

The examples in table 5.2 apply mathematical functions to scalars (individual
numbers). When these functions are applied to numeric vectors, matrices, or data
frames, they operate on each individual value. For example, sqrt(c(4, 16, 25))
returns c(2, 4, 5).

Statistical functions

Common statistical functions are presented in table 5.3. Many of these functions have
optional parameters that affect the outcome. For example:

y <- mean(x)
provides the arithmetic mean of the elements in object x, and
z <- mean(x, trim = 0.05, na.rm=TRUE)

provides the trimmed mean, dropping the highest and lowest 5 percent of scores and
any missing values. Use the help () function to learn more about each function and
its arguments.

Table 5.3 Statistical functions

Function Description

mean (x) Mean
mean(c(1,2,3,4)) returns 2.5.

median (x) Median
median(c(1,2,3,4)) returns 2.5.

sd (x) Standard deviation
sd(c(1,2,3,4)) returns 1.29.

var (x) Variance
var(c(1,2,3,4)) returns 1.67.

mad (x) Median absolute deviation
mad(c(1,2,3,4)) returns 1.48.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

Numerical and character functions 95

Table 5.3 Statistical functions (continued)

Function Description

quantile(x, probs) Quantiles where x is the numeric vector where quantiles are desired
and probs is a numeric vector with probabilities in [0,1].

30th and 84th percentiles of x

v <- quantile(x, c(.3,.84))

range (x) Range

x <- ¢c(1,2,3,4)

range (x) returns c(1,4).
diff (range (x)) returns 3.

sum (x) Sum
sum(c(1,2,3,4)) returns 10.

diff(x, lag=n) Lagged differences, with 1ag indicating which lag to use. The default
lag is 1.

x<- c(1, 5, 23, 29)

diff(x) returnsc(4, 18, 6).

min (x) Minimum
min(c(1,2,3,4)) returns 1.

max (x) Maximum
max(c(1,2,3,4)) returns 4.

scale(x, Column center (center=TRUE) or standardize (center=TRUE,
center=TRUE, scale=TRUE) data object x. An example is given in listing 5.6.
scale=TRUE)

To see these functions in action, look at the next listing. This listing demonstrates two
ways to calculate the mean and standard deviation of a vector of numbers.

Listing 5.1 Calculating the mean and standard deviation

> x <- ¢(1,2,3,4,5,6,7,8)

> mean (x) <—— Short way

[1] 4.5

> sd(x)

[1]1 2.449490

> n <- length(x) <+ Longway

> meanx <- sum(x)/n

> css <- sum((x - meanx)"2)
> sdx <- sqgrt(css / (n-1))
> meanx

[1] 4.5

> sdx

[1]1 2.449490

It’s instructive to view how the corrected sum of squares (css) is calculated in the
second approach:

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

96

5.2.3

CHAPTER 5 Advanced data management

1 xequalsc(1, 2, 3, 4, 5, 6, 7, 8)andmeanx equals 4.5 (length(x)
returns the number of elements in x).

2 (x - meanx) subtracts 4.5 from each element of x, resulting in
c(-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5).

3 (x - meanx) "2 squares each element of (x - meanx), resulting in
c(12.25, 6.25, 2.25, 0.25, 0.25, 2.25, 6.25, 12.25).

4 sum((x - meanx)”2) sums each of the elements of (x - meanx)"2),
resulting in 42.

Writing formulas in R has much in common with matrix manipulation languages such as
MATLAB (we’ll look more specifically at solving matrix algebra problems in appendix E).
STANDARDIZING DATA

By default, the scale () function standardizes the specified columns of a matrix or
data frame to a mean of 0 and a standard deviation of 1:

newdata <- scale(mydata)

To standardize each column to an arbitrary mean and standard deviation, you can use
code similar to the following:

newdata <- scale(mydata)*SD + M

where M is the desired mean and SD is the desired standard deviation. Using the
scale() function on non-numeric columns will produce an error. To standardize a
specific column rather than an entire matrix or data frame, you can use code such as

newdata <- transform(mydata, myvar = scale(myvar)*10+50)

This code standardizes the variable myvar to a mean of 50 and standard deviation of
10. We’ll use the scale () function in the solution to the data management challenge
in section 5.3.

Probability functions

You may wonder why probability functions aren’t listed with the statistical functions (it
was really bothering you, wasn’t it?). Although probability functions are statistical by
definition, they’re unique enough to deserve their own section. Probability functions
are often used to generate simulated data with known characteristics and to calculate
probability values within user-written statistical functions.

In R, probability functions take the form

[dpgrldistribution_abbreviation/ ()

where the first letter refers to the aspect of the distribution returned:

d = density

p = distribution function

a = quantile function

r = random generation (random deviates)

The common probability functions are listed in table 5.4.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

Numerical and character functions 97

Table 5.4 Probability distributions

Distribution Abbreviation Distribution Abbreviation
Beta beta Logistic logis
Binomial binom Multinomial multinom
Cauchy cauchy Negative binomial nbinom
Chi-squared (noncentral) chisqg Normal norm
Exponential exp Poisson pois
F £ Wilcoxon Signed Rank signrank
Gamma gamma T t
Geometric geom Uniform unif
Hypergeometric hyper Weibull weibull
Lognormal lnorm Wilcoxon Rank Sum wilcox

To see how these work, let’s look at functions related to the normal distribution. If you
don’t specify a mean and a standard deviation, the standard normal distribution is as-
sumed (mean=0, sd=1). Examples of the density (dnorm), distribution (pnorm), quan-
tile (gnorm) and random deviate generation (rnorm) functions are given in table 5.5.

Table 5.5 Normal distribution functions

Problem Solution

Plot the standard normal curve on the interval [-3,3] x <- pretty(c(-3,3), 30)
(see below) vy <- dnorm(x)
plot(x, v,
type = "1",
xlab = "Normal Deviate",
. vlab = "Density",
° yaxs = "i"
)
£
g 3
T T T T T T T
-3 -2 -1 0 1 2 3
Normal Deviate
What is the area under the standard normal curve to pnorm(1.96)equals 0.975
the left of z=1.967?

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

98

CHAPTER 5 Advanced data management

Table 5.5 Normal distribution functions (continued)

Problem Solution
What is the value of the 90th percentile of a normal gnorm (.9, mean=500, sd=100)
distribution with a mean of 500 and a standard equals 628.16

deviation of 100?

Generate 50 random normal deviates with a mean of rnorm (50, mean=50, sd=10)
50 and a standard deviation of 10.

Don’t worry if the plot function options are unfamiliar. They’re covered in detail in
chapter 11; pretty () is explained in table 5.7 later in this chapter.

SETTING THE SEED FOR RANDOM NUMBER GENERATION

Each time you generate pseudo-random deviates, a different seed, and therefore dif-
ferent results, are produced. To make your results reproducible, you can specify the
seed explicitly, using the set.seed () function. An example is given in the next listing.
Here, the runif () function is used to generate pseudo-random numbers from a uni-
form distribution on the interval 0 to 1.

Listing 5.2 Generating pseudo-random numbers from a uniform distribution

> runif (5)

[1] 0.8725344 0.3962501 0.6826534 0.3667821 0.9255909
> runif (5)

[1] 0.4273903 0.2641101 0.3550058 0.3233044 0.6584988
> set.seed(1234)

> runif (5)

[1] 0.1137034 0.6222994 0.6092747 0.6233794 0.8609154
> set.seed(1234)

> runif (5)

[1] 0.1137034 0.6222994 0.6092747 0.6233794 0.8609154
By setting the seed manually, you’re able to reproduce your results. This ability can be

helpful in creating examples you can access at a future time and share with others.

GENERATING MULTIVARIATE NORMAL DATA

In simulation research and Monte Carlo studies, you often want to draw data from
multivariate normal distribution with a given mean vector and covariance matrix. The
mvrnorm () function in the MASS package makes this easy. The function call is

mvrnorm(n, mean, sigma)

where n is the desired sample size, mean is the vector of means, and sigma is the vari-
ance-covariance (or correlation) matrix. In listing 5.3 you’ll sample 500 observations
from a three-variable multivariate normal distribution with

Mean Vector 230.7 146.7 3.6
Covariance Matrix 15360.8 6721.2 -47.1
6721.2 4700.9 -16.5

-47.1 -16.5 0.3

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

5.2.4

Numerical and character functions 99

Listing 5.3 Generating data from a multivariate normal distribution

> library (MASS)
> options(digits=3)
> set.seed(1234) 4—0 Set random number seed

> mean <- c(230.7, 146.7, 3.6) Specifymeanvector,

> sigma <- matrix(c(15360.8, 6721.2, -47.1, covariance matrix
6721.2, 4700.9, -16.5,
-47.1, -16.5, 0.3), nrow=3, ncol=3)
> mydata <- mvrnorm(500, mean, sigma) 4—0 Generate data

> mydata <- as.data.frame (mydata)
> names (mydata) <- c("y","x1","x2")

> dim(mydata) <'—o View results
[1] 500 3
> head(mydata, n=10)

h% x1 x2

1 98.8 41.3 4.35
2 244.5 205.2 3.57
3 375.7 186.7 3.69
4 -59.2 11.2 4.23
5 313.0 111.0 2.91
6 288.8 185.1 4.18
7 134.8 165.0 3.68
8 171.7 97.4 3.81
9 167.3 101.0 4.01
10 121.1 94.5 3.76

In listing 5.3, you set a random number seed so that you can reproduce the results at a
later time @. You specify the desired mean vector and variance-covariance matrix (2 3
and generate 500 pseudo-random observations €. For convenience, the results are
converted from a matrix to a data frame, and the variables are given names. Finally,
you confirm that you have 500 observations and 3 variables, and print out the first 10
observations @. Note that because a correlation matrix is also a covariance matrix, you
could’ve specified the correlations structure directly.

The probability functions in R allow you to generate simulated data, sampled from
distributions with known characteristics. Statistical methods that rely on simulated data
have grown exponentially in recent years, and you’ll see several examples of these in
later chapters.

Character functions

Although mathematical and statistical functions operate on numerical data, character
functions extract information from textual data, or reformat textual data for printing
and reporting. For example, you may want to concatenate a person’s first name and
last name, ensuring that the first letter of each is capitalized. Or you may want to count
the instances of obscenities in open-ended feedback. Some of the most useful charac-
ter functions are listed in table 5.6.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

100 CHAPTER 5 Advanced data management

Table 5.6 Character functions

Function Description

nchar (x) Counts the number of characters of x
x <- c("ab", "cde", "fghij")
length (x) returns 3 (see table 5.7).
nchar (x[3]) returns 5.

substr (x, start, stop) Extract or replace substrings in a character vector.
x <- "abcdef"

substr(x, 2, 4) returns “bcd”.

substr(x, 2, 4) <- "22222" (xis now

"a222ef").
grep (pattern, x, ignore. Search for pattern in x. If fixed=FALSE, then
case=FALSE, fixed=FALSE) patternis a regular expression. If £ixed=TRUE,
then pattern is a text string. Returns matching
indices.
grep (nAm , C (nbn , nAm , nen) , fixed=TRUE)
returns 2.
sub(pattern, replacement, x, Find pattern in x and substitute with
ignore.case=FALSE, fixed=FALSE) replacement text. If £ixed=FALSE then

patternis a regular expression. If £ixed=TRUE
then pattern is a text string.
sub("\\s",".","Hello There") returns
Hello.There. Note "\s" is aregular expression
for finding whitespace; use "\\s" instead
because "\ " is R’'s escape character (see section
1.3.3).

strsplit(x, split, fixed=FALSE) Split the elements of character vector x at spIlit.
If fixed=FALSE, then pattern is a regular
expression. If fixed=TRUE, then patternis a
text string.

y <- strsplit("abc", "") returnsa
1-component, 3-element list containing
Hau Hb" "C".

unlist(y)[2] and sapply(y, "[", 2)
both return “b”.

paste(..., sep="") Concatenate strings after using sep string to
separate them.
paste("x", 1:3, sep="") returns
c("xl", "x2", "x3").

paste("x",1:3,sep="M") returns
c("xM1", "xM2" "xM3").
paste("Today is", date()) returns
Today is Thu Jun 25 14:17:32 2011
(I changed the date to appear more current.)

toupper (x) Uppercase
toupper ("abc") returns “ABC”.

tolower (x) Lowercase
tolower ("ABC") returns “abc”.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

5.2.5

Numerical and character functions 101

Note that the functions grep (), sub(), and strsplit () can search for a text string
(fixed=TRUE) or a regular expression (fixed=FALSE) (FALSE is the default). Regular
expressions provide a clear and concise syntax for matching a pattern of text. For ex-
ample, the regular expression

~[hc]lrat

matches any string that starts with 0 or one occurrences of h or ¢, followed by at. The
expression therefore matches hat, cat, and at, but not bat. To learn more, see the regu-
lar expression entry in Wikipedia.

Other useful functions

The functions in table 5.7 are also quite useful for data management and manipula-
tion, but they don’t fit cleanly into the other categories.

Table 5.7 Other useful functions

Function Description

length (x) Length of object x.
x <- c(2, 5, 6, 9)
length (x) returns 4.

seq(from, to, by) Generate a sequence.
indices <- seqg(1l,10,2)
indices is c(1, 3, 5, 7, 9).

rep(x, n) Repeat x n times.
y <- rep(l:3, 2)
yis c(1, 2, 3, 1, 2, 3).

cut (x, n) Divide continuous variable x into factor with n levels.
To create an ordered factor, include the option ordered_result =
TRUE.

pretty(x, n) Create pretty breakpoints. Divides a continuous variable x into n
intervals, by selecting n+1 equally spaced rounded values. Often used
in plotting.

cat (.. , file = Concatenates the objects in ... and outputs them to the screen or to a

"myfile", append = file (if one is declared) .

FALSE) firstname <- c("Jane")
cat ("Hello" , firstname, "\n").

The last example in the table demonstrates the use of escape characters in printing.
Use \n for new lines, \t for tabs, \ ' for a single quote, \b for backspace, and so forth
(type 2quotes for more information). For example, the code

name <- "Bob"
cat("Hello", name, "\b.\n", "Isn\'t R", "\t", "GREAT?\n")

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

102

5.2.6

CHAPTER 5 Advanced data management

produces

Hello Bob.

Isn't R GREAT?

Note that the second line is indented one space. When cat concatenates objects for
output, it separates each by a space. That’s why you include the backspace (\b) escape
character before the period. Otherwise it would have produced “Hello Bob .”

How you apply the functions you’ve covered so far to numbers, strings, and vectors is
intuitive and straightforward, but how do you apply them to matrices and data frames?
That’s the subject of the next section.

Applying functions to matrices and data frames

One of the interesting features of R functions is that they can be applied to a variety of
data objects (scalars, vectors, matrices, arrays, and data frames). The following listing
provides an example.

Listing 5.4 Applying functions to data objects

> a <- 5
> sqgrt(a)
[1] 2.236068
> b <- c(1.243, 5.654, 2.99)
> round (b)
[1] 1 6 3
> ¢ <- matrix(runif(12), nrow=3)
> c

[,1] [,2] [,31] [,4]
[1,] 0.4205 0.355 0.699 0.323
[2,] 0.0270 0.601 0.181 0.926
[3,] 0.6682 0.319 0.599 0.215
> log(c)

[,1] [,2] [,3] [,4]
[1,] -0.866 -1.036 -0.358 -1.130
[2,] -3.614 -0.508 -1.711 -0.077
[3,] -0.403 -1.144 -0.513 -1.538
> mean(c)
[1] 0.444

Notice that the mean of matrix c in listing 5.4 results in a scalar (0.444). The mean ()
function took the average of all 12 elements in the matrix. But what if you wanted the
3 row means or the 4 column means?

R provides a function, apply (), that allows you to apply an arbitrary function to
any dimension of a matrix, array, or data frame. The format for the apply function is

apply (x, MARGIN, FUN, ...)

where x is the data object, MARGIN is the dimension index, FUN is a function you
specify, and ... are any parameters you want to pass to FUN. In a matrix or data
frame MARGIN=1 indicates rows and MARGIN=2 indicates columns. Take a look at the

examples in listing 5.5.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

5.3

A solution for our data management challenge 103

Listing 5.5 Applying a function to the rows (columns) of a matrix

> mydata <- matrix(rnorm(30), nrow=6) <,_o Generate data
> mydata
[,1] [,2] [,3] [,4] [,5]
[1,]7 0.71298 1.368 -0.8320 -1.234 -0.790
[2,] -0.15096 -1.149 -1.0001 -0.725 0.506
[3,1 -1.77770 0.519 -0.6675 0.721 -1.350
[4,] -0.00132 -0.308 0.9117 -1.391 1.558
[5,1 -0.00543 0.378 -0.0906 -1.485 -0.350
[6,] -0.52178 -0.539 -1.7347 2.050 1.569
> apply (mydata, 1, mean) <—@® Calculate row means
[1] -0.155 -0.504 -0.511 0.154 -0.310 0.165
> apply (mydata, 2, mean) 4—0 Calculate column means
[1] -0.2907 0.0449 -0.5688 -0.3442 0.1906
> apply(mydata, 2, mean, trim=0.2) Calculate trimmed
[1] -0.1699 0.0127 -0.6475 -0.6575 0.2312 column means

You start by generating a 6 x 5 matrix containing random normal variates @. Then you
calculate the 6 row means @, and 5 column means €. Finally, you calculate trimmed
column means (in this case, means based on the middle 60 percent of the data, with
the bottom 20 percent and top 20 percent of values discarded) @.

Because FUN can be any R function, including a function that you write yourself (see
section 5.4), apply () is a powerful mechanism. While apply () applies a function over
the margins of an array, lapply () and sapply () apply a function over a list. You’ll
see an example of sapply (which is a userfriendly version of lapply) in the next
section.

You now have all the tools you need to solve the data challenge in section 5.1, so
let’s give it a try.

A solution for our data management challenge

Your challenge from section 5.1 is to combine subject test scores into a single perfor-
mance indicator for each student, grade each student from A to F based on their rela-
tive standing (top 20 percent, next 20 percent, etc.), and sort the roster by students’
last name, followed by first name. A solution is given in the following listing.

Listing 5.6 A solution to the learning example

> options (digits=2)

> Student <- c("John Davis", "Angela Williams", "Bullwinkle Moose",
"David Jones", "Janice Markhammer", "Cheryl Cushing",
"Reuven Ytzrhak", "Greg Knox", "Joel England",

"Mary Rayburn")
Math <- c(502, 600, 412, 358, 495, 512, 410, 625, 573, 522)
Science <- c(95, 99, 80, 82, 75, 85, 80, 95, 89, 86)
English <- c(25, 22, 18, 15, 20, 28, 15, 30, 27, 18)
roster <- data.frame(Student, Math, Science, English,
stringsAsFactors=FALSE)

vV V. V. VvV

\

zZ <- scale(roster|[,2:4])
> score <- apply(z, 1, mean)
> roster <- cbind(roster, score)

Obtain performance
scores

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

104

CHAPTER 5 Advanced data management

> y <- quantile(score, c(. 4,.2)) <—— Grade students
> roster$grade[score >= y[l]] <- "A"
> roster$Sgrade[score < y[1l] & score >= y[2]] <- "B"
> rostersSgrade[score < y[2] & score >= y[3]] <- "C"
> roster$grade[score < y[3] & score >= y[4]] <- "D"
> roster$Sgrade[score < y[4]] <- "F"
> name <- strsplit((roster$Student), " ") Extract last and
> lastname <- sapply(name, "[", 2) first names
> firstname <- sapply(name, "[", 1)
> roster <- cbind(firstname, lastname, roster[,-11)
> roster <- roster[order (lastname, firstname),] Sort by last and
first names
> roster
Firstname Lastname Math Science English score grade
6 Cheryl Cushing 512 85 28 0.35 C
1 John Davis 502 95 25 0.56 B
9 Joel England 573 89 27 0.70 B
4 David Jones 358 82 15 -1.16 F
8 Greg Knox 625 95 30 1.34 A
5 Janice Markhammer 495 75 20 -0.63 D
3 Bullwinkle Moose 412 80 18 -0.86 D
10 Mary Rayburn 522 86 18 -0.18 C
2 Angela Williams 600 99 22 0.92 A
7 Reuven Ytzrhak 410 80 15 -1.05 F

The code is dense so let’s walk through the solution step by step:
Step 1. The original student roster is given. The options (digits=2) limits the num-
ber of digits printed after the decimal place and makes the printouts easier to read.

> options(digits=2)

> roster

Student Math Science English
1 John Davis 502 95 25
2 Angela Williams 600 99 22
3 Bullwinkle Moose 412 80 18
4 David Jones 358 82 15
5 Janice Markhammer 495 75 20
6 Cheryl Cushing 512 85 28
7 Reuven Ytzrhak 410 80 15
8 Greg Knox 625 95 30
9 Joel England 573 89 27
10 Mary Rayburn 522 86 18

Step 2. Because the Math, Science, and English tests are reported on different scales
(with widely differing means and standard deviations), you need to make them compa-
rable before combining them. One way to do this is to standardize the variables so that
each test is reported in standard deviation units, rather than in their original scales.
You can do this with the scale () function:

> z <- scale(roster([,2:4])
> z
Math Science English

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

A solution for our data management challenge 105

[1,1 0.013 1.078 0.587
[2,] 1.143 1.591 0.037
[3,] -1.026 -0.847 -0.697
[4,] -1.649 -0.590 -1.247
[5,]1] -0.068 -1.489 -0.330
[6,] 0.128 -0.205 1.137
[7,1 -1.049 -0.847 -1.247
[8,1 1.432 1.078 1.504
[9,1 0.832 0.308 0.954
[10,] 0.243 -0.077 -0.697

Step 3. You can then get a performance score for each student by calculating the
row means using the mean () function and adding it to the roster using the cbind ()
function:

> score <- apply(z, 1, mean)
> roster <- cbind(roster, score)

> roster

Student Math Science English score
1 John Davis 502 95 25 0.559
2 Angela Williams 600 99 22 0.924
3 Bullwinkle Moose 412 80 18 -0.857
4 David Jones 358 82 15 -1.162
5 Janice Markhammer 495 75 20 -0.629
6 Cheryl Cushing 512 85 28 0.353
7 Reuven Ytzrhak 410 80 15 -1.048
8 Greg Knox 625 95 30 1.338
9 Joel England 573 89 27 0.698
10 Mary Rayburn 522 86 18 -0.177

Step 4. The quantile () function gives you the percentile rank of each student’s per-
formance score. You see that the cutoff for an A is 0.74, for a B is 0.44, and so on.
> y <- quantile(roster$score, c(.8,.6,.4,.2))
>y
80% 60% 40% 20%

0.74 0.44 -0.36 -0.89
Step 5. Using logical operators, you can recode students’ percentile ranks into a new
categorical grade variable. This creates the variable grade in the roster data frame.

> rosterS$Sgrade[score >= y[1]] <- "A"
> roster$grade[score < y[l] & score >= y[2]] <- "B"
> roster$grade[score < y[2] & score >= y[3]] <- "C"
> rosterS$Sgrade[score < y[3] & score >= y[4]] <- "D"
> roster$grade[score < y[4]] <- "F"
> roster

Student Math Science English score grade
1 John Davis 502 95 25 0.559 B
2 Angela Williams 600 99 22 0.924 A
3 Bullwinkle Moose 412 80 18 -0.857 D
4 David Jones 358 82 15 -1.162 F
5 Janice Markhammer 495 75 20 -0.629 D
6 Cheryl Cushing 512 85 28 0.353 C
7 Reuven Ytzrhak 410 80 15 -1.048 F
8 Greg Knox 625 95 30 1.338 A

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

106

CHAPTER 5 Advanced data management

9 Joel England 573 89 27 0.698 B

10 Mary Rayburn 522 86 18 -0.177 C

Step 6. You’ll use the strsplit() function to break student names into first name
and last name at the space character. Applying strsplit () to a vector of strings re-
turns a list:

> name <- strsplit((roster$Student), " ")

> name

[[11]

[1] "John" "Davis"

[[2]1]

[1] "Angela" "Williams"
[[31]

[1] "Bullwinkle" "Moose"

[[4]1]
[1] "David" "Jones"

[[5]1]

[1] "Janice" "Markhammer"
[[6]1]

[1] "Cheryl" "Cushing"

[[71]

[1] "Reuven" "Ytzrhak"

[[81]

[1] "Greg" "Knox"

[[9]1]
[1] "Joel™ "England"
[[10]]
[1] "Mary" "Rayburn"

Step 7. You can use the sapply () function to take the first element of each compo-
nent and put it in a firstname vector, and the second element of each component and
put it in a lastname vector. " [" is a function that extracts part of an object—here the
first or second component of the list name. You’ll use cbind() to add them to the
roster. Because you no longer need the student variable, you’ll drop it (with the -1 in
the roster index).

> Firstname <- sapply(name, "[", 1)
> Lastname <- sapply(name, "[", 2)
> roster <- cbind(Firstname, Lastname, roster[,-11)
> roster

Firstname Lastname Math Science English score grade
1 John Davis 502 95 25 0.559 B
2 Angela Williams 600 99 22 0.924 A
3 Bullwinkle Moose 412 80 18 -0.857 D

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

5.4

5.4.1

Control flow 107

4 David Jones 358 82 15 -1.162 F
5 Janice Markhammer 495 75 20 -0.629 D
6 Cheryl Cushing 512 85 28 0.353 C
7 Reuven Ytzrhak 410 80 15 -1.048 F
8 Greg Knox 625 95 30 1.338 A
9 Joel England 573 89 27 0.698 B
10 Mary Rayburn 522 86 18 -0.177 C

Step 8. Finally, you can sort the dataset by first and last name using the order ()
function:

> roster[order (Lastname, Firstname),]
Firstname Lastname Math Science English score grade

6 Cheryl Cushing 512 85 28 0.35 C
1 John Davis 502 95 25 0.56 B
9 Joel England 573 89 27 0.70 B
4 David Jones 358 82 15 -1.16 F
8 Greg Knox 625 95 30 1.34 A
5 Janice Markhammer 495 75 20 -0.63 D
3 Bullwinkle Moose 412 80 18 -0.86 D
10 Mary Rayburn 522 86 18 -0.18 C
2 Angela Williams 600 99 22 0.92 A
7 Reuven Ytzrhak 410 80 15 -1.05 F

Voila! Piece of cake!

There are many other ways to accomplish these tasks, but this code helps capture
the flavor of these functions. Now it’s time to look at control structures and user-written
functions.

Control flow

In the normal course of events, the statements in an R program are executed sequen-
tially from the top of the program to the bottom. But there are times that you’ll want to
execute some statements repetitively, while only executing other statements if certain
conditions are met. This is where control-flow constructs come in.

R has the standard control structures you’d expect to see in a modern programming
language. First you’ll go through the constructs used for conditional execution,
followed by the constructs used for looping.

For the syntax examples throughout this section, keep the following in mind:

= statement is a single R statement or a compound statement (a group of R state-
ments enclosed in curly braces { } and separated by semicolons).

= cond is an expression that resolves to true or false.

= expris a statement that evaluates to a number or character string.

® seqis a sequence of numbers or character strings.

After we discuss control-flow constructs, you’ll learn how to write your functions.

Repetition and looping

Looping constructs repetitively execute a statement or series of statements until a con-
dition isn’t true. These include the for and while structures.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

108

5.4.2

CHAPTER 5 Advanced data management

FOR

The for loop executes a statement repetitively until a variable’s value is no longer con-
tained in the sequence seq. The syntax is

for (var in seq) statement

In this example

for (i in 1:10) print("Hello")

the word Hello is printed 10 times.
WHILE

A while loop executes a statement repetitively until the condition is no longer true.
The syntax is

while (cond) statement

In a second example, the code

i <- 10

while (i > 0) {print("Hello"); i <- 1 - 1}

once again prints the word Hello 10 times. Make sure that the statements inside the
brackets modify the while condition so that sooner or later it’s no longer true—other-
wise the loop will never end! In the previous example, the statement

i<-1i-1

subtracts 1 from object i on each loop, so that after the tenth loop it’s no longer larger
than 0. If you instead added 1 on each loop, R would never stop saying Hello. This is
why while loops can be more dangerous than other looping constructs.

Looping in R can be inefficient and time consuming when you’re processing the
rows or columns of large datasets. Whenever possible, it’s better to use R’s built-
in numerical and character functions in conjunction with the apply family of
functions.

Conditional execution
In conditional execution, a statement or statements are only executed if a specified
condition is met. These constructs include if-else, ifelse, and switch.

IF-ELSE
The if-else control structure executes a statement if a given condition is true. Op-
tionally, a different statement is executed if the condition is false. The syntax is

if (cond) statement
if (cond) statementl else statement2

Here are examples:

if (is.character(grade)) grade <- as.factor(grade)
if (!is.factor(grade)) grade <- as.factor (grade) else print("Grade already
is a factor")

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

5.5

User-written functions 109

In the first instance, if grade is a character vector, it’s converted into a factor. In the
second instance, one of two statements is executed. If grade isn’t a factor (note the !
symbol), it’s turned into one. If it is a factor, then the message is printed.

IFELSE

The ifelse construct is a compact and vectorized version of the if-else construct.
The syntax is

ifelse(cond, statementl, statement2)

The first statement is executed if cond is TRUE. If cond is FALSE, the second statement
is executed. Here are examples:

ifelse(score > 0.5, print("Passed"), print("Failed"))
outcome <- ifelse (score > 0.5, "Passed", "Failed")

Use ifelse when you want to take a binary action or when you want to input and out-
put vectors from the construct.

SWITCH
switch chooses statements based on the value of an expression. The syntax is

switch(expr, ...)

where . .. represents statements tied to the possible outcome values of expr. It’s easiest
to understand how switch works by looking at the example in the following listing.

Listing 5.7 A switch example

> feelings <- c("sad", "afraid")
> for (i in feelings)
print (
switch (i,

happy = "I am glad you are happy",
afraid = "There is nothing to fear",
sad = "Cheer up",
angry = "Calm down now"

[1] "Cheer up"
[1] "There is nothing to fear"

This is a silly example but shows the main features. You’ll learn how to use switch in
user-written functions in the next section.

User-written functions

One of R’s greatest strengths is the user’s ability to add functions. In fact, many of the
functions in R are functions of existing functions. The structure of a function looks
like this:

myfunction <- function(argl, arg2, ...){
statements
return (object)

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

110

CHAPTER 5 Advanced data management

Objects in the function are local to the function. The object returned can be any data
type, from scalar to list. Let’s take a look at an example.

Say you’d like to have a function that calculates the central tendency and spread
of data objects. The function should give you a choice between parametric (mean
and standard deviation) and nonparametric (median and median absolute deviation)
statistics. The results should be returned as a named list. Additionally, the user should
have the choice of automatically printing the results, or not. Unless otherwise specified,
the function’s default behavior should be to calculate parametric statistics and not
print the results. One solution is given in the following listing.

Listing 5.8 mystats () : a user-written function for summary statistics

mystats <- function(x, parametric=TRUE, print=FALSE) {
if (parametric) {
center <- mean(x); spread <- sd(x)
} else {
center <- median(x); spread <- mad(x)
}

if (print & parametric) {

cat ("Mean=", center, "\n", "SD=", spread, "\n")
} else if (print & !parametric) {
cat ("Median=", center, "\n", "MAD=", spread, "\n")

}

result <- list(center=center, spread=spread)

return(result)
}
To see your function in action, first generate some data (a random sample of size 500
from a normal distribution):

set.seed(1234)
x <- rnorm(500)

After executing the statement
vy <- mystats (x)

y$center will contain the mean (0.00184) and y$spread will contain the standard
deviation (1.03). No output is produced. If you execute the statement

vy <- mystats(x, parametric=FALSE, print=TRUE)

y$center will contain the median (=0.0207) and y$spread will contain the median
absolute deviation (1.001). In addition, the following output is produced:

Median= -0.0207

MAD= 1

Next, let’s look at a user-written function that uses the switch construct. This function
gives the user a choice regarding the format of today’s date. Values that are assigned
to parameters in the function declaration are taken as defaults. In the mydate () func-
tion, long is the default format for dates if type isn’t specified:

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

User-written functions 111

mydate <- function(type="long") {
switch (type,

long = format(Sys.time(), "%A %B %d %Y"),
short = format (Sys.time(), "%m-%d-%vy"),
cat (type, "is not a recognized type\n")

)
}

Here’s the function in action:

> mydate("long")

[1] "Thursday December 02 2010"

> mydate ("short")

[1] "12-02-10"

> mydate ()

[1] "Thursday December 02 2010"

> mydate ("medium")

medium is not a recognized type

Note that the cat () function is only executed if the entered type doesn’t match "long"
or "short". It’s usually a good idea to have an expression that catches user-supplied
arguments that have been entered incorrectly.

Several functions are available that can help add error trapping and correction to
your functions. You can use the function warning () to generate a warning message,
message () to generate a diagnostic message, and stop () to stop execution of the
current expression and carry out an error action. See each function’s online help for

more details.

TIP Once you start writing functions of any length and complexity, access to

good debugging tools becomes important. R has a number of useful built-

in functions for debugging, and user-contributed packages are available that

provide additional functionality. An excellent resource on this topic is Duncan

Murdoch’s “Debugging in R” (http://www.stats.uwo.ca/faculty/murdoch/

software/debuggingR).
After creating your own functions, you may want to make them available in every ses-
sion. Appendix B describes how to customize the R environment so that user-written
functions are loaded automatically at startup. We’ll look at additional examples of
user-written functions in chapters 6 and 8.

You can accomplish a great deal using the basic techniques provided in this section.
If you’d like to explore the subtleties of function writing, or want to write professional-
level code that you can distribute to others, I recommend two excellent books that
you’ll find in the References section at the end of this book: Venables & Ripley (2000)
and Chambers (2008). Together, they provide a significant level of detail and breadth
of examples.

Now that we’ve covered user-written functions, we’ll end this chapter with a
discussion of data aggregation and reshaping.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

112

5.6

5.6.1

5.6.2

CHAPTER 5 Advanced data management

Aggregation and restructuring

R provides a number of powerful methods for aggregating and reshaping data. When
you aggregate data, you replace groups of observations with summary statistics based
on those observations. When you reshape data, you alter the structure (rows and col-
umns) determining how the data is organized. This section describes a variety of meth-
ods for accomplishing these tasks.

In the next two subsections, we’ll use the mtcars data frame that’s included
with the base installation of R. This dataset, extracted from Motor Trend magazine
(1974), describes the design and performance characteristics (number of cylinders,
displacement, horsepower, mpg, and so on) for 34 automobiles. To learn more about
the dataset, see help (mtcars).

Transpose

The transpose (reversing rows and columns) is perhaps the simplest method of reshap-
ing a dataset. Use the t () function to transpose a matrix or a data frame. In the latter
case, row names become variable (column) names. An example is presented in the
next listing.

Listing 5.9 Transposing a dataset

> cars <- mtcars[l:5,1:4]

> cars

mpg cyl disp hp
Mazda RX4 21.0 6 160 110
Mazda RX4 Wag 21.0 6 160 110
Datsun 710 22.8 4 108 93
Hornet 4 Drive 21.4 6 258 110
Hornet Sportabout 18.7 8 360 175

> t(cars)
Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabout

mpg 21 21 22.8 21.4 18.7
cyl 6 6 4.0 6.0 8.0
disp 160 160 108.0 258.0 360.0
hp 110 110 93.0 110.0 175.0

Listing 5.9 uses a subset of the mtcars dataset in order to conserve space on the page.
You’ll see a more flexible way of transposing data when we look at the shape package
later in this section.

Aggregating data

It’s relatively easy to collapse data in R using one or more by variables and a defined
function. The format is

aggregate(x, by, FUN)

where xis the data object to be collapsed, by is a list of variables that will be crossed to
form the new observations, and FUN is the scalar function used to calculate summary
statistics that will make up the new observation values.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

5.6.3

Aggregation and restructuring 113

As an example, we’ll aggregate the mtcars data by number of cylinders and gears,
returning means on each of the numeric variables (see the next listing).

Listing 5.10 Aggregating data

> options (digits=3)
> attach (mtcars)
> aggdata <-aggregate (mtcars, by=list(cyl,gear), FUN=mean, na.rm=TRUE)
> aggdata

Group.l Group.2 mpg cyl disp hp drat wt gsec vs am gear carb
1 4 3 21.5 4 120 97 3.70 2.46 20.0 1.0 0.00 3 1.00
2 6 3 19.8 6 242 108 2.92 3.34 19.8 1.0 0.00 3 1.00
3 8 3 15.1 8 358 194 3.12 4.10 17.1 0.0 0.00 3 3.08
4 4 4 26.9 4 103 76 4.11 2.38 19.6 1.0 0.75 4 1.50
5 6 4 19.8 6 164 116 3.91 3.09 17.7 0.5 0.50 4 4.00
6 4 5 28.2 4 108 102 4.10 1.83 16.8 0.5 1.00 5 2.00
7 6 5 19.7 6 145 175 3.62 2.77 15.5 0.0 1.00 5 6.00
8 8 5 15.4 8 326 300 3.88 3.37 14.6 0.0 1.00 5 6.00

In these results, Group.1 represents the number of cylinders (4, 6, or 8) and Group.2
represents the number of gears (3, 4, or 5). For example, cars with 4 cylinders and 3
gears have a mean of 21.5 miles per gallon (mpg).

When you’re using the aggregate() function, the by variables must be in a
list (even if there’s only one). You can declare a custom name for the groups from
within the list, for instance, using by=1ist (Group.cyl=cyl, Group.gears=gear).
The function specified can be any built-in or user-provided function. This gives the
aggregate command a great deal of power. But when it comes to power, nothing beats
the reshape package.

The reshape package

The reshape package is a tremendously versatile approach to both restructuring and
aggregating datasets. Because of this versatility, it can be a bit challenging to learn.
We’ll go through the process slowly and use a small dataset so that it’s clear what’s hap-
pening. Because reshape isn’t included in the standard installation of R, you’ll need
to install it one time, using install.packages ("reshape").

Basically, you’ll “melt” data so that each row is a unique ID-variable combination.
Then you’ll “cast” the melted data into any shape you desire. During the cast, you can
aggregate the data with any function you wish.

The dataset you’ll be working with is shown in = taple 5.8 The original dataset (mydata)
table 5.8.

In this dataset, the measurements are the ID Time X1), ¥]
values in the last two columns (5, 6, 3, b, 6, 1 1 5 6
1, 2, and 4). Each measurement is uniquely
identified by a combination of ID variables 1 2 3 5
(in this case ID, Time, and whether the 2 1 6 1
measurement is on X1 or X2). For example,
the measured value 5 in the first row is 2 2 2 4

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

114

CHAPTER 5 Advanced data management

uniquely identified by knowing that it’s from observation (ID) 1, at Time 1, and on
variable X1.

MELTING
When you melt a dataset, you restructure it into a format where each measured vari-
able is in its own row, along with the ID variables needed to uniquely identify it. If you
melt the data from table 5.8, using the following code
library (reshape)
md <- melt (mydata, id=(c("id", "time")))
you end up with the structure shown in table 5.9.

Note that you must specify the

. . . . Table 5.9 The melted dataset
variables needed to uniquely identify each

measurement (ID and Time) and that D Time Variable VEE

the variable indicating the measurement

variable names (X1 or X2) is created for 1 1 X1 5

you automatically. 1 2 X1 3
Now that you have your data in a melted 5 1 “ 5

form, you can recast it into any shape, using

the cast () function. 2 2 X1 2

CASTING 1 1 X2 6

The cast() function starts with melted

data and reshapes it using a formula that 1 2 X2 °

you provide and an (optional) function 2 1 X2 1

used to aggregate the data. The format is 5 5 %o 4

newdata <- cast(md, formula, FUN)

where md is the melted data, formula describes the desired end result, and FUN is the
(optional) aggregating function. The formula takes the form

rowvarl + rowvar2 + .. ~ colvarl + colvar2 + ..

In this formula, rowvarl + rowvar2 + ... define the set of crossed variables that de-
fine the rows, and colvarl + colvar2 + ... define the set of crossed variables that
define the columns. See the examples in figure 5.1.

Because the formulas on the right side (d, e, and f) don’t include a function, the
data is reshaped. In contrast, the examples on the left side (a, b, and c) specify the
mean as an aggregating function. Thus the data are not only reshaped but aggregated
as well. For example, (a) gives the means on X1 and X2 averaged over time for each
observation. Example (b) gives the mean scores of X1 and X2 at Time 1 and Time 2,
averaged over observations. In (c) you have the mean score for each observation at
Time 1 and Time 2, averaged over X1 and X2.

As you can see, the flexibility provided by the melt () and cast () functions is
amazing. There are many times when you’ll have to reshape or aggregate your data
prior to analysis. For example, you’'ll typically need to place your data in what’s called

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

Reshaping a Dataset

With Aggregation Without Aggregation
mydata
ID Time X1 X2 cast(md, id+time~variable)
! ! ° 6 ID Time X1 X2
1 2 3 5
1 1 5 6
cast(md, id~variable, mean) 2 1 6 1
1 2 3 5
ID X1 X2 2 2 2 4 > p B p
1 4 55 2 2 2 4
2 4 2.5

(a)

md <~ melt(mydata, id=c("id", "time")) cast(md, id+variable~time)

cast(md, time~variable, mean) D Time Variable Value D Variable Time1 Time 2
1 5.5 35 1 2 X1 3 1 X2 6 5
2 25 45 \ 2 1 X1 6 / 2 X1 6 2
(b) 2 2 X1 2 2 X2 1 4
1 1 X2 6 (e)
1 2 X2 5
cast(md, id~time, mean) 2 ! X2 ! cast(md, id~variable+time)
1 5.5 4 Time1 Time2 Time1 Time2
2 3.5 3 1 5 3 6 5
2 6 2 1 4

(c)
(f)

Figure 5.1 Reshaping data with the melt () and cast () functions

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

Surunpn.ysas pun uoynSaSsy

It

116

5.7

CHAPTER 5 Advanced data management

“long format” resembling table 5.9 when analyzing repeated measures data (data
where multiple measures are recorded for each observation). See section 9.6 for an
example.

Summary

This chapter reviewed dozens of mathematical, statistical, and probability func-
tions that are useful for manipulating data. We saw how to apply these functions
to a wide range of data objects, including vectors, matrices, and data frames. We
learned to use control-flow constructs for looping and branching to execute some
statements repetitively and execute other statements only when certain conditions
are met. You then had a chance to write your own functions and apply them to
data. Finally, we explored ways of collapsing, aggregating, and restructuring your
data.

Now that you’ve gathered the tools you need to get your data into shape (no pun
intended), we’re ready to bid part 1 goodbye and enter the exciting world of data
analysis! In upcoming chapters, we’ll begin to explore the many statistical and graphical
methods available for turning data into information.

Licensed to Mark Jacobson <jacobson@cs.uni.edu>

	5 Advanced data management
	5.1 A data management challenge
	5.2 Numerical and character functions
	5.2.1 Mathematical functions
	5.2.2 Statistical functions
	5.2.3 Probability functions
	5.2.4 Character functions
	5.2.5 Other useful functions
	5.2.6 Applying functions to matrices and data frames

	5.3 A solution for our data management challenge
	5.4 Control flow
	5.4.1 Repetition and looping
	5.4.2 Conditional execution

	5.5 User-written functions
	5.6 Aggregation and restructuring
	5.6.1 Transpose
	5.6.2 Aggregating data
	5.6.3 The reshape package

	5.7 Summary

