Загальні вимоги до курсової роботи з дисципліни
«Бази даних та iнфоpмацiйнi системи»
!!!Вибір технологій, СКБД, ORM та мов програмування є вибором здобувача освіти(можна обрати будь-яку технологію та мову програмування)

!!!Головна задача розробити PET проект для власного портфоліо студента
Захист курсової роботи на заліковому тижні:
перший тиждень грудня 2025
1. Загальні вимоги

1. Обрати предметну область і затвердити тему у викладача до початку роботи над проектом. Тема має бути конкретною (не занадто загальною) і мати застосовну предметну модель (наприклад: «Система обліку замовлень для кав’ярні», «Інформаційна система у бібліотеці», «Система обліку обладнання лабораторії» тощо).

2. Робота має містити усі розділи: концептуальне проектування, логічне проектування, фізичне проектування, реалізацію (код), GUI, тестування та пояснювальну записку.

3. Всі артефакти (код, дамп БД, документація) повинні бути відкладені у визначену структуру (див. розділ «Файлова структура»).

4. Дотримуватись обраного архітектурного шаблону відповідно до типу застосунку (MVT, Model View Controler, MVVM тощо) - це опціонально.
Модель – таблиці та орм робота з базою даних

Представлення – веб сторінки, форми, все що GUI користувача

Логіка – функціональність яка дозволяю дані з моделі в представлення
Модель, представлення(форми або html сторінки), логіка
Студент має реалізувати програму так, щоб її частини були логічно розділені: Модель (дані) – класи або таблиці, що описують сутності предметної області та взаємозв’язки між ними; Представлення (інтерфейс) – форми, сторінки або інші елементи GUI, через які користувач взаємодіє з даними; Логіка (операції/сервіси) – функції та методи, які реалізують обробку даних, перевірку коректності, бізнес-правила та виклики до бази даних.
2. Етап концептуального проектування

1. Побудувати ER-діаграму у нотації Чена або «воронячі лапки» (Crow’s Foot) - вибрати одну й дотримуватись тільки її.

2. Обов’язкова кількість сутностей: не менше 7 (пояснити вибір сутностей).

3. Для кожної сутності вказати:

· атрибути (включно з первинним ключем PK),

· тип відношення (1:1, 1:N, M:N) з іншими сутностями,

· семантичні обмеження (наприклад, унікальність, обов’язковість).

4. Описати всі зв’язки M:N через проміжні таблиці (associative entities) - показати це в діаграмі.

5. Нормалізація: показати процес нормалізації до 3NF (мінімум). Надати приклади редундансів, які усуваються на кожному кроці.

6. Короткий словесний опис предметної моделі (2–3 абзаци): призначення системи, ключові сценарії використання.

3. Розробка логічної структури даних

1. Для кожної сутності сформулювати логічну модель (таблична форма): назва таблиці, поля, типи даних, ключі, обмеження (NOT NULL, UNIQUE, CHECK), індекси.

2. Описати зовнішні ключі (FK) та правила поведінки при оновленні/видаленні (ON UPDATE, ON DELETE - CASCADE/SET NULL/RESTRICT).

3. Навести SQL DDL для створення таблиць (перша версія логіки) - включити у проєкт як .sql або в ORM-міграціях.

4. Фізичне проектування і реалізація бази даних

1. Вибір СКБД - робить студент (рекомендації: PostgreSQL, MySQL/MariaDB, SQLite для простих проєктів). У записці обґрунтувати вибір (чому ця СКБД підходить для предметної області).

2. Створити таблиці у СКБД та забезпечити цілісність даних.

3. Вибір ORM - робить студент (у вимозі наведено приклад SQLAlchemy, але можна вибрати інший ORM; якщо вибір інший - пояснити у записці).

4. Зберігання параметрів з’єднання: усі параметри для підключення зберігати в конфіг-файлі (наприклад config.py, .env або config.json) у вигляді змінних. Жодних “хардкодів” паролів у коді.

5. За допомогою ORM:

· реалізувати підключення до бази,

· продемонструвати створення та видалення таблиць (migration або ORM create/drop).

6. Реалізація CRUD: написати методи/функції для створення, читання, оновлення та видалення записів через ORM (для основних сутностей).

7. SQL-запити: додатково реалізувати приклади CRUD через «чистий» SQL (INSERT, SELECT, UPDATE, DELETE) у вигляді скриптів або SQL-файлів.

8. Додаткові вимоги БД:
· створити приклади індексів для пришвидшення запитів,

· застосувати транзакції там, де це потрібно (з прикладами rollback),

· при потребі реалізувати тригери, збережені процедури або VIEW - якщо це логічно для предметної області.

9. Дамп бази: зберегти дамп БД у файлі sql/dump.sql. Дамп повинен містити структуру та прикладні дані (seed).

5. Інструментарій та реалізація GUI

1. Обрати тип GUI: веб, десктоп або мобільний - та дотримуватись відповідного архітектурного шаблону (опціонально).

2. Рекомендовані стек-приклади (але вибір за студентом):

· Веб: Flask/Django (Python), ASP.NET Core (C#), Node.js + Express + React/Vue, Django REST + React.

· Десктоп: WPF (C#), Electron (JS/TS), PyQt (Python).

· Мобільні: Flutter, React Native.

3. Обов’язкові GUI-функціональні вимоги:

· форми для CRUD операцій для основних сутностей,

· автентифікація/авторизація користувачів (мінімум - простий логін),

· валідація вводу на клієнті й сервері,

· відображення звітів/переліків з пагінацією/фільтрацією/сортуванням (на прикладі однієї сутності).

4. Опис UI/UX: надати макети/скріни або прототип (можна зробити в Figma, draw.io, паперові ескізи) - опціонально
6. Архітектура, безпека та операційні вимоги

1. Дотримуватись обраного архітектурного шаблону (MVT/MVC/MVVM). У пояснювальній записці - діаграма компонентів і короткий опис потоків даних(опціонально).

2. Безпека:
· обробка паролів тільки у захищеному вигляді (hash+salt) або делегування аутентифікації (OAuth - опціонально),

· захист від SQL-ін’єкцій (використовувати параметризовані запити або ORM),

· базові правила авторизації (ролі/права) - принаймні дві ролі (адмін/користувач) або опис їхньої відсутності.

3. Резервне копіювання та відновлення: описати процедуру створення дампу та відновлення (команди, приклади).

4. Логування та обробка помилок: мінімум базове логування серверних помилок та дій користувачів.

7. Тестування(опціонально)
1. Написати модульні тести для логіки доступу до БД (наприклад, тести CRUD через ORM).

2. Покрити хоча б 3–5 ключових сценаріїв (успішні та негативні).

3. Надати інструкцію, як запускати тести (команди).

4. Опціонально: інтеграційні тести для API (якщо реалізовано REST).

8. Пояснювальна записка (обов’язково, пізніше буде шаблон оформлення)
Пояснювальна записка повинна містити:

1. Титульний аркуш (за шаблоном ВНЗ).

2. Зміст.

3. Вступ (актуальність, мета й завдання).

4. Опис предметної області.

5. Концептуальне проектування (ER-діаграма + пояснення).

6. Процес нормалізації (кроки та приклади).

7. Логічна модель (таблиці та DDL).

8. Фізичне проектування (вибір СКБД, індекси, транзакції, налаштування продуктивності).

9. Опис реалізації (ORM, структура проекту, API, GUI).

10. Інструкція з встановлення й запуску (кроки для відтворення проєкту).

11. Тестування (опис та результати) (опціонально)
12. Висновки й можливі напрями розвитку.

13. Перелік джерел (посилання на github й інші ресурси).

14. Додатки (скріни, приклади SQL-запитів, дамп тощо).

9. Файлова структура проєкту

Приклад рекомендованої структури:

[image: image1.png]project-root/

- sre/ #

| backend/

| frontend/

L migrations/
- sal/

L dump.sql #
[~ tests/ #
I docs/ #
I config/

L config.example #
f— README .md #
- requirements.txt #

_gitignore

peanizoBanuii kod (cepbep, UL, ckpunmu)

dann B4 (cmpyxmypa + seed)

mecmu

GodamoBi dokymenmu, ER-diazpamu (png/pdf)

npuknad konpizypauii = onucom nomif

incmpykuia no zanycky

abo inuuii paiin sanexwocmeii

Примітка: config.example містить шаблон змінних (без секретів). У README вказати, як створити реальний config із паролями.
10. Публікація коду та документації

1. Весь код і SQL запити мають бути викладені на GitHub (або аналогічному репозиторії).

2. У пояснювальній записці в розділі «Перелік посилань» надати пряме посилання на репозиторій.

3. README має містити:

· короткий опис проєкту,

· вимоги (СКБД, мови, версії),

· інструкції по встановленню й запуску (кроки),

· приклади запитів (як відтворити основні сценарії).

11. Критерії оцінювання (рекомендовані)

· Тема та предметна область, обґрунтування - 10%

· Концептуальне проектування (ER + нормалізація) - 20%

· Логічна та фізична модель, DDL - 15%

· Реалізація БД (дамп, цілісність, індекси, транзакції) - 15%

· ORM & CRUD реалізація - 15%

· GUI (функціональність, валідація, UX) - 10%

· Документація, README, демонстрація на GitHub - 10%

· Тести та загальна якість коду - бонус/додаткові бали

12. Інструкція з подачі роботи

1. Надати посилання на GitHub репозиторій у пояснювальній записці.

2. У репозиторії: sql/dump.sql, папка src, docs з ER-діаграмою (png/pdf), README.md.

3. Віддати викладачу ZIP архів репозиторію або посилання на GitHub (з відкритим доступом) - за домовленістю.

4. Підготувати демонстрацію роботи (коротко - 7–10 хв): показати ER-діаграму, кілька SQL-запитів, CRUD через GUI, дамп та тест.

13. Додаткові/рекомендовані опції для бонусних балів

1. Реалізація ролей і прав доступу (RBAC).

2. REST API та документація через OpenAPI/Swagger.

3. CI (GitHub Actions) з автоматичним запуском тестів.

4. Написання інструкції для деплойменту (Docker Compose).

5. Аналітичні звіти/зведення (SQL-запити з агрегаціями, візуалізація).

Вимоги до презентації до захисту курсової роботи
Будь ласка врахувати, що фон білий, а літери темні, без використання тем оформлення, без використання логотипів технологій та програмних засобів та дотримуватися структури

При підготовці презентації слід звертати увагу на зміст слайдів, що виносяться на захист. Неприпустимими є презентації, де студенти просто демонструють екранні форми програм або логотипи засобів розробки. Приблизний зміст слайдів має бути такий.
1. Назва ВНЗ, кафедри, назва роботи, автор (група, П.І.Б.), керівник (посада, ступінь, звання, П.І.Б.).
2. Мета та завдання курсової роботи
3-4. Опис предметної області, призначення інформаційної системи
5. Концептуальна модель предметної області (ER діаграма)
6. Перелік сутностей та атрибутів + зв’язки (коротенько)
7. Логічне проектування системи (схема бази даних: таблиці)
8-9. Проектування запитів
10. Розроблені класи, опис ORM
11-13. Графічний інтерфейс користувача (консольний або візуальний, відображення результатів роботи запитів) Результати роботи програми
14. Висновки
15. Перелік публікацій студента – за наявності.
Звісно, що допускаються додаткові слайди, або заміна перелічених вище слайдів на інші, або зміна порядку слайдів після другого - за згодою керівника. Але мають бути чітко показані проектні рішення. Тобто презентація має висвітлювати не тільки що зроблено, а ЯК ЗРОБЛЕНО І ЧОМУ.
Приклади проектів
1. Приклад дуже простого проекту на flask, базовий шаблон проєкту на Flask, який реалізує просту базу даних із підтримкою додавання, оновлення, видалення і перегляду записів, дотримуючись архітектури MVT (Model-View-Template)
[image: image2.png]& Cipyktypa npoexty

posql

flask_app/

— app/
| b _init__.py
| b models.py

| b routes.py

— forms.py

| — templates/

| |— base.html

| | index.html
— add.htm1

| L— update.html

run.py

requirements. txt

rT

-

-

Model
View
Forms

Templates

вот така приблизна структура проекту, відсутня сторінка видалення, потрібно додати сторінку видалення

Нагадую, що у випадку розробки веб-застосунку на Flask:

Головну сторінку - index.html
Додаткова сторінка для додавання інформації ->форма для занесення даних Додаткова сторінка для відображення інформації
Додаткова сторінка для видалення інформації (самі обираєте поля за якими ви видаляєте інформацію)
Додаткова сторінка для оновлення інформації (самі обираєте поля за якими ви оновлюєте інформацію)
2. Базовий шаблон проєкту на tkinter з використанням архітектури MVC, який реалізує просту базу даних (SQLite) з можливістю додавати, видаляти та оновлювати записи.

[image: image3.png][CTpyKTypa NpoEKTy:
bash
simple_db_app/

— model.py

I view.py

— controller.py

main.py

