Бази даних та інформаційні системи
лекції – доцент, к.т.н.Миронова Наталя Олексіївна
лабораторні – аситент Дребезов Денис Олегович
Питання до студентів
 Якими мовами програмування ви володієте (C#, Java, Python, JS, інші)?
Python, C++, C#, Java
  Які парадигми програмування вам відомі (ООП, функціональне, процедурне)?
ООП: абстрагування, інкапсуляція, спадкування, поліморфізм
Функціональне програмування
[image: image1.png]Y Python uvknu (while, for) BGyaoBaHi, ane ix MoxHa peanisysatu 3a
AoroMoroto (YHKLT, ika BUKIKae camy cebe (peKypcisi) Ans NoBTOPeHHs
onepatliit, a6o BUKOPUCTOBYHOUM BULL (OYHKLIT, Taki AK map() Ta filter(),
NS 3aCTOCyBaHHA (YHKL A0 eNleMeHTiB MOCiA0BHOCTI. &

PekypcuHa peanisallisi LMKy 3a 4OMOMOro yHKLT
Lle cnoci6 imiTyBaTVt LMK, KoMK dyHKLIA BUKNMKae camy cebe, AoKu He Byae
[I0CArHyTa yMoBa BUXOdYy. @

Python (u]

def recursive_loop(n):
if n < # ynoba Buxody 3 pexypcii
return

print(n) # Aii, AKi BMKOHYWTbCA HG KoXHiG “imepau

recursive_Loop(n - 1) # PexypcuBhui Bunux gyaxuii

# PUKNaj BUKOPUCTAHHA

recursive_loop(s)|




  Чи працювали ви з базами даних? Якщо так, то з якими (SQL, NoSQL)?
SQLite, запити прості, складні, JOIN
  Чи знайомі ви з ORM (Entity Framework, Hibernate)?
ORM
  Чи знаєте ви архітектурні патерни (MVC, MVVM, інші)?
MVC
  Чи використовували інструменти для прототипування інтерфейсу (Figma)?
Figma
  Чи писали ви юніт-тести? Якщо так, то якими фреймворками?
юніт-тести
  Чи знайомі ви з процесами ручного тестування (тест-кейси, баг-репорти)?
ручного тестування
  Чи мали досвід з CI/CD інструментами (GitHub Actions, Jenkins, GitLab CI)?
GitHub
  Чи маєте досвід з Docker або Kubernetes?
Docker
  Чи працювали з хмарними сервісами (AWS, Azure, GCP)?
Azure
Лекція 1 Вступ. ER-діаграми, SQL-запити та CRUD-операції
Слайд 1. Вступ до теми: важливість баз даних
Бази даних є фундаментальною складовою будь-якої сучасної інформаційної системи. Вони дозволяють організовано зберігати велику кількість інформації, забезпечувати її доступність і цілісність. У світі, де дані стали новою «нафтою», вміння ефективно працювати з ними є ключовою навичкою.
Робота з базами даних починається з розуміння їх структури. Перш ніж перейти до практики SQL-запитів, важливо навчитися описувати предметну область за допомогою моделей даних. Це дозволяє уникнути хаотичного підходу до збереження інформації.
Бази даних застосовуються у всіх сферах: від мобільних додатків і банківських систем до промисловості та штучного інтелекту. Уміння працювати з ними відкриває широкі можливості для програміста, аналітика та інженера.
У нашій лекції ми повторимо основні теми: побудову ER-діаграм, написання SQL-запитів, виконання CRUD-операцій, роботу з базами даних через Python DB-API та огляд ORM у різних мовах програмування.
Слайд 2. Приклад предметної області (університет)
Для кращого розуміння ми будемо розглядати приклад університетської системи. У ній є сутності: студенти, курси, викладачі та записи на навчання. Це класична предметна область для навчання базам даних.
Кожен студент має атрибути: ім’я, групу, дату вступу. Кожен курс має назву, кількість кредитів і закріпленого викладача. Зв’язок між студентами і курсами — багато до багатьох, оскільки один студент може навчатися на багатьох курсах, а кожен курс може мати багато студентів.
На прикладі цієї системи ми можемо відпрацювати створення ER-діаграми, побудову таблиць у SQL і виконання CRUD-операцій. Це дозволить поєднати теорію та практику.
В подальших розділах ми будемо повертатися до цієї предметної області, щоб показати, як моделі переходять у SQL-запити та інтегруються в програмний код.
Слайд 3. Чому потрібні моделі даних
Створення моделей даних — перший крок до побудови якісної бази. Якщо одразу писати таблиці без моделювання, можна припуститися серйозних помилок: надлишковості даних, відсутності ключових зв’язків, проблем з цілісністю.
ER-діаграма допомагає візуалізувати предметну область. Вона показує сутності, їх атрибути та взаємозв’язки. Це зручно як для розробників, так і для замовників, адже модель легко зрозуміти навіть тим, хто не пише SQL.
Крім того, модель слугує документацією системи. У великих проєктах саме вона є вихідною точкою для програмістів, тестувальників та аналітиків. Це полегшує командну роботу.
Таким чином, моделювання — це не просто теорія, а практичний інструмент для створення стабільних та зрозумілих баз даних.
Слайд 4. Основні етапи роботи з БД
Робота з базою даних зазвичай складається з кількох етапів. Спочатку ми аналізуємо предметну область і створюємо ER-діаграму. Це дозволяє зрозуміти, які сутності існують та як вони взаємодіють.
Далі відбувається трансляція моделі у SQL-таблиці. На цьому етапі ми визначаємо ключі, типи даних та обмеження. Потім створюються зв’язки через зовнішні ключі.
Після цього починається робота з даними: вставка, вибірка, оновлення та видалення. Цей набір операцій відомий як CRUD. Для цього використовується мова SQL.
На більш високому рівні програмісти працюють з БД через API або ORM. Це дозволяє інтегрувати базу даних у програми на Python, C#, Java чи C++, забезпечуючи зручність і продуктивність.
Слайд 5. Зв’язок ER-діаграми → SQL → CRUD → API
Весь процес роботи з БД можна уявити як ланцюжок. Спочатку створюється ER-діаграма, яка є абстрактною моделлю системи. Вона перетворюється у SQL-таблиці, що визначають структуру зберігання даних.
Потім ми виконуємо CRUD-операції для роботи з інформацією. Це базові кроки: додати новий запис, отримати його, змінити або видалити. Без CRUD не існує жодної реальної програми.
Наступний рівень — це робота через Python DB-API чи ORM. Тут програміст уже не пише "чистий SQL", а працює з об’єктами, класами та методами. Це робить код більш зрозумілим і кросплатформеним.
Таким чином, вивчаючи цю лекцію, ми пройдемо шлях від абстрактної моделі до реальної інтеграції з програмами, охопивши всі рівні роботи з даними.
Слайд 6. ER-діаграми: визначення сутності
Сутність (Entity) — це об’єкт реального світу, який має значення для нашої системи. У контексті бази даних сутність відображається як таблиця. Наприклад, «Студент», «Курс» або «Викладач».
Кожна сутність описує клас об’єктів, а не конкретний екземпляр. Тобто сутність «Студент» — це всі студенти університету, а не лише одна особа.
Сутності формуються на основі аналізу предметної області. Якщо ми говоримо про університет, то сутностями будуть ті об’єкти, які потрібно зберігати: студенти, викладачі, курси, групи.
ER-діаграма дозволяє візуально представити ці сутності у вигляді прямокутників, що згодом трансформуються в таблиці SQL.
Нотація класична Чена + «воронячі лапки» Мартіна
Слайд 7. ER-діаграми: Атрибути сутності
Атрибут — це характеристика сутності, яка описує її властивості. Наприклад, у сутності «Студент» атрибутами можуть бути ім’я, дата народження, номер залікової книжки.
Атрибути в ER-діаграмі зазвичай відображаються у вигляді овалів, які з’єднані з прямокутником сутності. Кожен атрибут відповідає стовпцю таблиці SQL.
Важливо визначати, які атрибути є обов’язковими, а які — додатковими. Наприклад, ім’я студента є обов’язковим атрибутом, а по батькові може бути необов’язковим.
Крім того, атрибути можуть мати різні типи даних: текстові, числові, дати. Вибір правильного типу впливає на зручність і продуктивність зберігання даних.
Слайд 8. ER-діаграми: первинний ключ
Первинний ключ (Primary Key) — це атрибут або набір атрибутів, які унікально ідентифікують запис у таблиці. У сутності «Студент» таким ключем зазвичай є id (унікальний номер).
Первинний ключ не може містити однакових значень і не повинен бути пустим. Це гарантує, що кожен запис у таблиці буде відрізнятися від іншого.
У реальному житті прикладом ключа може бути номер паспорта або штрих-код товару. У базі даних найчастіше використовують числові автоінкрементні значення.
Правильний вибір ключа дозволяє уникати дублювання даних і спрощує створення зв’язків між таблицями.
Слайд 9. ER-діаграми: зв’язки між сутностями
Зв’язок (Relationship) показує, як сутності взаємодіють між собою. Наприклад, «Студент» навчається на «Курсі», або «Викладач» читає «Лекцію».
У ER-діаграмі зв’язки зображаються як ромби, які з’єднують сутності. В SQL вони трансформуються у зовнішні ключі.
Зв’язки дозволяють уникати дублювання інформації. Наприклад, якщо у нас 100 студентів навчаються на одному курсі, ми не дублюємо дані курсу в кожному записі, а створюємо окрему таблицю зв’язків.
Таким чином, зв’язки — це основа структурованості бази даних і правильного розподілу інформації між таблицями.
Слайд 10. ER-діаграми: Типи зв’язків (1:1)
Зв’язок «один до одного» (1:1) означає, що один запис однієї сутності відповідає лише одному запису іншої сутності. Наприклад, кожен студент має лише один студентський квиток.
У такому випадку в одній із таблиць зберігається зовнішній ключ, який унікально пов’язаний із записом іншої таблиці. Це забезпечує жорстку відповідність між сутностями.
1:1-зв’язки застосовуються нечасто, зазвичай у випадках, коли інформацію доцільно розділити для оптимізації. Наприклад, винести рідковживані дані в окрему таблицю.
У схемах ER такі зв’язки позначаються лінією з позначкою «1» біля обох сутностей.
Слайд 11. ER-діаграми: Типи зв’язків (1:N)
Зв’язок «один до багатьох» (1:N) є найбільш поширеним у базах даних. Він означає, що один запис у першій таблиці може мати кілька відповідних записів у другій таблиці.
Приклад: один викладач може вести кілька курсів, але кожен курс має лише одного викладача. Тобто «Викладач» — «Курс» = 1:N.
У SQL це реалізується за допомогою зовнішнього ключа в таблиці «Курс», що посилається на id викладача. Таким чином забезпечується зв’язок між записами.
У ER-діаграмі зв’язок 1:N позначається «1» біля однієї сутності та «N» біля іншої.
Слайд 12. ER-діаграми: Типи зв’язків (M:N)
Зв’язок «багато до багатьох» (M:N) означає, що один запис може відповідати кільком записам іншої сутності і навпаки.
Приклад: студент може навчатися на кількох курсах, а курс може мати багато студентів. Це класичний приклад зв’язку M:N.
У SQL реалізація M:N потребує проміжної таблиці. Наприклад, таблиця «Запис» містить student_id і course_id, що дозволяє пов’язати студентів і курси.
У ER-діаграмі M:N позначається літерами «M» та «N» біля відповідних сутностей.
Слайд 13. Приклад: Студенти й Курси
Розглянемо приклад університетської системи. Є сутності «Студент» (id, ім’я, група) та «Курс» (id, назва, кредити).
Між ними існує зв’язок M:N. Щоб його реалізувати, створюється проміжна сутність «Запис» (id, student_id, course_id, дата_запису).
У результаті ми можемо визначити, які студенти записані на які курси, і коли саме це сталося. Це дозволяє уникати дублювання та зберігати історію навчання.
Цей приклад буде основним для подальшого вивчення SQL-запитів та CRUD-операцій.
Слайд 14. Нормалізація даних (1ФН)
Нормалізація — це процес організації структури таблиць для уникнення надлишковості та залежностей.
Перша нормальна форма (1ФН) вимагає, щоб усі атрибути були атомарними. Це означає, що в кожній клітинці таблиці має бути одне значення, а не список або масив.
Наприклад, замість одного стовпця «Курси», де записано «Математика, Інформатика», потрібно мати окрему таблицю «Запис».
Дотримання 1ФН гарантує правильну структуру та дозволяє уникати складнощів при пошуку даних.
Слайд 15. Нормалізація даних (2ФН, 3ФН)
Друга нормальна форма (2ФН) передбачає усунення часткових залежностей. Це означає, що кожен атрибут має залежати від повного ключа, а не від його частини.
Третя нормальна форма (3ФН) вимагає усунення транзитивних залежностей. Тобто атрибут не повинен залежати від іншого атрибута, який не є ключем.
Наприклад, якщо в таблиці «Студенти» ми зберігаємо групу і ще й ім’я старости групи, то виникає транзитивна залежність. Краще винести групу в окрему таблицю.
Таким чином, нормалізація підвищує ефективність і надійність бази даних.
Слайд 16. Надлишковість і дублювання
Надлишковість даних означає, що одна й та ж інформація зберігається кілька разів у різних місцях. Це призводить до проблем із цілісністю.
Наприклад, якщо у таблиці «Студенти» ми зберігаємо назву курсу, то під час зміни назви потрібно оновити десятки рядків. Це неефективно.
Правильна модель бази даних повинна мінімізувати дублювання. Це досягається за допомогою нормалізації та зв’язків між сутностями.
Мінімізація надлишковості робить базу компактнішою, швидшою та зручнішою в обслуговуванні.
Слайд 17. Слабкі сутності
Слабка сутність — це така, яка не може існувати без сильної сутності. Вона ідентифікується через зв’язок із іншою таблицею.
Приклад: «Запис на курс» — слабка сутність, оскільки він існує тільки тоді, коли є студент і курс. Сам по собі «Запис» не має сенсу.
У SQL це реалізується через зовнішні ключі на сильні сутності. Слабка сутність часто не має власного унікального ідентифікатора.
У ER-діаграмі слабкі сутності позначаються подвійним прямокутником.
Слайд 18. Атрибути-зв’язки
Іноді зв’язки мають власні атрибути. Це відбувається, коли сам факт зв’язку несе додаткову інформацію.
Наприклад, зв’язок «Студент записаний на Курс» може мати атрибут «Дата запису». Цей атрибут не належить ні студенту, ні курсу, а саме зв’язку.
У SQL такі атрибути зберігаються в проміжних таблицях, що реалізують зв’язки M:N.
Таким чином, атрибути-зв’язки допомагають гнучко описати реальні ситуації у базі даних.
Слайд 19. Приклад ER-моделі "Бібліотека"
Розглянемо приклад бібліотеки. Є сутності: «Книга» (id, назва, автор), «Читач» (id, ім’я, адреса) та «Видача» (id, reader_id, book_id, дата_видачі).
Зв’язок «Читач бере Книгу» є M:N, бо один читач може брати багато книг, і одна книга може видаватися різним читачам у різний час.
Щоб реалізувати цей зв’язок, ми створюємо таблицю «Видача», яка зберігає додатковий атрибут — дату. Таким чином, ми отримуємо історію користування книгами.
Цей приклад демонструє важливість слабких сутностей і атрибутів-зв’язків у реальних системах.
Слайд 20. Трансформація ER-діаграми в SQL
ER-діаграма — це модель, а SQL — конкретна реалізація. Кожна сутність стає таблицею, атрибути — стовпцями, а зв’язки — зовнішніми ключами.
Зв’язки 1:N реалізуються через зовнішній ключ у дочірній таблиці. Зв’язки M:N — через проміжну таблицю. Атрибути-зв’язки зберігаються саме у проміжних таблицях.
Наприклад, сутність «Студент» перетворюється на таблицю Student(id, name, group). Сутність «Курс» стає таблицею Course(id, title, credits). Зв’язок реалізується таблицею Enrollment(student_id, course_id, date).
Таким чином, ми отримуємо готову структуру, яку можна реалізувати в будь-якій СУБД.
SQL-запити
Слайд 21. Що таке SQL
SQL (Structured Query Language) — це мова, яка використовується для взаємодії з реляційними базами даних. Вона дозволяє створювати структуру таблиць, наповнювати їх даними та виконувати різноманітні запити.
Мова SQL є стандартом, підтримуваним більшістю систем керування базами даних: MySQL, PostgreSQL, SQLite, Oracle, MS SQL Server. Незважаючи на різні реалізації, основний синтаксис залишається спільним.
SQL поділяється на кілька категорій: DDL (створення структури), DML (маніпуляція даними), DQL (вибірки), DCL (керування доступом) та TCL (транзакції).
У нашій лекції ми зосередимось на найбільш практичних аспектах: створенні таблиць, написанні SELECT-запитів та реалізації CRUD.
Слайд 22. DDL: створення таблиць
DDL (Data Definition Language) — це підмножина SQL, яка відповідає за визначення структури бази даних. Сюди входять команди CREATE, ALTER, DROP.
Найважливішою є команда CREATE TABLE, що створює таблиці з атрибутами та обмеженнями. Наприклад:
CREATE TABLE Student (
  id SERIAL PRIMARY KEY,
  name VARCHAR(50),
  group_name VARCHAR(20)
);
Команда ALTER TABLE дозволяє змінювати вже створені таблиці: додавати стовпці, змінювати типи даних чи додавати ключі.
Команда DROP TABLE використовується для видалення таблиць, але застосовувати її слід обережно, адже всі дані знищуються безповоротно.
Слайд 23. DML: вставка даних
DML (Data Manipulation Language) використовується для внесення змін у дані. Найважливіша команда цього блоку — INSERT.
Наприклад, щоб додати студента, ми пишемо:
INSERT INTO Student (name, group_name) 
VALUES ('Анна', 'ІТ-23');
Можна додавати одразу кілька записів:
INSERT INTO Course (title, credits) 
VALUES ('Математика', 5), ('Програмування', 6);
Ці команди є основою для початкового наповнення бази даних. Без них таблиці залишатимуться порожніми і не матимуть практичного сенсу.
Слайд 24. DQL: SELECT-запити
DQL (Data Query Language) використовується для вибірки даних із бази. Основна команда тут — SELECT.
Найпростіший приклад:
SELECT * FROM Student;
Це виведе всі записи й усі стовпці таблиці.
Можна вказати конкретні поля:
SELECT name, group_name FROM Student;
Запити SELECT — це серце SQL, адже вони дозволяють отримувати дані для звітів, інтерфейсів і логіки програм.
Слайд 25. WHERE і логічні оператори
Для відбору даних за умовами використовується оператор WHERE. Він дозволяє отримати лише ті рядки, які відповідають критеріям.
Приклад:
SELECT * FROM Student WHERE group_name = 'ІТ-23';
Умови можна комбінувати за допомогою AND, OR, NOT. Наприклад:
SELECT * FROM Course 
WHERE credits > 3 AND title LIKE 'М%';
Завдяки цим можливостям можна виконувати гнучкий пошук даних, фільтруючи їх за потрібними параметрами.
Слайд 26. ORDER BY, LIMIT
Щоб впорядкувати результати, використовується ORDER BY. Можна сортувати як за зростанням (ASC), так і за спаданням (DESC).
Приклад:
SELECT * FROM Student ORDER BY name ASC;
Команда LIMIT обмежує кількість рядків у результаті. Це корисно, коли потрібно вивести лише частину даних.
Наприклад:
SELECT * FROM Student ORDER BY id DESC LIMIT 5;
Цей запит виведе п’ять останніх студентів за id.
Слайд 27. GROUP BY, HAVING
GROUP BY використовується для групування даних за певним атрибутом. Це особливо важливо при підрахунках та агрегатних функціях.
Приклад:
SELECT group_name, COUNT(*) 
FROM Student 
GROUP BY group_name;
Оператор HAVING дозволяє накладати умови на групи, подібно до того, як WHERE працює з рядками.
Наприклад:
SELECT group_name, COUNT(*) 
FROM Student 
GROUP BY group_name 
HAVING COUNT(*) > 3;
Слайд 28. JOIN (INNER JOIN)
JOIN використовується для об’єднання даних з кількох таблиць. Найбільш поширений варіант — INNER JOIN.
Приклад:
SELECT s.name, c.title 
FROM Student s
INNER JOIN Enrollment e ON s.id = e.student_id
INNER JOIN Course c ON e.course_id = c.id;
Цей запит виведе список студентів і курсів, на які вони записані. Дані з обох таблиць поєднуються за умовою.
INNER JOIN показує лише ті записи, які мають відповідність у всіх таблицях.
Слайд 29. JOIN (LEFT, RIGHT, FULL)
LEFT JOIN показує всі записи з лівої таблиці, навіть якщо немає відповідності у правій. Це корисно, коли потрібно побачити «незаповнені» зв’язки.
Приклад:
SELECT c.title, s.name 
FROM Course c
LEFT JOIN Enrollment e ON c.id = e.course_id
LEFT JOIN Student s ON e.student_id = s.id;
RIGHT JOIN працює аналогічно, але пріоритет віддається правій таблиці.
FULL JOIN об’єднує результати обох і показує всі можливі записи, навіть без відповідності.
Слайд 30. Приклад: студенти та курси
Припустимо, ми хочемо побачити список студентів і курсів, на які вони записані. Для цього використовуємо JOIN.
SELECT s.name, c.title 
FROM Student s
JOIN Enrollment e ON s.id = e.student_id
JOIN Course c ON e.course_id = c.id;
Якщо студент ще не записаний на курс, то INNER JOIN його не покаже. Для цього можна використати LEFT JOIN, щоб побачити всіх студентів, навіть без курсів.
Цей приклад демонструє практичну силу JOIN-запитів у реальних системах.
Слайд 31. Підзапити (subqueries)
Підзапити дозволяють виконати один SELECT всередині іншого. Це дає змогу виконувати складні вибірки.
Наприклад:
SELECT name 
FROM Student 
WHERE id IN (SELECT student_id FROM Enrollment);
У цьому випадку ми отримаємо лише тих студентів, які мають записи в таблиці «Enrollment».
Підзапити можуть бути як у частині WHERE, так і в FROM, дозволяючи створювати віртуальні таблиці.
Слайд 32. Агрегатні функції (COUNT, AVG, SUM)
SQL має вбудовані функції для обчислень. COUNT підраховує кількість записів, AVG — середнє значення, SUM — суму.
Приклад:
SELECT COUNT(*) FROM Student;
Поверне кількість студентів.
Або:
SELECT AVG(credits) FROM Course;
Цей запит покаже середню кількість кредитів курсів.
Агрегатні функції часто використовуються разом із GROUP BY.
Слайд 33. Представлення (Views)
View — це віртуальна таблиця, яка створюється на основі запиту. Вона зберігає SQL як обгортку, але не дублює дані.
Приклад:
CREATE VIEW StudentCourses AS
SELECT s.name, c.title 
FROM Student s
JOIN Enrollment e ON s.id = e.student_id
JOIN Course c ON e.course_id = c.id;
Тепер можна звертатися до view як до таблиці:
SELECT * FROM StudentCourses;
Views спрощують роботу й дозволяють приховувати складність SQL-запитів.
Слайд 34. Індекси та продуктивність
Індекси — це спеціальні структури даних, що прискорюють пошук у таблицях. Вони працюють подібно до змісту в книзі.
Приклад створення індексу:
CREATE INDEX idx_student_group 
ON Student(group_name);
Тепер запити з умовою WHERE group_name = 'ІТ-23' будуть виконуватись швидше.
Однак надмірне використання індексів уповільнює вставку й оновлення, тому їх потрібно застосовувати розумно.
Слайд 35. Приклад комплексного запиту
Розглянемо складний запит:
SELECT s.group_name, COUNT(e.course_id) AS total_courses
FROM Student s
LEFT JOIN Enrollment e ON s.id = e.student_id
GROUP BY s.group_name
HAVING COUNT(e.course_id) > 2
ORDER BY total_courses DESC;
Цей запит підраховує кількість курсів у кожній групі, залишаючи лише ті, де студентів більше ніж два, і впорядковує їх за спаданням.
Таким чином, SQL дозволяє створювати звіти, які відображають аналітичну інформацію.
Комплексні запити — це основа аналітики та бізнес-логіки в інформаційних системах.
Слайд 36. Що таке CRUD
CRUD — це абревіатура від Create, Read, Update, Delete, яка описує базові операції з даними в будь-якій системі. Це фундаментальна модель роботи з базами даних.
· Create — створення нових записів.
· Read — читання, перегляд інформації.
· Update — оновлення існуючих даних.
· Delete — видалення непотрібних записів.
У сучасних інформаційних системах CRUD реалізується як на рівні SQL-запитів, так і через інтерфейси програмування (API, ORM). Це дозволяє уніфікувати роботу з даними в різних мовах і технологіях.
Слайд 37. CREATE (приклади)
Операція Create використовується для додавання нових записів у таблиці бази даних. Вона базується на SQL-команді INSERT.
Наприклад, додамо студента:
INSERT INTO Student (name, group_name) 
VALUES ('Олег', 'ІТ-24');
У багатьох СУБД можна додати кілька рядків одразу:
INSERT INTO Course (title, credits) 
VALUES ('Фізика', 4), ('Хімія', 3);
Створення записів — це перший крок у формуванні бази, і саме з цього починається наповнення інформаційної системи.
Слайд 38. READ (приклади)
Операція Read відповідає за отримання даних. Вона реалізується через команду SELECT.
Найпростіший варіант:
SELECT * FROM Student;
Цей запит покаже всіх студентів.
Для більш конкретного вибору можна застосовувати умови:
SELECT name FROM Student WHERE group_name = 'ІТ-24';
Операція читання використовується найчастіше, адже саме для доступу до даних створюється більшість інформаційних систем.
Слайд 39. UPDATE (приклади)
Операція Update дозволяє змінювати існуючі записи. Вона базується на SQL-команді UPDATE.
Приклад:
UPDATE Student 
SET group_name = 'ІТ-25' 
WHERE id = 1;
Цей запит оновлює групу студента з id = 1.
Якщо не вказати умову WHERE, зміни торкнуться всіх рядків таблиці. Це може бути небезпечно, тому завжди слід чітко визначати, які дані потрібно оновити.
Операція оновлення дозволяє підтримувати актуальність інформації у базі.
Слайд 40. DELETE (приклади)
Операція Delete використовується для видалення непотрібних записів із бази даних. Вона реалізується через команду DELETE.
Приклад:
DELETE FROM Student WHERE id = 2;
Цей запит видалить студента з id = 2.
Як і з UPDATE, якщо не вказати умову WHERE, то видаляться всі записи таблиці:
DELETE FROM Student;
Видалення — найнебезпечніша CRUD-операція. У багатьох системах передбачають логічне видалення (через спеціальний прапорець), щоб уникнути втрати важливих даних.
Слайд 41. Стандарт DB-API (PEP 249)
DB-API — це стандартний інтерфейс для роботи з базами даних у Python. Його описано в PEP 249, і він підтримується багатьма драйверами.
Головна ідея DB-API — забезпечити однаковий підхід до роботи з різними СУБД: SQLite, PostgreSQL, MySQL, Oracle. Незалежно від конкретної бази, програміст користується схожим синтаксисом.
DB-API включає обов’язкові елементи: підключення (connect()), курсори (cursor()), виконання запитів (execute()), коміти (commit()) та закриття з’єднання (close()).
Завдяки цьому Python може виступати універсальним інструментом для доступу до даних у найрізноманітніших проєктах.
Слайд 42. Підключення до БД
Щоб працювати з базою даних, потрібно створити з’єднання. У Python це робиться за допомогою драйвера, який реалізує DB-API.
Наприклад, для SQLite:
import sqlite3
conn = sqlite3.connect("university.db")
Для PostgreSQL використовують бібліотеку psycopg2:
import psycopg2
conn = psycopg2.connect(
    dbname="test", user="user", password="123", host="localhost"
)
Після створення з’єднання відкривається можливість виконувати SQL-запити. Важливо також закривати з’єднання методом conn.close().
Слайд 43. Курсори та виконання запитів
У DB-API для виконання запитів використовуються курсор-об’єкти. Курсор можна уявити як посередника між Python та СУБД.
Приклад:
cur = conn.cursor()
cur.execute("SELECT * FROM Student;")
Результати можна отримати методами:
· fetchone() — одна стрічка,
· fetchall() — усі результати,
· fetchmany(n) — n рядків.
Курсори забезпечують універсальний спосіб доступу до результатів незалежно від СУБД.
Слайд 44. CREATE через Python
Розглянемо приклад створення таблиці через Python DB-API.
cur = conn.cursor()
cur.execute("""
CREATE TABLE IF NOT EXISTS Student (
    id SERIAL PRIMARY KEY,
    name VARCHAR(50),
    group_name VARCHAR(20)
);
""")
conn.commit()
Тут ми виконуємо SQL-команду всередині Python. Після змін у структурі або даних завжди слід робити commit(), щоб зберегти їх у базі.
Таким чином Python дозволяє автоматизувати процес створення структури бази.
Слайд 45. READ через Python
Отримати дані з таблиці можна за допомогою SELECT-запитів.
cur.execute("SELECT name, group_name FROM Student;")
rows = cur.fetchall()
for row in rows:
    print(row)
Метод fetchall() повертає список кортежів, де кожен кортеж — це один рядок результату.
У Python часто дані далі перетворюють у словники або моделі для зручнішої роботи. Це крок до використання ORM.
Слайд 46. UPDATE через Python
Оновлення даних також виконується через метод execute().
cur.execute("""
UPDATE Student 
SET group_name = %s 
WHERE id = %s;
""", ("ІТ-25", 1))
conn.commit()
Тут використовується параметризація (%s) для уникнення SQL-ін’єкцій.
Використання змінних у запитах робить код безпечнішим і більш гнучким.
Слайд 47. DELETE через Python
Видалення записів здійснюється аналогічно:
cur.execute("DELETE FROM Student WHERE id = %s;", (2,))
conn.commit()
Після виконання цього запиту студент з id = 2 буде видалений.
Зверніть увагу: у параметрах потрібно передавати кортеж (2,), навіть якщо значення лише одне. Це вимога DB-API.
Завжди потрібно бути обережним із DELETE, аби не стерти всі дані випадково.
Слайд 48. Обробка помилок (try-except)
У Python при роботі з БД часто трапляються помилки: відсутність таблиць, неправильні типи даних, проблеми з мережею.
Тому важливо використовувати конструкції try-except.
try:
    cur.execute("SELECT * FROM WrongTable;")
except Exception as e:
    print("Помилка:", e)
У серйозних проєктах також застосовують logging для збереження інформації про помилки у файл.
Обробка винятків допомагає зробити систему надійною та захищеною від збоїв.
Слайд 49. Приклад: невелика програма CRUD
Ось невеликий приклад, який реалізує всі операції CRUD у Python:
def add_student(name, group):
    cur.execute("INSERT INTO Student (name, group_name) VALUES (%s, %s);", (name, group))
    conn.commit()
def get_students():
    cur.execute("SELECT * FROM Student;")
    return cur.fetchall()
Тут ми винесли логіку у функції, що дозволяє легко викликати їх у програмі.
Такий підхід робить код більш структурованим і зручним для розширення.
Слайд 50. Порівняння DB-API з «чистим SQL»
DB-API не замінює SQL, а лише обгортає його в Python. Тобто розробник все одно повинен знати SQL.
Основні переваги DB-API:
· універсальний інтерфейс,
· безпечні параметризовані запити,
· простота інтеграції з Python-кодом.
Недоліки: код швидко ускладнюється при великій кількості таблиць. У таких випадках зручно застосовувати ORM, які автоматизують роботу з моделями.
Таким чином DB-API — це базовий рівень, який готує ґрунт для більш високорівневих інструментів.
Слайд 51. Що таке ORM
ORM (Object-Relational Mapping) — це технологія, яка дозволяє працювати з базами даних через об’єктно-орієнтовані моделі замість «чистого» SQL.
Замість написання запитів програміст працює з класами й об’єктами. Наприклад, можна створити клас Student і зберегти його екземпляр у базі як рядок у таблиці.
ORM автоматично трансформує об’єкти у SQL-запити: INSERT, SELECT, UPDATE, DELETE. Це значно спрощує розробку.
Основні переваги ORM: менше коду, безпека від SQL-ін’єкцій, підтримка різних СУБД, швидкість розробки. Недолік — іноді менш ефективні запити, ніж написані вручну.
Слайд 52. ORM у Python (SQLAlchemy)
SQLAlchemy — один із найпопулярніших ORM для Python. Він підтримує як високорівневий ORM, так і роботу з «чистим» SQL.
Приклад моделі:
from sqlalchemy import Column, Integer, String
from sqlalchemy.orm import declarative_base
Base = declarative_base()
class Student(Base):
    __tablename__ = "students"
    id = Column(Integer, primary_key=True)
    name = Column(String)
    group = Column(String)
Тепер створення об’єкта Student("Анна", "ІТ-23") і виклик session.add(student) автоматично згенерує SQL-запит INSERT.
SQLAlchemy використовується у Flask, FastAPI та інших фреймворках.
Слайд 53. ORM у Python (Django ORM, Peewee)
Django ORM — це частина фреймворку Django. У ньому моделі описуються як класи, а всі SQL-запити генеруються автоматично.
Приклад:
class Student(models.Model):
    name = models.CharField(max_length=50)
    group = models.CharField(max_length=20)
Тепер Student.objects.all() виконає SQL SELECT * FROM students.
Peewee — легший ORM, який підходить для невеликих проєктів. Він має простіший синтаксис і добре працює зі SQLite.
Таким чином Python має як потужні (SQLAlchemy, Django ORM), так і легкі ORM (Peewee).
Слайд 54. ORM у C# (Entity Framework Core)
У світі .NET найпопулярніший ORM — Entity Framework Core. Він дозволяє працювати з БД через LINQ-запити.
Приклад моделі:
public class Student {
    public int Id { get; set; }
    public string Name { get; set; }
    public string Group { get; set; }
}
Тепер можна написати:
var students = dbContext.Students.ToList();
І це перетвориться на SQL SELECT * FROM Students.
Entity Framework підтримує міграції, lazy loading та роботу з різними СУБД. Це стандарт де-факто у C#.
Слайд 55. ORM у C# (Dapper)
Dapper — це «мікро-ORM», який зберігає баланс між SQL і об’єктами. Він швидший за Entity Framework і дає більше контролю.
Приклад:
var students = connection.Query<Student>(
    "SELECT * FROM Students WHERE Group = @Group", new { Group = "ІТ-23" });
Dapper повертає об’єкти Student, але SQL-запити все одно пише розробник.
Тобто Dapper — це компроміс: він не приховує SQL, але робить мапінг об’єктів максимально зручним.
Слайд 56. ORM у C++ (ODB, SOCI)
У C++ ORM не настільки поширені, але вони існують.
ODB — це потужний ORM для C++, який генерує SQL-код із класів. Він підтримує PostgreSQL, SQLite, MySQL та Oracle.
Приклад класу:
#pragma db object
class Student {
  int id;
  std::string name;
  std::string group;
};
ODB автоматично створює таблицю й методи для CRUD.
SOCI — це більше бібліотека для доступу до БД, яка працює подібно до DB-API, але зручніша за «чистий» SQL у C++.
Слайд 57. ORM у Java (Hibernate, EclipseLink, MyBatis)
У Java найбільш відомий ORM — Hibernate. Він є частиною специфікації JPA (Java Persistence API).
Моделі описуються через анотації:
@Entity
public class Student {
  @Id
  private int id;
  private String name;
  private String group;
}
EclipseLink — офіційна реалізація JPA від Oracle.
MyBatis — проміжний варіант між SQL і ORM: розробник пише SQL, а MyBatis робить мапінг у об’єкти.
Завдяки цим інструментам Java активно використовується в корпоративних додатках.
Слайд 58. Переваги та недоліки ORM
Переваги ORM:
· швидкий старт проєктів,
· захист від SQL-ін’єкцій,
· крос-СУБД підтримка,
· робота на рівні об’єктів.
Недоліки ORM:
· менший контроль над SQL,
· складність оптимізації запитів,
· іноді повільніші за «чистий» SQL,
· вивчення нового синтаксису.
На практиці поєднують ORM для стандартних CRUD-операцій і «чистий» SQL для складних аналітичних звітів. Це дозволяє досягти балансу між зручністю і продуктивністю.
Слайд 59. Порівняння підходів: ER → SQL → CRUD → API → ORM
ER-діаграми — це початкова точка роботи з даними. Вони дозволяють уявити предметну область у вигляді сутностей і зв’язків. Це допомагає правильно спроєктувати структуру бази.
SQL — мова взаємодії з реляційними базами. Вона надає можливості створювати таблиці, виконувати запити та реалізовувати логіку роботи з даними.
CRUD — універсальна модель для роботи з інформацією. Незалежно від технології чи мови програмування, ми завжди створюємо, читаємо, оновлюємо та видаляємо записи.
Python DB-API та ORM — це наступні кроки у спрощенні роботи. DB-API робить SQL ближчим до Python, а ORM дозволяє працювати вже з об’єктами, майже не думаючи про SQL-запити.
Слайд 60. Запитання для студентів (теорія + практика)
Теоретичні питання:
1. Що таке ER-діаграма і які її основні компоненти?
2. Які є типи зв’язків у базах даних (1:1, 1:N, M:N)?
3. Чим відрізняються команди DDL, DML і DQL?
4. Які чотири операції входять у CRUD?
5. У чому полягає принцип роботи ORM?
Практичні завдання:
1. Побудувати ER-діаграму для системи «Бібліотека» (книги, автори, читачі).
2. Написати SQL-запит для вибірки студентів, які відвідують курс «Програмування».
3. Реалізувати INSERT і UPDATE у таблиці Student.
4. Написати невелику програму на Python з використанням DB-API для збереження й читання даних.
5. Пояснити, чому ORM зручніші за «чистий» SQL у великих проєктах.


