Лекція 2 Огляд ORM
Слайд 1. Вступ до SQLAlchemy
ORM (Object-Relational Mapping) у Python реалізовано бібліотекою SQLAlchemy, яка вважається стандартом у промислових проєктах. Вона дозволяє програмісту працювати з базою даних через класи й об’єкти, а не через сирий SQL-код. Це знижує складність і кількість помилок у коді.
Основна особливість SQLAlchemy полягає в тому, що він поєднує два підходи: Core (робота з SQL-виразами у стилі Python) і ORM (робота через класи). Це дає можливість обирати потрібний рівень абстракції для кожної задачі.
SQLAlchemy підтримує всі основні СУБД, включаючи PostgreSQL, MySQL, SQLite, Oracle та Microsoft SQL Server. Завдяки цьому один і той самий Python-код можна використовувати в різних середовищах без великих змін.
Бібліотека має розвинену екосистему, чудову документацію та інтеграцію з популярними веб-фреймворками, такими як Flask і FastAPI. Це робить її інструментом №1 для Python-розробників, які працюють із базами даних.
Слайд 2. Оголошення моделі у SQLAlchemy
Модель у SQLAlchemy описується як Python-клас, що успадковується від базового класу Base. Кожен атрибут класу відповідає колонці у таблиці, а метадані (__tablename__) визначають, до якої таблиці належить ця модель.
Наприклад, клас Student з полями id, name, group буде автоматично відображатися у таблицю students. Типи даних визначаються через спеціальні типи SQLAlchemy: Integer, String, Date тощо. Це забезпечує сумісність з конкретною СУБД.
При створенні об’єкта Student("Анна", "ІТ-23") ми фактично готуємо рядок для вставки у таблицю. Коли ми додаємо його в сесію і виконуємо commit(), SQLAlchemy сам створює SQL-запит INSERT.
Таким чином, розробник працює виключно з об’єктами Python, а SQLAlchemy автоматично транслює їх у команди для бази даних. Це значно спрощує розробку й робить код більш зрозумілим.

Слайд 3. CRUD-операції у SQLAlchemy
Операції CRUD у SQLAlchemy виконуються через сесію. Створення нового запису відбувається додаванням об’єкта у session і викликом commit(). Це повністю замінює написання INSERT INTO.
Читання даних здійснюється за допомогою session.query(Student).all(), що повертає список об’єктів класу Student. Фільтрація реалізується через методи filter і filter_by, що дозволяє легко створювати складні умови без ручного SQL.
Оновлення відбувається як звичайна зміна атрибутів Python-об’єкта з подальшим commit(). Видалення працює через session.delete(student) і підтвердження транзакції. Усі операції відбуваються природно, ніби ми працюємо зі звичайними Python-списками.
Завдяки цьому навіть студенти без досвіду у SQL швидко навчаються працювати з базами даних, використовуючи лише базові знання Python. Це робить ORM зручним для навчання.

Слайд 4. Переваги SQLAlchemy
Однією з ключових переваг SQLAlchemy є підтримка різних стилів завантаження даних: lazy loading (ліниве завантаження) і eager loading (жадібне завантаження). Це дозволяє оптимізувати швидкодію при роботі з великими наборами даних.
Ще однією важливою перевагою є можливість поєднувати ORM із «чистим» SQL. Наприклад, у більшості випадків можна працювати через об’єкти, але у складних запитах застосувати SQLAlchemy Core або навіть «сирий» SQL.
SQLAlchemy добре масштабується: він підходить як для невеликих проєктів (наприклад, студентських баз даних), так і для корпоративних систем із сотнями таблиць і складними зв’язками між ними.
Наявність активної спільноти, численних підручників і прикладів дозволяє швидко знаходити відповіді на проблеми. Це одна з причин, чому SQLAlchemy рекомендують новачкам і професіоналам одночасно.

Слайд 5. Приклад кейсу з SQLAlchemy
Уявімо розробку веб-додатку для університету, де потрібно вести облік студентів, курсів і викладачів. Використання SQLAlchemy дозволяє описати всі сутності у вигляді класів Python. Це робить код зрозумілим і логічним для програміста.
Коли студент записується на курс, достатньо створити новий об’єкт Enrollment і зберегти його в сесію. ORM автоматично згенерує SQL-запит і збереже дані в таблиці.
При побудові сторінки зі списком студентів ORM виконає SELECT і поверне Python-об’єкти, які можна напряму передати у веб-шаблон. Таким чином розробник уникає прямого контакту з SQL.
Подібний підхід економить час і дозволяє розробникам зосередитися на бізнес-логіці, а не на деталях роботи з базою. Це одна з причин, чому SQLAlchemy та ORM у цілому стали стандартом у сучасному програмуванні.

Слайд 6. Вступ до Django ORM
Django ORM є вбудованим інструментом у фреймворку Django, який дозволяє працювати з базою даних без написання SQL-запитів. Він тісно інтегрований з усіма компонентами Django, що робить його зручним для розробки веб-додатків.
Основна ідея полягає в тому, що кожна модель описується як Python-клас, а таблиця створюється автоматично під час міграцій. Це дозволяє швидко переходити від логіки бізнес-процесу до готової структури бази.
Django ORM підтримує більшість поширених СУБД: PostgreSQL, MySQL, SQLite та Oracle. Це дає змогу легко змінювати базу даних у проєкті без переписування коду.
Таким чином, Django ORM є ключовим інструментом для веб-розробників на Python, які прагнуть швидко створювати надійні та масштабовані веб-додатки.

Слайд 7. Оголошення моделей у Django ORM
Модель у Django описується як клас, що успадковується від models.Model. Атрибути класу відповідають колонкам у таблиці й визначаються через спеціальні типи, наприклад CharField, IntegerField, DateField.
Наприклад, клас Student може мати поля name = models.CharField(max_length=100) і group = models.CharField(max_length=10). Django автоматично створить таблицю з відповідними колонками.
Для збереження даних достатньо створити об’єкт Student і викликати метод save(). Цей виклик автоматично генерує SQL-запит INSERT.
Таким чином, оголошення моделей у Django максимально просте: ми працюємо виключно з Python-класами, а вся логіка роботи з базою даних виконується у фоновому режимі.

Слайд 8. CRUD-операції у Django ORM
Створення нового запису відбувається через метод save(), або ж через класовий метод objects.create(). Це набагато простіше, ніж писати INSERT INTO.
Читання даних реалізується за допомогою менеджера objects. Наприклад, Student.objects.all() повертає всі об’єкти студентів, а Student.objects.filter(group="ІТ-23") виконає SQL-запит з умовою.
Оновлення даних можна зробити як через зміну полів об’єкта та виклик save(), так і через масове оновлення Student.objects.filter(...).update(...).
Видалення запису відбувається через метод delete(). Усі ці операції виглядають природно в Python-коді та не потребують знань SQL.

Слайд 9. Переваги Django ORM
Django ORM повністю інтегрований з іншими компонентами фреймворку, такими як форми, адмін-панель і REST API. Це дозволяє будувати повноцінні веб-додатки дуже швидко.
Він також підтримує зв’язки між таблицями: OneToOneField, ForeignKey, ManyToManyField. Це дозволяє відображати складні відношення предметної області без ручного написання JOIN-запитів.
Ще однією перевагою є система міграцій. Кожна зміна у моделях автоматично відслідковується й може бути застосована до бази даних командою makemigrations і migrate.
Завдяки цим перевагам Django ORM підходить як для малих проєктів, так і для великих корпоративних систем, які потребують швидкої розробки.

Слайд 10. Приклад кейсу з Django ORM
Уявімо створення веб-додатку для бібліотеки, де потрібно вести облік книг і читачів. За допомогою Django ORM ми описуємо класи Book і Reader у файлі models.py.
При запуску міграцій Django автоматично створює відповідні таблиці у базі даних. Адміністративна панель одразу дозволяє переглядати й редагувати записи без додаткового коду.
Коли користувач додає нову книгу через веб-форму, Django ORM сам виконує INSERT у таблицю books. При перегляді списку книг ORM робить SELECT і повертає об’єкти.
Таким чином, Django ORM дозволяє зосередитися на логіці роботи додатку, а не на SQL-запитах. Це значно економить час і знижує кількість помилок у коді.

Слайд 11. Вступ до Entity Framework Core
Entity Framework Core (EF Core) — це сучасний ORM для платформи .NET, який дозволяє працювати з базами даних через об’єктно-орієнтований підхід. Він підтримує всі популярні СУБД, включаючи SQL Server, PostgreSQL, MySQL, SQLite та Oracle.
Основна ідея EF Core полягає в тому, що розробник працює з класами C#, які автоматично відображаються у таблиці. Це дозволяє уникати прямого написання SQL-коду.
EF Core інтегрований з ASP.NET Core, тому він широко використовується для створення сучасних веб-додатків, REST API та корпоративних систем.
Завдяки своїй гнучкості та зручності EF Core став стандартним вибором ORM у середовищі C# і .NET, замінюючи старіші версії Entity Framework.

Слайд 12. Оголошення моделей у EF Core
У EF Core моделі описуються як класи C#, де кожна властивість відповідає колонці таблиці. Атрибут [Key] може визначати первинний ключ, а [Required], [MaxLength] — задавати обмеження.
Наприклад, клас Student може мати властивості Id, Name, Group. EF Core автоматично створить таблицю Students під час міграції.
Для налаштування складніших зв’язків використовується Fluent API. Це дозволяє точно визначати відношення «один до багатьох» або «багато до багатьох».
Таким чином, EF Core дає розробнику контроль над схемою бази, зберігаючи простоту роботи з об’єктами.

Слайд 13. CRUD-операції у EF Core
Створення нового запису виконується методом Add() з подальшим викликом SaveChanges(). Наприклад, context.Students.Add(student) автоматично виконає INSERT.
Читання даних реалізується через LINQ-запити, наприклад: context.Students.Where(s => s.Group == "ІТ-23").ToList(). ORM перетворює їх у SQL-запити до бази.
Оновлення відбувається простим присвоєнням нових значень властивостей об’єкта та викликом SaveChanges(). Видалення реалізується методом Remove().
Завдяки LINQ розробник може писати запити у стилі C#, що робить код більш читабельним і зрозумілим.

Слайд 14. Переваги EF Core
EF Core підтримує міграції, які дозволяють автоматично змінювати схему бази при оновленні моделей. Це спрощує супровід проєктів у довгостроковій перспективі.
Однією з головних переваг є інтеграція з LINQ, яка дозволяє писати складні запити у стилі C# без необхідності знати SQL. Це пришвидшує навчання новачків.
EF Core також підтримує відстеження змін: ORM автоматично визначає, які об’єкти були змінені, і генерує відповідні SQL-запити.
Це робить EF Core зручним інструментом для корпоративних систем, де важлива надійність, підтримка транзакцій і масштабованість.

Слайд 15. Приклад кейсу з EF Core
Уявімо створення веб-сервісу для університету, який зберігає інформацію про студентів та курси. З EF Core ми створюємо класи Student і Course та налаштовуємо зв’язок «багато до багатьох».
Коли студент записується на курс, розробник просто додає об’єкт у колекцію student.Courses. EF Core автоматично створює проміжний запис у базі.
При запиті списку курсів ORM використовує LINQ, а результат повертається як колекція об’єктів C#, готова до використання у програмі.
Завдяки цьому розробник зосереджується на бізнес-логіці, а робота з базою даних відбувається у фоновому режимі.

Слайд 16. Вступ до Dapper
Dapper — це легкий ORM для .NET, розроблений компанією Stack Overflow. Він позиціонується як мікро-ORM, тобто не намагається приховати всю складність SQL, а лише спрощує мапінг даних у C#-об’єкти.
Головна ідея Dapper полягає в тому, щоб залишити розробнику контроль над SQL-запитами, але позбавити його від рутинного коду для перетворення рядків у об’єкти.
Dapper дуже швидкий, адже він мінімально втручається у процес виконання запиту. Тести продуктивності показують, що він часто працює майже так само швидко, як «чистий» ADO.NET.
Завдяки цьому Dapper став популярним вибором у проєктах, де важливі продуктивність і контроль, але при цьому потрібна зручність ORM.

Слайд 17. Оголошення моделей у Dapper
У Dapper немає суворих вимог до оголошення моделей. Зазвичай це звичайні C#-класи (POCO — Plain Old CLR Objects), де властивості відповідають колонкам у таблиці.
Наприклад, клас Student може мати властивості Id, Name, Group. Dapper автоматично прив’яже дані з SQL-запиту до цих властивостей.
При цьому не потрібно вказувати анотації чи робити спеціальні конфігурації. Dapper просто зіставляє назви колонок із назвами властивостей.
Це робить роботу з моделями дуже легкою та природною, особливо для тих, хто звик працювати напряму з SQL.

Слайд 18. CRUD-операції у Dapper
Створення нового запису виконується через звичайний SQL-запит INSERT, який передається у метод Execute(). Dapper лише підставляє параметри і повертає результат.
Читання даних відбувається методом Query<T>(), який виконує SQL-запит і перетворює рядки у список об’єктів типу T. Це економить десятки рядків коду, які довелося б писати вручну.
Оновлення і видалення працюють аналогічно через Execute(), де виконується UPDATE чи DELETE.
Таким чином, CRUD у Dapper максимально наближений до чистого SQL, але при цьому зручний завдяки автоматичному мапінгу даних.

Слайд 19. Переваги Dapper
Головна перевага Dapper — це продуктивність. Він працює швидше, ніж більшість ORM, оскільки не будує складних моделей і не відстежує зміни у сутностях.
Ще одна важлива перевага — контроль. Розробник сам пише SQL-запити, що дозволяє оптимізувати їх і точно знати, який код виконується у базі.
Dapper також дуже простий у вивченні. Його API складається з кількох основних методів, які легко запам’ятати й використовувати.
Завдяки цьому Dapper часто обирають у проєктах, де вже є багато SQL-запитів, і потрібен лише зручний спосіб працювати з ними в C#.

Слайд 20. Приклад кейсу з Dapper
Уявімо розробку фінансової системи, де продуктивність запитів має критичне значення. Використання важкого ORM може уповільнити роботу.
З Dapper ми можемо писати власні SQL-запити для вибірки транзакцій і миттєво отримувати колекцію C#-об’єктів. Це дозволяє зберегти максимальну швидкість.
Якщо потрібно додати нову транзакцію, ми виконуємо SQL-запит INSERT, передаючи параметри як об’єкт. Dapper сам підставить значення без ризику SQL-ін’єкцій.
Таким чином, Dapper поєднує гнучкість «чистого SQL» із зручністю автоматичного мапінгу, що робить його чудовим вибором для високонавантажених систем.

📌 Слайд 22. Вступ до ODB
ODB — це потужний ORM для C++, який дозволяє працювати з реляційними базами даних через класи та об’єкти. Основна ідея — автоматичне відображення C++-класів у таблиці бази даних.
ODB підтримує основні СУБД: PostgreSQL, SQLite, MySQL, Oracle, що дозволяє обирати середовище без зміни бізнес-логіки.
Цей ORM використовують у проєктах, де важлива продуктивність, строгий контроль типів та можливість інтеграції з C++-кодом високої складності.
ODB значно спрощує роботу зі складними зв’язками між таблицями і дозволяє реалізовувати CRUD-операції через об’єкти без написання SQL.

Слайд 23. Оголошення моделей у ODB
У ODB клас оголошується з директивою #pragma db object, яка вказує, що клас слід відобразити у таблицю. Атрибути класу стають колонками бази.
Наприклад, клас Student з полями id, name, group автоматично транслюється у таблицю students. Первинний ключ та індекси можна вказати через додаткові атрибути.
Цей підхід дозволяє розробнику писати лише чистий C++-код і не думати про синтаксис SQL, а ORM самостійно генерує запити.
ODB також підтримує складні відношення між об’єктами, включаючи one-to-one, one-to-many та many-to-many. Це критично для великих систем з нормалізованою базою даних.

Слайд 24. CRUD-операції у ODB
Створення нового запису відбувається через метод db.persist(object), який автоматично виконує SQL INSERT. Все відбувається у контексті транзакції transaction t(db.begin()).
Читання даних реалізується через запит db.query<Student>(), який повертає об’єкти класу Student без ручного написання SELECT.
Оновлення виконується через зміну властивостей об’єкта та виклик db.update(object), а видалення — через db.erase(object).
Такий підхід робить роботу з базою максимально об’єктно-орієнтованою, що знижує ризик помилок та робить код зрозумілішим для команди.

Слайд 25. Переваги ODB
ODB забезпечує повну автоматизацію CRUD та мапінг між C++-класами і таблицями бази. Розробник може працювати як зі звичайними об’єктами, не думаючи про SQL.
Підтримка складних зв’язків між таблицями дозволяє ефективно моделювати реальні предметні області, наприклад системи управління роботами чи фінансові програми.
Висока продуктивність досягається через оптимізовану генерацію SQL-запитів та можливість кешування об’єктів.
ODB також має гнучку систему транзакцій, що дозволяє безпечно виконувати групи операцій, мінімізуючи ризик помилок у великих системах.

Слайд 26. Приклад кейсу з ODB
Уявімо проєкт з управління робототехнікою, де потрібно зберігати конфігурації та стан кожного робота. Клас Robot відображається у таблицю robots, а параметри зберігаються як властивості об’єкта.
Коли змінюється конфігурація, розробник просто оновлює об’єкт і виконує db.update(robot). ORM автоматично формує SQL-запит.
При відображенні стану всіх роботів ORM виконує query<Robot>() і повертає список об’єктів C++, готових до обробки.
Таке рішення дозволяє зосередитися на логіці управління та алгоритмах роботи роботів, а всі деталі збереження даних автоматично обробляє ODB.

Слайд 27. Вступ до Hibernate
Hibernate — один із найпопулярніших ORM для Java, який дозволяє працювати з реляційними базами через об’єктно-орієнтований підхід. Він автоматизує збереження, читання та оновлення об’єктів у базі даних.
Hibernate підтримує всі основні СУБД, включаючи PostgreSQL, MySQL, Oracle, SQL Server та SQLite. Це дозволяє розробляти кросплатформні Java-додатки без зміни логіки збереження даних.
Він інтегрується з популярними фреймворками, такими як Spring, що дозволяє швидко створювати веб-додатки, мікросервіси та корпоративні системи.
Основна перевага Hibernate — автоматичне мапування між класами Java і таблицями бази, що зменшує кількість ручного SQL-коду та підвищує продуктивність розробки.

Слайд 28. Оголошення моделей у Hibernate
У Hibernate моделі описуються як класи Java з анотаціями @Entity, @Table, @Id та іншими, що визначають таблицю, первинний ключ та обмеження.
Наприклад, клас Student з полями id, name, group відображається у таблицю students. Поля мають анотації @Column, які вказують типи даних і обмеження довжини.
Hibernate також підтримує складні відношення: @OneToOne, @OneToMany, @ManyToMany, що дозволяє відобразити реальні зв’язки між об’єктами.
Такий підхід дозволяє працювати з об’єктами Java без ручного написання JOIN-запитів і складних SQL-конструкцій.

Слайд 29. CRUD-операції у Hibernate
Створення нового запису виконується через метод save(), наприклад session.save(student). Hibernate автоматично перетворює це на SQL INSERT.
Читання даних реалізується через HQL (Hibernate Query Language) або Criteria API, що дозволяє писати об’єктно-орієнтовані запити.
Оновлення здійснюється через зміну властивостей об’єкта та виклик update(), а видалення — через delete(). Hibernate автоматично керує транзакціями та зв’язками.
Це значно спрощує роботу з базою, оскільки розробник може фокусуватися на логіці бізнес-процесу, а не на SQL.

Слайд 30. Переваги Hibernate
Hibernate підтримує lazy loading та eager loading, що дозволяє оптимізувати завантаження пов’язаних даних і підвищує продуктивність запитів.
Він інтегрується з JPA (Java Persistence API), що забезпечує стандартизований інтерфейс для різних ORM-рішень у Java.
Hibernate автоматично генерує SQL і забезпечує кешування об’єктів, що покращує швидкодію та зменшує навантаження на базу.
Завдяки цим перевагам Hibernate підходить як для малих, так і для великих корпоративних проєктів, де важлива масштабованість і підтримка складних структур даних.

Слайд 31. Приклад кейсу з Hibernate
Уявімо систему для управління університетом з таблицями Student, Course, Enrollment. Клас Enrollment відображає відношення «багато до багатьох».
Додавання нового запису студенту на курс виконується через створення об’єкта Enrollment і виклик session.save(enrollment). Hibernate автоматично обробляє проміжну таблицю.
При запиті списку курсів студента HQL або Criteria API виконують SELECT і повертають об’єкти Java, готові до використання у програмі.
Таким чином Hibernate дозволяє розробникам Java концентруватися на логіці додатку, автоматично керуючи всіма аспектами роботи з базою.

Слайд 32. Вступ до MyBatis
MyBatis — це популярний ORM для Java, який поєднує контроль SQL-запитів із зручністю мапінгу результатів у об’єкти. На відміну від Hibernate, він не приховує SQL, а дозволяє повністю керувати запитами.
Головна перевага MyBatis — можливість писати точні SQL-запити, оптимізовані під конкретну СУБД, і автоматично отримувати результат у вигляді Java-об’єктів.
MyBatis підтримує всі поширені СУБД, включаючи PostgreSQL, MySQL, Oracle та SQL Server. Це робить його універсальним для різних проєктів.
Завдяки комбінації контролю і зручності мапінгу MyBatis часто застосовують у проєктах, де важлива продуктивність і точність запитів.

Слайд 33. Оголошення моделей у MyBatis
У MyBatis моделі оголошуються як звичайні Java-класи (POJO), де властивості відповідають колонкам таблиці. Мапінг між SQL і об’єктами визначається у XML або через анотації.
Наприклад, клас Student з полями id, name, group відображається у таблицю students. XML-файл мапінгу містить SQL-запити і правила трансляції результату у Java-об’єкти.
Такий підхід дозволяє розробнику повністю контролювати SQL, одночасно використовуючи зручність мапінгу результатів у об’єкти.
MyBatis також підтримує складні зв’язки між об’єктами, включаючи one-to-many і many-to-many, через налаштування мапінгів у XML.

Слайд 34. CRUD-операції у MyBatis
Створення нового запису здійснюється через SQL INSERT, визначений у XML або як анотація, а результат автоматично мапиться у об’єкт.
Читання даних реалізується через SQL SELECT, який повертає колекцію Java-об’єктів. MyBatis автоматично зіставляє назви колонок і властивостей.
Оновлення і видалення реалізуються через відповідні SQL-запити UPDATE і DELETE, що дозволяє розробнику оптимізувати кожну операцію під конкретну задачу.
Таким чином CRUD у MyBatis поєднує максимальний контроль над SQL із зручністю роботи з об’єктами Java.

Слайд 35. Переваги MyBatis
Основна перевага MyBatis — контроль над SQL-запитами, що дозволяє оптимізувати продуктивність і складність запитів під конкретні вимоги.
Він дозволяє відокремити SQL-код від бізнес-логіки, зберігаючи чистоту коду і полегшуючи його підтримку.
MyBatis інтегрується з Spring і іншими фреймворками, що дозволяє будувати повноцінні веб-додатки та мікросервіси.
Він підходить для проєктів із високими вимогами до продуктивності, де Hibernate може бути надмірно «важким» або генерувати непотрібні JOIN-запити.

Слайд 36. Приклад кейсу з MyBatis
Уявімо систему управління навчальними курсами, де важлива швидка обробка великих таблиць студентів і курсів. MyBatis дозволяє писати точні SQL-запити для вибірки даних.
Наприклад, запит на отримання всіх студентів певної групи виконується через SELECT, а результат автоматично мапиться у список об’єктів Student.
Додавання нового запису або оновлення даних студента здійснюється через відповідні SQL-запити, визначені у XML або анотаціях, що дозволяє точно контролювати роботу бази.
Таким чином MyBatis поєднує переваги мапінгу даних з повним контролем SQL, що робить його ідеальним для високонавантажених систем.

Слайд 37. Переваги ORM: швидкий старт проєктів
ORM дозволяє розробнику почати роботу з базою даних майже одразу, без написання складного SQL.
Кожен об’єкт у коді автоматично відповідає таблиці бази, економлячи час на створення структур та зв’язків.
Моделі можна швидко визначити через класи та атрибути, а ORM автоматично створює таблиці і колонки під час міграцій.
Це особливо корисно у стартапах та навчальних проєктах, де важлива швидкість прототипування.
ORM також зменшує рутинну роботу з налаштування бази і дозволяє фокусуватися на бізнес-логіці.
Швидкий старт підвищує продуктивність команди на початкових етапах розробки.
Більшість сучасних ORM мають вбудовані інструменти для генерації CRUD і міграцій.
Це дозволяє новачкам швидко навчитися працювати з базою і одразу створювати робочий прототип.

Слайд 38. Переваги ORM: захист від SQL-ін’єкцій
ORM автоматично підставляє параметри у запити, що значно знижує ризик SQL-ін’єкцій.
Розробник працює з об’єктами і методами ORM, а не з рядками SQL, що робить запити безпечнішими.
Дані з форм або API автоматично екраніруються перед вставкою у базу, що захищає від атак.
Багато ORM реалізують параметризовані запити, де значення замінюються на маркери.
Це усуває ризик виконання шкідливого SQL-коду навіть при введенні користувачем спеціальних символів.
Наприклад, SQLAlchemy, Django ORM та EF Core автоматично підставляють параметри безпечним способом.
ORM також дозволяє централізовано управляти правами доступу та транзакціями.
Завдяки цьому розробник може зосередитися на логіці, не турбуючись про SQL-ін’єкції.
ORM підтримує перевірку типів та обмежень даних на рівні класів.
Числові, текстові та дата-поля автоматично перевіряються перед виконанням запиту.
Це знижує ймовірність некоректних або шкідливих даних у базі.
Таким чином, використання ORM підвищує безпеку на всіх CRUD-операціях.

Слайд 39. Переваги ORM: крос-СУБД підтримка
ORM дозволяє писати код незалежно від конкретної СУБД.
Одна і та ж модель може працювати з PostgreSQL, MySQL та SQLite без зміни бізнес-логіки.
Це корисно для крос-платформених рішень і проєктів, де база може змінюватися після запуску.
ORM забезпечує стандартизований доступ до бази через єдиний API.
Розробник не турбується про специфіку SQL конкретної СУБД.
Це дозволяє легко переносити проєкт між різними середовищами.
Багато ORM також підтримують міграції, що спрощує оновлення схем бази.
Таким чином, ORM підвищує гнучкість проєктів і полегшує масштабування.

Слайд 40. Переваги ORM: робота на рівні об’єктів
ORM дозволяє працювати з об’єктами та класами замість таблиць і SQL.
CRUD-операції виконуються через методи класів (save(), update(), delete()).
Код стає більш зрозумілим, підтримуваним і легко інтегрується з бізнес-логікою.
Менше помилок при складних запитах і роботі зі зв’язками між таблицями.
ORM також дозволяє працювати з колекціями об’єктів, що відображають зв’язки «один до багатьох» чи «багато до багатьох».
Це полегшує реалізацію складних функцій без написання JOIN-запитів.
Розробник може зосередитися на алгоритмах та логіці програми.
Таким чином, ORM забезпечує зручний і об’єктно-орієнтований доступ до бази даних.

Слайд 41. Недоліки ORM: менший контроль над SQL
Основний недолік — зменшений контроль над SQL-запитами.
ORM генерує запити автоматично, і розробник не завжди бачить, який SQL виконується.
Це може призводити до непередбачуваної поведінки у великих або складних системах.
Для оптимізації іноді доводиться писати «чистий» SQL або налаштовувати ORM вручну.
Деякі ORM дозволяють використовувати власні SQL-запити для критичних місць.
Наприклад, у Hibernate або EF Core можна виконувати raw SQL, але це зменшує переваги ORM.
Менший контроль може призводити до зайвих JOIN або підзапитів.
Розробник повинен балансувати між зручністю ORM і ефективністю SQL.

[bookmark: _GoBack]Слайд 42. Недоліки ORM: складність оптимізації запитів
Автоматично згенеровані запити не завжди оптимальні.
При великій кількості зв’язків між таблицями ORM може створювати багато зайвих JOIN.
Це може призводити до високого навантаження на базу і уповільнення програми.
Для оптимізації потрібні знання ORM і можливість писати власні запити.
Неправильне використання lazy/eager loading може викликати «N+1 problem».
Тому робота з ORM потребує уважності при побудові складних схем.
Оптимізація запитів може займати більше часу, ніж ручна робота з SQL.
Розробник повинен ретельно планувати структуру моделей.

Слайд 43. Недоліки ORM: іноді повільніше за «чистий» SQL
ORM додає додатковий шар абстракції, що іноді знижує продуктивність.
У великих проєктах або при масових операціях різниця у швидкодії може бути помітною.
Для критичних сценаріїв часто використовують оптимізовані SQL-скрипти замість ORM.
ORM дозволяє виконувати raw SQL для таких випадків.
Зважене використання ORM дозволяє балансувати між зручністю та продуктивністю.
Розробник сам вирішує, де використовувати ORM, а де ручний SQL.
Для аналітичних або фінансових систем це особливо актуально.
Оптимізація критичних запитів зменшує негативний вплив абстракції ORM.

Слайд 44. Недоліки ORM: вивчення нового синтаксису
Для роботи з ORM потрібно освоїти його API, методи і механізми мапінгу.
Навіть досвідчений програміст витрачає час на навчання ORM перед ефективною роботою.
Кожна ORM має свої особливості — SQLAlchemy, Django ORM, Hibernate, EF Core.
Помилки у використанні можуть призвести до некоректних запитів або результатів.
Додаткове навчання потрібне для нових членів команди.
Недосконале знання синтаксису може уповільнити розробку.
Документація та приклади допомагають швидше освоїти ORM.
Це важливий аспект при плануванні проєктів із ORM.

Слайд 45. Недоліки ORM: взаємодія з великими базами
При великих базах або складних схемах ORM може показати обмеження.
Генерація складних запитів або агрегатних функцій може бути громіздкою.
Іноді доводиться комбінувати ORM з ручним SQL для продуктивності.
Це підвищує складність і потребує ретельного тестування.
Великі об’єкти з багатьма зв’язками можуть створювати високі накладні витрати пам’яті.
Розробнику потрібно планувати структуру моделей і завантаження даних.
Недоліки проявляються не завжди, але їх треба враховувати для масштабних систем.
Грамотне використання ORM мінімізує негативний вплив на продуктивність.

Слайд 46. Підсумок переваг і недоліків
Переваги ORM: швидкий старт, безпечні CRUD-операції, крос-СУБД підтримка, об’єктно-орієнтований доступ.
Недоліки: менший контроль над SQL, складність оптимізації, повільніше за ручний SQL, необхідність навчання.
Використання ORM економить час, знижує кількість помилок і підвищує безпеку.
Проте у великих або високонавантажених системах потрібно уважно планувати і оптимізувати запити.
Розробник повинен балансувати між зручністю ORM і контролем SQL.
Важливо комбінувати переваги ORM із знаннями «чистого» SQL для критичних сценаріїв.
Підсумок допомагає приймати рішення про використання ORM у конкретному проєкті.
Грамотне застосування ORM дозволяє підвищити продуктивність команди та якість проєкту.

Лекція

2

Огляд

ORM

Слайд

1. Вступ до SQLAlchemy

ORM (Object

-

Relational Mapping) у Python реалізовано бібліотекою

SQLAlchemy

, яка вважається стандартом у промислових проєктах. Вона

дозволяє програмісту працювати з базою даних через класи й об’єкти, а не

чер

ез сирий SQL

-

код. Це знижує складність і кількість помилок у коді.

Основна особливість SQLAlchemy полягає в тому, що він поєднує два

підходи:

Core

(робота з SQL

-

виразами у стилі Python) і

ORM

(робота через

класи). Це дає можливість обирати потрібний рівень

абстракції для кожної

задачі.

SQLAlchemy підтримує всі основні СУБД, включаючи PostgreSQL, MySQL,

SQLite, Oracle та Microsoft SQL Server

. Завдяки цьому один і той самий

Python

-

код можна використовувати в різних середовищах без великих змін.

Бібліотека має

розвинену екосистему, чудову документацію та інтеграцію з

популярними веб

-

фреймворками, такими як Flask і FastAPI. Це робить її

інструментом №1 для Python

-

розробників, які працюють із базами даних.

Лекція 2 Огляд ORM Слайд 1. Вступ до SQLAlchemy ORM (Object - Relational Mapping) у Python реалізовано бібліотекою SQLAlchemy , яка вважається стандартом у промислових проєктах. Вона дозволяє програмісту працювати з базою даних через класи й об’єкти, а не чер ез сирий SQL - код. Це знижує складність і кількість помилок у коді. Основна особливість SQLAlchemy полягає в тому, що він поєднує два підходи: Core (робота з SQL - виразами у стилі Python) і ORM (робота через класи). Це дає можливість обирати потрібний рівень абстракції для кожної задачі. SQLAlchemy підтримує всі основні СУБД, включаючи PostgreSQL, MySQL, SQLite, Oracle та Microsoft SQL Server . Завдяки цьому один і той самий Python - код можна використовувати в різних середовищах без великих змін. Бібліотека має розвинену екосистему, чудову документацію та інтеграцію з популярними веб - фреймворками, такими як Flask і FastAPI. Це робить її інструментом №1 для Python - розробників, які працюють із базами даних.

