Лекція 3. Аспекти захисту даних у реляційних СУБД

У попередній лекції було розглянуто ORM - інструменти для роботи з базою даних на рівні об’єктів, які значно спрощують CRUD-операції і забезпечують базовий захист від SQL-ін’єкцій. Проте безпека даних не обмежується лише рівнем коду. Для побудови надійної системи необхідно враховувати обмеження цілісності, транзакції та контроль паралельного виконання операцій безпосередньо на рівні реляційної СУБД.
У цій лекції буде розглянуто механізми захисту даних, що забезпечують їхню точність, консистентність і конфіденційність, та дізнаємося, як поєднувати їх з можливостями ORM для побудови безпечних і надійних застосунків.

Слайд 1. Поняття захисту даних у контексті реляційних СУБД
Захист даних – це сукупність організаційних, програмних і технічних заходів, спрямованих на забезпечення конфіденційності, цілісності та доступності інформації. У межах реляційних систем керування базами даних (СУБД) захист визначає, наскільки надійно система може протистояти спробам несанкціонованого доступу, втрати або пошкодження інформації.

Основне завдання реляційної СУБД - гарантувати збереження узгодженості даних навіть у випадку відмови обладнання, збоїв програмного забезпечення або некоректних дій користувачів. Для цього система використовує вбудовані механізми контролю доступу, цілісності, транзакцій і резервного копіювання.

Сучасні реляційні бази даних, такі як PostgreSQL, Oracle або SQL Server, реалізують багаторівневу модель безпеки. Вона охоплює як апаратний рівень (захист сховищ і каналів зв’язку), так і логічний - контроль прав користувачів, ролей, політик безпеки.
Захист даних є не лише технічним завданням, а й фундаментальною складовою проектування будь-якої інформаційної системи. Від ефективності реалізації захисту залежить не лише стабільність роботи бази, а й довіра до системи з боку користувачів.

Слайд 2. Джерела загроз і типи пошкоджень даних
Загрози даним у базі поділяються на випадкові та навмисні. Випадкові виникають унаслідок помилок користувачів, програмних збоїв або фізичних відмов пристроїв зберігання. Навмисні загрози - це дії, спрямовані на порушення цілісності, секретності або доступності даних.

До основних типів пошкоджень належать логічні (втрата узгодженості через некоректні транзакції), апаратні (збої дисків, мереж) і програмні (помилки застосунків, SQL-ін’єкції, зловмисні скрипти). СУБД повинна передбачати механізми виявлення, запобігання та відновлення після таких подій.

Більшість сучасних СУБД реалізують багаторівневу модель безпеки: автентифікацію користувачів, авторизацію операцій, контроль транзакцій і ведення журналів змін. Це дозволяє не лише запобігти пошкодженням, а й відновити систему до консистентного стану після збоїв.

Важливо розуміти, що будь-яка система безпеки є ефективною лише за умови дотримання принципу мінімальних привілеїв - користувач має отримувати лише ті права, які необхідні для виконання його обов’язків.

Слайд 3. Роль СУБД у забезпеченні безпеки і цілісності даних
СУБД виступає центральним елементом інфраструктури безпеки, оскільки саме вона керує збереженням, модифікацією і доступом до даних. На відміну від прикладного програмного забезпечення, СУБД має повний контроль над транзакціями, що гарантує узгодженість навіть у разі часткових збоїв.

Основна функція СУБД - це підтримання логічної цілісності даних за допомогою обмежень, транзакцій та індексів. Вона також реалізує контроль доступу на основі ролей, паролів і політик безпеки, запобігаючи несанкціонованим змінам.
У багатьох СУБД реалізовані засоби журналювання (логування) всіх транзакцій, що дає змогу відновити стан бази після помилки або перевірити дії користувача. Це також важлива складова аудиту безпеки.

Таким чином, реляційна СУБД не лише зберігає дані, але й активно забезпечує їхню цілісність, узгодженість і захист від зовнішніх та внутрішніх загроз.

Слайд 4. Обмеження цілісності даних: поняття цілісності даних
Цілісність даних - це властивість бази, що гарантує правильність, несуперечливість і достовірність усіх записів. У реляційній моделі цілісність означає, що всі дані повинні відповідати визначеним правилам і не вступати у конфлікт із іншими даними в системі.

Цілісність є однією з ключових характеристик якості бази даних. Без неї будь-які обчислення або аналітика можуть стати хибними, навіть якщо сама система працює без технічних помилок. Саме тому реляційні СУБД мають механізми, які забезпечують контроль правильності введених і змінених даних.

Підтримання цілісності може бути як автоматичним (через вбудовані обмеження), так і логічним - через програмні перевірки в бізнес-логіці додатку. Обидва підходи часто поєднуються для підвищення надійності.

Цілісність охоплює не лише окремі таблиці, але й зв’язки між ними, тому вона має системний характер. Її реалізація гарантує, що будь-яка операція з даними не призведе до порушення узгодженості бази.

Слайд 5. Види обмежень цілісності
У реляційних базах даних виділяють кілька основних типів обмежень цілісності. Найважливіші з них - цілісність сутності, доменна та посилальна. Кожен тип має свою роль у підтриманні узгодженості інформації.

Цілісність сутності вимагає, щоб кожен рядок у таблиці можна було однозначно ідентифікувати. Це досягається за допомогою первинного ключа (PRIMARY KEY), який не може містити NULL і має бути унікальним.

Доменна цілісність визначає, що кожен атрибут має допустимий набір значень - домен. Наприклад, вік не може бути від’ємним, а дата народження - майбутньою. Цей тип цілісності реалізується через перевірочні обмеження (CHECK) або через типи даних.

Посилальна цілісність забезпечує узгодженість зв’язків між таблицями. Якщо один запис посилається на інший, то цей інший повинен існувати. Для цього використовуються зовнішні ключі (FOREIGN KEY), які гарантують, що зв’язки між таблицями не будуть порушені.

Слайд 6. Первинні та зовнішні ключі, унікальні обмеження
Первинний ключ - це головний ідентифікатор запису. У таблиці може бути лише один первинний ключ, який забезпечує унікальність кожного рядка. Його правильне визначення є основою для побудови стабільних зв’язків між таблицями.

Зовнішній ключ - це поле або група полів, що посилаються на первинний ключ іншої таблиці. Завдяки цьому реалізуються зв’язки типу «один-до-багатьох» або «багато-до-багатьох». Порушення цього правила призводить до логічних помилок і втрати зв’язності бази.

Унікальні обмеження (UNIQUE) дозволяють запобігти дублюванню даних. Наприклад, якщо таблиця містить поле «email», воно може бути позначене як унікальне, щоб запобігти створенню двох користувачів із однаковою адресою.

Такі ключі й обмеження є механізмом реалізації референційної цілісності, яка забезпечує достовірність зв’язків між сутностями системи. Без них будь-яка складна база даних втратила б логічну послідовність.

Слайд 7. Перевірочні обмеження (CHECK constraints)
Перевірочні обмеження дозволяють визначити додаткові логічні правила для полів таблиць. Наприклад, обмеження CHECK (salary > 0) гарантує, що заробітна плата не може бути від’ємною. Такі перевірки виконуються автоматично при кожній спробі вставити або оновити дані.

Ці обмеження допомагають зменшити ризик логічних помилок, які можуть виникати через неправильне введення даних користувачами. Вони виконують роль «автоматичних фільтрів» на рівні бази.

Використання CHECK - це найпростіший спосіб забезпечити локальну цілісність без додаткового коду. У складних випадках, коли перевірка потребує кількох умов, можна застосовувати тригери або процедури.

Завдяки перевірочним обмеженням система стає більш самостійною - навіть якщо помилка трапиться у застосунку, база зможе самостійно заблокувати некоректну операцію.

Слайд 8. Приклади реалізації цілісності у SQL
Реляційні бази даних підтримують реалізацію обмежень цілісності безпосередньо в SQL-коді. Наприклад:

CREATE TABLE Employee (

 emp_id INT PRIMARY KEY,

 name VARCHAR(50) NOT NULL,

 department_id INT,

 salary DECIMAL(10,2) CHECK (salary > 0),
 FOREIGN KEY (department_id) REFERENCES Department(dept_id)

);

У цьому прикладі одночасно використано кілька типів обмежень: первинний ключ (PRIMARY KEY), перевірочне (CHECK), а також зовнішній ключ (FOREIGN KEY). Це забезпечує контроль як локальної, так і міжтабличної цілісності.

Завдяки подібним декларативним засобам розробник може будувати надійні схеми баз даних без необхідності додаткових перевірок на рівні коду. Це також полегшує аудит і документування правил роботи з даними.

Слайд 9. Роль обмежень у підтриманні достовірності даних
Обмеження цілісності виконують роль фундаменту надійності бази. Вони діють незалежно від прикладної логіки, забезпечуючи автоматичну перевірку правильності кожної операції.

Головна перевага таких обмежень у тому, що вони гарантують узгодженість даних навіть у разі помилок у програмному коді. Таким чином, база захищає саму себе від пошкоджень.

Крім того, використання декларативних обмежень сприяє стандартизації - будь-яка команда розробників може легко зрозуміти логіку структури таблиць. Це підвищує масштабованість і спрощує супровід бази даних.

Таким чином, цілісність даних є не лише технічною властивістю, а й ключовою умовою інформаційної безпеки, оскільки достовірні дані - це перший крок до їхнього захисту.

Слайд 10. Визначення транзакції та її роль у збереженні узгодженості
Транзакція - це логічна одиниця роботи з базою даних, яка об’єднує кілька операцій у єдиний нерозривний процес. Усі дії в межах транзакції виконуються або повністю, або не виконуються взагалі. Такий підхід забезпечує узгодженість і надійність даних навіть при збоях системи.

Типовий приклад транзакції - банківський переказ. Під час переказу коштів одна операція зменшує баланс відправника, інша - збільшує баланс отримувача. Якщо система виконає лише одну з цих дій, цілісність фінансових даних буде порушена. Приклад SQL:

BEGIN TRANSACTION;

UPDATE Account SET balance = balance - 500 WHERE id = 1;

UPDATE Account SET balance = balance + 500 WHERE id = 2;

COMMIT;

Якщо під час виконання однієї з команд станеться збій, СУБД автоматично відкотить усю транзакцію до попереднього стабільного стану.

Таким чином, транзакції - це механізм, який гарантує, що дані залишаться узгодженими незалежно від зовнішніх помилок, програмних збоїв або часткових оновлень.

Слайд 11. Властивості ACID: атомарність, узгодженість, ізоляція, довговічність
Класичні властивості транзакцій описуються абревіатурою ACID:

· Atomicity (атомарність) - усі дії транзакції виконуються як одне ціле. Якщо одна операція не вдалася, скасовуються всі.

· Consistency (узгодженість) - транзакція переводить базу з одного узгодженого стану в інший, не порушуючи правил цілісності.

· Isolation (ізоляція) - паралельні транзакції не впливають одна на одну, кожна виконується так, ніби вона єдина в системі.

· Durability (довговічність) - після підтвердження результат зберігається навіть у випадку збоїв системи.

Приклад ізоляції транзакцій:

BEGIN TRANSACTION;

UPDATE Inventory SET quantity = quantity - 1 WHERE item_id = 101;

-- Інша транзакція не бачить цієї зміни, поки не буде COMMIT

COMMIT;

Без властивості ізоляції інша транзакція могла б прочитати ще «старе» або «нестабільне» значення, що спричиняє логічні помилки у звітах або підрахунках. Ці чотири властивості лежать в основі всіх сучасних реляційних СУБД і визначають їхню надійність та безпечність.

Слайд 12. Порушення транзакцій і методи їх відновлення
У реальних системах можуть виникати ситуації, коли транзакція не може бути завершена через помилки. Це можуть бути програмні збої, конфлікти блокувань або порушення обмежень.

Розглянемо приклад, коли порушується обмеження зовнішнього ключа:

BEGIN TRANSACTION;

INSERT INTO Orders (order_id, customer_id) VALUES (10, 99);

-- Але клієнта з ID=99 не існує
COMMIT;

У цьому випадку СУБД автоматично виконає ROLLBACK, і всі зміни будуть скасовані. Інший приклад - програмний збій у середині транзакції:

BEGIN TRANSACTION;

UPDATE Employee SET salary = salary * 1.1;

-- Помилка в коді або відсутній ресурс
ROLLBACK;

Завдяки механізму журналювання (transaction log) база зберігає стан до початку транзакції, що дозволяє повністю відновити дані.

Таким чином, відновлення після помилок - це невід’ємна частина роботи транзакційного механізму, який забезпечує надійність системи.

Слайд 13. Використання COMMIT і ROLLBACK у SQL
Команда COMMIT застосовується для підтвердження змін, зроблених під час транзакції, а ROLLBACK - для скасування. Ці операції надають розробнику гнучкий контроль над життєвим циклом транзакції. Приклад:

BEGIN TRANSACTION;

UPDATE Product SET price = price * 0.9;

SAVEPOINT Before_Discount;

UPDATE Product SET price = price * 0.8 WHERE category = 'Seasonal';

ROLLBACK TO Before_Discount; -- скасовує тільки частину транзакції
COMMIT;

Використання SAVEPOINT дозволяє створювати проміжні точки відкату. Це зручно у великих операціях, коли потрібно зберегти частину результатів, навіть якщо інша частина не вдалася.

Також СУБД автоматично виконує імпліцитний COMMIT, якщо запит завершується без помилок поза блоком BEGIN TRANSACTION. Проте явне використання транзакцій дає змогу досягти більш передбачуваної поведінки.

Розробник повинен пам’ятати, що неправильне використання COMMIT або ROLLBACK може призвести до втрати важливих змін або до появи частково оновлених даних.

Слайд 14. Контроль виконання транзакцій у СУБД
Сучасні СУБД мають вбудовані механізми для керування виконанням транзакцій. Вони забезпечують автоматичне журналювання, виявлення конфліктів і синхронізацію між різними користувачами.

Кожна транзакція записується у журнал транзакцій, який фіксує її початок, усі зміни й завершення. У разі аварії СУБД використовує журнал для відновлення бази до консистентного стану.

У системах із великою кількістю користувачів важливо забезпечити оптимальне керування блокуваннями. Наприклад, PostgreSQL використовує механізм MVCC (Multi-Version Concurrency Control), який дозволяє одночасно виконувати кілька транзакцій без взаємних конфліктів.

Адміністратори баз даних мають змогу переглядати активні транзакції, відстежувати блокування та виявляти «завислі» сесії за допомогою службових запитів, наприклад у PostgreSQL:

SELECT * FROM pg_stat_activity WHERE state = 'active';

Таким чином, контроль виконання транзакцій - це не лише технічна функція, а й ключовий елемент підтримки стабільності, цілісності та безпеки даних.

Слайд 15. Паралельне виконання та контроль доступу: проблеми одночасного доступу до даних
У сучасних системах одночасно з базою даних можуть працювати десятки чи сотні користувачів. Це створює ризик конфліктів при паралельному доступі до тих самих таблиць або рядків. Такі конфлікти можуть призвести до неконсистентних результатів або втрати даних.

Типові проблеми:

· Dirty read (брудне читання) - транзакція читає дані, змінені іншою, ще не підтвердженою транзакцією.

· Non-repeatable read (неповторюване читання) - один і той самий запит повертає різні результати через зміну даних іншою транзакцією.

· Phantom read (фантомне читання) - при повторному запиті з’являються або зникають нові рядки, вставлені іншими транзакціями.

Наприклад, якщо двоє користувачів одночасно оновлюють залишок товару, без механізму синхронізації можливе подвійне зменшення кількості.

UPDATE Inventory SET quantity = quantity - 1 WHERE item_id = 101;

Щоб уникнути таких помилок, СУБД використовує механізм блокувань і рівні ізоляції.
Слайд 16. Рівні ізоляції транзакцій
SQL-стандарт визначає чотири основні рівні ізоляції транзакцій, що балансують між продуктивністю і точністю:

1. READ UNCOMMITTED - дозволяє брудне читання, найшвидший, але найменш безпечний.

2. READ COMMITTED - транзакція бачить лише підтверджені зміни; захищає від брудних читань.

3. REPEATABLE READ - гарантує, що під час виконання транзакції жоден рядок, який вона читає, не буде змінено.

4. SERIALIZABLE - найвищий рівень, транзакції виконуються так, ніби вони послідовні; повністю виключає фантоми.

Приклад:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

BEGIN TRANSACTION;

SELECT * FROM Orders WHERE customer_id = 5;

COMMIT;

Цей рівень забезпечує максимальну узгодженість, але може знизити продуктивність, адже транзакції часто блокують одна одну. Розробник повинен обирати рівень ізоляції відповідно до типу системи: аналітичні - можуть дозволити READ COMMITTED, фінансові - вимагають SERIALIZABLE.

Слайд 17. Механізми блокувань і синхронізація транзакцій
Блокування - це ключовий механізм, який дозволяє СУБД запобігти одночасному доступу до тих самих даних. Існують ексклюзивні (X-lock) і роздільні (S-lock) блокування.

· S-lock (shared) дозволяє іншим транзакціям читати, але не змінювати дані.

· X-lock (exclusive) забороняє будь-який інший доступ до об’єкта, поки транзакція не завершиться.

Приклад:

BEGIN TRANSACTION;

SELECT * FROM Accounts WITH (HOLDLOCK) WHERE id = 1;

UPDATE Accounts SET balance = balance - 100 WHERE id = 1;

COMMIT;

Така конструкція гарантує, що під час операції жоден інший користувач не зможе змінити цей рахунок.

Блокування можуть бути на рівні рядка, таблиці або навіть сторінки пам’яті, залежно від СУБД. Для високих навантажень застосовуються адаптивні стратегії блокувань, що знижують ризик взаємних очікувань.

Слайд 18. Взаємодія між транзакціями ORM і СУБД
При використанні ORM (Object-Relational Mapping) розробник часто не помічає, як транзакції створюються і закриваються. Наприклад, у SQLAlchemy чи Hibernate транзакція автоматично починається при першій зміні об’єкта й завершується під час збереження (commit()).

ORM реалізують керування транзакціями через програмний інтерфейс, але фактичні блокування виконуються СУБД. Наприклад:

session.begin()

user.balance -= 100
session.commit()

У цьому випадку ORM відправляє SQL-команди в межах транзакції, яку контролює СУБД (наприклад, PostgreSQL).

Розробники повинні пам’ятати, що неправильне використання ORM-транзакцій може призвести до «завислих» сесій або взаємних блокувань. Тому важливо чітко розуміти, як ORM працює з рівнями ізоляції і як це відображається на рівні SQL.

Слайд 19. Оптимізація конкурентного доступу
Для підвищення продуктивності систем із великою кількістю транзакцій застосовують різні техніки керування конкурентністю. Одна з них - MVCC (Multi-Version Concurrency Control), яка створює «версії» рядків, дозволяючи читати старі значення без блокування.

Приклад у PostgreSQL:

BEGIN TRANSACTION ISOLATION LEVEL READ COMMITTED;

SELECT * FROM Products WHERE price > 100;

-- Інша транзакція може паралельно оновлювати ці дані
COMMIT;
MVCC забезпечує баланс між ізоляцією і продуктивністю, дозволяючи одночасно виконувати запити без конфліктів.

Також застосовуються оптимістичні блокування - транзакції виконуються без фіксації ресурсів, але перед комітом перевіряється, чи не змінилися дані іншими користувачами. Якщо зміни виявлені, операція відхиляється.

Таким чином, оптимізація паралельного доступу - це компроміс між точністю і швидкістю. Грамотне налаштування рівнів ізоляції та використання MVCC дає змогу досягти високої продуктивності без втрати цілісності.

Слайд 20. Поняття інформаційної безпеки в базах даних
Інформаційна безпека в базах даних - це комплекс заходів, спрямованих на запобігання несанкціонованому доступу, зміні, знищенню або розголошенню інформації. У межах реляційних СУБД безпека реалізується на кількох рівнях: користувацькому, логічному, системному та фізичному.

Завданням СУБД є не лише обмежити доступ до даних, а й контролювати, хто, коли і які операції виконував. Тому більшість сучасних СУБД мають розвинену систему облікових записів, ролей, паролів і політик аудиту.

Безпека даних включає три основні принципи - конфіденційність, цілісність і доступність (CIA). Конфіденційність забезпечує, щоб дані бачили лише уповноважені користувачі; цілісність гарантує, що інформація не буде змінена без дозволу; а доступність - що легальні користувачі можуть отримати дані вчасно.

Забезпечення цих принципів - це спільна відповідальність адміністратора бази, розробника застосунку і самої СУБД. Лише узгоджена взаємодія цих компонентів формує надійну інфраструктуру захисту даних.

Слайд 21. Механізми контролю доступу: ідентифікація, автентифікація, авторизація
Контроль доступу у СУБД складається з трьох послідовних етапів: ідентифікації, автентифікації та авторизації.

· Ідентифікація - це процес, коли користувач повідомляє систему про свою особу (наприклад, вводить логін).

· Автентифікація - перевірка достовірності цієї особи (наприклад, через пароль, сертифікат або токен).

· Авторизація - визначення, які дії користувач має право виконувати після успішного входу.

У SQL цей процес виглядає так:

CREATE USER 'alex' IDENTIFIED BY 'StrongPass123';

GRANT SELECT, UPDATE ON employees TO alex;

У цьому прикладі користувач alex створюється з паролем і отримує обмежені права лише на читання й оновлення таблиці employees.

Таким чином, ідентифікація відповідає за «хто ти», автентифікація - «чи дійсно ти той, за кого себе видаєш», а авторизація - «що тобі дозволено робити».
Слайд 22. Секретність даних і розмежування прав користувачів
Секретність - це здатність системи запобігти несанкціонованому розголошенню інформації. Вона реалізується через розмежування прав доступу до таблиць, представлень і стовпців.

Адміністратор може надати або відкликати конкретні права за допомогою SQL-команд GRANT і REVOKE:

GRANT SELECT ON payroll TO auditor;

REVOKE UPDATE ON payroll FROM auditor;

Цей приклад дозволяє аудиторові переглядати, але не змінювати інформацію про заробітні плати.

Більш складні системи, такі як Oracle або PostgreSQL, підтримують рівневий контроль доступу (Label Security), де кожен запис має свій рівень секретності. Користувач бачить лише ті дані, рівень яких не перевищує його власний.

Також важливим механізмом є розмежування за ролями (Role-Based Access Control, RBAC), коли права призначаються не окремим користувачам, а ролям, що полегшує адміністрування великих систем.

Слайд 23. Захист на рівні представлень (views) і шифрування даних
Одним із найпоширеніших способів забезпечення секретності є використання представлень (views) - віртуальних таблиць, що показують лише дозволені користувачеві поля.

Приклад:

CREATE VIEW public_employees AS
SELECT name, position FROM employees;

GRANT SELECT ON public_employees TO user_group;
Таким чином, користувачі бачитимуть лише загальні дані, без чутливих полів, таких як зарплата чи номер паспорта.

Додатковим рівнем безпеки є шифрування даних. СУБД може шифрувати як окремі поля (column-level encryption), так і весь диск (TDE - Transparent Data Encryption). Наприклад, у PostgreSQL можна використовувати функції з бібліотеки pgcrypto:

INSERT INTO users (name, password)

VALUES ('Anna', crypt('mypassword', gen_salt('bf')));

Цей підхід забезпечує захист навіть у випадку, якщо хтось отримає несанкціонований доступ до файлів бази.

Слайд 24. Політика безпеки та адміністрування доступу
Система безпеки бази даних повинна спиратися на чітку політику безпеки (Security Policy) - документ, що визначає правила надання доступу, зберігання, обміну й резервного копіювання даних.
Політика має включати:

· класифікацію інформації (публічна, службова, конфіденційна);

· порядок створення облікових записів і управління ролями;

· періодичну зміну паролів і журналювання дій користувачів;

· план реагування на інциденти безпеки.

Адміністратори баз повинні регулярно перевіряти ефективність політик, використовуючи інструменти аудиту, такі як pg_audit у PostgreSQL або Audit Vault в Oracle.

Ретельно налаштована політика безпеки перетворює базу даних із простої системи зберігання на надійний центр інформаційного контролю, який протидіє як зовнішнім, так і внутрішнім загрозам.

Слайд 25. Аудит і відновлення даних: журнал транзакцій і аудит змін
Журнал транзакцій - це основний механізм відстеження всіх операцій у СУБД. Кожна транзакція записується до журналу (transaction log) із позначенням часу, користувача, виконаних дій і результату. Це дозволяє повністю відновити стан бази даних після будь-якого збою.

У PostgreSQL, наприклад, такий журнал називається WAL (Write-Ahead Log) - він записує зміни спочатку до журналу, а потім до основних файлів бази. Такий підхід гарантує, що навіть при раптовому вимкненні живлення база зможе повернутися до останнього стабільного стану.

Приклад перегляду стану журналу в PostgreSQL:

SELECT * FROM pg_stat_activity;

SELECT * FROM pg_stat_replication;

Журнали використовуються також для аудиту - тобто відстеження, хто, коли і що змінював у базі. Це особливо важливо для систем, що працюють із конфіденційними або фінансовими даними.

Таким чином, журнал транзакцій - це не просто інструмент відновлення, а й центральний елемент системи прозорості та підзвітності.

Слайд 26. Відновлення після збоїв: логування, резервне копіювання
Відновлення даних після збою базується на поєднанні журналювання транзакцій і резервного копіювання.
Під час збоїв СУБД використовує журнал для відновлення транзакцій, що були зафіксовані (COMMIT), і відхиляє ті, що не завершилися (ROLLBACK).

У PostgreSQL є інструмент pg_basebackup, який створює фізичну копію бази, синхронізовану з WAL.

pg_basebackup -h localhost -D /var/backups/pg -U postgres -Fp -Xs -P
У SQL Server для цього використовується команда:

BACKUP DATABASE Finance TO DISK = 'D:\Backups\finance_full.bak';

RESTORE DATABASE Finance FROM DISK = 'D:\Backups\finance_full.bak';
Існують два основних підходи до резервування: повне (full) і інкрементальне (incremental).
Повне створює копію всієї бази, інкрементальне - лише змін з моменту останнього бекапу, що зменшує навантаження.

Систематичне резервне копіювання та тестування відновлення - це необхідна частина політики безпеки будь-якої бази даних.

Слайд 27. Механізми контролю доступу та аудит на основі політик
Аудит дій користувачів - це ключовий елемент безпеки, який дозволяє виявити спроби несанкціонованих дій або витоку даних.
Більшість сучасних СУБД підтримують політику аудиту (Audit Policy) - набір правил, що визначає, які операції потрібно реєструвати.

У PostgreSQL для цього використовується розширення pg_audit:

CREATE EXTENSION pgaudit;

SET pgaudit.log = 'read, write';

Ця конфігурація фіксує всі запити SELECT, INSERT, UPDATE, DELETE у журналі.
У системах Oracle подібний механізм реалізовано через Oracle Unified Audit, де можна створювати політики:

CREATE AUDIT POLICY sensitive_data

ACTIONS SELECT ON employees

WHEN 'SYS_CONTEXT(''USERENV'', ''SESSION_USER'') NOT IN (''admin'')';

ENABLE AUDIT POLICY sensitive_data;
Такі політики забезпечують проактивний захист - вони не лише фіксують порушення, а й можуть блокувати виконання небезпечних запитів.

Слайд 28. Відновлення та моніторинг безпеки в реальних системах
У промислових базах адміністратори використовують системи моніторингу стану бази (наприклад, Zabbix, Prometheus, pgAdmin, SQL Diagnostic Manager), які відстежують активність, навантаження та журнали безпеки в реальному часі.

Такі системи можуть виявляти:

· спроби підключення з невідомих IP-адрес;

· перевищення кількості помилкових входів;

· незвичайну активність користувача (наприклад, масові запити SELECT до конфіденційних таблиць).

Також важливо налаштовувати періодичне тестування аварійного відновлення (Disaster Recovery Test) - процедуру, під час якої перевіряють, чи можна швидко відновити базу до стабільного стану після збою.

Команда для перевірки актуальності резервних копій у PostgreSQL:

pg_verifybackup /var/backups/pg
Такий підхід гарантує, що політики безпеки не лише існують на папері, а реально працюють у щоденній експлуатації.

Слайд 29. Цілісність даних як фундамент безпеки
Цілісність даних - це перший і найважливіший етап забезпечення інформаційної безпеки. Без дотримання цілісності неможливо гарантувати достовірність аналітики, звітів чи фінансових результатів.

У реляційних СУБД цілісність реалізується через обмеження (constraints): первинні ключі, зовнішні ключі, унікальні значення, обмеження типу CHECK та NOT NULL. Кожен із цих механізмів автоматично контролює правильність даних, незалежно від помилок на рівні прикладного коду.

Наприклад, система зарплат, у якій дозволено зберігати від’ємні суми, вже є потенційно небезпечною. Саме обмеження цілісності не допускають таких логічних порушень.

ALTER TABLE payroll ADD CONSTRAINT salary_check CHECK (salary > 0);

Таким чином, контроль цілісності - це не просто технічна вимога, а елемент загальної політики інформаційного захисту, що формує надійність усієї системи.

Слайд 30. Транзакції, ізоляція та контроль одночасного доступу
Транзакційність - серце будь-якої надійної СУБД. Вона гарантує, що зміни у базі виконуються лише цілком і не залишають її в проміжному або суперечливому стані.

Механізм ACID (Atomicity, Consistency, Isolation, Durability) забезпечує одночасно стабільність і безпеку. А завдяки різним рівням ізоляції (READ COMMITTED, SERIALIZABLE тощо) адміністратор може гнучко налаштовувати баланс між продуктивністю і точністю результатів.

Приклад послідовної транзакції, що зберігає узгодженість:

BEGIN TRANSACTION;

UPDATE account SET balance = balance - 100 WHERE id = 1;

UPDATE account SET balance = balance + 100 WHERE id = 2;

COMMIT;

Без транзакцій подібна операція може призвести до втрати грошей або дублювання рухів коштів. Отже, транзакції - це гарантія фінансової, логічної та правової достовірності даних.

Слайд 31. Безпека, секретність і аудит у СУБД
Безпека бази даних - це багаторівнева система, яка поєднує контроль доступу, шифрування, аудит і політики керування користувачами.
На нижньому рівні вона починається з автентифікації - перевірки особи користувача, а завершується аудитом - контролем усіх його дій.

У SQL це реалізується засобами GRANT, REVOKE, CREATE ROLE і політиками аудиту:
CREATE USER auditor IDENTIFIED BY 'securePass';

GRANT SELECT ON payroll TO auditor;

CREATE AUDIT POLICY check_salary ACTIONS SELECT ON payroll;

ENABLE AUDIT POLICY check_salary;

Такі механізми забезпечують не лише захист від несанкціонованих дій, а й підзвітність усіх змін.

Завдяки цьому будь-яка операція може бути відстежена, що має вирішальне значення для державних, фінансових та корпоративних систем, де збереження доказової бази є частиною безпеки.

Слайд 32. Взаємодія ORM і реляційних механізмів безпеки
Сучасні ORM-фреймворки - такі як SQLAlchemy, Entity Framework чи Hibernate - не замінюють механізми СУБД, а доповнюють їх. Вони забезпечують захист від SQL-ін’єкцій, автоматично створюють транзакції, перевіряють дані перед записом і шифрують конфіденційну інформацію на рівні моделі.

Проте саме СУБД залишається останньою лінією оборони. Навіть якщо ORM реалізує валідацію чи логіку бізнес-процесів, контроль цілісності, ізоляція транзакцій, аудит і відновлення все одно виконуються на серверному рівні.

Приклад інтегрованого підходу:

SQLAlchemy
session.begin()

new_user = User(name='Ivan', password=hash_password('1234'))

session.add(new_user)

session.commit()
Така модель гарантує безпечне виконання операцій, але справжня безпека досягається лише при поєднанні ORM та політик СУБД.

Підсумок:
· Цілісність забезпечує достовірність даних.

· Транзакції гарантують стабільність змін.

· Ізоляція захищає від конфліктів.

· Контроль доступу і аудит - від внутрішніх і зовнішніх загроз.

· ORM - зручний, але не замінює фундаментальних принципів безпеки реляційних систем.

Рекомендована література

1. OWASP – Database Security Cheat Sheet – практичні поради про конфігурацію, ін’єкції, шифрування. URL: https://cheatsheetseries.owasp.org/cheatsheets/Database_Security_Cheat_Sheet.html
2. OWASP – Cryptographic Storage & Sensitive Data Exposure – ключі, алгоритми, рекомендації. URL: https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
3. Microsoft – SQL Server Security Best Practices – офіційний посібник для MS SQL (налаштування, аутентифікація, TDE). URL: https://learn.microsoft.com/en-us/sql/relational-databases/security/sql-server-security-best-practices?view=sql-server-ver17
4. IBM – Database Security: An Essential Guide – огляд політик і практик захисту даних. URL: https://www.ibm.com/think/topics/database-security
5. Percona / AWS / DB-specific docs – практики для MySQL, Postgres, Amazon RDS (шифрування, мережа, облікові записи). URL: https://www.percona.com/blog/best-practices-for-database-security
6. Практичні статті й чеклісти (Satori, DBVis) – короткі чеклісти й доповнення про шифрування і моніторинг. URL: https://satoricyber.com/database-security/top-10-database-security-best-practices
7. Ресурси по ACID (FreeCodeCamp, Databricks, BMC) – пояснення властивостей транзакцій і практичних наслідків для розробки. URL: https://www.freecodecamp.org/news/acid-databases-explained
8. Петльовий Б.С. Способи та засоби захисту баз даних : робота на здобуття кваліфікаційного ступеня магістра: спец. 125 - Кібербезпека та захист інформації / наук. кер. Лечаченко Т.А. Тернопіль : Тернопільський національний технічний університет імені Івана Пулюя, 2024. 72 с. URL: https://elartu.tntu.edu.ua/handle/lib/48321

PAGE
33

