
[bookmark: _z27pl1bepmee]MongoDb. Методичні матеріали
[bookmark: _t0i3kobhdpqs]1. Встановлення та налаштування MongoDb
Інструкція встановлення на прикладі системи Debian GNU/Linux. Наступні команди необхідно виконати у зазначеній послідовності.

	apt update && apt install wget sudo gnupg

wget -qO - https://www.mongodb.org/static/pgp/server-5.0.asc | sudo apt-key add -

echo "deb [ arch=amd64,arm64 ] https://repo.mongodb.org/apt/ubuntu focal/mongodb-org/5.0 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-5.0.list

sudo apt-get update && sudo apt-get install -y mongodb-org

mkdir /data && mkdir /data/db && touch  /data/db/log
mongod --dbpath data/db --fork --logpath data/db/log

mongo


[bookmark: _j0eovqdb0gpg]2. Створення документа (insert)
[bookmark: _innv7hadylwp]2.1 Створення колекції
MongoDB зберігає дані у формі документів JSON. Група такої документації разом відома як колекція в MongoDB. Таким чином, колекція аналогічна таблиці в реляційній базі даних, а документ аналогічний до запису.
Для зберігання документів нам потрібно спочатку створити колекцію. Цікавою особливістю бази даних NoSQL є те, що, на відміну від бази даних SQL, вам не потрібно вказувати імена стовпців або типи даних у ній.
Першим кроком до створення колекції є створення бази даних. Щоб створити базу даних та підключитись до неї за допомогою командного рядка, виконайте наведену нижче команду з домашнього каталогу установки MongoDB.
Нижченаведена команда складається із ключового слова use та назви semester. Замість semester може бути довільна назва.
	> use semester
switched to db semester


[bookmark: _8fc11ndioocm]2.2 Вставка документа в колекцію
	> db.createCollection("students")
{ "ok" : 1 }


Ось як створюється пуста колекція. Наступним кроком є вставка даних та деяка обробка записів за допомогою командного рядка MongoDB. 
Давайте почнемо зі вставки першого документа JSON у колекцію students, створену вище.
	> db.students.insertOne({name: "John", age: 21, hobby: "photography"})
{
        "acknowledged" : true,
        "insertedId" : ObjectId("624df5e1890e15654bcca794")
}


Ми успішно створили перший запис у колекції.
Переглянути всі записи можна за допомогою методу find(). Для зручності читання додайте після find() метод pretty(), як у прикладі нижче.
	> db.students.find().pretty()
{
        "_id" : ObjectId("624df5e1890e15654bcca794"),
        "name" : "John",
        "age" : 21,
        "hobby" : "photography"
}


Для вивчення операцій пошуку, сортування, оновлення, видалення та виконання множинних запитів нам знадобиться більше записів у колекції. Для цього скористаємося методом insertMany(). На відміну від insertOne(), він приймає масив значень.
	> db.students.insertMany([
        { name: "Rebecca", age: 20, hobby: "music" },
        { name: "Shawn", age: 25, hobby: "music" },
        { name: "Mary", age: 22, hobby: "travel" },
        { name: "Ann", age: 21, hobby: "art" },
   ])
{
        "acknowledged" : true,
        "insertedIds" : [
                ObjectId("624dfbe5890e15654bcca795"),
                ObjectId("624dfbe5890e15654bcca796"),
                ObjectId("624dfbe5890e15654bcca797"),
                ObjectId("624dfbe5890e15654bcca798")
        ]
}


Ще раз виведемо повний перелік записів колекції students.
	> db.students.find().pretty()
{
       "_id" : ObjectId("624df5e1890e15654bcca794"),
       "name" : "John",
       "age" : 21,
       "hobby" : "photography"
}
{
       "_id" : ObjectId("624dfbe5890e15654bcca795"),
       "name" : "Rebecca",
       "age" : 20,
       "hobby" : "music"
}
{
       "_id" : ObjectId("624dfbe5890e15654bcca796"),
       "name" : "Shawn",
       "age" : 25,
       "hobby" : "music"
}
{
       "_id" : ObjectId("624dfbe5890e15654bcca797"),
       "name" : "Mary",
       "age" : 22,
       "hobby" : "travel"
}
{
       "_id" : ObjectId("624dfbe5890e15654bcca798"),
       "name" : "Ann",
       "age" : 21,
       "hobby" : "art"
}



[bookmark: _2toybuew9cp9]3. Операції пошуку за критеріями
Ми можемо вводити параметри пошуку записів у таблицях, MongoDB передбачає можливість визначати умови пошуку документа в колекції.
Для цих цілей у MongoDB використовуються такі операції:
	Операція
	Синтаксис
	Приклад

	Рівність
	{<key>:<value>}
	db.students.find(
{“hobby”:”music”}
).pretty()

	Менше, ніж
	{<key>:{$lt:<value>}}
	db.students.find(
{“age”:{$lt:22}}
).pretty()

	Менше, або дорівнює
	{<key>:{$lte:<value>}}
	db.students.find(
{“age”:{$lte:22}}
).pretty()

	Більше, ніж
	{<key>:{$gt:<value>}}
	db.students.find(
{“age”:{$gt:22}}
).pretty()

	Більше, або дорівнює
	{<key>:{$gte:<value>}}
	db.students.find(
{“age”:{$gte:22}}
).pretty()

	Не дорівнює
	{<key>:{$ne:<value>}}
	db.students.find(
{“age”:{$ne:22}}
).pretty()


[bookmark: _gk2rc0i0yjm3]3.1 Метод findOne()
	> db.students.findOne({hobby: "music"})
{
       "_id" : ObjectId("624dfbe5890e15654bcca795"),
       "name" : "Rebecca",
       "age" : 23,
       "hobby" : "music"
}


[bookmark: _ouwk8xwwjpfi]3.2 Метод find()
	> db.students.find({hobby: "music"}).pretty()
{
       "_id" : ObjectId("624dfbe5890e15654bcca795"),
       "name" : "Rebecca",
       "age" : 20,
       "hobby" : "music"
}
{
       "_id" : ObjectId("624dfbe5890e15654bcca796"),
       "name" : "Shawn",
       "age" : 25,
       "hobby" : "music"
}


[bookmark: _5nwb02ghncbs]3.3 Операція AND
Для комбінування кількох умов запиту використовується оператор AND.
Цей запит має такий загальний вигляд:
	> db.collection.find(
   {
      $and: [
         {key1: value1}, 
         {key2: value2}
      ]
   }
).pretty()


[bookmark: _wfjc3m3djrqc]3.4 Операция OR
Для вибору документа, який відповідає одній з умов, MongoDB використовується оператор OR.
Цей запит має такий загальний вигляд:
	> db.collection.find(
   {
      $or: [
         {key1: value1}, 
         {key2: value2}
      ]
   }
).pretty()


Для розуміння того, як це працює на практиці, розглянемо найпростіший приклад.
Припустимо, що ми хочемо вибрати всіх студентів з нашої колекції students, у яких вік більше, або дорівнює 22, або їхнє хобі – фотографія.
Для цього нам необхідно скласти наступний запит:
	> db.collection.find(
   {
      $or: [
         {hobby: "photography"}, 
         {age: { $gte: 22 }}
      ]
   }
).pretty()


Якщо за заданими параметрами немає збігів, MongoDB повертає null.

[bookmark: _wrkh3rdm6zl4]4. Сортування
[bookmark: _bi2uox621sls]4.1 Налаштування запитів та сортування
MongoDB представляє ряд функцій, які допомагають керувати вибіркою із БД. Одна з них – функція limit. Вона визначає максимально допустиму кількість одержуваних документів. Кількість передається як числового параметра. Наприклад, обмежимо вибірку трьома документами:
	> db.students.find().limit(3)


В даному випадку ми отримаємо перші три документи (якщо в колекції 3 та більше документів). Але що, якщо ми хочемо зробити вибірку не спочатку, а пропустивши якусь кількість документів? У цьому нам допоможе функція skip. Наприклад, пропустимо перші три записи:
	> db.students.find().skip(3)


MongoDB надає можливості відсортувати набір даних, отриманий з БД, за допомогою функції sort. Передаючи в цю функцію значення 1 або -1, ми можемо вказати, в якому порядку сортувати: за зростанням (1) або за зменшенням (-1). Багато в чому ця функція аналогічна виразу ORDER BY в SQL. Наприклад, сортування за зростанням по полю name:
	> db.students.find().sort({name: 1}) 


Ну і в кінці треба відзначити, що ми можемо поєднувати всі ці функції в одному ланцюжку:
	> db.students.find().sort({name: 1}).skip(3).limit(3)


[bookmark: _29pj16r6bwb8]5. Оновлення (update)
Як і інші системи управління базами даних, MongoDB надає можливість оновлення даних. Для цього є ряд функцій.
updateOne() оновлює лише один документ.
updateMany() дозволяє оновити множину документів.
Для оновлення окремих полів у цих функціях застосовується оператор $set. Якщо документ не містить оновлюване поле, воно створюється.
	> db.students.updateOne(
    { name: "Rebecca", age: 20 },
    { $set: { age: 22 } }
)


Тут ми шукаємо документ з name="Rebecca" та age=20 та встановлюємо для його властивості age значення 22. 
Якщо оновлюваного поля в документі немає, воно додається:
	> db.students.updateOne(
    { name: "Ben", hobby: "reading" },
    { $set: { hobby: "fishing" } }
)


Якщо потрібно оновити значення кількох полів, то вони передаються оператору $set через кому:
	> db.students.updateOne(
    { name: "Jess" },
    { $set: { name: "Jessica", hobby: "reading" } }
)


Для простого збільшення значення числового поля на певну кількість одиниць застосовується оператор $inc. Якщо документ не містить оновлюване поле, воно створюється. Цей оператор застосовується лише до числових значень.
	> db.students.updateOne({name : "Tom"}, {$inc: {age:2}}) 


Якщо необхідно оновити всі документи, що відповідають певному критерію, застосовується функція updateMany():
	> db.students.updateMany({name : "Tom"}, {$set: {age : 23}}) 


[bookmark: _plb33jk9o993]6. Видалення (delete)
Для видалення документів у MongoDB передбачені функції deleteOne() – видаляє один документ та deleteMany() – дозволяє видалити кілька документів. Як параметр у ці функції передається фільтр документів, що видаляються.
Наприклад, видалимо документ, у якому name="Tom":
	> db.students.deleteOne({name : "Tom"}) 


У результаті перший знайдений документ із name=Tom буде видалено. Для видалення всіх документів, які відповідають фільтру, застосовується функція deleteMany():
	> db.students.deleteMany({name : "Tom"}) 


Причому, як і у випадку з find, ми можемо задавати умови вибірки як умовних конструкцій:
	> db.students.deleteOne({age: {$lt : 23}})


Щоб видалити разом усі документи з колекції, треба залишити порожнім параметр запиту:
	> db.students.deleteMany({}) 


[bookmark: _2r7g9o7xil3t]6.1 Видалення колекцій та баз даних
Ми можемо видаляти не лише документи, а й колекції та бази даних. Для видалення колекцій використовується функція drop:
	> db.students.drop() 


Щоб видалити всю базу даних, треба скористатися функцією dropDatabase:
	> db.dropDatabase() 


[bookmark: _6v7s1w7g3x56]7. Множинний запит
MongoDB 2.6+ підтримує масові операції. Це включає у собі масові вставки, оновлення, оновлення тощо.
Загальна концепція масових методів – це «менше трафіку» в результаті відправки відразу кількох речей та обробки лише однієї відповіді сервера. Скорочення цих накладних витрат, пов'язаних із кожним запитом на оновлення, заощаджує багато часу.
	> db.students.bulkWrite([
    {
        insertOne: {
            document: {
                name: "Tom", age: 25, hobby: "music",
            }
        }
    },
    {
        deleteOne: {
            filter: { name: "Shawn" }
        }
    }
])






