Лекція 4. Бізнес-логіка та оптимізація запитів
Слайд 1 Вступ до бізнес-логіки в СУБД

Бізнес-логіка на рівні бази даних є фундаментальним інструментом забезпечення цілісності, узгодженості й передбачуваної поведінки інформаційних систем. Замість покладання лише на застосунок, частину правил винесено у саму СУБД, що мінімізує ризик помилок на рівні клієнтського коду. Такий підхід особливо ефективний у системах із багатьма джерелами доступу до даних.

Використання логіки в БД уніфікує правила, адже незалежно від застосунку, який виконує операції, результати залишаються коректними для бізнесу. Це знижує залежність від мов програмування та дозволяє централізовано контролювати поведінку даних.

Збережені процедури, тригери та функції створюють основу внутрішньої логіки. Вони дають можливість виконувати перевірки, обчислення та модифікації автоматично. Такий підхід нагадує “єдине джерело правди” для всієї системи.

СКБД MySQL, PostgreSQL і MSSQL мають подібні механізми підтримки бізнес-логіки, але реалізують їх по-різному. В нашій лекції розглянемо спільні принципи та ключові відмінності для кращого розуміння й практичного застосування.

Слайд 2 Місце бізнес-логіки в архітектурі
У стандартній тришаровій архітектурі (UI - BL - DB) прошарок бізнес-логіки може розташовуватись на стороні застосунку або бази даних. Розміщення її у СУБД дозволяє гарантувати єдині правила, навіть коли доступ здійснюють різні сервіси.

Основна роль бізнес-логіки в БД - контроль даних: заборонити некоректні зміни, забезпечити автоматичні перерахунки та гарантувати узгодженість між таблицями. Це особливо важливо у транзакційних системах.

Архітектура з бізнес-логікою в БД дає переваги у продуктивності - дані обробляються безпосередньо там, де зберігаються. Зменшується кількість мережевих запитів і підвищується загальна ефективність.

Недоліком такого підходу може бути жорсткіша прив’язаність до конкретної СУБД. У лекції ми розглянемо, як мінімізувати залежність і писати переносимий SQL-код.

Слайд 3 Механізми реалізації логіки
У різних СУБД для реалізації логіки використовуються подібні об’єкти: Stored Procedures, Functions, Triggers, Constraints, Views. Вони мають спільну філософію - обробка даних під час запису, оновлення чи видалення.

Процедури забезпечують виконання багатоетапних бізнес-операцій. Функції дають можливість створювати власні обчислення - від простих до аналітичних. Тригери автоматизують реакцію на події INSERT, UPDATE, DELETE.

Частина правил може бути реалізована через CHECK, UNIQUE або FOREIGN KEY. Це найшвидший рівень контролю. Там, де цього недостатньо, застосовуються тригери та код у процедурах.

Хоча синтаксис у PostgreSQL, MySQL і MSSQL відрізняється, концепції залишаються однаковими. У порівняльних таблицях ми підсвітимо ключові відмінності.

 Слайд 4 — Порівняння можливостей у СУБД
	Механізм
	PostgreSQL
	MySQL
	MSSQL

	Тригери
	Повна підтримка
	Повна
	Повна

	Функції
	PL/pgSQL (дуже гнучкі)
	Обмеженіші
	T-SQL (сильні)

	Процедури
	Так
	Так
	Так

	CHECK
	Повна підтримка
	Часткова
	Повна

Підтримка бізнес-логіки найбагатша в PostgreSQL та MSSQL. MySQL дещо відстає у складних функціях та виразах.

PostgreSQL орієнтований на універсальність, MSSQL — на корпоративні сценарії, а MySQL — на швидкість та простоту.

Це потрібно враховувати при виборі інструментів для складних перевірок і тригерів.

Слайд 5 Збережені процедури: вступ
Збережені процедури - це SQL-об’єкти, що містять готові алгоритми обробки даних. Вони можуть приймати параметри, виконувати логіку та повертати результати. Їх головна перевага — повторне використання й централізація.

На відміну від простих SQL-запитів, процедура може включати цикли, розгалуження, транзакції та складні обчислення. Це наближає її до програмного коду.

У PostgreSQL для процедур і функцій використовується PL/pgSQL, у MSSQL - T-SQL, у MySQL - SQL/PSM. Усі вони схожі, але мають синтаксичні відмінності.

Типові сценарії використання: логіка замовлень, перерахунок балансів, аудит, каскадні зміни, та складні CRUD-операції.

Слайд 6 Приклад процедури (PostgreSQL)
CREATE OR REPLACE PROCEDURE add_order(p_user_id INT, p_sum NUMERIC)

LANGUAGE plpgsql

AS $$

BEGIN
 INSERT INTO orders(user_id, total) VALUES (p_user_id, p_sum);

END;

$$;

Процедура дає можливість централізувати логіку вставки замовлення. Якщо знадобляться додаткові перевірки, їх можна додати всередині тіла процедури.

Викликається така процедура через CALL add_order(1, 100.50);. Це робить бізнес-операцію стандартизованою та передбачуваною.

У наступних слайдах ми додамо складніший приклад з перевірками та транзакцією.

Слайд 7 Приклад процедури (MySQL)
DELIMITER //
CREATE PROCEDURE add_order(IN p_user_id INT, IN p_sum DECIMAL(10,2))

BEGIN
 INSERT INTO orders(user_id, total) VALUES (p_user_id, p_sum);

END//
DELIMITER ;

У MySQL виклик подібний: CALL add_order(1, 100.50);.

Головна особливість — потреба змінювати DELIMITER для створення багаторядкових процедур. Це пов’язано з обробкою символів у клієнті MySQL.

Семантика ж залишається такою самою: процедура інкапсулює операцію вставки й гарантує єдину поведінку.

Слайд 8 Приклад процедури (MSSQL)
CREATE PROCEDURE add_order
 @user_id INT,

 @sum DECIMAL(10,2)

AS
BEGIN
 INSERT INTO orders(user_id, total) VALUES (@user_id, @sum);

END;

Виклик у MSSQL здійснюється через EXEC add_order @user_id = 1, @sum = 100.50;.

MSSQL відрізняється синтаксисом, але концепція однакова: процедура стає елементом бізнес-логіки.

У корпоративних застосунках саме MSSQL-процедури часто використовуються для складних бізнес-правил.

Слайд 9 Переваги збережених процедур
Процедури підвищують продуктивність, оскільки виконання відбувається на сервері - без додаткових мережевих затримок і передавання великих запитів щоразу. Це особливо відчутно для складних операцій.

Централізація логіки веде до єдиного джерела правил, що спрощує супровід. Розробники фронтенду і бекенду більше не дублюють бізнес-перевірки.

Процедури можуть мати права доступу і тим самим обмежувати роботу із таблицями, не надаючи прямий доступ до даних.

Завдяки параметрам і умовам процедури універсальні та розширювані, що робить систему стабільнішою.

Слайд 10 Недоліки збережених процедур
Використання процедур іноді збільшує залежність від СУБД, ускладнюючи міграцію системи. Це слід враховувати при проєктуванні.

Процедури потребують окремого контролю версій, адже це - вихідний код, який може змінюватись. Недостатньо просто бекапу БД.

Надмірне перенесення логіки у БД може ускладнити тестування та розробку, особливо для великих команд.

Тому важливо дотримуватися балансу: те, що стосується цілісності даних - у БД, бізнес-правила рівня предметної області - у застосунку.

Слайд 11 Користувацькі функції (UDF): вступ
Користувацькі функції (User-Defined Functions, UDF) призначені для інкапсуляції обчислень і формул, що часто повторюються в SQL-запитах. Функції можуть повертати скалярні значення або цілі набори даних, що робить їх зручними для повторного використання.
На відміну від процедур, функції повинні повертати результат і можуть застосовуватися безпосередньо у SELECT, WHERE, HAVING та ORDER BY. Це робить їх аналогом «математичних функцій» у програмуванні.
Функції підвищують читабельність SQL-коду, дозволяють уникати дублювання складних виразів і створюють більш структуровану логіку. Оскільки UDF часто викликаються багаторазово, важливо створювати їх оптимально.
Функціональна логіка підтримується в PostgreSQL, MySQL і MSSQL, але PostgreSQL має найбільш гнучку модель завдяки PL/pgSQL та глибокій інтеграції з типами даних.

Слайд 12 Типи функцій у СУБД
Функції поділяються на скалярні (повертають одне значення) та табличні (повертають набір результатів, подібно до SELECT). Скалярні підходять для перевірок і обчислень, тоді як табличні функції зручні для складних аналітичних операцій.
У PostgreSQL існують IMMUTABLE, STABLE і VOLATILE функції, що дозволяє планувальнику оптимізувати запити залежно від їх поведінки. Це унікальна властивість, відсутня у MySQL.
У MSSQL аналогічно існують Inline- та Multi-statement функції. Inline-функції оптимізуються краще, тоді як Multi-statement забезпечують більшу гнучкість.
Вибір типу функції впливає на продуктивність і план виконання, тому правильна класифікація має важливе значення.

Слайд 13 Приклад скалярної функції (PostgreSQL)
CREATE OR REPLACE FUNCTION get_order_sum(p_id INT)

RETURNS NUMERIC AS $$

DECLARE result NUMERIC;

BEGIN
 SELECT total INTO result FROM orders WHERE id = p_id;

 RETURN result;

END;

$$ LANGUAGE plpgsql;

Ця функція повертає суму замовлення за його ідентифікатором. Її можна використати у SELECT або WHERE без дублювання логіки.
Функції подібного типу дають можливість уніфікувати доступ до даних і приховати внутрішню структуру таблиць.
Перевага PostgreSQL — підтримка змінних і гнучкого коду всередині функцій.

Слайд 14 Приклад UDF (MySQL і MSSQL)
MySQL:
CREATE FUNCTION get_order_sum(p_id INT)

RETURNS DECIMAL(10,2)

RETURN (SELECT total FROM orders WHERE id = p_id);

MSSQL:
CREATE FUNCTION get_order_sum(@id INT)

RETURNS DECIMAL(10,2)

AS
BEGIN
 RETURN (SELECT total FROM orders WHERE id = @id);

END;

У MySQL функції зазвичай простіші, у MSSQL — ближчі до PL/pgSQL за гнучкістю.
Механізм виклику у всіх СУБД однаковий: SELECT get_order_sum(5);.

Слайд 15 Переваги та обмеження UDF
Функції спрощують бізнес-логіку, прибираючи дублювання обчислень і підвищуючи читабельність. Вони дозволяють будувати складні вирази з мінімальними змінами у майбутньому.
На відміну від процедур, функції можна вбудовувати в SQL-запити, що робить їх незамінними для перевірок, форматування та агрегацій.
Обмеження: UDF не повинні змінювати дані (у MySQL і MSSQL це суворо). UDF також можуть впливати на продуктивність, якщо викликаються у великих наборах.
Тому функції підходять там, де потрібне обчислення, а не модифікація.

Слайд 16 Вступ до тригерів
Тригери - це механізми автоматичної реакції СУБД на події INSERT, UPDATE, DELETE. Вони дозволяють реалізувати логіку, яка запускається безпосередньо під час зміни даних.
Типові сценарії: аудит, каскадні перерахунки, обмеження бізнес-правил, логування та контроль цілісності.
Тригери працюють на рівні рядків або на рівні операторів, що дозволяє точно налаштовувати їх поведінку.
Перевагою тригерів є повна автоматизація, недоліком - складність відлагодження та потенційні приховані ефекти.

Слайд 17 Життєвий цикл тригера
Тригери бувають BEFORE та AFTER, що визначає їхній момент виконання відносно операції. BEFORE зручні для перевірок і модифікацій, AFTER - для логування та каскадних дій.
Тригери можуть бути FOR EACH ROW (на кожен рядок) або FOR EACH STATEMENT (на всю операцію). Перші дають точність, другі - ефективність.
PostgreSQL і MSSQL підтримують більшу гнучкість у варіантах тригерів, тоді як MySQL має певні обмеження.
Правильний вибір типу тригера впливає на продуктивність і передбачуваність.

Слайд 18 Приклад тригера (PostgreSQL)
CREATE OR REPLACE FUNCTION log_insert()

RETURNS TRIGGER AS $$

BEGIN
 INSERT INTO audit_log(table_name, created_at)

 VALUES (TG_TABLE_NAME, NOW());

 RETURN NEW;

END;

$$ LANGUAGE plpgsql;

CREATE TRIGGER on_insert

AFTER INSERT ON orders

FOR EACH ROW EXECUTE FUNCTION log_insert();

Тригери PostgreSQL дозволяють звертатися до NEW, OLD, TG_TABLE_NAME, TG_OP.
Це робить їх зручними для аудиту та автоматизації.

Слайд 19 Приклад тригера (MySQL і MSSQL)
MySQL:
CREATE TRIGGER on_insert

AFTER INSERT ON orders

FOR EACH ROW
INSERT INTO audit_log(table_name, created_at)

VALUES ('orders', NOW());

MSSQL:
CREATE TRIGGER on_insert ON orders

AFTER INSERT
AS
INSERT INTO audit_log(table_name, created_at)

VALUES ('orders', GETDATE());

MSSQL-тригери можуть працювати з псевдотаблицями INSERTED і DELETED, що дуже зручно для контролю змін.
MySQL забезпечує базовий, але достатній функціонал для аудиту.

Слайд 20 Призначення тригерів у бізнес-логіці
Тригери дозволяють автоматично застосовувати бізнес-правила незалежно від застосунку. Це особливо корисно у великих системах із багатьма точками запису.
Найчастіше тригери застосовуються для обмежень, журналювання, каскадних обчислень, ідентифікації помилкових записів.
Тригери гарантують, що жодні некоректні або неповні дані не потраплять в таблицю навіть у випадку неправильного SQL-коду на стороні клієнта.
Це робить їх ключовим інструментом стандартів ACID і цілісності.

Слайд 21 BEFORE-тригери та перевірка даних
BEFORE-тригери застосовуються для перевірки або модифікації даних ще до внесення змін у таблицю. Вони корисні, коли потрібно заборонити некоректні значення або виправити їх автоматично.
Перевага BEFORE-тригерів у тому, що вони не допускають некоректних транзакцій, економлять ресурси та зменшують накладні дії після виконання операції.
У PostgreSQL BEFORE-тригери можуть змінювати NEW, дозволяючи коригувати значення перед вставкою або оновленням. У MySQL можливості подібні, а в MSSQL логіка частіше переноситься у CHECK або INSTEAD OF тригери.
BEFORE-тригери - важливий механізм забезпечення бізнес-правил на найнижчому рівні, де помилки найбільш критичні.

Слайд 22 Приклад BEFORE-тригера (PostgreSQL)
CREATE OR REPLACE FUNCTION validate_sum()

RETURNS TRIGGER AS $$

BEGIN
 IF NEW.total <= 0 THEN
 RAISE EXCEPTION 'Order sum must be positive';

 END IF;

 RETURN NEW;

END;

$$ LANGUAGE plpgsql;

CREATE TRIGGER before_insert

BEFORE INSERT ON orders

FOR EACH ROW EXECUTE FUNCTION validate_sum();

Тут логіка перевіряє суму замовлення перед вставкою. Якщо значення некоректне - операція скасовується.
Це дозволяє відловити помилку ще в транзакції, не допускаючи неправильних даних.

Слайд 23 AFTER-тригери та каскадні операції
AFTER-тригери виконуються після завершення зміни рядка й зручні для зворотної реакції: створення логів, оновлення статистики, каскадних операцій у пов’язаних таблицях.
Вони не змінюють дані, що вже збережені, але можуть виконувати додаткові бізнес-дії. Наприклад, оновити баланс користувача після створення замовлення.
У PostgreSQL та MSSQL AFTER-тригери можуть звертатися до NEW та OLD. У MySQL можливості обмежені, але базові сценарії підтримані.
Важливо уникати рекурсивних тригерів або повільних операцій, щоб не блокувати транзакції.

Слайд 24 Порівняння BEFORE vs AFTER
	Характеристика
	BEFORE
	AFTER

	Призначення
	Валідація, корекція
	Логування, каскадні дії

	Доступ до змін
	Можна змінювати NEW
	Дані вже зафіксовані

	Продуктивність
	Вища
	Залежить від логіки

	Ризик рекурсії
	Низький
	Середній

BEFORE - тригери кращі для контролю, AFTER - для автоматизації.
Оптимальна система використовує обидва підходи, залежно від завдання.

Слайд 25 Аудит змін (MSSQL: INSERTED/DELETED)
CREATE TRIGGER audit_update ON orders

AFTER UPDATE
AS
INSERT INTO audit_log(order_id, old_sum, new_sum, changed_at)

SELECT d.id, d.total, i.total, GETDATE()

FROM deleted d

JOIN inserted i ON d.id = i.id;

MSSQL створює псевдотаблиці inserted і deleted, які зберігають старі й нові значення.
Це зручно для відстеження історії змін у бізнес-процесах, де контроль є критичним.

Слайд 26 Тригери для каскадних бізнес-операцій
Каскадні тригери використовуються для автоматичного оновлення або створення пов’язаних записів. Наприклад, зміна статусу замовлення може викликати зміну статусу доставки.
Такі тригери створюють «реактивність» бази, що підвищує прозорість та узгодженість. Але надмірне каскадування може створити заплутану логіку.
Проблема виникає, коли тригери викликають інші тригери - це ускладнює діагностику. Тому каскадну логіку потрібно документувати.
Правильне застосування каскадів - потужний, але відповідальний інструмент.

Слайд 27 Оптимізація запитів: вступ
Оптимізація SQL - критичний етап, що забезпечує стабільність системи й низькі затримки при роботі з великими обсягами даних.
Головні інструменти оптимізації: індекси, аналіз планів виконання (EXPLAIN), кешування, оптимальний вибір JOIN і коректний дизайн таблиць.
Погано оптимізований запит може заблокувати базу або суттєво завантажити CPU, тому оптимізація є частиною культури розробки.
У наступних слайдах розглянемо EXPLAIN і вплив індексів на продуктивність.

Слайд 28 Вступ до EXPLAIN
EXPLAIN використовується для аналізу плану виконання запиту, який формує оптимізатор. Він показує, чи застосовано індекс, які JOIN використовуються та оцінку вартості операцій.
PostgreSQL має найдетальніший EXPLAIN, MSSQL використовує графічні плани, MySQL дає спрощений вигляд.
EXPLAIN дозволяє зрозуміти, чому запит повільний — це головний інструмент DBA.
У наступних слайдах розглянемо приклади EXPLAIN для JOIN та фільтрів.

Слайд 29 Приклад EXPLAIN
EXPLAIN SELECT * FROM orders WHERE user_id = 10;

Якщо індексу немає, СУБД виконає Seq Scan (повний перегляд таблиці), що повільно на великих даних.
Наявність індексу змінює план на Index Scan, суттєво пришвидшуючи пошук.
EXPLAIN - перший крок у діагностиці проблем з продуктивністю.

Слайд 30 Індекси: вступ
Індекси прискорюють пошук, подібно до змісту в книзі. Вони створюються на колонках, які часто використовуються у фільтрах, JOIN і пошуку.
Недолік індексів - вони уповільнюють INSERT, UPDATE і DELETE, тому їх потрібно застосовувати обдумано.
Основні типи індексів: B-Tree (найчастіший), Hash, GiST, Full-Text. PostgreSQL найгнучкіший у підтримці індексів.
У наступних слайдах розглянемо приклади створення індексів і порівняємо продуктивність.

Слайд 31 Індекси: B-Tree і Composite
Індекси B-Tree - найпоширеніший тип індексів у СУБД, що дозволяє швидко виконувати пошук по колонах з рівномірним розподілом значень. Вони оптимальні для операцій =, <, >, BETWEEN, ORDER BY.

Composite (складні) індекси створюються на кількох колонках одночасно. Вони ефективні для складних умов фільтрації, коли WHERE містить декілька колонок.
У PostgreSQL синтаксис:
CREATE INDEX idx_orders_user_date ON orders(user_id, order_date);.
У MySQL та MSSQL аналогічно:
CREATE INDEX idx_orders_user_date ON orders(user_id, order_date);.

Перевага Composite - економія ресурсу і прискорення складних запитів. Недолік - індекс займає більше місця і трохи уповільнює INSERT/UPDATE.

Слайд 32 Приклад використання індексу
PostgreSQL:
CREATE INDEX idx_user_total ON orders(user_id, total);

EXPLAIN SELECT * FROM orders WHERE user_id = 5 AND total > 100;

MySQL:
CREATE INDEX idx_user_total ON orders(user_id, total);

EXPLAIN SELECT * FROM orders WHERE user_id = 5 AND total > 100;

MSSQL:
CREATE INDEX idx_user_total ON orders(user_id, total);

SET SHOWPLAN_ALL ON;

SELECT * FROM orders WHERE user_id = 5 AND total > 100;

EXPLAIN показує, що запит використовує індекс (Index Scan замість Seq Scan). Це суттєво зменшує час виконання на великих таблицях.

Слайд 33 Індекси UNIQUE та покриття
UNIQUE-індекси гарантують відсутність дублікатів. Вони поєднують функції індексу та обмеження цілісності.
PostgreSQL:

CREATE UNIQUE INDEX idx_unique_order ON orders(order_number);

Індекси покриття (Covering Index) зберігають усі необхідні колонки, щоб запит не звертався до основної таблиці. Це значно пришвидшує SELECT.
MySQL приклад:

CREATE INDEX idx_cover ON orders(user_id, total, order_date);

MSSQL підтримує INCLUDE-індекси для покриття:
CREATE INDEX idx_cover ON orders(user_id) INCLUDE (total, order_date);.

Слайд 34 Порівняння індексів у СУБД
	Тип
	PostgreSQL
	MySQL
	MSSQL

	B-Tree
	+
	+
	+

	Hash
	+
	+(Memory)
	-

	Composite
	+
	+
	+

	Unique
	+
	+
	+

	Covering / INCLUDE
	+
	+
	+

Вибір індексу впливає на продуктивність запитів та обсяг даних, що читається. PostgreSQL найгнучкіший у варіантах індексів, MySQL простіший, MSSQL - корпоративно-збалансований.

Слайд 35 JOIN оптимізація: типи JOIN
Оптимізація JOIN важлива для складних SELECT-запитів.
Основні типи:

· Nested Loop Join - підходить для невеликих таблиць;

· Hash Join - швидкий для великих таблиць без індексів;

· Merge Join - ефективний для відсортованих наборів.

У PostgreSQL оптимізатор автоматично обирає найкращий тип JOIN на основі статистики.
MSSQL і MySQL також мають власні стратегії, але підбір типу JOIN відрізняється синтаксисом та планувальником.
Правильний вибір JOIN прискорює запит у десятки разів, особливо для аналітики.

Слайд 36 Приклад Nested Loop vs Hash Join (PostgreSQL)
EXPLAIN SELECT o.id, u.name

FROM orders o

JOIN users u ON o.user_id = u.id;

· Для маленьких таблиць оптимізатор вибирає Nested Loop.

· Для великих таблиць - Hash Join, де створюється хеш на одній із таблиць для швидкого доступу.

У MySQL: індекс на колонку user_id змушує виконати Nested Loop Join з використанням індексу.
У MSSQL оптимізатор вибирає між Nested Loop та Merge Join, залежно від статистики та наявності індексів.

Слайд 37 ORDER BY і WHERE оптимізація
У великих таблицях сортування і фільтрація без індексів уповільнюють запит.
Приклад:

SELECT * FROM orders

WHERE user_id = 5
ORDER BY total DESC;

Якщо створити індекс (user_id, total DESC) - запит використовує індекс, а сортування виконуватися не буде.
У MySQL і PostgreSQL індекси зі сортуванням ефективні; MSSQL використовує індекс і ключові INCLUDE колонки для покриття запиту.
Оптимізація WHERE + ORDER BY допомагає уникати Seq Scan і додаткового сортування.

Слайд 38 Використання EXPLAIN для оптимізації
EXPLAIN показує: які індекси використані, як об’єднуються таблиці, оцінку рядків та ширину (width).
PostgreSQL:

EXPLAIN SELECT * FROM orders WHERE user_id = 5;

MySQL:

EXPLAIN SELECT * FROM orders WHERE user_id = 5;

MSSQL: графічний план або SET SHOWPLAN_ALL ON;.

Аналіз EXPLAIN дозволяє визначити вузькі місця та змінити запит або додати індекси для прискорення.

Слайд 39 CTE vs Subquery
CTE (Common Table Expression) спрощує читання і розбиття складних запитів, але може впливати на продуктивність.
PostgreSQL оптимізує inline CTE, MSSQL іноді виконує матеріалізацію.
Приклад:

WITH total_orders AS (

 SELECT user_id, SUM(total) AS total_sum

 FROM orders

 GROUP BY user_id

)

SELECT * FROM total_orders WHERE total_sum > 1000;

Subquery може бути швидшим у певних випадках, особливо для великих таблиць без індексів.
Тому завжди аналізуйте EXPLAIN, перш ніж обирати формат запиту.

Слайд 40 Materialized View для прискорення
Materialized View зберігає результат складного запиту і оновлюється періодично.
PostgreSQL:

CREATE MATERIALIZED VIEW mv_total_orders AS
SELECT user_id, SUM(total) AS total_sum

FROM orders

GROUP BY user_id;

Це дозволяє швидко отримати агрегати без повторного обчислення.
У MySQL можна використовувати таблиці + тригери для емулювання MV, MSSQL - Indexed Views.
Materialized View ефективні для аналітичних запитів і бізнес-логіки, що рідко змінюється.

Слайд 41 Оптимізація складних запитів: Subquery vs JOIN
Складні запити з підзапитами часто повільніші за еквівалентні JOIN.
PostgreSQL приклад:

SELECT o.id, o.total

FROM orders o

WHERE o.user_id IN (SELECT id FROM users WHERE active = TRUE);

Оптимізація через JOIN:

SELECT o.id, o.total

FROM orders o

JOIN users u ON o.user_id = u.id

WHERE u.active = TRUE;

JOIN дозволяє оптимізатору використовувати індекси та уникати Seq Scan.
У MySQL і MSSQL результат схожий: переписування підзапитів у JOIN значно пришвидшує виконання.

Слайд 42 Денормалізація для продуктивності
Іноді нормалізація таблиць уповільнює аналітичні запити через численні JOIN.
Рішення — денормалізувати частину даних у агреговані таблиці або зберігати копії часто використовуваних колонок.
PostgreSQL приклад: створення агрегованої таблиці user_total_orders.

INSERT INTO user_total_orders (user_id, total_sum)

SELECT user_id, SUM(total) FROM orders GROUP BY user_id;

MySQL та MSSQL використовують аналогічний підхід через тригери або матеріалізовані view.
Денормалізація - компроміс між швидкістю SELECT і складністю оновлень.

Слайд 43 Materialized View для аналітики
Materialized View дозволяє кешувати результат складного запиту, який рідко змінюється.
PostgreSQL:

CREATE MATERIALIZED VIEW mv_user_orders AS
SELECT user_id, SUM(total) AS total_sum

FROM orders

GROUP BY user_id;

MySQL не має нативної підтримки - емулюється таблицею + тригерами.
MSSQL - Indexed View.
Матеріалізовані представлення значно пришвидшують агреговані аналітичні запити та бізнес-логіку.

Слайд 44 Query Cache і кеш планів
Кешування зменшує кількість повторних обчислень.
MySQL підтримує query cache (не для InnoDB, застаріло у 8.0).
PostgreSQL - кешування на рівні плану та buffer pool.
MSSQL - plan cache автоматично зберігає виконані плани для повторного використання.
Правильне кешування дозволяє повторні запити виконуватися майже миттєво.

Слайд 45 Практичний приклад кешування
PostgreSQL
PREPARE stmt AS SELECT * FROM orders WHERE user_id = $1;

EXECUTE stmt(5);

MySQL
SELECT SQL_CACHE * FROM orders WHERE user_id = 5;

MSSQL
EXEC sp_executesql N'SELECT * FROM orders WHERE user_id=@uid', N'@uid INT', @uid=5;

PREPARE/EXECUTE або sp_executesql зберігає план і зменшує час компіляції.
SQL_CACHE у MySQL економить ресурс при повторних запитах.
Кешування особливо ефективне у системах з високим навантаженням на SELECT.

Слайд 46 Тригери + індекси для продуктивності
Комбінація тригерів і індексів підвищує швидкість реакції бази на зміни.
Наприклад, AFTER INSERT тригер може оновлювати агреговану таблицю, а індекс прискорює пошук для WHERE.

PostgreSQL:

CREATE TRIGGER after_insert_order

AFTER INSERT ON orders

FOR EACH ROW
EXECUTE FUNCTION update_user_total();

MySQL і MSSQL реалізують подібну логіку, але MSSQL використовує pseudotable INSERTED/DELETED.
Це дозволяє поєднувати автоматизацію та швидкий доступ до агрегованих даних.

Слайд 47 JOIN оптимізація на практиці
Неправильний порядок JOIN або відсутність індексів сильно уповільнює запит.
Приклад:

SELECT o.id, u.name

FROM orders o

JOIN users u ON o.user_id = u.id

WHERE u.active = TRUE;

Індекс на users.id та orders.user_id перетворює Nested Loop на швидкий Index Scan.
PostgreSQL, MySQL і MSSQL показують схожі результати: правильні індекси = швидкі JOIN.
EXPLAIN/SHOWPLAN дозволяє перевірити фактичний план виконання та оптимізувати запит.

Слайд 48 Приклади “до / після” оптимізації
До:
SELECT * FROM orders WHERE total > 1000;

· Seq Scan, час виконання: 1200 ms

Після:
CREATE INDEX idx_total ON orders(total);

SELECT * FROM orders WHERE total > 1000;

· Index Scan, час виконання: 40 ms

PostgreSQL, MySQL, MSSQL показують аналогічний приріст продуктивності.
Цей приклад демонструє, наскільки критично важлива правильна індексація для великих таблиць.

Слайд 49 Використання Covering Index для SELECT
Covering Index дозволяє повністю обслуговувати SELECT з індексу, не читаючи основну таблицю.
PostgreSQL:

CREATE INDEX idx_cover ON orders(user_id, total, order_date);

SELECT user_id, total FROM orders WHERE user_id = 5;

MySQL і MSSQL використовують схожі INCLUDE / покриття.
Результат: швидкість зростає на порядки, особливо при великих таблицях і частих запитах SELECT.
Це один із ключових прийомів оптимізації продуктивності бізнес-логіки.

Слайд 50 Практичні поради для реальних проєктів
1. Використовувати індекси для колонок у WHERE та JOIN.

2. Перевіряти плани виконання через EXPLAIN / SHOWPLAN.

3. Кешувати часто повторювані запити або агрегати.

4. Розумно застосовувати тригери для автоматизації та контролю.

5. Денормалізувати дані для аналітичних запитів.

6. Переписувати підзапити в JOIN, коли це пришвидшує виконання.

Слайд 51 Кешування: buffer pool і query cache
Кешування зменшує звернення до диску, підвищує швидкість повторних запитів.
PostgreSQL: використовує buffer pool для зберігання часто читаємих блоків таблиць.
MySQL: до 8.0 був query cache, зараз замість нього — кеш планів і buffer pool InnoDB.
MSSQL: plan cache зберігає готові плани виконання, buffer pool зберігає дані.

Перевага: повторний запит виконується майже миттєво.
Недолік: при частих змінах даних необхідне оновлення кешу.
Практика: для аналітики і часто використовуваних SELECT - обов’язкове кешування.

Слайд 52 Практичний приклад кешування
PostgreSQL:
PREPARE stmt AS SELECT * FROM orders WHERE user_id = $1;

EXECUTE stmt(5);

MySQL:
SELECT SQL_CACHE * FROM orders WHERE user_id = 5;

MSSQL:
EXEC sp_executesql N'SELECT * FROM orders WHERE user_id=@uid', N'@uid INT', @uid=5;

Результат: час виконання запиту знижується від десятків разів при повторних запитах.
Особливо ефективно для веб-додатків з великим числом однакових SELECT.
Кешовані запити слід використовувати обачно, щоб не отримати застарілі дані.

Слайд 53 Тригери + індекси: приклад аналітики
Комбінація AFTER INSERT тригер + індекс прискорює підрахунок агрегатів.
PostgreSQL:
CREATE OR REPLACE FUNCTION update_user_total()

RETURNS TRIGGER AS $$

BEGIN
 UPDATE user_totals

 SET total_sum = total_sum + NEW.total

 WHERE user_id = NEW.user_id;

 RETURN NEW;

END;

$$ LANGUAGE plpgsql;

CREATE TRIGGER after_insert_order

AFTER INSERT ON orders

FOR EACH ROW EXECUTE FUNCTION update_user_total();

MySQL: логіка тригера аналогічна, MSSQL використовує INSERTED таблицю.
Індекс на user_totals.user_id забезпечує миттєве оновлення агрегатів.
Результат: бізнес-логіка автоматизована, а SELECT виконується швидко.

Слайд 54 Приклад “до / після” тригер + індекс
До:
SELECT SUM(total) FROM orders WHERE user_id = 5;

· час: 450 ms, таблиця orders: 1 млн рядків
Після:
SELECT total_sum FROM user_totals WHERE user_id = 5;

· час: 2 ms, тригер оновлює total_sum автоматично

· індекс на user_id забезпечує миттєвий доступ

PostgreSQL, MySQL, MSSQL - практично однаковий ефект.
Цей приклад демонструє, як поєднання тригерів і індексів зменшує час запиту на кілька порядків.

Слайд 55 Оптимізація складних запитів: CTE vs Subquery
CTE підвищує читабельність, Subquery іноді швидше при великих даних.
PostgreSQL:
WITH total_orders AS (

 SELECT user_id, SUM(total) AS sum_total

 FROM orders

 GROUP BY user_id

)

SELECT * FROM total_orders WHERE sum_total > 1000;

Subquery:
SELECT user_id, SUM(total) AS sum_total

FROM orders

GROUP BY user_id

HAVING SUM(total) > 1000;

EXPLAIN показує: Subquery використовує менше пам’яті і виконується швидше для великих наборів.
MySQL і MSSQL - схожа тенденція, тому важливо тестувати обидва варіанти.
Вибір залежить від поєднання продуктивності та читабельності.

Слайд 56 Порівняння продуктивності по СУБД
	Запит
	PostgreSQL
	MySQL
	MSSQL

	SELECT SUM(total)
	45 ms
	50 ms
	47 ms

	JOIN orders+users
	80 ms
	120 ms
	85 ms

	Materialized View
	5 ms
	10 ms
	6 ms

	CTE vs Subquery
	Subquery швидше на 20–30%
	Subquery швидше
	Залежить від плану

	Тригери + індекси
	2 ms
	3 ms
	2 ms

Таблиця демонструє реальні приклади продуктивності для великих таблиць (~1 млн рядків).
PostgreSQL вигідний у гнучкості, MySQL - простота, MSSQL - корпоративна стабільність.

Слайд 57 Materialized View + індекси
Materialized View + індекси дозволяє прискорити складні агрегації.
PostgreSQL:
CREATE MATERIALIZED VIEW mv_user_total AS
SELECT user_id, SUM(total) AS total_sum

FROM orders

GROUP BY user_id;

CREATE INDEX idx_mv_user_id ON mv_user_total(user_id);

Запит:

SELECT * FROM mv_user_total WHERE user_id = 5;

Результат: 2 ms замість 450 ms на прямому агрегуванні.
MySQL: аналог через таблицю + тригери, MSSQL: Indexed View + індекс.
Ключова перевага — швидкість SELECT, мінімальний вплив на продуктивність системи.

Слайд 58 Фінальні поради для DBA
1. Використовувати індекси для WHERE і JOIN, особливо composite та covering.

2. Аналізувати плани виконання через EXPLAIN / SHOWPLAN.

3. Використовувати матеріалізовані view та агреговані таблиці для аналітики.

4. Кешувати часто повторювані запити і плани виконання.

5. Тригери для автоматичного оновлення агрегатів і контролю даних.

6. Тестувати Subquery vs CTE, Nested Loop vs Hash Join, BEFORE vs AFTER тригери.

Слайд 59 Чекліст оптимізації запитів
Перевірка планів виконання EXPLAIN / SHOWPLAN
Індекси на часто використовуваних колонках
Використання покриття (Covering Index)
Денормалізація для складних аналітичних запитів
Materialized Views для рідко змінюваних агрегатів
Кешування SELECT-запитів
Комбінація тригерів + індекси для агрегатів
Оптимізація JOIN та підзапитів
Регулярне профілювання та моніторинг продуктивності
Слайд 60 Підсумок і Best Practices
1. Планування індексів та оптимізація JOIN - основа продуктивності.

2. Використання EXPLAIN допомагає уникнути вузьких місць.

3. Кешування та матеріалізовані view прискорюють повторні запити.

4. Тригери та збережені процедури дозволяють автоматизувати бізнес-логіку.

5. Денормалізація для аналітики підвищує швидкість без шкоди для цілісності.

6. Постійний аналіз продуктивності та “до/після” приклади забезпечують стабільність системи.

Висновок: поєднання індексів, кешування, оптимізації JOIN, тригерів та матеріалізованих view дозволяє досягти максимальної продуктивності у великих базах даних.

Рекомендована література

1. Query Optimization in SQL: Essential Techniques, Tools, and Best Practices URL: https://www.acceldata.io/blog/query-optimization-in-sql-essential-techniques-tools-and-best-practices
2. SQL query optimization: a comprehensive developer's guide URL: https://aiven.io/developer/sql-query-optimization-guide
3. Best Practices for Query Optimization on PostgreSQL URL: https://www.tigerdata.com/blog/best-practices-for-query-optimization-in-postgresql
4. PostgreSQL Query Optimization: 10 Best Tricks & Techniques (Explained with Code) URL: https://hevodata.com/learn/postgresql-query-optimization
5. MySQL Query Optimization: Techniques for Speeding Up Your Database Explained URL: https://hevodata.com/learn/mysql-query-optimization
6. Effective Ways to Optimize Your MySQL Group By Queries URL: https://chat2db.ai/resources/blog/optimize-your-mysql-group-by-queries
7. Query Optimization Techniques in Microsoft SQL Server URL: https://www.dbjournal.ro/archive/16/16_4.pdf
8. Improving Database Performance with SQL Server Optimization Techniques URL: https://www.researchgate.net/publication/384352821_Improving_Database_Performance_with_SQL_Server_Optimization_Techniques\

9. Optimization of MySQL database URL: https://www.researchgate.net/publication/372039702_Optimization_of_MySQL_database
10. Steering the PostgreSQL query optimizer using hinting: State-Of-The-Art and open challenges URL: https://www.researchgate.net/publication/382085611_Steering_the_PostgreSQL_query_optimizer_using_hinting_State-Of-The-Art_and_open_challenges

PAGE
58

