Лекція 5. Техніки та інструменти забезпечення відмовостійкості даних
Слайд 1. Вступ до концепції відмовостійкості даних
Відмовостійкість — це здатність системи продовжувати функціонувати навіть при часткових збоях обладнання, мережі чи програмного забезпечення. У сучасних базах даних вона є ключовим чинником забезпечення безперервності бізнес-процесів. Основна мета — зберегти доступність та цілісність даних незалежно від непередбачуваних ситуацій.

Забезпечення відмовостійкості передбачає не лише резервування апаратних ресурсів, а й логічне дублювання даних через механізми реплікації, шардінгу та кластеризації. Системи управління базами даних (СУБД) реалізують різні підходи до мінімізації ризиків втрати інформації.

Такі підходи охоплюють як автоматичні механізми переключення (failover), так і методи контролю транзакцій, що гарантують узгодженість даних при збої. Важливим аспектом є також швидке відновлення після збоїв (recovery time).

Кожна технологія має власний баланс між складністю реалізації, швидкодією та рівнем надійності. У подальших розділах ми розглянемо основні архітектурні рішення, що дозволяють забезпечити стабільність роботи баз даних на практиці.

Слайд 2. Основні причини втрат і збоїв даних
Втрати даних можуть бути спричинені різними факторами: збоями апаратури, людськими помилками, помилками програмного забезпечення або зовнішніми загрозами, такими як віруси чи кібератаки. Важливо розуміти, що більшість інцидентів пов’язані не з технікою, а з некоректним управлінням даними.

У корпоративних системах навіть короткочасна втрата доступу до бази може мати серйозні наслідки — від втрати клієнтів до зупинки виробничих процесів. Тому стратегії відмовостійкості мають враховувати різні типи ризиків.

Основні категорії відмов включають: апаратні (hardware failure), мережеві (network failure), логічні (software bug) та людські (human error). Для кожної категорії існують свої методи профілактики.

Комплексна система захисту даних має бути багаторівневою — поєднувати реплікацію, резервування, контроль транзакцій і аудит. Саме цей підхід забезпечує не лише збереження інформації, а й її достовірність.

Слайд 3. Поняття RTO та RPO у стратегії безперервності
У практиці управління даними два ключові показники визначають ефективність стратегії безперервності: RTO (Recovery Time Objective) та RPO (Recovery Point Objective). RTO вказує, скільки часу може тривати відновлення системи після збою, тоді як RPO визначає, який обсяг даних допустимо втратити.

Наприклад, якщо RTO = 10 хвилин, то система має відновитись за цей проміжок часу. Якщо RPO = 5 хвилин, то припустимо втратити дані лише за останні 5 хвилин транзакцій. Ці параметри є основою для вибору технологій реплікації та резервування.

У великих організаціях часто використовують різні RTO/RPO для різних підсистем. Критичні сервіси (банківські транзакції, ERP) мають мінімальні значення, тоді як допоміжні можуть відновлюватись повільніше.

Таким чином, розрахунок RTO і RPO допомагає балансувати між вартістю рішень і рівнем безпеки даних, що є ключовим при проектуванні архітектури відмовостійких систем.

Слайд 4. Типи реплікації даних
Реплікація — це процес копіювання даних із одного вузла бази даних на інший для забезпечення узгодженості та доступності. Існують три основні типи реплікації: синхронна, асинхронна та напівсинхронна (semi-sync).

У синхронній реплікації зміни записуються на всі репліки одночасно — це забезпечує повну узгодженість, але збільшує затримку. У асинхронній — головна база (master) не чекає підтвердження від реплік, що прискорює роботу, але створює ризик втрати частини даних.

Напівсинхронна модель використовується як компроміс між швидкодією і надійністю — головний сервер чекає підтвердження хоча б від однієї репліки. Цей підхід популярний у банківських системах.

Вибір типу реплікації залежить від цілей: для критичних фінансових систем застосовують синхронну, для аналітичних — асинхронну, для балансування — комбінацію різних режимів.

Слайд 5. Приклад налаштування реплікації (PostgreSQL)
У PostgreSQL реплікація реалізується за допомогою механізму Write-Ahead Logging (WAL), який записує всі зміни у лог перед виконанням транзакцій. Нижче наведено базову конфігурацію реплікації master-slave:

На головному сервері
wal_level = replica

max_wal_senders = 3

archive_mode = on

archive_command = 'cp %p /var/lib/postgresql/archive/%f'
На репліці
standby_mode = on

primary_conninfo = 'host=192.168.1.10 user=replicator password=secret'
restore_command = 'cp /var/lib/postgresql/archive/%f %p'
Цей приклад демонструє класичну стрімінгову реплікацію, де репліка отримує WAL-файли від головного вузла. Вона забезпечує синхронність транзакцій без значного навантаження.

Такі налаштування дозволяють створювати як холодні, так і гарячі резервні копії бази, що дає змогу швидко відновити систему у випадку збою основного вузла.

Слайд 6. Реплікація в MySQL
У MySQL реплікація відома своєю простотою та гнучкістю. Вона базується на бінарних логах (binlog), які записують усі зміни, що виконуються на головному сервері. Репліки зчитують ці логи та відтворюють операції локально.

Основні команди для налаштування:

CHANGE MASTER TO
 MASTER_HOST='192.168.1.10',

 MASTER_USER='replica',

 MASTER_PASSWORD='password',

 MASTER_LOG_FILE='mysql-bin.000001',

 MASTER_LOG_POS=107;

START SLAVE;

У нових версіях MySQL додано підтримку GTID (Global Transaction Identifiers), які спрощують відновлення після збоїв. Це дозволяє уникати конфліктів між репліками.

MySQL-реплікація активно використовується для розподілу навантаження на читання, аналітичних запитів та резервного копіювання без простоїв.

Слайд 7. Реплікація в MongoDB
MongoDB використовує архітектуру Replica Set, яка автоматично забезпечує відмовостійкість. Один вузол виступає як Primary, інші — Secondary. У разі збою primary-сервера система автоматично обирає новий.

Конфігурація реплікації здійснюється через shell:

rs.initiate({

 _id: "rs0",

 members: [

 { _id: 0, host: "mongo1:27017" },

 { _id: 1, host: "mongo2:27017" },

 { _id: 2, host: "mongo3:27017" }

]

})

MongoDB автоматично синхронізує дані між вузлами та забезпечує баланс між доступністю та узгодженістю за допомогою протоколу Raft.

Ця модель дозволяє забезпечити автоматичний failover без ручного втручання, що є великою перевагою для масштабованих систем.

Слайд 8. Порівняння механізмів реплікації
	СУБД
	Тип реплікації
	Автоматичний failover
	Узгодженість
	Основне застосування

	PostgreSQL
	Синхронна / асинхронна
	Частково
	Висока
	Фінансові системи

	MySQL
	Асинхронна / GTID
	Ні (через ProxySQL)
	Середня
	Веб-додатки

	MSSQL
	Transactional / Merge
	Так
	Висока
	Корпоративні рішення

	MongoDB
	Replica Set
	Так
	Висока
	NoSQL-кластери

Таблиця демонструє, що вибір технології залежить від вимог до доступності та узгодженості. Наприклад, PostgreSQL і MSSQL краще підходять для критичних транзакцій, тоді як MongoDB — для масштабних веб-рішень.

Порівняння цих систем допомагає правильно визначити архітектуру майбутнього проєкту, балансуючи між продуктивністю і надійністю.

Слайд 9. Концепція шардінгу
Шардінг — це горизонтальний розподіл бази даних на частини (шарди), які зберігаються на різних вузлах.
Мета — підвищити продуктивність і масштабованість при великих обсягах даних.

Кожен шард містить унікальну частину даних, визначену за певним ключем (наприклад, ID користувача). Запити направляються до відповідного вузла, що зменшує навантаження на головну базу.

-- Приклад логічного розподілу
SELECT * FROM users_01 WHERE id < 100000;

SELECT * FROM users_02 WHERE id >= 100000;

Недоліком є складність підтримки узгодженості транзакцій між шардованими таблицями. Для цього застосовують middleware-рівні, такі як Vitess (MySQL) або Citus (PostgreSQL).

Шардінг широко використовується у великих системах — соціальних мережах, маркетплейсах і хмарних платформах.

Слайд 10. Типи шардінгу та їх порівняння
	Тип шардінгу
	Опис
	Переваги
	Недоліки

	Горизонтальний
	Розділення рядків таблиці
	Масштабованість
	Складність транзакцій

	Вертикальний
	Розділення за стовпцями
	Простота реалізації
	Обмежена гнучкість

	Функціональний
	Розділення за функціональними модулями
	Гнучкість архітектури
	Необхідність інтеграції

	Динамічний
	Автоматичний перерозподіл
	Баланс навантаження
	Висока складність

Шардінг часто поєднують із реплікацією для забезпечення і продуктивності, і відмовостійкості одночасно. Комбінація цих підходів лежить в основі сучасних систем типу Google Cloud Spanner або Amazon Aurora.

Слайд 11. Резервне копіювання як основа відмовостійкості
Резервне копіювання (backup) — це ключовий елемент будь-якої стратегії збереження даних. Його мета — створення копій інформації, що дозволяють відновити базу у випадку пошкодження або втрати основної. Без належної політики backup навіть найкраща реплікація не гарантує безпеки.

Процес резервного копіювання повинен бути автоматизованим і регулярним. Залежно від потреб організації визначається частота та тип копій. У критичних системах резервування виконується щогодини або навіть у реальному часі.

Надійна система копіювання повинна передбачати контроль якості резервів, перевірку цілісності файлів та їх відновлюваність. Це часто ігнорується, але саме ці тести рятують від помилок у критичних ситуаціях.

Для забезпечення повного циклу відмовостійкості backup має бути частиною комплексної стратегії, що включає моніторинг, логування, аудит і перевірку даних після відновлення.

Слайд 12. Важливість резервного копіювання
Резервне копіювання — це основа стратегії безпеки будь-якої інформаційної системи. Його мета — забезпечити можливість відновлення даних після збоїв, помилок користувачів чи атак програм-вимагачів.

Без належного бекапу будь-яка система з високою доступністю втрачає сенс, оскільки реплікація лише копіює помилки на всі вузли. Тому резервування має виконуватися незалежно від реплікаційних процесів.

Типовий підхід — створення щоденних інкрементальних копій і щотижневих повних резервів. Під час створення копій важливо враховувати час RTO (Recovery Time Objective) та RPO (Recovery Point Objective).

Сучасні системи резервного копіювання інтегрують інструменти шифрування та контроль цілісності, що запобігає компрометації архівів.

Слайд 13. Типи резервного копіювання
Існує три основні типи резервних копій: повне (Full Backup), інкрементне (Incremental) та диференційне (Differential).
Повне копіювання зберігає всю базу, але потребує найбільше часу та простору. Інкрементне зберігає лише зміни після останнього backup, що зменшує навантаження на систему.

Диференційне копіювання фіксує всі зміни від останнього повного резервування — воно є компромісом між швидкістю створення і відновлення. Вибір типу залежить від RTO та RPO, визначених для проєкту.

Наприклад, для транзакційних систем (банки, e-commerce) застосовується комбінація повного копіювання раз на добу та інкрементних копій кожні 15 хвилин.

Компанії часто комбінують локальні та віддалені копії, зберігаючи їх у різних дата-центрах або хмарних сховищах (AWS S3, Azure Blob, Google Cloud Storage).

Слайд 14. Типи резервних копій
	Тип копії
	Опис
	Переваги
	Недоліки

	Повна (Full)
	Повне дублювання всієї бази
	Простота відновлення
	Витрачає багато місця

	Інкрементальна (Incremental)
	Копіює лише зміни з останньої копії
	Економія ресурсів
	Довше відновлення

	Диференційна (Differential)
	Копіює зміни з моменту останньої повної копії
	Баланс часу і місця
	Збільшення обсягу з часом

	Холодна / Гаряча
	Залежно від активності БД під час копії
	Гнучкість
	Ризик блокувань

У великих системах часто застосовується комбінація кількох типів, що дозволяє мінімізувати час простою при відновленні.

Правильне поєднання стратегій визначає рівень готовності до будь-яких інцидентів.

Слайд 15. Резервне копіювання в PostgreSQL
PostgreSQL надає кілька механізмів створення резервних копій. Найпоширеніші — утиліта pg_dump (логічний backup) і pg_basebackup (фізичний backup).

Логічне копіювання:
pg_dump -U postgres -F c -b -v -f backup.dump mydb

Фізичне копіювання:
pg_basebackup -h 127.0.0.1 -D /backup -U replicator -Fp -Xs -P

Логічне копіювання зручно для міграцій або часткового відновлення, тоді як фізичне — для швидкого відновлення всієї бази. PostgreSQL також підтримує резервування за допомогою WAL-логів, що дозволяє створювати Point-In-Time Recovery (PITR).

PITR дає змогу “повернути” базу до стану на конкретний момент часу перед помилкою або збоєм.

Слайд 16. Резервне копіювання в MySQL
У MySQL резервне копіювання можна здійснювати кількома способами — за допомогою mysqldump, mysqlpump, або системних snapshot-методів. Найчастіше використовується mysqldump:

mysqldump -u root -p --routines --triggers --events mydb > backup.sql

Для великих баз рекомендується mysqlpump, який працює багатопотоково:

mysqlpump -u root -p --exclude-databases=information_schema --result-file=backup.sql

MySQL також підтримує Percona XtraBackup — інструмент для “гарячого” копіювання без зупинки сервера. Це особливо важливо для систем з безперервним навантаженням.

Резервування слід поєднувати з тестовим відновленням, щоб уникнути ситуацій, коли файли пошкоджені або неповні.

Слайд 17. Резервне копіювання в MSSQL
Microsoft SQL Server пропонує гнучку систему резервування через T-SQL або SQL Server Management Studio (SSMS). Приклад створення повного backup через T-SQL:

BACKUP DATABASE [FinanceDB]

TO DISK = N'C:\Backups\FinanceDB_full.bak'
WITH FORMAT, INIT, NAME = 'Full Backup', SKIP, NOREWIND, NOUNLOAD, STATS = 10;

Для інкрементного копіювання:

BACKUP LOG [FinanceDB]

TO DISK = N'C:\Backups\FinanceDB_log.trn' WITH NOFORMAT, NOINIT, NAME = 'Log Backup';

MSSQL підтримує differential backup, що пришвидшує відновлення при великих об’ємах даних. Крім того, можна планувати завдання через SQL Agent для автоматизації.

Інтеграція з Azure дозволяє зберігати копії в хмарі з перевіркою контрольних сум.

Слайд 18. Резервне копіювання в MongoDB
MongoDB використовує власний інструмент mongodump, який створює BSON-файли резерву бази:

mongodump --db mydb --out /backup/mongo

Відновлення здійснюється через mongorestore:

mongorestore --db mydb /backup/mongo/mydb

MongoDB також підтримує Oplog backup, що дозволяє відновлювати базу до певного моменту часу, подібно до WAL у PostgreSQL. У корпоративних середовищах застосовують рішення Ops Manager або Atlas Backup.

Перевагою є можливість копіювання без зупинки бази, що робить MongoDB гнучкою у безперервних середовищах.

Слайд 19. Порівняння систем резервного копіювання
	СУБД
	Інструмент
	Тип
	Гаряче копіювання
	Відновлення до моменту часу

	PostgreSQL
	pg_dump / pg_basebackup
	Логічне / фізичне
	Так
	Так

	MySQL
	mysqldump / XtraBackup
	Логічне / фізичне
	Частково
	Так

	MSSQL
	BACKUP DATABASE / LOG
	Фізичне
	Так
	Так

	MongoDB
	mongodump / Ops Manager
	Логічне
	Так
	Так

Ця таблиця демонструє, що більшість сучасних СУБД підтримують як “гарячі” резерви, так і точкове відновлення. Вибір методу залежить від навантаження системи, обсягів даних та частоти змін.

Для критичних систем важливо комбінувати різні методи копіювання, зберігаючи копії у різних місцях.

Слайд 20. Автоматизація backup-процесів
Ручне копіювання не відповідає вимогам сучасних систем. Використовуються планувальники, як-от cron (Linux) або Task Scheduler (Windows), для регулярного запуску скриптів.

Приклад cron-завдання для PostgreSQL:

0 2 * * * /usr/bin/pg_dump mydb > /backup/$(date +\%F).sql

Ключовим аспектом є моніторинг успішності копій. Адміністратор повинен отримувати повідомлення у разі помилки резервування. Це можна реалізувати через скрипти сповіщень (mail, Telegram API).

Автоматизація дозволяє зменшити людський фактор і гарантує, що копії будуть створюватись навіть при високому навантаженні.

Слайд 21. Відновлення бази даних після збою
Відновлення (restore) має бути протестованим і документованим процесом. Недостатньо просто мати резервні файли — потрібно вміти швидко їх використати.

Приклад відновлення PostgreSQL з повного backup:

pg_restore -U postgres -d newdb backup.dump

У MySQL:

mysql -u root -p newdb < backup.sql

У MSSQL процес реалізується через:

RESTORE DATABASE [FinanceDB] FROM DISK='C:\Backups\FinanceDB_full.bak' WITH REPLACE;

Важливо враховувати версію СУБД: backup, створений у новішій версії, не завжди сумісний із попередньою. Тому тестові відновлення є частиною політики відмовостійкості.

Слайд 22. Стратегії відновлення (Restore Strategies)
Процес відновлення має бути ретельно протестованим і задокументованим.
Рекомендовано перевіряти кожну резервну копію, виконуючи тестове відновлення у середовищі staging.

Основні сценарії:

1. Повне відновлення (Full Restore) — використовується при повному краху.

2. Point-in-Time Recovery (PITR) — відновлення до конкретного моменту.

3. Partial Restore — відновлення окремих таблиць або схем.

Критичним є контроль версій схем і сумісності між основною системою та резервними даними.

Регулярне тестування DR-плану — обов’язкова практика у будь-якій організації.

Слайд 23. Автоматизація резервного копіювання
Автоматизація дозволяє виконувати регулярні копії без участі оператора.
У PostgreSQL можна створити cron-завдання:

0 3 * * * pg_dumpall > /backups/all_dbs_$(date +\%F).sql

MySQL підтримує планування через EVENT SCHEDULER, MSSQL — через SQL Agent Jobs, MongoDB — через Node.js-скрипти або cron.

Автоматизоване копіювання повинно включати перевірку контрольних сум і повідомлення про помилки.

Такі механізми мінімізують людський фактор і підвищують стабільність процесу резервування.

Слайд 24. Контроль цілісності резервів
Резервна копія має бути перевірена на цілісність — відповідність структури, контрольних сум і відсутність пошкоджень.
У PostgreSQL це робиться за допомогою pg_verifybackup:

pg_verifybackup /backup/2025-11-03/

MySQL і MSSQL використовують перевірку контрольних сум (checksum) для кожного файлу або таблиці.
У MongoDB можна застосувати команду db.collection.validate().

Регулярна верифікація гарантує, що резерви не пошкоджені через збої дисків або помилки копіювання.
Відсутність перевірки може зробити резерви марними в момент, коли вони потрібні найбільше.

Слайд 25. Верифікація цілісності даних
Цілісність даних — це гарантія того, що інформація в базі залишається точною, повною і несуперечливою після будь-якої операції. У системах з високою доступністю верифікація потрібна після кожного відновлення або синхронізації.

Методи перевірки поділяються на структурні (перевірка зв’язків між таблицями, ключів, індексів) та логічні (контроль правильності бізнес-даних). PostgreSQL і MySQL підтримують автоматичні перевірки при виконанні CHECK CONSTRAINT або FOREIGN KEY.

Для виявлення невідповідностей використовують функції контролю хешів або контрольних сум. Наприклад, у PostgreSQL можна створити тригер, який перевіряє контрольні значення перед оновленням запису.

Верифікація є не лише технічною, а й управлінською задачею — вона запобігає поширенню помилок у зв’язаних системах (CRM, ERP, BI-аналітика).

Слайд 26. Контрольні суми як засіб перевірки
Контрольні суми (checksums) дозволяють виявити навіть незначні пошкодження даних.
У PostgreSQL вони можуть бути активовані при ініціалізації кластера (initdb --data-checksums). Це забезпечує автоматичну перевірку блоків при кожному зчитуванні.

Для ручної перевірки застосовується функція pg_checksums:

pg_checksums --check --data-directory=/var/lib/postgresql/data

У MySQL схожу функціональність реалізовано через CHECKSUM TABLE table_name;, яка дозволяє виявити зміни на рівні сторінок таблиць.

У MSSQL існує системна опція PAGE_VERIFY CHECKSUM, яка включає автоматичну перевірку на рівні сторінок бази. MongoDB зберігає контрольні суми для кожного блоку BSON-документів у WiredTiger Storage Engine, що гарантує виявлення пошкоджень навіть після аварійного вимкнення.

Слайд 27. Контроль конфліктів у реплікації
При багатовузловій реплікації (multi-master) може виникати конфлікт змін — коли різні вузли модифікують той самий запис одночасно. Такі ситуації потребують визначення правил пріоритету або механізмів “останній запис перемагає” (Last Write Wins).

У MySQL використовується Group Replication, яка реалізує консенсусний алгоритм для автоматичного узгодження транзакцій. У PostgreSQL подібну функцію виконує BDR (Bi-Directional Replication), де конфлікти вирішуються через логіку застосунку або функції тригерів.

MSSQL пропонує Merge Replication, де конфлікти обробляються спеціальними агентами — “Conflict Resolver”. MongoDB, навпаки, мінімізує ймовірність конфліктів за рахунок автоматичного вибору єдиного Primary-вузла.

Ефективне керування конфліктами визначає стабільність розподіленої системи і запобігає логічним втратам даних у кластерах.

Слайд 28. Механізми узгодження даних після збою
Після аварії або мережевого роз’єднання необхідно узгодити репліки, щоб відновити єдиний консистентний стан. Для цього використовують механізми reconciliation або resync.

У PostgreSQL — це pg_rewind, який дозволяє “підтягнути” репліку до стану головного вузла без повного відновлення:

pg_rewind --target-pgdata=/data/slave --source-pgdata=/data/master

У MySQL подібна функціональність реалізується через команду RESET SLAVE і синхронізацію GTID-записів. У MSSQL — через опцію “Automatic Seeding” у Always On Availability Groups.

MongoDB автоматично виконує resync для відстаючих вузлів через Oplog. Ці процеси важливі для забезпечення eventual consistency — коли всі вузли поступово досягають єдиного стану.

Слайд 29. Поняття Failover у базах даних
Failover — це автоматичне переключення системи на резервний вузол у разі недоступності основного. Такий механізм дозволяє мінімізувати простої і забезпечити безперервну роботу сервісу.

Failover може бути автоматичним або ручним. Автоматичний використовується у кластерних рішеннях (PostgreSQL Patroni, MySQL InnoDB Cluster, MSSQL Always On, MongoDB Replica Set).

Наприклад, у Patroni стан вузлів контролюється через Etcd або Consul, і при збої primary вузла обирається новий:

patronictl switchover --master pg01 --candidate pg02

Ключовою перевагою є відсутність втрати доступу до даних, однак потрібно враховувати ризики “split-brain” — коли кілька вузлів помилково вважають себе головними.

Слайд 30. Приклад кластеризації в PostgreSQL
Кластеризація забезпечує одночасну відмовостійкість і масштабування. PostgreSQL використовує Patroni як інструмент високої доступності (HA).

scope: postgres
namespace: /db/
name: cluster01
restapi:
 listen: 0.0.0.0:8008
etcd:
 host: 127.0.0.1:2379
bootstrap:
 dcs:
 ttl: 30
 loop_wait: 10
 retry_timeout: 10
Patroni керує ролями вузлів, автоматично виконує failover та реплікацію. Така архітектура забезпечує майже миттєве переключення при відмові головного сервера.

Кластери Patroni часто розгортають у поєднанні з HAProxy або PgBouncer для балансування запитів між вузлами.

Слайд 31. Приклад кластеризації в MySQL
MySQL має власне рішення для високої доступності — InnoDB Cluster, що включає Group Replication, MySQL Shell і Router.

Ініціалізація кластера:

dba.createCluster('MyCluster')

Додавання вузлів:

cluster.addInstance('replica@192.168.1.11:3306')

MySQL Router автоматично розподіляє запити між вузлами. У разі збою primary вузла кластер обирає новий лідер.

InnoDB Cluster підтримує strong consistency через консенсусний алгоритм, а його спрощене налаштування робить технологію популярною серед середніх підприємств.

Слайд 32. Кластеризація в MSSQL (Always On)
У Microsoft SQL Server функція Always On Availability Groups забезпечує як відмовостійкість, так і масштабування на рівні баз.

Конфігурація виконується через SSMS або PowerShell:

New-SqlAvailabilityGroup -Name "FinanceGroup" -Database "FinanceDB" -PrimaryReplica "SQL01"

Кластер включає primary та secondary репліки з автоматичним failover. Механізм підтримує синхронну і асинхронну реплікацію.

Always On дозволяє не лише переключати вузли без зупинки, а й використовувати вторинні репліки для читання, що підвищує ефективність системи.

Слайд 33. Автоматичний failover у MongoDB
MongoDB автоматично реалізує failover у межах Replica Set. При втраті primary-вузла вторинні члени проводять вибори нового головного, використовуючи алгоритм консенсусу Raft.

Приклад перевірки статусу:

rs.status()

Якщо новий primary обрано, усі клієнти автоматично перенаправляють з’єднання. Це забезпечує безперервність роботи без втручання адміністратора.

MongoDB також підтримує параметр priority, який визначає, який вузол має бути обраний першим при відмові попереднього, що підвищує керованість кластера.

Слайд 30. Порівняння кластерних рішень
	СУБД
	Технологія
	Автоматичний failover
	Балансування
	Рівень узгодженості

	PostgreSQL
	Patroni / Repmgr
	Так
	Так
	Високий

	MySQL
	InnoDB Cluster
	Так
	Так
	Високий

	MSSQL
	Always On AG
	Так
	Частково
	Високий

	MongoDB
	Replica Set
	Так
	Автоматичне
	Середній–високий

Усі сучасні СУБД забезпечують можливість автоматичного переключення та збереження доступності. Вибір рішення залежить від вимог до швидкодії, складності адміністрування та підтримки транзакцій.

Кластеризація — це основа архітектури “zero downtime”, де навіть при відмові окремого вузла користувачі не помічають перерв у роботі.

Слайд 31. Disaster Recovery (DR) плани
Disaster Recovery Plan (DRP) — це документована стратегія відновлення бізнесу після критичних інцидентів.
DR-план визначає відповідальних осіб, пріоритети відновлення, часові рамки (RTO/RPO) і процедури тестування.

Типовий DR-процес включає:

· створення резервних копій;

· географічне рознесення даних;

· регулярне тестування сценаріїв відновлення;

· аудит після інциденту.

DR-плани можуть бути локальними, регіональними або хмарними, залежно від архітектури компанії.

Слайд 32. Порівняння рішень для резервного копіювання
	СУБД
	Інструмент
	Тип копії
	Підтримка PITR
	Автоматизація

	PostgreSQL
	pg_dump, pg_basebackup
	Логічна/Фізична
	Так
	Cron / pgBackRest

	MySQL
	mysqldump, xtrabackup
	Логічна/Фізична
	Так
	MySQL Events

	MSSQL
	BACKUP DATABASE
	Усі типи
	Так
	SQL Agent

	MongoDB
	mongodump, Ops Manager
	Логічна/Файлова
	Частково
	Cron / Atlas

Кожна система має власну стратегію резервування. PostgreSQL і MSSQL забезпечують найвищу гнучкість, MySQL — простоту налаштування, MongoDB — масштабованість.

Вибір рішення залежить від пріоритету: швидкість, надійність чи вартість.

Слайд 33. Гібридні архітектури резервування
Сучасні підприємства дедалі частіше використовують гібридні стратегії, які поєднують локальні та хмарні резерви.
Наприклад, PostgreSQL може створювати фізичні копії на локальних серверах і одночасно архівувати WAL у хмарі AWS S3.

archive_command='aws s3 cp %p s3://company-backup/%f'
У MySQL аналогічно застосовують xtrabackup із збереженням у Google Cloud Storage або Azure Blob.
Такі рішення забезпечують географічну надлишковість та швидке відновлення навіть після повного фізичного знищення дата-центру.
Гібридна модель є оптимальним компромісом між безпекою та вартістю.

Слайд 34. Реплікація vs Резервування
Реплікація та резервування мають спільну мету — збереження доступності даних, але різні підходи.
Реплікація створює постійні копії бази для балансування навантаження й швидкого переключення при збоях.
Резервне копіювання — фіксує стан системи у певний момент часу.

	Ознака
	Реплікація
	Резервування

	Мета
	Безперервність роботи
	Відновлення після втрати

	Частота
	Постійна
	Планова

	Тип копії
	Активна
	Пасивна

	Ризик передачі помилки
	Високий
	Низький

Ідеальне рішення — комбінація обох методів: реплікація для доступності, резервування для безпеки історичних станів.

Слайд 35. Тестування відмовостійкості
Тестування відмовостійкості (Fault Tolerance Testing) — ключовий етап у валідації інфраструктури даних.
Його мета — оцінити реакцію системи на збої вузлів, втрату мережі чи пошкодження бази.

Типові методи:

1. Chaos Testing (ін’єкція помилок, як у Netflix Chaos Monkey);

2. Failover Simulation — перевірка автоматичного переключення на репліку;

3. Disaster Drill — повне тестове відновлення з резервів.

У PostgreSQL це можна зробити командою:

pg_ctl promote -D /data/replica

Результати тестів документуються та аналізуються для оптимізації RTO/RPO.

Слайд 36. Хмарні рішення для DR
Хмарні постачальники пропонують спеціальні сервіси для резервування:

· AWS Backup / RDS Snapshots,

· Azure Site Recovery,

· Google Cloud SQL Backups,

· MongoDB Atlas Backup.

Переваги:

· автоматизація;

· географічне рознесення;

· SLA до 99.999%;

· зниження витрат на інфраструктуру.

Хмари також надають API для інтеграції бекапів у CI/CD-процеси — це дозволяє робити резерви перед деплоєм нових версій ПЗ.

Слайд 37. Відновлення у хмарних середовищах
Відновлення в хмарі здійснюється швидше завдяки використанню знімків (snapshots) і контейнеризації.
Наприклад, для PostgreSQL у AWS RDS можна вибрати Snapshot і створити нову інстанцію:

aws rds restore-db-instance-from-db-snapshot \

 --db-instance-identifier restore-db \

 --db-snapshot-identifier mydb-snapshot

MongoDB Atlas пропонує “Restore to Cluster” із візуальним вибором часу.
Хмарні відновлення інтегруються з IaC (Infrastructure as Code), що дозволяє відтворювати систему в кілька кліків або команд.

Слайд 38. AI/ML у системах відновлення
Новий тренд — використання машинного навчання для прогнозування відмов.
AI-моделі аналізують журнали, навантаження та попереджають про потенційні ризики.

У PostgreSQL або MySQL лог-аналітика через Elastic Stack може навчатися виявляти аномалії запитів.
ML-алгоритми в DR-системах допомагають оптимізувати частоту резервування залежно від реальної активності даних.

Наприклад, модель може зменшити навантаження, якщо зміни в базі мінімальні у нічний час — це економить ресурси без втрати надійності.

Слайд 39. Кібербезпека у DR-сценаріях
Резервні копії мають бути зашифровані і зберігатися у середовищах із контрольованим доступом.
Загальні рекомендації:

· Використання GPG або AES-256 для шифрування файлів;

· Контроль прав доступу (role-based access);

· Зберігання ключів у менеджерах (Vault, KMS);

· Захист від ransomware шляхом ізоляції сховищ.

Наприклад:

pg_dump mydb | gpg --symmetric --cipher-algo AES256 > backup.sql.gpg

Безпека резервів = безпека всієї системи. Одне несанкціоноване копіювання архіву може коштувати втрати бізнесу.

Слайд 40. Практичний сценарій DR-плану
Сценарій: знищення основного дата-центру, відсутність локальних копій.

1. Автоматичний запуск DR-процесу через Terraform.

2. Розгортання резервної бази PostgreSQL у AWS із останнього S3 WAL-архіву.

3. Перенаправлення DNS на новий інстанс.

4. Перевірка цілісності таблиць і доступності API.

Усе це займає до 30 хвилин при належній автоматизації.
Таким чином, DR-план забезпечує бізнес-континуїті навіть у катастрофічних умовах.

Слайд 41. Висновки
· Резервне копіювання та відновлення — ядро стратегії інформаційної безпеки.

· Комбінація реплікації, бекапів і хмарних сервісів гарантує максимальну готовність системи.

· Тестування DR-планів має проводитися щоквартально.

· AI-моніторинг і предиктивна аналітика стають стандартом нових інфраструктур.

· Надійність баз даних визначається не лише технологіями, а й дисципліною адміністрування.

Сучасна стратегія DR — це поєднання технологій, автоматизації, кібербезпеки та людської відповідальності.

