Лабораторна робота №5
Оптимізація запитів
Мета роботи: навчитися аналізувати плани виконання складних SQL-запитів (включаючи вкладені підзапити, агрегування, сортування, CTE); освоїти техніки оптимізації – індексацію, рефакторинг запитів, профілювання (EXPLAIN ANALYZE, SHOW PROFILE); провести кількісне порівняння ефективності до/після оптимізації.
Обладнання, матеріали: MySQL 8.0 або MariaDB 10.11+, база даних Sakila (https://dev.mysql.com/doc/sakila/en/), графічний клієнт: DBeaver, MySQL Workbench або SQLYog

Короткі теоретичні відомості

У MySQL оптимізація запитів базується на статистиці індексів і селективності фільтрів.
Основні інструменти:
‒ EXPLAIN ‒ план виконання (теоретичний);
‒ EXPLAIN ANALYZE ‒ фактичний час виконання кожного етапу;
‒ SHOW PROFILES ‒ деталізація витрат CPU, I/O, кешу;
‒ SET profiling = 1; ‒ вмикає профілювання на сеанс.
Команда EXPLAIN показує план виконання запиту: тип з’єднання, використані індекси, кількість рядків, порядок з’єднань. Для глибшого аналізу MySQL 8 підтримує EXPLAIN ANALYZE, який виводить реальний час виконання. Важливою характеристикою індексу є селективність (чим вищий рівень унікальності ‒ тим ефективніше).
Оптимізація може включати: створення індексів (CREATE INDEX ...); заміну підзапитів на JOIN; використання LIMIT або WHERE; уникання SELECT *.

Завдання до лабораторної роботи

1. Ознайомитися з теоретичними відомостями.
2. Встановити базу даних Sakila. Увімкнути журнал довгих запитів.

3. Виконати 5 запитів різної складності:
	№
	Тип запиту
	Приклад
	Мета оптимізації

	1
	Простий SELECT з фільтрацією
	SELECT * FROM film WHERE title LIKE '%love%';
	Створення індексу по title

	2
	JOIN трьох таблиць
	SELECT f.title, c.name, COUNT(r.rental_id) AS total FROM film f JOIN film_category fc ON f.film_id = fc.film_id JOIN category c ON fc.category_id = c.category_id JOIN inventory i ON f.film_id = i.film_id JOIN rental r ON i.inventory_id = r.inventory_id GROUP BY f.title, c.name;
	Перевірити покриваючі індекси

	3
	Підзапит у WHERE
	SELECT * FROM customer WHERE customer_id IN (SELECT customer_id FROM rental WHERE rental_date < '2006-01-01');
	Заміна підзапиту на JOIN

	4
	CTE + агрегування
	WITH top_rentals AS (SELECT film_id, COUNT(*) AS cnt FROM rental r JOIN inventory i ON r.inventory_id = i.inventory_id GROUP BY film_id) SELECT f.title, t.cnt FROM film f JOIN top_rentals t ON f.film_id = t.film_id ORDER BY t.cnt DESC LIMIT 10;
	Перевірити ефективність CTE проти підзапиту

	5
	Корельований підзапит
	SELECT c.first_name, c.last_name, (SELECT COUNT(*) FROM rental r WHERE r.customer_id = c.customer_id) AS rents FROM customer c;
	Замінити підзапит на JOIN + GROUP BY

4. Для кожного запиту:
‒ виконати EXPLAIN та зберегти результати;

‒ виконати EXPLAIN ANALYZE та зберегти фактичний час;
‒ оптимізувати: додати індекси (CREATE INDEX ...); змінити підзапит на JOIN; перевірити тип з’єднання (ref, range, eq_ref);

‒ повторити аналіз і порівняти час виконання (до/після).
5. Знайти 3 “повільні” запити у файлі /var/log/mysql/slow.log; виконати їх вручну через EXPLAIN ANALYZE; запропонувати оптимізацію (новий індекс, зміна структури запиту або нормалізація таблиць); довести покращення часу виконання в 2-3 рази.
6. Створити власний тест (симулятор навантаження):

Приклад тесту:

DELIMITER //

CREATE PROCEDURE stress_test()

BEGIN

 DECLARE i INT DEFAULT 1;

 WHILE i <= 5000 DO

 INSERT INTO rental (rental_date, inventory_id, customer_id, staff_id)

 VALUES (NOW(), FLOOR(RAND()*4000)+1, FLOOR(RAND()*500)+1, 1);

 SET i = i + 1;

 END WHILE;

END//

DELIMITER ;

CALL stress_test();

Виконати запит на вибірку з цієї таблиці та оцінити, як зростання обсягу даних впливає на продуктивність і плани виконання.
7. Оформити звіт та завантажити Системи електронного забезпечення навчання ЗНУ. Звіт повинен містити мету роботи, завдання роботи, тексти SQL запитів (до і після оптимізації), результати EXPLAIN / EXPLAIN ANALYZE, додані індекси, таблицю порівняння часу виконання, висновки.

Контрольні питання

1. Яка різниця між EXPLAIN і EXPLAIN ANALYZE?
2. Як впливає селективність індексу на швидкість запиту?
3. Як уникнути filesort у результаті EXPLAIN?
4. Чим небезпечні корельовані підзапити?
5. Як MySQL вирішує, який індекс обрати при наявності кількох?
6. У чому різниця між CTE і підзапитом у FROM?
7. Як індекси впливають на операції INSERT / UPDATE?

