Лекція 6. Моніторинг, аудит і логування баз даних

Слайд 1. Вступ: роль моніторингу в архітектурі баз даних
Моніторинг — це фундаментальна частина будь-якої сучасної бази даних, що забезпечує стабільність, безпеку та відмовостійкість.
Його завдання — спостереження за поведінкою системи в реальному часі для запобігання критичним збоям.
Без постійного моніторингу неможливо гарантувати цілісність даних та високу доступність сервісів.
Інструменти моніторингу збирають метрики: час відповіді, навантаження, затримки, помилки, обсяг журналів.
Аналіз цих показників дозволяє оптимізувати запити, керувати індексами, балансувати навантаження.
Моніторинг — це «нервова система» бази даних, що реагує на будь-яку аномалію ще до відмови.

Слайд 2. Концепція спостережності (Observability)
Сучасна архітектура баз даних спирається на концепцію спостережності — observability.
Вона охоплює три компоненти: метрики, логи й трасування (tracing).
Спостережність дозволяє не лише фіксувати помилки, а й розуміти причини їх виникнення.
Для цього системи збирають дані з різних рівнів — ядра СУБД, операційної системи, мережі, прикладного коду.
Відповідно до моделі Three Pillars of Observability, дані обробляються аналітичними модулями для формування звітів.
Це забезпечує прозорість роботи всієї базової інфраструктури та знижує час реакції на інциденти.

Слайд 3. Архітектура систем моніторингу
Типова архітектура моніторингу включає три рівні: агенти збору даних, сховище метрик, візуалізацію.
Агенти (наприклад node_exporter, pg_stat_statements, MongoDB Exporter) передають дані у Prometheus чи InfluxDB.
Сховище зберігає часові ряди метрик, які аналізуються й відображаються в Grafana або Kibana.
Дані можуть передаватись у реальному часі через REST API або WebSocket для миттєвих сповіщень.
Моніторинг інтегрується з CI/CD-конвеєрами для перевірки продуктивності після оновлень.
Завдяки такій архітектурі адміністратори отримують централізоване керування станом баз даних.

Слайд 4. Метрики ефективності баз даних
Ключові метрики: CPU usage, IO wait, query latency, transactions per second, cache hit ratio.
У PostgreSQL їх отримують через представлення pg_stat_database або pg_stat_statements.

SELECT datname, xact_commit, blks_read, blks_hit

FROM pg_stat_database;

MySQL використовує SHOW STATUS LIKE 'Threads_connected';, а MSSQL — sys.dm_exec_requests.
MongoDB надає команду db.serverStatus() з показниками операцій, затримок і пам’яті.
Регулярний збір метрик дозволяє автоматично виявляти деградацію продуктивності.

Слайд 5. Класифікація моніторингових інструментів
	Тип системи
	Приклади
	Призначення

	Метрики
	Prometheus, Zabbix, Datadog
	Збір і зберігання статистики

	Логування
	ELK Stack, Graylog
	Аналіз журналів помилок

	Трасування
	Jaeger, OpenTelemetry
	Відстеження ланцюгів запитів

	Alerting
	Alertmanager, PagerDuty
	Автоматичні сповіщення

Комбінування інструментів формує комплексну екосистему моніторингу.

Це зменшує людський фактор і забезпечує повну видимість роботи системи.

Слайд 6. Моніторинг для безпеки та відмовостійкості
Моніторинг — ключовий інструмент кіберзахисту.
Аномалії в поведінці (раптові піки запитів, зміни схем, збільшення I/O) часто вказують на атаки.
Системи типу SIEM (Splunk, Wazuh, ELK) аналізують логи БД для виявлення несанкціонованих операцій.
Звіти з моніторингу використовуються для планування резервного копіювання та оціночних тестів на відмову.
Розподілені репліки допомагають забезпечити безперервну роботу під час збоїв.
Таким чином, моніторинг є частиною архітектури відмовостійкості та безпеки.

Слайд 7. Метрики відмовостійкості
До метрик відмовостійкості належать: Uptime %, Mean Time to Failure (MTTF), Mean Time to Repair (MTTR).
Розрахунок MTTF проводиться на основі журналів інцидентів та відновлень.

SELECT AVG(failure_interval) AS MTTF

FROM system_failures;

Порівняння значень дозволяє виявляти слабкі місця в інфраструктурі.
Моніторинг MTTR допомагає оцінити ефективність плану відновлення (Disaster Recovery).
Ці метрики використовуються для обчислення показника надійності Availability = MTTF / (MTTF + MTTR).

Слайд 8. Практичний приклад Prometheus + PostgreSQL
Prometheus — популярна система моніторингу, що працює за принципом pull-model.
PostgreSQL-експортер надає HTTP-ендпоінт з метриками:

docker run -d \

 -p 9187:9187 \

 -e DATA_SOURCE_NAME="postgresql://user:pass@host:5432/db" \

 quay.io/prometheuscommunity/postgres-exporter

Дані збираються кожні N секунд і візуалізуються в Grafana.
Це дозволяє відстежувати затримки транзакцій та аналітику запитів.
При відхиленні від нормальних значень відправляється автоматичне сповіщення.

Слайд 9. Моніторинг MongoDB через Cloud Manager
MongoDB Cloud Manager та Atlas надають інтегрований моніторинг кластерів.
Метрики збираються через агент і передаються в панель управління.
Вимірюються показники операцій читання/запису, блокування, розмір реплік.

db.serverStatus().metrics.document
Система виявляє вузли з відставанням реплікації та помилки в оптимізації індексів.
Завдяки візуалізації адміністратор бачить повну динаміку розподілу навантаження.

Слайд 10. Інтеграція з Zabbix для MSSQL та MySQL
Zabbix використовується для моніторингу MS SQL Server та MySQL.
Налаштовуються шаблони, які зчитують показники через ODBC або SQL запити.

SELECT cntr_value

FROM sys.dm_os_performance_counters

WHERE counter_name = 'Transactions/sec';

Система виявляє перевищення порогів та надсилає повідомлення адміністратору.
Додатково можна налаштувати web-hooks для інтеграції з Slack або Telegram.
Zabbix є гнучким інструментом для корпоративних інсталяцій з великими обсягами даних.

Слайд 11. Поняття аудиту в системах баз даних
Аудит — це процес фіксації всіх операцій, виконаних користувачами в базі даних.
Його головна мета — контроль дій, що впливають на цілісність, безпеку або доступ до даних.
Системи аудиту дозволяють встановити, хто, коли і яку дію виконав.
Вони створюють історію змін, що стає базою для розслідувань або аналізу інцидентів.
У корпоративних системах аудит є обов’язковим елементом інформаційної безпеки.
Його результати використовуються для забезпечення відповідності стандартам ISO, GDPR чи HIPAA.

Слайд 12. Механізми аудиту в різних СУБД
У PostgreSQL реалізується через розширення pgaudit, що логують команди DDL/DML.
MySQL має змінну audit_log_policy=ALL, яка фіксує всі запити користувачів.
У MSSQL використовується SQL Server Audit — об’єкти Server Audit та Audit Specification.
MongoDB реалізує аудит на рівні oplog у replica set, записуючи всі зміни документів.
Такі механізми дозволяють точно встановити історію операцій у часі.
Рівень деталізації аудиту визначається політикою безпеки конкретної організації.

Слайд 13. Приклад тригера аудиту в PostgreSQL
CREATE TABLE audit_log (

 id SERIAL PRIMARY KEY,

 username TEXT,

 operation TEXT,

 table_name TEXT,

 timestamp TIMESTAMP DEFAULT now()

);

CREATE OR REPLACE FUNCTION log_action()

RETURNS TRIGGER AS $$

BEGIN
 INSERT INTO audit_log(username, operation, table_name)

 VALUES (current_user, TG_OP, TG_TABLE_NAME);

 RETURN NEW;

END;

$$ LANGUAGE plpgsql;

CREATE TRIGGER trg_audit

AFTER INSERT OR UPDATE OR DELETE ON employees

FOR EACH ROW EXECUTE FUNCTION log_action();

Така функція зберігає всі зміни у таблиці audit_log, створюючи повну історію дій.

Слайд 14. Приклад аудиту в MSSQL
CREATE SERVER AUDIT AuditDB

TO FILE (FILEPATH = 'C:\AuditLogs\', MAXSIZE = 10 MB);

ALTER SERVER AUDIT AuditDB WITH (STATE = ON);

CREATE DATABASE AUDIT SPECIFICATION AuditSpec

FOR SERVER AUDIT AuditDB

ADD (UPDATE ON DATABASE::[HR] BY PUBLIC),

ADD (DELETE ON DATABASE::[HR] BY PUBLIC);

ALTER DATABASE AUDIT SPECIFICATION AuditSpec WITH (STATE = ON);

MSSQL дозволяє зберігати журнали в окремих файлах з цифровим підписом.
Такий підхід гарантує неможливість модифікації аудиторських записів.
Це забезпечує доказову базу при інцидентах безпеки або внутрішніх перевірках.

Слайд 15. Аудит у MySQL
MySQL використовує Audit Log Plugin, який активується в my.cnf:

plugin-load-add=audit_log.so

audit_log_policy=ALL

audit_log_format=JSON

Це дозволяє отримати JSON-звіти про всі операції в системі.
Такі файли легко інтегруються з Elasticsearch або Splunk для аналітики.
Завдяки цьому адміністратор може бачити активність усіх користувачів у реальному часі.
Лог-файли можуть архівуватись і перевірятись скриптами безпеки.

Слайд 16. Порівняльна таблиця аудиторських рішень
	СУБД
	Механізм
	Формат
	Особливості

	PostgreSQL
	pgaudit, тригери
	TEXT/JSON
	Повна гнучкість налаштувань

	MySQL
	Audit Log Plugin
	JSON/XML
	Легка інтеграція з ELK

	MSSQL
	SQL Server Audit
	Binary
	Підтримка цифрового підпису

	MongoDB
	Oplog Audit
	BSON
	Робота у replica set

Таким чином, кожна система пропонує власний рівень деталізації та безпеки. Вибір залежить від політики організації й вимог до комплаєнсу

Слайд 17. Логування змін у базах даних
Логування фіксує технічні події, що відбуваються під час виконання запитів.
Воно охоплює помилки, попередження, інформаційні повідомлення, час виконання.
У PostgreSQL налаштовується через log_statement, log_min_duration_statement.
MySQL має параметр general_log та slow_query_log для фіксації повільних запитів.
MongoDB веде mongod.log, де відображено всі дії з колекціями.
Логи слугують базою для подальшого аналізу й оптимізації роботи СУБД.

Слайд 18. Приклад конфігурації логування
PostgreSQL (postgresql.conf):
logging_collector = on
log_directory = 'pg_log'
log_statement = 'all'
log_min_duration_statement = 200
MySQL (my.cnf):
general_log=1
slow_query_log=1
long_query_time=1
log_output=TABLE

Такі параметри дозволяють збирати як повну історію запитів, так і лише критичні затримки.
Отримані логи аналізуються системами моніторингу для пошуку вузьких місць.

Слайд 19. Аналіз логів через ELK Stack
ELK (Elasticsearch, Logstash, Kibana) — найпоширеніший стек для обробки журналів.
Logstash збирає логи з PostgreSQL, MySQL або MongoDB, нормалізує й передає у Elasticsearch.
Далі Kibana візуалізує їх у вигляді графіків і таблиць.
Можна побудувати дашборд, який показує кількість запитів, помилки, час відповіді.
Також підтримуються автоматичні алерти при виявленні шаблонів атак.
ELK дозволяє інтегрувати моніторинг, логування та аудит у єдину систему.

Слайд 20. Порівняння систем логування
	Система
	Призначення
	Формат
	Сильні сторони

	ELK Stack
	Централізований збір і аналіз
	JSON
	Потужна аналітика та візуалізація

	Graylog
	Корпоративний моніторинг логів
	Syslog
	Легка інтеграція з SIEM

	Splunk Free
	Аналітика подій
	JSON/XML
	Інтелектуальні дашборди

	Fluentd
	Легковага альтернатива
	Text
	Висока продуктивність

Вибір залежить від обсягу логів, бюджету й вимог до інтеграції з безпекою. ELK — найгнучкіше рішення для систем будь-якого масштабу.
Слайд 21. Метрики продуктивності баз даних
Моніторинг продуктивності ґрунтується на метриках, що відображають стан ключових ресурсів.
Серед них — CPU load, disk I/O, memory usage, locks, query latency, connections.
У PostgreSQL доступні перегляди pg_stat_activity, pg_locks, pg_stat_bgwriter.

SELECT datname, state, wait_event_type, query

FROM pg_stat_activity;

MySQL використовує SHOW GLOBAL STATUS;, MSSQL — sys.dm_exec_sessions.
Аналіз цих даних дозволяє побачити «вузькі місця» й відреагувати до виникнення збоїв.

Слайд 22. Візуалізація метрик у Grafana
Grafana — потужна платформа для візуалізації метрик з Prometheus, InfluxDB чи Elastic.
Вона дозволяє створювати інтерактивні панелі для моніторингу у реальному часі.
Дані можуть групуватись за користувачами, транзакціями або таблицями.
Наприклад, графік затримки запитів дозволяє виявити години пікового навантаження.
Для PostgreSQL існують готові шаблони з панелями: Connections, Query Time, Cache Hit Ratio.
Використання Grafana спрощує технічний контроль навіть у великих кластерах баз даних.

Слайд 23. Система сповіщень (Alerting)
Система сповіщень — це важлива частина моніторингу, що дозволяє швидко реагувати на аномалії.
Alertmanager (для Prometheus) відправляє повідомлення через Email, Slack, Telegram або PagerDuty.
Сповіщення формуються на основі правил:

- alert: HighCPUUsage
 expr: rate(process_cpu_seconds_total[1m]) > 0.8
 for: 2m
 labels:
 severity: critical
 annotations:
 description: "Високе навантаження на CPU (>80%)"
Це гарантує, що адміністратори миттєво отримують інформацію про потенційні відмови.
Такий підхід скорочує час простою системи.

Слайд 24. Автоматичні дії при інцидентах
Сучасні системи підтримують auto-healing — автоматичне реагування на помилки.
Приклад: якщо репліка відстає на 10 секунд, система автоматично її перезапускає.
Prometheus разом з Alertmanager може викликати API-скрипти для таких сценаріїв.

curl -X POST https://ops-system/api/restart-node --data "node=db-slave-01"
Це дозволяє знизити залежність від людського фактора.
Автоматизація реакцій підвищує стабільність роботи бази в реальному часі.

Слайд 25. Контроль доступів і аудит користувачів
Моніторинг має включати не лише технічні, а й поведінкові аспекти — активність користувачів.
У PostgreSQL можна відстежувати підключення через log_connections і log_disconnections.
MSSQL має таблицю sys.dm_exec_sessions, що містить поточних користувачів.

SELECT login_name, host_name, program_name FROM sys.dm_exec_sessions;

MongoDB пропонує system.profile, який зберігає інформацію про всі операції CRUD.
Такі журнали використовуються для виявлення підозрілої активності або атак.

Слайд 26. Виявлення аномалій поведінки
Аномалії можуть проявлятись у вигляді незвичайних шаблонів запитів або частоти дій.
Аналітичні модулі виявляють відхилення від базової поведінки користувача.
Наприклад, раптове масове видалення або експорт даних поза робочий час.
Системи типу Splunk Enterprise Security або Wazuh SIEM аналізують такі події.
Це підвищує рівень кіберзахисту на рівні СУБД.
Інтеграція з моніторингом забезпечує комплексний контроль як системних, так і поведінкових ризиків.

Слайд 27. Метрики якості обслуговування (SLA/SLO)
Під час моніторингу враховують бізнес-метрики: SLA (Service Level Agreement) і SLO (Service Level Objective).
Вони визначають допустимий рівень відмов, час відгуку та доступність системи.
Наприклад, SLA = 99.95% означає максимум 22 хвилини простою на місяць.

SELECT ROUND(100*(1 - downtime_minutes/total_minutes),2) AS uptime_percent

FROM availability_log;

Регулярний контроль SLA дозволяє оцінити ефективність ІТ-процесів.
Високі показники SLO — це ознака надійності й правильного моніторингу.

Слайд 28. Моніторинг і DevOps інтеграція
У DevOps-практиках моніторинг — це частина циклу CI/CD.
Після кожного деплою виконується збір метрик і тестування на продуктивність.
Якщо показники перевищують допустимі межі, реліз автоматично відкочується.
Prometheus та Grafana інтегруються з Jenkins, GitLab CI або Kubernetes.

stages:
 - deploy
 - monitor
script:
 - promtool test rules ./alerts.yml
Це створює замкнений цикл контролю, що підтримує якість і стабільність системи.

Слайд 29. Моніторинг контейнеризованих баз даних
Docker і Kubernetes активно використовуються для розгортання баз даних.
Моніторинг у таких середовищах здійснюється через cAdvisor, Kube-state-metrics, Prometheus Operator.
Кожен контейнер має власні метрики CPU, пам’яті, мережі та стану.
Grafana може показувати дашборди для кожного pod або namespace.
Також підтримується автоматичне масштабування при перевищенні навантаження.
Контейнерний моніторинг забезпечує гнучкість і стабільність при великій кількості інстансів БД.

Слайд 30. Порівняльна таблиця DevOps моніторингових інструментів
	Інструмент
	Тип інтеграції
	Підтримка баз
	Особливості

	Prometheus
	CI/CD
	PostgreSQL, MySQL
	Глибока інтеграція, власний Alertmanager

	Datadog
	SaaS
	MSSQL, MongoDB
	Машинне навчання для аномалій

	Zabbix
	On-prem
	Усі
	SLA моніторинг, SNMP-підтримка

	Grafana Cloud
	Cloud
	PostgreSQL, Elastic
	Візуалізація + алерти

Використання DevOps моніторингу дозволяє забезпечити безперервний контроль і стабільність. Це суттєво скорочує час реакції на проблеми та покращує якість обслуговування.
Слайд 31. Моніторинг доступності бази даних
Моніторинг доступності визначає, чи відповідає база даних на запити користувачів.
Основні перевірки: час відповіді, стан мережевого підключення, доступність порту.
Prometheus використовує модуль blackbox_exporter, який тестує доступність через TCP/HTTP.

modules:
 tcp_check:
 prober: tcp
 timeout: 5s
 tcp:
 query_response:
 - expect: "PostgreSQL"
Якщо база не відповідає протягом встановленого часу, створюється alert.
Такі тести дозволяють швидко виявити не лише збій СУБД, але й проблеми мережі.

Слайд 32. Значення моніторингу для безпеки та відмовостійкості
Моніторинг бази даних — це процес безперервного спостереження за її станом, продуктивністю та стабільністю. Його мета — вчасно виявити потенційні збої, витоки ресурсів або спроби несанкціонованого доступу.

У відмовостійких системах моніторинг є невід’ємною частиною архітектури, оскільки без нього неможливо гарантувати оперативне реагування на проблеми. Він охоплює контроль CPU, пам’яті, дисків, транзакцій, реплікаційних лагів.

Розвинений моніторинг також включає систему попереджень (alerting), яка надсилає повідомлення при досягненні критичних порогів.

Основна мета — запобігти простою системи через раннє виявлення аномалій, забезпечуючи безперервність бізнес-процесів.

Слайд 33. Типи моніторингу у базах даних
Моніторинг поділяється на три рівні: інфраструктурний, прикладний та транзакційний.
Інфраструктурний контролює ресурси хостів і віртуальних машин, де розташована база. Прикладний — відстежує запити, блокування, швидкість індексації. Транзакційний — контролює бізнес-логіку операцій.

У PostgreSQL використовується системний погляд pg_stat_activity для перегляду активних процесів. У MySQL — таблиці performance_schema. MSSQL має sys.dm_exec_requests і sys.dm_os_wait_stats.

MongoDB надає команду db.serverStatus(), що виводить основні метрики у JSON.

Комбінація різних рівнів моніторингу забезпечує комплексний контроль і ранню діагностику збоїв у всьому життєвому циклі системи.

Слайд 34. Метрики продуктивності: ключові показники
Основні метрики продуктивності включають latency (затримку), throughput (пропускну здатність), CPU load, I/O wait, replication lag, cache hit ratio, deadlocks та locks count.

У PostgreSQL показник cache_hit_ratio розраховується так:

SELECT sum(blks_hit) / (sum(blks_hit) + sum(blks_read)) AS cache_hit_ratio FROM pg_statio_user_tables;

У MySQL — через SHOW STATUS LIKE 'Innodb_buffer_pool_read%';. MSSQL надає sys.dm_os_performance_counters. MongoDB — поле metrics.queryExecutor.scannedObjects.

Високі затримки чи часті блокування вказують на потребу оптимізації запитів або індексів. Збір таких показників у динаміці дозволяє прогнозувати деградацію системи.

Слайд 35. Використання Prometheus для моніторингу
Prometheus — один із найпоширеніших інструментів збору метрик у базах даних. Він працює за принципом pull, регулярно опитуючи експортери (Prometheus exporters).

Для PostgreSQL — це postgres_exporter, для MySQL — mysqld_exporter, MSSQL має wmi_exporter, а MongoDB — mongodb_exporter.

Конфігурація Prometheus:

scrape_configs:
 - job_name: 'postgresql'
 static_configs:
 - targets: ['localhost:9187']

Дані виводяться через Grafana у вигляді інтерактивних панелей, що дозволяє візуалізувати завантаження CPU, реплікаційні лаги, кількість транзакцій тощо.

Prometheus також забезпечує можливість створення правил оповіщення про критичні ситуації (Alertmanager).

Слайд 36. Grafana — візуалізація і аналітика
Grafana — це платформа для візуалізації метрик, яка інтегрується з Prometheus, InfluxDB, Loki та іншими системами моніторингу.

Вона дозволяє створювати дашборди для DBA і DevOps, відображаючи стан серверів, SQL-запитів, реплік і сховищ.
Наприклад, дашборд PostgreSQL може включати графіки по connections, locks, deadlocks, replication_delay.

Перевагою Grafana є інтерактивність — адміністратор може масштабувати графіки, обирати діапазони часу, налаштовувати алерти на певні події.

Такі інструменти є стандартом промислової експлуатації, особливо в кластерних і контейнеризованих середовищах (Kubernetes).

Слайд 36. Аудит дій користувачів
Аудит — це процес фіксації операцій користувачів для забезпечення прозорості, безпеки та дотримання політик доступу. Він дозволяє відстежити, хто, коли і що змінював у базі даних.

У PostgreSQL використовується розширення pgaudit, яке записує всі дії користувачів у журнали. У MySQL — audit_log_plugin, у MSSQL — SQL Server Audit. MongoDB має auditLog, який можна активувати у mongod.conf.

Приклад активації аудиту в PostgreSQL:

CREATE EXTENSION pgaudit;

Аудит важливий не лише для безпеки, а й для відновлення історії подій після інцидентів або аналізу компрометацій даних.

Слайд 37. Логування змін у базі
Логування змін (change logging) дозволяє зберігати всі події оновлення, вставки або видалення у спеціальних журналах. Це корисно для відстеження помилок, тестування і відкату транзакцій.

У PostgreSQL застосовують WAL (Write-Ahead Log), у MySQL — Binary Log (binlog), у MSSQL — Transaction Log, а MongoDB веде Oplog для реплікації.

Наприклад, у PostgreSQL WAL зберігає записи у каталозі pg_wal і використовується для відновлення бази після збою.

Журнали можна аналізувати для визначення часу падіння, ідентифікації останніх транзакцій або створення реплік. Вони — серце будь-якої відмовостійкої архітектури.

Слайд 38. Централізоване логування (ELK Stack)
Для масштабних систем логування потрібно централізувати. ELK Stack (Elasticsearch, Logstash, Kibana) є типовим рішенням для збору, аналізу і візуалізації логів.

Бази даних передають свої журнали до Logstash через Filebeat або syslog, після чого дані індексуються в Elasticsearch. Kibana дозволяє швидко фільтрувати події, будувати графіки та створювати алерти.

Приклад pipeline для PostgreSQL:

input { file { path => "/var/log/postgresql/*.log" } }

output { elasticsearch { hosts => ["localhost:9200"] } }

Такі системи значно полегшують аудит, оскільки дозволяють обробляти гігабайти журналів у реальному часі.

Слайд 39. Моніторинг безпеки та інцидентів
Моніторинг безпеки — це процес відстеження спроб доступу, підозрілих транзакцій або SQL-ін’єкцій. PostgreSQL і MySQL підтримують логування невдалих спроб входу (log_connections, log_disconnections).

Інтеграція з SIEM-системами (Splunk, Graylog, Wazuh) дозволяє отримувати оповіщення при виявленні аномальної активності.

У MongoDB для цього застосовується security.auditLog.destination: syslog, MSSQL може інтегруватися з Azure Sentinel.

Такі інструменти дозволяють організаціям дотримуватися стандартів безпеки (ISO 27001, GDPR) і проводити розслідування після інцидентів.

Слайд 40. Таблиця порівняння систем моніторингу
	Система
	Підтримка БД
	Тип метрик
	Алерти
	Візуалізація

	Prometheus
	PostgreSQL, MySQL, MSSQL, MongoDB
	Технічні
	Так (Alertmanager)
	Grafana

	ELK Stack
	Усі
	Логи та аудити
	Так
	Kibana

	Zabbix
	Різні СУБД
	Системні + SQL
	Так
	Вбудована

	Azure Monitor
	MSSQL
	Повна інтеграція
	Так
	Power BI

Моніторинг та аудит — це не лише інструменти адміністрування, а й складова корпоративної безпеки. Їх впровадження дає змогу не лише попереджати відмови, а й розуміти причини деградації продуктивності.

Комплексний підхід до моніторингу забезпечує проактивну підтримку системи замість реактивної, знижуючи ризики простоїв.

Слайд 41. Моніторинг резервних систем
Моніторинг гарантує вчасне виявлення проблем із копіями чи репліками.
Використовуються інструменти Prometheus, Grafana, Zabbix або pgBackRest Monitor.

Наприклад, для PostgreSQL можна відстежувати затримку реплікації:

SELECT client_addr, pg_wal_lsn_diff(pg_current_wal_lsn(), replay_lsn) AS delay;

MongoDB пропонує db.printSlaveReplicationInfo(), MSSQL — sys.dm_hadr_database_replica_states, MySQL — SHOW SLAVE STATUS\G.
Моніторинг також включає сповіщення (alerting) через Telegram, Slack або електронну пошту при відхиленнях від нормальної поведінки системи.
Слайд 42. Резервний аудит логів
Збереження копій логів у резервному сховищі забезпечує доказову цінність даних.
Рекомендовано реалізовувати централізоване сховище, наприклад Elastic Snapshot або AWS S3 Backup.
Скрипт резервного копіювання PostgreSQL:

pg_basebackup -D /backup/pg_$(date +%F) -Ft -z -P

aws s3 sync /backup s3://db-audit-logs/

Резервні логи зберігаються у зашифрованому вигляді з контрольними сумами SHA-256.
Це забезпечує неможливість фальсифікації аудиторських даних і відповідність стандартам безпеки.

Слайд 43. Виявлення інцидентів у логах
Сучасні системи аналізують логи на предмет аномалій, наприклад, спроб SQL-ін’єкцій або brute-force.
Використовуються правила регулярних виразів і шаблонів поведінки.

grep -E "DROP|ALTER|GRANT" /var/log/postgresql/postgresql.log

У поєднанні з Wazuh SIEM або Graylog Pipeline Rules можна створювати автоматичні тригери на підозрілі дії.
Це дає змогу реагувати миттєво — наприклад, блокувати IP або користувача.
Моніторинг логів є найефективнішим способом запобігання інцидентам безпеки.

Слайд 44. Моніторинг транзакцій і блокувань
Транзакції можуть спричиняти «deadlock» або затримку системи.
PostgreSQL надає уявлення pg_locks, що відображає активні блокування.

SELECT pid, mode, relation::regclass, granted

FROM pg_locks WHERE NOT granted;

MySQL — через SHOW ENGINE INNODB STATUS;, MSSQL — через sys.dm_tran_locks.
Моніторинг дозволяє виявляти джерела блокувань і оптимізувати транзакційну логіку.
Автоматичне завершення «завислих» транзакцій значно підвищує відмовостійкість.

Слайд 45. Моніторинг простору зберігання
Використання дискового простору є критичною метрикою для стабільності бази.
PostgreSQL надає функцію pg_total_relation_size() для вимірювання обсягів таблиць.

SELECT relname, pg_size_pretty(pg_total_relation_size(relid))

FROM pg_catalog.pg_statio_user_tables;

У MongoDB аналогічну інформацію надає db.stats().storageSize.
Регулярний моніторинг допомагає уникнути переповнення журналів транзакцій.
У Zabbix або Grafana можна задати пороги попередження для вільного простору.

Слайд 46. Контроль стану реплікаційних вузлів
У відмовостійких системах важливо відстежувати синхронізацію реплік.
PostgreSQL — через pg_stat_replication:

SELECT client_addr, state, sent_lsn, replay_lsn FROM pg_stat_replication;

MySQL — SHOW SLAVE STATUS\G, MSSQL — sys.dm_hadr_availability_replica_states.
Якщо відставання перевищує поріг, система може виконати автоматичне перемикання.
Моніторинг реплікацій — це основа для HA (High Availability)-архітектури.
Без нього неможливо гарантувати актуальність даних після відмов вузлів.

Слайд 47. Аудит змін у схемі бази даних
Контроль DDL-операцій (ALTER, CREATE, DROP) є частиною глибокого аудиту.
У PostgreSQL можна створити тригер ddl_command_end для запису змін у таблицю:

CREATE EVENT TRIGGER audit_ddl

ON ddl_command_end

EXECUTE FUNCTION log_ddl();

Такі записи допомагають простежити історію змін структури бази.
У MySQL та MSSQL існують журнали schema change history для тих самих цілей.
Це дозволяє швидко відновити попередню версію схеми після некоректних оновлень.

Слайд 48. Метрики стабільності системи
Основні показники стабільності: Error Rate, Response Time, Uptime, Recovery Speed.
Їх використовують для прогнозування потенційних відмов.
Prometheus формує ці метрики на основі часових рядів, що аналізуються у Grafana.

rate(http_requests_total{status!~"2.."}[5m])

Якщо частка помилок перевищує 2%, система надсилає alert «Degradation Detected».
Таким чином формується проактивна стратегія технічного обслуговування.

Слайд 49. Практичні інструменти контролю стану бази
	Інструмент
	Тип
	Особливості
	Формат

	Prometheus + Grafana
	Моніторинг
	Метрики часу виконання, CPU, пам’ять
	Time-series

	Zabbix
	Моніторинг + алерти
	Інтеграція з SNMP, SLA
	RDB

	ELK Stack
	Логування
	Централізована аналітика подій
	JSON

	Wazuh SIEM
	Безпека
	Аномалії, політики доступу, комплаєнс
	Syslog

	PgAudit, SQL Audit
	Аудит
	Логи змін, операцій DDL/DML
	TXT/BIN

Комбінування цих систем забезпечує комплексну стратегію нагляду й безпеки баз даних.

Слайд 50. Висновки та рекомендації
Моніторинг, аудит і логування утворюють три взаємопов’язані стовпи відмовостійкості.
Їх поєднання дозволяє не лише виявляти інциденти, а й передбачати потенційні збої.
Регулярний аналіз метрик сприяє оптимізації запитів, ресурсів і структур даних.
Аудит забезпечує контроль дій користувачів і юридичну доказовість змін.
Інтеграція моніторингу в DevOps-конвеєри створює замкнений цикл безпеки.
Таким чином, ефективна система моніторингу — це запорука надійності, прозорості та довіри до бази даних.

