Лекція 7. Вступ до NoSQL та сучасні підходи до зберігання даних
Слайд 1. Вступ до NoSQL систем зберігання даних
NoSQL — це клас сучасних систем управління даними, що зʼявився у відповідь на потреби високонавантажених та масштабованих інтернет-проєктів. 
На відміну від класичних реляційних баз, NoSQL не дотримується суворої
схеми даних, що дозволяє легше працювати з часто змінюваними структурами. 

Основна мета NoSQL — ефективно опрацьовувати великі обсяги даних,
які не підходять під традиційну табличну модель.

NoSQL популярний у веб-додатках, IoT, аналітиці, стрімінгових системах
та сервісах реального часу. Він пропонує інші моделі консистентності
та масштабування, ніж класичні СУБД. Завдяки гнучкій структурі,
такі бази легше адаптуються до динамічних потреб бізнесу.
Поява NoSQL стала відповіддю на обмеження вертикального масштабування
та складнощі забезпечення продуктивності у реляційних базах.
Слайд 2. Чому виникла потреба у NoSQL
Традиційні реляційні СУБД оптимізовані для транзакційних систем,
де дані строго структуровані. Але сучасні програми генерують гігабайти
неконсистентних і напівструктурованих даних. Це робить класичну схему
неефективною. Розробники потребували систем, що легко масштабуються
горизонтально, а не вертикально. Саме це стало ключовим драйвером
появи NoSQL парадигми.

Поширення Web 2.0, соціальних мереж, мобільних додатків вимагало
інших рішень — здатних обробляти мільйони запитів на секунду зорієнтовано
на доступність, а не ідеальну консистентність. Великі корпорації
на кшталт Google, Facebook і Amazon розробили власні NoSQL системи,
які стали основою відкритих проєктів. Це сприяло появі MongoDB, Cassandra,
Couchbase, Redis та багатьох інших рішень.

Слайд 3. Відмінності між SQL і NoSQL
Головна різниця між SQL і NoSQL полягає у підходах до структури
та зберігання даних. SQL бази дотримуються фіксованих схем,
визначених заздалегідь, тоді як NoSQL дозволяє зберігати записи
з різними наборами полів. Це дає змогу легко змінювати моделі даних
у процесі розробки. NoSQL бази не застосовують складні JOIN-операції,
замість цього дублюють або денормалізують дані.

Ще одна важлива відмінність — у моделі консистентності. SQL бази
слідують ACID гарантіям, тоді як NoSQL орієнтується на BASE —
гнучкішу модель, що забезпечує високу доступність. Реляційні системи
гарно підходять для банківських транзакцій, тоді як NoSQL системи
ідеальні для високонавантажених розподілених веб-платформ.





Слайд 4. ACID vs BASE
ACID — це набір вимог до транзакцій: атомарність, консистентність,
ізольованість та довговічність. Він гарантує правильність даних,
але знижує продуктивність у розподілених середовищах. NoSQL системи
часто переходять до BASE — Basically Available, Soft state,
Eventual consistency. Це дозволяє підтримувати високу доступність навіть
при часткових збоях мережі.

BASE передбачає, що дані можуть бути тимчасово неконсистентними,
але врешті узгодяться. Такий підхід робить NoSQL бази оптимальними
для соціальних мереж, логів, інформаційних стрімів, де затримка
не є критичною. Натомість ACID залишається необхідним у фінансових,
медичних та інших чутливих до помилок системах.

Слайд 5. CAP теорема і NoSQL
CAP теорема говорить, що у розподіленій системі неможливо одночасно
гарантувати консистентність (C), доступність (A) та стійкість
до розділення мережі (P). NoSQL системи, як правило, роблять вибір
між CA, CP або AP конфігураціями, залежно від задач бізнесу.
Наприклад, Cassandra орієнтується на AP, а MongoDB — на CP.

Вибір між характеристиками визначає архітектуру додатка.
Якщо система має бути завжди доступною, навіть у разі розриву мережі,
приймається AP модель. Якщо ж важливо завжди отримувати правильні дані,
вибирають CP модель. Реляційні SQL бази зазвичай тяжіють до CA
та не призначені для масового горизонтального масштабування.

Слайд 6. Типи NoSQL: огляд
NoSQL бази даних поділяються на чотири основні категорії:
документні, ключ-значення, графові та колоночні. Кожен тип
пристосований для певних сценаріїв. 
Документні бази зберігають JSON-подібні обʼєкти. 
Ключ-значення зосереджені на швидкому доступі до кешованих даних.
Графові моделі призначені для зв’язків між сутностями.

Колоночні NoSQL бази оптимізовані для аналітичних запитів та високої швидкості агрегування. 
Вибір типу залежить від того, як структура даних взаємодіє з бізнес-логікою. Важливо враховувати не лише швидкість, а й вимоги до консистентності, обсягів, характеристик доступу та масштабування.




Слайд 7. Документні сховища — основи
Документні NoSQL бази зберігають дані у вигляді JSON, BSON або XML
документів. Найвідоміший представник — MongoDB. Такий формат
простий у читанні та дозволяє вміщувати вкладені структури.
Документи можуть мати різні поля, що дає гнучкість у моделюванні.
Це робить документні бази зручними для швидкого прототипування.

Документ підходить для зберігання профілів користувачів,
замовлень, структурованих об’єктів. Читання та запис відбувається
значно швидше, ніж у SQL через відсутність JOIN. Замість них
часто застосовують денормалізацію. Документні бази чудово працюють
у мікросервісах та гнучких веб-платформах.




Слайд 8. MongoDB: приклад документа
MongoDB використовує BSON — двійкову форму JSON, що дозволяє
ефективно зберігати складні типи даних. Документ зберігається у колекції,
аналогічно до рядків у таблиці. Одні документи можуть містити додаткові
поля, яких немає в інших. Це робить схему гнучкою.

Приклад документа:
{
  "userId": 102,
  "name": "Anna",
  "orders": [
    {"id": 1, "sum": 200},
    {"id": 2, "sum": 150}
  ]
}
MongoDB дозволяє індексувати вкладені об’єкти, підтримує агрегування
та має власну мову запитів, схожу на JSON.

Слайд 9. Операції CRUD у MongoDB
MongoDB підтримує гнучку мову команд, що дозволяє маніпулювати
даними без складних SQL запитів. Усі операції виконуються методом
collection.<operation>(). Вставка може виконуватися без попереднього
визначення структури. Видалення та оновлення підтримує фільтри
і оператори оновлення, такі як $set або $inc.

Приклади CRUD:
db.users.insertOne({name:"Ivan", age:30});

db.users.find({age:{$gt:25}});

db.users.updateOne({name:"Ivan"}, {$set:{age:31}});

db.users.deleteOne({name:"Ivan"});

Це спрощує написання бізнес-логіки і дозволяє швидко масштабувати
продукт.

Слайд 10. Колоночні NoSQL сховища
Колоночні бази — Cassandra, HBase — зберігають дані у вигляді колонок, а не рядків. Це дозволяє виконувати запити, що фокусуються на окремих атрибутах. Колоночні бази оптимізовані для аналітики, масового запису та зберігання телеметрії. Вони підтримують високу доступність і масштабуються горизонтально.

Колоночні сховища використовують денормалізовану модель даних, де таблиця має сімейства колонок, згрупованих за логічними ознаками. Наприклад, у Cassandra кожен запис визначається первинним ключем і набором колонок, які можуть змінюватися між записами. Така модель ідеальна для часових рядів та IoT.




Слайд 11. Приклад таблиці Cassandra
Cassandra використовує CQL — Cassandra Query Language, схожу на SQL,
але орієнтовану на розподілені системи. Таблиці зберігаються у вигляді
розподілених сегментів, що робить Cassandra ефективною для високонавантажених
систем. Кластер може мати сотні нод.

Приклад створення таблиці:
CREATE TABLE events (

  event_id uuid PRIMARY KEY,

  type text,

  timestamp bigint,

  details text

);

Вставка даних:
INSERT INTO events (event_id, type, timestamp)

VALUES (uuid(), 'login', 16901010);

Слайд 12. Графові NoSQL бази
Графові бази — Neo4j, ArangoDB, JanusGraph — призначені для моделювання відносин між сутностями. Об’єкти називаються вузлами (nodes), а зв’язки — ребрами (edges). Графи оптимальні там, де важливі складні зв’язки: соціальні мережі, рекомендаційні системи, аналіз шахрайства.

Графові бази дозволяють швидко знаходити шляхи між вузлами через алгоритми shortest path, PageRank, centrality. Вони забезпечують гнучку структуру: різні вузли можуть мати різні атрибути. Запити у Neo4j пишуть мовою Cypher — декларативною і зручною
для опису графових операцій.




Слайд 13. Приклад запиту в Neo4j
Cypher дозволяє описувати структуру графа за допомогою ASCII-графів —
вузлів і стрілок. Це робить мову інтуїтивною. Графові запити
виконуються ефективніше, ніж JOIN у реляційних базах, оскільки
зв’язки зберігаються як частина структури.

Приклад:
MATCH (u:User)-[:FRIEND]->(f:User)

WHERE u.name = "Anna"

RETURN f.name;

Цей запит повертає всіх друзів Анни. Neo4j зберігає зв’язки
у вигляді pointer-based структур, що дозволяє миттєво переходити
від вузла до вузла.

Слайд 14. Бази типу ключ-значення
Key-Value бази — Redis, Riak, DynamoDB — найпростіші і найшвидші NoSQL системи. Вони зберігають дані у вигляді пари ключ → значення. Значення може бути рядком, списком, хешем або іншою структурою. Redis працює у оперативній пам’яті, тому дуже швидкий і підходить для кешування.

Key-Value моделі часто використовують у сесіях користувачів, пошукових системах, чергах повідомлень. Якщо ключ відомий, доступ до даних — O(1). Але пошук за полями неможливий — це слабкість key-value моделей.




Слайд 15. Приклади команд Redis
Redis використовує власний протокол і консольний інтерфейс.
Команди прості, але дуже потужні. Redis підтримує TTL — автоматичне
видалення даних через певний час. Це робить його зручним
для кешування авторизаційних токенів або сесій.

Приклади:
SET user:1 "Anna"

GET user:1
LPUSH queue 10
HSET profile name "Ivan"

EXPIRE user:1 60
Redis також підтримує Pub/Sub, streams, та atomic counters.

Слайд 16. Порівняльна таблиця типів NoSQL
	Тип NoSQL
	Модель
	Приклади
	Сценарії

	Документні
	JSON/BSON
	MongoDB
	Профілі, каталоги

	Колоночні
	Wide-Column
	Cassandra
	IoT, логування

	Key-Value
	HashMap
	Redis
	Кеш, сесії

	Графові
	Nodes/Edges
	Neo4j
	Соцмережі, рекомендації


Таблиця дає змогу побачити сильні сторони кожного типу. Кожний підхід має свої унікальні переваги, тому важливо розуміти, як бізнес-логіка поєднується зі структурою даних. Неправильний вибір моделі може створити масштабні проблеми у продуктивності або складності розробки.

Слайд 17. Масштабування NoSQL систем
NoSQL бази проектувалися під горизонтальне масштабування —
додавання нових серверів без зупинки системи. Реляційні бази
потребують вертикального масштабування, що значно дорожче.
NoSQL системи легко розширюються кластером із десятків нод.

Горизонтальне масштабування досягається через шардинг — розподіл
даних між серверами. Cassandra, наприклад, автоматично розподіляє
ключі по нодах. MongoDB має вбудований шардинг через config servers.
Це робить NoSQL зручним для екстремальних навантажень.

Слайд 18. Шардинг у MongoDB
MongoDB використовує три типи нод: shards, config servers
і query routers (mongos). Клієнти підключаються до маршрутизатора,
який направляє запити на відповідні шарди. Розподіл відбувається
за shard key — полем, що визначає сегментацію даних.

Приклад шардованої колекції:
sh.enableSharding("shop")

sh.shardCollection("shop.orders", {userId:1})

Така архітектура дозволяє масштабуватися до десятків мільйонів
користувачів і мільярдів документів.

Слайд 19. Реплікація NoSQL систем
Реплікація забезпечує відмовостійкість і доступність даних.
У MongoDB це replica set — набір нод із primary та secondary.
У Cassandra — повністю розподілена реплікація між нодами.
Redis підтримує master-replica кластери.

Реплікація дозволяє виконувати читання з secondary, розподіляти
навантаження і уникати простоїв під час обслуговування.
NoSQL бази часто дозволяють налаштовувати кількість реплік для
кожної колекції або таблиці, що гарантує захист від втрати даних.

Слайд 20. BASE у практиці
У NoSQL системах BASE модель реалізується через eventual consistency.
Наприклад, у Cassandra запис може бути підтверджений без синхронізації
усіх реплік. У MongoDB можна обирати write concern — 1, majority
або відкладені гарантії. Це дає гнучкість у балансуванні між
швидкістю та консистентністю.

Вибір режиму консистентності залежить від ризиків бізнесу.
Електронна пошта може працювати із затримкою синхронізації.
Однак платіжні системи мають працювати тільки з жорсткою консистентністю.
Це вимагає компромісів при проєктуванні архітектури.

Слайд 21. Схеми в NoSQL
На відміну від SQL, де схему визначають заздалегідь, у NoSQL
структура даних задається на рівні застосунку. Це дозволяє
не виконувати ALTER TABLE при зміні моделі. Документні бази можуть
містити нові поля без втручання в структуру всієї колекції.
Це особливо корисно у DevOps середовищах.

Такий підхід вимагає контролю схеми на рівні коду або використання
інструментів schema validation. MongoDB, наприклад, підтримує
validators, що дозволяє обмежувати структуру документів:

db.createCollection("users", {

 validator: { $jsonSchema: { required: ["name"] }}

})

Слайд 22. Кешування і NoSQL
Key-Value бази часто використовують як швидкі кеші. Redis
підтримує LRU, TTL, Pub/Sub, що робить його незамінним
у мікросервісах. Кешування знімає навантаження із основної бази
та пришвидшує доступ до популярних даних.

У великих системах застосовують багаторівневий кеш — локальний,
дальній, CDN. Redis може виступати як distributed cache для всіх
мікросервісів. Він забезпечує атомарні операції і швидку роботу
у пам’яті.

Слайд 23. Індексація у NoSQL
MongoDB підтримує single field, compound, geospatial, text indexes.
Правильний вибір індексу може пришвидшити запити у сотні разів.
Але індексація збільшує використання пам’яті та час вставки.
Cassandra використовує primary index і secondary index,
але другорядні мають обмеження у продуктивності.

Redis індексів не має — пошук лише за ключем.
Графові бази індексують вузли для швидкого пошуку.
Важливо планувати індекси відповідно до запитів застосунку.

Слайд 24. Запити та агрегації
Документні бази підтримують агрегування — аналоги SQL GROUP BY:

db.orders.aggregate([

 { $match:{status:"done"} },

 { $group:{_id:"$userId", total:{$sum:"$sum"}} }

])

Cassandra не підтримує складних агрегатів — лише базові операції,
і це робить її швидшою у великих масштабах.

Графові системи реалізують агрегації через MATCH і патерни,
що дозволяє будувати складні рекомендаційні алгоритми
та моделі звʼязків.

Слайд 25. Переваги NoSQL
NoSQL системи забезпечують гнучкість моделі даних,
високу продуктивність при читанні/записі, можливість
масштабування на сотні серверів. Вони дозволяють
ефективно зберігати напівструктуровані та неструктуровані
дані без складних перетворень.

NoSQL також добре працює з великими обсягами телеметрії,
логів, потоків подій і даних IoT. Підтримка кластеризації
та відмовостійкості робить їх популярними у високонавантажених
інтернет-проєктах.

Слайд 26. Недоліки NoSQL
Основний недолік — слабша консистентність, відсутність повної підтримки транзакцій у деяких системах, та складність у моделюванні складних звʼязків.
Багато NoSQL баз не підтримують JOIN, тому необхідна денормалізація, що ускладнює логіку.

Також NoSQL вимагає більш глибокого розуміння розподілених систем — реплікації, шардингу, CAP теореми. Це збільшує поріг входу для адміністраторів та розробників у порівнянні з класичними SQL системами.

Слайд 27. NoSQL у сучасних архітектурах
NoSQL часто є частиною мікросервісних архітектур або використовується разом зі SQL у polyglot persistence. Кожен сервіс обирає оптимальну базу під власні дані. 

Наприклад, профілі користувачів — у MongoDB, кеш — у Redis,
логування — у Cassandra.

Такий підхід дозволяє використати сильні сторони кожного типу
баз даних. Він також підвищує масштабованість і гнучкість системи,
але робить її складнішою у підтримці.

Слайд 28. Приклади архітектур з NoSQL
Рекомендаційні системи використовують графові бази для звʼязків,
документні для профілів, і Redis для кешу.
Онлайн-магазини застосовують MongoDB для кошиків і замовлень,
Cassandra для статистики і логів.
Соціальні мережі зберігають звʼязки у Neo4j або JanusGraph.

Політика вибору залежить від типу даних і очікуваних навантажень.
Мікросервіси дозволяють комбінувати різні NoSQL системи
у рамках одного проєкту.

Слайд 29. Порівняння SQL та NoSQL
	Характеристика
	SQL
	NoSQL

	Схема
	Жорстка
	Гнучка

	Масштабування
	Вертикальне
	Горизонтальне

	Транзакції
	ACID
	BASE

	JOIN
	Є
	Немає

	Дані
	Структуровані
	Будь-які


SQL підходить для транзакційних систем, NoSQL — для масштабних. Обидва підходи залишаються актуальними. Вибір залежить від характеру даних і вимог продуктивності.

Слайд 30. Висновки
NoSQL змінив підхід до зберігання даних, дозволивши обробляти величезні обсяги інформації, які не підходили під традиційні моделі. Він надає гнучкі схеми, горизонтальне масштабування, високу продуктивність і адаптивність.

Однак NoSQL — не заміна SQL, а доповнення. Реляційні бази залишаються незамінними для складних транзакцій, тоді як NoSQL є оптимальним для розподілених систем з великим навантаженням і динамічними структурами даних.

