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ПЕРЕДМОВА 
 

 
Математичний аналіз як наука, що досліджує функціональні залежності, 

є методологічною основою більшості сучасних математичних дисциплін, тому 

оволодіння його основами є невід’ємною складовою частиною підготовки не 

тільки майбутніх математиків, але й фахівців у галузях науки та техніки, де 

успішна діяльність пов’язана з необхідністю застосування сучасних математич-
них знань. Потреби практики та бурхливий розвиток сучасних інформаційних 

технологій вимагають постійного вдосконалення математичних методів дослід-

жень, розробки питань математичного забезпечення. Це обумовлює необ-

хідність оволодіння студентами фундаментальними знаннями із сучасного ма-

тематичного аналізу. Опанування його основами створює умови, необхідні для 

вивчення студентами математичних спеціальностей інших фахових дисциплін. 

Запропонований навчальний посібник містить стислий, але достатньо 

повний виклад змісту одного з основних розділів математичного аналізу – 

диференціального числення функції однієї змінної. Він призначений для 

надання допомоги студентам першого курсу денної та заочної форм навчання 
при виконанні домашніх завдань, підготовці до занять, контрольних робіт, 

заліків та іспитів у процесі їх самостійної роботи. 

У першому розділі викладено теоретичний матеріал за основними 

розділами диференціального числення функції однієї змінної. Визначено 

поняття похідної та диференціала, а також їх геометричний, механічний та 

економічний зміст. Розглядаються питання диференційовності функції, 

знаходження похідних складеної та зворотної функцій, а також похідних та 

диференціалів вищих порядків. Наводяться основні теореми про 

диференційовні функції, розглянуто застосування методів диференціального 

числення для дослідження функцій. 
Другий розділ посібника являє собою короткий історичний нарис 

створення та розвитку диференціального числення.  

Третій розділ містить практикум із розв’язання задач. Тут розглянуто 

приклади та задачі, що ілюструють основні положення та методи 
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диференціального числення функції однієї змінної. Підбір задач спрямований 

на осмислення студентами сутності математичних понять, що вводяться в 

названому розділі математичного аналізу, та формування в них навичок, 

необхідних для успішного використання апарату диференціального числення у 

практичних дослідженнях.  

Згідно з вимогами кредитно-модульної системи, на виконання 

індивідуальних завдань виділяється окремий навчальний час. У четвертому 

розділі посібника наводяться варіанти індивідуальних типових завдань та 

приклад виконання такого завдання. 
П’ятий розділ посібника містить питання та задачі для самоконтролю. 

Наведені тут теоретичні питання та задачі призначені для самоперевірки та 

контролю засвоєння студентами базових знань із диференціального числення 

функцій однієї змінної. Вони дозволяють забезпечити більш ефективне 
опрацювання студентом навчального матеріалу в процесі самостійної роботи 

над вивченням курсу математичного аналізу. Розв’язання задач п’ятого розділу 

посібника сприятиме формуванню практичних прийомів і навичок логічного 

мислення, розвитку математичної ерудиції, орієнтують студента на активну 

пізнавальну діяльність, самостійну творчу працю. При самостійному 

розв’язанні індивідуального типового завдання та завдань для самоперевірки 
корисним буде використання довідкового матеріалу, наведеного у додатку А. 

Хотілося б зауважити, що автори мали намір якнайбільше наблизити 

стиль посібника до стилю проведення занять із математичного аналізу в 

Запорізькому національному університеті, зберігаючи традиції кафедри 

математичного аналізу. Для цього застосовувалися позначення, логічні 

операції, предикати і квантори – такі, які використовуються викладачами і 
студентами під час занять.  

Автори сподіваються, що посібник надасть майбутнім фахівцям-

математикам суттєву допомогу в оволодінні знаннями з однієї з 

фундаментальних математичних дисциплін – математичного аналізу – та буде 
ефективно використаний ними при вивченні курсу. 
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Розділ 1. ТЕОРЕТИЧНІ ВІДОМОСТІ 
 
 

§ 1. Основи диференціального числення 
 

1. Означення похідної функції в точці 

Функцію ( )f x  будемо розглядати на інтервалі ( ) ( ; )D f a b= 1. 

Розглянемо точку 0 ( ; )x a b∈  і такий приріст аргументу xΔ  в точці 0x , що 

0 ( ; )x x a b+ Δ ∈ . Цьому приросту аргументу відповідає приріст функції в точці 

0x : 

0 0 0( ) ( ) ( )f x f x x f xΔ = + Δ − .  

Тоді різницеве відношення 0( )f x
x

Δ
Δ

 в точці 0x  утворює функцію, яка 

залежить від xΔ , оскільки кожному значенню 0 0( ; ) \{0}x a x b xΔ ∈ − −  

відповідає єдине значення різницевого відношення 0( )f x
x

Δ
Δ

. Точка xΔ =0 є 

граничною точкою2 множини 0 0( ; ) \{0}a x b x− − , тому коректно розглядати 

границю різницевого відношення в точці xΔ =0, а саме  0

0

( )
lim
x

f x
xΔ →

Δ
Δ

. Така 

границя може існувати або не існувати. Наприклад, для неперервної в точці 0x  

функції під знаком такої границі буде невизначеність вигляду 0
0
⎡ ⎤
⎢ ⎥⎣ ⎦

 згідно з 

таким означенням. 
Означення 1.1 (неперервності функції через прирости). Функцію 

( )f x  називають неперервною в точці 0x
def

⇔  нескінченно малому приросту 

                                                 
1 Замість інтервалу ( , )a b  можна розглядати будь-яку щільну в собі множину ,A  тобто таку 
множину, що будь-який окіл довільної точки 0x  множини A  містить хоча б одну точку із ,A  
відмінну від 0.x   
2 Граничною точкою  множини A  називають таку точку 0x , в будь-якому околі якої лежить хоча б 
одна точка множини ,A  відмінна від 0.x   
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аргументу в точці 0x  відповідає нескінченно малий приріст функції 0( )f xΔ  в 

цій точці, тобто 00
lim ( ) 0
x

f x
Δ →

Δ = . (  Повторіть усі означення неперервності 

функції в точці [3, с. 140 – 141; 4, с. 146 – 147]!) 

Означення 1.2 (похідної функції в точці). Похідною функції ( )f x  в 

точці 0x  називають границю різницевого відношення 0

0

( )
lim
x

f x
xΔ →

Δ
Δ

 (за умови її 

існування). Позначення: 0( )f x′ . Тобто  

 0( )
def

f x′ = 0

0

( )
lim
x

f x
xΔ →

Δ
Δ

0 0

0

( ) ( )
lim
x

f x x f x
xΔ →

+ Δ −
=

Δ
.  (1.1) 

Якщо в кожній точці ( , )x a b∈  існує похідна ( )f x′  функції ( )f x , то 

похідна функції являє собою функцію, що залежить від x . 

Приклад 1.1. Розглянемо функцію ( )f x c≡ , де x∈\ , тоді  

( )f x′ =
0 0 0

( ) ( )lim lim lim 0 0
x x x

f x x f x c c
x xΔ → Δ → Δ →

+ Δ − −
= = =

Δ Δ
. 

Приклад 1.2. Для функції ( )f x x= , де x∈\ , маємо 

( )f x′ =
0 0 0

( ) ( ) ( )lim lim lim 1
x x x

f x x f x x x x x
x x xΔ → Δ → Δ →

+ Δ − + Δ − Δ
= = =

Δ Δ Δ
. 

Означення 1.3 (односторонніх похідних функції). Лівою (правою) 

похідною функції ( )f x  в точці 0x  називають границю в точці 0xΔ =  зліва 

(справа) різницевого відношення 0( )f x
x

Δ
Δ

. Позначення: 0( )f x+′  для правої 

похідної і 0( )f x−′  для лівої. Тобто 

0( )
def

f x±′ = 0 0

0

( ) ( )
lim
x

f x x f x
xΔ →±

+ Δ −
Δ

. 

З критерію існування границі функції в точці, що виражається  через 

односторонні границі (  повторіть [3, c.126; 4, c.116]!), а також з означень 1.2 і 

1.3 випливає таке твердження. 

Твердження 1.1. Розглянемо точку 0 ( )x D f∈  

0 0 0 0 0( ) ( ) ( ) ( ) ( )f x f x f x f x f x+ − + −′ ′ ′ ′ ′∃ ⇔ ∃ ∧∃ ∧ = . 
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(  доведення здійснити самостійно!) 

Приклад 1.3. Розглянемо границю різницевого відношення для функції 

( )f x x=  в точці 0 0x = : 

(0)f+′ =
0 0 0

0(0 ) (0)lim lim lim 1
x x x

xf x f x
x x xΔ →+ Δ →+ Δ →

Δ −+ Δ − Δ
= = =

Δ Δ Δ
; 

(0)f−′ =
0 0 0

0(0 ) (0)lim lim lim 1
x x x

xf x f x
x x xΔ →− Δ →− Δ →

Δ −+ Δ − −Δ
= = = −

Δ Δ Δ
; 

(0)f+′ ≠ (0) (0)f f−′ ′⇒ ∃ . 

2. Геометричний зміст похідної функції в точці 

Розглянемо графік функції ( )y f x=  на інтервалі ( , )a b . 

Нехай точка ( ; )x a b∈ , а xΔ  – такий приріст аргументу в точці ,x  що 

( ; )x x a b+ Δ ∈ , тоді точки ( , ( ))M x f x  і ( , ( ))P x x f x x+ Δ + Δ  належать графіку 

цієї функції.  
Означення 1.4 (дотичної до графіка функції). Дотичною до графіка 

функції ( )y f x=  в точці M  називають граничне положення січної MP  при 

прямуванні точки P  до точки M  (тобто при 0)xΔ → , якщо таке граничне 

положення існує (рис. 1.1).  
Тут пряма MS  є граничним положенням січної MP , якщо при 

переміщенні точки P  по графіку ( )y f x=   до точки M   кут PMS∠  прямує до 

нуля.  
 

  

Рис. 1.1.  

O 

y 

xa b

M

P 
S

N

0ϕ ( )xϕ Δ

xΔ

( ) ( )f x x f x+Δ −

x x x+ Δ

( )xϕ Δ  
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Оскільки точка M  на графіку є фіксованою, то точка P  однозначно 
визначається приростом xΔ . Отже, кут PMN∠  нахилу січної MP  до осі Ox  є 

функцією аргументу xΔ . Позначимо цю функцію ( )xϕ Δ . 

Дотична до графіка функції ( )y f x=  в точці M  існує, якщо 

0
lim ( )
x

x
Δ →

∃ ϕ Δ . На рис. 1.1 0 0
lim ( )
x

x
Δ →

ϕ = ϕ Δ . 

Дотичною в цьому випадку виступає пряма 

MS . На рис. 1.2 в точці O  
0

lim ( ).
x

x
Δ →

∃ ϕ Δ  В 

цьому випадку не існує дотичної до графіка 
функції в точці .O  

 Теорема 1.1 (геометричний зміст 

похідної). Якщо існує похідна функції ( )f x  в 

точці ,x то: 

1) в точці ( , ( ))M x f x  існує дотична до графіка цієї функції; 

2)  кутовий коефіцієнт (тангенс кута нахилу дотичної до додатного напрямку 

осі )OX  дорівнює похідній функції в точці ,x  тобто  

0tg ( )f x′ϕ = . 

Доведення. Доведемо, що 
0

lim ( )
x

x
Δ →

∃ ϕ Δ , тобто, що в точці ( , ( ))M x f x  

існує дотична до графіка функції ( )f x . 

На рис. 1.1 в ( 90 )MNP N∠ = °+  маємо 

( ) ( )tg ( ) PN f x x f xx
MN x

+ Δ −
ϕ Δ = =

Δ
⇒ ( ) ( )( ) arctg f x x f xx

x
+ Δ −

ϕ Δ =
Δ

. 

Доведемо, що 
0

( ) ( )lim arctg
x

f x x f x
xΔ →

+ Δ −
∃

Δ
.  

Відомо, що 
0

( ) ( )( ) lim
x

f x x f xf x
xΔ →

+ Δ −′∃ ⇒ ∃
Δ

. Тоді функція ( ) arctgg t t=  

неперервна при t∈\ , тому 

y 

О х

Рис. 1.2.  
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0 0 0

( ) ( ) ( ) ( )lim ( ) lim arctg arctg lim
x x x

f x x f x f x x f xx
x xΔ → Δ → Δ →

+ Δ − + Δ −⎛ ⎞ϕ Δ = = =⎜ ⎟Δ Δ⎝ ⎠
 

arctg( ( ))f x′= .  

Ми довели, що дотична в точці ( , ( ))M x f x  існує, а оскільки її кут нахилу 

0 0
lim ( )
x

x
Δ →

ϕ = ϕ Δ , то  

0 arctg( ( ))f x′ϕ = 0tg ( )f x′⇒ ϕ = .  ■ 

З аналітичної геометрії [21, c. 55 – 57] відомо, що рівняння прямої, що 

проходить через задану точку 0 0( , )M x y  і має кутовий коефіцієнт k , має 

вигляд 0 0( )y y k x x− = − , її нормаль – 0 0
1 ( )y y x x
k

− = − − . Тоді, якщо функція 

( )f x  має похідну в точці 0x , то з геометричного змісту похідної отримаємо, 

що 0( )k f x′= , а рівняння дотичної і нормалі до графіка функції в точці 

0 0( , ( ))M x f x  будуть мати вигляд: 

0 0 0

0 0
0

( ) ( )( );
1( ) ( )
( )

y f x f x x x

y f x x x
f x

′− = −

− = − −
′

 

 

3. Механічний та економічний зміст похідної 
Розглянемо механічний зміст похідної. Нехай функція шляху 

матеріальної точки, що рухається прямолінійно, залежно від часу [0; ]t T∈  має 

вигляд ( )s t , а 0 0[0; ], [0; ]t T t t T∈ + Δ ∈ . Тоді  миттєва швидкість у момент часу 

0t  дорівнює  

0 0 0
0 00 0

( ) ( ) ( )
( ) lim lim ( )

t t

s t s t t s t
v t s t

t tΔ → Δ →

Δ + Δ − ′= = =
Δ Δ

, 

якщо така границя існує. Таким чином, отримуємо механічний зміст похідної: 

похідна від функції шляху в момент часу 0t  – це миттєва швидкість в цей 

момент часу. 

Розглянемо економічний зміст похідної. Нехай функція ( )y y t=  

виражає кількість виробленої продукції y  за час t . Необхідно знайти 
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продуктивність праці в момент 0t . За період часу від 0t  до 0t t+ Δ  кількість 

виробленої продукції зміниться від значення ( )0 0y y t=  до значення 

( )0 0y y y t t+ Δ = + Δ . Тоді середня продуктивність праці за цей період ср
yz
t

Δ
=
Δ

. 

Продуктивність праці в момент 0t  можна визначити як граничне значення 

середньої продуктивності за період часу від 0t  до 0t t+ Δ  при 0tΔ → , тобто 

0 0
lim limсрt t

yz z
tΔ → Δ →

Δ
= =

Δ
. Отже, похідна функції обсягу виробленої продукції за 

часом ( )0y t′  є продуктивністю праці в момент 0t . 

4. Правила диференціювання 

Операцію знаходження похідної будемо називати диференціюванням. 

Твердження 1.2. Якщо функція ( )f x  має похідну в точці 0x , то ця 

функція в точці 0x  є неперервною. 

Доведення. Якщо існує похідна функції ( )f x  в точці 0x , то згідно з 

означенням виконується рівність 

0
0

( )
( ) ( )

f x
f x x

x
Δ ′− = α Δ
Δ

, 

де ( )xα Δ  – нескінченно мала функція в точці 0xΔ = , тобто 
0

lim ( ) 0
x

x
Δ →

α Δ = . Тоді 

приріст функції ( )f x  в точці 0x  можна подати співвідношенням 

0 0( ) ( ) ( )f x f x x x x′Δ = ⋅Δ + Δ ⋅α Δ . 

Звідcи отримаємо, що 00
lim ( ) 0 ( )
x

f x f x
Δ →

Δ = ⇒  – неперервна в точці 0x  

(нескінченно малому приросту аргументу відповідає нескінченно малий 

приріст функції в точці 0x , а це означає, що функція неперервна в точці 0x ). ■ 

Зауваження 1.1. Зворотне твердження невірне. Наприклад, функція 

( )f x x=  – неперервна в точці 0x = 0, хоча вона не має похідної в цій точці 

(див. приклад 1.3). 
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Теорема 1.2 (арифметичні операції над похідними). 

( )

( )

1) ( ) ( ) ,
( )

2) ( ) ( ) ,
( )

( )3) , якщо ( ) 0.
( )

u x v x
u x

u x v x
v x

u x v x
v x

⎧
⎪ ′∃ ±⎪

′ ⎪∃ ⎫ ′⇒ ∃ ⋅⎬ ⎨′∃ ⎭ ⎪
′⎪ ⎛ ⎞

∃ ≠⎪ ⎜ ⎟
⎝ ⎠⎩

 

При цьому вірні наступні співвідношення:  

 
 

( )( ) ( )Cu x C u x′ ′= , 

( )( ) ( ) ( ) ( )u x v x u x v x′ ′ ′± = ± , 

( )( ) ( ) ( ) ( ) ( ) ( )u x v x u x v x u x v x′ ′ ′⋅ = ⋅ + ⋅ , 

2

( ) ( ) ( ) ( ) ( )
( ) ( )

u x u x v x u x v x
v x v x

′ ′ ′⎛ ⎞ ⋅ − ⋅
=⎜ ⎟

⎝ ⎠
 

 

Доведення. Доведемо формулу для похідної суми та різниці функцій. 

( )( ) ( )u x v x ′± =
( ) ( )

0

( ) ( ) ( ) ( )
lim
x

u x x v x x u x v x
xΔ →

+ Δ ± + Δ − ±
=

Δ
 

0

( ) ( ) ( ) ( )lim
x

u x x u x v x x v x
x xΔ →

+ Δ − + Δ −⎛ ⎞= ±⎜ ⎟Δ Δ⎝ ⎠
. 

Границя кожного різницевого відношення існує, оскільки існують похідні 

( )u x′  і ( )v x′ , тому [3, c. 130; 4, c. 129] границя суми/різниці дорівнює 

сумі/різниці границь. Тому, використовуючи означення похідної, отримаємо: 

( )( ) ( )u x v x ′± =
0 0

( ) ( ) ( ) ( )lim lim
x x

u x x u x v x x v x
x xΔ → Δ →

+ Δ − + Δ −
±

Δ Δ
( ) ( )u x v x′ ′= ± . 

Доведемо формулу похідної добутку функцій. Застосуємо означення 

похідної і виконаємо елементарні перетворення: 

( )
0

( ) ( ) ( ) ( )( ) ( ) lim
x

u x x v x x u x v xu x v x
xΔ →

+ Δ ⋅ + Δ − ⋅′⋅ = =
Δ
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0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )lim
x

u x x v x x u x v x x u x v x x u x v x
xΔ →

+ Δ ⋅ + Δ − ⋅ + Δ + ⋅ + Δ − ⋅
= =

Δ
 

0

( ) ( ) ( ) ( )lim ( ) ( )
x

u x x u x v x x v xv x x u x
x xΔ →

+ Δ − + Δ −⎡ ⎤= + Δ ⋅ + ⋅⎢ ⎥Δ Δ⎣ ⎦
. 

За умовою,  

0 0

( ) ( ) ( ) ( )( ) lim ( ) lim
x x

u x x u x v x x v xu x v x
x xΔ → Δ →

+ Δ − + Δ −′ ′∃ = ∧∃ =
Δ Δ

. 

Оскільки ( )v x′∃ , то, за твердженням 1.2, функція ( )v x  неперервна в точці x , 

тому 
0

lim ( ) ( )
x

v x x v x
Δ →

+ Δ = . Отже, ми можемо застосувати теорему про 

арифметичні дії над границями [3, c. 130; 4, c. 129]. В результаті отримаємо: 

( )( ) ( )u x v x ′⋅ =
0 0 0

( ) ( ) ( ) ( )lim ( ) lim ( ) lim
x x x

u x x u x v x x v xv x x u x
x xΔ → Δ → Δ →

+ Δ − + Δ −
+ Δ ⋅ + ⋅ =

Δ Δ
 

( ) ( ) ( ) ( )u x v x u x v x′ ′= ⋅ + ⋅ . 

Доведемо формулу похідної частки. Як зазначалося, функція ( )v x  непе-

рервна в точці x . Внаслідок теореми про сталість знаку неперервної в точці x  

функції [3, c. 182] отримаємо, що при ( ) 0v x ≠  матимемо ( ) 0v x x+ Δ ≠  для всіх 

достатньо малих xΔ . Отже, можна записати таке: 

0 0

( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )lim lim
( ) ( ) ( )x x

u x x u x
u x u x x v x u x v x xv x x v x
v x x x v x x v xΔ → Δ →

+ Δ
−′⎛ ⎞ + Δ ⋅ − ⋅ + Δ+ Δ

= = =⎜ ⎟ Δ Δ ⋅ + Δ ⋅⎝ ⎠
 

0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )lim
( ) ( )x

u x x v x u x v x u x v x u x v x x
x v x x v xΔ →

+ Δ ⋅ − ⋅ + ⋅ − ⋅ + Δ
= =

Δ ⋅ + Δ ⋅

0

( ) ( ) ( ) ( )( ) ( )
lim .

( ) ( )x

u x x u x v x x v xv x u x
x x

v x x v xΔ →

+ Δ − + Δ −
⋅ − ⋅

Δ Δ=
+ Δ ⋅

 

Далі так само, як і вище, скористаємося теоремою про арифметичні дії 

над границями, твердженням 1.2 щодо неперервності функції ( )v x  в точці x , 

припущенням про існування похідних функцій ( )u x  і ( )v x  у тій же точці. 

Отримаємо: 
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( )
( )

u x
v x

′⎛ ⎞
=⎜ ⎟

⎝ ⎠

0 0

0

( ) ( ) ( ) ( )( ) lim ( ) lim
.

( ) lim ( )
x x

x

u x x u x v x x v xv x u x
x x

v x v x x
Δ → Δ →

Δ →

+ Δ − + Δ −
⋅ − ⋅

Δ Δ=
⋅ + Δ

 

2
( ) ( ) ( ) ( ) .

( )
u x v x u x v x

v x
′ ′⋅ − ⋅

=  

Формулу ( )( ) ( )Cu x C u x′ ′=  вивести самостійно . ■ 

Теорема 1.3 (про похідну складеної функції). 

Якщо функція ( )t g x=  має похідну в точці x X∈ , а 

функція ( )y f t=  має похідну у відповідній точці 

( )t g x T= ∈ , тоді складена функція 

( ) ( ( ))y x f g x= ϕ =  має похідну в точці ,x  і має 

місце формула  

 [ ]( ) [ ]( ) ( ) ( ) ( ) ( ) ( )x f g x f t g x f g x g x′′ ′ ′ ′ ′ϕ = = ⋅ = ⋅ . 

Доведення. Функція ( )g x  задана на множині X . Розглянемо точку 

x X∈  і такий приріст аргументу xΔ  в точці x , що x x X+ Δ ∈ . Цьому 

приросту аргументу відповідає приріст функції в точці x : 

( ) ( ) ( )t g x g x x g xΔ = Δ = + Δ − . 

Позначимо ( )t g x T= ∈ . З попереднього випливає, що t t T+ Δ ∈ . Приросту tΔ  

аргументу в точці t  відповідає приріст функції ( )y f t= , що має вигляд: 

( ) ( ) ( )y f t f t t f tΔ = Δ = + Δ − . 

За означенням складеної функції, враховуючи, що ( )t g x= , а 

( ) ( ( ))y x f g x= ϕ = , отримаємо приріст складеної функції  в точці x : 

( ) ( ) ( )y x x x xΔ = Δϕ = ϕ + Δ −ϕ . 

Оскільки функція ( )y f t=  має похідну в точці t , то 

( ) ( )y f t t t t′Δ = ⋅Δ + Δ ⋅α Δ , 

де 
0

lim ( ) 0
t

t
Δ →

α Δ = . Поділимо обидві частини останньої рівності на xΔ : 

( ) ( )

( ) ( ( ))

g f

x t g x y f t

f g

y x f g x

X T Y
= =

ϕ=

=ϕ =

⎯⎯→ ⎯⎯→

↓ ↑
⎯⎯⎯⎯⎯⎯→D
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( ) ( )y t tf t t
x x x

Δ Δ Δ′= ⋅ + ⋅α Δ
Δ Δ Δ

.           (1.2) 

Оскільки функція ( )t g x=  має похідну в точці x , то 
0

lim ( )
x

t g x
xΔ →

Δ ′=
Δ

, а з 

твердження 1.2 випливає неперервність цієї функції в точці x , тобто 

0
lim 0
x

t
Δ →

Δ = . Виконаємо граничний перехід у рівності (1.2) з урахуванням 

вищесказаного: 

0 0 0 0

0( ) ( )

lim ( ) lim lim lim ( ) ( ) ( )
x x x t

g x g x

y t tf t t f t g x
x x xΔ → Δ → Δ → Δ →

=′ ′= =

Δ Δ Δ′ ′ ′= ⋅ + ⋅ α Δ = ⋅
Δ Δ Δ ��	�
��	�
 ��	�


. 

Таким чином, 
0

lim
x

y
xΔ →

Δ
∃

Δ
= ( ) ( )f t g x′ ′⋅ , тому, враховуючи, що 

( ) ( ) ( )y x x x xΔ = Δϕ = ϕ + Δ −ϕ  – приріст складеної функції ( ) ( ( ))y x f g x= ϕ =  в 

точці x , отримаємо: 

( ) ( ) ( )x f t g x′ ′ ′ϕ = ⋅ . ■ 

Теорема 1.4 (про похідну оберненої функції). Якщо функція ( )f x , що 

визначена на відрізку [ ; ]a b 1, строго зростає, неперервна на [ ; ]a b , має в усіх 

точках інтервалу ( ; )a b  похідну ( ) 0f x′ ≠ , тоді 

1) існує обернена функція 1( ) ( )g y f y−= , що визначена, зростає, 

неперервна на відрізку [ ]( ); ( )f a f b ; 

2) у будь-якій точці ( )y f x=  інтервалу ( )( ); ( )f a f b  обернена функція 

1( )f y−  має похідну, що обчислюється за формулою: 

 ( )1 1( )
( )

f y
f x

− ′ =
′

. 

Аналогічна теорема має місце для спадної функції. 

                                                 
1 Замість відрізку [ ; ]a b  можна розглядати інтервал ( ; )a b , півінтервал, півпряму, всю числову 
пряму, а також окіл деякої точки. 
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Доведення. Пункт 1) випливає з теореми про існування оберненої 

функції до монотонної неперервної на відрізку [ , ]a b  функції (  повторіть 

теорему [3, с. 161; 4, с. 172]!). 

Якщо ( )x g y=  – обернена до ( )y f x= , то приросту аргументу yΔ  

функції ( )g y  в точці y  (тут ( ) ( )( ); ( ) , ( ); ( )y f a f b y y f a f b∈ + Δ ∈ ) відповідає 

приріст функції ( ) ( ) ( )x g y g y y g yΔ = Δ = + Δ − . Тоді, за означенням оберненої 

функції, yΔ  – це приріст функції ( )f x  в точці ( )x g y= , що відповідає 

приросту аргументу xΔ .  

Оскільки ( )g y  – неперервна в точці y , то при 0yΔ →  маємо 0xΔ → . 

Якщо 0yΔ ≠ , то y y y+ Δ ≠ , тобто y y y+ Δ >  або y y y+ Δ < . Завдяки 

зростанню функції ( )g y , одержимо  

( ) ( ),
( ) ( ) 0

( ) ( ),
g y y g y

g y y g y x
g y y g y

+ Δ > ⎤
⇒ + Δ ≠ ⇒ Δ ≠⎥+ Δ < ⎦

. 

Отже, якщо 0yΔ → , то 0xΔ → , а також якщо 0yΔ ≠ , то 0xΔ ≠ . Тому 

можливе здійснення таких граничних переходів: 

0 0

0

( )

0 01 1 1lim lim
0 0 ( )lim

y y

x

f x

y yx
y yx xy f x
x x

Δ → Δ →

Δ →

′=

Δ ≠ ⇒ Δ → ⇒Δ
= = = = =

Δ Δ ′Δ ≠ Δ →Δ
Δ Δ��	�


, 

тобто  

0

1 1lim ( )
( ) ( )y

x g y
y f x f xΔ →

Δ ′∃ = ⇒ =
′ ′Δ

 ( )1 1( )
( )

f y
f x

− ′⇒ =
′

.  ■ 

 Похідні від елементарних функцій (таблиця похідних) 

( ) 1x xα α−′ = α ⋅ , 0x > , α∈\ ; 0C′ = , ( ) 1x ′ = , ( )2 2x x′ = , ( )3 23x x′ = ; 

2

1 1
x x

′⎛ ⎞ = −⎜ ⎟
⎝ ⎠

, 0x ≠ ; ( ) 1
2

x
x

′ = , 0x > ;  ( )3

3 2

1

3
x

x
′ = , 0x ≠ ; 

( ) lnx xa a a′ = , 0 1a< ≠ ; ( )x xe e′ = ; 
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1(ln )x
x

′ = , 0x > ; 1(log )
lna x

x a
′ = , 0, 0 1x a> < ≠ ; 

(sin ) cosx x′ = ; (cos ) sinx x′ = − ; 

2

1(ctg )
sin

x
x

′ =− , ,x n n≠ π ∈Z ; 
2

1(tg )
cos

x
x

′ = , ,
2

x n nπ
≠ +π ∈Z ; 

(sh ) chx x′ = ; (ch ) shx x′ = ; 

2

1(th )
ch

x
x

′ = ; 2

1(cth )
sh

x
x

′ =− , 0x ≠ ; 

2

1(arctg )
1

x
x

′ =
+

;  2

1(arcctg )
1

x
x

′ = −
+

; 

2

1(arcsin )
1

x
x

′ =
−

,  | | 1x < ; 
2

1(arccos )
1

x
x

′ = −
−

, | | 1x <  

Доведення формул таблиці похідних 
Отримаємо спочатку декілька формул для похідних, використовуючи 

означення, першу та другу істотні границі та наслідки з них (див. додаток А і 

[3, c. 172–176; 4, c. 122-125, 164]). Після цього доведемо формули таблиці за 

допомогою теорем про похідну складеної та оберненої функцій. 

1) Використаємо означення для отримання першої формули. Оскільки 

α∈\ , то для коректності визначення степеневої функції ax  припустимо, що 

0x > . Нехай також 0x x+ Δ > , тоді 1 

( ) ( ) 1

0 0 0

1 1 1 1
lim lim lima

x x x

x xx
xx x x xx x

x xx x
x x

α α
α

α α
α −

Δ → Δ → Δ →

⎛ ⎞Δ⎛ ⎞ Δ⎛ ⎞⋅ + −⎜ ⎟⎜ ⎟ + −⎜ ⎟ ⎜ ⎟⎝ ⎠+ Δ −′ ⎝ ⎠ ⎝ ⎠= = = ⋅
Δ ΔΔ ⋅

, 

( )
0 0

1 1 1 1,
lim lim

0
x u

x x uuxA xx uu
x

α

α

Δ → →

Δ⎛ ⎞+ − Δ⎜ ⎟ + −=⎝ ⎠= = =
Δ

→
. 

Позначимо ( )1 1q u α= + − , тоді 0q →  і 
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( )1 1 ,q u α+ = +  

( )ln( 1) ln 1 ,q u+ = α +  

( )ln 1
1.

ln( 1)
u

q
α +

=
+

 

Звідси 

( ) ( ) ( )1 1 ln 1 ln 1
1

ln( 1) ln( 1)
u u uq q q
u u u q q u

α+ − α + +
= ⋅ = ⋅ = ⋅ ⋅α

+ +
. 

Підставимо отримане під знак границі, яку позначено через А: 

( )
0 0

11

ln 1
lim lim

ln( 1)q u

uqA
q u→ →

==

+
= ⋅ ⋅α = α

+ ���	��
��	�

. 

Отже, ( ) 1 1x x A xα α− α−′ = ⋅ = α ⋅ . 

2) Для похідної показникової функції маємо: 

( )xa ′ =
0 0

ln

1lim lim ln
x x x x

x x

x x

a

a a aa a a
x x

+Δ Δ

Δ → Δ →

=

− −
= ⋅ = ⋅

Δ Δ��	�

. 

3) Знайдемо формулу похідної логарифмічної функції, використовуючи 
означення: 

( ) ( )
0 0

1/ ln

log 1log log 1 1 1log lim lim
ln

a
a a

a x x

a

x
x x x xx

xx x a x
x

Δ → Δ →

→

Δ⎛ ⎞+⎜ ⎟+ Δ − ⎝ ⎠′ = = ⋅ = ⋅
ΔΔ

���	��


. 

4) За означенням 

( )
0 0

cos

1

sinsin sin 22(sin ) lim lim cos cos
2

2
x x

x

x
x x x x xx x

xxΔ → Δ →

→

→

⎛ ⎞
⎜ ⎟Δ
⎜ ⎟+ Δ − + Δ′ = = ⋅ =⎜ ⎟ΔΔ ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

��	�

�	


. 

5) За означенням 
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( )
( ) ( ) ( )

( )0 0

sin sin
cos cos sin cos sin cos

(tg ) lim lim
cos cosx x

x x x
x x x x x x x x x

x
x x x x xΔ → Δ →

+ Δ
−

+ Δ + Δ − + Δ
′ = = =

Δ Δ + Δ
 

( )
( ) ( ) 20 0

1 1
cos

sin sin 1 1 1lim lim
cos cos cos cos cosx x

x

x x x x
x x x x x x x x xΔ → Δ →

→
→

⎛ ⎞
⎜ ⎟

+ Δ − Δ⎜ ⎟= = ⋅ ⋅ =⎜ ⎟Δ + Δ Δ + Δ
⎜ ⎟⎜ ⎟
⎝ ⎠
�	
 ��	�


. 

6) Одержимо формулу похідної степеневої функції іншим способом, 

застосовуючи отриману раніше похідну ( )x xe e′ = , а також теорему про 

похідну від складеної функції. Нехай 0x > , тоді 

( ) ( )ln ln 11 1x xx e e x x
x x

α α α α α−′ ′= = ⋅α ⋅ = ⋅α ⋅ = α ⋅ . 

7) Використаємо похідну (sin ) cosx x′ =  та теорему про похідну від 

складеної функції: 

(cos ) sin cos ( 1) sin
2 2

x x x x
′⎛ π ⎞ π⎛ ⎞ ⎛ ⎞′ = − = − ⋅ − = −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
. 

8) Отримаємо похідну від tg x  іншим способом, застосовуючи формули 

(sin ) cosx x′ =  і (cos ) sinx x′ =  і формулу похідної частки: 

2 2
sin cos cos sin ( sin ) 1(tg )
cos cos cos

x x x x xx
x x x

′ ⋅ − ⋅ −⎛ ⎞′ = = =⎜ ⎟
⎝ ⎠

. 

9) Функція arcsiny x=  є оберненою до sinx y=  на відрізку 
2 2

yπ π
− ≤ ≤ . 

На цьому відрізку функція sinx y=  є неперервною і зростаючою,  

sin 1; sin 1
2 2
π π⎛ ⎞ ⎛ ⎞− = − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, а (sin ) cosy y′ = , тому функція arcsiny x=  

неперервна, зростаюча на відрізку 1 1x− ≤ ≤ , а її похідна на інтервалі 
1 1x− < < , згідно з теоремою про похідну від оберненої функції, дорівнює 

2 2

1 1 1 1(arcsin )
(sin ) cos 1 sin 1

x
y y y x

′ = = = =
′ − −

. 
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Перед коренем обрано знак «+», оскільки функція cos y  при 
2 2

yπ π
− < <  

приймає додатні значення. 

10) Функція lny x=  є оберненою до yx e=  при y∈\ . На \  функція 
yx e=  є неперервною і зростаючою з множиною значень (0; )x∈ +∞ , а 

( )y ye e′ = , тому функція lny x=  є також неперервною та зростаючою на 

промені (0; )x∈ +∞ , а її похідна, згідно з теоремою про похідну від оберненої 

функції, дорівнює 

( )
1 1 1(ln ) y
y

x
xee

′ = = =
′

. 

11) Функція arctgy x=  є оберненою до tgx y=  на інтервалі 

2 2
yπ π

− < < . На цьому інтервалі функція tgx y=  є неперервною і зростаючою 

з множиною значень x∈\ , а 2

1( )
cos

tg y
y

′ = , тому функція arctgy x=  – 

неперервна, зростаюча на прямій x∈\ , а її похідна, згідно з теоремою про 

похідну від оберненої функції, дорівнює 

2 2

2

1 1 1 1(arctg )
1(tg ) 1 tg 1

cos

x
y y x

y

′ = = = =
′ + +

. 

Інші формули можна отримати самостійно . 

Логарифмічне диференціювання 

Якщо додатна функція ( )y f x= , що має похідну в точці x , визначена як 

добуток великої кількості функцій або є степенево-показниковою функцією, то 
можна застосовувати для обчислення похідної від неї логарифмічне 
диференціювання. А саме – обидві частини рівності 

( )y f x=  

логарифмують 
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[ ]ln ln ( )y f x= , 

праву частину рівності перетворюють, застосовуючи властивості логарифмів. 
Після цього обчислюють похідну від обох частин перетвореної рівності, 

враховуючи, що [ ]ln ( )f x  – складена функція, а ( )y f x=  – її проміжний 

аргумент, тому  

[ ]( ) 1ln ( )f x y
y

′ ′= ⋅ . 

Величину, яку визначено останньою формулою, називають логарифмічною 
похідною. 

Приклад 1.4.Обчислимо похідну від степенево-показникової функції 

[ ] ( )( ) v xy u x= . 

Область визначення функції: { : ( ) 0}x u x∈ >\ . Зробимо зазначені вище 

перетворення: 
ln ( ) ln ( )y v x u x= ; 

1 1( ) ln ( ) ( ) ( )
( )

y v x u x v x u x
y u x

′ ′ ′⋅ = ⋅ + ⋅ ⋅ ; 

1( ) ln ( ) ( ) ( )
( )

y y v x u x v x u x
u x

⎡ ⎤′ ′ ′= ⋅ + ⋅ ⋅⎢ ⎥
⎣ ⎦

. 

Підставимо замість y  функцію [ ] ( )( ) v xy u x= , отримаємо 

[ ]( ) [ ]( ) ( ) 1( ) ( ) ( ) ln ( ) ( ) ( )
( )

v x v xu x u x v x u x v x u x
u x

⎡ ⎤′ ′ ′= ⋅ ⋅ + ⋅ ⋅⎢ ⎥
⎣ ⎦

 

Приклад 1.5. Розглянемо функцію 

( ) ( ) ( )( )
( ) ( ) ( )

a x b x c xf x
d x h x g x

⋅ ⋅
=

⋅ ⋅
. 

Без обмеження загальності міркувань можна вважати, що в точці x   

( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0a x b x c x d x h x g x> > > > > > . 

Застосуємо до функції ( )f x  логарифмічне диференціювання: 

ln ln ln ln ln ln lnf a b c d h g= + + − − − , 
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1 a b c d h gf
f a b c d h g

′ ′ ′ ′ ′ ′
′ = + + − − − , 

отже, 

a b c a b c a b c d h g
d h g d h g a b c d h g

′ ′ ′ ′ ′ ′ ′⎛ ⎞ ⎛ ⎞⋅ ⋅ ⋅ ⋅
= ⋅ + + − − −⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅ ⋅⎝ ⎠ ⎝ ⎠

. 

5. Диференційовність функцій. Диференціал функції 

Якщо існує похідна функції ( )f x  в точці 0x , то, згідно з означенням, 

виконується рівність 

0
0

( )
( ) ( )

f x
f x x

x
Δ ′− = α Δ
Δ

, 

де ( )xα Δ  – нескінченно мала функція в точці 0xΔ = , тобто 
0

lim ( ) 0
x

x
Δ →

α Δ = . Тоді 

приріст функції ( )f x  в точці 0x  можна подати за допомогою співвідношення: 

0 0( ) ( ) ( )f x f x x x x′Δ = ⋅Δ + Δ ⋅α Δ .   (1.3) 

Оскільки 0( )f x′  є сталою у фіксованій точці 0x , то позначимо 0( )A f x′= . 

Функція  ( )x xΔ ⋅α Δ  є нескінченно малою в точці 0xΔ =  більш високого 

порядку за xΔ , тобто ( ) ( )x x o xΔ ⋅α Δ = Δ : 

0 0

( )lim lim ( ) 0 ( ) ( )
x x

x x x x x o x
xΔ → Δ →

Δ ⋅α Δ
= α Δ = ⇒ Δ ⋅α Δ = Δ

Δ
 

(  повторити означення ( )o γ  [3, c. 133]!). Тому (1.3) можна переписати: 

0( ) ( )f x A x o xΔ = ⋅Δ + Δ .           (1.4) 

Означення 1.5 (диференційовності й диференціала). Якщо для 
деякого числа A  приріст функції ( )y f x=  в точці 0x  можна подати у вигляді 

(1.4), то: 
1) функцію  ( )f x  називають диференційовною в точці 0x ; 

2) головну лінійну частину приросту функції A x⋅Δ  називають 
диференціалом функції ( )f x  в точці 0x  і позначають 0( )df x  (або 0( )dy x ), 

тобто 

0( )
def

df x = A x⋅Δ . 

Введемо позначення dx x= Δ , тоді 0( )df x = A dx⋅ . 
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Із зауважень, наданих перед означенням 1.5, випливає, що функція, яка 
має похідну в точці, є в цій точці диференційовною. Справедливим є також 
зворотне твердження, тому має місце така теорема. 

Теорема 1.5 (критерій диференційованості функції). Функція ( )f x  є 

диференційовною в точці 0x  тоді й лише тоді, коли вона в цій точці має 

похідну, крім того стала A  в головній лінійній частині приросту функції 

дорівнює 0( )f x′ . 

Доведення. Достатність було доведено вище. 
Необхідність. Поділимо обидві частини співвідношення (1.4) на xΔ : 

0( ) ( )f x o xA
x x

Δ Δ
= +

Δ Δ
, 

здійснимо граничний перехід при 0xΔ → , отримаємо ( )f x A′ = . ■ 

Нехай функція ( )f x  диференційовна в точці 0x , Тоді її приріст в цій 

точці представляється рівністю (1.4). Підставимо знайдене в теоремі 1.5 
значення сталої A  в (1.4): 

0 0( ) ( ) ( )f x f x x o x′Δ = ⋅Δ + Δ . 

Отже, головна лінійна частина приросту дорівнює 0( )f x x′ ⋅ Δ . Звідки 

отримуємо формулу для обчислення диференціала функції в точці 0x : 

0( )df x = 0( )f x dx′ ⋅  

Тоді 

0 0( ) ( )dff x x
dx

′ = . 

Вираз в правій частині останньої рівності застосовують для позначення 

похідної, тоді його читають: «де еф по де ікс в точці 0x ». 

Функцію, що є диференційовною в кожній точці інтервалу ( ; )a b , 

називають диференційовною на інтервалі ( ; )a b . 

6. Застосування диференціала для наближених обчислень 

Нехай 0( ) 0f x′ ≠ . Абсолютна похибка наближення 0 0( ) ( )f x df xΔ ≈ : 
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0 0 0 0( ) ( ) ( ) ( ) ( )f x df x f x f x x o x′Δ − = Δ − ⋅Δ = Δ ; 

відносна похибка:  
P

N

0

0 0

0 0
0

0

( )
( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

o x
f x df x o x x x

o xf x f x x o x f x
x

→

→

Δ
Δ − Δ Δ= = = α Δ

Δ′Δ ⋅Δ + Δ ′ +
Δ

, 

де ( )xα Δ  – нескінченно мала функція в точці 0xΔ = , тобто 
0

lim ( ) 0
x

x
Δ →

α Δ = . 

Приклад 1.6.  

1) Розглянемо функцію ( ) (1 )f x x α= +  в точці 0 0x = . Тоді  

(0) (0 ) (0) (1 ) 1f f x f x αΔ = + Δ − = + Δ − , 
1( ) (1 ) , (0) , ,f x x f dx xα−′ ′= α + = α = Δ  

(0) (0) ,df f dx x′= = αΔ  

(0) (0)f dfΔ ≈ ,  

(1 ) 1x xα+ Δ ≈ + α ⋅Δ  

2) Застосуємо отриману формулу для конкретних значень. Обчислимо 

1,1 . Тоді 1/ 2, 0,1xα = Δ = , тому 

11,1 1 0,1 1 0,1 1,05
2

= + ≈ + ⋅ = . 

3) Аналогічно можна отримати такі наближені формули: 

1 ,xe xΔ − ≈ Δ         1 lnxa x aΔ − ≈ Δ ,   

ln(1 ) ,x x+ Δ ≈ Δ     log (1 ) ,
lna

xx
a

Δ
+ Δ ≈  

sin ,x xΔ ≈ Δ         ,tg x xΔ ≈ Δ  

                            ( )211 cos ,
2

x x− Δ ≈ Δ  

arcsin ,x xΔ ≈ Δ      arctg x xΔ ≈ Δ  

(  Вивести формули самостійно!) 



Розділ 1. ТЕОРЕТИЧНІ ВІДОМОСТІ 

 26

7. Властивості диференціалів 

Мають місце такі формули: 

 ( )d u v du dv± = ± , ( )d uv udv vdu= + , 2

u vdu udvd
v v

−⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

Дійсно, з формул ( )( ) ( ) ( ) ( )u x v x u x v x′ ′ ′± = ± , ( )df x = ( )f x dx′ ⋅  випливає: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )d u x v x u x v x dx u x v x dx′ ′ ′± = ± = ± =  

( ) ( ) ( ( )) ( ( )).u x dx v x dx d u x d v x′ ′= ± = ±  

Аналогічно, оскільки ( )( ) ( ) ( ) ( ) ( ) ( )u x v x u x v x u x v x′ ′ ′⋅ = ⋅ + ⋅ , то 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ( )) ( ) ( ) ( ( ))d u x v x u x dx v x u x v x dx d u x v x u x d v x′ ′⋅ = ⋅ + ⋅ = ⋅ + ⋅ . 

Останню формулу отримати самостійно . 

 Виконайте вправу: застосовуючи формулу ( )df x = ( )f x dx′ ⋅  і 

таблицю похідних, складіть таблицю диференціалів елементарних функцій. 
8. Геометричний зміст диференціала 

        На рис. 1.3 пряма MS  – дотична 

до графіка функції ( )y f x=  в точці 

( , ( ))M x f x . Точка ( , ( ))P x x f x x+ Δ + Δ  

належить графіку цієї функції. Нехай 

MN PN⊥ , тоді в ( )90oQMN N∠ =+  

маємо 

( ) ( ) ( )f x f x x f x PNΔ = + Δ − = , 

x MNΔ = , QN MN tg QMN= ⋅ ∠ . 

Оскільки ( ) ( )df x f x x tg QMN MN′= ⋅Δ = ∠ ⋅ , то  

( )QN df x= . 

Геометричний зміст диференціала:  диференціал функції ( )y f x=  в 

точці x  – це приріст ординати дотичної до графіка функції в точці ( , ( ))M x f x . 

 

 

Рис. 1.3.  
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9. Інваріантність форми першого диференціала 
Як  у випадку, коли змінна x  є незалежною, так і у випадку, коли x  

сама є диференційовною функцією, що залежить від іншої змінної, форма 
першого диференціала не змінюється, а саме: в обох випадках диференціал 
функції ( )y f x=  дорівнює добутку похідної від цієї функції і диференціала 

аргументу dx , тобто dy = ( )f x dx′ ⋅ . Зазначену властивість диференціала 

називають інваріантністю форми першого диференціала.  
Доведемо цю властивість. Формула диференціала у випадку незалежної 

змінної x :  

dy = ( )xf x dx′ ⋅ . 

Нехай тепер ця змінна є залежною, тобто ( )x x t= , тоді 

( ) ( ) ( ) ( )t x x
dx

dy f t dt f x x t dt f x dx
=

′ ′ ′ ′= = ⋅ ⋅ = ⋅��	�
 . 

Це й доводить потрібне. 
10. Похідні вищих порядків 
Нехай функція ( )f x  визначена на інтервалі ( ; )a b  і диференційовна в 

кожній точці цього інтервалу. Тоді на інтервалі ( , )a b  буде визначеною також 

функція ( )f x′ . Якщо і ця функція є диференційовною у деякій точці x  

інтервалу ( ; )a b , тобто має в цій точці похідну (див. теорему 1.5), то значення 

похідної від функції ( )f x′  в точці x  називають другою похідною функції ( )f x  

в точці x  і позначають ( )f x′′ , тобто 

( )( ) ( )
def

f x f x ′′′ ′= . 

Аналогічно визначаються третя, четверта похідна. Якщо похідна  

( 1)n − -ого порядку від функції ( )f x  вже визначена і вона є функцією ( 1) ( )nf x− , 

заданою на інтервалі ( ; )a b  і диференційовною в деякій точці x  інтервалу 

( , )a b , то значення похідної від ( 1) ( )nf x−  в точці x  називають похідною n -ого 

порядку від функції ( )f x  в точці x  і позначають ( ) ( )nf x , тобто 

( )( ) ( 1)( ) ( )
def

n nf x f x− ′= . 
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 Таблиця похідних вищих порядків 

1
1 1 0( ) ...m m

m m mP x a x a x a x a−
−= + + + +   ⇒  ( )( ) !,

( )
0,

n m
m

a m n m
P x

n m
=⎧

= ⎨ >⎩
; 

( )( )
( 1) ... ( 1)

n nx n xα α−= α ⋅ α − ⋅ ⋅ α − + ⋅ , 

 0,x > α∈\ ; 

( )

1

1 ( 1) !n n

n

n
x x +

−⎛ ⎞ =⎜ ⎟
⎝ ⎠

, 0x ≠ ; 

( )( )
ln

nx x na a a= ⋅ , 0 1a< ≠ ; ( )( )nx xe e= ; 

( )
1

( ) ( 1) ( 1)!log
ln

n
n

a n

nx
x a

+− ⋅ −
=

⋅
, 0 1a< ≠ , 

0x > ; 

( )
1

( ) ( 1) ( 1)!ln
n

n
n

nx
x

+− ⋅ −
= , 0x > ; 

( )(sin ) sin
2

n nx x π⎛ ⎞= +⎜ ⎟
⎝ ⎠

; ( )(cos ) cos
2

n nx x π⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

Отримання формул таблиці: 

1) Розглянемо функцію 1
1 1 0( ) ...m m

m m mP x a x a x a x a−
−= + + + + . Якщо 1m = , 

тоді  

( ) ( ) ( )1 1 0 1 1 1 1( ) ( ) , ( ) ( ) ... 0P x a x a P x a P x P x′ ′′ ′′′= + ⇒ = = = = . 

Нехай при m k=  формула ( )( ) !,
( )

0,
n k

k

a k n k
P x

n k
=⎧

= ⎨ >⎩
 є вірною. 

Якщо 1m k= + , то  

*

1 1 *
1 1 1 0 1

( )

( ) ... ( )

k

k k k
k k k k k

P x

P x a x a x a x a a x P x+ +
+ + +

=

= + + + + = + ⇒����	���
  

( ) ( ) ( ) [ ]

{ )
{ )

{ )( 1) 1 *
1 1 1

( )**

( ) ( ) ( 1) !

k
k

kk k k
k k k k k

P xk

P x a x P x a k x a k+ +
+ + +

=

⎛ ⎞
′ ⎜ ⎟⎡ ⎤′ ⎡ ⎤ ′= + = + + =⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎜ ⎟

⎝ ⎠
���	��
  

1 1( 1) ! 0 ( 1)!,k ka k k a k+ += + ⋅ + = +  

( ) ( ){ 2) { 3)
1 1( ) ( ) ... 0.k k

k kP x P x+ +
+ += = =  

2) Для функції ( )f x xα= , α∉`  доведемо формулу за індукцією: 

Нехай 1, 2,3n = , тоді 
1( )f x xα−′ = α , 
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2( ) ( 1)f x xα−′′ = α α − , 
3( ) ( 1)( 2)f x xα−′′′ = α α − α − . 

Нехай для n k=  формула ( )( )
( 1) ... ( 1)

k kx k xα α−= α ⋅ α − ⋅ ⋅ α − + ⋅  є вірною. 

Тоді для 1n k= +  отримаємо 

( ) ( )( ) ( )( 1) ( )

( 1)

( 1) ... ( 1)

( 1) ... ( 1) ( ) .

k k k

k

x x k x

k k x

+α α α−

α− +

′ ′= = α ⋅ α − ⋅ ⋅ α − + ⋅ =

= α ⋅ α − ⋅ ⋅ α − + ⋅ α − ⋅

 

3) Формула 
( )

1

1 ( 1) !n n

n

n
x x +

−⎛ ⎞ =⎜ ⎟
⎝ ⎠

, 0x ≠  є наслідком попередньої, якщо 

обрати 1α = − . 

4) Розглянемо функцію ( ) lnf x x= . Тоді 1( )f x
x

′ = , 

( 1) 1
( ) 1 ( 1) ( 1)!( )

n n
n

n

nf x
x x

− −− −⎛ ⎞= =⎜ ⎟
⎝ ⎠

. 

5) Розглянемо функцію ( ) xf x a= . Тоді 

( ) lnxf x a a′ = ,   2( ) lnxf x a a′′ = . 

Нехай формула ( )( )
ln

nx x na a a= ⋅  є вірною, тоді 

( ) ( )( ) ( )( 1) ( ) 1ln ln ln ln
n nx x x n x n x na a a a a a a a a
+ +′ ′= = ⋅ = ⋅ ⋅ = ⋅ . 

6) Розглянемо функцію ( ) sinf x x= . Тоді 

( ) cos sin
2

f x x x π⎛ ⎞′ = = +⎜ ⎟
⎝ ⎠

, 

( ) cos sin 2
2 2

f x x xπ π⎛ ⎞ ⎛ ⎞′′ = + = + ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

Нехай формула  

( ) ( ) sin
2

nf x x nπ⎛ ⎞= + ⋅⎜ ⎟
⎝ ⎠

 

є вірною, тоді потрібно довести:  

( 1) ( ) sin ( 1)
2

nf x x n+ π⎛ ⎞= + ⋅ +⎜ ⎟
⎝ ⎠

. 
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Доведення: 

( )( )( 1) ( ) sin sin cos sin
2 2 2 2

nn n n nf x x x x x+
′⎡ π ⎤ π π π′ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤= = + = + = + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 

( 1)sin .
2

nx π +⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

Інші формули отримати самостійно . 
Формула Лейбніца. Обчислимо похідні вищих порядків від добутку 

функцій ( ) ( )uv u x v x= : 

( )uv u v uv′ ′ ′= + , 

( ) 2uv u v u v u v uv u v u v uv′′ ′′ ′ ′ ′ ′ ′′ ′′ ′ ′ ′′= + + + = + + , 

( )( ) 2 3 3uv u v u v u v u v u v uv u v u v u v uv′′′ ′′′ ′′ ′ ′′ ′ ′ ′′ ′ ′′ ′′′ ′′′ ′′ ′ ′ ′′ ′′′= + + + + + = + + + . 

Можна припустити наявність закономірності, що виражається формулою, в 

якій !
!( )!

k
n

nC
k n k

=
−

: 

( ) ( ) ( ) ( ) ( 1) ( ) ( ) ( 1) ( )

0
( ) ... ...

n
n k n k k n n k n k k n n

n n
k

uv C u v u v n u v C u v n u v uv− − − −

=

′ ′= = + ⋅ + + + + ⋅ +∑  

Доведення здійснимо за індукцією. Нехай формула 

( ) ( ) ( ) ( ) 1 ( 1) 2 ( 2) 1 ( 1) ( 1)

0

( ) ...
n

n k n k k n n n k n k k
n n n n

k

uv C u v u v C u v C u v C u v− − − − − + −

=

′ ′′= = + ⋅ + ⋅ + + +∑  

( ) ( ) 1 ( 1) ( )...k n k k n n
n nC u v C u v uv− −′+ + + ⋅ +  

є вірною, тоді  
( 1) ( 1) ( ) 1 ( ) 1 ( 1) 2 ( 1)( ) n n n n n n

n n nuv u v u v C u v C u v C u v+ + − −′ ′ ′′ ′′= + + ⋅ + ⋅ + ⋅ +  
2 ( 2) 1 ( 2) ( 1) 1 ( 1) ( ) ( 1) ( )...n k n k k k n k k k n k k
n n n nC u v C u v C u v C u v− − − + − − − + − +

−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−

′′′+ ⋅ + + + + +  

( ) ( 1) 1 ( 1) 1 ( ) ( ) ( 1)

~~~~~~~~~~~~~~~~~~~
...k n k k n n n n

n n nC u v C u v C u v u v uv− + − +′′ ′ ′+ + + ⋅ + ⋅ + + =  

( 1) ( ) 1 ( 1) 1 2 ( 1) ( ) 11 ... ...n n n n k k k k
n n n n nu v u v C u v C C u v C C+ − − + −′ ′′⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + + + + + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

1
( ) 1 ( 1) ( 1) ( )

1
0

1 .
n

n n k n k k
n n

k

u v C u v C u v
+

+ − +
+

=

′ ⎡ ⎤+ + + =⎣ ⎦ ∑  

У останній рівності застосовано співвідношення 
1 1

11 1 ,n nC n C ++ = + =  
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1 2 2
1

( 1) ,
2n n n

n nC C n C +

+
+ = + =  

1 ! ! ! 1 1
( 1)!( 1)! !( )! ( 1)!( )! 1

k k
n n

n n nC C
k n k k n k k n k n k k

− ⎛ ⎞+ = + = ⋅ + =⎜ ⎟− − + − − − − +⎝ ⎠
 

1
! 1 ( 1)! .

( 1)!( )! ( 1) !( 1)!
k
n

n n n C
k n k n k k k n k +

+ +
= ⋅ = =

− − − + − +
     ■ 

11. Диференціали вищих порядків 
Допоміжні позначення: 

xδ – диференціал аргументу, 

( )y f xδ = δ  – диференціал функції. 

Припустимо, що функція ( )y f x=  диференційовна на ( , )a b , а x  – 

незалежна змінна. Диференціал цієї функції ( ) ( )df x dy f x dx′= =  

( ( , ),x a b dx∈ ∈\ ) також називають першим диференціалом. Розглянемо його 

як функцію від x , вважаючи dx  фіксованим. Нехай функція ( )y f x=  має 

другу похідну в даній точці ( ; )x a b∈ . Для позначення диференціала функції 

dy  в цій точці будемо застосовувати символ δ . Тоді цей диференціал має 
вигляд 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )dy f x dx f x dx f x x dx f x x dx′′ ′ ′ ′′δ = δ = δ = δ = δ . 

Загалом кажучи, приріст dx  аргументу x  і повторний приріст xδ  мають 

нерівні значення. При цьому в наведеному далі означенні накладається 
припущення про їх рівність. 

Означення 1.6 (диференціала другого порядку). Диференціалом 
другого порядку в даній точці ( ; )x a b∈  називають диференціал від першого 

диференціала, якщо x dxδ = , і позначають його 2 ( )d f x  або 2d y . Тобто 

2 ( )
def

x dx
d y dy

δ =
= δ . 

Отже, 

( )22 ( )d y f x dx′′= , 
2

2 ( )d y f x
dx

′′=  

Вираз в лівій частині останньої рівності застосовують для позначення другої 
похідної, тоді його читають: «де два ігрек по де ікс двічі». 
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Зауважимо, що 2 0d x = , оскільки при обчисленні другого диференціала 

ми вважали dx x= Δ  сталим. 

Тепер розглянемо випадок, коли x  – залежна  змінна, тобто ( )x x t= . 

Припустимо, що має сенс суперпозиція [ ( )]y f x t= , а функції ( )x t  і ( )f x  

мають другі похідні в точках ( ; )t∈ α β  і ( )x x t=  відповідно. Тоді, за 

означенням, 2 ( )
t dt

d y dy
δ =

= δ . Внаслідок інваріантності форми першого 

диференціала, в цьому випадку він має вигляд ( )dy f x dx′= . Отже,  

( ) ( ){ }2 ( ) ( ) ( ) ( ) ( )
t dt t dt t dt

d y dy f x dx f x dx f x dx
δ = δ = δ =

′ ′ ′= δ = δ = δ ⋅ + ⋅δ =  

{ } { }( ) ( ) ( )
t dt t dt

f x x dx f x dx
δ = δ =

′′ ′= δ ⋅ + ⋅ δ . 

Оскільки { }( ) ( )
t dt t dt

x x t t x t dt dx
δ = δ =

′ ′δ = ⋅δ = ⋅ =  – це перший диференціал 

функції ( )x t  в точці t , а { }( )
t dt

dx
δ =

δ  – це, за означенням, другий диференціал 

цієї функції в точці t , то 

( )22 2( ) ( )d y f x dx f x d x′′ ′= +  

З останньої формули випливає, що форма другого диференціала не є 
інваріантною, тобто вона змінюється в залежності від того, чи є змінна x  

залежною або незалежною.  

Функцію ( )f x , що має другий диференціал в точці ( ; )x a b∈ , називають 

двічі диференційовною в цій точці. 

ІІ. Означення 1.7 (диференціала n -ого порядку). Нехай ( )y f x=  має 

n -у похідну в даній точці ( ; )x a b∈ , аргумент x  є незалежною змінною.  

Диференціалом n -го порядку від функції ( )y f x=  в точці x  називають 

диференціал від диференціала ( 1)n − -го порядку, якщо x dxδ = , і позначають 

( )nd f x  або nd y . Тобто 

( )1
def

n n

x dx
d y d y−

δ =
= δ . 

Функцію ( )f x , що має  диференціал  n -го порядку в точці ( ; )x a b∈ , 

називають n  разів  диференційовною в цій точці. 
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Індуктивно, у випадку, коли x  є незалежною змінною, отримати 

(самостійно ) формули: 

( )( ) ( ) nn nd y f x dx= , ( ) ( )
n

n
n

d y f x
dx

=  

Форма n -го диференціала ( 1n > ) не є інваріантною. 

Функцію ( )f x , яка має похідну n -го порядку в кожній точці інтервалу 

( ; )a b , називають n  разів диференційовною на цьому інтервалі. 

12. Диференціювання функцій, заданих параметрично 
Якщо змінні x  та y  являють собою функції, що залежать від змінної 

t T∈ , яка носить назву параметра, то кажуть, що функція задана параметрично: 

( ),
( ).

x t
y t
= ϕ⎧

⎨ = ψ⎩
. 

Параметризуємо коло 2 2 2x y a+ = : 

cos ,
sin ,

x a t
y a t
=⎧

⎨ =⎩
  [0,2 )t∈ π . 

Для того, щоби мати право розглядати y  як функцію від x , потрібно 

зробити припущення про те, що функція ( )x t= ϕ  має обернену 1( )t x−= ϕ  в 

якомусь околі B  даної точки t T∈ , тоді в образі цього околу ( )x B  буде 

визначеною функція 1( ( ))y x−= ψ ϕ . 

Припускаємо, що функції ( )x t= ϕ  та ( )y t= ψ  диференційовні стільки 

разів в околі B  даної точки t T∈ , скільки похідних нам потрібно обчислити, 

при цьому ( ) 0t t B′ϕ ≠ ∀ ∈ . Для першої похідної отримаємо: 

( ) ( )( )
( ) ( )

dy t dt ty x
dx t dt t

′ ′ψ ψ′ = = =
′ ′ϕ ϕ

, 

( )( )( )
( ) ( )

t

t

y tty x
t x t

′′ψ′ = =
′ ′ϕ

 

Зауважимо, що останню формулу можна отримати в інший спосіб, 

застосовуючи можливість визначення функції 1( ( ))y x−= ψ ϕ  на образі ( )x B  

околу B  даної точки t T∈ : 
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( )1 1 1( ) ( ( )) ( ) ( ( )) ( )
( )

y x x t x t
t

− −′′ ′ ′ ′= ψ ϕ = ψ ⋅ ϕ = ψ ⋅
′ϕ

. 

Для обчислення другої похідної розглянемо функцію ( )z g t= , яку в 

точках околу B  визначимо формулою ( ) ( ( ))g t y x t′=  , тоді отримаємо нову 

функцію, що задана параметрично 
( )
( )

z g t
x t
=⎧

⎨ = ϕ⎩
, похідна від якої і буде 

відповідати другій похідній заданої функції. Отримаємо для ( )x x B∈  

( )
[ ] 3

( )
( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

t
tg t t t t ty x y x

t t t

′′⎡ ⎤ψ
⎢ ⎥′′ ϕ ′′ ′ ′′ ′ψ ϕ −ϕ ψ⎣ ⎦′′′ ′= = = =

′ ′ϕ ϕ ′ϕ
. 

Або інакше: 
( )( )( )( )

( ) ( )
t

t

y xg ty x
t x tϕ

′′′
′′ = =

′ ′
 для ( )x x B∈ . 

Приклад 1.7. Розглянемо функцію 
( sin )

,
(1 cos )

x a t t
y a t
= −⎧

⎨ = −⎩
 графік якої 

називають циклоїдою (див. рис. 1.4 для випадку 1a = ). 
 

 
 

Рис. 1.4. 
 

Знайдемо першу і другу похідну від цієї функції: 

2

2sin cossin 2 2( ) ctg
(1 cos ) 22sin

2

t

t

t t
y a t ty x

tx a t

′
′ = = = =

′ −
, 

2

2 4

1

ctg 2sin 12 2( )
2 sin 4 sin

2 2
t

t t

y x
t tx a a

−′⎛ ⎞
⎜ ⎟
⎝ ⎠′′ = = = −

′
. 

2− π 2π
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13. Диференціювання функцій, заданих неявно 
Якщо функція ( )y y x=  задовольняє рівняння ( , ) 0F x y = , то кажуть, що 

функція задана неявно. 

Наприклад, розглядаючи рівняння 
2 2

2 2 1x y
a b

+ =  і обираючи 

2 2

2 2( , ) 1x yF x y
a b

= + − , ми звели його до вигляду ( , ) 0F x y = . Тепер постає 

питання про функцію ( )y y x= , яка задовольняє це рівняння. Тут ми бачимо, 

що при ( ; )x a a∈ −  таких функцій можна знайти дві: 
2

1 2( ) 1 xy x b
a

= + −  і 

2

2 2( ) 1 xy x b
a

= − − .  

Для того, щоб можна було говорити саме про функцію, задану неявно, 
потрібно накласти такі обмеження на x  і y , за яких рівняння ( , ) 0F x y =  є 

однозначно розв’язним відносно y . У зазначеному прикладі  при ( ; )x a a∈ −  і 

0y >  такою функцією є 1( )y x , а при ( ; )x a a∈ −  і 0y <  – функція 2 ( )y x .  

Зауважимо також, що в загальному випадку можна лише вказати на такі 
обмеження, однак подати функцію ( )y y x= , що є розв’язком рівняння 

( , ) 0F x y = , певною формулою неможливо. Прикладом такої функції, що 

задана неявно, є ( )2 2ln arctg yx y
x

+ =  при ( ) 0 4
00; , ;

2
x

x x y e
π⎛ ⎞∈ ∈⎜ ⎟

⎝ ⎠
, де 

1 1
2 2

0
2
5

arctg
x e= .  

Припустимо, що за певних обмежень на x  і y , які записуються за 

допомогою співвідношень ,x X y Y∈ ∈ , рівняння ( , ) 0F x y =  має єдиний 

розв’язок – функцію  ( )y y x= , яка є диференційовною на X . 

Правило знаходження похідної від функції, що задана неявно: в 
зазаначених припущеннях обчислюємо похідну від обох частин рівняння 

( , ) 0F x y = , вважаючи, що y  – це функція, що залежить від x  (тобто 

( )y y x= ), а x  – незалежна змінна:  
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( , ( )) 0d F x y x
dx

= , 

якщо така похідна існує. 

 
Рис. 1.5.  

Приклад 1.8. Розглянемо функцію, що 

задана неявно: 
2 2 2
3 3 3x y a+ =  при ( 1;1)x∈ − , 

0y > . Лінію, координати якої задоволь-

няють рівняння 
2 2 2
3 3 3x y a+ = , називають 

астроїдою (див. рис. 1.5 для випадку 1a = ), 

Знайдемо похідну першого і другого 
порядку: 

1 1
3 32 2 0

3 3
x y y
− −

′+ ⋅ = ,   3
yy
x

′ = − ; 

2 32
3

3
2 2

1 1
3 3

yx yy xy y x xy
x yx x

− − ⋅ −′ ⎛ ⎞−⎛ ⎞′′ = − ⋅ = − ⋅ =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

2
3

2 2 2 3 23
3 33

2 3

1
3 3

a

yx ax y
y x x xy

=

⎛ ⎞⎛ ⎞
= ⋅ ⋅ + =⎜ ⎟⎜ ⎟

⋅⎝ ⎠ ⎝ ⎠��	�

. 

Зауважимо, що детально теорія неявних функцій розглядатиметься після 
вивчення теми «Функції багатьох змінних» [3, c. 662-672], оскільки ця теорія 
потребує додаткового теоретичного обґрунтування. Тому в цьому посібнику 
при розв’язанні задач на обчислення похідної від функцій, заданих неявно, 
будемо в більшості випадків звертати увагу саме на техніку їх обчислення, не 
вказуючи зазначені вище обмеження на x  і y . 

 
§ 2. Основні теореми про диференційовні функції 

 
1. Монотонність функції в точці. Локальний екстремум 

Розглянемо функцію ( )f x  з областю визначення ( )D f . Припустимо, що 

точка c  – внутрішня точка ( )D f , тобто ця точка належить ( )D f  разом із 
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деяким своїм околом ( ) ( ; )B c c cδ = − δ + δ . Надалі будемо припускати, що 

( ) ( )B c D fδ ⊂ . 

Означення 1.8. Функція ( )f x  зростає в точці ( )c D f∈  ( ( )f x / )  

def

⇔
( ) ( ),

0 ( )
( ) ( ).

x c f x f c
x B c

x c f x f cδ

< ⇒ <⎧
∃δ > ∀ ∈ ⎨ > ⇒ >⎩

 

Аналогічно дають означення спадної функції в точці. 

Означення 1.9. Функція ( )f x  монотонна в точці ( )c D f∈  
def

⇔  ( )f x  

зростає або спадає в точці ( )c D f∈ . 

Означення 1.10. Точка ( )c D f∈  – точка локального максимуму 

( max)loc  функції ( )f x   
def

⇔  0 ( ) \{ } ( ) ( )x B c c f x f cδ∃δ > ∀ ∈ < . 

Аналогічно дають означення локального мінімуму функції. А саме: 

Точка ( )c D f∈  – точка локального мінімуму ( min)loc  функції ( )f x   
def

⇔  

0 ( ) \{ } ( ) ( )x B c c f x f cδ∃δ > ∀ ∈ > . 

Тобто точка ( )c D f∈  є точкою локального максимуму (мінімуму), якщо 

існує деякий окіл цієї точки, в межах якого значення ( )f c  є найбільшим 

(найменшим) серед усіх значень функції в цьому околі. 
Означення 1.11. Точка ( )c D f∈  – точка локального екстремуму 

( )loc extr  функції ( )f x  
def

⇔  в точці c  функція ( )f x  має локальний максимум 

або локальний мінімум. 
Теорема 1.6 (достатня умова монотонності функції в точці). 

 1) c  – внутрішня точка ( )D f , 

2) ( )f x  диференційовна в т. c ,  

3) ( ) 0 ( ( ) 0)f c f c′ ′> < , 

⎫
⎪⇒⎬
⎪
⎭

 

( ) ( )f x / 2  в т. c . 

Доведення. Розглянемо тільки випадок ( ) 0f c′ > , оскільки випадок 

( ) 0f c′ <  може бути доведеним аналогічно. Тоді за означенням границі 

( )f c′ =
0

( ) ( )lim
x

f c x f c
xΔ →

+ Δ −
Δ

 отримаємо: 
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для ( ) 0f c′ε = >  0 : ( ) 0x c x D f x∃δ > ∀ = + Δ ∈ < Δ < δ⇒  

( ) ( ) ( ) ( )f c x f c f c f c
x

+ Δ − ′ ′− < ε =
Δ

. 

Звідки випливає  

( ) 0x c x D f x c∀ = + Δ ∈ < − < δ⇒
( ) ( )0 2 ( )f x f c f c

x c
− ′< <
−

, 

тобто  

( ) \{ }x B c cδ∀ ∈   ( ) ( ) 0f x f c
x c
−

>
−

. 

Тому  
( ) ( ),

( )
( ) ( ).

x c f x f c
x B c

x c f x f cδ

< ⇒ <⎧
∀ ∈ ⎨ > ⇒ >⎩

 

Висновок: ( )f x / в т. c .  ■ 

Зауваження 1.2. Умова додатності похідної функції в 
точці c  є лише достатньою умовою зростання функції в 

точці c . Наприклад, функція 3( )f x x=  (графік див. на 

рис. 1.6) зростає в точці 0: 
3

3

0 ( ) 0 (0),
0 ( ) 0 (0);

x f x x f
x f x x f

⎧ > ⇒ = > =⎪
⎨

< ⇒ = < =⎪⎩
 

при цьому 2

0
(0) 3 0

x
f x

=
′ = = . 

Теорема 1.7 Ферма (необхідна умова локального 

екстремуму). 

 ( )f x  диференційовна в т. c , 

точкаc loc extr− , 

⎫
⇒⎬

⎭
 ( ) 0f c′ = . 

Доведення. 1 спосіб. Функція ( )f x – диференційовна в т. ( )c f c′⇒ ∃ . 

Оскільки т. c  – точка локального екстремуму, то в цій точці функція не може 
спадати, а тому, за теоремою 1.6, її похідна в цій точці не може бути меншою за 
нуль. Вона також не може зростати в т. c , тому похідна в цій точці не може 
бути більшою за нуль (за теоремою 1.6). Отже, ( ) 0f c′ = . Скорочений запис 

висловленого: 

 
Рис. 1.6.  
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( ) в точці ( ) 0,
( ) 0

( ) в точці ( ) 0.
f x с f c

f c
f x с f c

/ ′ ⎫⇒ </ ⎪ ′⇒ =⎬
/ ′⇒ >/ ⎪⎭

2
/

. 

2 спосіб. ( )f x  – диференційовна в т. ( ) ( ) ( )c f c f c f c+ −′ ′ ′⇒ ∃ = = . 

Нехай для визначеності c  – точка локального максимуму, тоді ( ) ( )f c x f c+ Δ <  

( ) \{ }c x D f c∀ + Δ ∈ , звідки 

N

N

0

0

( ) ( )( ) ( ) lim 0,

( ) 0

( ) ( )( ) ( ) lim 0.

x

x

f c x f cf c f c
x

f c

f c x f cf c f c
x

−

+ Δ →+

+

−

− Δ →−

−

⎫
⎪+ Δ −′ ′= = ≤ ⎪Δ ⎪⎪ ′⇒ =⎬
⎪

+ Δ − ⎪′ ′= = ≥ ⎪Δ
⎪⎭


������


������
. ■ 

Геометричний зміст теореми Ферма. 

( )f x  диференційовна в т. c , 

точкаc loc extr− , 

⎫⎪⇒⎬
⎪⎭

 
дотична в точці ( , ( ))M c f c  

паралельна вісі абсцис (див. рис. 1.7). 
 

2. Теореми Ролля, Лагранжа, Коші 

Теорема 1.8 Ролля (про нуль похідної)  

 
( )f x  неперервна на [ ; ]a b , 

( )f x  – диференційовна на ( ; )a b , 

( ) ( )f a f b= , 

⎫
⎪⎪⇒⎬
⎪
⎪⎭

 ( , ) ( ) 0a b f ′∃ξ∈ ξ = . 

Доведення. Оскільки функція неперервна на [ ; ]a b  то, за 

другою теоремою Вейєрштрасса [3, c.188; 4, c.176], вона досягає свого 
найбільшого й найменшого значення, які будемо позначати M  та m , 
відповідно. 

1) Якщо M m= , то ( )f x const= , тоді у всіх точках відрізка ( ) 0f x′ = . 

2) Нехай M m>  і  ( ) ( )f a f b= , тоді хоча б одне із значень M  або m  

досягається у внутрішній точці відрізка [ ; ]a b , тобто існує така точка ( ; )a bξ∈ , 

що ( )f Mξ =  або ( )f mξ = , тоді ξ −  точка loc extr . Отже, за теоремою Ферма 

( ) 0f ′ ξ = .■ 
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Геометричний зміст теореми Ролля. 

( )f x  – неперервна на [ ; ]a b , 

( )f x  – диференційовна на ( ; )a b , 

( ) ( )f a f b= , 

⎫
⎪⎪⇒⎬
⎪
⎪⎭

 
( ; )a b∃ξ∈ : дотична в точці 

( , ( ))fξ ξ  паралельна вісі абсцис 

(див. рис. 1.8). 

Теорема 1.9 Коші (формула Коші). 

( ; )a b∃ξ∈ : 

 
( )f x  і ( )g x  – неперервні на [ ; ]a b , 

( )f x  і ( )g x  – диференційовні на ( ; )a b , 

( ) 0 ( , )g x x a b′ ≠ ∀ ∈ , 

⎫
⎪⎪⇒⎬
⎪
⎪⎭

 ( ) ( ) ( )
( ) ( ) ( )

f a f b f
g a g b g

′− ξ
=

′− ξ
 

 

 

 

 

 

 

 

Рис. 1.7.  

 

 

 

 

 

 

Рис. 1.8.  
 

Доведення. Введемо допоміжну функцію 
( ) ( )( ) ( ) ( ) ( ( ) ( ))
( ) ( )

f a f bF x f x f b g x g b
g a g b

−
= − − ⋅ −

−
. 

1) Вона є заданою коректно: знаменник не дорівнює нулю. Дійсно, в 
супротивному випадку застосуємо теорему Ролля: 

( )g x  – неперервна на [ ; ]a b , 

( )g x  – диференційовна на ( ; )a b , 

( ) ( )g a g b= , 

⎫
⎪⎪⇒⎬
⎪
⎪⎭

 
(за теоремою Ролля) 

( ; ) : ( ) 0a b g ′∃ξ∈ ξ = . 

Отримане суперечить умові. Отже, ( ) ( )g a g b≠ .  

2) Завдяки неперервності функцій ( )f x  і ( )g x  на [ ; ]a b  і властивостям 

неперервних функцій, приходимо до висновку, що ( )F x  – неперервна на [ , ]a b . 

3) Аналогічно, ( )F x – диференційовна на ( ; )a b , причому  

ξa b x O

y

y=f(x) 

  f(a)=f(b) 

с  xO 

y 

 y=f(x) 

М 
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( ) ( )( ) ( ) ( )
( ) ( )

f a f bF x f x g x
g a g b

−′ ′ ′= − ⋅
−

. 

4) ( ) ( ) 0F a F b= = . 

Застосуємо теорему Ролля до функції ( )F x : 

1), 2), 3), 4) ( ; ) : ( ) 0a b F ′⇒ ∃ξ∈ ξ = , 
тобто 

( ) ( )( ) ( ) ( ) 0
( ) ( )

f a f bF f g
g a g b

−′ ′ ′ξ = ξ − ⋅ ξ =
−

. 

Звідси  
( ) ( ) ( )
( ) ( ) ( )

f a f b f
g a g b g

′− ξ
=

′− ξ
  ( ( ; )a bξ∈ ).■ 

Теорема 1.10 Лагранжа (формула Лагранжа). 
( ; )a b∃ξ∈ : 

 
( )f x  неперервна на [ ; ]a b , 

( )f x  диференційовна на ( , )a b  

⎫⎪⇒⎬
⎪⎭

 
( ) ( ) ( )( )f a f b f a b′− = ξ −  

Доведення. Нехай ( )g x x= , тоді 

1) ( )g x  неперервна на [ ; ]a b , 

2) ( )g x – диференційовна на ( , )a b , 

3) ( ) 1 0g x′ = ≠  ( ; )x a b∀ ∈ . 

Застосовуємо теорему Коші: 

( , )a b∃ξ∈ :  ( ) ( ) ( )
1

f a f b f
a b

′− ξ
=

−
. ■ 

 Геометричний зміст теореми 
Лагранжа. Розглянемо рис. 1.9: 

в ( )o90KPN P∠ =+  і 

( ) ( )NP f b f atg
KP b a

−
β = =

−
. 

Звідси і з формули Лагранжа приходимо 
до висновку: для диференційовної на 

( , )a b  і неперервної на [ ; ]a b  функції ( )f x  

 

b ξ  a 
X 

 K 

f(b) 

f(a) 

N 

  P 
   β 

 Y 

f(ξ) 

Рис. 1.9 

y 

x

 

     Рис. 1.9. 

О 
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можна знайти таке ( ; )a bξ∈ , що дотична в точці ( , ( ))fξ ξ  буде паралельна 

січній, що проходить через точки з координатами ( , ( ))a f a , ( , ( ))b f b . 

Нехай для функції ( )f x  всі припущення теореми Лагранжа виконано. 

Розглянемо точку 0 ( ; )x a b∈  і такий приріст аргументу xΔ  в точці 0x , що 

0 ( ; )x x a b+ Δ ∈ . Тоді виконується формула Лагранжа скінченних приростів 
 

0 0 00 1: ( ) ( ) ( )f x x f x f x x x′∃ < θ < + Δ − = + θΔ ⋅Δ  

Дійсно, всі припущення теореми Лагранжа виконано на відрізку 

0 0[ ; ]x x x+ Δ , якщо 0xΔ >  (або на відрізку 0 0[ ; ]x x x+ Δ , якщо 0xΔ < ). На цьому 

відрізку формула Лагранжа набуває вигляду: 

0 0 0 0( ) ( ) ( ) { }f x x f x f x x x′+ Δ − = ξ ⋅ + Δ −  

(тут точка ξ  знаходиться 

поміж 0 0ix x x+ Δ ). Тоді отри-

маємо: 

0(0;1) : x x∃θ∈ ξ = + θΔ , 
звідки 

0 0 0( ) ( ) ( )f x x f x f x x x′+ Δ − = + θΔ ⋅Δ .  

3. Наслідки з теореми Лагранжа 
Теорема 1.11 (про сталість функції, яка має на інтервалі похідну, що 

дорівнює нулю). 
( )f x  диференційовна на ( ; )a b ,  

( ) 0 ( ; )f x x a b′ = ∀ ∈ , 

⎫⎪⇒⎬
⎪⎭

 ( )f x const x= ∀ ∈ ( ; )a b . 

Доведення. Нехай 0 ( ; )x a b∈  фіксована точка, а  ( ; )x a b∈ – така 

довільна точка, що 0x x≠ . Оскільки функція ( )f x  диференційовна на ( ; )a b , то 

вона диференційовна на відрізку 0 0[ ; ] ([ ; ])x x x x , а тому неперервна на цьому 

відрізку. Таким чином, можна застосувати формулу Лагранжа: 

∃ξ  поміж x  і 0x : 0 0( ) ( ) ( ) ( )f x f x f x x′− = ξ ⋅ − . 

За умовою ( ) 0f ′ ξ = , тому 0( ) ( )f x f x= . В силу довільності вибору точки 

( ; )x a b∈  маємо: значення функції в усіх точках дорівнюють значенню в 

0x x+ Δ  ξ 0x

xΔ  
xθ⋅Δ x  
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конкретній точці 0 ( ; )x a b∈ . Якщо позначити 0( )c f x= , то 

( ) ( ; )f x c x a b= ∀ ∈ .■ 

Геометричний зміст теореми 1.11. Якщо функція диференційовна на 

інтервалі, і в будь-якій його точці дотична до її графіка паралельна вісі абсцис, 

тоді ця функція є сталою. 

Дійсно, паралельність дотичної до графіка функції вісі абсцис 

еквівалентна рівності похідної цієї функції нулю. Оскільки це виконується  в 

будь-якій точці інтервалу, то доведення зводиться до попередньої теореми. ■ 

Теорема 1.12 (про функції, що мають однакову похідну).  

( )f x  і ( )g x  диференційовні на ( ; )a b , 

( ) ( ) ( ; )f x g x x a b′ ′= ∀ ∈ , 
⎫
⇒⎬

⎭
 ( ) ( ) ( ; )f x g x const x a b= + ∀ ∈ . 

Тобто, якщо функції мають однакові похідні на інтервалі  ( ; )a b , то вони 

в точках цього інтервалу відрізняються на константу. 

Доведення. Розглянемо допоміжну функцію ( ) ( ) ( )x f x g xϕ = − , тоді  

( )xϕ  диференційовна на ( , )a b , 

( ) 0 ( ; )x x a b′ϕ = ∀ ∈ , 
⎫⇒⎬
⎭

 
( ) ( ) ( )x f x g x constϕ = − =   

                        x∀ ∈ ( ; )a b .  ■ 

Означення 1.12. Нехай функція ( )f x  визначена на множині ( )D f  і 

( )X D f⊂ . 

( )f x  – зростаюча (/ ) на X
def

⇔ 1 2 1 2 1 2, ( ) ( )x x X x x f x f x∀ ∈ < ⇒ < , 

( )f x  – спадна (2 ) на X
def

⇔ 1 2 1 2 1 2, ( ) ( )x x X x x f x f x∀ ∈ < ⇒ > , 

( )f x  – неспадна (нестрого зростаюча)  на X  
def

⇔ 1 2 1 2 1 2, ( ) ( )x x X x x f x f x∀ ∈ < ⇒ ≤ , 

( )f x  – незростаюча (нестрого спадна) на X  
def

⇔ 1 2 1 2 1 2, ( ) ( )x x X x x f x f x∀ ∈ < ⇒ ≥ , 

( )f x  – монотонна (строго) на X  
def

⇔ ( )f x  – зростаюча або спадна на X , 
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( )f x  – нестрого монотонна на X  
def

⇔ ( )f x  – незростаюча або  

неспадна на X . 
В пункті 1 цього параграфа було розглянуто поняття монотонності 

функції в точці. Із останнього означення випливає, що зростаюча \ спадна 
функція на множині X  буде зростаючою \ спадною в кожній внутрішній точці 

цієї множини. Зворотне твердження не є вірним. Функція 1( )f x
x

=  спадає в 

кожній точці множини ( ;0) (0; )X = −∞ +∞∪ , однак не є спадною на цій 

множині. Дійсно, розглянемо 1 0x <  та 2 0x > . Нехай 1

2
x

δ = , тоді  

( )1 1;x x Xδ δ− + ⊂  і ( )
1

1
1 1

1
1

1 1 ,
;

1 1 .

x x
x x

x x x
x x

x x

δ δ

⎡ < ⇒ >
⎢

∀ ∈ − + ⎢
⎢ > ⇒ <
⎢⎣

 

Звідки випливає спадання функції ( )f x  в точці 1x . Аналогічно доводиться 

спадання цієї функції в точці 2x  (доведіть це !). При цьому, маємо: 

1 0x <  і 2 0x > , тому 1 2x x<  і 
1 2

1 1
x x
< . 

Отже, функція ( )f x  не є спадною на X . 

Теорема 1.13 (критерій нестрогої монотонності функції на інтервалі). 

Якщо функція ( )f x  – диференційовна на ( , )a b , то для того, щоб вона була 

неспадною (незростаючою) на цьому інтервалі, необхідно і достатньо, щоб 
похідна в усіх точках інтервалу була невід’ємною (недодатною), тобто 

( ) 0f x′ ≥  ( ( ) 0f x′ ≤ ) x∀ ∈ ( , )a b . 

Доведення. Достатність. Нехай 0 ( , ), ( ; )x a b x a b∈ ∈ , а для 

визначеності припустимо, що 0x x< . Оскільки ( )f x  диференційовна на 

інтервалі ( , )a b , то вона диференційовна на відрізку 0[ ; ]x x , що знаходиться в 

середині цього інтервалу, та  неперервна на 0[ ; ]x x  (за твердженням 1.2). 

Отже, вимоги теореми Лагранжа виконуються на відрізку 0[ ; ]x x , тому 

можна знайти точку 0( ; )x xξ∈  таку, що 
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0 0( ) ( ) ( ) ( )f x f x f x x′− = ξ ⋅ − . 

Якщо ( ) 0f x′ ≥  на ( , )a b , а за припущенням 0x x< , тоді 

0( ) ( ) 0f x f x− ≥ , тобто 0( ) ( )f x f x≥ . Таким чином, ( )f x – неспадна функція 

(див. підкреслені співвідношення). 
Необхідність. Нехай ( )f x  – диференційовна і неспадна на ( , )a b . 

Доведемо, що ( ) 0f x′ ≥  x∀ ∈ ( ; )a b . 

Припустимо супротивне: ( ; ) : ( ) 0c a b f c′∃ ∈ < , тоді з теореми про 

достатню умову монотонності функції в точці маємо, що ( )f x  в точці с спадає, 

а це суперечить умові. ■ 
Теорема 1.14 (достатня умова строгої монотонності функції на 

інтервалі). 

 ( )f x  диференційовна на ( , )a b ,  

( ) 0 ( 0) ( ; )f x x a b′ > < ∀ ∈ , 

⎫⎪⇒⎬
⎪⎭

 ( ) ( )f x / 2  на ( , )a b . 

Доведення дублює обґрунтування достатності теореми 1.13. ■ 
Умова додатності (від’ємності) похідної на інтервалі не є необхідною 

умовою зростання (спадання) функції на цьому інтервалі. Наприклад, функція 
3( )f x x=  зростає (/ ) на ( 1;1)− , однак не у всіх точках інтервалу ( 1;1)−  вона 

має строго додатну похідну. А саме: в точці 0x =  похідна дорівнює нулю, 

тобто (0) 0f ′ = , отже, 2( ) 3 0f x x′ = ≥  на ( 1;1)− . 

Геометричний зміст теореми 1.14 (див. рис. 
1.10). Якщо ( ) 0f x′ >  на ( , )a b , то всюди на ( , )a b  

дотична, що лежить у верхній півплощині, утворює 
з додатним напрямком осі Ox  гострий кут, тому 
крива ( )y f x=  «йде вгору» всюди на інтервалі 

( , )a b . 

Точки, в яких виконується необхідна умова 
екстремуму, тобто ( ) 0f c′ = , домовимося називати стаціонарними, а 

стаціонарні точки й ті, в яких функція неперервна, а похідна не існує, – 
критичними. 

  a  b   O 

   y 

 x

Рис. 1.10.  
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4. Перша та друга достатні умови локального екстремуму 

Теорема 1.15 (перша достатня умова loc extr). 

 

1) ( )f x  

диференційовна 

в ( ) \{ }B c cδ , 

 2) c – критична 

точка, 

внутрішня для 

( )D f  

⎫
⎪
⎪
⎪
⎪
⎪
⇒⎬

⎪
⎪
⎪
⎪
⎪
⎭

 

І)
( ) 0 ( ; ),

max
( ) 0 ( ; ),

f x x c c
c loc

f x x c c
′ > ∀ ∈ −δ ⎫

⇒ −⎬′ < ∀ ∈ + δ ⎭
; 

ІІ)
( ) 0 ( , ),

min
( ) 0 ( , ),

f x x c c
c loc

f x x c c
′ < ∀ ∈ −δ ⎫

⇒ −⎬′ > ∀ ∈ + δ ⎭
; 

ІІІ) при переході через т. c  в ( ) \{ }B c cδ  

( )f x′  не змінює свій знак⇒  в точці c  

немає  loc extr. 

Доведення. І) Нехай ( ) \{ }x B c cδ∈  – довільна точка проколеного δ-

околу. Оскільки функція ( )f x  диференційовна в ( ) \{ }B c cδ , то вона 

диференційовна на піввідрізку [ ; ) (( ; ])x c c x , а тому є неперервною на ньому. 

Крім того, функція неперервна в точці c . Тому можна застосувати на відрізку 

[ ; ] ([ ; ])x c c x  теорему Лагранжа: 

( ) ( ) ( ) ( )f x f c f x c′− = ξ ⋅ − , 

де ξ  знаходиться поміж х і с. Звідси маємо: 

N

N

( ) 0 ( , ) ( ) ( ) ( ) ( ) 0 ( ) ( ).

( ) 0 ( , ) ( ) ( ) ( ) ( ) 0 ( ) ( ).

( ) ( ) ( ) \{ } точка max.

f x x c c f x f c f x c f x f c

f x x c c f x f c f x c f x f c

f x f c x B c c c loc

+ −

− +

′ ′> ∀ ∈ − ⇒ − = ⋅ − < ⇒ < ⎫
⎪
⇒⎬′ ′< ∀ ∈ + ⇒ − = ⋅ − < ⇒ < ⎪

⎭
⇒ < ∀ ∈ ⇒ −

�	


�	


δ

δ ξ

δ ξ  

 ІІ) Доведення аналогічне І). 

 ІІІ) Нехай для визначеності ( ) 0f x′ >   ( ) \{ }x B c cδ∀ ∈ , тоді  

N

N

( ; ) ( ) ( ) ( ) ( ) 0 ( ) ( ).

( ; ) ( ) ( ) ( ) ( ) 0 ( ) ( ).

x c c f x f c f x c f x f c

x c c f x f c f x c f x f c

δ ξ

δ ξ
+ −

+ +

′∈ − ⇒ − = ⋅ − < ⇒ < ⎫
⎪
⇒⎬′∈ + ⇒ − = ⋅ − > ⇒ > ⎪

⎭

�	


�	

 

в точці c  немає 

loc extr. ■ 
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Теорема 1.16 (друга достатня умова loc extr). 

 1) ( )f x  – диференційовна в 

( )B cδ , 

2) c  – внутрішня точка ( )D f , 

 3) ( ) 0f c′ = ,   4) ( )f c′′∃ , 

⎫
⎪
⎪
⇒⎬

⎪
⎪
⎭

 

І) ( ) 0 maxf c c loc′′ < ⇒ −  

ІІ) ( ) 0 minf c c loc′′ > ⇒ −  

ІІІ) ( ) 0f c′′ =  – сумнівний 

випадок. 

Доведення.  

І) ( ) ( ) 0,
( ) 0 ( ) в точці ( )

( ) ( ) 0,
x c f x f c

f c f c с x B c
x c f x f cδ

′ ′> ⇒ < = ⎫′′ ′< ⇒ ⇒∀ ∈ ⇒⎬′ ′< ⇒ > = ⎭
2  

за першою достатньою умовою екстремуму, точка . maxc т loc− . 

ІІ) Доводиться аналогічно. 

IІІ) Функція 3( )f x x=  в точці 0 зростає і, відповідно, не має екстремуму, 

хоч (0) 0f ′ = , а 4( )f x x=  в т. 0 має локальний мінімум, а (0) 0f ′ = . Тому цей 

випадок є сумнівним. ■ 

На рис. 1.11 зображено можливі типи локальних екстремумів: 

максимумів (рис. 1.11 а – г) і мінімумів (рис. 1.11 д – ж). Екстремуми на рис. 

1.11 б – г  і е – ж називають піковидними; в таких точках екстремуму функція 

не є диференційовною.  
 

 
  а  б   в    г 

 
  д  е   є    ж 

Рис. 1.11.  
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5. Доведення нерівностей за допомогою похідної 
Можна виділити деякі з основних методів доведення нерівностей, що 

застосовують диференціальні властивості функцій. 
І. Доведення нерівностей за допомогою теореми Лагранжа. 
ІІ. Доведення нерівностей з використанням монотонності функції. 
ІІІ. Доведення нерівностей за допомогою властивостей опуклості функції. 

І. Доведення нерівностей за допомогою теореми Лагранжа. 
Приклад 1.9. Довести такі нерівності (№Д12511 а, д): 

1.  | sin sin | | |x y x y− ≤ − ;       2.   | arctg arctg | | |x y x y− ≤ − . 

   Доведення. 

1. 
( ) sin неперервна на [ ; ] (або [ ; ]),
( ) sin диференційовна на ( ; ) (або ( ; )),

f x x x y y x
f x x x y y x

= − ⎫
⇒⎬= − ⎭

 

між i : | sin sin | | cos ( ) | | |x y x y x y x y∃ξ − = ξ ⋅ − ≤ − ; 

2. 
( ) arctg неперервна на [ ; ] (або [ ; ]),
( ) arctg диференційовна на ( ; ) (або ( ; )),

f x x x y y x
f x x x y y x

= − ⎫
⇒⎬= − ⎭

 

2

1між i : | arctg arctg | ( ) | |
1

x y x y x y x y∃ξ − = ⋅ − ≤ −
+ ξ

. 

ІІ. Доведення нерівностей з використанням монотонності функції на 
інтервалі. Для розв’язання деяких задач будемо застосовувати такий логічний 
ланцюжок. 

( ) неперервна на [ ; ],
( ) диференційовна на ( ; ), ( ) на ( ; ) i ( ) ( ) ( ) ( ; )
( ) 0 на ( ; ),

f x a b
f x a b f x a b f a f x f b x a b
f x a b

− ⎫
⎪− ⇒ < < ∀ ∈⎬
⎪′ > ⎭

/ . 

Аналогічно для випадку ( ) 0 на ( , )f x a b′ < (запишіть логічний ланцюжок 

самостійно !). 

Приклад 1.10. Довести нерівність 1xe x≥ +  для x∈\  (№Д1289 а). 

Якщо 0x = , то 0 1 0e = + , і нерівність, що перевіряється, 

перетворюється в рівність. Розглянемо неперервну на [0; )+∞  функцію 

                                                 
1 Посилання на номери, в яких фігурує літера «Д», означатимуть, що цей приклад відповідає 
збірнику задач Демидовича Б.П. [2]. 
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( ) 1xf x e x= − − . 

Вона диференційована на  (0; )+∞  і ( ) 1xf x e′ = − .  

Знаки похідної: 
 

1) 
0,

( ) (0)
( ) ,

x
f x f

f x
> ⎫

⇒ >⎬
⎭/

, 2) 
0,

( ) (0)
( ) ,

x
f x f

f x
< ⎫

⇒ >⎬
⎭2

, 

1 0xe x− − > ; 1 0xe x− − > . 

Отже, 1 0xe x− − >  при 0x ≠  і 1 0xe x− − =  при 0x = , тому 

1 0xe x x− − ≥ ∀ ∈\ . 

Приклад 1.11. Доведемо таку нерівність для 0x > : 
2 3

1 ...
2! 3! !

n
x x x xe x

n
> + + + + + . 

Доведення проводимо за індукцією. Якщо 1n = , то нерівність 1xe x≥ +  

вже доведена, навіть для всіх x∈\ . 

Зробимо індуктивне припущення про справедливість нерівності для 
1n − , а саме: 

2 3 1

1 ... 0
2! 3! ( 1)!

n
x x x xe x x

n

−

> + + + + + ∀ >
−

. 

Розглянемо функцію 
2 3

( ) 1 ...
2! 3! !

n
x x x xf x e x

n
= − − − − − − , 

тоді, 
2 3 1 2 3 12 3 4( ) 1 ... 1 ...

2! 3! 4! ! 2! 3! ( 1)!

n n
x xx x x nx x x xf x e e x

n n

− −

′ = − − − − − + = − − − − − −
−

. 

Згадавши індуктивне припущення, отримаємо ( ) 0 0f x x′ ≥ ∀ > . Звідси 

робимо висновок: 

0,
( ) (0)

( ) на (0; ),
x

f x f
f x
> ⎫

⇒ >⎬
+∞ ⎭/

, крім того  (0) 0f = , тому 

2 3

1 ... 0 0
2! 3! !

n
x x x xe x x

n
− − − − − − > ∀ > . 

0
+–
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Приклад 1.12. Нехай 0 1,ix i n> ∀ = . Введемо позначення для 

середнього арифметичного й середнього геометричного:  

1 2 ... nx x x
A

n
+ + +

= ,   1 2 ...n
nB x x x= ⋅ ⋅ ⋅ . 

Доведемо, що A B≥ , тобто 

1 2 ... nx x x
n

+ + +
≥ 1 2 ...n

nx x x⋅ ⋅ ⋅ . 

Таку нерівність називають нерівністю 
Коші. 

Наприклад, для 2n =  будемо 

мати  

1 2

2
x x+

≥ 1 2x x⋅ . 

 

х1 

1 2x x

х2 

1 2

2
x x+

K 

L 

M 
N 

Q 

O

 
Рис. 1.12.  

Геометричну інтерпретацію останньої нерівності можна отримати з  рис.1.12. А 
саме: середнє геометричне відповідає висоті LN  прямокутного трикутника 

+KLM ( 90oL∠ = ), а середнє арифметичне – радіусу OQ описаного навколо 

нього кола. Як бачимо, LN OQ≤ , що й відповідає зазначеній нерівності, 

оскільки 1 2LN x x= , а 1 2

2
x x

OQ
+

=  ( LN OQ= , коли 1 2x x= ). 

В прикладі 1.10 було доведено нерівність 1te t≥ + , t∈\ . При 1t x= −  

маємо нерівність 1xe x− ≥ , x∈\ . 

Розглянемо , 1,..., ,k
k

x
y k n

A
= =  тоді 1ky

ke y− ≥ , звідки 

1 1 1
x
A xe

A
−
≥ , 

2 1 2
x
A x

e
A

−
≥  

…………. 
1nx

nA x
e

A
−
≥ , 

⎫
⎪
⎪
⎪⎪
⎬
⎪
⎪
⎪
⎪⎭

 перемножимо⇒
1 1 ... 1 2 ...nxx x

n nA A A
n

x x x
e

A
+ + + − ⋅ ⋅ ⋅

≥ . 
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Розглянемо показник степеня в лівій частині останньої нерівності і застосуємо 
означення  величини A  як середнього арифметичного: 

1 2 ...
0nx x x A nn n n

A n A
+ + + ⋅

⋅ − = − =
⋅

. 

Отже, експонента має степінь 0, звідки отримаємо 

0 1 2 ...
1 n

n

x x x
e

A
⋅ ⋅ ⋅

= ≥  ⇒  1 2 ...n
nA x x x≥ ⋅ ⋅ ⋅  ⇒  1 2 ...n

nA x x x≥ ⋅ ⋅ ⋅ . 

Таким чином, A B≥ , що і треба було довести. 
6. Розкриття невизначеностей. Правила Лопіталя 

В цьому пункті проколений δ-окіл точки a  позначимо ( )B aδ , тобто  

( ) ( ; ) ( ; )B a a a a aδ = − δ + δ∪ . 

Теорема 1.17 (І правило Лопіталя, розкриття невизначеностей 0
0
⎡ ⎤
⎢ ⎥⎣ ⎦

).  

1) ( )f x  і ( )g x  диференційовні в ( )B aδ ,  

2) ( ) 0 ( )g x x B aδ′ ≠ ∀ ∈ , 

3) lim ( ) lim ( ) 0
x a x a

f x g x
→ →

= = , тобто під знаком 
1) ( )lim

( )x a

f x
g x→

∃ , 

границі 
( )lim
( )x a

f x
g x→

 має місце невизначеність 0
0
⎡ ⎤
⎢ ⎥⎣ ⎦

, 

4) 
( )lim
( )x a

f x
g x→

′
∃

′
 (скінченна або нескінченна), 

⎫
⎪
⎪
⎪
⎪⎪
⎬
⎪
⎪
⎪
⎪
⎪⎭

 ⇒ 2)  
( )lim
( )x a

f x
g x→

=
( )lim
( )x a

f x
g x→

′
′

. 

Доведення. 1) В точці a  функції ( )f x  і ( )g x  довизначимо значенням 0, 

тобто ( ) 0f a =  і ( ) 0g a = . 

Оскільки ( )f x  і ( )g x – диференційовні на ( )B aδ , то  

( )f x  і ( )g x  неперервні на ( )B aδ , 

( ) ( ) 0,
( ) ( ) непер. в т.lim ( ) lim ( ) 0,

x a x a

f a g a
f x i g x аf x g x

→ →

= = ⎫⎪⇒ −⎬= = ⎪⎭
, 

⎫
⎪⇒⎬
⎪
⎭

 

( )f x  і ( )g x – 

неперервні на 

( ; )a a− δ + δ . 

2) Доведемо теорему з використанням означення границі за Гейне. 
Розглянемо послідовність { } ( )nx B aδ⊂ , таку, що n nx a x a n→ ∧ ≠ ∀ . 

На відрізку [ , ] ([ , ])n nx a a x  маємо: 
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( )f x  і ( )g x  неперервні на [ , ] ([ , ])n nx a a x , 

( )f x  і ( )g x  диференційовна на ( )( ; ) ( ; )n nx a a x ,   

( ) 0g x′ ≠  на ( )( ; ) ( ; )n nx a a x , 

⎫
⎪⇒⎬
⎪
⎭

 
можна 
використати 
теорему Коші: 

( )( ; ) ( ; )n n nx a a x∃ξ ∈   
( ) ( ) ( )
( ) ( ) ( )

n n

n n

f x f a f
g x g a g

′− ξ
=

′− ξ
. 

Оскільки ( ) 0f a =  і ( ) 0g a = , то 

( ) ( )
( ) ( )

n n

n n

f x f
g x g

′ ξ
=

′ ξ
. 

За теоремою «про двох міліціонерів»  (принцип двостороннього 
обмеження) (  повторіть теорему [3, с. 94; 4, с. 57]!), 

n nx a

a

< ξ <
⇓2 0  або  

n nx a

a

> ξ >
⇓2 0 , 

тобто  lim nn
aξ = . За умовою ( )lim

( )x a

f x b
g x→

′
∃ =

′
 (скінченна або нескінченна), тому за 

означенням границі за Гейне, 

( ) ( )lim lim
( ) ( )

n

n x a
n

f f x b
g g x→∞ →

′ ′ξ
= =

′ ′ξ
. 

Отже, 
( ) ( )

lim lim
( ) ( )

n n

n n
n n

f f x
b b

g g x→∞ →∞

′ ξ
∃ = ⇒ ∃ =

′ ξ
.  

В силу довільності послідовності { }nx , яка збігається до а, за означенням 

границі функції за Гейне, 

( )lim
( )x a

f x
g x→

∃
( )

lim
( )

n

n
n

f x
g x→∞

= b= .  ■ 

Зауваження 1.3. Перше правило Лопіталя виконується також і для 
границь 0x a→ +  і 0x a→ − . 

Зауваження 1.4. Якщо похідні  ( )f x′  і ( )g x′  є такими функціями, які 

задовольняють умови правила Лопіталя, то правило Лопіталя можна 
застосовувати двічі. Це роблять у тому випадку, коли залишається 
невизначеність після першого використання правила Лопіталя. 
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Зауваження 1.5. Якщо похідні ( )f x′  і ( )g x′  є неперервними в точці a , 

то перше правило Лопіталя можна записати у вигляді:  

( ) ( )lim
( ) ( )x a

f x f a
g x g a→

′
=

′
. 

Зауваження 1.6. Зустрічаються випадки, коли ( )lim
( )x a

f x
g x→

′
∃

′
, хоча 

( )lim
( )x a

f x
g x→

∃ . Наприклад, 

N
N
N

2

0 0
н.м.ф.

1 обм.

н.м.ф.

1cos 1lim lim cos 0
sin sinx x

x xx x
x x x→ →

→

= ⋅ ⋅ =

��	�


  ( )lim
( )x a

f x
g x→

⇒ ∃ 1, 

P

N

0

2
2

0 0

1

1 1 1 1 12 cos sin 2 cos sin( )lim lim lim
( ) cos cosx a x x

x x xf x x x x x x
g x x x

→ ∃/

→ → →

→

−
⋅ − ⋅ ⋅ ⋅ +′

= =
′


����

 ( )lim
( )x a

f x
g x→

′
⇒ ∃

′
. 

Пояснимо останнє. Розглянемо дві послідовності  

* 1 0
2

2

nx
n

= →
π
+ π

 і ** 1 0
2nx

n
= →

π
, 

тоді  

*

*

( ) 1lim 1
1( )

n

n
n

f x
g x
′

= =
′

,   
**

**

1
( ) 2lim lim 0

1( )
n

n n
n

f x n
g x
′ π= =
′

. 

Із означення границі функції за Гейне випливає відсутність границі: 

( )lim
( )x a

f x
g x→

′
∃

′
. 

                                                 
1 Тут і далі, під записом «н.м.ф.», будемо розуміти «нескінченно мала функція ( )f x  у деякій точці 
a », тобто така функція, що lim ( ) 0

x a
f x

→
= . Під записом «обм.» будемо розуміти «обмежена 

функція ( )f x  у деякому околі точки a ». 
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Зауваження 1.7. У правилі Лопіталя стверджується, що за відповідних 
припущень із існування границі відношення похідних випливає існування 
границі відношення функцій (цей момент у формулюваннях тверджень 
виділено). Тому спочатку бажано відповідну рівність границь записувати під 
знаком запитання, який перекреслювати після перевірки існування границі 
відношення похідних. 

Приклад 1.13. Обчислимо границю: 

( )
( )

44 3?

20 0 02

2 2 2?
2

20 0 0

0 4lim (правилоЛопіталя) lim lim
0 2 2sin2cos 2 2cos 2

0
0 12 6 12(пр.Лопіталя) lim lim lim 12.
0 2 2cos 1 cos 1 cos ~

2

x x x

x x x

xx x
x xx x x x

x
x x x

xx x xx

→ → →

→ → →

′
⎡ ⎤= = = =⎢ ⎥ −+ − ′⎣ ⎦ + −

→ ⇒
⎡ ⎤= = = = = =⎢ ⎥ − − −⎣ ⎦

 

Зауваження 1.8. Перше правило Лопіталя також можна 
використовувати, якщо x →∞ , а саме: 

1) ( )f x  і ( )g x  диференційовні в  

\ ( ; )Bδ = −δ δ\ ,  

 

2) ( ) 0g x x Bδ′ ≠ ∀ ∈ ,  
1) ( )lim

( )x

f x
g x→∞

∃ , 

3)  lim ( ) lim ( ) 0
x x

f x g x
→∞ →∞

= = , 

4) ( )lim
( )x

f x
g x→∞

′
∃

′
 скінченна або нескінченна, 

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭

 
⇒
 

2) 

( ) ( )lim lim
( ) ( )x x

f x f x
g x g x→∞ →∞

′
=

′
. 

Доведення. Заміна: 1t
x

= . Якщо x →∞ , то 0t → . Введемо складені 

функції: 1( )F t f
t

⎛ ⎞= ⎜ ⎟
⎝ ⎠

,   1( )G t g
t

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. Тоді  

0

( ) ( )lim lim
( ) ( )t x

F t f x
G t g x→ →∞

=  (у випадку існування границь), 

( ) ( )2 2
2

1 1 1 1( ) , ( )G t g g g x x F t f x x
t t t t

′⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′ ′= ⋅ = − ⋅ = − ⋅ = − ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

.     (1.5) 
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1) Оскільки ( )f x  і ( )g x  диференційовні в \ ( ; )Bδ = −δ δ\ , тому із (1.5) ⇒  

( )F t  і ( )G t  – диференційовні в ( )1/ (0) 1/ ;1/ \ {0}B δ = − δ δ . 

2) Оскільки ( ) 0g x x Bδ′ ≠ ∀ ∈  і 0x ≠ , то із (1.5) ⇒  1/( ) 0 (0)G t t B δ′ ≠ ∀ ∈ . 

3) Оскільки ( ) ( )G t g x=  і lim ( ) 0
x

g x
→∞

= , то 
0

lim ( ) lim ( ) 0
t x

G t g x
→ →∞

= = . Аналогічно 

для ( )F t : 
0

lim ( ) lim ( ) 0
t x

F t f x
→ →∞

= = .  

4) Оскільки ( )lim
( )x

f x
g x→∞

′
∃

′
 і мають місце рівності (1.5), то  

2

20 0

( ) ( ) ( ) ( )lim lim lim lim
( ) ( ) ( )( )t x x t

F t f x x f x F t
G t g x G tg x x→ →∞ →∞ →

′ ′ ′ ′− ⋅
= = ⇒ ∃

′ ′ ′′− ⋅
. 

Таким чином, всі припущення теореми 1.17 для ( )F t  і ( )G t  виконані, 

тому 

0 0

( ) ( )lim lim
( ) ( )t t

F t F t
G t G t→ →

′
=

′
. 

Звідки маємо 

0 0

( ) ( ) ( ) ( )lim lim lim lim .
( ) ( ) ( ) ( )x t t x

f x F t F t f x
g x G t G t g x→∞ → → →∞

′ ′
= = =

′ ′
∃ ⇒ ∃ ⇒ ∃ ⇒ ∃

   ■ 

Теорема 1.18 (ІІ правило Лопіталя, розкриття невизначеностей ∞⎡ ⎤
⎢ ⎥∞⎣ ⎦

).  

1) ( )f x  і ( )g x  диференційовні в ( )B aδ ,   

2) ( ) 0 ( )g x x B aδ′ ≠ ∀ ∈ ,  

3) lim ( ) lim ( )
x a x a

f x g x
→ →

= =∞ , тобто під знаком  
1) ( )lim

( )x a

f x
g x→

∃  

⇒
 границі ( )lim

( )x a

f x
g x→

має місце невизначеність ∞⎡ ⎤
⎢ ⎥∞⎣ ⎦

, 

4) ( )lim
( )x a

f x
g x→

′
∃

′
 скінченна або нескінченна. 

⎫
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎭

 

 

2) 
( )lim
( )x a

f x
g x→

=
( )lim
( )x a

f x
g x→

′
′

. 

Доведення. Нехай nx a→ , тоді можливі два випадки: nx a>  або nx a< . 

Розглянемо перший випадок (у другому випадку доведення аналогічне). 
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Розглянемо 
,n

m

x a
x a

>⎧
⎨ >⎩

 і відповідно відрізки  [x n ; x m ] (або [x m ; x n ]). 

Оскільки nx ( )B aδ∈ , ( )f x  і ( )g x  – диференційовні в ( )B aδ  то ( )f x  і ( )g x  – 

диференційовні на ( ;n mx x ) (або ( ;m nx x )) і неперервні на [ ;n mx x ] (або [ ;m nx x ]). 

Крім того, ( ) 0 ( )g x x B aδ′ ≠ ∀ ∈ . Тому можна використати теорему Коші: 

( ) ( )
( ) ( )

n m

n m

f x f x
g x g x

−
−

=
'( )
'( )

nm

nm

f c
g c

,    (1.6) 

де nmc  знаходиться між nx  і mx .  

Випадок 1: ∃  скінченна границя lim
x a→

'( )
'( )

f x b
g x

= < ∞ . 

За теоремою про «двох міліціонерів», 

 
n nm m

nm

x c x
c a

a

< <
⇓ ⇒ →2 0 ,    або    

n nm m

nm

x c x
c a

a

> >
⇓ ⇒ →2 0 . 

Оскільки ( )lim
( )x a

f x
g x→

′
∃

′
, то за означенням границі за Гейне 

,

'( )
lim

'( )
nm

n m
nm

f c
g c→∞

∃ , тоді   

00 n∀ε > ∃ ∈` : ( )0 0,n n m n∀ ≥ ≥  
'( )
'( ) 2

nm

nm

f c
b

g c
ε

− < .  

Зробимо перетворення: 

( )1
( ) ( ) ( ) ( )

( )( ) ( ) ( ) 1
( )

m

n m n n

mn m n

n

f x
f x f x f x f x

g xg x g x g x
g x

−
−

= ⋅
− −

.   (1.7) 

Оскільки lim ( ) lim ( )
x a x a

f x g x
→ →

= =∞  і lim nn
x a

→∞
= , тоді за означенням границі за 

Гейне lim ( ) lim ( )n nn n
f x g x

→∞ →∞
= =∞ . Уведемо позначення 

1( )1
( )
( )1
( )

m

n
nm

m

n

f x
f x

A
g x
g x

−
⎛ ⎞−⎜ ⎟
⎜ ⎟=
⎜ ⎟−⎜ ⎟
⎝ ⎠

. За-

фіксуємо m, а n  спрямуємо до нескінченності (n→∞ ), тоді lim 1nmn
A

→∞
= , звідки 
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1 0 1
20 : 1

2

nmn n n n A
b

ε

∀ε > ∃ > ∀ ≥ − <
ε

+
.   (1.8) 

Тоді із (1.8) отримаємо 

2 1

2

nmA
b

ε

< +
ε

+
.   (1.9) 

Оскільки із (1.6) і (1.7) випливає, що  
1( )1

( ) ( ) ( ) ( ) '( )
( )( ) ( ) ( ) '( )1
( )

m

n n m n nm
nm

mn n m nm

n

f x
f x f x f x f x f c

A
g xg x g x g x g c
g x

−
⎛ ⎞−⎜ ⎟− ⎜ ⎟= ⋅ = ⋅

− ⎜ ⎟−⎜ ⎟
⎝ ⎠

, 

тоді з урахуванням (1.9), отримаємо 

( ) '( ) '( )
( ) '( ) '( )

n nm nm
nm nm nm

n nm nm

f x f c f c
b A b b A b A b

g x g c g c
⎛ ⎞

− = ⋅ − = − ⋅ + ⋅ − ≤⎜ ⎟
⎝ ⎠

 

'( )
1

'( )
nm

nm nm
nm

f c
A b b A

g c
≤ ⋅ − + ⋅ − ≤  

2 2 2

2 2
2 2 2 2 2 22 21

2
2 2 2 2

b b b
b

b b b b

ε ε ε ε ε ε⎛ ⎞ ⎛ ⎞ ⎛ ⎞ε ε⎛ ⎞ + ⋅ + + ⋅ ⋅ + ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ε ⎝ ⎠ ⎝ ⎠ ⎝ ⎠≤ + ⋅ + ⋅ = = = ε⎜ ⎟ε ε ε ε⎜ ⎟+ + + +⎜ ⎟
⎝ ⎠

. 

Таким чином, 
( )
( )

n

n

f x
b

g x
→ . Разом маємо: 

( )
,

( )
n

n n
n

f x
x a x a b

g x
→ > ⇒ → . В силу 

довільності послідовності { }nx , приходимо до висновку, що  

0

( )lim
( )x a

f x b
g x→ +

= . 

Випадок 2:  границя нескінченна '( )lim
'( )x a

f x
g x→

= ∞ . Тоді, оскільки 

( ) 0 ( )g x x B aδ′ ≠ ∀ ∈ , то ( ) 0 ( )f x x B aδ′ ≠ ∀ ∈ . Крім того, '( )lim 0
'( )x a

g x
f x→

= .  

Застосовуючи випадок 1, отримаємо 
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( ) '( )lim lim 0
( ) '( )x a x a

g x g x
f x f x→ →

∃ = =    ( )lim
( )x a

f x
g x→

⇒ = ∞ . ■ 

Приклад 1.14. Обчислимо границю: 

( )
?

1 30 0 0 0 0 0 0 0
2 2

1
lnlim ln lim lim lim ( 2 ) 0

1
2

x x x x

x xx x x
x x

→ + → + → + → +− −

−∞⎡ ⎤⋅ = = = = − =⎢ ⎥+∞⎣ ⎦ −
. 

7. Опуклість функції 
        Означення 1.13 (опуклості вниз).  

Функція ( )f x  – опукла вниз на [ , ]a b 1 
def

⇔   

1 2 1 2 1 2, [ ; ] ( , 0 1)x x a b q q q q∀ ∈ ∀ ≥ ∧ + =   

1 1 2 2 1 1 2 2( ) ( ) ( )f q x q x q f x q f x+ ≤ + .  

Зокрема, якщо ( )f x  – опукла вниз на [ , ]a b , 

то (рис. 1.13)  

1 2, [ , ]x x a b∀ ∈  1 2 1 2( ) ( )
2 2

x x f x f x
f

+ +⎛ ⎞ ≤⎜ ⎟
⎝ ⎠

. 

Аналогічно, функція ( )f x  – опукла вгору на [ ; ]a b  
def

⇔   

1 2 1 2 1 2, [ ; ] ( , 0 1)x x a b q q q q∀ ∈ ∀ ≥ ∧ + =  1 1 2 2 1 1 2 2( ) ( ) ( )f q x q x q f x q f x+ ≥ + . 

Покажемо рівність множин 

{ }1 1 2 2 1 2 1 2 1 2: , 0 1 [ , ]x q x q x q q q q x x= + ≥ ∧ + = = , якщо 1 2x x< . 

Першу із них позначимо через A . 

Дійсно, нехай x A∈ , тобто 1 1 2 2x q x q x= + , а 1 2 1 2, 0 1q q q q≥ ∧ + = , тоді 

1 1 2 2 1 2 2 2 2 1 2 2

1 1 2 2 1 1 2 1 1 1 2 1

( ) ,
( ) .

x q x q x q x q x x q q x
x q x q x q x q x x q q x
= + ≤ + = + =
= + ≥ + = + =

 

Тому 1 2 1 2[ , ]x x x x x x≤ ≤ ⇒ ∈ . Отже, 1 2[ , ]A x x⊂ . 

                                                 
1 Замість відрізка [ , ]a b  може виступати інтервал ( , )a b , півінтервал, півпряма (відкрита або 
замкнена) або пряма. 

2( )f x  

1 2( ) ( )
2

f x f x+  

1 2

2
x xf +⎛ ⎞

⎜ ⎟
⎝ ⎠

 

1x  
2x1 2

2
x x+O 

 y 

x 1( )f x  

Рис. 1.13.  
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З іншого боку, якщо 1 2x x x≤ ≤ , тоді для 2 1
1 2

2 1 2 1

,
x x x x

q q
x x x x

− −
= =

− −
 

маємо  

2 1
1 2

2 1

1
x x x x

q q
x x
− + −

+ = =
−

, 1 2, 0q q ≥ , 

2 1 1 2 1 2 1 2 2 1
1 1 2 2 1 2

2 1 2 1 2 1 2 1

( )x x x x x x xx xx x x x x x
q x q x x x x

x x x x x x x x
− − − + − −

+ = ⋅ + ⋅ = = =
− − − −

. 

Тобто x A∈ . Отже, 1 2[ , ]A x x⊃ . Таким чином, рівність множин доведено. 

Перша геометрична інтерпретація опуклості вниз: графік опуклої 

вниз на відрізку [ , ]a b  функції розташовується не  вище за хорду, що сполучає 

будь-які дві точки цього графіка, абсциси яких лежать на відрізку [ , ]a b . 

Доведення.  Якщо ( )f x  – опукла вниз на [ , ]a b , тоді підставимо у 

означення 2 1
1 2

2 1 2 1

,
x x x x

q q
x x x x

− −
= =

− −
 та отримаємо: 

2 1
1 2 1 2 1 2 1 2

2 1 2 1

, [ , ] : ( ) ( ) ( ) ( )
x x x x

x x a b x x x x x f x f x f x
x x x x

− −
∀ ∈ ≠ ∧ ≤ ≤ ≤ ⋅ + ⋅

− −
. 

Позначимо 2 1
1 1 2

2 1 2 1

( ) ( )
x x x x

y f x f x
x x x x

− −
= ⋅ + ⋅

− −
, 

тоді 1( )f x y≤ .  

Нехай y�  – ордината точки на хорді з 

абсцисою x . Доведемо, що 1y y=� . Тоді  

одержимо (рис. 1.14): 

1 2

1 2

( ) ( )
tg

y f x f x y
x x x x
− −

= =
− −

� �
α , 

звідки 

1 2 2 1( ( ))( ) ( ( ) )( )y f x x x f x y x x− − = − −� � , 

2 1 1 2
1

2 1

( )( ) ( )( )f x x x f x x x
y y

x x
− + −

= =
−

� . 

2( )f x

y�  

( )
1( )

f x
f x

 

1x 2x
 

x  O 

 y 

  x 
α

Рис. 1.14. 
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Таким чином, 1y y=� , тому ( )f x y≤ � . Це означає, що точка на графіку функції 

( )f x  з абсцисою x  розташовується не вище за точку на хорді з тією ж 

абсцисою. ■ 

Лема. Має місце еквівалентність нерівностей 1 2 1 2, [ , ] :x x a b x x x∀ ∈ < <  

1 2 1 2
1 2

2 1 2 1 1 2

( ) ( ) ( ) ( )
( ) ( ) ( )

x x x x f x f x f x f x
f x f x f x

x x x x x x x x
− − − −

≤ ⋅ + ⋅ ⇔ ≤
− − − −

. 

Доведення. Пригадаємо, що 2 1
1 2

2 1 2 1

,
x x x x

q q
x x x x

− −
= =

− −
, тоді 

2 1
1 2

2 1 2 1

1
x x x x

q q
x x x x

− −
= + = +

− −
. 

Ліву частину нерівності 1 2
2 1

2 1 2 1

( ) ( ) ( )
x x x x

f x f x f x
x x x x
− −

≤ ⋅ + ⋅
− −

 помножимо на 

одиницю, яка виражається зазначеним вище співвідношенням: 

2 1 1 2
2 1

2 1 2 1 2 1 2 1

( ) ( ) ( )
x x x x x x x x

f x f x f x
x x x x x x x x

⎛ ⎞− − − −
⋅ + ≤ ⋅ + ⋅⎜ ⎟− − − −⎝ ⎠

. 

Тоді 

( ) ( )1 2
2 1

2 1 2 1

( ) ( ) ( ) ( )
x x x x

f x f x f x f x
x x x x
− −

− ≤ −
− −

, 

1 2

1 2

( ) ( ) ( ) ( )f x f x f x f x
x x x x
− −

≤
− −

. 

Усі перетворення були еквівалентні. ■ 
Теорема 1.19 (критерій опуклості вниз). 

 
( )f x  – диференційовна  

            на ( ; )a b ,  

⎫
⎪⇒⎬
⎪
⎭

 

для опуклості вниз функції ( )f x  на 

( ; )a b  необхідно й достатньо, щоб 

( )f x′  /  нестрого на ( ; )a b . 

Доведення. Необхідність. Функція ( )y f x=  на ( ; )a b  опукла вниз, тому 

з урахуванням леми матимемо 

1 2 1 2, ( , ) :x x a b x x x∀ ∈ < <     1 2

1 2

( ) ( ) ( ) ( )f x f x f x f x
x x x x
− −

≤
− −

. 
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Оскільки ( )f x  – диференційовна на ( ; )a b , то після граничного переходу при 

1 2,x x x x→ →  отримаємо    

2 1 2 1
1 2

2 1 2 1

( ) ( ) ( ) ( )
( ) ( )

f x f x f x f x
f x f x

x x x x
− −′ ′≤ ∧ ≤
− −

. 

Отже, 1 2 1 2 1 2, ( , ) ( ) ( )x x a b x x f x f x′ ′∀ ∈ < ⇒ ≤ , тобто ( )f x′  /  нестрого на 

інтервалі ( ; )a b . 

Достатність. Розглянемо 1 2 1 2, ( , ) :x x a b x x x∈ < < . На 1[ ; ]x x  

застосуємо формулу Лагранжа (доведіть  можливість її застосування!), тоді 

1 1( ; )c x x∃ ∈ : 1 1 1( ) ( ) ( ) ( )f x f x f c x x′− = ⋅ − . 

Аналогічно на 2[ ; ]x x  маємо: 

2 1 2 2 2 2( , ) : ( ) ( ) ( ) ( )c x x f x f x f c x x′∃ ∈ − = ⋅ − . 
 
 
 

Звідси одержимо 

1 2
1 2

1 2

( ) ( ) ( ) ( )
( ) , ( ) .

f x f x f x f x
f c f c

x x x x
− −′ ′= =
− −

                (1.10) 

За умовою ( )f x′  /  нестрого на ( ; )a b , тому, оскільки 1 2c c< , то 

1 2( ) ( )f c f c′ ′≤ . З урахуванням (1.10) отримаємо 

1 2 1 2, ( ; ) :x x a b x x x∀ ∈ < <     1 2

1 2

( ) ( ) ( ) ( )f x f x f x f x
x x x x
− −

≤
− −

. 

Це й означає, згідно з лемою, опуклість вниз даної функції на ( , )a b .■ 

Наслідок 1.1 (другий критерій опуклості вниз). 

 
( )f x  – диференційовна  

            на ( ; )a b  двічі,  

⎫
⎪⇒⎬
⎪
⎭

 

для опуклості вниз функції ( )f x  на 

( ; )a b  необхідно й достатньо, щоб 

( ) 0f x′′ ≥  на ( ; )a b . 

    |    |      |     |     |     |      |     
1 1 2 2a x c x c x b  
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Доведення. Функція ( )f x  опукла вниз на ( , )a b ⇔ ( )f x′  на ( ; )a b /  

нестрого (критерій опуклості вниз) ⇔  ( )( ) ( ) 0f x f x′′ ′′= ≥  на ( ; )a b  (згідно з 

критерієм нестрогої монотонності функції на інтервалі). ■ 
Друга геометрична інтерпретація опуклості вниз: 

( )f x  – диференційовна 

на ( ; )a b ,  

⎫
⎪
⎪
⇒⎬

⎪
⎪
⎭

 

функція ( )f x  є опуклою вниз на ( ; )a b  

тоді й лише тоді, коли дотична в будь якій 

точці ( ; )a b  розташовується нижче за 

графік функції. 

Доведення.  Достатність. Нехай 1 2, ( ; )x x a b∈ , тоді рівняння дотичних 

в цих точках мають вигляд:  

1 1 1

2 2 2

( ) ( )( ),
( ) ( )( ).

y f x f x x x
y f x f x x x

′= + −

′= + −
 

Оскільки дотичні розташовані нижче графіка функції, то 

1 1 1

2 2 2

( ) ( ) ( )( ),
( ) ( ) ( )( ).

f x f x f x x x
f x f x f x x x

′≥ + −

′≥ + −
 

Тобто 

1 1 1

2 2 2

( ) ( ) ( )( ),
( ) ( ) ( )( ).

f x f x f x x x
f x f x f x x x

′− ≥ −

′− ≥ −
 

Нехай 1 2a x x x b< < < < . Розглянемо два випадки: 

І.   1x x<                                                 ІІ.  2x x<  

1
1

1

( ) ( )
( )

f x f x
f x

x x
−′ ≤
−

                             2
2

2

( ) ( )
( )

f x f x
f x

x x
−′ ≥
−

. 

Здійснимо граничні переходи: 

2x x→                                                    1x x→  

2 1
1

2 1

( ) ( )
( )

f x f x
f x

x x
−′ ≤
−

                            2 1
2

2 1

( ) ( )
( )

f x f x
f x

x x
−′ ≥
−

. 
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Таким чином, 1 2 1 2( ) ( )x x f x f x′ ′< ⇒ ≤ , що означає нестроге зростання 

( )f x′  на ( ; )a b , а тому за критерієм опуклості вниз отримаємо,  що ( )f x  – 

опукла вниз на ( ; )a b . 

Необхідність. Нехай ( )f x  – опукла вниз на ( ; )a b .  

Потрібно довести, що графік дотичної нижче за графік функції на ( ; )a b , 

а саме: 

0 0 0 0( ) ( ) ( )( ) , ( , )f x f x f x x x x x a b′≥ + − ∀ ∈ .                  (1.11) 

Нерівність (1.11) рівносильна двом іншим: 

І.   0x x> ,                                                ІІ.   0x x< , 

0
0

0

( ) ( )
( )

f x f x
f x

x x
−′ ≤
−

;                             0
0

0

( ) ( )
( )

f x f x
f x

x x
−′ ≥
−

. 

Введемо перепозначення: 

2

1 0

,
,

x x
x x
= ⎫

⇒⎬= ⎭

1

1
1

1

,
( ) ( )

( ) ;

x x
f x f x

f x
x x

<⎧
⎪ −⎨ ′ ≤⎪ −⎩

          2 0

1

,
,

x x
x x
= ⎫

⎬= ⎭
 

2

2
2

2

,
( ) ( )

( ) .

x x
f x f x

f x
x x

<⎧
⎪⇒ −⎨ ′ ≥⎪ −⎩

 

Згідно з доведенням необхідності в теоремі 1.19 опуклість вниз функції 

на ( ; )a b  еквівалентна двом отриманим нерівностям, які у свою чергу 

еквівалентні нерівності (1.11). ■ 
В наведених нижче прикладах дослідимо функції на опуклість. 

 
Рис. 1.15. 

Приклад 1.15. Розглянемо 

функцію , 0, 1xy a a a= > ≠ . 

Знайдемо другу похідну: lnxy a a′ = , 
2(ln ) 0xy a a′′ = > . Висновок: функція 

xy a=  на \  строго опукла вниз ( )∪ . 

Графіки функцій зображено на рис. 
1.15. 

 

0 1a< < 1a >  

    x 
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Рис. 1.16.  

Приклад 1.16. Для функції 
log , 0, 1ay x a a= > ≠  знайдемо другу похідну: 

1
ln

y
x a

′ = , 2

1 1
ln

y
a x
⎛ ⎞′′ = ⋅ −⎜ ⎟
⎝ ⎠

. Отримаємо:  

        1) 0 1 0a y′′< < ⇒ > ⇒  функція опукла 

вниз ( )∪  на (0; )+∞ , 

        2) 1 0a y′′> ⇒ < ⇒ функція опукла 

вгору ( )∩  на (0; )+∞ . 

Графіки функцій зображено на рис. 1.16. 

 
 

Рис. 1.17.  

Приклад 1.17. Розглянемо функцію 

siny x=  при 0
2

x π
≤ ≤  (рис. 1.17). 

Отримаємо  

sin 0 0;
2

y x x π⎡ ⎤′′ = − < ∀ ∈ ⇒⎢ ⎥⎣ ⎦
 

siny x= – опукла вгору ( )∩  на [ ]0, / 2π . 

Для функції із прикладу 1.17 отримаємо одну важливу нерівність. Із 
першої геометричної інтерпретації опуклості вгору функції випливає, що 

хорда, яка сполучає точки (0,0) i 0,
2
π⎛ ⎞

⎜ ⎟
⎝ ⎠

, тобто пряма 2y x=
π

 на відрізку 

0;
2
π⎡ ⎤

⎢ ⎥⎣ ⎦
, розташована не вище за графік функції siny x=  (див. рис. 1.17). Звідси 

отримаємо нерівність 

2sin при 0
2

x x x π
≥ ≤ ≤
π

. 

Пригадавши відому з теорії границь нерівність  [3, c.172; 4, c.122] 

sin при 0x x x≤ ≥ , 

одержимо 

2 sin при 0
2

x x x x π
≤ ≤ ≤ ≤

π
 

 x 

2y x=
π

siny x=

0 1a< <

1a >

 x 
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8. Точки перегину 
 
 
 
 
 
 

 
Рис. 1.18.  

 Означення 1.14. Нехай функція ( )f x  є 

неперервною в точці 0x . Точка ( )( )0 0,M x f x – 

точка  перегину  графіка  функції ( )y f x=   
def

⇔   

існує такий δ-окіл точки 0x , в межах якого 

функція змінює напрямок опуклості при  пере-
ході через точку 0x , тобто 

( )( )0 0,M x f x  – точка перегину графіка функції ( )y f x=  
def

⇔   

0∃δ > : ( )0 0в ( ; ) ( ) ( )x x f x− δ −∪ ∩ ∧  ( )0 0в ( ; ) ( ) ( )x x f x+ δ −∩ ∪ .  

Теорема 1.20 (необхідна умова перегину). 

 
1) ( )f x  – диференційовна в 0 0 0( ) ( ; )B x x xδ = − δ + δ , 

2) ( )( )0 0,M x f x  – точка перегину,   3) 0( )f x′′∃ , }⇒  0( ) 0f x′′ = . 

Доведення. Нехай ( )f x  диференційовна в 0( )B xδ . Оскільки 

( )( )0 0,M x f x – точка перегину, то  

0 0

0 0

в ( ; ) ( ) ( ) (критерій опуклості)  ( ) ( ),

в ( ; ) ( ) ( ) (критерій опуклості)  ( ) ( ),

x x f x f x

x x f x f x

′ ⎫− δ −∪ ∩ ⇒ ⎪⇒⎬
′+ δ −∩ ∪ ⇒ ⎪⎭

/ 2

2 /
  

т. 0x  – точка  локального максимуму (мінімуму) функції 0( ) ( ) 0f x f x′ ′′⇒ =  

(теорема Ферма). ■ 
Умова 0( ) 0f x′′ =  є тільки необхідною умовою перегину в точці 

( )( )0 0,M x f x . Наприклад, для функції 4y x=  в точці 0 0x =  маємо 

2

0
(0) 12 0

x
y x

=
′′ = = , але графік цієї функції в точці (0,0)  не має перегину 

(  накресліть графік функції!). 
На рис. 1.19 зображено можливі типи перегинів графіків функцій. 

Перегини, зображені на рис. 1.19 в, г, є, ж відповідають піковидним 

екстремумам. Зауважимо, що при переході через точки екстремумів, 

зображених на рис. 1.11 а, г, д, ж, функція не змінює напрям опуклості, тому в 

цих точках немає перегинів. 

0x0x −δ 0x + δO 
  x

y 

0( )f x  



Розділ 1. ТЕОРЕТИЧНІ ВІДОМОСТІ 

 66

 

 
а       б   в  г 

 
д       е   є  ж 

Рис. 1.19.  
Теорема 1.21 (достатня умова перегину). 

1) ( )f x  двічі диференційовна в 0( )B xδ , 

2) 0( ) 0f x′′ = ; 3) при переході через т. 0x   
в 0( )B xδ друга похідна ( )f x′′  змінює знак, 

⎫
⎪⇒⎬
⎪
⎭

 

( )( )0 0,M x f x  – 

точка перегину.  

Доведення. При переході через точку перегину 0x  в 0( )B xδ  друга 

похідна ( )f x′′  змінює свій знак, тому, застосовуючи другий критерій 

опуклості, отримаємо: 

0 0

0 0

( ; ) ( ) 0 ( 0) ( ) ( ),

( ; ) ( ) 0 ( 0) ( ) ( ),

x x x f x f x

x x x f x f x

δ

δ

′∀ ∈ − > < ⇒ − ∪ ∩ ⎫⎪⇒⎬
′∀ ∈ + < > ⇒ − ∩ ∪ ⎪⎭

 ( )( )0 0,M x f x  –точка 

перегину (за означенням). ■ 
9. Асимптоти графіка функції 

Означення 1.15. Пряма 0x x=  – вертикальна асимптота графіка 

функції ( )y f x=  
def

⇔  
0 0

lim ( )
x x

f x
→ −

= ∞  або 
0 0

lim ( )
x x

f x
→ +

= ∞ . 

0x  O x 

y 

0x  O x 

y 

0x  O x 

y 

0x  O x 

y 

0x  O x 

y 

0x  O x 

y 

0x  O x 

y 

0x  O x 

y 
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Рис. 1.20. 

Приклад 1.18. Для функції 

1y
x

=  (рис. 1.20) маємо 

0 0

1lim
x x→ +

= +∞ , 
0 0

1lim
x x→ −

= −∞ . 

Тому 0x =  – вертикальна асимптота 

графіка цієї функції.  Зауважимо, що 
вертикальну асимптоту графік функції 
може мати тільки в точках розриву 
другого роду цієї функції [3, c. 178]. 

Означення 1.16. Пряма y kx b= +  – похила асимптота графіка 

функції ( )y f x=  на +∞  ( −∞ )
def

⇔  відстань від точки графіка функції ( )y f x=  

до графіка прямої y kx b= +  прямує до 0, якщо x → +∞  ( x →−∞ ). (У випадку, 

коли функція визначена для як завгодно великих значень x ). 

Знайдемо формулу для обчислення k  і b . 

Рис. 1.21. 

На рис. 1.21 відстань, 
про яку йде мова у означенні 
– це MN . 

У  o( 90 )KNM N∠ =+  маємо: 

cosMN MK= ⋅ α , 
Тоді 

MK AM AK= − =  

( )( )f x kx b= − + , 

( ) ( )
( ) cos ,

lim ( ) 0
0, x

MN f x kx b
f x kx b

x MN

α
→+∞

⎫= − + ⋅ ⎪⇒ − + =⎬
→ +∞⇒ → ⎪⎭

,

( ) ( )lim 0
x

f x kx b
x→+∞

− +
= ⇒  ( ) ( )0 lim lim

x x

f x b f xk k
x x x→+∞ →+∞

⎡ ⎤ ⎡ ⎤= − − = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
. 

Висновок:    
( )

( )lim
x

f xk
x→+∞ −∞

= , 
 

( )
( )

lim ( )
x

b f x kx
→+∞ −∞

= −  

K 

M 

N 

A 

( )f x

α  

α  

 х х
O 

 y 

kx+b 

M 

N K 
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Окремим випадком є горизонтальна асимптота y b= , тоді 0k =  і  

( )
lim ( )

x
b f x

→+∞ −∞
=  

Приклад 1.19. Графік функції 1y
x

=  має горизонтальну асимптоту на 

+∞  і на −∞ 0y =  (див. рис. 1.20), оскільки 1lim 0
x x→±∞

= . 

Приклад 1.20. Знайти асимптоти графіка функції 
3

2

3 2xy
x
−

= . 

Область визначення функції: 0x ≠ .    

1) Шукаємо горизонтальні асимптоти ( y b= ): 

3

2

3 2lim
x

x
x→±∞

−
= ±∞ .  

Оскільки обчислена границя є нескінченною, графік заданої функції не має 

горизонтальної асимптоти. 

2) Шукаємо вертикальні асимптоти ( 0x x= ): 

3

2 20 0

3 2 2lim lim 3
x x

x x
x x→± →±

− ⎛ ⎞= − = ±∞⎜ ⎟
⎝ ⎠

. 

Оскільки функція має нескінчену границю при 0x → , то існує вертикальна 

асимптота 0x = . В інших точках функція неперервна, тобто інших 

вертикальних асимптот її графік не має. 

3) Шукаємо похилі асимптоти ( y kx b= + ): 

( )
3

32

3

3 2
3 2lim lim lim 3

x x x

x
y x xxk

x x x→±∞ →±∞ →±∞

−
−

= = = = , тобто 3k = ; 

( )( )
3

2 2

3 2 2lim lim 3 lim 0
x x x

xb y x kx x
x x→±∞ →±∞ →±∞

⎛ ⎞− −
= − = − = =⎜ ⎟

⎝ ⎠
, тобто 0b = . 

Таким чином, похилою асимптотою для графіка заданої функції буде пряма 
3y x= . 
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10. Загальна схема дослідження функції за допомогою похідної та 
побудова графіків 

1) Знайти область визначення ( )D f  заданої функції; 

2) знайти множину значень ( )E f  функції елементарними методами, якщо це 

можливо; 
3) дослідити функцію на парність, непарність; 
4) дослідити на періодичність; 
5) дослідити на неперервність і з’ясувати характер точок розриву; 
6) знайти асимптоти графіка функції (застосовувати результати п. 9, §2  цього 

розділу); 
7) знайти проміжки монотонності, точки екстремуму (за допомогою 

достатньої умови монотонності функції на інтервалі, необхідної умови та 
достатніх умов локального екстремуму); 

8) знайти проміжки опуклості, точки перегину (використати критерії 
опуклості, необхідну умову та достатню умови перегину); 

9) знайти точки перетину з осями координат, значення функції в характерних 
точках; 

10) побудувати графік функції. 
Приклад 1.21. Провести повне дослідження та побудувати графік 

функції 
3

2 1
xy

x
=

−
. 

1) ( ) ( ; 1) ( 1;1) (1; )D y = −∞ − ∪ − ∪ +∞ . 2) ( )E y = \ . 

3) ( ) ( )y x y x− = − ⇒  функція непарна, тому її графік симетричний відносно 

точки О(0,0). Отже, дослідження будемо проводити на промені [0; )+∞ . 

4) Функція неперіодична. 

5) Точкою розриву на промені [0; )+∞  є 1x = . Оскільки 

( )

3

2 21 0

1lim
1 1 0 1x

x
x→ +

⎡ ⎤
= = +∞⎢ ⎥

− + −⎢ ⎥⎣ ⎦
,   

( )

3

2 21 0

1lim
1 1 0 1x

x
x→ −

⎡ ⎤
= = −∞⎢ ⎥

− − −⎢ ⎥⎣ ⎦
, 

то в точці 1x =  розрив II роду.  
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Функції 3( )g x x=  і 2( ) 1h x x= −  неперервні на [0; )+∞ , як многочлени, 

тому дана функція у точках, де знаменник 2( ) 1h x x= −  на [0; )+∞  не дорівнює 

нулю (тобто при 1x ≠ ), є неперервною функцією як частка двох неперервних 

функцій. 
6) З п. 5) випливає, що 1x =  – вертикальна асимптота. 

Знайдемо похилі асимптоти: 
2

2

( )lim lim 1
1x x

f x xk
x x→+∞ →+∞

= = =
−

, 

( )
3 3 3

2 2lim ( ) lim lim 0
1 1x x x

x x x xb f x kx x
x x→+∞ →+∞ →+∞

⎛ ⎞ − +
= − = − = =⎜ ⎟− −⎝ ⎠

, 

тому y x=  – похила асимптота на +∞ .  

Оскільки графік функції має на +∞  похилу асимптоту, то горизонтальні 
асимптоти в нього на +∞  відсутні.  
7) Для дослідження функції на монотонність і пошуку її точок екстремуму 
знайдемо першу похідну: 

2 2 3 4 2 2 2

2 2 2 2 2 2

3 ( 1) 2 3 ( 3)
( 1) ( 1) ( 1)

x x x x x x x xy
x x x
− − ⋅ − −′ = = =
− − −

. 

Знайдемо критичні точки на промені [0; )+∞ , тобто точки, в яких похідна 

функції дорівнює нулю або не існує: 
2 2

2 2

( 3) 0,0,
( 1)

[0; ),
[0; ),

x xy
x

x
x

⎧ −′ ==⎧ ⎪⇔ −⎨ ⎨∈ +∞⎩ ⎪ ∈ +∞⎩

3, 0x x⇔ = = ; 

y′  не існує в точці 1 [0; )x = ∈ +∞ .  

Знаки y′ : 

Характерні точки 

Напрямки монотонності, loc extr   

Значення функції  в точках loc extr                     3 3
2

 

 

0 1 3
min 

+– –
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8) Для дослідження функції на опуклість і пошуку точок перегину її 

графіка знайдемо знак другої похідної на промені (0; )+∞ : 

3 2 2 4 2 2

2 4

(4 6 )( 1) ( 3 )(2( 1) 2 )
( 1)

x x x x x x xy
x

− − − − − ⋅′′ = =
−

( )2

2 3

2 3

( 1)

x x

x

+

−
. 

Знаки y′′ : 

Характерні точки 

Напрямки опуклості, точки перегину   
 

Внаслідок симетрії графіка функції відносно початку координат, функція 

опукла вниз, зокрема, на проміжку ( 1;0)− . Тому при переході через точку 

0x =  функція змінює напрямок опуклості, що відповідає перегину в точці 

(0,0). 

9) Точки перетину з осями: 
0,
0.

x
y
=⎧

⎨ =⎩
 

Точка  мінімуму 3x =  має тип, зображений на рис. 1.11 д, точка 

перегину (0,0) має тип, зображений на рис. 1.19 е. 

10) Графік будуємо спочатку для [0; )x∈ +∞ , після чого 

розповсюджуємо його симетрично відносно початку координат. В результаті 
отримаємо графік даної функції, що зображено на рис 1.22.  

 

11. Пошук найбільших та найменших значень функції на відрізку 

Якщо функція ( )y f x=  неперервна на відрізку [ ];a b , то  за другою 

теоремою Вейєрштрасса [3, c.188; 4, c.176], ця функція досягає свого 
найбільшого й найменшого значень в точках цього відрізку, тобто 

[ ]
[ ]1 1 ,

; ( ) max ( )
x a b

c a b f c f x
∈

∃ ∈ =  і [ ]
[ ]2 2 ,

, ( ) min ( )
x a b

c a b f c f x
∈

∃ ∈ = . 

Точки 1c , 2c  можуть бути або точками екстремуму або кінцями відрізку [ ];a b . 

 

0 

+–

 1 
 ∩ ∪
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Рис. 1.22.  

 

Схема пошуку найбільшого та найменшого значень: 
1) Знаходимо критичні точки, тобто точки, в яких похідна функції дорівнює 
нулю або не існує. 

2) Відкидаємо з розгляду ті точки, що не належать відрізку [ ];a b . 

3) Знаходимо значення функції в критичних точках з відрізку й на кінцях 

відрізка [ ];a b , обираємо з них найбільше і найменше, що й відповідатиме 

найбільшому й найменшому значенню функції на відрізку [ ];a b . 

Приклад 1.22 [4]. Розглянемо функцію 3 3( ) sin cosf x x x= +  на відрізку 

;
4 4

⎡ ⎤−⎢ ⎥⎣ ⎦

π π . Знайдемо похідну:  

2 2( ) 3sin cos 3cos ( sin ) 3sin cos (sin cos )f x x x x x x x x x′ = ⋅ + ⋅ − = ⋅ − ,  

після чого знайдемо критичні точки – ( ) 0f x′ = : 

sin 0;

;

x

x nπ

=

=
      

cos 0;

;
2

x

x k

=

= +
π π

     
sin cos ;

;
4

x x

x m

=

= +
π π

    , ,n m k ∈] . 

y=x

x=-1 

  x=1 

3

2 1
xy

x
=

−
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Відкинувши критичні точки, що не належать відрізку ;
4 4

⎡ ⎤−⎢ ⎥⎣ ⎦

π π , отримаємо 

точки 0x = , 
4

x = π . Знаходимо значення функції в обраних точках і на кінцях 

відрізку: 

(0) 1f = ,   0
4

f ⎛ ⎞− =⎜ ⎟
⎝ ⎠

π ,   
3

2 22
4 2 2

f π ⎛ ⎞⎛ ⎞ = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
. 

Відповідь: 
;

4 4

max ( ) 1f x
⎡ ⎤−⎢ ⎥⎣ ⎦

=
π π

, 
;

4 4

min ( ) 0f x
⎡ ⎤−⎢ ⎥⎣ ⎦

=
π π

. 

Приклад 1.23 [4]. Навколо півкулі радіуса r  описано прямий круговий 
конус найменшого об’єму. При цьому припускається, що основа півкулі й 
конуса лежать в одній площині. Знайти цей об’єм. 

На рис. 1.23 зображено переріз конуса вздовж його висоти. Об’єм у 
цьому випадку обчислимо за формулою 

21
3

V AO COπ= ⋅ ⋅ . 

Із рис. 1.23 отримаємо 

 

,

,
sin

.
cos

OK r const
rAO

rCO

ϕ

ϕ

= =

=

=

 

Тоді  
2

2

3
2

1
3 cossin

1 1 .
3 sin cos

r rV

r

= ⋅ =

=
⋅

π
ϕϕ

π
ϕ ϕ

 

Для того,  щоб  об’єм  досягав найменшого 
значення, потрібно, щоб найбільшого значення досягала функція  

2( ) sin cos maxf = ⋅ →ϕ ϕ ϕ  

на відрізку [ ]0; / 2π . 

С 

К 

А 
О  В 

   ϕ  

Рис. 1.23.  
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Знайдемо критичні точки функції: 
2 2 2( ) 2sin cos cos sin ( sin ) sin (2cos sin ) 0f ′ = ⋅ ⋅ + − = − =ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ; 

2 22cos sin=ϕ ϕ ;  sin 0=ϕ ; 

2tg 2=ϕ ; tg 2= ±ϕ ;  0 0;
2

⎡ ⎤= ∈ ⎢ ⎥⎣ ⎦

πϕ ; 

arctg 2 0;
2

⎡ ⎤= ∈ ⎢ ⎥⎣ ⎦

πϕ . 

Для знаходження значення функції в критичній точці обчислимо значення в ній 
тригонометричних функцій: 

( ) ( )

( ) ( )

2

2

1 1cos arctg 2 ,
31 tg arctg 2

2sin arctg 2 1 cos arctg 2 ,
3

= =
+

= − =

 

тоді ( ) 2 1arctg 2 .
3 3

f = ⋅  Оскільки (0) 0
2

f f π⎛ ⎞= =⎜ ⎟
⎝ ⎠

, то 
0,

2

2max ( )
3 3

f x
π⎡ ⎤

⎢ ⎥⎣ ⎦

= , тому 

3
3

2
arctg 2

1 1 3min
3 2sin cos

rV r
=

= =
⋅ ϕ

ππ
ϕ ϕ

. 

 
§ 3. Формула Тейлора 

 

1. Формула Тейлора для многочлена 
Розглянемо многочлен степеня n  

2 3
0 1 2 3( ) n

np x a a x a x a x a x= + + + + +… . 

Обчислимо його похідні до порядку n  включно: 
2 1

1 2 3( ) 2 3 n
np x a a x a x na x −′ = + + + +… , 

2
2 3( ) 2 1 2 3 ( 1) n

np x a a x n na x −′′ = + ⋅ ⋅ + + −… , 
3

3( ) 1 2 3 ( 2)( 1) n
np x a n n na x −′′′ = ⋅ ⋅ + + − −… , 

……………………………………………. 
( ) ( ) 1 2 3 ( 2)( 1)n

n np x n n na n a= ⋅ ⋅ ⋅ ⋅ − − = !…  

і значення їх у точці 0 
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0(0)p a= , 

1(0)p a′ = , 

2 2(0) 2 2p a a′′ = = ! , 

3(0) 3p a′′′ = ! , 

………………… 
( ) (0)n

np n a= ! . 

Звідки отримаємо (за домовленістю 0! =1 )    
( ) (0) , 0,
k

k
pa k n

k
= =

!
 

Формула Маклорена для многочленів: 
( )

2 3(0) (0) (0) (0)( ) (0)
1

n
np p p pp x p x x x x

n
′ ′′ ′′′

= + + + + +
! 2! 3! !

…  

Многочлен можна відтворити за його значенням та значеннями його похідних у 

точці 0.  

За допомогою заміни 0t x x= −  можна отримати формулу розвинення 

многочлена за степенями 0x x− , що виражається через його похідні: 

2
0 0 1 2( ) ( ) ( ) n

np x p t x P t A A t A t A t= + = = + + + +…         ⇒ 0 0(0) ( )A P p x= = , 

( )( ) ( ) ( ) ( )0 0 0 0( ) x xtt
P t p t x p t x t x p t x′ ′′ ′ ′= + = + ⋅ + = +   ⇒ 1 0(0) ( )A P p x′ ′= = , 

( ) ( )( ) ( )( ) ( )0 0 0 0x xx xxtt
P t p t x p t x t x p t x′ ′′′ ′ ′′ ′′= + = + + = +   ⇒ 0

2
( )(0)

2! 2
p xPA
′′′′

= =
!

, 

……………………………….……………………………………………. 

( ) ( )( ) ( )
0n

n n
x

P t p t x= +     ⇒
( )( )

0( )(0)
!

nn

n
p xPA

n n
= =

!
. 

Звідки 

( ) ( ) ( )
( )

20 0 0
0 0 0 0

( ) ( ) ( )
( ) ( )

1

n
np x p x p x

p x p x x x x x x x
n

′ ′′
= + − + − + + −

! 2! !
…  

Цю формулу називають формулою Тейлора для многочлена в точці 0x . 
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2. Розвинення довільної функції 

Припущення 

 
1) ( )f x  задана на ( ; )a b ,  

2) ( )f x  диференційовна ( )1n −  раз на ( ; )a b ,  

3) ( )f x  диференційовна n  разів у точці 0 ( ; )x a b∈  

Розглянемо многочлен Тейлора 

( ) ( ) ( )
( )

20 0 0
0 0 0 0

( ) ( ) ( )
( ) ( )

1 !

n
n

n
f x f x f x

p x f x x x x x x x
n

′ ′′
= + − + − + + −

! 2!
… . 

Якщо ( )f x  довільна й не є многочленом, то ( ) ( )nf x p x≠ . Функцію 

( ) ( ) ( )n nr x f x p x= −  називають залишковим членом формули Тейлора. 

Теорема 1.22 (залишковий член формули Тейлора у формі Пеано). У 

зазначених вище припущеннях залишковий член формули Тейлора в точці 0x  

можна подати у формі Пеано: 

( )( )0( ) n
nr x o x x= −  в точці 0x  

Тобто в зазначених припущеннях функція майже не відрізняється від 

многочлена степеня n  у деякому малому околі точки 0x  

Доведення формули Пеано. Дослідимо функцію ( ) ( ) ( )n nr x f x p x= − . 

Маємо 

0 0( ) ( )np x f x= , 0( ) 0nr x = , 

0 0( ) ( )np x f x′ ′= , 
0( ) 0nr x′ = , 

0 0( ) ( )np x f x′′ ′′= , 
0( ) 0nr x′′ = , 

…                                   …  
( ) ( )

0 0( ) ( )n n
np x f x= ,  ( )

0( ) 0n
nr x = . 

Таким чином, 
( )

0 0 0 0( ) ( ) ( ) ( ) 0n
n n n nr x r x r x r x′ ′′= = = = =… .          (1.12) 

Тепер дослідження зводиться до необхідності доведення такого факту: 

якщо функція ( )nr x  задовольняє (1.12), тоді ( )( )0( ) n
nr x o x x= −   в точці 0x .  
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Доведення проведемо за індукцією. 

1. Нехай 1n = , тоді за умовою 1 0 1 0( ) ( ) 0r x r x′= = . 

Потрібно довести:     1 0( ) ( )r x o x x= − . 

Маємо: 

0 0

1 1 01
1 0

0 0

( ) ( )( )
lim lim ( ) 0
x x x x

r x r xr x
r x

x x x x→ →

− ′= = =
− −

, 

а це за означенням функції (o γ ) означає, що 1 0( ) ( )r x o x x= −  в точці 0x . 

2. Індуктивне припущення. Нехай справедливе співвідношення 

( )( )0( ) n
nr x o x x= −  в точці 0x  за умови  

( )
0 0 0 0( ) ( ) ( ) ( ) 0n

n n n nr x r x r x r x′ ′′= = = = =… . 

3. Довести справедливість формули ( )( )1
1 0( ) n

nr x o x x +
+ = −  в точці 0x , за 

умови  
( 1)

1 0 1 0 1 0( ) ( ) ( ) 0n
n n nr x r x r x+
+ + +

′= = = =… .        (1.13) 

Із (1.13) випливає, зокрема, що 1 1 1 0

0

( ) ( ) ( )n n nr x r x r x+ + +

=

= −��	�
 . Скористаємося 

формулою Лагранжа (доведіть  можливість її застосування!): поміж x  і 0x  

існує точка c  така, що  

1 1 1 0( ) ( ) ( )n n nr x r x r x+ + += − = ( )1 0( )nr c x x+′ ⋅ − .    (1.14) 

Позначимо 1( ) ( )n ng x r x+′= , тоді 
( )

0 0 0

( 1)
1 0 1 0 1 0

( ) ( ) ( ) 0,
| || ||
( ) ( ) ( ) 0.

n
n n n

n
n n n

g x g x g x

r x r x r x+
+ + +

′= = = =

′ ′′= = = =

…

…
⏐  

Тоді за індуктивним припущенням ( )( )0( ) n
ng x o x x= − . Тому 

( )( )0( ) n
ng c o c x= − . 

Доведемо, що  

( )( )0( ) n
ng c o x x= − . 

 

x  c 0x  
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Дійсно, за побудовою 0 0x x c x− > − , тому 

( )
0 0

0
0 0

( ) ( )
( ) ( ) lim 0 lim 0

( ) ( )
n n n

n n nc x c x

g c g c
g c o c x

c x c x→ →
= − ⇒ = ⇒ =

− −
,

0 0

( ) ( )
0 .

( ) ( )

0

n n
n n

g c g c
x x c x

≤ <
− −
↓2 0  

Отже, ( )( )0( ) n
ng c o x x= − , тому ( )( )1 0( ) n

nr c o x x+
′ = − . Таким чином, із (1.14) і 

останнього маємо 

( )( ) ( )( )1
1 1 0 0 0 0( ) ( )( ) ( )n n

n nr x r c x x o x x x x o x x +
+ +

′= − = − − = − .  ■ 

Формула Тейлора із залишковим членом у формі Пеано:  

 ( ) ( ) ( ) ( )( )
( )

20 0 0
0 0 0 0 0

( ) ( ) ( )
( ) ( )

1 !

n
n nf x f x f x

f x f x x x x x x x o x x
n

′ ′′
= + − + − + + − + −

! 2!
…  

Формулу Тейлора в точці 0 0x =  називають формулою Маклорена. 

Теорема 1.23. Нехай функція ( )f x  задовольняє зазначеним вище 

припущенням і ( )( )0( ) ( ) n
nf x P x o x x= + − , де  

2
0 1 0 2 0 0( ) ( ) ( ) ( )n

n nP x A A x x A x x A x x= + − + − + + − −…  

деякий многочлен степеня, не вищого за n . Тоді ( )nP x  є многочленом Тейлора. 

Доведення: Із формули Тейлора із залишковим членом у формі Пеано та 
із умови теореми маємо: 

( ) ( ) ( ) ( )( )
( )

20 0 0
0 0 0 0 0

( ) ( ) ( )
( )

1 !

n
n nf x f x f x

f x x x x x x x o x x
n

′ ′′
+ − + − + + − + − =

! 2!
…

( )( )2
0 1 0 2 0 0 0( ) ( ) ( ) nn

nA A x x A x x A x x o x x= + − + − + + − + −… . 

Після граничного переходу при 0x x→  в останній рівності отримаємо 

0 0( )A f x= , 

звідки 

( ) ( ) ( ) ( )( )
( )

20 0 0
0 0 0 0

( ) ( ) ( )
1 !

n
n nf x f x f x

x x x x x x o x x
n

′ ′′
− + − + + − + − =

! 2!
…  
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( )( )2
1 0 2 0 0 0( ) ( ) ( ) .nn

nA x x A x x A x x o x x= − + − + + − + −…  

Розділимо обидві частини останньої рівності на 0( )x x− , враховуючи, що 

( )( )
( )( )0 1

0
0

n

n
o x x

o x x
x x

−
−

= −
−

: 

( ) ( ) ( )( )
( )

1 10 0 0
0 0 0

( ) ( ) ( )
1 !

n
n nf x f x f x

x x x x o x x
n

− −′ ′′
+ − + + − + − =

! 2!
…  

( )( )11
1 2 0 0 0( ) ( ) nn

nA A x x A x x o x x −−= + − + + − + −… . 

Знову спрямуємо x  до 0x , одержимо 

0
1

( )
1

f x
A

′
=

!
. 

Продовжуючи процес далі, отримаємо: 
( )

0( )
, 0,1, 2,...,

!

k

k
f x

A k n
k

= = , 

тобто многочлен ( )nP x  є многочленом Тейлора. Теорему доведено. ■ 

Теорема 1.23 стверджує, що жоден многочлен степеня, що не пере-
вищує n , відмінний від многочлена Тейлора, не може наближати цю функцію з 

точністю ( )( )0
no x x−  при 0x x→ . 

 Таблиця розвинень елементарних функцій за формулою  
Маклорена із залишковим членом у формі Пеано 

( )
2

1
1

n
x nx x xe o x

n
= + + + + +

! 2! !
… , 

( )
3 5 7 2 1

1 2sin ( 1)
3

m
m mx x x xx x o x

m

−
−= − + − + + − +

! 5! 7! (2 −1)!
… , 

( )
2 4 6 2

2 1cos 1 ( 1)
m

m mx x x xx o x
m

+= − + − + + − +
2! 4! 6! (2 )!

… , 

( ) ( ) ( )21 1 ( 1)
(1 ) 1m n nm m m m m nmx x x x o x

n
− − − +

+ = + + + + +
1! 2! !

…
… , 
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2 31 1 ( 1) ( )
1

n n nx x x x o x
x
= − + − + + − +

+
… , 

( )
2 3 4

1ln(1 ) ( 1)
n

n nx x x xx x o x
n

−+ = − + − + + − +
2 3 4

…  

Доведення формул таблиці будемо проводити, застосовуючи таблицю 

похідних вищих порядків. 

1. Розглянемо розвинення ( ) xf x e=  за формулою Маклорена ( 0 0x = ). 

Оскільки ( ) ( )n xf x e= , то ( ) 0(0) 1nf e= = . Підставимо в загальну формулу, 

отримаємо 

( )
2

1
1

n
x nx x xe o x

n
= + + + + +

! 2! !
… . 

2. Для функції ( ) sin( )f x x=  відомо, що  

( )( )( ) ( ) sin sin
2

nn nf x x x π⎛ ⎞= = +⎜ ⎟
⎝ ⎠

, 

тому 

(0) 0f = , 

(0) sin 0 1
2

f ⎛ ⎞′ = + =⎜ ⎟
⎝ ⎠

π , 

( )(0) sin 0 0f ′′ = + =π , 

3(0) sin 0 1
2

f ⎛ ⎞′′′ = + = −⎜ ⎟
⎝ ⎠

π , 

…  

( )(2 1) 1(0) sin 0 (2 1) sin cos ( 1) ,
2 2

m mf m m mπ ππ π− −⎛ ⎞ ⎛ ⎞= + − = − = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(2 ) (0) sin 0 2 0
2

mf m⎛ ⎞= + ⋅ =⎜ ⎟
⎝ ⎠

π . 

Отже, 

( )
3 5 7 2 1

1 2sin ( 1)
3

m
m mx x x xx x o x

m

−
−= − + − + + − +

! 5! 7! (2 −1)!
… . 
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Аналогічно отримуємо розвинення 

( )
2 4 6 2

2 1cos 1 ( 1)
m

m mx x x xx o x
m

+= − + − + + − +
2! 4! 6! (2 )!

… . 

3. Для функції ( ) (1 )mf x x= +  відомо, що  

( )( ) ( )( )( ) ( ) 1 2 1 1 m nnf x m m m m n x −= − − − + +… , 

тоді 

(0) 1f = , 
1(0) (1 0)mf m m−′ = + = , 

(0) ( 1)f m m′′ = − , 

…  

( )( ) ( )( ) (0) 1 2 1nf m m m m n= − − − +… , 

отже, 

( ) ( ) ( )21 1 ( 1)
( ) 1 n nm m m m m nmf x x x x o x

n
− − − +

= + + + + +
1! 2! !

…
… . 

4. Для отримання розвинення функції 1( )
1

f x
x

=
+

 виберемо в 

попередній формулі 1m = − , тоді 

( ) ( ) ( ) ( )( ) ( ) ( )2 31 2 1 2 3 1
( ) 1

n
n nn

f x x x x x o x
n n

− − − − − − !
= − + + + + +

2! ! !
… , 

тобто 

2 31 1 ( 1) ( )
1

n n nx x x x o x
x
= − + − + + − +

+
… . 

Зауважимо, що остання формула відповідає формулі суми нескінченної спадної 

геометричної прогресії з першим членом 1 1b =  і знаменником q x= − : 

2 3 1 1 11 ( 1) ...
1 1 ( ) 1

n n b
x x x x

q x x
− + − + + − + = = =

− − − +
… . 

Інші розвинення таблиці отримати самостійно ! 
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Інші форми подання формули Тейлора із залишковим членом у 
формі Пеано: 

форма подання через прирости: 

( ) ( ) ( )( )
( )

20 0 0
0

( ) ( ) ( )
( )

1

n
n nf x f x f x

f x x x x o x
n

′ ′′
Δ = Δ + Δ + + Δ + Δ

! 2! !
… , 

форма подання через диференціали: 

( )( )2
0 0 0 0

1 1 1( ) ( ) ( ) ( ) nnf x df x d f x d f x o x
n

Δ = + + + + Δ
1! 2! !

…  

Доведення. Форму подання  формули Тейлора через приріст функції і 
приріст аргументу отримаємо, позначивши в розвиненні 

( ) ( ) ( ) ( )( )
( )

20 0 0
0 0 0 0 0

( ) ( ) ( )
( ) ( )

1

n
n nf x f x f x

f x f x x x x x x x o x x
n

′ ′′
= + − + − + + − + −

! 2! !
…  

приріст аргументу в такий спосіб: 0x x xΔ = − . 

Для отримання подання через диференціали будемо вважати, що x  – 

незалежна змінна, тоді 

0 0 0( ) ( ) ( )df x f x x f x dx′ ′= Δ = , ( )22
0 0( ) ( )d f x f x dx′′= , 

( )( )( ) ( )
0 0( ) ( ) nn nd f x f x dx= , 

отже 

( )( )2
0 0 0 0 0

1 1 1( ) ( ) ( ) ( ) ( ) ( ) nnf x f x f x df x d f x d f x o x
n

Δ = − = + + + + Δ
1! 2! !

… . ■ 

Зауваження 1.9. Формула Тейлора із залишковим членом у формі Пеано 

має численні застосування, однак усі вони локального характеру, тобто 

дозволяють досліджувати поведінку функції через поведінку її многочлена 

Тейлора лише в точках x , достатньо близьких до 0x . У деяких задачах 

функцію потрібно наблизити многочленом і визначити точність такого 

наближення, оцінюючи модуль різниці між функцією і многочленом. Це 

питання не може вирішити форма Пеано залишкового члена, яка може лише 

стверджувати прямування до нуля такої різниці при 0x x→ . Отже, потрібно 

знайти іншу форму залишкового члена: 
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Інші форми залишкового члена.  Припущення: 

 

1) ( )f x  задана на ( )0 0 0 0[ ; ] [ ; ]x x x xδ δ+ − ,  

2) ( )f x  неперервно диференційовна n  разів на ( )0 0 0 0[ ; ] [ ; ]x x x xδ δ+ − ,  

3) ( )f x  диференційовна ( )1n +  разів на ( )0 0 0 0( ; ) ( ; )x x x xδ δ+ −  

Форма Шльомільха-
Роша (загальна форма) 

( )( 1)
0 0 1 1

0

( )
( ) (1 ) ( )

n
n p n

n

f x x x
r x x x

n p

+
− + ++ Θ −

= ⋅ −Θ ⋅ −
!

 

( 0 1< Θ < , p∈` ) 

При 1p n= +  

отримаємо  форму 
Лагранжа 

 
( )( 1)

0 0 1
0

( )
( ) ( )

( 1)

n
n

n

f x x x
r x x x

n

+
++ Θ −

= ⋅ −
+ !

 

( 0 1< Θ < ) 

При 1p =  отримаємо  

форму Коші 

( )( 1)
0 0 1

0

( )
( ) (1 ) ( )

n
n n

n

f x x x
r x x x

n

+
++ Θ −

= ⋅ −Θ ⋅ −
!

 

( 0 1< Θ < ) 

Доведення. За означенням залишковий член ( ) ( ) ( )n nr x f x p x= − , тобто 

( ) ( ) ( )
( )

20 0 0
0 0 0 0

( ) ( ) ( )
( ) ( ) ( )

1

n
n

n
f x f x f x

r x f x f x x x x x x x
n

′ ′′
= − − − − − − − −

! 2! !
… . 

Введемо допоміжну функцію 

( ) ( ) ( )
( )

2( ) ( ) ( )( ) ( ) ( )
1

n
nf z f z f zz f x f z x z x z x z

n
′ ′′

= − − − − − − − −
! 2! !

…ϕ . 

Визначимо її властивості: 

1) 0( ) ( )nx r x=ϕ , 

2) ( ) 0x =ϕ , 

3) обчислимо похідну, враховуючи припущення: 

( ) ( ) ( )

( ) ( )

2

(4)
3

( )( ) ( ) ( ) ( ) 1

( ) ( )2 ( 1)
2

z
f zz f z f z x z f z x z

f z f zx z x z

′′′
′ ′ ′′ ′= − − − − − − − −

2!
′′

− − − − − −
! 3!

ϕ
 

( ) ( ) ( )
( 1) ( )

2 1( ) ( ) ( )3 ( 1)
n n

n nf z f z f zx z x z n x z
n n

+
−′′′

− − − − − − + −
3! ! !

… , 



Розділ 1. ТЕОРЕТИЧНІ ВІДОМОСТІ 

 84

тобто 

( )
( 1) ( )( )
n

n
z

f zz x z
n

+

′ = − −
!

ϕ . 

Виходячи з останніх двох припущень, приходимо до висновку про  

1) неперервність ( )zϕ  на ( )0 0 0 0[ ; ] [ ; ]x x x xδ δ+ − ,  

2) диференційовність ( )zϕ  на ( )0 0 0 0( ; ) ( ; )x x x xδ δ+ − . 

Введемо ще одну допоміжну функцію ( )zψ , яка б задовольняла 

властивості, аналогічні ( )zϕ , крім того  

( ) 0z z′ ≠ ∀ ∈ψ ( )0 0 0 0( ; ) ( ; )x x x xδ δ+ − . 

Тоді можна застосувати формулу Коші для ( )zϕ  і ( )zψ : 

∃  c  між x  і 0x :  0

0

( ) ( ) ( )
( ) ( ) ( )
x x c
x x c

′−
=

′−
ϕ ϕ ϕ
ψ ψ ψ

, 

де ( )0 0 0 0[ , ] [ , ]x x x x x∈ + −δ δ . Отже, враховуючи властивості функції ( )zϕ , 

отримаємо 
1

0

( ) 0 ( ) 1( )
( ) ( ) ( )

n
nnr x f c x c

x x n cψ ψ ψ

+−
= − ⋅ − ⋅

′− !
, 

1
0( ) ( )( )( ) ( )

( )

n
n

n
x xf cr x x c

n c
ψ ψ

ψ

+ −
= ⋅ − ⋅

′!
  ( 0x c x≶ ≶ ). 

Покладемо ( ) ( ) pz x z= −ψ , тоді 

( ) 0x =ψ ,  0 0( ) ( ) px x x= −ψ , 

1( ) ( ) p
z z p x z −′ = − −ψ , 1( ) ( ) pc p x c −′ = − −ψ , 

тому 
1

1
0

( )( ) ( ) ( )
n

n p p
n

f cr x x c x x
p n

+
+ −= − −

⋅ !
,                            (1.15) 

де 0x c x≶ ≶ . Оскільки c  лежить між x  і 0x , то 

0 0(0;1) : ( )c x x x∃ Θ∈ = +Θ − , 

отже, формула (1.15) набуває вигляду 
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( )( 1)
0 0 1 1

0 0

( )
( ) ( ) (1 ) ( )

n
n p n p p

n

f x x x
r x x x x x

n p

+
− + − ++Θ −

= − ⋅ −Θ ⋅ −
!

, 

( )( 1)
0 0 1 1

0

( )
( ) (1 ) ( )

n
n p n

n

f x x x
r x x x

n p

+
− + ++ Θ −

= −Θ ⋅ −
!

.           (1.16) 

Таким чином, отримано формулу Шльомільха-Роша. Щоб отримати формулу 
Лагранжа, покладемо в (1.16) 1p n= + , тоді 

( )( 1)
0 0 1

0

( )
( ) ( )

( 1)

n
n

n

f x x x
r x x x

n

+
++ Θ −

= −
+ !

,                            (1.17) 

або 

( )( 1)
1

0( ) ( )
( 1)

n
n

n

f c
r x x x

n

+
+= −

+ !
 ( 0x c x≶ ≶ ).                            (1.18) 

Щоб отримати формулу Коші, покладемо в (1.16) 1p = : 

( )( 1)
0 0 1

0

( )
( ) (1 ) ( )

n
n n

n

f x x x
r x x x

n

+
++ Θ −

= −Θ −
!

.               (1.19) 

Приклад 1.24. Оскільки функція ( ) xf x e=  має похідну порядку n  

вигляду ( ) ( )n xf x e= , то при 0 0x =  залишковий член у формі Лагранжа (1.17) 

набуває вигляду 

1( )
( 1)

x
n

n
er x x

n

Θ
+=

+ !
 ( 0 1< Θ < ), 

і функція буде розвиненою за формулою Маклорена з залишковим членом 
зазначеної форми таким чином: 

2 3
11

( 1)

n x
x nx x x ee x x

n n

Θ
+= + + + + + +

2! 3! ! + !
…       ( 0 1< Θ < ). 

Знайдемо наближене значення числа e  з точністю до 0,001. Така задача 

зводиться до пошуку кількості n  доданків у формулі Тейлора, для яких 

досягається необхідна точність. Тобто потрібно знайти значення n , при якому 

наближена формула ( ) ( )nf x p x≈  має точність 0,001. Отримати оцінку точності 

дозволить оцінювання залишкового члена ( ) ( ) ( )n nr x f x p x= − . 
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У нашому випадку потрібно обрати 1x = , тоді 
1 3(1)

( 1) ( 1) ( 1)n
e er

n n n

Θ

= < <
+ ! + ! + !

. 

Якщо 6n = , то ( 1)n + ! = 7! = 5040 , а  

6
3 0,0006 0,001

( 1)
r

n
= < <

+ !
. 

Тому наближена формула 

1 1 1 1 11 1e ≈ + + + + + +
2! 3! 4! 5! 6!

 

має точність 0,001. 

Приклад 1.25. Розвинення функції ( ) sinf x x=  за формулою Маклорена 

має вигляд 
3 5 7 2 1

1
2sin ( 1) ( )

3

m
m

m
x x x xx x r x

m

−
−= − + − + + − +

! 5! 7! (2 −1)!
… . 

Знайдемо залишковий член у формі Лагранжа (1.17): 

( )(2 1) ( ) sin (2 1) sin cos ( 1) cos
2 2

m mf x x m x m x m x+ ⎛ ⎞ ⎛ ⎞= + + = + + = + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

π ππ π , 

2 1
2

( 1) cos( )
(2 1)

m
m

m
xr x x

m
+− Θ

=
+ !

  ( 0 1< Θ < ). 

1) Розглянемо наближену формулу 

sin x x≈ . 

Знайдемо, для яких x  ця наближена формула  має точність 0,001. Для цієї 

формули 1n = , тому нерівність 
1

33
2

( 1) cos 1( ) 0,001
3 6

xr x x x− Θ
= ⋅ < <

!
 

здійснюється при  3 0,006 0,1817x < < . Таким чином, наближена формула 

sin x x≈  має точність 0,001 при 0,18 0,18x− ≤ ≤ . 

2) Розглянемо наближену формулу 
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3

sin
3
xx x≈ −
!

. 

Знайдемо, для яких x  ця наближена формула  має точність 0,001. Для цієї 

формули 2n = , тому 
3

53
4

( 1) cos 1( ) 0,001
120

xr x x x− Θ
= ⋅ < <

5!
. 

Остання нерівність здійснюється при 0,6543x < , тому при таких x  

наближена формула 
3

sin
3
xx x≈ −
!

 має точність 0,001.  

Рис. 1.24 ілюструє, що збільшення кількості доданків покращує точність 
формули Маклорена, а саме: із збільшенням їх кількості значення x , для яких 

досягається бажана точність, збільшуються, а графіки многочлена й довільної 
функції майже не відрізняються для ширшого діапазону значень аргументу x . 

 

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

0 1 2 3 4 5 6

y=x
y=x-x^3/3!
y=x-x^3/3!+x^5/5!
y=x-x^3/3!+x^5/5!-x^7/7!
y=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!
y=sin x

 
 

Рис. 1.24.  
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=
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3. Третя достатня умова локального екстремуму 

Теорема 1.24 (третя достатня умова loc extr) Нехай функція ( )f x  

( 1)n −  раз диференційовна в деякому δ-околі ( ) ( ; )B c c cδ = − δ + δ   точки c  і має 

похідну порядку n  в цій точці. Якщо перша похідна, що не обертається в нуль 

в точці c  має порядок n , і n  є непарне число, то функція ( )f x  у точці c  не 

має екстремуму. Якщо така похідна парного порядку, то у випадку, коли вона 
додатна, функція буде мати в цій точці локальний мінімум, а коли від’ємна – 
максимум.  
 

Доведення. За умовою 
( 1)( ) ( ) ... ( ) 0nf c f c f c−′ ′′= = = = , ( ) ( ) 0nf c ≠ .  (1.20) 

Завдяки припущенням теореми, до функції ( )f x  можна застосувати 

формулу Тейлора в точці c  із залишковим членом у формі Пеано. З 

урахуванням (1.20) отримаємо: 
( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
! !

n n
n n nx c f cf x f c f c o x c x c

n n
− +α

− = ⋅ + − = ⋅ −    ( )x B cδ∀ ∈ , 

де lim 0
x c→

α = . 

Оскільки α  – нескінченно мала функція в точці c , то 

( ) ( )( ) ( )sgn ( ) sgn ( )n nf c f c+α =  ( ) \{ }x B c cδ∀ ∈ . 

Звідси  

( ) ( )( )sgn ( ) ( ) sgn ( ) ( )n nf x f c f c x c− = ⋅ −  ( ) \{ }x B c cδ∀ ∈ .         (1.21) 

Випадок 1: n  – парне натуральне число. Тоді ( ) 0nx c− >  ( ) \{ }x B c cδ∀ ∈  

і тому 

( ) ( )( )sgn ( ) ( ) sgn ( )nf x f c f c− =  ( ) \{ }x B c cδ∀ ∈ . 

1) Якщо ( ) ( ) 0nf c > , то ( ) ( ) 0f x f c− >  ( ) \{ }x B c cδ∀ ∈  ⇒   

⇒  ( ) ( )f x f c> ( ) \{ }x B c cδ∀ ∈  ⇒  c  – точка loc min. 

2) Якщо ( ) ( ) 0nf c < , то ( ) ( ) 0f x f c− <  ( ) \{ }x B c cδ∀ ∈  ⇒   
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⇒  ( ) ( )f x f c< ( ) \{ }x B c cδ∀ ∈  ⇒  c  – точка loc max. 

Випадок 2: n  – непарне натуральне число. Нехай ( ) ( ) 0nf c > .  

Якщо ( ) \{ }x B c cδ∈  і x c> , то із (1.21) маємо: ( ) ( )f x f c> . 

Якщо ( ) \{ }x B c cδ∈  і x c< , то із (1.21) – ( ) ( )f x f c< . 

Отже, в точці c  немає екстремуму. Випадок ( ) ( ) 0nf c <  є аналогічним (  роз-

глянути самостійно !). ■ 

Приклад 1.26. Дослідити функцію ( ) 2cosx xf x e e x−= + +  на локальний 

екстремум у точці 0. 

Точка 0x =  є стаціонарною, оскільки ( )
0

(0) 2sin 0x x

x
f e e x−

=
′ = − − = . 

Знайдемо вищі похідні: 

( )
( )
( )

0

0

0

(0) 2cos 0,

(0) 2sin 0,

(0) 2cos 4 0,

x x

x

x x

x

IV x x

x

f e e x

f e e x

f e e x

−

=

−

=

−

=

′′ = + − =

′′′ = − + =

= + + = >

 

тому внаслідок останньої теореми зробимо висновок, що в точці 0 – локальний 
мінімум. 
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Розділ 2. КОРОТКИЙ НАРИС ІСТОРІЇ РОЗВИТКУ 

ДИФЕРЕНЦІАЛЬНОГО ЧИСЛЕННЯ 
Розділ 2. КОРОТКИЙ НАРИС ІСТОРІЇ РОЗВИТКУ ДИФЕРЕНЦІАЛЬНОГО ЧИСЛЕННЯ 

 

Одним із найбільших досягнень математики справедливо вважається 

створення диференціального числення, під яким розуміють розділ 

математичного аналізу (або аналізу нескінченно малих), що вивчає похідні та 

диференціали, а також їх застосування до дослідження функцій 1. 

Своїм виникненням диференціальне числення багато в чому зобов’язане 

елементарній математиці, істотною особливістю якої є те, що вона має справу 

зі сталими величинами. Пов’язано це, передусім, з тим, що бурхливий розвиток 

природознавства в XVI-XVII ст. вимагав дослідження змінних явищ та 

процесів, оскільки при вивченні закономірностей, які зустрічаються в природі, 

увесь час доводиться мати справу як з величинами сталими, так і з величинами 

змінними. З цієї причини практичні потреби поставили перед елементарною 

математикою (математикою сталих величин) завдання фундаментальної 

важливості: знайти способи вивчення величин, що мають властивість 

змінюватися, – таких як швидкість і прискорення. І це, в результаті пошуків 

упродовж XVI-XVIII ст., було зроблено: створено новий розділ математики, з 

іншими поняттями, з новими методами досліджень. Для дослідження руху тіла 

в цей час впроваджується поняття змінної величини. Таким чином, визначення 

швидкості руху тіла було зведене до вивчення швидкості зміни цієї величини, 

що спричинило виникнення нових математичних понять – похідної та 

диференціала. Внаслідок цих досліджень було розроблено основи дифе-

ренціального числення або математики змінних величин. 

Особлива заслуга у створенні диференціального числення належить 

англійському натурфілософу й математику Ісааку Ньютону (1649–1727) і 

німецькому філософу й математику Готфріду Вільгельму Лейбніцу (1646–

1716), які є, по суті, творцями математичного аналізу.  

                                                 
1 Юшкевич А. П. Дифференциальное исчисление / А. П. Юшкевич // Математический энциклопе-
дический словарь. – М.: Советская энциклопедия, 1988. – С. 197–203. 
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Історія створення диференціального числення є надзвичайно 

повчальною, оскільки являє собою виразний приклад того, як ціла низка 

наукових робіт видатних вчених заклала основи принципово нового наукового 

напряму. 

Відомо, що перші кроки у напрямку створення диференціального 

числення були зроблені Рене Декартом (1596–1650), П’єром Ферма (1601–

1665), Йоганом Кеплером (1571–1630), Бонавентуром Кавальєрі (1598–1647), 

Жилем Робервалем (1602–1675), Ісааком Барроу (1630–1677) та іншими 

вченими XVII століття при розв’язанні задач визначення дотичних до кривих та 

знаходження максимальних і мінімальних значень змінних величин 1. Деякі 

спроби розв’язання вказаних задач були зроблені ще математиками 

Стародавньої Греції, проте розроблені ними методи могли бути використані 

тільки в окремих випадках та були ще далекими від ідей диференціального 

числення. На початку XVII ст. Ж. Роберваль, разом з Б. Кавальєрі, розробив так 

званий метод неподільних, який був ідейно близьким до аналізу нескінченно 

малих. Сутність цього методу, в основному, визначалася так: задана крива 

розглядалася як траєкторія руху точки, причому напрям руху цієї траєкторії в 

кожній точці приймався за напрям шуканої дотичної та будувався шляхом 

розкладання руху точки на складові та побудовою їх швидкостей. В той же час 

Р. Декартом був отриманий розв’язок задачі про дотичну до кривої та 

запропонований аналітичний спосіб знаходження її рівняння. До аналогічних 

висновків у своїх дослідженнях прийшли також П. Ферма і І. Барроу (вчитель 

І. Ньютона), причому їх міркування були близькими до тих, що застосовуються 

в сучасному диференціальному численні. Що стосується задачі про 

знаходження максимальних та мінімальних значень змінних величин, то для її 

розв’язання у цей час були запропоновані різноманітні штучні методи. 

І. Кеплером, Б. Кавальєрі та П. Ферма було висловлено зауваження з приводу 

вказаної задачі, основна ідея якого полягала в тому, що змінна величина, що 

                                                 
1 Граве Д. Дифференциальное исчисление / Д. Граве // Энциклопедический словарь. – Т. ХА : 
Десмургия-Домицианъ. – С.-Петербургъ: Типо-Литография И.А. Ефрона, 1893. – С. 688-705. 
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знаходиться поблизу свого найбільшого або найменшого значення, змінюється 

дуже мало. Надалі це привело П. Ферма до створення такого методу 

розв’язання задач на максимум або мінімум, який був близьким до методів 

диференціального числення. 

Проте при усій значущості отриманих математиками XVII ст. 

результатів щодо створення нового наукового напряму, диференціального 

числення у відомій нам формі ще не існувало. Необхідно було виділити 

загальні ідеї, що лежать у основі розв’язання багатьох окремих задач, а також 

встановити зв’язок між операціями диференціювання та інтегрування, який 

давав би досить загальний алгоритм дослідження функціональних залежностей, 

що й було зроблено надалі.  

Епохою створення диференціального числення як самостійного розділу 

математики вважається час, коли стало зрозумілим, що розв’язання зазначених 

задач повинне здійснюватися за допомогою одного й того ж математичного 

апарату (похідних і диференціалів). У другій половині XVII ст. це розуміння 

було досягнуте видатними вченими І. Ньютоном і Г. Лейбніцем, якими були 

сформульовані основні положення теорії диференціального числення та 

вказаний взаємно зворотний характер операцій диференціювання та 

інтегрування. Це стало причиною того, що диференціальне й інтегральне 

числення стали розвиватися в тісному взаємозв’язку. Слід зазначити, що 

спроби створення загального методу диференціювання та інтегрування, 

головною особливістю якого є взаємна зворотність цих процесів, могли бути 

зроблені вченими, які в повному обсязі оволоділи і геометричним методом, 

запропонованим у роботах математиків Стародавньої Греції та Б. Кавальєрі, і 

алгебраїчним методом Р. Декарта та Дж. Валліса. Саме такими вченими й 

виявилися І. Ньютон та Г. Лейбніц 1. При цьому І. Ньютон у своїх 

дослідженнях, в основному, спирався на фізичне уявлення про миттєву 

                                                 
1 Стройк Д. Я. Краткий очерк истории математики: Пер. с нем. – 5-е изд., испр. / Д. Я. Стройк. – 
М.: Физматлит, 1990. – 256 с. 
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швидкість руху, вважаючи його очевидним та зводячи до нього інші випадки 

похідної, а Г. Лейбніц використовував поняття нескінченно малої величини. 

Основні ідеї диференціального та інтегрального числення склалися в 

Ісаака Ньютона під впливом праць його попередників і сучасників Дж. Непера, 

Г. Галілея, Б. Кавальєрі, Е. Торрічеллі, П. Ферма, Дж. Валліса, його вчителя 

І. Барроу та інших відомих вчених того часу. Так, працюючи в 1665–1666 рр. 

над створенням універсального математичного апарату, за допомогою якого 

можна було б досліджувати та формулювати закони фізики, І. Ньютон 

розробив метод флюксій, завдяки якому з’явилася можливість розв’язувати 

різноманітні математичні та фізичні задачі. На відміну від своїх попередників, 

які визначали багато функцій тільки геометрично (через що до них неможливо 

було застосовувати алгебру або нове числення флюксій), І. Ньютон знайшов 

новий загальний метод аналітичного представлення функції – він ввів у 

математику та почав систематично застосовувати нескінченні ряди. У своєму 

методі флюксій неперервну змінну величину І. Ньютон називав флюєнтою 

(поточною величиною), швидкість зміни флюєнти – флюксією, а необхідні для 

обчислення флюксій їх нескінченно малі зміни – «моментами». Таким чином, 

Ньютон в основу методу поклав поняття флюксії (похідної), флюєнти (функції) 

і моменту (диференціала) 1. 

В цей же час І. Ньютоном було зроблено фундаментальне відкриття – 

встановлено взаємно зворотний характер операцій диференціювання та 

інтегрування. З цієї причини головними задачами для застосування методу 

флюксій були оголошені такі основні взаємно зворотні задачі – обчислення 

похідних та інтегрування (задача інтегрування диференціальних рівнянь), а 

саме 2: 

                                                 
1 Юшкевич А. П. Дифференциальное исчисление / А. П. Юшкевич // Большая советская энцикло-
педия. – 2-е изд. – М.: Большая советская энциклопедия, 1952. – Т.14: Демосфен-Докембрий. – С. 
510–519. 
2 История математики с древнейших времен до начала XIX столетия: В 3-х т. / Под ред. 
А. П. Юшкевича. – М.: Наука, 1970. – Т.2: Математика XVII столетия. – 300 с. 
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1) визначення швидкості руху в заданий момент часу за відомим шляхом 

або визначення співвідношення між флюксіями за даним співвідношенням між 

флюєнтами (задача диференціювання); 

2) визначення пройденого за цей час шляху за відомою швидкістю руху 

або визначення співвідношення між флюєнтами за даним співвідношенням між 

флюксіями (задача інтегрування диференціального рівняння і, зокрема, 

знаходження первісної). 

Слід зазначити, що у своїх дослідженнях І. Ньютон розглядав задачу 

знаходження невизначеного інтеграла функції як окремий випадок 

сформульованої ним другої задачі. Такий підхід був для І. Ньютона цілком 

виправданим: у більшості випадків закони природи виражаються у формі 

диференціальних рівнянь, при цьому розрахунок характеристик здійснення цих 

процесів зводиться до розв’язання цих рівнянь. 

Таким чином, можна зробити висновок, що запропонований І. Ньютоном 

метод флюксій виступає як алгоритм, заснований на диференціюванні, 

оберненій до нього операції – інтегруванні, а також на розвиненні функцій у 

степеневі ряди. Найповніший виклад диференціального та інтегрального 

числень міститься в праці «Метод флюксій та нескінченних рядів» І. Ньютона, 

написаній ним у 1670–1671 рр. та опублікованій у 1736 р. вже після смерті 

вченого. У цій роботі запропонований метод застосовується до широкого кола 

геометричних задач (задачі на визначення екстремумів функції, знаходження 

дотичних, обчислення кривизни та ін.). Крім того, у цій праці розглядаються 

питання інтегрування звичайних диференціальних рівнянь та подання їх 

розв’язків у вигляді нескінченних степеневих рядів. 

До аналогічних ідей, одночасно з І. Ньютоном, прийшов інший видатний 

вчений – Готфрід Вільгельм Лейбніц. В середині 70-х рр. XVII ст. під впливом 

Х. Гюйгенса та в ході вивчення робіт Р. Декарта, Б. Паскаля, Дж. Валліса, 

Б. Кавальєрі та інших вчених, Г. Лейбніц розробив дуже зручний алгоритм 

диференціального числення. Як вказувалося вище, у працях попередників 

Г. Лейбніца були розроблені різні методи й підходи до розв’язання задач на 
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знаходження екстремумів і проведення дотичних, проте дослідження в 

зазначених напрямах були обмежені переважно розглядом цілих алгебраїчних 

функцій. Вони не дозволяли отримати більш загальний метод, за допомогою 

якого можна було б досліджувати також і будь-які дробові, ірраціональні та 

трансцендентні функції. Крім того, у вказаних дослідженнях були відсутні 

єдина символіка, чітке формулювання основних понять аналізу та опис 

взаємозв’язків між ними. У порівнянні зі своїми попередниками, Г. Лейбніц, 

шляхом зведення існуючих окремих підходів та методів до єдиної системи 

аналізу, розробив алгоритм, за певними правилами якого видавалося можливим 

виконувати дії з нескінченно малими величинами, що описують (за допомогою 

введених ним позначень) основні взаємопов’язані поняття аналізу з виділеної 

ним системи 1. 

Уперше основи диференціального числення у формі, запропонованій 

Г. Лейбніцем, були викладені ним у 1684 р. у статті «Новий метод для 

максимумів і мінімумів, а також для дотичних, для якого не є перешкодою 

дробові й ірраціональні кількості, та особливий вид числення для цього» в 

журналі «Acta Eruditorum». У ній у стислій формі наводилися принципи нового 

методу, названого Г. Лейбніцем диференціальним численням. Дата публікації 

цієї статті – травень 1684 р. – вважається офіційною датою народження 

диференціального числення. У цій роботі були надані визначення та знак 

диференціала « d », наведені основні правила диференціювання функцій (суми, 

різниці, добутку, частки, будь-якого сталого степеня, складеної функції), а 

також правила визначення екстремальних значень функцій та точок перегину. 

Крім того, у своїй наступній роботі (1686) Г. Лейбніцем було запропоновано 

позначення ∫ (від першої літери слова Summa) для інтеграла, а також 

                                                 
1 Вилейтнер Г. История математики от Декарта до середины XIX столетия / Г. Вилейтнер. – 
М.: Физматлит, 1960. – 468 с. 
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встановлений взаємно зворотний характер операцій диференціювання та 

інтегрування 1. 

Отже, у працях Г. Лейбніца склалися основні поняття математичного 

аналізу – диференціал (як нескінченно малий приріст змінної величини) та 

інтеграл (як сума нескінченно великого числа диференціалів) 2. 

Слід зазначити, що сучасним позначенням в математичному аналізі ми 

зобов’язані Г. Лейбніцу (позначення диференціала dx  та інтеграла ∫ ydx ), 

йому належать назви «диференціальне числення» та «інтегральне числення», 

впроваджені спільно з Я. Бернуллі, а також терміни «стала», «змінна», 

«диференціал», «диференціальне рівняння», «функція», «координати», 

«алгоритм» та інші. Саме під впливом його праць розпочалося широке 

використання математичних символів « = » для позначення рівності та «·» – для 

множення. 

Отже, завдяки дослідженням І. Ньютона та Г. Лейбніца на кінець 

XVII ст. було досягнуто таких результатів: створені диференціальне та 

інтегральне числення, розроблені їх основні поняття та теорія, встановлено 

зв’язок між операціями диференціювання та інтегрування, а також вивчено їх 

застосування до розв’язання прикладних задач теоретичної механіки, фізики та 

астрономії. Створення диференціального та інтегрального числень стало 

причиною виникнення та розвитку ряду математичних дисциплін: теорії 

диференціальних рівнянь, варіаційного числення, теорії рядів та 

диференціальної геометрії. 

Надалі диференціальне числення розвивалося шляхом, окресленим 

Г. Лейбніцем. У цей період слід особливо відзначити праці братів Якоба 

Бернуллі (1654–1705) та Йоганна Бернуллі (1667–1748), Брука Тейлора (1685–

1731) та інших вчених, якими були систематизовано викладені основи 

                                                 
1 Эйлер Л. Дифференциальное исчисление: Пер. с лат. / Л. Эйлер. – М.-Л.: Государственное 
издательство технико-теоретической литературы, 1949. – 580 с. 
2 Юшкевич А. П. Дифференциальное исчисление / А. П. Юшкевич // Математический энцикло-
педический словарь. – М.: Советская энциклопедия, 1988. – С. 197–203. 
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диференціального та інтегрального числень, розроблені методи розв’язання 

деяких диференціальних рівнянь та окремих задач варіаційного числення. 

На основі вказівок та лекцій Й. Бернуллі, у 1696 р. маркізом Гійомом 

Франсуа Антуаном де Лопіталем (1661–1704) був опублікований перший у 

світі друкований курс диференціального числення «Аналіз нескінченно малих 

для вивчення кривих ліній», у якому наводяться визначення сталих, змінних 

величин та диференціала, пояснюються позначення dx , dy , що застосо-

вуються в диференціальному численні, отримано правила диференціювання 

алгебраїчних виразів, методи диференціального числення застосовуються для 

знаходження дотичних до кривих, визначення максимумів та мінімумів. 

На подальший розвиток диференціального числення величезний вплив 

мали праці Леонарда Ейлера (1707–1783) та Жозефа Луї Лагранжа (1736–1813). 

У своїх класичних курсах «Вступ до аналізу нескінченно малих» (1748) та 

«Диференціальне числення» (1755) Л. Ейлер систематизував майже весь 

існуючий матеріал з теорії диференціального числення, виклав диференціальне 

числення як аналітичну дисципліну, що не залежить від її застосування в 

геометрії та механіці, а також пов’язав диференціальне числення з численням 

скінченних різниць. 

При здійсненні наукових досліджень Ж. Лагранж намагався будувати 

диференціальне числення на основі алгебраїчного підходу, використовуючи 

при цьому розвинення функцій у степеневі ряди та визначаючи похідну як 

коефіцієнт при другому членові цього розвинення; він, зокрема, вперше 

застосував термін «похідна» та позначення y′  або ( )xf ′  1. У своїй праці 

«Теорія аналітичних функцій» (1797) Ж. Лагранж виклав диференціальне 

числення без застосування поняття нескінченно малої величини, отримав 

формулу залишкового члена ряду Тейлора, розглянув метод множників 

Лагранжа для розв’язання задач на умовний екстремум, а також спробував 

                                                 
1 Юшкевич А. П. Дифференциальное исчисление / А. П. Юшкевич // Большая советская энцикло-
педия. – 2-е изд. – М.: Большая советская энциклопедия, 1952. – Т.14: Демосфен-Докембрий. – С. 
510–519. 
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довести обґрунтованість диференціального та інтегрального числень. Пізніше 

ця праця надихнула О. Коші при розробці обґрунтування основних ідей 

математичного аналізу. 

Особливе місце в XVII–XVIII ст. займала проблема обґрунтування 

диференціального числення, тобто наукове тлумачення змісту нескінченно 

малих й використання їх у алгоритмах математичного аналізу. Ця проблема на 

початку XIX ст. була вирішена на основі теорії границь головним чином 

завдяки роботам Огюстена Луї Коші (1789–1857), Бернарда Больцано (1781–

1848) та Карла Фрідріха Гауса (1777–1855). 

Логічне обґрунтування й новий виклад аналізу нескінченно малих, та, 

зокрема, диференціального й інтегрального числень, були здійснені О. Коші 

шляхом визначення поняття границі послідовності. Зокрема, він вказав, що 

змінна може наближуватися до своєї границі як монотонно, так і коливаючись. 

Такий підхід визначив загальність та гнучкість теорії О. Коші. У своїх працях 

«Курс аналізу» (1821), «Резюме лекцій з числення нескінченно малих» (1823), 

«Лекції з додатків аналізу до геометрії» (1826–1828) він надав чітке визначення 

основних понять математичного аналізу – границі, неперервності, похідної, 

диференціала, інтеграла тощо. 

Математики досі прямують шляхом, визначеним О. Коші, але лише з 

тими удосконаленнями, які були внесені у другій половині XIX ст. Карлом 

Теодором Вільгельмом Вейєрштрассом (1815–1897). У своїх роботах 

К. Вейєрштрасс провів арифметизацію аналізу, розробивши систему його 

логічного обґрунтування на основі побудованої ним теорії дійсних чисел, 

з’ясував поняття мінімуму, функції, похідної та таким чином усунув 

неточності, що залишалися у формулюванні основних понять математичного 

аналізу. 

Роботами О. Коші та К. Вейєрштрасса завершується етап багатовікового 

створення й розвитку диференціального та інтегрального числень як основних 

розділів класичного математичного аналізу. 
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Отже, створення, розвиток та обґрунтування аналізу нескінченно малих 

стало результатом праці плеяди видатних вчених кількох століть, що 

ознаменувало завершення тривалого процесу, сутність якого полягала в 

накопиченні та виділенні елементів диференціального й інтегрального 

числення та теорії рядів. У наш час, у зв’язку з усе інтенсивнішим розвитком 

техніки й постійним удосконаленням інформаційних технологій, 

диференціальне та інтегральне числення стають усе актуальнішими при 

розв’язанні задач практики. 

У ході розвитку й обґрунтування диференціального та інтегрального 

числень сформувалися й набули сучасного змісту основні математичні поняття, 

визначення та дослідження яких складають предмет вступу в математичний 

аналіз: дійсне число, функція, границя, неперервність та нескінченно мала 

величина 1. Виходячи з цього, основною ідеєю диференціального числення є 

дослідження функцій «в малому», тобто дослідження функцій, поведінка яких 

у досить малому околі кожної точки є близькою до поведінки лінійної функції 

або многочлена, за допомогою похідної та диференціала – центральних понять 

диференціального числення 2. При цьому сучасна концепція нескінченно малих 

(як змінних величин, що прямують до нуля) та похідної (як границі відношення 

нескінченно малих приростів) була окреслена ще у працях І. Ньютона, 

концепція диференціала (як головної частини приросту функції) визначилася в 

дослідженнях Ж. Лагранжа, проте ці поняття остаточно оформились тільки 

після обґрунтування аналізу О. Коші, який, у свою чергу, надав також точне 

визначення інтеграла (як границі суми). 

Таким чином, після чіткого обґрунтування своїх основних понять, 

здійсненого протягом довготривалої еволюції, сучасне диференціальне 

числення надає можливість розв’язувати різноманітні практичні задачі за 

допомогою обґрунтованих, коректних та доступних для застосування методів. 

                                                 
1 Тихомиров В. М. Дифференциальное исчисление (теория и приложения) (Серия: “Библиотека 
«Математическое просвещение»”) / В. М. Тихомиров.  – М.: МЦНМО, 2002. – 40 с. 
2 Юшкевич А. П. Дифференциальное исчисление / А. П. Юшкевич // Математический энцикло-
педиический словарь. – М.: Советская энциклопедия, 1988. – С. 197–203. 
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Розділ 3. ПРАКТИКУМ ІЗ РОЗВ’ЯЗАННЯ ЗАДАЧ  
 
 

§ 1. Означення похідної 
 

У теоретичній частині були вже розглянуті приклади на обчислення 

похідної за означенням для деяких основних елементарних функцій. Наведемо 

в цьому параграфі два приклади як зразок, а детальніше застосування 

означення похідної для дослідження функцій на диференційовність буде 

розглянуто в § 3.  

Приклад 3.1. а) (№Д83118) Знайти (1)y′ , якщо 

( ) ( 1)arcsin
1

xy x x x
x

= + −
+

; 

б) знайти (5)y′ , якщо 4 3( 4) ( 2) ( 5)sin( 4)y x x x x= − − − − . 

Розв’язання. а) Знайдемо похідну функції в точці 0 1x =  за означенням: 

0 0

11 arcsin 1(1 ) (1) 2(1) lim lim
x x

xx xy x y xy
x xΔ → Δ →

+ Δ
+ Δ + Δ −

+ Δ − + Δ′ = = =
Δ Δ

 

0 0

11 arcsin
2 1lim lim 1 arcsin

2x x

xx
x x

x xΔ → Δ →

⎛ ⎞+ Δ
Δ +⎜ ⎟⎜ ⎟+ Δ ⎛ ⎞+ Δ⎝ ⎠= = + =⎜ ⎟⎜ ⎟Δ + Δ⎝ ⎠

1 .
4
π

+  ■ 

б) Знайдемо похідну за означенням: 
4 3

0 0

(5 ) (5) (1 ) (3 ) sin(1 ) 0(5) lim lim 27sin1
x x

y x y x x x xy
x xΔ → Δ →

+ Δ − + Δ + Δ Δ +Δ −′ = = =
Δ Δ

. ■ 

 
§ 2. Техніка диференціювання 

 
Приклад 3.2. Знайти похідну y′  функцій: 

а) ( )ln ln 1 sin
2
xy tg ctgx x x= − ⋅ + − ; б) ( )1 sin2cos

x
y x= ; 

                                                 
18Посилання на номери, в яких фігурує літера «Д», означатимуть, що цей приклад відповідає 
збірнику задач Демидовича Б.П. [2]. 



§ 1. Означення похідної 

 101

Розділ 3. ПРАКТИКУМ ІЗ РОЗВ’ЯЗАННЯ ЗАДАЧ  

§ 1. Означення похідної  

в) 
2

3
2

3
1 (3 )

x xy
x x

−
=

− +
 (№Д984 б); г) ( ) ( )( )cos sinsin cosx xxy e x x= − ; 

д) 2 2( ) ( )y x x= ϕ +ψ  (№Д985 а);  

е) ( )log ( ) ( ( ) 1, ( ) 0, ( ) 0)xy x x x xϕ= ψ ϕ ≠ ϕ > ψ >  (№Д985 г), 

де ( )xϕ  і ( )xψ  диференційовні функції; 

є) ( )( )x f xy f e e= ⋅   (№Д986 в);  ж) ( )( )( )y f f f x=  (№Д986 г), 

де ( )f u  – диференційовна функція. 

Розв’язання. а) ( )( ) 2ln ln 1 sin
2

2

xtg
xy tg ctgx x x

xtg

′
⎛ ⎞

′ ⎜ ⎟′⎛ ⎞ ⎝ ⎠′ ′= − ⋅ + − = −⎜ ⎟
⎝ ⎠

 

( ) ( ) ( )( )
2

1ln 1 sin ln 1 sin 1
2 cos

2 2

ctgx x ctgx x
x xtg

′′− ⋅ + − ⋅ + − = +
⋅

 

( )2

1 cosln 1 sin 1
1 sinsin

xx ctgx
xx

+ ⋅ + − ⋅ − =
+

 

( )
( )

2

2

ln 1 sin1 cos 1
sin sin 1 sinsin

x x
x x xx

+
= + − − =

+
( )

2

ln 1 sin
sin

x
x

+
.  ■ 

б) Застосуємо логарифмічне диференціювання: 

( )1 sin2cos
x

y x= ,  ( )1 sin2ln ln cos
x

y x= , 

21ln ln cos
sin

y x
x

= ⋅ , ( )
2ln cosln

sin
xy

x

′⎛ ⎞′ = ⎜ ⎟
⎝ ⎠

, 

( )
( )2

22 2
2

2 2

cos
sin cos ln cosln cos sin (sin ) ln cos1 cos

sin sin

x
x x xx x x x xy

y x x

′
′ ⋅ − ⋅′⋅ − ⋅

′⋅ = = =  

2 2 2
2 2

2 2

2 2

sin ( ) sin 2sin cos ln cos sin cos ln cos
cos cos

sin sin

x x x xx x x x x x
x x

x x

′⋅ ⋅
− ⋅ − ⋅ − ⋅ − ⋅

= = . 
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Отримали:  
2 2 2

2 2

2 sin sin cos cos ln cos
sin cos

y x x x x x x
y x x
′ − ⋅ − ⋅ ⋅
=

⋅
. 

Помножимо обидві частини цієї рівності на y : 

2 2 2

2 2

2 sin sin cos cos ln cos
sin cos

x x x x x xy y
x x

− ⋅ − ⋅ ⋅′ = ⋅
⋅

. 

Оскільки ( )1 sin2cos
x

y x= , то в результаті отримаємо 

( )
2 2 21 sin2

2 2

2 sin sin cos cos ln coscos
sin cos

x x x x x x xy x
x x

⋅ + ⋅ ⋅′ = − ⋅
⋅

.  ■ 

 в) Застосуємо логарифмічне диференціювання: 
2

3
2

3ln ln ;
1 (3 )

x xy
x x

⎛ ⎞−
= ⎜ ⎟⎜ ⎟− +⎝ ⎠

 

1 2ln 2ln ln(1 ) ln(3 ) ln(3 );
3 3

y x x x x= − − + − − +  

2 (1 ) 1 (3 ) 2 (3 ) ;
1 3 3 3 3

y x x x
y x x x x
′ ′ ′ ′− − +
= − + ⋅ − ⋅

− − +
 

2

3
2

2 1 1 1 2 1 3; ;
1 3 3 3 3 1 (3 )

y x xy y
y x x x x x x
′ −
= + − ⋅ − ⋅ × =

− − + − +
 

2

3
2

3 2 1 1 1 2 1 .
1 1 3 3 3 3(3 )

x xy
x x x x xx

− ⎛ ⎞′ = + − ⋅ − ⋅⎜ ⎟− − − ++ ⎝ ⎠
  ■ 

г) Спочатку знайдемо похідні від функцій ( ) ( )cos sinsin i cosx xx x . 

Першу знайдемо логарифмічним диференціюванням 

( )cossin xz x= , 

( ) ( )( )ln cos ln sin ,z x x ′′ =  

cossin ln(sin ) cos ,
sin

z xx x x
z x
′
= − +  

( )
2

cos cossin sin ln(sin ) .
sin

x xz x x x
x

⎛ ⎞
′ = − +⎜ ⎟

⎝ ⎠
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Другу знайдемо, застосувавши тотожність ln aa e= , у такий спосіб: 

( )( ) ( )( ) ( )( )sinsin ln cos sin ln coscos
xx x x xx e e ⋅′′ ′= = =  

( )sin ln cos sincos ln(cos ) sin
cos

x x xe x x x
x

⋅ −⎛ ⎞= ⋅ ⋅ + ⋅ =⎜ ⎟
⎝ ⎠

 

( )
2

sin sincos cos ln(cos ) .
cos

x xx x x
x

⎛ ⎞
= ⋅ ⋅ −⎜ ⎟

⎝ ⎠
 

В результаті отримаємо 

( ) ( )( )( ) ( ) ( )( )cos sin cos sinsin cos sin cosx x x xx xy e x x e x x
′

′ = − = − +  

( )
2

cos cossin sin ln(sin )
sin

xx xe x x x
x

⎡ ⎛ ⎞
+ ⋅ − + +⎢ ⎜ ⎟

⎝ ⎠⎣
 

( )
2

sin sincos cos ln(cos )
cos

x xx x x
x

⎤⎛ ⎞
+ ⋅ ⋅ − ⎥⎜ ⎟

⎝ ⎠⎦
.   ■ 

д) Якщо 2 2( ) ( )y x x= ϕ +ψ , то 

( )2 2

2 2

1 ( ) ( )
2 ( ) ( )

y x x
x x

′′ = ⋅ ϕ +ψ =
ϕ +ψ

 

( )
2 2

1 2 ( ) ( ) 2 ( ) ( )
2 ( ) ( )

x x x x
x x

′ ′= ⋅ ϕ ⋅ϕ + ψ ⋅ψ =
ϕ +ψ

 

2 2

( ) ( ) ( ) ( )

( ) ( )

x x x x

x x

′ ′ϕ ⋅ϕ +ψ ⋅ψ
=

ϕ +ψ
.  ■ 

е) Якщо ( )log ( ) ( ( ) 1, ( ) 0, ( ) 0)xy x x x xϕ= ψ ϕ ≠ ϕ > ψ > , де ( )xϕ  і ( )xψ  – 

диференційовні функції, то 

( )( ) 2

( ) ( )ln ( ) ln ( )
ln ( ) ( ) ( )log ( )
ln ( ) ln ( )x

x xx x
x x xy x
x xϕ

′ ′ψ ϕ
⋅ ϕ − ⋅ ψ′⎛ ⎞ψ ψ ϕ′′ = ψ = = =⎜ ⎟ϕ ϕ⎝ ⎠

 

2

( ) ( ) ln ( ) ( ) ( ) ln ( )
( ) ( ) ln ( )

x x x x x x
x x x

′ ′ϕ ⋅ψ ⋅ ϕ −ψ ⋅ϕ ⋅ ψ
=

ϕ ⋅ψ ⋅ ϕ
.   ■ 
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є) Якщо ( )( )x f xy f e e= ⋅ , то 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )x f x x f x x f xy f e e f e e f e e′ ′ ′′ = ⋅ = ⋅ + ⋅ =  

( ) ( )( ) ( ) ( )x x f x x f xf e e e f e e f x′ ′= ⋅ ⋅ + ⋅ ⋅ ( )( ) ( ) ( ) ( )f x x x xe f e e f e f x′ ′= ⋅ ⋅ + ⋅ .   ■ 

ж) Для функції ( )( )( )y f f f x=  маємо: 

( )( ) ( )( ) ( ) ( )y f f f x f f x f x′ ′ ′ ′= ⋅ ⋅ .     ■ 

Приклад 3.3. Показати, що існує однозначна функція ( )y y x= , що 

визначена рівнянням, та знайти її похідну xy′ : 

а) 3 3y y x+ =  (№Д1034); б) sin (0 1)y y x− ε = < ε <  (№Д1035). 

Розв’язання. а) Знайдемо похідну yx′ : 

23 3 0yx y y′ = + > ∀ ∈\ , 

тому функція ( )x x y=  є строго зростаючою на \  (достатня умова 

монотонності функції на інтервалі), причому її похідна в жодній точці з \  не 
дорівнює нулю. Звідси випливає існування однозначної оберненої функції 

( )y y x= , похідна якої дорівнює (теорема 1.4 про похідну оберненої функції) 

2
1 1

3( 1)x
y

y
x y

′ = =
′ +

. 

Існування однозначної функції ( )y y x=  можна обґрунтувати в інший 

спосіб. Припустимо супротивне, тобто що існують дві нерівні функції 1( )y x  і 

2 ( )y x , що визначені рівнянням 3 3y y x+ = , тоді 

( )31 13y y x+ =  і ( )32 23y y x+ = , 

звідки  

( ) ( )3 3
1 1 2 23 3y y y y+ = + , 

( ) ( ) ( )( )2 2
1 2 1 1 2 2 3 0y y y y y y− + + + = . 
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Неповний квадрат суми ( ) ( )2 2
1 1 2 2y y y y+ +  приймає строго додатні значення, 

отже значення виразу ( ) ( )2 2
1 1 2 2 3y y y y+ + +  ніколи не може дорівнювати 

нулю. Таким чином, виписана рівність буде вірною лише при 1 2 0y y− = , тобто 

при 1 2( ) ( )y x y x≡ . Це суперечить припущенню. Отже, існує єдина функція 

( )y y x= , що визначена заданим рівнянням. ■ 

б) Розв’яжемо поставлену задачу за допомогою похідної. Другий спосіб 

пропонуємо читачеві реалізувати самостійно. Знайдемо похідну yx′  і 

пригадаємо, що 0 1< ε < : 1 cos 0yx y y′ = − ε > ∀ ∈\ . Тому функція ( )x x y=  є 

строго зростаючою на \  і її похідна в жодній точці із \  не дорівнює нулю. 

Звідси випливає існування  однозначної оберненої функції ( )y y x= , похідна 

якої дорівнює 

1 1
1 cosx

y
y

x y
′ = =

′ − ε
.   ■ 

Приклад 3.4 (№Д1036). Визначити області існування обернених функ-

цій ( )x x y=  та знайти їхні похідні, якщо 

а) lny x x= + ; б) xy x e= + ; в) shy x= ; г) thy x= . 

Розв’язання. а) ОДЗ (область допустимих значень або область 

визначення функції): 0x > ; множина значень – \ . Знайдемо похідну xy′  при 

0x > : 

1 11 0 0x
xy x

x x
+′ = + = > ∀ > . 

Тому функція строго зростає і має ненульову похідну для всіх 0x > . Таким 

чином, існує обернена функція ( )x x y=  на \  (на множині значень даної 

функції), похідна якої дорівнює  

1
1y

x

xx
y x

′ = =
′ +

. ■ 

б) ОДЗ: x∈\ ; множина значень – \ . Знайдемо похідну xy′ : 
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1 0x
xy e x′ = + > ∀ ∈\ . 

задана функція строго зростає і має ненульову похідну на \ . Отже, існує 

обернена функція ( )x x y=  на \ , похідна якої дорівнює  

1 1 1
11y x

x
x

y y xe
′ = = =

′ + −+
. ■ 

в) ОДЗ: x∈\ ; множина значень – \ , похідна: 

ch 0xy x x′ = > ∀ ∈\ .  

Функція строго зростає і має ненульову похідну на \ , тому існує обернена 
функція на \ , похідна якої дорівнює  

2 2

1 1 1 1
ch 1+sh 1+

y
x

x
y x x y

′ = = = =
′

. ■ 

г) ОДЗ: x∈\ ; множина значень – | | 1y < ,  похідна: 

2
1 0

chxy x
x

′ = > ∀ ∈\ . 

Отже, існує обернена функція при | | 1y < , похідна якої дорівнює  

2
2 2

1 1ch (| | 1)
1 th 1yx x y

x y
′ = = = <

− −
. ■ 

Приклад 3.5 (№Д1037 а). Виділити однозначні неперервні гілки обер-

нених функцій ( )x x y= , знайти їхні похідні, побудувати графіки, якщо 

2 42y x x= − . 

Розв’язання. Похідна цієї функції 34 4xy x x′ = −  дорівнює нулю в точках 

0, 1x x= = ± . Тому на кожному із проміжків ( ; 1)−∞ − , ( 1;0)− , (0;1) , (1; )+∞  

функція строго монотонна і має ненульову похідну. Отже, на кожному із цих 
проміжків вона має однозначну гілку обернених функцій.  

В рівнянні 2 42y x x= −  покладемо 2t x= , отримаємо  квадратне 

рівняння 2 2 0t t y− + = , для якого 

/ 4 1 0 ( ;1]D y y= − ≥ ⇔ ∈ −∞ , 
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1 1 1 0t y= + − ≥  при ( ;1]y∈ −∞ , 2 1 1 0t y= − − ≥  при [0;1]y∈ . 

В результаті отримаємо рівняння однозначних гілок обернених функцій 

1 1 1x y= + −  при ( ;1]y∈ −∞ , 

2 1 1x y= − + −  при ( ;1]y∈ −∞ , 

3 1 1x y= − −  при [0;1]y∈ , 

4 1 1x y= − − −  при [0;1]y∈ . 

Графіки цих гілок зображені на 
рис. 3.1. Похідна від будь-якої з таких гілок  

має вигляд: 
( )2

1
4 1

ix
x x

′ =
−

  1, 2, 3, 4i∀ = . ■ 
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 Приклад 3.6. Дослідити функції  на диференційовність 

а) y x= ;  б) 3| sin |y x=  (№Д978 б). 

Розв’язання. а) У прикладі 1.3 було доведено, що для функції ( )f x x=  

в точці 0x =  односторонні похідні (0)f+′ = 1, (0)f−′ = –1, тому 

(0)f+′ ≠ (0) (0)f f−′ ′⇒ ∃ . 

Отже, згідно з твердженням 1.1 і теоремою 1.5, у точці 0x =  функція y x=  

недиференційовна. 
Нехай тепер 0x ≠ , тоді для 0x >  

0 0

( ) ( )( ) lim lim
x x

x x xf x x f xf x
x xΔ → Δ →

+ Δ −+ Δ −′ = = =
Δ Δ

 

0

0 ;
( 0 0) lim 1

0
x

x x x
x x xx x

x
x x x x x x

Δ →

> ⇒ =
+ Δ −

= Δ → ∧ > ⇒ = =
Δ

⇒ + Δ > ⇒ + Δ = + Δ

; 

для 0x <  

 

 

1x

3x

4x  

2x

  x

Рис. 3.1.  
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0 0

( ) ( )( ) lim lim
x x

x x xf x x f xf x
x xΔ → Δ →

+ Δ −+ Δ −′ = = =
Δ Δ

 

0

0 ;
( 0 0) lim 1.

0
x

x x x
x x xx x

x
x x x x x x

Δ →

< ⇒ = −
− − Δ +

= Δ → ∧ < ⇒ = = −
Δ

⇒ + Δ < ⇒ + Δ = − − Δ

 

Отже, приходимо до висновку: функція y x=  диференційовна при 0x ≠ , 

окрім того, отримано формулу 

( ) sgn при 0x x x′ = ≠   ■ 

б) Для функції 3siny x=  окремо розглянемо точки, в яких вираз під 

знаком модуля дорівнює нулю, тобто 3sin 0x = , тоді  

sin 0 ,x x n n= ⇔ = π ∈] . 

В цих точках за означенням матимемо 

( )y n′ π =
3 3

0 0

sin ( ) sin ( )( ) ( )lim lim
x x

n x ny n x y n
x xΔ → Δ →

π + Δ − ππ + Δ − π
= =

Δ Δ
 

3

0

sin ( )
lim
x

x

xΔ →

Δ
=

Δ

3 3
2

0 0 0

( ) ( ) sgnlim lim lim ( ) sgn 0
x x x

x x x x x
x xΔ → Δ → Δ →

Δ Δ ⋅ Δ
= = = Δ ⋅ Δ =

Δ Δ
. 

 В точках, де 3sin 0x ≠ , тобто x n n≠ π ∀ ∈]  отримаємо 

( ) ( ) ( )3 3 3 3 2| sin | sgn sin sin sgn sin 3sin cosy x x x x x x′′ ′= = ⋅ = ⋅ ⋅ . 

Приходимо до висновку, що задана функція диференційовна на \ . ■ 

 Приклад 3.7. Знайти похідні й побудувати графіки функцій та їх 

похідних, якщо  

а) | sin |y x= ;  б) ln | |y x=  (№Д977 в); 

в) 
arctg при | |<1,

1
sgn при | | 1.

4 2

x x
y x

x x

⎧
⎪= −⎨π

+ ≥⎪⎩

 

 Розв’язання. а) Для функції siny x=  розглянемо точки, де 

sin 0x = , тобто ,x n n= π ∈] . Знайдемо праву та ліву похідні в них:  
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( )y n+′ π =
0 0

sin( ) sin( )( ) ( )lim lim
x x

n x ny n x y n
x xΔ →+ Δ →+

π + Δ − ππ + Δ − π
= =

Δ Δ
 

0

sin( )
lim
x

x
xΔ →+

Δ
=

Δ

0

0 0

sin ~ lim lim 1
(додаток А)

x

x x

x xx x
x x

Δ →

Δ →+ Δ →+

Δ ΔΔ Δ= = = =
Δ Δ

, 

( )y n−′ π =
0

sin( ) sin( )
lim
x

n x n
xΔ →−

π + Δ − π
= =

Δ 0

sin( )
lim
x

x
xΔ →−

Δ
=

Δ
 

0 0
lim lim 1
x x

x x
x xΔ →− Δ →−

Δ −Δ
= = = −

Δ Δ
. 

Оскільки ( )y n−′ π ≠ ( )y n n+′ π ∀ ∈] , то в точках ,x n n= π ∈]  функція не є 

диференційовною.  

 В точках x n≠ π  ( n∈] )  одержимо 

( ) ( ) ( )
cos , 2 2 ;

sin sgn sin sin sgn sin cos
cos , 2 2 .

x n x n
y x x x x x

x n x n
π < < π+ π⎧′ ′′ = = ⋅ = ⋅ = ⎨− −π+ π < < π⎩

. 

Отримана похідна існує у всіх точках, де x n≠ π , тому приходимо до висновку, 

що задана функція диференційовна на \{ , }n nπ ∈\ ] , і похідна в цих точках 

дорівнює ( )sgn sin cosy x x′ = ⋅ . Графіки функції та її похідної зображені 

відповідно на рис. 3.2 а і на рис. 3.2 б.  ■ 
 

а 
 

        б 
Рис. 3.2.  

 

 б) Для функції ln | |y x=  точка, в якій вираз під модулем дорівнює 0 

(тобто 0x = ), не входить в область визначення, тому будемо шукати похідну 

тільки в точках, де 0x ≠ : 
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2 2

1 1 1 1| | sgn
| | | | | | | | | |

x x xy x x
x x x x xx x

′ ′= ⋅ = ⋅ = ⋅ = = = . 

Графіки функції та її похідної зображені відповідно на рис. 3.3 а та на 
рис. 3.3 б.   ■ 
 

   
        а     б 

Рис. 3.3.  
 

 в) Для функції 
arctg при | |<1,

1
sgn при | | 1,

4 2

x x
y x

x x

⎧
⎪= −⎨π

+ ≥⎪⎩

 якщо | |<1x , то  

2

1( )
1

y x
x

′ =
+

. 

Якщо 1x > , то  

1 1( )
4 2 2

xy x
′π −⎛ ⎞′ = + =⎜ ⎟

⎝ ⎠
. 

Якщо 1x < − , то 

1 1( )
4 2 2

xy x
′π − −⎛ ⎞′ = − + = −⎜ ⎟

⎝ ⎠
. 

В точках 1x = ±  обчислимо праву та ліву похідні. Так, для точки 1x =  

матимемо: 

(1)y+′ =
0 0

1 1
(1 ) (1) 14 2 4lim lim

2x x

x
y x y

x xΔ →+ Δ →+

π + Δ − π
+ −+ Δ −

= =
Δ Δ

, 

0 0

arctg (1+ )(1 ) (1) 4(1) lim lim
x x

xy x yy
x x− Δ →− Δ →−

π
Δ −+ Δ −′ = = =

Δ Δ
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0

arctg (1+ ) arctg1lim
x

x
xΔ →−

Δ −
= =

Δ

1+ , 1, 1,

arctg arctg b=arctg
1

a x b a b
a ba

a b

= Δ = ⋅ > −
=−

−
+ ⋅

 

0

1lim arctg
2x

x
x xΔ →−

Δ
= ⋅ =

Δ + Δ 0

1 1lim
2 2x

x
x xΔ →−

Δ
⋅ =

Δ + Δ
. 

Оскільки (1)y+′ = (1)y−′  то в точці 1x =  функція є диференційовною і  

1(1)
2

y′ = .  

Для точки 1x = −  маємо: 

0 0

arctg ( 1+ )
( 1 ) ( 1) 4( 1) lim lim

x x

x
y x yy

x x+ Δ →+ Δ →+

π⎛ ⎞− Δ − −⎜ ⎟− + Δ − − ⎝ ⎠′ − = = =
Δ Δ

 

( )
0

arctg (1 ) arctg1
lim
x

x
xΔ →−

− − Δ −
= =

Δ 0

1lim arctg
2x

x
x xΔ →−

− −Δ
⋅ =

Δ + Δ
1
2

, 

( 1)y−′ − =
0 0

1 1
( 1 ) ( 1) 14 2 4lim lim

2x x

x
y x y

x xΔ →− Δ →−

π − Δ − π⎛ ⎞− + − −⎜ ⎟− + Δ − − ⎝ ⎠= = −
Δ Δ

. 

Оскільки ( 1) ( 1)y y+ −′ ′− ≠ − , то в точці 1x = −  функція не є диференційовною. 

 Графіки функції та її похідної зображені відповідно на рис. 3.4 а, б.  ■ 
 

   
        а     б 

Рис. 3.4. 
 

Приклад 3.8 (№Д991). Довести, що функція 

2 1sin при 0;( )
0 при 0

x xf x x
x

⎧⎪ ≠= ⎨
=⎪⎩

 

має розривну похідну. 
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Розв’язання. Якщо 0x ≠ , то  

2
2

1 1 1 1 1( ) 2 sin cos 2 sin cosf x x x x
x x x xx

−′ = + ⋅ = − . 

Отримана функція є неперервною при 0x ≠ . Дійсно, функції 1sin
x

 та 1cos
x

 

неперервні як складені при 0x ≠ , а ( )f x′  неперервна при 0x ≠  як добуток і 

різниця неперервних при 0x ≠  функцій. 

 Якщо 0x = , то 

( )2

0 0 0

1sin 0( ) (0) 1(0) lim lim lim sin [н.м.ф.×обм.] 0
x x x

xy x y xf x
x x xΔ → Δ → Δ →

Δ −Δ − Δ′ = = = Δ ⋅ = =
Δ Δ Δ

. 

Розглянемо 
0 0 0 0

1 1lim ( ) lim 2 sin cos
x x

y x x
x x→ + → +

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

. Тут  

1) 
0 0

1lim 2 sin [н.м.ф.×обм.] 0
x

x
x→ +
= = , 

2) 
0 0

1lim cos
x x→ +

∃/ ,  

⎫
⎪⇒⎬
⎪
⎭

 
0 0

lim ( )
x

y x
→ +

′∃/ . 

Таким чином, похідна в точці 0x =  має розрив ІІ роду, а в усіх інших точках – 

неперервна.  ■ 
Приклад 3.9 (№Д992). За яких умов функція  

1sin при 0;( )
0 при 0

nx xf x x
x

⎧⎪ ≠= ⎨
=⎪⎩

 

а) неперервна при 0x = ; б) диференційовна при 0x = ; в) має неперервну 

похідну при 0x = ?  

Розв’язання. а) Оскільки (0) 0f = , то для того, щоб функція була 

неперервною, потрібно задовольнити вимогу: 

0
lim ( ) (0) 0
x

f x f
→

= = . 

Для заданої функції границя 

( )
0 0

1lim ( ) lim sinn

x x
f x x

x→ →
= ⋅  
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існує і дорівнює нулю, якщо 0n > . Отже, за цієї ж умови функція ( )f x  

неперервна в точці 0x = . 

 б) В точці 0x =  маємо 

( )
( ) 1

0 0 0

1sin 0( ) (0) 1(0) lim lim lim sin

n

n

x x x

xy x y xf x
x x x

−

Δ → Δ → Δ →

Δ −Δ − Δ′ = = = Δ ⋅
Δ Δ Δ

. 

Остання границя існує і дорівнює нулю за умови, коли 1 0n − > , тобто 1n > . За 

цієї ж умови функція диференційовна в точці 0x = . 

в) Якщо 0x ≠ , то  

1 21 1( ) sin cosn nf x nx x
x x

− −′ = − . 

Отримана функція є неперервною при 0x ≠  (доведення аналогічне прикла-

ду 3.8). Для того, щоб ( )f x′  в точці 0x =  була неперервною, потрібно задо-

вольнити при 1n >  вимогу: 

0
lim ( ) (0) 0
x

f x f
→

′ ′= = . 

Для функції ( )f x′  границя 

1 2

0 0

1 1lim ( ) lim sin cosn n

x x
f x nx x

x x
− −

→ →

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

 

дорівнює нулю, якщо 2 0n − > , тобто 2n > . Отже, за цієї ж умови ( )f x′  

неперервна в точці 0x = .   ■ 

 Приклад 3.10 (№Д998). Довести, що функція 
2 , якщо ;

( )
0, якщо \
x x

f x
x

⎧ ∈
= ⎨

∈⎩

_
\ _

 

має похідну лише при 0x = .  

Розв’язання. Функція ( )f x  неперервна лише в точці 0x = , а в усіх 

інших точках вона розривна (  повторіть доведення цього факту; розв’язання 
аналогічного прикладу №208 див. у [18, с. 102]).  

За твердженням 1.2, похідна може існувати лише в тих точках, у яких 
функція неперервна. Отже, в кожній точці 0x ≠  похідної не існує.  

 Розглянемо тепер точку 0x = . Якщо 0 ix xΔ ≠ Δ ∈_ , то  
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( )2 0(0 ) (0) xf x f x
x x

Δ −+ Δ −
= = Δ

Δ Δ
. 

Якщо \xΔ ∈\ _ , то  

(0 ) (0) 0 0 0f x f
x x

+ Δ − −= =
Δ Δ

. 

Отже, 

(0 ) (0)0 0

при 0.
0

f x fx x
x

x

+ Δ −
∀Δ ≠ ≤ ≤ Δ

Δ
⇓ Δ →2 0  

Звідки та  за означенням похідної, отримаємо: 

0

(0 ) (0)(0) lim 0
x

f x ff
xΔ →

+ Δ −′∃ = =
Δ

. 

 Таким чином, функція ( )f x  в точці 0x =  має похідну, що дорівнює 0, а 

в усіх інших точках не має похідної.   ■ 
 Приклад 3.11. Знайти односторонні похідні та дослідити функції на 
диференційовність: 

а) [ ]siny x x= π , де [ ]x  – ціла частина числа x , (№Д1001); 

б) 
2

1 xy e−= −  (№Д1005);     в) ln | | ( 0)y x x= ≠  (№Д1006). 

 Розв’язання. а) При обчисленні будемо застосовувати формули 

(перевірте їх !) 

[ 0] , [ 0] 1,n n n n n+ = − = − ∈]  

Окремо розглядаємо ті значення аргументу, при яких вираз під знаком цілої 
частини є цілим. У даному випадку – це ,x n n= ∈] . В таких точках одно-

сторонні похідні знайдемо за означенням: 

( )y n+′ 0 0

( ) ( ) [ ]sin( ) [ ]sin( )lim lim
x x

y n x y n n x n x n n
x xΔ →+ Δ →+

+ Δ − + Δ π + πΔ − π
= = =

Δ Δ
 

0 0

[ ]( 1) sin( ) [ ]lim ( 1) lim ( 1) [ 0] ( 1)
n

n n n

x x

n x x n x x n n
x xΔ →+ Δ →+

+ Δ − πΔ + Δ πΔ
= = − = − π + = − π

Δ Δ
, 

( )y n−′ =
0

[ ]( 1) sin( )lim ( 1) [ 0] ( 1) ( 1)
n

n n

x

n x x n n
xΔ →−

+ Δ − πΔ
= − π − = − π −

Δ
. 
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Оскільки права та ліва похідні в кожній із розглянутих точок набувають різних 
значень, то в цих точках функція не є диференційовною. 
 Нехай тепер x n n≠ ∀ ∈] , тоді [ ]x const=  на кожному із інтервалів 

( ; 1),k k k+ ∈] , тому 

( )( ) ( ) ( ) [ ] sin [ ] cosy x y x y x x x x x+ −
′′ ′ ′= = = π = π π , 

і функція в цих точках диференційовна.   ■ 

 б) Область визначення функції 
2

1 xy e−= − : 
2

1 0xe x−− ≥ ⇔ ∈\ . 

Формально обчислимо похідну за правилами диференціювання: 

( ) ( )
2 2

2 2

2 2 2

1 21 1
2 1 2 1 1

x x
x x

x x x

xe xey e e
e e e

− −
− −

− − −

′ ′′ = − = − = =
− − −

. 

Отримана похідна не визначена в точках, де 
2

1 0xe−− = , тобто в точці 0x = . У 

цій точці знайдемо односторонні похідні за означенням: 

(0)y±′ =
2

2

2( )

( ) 20 0 0

( )0( ) (0) 1lim lim lim 1
1 ( )

x

xx x x

xxy x y e
e xx x x

− Δ

− ΔΔ →± Δ →± Δ →±

ΔΔ →± ⇒Δ − −
= = = = ±

− ΔΔ Δ Δ∼
. 

Вони не співпадають, тому в точці 0x =  функція не є диференційовною. У всіх 

інших точках функція диференційовна і значення  односторонніх похідних 
співпадають із значенням похідної, тобто  

( ) ( )y x y x+ −′ ′= =
2

2
( ) ( 0)

1

x

x

xey x x
e

−

−
′ = ≠

−
.    ■ 

 в) Для функції ln | | ( 0)y x x= ≠  окремо розглянемо точки, де вираз під 

модулем дорівнює 0, тобто ln | | 0 1x x= ⇔ = ± . Отримаємо 

0 0

0
ln |1 |(1 ) (1)(1) lim lim 1 0

|1 | 1
x x

x
xy x yy x

x x
x x

± Δ →± Δ →±

Δ → ⇒
+Δ+ Δ −′ == = = + Δ > ⇒ =

Δ Δ
+ Δ = + Δ
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0 0

0
ln(1 ) ln(1 )lim 1 1 lim 1,

ln(1 ) 0
x x

x
x xx

x x
x

Δ →± Δ →±

Δ → ± ⇒
+Δ ± + Δ

= = + Δ ⇒ = = ±
Δ Δ

+ Δ
≷

≷ �
 

0 0

0
ln | 1 |( 1 ) (1)( 1) lim lim 1 0

| 1 | 1
x x

x
xy x yy x

x x
x x

± Δ →± Δ →±

Δ → ⇒
− + Δ− + Δ −′ − = = = − + Δ < ⇒ =

Δ Δ
− + Δ = − Δ

 

0 0

0
ln(1 ) ln(1 )lim 1 1 lim 1,

ln(1 ) 0
x x

x
x xx

x x
x

Δ →± Δ →±

Δ → ± ⇒
−Δ −Δ

= = − Δ ⇒ = = ±
Δ Δ

− Δ

∓≶
≶ �

 

односторонні похідні нерівні, як у точці 1x = , так і в 1x = − , тому в точках 

1x = ±  функція не є диференційовною. 

 Розглянемо 1x ≠ ± . В прикладі 3.7 б) було знайдено ( ) 1ln | |x
x

′ =  при 

0x ≠ , тому при 1x ≠ ±  і 0x ≠  одержимо 

( ) ( ) ( )y x y x y x+ −′ ′ ′= = =  

1 , якщо | | 1,
sgn(ln | |)sgn(ln | |) (ln | |)

1 , якщо 0 | | 1.

x
x xx x

x x
x

⎧ >⎪⎪′= ⋅ = = ⎨
⎪− < <
⎪⎩

 

Отримана похідна в усіх точках 1x ≠ ±  і 0x ≠  існує, тому в цих точках функція 

диференційовна. ■ 
Приклад 3.12. Обчислити  

а) ( )
3
2 2sin sin

ln cos
x

x
d e x

⎛ ⎞
⎜ ⎟⋅
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟+⎜ ⎟
⎜ ⎟
⎝ ⎠

;      б) 2

sin
( )
d x

xd x
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (№Д1096 б); 

в) 
2 2

1d
u v

⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠

 (№Д1093),      г) arctg ud
v

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (№Д1094),  

де ( ), ( )u u x v v x= =  диференційовні функції, x  – незалежна змінна. 
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Розв’язання. а) Диференціал обчислюється за формулою 

( )df x = ( )f x dx′ ⋅  (див. розділ 1, §1, п. 5), тому для функції 

( )
3
2 2sin sin

( ) ln cos
x

x
f x e x

⎛ ⎞
⎜ ⎟⋅
⎜ ⎟
⎝ ⎠= +  отримаємо: 

( )df x =
( )

3
2 2sin sin 3

2
cos2sin sin
cos

x
x x

e x dx
x x

⎛ ⎞
⎜ ⎟⋅
⎜ ⎟
⎝ ⎠

′⎛ ⎞′⎛ ⎞⎛ ⎞⎜ ⎟⋅ ⋅ + =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎝ ⎠
⎝ ⎠

 

3
2 2sin sin 3 1 3

2 2 2
2

2 3 2 2 2cos sin sin cos
2

x
x

e x x x tgx dx
x x x x

⎛ ⎞
⎜ ⎟⋅
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ − − =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎜ ⎟

⎝ ⎠

 

3
2 2sin sin 3

2 2 3 2 2 2cos sin sin cos
2

x
x

e x x tgx dx
x x xx

⎛ ⎞
⎜ ⎟⋅
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎛ ⎞ ⎛ ⎞⎜ ⎟= ⋅ ⋅ ⋅ ⋅ − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎜ ⎟

⎝ ⎠

.   ■ 

 б) 2

sin
( )
d x

xd x
⎛ ⎞
⎜ ⎟
⎝ ⎠

2

2 3

sin cos sin
cos sin

2( ) 2

x x x xdx dx x x xx x
xdxx dx x

′⎛ ⎞ −
⎜ ⎟ −⎝ ⎠= = =

′
.    ■ 

 в) ( ) ( ) ( )
1 3

2 2 2 2 2 22 2
2 2

1 1
2

d d u v u v d u v
u v

− −⎛ ⎞
= + = − + + =⎜ ⎟⎜ ⎟+⎝ ⎠

 

( ) ( ) ( )
2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2

2 2

du dv udu vdv udu vdv

u v u v u v u v u v u v

+ + +
= − = − = −

+ + + + + +
.   ■ 

 г) ud arctg
v

⎛ ⎞
⎜ ⎟
⎝ ⎠

=
2

2 2 2 2 2 2

1

1

u v vdu udv vdu udvd
v u v v u vu

v

− −⎛ ⎞ = ⋅ =⎜ ⎟ + +⎝ ⎠⎛ ⎞+ ⎜ ⎟
⎝ ⎠

.   ■ 

Приклад 3.13. Замінюючи приріст функції диференціалом, знайти 
наближено такі значення: 

а) 3 1,02  (№Д1099);  б) 7 100  (№Д1105 в);  

в) sin 29o  (№Д1100);  г) arctg1,05  (№Д1102). 
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 Розв’язання. а) Знайдемо наближене значення 3 1,02 . Оскільки 

0 0( ) ( )f x df xΔ ≈  (див. розділ 1, §1, п. 6), то для функції 3( )f x x=  оберемо 

0 1x = ,  0,02xΔ = , тоді 

( )
0 0 23

0

1 1( ) ( ) ;
3

0,02(1) 0,0067,
(1,03) 1 0,0067 1,0067.3

(1) (1,03) (1), (1) 1,

f x df x x
x

f
f

f f f f

Δ ≈ = ⋅ ⋅Δ

⎫Δ ≈ = ⎪⇒ ≈ + =⎬
⎪Δ = − = ⎭

 

Отже, 3 1,02 1,0067≈ . Зауважимо, що полегшити обчислення можна було б, 

застосовуючи для таких обчислень формули, отримані в теоретичній частині.  ■ 

б) Наближено обчислимо 7 100 . Оскільки 

7 7 7 7
28 7100 128 28 2 1 2 1

128 32
= − = ⋅ − = ⋅ − , 

то обираючи 7( )f x x= , 0 1x = ,  7
32

xΔ = − , отримаємо 

( )
0 0 67

0

1 1( ) ( ) ;
7

f x df x x
x

Δ ≈ = ⋅ ⋅Δ  

1(1) 0,03125,
32 71 1 0,03125 0,96875.

7 32(1) 1 (1), (1) 1,
32

f
f

f f f f

⎫Δ ≈ − = − ⎪⎪ ⎛ ⎞⇒ − ≈ − =⎬ ⎜ ⎟⎛ ⎞ ⎝ ⎠⎪Δ = − − =⎜ ⎟ ⎪⎝ ⎠ ⎭

 

Отже, 7 100 2 0,96875 1,9375≈ ⋅ = .   ■ 

в) Для наближеного обчислення sin 29o  зробимо попередні 

перетворення: 

sin 29 sin(30 1 ) sin
6 180

o o o π π⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

. 

Оберемо ( ) sinf x x= , 0 6
x π
= ,  

180
x π

Δ = − , тоді 
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0 0 0( ) ( ) cos ;

3 0,0151,
6 360

, 0,5 0,0151 0,4849.
6 6 180 6 6 180

1 0,5,
6 2

f x df x x x

f

f f f f

f

Δ ≈ = ⋅Δ

⎫π π⎛ ⎞Δ ≈ − ≈ − ⎪⎜ ⎟
⎝ ⎠ ⎪

⎪π π π π π π⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ = − − ⇒ − ≈ − =⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪

⎪π⎛ ⎞ = = ⎪⎜ ⎟
⎝ ⎠ ⎪⎭

 

Отже, sin 29 0, 4849o ≈ .   ■ 

г) Для наближеного обчислення arctg1,05  оберемо ( ) arctgf x x= , 0 1x = ,  

0,05xΔ = , тоді 

( )0 0 2
0

1( ) ( ) ;
1

f x df x x
x

Δ ≈ = ⋅Δ
+

 

( ) ( )

( ) ( ) ( )
( )

0,051 0,025, 1 0,7854,
1,05 0,8104.2 4

1 1,05 1 ,

f f
f

f f f

π ⎫Δ ≈ ≈ = ≈ ⎪⇒ ≈⎬
⎪Δ = − ⎭

 

Отже, arctg1,05 0,8104≈ .   ■ 
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 Приклад 3.14 (№Д1070). Довести, що у астроїди  
2 2 2
3 3 3x y a+ =  довжина 

відрізка дотичної, що обмежена осями координат, є сталою величиною. 
 Розв’язання. В теоретичній частині було обчислено похідну від заданої 
функції (див. приклад 1.8): 

3
yy
x

′ = − . 

Знайдемо рівняння дотичної в точці 0 0( , )M x y  (див. розділ 1, §1, п. 2): 

030 0
0

( )
y

y y x x
x

− = − − . 

Знайдемо координати точок перетину дотичної з осями. Розглянемо перетин з 
віссю ординат: 
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( )2 2 20 3 3 3330 0 0 0 0 0 0 0
0

0 ( ) ( ) ( )
y

x y y x y x y y y x y
x

= ⇒ − = ⇒ = + = ⋅ + . 

Оскільки точка 0 0( , )M x y  належить астроїді, то 32 2 23 3
0 0( ) ( )x y a+ = , тому 

шукана точка має координати ( )3 23
00; y a⋅ . Аналогічно, точка перетину з 

віссю абсцис має координати ( )3 23
0 ;0x a⋅ . Знайдемо відстань між 

знайденими точками 

( ) ( ) ( ) ( )
2 2 2 23 3 3 3 32 2 2 2 23 3 3 3

0 0 0 0d x a y a a x y a a a= ⋅ + ⋅ = ⋅ + = ⋅ = . 

Знайдена відстань є сталою величиною, що й треба було довести. ■ 
 Приклад 3.15 (№Д1062). Визначити кут, під яким перетинаються криві 

siny x=  і cosy x= . 

 Розв’язання. Знайдемо точки перетину кривих: 

,
sin , cos sin , , , 4

4
cos . cos . 2cos . ( 1) ,

2
n

x n
y x x x x n n

n
y x y x y x y

π⎧ = + ππ⎧ ⎪= = = + π ∈⎧ ⎧ ⎪ ⎪⇔ ⇔ ⇔ ∈⎨ ⎨ ⎨ ⎨= =⎩ ⎩ ⎪ ⎪= = −⎩ ⎪⎩

]
] . 

Кут ϕ  між прямими 1 1 2 2iy k x b y k x b= + = +  визначається з формули [21, 

c. 53] 

1 2

1 21
k k

tg
k k
−

ϕ =
+

. 

Дотичні до графіків заданих функцій в точках 
4

nπ
+ π  мають кутові коефіцієнти 

відповідно 

1
4 4

(sin ) (cos ) cos
4x n x n

k x x nπ π
= +π = +π

π⎛ ⎞′= = = + π =⎜ ⎟
⎝ ⎠

2( 1)
2

n− ; 

2
4 4

(cos ) ( sin ) sin
4x n x n

k x x nπ π
= +π = +π

π⎛ ⎞′= = − = − + π =⎜ ⎟
⎝ ⎠

1 2( 1)
2

n+− , 
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тому ( )
1

1 2

1 2 1

2 2( 1) ( 1) 22 2 2 2 2 2
11 2 2 11 ( 1) ( 1) 22 2

n n

n n

k k
tg arctg

k k

+

+

− − −−
ϕ = = = = ⇒ ϕ =

+ −+ − −
. ■ 

 Приклад 3.16 (№Д1072). За якої умови кубічна парабола  
3y x px q= + +  

дотикається вісі Ox ? 

 Розв’язання. Точки перетину кубічної параболи з віссю абсцис 
задовольняють рівняння: 

3 0x px q+ + = . 

В точках, в яких задана лінія дотикається до вісі Ox , похідна y′  дорівнює 

нулю, тобто: 
23 0x p+ = . 

Отже,  
3

3 2
3

2

420, ,0,0, 273 3
3 0. . ..3 33

pp px px q qqx px q
px p px p xx

⎧ ⎧⎧ + + = − =± − + =⎪ ⎪⎧ + + =⎪ ⎪ ⎪ ⎪⇔ ⇔ ⇔⎨ ⎨ ⎨ ⎨
+ = = ± −⎪ ⎪ ⎪ ⎪⎩ = ± −= ± −⎩ ⎪ ⎪⎩⎩

 

Таким чином, коефіцієнти кубічної параболи повинні задовольняти вимогу:  
3 2

0
3 2
p q⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
.   ■ 

 Приклад 3.17. Написати рівняння дотичної та нормалі до кривої  

а) 3( 1) 3y x x= + ⋅ −  у точках ( 1,0), (2,3), (3,0)A B C−  (№Д1055); 

б)  
2

3

2
3

x t t
y t t

⎧ = −⎪
⎨

= −⎪⎩
 у точках 0, 1t t= =  (№Д1077); 

в)  
2 2

1, (6; 6,4)
100 64
x y M+ =  (№Д1081);    г) ln 1, (1;1)xy y M+ =  (№Д1082). 

Розв’язання. а)  Для функції 3( ) ( 1) 3f x x x= + ⋅ − , що задана явно, 

знайдемо похідну: 
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( )
3

23

1 1( ) 3 ( 1)
3 3

f x x x
x

−′ = − + + ⋅ ⋅
−

 при 3x ≠ ,  (3)f ′ = ∞ . 

Рівняння дотичної та нормалі можна побудувати за формулами: 

0 0 0

0 0
0

( ) ( )( );
1( ) ( ).
( )

y f x f x x x

y f x x x
f x

′− = −

− = − −
′

 

Для точки ( 1,0)A −  маємо: 0 1x = − , ( 1) 0f − = , 3( 1) 4f ′ − = , тому рівняння 

дотичної та нормалі до кривої в цій точці мають, відповідно, вигляд: 
3

3 24( 1); ( 1).
2

y x y x= + = − +  

Для точки (2,3)B  маємо: 1 2x = , (2) 3f = , (2) 0f ′ = , тому дотична з 

рівнянням 3 0y − =  паралельна вісі абсцис, а нормаль – вісі ординат – 

2 0x − = .  

Для точки (3,0)C  маємо: 2 3x = , (3) 0f = , (3)f ′ = ∞ , тому дотична 

перпендикулярна вісі абсцис і має рівняння 3 0x − = , а нормаль 0y =  

паралельна цій вісі.    ■ 

б) Для функції 
2

3

2
3

x t t
y t t

⎧ = −⎪
⎨

= −⎪⎩
, що задана параметрично, похідна 

обчислюється за формулою t
x

t

y
y

x
′

′ =
′

 (див. розділ 1, §1, п. 12), тому маємо 

( )
( )

3 2

2

3 3 3 3 (1 )
2 2 22

x

t t ty t
tt t

′− −′ = = = +
−′−

. 

Значенню параметра 0t =  відповідає точка 0 00, 0x y= =  на декартовій 

площині й похідна 3
2xy′ = , а рівняння дотичної та нормалі набувають 

відповідно вигляду: 

3 2; .
2 3

y x y x= = −  
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Для параметра 1t =  маємо: 1 11, 2x y= = , 3xy′ = , тому рівняння дотичної та 

нормалі набувають відповідно вигляду: 

2 3( 1)y x− = − ,   12 ( 1)
3

y x− = − − , 

тобто 
3 1 0x y− − = ,   3 7 0x y+ − = .  ■ 

 в) За правилом диференціювання неявних функцій (див. розділ 1, §1, 

п. 13) обчислюємо похідну від обох частин заданого рівняння 
2 2

1
100 64
x y

+ = , 

вважаючи, що y  – це функція, що залежить від x  (тобто ( )y y x= ), а x  – 

незалежна змінна: 

2 2 160
100 64 25

x y y xy
y

′⋅ ′+ = ⇒ = − . 

Точка (6; 6, 4)M  задовольняє рівняння заданого еліпса, тому 0 06; 6, 4x y= = . 

Похідна в цій точці дорівнює 3
5

y′ = − . Отже, рівняння дотичної та нормалі в 

цій точці – 

3 56, 4 ( 6); 6,4 ( 6)
5 3

y x y x− = − − − = − , 

тобто 
3 5 50 0; 5 3 10,8 0x y x y+ − = − − = .   ■ 

г) Для функції ln 1xy y+ =  маємо область визначення 0y > , похідну 

2

0
1

y yy xy y
y xy
′

′ ′+ + = ⇒ = −
+

, 

(1;1)M 0 0 0
11; 1; ( )
2

x y y x′⇒ = = = − : 

дотичну в точці М: 11 ( 1) 2 3 0
2

y x x y− = − − ⇒ + − = ; 

нормаль у точці М: 1 2( 1) 2 1 0y x x y− = − ⇒ − − = .   ■ 
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§ 5. Похідні та диференціали вищих порядків 

 

 Приклад 3.18. Знайти другі похідні від функцій: 

а) ( ) ( )5 ln 5y x x= + ⋅ + ;  б) 
2 2

2 2

cos ,
sin

t

t

x e t
y e t

⎧ =⎪
⎨

=⎪⎩
 (№Д1045); 

в) 2 2arctg lny x y
x
= +  (логарифмічна спіраль) (№Д1053);  

г) (1 cos )aρ = + ϕ  (кардіоїда) (№Д1054 б).  

Розв’язання. а) Для явно заданої функції ( ) ( )5 ln 5y x x= + ⋅ +  маємо 

область визначення 5x > − . Знайдемо першу і другу похідні: 

( ) ( )5ln 5 ln 5 1
5

xy x x
x
+′ = + + = + +
+

, 

( )( ) 1ln 5 1
5

y x
x

′
′′ = + + =

+
.    ■ 

 б) Для функції 
2 2

2 2

cos ,
sin ,

t

t

x e t
y e t

⎧ =⎪
⎨

=⎪⎩
 що задана параметрично, похідна 

обчислюється за формулою t
x

t

y
y

x
′

′ =
′

, тому маємо: 

( )
( )

2 2 2 2

2 2 2 2

( ) 2 cos 2cos sin 2cos cos sin ;

( ) 2 sin 2sin cos 2sin sin cos ;

t t t
t

t t t
t

x t e t e t t t e t t

y t e t e t t t e t t

′ = − = ⋅ −

′ = + = ⋅ +
 

( )
( )

2

2

tg tg2sin sin cos tg 1 4tg tg tg
1 tg 42cos cos sin 1 tg tg

4

t
t

x t
t

tt e t ty ty t tg t t t
x tt e t t t

π
+⋅ +′ + π⎛ ⎞′ = = = ⋅ = ⋅ = ⋅ + ⋅⎜ ⎟π′ −⋅ − ⎝ ⎠− ⋅

 

Похідна є визначеною при / 4 , , ,t n n t k k≠ π + π ∈ ≠ π ∈] ] . Другу похідну 

знаходимо за формулою 
( )x t

xx
t

y
y

x

′′
′′ =

′
 (див. розділ 1, §1, п. 12): 
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( ) ( )

2
2

2 2

tg
tg4

costg tg cos4 4
2cos cos sin 2cos cos sin

t
xx t t

t
t

tt t t
y

t e t t t e t t

π

π π

⎛ ⎞+⎜ ⎟
⎝ ⎠ +′⎛ ⎞⎛ ⎞ ⎛ ⎞⋅ + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠′′ = = =

⋅ − ⋅ −
 

( )3 2 2

cos sin cos sin
4 4

2cos cos cos sin
4

t

t t t t

t t e t t

⎛ ⎞ ⎛ ⎞+ + + ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= =

⎛ ⎞⋅ + ⋅ −⎜ ⎟
⎝ ⎠

π π

π ( )3 2 2

cos 2 sin 2 .
4cos cos cos sin

4
t

t t

t t e t t

+
⎛ ⎞⋅ + ⋅ −⎜ ⎟
⎝ ⎠

π
   ■ 

в) Для обчислення похідної від функції 2 2arctg lny x y
x
= + , що задана 

неявно, обчислимо спочатку похідну за змінною x  від наведених нижче 

виразів, вважаючи, що ( )y y x= : 

2 2
x

y y x x y y x y
x x x

′ ′ ′ ′− −⎛ ⎞ = =⎜ ⎟
⎝ ⎠

; 

( ) ( ) ( )2 2 2 2

2 2 2 2 2 2

1 1 2 2 .
2 2xx

x yyx y x y x yy
x y x y x y

′ ′+′ ′+ = + = + =
+ + +

 

Тепер продиференціюємо задану рівність 2 2arctg lny x y
x
= + : 

( )2 2
2 2 2

1 1

1
xx

y x y
xy x y

x

′ ′⎛ ⎞ = +⎜ ⎟
⎝ ⎠ +⎛ ⎞+ ⎜ ⎟

⎝ ⎠

 

і підставимо знайдені похідні 

2 2 2 2 2 2

1 1

1

y x y x yy
xy x y x y

x

′ ′− +
⋅ = ⋅

+ +⎛ ⎞+ ⎜ ⎟
⎝ ⎠

. 

Після перетворень отримаємо 
;

.

y x y x yy
x yy
x y

′ ′− = +
+′ =
−

 

Обчислимо другу похідну як похідну від першої, пам’ятаючи, що ( )y y x= : 
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2 2

(1 )( ) (1 )( ) 2 2
( ) ( )

y x y y x y xy yy
x y x y

′ ′ ′+ − − − + −′′ = =
− −

. 

Підставимо в отриманий вираз для другої похідної замість y′  знайдене вище 

значення x yy
x y
+′ =
−

, отримаємо 

( )2 2

2 3

2 2 2

( ) ( )

x yx y x yx yy
x y x y

+
− +−′′ = =

− −
.   ■ 

 г) Розглянемо функцію (1 cos )aρ = + ϕ  в 

полярній системі координат. Графік 
зображено на рис. 3.5 при 1a = . Знаючи, що  

( ) cos ,
[ ; )

( )sin ,
x
y
= ρ ϕ ϕ⎧

ϕ∈ −π π⎨ = ρ ϕ ϕ⎩
, 

 
Рис. 3.5. 

отримаємо за формулою похідної від функції, що задана параметрично:  

sin cos
cos sinx

y
y

x
ϕ

ϕ

′ ′ρ ϕ+ρ ϕ′ = =
′ ′ρ ϕ−ρ ϕ

. 

Застосовуючи знайдену формулу, обчислюємо: 

(1 cos ) sina a′ ′ρ = + ϕ = − ϕ ; 

sin sin (1 cos )cos cos cos 2
sin cos (1 cos )sin sin sin 2x

a ay
a a

− ϕ ϕ+ + ϕ ϕ ϕ+ ϕ′ = = − =
− ϕ ϕ− + ϕ ϕ ϕ+ ϕ

 

32cos cos 32 2 ctg
3 22sin cos
2 2

ϕ ϕ
ϕ

= − = −
ϕ ϕ

,  2; ; 0
3
π⎧ ⎫ϕ∉ −π ±⎨ ⎬

⎩ ⎭
.  

 Знайдемо тепер другу похідну при 2; ; 0
3
π⎧ ⎫ϕ∉ −π ±⎨ ⎬

⎩ ⎭
. Для цього спочатку 

знайдемо першу похідну, яка є функцією, заданою параметрично (від 
параметра ϕ ):  
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cos (1 cos )cos ,
3ctg .
2x

x a

y

= ρ ϕ = + ϕ ϕ⎧⎪ ϕ⎨ ′ =⎪⎩
 

Похідна від неї і буде дорівнювати другій похідній від цієї функції, а саме: 

( )x
xx

y
y

x
ϕ

ϕ

′′
′′ =

′

2

2

1 3
3 2sin 32

3 3sin cos (1 cos )sin 2 sin 2sin cos
2 2 2

a a a

− ⋅
ϕ

= = =
ϕ ϕ ϕ− ϕ ϕ− + ϕ ϕ

 

3

3
34 sin cos
2 2

a
=

ϕ ϕ
.  ■ 

 Приклад 3.19. Знайти 2d y , якщо 

а)  uy
v

= (№Д1135),  б) 2 2lny u v= +  (№Д1138), 

де ( ), ( )u u x v v x= =  двічі диференційовні функції, x  – незалежна змінна. 

 Розв’язання. а) uy
v

=  ⇒ 2 ;vdu udvdy
v
−

=  

( )
2 2

2
22

2 2 2

4

( ) ( ) ( )

( ) 2 ( )

v d vdu udv d v vdu udvd y
v

v dvdu vd u dudv ud v vdv vdu udv
v

⋅ − − ⋅ −
= =

⋅ + − − − ⋅ −
= =

 

2 2

3

( ) 2 ( ) ( 0).v vd u ud v dv vdu udv v
v

⋅ − − ⋅ −
= ≠    ■ 

 б) ( )2 2 2 21ln ln
2

y u v u v= + = +  ⇒  
( )

2 2

2 22 2

( )
2
d u v udu vdvdy

u vu v
+ +

= =
++

; 

( ) ( )
( )

2 2 2 2
2

22 2

( ) ( )u v d udu vdv d u v udu vdv
d y

u v

+ + − + +
= =

+
 

( )
( )

2 2 2 2

22 2

( ) (2 2 )( )u v dudu ud u dvdv vd v udu vdv udu vdv

u v

+ + + + − + +
= =

+
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( ) ( ) ( )
( )

2 2 2 2 2 2 2 2 2 2

22 2

( ) 4 ( ) ( )v u du uvdudv u v dv u v ud u vd v

u v

− − + − + + +
=

+
 

2 2( 0)u v+ ≠ . ■ 

 Приклад 3.20. Знайти (50)y , якщо 2 sin 2y x x=  (№Д1165). 

 Розв’язання. Для знаходження цієї похідної застосуємо формулу 

Лейбніца. Нехай 2u x= , sin 2v x=  (за u  обрано многочлен!). Оскільки 

2 ,u x′ =   2,u′′ =   0u′′′ = , 

то формула Лейбніца буде містити лише 3 доданки, а саме:  
50

(50) ( ) (50 ) 0 (50) 1 (49) 2 (48)
50 50 50 50

0
( ) 0k k k

k
uv C u v C uv C u v C u v−

=

′ ′′= = + ⋅ + +∑ . 

Обчислимо 50, 49 і 48 похідні від функції v , застосовуючи формулу із таблиці 

похідних вищих порядків ( )(sin ) sin
2

n nx x π⎛ ⎞= +⎜ ⎟
⎝ ⎠

: 

(50) 50 50502 sin 2 2 sin 2 ;
2

v x xπ⎛ ⎞= + = −⎜ ⎟
⎝ ⎠

 

(49) 49 49492 sin 2 2 cos 2
2

v x xπ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

; 

(48) 48 48482 sin 2 2 sin 2
2

v x xπ⎛ ⎞= + =⎜ ⎟
⎝ ⎠

. 

Отримані результати зведемо в таблицю 3.1. 

 

Таблиця 3.1. 

k  n k−  k
nC  ( )ku  ( )n kv −  

0 50 0
50 1C =  2u x=  (50) 502 sin 2v x= −  

1 49 1
50 50C =  2u x′ =  (49) 492 cos 2v x=  

2 48 2
50

50 49 25 49
2

C ⋅
= = ⋅  2u′′ =  (48) 482 sin 2v x=  

 

Підставимо їх у формулу Лейбніца: 
(50) 0 (50) 1 (49) 2 (48)

50 50 50( )uv C uv C u v C u v′ ′′= + ⋅ + =  
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2 501 ( 2 sin 2 )x x= ⋅ ⋅ − + 4950 2 2 cos 2x x⋅ ⋅ 4825 49 2 2 sin 2x+ ⋅ ⋅ ⋅ ; 

(50)( )uv = (50 22 sin 2x x⋅ − + 50 cos 2x x 1225 sin 2
2

x ⎞+ ⎟
⎠

. ■ 

 Приклад 3.21. Знайти ( )ny , якщо   

а) ax by
cx d

+
=

+
 (№Д1188);  б) 

10

2 2
xy

x x
=

+ −
 для 10n > ; 

в) 1
1 2

y
x

=
−

 (№Д1191);  г) 3siny x=  (№Д1195); 

д) ln a bxy
a bx
−

=
+

 (№Д1208);  е) 1ln
1

xy x
x

−
=

+
; 

є) довести формулу ( )
1

1ln ! ln
n n

n
n

k

d x x n x
kdx =

⎛ ⎞
= ⋅ +⎜ ⎟

⎝ ⎠
∑  (№Д1232.1). 

 Розв’язання. а) Спочатку виділимо цілу частину: 

( ) ( ) 1
a ad a adcx d b cx d bax b a adc c c cy b

cx d cx d cx d cx d c c cx d

+ − + + − ++ ⎛ ⎞= = = + = + − ⋅⎜ ⎟+ + + + +⎝ ⎠
. 

Застосуємо формулу з таблиці похідних вищих порядків 
( )

1

1 ( 1) !n n

n

n
x x +

−⎛ ⎞ =⎜ ⎟
⎝ ⎠

 для 

обчислення відповідної похідної від останнього дробу. Будемо мати: 
( )

1

1 ( 1) !
( )

n n
n

n

n c
cx d cx d +

−⎛ ⎞ = ⋅⎜ ⎟+ +⎝ ⎠
, звідки  

1
( )

1 1

( 1) ! ( 1) ! ( )
( ) ( )

n n n
n n

n n

ad n n c bc ady b c
c cx d cx d

−

+ +

− − −⎛ ⎞= − ⋅ ⋅ =⎜ ⎟ + +⎝ ⎠
.  ■ 

 б) Здійснимо перетворення раціонального дробу:  
10 10 10 10

10
2

1 1 1 1
( 1)( 2) 3 1 2 3 1 22

x x x xy x
x x x x x xx x

⎛ ⎞⎛ ⎞= = ⋅ = ⋅ − = ⋅ −⎜ ⎟⎜ ⎟− + − + − ++ − ⎝ ⎠ ⎝ ⎠
 

Результатом ділення многочлена 10( )Q x x=  на двочлен ( )x a−  буде многочлен 
9-го степеня з коефіцієнтом 1 при старшому степені, а залишком ділення 
(згідно з теоремою Безу [22, c. 217]) – значення многочлена ( )Q x  в точці a , 
тобто ( )Q a . Отже, матимемо: 

10 10
9 8

8 1 0
1...

1 1
x x a x a x a

x x
= + + + + +

− −
, 
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10 10
9 8

8 1 0
( 2)...

2 2
x x b x b x b

x x
−

= + + + + +
+ +

. 

Таким чином, 
10 10

8
1 1 ( 2)( )
3 1 2

y P x
x x

⎛ ⎞−
= + ⋅ − =⎜ ⎟− +⎝ ⎠

8
1 1024( )

3( 1) 3( 2)
P x

x x
+ −

− +
, 

де 8 ( )P x −  многочлен 8-ого степеня. 
 Оскільки обчислюється похідна більше, ніж 8-го порядку, то вона буде 
нульовою для многочлена 8-го степеня, тому шукана похідна відповідно до 
формули  

( )

1

1 ( 1) !n n

n

n
x x +

−⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

набуде вигляду 

( )
1 1 1 1

( 1) ! 1024 ( 1) ! 1 1024( 1) !
3( 1) 3( 2) 3( 1) 3( 2)

n n
n n

n n n n

n ny n
x x x x+ + + +

⎛ ⎞− ⋅ −
= − = − ⋅ −⎜ ⎟− + − +⎝ ⎠

. ■ 

 в) Область визначення функції 1
1 2

y
x

=
−

: 1/ 2x < . Застосуємо 

формулу  

( )( )
( 1) ... ( 1)

n nx n xα α−= α ⋅ α − ⋅ ⋅ α − + ⋅  

для 1
2

α = − , тоді  

1
( ) 21 1 1 11 2 ... 1 (1 2 ) ( 2)

2 2 2 2
nn ny n x

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − ⋅ − − ⋅ − − ⋅ ⋅ − − + ⋅ − ⋅ − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

( 1) ( 2) 1 3 5 ... (2 1) (2 1)!!
2 (1 2 ) 1 2 (1 2 ) 1 2

n n

n n n

n n
x x x x

− ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ − −
= =

⋅ − ⋅ − − ⋅ −
 ( 1/ 2)x < 1.  ■ 

 г) Спочатку застосуємо формулу, що знижує степінь синуса: 

3 3 1sin sin sin 3
4 4

x x x= − . 

Також застосуємо формулу  

                                                 
1 Тут і далі застосовано позначення для подвійних факторіалів:  

(2 1)!! 1 3 5 ... (2 1)
def

n n− = ⋅ ⋅ ⋅ ⋅ − ,   (2 )!! 2 4 6 ... (2 )
def

n n= ⋅ ⋅ ⋅ ⋅ . 
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( )(sin ) sin
2

n n nax a ax π⎛ ⎞= ⋅ +⎜ ⎟
⎝ ⎠

. 

В результаті будемо мати:  

( )
( )

( )( ) 3 3 1sin sin sin 3
4 4

n
nny x x x⎛ ⎞= = − =⎜ ⎟

⎝ ⎠
 

3 1sin 3 sin 3
4 2 4 2

nn nx xπ π⎛ ⎞ ⎛ ⎞= ⋅ + − ⋅ ⋅ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.  ■ 

 д) ОДЗ: 0 ,a bx a ax
a bx b b
− ⎛ ⎞

> ⇔ ∈ −⎜ ⎟+ ⎝ ⎠
. 

 У випадку, коли 0a >  при ,a ax
b b

⎛ ⎞
∈ −⎜ ⎟
⎝ ⎠

 маємо: 

ln ln( ) ln( )a bx a bx a bx
a bx
−

= − − +
+

. 

Оскільки  

( ) 1 ( 1)!(ln ) ( 1)n n
n

nx
x

− −
= − , 

то  

( )( )( ) ln( ) ln( ) nny a bx a bx= − − + =  

1 1( 1)! ( 1)!( 1) ( ) ( 1)
( ) ( )

n n n n
n n

n nb b
a bx a bx

− −− −
= − ⋅ ⋅ − − − ⋅ ⋅ =

− +
 

1 ( 1)( 1)!
( ) ( )

n
n

n nb n
a bx a bx

⎛ ⎞−
= − ⋅ − +⎜ ⎟− +⎝ ⎠

. 

У випадку, коли 0a <  при ,a ax
b b

⎛ ⎞
∈ −⎜ ⎟
⎝ ⎠

 виконується рівність 

ln ln( ) ln( )a bx bx a a bx
a bx
−

= − − − −
+

. 

Тоді 

( )( )( ) ln( ) ln( ) nny bx a a bx= − − − − =  

1 1( 1)! ( 1)!( 1) ( 1) ( )
( ) ( )

n n n n
n n

n nb b
bx a a bx

− −− −
= − ⋅ ⋅ − − ⋅ ⋅ − =

− − −
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1 1( 1)! ( 1)!( 1) ( ) ( 1)
( ) ( )

n n n n
n n

n nb b
a bx a bx

− −− −
= − ⋅ ⋅ − − − ⋅ ⋅ =

− +
 

1 ( 1)( 1)!
( ) ( )

n
n

n nb n
a bx a bx

⎛ ⎞−
= − ⋅ − +⎜ ⎟− +⎝ ⎠

. 

В обох випадках маємо одну й ту ж форму похідної. ■ 

 е) ОДЗ: ( )1 0 1,1
1

x x
x

−
> ⇔ ∈ −

+
. 

 В межах інтервалу ( )1,1−  має місце співвідношення: 

( )1ln ln(1 ) ln(1 )
1

xx x x x
x

−
= − − +

+
. 

Знайдемо спочатку першу похідну: 

( )( )ln(1 ) ln(1 ) ln(1 ) ln(1 )
1 1

x xy x x x x x
x x

−′′ = − − + = − − + + − =
− +

 

1 1 1 1 1 1ln(1 ) ln(1 ) ln(1 ) ln(1 ) 1 1
1 1 1 1

x xx x x x
x x x x

− − + −
= − − + + − = − − + + − − + =

− + − +
1 1ln(1 ) ln(1 )

1 1
x x

x x
= − − + − +

− +
. 

Похідна порядку n  від заданої функції дорівнює похідній порядку 1n −  від y′ , 

тому зважаючи на формули  

( ) 1 ( 1)!(ln ) ( 1)n n
n

nx
x

− −
= − ,   

( )

1

1 ( 1) !n n

n

n
x x +

−⎛ ⎞ =⎜ ⎟
⎝ ⎠

, 

отримаємо: 
( 1)

( ) 1 1ln(1 ) ln(1 )
1 1

n
ny x x

x x

−
⎛ ⎞= − − + − + =⎜ ⎟− +⎝ ⎠

 

1
2 1 2

1 1

( 2)! ( 2)! ( 1) ( 1)!( 1) ( 1) ( 1) ( 1)
(1 ) (1 ) (1 )

n
n n n n

n n n

n n n
x x x

−
− − −

− −

− − − −
= − ⋅ ⋅ − − − ⋅ − ⋅ − +

− + −
 

1 1( 1) ( 1)! 2 ( 1) ( )( 2)!
(1 ) (1 ) (1 )

n n

n n n

n x n x nn
x x x

− −⎛ ⎞− − + − − ⋅ +
+ = − ⋅ +⎜ ⎟+ − +⎝ ⎠

.  ■ 

 є) Формулу ( )
1

1ln ! ln
n n

n
n

k

d x x n x
kdx =

⎛ ⎞
= ⋅ +⎜ ⎟

⎝ ⎠
∑  доведемо за індукцією.  
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 Нехай 1n = . Оскільки  

( ln ) ln 1d x x x
dx

= + ,   
1

1

11! ln ln 1
k

x x
k=

⎛ ⎞
⋅ + = +⎜ ⎟
⎝ ⎠

∑ , 

то формула є вірною при 1n = . 
 Припускаючи справедливість формули  

( )
1

1ln ! ln
n n

n
n

k

d x x n x
kdx =

⎛ ⎞
= ⋅ +⎜ ⎟

⎝ ⎠
∑ , 

доведемо формулу 

( )
1 1

1
1

1

1ln ( 1)! ln
n n

n
n

k

d x x n x
kdx

+ +
+

+
=

⎛ ⎞
= + ⋅ +⎜ ⎟

⎝ ⎠
∑  

 У формулі Лейбніца оберемо , lnnu x v x x= = . Складові доданків 

формули Лейбніца зведемо в таблицю 3.2. 
 

Таблиця 3.2. 

k  1n k+ −  1
k
nC +  ( )ku  ( 1 )n kv + −  

0 1n +  0
1 1nC + =  u x=  ( ) ( )

1
( 1)

1 ln ln
n n

n n n
n n

d d dv x x x x
dxdx dx

+
+

+

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 

1 n  1
1 1nC n+ = +  1u′ =  ( )( ) ln

n
n n

n

dv x x
dx

=  

Звідси отримаємо: 

( ) ( ) ( )
1

1
1 ln 1 ln ( 1) 1 ln

n n n
n n n

n n n
d d d dx x x x x n x x

dxdx dx dx

+
+

+

⎛ ⎞
= ⋅ ⋅ + + ⋅ ⋅⎜ ⎟

⎝ ⎠
. 

Тепер застосуємо припущення індукції і правила диференціювання: 

( )
1

1
1

1 1

1 1ln ! ln ( 1) ! ln
n n n

n
n

k k

d dx x x n x n n x
dx k kdx

+
+

+
= =

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⋅ ⋅ + + + ⋅ ⋅ + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑  

1 1

1 1 1 1! ( 1)! ln ( 1)! ln ( 1)! ( 1)!
1

n n

k k
n x n x n x n n

x k k n= =

⎛ ⎞
= ⋅ ⋅ + + ⋅ + = + ⋅ + + ⋅ + + ⋅ =⎜ ⎟ +⎝ ⎠

∑ ∑  

1 1

1 1

1 1( 1)! ln ( 1)! ( 1)! ln
n n

k k
n x n n x

k k

+ +

= =

⎛ ⎞
= + ⋅ + + ⋅ = + ⋅ +⎜ ⎟

⎝ ⎠
∑ ∑ .  ■ 
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§ 6. Теореми Ролля, Лагранжа, Коші 
 

Приклад 3.22 (№Д1235). Перевірити справедливість теореми Ролля для 

функції ( ) ( 1)( 2)( 3)f x x x x= − − − . 

Розв’язання. Ця функція є неперервною і диференційовною на \  як 
добуток неперервних і диференційовних на \  функцій. Зокрема, вона 

неперервна на відрізках [1;2]  і [2;3]  і диференційовна на інтервалах (1;2)  і 

(2;3) . Крім того, на кінцях зазначених відрізків набуває рівних значень: 

(1) (2) 0f f= =  і (2) (3) 0f f= = . Всі умови теореми Ролля виконуються, тому 

дана функція всередині цих відрізків має точки, в яких її похідна дорівнює 
нулю: 

(1;2) : ( ) 0f ′∃α∈ α =  і (2;3) : ( ) 0f ′∃β∈ β = . 

Безпосередньо знайдемо такі точки: 
2( ) ( 2)( 3) ( 1)( 3) ( 1)( 2) 3 12 11f x x x x x x x x x′ = − − + − − + − − = − + ; 

2( ) 0 3 12 11 0f x x x′ = ⇔ − + = ; 

3 32 (1;2); 2 (2;3)
3 3

α = − ∈ β = + ∈ .   ■ 

Приклад 3.23 (№Д1236). Функція 3 2( ) 1f x x= −  має нуль у точках 

1 1x = −  і 2 1x = , але тим не менше ( ) 0f x′ ≠  при 1 1x− ≤ ≤ . Пояснити уявну 

суперечність з теоремою Ролля. 
Розв’язання. Для того, щоб виконувались висновки теореми, потрібно, 

щоб виконувались усі, без винятку, її припущення. Перевіримо, чи є вірним 
припущення про диференційовність функції на інтервалі (–1;1), зокрема, 

диференційовність у точці  0 0x =  цього інтервалу: 

( )23

30 0 0

1 1( ) (0) 1lim lim lim
x x x

xf x f
x x xΔ → Δ → Δ →

− Δ −Δ −
= = = ∞

Δ Δ Δ
. 

Оскільки границя різницевого відношення в точці  0 0x =   нескінченна, то дана 

функція не є диференційовною в цій точці. 
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Отже, припущення про диференційовність функції на інтервалі (-1;1) не 
виконується, тому теорему Ролля при 1 1x− ≤ ≤  застосовувати не можна, і 

жодної суперечності з цією теоремою не існує!   ■ 
Приклад 3.24 (№Д1238). Нехай  

1) функція ( )f x  визначена і має неперервну похідну ( 1)n − -го порядку 
( 1) ( )nf x−  на сегменті 0[ ; ]nx x ;  

2) функція ( )f x  має похідну n -го порядку ( ) ( )nf x  на інтервалі 0( ; )nx x ; 

3) виконується рівність 

0 1 0 1( ) ( ) ... ( ) ( ... )n nf x f x f x x x x= = = < < < . 

Довести, що в інтервалі 0( ; )nx x  існує, як мінімум, одна точка ξ  така, що 
( ) ( ) 0nf ξ = . 

Доведення. За умовою для кожного 1, 2,...,i n=  функція ( )f x  

1) неперервна на кожному із відрізків 1[ ; ]i ix x− ,  

2) диференційовна на кожному інтервалі 1( ; )i ix x− ,  

3) на кінцях відрізків набуває рівних значень 1( ) ( )i if x f x− = , 

тому за теоремою Ролля  

1, 1 1 1, 11, 2,..., ( ; ) : ( ) 0i i i ii n c x x f c− − −′∀ = ∃ ∈ = . 

Функція ( )f x′  1 1,2,..., 1i n∀ = −  

1) неперервна на 
1 11, 1 1,[ ; ]i ic c− , 

2) диференційовна на 
1 11, 1 1,( ; )i ic c− , 

3) 
1 11, 1 1,( ) ( ) 0i if c f c−′ ′= = , 

⎫
⎪⎪⇒⎬
⎪
⎪⎭

 
за теоремою Ролля 

1 1 1 12, 1 1, 1 1, 2, 1( ; ) : ( ) 0i i i ic c c f c− − −′′∃ ∈ = . 

Продовжуючи аналогічні міркування, матимемо що функція ( 2) ( )nf x−  

для 2 1, ( 2)ni n n− = − − , тобто для 2 1, 2ni − =  

1) неперервна на 
2 22, 1 2,[ ; ]

n nn i n ic c
− −− − − , 

2) диференційовна на 

2 22, 1 2,( ; )
n nn i n ic c
− −− − − , 

3)
2 2

( 2) ( 1)
2, 1 2,( ) ( )

n n
n n

n i n if c f c
− −

− −
− − −= = 0, 

⎫
⎪
⎪⎪⇒⎬
⎪
⎪
⎪⎭

 

за теоремою Ролля 

2 2 21, 1 2, 1 2,( ; ) :
n n nn i n i n ic c c
− − −− − − − −∃ ∈  

          
2

( 1)
1, 1( ) 0

n
n

n if c
−

−
− − = . 
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Нарешті, функція ( 1) ( )nf x−  за умовою і за доведенням 

1) неперервна на 1,0 1,1[ ; ]n nc c− − , 

2) диференційовна на 1,0 1,1( ; )n nc c− − , 

3) ( 1) ( 1)
1,0 1,1( ) ( ) 0n n

n nf c f c− −
− −= = , 

⎫
⎪⎪⇒⎬
⎪
⎪⎭

 

за теоремою Ролля 

,0 1,0 1,1( ; ) :n n nc c c− −∃ξ = ∈  

          ( ) ( ) 0nf ξ = .  

Оскільки 1,0 1,1( ; )n nc c− − 0( ; )nx x⊂ , то 0( ; )nx xξ∈  і ( ) ( ) 0nf ξ = .   ■ 

Приклад 3.25 (№Д1240). Довести, що у випадку, коли всі корені 
многочлена 

1
0 1 0( ) ... ( 0)n n

n nP x a x a x a a−= + + + ≠  

з дійсними коефіцієнтами ( 0,1,2,..., )ka k n=  дійсні, його послідовні похідні 

( 1)( ), ( ),..., ( )n
n n nP x P x P x−′ ′′  також мають лише дійсні корені. 

Доведення. Многочлен степеня n  має точно n  коренів дійсних і 

комплексних з урахуванням їх кратності. Оскільки припускається, що цей 
многочлен із дійсними коефіцієнтами має тільки дійсні корені, то їх кількість 

дорівнює n . Нехай найменший серед них – 1x , а найбільший – nx . 

Нехай усі корені многочлена попарно відмінні. В прикладі 3.24 
припускалося, що функція має рівні значення в n +1 точці. У даному прикладі 

таких точок n  (корені многочлена). Два перші припущення прикладу 3.24 про 

неперервність похідної ( 2)n − -го порядку ( 1) ( )n
nP x−  на сегменті 1[ ; ]nx x  і 

існування похідної ( 1)n − -го порядку ( 1) ( )n
nP x−  на інтервалі 1( ; )nx x  задана 

функція-многочлен теж задовольняє. Із доведення прикладу 3.24 випливає, що 

похідні цього многочлена до ( 1)n − -го порядку включно 

( 1)( ), ( ),..., ( )n
n n nP x P x P x−′ ′′  мають лише дійсні корені на інтервалі 1( ; )nx x .  

У випадку, коли многочлен має кратний корінь, то цей корінь 
зобов’язаний бути коренем похідної такого многочлена, тобто дійсним.   ■ 

Приклад 3.26 (№Д1241). Довести, що у многочлена Лежандра 

( ){ }21( ) 1
2 !

n n
n n n

dP x x
n dx

= −  
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усі корені дійсні і розташовані в інтервалі ( 1;1)− . 

Доведення. Многочлен ( )2 1
n

x −  має 2n  коренів на [ 1;1]− : 

0 1 ... 1nx x x= = = = −  і 1 2 2... 1n n nx x x+ += = = = . Тому, згідно з прикладом 3.25, 

многочлен Лежандра як похідна порядку n  від многочлена ( )2 1
n

x −  степеня 

2n  має лише дійсні корені. Оскільки корені 1−  і 1 мають кратність n , то вони 

не можуть стати коренями похідної порядку n . Тому всі корені многочлена 

Лежандра лежать в інтервалі ( 1;1)− . ■ 

Приклад 3.27 (№Д1246 а, в, г). Знайти функцію ( , )x xθ = θ Δ  таку, що 

( ) ( ) ( ) (0 1)f x x f x f x x x′+ Δ − = + θΔ ⋅Δ < θ < , 

якщо 

а) 2( ) ( 0)f x ax bx c a= + + ≠ ; б) 1( )f x
x

= ; в) ( ) xf x e= . 

Розв’язання. До функцій а) і в) можна застосовувати формулу Лагранжа 
скінченних приростів в околі будь-якої точки x  із \ . Для функції б) формулу 

можна застосовувати в таких околах точок 0x ≠ , які не містять у собі точки 0. 

а) Розглянемо 2( ) ( 0)f x ax bx c a= + + ≠ : 
2( ) ( 0),f x ax bx c a= + + ≠  

2( ) ( ) ( ) ,f x x a x x b x x c+ Δ = + Δ + + Δ +  

( ) 2 ( ) 2 ( ) (0 1)f x ax b f x x a x x b′ ′= + ⇒ + θΔ = + θΔ + < θ < . 

За формулою Лагранжа скінченних приростів будемо мати: 
2( ) ( )a x x b x x c+ Δ + + Δ + − ( )2ax bx c+ + = ( )2 ( )a x x b x+ θΔ + ⋅Δ , 

22 ( )ax x a x b xΔ + Δ + Δ 22 2 ( )ax x a x b x= Δ + θ Δ + Δ , 

1
2

θ = .   ■ 

б) Для функції 1( )f x
x

=  за формулою Лагранжа скінченних приростів 

отримаємо: 
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2

1 1 1 (0 1),
( )

x
x x x x x

− = − ⋅Δ < θ <
+ Δ + θΔ

 

2 2 0,x x xθ ⋅Δ + θ⋅ − =  

2 2 1 0
4
D xx x x x

x
Δ⎛ ⎞= + ⋅Δ = ⋅ + ≥⎜ ⎟

⎝ ⎠
 при 1 0x

x
Δ

+ ≥ , 

1,2

1
1

xx x x x xx
x x x x

Δ
− ± +

Δ
θ = = − ± +

Δ Δ Δ
,   1 0, 0, 0x x x

x
Δ

+ ≥ ≠ Δ ≠  

тобто 

1 21 , 1x x x x x x
x x x x x x

Δ Δ
θ = − − + θ = − + +

Δ Δ Δ Δ
,  

де 1 0, 0, 0x x x
x
Δ

+ ≥ ≠ Δ ≠ . 

Оскільки 0, 0x x≠ Δ ≠ , то 0x
x
Δ

≠ . Якщо 1x
x
Δ

= − , то 1,2θ =1, що неможливо, 

оскільки 0 1< θ < , тому виникає потреба посилити обмеження: 

1 0, 0, 0 ( ) 0, 0x x x x x x x
x
Δ

+ > ≠ Δ ≠ ⇔ +Δ > Δ ≠ . 

Якщо 0x
x
Δ

> , то  

 1 1 1 0x x
x x
⎛ ⎞Δ

θ = − + + <⎜ ⎟⎜ ⎟Δ ⎝ ⎠
, що не відповідає обмеженню 10 1< θ < ; 

 1 1x x
x x
Δ Δ

+ < + ⇒ 2 1 1 1x x x x
x x x x
⎛ ⎞Δ Δ

θ = + − < ⋅ =⎜ ⎟⎜ ⎟Δ Δ⎝ ⎠
 і 2θ >0. 

Якщо 1 0x
x
Δ

− < < , то  

 1 1 1x x
x x
Δ Δ

> + > + ⇒  1 1 1 1x x x x
x x x x
⎛ ⎞Δ Δ⎛ ⎞θ = − − + ≤ − ⋅ − =⎜ ⎟ ⎜ ⎟⎜ ⎟Δ Δ ⎝ ⎠⎝ ⎠

 і 1θ >0; 

 
N

2

1
1

1 1 1x x
x x

>
>

⎛ ⎞
θ = − + + >⎜ ⎟⎜ ⎟Δ Δ⎝ ⎠���	��


, що не відповідає обмеженню 20 1< θ < . 
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Отже, нерівність 0 1< θ <  задовольняє таке ( , )x xθ = θ Δ , що подане у 

вигляді 1 1x x
x x
⎛ ⎞Δ

θ = + −⎜ ⎟⎜ ⎟Δ ⎝ ⎠
, де ( ) 0, 0x x x x+ Δ > Δ ≠ .■ 

в) Для функції ( ) xf x e=  за формулою Лагранжа скінченних приростів 

отримуємо: 

(0 1)x x x x xe e e x+Δ +θΔ− = ⋅Δ < θ < , 

1x xe e xΔ θΔ− = ⋅Δ , 

1x
xe e

x

Δ
θΔ−

= ⇒
Δ

  1 0 0
xe x
x

Δ −
> ⇒ Δ ≠

Δ
, 

1 1ln
xe

x x

Δ −
θ =

Δ Δ
. 

Перевіримо співвідношення 0 1< θ < . Із  прикладу 1.11 відомо, що 

1xe xΔ > Δ +  при 0xΔ ≠ , тобто  

1ln 0 при 0,
1 1ln 0 0

1ln 0 при 0,

x

x

x

e x
ex x

x xe x
x

Δ

Δ

Δ

⎧ −
> Δ >⎪ −⎪ Δ ⇒ > ∀Δ ≠⎨ Δ Δ−⎪ < Δ <⎪ Δ⎩

. 

Доведемо нерівність 1x xe xeΔ Δ− < Δ . Для цього розглянемо функцію 

( ) 1x xf x e xeΔ ΔΔ = − − Δ , для якої матимемо (достатня умова монотонності 

функції на інтервалі): 

( ) xf x xeΔ′ Δ = −Δ , 

 
( ) (0) при 0,

0 ( ) 0 ( ) при 0
(0) 0,

f x f x
x f x f x x

f
Δ < Δ >⎧′Δ > ⇒ Δ < ⇒ Δ Δ > ⇒ ⇒⎨ =⎩

2

    1 0x xe xeΔ Δ⇒ − −Δ < при 0xΔ > , 

 
( ) (0) при 0,

0 ( ) 0 ( ) при 0
(0) 0,

f x f x
x f x f x x

f
Δ < Δ <⎧′Δ < ⇒ Δ > ⇒ Δ Δ < ⇒ ⇒⎨ =⎩

/

    1 0x xe xeΔ Δ⇒ − −Δ < при 0xΔ < . 

Із доведеної нерівності отримуємо 
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1 при 0, 1 1ln 1 0
1 при 0,

x
x

x

x
x

e e x ex x
e x xe x

x

Δ
Δ

Δ

Δ
Δ

⎧ −
< Δ >⎪ −⎪ Δ ⇒ < ∀Δ ≠⎨ − Δ Δ⎪ > Δ <

⎪ Δ⎩

. 

Отже, 1 1ln (0;1)
xe

x x

Δ −
θ = ∈

Δ Δ
 при 0xΔ ≠ . ■ 

Приклад 3.28 (№Д1253). Нехай функція ( )f x   диференційовна  на 

сегменті 1 2[ ; ]x x , причому 1 2 0x x⋅ > . Довести, що  

1 2

1 21 2

1 ( ) ( )
( ) ( )
x x

f f
f x f xx x

′⋅ = ξ − ξ ξ
−

, 

де 1 2x x< ξ < . 

Доведення. Перетворимо ліву частину рівності: 

2 1

1 2 1 2 2 1 2 1

1 21 2 1 2

2 1

( ) ( )
( ) ( )1

1 1( ) ( )

f x f x
x x x f x x f x x x

f x f xx x x x
x x

−
−

⋅ = =
− − −

. 

Розглянемо дві допоміжні функції ( )( ) f xx
x

ϕ =  і 1( )x
x

ψ = . Вони 

диференційовні, а тому й неперервні (твердження 1.2) на 1 2[ ; ]x x  за умови 

1 2 0x x⋅ > , крім того, ( ) 0x′ψ ≠ ∀ 1 2[ ; ]x x x∈ . Тому до них можна застосувати 

теорему Коші:  

2 1
1 2

2 1

( ) ( ) ( )( ; ) :
( ) ( ) ( )
x x

x x
x x

′ϕ −ϕ ϕ ξ
∃ξ∈ =

′ψ −ψ ψ ξ
. 

Оскільки 2 2
( ) ( ) 1( ) , ( )f f′ξ ξ − ξ −′ ′ϕ ξ = ψ ξ =
ξ ξ

, то  ( ) ( ) ( )
( )

f f
′ϕ ξ ′= ξ − ξ ξ
′ψ ξ

. 

Отже, отримаємо:  

1 2( ; ) :x x∃ξ∈

2 1

1 2 2 1 2 1

1 21 2 2 1

2 1

( ) ( )
( ) ( )1 ( ) ( ) ( )

1 1( ) ( ) ( ) ( ) ( )

f x f x
x x x x x x

f f
f x f xx x x x

x x

−
′ϕ −ϕ ϕ ξ ′⋅ = = = = ξ −ξ ξ
′− ψ −ψ ψ ξ−

, 

що й доводить задану рівність. ■ 
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§ 7 Монотонність функції на інтервалі. Локальний екстремум. 
Найбільше й найменше значення функції на відрізку 

 
Приклад 3.29. Знайти інтервали монотонності та екстремуми даної 

функції, користуючись першою похідною: 
( )2

2

5x
y

x
−

= . 

Розв’язання. Область визначення цієї функції 0x ≠ . Знаходимо 

критичні точки, тобто точки, в яких похідна дорівнює нулю або не існує: 

( )( ) ( ) ( )
( )

( ) ( )
2 22 2 22

2 42

5 5 2 5 2 5x x x x x x x x
y

xx

′ ′
− ⋅ − − ⋅ − − −

′ = = =
( )

3

10 5x
x
−

, 

0y′ = ⇒
0,

5 0,
x

x
≠⎧

⎨ − =⎩
 

0,
5.

x
x
≠⎧

⇒ ⎨ =⎩
 

Визначаємо інтервали монотонності та точки екстремуму функції, 
використовуючи знак першої похідної (достатня умова монотонності функції 
на інтервалі та перша достатня умови локального екстремуму): 

Знаки y′  

Характерні точки 

Напрямки монотонності, loc extr   

Значення функції  в точках loc extr                ∃               0                   

Отже, на інтервалі ( );0−∞  і на ( )5;+∞  функція зростає; 

на інтервалі ( )0;5  функція спадає; 

точка 5x =  є точкою локального мінімуму.   ■ 

Приклад 3.30. Знайти найбільше та найменше значення функції на 
зазначеному відрізку: 

1 cos 2 sin
2

y x x= + , 0;
2
π⎡ ⎤

⎢ ⎥⎣ ⎦
. 

Розв’язання. Будемо діяти згідно зі схемою, наведеною у п. 11 розділу 1, 
§2. Знайдемо критичні точки функції: 

5 
min 

0 
 

++ –
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( ) ( ) ( )1 1cos 2 sin sin 2 2 cos cos sin 2
2 2

y x x x x x x′ ′′ = + = − ⋅ + = − , 

0y′ = , 

cos sin 2 0x x− =  cos 2cos sin 0x x x⇔ − ⋅ =    ( )cos 1 2sin 0x x⇔ ⋅ − = , 

cos 0,
1 2sin 0;

x
x
=⎡

⇔⎢ − =⎣ ( )

, ,
2

1 , .
6

n

x n n

x k k

π⎡ = + π ∈⎢
⎢ π

= − + π ∈⎢
⎣

]

]
 

Інтервалу 0;
2
π⎡ ⎤

⎢ ⎥⎣ ⎦
 належать тільки точки 

6
x π
=  і 

2
x π
= . 

Знаходимо значення функції в критичних точках та на кінцях інтервалу: 

( ) 10
2

y = , 3
6 4

y π⎛ ⎞ =⎜ ⎟
⎝ ⎠

, 1
2 2

y π⎛ ⎞ =⎜ ⎟
⎝ ⎠

. 

Висновок:  ( )
0;

2

1min 0
2 2

y y y
π⎡ ⎤

⎢ ⎥⎣ ⎦

π⎛ ⎞= = =⎜ ⎟
⎝ ⎠

,     
0;

2

3max
6 4

y y
π⎡ ⎤

⎢ ⎥⎣ ⎦

π⎛ ⎞= =⎜ ⎟
⎝ ⎠

. ■ 

Приклад 3.31 (№Д1558). Визначити найбільше значення добутку m -ого 

та n -ого степенів ( 0m > , 0n > ) двох додатних чисел, сума яких дорівнює a . 

Розв’язання. Нехай x  – одне з таких додатних чисел, тоді інше 

дорівнює a x− . Добуток їх m -го та n -го степенів дорівнюватиме ( )m nx a x⋅ − . 

Потрібно знайти найбільше значення функції ( ) ( )m nf x x a x= ⋅ −  при (0; )x a∈ . 

Для дослідження цієї функції знайдемо спочатку похідну: 
1 1 1 1( ) ( ) ( ) ( ) ( )m n n m m nf x mx a x n a x x x a x ma mx nx− − − −′ = ⋅ − − − ⋅ = ⋅ − − − . 

Далі знаходимо критичні точки функції: 

0,
,( ) 0

.

x
x af x

max
m n

=⎡
⎢ =⎢′ = ⇔
⎢

=⎢ +⎣

 

В інтервалі (0, )a  лежить одна критична точка: max
m n

=
+

.  

Нарешті, знайдемо значення функції в критичній точці і граничні 
значення на кінцях інтервалу: 
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0
lim ( ) 0, lim ( ) 0,
x x a

f x f x
→ →

= =  

.
( )

m n m n m n

m n

ma ma ma m n af a
m n m n m n m n

+

+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

Висновок: найбільше значення функції  дорівнює 
( )

m n m n

m n

m n a
m n

+

++
.   ■ 

Приклад 3.32 (№ Д1565). В еліпс 
2 2

2 2 1x y
a b

+ =  вписати прямокутник най-

більшої площі зі сторонами, що паралельні осям цього еліпса. 
Розв’язання. Нехай 2 , 2x y  (одиниць довжини) – довжини сторін 

прямокутника, тоді точки з координатами ( ),x y± ± , ( ),x y± ∓  є вершинами 

цього прямокутника (див. рис. 3.6). Ці точки повинні лежати на еліпсі, а їх 
координати – задовольняти рівняння еліпса: 

2 2

2 2 1x y
a b

+ = . 

 

Звідки 
2

21 xy b
a

= − . Площа побудованого прямокутника дорівнює 

2

2( ) 4 1 xS x x b
a

= − . Знайдемо значення півдовжини (0; )x a∈  однієї із сторін 

прямокутника, при якому функція ( )S x  набуває найбільшого значення. 

Для цього знайдемо критичні точки цієї функції: 

O a 

y 

x 

b 

   x

   y

− x 

− y 
− b 

 − a

Рис. 3.6. 
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( )2 22 2

2 2 2
2 2

2 2

4 2
( ) 4 1 ;

1 1

b a xx xS x b
a x xa a

a a

⎛ ⎞
⎜ ⎟ −⎜ ⎟′ = − − =
⎜ ⎟
⎜ ⎟− −
⎝ ⎠

 

( ) 0 при ;
2

( ) при .

aS x x

S x x a

′ = = ±

′∃ = ±/
 

В інтервалі (0, )a  лежить одна критична точка: 
2

ax = . Тепер знайдемо 

значення функції в критичній точці і граничні значення на кінцях інтервалу: 

0
lim ( ) 0, lim ( ) 0,

4 11 2 .
22 2

x x a
S x S x

a abS ab

→ →
= =

⎛ ⎞
= ⋅ − =⎜ ⎟

⎝ ⎠

 

Отже, найбільше значення функції досягається при 
2

ax = . Тоді та із 

сторін прямокутника, що паралельна великій піввісі еліпса, має довжину 

2 2x a= , а інша – 
2

22 2 1 2
2
ay b b
a

= − = . 

Висновок: довжини сторін шуканого прямокутника дорівнюють 2a  і 

2b .    ■ 

Приклад 3.33 (№Д1572). Знайти 

найбільший об’єм конуса з довжиною 

твірної l . 

Розв’язання. Нехай α  – кут між 

твірною конуса та його висотою. Зобразимо 

осьовий переріз конуса (див. рис. 3.7). В 

, 90oBKS K∠ =+ , KSB∠ = α , SB l= , тоді 

радіус основи дорівнюватиме 

sinR KB l= = α , 

A K 

S 

B R 

 l 

  α

 

Рис. 3.7. 

 h
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а висота конуса 

cosh SK l= = α . 

 

Тоді об’єм конуса складатиме  
3

2 21 cos sin
3 3

lV R h π
= π = ⋅ α ⋅ α . 

Для пошуку найбільшого значення об’єму знайдемо найбільше значення 
функції 

2( ) cos sinf α = α ⋅ α  

на інтервалі 0;
2
π⎛ ⎞α∈⎜ ⎟

⎝ ⎠
. Для цього знайдемо критичні точки цієї функції: 

( )3 2 2 2( ) sin 2cos sin cos sin tg 2f ′ α = − α + α ⋅ α = α ⋅ α ⋅ − α + ; 

, ,cos 0, 2
( ) 0 sin 0, , ,

tg 2, arctg 2 , ;

n n

f m m

k k

π⎡α = + π ∈⎢⎡ α =
⎢⎢′ α = ⇔ α = ⇔ α = π ∈⎢⎢
⎢⎢ α = ± α = ± + π ∈⎣ ⎢
⎣

]

]

]

 

( ) ,
2

f j jπ′∃ α ⇔ α = + π ∈/ ] . 

В інтервалі 0;
2
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 лежить одна критична точка: arctg 2α = . Знайдемо 

значення функції в критичній точці і граничні значення на кінцях інтервалу: 

0
2

lim ( ) 0, lim ( ) 0,f f
πα→ α→

α = α =  

( ) ( ) ( )
( )

( )
( )

2

2

22

tg arctg 21arctg2 cos arctg 2 sin arctg 2
1 tg arctg 21 tg arctg 2

f = ⋅ = ⋅ =
++

 

1 2 2 3 .
3 93

= ⋅ =  

Висновок: найбільше значення об’єму дорівнює  
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3
3

0,
2

2 3max ( )
3 27

lV f l
π⎛ ⎞α∈⎜ ⎟

⎝ ⎠

π π
= α = .   ■ 

Приклад 3.34 (№Д1579). Поперечний переріз відкритого каналу має 

форму рівнобічної трапеції. При якому нахилі ϕ  боків «мокрий периметр» 

перерізу буде найменшим, якщо площа «живого  перерізу» води в каналі до-

рівнює S , а рівень води дорівнює h . 

Розв’язання. На рис. 3.8 зображено поперечний переріз каналу. Нахилу 

боків відповідає кут 1CBB∠ = ϕ , рівню води – довжина відрізків  

MK NB h= = . 

В , 90oBNC N∠ =+ , NCB∠ = ϕ , тоді  

sin
hBC =
ϕ

, tgNC h c= ⋅ ϕ . 

Звідси знайдемо «живий переріз» 
води в каналі: 

( )

2 2
2

ctg ,

AB NCS h

AB h h

+
= ⋅ =

= + ⋅ ϕ ⋅
 

тому   

ctgSAB h
h

= − ⋅ ϕ . 

Отже, «мокрий периметр» перерізу складатиме: 

2ctg
sin

S hP AD AB BC h
h

= + + = − ⋅ ϕ+
ϕ

. 

Знайдемо значення кута 0;
2
π⎛ ⎞ϕ∈⎜ ⎟

⎝ ⎠
, при якому функція ( )P ϕ  набуває 

найменшого значення. 
Для цього знайдемо критичні точки цієї функції: 

2 2 2

2 cos (1 2cos )( )
sin sin sin

h h hP ϕ − ϕ′ ϕ = − =
ϕ ϕ ϕ

; 

A K 

C 

B 

D 

 φ 

 

Рис. 3.8.

   h

N 

 φ 

B1 

М 
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( ) 0 при 2 , ;
3

P n nπ′ ϕ = ϕ = ± + π ∈]  

( ) при , .P m m′∃ ϕ ϕ = π ∈/ ]  

В інтервалі 0,
2
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 лежить одна критична точка: 
3
π

ϕ = . Значення функції 

в критичній точці і граничні значення на кінцях інтервалу: 

0 0 0

2 ( cos 2)lim ( ) lim ctg lim
sin sin

S h S hP h
h hϕ→+ ϕ→+ ϕ→+

⎛ ⎞ ⎛ ⎞− ϕ+
ϕ = − ⋅ ϕ+ = + = +∞⎜ ⎟ ⎜ ⎟ϕ ϕ⎝ ⎠ ⎝ ⎠

 

0
2

lim ( ) 2 , 3.
3

S SP h P h
h hπ

ϕ→ −

π⎛ ⎞ϕ = + = +⎜ ⎟
⎝ ⎠

 

Отже, найменше значення «мокрого периметру» досягається для 

значення кута 
3
π

ϕ =  нахилу боків каналу.   ■ 

 
§ 8. Знаходження сум за допомогою похідної 

 
Розглянемо знаходження сум за допомогою похідних. Для цього будемо 

використовувати відомі формули: 
1

2 ...
1

n
n x xx x x

x

+−
+ + + =

−
;    (3.1) 

1sin sin
2 2sin sin 2 ... sin , 2
sin

2

n nxx
x x nx x k

x

+
⋅

+ + + = ≠ π , k ∈] ; (3.2) 

1sin
1 2cos cos 2 ... cos , 2
2 2sin

2

n x
x x nx x k

x

⎛ ⎞+⎜ ⎟
⎝ ⎠+ + + + = ≠ π , k ∈] ; (3.3) 

sincos cos cos ... cos
2 4 8 2 2 sin

2

n
n

n

x x x x x
x

⋅ ⋅ ⋅ ⋅ = , 2 , .nx k k≠ π ∈]   (3.4) 



Розділ 3. ПРАКТИКУМ ІЗ РОЗВ’ЯЗАННЯ ЗАДАЧ 

 148

Формули для знаходження багатьох сум скінченної кількості  одно-
йменних функцій можна отримати, диференціюючи такі рівності необхідну 
кількість разів, при цьому добуток (3.4) попередньо логарифмують. 

Приклад 3.35. Знайти формулу для суми  
2 11 2ln 3ln ... ln , 0nx x n x x−+ + + + > . 

Розв’язання. Виберемо в рівності (3.1) ln x  замість x : 
1

2 ln lnln ln ... ln
1 ln

n
n x xx x x

x

+−
+ + + =

−
. 

Знайдемо похідну від обох частин цієї рівності. Після  перетворень 
отримуємо: 

( ) ( )
( )

1
2 1

2

1 1 ln ln1 1 2ln 3ln ... ln
1 ln

n n
n n x n x

x x n x
x x x

+
− − + +

+ + + + =
−

. 

Звідси знаходимо: 

( )
( )

1
2 1

2

1 1 ln ln
1 2ln 3ln ... ln

1 ln

n n
n n x n x

x x n x
x

+
− − + +

+ + + + =
−

.   ■ 

Приклад 3.36. Знайти суму: 

2 2 2 2

1 1 1...
4cos 16cos 2 cos

2 4 2
n

n
x x x
+ + + . 

Розв’язання. Логарифмуємо рівність (3.4) та отримуємо: 

ln cos ln cos ... ln cos ln sin ln 2 ln sin .
2 4 2 2n n

x x x xx n+ + + = − −  

Диференціюємо отриману тотожність та знаходимо: 

1 1 1 1tg tg ... tg ctg ctg
2 2 4 4 2 2 2 2n n n n

x x x xx⎛ ⎞− + + + = −⎜ ⎟
⎝ ⎠

. 

Після повторного диференціювання отримуємо шукану формулу: 

2
2 2 2 2 2 2

1 1 1 1 1...
sin4cos 16cos 2 cos 2 sin

2 4 2 2
n n

n n
x x x xx
+ + + = − . ■ 
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§9. Доведення нерівностей 
 

Зауваження 3.1. Зверніть увагу (!), що декілька нерівностей було 
доведено в теоретичній частині (див. розділ 1, §2, п. 5). Зокрема, там було 
розглянуто такі класи задач: 
І. Доведення нерівностей за допомогою теореми Лагранжа. 
ІІ. Доведення нерівностей з використанням монотонності функції. 

Приклад 3.37. Довести нерівності 

а) 
3

tg
3
xx x> +  при 0

2
x π

< <  (№Д1289 г); 

б) 1/ 1/( ) ( )x y x yα α α β β β+ > +  при 0, 0, 0x y> > < α < β  (№Д1289 д); 

в) 2 sinx x x< <
π

 при 0
2

x π
< <  (№Д1290); 

г) 1 ( )
2 2

n
n n x yx y +⎛ ⎞+ > ⎜ ⎟

⎝ ⎠
 при 0, 0, , 1x y x y n> > ≠ >  (№Д1314 а); 

д) 2

2

x yx ye e e
++

>  при x y≠  (№Д1314 б). 

Розв’язання. Розглянемо ІІ клас нерівностей, що доводяться з 
використанням монотонності функцій (а–в). 

а) Для доведення нерівностей 
3

tg
3
xx x> +  при 0

2
x π

< <  розглянемо 

функцію 
3

( ) tg
3
xf x x x= − − .  

Знаходимо похідні до того порядку n , при якому можна буде визначити 

знак ( ) ( )nf x  при 0
2

x π
< < : 

2
2

1( ) 1
cos

f x x
x

′ = − − , 

3( ) 2cos sin 2f x x x x−′′ = − , 
4 2 2( ) 6cos sin 2cos 2f x x x x− −′′′ = ⋅ + − =  

2 2 4

4

3sin cos cos2
cos

x x x
x

+ −
= ⋅

2 2 2

4

3sin cos sin2 0
cos

x x x
x

+ ⋅
= ⋅ > . 
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Отже,  

( ) 0f x′′′ >  при 0
2

x π
< <  ( )f x′′⇒ /  ⇒ , якщо 0x > , то ( ) (0)f x f′′ ′′> . 

Оскільки ( )3

0
(0) 2cos sin 2 0

x
f x x x−

=
′′ = − = , а ( ) (0)f x f′′ ′′> , то ( ) 0f x′′ > . 

Тепер маємо:  

( ) 0f x′′ >  при 0
2

x π
< <  ( )f x′⇒ /  ⇒ , якщо 0x > , то ( ) (0)f x f′ ′> . 

Оскільки 2
2

0

1(0) 1 0
cos x

f x
x =

⎛ ⎞′ = − − =⎜ ⎟
⎝ ⎠

, а ( ) (0)f x f′ ′> , то ( ) 0f x′ > . 

Таким чином,  

( ) 0f x′ >  при 0
2

x π
< <  ( )f x⇒ /  ⇒ , якщо 0x > , то ( ) (0)f x f> . Оскільки 

3

0

(0) tg 0
3

x

xf x x
=

⎛ ⎞
= − − =⎜ ⎟
⎝ ⎠

, а ( ) (0)f x f> , то ( ) 0f x > , тобто 
3

tg 0
3
xx x− − > , 

що і треба було довести.  ■ 

б) Перед доведенням нерівності 1/ 1/( ) ( )x y x yα α α β β β+ > +  при 

0, 0, 0x y> > < α < β  спочатку поділимо обидві частини цієї нерівності на y  

(така дія коректна, оскільки 0y > ): 
1/ 1/

1 1x x
y y

α βα β⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟+ > +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

. 

Остання нерівність еквівалентна заданій, тому будемо доводити останню 

нерівність. Для цього розглянемо функцію ( )1/
( ) 1f t

γγγ = +  при 0γ > , де 

0t >  – стала. Щоб знайти похідну, застосуємо метод логарифмічного 

диференціювання: 

( )ln 1
ln ( )

t
f

γ +
γ =

γ
; 

( ) ( ) ( )
( ) ( )

( )
( )( )2 2 2 1

ln ln 1 ln 1 ln 1( ) 11 ln
( ) 1 1 1

t

t

t t t t t t t tf t
f t t t

γ

γ

γ
γ γ γ γ γ

γ

γ γ +γ

γ − + γ − + +′ γ += = =
γ γ γ + γ + +

; 
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( ) ( )
( )

( )( )
1/

2 1

1( ) 1 ln
1 1

t

t

t
f t

t t

γ

γ

γ
γγ

γ +γ
′ γ = +

γ + +
.   (3.5) 

Знайдемо знак похідної. Очевидно, що перші два множники є додатними при 
0γ > , 0t > . Відкритим є питання про знак третього множника. Оцінимо  вираз 

під знаком логарифма. Для цього введемо заміну 0z t γ= >  і дві допоміжні 

функції ( ) zh z z=  і 1( )
( 1)

z

z

zg z
z +=
+

 при 0z > . Для першої із цих функцій  

( ) ( )ln( ) (ln 1)z z z zh z z e z z′ ′′ = = = ⋅ + . 

Знаки ( )h z′  

Характерні точки 

Напрямки монотонності, loc extr 

 

Значення функції  в точках loc extr                       ( )1/1/ ee               

Також маємо: 
0

lim 1z

z
z

→+
=  (див. приклад 3.42 г). У випадку, коли 

0 1/z e< < , функція ( ) zh z z=  спадає і тому 
0

lim ( ) ( ) (1/ )
z

h z h z h e
→+

> > , тобто 

1

11
ezz

e
⎛ ⎞> > ⎜ ⎟
⎝ ⎠

, окрім того, 1( 1) 1zz ++ > , отже, здійснюється ланцюг нерівностей: 

11 ( 1)z zz z +< < + , 

звідки випливає, що  

1( ) 1
( 1)

z

z

zg z
z += <
+

. 

У випадку, коли 1/z e> , функція ( ) zh z z=  зростає, тому має місце імплікація 

( ) ( )11 1 ( 1)z zz z z z +< < + ⇒ < + , 

тоді для таких значень z  має місце оцінка  

1( ) 1
( 1)

z

z

zg z
z += <
+

. 

1/z e=  
min 

+_ 

/2
0
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Отже,  вираз під знаком логарифма в (3.5) менший за 1, тому  

( ) 0 0f ′ γ < ∀γ >  ( )f⇒ γ 2  на (0; )+∞  ⇒ , якщо 0 < α < β , то ( ) ( )f fα > β  

⇒ ( ) ( )1/ 1/
1 1t t

α βα β+ > + . 

Підставляючи xt
y

=  в останню нерівність, отримаємо нерівність, що 

доводиться.  ■ 

в) Для доведення нерівності 2 sinx x x< <
π

 при 0
2

x π
< <  введемо 

функцію sin( ) xf x
x

=  при 0
2

x π
< < , тоді 

2 2

cos sin cos ( tg )( ) x x x x x xf x
x x
− −′ = = . 

Розглянемо допоміжну функцію ( )g x x tg x= − , отримаємо 

2

2 2

1 cos 1( ) 1 0
cos cos

xg x
x x

−′ = − = <  при 0
2

x π
< <  ⇒  ( )g x 2  при 0

2
x π

< < , 

⇒ , якщо 0
2

x π
< < , то ( ) (0) 0g x g< =  

tg 0x x⇒ − <  при 0
2

x π
< < . 

Оскільки tg 0x x− < , то 2

cos ( tg )( ) 0x x xf x
x
−′ = <  при 0

2
x π

< < , тому  

0
2

sin sin sinlim lim
x x

x x x
x x xπ→ →

> >  при 0
2

x π
< <  

⇒
sin 21 x

x
> >

π
 при 0

2
x π

< <  

⇒
2 sinx x x< <
π

 при 0
2

x π
< < . 

Нагадаємо, що цю нерівність було доведено в теоретичній частині за 
допомогою опуклості вгору графіка функції sin x  при 0 / 2x< < π .   ■ 
 Розглянемо ІІІ клас нерівностей, що доводяться за допомогою 
властивостей опуклості функції, – приклади (г, д).  
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г) Для доведення нерівності 1 ( )
2 2

n
n n x yx y +⎛ ⎞+ > ⎜ ⎟

⎝ ⎠
 при 

0, 0, , 1x y x y n> > ≠ >  розглянемо функцію ( ) nf t t=  при 0, 1t n> > : 
1( ) nf t nt −′ = , 

2( ) ( 1) 0nf t n n t −′′ = − >  при 0, 1t n> > . 

Тому ( ) nf t t=  опукла вниз при 0, 1t n> >  (другий критерій опуклості вниз). Із 

означення опуклої вниз функції, зокрема, випливає, що вона задовольняє 
нерівність 

0 0x y∀ > ∀ >   ( ) ( )
2 2

x y f x f yf + +⎛ ⎞ <⎜ ⎟
⎝ ⎠

. 

Звідки одержимо 

1 ( )
2 2

n
n n x yx y +⎛ ⎞+ > ⎜ ⎟

⎝ ⎠
 при 0, 0, , 1x y x y n> > ≠ > , 

що й треба було довести. ■ 

д) Щоб довести нерівність 2

2

x yx ye e e
++

>  при x y≠ , розглянемо функцію 

( ) tf t e= : 

( ) tf t e′ = ,     ( ) 0tf t e′′ = > . 

Тому ( ) tf t e=  опукла вниз на \ . Звідки отримаємо 

2

2

x yx ye e e
++

>  на \  при x y≠ , 

що й треба було довести. ■ 
 

§ 10. Доведення тотожностей 
 

Доведення тотожностей за допомогою похідної ґрунтується на ознаці 
сталості функції, згідно з якою, якщо в усіх точках деякого проміжку 

( ) 0f x′ = , то функція ( )f x  зберігає на ньому стале значення. 

Приклад 3.38. Довести тотожність 
2

2
2

1arctg arctg
41

xx
x

π−
+ =

+
. 
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Розв’язання. Розглянемо функцію 

( )
2

2
2

1arctg arctg
1

xf x x
x

−
= +

+
, 

визначену на \ . Знайдемо її похідну для всіх x∈\ : 

( )
( )4 2 2 4 42 2

2

2 1 4 2 4 0
1 1 2 21 11

1

x x x xf x
x x xx x

x

−′ = + ⋅ = − =
+ + +⎛ ⎞− +

+ ⎜ ⎟+⎝ ⎠

. 

Оскільки ( ) 0f x′ = , то ( )f x  є сталою, ( )f x C≡  для будь-якого x∈\  

(теорема 1.11). Нехай 1x = . Отримуємо arctg1 arctg 0
4

+ =
π . Звідси маємо 

4
C =

π , тобто для всіх значень x∈\  виконується тотожність  

2
2

2

1arctg arctg
41

xx
x

π−
+ =

+
.   ■ 

Приклад 3.39. Довести тотожність 

2 2 2cos cos sin 2 .
8 8 2

x x x⎛ ⎞ ⎛ ⎞− − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

π π  

Розв’язання. Розглянемо функції 

( ) 2 2 2cos cos sin 2
8 8 2

f x x x x⎛ ⎞ ⎛ ⎞= − − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

π π . 

Знайдемо її похідну: 

( ) 2cos sin 2cos sin
8 8 8 8

f x x x x x⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ = − ⋅ − + + ⋅ + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

π π π π  

2 cos 2 sin 2 sin 2 2 cos 2
4 4

x x x x⎛ ⎞ ⎛ ⎞− = − + + − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

π π  

2 cos 2 2 cos 2 0.x x= − =  

Звідси ( )f x C x= ∀ ∈\ . Оскільки ( )0 0f = , то ( ) 0f x x= ∀ ∈\ , звідки 

випливає, що  

2 2 2cos cos sin 2 .
8 8 2

x x x⎛ ⎞ ⎛ ⎞− − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

π π   ■ 

Приклад 3.40. Довести тотожність 
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tg tg tg tg tg tg 1x y y z z x⋅ + ⋅ + ⋅ = , 

якщо 
2

x y z+ + =
π . 

Розв’язання. З додаткової умови знаходимо 
2

z x y= − −
π . Введемо 

допоміжну функцію для фіксованого y  

( ) ( ) ( )tg tg tg ctg ctg tgf x x y y x y x y x= ⋅ + ⋅ + + + ⋅ , 

яка співпадає з лівою частиною тотожності. Ця функція визначена на множині 

;
2 2n

A n nπ ππ π
∈

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠]
∪ . Доведемо, що для будь-яких можливих x A∈  та 

y A∈  виконується ( ) 1f x ≡ . Знайдемо ( )f x′ . 

( ) ( ) ( )
( )

( )( ) ( ) ( )

( ) ( )

2 2 2 2

2 2

ctgtg tg tg
cos sin sin cos

1 1tg ctg tg tg
cos sin

1 1 0.
cos cos sin cos cos sin

x yy y xf x
x x y x y x

y x y x y
x x y

x y x y x y x y

+
′ = − − + =

+ +

= + + − ⋅ + =
+

= − =
+ +

 

Отже, ( ) nf x C≡  на кожному із проміжків ;
2 2nA n nπ ππ π⎛ ⎞= − + +⎜ ⎟

⎝ ⎠
, 

n∈] . Для знаходження сталих nC  оберемо n nx n Aπ= ∈ , тоді  

( ) ( ) ( )tg tg tg ctg ctg tg 1nC f n n y y n y n y nπ π π π π= = ⋅ + ⋅ + + + ⋅ = . 

Тобто ( ) 1f x ≡  на всій множині визначення. Отже, тотожність виконується.  ■ 

 
§ 11. Розкриття невизначеностей. Правила Лопіталя 

 
Правила Лопіталя  застосовуються для розкриття   невизначеностей виду 

0
0
⎡ ⎤
⎢ ⎥⎣ ⎦

 та ∞⎡ ⎤
⎢ ⎥∞⎣ ⎦

. Нагадаємо, що із існування границі відношення похідних 

випливає існування границі відношення функцій. Тому спочатку бажано 
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відповідну рівність границь записувати під знаком запитання, який після 

перевірки існування границі відношення похідних перекреслювати. 

Приклад 3.41 (№Д1374 б). Дослідити можливість застосування правила 

Лопіталя для границі sinlim
sinx

x x
x x→∞

−
+

. 

Розв’язання. Позначимо ( ) sin , ( ) sinf x x x g x x x= − = + , тоді 

2( ) 1 coslim lim lim 2
( ) 1 cosx x x

f x x tg x
g x x→∞ →∞ →∞

′ −
= =

′ +
 – не існує, 

тому застосовувати правило Лопіталя не можна, однак задана границя існує, 
оскільки 

11 sin( ) sin 1 01lim lim lim 1sin [н.м.ф.×обм.=н.м.ф.] 01( ) sin 1 01 sin
x x x

x xf x x x x
xg x x x x x

x
→∞ →∞ →∞

− →∞⇒− −
= = = = == →+ ++

. ■ 

Приклад 3.42. Обчислити наступні границі:  

а) 11

ln(2 )lim
1xx

x
e −→

−
−

;             б) (№Д1327) 
20

arcsin 2 2arcsinlim
sinx

x x
x x→

− ;   

в) (№Д1341) 
0

lim ln ( 0)
x

x xε

→+
ε > ;  г) (№Д1342) 

0
lim x

x
x

→
;  

д) (№Д1348) ( )sin

0
lim ctg x

x
x

→
;      е) (№Д1365) 

1/

0

2lim arccos
x

x
x

→

⎛ ⎞
⎜ ⎟π⎝ ⎠

. 

Розв’язання.  

а)   
( )

( )
?

11 1 1

ln(2 )ln(2 ) 0lim (пр. Лопіталя) lim
01 1

xx x x

xx
e e

−→ → −

′−− ⎡ ⎤= = =⎢ ⎥ ′− ⎣ ⎦ −
 

11

1 ( 1)
2lim 1

1xx

x
e −→

⋅ −
−= = −

⋅
;  ■ 

б)   2 220

arcsin 2 2arcsin 0lim sin ~sinx

x x x
x xx x→

− → ⇒= = 30

arcsin 2 2arcsinlim
x

x x
x→

−
=  

 
2 2?

20

2 12
0 1 4 1(пр. Лопіталя) lim
0 3x

x x
x→

−
⎡ ⎤ − −= = =⎢ ⎥⎣ ⎦
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2 2 2 2

22 2 20 0

1 1

1 1 4 1 1 42lim 2lim
33 1 4 1x x

x x x x
xx x x→ →

→ →

− − − − − −
= = =

− −��	�
��	�

 

1 1

2 22 2?

2 20 0

1 1

2 8
0 1 4 4 12 1 2 1 4(пр. Лопіталя) 2 lim lim 1
0 6 3 1 4 1x x

x x
x xx x

x x x

→ →

→ →

→ →

− −
−

− − −⎡ ⎤ − −= = = − =⎢ ⎥⎣ ⎦ − −

������ �����

��	�
��	�

;   ■ 

в)   
0 0

ln0 lim ln lim
x x

xx x
x

ε
−ε→+ →+

ε > ⇒ = =
?

(пр. Лопіталя)∞⎡ ⎤ =⎢ ⎥∞⎣ ⎦
  

1?

10 0
lim lim 0
x x

x x
x

− ε

−ε−→+ →+
= = − =

ε−ε
;    ■ 

г) ln

0 0
lim limx x x

x x
x e

→ →
= ; 

покладемо 1ε =  у попередньому прикладі, отримаємо 
0

lim ln 0
x

x x
→+

= , тоді для 

даної границі ln

0 0
lim limx x x

x x
x e

→ →
= 0 1e= = ; ■ 

д) ( ) ( ) ( )sinsin ln ctg sin ln ctg

0 0 0
lim ctg lim lim

xx x x x

x x x
x e e ⋅

→ → →
= = =  

( ) 2?

1 20 0

1 1
ln ctg ctg sinexp lim (пр. Лопіталя) exp lim
sin ( 1)sin cosx x

x x x
x x x− −→ →

−⎛ ⎞⋅⎜ ⎟⎛ ⎞ ∞⎡ ⎤ ⎜ ⎟= = = =⎜ ⎟ ⎢ ⎥∞ − ⋅⎜ ⎟⎣ ⎦⎝ ⎠ ⎜ ⎟
⎝ ⎠

 

( )20 0

1 sinexp lim exp lim exp 0 1
ctg cos cosx x

x
x x x→ →

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟⋅ ⎝ ⎠⎝ ⎠
;    ■ 

е) 
1/ ?

0 0

2ln arccos
2 0lim arccos exp lim (пр.Лопіталя)

0

x

x x

x
x

x→ →

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟π⎛ ⎞ ⎡ ⎤⎝ ⎠⎜ ⎟= = =⎜ ⎟ ⎢ ⎥π ⎜ ⎟⎝ ⎠ ⎣ ⎦

⎜ ⎟
⎝ ⎠

 

2
2

20 0

1 2
2 1arccos 1 2exp lim exp lim exp

1 arccos 1x x

xx
e

x x

−
π

→ →

−⎛ ⎞⋅⎜ ⎟
π −⎜ ⎟ ⎛ ⎞− ⎛ ⎞π⎜ ⎟= = = − =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ π⎝ ⎠⋅ −⎝ ⎠⎜ ⎟

⎜ ⎟
⎝ ⎠

. ■ 
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§ 12.Формула Тейлора 
 

Приклад 3.43 (№Д1376). Многочлен 2 3( ) 1 3 5 2p x x x x= + + −  розвинути 

за цілими невід’ємними степенями двочлена 1x + . 

Розв’язання. Формула Тейлора для многочленів має вигляд 

( ) ( ) ( )
( )

20 0 0
0 0 0 0

( ) ( ) ( )
( ) ( )

1

n
np x p x p x

p x p x x x x x x x
n

′ ′′
= + − + − + + −

! 2! !
… . 

Цей многочлен потрібно розвинути за степенями 1x + , тому 0 1x = − . Для 

даного многочлена маємо 
 

2 3( ) 1 3 5 2p x x x x= + + − , ( 1) 5p − = ; 

2( ) 3 10 6p x x x′ = + − , ( 1) 13p′ − = − ; 

( ) 10 12p x x′′ = − , ( 1) 22p′′ − = ; 

( ) 12p x′′′ = − , ( 1) 12p′′′ − = − ; 

( ) ( ) ... 0IV Vp x p x= = = .  
 

Звідси отримуємо 

2 3 2 313 22 12( ) 5 ( 1) ( 1) ( 1) 5 13( 1) 11( 1) 2( 1)
1! 2! 3!

p x x x x x x x− −
= + + + + + + = − + + + − + .■ 

Приклад 3.44. Написати розвинення за цілими невід’ємними степенями 
змінної x  до члена вказаного порядку включно для наступних функцій 

а) 
22x xe −  до члена з 5x  (№Д1381); 

б) sinln x
x

 до члена з 6x  (№Д1387). 

Розв’язання. а) І спосіб. Оскільки потрібно знайти розвинення за 
степенями змінної x , то будемо застосовувати формулу Тейлора в точці 

0 0x = , тобто формулу Маклорена із залишковим членом у формі Пеано, що 

має вигляд: 
( )

2(0) (0) (0)( ) (0) ( )
1

n
n nf f ff x f x x x o x

n
′ ′′

= + + + + +
! 2! !

… . 
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Проміжні результати для функції 
22( ) x xf x e −=  внесемо до таблиці 3.3. 

 

Таблиця 3.3 

n  ( ) ( )nf x  ( ) (0)nf  

0 22( ) x xf x e −=  (0) 1f =  

1 2 22 2( ) (2 2 ) 2 (1 )x x x xf x e x e x− −′ = − = −   (0) 2f ′ =  

2 2 22 2 2( ) 4 (1 ) 2x x x xf x e x e− −′′ = − −   (0) 2f ′′ =  

3 
 

2 2 2

2 2

2 3 2 2

2 3 2

( ) 8 (1 ) 8 (1 ) 4 (1 )

8 (1 ) 12 (1 )

x x x x x x

x x x x

f x e x e x e x

e x e x

− − −

− −

′′′ = − − − − − =

= − − −
  (0) 4f ′′′ = −  

4 
 

2 2 2

2 2 2 2

2 4 2 2 2 2

2 2 4 2 2 2

( ) 16 (1 ) 24 (1 ) 24 (1 )

12 16 (1 ) 48 (1 ) 12

IV x x x x x x

x x x x x x x x

f x e x e x e x

e e x e x e

− − −

− − − −

= − − − − − +

+ = − − − +
  (0) 20IVf = −  

5 
 
 

2 2 2

2 2

2 2 2

2 5 2 3 2 3

2 2

2 5 2 3 2

( ) 32 (1 ) 64 (1 ) 96 (1 )

96 (1 ) 24 (1 )

32 (1 ) 160 (1 ) 120 (1 )

V x x x x x x

x x x x

x x x x x x

f x e x e x e x

e x e x

e x e x e x

− − −

− −

− − −

= − − − − − +

+ − + − =

= − − − + −

 (0) 8Vf = −  

 

 

Підставляючи в формулу Маклорена, отримаємо  
22x xe − = 2 3 4 5 52 2 4 20 81 ( )

1
x x x x x o x− − −

+ + + + + + =
! 2! 3! 4! 5!

 

2 3 4 5 52 5 11 2 ( )
3 6 15

x x x x x o x= + + − − − + . 

ІІ спосіб. Застосовуємо табличне розвинення  

( )
2

1
1

n
t nt t te o t

n
= + + + + +

! 2! !
… . 

Для функції 
22( ) x xf x e −=  маємо 22t x x= − , 5n = , тому 

22x xe − =
( ) ( ) ( ) ( ) ( )( )

2 3 4 52 2 2 22 52
2 2 2 221 2

1

x x x x x x x xx x o x x
− − − −−

+ + + + + + −
! 2! 3! 4! 5!

. 

Маючи на увазі властивості функцій ( )o β , де ( )xβ  нескінченно мала функція, 

отримаємо ( )( )52 52 ( )o x x o x− = , а для многочленів ( )np x  степеня 5n >  сума 
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5 5( ) ( ) ( )np x o x o x+ = . Тому розкриваємо дужки, враховуючи тільки доданки зі 

степенями, що не перевищують 5. Одержимо: 
22x xe − =

( ) ( ) ( ) ( )2 2 3 4 3 4 5 4 51 1 11 2 4 4 8 12 6 ... 16 32 ...x x x x x x x x x x= + − + − + + − + + + − + +
2 6 24

 

( ) ( ) ( )5 5 2 3 4 5 51 2 5 132 ... 1 2
3 6 15

x o x x x x x x o x+ + + = + + − − − +
120

. ■ 

б) Для розвинення функції sinln x
x

 до члена з 6x  застосуємо другий 

спосіб, в якому застосовуються розвинення функцій із таблиці розвинень 
елементарних функцій за формулою Маклорена з залишковим членом у формі 
Пеано. У даному випадку – це два розвинення 

( )
3 5 7 2 1

1 2sin( ) ( 1)
3

m
m mx x x xx x o x

m

−
−= − + − + + − +

! 5! 7! (2 −1)!
… , 

( )
2 3 4

1ln(1 ) ( 1)
n

n nt t t tt t o t
n

−+ = − + − + + − +
2 3 4

… . 

Для заданої функції 2 8 4m m= ⇔ = , тому маємо: 

( )
( )

3 5 7
8

2 4 6
7sin 3ln ln ln 1

3

x x xx o xx x x x o x
x x

− + − + ⎛ ⎞! 5! 7!= = − + − +⎜ ⎟! 5! 7!⎝ ⎠
. 

В розвиненні ln(1 )t+  покладемо ( )
2 4 6

7

3
x x xt o x= − + − +
! 5! 7!

, а найвищу степінь 

розвинення ln(1 )t+  візьмемо 3n = , щоби після піднесення до цього степеня 

мати найменший степінь 6x , тоді отримаємо 

( )
( ) ( )

2 32 4 6 2 4 6
7 7

2 4 6
7 3 3sinln

3

x x x x x xo x o x
x x x x o x

x

⎛ ⎞ ⎛ ⎞
− + − + − + − +⎜ ⎟ ⎜ ⎟! 5! 7! ! 5! 7!⎝ ⎠ ⎝ ⎠= − + − + − + −

! 5! 7! 2 3
 

( )
32 4 6

7

3
x x xo o x

⎛ ⎞⎛ ⎞
⎜ ⎟− − + − + =⎜ ⎟⎜ ⎟! 5! 7!⎝ ⎠⎝ ⎠

 

( ) ( )
2 4 6 4 6 6

7 61 1... ...
6 36 360 216
x x x x x xo x o x

⎛ ⎞ ⎛ ⎞
= − + − + − − + + − + − =⎜ ⎟ ⎜ ⎟120 5040 2 3⎝ ⎠ ⎝ ⎠
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( ) ( )
( )

( )
6

2 4 6 2 4 6
7 6 6

6 6
o x

x x x x x xo x o x o x

=

= − − − + + = − − − +
180 2835 180 2835���	��


.   ■ 

Приклад 3.45. Застосовуючи таблицю розвинень елементарних функцій 
за формулою Маклорена з залишковим членом у формі Пеано, знайти такі 
границі 

а) 20

sin (1 )lim
sin

x

x

e x x x
x x→

− + ; 

б) ( )3 / 2lim 1 1 2
x

x x x x
→∞

+ + − −  (№Д1400); 

в) 
3 2

30

sin(sin ) 1lim
6sin 6x

x x x
x x x→

− −
− +

. 

Розв’язання. а) Спочатку спростимо знаменник, застосовуючи 

еквівалентне перетворення, а саме: sin ~x x  при 0x → , отримаємо 

20

sin (1 )lim
sin

x

x

e x x x
x x→

− + = 30

sin (1 )lim
x

x

e x x x
x→

− + , 

тому розвивати функції чисельника потрібно до члена з 3x . Застосуємо 

розвинення функцій xe  і sin x  до членів з 3x , а саме: 

( ) ( )
2 3 2 3

3 31 1
1

x x x x x xe o x x o x= + + + + = + + + +
! 2! 3! 2 6

;

( ) ( )
3 3

4 4sin( )
3 6
x xx x o x x o x= − + = − +
!

, 

одержимо 

( ) ( )
2 3 3

3 4

3 30 0

1 (1 )
6sin (1 )lim lim

x

x x

x x xx o x x o x x x
e x x x

x x→ →

⎛ ⎞⎛ ⎞
+ + + + − + − +⎜ ⎟⎜ ⎟2 6− + ⎝ ⎠⎝ ⎠= =  

3
2 3 3 2 3

3 3

3 3 3 30 0 0

1 1 ( ) ( ) ( ) 12 6 3lim lim lim .
33x x x

xx x x o x x x o x x o x
x x x x→ → →

⎛ ⎞+ + − + − − +⎜ ⎟ ⎛ ⎞⎝ ⎠= = = + =⎜ ⎟
⎝ ⎠

 

При розв’язанні застосовано формулу 
3

30

( )lim 0
x

o x
x→

= , що відповідає означенню  

«о-малого». ■ 
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б) Спочатку зробимо такі перетворення  

( )

( )

3/ 2 3 / 2

20

1 1
1 1lim 1 1 2 lim 1 1 2

0
1lim 1 1 2 .

x x

t

t x
x x x x x x x t

x x x t

t t
t

→∞ →∞

→

⎛ ⎞ = ⇒ =
+ + − − = + + − − = =⎜ ⎟⎜ ⎟

⎝ ⎠ → ∞⇒ →

= + + − −

 

Оскільки в знаменнику стоїть 2t , то застосовувати будемо таке розвинення до 

члена з другим степенем 

( ) ( )2 21
(1 ) 1m m mmz z z o z

−
+ = + + +

1! 2!
. 

Для функції 1 t+  візьмемо в цьому розвиненні 1 ,
2

m z t= = , а для функції 

1 t−  покладемо 1 ,
2

m z t= = − , тоді 

( )20

1lim 1 1 2
t

t t
t→

+ + − − =  

2 2

2 2
20

1 1 1 11 1
1 1 12 2 2 2lim 1 ( ) 1 ( ) 2

2 2! 2 2!t

t t
t o t t o t

t→

⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟= + + + + − + + − =
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

2 2 2( ) ( ) ( )o t o t o t= + = =  

2
2 2 2

2 20 0

1 1 1 1 ( ) 1lim ( ) lim
8 8 4 4t t

o tt t o t
t t→ →

⎛ ⎞⎛ ⎞= − − + = − + = −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. ■ 

в) Для обчислення границі 
3 2

30

sin(sin ) 1lim
6sin 6x

x x x
x x x→

− −
− +

 зазначеним умовою 

способом дізнаємося найменший степінь розвинення знаменника за формулою 
Маклорена, щоб потім до цього степеня розвивати чисельник. Маємо 

( )
3 5 7 2 1

3 1 2 36sin 6 6 ( 1) 6
3

m
m mx x x xx x x x o x x x

m

−
−⎡ ⎤

− + = − + − + + − + − + =⎢ ⎥! 5! 7! (2 −1)!⎣ ⎦
…  

( )
5 7 2 1

3 1 2 36 66 ( 1) 6
m

m mx x xx x o x x x
m

−
−= − + − + + − + − + =

20 7! (2 −1)!
…  
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( )
6

5 7 2 1 5
1 2 6

0( )

6 6( 1) ( ).
m

m m

x

x x x xo x o x
m

−
−

=

= − + + − + = +
20 7! (2 −1)! 20

…
��������	�������


 

Чисельник будемо розвивати до 5x , застосовуючи розвинення функцій 

(1 )mt+  для 1
3

m = , 2t x= −  і sin t  спочатку для t x= , а потім для 

( )
3 5

6

3
x xt x o x= − + +
! 5!

: 

2 2
3 5

3 2 2 4 5

1 1 1 ( )
1 3 31 1 ( ) ( ) ( )
3 2! 3 9

x
x xx x x x o x x o x

⎡ ⎤⎛ ⎞− −⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⋅ − = ⋅ + − + + = − − +
⎢ ⎥
⎢ ⎥⎣ ⎦

; 

( )
3 5

6sin(sin ) sin
3
x xx x o x

⎛ ⎞
= − + + =⎜ ⎟! 5!⎝ ⎠

 

( ) ( ) ( ) ( )
3 53 5 3 5 3 5

6 6 6 61 1
3 3 3 3
x x x x x xx o x x o x x o x o x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + + − − + + + − + + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟! 5! ! ! 5! 5! ! 5!⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

( ) ( )
3 5 5

6 3 5 61 1 ...
6 2 120

x x xx o x x x o x⎛ ⎞= − + + − − + + + =⎜ ⎟6 120 ⎝ ⎠
 

( ) ( ) ( ) ( )
3 5

6 6 6 6x xo x o x o x x o x= + = = − + +
3 10

. 

В результаті отримаємо 

( )
3 5 3 5

6 5
3 2

3 50 0 6

( )sin(sin ) 1 3 9lim lim
6sin 6 ( )

x x

x x x xx o x x o xx x x
x x x x o x

→ →

− + + − + + +− − 3 10= =
− +

+
20

 

P

N
N

0
55

5
5

5 50 06
5

0
0

19 ( )19 ( ) 38lim lim
91 ( )( )

x x

o xx o x
x

x o xo x x
x

→

→ →

→
→

++
9090= = =

+ + ⋅
20 20

.   ■ 
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§ 13. Побудова графіків функцій за характерними точками 
 

Приклад 3.46. Побудувати графіки таких функцій 

а) 2 / 3 xy x e−=  (№Д1509);     б) 2

2arcsin
1

xy x
x

= −
+

; 

в) sin
2 cos

xy
x

=
+

 (№Д1504.1);     г) arctg
2
xy x= −  (№Д1517); 

д) 
ln ,

ln
x t t

ty
t

=⎧
⎪
⎨

=⎪⎩

 (№Д1538);     е) 
2

3

2 ,
3

x t t
y t t

⎧ = −⎪
⎨

= −⎪⎩
 (№Д1532); 

є) sin 3 ( 0)a aρ = ϕ >  (№Д1547);    ж) th
-1

a ϕ
ρ =

ϕ
, де 1 ( 0)aϕ > >  (№Д1549). 

Розв’язання. а) Для функції 2 / 3 xy x e−=  маємо 

1) Область визначення функції: ( )D y = \ . 

2) 2 / 3 ( ),
( )

( ),
x y x

y x x e
y x

⎧
− = ≠ ⇒⎨−⎩

 функція ні парна, ні непарна. 

3) Функція неперіодична. 

4) Функції 2 / 3( )g x x=  і 1( )
x

xh x e
e

− ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 є неперервними на \ , тому 

дана функція є неперервною на \  як добуток двох неперервних функцій.   
5) Знайдемо асимптоти графіка заданої функції (див. розділ 1, §2, п. 9). 

Оскільки функція неперервна на \ , то її графік  не має вертикальних 
асимптот. Знайдемо похилі асимптоти: 

2 / 3

1/ 3

( ) 1lim lim lim 0
x

xx x x

f x x ek
x x e x

−

→+∞ →+∞ →+∞
= = = = , 

( )
1/ 3

2 / 3 ?
2 / 3

2
3lim ( ) lim lim (пр.Лопіталя) limx

x xx x x x

xxb f x kx x e
e e

−

−

→+∞ →+∞ →+∞ →+∞

∞⎡ ⎤= − = = = = =⎢ ⎥∞⎣ ⎦
 

1/ 3

2 1lim 0
3 xx e x→+∞

= = , 
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Розділ 3. ПРАКТИКУМ ІЗ РОЗВ’ЯЗАННЯ ЗАДАЧ  

 
§ 13. Побудова графіків функцій за характерними точками 

тому 0y = – горизонтальна асимптота на +∞ . 

2 / 3 ?

1/ 3
2 / 3

( )lim lim lim (пр.Лопіталя) lim
1
3

x x x

x x x x

f x x e e e ek
x x x x

− − +∞ −

→−∞ →−∞ →−∞ →−∞ −

⎡ ⎤∞ −
= = = = = = =⎢ ⎥∞ ∞⎣ ⎦

 

2 / 33 lim [ ] ,x

x
x e e− +∞

→−∞
= − = ∞ ⋅ = ∞  

тому на −∞  горизонтальних асимптот немає.  
6) Для дослідження функції на монотонність і пошуку її точок 

екстремуму знайдемо першу похідну (достатня умова монотонності функції 
на інтервалі та перша достатня умови локального екстремуму): 

1/ 3 2 / 3 1/ 32 2
3 3

x x xy x e x e x e x− − − − − ⎛ ⎞′ = − = −⎜ ⎟
⎝ ⎠

. 

Знайдемо критичні точки, тобто точки, в яких похідна дорівнює нулю або не 
існує. 

( ) 0 2 / 3;
( ) при 0.

y x x
y x x
′ = ⇔ =
′∃ =/

 

Знаки y′  

Характерні точки 

Напрямки монотонності, loc extr   

Значення функції  в точках loc extr              0          2 / 33
4 0,39
9

e− ≈  

7) Для дослідження функції на опуклість і пошуку точок перегину її 
графіка знайдемо другу похідну (другий критерій опуклості вниз і достатня 
умова перегину): 

1/ 3 2 / 3 4 / 3 1/ 3 1/ 3 2 / 32 2 1 2 2
3 3 3 3 3

x x x x x xy x e x e x e x e x e x e− − − − − − − − − −
′⎛ ⎞′′ = − = − ⋅ − − + =⎜ ⎟

⎝ ⎠
 

2
4 / 3 ( 2 12 9 )

9

xe x x
x

−

= − − + . 

Знайдемо точки, «підозрілі» на перегин: 

2 6( ) 0 ;
3

( ) при 0.

y x x

y x x

±′′ = ⇔ =

′′∃ =/
 

2/3
max

0 
min 

−− +
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Знаки y′′  

Характерні точки 

Напрямки опуклості, 
точки перегину  

Ординати точок 
перегину  

2 6
33 10 4 6 0,34

9
e

−−
≈         

2 6
33 10 4 6 0,30

9
e

++
≈  

8) Точки перетину з осями: 
0,
0.

x
y
=⎧

⎨ =⎩
 

точка loc min 0x =  (О ( )0;0 ) має тип, зображений на рис. 1.11 ж,  

точка loc max  2
3

x =  (А 2 / 33
2 4;
3 9

e−⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

) має тип, зображений на рис. 1.11 а,  

точка перегину В
2 6

332 6 10 4 6;
3 9

e
−⎛ ⎞− −⎜ ⎟

⎜ ⎟
⎝ ⎠

 має тип, зображений на рис. 1.19 е,   

точка перегину С
2 6

332 6 10 4 6;
3 9

e
+⎛ ⎞+ +⎜ ⎟

⎜ ⎟
⎝ ⎠

 має тип, зображений на рис. 1.19 д. 

Як правило, екстремуми, що відповідають точкам, в яких похідна не існує, є 

піковидними, як у цьому випадку точка О ( )0;0 . 

9) Графік побудовано на рис. 3.9.  ■ 

 
Рис. 3.9. 

 
  0 2 6

3
0,15

− ≈

≈ −

перегин

+ + −−

∩  ∩ ∪∪

2 6
3

1, 48

+ ≈

≈
 

перегин
∩

О 
   В 

А С
 

2 / 3 xy x e−=
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б) Розглянемо функцію 2

2( ) arcsin
1

xf x x
x

= −
+

. 

1) ( )D f = \ , оскільки 

2 2
2 2

2 2 2

2 1 , (1 ) 0,21 1 (1 ) 2 1
1 (1 ) 2 , (1 ) 0,

x x xx x x x x
x x x x

⎧ ⎧≤ + − ≥⎪ ⎪− ≤ ≤ ⇔− + ≤ ≤ + ⇔ ⇔ ⇔ ∈⎨ ⎨
+ − + ≤ + ≥⎪ ⎪⎩ ⎩

\ . 

2) 2 2

2 2( ) arcsin ( ) arcsin ( )
1 ( ) 1

x xf x x x f x
x x

− ⎛ ⎞− = − − = − − = − − ⇒⎜ ⎟+ − +⎝ ⎠
 

функція непарна, тому її графік є симетричним відносно точки О(0,0). 
3) Функція неперіодична. 
4) Неперервність функції: 

– 2

2( )
1

xt g x
x

= =
+

 неперервна на \  як частка двох многочленів зі 

знаменником, що не дорівнює нулю на \ , значення функції ( )g x  – це 

[ 1;1]t∈ − , як було зазначено в п. 1);  

– ( ) arcsinh t t=  неперервна при [ 1;1]t∈ − ,  

– функція 1 2

2( ) arcsin ( ( ))
1

xf x h g x
x

= =
+

є неперервною на \  як складена 

функція;  

– лінійна функція 2 ( )f x x=  – неперервна.  

Висновок: функція 1 22

2( ) arcsin ( ) ( )
1

xf x x f x f x
x

= − = −
+

 є неперервною як сума 

двох неперервних функцій. 
5) Оскільки функція неперервна на \ , то її графік не має вертикальних 

асимптот. Знайдемо похилі асимптоти: 

P

N

0

0

2
2arcsin( ) 1lim lim 1 1

x x

x
f x xk

x x

→

→

→±∞ →+∞

→∞

+= = − = −


����

, 

( ) 2 2

2 2lim ( ) lim arcsin ( ) lim arcsin 0
1 1x x x

x xb f x kx x x
x x→±∞ →±∞ →±∞

⎛ ⎞= − = − − − = =⎜ ⎟+ +⎝ ⎠
, 
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тому y x= − – похила асимптота на ±∞ . 

6) Напрямки монотонності й точки екстремуму. 

2

2 2 22

2

2 1 2(1 ) 2 2arcsin 1
1 (1 )21

1

x x x xy x
x xx

x

′ + − ⋅⎛ ⎞′ = − = ⋅ − =⎜ ⎟+ +⎝ ⎠ ⎛ ⎞− ⎜ ⎟+⎝ ⎠

 

2

2 2 2

2 22 2 2

2

1 при 1;
2(1 ) 2sgn(1 ) 11 1

1 3(1 ) (1 ) при 1.
1

x x
x x x

x xx x x
x

⎧ −
<⎪− − ⎪ += − = − = ⎨

+ ++ − ⎪− >⎪ +⎩

. 

Критичні точки: 0y′ = x⇔ ∈∅ ;  ( )y x′∃ 1x⇔ = ± . 

Знаки y′  

Характерні точки 

Напрямки монотонності, loc extr   

Значення функції  в точках loc extr         1
2
π

− +           1
2
π
−  

7) Опуклість функції і точки перегину її графіка: 

2
2 2

2 2 2 2

2sgn(1 ) 1 21 2sgn(1 ) 2sgn(1 )
1 1 (1 )

x xy x x
x x x

′ ′⎛ ⎞− −⎛ ⎞′′ = − = − ⋅ = − ⋅⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠⎝ ⎠
. 

Знайдемо точки, «підозрілі» на перегин: 

0y′′ = 0x⇔ = ;  ( )y x′′∃ 1x⇔ = ± . 

Знаки y′′  

Характерні точки 

Напрямки опуклості, 
точки перегину 

 

Ординати точок 
перегину 

            1
2
π

− +              0               1
2
π
−  

1  
max

1−  
min 

−− +

  0  
перегин

1−  
перегин

+ −
_ +

∩ ∩ ∪∪  

  1  
перегин 

∩
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8) Точка перетину з осями: 
0
0

x
y
=⎧

⎨ =⎩
; інші точки перетину з віссю абсцис 

можна знайти лише наближеними методами, а в даному випадку в цьому немає 
особливої потреби.  

Характерні точки: 

точка loc min 1x = −  ( 1; 1
2

A π⎛ ⎞− − +⎜ ⎟
⎝ ⎠

) має тип, зображений на рис.1.11є,  

точка loc max 1x =  ( 1; 1
2

B π⎛ ⎞−⎜ ⎟
⎝ ⎠

)    має тип, зображений на рис. 1.11 в, 

точка перегину О ( )0;0  має тип, зображений на рис. 1.19 а. 

Точки екстремуму піковидні. 
9) Графік зображено на рис. 3.10. ■ 

 
Рис. 3.10.  

 в) Для функції sin
2 cos

xy
x

=
+

 маємо 

1) ( )D y = \ . 

А  О 

В 

  
2

2arcsin
1

xy x
x

= −
+
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2) sin( )( ) ( )
2 cos( )

xy x y x
x

−
− = = − ⇒

+ −
 функція непарна, тому її графік є 

симетричним відносно точки О(0,0). 
3) Функція періодична з періодом 2π . 

4) Функції ( ) sing x x=  і ( ) 2 cosh x x= +  є неперервними на \ , тому дана 

функція є неперервною на ( )D y = \  як частка двох неперервних функцій.   

5) Оскільки функція неперервна на \ , то її графік не має вертикальних 
асимптот. Графіки періодичних функцій не мають похилих і горизонтальних 
асимптот. 

6) Інтервали монотонності й точки екстремуму функції. 

2

2 2

sin cos (2 cos ) sin 2cos 1
2 cos (2 cos ) (2 cos )

x x x x xy
x x x

′ + + +⎛ ⎞′ = = =⎜ ⎟+ + +⎝ ⎠
. 

Критичні точки: 

0y′ = 22cos 1 0 2 ,
3

x x n nπ
⇔ + = ⇔ = ± + π ∈] . 

Знаки похідної достатньо визначати на будь-якому відрізку довжини періоду, а 
з урахуванням непарності функції, можна обмежитися лише відрізком [0, ]π . 

Знаки y′  

Характерні точки 

Напрямки монотонності, loc extr   

Значення функції  в точках loc extr                          3 / 3 0,57≈  
 

7) Опуклість функції і точки перегину її графіка. 

2

2 4

2cos 1 2sin (2 cos ) 2(2 cos )sin (2cos 1)
(2 cos ) (2 cos )

x x x x x xy
x x

′⎛ ⎞+ − + + + +′′ = = =⎜ ⎟+ +⎝ ⎠
 

4 3

2sin (2 cos )( 1 cos ) 2sin ( 1 cos ) .
(2 cos ) (2 cos )

x x x x x
x x

+ − + − +
= =

+ +
 

Знайдемо точки, «підозрілі» на перегин: 

2π/3
max

_ +
   0 
 

π 
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0y′′ =
sin 0, ,

,
cos 1; 2 ,

x x n
n m

x x m
= = π⎡ ⎡

⇔ ⇔ ∈⎢ ⎢= = π⎣ ⎣
] . 

 

Знаки y′′  

Характерні точки 

Напрямки опуклості, точки перегину  
Ординати точок перегину       0                                  0 

 

Внаслідок непарності й періодичності функції точки з абсцисами 0x =  і x = π  

будуть перегинами її графіка.  

8) Точки перетину з осями: 
, ,

0.
x n n
y
= ∈⎧

⎨ =⎩

]π
 

Точки loc max * 2 2
3nx nπ

= + π  ( 2 32 ; ,
3 3nA n n

⎛ ⎞π
+ π ∈⎜ ⎟⎜ ⎟

⎝ ⎠
] ) мають тип, 

зображений на рис. 1.11 а, тоді завдяки непарності **
nx =

2 2
3

nπ
− + π  

( 2 32 ; ,
3 3nB n n

⎛ ⎞π
− + π − ∈⎜ ⎟⎜ ⎟
⎝ ⎠

] ) – точки loc min, які мають тип, зображений на 

рис. 1.11 д. 

Точки перегину 2 (2 ,0)nC nπ , n∈]  мають тип, зображений на рис. 1.19 а, 

точки перегину 2 1( 2 ,0)nC n+ π + π , n∈]  мають тип, зображений на рис. 1.19 д. 

9) Графік функції спочатку будуємо на відрізку [0, ]π  (рис. 3.11 а), потім 

продовжуємо його за непарністю симетрично відносно точки О(0,0) на відрізок 
[ ,0]−π , отримуючи графік на відрізку [ , ]−π π  (рис. 3.11 б). Нарешті, 

продовжуємо отриманий графік за періодом на \ . Графік заданої функції 
побудовано на рис. 3.11 в. 

 
 

   0 

–

∩

    π 
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а                                                            б 

в 
Рис. 3.11. 

 г) Розглянемо функцію arctg
2
xy x= − .  

1) ( )D y = \ .  

2) ( ) arctg ( )
2
xy x x y x−

− = + = − ⇒  функція непарна, тому її графік є 

симетричним відносно точки О(0,0). 
3) Функція неперіодична. 
4) Дана функція є неперервною на \  як різниця двох неперервних на \  

функцій.   
5) Графік функції не має вертикальних асимптот. 
Похилі асимптоти: 

N

2

( ) 1 arctg 1lim lim
2 2x x

f x xk
x x

→

→+∞ →+∞

→+∞

⎛ ⎞
⎜ ⎟
⎜ ⎟= = − =⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠


��
π

, 

( ) 1lim ( ) lim arctg lim arctg
2 2 2x x x

xb f x kx x x x
→+∞ →+∞ →+∞

⎛ ⎞= − = − − = − = −⎜ ⎟
⎝ ⎠

π , 

тому 1
2 2

y x= −
π  – горизонтальна асимптота на +∞ ; 

N

2

( ) 1 arctg 1lim lim
2 2x x

f x xk
x x

→−

→−∞ →−∞

→−∞

⎛ ⎞
⎜ ⎟
⎜ ⎟= = − =⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠


��
π

, 

 А0 

 В0 

А0 

А0

  С0 С0 

В–1 

А1   А–1
С–2   С–1

В0

  С0

 С1

 В1

С2
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( ) 1lim ( ) lim arctg lim arctg
2 2 2x x x

xb f x kx x x x
→−∞ →−∞ →−∞

⎛ ⎞= − = − − = − =⎜ ⎟
⎝ ⎠

π , 

тому 1
2 2

y x= +
π  – горизонтальна асимптота на −∞ . 

6) Інтервали монотонності і точки екстремуму функції. 
2

2 2

1 1 1
2 1 2(1 )

xy
x x

−′ = − =
+ +

;  0y′ = 1x⇔ = ± . 

Знаки y′  

Характерні точки 

Напрямки монотонності, loc extr   

Значення функції  в точках loc extr         1
2 4

π
− +           1

2 4
π

−  

7) Опуклість функції і точки перегину графіка. 

2 2 2

1 1 2
2 1 (1 )

xy
x x

′⎛ ⎞′′ = − =⎜ ⎟+ +⎝ ⎠
; 0y′′ = 0x⇔ = . 

Знаки y′′  

Характерні точки 

Напрямки опуклості, точки перегину 

 

 
Ординати точок перегину                       0                                  

8) Точка перетину з осями: 
0,
0;

x
y
=⎧

⎨ =⎩
 інші точки перетину з віссю абсцис 

шукати не будемо. 

Точка  loc min 1x =  (А 11;
2 4

π⎛ ⎞−⎜ ⎟
⎝ ⎠

) має тип, зображений на рис. 1.11 д, 

точка loc max 1x = −  (В 11;
2 4

π⎛ ⎞− − +⎜ ⎟
⎝ ⎠

) має тип, зображений на рис. 1.11 а. 

Точка перегину О(0,0)  має тип, зображений на рис. 1.19 д.  
9) Графік зображено на рис. 3.12. ■ 

       0 
перегин

+–

∪∩

1  
min 

1−  
max 

+ + −
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Рис. 3.12.  

 д) Розглянемо функцію, що задана параметрично: 
ln ,

ln .

x t t
ty

t

=⎧
⎪
⎨

=⎪⎩

 

1) ( ) { 0}D y t= > . 

2) ?

,
ln 1/lim lim (пр.Лопiталя) lim 0,

1t t t

x
t t ty

t→+∞ →+∞ →+∞

→ +∞⎧
⎪→ +∞⇒ ⇒∞⎨ ⎡ ⎤= = = = +⎪ ⎢ ⎥∞⎣ ⎦⎩

 

lim 0 0
x

y y
→+∞

⇒ = + ⇒ =  – горизонтальна асимптота на +∞ ; 

?

20 0 0 0 0

0 0

ln 1/lim lim ln lim (пр.Лопiталя) lim lim 0,
1/ 1/

0
lnlim lim ,

0

t t t t t

t t

t tx t t t
t t

t
ty

t

→+ →+ →+ →+ →+

→+ →+

⎧ ∞⎡ ⎤= = = = = − = −⎪ ⎢ ⎥∞ −⎪ ⎣ ⎦→ + ⇒ ⇒⎨
−∞⎡ ⎤⎪ = = = −∞ ⋅∞ = −∞⎢ ⎥⎪ +⎣ ⎦⎩

0
lim
x

y
→−

⇒ = −∞  ( lim 0
y

x
→−∞

= − ) ⇒  0x =   –вертикальна асимптота. 

3) Інтервали монотонності й точки екстремуму функції. 

 А 

 

 О  В 

1
2 2

y x= +
π

1
2 2

y x= −
π

 arctg
2
xy x= −  
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2

2

1 lnln
1 ln

1( ln ) (ln 1)ln

t
x

t

t tt t
y tt ty
x t t t tt t

t

⋅ −′⎛ ⎞
⎜ ⎟′ −⎝ ⎠′ = = = =

′ ′ ++ ⋅
. 

Знайдемо критичні точки, тобто точки, в яких похідна дорівнює нулю або не 
існує. 

0xy′ =
2,72,

1 ln 0
1/ 0,37;

x e
t t e

y e
= ≈⎧

⇔ − = ⇔ = ⇔ ⎨ = ≈⎩
 

xy′∃
0, 0 ( ), 1/ 0,37,

ln 1 0; 1/ ; 2,72.
t t D y x e

t t e y e
= = ∈ = − ≈ −⎡ ⎡ ⎧

⇔ ⇔ ⇔ ⎨⎢ ⎢+ = = = − ≈⎣ ⎣ ⎩
 

 

Знаки y′  

Характерні точки 

Напрямки монотонності, loc extr 

Точка loc extr на координатній 
площині  

               { 1/x e
y e
= −
= −       { 1/

x e
y e
=
=  

 

4) Опуклість функції і точки перегину графіка. 

2 2
2 2

4 3 3 3

1 ln 1 1(ln 1) (1 ln ) 2 (ln 1)
(ln 1)( ) 2(ln 2) .
( ln ) (ln 1) (ln 1)

x t
xx

t

t
t t t t t t

t ty tt ty
x t t t t t t

′⎛ ⎞− ⎛ ⎞− ⋅ + − − + + ⋅⎜ ⎟ ⎜ ⎟′ ′ + −⎝ ⎠ ⎝ ⎠′′ = = = =
′ ′ + +

 

Точки, «підозрілі» на перегин:  

2

22

2 2

2

2 5,82,

2 / 0,34;,
0

1/ ; 2 / 0,34,

2 5,82.

xx

x e

y et e
y

t e x e

y e

⎡⎧ = ≈⎪⎢⎨
⎢⎡ = ≈= ⎪⎩′′ = ⇔ ⇔ ⎢⎢
⎧⎢⎢ = = − ≈ −⎣ ⎪
⎢⎨

= − ≈ −⎢⎪⎩⎣

 

xxy′′∃
0, 0 ( ), 1/ 0,37,

ln 1 0; 1/ ; 2,72.
t t D y x e

t t e y e
= = ∈ = − ≈ −⎡ ⎡ ⎧

⇔ ⇔ ⇔ ⎨⎢ ⎢+ = = = − ≈⎣ ⎣ ⎩
 

 
 
 

t e=
max 

1/t e=
min 

_ _ + 
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Знаки y′′  

Характерні точки 

Напрямки опуклості, 
точки перегину 

Точка перегину на 
координатній площині 

              2

2
2 /
2

x e
y e

⎧ = −
⎨

= −⎩
    { 1/x e

y e
= −
= −

        
2

2
2
2 /

x e
y e

⎧ =
⎨

=⎩
         

 

5) Точка перетину з осями: 
0, 0,

1
ln 0; 0.
t x

t
t y
≠ =⎡ ⎧

⇔ = ⇔ ⎨⎢ = =⎣ ⎩
. 

6) Графік зображено на рис. 3.13. 

 
 
 
 
 

                                      
Рис. 3.13. 

 

 е) Розглянемо функцію, що задана параметрично: 
2

3

2 ,
3 .

x t t
y t t

⎧ = −⎪
⎨

= −⎪⎩
 

1) ( ) { }D y t= ∈\ . 

1/t e=  
перегин

21/t e=
перегин 

+ –
_

+

∩
∩

∪  ∪
2t e=  

перегин 
∩  0 

2t e=t e=

1/t e=

21/t e=

1/t e=  
21/t e=

t e= 2t e=



§ 13. Побудова графіків функцій за характерними точками 

 177

2) 
2

lim ,,
, lim ,

3 ; lim .2

x

y

x

yx
t y x

y t ykx t x

→−∞

→±∞

→−∞

⎧⎧ ⎪ = ∞⎪ → −∞ ⎪⎪⎪ ⎪→ ±∞⇒ → ±∞ ⇒ = −∞⎨ ⎨
⎪ ⎪−⎪ ⎪= → ±∞ = = ∞⎪ ⎪−⎩ ⎩

 

Горизонтальних, вертикальних і похилих асимптот немає. 
3) Інтервали монотонності і точки екстремуму функції. 

23 3 3 (1 )
2 2 2

t
x

t

y ty t
x t
′ −′ = = = +
′ −

. 

Критичні точки: 

0xy′ =
3,

1 0 1
2;

x
t t

y
= −⎧

⇔ + = ⇔ = − ⇔ ⎨ = −⎩
 

xy′∃
1,

1
2.

x
t

y
=⎧

⇔ = ⇔ ⎨ =⎩
 

Знаки y′  

Характерні точки 
Напрямки монотонності, loc extr 

Точка loc extr на координатній 
площині  

                { 3,
2.

x
y
= −
= −          

4) Опуклість функції і точки перегину її графіка. 

2

3 3(1 )
( ) 2 2

2 2(2 )
x t

xx
t

t
y

y
x tt t

′⎛ ⎞+⎜ ⎟′ ′ ⎝ ⎠′′ = = =
′ ′ −−

; 

xxy′′∃
1,

1
2.

x
t

y
=⎧

⇔ = ⇔ ⎨ =⎩
 

Знаки y′′  

Характерні точки 
Напрямки опуклості, точки перегину  

Точка перегину на координатній площині                   { 1,
2.

x
y
=
=               

  1t =  
перегин

−+

∩∪

1t =1t = −
min 

+ −  + 
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5) Точка перетину з осями:  

2

3

0,
2;2,

0 2 0
0; 0,

0;

2 3 3,
0;

3,
2 3 3,0 3 0 3,

0;0;
0,
0.

x
yt

x t t
t x

y

x
y

t
xy t t t
yt
x
y

⎡ =⎧
⎨⎢ = −=⎡ ⎩⎢= ⇔ − = ⇔ ⇔⎢ ⎢= =⎧⎣ ⎢⎨ =⎢⎩⎣
⎡⎧ = −⎪
⎢⎨

=⎪⎢⎩⎡ = ⎢⎢ ⎧ = − −⎪⎢= ⇔ − = ⇔ = − ⇔⎢ ⎨⎢ =⎪⎢ ⎩⎢=⎢⎣ ⎢ =⎧
⎢⎨ =⎩⎢⎣

 

6) Графік зображено на рис. 3.14. 

 
Рис. 3.14.  

 
є) Розглянемо функцію, що задана в полярній системі координат: 

sin 3 ( 0)a aρ = ϕ > . 

3t =

0t =
1t =

3t = − 1t = −

       
2

3

2 ,
3 .

x t t
y t t

⎧ = −⎪
⎨

= −⎪⎩
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1) Область визначення: 2 20 sin 3 0 ,
3 3 3

n n nπ π π
ρ ≥ ⇔ ϕ ≥ ⇔ ≤ ϕ ≤ + ∈] . 

2) Період: 2
3

T π
= , дослідження будемо проводити з урахуванням 

області визначення на відрізку: 0;
3
π⎡ ⎤

⎢ ⎥⎣ ⎦
. 

3) Для всіх значень 0;
3
π⎡ ⎤ϕ∈ ⎢ ⎥⎣ ⎦

 функція приймає скінченні значення, а при 

ϕ→∞  границя функції не існує, тому асимптот у графіка функції немає. 

4) Інтервали монотонності і точки екстремуму функції. 

3 cos3 ;aϕ′ρ = ϕ  

3 cos3 0 , .
6 3

na nϕ

π π′ρ = ϕ = ⇔ ϕ = + ∈]  

В межах проміжку, на якому досліджується функція, 0;
3
π⎡ ⎤ϕ∈ ⎢ ⎥⎣ ⎦

, знаходиться 

одна критична точка 
6
π

ϕ = . 

Знаки ϕ′ρ  

Характерні точки 

Напрямки монотонності, loc extr  

Значення функції  в точках loc extr                            aρ =  

Точка 
6
π

ϕ =  є точкою локального максимуму відносно полярного радіусу, 

тобто на промені 
6
π

ϕ =  полярний радіус досягає свого найбільшого значення 

серед усіх значень на променях 0ϕ = ϕ , де 0 ;
6 6
π π⎛ ⎞ϕ ∈ −δ + δ⎜ ⎟

⎝ ⎠
 для деякого 

0δ > . 

6) Значення функції на кінцях відрізка 0;
3
π⎡ ⎤ϕ∈ ⎢ ⎥⎣ ⎦

: 

π/6 
max

_ 
+

   0 
 

  π/3 
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(0) 0ρ = , 0
3
π⎛ ⎞ρ =⎜ ⎟

⎝ ⎠
. 

7) Для випадку 1a =  графік будуємо спочатку при 0;
3
π⎡ ⎤ϕ∈ ⎢ ⎥⎣ ⎦

 (див. 

рис. 3.15 а), а потім продовжуємо за періодом на проміжки 2 ;
3
π⎡ ⎤π⎢ ⎥⎣ ⎦

 і 4 5;
3 3
π π⎡ ⎤

⎢ ⎥⎣ ⎦
 

(рис. 3.15 б).   ■ 
 
 

                   
а  б 

Рис. 3.15. 
 

ж) Розглянемо функцію, що задана в полярній системі координат: 

th
-1

a ϕ
ρ =

ϕ
, де 1 ( 0)aϕ > > . 

1) Область визначення: 
0, th 0, 0,

1
1; 1; 1;

ρ ≥ ϕ ≥ ϕ ≥⎧ ⎧ ⎧
⇔ ⇔ ⇔ ϕ >⎨ ⎨ ⎨ϕ > ϕ > ϕ >⎩ ⎩ ⎩

. 

2) Функція не є періодичною. 

3) Оскільки 
1 0

thlim
1ϕ→ +

ϕ
= +∞

ϕ−
, то 1ϕ =  – асимптота.  

/ 6ϕ = π

/ 3ϕ = π  

3
π

ϕ =
2
3
π

ϕ =

4
3
π

ϕ =      5
3
π

ϕ =  

ϕ = π 0ϕ =

0ϕ =

{ / 6
1

ϕ = π
ρ =   
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Оскільки 

P

N

1

thlim 0
1

→

ϕ→+∞

→+∞

ϕ
=

ϕ−
, то при ϕ→∞  графік функції буде прямувати до 

точки 0ρ = . 

4) Інтервали монотонності й точки екстремуму функції. 

2

2 2 2 2 2

1 1th 1 sh 21 sh chch 2
( 1) ( 1) ch ( 1) ch

a a aϕ

ϕ−
− ϕ ϕ− − ϕϕ− − ϕ⋅ ϕϕ′ρ = = =

ϕ− ϕ− ϕ ϕ− ϕ
. 

З’ясуємо знак чисельника. Для цього введемо допоміжну функцію 

1( ) 1 sh 2
2

g ϕ = ϕ− − ϕ . Оскільки для неї ( ) 1 ch 2 0g ′ ϕ = − ϕ <  при 1ϕ > , то вона 

при 1ϕ >  спадає, тому ( ) (1)g gϕ < , тобто 

1 11 sh 2 sh 2 0
2 2

ϕ− − ϕ < − < . 

Отже чисельник дробу, що відповідає похідній, є від’ємним при 1ϕ > , тому 

дана функція спадає. Це означає, що при збільшені полярного кута ϕ  від 1 до 

+∞  полярна відстань зменшується від +∞  при 1 0ϕ→ +  до нуля при ϕ→∞ . 

Графік функції при 1a =  зображено на рис. 3.16.   ■ 

 
Рис. 3.16.  

1ϕ =
th

1
a ϕ

ρ =
ϕ−
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Розділ 4. ІНДИВІДУАЛЬНЕ ТИПОВЕ ЗАВДАННЯ 
 

§ 1. Варіанти індивідуальних типових завдань 

 

1. Знайти похідну функції. 

2. Знайти за означенням ( )f a′ , 

(значення a  задано) або довести, 
що похідна не існує. 

3. Довести, що…. 
4. Знайти похідну функції, що 

задана параметрично. 
5. Знайти похідну функції, що 

задана неявно. 
6. Знайти диференціал функції. 

Якщо задана точка, обчислити в 
точці. 

7. Знайти похідну вказаного 
порядку n . 

8. Знайти похідну n -го порядку. 

9. Знайти диференціал вказаного 

порядку. 

10. Вивести формулу для суми за 

допомогою похідної. 

11. Довести нерівність за допомогою 
похідної. 

12. Довести тотожність за допомогою 
похідної. 

13. Обчислити границі за правилом 
Лопіталя. 

14. Розвинути функцію за формулою 
Маклорена. 

15. Знайти границі за допомогою 
формули Маклорена. 

16. Побудувати графіки функцій. 
  

ВАРІАНТ 1 ВАРІАНТ 2 

1. ( )( )sin( ) arctg 1 cos xf x x= + . 1. ( )( )sin( ) cos 2 ln 1 arctg x xxf x = ⋅ + . 

2. 2( ) ( 2) ( 3)( 4), 4f x x x x a= − − − = . 2. 3( ) ( 2)( 3)...( 10), 0f x x x x x a= − − − = . 

3. Похідна періодичної функції з 
періодом T  є періодичною 
функцією з періодом T . 

3. Похідна парної функції – непарна, а 
непарної – парна. 

4. 
ln sin / 2,

(0 )
ln sin

x t
t

y t
=⎧

< <⎨ =⎩
π . 4. 

( sin ),
( )

(1 cos )
x a t t

t
y a t
= −⎧

−∞ < < ∞⎨ = −⎩
. 

2 25. 5 5 30 10 9 0;
1.

x y x y
y

+ − + + =
< −

 
2 25. 4 4 3 4 7 0;
2 1.

x xy y x y
x y

− + + − − =
< −

 



§ 1. Варіанти індивідуальних типових завдань 

 183

6. ( )1sin2sin21ln −++ xx . 6. 
x
x

x

x
+
−

+
− 1

1ln
1

arcsin
2

. 

7. 3,3 == nxy x .  

8. 
44

1ln 2

2

+−
−

=
xx

xy . 

7. 2sin , 4y x x n= = .  

8. 
)1(

1
2 −

=
xx

y . 

9. arcsin ; 9; 0y x n x= = = . 9. 6/;10;3sin2sinsin π==⋅⋅= xnxxxy . 

10. 2242 )12(...531 −−++++ nxnxx . 10. 44184 )34()1(...951 −− −−+++− nn xnxx . 

11. 0;
1

)1ln( >
+

>+ x
x

xx . 11. 0; ≥≤ xxxarctg . 

12. 
3
2

1cossin
1cossin

66

44

=
−α+α
−α+α . 12. ( )21 sin 2 1 1 tg

1 cos 2 2
α α
α

+
= +

+
. 

13. а) 
122

253lim 34

234

1 −−+
−−−+

−→ xxx
xxxx

x
, 13. а) 

23353
49432lim 234

234

1 ++++
−−−+

−→ xxxx
xxxx

x
, 

б) ⎟
⎠
⎞

⎜
⎝
⎛

−
−

→ 1
11lim

0 xx ex
,     б) 

0

1 1lim
arcsinx x x→

⎛ ⎞−⎜ ⎟
⎝ ⎠

, 

в) 
sin

0

1lim
x

x x→+

⎛ ⎞
⎜ ⎟
⎝ ⎠

, в) ( )cos

/ 2 0
lim 2 x

x
x

π
π

→ −
− , 

г) ⎟
⎠
⎞

⎜
⎝
⎛
π+∞→

xarctgx
x

2lnlim ,  

д) 
x

x
x

/1

0
arccos2lim ⎟

⎠
⎞

⎜
⎝
⎛
π→

. 

г) 
0

1lim ln , , 0
x

x
x

α β α β
→+

⎛ ⎞ >⎜ ⎟
⎝ ⎠

,  

 

д) 
0

ln sinlim
x

x
ctgx→+

. 

14. )sin(sin x  до 5x . 14. )cos3ln( x  до 6x . 

15. 
0

sh 2 2shlim
( 1 )xx

x x
e x x→

−
− −

. 15. 
2

0

cos 1 / 2lim
ch 3 cos3 2x

x x
x x→

− +
+ −

. 

16. а) ( )22

5

1−
=

x

xy ,  16. а) 
4

1
1
⎟
⎠
⎞

⎜
⎝
⎛

−
+

=
x
xy , 

б) xxxy 3sin
3
12sin

2
1sin ++= . б)  xxxy −−= 3 2)3( . 
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ВАРІАНТ 3 ВАРІАНТ 4 

1. 
1

sin arcsin ln 31( )
1

xxf x e
x

−⎛ ⎞= ⋅⎜ ⎟+⎝ ⎠
. 1. ( )

21
2( ) ln arctg

1

x
x

x
ef x x

e
+= ⋅

+
. 

2. 
410 arctg( ) 2 , / 4xf x e a π= + = . 2. 2( ) sin , 0

4
f x x x aπ⎛ ⎞= ⋅ + =⎜ ⎟

⎝ ⎠
. 

3. 0)0( =′f  для  

2 1sin , 0,
( )

0, 0.

x x
f x x

x

⎧ ≠⎪= ⎨
⎪ =⎩

 

3. Існують такі числа a  і b , при яких 

функція 
2 , 1;

( )
, 1.

x x
f x

ax b x
⎧ ≤⎪= ⎨

+ >⎪⎩
 неперервна і 

диференційовна в точці x=1. 

4. 
sin sin ,
cos cos .

x r t rt
y r t rt
= +⎧

⎨ = +⎩
 4. 

4

2 4

2

2 4

1 ,
1 2

2 .
1 2

tx
t t
ty
t t

⎧ +
=⎪⎪ + +

⎨
⎪ =⎪ + +⎩

 

2

0

5. 5 8 12 26 11 0; 2;
11/12.

xy y x y y
x

+ − − + = <
=

 05. ln 1; 0; 0xy y y x+ = > = . 

6. 1;2;2
21

2

== xx
x

x
x

x

. 6. 1 2
ln 1; ;xarctg x x e

x e
= = . 

7. 3,
1

3

=
−

= n
x
xy .  7.  4,sin == nxey x . 

8. ( )2ln 1 4y x= − . 8. 
bax

y
+

=
1 . 

( )2
29. 1 1 ; 16; 0.y x x n x= − + − = =  9. 

( )
1;10;

23
17

2 ==
−
+

= xn
x
xy . 

10. nxnxx cos...2cos2cos +++ . 10. 2 2 2 2 4 2 2 21 3 5 ... (2 1) nx x n x −+ + + + − . 

11. 
1206

sin
6

533 xxxxxx +−<<− ,  

                                              0x > . 

11. 
2

cos 1 ;
2
xx x≥ − ∈\ . 

12. )2cos2cos3(
4
1sincos 366 α+α=α−α . 12. 

2 2

2 2
tg 2 tgtg tg3

1 tg 2 tg
α − α

α ⋅ α =
− α ⋅ α

. 
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13. а) xx xx
xx

−
+−

→

1lnlim
1

, 13. а) ( ) ( )
( )( ) 0;

11
11lim

1
≠β⋅α

−−
−β−−α
αβ

αβ

→ xx
xx

x
, 

б) 2 20

1 1lim
sinx x x→

⎛ ⎞−⎜ ⎟
⎝ ⎠

,  б) ( )xxx
x

27/66/7 lnlim −
+∞→

, 

в) ( ) cos

/ 2 0
lim tg x

x
x

π→ −
, в) 

1
ln(sh )

0
lim x

x
x

→+
, 

г) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−π

+∞→ 1
arcsin2lim

2x

xx
x

, г) 
0

lim sin ln(ctg )
x

x x
→+

, 

д) 
50

1001

50 49lim
100 99xx

x x
x→

− +
− +

. д) 
0

ln(1 cos )lim
ln(tg )x

x
x→+

− . 

14. 
x

xsinln  до 6x . 14. 
x

ex 1ln −  до 4x . 

15. 
( )3 4

0

1 1 2 1
lim

arctg arcsinx

x x x x

x x→

+ + + − −

−
. 15. 

0

tglim
sinx

x x
x x→

−
−

. 

16. а)
( )3

2

1
20
−

=
x

xy ,  16. а) 322 )1(32 −= xxy ,  

б) 
x

xy
2ln

= . б) 21
2arccos

2 x
xxy

+
−= . 

 
ВАРІАНТ 5 

 
ВАРІАНТ 6 

1. ( )( )( ) arctg sinx xf x e x x= ⋅ ⋅ . 1. ( )3 2 1( ) 1 arcsin xf x x x += + ⋅ . 

2. 
2

( ) , 0
1

x

x
ef x a

e
= =

+
. 2. ( ) 10 , 1xf x x a= ⋅ = . 

3. Існує неперервна функція, що не 

має похідних в заданих точках 

naaa ;...;; 21 . 

3. Якщо (0)f ′∃ ∧  0)0( =f , то 

 )0()(lim
0

f
x
xf

x
′=

→
. 
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4. 
arcsin ,

cos cos
x t
y r t rt
=⎧

⎨ = +⎩
  ( 1 1)t− < < . 4. 

2

2

arcsin ,
1

1arccos .
1

tx
t

y
t

⎧ =⎪
+⎪

⎨
⎪ =
⎪ +⎩

 

5. 0;0; 0 =>=+ xyexye y . 5. x y a+ = . 

6. 
2xx . 6. 

35
7

35
5 57 xshxsh + . 

7.  33 , 3xy xa n= = . 

8.  ( ) )1ln(183 2 +++= xxxy . 

7.  5,ln == nxxy .    

8.  xxy 2sin2= . 

9. 2arctg ; 10; 0y x n x= = = . 9. 0;20;
1

1
==

−

+
= xn

x
xy . 

10. nxnxx sin...2sin2sin +++ . 10. nxnxx sin...2sin2sin 22 +++ . 

11. 1 ln(1 ), 1xe x x≥ + + > − . 11. sin tg 2 ; 0 / 2x x x x π+ > < < . 

12. sin tg cos tg
2 2
α α

α − = α ⋅ . 12. 2 27 9sin 2 sin 2
8 8
π π⎛ ⎞ ⎛ ⎞− α − − α =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

1 sin 4
2

= α . 

13. а) aa

xa

ax ax
ax

−
−

→
lim , 13. а)  

22 0

arcsin(2 )lim
3 2x

x

x x→ +

−

− +
, 

б) 
1

lim ; 0
1 1x x xα β→

α β⎛ ⎞− α ⋅β ≠⎜ ⎟− −⎝ ⎠
,   б) 

( )0
lim

4 2 1xx x x eπ→

⎛ ⎞π π⎜ ⎟−
⎜ ⎟+⎝ ⎠

, 

в)  ( ) ln

0
lim 1 x

x
x

→+
+ , в)  

tg
2

lim 2
x
a

x a

x
a

π

→

⎛ ⎞−⎜ ⎟
⎝ ⎠

, 

г) ( ) tg

0
lim arcsin x

x
x

→+
,   г) 

xx
xex

x sin
sinlim

+
+

∞→
,   

д) 
x
x

x 3cosln
coslnlim

0→
. д) 

ln

1

1lim
ln

x

x

a
x→

− . 
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14. )cos4ln( 2 x  до 4x . 14. )cos5ln( 3 x  до 4x . 

15. 
0

arctg arcsinlim
tg sinx

x x
x x→

−
−

. 15. 
5

40

1 2 1lim
1 1x

x
x x→

+ −
+ − −

. 

16. а) 4

5 8
x

xy −
= ,  16.   а) 2

3

)7(
)5(

−
−

=
x
xy ,    

 б) 
2

2
1arccos
1

xy
x

−=
+

. б) 
x

xy
ln

= . 

ВАРІАНТ 7 ВАРІАНТ 8 

1. ( )4 4 4( ) 1 ln arctg
x

f x x x⎛ ⎞= + ⋅ ⎜ ⎟
⎝ ⎠

. 1. 2
2( ) ln(1 ) arctg

2 cos

xxf x x
x

⎛ ⎞
= + ⋅ ⎜ ⎟⎜ ⎟+⎝ ⎠

. 

102. ( ) ( 1) ( 2)( 3)( 5); 1.f x x x x x x a= − − − − =  2. ( ) 4/1;132)( 3 =−+−= axxxxxf . 

3. Функція 
x

xy
+

=
1

1ln)(  

задовольняє співвідношення  

1 yx y e′⋅ + = .  

3. Функція 
21

arcsin)(
x

xxy
−

=  задовольняє 

співвідношення ( )21 1x y xy′− ⋅ − = . 

4. 
3

3

cos ,

sin .

x t

y t

⎧ =⎪
⎨

=⎪⎩
 4. 

1 sin cos 2 ,
1 sin 2 ctg .

x t t
y t t
= + ⋅⎧

⎨ = − ⋅⎩
 

5. 2 2
06 10 2 0; 5; 0.x y x y y x+ − + − = >− =  5. 025 =−++ xyyy . 

6. 0;
1)45(

32)12(
32

2

=
−⋅+

+⋅− x
xx
xx . 6. 1 sinln 2 sin

1 sin
x arctg x
x

+
+

−
. 

7.  
2

, 5xy e n−= = . 7.  2,1 2 =+= nxxy .    

8.  
1242 −−

=
xx

xy . 8.  xxy 2)1ln( −= . 

9. 2 2(2 1)sh ; 10; 0y x x n x= + = = . 9. 6/;10;sin 2 π=== xnxy . 

10. nxnxx cos...2cos2cos 22 +++ . 10. 3 63 2 5 4 7 6 ...x x x⋅ + ⋅ + ⋅ + +  
2 3(2 1)(2 2) nn n x −+ − − . 

11. 0;1ln21 2 >≤− xxx . 11. ;xe e x x≥ ⋅ ∈\ . 
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12. 
α
α

=α+
5,3sin
5,10sin7cos21 . 12. ( ) ( ) 1cossin2cossin3 6644 =α+α−α+α . 

13. а) 
ϕ+

ϕ−ϕ
π→ϕ 4cos1

5,0sinlim
2

4/

tg , 13. а)  
2

30

ln(1 )lim
cos3 xx

x
x e−→

+
−

, 

б) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−

+→ 20

)1ln(
)1(

1lim
x

x
xxx

,   б) 
/ 2

lim
ctg cosx x x→π

⎛ ⎞π π
−⎜ ⎟

⎝ ⎠
, 

в)  
1

ln( 1)

0
lim

xe

x
x −

→+
, в)  ( )

0

1
2

lim cos
x

x
ax

→
, 

г) xxarctg
x

ln)2(lim −π
+∞→

, г) x

x
x)ln(lim

0
−

+→
, 

д) 20

)(lim
x

axa xx

x

−+
→

. д) 
25

2/ 6

3tg 1
lim

2sin 5sin 3x

x
x x→π

−

+ −
. 

14. 
23x xe +  до 5x . 14. 3 3sin x  до 13x . 

15. 
xx

xxx
x −+

+−+
→ )1ln(

21cos1lim
0

. 15. 
x

xex

x cosln
21lim

0

+−
→

. 

16. а) 
x

xxxy 22 23 +−−
= , 16. а)     

12

3

−
=

x
xy ,    

б)    
12

1
2

22

−
−

=
x

xxy . б)     xexy 22 )2( −−= . 

ВАРІАНТ 9 ВАРІАНТ 10 

1. 
( )

2

sin
( )

ln(1 tg )

xx
f x

x
=

+
. 

 

1. 
( )( )ln

1( )
cos arctg x

f x
x x

=
−

. 

2. π−=π== 21 ;|;sin|)( aaxxf . 2. ( ) 1;1)(
4/32 =++= axxxf . 

3. З того, що ( ) ( )f x g x≥ , не завжди 

витікає, що ( ) ( )f x g x′ ′≥ . 

3. Якщо ( )f x  має похідну на\ , то 

функція ( )f x  має похідну в тих точках 

x , для яких ( ) 0f x ≠ . 
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4. 
21 ln ,

3 .t

x t

y e

⎧ = −⎪
⎨

=⎪⎩
 4. 

(ln ctg( / 2) cos ),
sin .

x a t t
y a t
= −⎧

⎨ =⎩
 

5. 1cossin =+
x
y

y
x . 5. 2 2 5 7 5 0; 3,5x y x y y− + − + = > − . 

6. 2;1;6 21
22 ===− xxxyy . 6. 1 2

14 0; 1;
4

xxy x x
x y

+ = = = −
+

. 

7. 2cos , 4y x x n= = .  7. 4,22 == nexy x . 

8.  2

2

1
1

x
xy

−
+

= . 8. xxy 44 cossin += . 

9. 0;10;
1

)1ln(
==

+
+

= xn
x
xy . 9. 4/;15;sin3 π=== xnxy . 

10. 1)1(...3221 −+++⋅+⋅ nxnnx . 10. 3 7 4 13 7 ... (4 1) nx x n x −+ + + − . 

11. 
2

ch 1 ;
2
xx x≥ + ∈\ . 11. 2sin ; 0

2
x x x π

π
≥ ≤ ≤ . 

12. α−=
α+α⋅α
α−α⋅α 2

4sin24cos
4sin24cos 2tg

ctg
tg . 12. α=

+α+α
−α+α 4cos

2
6

22

22

ctgtg
ctgtg . 

13. а) 
xxx

xx
x sincos

arcsinlim
2

0 −→
, 13. а)  

0

ln coslim
tgx

x
x→

, 

б) 
12
12lim 30

20

1 +−
+−

→ xx x
xx , б) 20

1 1lim
arctgx x x x→

⎛ ⎞
−⎜ ⎟

⎝ ⎠
, 

в)  ( )2

0
lim ln x

x
x

→+
− , в)  ( ) xx

x
x

/12 33lim +
+∞→

, 

г) lim ; 0; 1a x

x
x a a a

→+∞
> ≠ , г) )1(1

1
lim −

→

x

x
x , 

д) 
0

tglim
arcsin ln(1 )x

x x
x x→

−
− +

. д) 
/ 2

cos(2 1)lim ; ,
cos(2 1)x

m x n m
n x→π

+
∈

+
` . 

14. )(sincos2 x  до 4x . 14. 3 3cos x  до 12x . 

15. 
3

20

3cos arcsin 3 1lim
ln(1 )x

x x x
x→

+ − +
−

. 15. 
3 2

0

1 ctglim
sinx

x x x
x x→

− − . 
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16. а)    2

2

)2(1
1

−+
+

=
x

xy ,  16. а)  xe
x

xxy /1
2 32

−
−+

= , 

      б)    
1

6
1
1ln

+
+

+
−

=
xx

xy .       б)  2arctg
2
xy x= + . 

 
ВАРІАНТ 11 

 
ВАРІАНТ 12 

1. ( )( )2( ) ctg sin ln 1 ( ) xf x x e x= ⋅ + + . 
 

1. 
2arctg 1 ln(1 )( ) ( ) xf x e x + += ⋅ . 

2. 0);sin(sin)( == axxf . 2. 0;sinsin)( 22 =⋅= axxxf . 

3. Похідна функції 

1sin , 0;
( )

0, 0

x x
f x x

x

⎧ ≠⎪= ⎨
⎪ =⎩

  

в точці 0 не існує. 

3. Якщо )(xf  і )(xg  мають похідні в 

точці a , то  

( ) ( ) ( ) ( )lim

( ) ( ) ( ) ( ).
x a

f x g a f a g x
x a

f a g a f a g a
→

−
=

−
′ ′= −

 

4. 
2

3

(sin( / 2) 0,5sin cos ),

( / 2) cos .

x a t t t

y t

⎧ = +⎪
⎨

= − π⎪⎩
 4. 

(2cos cos 2 ),
(2sin sin 2 ).

x a t t
y a t t
= +⎧

⎨ = −⎩
 

5. 0;)2( 22 <=− yxyxa . 5. ( ) 2 2arctg lny x x y= + . 

6. 4 4 2 28 10 16 0;x y x y+ − − + =  

   1 21; 3x x= = . 

6. 2 2( 1) ( 2); ( 1) ( 3);x t t y t t= − − = − −  

    1 24; 0t t= = . 

7. 3,3cos2 == nxxy . 7. 4;sin == nxey x . 

8.  
x
xxy

−
+

=
3
3ln . 8.  

232
23

2

2

−+
−

=
xx
xy . 

9. arctg ; 5; 0y x n x= = = . 9. 0;10;
23
23ln ==

−
+

= xn
x
xy . 

2

1

10. 1 2 3 2 3 4 3 4 5 ...

( 1)( 2) .n

x x

n n n x −

⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ +

+ + +
 10. nxxxx neeee ++++ ...32 32 . 

11. 
3

tg ; 0
3 2
xx x x π

< + < < . 11. 
2

ln(1 ) ; 0
2
xx x x x− < + < > . 
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12. )4cos35(
8
1sincos 66 α+=α+α . 12. 8 8 1cos sin cos2 (3 cos4 )

4
α− α= α⋅ + α . 

13. а) 
0

2tg 3 6tglim
3arctg arctg3x

x x
x x→

−
−

, 13. а)  lim arcsin ctg ( )
x a

x a x a
a→

−
⋅ − , 

б) 
3

5 21

5 2lim
1x

x x x

x→

− −

−
,   б) 

1

1 1lim
1 lnx x x→

⎛ ⎞−⎜ ⎟−⎝ ⎠
, 

в)  ( ) xx x

x
ln1lim

0
−

+→
,  в)  sin

0
lim x

x
x

→+
,  

г) 
21

0
lim(cos ) x

x
x

→
, г) 21

0
)(lim x

x
xxtg

→
, 

д) 
1/

20

(1 )lim
x

x

e x
x→

− + . д) 
2

60

sin(sin ) sinlim
x

x x x
x→

− . 

14. )cos(sin x  до 4x . 14. xtg  до 5x . 

15. ( )
0

ln(1 )
lim

sh2 2shx

x x x
x x→

+ −
−

. 15. 
0

arccos coslim
sin arcsinx

x x
x x→

−
−

. 

16. а) 
3 2

2
2

( 1)
x xy

x
+

=
−

, 16. а)   
3

2
( 1)
( 2)

xy
x
−

=
−

, 

б) xxy sinlnsin −= . б)   4 34 4xxy −= . 
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Приклад 4.1. Знайти похідну функції ( ) ( )
3 21sin ln arctg4 xy x x += ⋅ . 

Розв’язання. Нехай 
3 21sin(ln ), (arctg4 ) xu x v x += = , y u v= ⋅ ,  

y u v uv′ ′ ′= + . 

Знайдемо u′  та v′ . 

cos(ln )xu
x

′ = ; 

3 2ln 1 ln(arctg4 );v x x= + ⋅  

( ) ( ) ( ) ( )
2

32 23
2

1 4ln 1 2 ln arctg4 1 .
3 1 16 arctg4

vv x x x x
vx x

− ′′ = + ⋅ ⋅ + + ⋅ =
+ ⋅
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З останньої рівності знаходимо:  

( ) ( )

( ) ( )
3 2 3 2

1

2223

2 ln arctg4 4 1arctg4 .
1 16 arctg43 1

x x x xv x
x xx

+

⎡ ⎤
⋅ +⎢ ⎥′ = +⎢ ⎥+ ⋅+⎢ ⎥⎣ ⎦

 

Остаточно отримуємо: 

( ) ( ) ( ) ( )

( )
( )

( )
3 2

3 2
1

2223

cos ln 2 sin ln ln arctg4 4sin ln 1
arctg4 .

1 16 arctg43 1

x x x x x x x
y x

x x xx

+

⎡ ⎤
⋅ ⋅ ⋅ +⎢ ⎥′ = + +⎢ ⎥+ ⋅+⎢ ⎥⎣ ⎦

 ■ 

Приклад 4.2. Знайти за означенням ( )f a′  для заданого a , якщо 

( ) ( ) ( )( )( )25 6 7 8f x x x x x= − − − − , 7a = . 

Розв’язання. За означенням похідної маємо: 

( ) ( ) ( ) ( ) ( ) ( )2

0 0

7 7 2 1 1
7 lim lim

x x

f x f x x x x
f

x xΔ → Δ →

+ Δ − + Δ + Δ Δ Δ −
′ = = =

Δ Δ
 

( ) ( )( ) ( )2

0
lim 2 1 1 4 1 1 4.
x

x x x
Δ →

= + Δ + Δ Δ − = ⋅ ⋅ − = −  ■ 

Приклад 4.3. Довести, що існують такі значення a  та b , що функція 

2

2 , 0;
, 0.

x x
y

x ax b x

⎧ ≤⎪= ⎨
+ + >⎪⎩

 

є диференційовною на всій числовій прямій. 

Розв’язання. Задана функція ( )y x  є диференційовною на проміжках 

( );0−∞ , де ( ) 2 ln 2xy x′ = ⋅ , та ( )0;∞ , де ( ) 2y x x a′ = + . 

Визначимо, якими повинні бути a  та b , щоб ( )y x  була 

диференційовною при 0x = . З диференційовності ( )y x  у даній точці випливає 

її неперервність при 0x =  (твердження 1.2), тобто виконана рівність  

( ) ( ) ( )
0 0

lim lim 0
x x

y x y x y
→ + → −

= = . 

Звідси отримуємо, що  

( )2 0

0 0
lim 2 lim 2 1x

x x
x ax b

→ − → +
= + + = = , 

тому 1b = . 
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Знайдемо ліву та праву похідні функції ( )y x  при 0x = :  

( ) ( ) ( ) ( )0 0
0 2 , 0 2 ln 2 ln 2x

x x
y x a a y+ −= =
′ ′= + = = ⋅ = . 

Оскільки функція ( )y x  є диференційовною при 0x = , то, згідно з тверджен-

ням 1.1 і теоремою 1.5,  ( ) ( )0 0y y+ −′ ′=  і ln 2a = . 

Отже, при ln 2, 1a b= =  функція ( )y x  є диференційовною на всій 

числовій прямій.   ■ 
Приклад 4.4. Знайти похідну функції, що задана параметрично: 

2 ln ctg ,
tg ctg .

x t
y t t
=⎧

⎨ = +⎩
 

Розв’язання. Використаємо формулу для знаходження похідної функції, 
що задана в параметричній формі (див. розділ 1, §1, п. 12):  

t

t

ydy
dx x

′
=

′
. 

Отримаємо: 

2 2 2 2

2 1 4 1 1 4cos 2,
ctg sin 2sin cos sin sin 2t t

tx y
t tt t t t
⎛ ⎞′ ′= ⋅ − = − = − = −⎜ ⎟
⎝ ⎠

. 

Підставивши у вираз для dy
dx

, знаходимо: 

2

4cos 2 sin 2 ctg 2
4sin 2

t

t

ydy t t t
dx x t

′ ⎛ ⎞= = − ⋅ − =⎜ ⎟′ ⎝ ⎠
.   ■ 

Приклад 4.5. Знайти похідну функції ( ), 0f x y = , заданої неявно, у 

точці 0M , якщо ( ) ( )3 2 2 2
0, 5 2 6, 1;1f x y x x y y x y M= + + − + − . 

Розв’язання. Застосуємо правило диференціювання функції, що задана 
неявно (див. розділ 1, §1, п. 13). Продиференціюємо рівність, 

3 2 2 25 2 6 0x x y y x y+ + − + − = , 

вважаючи y  функцією від x . Отримуємо: 
2 23 10 5 2 4 0x xy x y yy x y′ ′ ′+ + + − + = . 

Звідси  



Розділ 4. ІНДИВІДУАЛЬНЕ ТИПОВЕ ЗАВДАННЯ 

 194

( )
2

2 2
2

4 3 105 2 1 4 3 10 ;
5 2 1
x x xyx y y x x xy y

x y
− −′ ′+ + = − − =

+ +
. 

У точці 0M  маємо ( )
2

2

4 1 3 1 10 1 1 91
85 1 2 1 1

y ⋅ − ⋅ − ⋅ ⋅′ = = −
⋅ + ⋅ +

.   ■ 

Приклад 4.6. Знайти диференціал функції ( )f x , якщо 

( )
2

2 4

1ln
1 1

x xf x
x x

−
= +

+ −
. 

Розв’язання. Областю визначення функції є проміжок ( 1;1)x∈ − . 

Оскільки для x  з області визначення функції виконується рівність 

( ) ( )
2

2 2
2

1ln ln 1 ln 1
1

x x x
x

−
= − − +

+
, то при диференціюванні отримуємо: 

( )
( ) ( )

4 4 5 4

2 2 2 24 4

2 2 1 4 4 3 4 1
1 1 1 1

x x x x x x xf x
x x x x

− + + − +′ = − − + =
− + − −

. 

Зважаючи на результати п. 5 розділу 1, §1, отримаємо диференціал функції 

( )f x :  

( ) ( )
( )

5 4

24

4 3 4 1

1

x x xdf x f x dx dx
x

+ − +′= =
−

.   ■ 

Приклад 4.7. Знайти похідну функції ( )y y x=  вказаного порядку n , 

якщо  

( )21 arctg , 4y x x n= + = . 

Розв’язання. Застосовуючи означення вищих похідних, отримаємо: 
2

2

12 arctg 2 arctg 1,
1

xy x x x x
x

+′ = ⋅ + = ⋅ +
+

 2

22arctg ,
1

xy x
x

′′ = +
+

 

( )
( ) ( )

( )
2 2

22
2 2 22 2

1 22 42 4 1 ,
1 1 1

x x
y x

x x x

−+ −
′′′ = + ⋅ = = ⋅ +

+ + +
 

( ) ( )
( )

34 2
32

164 ( 2) 1 2 .
1

xy x x
x

−
= ⋅ − ⋅ + ⋅ = −

+
   ■ 
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Приклад 4.8. Знайти n -у похідну функції ( )2 23 4xy e x= − . 

Розв’язання. Використаємо формулу Лейбніца  

( )( ) ( ) ( )

0

n
n k n kk

n
k

u v C u v −

=

⋅ = ⋅ ⋅∑ . 

Позначимо 2 2, 3 4xv e u x= = − , тоді  ( ) 22 , 0,1,..., .m m xv e m n= ⋅ =  Для функції 

u  маємо ( ) ( )46 , 6, ... 0, 3nu x u u u u n′ ′′ ′′′= = = = = = ≥ . Отримані результати 

зведемо в таблицю 4.1. 
 

Таблиця 4.1. 

k  n k−  k
nC  ( )ku  ( )n kv −  

0 n  0 1nC =  23 4u x= −  ( ) 22n n xv e=  

1 1n −  1
nC n=  6u x′ =  ( 1) 1 22n n xv e− −=  

2 2n −  2 ( 1)
2n

n nC ⋅ −
=  6u′′ =  ( 2) 2 22n n xv e− −=  

 

За формулою Лейбніца маємо: 
( ) ( ) ( ) ( ) ( )1 20 1 2 2 22 3 4n n n n n x

n n ny C u v C u v C u v e x− −′ ′′= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ = ⋅ − +  

( ) ( )1 2 2 2 2 21 3 1
2 6 2 6 2 3 3 4 .

2 4
n x n x n xn n n n

n e x e e x nx− −− −⎛ ⎞
+ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ = ⋅ ⋅ + + −⎜ ⎟

⎝ ⎠
   ■ 

Приклад 4.9. Знайти диференціал функції ( )y x  вказаного порядку у 

точці 0x , якщо ( ) 2

1
3 2

y x
x x

=
− +

, 09, 1,5n x= = . 

Розв’язання. Подамо ( )y x  у вигляді комбінації елементарних дробів:  

( ) ( )( )2

1 1 1 1
1 2 2 13 2

y x
x x x xx x

= = = −
− − − −− +

. 

Оскільки (див. таблицю похідних вищих порядків) 
( ) ( )

( )

( ) ( )
( )1 1

1 ! 1 !1 1;
2 12 1

n nn n

n n

n n
x xx x+ +

− ⋅ − ⋅⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠− −
, 
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то для n -ої похідної функції ( )y x  маємо: 

( ) ( ) ( )
( ) ( )1 1

1 11 ! ;
2 1

nn
n ny x n

x x+ +

⎛ ⎞
⎜ ⎟= − −
⎜ ⎟− −⎝ ⎠

 

( ) ( ) ( ) ( ) ( )9 10 10
0 1,5 9! 2 2 0.ny x y= = − − =  

Звідси для диференціала 9-го порядку отримуємо: 

( ) ( ) ( )99 91,5 1,5 0d y y dx= ⋅ = .   ■ 

Приклад 4.10. За допомогою похідної отримати формулу для суми 

( ) ( )sin 3sin 3 ... 2 1 sin 2 1 ,x x n n x x k+ + + − − ≠ π . 

Розв’язання. Спочатку знайдемо таку суму: 

( ) ( )cos cos3 ... cos 2 1S x x x n x= + + + − =  

( )( )2sin cos cos3 ... cos 2 1
2sin

x x x n x
x

⋅ + + + −
= =  

( )sin 2 sin 4 sin 2 ... sin 2 sin 2 2 sin 2
2sin 2sin

x x x nx n x nx
x x

+ − + + − −
= = . 

Шукана сума може бути отримана  диференціюванням ( )S x : 

( ) ( ) ( ) ( )1 sin 3sin 3 ... 2 1 sin 2 1S x x x n n x S x′= + + + − − = − =  

2

sin 2 2 cos 2 sin sin 2 cos .
2sin 2sin

nx n nx x nx x
x x

′ − ⋅ + ⋅⎛ ⎞= − =⎜ ⎟
⎝ ⎠

  ■ 

Приклад 4.11. Довести за допомогою похідної нерівність: 

12 3 , 1.x x
x

> − >  

Розв’язання. 1 12 3 2 3 0x x
x x

> − ⇔ + − > . Розглянемо   допоміжну 

функцію ( ) 12 3f x x
x

= + − . Диференціюємо її та отримуємо: 

( ) 2

1 1f x
xx

′ = − .  
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Оскільки при 1x >  виконуються нерівності 2
2

1 1,x x
xx

< > , то 

( ) 0f x′ >  при цих значеннях x .  Таким чином, згідно з достатньою умовою 

монотонності функції на інтервалі, функція ( )f x  монотонно зростає на 

проміжку ( )1;+∞ , тому на цьому проміжку ( ) ( )1f x f> ⇒  

( )12 3 0, 1; .x x
x

⇒ + − > ∈ +∞  Звідси випливає нерівність, яку потрібно було 

довести.   ■ 
Приклад 4.12. Використовуючи похідну, довести тотожність: 

2 2 3cos cos cos cos
3 3 4

x x x x⎛ ⎞ ⎛ ⎞+ + − ⋅ + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

π π . 

Розв’язання. Розглянемо допоміжну функцію  

( ) 2 2cos cos cos cos
3 3

f x x x x x⎛ ⎞ ⎛ ⎞= + + − ⋅ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

π π . 

Тоді 

( ) 2cos sin 2cos sin sin
3 3

2cos cos sin sin 2 sin 2
3 3 3

1 3 1sin 2 sin 2 sin 2 cos 2 sin 2
3 2 2 2

f x x x x x x

x x x x x

x x x x x

⎛ ⎞ ⎛ ⎞′ = − ⋅ − + ⋅ + + ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞× + + ⋅ + = − − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞+ + = − + − + +⎜ ⎟
⎝ ⎠

π π

π π π

π

 

3 cos 2 0 .
2

x x+ = ∀ ∈\  

Оскільки ( ) 0f x x′ = ∀ ∈\ , то, за ознакою сталості функції (теорема 2.11), 

( )f x C x= ∀ ∈\ . Знайдемо сталу C : 

( )
21 1 30 1 1 .

2 2 4
f ⎛ ⎞= + − ⋅ =⎜ ⎟

⎝ ⎠
 

Таким чином, вихідна тотожність виконується x∀ ∈\ .   ■ 

Приклад 4.13. Обчислити границі за допомогою похідної: 
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а) 
4 3 2

4 3 22

3 2lim
2 2 10 4x

x x x x
x x x x→

− + + +
− − − +

;   б) 
2

1lim tg
cosx

x
xπ

→

⎛ ⎞−⎜ ⎟
⎝ ⎠

;  

в) 
1

lim x
x

x
→+∞

;  г) 
1

lim 2 1x
x

x
→∞

⎛ ⎞
−⎜ ⎟

⎝ ⎠
;  д) 

( )
2

lim
ln 1x

x
x→+∞ +

. 

Розв’язання. 

а) 
4 3 2 3 2?

4 3 2 3 22 2

3 2 0 4 9 2 1 1lim (пр. Лопіталя) lim
0 342 2 10 4 8 3 4 10x x

x x x x x x x
x x x x x x x→ →

− + + + − + +⎡ ⎤= = =⎢ ⎥− − − + − − −⎣ ⎦
. 

б) [ ]
?

2 2

1 sin 1 0lim tg lim (пр. Лопіталя)
cos cos 0x x

xx
x xπ π

→ →

−⎛ ⎞ ⎡ ⎤− = ∞−∞ = = =⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
  

2

coslim 0
sinx

x
xπ

→

⎛ ⎞= =⎜ ⎟−⎝ ⎠
. 

в) 

1

ln1 ln lnlim0lim lim lim
x

x

x x x
x x x

x x x
x e e e →+∞

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

→+∞ →+∞ →+∞
⎡ ⎤= ∞ = = =⎣ ⎦ . 

Знайдемо границю lnlim
x

x
x→+∞

. 

( )
( )

? lnln 1lim (пр.Лопіталя) lim lim 0.
x x x

xx
x xx→+∞ →+∞ →+∞

′∞⎡ ⎤= = = =⎢ ⎥∞ ′⎣ ⎦
 

Звідси отримуємо 
1

0lim 1x
x

x e
→+∞

= = . 

г) [ ]

1
1

1 ? 2

2

1 2 ln 22 1 0lim 2 1 0 lim (пр.Лопіталя) lim
1 10

x

x
x

x x x

xx

x x
→∞ →∞ →∞

− ⋅ ⋅⎛ ⎞ − ⎡ ⎤− = ∞⋅ = = = =⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠ −
  

1

lim 2 ln 2 ln 2.x
x→∞

= ⋅ =  

д) 
( ) ( )

2 ? 2lim (пр.Лопіталя) lim lim 2 1 .
1ln 1

1
x x x

x x x x
x

x
→+∞ →+∞ →+∞

∞⎡ ⎤= = = + = +∞⎢ ⎥+ ∞⎣ ⎦
+

   ■ 



§ 2. Приклад виконання індивідуального завдання 

 199

Приклад 4.14. Розвинути функцію ( )y x  за формулою Маклорена до 4x , 

якщо ( ) ( )ln 1 siny x x= + . 

Розв’язання. Використовуючи розвинення за формулою Маклорена 

( ) ( )
2 3 4

4ln 1
2 3 4
t t tt t o t+ = − + − + , 

( )
3

4sin
3!
xx x o x= − + , 

знаходимо: 

( ) ( ) ( )
3 3

4 4ln 1 sin ln 1
3! 6
x xx x o x x o x

⎛ ⎞⎛ ⎞
+ = + − + = − + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

( ) ( ) ( )
2 3 43 3 3

4 4 41 1 1
2 6 3 6 4 6

x x xx o x x o x x o x
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

− − + + − + − − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

( ) ( )
2 3 4

4 4

2 6 12
x x xo x x o x+ = − + − + .   ■ 

Приклад 4.15. Знайти границю 
2

40

1 1 coslim
tgx

x x
x→

− +  за допомогою 

формули Маклорена. 
Розв’язання. Подамо чисельник та знаменник дробу за допомогою 

формули Маклорена до 4x : 

( )( ) ( )44 4 4tg ;x x o x x o x= + = +  

( ) ( )
1 2

2 4 42

1 1
2 21 1 cos 1 1

2 2
xx x x o x

⎛ ⎞⎛ ⎞⋅ −⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟− + = − + + + ×
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

( ) ( )
2 4 4

4 41 .
2! 4! 3
x x xo x o x

⎛ ⎞
× − + + = +⎜ ⎟
⎝ ⎠

 

Підставляємо ці вирази у границю та отримуємо: 
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( )
( )

( )

( )

44
4

2 4

4 4 4 40 0 0

4

1
1 1 cos 133lim lim lim .

3tg
1

x x x

o xx o xx x x
x x o x o x

x

→ → →

++− +
= = =

+
+

   ■ 

Приклад 4.16. Побудувати графіки функцій: 

а) 
2 4xy
x
+

= ,   б) 3 xy x e−= . 

Розв’язання. 

1) Область визначення функції: ( ) ( ) ( );0 0; ;D y = −∞ +∞∪ . 

2) ( ) ( ) ( )
2 24 4x xy x y x
x x

− + +
− = = − = −

−
, тому функція є непарною. 

3) Функція неперіодична. 

4) 
2 2

0 0

4 4lim ; lim
x x

x x
x x→ − → +

+ +
= −∞ = +∞ , тому точка 0x =  є точкою розриву 

другого роду. 

5) Оскільки ( )
0

lim
x

y x
→ ±

= ±∞ , то пряма 0x =  (вісь Oy ) є вертикальною 

асимптотою графіка даної функції; ( )lim
x

y x
→±∞

= ±∞ , тому горизонтальні 

асимптоти відсутні. Шукаємо похилі асимптоти у вигляді y kx b= + : 

( ) 2

2

4lim lim 1,
x x

y x xk
x x→∞ →∞

+
= = =  

( )( )lim
x

b y x kx
→∞

= − =
2 4 4lim lim 0.

x x

x x
x x→∞ →∞

⎛ ⎞+
− = =⎜ ⎟

⎝ ⎠
 

Пряма y x=  є похилою асимптотою. 

6) Точки перетину з координатними осями відсутні, оскільки 0y ≠ , а 

точка ( )0x D y= ∉ . При ( )0 0x y x< < , при ( )0 0x y x> > . 

7) Дослідимо ( )y x  на монотонність та знайдемо точки екстремуму. 

Знаходимо похідну ( )y x′ : 
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( )
2 2 2 2

2 2

4 2 4 4x x x xy x
x x x

′⎛ ⎞+ − − −′ = = =⎜ ⎟
⎝ ⎠

. 

Знаходимо критичні точки: 2
1,20 4 0 2y x x′ = ⇒ − = ⇒ = ± .  

На проміжках ( ); 2−∞ −  та ( )2;+∞  0y′ > , тому тут функція зростає,  

на ( )2;0−  і на ( )0;2 ,  0y′ < , функція спадає. Точка ( )0x D y= ∉ , 

2x = −  – точка локального максимуму, ( )2 4y − = − , ( 2; 4)A − − ,  

2x =  – локального мінімуму, ( )2 4y = , (2;4)B . 
 

Знаки y′  

Характерні точки 

Напрямки 
монотонності, loc extr 

 

Значення функції  в 
точках loc extr 

            –4                      ∃/                            4 

 

8) Визначимо характер опуклості функції та точки перегину її графіка. 
Для цього знайдемо другу похідну: 

( )
2

2 2 3

4 4 81xy y
x x x

′ ′⎛ ⎞− ⎛ ⎞′′′ ′= = = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

. 

0y′′ ≠ , тому точки перегину графіка функції відсутні. Друга похідна  ( ) 0y x′′ <  

на проміжку ( );0−∞ , тому тут функція опукла вгору, ( ) 0y x′′ >  на інтервалі 

( )0;+∞ , тому на цьому проміжку функція є опуклою вниз. 
 

Знаки y′′  

Характерні точки 

Напрямки опуклості, точка перегину 

 

 
Ордината точки перегину                      ∃/                                   

 

       0 
+–

∪∩

  0 
 

-2 
max 

+ + _ _ 

2 
min 
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9) На основі виконаного дослідження будуємо графік функції (див. 
рис.4.1). ■ 

 

 
Рис. 4.1.  

 

б) 3 xy x e−= . 

1) Область визначення функції: ( )D y = \ . 

2) ( ) ( ) ( ) ( ) ( )3 ,xy x x e y x y x y x y x− = − − ≠ ∧ − ≠ − , тому функція ні парна, 

ні непарна. 
3) Функція неперіодична. 
4) Функція є неперервною на всій числовій прямій. 

5) Оскільки ( )y x  неперервна на всій числовій прямій, то вертикальні 

асимптоти відсутні;  
3lim 0x

x
x e−

→+∞
= , тому 0y =  – горизонтальна асимптота при x → +∞ ;  

y x=

A

O

             
2 4xy
x
+

=  

 
    B    
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3lim x

x
x e−

→−∞
= −∞ , тому при x →−∞  горизонтальних асимптот немає;  

( ) ( )2 2lim lim 0, lim limx x

x x x x

y x y x
x e x e

x x
− −

→+∞ →+∞ →−∞ →−∞
= = = = +∞ , звідси випливає, що 

похилі асимптоти у графіка даної функції відсутні. 
6) При 0 0x y= = , графік функції проходить через початок координат. 

7) Дослідимо функцію на монотонність. 

( )2 3 23 3 ,x x xy x e x e x e x− − −′ = − = −  

1 20 0; 3y x x′ = ⇒ = = . 

На проміжку ( );3−∞  похідна додатна, тут функція зростає; 

на ( )3;+∞  похідна від’ємна, на цьому проміжку функція спадає.  

Точка 3x =  є точкою максимуму, ( )max 3

273 1,344y y
e

= = ≈ , 3

273;A
e

⎛ ⎞
⎜ ⎟
⎝ ⎠

.  

Точка 0x =  не є точкою екстремуму, оскільки при переході через неї похідна 

не змінює знак. 
 

Знаки y′  

Характерні точки 

Напрямки монотонності, loc extr   

Значення функції  в точках loc extr                              3

27 1,344
e

≈  

 

8) Визначимо тип опуклості функції.  

( ) ( ) ( ) ( )2 2 22 3 3 6 6x x x xy y xe x x e x x e xe x x− − − −′′′ ′= = − − − − = − +
2

1 2,30 0 6 6 0, 3 3.y x x x x′′ = ⇒ = ∧ − + = = ±  

На ( );0−∞  і на ( )3 3;3 3− +  0y′′ < , тут функція опукла вгору.  

На ( )0;3 3−  і на ( )3 3;+ +∞  0y′′ > , тому на цих проміжках функція опукла 

вниз. Точки з абсцисами 1 2 3, ,x x x  є точками перегину, ( )0 0, (0;0)y O= ; 

( ) ( ) ( ) ( )3 3 0,574, 3 3;0,574 ; 3 3 0,933, 3 3;0,933y C y D− ≈ − + ≈ + . 

3 
max

0 
 

−+ +
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Знаки y′′  

Характерні точки 

Напрямки опуклості, 
точки перегину 

 

Ординати точок 
перегину 

            0             0,574≈            0,933≈  

 
9) На основі виконаного дослідження будуємо графік, наведений на 

рис. 4.2.  ■ 

  
Рис. 4.2. 

 

2 3 3x = −  
перегин

1 0x =  
перегин 

+ –
_

+

∩ ∩ ∪∪ 3 3 3x = +
перегин 

∩

D       
            3 xy x e−=  

O 
C

A
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Розділ 5. ПИТАННЯ ДЛЯ САМОКОНТРОЛЮ 
 

§ 1. Теоретичні питання 
 

1. Поняття похідної функції в точці, односторонніх похідних. Необхідні й 
достатні умови існування похідної функції в точці. 

2. Геометричний, механічний та економічний зміст похідної функції в точці. 

3. Вивести похідні від функцій ; sin ; cos ; ;xa x x tgx ctgx  за означенням. 

4. Твердження про неперервність функції в точці, в якій вона має похідну. 
Арифметичні операції над похідними. 

5. Теорема про похідну складеної функції. 
6. Теорема про похідну оберненої функції. 

7. Знаходження похідних від функцій ( 0, )x xα > α∈\ , xa , sin x , cos x , 

tg x , ctg x  з використанням теорем про арифметичні операції над похід-

ними і про похідну від складеної функції. 

8. Знаходження похідних від функцій log , arcsin , arccos , arctg , arcctga x x x x x  

з використанням теорем про арифметичні операції над похідними і про 
похідну від оберненої функції . 

9. Логарифмічне диференціювання. Приклади. 
10. Диференційованість та диференціал функції в точці. Означення. Критерій 

диференційованості функції в точці. Геометричний зміст диференціала.  
11. Використання диференціала для наближених обчислень. Інваріантність 

форми першого диференціала. Таблиця диференціалів. 
12. Похідні вищих порядків. Означення, приклади. Таблиця похідних вищих 

порядків. 
13. Формула Лейбніца. 
14. Диференціали вищих порядків. Неінваріантність форми диференціалів 

вищих порядків. 
15. Диференціювання функцій, що задані параметрично, неявно. Приклади. 
16. Означення монотонної функції в точці. Поняття локального екстремуму. 

Достатня умова монотонності функції в точці.  
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17. Означення локального екстремуму. Теорема Ферма та її геометричний 
зміст. 

18. Теореми Ролля, Лагранжа і Коші та їх геометричний зміст. 
19. Наслідки з теореми Лагранжа. Теорема про сталість функції, що має на 

інтервалі похідну, яка дорівнює нулю, та її геометричний зміст. Критерій 
нестрогої монотонності функції на інтервалі. 

20. Доведення нерівностей за допомогою похідної. Приклади. Зв’язок між 
середнім арифметичним і середнім геометричним. 

21. Перше правило Лопіталя (загальна теорема). 
22. Перше правило Лопіталя у випадку, коли 0, 0,x a x a x→ + → − →∞ . 

23. Друге правило Лопіталя. 
24. Перша і друга достатні умови екстремуму функції в точці. 
25. Опуклі функції: означення, перша геометрична інтерпретація. 

Еквівалентний запис умови опуклості. 
26. Критерій опуклості вниз і наслідок з нього. 
27. Друга геометрична інтерпретація опуклості. 
28. Точки перегину: означення, необхідна умова перегину, достатня умова 

перегину. 
29. Асимптоти графіка функції (вертикальні, горизонтальні, похилі). Формули 

для обчислення параметрів похилої асимптоти. 
30. Схема дослідження функції за допомогою похідної та побудова графіків. 

Приклад. 
31. Пошук найбільшого і найменшого значень функції на відрізку. Приклад. 
32. Формула Тейлора для многочленів.  
33. Формула Тейлора для довільної функції з залишковим членом у формі 

Пеано.  
34. Приклади розвинення функцій за формулою Тейлора з залишковим членом 

у формі Пеано.  
35. Довести твердження: якщо функцію можна наблизити деяким многочленом 

степеня, не вищого за n , з точністю ( )( )0
no x x−  при 0x x→ , то цей 

многочлен є многочленом Тейлора.  
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36. Запис формули Тейлора через диференціали. 
37. Залишковий член формули Тейлора у формах Лагранжа та Коші. Приклади 

застосування залишкового члена. 
38. Третя достатня умова локального екстремуму. 
 

§ 2. Задачі для самоперевірки практичних навичок 
 

5.1. Знайти похідні функцій за означенням: 

а) 22 4y x= − ;  б) 1
1

y
x

=
+

;  в) 3y x= ; 

г) 2y x= + ;  д) 3 1−= xy ;  е) arctgy x= ; 

є) arcctg 2y x=  ;  ж) arcsin 2y x= ; з) arccosy x= . 

5.2. Знайти за означенням похідну функції в точці 0x , або довести, що 

похідної не існує. 

а) ( )2 sin 2y x x= − , 20 =x ; б) 
2

0, 1xy e x= = ; 

в) 3 2
0( 1) ( 1), 1y x x x x= − + = ; г) 2

0( 1)sin , 0y x x x= + = ; 

д) 02 , 4xy x x= ⋅ = ;   е) 0| cos |,
2

y x x π= = ; 

є) 2 2
0cos cos , 0y x x x= ⋅ = ; ж) 0cos(cos ), 0y x x= = . 

5.3.–5.41. Знайти похідні функцій. 

5.3. 2 3 1y x
x x

= − + .  5.4. ( )2 3 2 siny x x x= − + . 

5.5. arctg xy
x

= .   5.6. 77xy x= ⋅ . 

5.7. ( )102 1y x= + .   5.8. 5 2sin 3siny x x= − . 

5.9. tg xy e= .   5.10. lny x= . 

5.11. 25 x xy −= .   5.12. ( )tg2 4
x

y x= + . 

5.13. 2 2 cossin
ln

xy x x
x

= + . 5.14. 
3

cos5sin 23 xxy ⋅= . 
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5.15. 
( )42

5

18 x

xy
−

= .  5.16. 3 xxy += . 

5.17. 
21

arcsin
x

xy
+

= .  5.18. 
21

arccos

x

xy
−

= . 

5.19. 
xax

xaxy
−+

++
=

22

22
ln . 5.20. xaxy coscos ⋅= . 

5.21. x
x

y tgln
sin2

1
2 +−= . 5.22. 

sin 3
cos

3
1 sin3
3 cos

ax
bx axy

bx
= + ⋅ . 

5.23. ( ) 22 23arctg3 xbxxb
xb

xby −+−
−

= . 

5.24. ( )23arcsin 3arccos12 xy x −+= . 

5.25. xxxy lnarcsinln
2
1arcsinln 2 ++= . 

5.26. 
1
1ln

6
1

2
arctg

3
2

+
−

+=
x
xxy . 

5.27. x
x
x

x
xy arctg

2
1

1
1ln

4
1

1
1ln

4
3

2

2
+

+
−

+
−
+

= . 

5.28. 3 3 311 xy ++=  (№Д861). 

5.29. ( )( )xy sinsinsin=  (№Д866). 

5.30. ( )( )xy 32 lnlnln=  (№Д899). 

5.31. 
xxx xxxy ++= .  5.32. ( )sin sin xxy x x= + . 

5.33. x xy =   (№Д963).  5.34. ( )
1

sin xy x= .  

5.35. ( ) ( ) xx xxy sincos cossin +=  (№Д964).  

5.36. 
a x xx a xy x x a= + +   (№Д962). 
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5.37. ln
ln x

x
xy

x
=   (№Д965). 

5.38. 
( )
( )

2
2

2

arcsin sin

arccos cos

arctg x
x

y
x

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (№Д965.1). 

5.39. ( ) ( ) ( )( )2 2arccos ln arccos ln arccos 0,5y x x x= − +   (№Д973). 

5.40. 
( ) ( )

2 2

2

2

2

2

arcsin 1 ln 1
21

x x
x

x

e e
y e

e

− −

−

−
= + −

−
 (№Д975). 

5.41. а) ( )arctg
( )
xy
x

ϕ
=

ψ
 (№Д985 б);  

б) ( ) ( ) ( ( ) 0, ( ) 0)xy x x xϕ= ψ ϕ ≠ ψ >  (№Д985 в), 

де ( )xϕ  і ( )xψ  диференційовні функції; 

в) 2( )y f x=   (№Д986 а);   

г) ( ) ( )2 2sin cosy f x f x= +  (№Д986 б), 

де ( )f u  – диференційовна функція. 

5.42. (№Д984) Знайти логарифмічну похідну від функції y , якщо  

а) 1
1

xy x
x

−= ⋅
+

;  б) 
2

3 2
3

1 (3 )
x xy

x x
−= ⋅

− +
;   

в) ( ) ( ) ( )1 2

1 2 ... n

ny x a x a x aα α α= − ⋅ − ⋅ ⋅ − ; 

г) ( )21
n

y x x= + + . 

5.43. Визначити області існування обернених функцій ( )x x y=  та знайти 

їх похідні, якщо 

а) 5
2logy x x= + ;   б) 3 2xy x= + ;   в) chy x= ; г) cthy x= . 

5.44  Виділити однозначні неперервні гілки обернених функцій ( )x x y= , 

знайти її похідні, побудувати графіки, якщо  
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а) 2 42y x x= + ;  б) (№Д1037 в) 22 x xy e e− −= − . 

 5.45. (№Д978) Знайти похідні функцій, якщо  

а) ( ) ( )2 31 1y x x= − + ; б) 1arccosy
x

= ;  

в) [ ] 2sin ( )y x x= ⋅ π , де [ ]x  – ціла частина числа x . 

5.46. Знайти похідні й побудувати графіки функцій та їх похідних: 

а) xxy ⋅=  (№Д977 б); б) 2log | |y x= ;   

в) (№Д979) 
1 при 1;

(1 )(2 ) при 1 2;
(2 ) при 2 ;

x x
y x x x

x x

− −∞ < <⎧
⎪= − − ≤< ≤⎨
⎪− − < < +∞⎩

 

г) (№Д980) 
2 2( ) ( ) при ;

0 поза сегментом [ , ];
x a x b a x by

a b
⎧ − − ≤ ≤

= ⎨
⎩

 

д) (№Д981) 
при 0;

ln(1 ) при 0.
x x

y
x x

<⎧= ⎨ + ≥⎩
 

5.47. (№Д994) Знайти ( )f a′ , якщо  

( ) ( ) ( )f x x a x= − ϕ , 

де функція ( )xϕ  – неперервна в точці a .  

5.48. (№Д995) Показати, що функція  

( ) ( )f x x a x= − ⋅ϕ , 

де ( )xϕ  – неперервна функція в точці a  і ( ) 0aϕ ≠ , не має похідної в точці a . 

Знайти односторонні похідні ( )f a−′  і ( )f a+′ . 

5.49. Дослідити функцію 

sin , якщо ,
( )

0, якщо \
x x

f x
x
∈⎧

= ⎨ ∈⎩

_
\ _

 

на диференційованість.  
 5.50. (№Д1010) Нехай 

2
0

0

, якщо ;
( )

, якщо .
x x x

f x
ax b x x
⎧ ≤⎪= ⎨

+ >⎪⎩
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Як слід підібрати коефіцієнти a  і b , щоб функція ( )f x  була неперервною й 

диференційовною в точці 0x x= ? 

 5.51. (№Д1011) Нехай 

0

0

( ), якщо ;
( )

, якщо ,
f x x x

F x
ax b x x

≤⎧
= ⎨ + >⎩

 

де ( )f x  диференційовна зліва при 0x x= . При якому наборі коефіцієнтів a  і 

b  функція ( )F x  буде неперервною і диференційовною в точці 0x ? 

5.52. (№Д999) Дослідити на диференційованість функції: 

а) ( )( ) ( )2 31 2 3y x x x= − − − ;  б) cosy x= ; 

в) 2 2 2siny x x= π − ⋅ ;  г) arcsin(cos )y x= ; 

д) 
21 ( 1)( 1) при 1;

4
1 при 1.

x x x
y

x x

⎧ − + ≤⎪= ⎨
⎪ − >⎩

 

5.53. Для функції ( )f x  визначити ліву похідну ( )f x−′  і праву похідну 

( )f x+′ , якщо 

а) 1( ) cos( )
2

f x x x⎡ ⎤= − ⋅ π⎢ ⎥⎣ ⎦
, де [ ]x  – ціла частина числа x ; 

б) (№Д1002) ( ) cosf x x
x
π= ⋅ ; в) (№Д1003) 2( ) sinf x x= ; 

г) (№1004) 
1

1 при 0;
( ) 1

0 при 0.
x

x
f x e

x

⎧ ≠⎪= ⎨ +
⎪ =⎩

 

5.54 (№Д997) Довести, що функція 

2 cos при 0;
( )

0 при 0

x x
f x x

x

⎧ π
⋅ ≠⎪= ⎨

⎪ =⎩

 

має точки недиференційовності в будь-якому околі точки 0x = , але 

диференційовна в цій точці. 
5.55. Знайти диференціали функцій для довільних аргументу і приросту: 
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а) xxxy −= ln ;  б) 
2xy e−= ;  в) arctgx xy

a a
= ⋅ . 

5.56. Знайти 

а) (№Д1090 а) ( )xd xe ;   б) (№Д1090 г) ln xd
x

⎛ ⎞
⎜ ⎟
⎝ ⎠

; 

в) (№Д1090 ж) ( )( )2ln 1d x− ; г) (№Д1090 з) 1arccosd
x

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

; 

д) (№Д1091) ( )d uvw ;  е) (№Д1092) 2
ud
v

⎛ ⎞
⎜ ⎟
⎝ ⎠

; 

є) (№Д1095) ( )2 2lnd u v+ ; ж) (№Д1096 в) (sin )
(cos )

d x
d x

; 

з) (№Д1096 а) ( )3 6 9
3 2

( )
d x x x

d x
− − ;   і) (№Д1096 г) 

( )
( )

tg
ctg

d x
d x

, 

де ( ), ( ), ( )u u x v v x w w x= = =  диференційовні функції, x  – незалежна 

змінна. 

5.57. Для функції 22y x x= −  обчислити приріст функції і диференціал 

при 1x = , 0,01xΔ = . 

5.58. Обчислити наближено за допомогою диференціала: 

а) 16,5 ;  б) 3 9 ;   в) 4 80 ;  г) 7 129 ; 

д) 0,1e ;  е) arctg 0,9 ; є) sin 31D ; ж) lg11 . 

5.59. Написати рівняння дотичної та нормалі до кривої  

а) 
3

2 2

8
4

ay
a x

=
+

 в точці з абсцисою 2x a=  (№Б832)1; 

б)  

2

3

2

3

2 ;
1
2
1

t tx
t

t ty
t

⎧ +
=⎪⎪ +

⎨
−⎪ =⎪ +⎩

 в точках 0, 1,t t t= = = ∞  (№Д1078); 

                                                 
1 Посилання на номери, в яких фігурує літера «Б», означатимуть, що цей приклад відповідає 
збірнику задач Г.М. Бермана [5]. 
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в)  
3

2

2
xy

a x
=

−
 (цисоїда) в точці 0 0( , )M x y  (№Б833); 

г) 2 2( ) ( )x x y a x y+ = −  в точці (0; 0)M  (№Б846). 

5.60. Знайти кути, під якими перетинаються лінії 

а) 1
2

xy
x
+=
+

 і 
2 4 81

16
x xy + +=  (№Б859, 1); 

б) 2 2 4 1x y x+ − =  і 2 2 2 9x y y+ + =  (№Б860, 2); 

в) 2 4x ay=  і 
3

2 2

8
4

ay
a x

=
+

 (№Б863). 

5.61. (№Б869) Показати, що для будь-якої точки 0 0( , )M x y  рівнобічної 

гіперболи 2 2 2x y a− =  відрізок нормалі від точки M  до точки перетину з віссю 

абсцис дорівнює полярному радіусу точки M .  
5.62. (№Б871) Показати, що ордината будь-якої точки лінії 

2 2 42 (x y x c c− = − стала) є середня пропорційна між абсцисою і різницею 

абсциси й піднормалі, що проведена до лінії в тій же точці. 

5.63. (№Б873) Показати, що лінія sinkxy e mx=  дотикається до кожної з 

ліній kxy e= , kxy e= −  у всіх спільних з ними точках. 

5.64. (№Б842) В точках перетину прямої 1x y− +  і параболи 
2 4 5y x x= − +  проведено нормалі до параболи. Знайти площу трикутника, що 

утворено нормалями і хордою, що сполучає вказані точки перетину. 
5.65. Знайти похідні другого порядку для функцій:  

а) cosxy e x= ; б) 
2

xy
x

=
+

;  в) 
2

2xy = ; 

г) xy x= ;  д) (№Д1115) ( ) ( )2 21 arctg 1y x x= + + ; 

е) ln ( )y u x= ; є) (№Д1122) ln uy
v

= ; ж) (№Д1124) vy u= , 

де ( ), ( )u u x v v x= =  двічі диференційовні функції, x  – незалежна змінна. 



Розділ 5. ПИТАННЯ ДЛЯ САМОКОНТРОЛЮ 

 214

 5.66. (№Д1125–1128) Знайти похідні 2 3. ,x x x
y y y′ ′′ ′′′ , якщо ( )f x  – тричі 

диференційовна функція: 

 а) 2( )y f x= ; б) 1y f
x

⎛ ⎞= ⎜ ⎟
⎝ ⎠

;    в) ( )xy f e= ;  г) (ln )y f x= . 

5.67. Знайти 2d y , якщо 

 а) (№Д1133) xy x= ;  б) (№Д1139) arctg uy
v

= ; 

 в) (№Д1137) uy a= ;  г) (№Д1136) ( i сталі)m ny u v m n= − , 

де ( ), ( )u u x v v x= =  двічі диференційовні функції, x  – незалежна змінна. 

5.68. Знайти похідні 2 3, ,x x x
y y y′ ′′ ′′′  від функцій, що задані параметрично: 

а) 
cos ,
sin

x a t
y b t
=⎧

⎨ =⎩
 (№Д1141);  б) 2

ln ,
1

x t
y t
=⎧

⎨
= −⎩

 (№Б1074, 1); 

в)
ln ,

1;

x t t

y
t

=⎧
⎪
⎨ =⎪⎩

   г) 

2

2

1,
1 ;

1

x t
ty
t

⎧ = +
⎪
⎨ −=⎪

+⎩

 

д) 
cos ,
sin

x at t
y bt t
=⎧

⎨ =⎩
 (№Б1075);  е) 2

arcsin ,
ln(1 )

x t
y t
=⎧

⎨
= −⎩

 (№Б1074, 2); 

є) 
2

2

1arccos ,
1

arcsin
1

x
t

ty
t

⎧ =⎪ +⎪
⎨
⎪ =
⎪ +⎩

 (№Д1046). 

5.69 Знайти похідні ,x xxy y′ ′′  від функцій, що задані в неявному вигляді: 

а) ln 3
y
xx e

−
+ = ;  б) (№Б794) 3 3 3x y axy+ = ;  

в) (№Б804) xy yx = ; г) (№Б795) 2 2cos sin 3y x a x= ; 

д) 2 2 22x xy y a+ − = ; е) 02 =− yxe y ;  

є) 2 arctg xx y
y

= ;  ж) (№Б809) sin cos cos 2 0x y y y− + = ; 

з) sin( )xy y= ;  і) (№Б811) sin cos( ) 0y x x y− − = . 
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5.70. Знайти диференціал указаного порядку: 

а) 7y x= , 7d y ; б) sin 5y x x= , yd10 ; в) sin shy x x= ⋅ , 7d y . 

5.71. Знайти похідну вказаного порядку: 

а) ( ) ( )2 32 1 3y x x x= − + , ( )6y , ( )7y  (№Д1289); 

б) y x= , ( )10y  (№Д1158);  в) 
xey

x
= , ( )10y  (№Д1162); 

г) 
( )

1
1

y
x x

=
−

, ( )ny  (№Д1189);  д) 2 3
5

xy
x
+=
−

, ( )ny ; 

е) 2siny x= , ( )ny  (№Д1193); є) 3 sin 3y x x= , ( )50y ; 

ж) 
xey

x
= , ( )ny  (№Д1205);  з) sinxy e x= , ( )ny  (№Д1206); 

і) 
3

2
1

3 2
xy

x x
+=

− +
, ( )ny ;  к) 3 3( 2 5) xy x x e= + + , ( )ny ; 

л) ( )2ln 3 2y x x= − + , ( )ny ; м) 
2

2
9ln

3 2
xy

x x
−=

− +
, ( )ny ; 

н) ( )2ln 9y x x= − , ( )ny ;   о) 
1 3

xy
x

=
+

, ( )ny ; 

п) ( )2 3 2 ln( 1)y x x x= − + − , ( )ny . 

5.72. (№Б1118) Перевірити здійсненність теореми Ролля для функції 
sin4 xy =  на відрізку [0, ]π . 

5.73. (№Б1121) Функція | |y x=  приймає рівні значення на кінцях 

відрізка [ ; ]a a− . Упевнитися в тому, що похідна від цієї функції ніде на цьому 

відрізку не обертається в нуль. Пояснити уявну суперечність з теоремою Ролля. 
5.74. (№Б1125) Не обчислюючи похідну функції 

( ) ( 1)( 2)( 3)( 4)f x x x x x= − − − − , 

з’ясувати, скільки дійсних коренів має рівняння ( ) 0f x′ = , і вказати інтервали, 

в яких вони лежать. 
5.75. Написати формулу Лагранжа для функцій 

а) (№Б1127) sin 3y x=  на відрізку 1 2[ ; ]x x ; 
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б) (№Б1128) (1 ln )y x x= −  на відрізку [ ; ]a b ; 

в) (№Б1129) arcsin 2y x=  на відрізку 0 0[ ; ]x x x+ Δ . 

5.76. Знайти інтервали монотонності та екстремуми функції, користу-
ючись першою похідною:  

а) 4 2

1
ln( 4 10)

y
x x

=
+ +

; б) 2 2 1y x x= ⋅ + ; в) 
2

1 2
3 4

xy
x
+=

+
; 

г) 233 23 ++−= xxxy ; д) ( )xxy +−= 1ln ; е) xexy −= 2 . 

5.77. Знайти найбільше й найменше значення функції на заданому 
відрізку: 

а) (№Б1188) 3 23 6 2, [ 1;1]y x x x= − + − − ;  

б) (№Б1189) 2100 , [ 6;8]y x= − − ; 

в) (№Б1193) sin , ;
2 2

y x x π π⎡ ⎤= − −⎢ ⎥⎣ ⎦
; 

г) (№Б1190)
2

2
1 , [0;1]
1

x xy
x x

− +=
+ −

; 

д) (№Б1197) 1arctg , [0;1]
1

xy
x

−=
+

. 

5.78. (№Б1210) Число 36 розкласти на два такі множники, щоб сума їх 
квадратів була найменшою. 

5.79. (№Б1211) Потрібно виготовити ящик з кришкою, об’єм якого 
дорівнює 72 см3, причому сторони основи повинні відноситись як 1:2. Які 
повинні бути розміри всіх сторін, щоб повна поверхня була найменшою? 

5.80. (№Б1215) Відкритий чан має форму циліндра. При заданому об’ємі 
V  якими повинні бути радіус основи та висота циліндра, щоб його поверхня 

була найменшою. 
5.81. (№Б1222) Знайти висоту конуса найбільшого об’єму, який можна 

вписати в кулю радіусу R . 
5.82. (№Б1231) Знайти висоту прямого кругового конуса найменшого 

об’єму, який описано навколо кулі радіусу R . 
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5.83. (№Б1232) Знайти кут при вершині осьового перерізу конуса 
найменшої бічної поверхні, який описано навколо даної кулі. 

5.84. (№Б1237) Через дану точку ( )1;4P  провести пряму так, щоб сума 

довжин додатних відрізків, що відтинаються нею на координатних осях, була 
найменшою. 

5.85. (№Б1241) На еліпсі 2 22 18x y+ =  задано дві точки (1;4)A  і (3,0)B . 

Знайти на цьому еліпсі третю точку C  таку, щоб площа трикутника ABC  була 

найбільшою. 
5.86. Знайти формули для сум: 

а) 3 5 2 12 4 6 ... 2 nx x x nx −+ + + + ; 

б) 2 ( 1)1 2 2 3 2 ... 2x x n xn −+ ⋅ + ⋅ + + ⋅ ; 

в) 2 11 2 sin 3 sin ... sinnx x n x−+ ⋅ + ⋅ + + ⋅ ; 

г) 2 4 2 21 2 3 .. nx x nx −+ + + + ; 

д) 2 22 2 3 3 4 .. ( 1) nx x n n x −+ ⋅ + ⋅ + + − ; 

е) 4 7 3 22 5 8 ... (3 1) nx x x n x −+ + + + − ; 

є) ( )sin 2 2sin 4 ... sin 2 ,x x n nx x k+ + + ≠ π ; 

ж) ( )ch2 2ch4 ... ch 2 , 0x x n nx x+ + + ≠ ; 

з) ( )2 2sin 2 2 sin 4 ... sin 2 ,x x n n x x k+ + + ≠ π ; 

і) (№Д1026) 1 1 1tg tg ... tg
2 2 4 4 2 2n n

x x x
+ + + , 2 , .nx k k≠ π ∈]  

5.87. Довести нерівності: 

а) (№Б1132) lna b a a b
a b b
− −≤ ≤ , 0 b a< < ; 

б) (№Б1133) 2 2tg tg b
cos cos
a b a ba

b a
− −≤ − ≤ , 0

2
b a π< < < ; 

в) (№Б1134) 1 1( ) ( )n n n nnb a b a b na a b− −− < − < −  при b a< , 1n >  і 
1 1( ) ( )n n n nna a b a b nb a b− −− < − < −  при b a< , 1n < ; 
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г) (№Б1201) 2( 1)ln , 1
1

xx x
x
−

> >
+

; 

д) (№Б1202) 22 arctg ln(1 )x x x⋅ ≥ + ; 

е) (№Б1204) arctgln(1 ) , 0
1
xx x

x
+ > >

+
; 

є) (№Д1289 в) xxxx <<− sin
6

3
, 0>x ;  

ж) 21 2 ln x x+ ≤ , 0>x ; 

з) (№Б1205) 
3 5

sin , 0
6 120
x xx x x< − + > ; 

і) 
3

sin tg 2 , 0 / 2
3
xx x x x+ > + < < π ; 

к) 
2 4

ch 1
2 24
x xx ≤ + + ; л) (№Д1291) 

11 11 1
x x

e
x x

+
⎛ ⎞ ⎛ ⎞+ < < +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 0>x ; 

м) (№Д1314 в) ln ln ( ) ln
2

x yx x y y x y +
+ > + , 0x > , 0y > ; 

н) 2arctg arctg arctg
2

x y x y+
< + , 0x > , 0y > . 

5.88. (№Д1264) Довести тотожності: 

а) 2
22arctg arcsin sgn

1
xx x
x

π+ =
+

, 1≥x ; 

б) ( )33arccos arccos 3 4x x x π− − = , 
2
1

≤x . 

5.89. Довести тригонометричні тотожності: 

а) cos ec +ctg ctg ( /2)x x x= ; 

б) cos 4 sin 4 ctg 2 1x x x− ⋅ = − ; 

в) tg sec tg sec
cos ctg

x x x x
x x
−

= ⋅
−

; 

г) 
2 1 tg 21 2sin

1 sin 4 1 tg 2
xx

x x
+− =

− −
. 
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5.90–5.115. Обчислити границі, використовуючи правила Лопіталя. 

5.90. 
3 2

31

2 2lim
7 6x

x x x
x x→

− − +
− +

.      5.91. 
3

41

3 2lim
4 3x

x x
x x→

− +
− +

. 

5.92. 5lim
x

x

e
x→∞

.     5.93. 
0

ch 1lim
1 cosx

x
x→

−
−

. 

5.94. 
2

4

sec 2tglim
1 cos 4x

x x
xπ→

−
+

.     5.95. ( )
0

lim 1 cos ctg
x

x x
→

− . 

5.96. 
2

2 20

1 coslim
sinx

x
x x→

− .      5.97. 
0

1 1 1lim
sin shx x x x→

⎛ ⎞
−⎜ ⎟

⎝ ⎠
. 

5.98. 30

sinlim
x

x x
x→

− .     5.99. 
22 1lim xx

x
e→∞

+ . 

5.100. ( )
0

lim 1 cos ctg
x

x x
→

− .     5.101. 
1

1lim
1 lnx

x
x x→

⎛ ⎞−⎜ ⎟
−⎝ ⎠

(№Б1349). 

5.102. ( )
1

lim 1 tg
2x

xx π
→

− .      5.103. 
21/

1000
lim

x

x

e
x

−

→
 (№Д1338). 

5.104. 2lim arctg
x

x
x

→+∞

⎛ ⎞
⎜ ⎟
π⎝ ⎠

 (№Д1361).  5.105. 1

0
lim

xx

x
x −

→
 (№Д1343). 

5. 106. ( )0
lim 1

xx

x
x

→
−  (№Д1344).     5. 107. 

1
1

1
lim x
x

x −

→
 (№Д1346). 

5. 108. ( )tg
2

1
lim 2

x

x
x

π

→
−  (№Д1347).     5. 109. ( )tg2

4

lim tg x

x
x

π→
 (№Д1349). 

5. 110. ( )sin

0
lim ctg x

x
x

→
 (№Д1349).     5.111. 

tg
2

1
lim tg

4

x

x

x
π

π
→

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

5.112. ( )sin

0
lim x

x
x

→
 (№Б1358).    5.113. ( )

1
2

0
lim 1 x
x

x
→

+ . 

5.114. 
3

4 ln
0

lim x
x

x +

→+
.     5.115. 

2
1

0

coslim
ch

x

x

x
x→

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

5.116. (№Д1374 г) Дослідити можливість застосування правила Лопіталя 

для границі 
( ) sin

1 sin coslim
sin cos xx

x x x
x x x e→∞

+ +
+

. 
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5.117. (№Б1498) Написати розвинення многочлена 4 3 25 3 4x x x x− + − +  

за степенями двочлена ( 4)x − . 

5.118. (№Б1502) ( )f x  – многочлен четвертого степеня. Знаючи, що 

(2) 2, (2) 0, (2) 2, (2) 12, (2) 24IVf f f f f′ ′′ ′′′= − = = = − = , обчислити ( 1), (0)f f ′− , 

(1)f ′′ . 

5.119. Написати розвинення функції ( ) xf x x=  за цілими невід’ємними 

степенями двочлена 1x −  до члена з ( )31x − . 

5.120. Написати розвинення за цілими невід’ємними степенями змінної 
x  до членів указаного порядку включно наступних функцій: 

а) ( ) 2sinf x x=  до 2nx ;  б) ( ) 3sinf x x=  до 2 1nx + ; 

в) ( ) sinf x x x=  до 2nx ;  г) 3( ) sin3f x x x=  до 2nx ; 

д) ( ) 1 2f x x= −  до nx ;  е) ( ) 1
1 2

f x
x

=
+

 до nx ; 

є) 
( )

1( )
1

f x
x x

=
−

 до nx ;   ж) 2 3( )
5

xf x
x
+=
−

 до nx ; 

з) ( )2ln 1y x x= −  до 2 1nx + ; і) 
1 3

xy
x

=
+

 до nx ;  

к) ( )
1x

xf x
e

=
−

 до 4x  (№Д1381); 

л) ( )
ln(1 )

xf x
x

=
−

 до 4x ; 

м) ( ) ln cosf x x=  до 6x  (№Д1384); 

н) ( ) ( )sin sinf x x=  до 3x  (№Д1385); 

о) ( ) tgf x x=  до 5x . 

5.121. Використовуючи формулу Маклорена, обчислити границі: 

а) 
20,5

40

coslim
x

x

x e
x

−

→

−  (№Д1398); 
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б) 20

2lim ( 0)
x x

x

a a a
x

−

→

+ − >  (№Д1403); 

в) 
0

1 1lim
sinx x x→

⎛ ⎞−⎜ ⎟
⎝ ⎠

 (№Д1405); 

г) 
0

1 1lim ctg
x

x
x x→

⎛ ⎞−⎜ ⎟
⎝ ⎠

 (№Д1406); 

д) ( )6 66 5 6 5lim
x

x x x x
→+∞

+ − −  (№Д1401); 

е) 3 2 1/ 6lim 1
2

x

x

xx x e x
→+∞

⎡ ⎤⎛ ⎞− + ⋅ − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (№Д1402); 

є) 2 1lim ln 1
x

x x
x→∞

⎡ ⎤⎛ ⎞− +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (№Д1404); 

ж) 
3 2

50

sin(sin ) 1lim
x

x x x
x→

− ⋅ −  (№Д1406.1). 

5.122. Використовуючи формулу Тейлора, наближено обчислити з 
точністю 0,0001: 

а) 16,5 ;  б) 3 9 ;   в) 4 80  ; г) 7 129 ; 

д) e ;  е) ocos9 ; є) sin18D ; ж) lg1,1 . 

5.123–5.125. Знайти проміжки опуклості, увігнутості та точки перегину 
графіка функції. 

5.123. 3 25 3 5y x x x= − + − . 5.124. ( )2ln 1y x= + . 

5.125. arctgy x x= − . 

5.126–5.128. Знайти асимптоти графіків функцій. 

5.126. 
( )2

1
2

y
x

=
−

. 5.127. 
1
xy e= . 5.128. 

22 3
6

x xy
x
+ +=
+

. 

5.129. Дослідити функції та побудувати їхні графіки: 

а) 
2

2

( 1)
( 1)
x xy

x
−

=
+

 (№Д1479); б) 
x

xy 1
+= ; 
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в) 
( )

4

31
xy

x
=

+
 (№Д1477);  г) 21 x

xy
+

= ; 

д) 
1

xey
x

=
+

  (№Д1510);  е) xexy −= 2 ; 

є) ln xy
x

= ;   ж) ln xy
x

=   (№Д1512); 

з) 1sin sin 3
3

y x x= +   (№Д1497);  і) sin

sin
4

xy
x

=
π⎛ ⎞+⎜ ⎟

⎝ ⎠

  (№Д1503); 

к) arctgy x x= +  (№Д1516); л) arctgy x x= ⋅  (№Д1518); 

м) 2
2arcsin

1
xy
x

=
+

 (№Д1519); н) 
2

2
1arccos
1

xy x
x

−= −
+

. 

о) xy x=   (№Д1526);  п) 1/(1 ) xy x= +   (№Д1528). 

5.130. Побудувати криві, що задані в параметричній формі: 

а) 
2

,
2

t

t

x t e
y t e

−

−

⎧ = +⎪
⎨

= +⎪⎩
 (№Д1535). б) 

2

2

2

,
1

1
1

tx
t

y
t

⎧ =⎪⎪ −
⎨
⎪ =
⎪ +⎩

 (№Д1534). 

5.131. Побудувати графіки функцій, що задані в полярній системі 

координат ( , ) ( 0)ρ ϕ ρ ≥ : 

а) sin 2aρ = ϕ  (лемніската); б) ϕ+=ρ cosba  (№Д1546); 

в) (1 cos )aρ = + ϕ  (кардіоїда).



 

 223

СПИСОК РЕКОМЕНДОВАНОЇ ЛІТЕРАТУРИ 
 

Основна: 
 

1. Виноградова И.А. Задачи и упражнения по математическому анализу / 
И.А. Виноградова, С.Н. Олехник, В.А. Садовничий // Под общ. ред. В.А. Са-
довничего. – М.: Факториал, 1996. – 477 с. 

2. Демидович Б.П. 1  Сборник задач и упражнений по математическому 
анализу / Б.П. Демидович. – М.: Наука, 1990. – 624 с. 

3. Ильин В.А. Математический анализ / В.А. Ильин, В.А. Садовничий, 
Бл.Х. Сендов. – М.: Наука, 1979. – 720 с. 

4. Фихтенгольц Г.М.1 Курс дифференциального и интегрального исчисления: 
В 3-х т. / Г.М. Фихтенгольц. – Т.1. – М.: Физматлит, 1962. – 680 с. 

 
Додаткова: 

 
5. Берман Г.Н. Сборник задач по курсу математического анализа / 

Г.Н. Берман. – М.: Наука, 1985. – 383 с. 
6. Давидов М.О. Курс математичного аналізу / М.О. Давидов. – Ч.1. Функції 

однієї змінної. – К.: Вища шк., 1990. – 380 с. 
7. Ильин В.А1. Основы математического анализа: В 2 ч. / В.А. Ильин, 

Э.Г. Позняк. – М.: Физматлит. – Ч.1., 2005. – 648 с. 
8. Задачи и упражнения по математическому анализу: учеб. пособие: В 2 кн. / 

И. А. Виноградова [и др.]. – Кн. 1: Дифференциальное и интегральное 
исчисление функций одной переменной. – М.: Высшая школа, 2002 – 724 с. 

9. Запорожец Г.И.2 Руководство к решению задач по математическому 
анализу / Г.И. Запорожец. – М.: Высш. шк., 1966. – 460 с. 

10. Зорич В.А.2 Математический анализ: В 2 ч. / В.А. Зорич. – Ч.1. – М.: Фазис, 
1997. – 554 с. 

11. Каплан И.А.2 Практические занятия по высшей математике: В 5 ч. / 
И.А. Каплан. – Ч. 1. – Харьков: Изд-во Харьковского гос. университета, 
1967. – 946 с. 

12. Коши Г.А.Л.1  Дифференциальное и интегральное исчисление / 
Г.А.Л. Коши. –  СПб.: Императорская Академия Наук, 1831. – 245 с. 

                                                 
1 http://eqworld.ipmnet.ru/ru/library/mathematics/calculus.htm 
2 http://techlibrary.ru/ 



СПИСОК РЕКОМЕНДОВАНОЇ ЛІТЕРАТУРИ 

 224

13. Кудрявцев Л. Д1. Краткий курс математического анализа. В. 2 т. / 
Л. Д. Кудрявцев. – Т. 1: Дифференциальное и интегральное исчисления 
функций одной переменной. Ряды. – М.: Физматлит, 2005. – 400 с. 

14. Кудрявцев Л.Д. 1 Курс математического анализа: В 2 т. / Л.Д. Кудрявцев. – 
Т.1. – М.: Высш.шк., 1988. – 712 с. 

15. Кудрявцев Л.Д.1 Сборник задач по математическому анализу. – Т.1. Предел. 
Непрерывность. Дифференцируемость / Л.Д. Кудрявцев, А.Д. Кутасов, 
В.И. Чехов, М.И. Шабунин // Ред. Л.Д. Кудрявцева. – М.: Физматлит, 2003. – 

496 с. 
16. Лопиталь Г.Ф.1 Анализ бесконечно малых / Г.Ф. Лопиталь. –  М.-Л.: 

Гостехтеориздат, 1935. – 431 с. 
17. Ляшко І.І. Математичний аналіз: У 2 ч. / І.І. Ляшко, В.Ф. Ємельянов, 

О.К. Боярчук. – Ч.1. – К.: Вища шк., 1992. – 494 с. 
18. Ляшко И.И.1 Математический анализ: Введение в анализ, производная, 

интеграл. Справочное пособие по математическому анализу: В 5 т. / 
И.И. Ляшко, А.К. Боярчук, Л.Г  Гай, Г.П. Головчак. – Т.1. – М.: Едиториал 
УРСС, 2001. – 360 с. 

19. Математический анализ: учебник для студ. вузов, обучающихся по спец. 
"Математика", "Прикладная математика" и "Информатика": В 2 ч. / 
В.А. Ильин [и др.] // Ред. А.Н. Тихонов. – Ч.1. – М.: Издательство Проспект, 
2007. – 660 с. 

20. Никольский С.М. Курс математического анализа / С.М. Никольский. – Т.1. – 
М.: Наука, 1990. – 528 с. 

21. Привалов И.И. Аналитическая геометрия / И.И. Привалов. – М.: Наука, 
1966. – 272 с.  

22. Пискунов И.С. Дифференциальное и интегральное исчисление для втузов / 
И.С. Пискунов. – М.: Наука, 1985. – 432 с. 

23. Райхмист Р.Б. Графики функций / Р.Б. Райхмист. – М.: Высш.шк., 1991. – 
160 с. 

24. Шунда Н.М. Практикум з математичного аналізу: Вступ до аналізу. 
Диференціальне числення / Н.М. Шунда, А.А. Томусяк. – К.: Вища шк., 
1993. – 375 с. 

25. Эйлер Л.1 Дифференциальное исчисление / Л. Эйлер. –  М.-Л.: ГИТТЛ, 
1949. – 580 с. 

26. Trench W.F.2 Introduction to Real Analysis / W.F. Trench. – Pearson Education, 
2003. – 574 р. 

                                                 
1 http://techlibrary.ru/ 
2 http://eqworld.ipmnet.ru/ru/library/mathematics/calculus.htm 



Додаток А 

 225

Додаток А 
Додаток А 

Деякі тригонометричні формули 
sintg
cos

xx
x

= ,  cosctg
sin

xx
x

= ,  
x

x
cos

1sec = , 

1cossin 22 =+ xx ,  2
2

11 tg
cos

x
x

+ = ,  2
2

11 ctg
sin

x
x

+ = . 

Функції кратних кутів 

xxx cossin22sin = , xxx 3sin4sin33sin −= , 2

2tgtg2
1 tg

xx
x

=
−

, 

xxx 22 sincos2cos −= , xxx cos3cos43cos 3 −= , 
2ctg 1ctg2

2ctg
xx

x
−= . 

Функції суми і різниці кутів 

yxyxyx sincoscossin)sin( ±=± , tg tgtg( )
1 tg tg

x yx y
x y
±± =
⋅∓

, 

yxyxyx sinsincoscos)cos( ∓=± , ctg ctg 1ctg( )
ctg ctg

x yx y
y x
⋅± =
±

∓ . 

Формули пониження степеня 

( )xx 2cos1
2
1sin2 −= ,  ( )xx 2cos1

2
1cos2 += , 

( )xxx 3sinsin3
4
1sin3 −= ,  ( )xxx 3coscos3

4
1cos3 += , 

( )32cos44cos
8
1sin4 +−= xxx , ( )32cos44cos

8
1cos4 ++= xxx . 

Сума й різниця тригонометричних функцій 

2
cos

2
sin2sinsin yxyxyx −+

=+ , 
2

cos
2

cos2coscos yxyxyx −+
=+ , 

2
sin

2
cos2sinsin yxyxyx −+

=− , 
2

sin
2

sin2coscos yxyxyx −+
−=− , 

sin( )tg tg
cos cos

x yx y
x y
±± =
⋅

,  sin( )ctg ctg
sin sin

x yx y
x y
±± = ±
⋅

. 

Добуток тригонометричних функцій 

[ ])cos()cos(
2
1sinsin yxyxyx +−−= , [ ])cos()cos(

2
1coscos yxyxyx ++−= , 

[ ])sin()sin(
2
1cossin yxyxyx ++−= . 

Зв’язок між оберненими тригонометричними функціями 
2

2
2

1arcsin arcsin( ) arccos arccos 1 arctg arcctg
2 1

x xx x x x
xx

π −
= − − = − = − = =

−
, 

2 2

1 1arctg arctg ( ) arcctg arctg arcsin arccos
2 1 1

xx x x
x x x

π
= − − = − = = =

+ +
. 
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Дві істотні границі й наслідки з них 
[3, c. 172–176; 4, c. 122-125, 164] 

Еквівалентні нескінченно малі 
функції 

1sinlim
0

=
→ x

x
x

, 
0

tglim 1
x

x
x→

= ; sin ~x x ,   tg ~ ( 0)x x x → ; 

1arcsinlim
0

=
→ x

x
x

, 1lim
0

=
→ x

xarctg
x

; arcsin ~ , arctg ~ ( 0)x x x x x → ; 

2
1cos1lim 20

=
−

→ x
x

x
; )0(

2
1~cos1 2 →− xxx ; 

e
x

x

x
=⎟

⎠
⎞

⎜
⎝
⎛ +

∞→

11lim , ( ) ex x

x
=+

→

/1

0
1lim ;  

11lim
0

=
−

→ x
ex

x
, 1)1ln(lim

0
=

+
→ x

x
x

; 1 ~ ,xe x− )0(~)1ln( →+ xxx ; 

a
x

ax

x
ln1lim

0
=

−
→

. )0(ln~1 →− xaxax . 

 
Таблиця похідних 

( ) 1x xα α−′ = α ⋅ , 0x > , α∈\ ; 0C′ = , ( ) 1x ′ = , ( )2 2x x′ = , ( )3 23x x′ = ; 

2

1 1
x x

′⎛ ⎞ = −⎜ ⎟
⎝ ⎠

, 0x ≠ ; ( ) 1
2

x
x

′ = , 0x > ;  ( )3

3 2

1

3
x

x
′ = , 0x ≠ ; 

( ) lnx xa a a′ = , 0 1a< ≠ ; ( )x xe e′ = ; 
1(ln )x
x

′ = , 0x > ; 1(log )
lna x

x a
′ = , 0, 0 1x a> < ≠ ; 

(sin ) cosx x′ = ; (cos ) sinx x′ = − ; 

2

1(ctg )
sin

x
x

′ =− , ,x n n≠ π ∈Z ; 
2

1(tg )
cos

x
x

′ = , ,
2

x n nπ
≠ +π ∈Z ; 

(sh ) chx x′ = ; (ch ) shx x′ = ; 

2

1(th )
ch

x
x

′ = ; 2

1(cth )
sh

x
x

′ =− , 0x ≠ ; 

2

1(arctg )
1

x
x

′ =
+

;  2

1(arcctg )
1

x
x

′ = −
+

; 

2

1(arcsin )
1

x
x

′ =
−

,  | | 1x < ; 
2

1(arccos )
1

x
x

′ = −
−

, | | 1x < ; 

( ) sgn при 0x x x′ = ≠ ; [ ] 0 приx x′ = ∉] . 
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Таблиця похідних вищих порядків 
1

1 1 0( ) ...m m
m m mP x a x a x a x a−

−= + + + +   ⇒  ( )( ) !,
( )

0,
n m

m

a m n m
P x

n m
=⎧

= ⎨ >⎩
; 

( )( )
( 1) ... ( 1)

n nx n xα α−= α ⋅ α − ⋅ ⋅ α − + ⋅ , 
 0,x > α∈\ ; 

( )

1

1 ( 1) !n n

n

n
x x +

−⎛ ⎞ =⎜ ⎟
⎝ ⎠

, 0x ≠ ; 

( )( )
ln

nx x na a a= ⋅ , 0 1a< ≠ ; ( )( )nx xe e= ; 

( )
1

( ) ( 1) ( 1)!log
ln

n
n

a n

nx
x a

+− ⋅ −
=

⋅
, 0 1a< ≠ , 

0x > ; 

( )
1

( ) ( 1) ( 1)!ln
n

n
n

nx
x

+− ⋅ −
= , 0x > ; 

( )(sin ) sin
2

n nx x π⎛ ⎞= +⎜ ⎟
⎝ ⎠

. ( )(cos ) cos
2

n nx x π⎛ ⎞= +⎜ ⎟
⎝ ⎠

 
 

Таблиця розвинень елементарних функцій за формулою  
Маклорена із залишковим членом у формі Пеано 

( )
2

1
1

n
x nx x xe o x

n
= + + + + +

! 2! !
… ; 

( )
3 5 7 2 1

1 2sin ( 1)
3

m
m mx x x xx x o x

m

−
−= − + − + + − +

! 5! 7! (2 −1)!
… ; 

( )
2 4 6 2

2 1cos 1 ( 1)
m

m mx x x xx o x
m

+= − + − + + − +
2! 4! 6! (2 )!

… ; 

( ) ( ) ( )21 1 ( 1)
(1 ) 1m n nm m m m m nmx x x x o x

n
− − − +

+ = + + + + +
1! 2! !

…
… ; 

2 31 1 ( 1) ( )
1

n n nx x x x o x
x
= − + − + + − +

+
… ; 

( )
2 3 4

1ln(1 ) ( 1)
n

n nx x x xx x o x
n

−+ = − + − + + − +
2 3 4

… . 
 

Деякі скінченні суми 
1

2 ...
1

n
n x xx x x

x

+−
+ + + =

−
; 

1sin sin
2 2sin sin 2 ... sin , 2
sin

2

n nxx
x x nx x kx

+
⋅

+ + + = ≠ π , k ∈] ; 

1sin
1 2cos cos2 ... cos , 2
2 2sin

2

n x
x x nx x kx

⎛ ⎞+⎜ ⎟
⎝ ⎠+ + + + = ≠ π , k ∈] ; 

sincos cos cos ... cos
2 4 8 2 2 sin

2

n
n

n

x x x x x
x⋅ ⋅ ⋅ ⋅ = , 2 ,nx k k≠ π ∈]  
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ПРЕДМЕТНИЙ ПОКАЖЧИК 
ПРЕДМЕТНИЙ ПОКАЖЧИК 

Асимптота графіка 66, 68, 164, 200 
 
Диференціювання 12, 100 
– функцій, заданих в полярній системі 
координат 126 

– логарифмічне 20, 101, 150 
– неявно заданої функції 35, 125, 191, 214 
– параметрично заданої функції 33, 122, 

193, 214 
– техніка 100 
Диференційовність функції 23, 107, 192, 

210 
– –, критерій 24 
Диференціал функції 23, 117, 194, 211 
– – вищого порядку 32, 124, 195, 215 
– – другого порядку 32, 127 
– – n -ого порядку 32 
– –, властивості 26 
– –, геометричний зміст 26 
– –, застосування для наближених 
обчислень 24, 117, 212 

– –, інваріантність форми першого 
диференціала 27 

– –, неінваріантність форми 
диференціалів вищих порядків 32 

Дотична до графіка функції 9, 11, 119, 
121, 212 

 
Екстремум (мінімум, максимум) 
локальний 36, 45, 47, 69, 141, 165, 216 

– –, необхідна умова (теорема Ферма) 38 
– –, достатня умова 46, 47, 88 
– піковидний 47, 65, 166, 169 
Залишковий член формули Тейлора 76 
– – – – в формі Коші 83 
– – – – в формі Лагранжа 83 
– – – – в формі Пеано 76 
– – – – в формі Шльомільха-Роша 83 
 
Коші теорема, формула 39, 140 
 
Лагранжа залишковий член 83 

– теорема, формула 41, 137, 215 
– – , геометричний зміст 41 
– – , наслідки 42 
Лежандра многочлен 136 
Лейбніца формула 30, 128 
Лопіталя правило 51, 55, 155, 198, 215 
 
Маклорена формула 75, 78 
– –довільної функції 78, 158, 198, 220 
– – елементарних функцій (таблиця 
розвинень) 79 

– –, застосування для наближених 
обчислень 85, 86 

– – – для обчислення границь 163, 199, 
220 

– – многочленів 75 
Монотонна функція 17, 43, 70, 141, 165, 

197, 200, 216 
– – в точці 36 
– – – , достатня умова 37 
– – нестрого 43 
– – – , критерій 44 
– – строго 16, 43 
– – – , достатня умова 45 
 
Найбільше і найменше значення функції 
на відрізку 71, 141, 216 

Невизначеність, розкриття  51, 55, 155, 
198, 215 

– – виду 
0
0
⎡ ⎤
⎢ ⎥⎣ ⎦

 51, 156 

– – виду 
∞⎡ ⎤
⎢ ⎥∞⎣ ⎦

 55, 157 

Нормаль до графіка функції 11, 122, 212 
 
Опуклість функції 58, 71, 153, 165, 201, 

221 
– – , геометрична інтерпретація 59, 62 
– – , критерій 60, 61 
 
Перегин 65, 66, 69, 165, 201, 221 
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– , достатня умова 66 
– , необхідна умова 65 
Похідна функції 7 ,100, 191, 207 
– – вищого порядку 27, 215 
– – , геометричний зміст 9, 119 
– – другого порядку 27, 124, 213 
– – n -ого порядку 27, 128, 194 
– – , економічний зміст 11 
– – елементарної 17 
– – , механічний зміст 11 
– – оберненої 16, 104, 209 
– – одностороння (права, ліва) 8, 108, 211 
– – складеної 15 
– – степенево-показникової 21 
 
Ролля теорема (про нуль похідної) 39, 

135, 215 
– – , геометричний зміст 41 
 
Таблиця похідних 17, 226 
– – вищих порядків 28, 227 
– розвинень елементарних функцій за 
формулою Маклорена з залишковим 
членом у формі Пеано 79, 227 

Тейлора формула 74, 78, 82 
– – для довільної функції із залишковим 
членом у формі Пеано 78, 82  

– – для многочленів 74, 158, 220 
– –, застосування для наближених 
обчислень 221 

Теорема Коші 39, 140 
– Лагранжа 41, 137, 215 
– Ролля (про нуль похідної) 39, 134, 215 

– Ферма 38 
Точка критична 45, 70, 141, 200 
– стаціонарна 45 
– перегину 65, 66, 69, 165, 201, 221 
– розриву 111 
 
Формула Коші 39, 140 
– Лагранжа 41, 137, 215 
– – скінченних приростів 41 
– Лейбница 30, 128 
– Маклорена 75, 78, 158, 198, 220 
– Тейлора 74, 78, 82, 158, 220 
 
Функція диференційовна 23, 107, 192, 

210 
– , задана в полярній системі координат 

126, 178, 222  
– зростаюча 43 
– монотонна 17, 43, 70, 141, 165, 197, 200, 

216 
– незростаюча (нестрого спадна) 43 
– неперервна 7, 12, 39, 106, 112, 134, 164, 

210 
– неспадна (нестрого зростаюча) 43 
– нестрого монотонна 43 
– спадна 43 
– неявно задана 35, 125, 193, 214 
– обернена 16, 104, 209 
– –  однозначні неперервні гілки 104, 209 
– параметрично задана 33, 122, 174, 193, 

214, 222 
– складена 15 
– степенево-показникова 21 
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СПИСОК УМОВНИХ ПОЗНАЧЕНЬ 
 

def

⇔  – позначення, яке слід читати так: «якщо за означенням…» або «називається за 
означенням…». 
def

=  – рівність за означенням; величина, що визначається, стоїть в лівій частині 
рівності 

 – повторити 
 – означення 

■ – завершення доведення твердження чи розв’язання прикладу 
 – зверніть увагу, запам’ятайте! 
 – виконати завдання самостійно 

∃  – квантор існування 
∀  – квантор загальності 
∧  – логічна операція, кон’юнкція 
∨  – логічна операція, диз’юнкція 
⇒⎫
⎬⇐⎭

 – логічна імплікація  

⇔  – логічна еквівалентність (рівносильність) 
∪  – множинна операція, об’єднання 
∩  – множинна операція, перетин  
∈  – символ належності елемента деякій множині 
∅  - порожня множина 
\  – множина дійсних чисел 
]  – множина цілих чисел 
_  – множина раціональних чисел 
`  – множина натуральних чисел 
непер. – неперервна (функція) 
т. – точка 
/  – зростаюча функція 
2  – спадна функція 
∪  – опукла вниз функція 
∩  – опукла вгору функція 
loc extr  – локальний екстремум 

maxloc  – локальний максимум 
minloc  – локальний мінімум 

nx a→  – послідовність nx  прямує (збігається) до a  
lim nn

x a
→∞

=  – границя послідовності nx  дорівнює a  

lim ( )
x a

f x b
→

=  – границя функції ( )f x  в точці a  дорівнює b  
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