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ВСТУП 
 

 

Курс математичного аналізу є необхідною складовою частиною базової теоре-

тичної підготовки студента математичного факультету та основою для подальшого 

вивчення спеціальних дисциплін. Метою курсу є надання систематичних знань сту-

дентам з основ класичного аналізу дійсних функцій 

Математичний аналіз – фундаментальний курс, на поняттях і фактах якого ба-

зується більшість математичних дисциплін, вони також застосовуються в фізиці, ме-

ханіці, техніці, економіці та ін.  

Цей курс дає можливість простежити внутрішню логіку розвитку поняття фун-

кції, теорії границь, теорії диференціального та інтегрального числення функцій бага-

тьох змінних, а також закладає базу для подальшого вивчення курсів комплексного 

аналізу, теорії міри та інтеграла, функціонального аналізу, диференціальних рівнянь, 

диференціальної геометрії, теорії ймовірностей, рівнянь математичної фізики, механі-

ки деформівного твердого тіла та інших. 

Посібник охоплює один із найважливіших розділів математичного аналізу – ін-

тегральне числення функції багатьох змінних. Цей розділ вивчається студентами на-

прямів підготовки «Математика», «Прикладна математика» і «Програмна інженерія» 

в останньому семестрі курсу математичного аналізу і відповідає останнім контроль-

ним та змістовим модулям.  

У результаті вивчення зазначеного розділу курсу студент повинен знати основ-

ні поняття та факти інтегрального числення функцій багатьох змінних, основні облас-

ті застосування цих понять та фактів. Студент повинен вміти застосовувати кратні, 

криволінійні та поверхневі інтеграли до обчислення площ фігур, довжин дуг кривих, 

об’ємів тіл, площ поверхонь, застосовувати їх у векторному аналізі, механіці, фізиці 

та ін. 

Посібник складається із двох основних розділів. Теоретична частина містить 

конспект лекцій з трьох тем: «Кратні інтеграли», «Криволінійні та поверхневі інтег-

рали», «Елементи теорії поля. Основні інтегральні формули аналізу». Друга частина 

посібника містить варіанти двох індивідуальних завдань «Кратні інтеграли» і «Кри-

волінійні та поверхневі інтеграли. Елементи теорії поля» із прикладами виконання та-

ких завдань.  
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§1. Кратні інтеграли 
 
1 Інтеграл Рімана на m-вимірному проміжку 
Означення 1.1 (m-вимірного проміжку). Множину  

  1 2, ,..., ,..., : , 1,m

j m j j jI x x x x x a x b j m        

називають m вимірним проміжком. 
Приклади 1.1 Якщо m=1, то одновимірним проміжком є відрізок числової прямої 

1 1[ , ]a b . 

1.2 Якщо m=2, то двовимірним проміжком є прямокутник на декартовій площині, 
координати якого задовольняють нерівності: 

1 1 1 2 2 2, ,a x b a x b     

тобто в цьому випадку 

   1 1 2 2, ,I a b a b  . 

1.3 Якщо m=3, то тривимірним проміжком є прямий паралелепіпед в декартовому 
просторі, координати якого задовольняють нерівності: 

1 1 1 2 2 2 3 3 3, ,a x b a x b a x b      , 

тобто в цьому випадку 

     1 1 2 2 3 3, , ,I a b a b a b   . 

1.4 Якщо хочуть зазначити, що проміжок визначається точками  

   1 1,..., , ,...,m ma a a b b b  , то його позначають в такий спосіб: 

,a b
I
  

 або ,a b   . 

Означення 1.2 Мірою або об’ємом проміжку І=
,a b

I
  

 (тут 

   1 1,..., , ,...,m ma a a b b b  ) називають значення  
1

m

j j

j

b a


  і записують:  

     
1

m

j j

j

I V I I b a


     . 

Властивості міри проміжку: 

1. 
, ,

m

a b a b
I I
       

   . 

2. Якщо проміжок I  розбито на скінченну кількість проміжків, які попарно не 

мають спільних внутрішніх точок1, тобто 

   
1

,
n

o o

j j i

j

I I I I i j


   , 

тоді 

1

n

j

j

I I


 . 

3. Якщо проміжок I  покрито скінченною кількістю проміжків, тобто 
1

n

j

j

I I


 ,  

                                                 
1 Внутрішньою точкою множини M  називають таку точку  1 2, ,..., ,...,k mx x x x x , яка належить цій множині разом 

із деяким своїм околом  
1

( , )
m

k k

k

V x x x



     , тобто 0( )V x M  . Множину внутрішніх точок множини M  поз-

начається 0M . 
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тоді для міри виконується нерівність 

1

n

j

j

I I


 . 

 ПОВТОРЕННЯ. Розглянемо випадок функції однієї змінної. 

Нехай функція ( )f x  задана на [а,b]. Розглянемо розбиття { }kR x  відрізка [а,b] скін-

ченною кількістю точок  

0 1 2 1 1... ...k k n na x x x x x x x b           . 

Виберемо проміжні точки { }kP   , де 1[ , ], 1,k k kx x k n   . Розглянемо інтегральну 

суму 
1

( , , ) ( )
n

k k

k

f R P f x


       для функції ( )f x , що відповідає розбиттю R  та то-

чкам P  (тут 
1k k kx x x    ,   1

1,
max k k
k n

d x x 


   –  діаметр розбиття). 

Означення 1.3 (на мові    ). Число J  називають границею інтегральних 

сум ( , , )f R P  при 0d   і позначають 
0

lim ( , , )
d

J f R P


 , якщо для кожного 0   

можна знайти таке число 0  , що для будь-якого розбиття { }kR x  відрізка [ , ]a b  з 

умовою d    незалежно від вибору проміжних точок { }kP    виконується нерівність 

( , , )J f R P   . Тобто 

0
lim ( , , )

def

d
J f R P


    

0 0: { } { } ( , , )k kR x P d J f R P               . 

Якщо таке число J  існує, то функцію ( )f x  називають інтегровною за Ріманом на від-

різку [ , ]a b , а значення границі J  – визначеним інтегралом Рімана.  

 
Кратний інтеграл є узагальненням визначеного інтеграла Рімана функції однієї 

змінної. 

Кожен з відрізків ,j ja b    ( 1,j m ), що утворює проміжок  I , розбивається на 

відрізки, а розбиття проміжку I  утворюється  із проміжків, кожен з яких є декартовим 
добутком відрізків утворених розбиттів. 

Позначимо через  
1

n

j j
R I


  множину проміжків розбиття, 

 1 2, ,..., ,...j j j j

j k m jI        – проміжні (відмічені) точки,   jP   – множина відмі-

чених точок. 

Якщо A– довільна множина в 2

m
, то   ( ) sup , : ,d A x y x y A    – діаметр 

множини A . Діаметром розбиття  d d R  називають  максимальний серед усіх діаме-

трів проміжків розбиття, тобто 

   max j
j

d d R d I  . 

Означення 1.4 Інтегральною сумою функції  f x , що відповідає розбиттю 

 
1

n

j j
R I


  проміжку I  з відміченими точками  jP   , називають значення такої су-

ми  

   
1

, ,
n

j j

j

f R P f I


      . 
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 Означення 1.5 Число 
0

lim
d

J


   називають границею інтегральних сум при 

діаметрі розбиття, що прямує до нуля ( 0d  ), якщо 

0 0: R P      :   d J     . 

Якщо існує 
0

lim
d

J


  , тоді функцію  f x  називають інтегровною за Ріманом на про-

міжку I . Позначення:    f x I . Число J  називають інтегралом  Рімана на про-

міжку I .  Позначення:   
I

J f x dx  . 

Ще раз підкреслимо, що значення границі 
0

lim
d

J


   (згідно до означення) НЕ  

ЗАЛЕЖИТЬ від способу розбиття і вибору відмічених точок. 
Окремі випадки кратних інтегралів:  

m=1     
 

 
,

b

I a b a

J f x dx f x dx


    – визначений інтеграл Рімана, 

m=2     ,
I

J f x y dxdy   – подвійний інтеграл, 

m=3      , ,
I

J f x y z dxdydz   – потрійний інтеграл. 

Теорема 1.1 (необхідна умова інтегровності функції на проміжку). 

     f x I f x  обмежена на I . 

Доведення. Припустимо супротивне, що  f x – необмежена. Розглянемо роз-

биття  
1

n

j j
R I


  проміжку I  і випишемо інтегральну суму 

   
1

, ,
n

j j

j

f R P f I


      , 

що відповідає множині відмічених точок  jP   , які будемо обирати таким чином, 

щоб інтегральна сума була як завгодно великою. Оскільки функція  f x –необмежена, 

то вона необмежена хоча б на одному із проміжків розбиття 
0j

I     

   
0 0 0 0

*0 :j j j jM I f I M         ,  

де  
0

*

j j

j j

f I


   . Тоді 

   
0 0 0 0

* * * *

j j j jf I f I M M                . 

Висновок: границя інтегральних сум не існує, тому функція  f x  неінтегровна 

на I .        ■  

2 Критерії Дарбу інтегровності функції багатьох змінних на проміжку 

Введемо позначення: 

   inf , sup
j

j

j j
x I x I

m f x M f x
 

  . 

Тут  
1

n

j j
R I


  – розбиття проміжку I . 

Визначимо нижню та верхню інтегральні суми Дарбу функції  f x  на проміжку 

I , що відповідає розбиттю R  відповідно: 
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 
1

,
n

j j

j

S S f R m I


  , 

 
1

,
n

j j

j

S S f R M I


  . 

Властивості інтегральних сум Дарбу. 

Властивість 1.         , inf , , sup , , ,
P P

S f R f R P f R P S f R     . 

Ця властивість є наслідком означення сум Дарбу. 

Властивість 2. Якщо 1R  є подрібненням розбиття R , то має місце нерівність 

       1 1, , , ,S f R S f R S f R S f R   . 

Доведення здійснюється аналогічно доведенню в одновимірному випадку [1, c. 76]. 

Властивість 3. Будь-яка нижня сума для розбиття 1R  не більша за будь-яку вер-

хню суму Дарбу для іншого розбиття 2R : 

   1 2, ,S f R S f R . 

Доведення. Введемо до розгляду розбиття 3R , яке є подрібненням як розбиття 

1R , так і розбиття 2R , і інтегральні суми Дарбу, що йому відповідають 3 3iS S . Тоді 

згідно з властивістю 2, отримаємо 

1 3 3 2S S S S   . ■ 

Властивість 4.  

   1 10 : , , ,R P S f R f R P       , 

   2 20 : , , ,R P f R P S f R        . 

Доведення здійснюється аналогічно доведенню в одновимірному випадку [1, c. 75].  

Розглянемо множину   , :S f R R . Вона обмежена знизу, наприклад, значенням 

суми  *,S f R , де 
*R  – фіксоване розбиття. Отже, за основною теоремою теорії дійс-

них чисел [3, c. 48], 

  inf , :S f R R J   – верхній інтеграл Дарбу. 

Аналогічно,  

  sup , :S f R R J   – нижній інтеграл Дарбу. 

Теорема 1.2 (критерій Дарбу інтегровності функції на проміжку). Обмежена 

функція  f x  є інтегровною на проміжку І тоді і тільки тоді, коли  

 
0

lim 0
d

S S


  ,  

тобто 

обмежена функція    f x I    

0 0 R d             , ,S f R S f R   . 

Доведення здійснюється аналогічно доведенню в одновимірному випадку [1, c. 80].  

Наслідок 1.1 Обмежена функція  f x  є інтегровною на проміжку І тоді і тільки 

тоді, коли J J , крім того,  
I

J J J f x dx    . 
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3 Класи інтегровних функцій на проміжку 

Теорема 1.3 Неперервна функції на проміжку інтегровна на ньому.  

Доведення здійснюється за допомогою наслідку із теореми Кантора [3, c. 559] 
аналогічно випадку для функції однієї змінної.  

Означення 1.5 Множина A  має лебеґову міру нуль (позначення: 0A  ), як-

що її можна покрити не більше, ніж зчисленною кількістю проміжків, сумарним 
об’ємом меншим наперед заданого  . Тобто 

  0 0 :
def

j j jj M
j Mj M

A I M a A I I




 
            

 
 1. 

Зауваження 1.1 Безпосередньо із означення випливає таке: якщо множина A  має 
лебеґову міру нуль, то будь-яка її підмножина B  матиме теж міру нуль, тобто 

0 0B A A B       . 

Цю властивість міри Лебеґа називають повнотою міри.  
Приклад 1.5 Якщо A  – скінченна множина, тоді 0A  . 

Дійсно,  

 
1

11

,

нехай буде таким, що

n

n nj j

j j

jjj j j j

A n A a
A I I n

nI a I I
n





   
      

   


 .  ■ 

Приклад 1.6 Якщо A  – зчисленна ( A a ), тоді 0A  . 

Дійсно,  

 
1

1 11

,
2
12 1нехай такий, що 22

j j

j j j
j jjj j j j j

A a
A I I

I a I I



  


 

  
      

   


  . ■ 

Наприклад, множина  
m зчисленна (доведіть це !), тому 0m  . 

Приклад 1.7 Якщо 
   1

1
m

I m

  – вимірний проміжок, а функція  x – непе-

рервна на 
 1m

I


, тоді множина       1
, :

m
G x y y x x I


      в 

m
, яка є графіком 

функції  x , має лебеґову міру нуль, тобто  0G  . 

Доведення. Згідно з наслідком із теореми Кантора [3, c. 559] проміжок 
 1m

I


 мо-

жна розбити на скінченну кількість проміжків 
  1

1

n
m

j
j

I



, на кожному з яких коливання 

функції  x  буде меншим за 
*

2 I


 


.  

Обираємо довільні точки jx  із проміжку розбиття 
 1m

jI


. Розглянемо множину 

     1 * *,
m

j j jI x x
       

 
. Вона гарантовано покриває ділянку графіку функції 

 x , що розташовується над проміжком 
 1m

jI


. Множини 

     1 * *,
m

j j jI x x
       

 
 є проміжками в 

m
 об’єму (міри)  

         1 1* * *

1, 2
m m

m j j j m jI x x I
 


           
 

. 

                                                 
1 M  це потужність множини M ; a   це потужність зчисленної множини; запис M a означає, що множина M  

є не більш, ніж зчисленною, тобто скінченною або зчисленною. 
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(тут 
 1

( )
m

A


  – міра множини A  в 
1m
). Об’єднання цих проміжків утворює покриття 

A  графіку G  функції  x  і має об’єм  

  1* *

12 2
m

m j

j

A I I


          .   ■ 

Зауваження 1.2 Множина із прикладу 1.7 покрита скінченною кількістю проміж-

ків загального об’єму, меншого за  . Це відповідає жордановій мірі нуль1. 

Теорема 1.4 (критерій Лебеґа інтегровності функції на проміжку). Обмежена 

функція  f x  на проміжку І інтегровна тоді і тільки тоді, коли множена A  її точок роз-

риву має міру Лебеґа нуль, тобто 0A  . 

Доведення тереми входить в курс «Теорія міри та інтеграла». 

Якщо деяка властивість виконується у всіх точках, окрім точок лебеґової міри 

нуль, то кажуть що така властивість виконується майже скрізь. Будемо скорочено це 

позначати «м.с.»Тому останню теорему можна сформулювати в такий спосіб:  

Обмежена функція інтегровна на проміжку I  тоді і тільки тоді, коли вона на 

ньому неперервна майже скрізь. 

4 Інтеграл по множині 

4.1 Допустимі множини. 

Пригадаємо, що межовою точкою множини 2

mA  називають точку, в будь-

якому околі якої лежать як точки множини A , так і точки доповнення до неї. Множину 
всіх межових точок множини A  називають межею цієї множини і позначають A . 

Означення 1.6 Множину A  із m - вимірного простору 2

m
 називають допус-

тимою, якщо множина її межових точок має лебеґову міру нуль. Тобто 

 
mA – допустима   0

def

A   .  

Приклад 1.8 Якщо область D  обмежена графіками функцій 

   ,y x y x   ,  неперервними на 
 1m
 , тоді її межа має лебеґову міру нуль (згід-

но з прикладом 1.7), а D  є допустимою множиною в 
m

. 

Зокрема, якщо 2m  , функції 1( )f x  і 2( )f x  – 

неперервні на [ , ]a b , а також 1 2( ) ( )f x f x  на [ , ]a b , то 

множина  
2

2 1{( , ) : ( ) ( )}D x y a x b f x y f x         

(рис. 1.1) має межу лебеґової міри нуль. Отже, вона є 

допустимою. 

Приклад 1.9 Тетраедр, куля, призма, куб, пара-

лелепіпед є множинами допустимими, оскільки мно-

жина їх межових точок утворюється скінченною 

 

y=f1(x) 

X a O 

Y 

b 

D 

y=f2(x) 

 
Рис. 1.1 

кількістю неперервних поверхонь. 

                                                 
1 Множина A  має жорданову міру нуль (позначимо: 0A  ), якщо її можна покрити скінченною кількіс-

тю проміжків, сумарним об’ємом меншим наперед заданого  . Тобто  

 
1

11

0 0 :
N Ndef N

j j jj
jj

A I A I I




           
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Лема 1.1 
 
 
 

1 2 2

1 2 1 2
1 2

1 2 1 2

1 2 1 2

1) , замкненi в ,

2) ,
,

3) ,

4) \ .

m

m

E E

E E E E
E E

E E E E

E E E E

   
    

  
   


   

 

Наслідок 1.2 Якщо 1E  и 2E – допустимі множини, тоді їх об’єднання, перетин і 

різниця також будуть множинами допустимими. 
Доведення отримаємо із такої властивості множин лебегової міри нуль:  

     1 2 1 20 0E E E E          , 

а також із леми 1.1 і властивості повноти міри Лебеґа. ■ 
Означення 1.7 Характеристичною функцією множини E  називають функцію 

вигляду: 

  1, ,
0, .E

x E
x

x E


 


. 

Задамо функцію  

    , ,

0, .E

f x x E
f x

x E

 
  


 

Означення 1.8 Нехай E – допустима множина, тоді інтегралом від функції 
( )f x  по допустимій множині E  називають інтеграл по проміжку I , що покриває E , 

від функції  Ef x , тобто 

     
def

E

E I E

f x dx f x dx


   . 

Якщо існує інтеграл в правій частині останньої рівності, тобто ( )Ef I  , тоді функ-

цію ( )f x  називають інтегровною на множині  E  і позначають ( )f E . 

Лема 1.2 (коректність означення). Нехай E – допустима множина, тоді 

     
1 2

1 2 1 2, проміжків E E

I I

I I I E I E f x dx f x dx          . 

Це означає, що в означенні інтеграла по множині E  байдуже, який проміжок обирати за 
той, що покриває множину E . 

Доведення. Розглянемо проміжок 1 2I I I E  , тоді 

    *

0
limE k k
d

kI

f x dx f I


   , 

де  *kI  – розбиття проміжку І. Подовжимо1 розбиття  *kI  на проміжки 1I  і 2I  із збе-

реженням значення діаметра розбиття. Відмічені точки, що не належать  *kI , оберемо 

довільним чином, а ті, що належать  *kI , збережемо тими ж. Тоді на проміжках, що не 

належать  *kI , функція  Ef x  приймає значення нуль, тому інтегральні суми для 

проміжків 1I  і 2I  будуть збігатися із значенням інтегральної суми для проміжку І, а то-

му і значення границь інтегральних сум будуть рівними. Отримаємо: 

     
1 2

E E E

I I I

f x dx f x dx f x dx       .  ■  

                                                 
1 Якщо  * *

kR I  – розбиття проміжку I , а 1I I , то розбиття  ** **

sR I  називають подовженням розбиття *R , як-

що проміжки із розбиття **R , які належать I , збігаються з проміжками розбиття *R . 
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4.2 Критерій Лебеґа інтегровності функції на допустимій множині. 

Теорема 1.5 (критерій Лебеґа інтегровності функції на допустимій множині). 

Функція  f x , обмежена на допустимій множині E , інтегровна на цій множині тоді і 

тільки тоді, коли множина її точок розриву на множині E  має лебеґову міру нуль. Тоб-
то  

 
обм. на ,

0
,

f E
A

f E

 
   

, де A– множина точок розриву  f x  на E . 

Або можна переформулювати цю теорему в такий спосіб:  
Обмежена функція інтегровна на допустимій множині E  тоді і тільки тоді, 

коли вона на цій множині неперервна майже скрізь. 

Доведення.  
I  – проміжок, що покриває допустиму множину E , 

B – множина точок розриву  f x  на I , 




 

B A E  , A B E  . 

Необхідність.  

   
 

   
 

, ,
0

обм. на , обм. на ,

f x E f x I
B

f x E f x I

   
   

  
, 

E – допустима   0A   . 

Маємо:   
,

0, 0

0,

A B E

A A

B

  


    
  

. 

Достатність. 

 
         

0,
0,

,
обм. на ,

обм. на ,

A
B

B A E f x I f x E
f x I

f x I

 
  

         

.   ■ 

4.3 Міра (об’єм) допустимої множини. 
Означення 1.9 Жордановою мірою (об’ємом) допустимої множини E  нази-

вають інтеграл по цій множині від одиничної функції. Позначення:  абоE V E . 

Тобто, 

  1
def

E

E V E dx    . 

 ПОВТОРЕННЯ.  Плоску область E  називають квадровною, якщо  

     sup : , многокутник inf : , многокутник ( )
def

S B B E B S A A E A S E      ; 

спільне значення sup  і inf називають площею плоскої області E . 

Тіло (область у просторі) E  в 
3
– кубовне, якщо 

       sup : , многогранник inf : , многогранник
def

V B B E B V A A E A V E      ; 

спільне значення sup  і inf –  об’єм тіла (області в просторі) E .  

 

За означенням 1.9   1
E

E V E dx    . Встановимо зв’язок між означенням 1.9 і 

відомими раніше означеннями площі квадровної фігури чи об’єму кубовного тіла.  

Функція   1f x   на E  є неперервною, тому множина  М її точок розриву є по-

рожньою, звідки 0M  . Отже,   1f x   – інтегровна на E , тому за критерієм Дарбу, 
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     
__

E E E

I II

x dx x dx x dx       .                                                                 (1.1) 

З’ясуємо геометричний зміст верхнього інтеграла Дарбу  
__

E

I

x dx . За означенням  

   
__

inf ,E E
R

I

x dx S R   . 

Значення верхньої суми Дарбу  
1

,
n

E k k

k

S R M I


   дорівнює значенню сум площ 

(об’ємів) тих проміжків, які мають спільні точки з множиною E . Об’єднання таких 
проміжків є многокутником (многогранником), що описано навколо E . Цей многокут-
ник (многогранник) має сторони (ребра), паралельні осям координат. Значення нижньої 
суми Дарбу дорівнює сумі площ (об’ємів) проміжків розбиття, які цілком лежать всере-
дині множини E , тобто дорівнює площі (об’єму) вписаного в E  многокутника (много-
гранника) зі сторонами (ребрами), паралельними осям координат. 

Отже, 

   
: , многокутник (многранник) із сторонами

sup sup ,
(ребрами), паралельними осям координат E

R

S B B E B
S R

   
  

 
, 

  : , многокутник (многранник) із сторонами
inf

(ребрами), паралельними осям координат

S A A E A   
 
 

 inf ,E
R

S R  , 

а, внаслідок (1.1), 

         
___

inf , sup ,E E E E E
R R

I II

x dx S R S R x dx x dx           , 

звідки випливає, що 

  : , многокутник (многранник) із сторонами
sup

(ребрами), паралельними осям координат

S B B E B   
 

 

   
: , многокутник (многранник) із сторонами

inf
(ребрами), паралельними осям координат E

I

S A A E A
x dx

   
   

 
 .    (1.2) 

Відомо, що рівність значень sup i inf в (1.2) забезпечує квадровність (кубовність) облас-
ті E , а спільне їх значення відповідає площі (об’єму) цієї області. А із рівності (1.2) ви-

пливає, що значення площі (об’єму) області дорівнює значенню інтеграла  E

I

x dx . 

Отже, відоме раніше означення квадровності (кубовності) області та її площі (об’єму) 
збігається з новим означенням 1.9 міри допустимої множини через кратний інтеграл. 

5 Загальні властивості кратних інтегралів 

Надалі будемо вважати, що 1 2, ,E E E  – допустимі множини. 

Властивість 1 (властивість лінійності).    ,f g E f g E     

,  , крім того         
E E E

f x g x dx f x dx g x dx       .   

Доведення.  Перевіримо спочатку інтегровність: 

 
 

   

множина точок розриву на ,

множина точок розриву на ,

множина точок розриву функції на ,

A f x E

B g x E

C f x g x E

 


 
   
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    
    

       
вл. кр. Л.
повноти
міри

,

0 , 0
0,

0 ,

C A B

A f x E C f x g x E
A B

B g x E

 
                  

. 

Тепер можна доводити рівність інтегралів: 

      
1

E E

n

E k E k kf g
k

f g I   


           

   
1 1

E E

n n

E k k E k k f g

k k

f I g I  

 

               

  .
E EE E

f gf g         

Оскільки  , ,f g f g E   , то існують границі інтегральних сум в останній рів-

ності при 0d  ; здійснимо в ній граничний перехід: 

        E E E E

I I

f x g x dx f x dx g x dx


            , 

 ||                                         ||                    ||  

        
E E E

f x g x dx f x dx g x dx        .  ■ 

Властивість 2. 
   

 
 . .

,
0

0,
м c

E
E

f x E
f x dx

f x

 
 

 
 . 

Доведення.    f x E      Ef x E  .  

Тому границя інтегральних сум функції  Ef x  не залежить  від  вибору  про-

міжних точок. Оскільки    
. . . .

0 0
м c м c

E
E E

f x f x    , то можна обрати за проміжні 

саме ті точки, значення функції в яких дорівнює нулю. Матимемо: 

   0
0 0 0

Ef E k k Ed
k I

f I f x dx 
                  0

E

f x dx  . ■ 

Наслідок 1.3 
     

   
   . .

, ,

,
м c

E E
E

f x g x E
f x dx g x dx

f x g x

 
 

 
  . 

Доведення.  Оскільки    ,f g E f g E    , то 

     

       

   

. .

||

0 0

0.

м c

E

E E

x f x g x x dx

f x dx g x dx

      

 



 
■  

Властивість 3 (адитивність інтеграла). Нехай 1E  і 2E – допустимі множини, 

тоді виконуються наступні імплікації: 

       
1 2 1 2 1 2

1 . 2 .вл вл

E E E E E E

f x dx f x dx f x dx f x dx
 

      
 
 

    . 

Крім того 
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       
1 2 1 2

1 2 0
E E E E

E E f x dx f x dx f x dx

   

       . 

Доведення. 
1 .вл

  Введемо позначення:  

 1 1множина точок розриву наA f x E , 

 2 2множина точок розриву наA f x E , 

  1 2множина точок розриву наB f x E E , 

  1 2множина точок розриву наC f x E E . 

Тоді отримаємо: 

 

     

   
1 1

кр. Л.

1
вл.

2 2
повноти кр. Л.2
міри

0, 0 ,
,

0 .
,

B A f x E
A B

A f x E
A B

       
  

   
  

 

1 .вл

      
1

1 22
вл. кр. Л.
повноти

1 2
міри

0,
00,

,

A
B f x E EA

B A A

 

      

 

. 

2 .вл

      
1

2 1 2
вл. кр. Л.
повноти1 2
міри

0,
0, 0

,

A
A C f x E E

C A A

  


      
 

. 

Доведемо рівність. Оскільки        
1 2 1 1 1 2E E E E E Ex x x x     , тоді 

       
1 2 1 1 1 2E E E E E Ef x f x f x f x       . 

Маючи на увазі те, що  1 2 0E E  , одержимо  
1 2E Ef x

. .м в

I
 0. Звідси, а також із 

властивості лінійності та наслідку 1.3, отримаємо 

       
1 2 1 1 1 2

0

E E E E E E

I I I I

f x dx f x dx f x dx f x dx



          , 

     
1 2 1 2E E E E

f x dx f x dx f x dx    .  ■ 

Властивість 4.  
 

   

;

.
E E

f E

f E
f x dx f x dx

 


  




 

 

Доведення.  Якщо  

 множина точок розриву наA f x E , 

 множина точок розриву наB f x E ,  

тоді A B . Тому 

 
 кр. Л.

вл. кр. Л.
повноти
міри

0
0

f E A
B f E

A B

    
    

 
. 

Доведемо нерівність. Оскільки 

       
1 1

E E

n n

E k k E k kf x f x
k k

f I f I
 

 

          , 
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тоді здійснюючи граничний перехід при 0d   в останній нерівності, отримаємо 

   E E

I I

f x dx f x dx        
E E

f x dx f x dx   .  ■ 

Властивість 5. 
   
 

 
,

0
0 ,

E

f x E
f x dx

f x x E

 
 

   
 . 

Властивість 6. 
     
   

   
, ,

,
E E

f x g x E
f x dx g x dx

f x g x x E

 
 

   
  . 

Властивість 7. 

   

 
 

,

доп. мн.,

, E

f x E

E m E f x dx M E

m f x M x E

 


     
    

 . 

Властивість 8. 

   
 

 
 

,

inf , [ , ] :

sup ,
x E

E

x E

f x E

m f x m M f x dx E

M f x




 
     



 . 

Властивості 5–8 доводяться аналогічно доведенню в одновимірному випадку 
[1, c. 100]. Властивості 7–8 – це різні формулювання теореми про середнє. 

Властивість 9 (неперервний випадок теореми про середнє).  

   
непер. на ,

: ( )
доп. зв'язна мн.,

E

f x Е
E f x dx f E

E

 
   

 
 . 

Доведення здійснюється аналогічно доведенню в одновимірному випадку  
[1, c. 101] з використанням теореми Коші про проходження неперервної на зв’язній до-
пустимій множині функції через будь-яке проміжне значення [3, c. 557]. 

Властивість 10 (узагальнена теорема про середнє). 

     
 

 

 

     
     

, ,

,inf ,

[ , ] : .sup ,

0 ,

x E

x E E E

f x g x E

f x g x Em f x

m M f x g x dx g x dxM f x

g x x E






     
     

 
   

 
 

Властивість 11 (неперервний випадок узагальненої теореми про середнє). 

   

 
     

, непер. на ,

доп. зв'язна мн., : ( )

0 , E E

f x g x Е

E E f x g x dx f g x dx

g x x E

 


      
   

  .  

Доведення властивостей 10, 11 аналогічне одновимірному випадку [1, c. 102]. 

Властивість 12. 
 

 
 

. .0,
0

0 ,

м с

E
E

f x dx
f x

f x x E

 
 

   


.   

Доведення. Нехай E I  і   0
I

f x dx  , тоді  

      майже скрізь неперервна наf x f x I    . 

Доведення проведемо від супротивного. Нехай I –точка неперервності фун-

кції  f x , в якій   0f    , тоді      ( ) : 0V D f x V f x         1. Звідси  

                                                 

1Якщо 1( ,..., ,..., )k m     , то  
1

( , )
m

k k

k

V



       . 
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   
 

 
 

   2

\

0 4 0
I V I V

f x dx f x dx f x dx V

 



 

              ,   ■ 

6 Зведення кратного інтеграла до повторного.  

6.1 Tеорема Фубіні. 

Нехай X проміжок в 
m

 , Y проміжок в 
n
, X Y проміжок в 

m n
. 

Теорема 1.6 (теорема Фубіні). 

         
, ,

, , ,
, ,

X Y X Y Y X

f x y X Y
f x y dxdy dx f x y dy dy f x y dx

x X y Y


     
      

      
     . 

Пояснення. Перший інтеграл – це інтеграл на проміжку X Y . Другий и третій 
– це повторні інтеграли, які обчислюються таким чином. Нехай x X   довільний фік-

сований елемент проміжку X . Розглянемо    ,
Y

F x f x y dy  . Значення функції 

 F x  у випадку, коли існує інтеграл  ,
Y

f x y dy , обирається як значення цього інтег-

рала; а у випадку, коли не існує інтеграл  ,
Y

f x y dy , значення функції  F x  обира-

ється будь-яким між    ,
Y

f x y dy J x  і    
_

,
Y

f x y dy J x , тобто  

     ,F x J x J x   .  

В теоремі доводиться, 

по-перше, що    F x X ,  

по-друге,     : 0x X J x J x    . 

Після обчислення значення функції  F x  у всіх точках x  проміжку X , обчис-

люємо  
X

F x dx , який і позначено як  ,
X Y

dx f x y dy  .  

Ідея доведення. Окрім зазначеного вище, розглядаються також інтегральні суми 

для усіх 3-х інтегралів. Оскільки    ,f x y X Y  , то значення границь інтеграль-

них сум не залежать від способу розбиття і вибору проміжних точок. Отже, цей вибір 
робимо зручним для нас способом. Розбиття обираємо як декартів добуток розбиттів 
проміжків X  і Y . Проміжні точки обираємо теж як «декартів добуток» виборів на про-
міжках X  і Y . Будемо мати: 

     
,

, , ,i j i j i i j j j i j i

i j i j j i

f x y X Y X f x y Y Y f x y X       . 

Це дограничний вигляд теореми Фубіні. 

Доведення. По-перше, доведемо, що    F x X . Зауважимо спочатку, що 

         
0 0

, lim , lim , ,
d d

X Y

f x y X Y S f S f f x y dxdy
 



        .                   (*) 

Розглянемо ланцюг нерівностей: 

 
 

 
 

   
, ,

,

, inf , inf , inf inf ,
i j i j i j

i j
x y X Y x y X Y x X y Y

i j

S f f x y X Y f x y f x y
     

 
      

 
  
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   
за def

нижнього інт.Дарбу

inf inf , inf ,
i j i

j i i
x X y Y x X

i j i Y

f x y Y X f x y dy X
  

  
      

   
   

     

 

   
 

   

 
   

за def за def
функції функції

___

за def
верхнього інт.Дарб

,,

inf sup

sup , sup sup ,

sup , , .

i i

i i j

i j

i i
x X x Xi i

F x F x

i j i
x X x X y Yi i jY у

i j
x y X Yi j

F x X F x X

f x y dy X f x y Y X

f x y X Y S f

 

  

 

    

 
    

 
 

    

 

  



 

Здійснюємо граничний перехід під знаком нерівності. Тоді із (*) випливає, що значення 
границь усіх сум виписаного ланцюга однакові при 0d    

Тоді, зокрема, 

   
0 0

lim inf lim sup
i i

i i
d x X d x Xi i

F x X F x X
   

    , 

тобто     
__

X X

F x dx F x dx  . Це означає, що  функція  F x  інтегровна на X . 

По-друге, доведемо, що     : 0x X J x J x    . З ланцюга нерівностей також 

випливає, що  

 
0

lim inf ,
i

i
d x X

i Y

f x y dy X
 

 
   
 
 

    
__

0
lim sup ,

i

i
d x Xi Y

f x y dy X
 
  . 

Це говорить про те, що  

       
_ __ . .

, , 0 , ,
м с

X
X Y y Y Y

f x y dy f x y dy dx f x y dy f x y dy
 
     
 
 
      

    : 0.x X J x J x       ■ 

6.2 Наслідки із теореми Фубіні. 

Наслідок 1.4 Якщо      1 1 2 2, , , m

m mX a b a b a b     , то 

   
1 2

1 2

1 2 1 2, , ,
m

m

bb b

m m

X a a a

f x dx dx dx f x x x dx    . 

Приклад 1.10 Знайти  
I

f x dx , якщо 

   , , sinf x y z z x y   ,      0, , 0,1
2 2

I
  

     
 

. 

Розв’язання. Застосуємо наслідок 1.4 із теореми Фубіні: 

     
1 22 2 1

00 0 0

2 2

, , sin sin
2

I

z
f x y z dxdydz dx dy z x y dz dx x y dy

 

 

 
 

            

 
2 2

0 0 0
22

1 1 1
sin cos( ) cos cos 2

2 2 2 2 2
dx x y dy x y dx x x dx

 
  

 

     
              

    
    . ■ 
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Наслідок 1.5 Нехай D   допустима множина в 
1m
, E   допустима множина в 

m
, яка визначається наступним чином  

      , :mE x y x D x y x      . 

Якщо функція  ,f x y – інтегровна на E  (тобто    ,f x y E ), тоді 

   
 

 

, ,

x

E D x

f x y dxdy dx f x y dy





   .   

Доведення. Нехай x D fix  , тоді визначимо множину 

      , : , якщо ,

, якщо
x

x y x y x x D
E

x D

     
 

 
 

(див. рис. 1.2 і 1.3 – дво- та тривимірний випадки відповідно), тоді 

     ,
xE D Ex y x y    , звідки  

       

         

 

, , , ,

, ,

x y x y x

x

x y x x x

E

E I I E I D I E

D E D

I D I E I D E

F x

f x y dxdy f x y dxdy dx f x y x y dy

x dx f x y y dy x dx f x y dy

   

  



   

     

   

     

   
 

 

 

 
 

 

, , .

x

x x

D

I D x D x

F x

x dx f x y dy dx f x y dy

 

  



       

Тут значення функції  F x  визначається так само, як і в теоремі Фубіні, а саме: 

 

   

     
__

, , якщо ,

, , , , якщо , .

x x

x xx

E E

E EE

f x y dy f x y dy

F x

f x y dy f x y dy f x y dy

 


  
  
   

 

  
 

 

 

a x 

 x 

b 

I 

O 

 y 

xE  

yI

 

xD I

 

 , ( )x x  

 , ( )x x

 

E 

   Рис. 1.2 
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При цьому,    
__

: , , 0

xx EE

x D f x y dy f x y dy
  

    
  

  .   ■ 

Наслідок 1.6 (із наслідку 1.5). 

 
   

      1

доп. мн., що визн. так само,
1) допустима множина,

як і в поперед. наслідку,

2) .

неперервні на ,

m

D

D
E

D E x x dx

x і x D



  


     
 

   


 

Доведення. Оскільки  x  і   неперервні наx D  , тому множини точок 

графіків цих функцій в просторі 
m

 мають лебеґову міру нуль (див. приклад 1.7). Тоді 
множина E , що обмежена графіками цих функцій буде допустима, оскільки має межу 
лебеґової міри нуль. Тому з наслідку 1.5 отримаємо: 

 
 

 

 

 

    
xx

E D x D Dx

E dxdy dx dy dx y x x dx



 

            .   ■ 

Приклад 1.11  Знайти площу круга  
2 2 2x y r  . 

Розв’язання. Оскільки функції    2 2 2 2,x r x x r x         неперервні 

на  ,D r r  , тоді, згідно з наслідком 1.6, 

    
2

2 2 2 2 2 2 2 22 2 arcsin
2 2

r r

r r

r
x r x

E r x r x dx r x dx r x
r r 

 
             

 
   

 1 2,x x x  

 1 2 1 2, , ( , )x x x x  

 1 2 1 2, , ( , )x x x x  

x1 

x2 

O 

xE  

D  

z 

Рис. 1.3 

xI  

yI  
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2 2 2 20 0 2 .
2 2 2

r r r r
    

          
  

  ■ 

Наслідок 1.7 Нехай E  – допустима множина, що належить проміжку I , тобто 
mE I  . Подамо I  у вигляді декартового добутку: x yI I I  , де 

1 1,m
x yI I  . Тоді при майже всіх значеннях 0 yy I  переріз  

  
0 0, :yE x y E y y    

множини E   1m  -вимірною гіперплощиною 0y y  для майже всіх 0 yy I  являє со-

бою допустиму підмножину, причому  

 
y

y

I

E E dy   . 

Тут    1yE m   -вимірна міра множини yE  у випадку, коли yE  – допустима. Якщо 

yE  – не є допустимою множиною, тоді  yE  – це число, що лежить між   

1

yE

dy  і 

__

1

yE

dy . 

Доведення. Застосуємо теорему Фубіні: 

     ,
y yE I Ex y y x      

       1 , 1 .
y

x y y y y

E I y

E I I E I E I

E dx dy x y dx dy y dy dx E dy

 

             ■ 

Приклад 1.12 Застосовуючи формулу із наслідку 1.7, довести, що об’єм  
m -вимірної кулі радіуса R  у випадку, коли 2 1m k  , дорівнює 

2 1

2 1

(2 )
2

(2 1)!!

k
k

kV R
k






  


, а у випадку, коли 2m k , дорівнює 2

2

(2 )

(2 )!!

k
k

kV R
k


  . 

Провести доведення самостійно ! Див. [2, c.137]. 

7 Заміна змінних в кратному інтегралі  

7.1 Постановка задачі і евристичне виведення формули заміни змінних. 
 ПОВТОРЕННЯ.  

( ) неперервна на[ , ];

( ) неперервно диференційовна на [ , ];

( ) , ( ) ,

:[ , ] [ , ] взаємно однозначна функція;

f x a b

x t

a b

a b

 
     


     


     

( ) ( ( )) ( )

b

a

f x dx f t t dt





        

Узагальнимо це твердження на випадок функції багатьох змінних.  
 
Припущення: 

1) 
m

tD  , 
m

xD  ; 

2) ( )t – дифеоморфізм, тобто взаємно однозначне відображення множин  

t xD D , причому таке, що ( )l lx t  – неперервно диференційовні на tD  1,l m   і 
1( )l lt x  – неперервно диференційовні на xD  1,j m  ; 

3) tD  i xD  – відкриті множини в 2
m

;  
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4) ( )f x – неперервна на xD  (або у загальному випадку ( )xf D ). 

Мета: знайти ( )g t , яка виражається через ( )f x  i ( )t  так, щоб виконувалася 

рівність ( ) ( )

x tD D

f x dx g t dt  . 

Розглянемо випадок, коли tD =I – проміжок в
m

.  

Розіб’ємо проміжок I на проміжки iI  (утвориться розбиття 1{ }n

i iR I  ). Знайдемо 

ті множини, на які відобразяться проміжки iI  за допомогою відображення φ. Позначи-

мо їх через ( )iI . Оскільки iI – множина допустима, а ( )t  – дифеоморфізм, тоді 

( )iI – допустима множина.  

Оскільки ( )t  – дифеоморфізм, то  ( )iI  утворюють розбиття множини xD , 

тобто  ( )iI  не мають спільних внутрішніх точок і 
1

( )
n

x i

i

D I


  . Отже, за властивістю 

адитивності кратного інтеграла  

( )

xD

f x dx =

1 ( )

( )

i

n

i I

f x dx
 

   

застосуємо неперервний ви-
падок теореми про середнє: 

( )

1, ( ) :

( ) ( ) ( ( ))

i

i i

i i

I

i n I

f x dx f I



   

     1

( ) ( ( ))
n

i i

i

f I


     

Оскільки ( )t  – бієкція і ( )i i xI D   , то : ( )i i i iI      , тоді 

1

( ) ( ( )) ( ( ))

x

n

i i

iD

f x dx f I


     . 

Знайдемо ( ( ))iI  .  

Нехай спочатку ( )t – лінійна. Тоді у двовимірному випадку (m=2) прямокутни-

ки iI  переводяться відображенням φ в паралелограми та в координатній формі відобра-

ження ( )t  записується у вигляді 

1 11 1 12 2 1 1 2( , )x a t a t t t   ,  

2 21 1 22 2 2 1 2( , )x a t a t t t   , 

а у векторній –   

1

, 1,2
n

x t

i ij j

j

e a e i


  , 

де    1 2 1 2, i ,x x t te e e e  два базиси одиничних векторів простру 
2
2 . У цьому випадку 

1 1

11 12 1 2
1 2

21 22 2 2

1 2

( ( )) , ( ) abs ( ) abs ( )x x

i i i i

a a t t
I e e I I I

a a

t t

 

 
           

 

. 

В тривимірному випадку прямий паралелепіпед в базисі  tje перейде в похилий пара-

лелепіпед в базисі  xie . Об’єм останнього обчислюється як модуль мішаного добутку, 

що дорівнює модулю визначника матриці лінійного перетворення A , який можна також 
обчислювати через частинні похідні цього перетворення: 
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1

1

1

...

abs det abs ... ...

...

m

m

m m

m

t t
A

t t



 


 

 

= det ( )i
  , 

( ( )) det ( ) ( )i i iI I      . 

Остання рівність у випадку лінійного перетворення має значення, що не залежить 
від точки, в якій обчислюється, а у випадку, коли  φ(t) – нелінійний дифеоморфізм, а мі-

ра ( )iI – мала, тоді значення ( ( ))iI   мало відрізняється від міри похилого паралеле-

піпеду і залежить від точки, в якій обчислюється, причому 
( ( ))iI  det ( ) ( )i iI   . 

Значення виразу det ( )i   називають якобіаном. Зазвичай, якобіан позначається в та-

кий спосіб: 1

1

( ,..., )
det ( ) abs ( )

( ,..., )

m
i i

m

D

D t t

 
    . 

Отже, в результаті отримаємо: 

1

( ) ( ( ))det ( ) ( )

x

n

i i i

iD

f x dx f I


      . 

Сума в правій частині відповідає інтегральній сумі для функцій ( ( )) det ( )f t t    на 

проміжку I. Тому після здійснення граничного переходу отримаємо  

( ) ( ( ))det ( )

xD I

f x dx f t t dt    .  

Чи існує інтеграл в правій частині? Якщо функція ( )f x  неперервна на xD , ( )t  

– неперервна на ( )xI D  , тоді ( ( ))f t  – неперервна на I. Якобіан утворюється із ча-

стинних похідних координатних функцій ( )i t , які за умовою є неперервними на I, то-

му якобіан є неперервною на I функцією. Підінтегральна функція в правій частині, та-
ким чином, є неперервною, тому інтеграл на I існує.  

Отже, функцію ( )g t  знайдено: ( )g t = ( ( ))det ( )f t t  . Залишається узагальни-

ти множину tD . Для цього потрібно застосувати рівність ( ) ( )
x

t t

D

D I D

g t dt g t dt


   . 

Отже, отримаємо наступну теорему. 

Теорема 1.7 (заміна змінної під знаком кратного інтеграла). Якщо ( )f x – непе-

рервна на xD , ( )x t   – дифеоморфізм tD  на xD , ( )x tD D  , тоді має місце рів-

ність 

( )

( ) ( ( )) det ( )

x t tD D D

f x dx f t t dt



     .  

Тут  

1 1

1
1

1

1

....

( ,..., )
det ( ) abs abs ... ... ...

( ,..., )
....

m
m

m
m m

m

t t
D

t
D t t

t t

 

 
 

  
 

 

. 

Зауваження 1.3 xD  і tD  – це одна і та сама множина, але виражена через різні 

змінні. 
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Приклад 1.13 Знайти площу області, що обмежена лініями: 
, , , , 0 , 0 .x y a x y b y x y x a b             

Розв’язання. Оскільки область 
,x yD  обмежена неперервними лініями, графіки 

яких мають міру 0, тоді ця множина допустима. Із означення міри допустимої множини 

випливає, що 

D

S dxdy   . Функція під знаком інтеграла ( , ) 1f x y   – неперервна на 

,x yD . Введемо нові змінні 1 2( , ) , ( , )
y

u x y x y v x y
x

       . Відображення 

1 2( , ) { ( , ), ( , )}x y x y x y     задає дифеоморфізм області 
,x yD  на область 

,

,
:

.u v

a u b
D

v

 

  

 Отже, 

2
2

2 2

2

2

, ,
1

, , ,

1 1
( , ) 1 ( 1) ( 1),1
( , )

( , )

( , ) ( 1)

b

D a

y u
u x y v x

x v
y

a x y b a u b v
x

u
S dxdy du dv

D u v y u v vy
D x y x x x u

x x

D x y u
abs

D u v v





    


            

   
     




     

2 21 1 1 1 1
( ).

1 1 2 1 1

b

a

udu b a
   

       
        

  ■ 

7.2  Полярні координати. Розглянемо відображення, яке задає перехід від де-
картової до, переходячи до полярної системи координат: 

 cos ,
sin .

x
y
  
  

 

Розглянемо 

 ( , ) : 0 0 2I R          , 

 2 2 2( , ) :K x y x y R   , 

тоді відображення I K  не є дифеоморфізмом, тому що  

1) відрізок  ( , ) : 0 0 2         відображається в точку (0,0), 

2) два відрізки  

 ( , ) : 0 0R        i {(ρ,φ): 0 R   φ=2π} 

відображаються в один {( , ) : 0 0 }x y y x R    . 

Висновок: порушується взаємна однозначність. Для того, щоб відображення ста-
ло взаємно однозначним, потрібно розглянути відображення  \ \I I K E  , де Е – 
множина точок кола разом з множиною точок відрізка {( , ) : 0 0 }x y y x R    . Засто-

суємо теорему про заміну змінної під знаком кратного інтеграла: 

\ \

( , ) ( cos , sin ) ,

K E I I

f x y dxdy f I d d



         

\

0 ( , ) ( , ) ,

K E K

E f x y dxdy f x y dxdy      
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\

( ) 0 ( cos , sin ) ( cos , sin )

I I I

I f I d d f I d d



                  . 

Знайдемо якобіан | |I : 

2 2

cos , sin ,
( , ) cos sin

cos sin .
sin cos( , )

x y
D x y

I
D

     

  
       

   

  

Отже, 

2

0 0

( , ) ( cos , sin )

R

K

f x y dxdy d f d



           . 

Зауважимо, що у полярній системі координат  cos ,
sin

x
y
  
  

 (див. рис. 1.4) 

 – відстань від точки М площини до початку координат О ( 0  !),  

 – кут між OM  і віссю Oρ, 

ρ=R – коло радіусом R з центром в т. О, 
φ =φ0 – промінь, що утворює кут φ0 з віссю Oρ. 

 
Елемент  площі в полярній системі координат: I d d  d d   . Тоді площа плоскої 

області D  обчислюється як 

D

S dxdy  
D

d d     . 

Приклад 1.14 Знайти площу області, що обмежена лінією 
2 2 2 2 2 2( ) 2 ( )x y a x y     за умови 

2 2 2x y a  . 

Розв’язання. Введемо полярну систему координат  cos ,
sin ,

x
y
  
  

 тоді 

   
2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2

,
2 cos sin 2 cos2 ,

( ) 2 ( ),

x y
a a

x y a x y

  
        

   
 

2 22 cos2 0 2 2 2 , , .
2 2 4 4

a n n n n n n
   

                          

Знайдемо точки перетину лемніскати 2cos2a    і кола a  : 

1
2

2cos2 , 2cos2 cos2
,

2 2 , , .
3 6

a a a
a

n n n n

         
 

 
           

  

Дану область D  зображено на рис. 1.5. Зважаючи на її симетрію, отримаємо 

O ρ 

φ0 

0 0( , )M    

0    

O ρ 

φ0 

0    

0 0( , )M    

       Рис.1.4 

а) б) 

ρ0 
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2cos 26

0

2cos 2
2 2 26 6

0 0

4 4

2 cos2
4 4

2 2 2

a

D a

a

a

S d d d d

a a
d d




 

        

  
      

 

   

 

62 2
2

0

3
4 sin 2 2

2 2 2 6

a a
a



   
       

   
 

23 3
.

3
a

 
   ■ 

7.3   Циліндричні координати. 

 
cos ,
sin ,
.

x
y
z h

  
  


  
 

Рис. 1.5 

h – визначає аплікату точку М в просторі,  

 – відстань від проекції А точки М простору на площину Oxy  до початку координат О, 

тобто OA   ( 0  !), 

 – кут між OA  і додатним напрямком осі Ox  (див. рис. 1.6 а). 
 

             
   а        б 

Рис. 1.6 
 

0h h  – площина, паралельна Oxy , 

0    – циліндр, твірна якого паралельна осі Oz  і вісь якого збігається з цією віссю, 

радіус перерізу циліндру дорівнює 0 , 

0    – півплощина, обмежена віссю аплікат, яка утворює з віссю абсцис кут 0  (див. 

рис. 1.6 б). 
Знайдемо якобіан: 

cos sin 0
( , , )

sin cos 0
( , , ) 0 0 1

D x y z

D h

  
     

 
.  

Елемент об’єму:  dxdydz I d d dh    d d dh  . 

М 

z 

y 

x 
A 

O 

ρ0 φ0 

h0 h=h0 

φ =φ 0 

ρ =ρ 0 

М 

z 

y 

x A 

O 

ρ 
φ 

h 



§1. Кратні інтеграли 

 26 

Приклад 1.15 Знайти об’єм тіла Вівіані, яке обмежене поверхнями 

 2 2 2 2 2 2 2 2,x y R x x y z R x y R x       . 

Розв’язання. Розглянемо циліндричну поверхню: 
2 22 2

2 2 2 2 21
, 2 0, .

2 4 4 2 2

R R R R
x y R x x y R x x y

   
             

   
 

Вона являє собою два циліндри з осями 

2

R
x   , 

2

R
x  , радіусом перерізу 

2

R
 кожен. 

Дане тіло – це та частина кулі, що лежить 
зовні циліндричної поверхні. Перейдемо до ци-
ліндричної системи координат (рис. 1.7): 

2 2

2 2 2 2 2 2

cos ,

.

x y R x R

x y z R z R

     

      
 

Тоді 
2 2

2 2
2 2

0 cos 0 0 cos
0

8 8

R
RR R

R R

V d d dz d d z

  


 

             

 

2
2 2

0 cos

8

R

R

d R d





      

1
1

2 22 2

0

cos

2( )
4

3

R

R

R
d







   

2
3 3 3

0

8 16
sin .

3 9
R d R



     ■ 

7.4  Сферичні координати. 

1

1

1

cos cos ,
sin cos ,
sin

x
y
z

   


   
  

 
2

2

2

cos sin ,
sin sin ,
cos

x
y
z

   


   
  
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1  – кут між радіус-вектором OM  та пло-

щиною Oxy  
2 – кут між радіус-вектором OM і дода-

тнім напрямком осі Oz  

2

1 1 1; cos
2 2

I
 

        
2

2 2 20 ; sinI        

 – відстань від початку координат до точки М, тобто OM   ( 0  !), 

 – кут між OA  і віссю Ox , де А – це проекція точки М простору на площину Oxy  

Елемент об’єму:  
2

1 1cosdxdydz d d d       

Елемент об’єму: 
2

2 2sindxdydz d d d       

 
Обчислимо якобіан в першому випадку: 

1 1 1

1 1 1 1

1
1 1

2 2 2 2

1 1 1 1 1 1
2 2 2 2 2 2 2

1 1 1 1 1

cos cos sin cos cos sin
( , , )

sin cos cos cos sin sin
( , , ) sin 0 cos

sin sin cos sin sin cos cos sin

cos cos cos cos sin cos cos .

D x y z
I

D

       
          

     

           

          

 

Оскільки  
2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1(cos cos sin cos sin ) (cos sin )x y z                  , 

тому 0    – сфера з центром в т.О радіуса 0  

(рис. 1.10). 

1 0    ( 2 0   ) – частина конуса, твір-

на якого з площиною Oxy  (з віссю Oz) утво-

рює кут 0 . При перерізі сфери 0    конусом 

1 0    ( 2 0   ) утворюється паралель на 

сфері. 

Оскільки ( , )OA Ox , то 0    – пі-

вплощина, обмежена віссю аплікат, яка утво-

рює з додатним напрямом осі абсцис кут 0 . 

Переріз сфери цією півплощиною утворює ме-
ридіан.  

Приклад 1.16 Обчислити інтеграл 
2 22

2 2

21 1

2

0 0

x yx

x y

J dx dy z dz

 



     за допомогою сфе-

ричних координат.. 

 
Рис. 1.10 

Розв’язання. Розглянемо сферичну систему координат для  першого випадку:  
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За умовою 

2

2 2 2 2

0 1,

0 1 ,

2 ,

x

y x

x y z x y

 

  

    
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тому тіло обмежене додатними частинами кону-
са і сфери, що лежать в першому октанті. В да-
ному випадку рівнянням поверхні конуса в сфе-

ричній системі координат є 
4


  , а сфери – 

2  . Виходячи із геометричного змісту сфе-

ричних координат, отримаємо (див. рис. 1.11):  

22 2
2 2 2

1 1 1

0 0

4

cos sin .J d d d

 



            

Обчислення завершити самостійно ! 
 

7.5 Сферичні координати в 
m

.  
Рис. 1.11 

1 1 2 1

1

1

1

1

sin sin .....sin ,
......

cos sin , 2,3,...., 1,

......
cos ,

0 2 , 0 2, 1, 0,

n

m

k k i

i k

m m

i

x

x k m

x

i m











    



     



  
            

  

1
1 1

1

sin
m

m k

k

k

I


 



    – якобіан. 

Приклад 1.17 Обчислити 
2 2

1 1... ...m m

D

J x x dx dx   , де  

2 2 2

1: ... mD x x R   . 

Оскільки 
2 2 2

1 ... mx x R   , то 
2 2: :D R D R    . Отже, 

2

2 2 1

2 2 3 3

0 0 0 0 0

sin sin .... sin

R

m m

i m mJ d d d d d

   

                  

1 2 2 2 2
2 2 3 2

2 2 3 3 4 4 1 1

0 0 0 0

2 2 sin sin sin .... sin
1

m
m m

m m

R
d d d d

m


  


 

            
    

1
1 1!! 2!! ( 4)!! ( 3)!! , парне,

2 1 ... 2
1 2!! 2 3!! ( 3)!! ( 2)!! 1, непарне

m
mR m m m

m m m m




    
         

    

 

2
1 1

22

1 ( 2)!! 2

m
m mR

m m

 
   

   
    

   
, 

де [ ]a   ціла частина числа a , тобто найбільше ціле число, що не перевищує a . ■ 
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§2 Криволінійні та поверхневі інтеграли 
Розділ 1. ТЕОРЕТИЧНІ ВІДОМОСТІ  

1 Криволінійний інтеграл 

1.1 Поняття криволінійного інтеграла першого і другого роду.  
Нехай L  – спрямлювана крива, тобто така крива, у якої обмеженою є множина 

всіх довжин ламаних, вписаних в цю криву (див рис. 1.12). Значення супремума такої 
множини називають довжиною кривої. 

Параметризація кривої L : 
 
 

,

,

x t

y t

 


 
  ,t a b .  

Припущення:  
1. Крива L  не має самоперетинів і самонакладів. 
2. L  – гладка крива, тобто така крива, параметризація якої виражається через  

неперервно диференційовні на відрізку  ,a b  функції  t  і  t , тобто:  

а) функції  t  і  t  – неперервні на відрізку  ,a b ; 

б) функції  t  і  t  – диференційовні на інтервалі ( , )a b ; 

в)        
0 0

0 lim 0 lim
t a t b

a t b t
   

            ; 

3. крива не має особливих точок, тобто таких точок     0 0;t t   L , що 

   
2 2

0 0 0t t           . Іншими словами, усі точки кривої L  є звичайними, і  

 0 ,t a b      
2 2

0 0 0t t           . 

Розіб’ємо відрізок  ,a b  точками  

0 1 1... ...k n na t t t t t b        . 

Йому відповідає розбиття кривої L  точками  kM  на 

дуги 1{ }k kM M  (рис. 1.12). Тут 

      , ,k k k k k kM x y M t t   ,  

      1 1 1 1 1 1, ,k k k k k kM x y M t t        , 

   1 1k k k k kx t t x x      , 

   1 1k k k k ky t t y y      . 

Позначимо через kl  довжину дуги 1k kM M , тобто 

kl    
1

2 2

1

k

k

t

k k

t

M M t t dt




             . 

Діаметром розбиття кривої L  точками  kM  називають число max
k

  kl . 

Розглянемо три функції:  ,f x y ,  ,P x y  і  ,Q x y , задані на L . Як правило, 

передбачається, що ці функції є  неперервними вздовж L . Оскільки L  – замкнена мно-
жина і обмежена, то (за теоремою Кантора [3, c. 559]) , ,f P Q  – рівномірно неперервні 

на L , тобто  

0 0:     1 2,M M L  1 2( , )M M   1 2( ) ( )f M f M   , 

Аналогічно, неперервними (рівномірно неперервними) вважаються функції  ,P x y  і 

 ,Q x y . 

nM  

1nM   

1kM   

1M  

0M  

nt  

1nt   

kt  1kt   

1t  

0t  

Рис.1.12 

kM  
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Нехай 
1k k kN M M  ( 1,...,k n ) – проміжні точки розбиття кривої L  точками 

 kM . Враховуючи параметризацію кривої, матимемо: 

      , ,k k k k k kN N       , 1[ , ]k k kt t  , 1,...,k n . 

Розглянемо інтегральні суми 

      1

1 1

, ,
n n

k k k k k k

k k

f l f l
 

            , 

 2

1

,
n

k k k

k

P x


     ,      3

1

,
n

k k k

k

Q y


     . 

Означення 1.10 Число sI  ( 1,2,3s  ) назвемо границею інтегральних сум s  

при діаметрі розбиття, що прямує до нуля (
0

lims sI


  ), якщо  

   0 0: k kM N      : s sI       . 

Означення 1.11 Границю 1I  називають криволінійним інтегралом першого 

роду та  позначають:    1 , ,
L AB

I f x y dl f x y dl   . 

Означення 1.12 Границі 2I  і 3I  називають криволінійними інтегралами дру-

гого роду та  позначають:  2 ,
L

I P x y dx  ,  3 ,
L

I Q x y dy  . 

Означення 1.13 Суму        , , , ,
L L L

P x y dx Q x y dy P x y dx Q x y dy      нази-

вають загальним інтегралом другого роду. 
Із означення випливає,  

по-перше, що криволінійний інтеграл першого роду не залежить від напряму оббігу 
кривої L , а інтеграл другого роду залежить від напряму оббігу L  (змінює знак на 
протилежний при зміні напряму оббігу); 

по-друге, фізичний зміст інтеграла першого роду – це маса кривої L , що має густи-

ну  ,f x y ; 

по-третє, фізичний зміст інтеграла другого роду (загального інтеграла) – робота по 
переміщенню матеріальної точки із точки A в точку B вздовж кривої L  під дією 

сили      , , ,F x y P x y i Q x y j  . 

Зауваження 1.4 Аналогічним чином вводяться криволінійні інтеграли в просторі, 
зокрема, 

 , ,
L

f x y z dl  – криволінійний інтеграл першого роду. 

     , , , , , ,
L

P x y z dx Q x y z dy R x y z dz  – загальний криволінійний інтеграл 

другого роду. 
1.2 Умови існування криволінійних інтегралів. 

Теорема 1.8 (зведення криволінійного інтеграла до визначеного). Нехай гладка 

крива L  без особливих точок не має самоперетинів і самонакладів, функції  ,f x y , 

 ,P x y  і  ,Q x y  – неперервні вздовж L . Тоді існують криволінійні інтеграли першого 

і другого роду, до того ж, має місце формула зв’язку між криволінійними інтегралами і 
визначеним інтегралом Рімана: 

          
2 2

1, ,

b

L a

f x y dl f t t t t dt I               ,                                     (1.3) 
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         2, ,

b

L a

P x y dx P t t t dt I      .                                                             (1.4) 

         3, ,

b

L a

Q x y dy Q t t t dt I      .                                                             (1.5) 

Доведення. Внаслідок гладкості кривої L , функція    
2 2

t t          непере-

рвна на відрізку  ,a b . Дійсно, 

 
    

    

   

2

22

1
2

3

2 2

4 2 3

1) непер. на [ , ],
( ) непер. на [ , ] як композиція непер. ф-ій;

( ) непер. на ,

2) аналогічно, ( ) =  непер. на [ , ] ;

3) ( ) ( ) ( ) неп. на [ ,

u t a b
f t f t t a b

f u u

f t f t t a b

v f t f t f t t t a

   
           

      

             

     
2 2

4
4

] як сума непр. функцій;

4) ( ) неп. на [ , ];
( ) неп. на [ , ] як композиц. неп. ф-ій

( ) непер. на [0, )

b

v f t a b
t t h f t a b

h v v

  
               

Неперервними на відрізку  ,a b  є також і функції     , ,f t t       , ,P t t   

    ,Q t t  . Дійсно, 

   
 

    
    
    

 
, ,

, неперервнi на [ , ],
, , непер. на , як композиція непер. ф-ій.

, , ( , ), ( , ) непер. на ,
,

f t t
t t a b

P t t a b
f x y P x y Q x y L

Q t t

  
     

     
     

 

Отже, визначені інтеграли в правих частинах рівностей (1.3) – (1.5) існують завдяки не-

перервності підінтегральних функцій на  ,a b .  

 Розглянемо інтегральні суми 

 
   

   
1

2 2
1

11

, ,

, k

k

k k k kn
t

k k k
k k kk

t

f l
l M M t t dt





       

      
           




 

         
1

2 2

1

,
k

k

tn

k k

k t

f t t dt




               ; 

       
1

2 1 1

1

,
k

k

tn

k k k k k k k k

k t

P x x x x t t t dt



 



                 

       
1

1

,
k

k

tn

k k

k t

P t dt




       . 

Сума 3  для функції ( , )Q x y  має вигляд, аналогічний вигляду 2 , тому докладно її роз-

глядати не будемо. Проведемо оцінювання:  

              
1 1

2 2

1 1

, ,
k k

k k

t tn n

k k

k kt t

I P t dt P t t t dt

 
 

                 

             
1

1

, , ;
k

k

tn

k k

k t

t P P t t dt




            

              
1

2 2

1 1

1

, ,
k

k

tn

k k

k t

I t t f f t t dt




                     . 
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Покажемо що  
*max 0 max 0k k

k k
l t        .  

Функція    
2 2

t t          неперервна на відрізку  ,a b , тому (за другою теоремою 

Вейєрштрасса [3, c. 188]) ця функція має мінімум в деякій точці цього відрізку. Оскіль-

ки    
2 2

0t t          , то цей мінімум  додатний, тобто 

0 [ , ]:t a b   
 

       
2 22 2

0 0
,

min 0
a b

t t t t m                        . 

Тоді 

   
1 1

2 2
k k

k k

t t

k k

t t

l t t dt m dt m t

 

               . 

Звідси 
1

k kt l
m

   . Отже, 

 

* 1
0

0

m
   

   , тобто 
*max 0 max 0k k

k k
l t        . 

Оскільки       , неперервна на ,f t t a b   , тоді (за теоремою Кантора 

[3, c. 559])     ,f t t   рівномірно неперервна на відрізку  ,a b . Отже, 

           *

1 1 10 0 : , [ , ] , ,k k k k k kR t t t t f f t t
L




                    , 

  *

2 1 20 0 : , [ , ]k k k kR t t t t                     
 

, ,k kP P t t
M b a


       


, 

де L   довжина кривої L , M 
 

 
,

max
a b

t . 

Таким чином, маємо: 

   
1

2 2

1 1

1

k

k

tn

k t

I t t dt L
L L




 
                  , 

 
 

 
1

2 2

1 1

k

k

tn n

k

k kt

I t dt M t
M b a M b a


 

 
          

 
  . 

Тоді матимемо: 

  *

1 1 1 1 1 1

1 1
0 0: kM m m I

m m
                     . 

Звідки 1 1
0

limI


  . Аналогічно, 

  *

2 2 2 2 20 0: kM m I                , 

звідки 2 2
0

limI


  . ■ 

Означення 1.14 Криву називають кусково-гладкою, якщо вона неперервна і її 

можна розбити на скінчену кількість дуг kL , що не мають спільних внутрішніх точок, 

тобто  
0

k iL L  i k  , 
1

n

k

k

L L


  так, що кожна ділянка  kL  є гладкою кривою. 

Нагадаємо, що  -околом точки 0M  на кривій L  називають множину точок кри-

вої, що лежить всередині круга 0( )O M  радіусу   з центром в цій точці. Точку 0M  кри-
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вої називають внутрішньою, якщо вона належить цій кривій разом із деяким її  -
околом. 

Зауваження 1.5 Якщо крива кусково-гладка, то криволінійні інтеграли вздовж 

неї можна подати як суму інтегралів вздовж гладких її ділянок, тобто 
1

... ...

k

n

kL L

   Більш 

того, формули (1.3), (1.4), (1.5) мають місце і для кусково-гладких кривих. Так само ці ж 

формули справедливі, якщо функції  ,f x y ,  ,P x y  і  ,Q x y  кусково-неперервні 

на L . 
Зауваження 1.6 Формули (1.3), (1.4), (1.5) мають місце для кривих L  у просторі: 

якщо крива параметризована як 

L : 

 
 
 

,

,

,

x t

y t

z t

  


 
  

    ,t a b , 

то 

              
2 2 2

, , , ,

b

L a

f x y z dl f t t t t t t dt                     ; 

          , , , ,

b

L a

P x y z dx P t t t t dt      , 

          , , , ,

b

L a

Q x y z dy Q t t t t dy      , 

          , , , ,

b

L a

R x y z dy R t t t t dt      , 

якщо ( , , ), ( , , ), ( , , ), ( , , )f x y z P x y z Q x y z R x y z  – неперервні вздовж кривої, а L – гладка 

крива, без самоперетинів і самонакладів. Ці формули справедливі також, якщо L  – кус-
ково-гладка крива, а функції , ,f P Q  – кусково-неперервні вздовж кривої. 

Зауваження 1.7 Аналогічно вводяться криволінійні інтеграли для кривих у прос-

торі 
n
. 

Зауваження 1.8 Якщо крива зімкнена ( тому має точку само перетину), то інтег-
рал за цією кривою можна обчислювати, розбиваючи цю криву на дві гладкі частини 
без самоперетинів. А інтеграл подати сумою інтегралів по відповідним частина кривої. 
Як правило, це робиться теоретично, а на практиці лише перевіряється неперервність 

 t ,  t  на відрізку зміни параметру t , що відповідає повному оббігу кривої. 

Додатнім напрямом оббігу зімкненої кривої при обчисленні інтегралів другого 
роду будемо вважати такий напрям, рухаючись яким вздовж кривої L , область, яку об-
межує ця крива, залишається ліворуч від точки, що здійснює цей оббіг. Тобто такий об-
біг здійснюється проти годинникової стрілки. 

Коли хочуть зазначити, що крива зімкнена, то дотримуються позначення: 

   , ,
L

P x y dx Q x y dy . 

1.3 Властивості криволінійних інтегралів першого роду. Отримаємо їх, засто-
совуючи властивості визначеного інтеграла Рімана і формули зв’язку між криволіній-
ним і визначеним інтегралами Рімана. 

1) Якщо    , ,
L L

f x y dl g x y dl    , тоді  

 , ,
L

f x y          , , ,
L L

g x y dl f x y dl g x y dl      –  
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це властивість лінійності інтеграла першого роду. 

2) Властивість адитивності інтеграла першого роду: якщо 
1

n

k

k

L L


 , 

 
0

k iL L  i k  , тоді    
1

, ,

k

n

kL L

f x y dl f x y dl


  . 

3) Теорема про середнє: якщо  ,f x y  – неперервна на L , тоді 

 * : ,
L

M L f x y dl    *f M L . 

4) Оцінка модуля:  

 

   

1) , ;

,
2) , ,

L

L

L L

f x y dl

f x y dl
f x y dl f x y dl

 


  







 

. 

Геометричний зміст криволінійного інтеграла першого роду. 

L

dl L , тобто інтеграл 
L

dl  дорівнює  довжині кривої L . 

Приклад 1.18 Знайти L  довжину кривої 

cos ,

sin ,

,

t

t

t

x e t

y e t

z e







 



 

   0 2t   . 

Розв’язання. Із умови випливає, що  

( ) cos , ( ) sin ,t tt e t t e t      ( ) tt e  , 0, 2a b   .  

Застосуємо геометричний зміст криволінійного інтеграла першого роду і формули 
зв’язку між таким інтегралом і визначеним: 

     
2 2 2

b

L a

L dl t t t dt                    

 
2

2 2 2

0

cos sin sin cost t t t te t e t e t e t e dt



                         

2

2 2 2 2

0

cos 2cos sin sin sin 2sin cos cos 1te t t t t t t t t



          

   
2

2

2

0

12
3 3 3 1 3 1 .

0
t te dt e e

e



   



 
          

 
  ■ 

Приклад 1.19 Обчислити інтеграл    
AC

x y dx x y dy   , якщо AC  – частина 

еліпса 

2 2

2 2
1

x y

a b
   для випадку  0y  , де  ,0A a ,  0,C b .  

Розв’язання. Параметризуємо еліпс:  cos ,
sin ,

x a t
y b t



0 2t  . Із умови і парамет-

ризації отримаємо: ( , ) , ( , )P x y x y Q x y x y    , ( ) cos ,t a t   ( ) sint b t   

0, 2a b   . Оскільки ( ) sin , ( ) cost a t t b t      , а точкам  ,0A a ,  0,C b  відпо-

відають значення параметра 0 i / 2t t   , то за формулами (1.4) і (1.5) одержимо: 

              ... , ,

b

AC a

P t t t Q t t t dt            
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     



2

0

2
2 2 2 2

0

cos sin sin cos sin cos

cos sin sin cos sin cos

a t b t a t a t b t b t dt

a t t ab t ab t b t t dt





     

     





 

 
 

2 2 2 22

0

sin 2 cos2 .
2 2

a b a b
t ab t dt



  
     
 
 
   ■ 

2 Поверхневі інтеграли 

2.1 Поняття поверхні.  

Означення 1.15 Відображення ƒ що переводить множину G 2
 в множину 

G* 3
 називають гомеоморфізмом, якщо:  

1. ƒ – взаємно однозначне відображення G на G*, 
2. будь-яка фундаментальна послідовність {Nn}   G точок переводиться в фун-

даментальну послідовність {Mn}   G*, 
3. будь яка фундаментальна послідовність {Mn}   G* є образом фундаменталь-

ної послідовності {Nn}   G. 

Означення 1.16 Відображення ƒ: G  2
 → G*  3  називають локальним 

гомеоморфізмом, якщо окіл xx G U G    , який гомеоморфно відображається на 

свій образ, тобто на ( )xf U . 

Означення 1.17 Область G на площині Т називають елементарною областю 

(ЕО), якщо вона є гомеоморфним образом відкритого кругу D   
2
, тобто  

G   Т – ЕО 
def

   D   
2
– відкритий круг: :f D G  – гомеоморфізм. 

Означення 1.18 Зв’язну область G на площині називають простою плоскою 

областю (ППО), якщо будь-яка її точка 0x  має окіл, який є елементарною областю, 

тобто  

G  – ППО
def

 1) G – зв’язна; 2) 0 окіл xx U  , який  є ЕО. 

Означення 1.19 Множину точок 
3  називають поверхнею, якщо вона є 

локально гомеоморфним образом простої плоскої області G, тобто  

3  – поверхня 
def

  G  – ППО: ƒ: G → Ф – локальний гомеоморфізм. 
Означення 1.20. Околом т.М на поверхні Ф називають таку множину: 

( ) ( )
def

W M U M Ф . 

Приклад 1.20 Нехай G – проста плоска область на площині Оху (наприклад, G – 
відкритий круг), 

( , )M x y G , 

z = z(x,y) = z(M) – неперервна функція на G, 
G* – графік функції z(M), тобто G* = {(x,y,z): z =z(x,y)}. 

Відображення, що задає локальний гомеоморфізм: 

*
,
, є поверхнею
( , ),

x u
y v Ф G
z z u v


  


! ■ 

Розглянемо функцію, що задана параметрично: 
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( , ),
( , ), ( , ) ,
( , ),

x x u v
y y u v u v G G
x z u v


  


 ППО.                                                                       (1.6) 

Відображення задає векторну функцію ( , ) ( , ) ( , ) ( . )r r u v x u v i y u v j z u v k    . 

Вимоги А: 
1. Функції (1.6) має неперервні частинні похідні першого порядку в ППО G. 

2. 

( , )

rang 2 ( , )

u v

x y z

u u u u v є G
x y z

v v v

   
        
 
   

. 

Твердження 1.1 При виконані вимог А множина точок Ф в просторі, що визна-
чаються рівнянням (1.6) являє собою поверхню, тобто є образом простої плоскої області 
G при локально гомеоморфному відображені. 

Приклад 1.21 Функція 
,
,
( , )

x u
y v
z z u v





 в простій плоскій області G буде задовольняти 

вимоги А, якщо z = z(u,v) має неперервні частинні похідні першого порядку в G. Тоді 
буде мати місце рівність 

1 0
rang 2

0 1

dz

du
dz

dv

 
 

 
 
 

. 

Отже, за твердженням 1.1, ця функція визначає поверхню. 
Доведення твердження. Введемо позначення: 

( , ) ,
( , , ) ,

( , ), ( , ), ( , ),

N u v G
M x y z
x x u v y y u v z z u v




  
 

І) Доведемо, що відображення (1.6) малий окіл т. No переводить в малий окіл т. Мо. 
Із вимогиА1) випливає, що  x(u, v), y(y, v), z(u, v) – неперервна в області G, зокре-

ма, в т. No, тоді 

20 0 : ( , )

( ) ( ) ( ) ( ) ( ) ( ) .
3 3 3

o

o o o

N G N N

x N x N y N y N z N z N

        

   
        

 

 

Тому 
2

2 2 2

3( , ) ( ) ( ) ( ) ( ) ( ) ( ) 3
3

o o o oM M x N x N y N y N z N z N


           . 

Оскільки 2( , )oN N   , то т. N  належить  -околу т. oN , тобто ( ) ( )o oN U N U N  . 

Аналогічно, 3( , ) ( ) ( )o o oM M M V M V M      . 

Отже, малий окіл т. No відображається за допомогою (1.6) в малий окіл т. Мо. 

II) Оскільки G – проста область, то точка No має окіл 
*( )oU N G , який є елемен-

тарною областю, тобто є образом відкритого круга D  при гомеоморфному відображені. 

Нехай цей окіл міститься в ( )oU N . Оберемо всередині круга D  таку замкнену множи-

ну, яка при гомеоморфізмі відобразиться в замкнену підмножину 
**( )oU N  околу 

*( )oU N  (див. рис. 1.13). 
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На замкненій, обмеженій мно-

жині 
**( )oU N  функції х, y, z – неперер-

вні, а тому (за теоремою Кантора [3, c. 
559]) рівномірно неперервні. 

Нехай 
**{ } ( )k oN U N –

 фундаментальна послідовність, а 

{ } { ( ), ( ), ( )}k k k kM x N y N z N . Чи є фу-

ндаментальною послідовність { }kM ? 

Оскільки 
**{ } ( )k oN U N – фундамен-

тальна послідовність, то 
0 : ( , )o o n n pn n n p N N 

            . 

В силу рівномірної неперервності функцій х, y, z на 
**( )oU N  отримаємо 

0 0; ( , )

( ) ( ) ( ) ( ) ( ) ( ) .
3 3 3

o n n p

n n p n n p n n p

n n p N N

x N x N y N y N z N z N



  

            

   
        

 

 

Звідси on n p     

2

( , ) 3
3

n n pM M 

 
     

 
. 

Отже: фундаментальну послідовність { }kN  переведено в фундаментальну пос-

лідовність { }kM . 

III) Із A2) маємо rang 2

x y z

u u u
x y z

v v v

   
       
 
   

 в точках околу ( )oU N , тому хоча б 

один із мінорів не дорівнює нулю. Нехай для визначеності 

0 ( , ) ( )o

x y

u u N u v U N
x y

v v

 

    
 

 

. 

Зважаючи на вимогу А1), одержимо за теоремою про неявні функції [3, c. 673], 

що система  ( , ),
( , )

x x u v
y y u v



 має єдиний розв’язок  ( , ),
( , )

u u x y
v v x y



 в деякому околі W(Po) точки 

Ро(хо, уо). За тією ж теоремою, крім 

того, маємо неперервну диферен-

ційовність функцій  u(x, y) i v(x, y) 

в околі W(Po). Оскільки відобра-

ження  ( , ),
( , )

x x u v
y y u v



 і  ( , ),
( , )

u u x y
v v x y



 є 

взаємно оберненими, то відобра-

ження малого околу W(Po) на ма-

лий окіл ( )oU N  є взаємно одноз-

начним (рис. 1.14). Тому малий 

окіл W(Po) буде переводитися в 

малий окіл ( )oU N , а фундамента-

льна послідовність  {Pn} переведеться в фундаментальну послідовність {Nn}. 

x 

y O ( , )z x y   

 ( , ),
( , )

x x u v
y y u v



 

  z 

Рис. 1.14 

( , , )o o o oM x y z  

( )oV M

 

( , )o o oP x y  
( )oW P

 

 ( , ),
( , )

u u x y
v v x y



 

( , )o o oN u v  
( )oU N

 

(1.6) 

u 

v 
G 


 

**( )oU P  

      0P  

G 

  ( )oU P  

*( )oU P  F  
D 

Рис. 1.13 

 


  
 

 


  
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Оскільки функції  ( , ),
( , )

u u x y
v v x y



 неперервні в W(Po), то, маючи на увазі  z = z(u, v) = 

z(u(x, y), v(x, y)) = φ(x, y), отримаємо неперервність функції φ(x, y) в W(Po). Тому малий 

окіл  W(Po) буде переводитися в малий окіл  ( )oV M  (рис. 1.14), а фундаментальна пос-

лідовність  {Pn} переведеться в фундаментальну послідовність {Мn}. 
Відображення z = φ(x, y) здійснює проектування поверхні Ф в малому околі т.Мо 

на площину Оху  взаємно однозначно, тому малий окіл ( )oV M  буде переводитися в ма-

лий окіл W(Po), а фундаментальна послідовність {Мn} переведеться в фундаментальну 
послідовність {Рn}. 

Отже, 
фунд. {Мn}   фунд. {Рn}   фунд. {Nn}; 

малий окіл ( )oV M    малий окіл W(Po)   малий окіл ( )oU N . 

Тому відображення (1.6) здійснює локальний гомеоморфізм G на Ф.  
Висновок: Ф – поверхня. ■ 
Зауваження 1.9 Поверхня Ф, що визначена рівнянням (1.6) і задовольняє вимоги 

А, в достатньо малому околі будь-якої своєї точки однозначно проектується хоча б на 
одну з трьох координатних площин. 

Зауваження 1.10 Поверхню Ф, що задовольняє рівнянням (1.6) і першій з вимог 
А, тобто частинні похідні першого порядку від координатних функції неперервні в 
ППО G , називають гладкою, а якщо задовольняє другій вимозі А, тобто rang матриці 
дорівнює двом, то таку поверхню називають поверхнею без особливих точок. Тобто, 
фактично, поверхню Ф, що визначається рівнянням (1.6) і задовольняє обом вимогам А 
називають гладкою, без особливих точок поверхнею. 

Нехай Ф – поверхня, що визначається рівнянням (1.6), гладка, без особливих то-
чок. А 

( , ) ( , ) ( , ) ( , )r u v x u v i y u v j z u v k    – 

 її векторне рівняння. Нехай vo – фіксоване, таке що  (u, vo) G , тоді  

( , ) ( , ) ( , ) ( , )o o o or u v x u v i y u v j z u v k   – крива на поверхні Ф, 

o( , )  
r

u v
u




– вектори дотичних до кривої o ( , )r u v . 

Аналогічно, якщо ou  таке, що  ( , )ou v G , тоді ( , )or u v  – крива на Ф, 

( , )o

r
u v

v




 – вектори дотичних до кривої ( , )or u v . 

Множина кривих o ( , )r u v  і ( , )or u v  визначає множину координатних ліній. 

Оскільки No(uo, vo) → Mo(xo, yo, zo), то ( ) i ( )o o

r r
N N

u v

 

 
– два вектори, що вихо-

дять із однієї точки Мо.. Із вимоги А2), в якій рядки матриці містять координати векто-

рів ( ) ( )o o

r r
N i N

u v

 

 
, випливає, що ці вектори лінійно незалежні, оскільки ранг утво-

реної ними матриці дорівнює двом. 
Тоді ці два вектори та точка Мо визначають дотичну площину в т. Мо на поверхні 

а 
0 0

0

0 0

( ), ( )

( )

( ), ( )

r r
N N

u v
n M

r r
N N

u v

  
   
  
   

 – одиничний вектор нормалі до дотичної площини 

в точці Мо. 
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Оскільки поверхня гладка, то усі компоненти дотичних векторів є неперервними 
функціями, тому ( )n M  – неперервна функція в околі довільної точки поверхні Мо. Та-

ким чином, в околі будь-якої точки гладкої, без особливих точок поверхні утворено не-
перервне векторне поле нормалей. На практиці хотілося б мати справу з поверхнями, 
що мають цілком у всіх своїх точках неперервне поле нормалей. 

Приклад 1.22 Розглянемо листок Мебіуса. Він 
утворюється склеюванням прямокутника АВВ´А´ так, 
щоб збіглися точки  В з А´ і  А з В´. Поверхню, що 
утвориться в результаті називають листком Мебіуса 
(рис. 1.15). 

При оббігу листка Мебіуса нормаль змінює свій 
напрям не протилежний. Листок Мебіуса не має непе-
рервного поля нормалей (факт, відомий із диференці-
альної геометрії). 

Означення 1.21 Якщо поверхня Ф в цілому 
має неперервне поле нормалей, то таку поверхню на-
зивають двосторонньою. У супротивному випадку 
поверхню називають односторонньою. 

Листок Мебіуса є односторонньою поверхнею. 
Означення 1.22 Поверхню Ф називають повною, якщо будь-яка фундамента-

льна послідовність точок цієї поверхні збігається до точки, що лежить на цій поверхні. 
Означення 1.23 Поверхню називають обмеженою, якщо її можна помістити в 

деяку тривимірну кулю. 
Приклади 1.23 Куля, еліпсоїд, еліптичний параболоїд – двосторонні та повні по-

верхні. Куля та еліпсоїд – обмежені. 
Надалі будемо розглядати такі поверхні Ф, що є:  

1) гладкими, 2) без особливих точок, 3) двосторонніми, 4) повними, 5) обмеженими. 
2.2 Допоміжні леми. 

Лема 1.3 Нехай Ф гладка поверхня, а точка 0М  не є особливою, тобто rangА=2 в 

т.  0 0,u v , що відповідає точці  0М . Тоді існує такий окіл точки  0М , який однозначно 

проектується на дотичну площину, що проходить через будь-яку точку цього околу. 

Доведення провести самостійно [2, c. 179] ! 

Означення 1.24 Ділянка  
   має розмір менший за  , якщо вона лежить 

всередині кулі радіуса 
2


.  

Із означення 1.24 випливає, що для точок ділянки 
  розміру   має місце нерів-

ність:  1 2 1 2, ,М М М М Ф     . 

Як наслідок із леми 1.3 і твердження 1.1 отримаємо лему 1.4. 
Лема 1.4 Якщо поверхня   гладка, без особливих точок, обмежена, повна, тоді 

існує таке 0  , що будь-яка ділянка  
  поверхні  , розмір якої менший за  , одно-

значно проектується  
а) на одну із координатних площин; 
б) на будь-яку дотичну площину, що проходить через будь-яку довільну точку ці-

єї ділянки. 

Доведення провести самостійно [2, c. 180] ! 
Лема 1.5 Якщо поверхня   гладка, без особливих точок, обмежена, повна, двос-

тороння та визначається рівняннями (1.6), тоді 0 0        ділянка розміру, 

 
Рис. 1.15 

А 

В В´ 

А´ 
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меншого за  , є такою, що кут   між будь-якими двома нормалями в точках цієї діля-

нки задовольняє умову cos 1   , де 0   . 

Доведення. Оскільки поверхня є двосторонньою, то вона має неперервне поле 
нормалей. Поверхня   обмежена і повна. Повнота забезпечує її замкненість. Замкне-
ність і обмеженість множини   разом із неперервністю поля нормалей дає змогу за-
стосувати теорему Кантора [3, c. 559]. Приходимо до висновку про рівномірну непере-
рвність поля нормалей, а саме: 

 1 2 1 2 1 20 0 , , ( ) ( ) 2M M М М n M n M           . 

Поле нормалей є одиничним, тобто ( ) 1n M  , M  . Оскільки 

 1 2cos ( ), ( )n M n M  , то 

            

               

2

1 2 1 2 1 2

1 1 2 2 1 2

1 1
,

2 2
1

, , 2 , 1 cos .
2

n M n M n M n M n M n M

n M n M n M n M n M n M

      

     

 

Звідси, а також з врахуванням умови рівномірної неперервності, отримаємо 

cos 1   ;  
21

0 2
2

      . ■ 

2.3 Площа поверхні. Нехай    – гладка, без особливих точок, двостороння, по-
вна, обмежена.  

Застосовуємо лему 1.4, згідно з якою, знайдемо таке  , щоб будь-яка ділянка по-
верхні розміром, меншим за  , однозначно проектувалася б на будь-яку дотичну пло-
щину, що проходить через довільну точку цієї ділянки. Розбиваємо цю поверхню за до-

помогою кусково-гладких кривих на скінченну кількість ділянок  
1

n

i i
  розміром, 

меншим за  . Нехай i іM   ( 1,2,...,i n ) – довільні точки на цих ділянках. Позначи-

мо через d – найбільший серед розмірів ділянок і  – це діаметр розбиття (за побудо-

вою, d   ). Проектуємо ділянку і  на дотичну площину, що проходить через точку 

iM . Позначаємо площу утвореної проекції і . Розглянемо 
1

n

і

і

 . 

Означення 1.25 Границею сум 
1

n

і

і

 , що відповідають розбиттю  
1

n

i i
 , при 

діаметрі розбиття d, що прямує до нуля, називають  

 
10

1

lim 0 0 :
n def

n

і i id
і

I




           
1

n

i i

i

M d I


        . 

Означення 1.26 Якщо існує скінченне значення границі 
0

1

lim
n

і
d

і

I




  , тоді 

поверхню Ф називають квадровною, а значення границі I  – її площею. Позначен-

ня:  I    . 

Зауваження 1.11 Не можна отримати площу поверхні, апроксимуючи її площами 
поверхонь вписаних многогранників при подрібненні розмірів граней, і беручи за пло-
щу поверхні sup вписаних многогранників (так ми робили при обчисленні довжин кри-
вих, вписуючи в них ламані). Існує класичний приклад Шварца – так званий «чобіт 
Шварца», – він показує, що у площ, вписаних в циліндричну поверхню многогранників, 
не існує скінченного sup.   
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Теорема 1.9 Нехай поверхня   – гладка, без особливих точок, двостороння, по-
вна, обмежена і визначається рівнянням  

 
   

, ,

, , ,

( , ),

x x u v

y y u v u v G

z z u v

 


 
 

                                                                                          (1.7) 

(тут G – проста плоска область). Тоді ця поверхня є квадровною, а для обчислення її 
площі застосовується формула:  

;
G

r r
du dv

u v

  
     
 , 

де         , , , , , ,r u v x u v y u v z u v . 

Доведення. Оскільки поверхня гладка, то функції x, y, z мають неперервні час-
тинні похідні першого порядку, через які виражається підінтегральна функція, тому ця 
функція є неперервною на G, і інтеграл від неї існує. Домовимося значення цього інтег-
рала позначати через І, тобто  

;
G

r r
I du dv

u v

  
    
 . 

Доведемо квадровність поверхні   і той факт, що значення площі поверхні дорі-

внює І. Для цього застосуємо леми 1.4, 1.5: 0 0       
1

n

i i
Ф


  (розбиття поверхні 

  за допомогою кусково-гладких кривих з діаметром d   ) одержимо, що 
1) кожна така ділянка однозначно проектується на дотичну площину, що прохо-

дить через будь-яку точку цієї ділянки; нехай і іМ   (лема 1.4); через і  позначимо 

площу проекції ділянки і  на дотичну площину, що проходить через точку іМ ; 

2) кут між будь-якими двома векторами нормалі в точках ділянки  і  визнача-

ється рівністю cos 1   , де 0
I


    (лема 1.5). 

Мета: знайти площу і . 

Розглянемо власну систему координат. Початок координат – іМ , вісь Oz спряму-

ємо паралельно до нормалі, що проходить через іМ , тобто до  in M , площину Oxy ро-

зташуємо в дотичній площині до і  що проходить через точку  іМ . В цій системі ко-

ординат поверхня визначається системою рівнянь (1.7). 

Розглянемо нормаль в точці іM  , де ( ( , ), ( , ), ( , ))M x u v y u v z u v , 

 
( , )

( , )

;
u v

u v

i j k

x y z
r r

n M Ai Bj Cku u u
u v

x y z

v v v

  
  

         
  

  

, 

де 

( , )u v

y z

u uA
y z

v v

 

 
 

 

 , 

( , )u v

z x

u uВ
z x

v v

 

 
 

 

, 

( , )u v

x y

u uC
x y

v v

 

 
 

 

. 

Завдяки вибору системи координат косинус кута між нормаллю  n M  і віссю Oz дорі-

внює  
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( , )

cos

,

M

u v

C

r r

u v

 
  
   

, 0C  . 

Через iG  позначимо частину області G , що відповідає ділянці поверхні і  на 

Ф , а через і
 – проекцію 

і  на дотичну площину, яка збігається з площиною Oxy, то-

ді  площа цієї проекції дорівнює 

i

i dxdy


   . Застосуємо формулу заміни змінної під 

знаком подвійного інтеграла, отримаємо 

i

i dxdy


  

 
 

 
 

0

,
,

, cos ,
,

i i i

M

G G G
і i

C

x yx x u v
D x y r ru uy y u v dudv dudv dudv

x uD u v u v
Ф G

v v


 
              


 

   . 

Оскільки поверхня двостороння, то вона має неперервне поле нормалей, тому 

cosM  – неперервна на G . Отже, можна застосувати теорему про середнє: 

*

* : cos , cos ,
i

i i

i i i M M

G G

r r r r
i M dudv dudv

u v u v

      
                

  . 

Тепер обчислимо значення суми 

* *

* *

1 1

cos , cos 1 ,де 0 (лема 1.5)
i i

i

n n

i i iM M
i i G

r r
dudv

u v I 

   
             

    

*

1 1

,

, ,

i

G

n n

i

i iG G

r r
dudv I

u v

r r r r
dudv dudv

u v u v 

  
    

      
           



   . 

Звідси 

*

1

,

i

n

i

i G

I

r r
I dudv

u v 


  
       

 
1

,

i

n

i G

I

r r
dudv I

I u v I



    
      

 . 

Маємо:  0 0 іФ d I           . Отже, приходимо до висновку: 

0
1

1) lim ;

2) , .

n

i
d

i

G

I

r r
I dudv

u v





  

           




   ■ 

Зауваження 1.12 В теоремі припускається, що поверхня є гладка, без особливих 

точок, двостороння, повна, обмежена і визначається рівняннями (1.7). Якщо поверхню 

можна розбити на скінчену кількість ділянок без спільних внутрішніх точок, кожна з 

яких є гладкою, без особливих точок, повною, обмеженою, двосторонньою, що визна-

чаються рівнянням (1.7), тоді поверхня Ф також  буде квадровною, а її площа обчислю-

ється як сума площ ділянок, що її утворюють.  
Зауваження 1.13 Площа поверхні задовольняє властивості адитивності, тобто  
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 
1 21 2 1 2             o o

. 

Зауваження 1.14 1. Будемо, як і раніше, припускати, що поверхня, задана рів-

няннями (1.7), гладка, без особливих точок, повна, двостороння, обмежена, а область 

G , на якій задані функції із (1.7), проста плоска область. 
2 2 2 2

2 2 2 2

Нехай ,

,

, .

r x y z
E

u u u u

r x y z
G

v v v v

r r x x y y z x
F

u v u v u v u v

        
        
        

        
        
        

        
       

        

 

Тоді, застосовуючи співвідношення 
2 2

2 2[ , ] ( , ) | | | | ,

, ,

a b a b a b

r r
a b

u v

  

 
 
 

 

Отримаємо 
2, ,

r r
E G F

u v

  
    

 тобто 

 
2 площа поверхні, заданої параметрично через (1.7).

G

E G F du dv     

 2. Нехай поверхня визначається функцією, що задана явно ( , )z f x y , 

( , )x y G . Функція ( , )f x y  на плоскій простій області G  неперервна разом із своїми 

частинними похідними. Графік цієї функції є поверхнею (див приклад 1.21) гладкою, 

без особливих точок, повною, двосторонньою, обмеженою (перевірте це!). Її парамет-

ризація матиме вигляд: 

 

,

, ( , )

( , ),

x u

y v u v G

z f u v




 
 

. 

Тоді  

   
2 2 2

2 2
1 0 ( , ) 1 ( , ) ,u x

x y z
E f u v f x y

u u u

       
             

       
 

 
2 2 2

22
0 1 ( , ) 1 ( , ) ,v y

x y z
G f u v f x y

v v v

       
                       

 

1 0 0 1 ( , ) ( , ) ( , ) ( , ),u v x y

x x y y z x
F f u v f u v f x y f x y

u v u v u v

     
                

     
 

 
222 1 ( , ) ( , ) .x yE G F f x y f x y         

Звідки 

  
22

1 ( , ) ( , ) площа поверхні, що задана явно.x y

G

f x y f x y dx dy         

 



§2 Криволінійні та поверхневі інтеграли 

 44 

2.4 Поверхневі інтеграли. 

Нехай поверхня Ф –  гладка, без особових точок, двостороння, гладка, повна, об-
межена і визначена параметричними рівняннями (1.7) в простій плоскій області G. Не-
хай на цій поверхні визначені чотири функції: 

f(x,y,z), P(x,y,z), Q(x,y,z), R(x,y,z). 
Надалі будемо вважати, що вони неперервні на Ф. Розіб’ємо поверхню Ф за до-

помогою кусково-гладких кривих на ділянки {Фі} так, щоб виконувалися леми 1.4 і 1.5.  
Нехай точка Мі   Фі, 

( )in M  – вектор одиничної нормалі, тоді 

( ) (cos ,cos ,cos )i i i in M X Y Z , 

2( )    i i

S

Ф EG F dudv , 

d – найбільший серед розмірів ділянок Фі. 
Введемо чотири інтегральні суми: 

    

    

    

    

1 1 i

1

2 2 i

1

3 3 i

1

4 4 i

1

, Ф , ( ) ,

, Ф , ( )cos ,

, Ф , ( )cos ,

, Ф , ( )cos .

n

i i i

i
n

i i i i

i
n

i i i i

i
n

i i i i

i

f M F M

P M P M X

Q M Q M Y

R M R M Z









    

    

    

    









 

Означення 1.27 Границею інтегральних сум s  при діаметрі розбиття, що 

прямує  до нуля, називають таке число sI , для якого 

   
0

lim 0 0s i i s sSd
I Ф M d I


                ( 1,2,3,4s ). 

Означення 1.28 Якщо існує 1 1
0

lim
d

I


  , тоді 1I  називають поверхневим інтег-

ралом першого роду. Позначення: 1 ( , , ) 
Ф

I f x y z d . 

Якщо існує 
0

lims s
d

I


  , s = 2, 3, 4, тоді  sI  називають поверхневим інтегралом 

другого роду. Позначення:  

2

3

4

( , , )cos ( , , ) ,

( , , )cos ( , , ) ,

( , , )cos ( , , ) .

  

  

  

 

 

 

Ф Ф

Ф Ф

Ф Ф

I P x y z Xd P x y z dydz

I Q x y z Yd Q x y z dxdz

I R x y z Zd R x y z dxdy

 

Означення 1.29 Значення суми 

2 3 4 ( , , ) ( , , ) ( , , )

( cos cos cos )


     

   




Ф

I I I P x y z dydz Q x y z dxdz P x y z dxdy

P X Q Y R Z d
  

називають повним (або загальним) поверхневим інтегралом другого роду. 
Зауваження 1.15. Поверхневий інтеграл І роду не залежить від сторони поверхні, 

по якій він обчислюється, а поверхневий інтеграл ІІ роду залежить від сторони поверх-
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ні. Повний поверхневий інтеграл ІІ роду змінює знак на протилежний при зміні сторони 
поверхні. 

Зауваження 1.16 Фізичний зміст поверхневих інтегралів. Поверхневий інтеграл І 
роду – це маса поверхні з поверхневою густиною f(x,y,z). 

Розглянемо повний поверхневий інтеграл ІІ роду. Нехай  

( , , ) ( ( , , ), ( , , ), ( , , ))A x y z P x y z Q x y z R x y z , 

( , , ) (cos ,cos ,cos )n x y z X Y Z , 

тоді 
2 3 4 ( , )   

Ф

I I I A n d  – течія векторного поля A  через поверхню Ф. 

Зауваження 1.17 Поверхневий інтеграл І роду і загальний поверхневий інтеграл 
ІІ роду не залежать від вибору системи координат і є інваріантними відносно переходу 
до нових координат. 

Зауваження 1.18 Зв’язок між поверхневими інтегралами І і ІІ роду. Для переходу 
від поверхневого інтеграла ІІ роду до поверхневого інтеграла І роду потрібно відповід-
но за функцію ( , , )f x y z  обрати або ( , , ) cosP x y z X , або ( , , ) cosQ x y z Y , або 

( , , ) cosR x y z Z . 

Теорема 1.10 (зведення поверхневих інтегралів до подвійних). Якщо поверхня Ф – 
гладка, без особових точок, двостороння, повна, обмежена і визначена параметричними 
рівняннями  

 
   

, ,

, , ,

( , ),




 
 

x x u v

y y u v u v G

z z u v

,                                                                                        (1.8) 

тут G  – проста плоска область. Тоді 

2

1 ( ( , ), ( , ), ( , )) ,
G

I f x u v y u v z u v EG F dudv   

2

2 ( ( , ), ( , ), ( , )) cos ,
G

I P x u v y u v z u v EG F Xdudv   

2

3

2

4

( ( , ), ( , ), ( , )) cos ,

( ( , ), ( , ), ( , )) cos .

G

G

I Q x u v y u v z u v EG F Ydudv

I R x u v y u v z u v EG F Zdudv

 

 




 

Доведення. Зважаючи на зауваження 1.18, доведемо тільки першу формулу. Але 
пояснимо існування усіх чотирьох подвійних інтегралів. 

1) Функції F, P, Q, R – неперервні на Ф, 

2) поверхня Ф є гладкою, тому функції ( , ), ( , ), ( , )x u v y u v z u v  – неперервні ра-

зом із своїми частинними похідними першого порядку на G, тоді 

  

cos cos cos

, , , ,

X Y Z

i j k

x y z

u u u
x y z

A B Cv v v
n i j k

r r r r r r r r

u v u v u v u v

  

  
  

  
   

              
       
              

, 
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де , , .

y z z x x y

u u u u u uA B C
y z z x x y

v v v v v v

     

       
     

     

 

Отже, cos ,cos ,cosX Y Z  виражаються через частинні похідні функцій , ,x y z , тому є 

неперервними функціями на G; 

3) функції  

( ( , ), ( , ), ( , )), ( ( , ), ( , ), ( , )), ( ( , ), ( , ), ( , )),

( ( , ), ( , ), ( , ))

f x u v y u v z u v P x u v y u v z u v Q x u v y u v z u v

R x u v y u v z u v
  

є також неперервними, як композиції неперервних функцій, тому існують усі чотири 
подвійні інтеграли. 

Нехай  

2( ( , ), ( , ), ( , ))  
G

F x u v y u v z u v EG F dudv . 

Довести:  

    1 1 1
0

0 0: limi i
d

M d I


                    . 

Розглянемо інтегральну суму 

2

1

1 1

( ) ( )

i

n n

i i i

i i G

f M f M EG F du dv
 

       ,   

де iG G , що відповідає ділянці  i  при відображенні (1.8). 

Застосуємо адитивність подвійного інтеграла: 

2 2

1

( ) ( )

i

n

iG G

f M EG F du dv f M EG F du dv


      . 

Тоді 

2

1

1

2

1

( ( ) ( ))

( ) ( ) .

i

i

n

i

i G

n

i

i G

f M f M EG F dudv

f M f M EG F dudv





      

  





 

Оскільки  
функція ( , , )f x y z  – неперервна на Ф,  

поверхня Ф – повна, тому замкнена,  
поверхня Ф – обмежена,  

тому можна застосувати теорему Кантора [3, c. 559] і дійти висновку про рівно-
мірну неперервність функції ( , , )f x y z  на Ф. Отже, 

1 2 1 2 1 20 0: , ( , ) ( ) ( )


          


M M M M f M f M , 

де ( )     – площа поверхні Ф. 

Якщо розбити поверхню Ф на ділянки з діаметром меншим за  , тобто з  max ро-
зміром цих ділянок   , то це буде означати, що відстань між будь-якими двома точка-
ми таких ділянок буде   . Потурбуємося, щоб значення   відповідало також лемам 1.4 
і 1.5, щоб задовільними теорему про площу поверхні. Отже,  

( , ) ( ) ( ) .


    


i iM M f M f M  
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Таким чином, 

2 2

1

1 1 1

( ) ( )

i i

n n n

i i

i i iG G

f M f M EG F dudv EG F dudv
  

 
           

 
    . ■ 

Наслідок 1.8 Нехай ( , )z f x y   неперервна функція на замкненій обмеженій 

області G , яка має неперервні частинні похідні першого порядку на G . Тоді графік цієї 
функції буде гладкою, без особливих точок, двосторонньою, повною обмеженою пове-
рхнею  . Поверхневі інтеграли ІІ роду за цією поверхнею обчислюються за формула-
ми: 

'

2

'

3

4

( , , ( , )) ( , ) ,

( , , ( , )) ( , ) ,

( , , ( , )) .

 

 









x

G

y

G

G

I P x y f x y f x y dxdy

I Q x y f x y f x y dxdy

I R x y f x y dxdy

 

у припущенні, що нормаль до поверхні утворює гострий кут з віссю Оz. 

Доведення. Графік зазначеної функції є  
гладкою поверхнею (завдяки неперервності частинних похідних),  

без особливих точок (rang A=2, перевірте !),  
двосторонньою  (завдяки неперервності частинних похідних),  
повною  (завдяки неперервності функції ( , )f x y  на замкненій обмеженій області 

G  і теоремі Кантора),  
обмеженою (теорема Вейєрштрасса для неперервної функції на замкненій обме-

женій області G  [3, c. 558]).  
Тоді (за теоремою1.10) існують відповідні поверхневі інтеграли другого роду. 

Маємо: 

1)
2 ' 2 ' 21 ( ) ( )   x yEG F dudv f f dxdy , 

2) нормаль до поверхні  ( ) (cos ,cos ,cos )n M X Y Z   перпендикулярна до дотич-

ної площини, яка має рівняння [3, c. 567] 
' '

0 0 0 0 0 0 0( , )( ) ( , )( )    x yz z f x y x x f x y y y . 

Тоді вектор одиничної нормалі має координати 
' '

' 2 ' 2

( , ,1)
( )

1 ( ) ( )

x y

x y

f f
n M

f f

 


 
, 

тобто, 
''

' 2 ' 2 ' 2 ' 2 ' 2 ' 2

1
cos , cos , cos .

1 ( ) ( ) 1 ( ) ( ) 1 ( ) ( )

yx

x y x y x y

ff
X Y Z

f f f f f f


  

     
 

Тоді у випадку інтеграла 2I  отримаємо 

'
' 2 ' 2

2 ' 2 ' 2
( ( , ), ( , )) 1 ( ) ( )

1 ( ) ( )


   

 


x
x y

G x y

f
I P x y f x y f f dxdy

f f
  

'( , , ( , )) ( , )  x

G

P x y f x y f x y dxdy . 

Інші формули отримати самостійно ! 
Зауваження 1.20 Якщо поверхня Ф кусково-гладка, то поверхневі інтеграли мо-

жна обчислити як суму інтегралів за гладкими, без особливих точок, двосторонніми, 
обмеженими, повними ділянками.  
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§3. Елементи теорії поля. Основні інтегральні формули аналізу 
Розділ 1. ТЕОРЕТИЧНІ ВІДОМОСТІ 

1 Повторення з курсу лінійної алгебри. 

В цій темі розглянемо деякі положення з курсу алгебри. Всі пропущені доведення 
можна знайти в підручниках з цього курсу або в [4]. Пригадаємо деякі позначення. До-
мовимося опускати знак підсумовування за тим індексом, який повторюється двічі як 

верхній та нижній індекс в загальному члені цієї суми. Наприклад, в виразі 
i

ijg e  підсу-

мовування ведеться за індексом і, а індекс  j – фіксований, тобто замість 
3

1

i

ij

i

g e


  будемо 

писати  
i

ijg e . 

Нехай  іе  – базис в 
3
, тоді якщо 

3a , то 
3

1

і і

і і

і

a а е а е


  . 

Через 0,
1,

j

i

i j
i j


 


 позначають символ  Кронекера. 

1.1 Біортогональні базиси в евклідовому просторі 
3
. 

Означення 1.30 Базис  je  називають біортогональним до базису  ie , якщо 

( , )j j

i ie e   . 

Твердження 1.2 Для будь-якого базису  ie  в 
3
 існує єдиний біортогональний 

базис  je . 

1.2 Перетворення базисів. 

Розглянемо дві пари біортогональних базисів  ie ,  je  та    , j
ie e


  – відповід-

но, старих і нових. Тоді 

,

,

i
i i i
i i i

i

e b e

e b e
 
 




 ,                       

,

.

i
i i i
i i i

i

e b e

e b e










 

Відомо, що , , ,i i i i
i i i ib b b b

 
   – взаємно обернені пари матриць. Оскільки ( , )i i

i ib e e  , то  

,i i i i
i i i ib b b b
 

   . 

Отже, для переходу від базисів  ie ,  іе  до базисів    , i
ie e


  і навпаки достатньо зна-

ти тільки матрицю  iib   переходу від старого базису  ie  до нового базису  ie  . 

Нехай 
i

ia a e , 
i

ia a e . Оскільки ( , ) ( , )i i i

ia e a e e , ( , ) 1i

ie e  , то ( , )i ia a e . От-

же, 

( , ) i

ia a e e ,     ( , )i ia a e e . 

Знайдемо розклад базисних векторів за біортогональним базисом. Для цього в 

останні подання підставимо замість вектора a  базисний вектор i j

je e , відповідно: 

( , ) ,

( , ) ,

i i
j j i ji
j j i ji

i i

e e e e g e

e e e e g e

 

 
         

( , ),

( , )

ij j i
ji j i

g e e

g e e




 –  матриці симетричні, тобто 

, ji ij
ij jig g g g  . 

Висновок: 
i

j jie g e ,   
j ji

ie g e  
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Оскільки ( , ) ( , )k k k i ki

j j ij jie e g e e g g    то    , ij

ijg g  – взаємно обернені. 

 
1.3 Інваріанти лінійного оператора. Дивергенція. Ротор. 

Розглянемо оператор А:
3 3 . 

Означення 1.31 Оператор А називають лінійним, якщо  
3,x y    ,  : ( )A x y Ax Ay    . 

Твердження 1.3 Мають місце співвідношення 

для скалярного добутку ( , ) ( , )i i

i ie Ae e Ae , 

для векторного добутку , ,i i

i ie Ae e Ae       . 

Доведення. ( , ) ( , ) ( , ) ( , ) ( , )

k
j

i j ik ik j k i
i ij k ij k k ie Ae g e g Ae g g e Ae e Ae e Ae



    . 

Для векторного добутку доведення аналогічне. ■ 
Означення 1.32 Значення деякої величини  називають інваріантом, якщо воно 

не змінюється при перетворенні базисів простору. 

Твердження 1.4 Величини ( , ), ,i i

i ie Ae e Ae    і відповідно рівні їм 

( , ), ,i i

i ie Ae e Ae    є інваріантами. 

Доведення. ( , ) ( , ) ( , ) ( , ) ( , )i i i k i i k k i

i i i k i k i k ie Ae b e Ab e b b e Ae e Ae e Ae
     

         . 

Аналогічне доведення і для векторного добутку. ■ 

Означення 1.33 Інваріант ( , )i

ie Ae або ( , )i

ie Ae  називають дивергенцією опе-

ратора А, а ,i ie Ae    або , i

ie Ae    – ротором оператора А. Тобто 

div A ( , )
def

i

ie Ae  ( , )iie Ae ,   rot
def

A  , ,i i

i ie Ae e Ae       . 

Розкладемо образ базисного елемента при дії оператора за базисом: 
k

i i kAe a e . 

Скалярно помножимо цю рівність на елемент біортогонального базису і підсумуємо:  

( , ) ( , )j k j k j j
i i k i ike Ae a e e a a    . 

Отримуємо висновок щодо представлення елементів матриці оператора:  

( , )j j

i ia e Ae . 

Обчислимо дивергенцію оператора А: 
1 2 3 1 2 3

1 2 3 1 2 3

1 2 3

div ( , ) ( , ) ( , ) ( , )
tr .

i

iA e Ae e Ae e Ae e Ae a a a
A

       
      

  

Тут , 1,2,3i i   – власні числа оператора А (з урахуванням їх кратності), а trA   слід 

оператора A . 

Розглянемо в 
3
 канонічний базис , ,i j k , тоді  

1

1 ( , ),a i Ai  
2

1 ( , ),a i Aj  

3

1 ( , )a i Ak ,…, а матриця 
o

A  оператора А надбає вигляду 

1 1 1

1 2 3
2 2 2

1 2 3
3 3 3

1 2 3

( , ) ( , ) ( , )
( , ) ( , ) ( , )
( , ) ( , ) ( , )

o
a a a i Ai i Aj i Ak

A a a a j Ai j Aj j Ak
k Ai k Aj k Aka a a

   
    
       

, 

тому 
1 2 3

1 2 3div ( , ) ( , ) ( , )A a a a i Ai j Aj k Ak      .                                                     (1.9) 

Розглянемо аналогічно ротор лінійного оператора: 
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     rot , , , ,i

iA e Ae i Ai j Aj k Ak      . 

Обчислимо його доданки: 

  1 2 3 2 3

1 1 1 1 1, ,i Ai i a i a j a k ka ja       , 

інші можна отримати аналогічно. Підставивши, отримаємо 
3 2 1 3 2 1

2 3 3 1 1 2rot ( ) ( ) ( )A a a i a a j a a k      .                                                          (1.10) 

2 Скалярні і векторні поля 

Для зручності подальшого розгляду, будемо векторні величини позначати рискою 
або стрілкою зверху на відміну від скалярних величин. 

Означення 1.34 Будемо говорити, що в області D  задане скалярне (векторне) 
поле, якщо кожній точці М D  віджповідає за деяким законом єдине число (вектор). 

Якщо 
3D , тоді скалярне поле – це скалярна функція трьох змінних; а вектор-

не поле – векторна (координатна) функція трьох змінних. 

Приклад 1.24 1) ( )Е М  – векторне поле напруженності електричного поля, утво-

реного від’ємним зарядом, розташованим в точці О. Тоді 

( )Е М МО ,  
2

1
( )Е М 


,    

2 2 2x y z    ,   
3 3 3

( ) ; ;
x y z

Е М
 

    
   

. 

2) Скалярним є поле температур всередині нагрітого тіла; 
3) Векторним є поле швидкостей встановленої течії рідини. 
Означення 1.35 Скалярне поле ( )U M  називають диференційовним в точці 

М D , якщо його повний приріст можна подати у вигляді 

1 2 3 1 2 3( )U M A x A y A z x y z             , 

де 1 2 3, ,A A A  – числа, що не залежать від , ,x y z   ,  

00
00
00

lim 0 0i i xx
yy
zz

  
  
  

      ,     і=1, 2, 3. 

Як було доведено в темі «Функції багатьох змінних», еквівалентним є подання 
повного приросту у вигляді 

1 2 3( ) ( ),U M A x A y A z o          

2 2 2

0

( )
, lim 0.

o
x y z




       


 

Нехай  

 

 
1 2 3, , ,

, , .

A A A A

h x y z



   
 

Тоді повний приріст матиме вигляд: 

( ) ( , ) ( )U M A h o    . 

Як було доведено в темі «Функції багатьох змінних», градієнт скалярного поля 

 grad ( ) ; ;
def U U U

U M
x y z

   
  

   
( ),U M   ; ;

x y z

   
   

   
 

визначає напрям найшвидшого зростання або спадання цього поля, тому градієнт не за-

лежить від вибору системи координат. Отже, градієнт – це інваріант. Якщо e  – одинич-

ний вектор, що задає напрям, тоді, як відомо, похідна скалярної функції за напрямом e  

обчислюється за формулою 
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( ) (grad ( ), )
U

M U M e
e





. 

Означення 1.36 Векторне поле ( )a M  називають диференційовним в точці 

М D , якщо існує лінійний оператор А: 
3 3 , такий, що  

 1( ) ( ) ( )a M a M a M Ah o h     ,  

де 1 0 0 0( , , )M x x y y z z    ,  h  2 2 2x y z     ,  

 o h  – вектор: 
 

0
lim 0 0 0 0
h

o h
i j k

h
    . 

Твердження 1.5 Якщо ( )a M  – диференційовне векторне поле в точці  М D , 

тоді приріст векторного поля у вигляді  ( )a M Ah o h    визначається однозначно. 

Доведення. Припустимо супротивне, тобто існують два різні лінійні оператори А 
і В в означенні диференційовності векторного поля ( )a M : 

   ( )a M Ah o h Bh o h     .  

Тоді  ( )Ah Bh A B h o h    , тобто  ( )A B h o h  . Поділимо обидві частини 

останньої рівності  на h , враховуючи, що 
h

e
h

  – одиничний вектор: 

 

 
0

( )

( ) 0 .

0
h

o h
A B e

h
A B e Ae Be

o h

h



 


    


 



 

Образи операторів на одиничних векторах збігаються, а оператори лінійні, тому ці опе-

ратори будуть збігатися на усіх елементах із 
3
. ■ 

Означення 1.37 Векторне поле називають диференційовним в області D , як-
що воно диференційовне у всіх точках області D . 

Мета: дати означення похідної векторного поля за напрямом. 

Нехай 1,М М D . Одиничний вектор e  однаково спрямований з вектором 1ММ , 

тобто 1e MM  

Означення 1.38 Похідною векторного поля ( )a M  за напрямом e  називають 

1 1

1

1 1

( ) ( ) ( )
( ) lim lim

M M M M

a a M a M a M
M

e MM MM 

  
 


. 

Твердження 1.6 Якщо ( )a M  – диференційовне векторне поле в точці  М D , e  

– одиничний вектор, що задає напрям, тоді ( )
a

M Ae
e





, де А – оператор в означенні 

диференційовності векторного поля ( )a M . 

Доведення. Оскільки ( )a M  – диференційовне векторне поле в точці  М D , то  

 ( )a M Ah o h   . 
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Якщо 1h MM   , а 
1e MM , то h e h e   . Звідси 

( ) ( )a M Ae o    . 

Поділимо обидві частини останньої рівності  на  : 

1

( ) ( )a M o
Ae

MM

 
 


. 

Здійснимо граничний перехід при 0  або, що те саме, при 
1M M : 

1 1

( )
lim ( )

M M

a M a
Ae M

eMM

 
 


.    ■ 

Зауваження 1.21 Оскільки  

( ) (grad ( ), )
U

M U M e
e





,  

 1 2 3grad ( ) , ,U M A A A A U    , 

то можна вважати, що похідна за напрямом від скалярної функції також є результатом 

дії оператора А  на напрям е . 

Мета: знайти матрицю 
o

A  оператора А, що визначається умовою диференційов-

ності в ортонормованому базисі , ,i j k . 

,

,
,

( ) ,

,

a a P Q R
Ai i j k

i x x x xa
P Q RAe

Aj i j ke
y y ya M Pi Qj Rk
P Q R

Ak i j k
z z z

     
    
          

     
            

   

 

1 3

1 1( , ) , ( , ) ,...
P R

a i Ai a k Ai
x x

 
   

 
 

Висновок: 

o

P P P

x y z
Q Q Q

A
x y z
R R R

x y z

   
 
   
   

   
   
 
   

. 

3 Дивергенція, ротор, похідна за напрямом векторного поля 

Означення 1.39 Дивергенцією векторного поля, що є диференційовним в точці 
М називають дивергенцію оператора А, що визначається умовою диференційовності 

цього векторного поля в точці М. Тобто, якщо  ( )a M Ah o h   , то 

div ( ) diva M A . 

Означення 1.40 Ротор означається аналогічно, як rot ( ) roa M t A . 

Якщо ( ) ( ( ), ( ), ( ))a M P M Q M R M , то формули для обчислення отримаємо як 

наслідок означень 1.39, 1.40 і формул (1.9), (1.10): 

 1 2 3

1 2 3div , ;
P Q R

a a a a a
x y z

  
       

  
 

3 2 1 3 1 2

2 3 3 1 2 1rot ( ) ( ) ( )a a a i a a j a a k        
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 , .

i j k
R Q P R Q P

i j k a
y z z x x y x y z

P Q R

            
             

            
 

Нехай напрям задається одиничним вектором 

cos cos cose i j k      , 

де  cos ,cos ,cos    – направляючі косинуси. Отримаємо формули для обчислення 

похідної за цим напрямом: 

cos cos cosAe Ai Aj Ak         

cos cos cos
P P P

i
x y z

   
       

   
 

cos cos cos

cos cos cos .

Q Q Q
j

x y z

R R R
k

x y z

   
       

   
   

      
   

 

Зауваження 1.22 Дивергенція і ротор не залежать від вибору базису, тому для 
диференційовного в точці М векторного поля ротор і дивергенція – інваріанти. Звідси 
випливає, що в кожній точці М D  вони визначаються однозначно. 

Зауваження 1.23 Якщо ( ) ( ( ), ( ), ( ))a M P M Q M R M  – диференційовне вектор-

не поле в області D , а ( )U M  – диференційовне скалярне поле в області D , другі мі-

шані частинні похідні якого неперервні в D , тоді мають місце наступні, зручні для 
розв’язання прикладних задач,  тотожності 

   rot grad , 0,

ji k

U U yx z
UU U

zx y

 
     

 

 

 

     
2 2 2

2

2 2 2
div grad ( , ) , div rot ( , , ) 0.

U U U
U U U a a

x y z

  
          

  
 

 Фізичний зміст дивергенції і ротору. 
Дивергенція векторного поля ( ) ( ( ), ( ), ( ))a M P M Q M R M  обчислюється за фо-

рмулою div
P Q R

a
x y z

  
  
  

, а тому визначає швидкість зміни кожного компонента 

вектора у своєму власному напрямі. Отже, вона характеризує розбіжність векторного 
поля. Крім того, 

 div ( ) 0a M  із точки М витікає більше рідини, ніж потрапляє, тоді 

таку точку М називають витоком;  

 div ( ) 0a M    із точки М витікає менше рідини, ніж потрапляє, тоді 

таку точку М називають стоком;  

 div ( ) 0a M   здійснюється баланс між витіканням і потраплянням 

рідини в точці М. 
Величина rota  обчислюється за формулою 



§3. Елементи теорії поля. Основні інтегральні формули аналізу 

 54 

rot

i j k
R Q P R Q P

a i j k
y z z x x y x y z

P Q R

            
           

            
. 

Ротор векторного поля характеризує вихор. Це пов’язано з тим, що він якби «змішує» 
похідні і компоненти. Він якби слідкує як змінюються компоненти векторного поля за 
чужими напрямами, тобто ротор характеризує обертання векторного поля.  

Якщо ( )v M  – векторне поле швидкостей течії рідини, тоді його кутова швидкість 

виражається через ротор векторного поля ( )v M  за формулою: 
1

( ) ( )
2

M rot v M  . 

4 Формула Гріна 

Нехай   – це площина в 
3
, 

k  – одиничний вектор нормалі до  , 
D  – область на площині  . 
D  – однозв’язна плоска область, тобто така область, яка має властивість: будь-

яка кусково-гладка зімкнена крива, що лежить в D , обмежує область, яка також цілком 
лежить в  D . 

Через С  позначимо межу D  області D , тобто множину межових точок D  
(означення див. в §1, п. 4.1). 

Умови на межу С D   області D : 
1) крива С  – зімкнена, кусково-гладка, без особливих точок; 
2) на площині   можна обрати таку декартову прямокутну систему координат, що 

усі прямі, які паралельні осям координат перетинають С не більш, ніж у двох точках. 

( )t t M – векторне поле одиничних векторів дотичних до кривої С, яке узго-

джено з k . Це означає наступне: якщо дивитися з кінця вектора k , то вектори t  будуть 
задавати додатній напрям оббігу кривої С, тобто оббіг, що узгоджений з нормаллю за 
правилом «штопора». 

Теорема 1.11 (формула Гріна). Нехай  
   ♦ ( )a M  – векторне поле, диференційовне у відкритій  області D ,  

   ♦ межа С D   області D задовольняє умови 1) і 2), 
   ♦ векторне поле ( )a M  має неперервні похідні за будь-яким напрямом в точках зами-

кання D , тобто в точках множини D C D .  

Тоді  виконується формула: 

 ( , rot ) ( , )
D C

k a dxdy t a dl  .                                         (Г1) 

Фізична інтерпретація формули Гріна. Значення інтеграла ( , )
C

t a dl  – це цирку-

ляція векторного поля ( )a M  вздовж контуру С (або робота векторного поля ( )a M  по 

пересуванню матеріальної точки вздовж кривої С). Воно дорівнює значенню інтеграла 

( , rot )
D

k a dxdy , яке характеризує течію векторного поля rota  через область D . 

Доведення.  

 Дотичні вектори t  виражаються через похідні від функцій, що характеризують 
контур (вони кусково-неперервні за умовою, оскільки С – кусково-гладка крива), тому 

t  – кусково-неперервне векторне поле на С. 
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 Поле ( )a M   є неперервним на С в напрямах дотичних в точках кривої С, оскіль-

ки похідні за цими напрямами є неперервними в точках С. 

 З двох останніх фактів випливає, що ( , )t a  – скалярна кусково-неперервна на С 

функція. 

 Поле rota  за кожною координатою є неперервним в D , оскільки його координа-
ти утворюється із частинних похідних компонент векторної функції ( )a M , які, як похі-

дні за напрямами осей координат, неперервні на D C D . 

 Із останнього випливає, що ( , rot )k a – неперервна скалярна функція в D . 

 Область D  має за межу кусково-гладку криву С, тому множина С має лебеґову 

міру нуль (приклад 1.7), отже, область D  є допустимою множиною і на ній коректно 
визначатиметься кратний інтеграл. 

 Крива С є кусково-гладкою, без особливих точок, тому на ній коректно визнача-
тиметься криволінійний інтеграл. 

Висновок: обидва інтеграла у формулі (Г1) існують. 
Функції, що стоять під знаком інтеграла, є інваріантами, тому вони не залежать 

від вибору системи координат. Отже, систему координат будемо вибирати спеціальним 
чином: площину Oxy оберемо так, щоб задовольнялася умова 2), а вісь  Oz  так, щоб 

Oz k . Тоді 

( , ,0) ( , ,0) 0 ,a P x y i Q x y j k    

rot (0 0) (0 0) ,

0

i j k
Q P Q P

a i j k k
x y z x y x y

P Q

         
             
         

 

( , rot ) ,
Q P

k a
x y

 
 
 

 

 
 

, ,0
( , ) cos cos ( , ) cos sin .

cos ,cos ,0

a P Q
t a P Q t a dl P dl Q dl

t

 
       

   
 

Тут l – параметр довжини дуги, який змінюється, зростаючи в тому самому напрямі, в 
якому здійснюється оббіг кривої С, тому 

( , ) cos sint a dl P dl Q dl Pdx Qdy      . 

Таким чином, потрібно довести формулу: 

D C

Q P
dxdy Pdx Qdy

x y

  
   

  
  . 

Для цього доведемо окремо дві рівності: 

, .
D C D C

P Q
dxdy Pdx dxdy Qdy

y x

 
  

      

Доведемо першу, а друга доводиться аналогічно. 
Внаслідок умови 2), будь-яка пряма, паралельна осі ординат або абсцис , перети-

нає контур С не більше, ніж у двох точках. Тому можна знайти рівно дві прямі, парале-
льні осі ординат, які будуть перетинати контур С рівно в одній точці. Позначимо абсци-

си цих точок через 1 2ix x , причому 1 2x x . При цьому, вертикальні прямі, що лежать 

ліворуч (праворуч) прямої 1 2( )x x x x   не перетинають контур С в жодній точці, а 

поміж ними – у двох точках  1, ( )x x  і  2, ( )x x , де функції 1( )x  і 2( )x  визнача-

ють нижню і верхню частини контура С (рис. 1.16). Тоді 
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 
2 2 2

2

1

1 1 1

( )
( )

( )
( )

( , )

x x x
x

x
D x x x

P P
dxdy dx dy P x y dx

y y







 
     

      

2 2

1 1

2 1( , ( )) ( , ( ))

x x

x x

P x x dx P x x dx      . 

Оскільки функції 
1( )x  і 

2( )x  відповідають кривим 1C  і 2C  відповідно, а ці криві є 

частинами зімкненого контура С з додатним напрямом оббігу, то таким чином визнача-

ється напрям оббігу кривих 1C  і 2C  (див. рис. 1.16).  
 

 
Рис. 1.16 

 

Тому  

2 2

1 2 1 1

2 1( , ( )) , ( , ( ))

x x

x C x С

P x x dx Pdx P x x dx Pdx        . 

Отже,  

1 2

.

D C С C

P
dxdy Pdx Pdx Pdx

y


   

       ■ 

Зауваження 1.24 (щодо умови 2). Якщо 
умова 2) на контур С не виконується, тоді по-
трібно розбити область на ділянки, на яких 
вона виконується. Наприклад, якщо таких ді-
лянок виявиться дві (рис. 1.17), то 

1 2

,

D D D

     

2 2 3 2 3

2 1 3 1 3

,

.

D C C C C

D C C C C

  

  

   

   
 

Тепер додамо дві останні рівності, отримаємо 

1 2D C C C

      . 

Таким чином, формула Гріна виконується і без умови 2). 

Зауваження 1.25 (щодо однозв’язності області D ). Не обов’язково потрібно на-

кладати умову однозв’язності. Аналогічно зауваженню 1.24 область розбивається на ді-

1x  x  
2x  

 
 
1 1 1

1 2 1

, ( )

, ( )

x x

x x

 

 

 

 
 
2 1 2

2 2 2

, ( )

, ( )

x x

x x

 

 
 

 2, ( )x x  

 1, ( )x x  

 x 

  y 

O 

2C  

1C  

D  

x 

  y 

O 

1C  

3C  
2C  

1D  
2D  

Рис. 1.17 
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лянки за допомогою кусково-гладких кривих так, щоб кожна ділянка була од-

нозв’язною. Інтеграли за кривими розділу взаємознищуються при додаванні. 

Зауваження 1.26 (щодо послаблень припущень гладкості векторного поля 

( )a M ). Умови на гладкість векторного поля ( )a M  можна послабити, замінивши їх на 

неперервність поля ( )a M  в D , його диференційовність в D  і неперервність похідних 

за будь-яким напрямом в D . Але ж, доведення при цьому ускладниться. 

Зауваження 1.27 (щодо послаблень припущень на криву С). На криву можна на-

кладати лише припущення про її спрямлюваність. Правда, доведення при цьому ускла-

дниться. 

Зауваження 1.28 Формула Гріна може бути записана у вигляді: 

 

D C

Q P
ds Pdx Qdy

x y

  
   

  
  .                                            (Г2) 

Такий запис було отримано при виведенні формули. Крім того, формула (Г2), так само, 

як і формула (Г1), залишається інваріантною відносно вибору прямокутної системи ко-

ординат. Покажемо це. 

Доведення. Позначимо стару систему координат Oxy, в ній   ,a P Q , де 

( , ), ( , )P P x y Q Q x y  . Нова система координат – Ox y  , в ній  ,a P Q  , де 

( , ), ( , )P P x y Q Q x y         . Скористаємося інваріантністю скалярного добутку 

 , rotk a : 

  , , rot ,
Q P Q P Q P Q P

k k k a k k
x y x y x y x y

                
                             

. 

Елемент площі при переході від однієї прямокутної системи координат до іншої, теж,  

прямокутної системи координат, не змінює свого значення, оскільки якобіан переходу 

дорівнює 1, тобто  

ds J ds ds    . 

Отже, подвійні інтеграли мають рівні значення. 

Розглянемо тепер вираз під знаком криволінійного інтеграла. Скористаємося ін-

варіантністю скалярного добутку ( , )a t : 

( cos sin ) ( , ) ( cos sin ) .Pdx Qdy P Q dl a t P Q dl P dx Q dy                    

Отже, і  криволінійні інтеграли мають рівні значення. ■ 

5 Формула Остроградського-Гаусса 

Однозв’язною тривимірною областю 
3D  називають таку область, що будь-

яка кусково-гладка зімкнена поверхня G , яка міститься в D , обмежує область 1D , яка 

лежить всередині D, тобто 1( )G D D . 

S D   –множина межових точок області D. 

( )n n M  – векторне поле одиничних зовнішніх нормалей до поверхні S. 

Поверхня S  в 
3
 задовольняє умови: 

1)  S – кусково-гладка, без особливих точок, двозв’язна, повна, обмежена, зімкнена; 

2)    Oxyz (можна обрати прямокутну систему координат), таку, що будь-яка пряма, 

паралельна координатній осі, перетинає S не більше, як у двох точках. 
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Теорема 1.12 (формула Остроградського-Гаусса). Нехай  

   ♦  ( )a M  – диференційовне в D векторне поле,  

   ♦  множина межових точок S D   області D задовольняє умови 1) і 2),  

   ♦  похідна за будь-яким напрямом неперервна в D S D .  

Тоді  виконується формула: 

 div ( , )
D S

a dv a n ds  .                                               (О-Г1) 

Фізичний зміст: потрійний інтеграл від дивергенції векторного поля дорівнює те-

чії векторного поля через поверхню S. 

Доведення. 

 diva  виражається через частинні похідні, які є неперервними в D ; звідси випли-

ває, що дивергенція також неперервна в області D . 

 ( , )a n – неперервна числова функція на S, оскільки  

а) векторне поле )(Ma


 є неперервним в напрямах нормалей в точках S (оскільки 

похідні за цими напрямами є неперервними),  
б) поле нормалей є неперервним на S, що випливає із двосторонності поверхні. 

 Область D  має як межу кусково-гладку поверхню S, тому вона визначається скін-
ченною кількістю неперервних функцій. Звідси випливає, що множина S має лебеґову 

міру нуль (див. приклад 1.7). Отже, область D  є допустимою множиною і на ній корек-
тно визначатиметься кратний інтеграл. 

 Поверхня S є кусково-гладкою, без особливих точок, двозв’язною, повною, обме-
женою, тому на ній коректно визначатиметься поверхневий інтеграл. 

Висновок: обидва інтеграли формули (О-Г1) існують. 
Величини div a  та ( , )a n  – інваріантні відносно вибору системи координат, тому 

оберемо систему координат так, як зазначено в умові 2). Тоді в цій системі координат 

 
 

, , ,
( , ) cos cos cos ,

cos ,cos ,cos ,

a P Q R
a n P X Q Y R Z

n X Y Z

 
   

 
 

div .
P Q R

a
x y z

  
  
  

 

Формула (О-Г1) надбає вигляду 

cos
( cos cos cos ) cos

cosD S

X ds dydz
P Q R

dxdydz P X Q Y R Z ds Yds dxdz
x y z Zds dxdy

   
        

    
   

.
S

Pdydz Qdxdz Rdxdy    

Доведемо окремо кожну із наступних формул: 

, ,
D S D S

P Q
J dxdydz Pdydz I dxdydz Qdxdz

x y

 
   

       

.
D S

R
L dxdydz Rdxdy

z


 

   

Зупинимося на доведенні третьої, інші дві доводяться аналогічно. 
Нехай *D це проекція D  на Oxy ; через межові точки *D  проведемо прямі, 

паралельні Oz. Із умови 2) випливає, що кожна з цих прямих буде перетинати поверхню 
S  лише в одній точці. Множина таких точок утворить криву на поверхні S . Ця крива 

розбиває S  на дві поверхні 1 2iS S  (тобто 1 2S S S ). Пряма, паралельна осі Oz, що 

проходить через внутрішню точку ( , )x y  області *D , буде перетинати поверхню S  в 
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двох точках, одна з яких лежить на 
1S , а інша – на 

2S . Нехай поверхні 
1 2iS S  задають-

ся рівняннями  

1 1: ( , )S z z x y ,   
2 2: ( , )S z z x y . 

Тоді точки перетину зазначеної вертикальної прямої з цими поверхнями мають коорди-

нати  1, , ( , )x y z x y  і  2, , ( , )x y z x y  відповідно (рис. 1.18).  
 

 
 

В результаті отримаємо: 

 
1

2

( , )

1 2

* ( , ) *

( , , ( , )) ( , , ( , )) .

z x y

D D z x y D

R R
L dx dy dz dx dy dz R x y z x y R x y z x y dx dy

z z

 
   

      

Оскільки нормаль до поверхні 1S  утворює гострий кут з віссю аплікат, а до поверхні 

2S   тупий, то  

1

2

1

*

2

*

( , , ( , )) ,

( , , ( , )) .

D S

D S

R x y z x y dxdy R dx dy

R x y z x y dxdy R dx dy



 

 

 
 

Отже, 

1 2

.
S S S

L Rdxdy Rdxdy Rdxdy        ■ 

Зауваження 1.29 (щодо області D ). Якщо поверхня S не задовольняє умову 2) 
або область D , яку вона обмежує, не є однозв’язною, тоді область D  потрібно розбити 
на скінчену кількість областей, кожна з яких задовольняє умову 2), і застосувати влас-

тивість адитивності кратного інтеграла: 
1

i

n

iD D

  . Що стосується поверхневого ін-

теграла, то інтеграли вздовж тих частин поверхні, що будуть спільними у областей iD , 

взаємознищаться, оскільки будуть мати протилежно спрямовані нормалі. Після застосу-

вання формули Остроградського-Гаусса для кожної з частин iD  та підсумовування, ми 

отримаємо, що 

D S

  . 

( , )x y  

 1, , ( , )x y z x y  

 2, , ( , )x y z x y  

 x 

 y 
  O 

1S  

2S  

D  

*D  

 z 

Рис. 1.18 

1n  

2n  
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2H  

2
 

Рис.1.19 
С 

G 

Зауваження 1.30 Формулу Остроградського-Гаусса можна переписати, як було 
отримано при її доведенні, у вигляді:  

 .
D S

P Q R
dxdydz Pdydz Qdxdz Rdxdy

x y z

   
     

   
                    (О-Г2) 

Причому, ця формула є інваріантною за формою і значенням відносно переходу 
до нової системи координат. Доведення аналогічне, як для зауваження 1.28 до формули 
Гріна. 

6 Формула Стокса 

Повторимо деякі означення і зробимо висновки з метою введення поняття повер-
хні з краєм. 

А) Із означень 1.17 та 1.18 випливає, що як елементарна область (ЕО), так і проста 
плоска область (ППО), повинні бути відкритими множинами на площині з евклідовою 
метрикою. 

Б) 
3  – поверхня 

def

  G  – ППО: ƒ: G → Ф – локальний гомеоморфізм. 

В) Оскільки проста плоска область G є відкритою множиною, зокрема, в 
2

2 , то 

можна множину 
2
 локально гомеоморфно відобразити на G.  

Г) Композиція локальних гомеоморфізмів 
2
 → G і  G → Ф є локальним гомео-

морфізмом 
2
 → Ф, тому означення поверхні можна дати в інший спосіб. 

3  – поверхня 
def

   ƒ: 
2
 → Ф – локальний гомеоморфізм. 

Д) Введемо позначення:  
2 2{( , ) : 0}H x y y   . 

Е) Окіл т.М на поверхні Ф:  

( ) ( )
def

W M U M Ф . 

Означення 1.41 Поверхнею з 
краєм називають така множину G, де-
який окіл кожної з точок якої є гомео-

морфним образом або множини 
2
, 

або 
2H . Множину С тих точок, околи 

яких є гомеоморфними образами 

множини 
2H , називають краєм пове-

рхні G (див. рис. 1.19).  

Означення 1.42 
3S   – однозв’язна поверхня 

def

  С – кусково-гладкої, зі-
мкненої кривої C S  поверхня G, для якої крива С є краєм, причому ця поверхня G 

разом із краєм С лежить всередині S, тобто ( )G C S . 

Умови на поверхню S: 
1) S – кусково-гладка, без особливих точок, двостороння, повна, обмежена;  
2)  С – край поверхні S, який є кусково-гладкою, без особливих точок просторо-

вою кривою; 
3)  система координат Oxyz така, що поверхня S однозначно проектується на ко-

жну з трьох координатних площин. 
( )n n M  – векторне поле одиничних нормалей до S. 

( )t t M  – векторне поле одиничних векторів дотичних в точках контуру С з на-

прямами, які узгоджені з полем n . 
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За цих умов виконується теорема. 

Теорема 1.13 (формула Стокса). Нехай  

♦  ( )а M  – векторне поле, неперервно диференційовне в околі поверхні S (у відкритій 

множині, що містить у собі S),  

♦  поверхня S задовольняє зазначені умови 1) – 3). 

Тоді  виконується формула: 

 ( , rot ) ( , )
S C

n a ds a t dl  .                                                (С1) 

Фізичний зміст: течія векторного поля rota  через поверхню S дорівнює цирку-

ляції векторного поля вздовж контура С, який є краєм поверхні S. 

Доведення.  

 Поверхня двостороння, тому поле нормалей n  – неперервне на S. 

 Векторне поле ( )а M  – неперервно диференційовне на S, а компоненти вектора 

rota  виражаються через частинні похідні координатних функцій ( )а M , тому rota  – 

неперервне векторне поле на S. 

 Дотичні вектори t  виражаються через частинні похідні координатних функцій, що 

визначають контур С. Ці функції є кусково-гладкими, тому векторне поле дотичних t  є 

кусково-неперервним на С. 

 Тому кожен із скалярних добутків формули (С1) утворює неперервні або кусково-

неперервні функції. 

 Поверхня S є кусково-гладкою, без особливих точок, двосторонньою, повною, об-

меженою, тому на ній коректно визначатиметься поверхневий інтеграл. 

 Крива С є кусково-гладкою, без особливих точок, тому на ній коректно визначати-

меться криволінійний інтеграл. 

Висновок: обидва інтеграла формули (С1) існують.  

Підінтегральні функції – інваріанти відносно вибору системи координат Oxyz . 

Оберемо систему координат так, щоб виконувалася умова 3). Домовимося, що при ви-

борі системи координат напрями осей оберемо так, щоб нормаль n  утворювала гострий 

кут з усіма осями. 

В цій системі координат маємо: 

   , , , {cos ,cos ,cos }, cos ,cos ,cos ,

cos cos cos

( , rot ) cos

cos cos ,

( , ) cos cos cos .

a P Q R n X Y Z t

X Y Z
R Q

n a X
x y z y z

P Q R

P R Q P
Y Z

z x x y

a t P Q R

     

     
    

     

     
      

      
    

 

Формула (С1) набуває вигляду 

S C

R Q P R Q P
dydz dxdz dxdy Pdx Qdy Rdz

y z z x x y

         
            

         
  .  (С2) 

Окремо перевіримо справедливість кожної з формул 

cos cos ,
S C

P P
J Y Z ds Pdx

z y

  
   

  
   
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cos cos ,
S C

Q Q
I Z X ds Qdx

x z

  
   

  
   

cos cos .
S C

R R
L X Y ds Rdx

y x

  
   

  
   

Доведемо першу із них. Спроектуємо поверхню S  на площину Oxy  (див. рис. 1.20). 

Позначимо цю проекцію 
*D . Вона, за умовою, визначається однозначно. Через Г поз-

начимо проекцію контура С на Oxy .  

 

 
Нехай поверхня задається функцією ( , )z x y . Поверхня кусково-гладка, тому фун-

кція ( , )z x y  є кусково-диференційовною на D . Поверхня двостороння, тому поле нор-

малей є неперервним, а функції  

2 2 2 2 2 2

1
cos , cos , cos

1 ( ) ( ) 1 ( ) ( ) 1 ( ) ( )

yx

x y x y x y

zz
X Y Z

z z z z z z


  

          
  –  

неперервними на D . 

Оскільки 
2 21 ( ) ( )x yds z z dxdy    , то 

( , ) 2 2

2 2
*

( ) 1

cos cos 1 ( ) ( )
1 ( ) ( )

y

z z x y

x y

S D x y

P P
z

z yP P
J Y Z ds z z dxdy

z y z z



  
    

    
        

     
   

* ( , )

( ) .y

D z z x y

P P
z dxdy

z y


  
    

  
  

Обчислимо похідну від функції ( , , ( , ))P x y z x y : 

( , )

1 ( , )

( , , ( , )) y

z z x y

z z x y

P dy P z P P
P x y z x y z

y y dy z y z y




 
        

        
       

 

. 

Отже, 

Г 

t  

x 

y 
O 

S  

C  

*D  

z 

  Рис. 1.20 

n  



Розділ 1. ТЕОРЕТИЧНІ ВІДОМОСТІ 

 63 

*

( , , ( , ))
D

J P x y z x y dxdy
y


 


. 

Застосуємо формулу Гріна, знаючи, що Г – контур  області 
*D : 

*

( , , ( , ))
D

P x y z x y dxdy
y





( , , ( , ))

Г

P x y z x y dx  . 

Оскільки Г – проекція контуру С, то 

( , , ( , )) ( , , )
Г C

P x y z x y dx P x y z dx  . 

Таким чином, ( , , )
C

J P x y z dx  .   ■ 

Зауваження 1.31 Формула Стокса  є вірною для поверхні S, що задовольняє умо-
ви 1) і 2), але не задовольняє умову 3). 

Для обґрунтування цього факту спочатку доводиться твердження:  

0   таке, що S можна розбити на ділянки  іS , розмір яких    і для кожної ділянки 

іS  існує така система координат, що поверхня іS  однозначно проектуються на усі ко-

ординатні площини і задовольняє умовам 1) і 2) (розглянути доведення самостійно 

[4, c. 216] !). 

Після цього, вважаючи, що 
1

n

і

i

S


  , представляємо поверхневий і криволіній-

ний інтеграл сумами 

,

і іS Ф С Ф

      . 

Для ділянок, що мають спільну межу, криволінійний інтеграл за цією межею взаємно 
знищиться, оскільки для таких ділянок оббіг буде здійснюватися в протилежних напря-
мах. 

Зауваження 1.32 Формулу Стокса (С1) можна переписати у вигляді формули 

(С2), яка у скороченому записі має вигляд 

 

cos cos cos

S C

X Y Z

ds Pdx Qdy Rdz
x y z

P Q R

  
  

    ,   (С3) 

де інтеграли зліва і справа мають інваріантний характер відносно вибору декартової си-
стеми координат. Доведення аналогічне доведенню зауваження 1.28. 

7 Умови незалежності криволінійного інтеграла на площині від шляху інтег-
рування. Потенціальні векторні поля 

Нехай  ( , ) ( , ); ( ,а x y P x y Q x y  – плоске векторне поле у відкритій області D . 

Означення 1.43 Функцію U(x,y) називають потенціалом векторного поля 
( , )a x y , якщо ( , ) ( , )a x y gradU x y . Поле а , що має потенціал, називають потенціа-

льним. 
Із означення потенціала і градієнта випливає: 

 grad ; , , .
U U U U

U P Q a P Q
x y x y

    
      

    
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Теорема 1.14 Нехай функції P(x,y), Q(x,y) – неперервні у відкритій області D . 

Для будь-яких двох точок А і В із області D  значення інтеграла  

АВ

Pdx Qdy  не зале-

жать від лінії AB , що сполучає точки А і В та лежить всередині D , тоді і лише тоді, ко-

ли векторне поле  ( , ) ( , ), ( , )a x y P x y Q x y  потенціальне. Крім того, при цьому 

( ) ( ).
AB

Pdx Qdy U B U A    

Доведення. Достатність. Нехай  ,a P Q  – потенціальне поле, U – його поте-

нціал, тоді ,
U U

P Q
x y

 
 
 

. Зафіксуємо точки А і В із області D . Потрібно довести, 

що інтеграл 

AB

Pdx Qdy  не залежить від лінії AB D , що сполучає точки А і В. 

Нехай АВ:  ( ),
,

( ),
x x t

t a b
y y t





, тоді 

   
( ) ( )

( , ) ( , ) ( ), ( ) ( ), ( )

b

AB a

U dx t U dy t
P x y dx Q x y dy x t y t x t y t dt

x dt y dt

  
      

  
   

       ( ), ( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ) ( ).

b
b

a
a

dU
x t y t dt U x t y t U x b y b U x a y a U B U A

dt
       

Висновок: інтеграл не залежить від лінії АВ. 
Необхідність Нехай для будь-якої пари точок А і В із області D  інтеграл 

AB

Pdx Qdy  не залежить від лінії AB D . 

Довести: поле  ,a P Q  – потенціальне. Для цього потрібно знайти функцію 

U(x,y) таку, що ,
U U

P Q
x y

 
 
 

. 

Нехай 0 0 0( , )M x y  – фіксована точка 

області  0M D . 

Розглянемо відповідність 

0

!
M M

M Pdx Qdy  , де M D  – довіль-

на точка. Ця відповідність утворює функ-
цію, оскільки кожній точці відповідає єди-
не значення інтеграла, який не залежить 

від лінії 0M M : 

0

( )
M M

U M Pdx Qdy  . 

Доведемо, що U(M) – це шуканій потенціал поля  ,a P Q , тобто доведемо, що  

,
U U

P Q
x y

 
 
 

. 

Перевіримо першу рівність, а друга доводиться аналогічно. 
Нехай : ( , )x N x x y D   . Таку точку знайти можливо (рис. 1.21), оскільки, 

область D  – відкрита. Маємо: 

x 

y 

О 

 М   N 

М0 

x  x x  

y  

Рис. 1.21 

 D 



Розділ 1. ТЕОРЕТИЧНІ ВІДОМОСТІ 

 65 

0 0

( , ) ( , ) ( , ) ( ) ( )x

M MN M M

U x y U x x y U x y U N U M            

,
( , )

: 0

th про середнє ( , )( ) (0 1 ),

x x

MN MN x

MN D
Pdx Qdy Pdx P t y dt

MN y const dy dx

P x x y x x x




     
  

         

    

тобто, 
( , ) ( , )xU x y P x x y x       (0 1   ), 

0 0

( , )
lim lim ( , ) ( , )x

x x

U x y
P x x y P x y

x   


   


.  ■ 

Нехай в області D  функції P(x,y), Q(x,y) неперервні разом із своїми частинними 

похідними. Якщо векторне поле  ,a P Q  потенціальне, тоді  

( , ) : ,
U U

U x y P Q
x y

 
  

 
. 

Оскільки частинні похідні 
2 2

,
P U Q U

y y x x x y

   
 

     
 – неперервні в області D  (за припу-

щенням), тоді за теоремою Шварца в точках області D  має місце рівність 
P Q

y x

 


 
.  

Висновок. Якщо в області D  функції ( , ), ( , )P x y Q x y  неперервні разом із своїми 

частинними похідними, а інтеграл 

AB

Pdx Qdy  не залежить від лінії 

,AB D A B D   , тоді (за теоремою 1.14) векторне поле  ,a P Q  – потенціальне, 

а разом з цим ( ) ( )
P Q

M M M D
y x

 
  

 
. 

Доведемо зворотне твердження для випадку кругової області. 

Твердження 1.7  Нехай  
1) D  – круг,  
2) функції P(x,y), Q(x,y)  – неперервні разом із своїми частинними похідними в D ;  

3) ( ) ( )
P Q

M M M D
y x

 
  

 
. 

Тоді ,A B D   значення інтеграла  

АВ

Pdx Qdy  не залежать від лінії AB , що сполу-

чає точки А і В та лежить всередині області D . 

Доведення. Нехай для векторного поля  ,a P Q  в області D  виконується 

P Q

y x

 


 
. Доведемо, що векторне поле потенціальне, тобто знайдемо функцію U(x,y) 

таку, що ,
U U

P Q
x y

 
 
 

. Для цього розглянемо дві довільні точки 0 iM M  круга D  і 

двома способами сполучимо їх ламаними з ланками, паралельними координатним осям, 
так, як зображено на схемі рис. 1.22. Застосуємо формулу Гріна для прямокутника 

0 1 2M M MM : 

0 1 2 0 0 1 2

0

0.
M M MM M M M MM

P Q
Pdx Qdy dx dy

y x



  
    

  
   
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Отже,  

0 1 2 0 0 1 2 0

0 1 0 2

0

.

M M MM M M M M MM M

M M M M M M

Pdx Qdy

Pdx Qdy Pdx Qdy

    

  

  

 
 

Тому інтеграл 

0M M

Pdx Qdy  не залежить  від 

вигляду ламаної 0M M , що має ланки, парале-

льні координатним осям. 
Розглянемо функцію 

 

0

( ) ,
M M

U M Pdx Qdy   

де 0M M  – ламана з ланками паралельними ко-

ординатним осям. Доведення того, що це і є шуканий потенціал, здійснюється аналогіч-
но теоремі 1.14.■ 

Узагальнимо останню теорему. 

Твердження 1.8  Нехай 
1) D  – однозв’язна область,  
2) функції P(x,y), Q(x,y)  – неперервні разом із своїми частинними похідними в обла-

сті D ;  

3) ( ) ( )
P Q

M M M D
y x

 
  

 
.  

Тоді інтеграл 

AB

Pdx Qdy  не залежить від лінії ,AB D A B D   . 

Доведення. Якщо L  – довільна кусково-гладка, зімкнена крива, що розташована 

в D , то область
*D  (рис. 1.23), яку вона обмежує, цілком лежить в D , оскільки D  – 

однозв’язна. Застосуємо формулу Гріна і умову 3): 

*

0
L D

Q P
Pdx Qdy ds

x y

  
    

  
  . 

Нехай А і В – довільні точки D . Сполучимо 

їх двома кусково-гладкими кривими 1AC B  і 2AC B  

які лежать в D  (рис. 1.23), тоді 

1 2 1 2

0
AC BC A AC B BC A

Pdx Qdy        

1 2AC B AC B

Pdx Qdy Pdx Qdy    .  ■ 

Загальний висновок. Інтеграл  

AB

Pdx Qdy  не залежить від шляху інтегрування 

за дугою АВ, що лежить в області D , в якій дані функції неперервні разом із своїми ча-

стинними похідними, тоді і лише тоді, коли ( ) ( )
P Q

M M M D
y x

 
  

 
. Крім того, 

має місце формула ( ) ( ),
АВ

Pdx Qdy U B U A    де ( )U M – потенціал векторного поля 

( )a M . 

x 

y 

О 

М1 М 

М0 М2 

Рис. 1.22 

D 

В 

  С2 

 А 

С1 

Рис. 1.23 

D 

L 
  D* 
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Розділ 4. ІНДИВІДУАЛЬНЕ ЗАВДАННЯ 

§1. Кратні інтеграли 

 

1. Варіанти індивідуального завдання 
1, 2. Змінити порядок інтегрування. 

3. Обчислити подвійний інтеграл. 

4, 5. Обчислити подвійний інтеграл за допомогою нових змінних. 

6. Знайти об’єм тіла за допомогою подвійного інтеграла. 

7. Використовуючи потрібну заміну, знайти площу  області. 

8. Знайти координати центра мас пластини. 

9. Знайти площу поверхні. 

10, 11. Обчислити потрійний інтеграл. 

12, 13. Знайти об’єм тіла, що задається поверхнями, які його обмежують. 

14. Тіло задається поверхнями, які його обмежують, ( , , )x y z   густина. Знайти масу 

тіла. 
 

Варіант 1 Варіант 2 

1. 
1 0 2 0

0 1 2

( , ) ( , )

x x

dx f x y dy dx f x y dy

  

     1. 

221 2

0 0 1 0

( , ) ( , )

yy

dy f x y dx dy f x y dx



     

2. 

2254

30
4

( , )

y

y

dy f x y dx



   2. 

0 3

3

( , )

x

dx f x y dy

 

 
3 3

0

( , )

x

dx f x y dy   

 

3.  cos2 sin

D

x y dx dy ; 

 
 

: 0, 0, 4 4 0D x y x y       

3.
2

D

dx dy

ax x
 ; 

2 2: 0,D x y a ax    

4.

D

dx dy ; 

: 1, 2, , 3D xy xy y x y x     

4.

D

dx dy ;  2 2: , ,D y ax y bx   

, ( , )xy p xy q a b p q     
 

5.  2 2ln 1

D

x y dx dy  ; 

2 2 2: 0, 0,D x y x y R     

5. arctg

D

x
dx dy

y ; D   частина круга 

2 2 1x y  , що лежить в І чверті 

6. Тіло обмежене поверхнями 
 

6 9 5 0, 3 2 0, 4 0,x y z x y x y        

5, 0x y z    

6. Тіло обмежене еліпсоїдом 
22 2

2 2 2
1

yx z

a b c
    

7. Область обмежена еліпсом 
 

2 2( 2 3) (3 4 1) 100x y x y       

7. Область обмежена кривою 

 
32 2 2 2 24x y a x y   

8. Однорідна пластина обмежена  
 

лініями  2 2, 3 ,
3

x
y x y x y    

8. Однорідна пластина обмежена лініями  
22

2 2
1, 0, 0

yx
x y

a b
     ( 0, 0)x y   

9. Поверхня 
2

2

x
z  , для якої 2 2x  , 

2 4x y x   

9. Знайти площу поверхні 
2 2 2x y ay  , 

якщо 
2 2 2z x y   
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10. 22 xy

V

y e dx dy dz ; 

0, 1, , 0, 1x y y x z z      

10. 2 sh( )

V

x z xyz dx dy dz ; 

2, , 1, 0, 0, 0x y z x y z       
 

11. 

V

x dx dy dz ; 

: 10 , 0, 1, , 0V y x y x z xy z      

11. 

 
4

1
3 4 8

V

dx dy dz

yx z
  

 ; 

: 1, 0, 0, 0
3 4 8

yx z
V x y z       

12. 16 2 , 2 , 0, 2y x y x z x z      12. 
5 5

5 , , 5 , 0
3 3

x x
y x y z z      

13. 2 2 25
2 , , 0

4
x y y z x z      

13. 2 2 2 2, 4 ,x y y x y y     

2 2 , 0z x y z    

14.  2 2 2 2 264 , 4, 0,x y z x y y    

0z   2 25
( 0, 0),

4
y z x y     

14. 2 2 2 4,x y z  

 2 2 2 21 1 ,x y x y   

 0 0 , 4x x z    
 

Варіант 3 Варіант 4 

1. 
2

3 0

2 4

( , )

x

dx f x y dy


  

   

2

0 0

3 4 2

( , )

x

dx f x y dy

  

    

1. 

1 0

2 2

( , )

y

dy f x y dx


  

   

0 0

1

( , )

y

dy f x y dx

  

    

2. 

2

2

22

2 1

( , )

y

y

dy f x y dx

 

   2. 
7 3

93

( , )

x

dx f x y dy 
9 10

97

( , )

x

x

dx f x y dy


   

3.
2 2

D

x dx dy

x y ;  : tg( ),D y x x y x   3.

D

x y dx dy ; 2 2: 2, 2D x y x y y     

4.

D

xy dx dy ; 3 3: , ,D y ax y bx   

2 2,y px y qx  (0 , 0 )a b p q     

4.
2( )x y

D

e dx dy

 ;   

 

: 0, 0, 1D x y x y     

5. 2 2

D

x x y dx dy  ; 

   
22 2 2 2 2: , 0D x y a x y x      пе-

люстка лемніскати 

5. 
22

2

2 2

( 1);

D

dx dy
c

yx
c

a b



 
  

 
22

2 2
: 1

yx
D

a b
   

6. (№Б3570) Тіло обмежене круговим ци-

ліндром радіуса r , віссю якого служить 

вісь ординат, координатними площинами 

і площиною 1
yx

r a
   

 

6. Вивести «шкільну» формулу для обчис-

лення об’єму конуса (висота H , радіус 

основи R ) за допомогою  

подвійного інтеграла 
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7. Область обмежена кривою 
2 2( 2 3) (3 4 1) 100x y x y       

7. Область обмежена кривими 
3 3, ,y ax y bx    

2 ,y px  
2y qx   (0 , 0 )a b p q     

8. Однорідна пластина обмежена лініями 

2 2, 3 ,
3

x
y x y x y    

8. Однорідна пластина обмежена  
 

лініями 
22 , 0x y y x    

9. Поверхня 
2

2

x
z  , для якої 2 2x  , 

2 4x y x   

 

9. Поверхня 
2 2 2x y z  , що лежить все-

редині циліндра 
2 2 2x y a   

10. 2ch(2 )

V

y xy dx dy dz ; 

0, 2, 4 , 0, 2x y y x z z       

10. 2 28 xyz

V

y z e dx dy dz ; 

0, 0, 0, 1, 2, 1x y z x y z        

11.  2 215

V

y z dx dy dz ; 

 

: , 1, 0, 0, 0V z x y x y x y z        

11. (3 4 )

V

x y dx dy dz ;  : ,V y x  

0,y    2 21, 5 , 0x z x y z     

12. 2 2 2, , 0,x y y x y     0,z   

15z x  

12. 2, , 12 , 0x y y x z y z      

13. 2 2 2 28 2 , 64,x y x z x y      

0 ( 0)z z   

13. 2 2 24 0, 8 , 0x y x z y z       

 
 
 
 

14. 2 2 2 21, 2 , 0, 0,x y z x y x y       
 

0 ( 0, 0), 10z x y x     

14. 2 2 216
,

49
x y z  2 2 4

,
7

x y z 

 0, 0 0, 0 , 80x y x y y z        
 

Варіант 5 Варіант 6 

1. 
2

1 1

0 1

( , )

x

dx f x y dy



   

1

1 ln

( , )
e

x

dx f x y dy   

1. 
2

3 0

0 4 2

( , )

x

dx f x y dy

 

   

2

2 0

3 4

( , )

x

dx f x y dy

 

    

2. 

2
2

12

0

( , )

y

y

dy f x y dx



 

210

2

2

( , )

y

y

dy f x y dx





   

 

2. 
2

22

6
1

4

( , )

y

y

dy f x y dx






   

 

3.  2 2

D

x y dx dy ;  D   трикутник з 

вершинами ( 1;1), (1;3), (2; 4)   

3.
2

2
D

x y
dx dy

x y



 ; 

: 1 , 1 , 0D y x y x y       

4. (2 )

D

x y dx dy ;   : 2,D x y   

3,x y   2 3, 2 4x y x y     
4. 

1 2

0

x

x

dx dy  . Заміна: 
(1 ),x u v

y u v

  


 
 

5. 2 2 2

D

a x y dx dy  ;  

2 2:D x y ax   

5.  2 2 ;

D

x y dx dy  

 2 2: ( 2) 4D x y    
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6. (№Д40291) Тіло обмежене поверхнями 
2 2, , 2 ,z xy x y x y    

2 2, 2 , 0y x y x z    

 

6.    2 2 2 2 2 23 , 2x y z a x y az      

7. Область обмежена кривими 

1, 0, 0 ( 0, 0)nn
yx

x y x y
a b
       

7. Область обмежена кривими 

, ,xy p xy q   
2 ,y ax   

2y bx   

(0 , 0 )a b p q     

8. Однорідна пластина обмежена лініями  
2 2, 3 , 3y x y x y x    

8. Однорідна пластина обмежена лініями 
24 4, 2 1y x y x      

9. Поверхня 
2 22az x y  , для якої 

2 2 2 2x y z cz    

9. Поверхня 
2 22ax y z  , для якої 

2 2y ax a   

10. 2sh(3 )

V

x xy dx dy dz ; 

1, 2 , 0, 0, 2, 36x y x y z y z       

10. 2 cos( )

V

y z xyz dx dy dz ; 

1, , 0, 0, 0x y x y z      

11.  31 2

V

x dx dy dz ;  : 9 ,V y x  

0,y   1, , 0x z xy z    

11.  327 54

V

y dx dy dz ; 

: , 0, 1, , 0V y x y x z xy z      

12. 
1

20 2 , 5 2 , 0,
2

x y x y z y z      12.  5 5 5
, , 0, 3

2 6 6
x y x y z z y      

13. 2 2 2 26 , 9 ,x y x x y x     

2 2 ,z x y   0, 0 ( 0)z y y    

13. 2 2 2 26 2 , 36,x y x z x y      
 

0 ( 0)z z   
 

14. 2 2 2 1,x y z   2 2 24 ,x y z   
 

 0, 0 0, 0 , 20x y x y z      

14.   2 2 2 2 236 , 1, 0,x y z x y x      

0z   2 25
( 0, 0),

6
y z x y     

 
Варіант 7 

 
Варіант 8 

1. 

31

0 0

( , )

y

dy f x y dx  
22

1 0

( , )

y

dy f x y dx



   1. 

1 0

0

( , )

y

dy f x y dx



  +
2

2 0

1 2

( , )

y

dy f x y dx

 

   

2. 

22

0 0

( , )

x

dx f x y dy    

4 10

2 0

( , )
x

dx f x y dy


 
7 10

4 4

( , )
x

x

dx f x y dy




   

2. 

2

2

6 3 12 4

2 3 12 4

( , )

x x

x x

dx f x y dy

   

    

   

 

3.  2

D

x y dx dy ; D   трикутник з 

 

 вершинами (1;0), ( 1;2), (3;4)  

3. 2 2

D

a x dx dy ;  

2 2 2: , , 0, 0D y x a x a x y      

4.

D

dx dy ;  : 1, 2,D xy xy   

, 3y x y x   

4.

D

dx dy ;   : 3, 5,D xy xy    

4 , 6y x y x   

                                                 
1 Посилання на номери з літерою «Д», означатиме, що цей приклад відповідає збірнику задач Демидовича Б.П. [9]. 
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5.  2 2 ;

D

x y dx dy  

 2 2: ( 2) 4D x y    

5. 2 2 9

D

x y dx dy  ; 

2 2: 9 25D x y    

 

6. 2 2 2 2 2, 2 2x ay bx x y hz x y       

6. (№Б35911) Тіло обмежене сферою  
2 2 2 2x y z a    і циліндром 

2 2x y ax   

(задача Вівіані) 
7. Область обмежена кривою 

222
2 2

2 2

yx
x y

a b

 
   

 
 

7. (№Д3985) Область обмежена кривими 
2 22 ,y px p   

2 22y qx q    

( 0, 0)p q   

8. Однорідна пластина обмежена 

 лініями 
22

2 2
1, 0 ( 0)

yx
x x

a b
     

8. Однорідна пластина обмежена 
 

 лініями  2 2, 2 , 1, 2y x y x x x     

9. (№Б3631) Поверхня 
2 2 2x y z  , що 

вирізана циліндром  
2 2 2x y a   і пло-

щинами y b  та y b   

9. Поверхня 
2 2 2x y z  , для якої 

2x ay  

10.  2 cos
4

V

y yz dx dy dz


 ; 

21, 1, , 0,
2

x
x y y z z         

10. 2 ch
2

V

xyz
y z dx dy dz ; 

 

2, 1, 2, 0, 0, 0x y z x y z        
 

11. 

V

y dx dy dz ; 

: 15 , 0, 1, , 0V y x y x z xy z      

11. 

 
5

1
16 8 3

V

dx dy dz

yx z
  

 ; 

: 1, 0, 0, 0
16 8 3

yx z
V x y z       

12. 2 2 2, , 0, 0,x y x y x z      

30z y  
12. 

12
2, , , 0

5

x
x y x y z z      

13. 2 2 29
2 , , 0

4
x y y z x z      

13. 2 2 2 22 , 5 ,x y y x y y     

2 2 ,z x y   0z   

14.   2 2 2 2 216, 4x y z x y      

 2 2 4 ,x y  2 z   

14.   2 2 4,x y  2 2 8 ,x y z   
 

 0, 0, 0 0, 0 , 5x y z x y x       
 

Варіант 9 Варіант 10 

1. 

sin4

0 0

( , )

y

dy f x y dx



 
cos2

0
4

( , )

y

dy f x y dx




   1. 

1

0 0

( , )

y

dy f x y dx  
22

1 0

( , )

y

dy f x y dx



   

2. 

2

2

4 16

0 4

( , )

x

x x

dx f x y dy





   2. 

2
2 2

2 0

( , )

x

dx f x y dy





 
2

10 2
3 2

2 4

( , )

x

x

dx f x y dy





    

  

                                                 
1 Посилання на номери з літерою «Б», означатиме, що цей приклад відповідає збірнику задач Бермана Г.М. [10]. 



§1. Кратні інтеграли 

 72 

3. 2

D

xy y dx dy ;  D   трапеція з вер-

шинами (1;1), (5;1), (10;2), (2;2)  

3. x y

D

e dx dy

 ; : , 0, 2xD y e x y     

4. 

D

dx dy ;   

2 2 2 2: 1, 2, 3, 4D x y x y x y x y       

4. ( 2 )

D

xy y dx dy ;   : 2 3,D x y    

 

2 5,x y   3 2 6, 3 2 7x y x y     
 

5. 

2 2

2
2 2 2

0

a ya

ay y

dy
dy

a x y



  
   

5. 2 2 2 ;

D

x x y dx dy   

   
22 2 2 2 2: , 0D x y a x y x      пе-

люстка лемніскати 
6. (№Б3575) Тіло обмежене гіперболічним 

параболоїдом 
2 2z x y   і площинами  

3, 0x z   

6.  Тіло обмежене поверхнями 
2 22 2

2 2 2 2
0, ,

y y yx z x x
z

c a ba b a b
       

7. Область обмежена кривою 
5 2 2

4

y x yx

a b c

   
 

 

7. Область обмежена кривими 
2 22 , 2 ,x ry x sy    

2 2 ,y px  

2 2y qx   (0 , 0 )p q r s     

8. Однорідна пластина обмежена 
 

 лініями  22 , 0y x x y    

8. (№Д4055) Однорідна пластина обмеже-

на кривою 

3

2

y xyx

a b c

   
 

  (петля) 

9. Поверхня 
2 2 2x y z  , для якої 

2 2 2, ( )y b x y a a b     

9. Поверхня 
2 2 2 2x y z R   , для  

 

якої , 0, 0x y R x y     

10. 2 xy

V

x e dx dy dz

 ; 

2, 0, 1, , 0
4

x
x y z y z       

10. 22  xyz

V

x y e dx dy dz ; 

 

1, 1, 1, 0, 0, 0x y z x y z       

11.  2 23

V

x y dx dy dz ;  : 10 ,V z y   

1,x y   0, 0, 0x y z    

 

11.  30 15

V

z x dx dy dz ;  

2 2: 3 ,V z x y   0,z   , 0, 1y x y x    

12. 
1

17 2 , 2 2 , 0,
2

y x y x z x z      12.  5
, 9 5 , 0, 9 5 3

3
y x y x z z x      

13. 2 2 2 22 2 0, 4,x y x z x y       

0 ( 0)z z   

13. 2 2 24 , 10 , 0x y x z y z      

 

14.   2 2 2 2 24 2
, ,

25 5
x y z x y z     

0, 0 ( 0, 0, 0)x y x y z     , 28xz   

 

 

14.   2 2 2 2 2 24, ,x y z x y z      
 

0, 0 ( 0, 0, 0)x y x y z     , 6z   
 

Варіант 11 Варіант 12 

1. 

1 0

0

( , )

y

dy f x y dx



 
ln

1 1

( , )

ye

dy f x y dx





   1. 

1 0

0

( , )

y

dy f x y dx



  +
2

2 0

1 2

( , )

y

dy f x y dx

 

   
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2. 

2 2

20 2

( , )

a a a x

ax x

dx f x y dy

 



   2. 
2 6

0 2

( , )
x

x

dx f x y dy


   

 

 

3.

D

dx dy ; 2: 2 , 4 4D y x y x     3.  

21 1
2 2

0 0

1

x

dx x y dy


    

4.
2 cos

D

y xy
dx dy

x ;  

2 2 2 22
: , , , 2

3 3
D y x y x x y x y

 
     

 

4.

D

dx dy ;   : 1, 2,D xy xy     

 

2 , 4y x y x   

5.  2 2 ;

D

x y dx dy  

 
2 2 2 2: , 2 , 0D x y ax x y ax y      

5.
2 2

D

x y dx dy ;  D   область, обме-

жена колом 
2 2 2x y a   і кардіоїдою 

 2 2 2 2x y a x y x     (область не міс-

тить початку координат) 
6. (№Д4027) Тіло обмежене поверхнями 

2 , ,z xy x y a     
 

x y b    (0 )a b   

6. (№Д4015) Тіло обмежене поверхнями 
2 2 2 2, ,z x y x y x      

2 2 2 , 0x y x z    

7. (№Б3608.1) Область обмежена кривою 
222

2 2 2

y xyx

a b c

 
  

 
 

7. Область обмежена еліпсом 

   
2 2

1 1 1 2 2 2 1a x b y c a x b y c      , де 

1 2 2 1 0a b a b     (№Д4001) 

8. Пластина обмежена лініями 

, , 1y x y x x     з густиною, яка в ко-

жній точці дорівнює відстані від цієї точ-

ки до початку координат 

8. Однорідна пластина обмежена 
 

 верхньою половиною еліпса, що 
 

 опирається на велику вісь 

9. (№Б3629) Поверхня 
2 2 2z x y  , що 

вирізана циліндром  
2 2z py  

9. (№Д4043) Поверхня 
2 2 22x y z  , 

 

 яка вирізана площинами 

1, 1x y x y        

10.  2 sin
2

V

x xy dx dy dz


 ; 

2, , 0, 0,x y x y z z       

 

10. 2 sh( )

V

x z xyz dx dy dz ; 

2, 0, , , 0x y y x z xy z      

11.  34 8

V

z dx dy dz ; 

: , 0, 1, , 0V y x y x z xy z      

 

11. 21

V

xz dx dy dz ; 

 

: 2, 0, , , 0V x y y x z xy z      

12. 2 2 8, 2 , 0,x y y x y     

0,11 15z z x   

12. 4, 2 , 3 , 0x y y x z y z      

13. 2 2 2 27 , 10 ,x y x x y x     

2 2 ,z x y   0, 0 ( 0)z y y    

13. 2 2 2 28 2 , 64,x y y z x y      
 

0 ( 0)z z   

14.   2 2 2 2 225 , 4, 0,x y z x y x      

0z  ( 0, 0),x z   
2 22 ( )x y   

 

14. 2 2 2 2 29, 4x y z x y      

 2 2 4 ,x y   0 0 ,y y z    
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Варіант 13 

1. 

23 4

2 0

( , )

x

dx f x y dy
 



   

 

+

20 2 4

3 0

( , )

x

dx f x y dy
 



   

 

2. 
2

1
2

( , )

y

y

dy f x y dx   

 

3.  (3 )

D

x y dx dy ;  

2 2 2
: 9, 3

3
D x y y x     

4.  2 2

D

x y dx dy ;  2: ,D xy e   

 

4,xy e  , ( )x y a x y b a b      

5. 

2 2

2
2 2 2

0

a ya

ay y

dx
dy

a x y



  
   

6. (№Д4016) Тіло обмежене поверхнями 
2 2 2 2,x y z a    

2 2 ( 0)x y a x a     

7. (№Б3605) Область обмежена кривою 
3 3 2x y xy  , що лежить в  

 

І чверті (петля) 

8. (Б3649) Однорідна пластина  
 

обмежена синусоїдою siny x , віссю Ox  

і прямою 
4

x


  

9. Вивести «шкільну» формулу для обчи-

слення площі бічної поверхні конуса (ви-

сота H , радіус основи R ) за допомогою 

подвійного інтеграла 

10.  2sh

V

x xy dx dy dz ; 

2, , 0, 0, 1
2

x
x y y z z       

11. 

V

xyz dx dy dz ; 

: , 0, 3, , 0V y x y x z xy z      

 

 

12. 6 5 ,18 5 ,x y x y   0,z    
 

 18 5 3z y   

13. 2 2 213
2 , , 0

4
x y y z x z      14. 2 2 2 21, 6 , 0, 0,x y x y z x y       

0z   ( 0, 0, 0), 90x y z y     
 

2 Приклад розв’язання варіанта індивідуального типового завдання 

Приклад 2.1 Змінити порядок інтегрування: 

2 2

16 82 4 0

1

0 216 16

( , ) ( , )

y

y y

I dy f x y dx dy f x y dx

 

   

      

Розв’язання. Перший інтеграл в сумі задає область 

1 2

0 2;
:

16 16 8 .

y
D

y x y

 

     

  

Криві, що обмежують цю область, мають рівняння: 
20, 2, 16 ,

16 8 .

y y x y

x y

    

  
 

З’ясуємо типи цих кривих: 
1) 0, 2y y    горизонтальні прямі, 

2) 
2 2

2 16,
16

0,

x y
x y

x

  
    


, тому 

216x y   – ліва частина кола з центром в  
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точці (0,0)  радіуса 4, 

3) 

2

2 ,
16 8 8

0,

x
y

x y

x


 

    
 

 тому 

16 8x y    – ліва вітка параболи. Зважаю-

чи на означення області 
1D , зобразимо її на 

координатній площині (див. рис. 2.1). 
Тепер розглянемо другий інтеграл і об-

ласть, яку він визначає: 

2 2

2 4;
:

16 0.

y
D

y x

 

   

 

Криві, що обмежують цю область: 
1) 2, 4y y    горизонтальні прямі, 

2) 
216x y   – ліва частина кола з центром в точці (0,0)  радіуса 4. 

Область 2D  зображено разом з областю 1D  на рис. 2.1. Об’єднання цих областей позна-

чимо через D . Область D  є допустимою, оскільки обмежена графіками неперервних 
функцій (згідно з прикладом 1.8). Отже, даний повторний інтеграл (за наслідком 1.5 із-

теореми Фубіні) відповідає подвійному інтегралу 1 ( , )

D

I f x y dx dy  . 

За наслідком 1.5 із теореми Фубіні подвійний інтеграл можна записати також як 
повторний із зовнішнім інтегруванням за змінною x . У цьому випадку потрібно вказати 
незмінні межі інтегрування за x , а межі інтегрування за y  виразити неперервними фу-

нкціями, що залежать від x . Для цього потрібно зробити такі дії. 
1) В рівняннях межі області D  виразити y  через x :  

2

16 8 2
8

x
x y y      , 

2 2 216 16x y y x      , 

при цьому необхідно врахувати, що в рівнянні другої кривої перед коренем потрібно 
обрати знак „+”, тому що у даному випадку область обмежена верхньою частиною кола 

2 2 16x y  . 

2) Потрібно провести прямі, паралельні вісі ординат (тобто прямі x const ) з ме-
тою виявлення необхідності розбиття області на частини, а саме: незалежно від розта-

шування такої прямої вона спочатку перетинає криву 
2

2
8

x
y   , а потім криву 

216y x  , тому у даному випадку розбивати область на частини не потрібно. 

3) Області D  відповідають такі зміни x  і y : 4 0x   , 
2

22 16
8

x
y x    . 

Розставляємо межі інтегрування із зовнішнім інтегруванням за x :  
2

2

0 16

1

4
2

8

( , )

x

x

I dx f x y dy






   .   ■ 

Приклад 2.2 Змінити порядок інтегрування: 

2
1

20 1

( , )

x x

x

dx f x y dy



 

  , 

 

D2 

D1 

Рис. 2.1 

  2 2 16x y   

2

2
8

x
y    

4y   

  2y   

  0y   

 x const  
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де 
1 0x    абсциса точки перетину графіків функцій 

2 2i 1y x y x     . 

Розв’язання. Спочатку знайдемо точку перетину даних кривих, зважаючи на те, 

що її абсциса додатна ( 1 0)x  : 

2

2

,

1 ,

y x

y x

  


   2

,

0,

1 ,

x y

y

x y

   


 


  
2

,

0,

1 ,

x y

y

y y

  


 


  

 

2

1,2

, ,

0, 0,

1 0, 1 5
,

2

x y x y

y y

y y
y


    


     
      



1

1

5 1
0,79,

2

1 5
0,62.

2

x

y

 
  




  

. 

Даний інтеграл задає область 

1

2 2

0 ,
:

1 .

x x
D

x y x

 

    

  

Криві, що обмежують цю область, мають рівняння: 
2 2

10, , 1 , .x x x y x y x        

З’ясуємо типи цих кривих: 

1) 10,x x x    вертикальні прямі, 

2) 

2 2
2 1,

1
0,

x y
y x

y

  
    


, тому 

21y x   – нижня частина кола з центром 

в точці (0,0)  радіуса 1, 

3) 
2y x    парабола, вітки якої спрямо-

вані вниз. 

Зображення області наведено на 

рис. 2.2. За наслідком 1.5 із теореми Фубіні 

2 ( , )

D

I f x y dx dy  , і цей подвійний інтеграл 

можна також записати повторним із зовнішнім інтегруванням за змінною y . В цьому 

випадку потрібно вказати незмінні межі інтегрування за y , а межі інтегрування за x  

виразити неперервними функціями, що залежать від y . Для цього зробимо такі дії.  

1) В рівняннях кривих, що задають межу області, виразити x  через y : 

2, 1x y x y      , при цьому необхідно врахувати, що в рівняннях кривих перед 

коренями стоїть знак „+”, тому що область D  обмежена правою віткою параболи і пра-
вою частиною кола. 

2) Потрібно провести прямі, паралельні осі абсцис (тобто прямі y const ) з ме-

тою виявлення необхідності розбиття області на частини, а саме:  

 якщо така пряма проходить вище прямої 1y y , то вона спочатку перетинає вісь 

ординат, а потім криву x y  ,  

-1

-0,8

-0,6

-0,4

-0,2

0

0 0,2 0,4 0,6 0,8 1

y 1 D

X
Y

x 1

21 yx 

yx 2
D 1

D
2

y=const

 
Рис. 2.2 

2D     21y x    

2y x   

   x y 
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 якщо така пряма проходить нижче прямої 
1y y , то вона спочатку перетинає вісь 

ординат, а потім криву 
21x y  ;  

 отримане означає, що дану область потрібно розбити на дві частини прямою 

1y y ; 

3) Перша з отриманих областей 
1D  визначається нерівностями: 

1

1

0,
:

0 ;

y y
D

x y

 


  
 

4) Друга область 2D  –  нерівностями: 
1

2 2

1 ,
:

0 1 .

y y
D

x y

  


  

 

Розставляємо межі інтегрування зі зовнішнім інтегруванням за y :  
2

1

1

10

2

0 1 0

( , ) ( , )

y yy

y

I dy f x y dx dy f x y dx

 



     ,   1

1 5

2
y


 . ■ 

Приклад 2.3 Обчислити подвійний інтеграл: 

3

2

( ) ,

: ( 1) , sin , 0 1

D

I x y dxdy

D y x x y y

 

     


 

Розв’язання. Зображення об-
ласті D  наведене на рис. 2.3. У да-
ному випадку зручніше виражати 
даний інтеграл через повторний із 
зовнішнім інтегруванням за змін-
ною y , щоб не розбивати область 

інтегрування на частини.  
Виражаємо x  через y  в рів-

няннях кривих, отримаємо:  

1, sinx y x y     .  

Перед коренем стоїть знак «+», 
оскільки область обмежена правою віткою параболи. 

Область D  визначається нерівностями: 

0 1,
:

1 sin .

y
D

y x y

 


   
 

За наслідком 1.5 із теореми Фубіні, подвійний інтеграл можна виразити повторним:  
sinsin1 1 2

0 01 1

( ) ( )
2

yy

D y y

x
x y dxdy dy x y dx dy yx



 

 
      

 
     

 
 

2
1 2

0

1sin
sin 1

2 2

yy
dy y y y y

        
 
 
 

  

1

0

1 1 1
cos2 sin

4 4 2 2

y
dy y y y y y y y
 

           
 

  

1
13 52

0
0

2 21 1
sin 2 sin

4 8 4 3 5

y yy
y y y ydy

 
          
 
 

  

 
Рис. 2.3 
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1
1

0

0

4 1
1 cos cos

sin cos 15

u y du dy
y y ydy

dv ydy v y

   
              

  

1

0

4 1 1 4 1
1 sin .

15 15
y

 
       

   
  ■ 

Приклад 2.4 Обчислити подвійний інтеграл за допомогою нових змінних: 

4 ( )

D

I xy x y dx dy  ;  : 1, 1, 1/ , 2/D x y x y y x y x       , 0y  . 

Розв’язання. Зображення області D  наведено на рис. 2.4. 
Введемо нові змінні 

,u y x v yx   .  

Згідно з означенням області D  отримаємо нерів-
ності, що її характеризують: 

1 1, 1 2u v     . 

Знайдемо якобіан переходу від старих до но-
вих змінних: 

( , ) 1 1

( , )

u u

D u v x y
x y

v v y xD x y

x y

 

 
    
 

 

; 

( , ) 1 ( , )
( ) 1

( , ) ( , )

D x y D x y
x y abs

D u v x y D u v
    
 

. 

Відображення  

,

,

0,

u y x

v yx

x

 



 

  

яке переводить множину  ( , ) : 1 1, 1/ 2/x y x y x y x       у множину 

 ( , ) : 1 1, 1 2u v u v     , визначає дифеоморфізм. Функції під знаком інтеграла 

неперервні на D , тому можна застосувати теорему 1.7 про замінну змінних під знаком 
кратного інтеграла: 

 
 

4

( , ): 1 1, 1 2

( , )
( , ) ( , ), ( , )

( , )
D u v u v

D x y
I f x y dx dy f x u v y u v abs du dv

D u v
    

      

 
22 1 2 2

11 1 1

1

( , )
( , ), ( , )

( , )

2 2 3.( , ) 2( )
( , )

v

D x y
f x u v y u v abs

D u v
v

v dv du v dvD x y
xy x y abs v

D u v 




 

      
        ■ 

Приклад 2.5 Обчислити подвійний інтеграл за допомогою нових змінних: 

5 arctg

D

y
I dx dy

x
  ;  

22 2 2 2: 32 , ( 2) ( 2) 4D x y xy x y      . 

Розв’язання. Введемо полярну систему координат  cos
sin

x
y
  
  

 (див. пункт 7.2 те-

оретичної частини), тоді для кривої  
2

2 2 32x y xy   матимемо: 

 

1y x   

1y x   

1
y

x
  

2
y

x
  

Рис. 2.4 
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 

2 2 2

2
2 2

2

,

32 cos sin 16sin 2 4 sin 2 лемніската,

0 sin 2 0 , .
2

x y

n n n

  

          


            

 

При 0n   полярний кут задовольняє нерівність 0
2


   , що відповідає І чверті. При 

1n    нерівності 
3

2 2

 
   , це відповідає ІІІ чверті. 

За умовою, лемніската лежить всередині круга 
2 2 2 2( 2) ( 2) 4 2 2x y x y x y        , 

який в полярній системі координат задається нерівністю 

 2 cos sin    . 

Знайдемо точки перетину лемніскати 4 sin 2    і кола  2 cos sin    : 

 
 

2 14 sin 2 ,
4sin 2 cos sin sin 2

2 cos sin , 3

  
        

   
 

1 1
( 1) arcsin , .

2 3 2

m m
m


      

Розглянемо два значення  для m  – це 0 і 1. Саме вони будуть відповідати І чверті, а ІІІ 
чверті точки кола не належать. Матимемо: 

1 2

1 1 1 1
0 arcsin , 1 arcsin .

2 3 2 2 3
m m


        

Розглянемо інтеграл по тій області, 
яку зображено на рис. 2.5. Будемо її позна-
чати через D . Ту область, яка є доповнен-
ням множини D  до круга, пропонуємо ро-
зглянуте читачеві самостійно.  

Щоб з’ясувати, чи потрібно область 
D  розбивати на ділянки, побудуємо про-

мені 0   .  

 Якщо 0 10     , то промінь 

0   , виходячи з полярного по-

люса, проходить через область D  і 
покидає її, проходячи через лемніс-
кату. 

 Те саме трапляється, коли 

2 0
2


    . 

 Якщо 1 0 2     , то промінь 0   , виходячи з полярного полюса, проходить 

через область  D  і покидає її, проходячи через коло. 

 Отримане означає, що дану область потрібно розбити на три частини променями 

1    та 2   . 

Кожна з трьох отриманих областей  визначається нерівностями:  

1 1: 0 , 0 4 sin2D      , 

2 1 2: , 0 2(cos sin )D      , 

 

0    

1    

2    

4sin 2    

2(cos sin )     

 Рис. 2.5 
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3 2: , 0 4 sin 2
2

D


        .  

Враховуючи значення якобіана в полярній системі координат 
( , )

( , )

D x y

D
 

 
, обчис-

лимо даний інтеграл: 

1 2

1

4 sin 2 2(cos sin )

5

0 0 0

sin
arctg arctg

cos
D

y
I dx dy d d d d

x

   



 
       

       

1 2

2 1 2

4 sin 2 2(cos sin ) 4 sin 24 sin 22 22 2 2

0 0 00 0
2 2 2

d d d d d

 
    

  

  
                   

1 2

1 2

2
2

0

8 sin 2 2 (cos sin ) 8 sin 2d d d


 

 

              1
sin 2 cos2

2

u du d

dv d v

   


     

 

   
21

2
1

2

0

1 1
4 cos2 sin 2 4 cos2 sin 2 2 (1 sin 2 )

2 2
d

 

 

               

 
2

1

2 2
1 1 1 2 2 2 2 1

2 2
2 1 2 2 1 1

4 cos2 2sin 2 2 4 cos2 2sin 2

1
cos2 sin 2 2 3 cos2 3 cos2

2





              

             
 

2 1
3 3

sin 2 sin 2 .
2 2

     

Оскільки 

   

 

1 2

2
1 1 2

1 1 1 1
sin 2 sin arcsin , sin 2 sin arcsin ,

3 3 3 3

2 2 1 2 2
cos2 1 sin 2 , cos2 cos arcsin ,

3 3 3

      

         

 

то 

 
2

5

1
2 2 arcsin

4 2 3
I

 
     .   ■ 

В наступному прикладі передбачається застосування наслідку 1.6 із теореми Фубі-

ні. В ньому стверджується, що якщо D   допустима множина в 
1m
, E   множина в 

m
, яка визначається наступним чином  

      , :mE x y x D x y x      , 

а     неперервні на ,x і x D    тоді  

      1) допустима множина, 2) .
D

E E x x dx      

Міра тривимірної допустимої множини (тіла) дорівнює її об’єму, і цей об’єм ви-
ражається подвійним інтегралом: 

 ( ) ( , ) ( , )
D

V E x y x y dx dy   . 

Приклад 2.6 Знайти об’єм тіла за допомогою подвійного інтеграла, якщо тіло 
обмежене поверхнями  

2 , 2,y x x y z    0, 0, 0x y z   . 
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Розв’язання. З’ясуємо вигляд тіла, що задається умовою задачі. В першому ок-
танті площина 2x y z    відсікає піраміду, а на площині Oxy - трикутник ОАВ пря-

мою 
2,

0

x y z

z

  



, тобто 2y x  . Площина 2y x  ділить піраміду на дві піраміди, а 

трикутник ОАВ - на два трикутники ОКВ і ОКА, які є проекціями утворених пірамід 
(рис. 2.6 – вигляд в просторі, рис. 2.7 – проекція на площину Oxy). Оскільки не зазначе-
но, об’єм якої саме піраміди потрібно знайти, знайдемо об’єми обох (SOAK i  SOBK).  

 

 
 
 
 

 

Знайдемо координати точки К, що є точкою перетину прямих 2y x  і 2y x   

на площині. Для цього розв’яжемо систему 
2 ,

2 ,

y x

y x




 
, звідки отримаємо 1

1

2 / 3,

4 / 3.

x

y





. 

Застосуємо наслідок 1.6 із теореми Фубіні, обираючи у виписаній вище формулі 
( , ) 0, ( , ) 2 ,x y x y x y       а за область D  – трикутник ОКА, отримаємо: 

(2 )SOAK

D

V x y dxdy   . 

Виписаний інтеграл простіше обчислити, обравши зовнішньою межею інтегру-
вання y. В рівняннях прямих х виразимо через у, одержимо: / 2, 2x y x y   , а інте-

грал (за наслідком 1.5 із теореми Фубіні) набуває вигляду: 
224 / 3 4 / 3 2

1

0 / 2 0 / 2

(2 ) (2 ) 2
2

yy

D y y

x
V x y dxdy dy x y dx dy x yx


 

          
 

     

4 / 3 4 / 32 2 2
2

0 0

(2 ) 9
2(2 ) (2 ) 2 3

2 8 2 8

y y y
dy y y y y y y dy
    

               
   

   

4 / 3

2 3

0

3 3 8
2 .

2 8 9
y y y

 
    
 

 

 
 x 

y 

   z 

 O 

 A 

 B 

 S 

Рис. 2.6 
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Об’єм піраміди SОКВ можна знайти за допомогою подвійного інтеграла, а можна 

і з розумінь аналітичної геометрії. Обчислимо об’єм усієї піраміди SOAB. Для цього за-

гальне рівняння площини 2x y z    перепишемо як рівняння у відрізках, що відсі-

каються на координатних осях:  1
2 2 2

x y z
   . Тоді об’єм піраміди SOAB дорівнює 

1 4
2 2 2

6 3
V      , а шуканий об’єм –  

4 8 4

3 9 9
SOBK SOAB SOAKV V V     .   ■ 

Приклад 2.7 Вводячи потрібну заміну, знайти площу  області 
3

2 2
3

2 2
2

x y
ay

c b

 
  

 
. 

Розв’язання. Уведемо узагальнені полярні координати  cos ,
sin ,

x c
y b
  
  

 тоді 

2 2
2

2 2

x y

c b
   , а рівняння кривої, що обмежує область, набуває вигляду: 6 3 3 32 sinab   , 

тобто 3 2 sinb a    . Межі зміни кута   знайдемо із нерівності 0  , тобто sin 0 . 

На відрізку [0,2 ]  ця нерівність має розв’язок 0    . Якобіан у цьому випадку дорі-

внює 
( , )

( , )

D x y
bc

D
 

 
. Зважаючи на означення міри допустимої множини, отримаємо: 

33 2 sin2 sin 2

0 0 0 0
2

xy

b ab a

D D

S dxdy cb d d cb d d cb d



   


                 

2 2 3 2 3 23 3 3 3
3 2 3

0 0 0

4 4 4 sin 2 4
sin (1 cos2 )

2 4 4 2 4

a a cb a cb a
cb d cb d

 
    

          
 

  . ■ 

Приклад 2.8 Знайти координати центра мас пластини 
2 24 , 2y x y x x    . 

Розв’язання. Дану область зображено на рис. 2.8. Координати точок перетину 

парабол, що обмежують область, є розв’язками систе-

ми рівнянь 

2

2

4 ,

2 ,

y x

y x x

  


 
 тобто 

2, 1,
або

0 3.

x x

y y

   
 

  
. 

У даному випадку за зовнішню межу інтегрування 

простіше обрати x . Область D , таким чином, визна-

чається нерівностями: 1 2x   , 
2 22 4x x y x    . 

Вона є допустимою (оскільки обмежена графіками не-

перервних функцій, згідно з прикладом 1.8), а її площу 

можна знайти як значення подвійного інтеграла: 
2

2

2

2

2 4 2
4

2

1 12

x
x

x x

D x x

S dx dy dx dy dx y






 

        

 
2 2

2 2 2

1 1

4 ( 2 ) ( 2 2 4)dx x x x x x dx
 

           

2

3 2

1

2
4 9

3
x x x



 
    
 

. 

  

Рис.2.8 

D  
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Тепер знайдемо координати центра мас однорідної пластини: 
2

2

2

2

2 4 2
4

. . 2

1 12

1 1

9

x
x

ц м x x

D x x

x x dx dy x dx dy dx y
S






 

        

 
22

2 4 3 2

1 1

1 1 2 2 1
2 2 4 2

9 9 4 3 2
x x x dx x x x

 

 
         

 
 ; 

2
2

2 2

42 4 2 2

. .

1 12 2

1 1

9 2

xx

ц м

D x x x x

y
y y dx dy dx y dy dx

S



  

        

    
2

2 2
2 2

1

1 3
4 2

18 2
x x x dx



     . 

Отже, центр мас даної однорідної пластини знаходиться в точці 
1 3

,
2 2

 
 
 

.   ■ 

В наступному прикладі будемо застосовувати формулу площі поверхні, що зада-

на явно, одержану в другій частині зауваження 1.14: 

  
22

1 ( , ) ( , ) ,x y

G

f x y f x y dx dy         

тут G   проста плоска область, що є проекцією поверхні на площину Oxy. 

 

 
                            Рис. 2.9 

Приклад 2.9 Знайти площу поверхні: 
2 2 2 22 , 0x y x z x y     . 

Розв’язання.  За умовою, потрібно 

знайти площу частини циліндричної поверх-

ні 
2 2 2x y x  . Оскільки  

2 2 2 2

2 2

2 2 1 1

( 1) 1,

x y x x x y

x y

       

  
 

то ця поверхня є круговим циліндром, віссю 

якого є пряма  
1,

0,

x

y





, а радіус кола в пере-

різі дорівнює 1. 

Частина зазначеного циліндра знизу 

обмежена площиною 0z   (площина Oxy), а 

зверху – круговим параболоїдом 
2 2z x y  . 

(див. рис. 2.9).  Знайдемо проекцію лінії пе-

ретину циліндра і параболоїда на площину 

Oxz : 
2 2

2 2

2 ,
2

,

x y x
z x

z x y

  
 

 
. 

 

Тепер можна побудувати проекцію G  даної поверхні на зазначену площину (див. рис. 
2.10). 

При обчисленні площі поверхні будемо враховувати той факт, що площина Oxz  
розбиває цю поверхню на дві рівні частини. Перша із цих поверхонь задається рівнян-

ням 
22y x x  , а друга – рівнянням 

22y x x   . Отже, згідно із зазначеною вище 

формулою, 

x y 

z 
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   
2 2

2 1 x z

G

S y y dx dz      

2

2

2

2 2
2 1 0

2 2G

x
dx dz

x x

 
    

 
  

2 2

2 2
0 0

2

1
2 2

2 2

x

G

x

dx
dx dz dz

x x x x


   
 

    

2 2

2
0

2 (2 ) (2 2 ) ,
2

2 (2 2 ) 22

x dx d x x x dx

x xx x

  
  

   
  

 
2 2 2 22

2 2 2 2
0 0 0 0

(2 2 ) 2 (2 ) 2 ( 1)
2 2

2 1 ( 1) 2 1 ( 1)

x dx dx d x x d x

x x x x x x

      
        
           
     

 
2

2

0 / 2 / 2

2 2 2 2arcsin( 1) 4(arcsin1 arcsin( 1)) 4x x x
 

          .  ■ 

Приклад 2.10 Обчислити потрійний інтеграл: 
42 cos( )

V

zy xyz dx dy dz , 

де тіло V  обмежене поверхнями 0, 1, , 0, 1x y y x z z     . 

Розв’язання. Рисунок тіла та його проекції на площинуOxz  зображено на  

рис. 2.11. 

В цьому прикладі важливо правильно 

обрати порядок інтегрування. Якщо крайнє 

внутрішнє інтегрування буде проводитися за 

змінної y , то потрібно буде чотири рази за-

стосовувати формулу інтегрування частина-

ми. А якщо інтегрування за y  здійснити як 

зовнішнє, то вже перше внутрішнє інтегру-

вання дасть множник 1/ y , в результаті, після 

скорочення,  порядок  степеня  змінної  y   

зменшиться на 1. Аналогічно, щодо інтегру-

вання за змінною z , то його теж не бажано 

ставити як крайнє внутрішнє з тих же мірку-

вань. Щодо інтегрування за змінною x , то йо-

го не можна ставити як зовнішнє або середнє внутрішнє, оскільки при інтегруванні за 

іншими змінними, їх первісна буде мати множник 1/ x . Це означатиме, що при наступ-

ному інтегруванні за змінною x  інтегрування зведеться до інтеграла типу  

cos
( 1або 2)

k

ax
dx k k

x
  , який не виражається в елементарних функціях. Враховуючи 

сказане, отримаємо: 

 ( , , ) : 0 1, 0 , 0 1V x y z y x y z       ; 

 x 

z 

G 

Рис. 2.10 

y 

 

 y 

x 

z 

Рис. 2.11 
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yz
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y
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   

 

 
      

 

   

   

 

 

   
1

1
2 2 2

0
0

cos 1 sin 1 sin1 1.y d y y          ■ 

Приклад 2.11 Обчислити потрійний інтеграл 

(4 )

V

y dx dy dz ;  : , 0, 4 , 0V y x y z x y z      . 

Розв’язання. Дане тіло V  обмежене площинами 

0z   (площина Oxy ) і 4z x y    знизу та зверху від-

повідно.  

На площині Oxy  утворюються три прямі, які є пе-

ретином похилої  4z x y    та вертикальних площин 

, 0y x y   з Oxy . Ці прямі на площині Oxy  мають рів-

няння 4x y  , , 0y x y   відповідно. Вони обмежу-

ють область D , зображену на рис. 2.12. Ця область є 

проекцією тіла V  на Oxy . 

Точка перетину прямих 4x y   і y x  на пло-

щині Oxy  має координати (2;2) . Щоб не розбивати об-

ласть D  на частини, потрібно за зовнішню змінну інтег-

рування обрати y . Тоді, в рівняннях прямих необхідно виражати x  через y , а область 

D  визначити як  ( , ) : 0 2, 4D x y y y x y      , а тіло V  –  

 ( , ) : 0 2, 4 , 0 4V x y y y x y z x y          . 

Отже,  
4 4 42 2

4

0

0 0 0

(4 ) (4 ) (4 )

y x y y
x y

V y y

y dx dy dz dy dx y dz dy y z dx

   
 

             

 
4 42 2

2

0 0

(4 )(4 ) (4 ) (4 )

y y

y y

dy y y x dx dy y y x dx

 

             

 
42 2 22
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dy x y y dy y y y y


  

            
   

   

 
2

2 3

0

56
32 40 16 2 .

3
y y y dy      ■ 

Приклад 2.12 Обчислити об’єм тіла, що обмежено поверхнями 
2 2 24 , 4 , 0z x x y x z     . 

 
Рис. 2.12 

 x 

  y=x 

x+y=4 

 y 

D 



§1. Кратні інтеграли 

 86 

Розв’язання. Поверхня 
2 4z x   є циліндричною з твірною, що паралельна вісі 

Оу. Рівняння поверхні 
2 2 4x y x   можна переписати, виділивши повний квадрат, у 

вигляді 
2 2( 2) 4x y   , тому ця поверхня є круговим циліндром. На рис. 2.13 зобра-

жено схему утворення даного тіла T . 

 
Циліндрична поверхня 2 4z x   відсікає на площині Оху півплощину 4x  . В 

проекції на Оху круговий циліндр 2 2( 2) 4x y    утворює коло з центром в точці (2; 0) 

радіуса 2, яке цілком міститься в півплощині 4x  . 

Тому проекцією D  даного тіла на площину хОу є 

круг, який обмежується зазначеним колом 

(рис. 2.14).  
 

Застосуємо означення об’єму допустимої 

множини T . Її об’єм обчислюється за формулою 

T

V dx dy dz  .  

Дане тіло знизу обмежене площиною Oxy, а 

зверху – циліндричною поверхнею 4z x  . Ро-

зглянемо проекцію D  тіла T  на площину Oxy. В 

рівнянні кола виразимо y  через x : 
24y x x   , 

де знак „+” відповідає верхній частині кола, а „ ” – нижній. Отже, область T  характе-

ризується такими нерівностями:  

2 20 4, 4 4 , 0 4 ,x x x y x x z x           

тому одержуємо: 
2 2

2 2

4 4 4 4 4

0 0 04 4

4

4

x x x x x

x x x x

x

V dx dy dz dx x dy

  

   

 

         

 
2

2

4 44
2

4
0 0

4 2 4 4
x x

x x

dx y x x x x dx


 

         
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     Рис. 2.13 
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4
4 3/ 2 5 / 2

0 0

256
2 (4 ) 2 4 .

3/ 2 5/ 2 15

x x
x x dx

 
     

 
 ■ 

Приклад 2.13 (№Д4106) Обчислити об’єм тіла, що обмежено поверхнями 

2 2 2 26 ,z x y z x y     . 

Розв’язання. Дане тіло T обмежене поверхнями кругового параболоїда і круго-

вого конуса (див. рис. 2.15). Знайдемо лінію перетину цих поверхонь: 
2 2

2 2
2 2 2 2

2

2 2

6 ,
6 ,

6 , 2, 4,
6 ,

3, 2., 0,
0,

z x y
z x y

z x y z x y
z z

z zz x y z
z

   
             

               
 

 

Отже, проекцією D  тіла T  на площину Oxy  є круг  
2 2 4x y  . 

Оскільки як рівняння поверхонь, що обмежують тіло, так і рівняння лінії, що об-

межує його проекцію на площину Oxy , залежать від 
2 2x y , то для обчислення об’єму 

зручніше вводити циліндричну систему координат cos , sin ,x y z z        (див. 

пункт 7.3 теоретичної частини). Тоді рівняння 

поверхонь набувають вигляду  

2 2 2

2 2 2

,

6 6 ,

z x y z

z x y z

   

     
 

а область D  буде визначатися нерівностями 

 ( , ) : 0 2 , 0 2D          . Враховую-

чи означення міри допустимої множини T  і 

значення якобіана циліндричної системи ко-

ординат 
( , , )

( , , )

D x y z

D z
 

 
, отримаємо: 

 
262 2 2 2

2

0 0 0 0

6

T T

V dx dy dz d d dz

d d dz d d

 



    

          

 

    
 

2

0

16 32

3 3
d




   .   ■ 

Приклад 2.14 Тіло задається поверхнями, які його обмежують, ( , , )x y z   густи-

на. Знайти масу тіла, якщо  

 

2 2 2 2 2 2 2 2 2

2 2 2

2 , tg tg ,

0 , 0, 5 .
2

x y z Rz z x y z

z x y z

     

      

 


  

 

Розв’язання. Дане тіло обмежене: 

1) сферою 2 2 2 2( )x y z R R    , 

2) конусами  2 2 2 2 2 2 2 2tg , tgz x y z x y     , твірні яких з віссю Oz  утворюють 

кути i   відповідно. 

Поверхні, що обмежують дане тіло, зображені на рис. 2.16.  
Уведемо сферичні координати (див. пункт 7.4 теоретичної частини): 

 

z 

y x 

   Рис. 2.15 
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2

cos sin ,
sin sin ,
cos .

x
y
z

   

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  

 

Дана сфера в цій системі координат буде визначатися рівнянням 
22 cosR   . Оскіль-

ки 
2 0   – частина конуса, твірна якого з віссю Oz утворює кут 

0 , то для даного тіла 

значення кута 2  задовольняє не-

рівність 
2    . Якщо провес-

ти радіус-вектор через тіло, то він 
почне свій рух в початку коорди-
нат і покине тіло через сферу. Це 
означає, що значення сферичної 
відстані   задовольняє нерівність 

20 2 cosR  . При оббігу тіла 

кут між проекцією зазначеного ра-
діус-вектора, на площину Oxy  та 

віссю абсцис набуває значення від 
0 до 2 , тобто 0 2   . 

Для обчислення маси тіла 

застосуємо формулу  

( , , )
V

M x y z dx dy dz  . 

Знаючи, що значення якобіана 
сферичної системи координат до-

рівнює 2

2

2

( , , )
sin

( , , )

D x y z

D
  

  
, отри-

маємо 

 

 
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2 2 2 2 2

2 cos2 2
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2 2 5

2 2 2 2 0
0 0 0
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   Рис. 2.16 
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§2. Криволінійні та поверхневі інтеграли. Елементи теорії поля 
Розділ 4. ІНДИВІДУАЛЬНЕ ЗАВДАННЯ 

 

1. Варіанти індивідуальних завдань 
 

1, 2, 3. Обчислити криволінійний інтеграл. 
4. Розв’язати задачу. 
5. Використовуючи криволінійний інтеграл, знайти функцію u , попередньо впевнив-
шись в тому, що наданий вираз є її повним диференціалом. 
6. За допомогою формули Гріна обчислити інтеграл, зімкнувши, якщо це необхідно, 
криву відрізком прямої. 
7. Обчислити поверхневий інтеграл І роду. 
8. Обчислити інтеграл за зовнішньою стороною поверхні S  (двома способами: безпосе-
редньо та за допомогою формули Остроградського-Гаусса). 
9. Обчислити інтеграл вздовж кривої L , яка утворюється перетином зазначених повер-
хонь. Напрям оббігу обрати таким, щоб спостерігач, якого вісь Oz  пронизує з ніг до го-
лови, бачив його таким, що проходить проти руху годинникової стрілки. Розглянути два 
способи: безпосередньо та за допомогою формули Стокса. 
10. В непарних варіантах знайти похідну скалярного поля ( , , )u x y z  в точці M  вздовж 

напряму нормалі до поверхні S , що утворює гострий кут з додатним напрямом осі Oz . 
В парних варіантах – похідну скалярного поля ( , , )u x y z  в точці M  за напрямом векто-

ра l . 
11. Знайти кут між градієнтами скалярних полів ( , , )u x y z  і ( , , )v x y z  в точці M . 

12. Знайти векторні лінії в векторному полі a  ( , , )a x y z . 

13. Знайти течію векторного поля a  ( , , )a x y z  через частину поверхні P , що міститься 

в І октанті (нормаль утворює гострий кут з віссю Oz ). 
14, 15, 16. Знайти течію векторного поля a  ( , , )a x y z  через зімкнену поверхню S  (но-

рмаль зовнішня). 

17. Знайти роботу сили F  при пересуванні точки її прикладання вздовж лінії L  від то-
чки M  до точки N . 
18. Знайти циркуляцію векторного поля a  ( , , )a x y z  вздовж контура L  (у напрямі зро-

стання параметра t ). 
19. Знайти модуль циркуляції векторного поля a  ( , , )a x y z  вздовж контура L . 
 

Варіант 1 Варіант 2 

1. 

L

x dy , де L   контур  трикутника, 

 

утвореного    осями    координат    і 
 

 прямою 3 2 6x y   з додатним напря-

мом оббігу 

1. 

L

x dy , де L   відрізок прямої  

1
yx

a b
   від точки її перетину з віссю абс-

цис до точки її перетину з віссю  

ординат 

2. 

(3,6)
2 2

(0,0)

4 sin cos 2x y dx y x dy  вздовж 

прямої лінії 

2. 
2 2

5 / 3 5 / 3

L

x dy y dx

x y



 ,  

3

3

cos ,
:

sin

x a t
L

y a t

 




 від точки 

( ,0)a  до точки (0, )a  
 

3. 

L

xy ds    вздовж   периметра  

 

прямокутника,     обмеженого  
 

прямими 0, 0, 4, 2x y x y     

3. 
2 2

L

ds

x y
   вздовж  відрізка  прямої 

2
2

x
y     від  точки  (0, 2)   до  точки 

(4,0)  
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4. Обчислити площу області, що обме-

жена еліпсом 
22

2 2
1

yx

a b
   

4. Обчислити площу області, що обмежена 

кривою 
2 cos cos2 ,

2 sin sin 2

x a t a t

y a t a t

 


 
  (0 2 )t    

5. 2 3 3 2 22 3du y z dx xyz dy xy z dz    
 

5. du   

2

1 1 1

1 1 1( 1)

dx z
dy dz

x z yy

 
         

 

6. sh chx x

L

e y dx e y dy  ,  

де L   контур, що обмежує область 

0, 0 , 0a x y x a a       , який 

пробігається у додатному напрямі 

6. 2 3 3 2

L

x y dx x y dy ,  

де L   еліпс 
22

2 2
1

yx

a b
   з додатним напря-

мом оббігу 

7.  2 2 2

S

x y z ds  , де S   поверхня, 

утворена обертанням кардіоїди 

(1 cos )a    навколо осі Ox  (декар-

това та полярна системи координат су-

міщаються) 

7.  
S

xy yz zx ds  , 

 2 2 2 2( , , ) : , 2S x y z z x y x y ax      

8. ( )

S

x y dy dz y dx dy  , 

2 2 2 2: 8 ,S z x y z x y      

8. ( ) ( ) ( )

S

x y dy dz y z dz dx z x dx dy      

2: 2 , 4 , 1, , 0S y x y x x z y z      

9. 

L

yz dx xz dy xy dz  , 

2 2 2

2 2

9,
:

9

x y z
L

x y

   


 
 

4 3 3

L

dx x dy xz dz  ,  

2 2 2,
:

3

x y z
L

z

  



 

 

10.  24ln 3 8u x xyz   , 

2 2 2: 2 2 1, (1,1,1)S x y z M    

10.  
3/ 22 2 2u x y z   ,  

l i j k   , (1,1,1)M  

11. 
2 3

3 3

2
, 6 3 6 ,

2

yz x
u v y z

x
     

 1 1
2, ,

2 3
M  

11. 2 3 4 6 6 3
, ,

9
u x yz v

x y z
     

1 3
2, ,

3 2
M
 
 
 

 

12. 4 9a y i x j   12. 2 3a y i x j   

13. 7 (5 2) 4a x i y j z k     , 

: 4 1
2

y
P x z    

13. 2 (7 2) 7a x i y j z k     , 

: 1
2 3

y z
P x     

14.  2z x ya e x i e j e k    ,  
 

: 1, 0, 0, 0S x y z x y z       

14.    23 2xa z x i e y j      

(2 )z xy k  , 2 2 2: ,S x y z   1, 4z z   

15.    a x z i y z k    , 
2 2: 9, , 0 ( 0)S x y z x z z      

 
 

15. 2a x i z k  , 
2 2 2 2: 3 2 1, 4, 0S z x y x y z       
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16. 2a x i x j xz k   , 
2 2: , 1, 0, 0S x y z z x y      

(І октант) 

16.    2 2 2 2a x y i x y j      

 2 2y z k  , 2 2: 1, 0, 1S x y z z      

17.    2 22 2F x y i y x j    , L   

 

 відрізок MN , де ( 4,0)M  , (0,2)N  

17.    2 22 2F x y i y x j    , :L  

2

2
8

x
y  , ( 4,0)M  , (0,2)N  

18. 2a y i x j z k   , 

2 2
: cos , cos , sin

2 2
L x t y t z t    

18. 2 3a x y i j z k    , 
 

3 3: 4 cos , 4 sin , 3L x t y t z    

19.  2a x y i x j k    , 

2 2: 1, 1L x y z    

 

19. a xz i j y k   , 
 

 2 2: 5 , 4L z x y z    
 

Варіант 3 Варіант 4 

1.  2 2

L

x y dx , де L   дуга параболи 

2y x  від точки (0,0)  до точки (2,4)  

1.  2 2

L

x y dy , де L   контур  

 

чотирикутника з вершинами (вказані в 
 порядку оббігу) в точках (0,0),A  (2,0),B  

(4,4), (0,4)C D  

2. 
L

xdx y dy

y y a


  вздовж дуги циклоїди 

( sin ),

(1 cos )

x a t t

y a t

 


 
 від точки 

6
t


  до точ-

ки 
3

t


  

 

2.    2 2 2 2

L

x y dx x y dy    у  

 
додатному напрямі вздовж еліпса  
 

22

2 2
1

yx

a b
   

3. 

L

y ds  вздовж відрізка прямої від точ-

ки (0,0)  до точки (1,2)  

3. 

L

x ds  вздовж параболи 
2y x  від точки 

(2,4)  до точки (1,1)  

4. Обчислити площу області, що обме-

жена параболою 
2( )x y ax   ( 0)a   і 

віссю Ox  

4. Обчислити площу області, що обмежена 

кривою 
4 2( )x y ax y    (петля) 

5. du 
21 1

z z
dx

xz y

 
    

 

2 2

2

1( 1)

xyz z
dy

yzy

 
    

 

21 11

yx x
dz

xz yzy

 
     

 

 

5. du   

 

2 2

2 2

1
sec sec

z dy yz z
dx dz

x z x xx z

     
 

 

6. 

L

y dx xy dy , де L   контур, що 

обмежує область 0 2,x   

0 2y x x    , яка пробігається у до-

датному напрямі 

6. (1 cos ) ( sin )x x

L

e y dx e y y dy   ,  

 

де L   квадрат x y a   з від’ємним на-

прямом оббігу 
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7.  2 2 2

S

x y z ds  , де S   межа тіла 

 2 2( , , ) : 1V x y z x y z     

7.  
S

y z ds , де S   поверхня, що ле-

жить в І октанті, і яка утворена обертанням 

циклоїди  ( sin ),

(1 cos ),

x a t t

y a t

 

 
 0 2t    навко-

ло осі Ox  

8. (3 ) 3 2

S

x y z dydz ydzdx zdxdy    , 

2 2: , 2S z x y z y    

8. ( ) ( 2 )

S

z y dy dz x y z dz dx x dx dy     , 

2 2 2 2: 1, , 0S x y z x y z      

9. ( ) 6

L

x y dx x dy dz   , 

2 2 9,
:

2

x y
L

z

  



 

9. 22

L

y dx x dy z dz  ,  

 2 24 2,
:

6

z x y
L

z

   




 

10. u x y y z  ,  
 

2 2: 4 2 0, (2,4,4)S z x y M    

10.  2 2lnu x y z   ,  

2l i j k    , (2,1,1)M  

11. 
33 3

3

2

4
, 9 2 ,

2 2 3

yz z
u v x

xy
     

1 3
,2,

3 2
M
 
 
 

 

11. 
3 2

3 4 1
, ,

6

z
u v

x y zx y
      1

1,2,
6

M  

12. 2 4a x i y j   12. 3a x i y j   

13. 9 3a x i j z k   , 

: 1
3

x
P y z    

13. (2 1) 3a x i y j z k    , 

: 2 1
3

x
P y z    

14.    3za e x i xz y j      

 2z x k  ,  
 

: 2 2, 0, 0, 0S x y z x y z        

 

14.    cos 3 2a z x i x y j       
 

 23z y k  ,  

 2 2 2: 36 , 6S x y z z    

15. ( )a z y i y j x k    ,   
2 2: 2 ,S x z y   2y   

15. 3a x i z j  , 
2 2 2 2 2: 6 , ( 0)S z x y z x y z       

16. a xz i z j y k   , 
2 2: 1 , 0S x y z z     

16. 2a x i y j   z k , 
2 2 2: 1, 0 ( 0)S x y z z z       

17.   ( )F x y i x y j    , 2:L y x , 

( 1,1)M  , (1,1)N  

17. 3 3F x i y j  , :L  2 2 4x y    
 

( 0, 0),x y   (2,0)M , (0,2)N  
 
 

18. ( ) ( ) ( )a y z i z x j x y k      , 
 

: 4cos , 4sin , 1 cosL x t y t z t     

18. 2a x i y j z k   , 

2 2
: cos , sin , cos

2 2
L x t y t z t    

 

19. ( )a x y i x j z k    , 
2 2: 1, 5L x y z    

 

19. a x i yz j x k   , 
2 2: 1, 1L x y x y z      
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Варіант 5 Варіант 6 

1. 

( ,2 )

(0,0)

cos sinx y dx y x dy

 

   вздовж 

 

 прямої лінії 

1. 

(1,1)

(0,0)

( )xy dx y x dy   вздовж ліній: 

а) y x ; б) 2y x  

2. ( )

L

x y dx dy   вздовж верхньої по-

ловини кола 
2 2 2x y R   від  

 

точки ( ,0)R  до точки ( ,0)R  

2. 

L

y dx x dy  вздовж контура  

 

трикутника, обмеженого осями координат і 

прямою  1
yx

a b
  , який пробігається у 

від’ємному напрямі 

3. 

AB

y ds

x , де AB   дуга півкубічної 

параболи 
3

2 4

9

x
y  від точки (3,2 3)A  

до точки 
32 2

8,
3

B
 
 
 

 

 

3. 2 2

L

x y ds ,  

 

де L   коло 
2 2x y ax    

4. Обчислити площу області, що обме-

жена кривою 
2 2 3y x x    

4. Обчислити площу області, що обмежена 

кривою  
2 3 49 4y x x   

5. du 
2

1
cos

y y
dx

x zx

    
 

 

2

1
sin cos

yz z
dy

y x xy

 
   
 

 

2

1
sin

z x
dz

y y z

 
  
 

 

 

5. du   
 

2 2

1 2

1

y y

x xy y
e dx e dy

xx y

  
    

 
 

2

2

1

z
dz

z



 

6. 2 2

L

y dx x dy ,  

де L   контур, що обмежує область 

0 , 0 sinx y x    , яка пробігається 

у додатному напрямі 

6. 2 2

L

x y dx   

  2 2lny xy x x y dy    ,  

де L   коло 
2 2 2x y R   

7. 
2 22S

ds

y z 
 , де S   поверхня,  

 
 

утворена обертанням лінії  
 

 ( , ) : sin , 0L x y y x x      навколо 

осі Ox  

 

7.  2 2 23 5 3 2

S

x y z ds   , де S   части-

на конуса 
2 2y x z  , що  

 

лежить між площинами 0,y y b   

8. (2 15 ) ( )

S

y x dydz z y dzdx      

 

(3 )y x dxdy  , 

2 2 2 2 1
: 3 1, , 0

4
S z x y x y z       

8. ( 2 ) ( )

S

x dy dz z dz dx x y dx dy    , 

2 2 2 2: 2 , , 0S x y y z x y z      

9. 3 2 2

L

z dx y dy y dz  , 9.  22

L

y dx x dy z dz  ,  
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2 2 4,
:

2 3 2 1

x y
L

x y z

  


  
  2 24 2,

:
6

z x y
L

z

   



 

10.  22ln 5 4u x xyz    ,  
 

2 2 2: 2 2 1, (1,1,1)S x y z M    

10. 2 2u x y xy z   ,  
 

2 2l j k  , (1,5, 2)M   

11. 
2 3

3 3

2
, 6 3 6 ,

2

x x
u v y z

yz
     

 1 1
2, ,

2 3
M  

11. 
22

2 2

2
, 3 2 3 2 ,

2

yz
u v x z

xy
      

1 2
,2,

3 3
M
 
 
 

 

12. 4a x i y j   12. 3 6a x i z k   

13. 7 9a x i yj k   , 

: 1
3

y
P x z    

13. 5 11a i y j z k   , : 1
3

z
P x y    

 

14.    ln 7 sin 2a y x i z y j      

 2ye z k  , 

2 2 2: 2 2 2 2S x y z x y z       

14.    cos 6 xa y x i e z j      

 2 3y z k  ,  
 

2 2 2: , 1S x y z z    

15. 2 2a x i y j z k   ,   2: ,S y x  

24 ,y x  1 ( 0), 0,y x z z y     

15. ( 2 )a x i x y j y k    , 
2 2: 1, 0, 2 3 6S x y z x y z       

16. 2 2 2a x i y j z k   , 
2 2 2 2 2 2: 4, ( 0)S x y z x y z z       

 

16. 3 2a x i x j y k   ,  
 

: 2, 1, 0, 0, 0S x y z x x y z         

17.   2F x y i xj   , 2 2: 4L x y   

( 0)y  , (2,0)M , ( 2,0)N   

17. 2F x y i y j  , L   відрізок MN , 

( 1,0)M  , (0,1)N  

18. ( ) ( ) ( )a y z i z x j x y k      , 

: cos , cos , 2(1 cos )L x t y t z t     

18. 2 3a y i x j x k   , : 2cos ,L x t  

2sin ,y t  2 2cos 2sinz t t    
 

19. 2a yz i xz j xy k   , 
 

2 2 2 2 2: 25, 9 ( 0)L x y z x y z       

19. 2a y i x j z k   , 

 2 2: 3 1, 4L z x y z     

Варіант 7 Варіант 8 

1. 
(1,1)

(0,0)
( )xy dx y x dy   вздовж ліній: 

а) 
2y x ; б) 

3y x   

1. 
(5,12)

2 2(3,4)

x dx y dy

x y



  (початок координат не 

 лежить всередині контура інтегрування) 

2. 

L

y dx x dy   вздовж контура  

 

трикутника 0, 0x y  , 2 3 6x y  , 

який пробігається у додатному напрямі  

2. 

L

xdy ydx  вздовж кривої 
3y x  від  

 

точки (0,0)  до точки (2,8)  

3. 
2 2 2

L

ds

x y z 
 , де L   перший оберт  

гвинтової лінії 

cos ,

sin ,

x a t

y a t

z bt





 

 

 

3. 2 2

L

x y ds ,  

 

де L   коло 
2 2 2x y ay    
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4. Знайти масу дуги кола 
cos , sinx t y t   (0 )t    з густиною 

( , )x y y   

4. Обчислити площу області, що обмежена 
однією аркою циклоїди  

( sin ),

(1 cos )

x a t t

y a t

 


 
 (0 2 )t    та віссю Ox  

 

5. du  ln 2
y

y x dx
x

    
 

 

 

ln 1
x

x dy
y

 
   
 

 

5. du 
2

1
1

1 ( 1)

y
dx

y x

 
     

 

2

1
2

1 ( 1)

x
y dy

x y

 
     

 

6.  2cosx

L

e y y dx     

 2sinxe y x dy  , 
  

де L   праве ( )x a  півколо  
 

2 2 2x y ax   від точки ( ,0)a  до  
 

точки ( , )a a  

 

6. 2 2

L

x y dx y x dy ,  

 

де L   верхня ( 0)y   частина правої  
 

петлі ( 0)x   лемніскати  

   
22 2 2 2 2x y a x y    від точки (0,0)  до 

точки ( ,0)a  

 

7. 

S

xyz ds ,  

 

 2 2 2 2( , , ) : ,S x y z x y z a     
 

0, 0, 0x y z    

 

7. 
22 2

4 4 4

S

yx z
z ds

a b c
   ,  

22 2

2 2 2
( , , ) : 1,

yx z
S x y z

a b c


   


 

0, 0, 0x y z    

8. (2 ) ( 2 )

S

x y dydz y xy dxdy   ,  

 

   2 2 2 2: 2 4 , 4S z x y z x y      

8. (4 3 ) (3 2 )

S

y z dy dz x z dz dx      

( )x y z dx dy   , 
 

2 2: 1, 4 , 0S x y z x y z       

9. 2

L

y dx x dy z dz  , 

2 2 2 4,
:

2

x y z
L

z

  



 

9.  23

L

y dx x dy z dz  ,  

2 2 2

2 2

9,
:

1 ( 0)

x y z
L

x y z

   


  
 

10. 2 2 21
5

4
u x y x z   ,  

 

2 2 2 1
: 4 4, ( 2, ,1)

2
S z x y M     

 

10.  2ln 1 arctgu y x z   ,  

 

2 3 2l i j k   , (0,1,1)M  

11. 
2

3 3 3, 6 6 6 6 2 ,
xz

u v x y z
y

     

 1 1
, ,1

6 6
M  

11. 
2

6 6 2
, ,

2 2 3

yz
u v

x x y z
     

 1 1 1
, ,

2 2 3
M  

12. 4 9a z i x k   12. 2 3a z i x k   

13. ( 1)a x i z k   , 

: 2 1
2 3

y z
P x     

13. 5 (9 1) 4a x i y j z k     , 

: 1
2 3 2

yx z
P     
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14.    24 2 ln 4a x y i z y j      

 3

4

z
x k  , 2 2 2: 2 3S x y z x     

 

14.    1 4a z i y x j      xy k ,  
 

 2 2 2: 4 , 3S x y z z    

15. 2( ) ( )a z y j x z k    ,   
2 2: 3 1,S z x y    

2 20, 1z x y    

15. a x i z j y k   , 

   2 2 2 2: 4 2 , 2S z x y z x y      

16. 2 2 2a x i y j z k   , 
2 2 2: 2, 0 ( 0)S x y z z z      

16. 3 3 3a x i y j z k   ,  
2 2 2: 1S x y z     

 

17.    22F xy y i x x j    ,  

2 2: 9L x y   ( 0)y  , (3,0)M , ( 3,0)N   

17. ( ) ( )F x y i x y j    , 
2

2: 1
9

y
L x    

( 0, 0)x y  , (1,0)M , (0,3)N  

18. 2a z i x j y k   , 

: 2cos , 2sin , 1L x t y t z    

18. a y i x j z k   , 

: cos , sin , 3L x t y t z     
 

19. 22a yz i xz j y k   , 
 

2 2 2 2 2: 25, 16 ( 0)L x y z x y z       

 

19. a xy i yz j xz k   , 
 

2 2: 9, 1L x y x y z      
 

Варіант 9 Варіант 10 

1. 

(1,1)
2

(0,0)

2xy dx x dy  вздовж лінії  

 

3y x   

 

1. 

L

ydx xdy , де L   чверть кола 

 cos ,

sin

x R t

y R t




 від 1 0t   до 2 2

t


  

2. 

L

xy dx  вздовж дуги синусоїди 

siny x  від x   до 0x   

2. 

L

xdy  вздовж периметра трикутника, 

утвореного прямими , 2, 0y x x y    (у 

додатному напрямі) 
 

3.  3 3

L

x y ds , де L   лемніската  

 
22 2 22 , 0, 0x y a xy x y     

3. 
sin 2

L

ds


 , де L   коло з центром в  

 

точці (0,2)A  радіуса 2  

4. Знайти площу петлі кривої  
 

3( )x y xy   

4. Обчислити площу області, що  

обмежена лемніскатою  
22 2 2x y a xy   

 

5. du 
2

cos cos
sin

sin

x y
x dx

x

   
 

 

 

sin
cos

sin

y
y dy

x
   
 

 

5. du 
2

2

1

( )

y
dx

x x y

 
   

 
 

2

2

1

( )

x
dy

y x y

 
  

 
 

6. 
34

2 2

3

4
L

xyx
dy dx

a b
 , де L   еліпс 

22

2 2
1

yx

a b
   з додатним напрямом оббігу 

 

6. 3 3 3( )

L

x y dx x y dy  , де L   ламана  

 

ABC , де (2,1), (0,3), ( 2,1)A B C   
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7. 2( )

S

xyz ds ,  

 2 2 2( , , ) : ,S x y z x y z   a z b   

7. 2 1 4

S

x z ds  ,  

 2 2 2( , , ) : , 0S x y z x y z z b      

8. 2 3

S

x dy dz y dz dx z dx dy  ,  

2 2: , 2S z x y z x    

8. 7

S

x dy dz z dz dx  ( 5 )x y z dx dy  , 

 

2 2 2 2: , 2 , ,S z x y z x y y x      

2 , 1y x x   

9. (2 )

L

xy dx yz dy xz dz   , 

2 2 4,
:

1

x y
L

x y z

  


  
 

9.  22

L

yz dx xz dy y dz  ,  

2 2 2

2 2

25,
:

16 ( 0)

x y z
L

x y z

   


  
 

10. 2 3u xz x y  ,  
 

 

2 2: 3 12 0, (2,2,4)S x y z M     

 

10. sin( 2 )u x y xyz   ,  

4 3l i j  ,  3
, ,3

2 2
M

   

11. 
2

2 2

2
, 3 2 3 2 ,

2

xy yz
u v x z

z
     

1 2
,2,

3 3
M
 
 
 

 

11. 
2

1 4 2 2 1
, ,

9 3
u v

x y zx yz
      

 1 1
2, ,

3 6
M  

12. 4 8a y j z k   12. 3a y j z k   

13. 2a i y j    
3

2
z k


, 

: 1
3 4

x z
P y    

 

13. 9 (5 1) 2a x i y j z k     , 
 

:3 1
9

z
P x y    

14.    a z x i x y j     2y z k  ,  
 

: 3 2 6, 0, 0, 0S x y z x y z       

14.    2a yz x i x y j     2xy z k  ,  

2 2 2: 2S x y z z    

15. 4 2a z i y j x k   ,   
2 2: ,S z x y   1z   

15. 4 2a x i y j z k   ,  
 

: 3 2 12, 3 6, 0, 0S x y x y y z      ,  
6x y z    

 

16. ( ) ( )a zx y i zy x j       

 2 2x y k  ,  
2 2 2: 1, 0 ( 0)S x y z z z      

16. 2 2 2a y x i z y j x z k   ,  
 

2 2 2: 1S x y z     

17.    2 2 2 2F x y i x y j    ,  

, 0 1,
:

2 ,1 2,

x x
L y

x x

 
 

  
 (2,0)M , (0,0)N  

 

17. F y i x j  ,   2 2: 2 1L x y    
 

( 0)y  ,  1
,0

2
M ,  1

,0
2

N   

18. 2a x i z j y k   , 

: cos , 2sin ,L x t y t   

2cos 2sin 1z t t    

 

18. 3 3a y i x j x k   , 

: 3cos , 3sin ,L x t y t   

3 3cos 3sinz t t    
 

19. (1 )a y i x j z k    , 
 

2 2 2 2 2: 4, 1 ( 0)L x y z x y z       

19. 2a y i x j z k   , 
 

2 2: 1, 4L x y z    
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Варіант 11 Варіант 12 
 

1. 

L

y dx x dy  де L   верхня дуга елі-

пса 
22

2 2
1

yx

a b
   від точки ( ,0)a  до точки 

( ,0)a  

1. 
2 2

2 2

L

y dx x dy

x y



 , де L   верхня дуга 

 

 кола 
2 2 2x y a  , яка пробігається 

 

 проти руху годинникової стрілки 

2.  2

L

x y dx  вздовж периметра пря-

мокутника, утвореного прямими 
 

 0, 0, 1, 2x y x y     (у додатному 

напрямі) 

2.  2

L

xy y dx x dy   від точки (0,0) до 

точки (1,2) вздовж кривих а) 2y x , 

б) 
22y x , в) по сукупності двох відрізків, 

що виходять із даних точок і зустрічаються 

в точці  1
,3

2
 

 

3. 

L

xy ds , де L   контур  

 

чотирикутника з вершинами  
 

(0,0), (1,2), (2,3), (3,2)A B C D  

3. arctg

L

y
ds

x , де L  частина спіралі Ар-

хімеда 2  , що знаходиться всередині 

круга радіуса ( )R R   з центром в почат-

ку координат (в полярному полюсі) 
4. Знайти площу частини циліндричної 

поверхні 
2 2y x , що лежить між пло-

щиною Oxy  і поверхнею 

22 4z x x    (за допомогою криволі-
нійного інтеграла) 

4. Знайти координати центра мас дуги одно-

рідної кривої x y a   

 

 

5. du   
22 3xyy e dx   

 

 
2

2 1xyxye dy   

5. du 
2

1 y
dx

x y




2

1 2x
dy

xy


 

6. 

L

y dx x dy , де L   контур, що об-

межує область 0 ,
2

   

0 sin2a    і пробігається у 

від’ємному напрямі 

 

6. 5/ 3 5 / 3

L

y dx x dy , де L   додатно  

 

орієнтовна крива 2 / 3 2 / 3 2 / 3x y a   

7. 2

S

xy z ds ,  

 2 2 2( , , ) : ,S x y z x y R    
 

0, 0x z b    

7. 3 ( 2 3)

S

z x y ds   ,  

 2 2 2( , , ) : 4 ,S x y z x z R     

2 2 2, 0x y R z    

8. 17 7 11

S

x dy dz y dz dx z dx dy  ,  

 2 2 2 2 2: , 2 , ,S z x y z x y y x       
 

y x  

8. ( ) (2 )

S

x y z dy dz y x dz dx       

 

(3 )z y dx dy  , 
 

2 2: , , 2 , 1, 0S z x y y x y x x z        
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9. 2

L

y dx dy dz   ,  

2 2 2,
:

1

x y z
L

z

  



 

9.  4

L

x dx yz dy x dz  ,  

2 2 1,
:

1

x y
L

x y z

  


  
 

10. arctg
y

u xz
x

  ,  
 
 

2 2: 2 10, (2,2, 1)S x y z M     

 

10. 2 arctg( )u x y z   ,  
 

3 4l j k  ,  2,1,1M  
 

11. 2 2 2, 9 6 ,u xyz v x y z      
 

 1 1
1, ,

3 6
M  

11. 
3

2

2 3 6
, ,

2 4

y
u v

x y zx z
     

2 3 1
, ,

3 2 2
M
 
 
 

 

12. 2 8a x i z k   12. 3a x i z k   

13. 7 ( 2 )a x i x y j     (7 2)z k , 

: 1
2

z
P x y    

13. (4 2 )a y j z k   , 

: 2 1
3 4

y z
P x     

14.    2 2ya e x i x y j       
 

 2 3y z k  ,  
 

: 1, 0, 0, 0S x y z x y z       

14.    2 3xa z x i e y j       
 

y x k  , 
  

2 2 2: , 2, 5S x y z z z     

15. 8 2a x i y j x k   ,   
2 2: ,S z x y   1, 0, 0,x y x y     

0z   

15. a z i x j z k   ,  
2 2: 4 , 4S z x y z   ,  

 

16. 2a x i xy j   3z k ,  
 

2 2 2: , 4S x y z z    

16.      2a zx y i xy z j x yz k      ,  
 

2 2: 2, 0, 1S x y z z      
 

17. F xy i ,  
 

: sinL y x  ( ,0)M  , (0,0)N  

 

17.  2F x y y i x j   ,   2: 2L y x , 

 0,0M ,  1,2N  

18. 2 3 2a x y i j xz k    , 

: 2 cos , 2sin ,L x t y t   1z   

 

18. 6a z i x j  , 
 

: 3cos , 3sin , 3L x t y t z    
 

19. 4 2a x i j xy k   , 
 

 2 2: 2 1, 7L z x y z     

19. 22 3a y i x j z k   , 
 
 

2 2: , 1L x y z z    
 

Варіант 13 

1. (2 ) ( )

L

a y dx y a dy   , де L    

 

перша (від початку координат) арка ци-

клоїди  ( sin ),

(1 cos )

x a t t

y a t

 

 
  

2. 2

AB

z dx x dy y dz  , де AB   крива 

2 2 2 , , 0, (0,0,0),x y ax az xy z A      
 

(2 ,0,0)B a , 0a   

3. 

L

xy ds , де L   контур прямокутника 

(0,0), (4,0), (4,2), (0,2)A B C D  

 

4. Знайти площу області, що обмежена  
 

кривою  2 2 4y x x   
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5. du   
22 3xyy e dx   

 
 

 
222 1xyxyy e dy   

 

6. ( ) ( )

L

xy x y dy xy x y dx     , де 

L   частина кола   2 2

2

a
x y ax x    від 

точки  ,
2 2

a a
  до точки  ,

2 2

a a  

7. 3( )

S

z R ds ,  

 2 2 2( , , ) : 2 ,S x y z x y z Rz   

0, 0,x y z R    

8. ( 2 )

S

y dy dz x y dz dx x dx dy   ,  

 

2 2 2 2: , 2 , 0S z x y x y x z      

 

9. 23

L

y dx x dy z dz  , 

2 2 1,
:

3

z x y
L

z

   



 

10.  
3/ 22 2 2u x y z   ,  

 
2 2 2: 2 7, (0, 3,4)S x y z M     

11. 
2 3 33 3

2

8
, ,

2 2 3

y z yx z
u v

x
     

3
2, 2,

2
M
 
 
 

 

 

12. 4 9a z j y k   

 

13. (3 1) (9 1)a i y j      6 z k , 

: 1
2 3 9

yx z
P     

14.   ln
4 4

z yx
a e i x j      

  4

z
k ,  

2 2 2: 2 2 2 2S x y z x y z       

15. 6 2a x i y j z k   ,   

 2 2: 3 2 ,S z x y    

2 2 2 ( 0)z x y z    

16. a xy i yz j   zx k ,  
 

2 2 2 2 2 2: 16, ( 0)S x y z x y z z       

 

17. F y i x j   ,  

3:L y x , (0,0)M , (2,8)N  

 

18. 2a z i y j x k   , 

: 2 cos , 2sin ,L x t y t   2 cosz t  
 

19. 23 2a z i y j y k    ,  2 2: 4, 3 2 1L x y x y z      

2. Приклад розв’язання варіанта індивідуального типового завдання 

В наступних двох прикладах передбачається застосування теореми 1.8 про зведен-

ня криволінійного інтеграла до визначеного. 

Приклад 2.15. (№Д4255) Обчислити криволінійний 

інтеграл  

ABCDA

dx dy

x y



 , де ABCDA  – контур квадрата з 

вершинами (1,0), (0,1), ( 1,0), (0, 1)A B C D  . 

Розв’язання. Обчислимо криволінійний інтеграл 

другого роду окремо вздовж кожної сторони квадрата. 

Знайдемо рівняння прямої AB : 

1 0
: : 1
0 1 1 0

x y
AB AB y x

 
   

 
. 

Звідси (1 )dy d x dx    . Тоді 0dx dy  , отже, 
 

 

Рис. 2.16. 

 D 

  C 

 B 

  А 
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0
AB

dx dy

x y




 . 

Оскільки BC  задається рівняннями 1y x  , то ( 1)dy d x dx   . Відрізку BC  

відповідають недодатні значення x  і невід’ємні значення y , тому x y x y    . При 

оббігу контура від точки B  до точки C  параметр x  змінюється від 0 до 1 . Отже, 
1 1

0 0

1,
... 2 2

( 1)
BC BC

dx dy dx dxy x
dx

dy dxx y x x

 
  

     
        . 

Аналогічно, 

: 1 0 0
CD

dx dy
CD y x dy dx dx dy

x y


          

 . 

1

0

: 1 ,

( 0 0) , ... 2
( 1)

змінюється від 0 до1,
DA DA

DA y x dy dx
dx dy dx dx

x y x y x y
x y x x

x

    
 

          
  



   . 

В результаті одержимо: 

... ... ... ... ... 0 ( 2) 0 2 0
ABCDA AB BC CD DA

              .   ■ 

Приклад 2.16. Обчислити криволінійні інтеграли ( )
L

x y dl  і 

( ) ( )
L

x y dx y x dy    де L   частина кола 
2 2

2

a
x y ax x

 
   

 
, що сполучає точки 

,
2 2

a a
A
 
 
 

 і  ,
2 2

a a
B
 

 
 

. 

Розв’язання. Оскільки рівняння кола можна переписати у вигляді 
2 2

2

2 2

a a
x y

   
     

   
, то це коло має центр в точці ,0

2

a
C
 
 
 

 і радіус 
2

a
. Нерівність 

2

a
x   задає праву частину кола AMB (див. рис. 2.17). 

В полярній системі координат cos , sinx y     рівняння даного кола має 

вигляд cosa , тому 

2 2 2 2( ) cos ( sin )dl d a d a d           , 

2( ) ( )cos cos (1 cos2 ),
2

( ) ( )sin cos sin sin 2 ,
2

sin 2 , cos2 .

a
x a

a
y a

dx a d dy a d

         

         

      

 

Правій частині кола відповідає зміна полярного кута   від 

4


  до 

4


. При зведенні криволінійного інтеграла першого 

роду до визначеного, в останньому інтегралі межі інтегруван-

ня розставляються від меншого значення параметра до біль-

 

  
2

a
 

a  

4


   

4


    

О 

Рис. 2.17. 

C 

В 

   А 

M 
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шого. Щодо криволінійного інтеграла другого роду, то в ньому суттєвим є напрям оббі-

гу кривої. Оскільки крива L   пробігається від точки A  до точки B , то у визначеному 

інтегралі межі інтегрування будуть від 
4


 до 

4


 . Отже, за теоремою 1.8 матимемо: 

2 2 24 4

44

1 1
( ) (1 cos2 sin 2 ) sin 2 cos2 1

2 2 2 2 2 2
L

a a a
x y dl d

 

 

   
              

   
  , 

( ) ( )
L

x y dx y x dy   
4

4

(1 cos2 ) sin 2 ( sin 2 )
2 2

a a
a d






 
        

 
  

4

4

sin 2 (1 cos2 ) cos2
2 2

a a
a d






 
        

 
  

2 24

4

sin 2 cos2 1 1
2 2 2

a a
d






 
      

 
 . ■ 

Приклад 2.17. Обчислити криволінійний інтеграл  2 2

AB

x y dl , вздовж дуги 

кривої 2 2 , tg
y z

x y cz
x c

   , що сполучає точки 0 0 0(0,0,0), ( , , )A B x y z . 

Розв’язання. Потрібно параматризувати дану криву. Нехай спочатку 

cos , sinx y    , тоді  

2 2 2 ,

tg tg tg .

x y cz cz cz

y z z z

x c c c

       

      
 

Звідси одержимо параметризацію кривої 

cos ,

sin ,

.

z
x cz

c
z

y cz
c

z z








 

  Тоді  

     

 

2 2 2

2 2

21 1
cos sin sin cos 1

2 2

1
1 .

4 2

z z zdl x y z dz

c z z c z z
cz cz dz

c c c c c ccz cz

c z c z
dz dz

z c z c

     

   
          

   

 
     

 

 

Оскільки за параметр обрано z , то,  за означенням кривої, він змінюється від 0 до 
0z .  

Таким чином, 

 

0

0

3 5

2 2
2 2

0

0

1 1 2 2

2 2 3 5

z

z

AB

c z z z
x y dl cz dz c c c

z c

 
             

  
 

   

0 0 0

1 2
.

3 5
z cz c z

 
   

 
   ■ 
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Отримаємо формулу для обчислення площі через криволінійний інтеграл. За 

означенням міри допустимої множини D , її міра дорівнює її площі і 1
D

S dx dy  . За-

стосуємо формулу Гріна (Г2): 

 
D C

Q P
ds Pdx Qdy

x y

  
   

  
  ,  

обравши 1
Q P

x y

 
 

 
, C   зімкнений контур, який є межею області D  і має додатний 

напрям оббігу. Розглянемо три можливих випадки.  

1) якщо 1, 0
Q P

x y

 
 

 
, то  ( , ) , ( , ) 0Q x y x P x y   і 1

D C

S dx dy x dy    ; 

2) якщо 0, 1
Q P

x y

 
  

 
, то ( , ) 0, ( , )Q x y P x y y    і 1

D C

S dx dy y dx     ; 

3) якщо 
1 1

,
2 2

Q P

x y

 
  

 
, то 

1 1
( , ) , ( , )

2 2
Q x y x P x y y    і  

1
1

2
D C

S dx dy y dx x dy     . 

Приклад 2.18. (№Д4311) Знайти площу області D , що обмежена петлею декар-

тового листа 
3 3 3x y axy  . 

Розв’язання. Для обчислення площі за допомогою криволінійного інтеграла пот-
рібно застосувати одну із трьох отриманих вище формул. 

Одержимо параметризацію кривої, поклавши  y tx , тоді  

3 3 3 3 3 3

2

3

3
,

3 , 3 , 1
, , 3

.
1

at
x

x y axy x t x ax tx t
y tx y tx at

y
t


         

    


 

Звідки  

 

 

3

23 3

2 4

23 3

1 2
3 3 ,

1 1

2
3 3 .

1 1

t t
dx a dt a dt

t t

t t t
dy a dt a dt

t t

        
   


   

    
  

 

Знайдемо значення параметра, які відповідають точці самоперетину кривої. Параметру 

1 0t   відповідає точка (0,0)O  на площині, а параметру 2t   – та ж сама точка, оскі-

льки 

0 3

2

0 3

3
lim 0,

1
3

lim 0.
1

t

t

at
x

t
at

y
t






  


  
 

 

Розглянемо різницю між y  і x :  
2

3 3 2

3 3 3 ( 1)

1 1 ( 1)( 1)

at at at t

t t t t t


 

    
. 
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Звідки отримаємо: y x  при (0;1)t , а y x  при 

(1; )t  . Це означає, що всі точки  3 3 3( ); ( )M x t y t  

кривої, що відповідають значенню параметра 3 (0;1)t   

знаходяться нижче прямої y x , а точки 

 4 4 4( ); ( )M x t y t , де 4 (1; )t   , знаходяться вище цієї 

прямої (див. рис. 2.18). Отже, по-перше, інших точок 

самоперетину крива не має. По-друге, оскільки 

1 3 4 2t t t t   , то точки О, 3M , 4M , О, передують од-

на одній, тобто 3 4O M M O  (рис. 2.18). Таким чином, контур С пробігається проти 

годинникової стрілки, що відповідає додатному напряму оббігу. 

Тепер застосуємо другу з отриманих формул для обчислення площі: 

 

2 3
2 2

23 3 33
0 0

22
2 2

3
3 30

1 2
9 9

1 1 11

, ,
9

,2 1
1 1

C

t t t t
S y dx a dt a t d

t t tt

u t du dt
a t

t d t t
dv d vt

t t

 



  
          

   

 
 

               
    

  



 

2 22

3 3

00

9

2 1 1

a t t
t dt

t t


 

         
     
 


 

 

32 2 2

2 33
00

19 1 3 1 3
0

2 3 2 1 21

d ta a a

tt

 
       
  
 

 .■  

Розглянемо висновки, отримані в пункті 7, §3 розділу 1. За твердженням 1.7, якщо 

1) D  – однозв’язна область,  

2) функції P(x,y), Q(x,y)  – неперервні разом зі своїми частинними похідними в D , 

3) ( ) ( )
P Q

M M M D
y x

 
  

 
, 

тоді інтеграл 

AB

Pdx Qdy  не залежить від лінії ,AB D A B D   . Звідси випливає 

(за теоремою 1.14), що поле   ,a P Q  потенціальне, тобто  

( , ) : ,
U U

U x y P Q
x y

 
  

 
. 

Окрім того, в цьому випадку ( ) ( ).
AB

Pdx Qdy U B U A    Внаслідок того, що 

,
U U

P Q
x y

 
 

 
, диференціал функції ( , )U x y  дорівнює  

U U
dU dx dy Pdx Qdy

x y

 
   
 

. 

Нехай виконуються припущення 1), 2), 3). Тоді виве-
демо формулу для обчислення потенціалу ( , )U x y . Внаслі-

док зазначених припущень і твердження 1.7, інтеграл 

AB

Pdx Qdy  не залежить від лінії ,AB D A B D   .  

Припустимо, що точки ( , )B x y  і 0 0( , )A x y  можна 

сполучити ламаною так, як зображено на рис. 2.19, і ламана 
цілком лежить всередині області D . Тоді 

0x  

x  

y  

x  

0y  

y  

O  

A  

B  

Рис. 2.19.     

M  

 

1t 
1t 

0 1t   

O  

4M  

3M  

1 0t   

2t    

                                x  

y  

Рис. 2.18. 

C  
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... ... ...,
AMB AM MB

     

0

0 0: 0; ( , ) ;

x

AM x

AM y y dy P dx Q dy P x y dx       

0

: 0; ( , ) ;

y

MB y

MB x x dx P dx Q dy Q x y dy       

0 0

0( , ) ( , ) .

yx

AMB x y

P dx Q dy P x y dx Q x y dy      

Оскільки інтеграл 

AB

Pdx Qdy  не залежить від кривої, що сполучає 

точки A  і B , а його значення дорівнює ( ) ( )
AB

Pdx Qdy U B U A   , то 

0 0

0 0 0( , ) ( , ) ( , ) ( , )

yx

AB AMB x y

U x y U x y Pdx Qdy Pdx Qdy P x y dx Q x y dy          , 

звідки  

0 0

0 0 0( , ) ( , ) ( , ) ( , )

yx

x y

U x y P x y dx Q x y dy U x y    . 

Отже,  

0 0

0( , ) ( , ) ( , )

yx

x y

U x y P x y dx Q x y dy C    .                                                            (2.1) 

Можна отримати іншу формулу для пошуку потенціалу векторного поля на площині: 

0 0

0( , ) ( , ) ( , )

yx

x y

U x y P x y dx Q x y dy C    . 

Нехай векторне поле ( , , ) ( , , ) ( , , ) ( , , )a x y z P x y z i Q x y z j R x y z k    задане в од-

нозв’язній множині 
3D  простору, його координатні функції , ,P Q R  неперервні ра-

зом зі своїми частинними похідними в D  і задовольняють умови 

( ) ( ), ( ) ( ), ( ) ( )
P Q Q R R P

M M M M M M M D
y x x y x z

     
    

     
. 

Тоді існує потенціал цього векторного поля, який можна визначити за формулою 

0 0 0

0 0 0( , , ) ( , , ) ( , , ) ( , , )

yx z

x y z

U x y z P x y z dx Q x y z dy R x y z dz C      . 

Приклад 2.19. Використовуючи криволінійний інтеграл, знайти функцію 
( , )U x y , попередньо упевнившись в тому, що наданий вираз є її повним диференціа-

лом: 
2 23 2 3

y dx x dy
dU

x xy y




 
. 

Розв’язання. В даному випадку 

2 2 2 2
( , ) , ( , )

3 2 3 3 2 3

y x
P x y Q x y

x xy y x xy y


 

   
. 

Ці функції неперервні разом зі своїми частинними похідними на всій декартовій пло-
щині, остання є множиною зв’язною. Отже, умови 1) і 2) твердження 1.7 виконуються. 
Перевіримо умову 3): 
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2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

3 2 3 ( 2 6 ) 3 3
,

3 2 3 3 2 3
.

3 2 3 (6 2 ) 3 3
,

3 2 3 3 2 3

P x xy y y x y x y

P Qy x xy y x xy y

Q x xy y x x y x y y x

x x xy y x xy y

      
        

 
        

     

 

Отже, потенціал ( , )U x y  існує, і його можна знайти за формулою (2.1). Точку 0 0( , )x y  в 

цій формулі можна обирати довільним чином із множини визначення функцій iP Q , 

тобто на площині. Зручніше за все взяти 
0 00, 0x y  . Отже, маємо: 

0 0

0

2 2 2 2

0 0

( , )
3 2 3 3 2 3

yx

x y

y x
U x y dx dy C

x xy y x xy y


   

      

22 2

20 0 0

0
3 2 3 3 8

3 9

y yx
x x dy

dx dy C C
x xy y x

y x


      

   
  

 

    

0

3 1 33arctg arctg
3 2 2 2 2 2 2 2 2

3

y

x
y

x y x
C C

x x x




        .  

Перевірка.  Доведено, що мають місце рівності ,
U U

P Q
x y

 
 

 
. Дійсно, 

2

2

2 2 2 2 2

2 2

2

1 3 1 1
arctg

2 2 2 2 2 2 3
1

2 2

2 2 2 2(3 ) 1 8 6 2

8 8 9 6 82 2

( , );
3 2 3

1 3 1 1 1
arctg 3

2 2 2 2 2 2 2 23
1

2 2

U y x
C

x x x y x

x

x y x x y

x x y xy x x

y
P x y

x xy y

U y x
C

y y x xy x

x

   
       

     
  
 

   
     

  

 
 

   
         

     
  
 

 

      
2 2

( , ).
3 2 3

x
Q x y

x xy y


 

 
   ■ 

Приклад 2.20. (№Д4303) За допомогою формули Гріна обчислити інтеграл, зімк-

нувши, якщо це необхідно, криву відрізком прямої. Тут 

   sin cosx x

AmO

e y my dx e y m dy   , 

де AmO   верхнє півколо 
2 2x y ax  , що пробігається від точки ( ,0)A a  до точки 

(0,0)O  

Розв’язання. Рівняння кола можна переписати у вигляді 

2 2

2

2 2

a a
x y

   
     

   
. 

Звідси випливає, що це коло має центр в точці ,0
2

a 
 
 

 і радіус 
2

a
. 
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Зімкнемо криву відрізком OA . Об’єднання дуг AmO  і OA  позначимо через C , а 
область, яку обмежує контур C , через D . 

Застосуємо формулу Гріна. Нехай  

( , ) sin , ( , ) cosx xP x y e y my Q x y e y m    . 

Тоді 

cos , cosx xP Q
e y m e y

y x

 
  

 
, 

   

   

 

sin cos

sin cos

cos cos ,

x x

AmO

x x

OA

x x

D D

e y my dx e y m dy

e y my dx e y m dy

e y e y m dx dy m dx dy

   

    

    
 





 

 

       sin cos sin cosx x x x

AmO D OA

e y my dx e y m dy m dx dy e y my dx e y m dy           . 

Зважаючи на означення міри допустимої множини D , одержимо значення подвійного 

інтеграла: 
2 21

( )
2 2 8

D

a m a
m dx dy mS D m

 
       

 
 . 

Обчислимо криволінійний інтеграл вздовж OA . Оскільки 

 : 0 0 ( ,0) 0OA y dy P x     , 

то вираз під знаком криволінійного інтеграла дорівнює 0. Отже, ... 0
OA

 . Таким чином, 

   
2

sin cos .
8

x x

AmO

m a
e y my dx e y m dy


       ■ 

Приклад 2.21. Обчислити поверхневий інтеграл І роду ( )
S

xy yz xz ds  , де 

S   частина конуса 
2 2 2, 0x y z z   , яка лежить всередині циліндра 

2 2 2x y ax  . 

Розв’язання. Схема утворення поверхні та її проекції D  на площину Oxy  зо-

бражено на рис. 2.21.  

 
Виразимо із рівняння поверхні z  через x  і y : 

2 2 2 2 2, 0x y z z z x y      . 

 
x 

y 

 z 

 

y x 

z 

 

x 

y 

O 
D 

     a          

  Рис. 2.21. 

 
Рис. 2.20. 
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Знайдемо диференціал поверхні,застосовуючи зауваження 1.14.2: 

   
2 2

22

2 2 2 2

2 2
1 1 2

2 2
x y

x y
ds z z dx dy dx dy dx dy

x y x y

   
           

       

. 

Для зведення поверхневого інтеграла до кратного застосуємо теорему 1.10: 

 2 2 2 2

20 ( ) 2
S D

I xy yz xz ds xy y x y x x y dx dy         . 

Для обчислення подвійного інтеграла введемо полярну систему координат. Охарактери-

зуємо область D  
2 2 2 2 cos ,

: , 0 2 cos .
2 2

x y ax a

D a

    

 
       

 

Отже, 

2 cos2
2

20

0

2

2 (cos sin sin cos )

a

I d d








            

2
4 4

2

4 2 (cos sin sin cos ) cos .a d






          

2 2
4 4 5

непарна
2 2

0

4 2 (cos sin sin ) cos cos .a d d

 

 
 



 
 
 

          
 
 
 

   

Оскільки має місце формула 

2 2

0 0

1, непарне,
( 1)!!

sin cos ,
, парне,!!

2

n n

n n

n
n

xdx xdx D D n
nn

 

 
     


  , 

то 

2 2
5 5

0

2

4!! 2 4 16
cos 2 cos 2 2

5!! 1 3 5 15
d d

 





         

   . 

Таким чином,  
4

20

64
2

15
I a .   ■ 

Приклад 2.22. Обчислити інтеграл  2 2 2

21

S

I yz dy dz zy dz dx yx dx dy   ,  де S   

зовнішній бік поверхні тіла 
2 2 2 20 , 1, 0, 0z x y x y x y       , двома способами: 

безпосередньо та за допомогою формули Остроградського-Гаусса. 

Розв’язання. Дане тіло T  зображено на рис. 2.22. Воно обмежене знизу площи-

ною 0z   (поверхня 1S ), зверху – круговим параболоїдом 
2 2z x y   (поверхня 2S ). 

Його бічна поверхня утворюється іх двох площин 0, 0x y   і кругового циліндра 
2 2 1x y   (поверхні 3 4 5, ,S S S  відповідно).  
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Спочатку проведемо обчислення за формулою Остроградського-Гаусса (О-Г2). В 

даному прикладі 
2 2 2, ,P yz Q zy R yx   , 

тому 2
P Q R

yz
x y z

  
  

  
, 21 2

T

I yz dx dy dz  . 

Оскільки проекціею D  тіла на площину Oxy  є 

сектор круга 
2 2 1x y  , що лежить в І чверті, а 

поверхня, що обмежує поверхню, виражається 

через 
2 2x y , то для обчислення потрійного ін-

теграла зручно вводити циліндричні координати 

cos ,
sin ,
.

x
y
z z

  
  


. Матимемо:  

2 2

2 2 2

2

1 1,

,

: 0 , 0 1, 0
2

x y

z x y

T z

    


    


        

, 

2
21 12 2

2 2

21 0
0 0 0 0 0

12 2
6

0 0 0

2 2 sin sin

1 1
sin sin .

7 7

T

I yz dx dy dz d d z dz d d z

d d d

 




 

            

        

     

  

 

Тепер перейдемо до безпосереднього обчислення. Знайдемо поверхневі інтеграли 
ІІ роду за п’ятьма поверхнями. Розглянемо спочатку інтеграл за поверхнею параболоїда 

2S . Нормаль до неї утворює гострий кут з віссю аплікат, тому можна застосувати наслі-

док 1.8, звідки 

 
2

' '

( , , ) ( , , ) ( , , )

( , , ( , )) ( , ) ( , , ( , )) ( , ) ( , , ( , )) .

S

x y

D

P x y z dy dz Q x y z dz dx R x y z dx dy

P x y f x y f x y Q x y f x y f x y R x y f x y dx dy

  

   




 

Отже, 
2 2 ( , ) ( , ) 2 , ( , ) 2 ,x yz x y f x y f x y x f x y y        

    
2

2
2 2 2 2 2 2... 2 2

S D

y x y x x y y y yx dx dy         . 

Введемо полярні координати, матимемо: 

 
2

12
6 5 3 3 2

0 0

... 2 cos sin 2 sin cos sin
S

d d



                

2
3 2

0

1 2 1 209
sin 2 sin cos sin .

8 7 5 840
d



 
         

 
  

Далі обчислимо інтеграл за площиною 0z  . За означенням поверхневого інтег-

рала другого роду 

( cos cos cos )
S S

P dy dz Q dz dx Rdx dy P X Q Y R Z ds      ,                          (2.2) 

  
 

Рис. 2.22. 

x 
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де cos , cos , cosX Y Z  – направляючі косинуси нормалі до поверхні. Для даної площини 

cos 0, cos 0, cos 1X Y Z    , де знак «–» обрано внаслідок того, що нормаль до пло-

щини утворює кут 180о з віссю аплікат. Крім того, оскільки 0z  , то 

   
22

1 x yds z z dx dy dx dy     . 

Проекцією на Oxy  частини даної поверхні, що лежить на площині 0z  , є область D . 

Отже,  

1 1

2 2 2 2 2 2

1 32 2 2
2 3 2 2

0 0 0 0

( cos cos cos ) ( 0 0 0 0 ( 1))

1 1 cos 1
cos sin cos (cos ) .

5 5 3 15

S S

D

yz X zy Y yx Z ds y y yx ds

yx dx dy d d d

  

           


               

 

   

 

Для площини 0x  : 

cos 1, cos 0, cos 0X Y Z    ,    
2 2

1 y zds x x dy dz dy dz     .  

Проекцією на Oyz  частини даної поверхні, що лежить на площині 0x  , є область 
2

3 : 0 1, 0D y z y    . Отже, 
2

3 3

1 1

2 2 7

0 0 0

1 1
... .

3 24

y

S D

yz dy dz ydy z dz y dy             

Для площини 0y   функція під знаком поверхневого інтеграла 

2 2 2cos cos cos 0yz X zy Y yx Z   , тому 

4

... 0
S

 . 

Розглянемо циліндричну поверхню 
21 ( , )y x g y z   . Нормаль до неї утво-

рює гострий кут з віссю ординат. Проекція відповідної частини поверхні на площину 

Oxz  являє собою квадрат 4 : 0 1, 0 1D x z    . Таким чином, 

 

 

    

4

4

4

' '

2 2 2 2 2

2

1 1 1

2 2 2

0 0 0

( , ( , ), ) ( , ) ( , ( , ), ) ( , ( , ), ) ( , )

2
1 1 1 0

2 1

1 1
1 1 .

3 2 2

S

x z

D

D

Pdy dz Q dz dx Rdx dy

P x g y z z g x y Q x g y z z R x g y z z g x y dx dz

x
z x z x x x dx dz

x

x
dx x z z x dz x dx

  

      

 
            

 

 
       

 







  

 

В результаті отримаємо: 
5

1

209 1 1 1 1
... ... 0

840 15 24 2 7
k

kS S

         .   ■ 

Приклад 2.23. Обчислити інтеграл вздовж кривої L , яка утворюється перетином 

зазначених поверхонь. Напрям оббігу обрати таким, щоб спостерігач, якого вісь Oz  

пронизує з ніг до голови, бачив його таким, що проходить проти руху годинникової 

стрілки. Розглянути два способи: безпосередньо та за формулою Стокса. Тут  

а) (5 2 ) 2 2a

L

I xy dx yz dy xz dz    , 
2 2 9,

:
1;

x y
L

x y z

  


  
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б) 23б

L

I yz dx xz dy x dz   , 

2 2

2 2 2

4,
:

, 0.

x y
L

x y z z

  


  

 

Розв’язання. а) Застосуємо формулу Стокса (С3) 

cos cos cos

S L

X Y Z

ds Pdx Qdy Rdz
x y z

P Q R

  
  

    .   

У даному прикладі за поверхню S  будемо розглядати частину площини 

1x y z    , яка лежить всередині циліндра 2 2 9x y  . Згідно з умовою щодо орієн-

тації контура, з якою також узгоджено орієнтацію поверхні, нормаль до площини пот-

рібно обрати n i j k   . Ця нормаль має довжину 3n  , тому 

1 1 1
cos , cos , cos

3 3 3
X Y Z   . Маємо: 

1 1 1

3 3 3

2
( ) .

3

5 2 2 2

a

S S

I ds x y z ds
x y z

xy yz xz

  
   

  

  

   

Для площини 1z x y    диференціал поверхні дорівнює 

   
22

1 3x yds z z dx dy dx dy     . 

Проекцією  D  поверхні S  на площину Oxy  є круг 2 2 9x y  . Отже,  

22
1 3 2 ( ) 2 3 18 .

3
a

D

I dx dy S D           

Для безпосереднього обчислення криволінійного інтеграла криву потрібно пара-

метризувати. Якщо 3 cos , 3sinx t y t  , то 
2 2 9x y  , 1 3 cos 3sinz t t   . Тобто 

3 cos , 3 sin ,

3sin , 3cos ,

1 3 cos 3sin , 3 (sin cos ) ,

x t dx t dt

y t dy t dt

z t t dz t t dt

   
 

   
      

 

Звідки 





2

0

(5 9sin 2 ) ( 3 sin ) 18sin (1 3 cos 3sin )cos

18cos (1 3 cos 3sin ) (sin cos )

aI t t t t t t

t t t t t dt

      

    




 

2
2 3 2

0

108sin cos 54cos 18cos 18sin 2 15sin 18 .t t t t t t dt


           ■ 

б) Лінія перетину поверхонь 
2 2 4x y   і 

2 2 2x y z   при 0z   лежить на пло-

щині 2z  . За поверхню, за якою обчислюється поверхневий інтеграл в формулі Сток-

са, оберемо саме площину 2z  , яка лежить всередині циліндра 
2 2 4x y  . Тоді нор-

маль до неї 0 0 1n i j k      , а направляючі косинуси 

cos 0, cos 0, cos 1X Y Z   . Отже, за формулою Стокса  
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2

0 0 1

4 .

3

б

S S

I ds z ds
x y z

yz xz x

  
  

  



   

Для площини 2z   диференціал поверхні дорівнює ds dx dy . Проекцією D  поверхні 

S  на площину Oxy  є круг радіуса 2. Отже,  

24 2 8 ( ) 8 2 32 .б

D

I dx dy S D              

Обчислимо інтеграл безпосередньо. Оскільки контур можна параметризувати 

2 cos ,

2sin ,

2,

x t

y t

z





 

то 

2 sin ,

2cos ,

0.

dx t dt

dy t dt

dz

 



 

 Тоді 

 
2

2 2

0

24sin 8cos 32бI t t dt    


 .   ■ 

Приклад 2.24. Знайти похідну скалярного поля 2( , , ) arctgu x y z y xz   в точці 

 1 1
1, ,

2 3
M  

а) вздовж напряму нормалі до поверхні 2 2 2: 2 4 1S x y z   , що утворює гост-

рий кут з додатним напрямом осі Oz , 

б) за напрямом вектора l i j k   . 

Розв’язання. Знайдемо градієнт скалярного поля в зазначеній точці: 

2

2 2

2

grad ( )

1 1
2 arctg arctg 2 arctg

1 ( ) 1 ( )

6 2
.

24 36 8

M

M

u u u
u M i j k

x y z

y xz z i xz j y xz x k
xz xz

i j k

   
       

 
           

  

  
     

 

а) Знайдемо вектор нормалі до поверхні ( , , ) 0F x y z  , що задана неявно. Тут 
2 2 2( , , ) 2 4 1F x y z x y z     Маємо: 

  4 8
2 4 8 2

2 3M
M

F F F
n i j k x i y j z k i j k

x y z

   
            

. 

Оскільки апліката отриманого вектора додатна, то цей вектор утворює гострий кут з 
додатним напрямом осі Oz . Знайдемо направляючі косинуси цього вектора. Для цього  

знайдемо його довжину:    
22

2 4 8 10
2

2 3 3
n      . Тоді 

10 3 2 3 8 10 4
cos 2 : , cos , cos :

5 5 2 53 3 3
          . 

Тому одиничний вектор нормалі матиме вигляд 
3 2 3 4

.
5 5 2 5

e i j k        

Шукана похідна за напрямом нормалі дорівнює 

 
2 26 3 2 3 2 4 2 6

( ) grad ( ), .
24 5 36 5 2 8 5 8 180

u
M u M e

e

     
         


   ■ 
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б) Довжина вектора l i j k    дорівнює 3l  , тому його направляючі ко-

синуси 
1 1 1

cos , cos , cos
3 3 3

       , а одиничний напрям 

1 1 1
.

3 3 3
e i j k       Отже, похідна за напрямом дорівнюватиме 

 
2 26 1 1 2 1 2 3

( ) grad ( ), (1 3) .
24 36 8 24 1083 3 3

u
M u M e

e

     
         


   ■ 

Приклад 2.25. Знайти кут між градієнтами скалярних полів 
2

( , , )
yz

u x y z
x

  і 

34 6
( , , ) 2

2
v x y z z

x y
    в точці  1 1

2, ,
2 3

M . 

Розв’язання. Знайдемо градієнти скалярних полів в точці M : 

3 2 2

2 1 1 1
grad ( ) ,

2 3 2 3 2 2MM

yz yu u u z
u M i j k i j k i j k

x y z x x x

                      
 

2

2 2

4 6
grad ( ) 6 2 6 2 .

2M M

v v v
v M i j k i j z k i j k

x y z x y

    
                  

 

Тепер знайдемо косинус кута   між цими векторами: 

  1 1 1 1
grad ( ),grad ( ) ( 2) ( 6) 2 ,

2 3 2 3 2 2 3
u M v M            

 grad ( ), grad ( )7 2
grad ( ) , grad ( ) 14, cos .

grad ( ) grad ( ) 72 3

u M v M
u M u M

u M u M
    


 

Шуканий кут: 
2

arccos
7

  .   ■ 

Приклад 2.26. Знайти векторні лінії в векторному полі 

а) 2a x i y j z k   ,   б) 2 3a z j y k  . 

Розв’язання. Векторною лінією векторного поля 

( ) ( ) ( ) ( )a M P M i Q M j Q M k    називають криву, в кожній точці якої вектор ( )a M  

направлений вздовж дотичної до кривої. Через кожну точку M  векторного поля ( )a M  

проходить по одній векторній лінії. Сім’я векторних ліній визначається диференціаль-

ними рівняннями 
dydx dz

P Q R
  . 

а) Диференціальні рівняння векторних ліній поля 2a x i y j z k    мають ви-

гляд 

,
2

2
.

dydx
dydx dz x y

x y z dx dz

x z

 


   
  

 

 

Проінтегруємо їх: 

 

 

2
21

1

1
2 2

2

,
1 ,

ln ln ,
,2 1

,ln ln ,
1

.

x t
x C y

x C y t
y

x Cx C z C z
z

C t


 

     
    

    
 


 

 
Рис. 2.23. 
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Деякі лінії із отриманої сім’ї зображено на рис. 2.23.   ■ 

б) Знайдемо векторні лінії поля 2 3a z j y k  : 

1

11
2 2

2 2
2

2 2

0,
,

,0 2 3 3 2 ,
2 3

,,

3
, 1.

2 2 3

dx
x Cdydx dz

dy dz
z y ydy zdz

z y

x Cx C

y z
y z C

C C


 

      

 
 

     

 

Деякі лінії із отриманої сім’ї зображено на рис. 2.24. 
Кожна з цих ліній визначає гіперболу (в загальному 
розумінні), розташовану на площині, яка паралельна 
площині Oyz . ■ 

 
Рис. 2.24. 

Приклад 2.27. Знайти течію векторного поля a  8 11 17x i y j z k   через час-

тину поверхні : 2 3 1x y z   , що міститься в І октанті (нормаль утворює гострий кут 

з віссю Oz ). 
Розв’язання. Згідно з фізичним змістом загального поверхневого інтеграла ІІ ро-

ду (див. зауваження 1.16), течія   векторного поля a  через поверхню S  обчислюється 

за формулою ( , )

S

a n ds   , де ( , , ) (cos ,cos ,cos )n x y z X Y Z  – одиничний вектор нор-

малі до поверхні S . Тобто  

( , ) ( cos cos cos )

S S

a n ds P X Q Y R Z ds      . 

Для даної площини : 2 3 1x y z    (або 
1

: (1 2 )
3

z x y   ) одиничним векто-

ром нормалі, яка утворює гострий кут з віссю Oz , є вектор  1 2 3
, ,

14 14 14
n , диферен-

ціалом поверхні –  

   
2 2

22 1 2 14
1 1

3 3 3
x yds z z dx dy dx dy dx dy

   
            

   
, 

а проекцією на площину Oxy  – область D , обмежена прямими 0, 0, 2 1x y x y     

(рис. 2.25). Тоді течія поля через поверхню дорівнює 

 
1 21/ 2

0 0

22 17(1 2 )8 14

314 14 14

1
8 22 17(1 2 )

3

D

y

y x yx
dx dy

dy x y x y dx



        
 

     



 

 

 
1/ 2

2

0

1 9
(1 2 ) 12 (1 2 ) 17 34 1

3 2
y y y y dy        . ■ 

 

 
Рис. 2.25. 

Приклад 2.28. Знайти течію векторного поля  

a   2( ) ( 1)x xy i y x j z k       

через зімкнену поверхню 
2 2 2 2: , 8S z x y z x y      (нормаль зовнішня). 

Розв’язання. При обчисленні потоку через зімкнену поверхню S  зручніше за-
стосовувати формулу Остроградського-Гаусса (О-Г1): 

x 

y 

x+2y=1 

 y 

 z 

 x 



Розділ 4. ІНДИВІДУАЛЬНЕ ЗАВДАННЯ 

 115 

( , ) div
S D

a n ds a dv    ,  

де D   тіло, яке обмежує поверхня S . Оскільки div 
QP R

a
x y z

 
  
  

, то 

D

P Q R
dx dy dz

x y z

   
    

   
 . 

В даному прикладі 

 

 

2

( ) ( 1)

3 .

D

D

y xx xy z
dx dy dz

x y z

y dx dy dz

     
     
   
 

 





 

Задана поверхня обмежена параболоїдами 
2 2 2 2i 8z x y z x y      знизу та зверху, відпо-

відно. Знайдемо лінію перетину параболоїдів: 
2 2 2 2

2 2

, 4,

4.8 ,

z x y x y

zz x y

     
 

   

 
 

Рис. 2.26 

Отже, проекцією тіла D  на площину Oxy  є круг 
2 2 4x y   (рис. 2.26).  

Для обчислення потрійного інтеграла, до якого зведено обчислення потоку, вве-
демо циліндричні координати cos , sin ,x y z z       , одержимо 

2 2 2 2 2 2, 8 8 ,z x y z x y          

  
2

2

82 2 2 2

2

0 0 0 0

(3 sin ) 3 sin 8 2d d dz d d

 



                     

22 2

2 4 3 5

0 00

3 8 2 128
12 sin sin 24 48

2 3 5 15
d d

 
    

                  
    

  .   ■ 

Приклад 2.29. Знайти роботу сили F y i x j   при пересуванні точки її прик-

ладання вздовж лінії 
2 2: 2 1, 0L x y y    від точки  1

,0
2

M  до точки  1
,0

2
N  . 

Розв’язання. В п.1, §2 розділу 1 було зазначено, що фізичним змістом криволі-

нійного інтеграла ІІ роду є робота A  по переміщенню матеріальної точки із точки M  в 

точку N  вздовж кривої L  під дією сили      , , ,F x y P x y i Q x y j  . Тобто  

   , ,
L

A P x y dx Q x y dy  . 

Задану криву параметризуємо в такий спосіб: 

cos
,

2:

sin .

t
x

L

y t

 

 

 Пересування із точки 

M  в точку N  відповідає зростанню параметра t  від 0 до  . Тоді для даної сили 

F y i x j   робота дорівнюватиме 

0

sin cos
sin cos

2 2 2L

t t
A y dx x dy t t dt


  

        
 

  .   ■ 
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Приклад 2.30. Знайти циркуляцію векторного поля a  3
3

y
i x j x k   вздовж 

кривої : 2cos , 2sin ,L x t y t   1 2cos 2sinz t t    (у напрямі зростання параметра t ). 

Розв’язання. За означенням, циркуляція обчислюється за формулою 

Ц ( , )
L

t a dl  , де   ( )t t M – вектори дотичних до кривої L . Оскільки 

 
 

, ,
( , ) cos sin cos

cos ,cos ,cos

a P Q R
t a dl P dl Q dl R dl Pdx Qdy R dz

t

 
         

    
, 

то Ц
L

P dx Q dy R dz   . 

З’ясуємо вигляд заданої кривої. Оскільки 2cos , 2sin ,x t y t   то 
2 2 4, 1 2 2x y z x y     . Результатом перетину отриманих поверхонь – кругового ци-

ліндра і площини – є еліпс в просторі. Йому відповідає зростання параметра t  від 0 
до 2 . Таким чином, 

Ц 3
3

L

y
dx x dy x dz     

2

0

4 52
sin ( sin ) 12cos cos 4cos (sin cos )

3 3
t t t t t t t dt


 

           
 
 . ■ 

Приклад 2.31. Знайти модуль циркуляції векторного поля 
22a yz i xz j y k    

вздовж кривої 

2 2 2

2 2

25,
:

16, 0.

x y z
L

x y z

   


  

. 

Розв’язання. Лінія перетину поверхонь 
2 2 2 25x y z    і 

2 2 16x y   при 

0z   лежить на площині 3z  . За поверхню, вздовж якої обчислюється поверхневий 
інтеграл в формулі Стокса (С3), оберемо саме площину 3z  , яка лежить всередині ци-

ліндра 
2 2 16x y  . Тоді нормаль до неї 0 0 1n i j k      . Отже, за формулою Сто-

кса  

2

0 0 1

Ц .

2

S S

ds z ds
x y z

yz xz y

  
  

     

Для площини 3z   диференціал поверхні дорівнює ds dx dy . Проекцією D  поверхні 

S  на площину Oxy  є круг радіуса 3. Отже,  

2Ц 3 3 ( ) 3 3 27 Ц 27 .

D

dx dy S D                   ■ 

Формальні вимоги щодо виконання кожного індивідуального завдання. Номер 
варіанта індивідуального завдання обчислюється як залишок ділення номера прізвища 
студента в списку академічної групи на 13. Кожне індивідуальне завдання оформлюєть-
ся в зошиті обсягом 12 – 18 аркушів і здається на передостанньому тижні відповідного 
змістового модуля навчального семестру, протягом якого вивчається відповідна тема. 
Розв’язки повинні містити усі необхідні обґрунтування з посиланням на відповідні фо-
рмули, теореми і властивості. У разі незарахування індивідуального завдання студент 
повинен його доопрацювати до останнього тижня модуля. Захист індивідуального за-
вдання проводиться на останньому тижні модуля. Студент, у якого індивідуальне за-
вдання незараховано, не допускається до екзамену. 
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Розділ 3. ЗАПИТАННЯ ДЛЯ САМОКОНТРОЛЮ 
 

Навести означення або сформулювати теорему: 
 

1. Поняття кратного інтеграла по m вимірному проміжку та інтегровності.  
2. Критерій Дарбу інтегровності на m вимірному проміжку.  
3. Класи функцій, інтегровних на m вимірному проміжку. Критерій Лебеґа інтегрованості 

функції на проміжку. 
4. Допустима множина, приклади. Об’єм допустимої множини. 
5. Означення інтеграла по множині та його коректність.  
6. Критерій Лебеґа  інтегрованості функції на допустимій множині. 
7. Полярні, сферичні і циліндричні координати.  
8. Поняття криволінійних інтегралів першого і другого роду, загального криволінійного інтег-

рала другого роду,  фізичний зміст криволінійних інтегралів. 
9. Зведення криволінійних інтегралів до визначеного інтеграла Рімана.  
10. Поняття гомеоморфізму множин, локального гомеоморфізму. Поняття елементарної облас-

ті, простої плоскої області. Поняття поверхні. Поняття околу точки на поверхні. Приклад 
поверхні. 

11. Поняття двосторонньої поверхні. Повні та обмежені поверхні.  
12. Поняття площі поверхні. Формули площі поверхні, що задана параметрично, явно. 
13. Поняття поверхневих інтегралів першого і другого роду, загального криволінійного інтег-

рала другого роду. Фізичний зміст поверхневих інтегралів. 
14. Зведення поверхневих інтегралів до кратних інтегралів Рімана: загальні формули і частко-

вий випадок декартової системи координат. 
15. Дивергенція і ротор векторного поля. Їх фізичний зміст. Формули для обчислення . 
16. Формули Гріна, Остроградського-Гаусса, Стокса. 
17. Потенціальне поле. Умови незалежності криволінійного інтеграла на площині від шляху 

інтегрування. 
 

Надати відповідь на теоретичні питання з обґрунтуванням: 
 

1. Поняття m вимірного проміжку. Міра проміжку та її властивості. Розбиття проміжку. По-
няття кратного інтеграла по m вимірному проміжку та інтегровності. Необхідна умова ін-
тегровності. 

2. Критерій Дарбу інтегровності на m вимірному проміжку.  
3. Класи функцій, інтегровних на m вимірному проміжку.  
4. Допустимі множини, приклади. Означення інтеграла по множині та його коректність. Кри-

терій Лебеґа інтегрованості функції на множині. 
5. Об’єм допустимої множини. 
6. Властивості кратних інтегралів по множині, пов’язані із знаком рівності. 
7. Властивості кратних інтегралів по множині, пов’язані із знаком нерівності. 
8. Теорема Фубіні. 
9. Наслідки з теореми Фубіні. 
10. Заміна змінної під знаком кратного інтеграла. Евристичний підхід до доведення. 
11. Полярні, сферичні і циліндричні координати.  
12. Поняття криволінійних інтегралів першого і другого роду, загального криволінійного інтег-

рала другого роду, наслідки з означення, фізичний зміст криволінійних інтегралів. 
13. Поняття гладкої на відрізку кривої, поняття особливої і звичайної точок. Зведення криволі-

нійних інтегралів до визначеного інтеграла Рімана. Криволінійні інтеграли за кусково глад-
кою кривою і від кусково гладких функцій. 

14. Властивості криволінійних інтегралів першого роду. 
15. Поняття гомеоморфізму множин, локального гомеоморфізму. Поняття елементарної облас-

ті, простої плоскої області. Поняття поверхні. Поняття околу точки на поверхні. Приклад 
поверхні. 
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16. Довести, що множина точок, що задовольняє рівнянням, ( , ), ( , ), ( , )x x u v y y u v z z u v   , 

має в простій плоскій області неперервні часткові похідні першого порядку, а матриця 

x y z

u u uA
x y z

v v v

   
       
 
   

 має ранг 2 являє собою поверхню. 

17. Поняття координатних ліній на поверхні, дотичних площин і нормалей в точках поверхні. 
Поняття двосторонньої поверхні. Повні та обмежені поверхні. Леми про однозначне проек-
тування малих околів точок на координатні площини, дотичні площини, про кут між нор-
малями в точках таких околів. 

18. Поняття площі поверхні. Виведення загальної формули для обчислення площі поверхні, що 
виражається через подвійний інтеграл від векторного добутку дотичних векторів. 

19. Формули площі поверхні, що задана параметрично, явно. 
20. Поняття поверхневих інтегралів першого і другого роду, загального криволінійного інтег-

рала другого роду, наслідки з означення, фізичний зміст поверхневих інтегралів. 
21. Зведення поверхневих інтегралів до кратних інтегралів Рімана (загальні формули і частко-

вий випадок декартової системи координат). 
22. Біортогональні базиси. Перетворення базисів. Матриці переходу від старого базису до но-

вого, від базису до біортогонального до нього базису. 
23. Дивергенція і ротор лінійного оператора. Дивергенція і ротор в ортонормованному базисі. 
24. Скалярне і векторне поле, їх дифференційовність, похідні за напрямом.  
25. Дивергенція і ротор векторного поля. Їх фізичний зміст. Формули для обчислення . 
26. Формула Гріна. 
27. Формула Остроградського-Гаусса. 
28. Формула Стокса. 
29. Потенціальне поле. Умови незалежності криволінійного інтеграла на площині від шляху 

інтегрування. 
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