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Foreword to the Revised
OpenCL 1.2 Edition
I need your help. I need you to read this book and start using OpenCL. Let me

explain.

The fundamental buildingblocksof computing have changed over the past 10years.

We have moved from the single-core processors many of us started with long ago to

shared memory multicore processors, to highly scalable “many core” processors, and

finally to heterogeneous platforms (e.g., a combination of a CPU and a GPU). If you

have picked up this book and are thinking of reading it, you are most likely well aware

of this fact. I assume you are also aware that software needs to change to keep up with

the evolution of hardware.

And this is where I need your help. I’ve been working in parallel computing since

1985 and have used just about every class of parallel computer. I’ve usedmore parallel

programming environments than I could name and have helped createmore than a few.

So I knowhow this gameworks.Hardware changes and programmers like us are forced

to respond.Our old code breaks andwehave to reengineer our software. It’s painful, but

it’s a fact of life.

Money makes the world go around so hardware vendors fight for competitive ad-

vantage. This drives innovation and, over the long run, is a good thing. To build atten-

tion for “their” platforms, however, these vendors “help” the poor programmers by

creating new programming models tied to their hardware. And this breeds confusion.

Well-meaning but misguided people use, or are forced to use, these new programming

models and the software landscape fragments.With different programmingmodels for

each platform, the joy of creating new software is replaced with tedious hours rework-

ing our software for each and every new platform that comes along.

At certain points in the history of parallel computing, as the software landscape

continues to fragment, a subset of people come together and fight back. This requires

a rare combination of a powerful customer that controls a lot of money, a collection

of vendors eager to please that customer, and big ideas to solve the programming

challenges presented by a new class of hardware. This rare set of circumstances

can take years to emerge, so when it happens, you need to jump on the opportunity.

It happened for clusters and massively parallel supercomputers with MPI (1994).

It happened for shared memory computers with OpenMP (1997). And more recently,

this magical combination of factors has come together for heterogeneous computing

to give us OpenCL.

I can’t stress how important this development is. If OpenCL fails to dominate the

heterogeneous computing niche, it could be many years before the right set of cir-

cumstances come together again. If we let this opportunity slip away and we fall back

on our old, proprietary programming model ways, we could be sentencing our soft-

ware developers to years of drudgery.
vi



viiForeword to the revised OpenCL 1.2 edition
So I need your help. I need you to join the OpenCL revolution. I need you to insist

on portable software frameworks for heterogeneous platforms. When possible, avoid

programming models tied to a single hardware vendor’s products. Open standards

help everyone. They enable more than a product line. They enable an industry,

and if you are in the software business, that is a very good thing.

OpenCL, however, is an unusually complex parallel programming standard.

It has to be. I am aware of no other parallel programming model that addresses such

a wide array of systems: GPUs, CPUs, FPGAs, embedded processors, and combina-

tions of these systems. OpenCL is also complicated by the goals of its creators. You

see, in creating OpenCL, we decided the best way to impact the industry would be to

create a programming model for the performance-oriented programmer wanting full

access to the details of the system. Our reasoning was that, over time, high-level

models would be created to map onto OpenCL. By creating a common low-level tar-

get for these higher level models, we’d enable a rich marketplace of ideas and pro-

grammers would win. OpenCL, therefore, doesn’t give you many abstractions to

make your programming job easier. You have to do all that work yourself.

OpenCL can be challenging, which is where this book comes in. You can learn

OpenCL by downloading the specification and writing code. That is a difficult way

to go. It is much better to have trailblazers who have gone before you establish the

context and then walk you through the key features of the standard. Programmers

learn by example, and this book uses that fact by providing a progression of exam-

ples from trivial (vector addition) to complex (image analysis). This book will help

you establish a firm foundation that you can build on as you master this exciting

new programming model.

Read this book. Write OpenCL code. Join the revolution. Help us make the world

safe for heterogeneous computing. Please . . . I need your help. We all do.

Tim Mattson
Principal Engineer

Intel Corp.



Foreword to the First Edition
For more than two decades, the computer industry has been inspired and motivated

by the observation made by Gordon Moore (A.K.A “Moore’s law”) that the density

of transistors on die was doubling every 18 months. This observation created the an-

ticipation that the performance a certain application achieves on one generation of

processors will be doubled within two years when the next generation of processors

will be announced. Constant improvement in manufacturing and processor technol-

ogies was the main drive of this trend since it allowed any new processor generation

to shrink all the transistor’s dimensions within the “golden factor”, 0.3 (ideal shrink)

and to reduce the power supply accordingly. Thus, any new processor generation

could double the density of transistors, to gain 50% speed improvement (frequency)

while consuming the same power and keeping the same power density. When better

performance was required, computer architects were focused on using the extra tran-

sistors for pushing the frequency beyond what the shrink provided, and for adding

new architectural features that mainly aim at gaining performance improvement

for existing and new applications.

During the mid 2000s, the transistor size became so small that the “physics of

small devices” started to govern the characterization of the entire chip. Thus fre-

quency improvement and density increase could not be achieved anymore without

a significant increase of power consumption and of power density. A recent report

by the International Technology Roadmap for Semiconductors (ITRS) supports this

observation and indicates that this trend will continue for the foreseeable future and it

will most likely become the most significant factor affecting technology scaling and

the future of computer based system.

To cope with the expectation of doubling the performance every known period of

time (not 2 years anymore), two major changes happened (1) instead of increasing

the frequency, modern processors increase the number of cores on each die. This

trend forces the software to be changed as well. Since we cannot expect the hardware

to achieve significantly better performance for a given application anymore, we need

to develop new implementations for the same application that will take advantage of

the multicore architecture, and (2) thermal and power become first class citizens with

any design of future architecture. These trends encourage the community to start

looking at heterogeneous solutions: systems which are assembled from different sub-

systems, each of them optimized to achieve different optimization points or to ad-

dress different workloads. For example, many systems combine “traditional” CPU

architecture with special purpose FPGAs or Graphics Processors (GPUs). Such an

integration can be done at different levels; e.g., at the system level, at the board level

and recently at the core level.

Developing software for homogeneous parallel and distributed systems is consid-

ered to be a non-trivial task, even though such development uses well-known para-

digms and well established programming languages, developing methods,

algorithms, debugging tools, etc. Developing software to support general-purpose
viii



ixForeword to the first edition
heterogeneous systems is relatively new and so less mature and much more difficult.

As heterogeneous systems are becoming unavoidable, many of the major software

and hardware manufacturers start creating software environments to support them.

AMD proposed the use of the Brook language developed in Stanford University,

to handle streaming computations, later extending the SW environment to include

the Close to Metal (CTM)and the Compute Abstraction Layer (CAL) for accessing

their low level streaming hardware primitives in order to take advantage of their

highly threaded parallel architecture. NVIDIA took a similar approach, co-designing

their recent generations of GPUs and the CUDA programming environment to take

advantage of the highly threaded GPU environment. Intel proposed to extend the use

of multi-core programming to program their Larrabee architecture. IBM proposed

the use of message-passing-based software in order to take advantage of its hetero-

geneous, non-coherent cell architecture and FPGA based solutions integrate libraries

written in VHDL with C or Cþþ based programs to achieve the best of two envi-

ronments. Each of these programming environments offers scope for benefiting do-

main-specific applications, but they all failed to address the requirement for general

purpose software that can serve different hardware architectures in the way that, for

example, Java code can run on very different ISA architectures.

The Open Computing Language (OpenCL) was designed to meet this important

need. It was defined and managed by the nonprofit technology consortium Khronos

The language and its development environment “borrows” many of its basic con-

cepts from very successful, hardware specific environments such as CUDA, CAL,

CTM, and blends them to create a hardware independent software development en-

vironment. It supports different levels of parallelism and efficiently maps to homo-

geneous or heterogeneous, single- or multiple-device systems consisting of CPUs,

GPUs, FPGA and potentially other future devices. In order to support future devices,

OpenCL defines a set of mechanisms that if met, the device could be seamlessly in-

cluded as part of the OpenCL environment. OpenCL also defines a run-time support

that allows to manage the resources, combine different types of hardware under the

same execution environment and hopefully in the future it will allow to dynamically

balance computations, power and other resources such as memory hierarchy, in a

more general manner.

This book is a text book that aims to teach students how to program heteroge-

neous environments. The book starts with a very important discussion on how to pro-

gram parallel systems and defines the concepts the students need to understand

before starting to program any heterogeneous system. It also provides a taxonomy

that can be used for understanding the different models used for parallel and distrib-

uted systems. Chapters 2 – 4 build the students’ step by step understanding of the

basic structures of OpenCL (Chapter 2) including the host and the device architecture

(Chapter 3). Chapter 4 provides an example that puts together these concepts using a

not trivial example.

Chapters 5 and 6 extend the concepts we learned so far with a better understand-

ing of the notions of concurrency and run-time execution in OpenCL (Chapter 5) and

the dissection between the CPU and the GPU (Chapter 6). After building the basics,
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the book dedicates 4 Chapters (7-10) to more sophisticated examples. These sections

are vital for students to understand that OpenCL can be used for a wide range of ap-

plications which are beyond any domain specific mode of operation. The book also

demonstrates how the same program can be run on different platforms, such as Nvi-

dia or AMD. The book ends with three chapters which are dedicated to advanced

topics.

No doubt that this is a very important book that provides students and researchers

with a better understanding of the world of heterogeneous computers in general and

the solutions provided by OpenCL in particular. The book is well written, fits stu-

dents’ different experience levels and so, can be used either as a text book in a course

on OpenCL, or different parts of the book can be used to extend other courses; e.g.,

the first two chapters are well fitted for a course on parallel programming and some

of the examples can be used as a part of advanced courses.

Dr. Avi Mendelson
Microsoft R&D Israel

Adjunct Professor, Technion



Preface
OUR HETEROGENEOUS WORLD
Our world is heterogeneous in nature. This kind of diversity provides a richness and

detail that is difficult to describe. At the same time, it provides a level of complexity

and interaction in which a wide range of different entities are optimized for specific

tasks and environments.

In computing, heterogeneous computer systems also add richness by allowing the

programmer to select the best architecture to execute the task at hand or to choose the

right task to make optimal use of a given architecture. These two views of the flex-

ibility of a heterogeneous system both become apparent when solving a computa-

tional problem involves a variety of different tasks. Recently, there has been an

upsurge in the computer design community experimenting with building heteroge-

neous systems. We are seeing new systems on the market that combine a number of

different classes of architectures.What has slowed this progression has been a lack of

standardized programming environment that can manage the diverse set of resources

in a common framework.
OPENCL
OpenCL has been developed specifically to ease the programming burden when writ-

ing applications for heterogeneous systems. OpenCL also addresses the current trend

to increase the number of cores on a given architecture. The OpenCL framework sup-

ports execution on multi-core central processing units, digital signal processors, field

programmable gate arrays, graphics processing units, and heterogeneous accelerated

processing units. The architectures already supported cover a wide range of ap-

proaches to extracting parallelism and efficiency from memory systems and instruc-

tion streams. Such diversity in architectures allows the designer to provide an

optimized solution to his or her problem—a solution that, if designed within the

OpenCL specification, can scale with the growth and breadth of available architec-

tures. OpenCL’s standard abstractions and interfaces allow the programmer to seam-

lessly “stitch” together an application within which execution can occur on a rich set

of heterogeneous devices from one or many manufacturers.
THIS TEXT
Until now, there has not been a single definitive text that can help programmers and

software engineers leverage the power and flexibility of the OpenCL programming

standard. This is our attempt to address this void. With this goal in mind, we have not

attempted to create a syntax guide—there are numerous good sources in which

programmers can find a complete and up-to-date description of OpenCL syntax.
xi



xii Preface
Instead, this text is an attempt to show a developer or student how to leverage

the OpenCL framework to build interesting and useful applications. We provide a

number of examples of real applications to demonstrate the power of this program-

ming standard.

Our hope is that the reader will embrace this new programming framework and

explore the full benefits of heterogeneous computing that it provides. We welcome

comments on how to improve upon this text, and we hope that this text will help you

build your next heterogeneous application.
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CHAPTER
Introduction to Parallel
Programming
 1

INTRODUCTION
Today’s computing environments are becoming more multifaceted, exploiting the

capabilities of a range of multi-core microprocessors, central processing units

(CPUs), digital signal processors, reconfigurable hardware (FPGAs), and graphics

processing units (GPUs). Presented with so much heterogeneity, the process of de-

veloping efficient software for such a wide array of architectures poses a number of

challenges to the programming community.

Applications possess a number of workload behaviors, ranging from control

intensive (e.g., searching, sorting, and parsing) to data intensive (e.g., image

processing, simulation and modeling, and data mining). Applications can also

be characterized as compute intensive (e.g., iterative methods, numerical methods,

and financial modeling), where the overall throughput of the application is heavily

dependent on the computational efficiency of the underlying hardware. Each of

these workload classes typically executes most efficiently on a specific style of

hardware architecture. No single architecture is best for running all classes of

workloads, and most applications possess a mix of the workload characteristics.

For instance, control-intensive applications tend to run faster on superscalar CPUs,

where significant die real estate has been devoted to branch prediction mecha-

nisms, whereas data-intensive applications tend to run fast on vector architectures,

where the same operation is applied to multiple data items concurrently.
OPENCL
The Open Computing Language (OpenCL) is a heterogeneous programming

framework that is managed by the nonprofit technology consortium Khronos

Group. OpenCL is a framework for developing applications that execute across

a range of device types made by different vendors. It supports a wide range of

levels of parallelism and efficiently maps to homogeneous or heterogeneous,

single- or multiple-device systems consisting of CPUs, GPUs, and other types of de-

vices limited only by the imagination of vendors. The OpenCL definition offers both

a device-side language and a host management layer for the devices in a system.
Heterogeneous Computing with OpenCL

© 2013 Advanced Micro Devices, Inc. Published by Elsevier Inc. All rights reserved.
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2 CHAPTER 1 Introduction to parallel programming
The device-side language is designed to efficiently map to a wide range of memory

systems.The host language aims to support efficient plumbingof complicated concur-

rent programswith low overhead. Together, these provide the developerwith a path to

efficiently move from algorithm design to implementation.

OpenCL provides parallel computing using task-based and data-based parallel-

ism. It currently supports CPUs that include x86, ARM, and PowerPC, and it has

been adopted into graphics card drivers by AMD, Apple, Intel, and NVIDIA. Support

for OpenCL is rapidly expanding as a wide range of platform vendors have adopted

OpenCL and support or plan to support it for their hardware platforms. These vendors

fall within a wide range of market segments, from the embedded vendors (ARM and

Imagination Technologies) to the HPC vendors (AMD, Intel, NVIDIA, and IBM).

The architectures supported include multi-core CPUs, throughput and vector proces-

sors such as GPUs, and fine-grained parallel devices such as FPGAs.

Most important, OpenCL’s cross-platform, industrywide support makes it an

excellent programming model for developers to learn and use, with the confidence

that it will continue to be widely available for years to come with ever-increasing

scope and applicability.
THE GOALS OF THIS BOOK
The first edition of this book was the first of its kind to present OpenCL programming

in a fashion appropriate for the classroom. In this second edition we update the con-

tent for the latest version of the OpenCL standard. The book is organized to address

the need for teaching parallel programming on current system architectures using

OpenCL as the target language, and it includes examples for CPUs, GPUs, and their

integration in the accelerated processing unit (APU). Another major goal of this text

is to provide a guide to programmers to develop well-designed programs in OpenCL

targeting parallel systems. The book leads the programmer through the various ab-

stractions and features provided by the OpenCL programming environment. The ex-

amples offer the reader a simple introduction and more complicated optimizations,

and they suggest further development and goals at which to aim. It also discusses

tools for improving the development process in terms of profiling and debugging

such that the reader need not feel lost in the development process.

The book is accompanied by a set of instructor slides and programming exam-

ples, which support the use of this text by an OpenCL instructor. Please visit

http://heterogeneouscomputingwithopencl.org/ for additional information.
THINKING PARALLEL
Most applications are first programmed to run on a single processor. In the field

of high-performance computing, classical approaches have been used to accelerate

computationwhen providedwithmultiple computing resources. Standard approaches

http://heterogeneouscomputingwithopencl.org/


3Thinking parallel
include “divide-and-conquer” and “scatter–gather” problemdecompositionmethods,

providing the programmer with a set of strategies to effectively exploit the parallel

resources available in high-performance systems. Divide-and-conquer methods iter-

atively break a problem into subproblems until the subproblems fit well on the com-

putational resources provided. Scatter–gather methods send a subset of the input data

set to each parallel resource and then collect the results of the computation and com-

bine them into a result data set. As before, the partitioning takes account of the size of

the subsets based on the capabilities of the parallel resources. Figure 1.1 shows how

popular applications such as sorting and a vector–scalar multiply can be effectively

mapped to parallel resources to accelerate processing.

The programming task becomes increasingly challenging when faced with the

growing parallelism and heterogeneity present in contemporary parallel processors.

Given the power and thermal limits of complementary metal-oxide semiconductor

(CMOS) technology, microprocessor vendors find it difficult to scale the frequency

of these devices to derive more performance and have instead decided to place mul-

tiple processors, sometimes specialized, on a single chip. In doing so, the problem of

extracting parallelism from an application is left to the programmer, who must de-

compose the underlying algorithms in the applications and map them efficiently to a

diverse variety of target hardware platforms.

In the past 5 years, parallel computing devices have been increasing in number and

processing capabilities. GPUs have also appeared on the computing scene and are
A B

FIGURE 1.1

(A) Simple sorting and (B) dot product examples.



4 CHAPTER 1 Introduction to parallel programming
providing new levels of processing capability at very low cost. Driven by the demand

for real-time three-dimensional graphics rendering, a highly data-parallel problem,

GPUs have evolved rapidly as very powerful, fully programmable, task and data-

parallel architectures. Hardware manufacturers are now combining CPU cores and

GPU cores on a single die, ushering in a new generation of heterogeneous computing.

Compute-intensive and data-intensive portions of a given application, called kernels,

may be offloaded to the GPU, providing significant performance per watt and raw

performance gains, while the host CPU continues to execute nonkernel tasks.

Many systems and phenomena in both the natural world and the man-made world

present us with different classes of parallelism and concurrency:

• Molecular dynamics

• Weather and ocean patterns

• Multimedia systems

• Tectonic plate drift

• Cell growth

• Automobile assembly lines

• Sound and light wave propagation

Parallel computing, as defined by Almasi and Gottlieb (1989), is “a form of compu-

tation in which many calculations are carried out simultaneously, operating on the

principle that large problems can often be divided into smaller ones, which are then

solved concurrently (i.e., in parallel).” The degree of parallelism that can be achieved

is dependent on the inherent nature of the problem at hand (remember that there ex-

ists significant parallelism in the world), and the skill of the algorithm or software

designer is to identify the different forms of parallelism present in the underlying

problem. We begin with a discussion of two simple examples to demonstrate inher-

ent parallel computation: vector multiplication and text searching.

Our first example carries out multiplication of the elements of two arrays A and B,

each with N elements, storing the result of each multiply in a corresponding array C.

Figure 1.2 shows the computation we would like to carry out. The serial Cþþ
program for code would look as follows:

for (i¼0; i<N; i++)

C[i] ¼ A[i] * B[i];

This code possesses significant parallelism but very little arithmetic intensity. The

computation of every element in C is independent of every other element. If we were

to parallelize this code, we could choose to generate a separate execution instance to

perform the computation of each element of C. This code possesses significant data-

level parallelism because the same operation is applied across all of A and B to pro-

duce C. We could also view this breakdown as a simple form of task parallelism

where each task operates on a subset of the same data; however, task parallelism gen-

eralizes further to execution on pipelines of data or even more sophisticated parallel

interactions. Figure 1.3 shows an example of task parallelism in a pipeline to support

filtering of images in frequency space using an FFT.
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Filtering a series of images using an FFT shows clear task parallelism as a series of tasks

operate together in a pipeline to compute the overall result.

5Thinking parallel
Let us consider a second example. The computation we are trying to carry out is

to find the number of occurrences of a string of characters in a body of text

(Figure 1.4). Assume that the body of text has already been parsed into a set of N
words. We could choose to divide the task of comparing the string against the N po-

tential matches into N comparisons (i.e., tasks), where each string of characters is

matched against the text string. This approach, although rather naı̈ve in terms of

search efficiency, is highly parallel. The process of the text string being compared

against the set of potential words presentsN parallel tasks, each carrying out the same
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An example of both task-level and data-level parallelism. We can have parallel tasks that

count the occurrence of string in a body of text. The lower portion of the figure shows that the

string comparison can be broken down to finer-grained parallel processing.

6 CHAPTER 1 Introduction to parallel programming
set of operations. There is even further parallelism within a single comparison task,

where the matching on a character-by-character basis presents a finer-grained degree

of parallelism. This example exhibits both data-level parallelism (we are going to be

performing the same operation onmultiple data items) and task-level parallelism (we

can compare the string to all words concurrently).

Once the number ofmatches is determined,we need to accumulate them to provide

the total number of occurrences. Again, this summing can exploit parallelism. In this

step, we introduce the concept of “reduction,” where we can utilize the availability of

parallel resources tocombinepartials sumsinaveryefficientmanner.Figure1.5shows

the reduction tree, which illustrates this summation process in log N steps.
CONCURRENCY AND PARALLEL PROGRAMMING MODELS
Here, we discuss concurrency and parallel processing models so that when attempt-

ing to map an application developed in OpenCL to a parallel platform, we can select

the right model to pursue. Although all of the following models can be supported in

OpenCL, the underlying hardware may restrict which model will be practical to use.
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After all string comparisons are completed, we can sum up the number of matches in a

combining network.

7Concurrency and parallel programming models
Concurrency is concerned with two or more activities happening at the same

time. We find concurrency in the real world all the time—for example, carrying a

child in one arm while crossing a road or, more generally, thinking about something

while doing something else with one’s hands.

When talking about concurrency in terms of computer programming, we mean a

single system performing multiple tasks independently. Although it is possible that

concurrent tasks may be executed at the same time (i.e., in parallel), this is not a re-

quirement. For example, consider a simple drawing application, which is either re-

ceiving input from the user via the mouse and keyboard or updating the display with

the current image. Conceptually, receiving and processing input are different oper-

ations (i.e., tasks) from updating the display. These tasks can be expressed in terms of

concurrency, but they do not need to be performed in parallel. In fact, in the case in

which they are executing on a single core of a CPU, they cannot be performed in

parallel. In this case, the application or the operating system should switch between

the tasks, allowing both some time to run on the core.

Parallelism is concerned with running two or more activities in parallel with the

explicit goal of increasing overall performance. For example, consider the following

assignments:
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step 1) A ¼ B + C

step 2) D ¼ E + G

step 3) R ¼ A + D

The assignments of A and D in steps 1 and 2 (respectively) are said to be independent

of each other because there is no data flow between these two steps (i.e., the variables

E and G on the right side of step 2 do not appear on the left side step 1, and vice versa,

the variables B and C on the right sides of step 1 do not appear on the left side of

step 2.). Also the variable on the left side of step 1 (A) is not the same as the variable

on the left side of step 2 (D). This means that steps 1 and 2 can be executed in parallel

(i.e., at the same time). Step 3 is dependent on both steps 1 and 2, so cannot be

executed in parallel with either step 1 or 2.

Parallel programsmust be concurrent, but concurrent programsneed not be parallel.

Althoughmany concurrent programs can be executed in parallel, interdependencies be-

tween concurrent tasksmaypreclude this. For example, an interleaved executionwould

still satisfy thedefinitionofconcurrencywhilenot executing inparallel.Asa result, only

a subset of concurrent programs are parallel, and the set of all concurrent programs is

itself a subset of all programs. Figure 1.6 shows this relationship.

In the remainder of this section, somewell-known approaches to programming con-

current and parallel systems are introduced with the aim of providing a foundation

before introducing OpenCL in Chapter 2.
All programs

Concurrent
programs

Parallel
programs

FIGURE 1.6

Parallel and concurrent programs are subsets of programs.
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Threads and Shared Memory
A running program may consist of multiple subprograms that maintain their own in-

dependent control flow and that are allowed to run concurrently. These subprograms

are defined as threads. Communication between threads is via updates and access to

memory appearing in the same address space. Each thread has its own pool of local

memory—that is, variables—but all threads see the same set of global variables. A

simple analogy that can be used to describe the use of threads is the concept of a main

program that includes a number of subroutines. The main program is scheduled to

run by the operating system and performs necessary loading and acquisition of sys-

tem and user resources to run. Execution of the main program begins by performing

some serial work and then continues by creating a number of tasks that can be sched-

uled and run by the operating system concurrently using threads.

Each thread benefits from a global view of memory because it shares the same

memory address space of the main program. Threads communicate with each other

through global memory. This can require synchronization constructs to ensure that

more than one thread is not updating the same global address.

A memory consistency model is defined to manage load and store ordering. All

processors see the same address space and have direct access to these addresses with

the help of other processors. Mechanisms such as locks/semaphores are commonly

used to control access to shared memory that is accessed by multiple tasks. A key

feature of the shared memorymodel is the fact that the programmer is not responsible

for managing data movement, although depending on the consistency model imple-

mented in the hardware or runtime system, some level of memory consistency may

have to be enforced manually. This relaxes the requirement to specify explicitly the

communication of data between tasks, and as a result, parallel code development can

often be simplified.

There is a significant cost to supporting a fully consistent sharedmemorymodel in

hardware. For multiprocessor systems, the hardware structures required to support

this model become a limiting factor. Shared buses become bottlenecks in the design.

The extra hardware required typically grows exponentially in terms of its complexity

as we attempt to add additional processors. This has slowed the introduction of multi-

core andmultiprocessor systems at the low end, and it has limited the number of cores

working together in a consistent shared memory system to relatively low numbers

because shared buses and coherence protocol overheads become bottlenecks. More

relaxed shared memory systems scale further, although in all cases scaling shared

memory systems comes at the cost of complicated and expensive interconnects.

Most multi-core CPU platforms support shared memory in one form or another.

OpenCL supports execution on shared memory devices.
Message-Passing Communication
The message-passing communication model enables explicit intercommunication of

a set of concurrent tasks that may use memory during computation. Multiple tasks

can reside on the same physical device and/or across an arbitrary number of devices.
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Tasks exchange data through communications by sending and receiving explicit

messages. Data transfer usually requires cooperative operations to be performed

by each process. For example, a send operation must have a matching receive

operation.

From a programming perspective, message-passing implementations commonly

comprise a library of hardware-independent routines for sending and receiving mes-

sages. The programmer is responsible for explicitly managing communication be-

tween tasks. Historically, a variety of message-passing libraries have been

available since the 1980s. MPI is currently the most popular message-passing mid-

dleware. These implementations differ substantially from each other, making it dif-

ficult for programmers to develop portable applications.
Different Grains of Parallelism
In parallel computing, granularity is a measure of the ratio of computation to com-

munication. Periods of computation are typically separated from periods of commu-

nication by synchronization events. The grain of parallelism is constrained by the

inherent characteristics of the algorithms constituting the application. It is important

that the parallel programmer selects the right granularity in order to reap the full

benefits of the underlying platform because choosing the right grain size can help

to expose additional degrees of parallelism. Sometimes this selection is referred

to as “chunking,” determining the amount of data to assign to each task. Selecting

the right chunk size can help provide for further acceleration on parallel hardware.

Next, we consider some of the trade-offs associated with identifying the right

grain size.

• Fine-grained parallelism

• Low arithmetic intensity.

• Maynot have enoughwork to hide long-duration asynchronous communication.

• Facilitates load balancing by providing a larger number of more manageable

(i.e., smaller) work units.

• If the granularity is too fine, it is possible that the overhead required for com-

munication and synchronization between tasks can actually produce a slower

parallel implementation than the original serial execution.

• Coarse-grained parallelism

• High arithmetic intensity.

• Complete applications can serve as the grain of parallelism.

• More difficult to load balance efficiently.

Given these trade-offs, which granularity will lead to the best implementation? The

most efficient granularity is dependent on the algorithm and the hardware environ-

ment in which it is run. In most cases, if the overhead associated with communication

and synchronization is high relative to the time of the computation task at hand, it

will generally be advantageous to work at a coarser granularity. Fine-grained paral-

lelism can help reduce overheads due to load imbalance or memory delays (this is
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particularly true on a GPU, which depends on near-zero-overhead fine-grained

thread switching to hide memory latencies). Fine-grained parallelism can even occur

at an instruction level (this approach is used in very long instruction word (VLIW)

and superscalar architectures).
Data Sharing and Synchronization
Consider the case in which two applications run that do not share any data. As long as

the runtime system or operating system has access to adequate execution resources,

they can be run concurrently and even in parallel. If halfway through the execution of

one application it generated a result that was subsequently required by the second

application, then we would have to introduce some form of synchronization

into the system, and parallel execution—at least across the synchronization

point—becomes impossible.

When writing concurrent software, data sharing and synchronization play a crit-

ical role. Examples of data sharing in concurrent programs include

• the input of a task is dependent on the result of another task—for example, in a

producer/consumer or pipeline execution model; and

• when intermediate results are combined together (e.g., as part of a reduction, as in

our word search example shown in Figure 1.4).

Ideally, we would only attempt to parallelize portions of an application that are void

of data dependencies, but this is not always possible. Explicit synchronization prim-

itives such as barriers or locks may be used to support synchronization when neces-

sary. Although we only raise this issue here, later chapters revisit this question when

support for communication between host and device programs or when synchroni-

zation between tasks is required.
STRUCTURE
The remainder of the book is organized as follows:

Chapter 1 (this chapter) introduces many concepts related to the development of

parallel algorithms and software. The chapter covers concurrency, threads, and

different grains of parallelism: many of the fundamentals of parallel software

development.

Chapter 2 presents an introduction to OpenCL, including key concepts such as

kernels, platforms, and devices, the four different abstraction models, and devel-

oping your first OpenCL kernel. Understanding these different models is critical

to fully appreciate the richness of OpenCL’s programming model.

Chapter 3 presents some of the architectures OpenCL does or might target, in-

cluding x86 CPUs, GPUs, and APUs. The text includes discussion of different

styles of architectures including SIMD and VLIW. This chapter also covers
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the concepts of multi-core and throughput-oriented systems, as well as the new

advances in heterogeneous architectures.

Chapter 4 introduces basic matrix multiplication, image rotation and convolution

implementations to help the reader learn OpenCL by example.

Chapter 5 discusses concurrency and execution in the OpenCL programming

model. In this chapter we discuss kernels, work items and the OpenCL execution

and memory hierarchies. We also show how queuing and synchronization work

in OpenCL such that the reader gains an understanding of how to write OpenCL

programs that interact with memory correctly.

Chapter 6 shows howOpenCLmaps to an example architecture. For this study we

choose a system comprising an AMD Bulldozer CPU and an AMD Radeon

HD7970 GPU. This chapter allows us to show how the mappings of the OpenCL

programming model for largely serial architectures such as CPUs and vector/

throughput architectures such as GPUs differ, giving some idea how to optimize

for specific architectural styles.

Chapter 7 discusses data management on heterogeneous systems, with particular

focus on developing guidelines on how to optimize data transfers on different

platforms using OpenCL. The chapter concludes with a case study where the per-

formance of a reduction kernel is considered when different data management

strategies are used.

Chapter 8 presents a case study that accelerates a convolution algorithm. Issues

related to memory space utilization and efficiency are considered as well as work

item scheduling, wavefront occupancy, and overall efficiency. These techniques

are the foundations necessary for developing high performance code using

OpenCL.

Chapter 9 presents another case study, looking at how to optimize the perfor-

mance of a Histogramming application. In particular, it highlights how careful

design of work-group size andmemory access patterns can make a vast difference

to performance in memory bound applications such as Histogram.

Chapter 10 discusses how to leverage a heterogeneous CPU-GPU environment.

The target application is a mixed particle simulation (as illustrated on the cover)

where work is distributed across both the CPU and GPU depending on the grain

size of particles in the system.

Chapter 11 shows how to use OpenCL extensions using the device fission and

double precision extensions as examples.

Chapter 12 shows that non C and C++ application developers can access the ben-

efits of OpenCL via a selection of API wrapper frameworks and Embedded Do-

main Specific Languages. This main component of the chapter is an in depth look

at accessing OpenCL from the functional programming language Haskell.

Chapter 13 introduces the reader to debugging and analyzing OpenCL programs.

The right debugging tool can save a developer 100s of wasted programs, allow-

ing her instead to learn the specific computer language and solve the problem at

hand.
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Chapter 14 looks at the profiling techniques briefly mentioned in chapter 13 in

more depth, applying them to a real application. A medical image analysis pipe-

line is ported from a traditional CPU multithreaded execution and optimized for

execution using OpenCL on a GPU. In this chapter we see both static analysis and

profiling and the tradeoffs involved in optimizing a real application for data-

parallel execution.
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CHAPTER
Introduction to OpenCL
 2

INTRODUCTION
This chapter introduces OpenCL, the programming fabric that will allow us to weave

our application to execute concurrently. Programmers familiar with C and Cþþ
should have little trouble understanding the OpenCL syntax. We begin by reviewing

the OpenCL standard.
The OpenCL Standard
Open programming standards designers are tasked with a very challenging objective:

arrive at a common set of programming standards that are acceptable to a range of

competing needs and requirements. The Khronos consortium that manages the

OpenCL standard has done a good job addressing these requirements. The consor-

tium has developed an applications programming interface (API) that is general

enough to run on significantly different architectures while being adaptable enough

that each hardware platform can still obtain high performance. Using the core lan-

guage and correctly following the specification, any program designed for one ven-

dor can execute on another’s hardware. The model set forth by OpenCL creates

portable, vendor- and device-independent programs that are capable of being accel-

erated on many different hardware platforms.

The OpenCLAPI is a Cwith a CþþWrapper API that is defined in terms of the C

API. There are third-party bindings for many languages, including Java, Python, and

.NET. The code that executes on an OpenCL device, which in general is not the same

device as the host CPU, is written in the OpenCL C language. OpenCL C is a

restricted version of the C99 language with extensions appropriate for executing

data-parallel code on a variety of heterogeneous devices.
The OpenCL Specification
The OpenCL specification is defined in four parts, called models, that can be sum-

marized as follows:
Heterogeneous Computing with OpenCL

© 2013 Advanced Micro Devices, Inc. Published by Elsevier Inc. All rights reserved.
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1. Platform model: Specifies that there is one processor coordinating execution (the

host) and one or more processors capable of executing OpenCL C code (the de-
vices). It defines an abstract hardware model that is used by programmers when

writing OpenCL C functions (called kernels) that execute on the devices.

2. Execution model: Defines how the OpenCL environment is configured on the

host and how kernels are executed on the device. This includes setting up an

OpenCL context on the host, providing mechanisms for host–device interaction,

and defining a concurrency model used for kernel execution on devices.

3. Memory model: Defines the abstract memory hierarchy that kernels use, regard-

less of the actual underlying memory architecture. The memory model closely

resembles current GPU memory hierarchies, although this has not limited adopt-

ability by other accelerators.

4. Programming model: Defines how the concurrency model is mapped to physical

hardware.

In a typical scenario, we might observe an OpenCL implementation executing on a

host x86 CPU, which is using a GPU device as an accelerator. The platform model

defines this relationship between the host and device. The host sets up a kernel for the

GPU to run and instantiates it with some specified degree of parallelism. This is the

execution model. The data within the kernel is allocated by the programmer to spe-

cific parts of an abstract memory hierarchy. The runtime and driver will map these

abstract memory spaces to the physical hierarchy. Finally, hardware thread contexts

that execute the kernel must be created and mapped to actual GPU hardware units.

This is done using the programming model. Throughout this chapter, these ideas are

discussed in further detail.

This chapter begins by introducing how OpenCL kernels are written and the par-

allel execution model that they use. The OpenCL host API is then described and

demonstrated using a running example–vector addition. The full listing of the vector

addition example is given at the end of the chapter.
Kernels and the OpenCL Execution Model
Kernels are the parts of an OpenCL program that actually execute on a device. The

OpenCL API enables an application to create a context for management of the ex-

ecution of OpenCL commands, including those describing the movement of data be-

tween host and OpenCL memory structures and the execution of kernel code that

processes this data to perform some meaningful task.

Like many CPU concurrency models, an OpenCL kernel is syntactically similar

to a standard C function; the key differences are a set of additional keywords and the

execution model that OpenCL kernels implement. When developing concurrent pro-

grams for a CPU using OS threading APIs or OpenMP, for example, the programmer

considers the physical resources available (e.g., CPU cores) and the overhead of
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creating and switching between threads when their number substantially exceeds the

resource availability. With OpenCL, the goal is often to represent parallelism pro-

grammatically at the finest granularity possible. The generalization of the OpenCL

interface and the low-level kernel language allows efficient mapping to a wide range

of hardware. The following discussion presents three versions of a function that per-

forms an element-wise vector addition: a serial C implementation, a threaded C

implementation, and an OpenCL implementation.

The code for a serial C implementation of the vector addition executes a loop with

as many iterations as there are elements to compute. Each loop iteration adds the

corresponding locations in the input arrays together and stores the result into the out-

put array:

// Perform an element-wise addition of A and B and store in C.

// There are N elements per array.

void vecadd(int *C, int* A, int *B, int N) {
for(int i ¼ 0; i < N; i++) {

C[i] ¼ A[i] + B[i];

}

}

For a simple multi-core device, we could either use a low-level coarse-grained

threading API, such as Win32 or POSIX threads, or use a data-parallel model such

as OpenMP. Writing a coarse-grained multithreaded version of the same function

would require dividing the work (i.e., loop iterations) between the threads. Because

there may be a large number of loop iterations and the work per iteration is small, we

would need to chunk the loop iterations into a larger granularity (a technique called

strip mining, (Cooper and Torczon, 2011)). The code for the multithreaded version

may look as follows:

// Perform and element-wise addition of A and B and store in C.

// There are N elements per array and NP CPU cores.

void vecadd(int *C, int* A, int *B, int N, int NP, int tid) {
int ept ¼ N/NP; // elements per thread

for(int i ¼ tid*ept; i < (tid+1)*ept; i++) {

C[i] ¼ A[i] + B[i];

}

}

OpenCL is closer to OpenMP than the threading APIs of Win32 and POSIX,

supporting data-parallel execution but retaining a low level of control. The unit of

concurrent execution in OpenCL C is a work-item. As with the two previous exam-

ples, each work-item executes the kernel function body. Instead of manually strip

mining the loop, we will often map a single iteration of the loop to a work-item.

We tell the OpenCL runtime to generate as many work-items as elements in the input

and output arrays and allow the runtime to map those work-items to the underlying
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hardware, and hence CPU or GPU cores, in whatever way it deems appropriate. Con-

ceptually, this is very similar to the parallelism inherent in a functional “map” op-

eration (c.f., mapReduce) or a data-parallel for loop in a model such as OpenMP.

When an OpenCL device begins executing a kernel, it provides intrinsic functions

that allow a work-item to identify itself. In the following code, the call to get_glo-

bal_id(0) allows the programmer to make use of the position of the current work-

item in the simple case to regain the loop counter:

// Perform an element-wise addition of A and B and store in C

// N work-items will be created to execute this kernel.

__kernel

void vecadd(__global int *C, __global int* A, __global int *B) {
int tid ¼ get_global_id(0); // OpenCL intrinsic function

C[tid] ¼ A[tid] + B[tid];

}

Given that OpenCL describes execution in fine-grained work-items and can dispatch

vast numbers of work-items on architectures with hardware support for fine-grained

threading, it is easy to have concerns about scalability. The hierarchical concurrency

model implemented by OpenCL ensures that scalable execution can be achieved

even while supporting a large number of work-items. When a kernel is executed,

the programmer specifies the number of work-items that should be created as an

n-dimensional range (NDRange). An NDRange is a one-, two-, or three-dimensional

index space of work-items that will often map to the dimensions of either the input or

the output data. The dimensions of the NDRange are specified as an N-element array

of type size_t, where N represents the number of dimensions used to describe the

work-items being created.

In thevectoradditionexample,ourdatawill beone-dimensional and,assuming that

there are 1024 elements, the size can be specified as a one-, two-, or three-dimensional

vector. The host code to specify an ND Range for 1024 elements is as follows:

size_t indexSpaceSize[3] ¼ {1024, 1, 1};

Achieving scalability comes from dividing the work-items of an NDRange into smal-

ler, equally sized workgroups (Figure 2.1). An index space with N dimensions re-

quires workgroups to be specified using the same N dimensions; thus, a three-

dimensional index space requires three-dimensional workgroups.

Work itemswithin aworkgroup have a special relationshipwith one another: They

can perform barrier operations to synchronize and they have access to a shared mem-

ory address space. Because workgroup sizes are fixed, this communication does not

have aneed to scale andhencedoesnot affect scalabilityof a large concurrent dispatch.

For the vector addition example, the workgroup size might be specified as

size_t workGroupSize[3] ¼ {64, 1, 1};

If the total number of work-items per array is 1024, this results in creating 16 work-

groups (1024 work-items/(64 work-items per workgroup) ¼ 16 workgroups). Note
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that OpenCL requires that the index space sizes are evenly divisible by the work-

group sizes in each dimension. For hardware efficiency, the workgroup size is usu-

ally fixed to a favorable size, and we round up the index space size in each dimension

to satisfy this divisibility requirement. In the kernel code, we can specify that

extra work-items in each dimension simply return immediately without outputting

any data.

For programs such as vector addition in which work-items behave independently

(evenwithin a workgroup), OpenCL allows the local workgroup size to be ignored by

the programmer and generated automatically by the implementation; in this case, the

developer will pass NULL instead.
PLATFORM AND DEVICES
The OpenCL platform model defines the roles of the host and devices and provides

an abstract hardware model for devices.
Host–Device Interaction
In the platform model, there is a single host that coordinates execution on one or

more devices. Platforms can be thought of as vendor-specific implementations of

the OpenCL API. The devices that a platform can target are thus limited to those with

which a vendor knows how to interact. For example, if Company A’s platform is

chosen, it cannot communicate with Company B’s GPU.

The platform model also presents an abstract device architecture that program-

mers target when writing OpenCL C code. Vendors map this abstract architecture

to the physical hardware. With scalability in mind, the platform model defines a
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The platform model defines an abstract architecture for devices.
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device as an array of compute units, with each compute unit functionally independent

from the rest. Compute units are further divided into processing elements. Figure 2.2
illustrates this hierarchical model.

The platform device model closely corresponds to the hardware model of some

GPUs. For example, the AMD Radeon 7970 graphics card (device) comprises 32

vector processors (compute units). Each compute unit has 4 16-lane SIMD engines

for a total of 64 lane (processing elements). Each SIMD lane on the 7970 executes a

scalar instruction. This allows the device to execute a total of 2048 instructions at

a time on the processing elements.

The API function clGetPlatformIDs() is used to discover the set of available

platforms for a given system:

cl_int

clGetPlatformIDs(cl_uint num_entries,
cl_platform_id *platforms,

cl_uint *num_platforms)
clGetPlatformIDs() will often be called twice by an application. The first call

passes an unsigned int pointer as the num_platforms argument and NULL is passed

as the platforms argument. The pointer is populated with the available number of

platforms. The programmer can then allocate space to hold the platform information.

For the second call, a cl_platform_id pointer is passed to the implementation with

enough space allocated for num_entries platforms. After platforms have been dis-

covered, the clGetPlatformInfo() call can be used to determine which implemen-

tation (vendor) the platform was defined by. The full source code listing at the end of

the chapter demonstrates this process.

The clGetDeviceIDs() call works very similar to clGetPlatformIDs(). It takes

the additional arguments of a platform and a device type but otherwise the same

three-step process occurs. The device_type argument can be used to limit the de-

vices to GPUs only (CL_DEVICE_TYPE_GPU), CPUs only (CL_DEVICE_TYPE_CPU),

all devices (CL_DEVICE_TYPE_ALL), as well as other options. As with platforms,
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clGetDeviceInfo() is called to retrieve information such as name, type, and vendor

from each device. Discovering devices is illustrated in the full source code listing at

the end of the chapter:

cl_int

clGetDeviceIDs(cl_platform_id platform,
cl_device_type device_type,

cl_uint num_entries,

cl_device_id *devices,

cl_uint *num_devices)
The CLInfo program in the AMD APP SDK uses the clGetPlatformInfo() and

clGetDeviceInfo() commands to print detailed information about the OpenCL sup-

ported platforms and devices in a system. Hardware details such as memory sizes and

bus widths are available using these commands. A snippet of the output from the

CLInfo program is shown here:

$ ./CLInfo

Number of platforms: 1

Platform Profile: FULL_PROFILE

Platform Version: OpenCL 1.2 AMD–APP (938.1)

Platform Name: AMD Accelerated Parallel Processing

Platform Vendor: Advanced Micro Devices, Inc.

Number of devices: 2

Device Type: CL_DEVICE_TYPE_GPU

Board name: AMD Radeon HD 7900 Series

Device Topology: PCI[ B#1, D#0, F#0 ]

Max compute units: 32

Max work items dimensions: 3

Max work group size: 512

Preferred vector width char: 16

Local memory type: Scratchpad

Local memory size: 32768

Name: Tahiti

Vendor: Advanced Micro Devices, Inc.

Device OpenCL C version: OpenCL C 1.2

Driver version: CAL 1.4.1741 (VM)

Device Type: CL_DEVICE_TYPE_CPU

Device ID: 4098

Max compute units: 2

Max work group size: 1024

Name: Intel(R) Core(TM)2 CPU 6300 @ 1.86 GHz

Vendor: GenuineIntel

Device OpenCL C version: OpenCL C 1.2
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THE EXECUTION ENVIRONMENT
Before a host can request that a kernel be executed on a device, a context

must be configured on the host that enables it to pass commands and data to the device.
Contexts
In OpenCL, a context is an abstract container that exists on the host. A context

coordinates the mechanisms for host–device interaction, manages the memory ob-

jects that are available to the devices, and keeps track of the programs and kernels

that are created for each device.

The API function to create a context is clCreateContext(). The properties ar-

gument is used to restrict the scope of the context. It may provide a specific platform,

enable graphics interoperability, or enable other parameters in the future. Limiting

the context to a given platform allows the programmer to provide contexts for mul-

tiple platforms and fully utilize a system comprising resources from amixture of ven-

dors. Next, the number and IDs of the devices that the programmer wants to associate

with the context must be supplied. OpenCL allows user callbacks to be provided

when creating a context that can be used to report additional error information that

might be generated throughout its lifetime. The full source code listing at the end of

the chapter demonstrates the creation of a context:

cl_context

clCreateContext (const cl_context_properties *properties,
cl_uint num_devices,

const cl_device_id *devices,

void (CL_CALLBACK *pfn_notify)(

const char *errinfo,

const void *private_info,

size_t cb,

void *user_data),

void *user_data,

cl_int *errcode_ret)
The OpenCL specification also provides an API call that alleviates the need to build a

list of devices. clCreateContextFromType() allows a programmer to create a context

that automatically includes all devices of the specified type (e.g., CPUs, GPUs, and all

devices). After creating a context, the function clGetContextInfo() can be used to

query information such as the number of devices present and the device structures.

In OpenCL, the process of discovering platforms and devices and setting up a

context is tedious. However, after the code to perform these steps is written once,

it can be reused for almost any project.
Command Queues
Communication with a device occurs by submitting commands to a command queue.
The command queue is themechanism that the host uses to request action by the device.
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Once the host decides which devices to work with and a context is created, one

command queue needs to be created per device (i.e., each command queue is

associated with only one device). Whenever the host needs an action to be performed

by a device, it will submit commands to the proper command queue. The API

clCreateCommandQueue() is used to create a command queue and associate it with

a device:

cl_command_queue

clCreateCommandQueue(
cl_context context,

cl_device_id device,

cl_command_queue_properties properties,

cl_int* errcode_ret)
The properties parameter of clCreateCommandQueue() is a bit field that is used to

enable profiling of commands (CL_QUEUE_PROFILING_ENABLE) and/or to allow out-

of-order execution of commands (CL_QUEUE_OUT_OF_ ORDER_EXEC_MODE_ ENABLE).

Profiling is discussed in Chapter 12. With an in-order command queue (the

default), commands are pulled from the queue in the order they were received.

Out-of-order queues allow the OpenCL implementation to search for commands

that can possibly be rearranged to execute more efficiently. If out-of-order queues

are used, it is up to the user to specify dependencies that enforce a correct execution

order. The full source code listing at the end of the chapter creates a command

queue.

Any API that specifies host–device interaction will always begin with

clEnqueue and require a command queue as a parameter. For example, the

clEnqueueReadBuffer() command requests that the device send data to the host,

and clEnqueueNDRangeKernel() requests that a kernel is executed on the device.

These calls are discussed later in this chapter.
Events
Any operation that enqueues a command into a command queue—that is, any API

call that begins with clEnqueue—produces an event. Events have two main roles in

OpenCL:

1. Representing dependencies

2. Providing a mechanism for profiling

In addition to producing event objects, API calls that begin with clEnqueue also

take a “wait list” of events as a parameter. By generating an event for one API call

and passing it as an argument to a successive call, OpenCL allows us to represent

dependencies. A kernel enqueued using a clEnqueue call will not begin executing

until all events in its wait list have been satisfied. Chapter 5 provides examples of

representing dependencies using events.

OpenCL events can also be used to profile, using associated timers, commands

enqueued. Chapter 13 describes how to use OpenCL events for profiling.
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Memory Objects
OpenCL applications often work with large arrays or multidimensional matrices.

This data needs to be physically present on a device before execution can begin.

In order for data to be transferred to a device, it must first be encapsulated as a mem-
ory object. OpenCL defines two types of memory objects: buffers and images.
Buffers are equivalent to arrays in C, created using malloc(), where data elements

are stored contiguously in memory. Images, on the other hand, are designed as opa-

que objects, allowing for data padding and other optimizations that may improve per-

formance on devices.

Whenever a memory object is created, it is valid only within a single context.

Movement to and from specific devices is managed by the OpenCL runtime as nec-

essary to satisfy data dependencies.

Buffers
Conceptually, it may help to visualize a memory object as a pointer that is valid on a

device. This is similar to a call to malloc, in C, or a Cþþ’s new operator. The API

function clCreateBuffer() allocates the buffer and returns a memory object:

cl_mem clCreateBuffer(
cl_context context,

cl_mem_flags flags,

size_t size,

void *host_ptr,

cl_int *errcode_ret)
Creating a buffer requires supplying the size of the buffer and a context in which

the buffer will be allocated; it is visible for all devices associated with the con-

text. Optionally, the caller can supply flags that specify that the data is read-

only, write-only, or read-write. Other flags also exist that specify additional op-

tions for creating and initializing a buffer. One simple option is to supply a host

pointer with data used to initialize the buffer. The full source code listing at the

end of the chapter demonstrates the creation of two input buffers and one output

buffer.

Data contained in host memory is transferred to and from an OpenCL buffer

using the commands clEnqueueWriteBuffer() and clEnqueueReadBuffer(),

respectively. If a kernel that is dependent on such a buffer is executed on a discrete

accelerator device such as a GPU, the buffer may be transferred to the device. The

buffer is linked to a context, not a device, so it is the runtime that determines

the precise time the data is moved.

The API calls for reading and writing to buffers are very similar. The signature for

clEnqueueWriteBuffer() is

cl_int

clEnqueueWriteBuffer (
cl_command_queue command_queue,

cl_mem buffer,
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cl_bool blocking_write,

size_t offset,

size_t cb,

const void *ptr,

cl_uint num_events_in_wait_list,

const cl_event *event_wait_list,

cl_event *event)
Similar to other enqueue operations, reading or writing a buffer requires a com-

mand queue to manage the execution schedule. In addition, the enqueue function

requires the buffer, the number of bytes to transfer, and an offset within the

buffer. The blocking_write option should be set to CL_TRUE if the transfer into

an OpenCL buffer should complete before the function returns—that is, it will

block until the operation has completed. Setting blocking_write to CL_FALSE

allows clEnqueueWriteBuffer() to return before the write operation has com-

pleted. The full source code listing at the end of the chapter enqueues

commands to write input data to buffers on a device, and read the output data back

to the host.
Images
Images are OpenCL memory objects that abstract the storage of physical data to al-

low for device-specific optimizations. They are not required to be supported by all

OpenCL devices and an application is required to check, using clGetDeviceInfo(), if

they are supported or not, otherwise behavior is undefined. Unlike buffers, images can-

not be directly referenced as if theywere arrays. Further, adjacent data elements are not

guaranteed tobestoredcontiguously inmemory.Thepurposeofusing images is toallow

thehardware to takeadvantageofspatial localityand toutilize thehardwareacceleration

available on many devices. The architectural design and tradeoffs for images are dis-

cussed in detail in Chapter 5.

In versions 1.0 and 1.1 of the OpenCL standard, only 2D and 3D images were

supported using the commands clCreateImage2D() and clCreateImage3D(),

respectively. In version 1.2 of the standard, a more general interface was introduced

using clCreateImage(), which also supports 1D images.

Unlike buffers that do not have a data type or dimensions, an image is created

using descriptors that provide specific details to the hardware about the data. The

elements of an image are represented by a format descriptor (cl_image_format).

The format descriptor specifies how the image elements are stored in memory

based the on the concept of channels. The channel order specifies the number

of elements that make up an image element (up to 4 elements, based on the tra-

ditional use of RGBA pixels), and the channel type specifies the size of each

element. These elements can be sized anywhere from 1 to 4 bytes and in various

different formats. e.g. integer or floating point. Other metadata is provided by an

image descriptor (cl_image_desc), which includes the type of the image and the

dimensions.
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cl_mem

clCreateImage(

cl_context context,

cl_mem_flags flags,

const cl_image_format *image_format,

const cl_image_desc *image_desc,

void *host_ptr,

cl_int *errcode_ret)

There are also additional parameters compared to buffers when reading or writing

an image. Read or write operations take a 3-element origin (similar to the buffer

offset) that defines the location within the image that the transfer will begin,

and another 3-element region parameter that defines the extent of the data that will

be transferred.

Within a kernel, images are accessed with built-in functions specific to the data

type. For example, the function read_imagef() is used for reading floats and

read_imageui() for unsigned integers. When data is read from an image, a sampler

object is required. Samplers specify how out-of-bounds image accesses are handled,

whether interpolation should be used, and if coordinates are normalized. Writing to a

location in an image requires manual conversion to the proper storage data format

(i.e., storing in the proper channel and with the proper size). Chapter 4 provides

an example of an OpenCL program that uses images.
Flush and Finish
The flush and finish commands are two different types of barrier operations for a

command queue. The clFinish() function blocks until all of the commands in a

command queue have completed; its functionality is synonymous with a synchroni-

zation barrier. The clFlush() function blocks until all of the commands in a com-

mand queue have been removed from the queue. This means that the commands will

definitely be in-flight but will not necessarily have completed.

cl_int clFlush(cl_command_queue command_queue);

cl_int clFinish(cl_command_queue command_queue);
Creating an OpenCL Program Object
OpenCL C code (written to run on an OpenCL device) is called a program. A pro-

gram is a collection of functions called kernels, where kernels are units of execution

that can be scheduled to run on a device.

OpenCL programs are compiled at runtime through a series of API calls. This

runtime compilation gives the system an opportunity to optimize for a specific de-

vice. There is no need for an OpenCL application to have been prebuilt against the

AMD, NVIDIA, or Intel runtimes, for example, if it is to run on devices produced by

all of these vendors. OpenCL software links only to a common runtime layer (called
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the ICD); all platform-specific SDK activity is delegated to a vendor runtime through

a dynamic library interface.

The process of creating a kernel is as follows:

1. The OpenCL C source code is stored in a character string. If the source code is

stored in a file on a disk, it must be read into memory and stored as a character

array.

2. The source code is turned into a program object, cl_program, by calling clCreate

ProgramWithSource().

3. The program object is then compiled, for one or more OpenCL devices, with

clBuildProgram(). If there are compile errors, they will be reported here.

The precise binary representation used is vendor specific. In the AMD runtime,

there are two main classes of devices: x86 CPUs and GPUs. For x86 CPUs,

clBuildProgram() generates x86 instructions that can be directly executed on

the device. For the GPUs, it will create AMD’s GPU intermediate language (IL),

a high-level intermediate language that represents a single work-item but that

will be just-in-time compiled for a specific GPU’s architecture later, generating

what is often known as ISA (i.e., code for a specific instruction set architecture).

NVIDIA uses a similar approach, calling its intermediate representation PTX.

The advantage of using such an IL is to allow the GPU ISA to change from one de-

vice or generation to another in what is still a very rapidly developing architectural

space.

One additional feature of the build process is the ability to generate both the final

binary format and various intermediate representations and serialize them (e.g., write

them out to disk). As with most objects, OpenCL provides a function to return

information about program objects, clGetProgramInfo(). One of the flags to this

function is CL_PROGRAM_BINARIES, which returns a vendor-specific set of binary

objects generated by clBuildProgram().

In addition to clCreateProgramWithSource(), OpenCL provides clCreate-

ProgramWithBinary(), which takes a list of binaries that matches its device list.

The binaries are previously created using clGetProgramInfo().
The OpenCL Kernel
The final stage to obtain a cl_kernel object that can be used to execute kernels on a

device is to extract the kernel from the cl_program. Extracting a kernel from a pro-

gram is similar to obtaining an exported function from a dynamic library. The name

of the kernel that the program exports is used to request it from the compiled program

object. The name of the kernel is passed to clCreateKernel(), along with the pro-

gram object, and the kernel object will be returned if the program object was valid

and the particular kernel is found.

A few more steps are required before the kernel can actually be executed. Unlike

calling functions in regular C programs, we cannot simply call a kernel by providing

a list of arguments.
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Executing a kernel requires dispatching it through an enqueue function. Due

both to the syntax of the C language and to the fact that kernel arguments are per-

sistent (and hence we need not repeatedly set them to construct the argument list for

such a dispatch), we must specify each kernel argument individually using the

function clSetKernelArg(). This function takes a kernel object, an index specify-

ing the argument number, the size of the argument, and a pointer to the argument.

When a kernel is executed, this information is used to transfer arguments to the

device. The type information in the kernel parameter list is then used by the runtime

to unbox (similar to casting) the data to its appropriate type. The process of setting

kernel arguments is illustrated in the full source code listing at the end of the

chapter.

After any required memory objects are transferred to the device and the kernel

arguments are set, the kernel is ready to be executed. Requesting that a device begin

executing a kernel is done with a call to clEnqueueNDRangeKernel():

cl_int

clEnqueueNDRangeKernel(
cl_command_queue command_queue,

cl_kernel kernel,

cl_uint work_dim,

const size_t *global_work_offset,

const size_t *global_work_size,

const size_t *local_work_size,

cl_uint num_events_in_wait_list,

const cl_event *event_wait_list,

cl_event *event)
Look at the signature for the function. A command queue must be specified so the

target device is known. Similarly, the kernel object identifies the code to be executed.

Four fields are related to work-item creation. The work_dim parameter specifies the

number of dimensions (one, two, or three) in which work-items will be created.

The global_work_size parameter specifies the number of work-items in each di-

mension of the NDRange, and local_work_size specifies the number of work-items

in each dimension of the workgroups. The parameter global_work_offset can be

used to provide global IDs to the work-items that do not start at 0. As with all clEn-
queue commands, an event_wait_list is provided, and for non-NULL values the

runtime will guarantee that all corresponding events will have completed before

the kernel begins execution. The clEnqueueNDRangeKernel() call is asynchronous:

it will return immediately after the command is enqueued in the command queue and

likely before the kernel has even started execution. Either clWaitForEvents() or

clFinish() can be used to block execution on the host until the kernel completes.

The code to configure the work-items for the vector addition kernel and enqueue it

for execution is shown in the full source code listing at the end of the chapter.

At this point, we have presented all of the required host API commands needed to

enable the reader to run a complete OpenCL program.
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MEMORY MODEL
In general, memory subsystems vary greatly between computing platforms. For ex-

ample, all modern CPUs support automatic caching, although many GPUs do not. To

support code portability, OpenCL’s approach is to define an abstract memory model

that programmers can target when writing code and vendors can map to their actual

memory hardware. The memory spaces defined by OpenCL are discussed here and

shown in Figure 2.3.

These memory spaces are relevant within OpenCL programs. The keywords as-

sociated with each space can be used to specify where a variable should be created or

where the data that it points to resides.

Global memory is visible to all compute units on the device (similar to the main

memory on a CPU-based host system). Whenever data is transferred from the host to

the device, the data will reside in global memory. Any data that is to be transferred

back from the device to the host must also reside in global memory. The keyword

__global is added to a pointer declaration to specify that data referenced by the

pointer resides in global memory. For example, in the OpenCL C code at the end

of the chapter __global float* A, the data pointed to by A resides in global memory

(although we will see that A actually resides in private memory).
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The abstract memory model defined by OpenCL.
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Constant memory is not specifically designed for every type of read-only data but,
rather, for datawhere each element is accessed simultaneously by allwork-items.Var-

iables whose values never change (e.g., a data variable holding the value of p) also
fall into this category. Constant memory is modeled as a part of global memory, so

memory objects that are transferred to global memory can be specified as constant.

Data is mapped to constant memory by using the __constant keyword.

Local memory is a scratchpad memory whose address space is unique to each

compute device. It is common for it to be implemented as on-chip memory, but there

is no requirement that this be the case. Local memory is modeled as being shared by a

workgroup. As such, accesses may have much shorter latency and much higher band-

width than global memory. Calling clSetKernelArg()with a size, but no argument,

allows local memory to be allocated at runtime, where a kernel parameter is defined

as a __local pointer (e.g., __local float* sharedData). Alternatively, arrays can

be statically declared in local memory by appending the keyword __local (e.g.,

__local float[64] sharedData), although this requires specifying the array size

at compile time.

Private memory is memory that is unique to an individual work-item. Local vari-

ables and nonpointer kernel arguments are private by default. In practice, these vari-

ables are usually mapped to registers, although private arrays and any spilled

registers are usually mapped to an off-chip (i.e., long-latency) memory.

The memory spaces of OpenCL closely model those of modern GPUs. Figure 2.4

details the relationship between OpenCL memory spaces and those found on an

AMD 7970 GPU.
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7970 GPU. Simple private memory will be stored in registers; complex addressing or

excessive use will be stored in DRAM.
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WRITING KERNELS
As previously described, OpenCL C kernels are similar to C functions and can

be thought of as instances of a parallel map operation. The function body, like

the mapped function, will be executed once for every work-item created. We

utilize the code for the OpenCL kernel cache to illustrate how this mapping is

accomplished.

Kernels begin with the keyword __kernel and must have a return type of void.

The argument list is as for a C function with the additional requirement that the ad-

dress space of any pointer must be specified. Buffers can be declared in global mem-

ory (__global) or constant memory (__constant). Images are assigned to global

memory. Access qualifiers (__read_only, __write_only, and __read_write) can

also be optionally specified because they may allow for compiler and hardware

optimizations.

The __local qualifier is used to declare memory that is shared between all work-

items in a workgroup. This concept is often one of the most confusing for new

OpenCL programmers. When a local pointer is declared as a kernel parameter, such

as __local float *sharedData, it is a pointer to an array shared by the entire work-

group. In other words, only one array will be created per workgroup, and all work-

items in the workgroup can access it.

An alternative approach for declaring local memory allocations is to declare a

variable at a kernel-scope level:

__kernel void aKernel(. . .){
// Shared by all work-items in the group

__local float sharedData[32];

. . .

}

This appears to have kernel lexical scope, but the same named entity is shared by all

work-items in an entire workgroup, just as is the __local parameter, and the ap-

proaches are equivalent. Although it is important to note that a __local parameter

can be set to a different size for each dispatch, a __local declaration within a kernel

is fixed at compilation time.

When programming for OpenCL devices, particularly GPUs, performance may

increase by using local memory to cache data that will be used multiple times by a

work-item or by multiple work-items in the same workgroup (i.e., data with temporal

locality). When developing a kernel, we can achieve this with an explicit assignment

from a global memory pointer to a local memory pointer, as shown in the following

example code:

__kernel void cache(
__global float* data,

__local float* sharedData) {

int globalId ¼ get_global_id(0);
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int localId ¼ get_local_id(0);

// Cache data to local memory

sharedData[localId] ¼ data[globalId];

. . .

}

Once a work-item completes its execution, none of its state information or local

memory storage is persistent. Any results that need to be kept must be transferred

to global memory.
FULL SOURCE CODE EXAMPLE FOR VECTOR ADDITION
The following example listing is the complete host code for implementing the vector

addition example discussed in this chapter.

// This program implements a vector addition using OpenCL

// System includes

#include<stdio.h>

#include<stdlib.h>

// OpenCL includes

#include<CL/cl.h>

// OpenCL kernel to perform an element-wise addition

const char* programSource =

“__kernel \n”

“void vecadd(__global int *A, \n”

“ __global int *B, \n”

“ __global int *C) \n”

“{ \n”

“ \n”

“ // Get the work-item’s unique ID \n”

“ int idx=get_global_id(0); \n”

“ \n”

“ // Add the corresponding locations of \n”

“ // ‘A’ and ‘B’, and store the result in ‘C’. \n”

“ C[idx]=A[idx]+B[idx]; \n”

“} \n”

;

int main() {

// This code executes on the OpenCL host

// Host data

int *A=NULL; // Input array

int *B=NULL; // Input array

int *C=NULL; // Output array

// Elements in each array

const int elements=2048;
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// Compute the size of the data

size_t datasize=sizeof(int)*elements;

// Allocate space for input/output data

A=(int*)malloc(datasize);

B=(int*)malloc(datasize);

C=(int*)malloc(datasize);

// Initialize the input data

int i;

for(i=0; i<elements; i++) {

A[i]=i;

B[i]=i;

}

// Use this to check the output of each API call

cl_int status;

// Retrieve the number of platforms

cl_uint numPlatforms=0;

status=clGetPlatformIDs(0, NULL, &numPlatforms);

// Allocate enough space for each platform

cl_platform_id *platforms=NULL;

platforms=(cl_platform_id*)malloc(

numPlatforms*sizeof(cl_platform_id));

// Fill in the platforms

status=clGetPlatformIDs(numPlatforms, platforms, NULL);

// Retrieve the number of devices

cl_uint numDevices=0;

status=clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_ALL, 0,

NULL, &numDevices);

// Allocate enough space for each device

cl_device_id *devices;

devices=(cl_device_id*)malloc(

numDevices*sizeof(cl_device_id));

// Fill in the devices

status=clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_ALL,

numDevices, devices, NULL);

// Create a context and associate it with the devices

cl_context context;

context=clCreateContext(NULL, numDevices, devices, NULL,

NULL, &status);

// Create a command queue and associate it with the device

cl_command_queue cmdQueue;

cmdQueue=clCreateCommandQueue(context, devices[0], 0,

&status);



34 CHAPTER 2 Introduction to OpenCL
// Create a buffer object that will contain the data

// from the host array A

cl_mem bufA;

bufA=clCreateBuffer(context, CL_MEM_READ_ONLY, datasize,

NULL, &status);

// Create a buffer object that will contain the data

// from the host array B

cl_mem bufB;

bufB=clCreateBuffer(context, CL_MEM_READ_ONLY, datasize,

NULL, &status);

// Create a buffer object that will hold the output data

cl_mem bufC;

bufC=clCreateBuffer(context, CL_MEM_WRITE_ONLY, datasize,

NULL, &status);

// Write input array A to the device buffer bufferA

status=clEnqueueWriteBuffer(cmdQueue, bufA, CL_FALSE,

0, datasize, A, 0, NULL, NULL);

// Write input array B to the device buffer bufferB

status=clEnqueueWriteBuffer(cmdQueue, bufB, CL_FALSE,

0, datasize, B, 0, NULL, NULL);

// Create a program with source code

cl_program program=clCreateProgramWithSource(context, 1,

(const char**)&programSource, NULL, &status);

// Build (compile) the program for the device

status=clBuildProgram(program, numDevices, devices,

NULL, NULL, NULL);

// Create the vector addition kernel

cl_kernel kernel;

kernel=clCreateKernel(program, “vecadd”, &status);

// Associate the input and output buffers with the kernel

status=clSetKernelArg(kernel, 0, sizeof(cl_mem), &bufA);

status=clSetKernelArg(kernel, 1, sizeof(cl_mem), &bufB);

status=clSetKernelArg(kernel, 2, sizeof(cl_mem), &bufC);

// Define an index space (global work size) of work

// items for execution. A workgroup size (local work size)

// is not required, but can be used.

size_t globalWorkSize[1];

// There are ‘elements’ work-items

globalWorkSize[0]=elements;

// Execute the kernel for execution

status=clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL,

globalWorkSize, NULL, 0, NULL, NULL);
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// Read the device output buffer to the host output array

clEnqueueReadBuffer(cmdQueue, bufC, CL_TRUE, 0,

datasize, C, 0, NULL, NULL);

// Verify the output

int result=1;

for(i=0; i<elements; i++) {

if(C[i] !=i+i) {

result=0;

break;

}

}

if(result) {

printf(“Output is correct\n”);

} else {

printf(“Output is incorrect\n”);

}

// Free OpenCL resources

clReleaseKernel(kernel);

clReleaseProgram(program);

clReleaseCommandQueue(cmdQueue);

clReleaseMemObject(bufA);

clReleaseMemObject(bufB);

clReleaseMemObject(bufC);

clReleaseContext(context);

// Free host resources

free(A);

free(B);

free(C);

free(platforms);

free(devices);

return 0;

}

VECTOR ADDITION WITH C++ WRAPPER
The Khronos Group has defined a C++ wrapper API to go along with the OpenCL

standard. The C++ API corresponds closely to the C API (e.g. cl::Memory maps to

cl_mem), but offers the benefits of the higher-level language such as classes and

exception handling. The following source code listing provides a vector addition

example that corresponds to the prior C version.

#define __NO_STD_VECTOR // Use cl::vector instead of STL version

#define __CL_ENABLE_EXCEPTIONS
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#include<CL/cl.hpp>

#include<iostream>

#include<fstream>

#include<string>

int main() {

const int N_ELEMENTS=1024;

int *A=new int[N_ELEMENTS];

int *B=new int[N_ELEMENTS];

int *C=new int[N_ELEMENTS];

for(int i=0; i<N_ELEMENTS; i++) {

A[i]=i;

B[i]=i;

}

try {

// Query for platforms

cl::vector<cl::Platform>platforms;

cl::Platform::get(&platforms);

// Get a list of devices on this platform

cl::vector<cl::Device>devices;

platforms[0].getDevices(CL_DEVICE_TYPE_GPU, &devices);

// Create a context for the devices

cl::Context context(devices);

// Create a command queue for the first device

cl::CommandQueue queue =

cl::CommandQueue(context, devices[0]);

// Create the memory buffers

cl::Buffer bufferA=cl::Buffer(context,

CL_MEM_READ_ONLY, N_ELEMENTS * sizeof(int));

cl::Buffer bufferB=cl::Buffer(context,

CL_MEM_READ_ONLY, N_ELEMENTS * sizeof(int));

cl::Buffer bufferC=cl::Buffer(context,

CL_MEM_WRITE_ONLY, N_ELEMENTS * sizeof(int));

// Copy the input data to the input buffers using the

// command queue for the first device

queue.enqueueWriteBuffer(bufferA, CL_TRUE, 0,

N_ELEMENTS * sizeof(int), A);

queue.enqueueWriteBuffer(bufferB, CL_TRUE, 0,

N_ELEMENTS * sizeof(int), B);

// Read the program source

std::ifstream sourceFile(“vector_add_kernel.cl”);

std::string sourceCode(

std::istreambuf_iterator<char>(sourceFile),
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(std::istreambuf_iterator<char>()));

cl::Program::Sources source(1,

std::make_pair(sourceCode.c_str(),

sourceCode.length()+1));

// Make program from the source code

cl::Program program=cl::Program(context, source);

// Build the program for the devices

program.build(devices);

// Make kernel

cl::Kernel vecadd_kernel(program, “vecadd”);

// Set the kernel arguments

vecadd_kernel.setArg(0, bufferA);

vecadd_kernel.setArg(1, bufferB);

vecadd_kernel.setArg(2, bufferC);

// Execute the kernel

cl::NDRange global(N_ELEMENTS);

cl::NDRange local(256);

queue.enqueueNDRangeKernel(vecadd_kernel,

cl::NullRange, global, local);

// Copy the output data back to the host

queue.enqueueReadBuffer(bufferC, CL_TRUE, 0,

N_ELEMENTS * sizeof(int), C);

// Verify the result

bool result=true;

for (int i=0; i<N_ELEMENTS; i ++) {

if (C[i] !=A[i]+B[i]) {

result=false;

break;

}

}

if (result)

std::cout<< “Success!”<< std::endl;

else

std::cout<< “Failed!”<< std::endl;

}

catch(cl::Error error)

{

std::cout<< error.what()<< “(”<<

error.err()<< “)”<< std::endl;

}

return 0;

}
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SUMMARY
In this chapter, we provided an introduction to the basics of using the OpenCL stan-

dard when developing parallel programs. We described the four different abstraction

models defined in the standard and presented examples of OpenCL implementations

to place some of the abstraction in context.

In Chapter 3, we discuss OpenCL device architectures, including a range of in-

struction set styles, threading issues, and memory topics.
Reference
Cooper, K., & Torczon, L. (2011). Engineering a Compiler. Burlington, MA: Morgan

Kaufmann.
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INTRODUCTION
OpenCL has been developed by a wide range of industry groups to satisfy the need to

standardize on programming models that can achieve good or high performance

across the range of devices available on the market. Each of these companies has

specific goals in mind for OpenCL and targets for what features OpenCL should have

to be able to run correctly on a specific architecture. To this end, OpenCL has a range

of features that attempt to allow detection of unique hardware capabilities. For ex-

ample, OpenCL has a relaxed consistency block-based parallelismmodel intended to

run relatively efficiently on serial, symmetric multiprocessing (SMP), multithreaded,

and single instruction multiple data (SIMD) or vector devices. In this chapter, we

discuss some of these devices and the overall design space in which they sit.

Although OpenCL is designed to be a platform-independent application pro-

gramming interface (API), at the algorithm level and consequently at the level of

kernel implementation, true platform independence in terms of performance is still

a goal (versus a reality). As developers, we need to understand the potential advan-

tages of different hardware features, the key runtime characteristics of these devices,

and where these devices fit into the different classes of computer architectures. Once

the reader is equipped with this deeper understanding of the targeted hardware, he or

she can make informed choices when designing parallel algorithms and software.

The reader should also better appreciate the philosophy behind OpenCL’s design

in terms of programming, memory, and runtime models.
HARDWARE TRADE-OFFS
Given the history of OpenCL and its early use for graphics APIs and pixel shaders, it

is easy to understand how OpenCL has developed as a leading language targeted for

GPU programming. As a result, OpenCL has become a popular programming API for

the high-performance computing market. However, as the number of platforms sup-

porting OpenCL grows (particularly in the embedded systems space), the overall

impact of OpenCL should increase substantially.
Heterogeneous Computing with OpenCL

© 2013 Advanced Micro Devices, Inc. Published by Elsevier Inc. All rights reserved.
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What is not necessarily clear from this discussion is what a GPU really is and how

it differs from these “other devices.” When we develop general-purpose code for a

GPU is the device still a graphics processor, or some more generic entity. If it is a

graphics processor is that due to the device carrying some amount of graphics-

specific logic, or is it the architectural style overall?

More questions arise when we try to think about this question in any detail. How

many cores does a GPU have? To answer that question, we have to decide on a def-

inition of “core.” What is a “many-core” device, and is it significantly different from

a “multi-core” device? In general, different architectures choose different ap-

proaches to increase performance for a given power/transistor budget. Rather than

simply being a raw compute power/electrical power/area trade-off, hardware devel-

opers have always also had to consider programming effort. The trade-off between

these factors has created a wide divergence in designs.

Multi-core CPUs allow us to maintain clock frequences and complexity that are

comparable to single core CPUs, while adding more cores as transistor sizes reduce.

With careful design, power consumption can be kept within reasonable limits.

SIMD and very long instruction word (VLIW) architectures attempt to further in-

crease the amount of useful work being performed by improving the ratio of arith-

metic operations to control logic. In such cases, it can be difficult to generate

workloads to keep the arithmetic logic units (ALUs) satisfied. Multithreading

approaches this from a different angle. Rather than increasing the ratio of useful

to computation to control logic, it increases the amount of useful work available

to occupy computation logic during periods in which indirectly useful work is

occupying noncompute logic such as memory pipelines. Thereby multithreading

increases the utilization of the device we already have. Threading can be seen from

the software side, in which case it can apply to multi-core chips as much as to single

core designs, but it can also be viewed in terms of single cores managing multiple

software threads. Caches and memory system trade-offs allow different architec-

tures to target different data access patterns while trading off transistors for differ-

ent uses.

In all these cases, we can apply the trade-offs to an individual core or a set of

cores, depending on our definition of core. However, we do not need to apply the

same trade-off across an entire device. Heterogeneity can enable hardware optimi-

zations for multiple types of algorithms running simultaneously, offering better per-

formance on both and hence overall. The traditional, and at the present time

common, example of this at the system level is the GPU þ CPU combination we

see in modern PCs (along with other lower performance processors scattered

throughout the system). The latest generations of high-performance processors com-

bine these two aspects into a single device, something that AMD calls the accelerated

processing unit (APU).

In reality, we see combinations of these factors in different designs with different

target markets, application, and price points. In this section, we examine some of

these architectural features and discuss to what degree different common architec-

tures apply them.
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Performance Increase by Frequency, and Its Limitations
The easiest way, as a developer, to think about codewe are writing is to create software

that executes linearly: Perform one task, complete that task, perform another task. It is

considerably more difficult for a developer to write parallel code, this is true even for

limited SIMD or vector parallelism as is common in graphics. Multi-component pixels

make this relatively simple as the logical entitymapswell to the programming concept.

In other applications, where the logical concepts do not map as effectively to program-

ming vectors, extracting SIMD operations can be substantially more difficult. For this

reason, architectures have historically aimed to increase the performance of a single,

narrow, thread of execution beforemoving to parallelism,with extreme,multi-threaded

parallelism relegated to high-performance specialist machines in particular markets.

Shrinking of CMOS circuitry has allowed distances between transistors to scale

fairly consistently for an extended period of time. The shrinking of distances and re-

duction in size of the capacitors allowed hardware architects to clock circuits at a

higher rate. In turn, this led to GordonMoore’s famous self-fulfilling prophecy about

transistor density and its misinterpretations into the realm of execution frequency and

overall performance. Certainly, increasing frequency allowed the performance of

nonparallel code to increase consistently during that time, such that it became an

expectation for software developers until the early 21st century.

During the past decade, it has become obvious that continued scaling of clock

frequencies of CPUs is not practical, largely due to power and heat dissipation con-

straints. The reason for this is that power consumption is dependent on frequency in a

nonlinear manner. CMOS dynamic power consumption is approximated by the com-

bination of dynamic and static power:

P ¼ ACV2Fþ VIleak

where

A is the activity factor, or fraction of the number of transistors in the circuit that

are switching;

C is the capacitance of the circuit;

V is the voltage applied across the circuit;

F is the switching frequency; and

Ileak is an estimate of the current due to leakage of transistors.

It appears from this equation that power is linear with frequency. In reality, to increase

the frequency, one has to increase the rate of flow of charge into and out of the capac-

itors in the circuit. This requires a comparable increase in voltage, which both scales

the dynamic term and also increases the latter, static, term in the equation. For a long

time, voltages could reduce with each process generation such that frequency scaling

would not increase the power consumption uncontrollably. However, as process tech-

nology has reached the small sizes we see today, we can no longer scale the voltage

down without increasing the error rate of transistor switching and hence frequency

scaling requires voltage increases. The increase in power consumption and heat

dissipation from any increase in frequency is then substantial.
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As a second problem, increasing clock frequency on-chip requires either increas-

ing off-chip memory bandwidth to provide data fast enough to not stall the linear

workload running through the processor or increasing the amount of caching in

the system.

If we are unable to continue increasing the frequency with the goal of obtaining

higher performance, we require other solutions. The heart of any of these solutions is

to increase the number of operations performed on a given clock cycle.
Superscalar Execution
Superscalar and, by extension, out-of-order execution is one solution that has been

included on CPUs for a long time; it has been included on x86 designs since the be-

ginning of the Pentium era. In these designs, the CPU maintains dependence infor-

mation between instructions in the instruction stream and schedules work onto

unused functional units when possible. An example of this is shown in Figure 3.1.

The major beneficiary of out-of-order logic is the software developer. By extract-

ing parallelism from the programmer’s code automatically within the hardware, se-

rial code performs faster without any extra developer effort. Indeed, superscalar

designs predate frequency scaling limitations by a decade or more, even in popular

mass-produced devices, as a way to increase overall performance superlinearly.

However, it is not without its disadvantages.

Out-of-order scheduling logic requires a substantial investment in transistors and

hence CPU die area to maintain queues of in-flight instructions and maintain infor-

mation on inter-instruction dependencies to deal with dynamic schedules throughout

the device. In addition, speculative instruction execution quickly becomes necessary

to expand the window of out-of-order instructions to execute in parallel. Such spec-

ulative execution results in throwaway work and hence wasted energy. As a result,

out-of-order execution in a CPU has shown diminishing returns; the industry has

taken other approaches to increasing performance as transistor size has decreased,

even on the high-performance devices in which superscalar logic was formerly fea-

sible. On embedded and special-purpose devices, extraction of parallelism from

serial code has never been as much of a goal, and such designs have historically been

less common in these areas.

Good examples of superscalar processors are numerous, from Seymour Cray’s

CDC 6600 to numerous RISC designs in the 1990s. Currently, high-end CPUs are

mostly superscalar. Many GPUs also show superscalar capabilities.
VLIW
VLIW is a heavily compiler-dependent method for increasing instruction-level par-

allelism in a processor. Rather than depending entirely on complex out-of-order con-

trol logic that maintains dependences in hardware, as we saw when discussing

superscalar execution, VLIW moves this dependence analysis work into the com-

piler. Instead of providing a scalar instruction stream, each issued instruction in a



FIGURE 3.1

Out-of-order execution of an instruction stream of simple assembly-like instructions. Note

that in this syntax, the destination register is listed first. Add a, b, c is a ¼ b þ c.
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VLIW processor is a long instruction word comprising multiple instructions intended

to be issued in parallel. This instruction will be mapped directly to the execution

pipelines of the processor.

An example of VLIW execution is shown in Figure 3.2. This is the same set of

instructions as we saw in Figure 3.1, but rather than being fetched serially, they are

fetched in three horizontally arranged packets of up to three instructions. We now see

that the dependence structure of this instruction stream is linear, and the hardware

will treat it that way rather than extracting and tracking a more complicated depen-

dence graph. The VLIW instruction packets are decoded, and each individual part of

the instruction stream maps to a given computation unit in the processor for execu-

tion. In some VLIW designs, as in this example, the computation units are



FIGURE 3.2

VLIW execution based on the out-of-order diagram in Figure 3.1.
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heterogeneous and hence some instructions will only ever be scheduled into a given

lane of the VLIW packet stream. Other architectures present more homogeneous

hardware such that any instruction can be issued in any location and only dependence

information limits the possibilities.

In the example in Figure 3.2, we see that the instruction schedule has gaps: The

first two VLIW packets are missing a third entry, and the third is missing its first and

second entries. Obviously, the example is very simple, with few instructions to pack,

but it is a common problem with VLIW architectures that efficiency can be lost due

to the compiler’s inability to fully fill packets. This can be due to limitations in the

compiler or simply due to an inherent lack of parallelism in the instruction stream. In

the latter case, the situation will be no worse than for out-of-order execution but more

efficient as the scheduling hardware is reduced in complexity. The former case

would end up as a trade-off between efficiency losses from unfilled execution slots

and gains from reduced hardware control overhead. In addition, there is an extra cost

in compiler development to take into account when performing a cost/benefit

analysis for VLIW execution over hardware schedule superscalar execution.
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VLIW designs commonly appear in DSP chips. High-end consumer devices

currently include the Intel Itanium line of CPUs (known as Explicitly Parallel

Instruction Computing) and AMD’s R600 GPUs.

SIMD and Vector Processing
SIMD and its generalization in vector parallelism aim for improved efficiency from a

slightly different angle compared with the other previously discussed concepts.

Whereas VLIW and hardware-managed superscalar both address extracting indepen-

dent instruction parallelism from unrelated instructions in an instruction stream,

SIMD and vector parallelism directly allow the hardware instructions to target data

parallel execution.

A single SIMD instruction encapsulates a request that the same operation be per-

formed on multiple data elements in parallel. Contrast this with the scalar operation

performed by each instruction in the other approaches to parallelism. Vector compu-

tation generalizes this approach and usually works over long sequences of data ele-

ments, often pipelining computations over the data rather than executing on all

elements simultaneously, and more generally supports gathered read and scattered

write operations to and from memory.

If we again look at a variation on the running example as seen in Figure 3.3, we

can see that the instruction stream is now issued linearly rather than out of order.
FIGURE 3.3

SIMD execution where a single instruction is scheduled in order but executes over multiple

ALUs at the same time.
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However, each of these instructions now executes over a vector of four ALUs at the

same time. The integer instructions issue one by one through the four-way integer

vector ALU on the left, and the floating point instructions issue similarly through

the four-way floating point ALU on the right. Note that although in this example

we are issuing the instructions linearly, there is no reason to assume that we cannot

perform these operations within a superscalar or VLIW pipeline, and we will see ar-

chitectures that do just that in later discussion.

TheadvantageofSIMDexecution is that relative toALUwork, theamountof sched-

uling and instruction decode logic can both be decreased.We are now performing four

operations with a single instruction and a single point in the dependence schedule.

Of course, as with the previous proposals, there are trade-offs. A significant

amount of code is not data parallel, and hence it is not possible to find vector instruc-

tions to issue. In other cases, it is simply too difficult for the compiler to extract data

parallelism from code. For example, vectorization of loops is an ongoing challenge,

with little success in anything but the simplest cases. In these cases, we end up with

unutilized ALUs and thus transistor wastage.

Vector processors originate in the supercomputer market, but SIMD designs are

common in manymarket segments. CPUs often include SIMD pipelines with explicit

SIMD instructions in a scalar instruction stream, including the various forms of

Streaming SIMD Extension (SSE) and AVX on x86 chips, the AltiVec extensions

for PowerPC, and ARM’s NEON extensions. GPU architectures historically in-

cluded explicit SIMD operations to support pixel vectors, and many modern GPUs

also execute over wide implicit SIMD vectors, where the scalar instruction stream

describes a single lane. Indeed, such machines can be considered vector machines

because in many cases the vector is logical. For example, AMD’s Radeon

HD7970 architecture executes 64-wide SIMD operations. These wide vector in-

structions are pipelined over multiple cycles through a 16-lane SIMD unit.
Hardware Multithreading
The third common form of parallelism after instruction and data is thread parallelism,

or the execution of multiple independent instruction streams. Clearly, this form is

heavily used on large, parallel machines, but it is also useful within a single CPU

core. As previously discussed, extracting independent instructions from an instruc-

tion stream is difficult, in terms of both hardware and compiler work, and it is some-

times impossible. Extracting instruction parallelism from two independent threads is

trivial because those threads already guarantee independence outside of explicit syn-

chronization blocks. The difficulty in hardware implementation is due to managing

the additional instruction stream and the state that a second instruction stream re-

quires in terms of registers and cache.

There are two main ways to apply on-chip multithreading:

Simultaneous multithreading

Temporal multithreading



FIGURE 3.4

The out-of-order schedule seen in Figure 3.1 combined with a second thread and executed

simultaneously.
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Simultaneous multithreading (SMT) is visualized in Figure 3.4. In this approach, in-

structions frommultiple threads are interleaved on the execution resources by an exten-

sion to the superscalar scheduling logic that tracks both instruction dependencies and

source threads. The goal is for the execution resources to be more effectively utilized,

and in the figure that is thecase.Ahigherproportionof execution slots are occupiedwith

useful work. The cost of this approach is that state storage must be increased and the

instruction dependence and scheduling logic becomes more complicated as it manages

two distinct sets of dependencies, resources, and execution queues.

Figure 3.5 shows the simpler time-sliced version of chip multithreading. In this

case, each thread is executed in consecutive execution slots in round-robin fashion.

For the purposes of simplification, the diagram shows a single shared ALU.

The following are advantages of this approach:

• The logic to handle the scheduling is simple.

• Pipeline latency can be covered by scheduling more threads, reducing the amount

of forwarding logic.



FIGURE 3.5

Two threads scheduled in time slice fashion.
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• Stalls of a single thread due to a cache miss, waiting for a branch to be computed,

or similar events can be covered by changing the order of thread execution and

running more threads than necessary to cover pipeline latency.

This last case is the most useful in scaling to complicated problems. Many architec-

tures are able to run more threads than necessary. When a thread reaches some sort of

stall, it can be removed from the ready queue such that only threads in the ready

queue are scheduled for execution. Once the stall ends, the thread can be placed back

in the ready queue. In this manner, although a single thread might execute more

slowly than on an out-of-order machine, the total throughput of the machine is kept
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FIGURE 3.6

Taking temporal multithreading to an extreme as throughput computing: A large number of

threads interleave execution to keep the device busy, whereas each individual thread takes

longer to execute than the theoretical minimum.
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high and utilization of compute resources can be maintained without overcomplicat-

ing the control logic. Taken to an extreme, this sort of heavy multithreading can be

viewed as throughput computing: maximizing throughput at the possible expense of

latency. The principle is shown in Figure 3.6.

Both forms of chip multithreading are common. The MTA design from Tera is a

classic time-sliced multithreading supercomputer. The MTA design suffered from

manufacturing difficulties; however, Cray’s subsequent implementation, the MTA-

2 design, utilized 128 register sets per CPU using fast thread switching between

threads within this state and skipping stalled threads. The XMT design extends this

further to fit multithreaded processors in standardAMDOpteron-basedCray systems.

Sun’s Niagara series of chips implements a multi-core multithreaded design (8 per

core) to achieve low power and high throughput on data-center workloads. Intel’s

Pentium 4 and then later Nehalem and successor designs implement a form of

SMT known as “hyperthreading.” Modern GPU designs runs numerous threads in a

temporal fashion on each core, where the number is generally resource limited: On

the current generation of AMD GPUs, this is usually 8–10 threads per core to cover

latency and stalls.

Multi-Core Architectures
Conceptually at least, the obvious approach to increasing the amount of work per-

formed per clock cycle is to simply clone a singleCPUcoremultiple times on the chip.

In the simplest case, each of these cores executes largely independently, sharing data

through thememory system, usually through a cache coherency protocol. This design

is a scaled down version of traditional multisocket server SMP systems that have been

used to increase performance for decades, in some cases to extreme degrees.

However, multi-core systems come in different guises, and it can be very difficult

to define a core. For example, a mainstream CPU, at the high end, generally includes

a wide range of functional blocks such that it is independent of other cores on the

chip, barring interfacing logic, memory controllers, and so on, that would be unlikely

to count as cores. However the line can be blurred. For example, AMD’s “Bulldozer”

(high-power core) design shown alongside the simpler “Bobcat” (low-power core)
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FIGURE 3.7

The AMD Bobcat and Bulldozer high-level designs (not shown to any shared scale). Bobcat

(left) follows a traditional approach mapping functional units to cores, in a low-power design.

Bulldozer (right) combines two cores within a module, offering sharing of some functional

units. The two shades in the Bulldozer diagram show the difference between functional

blocks that are shared between cores and those that are not.
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design in Figure 3.7 shares functional units between pairs of cores in a replicable unit

termed a module. A single thread will run on each core in a traditional fashion while

the hardware interleaves floating point instructions onto the shared floating point

pipelines. The aim of such a design is to raise efficiency by improving occupancy

of functional units.

In a similar manner, GPU designs show a different definition of core. Modern

GPUs have tens of cores—at the current high end there are between 16 and 32, with

levels of complexity that depend on the specific architecture. Many GPU designs,

such as the Graphics Core Next-based (AMD, 2012) designs from AMD and the

Fermi and Kepler derivatives from NVIDIA follow a relatively CPU-like design.

However, some designs diverge substantially, for example if we look at the AMD

Radeon HD 6970 high-level diagram shown in Figure 3.8, we see a similar approach

to Bulldozer taken to an extreme. Although the device has 24 SIMD cores, by looking

at the execution units in the fairestway to comparewith traditional CPUs, those SIMD

cores only execute ALU operations—both floating point and integer. Instruction

scheduling, decode, and dispatch are executed by the wave scheduler units. The wave

schedulers are so named because the unit of scheduling is awide SIMD thread context

known as a wavefront. Indeed, on the 6970, there are two of these to prevent overly

high complexity, whereas lower capability parts in the series use only one and scale

the number of SIMD cores.



FIGURE 3.8

The AMD Radeon� HD6970 GPU architecture. The device is divided into two halves where

instruction control: scheduling and dispatch is performed by the level wave scheduler for

each half. The 24 16-lane SIMD cores execute four-way VLIW instructions on each SIMD lane

and contain private level 1 caches and local data shares (LDS).
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Integration: Systems-on-Chip and the APU
In the embedded space, a more heterogeneous approach to multi-core design is com-

mon. To achieve low power, embedded developers have constructed complicated

systems-on-chip (SoCs) combining varied components into a compact and cost-

effective design. Combining specialized components in this way allows devices to

be optimized for a particular use case and power envelope, which is particularly

important in markets such as the design of mobile phones.

Benefits from SoCs are the following:

• Combining multiple elements into a single device allows for a single manufactur-

ing process and a single product to deal with, allowing for lower manufacturing

costs.

• The smaller number of packages takes up less space in a final device, allowing for

lower device cost and smaller form factor, which are vital in markets such as

mobile telephony.

• Smaller distances mean less power used during communication and easier shar-

ing of data through a single memory system.
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• Lower communication latencies can lead to improved turnaround times for work-

loads dispatched to coprocessors.

Good examples of this approach in the mobile phone space are the Snapdragon SoC

from Qualcomm and the OMAP series from Texas Instruments. Designs such as

these combine an implementation of the ARM ISA, a mobile GPU, memory control-

lers, and various wireless and media processing components.

At the higher performance end of the market, Sony, Toshiba, and IBM developed

the Cell Broadband engine processor that combines a number of small, high-

performance but simple cores with a main traditional full-capability core with the

aim of improving the performance/Watt characteristics. AMD and Intel have both

developed combined CPU/GPU SoCs termed APUs by AMD, enabling high-

performance graphics and CPU power in a more efficient single chip package.
Cache Hierarchies and Memory Systems
Whereas in the early years of supercomputers memory bandwidth and latency were

such that CPUs could always access the data they needed when it was needed, it has

been a long time since this has been the case. Currently, it is not unusual that the

latency between a memory request on the CPU and the data being returned from

memory is hundreds or even thousands of CPU cycles. On a single threaded

CPU, out-of-order logic would be impossibly complicated to cover that much

latency.

Fortunately, most applications do not make entirely independent memory accesses.

In general, memory access patterns express some degree of locality, which will be

either of the following:

• Spatial: Two or more memory accesses read or write addresses that are near each

other, by some measure, in memory.

• Temporal: Two or more memory accesses read or write the same address (i.e., the

same read is performed at different times).

These two forms of locality lead to the conclusion that if we can store a value read

from memory and its neighbors, later reads will be able to reuse that data. As a result,

CPU designers have added complicated layers of intermediate memory caches to

support this optimization.

Caches come in varied designs, but they can be divided into two general catego-

ries that are applied dependent on the workload. CPU caches tend to be designed to

minimize latency. To achieve this, caches are large with complicated hierarchies to

move as much of the data as close to the CPU core as possible. Out-of-order logic can

only cover a limited amount of latency, so the fewer cycles to access data, the better.

In addition, keeping data close to the execution units minimizes power consumption:

Long-distance data movement is a significant component of CPU power usage.

Throughput processors are more latency tolerant, using threading to cover the

cycles between request and data return. In these designs, the goal of caching is less
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to minimize latency, so the large multilevel hierarchy is less common, and more to

reduce traffic across the limited memory buses. Smaller caches that allow neighbor-

ing accesses to be caught but are concerned less with very long periods of reuse are

often seen in these situations, acting more as spatial filters. Wide SIMD units and

programming models aim for efficient coalesced memory access to increase the

size of memory transactions issues. The result is that dedicating logic to arithmetic

units becomes a better use of transistors. In addition, higher latency, higher band-

width memory interconnects allow this design to work more efficiently, although

system-level issues such as pin availability and necessity to allow swapping of mem-

ory chips are equally important in this decision. One extension of this bias toward

spatial locality that we often see in GPU design is to lay memory out such that

two-dimensional accesses are efficiently cached.

Some designs including GPUs and the cell processor include software-managed

scratchpad memory spaces as well as or in place of cache hierarchies. These buffers

enable higher performance at a given power and area budget, but they require more

complicated programming.

The reality of any given design is that it balances caching levels and features

based on the expected workloads for the processor. Unfortunately, there is no right

answer for all processor design/workload combinations.
THE ARCHITECTURAL DESIGN SPACE
In the real world, we do not see many architectures that fit cleanly into just one of the

previously mentioned categories. The reality is that computer architecture is a huge

design space with enormous variation in all directions. Common current architec-

tures sit in that design space at various points.

This is most important in helping us realize that some of the publicly held view-

points of today’s architectures can be overly simplistic. For example, in the domain

of GPUs, we often encounter statements such as the following:

• CPUs are serial, GPUs are parallel.

• CPUs have a small number of cores, GPUs have hundreds.

• GPUs run thousands of threads, CPUs run one (or two).

The reality of any design is far more complicated than that, with wide variation in

internal buffers, number of pipelines, type of pipelines, and so on. The theme of this

chapter is to show that the difference between GPUs and CPUs, or indeed most

modern architectures, is not fundamental. The majority of the visible architectural

differences we commonly see today are simply points on a sliding scale, a set of

parameterization knobs applied to basic designs. These are the differences the aver-

age programmer needs to understand: Only the expert need be concerned with ratios

between buffer sizes and arranging instructions for hardware co-issue.

In this section, we discuss several real architectures and where they fit in the de-

sign space trading off some of the features we discussed previously. It is hoped that
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this will help to give a more nuanced feel for architectural trade-offs and help de-

velop views on what algorithms may or may not work well on real architectures.

Figure 3.9 gives a graphical hint toward some of the architectural trade-offs while

ignoring caching to keep the diagram somewhat simple. In the design, we limit our-

selves to extreme simplifications. The goal is to show that the wide SIMD and state

storage design of GPUs is a long way along a spectrum from simple CPUs in terms of

use of area, and that maximum performance and ease of achieving good performance

depend on these design choices.
CPU Designs
The devices that most people are used to developing on can be loosely described as

“CPUs.” Even within this space, there is considerable variation in how different

forms of parallelism are utilized.
Low-Power CPUs
At the very lowest end of the power spectrum, CPU cores are very simple, in-order

cores. At this level, power consumption is the most important factor in design, with

performance a secondary consideration. Such designs often do not support floating

point operations and have no need for parallelism.

Currently, the most widespread low-power CPU ISA is the ARM ISA developed

in IP form by ARM Holdings. The ARM architecture originated in the Acorn RISC

machine concept from Acorn Computers as a desktop architecture, but recently the

simplicity of the architecture has made it dominant in the mobile and embedded mar-

kets, with a foray into Acorn’s own desktop projects from 1996 to 1998 as the DEC-

manufactured StrongARM. ARM designs come in a wide variety of forms because

the ISA IP is licensed to manufacturers who are at liberty to design their own cores.

Usually, ARM cores are combined within SoCs with other units such as cellular

modems, embedded graphics processors, video accelerators, and similar devices.

Most variants on the ARM ISA have been in-order cores with three to seven pipe-

line stages. The Cortex-A8, -A9, and -A15 cores, based on the ARMv7 ISA, are

superscalar andmulti-core with up to four symmetric cores. The ARMv7-based cores

may also support the Neon SIMD instructions, giving 64- and 128-bit SIMD

operations in each core.

The AMD Bobcat CPU core that was shown in Figure 3.7 is the low-power core

in AMD’s current CPU lineup designed for a power range of 1–10W. To achieve the

low-power figures, Bobcat cores are clocked more slowly than the high-end parts as

well as being carefully designed to reduce overhead—at the cost of lower peak per-

formance. Bobcat is a 64-bit design, supports two-way out-of-order issue, and also

has a 64-bit SIMD unit that can multicycle SSE operations.

Intel’s Atom design takes a slightly different approach to performance compared

with AMD’s Bobcat. Atom does not support out-of-order execution, and as a

result, single threaded performance suffers. However, Atom does support a form



FIGURE 3.9

A selection of the architectures discussed in this section giving a graphical hint toward their

trade-offs in use of silicon area. Note, in particular, the preference for state storage in the GPU

designs compared with the CPU designs. Note that the definition of “ALU” in this diagram is

somewhat flexible. We are counting both integer ALUs and floating point ALUs but not

necessarily counting separate multiplication and addition ALUs as distinct even when they can

dual issue. The important factor is the rough ratio to state, not the precise numbers for a given

device.
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of temporal multithreading executing two threads at once. This allows Atom’s per-

formance on multithreaded workloads to be competitive in some circumstances.

In general, these low-power CPUs support in-order or narrow out-of-order exe-

cution with relatively narrow SIMD units. Variation in the number of cores can be

used to scale to varied power/performance points in multithreaded situations. In all

cases, these features are kept simple compared with desktop CPUs as a method for

reducing power consumption.
Mainstream Desktop CPUs
Mainstream desktop CPUs from AMD and Intel do not look much different from

the Bobcat design. In each case, they slightly increase the complexity of each

element.

The Sandy Bridge microarchitecture is the current mainstream desktop CPU core

from Intel. The Sandy Bridge core supports full 128-bit SSE operations through mul-

tiple pipelines and issues up to six operations of mixed types in parallel. In addition,

Sandy Bridge supports 256-bit Advanced Vector Extensions (AVX) operations,

allowing up to 16 single precision floating point operations per cycle. As with Atom,

Intel added hardware multithreading support to Nehalem, Sandy Bridge’s predeces-

sor, and maintained this in Sandy Bridge and its later die shrink known as “Ivy

Bridge”. In this case, it is true SMT: Each core can mix operations from a pair of

threads in the execution units. This increase in scheduling complexity is traded

against the increased utilization of the functional units.

AMD’s Bulldozer core, seen in Figure 3.7, increases parallel thread execution by

taking a middle ground between increasing core count and increasing threads per

core. Rather than increasing core count as in earlier AMD designs, which results

in large per-core overhead, or using true SMT as in Sandy Bridge, with its high de-

gree of scheduling complexity, Bulldozer takes a middle ground.

The approach used in Bulldozer is to create a second independent integer core

with its own set of private ALUs, state and scheduler. However, the floating point

ALUs are shared between pairs of cores, as are the fetch and decode blocks and

the level 2 cache. The goal of this design is to only share functional units that are

not likely to be overly heavily contended in real workloads.

Each core supports out-of-order execution through four ALU pipelines. The

shared floating point ALU is a pair of 128-bit (SSE) SIMD units that can combine

to execute AVX instructions. Bulldozer relies on multi-core execution to increase its

thread count. However, each core is a relatively small area, so a higher core density

should be possible compared with earlier designs that reproduced all floating point

and scheduling resources on a per-core basis.

With mainstream CPUs, then, we see wide multi-issue out-of-order hardware,

high clock speeds, and large caches—all features intended to maintain high single

threaded performance with reasonably high power draw. In-core multithreading is

kept minimal or nonexistent, and SIMD units are set at a width that does not waste

too much area when not in use.
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Intel Itanium 2
Intel’s Itanium architecture and its more successful successor, the Itanium 2, repre-

sent an interesting attempt to make a mainstream server processor based on VLIW

techniques. The Itanium architecture includes a large number of registers (128 inte-

gers and 128 floating points). It uses a VLIW approach known as EPIC, in which

instructions are stored in 128-bit three-instruction bundles. The CPU fetches two

bundles per cycle from L1 cache and hence executes six instructions per clock cycle.

There are two 64-bit SIMD units on each core, and the processor is designed to be

efficiently combined into multi-core and multi-socket servers.

The goal of EPIC is to move the problem of exploiting parallelism from runtime

to compile time. It does this by feeding back information from execution traces into

the compiler. It is the task of the compiler to package instructions into the VLIW/

EPIC packets, and as a result, performance on the architecture is highly dependent

on compiler capability. To assist with this numerous masking, dependence flags be-

tween bundles, pre-fetch instructions, speculative loads, and rotating register files

are built into the architecture. To improve the throughput of the processor, Itanium

2 implementations support two-way temporal multithreading, switching threads on

certain events such as memory accesses that are likely to have long latency.

Niagara
The Niagara design (Figure 3.10), originally from Sun and under continuing devel-

opment at Oracle, takes a throughput computing multithreaded approach to server

workloads. Workloads on many servers, particularly transactional and web work-

loads, are often heavily multithreaded, with a large number of lightweight integer

threads using the memory system. The Niagara, or UltraSPARC Tx and later SPARC

Tx CPUs are designed to efficiently execute a large number of threads to maximize

overall work throughput with minimal power consumption. Each of the cores is

designed to be simple and efficient, with no complex out-of-order execution logic.

Each core is designed to interleave operations from eight threads through two exe-

cution units. Figure 3.9 shows howmuch state is present compared with decode logic

or ALUs, showing a clear preference for latency hiding and simplicity of logic com-

pared with the mainstream x86 designs.

To support these threads, the design requires multiple sets of registers but as a

trade-off requires less speculative register storage than a superscalar design. In ad-

dition, coprocessors allow acceleration of cryptographic operations, and an on-chip

Ethernet controller improves network throughput. The UltraSPARC T2 (Grohoski,

2006) has 8 cores with eight threads each. The SPARC T3 expands this to 16 cores,

with eight threads each.

The latest generation, the SPARC T4, backs off slightly from the earlier multi-

threading design. Oracle claims that per-thread performance is increased by 5x over

the SPARC T3. Each CPU core supports out of order execution and can switch to a

single thread mode where a single thread can use all of the resources that previously

had to be dedicated to multiple threads. In this sense the SPARC T4 is closer to other

modern SMT designs such as those from Intel.



FIGURE 3.10

Diagrammatic representation of the Niagara 2 CPU from Sun/Oracle. The design intends to

make a high level of threading efficient: Note its relative similarity to the GPU design seen

in Figure 3.8. Given enough threads, we can cover all memory access time with useful

compute without extracting ILP through complicated hardware techniques.
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GPU Architectures
Like CPUs, GPU architectures come in a wide variety of options. Here, we briefly

discuss several before going into more depth about OpenCL programming for the

AMD architecture. GPUs tend to be heavily multithreaded with sophisticated hard-

ware task management because the graphics workloads they are designed to process

consist of complex vertex, geometry, and pixel processing task graphs. These tasks

and the pixels they process are highly parallel, which gives a substantial amount of

independent work to process for devices with multiple cores and highly latency-

tolerant multithreading. It is important to understand that barring sophisticated

mechanisms to manage task queues, or to hide SIMD execution behind hardware

management systems, GPUs are simply multithreaded processors with their param-

eterization aimed at processing large numbers of pixels very efficiently.

Handheld GPUs
Handheld GPUs have only recently started to gain general-purpose capabilities, with

ARM and Imagination Technologies, in particular, now offering fully OpenCL-

compliant IP. At this scale, GPUs consist of a small number of cores, typically
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one to four, where each executes a large number of individual threads on a small

pixel-size SIMD unit not entirely dissimilar to an SSE vector pipeline. For example,

ARM’s Mali-T604 architecture uses three types of computation pipeline in each of

up to four cores. Intercore task management supports managing workloads across the

cores: Much GPU threading in general is hardware controlled rather than exposed to

the operating system. An embedded design such as theMali-T604 can share the same

global memory as embedded CPUs, reducing the need to copy data across memory

spaces; in the ARM design, this data is fully cached.

At the High End: AMD Radeon HD7970 and NVIDIA GTX580
High-end desktop GPUs and their derivatives for the HPC and workstation segments

aim more for performance than maximal power efficiency. To achieve high memory

bandwidth, a large number of pins are dedicated to memory traffic, and high

bandwidth-per-pin (possibly lower latency) memory protocols may be used such

as GDDR5. These devices use a mixture of features to improve compute throughput,

including wide SIMD arrays to maximize arithmetic throughput for a given number

of issued instructions. The AMD Radeon HD7970 architecture seen in Figure 3.11

has 16 SIMD lanes in hardware and uses vector pipelining to execute a 64-element

vector over four cycles. The NVIDIA GTX580 architecture (Figure 3.12) also uses a

16-wide SIMD unit and executes a 32-element vector over two cycles. Both devices

are multithreaded, supporting numerous wide SIMD threads on each core. On the

AMD architecture, for example, each core possesses one scalar core and four SIMD

units associated with a banked register file: each of those four SIMD units can have

up to 10 vector threads (wavefronts) in flight, one of which can be chosen on each

issue cycle for that SIMD unit. That gives a total of up to 40 per core and hence 1280

active vector threads across the entire device (or 81920 individual work items). The

NVIDIA design offers similarly high numbers: however in both cases the actual con-

currency is limited by the amount of state each thread uses and the realistic number is

likely to be much lower.

In both the AMD and NVIDIA architectures the intermediate language that pro-

grams the device is a lane-wise SIMD model such that the instruction stream repre-

sents a single lane of the SIMD unit, an approach that NVIDIA calls “Single

Instruction Multiple Thread” (SIMT) and has also be called “SPMD-on-SIMD”.

The ISA that this compiles down to may or may not be lane-wise, and in the

AMD case it is an explicit scalar+vector ISA where program counters are managed

explicitly on a per-wavefront basis and divergent branches are managed using ex-

plicit mask registers. We will discuss this in more detail in Chapter 6.

Instruction level parallelism is achieved in varying ways. The HD7970 design

issues multiple instructions per cycle, each from a different active program counter,

where one vector instruction will be issued on each cycle to a different vector unit.

The GTX580 can co-issue two threads at once over two execution pipelines. Older

AMD designs such as the HD6970 used VLIW instruction issue. In fact the HD6970

and HD7970 are very similar in their execution unit design, the difference lies largely

in the instruction issue such that one issues in a compiler-structured fashion from one

thread and the other issues at runtime from four threads. All of these designs are



FIGURE 3.11

The AMDHD7970 architecture. The device has 32 cores in 8 clusters. Each core consists of a

scalar execution unit, that handles branches and basic integer operations, and four SIMD

ALUs. Each of the four SIMD units may have an instruction issued per cycle and the schedule

selects a single instruction from one of the active hardware threads, or “wavefronts” to issue to

the SIMD unit, as well as a scalar operation and a memory operation.
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superscalar in that execution resources can issue memory access, arithmetic and

other operations from threads running on the same core, but not necessarily the same

thread and in this sense they are throughput architectures optimizing for the through-

put of a set of threads over the latency of one.

Like the mobile GPUs on the market, the high-end AMD and NVIDIA models

comprise multiple cores. Defining a core as the closest reasonable mapping to the

equivalent in a CPU, the HD7970 has 32 cores (each with 4 vector units) and the

NVIDIA design has 16 (with two vector units and clocked at double rate). Each core

has a scratchpad memory buffer known as local memory in OpenCL which is allo-

cated on a per-workgroup basis.

In Figure 3.9 we see a rough comparison of state usage in different styles of de-

vice. It should be clear that the high-end GPU design is heavily weighted towards

thread state: allowing fast switching between multiple program instances and high

throughput.



FIGURE 3.12

The NVIDIA GTX580 architecture. This device has 16 cores, with two SIMD arrays of 16 lanes

in each core. Each core includes a shared memory/level one cache and a separate array

of special function units to performmore complicated operations. The fine-grained scheduler

chooses hardware threads, or “warps,” to map to each SIMD array as they are available

to execute.

61The architectural design space
APU and APU-Like Designs
SoCs have been common in embedded markets for a long time. Currently, there is a

move toward SoCs being used for much higher performance systems and applica-

tions. Such fused processors, most obviously combining CPU and GPU designs,

in addition to the less strongly marketed video decoders random number generators

and encryption circuits, begin to encroach on the netbook, notebook, and low-end

desktop spaces. It is easy to imagine such designs moving into high-end desktops.

In this space wemight see the power saving capabilities of integration combined with

the substantial compute capability of a discrete GPU that need only be enabled when

higher performance is needed, thus offering power savings overall.

Currently, the major architectures in this market are AMD’s Bobcat-based,

Phenom II-based and Bulldozer-based Fusion products (Advanced Micro Devices,

2011) and Intel’s Sandy Bridge and Ivy Bridge ranges.



Low-power cores GPU SIMD units

x86 core

GB/s
32kB

L1 Data cache

GB/s

512kB
L2 cache

x86 core

32kB
L1 Data cache

512kB
L2 cache

SIMD Core

SIMD Core

63 GB/s

512kB L2 cache

32kB LDS

32kB LDS
31 GB/s

8 GB/s

DDR3 System memory

Sh
ar

ed
 b

us
 a

nd
 m

em
or

y
co

nt
ro

lle
r

FIGURE 3.13

The E350 “Zacate” AMDAPU consists of two 8-wide SIMD cores with five-way VLIW units and

two “Bobcat” low-power x86 cores connected via a shared bus and a single interface to

DRAM.
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The AMD designs targeted at low-end netbook and subnotebook machines with a

9–18Wpower budget are known asOntario or Zacate and are based on the low-power

Bobcat CPU core combined with a low-end GPU. These components are produced

together on a single silicondie ona40-nmprocess. Thehighest specmodel in the range

is shown in Figure 3.13. In this case, the GPU is an eight-wide SIMD unit based on the

five-way VLIW of the 5xxx GPU generation from which the architecture is derived.

The twoBobcat cores have two-waySIMDunits, each allowing SSE instructions to be

issued from each core over two cycles. AMD’s higher performance APU, Trinity,

is based on a derivative of the Bulldozer core and a significantly higher perfor-

mance GPU.

Intel’s Ivy bridge APU design (Figure 3.14) is based on four cores of the Sandy

Bridge microarchitecture core discussed previously. The GPU is part of the ongoing

development of Intel’s in-house embedded GPU design. This latest revision of Intel’s

GPU core has full OpenCL and DirectX 11 capabilities.

The APU architectures offer scope for sharing data structures between GPU and

CPU cores such that the major communication bottleneck of many GPU compute

workloads is alleviated. This means that latency can be improved for workloads dis-

patched to the GPU and more tightly integrated algorithms between GPU and CPU

cores can be created that are currently not practical due to performance constraints

arising from the latency of the PCI express bus. This improvement comes at the cost

of CPU-style memory bandwidth shared between both devices, losing the very high-

bandwidth exotic memory interfaces of discrete GPUs. It is likely that this trade-off



FIGURE 3.14

The Intel Ivy Bridge with Intel HD4000 graphics present. Although not termed an “APU” by

Intel, the concept is the same as the devices under that category from AMD. Intel combines

four Ivy Bridge x86 cores, the 22nm die shrink of the Sandy Bridgemicroarchitecture, with an

improved version of its embedded graphics processor.
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is advantageous in the wide range of algorithms that are inefficient when implemented

purely on the GPU. This advantage may come either because the GPU’s throughput-

based design being suboptimal for serial code, and the APU design may reduce

turnaround time of mixing CPU and GPU code, or because the algorithms are

communication-bottlenecked.
SUMMARY
In this chapter, we discussed the types of architecture that OpenCL might run on and

the trade-offs in the architectural design space that these architectures embody. After

examining OpenCL more closely, in Chapter 6 we discuss how the OpenCL model

maps to a specific architecture in the form of a combination of AMD FX8150 CPU

and HD7970 GPU.

The content of this chapter will benefit from further reading; however, for many

of the specific devices, concise references can be difficult to find. The fourth edition

of Computer Organization and Design (Patterson and Hennessy, 2008) discusses

many architectural issues in-depth, including the AMDOpteron, Intel Nehalem (pre-

decessor to Sandy Bridge, sharing many features), UltraSPARC T2, and various
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other designs. It also contains a section on NVIDIA’s GPU architecture. The fifth

edition of Computer Architecture (Hennessy and Patterson, 2011) extends these con-
cepts. NVIDIA released a white paper on its Fermi architecture in 2009 (NVIDIA,

2009). Chapter 2 of the Itanium 2 processor manual (Intel, 2002) gives a reasonably

high-level overview of the EPIC implementation and processor pipeline.
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CHAPTER
Basic OpenCL Examples
 4

INTRODUCTION
In Chapter 2, we discussed the OpenCL specification and how it can be used to im-

plement programs for heterogeneous platforms. Chapter 3 covered the architecture

of some possible OpenCL targets. In this chapter, we discuss a few more complex

examples, which build on the simple examples such as vector addition discussed

in Chapter 2. We cover the implementation of both the host and the device code

in a methodical manner.

The aim of this chapter is to give the reader more intuition of how OpenCL can be

used to write data-parallel programs. The implementations in this chapter are com-

plete OpenCL examples. However, they have not been tuned to take advantage of

any particular device architecture. The aim is to provide the user with implementa-

tion guidelines for OpenCL applications and to discuss implementations that can

serve as a baseline for the architecture-specific optimization of applications in later

chapters.
EXAMPLE APPLICATIONS
In this section, we discuss the implementation of some example OpenCL applica-

tions. The examples covered here include image rotation, matrix multiplication,

and image convolution.
Simple Matrix Multiplication Example
A simple serial C implementation of matrix multiplication is shown here (remember

that OpenCL host programs can be written in either C or using the OpenCL Cþþ
Wrapper API). The code iterates over three nested for loops, multiplying Matrix

A by Matrix B and storing the result in Matrix C. The two outer loops are used to

iterate over each element of the output matrix. The innermost loop will iterate over

the individual elements of the input matrices to calculate the result of each output

location.
Heterogeneous Computing with OpenCL
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// Iterate over the rows of Matrix A

for(int i ¼ 0; i < heightA; i++) {

// Iterate over the columns of Matrix B

for(int j ¼ 0; j < widthB; j++) {
C[i][j] ¼ 0;

// Multiply and accumulate the values in the current row

// of A and column of B

for(int k ¼ 0; k < widthA; k++) {

C[i][j] +¼ A[i][k] * B[k][j];

}

}

}

It is straightforward to map the serial implementation to OpenCL, as the two outer

for-loops work independently of each other. This means that a separate work-item

can be created for each output element of the matrix. The two outer for-loops are

mapped to the two-dimensional range of work-items for the kernel.

The independence of output values inherent in matrix multiplication is shown in

Figure 4.1. Each work-item reads in its own row of Matrix A and its column of Ma-

trix B. The data being read is multiplied and written at the appropriate location of the

output Matrix C.
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h output value in a matrix multiplication is generated independently of all others.
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// widthA ¼ heightB for valid matrix multiplication

__kernel void simpleMultiply(

__global float* outputC,

int widthA,

int heightA,

int widthB,

int heightB,

__global float* inputA,

__global float* inputB) {

//Get global position in Y direction

int row ¼ get_global_id(1);

//Get global position in X direction

int col ¼ get_global_id(0);

float sum ¼ 0.0f;

//Calculate result of one element of Matrix C

for (int i ¼ 0; i < widthA; i++) {
sum +¼ inputA[row*widthA+i] * inputB[i*widthB+col];

}

outputC[row*widthB+col] ¼ sum;

}

Now that we have understood the implementation of the data-parallel kernel, we

need to write the OpenCL API calls that move the data to the device. The implemen-

tation steps for the rest of the matrix multiplication application are summarized in

Figure 4.2. We need to create a context for the device we wish to use. Using the con-

text, we create the command queue, which is used to send commands to the device.

Once the command queue is created, we can send the input data to the device, run the

parallel kernel, and read the resultant output data back from the device.

Step 1: Set Up Environment
In this step, we declare a context, choose a device type, and create the context and a

command queue. Throughout this example, the ciErrNum variable should always be

checked to see if an error code is returned by the implementation.

cl_int ciErrNum;

// Use the first platform

cl_platform_id platform;

ciErrNum ¼ clGetPlatformIDs(1, &platform, NULL);

// Use the first device

cl_device_id device;

ciErrNum ¼ clGetDeviceIDs(
platform,

CL_DEVICE_TYPE_ALL,

1,

&device,

NULL);
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Programming steps to writing a complete OpenCL application.
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cl_context_properties cps[3] ¼ {

CL_CONTEXT_PLATFORM, (cl_context_properties)platform, 0};

// Create the context

cl_context ctx ¼ clCreateContext(

cps,

1,

&device,

NULL,

NULL,

&ciErrNum);

// Create the command queue

cl_command_queue myqueue ¼ clCreateCommandQueue(

ctx,

device,

0,

&ciErrNum);
Step 2: Declare Buffers and Move Data
Declare buffers on the device and enqueue copies of input matrices to the device.

Also declare the output buffer.
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// We assume that A, B, C are float arrays which

// have been declared and initialized

// Allocate space for Matrix A on the device

cl_mem bufferA ¼ clCreateBuffer(

ctx,

CL_MEM_READ_ONLY,

wA*hA*sizeof(float),

NULL,

&ciErrNum);

// Copy Matrix A to the device

ciErrNum ¼ clEnqueueWriteBuffer(

myqueue,

bufferA,

CL_TRUE,

0,

wA*hA*sizeof(float),

(void *)A,

0,

NULL,

NULL);

// Allocate space for Matrix B on the device

cl_mem bufferB ¼ clCreateBuffer(

ctx,

CL_MEM_READ_ONLY,

wB*hB*sizeof(float),

NULL,

&ciErrNum);

// Copy Matrix B to the device

ciErrNum ¼ clEnqueueWriteBuffer(

myqueue,

bufferB,

CL_TRUE,

0,

wB*hB*sizeof(float),

(void *)B,

0,

NULL,

NULL);

// Allocate space for Matrix C on the device

cl_mem bufferC ¼ clCreateBuffer(

ctx,

CL_MEM_WRITE_ONLY,

hA*wB*sizeof(float),

NULL,

&ciErrNum);
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Step 3: Runtime Kernel Compilation
Compile the program from the kernel array, build the program, and define the kernel.

// We assume that the program source is stored in the variable

// ‘source’ and is NULL terminated

cl_program myprog ¼ clCreateProgramWithSource (
ctx,

1,

(const char**)&source,

NULL,

&ciErrNum);

// Compile the program. Passing NULL for the ‘device_list’

// argument targets all devices in the context

ciErrNum ¼ clBuildProgram(myprog, 0, NULL, NULL, NULL, NULL);

// Create the kernel

cl_kernel mykernel ¼ clCreateKernel(

myprog,

“simpleMultiply”,

&ciErrNum);
Step 4: Run the Program
Set kernel arguments and the workgroup size. We can then enqueue the kernel onto

the command queue to execute on the device.

// Set the kernel arguments

clSetKernelArg(mykernel, 0, sizeof(cl_mem), (void *)&bufferC);

clSetKernelArg(mykernel, 1, sizeof(cl_int), (void *)&wA);

clSetKernelArg(mykernel, 2, sizeof(cl_int), (void *)&hA);

clSetKernelArg(mykernel, 3, sizeof(cl_int), (void *)&wB);

clSetKernelArg(mykernel, 4, sizeof(cl_int), (void *)&hB);

clSetKernelArg(mykernel, 5, sizeof(cl_mem), (void *)&bufferA);

clSetKernelArg(mykernel, 6, sizeof(cl_mem), (void *)&bufferB);

// Set local and global workgroup sizes

//We assume the matrix dimensions are divisible by 16

size_t localws[2] ¼ {16,16} ;

size_t globalws[2] ¼ {wC, hC};

// Execute the kernel

ciErrNum ¼ clEnqueueNDRangeKernel(
myqueue,

mykernel,

2,

NULL,

globalws,

localws,

0,

NULL,

NULL);
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Step 5: Return Results to Host
After the program has run, we enqueue a read back of the result matrix from the de-

vice buffer to host memory.

// Read the output data back to the host

ciErrNum ¼ clEnqueueReadBuffer(
FIGURE
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are dro
myqueue,

bufferC,

CL_TRUE,

0,

wC*hC*sizeof(float),

(void *)C,

0,

NULL,

NULL);
The steps outlined here show an OpenCL implementation of matrix multiplication

that can be used as a baseline. In later chapters, we use our understanding of

data-parallel architectures to improve the performance of particular data-parallel

algorithms.
Image Rotation Example
Image rotation is a common image processing routine with applications in matching,

alignment, and other image-based algorithms. The input to an image rotation routine

is an image, the rotation angle y, and a point about which rotation is done. The aim is

to achieve the result shown in Figure 4.3. For the image rotation example, we use

OpenCL’s Cþþ Wrapper API.
Original image After rotation of 45�

4.3

ge rotated by 45�. The output is the same size as the input, and the out of edge values

pped.
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The coordinates of a point (x1, y1) when rotated by an angle y around (x0, y0) be-
come (x2, y2), as shown by the following equation:

x2 ¼ cosðyÞ � ðx1 � x0Þ þ sinðyÞ � ðy1 � y0Þ
y2 ¼ � sinðyÞ � ðx1 � x0Þ þ cosðyÞ � ðy1 � y0Þ

By rotating the image about the origin (0, 0), we get

x2 ¼ cosðyÞ � ðx1Þ þ sinðyÞ � ðy1Þ
y2 ¼ � sinðyÞ � ðx1Þ þ cosðyÞ � ðy1Þ

To implement image rotation with openCL, we see that the calculations of the new (x,
y) coordinate of each pixel in the input can be done independently. Each work-item

will calculate the new position of a single pixel. In a manner similar to matrix mul-

tiplication, a work-item can obtain the location of its respective pixel using its global

ID (as shown in Figure 4.4).

The image rotation example is a good example of an input decomposition, mean-

ing that an element of the input (in this case, an input image) is decomposed into a

work-item. When an image is rotated, the new locations of some pixels may be out-

side the image if the input and output image sizes are the same (see Figure 4.3, in
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Each element of the input image is handled by one work-item. Each work-item calculates its

data’s coordinates and writes image out.
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which the corners of the input would not have fit within the resultant image). For this

reason, we need to check the bounds of the calculated output coordinates.

__kernel void img_rotate(
__global float* dest_data, __global float* src_data,

int W, int H, //Image Dimensions

float sinTheta, float cosTheta ) //Rotation Parameters

{

//Work-item gets its index within index space

const int ix ¼ get_global_id(0);

const int iy ¼ get_global_id(1);

//Calculate location of data to move into (ix,iy)

//Output decomposition as mentioned

float x0 ¼ W/2.0f;

float y0 ¼ W/2.0f;

float xoff ¼ ix�x0;

float yoff ¼ iy�y0;

int xpos ¼ (int)(xOff*cosTheta + yOff*sinTheta + x0 );

int ypos ¼ (int)(yOff*cosTheta � xOff*sinTheta + y0 );

//Bound Checking

if(((int)xpos>¼0) && ((int)xpos< W) &&
((int)ypos>¼0) && ((int)ypos< H))

{

// Read (ix,iy) src_data and store at (xpos,ypos) in

// dest_data

// In this case, because we rotating about the origin

// and there is no translation,

dest_data[iy*W+ix] ¼ src_data[ypos*W+xpos];

}

}

As seen in the previous kernel code, image rotation is an embarrassingly parallel
problem, in which each resulting pixel value is computed independently. The main

steps for the host code are similar to those in Figure 4.2. For this example’s host code,

we can reuse a substantial amount of code from the previous matrix multiplication

example, including the code that will create the context and the command queue.

To give the developer wider exposure to OpenCL, we write the host code for the

image rotation example with the Cþþ bindings for OpenCL 1.1. The Cþþ bindings

are also compatible with OpenCL 1.2 and provide access to the low-level features of

the original OpenCL C API. The Cþþ bindings are compatible with standard Cþþ
compilers, and they are carefully designed to perform nomemory allocation and offer

full access to the features of OpenCL, without unnecessary masking of functionality.
More details about the OpenCL 1.1 specification’s Cþþ Wrapper API can be found at
www.khronos.org/registry/cl/specs/opencl-cplusplus-1.1.pdf.

http://www.khronos.org/registry/cl/specs/opencl-cplusplus-1.1.pdf
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The Cþþ header for OpenCL is obtained by including the header cl.hpp. The

steps are shown in a similar manner to the matrix multiplication example in order to

illustrate the close correspondence between the C API and the more concise Cþþ
bindings.

Step 1: Set Up Environment
// Discover platforms

cl::vector<cl::Platform> platforms;

cl::Platform::get(&platforms);

// Create a context with the first platform

cl_context_properties cps[3] ¼ {CL_CONTEXT_PLATFORM,
(cl_context_properties)(platforms[0])(), 0};

// Create a context using this platform for a GPU type device

cl::Context context(CL_DEVICE_TYPE_ALL, cps);

// Get device list from the context

cl::vector<cl::Device> devices ¼
context.getInfo<CL_CONTEXT_DEVICES>();

// Create a command queue on the first device

cl::CommandQueue queue ¼ cl::CommandQueue(context,

devices[0], 0);
Step 2: Declare Buffers and Move Data
// Create buffers for the input and output data (“W” and “H”

// are the width and height of the image, respectively)

cl::Buffer d_ip ¼ cl::Buffer(context, CL_MEM_READ_ONLY,
W*H* sizeof(float));

cl::Buffer d_op ¼ cl::Buffer(context, CL_MEM_WRITE_ONLY,

W*H* sizeof(float));

// Copy the input data to the device (assume that the input

// image is the array “ip”)

queue.enqueueWriteBuffer(d_ip, CL_TRUE, 0, W*H*

sizeof(float), ip);
Step 3: Runtime Kernel Compilation
// Read in the program source

std::ifstream sourceFileName("img_rotate_kernel.cl");

std::string sourceFile(
std::istreambuf_iterator<char>(sourceFileName),

(std::istreambuf_iterator<char>()));

cl::Program::Sources rotn_source(1,

std::make_pair(sourceFile.c_str(),
sourceFile.length()+1));
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// Create the program

cl::Program rotn_program(context, rotn_source);

// Build the program

rotn_program.build(devices);

// Create the kernel

cl::Kernel rotn_kernel(rotn_program, "img_rotate");

Step 4: Run the Program
// The angle of rotation is theta

float cos_theta ¼ cos(theta);

float sin_theta ¼ sin(theta);

// Set the kernel arguments

rotn_kernel.setArg(0, d_op);

rotn_kernel.setArg(1, d_ip);

rotn_kernel.setArg(2, W);

rotn_kernel.setArg(3, H);

rotn_kernel.setArg(4, cos_theta);

rotn_kernel.setArg(5, sin_theta);

// Set the size of the NDRange and workgroups

cl::NDRange globalws(W,H);

cl::NDRange localws(16,16);

// Run the kernel

queue.enqueueNDRangeKernel(rotn_kernel, cl::NullRange,
globalws, localws);
Step 5: Read Result Back to Host
// Read the output buffer back to the host

queue.enqueueReadBuffer(d_op, CL_TRUE, 0, W*H*sizeof(float), op);

As seen from the previous code, the Cþþ bindings maintain a close correspondence

to the C API.
Image Convolution Example
In image processing, convolution is a commonly used algorithm that modifies the

value of each pixel in an image by using information from neighboring pixels. A con-

volution kernel, or filter, describes how each pixel will be influenced by its neigh-

bors. For example, a blurring kernel will take the weighted average of neighboring

pixels so that large differences between pixel values are reduced. By using the same

source image and changing only the filter, effects such as sharpening, blurring, edge

enhancing, and embossing can be produced.

A convolution kernel works by iterating over each pixel in the source image. For

each source pixel, the filter is centered over the pixel and the values of the filter
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Applying a convolution filter to a source image.
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multiply the pixel values that they overlay. A sum of the products is then taken to

produce a new pixel value. Figure 4.5 provides a visual for this algorithm.

Figure 4.6B shows the effect of a blurring filter and Figure 4.6C shows the effect

of an edge-detection filter on the same source image seen in Figure 4.6A.

The following code performs a convolution in C. The outer two loops iterate over

the source image, selecting the next source pixel. At each source pixel, the filter is

applied to the neighboring pixels.

// Iterate over the rows of the source image

for(int i ¼ halfFilterWidth; i < rows - halfFilterWidth; i++) {
// Iterate over the columns of the source image

for(int j ¼ halfFilterWidth; j < cols - halfFilterWidth; j++) {

sum ¼ 0; // Reset sum for new source pixel

// Apply the filter to the neighborhood

for(int k ¼ - halfFilterWidth; k <¼ halfFilterWidth; k++) {
for(int l ¼ - halfFilterWidth; l <¼ halfFilterWidth; l++) {

sum +¼ Image[i+k][j+l] *
Filter[k+ halfFilterWidth][l+ halfFilterWidth];
}

}

outputImage[i][j] ¼ sum;

}

}

Step 1: Create Image and Buffer Objects
This example implements convolution using OpenCL images for the data type of the

source and output images. Using images to represent the data has a number of ad-

vantages. For the convolution, work-items representing border pixels may read
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FIGURE 4.6

The effect of a blurring filter and a vertical edge-detecting filter applied to the same source

image. (A) The original image. (B) Blurring filter. (C) Vertical edge-detecting filter.
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out-of-bounds. Images supply a mechanism to automatically handle these accesses

and return meaningful data.

The code begins by assuming that a context (context) and command queue

(queue) have already been created, and that the source image (sourceImage), output

image (outputImage), and filter (filter) have already been initialized on the host.

The images both have dimensions width by height.

The first task is to allocate space on the device for the source image, output im-

age, and the filter. Image declarations require a descriptor, cl_image_desc, and

a format, cl_image_format. The image descriptor is used to define the size and

dimensions of data, and the format is used to specify the datatype of each pixel

and the channel layout of the image. The image_channel_order field of the format

is where the channel layout is specified. Recall from Chapter 2 that every element

of an image stores data in up to four channels, with each channel specified by

RGBA, respectively. An image that will hold four values in every element

should use CL_RGBA for the channel order. However, if each work-item will only

access a single value (e.g., a pixel from a grayscale image or an element of a matrix),

the data can be specified to only use a single channel using CL_R. This example

assumes grayscale data and so only uses a single channel. The type of data is in

the image_channel_data_type field of the descriptor. Integers are specified by a

combination of signedness and size. For example, CL_SIGNED_INT32 is a 32-bit

signed integer, and CL_UNSIGNED_INT8 is the equivalent of an unsigned character

in C. Floating point data is specified by CL_FLOAT, and this is the type of data

used in the example.

After creating the image format descriptor, memory objects are created to repre-

sent the images using clCreateImage(). A buffer is created for the filter and will

eventually be used as constant memory.

// The image descriptor describes how the data will be stored in memory

// This descriptor initializes a 2D image with no pitch

cl_image_desc desc;

desc.image_type ¼ CL_MEM_OBJECT_IMAGE2D;

desc.image_width ¼ width;

desc.image_height ¼ height;

desc.image_depth ¼ 0;

desc.image_array_size ¼ 0;

desc.image_row_pitch ¼ 0;

desc.image_slice_pitch ¼ 0;

desc.num_mip_levels ¼ 0;

desc.num_samples ¼ 0;

desc.buffer ¼ NULL;

// The image format describes the properties of each pixel

cl_image_format format;

format.image_channel_order ¼ CL_R; // single channel

format.image_channel_data_type ¼ CL_FLOAT; // float data type
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// Create space for the source image on the device

cl_mem bufferSourceImage ¼ clCreateImage(context, CL_MEM_READ_ONLY,

&format, &desc, NULL, NULL);

// Create space for the output image on the device

cl_mem bufferOutputImage ¼ clCreateImage(context, CL_MEM_WRITE_ONLY,

&format, &desc, NULL, NULL);

// Create space for the 7x7 filter on the device

cl_mem bufferFilter ¼ clCreateBuffer(context, 0, filterSize*

sizeof(float), NULL, NULL);
Step 2: Write the Input Data
The call to clEnqueueWriteImage() copies an image to a device. Unlike buffers,

copying an image requires supplying a three-dimensional offset and region, which

define the coordinates where the copy should begin and how far it should span,

respectively.

The filter is copied using clEnqueueWriteBuffer(), as seen in previous

examples.

// Copy the source image to the device

size_t origin[3] = {0, 0, 0}; // Offset within the image to copy from

size_t region[3] = {width, height, 1}; // Elements to per dimension

clEnqueueWriteImage(

queue,

bufferSourceImage,

CL_TRUE, origin,

region,

0,

0,

sourceImage,

0,

NULL,

NULL);

// Copy the 7x7 filter to the device

clEnqueueWriteBuffer(

queue,

bufferFilter,

CL_TRUE,

0,

filterSize*sizeof(float),

filter,

0,

NULL,

NULL);
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Step 3: Create Sampler Object
In OpenCL, samplers are objects that describe how to access an image. Samplers

specify the type of coordinate system, what to do when out-of-bounds accesses oc-

cur, and whether or not to interpolate if an access lies between multiple indices. The

format of the clCreateSampler() API call is as follows:

cl_sampler clCreateSampler (
cl_context context,

cl_bool normalized_coords,

cl_addressing_mode addressing_mode,

cl_filter_mode filter_mode,

cl_int *errcode_ret)
The coordinate system can either be normalized (i.e., range from 0 to 1) or use Pixel-

based integer addresses. Setting the second argument to CL_TRUE enables normalized

coordinates. Convolution does not use normalized coordinates, so the argument is set

to FALSE.

OpenCL also allows a number of addressing modes to be used for handling

out-of-bounds accesses. In the case of the convolution example, we use

CL_ADDRESS_CLAMP_TO_EDGE to have any out-of-bounds access return the value on

the border of the image, if the access went out-of-bounds. If CL_ADDRESS_CLAMP is

used, the value produced by an out-of-bounds access is 0 for channels RG and B,

and it returns either 0 or 1 for channel A (based on the image format). Other options

are available when normalized coordinates are used.

The filter mode can be set to either access the closest pixel to a coordinate or

interpolate between multiple pixel values if the coordinate lies somewhere in

between.

// Create the image sampler

cl_sampler sampler ¼ clCreateSampler(
context,

CL_FALSE,

CL_ADDRESS_NONE,

CL_FILTER_NEAREST,

NULL);
Step 4: Compile and Execute the Kernel
The steps to create and build a program, create a kernel, set the kernel arguments, and

enqueue the kernel for execution are identical to those in the previous example. Un-

like the reference C version, the OpenCL code using images should create as many

work-items as there are pixels in the image. Any out-of-bounds accesses due to the

filter size will be handled automatically, based on the sampler object.
Step 5: Read the Result
Reading the result back to the host is very similar to writing the image, except that a

pointer to the location to store the output data on the host is supplied.
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// Read the output image back to the host

clEnqueueReadImage(

queue,

bufferOutputImage,

CL_TRUE,

origin,

region,

0,

0,

outputImage,

0,

NULL,

NULL);

The Convolution Kernel
The kernel is fairly straightforward if the reference C code is understood—each

work-item executes the two innermost loops. Data reads from the source image must

be performed using an OpenCL construct that is specific to the data type. For this

example, read_imagef() is used, where f signifies that the data to be read is of type

single precision floating point. Accesses to an image always return a four-element

vector (one per channel), so pixel (the value returned by the image access) and

sum (resultant data that gets copied to the output image) must both be declared as

a float4. Writing to the output image uses a similar function, write_imagef(),

and requires that the data be formatted correctly (as a float4). Writing does not sup-

port out-of-bounds accesses. If there is any chance that there are more work-items in

either dimension of the NDRange than there are pixels, bounds checking should be

performed before writing the output data.

The filter is a perfect candidate for constant memory in this example because all

work-items access the same element each iteration. Simply adding the keyword

__constant in the signature of the function places the filter in constant memory.

__kernel

void convolution(
__read_only image2d_t sourceImage,

__write_only image2d_t outputImage,

int rows,

int cols,

__constant float* filter,

int filterWidth,

sampler_t sampler)

{

// Store each work-item’s unique row and column

int column ¼ get_global_id(0);

int row ¼ get_global_id(1);

// Half the width of the filter is needed for indexing

// memory later

int halfWidth ¼ (int)(filterWidth/2);
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// All accesses to images return data as four-element vector

// (i.e., float4), although only the ’x’ component will contain

// meaningful data in this code

float4 sum ¼ {0.0f, 0.0f, 0.0f, 0.0f};

// Iterator for the filter

int filterIdx ¼ 0;

// Each work-item iterates around its local area based on the

// size of the filter

int2 coords; // Coordinates for accessing the image

// Iterate over the filter rows

for(int i ¼ -halfWidth; i <¼ halfWidth; i++) {

coords.y ¼ row + i;

// Iterate over the filter columns

for(int j ¼ -halfWidth; j <¼ halfWidth; j++) {
coords.x ¼ column + j;

float4 pixel;

// Read a pixel from the image. A single channel image

// stores the pixel in the ’x’ coordinate of the returned

// vector.

pixel ¼ read_imagef(sourceImage, sampler, coords);

sum.x +¼ pixel.x * filter[filterIdx++];

}

}

// Copy the data to the output image if the

// work-item is in bounds

if(myRow < rows && myCol < cols) {

coords.x ¼ column;

coords.y ¼ row;

write_imagef(outputImage, coords, sum);

}

}

COMPILING OPENCL HOST APPLICATIONS
To run a program for a GPU, an OpenCL-supported graphics driver is required.

OpenCL programs using AMD’s implementation can be run on x86 CPUs without

the installation of any hardware drivers but still require the OpenCL runtime.

Compiling an OpenCL program is similar to compiling any application that uses

dynamic libraries. Vendors distribute their own OpenCL library that must be used

when compiling and linking anOpenCLexecutable. To compile anOpenCLprogram,

an include path must be set to locate the OpenCL headers (cl.h or cl.hpp). The

linker must know how to locate the OpenCL library (OpenCL.lib for Windows and

libOpenCL.a on Linux). That’s it!
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Assuming that the OpenCL SDK is installed at $(AMDAPPSDKROOT), an example

compilation on Linux might be as follows:

$ g++ -o prog -I/$(AMDAPPSDKROOT)/include –L/$(AMDAPPSDKROOT)/lib/

x86_64 –lOpenCL prog.cpp

We see that most of the steps are similar across applications, allowing us to reuse a

lot of “boiler plate” code. Applications using the CþþWrapper API are compiled in

the same manner. The Cþþ header file will usually be located in the same directory

as the C headers.
SUMMARY
In this chapter, we discussed implementations of some well-known data-parallel al-

gorithms. We studied the use of OpenCL buffer and image objects. We also used the

Cþþ Wrapper API for the image rotation example.

In each example, a work-item computes the result of a single output element for

the problem, although the input data requirements vary. The image rotation example

is a case in which only one input element is needed. In matrix multiplication, a whole

row and a whole column of the input matrices are needed by each work-item to cal-

culate the result of one element of the output matrix. Convolution requires a neigh-

borhood of input pixels to compute a result.

Although the examples discussed in this chapter are correct data-parallel OpenCL

programs, their performance can be drastically improved. Optimizing performance

based on specific hardware platforms is the goal of subsequent chapters.



CHAPTER
5
Understanding OpenCL’s
Concurrency and
Execution Model
INTRODUCTION
As discussed in Chapter 3, there is a wide range of devices supported by OpenCL. To

achieve such wide support, it is vital that the memory and execution models for

OpenCL are defined in such a way that we can achieve a high level of performance

across a range of architectures without extraordinary programming effort. In this

chapter, we delve deeper into these models, and in Chapter 6 we show how they

map to a specific architecture that supports OpenCL.
KERNELS, WORK-ITEMS, WORKGROUPS, AND
THE EXECUTION DOMAIN
OpenCL execution is centered on the concept of a kernel. A kernel is a unit of code

that represents a single executing instance as written in the OpenCL C language.

A kernel instance is at first sight similar to a C function: In the OpenCL C language,

a kernel looks like C, it takes a parameter list, and has “local” variables (in a private

address space, as we shall see) and standard control flow constructs. This single

kernel instance is known as a work item in OpenCL terminology.

What makes the OpenCL kernel different from a C function is its parallel seman-

tics. Any given kernel instance or work item defines just one sliver of a large parallel

execution space. A kernel dispatch, initiated when the runtime processes the entry in

an execution queue created by a call to enqueueNDRange on a queue object, consists

of a large number of work items intended to execute together to carry out the collec-

tive operations specified in the kernel body. As the enqueue call suggests, this dis-

patch creates an NDRange (an n-dimensional range) worth of work items. An NDRange

defines a one-, two-, or three-dimensional grid of work items, providing a simple and

straightforward structure for parallel execution. When mapped to the hardware

model of OpenCL, each work item runs on a unit of hardware abstractly known

as a processing element, where a given processing element may process multiple

work items in turn.
Heterogeneous Computing with OpenCL
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Within a kernel dispatch, each work item is independent. In OpenCL, synchro-

nization between work items is not defined. This relaxed execution model allows

OpenCL to scale on devices possessing a large number of cores. However, this kind

of hardware actually provides a hierarchy of execution devices, particularly a hier-

archy of memory structures.

To flexibly support these sorts of devices, OpenCL divides the global execution

space into a large number of equally sized one-, two-, or three-dimensional sets of

work items called workgroups. Within each workgroup, some degree of communi-

cation is allowed. The OpenCL specification defines that an entire workgroup can

run concurrently on an element of the device hierarchy known as a compute unit.

This form of concurrent execution is vital to allow synchronization. Workgroups al-

low for local synchronization by guaranteeing concurrent execution, but they also

limit communication to improve scalability. An application that involves global

communication across its execution space is challenging to parallelize to multi-core

devices with OpenCL. To satisfy global communications, the compute unit will be

mapped onto a single core.

By defining larger dispatches than can execute concurrently, OpenCL kernels can

scale onto larger and more heavily threaded devices on which more groups and more

work items can execute at once. However, for performance reasons (just as with APIs

such as OpenMP and MPI), it may make more sense to only issue enough work that

you know can run and more directly control optimization.

As discussed in Chapter 2, OpenCL work items attempt to express parallelism

that could be expressed using Win32 or POSIX threads or a more abstract mapping

to threads such as OpenMP. The design of OpenCL takes that a step further, however,

because the set of work items within a workgroup can be efficiently grouped into a

smaller number of hardware thread contexts. This can be viewed as a generalization

of single instruction multiple data (SIMD) or pipelined vector execution where long

logical vectors execute over multiple cycles, but in the OpenCL case, subvectors can

maintain their own program counters until synchronization points. The best example

of this is on the GPU, where as many as 64 work items execute in lock step as a single

hardware thread on a SIMD unit: On AMD architectures, this is known as a wave-
front, and on NVIDIA architectures it is called a warp. The result is SIMD execution

via lanewise programming, an arguably simpler development model than explicit use

of SIMD instructions as developers are used to when using SSE intrinsics on x86

processors. Because of this SIMD execution, it is often noted that for a given device,

an OpenCL dispatch should be an even multiple of that device’s SIMD width. This

value can be queried through the getInfo functionality of the runtime as the param-

eter CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE to the clGetKernel-

WorkGroupInfo function.

OpenCL defines functions callable fromwithin a kernel to obtain the position of a

given work item in the execution range. Some of these functions take a dimension

value, listed here as uint dimension. This refers to the 0th, 1st, or 2nd dimension in

the iteration space as provided in the multidimensional NDRange parameters to the

kernel enqueue:
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• uint get_work_dim(): Returns the number of dimensions in use in the dispatch.

• uint get_global_size(uint dimension): Returns the global number of work

items in the dimension requested.

• uint get_global_id(uint dimension): Returns the index of the current work

item in the global space and in the dimension requested.

• uint get_local_size(uint dimension): Returns the size of workgroups in this

dispatch in the requested dimension.

• uint get_local_id(uint dimension): Returns the index of the current work

item as an offset from the beginning of the current workgroup.

• uint get_num_groups(uint dimension): Returns the number of workgroups in

the specified dimension of the dispatch. This is get_global_size divided by

get_local_size.

• uint get_group_id(uint dimension): Returns the index of the current work-

group. That is, the global index of the first work-item in the workgroup, dividing

by the workgroup size.

As an example of execution of a simple kernel, take the following trivial kernel that

executes over a two-dimensional execution space, multiplies an input array by 2, and

then assigns it to the output. Figure 5.1 shows how this executes in practice. We can

see that the calls to get_global_id and get_global_size return different values for

each work item that refer to different points in the iteration space. In this trivial ex-

ample, we use the position in the space to directly map to a two-dimensional data

structure. In real examples, much more complicated mappings are possible, depend-

ing on the input and output structures and the way an algorithm will process the data.

__kernel void simpleKernel(
FIGU

Exe
__global float *a,

__global float *b )

{

RE 5.1

cuting a simple kernel showing kernel instances in the grid.
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int address ¼
get_global_id(0) +

get_global_id(1) * get_global_size(0);

b[address] ¼ a[address] * 2;

}

OPENCL SYNCHRONIZATION: KERNELS, FENCES,
AND BARRIERS
In the OpenCL model at its simplest, individual work items execute independently.

A write performed in one work item has no ordering guarantee with a read performed

in another work item. Rather, OpenCL has both a relaxed synchronization model and

a relaxed memory consistency model. Although the reality of hardware means that

certain guarantees will be met, in a cross-platform API no such guarantee can be

made. The solution is that OpenCL explicitly defines synchronization points where

the programmer knows with certainty what the state of some part of the system is and

can rely on that information to obtain expectations of behavior.

Because OpenCL runs on devices in which threading is managed by hardware,

such as GPUs, in addition to operating system-managed threading models such as

mainstream x86 CPUs, further care is taken to enable full concurrency. In an x86

thread, it is possible to attempt to lower a semaphore and block if the semaphore

in unavailable, knowing that the operating system will remove the thread from ex-

ecution and is free to schedule anything in its place with little in the way of resource

constraints. On a GPU, applying the same trick in the GPU equivalent of a thread, the

wavefront on AMD hardware, is problematic because the resources occupied are

fixed. For example, removing one wavefront from execution does not free its re-

sources, so it is possible to reach a situation in which a wavefront that is not yet able

to fit on the device is required to free the semaphore before one that is already on the

device is able to continue. Because the wavefronts on the device are waiting on that

semaphore, they never get to execute and so the system deadlocks.

To circumvent this eventuality, OpenCL only defines global synchronization at

kernel boundaries. That is, between one work item and another, there is no specified

method of ensuring an ordering if those two work items are in different workgroups

of the same kernel execution. To support sharing of data, mainly in local memory,

between work items in the same workgroup, OpenCL specifies the barrier opera-

tion within the workgroup. A call to barrier within a work item requires that that

work item cannot continue past the barrier until all work items in the group have also

reached the barrier. This is a program-counter level restriction, which means that

each barrier in the code is treated as a different execution barrier. As a result, when

a workgroup barrier is placed within control flow in the kernel, all work items within

the group must encounter that barrier. The net effect of this is that behavior of bar-

riers within control flow that diverges between different work items in the group is
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undefined: Onmany devices, this leads to deadlock as work items wait for others that

will never reach the barrier.

A simple example of OpenCL synchronization is shown in Figure 5.2. In this di-

agram, we see an initial kernel enqueue with four workgroups of eight work items

each. Under the loosest interpretation of the OpenCL spec (i.e., ignoring hardware

implementations), the work items in each workgroup proceed at varying rates. On

issuing the barrier instruction, the most advanced work item waits for all others to

catch up, only continuing after all have reached that point. Different workgroups

and specifically work items in other workgroups proceed with a schedule completely

unrelated to that of the first workgroup until the end of the kernel. Between kernel

dispatches, all work is guaranteed to be complete and all memory consistent. Then,

the next kernel launches, with the same semantics.

If we assume that the kernels enqueued as 0 and 1 are produced from the same

kernel object, the following kernel code and API calls could be expected to
FIGURE 5.2

Synchronization behavior in OpenCL. Within a single kernel dispatch, synchronization is only

guaranteed within workgroups using barriers. Global synchronization is maintained by

completion of the kernel and the guarantee that on a completion event all work is complete

and memory content as expected.
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produce the behavior seen in Figure 5.2. In this case, the behavior we see from the

work items is a simple wrapping neighborwise addition of elements in local memory,

where availability of the data must be guaranteed before neighbors can be read. Note

from this example that kernel arguments assigned to a kernel object are persistent and

hence do not need to be repeatedly set. This is true of both the C and Cþþ APIs.

// Host code

. . .
cl_mem input ¼ clCreateBuffer(

context,

CL_MEM_READ_ONLY,

10*sizeof(float),

0,

0);

cl_mem intermediate ¼ clCreateBuffer(

context,

CL_MEM_READ_ONLY,

10*sizeof(float),

0,

0);

cl_mem output ¼ clCreateBuffer(

context,

CL_MEM_WRITE_ONLY,

10*sizeof(float),

0,

0);

clEnqueueWriteBuffer(

queue,

input,

CL_TRUE,

0,

10*sizeof(int),

(void *)hostInput,

0,

NULL,

NULL);

clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&input);

clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&intermediate);

clSetKernelArg(kernel, 2, 2*sizeof(float), 0);

size_t localws[1] ¼ {2} ;

size_t globalws[1] ¼ {10};

clEnqueueNDRangeKernel(

queue,

kernel,

1,

NULL,
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globalws,

localws,

0,

NULL,

NULL);

clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&intermediate);

clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&output);

clEnqueueNDRangeKernel(

queue,

kernel,

1,

NULL,

globalws,

localws,

0,

NULL,

NULL);

clEnqueueReadBuffer(

queue,

output,

CL_TRUE,

0,

10*sizeof(float),

(void *)&hostOutput,

0,

NULL,

NULL);

. . .

// Kernel

__kernel void simpleKernel(

__global float *a,

__global float *b,

__local float *l )

{

l[get_local_id(0)] ¼ a[get_global_id(0)];

barrier(CLK_LOCAL_MEM_FENCE);

unsigned int otherAddress ¼

(get_local_id(0) + 1) % get_local_size(0);

b[get_local_id(0)] ¼ l[get_local_id(0)] + l[otherAddress];

}
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QUEUING AND GLOBAL SYNCHRONIZATION
OpenCL is based on a task-parallel, host-controlled model, in which each task is data

parallel. This is maintained through the use of thread-safe command queues attached

to each device. Kernels, data movement, and other operations are not simply exe-

cuted by the user calling a runtime function. These operations are enqueued onto

a specific queue using an asynchronous enqueue operation, to be executed at some

point in the future.

The commands enqueued into OpenCL’s command queues can be as follows:

• Kernel execution commands

• Memory commands

• Synchronization commands

All kernel execution and synchronization commands are enqueued asynchronously.

Completionof a command fromthe point of viewof thehost program isonly guaranteed

at a synchronization point. The following are the primary synchronization points:

• A clFinish command that blocks until an entire queue completes execution

• Waiting on the completion of a specific event

• Execution of a blocking memory operation

The last option is the simplest, often used in simple OpenCL demos. The following is

a program fragment that asynchronously enqueues a sequence of commands and re-

quires a blocking memory operation to perform synchronization with the host:

// Perform setup of platform, context and create buffers

. . .

// Create queue leaving parameters as default so queue is in-order

queue ¼ clCreateCommandQueue( context, devices[0], 0, 0);

. . .

clEnqueueWriteBuffer(
queue,

bufferA,

CL_TRUE,

0,

10 * sizeof(int),

a,

0,

NULL,

NULL);

clEnqueueWriteBuffer(

queue,

bufferB,

CL_TRUE,

0,

10 * sizeof(int),

b,
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0,

NULL,

NULL);

// Set kernel arguments

. . .

size_t localws[1] ¼ {2}; size_t globalws[1] ¼ {10};

clEnqueueNDRangeKernel(

queue,

kernel,

1,

NULL,

globalws,

localws,

0,

NULL,

NULL);

// Perform blocking read-back to synchronize

clEnqueueReadBuffer(

queue,

bufferOut,

CL_TRUE,

0,

10 * sizeof(int),

out,

0,

0,

0);

The second parameter to enqueueReadBuffer reads CL_TRUE. This parameter makes

the read buffer asynchronous, such that it will block until the data has been copied

back. To correctly copy back, all activities in the queue before the copy must have

completed to correctly generate the data. Had we set that parameter to CL_FALSE, a

further synchronization operation would have been needed. The simplest approach

would have been to insert a cl finish operation on the queue:

clEnqueueReadBuffer(
queue,

bufferOut,

CL_FALSE,

0,

10 * sizeof(int),

out,

0,

0,

0);

clFinish(queue);
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Memory Consistency in OpenCL
OpenCL synchronization applies not only to completion of work but also to correct

visibility of memory. OpenCL follows a relaxed memory consistency model that al-

lows it to be more efficiently mapped to a wide range of devices. In the OpenCL

model, any memory object that is shared between multiple enqueued commands

is guaranteed to be consistent only at synchronization points. This means that be-

tween two commands, consistency, and hence correctness of communication, is

guaranteed at the minimum between elements in an in-order queue or on a commu-

nicated event from one command that generates the event to another that waits on it.

Even in this case, memory object consistency will be maintained only within the

runtime, not visibly to the host API. To achieve host API correctness, the user must

use one of the discussed blocking operations. For example, clFinishwill block until

all operations in the specified queue have completed and hence guarantee memory

consistency of any buffers used by operations in the queue.

Between devices, the same consistency issues arise. Because memory objects are

associated with contexts rather than devices, it is the responsibility of the OpenCL

runtime to ensure that such objects are consistent across devices when data is shared

and appropriate events occur. Data is moved from one device to another such that if a

kernel is to be executed on a second device, any results generated on the first will be

available when necessary. The completion of an event on the first data structure is the

guarantee that the data is OK to move and no separate buffer copy operation is

needed.
Events
Note that the command queue is constructed ignoring the final two parameters,

which are left as default. One of the properties available for this bit field is to enable

out-of-order execution of the queue (CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE).

Thus, although the queue in the previous example is in-order, it is possible for a

queue to execute out-of-order.

An out-of-order queue has no default ordering of the operations defined in the

queue. If the runtime decides that it has, for example, a DMA engine that can execute

in parallel with compute units, or that the device can execute multiple kernels at

once, it is at liberty to schedule those operations in parallel with no guarantee that

one completes before another starts. Similarly, if the runtime has multiple queues

whether on the same device or, more obviously, on multiple devices, there is no de-

fault assumption about order of execution of elements of these multiple queues.

In either case, to correctly execute such a structure requires the construction of a

task graph. In OpenCL, task graph creation is through event objects. OpenCL’s event

model allows the construction of complicated graphs linking the tasks enqueued in

any of the command queues associated with a given OpenCL context. A single event

can be passed as the final parameter to the enqueue functions, and this event encap-

sulates the state of that enqueued command. Most important, the event registers the
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completion of the task along with the guarantee that all memory referenced by the

task is consistent. A list of events can be passed to an enqueue function as a depen-

dence list. This means that the commandwill not begin executing until all of the input

events have completed. The following code is a repeat of the previous example, with

an out-of-order queue and all dependencies explicitly defined. Figure 5.3 represents

the same command sequence diagrammatically. As one can see in the example, a

third approach for synchronizing with the host is to use an event directly. In this case,

we see that we have called wait() on the read event:

// Perform setup of platform, context and create buffers

. . .

// Create queue leaving parameters as default so queue is in-order

queue ¼ clCreateCommandQueue( context, devices[0], 0, 0);

. . .

cl_event writeEventA;

cl_event writeEventB;

cl_event kernelEvent;

cl_event readEvent;

clEnqueueWriteBuffer(
FIGURE

One en

passed
queue,

bufferA,

CL_TRUE,

0,
5.3

queued command can depend on a set of enqueued commands through the events

to the respective enqueue functions.
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10 * sizeof(int),

a,

0,

NULL,

&writeEventA);

clEnqueueWriteBuffer(

queue,

bufferB,

CL_TRUE,

0,

10 * sizeof(int),

b,

0,

NULL,

&writeEventB);

// Set kernel arguments

. . .

size_t localws[1] ¼ {2}; size_t globalws[1] ¼ {10};

// Wait on both writes before executing the kernel

cl_event eventList[2];

eventList[0] ¼ writeEventA;

eventList[1] ¼ writeEventB;

clEnqueueNDRangeKernel(

queue,

kernel,

1,

NULL,

globalws,

localws,

2,

eventList,

&kernelEvent);

// Decrease reference count on events

clReleaseEvent(writeEventA);

clReleaseEvent(writeEventB);

// Read will wait on kernel completion to run

clEnqueueReadBuffer(

queue,

bufferOut,

CL_TRUE,

0,

10 * sizeof(int),

out,

1,

&kernelEvent,

&readEvent);
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clReleaseEvent(kernelEvent);

// Block until the read has completed

clWaitForEvents(1, &readEvent);

clReleaseEvent(readEvent);

Command Queues to Multiple Devices
Understanding the synchronization capabilities and the host memory model of

OpenCL is necessary for the management of multiple command queues. Multiple

queues can be mapped to the same device to overlap execution of different com-

mands or overlap commands and host–device communication. If we have multiple

devices in a system (e.g., a CPU and a GPU or multiple GPUs), each device needs its

own command queue.

Figure 5.4 shows an OpenCL context with two devices. Separate command

queues are created to access each device. The following code shows how two com-

mand queues can be created within the same context. It is important to note that syn-

chronization using OpenCL events can only be done for commands within the same

context. If separate contexts were created for different devices, then synchronization

using events would not be possible, and the only way to share data between devices

would be to use clFinish and then explicitly copy data between buffer objects.

cl_uint num_devices;

cl_device_id devices[2];

cl_context ctx;

//Obtain devices of both CPU and GPU types
FIGURE 5.4

Multiple command queues created for different devices declared within the same context.
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err_code ¼ clGetDeviceIDs(

NULL,

CL_DEVICE_TYPE_CPU,

1,

&devices[0],

&num_devices);

err_code ¼ clGetDeviceIDs(

NULL,

CL_DEVICE_TYPE_GPU,

1,

&devices[1],

&num_devices);

//Create a context including two devices

ctx ¼ clCreateContext(0, 2, devices, NULL, NULL, &err);

cl_command_queue queue_cpu, queue_gpu;

//Create queues to each device

queue_cpu ¼ clCreateCommandQueue(context, devices[0], 0, &err);

queue_gpu ¼ clCreateCommandQueue(context, devices[1], 0, &err);

Multiple device programming with OpenCL can be summarized with two execution

models usually seen in parallel programming for heterogeneous devices:

• Two or more devices work in a pipeline manner such that one device waits on the

results of another, shown in Figure 5.5.

• A model in which multiple devices work independently of each other, shown in

Figure 5.6.

In the following code, the wait list orders execution such that the kernel on the GPU

queue will complete before the CPU queue begins executing the kernel:
FIGURE 5.5

Multiple devices working in a cooperative manner on the same data. The CPU queue will wait

until the GPU kernel is finished.



FIGURE 5.6

Multiple devices working in a parallel manner. In this scenario, both GPUs do not use the

same buffers and will execute independently. The CPU queue will wait until both GPU devices

are finished.
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//! A collaborative - pipelined model of multidevice execution

//! The enqueued kernel on the GPU command queue waits for the kernel on

the CPU

//! command queue to finish executing

cl_event event0_cpu, event1_gpu;

// Starts as soon as enqueued

err ¼ clEnqueueNDRangeKernel(

queue_gpu,

kernel1_gpu,

2,

NULL,

global,

local,

0,

NULL,

&event_gpu);

// Starts after event_gpu is on CL_COMPLETE

err ¼ clEnqueueNDRangeKernel(

queue_cpu,

kernel2_cpu,

2,

NULL,

global,

local,

1,
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&event_gpu,

&event_cpu);

clFlush(queue_cpu);

clFlush(queue_gpu);

The following code shows an execution model in which the kernels are executed on

different devices in parallel. A parallel multidevice example is shown in Figure 5.6,

in which two GPUs process kernels independently. Separate buffers are required for

the two devices because they can only execute in parallel if they do not share buffers.

// Parallel multidevice execution

// We would need to create 3 command queues in this case

// 2 queues for 2 GPUs and 1 queue for the CPU

// The enqueued kernel on the CPU command queue waits

// for the kernels on the GPU command queues to finish

cl_event event_gpu[2];

// Both the GPU devices can execute concurrently as soon as they have

// their respective data since they have no events in their waitlist

err ¼ clEnqueueNDRangeKernel(
queue_gpu_0,

kernel_gpu,

2,

NULL,

global,

local,

0,

NULL,

&event_gpu[0]);

err ¼ clEnqueueNDRangeKernel(

queue_gpu_1,

kernel_gpu,

2,

NULL,

global,

local,

0,

NULL,

&event_gpu[1]);

// The CPU will wait till both GPUs are done executing their kernels

// Two events in the CPU’s waitlist

err ¼ clEnqueueNDRangeKernel(

queue_cpu,

kernel_cpu,

2,

NULL,

global,
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local,

2,

event_gpu,

NULL);

clFlush(queue_gpu_0);

clFlush(queue_gpu_1);

clFlush(queue_cpu);

Event Uses beyond Synchronization
Due to the asynchronous nature of the OpenCL API, there is no good way for indi-

vidual API calls to return error conditions or profiling data that relates to the execu-

tion of the OpenCL command rather than the setup of the queue performed by the

enqueue function. Whereas the API calls can return error conditions relating to their

parameters, error conditions relating to the execution of the OpenCL command itself

can be queried through the event the command returns. Indeed, completion can be

considered a condition similar to any other.

Event queries are performed through the getInfo function on an event. The fol-

lowing concepts can be queried through getInfo:

• CL_EVENT_COMMAND_QUEUE: Returns the command queue associated with the

event (useful if events are being passed around a complicated program).

• CL_EVENT_CONTEXT: Returns the context associated with the event.

• CL_EVENT_COMMAND_TYPE: Returns the command associated with the event.

This can be one of a list of types, including CL_COMMAND_NDRANGE_KERNEL and

CL_COMMAND_READ_BUFFER.

• CL_EVENT_COMMAND_EXECUTION_STATUS: Returns the status of the command asso-

ciated with the event. CL_COMPLETE is the event we wait on with event.wait(),

but the command can be queued, submitted, or running as well. A negative inte-

ger value in this field is the method by which error codes that only arise when the

command tries to execute are returned.

If the context was created with profiling enabled, event.getProfilingInfo allows

the developer to obtain timing information from the command. Profiling with events

is discussed in Chapter 12.

User Events
User events are OpenCL’s method for allowing the user to enqueue commands that

depend on the completion of some arbitrary task. The user event can be passed to

OpenCL enqueue functions like any other event, but the execution status of the event

is set explicitly.

For example, to ensure that a buffer is not overwritten by an asynchronous

OpenCL read operation until the buffer is no longer in use, we could do something

such as the following:

cl_event userEvent ¼ clCreateUserEvent( context 0 );

clEnqueueReadBuffer(
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queue,

bufferOut,

CL_TRUE,

0,

10 * sizeof(int),

out,

1,

&userEvent,

0);

// Do other things

. . .

// Make sure that the host pointer bufferOut is safe to overwrite

// at this point because it has been used on the host side

clSetUserEventStatus( userEvent, CL_COMPLETE );

// Now the read buffer operation can continue because

// its dependencies are satisfied
Event Callbacks
OpenCL allows a user to define callbacks invoked when events reach specific states.

The callback function will be invoked for a specified execution status of a command

in the queue. Event callbacks can be used to enqueue new commands. Callbacks

can also be used to invoke host functions such as specialized CPU libraries. The

clSetEventCallback function call is used to set a callback for an event:

// Function call to set an event callback

cl_int clSetEventCallback (
//OpenCL event

cl_event event,

//Event Status which invokes callback

cl_int command_exec_callback_type,

//Function pointer - parameter type shown

void (CL_CALLBACK *pfn_event_notify)

(cl_event event,

cl_int event_command_exec_status,

void *user_data),

//Pointer to user data which is used by callback

void *user_data )
A usage scenario of OpenCL callbacks (Figure 5.7) includes applications in which

the host CPU interacts tightly with a device such as a GPU. In such applications,

usually the host would have to wait while the device is executing. This could reduce

the system’s efficiency. An alternative method would be to set a callback to a stub

host function. The host could improve its efficiency by doing other work instead of

spinning while waiting on the GPU.



FIGURE 5.7

Using callbacks to enqueue data to device.
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The location of the clSetEventCallback is key in the following code segment. The

function call is required after the clEnqueueNDRangeKernel because the clSetEvent-

Callback function requires a valid event object that gets populated by the runtime.

The following codewill return with an invalid event error code because the runtime

has not populated an event with valid information when the callback is being set up:

cl_event completionEvent;

// Wrong location to set callback in

errcode ¼ clSetEventCallback(
completionEvent,

CL_COMPLETE,

myCallback,

(void *)&ipargs);

// clSetEventCallback will return an invalid event error code

errcode ¼ clEnqueueNDRangeKernel(command_queue,

kernel,

2,

0,

globalworksize,

localworksize,

&completionEvent);

Callbacks should be used with caution for the following reasons, as highlighted by

the OpenCL specification:

• There is no guarantee that the callback functions registered for multiple execution

status for the same event will be called in the exact order that the execution status

of a command changes.
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• The callback should be thread-safe and will be called asynchronously.

• The behavior of calling expensive system routines, or blocking OpenCLAPI calls

such as clFinish from the callback function is undefined.

For these reasons, callbacks should be lightweight stubs, which call more compli-

cated functions. The following is an example of setting a callback:

// The callback can only get a single void* user_data pointer.

// As a work around, a programmer can pass multiple

// arguments by wrapping them within a structure as shown

struct arg_block{
data_type arg0;

data_type arg1;

};

cl_event completionEvent;

//! Simple example showing declaration of a callback

//! The callback function can only have the signature shown below

void CL_CALLBACK

callbackFunction(

cl_event event,

cl_int cmd_exec_status,

void *user_data) {

//Use this function to invoke a host Library

arg_block * ipargs ¼ (arg_block * )user_data;

//Call host function

host_function(arg_block.arg0, arg_block.arg1);

}

//!Start Device computation

errcode ¼ clEnqueueNDRangeKernel(

command_queue,

kernel,

2,

0,

globalworksize,

localworksize,

0,

NULL

&completionEvent);

// Set the callback such that callbackFunction is called when

// completionEvent indicates that the kernel

// has completed (CL_COMPLETE)

errcode ¼ clSetEventCallback(

completionEvent,

CL_COMPLETE,

callbackFunction,

(void *)&ipargs);
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One of the primary benefits of using the event-handling capabilities of OpenCL is

that application-level behavior and synchronization requirements can be handled

in a consistent manner on both CPU and GPU for multiple vendor implementations.

This restricts device-specific tuning to only the compute kernels.
Native Kernels
An alternative to callbacks that is more cleanly integrated into the OpenCL

execution model is to use native kernels. Native kernels allow standard C functions

compiled with a traditional compiler rather than the OpenCL compiler flow to be ex-

ecutedwithin theOpenCLtaskgraph,be triggeredbyevents, and trigger furtherevents.

The difference between enqueuing a native kernel and enqueuing a kernel is that

rather than taking a cl_kernel object as an argument, the native kernel enqueue

function, clEnqueueNativeKernel, takes a function pointer to a standard C function.

The argument list is provided separately along with its size. Because OpenCL uses

buffer and image objects, these are passed as kernel arguments, and it is useful to be

able to pass these to native functions. This process is called unboxing, and it is han-

dled by passing in a list of memory objects, in the argument mem_list, and a list of

pointers, args_mem_loc, mapping into args where the unboxed memory pointers

will be placed.

To illustrate the point, consider the following example, in which a native

function expects an argument list containing five values, where the 0 and 2 indexes

are set to integers 5 and 8, respectively, and the 1, 3, and 4 indexes are two buffer

objects and an image object. This is shown in Figure 5.8. The corresponding code is

as follows:

cl_command_queue queue ¼ clCreateCommandQueue(. . .);

cl_mem buffer1 ¼ clCreateBuffer(. . .);

cl_mem buffer2 ¼ clCreateBuffer(. . .);

cl_mem image ¼ clCreateImage2D(. . .);

// initialize buffers, images, and so on

size_t cb_args ¼ 5;

num_mem_objects ¼ 3;

void *args[5] ¼ { (void *)5, NULL, (void *)8, NULL, NULL };

cl_mem mem_list[3] ¼ { buffer1, buffer2, image};

void * args_mem_loc[3] ¼ { &args[1], &args[3], &args[4] };

Finally, given a native function void foo(void * args), we can call

clEnqueueNativeKernel:

clEnqueueNativeKernel(
queue,

foo,

args,

cb_args,



FIGURE 5.8

Example showing OpenCL memory objects mapping to arguments for clEnqueue

NativeKernel.
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num_mem_objects,

mem_list,

args_mem_loc,

0,

NULL,

NULL);
Command Barriers and Markers
An alternative method of synchronizing in an out-of-order queue is similar to the

approach for synchronizing within a workgroup. In both cases, a barrier operation

causes anything executing from the queue before the barrier to complete until activ-

ities after the queue can continue. A barrier includes no state and does not support an

event of its own but sits in a queue guaranteeing ordering. Conceptually, this means

that a barrier has an implicit event list including the returned event from every pre-

ceding entry in the queue and an implicit output event that is included in the input

event list of every later command. A barrier is similar to an asynchronous clFinish.
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Markers, enqueued using the enqueueMarker, are related to barriers but do not

block execution. Rather, when all preceding commands have completed, the marker

completes: It has an implicit input event list with events from all preceding com-

mands. The output event of a marker is explicit and can be used to trigger further

activity. This could be useful if there is some event (or some host activity) that

has to wait for a given set of queue entries to complete but that is not bothered if

other commands outside that set also execute.

The final synchronization primitive is waitForEvents, which is the opposite of a

marker. Rather than triggering an event on completion, it holds execution of the

queue for a specific set of triggering events to have completed.

Between these synchronization commands and the more general use of events,

OpenCL provides the ability to produce sophisticated and complicated task graphs

enabling highly complicated behaviors.
THE HOST-SIDE MEMORY MODEL
OpenCL devices such as GPUs and other accelerators frequently operate with mem-

ory systems separate from the main memory associated with the computer’s primary

CPUs. In addition, OpenCL’s concurrency model supports a relaxed consistency in

which global synchronization of memory is only defined on the completion of events

and local synchronization on barrier operations. To support both of these features,

OpenCL’s memory objects are defined to be in a separate space from the host CPU’s

memory. Any movement of data in and out of OpenCL memory objects from a CPU

pointer must be performed through API functions. It is important to note that

OpenCL’s memory objects are defined on a context and not on a device. That is,

in general, moving data in and out of a buffer need not move data to any specific

device. It is the job of the runtime to ensure that data is in the correct place at the

correct time.

OpenCL’s memory objects are divided into two types, where specific placement,

layout, and format of these two types are defined by parameters. The two types of

objects defined in the OpenCL specification are buffers and images.

Buffer objects are one-dimensional arrays in the traditional CPU sense and sim-

ilar to memory allocated through malloc in a C program. Buffers can contain any

scalar data type, vector data type, or user-defined structure. The data stored in a

buffer is sequential, such that the OpenCL kernel can access it using pointers in a

random access manner familiar to a C programmer.

Image objects take a different approach. Because GPUs are designed for proces-

sing graphics workloads, they are heavily optimized for accessing image data. This

works in three main ways:

• GPU cache hierarchies and data flow structures are designed to optimize access

to image-type data.
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• GPU drivers optimize data layouts to support the hardware in providing efficient

access to the data, particularly when using two-dimensional access patterns.

• Image access hardware supports sophisticated data conversions that allow data to

be stored in a range of compressed formats.

The data layout transformations involved in optimizing image access make it diffi-

cult to define pointer access to this data because the relationship of one memory lo-

cation to another becomes opaque to the developer. As a result, image structures are

completely opaque not only to the developer but also to the kernel code, accessible

only through specialized access functions.
Buffers
Buffer objects map very easily to the standard array representation that people expect

in the host C program. Consider the following host code, which is legal C:

float a[10], b[10];

for( int i ¼ 0; i < 10; ++i ){
*(a+i) ¼ b[i];

}

The example shows that we can access a and b either through pointers or using array
access syntax. This is important because it implies that data is allocated sequentially,

such that the ith element a[i] of array a is stored at location (a + i).

We can use sizeof operations on array elements to calculate offsets into arrays

cast to pointers of different types. In low-level code, it is useful to have these fea-

tures, and it is a natural expectation for a C-derived language. For example, the fol-

lowing OpenCL kernel code, taken from the Bullet physics SDK, allows us to

perform flexible output into a vertex buffer by parameterizing with base pointer

and strides. The position and normal arrays we receive are float4 in structure, and

the output is a structure containing the position and normal information as well as

other content that the kernel need not know about.

__kernel void OutputToVertexArray(
const int startNode,

const int numNodes,

__global float *g_vertexBuffer,

const int positionOffset,

const int positionStride,

const __global float4* g_vertexPositions,

const int normalOffset,

const int normalStride,

const __global float4* g_vertexNormals ){

int nodeID ¼ get_global_id(0);

float4 position ¼ g_vertexPositions[nodeID + startNode];

float4 normal ¼ g_vertexNormals[nodeID + startNode];
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int positionDestination ¼
nodeID * positionStride + positionOffset;

g_vertexBuffer[positionDestination] ¼ position.x;

g_vertexBuffer[positionDestination+1] ¼ position.y;

g_vertexBuffer[positionDestination+2] ¼ position.z;

int normalDestination ¼ nodeID * normalStride + normalOffset;

g_vertexBuffer[normalDestination] ¼ normal.x;

g_vertexBuffer[normalDestination+1] ¼ normal.y;

g_vertexBuffer[normalDestination+2] ¼ normal.z;

}

Manipulating Buffer Objects
Buffer objects are similar to malloc’d arrays, so their creation is relatively simple. At

the simplest level, creation requires a size, a context in which to create the buffer, and

a set of creation flags:

cl_mem clCreateBuffer(
cl_context context,

cl_mem_flags flags,

size_t size,

void *host_ptr,

cl_int *err)
The function returns a buffer object, where the error code is returned through a var-

iable passed by reference as the last parameter. The flags allow for various combi-

nations of read-only/write-only data and allocation options. For example, in the

following code, we create a read-only buffer that will be stored directly in a source

array a, which is of the same size as the buffer. Note that memory in OpenCL is only

guaranteed to be consistent at completion events of enqueued operations. As a result,

when CL_MEM_USE_HOST_PTR is used, the runtime is still able to copy the data to the

device, execute, and return it on completion because the data is guaranteed to have

been synchronized after the kernel completion event. Any error value will be

returned in err, which can be any of a range of error conditions defined in the spec-

ification. CL_SUCCESS is returned by any of the OpenCL functions when they com-

plete successfully.

cl_int err;

int a[16];

cl_mem newBuffer ¼ clCreateBuffer(
context,

CL_MEM_READ_ONLY j CL_MEM_USE_HOST_PTR,
16*sizeof(int),

a,

&err);

if( err !¼ CL_SUCCESS ) {

// Do whatever error test is necessary

}
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After creation, access to buffer objects is achieved through access functions. These

functions are intended, like the rest of the OpenCL API, to be used asynchronously.

That is, if we call clEnqueueReadBuffer, we cannot expect to be able to read the data

from the target host array until we know—through the event mechanism, a clFinish

call, or by passing CL_TRUE to clEnqueueReadBuffer to make it a blocking call—that

the read has completed. Thus, for example, the following host code sequence does

not guarantee that the two printf calls A and B generate different values even if

outputBuffer’s content would suggest that it should. The printf of C is the only

point in the code where the printed value is guaranteed to be that copied from

outputBuffer.

int returnedArray[16];

cl_buffer outputBuffer;

cl_event readEvent;

// Some code that fills returned Array with 0s and invokes kernels

// that generates a result in outputBuffer

printf( "A: %d\n", returnedArray[3] );

clEnqueueReadBuffer(
commandQueue,

outputBuffer,

CL_FALSE,

0,

sizeof(int)*16,

returnedArray,

0,

0,

&readEvent );

printf( "B: %d\n", returnedArray[3] );

clWaitForEvents(1, &readEvent);

printf( "C: %d\n", returnedArray[3] );

This is a vital point about the OpenCL memory model. Changes to memory are not

guaranteed to be visible, and hence memory is not guaranteed to be consistent, until

an event reports that the execution has completed. This works both ways: In a transfer

between a host buffer and a device buffer, you cannot reuse a host buffer until you

know that the event associated with the asynchronous copy moving data into the de-

vice buffer has completed. Indeed, a careful reading of the OpenCL specification

suggests that because buffers are associated with the context and not a device, a

clEnqueueWriteBuffer enqueue, even on completion, does not guarantee to have

moved the data to the device, only that it be moved out of the host pointer:

If blocking_write is CL_TRUE, the OpenCL implementation copies the data re-

ferred to by ptr and enqueues the write operation in the command-queue. The

memory pointed to by ptr can be reused by the application after the clEnqueue-

WriteBuffer call returns

OpenCL programming guide section 5.2.2
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However, unlike other API calls in OpenCL, the read and write buffer calls allow us

to specify synchronous execution. Had we replaced the previous call with

clEnqueueReadBuffer(
commandQueue,

outputBuffer,

CL_TRUE,

0,

sizeof(int)*16,

returnedArray,

0,

0,

&readEvent );
execution of the host thread would stall at the read buffer call until all execution had

completed and the copy had been correctly performed.

OpenCL also defines the context of sub-buffer objects that allow us to divide a

single buffer into multiple smaller buffers that may overlap and that can be read,

written, copied, and used in much the same way as their parent buffer objects. Note

that overlapping sub-buffers and the combination of sub-buffers and their parent

buffer objects constitutes aliasing, and behavior is undefined in these circumstances.

Images
Images differ from buffers in three ways. Images are

• opaque types that cannot be viewed directly through pointers in device code;

• multidimensional structures; and

• limited to a range of types relevant to graphics data rather than being free to im-

plement arbitrary structures.

Image objects exist in OpenCL to offer access to special function hardware on

graphics processors that is designed to support highly efficient access to image data.

These special function units do not always support the full range of access modes

necessary to enable buffer access, but they may provide additional features such

as filtering in hardware in a highly efficient manner. Filtering operations enable ef-

ficient transformations of image data based on collections of pixels. These operations

would require long instruction sequences with multiple read operations and can be

very efficiently performed in dedicated hardware units.

Image data is accessed through specialized access functions in the kernel code, as

discussed later. Access to images from the host is not significantly different from

access to buffers, except that all functions are expanded to support addressing in

multiple dimensions. Thus, for example, clEnqueueReadImage is more like

clEnqueueReadBufferRect than clEnqueueReadBuffer.

The major difference between buffers and images from the host is in the formats

images can support. Whereas buffers support the basic OpenCL types and structures

made from them, Image formats are more subtle.
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Image formats are a combination of a channel order and a channel type. Channel

order defines the number of channels and the order inwhich they occur—for example,

CL_RGB, CL_R, or CL_ARGB. Channel type is selected from a wide range of storage

formats from CL_FLOAT to less storage-hungry formats such as CL_UNORM_SHORT_565,

which packs into a single 16-bit word in memory. When accessed from kernel

code, reading from any of these formats results in upconversion to a standard

OpenCL C type. The list of image formats can be queried by the API call

clGetSupportedImageFormats.

Images offer an additional feature that enables optimizations in the runtime system

and hardware that buffers may often not support. Whereas image data can be mapped

to the host using the clEnqueueMapImage API call, and hence image data must have a

certain format when viewed through the mapped host pointer, the semantics of the map

operation allow for format conversion. This feature of OpenCL data structures enables

the runtime system to perform transformations on data that it controls.

Image objects cannot be accessed through pointers on the device and cannot be

both read and write within the same kernel. As a result, the transformations that the

runtime system performs can be entirely opaque to the kernels executing on the

OpenCL device: Transformations can significantly improve performance without af-

fecting code correctness. This feature of images also removes the possibility of

aliased data, allowing the hardware to cache images in situations in which buffers

cannot be safely cached.

Take one common optimization as an example. Any given multidimensional data

structure, of which an image is an example, must be mapped to a single dimensional

memory address at some point. The obvious method, and indeed the method applied

to multidimensional arrays in most programming languages, is a dictionary order in

either column-major or row-major pattern. That is, (x,y) comes before (x+1,y),

which comes long before (x,y+1), and so on. The long distance in memory between

(x,y) and (x,y+1)means that an access of consecutive addresses in the y-dimension

stride inefficiently through memory hitting a large number of cache lines. In contrast,

the fact that (x,y) is adjacent to (x+1,y) means consecutive accesses in x stride

efficiently (and cause memory accesses to coalesce).

Z-order or Morton order memory layouts apply a mapping that preserves spatial

locality of data points. Figure 5.9 shows that the data is stored in order (0,0), (1,0),

(0, 1), (1, 1), (2, 0) and so on. By storing data according to its position in a

Z-ordered mapping, we may hit the same cache line repeatedly when performing

a vertical read. If we go further by laying out our computational work in a two-

dimensional layout (as we see with the quads created in the graphics pipeline),

we further improve this data locality. This sort of optimization is only possible trans-

parently (and hence different optimizations can be performed on different architec-

tures) if we offer the kernel programmer no guarantees about the relative locations of

memory elements.

We can go a step further with this approach. If we are executing on an architecture

that does not have vector registers and does not perform vector reads from memory,

we might wish float4 a ¼ read_imagef( sourceImage, imageSampler, location )



FIGURE 5.9

Applying the Z-order mapping to a two-dimensional memory space.
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to compile down to four scalar reads instead of a single vector read. In these circum-

stances, it might be a more efficient use of the memory system to read from the same

offset into four separate arrays instead of four times from the single array because the

data in each separate array would exhibit better locality on each individual read

operation.
THE DEVICE-SIDE MEMORY MODEL
On OpenCL devices, the memory space is classified into four primary categories:

• Global memory

• Local memory

• Constant memory

• Private memory

These memory spaces are visualized in Figure 5.10. As discussed in Chapter 3,

OpenCL is designed to run on a range of architectures. The purpose of arranging a

memory hierarchy of this form is to allow OpenCL to perform efficiently on such ar-

chitectures.The actualmeaningof eachmemory space in termsof ahardwaremapping

is very much implementation dependent. However they are mapped to hardware, as a



FIGURE 5.10

The OpenCL memory spaces available on an OpenCL device.
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programming construct, these memory spaces are disjoint. Furthermore, as shown in

Figure 5.10, local and private are divided into disjoint blocks across compute units

and work items. By defining separate layers of address space in this way, the mapping

to hardware can efficiently use anything from relaxed memory consistency models

with programmatically controlled scratchpad buffers as seen on most GPU devices

to fully coherent memory systems such as x86-based architectures.

The default address space for function arguments and local variables within a func-

tionorblock isprivate. Pointer arguments to functions canbeplaced in one of the other

address spaces depending on where the data comes from or where it is to be used. Note

that the pointer itself is always in the private address space wherever the data lies.

The address spaces are strictly disjoint when used through pointers. Casting from

one address space to another is not legal because this would imply either that the data

lives at a globally accessible address or that the compiler would have to generate a

copy to go with the cast, which is not feasible in practice. Image arguments to func-

tions always live in the global address space, so we discuss images in those terms.
Device-Side Relaxed Consistency
OpenCL’s relaxed consistency model applies within the kernel as well as between

dispatches. Writes to memory are not guaranteed to be visible until the end of the

kernel execution unless fence operations are used. As a result, we have a hierarchy

of consistency:
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• Within a work item, memory operations are ordered predictably: Any two reads

and writes to the same address will not be reordered by hardware or the compiler.

• Between work items and within a workgroup, memory is only guaranteed to be

consistent at a barrier operation.

• Between workgroups, there are no guarantees about memory consistency until

completion of the kernel execution—that is, when the event reports completion.

Given the previous hierarchy, there is no requirement for the compiler to make any-

thing but the last write to a given address visible outside a given work item. To allow

some level of communication between work items within and between workgroups,

OpenCL provides a set of fence operations. Even with these fences, there are no guar-

antees of ordering between work items.

Fences come in read, write, and read/write versions:

• read_mem_fence( cl_mem_fence_flags flags )

• write_mem_fence( cl_mem_fence_flags flags )

• mem_fence( cl_mem_fence_flags flags )

In each case, the fence is parameterized with flags specifying the address space it is

fencing. The value of these flags is some combination of CLK_LOCAL_MEM_FENCE and

CLK_GLOBAL_MEM_FENCE. The fence ensures that loads and/or stores issued before the

fence will complete before any loads and/or stores issued after the fence. No synchro-

nization is implied by the fences alone. The barrier operation supports a read/write

fence in one or both memory spaces as well as blocking until all work items in a given

workgroup reach it.

An alternative approach to ensuring that memory operations are correctly com-

municated between work items is to use atomic operations. These are particularly

useful because they guarantee not only that a write update occurs but also that a read

and write combined with some operation on the data occur without interruption from

another work item. However, they are only defined on integer data due to the com-

plexity (both in implementation and in comprehension) of performing floating point

atomics in most hardware. Atomic operations may be arithmetic operations, such as

int atomic_add( volatile __global int *p, int val ), and data-only, such as int

atomic_xchg (volatile __global int *p, int val). In all cases, the atomic opera-

tion returns the original data that was at the memory location. Note that if the return

value is ignored, the compiler is at liberty to use nonreturning atomic operations,

which are far more efficient on many architectures.
Global Memory
Global memory, defined in OpenCL C code by a pointer with the type qualifier

__global (or global), or by one of the image types image2d_t or image3d_t, refers

to data in a memory space consistently addressable by all compute units in the de-

vice. The two types of object differ in their scope and use cases.

The __global address space qualifier refers to a pointer referencing data in a

buffer object. As noted previously, a buffer can carry any scalar data type, vector
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data type, or user-defined structure. Whatever the type of buffer, it is accessed at the

end of a pointer and can be read/write accessible as well as read-only. Thus, for ex-

ample, the following trivial operation code is an example of valid use of a buffer:

typedef struct AStructure {
float a;

float b;

} AStructure;

__kernel void aFunction( __global AStructure *inputOutputBuffer ) {

__global AStructure* inputLocation ¼
inputOutputBuffer + get_global_id(0);

__global AStructure* outputLocation ¼
inputOutputBuffer + get_global_size(0) + get_global_id(0);

outputLocation->a ¼ inputLocation->a * -1;

outputLocation->b ¼ (*inputLocation).b + 3.f;

}

Image objects, although conceptually in the __globalmemory space, are treated dif-

ferently from buffers and are not mappable to __global pointers. Image objects

can be two-dimensional or three-dimensional and created using the image2d_t or

image3d_t type qualifiers. Unlike buffers, images can be either read-only or

write-only but never both within the same kernel. This is a result of the design of

GPU hardware supporting very high-performance caching and filtering. Within ker-

nel code, we specify which form of access we are using with the __read_only and

__write_only access qualifiers on kernel image parameters.

Images are opaque memory objects. Although we can read or write the data based

on addresses, we do not really know the relative memory locations of two different

values in the image. As a result, and to support parameterization of the style of read,

rather than accessing images through pointers, we use a set of built-in functions:

read_imagef, read_imagei, read_imageui, write_imagef, and so on. Each of the

image read functions takes three parameters:

float4 read_imagef(
image2d_t image,

sampler_t sampler,

float2 coord)
The final address parameter can optionally be an int2 (or int4 if the image is of type

image3d_t), and the precise meaning of the returned data depends on the image for-

mat. The OpenCL specification lists these options in full.

The first and third parameters to the read functions are self-explanatory, being the

image object itself and the coordinate of the read. The second parameter is more com-

plicated. This is a sampler object that defines how the image is interpreted by the hard-

ware or runtime system. The sampler can be defined either by declaring a constant

variable of sampler_t type within the OpenCL C source or by passing as a kernel
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parameter a sampler created in host code using the clCreateSampler function. The

following is an example of the use of a constant-variable-declared sampler:

__constant sampler_t sampler ¼

CLK_NORMALIZED_COORDS_TRUE j CLK_FILTER_LINEAR;

__kernel void samplerUser(

__read_only image2d_t sourceImage,

__global float *outputBuffer ) {

float4 a ¼ read_imagef(
sourceImage,

sampler,

(float2)(

(float)(get_global_id(0)),

(float)(get_global_id(1))) );

outputBuffer[

get_global_id(1) * get_global_size(0) +

get_global_id(0)] ¼ a.x + a.y + a.z + a.w;

}

The value returned in the float4 vector depends on the image format specified on

image creation. A CL_R image, for example, would only contain data in the x channel

with 1.0 in the w (alpha) channel.

The write functions take a similar set of parameters, replacing the sampler with

the value to write:

float4 write_imagef(image2d_t image, float2 coord, float4 color)

Local Memory
A subset of the architectures supported by OpenCL, including many of the GPUs and

the Cell broadband engine, possess small scratchpad memory buffers distinct from

the primary DRAM and caching infrastructure. Local memory in these cases is dis-

joint from global memory and often accessed using separate memory operations. As

a result, data must be copied in and out of it programmatically. Depending on the

architecture, this occurs either through DMA transfers (most efficiently accessed

using the async_work_group_copy function) or by memory-to-memory copies.

Local memory is also supported in CPU implementations, but it sits in standard

cacheable memory; in such cases, use of local memory can still be beneficial because

it encourages cache-aware programming.

Local memory is most useful because it provides the most efficient method of

communication between work items in a workgroup. Any allocated local memory

buffer can be accessed at any location by an entire workgroup and hence writes

to the local array will be visible to other work items. Remember that OpenCL work

items are conceptually, if not literally, executed independently.

Local memory is defined by the __local address space qualifier and can be de-

fined either locally in the kernel or as a parameter. Both examples are shown in the

following code:
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__kernel void localAccess(

__global float* A,

__global float* B,

__local float* C )

{

__local float aLocalArray[1];

if( get_local_id(0) ¼¼ 0 ) {
aLocalArray[0] ¼ A[0];

}

C[get_local_id(0)] ¼ A[get_global_id(0)];

barrier( CLK_LOCAL_MEM_FENCE );

float neighborSum ¼ C[get_local_id(0)] + aLocalArray[0];

if( get_local_id(0) > 0 )

neighborSum ¼ neighborSum + C[get_local_id(0)-1];

B[get_global_id(0)] ¼ neighborSum;

}

Figure 5.11 shows a diagrammatic representation of the data flow in the previous

code sample. Note that data will be read from global memory and written to the

two local arrays C and aLocalArray at unpredictable times as the work items execute

independently in an undefined order. The reality will be slightly more predictable on
RE 5.11

pattern of data flow for the example shown in the “localAccess” code.
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a given device because implementations will map to hardware in predictable ways.

For example, on the AMD GPUs, execution occurs in lock-step over a wide SIMD

vector, meaning that the read and write operations will have an ordering guarantee

over the entire vector in the same way that they would over a single work item. How-

ever, this feature does not apply generally. In the general case, we must insert the

barrier operation: Only at this barrier can we guarantee that all writes to local arrays,

and the global memory reads that fed them, will have been completed across the

workgroup such that the data is visible to all work items. Beyond this barrier, the

data can be used by the entire workgroup as shown in the lower part of the diagram.

aLocalArray is at function scope lexically but is visible to the entire workgroup.

That is, there is only one 32-bit variable in local memory per workgroup, and any

work item in the group using the name aLocalArray has access to the same

32-bit value. In this case, after the barrier we know that work item 0 has written

to aLocalArray and hence all work items in the group can now read from it.

The alternative method for creating local arrays is through a kernel parameter, as

we see for array C. This version is created by a runtime API call. To allocate the mem-

ory, we call clSetKernelArg as we would for passing a global array to the kernel, but

we leave the final pointer field as 0. We therefore allocate a per-workgroup amount

of memory based on the third parameter but with no global object to back it up so it

sits in local memory:

ciErrNum ¼ clSetKernelArg(
kernel object,

parameter index,

size in bytes,

0);
Constant Memory
The constant address space, described by the __constant qualifier, intends to cleanly

separate small sets of constant values from the global address space such that the

runtime can allocate caching resources or efficient constant memory banks if possi-

ble. Data allocated in the constant address space is passed to the kernel using clSet-

KernelArg and can be accessed through a pointer from within the kernel.

Architectures differ in how they treat this data. For example, the AMD Radeon�

HD 6970 is designed to support three types of constant data:

• Direct address: The address of the data is constant and can be embedded into the

instruction. This is very fast, 16 bytes/cycle/core, because data can be placed in

hardware constant buffers.

• Same index: The address is the same across an entire wavefront; 4 bytes/cycle/core.

• Varying index: Treated as global memory and may be cached through L1.

OpenCL defines a limited number of constant arguments for each device that, along

with the constant buffer size, can be queried with CL_DEVICE_MAX_CONSTANT_ARGS and

CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE arguments to clDeviceInfo arguments.
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To pass a __constant buffer to a kernel, the buffer must be allocated using the

CL_MEM_READ_ONLY flag.
Private Memory
Private memory refers to all variables not declared with an address space qualifier, all

variables within nonkernel functions, and all function arguments that are not

pointers. In principle, private data may be placed in registers, but due to either a lack

of capacity spilling or an inability for the hardware to dynamically index register ar-

rays, data may be pushed back into global memory. The amount of private memory

allocated directly impacts on the number of registers used by the kernel.

Like local memory, a given architecture will have a limited number of registers.

The performance impact of using too large a number will vary from one architecture

to another.

x86 CPUs have a relatively small number of registers. However, due to large

caches, the operations of pushing these registers to memory on the stack and return-

ing them to registers later often incur little overhead. Variables can be efficiently

moved in and out of scope, keeping only the most frequently used data in registers.

GPUs do not generally have the luxury of using a cache in this way. Many devices

do not have read/write caches, and those that do may be limited in size and hence spill-

ing registers from a large number of work itemswould rapidly lead to filling this cache,

leading to stalling on amiss when the data is required again. Spilling to DRAMon such

a device causes a significant performance degradation and is best avoided.

When not spilling registers, the capacity of the register bank of a GPU trades

against the number of active threads in a similar manner to that of LDS. The

AMD Radeon HD 6970 architecture has 256 kB of registers on each compute unit.

This is 256 four-vector (128-bit) registers per work item in a 64-wide wavefront. If

we use 100 registers per work item, only two waves will fit on the hardware, which is

not enough to cover anything more than instruction latency. If we use 49 registers per

work item, we can fit five waves, which helps with latency hiding.

Moving data into registers may appear to improve performance, but if the cost is

that one fewer wavefront can execute on the core, less latency hiding occurs and we

may see more stalls and more wasted GPU cycles.
SUMMARY
In this chapter, we discussed the consistency, concurrency, and synchronization of

OpenCL programs. OpenCL follows a relaxed execution and consistency model to

aid efficient implementation on as wide a range of architectures as possible. In later

chapters, we consider how the execution model maps to some specific architectures

and then discuss case studies that give some idea of how to optimize an OpenCL

program to use the hardware efficiently.
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INTRODUCTION
In Chapter 3, we discussed trade-offs present in different architectures, many of

which support the execution of OpenCL programs. The design of OpenCL is such

that the model maps capably to a wide range of architectures, allowing for tuning

and acceleration of kernel code. In this chapter, we discuss OpenCL’s mapping to

a real system in the form of a high-end AMD CPU combined with an AMD Radeon

HD7970 GPU. Although AMD systems have been chosen to illustrate this mapping

and implementation, each respective vendor has implemented a similar mapping for

NVIDIA GPUs, Intel/ARM CPUs, and any OpenCL-compliant architecture.
OPENCL ON AN AMD BULLDOZER CPU
AMD’s OpenCL implementation is designed to run on both AMDGPUs and AMD’s

x86 CPUs in an integrated manner. All host code executes as would be expected on

the general-purpose x86 CPUs in a machine, along with operating system and gen-

eral application code. However, AMD’s OpenCL implementation is also capable of

compiling and executing OpenCL C code on x86 devices using the queuing mech-

anisms provided by the OpenCL runtime.

OpenCL can run on each of the eight cores of an AMD FX-8150 chip within the

larger system. Figure 6.1 shows a diagram of the FX-8150 design.

In Figure 6.2, OpenCL is mapped onto this architecture. The entire chip is

consumed by the OpenCL runtime as a single device that is obtained using

clGetDeviceIDs and is passed to clCreateContext and clBuildProgram. The

CPU device requires the CL_DEVICE_TYPE_CPU flag to be passed to the device types

parameter of clGetDeviceIDs.

By treating the entire CPU as a single device, parallel workloads can be spread

across the CPU cores from a single queue, efficiently using the parallelism present in

the system. It is possible to split the CPU into multiple devices using the device fis-

sion extension that is discussed in a later chapter.

The OpenCL CPU runtime creates a thread to execute on each core of the CPU as

a work pool to process OpenCL kernels as they are generated. These threads are
Heterogeneous Computing with OpenCL
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AMD FX-8150 CPU eight cores in four dual-core modules and a large level 3 cache.

122 CHAPTER 6 Dissecting a CPU/GPU OpenCL implementation
passed work by a core management thread for each queue that has the role of remov-

ing the first entry from the queue and setting up work for the worker threads. Any

given OpenCL kernel may comprise thousands of workgroups for which arguments

must be appropriately prepared, memory allocated, and, if necessary, initialized and

work queues generated.

OpenCL utilizes barriers and fences to support fine-grained synchronization. On

a typical CPU-based system, in which the operating system is responsible for man-

aging interthread communication, the cost of interacting with the operating system is

a barrier to achieving efficient scaling of parallel implementations. In addition, run-

ning a single workgroup across multiple cores could create cache-sharing issues. To

alleviate these issues, the OpenCL CPU runtime executes a workgroup within a sin-

gle operating system thread. The OpenCL thread will run each work item in the

workgroup in turn before moving onto the next work item. After all work items

in the workgroup have finished executing, the worker thread will move on to the next

workgroup in its work queue. As such, there is no parallelism between multiple work

items within a workgroup, although between workgroups multiple operating system

threads allow parallel execution when possible.

In the presence of barrier synchronization, OpenCL work items within a single

workgroup execute concurrently. Each work item in the group must complete

the section of the code that precedes the barrier operation, wait for other work items
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to reach the barrier, and then continue execution. At the barrier operation, one work

item must terminate and another continue; however, it is impractical for perfor-

mance reasons to let the operating system handle this with thread preemption
(i.e., interrupting one thread to allow another to run). Indeed, as the entire work-

group is running within a single thread, preemption would not be meaningful.

In AMD’s OpenCL CPU runtime, barrier operations are supported using setjmp

and longjmp. setjmp stores system state and longjmp restores it by returning to

the system state at the point where setjmp was called (Gummaraju et al., 2010).
The runtime provides custom versions of these two functions because they need

to work in cooperation with the hardware branch predictor and maintain proper

program stack alignment.

An example of using a barrier in kernel foo() is shown in Figure 6.3. Note that

although a CPU thread eventually executes multiple workgroups, it will complete

one workgroup at a time before moving on to the next. When a barrier is involved,

it will execute every work item of that group up to the barrier, then every work item
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An OpenCL worker thread processes an entire workgroup one work item at a time. At a barrier

or the end of the kernel, the thread transitions to the next work item.
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after the barrier, hence providing correct barrier semantics and re-establishing con-

currency, if not parallelism, between work items in a single workgroup.

__kernel foo(){
. . .

barrier(CLK_GLOBAL_MEM_FENCE);

. . .

}
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The AMD Bulldozer microarchitecture includes 128-bit vector registers and opera-

tions from various Streaming SIMD Extension (SSE) and Advanced Vector Exten-

sion (AVX) versions.1 OpenCL C includes a set of vector types: float2, float4,

int4, and other data formats. Mathematical operations are overloaded2on these

vector types, enabling the following operations:

float4 a ¼ input_data[location];

float4 b ¼ a + (float4)(0.f, 1.f, 2.f, 3.f);

output_data[location] ¼ b;

These vector types are stored in vector registers and operations on them compile to

SSE and AVX instructions on the AMD Bulldozer architecture. This offers an im-

portant performance optimization. Vector load and store operations, as we also see

in our low-level code discussions, improve the efficiency of memory operations.

Currently, access to SIMD vectors is entirely explicit within a single work item:

We will see how this model differs on AMD GPU devices when we discuss a

GPU in the next section.

The AMD Bulldozer design does not provide dedicated hardware for scratchpad

memory buffers. CPUs typically provide multiple levels of memory caching in

order to hide main memory access latency. The data localization provided by

local memory supports efficient mapping onto the CPU cache hierarchy and

allows the kernel developer to improve cache performance even in the absence of

a true hardware scratchpad. To improve cache locality, local memory regions are

allocated as an array per CPU thread and reused for each workgroup executed by

that thread. For a sequence of workgroups, barring any data races or memory

conflicts, there is then no need for this local memory to generate further cache

misses and, as an additional benefit, there is no overhead from repeated calls to

memory allocation routines. Figure 6.4 shows how we would map local memory

to the AMD CPU cache.

Work item data stored in registers is backed into a work item stack in main mem-

ory during the setjmp call. This memory is carefully laid out to behave well in the

cache, reducing cache contention and hence conflict misses and improving the uti-

lization of the cache hierarchy. In particular, the work item stack data is staggered in

memory to reduce the chance of conflicts, and data is maintained in large pages to

ensure contiguous mapping to physical memory and to reduce pressure on the CPU’s

translation lookaside buffer.3
1SSE and AVX are a SIMD instruction set extensions to the x86 architecture. Both AMD and Intel have

introduced multiple generations of SSE instruction set extensions since 1999 and have supported AVX

since 2011.
2Overloading is a form of polymorphism that supports reuse of the same function name over multiple

parameter types, simplifying code such that only intent is required in the function name rather than

intent and parameter type.
3A translation lookaside buffer is a hardware table on the CPU that caches virtual to physical memory

address translations.
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In the CPU implementation of OpenCL, regions of local, private, and constant memory are

stored contiguously for each workgroup and work item. This data will be loaded into the cache

hierarchy as contiguous blocks, maintaining cache locality as much as possible while a given

workgroup is executing.
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OPENCL ON THE AMD RADEON HD7970 GPU
A GPU is a significantly different target for OpenCL code compared with the CPU.

The reader must remember that a graphics processor is primarily designed to render

three-dimensional graphics efficiently. This goal leads to significantly different

prioritization of resources and hence a significantly different architecture from that

of the CPU. On current GPUs, this difference comes down to a few main features, of

which the following three were discussed in Chapter 3:

• Wide single instruction multiple data (SIMD) execution: A far larger number of

execution units execute the same instruction on different data items.

• Heavily multithreading: Support for a large number of concurrent thread contexts

on a given GPU compute core.

• Hardware scratchpad memory: Physical memory buffers purely under the pro-

grammer’s control.

The following are additional differences that are more subtle but interesting because

they create opportunities to provide improvements in terms of latency of work dis-

patch and communication:

• Hardware synchronization support: Supporting fine-grained communication

between concurrent hardware threads.
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• Hardware managed tasking and dispatch: Work queue management and load bal-

ancing in hardware.

Hardware synchronization support reduces the overhead of synchronizing execution

of multiple thread contexts on a given SIMD core, enabling fine-grained communi-

cation at low cost.

GPUs provide extensive hardware support for task dispatch because of their deep

roots in the three-dimensional graphics world. Gaming workloads involve managing

complicated task graphs arising from interleaving of work in a graphics pipeline. As

shown in the high-level diagram of the AMD Radeon HD7970 in Figure 3.11, the ar-

chitecture consists of a command processor and group generator at the front that passes

constructed groups to a pair of hardware schedulers. These two schedulers arrange

computeworkloads onto the 32 cores spread throughout the device, each of which con-

tains one scalar unit and four vector units. For graphics workloads, AMD includes a

further set of hardware accelerator blocks below the command processor:

• Tesselator: Tessellation is the process of generating smaller triangles from larger

ones to scale model complexity at runtime.

• Geometry assembler: Packages geometric information for processing by shaders.

• Rasterizer: Transforms vector data into a raster format.

• Hierarchical Z processor: Maintains a hierarchical representation of the scene

depth to reduce load by providing the ability to reject pixels early based on depth.

Together, these units allow the hardware to schedule workloads as shown in

Figure 6.5. To obtain the high degrees of performance acceleration associated with
FIGURE 6.5

A hardware-managed schedule for the set of tasks performed on a small unit of GPU

work. When many of these work loads are scheduled together, the hardware can be very

efficiently utilized.
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GPUcomputing, schedulingmustbeveryefficient.Threadschedulingoverheadneeds

to remain lowbecause thechunksofworkassembledbythe inputassemblymaybevery

small—for example, a single triangle consisting of a few pixels. This amount of work

alonewouldnotkeep themachineutilized, but remember that the full graphicspipeline

is very quickly assembling, rasterizing and shading a large number of triangles concur-

rently. We can see a simplified version of such a schedule in Figure 6.5. Note that the

unutilized compute time depicted by whitespace in the figure will fill out easily when

multiple triangles are being processed concurrently. This presents a good example of

why the GPU is designed for high-throughput processing and, hence, why workloads

need to map properly to the underlying hardware to attain good performance.

For OpenCL, much of this rasterization and assembly hardware is not necessary

because dispatches are predefined with large sizes and need only be assembled into

appropriate workgroups and hardware threads to launch on the device. However,

to allow a deeply pipelined command processor and work generator to work effi-

ciently and to reach high performance levels on a GPU, we need to:

• Provide a lot of work for each kernel dispatch.

• Batch jobs together.

By providing a sufficient amount of work in each kernel, we ensure that the group

generation pipeline is kept occupied so that it always has more work to give to the

wave schedulers and the schedulers always have more work to push onto the SIMD

units. In essence, we wish to create a large number of threads to occupy the machine:

As discussed previously, the GPU is a throughput machine.

The second point refers to OpenCL’s queuing mechanism. When the OpenCL run-

time chooses to process work in the work queue associated with the device, it scans

through the tasks in the queue with the aim of selecting an appropriately large chunk

to process. From this set of tasks, it constructs a command buffer ofwork for theGPU in

a language understood by the command processor at the front of the GPU’s pipeline.

This process consists of (1) constructing a queue, (2) locating it somewhere inmemory,

(3) telling the devicewhere it is, and (4) asking the device to process it. Such a sequence

of operations takes time, incurring a relatively high latency for a single block of work.

In particular, as the GPU runs behind a driver running in kernel space, this process

requires a number of context switches into and out of kernel space to allow the

GPU to start running. As in the case of the CPU, where context switches between

threads would become a significant overhead, switching into kernel mode and prepar-

ing queues for overly small units of work is inefficient. There is a fairly constant

overhead for dispatching a work queue and further overhead for processing depending

on the amount of work in it. This overhead must be overcome through providing very

large kernel launches, or long sequences of kernels. In either case the goal is to increase

the amount of work performed for each instance of queue processing.
Threading and the Memory System
Figure 6.6 shows an approximation of the memory hierarchy of a system containing

an AMD FX8150 CPU and an AMD Radeon HD7970 GPU. The CPU cache

hierarchy in this setup is arranged to reduce latency of a single memory access
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Approximate bandwidth numbers for the various levels of memory hierarchy on both the AMD FX8150 CPU and the AMD Radeon HD7970 GPU.

Note particularly the low bandwidth of the PCI express bus compared with the other levels, particularly the caches, on both sides of the interface.
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stream: Any significant latency will cause that stream to stall and reduce execution

efficiency. Because the design of the GPU cores uses threading and wide SIMD to

maximize throughput at the cost of latency, the memory system is similarly designed

to maximize bandwidth to satisfy that throughput, with some latency cost.

The limited caching associated with high-bandwidth GDDR5 on the Radeon

design is made possible by the following:

• Local data shares (LDS)

• A high level of on-chip multithreading

LDSallows for highbandwidth and low latencyprogrammer-controlled read/write ac-

cess. This form of programmable data reuse is less wasteful and alsomore area/power

efficient thanhardware-controlled caching.The reducedwaste data access (data that is

loaded into thecachebut notused)means that theLDScanhave a smaller capacity than

an equivalent cache. In addition, the reduced need for control logic and tag structures

result in a smaller area per unit capacity.

Hardware-controlled multithreading in the GPU cores allows the hardware to cover

latency tomemory.Toperformamemoryaccess, a thread runningonaSIMDunit is tem-

porarily removed from that unit and placed into a separatememory controller. The thread

does not resume on the SIMD until the memory access returns. To reach high levels of

performance and utilization, a sufficiently large number of threadsmust be running. Four

or more wavefronts per SIMD unit or 16 per core (Compute Unit) may be necessary in

many applications. Each SIMD unit can maintain up to 10 wavefronts, with 40 active

across the compute unit. To enable fast switching, wavefront state is maintained in reg-

isters, not cache. Each wavefront in flight is consuming resources and so increasing the

numberof livewavefronts tocover latencymustbebalancedagainst registerandLDSuse.

The caches that are present in the system provide a filtering mechanism to com-

bine complicated gathered read and scattered write access patterns in vector memory

operations into the largest possible units. The large vector reads that result from

well-structured memory accesses are far more efficient for a DRAM-based system,

requiring less temporal caching than the time-distributed smaller reads arising from

the most general CPU code.

The diagram in Figure 6.6 shows the PCI Express bus as the connection between the

CPU and GPU devices. All traffic between the CPU, and hence main memory, and the

GPUmust go through this pipe. Because PCI Express bandwidth is significantly lower

than access to DRAM and even lower than the capabilities of on-chip buffers, this can

become a significant bottleneck on a heavily communication-dependent application. In

anOpenCL application, we need tominimize the number and size ofmemory copy op-

erations relative to thekernelswe enqueue. It is difficult to achieve goodperformance in

an application that is expected to run on a discrete GPU if that application has a tight

feedback loop involving copying data back and forth across the PCI Express bus.

Chapter 7 will discuss data movement optimization tradeoffs in more detail.

Instruction Execution on the HD7970 Architecture
The idea of programming a SIMD architecture using a lanewise model was discussed

previously. Within each HD7970 compute unit or core the instruction scheduler may
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schedule up to 5 instructions on each cycle onto the scalar unit, one of the SIMD

units, memory unit or other hardware special function devices.

In previous devices, such as the HD6970 architecture presented in the earlier edi-

tion of the book, control flow was managed automatically by a branch unit. This de-

sign led to a very specialized execution engine that looked somewhat different from

other vector architectures on the market. The HD7970 design is more explicit in

integrating scalar and vector code instruction-by-instruction, much as an x86 CPU

will when integrating SSE or AVX operations.

The SIMD engine executes 64-wide logical SIMD entities called wavefronts.

Each wavefront utilizes a single instruction decode and has its own instruction stream

and can be viewed as a separate hardware thread context. The 64 work items within

the wavefront execute over four clock cycles over a 16-lane hardware SIMD unit.

Different wavefronts execute at different points in their instruction streams.

All branching is performed at wavefront granularity.

Any possibility of sub-wavefront (divergent) branching requires restricting of

ISA into a sequence of mask and unmask operations. The result is a very explicit

sequence of instruction blocks that execute until all necessary paths have been cov-

ered. Such execution divergence creates inefficiency as only part of the vector unit is

active at any given time, however being able to support such control flow improves

the programmability by removing the need for the programmer to manually vectorize

code. Very similar issues arise when developing for competing architectures such as

NVIDIA’s GTX580 design and are inherent in software production for wide vector

architectures, whether manually-, compiler-, hardware-vectorized or somewhere in

between.

The following is an example of code designed to run on the HD7970 compute

unit (see the Southern Islands ISA specification [cite]SI-ISA[/cite]). Let’s

take a very simple kernel that will diverge on a wavefront of any width greater

than one:

kernel void foo(const global int* in, global int *out)

{

if( get_global_id(0) == 0 ) {

out[get_global_id(0)] = in[get_global_id(0)];

} else {

out[get_global_id(0)] = 0;

}

}

While this is a trivial kernel, it will allow us to see how the compile maps this to ISA,

and indirectly how that ISA will behave on the hardware. When we compile this for

the HD7970 we get the following:

shader main

asic(SI_ASIC)

type(CS)

s_buffer_load_dword s0, s[4:7], 0x04

s_buffer_load_dword s1, s[4:7], 0x18
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s_waitcnt lgkmcnt(0)

s_min_u32 s0, s0, 0x0000ffff

v_mov_b32 v1, s0

v_mul_i32_i24 v1, s12, v1

v_add_i32 v0, vcc, v0, v1

v_add_i32 v0, vcc, s1, v0

s_buffer_load_dword s0, s[8:11], 0x00

s_buffer_load_dword s1, s[8:11], 0x04

v_cmp_eq_i32 s[4:5], v0, 0

s_and_saveexec_b64 s[4:5], s[4:5]

v_lshlrev_b32 v1, 2, v0

s_cbranch_execz label_0016

s_waitcnt lgkmcnt(0)

v_add_i32 v1, vcc, s0, v1

s_load_dwordx4 s[8:11], s[2:3], 0x50

s_waitcnt lgkmcnt(0)

tbuffer_load_format_x v1, v1, s[8:11], 0 offen

format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]

label_0016:

s_andn2_b64 exec, s[4:5], exec

v_mov_b32 v1, 0

s_mov_b64 exec, s[4:5]

v_lshlrev_b32 v0, 2, v0

s_waitcnt lgkmcnt(0)

v_add_i32 v0, vcc, s1, v0

s_load_dwordx4 s[0:3], s[2:3], 0x58

s_waitcnt vmcnt(0) & lgkmcnt(0)

tbuffer_store_format_x v1, v0, s[0:3], 0 offen

format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]

s_endpgm

end

This code may be viewed, like OpenCL code, to represent a single lane of

execution: a single work item. However, unlike the higher level language, here

we see a combination of scalar operations, (prefixed with s_) intended to execute

on the scalar unit of the GPU core that we see in Figure 6.7, and vector operations

(prefixed with v_) that execute across one of the vector units.

If we look at the structure of the code carefully, we see:

A vector comparison operation, across the entire wavefront we compare the local

id with the constant 0.

v_cmp_eq_i32 s[4:5], v0, 0

then manipulates the execution mask by anding with the result of the comparison and

updating the scalar register with the current value of the mask. In addition this op-

eration ensures that the scalar condition code (SCC) register is set: this is what will

trigger the conditional branch.
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FIGURE 6.7

The compute unit/core on the Radeon HD7970 architecture. The compute unit consists of a

scalar processor and four 16-lane SIMD units. Each SIMD unit executes a 64-element

wavefront over four cycles. 64kB of vector registers are partitioned between the four SIMD

cores allowing high throughput access.
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s_and_saveexec_b64 s[4:5], s[4:5]

The aim of this is that if any lane of the wavefront was due to enter the if, the

conditional branch will not happen. If the conditional branch does not happen,

the code will enter the if part of the conditional. If no lane needs to enter

the if part, the scalar unit will execute the branch and control will pass to the

else part.

s_cbranch_execz label_0016

If the if branch is executed, a vector load (a load from the t, or texture, buffer, show-

ing the graphics heritage of the ISA: tbuffer_load_format_x) pulls the expected

data into a vector register, v1. Note that the tbuffer_store operation was factored

out by the compiler so we only see it once in the compiled code while we saw two in

the original OpenCL C source.

In the else branch the behavior is as we expect: those lanes that did not

execute the if branch should execute here. Specifically, the execution mask is

replaced by the current mask NANDed with the original, stored mask and made

active:

s_andn2_b64 exec, s[4:5], exec

And then v1 is loaded with 0, which is what we expect from the OpenCL C source.

v_mov_b32 v1, 0

There is no branch to skip the else branch. It appears that in this case the compiler

has decided that, as there is no load to perform in the else branch, the overhead of

simply masking out the operations and treating the entire section as predicated ex-

ecution is an efficient solution, such that the else branch will always execute and
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simply usually not update v1. The execution mask is refreshed (s_mov_b64 exec,

s[4:5]) and the code executed. Whichever of the two writes to v1 is correct for

the current vector lane will be stored to memory.

Obviously this is a very simple example. With deeply nested ifs the mask code

can be complicated with long sequences of storing masks and ANDing with new

condition codes, narrowing the set of executing lanes at each stage until finally

scalar branches are needed. At each stage of narrowing, efficiency of execution

decreases and as a result well structured code that executes the same instruction

across the vector is vital for efficient use of the architecture. It is the sophisticated

set of mask management routines and other vector operations that differentiates

this ISA from a CPU ISA like SSE, not an abstract notion of having many more

cores.

A diagram of the SIMD unit that executes this code is shown in Figure 6.7. Each

SIMD unit contains a 32-ported LDS with a four-operation latency and atomic units

on its interface. These atomic units mean that non-returning atomic operations can be

executing on the LDS at the same time as arithmetic operations executing within the

ALUs, offering further parallelism. Two wavefronts from different SIMD units on

the same core may be coalesced together over the 32 banks of the LDS unit. Reads

or writes from one or both wavefronts active on the LDS interface may collide, and

colliding reads or writes are replayed over multiple cycles until all operations are

complete. For reads, this can cause the ALUs to stall.
The Shift from VLIW Execution
Earlier AMD architectures described in the previous edition of the book suffered

from a more complicated, harder to read ISA. This was in part due to a decoupled

scalar unit with a high latency of execution, and partly due to the use of a VLIW

execution. While on the HD7970 instructions may be dynamically scheduled across

the four SIMD units in a compute unit, on earlier devices these four (or, indeed, five)

SIMD units executed in lock-step from a compiler-generated instruction schedule. In

general this change should lead to fewer bubbles in the instruction schedule, however

it does lead to one important difference in the mapping of OpenCL fromwhat we will

have seen in the past. The use of OpenCL builtin vector types was previously advised

as a way to increase the arithmetic intensity of a function and to pack more arithmetic

operations close together to fill a VLIW packet.

For example on the HD6970 architecture we might see the following instruction

in its ISA:

17 y: ADD ____, R1.x, PV16.x

z: ADD T0.z, R1.x, -PV16.x

18 x: MOV R1.x, R0.w

y: MOV R1.y, R0.w

z: MOV R1.z, R0.w

w: MUL_e ____, R4.x, PV17.y
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This is a pair of instruction packets, each containing up to four operations. The first

one is only half full: this is where vector operations came in. In addition, the four

banks of the register file that we see in Figure 6.7 were accessed from the four VLIW

slots (with some flexibility) – such that vector variables were optimally stored.

The architectural change to the four dynamically scheduled SIMD units we see in

Figure 6.7 means that the extra arithmetic instructions may not be necessary, rather

that this may be seen as purely an arithmetic intensity question. More significantly,

use of an OpenCL short vector consumes multiple consecutive registers, and with no

gain in terms of register packing efficiency this may lead to overuse of the register

file. Note that four wavefronts are active in the space that would previously have

been occupied by one: with extra intermediate registers to match.

Resource Allocation
EachSIMDunit on theGPU includes a fixed amount of register andLDS storage space.

There are 256 kB of registers on each compute unit. These registers are split into four

banks such that there are 256 registers perSIMDunit, each64-laneswideand32-bits per

lane.These registerswill bedividedbasedon thenumberofwavefronts executingon the

SIMDunit. There are 64kBofLDSoneachcompute unit, accessible as a randomaccess

32-bank SRAM. The LDS is divided between the number of workgroups executing on

the compute unit, based on the localmemory allocation requestsmadewithin the kernel

and through the OpenCL runtime parameter-passing mechanism.

When executing a single kernel on each compute unit, as is the standard mapping

when running an OpenCL program, we might see a resource bottleneck, as seen in

Figure 6.8. In this diagram, we see two workgroups each containing two wavefronts,

where each work item (and hence wavefront scaled up) needs 42 vector registers,
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FIGURE 6.8

Allocating the resourcesofa singlecomputeunit toOpenCLworkloads.Givenaworkgroupof128

work items that requires24kBof LDSandwhere eachwork item requires42vector registers and

50scalar registers,wecan fit twoworkgroups, andhence fourwavefronts,oneachSIMDunit:We

are limited by the availability of LDS while register capacity is largely unused.
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a share in 50 scalar registers and the workgroup needs 24 kB of LDS. This allocation

of four wavefronts per compute unit is limited by the LDS requirements of the work-

group and is below the minimum number of wavefronts we need to run on the device

to keep the device busy as with only one wavefront per SIMD unit we have no ca-

pacity to switch in a replacement when the wavefront is executing scalar code or

memory operations. If we can increase the number of wavefronts running on the

SIMD unit to four or more, we have a better chance of keeping the scalar and vector

units busy during control flow and, particularly, memory latency, where the more

threads running, the better our latency hiding. Because we are LDS limited in this

case, increasing the number of wavefronts per workgroup to three would be a good

start if this is practical for the algorithm. Alternatively, reducing the LDS allocation

would allow us to run a third workgroup on each compute unit, which is very useful if

one wavefront is waiting on barriers or memory accesses and hence not on the SIMD

unit at the time.

Each wavefront runs on a single SIMD unit and stays there until completion.

Any set of wavefronts that are part of the same workgroup stay together on a single

compute unit. The reason for this should be clear when seeing the amount of state stor-

age required by that group: In this case, we see 24 kB of LDS and 84 kB of registers per

workgroup. This would be a significant amount of data to have to flush to memory and

move to another core. As a result, when the memory controller is performing a high-

latency read or write operation, if there is not another wavefront with ALU work to

perform ready to be scheduled onto the SIMD unit, hardware will lie idle.
MEMORY PERFORMANCE CONSIDERATIONS IN OPENCL
OpenCL Global Memory
Issues related to memory in terms of temporal and spatial locality were discussed in

Chapter 3. Obtaining peak performance from an OpenCL program depends heavily

on utilizing memory efficiently. Unfortunately, efficient memory access is highly

dependent on the particular device on which the OpenCL program is running. Access

patterns that may be efficient on the GPU may be inefficient when run on a CPU.

Even when we move an OpenCL program to GPUs from different manufacturers,

we can see substantial differences. However, there are common practices that will

produce code that performs well across multiple devices.

In all cases, a useful way to start analyzing memory performance is to judge what

level of throughput a kernel is achieving. A simple way to do this is to calculate the

memory bandwidth of the kernel:

EB ¼ ðBr þ BwÞ=T
where

EB is the effective bandwidth;

Br is the number of bytes read from global memory;
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Bw is the number of bytes written to global memory; and

T is the time required to run the kernel.

T can be measured using profiling tools such as the AMD Stream Profiler (which is

discussed in Chapter 13). Br and Bw can often be calculated by multiplying the num-

ber of bytes each work item reads or writes by the global number of work items. Of

course, in some cases, this number must be estimated because we may branch in a

data-dependent manner around reads and writes.

Once we know the bandwidth measurement, we can compare it with the peak

bandwidth of the execution device and determine how far away we are from peak

performance: The closer to peak, the more efficiently we are using the memory sys-

tem. If our numbers are far from peak, then we can consider restructuring the mem-

ory access pattern to improve utilization.

Spatial locality is an important consideration for OpenCL memory access. Most

architectures on which OpenCL runs are vector based at some level (whether SSE-

like vector instructions or automatically vectorised from a lane-oriented input lan-

guage such as AMD IL or NVIDIA PTX), and their memory systems benefit from

issuing accesses together across this vector. In addition, localized accesses offer

caching benefits.

On most modern CPUs, there is a vector instruction set; the various versions of

SSE and the AVX are good examples. For efficient memory access, we want to de-

sign code such that full, aligned, vector reads are possible using these instruction sets.

Given the small vector size, the most efficient way to perform such vector reads is to

give the compiler as much information as possible by using vector data types such as

float4. Such accesses make good use of cache lines, moving data between the cache

and registers as efficiently as possible. However, on these CPUs, caching helps cover

some of the performance loss from performing smaller, unaligned, or more randomly

addressed reads. Figures 6.9 and 6.10 provide a simple example of the difference

between a single contiguous read and a set of four random reads. Not only do the

narrower reads hit multiple cache lines (creating more cache misses if they do not

hit in the cache) but they also cause less efficient transfers to be passed through

the memory system.

GPU memory architectures differ significantly from CPU memory architectures,

as discussed in Chapter 3. GPUs use multithreading to cover some level of memory

latency and are biased in favor of ALU capability rather than caching and sophisti-

cated out-of-order logic. Given the large amounts of compute resources available on

typical GPUs, it becomes increasingly important to provide high bandwidth to the

memory system if we do not want to starve the GPU. Many modern GPU architec-

tures, particularly high-performance desktop versions such as the latest AMDRadeon

and NVIDIA GeForce designs, utilize a wide-SIMD architecture. Imagine the loss of

efficiency in Figure 6.10 scaled to a 64-wide hardware vector, as we see in the AMD

Radeon HD7970 architecture.

Efficient access patterns differ even among these architectures. For an x86 CPU

with SSE, we would want to use 128-bit float4 accesses, and we would want as



FIGURE 6.9

Using vector reads, we give more opportunities to return data efficiently through the memory

system.

FIGURE 6.10

If we transfer the same four floats as in Figure 6.9 but with a more random pattern, we return

smaller chunks of memory through the memory system less efficiently.
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many accesses as possible to fall within cache lines to reduce the number of cache

misses. For the AMDRadeon HD7970 GPU architecture consecutive work items in a

wavefront will issue a memory request simultaneously. These requests will be

delayed in the memory system if they cannot be efficiently serviced. For peak effi-

ciency the work items in a wavefront should issue 32-bit reads such that the reads

form a contiguous 256-byte memory region so that the memory system can create

a single large memory request. To achieve reasonable portability across different ar-

chitectures, a good general solution is to compact the memory accesses as effectively

as possible, allowing the wide vector machines (AMD and NVIDIA GPUs) and the

narrow vector machines (x86 CPUs) to both use the memory system efficiently. To

achieve this, we should accessmemory across a whole workgroup startingwith a base

address aligned to workgroupSize * loadSize, where loadSize is the size of the load

issued by each work item, and which should be reasonably sized—preferably 128 bits

on x86 CPUs and AMD GPU architectures and expanding to 256 bits on AVX-

supported architectures.

Further complications arise when dealing with the specifics of different memory

systems, such as reducing conflicts on the off-chip links to DRAM. For example, let

us consider the way in which the AMD Radeon architecture allocates its addresses.

Figure 6.11 shows that the low 8 bits of the address are used to select the byte within

the memory bank; this gives us the cache line and sub-cache line read locality. If we

try to read a column of data from a two-dimensional array, we already know that we

are inefficiently using the on-chip buses. It also means that we want multiple groups

running on the device simultaneously to access different memory channels and

banks. Each memory channel is an on-chip memory controller corresponding to a

link to an off-chip memory (Figure 6.12). We want accesses across the device to

be spread across as many banks and channels in the memory system as possible, max-

imizing concurrent data access. However, a vector memory access from a single

wavefront that hits multiple memory channels (or banks) occupies those channels,

blocking access from other wavefronts and reducing overall memory throughput.

Optimally, we want a given wavefront to be contained with a given channel and

bank, allowing multiple wavefronts to access multiple channels in parallel. This will

allow data to stream in and out of memory efficiently.

To avoid using multiple channels, a single wavefront should access addresses

from within a 64-word region, which is achievable if all work items read 32 bits from

consecutive addresses. The worst possible situation is if each work item in multiple
31:x bank channel 7:0 address

FIGURE 6.11

The meaning of the bits comprising the address of a global memory byte on the Radeon

architecture. The precise share of the bits varies from one device to another. For example,

devices with 8 channels will use 3 channel selection bits. The HD7970 architecture has

12 channels and uses a more complicated computation.
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wavefronts reads an address with the same value above bit 8: Each one hits the same

channel and bank, and accesses are serialized, achieving a small fraction of peak

bandwidth. More details on this subject for AMD architectures can be found in

AMD’s OpenCL programming guide (Advanced Micro Devices, Incorporated,

2012). Similar information is provided to cover the differences in competing archi-

tectures from the respective vendors—for example, NVIDIA’s CUDA programming

guide (NVIDIA Corporation, 2012).
Local Memory as a Software-Managed Cache
Most OpenCL-supporting devices have some form of cache support. Due to their

graphics-oriented designs, many GPUs have read-only data caches that enable some

amount of spatial reuse of data.

The easiest way to guarantee the use of caches on a wide range of devices is to use

Images (discussed in Chapter 5). Images map data sets to the texture read hardware

and, assuming that complicated filtering and two-dimensional access modes are not
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needed, improve memory efficiency on the GPU. However, GPU caches are small

compared with the number of active thread contexts reading data. Programmer-

controlled scratchpad memory in the local address space is an efficient approach

for caching data with less overhead from wasted space than hardware-controlled

caches, better power efficiency, and higher performance for a given area. It is also

useful as a way to exchange data with other work items in the same workgroup with a

very low and, barring collisions, guaranteed access latency.

Figure 5.11 shows a simple example of this approach. The code loads a range of data

from A into C and then accesses multiple values from it, avoiding a second read from

DRAM. At the same time, the code loads a single value from aLocalArray just once

and reuses it across all work items in the group, thereby considerably reducing the

memory traffic. The amount of automatic cache reuse varies from one architecture

to another. Given that we have knowledge of the underlying memory access patterns,

we can control how much reuse of data is present in the application.

Of course, there are trade-offs when considering how best to optimize data local-

ity. In some cases, the overhead of the extra copy instructions required to move data

into local memory and then back out into the ALU (possibly via registers) will some-

times be less efficient than simply reusing the data out of cache. Moving data into

local memory is most useful when there are large numbers of reads and writes reus-

ing the same locations, when the lifetime of a write is very long with a vast number of

reads using it, or when manual cache blocking offers a way to correct for conflict

misses that can often be problematic in two-dimensional data access patterns.

In the case of read/write operations, the benefit of local memory becomes even

more obvious, particularly given the wide range of architectures with read-only caches.

Consider, for example, the following relatively naive version of a prefix sum code:

void localPrefixSum(
__local unsigned *prefixSums,

unsigned numElements ) {

// Run through levels of tree halving sizes of the element set

// performing reduction phase

int offset ¼ 1;

for( int level ¼ numElements/2; level > 0; level /¼ 2 ) {

barrier(CLK_LOCAL_MEM_FENCE);

for( int sumElement ¼ get_local_id(0);
sumElement < level;

sumElement +¼ get_local_size(0) ) {

int ai ¼ offset*(2*sumElement+1)-1;

int bi ¼ offset*(2*sumElement+2)-1;

prefixSums[bi] ¼ prefixSums[ai] + prefixSums[bi];

}

offset *¼ 2;

}
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barrier(CLK_LOCAL_MEM_FENCE);

// Need to clear the last element

if( get_local_id(0) ¼¼ 0 ) {

prefixSums[ numElements-1 ] ¼ 0;

}

// Push values back down the tree

for( int level ¼ 1; level < numElements; level *¼ 2 ) {

offset /¼ 2;

barrier(CLK_LOCAL_MEM_FENCE);

for( int sumElement ¼ get_local_id(0);
sumElement < level;

sumElement +¼ get_local_size(0) ) {

int ai ¼ offset*(2*sumElement+1)-1;

int bi ¼ offset*(2*sumElement+2)-1;

unsigned temporary ¼ prefixSums[ai];

prefixSums[ai] ¼ prefixSums[bi];

prefixSums[bi] ¼ temporary + prefixSums[bi];

}

}

}

Although the previous code is not optimal for many architectures, it does effectively

share data between work items using a local array. The data flow of the first loop

(level ¼ numElements>>1 to 0) is shown in Figure 6.13. Note that each iteration

of the loop updates a range of values that a different work item will need to use

on the next iteration. Note also that the number of work items collaborating on

the calculation decreases on each iteration. The inner loop masks excess work items

off to avoid diverging execution across the barrier. To accommodate such behavior,

we insert barrier operations to ensure synchronization between the work items and so

that we can guarantee that the data will be ready for the execution of the next

iteration.

The prefix sum code discussed previously uses local memory in a manner that is

inefficient on most wide SIMD architectures, such as high-end GPUs. As mentioned

in the discussion on global memory, memory systems tend to be banked to allow a

large number of access ports without requiring multiple ports at every memory lo-

cation. As a result, scratchpad memory hardware (and caches, similarly) tends to be

built such that each bank can perform multiple reads or concurrent reads and writes

(or some other multiaccess configuration), whereas multiple reads will be spread

over multiple banks. This is an important consideration when we are using wide

SIMD hardware to access memory. The HD7970 GPU can issue four vector instruc-

tions on a cycle and can process local memory operations from two of the four SIMD

units. As each SIMD unit is 16 lanes wide, up to 32 local reads or writes may be

issued every cycle and the local memory, or LDS, has 32 banks. If each bank supports

a single access port, then we can only achieve this throughput if all accesses target



FIGURE 6.13

The accumulation pass of a prefix sum over 16 elements operating in local memory

using eight work items. The accumulation phase would be followed by a propagation phase

that pushes results back down the tree to give a correct prefix value in each location.
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different memory banks because each bank can only provide one value. Similar rules

arise on competing architectures; NVIDIA’s Fermi architecture, for example, also

has a 32-banked local memory.

The problem for local memory is not as acute as that for global memory. In global

memory, we saw that widely spread accesses would incur latency because they might

cause multiple cache line misses. In local memory, at least on architectures with true

scratchpads, the programmer knows when the data is present because he or she put it

there manually. The only requirement is that the 16 accesses we issue as part of that

read or write instruction hit different banks.

Figure 6.14 shows a simplification for comparison—step 1 of the prefix sum

in Figure 6.13 accessing a local memory with eight memory banks, where each

work item can perform a single local memory operation per cycle. In this case,

our local memory buffer can return up to eight values per cycle from memory.



FIGURE 6.14

Step 1 of Figure 6.13 showing behavior with a local memory of eight banks and one access per

work item per cycle.
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What result do we obtain when performing the set of accesses necessary for step 1 of

the prefix sum?

Note that our 16-element local memory (necessary for the prefix sum) is spread

over two rows. Each column is a bank, and each row is an address within a bank.

Assuming (as is common in many architectures) that each bank is 32 bits wide,

and assuming, for simplicity, that the current wavefront is not competing with

one from another SIMD unit, our memory address would break down as shown at

the top of Figure 6.14. Two consecutive memory words will reside in separate banks.

As with global memory, a SIMD vector that accesses consecutive addresses along its

length will efficiently access the local memory banks without contention. In

Figure 6.14, however, we see a different behavior. Given the second access to local

memory, the read from prefixSums[bi] in

prefixSums[bi] ¼ prefixSums[ai] + prefixSums[bi];

tries to read values from locations 3, 7, 11, and 15. As shown in Figure 6.14, 3 and 11

both sit in bank 3; 7 and 15 both sit in bank 7. There is no possible way to read two

rows from the same bank simultaneously, so these accesses will be serialized on

GPUs by the hardware, incurring a read delay. For good performance, we might wish

to restructure our code to avoid this conflict. One useful technique is to add padding
to the addresses, and an example of this is shown in Figure 6.15. By shifting



FIGURE 6.15

Figure 6.15 with padding added in the data structures showing how it removes the conflict in

this case.
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addresses after the first set (aligning to banks), we can change evenly strided accesses

to avoid conflicts. Unfortunately, this adds address computation overhead, which can

be more severe than the bank conflict overhead; hence, this trade-off is an example of

architecture-specific tuning.

Local memory should be carefully rationed. Any device that uses a real scratch-

pad region that is not hardware managed will have a limited amount of local memory.

In the case of the AMD Radeon HD7970 GPU, this space is 64 kB, following

OpenCL minimum requirements. It is important to note that this 64 kB is shared be-

tween all workgroups executing simultaneously on the core. Also, because the GPU

is a latency hiding throughput device that utilizes multithreading on each core, the

more workgroups that can fit, the better the hardware utilization is likely to be. If

each workgroup uses 16 kB, then only four can fit on the core. If these workgroups

contain a small number of wavefronts (one or two), then there will only barely be

enough hardware threads to cover latency. Therefore, local memory allocation will

be needed to balance efficiency gains from sharing and efficiency losses from reduc-

ing the number of hardware threads to one or two on a multithreaded device.

The OpenCL API includes calls to query the amount of local memory the device

possesses, and this can be used to parameterize kernels before the programmer com-

piles or dispatches them. The first call in the following code queries the type of the

local memory so that it is possible to determine if it is dedicated or in global memory
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(which may or may not be cached; this can also be queried), and the second call

returns the size of each local memory buffer:

cl_int err;

cl_device_local_mem_type type;

err ¼ clGetDeviceInfo(
deviceId,

CL_DEVICE_LOCAL_MEM_TYPE,

sizeof(cl_device_local_mem_type),

&type,

0 );

cl_ulong size;

err ¼ clGetDeviceInfo(

deviceId,

CL_DEVICE_LOCAL_MEM_SIZE,

sizeof( cl_ulong ),

&size,

0 );
SUMMARY
The aim of this chapter was to show a very specific mapping of OpenCL to an ar-

chitectural implementation. In this case, it was shown how OpenCL maps slightly

differently to a CPU architecture and a GPU architecture. The core principles of this

chapter apply to competing CPU and GPU architectures, but significant differences

in performance can easily arise from variation in vector width (32 on NVIDIA GPUs,

32/64 on AMDGPUs, and much smaller on CPUs), variations in thread context man-

agement, and instruction scheduling. It is clear that in one book we cannot aim to

cover all possible architectures, but by giving one example, it is hoped that further

investigation through vendor documentation can lead to efficient code on whatever

OpenCL device is being targeted.
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When programming with OpenCL for a discrete GPU, the overhead of transferring

data between the host and the device needs to be considered carefully since this com-

munication can dominate overall program execution time. Data transfer time can

rival the performance benefits afforded by data-parallel execution on GPUs, and

it is not uncommon for data transfer to be on the same order of time as kernel exe-

cution. As we move to shared-memory CPU–GPU systems (APUs), the performance

issues involved with proper data management and communication are equally crit-

ical. This chapter introduces many of the key concepts and presents details required

to understand data transfers and data accesses within discrete and shared-memory

heterogeneous systems.
MEMORY MANAGEMENT
Modern operating systems provide the abstraction of virtual memory to user

processes (Peter Denning—Virtual Memory, 1970). Virtual memory hides the true

storage medium and makes data byte addressable regardless of where it actually

resides. Operating systems provide each process a separate virtual memory address

space, allowing them to execute with the entire virtual address space at their disposal.

The most important aspect of virtual memory for this discussion is that it allows

a process to execute without the need to have all of its code and data resident in

the CPU main memory (i.e., DRAM).

The virtual address space of a process is divided into fixed-size blocks, called

pages. In the physical memory system, the physical address space (the range of ac-
tual memory locations) is likewise divided into equally sized frames so that a frame

is capable of storing a page. Virtual pages can be mapped to any frame in main mem-

ory, mapped to a location on disk, or not yet be allocated. However, the CPU requires

a page to be in a main memory frame when it is being accessed or executed. When a

process executes an instruction using a virtual memory address, a hardware unit

called the Memory Management Unit (MMU) intervenes and provides the map-

ping of the virtual address to the physical address. If the physical address of a page

is not in main memory, a page fault occurs, and the process is suspended while the

page is retrieved and a virtual-to-physical mapping is created. This technique is

known as demand paging and is completely transparent to the user process (except
Heterogeneous Computing with OpenCL
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An illustration of demand paging for two user processes.
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for the time it takes to service the page fault). Figure 7.1 shows an example of

demand paging.

Virtual memory has implications on data transfer performance in OpenCL, since

transferring data from the CPU to the GPU when using a discrete GPU uses Direct
Memory Access (DMA) over the PCI-Express bus. DMA is an efficient way to

access data directly from a peripheral device without CPU intervention. DMA

requires that the data is resident in main memory and will not be moved by the

operating system. When the operating system does not have the discretion to move

a page, the page is said to be pinned (or page-locked).
The PCI-Express protocol allows any device connected to the bus, such as a GPU,

to transfer data to or from theCPU’smainmemory.When performingDMA transfers,

a device driver running on the CPU supplies a physical address, and theDMA engine
on theGPUcan then perform the transfer and signal to theCPUwhen it has completed.

Once the transfer completes, the pages can then be unmapped from memory.

Modern x86 systems use an I/O Memory Management Unit (IOMMU) as an
interface between the PCI-Express bus and the main memory bus (AMD IOMMU

Architectural Specification; Intel Virtualization Technology for Directed I/O

Architecture Specification). The IOMMU performs the same role for peripheral

devices as the MMU does for x86 cores, mapping virtual I/O addresses to physical ad-

dresses. Themajor benefit of utilizing an IOMMU for aGPU is that it allows the device

to perform DMA transfers from noncontiguous physical address locations and allows

access to physical locations that may be out of the range of addresses supported by

the device. A block diagram of system with an IOMMU is shown in Figure 7.2.
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DATA TRANSFER IN A DISCRETE ENVIRONMENT
In a machine with an x86 CPU and a GPU, an OpenCL call to transfer data from the

host to the device (e.g., clEnqueueWriteBuffer) is done using the DMA unit on the

GPU. As described previously, DMA requires that the pages that are being accessed

need to be pinned in memory. Therefore, to transfer data from the CPU to the GPU,

the OpenCL runtime must take the following steps:

1. Pin the memory pages containing the source data or copy the source data to pre-

pinned memory pages.

2. Ensure that memory space has been allocated for the data on the GPU.

3. Pin the destination pages in the GPU memory system.

4. Initiate the DMA transfer from the CPU memory to the GPU memory.
Optimizations
To help speed up the process of transferring data, OpenCL allows flags to be passed

to clCreateBuffer. The OpenCL specification is intentionally ambiguous in defin-

ing the meanings of flags passed to the runtime in clCreateBuffer. Vendors inter-

pret the flags passed by the developer as possible optimizations to the data’s location
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that can be applied by the runtime. While performance portability is not achievable,

these flags have obvious mappings to behavior.

As discussed above, pinning memory pages requires operating system interven-

tion and so some overhead is incurred in addition to the actual data transfer. To am-

ortize this overhead, the developer can request to the runtime that the buffer be

created and pinned for its lifetime. Using this approach, the cost of performing pin-

ning is only incurred once instead of before each transfer. For version 2.7 of AMD’s

OpenCL APP SDK and NVIDIA’s CUDA Tooklit 4.2, the flag CL_ALLOC_HOST_PTR

passed to clCreateBuffer is interpreted by the runtime to create pinned memory on

the host. Figure 7.3 shows the performance benefits of pre-pinning memory for re-

peated data transfers.

The trade-off with creating pinned buffers is that the operating system is no lon-

ger free to evict the pages containing the buffer data from memory, and system per-

formance can degrade if there is not enough physical memory for other programs to

use. Using pinned memory for optimized transfers also makes programs less porta-

ble. For example, creating a large pinned buffer may be fine on a server with large

amounts of physical RAM installed, yet it could cause the program to crash on a lap-

top or another system that has a small amount of RAM available. Further, even if

RAM is not a concern for a single program, if multiple users on a system all run pro-

grams with pinned memory, they could quickly fill up the system RAM.
Zero-Copy Buffers
In addition to using DMA transfers, GPUs also have the ability to access data directly

from CPU main memory during kernel execution. This reduces the overhead of the

data transfer but limits access performance to the speed of the PCI-Express bus. The
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By default, pages of a kernel’s virtual address space map to video memory on the GPU. Zero-
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CPU main memory over the PCI-Express bus.
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term zero-copy buffer is used to describe an OpenCL buffer that physically resides

in host memory but is accessed during kernel execution by the device. Figure 7.4

shows an example of the virtual address space of a GPU kernel that uses both

GPU video memory and zero-copy memory from the CPU.

The best scenario to use zero-copy buffers is when the data is small and does not

warrant the overhead of a transfer or when a buffer will only be sparsely read or writ-

ten. Later in the chapter, an example application is presented that highlights the

trade-offs of using zero-copy buffers.
DATA PLACEMENT IN A SHARED-MEMORY ENVIRONMENT
In shared-memory, heterogeneous systems-on-a-chip (e.g., AMD Fusion, Intel Ivy

Bridge), the PCI-Express link is no longer needed, as both the CPU and the GPU

access the samemain memory. There are twomajor benefits of using shared-memory

in a heterogeneous system: (1) we remove the overhead associated with expensive

data transfers, and (2) a common virtual address space can be presented to both
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devices. Despite the clean interface provided by a shared-memory system, the pro-

grammer must carefully design allocation and data mapping in order to reap the per-

formance benefits provided by shared memory.

Intel’s approach to APUs has been to place the CPU and GPU under a shared last-

level cache. The advantage of this approach is that the cache coherence protocol

naturally handles data sharing between the processors. The trade-off is that both pro-

cessors share a single link to main memory. AMD’s APUs implement separate paths

to memory so that each processor has its own bus for accessing data. However, since

the processors are more loosely coupled, proper data placement becomes more

critical. The rest of this chapter is dedicated to data placement in AMD APUs.

AMD APUs divide the system memory into two logical regions: (1) regular

system memory and (2) “local” video memory (not to be confused with OpenCL’s

terminology). In Fusion processors, local video memory refers to a portion of the

memory optimized for high-throughput accesses by the GPU. Specifying where

buffers are allocated and how they are accessed determines the amount of memory

bandwidth that each processor will have to work with when accessing shared mem-

ory. Data allocated in system memory has the option to be set as cached or uncached

by the CPU. Data allocated in local memory is always uncached by the CPU. The

GPUs on currently available Llano and Trinity Fusion devices have read-only

caches. Given the three different memory allocation options, two processors, and

two types of operations (read and write), there are a total of 12 bandwidth consider-

ations that the programmer must consider when placing data. It should also be noted

that both cached and uncached system memory require pinning data so that it is

accessible by the GPU, which has the same trade-offs as described previously.

In AMD’s current Llano and Trinity APUs, the GPU accesses local memory with

high bandwidth using the Radeon Memory Bus (RMB), and accesses system mem-

ory with lower bandwidth using the Fusion Compute Link (FCL). The RMB ad-

dresses memory directly (via the IOMMU) and is noncoherent with the CPU

cache hierarchy. The FCL, on the other hand, is the bus used to access data that

is coherent in the CPU cache hierarchy. In order to maintain coherent state, the

FCL interacts with the MMU and is therefore slower than the RMB. The CPU ac-

cesses system memory through the standard memory bus, with writes to local and

uncached memory going through a Write Combining (WC) unit. The job of the

WC unit is to coalesce multiple write accesses into the fewest number of memory

transactions possible, reducing unnecessary memory traffic. A diagram of the differ-

ent paths to memory is shown in Figure 7.5.

In addition to determining the cache behavior of memory, the virtual-to-physical

mapping of program data also plays a major role in performance. In Fusion proces-

sors, the GPU and CPU each have their own set of page tables, and each has its own

Address Translation Cache (more commonly referred to as a Translation Looka-
side Buffer), which is a cached version of the page tables. For the GPU, the IOMMU

plays the role of the MMU and performs virtual-to-physical address translation.

When data is stored in local memory, the GPU page tables contain the valid

virtual-to-physical mapping, and the IOMMU will have to be consulted by the
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CPU before it can access the data. Similarly, when data is stored in system memory,

the CPU page tables contain the valid mapping, and the MMU will need to be con-

sulted by the GPU. Currently, Fusion systems rely on the OpenCL driver to fill in the

GPU page tables when a kernel is scheduled, since the address ranges that will be

accessed are known in advance. The synchronization between page tables implemen-

ted by Fusion allows data to be referenced by a single pointer that can be shared by

both the CPU and the GPU.
Local Memory
When data is allocated in local memory, the GPU maintains the valid virtual-to-

physical mappings in its page tables. This allows the GPU to read and write to local

memory at the full speed of the RMB, without having to involve the CPU.

For the CPU to access local memory, it must first request the virtual-to-

physical mapping from the GPU IOMMU. This additional step increases the

latency for an access. Since writes are combined in the WC unit, this path from

CPU to local memory still provides decent performance. When the CPU needs

to read from local memory, accesses are uncached and only a single inflight access

is permitted. Only a single inflight access from the CPU is permitted since

uncached writes need to be verified as having completed before read accesses

are issued to the cache hierarchy.
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By default, clCreateBuffer allocates buffers in local memory. Allocating a

buffer in local memory is the best choice if the GPU will be accessing a large

amount of data. Since reads to system memory are so slow, it often makes sense

to create a buffer in local memory separate from the host pointer (i.e., do not

use CL_MEM_USE_HOST_PTR). If a separate buffer is used, clEnqueueWriteBuffer

performs a DMA transfer to local memory, local memory is used for kernel

execution, and then clEnqueueReadBuffer performs a DMA transfer back to

system memory.
Cacheable System Memory
For a buffer allocated in cacheable system memory, the CPU uses the standard mem-

ory path through the cache hierarchy. Accesses by the CPU can thus achieve high

performance on reads and writes for this type of buffer.

If the GPU accesses a buffer in cacheable system memory, it must first obtain the

virtual-to-physical mappings from the CPU MMU. The GPU must then snoop the

cache hierarchy to retrieve the latest value of the data. These operations impact mem-

ory bandwidth for read and write operations by the GPU.

When the flag CL_MEM_ALLOC_HOST_PTR is passed to clCreateBuffer, the

buffer is allocated in system memory. If the buffer is mapped to a pointer using

clEnqueueMapBuffer, the data is set as cacheable. The flag CL_MEM_USE_HOST_PTR

will leave existing data in cacheable system memory and use this space to create the

buffer. This option is the best to use if the data will mostly be accessed by the CPU,

and only sparingly by the GPU.
Uncached System Memory
Uncached system memory avoids using the cache hierarchy and provides a middle

ground between cacheable and local memory. CPU writes to uncached memory still

occur at full speed, since the cache hierarchy is simply ignored. CPU reads, however,

must maintain memory consistency by first flushing outstanding writes in the WC

unit back to main memory. This additional step reduces memory bandwidth when

the CPU reads uncached data.

Uncached memory relieves the GPU from having to snoop the CPU cache hier-

archy, which improves read and write bandwidth when compared to using cacheable

memory.

Creating a buffer in uncached system memory is achieved by calling

clCreateBuffer with the CL_MEM_ALLOC_HOST_PTR and CL_MEM_READ_ONLY flags

from the OpenCL program. The CL_MEM_READ_ONLY flag tells the OpenCL runtime

that the buffer is read-only with respect to the GPU, so the CPU will not need to

read output data from the buffer. This allows fast GPU reads and writes, and fast

CPU writes.
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EXAMPLE APPLICATION—WORK GROUP REDUCTION
This section covers the implementation of a reduction algorithm to illustrate the per-

formance benefits of using different OpenCL buffers. A reduction is any algorithm

that converts a large data set into a smaller data set using an operator on each element.

A simple reduction example is to compute the sum of the elements in an array.

float sum_array(float * a, int No_of_elements)

{

float sum ¼ 0.0f;

for (int i ¼ 0; i < No_of_elements; i++)

sum + ¼ a[i];

return sum;

}

With OpenCL, the common way to parallelize a reduction is to divide the input data

set between different work groups on a GPU, where each work group is responsible

for computing a single element. Within a work group, the reduction is performed

over multiple stages. At each stage, work-items sum an element and its neighbor that

is one stride away. The stride grows at each stage and the number of participating

work items decreases. This methodology of reducing a data set is known as a reduc-
tion tree and is shown in Figure 7.6. The OpenCL kernel is shown below.

// A simple reduction tree kernel where each work group reduces a set

// of elements to a single value in local memory and writes the

// resultant value to global memory.

__kernel void reduction_kernel(

unsigned int N, // number of elements to reduce
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FIGURE 7.6

A sum reduction tree implemented in OpenCL.
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__global float* input,

__global float* output,

__local float* sdata)

{

// Get index into local data array and global array

unsigned int localId ¼ get_local_id(0);

unsigned int globalId ¼ get_global_id(0);

unsigned int groupId ¼ get_group_id(0);

unsigned int wgSize ¼ get_local_size(0);

// Read in data if within bounds

sdata[localId] ¼ (i<N) ? input[globalId]: 0;

// Synchronize since all data needs to be in

// local memory and visible to all work items

barrier(CLK_LOCAL_MEM_FENCE);

// Each work item adds two elements in parallel.

// As stride increases, work items remain idle.

for(int offset ¼ wgSize ; offset > 0; offset >>¼ 1)

{

if (localId < offset && localId + offset < wgSize)

{

sdata[localId] +¼ sdata[localId + offset];

}

barrier(CLK_LOCAL_MEM_FENCE);

}

barrier(CLK_LOCAL_MEM_FENCE);

// Only one work item needs to write out result of the work

//group’s reduction

if ( tid ¼¼ 0 )

output[groupId] ¼ sdata[0];

}

This baseline implementation of the reduction example can benefit from kernel op-

timizations such as loop unrolling and vectorization, as shown in Chapter 8. How-

ever, the aim of this example is to illustrate the impact of using different locations for

the input and the output buffers.

The performance results captured for the discrete and APU platforms show a

reduction of 1M floating point values in a configuration of 512 work items per

work group.
Using a Discrete GPU Device
The following cases describe various buffer allocation options for the reduction ex-

ample with a discrete GPU. The experiments were performed on a Radeon 7850 GPU

and a Tesla M2070 GPU. The results are presented in Tables 7.1 and 7.2.



Table 7.1 Breakdown of the Execution Times of the Reduction Application for

Various Data Allocation Options on a Radeon 7850 GPU

Buffer Allocation

Write to
Device
(ms)

Kernel
Execution
(ms)

Read from
Device (ms)

Total
Time
(ms)

Case 1: Default
buffers

2.01 0.13 0.13 2.27

Case 2: Pinned
staging buffers

0.70 0.13 0.05 0.88

Case 3: Zero-copy
host buffers

N/A 0.90 N/A 0.90

Case 4: Pinned input,
zero-copy output

0.71 0.13 N/A 0.84
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Case 1 Using device buffers
In this case, the input and the output buffers of the reduction kernel are allocated in

the video memory of the device. This is the most common scenario and has the over-

head of two data transfers: writing data to the GPU before execution and reading

back the results after execution. When data is transferred to the device, the OpenCL

kernel can utilize the high bandwidth of the GPU’s video memory.

Case 2 Using pinned staging buffers
This case is similar to Case 1, except that pinned buffers on the CPU are used to make

transfers more efficient. The input data is first transferred to a pre-pinned buffer on

the CPU. The transfer to the GPU is then more efficient, as the DMA transfer takes

place without any additional overhead. Execution then occurs with the buffers in

video memory. Finally, after execution completes, the output data is transferred

to a pinned output buffer on the CPU.

Case 3 Using zero-copy buffers
By creating the input and output buffers as zero-copy buffers, the kernel accesses are

performed directly in CPUmain memory, and the overhead of data transfers with the

GPU is avoided. Although the transfer overhead is avoided, memory performance is

limited by the interconnect (PCI-Express) bandwidth during execution. Zero-copy

buffers are implemented as buffer copies on the Tesla 2070, so the results are not

included in Table 7.2.

Case 4 Combination
Recall that for GPU execution, zero-copy buffers are beneficial when the overhead of

data transfer is higher than the cost of direct access of CPU memory by the

GPU kernel. This is usually the case when a small amount of data is read or written.

Intuition says that since the input buffer is large and every element is used, it will

benefit from being allocated in device memory, and since the output buffer is small,



Table 7.2 Breakdown of the Execution Times of the Reduction Application for

Regular and Pinned Buffers on an NVIDIA Tesla M2070 GPU

Buffer Allocation

Write to
Device
(ms)

Kernel
Execution
(ms)

Read From
Device (ms)

Total
Time
(ms)

Case 1: Default buffers 1.30 0.37 0.01 1.67

Case 2: Pinned staging
buffers for device I/O

0.70 0.37 <0.01 1.08
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it should benefit from the zero-copy approach. Recall that in the reduction code, the

output buffer is only written to once by a single work item in each work group.

Case 2 in Table 7.1 shows that if it is possible to use pinned staging buffers, they

can greatly improve the rate of data transfer. Case 3 shows that although zero-copy

buffers avoid the overhead of data transfer, the slower access to CPU main memory

can have a large impact on kernel execution time. Since a reduction example starts

with a large amount of input data and generates a small amount of output data, Case 4

provides the best overall performance.

AlthoughCase 4 provides the shortest total execution time, it should be noted that if

the output buffer were used in future computation on the device, the zero-copy ap-

proach would result in slow accesses by the device. In such scenarios, creating the out-

put buffer in video memory on the GPU would likely provide better results.

Table 7.2 shows that pinned buffers also achieved a large speedup with the Tesla

2070 GPU. Notice that both GPUs were able to saturate the PCI-Express bus during

pinned transfers.
Using an APU
The following cases describe a similar set of experiments using a Llano APU with

various allocation options for input and output buffers. The longer kernel execution

duration is related to the smaller number of compute units on the GPU device of the

Llano APU as compared to the Radeon 7850 discrete GPU. The GPU on the Llano

APU is also an implementation of the older Evergreen architecture.

Recall that in an APU, the CPU and GPU share a single memory. However, in

AMD APUs, there are two regions of memory that have different performance char-

acteristics: regular system memory, and local memory, which is optimized for GPU

accesses.
Case 1 Using local memory buffers
By default, OpenCL buffers are allocated in local memory, and transfers still need to

be used to copy data to these buffers from system memory. However, since the PCI-

Express bus is avoided, transfer time is faster than with the discrete GPU.
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Case 2 Using pinned staging buffers
As in the discrete case, using pinned buffers greatly reduce the amount of time for the

data transfers. As with Case 1, the data ends up in local memory, so the kernel ex-

ecution time remains the same.
Case 3 Using zero-copy buffers
In this case, the benefit of the APU platform is clearly seen. There is very little deg-

radation (none in this case) in kernel performance when using zero-copy host buffers

during kernel execution. This should be compared against the discrete platform,

where a 7X degradation in execution performance is seen when using the zero-copy

buffers during execution.

Case 1 in Table 7.3 shows that the overhead of data transfer in an APU is much

lower than the corresponding case for a discrete GPU. As with the discrete example,

Case 2 shows that APUs also benefit from pinned staging buffers. However, the big-

gest benefit is shown in Case 3, where the use of zero-copy buffers eliminates data

transfer overhead with minimal performance degradation.
Table 7.3 Breakdown of the Execution Times of the Reduction Application for

Various Data Allocation Options on an A8-3850 APU

Buffer
Allocation

Write to
Device (ms)

Kernel
Execution
(ms)

Read From
Device (ms)

Total
Time
(ms)

Case 1: Default
buffers

0.96 1.40 0.15 2.52

Case 2: Pinned
host buffers

0.27 1.40 0.03 1.70

Case 3: Zero-
copy buffers

N/A 1.40 N/A 1.40
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CHAPTER
OpenCL Case Study:
Convolution
 8

INTRODUCTION
In Chapter 4, we introduced a basic convolution example using OpenCL images.

Images provided the benefit of automatically handling out-of-bounds accesses (by

clamping or wrapping accesses), which simplified the coding that would have been

required for the cases in which the convolution filter accessed data outside of the

image. Thus, image support may reduce control flow overhead and provide caching

and data access transformations that improve memory system performance. When

targeting GPUs, the automatic caching mechanism provided for images is much

better than not caching. In many circumstances, however, it can be outperformed

by efficient use of local memory. In this chapter, we use a convolution filter to pro-

vide some intuition on how to make good use of local memory. We encourage the

reader to compare the two different implementation choices and judge which would

be best for a particular use case.
CONVOLUTION KERNEL
The OpenCL convolution kernel can be naturally divided into three sections: (1) the

caching of input data from global to local memory, (2) performing the convolution,

and (3) the writing of output data back to global memory. This chapter focuses on the

first task, optimizing data caching for the underlyingmemory system. Loop unrolling

is also discussed in the context of performing the convolution. The write back stage is

straightforward and will not be discussed in detail. During the discussion, a 7 � 7

filter is considered when concrete examples facilitate the discussion of optimiza-

tions, although the principles should generalize to different filter configurations.

Optimizations for the OpenCL kernel are presented inline throughout the chapter,

along with any relevant host code. The complete reference implementations are

provided in Code Listings.

Selecting Workgroup Sizes
Recall that when performing a convolution, each work-item accesses surrounding

pixels based on the size of the filter. The filter radius is the number of pixels in each

direction that are accessed, not including the current pixel. For example, a 7� 7 filter
Heterogeneous Computing with OpenCL
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162 CHAPTER 8 OpenCL case study: Convolution
accesses three additional pixels in each direction, so the radius is 3. From Figure 4.5,

it is easy to see that adjacent output points have two-dimensional locality for data

accesses. Each work region also involves a wide data halo of padding pixels due

to the size of the input filter. This tells us that for efficiency, we should use two-

dimensional access regions, and a square minimizes the ratio of the halo dimensions

to the output data size and hence the input:output efficiency. For this example, we

consider a mapping of work-items using a single work-item per output approach,

leaving multi-output optimizations to be considered in a histogram example in

Chapter 9. Figure 8.1 shows the padding pixels required for a given work region

and hence an OpenCL workgroup.

In OpenCL, work-item creation and algorithm design must be considered simul-

taneously, especially when local memory is used. For convolution, the size of the

workgroups and the algorithm for caching data to local memory are closely related.

There are two obvious approaches for caching data. The first approach is to create the

same number of work-items as there are data elements to be cached in local memory.

That is, create as manywork-items as there are in the combined number of output and

padding pixels. Using this approach, each element would simply copy one pixel from

global to localmemory, and then thework-items representing the border pixels would

sit idle during the convolution. The limitations of this approach are that larger filter

sizes will not allow many output elements to be computed per workgroup, and when

targetingGPUs,wavefrontsmaybe fragmented, causingALUcycles to bewasted.Al-

ternatively, the second approach is to create asmanywork-items aswill be performing

the convolution. In this approach, there will be fewer work-items than pixels to be

cached, so somework-itemswill have to copymultiple elements and nonewill sit idle

during the convolution. This approach is obviouslymuch better suited for large filters

because the number of padding elements will not limit the number of work-items that

generate output pixels. For this example, the second approach towork-item creation is

used because it is better suited for OpenCL targeting GPUs.
0,0 0,1 0,2 0,3

1,0 1,1 1,3

2,0 2,1 2,2 2,3

1,2

Border pixels do not
produce output

Padding pixels
(per workgroup)

Area corresponding to output
region for each workgroup

FIGURE 8.1

Workgroups have a unique output region for which they produce values. Each workgroup

caches values from the source image corresponding to its output location as well as padding

pixels determined by the filter radius.
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Taking this optimization approach a step further, we might like to create fewer

work-items than output pixels in a group. The reader can easily infer such an ap-

proach from the algorithm discussed and may like to experiment with this trade-

off. Finding the optimal combination can mean exploring a large design space.

Selecting an efficient workgroup size requires consideration of the underlying

memory architecture. For the AMD 6970 GPU sixteen consecutive work-items issu-

ing 128-bit reads on an aligned address can come closest to fully utilizing the mem-

ory bus bandwidth. The most favorable memory transactions on NVIDIA platforms

come from 32 work-items issuing a combined request that is 128 bytes in size and

128-byte aligned (NVIDIA, 2009). This means 32 work-items will access consecu-

tive 4-byte elements, beginning at a 128-byte aligned address boundary, which is the

most ideal access pattern. Transactions of 64 and 32 bytes are also supported. For

this example, creating workgroups of either 32 or 16 items in width offers us a

good chance for creating efficient memory requests regardless of platform. The

Y-dimension of the workgroup does not affect memory access performance. On

AMD GPUs, the workgroup size limit is 256 work-items, so choosing a width of

32 produces a height of 8, and a width of 16 produces a height of 16. With NVIDIA,

larger workgroup sizes are possible, although the “ideal” size is really determined by

the interplay between hardware resources. The workgroup size that performs best

will be a trade-off between the efficiency of the memory accesses and the efficiency

of the computation. For the code and analysis presented in this chapter, we use

16 � 16 workgroups to perform the convolution.

When performing reads from global to local memory, each workgroup needs

to copy twice the filter radius additional work-items in each dimension. For a

7 � 7 filter, this would mean an additional six pixels in each dimension. When

computing the NDRange size, one filter radius of border pixels around the image

(i.e., 3 for a 7 � 7 filter) will not compute output values because they would cause

out-of-bounds accesses for the filter.1 For an image with dimensions imageWidth

and imageHeight, only (imageWidth-2*filterRadius) x (imageHeight-2*

filterRadius) work-items are needed in each dimension, respectively. Because

the image will likely not be an exact multiple of the workgroup size, additional

workgroups must be created in both the X- and Y-dimensions (Figure 8.2). These

last workgroups in each dimension may not be fully utilized, and this must be

accounted for in the OpenCL kernel. A function that takes a value (e.g., the image

width) and rounds it up to a multiple of another value (e.g., the workgroup width)

is shown here:

// This function takes a positive integer and rounds it up to

// the nearest multiple of another provided integer

unsigned int roundUp(unsigned int value, unsigned int multiple) {
1The algorithm could be modified to have the border pixels produce output values by detecting out-of-

bounds accesses and returning valid values.
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FIGURE 8.2

The last workgroups in each dimension may contain out-of-bounds pixels. The work-items

representing these locations will need to be handled in the kernel.
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// Determine how far past the nearest multiple the value is

unsigned int remainder ¼ value % multiple;

// Add the difference to make the value a multiple

if(remainder !¼ 0) {

value +¼ (multiple-remainder);

}

return value;

}

The code to compute the NDRange size for an image with dimensions imageWidth

and imageHeight is as follows:

// Selected workgroup size is 16x16

int wgWidth ¼ 16;

int wgHeight ¼ 16;

// When computing the total number of work-items, the

// padding work-items do not need to be considered

int totalWorkItemsX ¼ roundUp(imageWidth-paddingPixels,

wgWidth);

int totalWorkItemsY ¼ roundUp(imageHeight-paddingPixels,

wgHeight);

// Size of a workgroup

size_t localSize[2] ¼ {wgWidth, wgHeight};

// Size of the NDRange

size_t globalSize[2] ¼ {totalWorkItemsX, totalWorkItemsY};

Caching Data to Local Memory
Caching data in local memory first requires allocating space in local memory—either

statically by hard coding the values into the OpenCL kernel or dynamically by spec-

ifying a size and passing it as a kernel argument. Because the program will have to

cache a different amount of data based on the filter size, the following dynamically

allocates local memory space and passes it as the seventh argument (the argument at

index 6) to the OpenCL kernel:
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int localWidth ¼ localSize[0] + paddingPixels;

int localHeight ¼ localSize[1] + paddingPixels;

size_t localMemSize ¼ (localWidth * localHeight *

sizeof(float));

. . .

// Dynamically allocate local memory (per workgroup)

clSetKernelArg(kernel, 6, localMemSize, NULL);

The process of copying data from global memory to local memory often requires the

most thought and is often the most error-prone operation when writing a kernel. The

work-items first need to determine where in global memory to copy from and then en-

sure that they do not access a region that is outside of their working area or out of

bounds for the image. The following code identifies each work-item locally and glob-

ally and then performs the copy from global memory to local memory. Figure 8.3 pro-

vides an illustration of the variables used to perform the copy in this example:

__kernel

void convolution(__global float* imageIn,
 

gr
(p

FIGURE

Illustrat

image.
__global float* imageOut,

__constant float* filter,

int rows,

int cols,

int filterWidth,

__local float* localImage,

int localHeight,

int localWidth) {

// Determine the amount of padding for this filter

int filterRadius ¼ (filterWidth/2);

int padding ¼ filterRadius * 2;
 

oupStartCol
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get_local_size(0)
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8.3

ion of the variables required for identifying a work-item’s read location within the input
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// Determine where each workgroup begins reading

int groupStartCol ¼ get_group_id(0)*get_local_size(0);

int groupStartRow ¼ get_group_id(1)*get_local_size(1);

// Determine the local ID of each work-item

int localCol ¼ get_local_id(0);

int localRow ¼ get_local_id(1);

// Determine the global ID of each work-item. work-items

// representing the output region will have a unique

// global ID

int globalCol ¼ groupStartCol + localCol;

int globalRow ¼ groupStartRow + localRow;

// Cache the data to local memory

// Step down rows

for(int i ¼ localRow; i < localHeight; i +¼
get_local_size(1)) {

int curRow ¼ groupStartRow+i;

// Step across columns

for(int j ¼ localCol; j < localWidth; j +¼
get_local_size(0)) {

int curCol ¼ groupStartCol+j;

// Perform the read if it is in bounds

if(curRow < rows && curCol < cols) {

localImage[i*localWidth + j] ¼
imageIn[curRow*cols+curCol];

}

}

}

barrier(CLK_LOCAL_MEM_FENCE);

// Perform the convolution

. . .

The barrier at the end of the copy is required because work-items will finish with

their data transfers at different times, and no work-item in the group should begin

the convolution step until all transfers are complete.
Aligning for Memory Accesses
Performance on both NVIDIA and AMD GPUs benefits from data alignment in

global memory. Particularly for NVIDIA, aligning accesses on 128-byte boundaries

and accessing 128-byte segments will map ideally to the memory hardware. How-

ever, in this example, the 16-wide workgroups will only be accessing 64-byte seg-

ments, so data should be aligned to 64-byte addresses. This means that the first

column that each workgroup accesses should begin at a 64-byte aligned address.
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FIGURE 8.4

The first padding pixel read by each workgroup will be amultiple of the workgroup size in each

dimension. Padding the image and sizing the X-dimension of the workgroup appropriately

ensures aligned accesses.

167Convolution kernel
In this example, the choice to have the border pixels not produce values deter-

mines that the offset for all workgroups will be a multiple of the workgroup dimen-

sions (i.e., for a 16� 16 workgroup, workgroup<N,M>will begin accessing data at

column N*16). An example of the offset of each workgroup is presented in

Figure 8.4. To ensure that each workgroup aligns properly, the only requirement then

is to pad the input data with extra columns so that its width becomes a multiple of the

X-dimension of the workgroup.

Manually padding a data array on the host can be complicated, time-consuming,

and sometimes infeasible. To avoid such tedious data fixup, OpenCL has introduced

a command called clEnqueueWriteBufferRect() to copy a host array into the mid-

dle of a larger device buffer. When creating the buffer, the number of columns used

to determine the size should be the number of elements required to provide the de-

sired alignment. For a 16� 16 workgroup, the number of columns should be rounded

up to the nearest multiple of 16. The call to clEnqueueWriteBufferRect()that cop-

ies the host data into the padded device buffer is listed here:

// Pad the number of columns (assuming 16x16 workgroup)

int deviceWidth ¼ roundUp(imageWidth, 16);

// No padding needed for rows

int deviceHeight ¼ imageHeight;

// Copy the input data on the host to the padded buffer

// on the device

clEnqueueWriteBufferRect(queue, d_inputImage, CL_TRUE,
buffer_origin, host_origin, region,

deviceWidth*sizeof(float), 0, imageWidth*sizeof(float),

0, inputImage, 0, NULL, NULL);
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By aligning data to a 64-byte boundary, performance improved by 10% on a

Radeon 6970 GPU. The NVIDIA Fermi architecture automatically caches memory

transactions on-chip in L1memory, and because nonaligned reads get turned into an ad-

ditional access (which is usually used in the following read anyway), negligible perfor-

mancegains canbeachievedon aGTX480.On theGT200 series architecture, automatic

caching is not supported, so memory alignment plays a more significant role. Using the

NVIDIAVisual Profiler and a GTX 285 GPU, we see that aligning to a 64-byte address

boundary results in fewer memory transactions, each of a larger size, producing an 8%

improvement in memory performance over the original version of the code.

Improving Efficiency with Vector Reads
AMD 5000-series and 6000-series GPUs are optimized for 128-bit read operations

per SIMD lane and therefore see performance gains from performing vector reads

(i.e., reading float4 data allows us to come closer to achieving peak memory band-

width than reading float data). The 7000 series GPU will not benefit substantially

from vector reads. Additionally, if a filter has radius of 8 or less (i.e., the filter is at

most 17 � 17), a 16 � 16 workgroup can copy all of the padding and output pixels

with only a single float4 read per work-item.

The first step is to resize the local memory allocation to include the extra pixels

required to support the float4 data type:

int localWidth ¼ roundUp(localSize[0]+padding, 4);

int localHeight ¼ localSize[1]+padding;

size_t localMemSize ¼ (localWidth*localHeight*sizeof(float));

The code to perform the vector transfer of data from global memory to local memory

is listed next. To employ a vector read and still use scalar data for the convolution, the

input image is given the type float4, and the local memory cache is given the data

type float. When the read is performed, a temporary __local float4 pointer is set

to the desired location in local memory and is used to read the data. By using float4

as the data type of the input image, the width (number of columns) of the image is

divided by four because each column stores four values. The number of rows in the

image does not change.

__kernel

void convolution_read4(__global float4* imageIn,
__global float* imageOut,

__constant float* filter,

int rows,

int cols,

int filterWidth,

__local float* localImage,

int localHeight,

int localWidth) {
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// Vector pointer that will be used to cache data

// scalar memory

__local float4* localImage4;

// Determine the amount of padding for this filter

int filterRadius ¼ (filterWidth/2);

int padding ¼ filterRadius * 2;

// Determine where each workgroup begins reading

int groupStartCol ¼ get_group_id(0)*get_local_size(0)/4;

int groupStartRow ¼ get_group_id(1)*get_local_size(1);

// Flatten the localIds 0-255

int localId ¼ get_local_id(1)*get_local_size(0) +

get_local_id(0);

// There will be localWidth/4 work-items reading per row

int localRow ¼ (localId / (localWidth/4));

// Each work-item is reading 4 elements apart

int localCol ¼ (localId % (localWidth/4));

// Determine the row and column offset in global memory

// assuming each element reads 4 floats

int globalRow ¼ groupStartRow + localRow;

int globalCol ¼ groupStartCol + localCol;

// Set the vector pointer to the correct scalar location

// in local memory

localImage4 ¼ (__local float4*)

&localImage[localRow*localWidth+localCol*4];

// Perform all of the reads with a single load

if(globalRow < rows && globalCol < cols/4 &&

localRow < localHeight) {
calImage4[0] ¼ imageIn[globalRow*cols/4+globalCol];
lo

}

barrier(CLK_LOCAL_MEM_FENCE);

// Perform the convolution

. . .
On the AMD Radeon 6970, a significant performance gain is achieved by using

vector reads. Compared to the initial implementation of the algorithm, a 42%

improvement in memory performance was seen when using the float4 data type

with aligned memory accesses. The memory hardware on NVIDIA GPUs ben-

efits less from 128-bit reads, and the extra register pressure can decrease overall

performance; thus, even though the overall number of memory transactions de-

creased using the vector type, a slight performance degradation was seen in this

example.
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Performing the Convolution
Now that the data is stored in localmemory, it can be efficiently accessed to perform the

convolution. The following code provides an implementation of the algorithm that cor-

responds to the C version in Chapter 4. Each work-item represents an output location

and applies the filter by performing multiply-accumulate operations in a neighborhood

around its location. No output is produced for pixels that would need to access out-of-

bounds locations in the original image due to the filter size. For a 7 � 7 filter, the first

valid output pixel will be located at index (3,3), and issue accesses to the padding pixels

beginning at index (0,0). Because we want all work-items to produce output data, the

work-itemwith global index (0,0)will produce the output value at (3,3). In other words,

each work-item’s output value will be offset from its global ID by the filter radius in

both the X and Y directions. The following code performs the convolution:

// Only allow work-items mapping to valid locations in

// the output image to perform the convolution

if(globalRow < rows - padding && globalCol < cols - padding) {
// Each work-item will filter around its start location

// (starting from the filter radius left and up)

float sum ¼ 0.0f;

int filterIdx ¼ 0;

// The convolution loop

for(int i ¼ localRow; i < localRow+filterWidth; i++) {

int offset ¼ i*localWidth;

for(int j ¼ localCol; j < localCol+filterWidth; j++) {
sum +¼ localImage[offset+j] * filter[filterIdx++];

}

}

// Write the data out

imageOut[(globalRow+filterRadius)*cols +

(globalCol+filterRadius)] ¼ sum;

}

}

Improving Performance with Loop Unrolling
Unlike the 7970 GPU, the AMD 6970 GPU is a VLIW (Very Long InstructionWord)

architecture where the compiler is tasked with packing multiple instructions to keep

the ALU Units busy. Using the AMD APP Profiler, we are able to see that the ALU

packing in the VLIW units for this kernel is low (only 43%). This means that less than

half of the ALU units are being utilized, and it is a sign that the compiler cannot find

sufficient instructions to fill the VLIW units. For the convolution kernel, the tight

computation loops are the likely culprit. If we know that the filter size will be static

(i.e., at compile time), we can unroll the inner loop to increase the ratio of ALU to

branching instructions.
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// Only allow work-items mapping to valid locations in

// the output image to perform the convolution

if(globalRow < rows - padding && globalCol < cols - padding) {

// Each work-item will filter around its start location

//(starting from the filter radius left and up)

float sum ¼ 0.0f;

int filterIdx ¼ 0;

// Inner loop unrolled

for(int i ¼ localRow; i < localRow+filterWidth; i++) {
int offset ¼ i*localWidth+localCol;

sum +¼ localImage[offset++] * filter[filterIdx++];

sum +¼ localImage[offset++] * filter[filterIdx++];

sum +¼ localImage[offset++] * filter[filterIdx++];

sum +¼ localImage[offset++] * filter[filterIdx++];

sum +¼ localImage[offset++] * filter[filterIdx++];

sum +¼ localImage[offset++] * filter[filterIdx++];

sum +¼ localImage[offset++] * filter[filterIdx++];

}

// Write the data out

imageOut[(globalRow+filterRadius)*cols +

(globalCol+filterRadius)] ¼ sum;

}

}

On an AMD Radeon 6970, using a 7� 7 filter and a 600� 400 image, unrolling the

innermost loop provided a 2.4� speedup and increased the ALU packing efficiency

to 79%. The GTX 285 and 480 saw similar performance gains—2.6� and 2.2�
speedups, respectively.

Completely unrolling both inner and outer loops of the convolution increases the

code size and may not be possible for large filtering kernels. However, in general,

loop unrolling produces a substantial speedup on both AMD and NVIDIA GPU

devices. With a 7 � 7 filter, the Radeon 6970 achieved a 6.3� speedup over the

non-unrolled version. The GTX 285 and 480 saw speedups of 3.2� and 2.9�, respec-

tively, over the non-unrolled version.

Using the memory optimizations and loop unrolling described in this

chapter, both the Radeon 6970 and the GTX 480 are able to perform the convolution

at a rate of approximately 2 billion pixels per second while using a 7 �7 filter.
CONCLUSIONS
This chapter discussed a classical computational kernel, convolution, that is used in

many machine vision, statistics, and signal processing applications. We presented

how to approach optimization of this OpenCL kernel when targeting either AMD

or NVIDIA GPUs. We explored the benefits of different memory optimizations
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and showed that performance is heavily dependent on the underlying memory archi-

tecture of the different devices. However, for all devices considered, significant per-

formance improvements were obtained in the computational portions of the

algorithm by giving up the generality of the double convolution loops and unrolling

for specific kernel sizes. In general, many performance optimizations will depend on

the specifics of the underlying device hardware architecture. To obtain peak perfor-

mance, the programmer should be equipped with this information.
CODE LISTINGS
Host Code

#define WGX 16

#define WGY 16

// Uncomment each of these to run with the corresponding

// optimization

#define NON_OPTIMIZED

//#define READ_ALIGNED

//#define READ4

// This function takes a positive integer and rounds it up to

// the nearest multiple of another provided integer

unsigned int roundUp(unsigned int value, unsigned int multiple) {
// Determine how far past the nearest multiple the value is

unsigned int remainder ¼ value % multiple;

// Add the difference to make the value a multiple

if(remainder !¼ 0) {

value +¼ (multiple-remainder);

}

return value;

}

int main(int argc, char** argv) {

// Set up the data on the host

// Rows and columns in the input image

int imageHeight;

int imageWidth;

// Homegrown function to read a BMP from file

float* inputImage ¼ readImage("input.bmp", &imageWidth,
&imageHeight);

// Size of the input and output images on the host

int dataSize ¼ imageHeight*imageWidth*sizeof(float);

// Pad the number of columns
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#ifdef NON_OPTIMIZED

int deviceWidth ¼ imageWidth;

#else // READ_ALIGNED jj READ4
int deviceWidth ¼ roundUp(imageWidth, WGX);

#endif

int deviceHeight ¼ imageHeight;

// Size of the input and output images on the device

int deviceDataSize ¼ imageHeight*deviceWidth*sizeof(float);

// Output image on the host

float* outputImage ¼ NULL;

outputImage ¼ (float*)malloc(dataSize);

for(int i ¼ 0; i < imageHeight; i++) {
for(int j ¼ 0; j < imageWidth; j++) {

outputImage[i*imageWidth+j] ¼ 0;

}

}

// 45 degree motion blur

float filter[49] ¼
{0, 0, 0, 0, 0, 0.0145, 0,

0, 0, 0, 0, 0.0376, 0.1283, 0.0145,

0, 0, 0, 0.0376, 0.1283, 0.0376, 0,

0, 0, 0.0376, 0.1283, 0.0376, 0, 0,

0, 0.0376, 0.1283, 0.0376, 0, 0, 0,

0.0145, 0.1283, 0.0376, 0, 0, 0, 0,

0, 0.0145, 0, 0, 0, 0, 0};

int filterWidth ¼ 7;

int filterRadius ¼ filterWidth/2;

int paddingPixels ¼ (int)(filterWidth/2) * 2;

// Set up the OpenCL environment

// Discovery platform

cl_platform_id platform;

clGetPlatformIDs(1, &platform, NULL);

// Discover device

cl_device_id device;

clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 1, &device,

NULL);

// Create context

cl_context_properties props[3] ¼ {CL_CONTEXT_PLATFORM,

(cl_context_properties)(platform), 0};

cl_context context;

context ¼ clCreateContext(props, 1, &device, NULL, NULL,

NULL);

// Create command queue

cl_command_queue queue;
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queue ¼ clCreateCommandQueue(context, device, 0, NULL);

// Create memory buffers

cl_mem d_inputImage;

cl_mem d_outputImage;

cl_mem d_filter;

d_inputImage ¼ clCreateBuffer(context, CL_MEM_READ_ONLY,

deviceDataSize, NULL, NULL);

d_outputImage ¼ clCreateBuffer(context, CL_MEM_WRITE_ONLY,

deviceDataSize, NULL, NULL);

d_filter ¼ clCreateBuffer(context, CL_MEM_READ_ONLY,

49*sizeof(float),NULL, NULL);

// Write input data to the device

#ifdef NON_OPTIMIZED

clEnqueueWriteBuffer(queue, d_inputImage, CL_TRUE, 0,

deviceDataSize,
inputImage, 0, NULL, NULL);
#else // READ_ALIGNED jj READ4
size_t buffer_origin[3] ¼ {0,0,0};

size_t host_origin[3] ¼ {0,0,0};

size_t region[3] ¼ {deviceWidth*sizeof(float),
imageHeight, 1};

clEnqueueWriteBufferRect(queue, d_inputImage, CL_TRUE,

buffer_origin, host_origin, region,

deviceWidth*sizeof(float), 0, imageWidth*sizeof(float), 0,

inputImage, 0, NULL, NULL);

#endif

// Write the filter to the device

clEnqueueWriteBuffer(queue, d_filter, CL_TRUE, 0,
49*sizeof(float), filter, 0, NULL, NULL);

// Read in the program from file

char* source ¼ readSource("convolution.cl");

// Create the program

cl_program program;

// Create and compile the program

program ¼ clCreateProgramWithSource(context, 1,

(const char**)&source, NULL, NULL);

cl_int build_status;

build_status ¼ clBuildProgram(program, 1, &device, NULL, NULL,

NULL);

// Create the kernel

cl_kernel kernel;

#if defined NON_OPTIMIZED jj defined READ_ALIGNED

// Only the host-side code differs for the aligned reads

kernel ¼ clCreateKernel(program, "convolution", NULL);
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#else // READ4

kernel ¼ clCreateKernel(program, "convolution_read4", NULL);

#endif

// Selected workgroup size is 16x16

int wgWidth ¼ WGX;

int wgHeight ¼ WGY;

// When computing the total number of work-items, the

// padding work-items do not need to be considered

int totalWorkItemsX ¼ roundUp(imageWidth-paddingPixels,
wgWidth);

int totalWorkItemsY ¼ roundUp(imageHeight-paddingPixels,

wgHeight);

// Size of a workgroup

size_t localSize[2] ¼ {wgWidth, wgHeight};

// Size of the NDRange

size_t globalSize[2] ¼ {totalWorkItemsX, totalWorkItemsY};

// The amount of local data that is cached is the size of the

// workgroups plus the padding pixels

#if defined NON_OPTIMIZED jj defined READ_ALIGNED

int localWidth ¼ localSize[0] + paddingPixels;

#else // READ4

// Round the local width up to 4 for the read4 kernel

int localWidth ¼ roundUp(localSize[0]+paddingPixels, 4);

#endif

int localHeight ¼ localSize[1] + paddingPixels;

// Compute the size of local memory (needed for dynamic

// allocation)

size_t localMemSize ¼ (localWidth * localHeight *
sizeof(float));

// Set the kernel arguments

clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_inputImage);

clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_outputImage);

clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_filter);

clSetKernelArg(kernel, 3, sizeof(int), &deviceHeight);

clSetKernelArg(kernel, 4, sizeof(int), &deviceWidth);

clSetKernelArg(kernel, 5, sizeof(int), &filterWidth);

clSetKernelArg(kernel, 6, localMemSize, NULL);

clSetKernelArg(kernel, 7, sizeof(int), &localHeight);

clSetKernelArg(kernel, 8, sizeof(int), &localWidth);

// Execute the kernel

clEnqueueNDRangeKernel(queue, kernel, 2, NULL, globalSize,

localSize, 0, NULL, NULL);

// Wait for kernel to complete
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clFinish(queue);

// Read back the output image

#ifdef NON_OPTIMIZED

clEnqueueReadBuffer(queue, d_outputImage, CL_TRUE, 0,
deviceDataSize, outputImage, 0, NULL, NULL);
#else // READ_ALIGNED jj READ4
// Begin reading output from (3,3) on the device

// (for 7x7 filter with radius 3)

buffer_origin[0] ¼ 3*sizeof(float);

buffer_origin[1] ¼ 3;

buffer_origin[2] ¼ 0;

// Read data into (3,3) on the host

host_origin[0] ¼ 3*sizeof(float);

host_origin[1] ¼ 3;

host_origin[2] ¼ 0;

// Region is image size minus padding pixels

region[0] ¼ (imageWidth-paddingPixels)*sizeof(float);

region[1] ¼ (imageHeight-paddingPixels);

region[2] ¼ 1;
// Perform the read

clEnqueueReadBufferRect(queue, d_outputImage, CL_TRUE,

buffer_origin, host_origin, region,

deviceWidth*sizeof(float), 0, imageWidth*sizeof(float), 0,

outputImage, 0, NULL, NULL);

#endif

// Homegrown function to write the image to file

storeImage(outputImage, "output.bmp", imageHeight,
imageWidth);

// Free OpenCL objects

clReleaseMemObject(d_inputImage);

clReleaseMemObject(d_outputImage);

clReleaseMemObject(d_filter);

clReleaseKernel(kernel);

clReleaseProgram(program);

clReleaseCommandQueue(queue);

clReleaseContext(context);

return 0;

}

Kernel Code
__kernel

void convolution(__global float* imageIn,
__global float* imageOut,
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__constant float* filter,

int rows,

int cols,

int filterWidth,

__local float* localImage,

int localHeight,

int localWidth) {

// Determine the amount of padding for this filter

int filterRadius ¼ (filterWidth/2);

int padding ¼ filterRadius * 2;

// Determine the size of the workgroup output region

int groupStartCol ¼ get_group_id(0)*get_local_size(0);

int groupStartRow ¼ get_group_id(1)*get_local_size(1);

// Determine the local ID of each work-item

int localCol ¼ get_local_id(0);

int localRow ¼ get_local_id(1);

// Determine the global ID of each work-item. work-items

// representing the output region will have a unique global

// ID

int globalCol ¼ groupStartCol + localCol;

int globalRow ¼ groupStartRow + localRow;

// Cache the data to local memory

// Step down rows

for(int i ¼ localRow; i < localHeight; i +¼
get_local_size(1)) {

int curRow ¼ groupStartRow+i;

// Step across columns

for(int j ¼ localCol; j < localWidth; j +¼

get_local_size(0)) {

int curCol ¼ groupStartCol+j;

// Perform the read if it is in bounds

if(curRow < rows && curCol < cols) {

localImage[i*localWidth + j] ¼
imageIn[curRow*cols+curCol];

}

}

}

barrier(CLK_LOCAL_MEM_FENCE);

// Perform the convolution

if(globalRow < rows-padding && globalCol < cols-padding) {

// Each work-item will filter around its start location
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//(starting from the filter radius left and up)

float sum ¼ 0.0f;

int filterIdx ¼ 0;

// Not unrolled

for(int i ¼ localRow; i < localRow+filterWidth; i++) {

int offset ¼ i*localWidth;

for(int j ¼ localCol; j < localCol+filterWidth; j++){
sum +¼ localImage[offset+j] *

filter[filterIdx++];

}

}

/*

// Inner loop unrolled

for(int i ¼ localRow; i < localRow+filterWidth; i++) {

int offset ¼ i*localWidth+localCol;

sum +¼ localImage[offset++] * filter[filterIdx++];

sum +¼ localImage[offset++] * filter[filterIdx++];

sum +¼ localImage[offset++] * filter[filterIdx++];

sum +¼ localImage[offset++] * filter[filterIdx++];

sum +¼ localImage[offset++] * filter[filterIdx++];

sum +¼ localImage[offset++] * filter[filterIdx++];

sum +¼ localImage[offset++] * filter[filterIdx++];

}

*/

// Write the data out

imageOut[(globalRow+filterRadius)*cols +

(globalCol+filterRadius)] ¼ sum;

}

return;

}

__kernel

void convolution_read4(__global float4* imageIn,

__global float* imageOut,

__constant float* filter,

int rows,

int cols,

int filterWidth,

__local float* localImage,

int localHeight,

int localWidth) {

// Vector pointer that will be used to cache data

// scalar memory

__local float4* localImage4;

// Determine the amount of padding for this filter

int filterRadius ¼ (filterWidth/2);

int padding ¼ filterRadius * 2;



179Code listings
// Determine where each workgroup begins reading

int groupStartCol ¼ get_group_id(0)*get_local_size(0)/4;

int groupStartRow ¼ get_group_id(1)*get_local_size(1);

// Flatten the localIds 0-255

int localId ¼ get_local_id(1)*get_local_size(0) +

get_local_id(0);

// There will be localWidth/4 work-items reading per row

int localRow ¼ (localId / (localWidth/4));

// Each work-item is reading 4 elements apart

int localCol ¼ (localId % (localWidth/4));

// Determine the row and column offset in global memory

// assuming each element reads 4 floats

int globalRow ¼ groupStartRow + localRow;

int globalCol ¼ groupStartCol + localCol;

// Set the vector pointer to the correct scalar location

// in local memory

localImage4 ¼ (__local float4*)

&localImage[localRow*localWidth+localCol*4];

// Perform all of the reads with a single load

if(globalRow < rows && globalCol < cols/4 &&

localRow < localHeight) {

localImage4[0] ¼ imageIn[globalRow*cols/4+globalCol];

}

barrier(CLK_LOCAL_MEM_FENCE);

// Reassign local IDs based on each work-item processing

// one output element

localCol ¼ get_local_id(0);

localRow ¼ get_local_id(1);

// Reassign global IDs for unique output locations

globalCol ¼ get_group_id(0)*get_local_size(0) + localCol;

globalRow ¼ get_group_id(1)*get_local_size(1) + localRow;

// Perform the convolution

if(globalRow < rows-padding && globalCol < cols-padding) {

// Each work-item will filter around its start location

// (starting from half the filter size left and up)

float sum ¼ 0.0f;

int filterIdx ¼ 0;

// Not unrolled

for(int i ¼ localRow; i < localRow+filterWidth; i++) {
int offset ¼ i*localWidth;

for(int j ¼ localCol; j < localCol+filterWidth; j++){

sum +¼ localImage[offset+j] *

filter[filterIdx++];

}

}

/*
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// Inner loop unrolled

for(int i ¼ localRow; i < localRow+filterWidth; i++) {

int offset ¼ i*localWidth+localCol;

sum +¼ localImage[offset++] * filter[filterIdx++];

sum +¼ localImage[offset++] * filter[filterIdx++];

sum +¼ localImage[offset++] * filter[filterIdx++];

sum +¼ localImage[offset++] * filter[filterIdx++];

sum +¼ localImage[offset++] * filter[filterIdx++];

sum +¼ localImage[offset++] * filter[filterIdx++];

sum +¼ localImage[offset++] * filter[filterIdx++];

}

*/

/*

// Completely unrolled

int offset ¼ localRow*localWidth+localCol;

sum +¼ localImage[offset+0] * filter[filterIdx++];

sum +¼ localImage[offset+1] * filter[filterIdx++];

sum +¼ localImage[offset+2] * filter[filterIdx++];

sum +¼ localImage[offset+3] * filter[filterIdx++];

sum +¼ localImage[offset+4] * filter[filterIdx++];

sum +¼ localImage[offset+5] * filter[filterIdx++];

sum +¼ localImage[offset+6] * filter[filterIdx++];

offset +¼ localWidth;

sum +¼ localImage[offset+0] * filter[filterIdx++];

sum +¼ localImage[offset+1] * filter[filterIdx++];

sum +¼ localImage[offset+2] * filter[filterIdx++];

sum +¼ localImage[offset+3] * filter[filterIdx++];

sum +¼ localImage[offset+4] * filter[filterIdx++];

sum +¼ localImage[offset+5] * filter[filterIdx++];

sum +¼ localImage[offset+6] * filter[filterIdx++];

offset +¼ localWidth;

sum +¼ localImage[offset+0] * filter[filterIdx++];

sum +¼ localImage[offset+1] * filter[filterIdx++];

sum +¼ localImage[offset+2] * filter[filterIdx++];

sum +¼ localImage[offset+3] * filter[filterIdx++];

sum +¼ localImage[offset+4] * filter[filterIdx++];

sum +¼ localImage[offset+5] * filter[filterIdx++];

sum +¼ localImage[offset+6] * filter[filterIdx++];

offset +¼ localWidth;

sum +¼ localImage[offset+0] * filter[filterIdx++];

sum +¼ localImage[offset+1] * filter[filterIdx++];

sum +¼ localImage[offset+2] * filter[filterIdx++];

sum +¼ localImage[offset+3] * filter[filterIdx++];
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sum +¼ localImage[offset+4] * filter[filterIdx++];

sum +¼ localImage[offset+5] * filter[filterIdx++];

sum +¼ localImage[offset+6] * filter[filterIdx++];

offset +¼ localWidth;

sum +¼ localImage[offset+0] * filter[filterIdx++];

sum +¼ localImage[offset+1] * filter[filterIdx++];

sum +¼ localImage[offset+2] * filter[filterIdx++];

sum +¼ localImage[offset+3] * filter[filterIdx++];

sum +¼ localImage[offset+4] * filter[filterIdx++];

sum +¼ localImage[offset+5] * filter[filterIdx++];

sum +¼ localImage[offset+6] * filter[filterIdx++];

offset +¼ localWidth;

sum +¼ localImage[offset+0] * filter[filterIdx++];

sum +¼ localImage[offset+1] * filter[filterIdx++];

sum +¼ localImage[offset+2] * filter[filterIdx++];

sum +¼ localImage[offset+3] * filter[filterIdx++];

sum +¼ localImage[offset+4] * filter[filterIdx++];

sum +¼ localImage[offset+5] * filter[filterIdx++];

sum +¼ localImage[offset+6] * filter[filterIdx++];

offset +¼ localWidth;

sum +¼ localImage[offset+0] * filter[filterIdx++];

sum +¼ localImage[offset+1] * filter[filterIdx++];

sum +¼ localImage[offset+2] * filter[filterIdx++];

sum +¼ localImage[offset+3] * filter[filterIdx++];

sum +¼ localImage[offset+4] * filter[filterIdx++];

sum +¼ localImage[offset+5] * filter[filterIdx++];

sum +¼ localImage[offset+6] * filter[filterIdx++];

*/

// Write the data out

imageOut[(globalRow+filterRadius)*cols +

(globalCol+filterRadius)] ¼ sum;

}

return;

}

Reference
NVIDIACorporation. (2009).NVIDIAOpenCLProgrammingGuide for theCUDAArchitecture.

Santa Clara, CA: NVIDIA Corporation.



CHAPTER
OpenCL Case Study:
Histogram
 9

INTRODUCTION
This chapter discusses specific optimizations for a memory-bound kernel. The kernel

we choose for this chapter is an image histogram operation. The source data for this

operation is an 8-bit-per-pixel image with a target of counting into each of 256 32-bit

histogram bins.

The principle of the histogram algorithm is to perform the following operation

over each element of the image:

for( many input values ) {

histogram[ value ]++;

}

This algorithm performs many scattered read-modify-write accesses into a small his-

togram data structure. On a CPU, this application will use the cache, although with a

high rate of reuse of elements. On a GPU, these accesses will be resolved in global

memory, which will produce a worst-case scenario in terms of performance.

To address the high degree of contention of access in global memory, the algo-

rithm chosen parallelizes the histogram over a number of workgroups, each of which

summarizes its block of source data into a number of sub-histograms stored in on-

chip local memory. These local histograms are finally reduced into a single global

histogram, storing the result for the overall image. The overview of the algorithm is

shown in Figure 9.1.
CHOOSING THE NUMBER OF WORKGROUPS
When we begin to map an OpenCL kernel to target hardware, we may encounter

some constraints on the number of work-items and workgroups that follow from

the design of the algorithm, the target architecture, and the size of the various mem-

ory regions distributed throughout the target machine. Local memory is shared

within a workgroup, and a given group summarizes data into a sub-histogram stored

in a region within local memory. This allows many work-items to contribute to the

same local memory area, collaborating to reducememory overhead. Given that the fi-

nal stageof thehistogramcomputation isaglobal reductionwitha separate local region
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FIGURE 9.1

Computing the histogram involves first producing local histograms from the input image and

then exporting those to global memory and performing a global reduction operation to

produce the final histogram.
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per workgroup, creating too many workgroups would transfer more local data into

global memory, increasing memory usage and require a larger reduction operation.

To most efficiently use local memory and to reduce the overhead of global mem-

ory transactions, the number of workgroups should be as close as possible to the

number of compute units, or SIMD cores, in the device. The local memory resources

exist physically on a per-SIMD core basis in AMD and NVIDIA GPUs and are

intended in the OpenCL specification to support access at least as efficient as global

memory. It is important to make maximal use of the high bandwidth to such dedi-

cated memory regions and that we use as many local memory spaces as possible to

maximise parallel memory access. As just noted, we should avoid creating many

more workgroups than the actual number of SIMD cores because this wastes global

memory bandwidth.

Through the OpenCL API, we can query the number of compute units on the

device at runtime:

clGetDeviceInfo(. . ., CL_DEVICE_MAX_COMPUTE_UNITS, . . . );

Note that in this case, using the naive single work-item per input pixel is highly in-

efficient. This is due largely to the low number of pixels mapping to a single histo-

gram bin and hence generates a higher cost during the reduction phase. This

inefficiency is also caused by per-work-item and per-group execution costs becom-

ing significant due to high work-item counts.
CHOOSING THE OPTIMAL WORKGROUP SIZE
The optimal workgroup size for a given algorithm can be difficult to identify. At a

minimum, workgroup sizes should be selected to be an even multiple of the width of

the hardware scheduling units. Because targeted architectures are often vector based,

it is inefficient to use half vectors for scheduling OpenCL work-items. On AMD

GPUs, the hardware scheduling unit is a wavefront—a logical vector of 32 or 64



185Optimizing global memory data access patterns
work-items that runs on a hardware SIMD unit. OpenCL workgroups execute as sets

of wavefronts.

A single wavefront per compute unit is inadequate to fully utilize the machine.

The hardware schedules two wavefronts at a time interleaved through the ALUs of

the SIMD unit, and it schedules additional wavefronts to perform memory transac-

tions. An absolute minimum to satisfy the hardware and fill instruction slots on an

AMDGPU is then three wavefronts per compute unit, or 196 work-items on high-end

APU GPUs. However, to enable the GPU to perform efficient hiding of global mem-

ory latency in fetch-bound kernels, at least seven wavefronts are required per SIMD.

We cannot exceed the maximum number of work-items that the device supports

in a workgroup, which is 256 on current AMD GPUs. At a minimum, we need 64

work-items per group and at least three groups per compute unit. At a maximum,

we have 256 work-items per group, and the number of groups that fit on the compute

unit will be resource limited. There is little benefit to launching a very large number

of work-items. Once enough work-items to fill the machine and cover memory la-

tency have been dispatched, nothing is gained from scheduling additional work-

items, and there may be additional overhead incurred. Within this range, it is neces-

sary to fine-tune the implementation to find the optimal performance point.
OPTIMIZING GLOBAL MEMORY DATA ACCESS PATTERNS
A histogram is a highly memory-bound operation: Very few arithmetic operations

are needed per pixel of the input image. We cannot rely on the often extensive float-

ing point capabilities of OpenCL devices to attain high performance. Instead, we

must make as efficient use of the memory system as possible, optimizing memory

accesses when moving from one type of device to another.

For the histogram operation, the order of reads from global memory is order in-

dependent. This means that we can freely optimize the access pattern without con-

cerns about correctly ordering reads with respect to each other.

The memory subsystems of both AMDGPUs and CPUs are optimized to perform

128-bit read operations, matching the common four-component pixel size of four 32-

bit floats. On the GPU, single reads are inefficient because of the availability of vec-

tor hardware that can hold up to 64 work-items, so multiples of this 128-bit read al-

low the memory system to take full advantage of wide and high-speed data paths to

memory. The ideal read pattern is for all simultaneously executing work-items to

read adjacent 128-bit quantities, forming a 256-byte read burst across the 16

work-items executing in parallel on a given core and directly mapping to a GPU

memory channel.

The result is that we transform memory accesses as follows. Each work-item

reads unsigned integer quantities, packed into four-wide vectors (unit4), starting

at the global work-item index and continuing with a stride that is equal to the total

number of work-items to be read.
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An efficient access pattern for reading input data is shown in the following code

and in Figure 9.2:

uint gid ¼ get_global_id(0);

uint Stride ¼ get_global_size(0);

for( i¼0, idx ¼ gid; i < n4VectorsPerWorkItem; i++, idx +¼ Stride ) {
u

.

Loop
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uint4 temp ¼ Image[idx];

. . .
Although the similar code shown in Figure 9.3 is a less efficient implementation

when run on the GPU (in which each work-item reads serially), this implementation

is perfect for a CPU, in which the total number of work-items in the system should

not significantly exceed the number of cores.

uint gid¼ get_global_id(0);

for( i¼0, idx ¼ gid * n4VectorsPerWorkItem;
I < n4VectorsPerWorkItem;

i++, idx++) {

int4 temp ¼ Image[idx];

. .
0 1 2 3 ...
get_global_id(0)

get_global_size(0)

9.2

ient read pattern for the GPU in which work-items read consecutive addresses and

rough memory to find the next data item to read.

n4VectorsPerWorkItem

1
2 3

9.3

eads in which each work item reads a series of locations in a contiguous section of

y and the next work item starts some distance through memory are more efficient

CPU, in which temporal locality in a single work-item is more of a benefit than

ed reading between serially executed work-items.
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Serial coalesced trade-off: A graph of memory system throughput scalar and vector serial

and coalesced reads against the number of work-items on the AMD Radeon HD�6970 GPU.

Note that when the number of work-items becomes very large as the data set size is fixed, the

two read styles converge to be the same coalesced read; hence, they have identical

performance. The graph assumes a data set size of 256 MB.
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We can see how the difference between these trades off as a function of the number of

work-items in Figure 9.4. A clear performance benefit initially, but as we increase the

number of work-items performing coalesced reads, performance declines because

too many work-items are active in the system. Serial performance is very poor when

strides are long, but as strides reduce, cache line reuse and coalescing benefits in the

memory system improve performance until the two types of reads converge when

they become identical with one data element read per work-item.
USING ATOMICS TO PERFORM LOCAL HISTOGRAM
When we execute this application on a CPU, we execute a workgroup with a single

thread and hence have no read-after-write hazards. When targeting an AMD Radeon�

GPU, we can use a wide SIMD vector and provide for fine-grained threading. The

combination of these features means that many work-items execute in parallel (16

work-items on high-end GPUs), and we can potentially interleave instruction execu-

tion frommultiple executing wavefronts. As a result, we cannot guarantee the ordering

of read-after-write dependencies on our local histogram bins.

To address this issue, we could reproduce the histogram bins multiple times, but

this would require a copy of each bin for eachwork-item in the group (we do not know

what order they will execute in). The resulting memory pressure would be too great.
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The alternative solution is to use hardware atomics. The hardware atomics on the

AMD Radeon HD6970 architecture are associated with each lane of the local data

storage and can improve performance significantly. We can rely on these atomics

with little concern about the overhead for our algorithm.

Performing the histogram operation in a local memory buffer becomes as simple

as the following code. Note that because we have performed a 128-bit read of 16

pixels simultaneously (where each pixel is really a single 8-bit channel), we repeat

this code in the core loop for each channel and use masks and shifts to extract this

data. Performing the mask and shift operations explicitly on a uint4 vector maps

efficiently to the underlying hardware architecture.

for( int i¼0, idx¼gid; i<n4VectorsPerWorkItem; i++, idx +¼ Stride ) {
uint4 temp ¼ Image[idx];

uint4 temp2 ¼ (temp & mask);

(void) atomic_inc( subhists + temp2.x );

(void) atomic_inc( subhists + temp2.y );

(void) atomic_inc( subhists + temp2.z );

(void) atomic_inc( subhists + temp2.w );

temp ¼ temp >> 8;

temp2 ¼ (temp & mask);

. . .
OPTIMIZING LOCAL MEMORY ACCESS
Directly targeting histogram bins in global memory is a recipe for a nonscalable al-

gorithm (i.e., the performance will not scale when we introduce additional hardware

resources to the execution). There is a severe bottleneck when performing binning

operations, whether using atomic functions or multiple bins per group, through

the DRAM interface that will limit performance due to a significant increase in

the total amount of memory traffic.

To avoid this issue, we choose to use separate small histograms for each work-

group using local memory buffers. These local memories are very high bandwidth,

whether we are running on a CPU or a GPU. Using small histograms guarantees

cache independence on a CPU and effective use of the dedicated high-bandwidth

scratchpad memories on many GPUs. Although we are able to map to the scratchpad

memory on a GPU, given that we are using wide SIMD vectors to access this mem-

ory, care must be taken to access this local data efficiently. Taking the local memory

structure on the AMD Radeon 6970 GPU as an example (i.e., local data shares

(LDS)), we have an SRAM array with 32 banks addressed using bits 2–7 of the ad-

dress. Bank conflicts occur if we have multiple work-items from a 16-wide parallel

SIMD issue attempt to read or write the same LDS bank.

Because we are limiting ourselves to a small number of workgroups relative to

the amount of input data, we know that each work-item will process a significant

number of input pixels. We already know that this reduces the size of the final
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reduction and concentrates work into local memory, localizing memory traffic and

hence improving performance. It also gives us a further advantage in that we can

afford to expand our local memory buffer slightly, such that instead of a single his-

togram for the entire workgroup, we use a subset of histograms and perform a reduc-

tion at the end. Given the large number of pixels per work-item, the overhead of the

reduction stage should be negligible.

The benefit of using multiple histogram bins is apparent if we are careful with our

layout. Figure 9.5 shows how we can reproduce the histogram multiple times to reduce

bank conflicts. TheAMDhardware has 32memory banks in LDS and a single set of his-

togrambins.Toattempt to increment thesamehistogrambin (guaranteed inasinglecolor

image) or sets of histogram bins that map to the same bank, sets of 16 work-items are

dispatched in a singleSIMDinstruction.Anycollisionswill cause theapplication to stall.

To avoid these stalls, we can reproduce the entire set of histogram bins such that

each work-item is guaranteed, whichever histogram bin it aims to use, to access the

same bank. In this way, we can guarantee that a single bankwill be used per work-item,

and no twowork-items will use the same bank. The cost is an increase in local memory

use per workgroup and the addition of a local reduction stage to the computation.

Figure 9.6 shows the impact of this trade-off when accessing a random data set,

where conflicts were few, so the overhead of the reduction is more noticeable. A uni-

form data set created a significant number of bank conflicts when using a single set of

histogram bins and so benefits immediately when increasing the number of copies.
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With a single set of histogram bins and 16 hardware banks, every 16th bin will map to the

same hardware bank, causing conflicts if for any two work-items in a single SIMD vector

address two histogram bins a and b, where a%16¼ b%16. By reproducing the histogram for

each work item, we alleviate these collisions.



FIGURE 9.6

Trading off the number of banks. As we increase the number of copies of the local histogram

in a given workgroup, we reduce the number of conflicts at the cost of introducing a local

reduction operation and, eventually, reducing concurrent execution in the system due to

resource constraints.
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Realistic data sets would lie between these two extremes. Note that the peak is found

at 16 banks, even though this evaluation is performed on the Radeon HD6970 device

with 32 banks in total. Only 16 work-items issue in a given SIMD vector, and atomic

operations are limited to 32-bit per SIMD lanes, so we can only use a maximum of 16

banks; the other 16 are unused.

We next modify the previous code to compute offsets based on the number of

copies of the local histogram we described previously:

#define NBANKS 16

uint offset ¼ (uint) lid % (uint) (NBANKS);

for( int i¼0, idx¼gid; i<n4VectorsPerWorkItem; i++, idx +¼ Stride ) {
uint4 temp ¼ Image[idx];

uint4 temp2 ¼ (temp & mask) * (uint4) NBANKS + offset;

(void) atomic_inc( subhists + temp2.x );

(void) atomic_inc( subhists + temp2.y );

(void) atomic_inc( subhists + temp2.z );

(void) atomic_inc( subhists + temp2.w );

. . .
LOCAL HISTOGRAM REDUCTION
Before we conclude the local histogram kernel discussion, we must reduce the data

across the copies we created and output this to global memory. We can mask out

work-items in the group higher numbered than the number of bins. We can
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alternatively iterate through bins (if there are more bins than work-items) and then,

for each bin histogram, copy the bins and output this to global memory.

barrier( CLK_LOCAL_MEM_FENCE );

for( int binIndex ¼ lid;
binIndex < NBINS;

binIndex +¼ get_local_size(0) ) {

uint bin ¼ 0;

for( int i¼0; i<NBANKS; i++ ) {

bin +¼ subhists[
(lid * NBANKS) + ((i + lid) % NBANKS) ];
}

globalHistogram[

(get_group_id(0) * NBINS) + binIndex ] ¼ bin;

}

Note that in the previous code, we modify the code to avoid bank conflicts within the

summation loop, as we otherwise guarantee NBANKS-way conflicts.
THE GLOBAL REDUCTION
The final step necessary in our histogram algorithm is to reduce the local bins.

Because we have carefully limited the number of workgroups, the work to perform

the global reduction is minor. Accordingly, we can avoid performing complicated

tree-based reductions and multipass algorithms. Instead, we enqueue a single sum-

mation kernel similar to the reduction used for the local histograms:

__kernel void reduceKernel(
__global uint * globalHistogram,

uint nSubHists ) {

uint gid ¼ get_global_id(0);

uint bin ¼ 0;

for( int i¼0; i < nSubHists; i++ )

bin +¼ globalHistogram [ (i * NBINS) + gid ];

globalHistogram [ gid ] ¼ bin;

}

FULL KERNEL CODE
__kernel __attribute__((reqd_work_group_size(NBINS,1,1)))

void histogramKernel(__global uint4 *Image,
__global uint *globalHistogram,

uint n4VectorsPerWorkItem){
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__local uint subhists[NBANKS * NBINS];

uint gid ¼ get_global_id(0);

uint lid ¼ get_local_id(0);

uint Stride ¼ get_global_size(0);

uint4 temp, temp2;

const uint shift ¼ (uint) NBITS;

const uint mask ¼ (uint) (NBINS-1);

uint offset ¼ (uint) lid % (uint) (NBANKS);

uint localItems ¼ NBANKS * NBINS;

uint localItemsPerWorkItem;

uint localMaxWorkItems;

// parallel LDS clear

// first, calculate work-items per data item,

// at least 1:

localMaxWorkItems ¼ min( 1, get_local_size(0) / localItems );

// but no more than we have items:

localMaxWorkItems ¼ max( 1, localMaxWorkItems / localItems );

// calculate threads total:

localMaxWorkItems ¼ localItems / localMaxWorkItems;

// but no more than LDS banks:

localMaxWorkItems ¼ min( get_local_size(0), localMaxWorkItems );

localItemsPerWorkItem ¼ localItems / localMaxWorkItems;

// now, clear LDS

__local uint *p ¼ (__local uint *) subhists;

if( lid < localMaxWorkItems ) {

for(i¼0, idx¼lid;
i<localItemsPerWorkItem;

i++, idx+¼localMaxWorkItems)

{

p[idx] ¼ 0;

}

}

barrier( CLK_LOCAL_MEM_FENCE );

// read & scatter phase

for( int i¼0, idx¼gid;

i<n4VectorsPerWorkItem;

i++, idx +¼ Stride ) {

temp ¼ Image[idx];

temp2 ¼ (temp & mask) * (uint4) NBANKS + offset;

(void) atomic_inc( subhists + temp2.x );

(void) atomic_inc( subhists + temp2.y );

(void) atomic_inc( subhists + temp2.z );
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(void) atomic_inc( subhists + temp2.w );

temp ¼ temp >> shift;

temp2 ¼ (temp & mask) * (uint4) NBANKS + offset;

(void) atomic_inc( subhists + temp2.x );

(void) atomic_inc( subhists + temp2.y );

(void) atomic_inc( subhists + temp2.z );

(void) atomic_inc( subhists + temp2.w );

temp ¼ temp >> shift;

temp2 ¼ (temp & mask) * (uint4) NBANKS + offset;

(void) atomic_inc( subhists + temp2.x );

(void) atomic_inc( subhists + temp2.y );

(void) atomic_inc( subhists + temp2.z );

(void) atomic_inc( subhists + temp2.w );

temp ¼ temp >> shift;

temp2 ¼ (temp & mask) * (uint4) NBANKS + offset;

(void) atomic_inc( subhists + temp2.x );

(void) atomic_inc( subhists + temp2.y );

(void) atomic_inc( subhists + temp2.z );

(void) atomic_inc( subhists + temp2.w );

}

barrier( CLK_LOCAL_MEM_FENCE );

// reduce __local banks to single histogram per work-group

for( int binIndex ¼ lid;

binIndex < NBINS;

binIndex +¼ get_local_size(0) ) {

uint bin ¼ 0;

for( int i¼0; i<NBANKS; i++ ) {
bin +¼ subhists[

(lid * NBANKS) + ((i + lid) % NBANKS) ];

}

globalHistogram[

(get_group_id(0) * NBINS) + binIndex ] ¼ bin;

}

}

__kernel void reduceKernel(

__global uint *globalHistogram,

uint nSubHists ) {

uint gid ¼ get_global_id(0);

uint bin ¼ 0;
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// Reduce work-group histograms into single histogram,

// one work-item for each bin.

for( int i¼0; i < nSubHists; i++ )

bin +¼ globalHistogram[ (i * NBINS) + gid ];

globalHistogram[ gid ] ¼ bin;

}

PERFORMANCE AND SUMMARY
Combining these activities, we can process a significant amount of input data with

very high performance. As measured on the AMDRadeon HD6970 architecture with

256 histogram bins, we can achieve the following:

1. 158 GB/s of input data performing only reads from global memory into registers

2. 140 GB/s of input data adding scattering into local histograms to 1

3. 139 GB/s adding the local reduction operation to 1 and 2

4. 128 GB/s adding the final global reduction, requiring enqueuing a second kernel,

to 1–3

In this chapter, we focused on the steps needed to optimize a memory-bound algo-

rithm. We discussed how to restructure reads and to use local memory to reduce ac-

cess overhead. We showed that we can improve application throughput when

performing a full histogram compared with reading data only. We also showed that

compared with reading data only, performing a full histogram need only marginally

reduce application throughput if implemented efficiently. Techniques to reduce local

memory bank conflicts and to improve global memory performance have wide ap-

plication in other algorithms.



CHAPTER
OpenCL Case Study:
Mixed Particle Simulation
 10
INTRODUCTION
This case study examines leveraging both the CPU and the GPU to implement a

mixed-sized particle simulation. Without a loss of generality, this example is re-

stricted to two dimensions to keep the kernels easily understandable. In addition,

this case study leverages OpenCL’s ability to share data between the CPU

and the GPU, which is beneficial on highly integrated devices such as AMD’s

APUs.

Implementing a simple simulation with uniform particle sizes on data-parallel

devices such as GPUs is relatively straightforward in OpenCL. Unfortunately, the

efficiency of the simulation decreases if the assumption breaks and the particle size

varies. The inefficiency results from the non-uniform granularity of the computa-

tion, especially for the collision detection, which is the most expensive part in a par-

ticle simulation. If there is a single large particle and many small particles, the

number of collisions detected on the large particle can be significantly more than

the number detected on the small particles. This difference can cause inefficiency

because most GPUs execute in SIMD manner over wide vectors. If a GPU SIMD

engine executes small particles for most SIMD lanes and in a single lane computes

the result for a large particle, the “large” lane runs for longer than the “small” lanes.

This means that the lanes computing collisions for small particles have to wait for the

large lane to finish. The work imbalance results in load imbalance and poor utiliza-

tion of the hardware as the vector width increases. However, the CPU has no problem

dealing with this variation in the granularity of computation. Accordingly, the ap-

proach we present here is to use the CPU for the collision of large particles, whereas

the GPU is used only for the collision of the uniformly sized small particles. This

chapter discusses how to realize the collaboration of the GPU and the CPU for a

mixed-sized particle simulation using OpenCL.
Heterogeneous Computing with OpenCL

© 2013 Advanced Micro Devices, Inc. Published by Elsevier Inc. All rights reserved.
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OVERVIEW OF THE COMPUTATION
Figure 10.1 is a screen shot from the simulation. You can see a large number of small

particles rendered in blue interacting with varying-sized particles rendered in green

and red. The green and the red colors represent dynamic and static particles, respec-

tively.The collisions between theparticles are classified into three types: small–small,

large–small, and large–large. The granularity of the small–small collision is uniform,

so theworkisdispatched to theGPU.However,asdiscussedpreviously, thegranularity

of large–small and large–large is varying, so the CPU is better suited for performing

these computations. If there are no large–small interactions, the two simulations are

completely disjoint, so the GPU simulates the small particles and the CPU simulates

the largeparticles.Themixed-sizedparticle simulation is implementedasanextension

of the two disjoint computations. The challenge is to efficiently realize the interaction

between the simulations because the physical properties of small particles live inGPU

memory, whereas those of large particles live in CPU memory. If the memories are

allocated without care, the data on the GPU has to be read back to the host every time

it calculates the interaction. By using OpenCL buffers that are shared between and

accessed by both the CPU and the GPU, the read back is no longer necessary.

Figure 10.2 shows an overview of the algorithm and the interaction between the

GPU manager thread and the CPU work thread, both of which run on the host CPU.

Thereare threemajorphasesofcomputationper iteration: (1)data structureconstruction

(2) computation of forces resulting from (3) collisions and force integration.
FIGURE 10.1

A screen shot from the mixed particle simulation. (Please see front cover of the book)



FIGURE 10.2

Overview of the computation for a single iteration.
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First, the GPU kernel data structure is built. Then the GPU and CPU are

synchronized to guarantee that the computation of the new data structure is com-

plete and we can share the updated data and physical properties of the small

particles with the CPU thread. After the first synchronization, threads start pro-

cessing collisions. The GPU performs the small–small collisions, and the CPU

performs the large–small and large–large collisions. To accelerate the collision

detection of small particles against large particles, the data structure built on

the GPU is also used on the CPU. The output from the collisions is a set of

forces on particles. Two force buffers are prepared for the small particles:

One is filled with small–small forces, resulting from the small–small collisions,

and the other is shared with the CPU, which fills the buffer with the forces

resulting from the large–small collisions. After the collisions are completed,

the GPU and CPU threads are synchronized again so that the CPU is known to have

finished writing to the force buffer, which is going to be used in the integration

stage. Then, the GPU integrates forces on small particles, and the CPU integrates

forces on large particles. Note that there are no write conflicts between the CPU and

the GPU for the shared buffer. The CPU only writes to the shared buffer during the

large–small collision phase. The buffer is only accessed by the GPU during the

integration phase, after the GPU and CPU synchronize.
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GPU IMPLEMENTATION
Buffer Creation
First, the buffers have to be created so that the runtime has the option of sharing data

between theGPU and the CPU.A shared buffer can be createdwith the CL_MEM_ALLOC_

HOST_PTR flag, which indicates the CPU will access the buffer. If the buffer is created

with this flag, the runtime must return a location in host memory where data can be

accessed between map and unmap function calls. We have the option of maintaining

the data in host memory permanently (although this is not a requirement).1 If this data

is located permanently in host memory, the map and unmap operations applied to

the buffer will introduce little execution overhead, requiring only synchronization

overhead. However, this benefit does not come for free on a discrete GPU. Because

the memory is stored in the CPU memory, whenever the GPU accesses the buffer the

request must utilize the PCI Express bus. This transfer can result in larger latency

compared with memory allocated on the GPU. On AMD’s Fusion APU architecture

andsimilarheterogeneousmultiprocessors-on-a-chipwhere theGPUand theCPUshare

memory,weavoid the overheadofusing thePCIExpressbus.Removing this bottleneck

leads to better performance. The following code shows an allocation of a shared buffer.

Note that we are passing the CL_MEM_ALLOC_HOST_PTR flag as an argument:

buffer ¼ clCreateBuffer(
1Note th

pointer

calls to
context,

CL_MEM_READ_WRITE j CL_MEM_ALLOC_HOST_PTR,
bufferSize,

0,

&status );
Although this buffer is created to be shared between the CPU and the GPU, we can-

not access the data from the buffer pointer because the memory space is not unified in

OpenCL. To access the data from the CPU, the buffer has to be mapped into the

host’s address space:

ptr ¼ clEnqueueMapBuffer(
commandQueue,

buffer,

false,

CL_MAP_READ j CL_MAP_WRITE,
0,

bufferSize,

0,

0,

0,

&status );
at CL_MEM_ALLOC_HOST_PTR guarantees that when map is called on the buffer, the passed

becomes the host pointer returned by map. Data is still only valid at the host pointer between

map and unmap.
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The clEnqueueMapBuffer call returns a pointer to the buffer data. If a buffer is cre-

ated without the flag being mapped, the data will be copied over from the device to

the host, and the map operation is expensive. However, the map is almost free when a

buffer is created using the flag and combined with appropriate runtime and hardware

support, the buffer then lives in the host memory.
Building the Acceleration Structure
For accelerating the collision detection of particles, we use a uniform grid (a grid

with a spatially invariant cell size) with a fixed capacity for each cell. Fast build

and query are properties of a uniform grid that make it well suited for collision de-

tection in a particle simulation, if the simulation does not have to extend to infinite

space. The uniform grid has two buffers: a counter buffer storing cell counters and an

index buffer storing particle indices or cell data. A work-item assigned to a particle

fetches the particle position from global memory to a register and converts the world

space position to a grid space coordinate. The work-item reads from the counter

buffer the number of particles stored in the cell and adds the particle index to the

index buffer. Care must be taken when accessing the counter because there can

be several particles that fall into the same cell. In that case, several work-items

try to read and write to the same counter. To guarantee the success of the memory

access, we use an atomic operation as shown here:

for( all particles ) {
idx ¼ convertToGridIdx( particle[i] );

count ¼ atomic_inc( grid_count[idx] );

grid[ calcAddr( idx, count ) ] ¼ I;

}

The code listed under Kernels for Simulation has some additional logic to handle

the boundary conditions and to prevent too many particles from being stored in a

single cell.
Computing Collisions
This step calculates the force on each particle from the colliding particles. The uni-

form grid is used to efficiently locate the colliding particles associated with each par-

ticle. The particle position is converted to a grid coordinate system, which is used to

calculate the address in memory of the grid cell. Because the size of each cell is de-

fined to be equal to the diameter of the particles, potential colliding particles are only

in the 32 grid cells (in three dimensions, 33) around the cell to which the particle be-

longs. Note that the granularity of the computation is uniform because the particles

we are calculating have a uniform diameter, so all work-items check nine cells with-

out any exceptions. A work-item iterates over the nine cells and reads the number of

particles and particle indices stored in each cell to calculate the force on the particle.

This force is a function of the colliding particle positions and velocities. After
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interparticle collision, each work-item checks for particle collisions with the bound-

ary. These forces are accumulated and then written out to a force buffer.

for( all particles ) {
force ¼ 0;

// compute particle interaction

for( neighborhood ) {

for( particles in grid cell[n] ) {
j ¼ getStoredParticleIdx();

force +¼ calcForce( particle[i], particle[j] );

}

}

// compute boundary interaction

force +¼ calcForce( particle[i], top );

force +¼ calcForce( particle[i], bottom );

force +¼ calcForce( particle[i], left );

force +¼ calcForce( particle[i], right );

forceOut[i] ¼ force;

}

Integration
After the forces are computed on the CPU and GPU, a kernel is used to update the

particles’ positions and velocities via a process called integration. The velocity is

computed as the sum of the forces resulting from the small–small particle interac-

tions and the forces resulting from the large–small particle interactions. The particle

position is updated based on the resulting particle velocity multiplied by the time

step, dt. Finally, the buffer used to share force data with the CPU is zeroed for

the next iteration. This kernel pseudo-code is fairly simple:

for( all particles ) {
vel[i] +¼ forceSmallSmall[i] + forceLargeSmall[i];

pos[i] +¼ vel[i]*dt;

// zero forces for the CPU side

forceBigParticles[i] ¼ 0;

}

CPU IMPLEMENTATION
The CPU implementation does not differ much from the GPU version, but it runs in

scalar rather than vector fashion. The collisions of particles are serialized so that we

do not have to worry about the granularity. The collision of a large particle with small

particles is performed using the uniform grid that was built on the GPU and shared

with the CPU. It first calculates the extent of the large particle in the grid space and

looks up all the cells in the extent. Figure 10.3 illustrates overlapping cells for a large

particle. As the reader can see from this figure, the large particle overlaps many cells,



FIGURE 10.3

Small and large particles as mapped to the uniform grid.
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whereas a small particle does not. If this code were to be executed on the GPU, it

would waste many cycles as SIMD lanes were masked out.
LOAD BALANCING
Although we have shown the flow of the simulation using two threads in Figure 10.2,

our implementation suffers from pool imbalance in terms of computation between

the workloads. This imbalance results in low utilization of CPU threads. Of course,

the degree of imbalance depends on the numbers of small and large particles present.

Looking at the CPU work thread, it is easy to see that the large–small and large–large

collisions are more expensive than the integration. Thus, the time between the first

and the second synchronization is the largest amount of time. On the other hand, the

most expensive part of the GPU execution is the small–small collision computation,

followed by the construction of the uniform grid. Although the GPU is a powerful

processor, the cost of building the uniform grid is not negligible. If the simulation

is executed as shown in Figure 10.2, a thread has to wait before the first synchroni-

zation and the other has to wait before the second synchronization, which we can see

more clearly in Figure 10.4A.

The computations can be reordered to improve load imbalance. Figure 10.2

shows the flow of a single iteration, but it is not necessary for grid creation to be

the first step if we assume that particles do not move between the end of the previous

iteration and the start of the current iteration. This is generally true unless a particle is

directly moved, likely through user interaction, which is relatively rare. From this

observation, grid creation can be moved to the end of the previous iteration. This

modification makes two big blocks for the GPU thread, but the CPU’s thread work-

load only involves the integration of particles (which is inexpensive). If we can move

some computation to the CPU thread from the first half to the second half, then this

should also ease load imbalance. Careful observation of the data flow of the pipeline

shows that the second synchronization is necessary only for the buffer containing



FIGURE 10.4

Load balancing.
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forces for the small particles that were filled by the CPU. As a result, the large–large

collision does not have to be performed during the first half given the removal of any

data dependencies with the next GPU computation. This means that the large–large

collision can be moved to the second half of the computation (as shown in

Figure 10.4B). In this way, we improve the load balance on the CPU threads, which

results in a reduction in total simulation time.
PERFORMANCE AND SUMMARY
Figure 10.1 is a screen shot from the mixed particle simulation with approximately

8200 small particles and 150 large particles running on an AMD A-series Fusion

APU, on which the CPU and GPU are integrated on-chip. The bar at the right of

the figure shows the computation times on two threads (one column per thread).

The full height of the column is equal to 1/60 of a second. The blue and green blocks

correspond to the time spent on the GPU and the CPU, respectively. Because there are

four iterations per time step, one iteration takes approximately 4ms in this simulation.

The first four blocks are for the first iterations. As can be seen, the threads synchronize

after the firstGPUcomputation. TheCPUwork thread iswaiting for theGPU thread to

finish, producing the gap between the first green block and the synchronization.
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Breakdown of the simulation times.
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If a buffer is created without the CL_MEM_ALLOC_HOST_PTR flag, the data has to be

copied when the buffer is mapped and unmapped. The effect of the map operation is

quantitatively compared between a simulation with a normal buffer and a simulation

with a shared buffer. Figure 10.5 is the breakdown of the times. Although the sim-

ulation itself is the same, one can see a clear difference between the two versions with

and without data sharing. The comparison shows a clear advantage of using a shared

buffer. However, notice the extra execution time for the GPU-side small–small col-

lision phase when using data sharing: This is due to the extra latency of accesses over

the shared memory interface.

In this chapter, we discussed an implementation of a particle simulation that han-

dles variably sized particles by leveraging the best features of both the CPU and the

GPU. In addition, by sharing memory between the CPU and the GPU on tightly in-

tegrated devices such as AMD’s Fusion APU architecture, the efficiency of the com-

putation improved by eliminating wasteful memory copies. Although this example is

designed to be simple to understand, the same technique can be applicable to more

complicated applications.
KERNEL FOR UNIFORM GRID CREATION
typedef struct

{

float4 m_max;

float4 m_min;

int4 m_nCells;

float m_gridScale;

u32 m_maxParticles;

}ConstBuffer;
__kernel

void GridConstructionKernel(

__global float4* gPosIn,
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__global int* gridG,

__global int* gridCounterG,

ConstBuffer cb )

{

int gIdx ¼ get_global_id(0);

if( gIdx >¼ cb.m_maxParticles ) {
return;

}

float4 iPos ¼ gPosIn[gIdx];

int4 gridCrd ¼ ugConvertToGridCrd(

iPos-cb.m_min, cb.m_gridScale );

if( gridCrd.x < 0 jj gridCrd.x >¼ cb.m_nCells.x

jj gridCrd.y < 0 jj gridCrd.y >¼ cb.m_nCells.y ) {

return;

}

int gridIdx ¼ ugGridCrdToGridIdx(

gridCrd,

cb.m_nCells.x,

cb.m_nCells.y,

cb.m_nCells.z );

int count ¼ atom_add(&gridCounterG[gridIdx], 1);

if( count < MAX_IDX_PER_GRID ) {

gridG[ gridIdx*MAX_IDX_PER_GRID + count ] ¼ gIdx;

}

}

KERNELS FOR SIMULATION
typedef struct

{

float4 m_g;

int m_numParticles;

float m_dt;

float m_scale;

float m_e;

int4 m_nCells;

float4 m_spaceMin;

float m_gridScale;

}ConstBuffer;

__kernel

void CollideGridKernel(

__global float4* posIn,
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__global float4* velIn,

__global int* grid,

__global int* gridCounter,

__global float4* forceOut,

ConstBuffer cb)

{

int gIdx ¼ get_global_id(0);

if(gIdx >¼ cb.m_numParticles ) {
return;

}

int4 nCells ¼ cb.m_nCells;

float4 spaceMin ¼ cb.m_spaceMin;

float gridScale ¼ cb.m_gridScale;

float dt ¼ cb.m_dt;

float e ¼ cb.m_e;

float4 f ¼ make_float4(0,0,0,0);

float4 x_i ¼ posIn[ gIdx ];

float4 v_i ¼ velIn[ gIdx ];

float sCoeff, dCoeff;

calcCoeffs(v_i.w, v_j.w, sCoeff, dCoeff);

int4 iGridCrd ¼ ugConvertToGridCrd( x_i-spaceMin, gridScale );

//1. collide particles

for(int i¼-1;i<¼1;i++) for(int j¼-1;j<¼1;j++) {

int4 gridCrd ¼ make_int4(
iGridCrd.x+i,

iGridCrd.y+j,

iGridCrd.z+k,

0);

if( gridCrd.x < 0 jj gridCrd.x >¼ nCells.x

jj gridCrd.y < 0 jj gridCrd.y >¼ nCells.y ) {

continue;

}

int gridIdx ¼ ugGridCrdToGridIdx(

gridCrd,

nCells.x,
nCells.y,

nCells.z );

int numElem ¼ gridCounter[ gridIdx ];

numElem ¼ min(numElem, MAX_IDX_PER_GRID);

for(int ie¼0; ie<numElem; ie++) {

int jIdx ¼ grid[ MAX_IDX_PER_GRID*gridIdx + ie ];
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if( jIdx ¼¼ gIdx ) {

continue;

}

float4 x_j ¼ posIn[jIdx];

float4 v_j ¼ velIn[jIdx];

f +¼ calcForce(

x_i,

x_j,

v_i,

v_j,

x_i.w,

x_j.w,

v_i.w,

v_j.w,

dt,

sCoeff,

dCoeff );
}

}

//2. collide with boundary

{

float sCoeff, dCoeff;

calcCoeffs(v_i.w, sCoeff, dCoeff);

float4 planes[4];

planes[0] ¼ make_float4(0,1,0,cb.m_scale);

planes[1] ¼ make_float4(-1,0,0,cb.m_scale);

planes[2] ¼ make_float4(1,0,0,cb.m_scale);

planes[3] ¼ make_float4(0,-1,0,cb.m_scale);

for(int j¼0; j<4; j++) {
float4 eqn ¼ planes[j];

float dist ¼ dot3w1( x_i, eqn );

f +¼ calcForceB(

x_i,

v_i,

x_i.w,

dist,

eqn,

dt,

sCoeff,

dCoeff );

}

}

forceOut[ gIdx ] ¼ f;

}
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__kernel

void IntegrateKernel(

__global float4* pos,

__global float4* vel,

__global float4* forceSS,

__global float4* forceLS,

ConstBuffer cb)

{

int gIdx ¼ get_global_id(0);

if( gIdx >¼ cb.m_numParticles ) {
return;

}

float4 x ¼ pos[gIdx];

float4 v ¼ vel[gIdx];

v +¼ (forceSS[gIdx]+ forceLS[gIdx])*cb.m_dt/v.w+cb.m_g;

x +¼ v*cb.m_dt;

pos[gIdx] ¼ make_float4(x.x, x.y, x.z, pos[gIdx].w);

vel[gIdx] ¼ make_float4(v.x, v.y, v.z, vel[gIdx].w);

forceLS[gIdx] ¼ make_float4(0,0,0,0);

}



CHAPTER
OpenCL Extensions
 11

INTRODUCTION
Similar to most programming languages and frameworks, the OpenCL specification

provides support for optional extensions. They represent a small but important set

of extended OpenCL capabilities. In this chapter, we discuss a number of these

extensions that can provide programmers an extended set of tools to implement

OpenCL applications.
OVERVIEW OF EXTENSION MECHANISM
OpenCL defines three types of extensions:

• KHR extension: Formally ratified by the OpenCL working group and comes with

a set of conformance tests that any application claiming to support the extension

must have passed. All KHR extensions are included as part of the OpenCL spec-

ification. In general, the goal is to keep the set of KHR extensions small to avoid

differences between implementations. Unfortunately, in some cases, a feature

must be an extension because it is not possible to support on all platforms.

DirectX interoperability is a good example because it is only relevant to OpenCL

implementations that support Microsoft Windows. A KHR extension is assigned

a unique string name of the form cl_khr_<name>, where name is the name given

to the particular extension.

• EXT extension: Developed by one or more of the OpenCL working group

members, but it has not been formally approved. There is no requirement

for an EXT feature to pass conformance tests. An EXT extension is often

used to provide early access to features being worked on by a subgroup of the

OpenCL working group, many of which will appear in the specification core

or as a KHR at a later date. An EXT extension is assigned a unique string name

of the form cl_ext_<name>, where name is the name given to the particular

extension.

• Vendor extension: Developed by a single vendor, most likely to expose some fea-

ture that is only accessible on the vendor’s hardware or platform (and thus would
Heterogeneous Computing with OpenCL
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not be of general application). An example is AMD’s Device Attribute

Query, which allows the developer to query additional information specific to

AMD devices. A Vendor extension is assigned a unique string name of the

form cl_<vendor>_<name>, where vendor is a given vendor-defined string

(e.g., amd is used by AMD), and name is the name given to the particular

extension.

Extensions can be associated with a given OpenCL platform and in those cases

are likely to be always enabled. For example, AMD’s Event Callback extension

(cl_amd_event_callback) is always enabled. Other extensions can be specific

to a particular set of devices (e.g., double precision support (cl_khr_fp64)).

In general, the application must query either the platform or a particular device to

determine what extensions are supported. Using the CþþWrapper API, the follow-

ing code demonstrates how to query both the platform and a device for the extension

information:

std::vector<cl::Platform> platforms;

cl::Platform::get(&platforms);

std::string platformExts ¼ platforms[0].getInfo<CL_PLATFORM_

EXTENSIONS>();

cl_context_properties cprops[] ¼ {
CL_CONTEXT_PLATFORM,(cl_context_properties)platforms[1](),0};

cl::Context context(devType, cprops);

std::vector<cl::Device> devices ¼ context.getInfo<CL_CONTEXT_

DEVICES>();

// Check that double is supported

std::string deviceExts ¼ devices[0].getInfo<CL_DEVICE_EXTENSIONS>

();

Of course, because we now have a value of type std::string for platform and de-

vice extensions, we can simply use the method find(). For example, to check that

a device supports 64-bit Atomics (defined with the name cl_khr_int64_base_

atomics), you could use the following code:

bool has64Atomics ¼ deviceExts.find(“cl_khr_int64”);

Because extensions are optional, there is no requirement for an implementation

to provide any externally defined symbols that the host application can call.

Accordingly, a host program cannot be statically linked against any extension

APIs. Instead, we can query the particular function’s address equipped with the

following API:

void * clGetExtensionFunctionAdddress(const char *funcname);

This returns the address of the extension function named by funcname. The pointer

returned can be cast to a function pointer of the expected type. Typedefs for each
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function pointer are declared for all extensions that add API entry points.

For example, the EXT extension Atomic Counters, exposed in the OpenCL extension

header cl_ext.h, provides low-latency atomic append/consume counters and de-

fines the following:

typedef CL_API_ENTRY cl_counter_ext (

CL_API_CALL * clCreateCounterEXT_fn)(
cl_context /* context */,

cl_counter_flags_amd /* flags */,

cl_uint /* value */,

cl_int * /*error_ret*/)CL_API_SUFFIX__VERSION_1_0;
Then, assuming that a particular OpenCL device supports the extension cl_ext_

atomic_counters, the following call will set clCreateCounterEXT_pfn to a non-

NULL value:

clCreateCounterEXT_fn clCreateCounterEXT_pfn ¼

clGetExtensionFunctionAdddress(“clCreateCounterEXT”);
In practice, it is often useful to use the following macro to enable quick allocation of

these functions:

#define __INIT_CL_EXT_FCN_PTR(name) \
if(!##name_fn) { \

##name_pfn ¼ (##name_fn) \

clGetExtensionFunctionAddress(#name); \
if(!##name_pfn) { \

} \

}

To get the same behavior as the function pointer definition previously, we can write

the following:

__INIT_CL_EXT_FCN_PTR(clCreateContextEXT)

The examples presented later in this chapter go a step further and use the OpenCL

Cþþ Wrapper API, which, if a particular extension is enabled, directly exposes a

class interface and implicitly takes care of allocating and querying function pointers

(as required).

Once an application has verified that a particular extension is supported by a de-

vice and has allocated any required API function addresses, it can then use any cor-

responding OpenCL C source extensions. However, these extension must also be

enabled, this time in the OpenCL C source itself. These features are controlled using

a pragma directive. The pragma is of the form

#pragma OPENCL EXTENSION extension_name : behavior

where extension_name is the corresponding name of the extension being enabled or

disabled, such as cl_khr_int64, and behavior can be either enable or disable. The

impact of enabling or disabling an extension follows from the position in the source
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code of the last seen pragma for a given extension. For example, to enable 64-bit

atomics in an OpenCL C source program, the following code would do the job:

#pragma OPENCL EXTENSION cl_khr_int64 : enable

Images are the one exception to the rules described previously. To check if a device

supports this feature (which is optional), a separate device query is required:

bool hasImages ¼ devices[0].getInfo<CL_DEVICE_IMAGE_SUPPORT>;

If the result of this call is true, then images are supported by the device in question

and the OpenCL C source is not required to explicitly enable this feature.

There are many KHR, EXT, and vendor extensions—too many to discuss in de-

tail in this chapter. The remainder of this chapter discusses two important extensions

in wide use today:

• Device fission—the ability for some devices to be divided into smaller

subdevices

• Double precision—the ability for some devices to support double as well as float

data types
DEVICE FISSION
The EXT extension Device Fission (Bellows et al., 2010) provides an interface for

subdividing an OpenCL device into multiple subdevices. As an example, consider an

AMD six-core Istanbul x86 CPU shown symbolically in Figure 11.1A. We view all

six cores as a single OpenCL device by default, as shown in Figure 11.1B. Using

Device Fission, the six cores can be subdivided into six OpenCL devices as shown

in Figure 11.1C, each capable of supporting one or more command queues. Because

these command queues are asynchronous and run in their own threads, it is possible

to use Device Fission to build a portable and powerful threading application based on

task parallelism. To date, Device Fission is supported only on CPU-like devices, but

in the future this functionality will spread across all devices in the platform, including

GPUs. Next, we motivate and describe the basic use of Device Fission through an

example.

An interesting application of Device Fission is to use it to build and study con-

current runtimes, similar to Microsoft’s Concurrent Runtime (ConcRT) (Microsoft,

2010) and Intel’s Threading Building Blocks (TBB) (Intel, 2011). We present a case

study of building a simple Cþþ class that supports a parallel for construct that dis-
tributes work across a set of devices created using Device Fission. Although this ex-

ample has little in common with the kind of production functionality provided by

runtimes such as ConcRT and TBB, it provides enough to show that with only a small

amount of effort we can build portable, scalable, parallel applications that go beyond

basic data-parallel computations. For this example, the goal is to implement a simple

class Parallel that provides a parallelFor method to distribute work across x86
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cores, each having a corresponding OpenCL device generated by Device Fission.

The class Parallel has the following public interface:

class Parallel

{

public:
Parallel();

static unsigned int atomicAdd(

unsigned int inc,

volatile unsigned int *dest);

bool parallelFor(int range, std::function<void (int i)> f);

};

We demonstrate its use with a simple application that counts the number of prime

numbers in an input array of randomly generated integers. The implementation uses

the OpenCL Cþþ Wrapper API (Gaster, 2010). To enable Device Fission, we sim-

ply need to define USE_CL_DEVICE_FISSION and include cl.hpp:
1

#define USE_CL_DEVICE_FISSION 1

#include <CL/cl.hpp>

As described previously, we encapsulate the parallel features of our simple runtime in

the class Parallel. All OpenCL state for the program is held in the private part of this

class definition. The default constructor initializesOpenCL and divides theCPUdevice

into single core subdevices. As is standard with all OpenCL initialization, we need to

first query a platform, then create a context (in this case, using CL_DEVICE_TYPE_CPU),

and finally inspect the list of devices (as shown in Figure 11.1B, this will always be

presented as a single element):

std::vector<cl::Platform> platforms;

cl::Platform::get(&platforms);

cl_context_properties properties[] ¼
{

CL_CONTEXT_PLATFORM,

(cl_context_properties)(platforms[1])(),

0

};

context_ ¼ cl::Context(CL_DEVICE_TYPE_CPU, properties);

std::vector<cl::Device> devices ¼
context_.getInfo<CL_CONTEXT_DEVICES>();

Before we can use the Device Fission extension, the program must check that it is an

exported extension for the device:
1We also enable Cþþ exceptions for OpenCL as shown in the full program source, given in Listing

11.1.



214 CHAPTER 11 OpenCL extensions
if (devices[0].getInfo<CL_DEVICE_EXTENSIONS>().find(

"cl_ext_device_fission") ¼¼ std::string::npos) {

std::cout << "Required that device support “
<< “cl_ext_device_extension"

<< std::endl;

exit(�1);

}

Given an OpenCL cl::Device, in this case devices[0], the method createSubDe-

vices creates subdevices,

cl_int createSubDevices(
const cl_device_partition_property_ext * properties,

VECTOR_CLASS<Device>* devices)
which, given a list of partition properties (as defined in Table 11.1), creates a set of

subdevices, returned in the parameter devices.

The following code then creates the subdevices, using the partition CL_DEVICE_

PARTITION_EQUALLY_EXT to equally subdivide (in this case), producing a one-to-one

mapping between subdevice and core:



FIGURE 11.1

CPU as seen by OpenCL with and without device fission. (A) Phenom II 6 core. (B) Phenom II

6 core represented as a single OpenCL device for all cores. (C) Phenom II 6 core represented

as an OpenCL device for each core.



Table 11.1 Subdevice Partition Properties

cl_device_partition
_property_ext Description

CL_DEVICE_PARTITION_
EQUALLY_EXT

Split the aggregate device into as many smaller devices as
can be created, each containing N compute units. The
value N is passed as the value accompanying this
property. If N does not divide evenly into
CL_DEVICE_MAX_COMPUTE_UNITS, then the remaining
compute units are not used.

CL_DEVICE_PARTITION_
BY_COUNTS_EXT

This property is followed by a
CL_PARTITION_BY_COUNTS_LIST_END_EXT
terminated list of compute unit counts. For each non-zero
countM in the list, a subdevice is created withM compute
units in it. CL_PARTITION_BY_COUNTS_LIST_END_EXT
is defined to be 0.

CL_DEVICE_PARTITION_
BY_NAMES_EXT

This property is followed by a list of compute unit names.
Each list starts with a
CL_PARTITION_BY_NAMES_LIST_END_EXT terminated
list of compute unit names. Compute unit names are
integers that count up from zero to the number of compute
units less 1. CL_PARTITION_BY_NAMES_LIST_END_EXT
is defined to be�1. Only one subdevice may be created at
a time with this selector. An individual compute unit name
may not appear more than once in the subdevice
description.

CL_DEVICE_PARTITION_
BY_AFFINITY_
DOMAIN_EXT

Split the device into smaller aggregate devices containing
one or more compute units that all share part of a cache
hierarchy. The value accompanying this property may be
drawn from the following CL_AFFINITY_DOMAIN list:
CL_AFFINITY_DOMAIN_NUMA_EXT—Split the device into
subdevices composed of compute units that share a NUMA
band.
CL_AFFINITY_DOMAIN_L4_CACHE_EXT—Split the
device into subdevices composed of compute units that
share a level 4 data cache.
CL_AFFINITY_DOMAIN_L3_CACHE_EXT—Split the
device into subdevices composed of compute units that
share a level 3 data cache.
CL_AFFINITY_DOMAIN_L2_CACHE_EXT—Split the
device into subdevices composed of compute units that
share a level 2 data cache.
CL_AFFINITY_DOMAIN_L1_CACHE_EXT—Split the
device into subdevices composed of compute units that
share a level 1 data cache.
CL_AFFINITY_DOMAIN_NEXT_FISSIONABLE_EXT—
Split the device along the next fissionable
CL_AFFINITY_DOMAIN. The implementation shall find the
first level along which the device or subdevice may be
further subdivided in the order NUMA, L4, L3, L2, L1, and
fission the device into subdevices composed of compute
units that share memory subsystems at this level. The user
may determine what happened by calling
clGetDeviceInfo
(CL_DEVICE_PARTITION_STYLE_EXT) on the
subdevices.
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cl_device_partition_property_ext subDeviceProperties[] ¼
{

CL_DEVICE_PARTITION_EQUALLY_EXT,

1,

CL_PROPERTIES_LIST_END_EXT,

0

};

devices[0].createSubDevices(subDeviceProperties, &subDevices_);

if (subDevices_.size() <¼ 0) {

std::cout << "Failed to allocate sub-devices" << std::endl;

exit(-1);

}

The following code concludes the default constructor definition by iterating through

the list of subdevices, creating a command queue for each one:

for (auto i ¼ subDevices_.begin(); i !¼ subDevices_.end(); i++) {
queues_.push_back(cl::CommandQueue(context_, *i));

}

Figure 11.2 shows each CPU core paired with its corresponding command queue. It

is important to note that commands submitted via each queue run asynchronously

and concurrently with each other.

The implementation for atomicAdd is straightforward and is provided later. Here,

we focus on the definition of parallelFor, which takes two arguments. The first

argument represents the bounds of the iteration space, and the second argument is

a function object that will be applied to each index across this space. This second

argument is a native Cþþ function object,2 but OpenCL clEnqueueNDRangeKernel

operations are valid only for OpenCL C kernels, and so we need another approach to

support native Cþþ functions. Fortunately, OpenCL has just such a function, clEn-

queueNativeKernel, which can enqueue a C function. With some careful marshal-

ing, this can also bemade to work for a Cþþ function. Native kernels were described

in Chapter 5.

Using clEnqeueNativeKernel, the definition of parallelFor is straightforward:3

bool parallelFor(int range, std::function<void (int i)> f)

{

2The ter

and not
3Note th

API), as
std::vector<cl::Event> events;

size_t args[2];

args[0] ¼ reinterpret_cast<size_t>(&f);
m native is used to imply that the function in question has been compiled by the host compiler

the OpenCL C compiler.

at we use the OpenCL CþþWrapper API (rather than the clEnqueueNativeKernel from the C

described previously.



FIGURE 11.2

OpenCL subdevices with associated command queues.
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int index ¼ 0;

for (int x ¼ 0; x < range; x++) {

int numQueues ¼
range - x > queues_.size() ? queues_.size() : range - x;
cl::Event event;

while(numQueues > 0) {
args[1] ¼ static_cast<size_t>(index++);

queues_[numQueues-1].enqueueNativeKernel(

funcWrapper,

std::make_pair(

static_cast<void *>(args),

sizeof(size_t)*2),

NULL,

NULL,

NULL,

&event);

events.push_back(event);

numQueues–;

x++;
}

cl::Event::waitForEvents(events);

}

return true;

}
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The first part of the function sets up the argument, which in this case is the actual func-

tionwewant to run. This is required because it is aCþþ function object (often called a

functor), and OpenCL is expecting a C function. Thus, we provide a wrapper function

called funcWrapper that takes as an argument a pointer to the functor. The wrapper

function “unboxes” it and calls the function object when executed. The main body

of the function is the loop executing the functor for the 0 . . . range, with the inner loop
mapping some subset of this to the number of actual subdevices. Note that these are all

submitted asynchronously, and each call returns an event that we wait on at the end of

each set of submissions. Amore optimized version might wait until a large number of

submissions have happened and control a finer grain of control using queue.flush()

and so on. We leave this as an exercise for the reader.

Finally, we put this all together in Listing 11.1, which shows the complete

implementation of our primes checking example, including themain function.One in-

terestingand important aspect of this example is that noOpenCLCdevice code is used,

and it is simply using the OpenCL runtime as a portable threading library.
Listing 11.1
// Enable OpenCL C++ exceptions
#define __CL_ENABLE_EXCEPTIONS

// Enable Device Fission
#define USE_CL_DEVICE_FISSION 1

#include <CL/cl.hpp>

#include <cstring>
#include <cstdlib>
#include <cassert>
#include <cmath>
#include <iostream>
#include <fstream>
#include <vector>

#include <functional>
#include <memory>

class Parallel
{
private:
cl::Context context_;
std::vector<cl::Device> subDevices_;
cl::CommandQueue queue_;
std::vector<cl::CommandQueue> queues_;

static void CL_CALLBACK funcWrapper(void * a)
{

size_t * args ¼ static_cast<size_t *>(a);

std::function<void (int i)> * f ¼
reinterpret_cast<std::function<void(inti)>*>(args[0]);
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(*f)(static_cast<int>(args[1]));

}

public:
Parallel()
{

std::vector<cl::Platform> platforms;
cl::Platform::get(&platforms);

cl_context_properties properties[] ¼
{

CL_CONTEXT_PLATFORM,
(cl_context_properties)(platforms[1])(),
0

};

context_ ¼ cl::Context(CL_DEVICE_TYPE_CPU, properties);

std::vector<cl::Device> devices ¼
context_.getInfo<CL_CONTEXT_DEVICES>();

// Check that device fission is supported
if (devices[0].getInfo<CL_DEVICE_EXTENSIONS>().find(

"cl_ext_device_fission") ¼¼ std::string::npos) {
std::cout << "Required that device support “

<< “cl_ext_device_extension"
<< std::endl;

exit(�1);
}

cl_device_partition_property_ext subDeviceProperties[] ¼
{

CL_DEVICE_PARTITION_EQUALLY_EXT,
1,
CL_PROPERTIES_LIST_END_EXT,
0

};

devices[0].createSubDevices(subDeviceProperties, &subDevices_);
if (subDevices_.size() <¼ 0) {

std::cout << "Failed to allocate sub-devices" << std::endl;
exit(�1);

}

for (auto i ¼ subDevices_.begin(); i !¼ subDevices_.end(); i++) {
queues_.push_back(cl::CommandQueue(context_, *i));
}

std::cout << "Number of sub-devices "
<< subDevices_.size()
<< std::endl;
}

static unsigned int atomicAdd(

unsigned int inc,
volatile unsigned int *dest)
{
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#if defined(_MSC_VER)
return (unsigned int)_InterlockedExchangeAdd(

(volatile long*)dest,
(long)inc);

#else
return __sync_fetch_and_add(dest, inc);

#endif

}

bool parallelFor(int range, std::function<void (int i)> f)
{

std::vector<cl::Event> events;

size_t args[2];

args[0] ¼ reinterpret_cast<size_t>(&f);

int index ¼ 0;
for (int x ¼ 0; x < range; x++) {

int numQueues ¼
range-x>queues_.size()?queues_.size():range-x;

cl::Event event;
while(numQueues > 0) {

args[1] ¼ static_cast<size_t>(index++);

queues_[numQueues-1].enqueueNativeKernel(
funcWrapper,
std::make_pair(

static_cast<void *>(args),
sizeof(size_t)*2),

NULL,
NULL,
NULL,
&event);

events.push_back(event);

numQueues�;
x++;

}

cl::Event::waitForEvents(events);

}

return true;

}

};

const unsigned int numNumbers ¼ 1024;
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int
main(int argc, char** argv)
{

volatile unsigned int numPrimes ¼ 0;
int * numbers ¼ new int[numNumbers];
::srand(2009);

// Random initialize
for (size_t i ¼ 0; i < numNumbers; ++i) {

numbers[i] ¼ ::rand();
}

try {
Parallel parallel;

parallel.parallelFor(numNumbers, [numbers, &numPrimes]
(int x) {

auto isPrime ¼ [] (unsigned int n) -> bool {
if (n ¼¼ 1 jj n ¼¼ 2) {

return true;
}
if (n % 2 ¼¼ 0) {

return false;
}

for (unsigned int odd ¼ 3;
odd <¼ static_cast<unsigned int>(

sqrtf(static_cast<float>(n)));
odd +¼2) {

if (n % odd ¼¼ 0) {
return false;

}
}
return true;

};

if (isPrime(numbers[x])) {
Parallel::atomicAdd(1, &numPrimes);

}
});
std::cout << "Number of primes found ¼ " << numPrimes <<

std::endl;

}
catch (cl::Error err) {

std::cerr
<< "ERROR: "
<< err.what()
<< "("
<< err.err()
<< ")"
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<< std::endl;
return EXIT_FAILURE;
}
delete[] numbers;
return EXIT_SUCCESS;

}

DOUBLE PRECISION
Floating point formatswere created to allow programmers toworkwith very large and

very small non-integral data values. For many applications, single precision floating

point does not provide enough range for the targeted application. Many applications

(particularly in science and engineering) require part or all of a particular computation

touse double precision.OpenCLdoesnot require that a particular compute device sup-

port double precision. For critical applications in which double precision is required,

OpenCL provides the optional cl_khr_fp64 extension. This is enabled by including

the following directive before any double precision use in an OpenCL C program:

#pragma cl_khr_fp64 : enable

Once enabled, the double precision support provides access to the following data

types:
Type
 Description
Double
 Double precision floating point number
double2
 2-component double vector
double3
 3-component double vector
double4
 4-component double vector
double8
 8-component double vector
double16
 16-component double vector
The double type conforms to the IEEE 754 double precision storage format.

There is a one-to-one mapping with the corresponding single precision float

types. On an AMD CPU, when the OpenCL device is CL_DEVICE_TYPE_CPU, vector

types are mapped directly to SSE and AVX packed registers. In the case in which a

vector type is larger than the underlying hardware vector, the resulting implementa-

tion is expanded into multiples of the hardware width. All of the conversion rules

defined by the OpenCL specification for float types are also defined for doubles.

The built-in math functions provided for float have been extended to include
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appropriate versions that work on double, double2, double3, double4, double8, and

double16 as arguments and return values.

As a simple example, Listing 11.2 shows OpenCL C code to implement a block

matrix multiple using double precision. Note that the first line of the OpenCL source

file enables the extension.
Listing 11.2
#pragma OPENCL EXTENSION cl_khr_fp64 : enable

#include "matrixmul.h"

#define AS(i, j) As[(j) * BLOCK_SIZE + (i)]
#define BS(i, j) Bs[(j) * BLOCK_SIZE + (i)]

__kernel void
matrixMul(
__global double* C,
__global double* A,
__global double* B,
int wA,
int wB,
__local double* As,
__local double* Bs)

{
// Block index
int bx ¼ get_group_id(0);
int by ¼ get_group_id(1);

int tx ¼ get_local_id(0);
int ty ¼ get_local_id(1);

// Index of the first sub-matrix of A processed by the block
int aBegin ¼ wA * BLOCK_SIZE * by;

// Index of the last sub-matrix of A processed by the block
int aEnd ¼ aBegin + wA - 1;

// Step size used to iterate through the sub-matrices of A
int aStep ¼ BLOCK_SIZE;

// Index of the first sub-matrix of B processed by the block
int bBegin ¼ BLOCK_SIZE * bx;

// Step size used to iterate through the sub-matrices of B
int bStep ¼ BLOCK_SIZE * wB;

// Csub is used to store the element of the block sub-matrix
// that is computed by the thread
double Csub ¼ 0;

// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a ¼ aBegin, b ¼ bBegin;
a <¼ aEnd;



225Double precision
a +¼ aStep, b +¼ bStep) {

// Load the matrices from device memory
// to local memory; each work-item loads
// one element of each matrix
AS(ty, tx) ¼ A[a + wA * ty + tx];
BS(ty, tx) ¼ B[b + wB * ty + tx];

// Synchronize to make sure the matrices are loaded
barrier(CLK_LOCAL_MEM_FENCE);

// Multiply the two matrices together;
// each work-item computes one element
// of the block sub-matrix
for (int k ¼ 0; k < BLOCK_SIZE; ++k)
Csub +¼ AS(ty, k) * BS(k, tx);
// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
barrier(CLK_LOCAL_MEM_FENCE);
}
// Write the block sub-matrix to device memory;
// each work-item writes one element
int c ¼ wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wB * ty + tx] ¼ Csub;

}

ThehostOpenCLprogram,writtenusing theOpenCLCþþWrapperAPI, is given

inListing 11.3,with the shared header, matrixmul.h, given inListing 11.4. The exam-

ple is straightforward, but two points are worth discussing further. First, to avoid un-

expected runtime errors, the application must check that the device supports the

extension cl_khr_fp64, and this is achieved with the following code:

if (devices[0].getInfo<CL_DEVICE_EXTENSIONS>().find("cl_khr_fp64")

¼¼

std::string::npos) {

std::cout << "Required that device support cl_khr_fp64" << std::

endl;

exit(�1);

}

In this case, if the device does not support the extension, then the application simply

exits. A more robust solution might drop back to the host to perform the computation

if necessary. Second, this example uses the profiling API for command queues to

collect information on the time taken to execute the matrix multiply.
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Listing 11.3
#include <CL/cl.hpp> // C++ Wrapper API (no need to include cl.h)

#include <cstring>
#include <cstdlib>
#include <cassert>
#include <cmath>
#include <iostream>
#include <fstream>
#include <vector>
#include <matrixmul.h>

template <size_t X, size_t Y>
class Matrix
{
private:
cl_double data_[X * Y];

public:
template <typename Functor>
Matrix(Functor init) { init(data_, X, Y); }
Matrix() { ::memset(data, ’\0’, X * Y * sizeof(cl_double)); }

Matrix<X,Y> operator -¼ (const Matrix<X,Y>& rhs)
{

for (size_t i ¼ 0; i < (X * Y); ++i) {

data_[i] -¼ rhs.data_[i];
}
return *this;
}

Matrix<X,Y> operator - (const Matrix<X,Y>& rhs)
{

Matrix<X,Y> result ¼ *this;
return result -¼ rhs;
}

bool operator ¼¼ (const Matrix<X,Y>& rhs)
{

for (size_t i ¼ 0; i < (X * Y); ++i) {

if (data_[i] !¼ rhs.data_[i]) {

return false;
}

}
return true;
}

bool operator !¼ (const Matrix<X,Y>& rhs)
{

return !(*this ¼¼ rhs);

}
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bool compareL2fe(const Matrix<X,Y>& reference, cl_double
epsilon)
{

cl_double error ¼ 0.0f;
cl_double ref ¼ 0.0f;

for (size_t i ¼ 0; i < (X * Y); ++i) {

cl_double diff ¼ reference.data_[i] - data_[i];
error +¼ diff * diff;
ref +¼ reference.data_[i] * reference.data_[i];
}

cl_double normRef ¼::sqrt((double) ref);
if (::fabs((double) ref) < 1e-7f) {
return false;

}
cl_double normError ¼ ::sqrtf((double) error);
error ¼ normError / normRef;

return error < epsilon;

}

void printOn(std::ostream& out)
{

for (size_t y ¼ 0; y < Y; ++y) {

for (size_t x ¼ 0; x < X; ++x) {

out << data_[y * X + x] << " ";
}
out << "\n";
}

}

cl_double* data() { return data_; }
size_t size() const { return X * Y * sizeof(cl_double); }

};

static void
randomInit(cl_double* data, size_t width, size_t height)
{

for (size_t i ¼ 0; i < width*height; ++i) {

data[i] ¼ ::rand() / (double) RAND_MAX;
}
}

static void
nop(cl_double*, size_t, size_t)
{
}

static void
computeGold(

cl_double* C, const cl_double* A, const cl_double* B,
cl_uint hA, cl_uint wA, cl_uint wB)

{
for (cl_uint i ¼ 0; i < hA; ++i) {
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for (cl_uint j ¼ 0; j < wB; ++j) {

cl_double sum ¼ 0;
for (cl_uint k ¼ 0; k < wA; ++k) {

cl_double a ¼ A[i * wA + k];
cl_double b ¼ B[k * wB + j];
sum +¼ a * b;

}
C[i * wB + j] ¼ (cl_double)sum;
}

}

}

int
main(int argc, char** argv)
{

cl_device_type devType ¼ CL_DEVICE_TYPE_CPU;
cl_int err, err1, err2, err3;
::srand(2009);

Matrix<WA,HA> A(&randomInit);
Matrix<WB,HB> B(&randomInit);

// Initialize the OpenCL runtime.
std::vector<cl::Platform> platforms;
cl::Platform::get(&platforms);

cl_context_properties cprops[] ¼ {

CL_CONTEXT_PLATFORM, (cl_context_properties)platforms[1]
(), 0 };
cl::Context context(devType, cprops);
std::vector<cl::Device> devices ¼ context.getInfo<

CL_CONTEXT_DEVICES>();
if (devices.size() ¼¼ 0) {
std::cerr << "Device not available\n";
return EXIT_FAILURE;
}

// Check that double is supported
if (devices[0].getInfo<CL_DEVICE_EXTENSIONS>().find(

"cl_khr_ fp64") ¼¼

std::string::npos) {

std::cout << "Required that device support cl_khr_fp64"
<< std::endl;

exit(�1);

}

std::ifstream file("matrixmul_kernels.cl");
if (!file.is_open()) {
std::cerr << "We couldn’t load CL source code\n";
return EXIT_FAILURE;
}

std::string prog(
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std::istreambuf_iterator<char>(file),
(std::istreambuf_iterator<char>()));
cl::Program::Sources source(

1,
std::make_pair(prog.c_str(),prog.length()+1));
cl::Program program(context, source);

err ¼ program.build(devices, "�I.");
if (err !¼ CL_SUCCESS) {
std::string str;
str ¼ program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(devices
[0]);
std::cout << "Program Info: " << str;
exit(1);
}

cl::Kernel matrixMul(program, "matrixMul", &err);
if (err !¼ CL_SUCCESS) {
std::cerr << "Could not create kernel \"matmult\"\n";
return EXIT_FAILURE;
}

cl::Buffer in0(context, CL_MEM_USE_HOST_PTR, A.size(),
A.data(), &err1);

cl::Buffer in1(context, CL_MEM_USE_HOST_PTR, B.size(),
B.data(), &err2);

cl::Buffer out(context, CL_MEM_ALLOC_HOST_PTR,

WC * HC * sizeof(cl_double), NULL, &err3);
if (err1 !¼ CL_SUCCESS jj err2 !¼ CL_SUCCESS jj err3 !¼ CL_SUCCESS) {

std::cerr << "Could not create memory objects\n";
return EXIT_FAILURE;
}

err ¼ matrixMul.setArg(0, out);
err j¼ matrixMul.setArg(1, in0);
err j¼ matrixMul.setArg(2, in1);
err j¼ matrixMul.setArg(3, WA);
err j¼ matrixMul.setArg(4, WB);
constsize_tlocalSize¼ sizeof(double[BLOCK_SIZE][BLOCK_SIZE]);
err j¼ matrixMul.setArg(5, cl::__local(localSize));
err j¼ matrixMul.setArg(6, cl::__local(localSize));
if (err !¼ CL_SUCCESS) {
std::cerr << "Could not set matrixMul’s args\n";
return EXIT_FAILURE;
}

cl_command_queue_properties properties ¼
CL_QUEUE_PROFILING_ ENABLE;

cl::CommandQueue queue(context, devices[0], properties, &err);
if (err !¼ CL_SUCCESS) {
std::cerr << "Could not create the command queue\n";
return EXIT_FAILURE;
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}

cl::Event event;
err1 ¼ queue.enqueueNDRangeKernel(
matrixMul, cl::NullRange,
cl::NDRange(WC, HC),
cl::NDRange(BLOCK_SIZE, BLOCK_SIZE),
NULL,
&event);
Matrix<WC,HC> C(&nop);
err2 ¼ queue.enqueueReadBuffer(out, CL_TRUE, 0, C.size(),

C.data());
if (err1 !¼ CL_SUCCESS jj err2 !¼ CL_SUCCESS) {
std::cerr << "matrixMul execution failed\n";
return EXIT_FAILURE;
}

Matrix<WC, HC> reference(&nop);
computeGold(reference.data(), A.data(), B.data(), HA, WA, WB);

if (!C.compareL2fe(reference, 1e-6f)) {

Matrix<WC, HC> difference ¼ reference - C;
difference.printOn(std::cout);
std::cout << "FAILED\n";
return EXIT_FAILURE;
}
if ((properties & CL_QUEUE_PROFILING_ENABLE) !¼ 0) {
cl_long start¼ event.getProfilingInfo<
CL_PROFILING_COMMAND_START>();

cl_long end ¼ event.getProfilingInfo<
CL_PROFILING_COMMAND_END>();

std::cout << "Elapsed time: "

<< (double)(end � start) / 1e6
<< "ms\n";

}

std::cout << "PASS!\n";
return EXIT_SUCCESS;

}

Listing 11.4
// Thread block size
#define BLOCK_SIZE 16

// Matrix dimensions
// (chosen as multiples of the thread block size for simplicity)
#define WA (3 * BLOCK_SIZE) // Matrix A width
#define HA (5 * BLOCK_SIZE) // Matrix A height
#define WB (8 * BLOCK_SIZE) // Matrix B width
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#define HB WA // Matrix B height
#define WC WB // Matrix C width
#define HC HA // Matrix C height
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CHAPTER
Foreign Lands: Plugging
OpenCL In
 12

INTRODUCTION
Up to this point, we have considered OpenCL in the context of the system program-

ming languages C and Cþþ; however, there is a lot more to OpenCL. In this chapter,

we look at how OpenCL can be accessed from a selection of different programming

language frameworks, including Java, Python, and the functional programming

language Haskell.
BEYOND C AND Cþþ
For many developers, C and Cþþ are the programming language of choice. For

many others, this is not the case: for example, a large amount of the world’s software

is developed in Java or Python. These high-level languages are designed with pro-

ductivity in mind, often providing features such as automatic memory management,

and performance has not necessarily been at the forefront of minds of the systems’

designers. An advantage of these languages is that they are often highly portable,

think of Java’s motto “write once, run everywhere,” and reduce the burden on the

developer to be concerned with low-level system issues. However, it is often the case

that it is not easy, sometimes even impossible, to get anything close to peak perfor-

mance for applications written in these languages.

To address both the performance gap and also to allow access to a wide set of li-

braries not written in a given high-level language, a foreign function interface (FFI) is

provided to allow applications to call into native libraries written in C, Cþþ, or other

low-level programming languages. For example, Java provides the Java Native Inter-

face, while Python has its own mechanism. Both Java (e.g., JOCL (Java bindings for

OpenCL (JOCL), 2012)) and Python (e.g., PyOpenCL (Klöckner, 2012)) have

OpenCL wrapper APIs that allow the developer to directly access the compute capa-

bilities offered by OpenCL. These models are fairly low level and provide the plumb-

ing between themanaged runtimes and the native, unmanaged, aspects ofOpenCL.To

give a flavor ofwhat is on offer, Listing 12.1, is a PyOpenCL implementation of vector

addition.
Heterogeneous Computing with OpenCL

© 2013 Advanced Micro Devices, Inc. Published by Elsevier Inc. All rights reserved.
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Listing 12.1
import pyopencl as cl
import numpy
import numpy.linalg as la

a ¼ numpy.random.rand(50000).astype(numpy.float32)
b ¼ numpy.random.rand(50000).astype(numpy.float32)

ctx ¼ cl.create_some_context()
queue ¼ cl.CommandQueue(ctx)

mf ¼cl.mem_flags
a_buf ¼cl.Buffer(ctx,mf.READ_ONLY|mf.COPY_HOST_PTR,hostbuf¼a)
b_buf ¼cl.Buffer(ctx,mf.READ_ONLY|mf.COPY_HOST_PTR,hostbuf¼b)
dest_buf ¼cl.Buffer(ctx, mf.WRITE_ONLY, b.nbytes)

prg ¼ cl.Program(ctx, """
__kernel void vecadd(__global const float *a,
__global const float *b, __global float *c)
{

int gid ¼ get_global_id(0);
c[gid] ¼ a[gid] + b[gid];

}
""").build()

prg.vecadd(queue, a.shape, None, a_buf, b_buf, dest_buf)

a_plus_b ¼ numpy.empty_like(a)
cl.enqueue_copy(queue, a_plus_b, dest_buf)

print la.norm(a_plus_b � (a+b))
An example of moving beyond simple wrapper APIs is Aparapi (2012). Origi-

nally developed by AMD but now a popular open source project, Aparapi allows

Java developers to take advantage of the compute power of GPU and other OpenCL

devices by executing data-parallel code fragments on the GPU rather than confining

them to the local CPU. The Aparapi runtime system achieves this by converting Java

bytecode to OpenCL at runtime and executing on the GPU. If for any reason Aparapi

cannot execute on the GPU, it will execute in a Java thread pool. An important goal of

Aparapi is to stay within the Java language both from a syntax point of view and from

one of sprit. This design requirement can be seen from the source code to perform a

vector addition, given in Listing 12.2, where there is no OpenCL C code or OpenCL

API calls.
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Listing 12.2
package com.amd.aparapi.sample.add;
import com.amd.aparapi.Kernel;
import com.amd.aparapi.Range;
public class Main{
public static void main(String[] _args) {

final int size ¼ 512;
final float[] a ¼ new float[size];
final float[] b ¼ new float[size];
for (int i ¼ 0; i < size; i++) {

a[i] ¼ (float)(Math.random()*100);
b[i] ¼ (float)(Math.random()*100);

}
final float[] sum ¼ new float[size];
Kernel kernel ¼ new Kernel(){
@Override public void run() {

int gid ¼ getGlobalId();
sum[gid] ¼ a[gid] + b[gid];

}
};
kernel.execute(Range.create(512));
for (int i ¼ 0; i < size; i++) {
System.out.printf("%6.2f + %6.2f¼ %8.2f\n", a[i], b[i], sum[i]);

}
kernel.dispose();

}
}

Instead, the Aparapi developer expresses OpenCL computations by generating

instances of Aparapi classes, overriding methods that describe the functionality of

a kernel that will be dynamically compiled to OpenCL at runtime from the generated

Java bytecode.

Aparapi is an example of a more general concept of embedding a Domain-

Specific Language (DSL) within a hosting programming language: in this case, Java.

DSLs focus on providing an interface for a domain expert and commonly a DSL will

take the form of a specific set of features for a given science domain, for example,

medical imaging. In this case, the domain is that of data-parallel computations and in

particular that of GPGPU computing.
HASKELL OPENCL
Haskell is a pure functional language and along with Standard ML (SML), and its

variants is one of the most popular modern functional languages. Unlike many of

the other managed languages, Haskell (and SML) programming consists of
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describing functions, in terms of expressions, and evaluating them by application to

argument expressions. In general, the model differs from imperative programming

by not defining sequencing of statements and not allowing side effects. There is usu-

ally no assignment outside of declarations. This is often seen as both a major advan-

tage and a major disadvantage of Haskell. Combining side-effect free programming

with Haskell’s large and often complex type system can often be an off-putting ex-

perience for the newcomer used to the imperative models of C, Cþþ, or Java. How-

ever, side-effect free can be liberating in the presence of parallel programming, as in

this case evaluating an expression will produce a single isolated result, which is

thread-safe by definition. For this reason, Haskell has recently gained a lot of interest

in the parallel programming research community. For the interested reader new to

Haskell, they would do well to read Hutton’s excellent book on programming in

Haskell (Hutton, 2007) andMeijer’s companion video series onMicrosoft’s Channel

9 (Meijer, 2009).

Due to certain aspects of Haskell’s type system, it has proven to be an excel-

lent platform for the design of Embedded Domain-Specific Languages (EDSLs),

which in turn provide abstractions that automatically compile to GPUs. See, for

example, Accelerate (Chakravarty et al., 2011) or Obsidian (Svensson et al.,
2011) for two excellent examples of this approach. However, this is a book about

low-level programming with OpenCL and so here we stay focused, instead con-

sidering how the Haskell programmer can get direct access to the GPU via

OpenCL. The benefits of accessing OpenCL via Haskell are manyfold but in

particular:

1. OpenCL brings a level of performance to Haskell not achievable by existing CPU

threading libraries.

2. The high-level nature of Haskell significantly reduces the complexity of

OpenCL’s host API and leads to a powerful and highly productive development

environment.

There has been more than one effort to develop wrapper APIs for OpenCL in Haskell;

however, we want more than a simple FFI binding for OpenCL. In particular, we

want something that makes accessing OpenCL simpler, while still providing full ac-

cess to the power of OpenCL. For this, we recommend HOpenCL (Gaster and

Morris, 2012), which is an open source library providing both a low-level wrapper

to OpenCL and a higher level interface that enables Haskell programmers to access

the OpenCL APIs in an idiomatic fashion, eliminating much of the complexity of

interacting with the OpenCL platform and providing stronger static guarantees than

other Haskell OpenCL wrappers. For the remainder of this chapter, we focus on the

latter higher level API; however, the interested reader can learn more about the low-

level API in HOpenCL’s documentation.

As a simple illustration we again consider the vector addition of Chapter 1.

The kernel code is unchanged and again embedded as a string, but the rest is

all Haskell.
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Module Structure
HOpenCL is implemented as a small set of modules all contained under the structure

Langauge.OpenCL.

� Language.OpenCL.Host.Constants — defines base types for the OpenCL Core

API

� Langauge.OpenCL.Host.Core — defines low-level OpenCL Core API

� Language.OpenCL.GLInterop — defines the OpenGL interoperability API

� Language.OpenCL.Host — defines the high-level OpenCL API

For the most part, the following sections introduce aspects of the high-level API, and

in the cases where reference to the core is necessary, it will be duly noted. For details

of the low-level API, the interested reader should reference the HOpenCL documen-

tation (Gaster and Garrett Morris, 2012).
Environments
As described in early chapters, many OpenCL functions require either a context,

which defines a particular OpenCL execution environment, or a command queue,

which sequences operations for execution on a particular device. In much OpenCL

code, these parameters function as “line noise,” that is, which technically necessary,

they do not change over large portions of the code. To capture this notion, HOpenCL

provides two type classes, Contextual and Queued, to qualify operations that require

contexts and command queues, respectively.

In general, an application using HOpenCL will want to embed computations that

are qualified into other qualified computations, for example, embedding Queued

computations within Contextual computations and thus tying the knot between them.

The with function is provided for this purpose.

with :: Wraps t m n ¼> t –> m u –> n u
Reference Counting
For OpenCL objects whose life is not defined by a single C scope, the C API provides

operations for manual reference counting (e.g., clRetainContext/clReleaseCon-

text). HOpenCL generalizes this notion with a type class LifeSpan which supports

operations retain and release.

retain :: (LifeSpan t, MonadIO m) ¼> t –> m ()

release :: (LifeSpan t, MonadIO m) ¼> t –> m ()

The using function handles constructing and releasing new reference-counted ob-

jects. It introduces the ability to automatically manage OpenCL object lifetimes.

using :: (Lifespan t m, CatchIO m) ¼> m t –> (t –> m u) –> m u
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To simplify the use of OpenCL contexts (Context) and command queues

(CommandQueue), which are automatically reference-counted in HOpenCL, the oper-

ation withNew combines the behavior of the with function and the using function.

withNew :: (Wraps t m n, Lifespan t, CatchIO n) ¼> n t –> m u –> n u
Platform and Devices
The API function platforms is used to discover the set of available platforms for a

given system.

platforms :: MonadIO m ¼> m [Platform]

Unlike the C API, there is no need to call platforms twice, first to determine the

number of platforms and second to get the actual list of platforms; HOpenCL man-

ages all of the plumbing automatically. The only complicated aspect of the definition

of platforms is that the result is returned within a monadm, which is constrained to be

an instance of the type class MonadIO. This constraint enforces that the particular

OpenCL operation happens within a monad that can perform IO. This is true for

all OpenCL actions exposed by HOpenCL and is required to capture the fact that

the underlying API may perform unsafe operations and thus needs sequencing.

After platforms have been discovered they can be queried, using the overloaded (?)

operator, to determine which implementation (vendor) the platform was defined by.

For example, the following code selects the first platform and displays the vendor.

(p:_) <- platforms

putStrLn . ("Platform is by: " ++) ¼<< p ? PlatformVendor

In general, any OpenCL value that can be queried by a function of the form

clGetXXXInfo, where XXX is the particular OpenCL type, can be queried by an in-

stance of the function:

(?) :: MonadIO m ¼> t –> qt u –> m u

For platform queries the type of the operator (?) is

(?) :: MonadIO m ¼> Platform -> PlatformInfo u –> m u

Similar to the OpenCL Cþþ Wrapper API’s implementation of clGetXXXInfo, the

type of the value returned by the operator (?), is dependent on the value being que-

ried, providing an extra layer of static typing. For example, in the case of Platform-

Vendor, the result is the Haskell type String.

The devices function returns the set of devices associate with a platform.

It takes arguments of a platform and a device type. The device type argument can

be used to limit the devices to GPUs only (GPU), CPUs only (CPU), all devices (ALL),

as well as other options. As with platforms the operator (?) is called to retrieve in-

formation such as name and type.

devicesOfType :: MonadIO m ¼> Platform –> [DeviceType] –> m [Device]
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The Execution Environment
As described earlier, a host can request that a kernel be executed on a device. To

achieve this, a context must be configured on the host that enables it to pass com-

mands and data to the device.

Contexts
The function context creates a context from a platform and a list of devices.

context :: MonadIO m ¼> Platform –> [Device] –> m Context

In the case that it is necessary to restrict the scope of the context, e.g., to enable

graphics interoperability, then properties may be passed using the contextFromPro-

perties function.

contextFromProperties :: MonadIO m ¼>

ContextProperties –> [Device] –> m Context

Context properties are built with the operations noProperties, which defines an

empty set of properties and pushContextProperty that adds a context property to

an existing set. noProperties and pushContextProperty are defined as part of

the core API in Language.OpenCL.Host.Core.

noProperties :: ContextProperties

pushContextProperty :: ContextProperty t u ¼>

t u –> u –> ContextProperties –> ContextProperties

Command Queues
Communicationwithadeviceoccursbysubmittingcommands toacommandqueue.The
function queue creates a command queue within the current Contextual computation.

queue :: Contextual m ¼> Device –> m CommandQueue

As CommandQueue is reference-counted and defined within a particular Contextual

computation, a call to queue will often be combined with withNew, embedding the

command queue into the current context.

withNew (queue gpu) $

--computation dependent on newly created command queue

Buffers
The function buffer allocates anOpenCL buffer, assuming the default set of flags. The

function bufferWithFlags allocates a buffer with the associated set of user-supplied

memory flags. (MemFlag is defined in Language.OpenCL.Host.Constants.)

buffer :: (Storable t, Contextual m) ¼> Int –> m (Buffer t)

bufferWithFlags :: (Storable t, Contextual m) ¼>

Int –> [MemFlag] –> m (Buffer t)

As buffers are associated with a Contextual computation (a Context), the using func-

tion can be used to make this association.
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Data contained in host memory is transferred to and from an OpenCL buffer using

the commands writeTo and readFrom, respectively.

readFrom :: (Readable cl hs, Storable t, Queued m) ¼>

cl t –> Int –> Int –> m (hs t)

writeTo :: (Writable cl hs, Storable t, Queued m) ¼>

cl t -> Int -> hs t -> m Event

Creating an OpenCL Program Object
OpenCL programs are compiled at runtime through two functions, programFrom-

Source and buildProgram, that create a program object from source string and build

a program object, respectively.

programFromSource :: Contextual m ¼> String -> m Program

buildProgram :: MonadIO m ¼> Program -> [Device] -> String -> m ()

The OpenCL Kernel
Kernels are created with the function kernel.

kernel :: MonadIO m ¼> Program -> String -> m Kernel

Arguments can be individually set with the function fixArgument. However, often

the arguments can be set at the point when the kernel is invoked and HOpenCL pro-

vides the function invoke for this use case.

fixArgument::(KernelArgumenta,MonadIOm)¼>Kernel->Int->a->m()

invoke :: KernelInvocation r ¼> Kernel -> r

Additionally, it is possible to create a kernel invocation, which one can think of as a

kernel closure, from a kernel and a set of arguments using the function setArgs. This

can be useful in a multi-threaded context.

setArgs :: Kernel -> [Co.Kernel -> Int -> IO ()] -> Invocation

A call to invoke by itself is not enough to actually enqueue a kernel; for this, an ap-

plication of invoke is combined with the function overRange, which describes the

execution domain and results in an event representing the enqueue, within the current

computation.

overRange :: Queued m¼> Invocation -> ([Int], [Int], [Int]) -> m Event

Full Source Code Example for Vector Addition
The following example source code implements the vector addition OpenCL appli-

cation, originally given in Chapter 2, and is reimplemented here using HOpenCL.

module VecAdd where

import Language.OpenCL.Host

import Language.OpenCL.Host.FFI

import Control.Monad.Trans (liftIO)
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source =

"__kernel void vecadd( \n" ++

" __global int *C, __global int* A, __global int *B) { \n" ++

" int tid = get_global_id(0); \n" ++

" C[tid] = A[tid] + B[tid]; \n" ++

"} "

elements = 2048 :: Int;

main = do (p:_) <- platforms

[gpu] <- devicesOfType p [GPU]

withNew (context p [gpu]) $

using (programFromSource source) $ \ p ->

using (buffer elements) $ \ inBufA ->

using (buffer elements) $ \ inBufB ->

using (buffer elements) $ \ outBuf ->

do { buildProgram p [gpu] ""

; using (kernel p "vecadd") $ \ vecadd ->

withNew (queue gpu) $

do writeTo inBufA 0 [0.. elements - 1 ]

writeTo inBufB 0 [0.. elements - 1 ]

invoke vecadd outBuf inBufA inBufB

‘overRange‘ ([0], [elements], [1])

(x::[Int]) <- readFrom outBuf 0 elements

liftIO (if and $ zipWith (\a b -> a == b+b)

x [0.. elements - 1 ]

then print "Output is correct"

else print "Output is incorrect") }

This is the complete program! Compare these 33 lines of Haskell code to the 208

lines (not counting comments) for the same example given at the end of Chapter 2.
SUMMARY
In this chapter, we have shown that accessing OpenCL’s compute capabilities need

not be limited to the C or C++ programmer. We highlighted that there are production

level bindings for OpenCL for many languages, including Java and Python, and fo-

cused on a high-level abstraction for programming OpenCL from the functional lan-

guage Haskell.
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CHAPTER
OpenCL Profiling and
Debugging
 13

INTRODUCTION
Our motivation for writing programs in OpenCL is not limited to writing isolated

high-performance kernels but to speed up parallel applications. Previous chapters

discussed howwe can optimize kernels running on OpenCL devices by targeting fea-

tures of the architecture. In this chapter, we discuss how we can study the interaction

between the computational kernels on the device and the host. We need to measure

the performance and study an application as a whole to understand bottlenecks.

An OpenCL application can include kernels and a large amount of input/output

(IO) between the host and device. Profiling such an application can help us to im-

prove performance by answering some of the following questions regarding an

application:

• Which kernel should be optimized when multiple kernels exist in an application?

• How much time is spent by the kernels waiting in command queues versus actu-

ally executing?

• What is the ratio between execution time and the time spent initializing the

OpenCL runtime and compiling kernels for an application?

• What is the ratio of time spent in host device IO to computation time for an

application?

The first two sections of this chapter examine how the OpenCL API provides some

basic features for application profiling and how operating system APIs can be used

for timing sections of code, respectively. The following two sections discuss two

tools from AMD that can help with profiling an application for performance:

• AMD Accelerated Parallel Processing (APP) Profiler is a performance analysis

tool that gathers data from the OpenCL runtime and AMD Radeon GPUs during

the execution of an OpenCL application.

• AMD Accelerated Parallel Processing (APP) KernelAnalyzer is a static analysis

tool to compile, analyze, and disassemble an OpenCL kernel for AMD Radeon

GPUs.
Heterogeneous Computing with OpenCL
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Each of the profiling approaches discussed above can help a developer quickly de-

termine why an application is not performing as expected and, in combination with

the debugging features described later in this chapter, can greatly improve the devel-

opment process.

We conclude this chapter by discussing debugging OpenCL code. Debugging of

parallel programs is traditionallymore complicated than conventional serial code due

to subtle bugs such as race conditions, which are difficult to detect and reproduce.

We give a brief overview of gDEBugger. AMD gDEBugger is an OpenCL� and

OpenGLdebugger andmemory analyzer, that provides the ability to debugOpenCL�

&OpenGL API calls and OpenCL� kernels and step through the source code to find

bugs, optimize performance and reduce memory consumption. We also briefly ex-

plain the printf extension provided by AMD, which allows us to view kernel data.
PROFILING WITH EVENTS
OpenCL supports 64-bit timing of commands submitted to command queues using

clEnqueueXX()commands, such as clEnqueueNDRangeKernel(). Generally, com-

mands are enqueued into a queue asynchronously, and as described in previous

chapters, the developer uses events to keep track of a command’s status as well

as to enforce dependencies. Events provide a gateway to a command’s history: They

contain information detailing when the corresponding command was placed in the

queue, when it was submitted to the device, and when it started and ended execution.

Access to an event’s profiling information is through the following API clGetE-

ventProfilingInfo, which provides an interface for queuing timing information:
Enabling Profiling
Profiling of OpenCL programs using events has to be enabled explicitly on a per command
queue basis. Profiling is enabled when creating a command queue by setting the
CL_QUEUE_PROFILING_ENABLE flag.

Once a command queue has been created, it is not possible to turn event profiling on
and off.

cl_int clGetEventProfilingInfo (
cl_event event,

cl_profiling_info param_name,

size_t param_value_size,

void *param_value,

size_t *param_value_size_ret)
The first argument, event, is the event being queried, and the second argument is an

enumeration value describing the query. Valid values for the enumeration are given

in the following table:
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CL_PROFILING

Return
Type
Information Returned in
param_value
CL_PROFILING_COMMAND_QUEUED
 cl_ulong
 A 64-bit value that describes the
current device time counter in
nanoseconds when the command
identified by event is enqueued in a
command queue by the host.
CL_PROFILING_COMMAND_SUBMIT
 cl_ulong
 A 64-bit value that describes the
current device time counter in
nanoseconds when the command
identified by the event that has
been enqueued is submitted by
the host to the device associated
with the command queue.
CL_PROFILING_COMMAND_START
 cl_ulong
 A 64-bit value that describes the
current device time counter in
nanoseconds when the command
identified by event starts execution
on the device.
CL_PROFILING_COMMAND_END
 cl_ulong
 A 64-bit value that describes the
current device time counter in
nanoseconds when the command
identified by event has finished
execution on the device.
As discussed previously, OpenCL command queues work asynchronously—that is,

the functions return as soon as the command is enqueued. For this reason, querying

an OpenCL event for timestamps after a kernel enqueue necessitates a clFinish call

or other event synchronization before the call to clGetEventProfilingInfo to

ensure that the task associated with the event has completed execution.

Event profiling information is not enabled by default and instead is enabled on a

per command queue basis. To explicitly enable a command queue for event profiling,

the following bit-field value is passed at creation:

CL_QUEUE_PROFILING_ENABLE

Once a command queue has been created, it is not possible to turn event profiling on

and off.

The following is a simple example of the use of events to profile a kernel

execution:

// Sample Code that can be used for timing kernel execution duration

// Using different parameters for cl_profiling_info allows us to

// measure the wait time

cl_event timing_event;

cl_int err_code;
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//! We are timing the clEnqueueNDRangeKernel call and timing

//information will be stored in timing_event

err_code ¼ clEnqueueNDRangeKernel (

command_queue, kernel,

work_dim,

global_work_offset,

global_work_size,

local_work_size,

0,

NULL,

&timing_event);

clFinish(command_queue);

cl_ulong starttime;

cl_ulong endtime;

err_code ¼ clGetEventProfilingInfo(

timing_event,

CL_PROFILING_COMMAND_START,

sizeof(cl_ulong),

&starttime, NULL);

kerneltimer ¼ clGetEventProfilingInfo(

timing_event,

CL_PROFILING_COMMAND_END,

sizeof(cl_ulong),

&endtime,

NULL);

unsigned long elapsed ¼ (unsigned long)(endtime - starttime);

printf("Kernel Execution\t%ld ns\n",elapsed);
AMD ACCELERATED PARALLEL PROCESSING PROFILER
The AMD Accelerated Parallel Processing (APP) Profiler is a performance analysis

tool that gathers data from the OpenCL runtime and AMD Radeon GPUs during the

execution of an OpenCL application. We can then use this information to discover

bottlenecks in an application and find ways to optimize the application’s perfor-

mance for AMD platforms. Hereafter, we refer to the AMD APP Profiler as the

profiler.

The profiler can be installed as part of the AMD APP SDK installation or indi-

vidually using its own installer package. You can download the profiler from the

AMD developer website at http://developer.amd.com.

In this section, we describe the major features in Version 2.5 of the profiler with

the described version is included with Version 2.7 of the AMD APP SDK. Because

the profiler is still being rapidly developed, please consult the profiler documentation

for the latest features of the tool.

http://developer.amd.com
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The profiler supports two usage models:

1. As a Microsoft Visual Studio 2008 or 2010 plug-in

2. As a command line utility tool for both Windows and Linux platforms

Using the profiler as a Visual Studio plug-in is the recommended usage model

because one can visualize and analyze the results in multiple ways. To start the pro-

filer in the Visual Studio plug-in, simply load a solution into Visual Studio. Select a

C/Cþþ project as the startup project, and click on the Collect Application Trace or

Collect GPU Performance Counters button on the APP Profiler Session Explorer

panel. By default, the APP Profiler Session Explorer panel will be docked in the same

window panel as the Visual Studio Solution Explorer panel. No code or project mod-

ifications are required to profile the application. The profiler will query Visual Studio

for all the project settings required to run the application. When the application com-

pletes, the profiler will generate and display the profile information.

Thecommandlineutilitytoolisapopularwaytocollectdataforapplicationsforwhich

the source code is not available. The output text files generated by the profiler can be

analyzed directly. They can also be loaded by the Visual Studio plug-in to be visualized.

Two modes of operation are supported by the profiler: collecting OpenCL appli-

cation traces and collecting OpenCL kernel GPU performance counters.
Collecting OpenCL Application Trace
The OpenCL application trace lists all the OpenCL API calls made by the applica-

tion. For each API call, the profiler records the input parameters and output results. In

addition, the profiler also records the CPU timestamps for the host code and device

timestamps retrieved from the OpenCL runtime. The output data is recorded in a text-

based AMD custom file format called an Application Trace Profile file. Consult the

tool documentation for the specification. This mode is especially useful in helping to

understand the high-level structure of a complex application.

From the OpenCL application trace data, we can do the following:

• Discover the high-level structure of the application with the Timeline View.

From this view, we can determine the number of OpenCL contexts and command

queues created and the relationships between these items in the application. The

application code, kernel execution, and data transfer operations are shown in a

timeline.

• Determine if the application is bound by kernel execution or data transfer oper-

ations, find the top 10 most expensive kernel and data transfer operations, and

find the API hot spots (most frequently called or most expensive API call) in

the application with the Summary Pages View.

• View and debug the input parameters and output results for all API calls made by

the application with the API Trace View.

The Timeline View (Figure 13.1) provides a visual representation of the execu-

tion of the application. Along the top of the timeline is the time grid, which shows the



FIGURE 13.1

The Timeline and API Trace View of AMD APP Profiler in Microsoft Visual Studio 2010.
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total elapsed time of the application when fully zoomed out, in milliseconds. Timing

begins when the first OpenCL call is made by the application and ends when the final

OpenCL call is made. Directly below the time grid, each host (OS) thread that made

at least one OpenCL call is listed. For each host thread, the OpenCL API calls are

plotted along the time grid, showing the start time and duration of each call. Below

the host threads, the OpenCL tree shows all contexts and queues created by the ap-

plication, along with data transfer operations and kernel execution operations for

each queue. We can navigate in the Timeline View by zooming, panning, collaps-

ing/expanding, or selecting a region of interest. From the Timeline View, we can also

navigate to the corresponding API call in the API Trace View and vice versa.

The Timeline View can be useful for debugging your OpenCL application. The

following are examples:

• You can easily confirm that the high-level structure of your application is correct.

By examining the timeline, you can verify that the number of queues and contexts

created match your expectations for the application.

• You can gain confidence that synchronization has been performed properly in the

application. For example, if kernel A execution is dependent on a buffer operation

and outputs from kernel B execution, then kernel A execution should appear after

the completion of the buffer execution and kernel B execution in the time grid.

It can be difficult to find this type of synchronization error using traditional

debugging techniques.
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• Finally, you can see that the application has been utilizing the hardware effi-

ciently. For example, the timeline should show that nondependent kernel execu-

tions and data transfer operations occur simultaneously.

Summary Pages View
The Summary Pages View shows various statistics for your OpenCL application. It

can provide a general idea of the location of the application’s bottlenecks. It also pro-

vides useful information such as the number of buffers and images created on each

context, the most expensive kernel call, etc.

The Summary Pages View provides access to the following individual pages:

• API Summary page: This page shows statistics for all OpenCL API calls made in

the application for API hot spot identification.

• Context Summary page: This page shows the statistics for all the kernel dispatch

and data transfer operations for each context. It also shows the number of buffers

and images created for each context. This is shown in Figure 13.2.

• Kernel Summary page: This page shows statistics for all the kernels that are cre-

ated in the application.

• Top 10 Data Transfer Summary page: This page shows a sorted list of the 10 most

expensive individual data transfer operations.

• Top 10 Kernel Summary page: This page shows a sorted list of the 10 most

expensive individual kernel execution operations.

• Warning(s)/Error(s) Page: The Warning(s)/Error(s) Page shows potential prob-

lems in your OpenCL application. It can detect unreleased OpenCL resources,

OpenCL API failures and provide suggestions to achieve better performance.

Clicking on a hyperlink takes you to the corresponding OpenCL API that gener-

ates the message.

From these summary pages, it is possible to determine whether the application is

bound by kernel execution or data transfer (Context Summary page). If the applica-

tion is bound by kernel execution, we can determine which device is the bottleneck.
FIGURE 13.2

The Context Summary Page View of AMD APP Profiler in Microsoft Visual Studio 2010.
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From the Kernel Summary page, we can find the name of the kernel with the highest

total execution time. Or, from the Top 10 Kernel Summary page, we can find the

individual kernel instance with the highest execution time. If the kernel execution

on a GPU device is the bottleneck, the GPU performance counters can then be used

to investigate the bottleneck inside the kernel. We describe the GPU performance

counters view later in this chapter.

If the application is bound by the data transfers, it is possible to determine the

most expensive data transfer type (read, write, copy, or map) in the application from

the Context Summary page.We can investigate whether we canminimize this type of

data transfer by modifying the algorithm if necessary. With help from the Timeline

View, we can investigate whether data transfers have been executed in the most ef-

ficient way—that is, concurrently with a kernel execution.

API Trace View
The API Trace View (Figure 13.1) lists all the OpenCL API calls made by the

application.

Each host thread that makes at least one OpenCL call is listed in a separate tab.

Each tab contains a list of all the API calls made by that particular thread. For each

call, the list displays the index of the call (representing execution order), the name of

the API function, a semicolon delimited list of parameters passed to the function, and

the value returned by the function. When displaying parameters, the profiler will at-

tempt to dereference pointers and decode enumeration values to give as much infor-

mation as possible about the data being passed in or returned from the function.

Double-clicking an item in the API Trace View will display and zoom into that

API call in the Host Thread row in the Timeline View.

The view allows us to analyze and debug the input parameters and output results

for each API call. For example, we can easily check that all the API calls are return-

ing CL_SUCCESS or that all the buffers are created with the correct flags. We can also

identify redundant API calls using this view.
Collecting OpenCL GPU Kernel Performance Counters
The GPU kernel performance counters can be used to find possible bottlenecks in the

kernel execution. You can find the list of performance counters supported by AMD

Radeon GPUs in the tool documentation.

Once we have used the trace data to discover which kernel is most in need of op-

timization, we can collect the GPU performance counters to drill down into the kernel

execution on aGPUdevice. Using the performance counters, we can do the following:

• Find the number of resources (General Purpose Registers, Local Memory size,

and Flow Control Stack size) allocated for the kernel. These resources affect

the possible number of in-flight wavefronts in the GPU. A higher number of

wavefronts better hides data latency.

• Determine the number of ALU, global, and local memory instructions executed

by the GPU.



FIGURE 13.3

The Session View of AMD APP Profiler in Microsoft Visual Studio 2010.
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• Determine the number of bytes fetched from and written to the global memory.

• Determine the utilization of the SIMD engines and memory units in the system.

• View the efficiency of the Shader Compiler in packing ALU instructions into the

VLIW instructions used by AMD GPUs.

• View any local memory (Local Data Share (LDS)) bank conflicts where multiple

lanes within a SIMD unit attempt to read or write the same LDS bank and have to

be serialized, causing access latency.

The Session View (Figure 13.3) shows the performance counters for a profile ses-

sion. The output data is recorded in a comma-separated-variable (csv) format.

You can also click on the kernel name entry in the “Method” column to view the

OpenCL kernel source, AMD Intermediate Language, GPU ISA, or CPU assembly

code for that kernel.
AMD ACCELERATED PARALLEL PROCESSING
KERNELANALYZER
The AMD APP KernelAnalyzer is a static analysis tool to compile, analyze, and dis-

assemble an OpenCL kernel for AMDRadeonGPUs. It can be used as a graphical user

interface tool for interactive tuning of an OpenCL kernel or in command line mode to

generate detailed reports. Hereafter, we refer to this tool as the KernelAnalyzer.

The KernelAnalyzer can be installed as part of the AMDAPP SDK installation or

individually using its own installer package. You can download the KernelAnalyzer

package from the AMD developer website at http://developer.amd.com.

To use the KernelAnalyzer, the AMD OpenCL runtime is required to be installed

on the system. However, no GPU is required in the system.

To compile an OpenCL kernel in the KernelAnalyzer, simply drop the source

containing the OpenCL kernel anywhere within the KernelAnalyzer’s main window

(Figure 13.4).We do not require the entire OpenCL application to compile or analyze

the OpenCL kernel.

http://developer.amd.com


FIGURE 13.4

AMD APP KernelAnalyzer.
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With the KernelAnalyzer, we can do the following:

• Compile, analyze, and disassemble the OpenCL kernel for multiple Catalyst

driver versions and GPU device targets.

• View any kernel compilation errors and warnings generated by the OpenCL

runtime.

• View the AMD Intermediate Language code generated by the OpenCL

runtime.

• View the ISA code generated by the AMD Shader Compiler. Typically, device-

specific kernel optimizations are performed by analyzing the ISA code.

• View various statistics generated by analyzing the ISA code.

• View General Purpose Registers and spill registers allocated for the kernel.

Because the KernelAnalyzer can quickly compile a kernel for multiple GPU device

targets, it is very useful for rapid prototyping of OpenCL kernels.
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WALKING THROUGH THE AMD APP PROFILER
In this section, we walk through the usage of AMD APP Profiler to profile the

MatrixMultiplication application from the AMD APP SDK Version 2.4 samples.

We show you a step-by-step process that includes running the AMD APP Pro-

filer, using the generated data to find a bottleneck in the application, and improving

the performance of the application.
Starting the AMD APP Profiler
1. Load the AMD APP SDK samples solution file (OpenCLSamplesVS10.sln) in

Microsoft Visual Studio.

2. Set the MatrixMultiplication project as the start-up project.

3. Confirm that the project can compile and run normally.

4. Confirm that the APP Profiler has been installed properly.
a. From the Visual Studio main menu bar, select the Help -> About Microsoft

VisualStudiomenu item. Under the Installedproducts, you should see an

AMD APP Profiler entry. If you do not see this entry, please re-install the

profiler.

b. Check that the APP Profiler Session Explorer is docked in the same window

panel as the Visual Studio Solution Explorer. If you do not see the APP Pro-

filer Session Explorer panel, enable it by selecting View -> Other Windows ->

APP Profiler Session Explorer from the Visual Studio main menu bar.
Using the Application Trace to Find the Application Bottleneck
1. On the APP Profiler Session Explorer, click on the Collect Application Trace

button to start collecting a trace for the application.

2. After the trace has been completed, the APP Profiler Timeline (Figure 13.5) will

be shown and docked in the same window panel as the Visual Studio editor

window.
a. From the API Trace View in Figure 13.5, we can confirm that the application

runs successfully without generating any errors from the OpenCL runtime by

verifying that all return error codes of the API calls are CL_SUCCESS. From this

view, we can also inspect the input arguments and output results of each API

call. For example, the first two buffers are created with a CL_MEM_READ_ONLY

flag, and the third buffer is created with a CL_MEM_WRITE_ONLY flag. These

buffers are of size 16 MB.

b. From the Timeline View in Figure 13.5, we can learn the following facts

about the application:

• The application contains one OpenCL context and one command queue.

• The command queue is created for a GPU device called Juniper, which is

the internal name for the AMD Radeon HD5770 GPU.



FIGURE 13.5

The APP Profiler Timeline and API Trace View of the MatrixMultiplication application.
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• The application contains three data transfer operations: Two input buffers

are sent to the device, and one output buffer is read from the device.

• There is one kernel execution on the GPU device.

• Theapplicationlikelyhascorrectdependencyfor thedatatransfersandkernel

operations. Two input buffers are sent to the device prior to the start of the

kernel executionoperation, and the output buffer is read from the device after

the completion of the kernel execution. Short of exhaustive testing or model

checking, this is good support for correct implementation of the intent.
3. Click on the Summary tab (Figure 13.5) to view the Summary Pages View.
a. Navigate to the Context Summary page (Figure 13.6; the default view after

you click on the Summary tab) by selecting the Context Summary from the

drop-down combo box on the Summary Pages View.

• From this page, we find that the kernel operation on the GPU device is the

bottleneck. The total kernel execution on the GPU device takes 195 ms

compared to the total data transfer operations, which take 32 ms.
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b. Navigate to the Top10 Kernel Summary page (Figure 13.7) by selecting the

Top10 Kernel Summary from the drop-down menu.

• Using this page, we can find the kernel instance (mmmKernel) that is in

most need of optimization. In this example, however, there is only one ker-

nel instance.
Using the GPU Performance Counters to Find the
Bottleneck in the Kernel
Once we have discovered the kernel instance that is in most need of optimization, we

can collect the GPU performance counters (click the Collect GPU Performance

Counters button on the APP Profiler Session Explorer panel) to guide us in finding

the possible bottlenecks in the kernel.

Figure 13.8 shows the resulting GPU performance counters of multiplying two

matrices of size 2048 � 2048 together using three different methods:
RE 13.6

Context Summary page of the MatrixMultiplication application.

RE 13.7

Top10 Kernel Summary page of the MatrixMultiplication application.

RE 13.8

resulting GPU performance counters for three different methods of multiplying two

trices of size 2048 � 2048. The first row employs a method of using only the global

mory, whereas the second row adds the usage of local memory. The third method uses

nCL image objects.
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1. Row 1 is the result from the MatrixMultiplication sample: This method uses the

global memory to store the matrices.
a. The result shows that the kernel uses 17 general-purpose registers (GPRs).

This is good because it is less likely that the number of wavefronts in-flight

will be limited by the GPR usage. There are 4096 wavefronts generated.

With a maximum of 24 SIMD cores on current devices, this is at least 170

wavefronts per core—far more than the device resources can run concurrently

and easily enough to keep the device busy.

b. From the low value of ALUBusy and high value of FetchUnitBusy and Fetch-

UnitStalled counters, we can conclude that the kernel is bottlenecked by

fetching data from the global memory.
2. Row 2 is the result from the MatrixMultiplication sample with a mmmKernel_

local kernel: This method uses the global memory to store the matrices but also

utilizes the local memory to cache the results.
a. Theresult shows thatwehave improved thekernel running timefrom195 to114

ms(a42%improvement)byutilizing the localmemory to reduce thepressureof

fetching data from the global memory. The shader compiler is also doing a

slightly better job of packing the VLIW instructions (ALUPacking counter).
3. Row 3 is the result from the MatrixMulImage sample: This method uses the

OpenCL image objects to store the matrices.
a. The result shows that the kernel running time has been significantly improved

(down to 21 ms—an 89% improvement over Method 1 using only the global

memory). From the performance counters, we can see that the value of the

FetchUnitStalled counter is now near 0%. The value of FetchUnitBusy is still

very high; this shows that this kernel is still bottlenecked over the data fetch-

ing from the global memory. However, using the image objects helps due to

the support for data caching of image objects (69% cache hit for the CacheHit

counter). The value of the ALUBusy counter is now quite high, signifying that

the SIMDs are now utilized properly.
From these three methods, we have seen that the MatrixMultiplication kernel is bot-

tlenecked by fetching data from the global memory. The second and third methods

try to address this problem by utilizing the local memory and image buffer objects to

cache the results from the global memory.
DEBUGGING OPENCL APPLICATIONS
From the previous sections, we have seen how we can optimize performance of our

OpenCL code. However, the paramount requirement is correctness. In this section,

we discuss debugging in a heterogeneous environment and give an overview of the

tools provided.

Debugging of parallel programs is traditionally more complicated than conven-

tional serial code due to subtle bugs such as race conditions, which are difficult to

detect and reproduce. The difficulties of debugging parallel applications running on



257Overview of gDEBugger
heterogeneous devices are exacerbated by the complexity and “black box” nature of

the accelerated parallel platform.

The developer works on top of an API that hides the parallel platform’s imple-

mentation. Debuggers and profilers transform the developer’s view into a “white

box” model, letting the developer peer into OpenCL to see how individual com-

mands affect the parallel computing system. This allows developers to find bugs

caused by incorrect OpenCL usage and optimize their applications for the system

on which it runs. In the remainder of this chapter, we give a brief overview of gDE-

Bugger, which is an advanced debugger and profiler for OpenCL, and we explain

(briefly) the printf extension provided by AMD, a simpler but sometimes effective

alternative to a full debugger.
OVERVIEW OF GDEBUGGER
gDEBugger is an OpenCL and OpenGL debugger, profiler, and memory analyzer. It

helps developers find bugs and optimize OpenCL performance and memory

consumption.

gDEBugger consists of the following components:

• gDEBugger Visual Studio plug-in—a plug-in that adds advanced OpenCL and

OpenGL debugging capabilities into Microsoft’s Visual Studio

• gDEBugger (stand-alone)—a stand-alone product that offers advanced OpenCL

and OpenGL debugging and profiling capabilities over multiple platforms (Win-

dows, Linux, and Mac)

Figure 13.9 shows a simplified high-level overview of how gDEBugger interacts

with OpenCL devices. It shows some of the important modules/components. When

gDEBugger is used, it intercepts the API calls between the Application and the

OpenCL Installable Client Driver. This enables gDEBugger to log all API calls, iden-

tify all used OpenCL objects, and gather data on these objects. In addition, gDEBug-

ger can actively modify some of the API calls, add calls to query additional

information, and can eliminate some calls to help the developer analyze the perfor-

mance bottlenecks.

In the following sections, we briefly describe the debugging capabilities of gDE-

Bugger to advocate its usage in development environments.
Debugging Parallel OpenCL Applications with gDEBugger
As previously discussed, there are two distinct regions of code in heterogeneous

applications:

1. API-level code (clEnqueue calls, clCreateBuffer, etc.), which runs on the host

2. Compute kernel (run on devices) code



FIGURE 13.9

A high-level overview of where gDEBugger links to the application and OpenCL.
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We give brief details about the debugging capabilities of gDEBugger for both the

API-level code and compute kernels.

API-Level Debugging
API-level debugging is provided by gDEBugger to view the parameters that a run-

time function is called with. The following are features provided by API-level

debugging:

• API function breakpoints: gDEBugger will break the debugged application be-

fore the function is executed. This allows viewing the call stack that led to the

function call, as well as the function’s parameters.

• Record the OpenCL API call history: When the debugged process is suspended,

gDEBugger shows us the last OpenCL function call (and its parameters) made in

the currently selected context. Figure 13.10 shows how gDEBugger provides a

back-trace of the OpenCL commands invoked by the program.

• Program and kernel information: OpenCL contexts contain multiple program and

kernel objects within them. gDEBugger allows us to verify which programs are

associated with each context. If the program was created using clCreatePro-

gramWithSource, we can also view the source code passed to this function.

• Image and buffers’ data: An OpenCL context will contain buffers and images.

gDEBugger allows us to view the object’s data. For Image types, gDEBugger

allows us to see the image data visualized in the “Image view.”



FIGURE 13.10

gDEBugger function call history.
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• Memory checking: gDEBugger allows us to view the memory consumption for a

specific context’s buffers. The memory checking functionality provided by gDE-

Bugger can be used to trace memory leaks and unneeded objects that were created

or were not released in time, consuming device memory and making debugging

more difficult.

• API usage statistics: gDEBugger shows statistical information about the currently

selected context’s API usage. By viewing a breakdown of the OpenCL API calls

made in this context by various categories, we can see the number of times a func-

tion is called. This allows us to understand the performance of different runtime

functions for different implementations and devices.
Kernel Debugging
gDEBugger also enables debugging within the compute kernel that is executing on

the device. There are two ways to start debugging an OpenCL kernel with

gDEBugger:

1. Setting a breakpoint in the kernel code

2. Stepping into the kernel execution from its corresponding

clEnqueuNDRangeKernel call

A common concern when debugging an OpenCL application is keeping track of

state in the presence of a large number of work items. A kernel on a GPU device will

commonly be launched with many thousands of work items. gDEBugger assists the

developer by allowing us to focus on a particular active work item by displaying the

work item’s variable’s values and enforcing possible breakpoints for the work item.

Figure 13.11 shows the appearance of OpenCL kernel code while debugging with

gDEBugger.
AMD PRINTF EXTENSION
The AMD printf extension is another useful debugging tool. The printf extension

is enabled by adding the line #pragma OPENCL EXTENSION cl_amd_printf : enable to

the kernel source code. OpenCL extensions were described in detail in Chapter 11.



FIGURE 13.11

Kernel source view seen in gDEBugger for an application kernel.
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The pragma lets the OpenCL compiler know about the possible usage of the printf

function within a kernel body.

As seen in the following vector addition code, the usage of printf for OpenCL

kernels is similar to its usage in C/Cþþ programming. Note that printf outputs the

results of the format string for every work item of the NDRange on which it will be

executed.

#pragma OPENCL EXTENSION cl_amd_printf : enable

//! Simple example showing usage of printf in a vector add kernel.

__kernel void vec_add(__global float * d_ip1, __global float * d_ip2,

__global float d_op, int N)

{

int tid ¼ get_global_id(0)

if (tid < N)
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{

float value_0 ¼ d_ip0[tid];

float value_1 ¼ d_ip0[tid];

//This line will print out the format string below ‘N’ times.

printf(“Values read in %f\t %f\n”, value_0, value_1);

d_op[tid] ¼ value_0 + value_1;

}

}

CONCLUSION
In this chapter, we examined different OpenCL profiling and debugging tools.

OpenCL tools such as the APP Profiler and the KernelAnalyzer help us to understand

the location of performance bottlenecks in our code. gDEBugger helps us to debug

our programs.



CHAPTER
4
Performance Optimization
of an Image Analysis
Application

1

INTRODUCTION
Chapter 13 discussed step by step how to use AMD CodeAnalyst, Profiler, gDEBug-

ger, and KernelAnalyzer to profile and debug an OpenCL application. While

Chapter 13 gave a very basic introduction to the tools, in this chapter, we use a

real-world application as an example to walk through the steps from migrating a

single-threaded application to one that utilizes the GPU and APU power using

OpenCL. We will see how some of the profiling techniques that these, and other,

tools provide can be used to investigate bottlenecks and improve peak performance

of an application. After all, high performance is generally the reason to put time into

porting code to use OpenCL.

This chapter dives into detailed profiling techniques provided by the software

development tools described in Chapter 13, and applies them to a real application.

We port a medical image analysis pipeline from a traditional CPU multithreaded

execution and optimized for execution in OpenCL on a GPU. In this chapter, we

see both static analysis and profiling and the trade-offs involved in optimizing a real

application for data-parallel execution on a GPU.

In this chapter, we use AMD tools as an example. More thorough descriptions of

all the tools are available in their documentation, and tools from other vendors

provide similar capabilities. You should use whatever tools are appropriate for the

architecture you are targeting.

We present a vasculature image enhancement module, which is the first and most

important step for a vessel analysis application. The automatic and real-time en-

hancement of the vessels potentially facilitates diagnosis and later treatment of vas-

cular diseases. The performance and power consumption of the proposed algorithms

are evaluated on single-core CPU, multicore CPU, discrete GPU, and finally an ac-

celerated processing unit (APU).

In this chapter, we first discuss the algorithm to give a background to the problem

being solved. We then show how the CPU implementation may be ported to OpenCL

and run on a GPU. In this section, we show how different tools may be used to inform

the developer about what parts of the application should move to OpenCL and how to

optimize them once they are there. We examine some trade-offs in kernel code and
Heterogeneous Computing with OpenCL
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how they affect performance. Finally, we see how these changes may affect energy

use by the application and show that the GPU can give an energy consumption

benefit.
DESCRIPTION OF THE ALGORITHM
The algorithm chosen is a coarse segmentation of the coronary arteries in CT

images based on a multiscale Hessian-based vessel enhancement filter (Frangi,

2001). The filter utilizes the second-order derivatives of the image intensity after

smoothing (using a Gaussian kernel) at multiple scales to identify bright tubular-

like structures. The six second-order derivatives of the Hessian matrix at each

voxel can be either computed by convolving the image with second-order

Gaussian derivatives at preselected scale value or approximated using a finite

difference approach.

Various vessel enhancement techniques have been proposed in the past decade.

Three of the most popular techniques for curvilinear structure filtering have been

proposed by Frangi (2001), Lorenz et al (1997), and Sato et al (1998). All these

approaches are based on extracting information from the second-order intensity de-

rivatives at multiple scales to identify local structures in the images. Based on that

information, it is possible to classify the local intensity structure as tubular-like,

plane-like, or block-like.

In this chapter, we use a multiscale Hessian-based vessel enhancement filter by

Frangi (2001) because of its superior performance compared with other tubular fil-

ters (Olabarriaga et al. 2003). The filter utilizes the second-order derivatives of the

image intensity after smoothing using a Gaussian kernel at multiple scales to identify

bright tubular-like structures with various diameters. The six second-order deriva-

tives of the Hessian matrix at each voxel are computed by convolving the image with

the second-order Gaussian derivatives at preselected scales.

Assuming a continuous image function I(x),x¼ (x,y,z), the Hessian matrixH for

the 3D image at any voxel x is defined as

H xð Þ ¼
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@x@x
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At a predefined scale s, Hessian H can be computed by convolving the image I(x)
with the second-order Gaussian derivatives shown in Figure 14.1(a).
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FIGURE 14.1

Illustrations of second-order Gaussian derivative and ellipsoid. (a) The second-order

derivative of a Gaussian kernel at scale s¼1. (b) The ellipsoid that locally describes the

second-order structure of the image with illustration of the principal directions of curvature.
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A vesselness term vs(x) is defined as in Frangi (2001) and is based on the eigen-

values and eigenvectors of Hs(x). Let |l1|� |l2|� |l3| denote the eigenvalues of the
Hessian Hs(x), and v1,v2,v3 are the corresponding eigenvectors. The principal cur-

vature directions are then given by v2 and v3, as shown in Figure 14.1(b).

Since arteries have higher intensity values in computerized tomographic angiog-

raphy (CTA) images than surrounding soft tissues, the vessel center points are the

ones with maximal local intensities after smoothing. Thus, the corresponding eigen-

values l2 and l3 should be negative for voxels on the arteries in CTA image; other-

wise, the vesselness response should be zero. As in Frangi (2001), the vesselness

response vs(x) at voxel x with scale s is formulated as

vs xð Þ ¼
0 if l2 > 0orl3 > 0

1� e�ðA2=2a2Þ
� �

e�ðB2=2b2Þ 1� e�ðS2=2g2Þ
� �

otherwise

(

where A ¼ jl2j
jl3j ; B ¼ jl1jffiffiffiffiffiffiffiffiffi

jl2l3j
p ; S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22 þ l23

q
Controlled by a, parameter A discriminates plate-like from line-like structures; B,

dominated by b, accounts for deviation from blob-like structures, and S, controlled
by g, differentiates between high-contrast region, for example, one with bright vessel

structures on a dark background, and low-contrast background regions. This ap-

proach achieves scale normalization by multiplying H by s2 before eigenvalue de-
composition. The weighting factors a, b, and g are to be specified in order to

determine the influence of A, B, and S.
Because the size of the cross-sectional profile of the coronaries varies substan-

tially from the root to the distal end, a single-scale vesselness response is not suffi-

cient to capture the whole range of coronaries. The vesselness response of the filter



FIGURE 14.2

Flowchart of the vessel enhancement algorithm described in this chapter.
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reaches a maximum at a scale that approximately matches the size of the vessel to

detect. Thus, integrating the vesselness response at different scales is necessary to

support varying vessel sizes. Here, the response is computed at a range of scales,

exponentially distributed between smin and smax. The maximum vesselness response

Vs(x) with the corresponding optimal scale soptimal(x) is then obtained for each voxel
of the image:

V xð Þ ¼ max
smin�s�smax

vs xð Þ

The scale soptimal (x) approximates the radius of the local vessel segment centered at

x. There are two groups of outputs of this vessel enhancement algorithm:

(1) The final vesselness image denoted as Iv is constructed using the maximum re-

sponse Vs(x) of each voxel x as the intensity value;

(2) The optimal scale soptimal(x) is selected for each voxel x (Figure 14.2).

In this chapter, we use a 3D cardiac CTA image with voxel dimensions 256 by 256 by

200, voxel resolution 0.6�0.6�0.5 mm3.
MIGRATING MULTITHREADED CPU IMPLEMENTATION
TO OPENCL
At the time of writing, AMD offers the following development tools: APP Kernel-

Analyzer, CodeAnalyst, APP Profiler, and gDEBugger. The first two are used in

this section to port the multithreaded CPU-based image analysis application to

GPU. The APP Profiler will be utilized in the next section for performance

optimization.
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KernelAnalyzer is a static analysis tool for viewing details about OpenCL kernel

code (among other possible inputs). It compiles the code to both AMD’s intermediate

language and the particular hardware ISA of the target device and performs analyses

on that data such that it can display various statistics about the kernel in a table. This

can be useful for catching obvious issues with the compiled code before execution as

well as for debugging compilation.

CodeAnalyst is traditionally a CPU profiling tool that supports timer-based and

counter-based sampling of applications to build up an impression of the application’s

behavior. Recent editions of CodeAnalyst have added support for profiling the

OpenCL API.

The APP Profiler supports counter-based profiling for the GPU. The approach it

uses is not interrupt based in the way that CodeAnalyst is, rather it gives accumulated

values during the execution of the kernel. This information is useful for working out

where runtime bottlenecks are, in particular, those arising from computed memory

addresses that are difficult or impossible to predict offline.

Finally, gDEBugger is a debugging tool that supports step-through debugging of

OpenCL kernels.
Hotspot Analysis
Before implementing and optimizing for GPU and APU platforms, we first

need to identify the hot spots in the multithreaded CPU-based implementation

with the time-based profiling (TBP) facility in CodeAnalyst. These hot spots

are the most time-consuming parts of a program that are the best candidates for

optimization.

At the time of writing, CodeAnalyst 3.7 offers eight predefined profile configu-

rations, including time-based profile, event-based profile (access performance, in-

vestigate L2 cache access, data access, instruction access, and branching),

instruction-based sampling and thread profile. It also offers three other profile con-

figurations that can be customized. The profile configuration controls which type of

performance data to be collected. For example, if we are interested in finding detailed

information about the mispredicted branches and subroutine returns, the “investigate

branching” configuration is the ideal choice. Note that you can also profile a Java or

OpenCL application in CodeAnalyst to help identify the bottlenecks of your

applications.

Here we focus on getting an overall assessment of the performance of this appli-

cation and identifying the hot spots for further investigation and optimization pur-

pose. Hence, two configurations suit our requirement: access performance and

time-based profiling.
In TBP, the application to be analyzed is run at full speed on the same machine

that is running CodeAnalyst. Samples are collected at predetermined intervals to

be used to identify possible bottlenecks, execution penalties, or optimization

opportunities.
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TBP uses statistical sampling to collect and build a program profile. CodeAnalyst

configures a timer that periodically interrupts the program executing on a processor

core using the standard operating system interrupt mechanisms. When a timer inter-

rupt occurs, a sample is created and stored for postprocessing. Postprocessing builds

up an event histogram, showing a summary of what the system and its software com-

ponents were doing. The most time-consuming parts of a program will have the most

samples, as there would be more timer interrupts generated and more samples taken

in that region. It is also important to collect enough samples to draw a statistically

meaningful conclusion of the program behavior and to reduce the chance of features

being missed entirely.

The number of TBP samples collected during an experimental run depends

upon the sampling frequency (or, inversely, on the timer interval) and the mea-

surement period. The default timer interval is one millisecond. Using a one mil-

lisecond interval, a TBP sample is taken on a processor core approximately every

millisecond of wall clock time. The timer interval can be changed by editing the

current time-based profile configuration. By specifying a shorter interval time,

CodeAnalyst can take samples more frequently within a fixed-length measure-

ment window. However, the overhead of sampling will increase too, which leads

to higher load on the test system. The process of taking samples and the incurred

overhead have an intrusive effect that might perturb the test workload and bias the

statistical results.

The measurement period refers to the length of time over which samples are

taken. It depends upon the overall execution time of the workload and how Code-

Analyst data collection is configured. The measurement period can be configured

to collect samples for all or part of the time that the workload executes. If the

execution time of a program is very short (for example, less than 15 s), it helps to

increase program runtime by using a larger data set or more loop iterations to obtain

a statistically useful result. However, it depends on the characteristics of the work-

load being researched to decide how many samples should be taken at what interval

that would provide sufficient information for the analysis and, in some circum-

stances, increasing the length of the workload’s execution may change the behavior

enough to confuse the results.

The system configuration for this work is an AMD Phenom II X6 1090T,

Radeon HD 6970, with CodeAnalyst Performance Analyzer for Windows version 3.5.

The access performance configuration shows 95% average system CPU utiliza-

tion and 44% average systemmemory utilization. Given that TBP provides a system-

wide profiling, to use the information provided in TBP efficiently, we need to select

the entries corresponding to the application itself and perform postanalysis. The table

below provides the four most time-consuming segments of the application, account-

ing for 95% of the application runtime. It also illustrates the percentage of function

execution over the execution time of the whole application. Given that all these rou-

tines are inherently parallel for an image analysis workload, we can start by porting

the eigenanalysis function into an OpenCL kernel first, followed by the convolution,

Hessian, and vesselness computations.
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Function
 Convolution
 Hessian
 Eigenanalysis
 Vesselness
Ratio
 30%
 8%
 55%
 2%
Kernel Development and Static Analysis
In this chapter, we use the latest release of AMD APP KernelAnalyzer, version

1.12. KernelAnalyzer is a tool for analyzing the performance of OpenCL kernels

for AMD Radeon Graphics cards. It compiles, analyzes, and disassembles the

OpenCL kernel for multiple GPU targets and estimates the kernel performance

without having to run the application on actual hardware or, indeed, having the tar-

get hardware in your machine. You can interactively tune the OpenCL kernel using

its GUI. It is very helpful for prototyping OpenCL kernels in KernelAnalyzer

and seeing in advance what compilation errors and warnings would be generated

by the OpenCL runtime and subsequently for inspecting the statistics derived by

analyzing the generated ISA code.

A full list of the compiler statistics can be found in the documentation of the

KernelAnalyzer on AMD’s Web site. Here we illustrate a subset of them that are

important for providing hints for optimizing this application:

1. GPR shows the number of general purpose registers used or allocated. The impact

of GPR usage on the kernel performance is discussed later in this chapter.

2. CF shows the number of control flow instructions in the kernel.

3. ALU:Fetch ratio shows whether there is likely to be extra ALU compute capacity

available to spare. ALU:Fetch ratios of 1.2 or greater are highlighted in green and

those of 0.9 or less are highlighted in red.

4. Bottleneck shows whether the likely bottleneck is ALU operations or global

memory fetch operations.

5. Throughput is the estimated average peak throughput with no image filtering be-

ing performed.

Figure 14.3 shows the KernelAnalyzer user interface while analyzing the vesselness

OpenCL kernel.

After developing all four major functions from this application in OpenCL and

having it run on the GPU device, we inspect the performance of this newly migrated

application in APP Profiler. Figure 14.4 shows the timeline view from APP Profiler.

From the collected trace file, we can derive that the kernel execution takes 35.1% of

the total runtime, the data transfer 32.7%, launch latency 9%, and other unaccounted

activities that cover the setup time, and finalization time on the host-side account for

the rest. We can see from the second to the last row of the trace that considerable

time is spent copying data to and from the device. Given that all four functions

are executed on device side and no host-side computation is left in between the

kernels, we can safely eliminate the all interim data copies. This optimization

reduces the total runtime by 23.4%. The next step is to inspect individual kernels

and optimize them.



FIGURE 14.4

Execution trace of the application showing host code, data transfer, and kernel execution time

using the timeline view of AMD APP Profiler.

FIGURE 14.3

KernelAnalyzer user interface while analyzing the vesselness kernel and generating output for

the Radeon HD6970 (Cayman) GPU.
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PERFORMANCE OPTIMIZATION
APP Profiler has two main functionalities: collecting application trace and GPU

performance counters. Counter selections include three categories: General

(wavefronts, ALUInsts, FetchInsts, WriteInsts, ALUBusy, ALUFetchRatio, ALU-

Packing), GlobalMemory (Fetchsize, CacheHit, fetchUnitBusy, fetchUnitStalled,

WriteUnitStalled, FastPath, CompletePath, pathUtilisation), and LocalMemory

(LDSFetchInsts, LDSWriteInsts, LDSBankConflict). For more detailed information

about each of these counters, we refer to the APP Profiler documentation. In the rest

of this section, we first discuss how to use kernel occupancy (a very important

estimation provided in application trace) and a subset of GPU performance counters

to guide the optimization.
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Kernel Occupancy
This section provides an overview of the kernel occupancy calculation, including its

definition and a discussion on the factors influencing its value and interpretation.

Kernel occupancy is a measure of the utilization of the resources of a compute

unit on a GPU, the utilization being measured by the number of in-flight wavefronts,

or threads as the hardware sees them, for a given kernel, relative to the number of

wavefronts that could be launched, given the ideal kernel dispatch configuration

depending on the workgroup size and resource utilization of the kernel.

The kernel occupancy value estimates the number of in-flight (active) wavefronts

Nw
A on a compute unit as a percentage of the theoretical maximum number of wave-

frontsNw
T that the compute unit can execute concurrently. Hence, the basic definition

of the occupancy (O) is given by

O ¼ NA
w

NT
w

The number of wavefronts that are scheduled when a kernel is dispatched is con-

strained by three significant factors: the number of GPRs required by each work item,

the amount of shared memory (LDS for local data store) used by each workgroup,

and the specified workgroup size.

Ideally, the number of wavefronts that can be scheduled corresponds to the max-

imum number of wavefronts supported by the compute unit because this offers the

best chance of covering memory latency using thread switching. However, because

the resources on a given compute unit are fixed and GPRs and LDS are hence shared

among workgroups, resource limitations may lead to lower utilization. A workgroup

consists of a collection of work items that make use of a common block of LDS that is

shared among the members of the workgroup. Each workgroup consists of one or

more wavefronts. Thus, the total number of wavefronts that can be launched on a

compute unit is also constrained by the number of workgroups, as this must corre-

spond to an integral number of workgroups, even if the compute unit has capacity for

additional wavefronts. In the ideal situation, the number of wavefronts of a particular

kernel that the compute unit is capable of hosting is an integral multiple of the num-

ber of wavefronts per workgroup in that kernel, which means that the maximum

number of wavefronts can be achieved. However, in many situations this is not

the case. In such a case, changing the number of work items in the workgroup

changes the number of wavefronts in the workgroup and can lead to better utilization.

The factors that dominate kernel occupancy vary depending on the hardware fea-

tures. In the following discussion, we focus on two major AMD GPU architectures:

VLIW5/VLIW4 and Graphics Core Next.
Kernel Occupancy for AMD Radeon HD5000/6000 Series
The Radeon HD5000 and Radeon HD6000 series are based on a VLIW architecture

such that operations are scheduled statically by the compiler across 4 or 5 SIMD

ALUs. In this section, we discuss how this architecture affects some of the statistics.



272 CHAPTER 14 Performance optimization of an image analysis application
1. LDS limits on the number of in-flight wavefronts

In the case that the LDS is the only constraint on the number of in-flight wavefronts,

the compute unit can support the launch of a number of in-flight workgroups given by

WGmax ¼ LDSCU

LDSWG

where WGmax is the maximum number of workgroups on a compute unit, LDSCU is

the shared memory available on the compute unit, and LDSWG is the shared memory

required by the workgroup based on the resources required by the kernel. The cor-

responding number of wavefronts is given as

WFmax ¼ WGmax �WFWG

where WFmax is the maximum number of wavefronts, WGmax is the maximum num-

ber of workgroups, and WFWG is the number of wavefronts in a workgroup.

There is also another constraint whereby a compute unit can only support a fixed

number of workgroups, a hard limit of WGmax¼8. This also limits the effectiveness

of reducing the workgroup size excessively, as the number of wavefronts is also lim-

ited by the maximum workgroup size. Currently, the maximum workgroup size is

256 work items, which means that the maximum number of wavefronts is 4 when

the wavefront size is 64 (and 8 when the wavefront size is 32).

Thus, when the only limit to the number of wavefronts on a compute unit is set by

the LDS usage (for a given kernel), then the maximum number of wavefronts (LDS

limited) is given by

WFmax
LDS ¼ min WGCU

max �WFWG;WGmax �WFWG

� �

2. GPR limits on the number of in-flight wavefronts

Another limit on the number of active wavefronts is the number of GPRs. Each com-

pute unit has 16384 registers or 256 vector registers. These are divided among the

work items in a wavefront. Thus, the number of registers per work item limits the

number of wavefronts that can be launched. This can be expressed as

WFGPR ¼ Nmax
reg

Nused
reg

where Nreg is the number of registers per work item; the superscripts “max” and

“used” refer to the maximum number of registers and the actual number of registers

used per wavefront.

As the number of in-flight wavefronts is constrained by the workgroup granular-

ity, the number of GPR-limited wavefronts is given by

WFmax
GPR ¼ floor

WFGPR

WFWG

� �
�WFWG
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3. Other constraints

Another limit on the number of in-flight wavefronts is the flow control stack. How-

ever, this is generally an insignificant constraint, only becoming an issue in the pres-

ence of very deeply nested control flow, and so we do not consider it here.

The final factor in the occupancy is the workgroup size, as briefly discussed

above. If there are no other constraints on the number of wavefronts on the compute

unit, the maximum number of wavefronts is given by

WFmax
WG ¼ min floor

WFCU
max

WFWG

� �
;WFCU

max

	 

�WFWG

where WFmax
CU is the maximum number of wavefronts on the compute unit and

WFWG
max is the maximum number of wavefronts on a compute unit when workgroup

size is the only constraint.

This equation shows that having a workgroup size where the number of wave-

fronts divides the maximum number of wavefronts on the compute unit evenly

generally yields the greatest number of active wavefronts, while indicating

that making the workgroup size too small yields a reduced number of wavefronts.

For example, setting a workgroup consisting of only 1 wavefront yields only

8 in-flight wavefronts, whereas (for example, given a maximum number of wave-

fronts on the compute unit of 32) a workgroup of 2 wavefronts will yield 16

wavefronts. Furthermore, having a single wavefront per workgroup doubles the

LDS usage relative to having 2 wavefronts per workgroup as the LDS is shared

only among the wavefronts in the same workgroup. Reuse of LDS may be a good

thing for performance, too, reducing the number of times data is loaded from

memory.

Given these constraints, the maximum number of in-flight wavefronts is given by

NA
W ¼ min WFmax

LDS;WFmax
WG ;WFmax

GPR

� �
Thus, the occupancy, O, is given by:

O ¼ min WFmax
LDS;WFmax

WG ;WFmax
GPR

� �
NT
W

The occupancy shown here is the estimated occupancy on a single compute unit. It is

independent of the workloads on the other compute units on the GPU, as the occu-

pancy is only really meaningful if there are sufficient work items to require all the

resources of at least one compute unit. However, ideally, there should be a sufficient

workload to ensure that more than one compute unit is needed to execute the work to

explore the benefits of parallel execution. Higher occupancy allows for increased

global memory latency hiding, as it allows wavefronts being swapped when there

are global memory accesses. However, once there is a sufficient number of wave-

fronts on the compute unit to hide any global memory accesses, increasing occu-

pancy may not increase performance.
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Kernel Occupancy for AMD Radeon� HD 7000
The Radeon HD7000 series is based on the Graphics Core Next architecture dis-

cussed in Chapter 6. This design separates the four VLIW-dispatched vector ALUs

from the VLIW4-based designs and breaks it down into four separate SIMD units

that are runtime scheduled. In addition, there is a separate scalar unit to manage con-

trol flow.

As a result of these architectural differences, the computation of occupancy on

the HD7000 series GPUs differs in a number of significant ways from the previous

occupancy calculation. While some features, such as the GPR, are still computed

on the basis of individual SIMDs, these must be scaled to the whole compute

unit. On the other hand, workgroup limits must be computed over the whole

compute unit.

The first limit to the number of active wavefronts on the compute unit is

the workgroup size. Each compute unit has up to 40 slots for wavefronts. If each

workgroup is exactly one wavefront, then the maximum number of wavefronts

WFmax is 40.

Otherwise, if there is more than one wavefront (WF) per workgroup (WG), there

is an upper limit of 16 workgroups (WG) per compute unit (CU). Then, the maximum

number of wavefronts on the compute unit is given by

WFmax
WG ¼ min 16 �WFWG;WFmaxf g

where WFWG is the number of wavefronts per workgroup.

The second limit on the number of active wavefronts is the number of VGPR

(vector GPR) per SIMD.

WFmax
VGPR ¼ VGPRmax

VGPRused

where VGPRmax is maximum number of registers per work item and VGPRused is the

actual number of registers used per work item. However, for the total number of

wavefronts per compute unit, we have to scale this value by the number of compute

units:

WFmax
VGPR ¼ WFmax

VGPR � SIMDPerCU

At the same time, the number of wavefronts cannot exceed WFmax, so

WFmax
VGPR ¼ min WFmax

VGPR;WFmax

� �
However, the wavefronts are constrained by workgroup granularity, so the maximum

number of wavefronts limited by the VGPR is given by

WFmax
VGPR ¼ floor

WFmax
VGPR

WFWG

� �
�WFWG

The third limit on the number of active wavefronts is the number of SGPR (Scalar

GPR). SGPRs are allocated per wavefront but represent scalars rather than
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wavefront-wide vector registers. It is these registers that the scalar units discussed in

Chapter 6 use. The SGPR limit is calculated by

WFmax
SGPR ¼ floor

min SGPRmax

SGPRused
� SIMDPerCU ;WFmax

n o
WFWG

0
@

1
A �WFWG

The final limit on the number of active wavefronts is the LDS. The LDS limited num-

ber of wavefronts is given by

WGmax ¼ LDSmax

LDSused

whereWGmax is the maximum number of workgroups determined by the LDS. Then,

the maximum number of wavefronts is given by

WFmax
LDS ¼ WGmax �WFWG

Thus, the occupancy, O, is given by

O ¼ min WFmax
LDS;WFmax

SGPR;WFmax
VGPR;WFmax

WG

� �
WFmax

Impact of Workgroup Size
The three graphs in Figure 14.5 provide a visual indication of how kernel resources

affect the theoretical number of in-flight wavefronts on a compute unit. This figure is

generated for the convolution kernel with workgroup size of 256 and 20 wavefronts

on a Cayman GPU. The figure is generated directly by the profiler tool and its exact

format depends on the device. There will be four subfigures if the kernel is dis-

patched to an AMD Radeon� HD 7000 series GPU device (based on Graphics Core

Next Architecture/Southern Islands) or newer. In this case, the extra subfigure is

“Number of waves limited by SGPRs” that shows the impact of the number of scalar

GPRs used by the dispatched kernel on the active wavefronts.
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FIGURE 14.5

A visualization of the number of wavefronts on a compute unit as limited by (a) workgroup

size, (b) vector GPRs, (c) LDS. This figure is generated by the AMD APP Profiler tool. The

highlight on the title of (a) shows that the workgroup size is the limiting factor in this profile.
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The title of the subfigure representing the limiting resource is highlighted. In this

case, the highlight is placed on the first subfigure: “Number of waves limited by

workgroup size.” More than one subfigure’s title is highlighted if there is more than

one limiting resource. In each subfigure, the actual usage of the particular resource is

highlighted with a small square.

The first subfigure, titled “Number of waves limited by workgroup size,”

shows how the number of active wavefronts is affected by the size of the

workgroup for the dispatched kernel. Here the highest number of wavefronts is

achieved when the workgroup size is in the range of 128–192. Similarly, the sec-

ond and third subfigures show how the number of active wavefronts is influenced

by the number of vector GPRs and LDS used by the dispatched kernel. In both

case, as the amount of used resource increases, the number of active wavefronts

decreases in steps.

In the same APP Profiler occupancy view, just below Figure 14.5, a table as

shown below is generated with device, kernel information, and kernel occupancy.

In the section “Kernel Occupancy,” the limits imposed by each resource are shown,

as well as which resource is currently limiting the number of waves for the kernel

dispatch, with the occupancy ratio estimated in the last row.
Variable
 Value

Device
Limit
Device Info
Device name
 Cayman
Number of compute units
 48
Max number of waves per compute unit
 21
Max number of workgroups per compute unit
 8
Wavefront size
 64
Kernel Info
Kernel name
 Convolution
Vector GPR usage per work item
 8
 256
LDS usage per workgroup
 0
 32768
Flattened workgroup size
 256
 256
Flattened global work size
 13107200
 16777216
Number of waves per workgroup
 4
 4
Kernel Occupancy
Number of waves limited by vector GPR and
workgroup size
32
 21
Number of waves limited by LDS and workgroup size
 21
 21
Number of waves limited by workgroup size
 20
 21
Limiting factor(s)
 Workgroup size
Estimated occupancy
 95.24%
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The same visualization as in Figure 14.5 but where the workgroup size is lowered to 128. All
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Given thisanalysisprovidedby thekerneloccupancyview, the limiting factorswouldbe

the optimization target. To keep it simple and for illustration purpose, we lower the

workgroup size to 128 insteadof 192 to checkwhetherwe can eliminateworkgroup size

as the limiting factor. A large workgroup size may not, after all, be necessary if enough

wavefronts are present to cover memory latency. After this modification, we obtain a

new set of kernel occupancy information as shown Figure 14.6, where the small square

marks the current configuration with workgroup size 128 and wavefronts 16.

three factors now limit the occupancy.
Variable
 Value

Device
Limit
Device Info
Device name
 Cayman
Number of compute units
 48
Max number of waves per compute unit
 21
Max number of workgroups per compute unit
 8
Wavefront size
 64
Kernel Info
Kernel name
 Convolution
Vector GPR usage per work item
 8
 256
LDS usage per workgroup
 0
 32768
Flattened workgroup size
 128
 256
Flattened global work size
 13107200
 16777216
Number of waves per workgroup
 2
 4
Kernel Occupancy
Number of waves limited by vector GPR andworkgroup
size
16
 21
Number of waves limited by LDS and workgroup size
 16
 21
Number of waves limited by workgroup size
 16
 21
Limiting factor(s)
 VGPR, LDS, workgroup size
Estimated occupancy
 76.19%
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This change has a negative impact on the occupancy ratio, and all three factors

are now limiting the number of active wavefronts. However, using APP Profiler,

we can collect not only application trace but also the GPU performance counters.

Table 14.1 shows a subset of the details that can be obtained from collecting

GPU performance counters. Note that this table is based on the first configuration

with workgroup size {64, 4, 1}, or a flattened workgroup size of 256 work items.

Here four kernels are executed five times, each giving the gradual increase of the

sigma value as described in the algorithm section. This trace does not include interim

data transfers between kernels. As we discussed earlier, those interim transfers can be

eliminated once all computations are performed on GPU device and so here we see

only the first transfer from host to device and the end result being copied back after

the data is processed.

In Table 14.1, we see more information than we have yet discussed. In

summary,

Global work size and workgroup size are the NDRange parameters used for the

kernel dispatch.

ALUBusy is the percentage of the execution during which the vector ALUs are

being kept busy with work to do. If all the wavefronts on the SIMD unit are wait-

ing for data to be returned from memory or blocking on colliding LDS writes the

ALU will stall and its busy percentage will drop.

ALUFetch is the ratio of ALU operations to memory operations. To a degree, the

higher the better because the more ALU operations there are to execute on the

compute unit, the more work there is to execute while waiting for data to return

from memory.

CacheHit is the hit rate of data in the cache hierarchy. In theory, higher is better,

but that stands with the caveat that a kernel that performs only a single pass over

the data does not need to reuse any data and hence is unlikely to hit frequently in

the cache, for instance, the vesselness computation of a voxel only utilizing its

own eigenvalues. In a kernel that frequently reuses data either temporally or be-

tween neighboring work items, the higher this value is, the more efficient that

reuse is.

The final two columns show when the memory fetch units are busy and stalled.

A high busy value along with a high ALU busy value shows that the device is

being effectively utilized. A high busy value with a low ALU busy value would

imply that memory operations may be leading to underutilization of the compute

capability of the device.

High kernel occupancy rate does not necessary indicate a more efficient execution.

Take the convolution kernel as an example. The kernel occupancy rate increases

from 76.19% to 95.24% while we increase the workgroup size from {64 2 1} to

{64 4 1}. But the CacheHit and ALU utilization ratio reduced from 91.25% and

21.64% to 82.91% and 20.98%, respectively. As a result, the kernel execution time

increases from 342 to 353 ms as shown in Table 14.2 created with numbers collected

through the GPU performance counter in APP Profiler.



Table 14.1 A subset of the hardware performance counter values obtained from a profiling run.

Method
Call
Index GlobalWorkSize

Work
Group Size Time

Local
Mem
Size VGPRs FCStacks ALUBusy ALUFetch CacheHit FetchUnit FetchUnit

Convolution__k1_Ca 50 {256 256 200} {64 4 1} 352.1 0 8 5 20.98 3.72 82.91 45.09 0

Hessian__k2_Cayma 74 {256 256 200} {64 4 1} 17.13 0 13 1 4.21 2 84.16 16.88 0.05

EigenAnalysis__k3_C 103 {256 256 200} {64 2 1} 92.95 4608 15 5 44.88 356.6 75 1.01 0.01

Vesselness__k4_Cay 120 {256 256 200} {64 4 1} 5.47 0 12 2 48.58 33.07 7.02 11.61 0.26

Convolution__k5_Ca 141 {256 256 200} {64 4 1} 352.59 0 8 5 20.97 3.72 82.78 45.07 0

Hessian__k6_Cayma 165 {256 256 200} {64 4 1} 16.75 0 13 1 4.23 2 83.84 16.95 0.05

EigenAnalysis__k7_C 194 {256 256 200} {64 2 1} 93.47 4608 15 5 44.9 356.63 75 1.01 0.01

Vesselness__k8_Cay 211 {256 256 200} {64 4 1} 5.38 0 12 2 48.7 33.08 7.21 11.64 0.25

Convolution__k9_Ca 232 {256 256 200} {64 4 1} 352.58 0 8 5 20.97 3.72 82.74 17.05 0.05

Hessian__k10_Cayma 256 {256 256 200} {64 4 1} 17.35 0 13 1 4.26 2 83.94 17.05 0.05

EigenAnalysis__k11_ 285 {256 256 200} {64 2 1} 92.57 4608 15 5 44.8 357.49 74.99 1.01 0.01

Vesselness__k12_Ca 302 {256 256 200} {64 4 1} 5.35 0 12 2 48.63 33.06 7.12 11.62 0.25

Convolution__k13_C 323 {256 256 200} {64 4 1} 352.76 0 8 5 20.97 3.72 82.63 45.07 0

Hessian__k14_Cayma 347 {256 256 200} {64 4 1} 17.55 0 13 1 4.26 2 83.91 17.05 0.05

EigenAnalysis__k15_ 376 {256 256 200} {64 2 1} 92.44 4608 15 5 45 356.62 75 1.02 0.01

Vesselness__k16_Ca 393 {256 256 200} {64 4 1} 5.37 0 12 2 48.55 33.07 7.08 1.02 0.01

Convolution__k17_C 414 {256 256 200} {64 4 1} 352.53 0 8 5 20.96 3.72 82.82 45.06 0

Hessian__k18_Caym 438 {256 256 200} {64 4 1} 17.11 0 13 1 4.87 2 83.73 19.55 0.09

EigenAnalysis__k19_ 467 {256 256 200} {64 2 1} 92.90 4608 15 5 44.82 357.75 75 1.01 0.01

Vesselness__k20_Ca 484 {256 256 200} {64 4 1} 5.37 0 12 2 48.69 33.08 7.13 11.63 0.24



Table 14.2 Comparison of different workgroup sizes for the convolution kernel. Based on values obtained from APP Profiler.

Kernel Platform Global Work Size
Work
Group Size Time LDS

VGPRS
SGPRs

Scratch
Regs FCStacks ALUBusy

ALUFetch
Ratio CacheHit

Fetch
Unit
Busy

FetchUnit
Stalled

Convolution Cayman {256 256 200} {64 2 1} 342 0 8 NA 0 521.64 3.72 91.25 46.52 0

Convolution Cayman {256 256 200} {64 4 1} 353 0 8 NA 0 520.98 3.72 82.91 45.09 0
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Impact of VGPR and LDS
If a kernel is limited by register usage and not by LDS usage, then it is possible that

moving some data into LDS will shift that limit. If a balance can be found between

LDS use and registers such that register data is moved into LDS in such a way that the

register count is lowered but LDS does not become a more severe limit on occu-

pancy, then this could be a winning strategy. The same under some circumstances

may be true of moving data into global memory.

However, care must be taken while making this change. Not only may LDS be-

come the limiting factor on kernel occupancy, but accessing LDS is slower than

accessing registers. Even if occupancy improves, performance may drop because

the compute unit is executing more, or slower, instructions to compute the same re-

sult. This is even more true if global memory were to be used to reduce register count:

this is exactly the situation we see with register spilling.

This section we show the impact of reducing kernel VGPR usage by moving some

data storage to LDS to increase the kernel occupancy and improve the performance.

Eigen decomposition of the Hessian matrix at each voxel of the image is used to illus-

trate this. The basic implementation of the eigenanalysis kernel is inserted below:

__kernel void eigenAnalysis(
__read_only image3d_t h1, _

_read_only image3d_t h2,

__read_only image3d_t h3,

__read_only image3d_t h4,

__read_only image3d_t h5,

__read_only image3d_t h6,

__write_only image3d_t eig1,

__write_only image3d_t eig2,

__write_only image3d_t eig3)

{

int4 coord¼(int4)(get_global_id(0), get_global_id(1),

get_global_id(2), 0);

float matrix[9];

float eigenvector[9];

float eigenvalue[3];

float4 value;

value¼read_imagef(h1, imageSampler,
(int4)(coord.x, coord.y, coord.z, 0));

matrix[0]¼value.x;

value¼read_imagef(h2, imageSampler,

(int4)(coord.x, coord.y, coord.z, 0));

matrix[1]¼matrix[3]¼value.x;

value¼read_imagef(h3, imageSampler,

(int4)(coord.x, coord.y, coord.z, 0));

matrix[2]¼matrix[6]¼value.x;

value¼read_imagef(h4, imageSampler,

(int4)(coord.x, coord.y, coord.z, 0));
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matrix[4]¼value.x;

value¼read_imagef(h5, imageSampler,

(int4)(coord.x, coord.y, coord.z, 0));

matrix[5]¼matrix[7]¼value.x;

value¼read_imagef(h6, imageSampler,

(int4)(coord.x, coord.y, coord.z, 0));

matrix[8]¼value.x;

EigenDecomposition(eigenvalue, eigenvector, matrix, 3);

write_imagef(eig1, coord,

(float4)(eigenvalue[0], 0.0f, 0.0f, 0.0f));

write_imagef(eig2, coord,

(float4)(eigenvalue[1], 0.0f, 0.0f, 0.0f));

write_imagef(eig3, coord,

(float4)(eigenvalue[2], 0.0f, 0.0f, 0.0f));

}

In this implementation, each eigenanalysis kernel consumes 41 GPRs, with no

LDS used. Profiling with APP Profiler, we can see that this high usage of the VGPR

resource limits the number of wavefronts that can be deployed to 6. As a result, the

estimated occupancy ratio is 29.57%. By allocating the storage for the array matrix

in LDS as shown in the following code example, the vector GPR usage per work

item is reduced to 15, with LDS usage reported at 4.5K, and the number of active

wavefronts 14. Consequently, the estimated occupancy ratio increases substan-

tially to 66.67%. The kernel runtime dropped from 180 to 93 ms on average on

Cayman.

__kernel __attribute__(
(reqd_work_group_size(GROUP_SIZEx, GROUP_SIZEy, 1)))

void EigenAnalysis(

__read_only image3d_t h1,

__read_only image3d_t h2,

__read_only image3d_t h3,

__read_only image3d_t h4,

__read_only image3d_t h5,

__read_only image3d_t h6,

__write_only image3d_t eig1,

__write_only image3d_t eig2,

__write_only image3d_t eig3)

{

int4 coord¼(int4)(get_global_id(0), get_global_id(1),

get_global_id(2), 0);

int localCoord¼get_local_id(0);

__local float matrix[GROUP_SIZEx*GROUP_SIZEy][9];

float eigenvector[9];

float eigenvalue[3];

float4 value;

. . .

}
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The table below shows the profiler summary of the execution time of the final im-

plementation with five different scales. These data are collected on a Radeon�

HD6970 GPU with five scales ranging from 0.5 to 4 mm and an image size of

256�256�200.
Kernel
Name
Device
Name
# of
Calls
Total Time
(ms)
Avg Time
(ms)
Max
Time(ms)
Min Time
(ms)
Convolution
 Cayman
 5
 1711.34022
 342.26804
 343.05167
 340.98611
Eigenanalysis
 Cayman
 5
 463.57545
 92.71509
 93.19711
 92.34878
Hessian
 Cayman
 5
 86.11744
 17.22349
 20.16967
 15.76600
Vesselness
 Cayman
 5
 26.23067
 5.24613
 5.26400
 5.23556
POWER AND PERFORMANCE ANALYSIS
We test the optimized application on a Trinity (A10-5800K) platform in three

formats: a single-threaded CPU version, a multithreaded CPU version, and the

GPU-based version. Using the AMD Graphics Manager software on the Trinity

APU, we can collect the power consumption number at a fixed time interval

on each device. In this case, two CPU modules (core pairs) listed as “CU” in

the table and the GPU. In this test, power samples are collected at 100-ms time

intervals and seven different scales for identifying vessel structure are used to in-

crease the amount of samples collected for a more accurate analysis. Each row in

the table below shows the average power consumption for each device and the

total power consumption and execution time measured. Using this data, we cal-

culate the total energy consumption. Note that despite the fact that all other ap-

plications are switched off, this approach still measures the whole system’s power

consumption, not just the running application. However, it is the easiest way to

get an estimated analysis without extra hardware. Using the single-threaded

CPU version as baseline, we can derive the performance and energy improvement

for a multithreaded CPU version and GPU-based one. We perform a similar com-

parison with the multithreaded CPU as baseline in the third table. In total, we

observe that, despite the GPU being powered down while not in use, the energy

consumption of executing the application on GPU is significantly lower than the

MT-CPU one.
CU0
 CU1
 GPU
 Power

Total
Time (s)
 Energy
ST-CPU
 23.97
 21.52
 8.71
 54.20
 282.00
 15285.45
MT-CPU
 32.24
 31.78
 9.01
 73.03
 133.80
 9772.01
GPU
 16.01
 15.21
 24.48
 55.70
 19.35
 1077.72
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Baseline: ST-CPU

Performance
Improvement
Energy
Improvement
ST-CPU
 1
 1
MT-CPU
 2.12
 1.56
GPU
 14.57
 14.18
Baseline: MT-CPU

Performance
Improvement
Energy
Improvement
GPU
 6.9
 9
CONCLUSION
In this chapter, we showed how some of the profiling tools in the AMDAPP SDK can

be used to analyze and hence help optimize kernel performance. We applied runtime

profiling and static analysis to a real-image analysis application to help optimize per-

formance using OpenCL. Of course, in writing this chapter, we had to select a con-

sistent set of tools, and in this case, to match the hardware example chapter and to

make chapters link together, we choose the AMD tools. Similar data and optimiza-

tions are, of course, necessary on other architectures, and NVIDIA, Intel, and other

vendors provide their own, often excellent, tools to achieve similar goals.
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Computerized tomographic angiography (CTA)

images, 265

Concurrent runtime (ConcRT), 212–213

Constant memory. See Memory model

Contexts, 22

Convolution. See Example applications

CPU/GPU OpenCL implementation

AMD BULLDOZER CPU
architecture, mapping, 121, 123f

128-bit vector, 125

CPU core, 121–122

design, 121, 122f

memory mapping, 125, 126f

worker thread processes, 122–125,

124f

AMD Radeon HD6970

architecture, core, 133f, 134

hardware
synchronization support, 126–127

workload schedule, 127–128, 127f

high-bandwidth GDDR5, 130

instruction execution

code, 131–132

divergent branching, 131

LDS, 134

scalar condition code register, 133

wavefronts, 131

memory hierarchy, 128–130, 129f

PCI express bus, 130

performance, 128

queuing mechanism, 128
285
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resource allocation

registers and LDS storage space, 135

single compute unit, OpenCL workloads,

135–136, 135f

threading and memory system, 130

VLIW execution, 134–135
D
Data management

data placement, shared-memory environment
advantages, 151

AMD APUs, 152–153

cacheable system memory, 154

FCL, 152

Fusion system, 152–153

heterogeneous systems-on-a-chip, 151

local memory, 153–154

RMB, 152

uncached system memory, 154

virtual-to-physical mapping, 152

data transfer, discrete environment

OpenCL runtime, 149

optimizations, 149–150

zero-copy buffers, 150–151

memory management

DMA, 148

IOMMU, 148–149

pages, 147

PCI-Express bus, 148

virtual memory, 147–148

work group reduction

APU, 158–159

discrete GPU device, 156–158

OpenCL kernel, 155

reduction algorithm, 155

reduction tree, 155

Data sharing and synchronization

barriers/locks, primitives, 11

concurrent program, 11

Debugging

AMD printf extension, 259–261

developer’s view, 257

gDEBugger
API-level debugging, 258–259

kernel debugging, 259

parallel programs, 257

Demand paging, 147

Device buffers, 157

Direct memory access (DMA), 148

Domain-specific language (DSL),

235
E
Events

code, 95–97

command sequence, 94–97, 95f

defined, 23

devices, command queue, 97

error conditions, 101

execution models, 98

getInfo function, 101

multiple command queues, 97–98, 97f

out-of-order queue, 94

parallel multidevice, 98, 99f, 100–101

read buffer operation, 101–102

task graph creation, 94–97

user, 101–102

wait list orders execution, 98–100

Example applications

Convolution (buffers)
code listings

host code, 172–176

kernel code, 176–181

performance

code size, 171

loop unrolling, 170–171

memory optimization, 171

workgroup size selection, 161–164

Convolution (images)

compilation and execution, 80

description
blurring and vertical edge-detecting filters,

75–76, 77f

blurring kernel, 75

kernel, 81–82

sampler creation, 80

serial code, 76

Histogram

description, 183

global memory data access patterns,

185–187

global reduction operation, 184f

kernel code, 191–194

local memory access
binning operations, 188

hardware banks, 189, 189f

reduction operation, 190f

SIMD vectors, 188

reduction

bank conflicts, 189–190

bins, 189–191

global, 191

using atomics

AMD Radeon HD6970 architecture,

187
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memory pressure, 187

SIMD vector, 187

workgroups

global memory transactions, 184

local memory, 183–184

pixels mapping, 184

size, optimal, 184–185

Image rotation

buffer declaration and data movement, 74

Cþþ bindings, 73–74

coordinates and equations, 72

description, 71

input decomposition, 72–73

program execution, 75

runtime kernel compilation, 74–75

Matrix multiplication

buffer declaration and data movement, 68–69

implementation steps, 67, 68f

loops, 65–66

program execution, 70

runtime kernel compilation, 70

Mixed particle simulation

computation
collisions, particles, 196

data and physical properties, 197

GPU vs. CPU, 196

screen shot, 196

small-small collisions, 197

CPU implementation, 200–201

data-parallel devices, 195

description, 195

GPU implementation

acceleration structure, 199

buffer creation, 198–199

computing collisions, 199–200

integration, 200

kernels, 203–207

load balancing

CPU’s thread workload, 201–202

pool imbalance, 201

structure, 202f

performance, 202–203

uniform grid creation kernel, 203–204

Vector addition, 32–37

Execution model

devices, 86

kernels, 16–19, 85–88

queuing and synchronization
callbacks, event, 102–105

command barriers and markers,

106–107

events, 94–102

finish operation, 92–93
memory consistency, 94

thread-safe command queues, 92

synchronization, 88–93, 89f

wavefront and warp, 86

workgroups, 85–86

work items, 17, 85

Extensions. See also Open computing language

types, 209

EXT extension, 209

F
Foreign function interface (FFI), 233

Fusion compute link (FCL), 152

G
gDEBugger, 267

API-level debugging, 258–259

components, 257

interaction, 257, 258f

kernel debugging, 259, 260f

OpenCL performance and memory consumption,

257

Global memory. See also Memory model

access alignment
64 and 128-byte segments, 166

data array padding, 167–168

GT200 series architecture, 168

global data access

AMD GPUs and CPUs, 185

arithmetic operations, 185

efficient access pattern, reading, 186–187, 186f

nonparallel work items, 186f

read converge, 187

serial coalesced trade-off, 187f

global performance

access memory, 136

analyzing performance, 136

bandwidth measurement, 136–137

128-bit float4 accesses, 137

bits, 137, 139, 139f

efficiency loss, 137, 138f

modern CPUs, vector instruction, 137

multiple wavefronts, 139

Graphic processing units (GPUs). See also CPU/

GPU OpenCL implementation

described, 58

handheld, 58–59

high-end desktop
AMD Radeon HD6970, 59–60, 60f

cores, 60

vs. CPU designs, 61

lane-wise SIMD model, 59, 61f

NVIDIA GTX580, 59–60, 61f
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Graphic processing units (GPUs). (Continued)
scratchpad memory buffer, 59

SIMD arrays and threads, 59

integration, 200

kernel performance counters, 250–251
H
Hardware trade-offs

cache hierarchies and memory systems
access patterns, 52

GPUs and cell processor, 53

latency, 52–53

cores, 40

graphics APIs and pixel shaders, 39

heterogeneity, 40

multi-core architectures

AMD RadeonTM HD6970 GPU architecture,

50, 51f

AMD’s Bulldozer and Bobcat designs, 49–50,

50f

cloning, single core, 49

multi-core CPUs, 40

multithreading, 46–49

performance enhancement

clock frequency, 42

CMOS dynamic power consumption, 41

parallel coding, 41

voltage and frequency, 41

SIMD and vector processing, 45–46

SoC and APU, 51–52

superscalar execution, 42, 44f

VLIW, 42–45

Haskell OpenCL

advantages, 236

EDSLs, 236

environments, 237

execution environment
buffers, 239–240

command queues, 239

contexts, 239

OpenCL kernel, 240

OpenCL program object, 240

vector addition source code, 240–241

low-level API, 236

module structure, 237

parallel programming, 235

platform and devices, 238

reference counting, 237–238

side-effect free programming, 236

SML, 235

Hessian matrix, 264

Histogram. See Example applications
I
IBM

cell processor, 53

Image analysis application

algorithm description
CTA image, 265

ellipsoid, 265

Hessian matrix, 264

multiscale Hessian-based vessel enhancement

filter, 264

second-order Gaussian derivatives, 264–265

vessel enhancement algorithm, 266

vessel enhancement techniques, 264

vesselness response, 265–266

AMD tools, 263

multithreaded CPU implementation

APP Profiler, 267

CodeAnalyst, 267

gDEBugger, 267

hotspot analysis, 267–268

KernelAnalyzer, 267

kernel development and static analysis,

269–270

performance optimization

APP Profiler functionalities, 270

kernel occupancy (see Kernel occupancy)

VGPR and LDS impacts, 281–283

workgroup size impacts, 275–280

power and performance analysis, 283–284

vasculature image enhancement module, 263

Image rotation. See Example applications

Images

vs. buffers, 111

channel order and type, 112

data, 111

multidimensional data structure, 112

objects, 107–109

runtime system and hardware, 112

scalar and vector reads, 113

transformations, 112

Z-order/Morton order memory layouts,

112, 113f

Intel Itanium 2, 57

Intel Sandybridge, 56. See also Central processing

units

I/O memory management unit (IOMMU),

148–149
K
KernelAnalyzer, 267, 269–270

Kernel occupancy

AMD Radeon HD5000/6000 series
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GPR limits, 272

LDS limits, 272

other constraints, 273

VLIW architecture, 271

AMD RadeonTM HD 7000, 274–275

definition, 271

Kernels

arguments, 105

debugging, 259, 260f

enqueue function, 28

extraction, 27

KHR extension, 209

local memory allocations, 31

mapping, 31

performance counters, 250–251

simulation, 204–207

textual scope, 31

uniform grid creation, 203–204

L
Local data shares (LDS)

allocation, 135–136

availability, 135f

memory latency, 136–137

read/write access, 130

SIMD, 134–135

Local memory. See also Memory model

data access
binning operations, 188

hardware banks, 189, 189f

reduction operation, 190f

SIMD vectors, 188

performance

access phase, 143, 143f

balance efficiency, 145

behavior, 144, 144f

code loads, 141

data caches, 140

data structures, 144–145, 145f

HD6970 memory system and SIMD cores,

140f

images map data, 141–142

prefix sum, 143f, 144

read/write operations, 141

trade-offs, 141

VLIW packet, 143–144

Local memory buffers, 158

M
Matrix multiplication. See Example applications

Memory management unit (MMU), 147

Memory model

device-side memory model
constant memory, 121–122

global memory, 117–119

local memory, 119–121

private memory, 122

relaxed consistency, 116–117

host-side memory model

buffers, 108–111

images, 111–113

Memory objects

buffers, 24–25

definition, 24

images, 25–26

Message-passing communication

MPI, 10

physical/arbitrary device, 9–10

Message passing interface (MPI), 10

Mixed particle simulation. See Example applications

MPI. See Message passing interface

Multiscale Hessian-based vessel enhancement

filter, 264

Multithreading

extraction, instruction parallelism, 46

MTA and XMT design, 49

SMT, 47, 47f

time-sliced version, 47, 48f

types, 46–47

N
NVIDIA GTX580. See Graphic processing units

O
OpenCL. See Open computing language

Open computing language (OpenCL)

beyond C and Cþþ

Aparapi, 234–235

DSL, 235

FFI, 233

high-level languages, 233

PyOpenCL implementation, 233

compilation

AMD’s implementation, 82

dynamic libraries, 82

Linux, 83

device architectures

block-based parallelism model, 39

design space
APU and APU-like designs, 61–63

CPU designs, 54, 56–58

CPUs vs. GPUs, 53

GPU, 58–61

state storage and ALUs, 54, 55f

hardware trade-offs
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cache hierarchies and memory systems,

52–53

cores, 40

graphics APIs and pixel shaders, 39

heterogeneity, 40

multi-core architectures, 49–51

multi-core CPUs, 40

multithreading, 46–49

performance increase, frequency, 41–42

SIMD and vector processing, 45–46

superscalar execution, 42

VLIW, 42–45
device fission, extensions

AMD Istanbul CPU, 212, 215f

class Parallel, 212–215

command queues, 216, 218f

ConcRT and TBB, 212–213

creation, subdevices, 216

exported extension, 215

funcWrapper, 219

implementation, 219–223

subdevice partition properties, 214, 216t

double precision, extensions

AMD CPU, 223

Cþþ Wrapper API, 225–226

data types, 223–224

floating point formats, 223

matrix multiplication implementation, 224–225

profiling API, 226–231

execution environment

command queues, 22–23

contexts, 22

events, 23

flush and finish command, 26

memory objects, 23–26

execution model

CPU concurrency models, 16–17

data-parallel execution, 17–18

hierarchical concurrency model, 18

memory structures, 16

NDRange, 18, 19f

framework, heterogeneous programming, 1–2

Haskell (see Haskell OpenCL)

kernels

compiling kernels, 33, 36

enqueue function, 28

extraction, 27

memory model (See Memory model)

parallel computing, 2

platform independence, 39

platform vendors, 2

program object creation (See Programs)
querying, platform and device, 210

scope and applicability, 2

specification, models

defined, 15–16

execution, 16

memory, 16

parallel execution, 16

platform, 16

programming, 16

standard, 15

writing kernels

local memory allocations, 31

mapping, 31

textual scope, 31

P
Parallelism granularity

chunk size selection, 10–11

coarse-grained, 10

computation ratio, 10–11

fine-grained, 10

Parallel programming

array multiplication, 5f

computing, definition, 4

and concurrency
assignments, 7–8

data sharing and synchronization, 11

message-passing communication, 9–10

parallelism grains, 10–11

receiving and processing input, 7

subsets, program, 8, 8f

threads and shared memory, 9

control and data intensive, 1

data and task-level parallelism, 5–6

divide-and-conquer methods, 2–3

elements multiplication, 4

goals, 2

GPUs, 3–4

heterogeneity, 1

image filtration, FFT, 5f

multiple processors, 3

OpenCL, 1–2

parallelism and concurrency, classes, 4

reduction concept, 6

simple sorting and vector-scalar multiply, 3f

structure, 11–13

Physical address, 147

Pinned staging buffers, 157, 159

Pragma directive, 211–212

Private memory. See Memory model

Profiling events

command’s queues and status, 244

enabling, 244
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information, 245

kernel execution, 245–246

valid values enumeration, 244–245

Programs

binary representation, 27

build process features, 27

dynamic library interface, 27

kernels, 26

runtime compilation, 26–27

Q
Queuing and global synchronization

callbacks, event, 102–105

cl finish operation, 93

command barriers and markers
clwaitForEvents, 107

event list, 107

task graphs, 107

events (See Events)

memory consistency

commands, 94

data, 94

runtime, 94

primary points, 92–93

thread-safe command queues, 92
R
Radeon memory bus (RMB), 152
S
Second-order Gaussian derivatives, 264–265

SIMD. See Single instruction multiple data

Simultaneous multithreading (SMT), 47, 47f

Single instruction multiple data (SIMD)

cores, 50, 51f

threads, 59

vector processing
CPUs and GPUs, 46

execution advantage, 46

parallelism, 45
SMT. See Simultaneous multithreading

SoC. See Systems-on-chip

Sun Niagara design, 57–58. See also Central

processing units

Superscalar execution, 42

Systems-on-chip (SoC)

APU
benefits, 51–52

cell broadband engine processor, 52

multi-core design, 51

fused processors, 61
T
Threading building blocks (TBB), 212

Threads and shared memory

consistency model, defined, 9

definition, 9

global view, 9

OpenCL, 9

shared bus, 9

Throughput computing, 49, 49f. See also

Multithreading

Translation lookaside buffer, 152

V
Vector addition. See Example applications

Vendor extensions, 209–210

Very long instruction word (VLIW)

ALU packing, 170–171

architectures, 40

description, 42–43

designs, 45

DSP chips, 45

efficiency losses, 44

four-way, 20

method, 42–43

out-of-order execution, 42–43, 43f, 44f

packet stream, 43–44

SIMD lane, 51f

VLIW. See Very long instruction word

W
Web photo editor. See Example applications

Workgroups

definition, 86

histogram
global memory transactions, 184

local memory, 183–184

pixels mapping, 184

size, optimal, 184–185

size selection

aligning data, 168

caching data to local memory, 162, 164–169

efficiency, vector reading, 168–169

filter size, 161–162

input-output efficiency, 162

memory access aligning, 166–168

optimization approach, 163

out-of-bounds access, 163–164, 164f

Work-items, 17, 85

Write combining (WC) unit, 152

Z
Zero-copy buffers, 150–151, 157–159


	Contents
	Foreword to the RevisedOpenCL 1.2 Edition
	Foreword to the First Edition
	Preface
	Acknowledgments
	About the Authors
	1. Introduction to Parallel Programming
	OPENCL
	THE GOALS OF THIS BOOK
	THINKING PARALLEL
	CONCURRENCY AND PARALLEL PROGRAMMING MODELS
	Threads and Shared Memory
	Message-Passing Communication
	Different Grains of Parallelism
	Data Sharing and Synchronization

	STRUCTURE
	Reference
	Further Reading and Relevant Websites

	2. Introduction to OpenCL
	INTRODUCTION
	The OpenCL Standard
	The OpenCL Specification
	Kernels and the OpenCL Execution Model

	PLATFORM AND DEVICES
	Host–Device Interaction

	THE EXECUTION ENVIRONMENT
	Contexts
	Command Queues
	Events
	Memory Objects
	Buffers
	Images
	Flush and Finish
	Creating an OpenCL Program Object
	The OpenCL Kernel

	MEMORY MODEL
	WRITING KERNELS
	FULL SOURCE CODE EXAMPLE FOR VECTOR ADDITION
	VECTOR ADDITION WITH C++ WRAPPER
	SUMMARY
	Reference

	3. OpenCL DeviceArchitectures
	HARDWARE TRADE-OFFS
	Performance Increase by Frequency, and Its Limitations
	Superscalar Execution
	VLIW
	SIMD and Vector Processing
	Hardware Multithreading
	Multi-Core Architectures
	Integration: Systems-on-Chip and the APU
	Cache Hierarchies and Memory Systems

	THE ARCHITECTURAL DESIGN SPACE
	CPU Designs
	Low-Power CPUs
	Mainstream Desktop CPUs
	Intel Itanium 2
	Niagara

	GPU Architectures
	Handheld GPUs
	At the High End: AMD Radeon HD7970 and NVIDIA GTX580

	APU and APU-Like Designs

	SUMMARY
	References

	4. Basic OpenCL Examples
	EXAMPLE APPLICATIONS
	Simple Matrix Multiplication Example
	Step 1: Set Up Environment
	Step 2: Declare Buffers and Move Data
	Step 3: Runtime Kernel Compilation
	Step 4: Run the Program
	Step 5: Return Results to Host

	Image Rotation Example
	Step 1: Set Up Environment
	Step 2: Declare Buffers and Move Data
	Step 3: Runtime Kernel Compilation
	Step 4: Run the Program
	Step 5: Read Result Back to Host

	Image Convolution Example
	Step 1: Create Image and Buffer Objects
	Step 2: Write the Input Data
	Step 3: Create Sampler Object
	Step 4: Compile and Execute the Kernel
	Step 5: Read the Result
	The Convolution Kernel


	COMPILING OPENCL HOST APPLICATIONS
	SUMMARY

	5. Understanding OpenCL’s Concurrency and Execution Model
	KERNELS, WORK-ITEMS, WORKGROUPS, ANDTHE EXECUTION DOMAIN
	OPENCL SYNCHRONIZATION: KERNELS, FENCES,AND BARRIERS
	QUEUING AND GLOBAL SYNCHRONIZATION
	Memory Consistency in OpenCL
	Events
	Command Queues to Multiple Devices
	Event Uses beyond Synchronization
	User Events

	Event Callbacks
	Native Kernels
	Command Barriers and Markers

	THE HOST-SIDE MEMORY MODEL
	Buffers
	Manipulating Buffer Objects
	Images

	THE DEVICE-SIDE MEMORY MODEL
	Device-Side Relaxed Consistency
	Global Memory
	Local Memory
	Constant Memory
	Private Memory

	SUMMARY

	6. Dissecting a CPU/GPUOpenCL Implementation
	OPENCL ON AN AMD BULLDOZER CPU
	OPENCL ON THE AMD RADEON HD7970 GPU
	Threading and the Memory System
	Instruction Execution on the HD7970 Architecture
	The Shift from VLIW Execution
	Resource Allocation

	MEMORY PERFORMANCE CONSIDERATIONS IN OPENCL
	OpenCL Global Memory
	Local Memory as a Software-Managed Cache

	SUMMARY
	References

	7. Data Management
	MEMORY MANAGEMENT
	DATA TRANSFER IN A DISCRETE ENVIRONMENT
	Optimizations
	Zero-Copy Buffers

	DATA PLACEMENT IN A SHARED-MEMORY ENVIRONMENT
	Local Memory
	Cacheable System Memory
	Uncached System Memory

	EXAMPLE APPLICATION—WORK GROUP REDUCTION
	Using a Discrete GPU Device
	Case 1 Using device buffers
	Case 2 Using pinned staging buffers
	Case 3 Using zero-copy buffers
	Case 4 Combination

	Using an APU
	Case 1 Using local memory buffers
	Case 2 Using pinned staging buffers
	Case 3 Using zero-copy buffers


	References

	8. OpenCL Case Study: Convolution
	CONVOLUTION KERNEL
	Selecting Workgroup Sizes
	Caching Data to Local Memory
	Aligning for Memory Accesses
	Improving Efficiency with Vector Reads
	Performing the Convolution
	Improving Performance with Loop Unrolling

	CONCLUSIONS
	CODE LISTINGS
	Host Code
	Kernel Code

	Reference

	9. OpenCL Case Study:Histogram
	CHOOSING THE NUMBER OF WORKGROUPS
	CHOOSING THE OPTIMAL WORKGROUP SIZE
	OPTIMIZING GLOBAL MEMORY DATA ACCESS PATTERNS
	USING ATOMICS TO PERFORM LOCAL HISTOGRAM
	OPTIMIZING LOCAL MEMORY ACCESS
	LOCAL HISTOGRAM REDUCTION
	THE GLOBAL REDUCTION
	FULL KERNEL CODE
	PERFORMANCE AND SUMMARY

	10. OpenCL Case Study:Mixed Particle Simulation
	OVERVIEW OF THE COMPUTATION
	GPU IMPLEMENTATION
	Buffer Creation
	Building the Acceleration Structure
	Computing Collisions
	Integration

	CPU IMPLEMENTATION
	LOAD BALANCING
	PERFORMANCE AND SUMMARY
	KERNEL FOR UNIFORM GRID CREATION
	KERNELS FOR SIMULATION

	11. OpenCL Extensions
	OVERVIEW OF EXTENSION MECHANISM
	DEVICE FISSION
	DOUBLE PRECISION
	Listing 11.2
	Listing 11.3
	Listing 11.4

	References

	12. Foreign Lands: Plugging OpenCL In
	BEYOND C AND C++
	Listing 12.1
	Listing 12.2

	HASKELL OPENCL
	Module Structure
	Environments
	Reference Counting
	Platform and Devices
	The Execution Environment

	SUMMARY
	References

	13. OpenCL Profiling andDebugging
	INTRODUCTION
	PROFILING WITH EVENTS
	AMD ACCELERATED PARALLEL PROCESSING PROFILER
	Collecting OpenCL Application Trace
	Summary Pages View
	API Trace View
	Collecting OpenCL GPU Kernel Performance Counters

	AMD ACCELERATED PARALLEL PROCESSINGKERNELANALYZER
	WALKING THROUGH THE AMD APP PROFILER
	Starting the AMD APP Profiler
	Using the Application Trace to Find the Application Bottleneck
	Using the GPU Performance Counters to Find theBottleneck in the Kernel

	DEBUGGING OPENCL APPLICATIONS
	OVERVIEW OF GDEBUGGER
	Debugging Parallel OpenCL Applications with gDEBugger

	API-Level Debugging
	Kernel Debugging
	AMD PRINTF EXTENSION
	CONCLUSION

	14. Performance Optimization of an Image Analysis Application
	DESCRIPTION OF THE ALGORITHM
	MIGRATING MULTITHREADED CPU IMPLEMENTATIONTO OPENCL
	Hotspot Analysis
	Kernel Development and Static Analysis

	PERFORMANCE OPTIMIZATION
	POWER AND PERFORMANCE ANALYSIS
	Kernel Occupancy
	Kernel Occupancy for AMD Radeon HD5000/6000 Series
	Kernel Occupancy for AMD Radeon� HD 7000
	Impact of Workgroup Size
	Impact of VGPR and LDS

	CONCLUSION
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	Z


