

1. Classes and Instances
2. The Methods
3. The Constructors
4. Static Elements
5. Initialization sections
6. Package
7. Inheritance and Polymorphism
8. Abstract classes and Interfaces
9. String processing
10. Wrapper classes for primitive types
11. Exceptions and Assertions
12. Nested classes
13. Enums
14. Generics
15. Collections
16. Method overload resolution
17. Multithreads
18. Core Java classes
19. Object Oriented Design
20. Functional Programming

Module contents

Core Java classes
- The Math class
- Random Numbers
- BigInteger and BigDecimal classes
- The System class
- The Runtime class
- The Properties class
- Creating a Locale
- Numbers and Currencies
- Date and time

Module contents

Core Java classes
- The Math class
- Random Numbers
- BigInteger and BigDecimal classes
- The System class
- The Runtime class
- The Properties class
- Creating a Locale
- Numbers and Currencies
- Date and time

machine time approach

java.util.Date

Date and Time
public class Date implements java.io.Serializable, Cloneable, Comparable<Date> {

private static final BaseCalendar gcal =CalendarSystem.getGregorianCalendar();

private static BaseCalendar jcal;

private transient long fastTime;

// Parse 2-digit years within the correct default century

private static int defaultCenturyStart;

public Date() {

this(System.currentTimeMillis());

}

/**

* Initializes a Date object with the specified number of milliseconds since the

* standard base time known as "the epoch", namely January 1 1970, 00:00:00 GMT.

*/

public Date(long date) {

fastTime = date;

}

...

}
See DateDemo

human time approach

java.util.Calendar

Date and Time
public abstract class Calendar implements Serializable, Cloneable,

Comparable<Calendar> {

// The current time is represented in two ways by Calendar: as UTC

// milliseconds from the epoch (1 January 1970 0:00 UTC), and as local

// fields such as MONTH, HOUR, AM_PM, etc

public static final int ERA = 0;

public static final int YEAR = 1;

public static final int MONTH = 2;

...

//A style specifier for getDisplayNames(int, int, Locale) getDisplayNames indicating

public static final int ALL_STYLES = 0;

public static final int SHORT = 1;

...

// 1. Initially, no fields are set, and the time is invalid.

// 2. If the time is set, all fields are computed and in sync.

// 3. If a single field is set, the time is invalid.

// Recomputation of the time and fields happens when the object needs

// to return a result to the user, or use a result for a computation.

protected int fields[];

protected long time;
...

See CalendarDemo

Formatted date and time output

java.text.DateFormat styles - int constants:

• SHORT 13.01.23 10:24

• MEDIUM (default) 13 січ. 2023 р., 10:24:18

• LONG 13 січня 2023 р. 10:24:18 EET

• FULL пʼятниця, 13 січня 2023 р. 10:24:18
за східноєвропейським стандартним
часом

Date today = new Date();

DateFormat dtf = DateFormat.getDateTimeInstance(int style);

DateFormat df = DateFormat.getDateInstance(int style);

DateFormat tf = DateFormat.getTimeInstance(int style);

System.out.println(dtf.format(today));

See DateFormat

Formatted date and time output

java.util.Calendar styles - int constants:

• NARROW_FORMAT J

• SHORT Jan.

• SHORT_STANDALONE Jan

• LONG Januar

You can use _SANDALONE styles to avoid dot printing at the end

Calendar cal = Calendar.getInstance();
Locale locale = Locale.GERMANY;
System.out.println(cal.getDisplayName(Calendar.MONTH,

Calendar.LONG, locale));

See DateFormat

Java Date and Calendar issues

• Date is mutable. It's possible to change the Date
instance by client
without the class-owner of that instance knowing;

• Date constructor parameters are mistakeable (year,
month);

• We get timezone using String instead of Enum so we
can mistake without exception throw.

• Not intuitive Calendar instance constructing
including TimeZone.

• DateFormat cannot be applied to Calendar instance
(and SimpleDateFormat is thread-unsafe).

See DateCalendarIssues

Java Date-Time API
• Java Date-Time API was introduced in the Java SE 8

(package java.time)
• Java Date-Time API based on the ISO-8601 Data elements

and interchange formats - Representation of dates and
times, that uses the de facto world Gregorian calendar.

• Java Date-Time API uses java.time.chrono package tools
for alternative calendar systems (Japanese Imperial or Thai
Buddhist or you can create your own).

• Java Date-Time API uses the Unicode Common Locale Data
Repository (CLDR) with the world's largest collection
of locale data available and the Time-Zone Database (TZDB)

• Most of the Date-Time API classes create immutable (and
thread-safe) objects.

• The Date-Time API provides a fluent interface, making the
code easy to read. Since JDK 8

The java.time package provides the main classes for dealing with dates
and times (we call temporal objects for these classes instances):

• LocalDate - represents a date (year, month, day).

• LocalTime - represents time in a 24-hour day (hour, minute, second,
nanosecond).

• LocalDateTime - represents the date and time combined, in terms of
both date and time fields. A date-time has no time zone.

• ZonedDateTime - represents the date-time with a time zone.

• Instant - represents a measurement of time starting from an epoch
(Jan 1, 1970 00:00:00 GMT). An instant values store as a long-type
seconds and int-type nanoseconds, both can be a negative value.

• Period - represents the difference between two dates in years,
months, and days. It related to date timeline and timezones. It can be
negative.

• Duration - represents the difference between two times in seconds
and nanoseconds. It does not related to date timeline and timezones.
It can be negative.

Java Date-Time API Temporal classes

java.time package

Class or Enum Year Month Day Hours
Minu

tes
Secon

ds*
Zone

Offset
Zone

ID
toString Output

LocalDate ✔ ✔ ✔ 2013-08-20

LocalTime ✔ ✔ ✔ 08:16:26.943

LocalDateTime ✔ ✔ ✔ ✔ ✔ ✔
2013-08-
20T08:16:26.937

ZonedDateTime ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

2013-08-
21T00:16:26.941+
09:00[Asia/Tokyo]

Instant ✔
2013-08-
20T15:16:26.355Z

Period ✔ ✔ ✔ *** *** P10D (10 days)

Duration ** ** ** ✔ PT20H (20 hours)

Java Date-Time API Basic TemporalClasses

* with nanosecond precision,
** has methods to provide time in these units.
*** daylight saving time or other local time differences are observed.

Throwing java.time.DateTimeException indicates problems
with creating, querying and manipulating date-time objects.

Class or Enum Year Month Day Hours
Minu

tes
Secon

ds*
Zone

Offset
Zone

ID
toString Output

DayOfWeek** ✔ FRIDAY

MonthDay ✔ ✔ --08-20

Month** ✔ AUGUST

YearMonth ✔ ✔ 2013-08

Year ✔ 2013

OffsetTime ✔ ✔ ✔ ✔
08:16:26.957-
07:00

OffsetDateTime ✔ ✔ ✔ ✔ ✔ ✔ ✔

2013-08-
20T08:16:26.954-
07:00

ZoneId ✔ Europe/Paris

ZoneOffset ✔ +02:00

* Seconds are captured to nanosecond precision.
* This is enum

Java Date-Time API Supplement Classes

Java Date-Time API main classes hierarchy

Method Use

of(int year, int month, ...) static. Construct temporal object from
provided temporal fields.

int get(TemporalField field) Return a specific field of this temporal object.
boolean

isSupported(TemporalField
field)

Check specific property of this temporal
object.

minus(long val, ChronoUnit
unit)

minusXXX(long val)

Returns a copy of the target object after
subtracting an amount of time.

plus(long val, ChronoUnit unit)
plusXXX(long val)

Returns a copy of the target object after
adding an amount of time.

atTime(int hour, int minute, ...)

Create a new temporal object by combining
this temporal object and another temporal
object.
Not provided by ZonedDateTime class.

with(TemporalField field, long
newVal)

withXXX(long newVal)

Create a copy of this temporal object with
one field modified.

toXXX() Convert this temporal object to another type.
XXX can be a specific field, a specific unit or a class name

All temporal classes common methods

Method Use

now() static. Obtain the current date and/or time from the
system clock in the default or specified time zone.

from(TemporalAccess
or temporal)

static. Obtain a specialized instance of this temporal
class from temporal class instance-parameter.

long until(Temporal
endExclusive,

TemporalUnit unit)

Calculates the amount of time until another date-time
in terms of the specified unit.

parse(CharSequence
text,

DateTimeFormatter
formatter)

static. Obtain a temporal instance from a specified text
string.

String
format(DateTimeForm

atter formatter)

Create a text representation of this temporal object
using a specified formatter. Instant class does not
provide this method.

boolean
isEqual/isBefore/

isAfter(ChronoLocalDa
teTime<?> other)

default.

Additional common methods for LocalDate,
LocalTime, LocalDateTime, ZonedDateTime, Instant

See LocalDateTimeDemo

See EnumsDemo
See DateSupplementClassesDemo

Time Zone and Offset Classes
• A time zone is a region of the Earth where the same

standard time is used. The time observed in a region
is usually referred to as the local time.

• Each time zone is described by an identifier and usually
has the format region/city (Asia/Tokyo) and an offset in
time from Greenwich/UTC time (Coordinated Universal
Time).

• Java uses the IANA Time Zone Database (TZDB) maintained
by the Internet Assigned Numbers Authority (IANA) that
updates the database regularly, in particular, regarding
changes to the rules for DST practiced by a time zone.

• GMT (Greenwich Mean Time) has zero offset from
UTC/Greenwich (UTC+0), thus the two are often used as
synonyms, for example, GMT-4 is equivalent to
UTC-4. However, GMT is a time zone, whereas UTC is a
time standard.

Time Zone and Offset Classes
• The following three classes in the java.time package

are important when dealing with date and time
in different time zones and daylight saving time (DST):
ZoneId
ZoneOffset
ZonedDateTime

See TimeZoneClassesDemo

• For representing an amount of time, the Date and Time
API provides the two classes Period and Duration.

• A Period uses date-based amount of time (years,
months, days) so it can be used with LocalDate,
LocalDateTime and ZonedDateTime classes.

• The total period of time is represented by all three units
together: months, days, and years.

• A Period of one day, when added to a ZonedDateTime,
may vary according to the time zone. For example, if it
occurs on the first or last day of daylight saving time.

• The Period class provides various get methods, such as
getMonths, getDays, and getYears, so that You can
extract the amount of time from the period.

Period

See PeriodDemo

Duration
• A Duration implements a time-based amount of time

in terms of seconds and nanoseconds, using a long
and an int value for these time units, respectively.

• A Duration instance can represent an amount of time
in terms of days, hours, and minutes. As these time units
have fixed lengths, it makes interoperability between
these units possible.

• The Duration class can be used with the LocalTime
and LocalDateTime classes.

• A Duration is most suitable in situations that measure
machine-based time, such as code that uses
an Instant object.

See DurationDemo

Instant Class
• An Instant object represents a point on the timeline,

measured with nanosecond precision from a starting
point or origin that is, January 1, 1970, at midnight GMT
- and is called epoch.

• Instants before the epoch have negative values, whereas
instants after the epoch have positive values.

• An Instant object is modeled with two values:
• A long value to represent the epoch-second
• An int value to represent the nano-of-second (0 -
999_999_999)

• The Instant class can be used for representing computer
time, specially timestamps that identify to a higher
precision when an event occurred on the timeline.
Instants are suitable for persistence purposes - for
example, in a database. See InstantDemo

Temporals Converting from/to
Legacy Date & Calendar

From To Comments

java.util.Date
java.time.

LocalDateTime
The Date toInstant() and LocalDateTime
.ofInstant(Instant instant, ZoneId zone) methods

java.time.
LocalDateTime

java.util.Date
The Date.from(Instant instant) and
LocalDateTime atZone(ZoneId zone) and
ZonedDateTime toInstant() methods

java.util.Gregorian
Calendar

java.time.ZonedD
ateTime

The Calendar.getInstance() and ZonedDateTime
.ofInstant(Instant instant, ZoneId zone) methods

java.time.Zoned
DateTime

java.util.Gregorian
Calendar

The GregorianCalendar.from(ZonedDateTime zdt)
method

• An object of the java.util.Date represents time, date, and time
zone. It can be converted to java.time.Instant object.

• Also we can create the java.util.Date object from the
java.time.Instant object.

See LegacyCodeConvertDemo

