

Training program

1. Java I/O Streams
2. Java Serialization
3. Java Database Connectivity
4. Java GUI Programming
5. The basics of Java class loaders
6. Reflections
7. Annotations
8. The proxy classes
9. Java Software Development
10. Garbage Collection

Java Serialization 1/9
• Often, when a program is running, it is necessary to save the

state of its objects (intermediate and final). Serialization and
deserialization are Java technologies that store objects as a
sequence of bytes and restore objects from such a sequence.

• A serialized object as a sequence of bytes can be written
to a file, transmitted over the network, written to a buffer
in memory. And this sequence can be deserialized into an object
by this or another program on the current or another computer,
regardless of the operating system running on it.

• The following information is included when an object is
serialize:

- the class information needed to reconstruct the object;

- the values of all serializable non-transient and non-static
members, including those that are inherited.

• Object methods and constructors are not saved as part of the
serialized IO stream, since the receiving side must have
an object class to interpret the serialized byte stream.

• If class not implements Serializable interface,
it serialization throws java.io.NotSerializableException

public interface Serializable {}

Java Serialization

• An ObjectOutputStream is used to save the object state to
file (to serialize object).

• An ObjectOutputStream must wrap (chain) an OutputStream
subclass, for example FileOutputStream.

• We can use for this purpose ObjectOutputStream method:

public final void writeObject(Object obj) throws IOException

• An ObjectInputStream is used to restore the object state
from file (to deserialize object).

• An ObjectInputStream must wrap (chain) an InputStream
subclass, for example FileInputStream.

• We can use for this purpose ObjectInputStream method:
public final Object readObject() throws IOException,

ClassNotFoundException

Serialization-deserialization Stream Chaining

For serialization-deserialization to/from file

Java Serialization - serialVersionUID

• During serialization, an unique constant serialVersionUID
• (of type long) is calculated as hash-function from the following

members of the serializing class :
- field names and their modifiers (field values ​​are not taken

into account);
- constructors and methods declarations, including signatures,

return types and modifiers (exception declarations
are ignored). Constructor and method bodies are not taken
into account.

• The serialVersionUID value is placed in the serialization file.
• While deserialization, the same value is obtained

for the restored object from class.
• If the numbers do not match, a java.io.InvalidClassException

will be thrown.

See serialization\basic\Student

• But if You add a private static final long serialVersionUID
field to the class and set it to an arbitrary value (the standard
value of 1L is often used), then the serialVersionUID
calculation mechanism will be disabled and the
serialVersionUID value we specified will be written to the file
and used for deserialization.

• With such fixed serialVersionUID value You can:

- add/remove class fields;

- move fields around the class definition, etc.

• Since JDK 14 @Serial annotation was added. It has not
influence on serialization mechanism. It only checks the
correct field and method used by serialization signature
(like @Override annotation).
But it need compiler options:
javac -Xlint:serial Main.java

for warning printing.

Java Serialization - serialVersionUID

See serialization\basic\Student

• You can generate the serialVersionUID with the serialver tool:
serialver -classpath bin basic.Student

basic.Student: private static final long
serialVersionUID = 11224748738392134L;

Java Serialization - serialVersionUID

See serialization\basic\Student

Java Serialization - serialVersionUID

• You can generate the serialVersionUID with the IntelliJ IDEA:

See serialization\basic\Student & SerializationDemo
& DeserializationDemo

Java Serialization explore

For SerializationStudyApp project basic package:

• Add and remove implements Serializable for class Student
and run SerializationDemo program

• Comment private static final long serialVersionUID = 1L field
in Student class and add private String patronymicName field
and run DeserializationDemo program

• In console run
serialver -classpath bin basic.Student
and check if serialVersionUID changed while:
adding field, adding field value,
changing constructor modifier,
adding throws clause to constructor and method,
changing body of constructor and method.

Java Serialization
The serialization algorithm does the following things:
1) recording metadata about the class associated with the

object;
2) recursively writing superclass descriptions until

java.lang.Object is reached;

3) after the end of the metadata recording, recording of the
actual data associated with the instance, starts recording from
the topmost superclass;

4) recursively writing data associated with an instance, starting
with the lowest superclass

Magic data
Description

of the object
class

Descriptions
of the

superclasses

Data of the
object

Description
of the

associated
class

Data of
associated

object

Java Object Serialization Specification -
https://docs.oracle.com/en/java/javase/19/docs/specs/serialization/index.html

Serialization file format

Serialization file format

Serialization file format -1/4

Serialization protocol data (5 bytes):
ac ed: - STREAM_MAGIC - serialization protocol pointer
00 05: STREAM_VERSION - serialization protocol version
0x73: TC_OBJECT - a pointer that a new object has been serialized

Description of the class of the serialized object :
0x72: TC_CLASSDESC - serialized object class pointer
00 0d: class filename length from application root - 13 characters
62 61 73 69 63 2e 53 74 75 64 65 6e 74: package and class file name basic.Student
00 00 00 00 00 00 00 01: serialVersionUID = 1L
0x02: Flags value 02 means the object supports serialization.
00 03: number of fields of this class

Description of the first field of the class:
0x49: variable type code 49 - "I", int ('B' for byte, 'C' for char, 'D' for double, 'F'
for float, 'J' for long, 'L' for non-array object types, 'S' for short, 'Z' for boolean, and
'[' for arrays))
00 03: variable name length
61 67 65: variable name - age

Description of the second field of the class (the type of reference variables is
described in the format "field descriptor" L ClassName ;):

0x4c: start of reference variable declaration "L",
00 09: variable name length
66 69 72 73 74 4e 61 6d 65: variable name - firstName
0x74: TC_STRING - reference variable type pointer

Serialization file format -2/4

00 12: length of reference variable type name in the format "field descriptor"
4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b - type name Ljava/lang/String;

Description of the third class field :
0x4c: start of reference variable declaration "L",
00 08: variable name length
6c 61 73 74 4e 61 6d 65: variable name - lastName
0x71: TC_REFERENCE reference to an object already written to the stream
(Ljava/lang/String;)
00 7e 00 01 ???
0x78: TC_ENDBLOCKDATA - end of description

0x70: TC_NULL - there is no parent class (otherwise it would be its description)

Serialization file format -3/4

Field values :
00 00 00 16: the value of a primitive type variable int (22)
0x74: TC_STRING - reference variable type pointer
00 05: длина значения ссылочной переменной в формате
53 61 73 68 61: reference variable value (Sasha)

0x74: TC_STRING - reference variable type pointer
00 06: the length of the value of the reference variable in the format
50 65 74 72 6f 76: reference variable value (Petrov)

Serialization file format -3/4

• You can use transient modifier with field declaration
to omit the serialization of the field - selective serialization.

• The transient modifier prevents serialization of the field,
i.e. placing the field description and its value in the
serialization file.

• However, during deserialization, due to casting the type
of the restored object to the class of the serialized object,
the name of the transient property is restored, but it has
the default value.

• For static fields, serialization and deserialization are not
performed, since these technologies apply to an object,
not a class, so the value of a static field will be the same
as it is set in the class or the default value if not set.

The transient modifier

See serialization\transientstatic

Java Serialization

• All subclasses of a serializable class are automatically
serializable.

• However, if the serializable class contains a reference
to an object of a non-serializable class,
a java.io.NotSerializableException is thrown when trying
to serialize.

• In other words, the resulting graph of this object is fully
serializable. An object graph includes a tree or structure
of object fields and its subobjects.

Magic data
Description

of the object
class

Descriptions
of the

superclasses

Data of the
object

Description
of the

associated
class

Data of
associated

object

See serialization\complex

Serialization file format -1/4

0x73: TC_OBJECT - pointer that the new object is serialized
0x72: TC_CLASSDESC - serialized object class pointer
00 0E: class filename length from application root - 14 characters
663 6F 6D 70 6C 65 78 2E 43 6F 75 72 73 65: complex.Course class
00 00 00 00 00 00 00 01: serialVersionUID = 1L
0x02: Flags value 02 means the object supports serialization
00 02: number of fields of this class

Description of the first field of the class :
0x4a: variable type code - 'J', LONG ('B' for byte, 'C' for char, 'D' for double, 'F'
for float, 'I' for int, 'L' for non-array object types, 'S' for short, 'Z' for boolean, and '['
for arrays))
00 02: variable name length
69 64: variable name - id

Serialization file format -2/4

Description of the second field of the class (the type of reference variables is
described in the format "field descriptor" L ClassName ;):
0x4c: start of reference variable declaration "L",
00 04: variable name length
6E 61 6D 65: variable name - name
0x71: TC_REFERENCE reference to an object already written to the stream
(Ljava/lang/String;)
00 7e 00 01 ???

Serialization file format -3/4

0x78: TC_ENDBLOCKDATA - end of description

0x70: TC_NULL - there is no parent class (otherwise it would be its description)00
00 00 00 00 00 00 0B - course id field value
0x74: TC_STRING - reference variable type pointer
00 09: the length of the value of the reference variable in the format
4A 61 76 61 20 42 61 73 65: reference variable value (Java Base)

Serialization file format -4/4

See serialization\inheritance

Serialization file format -1/4

0x72: TC_CLASSDESC - serialized object class pointer
00 12: class filename length from application root - 18 characters
69 6E 68 65 72 69 74 61 6E 63 65 2E 50 65 72 73 6F 6E: inheritance.Person class
00 00 00 00 00 00 00 01: serialVersionUID = 1L
0x02: Flags value 02 means the object supports serialization
00 02: number of fields of this class
… description of the fields of the parent class and their values for the object

See serialization\custom

private void writeObject(ObjectOutputStream out)
throws IOException

and/or
private void readObject(ObjectInputStream in)

throws IOException, ClassNotFoundException

Must be private!!!

and write and read all properties of the object.

Java Externalizable Interface

This is not a marker interface

package java.io;

import java.io.ObjectOutput;
import java.io.ObjectInput;

public interface Externalizable extends java.io.Serializable {

void writeExternal(ObjectOutput out) throws IOException;

void readExternal(ObjectInput in) throws IOException,
ClassNotFoundException;

}

• In contrast to Serializable interface, Externalizable
delegates to the class the responsibility of how it
should be serialized and deserialized.

• We are implementing he Externalizing interface by the
class that should be serialized and override
void writeExternal(ObjectOutput out) and
void readExternal(ObjectInput in) methods

• We must also to define default constructor in the class
(to pre-create an object during deserialization,
from which the readExternal(ObjectInput in) method is
then called).

See serialization\externalizable

Serializable vs Externalizable

• For tasks that do not require high performance or when
serializing complex cross-referenced objects, it is best to
use Serializable.

• On the other hand, when serialization speed is really
important (for example, if you frequently (de)serialize a
large number of objects), the Externalizable interface will
benefit. Compare with basic deserialization.

• It is also worth noting that despite the speed advantage
of the Externalizable mechanism (over standard
serialization), when handling complex object structures,
‘manual’ serialization must be carefully thought out to
avoid breaking the original object graph.

Alternatives to standard serialization

eXtensible Markup Language
Java Architecture for XML Binding
(JAXB, JSR-222)

Java API for JSON Processing
(JSON-P, JSR-353)

XML and JSON serialization

Third-party library:
FasterXML Jackson

See serialization\xmlserialization & serialization\jsonserialization

<dependency>
<groupId>com.fasterxml.jackson.dataformat</groupId>
<artifactId>jackson-dataformat-xml</artifactId>

</dependency>

<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>

</dependency>

File - Project Structure - Project Settings
- Libraries

XML and JSON serialization

