JAVA PROGRAMMING BASICS

Module 3: Java Standard Edition

e 4@
Training program

Java I/O Streams

Java Serialization

Java Database Connectivity
Java GUI Programming

The basics of Java class loaders
Reflections

Annotations

The proxy classes

Java Software Development
10 Garbage Collection

Lo N WU R WN

Module contents

1. Annotations
— Annotations Basics
— Annotation Types Used by the JavaSE
— Custom annotations in Java

Module contents

1. Annotations
— Annotations Basics
— Annotation Types Used by the JavaSE
— Custom annotations in Java

Annotations Basics 1/4

Annotations, a form of metadata, provide data

about a program that is not part of the program
itself

Annotations have no direct effect on the operation
of the code they annotate

Syntactically, annotations are a special kind

of interfaces that are attached to various program
elements in the source code, such as classes,
variables, and methods

Java annotations were added to Java from Java 5

NSS——_—————————| |
Annotation Basics

Annotations are tags inserted into source code
for processing by software tools.

Such tools can operate at the source code
or bytecode level.

Annotations can be processed at runtime using
the Java Reflection API.

There are some existing annotations that

are processed by the Java compiler, and even more
annotation support is provided by various
frameworks like Java EE/Jakarta and the Spring
Framework.

Annotations Basics 2/4

Annotations have a number of uses,
among them:

Information for the compiler

Compile-time and deployment-time
processing

Runtime processing

Annotations Basics 3/4

An annotation looks like the following:
@Entity

The at sign character (@) indicates to the
compiler that what follows is an annotation

Annotations Basics 4/4

Annotations can be applied to declarations:
declarations of classes, fields, methods, and
other program elements.

When used on a declaration, each

annotation often appears, by convention,
on its own line.

Module contents

1. Annotations
— Annotations Basics
— Annotation Types Used by the JavaSE
— Custom annotations in Java

Annotation Types Used by the JavaSE 1/4

A set of annotation types are predefined in the
Java SE API.

Some annotation types are used by the Java
compiler, and some apply to other annotations

The predefined annotation types defined

in java.lang are
@Deprecated, @Functionallnterface

@Override, @SafeVarargs
and @SuppressWarnings

S———_— e HHHSSSHEL
Standard annotations - 1

Annotation Interface Applicable To Purpose
Deprecated All Marks item as deprecated.
Suppressiarnings All but packages Suppresses warnings of the given type.
and annotations
Safevarargs Methods and Asserts that the varargs parameter is safe I
constructors to use.
Override Methods Checks that this method overrides a
superclass method.
FunctionalInterface Interfaces Marks an interface as functional (with a
single abstract method).
PostConstruct Methods The marked method should be invoked
PreDestroy immediately after construction or before
removal.
Resource Classes, interfaces, On a class or interface, marks it as a

methods, fields resource to be used elsewhere. On a
method or field, marks it for “injection.”

S———_— e HHHSSSHEL
Standard annotations - 2

Annotation Interface Applicable To Purpose

Resources Classes, interfaces Specifies an array of resources.

Generated All Marks an item as source code that has
been generated by a tool.

Target Annotations Specifies the items to which this
annotation can be applied.

Retention Annotations Specifies how long this annotation is
retained.

Documented Annotations Specifies that this annotation should be
included in the documentation of
annotated items.

Inheri ted Annotations Specifies that this annotation, when
applied to a class, is automatically
inherited by its subclasses.

Repeatable Annotations Specifies that this annotation can be

applied multiple times to the same item.

Annotation Types Used by the JavaSE 2/4

@Override annotation informs the compiler that
the element is meant to override an element
declared in a superclass.

@Qverride
int overriddenMethod() {

see predefined.override.Square

Annotation Types Used by the JavaSE 3/4

@Deprecated annotation indicates that the marked
element is deprecated and should no longer be used.

The compiler generates a warning whenever a
program uses a method, class, or field with
the @Deprecated annotation.

/*** @deprecated * explanation of why it was

deprecated */
@Deprecated static void deprecatedMethod() {

/...
}

see predefined.deprecated.DeprecatedAnnoDemo
-

Annotation Types Used by the JavaSE 4/4

@SuppressWarnings annotation tells the
compiler to suppress specific warnings that it
would otherwise generate

@SuppressWarnings("deprecation™)

public static void main(String[] args) {
long at = Date.parse(args[0]),

}

"deprecation” tells the compiler to ignore when we're
using a deprecated method or type

"unchecked" tells the compiler to ignore when we're

using raw txees

see predefined.suppresswarnings.Machine

Annotated Types used by Java SE

Java 5 introduced the concept of varargs, or
a method parameter of variable length,
as well as parameterized types.

Combining these can cause problems and

compiler warns: "Possible heap pollution from
parameterized vararg type"

@SafeVarargs annotation disabled this warn.

see predefined.predefined.safevarargs

Module contents

1. Annotations
— Annotations Basics
— Annotation Types Used by the JavaSE
— Custom annotations in Java

Custom annotations in Java 1/8

The @interface declarations informs java that this is
custom annotation

@Inherited
@Target(value= ElementType. METHOD)
@Retention(value= RetentionPolicy. RUNTIME)
public @interface MyAnnotation {
String param1() default "some def value";
String param2(),

}

Custom annotations in Java

Annotations are an interface and consist only
of method declarations called annotation-type
elements.

Method declarations have no parameters
and no exception declarations (throws).

Return types can be primitives, objects of classes
String, Class, enumerations, annotations and arrays
of such types.

The bodies of the methods are not defined,
but are implemented by means of reflection.

Usually the interface annotation is also annotated
with so-called meta-annotations.

Custom annotations in Java 2/8

@Target annotation restricts to which source code
ements the custom annotation can be applied

ementType. ANNOTATION_TYPE
ementType.CONSTRUCTOR
ementType.FIELD
ementType.LOCAL_VARIABLE
ementType.METHOD
ementType.PACKAGE
ementType.PARAMETER
ementType.TYPE

m m m m m m m m @

Custom annotations in Java 3/8

@Retention annotation specifies how the marked
annotation is stored:

RetentionPolicy.SOURCE — The marked annotation
is retained only in the source level and is ignored
by the compiler.

RetentionPolicy.CLASS — The marked annotation
is retained by the compiler at compile time,
but is ignored by the Java Virtual Machine (JVM).

RetentionPolicy. RUNTIME — The marked
annotation is retained by the JVM so it can be used

by the runtime environment.
]

Custom annotations in Java 4/8

@Inherited annotation indicates that the
annotation type can be inherited from the super
class. (This is not true by default.)

When the user queries the annotation type and
the class has no annotation for this type, the class'
superclass is queried for the annotation type. This
annotation applies only to class declarations.

Custom annotations in Java 5/8

@Documented annotation indicates that
whenever the specified annotation is used
those elements should be documented

using the Javadoc tool

By default, annotations are not included in
Javadoc

Custom annotations in Java 6/8

public class SomeClass {
@MyAnnotation(param1 = "a1", param2 = "a2")
public static void doJob1() {
/...
}
@MyAnnotation(param2 = "b2")
public static void dojJob2() {
/...

}

Custom annotations in Java /7/8

Class<?> cls = SomeClass.class;
Method[] methods = cls.getDeclaredMethods();
for (Method method : methods) {
if (method.isAnnotationPresent(MyAnnotation.class)) {
MyAnnotation ma =
method.getAnnotation(MyAnnotation.class);
System.out.printin(method.getName()+"->"
+ ma.param1()+","+ma.paramz2());

Custom annotations in Java 8/8

- Console output

- doJob1->a1,a2
- doJob2->some def value,a2

