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Abstract and Keywords
This introduction to the volume begins with a manifesto that puts forward two theses: first, that 
the sciences are the best place to turn in order to understand causality; second, that 
scientifically‐informed philosophical investigation can bring something to the sciences too. Next, 
the chapter goes through the various parts of the volume, drawing out relevant background and 
themes of the chapters in those parts. Finally, the chapter discusses the progeny of the papers 
and identifies some next steps for research into causality in the sciences.
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Abstract

This introduction to the volume begins with a manifesto that puts forward two theses: 
first, that the sciences are the best place to turn in order to understand causality; second, 
that scientifically‐informed philosophical investigation can bring something to the sciences 
too. Next, the chapter goes through the various parts of the volume, drawing out relevant 
background and themes of the chapters in those parts. Finally, the chapter discusses the 
progeny of the papers and identifies some next steps for research into causality in the 
sciences.
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1.1 A manifesto
One might think that the sciences are the last place one should look to gain insights about 
causality. This is because, due to influential arguments of Karl Pearson, Ernst Mach and 
Bertrand Russell at the turn of the twentieth century, research scientists have for a long time 
taken great pains to eradicate causal talk from their research papers and to talk instead of 
associations, correlations, risk factors and other ephemeral properties of data. Thus the 
traditional home of the study of causality has been within the field of metaphysics in philosophy 
— a field that has in its turn been treated sceptically by many scientists.

Our first thesis is that, on the contrary, the sciences are the best place to turn in order to 
understand causality. We maintain this thesis for a variety of reasons.

First, as explained in Section 1.2.5, causal talk became more respectable in the sciences at the 
turn of the twenty‐first century, thanks to attempts to mathematize the notion of cause. It is now 
becoming clearer that causal reasoning is of central concern to scientists in many fields, as well 
as to philosophers, and it is fruitfully pursued as a project of mutual concern.

Second, although causal talk was unfashionable in the twentieth century, causality never really 
went away: scientists' claims were always intended (p.4) to inform policy, experiment and 
technology, and such applications require causation, rather than mere association which tells us 
nothing about what happens when we intervene to change the world.

Third, the concept of cause is changing, and the sciences are at the forefront of these changes. 
In Aristotle's time causality was understood as explanation in general: the search for causes was 
a search for ‘first principles’, which were meant to be explanatory. However, now causal 
explanation is usually thought of as just one kind of explanation. In the modern era, causality 
became tied up with the notion of determinism, the prevailing scientific view of the world in 
Newtonian times. But determinism fell out of favour in science due to the advent of quantum 
mechanics. Moreover, a non‐deterministic notion of cause became increasingly relevant to 
science (in medicine, for example, claims like ‘smoking causes cancer’, where the cause is not 
sufficient to ensure the effect, became quite acceptable), and causality lost its deterministic 
connotations. If attempts within science to mathematize the notion of cause should prove 
successful (though this is controversial), the current concept of cause may be replaced by some 
formal explication, as happened so systematically with the concept of probability. It is science 
that is driving change in the concept of cause.

Fourth, the field of metaphysics generally benefits immeasurably from interactions with the 
sciences. Our understanding of time and space, for example, is derived from the use of these 
notions in physics, just as our understanding of what an organism is (and could be) is derived 
from the biological study of organisms. It is part of the job of any scientific field to decide what 
the constituents of its field are, whether that is four‐dimensional space‐time, bacteria, or market 
transactions. This is the same question that is faced at a higher degree of abstraction by the 
metaphysician concerned with what the constituents of the world are. It is bizarre to try to 
answer those questions without looking at how the same questions are dealt with in the 
sciences.
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Our second thesis is that scientifically‐informed philosophical investigation can bring something 
valuable to the sciences, too. As can be seen in this volume, many scientific fields are wrestling 
with the same methodological problems concerning causality. Different sciences use different 
languages and different paradigmatic examples, which can obscure the fact that they are facing 
the very same problems. But philosophers of science are in a natural position to identify 
common ground in the methods they encounter across the sciences. These philosophers are 
becoming increasingly well‐informed about the sciences and so able to exploit that position in 
order to identify best practice. Of course philosophers are also well placed to identify any 
conceptual problems that they encounter in the methods developed in the sciences and to clarify 
the very concept of cause that these methods appeal to.

(p.5) We think, then, that the most promising way forward in understanding causality and 
making methodological progress is as a mutual project between philosophically‐minded 
scientists and scientifically‐informed philosophers. We hope that this volume is testimony to the 
fruitfulness of this way of looking at causality in the sciences.

1.2 The core issues
1.2.1 Health sciences
While biomedical issues have long been a concern of ethicists and phenome‐ nologists, only very 
recently have the health sciences become prominent in the debates of philosophers of science 
and philosophers of causality. It is now clear that the health sciences are an inspiring source for 
methodological, epistemological and metaphysical issues concerning causation. The chapters in 
this part of the volume testify to the increasing awareness of both philosophers and practising 
scientists that biomedical research shares with other domains a number of concerns, from the 
conditions for inferring causation from correlational data to the definition, use, and role of 
mechanisms. What triggered philosophers to pay more attention to this domain has been the 
rise of the so‐called evidence‐based medicine (EBM) movement. Although the first works by the 
epidemiologist Archie Cochrane going in this direction date from the early 1970s, the term was 
coined and started to be customarily used only in the early 1990s. The main result has been the 
production of the so‐ called ‘evidence‐hierarchy’, i.e. a list ranking methods for causal inference 
from the strongest (notably, meta‐analyses of randomized controlled trials) to the weakest 
(notably, expert opinion). Evidence, it seems, is the pillar of science and the tenets of EBM are 
well‐entrenched. But these strongholds have been under attack for the last 10 years at least. The 
battle to set the debate straight is happening in this volume too.

For instance, in Causality, theories, and medicine Paul Thompson argues against RCTs as the 
gold standard of causal inference in medicine. Ultimately, Thompson's critical target is 
statistical methods alone as reliable tools for causal inference. His argument largely hinges upon 
the crucial differences between trials in biomedical contexts and in agricultural settings, where 
Fisher first developed the methods of randomization. He thus emphasises the role of theory and 
of background knowledge in establishing causal claims. Thompson's emphasis on the role of 
‘non‐statistical’ elements in causal inference is also shared by Alex Broadbent in Inferring 
causation in epidemiology: mechanisms, black boxes, and contrasts and by Harold Kincaid in
Causal modelling, mechanism, and probability in epidemiology. They turn attention to the 
contentious issue of whether causal claims in epidemiology are supported by mechanisms and, if 
so, how. Broadbent in particular opposes the ‘mechanistic (p.6) stance’ and the ‘black box 
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stance’ in epidemiology. He thoroughly discusses pros and cons of taking mechanisms as 
necessary or sufficient to establish causal claims. He also investigates assumptions and 
consequences of taking mechanistic considerations in causal assessment to be descriptive or 
normative. Kincaid, on the other hand, focuses on the use of mechanisms, hoping to make 
observational studies in epidemiology ‘more formal’ and consequently stronger.

In The IARC and mechanistic evidence, Bert Leuridan and Erik Weber focus on yet another 
aspect of using mechanisms. Their philosophical considerations about causality and mechanisms 
are more specifically applied to the procedures for evaluating carcinogenicity of agents by the 
International Agency for Research on Cancer (IARC). They argue for an evidential role of 
mechanisms. Mechanisms help in excluding confounding, that is when one or more variables 
interfere and confound the ‘real’ causal relations. This may lead IARC panels to conclude that an 
agent is carcinogenic when it is not, and vice versa. A more theoretical contribution is that of 
Donald Gillies in The Russo‐Williamson thesis and the question of whether smoking causes heart 
disease. Gillies specifically addresses the thesis, put forward in Russo and Williamson 2007, that 
evidence of both difference‐making and mechanisms are needed to establish causal claims. 
Using examples from the studies on smoking and heart disease, Gillies refines the thesis, 
requiring that mechanisms be ‘plausible’ rather than ‘confirmed’ or ‘well established’.

The leitmotif of the chapters of this part seems to be that (pace EBM partisans) there is more to 
causation in health contexts than simply statistics. This, as we shall see next, is a thread 
followed also in the investigations on causality in psychology. Likewise, chapters in the 
psychology part share concerns about the role and import of difference‐making and mechanistic 
information for disease causation or causal assessment. Another relevant aspect highlighted by 
this sample of works in the health sciences is that debates on conceptual issues such as 
mechanisms are not pursued in abstract terms but are meant to positively contribute to the 
discussions about the ‘use’ of causality, for instance in IARC procedures.

1.2.2 Psychology
Psychology has a history of paying serious attention to the philosophical literature and of valuing 
rigorous philosophical clarification of the basic concepts and distinctions of psychology. 
Philosophy has not always returned the compliment. As a result, many philosophers will be 
unaware of the explosion of work in psychology on all aspects of causal reasoning. This 
fascinating work should be of interest not only to philosophy but also to any area of science that 
is wrestling with causality.

Psychologists test empirically how people do reason, not directly how people should reason. 
Nevertheless, empirical results are of direct interest to other (p.7) fields. Psychologists test 
‘folk intuitions’ on causal reasoning, which is a useful check on whether philosophers' intuitions 
are systematically different from those of the unphilosophical folk. For the rest of science, 
primarily concerned with the normative aspect of causal reasoning, psychology can find out 
which weaknesses and fallacies we are susceptible to in our causal reasoning, and in which 
circumstances we do better — or worse.

The first three chapters in this part give a taster of this growing psychological literature. In
Causal thinking, David Lagnado brings to bear a body of empirical work to criticize the usual 
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practice in psychology of separating the study of causal learning (learning about a causal 
structure) and causal reasoning (reasoning on the basis of a known causal structure). Lagnado 
argues that studying both aspects together — on the basis of a psychological process account of 
causal reasoning — will be superior. In When and how do people reason about unobserved 
causes?, Benjamin Rottman, Woo‐kyoung Ahn and Christian Luhmann similarly use a body of 
empirical work to argue that people's reasoning about unobserved causes is more sophisticated 
than has been recognized. Reasoning about unobserved causes is a big problem for inferring 
causation from correlation — a concern of almost any science. In particular they examine 
patterns that people infer in data that deviates from simple correlations and conclude that there 
is a dynamic interplay between observed and unobserved causes that any attempt to explain 
causal learning must consider. Clare Walsh and Steven Sloman, in Counterfactual and 
generative accounts of causal attribution, argue that there is evidence that people think about 
both counterfactuals and mechanisms in forming causal judgements. They go on to examine 
reasoning about prevention or causing an absence, noting that there is considerably less 
consensus on prevention than on positive causation.

The remaining chapters are more philosophical, and illustrate how integrating psychological and 
philosophical work can benefit both disciplines. In The autonomy of psychology in the age of 
neuroscience, Ken Aizawa and Carl Gillett examine the issue psychologists or neuroscientists 
face when they discover more than one neurological realizer for what was initially treated as a 
single psychological phenomenon: do they keep a single psychological phenomenon, with 
multiple realizers, or do they decide that after all there was more than one psychological 
phenomenon? Aizawa and Gillett argue, with reference to the discovery of the neural realizers of 
colour vision, that the higher‐level theory plays an essential role in this choice. It is worth noting 
that Baetu's chapter in Section 1.2.4 examines the same theme with regard to classical genetics 
and molecular biology. Otto Lappi and Anna‐Mari Rusanen, in Turing machines and causal 
mechanisms in cognitive science, argue that explanation using abstract representations in 
Turing machines illustrates limitations of the account of mechanistic explanation put forward in 
recent years in the philosophical literature on mechanisms. Finally, in Real causes (p.8) and 
ideal manipulations: Pearl's theory of causal inference from the point of view of psychological 
research methods, Keith Markus sets out a detailed examination of Pearl's account of causal 
reasoning (see Section 1.2.5), when applied to psychology. Markus discusses ways in which 
Pearl's formalism should be interpreted and argues that it has certain limitations in the context 
of psychology.

This part thus develops themes arising in psychology itself and from examination of psychology 
— but which are also of vital interest to other sciences. If it is true that reasoning to a causal 
structure and reasoning from a causal structure influence each other, as Lagnado argues, then 
that is of concern to the many scientists whose work is related to either or both forms of 
reasoning. The issue of scientific taxonomy, or how a field should chop up its domain, is of wide 
concern, as is examination of the limitations of highly successful inference methods such as 
those based on Pearl. Finally, mechanisms and their position in causal judgements, and 
explanations, are clearly of increasing interest. The use of mechanisms in causal reasoning is 
now a substantial debate in psychology, that has come from philosophy, and — on the basis of 
much of this volume — is rapidly becoming a debate of interest right across the sciences.
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1.2.3 Social sciences
The social sciences are another area that took time to attract the interest of philosophers of 
causality and of philosophically‐minded scientists. It has perhaps been methodological 
advancements, especially in quantitative research, that have enabled the social sciences to 
shake off an inferiority complex with respect to the hard sciences. Arguably, the social sciences 
still cannot establish the same kind of laws as physics, but the use of more rigorous methods has 
allowed a much deeper understanding of many social phenomena, and more accurate 
predictions and well‐informed interventions through social policy. Moreover, recent debates in 
philosophy give room for rethinking even traditional debates in social science.

This is the case, for instance, in the contributions Causal mechanisms in the social realm by 
Daniel Little and Getting past Hume in the philosophy of social science by Ruth Groff. On the 
one hand, Little endorses causal realism and asks what ontology is to be developed for the social 
realm. He argues for mechanisms, but within a microfoundations approach: in social contexts 
‘causal mechanisms are constituted by the purposive actions of agents within constraints’. Little 
also makes clear that such an ontology in the social context is overtly anti‐Humean, because 
causation is not in regularities but in mechanisms. Humeanism is also the critical target of Groff. 
Notably, she discusses how the tacit Humean metaphysics can be by‐passed in social science 
and touches on issues related to methodological individualism and causal powers. Although 
Groff does not offer any definite positive arguments, she nicely builds bridges between the 
traditional philosophy of science literature, stances in analytic philosophy, and the methodology 
of social science. The (p.9) kind of anti‐Humeanism argued for in these two chapters concerns 
metaphysics, namely whether or not all there is about causation is the regular sequence of 
effects following causes in time. The line of argument of Little and Groff may also be extended to 
epistemological considerations, namely whether or not in order to know about causal relations 
all we have to do is to track regular sequences of effects following causes in time. An attempt to 
challenge ‘epistemological Humeanism’ has been carried out by Russo and Williamson (2009a,
b) for the social sciences and for epidemiology. Russo has argued that causal epistemology 
hinges upon the notion of variation. Simply put, model building and model testing is about 
meaningful joint variations between variables of interest; conditions of invariance of parameters 
or regularity of occurrence are instead constraints to ensure that variations are causal rather 
than spurious or accidental. Arguments given in Section 1.2.2 seem to suggest that psychologists 
also track variations rather than regularities.

In the next group of chapters, two main issues come up: mechanism and structure. In Causal 
explanation: recursive decompositions and mechanisms, Michel Mouchart and Federica Russo 
tackle the problem of causal explanation in social science research, especially quantitative‐
oriented research. They present the structural modelling approach as a means to causally 
explain a social phenomenon and advance the view that the core formal tool — i.e. the recursive 
decomposition — needs to be interpreted in mechanistic terms. In Counterfactuals and causal 
structure by Kevin Hoover, structural modelling has a slightly different facet. ‘Structural’ does 
not refer to the structure or mechanism that the recursive decomposition represents, but to the 
structural equations. Hoover's structural account hinges on Simon's notion of causal ordering, 
and the key aspect is the invariant parametrization of the system. The two chapters have in 
common, though, that structural modelling is an alternative to a manipulationist or 
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interventionist account à la Woodward (Woodward, 2003). Simply put, manipulationist accounts 
hold that x is a cause of y if, and only if, were we to manipulate or intervene on x, some change 
in y would accordingly follow (with the usual caveats of holding fixed any other factor liable to 
interfere in the relation between x and y). Interestingly enough, manipulability theories now 
enter philosophical discussions in a different way. It seems that the importance of the notion of 
manipulation is not so much in providing an explication of the concept of causation, but rather in 
explicating other notions, e.g. that of ‘constitutive relevance’ used by Craver (2007). In The 
error term and its interpretation in structural models in econometrics, Damien Fennell also 
considers structural models based on Herbert Simon's notion of causal ordering, and in 
particular examines issues related to the error term in the equations. The goal of the chapter is 
mainly expository, in making those who use these kinds of models in econometrics aware of 
conceptual issues that can hinder successful and meaningful results. In the last chapter A 
comprehensive causality test based on the singular spectrum analysis, (p.10) Hossein Hassani, 
Anatoly Zhigljavsky, Kerry Patterson and Abdol S. Soofi discuss a new statistical method for 
testing causal relations not in the tradition of structural modelling, but rather in the tradition of 
Granger's approach. In this approach causality does not lie in the structures or mechanisms
identified in the joint probability distributions, but, to put things very simply, it lies in the power 
of a (set of) cause‐variables to convey information in order to predict the effect‐variable.

The second group of chapters, and in particular Hoover's, is closely related to issues also 
addressed by Judea Pearl and Nancy Cartwright in Section 1.2.5: counterfactuals and structural 
models, structural models and external validity, going beyond statistics in drawing causal 
inferences. It is also worth mentioning that most chapters again deal, either directly or 
indirectly, with mechanisms. A possible explanation is that one may require more than 
probabilities to give a satisfying conceptual analysis of causation. Perhaps probabilities are not 
enough even from a methodological point of view: large parts of these methodological chapters 
invoke, albeit in different ways, mechanisms. The fact that so much emphasis is given to 
mechanisms may be due to a shift of focus from probabilities to mechanisms. This does not 
necessarily mean, of course, that probabilities do not play any role in the explication of 
causation.

1.2.4 Natural sciences
The natural sciences, and particularly physics, are the traditional source for philosophers of 
science, and for many years natural scientists have taken an interest in the philosophical 
literature on their field. This part begins with chapters representing the established but growing 
interest of philosophers in the biological sciences. These engage with topics from mechanism 
discovery in molecular biology to mathematical modelling in evolutionary biology. The 
increasing diversity of engagement between philosophy and the natural sciences is also 
represented by work on the far newer climate science. The part closes with two chapters 
demonstrating the cutting edge of work on causality emanating from physics.

In Mechanism schemas and the relationship between biological theories, Tudor Baetu looks at 
the relationship between classical genetics and molecular biology, and argues that there are 
cases where the accommodation of data from molecular biology results in better classical
explanations. For example, Marfan, Loeys‐Dietz and Ehlers‐Danlos syndromes can be confused 
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as a single genetic disease, but they are different — and this has implications for their 
treatment. Baetu argues that this means that classical genetics and molecular biology are not 
merely parallel explanatory projects, but related. He offers an account of this relation in terms 
of mechanism schemas. Note that this chapter is thematically linked to the chapter by Aizawa 
and Gillett in Section 1.2.2. The common concern is with when a difference in lower‐level 
realiser (for Baetu, biochemical molecules; for Aizawa and Gilett, (p.11) neural systems) 
matters to the higher‐level theory (for Baetu, classical genetics; for Aizawa and Gillett, colour 
vision), when it does not, and why.

Roberta Millstein turns to our concept of chance in Chances and causes in evolutionary biology: 
how many chances become one chance. Millstein argues that at least seven colloquial uses of 
chance in evolutionary biology can all be translated into the Unified Chance Concept (UCC) by 
specifying the types of causes that are taken into account (i.e. considered), the types of causes 
that are ignored or prohibited, and the possible types of outcomes. The UCC is useful, Millstein 
argues, because it makes it easier to translate between the colloquial chance concepts, and also 
from them to more formal probabilistic language. In Drift and the causes of evolution, Sahotra 
Sarkar takes a very different approach. Drift is an explanation for evolutionary outcomes which 
are not due to natural selection, mutation, migration or the other recognized causes of evolution. 
There is always deviation from expected outcomes due to these causes, and this is drift. Sarkar 
works in the framework of mathematical modelling of evolutionary processes. He distinguishes 
between the constitutive and the facultative assumptions of a model. The constitutive 
assumptions define the model, and cannot be changed without changing the system, while the 
facultative assumptions can vary. So the facultative assumptions give you the causes which act 
against the background conditions that are given in the constitutive assumptions. Sarkar takes 
whether the initial size of a population is finite or infinite as a constitutive assumption, and 
builds a simple mathematical model to show that this models drift, satisfying the usual 
conditions for drift. But drift is in no facultative assumption of this model. All that is required for 
drift is that the population be of a finite size; this finite size is part of the conditions under which 
the evolutionary causes — selection and mutation — operate. Sarkar concludes that drift is not a 
cause of evolution.

In the chapter, In defense of a causal requirement on explanation, Garrett Pendergraft examines 
whether equilibrium explanations, which explain an observed equilibrium state of a dynamical 
system by providing a range of possible initial states and possible causal trajectories of the 
event being explained, violate Pendergraft's Causal Factors Requirement: an explanation of an 
event must provide information about the causal factors that influenced whether or not that 
event occurred. Pendergraft argues that equilibrium explanations satisfy this, since they do 
provide information about causal factors. In so far as drift is an explanation of evolutionary 
outcomes in terms of chance, the question of whether or not it is a cause of evolution is a link 
between Millstein and Sarkar's work, and Pendergraft's.

Paolo Vineis, Aneire Khan and Flavio D'Abramo, in Epistemological issues raised by research on 
climate change, examine some of the epistemological challenges faced by climate change 
research. This is an area with special challenges for coming to causal conclusions, since 
randomized experiments cannot be done, but only experiments on microenvironments artificially
(p.12) constructed in the laboratory, where the results don't always extrapolate to the real 
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world, and some highly speculative attempts to control real weather, such as to make rain by 
seeding clouds. This chapter considers particularly the example of rising levels of certain 
diseases that can clearly be traced to rising salt levels in Bangladesh, and whether we can say 
that climate change caused these diseases.

One interesting account of causality that emanates from the traditional engagement of 
philosophy with physics is the process theory of causality (Reichenbach 1956; Salmon 1998; 
Dowe 2000). Reichenbach's seminal idea, taken up and developed by Salmon, held a process to 
be causal if it is capable of transmitting a mark. Salmon and Dowe later adopted a version of the 
theory according to which a causal process is one that transmits or possesses a conserved 
physical quantity such as charge or angular momentum. In Explicating the notion of ‘causation’: 
the role of extensive quantities, Giovanni Boniolo, Rosella Faraldo and Antonio Saggion present 
a development of the process theory, in which conserved quantities are replaced by extensive 
quantities. An extensive quantity is defined as a quantity whose value is given by the volume 
integral of some function defined over space‐time points. Extensive quantities include conserved 
quantities like angular momentum and charge, but also quantities such as volume and entropy.

For Reichenbach, causal relationships were also characterized probabilistically. His probabilistic 
theory was based around the common cause principle, which says roughly that if two events are 
probabilistically dependent but neither causes the other, then there is some set of common 
causes of the two events that screens off the dependence (i.e. the two events are 
probabilistically independent conditional on the common causes). Miklós Rédei and Balázs 
Gyenis, in Causal completeness of probability theories — results and open problems, investigate 
the question of when the common cause principle is satisfiable. It turns out that in some 
probability spaces it is possible to satisfy the principle but in others it is not. Their chapter 
considers both classical and non‐classical probability spaces and presents the state‐of‐the‐art 
concerning what is known about this problem.

On the surface these chapters are very different, arising from different concerns from different 
scientific fields. But there are some common themes at work here, and in the rest of the volume. 
The concern of Vineis, Khan and D'Abramo over difficulties with randomized experiments also 
arises in Section 1.2.1, on the health sciences, and in Section 1.2.5, on computer science, 
probability and statistics. The issue of mechanisms arises here, as elsewhere. For Baetu, 
understanding mechanisms and mechanism discovery is vital to understanding the relation 
between theories, while for Pendergraft the challenge is better to understand different 
approaches to explanation. The overall project of better understanding explanation is also 
reflected in the chapter by Lappi and Rusanen examining mechanistic explanation in Section
1.2.2. (p.13) The work on mechanisms is, on the face of it, very different from the work on 
causal processes originating in physics, but there are commonalities in the role of mechanisms 
and processes in causal explanation and inference, as developed in Section 1.2.6.

1.2.5 Computer science, probability and statistics
As discussed earlier, in the face of criticisms from Mach, Pearson and Russell, in the twentieth 
century research scientists largely avoided explicit discussion of the causal claims that were 
implicit in their papers. But certain developments at the turn of the millennium have helped to 
rehabilitate explicit talk of causality in the sciences, and now ‘causality’ is no longer a dirty 
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word. It is in the context of these developments that the chapters of this part of the book should 
be placed.

The 1980s saw the beginning of a revolution in the use of causal methods in the sciences, 
stemming from interest amongst computer scientists and statisticians in probabilistic and 
graphical methods for reasoning with causal relationships. Of course revolutions don't just pop 
out of thin air, and there were several — rather disjoint — lines of thought that led to these 
important advances. Notably, philosophers of science attempted to characterize causal 
relationships in terms of patterns of probabilistic dependencies and independencies, and 
represent them graphically using ‘causal nets’ (Reichenbach 1956); computer scientists used 
graphs that chart probabilistic dependencies and independencies to construct computationally 
tractable representations of probability distributions (see, e.g. Chow and Liu 1968); statisticians 
were also using graphical models to represent dependence and independence relationships in 
the analysis of contingency tables (Darroch et al. 1980). In the 1980s these advances led to
Bayesian net methods for causal reasoning (Pearl 1988). Here causal relationships are 
represented by a directed acyclic graph and causality is tied to probability via the causal Markov 
condition, which says that each variable in the network is probabilistically independent of its 
non‐effects, conditional on its direct causes (see, e.g. Williamson 2005). In the 1990s these 
methods were reconciled with the use of structural equation models to handle causal 
relationships — a formalism, stemming from work in the 1920s, that is essentially very similar to 
the Bayesian net approach (Pearl 2000). As can be seen from the chapters in this part of the 
book, the Bayesian net approach, and more generally the approach to causality stemming from 
recent developments in computer science, probability and statistics, remains a thriving area of 
interesting research questions and lively debate.

In Causality workbench, Isabelle Guyon, Constantin Aliferis, Gregory Cooper, André Elisseeff, 
Jean‐Philippe Pellet, Peter Spirtes and Alexander Statnikov focus their attention on methods for 
the automated learning of causal models directly from data. Hitherto, the field of machine 
learning in computer science has primarily concerned itself with the task of generating (p.14) 

models that are predictively accurate. Broadly speaking, predictive accuracy merely requires 
that the model adequately capture the underlying probability distribution. Recently, however, 
there has been some demand for models that are explicitly causal, in order to predict the effects 
of interventions. Thus a supermarket may wish to use shopping data not only to predict which 
aisles will need stocking most regularly but also to determine where to move a particular 
product in order to increase sales of that product. Causality workbench presents and discusses 
an exciting new testbed for computer systems that attempt to learn causal relations directly 
from data.

The standard approach to learning causal relationships from data is to find a Bayesian net with 
the least number of arrows from all those that fit the data, and to interpret the arrows in the 
graph of that net as characterizing the causal relationships. In When are graphical causal 
models not good models?, Jan Lemeire, Kris Steenhaut and Abdellah Touhafi argue that this 
approach may be unsatisfactory. By appealing to ideas concerning Kolmogorov complexity, used 
widely in computer science in the context of data compression, they argue that the correct 
causal model may not be a minimal Bayesian net.
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Under the standard machine learning approach, the probabilities of a Bayesian net that has 
been learnt from data are usually simply the frequencies induced by the data. But Bayesian nets 
were originally conceived of as belief networks: the probabilities in the net were supposed to 
represent degrees of belief that would be appropriate for an agent to adopt given the evidence 
of the data (Pearl 1988). In Why making Bayesian networks objectively Bayesian makes sense, 
Dawn Holmes argues for a return to the Bayesian, degree of belief interpretation. But rather 
than advocating the usual subjective Bayesian approach, according to which degrees of belief 
are subject to rather loose constraints and are largely a question of personal choice, Holmes 
advocates objective Bayesianism, which holds that degrees of belief are typically subject to tight 
constraints that leave little or no room for personal choice (Jaynes 1957; Williamson 2010). The 
key question is: given certain causal and probabilistic evidence, which Bayesian net best 
represents appropriate degrees of belief? This question has been tackled by Williamson (2005) 
and Schramm and Fronhöfer (2005), as well as in a distinct line of work culminating in Holmes' 
chapter.

Bayesian nets are normally construed as representing causal relationships in a qualitative way, 
via the arrows in the graph of the net. But one might suspect that causality is a matter of 
degree, in which case the question arises as to how one could measure the extent to which one 
variable causes another. This question is taken up by the next two chapters. Probabilistic 
measures of causal strength, by Branden Fitelson and Christopher Hitchcock, presents a 
detailed comparative analysis of a plethora of measures of causal strength that have been put 
forward in the literature on causality. Kevin Korb, Erik Nyberg and Lucas Hope, in their chapter, 
A new causal power theory, argue that (p.15) a good measure of degree of causal power can be 
constructed by appealing to concepts from information theory in computer science — in 
particular to the concept of mutual information, a concept that is very natural in this context and 
which underpins, for example, the approach of Chow and Liu (1968) alluded to above.

A quantitative view of causal relationships also forms the backdrop of Multiple testing of causal 
hypotheses by Samantha Kleinberg and Bud Mishra. Their chapter seeks to use methods from 
computer science and statistics to determine those causal hypotheses that are significant in the 
statistical sense. Rather than framing their approach in the Bayesian net formalism, which can 
struggle to cope with the kind of time‐series data under consideration in this chapter, Kleinberg 
and Mishra develop a framework using other methods from computer science, in particular 
temporal logic and model checking. They apply their approach to microarray data, to neural 
spike trains, and also to data concerning political speeches and job approval ratings.

Machine learning methods for constructing Bayesian nets can be categorized according to 
whether or not they attempt to discover latent variables, i.e. variables which are not themselves 
measured in the data but which are causes of two or more variables that are measured. Latent 
variables are important to many sciences, not least to psychology which typically uses factor 
analysis to discover unmeasured common causes (cf. the chapter of Rottman et al. discussed in 
Section 1.2.2). In Measuring latent causal structure, Riccardo Silva presents an approach to 
learning causal relationships that explicitly represents latent variables as nodes in the graph of 
the Bayesian net. This approach is applied to an example concerning democracy and 
industrialization and to an example concerning depression.
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Judea Pearl, in The structural theory of causation, continues his programme of providing a 
mathematical formalism for causality that unifies approaches to causal reasoning that are extant 
in the sciences. After explaining the core features of his new theory — which extends the 
Bayesian net approach of Pearl (1988) and the structural equation approach of Pearl (2000) — 
Pearl discusses how his new theory can underwrite counterfactual conditionals (conditionals 
whose antecedents are false), a topic already encountered in Hoover's chapter earlier in the 
volume. Pearl argues that his account supersedes attempts by philosophers of science to provide 
a probabilistic analysis of causality, and should be preferred to the potential‐outcomes (also 
called potential response) approach that emerges from work by Neyman and Rubin (Neyman,
1923; Rubin, 1974).

The potential response approach is also discussed by Sara Geneletti and Philip Dawid in
Defining and identifying the effect of treatment on the treated. They argue that their decision‐
theoretic version of the Bayesian net approach can be viewed as a generalization of the potential 
response approach. Moreover, they argue that their approach can be used to formulate and 
measure the (p.16) effect of treatment on the treated, an important measure of causal strength 
that applies to cases where those who are treated are to some extent self‐selected.

Statistical and machine learning methods examine data involving a sample of individuals and 
make general causal claims on the basis of this data. (As Geneletti and Dawid emphasize, one 
needs to be very careful not to overgeneralize at this stage.) Then policy makers need to apply 
the general causal claims to a group of individuals who require remedial action in order to 
identify the most effective interventions. This two‐stage process is the focus of Nancy 
Cartwright's chapter, Predicting ‘it will work for us’: (Way) beyond statistics. Cartwright argues 
that statistical methods alone will not guarantee the success of either stage of the process. The 
second stage, Cartwright maintains, needs to be informed by case‐specific causal models, 
concerning the group of individuals who will be treated, and this requires local knowledge about 
that group that goes well beyond the original dataset. On Cartwright's account, general causal 
claims are claims about tendencies or capacities and the first stage needs to be backed up by 
theoretical knowledge of the domain — knowledge of the mechanisms that are responsible for 
the regularities in the data. (This latter view accords with Thompson's chapter, discussed in 
Section 1.2.1.)

1.2.6 Causality and mechanisms
This final part of the volume examines mechanisms and their relationship to causality. 
Mechanisms are important to causal explanation, as one way of explaining a phenomenon is to 
point out the mechanism responsible for it. As we see in the parts on Health Sciences, Section
1.2.1, and Social Sciences, Section 1.2.3, mechanisms are of increasing importance in causal
inference. (See also Russo and Williamson, 2007; Russo and Williamson, 2011; Illari, 2011). As 
we see in the part on Psychology, Section 1.2.2, mechanisms are also important in causal
reasoning (reasoning from a known causal structure). It seems that mechanisms are of interest 
to every aspect of thinking about causality. The widespread feeling that investigating 
mechanisms is a fruitful avenue to explore is illustrated in the sheer number of chapters in this 
volume that touch on the methodology, epistemology and metaphysics of mechanisms in some 
way or another.
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This is a very clear case where philosophical theorizing about the methodology of science is of 
interest right across scientific disciplines. And while these chapters are more theoretical than 
those in other sections, since they are not examining an issue arising in a single scientific field, 
they are all aiming to contribute to scientific work, and are scientifically informed. These 
chapters illustrate the sheer breadth of interesting work concerning causality and mechanisms, 
stretching from the very idea of mechanism, their metaphysics, and the applicability of 
particular conceptions of mechanism across scientific domains.

(p.17) In The idea of mechanism Stathis Psillos disentangles two historical ideas of mechanism. 
The first is the mechanical conception of mechanism, that mechanisms are configurations of 
matter in motion subject to mechanical laws. Psillos examines Poincaré's critique that such 
mechanical mechanisms are too easy to envisage to be informative, because if there is any 
possible configuration of matter in motion that can underpin a set of phenomena, then there is 
an infinity of such configurations. The second idea of mechanism is the quasi‐mechanical 
conception of mechanisms, where a mechanism is any arrangement of parts into wholes in such 
a way that the behaviour of the whole depends on the properties of the parts and their mutual 
interactions, where this is what constitutes their unity. Psillos discusses Hegel's critique that the 
unity that such mechanisms possess is external to them, because of the need to identify a
privileged decomposition out of those available, and so the idea that all explanation is 
mechanical in this sense is devoid of content. Psillos argues on the basis of these two critiques 
that mechanisms are not the building blocks of nature, so undermining the metaphysics of 
mechanisms, but that nevertheless the search for mechanism is epistemologically and
methodologically useful. This is a valuable critical historical introduction to the idea of 
mechanism, against which many of the other chapters can be seen as developing a distinct new
notion of mechanism.

The first two chapters engage with the metaphysics of mechanisms. In Singular and general 
causal relations: a mechanist perspective, Stuart Glennan examines the relation between 
singular and general causal relations — the difference between Fred's taking penicillin curing
him, and penicillin in general curing certain forms of infection. Glennan argues that the simplest 
reason for preferring singularism from a mechanista's perspective (the perspective of someone 
promoting mechanisms for at least one of the three purposes outlined above) is because 
mechanisms are particulars — particular things. Glennan then argues for singular 
determination, which is the view that any causal interaction is a singular case of causal 
determination, where any causal generalisation is true merely in virtue of a pattern of such 
singular instances. For Glennan, this is the best metaphysical view of the fundamental
components of mechanisms since it offers a unified singularist view of these, with the singularist 
view of mechanisms themselves as particulars. Phyllis McKay Illari and Jon Williamson, in
Mechanisms are real and local, examine the implications of two widely shared premises 
concerning mechanistic explanation: that mechanistic explanation offers a welcome alternative 
to traditional laws‐based explanation, and that there are two senses of mechanistic explanation: 
epistemic and physical explanation. They argue that in mechanistic explanation, mechanisms are 
treated as both real and local, and argue that reality and locality require an active metaphysics 
for the components of mechanisms, illustrated using Cartwright's capacities approach.
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(p.18) The next two chapters both address the idea of a causal link, or causal continuity. In
Mechanistic information and causal continuity, Jim Bogen and Peter Machamer set out to give a 
novel account of causal continuity in terms of mechanistic information. They use examples of 
Crick's early conception of gene expression and a sensory‐motor reflex in the leech to argue that 
mechanistic information can be understood in terms of goals served by mechanisms, and the
reach or strength and independence of influence of initial stages of the mechanism on the final 
stages. Information is ineliminable because the continuity of some mechanisms is a function of 
their teleological structure, i.e. the goal of the mechanism, and so without attention to the 
teleological structure, the vital continuity is lost. This chapter has potential implications for the 
epistemology and methodology of mechanisms, along with their metaphysics. In The causal‐
process‐model theory of mechanisms, Phil Dowe addresses the issue of the applicability of 
causal process theories — such as his own view, mentioned in Section 1.2.4, that causal 
processes involve the maintenance of conserved quantities — to areas of science other than 
physics. Dowe considers the need for an account of what it is that scientists look for when they 
look for something that underlies correlations as an important motivation for his account. If 
processes involve a spatiotemporally continuous link between cause and effect, then processes 
cannot involve absences, which would be a gap in a causal process. But absences are sometimes 
cited as cause or effect, such as in: ‘my failure to water the plants caused their death’. An
absence of watering is said to cause a positive outcome. Dowe offers an account of causal 
relevance in mechanisms, which can incorporate his theory that causation involves causal 
processes understood in terms of conserved quantities, but which also allows absences in causal 
explanation.

Meinard Kuhlmann, in Mechanisms in dynamically complex systems, examines whether the 
concept of mechanism can be extended to cover systems that are not just compositionally
complex, but exhibit complex dynamics — what he calls ‘dynamically complex systems’. These 
dynamics arise from the interaction of the system's parts, but are largely irrespective of many 
properties of these parts. Kuhlmann uses detailed examples of dynamical systems in analysis of 
heart beat, and financial markets, to argue that dynamically complex systems are not sufficiently 
covered by the available conceptions of mechanisms. He explores how the notion of a 
mechanism has to be modified to accommodate this case.

Julian Reiss, in Third time's a charm: causation, science, and Wittgensteinian pluralism, 
examines pluralism about causality: the claim that there is no single correct account of what
cause means, but instead multiple concepts of cause. Reiss examines three different accounts 
that all reject any attempt to define ‘cause’ in terms of necessary and sufficient conditions. 
Instead they regard different instances of causal relationships such as ‘pulling’, ‘pushing’, 
‘breaking’ or ‘binding’ as sharing family resemblances at best: pushing and (p.19) pulling 
clearly share something in common, as do breaking and binding, but there is no single property 
shared by all instances of such causal terms. This is a pluralist tradition inspired by Wittgenstein 
and shared by Anscombe, Cartwright, and Machamer, Darden and Craver, and is a form of 
pluralism about causality that interests many working on mechanisms. Reiss argues for the third 
form of pluralism, which he says is a form of inferentialism: the method of verifying a causal 
claim — of evidentially supporting it — determines with what other claims it is inferentially 
related.
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In different ways these chapters are attempting to give an account of mechanisms suitable to 
their place in causal explanation, inference and reasoning. It is their place in explanation that 
drives Glennan's emphasis on singularism, and Illari and Williamson's related examination of 
locality, while Machamer and Bogen, and Dowe's very different attempts to give an account of 
the causal link — if successful — are important to the usefulness of mechanisms to causal 
inference. One ambition is also for a single account of mechanism that is applicable across 
scientific disciplines. Ultimately, the hope is for a general account of mechanisms — the first 
glimmerings of which can be seen here — which fruitfully addresses all three methodological
uses of mechanisms in all scientific disciplines. This is ambitious, and it remains an open 
question whether it will be possible.

1.3 Whence and whither?
Progeny of the chapters
Some of the chapters in this volume were invited contributions, but most were submissions to an 
open call for papers. Within the broad remit of Causality in the Sciences, all authors chose their 
own topics and titles, and all papers were refereed. Many submissions were received from 
participants in two events of the Causality in the Sciences Conference Series (http://
www.kent.ac.uk/reasoning/cits): Causality Study Fortnight held at the University of Kent in 
September 2008, and Mechanisms and Causality in the Sciences held at the University of Kent in 
September 2009.

Next steps
The individual chapters in this volume indicate a plethora of open questions for research on 
causality. Here we highlight just a few topics for future research that stand out as particularly 
pressing.

From the volume it is clear that there is a mature field of research centred on the question of 
the relationship between causality and probability (see Section 1.2.5). But the volume also 
indicates that there is also a newer, rapidly developing area of research, exploring the 
relationship between causality and mechanisms (see in particular Section 1.2.6). However, we 
received very few (p.20) papers on all three: on causality and probability and mechanisms, and 
the question of how probabilistic accounts of causality can mesh with mechanistic accounts of 
causality desperately needs answering. This suggests that a first hot topic for future research 
will be on causality, probability and mechanisms, bridging the causality‐probability agenda on 
the one hand, and the causality‐ mechanisms agenda on the other hand.

Although successful formalisms exist for handling aspects of causal reasoning using 
probabilities, few are explicitly designed for handling mechanisms (see however the discussions 
of the possible mechanistic interpretations of models in social research in Section 1.2.3). Indeed, 
a detailed formal understanding of causal reasoning using mechanisms is sorely lacking. So a 
second hot topic is likely to concern formalisms for handling mechanisms, particularly in causal 
inference and reasoning. Such formalisms may emerge from the existing formalisms for 
reasoning using probabilities (e.g. Bayesian nets or multilevel models), or they may need to be 
entirely new — tailor‐made methods for handling causal mechanisms.
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A number of chapters invoke mechanisms as evidence for causal tasks, e.g. for the assessment 
of carcinogenicity. Interestingly, in biomedical and social contexts alike scientists are suggesting 
that the ‘mechanistic picture’ is more complicated than it may look at first sight. They are thus 
moving towards ‘ecological views’, namely approaches that aim to include both biological and 
socio‐economic factors in the same mechanism. This suggests a third hot topic will be to develop
pan‐scientific causal methods. In particular, we are in need of accounts where (i) the concept
of mechanism permits the inclusion of factors of different natures, (ii) factors of different 
natures can provide multiple points of epistemic access to the same mechanism, and (iii) formal 
models can handle factors of different natures.

Having presented three questions that are likely to feature in future research, we should make 
some cautionary remarks about how these questions might be solved. We suggested in our 
manifesto (Section 1.1) that theorizing about causality is best pursued as a collaborative project 
involving both philosophers of science and scientists from different disciplines and fields. But 
such a broad project poses two related challenges.

Causality is at the crux of metaphysical, epistemological and methodological issues in the 
sciences. And different participants in the debate have different primary concerns. The first 
challenge in theorising about causality is to avoid blurring these three kinds of issue, remaining 
explicit about which kind is being addressed, and how. For example, the question above of how 
to integrate ontologically different factors in the same mechanism has metaphysical, 
epistemological and methodological facets. Yet giving a methodological answer to someone 
concerned about the metaphysics of this question, or vice versa, will not help them.

(p.21) Nevertheless, the metaphysics, the epistemology and the methodology of causality are 
not wholly distinct. We should expect answers to any one of the three kinds of issue to have 
implications for the other two kinds. The second challenge is to produce an understanding of 
causality that successfully addresses all three kinds of issue in a unified way, without blurring 
the distinctions between metaphysics, epistemology and methodology. To make progress on this 
requires making explicit how metaphysics, epistemology and methodology impact on each other. 
This is challenging. Note that Cartwright (2007) is pioneering in this regard, urging that 
questions of metaphysics, methods and use cannot be successfully addressed in isolation. 
Cartwright makes it clear that she thinks an understanding of causality that does not help us 
address how causal claims inform policy will never be adequate.

In an era of concern about the ‘impact’ of research, philosophers have to make the effort to 
explain why and how philosophical discussions of causality have a bearing on policy and other 
questions of intervention and control. But scientists also need to make an effort to step back and 
think of the coherence of the foundations of their work: a ‘methodological salad’ — an eclectic 
mix of methods — will inspire no confidence at all unless unifying foundations can be found for 
the ingredient methods.

In sum, while a sound understanding of causality can best be gained though a mutual project 
involving the sciences and philosophy, care must be taken not to make progress on metaphysics 
at the expense of epistemology and methodology, or vice versa.
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Abstract and Keywords
Randomized controlled trials (RCTs) are pervasive in clinical medical research, which stands in 
stark contrast to other sciences such as physics, chemistry and biology. Most clinical 
researchers that use RCTs regard them as uncovering causal connections. R. A. Fisher best 
articulated the rationale for this position in 1935. According to Fisher, if randomization, 
blocking and replication demonstrated a connection between an intervention and an outcome, 
that connection is causal. This chapter argues that RCTs in clinical medicine do not reveal 
causal connections. Causal claims in clinical medicine, as in the rest of science, are justified by 
reference to a robust theory, not RCTs. Part of the argument rests on crucial differences 
between Fisher's use of RCTs in agriculture and the current use of RCTs in clinical medicine. 
Two key differences are: the different role of randomization and the legitimacy of assuming 
homogeneity of the intervention and control entities. A more significant part rests on the 
integrative power of robust theories; causal attributions are justified by demonstrating that they 
are, or can be, embedded in a large well-confirm framework. RCTs, by contrast, at best provide 
isolated input-output connections. A secondary thesis of the paper is that robust theories also 
allow causal claims to be well-confirmed.
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Fisher best articulated the rationale for this position in 1935. According to Fisher, if 
randomization, blocking and replication demonstrated a connection between an 
intervention and an outcome, that connection is causal. In this paper, I argue that RCTs in 
clinical medicine do not reveal causal connections. Causal claims in clinical medicine, as 
in the rest of science, are justified by reference to a robust theory, not RCTs. Part of the 
argument rests on crucial differences between Fisher's use of RCTs in agriculture and the 
current use of RCTs in clinical medicine. Two key differences are: the different role of 
randomization and the legitimacy of assuming homogeneity of the intervention and control 
entities. A more significant part rests on the integrative power of robust theories; causal 
attributions are justified by demonstrating that they are, or can be, embedded in a large 
well-confirm framework. RCTs, by contrast, at best provide isolated input-output 
connections. A secondary thesis of the paper is that robust theories also allow causal 
claims to be well-confirmed.

2.1 Introduction
R.A. Fisher was a brilliant mathematician whose contributions to the mathematical foundations 
of statistics were deep, elegant and robust. His applications of statistics to agricultural research 
and to Mendelian-based population dynamics were, and remain, transformative. In medicine, the 
nearly ubiquitous acceptance of the mantra that Randomised Controlled Trials (RCTs) are the 
gold standard of evidence is traceable to Fisher — although most who espouse the mantra seem 
not to know its Fisherian origins. Embedded in Fisher's conceptions of experimental design and 
statistical inference is a conception of causality, and of the role and power of randomization. 
Both these conceptions I shall argue are untenable, especially in the context of medicine.

RCTs may have considerable utility in a number of research contexts since they do provide some 
support for a scientific theory (a dynamical (p.26) (and mechanistic) system which is asserted 
to model (mathematically) the ontology1 and dynamics of phenomena). They, however, are far 
from a gold standard. Contrary to Fisher, they do not provide a causal account of the 
phenomena under study; nor is randomization essential or, in some contexts, desirable. In what 
follows, I shall explore what kind of empirical support RCTs provide and why in medicine that 
support is problematic. I shall also argue that causal attributions are only possible when a 
robust scientific theory underwrites the attributions; RCTs fall far short of providing a basis for 
causal attributions. Notwithstanding the ubiquitous use of RCTs in clinical medicine, impressive 
and robust theoretical underpinnings exist for a substantial array of medical knowledge and 
causal attributions; it is on these, and not RCTs, that explanation and prediction rest.

2.2 Causality and randomized controlled trials
Outcomes from RCTs constitute the basis for many knowledge claims in medicine and many 
clinical decisions — especially pharmacological interventions and lifestyle interventions 
(changes in diet, exercise, and so on). During the last half‐century, RCTs have risen in number 
and authority; government regulators, many epidemiologists and the media have come to regard 
RCTs as the gold standard of evidence in clinical medicine. This rise in number and authority 
began with R. A. Fisher who claimed that RCTs provide the basis for discovering and justifying 
causal connections.2 According to Fisher, randomization, replication and control (for him, the 
method of pairwise blocking) guarantee that the intervention is the cause of the difference 
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between the outcome in the experimental group (those receiving an intervention) and that in the 
control group.

Fisher developed his views on experimental design while working at Rothamsted Experimental 
Station, which he joined as a statistician in 1919. The Station, by that time, had been engaged in 
agricultural research for more than 70 years. By 1935 when his Design of Experimentswas 
published his adherence to the principles of randomization, replication and blocking were (p.27) 
firmly entrenched in his method of experimental design. These principles proved powerful in the 
context of plant agriculture where replication involved sectioning a field into plots, blocking was 
pairing adjacent plots that were assumed to be identical in all relevant respects (nutrient 
content and soil composition for example) and randomization was the designation of one of each 
pair as the experimental plot by a random process such as flipping a coin. Since there were 
numerous paired plots, the experimental intervention was replicated many times within a single 
experiment. If a consistent similar difference was found between each experimental plot and its 
paired control, constant conjunction of intervention and outcome could be assumed. Since 
paired plots were assumed to be identical in all relevant respects except for the intervention, the 
outcome could be declared as causedby the intervention. Randomization bolstered the 
assumption of plot‐pair identity by removing any systematic bias in favour of one plot of a pair — 
such as, always choosing the left plot as the experimental plot or favouring lower elevation.

This kind of agricultural research presents an ideal state of affairs for applying Fisher's method 
of experimental design. The values of the relevant variables in a modest‐sized field, as is most 
frequently used in research, are reasonably homogeneous (soil Ph, organic‐to‐inorganic material 
ratio, clay content, and so on). Moreover, dividing the field into small plots and pairing adjacent 
plots reduces what little heterogeneity might be found in non‐adjacent parts of the entire field. 
Genetic diversity and trait diversity can be managed in agricultural plants to ensure minimal 
heterogeneity. The adjacent plots remain adjacent throughout the trial and external factors 
(such as rainfall, hours of sunlight) will be virtually identical for both plots. In short, 
homogeneity of relevant factors exists naturally or can be easily produced.

In clinical medicine, things are very different. First, a population of individuals is an extremely 
heterogeneous collection: a wide variety of genotypes, different environmental histories, 
different physiological dynamics, different interpersonal contacts, and the like. Second, unlike 
two adjacent plots of land, pairs of individuals or paired groups of individuals do not remain 
together during a trial; hence, each individual is exposed to different environmental factors. 
Consider, for example, the simple difference of diet and timing of meals, which may or may not 
be relevant and often we do not really know their relevance. In the world of RCTs, the Fisherian 
principles of experimental design are supposed to tame this heterogeneity. The paired groups of 
individuals are, ideally, random samples from a population; randomization, in principle, results 
in groups with identical heterogeneity; for each individual in one group, there will be an 
individual in the other group with the same characteristics. Hence, it is assumed that although 
any two individuals chosen randomly can be expected to differ in relevant respects, when a large 
number of individuals are assigned randomly to two different groups, the groups, taken as 
collectives, will be homogeneous.
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(p.28) Most texts on statistical methods define ‘random sample’ as: ‘A sample of
nindividuals from the population [the whole set or collection of items about which we want 
information] chosen in such a way that all possible sets of nindividuals are equally likely to 
occur’ (Wetherill, 1967). As an assumption underpinning aspects of experimental design and 
statistical analysis, this definition is essential and potent. In the messy world of RCTs, its 
potency evaporates. First, even the most careful actual random sampling cannot be known to 
satisfy the requirement of the definition. Second, for financial, ethical and/or trial management 
reasons, most ‘random’ sampling in clinical experiments are not from ‘the whole set or collection 
of items about which we want information’ (the population) but an already much reduced 
collection — those, for example, willing and available to participate, those located near the 
research centre, those who have a relevant disorder, those who do not have signs or symptoms 
that suggest the experiment might put them at risk, and the list goes on.

Third, even if two groups satisfied the statistical definition of random samples, internal 
heterogeneity undercuts the assumption that the groups are identical in relevant respects. Most 
traits of individuals are quantitative traits (traits that differ in the amount or degree) such as 
blood pressure and lung capacity. These traits are usually the product of many genes and, 
importantly, are somewhat environmentally sensitive (for example, the effect of exercise on lung 
capacity and muscle strength).3

Suppose only 10 traits are relevant in a particular RCT, the traits vary little (say, six possible 
values for each) and the experimental and control groups each contain 10,000 individuals and 
the sampling was random (i.e. the sampling was such that from the population all possible sets 
of 10,000 individuals were equally likely to occur). Even this does not warrant the conclusion 
that the groups are identical in relevant respects. The possible combinations of 10 traits each 
with six possible values entails, assuming independence, equals 610(60,466,176). Hence, no two 
individuals in a population of 60 million are the same.

If the number of relevant factors is 11, the possible combinations equal 362,797,056. The US 
Census Bureau estimated the population of the United States as of August 8, 2009 to be 
307,118,070. Consequently, two groups of 10,000 randomly sampled from the entire population 
of the United States will not be identical in relevant respects. There are almost always more (p.
29) than 11 relevant variables (factors) and many more than six possible values for those 
variables and the population being sampled is always dramatically less than 300,000,000 (often 
fewer than 50,000). In addition, although the values between individuals can be assumed 
independent, those in a particular individual are rarely independent of each other — such that 
altering one will alter one or more of the others — and the specific dynamics are frequently 
idiosyncratic, which further increases the heterogeneity.

To complicate the situation further, the dynamics involved in multivariable interacting systems, 
such as those involved in the human endocrine, immune and other such systems are usually 
chaotic; the trajectory of the system is highly sensitive on initial conditions. Since those initial 
conditions frequently will be different for different individuals, the trajectory of the systems will 
vary widely. In short, the homogeneity found in agricultural RCTs is entirely illusory and elusive 
in clinical medicine; in clinical medicine heterogeneity is ubiquitous.4 This is why some clinical 



Causality, theories and medicine

Page 5 of 20

researchers have endorsed the utility of nof 1 trials (i.e. where a single patient is the entire 
trial).5

Fisher's motivation for insisting on randomization was rooted in a requirement for the 
application of mathematical statistics and the definition of causality he adopted. Randomization 
is required in order to apply the statistical tools of analysis that underpinned his methods and 
his causal claims. Given the near impossibility of random sampling in clinical trials, Fisher's 
methods are not applicable;6 agricultural trials do not rest on random sampling, they involve the 
toss of a coin (or some other random binary process) to determine which plot of a pair is the 
experimental plot. There are, of course, other experimental design methodologies that can be 
applied in clinical medicine but to successfully avoid the aforementioned challenges their 
validity must be independent of random sampling. Many other critiques of randomised 
controlled trials have been offered (see: Cartwright, 2007a; Urbach, 1993; Worrall, 2002 and
2007).7 For the most part they focus on challenging whether randomization is necessary. I agree 
with those critiques but here have argued that, whether necessary or not, it is unachievable.

The definition of causality that appears to underlie Fisher's methods is elementary. A cause is 
that which makes a difference. If two states of affairs at t1 are identical except for one element
E and the states differ at t2, E can (p.30) be declared the cause of the difference. In Fisher's 
agricultural trials, the homogeneity of the states being compared (plots adjacent to each other) 
virtually ensured identity. By having numerous paired plots (paired states) and randomly 
selecting which plot from each pair would receive the intervention (E), the validity of the claim 
that the two plots being compared in each case are identical is certain or near certain. Since, 
the only difference between compared plots is E, it can with certainty be declared ‘the cause’ of 
any difference that arises. The upshot of all this is that Fisher's experimental methods do not 
provide any basis for discovering or justifying causal claim made on the basis of RCTs in clinical 
medicine.

2.3 Scientific theories
The conclusion of Section 2.2 is that RCTs in clinical medicine provide no, or at best the weakest 
possible, support for causal claims.8 I’ll return later to the question, ‘For what, if anything, do 
they provide evidence?’ Before doing that, in this section I turn to a positive thesis with respect 
to clinical medicine–namely, what can and does underwrite causal claims.

Physics and chemistry have a rich toolkit of methods which have teased from nature a large and 
deep body of knowledge. Noteworthy is the fact that RCTs are not among their methods. There 
is no shortage of recourse to probability and statistics; indeed they employ the entire domain of 
mathematical knowledge and techniques (e.g. the infinitesimal calculus, topology, and linear and 
nonlinear algebra). Physics and chemistry employ probability and statistics in contexts where 
the phenomena are considered truly random or where, even though a system is held to be 
deterministic, the current understanding of the system admits of uncertainty. In the latter case, 
the ultimate quest (p.31) is to diminish the uncertainty; the need to use probability and 
statistics is unsatisfying, though necessary.

Engineering — an applied endeavour similar to clinical medicine — draws heavily on physics and 
chemistry. Indeed, much of the confidence we have in the claims, predictions and explanations 
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in engineering rest on the confidence we have in the theories, models and knowledge in physics 
and chemistry. One fundamental logical feature of engineering reasoning — and reasoning in 
physics and chemistry — is the use and justification of counterfactual claims (typically expressed 
as conditional — if, then — claims in which the antecedent–the if part — has not occurred or is 
not known to be true). For example, the claim, ‘If my computer keyboard were in motion relative 
to me, then it would be shorter in the dimension of travel than it was when stationary relative to 
me,’ is a counterfactual claim since the keyboard is in fact currently stationary relative to me. 
No physicist, however, would doubt the truth of the claim because its truth rests on Einstein's 
special theory of relativity; hence, to doubt the truth of the claim is to doubt the validity of that 
theory.

The reason theories support counterfactuals is that they unify and integrate a large body of 
knowledge into a connected web.9 The logical structure of this web is such that explanation and, 
importantly, prediction rest on a wealth of interrelated knowledge claims. Predictions made on 
the basis of a theory are possible because the integrated wealth of knowledge claims comprising 
the theory can be used to justify confidence in the predictions. Prediction is an instance of a 
counterfactual claim.

Although I hold a view of the structure of theories that understands them as a certain sort of 
mathematical model — a view I will set out below — the logical empiricist conception of theories 
as interconnected statements (formalized in first‐order predicate logic) is a heuristically useful 
entry point for uncovering the underlying logic of explanation and prediction. Some statements 
in a theory are extremely general and cannot be deduced from other statements in the 
collection; these are the axioms of the theory. In a fully developed theory, all the other 
statements in the collection can be deduced from the axioms. It is that deductive connectivity 
that integrates the wealth of knowledge claims; it also justifies confidence in predictions and 
explanations because they are deductive consequences of the theory.10 Some claims deduced 
from the axioms are still very general. The further down the deductive hierarchy one moves, the 
less general the claims; at the lowest level of generality are claims about specific causes of 
specific effects (see Figure 2.1 for a stylized schematic diagram).

(p.32)
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Views differ on how the axioms are 
generated (discovered). Simplistic 
empiricism assumes that the first step is the 
generation of the empirical laws from 
empirical observation — perhaps by 
induction, perhaps hypothetico‐ deductively. 
Among these empirical laws patterns occur 
that suggest that a number of empirical 
laws can be usefully subsumed under a 
more general claim. Among these more 
general claims patterns occur that suggest 
subsets of these more general claims can be 
subsumed under even more general laws. 
The process continues until the axioms 
emerge as the most general claims. 
Simplistic rationalism assumes the axioms 
are generated by rational thinking and are subsequently justified by deducing the consequences 
of accepting the axioms, consequences which are then empirically tested. The history of science 
suggests that a mixture of these methods is usually involved.

Returning to the claim, ‘If my computer keyboard were in motion relative to me, then it would 
be shorter in the dimension of travel than it was when stationary relative to me’, this claim, as 
noted, is counterfactual. It, however, can be accepted with confidence because it is deducible 
from the axioms of the special theory of relativity. The degree of confidence, of course, is 
proportional to the confidence one has in that theory.

The logical empiricist view of theories just sketched assumes that the language of science is 
first‐order predicate logic with identity (symbolic or mathematical logic). The view of theories 
that I, along with many others,11 have promoted allows any appropriate mathematical domain to 
be the language of a theory (e.g. set theory, probability, topology, string theory, and so on). 
Following Galileo (1623), and three centuries before him Bradwardine (1330),12 this (p.33) 
view sees mathematics broadly as the language of science. Consequently, it is not a sentential 
(linguistic) view of the language of science. Theories are not deductively connected statements 
formalized in symbolic logic but mathematical formulations of dynamical systems. This is still a 
deductive framework; the deductive structure and techniques of the domain of mathematics 
used are fully available. Unlike the logical empiricist's view, however, this view understands 
theories to specify an ontology and the dynamics of a physical system,13 which is achieved by 
identifying variables and their range of magnitudes, and specifying, mathematically, the 
relations among the variables and how the variables change over time (e.g. using transition 
functions such as x t+1 = f (x t): f (x t) might be r x t where ris the rate of population growth (births 
minus deaths) and xis population size). The thesis of this paper does not rest on which view of 
theories one accepts. Counterfactual claims are deductive consequences of the theory on both 
views and confidence in them rests on that deducibility.

Fig. 2.1  Simple schematic of the deductive 
web of a theory.
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2.4 Theories, RCTs and causality
A central role of scientific enquiry and scientific knowledge is to answer ‘why’ questions, and 
the perceived importance of uncovering causal connections is motivated by the view that 
knowledge of cause and effect relationships allows ‘why’ questions to be answered.14

Consider the question, ‘why, at the onset of the luteal phase in the menstrual cycle, does the 
level of plasma gonadotropins decrease’. The answer found in Harrison's Principles of Internal 
Medicine(a leading medical resource) is, ‘A secondary rise in estrogen causes a further 
gonadotropine suppression’ (Braunwald, 2001 p. 2157, emphasis added). Of course, the entire 
answer to the why question is much more complicated and the additional elements will require 
the citing additional causes.

In this section, I explore what I argue is a more fundamental element in answering why 
questions, namely the role of theories. As indicated in (p.34) previous section, what 
underwrites confidence in counterfactual claims (and, hence, predictions) is that they can be 
deduced from relevant parts of a theory. Confidence in the theory comes from the 
interconnected, and inseparable, nature of the regularities it codifies and the countless 
predictions deduced using it which have continually been found to be in accordance with the 
behaviour of the empirical world as we experience it. No isolated claim of a regularity has that 
robustness and predictions made on the basis of an isolated claim of regularity lack the support 
and credibility of predictions deduced from regularities embedded in an interconnected web of a 
vast number and array of regularities. What is true of prediction is equally true of explanation. 
Although there is no tight symmetry between explanation and prediction, they are two faces of 
the same logical coin. A robust explanation of an event requires deducing it from a theory, just 
as a robust prediction requires such a deduction.

To be clear, I am not denying that isolated regularities provide accounts of events; they do. A 
social worker who asks, ‘Why does 8 year old Susan have bruises on her head and shoulder?’ 
may be attempting to determine whether child abuse has occurred. The explanation that Susan 
fell off a swing the previous day addresses the concern; third‐party witnesses make it a 
compelling explanation. Of course, the social worker has to know that falling off a swing 
normally results in bruises. For the social worker, this need be no more than an observed 
regularity — a belief based on the constant conjunction, temporal contiguity and order of the 
two events. Explanation is pragmatic; the purpose of posing a ‘why question’ determines the 
relevance of the answer. My claim, as will become clear, is that the purpose of scientific
research and theorising is to provide an account of observed phenomena, not just a description 
of them. From the point of view of scientific explanation, the observation that trauma to the skin 
normally results in a discolouration of the skin in the area of the trauma is simply describing an 
observation, not explaining it. The goal of scientific15 research and theorising is to uncover the 
mechanism that explains the observed phenomenon; in this case, a part of physiological theory.

This goes to the heart of a problem with RCTs. To the extent that they uncover any regularities, 
they uncover isolated ones unless they can be shown to be among those embedded in, and hence 
deducible from, a theory. But if such a deduction can be made, it is not the RCT that establishes 
or justifies acceptance of the regularity; it is the theory. This is not to say that RCTs have no 
methodological or logical role in scientific enquiry. Fisher's use of them in agriculture is often 
cast as establishing and justifying causal assertions.
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(p.35) But that is the wrong way to view things. RCTs divorced from a theory provide, at best, 
knowledge of isolated regularities (for Fisher a cause and effect relationship) and, as already 
argued, isolated regularities lack the robustness required in providing compelling predictions or 
explanations. What RCTs, used as Fisher used them, can do is provide a method for testing 
predictions made using a theory — in effect, they are a way of empirically testing a theory. In 
this way, they confirm or call into question some feature of the theory, such as one or more of its 
axioms, the validity of a particular deduction from it or some interpretation of its ontology or 
dynamics, and the like. This is an important role but one that can only be played in the context 
of a theory. Moreover, this role is not an explanatory one.16 Furthermore, in the absence of a 
theory, determining whether and in what way an RCT should be conducted is doomed to 
failure.17

An example from immunology illustrates the distinction I am drawing between an isolated result 
from an RCT (or several RCTs that produce similar results) and a robust explanation of the 
result that embeds it in a theory. In the eighteenth century, protection from smallpox was 
discovered to occur in some individuals after inoculation with the dried material from a smallpox 
pustule. Regrettably, about three in 100 people developed a severe case of smallpox and died. 
Edward Jenner, in 1796, discovered that inoculation with material from cowpox pustules (the 
bovine form of smallpox) also conferred protection without causing severe cases. He called this 
inoculation process vaccination (from vacca—Latin for cow: also the origin of vaccinia for the 
virus that causes cowpox); Pasteur (honouring Jenner) extended this term to cover all 
inoculations which provide protection from infectious agents. Jenner had no knowledge of the 
infectious agent; he only knew that protection from smallpox followed vaccination with cowpox, 
with only a small number of individuals developing serious disease. The vaccine was modified 
during the following century and a half (e.g. attenuated versions of the smallpox virus were 
developed).

Jenner's experiment to demonstrate the efficacy of inoculation with cowpox falls significantly 
short of the ‘proof’ required today and would completely fail an ethics test. Jenner inoculated an 
eight‐year old boy, James Phipps, with cowpox material. He waited six weeks and inoculated him 
with fluid extracted from an active smallpox pustule. Phipps did not contract smallpox. On the 
basis of this ‘experiment’, he published his success in 1798. As one (p.36) would expect, 
smallpox vaccines approved in the latter half of the twentieth century were subjected to RCTs. 
Clearly, an RCT would have provided a higher level of confidence in the efficacy of Jenner's 
vaccine. It would not, however, have added anything to Jenner's description of the connection of 
the events. RCTs on more recent smallpox vaccines provide evidence that vaccination is followed 
by protection against smallpox — knowledge that is, without question, valuable in clinical 
medicine18 — but an explanation of why there is a connection is not provided by an RCT.

What does provide an explanation is immunological theory; it provides an account of how the 
vaccine results in immunity to the variola majorvirus (the virus causing smallpox); and theories 
in virology and physiology provide an account of how the virus causes the clinical manifestations 
of smallpox. A comprehensive account of the explanation is complex and more technical than 
appropriate for this paper but the skeleton can be easily provided. The virus in Jenner's vaccine 
has the same antigenic determinants (epitopes) as the variola virus but is not a viable pathogen 
in humans. Lymphocytes (a kind of white blood cell) are produced in the bone marrow. A 
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common lymphoid progenitor gives rise to lymphocytes. There are two major kinds: B 
lymphocytes (which mature in the bone marrow — hence B) and T lymphocytes (which mature in 
the thymous — hence T). These are more commonly known as B cells and T cells. Lymphocytes 
recognise specific sites that are present on antigens–foreign material. A large variety of site‐
specific T lymphocytes are produced, each recognizing a different epitope. The presence of the 
vaccine virus is detected by a specific lymphocyte whose receptor matches the virus’ epitope; 
that detection results in the production of a large number of lymphocytes that are site‐specific 
for the virus. Through a complicated biochemical process, the production of armed effector T 
cells with that site‐specific receptor is initiated. These effector T cells inactivate the virus by 
binding to the epitope. As part of the process, memory T cells and B cells are produced; these 
provide the observed long‐term protection. The same process can be initiated by inoculation 
with attenuated variola (smallpox) virus.

What makes this a robust explanation of the observed phenomena is the rich body of 
generalizations on which it draws and the rich ontology involved (hematopoietic stem cells, 
neutrophils, B cells, T cells, antibodies, basophils, and so on). The deductive network of 
generalizations at a variety of levels of generality integrates this single‐case connection of 
events (vaccine and protection) in a large framework. A framework that also explains why 
lymphocytes do not bind to the bodies own tissues, and why the major histocompatability 
complex (MHC) of genes is important to the production of armed effector (p.37) T cells, and 
why B cells bearing surface CD5 express a distinctive repertoire, and why HIV produces an 
autoimmune response, and so on and so on. The connection of vaccine and protection is 
imbedded in this complex dynamical system; a system by means of which we can provide a rich 
multilayered explanation of the observed connection of events.

Importantly, immunological theory explains the heterogeneity of individuals and explains the 
heterogeneity of responses to interventions. The explanations will appeal, for example, to 
genetic differences, such as differences in the MHC group of genes, to compromises to the 
system, such as low leukocyte counts, to deficiencies in critical precursor elements, such as 
cytokines, and so on. This explanatory power of heterogeneity is a feature of all theories in 
medicine.

By contrast, RCTs, independent of this theoretical framework, focus on an isolated connection of 
events. Even a meta‐analysis, which examines and analyses numerous RCTs, focuses on an 
isolated connection of events. A meta‐ analysis may provide even stronger evidence that there is 
a connection but it stills fails to explain why there is a connection. And, the heterogeneity of 
individuals and their responses to interventions bedevils RCTs divorced from a theory.

Returning now to Fisher to further support my thesis, as noted, for the most part, Fisher's 
method of experimental design was focused on agricultural research. He did, however, with 
support from the Rockefeller Foundation, do some work in medicine on blood groups during the 
period 1935–1943. This work contributed significantly to the early understanding of the Rh 
factor. It, however, drew heavily on population genetics and evolution, both are robust 
theories.19 What Fisher demonstrated in 1943 (see Fisher 1943 and 1944), using the theory of 
population genetics, was the role that three linked loci with specific allelic combinations could 
play in the explanation of the puzzling experimental results with the Rh factor. He also 



Causality, theories and medicine

Page 11 of 20

predicted, again on the basis of population genetical theory, the existence of antibodies not 
known to exist at that point. Within the next five years his prediction and explanation received 
independent empirical support — further confirming the theories. Consequently, Fisher's work 
in clinical medicine, far from demonstrating the value of RCTs in that domain, elegantly 
demonstrated the value of a robust theory in providing explanations and making predictions.

Fisher's work on population genetics and evolution and his use of them in medical explanation 
and prediction makes clear that probability and statistics play an important role in science, 
outside of RCTs. The domain of mathematics employed as the language of his genetical theory of 
natural selection is probability and statistics. Using probability and statistics in this way — i.e. 
as (p.38) the language of theory — is common in physics, chemistry and biology; its use in 
RCTs is not.20

What is being questioned here is the appropriateness of the use of probability and statistics in 
RCTs in medicine. In agriculture, many of the presuppositions on which a legitimate use of 
probability and statistics are based are met; this is the case in medicine. In medicine, 
randomization is almost always gerrymandered (sampling is not from the entire relevant 
population, some individuals assigned to a sample are removed after the fact, samples are 
adjusted to eliminate relevant differences observed after sampling or known to be likely from 
past experience — difference in age profile or imbalanced gender, for example — and so on). In 
addition, the assumption of homogeneity that is reasonably robust in Fisher's agricultural work 
is absent in medicine,21which in part accounts for ‘side effects’ which are often more prevalent 
that the target effect, the heterogeneity of outcomes22 and the constant publication of 
contradictory findings about the same intervention. The heterogeneity in the population and in 
outcomes undermines any chance of justifying causal claims. In Fisher's agricultural trials, 
justifying a causal claim on the basis of the trial is plausible. The problem in this case, as I have 
argued, is that the causal claim is isolated and, hence, cannot provide a basis for explanation; 
for that a theory is required. Unlike Fisher's agricultural trials, medical trials do not come 
remotely close to even justifying the assertion of a causal claim.

In agriculture, randomization is restricted to choosing one of a matched pair of plots — not as in 
medicine to sampling from a population; paired plots can with a high level of confidence be 
assumed homogeneous for all relevant factors — contrary to the situation in medicine; and the 
multiple match‐plots which are part of each trial provide replication within the trial–in medicine, 
replication requires new trials which will be few in number and almost certainly dissimilar to the 
original trial in important ways.

(p.39) 2.5 Causality, theories and an eliminative thesis
Causality has had a rough couple of millennia. Aristotle identified four causes (efficient, formal, 
final and material). Today ‘cause’ is only associated with his efficient cause; the other three are 
held in various states of derision. Even efficient cause has been, and still is, under constant 
attack. It was, for example, pummelled by David Hume and outright rejected by Bertrand 
Russell. Responses and counter‐responses abound. Patrick Suppes opens his excellent A 
Probabilistic Theory of Causalityby quoting the relevant passages from Russell's, ‘On the Notion 
of Cause’; he then argues that Russell's position is a relic of a superseded period of physical 
science — a period in which ‘the fundamental physical phenomena in question were felt to be 
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much better understood at a fundamental level than they are today’. Since, I shall provide a neo‐
Russellian account repeating the quotation here provides an appropriate starting point.

All philosophers, of every school, imagine that causation is one of the fundamental axioms 
or postulates of science, yet, oddly enough, in advanced sciences such as gravitational 
astronomy, the word ‘Cause’ never occurs.… The law of causality, I believe, like much that 
passes muster among philosophers, is a relic of a bygone age, surviving, like the 
monarchy, only because it is erroneously supposed to do no harm.… The principle ‘same 
cause, same effect,’ which philosophers imagine to be vital to science, is therefore utterly 
otiose. As soon as the antecedents have been given sufficiently fully to enable the 
consequent to be calculated with some exactitude, the antecedents have become so 
complicated that it is very unlikely they will ever recur. Hence, if this were the principle 
involved, science would remain utterly sterile.… No doubt the reason why the old ‘law of 
causality’ has so long continued to pervade the books of philosophers is simply that the 
idea of a function is unfamiliar to most of them, and therefore they seek an unduly simple 
statement. There is no question of repetitions of the ‘same’ cause producing the ‘same’ 
effect; it is not in any sameness of causes and effects that the constancy of scientific laws 
consists, but in ‘sameness of relations’. And even ‘sameness of relations’ is too simple a 
phrase; ‘sameness of differential equations’ is the only correct phrase.

Suppes is correct to point out that the natural sciences at the time he was writing (1970) were 
more conceptually and theoretically complex than in the period Russell was writing (1910–15); 
the full impact of Einsteinian relativity (his special theory of relativity was published in 1905 and 
his general theory of relativity was presentation to the Prussian Academy of Science in 1915) 
had not occurred and quantum theory only began to coalesce in the 1920s. Since Suppes' 
observation, the natural sciences have been influenced by chaotic dynamical systems, fractal 
mathematics and computer simulation to mention but a few important factors. These changes 
make Suppes' observation more apt. Notwithstanding, however, this correct observation of 
Suppes', I contend that Russell uncovered the kernel of a profound reinterpretation of causality.

(p.40) The essence of the argument can be sketched by reflecting on the history of teleology in 
physics and biology. In the period from Galileo to Newton, the role of teleological accounts of 
phenomena shrank in physics and astronomy. After Newton, its role was miniscule to non‐
existent — bursts of attempted resuscitations were unsuccessful. There are cases where the 
language used appears to invoke a teleological account. For example, it might be said that a 
particular missile is ‘seeking’ a fighter aircraft. The missile changes trajectory as the target 
moves. That phenomenon is a function of an internal positive/negative feedback mechanism; the 
language of ‘seeking’ is simply a shorthand expression that can readily be replaced by the 
mechanistic one. No physicist or engineer — indeed no moderately educated person — would 
really believe that the missile was ‘seeking’ the aircraft and was directing its behaviour to 
achieving that goal. It is simply behaving in accordance with its internal structure and program. 
If anything can be identified as a goal, it is a humanly constructed goal of incapacitating the 
aircraft within a larger military goal. Whether this ‘goal’ is irreducible to a mechanism is 
complex and irrelevant to the goal‐directed language of the physical entity and its behaviour; 
the physical entity and its behaviour have no intrinsic goals.
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In biology, teleological accounts of phenomena were alive and well until the second half of the 
nineteenth century; the publication of Darwin's Origin of Speciesbegan the slow decline in the 
use of teleological accounts. It is not that the use of teleological language was purged from 
biology. Indeed, today it is easy to find such language in biological books and articles — 
especially those dealing with the behaviour of organisms. What changed with Darwin was how 
this language was understood.

When a biologist remarks, ‘Hymenoptera perform this dance in order to communicate the 
direction and distance of a food source to other workers,’ there is no attribution of intentions. 
The use of ‘in order to’ is shorthand for a mechanistic understanding. The behaviour has a 
genetic basis and is, therefore, biologically programmed and heritable, and the genes 
responsible for the behaviour have become ubiquitous in that species because they enhance 
reproductive success. There is no goal of communication, in any teleological sense — though 
information is in fact conveyed. To the extent anything can be considered a goal, it is the 
reproductive success of the individual organisms.

Although Suppes' (1970) observation that causal language is pervasive in modern sciences 
remains true today, I contend that it is, nonetheless, like the use of teleological language; it is a 
shorthand expression, which owes any meaning and validity to the existence of models and 
theories. It can, and often should, be eliminated in favour of a mechanistic theoretical account. 
The claim ‘A caused B’ is shorthand for ‘The claim, whenever the system is in state A, the next 
state of the system will be B (either always or with Pr(x)) can be deduced from a currently 
accepted and well‐confirmed dynamical theory.’

(p.41) On this interpretation of ‘cause’, even in agricultural trials, RCTs do not justify causal 
claims; only a theory can do that. In addition, this interpretation goes to the heart of a diagnosis 
of the problem with RCTs in medicine. The problem identified above is that in the absence of a 
theory, RCTs do not provide explanations or allow predictions. That is a hefty shortcoming, and 
were not so much at stake it would make the claim that RCTs are a gold standard risible. They 
do not provide explanations and predictions because the results, unless connected in ways I 
have described to a theory, stand isolated; an isolation, this reinterpretation of ‘cause’ suggests, 
renders causal claims made on the basis of RCTs vacuous.

In physics, chemistry and biology, Russell overstated the case with his claim, ‘The law of 
causality, I believe, like much that passes muster among philosophers, is a relic of a bygone age, 
surviving, like the monarchy, only because it is erroneously supposed to do no harm.’ In those 
contexts, using the shorthand language of causality almost never results in researchers failing to 
grasp the importance and role of a theory. Those researchers quite naturally — almost 
unconsciously — appeal to theories in making predications and providing explanations. Russell's 
claim, however, has considerable validity in clinical medicine that focuses on RCTs. An 
impoverished interpretation of causality that divorces it from theories results in significant 
methodological, epistemological and logical harms. In turn, these result in the harm of suspect 
findings and claims, and poorly or improperly understood interventions. At the heart of the harm 
is the undermining of the validity of explanations, predictions and clinical treatments; and that is 
far from a trivial harm.
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The conclusion to draw from all this is not that RCTs and the results of RCTs have no role in 
medicine; they do. The appropriate conclusion is that their role is dependent on being integrated 
into (indeed subservient to) a theory. Fortunately, in spite of the emphasis on RCTs, robust 
theories, that can be used to ground RCTs, abound in medicine; from immunology through to 
physiology and endocrinology to neurosciences robust theories are found. It is these that have 
provided the solid, lasting basis for medical explanation, prediction, diagnosis and treatment. 
Consider, for example, the compendium on immunobiology by Charles Janeway Jr.23 or the text 
on medical genetics by Margaret Thompson et al.24 Their entire treatment of their subject is 
experimental and theoretical, and, most notably, RCTs play no role in the evidence, explanations 
and predictions provided.25

(p.42) To appropriate Dobzansky's famous claim that, ‘Nothing in biology makes sense except 
in the light of evolution’,26 ‘nothing makes sense in medicine except in the light of a theory’.
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Notes:
(1) The ontology of a system is the collection of entities postulated to exist (e.g. DNA, proteins, 
amino acids, leukocytes, and the like) and their properties and their physical relationships to 
each other (e.g. proteins are strings of amino acids). Dynamical relationships are expressed by a 
set of equations with these entities as variables.

(2) Randomized trials existed prior to Fisher. James Lind, for example, conducted controlled 
trials in the eighteenth century–not quite randomized but employing the same reasoning. The 
most well known is his controlled trial involving the causes of scurvy — a small sample size but 
manifesting the principles of current RCTs (see: Lind, 1753). Nonetheless, Fisher looms large in 
the history of RCTs and he contributed significantly to dogma that RCTs provide a strong basis 
for asserting causal connections and that they should be the basis for experimental design in 
agriculture and other fields.

(3) Traits determined by multiple genes and subject to environmental influences are known as 
multifactorial traits. Separating the genetic determinants from the environmental ones is 
challenging. Also, even with stable environmental factors, understanding the genetic 
transmission of polygenic traits (those caused by more than one gene) is complex. These traits 
do not manifest simple Mendelian transmission. Although the transmission is Mendelian, it is a 
complex process which is the subject of the field of quantitative genetics. Within that field, 
numerous statistical tools have been developed to deal with this complexity (see: Hartl and 
Clark, 1989).

(4) Of course, there are some cases where the required homogeneity exists. In such cases, the 
relevant variables are few — usually one or two — and the values are constrained. For example, 
placing a 10% solution of iodine on the skin will result in discolouration of the contacted area.

(5) See, for example, Guyatt, GH, Keller, JL et al.(1990) and Avins, AL, Bent, S, et al.(2005).

(6) Fisher, with support from the Rockefeller Foundation, did some work in medicine on blood. 
He contributed significantly to the understanding of the Rh factor in blood groups.
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(7) Many defences have been offered as well (see, for example, Papineau, 1994 and Suppes, 
1982). Those defences strike me as inadequate against the criticisms of Cartwright, Urbach and 
Worrall and do not undermine the criticism I have articulated.

(8) It might be thought that, in clinical medicine, RCTs are just testing hypotheses without any 
clear causal structure. That, in fact, is a role that RCTs could play under the auspices of a causal 
theory, as I indicate below. That, however, is not how medical epidemiologists view them. With 
few exceptions, books on clinical epidemiology are quite explicit about the causal goals. 
Consider, for example, Haynes et al.'s book, Clinical Epidemiology, in which they claim, ‘Our key 
point is this: RCTs provide the best evidence for causation, so don't give up on doing an RCT to 
settle a causal issue just because it may be difficult or contentious to do so.’ (p. 360). Elwood, in 
his Critical Appraisal of Epidemiological Studies and Clinical Trials, devotes an entire chapter to 
causality. In the section ‘A direct test of causation’, he claims, ‘If a causal relationship exists, the 
frequency of the defined outcome will be higher in the group exposed to the causal factor. A 
study design which uses this approach is the randomized trial; that is, the assignment of the 
treatment for each subject is made by a random or chance procedure.’ (p. 7). Further, Rothman 
and Greenland in Modern Epidemiologyalso have an entire chapter on causality — one of the 
most nuanced accounts I have found in epidemiological writings. Uncovering causal 
relationships is clearly on the minds of epidemiologists who engage in RCTs.

(9) Quine and Ullian also employ the metaphor of a web in a way analogous to mine (see Quine 
& Ullian 1970). Kuhn's holistic view of theories also treats them as a web (see Kuhn, 1962).

(10) Deduction is the ideal in deterministic systems and theories describing them but frequently 
the connections are probabilistic such that the truth of a claim is highly probable based on a 
collection of other claims in the theory, but not a deductive certainty.

(11) See: Suppe (1967, 1972, 1989), Suppes (1957, 1961, 1962, 1967, 1968), Lloyd (1984, 1986, 
1988), Thompson (1983, 1986, 1987, 1989, 2007) and van Fraassen (1967, 1969, 1970, 1972).

(12) See: Weisheipl (1967).

(13) See note 2.

(14) Silvain Bromberger, over 40 years ago, renewed philosophical attention on the importance 
and role of why questions (Bromberger, 1966). Significant criticisms of Bromberger's specific 
account have been proffered. I find van Fraassen's early criticism compelling (van Fraassen
1980, pp. 126–130) but do not believe that it diminishes the centrality of why questions; it 
simply identifies the difficulties with a particular account of the connection between explanation 
and why questions and the canonical form prescribed by Bromberger. Almost all philosophers of 
science, and van Fraassen is among this majority, accept that a why question is a request for an 
explanation and such requests are central to the scientific enterprise. That is all the arguments 
of this paper require. Of course, van Fraassen and others have put forward a compelling case for 
the importance of context in determining which theory and/or parts of a theory are relevant to 
the sought after explanation. I take this as undeniable; a fact that complicates explanation but 
does not undermine the central arguments of this paper.
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(15) I, of course, am using ‘scientific’ in a narrower sense that some others might. I think my use 
accords with standard usage in philosophy of science. Nonetheless, little hangs on this. If forced 
to broaden the scope of the phrase ‘scientific explanation’, I would use ‘robust scientific 
explanation’ in its place.

(16) Nancy Cartwright, with somewhat different arguments and purposes, has made a similar 
point in her compelling and insightful recent book, Hunting Causes and Using Them(Cartwright,
2007), as also have numerous philosophers over the last 50 or so years (see also Cartwright,
2008).

(17) This is a point elegantly made by Hempel (1966, pp. 10–18). His example and argument are 
entirely independent of his logical empiricist philosophy; it applies equally to other views of 
theories and their role in science.

(18) Smallpox vaccination has resulted in one of the great successes of clinical medicine. The 
last reported case of smallpox was in Somalia in December 1977. On 9 December 1997, the 
World Health Organization declared that smallpox had been eradicated.

(19) Fisher contributed significantly to their development (Fisher, 1930).

(20) To avoid any confusion, let me be clear that, as the forgoing use by Fisher makes 
abundantly clear, the importance or power of probability and statistics in science is not in 
question. Fisher's use of that domain in population genetics, evolution and medicine parallels its 
use in physics (e.g. statistical mechanics (a deterministic sphere) and quantum mechanics (an 
indeterministic sphere)), chemistry (e.g.) and biology (e.g. population genetics). Patrick Suppes 
used it in a compelling way to develop a probabilistic theory of causality (Suppes, 1970). It 
worth noting in passing that Suppes is quite clear about the role and importance of theory in his 
account, ‘The analysis of causes and their identification must always be relative to a conceptual 
framework [what I take a currently accepted theory to be], and there is no successful argument 
apparently that can show that a particular conceptual framework represents some ultimate and 
correct view about the structure of the world’ (Suppes, 1970, pp. 90–91). There are also a host 
of other ways in which probability is used in science — from determining goodness of fit 
between predictions deduced from a theory and the experimental data obtained to describing 
the distribution of chance events.

(21) See: Upshur (2005).

(22) See: Kravitz et al.(2004).

(23) Janeway (1997).

(24) Thompson et al.(1996).

(25) The same is true in many other research fields in medicine as a perusal of medical texts in 
medical genetics, human physiology, neurosciences will reveal.
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(26) Dobzhansky (1964) p. 449, see also, Dobzhansky (1973). Dobzhansky meant by ‘evolution’ 
both the fact that it occurred and, most importantly for him, the modern synthetic theory of 
evolution.
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mechanistic interpretation of causal generalisations in epidemiology as existence claims 
about underlying mechanisms.

3.1 Causal hypotheses in epidemiology
What does it take to establish a causal hypothesis in epidemiology? What standards need to be 
met? Or, if establishment comes in degrees, degrees of what?

The most obvious aspect of this problem concerns inferring causation in a particular study. A 
study reveals a statistical association between smoking and lung cancer, or a certain gene and 
obesity. Statistical analysis reveals a low p‐value — a measure of the chance that the association 
is due to chance. Study design controls for confounding variables (what philosophers would call 
common causes of the putative cause and effect). Can it be inferred that, for this group, a causal 
relationship exists between smoking and lung cancer, or having that gene and obesity?

Oddly enough, this is not a question that epidemiologists like to answer. A single study would 
not normally be considered a sufficient basis for a causal inference. Replication is a guiding 
epidemiological principle. From a (p.46) methodological point of view this is extremely 
interesting. Epidemiologists' credence in a causal hypothesis about Study Group A increases 
when the effect is replicated in Study Group B. Explaining (or, I suppose, refuting) this attitude 
is a central task for any methodological analysis.

A second difficulty concerns the inference from a study, or a collection of studies, to a wider 
population. Epidemiologists are centrally concerned with extrapolating from the people they 
study to people they have not studied. Replication is important here too, because one way to 
argue that differences between the population studied and the target population are causally 
irrelevant is to replicate the study among people who are drawn from the target population. 
However, replication cannot solve the problem of generalisation. Often the study group will
already be drawn from the target population: for example, when generalizing from the Whitehall 
studies to the population of Britain.1 Differences between those studied and those not studied 
will always remain; the difficulty is working out when these differences make a difference. On 
other occasions, studies on a subset of the target population may be impractical: for an obvious 
example, consider future populations. Quite generally, a central purpose of epidemiology is to 
get more for less: to learn something not only about those who have been studied, but about 
those who have not.

Epidemiologists make efforts to be precise about the scope of their claims, by explicitly stating 
whether they are intended to apply to the group studied, or to a wider population, and if the 
latter what conditions the wider population are to meet. For example, instead of saying ‘genetic 
influences cause paediatric obesity’, they might say:

Genetic influences on BMI and abdominal adiposity are high in children born since the 
onset of the pediatric obesity epidemic.

(Wardle et al. 2008, p. 398)
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However, even this is an incomplete specification. The children studied were British, but the 
obesity epidemic affects Europe and America too. Are these results evidence for high genetic 
influences on BMI and adiposity in children in Britain only, or in Europe and America too? The 
incompleteness of the specification is not necessarily a failing of the authors of the study. It 
reflects the genuine difficulty of deciding how to generalize.

Note that replicating the study in European or American children is a way to avoid the question, 
not to answer it. Replication cannot tell us whether a generalisation from this study to American 
children would be warranted, only whether it would be correct. In circumstances where we can 
replicate, that may (p.47) be the best strategy; but for reasons I have already given, we cannot 
universally substitute replication for generalisation.

Thirdly, there is a difficulty interpreting general claims, even when their scope is fixed. A great 
deal of philosophical attention has been directed towards singular causal claims, such as ‘Jones' 
smoking caused his lung cancer’. But epidemiologists are almost exclusively concerned with 
general claims, such as ‘smoking causes lung cancer’. Does the latter express a relationship 
between smoking and lung cancer, or is it a generalisation over individual causal relationships 
— along the lines of ‘in X% of cases, smoking causes lung cancer’?

This difficulty is a relatively familiar one to philosophers, but it is perhaps not the most pressing 
one for epidemiologists. In practice, epidemiological hypotheses are explicitly exception‐ridden. 
Accordingly they are framed not as universal generalisations, but as measures of the influence of 
one factor on an outcome, or measures of the strength of an association, or of the proportion of 
an effect that is due to a particular factor or group of factors. These sorts of claims raise what is 
fundamentally the same problem, but in a slightly different way. For example, saying ‘Genetic 
influences … are high’ makes it clear that the generalisation is not exceptionless. But it still does 
not make clear exactly how the degree of influence is to be interpreted. Is the claim that, in each 
individual, the genetic influence is high? — This would amount to a universal generalisation 
attributing a certain genetic influence to each individual. Such an interpretation is hard to make 
sense of on either the effect side or the cause side. On the effect side, obesity might be absent in 
some of the individuals studied. Genetic factors cannot then be said to influence it. Switching 
from a qualitative property (obesity) to a quantitative one (such as bodyweight) will not always 
be straightforward: the absence of effects such as lung cancer, diabetes, and suicide are hard to 
interpret as zero degrees on any quantitative scale. Similarly on the cause side, it makes little 
sense to attribute some degree of influence to a factor that is absent. This is not clear in the 
example I have picked, since ‘genetic influences’ are always present in people, but it is obvious 
when we consider single‐gene conditions. When somebody lacks the gene but has the trait in 
question, it makes no sense to attribute the trait's presence to the influence of the absent gene 
in any degree.

Another interpretation would see measures of influence, proportion, strength of association, and 
similar, as measures of the proportion of cases in which a factor is causal. (This interpretation is 
akin to the generalisation‐ over‐singular‐causation view of universal causal generalisations.) This 
view is easy enough to make sense of, but there is a case that it reflects metaphysical 
commitments rather than epidemiological evidence. Take a measure such as heritability, which 
is the proportion of a given trait in a given population that is due to genetic factors. The idea 
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that causes are either present or absent, (p.48) strictly speaking, and the view that we cannot 
quantify the contribution of a particular cause to a particular effect, are widespread among 
philosophers from John Stuart Mill to David Lewis (Mill 1843; Lewis 1973). On such a view, 
heritability expresses the proportion of the population in which the trait is caused by genetic 
factors — but in each individual, the trait either is or is not caused by genetic factors. But this 
interpretation is not stable, because on this metaphysical picture, causation is not exclusive. 
Saying that a trait is caused by genetic factors in an individual is compatible with saying that it 
is caused by non‐genetic factors: events have many causes. In the study I have been using as an 
example, the aim is to measure the contribution of genetic influence to obesity in a population. 
To interpret this as a claim about the proportion of individuals in whom genetic factors cause 
obesity would be bizarre, since genetic factors are part of the causal history in 100% of cases of 
obesity. Indeed, every trait is both 100% genetic and 100% environmental, on this interpretation 
(Rothman and Greenland 2005, S146). Better, we could see it as a claim about the proportion of 
individuals in whom genetic factors make the difference between being obese and not. This 
interpretation might be made to work; but that would be no trivial philosophical achievement. 
The interpretation of heritability is a topic of considerable dispute (e.g. Schonemann 1997; 
Sesardic 2005).2

Two lines of response to this bundle of difficulties may be discerned in the contemporary 
methodological‐epidemiological literature. These lines of response are in tension. One is the
mechanistic stance: the view that causal inference in epidemiology aims at discovering 
mechanisms: that discovering mechanisms is necessary and sufficient for establishing a causal 
hypothesis. The other is the black box stance: the view that epidemiology is primarily concerned 
with statistical analysis of associations, and only incidentally concerned with uncovering 
mechanisms. In Sections 3.2 and 3.3 I will describe and evaluate each stance, and in Section 3.4
I will propose a resolution.

My terms ‘stance’, ‘line of thought’, and similar are intended to avoid commitment on the 
question of whether any actual epidemiologist wholeheartedly asserts any of the views 
discussed. I rather doubt that any does. Nonetheless, these are not straw men: these stances are 
evident in the methodological writings of actual epidemiologists, and there is value in seeking to 
draw them out into the light for explicit evaluation, even though — indeed, partly because — (p.
49) nobody would endorse these views when stated explicitly and taken to their logical 
conclusions.

3.2 Mechanisms
There has been a surge of interest in mechanisms in recent philosophy of science. One well‐
known definition is this:

A mechanism for a behavior is a complex system that produces that behavior by the 
interaction of a number of parts, where the interactions between parts can be 
characterized by direct, invariant, change‐relating generalisations.

(Glennan 2002, S344)
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The word ‘mechanism’ is less common in epidemiology than it is in some other biological 
sciences. Nevertheless, it would be interesting if a similar idea could be identified in actual 
epidemiological practice.

I think it that it can. Epidemiologists, like neuroscientists, use the term ‘mechanism’, and they 
do so in revealing ways, as I shall argue. But in addition, I suggest that it is plausible to take the 
common epidemiological phrase ‘causal pathway’ as referring to a mechanism. Perhaps a causal 
pathway is not exactly the same thing as a mechanism: for one thing, it may be longer, and 
include several ‘mechanisms’ in the sense intended by Glennan. Nevertheless, causal pathways 
probably do meet the proffered criterion for mechanisms, since they typically will be postulated 
to explain a ‘behaviour’, and will plausibly constitute a ‘complex system’ whose parts interact 
according to ‘direct, invariant, change‐relating generalisations’. Moreover, identifying a 
mechanism in neuroscience, and identifying a mechanism in epidemiology, satisfy the same goal: 
they both explain how something works. For these reasons, it is plausible to see the search for 
causal pathways in epidemiology as a search for what Glennan and others call ‘mechanisms’, 
even if the causal pathways identified in epidemiology are not terribly similar to the mechanisms 
in neuroscience.

The notion of mechanism neatly captures one methodological story that may be discerned in the 
epidemiological literature. That story has two parts. Initially, associations are identified between 
variables and health outcomes. By a sort of process of elimination, it is established that it is very 
unlikely that the association is due to chance, or to confounding variables (common causes, to 
philosophers) or other biases. A variable for which such an association has been established is 
called a risk factor. This first part of the process provides a good reason to think that the risk 
factor is causal, but a second stage is required for a conclusive case. The mechanism for the 
operation of the risk factor must be identified. Perhaps not immediately; but if in the fullness of 
time no mechanism is identified, the credibility of the hypothesis will suffer.

(p.50) Moreover establishing a mechanism is sufficient for proving that a causal hypothesis is 
correct: showing how A actually causes B is conclusive proof that A does cause B.3 The
mechanistic stance is the methodological position that identifying the underlying mechanism is 
both necessary and sufficient for warranted inference to a causal hypothesis.

As a description of contemporary epidemiological methodology, the mechanistic stance is 
appealing. It has plenty of illustrations. Genetic epidemiology is an extremely good fit. Consider 
this extract from the introduction of another high profile clinical study in the genetics of obesity:

The genetic contribution to body weight has been established through family studies, 
investigation of parent–offspring relationships, and the study of twins and adopted 
children … As is the case for height … environmentally driven changes in body weight in 
the population occur against a background of susceptibility to weight gain that is 
determined by genetic factors. Thus, genetic approaches can be applied to understand 
both the molecular and physiological mechanisms involved in human obesity.

(Farooqi and O'Rahilly 2006, p. 710)
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The rationale appears to follow exactly the lines of the mechanistic stance I have described. 
There is considerable evidence for a causal link between genetics and weight; the next step is to 
understand the mechanisms involved.

A similar sentiment is evident at what might be seen as the other end of the epidemiological 
spectrum, among those who work on social determinants of health. They, too, see it as crucial to 
identify plausible pathways for the determinants they identify. Here is an extract from another 
introductory rationale, this time from a chapter by two leading proponents of social 
determinants of health research:

Psychosocial factors and their influences on health are active areas of research … There is 
now enough evidence to suggest that this is an important field for those concerned with 
improving public health…Plausible mechanisms linking psychosocial factors to health are 
described in the first half of this chapter. We then look to the evidence from both human 
and animal literature to illustrate the ways in which social organisation can influence our 
biology and, therefore, the health of individuals and populations.

(Brunner and Marmot 2006, p. 8)

This passage mixes the mechanistic stance as a purely methodological stance with the natural 
companion view that identifying mechanisms is a good way to improve public health. Setting 
that aside, the mechanistic stance is clearly discernible. There is already evidence that 
psychosocial factors influence health; the purpose of the chapter is to work out how, by 
postulating ‘plausible mechanisms’ and presenting ‘evidence from both human and animal litera‐
(p.51) ture’ in support. Whether or not this is the authors' intention, they certainly give the 
impression that providing a mechanism a key element in the case for the hypothesis that social 
status is a determinant of health.

In each of these cases, the identification of mechanisms is seen as important: important enough 
to devote an entire paper to. Why? It could be simple scientific curiosity: the desire to find out 
how things work, just for the sake of it. But I think there is more to it than that. Identifying 
mechanisms is presented as important not only to complete the scientific picture, but also to 
seal the case for existing causal hypotheses. This is especially clear in the social determinants of 
health literature, where the identification of pathways is seen by proponents and detractors 
alike as crucial for the case that the socioeconomic factors identified as health determinants 
really do have the effects claimed for them. Michael Marmot's Whitehall studies provide 
evidence for a causal link between social status and health, among British civil servants — a 
population whose basic biological needs (food, water, shelter) are amply met. Marmot's efforts 
to confirm this hypothesis have not focused merely on replicating the results in different 
populations (though that is of course one area of activity). A considerable amount of effort has 
also been devoted to identifying mechanisms by which social status might affect health.

This suggests a methodological thesis: that identifying an underlying mechanism is both 
necessary and sufficient for establishing a causal hypothe‐ sis.4 I am not suggesting that Marmot 
or anyone else endorses this thesis: indeed it may be that no actual epidemiologist would sign up 
to it, in that blunt form. But identifying mechanisms clearly is relevant to establishing causal 
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hypotheses in epidemiology, and setting up a somewhat extreme but clear stance may be a 
useful technique for exploring that rele‐ vance.5

It is not hard to see why identifying a mechanism might be considered necessary and sufficient 
for establishing a causal hypothesis, at least in epidemiology. An argument for its being 
necessary might appeal to the fact that epidemiology is clearly not a fundamental science. 
Causal associations identified in epidemiology presumably exist in virtue of the way that things 
are organized at a more fundemental level. The existence of causal associations at the 
population level is naturally seen as arising from certain regularities in the way that the 
members of that population are organised, and regularities in their (p.52) environment. 
Identifying a mechanism is just identifying the properties and activities of the population's 
members and environment which together give rise to the population‐level association. If no 
mechanism can be identified, then the status of the population‐level causal association remains 
mysterious. Failure to identify such properties and activities is not always evidence that they do 
not exist, of course, and perhaps this is why Austin Bradford Hill famously urges that ‘biological 
plausibility’ be treated with caution (Hill 1965). Nevertheless, a hypothesis for which no 
mechanism is remotely plausible, or for which no mechanism is discovered after a long period of 
time, remains at best tentative.

It is similarly obvious why identifying a mechanism underlying a causal association might be 
considered sufficient for establishing the corresponding causal hypothesis. If the events and 
activities giving rise to an association are identified, then it presumably follows that the 
variables which the hypothesis asserts are causally linked at least can be causally connected. 
There is an interesting twist here, however. Showing that a mechanism exists by which, say, 
stress can cause poor health, does not bear directly on the claim that stress does cause poor 
health in any particular population. The mechanisms identified by Marmot are ways in which the 
results of the Whitehall studies might have come about. This explains his two‐part strategy 
outlined in the excerpt quoted previously, of first identifying mechanisms and then arguing for 
their actual operation in humans and animals. So identifying a mechanism is not on its own 
sufficient for establishing a causal hypothesis; a further inference is required to the claim that 
the identified mechanism is indeed the explanation of the causal association asserted by the 
hypothesis in question. What is sufficient, then, to establish a causal hypothesis, is the 
identification of the mechanism actually responsible for the association, not merely a mechanism 
which physically could be responsible for it. I take it that the fundamental motivation for this 
stance is that it follows from the claim that A causes B in a particular way, that A causes B 
simpliciter. Showing how A causes B is only possible if, or in other words entails that, A does in 
fact cause B.

The mechanistic stance responds as follows to the difficulties facing causal inference in 
epidemiology which I identified in Section 3.1. In answer to the question when we are justified in 
inferring causation for a studied group, the mechanistic answer is presumably, ‘Not until a 
mechanism has been identified’. A single epidemiological study will not usually identify a 
mechanism, perhaps explaining why single studies typically provoke replication and further 
research, rather than a causal inference. But if epidemiology seeks to uncover mechanisms, then 
there may be another, more subtle reason that replication is important. Replicating in Study B 
an association observed in Study A provides evidence that the same mechanism underlies both



Inferring causation in epidemiology: Mechanisms, black boxes, and contrasts

Page 8 of 23

associations; it seems prima facie less likely that two different mechanisms gave rise (p.53) to 
the two associations, than that one did.6 This explains why replication by Study B can confirm a 
hypothesis about Study A: because Study B provides further reason to think that some 
mechanism underlies both studies, and thus provides further reason to think that some 
mechanism underlies the association first observed in Study A. And showing that some 
mechanism underlies an association is sufficient for showing that the association is indeed 
causal, on the mechanistic stance. This methodological stance therefore explains and vindicates 
the reluctance of epidemiologists to make causal inferences on the basis of individual studies, 
and the importance they attach to replication.

The mechanistic stance also provides useful clarification of the other difficulties we identified, 
the problem of generalizing from studies to population, and the question of how to interpret 
general causal hypotheses in epidemiology. Generalizing to a wider population is typically safer 
when the mechanism underlying a causal association has been identified, because knowledge of 
the mechanism yields detailed knowledge of what differences are relevant to the association. 
For example, our knowledge of the mechanism underlying the analgesic effect of paracetamol 
enables us to identify the circumstances relevant to this effect, and thus to say whether the 
effect will hold in a very wide range of circumstances. Moreover, it also gives us a lot of other 
useful knowledge, for example, about other associations — other effects of taking paracetamol. 
These uncontroversial facts motivate a methodological idea: that the generalisation of an 
association observed in a particular study to a wider population is only really warranted when 
the mechanism underlying the association has been identified. generalisation before a 
mechanism has been identified may of course be required in some circumstances, but until the 
mechanism has been identified, generalizing remains a sort of guessing, according to the 
mechanistic stance: because we can't be sure exactly when our causal generalisations will hold, 
until we know why they hold.

This suggests an interpretation of general causal claims, such as ‘smoking causes lung cancer’ 
or ‘genetic influences on BMI and abdominal adiposity are high in children born since the onset 
of the pediatric obesity epidemic’. Such claims are to be interpreted, first, as asserting the 
existence of a mechanism — or perhaps several — linking the causal and effect variables, and 
second, as claiming that the operation of this mechanism(s) is (are) in fact what underlies the 
causal association between the two variables. The mechanism may or may not be known. When 
it is, this interpretation is very natural. ‘Paracetamol causes pain relief’ is naturally precisified, 
not by specifying more exactly the probability that an analgesic effect will be observed in 
various circumstances, but rather by saying more about the way paracetamol works. Detailed 
description of the mechanism yields information about whether an analgesic effect (p.54) will 
be observed in a wide range of circumstances, in an efficient way. When a mechanism is not 
known, the causal generalisation is a sort of stand‐in: a claim that some unknown mechanism 
does link the variables.

The exception‐ridden nature of epidemiological generalisations is unprob‐ lematic, on this view. 
Suppose a causal generalisation is just a claim that a mechanism underlies the association 
between two variables C and E. That is to say, in individual cases where an individual c leads to 
an individual e, a mechanism connects c and e. The exception‐ridden nature of the generalisation 
reflects the fact that sometimes, C‐events occur, but the mechanism by which they give rise to E‐
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events is absent, and so E‐events fail to occur. Likewise, the fact that C‐events can by a certain 
mechanism give rise to E‐events does not preclude E‐events from coming about some other way. 
Causal generalisations are claims about the actual linking of individual C‐events and E‐events by 
actual instances of a mechanism; such claims are entirely compatible with C‐events occurring 
without the E‐producing mechanism, or E‐events occurring as the result of some other 
mechanism. The content of the causal generalisation is that a certain mechanism is responsible 
for the causal association between the identified variables; it is not a claim about the association 
itself, but about how the association arises. Further support for this interpretation of exception‐
ridden causal generalisations derives from one of the points argued in the last paragraph, that 
when a mechanism is known, it is natural to precisify a causal generalisation by specifying the 
underlying mechanism, rather than offering more statistical detail about the circumstances in 
which the association holds. Whether or not it is a model for other sciences, it seems to be a 
good fit for epidemiology.

The one trouble previously identified which the mechanistic stance does not seem to handle is 
the worry about measures of proportion of influence, such as heritability. It can handle causal 
generalisations amounting to associations of less than 100%, such as ‘smoking causes lung 
cancer’, in the manner already indicated. But a claim such as ‘pediatric obesity is over 70% 
heritable’ does not submit to a mechanistic interpretation, since presumably mechanisms linking 
genes to weight exist in every human being. I am, however, inclined to think that this reflects 
badly on the concept of heritability, and similar attempts to apportion causal responsibility; such 
concepts are hard to make sense of in any analysis. It may be that they have no clear sense, or 
that they need further clarification (cf. Lewontin 1974; Schonemann 1997). Accordingly I 
propose to set them aside, and focus on interpreting those epidemiological hypotheses that 
clearly do make sense.

The mechanistic stance has a lot to recommend it, then: it provides a neat interpretation of 
several tricky features of actual epidemiological practice, and thus vindicates that practice. The 
idea that epidemiologists ought to first identify risk factors, and then look for the mechanisms 
underlying them, sounds like both sensible methodological advice and a fair description (p.55) 

of actual epidemiological methodology. In the next section, however, I will identify and amplify 
some doubts that some epidemiologists have expressed about the mechanistic stance.

3.3 Black boxes
Notwithstanding the foregoing, there are some reasons to doubt that the mechanistic stance 
provides a good methodology for causal inference in epidemiology. Both the necessity and the 
sufficiency of discovering a mechanism for inferring causation are open to criticisms of 
principle, and these criticisms can be illustrated by actual episodes in epidemiology.

Let us start with the idea that discovering underlying mechanisms is necessary for the inference 
of general causal hypotheses. The motivation identified in the previous section for this 
methodological principle is that the existence of a mechanism is necessary for the existence of a 
general causal relationship. On the mechanistic interpretation, a causal relationship exists at the 
population level between two variables only if the particular instances of those variables are 
related by a mechanism. I suggested that the general causal claim could be interpreted as a 
claim about the existence of an underlying mechanism. If so, it is natural enough to require that 
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we discover this mechanism when we assert a general causal claim. So an inference to a general 
causal claim requires, as warrant, the discovery of an underlying mechanism — sooner or later.

This ‘sooner or later’ indicates a difficulty, though. Our failure to discover an underlying 
mechanism does not mean the mechanism doesn't exist. Moreover, when we are entirely 
ignorant of a mechanism, it seems that we are often quite incredulous about the existence of 
one. Combined with the view that a mechanism must underlie causal associations, this native 
incredulity can lead, and on occasion has led, to an unreasonable prejudice against hypotheses 
when we do not see how the hypothesised causal link might work. The view that mechanisms 
need to be identified for a causal inference to be secure can colour our assessment of the 
evidence for new hypotheses or against accepted hypotheses. I will suggest that this is because 
it is not really a methodological principle: it tells us what to aim at (discovery of mechanisms) 
but not how to achieve that goal. As a consequence, it tilts the balance in favour of existing 
knowledge, and inhibits what it recommends — the discovery of mechanisms about which we do 
not yet know.

Several well‐known episodes from the history of epidemiology illustrate these claims. Perhaps 
most famously, the miasma theory of the nineteenth century offered a mechanism for the 
transmission of disease, based on the movements of ‘miasms’ (roughly, bad air). The fact that 
the theory purported to give a mechanism for disease transmission was its principle virtue. (p.
56) Nineteenth century epidemiological heroes such as John Snow and Ignaaz Semmelweis 
were criticized for failing to identify plausible mechanisms for their causal hypotheses, leading 
to unnecessary loss of life in both cases. Snow argued, on the basis of incredibly careful door‐to‐
door inquiries, that a causal connection existed between water supply and cholera (Cameron 
and Jones 1983). Semmelweis that differential childbed fever rates between two wards in a 
Vienna hospital were caused by the dirty hands of medical students, who worked in one ward 
but not the other (Carter 1994). Both hypotheses were resisted by the authorities and many 
doctors (although Snow was somewhat more persuasively successful than Semmelweis), and the 
principal reason given was that no plausible mechanism for the transmission of disease along 
these vectors had been identified. It was not until some decades later that a mechanism which 
might plausibly underlie their respective hypotheses was identified, in the shape of microbial 
theory (Carter 2003, esp. Ch. 3, 4).

J.P. Vandebroucke argues that Snow had a ‘contagionist’ hypothesis about the mechanism of 
disease transmission, and thus that this is not an example of ‘black box’ epidemiology 
(Vandenbroucke 1988). Nevertheless, it is doubtful that Snow had what we now view as a
correct theory of cholera transmission (and contagionism is certainly false as a general theory, 
since it is possible to contract diseases other than from another diseased person, e.g. tetanus; 
puerperal fever). It is important to distinguish psychological claims about what leads scientists 
to their theories, from methodological claims about what justifies or otherwise warrants those 
theories. Snow's results are impressive to modern epidemiologists, even though we now believe 
he was wrong about the mechanism of disease transmission. His proposed mechanism cannot, 
therefore, be part of the warrant which we now accept for his conclusions (whatever he 
thought); yet we still regard those conclusions as warranted to a high degree by the evidence he 
procured. Semmelweis also hypothesised a disease mechanism, namely the resorption of animal‐
organic matter leading to the decaying of the blood (Gillies 2005). But similarly, acceptance of 
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Semmelweis's resorption/decaying blood mechanism surely cannot be part of our reason for 
thinking that any of Semmelweis's causal hypotheses were well‐founded, since we believe the 
resorption/decaying blood mechanism is not what underlay the associations he identified, for 
instance between disinfecting hands and reductions in differences in mortality between the two 
wards. Yet even though we reject his account of the underlying mechanism, this does not 
prevent us from accepting Semmelweis's causal hypothesis that disinfecting hands caused the 
reduction. Vandenbroucke's argument stumbles on exactly the point I am trying to make, 
confusing the discovery of mechanism as a goal of causal inference, with the discovery of 
mechanism as method. I am suggesting that it is a good goal, but a lousy method. It is not their 
theories of the mechanism of disease transmission which have elevated Snow and Semmelweis 
almost to hero status in the eyes of many (p.57) modern epidemiologists; and it is not the 
failure of their contemporaries to appreciate these mechanism‐theories that is so often 
lamented. Rather, it is the way they procured evidence to support their causal hypotheses and to 
refute counter‐hypotheses, which is so widely admired; and the way that evidence was ignored 
that is lamented.

Thus these episodes cast doubt on the usefulness of a methodological principle stating that 
discovery of mechanism is necessary for warranted causal inference. At least three doubts are 
distinguishable. First, the obvious logical point that has already been mentioned: that the 
inference from no known mechanism to no mechanism is a tricky one. Second, demanding that a 
mechanism be identified before a causal inference is accepted simply seems to be an 
unreasonable position, because it seems possible to have excellent evidence for a causal link, 
without understanding how the link works. Even if the mechanistic interpretation is plausible, 
and general causal claims are to be interpreted as existence claims about underlying 
mechanisms, it does not follow that a general causal claim is only warranted when the 
underlying mechanism is identified. It is possible, in an epidemiological context, to know that 
there is a causal link — and therefore that a mechanism must exist, on the mechanistic stance — 
yet not know what that mechanism is. The opponents of Snow and Semmelweis are generally 
considered to have been unreasonable to doubt the extremely convincing evidence for a causal 
link; this is difficult to explain if warrant for causal inference requires the identification of a 
mechanism.

Of course, in these cases, a mechanism was eventually discovered. But (and this is the third 
doubt) the discovery came after the causal hypothesis was well‐ established. The mechanistic 
methodology gets things the wrong way round, in these cases. The discovery of a mechanism
can of course help to confirm a causal hypothesis, but a causal hypothesis can also be solidly 
confirmed well before the underlying mechanism is known. Therefore discovery of an underlying 
mechanism is not a necessary condition on warranted causal inference.

It must be remarked that drawing morals from historical episodes is a delicate business, 
because it is possible for different commentators to see different lessons in the same episode. 
For example, while most commentators (of a moral‐drawing sort) would agree that something 
went wrong in the Semmelweis episode, Federica Russo and Jon Williamson see the episode 
differently. They insist that, to establish a causal claim, it is necessary to identify an underlying 
mechanism. But they do not adopt the mechanistic stance as I have outlined it, because they do 
not think that identifying a mechanism is sufficient for causal inference: they hold that it is also 
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necessary to provide what they variously refer to as ‘statistical’ and ‘probabilistic’ evidence. In 
support, they cite episodes where causal hypotheses were supported by evidence of one kind but 
not of the other, and were rejected on that basis. Thus they cite the Semmelweis episode to 
illustrate the claim that ‘the relation (p.58) between contamination and puerperal fever … was 
not accepted until backed up by mechanistic evidence, i.e. until the germ theory had been 
developed’ (2007, p. 11), as an instance of their more general thesis that identifying mechanisms 
is necessary (though not sufficient) for causal inference. They go on to propose a theory of 
causation which is intended to fit this methodological picture.

This line of argument makes me uneasy, because I am unsure whether it is meant as a 
descriptive account of causal inference (then and now), or as a normative account of the 
standards which ought to be used when deciding whether to infer causation. Suppose we grant 
(for the argument) Russo– Williamson's descriptive claim, that Semmelweis's contemporaries 
rejected his theories because of a lack of ‘mechanistic evidence’, which I take to mean a lack of 
any then‐acceptable theory about what the underlying mechanism for the proposed causal 
association might be. In this sense, indeed, Semmelweis did fail to establish his various causal 
hypotheses: he failed to provide evidence which was in fact compelling, as demonstrated by the 
fact that his evidence did not compel many of his contemporaries. But in another sense he 
clearly succeeded in establishing (at least some of) his causal hypotheses: he provided evidence 
which, in the eyes of most modern epidemiologists, his colleagues ought to have taken more 
seriously. In particular, the evidence for the efficacy of his proposed intervention — disinfecting 
(not merely washing) hands — is extremely strong. And replication would have made it stronger, 
without necessarily advancing knowledge of underlying mechanisms.

Unfortunately a purely descriptive reading of Russo and Williamson's claim renders it largely 
irrelevant from a methodological point of view, and does not justify or explain why they 
themselves treat it as a motivation to seek a theory of causation, apt for the health sciences. If 
the claim is merely descriptive, then we may conclude that Semmelweis's contemporaries were 
simply wrong to insist that a mechanism be identified before they accepted any causal 
connection. (And so we do not need a new theory of causation that would be compatible with 
this insistence.) Suppose, then, that Russo and Williamson intend their claim to be normative. 
Then they are making a normative claim that mechanistic (as well as statistical) evidence is 
necessary for good, rational, warranted causal inference. On this reading, the lesson Russo and 
Williamson draw from the Semmelweis episode is that Semmelweis's theories ought not to have 
been accepted until knowledge of underlying mechanisms was obtained. (This explains why they 
offer a theory of causation intended to justify this stance.)

But if this is indeed what Russo and Williamson are claiming, then I fear they need a far 
stronger argument than any they supply. For then they are committed to the startling view that, 
had germ theory not come along and the underlying mechanism remained a mystery, we today 
would be rational to dismiss Semmelweis's work, no matter how much evidence we had 
gathered (p.59) in the meantime about the efficacy of disinfecting hands. That is not a view 
which many modern epidemiologists would share. Modern epidemiologists set very high store in 
some methods, such as the randomized control trial, which involve no requirement to identify 
underlying mechanisms. Empirical evidence suggests that this view would cost lives if it were 
adopted by modern epidemiologists, and that indeed it did cost lives if it was in fact the reason 
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that Semmelweis's claims were not accepted more promptly. In short, the descriptive Russo–
Williamson thesis does not (without further argument) support any claims about causation, nor 
bear on questions about how causation ought to be inferred; while the normative thesis is false 
by the methodological standards prevalent in epidemiology, and also, arguably, in light of the 
empirical evidence from episodes such as the Semmelweis case itself.

In fact, on the mechanistic interpretation, it is not surprising that a causal hypothesis can be 
well confirmed before the underlying mechanism is discovered. On the mechanistic 
interpretation I have suggested, a causal generalisation asserts that there is some mechanism 
that is responsible for the association in question. We could have good reason to believe that 
there is some mechanism, yet not know what it is.7 Moreover, this order of events suggests a 
plausible story about how we discover mechanisms when we previously had no idea about them. 
We make warranted inferences to causal generalisations; these generalisations imply the 
existence of underlying mechanisms; and we then conduct further research to find the 
mechanisms. We know where to look. It seems, then, that the mechanistic metaphysics does not 
after all motivate the corresponding methodological principle that the discovery of underlying 
mechanism is necessary for warranted causal inference.

Stepping for a moment beyond the confines of the methodology of epidemiology, there seems to 
be little intuitive support for the idea that causal inferences require knowledge of mechanisms 
as warrant. There are many everyday cases where we take ourselves to have knowledge of 
causal relations, without having the slightest idea about the mechanisms underlying them. I 
know that the clear Turkish liquor, raki, goes cloudy when water is added, but I don't know what 
the underlying mechanism is. Presumably someone does, and it might be suggested that I can 
have a warranted causal belief just as long as I have recourse to an expert who can explain the 
mechanism to me. But the Turks have known for centuries that raki goes cloudy when water is 
added. It is absurd to insist that, for centuries before the underlying mechanism was known, the 
Turks did not know that mixing water and raki in roughly equal quantities caused the cloudiness 
they routinelys witnessed.

Moreover, to insist as a general matter that underlying mechanisms must be identified before a 
causal inference is warranted raises a dilemma. As we go (p.60) on uncovering underlying 
mechanisms, either we will come up against causal relations for which no underlying mechanism 
can be discovered, or we will not. If we do, then none of our causal knowledge will be secured, 
because we will have reached a point where we are unable to discover underlying mechanisms 
and therefore unable to obtain the warrant we sought for our higherlevel causal inferences.8 If 
we do not, then we will never finish uncovering underlying mechanisms, and thus again we will 
never obtain the warrant we seek for our causal inferences. As a general methodological 
principle, then, the requirement that underlying mechanisms be identified, before a causal 
inference is warranted, is a guarantee that we can never have causal knowledge. If it has any 
applicability then it must be confined to particular domains, such as causal inference in 
epidemiology; but historical episodes previously alluded to suggest that it does not work even so 
confined.

These famous historical episodes have more recent echoes. In an influential (but not 
uncontroversial) report for the US government, Richard Doll and Richard Peto argued that many 
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environmental causes of cancer could be identified from careful analysis of epidemiological 
evidence (Doll and Peto 1981). This approach suggests that epidemiologists should treat 
diseases as ‘black boxes’ (Peto 1984), and that the identification of a causal mechanism is not 
necessary for a warranted causal inference. Accordingly, epidemiologists need not concern 
themselves with the discovery of mechanisms, but can directly attack causal questions without 
worrying about the mechanisms underlying the hypotheses they generate. As in the cases of 
Snow and Semmelweis, the pragmatic benefits of this approach are evident. If Doll and Peto are 
correct, then labouring to uncover mechanisms may well prove to be a waste of time and money, 
from a public health point of view. Especially where environmental causes are concerned 
(smoking being the best‐known example), refusing to make a causal inference until a mechanism 
is known can be seriously detrimental to public health. Doll and Peto's recommendation typifies 
what I will call the black box stance.

A great deal of contemporary research is, I think, undecided between the mechanistic and the 
black box stances. On the one hand, epidemiological research largely proceeds by identifying 
associations and applying various statistical tests and methodological principles to form a view 
about whether these associations are causal. On the other hand, the explosion of identified risk 
factors has not produced a corresponding increase in the scope of our (p.61) understanding of 
the conditions studied, nor has it been accompanied by a corresponding explosion in public 
health or medical interventions. This is not just a case of technology lagging: it is also due to the 
fact that the causal hypotheses in question do not seem terribly reliable. For example, studies 
seemed to show that hormone replacement therapy reduced risk of heart disease, and public 
health policies were implemented on this basis, before subsequent studies found the opposite 
effect (Rutter 2007). A slightly more subtle problem is that directly translating a causal 
hypothesis into a public health intervention may have unintended consequences (an instance of 
the generalisation problem). For example, beta blockers administered after surgery appeared to 
reduce the risk of death by heart attack, but subsequent studies showed that they increased the 
risk of death overall by increasing risk of death by stroke and other conditions (Devereaux et al.
2008). This, of course, is grist to the mill of the mechanistic stance, because one of the chief 
benefits of discovering the mechanism underlying an association is that it often comes with 
information about other associations, and so makes unintended consequences of this sort less 
likely.

Requiring that a mechanism be identified before a causal hypothesis is accepted may be too 
strict; but it does at least have the merit of clarity. It is easy to tell whether a mechanism has 
been postulated; moreover testing the hypothesis by replicating the mechanism may sometimes 
be a more straightforward (because lab‐based or clinical) business than replicating the 
association itself in a large observational study. Whereas analysing the methodology of a 
published study in order to form a view as to the security of its results is devilishly difficult. 
Indeed it may be impossible, depending on the accuracy and completeness of the published 
methods section.

One solution to this tension, then, would be to require the discovery of mechanisms as an 
admittedly too strong necessary condition on causal inference. In pragmatic contexts where 
great harm appears to be a real possibility, but where a mechanism cannot be identified, some 
other decision‐theoretic principle, such as the precautionary principle, might be appealed to. 
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This stubborn mechanistic stance is, however, a last resort, because of the difficulties we have 
been discussing, and because identifying sound principles for decision‐ making under 
uncertainty is itself a difficult task. Even erring on the side of safety is not straightforward. The 
HRT/heart disease example shows that we can be wrong, not only in our causal inferences, but 
also in deciding which way it is safe to err.

So far I have been focusing on the view that mechanism discovery is necessary for causal 
inference. What about the claim that it is sufficient? Here, the mechanistic stance might appear 
to be on stronger ground: showing how A causes B seems to entail that A does cause B.

Unfortunately, that does not mean that ‘look for mechanisms’ is a good methodological 
principle. It has at least two serious weaknesses. First, it is (p.62) too vague. Ironically, it does 
not tell us how to look for mechanisms. It states a goal, but gives no indication how to get there. 
This, I suggest, explains why the mechanistic stance has on occasion led to a bias towards 
existing knowledge. Mechanisms we already take ourselves to know about satisfy the 
methodological directive; but the same directive doesn't help us find mechanisms we don't know 
about.

Second, the search for mechanisms can mislead, because it can allow us to believe we have 
achieved an understanding of something when we have not. Showing how A causes B indeed 
entails showing that A causes B. But giving information about an event's causes is not sufficient 
to explain that event, nor to allow you to devise an effective intervention. If I explain my late 
arrival by telling you that I was born, I am citing a cause of my late arrival: but I am probably 
not providing a good explanation of my late arrival. Similarly, identifying a mechanism by which, 
say, hydrochloric acid leads to ulceration of the stomach lining is indeed sufficient for showing
that the presence of acid causes ulceration. But there is an explanation for the presence of 
excessive acid, in the case of many sufferers, namely the presence of bacteria, Helicobacter 
pylori. Showing that stomach acid causes ulceration by identifying the mechanism is a good 
method for proving causation; but epidemiologists (like other scientists) are typically interested 
in more than cataloguing the causes of the phenomena they study. They are interested in 
explaining them, and intervening to change them. Each of these goals plausibly requires the 
identification of causes. But not just any causes. The mechanistic methodology misleads because 
it provides a sufficient criterion for causation, but no guidance on whether the ‘right’ causes 
have been identified, or what the ‘right’ causes are.

This philosophical point is also well‐illustrated by famous historical episodes. I have already 
mentioned the discovery of H pylori. Thoroughly documenting the mechanism by which 
hydrochloric acid causes stomach ulceration did not lead to the discovery of H pylori. Moreover, 
the hypothesis that peptic ulcer might in many cases be an infectious disease was initially 
treated with considerable scepticism — because it was thought that bacteria could not survive in 
such an acidic environment as the stomach. What led to the discovery of H pylori was initially 
chance observation of unknown bacteria in patients with peptic ulcer, followed up by 
observational studies, clinical work on the bacteria, and a dramatic piece of self‐experimentation 
(for a summary see Angel 2008, Ch 2).9 Of course, the discovery of the mechanism by which H 
pylori causes ulcer is also an important feature of this episode. I don't mean to deny that 
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discovering mechanisms is important and useful: only that the directive to do so is not a reliable 
guide for causal inference in epidemiology. This is not because it does not establish causation, 
but because it does not identify the right causal associations. Identifying causes, any
causes, is not (p.63) enough; there may be other causes — like H pylori — which better explain 
the phenomena in question, or offer readier foci for intervention. Mere causal inference is not all 
it is cracked up to be.

What makes the H pylori case such a neat illustration is that acid does play a role in ulceration. 
The bacteria cause excessive acid production, which is what directly causes ulceration. So there
is a mechanism there. In the cases of Snow and Semmelweis, on the other hand, the mechanisms 
identified we would now regard as non‐existent. So in those historical cases, a defender of the 
mechanistic stance might argue that, had the real mechanism of disease transmission been 
believed rather than miasma theory, the hypotheses of Snow and Semmelweis would have been 
better received. That may well be so. But this argument confuses reality with our grasp on it. A 
sound methodological principle cannot rely on our already knowing what we are trying to find 
out. In the case of miasma theory, many medical scientists thought they knew the mechanism of 
disease transmission. Partly as a consequence, they failed to properly appreciate the evidence 
before them. This is not simply a case of scientists being convinced of something and failing to 
give due weight to disconfirming evidence: it is a case of scientists believing they understand
how something happens, and rejecting causal hypotheses that appear incompatible with this 
mechanism.

This problem seems to be at least partly what Doll and Peto have in mind when the advocate the 
black box stance. They argue that epidemiological evidence can warrant many causal inferences, 
without the underlying mechanisms being known. This sounds like a sort of call to arms for 
epidemiologists, a rallying cry for them to have faith in the methods of their discipline, and in 
particular to pay attention to the causal associations revealed by the evidence, without worrying 
about how the causal associations might work. Nevertheless, the black box stance does not offer 
much in the way of positive methodological recommendations. And it does not entirely dispense 
with the fundamental motivation of the mechanistic stance: that if we want to really explain — or 
control — something, we need to know how it works. In the next section I will propose a 
reconciliation.

3.4 Contrasts
It may be tempting to see the contrast between the mechanistic stance and the black box stance 
as a disagreement about the goals of epidemiology. One epidemiologist puts it like this:

… the epidemiologist who tries to explain, and if possible eliminate, variations in disease 
occurrence without much regard for mechanisms, stands in contrast to the laboratory 
scientist who prefers to disentangle the mechanisms first.

(Vandenbroucke 1988, p. 708)

(p.64) The mechanistic stance might be seen as a more properly scientific view, interested in 
deep explanation; while the black box stance might be thought of as a more pragmatic view, 
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interested primarily in designing public health interventions by the most direct inferential route 
available.

This is a misunderstanding, in my opinion. The strengths and weaknesses of the mechanistic 
stance apply equally to the goals of explanation and intervention. Let me enumerate the 
principle strengths and weaknesses of the mechanistic stance, starting with the strengths.

(i) Interpreting causal generalisations in epidemiology as existence claims about 
underlying mechanisms resolves gives a clear and plausible meaning to those 
generalisations, and helps us to understand the role of replication in epidemiology.
(ii) How widely we can generalize from a known association seems to be directly linked 
to how well the underlying mechanism is understood.
(iii) Discovering an underlying mechanism proves the truth of the causal hypothesis in 
question.
(iv) A mechanistic explanation of a causal association increases our understanding of that 
association.
(v) Knowledge of the mechanism underlying one causal association gives us, or at least 
can lead to, knowledge of other causal associations.

Each of these is a strength, whether the goal is scientific explanation or public health 
intervention. (i) is perhaps the most philosophical advantage, but it is surely of some importance 
to the scientist and the public health policy maker alike to have a good grasp on the nature of 
the causal generalisations they employ. For the scientist, it yields greater understanding; for the 
policymaker, the ability to avoid practical consequences of misunderstanding. (ii) is evidently of 
central interest to the policy‐maker, since how widely the results of a given study apply is 
central to the question of what interventions it warrants. It is also of evident interest for 
someone who is interested primarily in explanation, since it bears on how much a given causal 
hypothesis might explain. (iii) is of interest for both explanation and intervention, since false 
causal inferences are neither explanatory nor reliable guides for intervention. (iv) is evidently of 
value for those interested primarily in explanation, but it is also of use to the intervention‐
focused. This is because when we understand a mechanism, we are often able to identify more 
than one point at which we might intervene on that mechanism (if we want to prevent it) or 
more than one point at which it might be vulnerable to breaking down (if we want to protect it). 
(v) is useful from an explanatory perspective, since knowledge of other associations is a 
symptom of explanatory power, as well adding to the grand total of our knowledge. And it is 
evidently useful from the point of view of intervention, because it enables us to avoid unintended 
consequences.

(p.65) A similar exercise shows the weaknesses of the mechanistic stance to apply regardless 
of whether explanation or intervention is the goal. To summarize the weaknesses:

(i) A general causal hypothesis can be warranted before the underlying mechanism is 
discovered (indeed, a warranted causal hypothesis is a great reason to look for a 
mechanism).
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(ii) The directive to seek mechanisms is non‐specific, and does not tell us how to find 
mechanisms; on some occasions, this appears to have led to a bias in favour of known 
mechanisms and against causal associations for which no mechanism is yet known.
(iii) A causal hypothesis may be deficient even though the underlying mechanism is 
understood, because it may lead us to believe that we have obtained a greater 
understanding of a phenomenon than we really have.

From an intervention‐oriented point of view, (i) is a serious drawback of the mechanistic stance, 
because it shows that the mechanistic stance could lead to serious unnecessary delays on 
intervention. Less obviously, it is also a drawback from the explanatory point of view, because it 
leads to the unnecessary rejection of good explanations. From an explanatory point of view, the 
mechanistic stance is guilty of a why‐regress fallacy. The ‘why regress’ is simply the fact that it 
is always possible to ask ‘Why?’, including on occasions when the explanation offered is a good 
one (Lipton 2004, pp. 21–2). What I call a why‐regress fallacy is the refusal to accept an 
explanation on the grounds that the explanation itself has not been explained. As a general rule, 
such grounds are fallacious, because explanations can be good as far as they go, without 
providing the entire causal history of the explanandum. Otherwise, epidemiologists would study 
the Big Bang. (ii) is clearly a problem for any application of the mechanistic stance on causal 
inference, regardless of motivation. (iii) applies to intervention‐ and explanation‐oriented foci 
equally, since it means that we miss out on potentially more fruitful interventions or 
explanations, respectively.

What, then, is the diagnosis of the tension between mechanistic and black box stances? I 
suggest it arises from a simple confusion of metaphysics and methodology. On the one hand, it 
does not follow from the strengths listed that discovering mechanisms is necessary for causal 
inference, nor that the discovery of mechanisms is a sufficient guide for explanation or 
intervention. None of these points directly motivate the mechanistic methodological stance on 
causal inference; what they motivate is interpreting causal hypotheses as existence claims about 
underlying mechanisms, and seeking these underlying mechanisms. Neither directive tells us 
anything about the method of causal inference; at most, they tell us about the goal. On the other 
hand, it does (p.66) not follow from the weaknesses listed that we should abandon a 
mechanistic interpretation of causal hypotheses, or that we should abandon the search for 
mechanisms. It only follows that we should not set the identification of a mechanism as a 
necessary condition for causal inference; nor confuse the power of a mechanistic explanation for 
a given causal association with the explanatory power of the association itself, with respect to 
the goals of our investigative activities.

The advantages of a mechanistic interpretation of causal hypotheses in epidemiology were laid 
out in Section 3.2. My suggestion is that we endorse this interpretation, but resist the 
temptation to take the mechanistic methodological stance with respect to causal inferences. The 
mechanistic metaphysics is good, but its methodology is bad.

The obvious next question is: how should causation be inferred? I do not think there is an easy 
answer. There are just a bundle of methods, organised around a common theme of identifying 
patterns of differences and similarities (Mill 1843; Lipton 2004), but increasingly statistically 
sophisticated (Spirtes, Glymour and Scheines 1993; Pearl 2000), and (it is to be hoped) 
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increasingly reliable. The point of this paper is not to contribute a new method of causal 
inference, but to identify and debunk a tempting bad method. That method is what I called the 
mechanistic stance. But at the same time, I hope to have shown that a mechanistic metaphysics 
for causal generalisations has a great deal to offer epidemiology. There is, therefore, no need to
choose between the identification of causal associations at the population level, and the 
identification of underlying mechanisms. On the mechanistic interpretation, causal hypotheses 
at the population level are existence claims about underlying mechanisms. There need be no 
opposition between epidemiologists conducting observational studies, and those trying to 
‘disentangle’ mechanisms in a laboratory. They are studying the same thing.

It is not necessary to identify the underlying mechanism in order to have warrant for a causal 
hypothesis. But it is necessary in order to explain the association. A hypothesis can be perfectly 
warranted, without being understood. Conversely, a hypothesis may be well (mechanistically) 
understood, but may itself fail to provide a good explanation of the phenomenon in question for 
the purposes at hand. To prove a causal hypothesis, it is sufficient to identify an underlying 
mechanism. But identifying a mechanism is no guarantee of the explanatory power of the 
hypothesis itself — the explanatory power of the hypothesis that stomach acid causes ulcer, for 
example. Mechanism is sufficient for causation; but causation is not sufficient for explanation, or 
for purposes of intervention. Oxygen is a cause of every car crash, and I make that assertion not 
on the basis of any statistical information, but entirely on the basis of my knowledge of the 
mechanisms underlying internal combustion engines and human respiration. Yet oxygen offers 
good explanations of few, (p.67) if any, car crashes; and controlling the oxygen supply is not a 
particularly promising avenue for policy makers to pursue.10

What I have not done is offer any detailed analysis of the notion of a mechanism. The goal of this 
paper is to see what the notion can offer causal inference in epidemiology, not to analyse that 
notion itself. Nevertheless, I would like to finish by sketching a view of the relation between 
mechanistic explanation and other kinds of causal explanation. I am inclined to see mechanistic 
explanation as of a kind with causal explanation in general. I take it as widely accepted that 
causation is not sufficient for explanation, and that for a causal association to explain, it must 
amount to a difference between fact and foil (Lewis 1986; Lipton 2004, Ch 3). In a public health 
context, health provides a plausible contrast class, as I have argued elsewhere (Broadbent,
2009b). To give a mechanistic explanation of an association is to tell a story about how events of 
one type cause events of another, by filling in the intervening steps in the causal chain, and 
specifying what conditions must hold. It is tempting to see mechanistic explanations as causal 
explanations, with associations as their explananda. Presumably the relevant contrast class is 
the failure of that association to hold. Identifying possible failures is not purely a hypothetical 
exercise: typically there will be plenty of actual failures, since epidemiological generalisations 
are typically exception‐ridden.

If this sketch of a contrastive analysis is approximately correct, it would explain why 
mechanistic explanations are so useful in epidemiology and public health: because they provide 
information about what makes the difference between cause‐events leading to effect‐events, and 
not doing so. And intervening on links of this sort is the central purpose of public health policy. 
However, this sketch also illustrates why mechanistic explanation is not necessary for good 
causal inference: because a causal difference between fact and foil can be identified, even 
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before the causal link between the proposed explanans and the fact is understood. We can know
that drinking dirty water is the cause of the difference between people with cholera and those 
without, even if we don't know how drinking dirty water results in cholera. And the contrastive 
approach shows why mechanistic explanation is not sufficient for effective intervention or 
explanation. If a causal hypothesis fails to identify a causal difference between good health and 
ill, then it will offer neither explanation (p.68) of nor intervention on that difference; and a 
mechanistic explanation of the causal hypothesis (e.g. miasma theory) cannot improve matters.

The correct analysis of mechanistic explanation is not, however, the purpose of this paper. To 
apply the moral reflexively, we can know that mechanistic explanation works, without knowing 
how it works. I hope to have shown the strengths of a mechanistic interpretation of causal 
hypotheses in epidemiology, and to have illuminated the pitfalls of a tempting but erroneous 
companion methodology.
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Notes:
(1) The Whitehall studies concerned various aspects of social status and health among British 
civil servants (Marmot 2006). The aim was to identify social determinants of health, especially 
the role of purely social differences in explaining differences in health, by studying a group of 
people whose absolute wealth was such that their basic biological needs were met.

(2) Heritability is not to be confused with heredity. An individual can inherit a trait from her 
parents, for example her eye colour. The disposition to develop blue eyes given a certain broadly 
congenial environment is hereditary; favourite colour probably is not. The heritability of a trait 
is defined with reference to a population, and makes no sense applied to an individual. It is 
meant to be a measure of the relative contribution of genes and environment, and is not fixed for 
a given trait. Hence Wardle's interest in showing that obesity is still highly heritable despite an 
increase in the availability of calories.

(3) Showing that a given mechanism is how A actually causes B must not, of course, be confused 
with exhibiting a mechanism by which A could cause B. The entailment goes through only when 
what has been shown is how A actually causes B.

(4) Where there is more than one distinct mechanism underlying a given association, 
presumably all the underlying mechanisms would have to be identified to satisfy the spirit of this 
requirement.

(5) The mechanistic stance is not supposed to be the view that identifying mechanisms is the 
goal of epidemiological research: only of causal inference. Causal inference may have other 
goals, such as public health intervention, or indeed informing further causal inferences in an 
iterative process.

(6) This is an application of what is sometimes called the Common Cause Principle.
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(7) This is an instance of the more general fact that we can know that something exists without 
knowing what it is. For example, I know that there is something holding the floor up, but I don't 
know what it is; you may know that there is something in the cave, but not what, etc.

(8) Might it be objected that warrant of a higher‐level causal hypothesis can be conferred by 
knowledge of an underlying mechanism, even if that underlying mechanism contains causal links 
for which yet lower‐level underlying mechanisms are not known? No: because (on this view) we 
are not warranted in believing that the causal links in the mechanism underlying our higherlevel 
hypothesis, until we have identified the mechanisms underlying them in turn. Without that 
warrant, we do not know (on this view) that they are causal links: for all we know (on this view), 
our putative mechanism may be a coincidental dance of its parts.

(9) One of the discoverers, Barry Marshall, drank a solution containing the bacteria and 
developed gastritis, then took antibiotics and recovered.

(10) Sometimes a distinction is drawn between distal and proximate causes of disease; and 
sometimes biological causes are also distinguished, which may be either distal or proximate. 
However, drawing and defending such distinctions is not easy, as a large literature in philosophy 
and also in jurisprudence shows (for references see, respectively: Broadbent 2008; 2009a). A 
discussion of these distinctions would not be relevant here, since there is no particular reason to 
hope that the most explanatory cause in a given circumstance will be either proximate, or distal, 
or biological. Moreover, even if there were some reason for epidemiologists to favour one of 
these categories, a choice would still have to be made among causes within them.
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they can be either helpful or essential, depending on whether causal relations or causal 
effect sizes are being examined. Recent work in epidemiology is finding that traditional 
stratification analysis can be improved by providing explicit DAGs. However, they are not 
helpful for dealing with moderating variables and other types of complex causality which 
can be important epidemiology.

Introduction
This chapter focuses on the three subthemes of this volume — causality, mechanism, and 
probability — largely through the lens of recent causal modelling approaches in epidemiology 
combined with some general morals from the philosophy of science. The general morals concern 
tendencies in the sciences to try to make formal methods do more than they can and to down 
play domain‐specific substantive assumptions in scientific inference, a process sometimes called 
‘black boxing’. The issues about mechanisms that I pursue largely concern claims by 
epidemiologists (Hafeman & Schwartz, 2009), claims echoed by social scientists (Hedström & 
Swedberg, 1998; Morgan & Winship, 2007), that various explanations in their fields are 
inadequate because they lack mechanisms. I use causal modelling results and my philosophy of 
science morals to help evaluate that criticism and to show some ways in which traditional 
epidemiology — analytic stratification analysis without use of explicit causal models — 
sometimes tries to get more out formal inference methods than they can really yield and how 
some recent uses of causal (p.71) modelling in epidemiology does the same. One particular 
instance of this over extension, I argue, comes from appealing to probabilities in epidemiology 
when they are ungrounded.

Section 4.1 explains the framework and some general morals about mechanism, causation and 
probability. Section 4.2 looks at the standard epidemi‐ ological practice of identifying risk factors 
by stratification analysis. I argue that traditional epidemiology tries to get by with very little in 
the way of causality and makes much less use of probability than it advertises. Section 4.3 turns 
to more recent developments in epidemiology employing Pearle's graphical approach to 
causality. I discuss both its strengths and limits in understanding the place of mechanism and 
probability in analysing causality in epidemiology.

4.1 A framework
Some philosophical preliminaries will be useful for framing the kind of issues I want to discuss 
in epidemiology. There are two truths from the past decades of history and philosophy of science 
about scientific method and explanation that I would defend: (1) that scientific inference and 
explanation cannot be adequately captured by an a priori, domain independent logic of science 
or, put in a positive vein, domain specific, substantive assumptions play key roles in scientific 
inference; and (2) scientists often believe or act as if they believe that their results are the 
product of precisely such a logic when they are not. There are many lines of reasoning to (1). 
They include:

(a) The argument ad Carnapium given by Quine: if Carnap could not find a successful 
inductive logic, then there is not one or, more seriously, informative general inductive 
logics have not been forthcoming.1 The causal modelling techniques discussed later in 
the chapter illustrate the situation: there are useful things that can be said using them, 
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but their range of application is restricted because of the strong assumptions and prior 
background knowledge needed.
(b) The argument from holism: every part of the web of belief is at least indirectly 
connected to every other, and given a big enough empirical change in one part of the 
web, we might have to give up those parts of the web that look like logical truths. Thus 
no inference rule is indefeasible (Quine & Ullian, 1970).
(p.72)
(c) The argument from underdetermination: there are always possible alternative 
theories compatible with any given set of data and therefore there cannot be a logic of 
inference that tells us which is correct, given those data (Longino, 1990).
(d) The argument from conceptual humility: There is no reason to think our concepts, 
including the concepts of justification, rationality, explanation and other epistemic 
concepts, have a logic of necessary and sufficient conditions that determine their domain 
of application (Wilson, 2006).
(e) The argument from history and social studies of science, which is really many related 
arguments or pieces of evidence about science in practice: Specific instances of 
inference rules such as parsimony or inference to the best explanation turn out to involve 
non‐logical, domain substantive empirical assumptions (Day & Kincaid, 1994; Sober,
1988). Scientific experiments in our best science seem to be declared decisive by a 
complex social process that looks contingent (Gallison, 1987). Apparently general 
scientific inference rules or virtues can conflict and have to be balanced on substantive 
grounds (Kuhn, 1977). Scientific papers do not reflect the process and uncertainties of 
the reasoning that went into them. There can be science that is well done by the most 
obvious standards such as replication, peer review, etc. and yet that involves non‐ 
epistemic values (Longino, 1990).

Obviously these arguments are of varying quality, clarity, and upshot. In particular, it is 
important to note the difference between conclusions about what cannot in principle be done 
anywhere in science and conclusions about what some specific research programme currently 
cannot do in practice. Science is a multifaceted process, and pronouncements about it as a 
whole in fact violate the pragmatist spirit that motivates many of the arguments given above. Of 
course, rules of inference that approach a logical status are great when you can get them, 
because if usable by real humans, they guarantee reliability. However, the above arguments are 
at least some reason to think that we should be alert to the substantive, domain‐specific 
knowledge that is often needed for successful inference.

It is when conclusions are claimed to follow from rules alone, when in truth they do not, that 
problems can begin. My claim (2) above that scientists make such exaggerated assertions is an 
empirical one. One line of evidence that will be further supported in this paper comes from the 
widespread abuse of statistical significance in the social, behavioural and biomedical sciences. 
Other evidence is found in the studies cited in (e) above. On common‐sense grounds it seems 
clear that scientists have to use methods developed by others without fully understanding how 
they work because of the scientific division labour. Not understanding the full details of a 
method can lead to (p.73) underestimating its limitations. It is the hope for and the difficulties 
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of finding tight inference rules that I shall use in framing my discussion of mechanism, 
probability, and causation in epidemiology.

Some general morals follow from the above perspective that I will argue are equally applicable 
to epidemiology. The first is the now perhaps standard truism of Cartwright's (Cartwright, 1994) 
that if there are no causes in, there will be no causes out. There is no logic that gets you from 
probabilities or associations alone to causal conclusions. However, at this level of abstraction, 
the claim is not that interesting (if the premises do not use the predicate ‘cause’ it is not going 
to be in a validly drawn conclusion). The interesting question is which causes in are needed to 
get what causes out. That is an important, non‐obvious question of real import to epidemiology 
and one that will be discussed below.

Another moral concerns the place of mechanisms. Asking that mechanisms be provided is a 
demand that can mean multiple things resulting in different claims:

1. In the philosophy of science literature (Bechtel, 2008), mechanisms are usually 
thought of as the component processes realizing some higher level capacities, e.g. the 
mechanism of memory. I call these ‘vertical’ mechanisms'. However, many requests for 
mechanisms are about providing intervening or mediating variables between a putative 
cause and its effect. Call these ‘horizontal’ mechanisms. The latter is generally more 
relevant to epidemiology, particularly to the causal modelling work I shall discuss.
2. We can also want mechanisms for explanation as opposed to confirmation. Those who 
want mechanisms because they might rule out spurious causation are targeting their 
role in confirmation and are generally invoking horizontal mechanisms. These are the 
kinds of concerns that I discuss in epidemiology and causal modelling. The philosophy of 
science literature on mechanisms largely emphasizes the idea that mechanisms are 
needed to provide sufficiently deep explanations, working with at least implicitly an ideal 
of the ‘full’ explanation. The work in epidemiology that I discuss does not generally come 
from this motivation.
3. Mechanisms might be important for establishing that there exist causal relations 
between variables or for establishing causal effect sizes. Their ‘importance’ might mean 
knowing the mechanisms is essential or not essential but useful.

Identifying these distinctions helps support my general doubts that there are useful universal 
methodological rules when it comes to the demand for mechanisms. There are just too many free 
parameters in that demand for us to take it as binding in the abstract. So, for example, consider 
the claim that (p.74) identifying mechanisms is necessary for ruling out spurious causation. If I 
am worried that the association observed between A and B might not be evidence for causation 
because they might be the common causes of some third factor, it may not help me to know how 
A and B's properties are realized, i.e. to know the vertical mechanism. What is needed is not the 
microdetail but evidence about possible other causes at the level of A and B.

I next want to draw some limited morals about probability from the general framework. We 
certainly do have clear formal rules for handling probability, and those are universal and a priori 
if anything is. However, their range of applicability may not be, and we must again be aware of 
extension beyond reasonable bounds. Arguably the two most basic situations grounding 
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probability judgements come from either (a) there are chance mechanisms, processes, or 
devices or (b) measurement of consistent degrees of belief. Random sampling from a population, 
random assignment to treatment or control groups, or random measurement errors are the main 
instances of the first category and Bayesian updating of the second. We have to assess case by 
case which of these groundings, if any, is applicable. This may all seem obvious, but we shall see 
in that epidemiology sometimes uses probability notions where none of these groundings exist.

4.2 Traditional epidemiology
Much of standard epidemiology — what I will call ‘traditional epidemiology’ in contrast to newer 
work with explicit causal modelling that I discuss later — consists in identifying risk factors in 
observational data for disease via stratification analysis to eliminate confounders. I want to 
sketch some typical work in this vein to serve as the source of my general discussion. My focus 
is on the epidemiology of leukemia and, more specifically, the roles of benzene exposure and 
diet in leukemia.

Benzene is a hydrocarbon extracted from petroleum for a variety of uses. The first cases 
reporting a link between benzene and leukemia date back to the 1920s. It was only in the 1960s 
that evidence beyond case reports began to appear. Supporting studies are either case‐control 
studies or cohort studies (Glass et al. 2006). Case‐control studies identify a set of present or past 
cases of the leukemia and compare benzene exposure in that group to exposure and disese in a 
control group. Cohort studies follow a group of individuals over time, tracking exposure and 
disease status. A standard outcome measure is the odds ratio, which is the odds of disease in the 
exposed divided by the odds of disease in the non‐exposed. The data are typically analysed in 
two ways. In simple stratification analysis correlation coeffecients are calculated within the 
relevant stratifying subset, for example potential exposures to other carnio‐ gens, producing a 
new estimate of the odds ratio. More complex analysis make (p.75) use of multiple regression, 
where other possible ‘risk factors’ are included and the adjusted odds ratio is reported along 
with either a signficance level or confidence interval for the association. Benzene, for example, 
is consistently statistically signficantly associated with chronic lympahtic leukemia but the 
associations with other leukemias do not usually meet standard significance levels and are 
described as ‘not significantly associated with’ these diseases.

Numerous studies have also ‘implicated’ (a standard wording) diet in cancer. The connection 
between diet and leukemia, however, is based largely on the one study of Jensen et al. (2004). 
That study identified cases of childhood leukemia in a northern California registry and 
interviewed all who agreed to participate (83%) about diet of the mother during pregnancy. 
Controls were selected from the same geographic area based on birth certificates and were 
matched on variables such as race. Again odds ratios were caculated, multiple regressions run 
with other risk factors, and associations reported with significance levels. Consumption of fruits 
and vegetables was inversely associated with acute lymphatic leukemia, the more agressive 
form of lymphatic leukemia commonly found in children. Benzene exposure was not ascertained.

These kinds of studies are a dominant form of inquiry and research reporting in epidemiology. 
They predominate in the journals. The main textbooks (Rothman, Greenland & Lash, 2008) 
consist mostly of discussion of the techniques for doing these kinds of studies. Their general 
form — (a) reporting multiple regression correlations from (b) observational samples relying on 
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(c) tests of significance and confidence intervals as the acceptance criteria — is also common 
across the social sciences. Probability, mechanism, and causality get relative little focus in this 
traditional approach, and the discussions they do get are skewed by the logic of science gloss I 
mentioned above, or so I want to argue.

A somewhat curious element of this traditional practice is that it is acausal. The Glass et al. 
study is illustrative. The word ‘cause’ is used only twice, both times in the initial background 
discussion referring to the work of others. The paper's conclusion is repeatedly stated as 
establishing an association between low levels of benzene and leukemia. The standard risk 
factor analysis paper that makes up the majority of the published work in epidemiology shares 
the same trait: results are always reported as associations, not as causes.

Is this eschewal of causal conclusions merely reasonable humility about the limits of inferring 
causes from correlations? No doubt it in part is.2

(p.76) However, the roots go considerably deeper than that. Historically, the origins of 
epidemiology are closely tied to ‘positivist’ doubts about causation as a legitimate scientific 
notion. Karl Pearson was extremely influential among the early practitioners of epidemiology. In 
his Grammar of Science, Pearson (1900) argued that the concept of cause had no place in 
modern science. Causation was too metaphysical a notion; association, on the other hand, could 
be given full mathematical rigour and should replace causal talk in modern science. So from the 
start epidemiology was built on correlations taken as ends in themselves.

Moreover, the prejudice against causes is built into the analytic methodology of epidemiology. 
The ubiquitous stratification techniques actually can be inconsistent with a causal 
interpretation. Standard practice is to report relative risks or odd ratios after adjustment for any 
factor that might be thought to change the size of relevant risk. Confounders are often defined 
in purely statistical terms — confounding of an association between two variables occurs when 
there is a third factor or variable that, when controlled for, changes the value of the correlation 
between the two variables at issue. If one were looking for causes, such a procedure would be 
guaranteed sometimes to produce wrong results. Multiple causal interpretations are possible, as 
I will discuss in more detail below, when controlling for a third variable changes the correlation 
between two variables under study. Conditioning on the common effect of two independent 
variables creates correlations that do not represent causal influence. Conditioning on a 
moderator variable — one that influences the effect size of another cause (more on this later) — 
reduces correlation as does conditioning on a common cause or an intermediate cause. So the 
very procedures that are used by themselves have no consistent causal interpretation. No doubt 
some or many epidemiologists realize this on some level, and I will report on their attempts to 
get clear on a better notion of confounding in the next section.

Thus this attempt to stick to associations alone is really not sustainable, for both pragmatic and 
theoretical reasons. The pragmatic reasons come because epidemiology wants to be relevant to 
policy — whether it is governments intervening or individuals deciding how to behave — and 
interventions concern what can be causally influenced. So a typical epidemiological report will 
describe only associations and provide no explicit causal model, but then conclude with 
something relevant to policy. The theoretical reason that epidemiology cannot be consistently 
associationist and non‐causal is that associations alone are unacceptably arbitrary. Associations 
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are always associations in a population or sample from a population. If the population is not in 
some sense a causally homogeneous one, then indefinitely many uninteresting associations of 
the ‘coffee users on Tuesday have less leukemia’ sort can be found. The number of associations 
is restricted only by our ability to imagine possible predicates or categories.

(p.77) I would use this last point along with several others to argue that the place of probability 
in actual epidemiological practice in more minimal than might be imaged. My worry about 
arbitrarily many associations could be put as a variant of Cartwright's dictum ‘no causes in, no 
causes out’ that reads 'sometimes, no causes in, no objective probabilities out’. An objective 
probability, I take it, is one that picks up a real distinction in nature. Cashing out ‘real 
distinction’ is of course a matter of controversy, but grounding inferences to other populations 
seems essential to the notion. Doing that requires us to think there is a causal process behind 
the probabilities or correlations that we identify. That does not mean that objective probabilities 
or what philosophers would call ‘nomic’ generalizations or correlations must always represent a 
cause — generalizable correlations can result from a causal process involving colliders, for 
example, which will generate objective non‐ causal probabilities if the same causal process can 
be found out of sample. However, I believe that the associations of epidemiology, stripped of any 
causal basis, may not provide for reliable inferences to populations beyond those where the 
associations are initially found, because there are a great many accidental associations in any 
population. Probability talk in such circumstances is misleading, which is precisely a standard 
critique of probabilistic accounts of causation.

I also am suspicious that the main targets of epidemiological explanation — generic risk claims 
— are probabilities, though I admit that they may seem to be (see Russo & Williamson, 2007). 
The kinds of things epidemiologists want to explain are relative risks, odds ratios, and 
population attributable fractions of disease. These are not measures that vary from zero to one. 
They are based on frequencies, for sure, and can be converted to percentages. However, though 
they are loath to say it until that final paragraph with the policy and behaviour implications, 
what epidemiologists really want these to measure is effect size, a causal notion that need not 
be cashed out in probability terms. Relative risk can make sense in a single fixed population with 
deterministic causes that results from no sampling distribution or random assignment. Use of 
epidemiological information to make risk claims about individuals in the process of diagnosis 
may well be probability claims, but they are part of clinical medicine, not epidemiology proper.

Not only can measures of relative risk make sense in such populations, these kinds of 
populations are predominantly what epidemiology deals with. This fact provides another reason 
to think that probability plays a more limited role in epidemiology than it might seem. Most 
epidemiological studies do not involve samples picked randomly from a population (and 
generally randomized experiments are thought not to be part of epidemiology with the exception 
of clinical epidemiology). Take the work on leukemia cited above. None of it involves random 
samples except on a few occasions for the control groups, and then the samples come from a 
‘population’ that is in effect a convenience (p.78) sample. This work shows that diet has some 
connection to leukemia in those individuals living in northern California willing to participate in 
a study. No one would pretend these are random samples from anything.
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Epidemiologists nonetheless report significance levels taken as the probability of seeing a given 
result when there is no real correlation. However, we have to ask ‘no real correlation where? ’ 
Since these probabilities are not explicitly taken to be subjective degrees of belief, their 
interpretation remains unclear. The closest I can find to a coherent answer in this regard is that 
the population is some hypothetical super‐population from which the population under study is 
an instantiation and random sample (Morgan & Winship, 2007). However, that framework is to 
my knowledge notably understudied. Why, for instance do we think that the population is a 
random sample from the hypothetical population? And why do we want to make inferences 
about hypothetical populations anyway, unless we are doing so to talk about counterfactual 
causal possibilities rather than sampling error?

However, there is a natural Bayesian interpretation of the probability claims made by 
significance tests for these nonrandom samples. I can reasonably ask what probability I should 
attach to the claim ‘if there were some randomizing process such as measurement error that 
was involved in generating my data, then it is probable/ximprobable that I should see data like 
this’. One can then use objective mathematical facts about the hypothetical source or error to 
assign a conditional probability, which is objective not in the sense of having been generated by 
a real mechanism but in the sense of following deductively from assumptions.3 However, 
traditional analytic epidemiology is decidedly non‐Bayesian.

That non‐Bayesian commitment is also illustrated by the other ways that probability is 
minimized in epidemiology, namely, in the studied avoidance of using Bayes' theorem to make 
sense of results. Like much other biomedical and social research, epidemiologists sometimes use 
significance levels as straight indicators of probable truth or falsity. This, of course, contravenes 
Bayes' theorem in that both the prior probability of the hypothesis and the likelihood of the data 
on the maintained hypothesis — the power — are needed to interpret a significance level. Note 
that the role attributed to significance levels does not result simply from a reversion to 
subjective priors, for power calculations are rare as well. Rothman et al. (2008) devote three 
pages to the concept.

These familiar practices seem to me a clear instance of hoping that significance testing can 
provide a logic of inference without the need for further (p.79) substantive knowledge. 
Standard practice portrays itself as rule driven inference when it clearly cannot be, at least 
where the rules are valid.

Pushing the formulas to do more than they can also shows up when what I have been calling 
traditional epidemiology does try to talk about causality. One practice that epidemiology shares 
with the social sciences and other biomedical fields is the use of the R‐squared statistic as a 
measure of how well the given causes account for an outcome. A second practice more specific 
to epidemiology is reporting what is called the ‘population attributable fraction’ as a way of 
measuring how much of the disease burden is due to some risk factor. Both are calculated with 
the correlational evidence that is common to traditional epidemiology. Not surprising, as purely 
statistical measures, neither is a reliable guide to causal importance.

Put in the usual regression terms, R‐squared ‐ ‘the explained variance’ ‐ is calculated in terms of 
the predictive errors of the regression. It is the squared ratio of the covariance to the product of 
the standard deviations:
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It is common to take a high R‐squared to mean that the causal factors included in the model 
capture most of the causal influence.

However, this causal interpretation is more than the formula can warrant. The formula gives a 
statistical measure of how close the data points are to the regression line estimated from them. 
In the simple case where Xcauses Y with no other causes involved and we regress percentage 
changes of Y on changes in X with measurement error, it is obviously the slope of the regression 
line — the percentage change in Y that is associated with a percent change in X — that measures 
the size of the causal effect. The data points may be close to a regression line with a shallow 
slope and they may be far from one with a steep slope. The R‐squared statistic is orthogonal to 
measures of causal influence.

It is not that this confusion has gone unnoticed. It has been. Rather, my point is: the hope for 
purely formal criteria leads to using formal measures beyond their legitimate domain of 
application. Warnings about interpretation are ignored.

The ‘population attributable fraction’ is a statistical measure specific to epidemiology that 
compares the amount of disease burden in a population exposed to a risk factor to the burden 
with no exposure. Thus it is:

(P(D)P(D∣E—))/P(D), where P(D) is the (unconditional) probability of disease over a 
specified time period, and P (D ∣ E—) is the probability of disease over the same time 
period conditional on non‐exposed status.

There has recently been a large debate between obesity researchers and researchers on other 
major causes of diseases such as cancer and (p.80) cardiovascular disease over whose disease 
contributes most to mortality (Flegal et al. 2005). The measure being used in the debate is the 
population attributable factor.

The population attributable fraction is no better a measure of causal importance than R‐squared 
(Levine, 2008). People are subject to overlapping risk factors for the same condition. If we 
assess them one by one for causal importance in the manner recommended by this formula, the 
total causal contributions will sum to more than one or, put alternatively, there will be more 
explained deaths than there actually are.

Let me now turn to the role of mechanisms in traditional epidemiology. Needless to say, if 
traditional epidemiology avoids causal claims, then it is likely to avoid mechanisms as well. So it 
does. Here, however, I would argue that it is on better grounds than with its approaches to 
probability and causation, and indeed for causal reasons that epidemiologists invoke indirectly.

Consider the cases of benzene, diet, and leukemia cited above. I think they nicely illustrate my 
point (Ok, they were selected to do so) that whether mechanisms are needed for respectable 
science depends on the context. Currently there is mostly only speculation about the molecular 
route by which benzene might cause cancer (Atkinson, 2009). Actually the problem is not that 
routes are hard to picture but that there are too many imagined routes and not much evidence 
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to pick among them. The molecular changes involved in cancer are enormously complex and 
diverse, so much so that there are reasons to doubt that the cancers form much of a natural kind 
(Kincaid, 2008). There are many routes to tumorigenic transformations and various metabolites 
of benzene could be involved in various of those routes. There is no definitive evidence for any of 
these possibilities as the mechanism by which benzene causes cancer, and most of these 
possible pathways have only been understood in the last decade.

Yet arguably the evidence was good that benzene causes cancer some time ago. Although the 
traditional epidemiological reports shy away from causal claims, they do provide evidence that 
allows for causal interpretation. The cohort and case control studies can mimic, if not ideally 
realize, the logic of the clinical trial. They can do so by showing that differences in exposure are 
associated with differences in outcome and then arguing that there is no third factor that might 
explain the association. The clinical trial logic is precisely designed to establish causality 
without having to understand the intervening steps or mechanism. Of course, the evidence is 
fallible and adding in the mechanisms to the story would strengthen the evidence in various 
ways we will discuss in the next section.

The dietary case tells a different story. The mechanism is not known and there are not many 
concrete ideas about how diet would influence leukemia. One concrete hypothesis is that foods 
with DNA topoisomerase II (DNAt2) (p.81) inhibitor eaten during pregnancy reduce DNA 
damage. However, in the study described above, when the subset of possible protective dietary 
factors was restricted to those with DNA topoisomerase II (DNAt2) inhibitor, the inverse 
correlation with leukemia lost statistical significance. We have considerably less confidence in 
the plausibility of a mechanism in the case of diet than in the case of benzene.

This weakness in the evidence takes on considerable importance because the correlational 
evidence for a link between diet and leukemia is much shakier than in the case of benzene. The 
number of studies is small and the association between diet and leukemia is not always seen. 
The effect is likely to be small compared to that of benzene and thus proportionately harder to 
find. The number of possible confounding variables is large and it is hard to make a case that 
they have all been controlled for. As we noted, the study described here did not control for 
benzene exposure, certainly a possible confounder. Diet is in much greater need of a mechanism 
if we are going to label it as a cause of leukemia.

4.3 Causal modelling
I turn in this section to explicit causal modelling efforts in epidemiology, with the focus again on 
themes related to mechanisms, causality, and probability. I ask to what extent the Pearl (2000) 
programme can shed light on the need for mechanisms, on the role of probability in identifying 
causality, and the limitations of the Pearl approach for some epidemiological questions.

A central and intuitive element of the Pearl programme is the directed, acyclic graph (DAG), an 
instance of which is given in Figure 4.1. The graph is directed in that there are arrows between 
the variables representing causal relations. A cause is direct if does not go through another 
variable or ‘node’ to
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(p.82) exert its influence. The graph is 
acyclic in that it applies only to causal 
systems without mutual causation. Thus no 
arrow points directly to two nodes. All the 
causes pointing directly or indirectly into a 
given cause are called its parents or 
ancestors and all those causes pointed to 
directly or indirectly are its children and its 
descendants, respectively. A node with two 
arrows pointing to it is a collider, a node 
with arrows pointing to two or more 
variables is a common cause, and a path 
between two variables that passes through another node is one that involves in intermediate or 
mediating cause. A path is open or active, conditional on a set Z: of other variables, if Z contains 
no common causes or intermediate causes or contains a collider.
Pearl showed how to derive the relevant conditional and marginal dependencies and 
independencies from causal graph of the sort just described. So, for example, conditioning on a 
collider or any of its descendants ‘opens’ the path and thus creates a correlation between the 
variables leading into it. Conditioning on a non‐collider intermediate variable blocks the path 
and thus removes correlations.

From the rules of d‐separation the independencies and associations follow as described in Table
4.1. These independencies then can be looked for in the data by asking whether the relevant 
covariances or correlation coefficients between the variables are zero for the specific 
independence relations. The corresponding set of dependencies for the causal relations in 
Figure 4.1 can be tested in the data by looking for the corresponding non‐zero covariances or 
correlation coefficients. These provide direct tests of causality in a disciplined way.

What is the relation of these diagrams to probability claims? Pearl and nearly every other 
presenter of the DAG framework puts the relations between causal variables in terms of 
probability distributions. However, DAG models have no inherent connection to probability. It is 
important to separate the causal model itself from associated statistical issues that result from 
sampling or measurement uncertainties. If the variables in Figure 4.1 are measured

Table 4.1 Independencies and associations implied by the model of Figure 4.1.

Implied independencies Marginal associations Conditional associations

A indep C/B A and B C and D/E

A indep D/B B and D C and D/F

A indep E/CD B and C

A indep F C, D and E

B indep E/ACD E and F

B indep F/A B and E

C indep D/B

Fig. 4.1  Directed acyclic graph (DAG) with 
six variables.
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Implied independencies Marginal associations Conditional associations

D indep F/B

(p.83) with certainty, then what must be observed are functional dependencies and 
independencies only, not probabilities. Since probabilities are functions, they can express 
dependencies and independencies. Yet they are not essential to do so. No notion of probability 
as taking on values between zero and one are necessary. Measurement and sampling issues can 
be added onto the DAG framework, but the probabilities they require are not part of the basic 
logic of testing causal claims.
Not only are probabilities unneeded to test DAGs, the methods described above for testing them 
tell us about the presence or absence of causes, but not about the size of causal effects. Putting 
the DAG framework in terms of probabilities can make it look like effect sizes are part of the 
model because the probabilities are often the relative frequencies in the population which then 
seem like a measure of causal size in the sense of the proportion of As (say, the exposed) are Bs 
(say, diseased). However, as the graphs make clear, size information is not represented.

It is important to be clear that the testing logic is not about effect size in order to see that 
estimates of effect size generally presuppose that the maintained causal relations are the true 
ones. The measure of effect does not test the causal model but rather assumes it. This difference 
is not often made explicit, though see Morgan and Winship (2007). Sizes of causal effects can be 
inferred by a variety of methods, though of course sometimes stringent conditions have to be 
met. Most directly related to the Pearl framework perhaps is the decomposing of causal effect 
sizes by means of the size of correlation coefficients analysed by the rules of path analysis. So 
the indirect effect of A on C in Figure 4.1 is the product of the coefficient of the arrow from A to 
B and the coefficient of B to C. But calculating these effect sizes takes the causal relations 
themselves between A, B and C as true. This is an instance of Cartwright's dictum ‘no causes in, 
no causes out’. It is likewise a quite concrete sense in which mechanisms are needed.

Traditional epidemiology we saw is skeptical about causation and thus general does not 
explicitly state the full assumed causal model when providing ‘adjusted’ odd ratios. Adjusted 
ratios are contrasted to the ‘crude’ ratios. Odds ratios, we saw earlier, are measures of effect 
size. Adjusted ratios reflect effect size after controlling for other risk factors. Using the DAG 
framework to provide explicit causal models can help show when this traditional practice is on 
the right track and when it is not (Rothman et al. 2008).

Collider bias nicely illustrates why having an explicit causal model is necessary for both 
inferring causation and causal effect size. Recall that a collider is a node in a causal graph into 
which two arrows run. If we condition on that node by stratifying on it or including it in a 
regression, we produce spurious correlation. So, in Figure 4.2, if we condition on C in either 
diagram, then we have fixed its value and thus the values of A and B, creating a non‐causal 
correlation. This means that we can both make mistakes in causal inference (p.84)
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and causal size inference. Figure 4.2(b)
shows the cause where we create a 
dependency that is non‐causal. Figure 4.2(a)
shows the case where there is a causal 
relation, but by conditioning on C we are 
making that association look stronger than 
it is, because we are creating a further 
association.
Traditional epidemiology works by taking a 
list of possible causes and confounders and 
begins an analytic adjustment procedure. 
The procedure invokes statistical 
associations without explicit causal models. 
DAG reasoning shows that this procedure is prone to bias — to inferring causes where they are 
not and to inferring incorrect estimates of their size (Schisterman, Cole, & Platt, 2009).

These are specific ways that knowing the horizontal mechanism can be necessary for confirming 
claims about effect size. I want to turn now to the use of mechanisms in identifying not effect 
sizes but the basic causal relations that are needed to estimate them. Earlier I argued informally 
that mechanisms are not always needed to infer causation. That can now be seen more formally 
by thinking about the causal model in Figure 4.1 if my concern is to evaluate the claim that A 
causes E. Consider the collapsed model in Figure 4.3 where I do not know the mechanism in 
terms of B, C, D and have no measurement of them. Assume I do have measures of A, B,E, and F. 
The reduced model AEF nonetheless entails that A and E are independent conditional on B and 
that A and B, B and E, and E and F are correlated.

If these independencies and dependences are reflected in the relevant zero and non‐zero 
correlations in the data, I have evidence for the claim that A causes E that in no way depends on 
knowing about the intervening mechanism.

(p.85)

Fig. 4.2  Confounding caused by conditioning 
on a collider.

Fig. 4.3  DAG of model without mechanism.
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However, knowing the intervening process 
— the horizontal mechanism — can 
nonetheless increase my confidence that A 
causes E. To see that imagine that I have 
evidence only about the simple model in 
Figure 4.4(a) and I am worried that there is 
some unknown variable U which is 
confounding my correlation between A and 
E and so that the real model is as in Figure
4.4(b).

If I now measure B, C, and D and find that I 
have evidence for the mechanism in Figure
4.1, then for U to be a confounder it would 
also have to account for these further 
correlations by means of our potential confounder U. Obviously spelling out the rest of the 
mechanism in Figure 4.1 correspondingly would increase our power to reject U as a confounder. 
So while I do not need the mechanism to know that A causes E, having measurements on 
plausible mechanism makes it easier to do so. I take this to be a core idea behind the claim that 
mechanisms increase the security of our knowledge.

Mechanisms can also contribute to confirmation by helping provide a more precise 
understanding of the cause involved. Take our case earlier of leukemia and diet. Eating fruits 
and vegetables may be a cause of reduced leukemia burden. Identifying a mechanism through 
which that influence happens would simultaneously help us identify what it was about eating 
fruits and variables that was beneficial, e.g. antioxidants.

In this case identifying the vertical mechanism is part of identifying the horizontal mechanism. 
However, the notion of vertical mechanism here is much weaker than the notion described in 
the recent mechanisms literature. In that literature a mechanism is much more of a system 
where component parts are identified. The mechanism behind eating fruits and vegetables is 
presumably just some separable component of them.

I now turn to some shortcomings of the Pearl framework for epidemiology. A standard concern 
in traditional epidemiology is with moderator variables or what is sometimes called interaction 
effects. Epidemiologists say that an (p.86) interaction effect occurs statistically when the 
correlation between two variables changes with the value of a third variable. The causal idea is 
that the effect of one factor A on another B is influenced by a third variable C. So rather than A 
and C being independent causal influences on B, it is their joint effect that does the trick.

Such causal relations are likely to be important in epidemiology. Many diseases are probably the 
effect of gene—environment interactions where the gene by itself is not enough to cause the 
disease but only to ground a susceptibility. Disease then occurs when the relevant 
environmental factors are added. So in the case of depression it is likely that that a genetic 
background combined with a stressful environment combine to produce depressed individuals, 
where neither alone would do so. Copy number variants of genes where severity depends on the 

4.4  (a) Simple collapsed model of Figure 4.1 
and (b) Possible confounder.
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number of genes while the presence of the disease at all requires an environmental insult are 
also likely to be a common situation. Similarly, cancers are thought to arise from multiple 
genetic hits and it is easy to imagine that the number of disease cases could be a function of the 
level of exposure of multiple agents.

There are in fact two different cases here that we could distinguish, given our earlier distinction 
between models of causal relations and models of causal effect sizes. Moderators that are 
involved in the causal relation are instances of Mackie's necessary components of a sufficient 
complex cause. In the case of A and C jointly causing B, the value of both A and C cannot take on 
a zero value and have result B. In the effect size instance the measured size of B depends on the 
size of A and C, which in this case is really the more general connection, with the causal 
relations issue being an instance where the relevant values of the variables are only zero or 
greater than zero.

VanderWeele and Robins (2007) claim that all possible types of interaction effects fall into one 
of four categories according to which of four possible DAGs describe them. Using diabetes (D) 
as the outcome, they imagine that E is a drug for hypertension in a clinical trial that interacts 
with a genotype variable X. Mother's genotype C that causes X, proxy variable R that is 
associated with X, and mother's hair colour M that is caused by X as well give them all the 
possible statistical confounding associations. The four possible interaction situations are 
illustrated in Figure 4.5, where the parentheses pick out the modifier in terms of statistical 
interaction.

Unfortunately, these proofs produce much less than they advertise. They provide a classification 
of all possible statistical interactions between the kind of factors in a traditional epidemiological 
analysis (confounders, indirect measures, etc.), given a traditional DAG. The problem is that the 
traditional DAG representation has no place for real causal interaction as opposed to statistical 
interaction. VanderWeele and Robins have not actually described causal moderation or 
interaction in the DAG frame work. Their case of drug and genetics influencing hypertension 
makes each a causal influence (p.87)
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on hypertension independently of the other. 
While the effect size of one on hypertension 
will depend on the value of the other, the 
causal relation itself does not. In other 
words, if either takes on a zero value, the 
other still has an effect.
Keeping clear on the distinction between 
establishing a causal relation and an effect 
size thus pays off here. The depression case 
mentioned above is not one where there is a 
gene that causes depression and a social 
environment that also independently 
contributes but rather is one where both are 
required. That kind of situation has no 
representation in the DAG framework, for it 
calls for a representation that looks 
something like Figure 4.6.

Another way to put this point is that causal moderation violates the modularity assumption that 
a DAG presupposes. The modularity assumption says that the causal relations are such that I 
could in principle remove an

(p.88) arrow between two variables while 
leaving the rest of the causal graph intact. 
However, the moderation effect shown in 
Figure 4.6 is precisely the kind of situation 
that cannot be so far as I can see be 
represented in the Pearl framework. 
Epidemiology thus provides fruitful sources 
for Cartwright's (2007) thesis that 
modularity can often fail.
When modularity fails, then testing via the 
expected independencies will not work. The 
moderator cause will exhibit dependencies, 
but not the kinds of dependencies that will be screened off in the case of standard causes in a 
DAG that have independent effects on variables. VanderWeele and Robins have sought to get a 
formal account of all the possible ways that traditional risk factor analyses might get at 
moderation effects, however they do so at the expense of missing the substantive issues at stake 
about causality.

I want to turn finally to some issues concerning estimating effect sizes in epidemiology, when we 
assume we know the correct set of causal relations. My point will be again that ‘knowing the 
mechanism’ means many things — in this case, that measuring effect size requires knowing the 
functional form connecting changes in causal levels with changes in causal effects. DAG models 
of causal relations make no assumptions such as linearity, but when effect sizes are measured 
such assumptions generally become essential.

Fig. 4.5  (a) Direct effect modifier X. (b) 
Indirect effect modifier C. (c) Effect 
modification by proxy R. (d) Effect 
modification by common cause M.

Fig. 4.6  Effect modification.
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Typically causal effect sizes are measured in both traditional epidemiology (when it is willing to 
talk about causes) and in the more sophisticated work based on explicit DAG models by use of 
regression models. Regression models are best estimates of the average value of the dependent 
variable based on average values of the dependent variables. These models typically assume 
that (see Abbott, 2001):

1. Variables are acting on the same timeframes.
2. Causal influences effect the variance of the variables being measured, for example, 
rather than that causes that effect levels of variables.
3. Causes are symmetric, that is, an increase in the value of variable will increase the 
value of the variable and a decrease will produce a decrease.
4. There is a causal effect at every value of the variable.
5. The causal effect on one individual unit is independent of the number of individuals 
affected by that cause.

All of these assumptions are ones that are likely to be violated sometimes by causes in 
epidemiology. Different carcinogens may act over different periods to produce the same amount 
of risk. Dose—response relations might be nonmonotonic. Environmental risk assessment takes 
seriously the idea of threshold effects, and we can imagine mechanisms such as toxin clearing 
capacity to support them. Social factors in epidemiology are likely to involve cases where the 
number of individual affected is a factor in the effect on individuals, i.e. where there are scale 
effects.

(p.89) These complications show that there can be a significant wedge between what it takes to 
know that there is a causal relation and what it takes to know its size. Knowing its size may take 
considerably more information about mechanisms; Pearl has shown that finding causal relations 
can proceed without presupposing any strong form of assumption about the functional forms of 
those relations. As I suggested in the first section, different causal claims can make different 
presuppositions about what the underlying mechanisms might be, some logically stronger than 
others. Those differences are important in evaluating the need for mechanisms, and suggest that 
in epidemiology mechanisms are more important in determining the effect size of risk factors as 
compared to finding risk factors in the first place.

4.4 Conclusion
Epidemiology presents a rich source for looking at the connections between probability, 
causality, and mechanisms. When pressed, the work discussed here from epidemiology and from 
the application of DAG style causal modelling relied less on probabilistic notions than might be 
thought. The kind of horizontal mechanisms emphasized in the philosophy of science literature 
also played little role. However, mechanisms as intervening variables is much more important, 
especially when explicit causal modelling is involved. The Pearl type applications in 
epidemiology provide a nice way to make it clear when and how such mechanisms are needed. 
Our discussion here shows that considerably more progress has been made in clarifying these 
issues when it comes to understanding causal relations as opposed to causal effect size. Causal 
interaction and causality that does not easily fit the standard regression assumptions are much 
in need of further investigation.
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Notes:
(1) I take it that ‘do not violate the probability calculus, first order logic, etc’. is not informative 
in that it does not say anything about standard methodological disputes, for example on the 
importance of novel data. I have argued elsewhere that Bayes' theorem is uninformative in this 
way (Kincaid, 2002).

(2) A referee wondered whether the reluctance to use causal language was counter‐evidence to 
my thesis that there is a tendency in epidemiology, as in all science, to extend formal methods 
beyond their reasonable reach. In so far as epidemiology really is motivated by that goal it is 
indeed and that is a good thing. However, as I point out, despite the admonition to not confuse 
correlation with causation, epidemiology in the end makes lots of causal claims based on 
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associations. What is exciting about work in causal modelling is that makes such assertions 
possible in a disciplined way, but also shows when those implicit moves are illegitimate.

(3) A standard way to do this, one not often invoked in epidemiology, is through what is called 
permutation analysis. For example, suppose one has values for treatment for cases and controls. 
The mean of observed differences is then compared to the distribution of the mean that is 
produced if the labels case and control are switched in many different ways.
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Papillomaviruses, they review the available evidence deriving from epidemi‐ ological 
studies, animal experiments and information about mechanisms (and other data). The 
evidence of the different groups is combined such that an overall assessment of the 
carcinogenicity of the agent in question is obtained.

In this paper, we critically review the IARC's carcinogenicity evaluations. First we show 
that serious objections can be raised against their criteria and procedures — more 
specifically regarding the role of mechanistic knowledge in establishing causal claims. Our 
arguments are based on the problem of confounders, of the assessment of the temporal 
stability of carcinogenic relations, and of the extrapolation from animal experiments. Then 
we address a very important question, viz. how we should treat the carcinogenicity 
evaluations that were based on the current procedures. After showing that this question is 
important, we argue that an overall dismissal of the current evaluations would be too 
radical. Instead, we argue in favour of a stepwise re‐evaluation of the current findings.

5.1 Introduction
The IARC, the International Agency for Research on Cancer, is a division of the World Health 
Organization. In the Preamble to the IARC Monographswe read:1

Through the Monographsprogramme, IARC seeks to identify the causes of human cancer. 
(IARC 2006, p. 1)

(p.92)
More specifically, the objective of the programme is …

… to prepare, with the help of international Working Groups of experts, and to publish in 
the form of Monographs, critical reviews and evaluations of evidence on the carcino‐ 
genicity of a wide range of human exposures. (IARC 2006, p. 2)

The term ‘agent’ is used to refer to ‘any entity or circumstance that is subject to evaluation in a 
Monograph’ (IARC 2006, p. 2). The exposures or agents include individual chemicals, but also …

… groups of related chemicals, complex mixtures, occupational exposures, physical and 
biological agents and lifestyle factors. (IARC 2006, p. 1)

How is the carcinogenic risk of exposures assessed by the IARC?2 The available evidence 
consists of epidemiological studies (field experiments with humans), animal experiments and 
information about mechanisms (and other data). The available studies are first evaluated 
separately. Then their conclusions are combined per group. Finally, the evidence of the different 
groups is combined into one final assessment.

In this chapter, we will critically review the IARC's carcinogenicity evaluations. In the first part, 
we will briefly present their procedures and criteria (Section 5.2) and show that serious 
objections can be raised against them — more specifically regarding the role of mechanistic 
knowledge in establishing causal claims (Sections 5.3–5.5). This means we will only focus on the 
evidential role of mechanisms, not on their possible explanatory roles (cf. Glennan 2002, Bechtel 
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and Abrahamsen 2005). Then we will address a very important question, viz. how we should 
treat the conclusions of all Monographsthat were based on the current procedures (Section 5.6). 
We will show that this question is important (given the possible economic and social 
consequences of the IARC assessments), but that an overall dismissal of the current evaluations 
would be too radical. Instead, we argue in favour of a stepwise re‐evaluation of the current 
findings.

5.2 Relevant features of the IARC procedures and criteria
The IARC's evaluation procedure consists of three phases and involves three kinds of studies: 
epidemiological studies, experimental studies on animals, and mechanistic information and 
other data. (We will often use the labels ‘epidemiological’, ‘experimental’ and ‘mechanistic’ to 
refer to these respective (p.93) kinds of studies or evidence.) In the first phase, all studies are 
evaluated separately. In the second phase, assessments are made of the epidemiological, the 
experimental and the mechanistic group respectively. In the third phase, the evidence of the 
different groups is combined such that an overall assessment of the carcinogenicity of the agent 
in question is obtained.

1. Let us first look at the epidemiological studies. For ethical reasons, these studies with humans 
are almost without exception prospective or retrospective; randomized experiments are very 
rare. In the first phase, each study is assessed according to three criteria: viz. whether they are 
plagued by bias, confoundingor chance. Bias is defined as

… the operation of factors in study design or execution that lead erroneously to a stronger 
or weaker association than in fact exists between an agent and disease. (IARC 2006, p. 9)

In order to exclude bias it is required that

… the study population, disease (or diseases) and exposure should have been well defined 
by the authors. Cases of disease in the study population should have been identified in a 
way that was independent of the exposure of interest, and exposure should have been 
assessed in a way that was not related to disease status. (IARC 2006, p. 9)

Confounding occurs when

… the relationship with disease is made to appear stronger or to appear weaker than it 
truly is as a result of an association between the apparent causal factor and another factor 
that is associated with either an increase or decrease in the incidence of the disease. 
(IARC 2006, p. 9)

In order to rule out confounding it is required that

… the authors should have taken into account — in the study design and analysis–other 
variables that can influence the risk of disease and may have been related to the exposure 
of interest. Potential confounding by such variables should have been dealt with either in 
the design of the study, such as by matching, or in the analysis, by statistical adjustment. 
(IARC 2006, p. 9)
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In order to exclude chance the authors must report the basic data on which their conclusions 
are based, but also their statistical methods:

Finally, the statistical methods used to obtain estimates of relative risk, absolute rates of 
cancer, confidence intervals and significance tests, and to adjust for confounding should 
have been clearly stated by the authors. (IARC 2006, p. 10)

Studies that score badly on these criteria have a low credibility, so their weight in the final 
evaluation is very low.

After the individual screening, the epidemiological studies are compared with each other. The 
aim of this second phase is to arrive at one of the following conclusions (IARC 2006, pp. 19–20):
(p.94)

(1) There 6is sufficientepidemiological evidence of carcinogenicity.
(2) There is limitedepidemiological evidence of carcinogenicity.
(3) The epidemiological evidence of carcinogenicity is inadequate.
(4) There is epidemiological evidence suggesting lackof carcinogenicity.

Conclusion (1) is drawn if ‘a positive relationship has been observed between exposure and 
cancer in studies in which chance, bias and confounding could be ruled out with reasonable 
confidence’ (IARC 2006, p. 19). Conclusion (2) is drawn if a positive association is observed for 
which a causal interpretation is credible, but chance, bias or confounding could not be ruled out 
with reasonable confidence. Conclusion (3) is drawn if there are no studies available, or if the 
available studies are of insufficient quality or consistency (for the first two conclusions it is 
required that the positive association occurs in a large majority of the studies). Conclusion (4) is 
drawn if there are several adequate studies which consistently show no positive association.

2. The experiments with animals are also screened individually in the first phase. One of the 
considerations is of course whether the animals were allocated randomly to the experimental or 
the control group: if that condition is not satisfied, the main possible advantage of animal 
experiments (viz. that they can be randomized trials) is not exploited. Another consideration is 
whether both male and female animals were used (this prevents a possible bias). And of course 
the data (number of animals studied, number of tumours, length of survival, etc.) should be 
reported and analysed adequately (elimination of chance).

After the individual screening, the results of animal experiments are combined in the second 
phase. The possible conclusions are (IARC 2006, pp. 20–21):

(1) There is sufficientevidence of carcinogenicity in experimental animals.
(2) There is limitedevidence of carcinogenicity in experimental animals.
(3) The evidence of carcinogenicity in experimental animals is inadequate.
(4) There is evidence suggesting lackof carcinogenicity in experimental animals.

Conclusion (1) is drawn if there are high quality studies (randomised, elimination of chance) for 
two or more species, consistently showing an increased incidence of tumours. Increased 
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incidence in a well‐conducted study in both sexes of a single species, can also provide sufficient 
evidence. Conclusion (2) is drawn if the data suggest a carcinogenic effect but are limited for 
making a definitive evaluation (e.g. because only one sex of a single species is investigated). The 
criteria for conclusions (3) and (4) are similar to those for epidemiological studies.

(p.95) 3. The mechanistic data3 include information about toxicokinetics (absorption, 
distribution, metabolism, and elimination of agents) and mechanisms of carcinogenesis (How 
does the agent affect the organs, tissues or cells? Does it e.g. lead to genetic mutations?). For 
carcinogenic effects that have been observed in experimental animals, an evaluation is made of 
the strength of the evidence that it is due to a particular mechanism. The second‐phase 
categories that are used here are ‘weak’, ‘moderate’ and ‘strong’, but these labels are less 
clearly defined than those of the epidemiological and exper imental studies (IARC 2006, pp. 21–
22). For instance, experimental studies which show that suppressing key elements of a 
mechanism prevents the development of tumours, provide strong evidence for the conclusion 
that the mechanism operates in the type of experimental animal that is studied. There is also an 
assessment of how likely it is that a particular mechanism operates in humans. And much 
attention is paid to the questions whether ‘multiple mechanisms might contribute to tumour 
development, whether different mechanisms might operate in different dose ranges, whether 
separate mech anisms might operate in humans and experimental animals and whether a unique 
mechanism might operate in a susceptible group’. (IARC 2006, p. 21)

4. Finally, in the third phase, the three types of evidence are brought together. The agent under 
investigation is put into one of the following groups (IARC 2006, pp. 22–23):4

Group 1: The agent is carcinogenic to humans.
Group 2A: The agent is probably carcinogenic to humans.
Group 2B: The agent is possibly carcinogenic to humans.
Group 3: The agent is not classifiable as to its carcinogenicity to humans.
Group 4: The agent is probably not carcinogenic to humans.

The Preamble presents a set of rules governing this overall assessment. It is important to note 
that these are not treated as rigorous rules and that past decisions have resulted in apparent 
exceptions (as is indicated by formulations starting with ‘exceptionally’ or ‘in some cases’). We 
will not list all exceptional rules. Thus the following presentation is somewhat simplified.

An agent is placed in Group 1 if there is sufficientepidemiological evidence of carcinogenicity. 
Exceptionally, an agent may also be labelled carcinogenic (p.96) to humans if there is
sufficientexperimental evidence and strongmechanistic evidence. But normally, if the 
epidemiological evidence is less than sufficient, it is combined with the evidence from 
experimental animals and/or with the mechanistic evidence and results in a classification lower 
than Group 1. For instance, an agent is classified in Group 2A in the following cases:

(a) If there is limitedepidemiological evidence and sufficientexperimental evidence.
(b) (In some cases) if there is inadequateepidemiological evidence, but
sufficientexperimental evidence and strongevidence that the carcinogenesis is mediated 
by a mechanism that also operates in humans.
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(c) (Exceptionally) if there merely is limitedepidemiological evidence of carcinogenicity in 
humans.

In condition (b) the mechanistic evidence is used to warrant extrapolation from animals to 
humans. If this warrant is absent — case (a) — stronger epidemiological evidence is required 
than in cases where there is such a warrant.

This role of mechanistic evidence, which relates to the extrapolation from animal experiments to 
humans, can be further clarified by means of the difference between the following rules:

(d) If there is inadequateepidemiological evidence and sufficientexperimental evidence, 
but strongevidence that the mechanism of carcinogenicity in experimental animals does 
notoperate in humans, the agent is classified in Group 3.
(e) If there is inadequateepidemiological evidence and sufficientexperimental evidence, 
but no such negative mechanistic evidence, then the agent is classified in Group 2B.

5.3 Mechanisms and the problem of confounders
1. Biomedical scientists investigating the causes of diseases face a fundamental ethical problem. 
Randomized experiments with the target population (i.e. humans) provide the most reliable 
method for establishing causal relations in the biomedical sciences:

A decisive test of whether smoking causes heart disease, then, would be to take a large 
sample of human infants randomly selected from the human population, divide them into 
two equal groups, and force one group to smoke for the rest of their–no doubt 
abbreviated–lives. (Dupré 1993, pp. 202–203)

However, these randomized experiments are usually impossible for ethical reasons: they may 
cause physical harm to the experimental subjects, as in (p.97) Dupré's example. Biomedical 
scientists can avoid the unethical experiments by doing merely observational studies on humans 
(prospective or retrospective designs) and by doing randomised experiments with animals.5

From Section 5.2.4 it is clear that the IARC procedures do take into account the role that 
information about mechanisms can play in extrapolating results from animal experiments to 
humans. However, mechanisms can have at least two other evidential roles that are neglected in 
the IARC procedures. The first role relates to the problem of confounders and is discussed in 
this section. The second relates to extrapolation over time and is discussed in Section 5.4.

2. The problem of confounders originates from the fact that in a prospective or retrospective 
design the individuals ‘put themselves’ into the experimental or the control group by the way 
they act.6 For instance, in a prospective design set up to investigate the relation between 
smoking and heart disease, people that decided to smoke end up in the experimental group, non‐
smokers in the control group. Because of this non‐random selection, there may be disturbing 
factors. For instance, if there are more heart diseases among the smokers, this may be due to 
the fact that both smoking and heart disease are positively influenced by coffee drinking. 
Randomized experiments avoid this problem by the random division into experimental and 
control group.
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The standard solution to this problem is ‘conditioning on potential con‐ founders’. But this 
solution has its limitations, as Dan Steel points out with respect to the social sciences:

I agree that there are cases in which one can draw reasonable conclusions about what 
causes what without the aid of experiment or substantial knowledge of underlying 
mechanisms. However, the usefulness of conditioning on potential causes does not 
undermine the proposal that mechanisms significantly aid causal inference in the social 
sciences, since social scientists are rarely able to measure all potential common causes. 
Indeed, the inability to exhaustively consider all potential common causes is a basic 
element of the problem of confounders, to which mechanisms are being considered as a 
partial solution. (Steel 2004, p. 63)

This problem is not limited to the social sciences. Potential disturbing factors (confounders) can 
be eliminated by means of statistical methods on a one‐by‐ one basis. But we can never be sure 
that no untested variables will ever turn out to be confounders, and we cannot test all possible 
variables. For instance, (p.98) we can exclude the possibility that coffee drinking is a common 
cause in the above example, but we cannot be sure that there is no other variable which causes 
both smoking and heart disease and is responsible for the correlation. We cannot exclude the 
possibility that smoking and heart disease have a common cause; we can only test individual 
variables and exclude them as common causes. More generally, it seems impossible to rule out 
confounding ‘with reasonable confidence’ by means of conditioning alone.7

How can causal mechanisms help here? Steel (2004) distinguishes two possible roles for 
mechanisms relating to the problem of confounders. The first possible role is negative: if we 
don't find a plausible mechanism linking two variables, we can conclude that the correlation 
between them is spurious (i.e. there is a common cause). Steel argues that this negative role 
does not work, because we can always find plausible mechanisms. This argument is a bit too 
strong, however. At least it does not apply straightforwardly to the present context. In 
biomedical research, it does not suffice to just come up with a plausible mechanism. Mechanistic 
hypotheses have to be justified empirically. Moreover, the IARC itself sometimes explicitly uses 
strong evidence suggesting lack of a mechanism (and other relevant data), in tandem with 
inadequate epidemiological evidence and experimental evidence suggesting lack of 
carcinogenicity, as a reason to classify an agent in Group 4. (Yet this decision is not taken 
frivolously.)8 Hence we suggest that the negative role of mechanisms does bear on 
carcinogenicity studies (even if, as Steel argues, it does not work in the social sciences).

The second possible role is positive: if we find a mechanism for which we have good evidence of, 
we can conclude that there is a causal relation between the two correlated variables. In the case 
of carcinogenesis, the description of the mechanism would contain claims about how the 
presence of certain chemical substances (e.g. in the blood) leads to the presence of other 
chemical substances in cells and to changes in properties of cells (e.g. genetic mutation). These 
processes can be investigated in vitro. This is important, because in vitroit is possible to do 
randomized experiments, in which the problem of confounders is unlikely to occur. An ideal 
mechanistic argument for a claim about carcinogenicity (or other hazard) consists of a chain of 
lower‐level causal (p.99) claims of which each element is supported by a randomized 
experiment. Similarly, in the social sciences, an ideal mechanistic argument uses causal claims 
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with respect to the behaviour of individuals which have been tested in randomized trials. Both in 
the social and in the biomedical sciences, the usefulness of mechanistic evidence ‘relies upon 
causal relationships among components being more directly accessible than those at the 
macrolevel’ (Steel 2008, p. 195).9

Looking back at Section 5.2.1 we see that this evidential role of mechanisms is largely neglected 
in the IARC procedures. It is assumed that one may attempt to exclude the possibility of 
confounding with reasonable confidence without invoking mechanisms. A sceptic, following 
Steel's line of reasoning, might argue that confounding can never be excluded with reasonable 
confidence in this way. So there never is sufficientepidemiological evidence for carcinogenicity: 
that is an empty category. This is an argument for suggesting a change in the IARC procedures. 
Mechanistic evidence should also be used to better exclude the possibility of confounding in 
individual epidemiological studies.

5.4 Mechanisms and temporal stability
Consider the following statements, that have an identical logical form:

No gold sphere has a mass greater than 100,000 kg.

No enriched uranium sphere has a mass greater than 100,000 kg.

The second statement is deemed temporally much more stable than the first. The critical mass 
for enriched uranium is just a few kilograms, so the second statement is not only true at this 
moment, but will remain true unless some principles that govern the universe change. The truth 
of the first statement seems to be more contingent (it just happens to be the case that no one did 
produce such a sphere yet). Examples of even less stable generalizations are ‘All screws in 
Smith's car are rusty’ and ‘All coins in my pocket are made of copper’.

Likewise, probabilistic causal claims that are true at this moment can also differ with respect to 
their temporal stability. Consider first an example from (p.100) the social sciences. In a book 
on ethical problems in the social sciences, Paul Davidson Reynolds discusses an experiment 
which investigates the effects of negative income tax (his source is Kershaw 1972):

The research involved the examination of the effects of different negative income tax plans 
(direct cash payments) to ‘guarantee’ a predetermined minimum household income: 
partial reductions in payments occurred if household earnings increased. The basic 
question was the extent of labor‐force participation of individuals in households with a 
guaranteed income — i.e. would they work less? The study also estimated the costs of a 
guaranteed income program if adopted as the major welfare strategy for the nation. The 
initial study involved 1400 families in five cities in the New Jersey—Pennsylvania area 
randomly assigned to one of the eight plans (negative income tax schedules) or to a 
control group (families receiving no guaranteed income). (1982, p. 36)

The eight plans differed in the amount of money that was given if there was no other income, 
and in the reductions in payment that occurred when there was another income. But in each 
plan, the reductions were only partial. The aim of the study was to determine whether the 
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advantages of a guaranteed income plan (administrative simplicity, dignity, equity, … ) were or 
were not outweighed by a possible disadvantage, viz. reduced labour‐force participation.

The experiments reported by Reynolds were performed to evaluate guaranteed income as a 
nationwide welfare strategy. In the early 1970s (when these experiments were performed) the 
result was that the effect of guaranteed income on labour‐force participation was small. Suppose 
now that the US Government would have taken this result as a basis for adopting negative 
income tax as the major welfare strategy. Then 35 years later they might have found out that the 
effect has changed. Causal relations can become weaker or stronger over the years. For 
instance, if people become less materialistic, they might attach more value to free time and less 
to extra consumption, so the effect of a guaranteed income on labour‐force participation might 
increase. Causal relations can even be reversed (from positive to negative, or the other way 
around).

No matter what the nature of our evidence is (random experiments, prospective or retrospective 
designs) we face the challenge of extrapolating our results to the future. Without such 
extrapolation, the results have no policy relevance (see Section 5.6 for a more elaborate 
discussion of policy relevance). How far the extrapolation must go, depends on what we use the 
causal relation for. Since no government wants to change its welfare strategy fundamentally too 
often, extrapolation is required for quite a large period. Regardless of how far one should try to 
extrapolate, it is clear that extrapolation is impossible without insight into the stability of the 
underlying social mechanism. Once we know the mechanism, we can investigate how changes at 
the micro‐level (people's beliefs, desires and individual decisions) may affect the macro‐level (p.
101) (the relation between negative income tax and labour‐force participation). If there is a 
change at the micro‐level that is likely to occur and that has an effect on the causal relation at 
the macro‐level, extrapolation is a risky business. If such changes are unlikely, extrapolation is 
quite safe.

Let us now go back to the biomedical sciences. There are three ways in which causal 
generalizations can be unstable in time. First, evolution in the age structure of the population of 
interest may have an effect on the strength of a causal relation, or even result in new causal 
relations. Compare a population where everyone dies before the age of 80 with a population in 
which a substantial part reaches the age of 100 years. It is possible that a compound constitutes 
a hazard in the second population but not in the first simply because the effects of the 
compound are very slow and only manifest themselves above the age of 80.

Second, there is risk‐instability. Consider the following example. Various risk factors of breast 
cancer are being explored. In a paper arguing for a causal link between exposure to 
electromagnetic fields and breast cancer, McElroy et al.(2007, p. 266) claim that about half of 
the variation in breast cancer rate is still unexplained by well explored risk factors such as 
ionizing radiation, abortion, alcohol consumption, hormone use, etc. That is why they investigate 
exposure to electromagnetic fields. However, there is also research into the effect of maternal 
diet on breast cancer. The hypothesis is that maternal diet may increase the risk of breast 
cancer by inducing changes in the foetus, which alter the susceptibility of the daughter to risk 
factors that occur later in her life, such as the ones mentioned above (see Hilakivi‐Clarke and 
Clarke 2006, p. 340). This example shows that it is possible that our susceptibility to factors that 
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initiate cancer can vary quite quickly, under the influence of changes in (maternal) diet. This is a 
typical example of risk‐ instability. Maternal diet may change quickly in a population. In general, 
it is possible that a compound does not constitute a hazard at time x(because everyone in the 
population has a certain property Pwhich neutralizes the effect of the compound) while it does 
constitute a hazard at time y(because e.g. only half of the population has property P).

A third way in which causal relations can be unstable over time is mechanism instability.10 Ye et 
al.(2009) study the evolutionarymechanism of cancer progression (as opposed to molecular 
mechanisms). They note that a large number of molecular mechanisms and pathways are known 
that underlie tumorigenicity. However, no common molecular mechanism underlying all kinds of 
cancer is known. According to Ye et al. genome instability (more specifically, the increased 
frequency of non‐clonal chromosome aberrations) is the common mechanism: (p.102)

Increasing evidence illustrates that the somatic evolution of cancer is similar to natural 
evolution with system stability mediated genetic heterogeneity playing a key role [… ]. 
[… ] An emerging genome‐centric concept on cancer evolution states that overall genome 
level variation coupled with stochastic gene mutations serve as a driving force of cancer 
evolution by increasing the cell population diversity [… ]. (2009, p. 288)

Genome level variation or instability raises population heterogeneity qua molecular 
mechanisms,11 which in turn raises the probability of a specific pathway leading to cancer (this, 
together with natural selection at the somatic cell level, constitutes the evolutionary mechanism 
of cancer; 2009, p. 296). It may itself be caused by genetic, metabolic and environmental (cf. the 
agents reviewed by the IARC elements (2009, p. 295).

Thus the picture is as follows: for some or other reason (e.g. the presence of some carcinogenic 
agent), genome level instability is induced. This raises the number of potential molecular 
pathways or mechanisms, some of which may lead to cancer. But these ‘mechanisms are 
constantly changing during cancer evolution’ (2009, p. 289), which means that different cells 
may contain different pathways. Here's the crux: if the hallmark of cancer progression is 
molecular heterogeneity, what reason would we have to presuppose these mechanisms remain 
stable over time in the human population?

Mechanism‐instability is also present in the case of breast cancer susceptibility we used to 
illustrate risk‐instability (cf. supra). Hilakivi‐Clarke and de Assis write that ‘[a]lterations in the 
fetal hormonal environment, caused by either maternal diet or exposure to environmental 
factors with endocrine activities, can modify the epigenome, and these modifications are 
inherited in somatic daughter cells and maintained throughout life.’ (2006, p. 340) The fetal 
hormonal environment induces changes to the mechanism underlying carcinogenesis.

These examples show that there is yet another reason for changing the IARC procedures. The 
stability over time of carcinogenicity evaluations should be explicitly addressed and mechanistic 
evidence should be included as much as possible in this assessment. Moreover, carcinogenicity 
conclusions that have little stability (or whose stability is unknown) should be re‐evaluated more 
frequently than more stable conclusions.12
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(p.103) 5.5 Extrapolation from animals to humans
The use of mechanistic evidence in the IARC procedures is lacking in still another way. We 
mentioned that mechanistic data are used to guide the extrapolation of experimental evidence to 
humans. At the moment, however, this use is open to improvement.

In Section 5.2.4 we discussed the rules governing the attribution of agents to Group 2A. We 
found that an agent may be placed in this group if there is limitedepidemiological evidence of 
carcinogenicity and sufficientevidence of carcinogenicity in experimental animals (this was 
labelled ‘case (a)’). In some cases, an agent may also be placed in this group in case there is
inadequateepi‐ demiological evidence of carcinogenicity, sufficientevidence of carcinogenicity in 
experimental animals and strongevidence that the carcinogenesis is mediated by a mechanism 
that also operates in humans (this was labelled ‘case (b)’). The difference between the cases (a) 
and (b) is remarkable. Once it is acknowledged that there is no sufficientepidemiological 
evidence available (i.e. when it is either limitedor inadequate) and that hence we need to rely on 
experimental evidence in animals, we should, strictly speaking, be prepared to show that this 
experimental evidence is relevant to humans.13 But if mechanistic evidence is needed for 
extrapolation in case (b), why isn't it needed in case (a)? In short, we recommend that the use of 
mechanistic evidence in extrapolation is treated as consistently as possible in the IARC 
procedures. Whatever the experimental evidence in animals may be, its relevance for humans 
should be made clear. (Note that this role for mechanistic evidence is independent of its possible 
use to rule out confounders with reasonable confidence.)

5.6 The status of the current IARC conclusions
Let us briefly recapitulate the conclusions of the last three sections. First, we argued that 
epidemiological studies, given their non‐experimental nature, may always fall victim to the 
problem of confounders. Therefore we suggested a change in the IARC procedures: mechanistic 
evidence should also be used to better exclude the possibility of confounding in individual 
epidemiological studies. Secondly, we showed that mechanistic evidence is needed in order to 
assess the temporal stability of causal claims — even in the biomedical sciences — and we 
argued that this was yet another reason to change the procedures of the IARC. Finally, we drew 
attention to the unequal role played by mechanistic evidence regarding the extrapolation of 
experimental evidence on laboratory animals to human beings.

(p.104) These findings and recommendations raise an important question, viz. how should we 
treat the conclusions of all Monographsthat were based on the current procedures? Should we 
dismiss them completely? Our answer to this question consists of three parts. First we further 
motivate the above question. Prima facie, there are good reasons to dismiss the current 
evaluations (Section 5.6.1). Then we will analyse the possible consequences of such a decision, 
leading to the conclusion that an overall dismissal of the current evaluations would be too 
radical (Section 5.6.2). Finally, we will argue for a stepwise re‐evaluation of the current IARC 
conclusions (Section 5.6.3).

1. Prima facie, there are good reasons to dismiss the current evaluations. We may fear that the 
current procedures result in false positives: some chemical substances, biological agents, … are 
declared carcinogenic while they are not. If there can be sufficientepidemiological evidence 
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without any mechanistic backing (see Section 5.3), some agents may erroneously end up in 
Group 1 (see Section 5.2). And if positive experimental evidence on animals may be considered 
relevant for human beings without any mechanistic warrant, some agents may erroneously end 
up in Groups 2A or 2B. We may also fear that the carcinogenicity relations that were discovered 
in the old Monographshave changed (cf. the problem of stability over time we discussed in 
Section 5.4).14

False positives would be problematic given that the IARC conclusions serve as the basis for 
regulation and legislation in large parts of the world. As such, they indirectly have huge 
financial and economic consequences. (Note that the IARC itself does not directly engage in 
regulation or legislation, cf. infra.)

The Monographs are used by national and international authorities to make risk 
assessments, formulate decisions concerning preventive measures, provide effective 
cancer control programmes and decide among alternative options for public health 
decisions. (IARC 2006, p. 3)

For example, one of the tasks of the California Environmental Protection Agency (Cal/EPA) is to 
‘publish a list of chemicals known to the State of California to cause cancer, birth defects or 
other reproductive harm’.15 One of the reasons why a chemical may be listed is that the IARC (or 
a similar ‘authoritative body’) has identified it as carcinogenic (Cogliano et al. 2004, p. 1269). 
This list has direct regulatory consequences.

Proposition 65 imposes certain requirements that apply to chemicals that appear on this 
list. These requirements are designed to protect California's drinking water sources from 
contamination by these chemicals, to allow California consumers to make informed 
choices about the products they purchase, and to enable residents or (p.105) workers to 
take whatever action they deem appropriate to protect themselves from exposures to 
harmful chemicals.16

The legislation of the European Commission provides a second example. For example, in the 
Commission Directive 2009/2/EC of 15 January 2009 on the classification, packaging and 
labelling of dangerous substances, it is stated that attention should be paid to the outcome of 
future discussions within the IARC on the carcinogenicity of nickel substances.17

In the past, the use of the IARC's conclusions as a basis for regulation and legislation has been 
criticized by the industry. For example, twenty years ago Barnard et al. (1989, p. 85) condemned 
the fact that the then IARC procedures ‘made no attempt to evaluate whether animal evidence is 
predictively relevant to human cancer risk’.18 Furthermore, they regretted that

[b]ecause of a misunderstanding of the limited scope of the analysis involved, the IARC 
[… ] lists have recently been used as a basis for legislative and regulatory decisions. 
(Barnard et al. 1989, p. 81)

It should be noted, however, that the IARC itself does not take part in regulation or legislation. 
Quite the reverse, the preamble explicitly states that
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The evaluations of IARC Working Groups are scientific, qualitative judgements on the 
evidence for or against carcinogenicity provided by the available data. These evaluations 
represent only one part of the body of information on which public health decisions may 
be based. Public health options vary from one situation to another and from country to 
country and relate to many factors, including different socioeconomic and national 
priorities. Therefore, no recommendation is given with regard to regulation or legislation, 
which are the responsibility of individual governments or other international organizations
.(IARC 2006, p. 3, our emphasis)

That the IARC evaluations represent only part of the body of information on which public health 
decisions are based emerges in two ways. The first way is alluded to in the last quote: one agent 
(whatever is the group it is attributed to) may be treated differently in different countries. 
Secondly, the weight of the IARC's verdict on the carcinogenicity to humans of some agent X is 
not proportional to the issuing regulatory decisions and in many cases a wide range of possible 
decisions is open for consideration. Hence agents with the same IARC classification may be 
treated differently in one and the same country. For example, the sale and use of alcoholic 
beverages, which are carcinogenic to humans (Group 1) is permitted throughout the European 
Union (of course, in some countries they are more heavily taxed than in (p.106) others). By 
contrast, the importation, supply and new use of asbestos (which are also in Group 1) is strictly 
prohibited throughout the European Union. In both cases (alcoholic beverages and asbestos), 
there are threats of serious damage or harm to human health (cancer!), and in both cases the 
same level of scientific certainty is attributed (Group 1). Yet strong precautionary measures are 
taken in the case of asbestos, but not in the case of alcoholic beverages.

To conclude, given the insufficient use of mechanistic evidence by the IARC, one may fear that 
the current procedures result in false positives. These may have huge economic and social 
consequences given that the IARC conclusions serve as the basis for regulation and legislation in 
large parts of the world (even though the IARC itself does not engage in regulation or 
legislation). It follows that the above question is important and that prima facie there are good 
reasons to dismiss the current evaluations.

2. However, a dismissal would be unjustified. In general, rejecting the best available knowledge 
solely because it is not the best possible knowledge is counterproductive (provided this best 
available knowledge is reasonably reliable). Scientific knowledge is rarely sought after for 
intellectual reasons only. It is aspired for its possible use: as a basis for policy. Although the use 
of the IARC conclusions in policy (regulation and legislation; cancer prevention–IARC 2006, p. 1) 
provides reasons to deem the flaws in the IARC procedures problematic, we will see that this 
very same use safeguards them from an overall dismissal. Given what is at stake (viz. the life 
and the quality of life of thousands of people), we should prefer false positives over total 
ignorance.

In Sections 5.3–5.5 we showed that the IARC procedures are open to improvement. We did not 
show that they are completely flawed. Quite the contrary, they incorporate several protocols to 
provide as sound a scientific basis for evaluation as possible.



The IARC and mechanistic evidence

Page 14 of 19

Firstly, it is clear from Section 5.2 that the IARC bases its findings on a broad empirical basis, 
reviewing ‘all pertinent epidemiological studies and cancer bioassays in experimental 
animals’ (IARC 2006, p. 3) plus part of the mechanistic and other relevant data on the condition 
that they are ‘published or accepted for publication in the openly available scientific literature’ 
or stem from ‘government agency reports that are publicly available’ (IARC 2006, p. 4).

Secondly, all participants of the IARC working groups need be qualified and impartial. It is the 
working groups that are responsible for developing the Monographs. Their members are 
selected by IARC staff together with other experts (IARC 2006, p. 5). The goal of the IARC is to 
invite the best‐ qualified experts (Cogliano et al.2004, p. 1273). Study summaries may not be 
written by or reviewed by someone associated with the study being considered (IARC 2006, p. 
6). Potential participants also have to declare, in confidence,

any interests that could constitute a real, potential or apparent conflict of interest, with 
respect to his/her involvement in the meeting or work between (a) commercial entities and 
the participant personally, and (b) commercial entities and the administrative (p.107) 

unit with which the participant has an employment relationship. (quoted in Cogliano et al.
2004, p. 1273)

In line with the WHO procedures, an apparent conflict of interest exists when the expert's 
objectivity could be questioned by others, even if the interest does not necessarily influence the 
expert (Cogliano et al. 2004, p. 1273).19

Finally, the working groups strive after consensus evaluation (or otherwise majority vote) and 
the working group members engage in peer‐review.

IARC Working groups strive to achieve a consensus evaluation. Consensus reflects broad 
agreement among Working Group Members, but not necessarily unanimity. The chair may 
elect to poll Working Group Members to determine the diversity of scientific opinion on 
issues where consensus is not readily apparent. (IARC 2006, p. 6)

Together these protocols (broad empirical basis, qualified and impartial experts, and peer 
review and consensus) ensure that the current IARC conclusions are reasonably reliable for 
policy. For the sake of prudence, we should not opt for an overall dismissal of the current IARC 
evaluations and our methodological criticisms should not be used by industrial lobbies to 
undermine the role of the IARC as providing the scientific basis for regulation and legislation.

3. Instead of dismissal, we would argue for a stepwise re‐evaluation. We should stick to the IARC 
conclusions unless and until they are contradicted by more recent Monographsand updates.20 In 
this way, we do not lose the pragmatic value of the current body of knowledge. At the same 
time, we strive for increasingly reliable conclusions.

Here the industry can play a role. It can suggest which agents are eligible for re‐evaluation. Yet 
such a suggestion cannot by itself undermine our confidence in the current findings. Until a re‐
evaluation is finished and published, the current conclusions remain our best available 
knowledge and should serve as a basis for policy.
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5.7 Conclusions
The procedures of the IARC should be improved by making more appropriate use of mechanistic 
evidence. It may be feared that the current evaluations result in false positives that can be 
avoided. In particular we recommend that (p.108) mechanistic evidence is used more 
consistently with regard to extrapolation of experimental findings on animals to cancer in 
humans, that it is used to better rule out the possibility of confounding in epidemiological 
studies and that it is used to assess the temporal stability of carcinogenicity claims.

But from this it does not follow that the current evaluations have to be dismissed–at least not 
until they are contradicted by more recent Monographsor updates. Given what is at stake (viz. 
the life and the quality of life of thousands of people), we should prefer false positives over total 
ignorance.
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Notes:

(1) The Preamble to the IARC Monographscan be found at the beginning of each Monograph(for 
the current preamble, see e.g. in IARC 2007, p. 9–31). A slightly different version of the current 
preamble can be found on the web (IARC 2006). Throughout the history of the IARC, in the past 
four decades, the procedures and the criteria that are listed in the Preamble have repeatedly 
been changed (Hopkins 1994, pp. 194–196; Cogliano 2006).

(2) Despite the title of the Monographs, the goal of the IARC is to evaluate cancer hazard (i.e. 
the potential of agents to cause cancer), not cancer risk (i.e. the probability that this potential is 
realized for a particular section of the population in a defined set of circumstances). (Hopkins
1994, pp. 193–194)

(3) Originally, mechanistic data were not taken into account. In 1982, the first kind of mech 
anistic information (viz. genotoxicity evaluation) was taken into account, and in 1991 several 
other types of mechanistic data (e.g. concerning gene‐expression) were incorporated in the 
IARC criteria (Hopkins 1994, pp. 194–195). In the current preamble (i.e. IARC 2006), even more 
weight is attached to mechanistic information (Cogliano 2006).

(4) At this moment, nearly 1,000 agents have been classified. Of these, 107 are in Group 1, 58 
are in Group 2A, 249 are in Group 2B, 512 are in Group 3 and, finally, 1 agent (Caprolactam) is 
in Group 4.

(5) As an anonymous referee rightly pointed out, randomized experimental designs also have 
other shortcomings than those cited above. For example, they can show us thattwo variables are 
causally linked but not howthey are linked. It follows that even where randomized experimental 
designs are feasible, mechanistic information may still add to our knowledge.

(6) This terminology should not be taken literally. It is not required that individuals are actively 
responsible for ending up in the experimental or the control group (due to their behaviour). Only 
where they end up does not depend on any manipulation by the researcher.

(7) The picture is somewhat more complicated. In the epidemiological literature, two general 
methods for dealing with the problem of confounders in observational studies are distinguished. 
‘The first is to consider them in the design of the study by matching on the potential confounder 
or by restricting the sample to limited levels of the potential confounder. The other method is to 
evaluate confounding in the analysis by stratification […] or by using multivariate analysis tech 
niques such as multiple logistic regression.’ (Greenberg et al. 2004, chapter 10, ‘Confounding’) 
(See also the quote from the IARC preamble in Section 5.2.1.) But these complications do not 
affect the main problem addressed by Dan Steel, a problem which is explicitly recognized in the 
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epidemiological literature: ‘Only known confounders can be addressed in observational 
research.’ (Greenberg et al. 2004, chapter 10, ‘Summary’)

(8) See also case (d) in Section 5.2.

(9) Let us briefly discuss some doubts raised by an anonymous referee who states that 
mechanistic evidence is as undetermined as any other and that it is trivial to formulate multiple, 
contradictory plausible mechanisms for any pathogenic process. We already stated that in bio‐ 
medical research it does not suffice to come up with just a plausible mechanism. It may be trivial 
to formulate plausible mechanistic hypotheses, but it takes a lot of work to support them 
empirically. What we need to rule out confounders is a well‐justified model of a mechanism, not 
just a mechanism sketch, i.e. a description of a (possible) mechanism containing missing pieces 
which we do not yet know how to fill in — cf. Machamer et al.(2000, p. 18).

(10) We thank one of the referees for drawing our attention to the difference between risk‐ 
instability and mechanism‐instability.

(11) The population here is composed of cells, not individuals.

(12) In the history of the IARC evaluations, certain agents have been re‐evaluated in different
Monographs. For example, the possible carcinogenicity of tobacco smoking has been evaluated 
in IARC (1986) and re‐evaluated in IARC (1987) and in IARC (2004). Likewise, tobacco habits 
other than smoking have been evaluated in IARC (1985) and again in IARC (1987) and in IARC 
(2007). The most recent evaluations (2004, 2007) did not only rely on more recent studies, they 
also invoked the most recent criteria (cf. footnote 3).

(13) The need for such a warrant becomes very clear if we realize that different animal species 
may suggest different causal relations. For instance, aflotoxin B1 causes liver cancer in rats but 
not in mice (Steel 2008, p. 82).

(14) The problem of the stability of carcinogenicity claims may also result in false negatives.

(15) Quoted from http://www.calepa.ca.gov/publications/factsheets/1997/prop65fs.htm

(16) Quoted from http://www.calepa.ca.gov/publications/factsheets/1997/prop65fs.htm

(17) Commission Directive 2009/2/EC in Official Journal of the European Union, 16.1.2009, L 
11/7.

(18) At the time of publication, the authors were all linked with chemical companies (Barnard 
with Cleary, Gottlieb, Steen and Hamilton; Moolenaar with Dow Chemical Co.; and Stevenson 
with Shell Chemical Co.). Barnard and Stevenson were also members of the American Industrial 
Health Counsil.

(19) It may be the case that the best‐qualified experts have real or apparent conflicts of interest 
and hence may not serve as working group members. In that case they may act as invited 
specialists. Invited specialists take part in subgroup and plenary discussions but they may not 



The IARC and mechanistic evidence

Page 19 of 19

serve as meeting or subgroup chairs, draft text that discusses cancer data or contribute to the 
evaluations. (Cogliano et al.2004, p. 1273)

(20) In footnote 12 we already mentioned that in the history of the IARC, certain agents have 
been re‐evaluated in different Monographs.
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needs, in addition to statistical evidence, evidence for the existence of a mechanism 
connecting A and B. This thesis is examined in the case of the claim that smoking causes 
heart disease. It is shown that the correlation between smoking and heart disease was 
established by 1976 before any plausible linking mechanism was known. At that stage, 
there were doubts about whether a genuine causal connection existed here. Details of the 
history of research in atherosclerosis from 1979 to the late 1990s are then given, and it is 
shown that there is now a plausible mechanism connecting smoking and heart disease, 
and that, correspondingly, most experts now accept that smoking causes heart disease. 
This historical case study therefore provides support for at least one version of the Russo–
Williamson thesis.

6.1 From correlation to causation
One of the most fundamental questions in the analysis of causality is how one can get from 
correlation to causation. I will illustrate this problem by considering two examples of 
correlations. The first is generally recognized to have causal implications, while the second most 
probably does not.

The first of these examples is a very famous one. It is the correlation between smoking and lung 
cancer. This correlation was found in many separate studies, but I will describe what is perhaps 
the best known of them. This study was started by Bradford Hill in 1951, not long after he began 
to suspect that smoking might be a cause of lung cancer. He and Doll wrote at the end of 
October that year to all the doctors on the British Medical (p.111) Register who were believed 
to be resident in the United Kingdom to ask them if they would participate in a survey 
concerning smoking. 34,440 agreed to take part and they were then followed for the next 40 
years. Their smoking habits were monitored from time to time, and when they died the cause of 
death was noted. Reports on the results were published occasionally as the study progressed. 
Here I will quote some of the results to be found in Doll and Peto (1976). Peto had by this time 
replaced Bradford Hill in handling the survey. The 1976 paper deals with the mortality rates of 
the male doctors over the 20 years from 1 November 1951 to 31 October 1971. During that 
time, 10,072 of those who had originally agreed to participate in the survey had died, and 441 of 
these had died of lung cancer. Doll and Peto calculated the annual death rate for lung cancer 
per 100,000 men standardized for age. The results in various categories were as follows (1976, 
p. 1527):

Non‐smokers 10

Smokers 104

1–14 gms tobacco per day 52

14–24 gms tobacco per day 106

25 gms tobacco per day or more 224
A cigarette is roughly equivalent to 1 gm of tobacco.

These results do indeed show a striking correlation between smoking and lung cancer. Smokers 
are on average more than 10 times more likely to die of lung cancer than non‐smokers, and this 
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figure rises to more than 22 times for heavy smokers who consume 25 gms or more of tobacco 
per day. These results are highly significant statistically.

This correlation was accepted at the time by most researchers (if not quite by all!) as 
establishing a causal link between smoking and lung cancer. Indeed Doll and Peto themselves 
say explicitly (p. 1535) that the excess mortality from cancer of the lung in cigarette smokers is 
caused by cigarette smoking.

However, not all correlations are taken as establishing causal links. Freudenheim et al. (2005) 
report a series of studies of alcoholics carried out between 1974 and 1981 which showed that 
the high consumption of alcohol by these individuals was accompanied by high levels of 
morbidity and mortality from lung cancer. So we have a strong correlation between heavy 
drinking and lung cancer. However, few would accept that there is a causal link here. Instead 
the correlation would be attributed to the confounding factor of smoking. A large percentage of 
alcoholics are also heavy smokers, and most researchers would judge that it was the smoking of 
alcoholics rather than their drinking which increased the risk of lung cancer. Admittedly 
Freudenheim et al. (2005) think that heavy drinking might slightly increase the risk of lung 
cancer, (p.112) but they add (p. 657): “Residual confounding by smoking may explain part of 
the observed relation”. For the purposes of this chapter, I will assume that the correlation 
between heavy smoking and lung cancer does show a causal relation, while the correlation 
between heavy drinking and lung cancer does not indicate any causal relation.

The contrast between these two cases shows why it is important to go beyond correlation and 
raise the question of causality. In Gillies (2005) I argued that the essential feature of causality is 
its relation to action. Let us consider a causal law of the form: A causes B. On the basis of this 
law we can carry out two kinds of actions which I call (2005, p. 827) productive and avoidance. A 
productive action is one which tries to produce B by instantiating A, while an avoidance action is 
one which tries to avoid B by preventing A from occurring. Now in medicine it is, generally 
speaking, avoidance actions which are relevant. If we accept that smoking causes lung cancer, 
then not smoking is a good strategy for avoiding lung cancer. However, if the link between 
heavy drinking and lung cancer is only a correlation with no causal implications, then it is 
certainly not a good strategy to give up drinking in order to avoid lung cancer. Such a strategy 
might well have not the slightest effect on the risk of getting lung cancer. This point could be 
put another way as follows. Causality is a more complicated concept than correlation, and it is 
more difficult to establish causal links than correlations. However, the extra effort is worthwhile, 
since, once we have established a causal link, we can easily infer what actions are appropriate 
for us to take, whereas this cannot be done easily from correlations alone. This shows the 
importance of the step from correlation to causation. Let us therefore consider the question of 
what kind of evidence can justify us in taking such a step.

A distinction is often made between observational and experimental evidence. Observational 
evidence is obtained by observing some process without intervening in it in any way. 
Experimental (or interventional) evidence is obtained by producing, in a controlled way by 
means of an intervention, a process which is then observed. Admittedly this distinction becomes 
somewhat doubtful in the micro world of quantum mechanics because of Heisenberg's 
uncertainty principle. In this area any observation turns out to be an intervention which disturbs 
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the process being observed. However, in this chapter, I will be dealing with examples from 
medicine where the distinction is unproblematic.

As we have seen, causality involves a relation to human action. This suggests the following 
principle: correlations can be established by observational evidence alone, but to establish a 
causal claim one needs at least some experimental (or interventional) evidence. This principle 
can be illustrated by the standard example of a correlation which is not a causal link. Let us 
consider a particular barometer, and suppose we establish by careful observation that this 
barometer's reading falling to a low level is strongly correlated with rain occurring. Is this 
correlation a causal link? Further careful observations will (p.113) not give us the answer, but 
we can test out the hypothesis of causality by making an experimental intervention. We add to 
the barometer a device which enables us to reduce the barometer's reading to a low level by 
turning a knob. We have only to turn this knob and see whether rain occurs in order to confirm 
or refute the causal hypothesis.

Let us next generalize from this simple example. Suppose it has been established by observation 
that A is correlated with B. One way of testing whether A also causes B is to make what could be 
called a direct intervention. This consists in intervening in order to produce A under some 
controlled conditions and then seeing whether B results. A direct intervention of this sort is 
perhaps the simplest way of either confirming or refuting a causal claim. Unfortunately, 
however, it is not always possible.

Let us take our example of whether smoking causes heart disease. In this case a direct 
intervention might consist of a randomized control trial of the following kind. We take a sample 
of 30,000 humans chosen at random. We then select at random 15,000 who are forced to 
become smokers. The remaining 15,000 are forced to become non‐smokers. We then follow up 
these individuals over a period of say 40 years and see what the differential death rates are in 
the two groups. However, as Pearl remarks (2000, p. 353), controlled experiments of this sort 
‘are impossible (and now also illegal) to conduct’. The example of smoking causing heart disease 
is, in this respect, typical of most causal claims in medicine. These characteristically take the 
form: X causes D, where D is a disease and X is a putative cause of D. In testing such claims it is 
obviously impossible for ethical, practical, and usually legal reasons, to make the direct 
intervention of implementing X for a group of humans under controlled conditions and seeing 
whether D results.

If then direct interventions are ruled out in many medical situations, it is obvious that, if the 
principle formulated earlier is correct, that we must resort to indirect interventions in order to 
establish causality. But what form should such indirect interventions take? An answer to this 
question is provided by the Russo–Williamson thesis to which I now turn.

6.2 The Russo–Williamson thesis
In their 2007 paper, Russo and Williamson write as follows (pp. 158–9):

… the health sciences infer causal relations from mixed evidence: on the one hand, 
mechanisms and theoretical knowledge, and, on the other, statistics and probabilities. … 
To establish causal claims, scientists need the mutual support of mechanisms and 
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dependencies. … The idea is that probabilistic evidence needs to be accounted for by an 
underlying mechanism before the causal claim is established …

(p.114) I will refer to this suggestion as the Russo–Williamson thesis (or RWT for short). The 
general sense of this thesis is quite clear, but, like most philosophical theses, it can be 
formulated in a number of slightly different ways. I will now make some comments on the thesis, 
and then formulate the precise version of the thesis which I will try to defend in the rest of the 
chapter.

Russo and Williamson speak of establishing causal claims. This seems to me a quite appropriate 
terminology which indeed I have used in Section 6.1. However, it should be taken in a qualified 
sense. ‘Establishing’ here does not mean ‘establishing with complete certainty or beyond doubt’ 
because scientific claims can never be established in this sense. ‘Establishing’ should rather be 
understood in something like the following sense. Suppose a scientific claim has become so well 
confirmed by the available evidence that it can be accepted for the time being as the basis for 
action. Then this claim can be said to be established. However, this by no means excludes the 
possibility that the further advance of science will lead us to modify, or even reject, the claim.

Russo and Williamson speak in one place of ‘statistics and probabilities’ and in another of 
‘dependencies’. I will in this confine myself to ‘statistics’ and ‘statistical evidence’. This is 
connected with another feature of Russo and Williamson's 2007 paper. They limit themselves to 
the health sciences. Indeed the paper is entitled: ‘Interpreting causality in the health sciences’. 
Now it seems to me that the Russo–Williamson thesis might well be extended to causality in 
general. However, the health sciences are a particularly good area to study it, at least initially. 
This is because in this area the two types of evidence which are brought to bear are quite 
sharply distinguishable. The statistical evidence comes from epidemiological observations of 
populations, such as the study of doctors and smoking described in Section 6.1. This evidence, 
however, is usually supplemented by experimental evidence obtained in the laboratory from 
biochemical investigations of cells and tissues, or from physiological investigations into animals 
which have been treated in various ways. This enables us to connect the Russo–Williamson 
thesis to the principle proposed in Section 6.1 concerning observational evidence and 
experimental (or interventional) evidence. In a typical medical example the epidemiological 
evidence is observational statistical evidence while the evidence for the existence of a linking 
mechanism is provided by laboratory experiments.

There is one further distinction which will prove useful in our specific formulation of the Russo–
Williamson thesis. This is the distinction between a plausible mechanism, and a confirmed
mechanism. A plausible mechanism is one which is confirmed by our general background 
knowledge but not necessarily by particular investigations and experiments designed to test it 
out. This distinction can be illustrated by the example given in Section 6.1 of the difference 
between the cases of smoking and drinking in relation to lung cancer. Cigarette smoke contains 
a large number of chemicals of various (p.115) types and, in the case of those who smoke 
regularly, some of these are likely to find their way into the lungs. It seems likely that some of 
these chemicals will damage the tissue of the lungs, and some indeed might be carcinogens 
which initiate a cancerous tumour. It was part of the background knowledge of 1976 that there 
existed chemical carcinogens capable of initiating cancerous tumours. Indeed this had been 
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established by experimental evidence. Consequently it was known in 1976 that there was a 
plausible mechanism linking smoking to lung cancer. By contrast there does not seem to be an 
obvious mechanism connecting the consumption of alcohol to lung cancer. Of course the body is 
very complicated, and such a mechanism might turn out to exist after all. However, background 
knowledge does not make the existence of such a mechanism very plausible. This suggests that 
we may be more prepared to go from correlation to causation if there exists a plausible 
mechanism linking the two factors.

In contrast to smoking and lung cancer in 1976, a mechanism may, in some other cases, be 
uncovered by a lengthy series of experiments, and its correctness confirmed by these results. 
Here I will speak of a confirmed mechanism. Of course there is really a continuum here which 
depends on the degree to which the mechanism has been confirmed. However, the rough 
distinction between plausible and confirmed mechanisms is helpful for clarifying the situation. I 
will understand confirmed mechanisms to be also plausible, but not vice versa.

Corresponding to this distinction, we can have two forms of the Russo– Williamson thesis–a 
strong form and a weak form. According to the strong form, a causal link between A and B can 
only be said to be established if it has been shown that there is a confirmed mechanism linking A 
and B. For the weak form, it may suffice just to show that there is a plausible mechanism linking 
A and B. I prefer the weak form of the thesis since it fits better with the classic example of 
smoking and lung cancer described in Section 6.1. I would argue that Doll and Peto were quite 
justified in claiming in 1976 to have established that smoking causes lung cancer, even though 
the mechanism linking the two was, at that stage, only plausible rather than confirmed. So, after 
these preliminaries, I can formulate the precise form of the Russo–Williamson thesis which I will 
defend in the rest of the chapter. It may be stated as follows: ‘In order to establish that A causes 
B, observational statistical evidence does not suffice. Such evidence needs to be supplemented 
by interventional evidence, which can take the form of showing that there is a plausible 
mechanism linking A to B.’ This is a weak version of the RWT, but not a trivial one. It has 
important implications for artificial intelligence. At the moment, there are a number of research 
programmes whose aim is to obtain causal relations from observational statistical data 
automatically using machine learning. If, however, the RWT as just formulated is correct, these 
programmes cannot succeed. In the example to be considered in (p.116) Sections 6.3–6.5, 
epidemiological data showing a correlation between smoking and heart disease was not 
regarded as sufficient to establish a causal link. To establish causality, scientists regarded as 
necessary the additional evidence provided by laboratory investigations which showed that 
there is a plausible mechanism linking smoking to heart disease.

Against this view, it could be argued that modern machine learning programs do not employ the 
kind of simple statistical methods employed by Doll and Peto, but analyse the data using a 
variety of much more sophisticated techniques such as investigating the effect of 
conditionalizing on a variety of variables. These more sophisticated statistical techniques would, 
so it might be claimed, be sufficient to establish the causal link between smoking and heart 
disease without any need for the evidence provided by laboratory experiments. I find such a 
claim quite unconvincing, but to discuss it further would take me too far from the aim of the 
present chapter. Let me just say that this example constitutes a challenge to advocates of the 
automated learning of causal relations from observational statistical data.
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From now on I will limit the Russo–Williamson thesis (or RWT) to the specific version just 
formulated. My aim in the rest of the chapter is to show the RWT is supported by the way that 
medical research into smoking and heart disease developed in the period from 1976 to the late 
1990s.

6.3 Smoking and heart disease. Is there a linking mechanism?
Let us now return to Doll and Peto's paper of 1976. Their survey of mortality among male 
doctors in the UK did not confine itself to lung cancer, but investigated all the recorded causes 
of death. In fact the most common cause of death among the doctors was ischaemic heart 
disease. This accounted for 3191 deaths as compared to 441 from lung cancer. Now death from 
ischaemic heart disease was also positively correlated with smoking. The annual death rate from 
ischaemic heart disease per 100,000 men, standardized for age, in various categories was as 
follows (Doll and Peto 1976, p. 1527):

Non‐smokers 413

Smokers 565 (+37%)

1–14 gms tobacco per day 501 (+21%)

14–24 gms tobacco per day 598 (+45%)

25 gms tobacco per day or more 677 (+64%)
A cigarette is roughly equivalent to 1gm of tobacco.

(p.117) These figures are less striking than those relating smoking to lung cancer, but they still 
show a positive correlation which is highly significant statistically. Moreover Doll and Peto say 
(1976, p. 1534): ‘Our data for ischaemic heart disease are similar to those that have been 
reported in many other studies throughout the world’. They cite in this context six studies 
carried out between 1965 and 1975.

Doll and Peto are, however, cautious about drawing causal conclusions from this correlation. 
Ischaemic heart disease is one of the conditions which they list in their table III, and they say 
(1976, p. 1528):

Half the conditions in table III were positively related to smoking, some very strongly so, .
…To say that these conditions were related to smoking does not necessarily imply that 
smoking caused … them. The relation may have been secondary in that smoking was 
associated with some other factor, such as alcohol consumption or a feature of the 
personality, that caused the disease. Alternatively, smoking habits may have been 
modified by the disease or the relation may have been an artefact due to misdiagnosis, …

As we have seen, Doll and Peto (1976) do definitely regard the link between smoking and lung 
cancer as causal in nature. However, as regards ischaemic heart disease, they make the weaker 
claim that (p. 1535) that the excess mortality from ischaemic heart disease in cigarette smokers 
is probably wholly or partly attributable to smoking. This caution is very much in agreement 
with the Russo–Williamson thesis, because the background knowledge of heart disease in 1976 



The Russo–Williamson thesis and the question of whether smoking causes heart disease

Page 8 of 15

did not support any plausible mechanism linking smoking to heart disease. Let us briefly review 
some features of this background knowledge.

The vast majority of heart disease is owing to atherosclerosis. The word comes from the Greek 
terms: athere = porridge, and sclerosis = hardening. It refers to the formation of plaques in the 
arteries. To be scientific then, we should seek a link not between smoking and heart disease, but 
between smoking and atherosclerosis. This will be our strategy in the rest of the paper.

Let us suppose large atherosclerotic plaques have been formed in the coronary arteries 
supplying blood to the heart. One of these may break off releasing fatty lipids and other debris 
into the artery. Alternatively, or in addition, contact with the plaque may cause a blood clot or
thrombus to form. The effect of this is to cut off temporarily, or severely reduce, the blood flow 
to the heart, and this in turn can cause damage and/or death (infarction) of heart muscle tissue 
(myocardium). This is the mechanism of a heart attack, or myocardial infarction as it is known in 
the medical world. A similar mechanism is responsible for strokes.

Atherosclerotic plaques in the arteries were investigated by pathologists in the nineteenth 
century, and in 1910 the German chemist Windaus claimed that such plaques consisted of 
calcified connective tissue and cholesterol. The importance of cholesterol was reinforced by a 
paper published by two (p.118) Russians (Anitschkov and Chalatov) in 1913. They had 
succeeded in inducing atherosclerosis in rabbits by feeding them a cholesterol‐rich diet. Later 
investigations showed that cholesterol is carried in the blood in two forms: low‐density 
lipoprotein (LDL) and high‐density lipoprotein (HDL). In fact it is only LDL which is responsible 
for atherosclerosis. HDL inhibits rather than encourages the disease.

So in 1976 it was known that a high concentration of LDL in the blood favoured the development 
of atherosclerosis. But why should smoking accelerate this process? The background knowledge 
of the time suggested no plausible mechanism linking smoking and atherosclerosis. However, 
research into heart disease between 1976 and the late 1990s greatly increased medical 
knowledge of how and why atherosclerotic plaques form, and this new knowledge does support 
a plausible mechanism by which smoking may increase the rate of formation of such plaques. I 
will give a brief account of some of the research into atherosclerosis between 1979 and the late 
1990s in the next two sections.

6.4 Research into atherosclerosis 1979–89
To follow the course of this research, two technical terms must first be mastered, namely
macrophages and monocytes. Macrophages (literally ‘large eaters’) are well‐known to the 
general public. They are white cells which attack and destroy microbes, such as bacteria, which 
invade the body. Macrophages have receptors or binding sites by means of which they attach 
themselves to their prey. This prey is then engulfed, and destroyed. At least the macrophages 
attempt to destroy their prey. They are not always successful. Monocytes are circulating 
predecessors of macrophages. If additional macrophages are needed at any point, monocytes 
arrive and turn into macrophages at the location of the action in the tissue.

Let us now return to the problem of how LDL carried round by the blood stream can be 
converted into atherosclerotic plaques. A crucial step was taken in elucidating the process was 



The Russo–Williamson thesis and the question of whether smoking causes heart disease

Page 9 of 15

taken by Goldstein et al. in their paper published in 1979. In this paper they showed that if LDL 
is modified by being acetylated, it gets taken up in large quantities by macrophages using a 
specific binding site or receptor, which later became known as the ‘scavenger receptor’. The 
macrophages which take up the modified LDL become, in their attempts to destroy it, bloated 
with lipid and resemble the foam cells to be found in the fatty streaks which are the first stage in 
the formation of atherosclerotic plaques. This was a most suggestive observation, but of course 
acetylation of LDL in the body seemed an unlikely occurrence. As Goldstein et al. say (p. 337):

(p.119) Although in vivo acetylation of plasma LDL seems unlikely at this point, some 
chemical or physical alteration of LDL occurring in plasma or interstitial fluid may make it 
susceptible to recognition by the macrophage binding site.

Naturally this remark prompted the search for the appropriate in vivo alteration of LDL, and it 
was duly found in the next few years (Henriksen et al. 1981; Steinbrecher et al. 1984). The 
alteration was the oxidation of LDL. This can occur quite naturally in the body. It is induced by 
incubation of LDL with the endothelial cells which line the arteries. It can also be induced by 
incubation with smooth muscle cells, or with macrophages (Jürgens et al. 1987). Moreover 
oxidized LDL, just like acetylated LDL, is taken up by the scavenger receptor on macrophages 
resulting in the formation of foam cells bloated with lipid. Oxidised LDL has two further 
properties of great interest (Jürgens et al. 1987). It inhibits the movement of macrophages, while 
attracting monocytes.

Putting all these elements together, we arrive at a mechanism by which fatty streaks can form 
within the artery walls. This is described by Steinberg et al. (1989), a paper with the significant 
title: ‘Beyond cholesterol. Modifications of low‐density lipoprotein that increase its 
atherogenicity’. The key point is that LDL, even in large quantities, causes no problems as long 
as it remains in its natural state. However, if it is oxidized, then trouble starts. Oxidized LDL is 
attacked by macrophages which bind it with their scavenger receptor, and then attempt to 
destroy it. The result is the formation of foam cells. If some of these are in the wall of an artery, 
then, because oxidized LDL inhibits the movement of macrophages, they remain there. 
Moreover oxidized LDL attracts monocytes, which turn into macrophages and generate more 
foam cells. Since macrophages also oxidize LDL, a self‐reinforcing process can start, resulting in 
the formation of fatty streaks in the artery walls.

It may seem a little odd that macrophages should try to dispose of oxidized LDL since the results 
of this attempt are somewhat unfortunate. However it should be remembered that oxidized LDL 
can be very damaging to the cells of the body, so that its disposal, even at some cost, may be on 
balance justified. It would obviously, however, be better for LDL not to be oxidized, and in fact 
there are many devices to protect LDL from oxidation. LDL carries round with it in the blood 
stream a whole package of antioxidants which protect it against oxidation. The principal 
component of this package is vitamin E, but the package also contains (Esterbauer et al. 1989, p. 
256) beta‐carotene, lycopine, and retinylstearate. Moreover in the plasma of normal blood there 
are large quantities of two powerful anti–oxidants–vitamins C and E. These devices have 
obviously evolved to prevent the oxidation of LDL and the harmful consequences of this 
oxidation.
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So by the end of the 1980s it was established that the oxidation of LDL was an important step in 
the process which led to atherosclerotic plaques. Now this (p.120) seems at once to explain 
why smoking accelerates atherosclerosis. Cigarette smoke gives rise to what are known as 
reactive oxygen species (or ROS) (Lehr et al. 1994, p. 7691). These include superoxide and 
hydrogen peroxide. Their effect would be to increase the tendency towards oxidation in the 
body, to introduce what is called ‘oxidative stress’. The existence of such oxidative stress in 
smokers was strongly confirmed in a study by Morrow et al. (1995). They introduced a new and 
superior index of the amount of lipid peroxidation occurring in vivo. This was the level of F2‐
isoprostanes. Sure enough this level proved to be much higher in smokers than non‐smokers. 
Morrow et al. (1995) et al. conclude (1995, pp. 1201–2):

Our finding that the production of F2‐isoprostanes is higher in smokers than in 
nonsmokers provides compelling evidence that smoking causes oxidative modification of 
biologic components in humans. This conclusion is greatly strengthened by the finding 
that levels of F2‐isoprostanes in the smokers fell significantly after two weeks of 
abstinence from smoking. These results provide a basis for hypotheses that link oxidative 
damage of critical biomolecules to the pathogenesis of diseases caused by smoking.

At this point it may well look as if we have not just a plausible mechanism, but a confirmed 
mechanism linking smoking to heart disease. Smoking introduces oxidative stress. This results 
in more LDL being oxidised, which in turn leads to the development of fatty streaks in the artery 
walls and atherosclerotic plaques. However, there is a difficulty which shows that this 
mechanism, however convincing it may appear at first sight, cannot be correct. The difficulty 
concerns the place at which the oxidation of the LDL takes place. Steinberg et al. argue in their 
1989 that LDL is not oxidized in the blood stream but within the artery wall. This is what they 
say (1989, p. 919):

For several reasons, it seems that the oxidation of LDL probably occurs not in the 
circulation but within the artery wall. First, even if oxidized LDL were generated in the 
plasma, it would be swept up within minutes by the liver. Second, oxidation is inhibited by 
plasma and so probably requires the favorable conditions of a sequestered 
microenvironoment.

As we pointed out, normal blood plasma contains large quantities of vitamins C and E, and these 
strongly inhibit the oxidation of LDL. If, however, the blood contains a great deal of LDL, some 
LDL may diffuse into the artery wall. Here it is no longer protected by the antioxidants of the 
blood plasma, and so, in the presence of oxidizing agents such as macrophages, its own package 
of protective antioxidants may be exhausted and it may become oxidized.

Now smoking introduces additional oxidizing agents into the blood stream (the ROS), but these 
do not penetrate into the artery wall, and so should have no effect on the formation of the 
atherosclerotic plaques as so far described. So far then the mechanism (if any) by which 
smoking accelerates the formation (p.121) of atherosclerotic plaques remains a mystery. 
However, as I will describe in the next section, further researches in the 1990s shed new light 
on the question.
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6.5 Research into atherosclerosis in the 1990s
In the 1990s, investigations began into another aspect of the process of formation of 
atherosclerotic plaques. If monocytes adhere to the endothelial cells lining the arteries, they can 
work their way into the artery wall, turn into macrophages and accelerate any on‐going process 
of plaque formation. Now cigarette smoke consists of 92% gaseous components and 8% 
particulate constituents. These particulate constituents are known as cigarette smoke 
condensate. In 1994, Kalra et al. discovered that cigarette smoke condensate increases 
significantly the tendency of monocytes to adhere to the endothelial cells. As they say (Kalra et 
al. 1994, p. 160):

It thus appears that cigarette smoke particulate constituents potentiate adherence of 
monocytes to the vascular endothelial cell lining. This presumably is followed by 
transmigration of adhered monocytes into the subendothelium space to form foam cells 
and subsequent atherosclerotic lesion formation.

Interestingly Kalra et al. elucidate the mechanism which brings about the increased adherence 
of the monocytes. They describe it as follows (1994, p. 155):

… the recruitment of monocytes to the endothelial surface could occur as a result of 
change in the adhesive properties of the endothelial surface.

The results presented here show that cigarette smoke condensate (CSC), the par-ticulate 
phase of cigarette smoke, causes an increase in the expression of CD11b on monocytes 
and ICAM‐1, ELAM‐1, and VCAM‐1 adhesion molecules on endothelial cells with a 
concomitant increase (70–90%) in the basal adherence of monocytes to cultured 
endothelial cells.

Daniel Steinberg, who played a key part in the elucidation of the mechanisms described in the 
previous section, made a useful comment on the situation in his 1995 paper. Here he pointed out 
that the studies carried out so far had been mainly concerned with the formation of fatty streaks 
in the artery walls, but that these are only the earliest atherosclerotic lesions. He writes (1995, 
p. 37):

How long does it take for a new fatty streak to become a clinically threatening lesion? We 
cannot be sure, but we know that by age 25 some 20–30% of the aorta is covered by fatty 
streak lesions and yet myocardial infarction seldom occurs before age 50. If lesion 
progression is more or less linear as a function of time, we might conclude that it takes 20 
years or more for a new fatty streak to become the nidus for coronary thrombosis.

(p.122) This suggests that more attention should be devoted to the development of 
atherosclerotic plaques than to their initial stages. One factor to which attention is drawn by 
Poston and Johnson‐Tidey in their 1996 concerns the rate at which monocytes adhere to the 
endothelium of the artery. They write (1996, p. 75):

“…at 20 or 37 °C, human peripheral blood monocytes …showed selective binding to 
atherosclerotic plaques, compared with non‐atherosclerotic arterial intima … Adhesion 
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occurred to the endothelium of the plaque area … The binding to non‐atherosclerotic 
artery endothelium was much less, and the difference was highly significant …

They go on to suggest that a positive feedback mechanism may develop in which atherosclerotic 
plaques as they develop attract more and more mono‐ cytes which cause them to develop 
further. As they point out (p. 73) there could be a link here to the question of the effects of 
smoking on atherosclerosis in the light of some earlier work of Lehr et al. (1994), to which we 
now turn.

Lehr et al. investigated the effects of cigarette smoke on hamsters. They showed that cigarette 
smoke increased the rate of adhesion of leukocytes to arterial endothelium, and that this rate of 
adhesion was significantly reduced by vitamin C, but not by vitamin E. They argue that the 
increase in the rate of adhesion was due to the reactive oxygen species (ROS) produced by 
cigarette smoke (CS). From this they draw the following conclusion (Lehr et al. 1994, p. 7691):

The fact that the water‐soluble vitamin C, but not the lipid‐soluble antioxidants vitamin E 
and probucol (which contribute little to serum antioxidant activity), afforded protection 
from CS‐induced changes indicates that CS‐induced leukocyte adhesion and aggregate 
formation with platelets involves isolated, direct attacks of aqueous‐phase ROS, rather 
than the sequelae of membrane lipid peroxidation. Like dietary vitamin C, a single 
intravenous injection of vitamin C just 5 min prior to CS exposure resulted in a similar 
protection from CS‐induced leukocyte/platelet/endothelium interaction, suggesting that 
vitamin C does not need to be incorporated into cells in order to be effective, but that it 
merely needs to be circulating in the bloodstream in order to neutralize aqueous phase 
ROS.

We saw earlier that the oxidation of LDL which is relevant to the formation of atherosclerotic 
plaques was thought in the 1980s to occur within the artery walls rather than in the blood 
stream and so was unlikely to be produced by smoking. However, the results of Lehr et al. 
indicated that there was another oxidation process which did occur in the blood stream and 
which affected atherosclerosis. This was the process which resulted in an increased rate of 
activation, aggregation, and adhesion of leukocytes to the endothelium of the artery. The 
process was known to involve oxidation because it was inhibited (p.123) by antioxidants, and it 
was known to occur in the bloodstream because it is inhibited by vitamin C but not vitamin E. 
Lehr et al. remark (1994, p. 7692):

Corroborative evidence can be derived from epidemiological surveys which consistently 
demonstrate a significant consumption of vitamin C, but not of vitamin E, in the plasma of 
smokers.

Here then, at last, was a mechanism linking smoking to atherosclerosis. Smoking produced 
oxidative stress. This increased the adhesion of leukocytes to the endothelium of the artery, 
which in turn accelerated the formation of atherosclerotic plaques. This mechanism was 
certainly plausible, and indeed could be regarded as at least partially confirmed. So it was 
sufficient for the Russo–Williamson thesis in the form in which I have formulated and defended 
it.
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6.6 Conclusions
In this chapter I have formulated a version of the Russo–Williamson thesis according to which 
observational statistical evidence alone is not sufficient to establish that A causes B. Such 
evidence can only establish that A and B are correlated. One way of going from correlation to 
causation is to show that there is a plausible mechanism linking A to B. This version of the thesis 
was tested out and confirmed by three examples from medicine. The first example is the claim 
that smoking causes lung cancer. This was taken as established by Doll and Peto in 1976 on the 
basis of strong observational statistical evidence, which accords with our version of the RWT 
because there was a plausible mechanism linking smoking and lung cancer. By the early 1980s, 
a number of observational studies had shown that there was also a strong correlation between 
drinking heavily and lung cancer. However, this was not taken as showing a causal connection, 
but rather as being explained by confounding factors such as smoking. This again agrees with 
our version of the RWT since there was, and is, no plausible mechanism linking heavy drinking 
to lung cancer. The third example concerned smoking and heart disease. We saw that Doll and 
Peto established a strong correlation between the two in 1976, and yet were hesitant about 
inferring a causal connection. They thought that causality was probable but had not been 
established. This again agrees with our version of the RWT because no plausible mechanism 
linking smoking and heart disease had at that time been shown to exist. However I went on to 
show that between 1979 and the late 1990s research into atherosclerosis did bring to light a 
mechanism linking smoking to an acceleration of the rate of formation of atherosclerotic 
plaques. This mechanism was at least plausible and perhaps even confirmed. So it justified the 
increasing acceptance that smoking causes heart disease. However, an account of the research 
shows (p.124) that the path to a plausible mechanism here was a winding one. Some earlier 
results suggested a mechanism which for quite subtle reasons could not be correct, and the 
linking mechanism which now looks plausible has a rather different character. This is a nice 
illustration of the difficulties of establishing plausible mechanisms through research in the 
medical field.
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role of mental simulation in causal inference. Drawing on parallels with work in the 
psychology of mechanical reasoning, the notion of a causal mental model is proposed as a 
viable alternative to reasoning systems based in logic or probability theory alone. The 
central idea is that when people reason about causal systems they utilize mental models 
that represent objects, events or states of affairs, and reasoning and inference is carried 
out by mental simulation of these models.

You arrive at your holiday apartment, welcomed by the local cat and a chorus of crickets outside 
the window. During the night your sleep is interrupted by intermittent high‐pitched squeals. At 
first you assume it is the cat, but on careful listening the noises sound mechanical rather than 
animate. You get up and walk around the flat, and notice that the light on the smoke detector is 
flashing red–suggesting that the battery is running down. You recall a similar problem with the 
smoke alarm in your own house, and an equally annoying high‐pitched squeal as the battery died 
out. You remove the battery from the fire alarm, and the squeals stop.

Next morning, as you make breakfast, the squeals seem to return. But the smoke detector is 
lying dismantled on the table. Perhaps the capacitor is still discharging, emitting the occasional 
squeal? Or a cricket has started mimicking the sound of the dying smoke detector? But then you 
notice that whenever you turn on the kitchen tap, there is a high‐pitched noise that sounds very 
similar to last night's squeals. You turn on the tap at random moments throughout the day, and 
it is nearly always followed by a squeal. Problem solved! But maybe the smoke detector, like the 
local cat, was falsely accused. Perhaps it was the dodgy plumbing all along? Just as you start to 
reinsert the battery to test out this idea you remember that you are on holiday.

(p.130) This is an everyday example, but it illustrates several of the key aspects of causal 
thinking. In this chapter I will use it as a running example to identify some shortcomings with 
current theorizing in the psychology of causal inference. I will also suggest ways in which our 
understanding of causal cognition might be improved. In particular, I will argue that causal 
learning and reasoning are intertwined, that there are multiple sources of evidence for causal 
relations, and I will speculate about the role of mental simulation in causal inference.

7.1 Interplay of learning and reasoning
At a general level the smoke detector example highlights the interplay between causal learning 
(typically conceived as the induction of causal relations from patterns of observations) and 
causal reasoning (drawing inferences on the basis of assumed causal relations)–and the 
artificiality of separating and studying these activities in isolation, as is common in the 
psychological literature. Thus, as you try to work out the cause (or causes) of the high‐pitched 
squeals, you engage in a variety of interleaved inferential activities, including hypothesis 
generation and testing, hypothetical and counterfactual reasoning. For example, your 
observation that the smoke detector light is flashing red leads you to hypothesize that the 
battery is running low, and that a low battery is the cause of the noises. You reason 
(hypothetically) that if the low battery is the cause, then removing the battery altogether should 
stop the squeals. You confirm this hypothesis by removing the battery and noting that the 
squeals stop.
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Even in this simple learning episode, which is only the start our scenario, you have deftly 
switched between various forms of inference. You have inferred a putative causal relation from 
observations, but also engaged in hypothetical reasoning and hypothesis‐testing. In mainstream 
cognitive psychology, however, causal learning and causal reasoning are usually treated as 
separate areas of research, with different theories and empirical paradigms.

Research in causal learning focuses on the induction of causal relations from data, with little 
concern for the other reasoning activities that might accompany this induction. A typical 
experiment presents people with covariation information about potential causes and effects 
(either in summary format, or presented sequentially) and asks them to assess the strength of 
the putative causal relation. Applied to our example, this would correspond to showing people a 
sequence of cases in which the smoke detector battery is either low or high, and the detector 
either does or does not make a squeal. The central question of interest to experimenters and 
theorists is how people arrive at a causal estimate from the patterns of covariation, and there is 
substantial debate about this (Cheng, 1997; Griffiths & Tenenbaum, 2005; Shanks, 2004; Vallee‐
Tourangeau et al. 1998). However, very little is said about what, if any, (p.131) reasoning 
occurs in such experiments, or how this reasoning takes place. Indeed theorists of an associative 
persuasion maintain that people are simply acquiring associations between mental 
representations of the presented variables (e.g. mentally associating ‘low battery’ with 
‘squeals’)1. But this is only part of the story. There is compelling empirical evidence that in 
causal learning contexts people are not merely associating the two variables, but are 
hypothesizing that one causes the other (Waldmann, 1996; Waldmann and Holyoak, 1992; see 
Lagnado et al. 2007 for a review), an inference that engenders a range of further inferences (e.g. 
that if you were to replace the low battery with a new one, then the squeals will stop; and if the 
battery had been high, then there would have been no squeals). Of course these inferences are 
fallible. You might have the wrong causal model. But your conjecture that one variable causes 
another carries with it these additional inferences, in a way that the postulation of a mere 
association does not. The claim that two variables are associated by itself tells us nothing about 
what would happen to one variable if we were to change the other.

More generally, an analysis of causal learning that focuses only on the associations that people 
can learn between variables does not account for a variety of other inferential activities that 
people engage in, or the wealth of information (beyond covariation data) that they might use to 
support these inferences.2

On the other hand, research in causal reasoning tends to focus on how people make conditional 
or counterfactual inferences on the basis of presupposed causal relations, with little regard for 
how these causal models are acquired or generated. For example, one of the dominant accounts 
of reasoning, mental model theory, argues that causal reasoning involves the construction of 
possible states of the world and the search for counterexamples (Goldvarg and Johnson‐Laird
2001). In particular, the meaning of ‘A causes B’ is cashed out in terms of the possibilities 
consistent with ‘A materially implies B’ and the constraint that A temporally precedes B. 
However, nothing is said about how people acquire the background causal knowledge that 
allows them to generate appropriate possibilities, and make appropriate connections between 
these possibilities (e.g. distinguish between possible states that are causally connected rather 
than merely correlated).
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Other investigations into causal reasoning (e.g. explanation‐based reasoning, Hastie & 
Pennington 2000; causal heuristics, Kahneman & Tversky 1982) also fail to account for how 
people construct and revise causal models. This would not be a problem if learning and 
reasoning were separate activities that engaged entirely distinct processes; but these inferential 
activities are (p.132) best studied together, as part of a general system of causal inference (see 
Lagnado 2009). Postulating common representations and mechanisms also explains why both 
learning and reasoning are subject to similar constraints (e.g. attentional or working memory 
limitations).

From a formal perspective, causal Bayesian networks (Spirtes, Glymour and Scheines 1993; 
Pearl, 2000) provide a unified framework for representation, learning and inference (for 
criticisms of some of the assumptions underlying this framework see Cartwright, 2007, 
Williamson, 2005). Numerous psychologists have adopted this framework as a model of human 
inference (Gopnik and Schultz, 2007; Lagnado et al. 2007; Sloman and Lagnado, 2005; Sloman et 
al. 2009; Tenenbaum et al. 2007). The framework is a great advance insofar as it provides a 
normative benchmark against which to appraise human inference, and a guide for the 
construction of descriptive models. But the formalism alone does not mandate any specific 
psychological account; and, indeed, a psychological theory need not be tied too tightly to the 
normative theory.

7.2 Multiple sources of evidence for causal beliefs
Psychological research into causal learning has been dominated by the question of how people 
induce causal relations from patterns of covariation. However, covariation‐based learning is only 
part of the picture, and exclusive focus on this question threatens to distort our understanding 
of causal cognition.

As well as engaging in several kinds of inference (not just induction), people use various sources 
of information to infer causal relations (Einhorn and Hogarth, 1986; Lagnado et al. 2007; 
Waldmann et al. 2006). These ‘cues to causality’ include information about temporal order, 
interventions, spa‐ tiotemporal contiguity, similarity, analogy and prior knowledge. The smoke 
detector scenario in fact illustrates most of these possibilities. For example, the temporal 
proximity between squeals and tap turns was an important clue to identifying the hot water 
system as a likely cause (if the temporal interval had been much greater, or more variable, you 
would have been less likely to associate the two). The repeated interventions on the hot tap, at a 
random selection of times throughout the morning, helped to rule out possible confounding 
causes, and establish the hot tap as a cause of the squeals. The analogy of the current situation 
to a previous encounter with the noises admitted from a smoke detector helped guide the 
hypothesis formulation and testing. The similarity in sound of the squeals meant that a single 
cause was sought (e.g. smoke detector or hot water system). The role of prior information was 
also ubiquitous (see next section).

This is not to deny the role of covariation information (which also plays its part in our scenario), 
but to emphasize that it is just one cue among many. Indeed covariation information by itself is 
seldom sufficient for inferring a (p.133) unique causal model. For example, consider a variation 
on our story about the mysterious squealing where we ignore the smoke detector and faulty hot 
water system, and focus on the local cat. Suppose that the only available evidence is your 
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observation of a strong correlation between the appearances of the cat and the sound of the 
squealing noises. In the absence of any other information (e.g. about temporal order; 
spatiotemporal contiguity etc.) this evidence does not distinguish between a causal model in 
which the cat causes the squeals, or a model in which the squeals cause the cat's presence 
(perhaps it is tracking a squealing mouse or large insect, or even a mate), or a common cause 
model in which both the cat's presence and the squeals are due to a third factor.

One way to distinguish between these models is to intervene by removing the cat from the 
premises, and ensuring it does not return. Do the intermittent squeals persist? If so, then the cat 
is ruled out as a cause. If not, then it is ruled in. Another route is to acquire additional 
information about the potential cat → squeal relation, perhaps in terms of spatial or temporal 
information about the cat and the squeals. The critical moral is that the mere observation of a 
correlation does not provide evidence for a unique causal relation (for more details see Lagnado
et al. 2007; Sloman, 2005).

Recent psychological studies have shown that people are indeed able to use interventions to 
learn causal models; and, moreover, to learn models that cannot be learned from covariational 
information alone (Gopnik et al. 2004; Lagnado and Sloman, 2002, 2004, 2006; Meder et al.
2008; Steyvers et al. 2003; Waldmann & Hagmayer, 2005). Not only do people learn better when 
they can intervene on a system, but they also make appropriate inferences about the effects of 
their interventions (Sloman and Lagnado, 2005). These experiments, as well as numerous others 
conducted by Tenenbaum and Griffiths and colleagues (e.g. Tenenbaum and Griffiths, 2003; 
Tenenbaum et al. 2007), convincingly demonstrate that people do not solely rely on covariational 
information to induce causal structure. Instead, they make use of a range of sources of 
information, including a central role for the evidence gathered from interventions.

In many real‐world contexts people are provided with a rich variety of information about the 
causal systems they interact with. The control of objects, tools and simple devices (e.g. pens, 
scissors, can‐openers) are readily learned through a combination of interventions, sensorimotor 
feedback, and spa‐ tiotemporal information. To explore this kind of learning we introduced a 
novel experimental paradigm in which subjects manipulated on‐screen sliders in a real‐time 
learning environment. Their task was to discover the causal connections between these sliders 
by freely changing the settings of one slider and observing the resultant changes in the other 
sliders. Subjects excelled at this task, rapidly learning complex causal structures with a 
minimum of exploration (Lagnado et al. 2007; Lagnado & Loventoft‐Jessen, in prep.).

(p.134) This set‐up revealed two important points about people's capacity for causal learning. 
First, it only took a few manipulations of a slider for subjects to leap to a causal conclusion 
about the link between one slider and another. The causal relation ‘popped‐out’ due to the 
confluence of various factors: the spatiotemporal similarities in the motions of the sliders that 
were causally connected; the sensitivity of control that one slider exerted on the other; the 
opportunity for subjects to intervene when they chose (thus ruling out confounding variables).3

Second, once subjects had explored the system for several minutes, they were able to construct 
mental models of the causal connections between sliders, and imagine the effects of 
interventions that they had not yet taken.



Causal thinking

Page 6 of 20

This was shown in a follow‐up experiment (Lagnado & Loventoft‐Jessen, in prep.), in which 
subjects made use of ‘double interventions’ in order to disambiguate between models. For 
example, if subjects are only able to move one slider at a time, it is impossible to distinguish 
between a model with a chain (A → B → C) and a similar model with an additional link from A to 
C. In both cases, changes in A lead to changes in B and C, and changes in B lead to changes in C 
alone. One way to distinguish these models is to disable B, and then see whether changes in A 
still lead to changes in C. If they do not, then the true model is the chain. In the experiment, 
subjects engaged in an initial learning phase where they were restricted to moving one slider at 
a time. At the end of this phase they were asked which causal model (or models) best explained 
the observations they had made. In a second test they were asked to choose one disabling 
intervention (in combination with a single slider move) that would allow them to distinguish 
between models. Many subjects were able to select the correct disabling intervention, showing 
that they could mentally represent possible causal models, and imagine the effects of 
interventions on this model (in particular, what would happen if they disabled one slider, and 
then moved another).

This experiment supports several of the claims made in this chapter. It shows that people can 
make use of various sources of information, including interventions and spatiotemporal 
similarities, to learn causal models. It shows that people can engage in hypothetical reasoning in 
order to disambiguate complex causal structures, thus confirming the interplay between 
learning and reasoning. Finally, it anticipates the discussion of mental simulation and causal 
reasoning presented in later sections.

A central claim in this chapter is that it is mistaken to focus on just one source of information, to 
the exclusion of other sources. A related mistake would be to conflate one source of evidence for 
causality (e.g. covariation) (p.135) with the conception of causality that people actually have or 
ought to have.4 It seems clear from the psychological literature that people's lay conception of 
causality is rich and multi‐faceted, and not reducible to a purely probabilistic notion.

Given that people use multiple sources of information to infer causal beliefs, the question arises 
as to how this information is combined. In some contexts this will be relatively trivial, because 
the different cues will converge on the same causal conclusion. This often occurs when agents 
act in the natural environment–the information given by interventions tend to be nicely 
correlated with spatial and temporal information–I swat a fly, and the fly dies at a nearby time 
and place. However, the correlations between cues are sometimes broken–turning the hot water 
tap causes a squeal to emanate from pipes above my head. Here I use my hazy knowledge of the 
hot water system to explain this discrepancy. More problematic are cases where two separate 
cues point in different directions, for example when the temporal ordering suggests one causal 
model, but the covariation information suggests a different model (see Lagnado & Sloman 2006, 
for experiments that explore this kind of situation in the context of the appearance and 
transmission of computer viruses).

The open question is how people combine these different cues, especially when they suggest 
different causal conclusions. One general approach is to estimate the reliability of each cue, and 
combine them relative to this weight. However, this might not reflect what people actually do–
certain cues in certain contexts might trump other cues altogether (this is what was suggested 
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in Lagnado & Sloman, 2006, with temporal order trumping covariation information). Another 
possibility is that just as people tend to entertain or test only one causal hypothesis at a time, 
they also use cues in a sequential fashion. Lagnado and Sloman suggested that people set up an 
initial hypothesis or model on the basis of time order alone, and then used covariation 
information to test this model. This was supported by a later experiment that elicited people's 
causal models regularly throughout the course of the experiment (but more research is needed).

7.2.1 Prior causal knowledge
In most situations causal learning takes place against the backdrop of extensive prior causal 
knowledge. This knowledge can be very general–that cats sometimes screech, that water 
systems malfunction, that batteries run low, or more specific–that smoke detectors are battery 
operated, that the red light on (p.136) a smoke detector indicates a low battery, etc. This 
knowledge includes spatial and temporal information–e.g. concerning the relation between 
location and sound, and mechanical information of all sorts–e.g. the usual functioning of a smoke 
detector. Moreover, people do not require detailed (or correct) knowledge about causal systems 
in order to use this knowledge to acquire new beliefs. Simple beliefs will often suffice to figure 
out a novel causal relation. For example, one can infer that the low battery is causing the 
squeals without detailed knowledge about the inner workings of batteries or smoke detectors 
(although it helps to know that designers might have constructed the detector so that it warns 
users when it is about to fail).

A clear illustration of the role of prior knowledge is provided by cases of one‐trial learning, 
where people learn (or assume that they learn) a causal relation after exposure to just one 
exemplar. For example, in our tale of the smoke detector, it took just one test (in which the 
battery was removed and the squeals stopped) to establish the hypothesis that a low battery was 
causing the squeals. It might be argued that this test actually involved a couple of observations–
e.g. low battery and squeal, no battery and no squeals. But the point is that the number of 
observations were definitely too low for standard covariation‐based learning algorithms to do 
their work. Most learning algorithms, including those developed within the CBN framework (e.g. 
Spirtes et al. 1993), require repeated observations before a relation can be learned (in the same 
way that statistical analyses require datasets larger than one). In cases of rapid learning, prior 
causal knowledge is used in combination with a simple piece of inferential reasoning.

An associative theorist might respond that one‐trial learning can be captured in a contingency‐
based learning rule, so long as the learning rate parameter is high. In other words, a single 
observation that the squeals stop when the battery is removed provides enough covariation 
information to support the causal conclusion that the low battery was the cause of the noises. 
But this move seems unprincipled, in the sense that one would not want to licence single‐trial 
learning in all contexts. Whether or not one makes the leap to a causal conclusion from just one 
exemplar (or a few) depends heavily on what other prior background knowledge one has. This 
inductive leap should only be taken when the background is rich and sufficient to ground the 
inference (e.g. given basic knowledge about how batteries work; how smoke detectors might be 
designed, etc.). A single‐case co‐occurrence in a context where there is little prior knowledge to 
support the inference, or even knowledge that goes against it, is less likely to lead to rapid 
learning.
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Thus any attempt to address one‐trial learning by adjusting the learning parameter in an 
associative mechanism effectively concedes that additional background information is being 
used in these cases (and is reflected in the adjustment of this parameter). The crucial point is 
that it is the background knowledge that is modulating the inferences drawn in one‐trial cases, 
not (p.137) the covariation information. This background knowledge supports additional 
reasoning about the situation–and this explains our ability to learn causal relations from 
impoverished data (see also Tenenbaum and Griffiths 2003).

There are numerous routes by which people attain prior knowledge–they might have been 
taught it, read about it, or possibly acquired it firsthand through their own experiences with the 
causal system in question. The important point is that it is rare for people to be confronted with 
a causal inference problem for which they have no relevant prior knowledge. Even infants seem 
to enter the world with certain prior assumptions that help them acquire more specific causal 
knowledge (Schlottmann, 2001; Scholl, 2005). Despite its ubiquity, the interaction of prior 
causal knowledge with novel problem situations, and the ability to construct new causal models 
from prior assumptions, has not been systematically investigated in mainstream cognitive 
psychology (but see Ahn and Kalish, 2000, Tenenbaum and Griffiths, 2003, Waldmann, 1996).

7.2.2 Prior assumptions behind interventions
One of the key aspects of causal thinking is that it serves as a guide to action. If done right, it 
allows us to predict and anticipate the effects of our actions, including those that we have never 
taken before. Pearl (2000) summarizes this neatly with his claim that causal models are ‘oracles 
for interventions’. The flipside of this is that causal models can often be learned through 
carrying out appropriate interventions. For instance, when I conjecture that the low battery is 
causing the squeals, I construct a simple causal model: low battery → squeal. I then reason that 
according to this model, if I intervene and replace the old battery with a new one, then the 
squeals will stop. I can then test this prediction by actually replacing the battery, and observing 
whether or not the squeals stop. Once I have established the correctness of this causal model, I 
can use it to make predictions on other occasions. Of course I must be aware that the context 
might change in ways that make this model inappropriate. There is no guarantee that what 
works on one occasion will work in the future, or generalize to other slightly different 
circumstances. I will make assumptions that may have better or worse justifications. Thus, I can 
safely assume that the same smoke detector will work similarly tomorrow (although I can't be 
sure–perhaps when I replace the battery another component will break), and also assume that 
the smoke detector next door operates in the same way. But I will be on dangerous ground if I 
assume that a very different device (e.g. a battery‐operated baby doll) will stop squealing once I 
replace the battery.

This shows that our causal reasoning depends on assumptions, many of them tacit, about the 
robustness of the causal models we can learn. Indeed a crucial element in our ability to think 
causally is our ability to gauge when we can generalize and transpose our models to novel 
environments (p.138) (cf. Cartwright, 2007; Steele, 2007). This seems to be an unexplored area 
in cognitive psychology.
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7.2.3 Causal Bayesian networks over‐ and under‐estimate human reasoners
This concludes our brief survey of the multiple sources of evidence for causal beliefs (for more 
details see Einhorn & Hogarth 1986; Lagnado et al. 2007). One significant point to emerge from 
this concerns the applicability of the Causal Bayesian Networks (CBN) framework as a model of 
human inference. A strong advantage for this framework is that it formalizes the distinction 
between interventional and observational (correlational) learning, and suggests various 
algorithms for learning causal models under either regime (given certain crucial assumptions). 
However, there are reasons to question its wholesale application to everyday human causal 
inference.

In particular, it appears that the CBN framework both over‐ and underestimates the capabilities 
of human reasoners. It seems to over‐estimate people's abilities to perform large‐scale 
computations over large bodies of hypotheses and data. People have limited‐capacity working 
memory, and this serves as a bottleneck for complex computations with many variables and 
relations (Cowan 2001; Halford et al. 2007; Miller, 1956). It is likely that human reasoners adopt 
strategies to overcome these limitations, such as performing local computations (Fernbach & 
Sloman, 2009) and chunking information into hierarchically structured representations (Bower,
1970; Lagnado & Harvey, 2008).

On the other hand, current attempts to apply CBN to human inference also seem to 
underestimate human capabilities. As noted above, there is a wealth of information about 
causality aside from statistical covariation, including spatiotemporal information, similarity, 
temporal order etc. People are able to incorporate this information in their search for causal 
structure, but this is not yet captured in standard causal Bayesian models. This is not to deny 
the relevance of the CBN framework, or the considerable benefits it brings to the study of causal 
cognition. But it is a starting point for formulating better psychological theories, not an 
endpoint.

7.3 Mental models and simulations
So far we have talked about causal inference at a relatively abstract level, without delving into 
the mechanics of how people actually carry out these inferences. This level of description is 
appropriate when comparing people's inferences against a normative model of inference, such 
as that provided by logic, probability theory or causal Bayesian networks. But it tells us little 
about the psychological processes that underpin these inferences. For example, if someone's 
inferences correspond to those prescribed by the normative model, (p.139) there remains the 
question of how these inferences were actually carried out. There will usually be a variety of 
possible psychological processes that could have reached the normatively correct conclusions.5

It is instructive here to compare with the case of deductive reasoning. Some theorists argue that 
when people make deductive inferences (e.g. from premises ‘If X, then Y’ and ‘X’, infer 
conclusion ‘Y’) they apply formal inference schema to syntactically structured mental 
representations (Inhelder & Piaget 1958; Braine and O'Brien, 1998; Rips, 1983). This ‘mental 
logic’ theory is controversial, especially in light of the well‐documented failures in people's 
deductive reasoning, and its sensitivity to both content and context (Wason, 1983; Evans, 2002). 
One alternative to this position is mental model theory (Johnson‐Laird, 1983; 2006). On this 
theory people evaluate deductive inferences by envisaging and combining possible states of 
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affairs. I will not go into the details of this debate. What is important for current purposes is that 
we should not simply assume that when people reason causally they use a causal logic that 
operates on sentential mental representations. But what are the alternatives?

Mental model theory provides an alternative perspective here. As noted above, the theory claims 
that causal reasoning involves the envisioning and combining of possible states (Goldvarg and 
Johnson‐Laird, 2001). There are various reasons why the theory by itself does not seem 
satisfactory. Prominent amongst these are the lack of constraints on the possible states implied 
by causal relations (material implication is too inclusive a relation), the failure to account for 
people's causal judgments (Sloman, Barbey & Hotaling, 2009) and the difficulty the model has in 
distinguishing inferences based on observations from those based on interventions (for details 
see Glymour, 2007; Sloman and Lagnado, 2005).

Despite these shortcomings, mental model theory does contain the seeds of a plausible account. 
To articulate this, it helps to return to the classic work on mental models by Kenneth Craik:

If the organism carries a ‘small‐scale model’ of external reality and of its own possible 
actions within its head, it is able to try out various alternatives, conclude which is the best 
of them, react to future situations before they arise, utilize the knowledge of past events in 
dealing with the present and the future, and in every way react in a much fuller, safer, and 
more competent manner to the emergencies which face it.

(Craik 1952, p. 61).

Craik's suggestion is that people anticipate the effects of their actions by simulating these 
actions on a mental model of the external world. The key idea is that manipulations of the 
mental model parallel the correspondent (p.140) manipulations of the world. In other words, 
causal inferences are carried out by mental simulations that somehow encapsulate the causal 
processes in the world. This proposal is innovative, but raises a host of questions, especially with 
regard to what constitutes a mental model, and how these models are simulated. For example, 
what aspects are represented, how these are represented, and how a simulation is actually run 
so that it respects real world processes. In the following I will pursue one possible extension of 
Craik's original ideas, one most relevant for causal inference.

7.3.1 Mechanical reasoning

Mechanical reasoning furnishes some clear examples of mental simulation (Hegarty, 2004). 
Consider the following problem: You are presented with a sequence of gears (see Figure 7.1), 
and told that the leftmost gear is rotated in a clockwise direction. Your task is to predict the 
direction of movement of the rightmost gear. How do you solve this prediction problem? 
Psychological studies (e.g. Schwartz & Black 1999) suggest that people engage in mental 
simulation of the gear system. They tend to mentally rotate the first gear, and imagine how the 
second gear will rotate in response (it helps if you include some of the gear teeth!). This is 
continued in a piecemeal fashion until the final gear is rotated. After practice with this way of 
solving the problem, people often graduate to a more analytic solution, whereby they acquire 
the rule that adjacent gears will move in opposite directions. But for this task, and a host of 
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other problems (e.g. pulley systems, water in glasses, etc.), people predominantly use mental 
simulation to answer questions of causal inference.

Hegarty (2004) has extracted several important principles from these studies:

(1) Simulation of complex physical systems is piecemeal rather than holistic, and occurs 
in the direction of causality (and time). For instance, to solve the gear problem, people 
simulated the gears sequentially, in a chain, starting from the initial cause and leading 
onto the final effect. In
(p.141) another example involving 
pulley problems, Hegarty (1992) 
found that when people had to infer 
the movement of a pulley located in 
the middle of a causal chain, their 
eye fixations implied that they 
simulated causally prior pulleys that 
led to the movement of the pulley in 
question, but not pulleys that were 
causally downstream of this 
intermediate pulley.
These findings suggest that 
simulation does not operate on a complete or wholesale model of the physical set‐up, but 
proceeds by selectively operating with smaller sub‐components (i.e. individual causal 
links)6; it also suggests that simulations are constrained by the limitations of working 
memory.
(2) Simulation is not solely based on visual information, but can include non‐visual 
information such as force and density. For example, people's mental simulations of the 
movements of liquids in a container are sensitive to the effects of gravity and the 
viscosity of the liquid (Schwartz, 1999). This suggests that mental simulation does not 
simply correspond to the manipulation of visual images, but can incorporate more 
abstract variables that explain a system's behaviour in the world.
(3) Simulations can include motor representations, especially when people are simulating 
their own (or other's) actions. Indeed there is now a rich literature on the role of motor 
representations in thinking (Jean‐ nerod, 2006), and some sophisticated computational 
models of action that use internal models to predict sensory consequences of both actual 
and imagined actions (Wolpert, 2007).
(4) People use a variety of strategies to solve mechanical inference problems; these 
include mental simulation, but also rule‐based strategies and analogical reasoning. These 
strategies are not mutually exclusive, and thus people might use a combination of 
strategies to solve a problem. As noted above, Schwartz & Black (1999) found that in the 
gear problems people progressed from using mental simulation to formulating and 
implementing a simple rule. Schwartz and Black speculate that mental simulation is best 
suited to novel problem situations, where people cannot draw on a ready‐made set of 
formal rules.

Fig. 7.1  System of interlocking gears.
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In addition to these principles, Hegarty distinguishes between visual and spatial representation. 
The former represents visual aspects of things, such as colour and brightness, whereas the 
latter represents spatial relations and location and movement in space. Hegarty argues that 
mechanical reasoning predominantly depends on manipulations of spatial rather than visual 
images.

(p.142) The work on mental simulation in mechanical reasoning has garnered strong empirical 
support (see Hegarty 2004, Nersessian, 2008). There remain open questions about the exact 
nature of simulation (e.g. how and in what respects do mental simulations track the real world 
causal processes), but the descriptive claim that people engage in mental simulation is generally 
well accepted. It also seems relatively straightforward to apply these ideas to the psychology of 
causal inference (for a related program see Wolff, 2007). The key idea would be that when 
people reason about causal systems they utilize mental models that represent objects, events or 
states of affairs, and reasoning and inference is carried out by mental simulation of these 
models. Moreover, these mental models admit of multifarious formats ranging from visual or 
spatial images, sensorimotor models to amodal representations.

7.3.2 Mental simulation of interventions
One of the most basic kinds of simulation involves the predictions of the effects of our own 
motor actions. In such cases mental simulation is likely to be tied quite closely to sensorimotor 
representations (e.g. forward models, Jeannerod, 2006, Wolpert, 2007), although these 
simulations can incorporate more abstract and non‐visual elements too (e.g. gravity or friction). 
There is a natural progression to the simulation of others' actions (Brass and Heyes, 2005), and 
then to actions that need not involve an agent–e.g. natural causes such as the wind blowing; fire 
spreading etc. In these contexts the notions of cause and effect become less tied to agency and 
actions and their immediate effects. Note the parallel in the development of interventionist 
theories of causation in philosophy. These theories were initially tied to human agency 
(Collingwood, 1940), but subsequently developed in terms of potential manipulations without 
anthropomorphic connotations (Woodward, 2003). The evolution of mental causal simulation 
might have followed a similar course–at first tied to first‐person agency and the immediate 
effects of actions, but progressing to simulations that need not involve agents, and incorporate 
more abstract causal variables.

One advantage of linking causal inference to simulation is that it can explain a variety of 
empirical findings which show that inference is enhanced with concrete materials and when 
spatial imagery/ visualization are supported (Barsalou, 1999; 2003). It also provides a ready 
explanation for situations where people are misled in their inferences. For instance, when the 
ease of mental simulation is mistakenly taken as an accurate guide to what actually happened. A 
compelling example of this is the power of direct witness testimony in legal cases (Heller, 2006). 
Vivid details given by an eyewitness about how the accused committed the crime greatly aid the 
jurors in imagining this scenario, and facilitate the move from speculation to conviction. Indeed
(p.143) computer animations that attempt to reconstruct the visual aspects of a crime are 
increasingly popular in legal cases.

However, as well as showing how people's causal inferences might get distorted, the simulation 
account can also explain how they can make inferences in accord with normative models of 
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causality. This is because mental simulation, by the very nature of being a simulation of the 
external causal system, will automatically observe the basic causal ‘logic’ of that external 
system. For example, simulating forwards from cause to effects naturally obeys the logic of 
intervention whereby an intervened‐on variable propagates its effects downstream but not 
upstream (i.e. obeys ‘do’ surgery). For example, when I imagine myself intervening to turn the 
leftmost gear in Figure 7.1 I simulate the consequences of this action, such as the turning of the 
adjacent gear, but I do not typically simulate other possible causes of these effects, such as 
someone else turning the second gear instead. Predictive inference (inferring effects from 
causes) is thus relatively easy, because the system's behaviour is simulated forward (in time) 
from representations of causes to representations of effects. Diagnostic inference (inferring 
causes from effects) is more complex, because there might be various different possible causes 
of the effect in question, and hence a need to compare several simulations (for recent work that 
fits with the differences between diagnostic and predictive inference see Fernbach & Sloman
2009, also see Hagmayer & Waldmann, 2000). More complicated still are situations demanding 
both predictive and diagnostic inference. In such cases it is likely that people rely on piecemeal 
simulations of separate links (cf. Hegarty, 2004, Fernbach & Sloman, 2009). Indeed the 
simulation‐based account of causal reasoning makes a range of testable predictions about the 
kinds of causal inference that people will find easy or hard, and the methods by which they 
might attempt to solve complex causal inferences.

One important question for this kind of approach is how it might be extended to causal 
inferences that do not involve directly or easily perceived causal systems? As well as making 
causal inferences in the physical or mechanical domain, we are able to reason about far more 
complex systems and about unobserved variables. Just think of the complexity in predicting the 
behaviour of your favourite soap‐opera character. But the same issue arises with simpler cases 
too. Consider the inference that the low battery in the detector is causing the squeals. 
Presumably we need not know much about the actual physical processes that make the low 
battery cause the squeals. So what is involved in the hypothetical inference that removing the 
battery will stop the squeals? Do we still run simulations in such a situation?

One line of response to this issue is to note that mental simulation is a broad church, and 
accepts a plurality of possible representational formats–perceptual, motoric, amodal etc. 
Although its origins might lie in mental models that are closely tied to our immediate 
experiences with the world (e.g. sensorimotor representations), these can become increasingly
(p.144) more abstract (e.g. spatial and map‐like representations, cf. Tolman, 1948; Grush,
2004). Thus, although mental simulation can be accompanied by modal imagery (e.g. when you 
imagine a diver doing a somersault), visual imagery is not an essential part of simulation. It is 
possible to engage in mental simulation without explicit visual imagery. And it is also possible to 
use visual imagery to simulate a very abstract inference (e.g. imagining the economy taking a 
nose‐dive). Indeed in cases of more abstract causal reasoning it is likely that representational 
schemes and models are created on the fly to solve specific inference problems, with different 
representations and mappings being used on different occasions. One day I might make 
predictions about the effects of the credit crunch by using a schematic model of a high‐board 
diver, on another day I might prefer to use a model of a spreading fire, and at another time I 
might give up on imagery altogether. This highlights the tight coupling between representation 
and inference, and the flexibility of our representational resources.
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The main point is that mental simulations are not restricted to sensorimo‐ tor models, but can 
incorporate a rich array of entities and processes. Indeed even the act of perception involves 
complex higher‐level representations in terms of objects and the interrelations they bear. Thus 
mental models can be hierarchically structured, with components that can be recombined and 
reused (and are proposition‐like in this respect).

Much of this is speculation ahead of empirical enquiry, but it is notable that all four principles 
advocated by Hegarty (2004) in the domain of mechanical reasoning seem to apply to the more 
general context of causal inference. Causal reasoning proceeds piecemeal (Fernbach & Sloman
2009; Lagnado et al. 2007; Hagmayer & Waldmann, 2000), it is not tied to visual 
representations, it takes advantage of motoric information (Jeannerod, 2006; Wolpert, 2007), 
and seems to admit of a variety of strategies ranging from image‐based to abstract amodal 
simulation. The latter then paves the way for the formulation of general causal rules (see below). 
Suggestive evidence is also provided by the experiment described in an earlier section of this 
chapter (Lagnado & Loventoft‐Jessen, in prep.). This experiment suggested that people were 
able to mentally represent possible causal models, and simulate possible interventions on these 
models. This included the ability to represent two different kinds of operation (disabling one 
slider and moving another), and draw appropriate inferences from this.

7.3.3 Is causal reasoning more basic than logical reasoning?
At this juncture it is useful to compare the proposed approach with the standard mental model 
theory advanced by Johnson‐Laird and colleagues. The latter theory assumes that when people 
engage in deductive reasoning they use iconic but amodal representations. The theory then 
explains people's well‐ known shortcomings in logical reasoning by adding principles that 
capture (p.145) people's failures to represent the full set of possibilities (e.g. focus just on A & 
B when entertaining ‘If A then B’). An alternative approach would be to accept that people can 
sometimes use amodal representations, but argue that the primary form of inference is causal–
via mental simulation of these representations (which might include aspects that are modal), 
and that logical reasoning piggy‐backs on this ability. This would explain many of the 
shortcomings in logical reasoning (e.g. influence of content and context), and also explain 
people's superior capability for causal reasoning. A similar argument might be made with 
respect to recent claims that logical reasoning is subserved by probabilistic reasoning (Oaksford 
& Chater, 2007). Here again the many shortcomings in people's explicit probabilistic reasoning 
might be explicable by their use of (causal) mental simulations in these situations (see Krynski & 
Tenenbaum, 2007, and Kahneman & Tversky, 1982, for related arguments). Of course the details 
of such an argument need to be spelled out and empirical studies need to be designed in this 
light. But it seems a suggestive possibility.

Moreover, it yields a simple account for how people can slowly acquire mastery of logical and 
probabilistic reasoning. They gradually capitalize on their ability to manipulate amodal 
representations, and integrate this with a more sentence‐like symbolic language presented to 
them while they are learning. This process resembles the observed transition from simulating 
gears to learning a formal rule (Schwartz & Black, 1999). However, the role of some kind of 
imagery is probably never lost, and can persist even in rarefied domain of scientific inference 
(Hadamard 1954).
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In short, the speculative claim here is that people have a core capability for causal reasoning via 
mental simulation, and deductive and inductive reasoning builds on this foundation. This shift of 
perspective might explain the characteristic biases and shortcomings in lay people's logical and 
probabilistic reasoning.

7.4 Conclusions
I have argued for the interplay of causal learning and reasoning, the multiplicity of sources of 
evidence for causal relations, and the role of mental simulation in causal inference. These three 
strands are themselves intertwined. Learning and reasoning utilize the same kinds of 
representations and mechanisms: they both rely on mental models, and in both cases inference 
depends on the simulation of these models. The fact that these mental models admit of 
multifarious formats (e.g. spatial, perceptual, sensorimotor) reflects the rich causal information 
available from the world and our interactions with it. Nevertheless, our ability to construct 
evermore abstract amodal representations, catalysed by the invention of external 
representational forms such as diagrams (p.146) and language, enables us to draw causal 
inferences that take us beyond the surface of our perceptions.
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Notes:
(1) There are several varieties of associative theory, but this appears to be a shared assumption 
across most variations (Dickinson, 1980; Hall, 2002; Shanks, 1995).

(2) This is not to undermine the important role that associative learning can play in cognition, 
but to emphasize that causal thinking will often go beyond the acquisition of associations.

(3) These findings have parallels with Michottean paradigms (Michotte, 1954; for recent 
discussion see Wagemans et al. 2006). However, learning in our experiments was not dependent 
on spatial contiguity, and the causal mechanisms linking the sliders were invisible.

(4) It could be argued that such a mistake is sometimes made in philosophical circles–especially 
when theorists attempt to define causation purely in probabilistic terms (Suppes, 1970). Indeed 
this mistake is perhaps perpetuated in more recent theories of causality based on causal 
Bayesian networks. Sources of evidence for causal models, whether from observational or 
interventional probabilities, should not be taken as definitional of causality.

(5) This does not mean that conformity to the normative model tells us nothing about the nature 
of the psychological processes. For instance, successful causal inference presumably requires 
the capability to represent networks of directed relations between variables.

(6) Applied to the causal learning literature, this fits with suggestions made by Lagnado et al. 
(2007) and recent empirical work by Fernbach & Sloman (2008).
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between the observed cause and effect cannot be taken at face value to infer causality. We 
review evidence that three types of situations lead people to infer unobserved causes: 
after observing single events that occur in the absence of any precipitating causal event, 
after observing a systematic pattern among events that cannot be explained by observed 
causes, and after observing a previously stable causal relationship change. In all three 
scenarios people make sophisticated inferences about unobserved causes to explain the 
observed data. We also discuss working memory as a requirement for reasoning about 
unobserved causes and briefly discuss implications for models of human causal reasoning.

An observed correlation between two events does not imply a direct causal relationship between 
them. One reason that is particularly important in developing theories of human causal learning 
is that unobserved or unattended cause(s) may account for all or part of the observed 
correlations.

For instance, an article published in Nature reported that young children who sleep with a 
nightlight are much more likely to develop myopia later in life (Quinn, Shin, Maguire, & Stone,
1999). This was interpreted as implying a causal relationship by the popular press. For instance, 
CNN reported, even low levels of light can penetrate the eyelids during sleep, keeping the eyes 
working when they should be at rest. Taking precautions during infancy, when eyes are 
developing at a rapid pace, may ward off vision trouble later in life (CNN, May 13, 1999). A later 
study, however, suggested that a common cause is responsible for this correlation; myopic 
parents are more likely to leave a light on for children, and myopic parents are more likely to 
have myopic children (Gwiazda, Ong, Held, & Thorn, 2000).

While the above example illustrates how a positive correlation between two variables does not 
imply that one causes the other, the opposite can happen (p.151) as well; we observe no 
correlation between two events when, in fact, there is a causal relationship between them. For 
example, a recent study demonstrated that pollution and daily temperature range are positively 
associated in the summer, but negatively associated in the winter (Gong, Guo, & Ho, 2006). 
Prior to learning that season plays a causal role, it would appear as if there is no relationship 
between pollution and temperature range because there is no correlation, even though there is 
an important relationship. Restated, there was a period of time during which an unknown 
variable (season) obscured the causal relationship between two observed variables, and the 
researchers had to learn about this interaction.

Considering these examples, it should be obvious that assumptions and beliefs about unobserved 
causes are vital in inferring causal relationships from observed correlations. In some sense, it is 
remarkable that we can make any valid causal inferences from observed correlations alone. 
There can be any number of unobserved causes at play, and people cannot possibly reason 
through all possible combinations whenever they make causal inferences.

This paper examines laypeoples' inferences about unobserved causes. We will first elaborate on 
the problems involving unobserved causes. Then, we will argue that people actually perform 
fairly sophisticated reasoning about unobserved causes, and that such reasoning is engaged due 
to a certain set of assumptions that they hold about the world. We also review psychological 
studies supporting our argument.
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Problems with reasoning about unobserved causes

Consider a simple causal reasoning scenario involving a light switch and a light. Suppose you go 
into a room for the first time, and you observe the light (i.e. on or off; 1 or 0, respectively in 
Table 8.1 under Light) across eight consecutive trials when the switch is up or down (1 or 0 
respectively in Table 8.1 under Switch). One possible causal interpretation is that there is no 
causal relationship between the observed switch and the light, and there is an unobserved 
switch that is entirely responsible for the light's behaviour (see Table 8.1, ‘Entirely Responsible’ 
column).

But, there are many other equally plausible possibilities in which the observed switch is causally 
responsible for the effect in combination with another unobserved switch (see Table 8.1). One is 
that the observed switch interacts with another switch through a biconditional interaction such 
that the light turns on only when the two switches are either both up or both down. Yet another 
possibility is that there are two unobserved switches, and at least two out of three of these 
switches must be up to make the light turn on. Depending on whether one believes in the 
biconditional interaction or two out of three unobserved switches, one's future intervention to 
make the light go on would change (e.g. if it is two unobserved switches, keeping the switch up 
would maximize the time the light is on, but for a biconditional (p.152)
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Table 8.1 Light switch example

Trials Observed events Different types of possible unobserved switches

Switch Light Entirely Responsible Biconditional 2 Out of 3 Always Present

1 0 0 0 1 00 1

2 1 0 0 0 00 1

3 1 1 1 1 10 1

4 0 1 1 0 11 1

5 0 0 0 1 10 1

6 1 0 0 0 00 1

7 1 1 1 1 11 1

8 0 1 1 0 11 1
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case, flipping the switch whenever the light goes off would likely maximize the time the light is 
on).
The point of this example is to illustrate that there are so many possible ways that unobserved 
causes could interact that it would be impossible for people to consider all of these 
configurations. Does this mean that people do not spontaneously reason about unobserved 
causes? The answer must be no, given the obvious fact that people do make causal inferences 
based on correlations, and they must make (or act as if they make) some assumptions about 
unobserved causes in order to do so. (For instance, inferring that X causes Y based on a positive 
correlation between X and Y requires assuming that there is no unobserved, confounding 
variable.) The important question, then, is what assumptions and inferences people make about 
unobserved causes, and what triggers inferences about unobserved causes given that people 
cannot always consider all possible unobserved causes? The current chapter reviews studies 
from our labs that provide some answers to these questions.

In the following sections, we first briefly review how existing models of causal learning handle 
unobserved causes. Then we argue that people hold assumptions that trigger specific inferences 
about unobserved causes. We claim that people believe that (i) an event must be caused by 
another event (causal determinism), (ii) any systematic pattern or regularity among events must 
be causally determined, and (iii) causal relations stay stable across different times and contexts. 
When causal determinism is violated, when a systematic pattern is not explained by observed 
causes, or when causal relations are not stable, we argue that people infer an unobserved cause 
to explain the apparent violation of the assumption. Then we present experimental results 
suggesting that people do spontaneously make such inferences about unobserved causes, and 
describe how such inferences further influence the causal inferences people draw from observed 
correlations. Finally, we will discuss one cognitive requirement for reasoning about unobserved 
causes.

(p.153) 8.1 Unobserved causes in models of human causal learning
Many models have been developed to explain how people learn the causal strength of a 
particular cause and effect relationship. Luhmann and Ahn (2007) and Hagmayer and Waldmann 
(2007) have provided detailed reviews of how these models handle unobserved causes. Here we 
provide a brief summary.

One class of models makes no assumptions about unobserved causes, and thus makes no 
inferences about unobserved causes. For example, AP (Jenkins & Ward, 1965), an associative 
measure, estimates causal strength as the difference in probability of the effect (E) being 
present when the cause (C) is present vs. absent: P(EǀC) − P(Eǀ ~ C). Though Δ P is a very 
intuitive way of calculating the influence of C on E, it runs into a critical problem; people are 
more sensitive to certain types of evidence such as when both C and E are present and are less 
sensitive to other types of evidence such as when both are absent. Many subsequent descriptive 
models have tried to capture this phenomenon by differentially weighting the evidence (e.g. 
Arkes & Harkness, 1983; Downing, Steinberg, & Ross, 1985; Einhorn & Hogarth, 1986; Nisbett 
& Ross, 1980; Schustack & Sternberg, 1981; Shaklee and Tucker, 1980). However, these 
approaches did not provide a theoretical explanation for the phenomenon.



When and how do people reason about unobserved causes?

Page 6 of 32

Cheng (1997), Novick and Cheng (2004), see also Pearl (2000), provided a parsimonious 
theoretical explanation for this phenomenon by appealing to unobserved causes. Cheng argued 
that differential weighting of evidence is a normative result of accounting for ceiling effects, 
when an unobserved cause frequently produces the effect (see Section 8.4.1 for a discussion). 
However, Cheng's model requires a number of assumptions. Specifically, for a generative 
observed cause, unobserved causes are assumed to interact in a noisy‐or fashion with observed 
causes, to be generative, not inhibitory, and to be independent from observed causes. These 
very strict assumptions limit the applicability of the model and it is not entirely clear whether 
people actually make these assumptions (Luhmann & Ahn, 2007; Hagmayer & Waldmann,
2007; White, 2005, 2009).

A very different approach to unobserved causes makes the straightforward assumption that all 
unobserved causes, taken as a whole, are present across all learning trials. For example, the 
Rescorla‐Wagner model (Rescorla & Wagner, 1972; Dickinson, 1984) includes a background 
context node that can be viewed as an aggregation of all unobserved causes. When an effect 
occurs without the observed cause, this node gains associative strength, which can be used as 
an estimate of the causal strength of an unobserved cause. However, it is easy to see that the 
consequence of this assumption would be quite unsatisfactory for reasoners. For example, in 
Table 8.1, last column, an unobserved cause present on every trial would be completely unable 
to explain the light's behaviour; neither the observed switch nor the unobserved cause 
correlates (p.154) with the status of the light and thus the only unsatisfactory conclusion is 
that the light was acting randomly without any cause.

Some recent models have attempted to explain peoples' sophisticated reasoning about 
unobserved causes including (i) inferring whether an unobserved cause is present or absent on a 
particular trial, and (ii) inferring the causal strength of an unobserved cause. For example, if an 
effect is observed without an observed cause, one would likely infer that an unobserved cause is 
responsible. Furthermore, given that an observed cause is present, one would more likely infer 
that an unobserved cause is also present if the effect is present rather than absent (see 
Hagmayer & Waldmann, 2007, for a detailed explanation of these examples). One new model, 
BUCKLE (Luhmann & Ahn, 2007), has been developed specifically for these types of inferences. 
BUCKLE is explained in the Section 8.2.

In sum, few models have been developed to account for reasoning about unobserved causes, 
though there have been some recent attempts to explain how people learn about the presence 
and causal strength of an unobserved cause. In the next section, we provide further evidence of 
reasoning about unobserved causes that a more comprehensive model should account for.

8.2 Causal determinism about individual events
One of the more primitive assumptions that lay reasoners appear to make is causal determinism, 
that every event has a cause and that events cannot occur in the absence of any precipitating 
causal event.1 This assumption of causal determinism is captured in the causal principle from 
ancient philosophy; ‘nothing happens without a cause’ (‘nihil fit sine causa’ Audi, 1995). For 
someone who believes in causal determinism, events with no apparent cause should suggest the 
existence of hidden causes. Much of the empirical work suggesting that people believe in causal 
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determinism has investigated children's beliefs about agency and magic, which is reviewed 
below.

8.2.1 Children
Children's beliefs about agency
A major question in developmental psychology pertains to children's beliefs about agency, the 
idea that there are entities with free will (e.g. humans and animals) that are primary sources of 
causal influence. For example, the motion of animate agents may be assumed to be generated 
internally and to not require further explanation (e.g. Wegner, 2002; Leising, Wong, Waldmann, 
& (p.155) Blaisdell, 2008). In contrast, the motion of non‐agents (e.g. billiard balls) must be 
explained by referring to external causal forces. When an inanimate object assumed not to have 
self‐agency appears to move on its own (e.g. a baseball moving like a bird rather than in an arc), 
this violation of determinism should be surprising.

Saxe, Tenenbaum, & Carey (2005), see also Saxe, Tzelnic, & Carey (2007), tested this reasoning 
with infants in the following way. They had infants repeatedly observe a beanbag (a non‐agent) 
flying through the air from one side of a small stage to the other. (Studies with infants often use 
a ‘habituation’ phase, during which the infant becomes accustomed to seeing the same event 
and stops paying attention to the event. In a later phase, if infants show increased interest, this 
is taken to imply ‘surprise.’) After an infant was habituated to this event, he/she was presented 
with this same event (the beanbag flying across the stage) followed by a human hand entering 
from one side of the stage, either the side from which the beanbag was launched, or the 
opposite side. The infants were more ‘surprised’ (spent more time looking at the hand) when the 
hand entered from the opposite side of the stage as the beanbag. The reasoning is that when the 
hand entered from the same side as the beanbag, the infants could reason backwards that the 
hand had been behind the stage all along and could have thrown the beanbag. However, when 
the hand entered from the opposite side as the beanbag, there is no cause of the beanbag's 
motion — the beanbag cannot propel itself and the hand was on the opposite side. Critically, this 
result disappeared entirely when the beanbag was replaced with a puppet (an agent) that 
appeared to propel itself across the stage without requiring another agent. In sum, the infants 
were ‘surprised’ only when an inanimate object appeared to move itself, a violation of causal 
determinism, but they were not surprised when an animate object, assumed to have self‐agency, 
moved itself.

Children's beliefs about magic
Other developmental work has examined circumstances that evoke magical explanations from 
children (see Woolley, 1997 for a review). For example, Phelps & Woolley (1994) presented 
children (ages 4—8) with several real‐ world objects and asked them about their operation. 
Children were shown two objects that were, unbeknownst to the children, magnets of opposing 
polarity. The children were first asked to make a prediction (e.g. whether one object could move 
the other without touching it) and then to provide an explanation once a surprising event 
occurred (e.g. after one object pushed the other without touching it). This study revealed that if 
a child could not explain the event with a physical explanation, he/she tended to appeal to magic 
or ‘tricks’ (both of which refer to hidden causes). Thus, children's reliance on magic for 
explanation, an inference to the ultimate hidden cause, appears to be strongly driven by events 
that violate causal determinism.
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(p.156) 8.2.2 Adults
Luhmann & Ahn (2007) have recently conducted a series of experiments to explore beliefs about 
causal determinism in adults. The study was designed to investigate whether adults make 
significant inferences to hidden causes and what, if any, influence on behavior such simple 
inferences might have. The study used a typical causal learning task in which subjects were 
asked to learn about a pair of potential causes (gray and white buttons) and their influence on a 
single effect (light turning on). Participants observed the presence/absence of the different 
events in a trial‐by‐trial manner. On each trial, learners observed the presence/absence of one 
cause (whether the gray button in Figure 8.1 was pressed or not) and the presence/absence of 
the effect (whether the light was on/off). Unlike typical causal learning experiments, one of the 
two causes in our study was ‘hidden’ from subjects (the white button in Figure 8.1). No 
information was ever provided to the participants about the presence/absence of the second, 
hidden cause. After they completed the trial sequence, participants evaluated the strength of the 
causal relationship between the observed cause and the effect and the strength of the 
relationship between the hidden cause and the effect.

To determine whether learners made notable inferences about the hidden cause, we 
manipulated whether or not the different sequences included trials that violated causal 
determinism; trials in which the effect was present but the observed cause was absent (the light 
was on, but the button was not pressed; Figure 8.1). We call these trials unexplained effects, as 
effects are present in the absence of any observed causes. As shown in Table 8.2, the 
‘unnecessary’ and ‘zero’ conditions included unexplained effects, whereas the ‘perfect’ and 
‘insufficient’ conditions did not. Our results demonstrated that sequences that included 
unexplained effects, or violations of causal determinism, led subjects to believe that the hidden 
cause was a stronger (generative) cause than sequences that did not include unexplained effects 
(last column of Table 8.2).

(p.157)

Table 8.2 Summary of conditions and mean probability and causal strength 
estimates of unobserved cause in Luhmann & Ahn (2007, Experiment 3)*.

Fig. 8.1  Sample unexplained effect trial 
used in Luhmann & Ahn (2007).
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(*) Note: O is the observed cause, and E is the effect. ~ represents the absence of an event. 
Unexplained effect (~OE) trials are shown in bold. Standard errors are in parentheses.

Because violations of causal determinism were prima facie evidence for the operation of an 
unobserved, generative cause, we suggested that subjects were using these specific occasions 
as the basis for their causal strength judgments of the hidden cause.

To validate our explanation, we asked learners on each trial to judge how likely the hidden cause 
was present using a scale that ranged from 0 (definitely absent) to 10 (definitely present, see the 
fourth column, Table 8.2). These probability judgments allowed us to directly measure learners' 
beliefs about the hidden cause on all four types of trials. As expected, learners believed that the 
hidden cause was likely present when causal determinism was violated (~OE trials in bold in the 
fourth column in Table 8.2). In fact, learners believed that the hidden cause was more likely to 
be present on these occasions than on any other type of trial. Thus, similar to infants, violations 
of causal determinism lead adults to infer hidden causes.

The finding that people infer unobserved causes during unexplained effects may seem fairly 
intuitive. However, this experiment allowed us to uncover additional, potentially less intuitive, 
and more sophisticated inferences about hidden causes.

One demonstration of sophisticated reasoning about unobserved causes is that participants' 
real‐time judgments about the presence/absence of the unobserved cause explain their 
judgments of the causal strength of the (p.158) unobserved cause. To demonstrate this, we 
computed Δ P, a measure of covariation, between the unobserved cause and the effect (i.e. P(Eǀ
U)–P(Eǀ ~ U)) based on participants' average probability judgments of the presence of the 
unobserved cause shown in Table 8.2 (converted to probabilities that ranged from 0 to 1); they 
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were 0.40, 0.40, 0.10, and 0.19, respectively, for the four conditions in Table 8.2.2

Impressively, these virtual covariations correlate with the subsequent judgments of the causal 
strength of the unobserved cause (shown in the last column of Table 8.2). It should be stressed 
that these were ‘virtual’ covariation in the sense that it only existed in the heads of the learners. 
No actual covariation existed because one of the two potentially covarying events was hidden. 
Furthermore, subjects were never asked to estimate the overall covariations between these two 
events; we computed them over participants' probability judgments of the presence of the 
unobserved cause. That is, when the virtual Δ P between the hidden cause and the effect was 
higher, subjects' causal strength estimate of the hidden cause was higher, and vice versa, as if 
the ‘virtual’ covariation we computed had been directly observed by learners.

Even more subtly, each subject's idiosyncratic beliefs about hidden cause‐ effect covariation 
could be used to estimate his/her own inferences of the causal strength of the unobserved cause. 
Some subjects believed in strong covariation between the hidden cause and the effect. Other 
subjects' probability judgments showed weaker covariation. Remarkably, the individual 
differences in this virtual covariation measure (i.e. Δ P between the unobserved cause and the 
effect) significantly predicted subjects' subsequent judgments of the causal strength of the 
hidden cause in each of the four conditions: rs = 0.48, 0.43, 0.59, and 0.52, respectively (all ps
〈 0.05, Luhmann & Ahn 2007, unpublished analyses). Those subjects whose inferences implied 
strong hidden cause‐effect covariation judged the causal relationship to be stronger than those 
subjects whose inferences implied weak covariation. This pattern of beliefs suggests particularly 
elaborate reasoning about hidden causes.

These data could be also used to evaluate some of the theoretical claims about hidden causes. 
For example, as mentioned above, prominent theories of causal inference (e.g. Cheng, 1997) 
require that hidden causes occur independently of observed causes; that is, the likelihood of a 
hidden cause, U, in the presence of an observed cause, O, is the same as the likelihood of U in 
the absence of O, P(Uǀ O) = P(Uǀ~O). In contrast, according to subjects' probability judgments 
shown in Table 8.2, this requirement was violated in the majority of situations we tested. The 
hidden cause was judged to be (p.159) more likely when the observed cause was present and 
less likely when the observed cause was absent (i.e. P(UǀO) 〉 P(Uǀ~O)), as illustrated by the 
marginal means of O and ~O in the fourth column of Table 8.2. Nonetheless, subjects were 
uniformly willing to estimate the strength of both the hidden and observed cause. This suggests 
that people might not believe that independence of hidden causes is a requirement for valid 
causal inference (Luhmann & Ahn, 2005; see also Hagmayer & Waldmann, 2007).

These data also provide insight into the conditions under which people infer unobserved causes 
to be generative or inhibitory. In the previous studies, the unobserved cause was always judged 
to be generative. However, Schulz and Sommerville (2006) demonstrated that four‐year‐olds 
sometimes infer preventative hidden causes. In their study, children were presented with a 
cause that produced an effect four times. They then observed eight trials when the cause 
unreliably produced the effect (sometimes the effect was present when the cause was present, 
sometimes the effect was absent when the cause was present). Finally, the children were shown 
a button box that the experimenter had hidden during the cause—effect sequence. When asked 
to prevent the effect, children pressed the previously hidden button, indicating that they thought 
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it was preventative. To summarize, Schulz and Sommerville found that instances when a cause is 
present but the effect is absent (O~E observations) lead children to infer an inhibitory cause, 
but Luhmann and Ahn found that adults inferred a generative cause.

Luhmann and Ahn (2007) reasoned that O~E observations could be interpreted in multiple ways. 
For instance, O~E may occur (a) because an unobserved cause prevented the effect from 
happening or (b) because the observed cause is not entirely sufficient to bring about the effect. 
Thus, if a learner believes that the observed cause is weak, then the learner does not have to 
infer that the unobserved cause is inhibitory in order to account for O~E observations. Indeed, 
in conditions with O~E observations in the experiment described above (e.g. the Insufficient and 
Zero conditions), learners believed that the observed cause was relatively weak and the hidden 
cause was relatively strong and generative (e.g. note the relatively high causal judgment of the 
unobserved cause in the Insufficient cause). However, if people already believe that the 
observed cause is strongly generative, they might infer an unobserved inhibitory cause to 
explain O~E evidence.

To reconcile our findings with those of Schulz and Sommerville (2006), we designed an 
experiment that provided pre‐training to learners. This pre‐ training was designed to convince 
learners that the observed cause was, on its own, a sufficient cause of the effect. Once this pre‐
training was complete, we then presented the same Insufficient condition we used in the 
experiment described above. In light of the pre‐training, learners' judgments indicated that they 
believed that the hidden cause was preventative. This result suggests an important difference 
between O~E and ~O E. Observations of ~O E are (p.160) violations of causal determinism and 
require inferring a hidden generative cause. In contrast, observations of O~E are somewhat 
more ambiguous. If learners entertain the possibility that the observed cause has no causal 
influence at all, or if they allow for the possibility that the observed cause produces its effect 
unreliably, then there is no need to appeal to hidden causes at all. Alternatively, if learners 
believe that the observed cause reliably produces its effect (e.g. the children in Schulz and 
Sommerville (2006) experiment or the adults after our pre‐training), then observations of O~E
suggest the operation of hidden, preventative causes.

8.2.3 BUCKLE: A model of unobserved cause learning
Because existing theories of causal inference were unable to account for these results, Luhmann 
and Ahn (2007) proposed an alternative account, instantiated as a computational model called 
BUCKLE. The basic operation of BUCKLE involves (1) making inferences about the presence or 
absence of hidden causes (via Bayesian inference) and (2) then adjusting beliefs about the 
causal strength of all causes (both hidden and observed). These two steps are performed on 
each trial.

In Step 1, BUCKLE makes use of four pieces of information to estimate the probability that U is 
present: whether O and E are present or absent and the causal strengths of O and U that were 
calculated on the previous trial. Suppose that the learner observes an O E trial. If the learner 
believes that O is strong, then there is little reason to posit that U is present because O could 
have produced E. The stronger the causal strength of O, the less likely that U is to be present. 
However, if O is weak, then U is needed to explain the presence of E. In fact, if O has zero causal 
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strength, then U must be present, otherwise there is no way to explain the presence of E. 
Finally, suppose that the learner observes an ~O E trial. Like the previous case, U also must be 
present because O is not present to produce E. These last two examples show how BUCKLE 
embodies the assumption of causal determinism; if O is unable to produce E because it is absent 
or has zero causal strength, then U must have been present and must have caused it. This sort of 
reasoning drives BUCKLE's inference about the presence of U on a given trial.

In Step 2, BUCKLE updates its estimate of the causal strengths of O and U. To do so, BUCKLE 
first predicts whether E should be present or not based on its current causal strengths of O and
U, knowledge about the presence/absence of O, and its inference about the presence of U (from 
Step 1). Intuitively, this prediction is made the following way. Suppose we know that O is absent. 
Then, the only way E could be present is by U. Thus, the probability that E would be present is 
the causal strength of U multiplied by the probability that U is present. Alternatively, if O is 
present, the probability of E being present is increased if O is strong, if U is strong, and if U is 
likely present. Once BUCKLE has made its prediction about E, BUCKLE calculates (p.161) the 
difference between this prediction and knowledge about the actual presence/absence of E. This 
step is very similar to the Rescorla and Wagner (1972) model. If BUCKLE under‐predicts E, then 
the causal strengths of the present causes are increased. If BUCKLE over‐predicts E, they are 
decreased.

BUCKLE is capable of accounting for the patterns of inferences described above, both the trial‐
by‐trial judgments of the probability of an unobserved cause being present and the causal 
strength judgments. Additionally, BUCKLE explains how inferences that people make about 
unobserved causes interact with their inferences about observed causes such as order effects 
(Luhmann & Ahn, 2007).

In summary, these studies have shown that when an event occurs that cannot be explained by an 
observed cause, people infer an unobserved cause to explain the event. These studies have so 
far focused on inferences that people make about single events. In the next section, we will 
discuss inferences people make about unobserved causes from patterns of events.

8.3 Causal determinism about systematic patterns among events
We argue that when people perceive a pattern in a sequence of events, they are reluctant to 
treat it as purely accidental, and instead they infer that the pattern was planned or produced 
through a causal mechanism. A classic example involves the pattern of bombs dropped on 
London by the Nazis during World War II (Gilovich, 1991, pp. 19–21; Hastie & Dawes, 2001, pp. 
160–161). Even though the locations of the bombings have since been shown to be statistically 
random, many British citizens thought they saw clusters of bombings, and consequently inferred 
that German bombers deliberately avoided locations where German spies lived, creating the 
perceived clustering. This is a perfect example of how people infer an unobserved cause to 
explain an observed pattern (even though the pattern is statistically absent).

Perhaps the most basic types of patterns from which people infer a causal mechanism are those 
studied in introductory statistics courses: differences between the mean scores of two groups 
and correlations between two variables. There exists extensive literature about causal learning 



When and how do people reason about unobserved causes?

Page 13 of 32

of this sort (e.g. Cheng, 1997; Jenkins & Ward, 1965). Here we focus on other patterns from 
which people are likely to infer an unobserved cause.

8.3.1 Autocorrelation
One type of pattern that has been investigated in previous literature is autocorrelation, when a 
previous event is statistically correlated with a future event. We will first discuss two types of 
irrational beliefs about autocorrelation that (p.162) people have been shown to endorse and 
later discuss how beliefs about the underlying unobserved causal mechanisms moderate these 
fallacies.

One famous example of irrational belief in ‘negative autocorrelation’ is called the gambler's 
fallacy. Specifically, gamblers often believe that if they lost on the previous gamble (e.g. roulette 
bet), they are ‘due for a win’ on the next gamble. That is, people sometimes believe that the 
previous event negatively predicts the next event. A similar phenomenon occurs with other 
processes that are expected to be random. For example, people think that having six boys in a 
row (BBBBBB) is less likely than a specific intermixed sequence (e.g. GBBGBG) even though 
both are equally likely. As famously stated in a Dear Abby column, a woman who just had her 
eighth girl in a row claimed that ‘this one was supposed to have been a boy’ as if the previous 
births negatively influenced the chances of the future birth (DEAR ABBY column, reprinted in 
Hastie & Dawes, 2001, p. 159).

Consider another fallacy termed ‘hot‐hand.’ This fallacy is named after the belief that basketball 
players go through hot streaks of many baskets in a row and cold streaks of many misses in a 
row. In fact, statistical analyses have not found even a single basketball player whose streaks 
deviate from chance; however, hot‐hand has been found in other sports (Adams, 1995; Dorsey‐
Palmateer & Smith, 2004; Gilden & Wilson, 1995; 1996; Smith, 2003).

What mediates whether people believe in hot‐hand or gambler's fallacy? Restated, for a given 
random series of events, why do people sometimes infer streaks (positive autocorrelation) and 
other times infer alternation (negative autocorrelation)? Burns and Corpus (2004) proposed that 
inferring positive vs. negative autocorrelation depends upon the causal mechanism that people 
believe to have generated the data. Specifically, people believe that some causal mechanisms 
have ‘momentum’ and cause streaks, whereas mechanisms that are ‘random’ do not produce 
streaks. Burns and Corpus presented participants with scenarios intended to imply either a 
random mechanism (e.g. roulette wheel) or a mechanism with momentum (e.g. basketball‐
shooting under competition). Participants were told that in a series of 100 events, the 
frequencies of the two outcomes had been equal, but that the event ended with a streak of one 
outcome. In the scenarios that participants believed to be produced by a random mechanism, 
participants were more likely to predict that the next event would break the streak (i.e. negative 
autocorrelation), whereas in the conditions that participants believed to have been produced by 
a non‐random mechanism with momentum, participants were more likely to believe that the next 
event would continue the streak.

Ayton and Fischer (2004) conducted an experiment demonstrating the reverse effect; 
participants observed a binary sequence of events and were then asked to choose whether they 
thought the sequence was produced by either a mechanism meant to imply randomness (e.g. 
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roulette wheel) or by a mechanism meant to imply momentum (e.g. basketball shooting). After 
observing (p.163) positive/negative autocorrelation within the sequence of events, people 
tended to infer non‐random/random mechanisms, respectively. In sum, these studies show that 
people infer different unobserved mechanisms based on different observed patterns.

These studies have compared two generating procedures, random and streaky mechanisms. One 
interesting possibility is that people may also infer a mechanism that frequently alternates. For 
example, it seems likely that most people do not go to the same restaurant twice in a row–after 
going to a restaurant once, one would probably switch to a different restaurant for diversity. In a 
series of data that is strongly alternating, it seems likely that people would infer a third type of 
mechanism that produces alternating sequences.

8.3.2 Tolerance and sensitization
A recent study by Rottman and Ahn (2009) demonstrates that people infer a causal mechanism 
given other kinds of patterns: tolerance and sensitization. An example of a tolerance scenario is 
tolerance to coffee. The first time a person drinks one cup of coffee he/she may feel very awake. 
However, after repeatedly drinking one cup of coffee, he/she becomes tolerant and one cup of 
coffee has little effect. The person may then drink two cups of coffee and initially feel very alert, 
but after repeatedly drinking two cups of coffee, again becomes tolerant. In sum, tolerance 
involves a decreasing effect over time when the cause is held constant. Sensitization is 
essentially the opposite of tolerance; sensitization involves an increasing effect over time when 
the cause is held constant. For example, many antidepressants require repeated exposure for 
full effectiveness. Two pills of antidepressant may initially have no effect, but after repeated 
exposure, two pills may be sufficient to make a person very happy. If the person cuts down to 
one pill of antidepressant, the decrease may initially result in a decrease in happiness, but if the 
person becomes sensitized to the reduced amount of antidepressant, over time, one pill may 
become sufficient.

To determine whether people are sensitive to these tolerance/sensitization schemata, Rottman 
and Ahn showed participants scenarios in which machines were tested 14 times in a row for 
their emissions (e.g. noise, light, heat, or smell). The input to the machines was a lever that 
could be set to three positions, analogous to the number of cups of coffee or number of pills of 
antidepressant for the scenarios described above. In one set of ‘ordered’ conditions, the 
emissions increased (sensitization) or decreased (tolerance) over repeated use. In another set of 
‘unordered’ conditions, there was no temporal pattern so the data looked random. Figure 8.2
depicts the ordered and unordered versions of both the tolerance and sensitization conditions.

After observing these trials in each condition, participants were asked to ‘rate how confident 
you are that the lever has the capacity to affect’ the (p.164)
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(p.165) emission (e.g. noise, light, heat, or 
smell). Participants gave considerably 
higher ratings in the ordered tolerance and 
sensitization conditions than in the 
unordered conditions. What is particularly 
interesting about the results is that people 
in both the ordered and unordered 
conditions saw identical data in terms of the 
simple correlation between the lever and 
the emission (i.e. not considering the 
temporal dimension). This is the type of 
information that has been used as the basis 
of causal inferences by most traditional 
causal induction models, and thus, they 
would have predicted no difference between 
the two conditions. Furthermore, the overall 
correlation was zero. Despite this, people in 
the ordered condition were moderately 
confident that the lever had causal efficacy.
One way to explain this finding appeals to 
unobserved causes. For example, in the 
ordered‐tolerance condition, participants 
likely inferred a process that occurs within 
each individual machine such that a latent 
inhibitory variable increases over time. This 
is why the emissions decrease over time. In 
the ordered‐sensitization condition, 
participants likely inferred an unobserved 
inhibitory cause that decreases over time, 
explaining why the emissions increase. It 
seems unlikely that people would think that 
time itself directly influences the emissions, 
however, over time, the machine may 
become ‘worn in’ and produce less 
emission. In this case, the variable 
responsible for ‘wearing in’ would be the 
unobserved variable that inhibits the 
emissions and is correlated with time.

In this account, people would use the 
temporal pattern to infer an unobserved 
cause, and the combination of the lever and 
this unobserved cause completely explains the emissions. This explains why participants judged 
that the lever influences the emissions. After all, in the ordered conditions, the emission is 
statistically dependent upon the lever once time or the unobserved cause is taken into account. 
However, when there is no temporal pattern as in the unordered condition, there is no reason to 

Fig. 8.2  Tolerance and sensitization, 
ordered and unordered conditions.

Note: Dashed lines (not shown to 
participants) illustrate how the same 
data were reordered from the ordered 
to unordered conditions.
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infer an unobserved cause that changes with time. Consequently people have no way to make 
sense of the influence of the lever and judge it not causally efficacious.

It is not difficult to find real‐world examples of this reasoning. Caffeine is an adenosine 
antagonist; caffeine inhibits sleep through blocking adenosine, which promotes sleep. However, 
over repeated caffeine exposure, the number of adenosine receptors increases, making caffeine 
less effective at blocking them. The number of adenosine receptors is thus an unobserved cause 
that changes over time within an individual person.

The above situations depict repeated treatments on the same machine. To further test whether 
people understand the tolerance/sensitization scenarios, we created another set of scenarios in 
which the increasing/decreasing patterns occur to many different machines. Going back to the 
coffee scenario, one person's coffee drinking can influence the effectiveness of coffee for that 
same person at a later time. However, one person's coffee drinking should not (p.166) 

influence the effectiveness of coffee for a different person at a later time–tolerance to coffee 
must happen within one entity. If people only apply the tolerance/sensitization schemata for one‐
entity scenarios, then they should give higher causal efficacy ratings for the lever in one‐entity 
scenarios compared to many‐entity scenarios that depict the exact same input/output data 
patterns. In a second experiment designed to test this one‐entity vs. many‐ entity distinction, we 
found that people were more confident in the causal efficacy of the lever in the one‐entity than 
many‐entities conditions both for sensitization and tolerance.

This experiment further clarifies the inferences about the unobserved variable. In this 
experiment, the data patterns in the one‐entity and many‐entity conditions were identical for the 
lever, emissions, and temporal order. However, it is only in the one‐entity condition that one can 
plausibly infer a latent process; an unobserved cause within each individual machine changes 
and affects the emissions even though the observed cause's strength remains constant. As 
previously explained, if people infer an unobserved cause in the one‐entity scenario, the 
combination of this unobserved variable and the lever completely accounts for the pattern of 
emissions, which explains why people rated the lever to be efficacious. However, it would be too 
bizarre to infer a latent process occurring within each individual getting transferred to the 
person who happens to drink coffee next or the machine that happens to be tested next. If 
people do not infer an unobserved cause in the many‐entities scenario, the pattern of data 
between the lever and emission does not make sense; after all, as is also true in the one‐entity 
scenario, there is no simple correlation between the lever and emission. This explains why 
participants gave lower ratings for the causal efficacy of the lever in the many‐entities condition. 
In sum, this study suggests that inferences about an unobserved cause that changes over time 
within one entity influenced inferences about the relationship between the observed cause and 
effect.

8.3.3 Developmental origins of beliefs about order
The previous studies have focused on cases when adults perceive a pattern and infer an 
unobserved cause to explain the pattern. Some previous studies have plotted the development of 
children's beliefs and inferences about causal mechanisms. Friedman (2001) found that four‐
year‐old children believe that it is plausible for animate agents to create an ordered pattern 
from randomness but less plausible for non‐animate causes (e.g. the wind) to do the same. That 
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is, even without seeing a particular cause occur, four‐year‐olds infer that one type of unobserved 
cause is more plausible than another.

Newman, Keil, Kuhlmeier, and Wynn (2010) found similar results among even 12‐month‐old 
children. They created scenarios in which the infants initially saw either an ordered or 
unordered pile of blocks. Then an opaque barrier occluded the blocks and either a rolling ball or 
an animate (p.167) agent (a self‐propelled circular face) moved behind the occluder, 
presumably coming in contact with the blocks. Finally, the occluder was removed displaying 
either ordered and unordered blocks. The infants were more surprised (looked longer) when the 
ball appeared to create order from disorder than disorder from order, but they looked equally 
long at the two conditions for the animate agent. In sum, from a fairly early age, children 
understand that only animate mechanisms can create ordered patterns and infer an unobserved 
agent to explain an observed pattern.

8.3.4 Other types of patterns and discussion
The tolerance/sensitization experiments described above made us aware that there might be 
other types of patterns that people may use to infer unobserved causes. When making the 
unordered tolerance/sensitization conditions (see Figure 8.2), we tried to make the temporal 
patterns look as random as possible. However, despite our best efforts, in informal discussions 
after the experiment we discovered that some participants still saw patterns in the data. (See 
Hastie & Dawes, 2001, p. 355, for an example of the many possible patterns one might infer 
from a series of six sequential coin flips.) Participants saw increasing or decreasing patterns 
within subsets of data and interpreted them as meaningful trends (e.g. an increasing pattern in 
Trials 10–14 in the tolerance‐unordered condition in Figure 8.2 despite Trials 9 and 13). Thus, 
tolerance/sensitization may potentially be triggered for noisier data than what we presented to 
participants or subsets of data. Some participants also saw alternating patterns (e.g. Trials 1–5 
in the tolerance‐unordered condition in Figure 8.2) of the form we proposed at the end of 
Section 8.3.1. Another type of pattern people would likely infer in other situations is a periodic 
or sinusoidal pattern. A sinusoidal pattern is similar to positive autocorrelation in that the 
previous trial predicts the next trial, but different in that the period of repetition may be 
constant which is not necessarily the case for autocorrelation. In all of these scenarios, we 
believe that people would likely attribute an observed pattern to an unobserved cause, which 
could further influence their judgments about observed causes. (But see the last section of this 
chapter for a discussion of boundary conditions.)

There are a number of important future directions of this research. First, it would be useful to 
determine whether people have a limited set of schemata or patterns they primarily search for 
when learning new causal relationships. A limited set or taxonomy of plausible schemata could 
reduce the complexity of causal learning given that there are infinite numbers of possible 
patterns caused by unobserved variables. Exploring the diversity of causal schemata may help 
us better understand the limits of causal learning as well as how people make generalizations 
from schemata they know and learn new schemata.

There might also be important individual differences in inferring unobserved causes due to 
pattern detection. Certain people, for example, paranoid (p.168) people, may have a higher 
likelihood of seeing a pattern where none exists and attributing the pattern to an unobserved 
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cause. Prior experience with certain types of mechanisms or schemata may also make a person 
more likely to infer a particular type of mechanism.

Finally, though some of these phenomena (e.g. hot‐hand fallacy) have been studied extensively, 
they are not usually considered the domain of causal reasoning, but rather decision making. It 
would be useful to integrate research about systematic patterns with more traditional causal 
learning paradigms that have focused on single events (i.e. the previous section). After all, when 
observing a new set of data, people are sensitive to both single events and patterns of events, 
and a general model of causal learning should incorporate both.

8.4 Beliefs in stability of causal relations
The previous two sections have suggested that people infer an unobserved cause to understand 
unexplained events and systematic patterns of events. In this section, we suggest that people 
also infer an unobserved cause if they notice that the relationship between an observed cause 
and effect changes. For example if you know that a medicine has a particular side effect for most 
people, but find a group of people who do not develop the side effect, it would make sense to 
infer an unobserved cause to explain the difference (e.g. the group has an unusual gene). 
Restated, it seems likely that people will infer an unobserved cause when a causal relationship is 
not stable. We will discuss two types of stability of causal relationships: stability across different 
samples and stability over time.

8.4.1 Causal power–stability across samples

Cheng (Power PC; Cheng, 1997) proposed that when people judge whether X causes Y, people 
intuitively estimate causal power, the ‘probability with which [X] influences [Y]’ (Buehner, 
Cheng, & Clifford, 2003). Consider the following scenario: you are testing the side‐effects of a 
new drug and discover that when given to 100 people without headaches, 50 of these people 
develop a headache. Suppose you gave the drug to 100 people, 50 of whom already have a 
headache. How many out of these 100 would have a headache after taking the drug? According 
to Power PC theory 75 people would have a headache. In the first situation, the medicine caused 
50% of the people to get a headache. In the second scenario, 50 people already have a 
headache, and the medicine will cause 50% of the remaining people to get a headache. The base 
rate percent of people who already have a headache may vary from situation to situation, but 
Cheng argues that the percent of people who do not already have a headache and will get a 
headache should be constant across scenarios.

(p.169) Before moving on, it is useful to understand why Cheng makes this argument, though 
some readers may prefer to skip ahead to the results of her experiment. One easy way to 
calculate causal strength is simply to subtract the probability of an effect (E) occurring in the 
presence of an observed cause (O) minus the probability of the effect occurring in the absence of 
the cause: P(EǀO) ‐ P(Eǀ~O) (i.e. ΔP measure mentioned earlier). However, this calculation has 
the problem that it is influenced by ceiling effects. When the base rate of the effect occurring 
without the cause is greater than zero, the causal strength cannot be the maximum 1 even if the 
effect always occurs in the presence of the cause. To get around this problem, Cheng uses a 
number of assumptions to calculate causal power.3 First, she assumes that an effect can occur 
for two reasons: if the observed cause produces the effect or if an unobserved cause (U) 
produces the effect (or they can both produce it simultaneously). This assumption is very useful 
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because it implies that if E occurs in the absence of O then U must be responsible. Thus the 
probability of the effect occurring in the absence of the cause, P(Eǀ~O) is an estimate of the 
frequency that the unobserved was responsible for the effect. Second, she assumes that the 
observed cause occurs independently from unobserved causes, P(OǀU) = P(Oǀ~U), and that O
and U influence E independently. These assumptions are also very useful because we now 
assume that P(Eǀ~O) is an estimate of how frequently the unobserved cause produces the effect 
in general, even when O is present. To determine causal power, Δ P is divided by 1 ‐ P(Eǀ~O) 
which effectively normalizes it on the probability that the unobserved cause produced the effect, 
resulting in the increase in probability of the effect due to the observed cause regardless of 
unobserved causes.

The causal power of a particular cause/effect relationship is thus supposed to be the same in 
samples regardless of unobserved causes (the base rate of E). If different causal powers are 
observed in different samples, one likely explanation is that the assumptions about the 
unobserved causes are violated, and that the apparent relationship between the observed cause 
and effect is partially due to unobserved causes.

Liljeholm and Cheng (2007) tested whether people believe that the causal power of a specific 
cause is stable across situations. They created two conditions, each of which had three scenarios 
like the headache scenario. In one condition, the three scenarios had the same causal power but 
different base rates of headache. In a second condition, the base rate of headache was the same 
(zero people initially had a headache) but the causal power was different (p.170) across the 
three scenarios. After observing the data for the three scenarios in each condition, participants 
answered whether they thought the medicine interacts with some unobserved factor across the 
experiments or whether the medicine has the same influence across the three scenarios. 
Whereas only one third of participants thought the medicine interacted with an unobserved 
factor in the causal power constant condition, 86% thought that the medicine interacted with an 
unobserved factor in the condition in which causal power varied.

In sum, causal power seems to be one way in which people expect causal relations to be stable 
across scenarios. When it is not stable, people infer an unobserved cause that interacts with the 
observed cause and is responsible for the discrepant causal power estimates. The type of 
stability of causal relations discussed here relates to stability across different contexts that are 
distinguished for learners. That is, Liljeholm and Cheng (2007) presented participants with 
three scenarios each framed as an individual study with different hypothetical patients. In the 
next studies, participants learned about changing causal relations on their own.

8.4.2 Grouping effects–stability over time
One of the challenging aspects of causal learning is that there are infinitely many possible 
interacting factors and these interacting factors change over time and context. Sometimes we 
have a priori beliefs about possible interacting factors; however, often we do not know about 
interacting factors, or whether interacting factors have changed. In this case, we may learn 
about interacting factors by noticing a difference in a causal relationship over time. When we 
observe a change in a causal relationship over time, we will likely conclude that an unobserved 
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interacting factor changed. One critical assumption for making such an inference is that 
unobserved factors are stable for long enough periods of time that we can notice the difference.

Consider the following double‐switch scenario that was briefly discussed at the beginning of this 
chapter listed in Table 8.1 as biconditional. Some lights are connected to two switches (e.g. often 
at opposite ends of a hallway). There are two important characterizations of this scenario. First, 
whenever one switch is flipped (assuming that the other light switch is not flipped at exactly the 
same time), the state of the light will change. Second, neither of the two switches has an ‘on’ or 
‘off’ position–there is not necessarily any correlation between the position of a given switch and 
the state of the light. Figure 8.3 provides a wiring diagram of a double light switch. The light will 
be on whenever the switches make a complete circuit (if both switches are up or if both switches 
are down).

Suppose you enter a room for the first time and discover that when you flip a switch up, a light 
goes on, and when you flip it down, the light goes off (grey cells, Steps 1–4 in Table 8.3). If you 
assume that other potential causes of the (p.171)

Table 8.3 Double light switch, grouped scenario.*

Fig. 8.3  Wiring diagram for double light 
switch scenario.
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(*) Note: For Tables 8.3 and 8.4, ‘U’ represents an unobserved interacting factor and ‘I’ 
represents a factor learners are likely to infer. 0 represents down for the switch and off for 
the light, and 1 represents up for the switch and on for the light.

(p.172) light are fairly stable (and do not happen to change at the same moment you flipped 
your switch), you would infer that the switch influences the light. Later (Steps 4–5), the light 
turns off without anyone touching the switch (perhaps your daughter flipped the other switch 
unknown to you; U in Table 8.3). Afterwards, when the switch is down, the light is on, and off 
when up (Steps 5–8). From this scenario, you might be very confident that your switch 
influences the light; there were two long periods when the status of the switch correlated with 
the status of the light. Additionally, because the light mysteriously turned off, you might infer an 
unobserved factor (I in Table 8.3) that interacts with your switch, explaining the overall zero 
contingency between the switch and light.
However, inferring the observed switch to be efficacious depends upon the stability of the 
unobserved cause. For example, consider the same data from Table 8.3, rearranged as in Table
8.4. Initially, the switch is down and the light is off (Step 1). In Step 2 the switch is flipped up, 
but the light still stays off. In order to believe that the switch is causally efficacious, one must 
infer that at the moment the switch was flipped, an unobserved factor coincidentally changed 
and counteracted the effect of the observed switch, as specified under column ‘U’ (unobserved 
interacting factor). Then, in Step 3, the light turns on without flipping the switch, and so on. 
Thus, for the situation shown in Table 8.4, it would be extremely difficult to infer the switch to 
be causally efficacious: The switch cannot be the sole cause of the light because there is zero 
contingency with the light. Furthermore, it would be difficult to infer it as part of an interaction 
because doing so would require inferring an unobserved factor operating as specified under 
column ‘U,’ which is counterintuitive; the unobserved interacting factor is highly unstable and 
exceedingly complicated to track. Instead, the simplest account (intuitively) would be to infer an 
unobserved factor that is entirely responsible for turning the light on and off. Such a factor 
would be perfectly correlated with the light, as specified under column ‘I’ (inferred factor). If a 
learner inferred ‘I’, he/she would likely infer that the switch is not causally responsible for the 
light at all.

These two examples were meant to demonstrate that if an unobserved cause is relatively stable 
for periods of time with a few salient different periods as in

Table 8.4 Double light switch, ungrouped scenario.
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(p.173) Table 8.3, a learner is likely to infer that an interaction is taking place with an 
unobserved cause. However, if the scenario is very unstable, as in Table 8.4, then the learner is 
less likely to infer an interaction with an unobserved cause. Instead, they would likely infer that 
the unobserved cause is not responsible for the effect at all.
To investigate these inferences, we gave participants a cover‐story about machines that produce 
blocks of various shapes (e.g. square or triangle), and asked participants to determine if the 
position of a lever on the machines affects the shape of the blocks. Participants then observed 
videos of 20 trials in a continuous temporal sequence; from trial to trial, the lever sometimes 
switched between the left and right position and the shape of block (e.g. square or triangle) 
sometimes changed. In all conditions, the lever was statistically uncorrelated with the shape of 
the blocks.

Rottman and Ahn (in prep. see Rottman & Ahn 2009, for partial results) manipulated two 
aspects of the scenarios. First, we manipulated the grouping of the trials similar to that shown in 
Tables 8.3 and 8.4. In the ‘grouped’ condition, there were relatively stable periods of time when 
one shape was associated with one position of the lever, and other periods when the association 
flipped. In the ‘ungrouped’ condition, these two different associations were more intermixed so 
that there were no discernable stable periods. If grouping allows people to infer an unobserved 
cause that is stable for periods of time and then switches, people should infer an interacting 
unobserved cause more in the grouped than ungrouped condition.

Another manipulation of the study was whether the scenario involved only one machine 
changing over time or different machines. In the one‐ machine condition, all 20 trials occurred 
with one machine. That is, in the one‐machine conditions, the lever on the machine was 
sometimes flipped back and forth between left and right, and the shape of the block produced by 
the machine sometimes changed over 20 trials. In the many‐machines conditions, 20 different 
machines were observed once each: the lever of each machine was set either to the left or the 
right, and the machine produced either a square or triangle. Even though the many‐machine 
conditions were identical to the one‐machine conditions in every other way, we reasoned that 
participants would not make different inferences about the unobserved cause between the 
grouped vs. ungrouped conditions. Because each machine is different, we reasoned that 
participants would not make use of the temporal grouping information to infer a stable 
unobserved cause; after all, participants had no reason why they were presented with the 
machines in the particular order. If the temporal stability information was not deemed important 
and people did not use it to infer stability, there should not be any difference between the 
grouped and ungrouped conditions for many‐ machines. Such a finding would suggest a caveat 
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to the assumption of stability: people only distinguish between stable and unstable scenarios for
(p.174)

inferring interactions with unobserved 
causes when time is a meaningful variable.
After observing each scenario, participants 
rated their agreement with whether ‘A 
combination of the lever and some other 
factor influenced the shape of the blocks’ 
from 1 (‘Absolutely Disagree’) to 9 
(‘Absolutely Agree’) (see Figure 8.4). As 
expected, in the one‐machine condition, 
participants inferred an interaction with an 
unobserved cause more in the grouped than 
ungrouped condition. However, in the many‐
machine condition, when time was not a 
meaningful factor, there was no difference 
between the grouped and ungrouped 
conditions in participants' inferences about 
an interaction with an unobserved cause.4

In other words, only when time is a 
meaningful variable (i.e. the one‐machine 
condition), do people use temporal stability 
to infer an interaction with an unobserved cause. When time is not meaningful (i.e. the many‐
machine condition), there is no difference between grouped and ungrouped conditions.

Inferring that there is an unobserved interacting factor has further implications for peoples' 
views of the observed cause. Specifically, (p.175) Rottman & Ahn (2009; Experiment 1) 
demonstrated that the more grouped the scenario, the higher the causal strength ratings that 
participants gave it. Across these two experiments, when a scenario is grouped, people are able 
to infer the interacting unobserved cause and still believe that the observed cause influences the 
effect even though there is no correlation between the two. However, when the scenario is 
ungrouped, people are less likely to infer an unobserved factor and more likely to infer that the 
observed cause is not related to the effect (after all, there is zero correlation).

One of the important implications of this study is that people spontaneously distinguish between 
scenarios with stable unobserved causes and scenarios with unstable unobserved causes, even 
though both can appear to have zero correlation between the cause and effect. Consider the 
study briefly discussed in the introduction that investigated the role of pollution (observed 
cause) on daily temperature range (effect; Gong, Guo, & Ho, 2006). The researchers found that 
pollution decreases daily temperature range during the winter, but pollution increases daily 
temperature range during the summer. Summarized, the season flips the direction of the 
influence of pollution on diurnal temperature range. This example makes an important point: the 
researchers did not know about the interaction with season a priori. At some point, they must 
have noticed that the relationship between pollution and weather is flipped depending on the 
season, and if they had overlooked this important factor, the relationship between pollution and 

Fig. 8.4  Combination of lever and 
unobserved factor influenced shape.

Note: * paired t‐test, p 〈 0.05,† 
interaction in repeated‐measures 
ANOVA, p 〈 0.05.
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diurnal temperature range would have been obscured and might appear to not exist. By 
observing a stream of data and noticing periods of stability, the researchers could uncover that 
an unpredicted variable (season) plays an important interacting role.

In summary, these studies suggest that people believe causal relationships to be fairly stable 
across contexts, and if they notice a difference across samples or times, they posit an 
unobserved factor to explain the difference. Presumably people would also infer systematic 
patterns to be stable across different contexts, and would likewise posit an unobserved factor if 
they notice a difference. For example, if a cause exhibited tolerance for one sample and 
sensitization for another, or positive autocorrelation for one sample and negative 
autocorrelation for another, people would likely infer an unobserved cause to explain the 
difference. Additionally, if a cause appeared to switch from a noisy‐or to a biconditional 
functional relationship, people would also infer that an unobserved factor changed. In this way, 
the inferences we have discussed about single events, patterns of events, and relationships 
between causes/effects can be viewed in a hierarchy. If an unexplained change occurs anywhere 
along the hierarchy from the lowest level (single events), middle level (patterns of events) or the 
highest level (relationships between causes/effects), people will infer that an unobserved cause 
is responsible.

(p.176) 8.5 Working memory–A requirement for reasoning about unobserved 
causes
We have now discussed a number of situations when people infer unobserved causes. However, 
reasoning about unobserved causes is also cognitively challenging. As we have already 
explained, there are many possible unobserved and unattended causes, and many ways in which 
those causes can interact with observed causes. In this section, we propose that reasoning about 
unobserved causes requires considerable working memory capacity. We will now review a 
particular phenomenon, recency/primacy effects, in which beliefs about unobserved causes play 
a central role. Then we will demonstrate how working memory mediates this phenomenon.

Suppose you initially observe a set of data, mostly showing positive covariation between two 
events, followed by data mostly showing negative covariation between the same events. For 
instance, for the first half of the baseball season, you notice that your favorite baseball team was 
more likely to win when you were wearing your ‘lucky’ socks, but for the second half of the 
baseball season, you notice that your team was more likely to lose when you were wearing your 
‘lucky’ socks. Would you consider your socks to be still lucky? There are many possible 
strategies a reasonable learner could take to answer this question. One could average across all 
of the available data, concluding that the socks have nothing to do with winning. Alternatively, 
one could give more weight on the most recent data, concluding that wearing those socks 
actually hurts performance. Or one can give more weight on initial data, concluding that 
wearing those socks improves performance. It is difficult to tell which one of these three is the 
most rational strategy, and in fact, the experimental results using this paradigm show that 
people demonstrate all three strategies (Dennis & Ahn 2001; Glautier, 2008; Lòpez, Shanks, 
Almaraz, & Fernàndez, 1998; Marsh & Ahn, 2006; Shanks, Lòpez, Darby, & Dickinson, 1996).

In a recent study, Luhmann and Ahn (in press) found empirical evidence that the conflicting 
findings of primacy/recency effects can be explained by learners' beliefs about unobserved 
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causes. Specifically, people who reason more about unobserved causes tend to show primacy, 
whereas people who reason less about unobserved causes tend to show recency effects in their 
causal strength judgments. Learners were presented with sequences of covariation information 
involving medications and potential side effects. Sequences always used the same set of 
observations, but were constructed to present the majority of positive evidence first, followed by 
the majority of negative evidence (Positive—Negative) or vice versa (Negative—Positive). 
Sometimes during the learning sequence, participants were asked to explain why the effect did 
or did not occur, and at the end of the sequence, learners made causal strength judgments.

(p.177) Some subjects were particularly likely to explain the outcome of a specific trial by 
appealing to unobserved causes. For example, consider a learner in the Positive–Negative 
condition who observed the first half of positive evidence, and then observes some contradictory 
negative evidence (i.e. a trial when the cause occurs but the effect does not). Participants were 
then prompted to choose one explanation for why this happened: ‘[the cause] prevented [the 
effect]’, ‘it is pure coincidence that’ [the effect] did not occur after [the cause]', or ‘for some 
reason, [the cause] failed to cause [the effect].’ If the participant appeals to an unobserved 
cause, he/she would choose the third option, which subtly references alternative causal 
influences (i.e. ‘for some reason’). The unobserved cause could have overridden the observed 
cause and prevented the effect, allowing participants to continue to believe that the observed 
cause was generative. In fact, participants who choose this option gave higher causal strength 
ratings in the Positive–Negative condition. (These participants exhibited a primacy effect 
because their higher causal strength ratings reflect the initial positive contingency.) These 
results suggest that unexpected covariation information elicits reasoning about unobserved, 
alternative causes in some learners. Such reasoning tends to ‘excuse’ the new, contradictory 
information and leave the prior causal beliefs relatively untouched.

However, other learners appealed to unobserved causes less and instead used this same 
conflicting information to directly modify their causal beliefs. For example, in the Positive—
Negative case, upon encountering the negative evidence, a learner could take this evidence at 
face value and modify the initial belief that the cause generates the effect to conclude that the 
cause is not related to the effect or even prevented the effect. Such learners subsequently gave 
lower causal strength estimates (a recency effect).

So far, these results suggest that primacy/recency effects in causal judgments are related to 
whether people appeal to unobserved causes. However, why do some people appeal to 
unobserved causes more than others? We hypothesize that one of the reasons is the ease with 
which learners are able to reason about unobserved causes that produces these different 
learning strategies. Marsh and Ahn (2006) demonstrated that learners with higher verbal 
working memory capacity were more likely to show a primacy effect. Thus, we reasoned that 
working memory may facilitate reasoning about unobserved causes, which we know influences 
primacy/recency in causal strength judgments. To test this hypothesis, Luhmann and Ahn (in 
press) created two situations that experimentally manipulated the ease of reasoning about 
unobserved causes.

First, Luhmann and Ahn (in press) increased the cognitive load during the task, which we 
predicted would decrease the ease of reasoning about unobserved causes and produce a recency 
effect. The learners performed the same task explained above while simultaneously performing 
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a difficult secondary task (counting backwards by 3s) This manipulation impaired rea‐ (p.178) 

soning about unobserved causes. Participants took individual trials at face value and modified 
existing hypotheses. For example, in the Positive–Negative condition, when faced with the 
negative evidence, participants simply said that the cause inhibits the effect, presumably 
because it would be too taxing on working memory to postulate unobserved causes. 
Furthermore, participants' overall causal strength judgments showed a recency effect.

Second, we made it easier for learners to reason about unobserved causes by simply making the 
unobserved causes observed. During the second, contradictory half of the event sequence, 
learners were told that an alternative cause was present. Note that they were not told that the 
effect occurred because of this alternative cause (that is, there still is an ambiguity as to what 
was the true cause of the effect). Yet, this manipulation increased participants' reasoning about 
unobserved causes and they interpreted information that contradicted their prior causal beliefs 
as “something” going wrong, leaving their beliefs relatively untouched. Furthermore, their 
overall causal strength judgments showed a primacy effect.

In sum, these studies demonstrate that working memory moderates inferences about 
unobserved causes for primacy/recency effects. Based on these results, it is plausible that 
working memory would moderate other inferences about unobserved causes, such as those in 
the double light switch scenario or perhaps those discussed in the section on Power PC. Given 
that reasoning about unobserved causes (e.g. potential confounds; see Cheng, 1997) is 
necessary for normative causal inference, future research on the limits and conditions under 
which people reason about unobserved causes is particularly important.

8.6 Conclusions
In this chapter, we demonstrated that people make a number of sophisticated inferences about 
unobserved causes. First, people infer an unobserved cause when a single unexplained event 
happens: children appeal to magic when they don't have a physical explanation for why one 
object would move without another object touching it (Phelps & Woolley, 1994), and adults infer 
that a hidden button was pressed when a light bulb illuminates without an observed button 
being pressed (Luhmann & Ahn, 2007). Second, people infer an unobserved factor to explain 
patterns of events that cannot be explained by the observed causes, such as a series of 10 coin 
flips all landing on heads (Ayton & Fischer, 2004), or a person becoming tolerant to caffeine 
(Rottman & Ahn, in press). (In both these scenarios, the mechanism that produced the pattern is 
not observed.) Third, people infer an unobserved cause to explain changes in the relationship 
between a cause and effect, for example, if a cause sometimes generates the effect and 
sometimes inhibits the effect (Rottman & Ahn, 2009).

(p.179) Though we have not focused much on causal learning models, these experiments 
suggest some important implications for the development of future models. Most existing 
models of causal learning have focused upon observed causes and make fairly simple 
assumptions about unobserved causes. For example, existing models assume that unobserved 
causes are always present (Rescorla & Wagner, 1972) or are not confounded with observed 
causes (e.g. Cheng, 1997; see Luhmann & Ahn, 2007, for a discussion). However, people do not 
seem to make these assumptions and instead make dynamic inferences about unobserved 
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causes; people do not believe that unobserved causes are constant and make sophisticated 
inferences about the presence and changes in unobserved causes.

Many of the phenomena discussed in the current chapter involve scenarios that unfold over time 
(i.e. autocorrelation, tolerance/sensitization, the double light switch scenario, and primacy/
recency effects), yet most existing models do not capture time sufficiently. Many influential 
models have been designed primarily to capture causal phenomena that do not occur over time, 
and thus they aggregate across all trials (e.g. Cheng, 1997; Jenkins & Ward, 1965; Griffiths & 
Tenenbaum, 2005). As already discussed, influential animal‐learning models that do model 
learning over time (e.g. Rescorla & Wagner, 1972) often make overly‐simplistic assumptions 
about unobserved causes. Bayesian inference has become a particularly common way to model 
causal learning, and it proved very useful in BUCKLE. However, as noted by Danks (2007), 
‘causal Bayes nets do not currently provide good models of continuous time phenomena, though 
continuous time Bayes nets are the subject of ongoing research (Nodelman 2002, 2003)’. We 
believe that capturing phenomena that unfold over time should be an important aspect of future 
models.

We have also demonstrated that when working memory is taxed, people have difficulty 
reasoning about unobserved causes (Luhmann & Ahn, in press) Yet, despite the additional 
cognitive challenge of reasoning about unobserved causes, we believe that it occurs as a normal 
part of causal learning. Many of the previously mentioned studies have demonstrated that 
people spontaneously reason about unobserved causes. Furthermore, we have described 
multiple phenomena in which reasoning about unobserved causes influences the inferences 
people make about observed causes, the more typically studied form of causal learning. For 
example, when people infer that an unobserved cause flips the relationship between the 
observed cause and effect (generative vs. preventative), since the interaction explains why there 
may be zero overall correlation, people infer that the observed cause still influences the effect 
(Rottman & Ahn, 2009).

One general way to summarize these findings is that people are always on the lookout for 
unexplained data and consequently infer unobserved causes to make sense of the relationship 
between observed causes and effects. Any attempt to explain causal learning based on overly 
simplistic and static (p.180) assumptions about unobserved causes will not be able to account 
for the dynamic interplay between observed and unobserved causes demonstrated in these 
studies. Perhaps reasoning about unobserved causes should be viewed as a fundamental feature 
of ‘causal’ reasoning.
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Notes:
(1) Here we distinguish causal determinism, the idea that every event must have a cause, from 
deterministic causality, the belief that an effect must be present if its cause is present (Goldvarg 
& Johnson‐Laird, 1994; Koslowski, 1996; Luhmann & Ahn, 2005).

(2) To compute this measure of ΔP, the quantities P(EǀU) and P(Eǀ~U) were derived by applying 
Bayes rule to the quantities P(UǀE) and P(U ǀΔ E) which were computed using learners' trial‐by‐
trial likelihood judgments. In this way, the resulting Δ P measures the extent to which each 
subject believed the unobserved cause covaried with the effect.

(3) See Cheng (1997) for the complete, formal treatment. Note that we use different notation for 
consistency within this chapter.

(4) As seen in Figure 8.4, participants were more likely to think that there was an interaction 
with an unobserved cause in the many‐machines condition than in the one‐machine condition. 
The reason for this finding is likely because they thought the different machines interact 
differently with the switch — the different machines is the second interacting factor.
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remains elusive. We will review some of the existing research and offer a bit of new 
evidence about how people make causal attributions. Our review will focus on two major 
types of theory: counterfactual and generative theories.

9.1 Counterfactual theories of causal attribution
Counterfactual theories have their origins in the work of Hume (1748/1988). On these accounts, 
a cause is an event that makes a difference to another event. This definition does not rely on any 
reference to the mechanism or process connecting the two events. Because causation cannot be 
directly perceived, people use other cues. For instance, they may judge that C caused E if events 
similar to E tend to follow events similar to C (Hume, 1748/1988). Hume's work established a 
strong tradition in psychological theorizing about causation that takes co‐variation to be the 
major determinant of causal beliefs (e.g. Cheng and Novick, 1990; Kelley, 1973).

Another prong in the Humean analysis of causation led to the development in philosophy of 
counterfactual theories (Lewis, 1973). These theories share with co‐variation theories a reliance 
on difference‐making rather than any reference to the mechanism mediating cause and effect. 
Although co‐variation may provide a cue to causation, it cannot distinguish causation from mere 
correlation. Two events (e.g. poor vegetation and a dry riverbed) may co‐vary not because one 
causes the other but rather because both share a common (p.185) cause (e.g. a shortage of 
rain). Counterfactuals enable us to separate correlation from causation. According to the 
counterfactual view of causation, C caused E provided that if C hadn't occurred, then E wouldn't 
have occurred (Lewis, 1973). Lewis proposed that we evaluate counterfactuals with reference to 
the closest possible world. If we assume C and E both occurred and we imagine the closest 
possible world to the actual world in which C did not occur, C will be judged to have caused E 
provided that E also would not have occurred in this counterfactual world. We may judge that 
the lack of rain caused the dry riverbed because in the closest world in which it did rain, the 
riverbed wouldn't be dry.

In practice, when people mentally simulate alternative scenarios, they may not always generate 
ones that are minimally different from the actual world (Walsh & Johnson‐Laird, 2009) and in 
fact calculating a complete ordering of possible worlds in terms of closeness may exceed 
cognitive limitations. An alternative possibility is that people generate counterfactuals about 
specific situations (worlds) by building models based on their existing knowledge of the causal 
relations that generally hold between events of the types that occur in that situation (Halpern & 
Pearl, 2001; Hitchcock, 2001; Pearl, 2000; Woodward, 2003). For example, they may generate a 
causal model showing that, in general, rain tends to cause rivers to flow and vegetation to grow. 
Each event in the model can have different values. For example, rain could have the value 
‘present’ or ‘absent’. When we change the value of an event then the values of any consequences 
of that event in the model can also change. The updated model can then be used to evaluate a 
counterfactual world. For example, if we change the value of rain to absent, then its 
consequences will also change so that we can infer that if there hadn't been rain, then the river 
wouldn't flow and vegetation wouldn't grow. In contrast the values of any antecedents in a 
model will remain unchanged. For instance, if we change the value of a river from flowing to 
dried up, then we don't change the values of rain and therefore we don't infer that a dry 
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riverbed caused a shortage of rain. In sum then, on this view the knowledge of the general 
causal relations between events can be used to make causal attributions for a particular event.

9.1.1 Empirical evidence
Research on the role of counterfactuals in judging causation has addressed three main 
questions. First, it has examined whether a change to the possible counterfactual alternatives to 
an action leads to different judgments of the causal role of that action. It has also examined 
whether the availability of counterfactual alternatives to an event influences the extent to which 
the event is judged to have caused the outcome and, finally, whether the availability of 
counterfactual alternatives to an event influences the likelihood the event will be selected as 
‘the cause’ of an ensuing event from a set of necessary conditions.

(p.186) Do people consider counterfactual alternatives in their causal ratings?
One way to examine whether people use counterfactuals to make causal judgments is by 
comparing their responses to scenarios in which the facts are held constant and the 
counterfactual alternatives are manipulated. Wells & Gavanski, (1989) did this by presenting 
participants with a scenario based on a true story about a taxi driver who refused to take a fare 
from a paraplegic couple because he thought the taxi would be too crowded with them and their 
wheelchairs. Instead the couple take their own specially‐equipped car. Unfortunately a bridge 
on their journey collapses shortly before they arrive and in the dark they drive off the bridge and 
drown. The question asked was the extent to which the taxi driver caused and was responsible 
for the outcome. In one version of the story the taxi driver made it safely across the bridge 
before it collapsed whereas in the other he did not. And as counterfactual theory predicts, 
participants judged him to be more causal and responsible in the former case where a change to 
his actions could have prevented the outcome (Wells & Gavanski, 1989). Similarly it has been 
shown that when people are presented with a scenario where the counterfactual outcome is 
omitted, causal ratings tend to be intermediate, that is, they are lower than when it is known 
that a change to the event would undo the outcome and higher than when it is known that a 
change to the event would leave the outcome unchanged (McCloy & Byrne, 2002). In these 
cases, causal ratings were sensitive to counterfactual alternatives.

Does the availability of counterfactuals influence causal judgments?
The studies described so far suggest that counterfactuals play an important role in judging the 
extent to which an event caused an outcome. Extensive evidence suggests that some 
counterfactuals are generated more readily than others. In this section, we examine whether 
this differential availability may affect causal judgments.

Despite the fact that in any situation there are an infinite number of coun‐ terfactuals, it turns 
out that there are considerable regularities in the kinds of alternatives that people imagine most 
readily (Kahneman & Tversky, 1982a). Taking Hofstadter's (1979) example, imagine running 
into a swarm of bees while driving down a country road. Some alternatives are likely to come to 
mind very readily, for example, if only I had closed my window. In contrast, others seem very 
unlikely, for example, if only those bees were dollar bills. Psychological studies indicate that 
people are more likely to mentally simulate counterfactual alternatives to some events than 
others. They imagine alternatives to exceptional events more than normal ones (Kahneman & 
Miller, 1986), actions more than inactions (e.g. Byrne & McEleney, 2000; Gilovich & Medvec,
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1994; Kahneman & Tversky, 1982b), and controllable more than uncontrollable events (Girotto, 
Legrenzi, & Rizzo, 1991; McCloy & Byrne, 2000). The mutability of an event is also influenced by 
its relation (p.187) to other events that happened. People tend to imagine alternatives to the 
first event in a causal chain (Wells, Taylor, & Turtle, 1987) but to the last event in a temporal 
sequence of events (Miller, 1990; Walsh & Byrne, 2004).

These findings lead to the hypothesis that events that have available coun‐ terfactual 
alternatives tend to be perceived as more causal. There is some evidence to support this. People 
more readily imagine counterfactual alternatives to actions than failures to act perhaps because 
inaction is the norm (Kahneman & Miller, 1986) or because it matches the pre‐action state 
which people have already represented in mind (Byrne & McEleney, 2000). They also tend to 
perceive actions as more causal than failures to act even when both lead to the same outcome. 
Spranca, Minsk & Baron (1991) collected causal ratings for the actions of a tennis player John. 
The night before a match, his competitor Ivan is about to choose between two food dressings at 
dinner, one of which John knows contains an ingredient that Ivan is allergic to Ivan takes the 
wrong one and gets food poisoning. People judged John's actions as more causal when he 
recommended the wrong dressing to Ivan than when he failed to warn Ivan after he chose it. 
Other studies have used more indirect measures such as blame, victim compensation and 
perpetrator punishment for crimes committed. These also suggest that the availability of a 
counterfactual alternative that would undo the outcome leads to more extreme judgments. For 
example, when people are asked to recommend a punishment to a burglar who robs a home 
during the family's three month summer vacation, they recommend a harsher punishment when 
the burglary takes place the night before the family returns than when it takes places in the 
middle of the vacation. In the former case, it's easier to imagine that the family might have been 
there thus foiling the burglar (Macrae, Milne & Griffiths, 1993). Similarly, people tend to 
recommend harsher punishment to a mugger who attacks someone when they are on an unusual 
than a usual route (Macrae et al. 1993; see also Roese & Olson, 1996). The results suggest that 
counterfactuals are used to make these judgments of blame and punishment, and that people 
use the counterfactual that comes most readily to mind, perhaps because people have difficulty 
juggling multiple possibilities (Byrne, 2005). However, given that the measures in these latter 
studies were indirect, we can't be sure that they reflect effects of counterfactual availability on 
causation.

A number of studies have attempted to obtain a more direct measure of the impact of 
counterfactual availability on causation. These studies either provide participants with an 
explicit counterfactual alternative or get them to generate one and then examine its influence on 
causal judgments. Using response latency measures, Roese & Olson (1997) found that judging a 
counterfactual conditional, i.e. whether a change to event C would have led to a change in 
outcome E, increased the speed of response to a subsequent corresponding causal statement, 
whether C caused E. In contrast however, making a causal judgment first had no effect on the 
speed of judging counterfactual (p.188) conditionals. The first result suggests that people do 
benefit from having an available counterfactual when making a causal judgment. However, the 
fact that the priming advantage is only in one direction suggests that causal judgments don't 
always involve the simulation of a counterfactual alternative. If they did, we would expect to find 
that judging causation should facilitate subsequent counterfactual judgments.
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A similar pattern tends to be found in studies that examine whether making a counterfactual 
alternative available influences causal ratings. For instance in one study (Spellman & 
Kincannon, 2001), participants were presented with details of a court case about a drunk driver 
who hit another car and caused an accident. The victim refused a blood transfusion due to 
religious beliefs and died. Participants then heard either the prosecution argument about how a 
change to the defendant's actions could have avoided the outcome or the defence argument 
describing a number of alternative counterfactual possibilities such as a case where the victim 
accepted treatment or the defendant hit someone else and as a result no‐one died. Participants 
who heard the prosecution's argument rated the defendant as more causal than those who heard 
the defence's argument (Spellman & Kincannon, 2001).

The same result occurs when individuals generate their own counterfac‐ tuals. For instance, 
after reading a date rape story, individuals who thought about how a change to the victim's 
behaviour could have changed the outcome tended to judge the victim as more at fault than 
individuals who thought about how a change to the victim's behaviour would have lead to the 
same outcome (Branscombe et al. 1996, see also McCloy & Byrne, 2002; Nario‐Redmond, 1996 
for similar effects). However, like the latency study, rating the extent to which a particular event 
C caused E generally has no influence on the likelihood that individuals will subsequently select 
that event as a means to undo the outcome (Wells & Gavanski, 1989). Increasing the salience of 
a counterfactual alternative influences causal judgments, suggesting once again that individuals 
don't generate all the relevant counterfactuals in rating how causal an event is. Instead, they 
may use only the most relevant ones. As a consequence, causal ratings tend to be higher for 
events that have readily available alternatives or when the relevant counterfactual is made 
explicit.

Does the availability of a counterfactual increase the likelihood that the corresponding actual 
event will be selected as ‘the cause’ of an outcome?
Given any outcome, there are usually multiple factors that were necessary to bring it about. But 
people usually pick out one event as ‘the cause’. Another issue that researchers have therefore 
investigated is whether the availability of a counterfactual about a particular event increases the 
likelihood that that event will be chosen as the cause of the outcome. In one study, participants 
read a scenario about a man who takes a flight despite his wife's fear of flying and the fact that 
normally they never fly. His wife considers pleading with him (p.189) to take the train instead, 
knowing that he would do it if she asked, but decides against it. Unfortunately, there is an 
engine failure and the plane crashes killing everyone on board. When participants were asked to 
imagine how the outcome could have been avoided they tended to focus on Mrs. Wallace's 
failure to encourage her husband to take the train. However when they are asked what caused 
the outcome they selected the engine failure (Mandel & Lehman, 1996; see also N'gbala & 
Branscombe, 1995). The results suggest that although the availability of a counterfactual 
alternative to a particular event may increase the perceived causal role of that event, 
counterfactual availability does not influence the likelihood that an event will be selected as ‘the 
cause’ from a set of necessary conditions.

Summary
Psychological studies have provided evidence that people use counterfactuals when attributing 
causation. When the facts are held constant, people tend to judge an event to be more causal if a 
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change to that event would produce a change to the outcome. In addition, people spontaneously 
generate counter‐ factuals for some events more than others and those events with readily 
available counterfactual alternatives tend to elicit stronger ratings for judgments associated 
with causation, such as, blame, guilt, and victim compensation. Finally, although counterfactuals 
may be used to decide the extent to which a particular event caused an outcome, the availability 
of counterfactual alternatives does not seem to influence judgments about which one of a set of 
events should be judged as ‘the cause’. People tend to select different events when asked to 
imagine what caused an outcome and how it could have happened differently.

9.2 Generative theories of causation
An alternative view to counterfactual theories is that a cause is something that generates an 
outcome. This idea can be traced back to Kant (1781) and can be found in current philosophical 
(Dowe, 2000; Salmon, 1984) and psychological theories (Schultz, 1982). According to this view, 
causation involves a mechanism or causal process that links cause and effect. There is a 
transmission along a causal pathway and an exchange of some conserved quantity such as 
energy or momentum (Dowe, 2000; Salmon, 1997). For example, the reason that we believe that 
throwing the stone caused the window to break is that a force is transferred from the stone to 
the window.

9.2.1 Empirical evidence
One striking piece of evidence that causation is not always inferred from repeated associations 
came from the work of Michotte (1946/1963). He (p.190) demonstrated that in some cases, 
causation is directly perceived. In his demonstrations, Michotte used images, such as moving 
circles to represent billiard balls. In the classic example, one circle moves across the screen, it 
stops when it comes in contact with another circle and at that moment the second circle moves 
off in the same direction. In this demonstration, people generally go beyond these images when 
describing what they see and infer that the first circle hit the second circle and set it in motion. 
Michotte showed that at least in some cases, causation can be directly perceived and hence that 
it can be inferred from a single observation. A number of other methods have been used to 
examine the role of mechanisms in causal attribution.

What kinds of information do people search for when attributing causation?
One way to examine whether people rely on mechanisms to decide whether one event caused 
another is to examine what information they search for in trying to discover the cause of an 
outcome. Ahn et al. (1995) presented participants with events such as ‘John had a car accident 
on Route 7 yesterday’ and allowed them to ask questions in order to establish the cause. If 
people rely on information about the regular co‐occurrence of cause and effect, they might ask 
questions about events at other times and places. For example, they could ask whether John 
often has accidents, whether there are frequently accidents on this road, or whether there were 
many accidents in other places yesterday. In contrast, if people rely on an understanding of the 
generative processes to establish the cause of an event, then they may search information about 
the underlying mechanism such as whether there was a fault with the car or whether there was 
bad weather that caused hazardous driving conditions. The results showed that the majority of 
questions sought out mechanisms for how the event occurred. In attributing causation, people 
aim to discover not what has happened on previous occasions but rather how the event came 
about on this occasion.
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Do people use mechanistic knowledge when attributing causation?
A number of studies have examined whether children and adults use knowledge of the kinds of 
mechanisms that can mediate a cause–effect relation to attribute causation. In one such study 
(Bullock, Gelman, & Baillargeon, 1982), individuals were presented with a box with two windows 
and a jack‐in‐the‐box at the end. A ball rolled along one window whereas a light passed 
simultaneously down the other. When they reached the end, a jack popped out of the box. Both 
adults and young children judged that the ball caused the jack to pop out presumably because 
they knew that a ball can produce movement of an object through physical contact. When the 
box with the windows was disconnected from the jack‐in‐the‐box so that there was a gap 
between them, people tended to switch their judgments. It was no longer possible for the ball to 
hit the jack. In contrast, electrical mechanisms are often hidden and appear (p.191) to occur at 
a distance. Only 3 year olds continued to attribute causation to the ball. Adults and older 
children (4 and 5 years of age) attributed causation to the light in this case, showing that when 
they make causal judgments they take into account the kinds of mechanisms that can mediate 
between a cause and effect.

When mechanistic and alternative cues are available, which do people rely on to attribute 
causation?
In order to examine which cues people draw on most in attributing causation, a number of 
studies have presented individuals with an outcome preceded by multiple antecedents each of 
which is supported by a different cue to causation. For instance, Ahn et al. (1995) gave 
participants descriptions of events such as ‘Kim had a traffic accident last night’ and two 
possible factors, one supported by mechanism information, e.g. ‘Kim is near‐sighted and tends 
not to wear her glasses when driving’ and one supported by co‐variation information, e.g. 
‘Traffic accidents were more likely last night than on other nights’. Participants gave higher 
ratings of causal strength to factors that were supported by mechanism information. Schultz 
(1982) used a similar method to see which cues young children prefer to use. He showed the 
children events such as a spotlight appearing on the wall and their task was to decide which of 
two lamps caused the light. One of the lamps actually generated the spotlight whereas the other 
did not but was supported by other causally relevant cues. For instance in one condition, when 
the green lamp generated the spotlight, switching on the yellow lamp (but not the green one) 
was temporally contiguous with the appearance of the spotlight. In another condition, the yellow 
lamp was supported by a spatial contiguity cue (it actually touched the spotlight). In a final 
condition, switching on the yellow lamp only co‐varied with the appearance of the spotlight on a 
number of earlier trials. Children ranging in age from 3 to 13 predominantly used generative 
transmission to attribute causation. The only exception was that 3 year old children preferred to 
use spatial contiguity over generative transmission.

Summary
Evidence generally supports the view that people use generative transmission to attribute 
causation. They readily perceive causation when two objects interact. When attempting to 
discover a cause, they are more likely to search for information about possible mechanisms than 
for covariation information. They are sensitive to what mechanisms could possibly produce an 
effect. For example, they are more likely to attribute causation to an electrical mechanism than 
a direct physical force when there is a spatial gap between the cause and effect. And when 
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forced to choose between events that are supported by different causal cues, they tend to 
attribute causation to the event that generated the outcome.

(p.192) 9.3 Challenges for counterfactual and generative theories of causation
9.3.1 Pre‐emption
Situations that involve over‐determination or pre‐emption provide a challenge for counterfactual 
theories in their original form. In these cases, there is more than one cause which is sufficient 
for an outcome hence undoing either one will not undo the outcome. In the classic example, two 
individuals, Billy and Suzy, throw rocks at a bottle. Suzy throws seconds before Billy so it is her 
rock that hits the bottle. But if she hadn't thrown, Billy's rock would have hit the bottle and so 
the outcome would be unchanged. These cases have received a lot of attention from 
counterfactual theorists and two recent modifications to the theory have been proposed. Lewis's 
(2000) reformulation solves the problem of pre‐emption by proposing that the degree of causal 
influence reflects the extent to which whether, when and how one event happens depends on 
whether, when and how another event happens. The modified theory states that C causally 
influences E if an alteration to C would have led to an alteration of E. For instance, if Suzy's 
throw had been harder, then the shattering would have been different whereas a change to 
Billy's throw would make no difference.

Another solution was proposed by Halpern & Pearl (2001; see also Hitchcock, 2001). According 
to this account, people mentally run a counterfactual simulation while holding certain events 
constant. For instance, if we hold constant the fact that Billy's rock didn't hit the bottle, then if 
Suzy hadn't thrown the bottle wouldn't have broken.

Pre‐emption tends to be unproblematic for generative theories of causation. According to these 
accounts causation is attributed to the event that passes a conserved quantity along a path that 
culminates in the outcome. In the example above, Suzy will be judged to have caused the 
outcome because it is the force of her rock interacting with the bottle that produced the 
shattering.

9.3.2 The attribution of prevention
Although the literature on causation is quite extensive, much less attention has been paid to how 
people attribute prevention. Counterfactual theories of causation can easily be extended to deal 
with cases of prevention. To prevent something may mean the same as to cause it not to occur 
(Collins, 2000). Lewis (2000) treats double prevention as a case of causation. In other words, if A 
prevents B and B prevents C, then we should say that A causes C. According to this view, we can 
say that P prevents E provided that if P hadn't occurred, then E would have. For instance, if Billy 
hadn't caught the ball, then the window would have broken.

(p.193) Prevention is a bigger challenge for generative theories because in general prevention 
involves the absence of an outcome. Absences are difficult for generative accounts because 
nothing is transferred from the preventer to the target outcome. Dowe (2000) developed a 
generative theory of prevention that defines prevention as qualitatively different from causation. 
He proposed that A prevented B if and only if A occurred and B did not, there was a causal 
interaction between A and another process X, and if A hadn't occurred then X would have 
caused B. For example, Jack prevented the child from being hit by a car if and only if (i) he 
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grabbed the child and she wasn't hit by the car and (ii) if he hadn't grabbed her, she would have 
been hit by the car. Unlike causation which relies on purely generative processes, Dowe (2000) 
classes prevention as a form of quasi‐causation because of its reliance on nongenerative 
processes. Similarly, Wolff, Barbey & Hauskneckt (2010) define prevention as a removal of a 
force that had a tendency to produce an outcome. There are two things to note about these 
accounts. First, these definitions include a counterfactual element. Hence, they need to deal 
with any challenges faced by the counterfactual theory such as cases of pre‐emption. Second, 
the theories assume that the meanings of causation and prevention need not be symmetrical. In 
other words, to prevent E means something different from to cause not E. Below, we describe a 
study that we ran to test whether this is the case.

9.4 Studies of causation and prevention
9.4.1 Experiment 1: Do people attribute causation and prevention in the same way?
In order to provide an initial test of whether people attribute causation and prevention in the 
same way, we generated two scenarios based on classic examples of late pre‐emption (cf. Hall & 
Paul, 2003). Although studies have been carried out to examine how people attribute causation 
when there are two sufficient causes (Mandel, 2003; Spellman & Kincannon, 2001), we know of 
no empirical studies that have tested how people respond to cases of preemptive prevention.

Consider the following two scenarios, one of which involves pre‐emptive causation:

There is a bottle on the wall. Billy and Suzy are standing close by with stones and each 
one throws a stone at the bottle. Their throws are perfectly on target. Billy happens to 
throw first and his reaches the bottle before Suzy's. The bottle breaks.

and one of which had a similar structure to the first except that the links were preventive:

(p.194) There is a bottle on the wall. Frank and Jane are standing close by. While they 
are there someone else aims to throw a ball at the bottle. The aim is perfectly on target. 
Frank and Jane both step in front of the bottle. Frank happens to step in front of Jane and 
catches the ball. The bottle doesn't break.

The ‘causation scenario’ included an actual mechanism going from cause to effect, that is, a 
stone is thrown, it hits a bottle and the bottle breaks. It was followed by two questions which 
asked whether each actor caused the outcome:

Did Billy cause the bottle to break?

Did Suzy cause the bottle to break?

In contrast, in the ‘prevention scenario’ the actions involved an interruption to a causal 
mechanism; that is, Frank stops the ball and as a result the ball doesn't hit the bottle. Again, the 
scenario was followed by two questions, this time based on prevention:

Did Frank prevent the bottle from breaking?

Did Jane prevent the bottle from breaking?
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The counterfactual theories developed by Lewis, (2000) and Halpern & Pearl (2001) were 
designed to ascribe causation to Billy and not Suzy. On the assumption that ‘A prevents B’ 
means the same as ‘A causes not B’, the theories make the parallel prediction for prevention, 
ascribing prevention to Frank and not Jane.

According to generative mechanism theories, people should also ascribe causation to Billy but 
not Suzy. In this case, there is a clear mechanism linking the action (Billy's throw) to the 
outcome (the bottle breaking). On Dowe's (2000) account, people should also ascribe prevention 
to Frank but not Jane, although the reason is different. In this case, the action (Frank's catch) 
interacts with the marble and it is natural to infer that if Frank had not caught the marble, it 
would have hit the bottle and broken it. Hence in this study, both theories make the same 
predictions. Our aim was to provide an initial test of whether people's attributions are consistent 
with these predictions.

One hundred individuals read the scenarios described above and responded to the questions by 
answering ‘yes’ or ‘no’. As Table 9.1 shows, the results for the causation scenario strongly 
corroborate the predictions of the mechanism and counterfactual views. A large majority (90%) 
attributed causation to Billy but not Suzy.

The results for the prevention scenario are much less clear cut. The majority of participants also 
attributed prevention to the first actor only, i.e. Frank but not Jane (60%). However, the 
percentage of participants who made an attribution to the first actor only was significantly lower 
in the prevention scenario than in the causation scenario (McNemar Test, p 〈 0.001). For the 
prevention (p.195)

Table 9.1 The percentage of ‘yes’ responses to the four questions in 
Experiment 1.

Causation scenario Prevention scenario

First actor total (Billy / Frank) 95 83

First actor only 90 60

Both actors 5 23

Second actor total (Suzy / Jane) 6 29

Second actor only 1 6

Both actors 5 23

Neither 4 11

scenario, a large minority (23%) ascribed prevention to both actors. This result is not predicted 
by Dowe's mechanism theory or by recent counterfactual theories which would predict that only 
the first actor prevented the outcome. One explanation for this result is that some people may 
understand prevention not just as an actual interruption to a causal mechanism (Frank actually 
caught the ball) but rather as a potential interruption to that mechanism (Jane would have 
caught the ball). The ball would have transmitted a force breaking the bottle if Frank and Jane 
had not intervened to interrupt that process. People often talk about prevention in the sense of 
having the potential to block some event even if that event does not occur (e.g. the lock is 
preventing the bike from being stolen). The result also suggests that although people tend to 
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select one event as being ‘the cause’ of an outcome, they may be less likely to do so for 
prevention.

9.4.2 Experiment 2: Comparing causation and prevention when a mechanism is unblocked
Our first study suggests that people may think differently about cases of causation and 
prevention. However, the scenarios differed in two ways. First, in one case we asked questions 
about causation whereas in the other we asked about prevention. Second, the causation scenario 
involved a continuous mechanism linking cause and effect whereas the prevention scenario 
involved an event that interrupted a mechanism. In order to test whether the different results 
really depend on a difference in the meaning of causation and prevention, we carried out a study 
in which we collected measures of both using the same scenario.

Our second objective was to pit counterfactual against generative theories of causation, hence 
we constructed a scenario for which the two theories make different predictions. We examined 
attributions to actions that unblocked a causal pathway. There was no causal process linking the 
actions to the outcome, but they were nevertheless responsible for a change to the outcome:

(p.196) There is a coin wobbling on edge at the end of the table. It is about to fall over 
and land on tails. There is a book directly in front of the coin. Max and Anne are standing 
close by. While they are there someone else rolls a marble toward the coin. The roll is 
perfectly on target and in the absence of the book it will hit the coin, knock it over and the 
coin will land on heads. Max and Anne both reach out to lift the book. Max happens to 
reach in front of Anne and he lifts the book. The marble hits the coin, and the coin falls 
over and lands on heads.

After reading the scenario, participants answered the following four questions.

Did Max cause the coin to land on heads?

Did Anne cause the coin to land on heads?

Did Max prevent the coin from landing on tails?

Did Anne prevent the coin from landing on tails?

If attributions of cause and prevent depend on a change to the outcome and not on a causal 
mechanism, then we expect people to attribute both to the first actor (Max) in this scenario. In 
contrast, if a mechanism from cause to effect is important in attributing causation, then we 
expect that people should not attribute causation to Max. However, they should judge that he 
prevented the outcome. Consistent with Dowe's (2000) definition of prevention, Max interacted 
with the book and if he hadn't, then the coin would have landed on tails.

Sixty‐eight participants read the scenario and responded to each of the four questions by 
answering ‘yes’ or ‘no’. The results are set out in Table 9.2. Our first aim was to compare 
attributions of causation and prevention. As Dowe (2000) predicted, Max was judged to have 
prevented the outcome (53%) more often than to have caused it (38%). Nonetheless, this time a 
significant minority (41%) attributed prevention to neither actor. This result contrasts with the 
previous experiment, where the largest minority attributed prevention to both actors. The main 
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difference between the two studies is that in the previous study the prevention scenario ended 
with no change of state, the bottle remained unbroken, whereas in this experiment the scenarios 
end with an outcome different from the original state, i.e. the coin was spinning but in the end 
lands on heads. In this case, the outcome may be attributed to a different mechanism, namely 
the spinning of the coin, and hence the actors may be perceived to have played a lesser role and 
are thus less likely to be assigned any kind of causal role. This latter finding is once again 
inconsistent with both Dowe's theory and counterfactual theories that have been adapted to deal 
with preemption (Halpern & Pearl, 2000; Hitchcock, 2001; Lewis, 2000). Also, in contrast to 
causal judgments, when people make prevention judgments they are less likely to distinguish 
between the preempting cause and the preempted back‐up.

Our second objective was to examine whether people attributed causation to Max, as 
counterfactual theories predict, or not, as generative theories predict. As Table 9.2 shows, the 
majority of participants did not attribute causation to (p.197)

Table 9.2 The percentage of ‘yes’ responses to the eight questions in 
Experiment 2.

Mechanism unblocked

Cause question Prevent question

First actor total (Max) 38 53

First actor only 34 47

Both actors 4 6

Second actor total (Suzy / Jane) 4 12

Second actor only 0 6

Both actors 4 6

Neither 62 41

him (62%). The result supports the predictions made by generative theories. In contrast, the 
result is inconsistent with counterfactual theories (Halpern & Pearl, 2000; Hitchcock, 2001; 
Lewis, 2000) because a change to Max's behaviour would have led to a change in the outcome. 
When there is a change to the default outcome, in the absence of a mechanism, people are less 
likely to make a causal inference. In other studies using the same coin toss scenario, we have 
shown that when a mechanism is present (i.e. a rolling marble changes the way that the coin 
falls), then the majority of people attribute causation to it (Walsh & Sloman, in press).

9.5 Conclusions
There is evidence to suggest that both counterfactuals and mechanisms can influence causal 
judgments. Counterfactual theory is supported by the finding that when a change to an event 
leads to a change in the outcome, people rate it as more causal than when a change to the event 
would not undo the outcome. Nonetheless, people generate counterfactuals for some events 
more readily than others and as a consequence these events tend to be assigned a greater 
causal role.
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There is also evidence to support generative theories. When trying to discover the cause of an 
event, people tend to spontaneously search for mechanistic information. In addition, when co‐
variation and mechanistic information are pitted against one another, people prefer to rely on 
mechanistic information than co‐variation.

In most situations, counterfactuals and causal processes point to the same causal judgment. One 
case where they make different predictions is when an event blocks or unblocks a mechanism. 
For example, the scenario used in our second experiment described the removal of a book that is 
blocking a causal pathway between a marble and a coin and as a consequence, the coin falls on
(p.198) heads instead of tails. Counterfactual theory suggests that the action caused the 
outcome. However, there is no causal process linking the removal of the book and the coin's fall. 
Hence, generative theory predicts that the action is not causal. The results of our study show 
that the majority of participants make judgments consistent with generative theory. At least in 
some cases, people rely on an analysis of mechanisms more readily than on counterfactuals. Of 
course in many real life situations, people do not know how the mechanisms work (Rozenblit & 
Keil, 2002). However, it is likely that people need only believe that a mechanism is possible (Ahn 
and Kalish, 2000; Walsh & Sloman, in press). Our study suggests that once it is clear that there 
is no mechanism linking an event to an outcome, people tend not to attribute causation to that 
event, even if it changes the outcome.

The results of our studies include some novel findings regarding judgments of prevention. First, 
compared to causation, there is less consensus regarding whether or not an event prevented an 
outcome (see also Collins, 2000) and so it is unsurprising that no theory can explain all the 
results. Second, our results show that the meanings of causation and prevention are not 
symmetrical. To prevent something does not always mean the same thing as to cause it not to 
occur. When an action unblocks a causal pathway, individuals are more likely to judge the actor 
to have prevented the outcome than to have caused it. The result is predicted by Dowe's 
generative theory of prevention. Finally, people are less likely to distinguish between 
preempting and preempted events when making judgments about prevention than about 
causation.

Causation focuses people's attention on the facts. It asks people to make judgments about how 
the actual outcome came about. Hence, most people rely on an analysis of the mechanisms that 
brought that event about. This may also explain why people often rely on counterfactuals. 
Counterfactual possibilities are also determined by the mechanisms governing the actual event; 
the counterfactual arises when we imagine the same mechanisms to have different antecedent 
conditions. As a result, counterfactuals can inform us about which mechanisms are at play. 
People seem to be more likely to rely on a counterfactual if it is made explicit or if it comes to 
mind readily. Prevention, on the other hand, focuses people's attention on the counterfactual 
alternatives. It asks people to make a judgment about an event that might have happened. 
Prevention questions therefore force people to think about how things might have happened 
differently. One reason that judgments of prevention are less clear cut may be that people 
consider different possibilities and these give rise to different judgments. In addition, if people 
consider multiple possibilities, it may explain why they are less likely to pick out a single event 
as having prevented an outcome.
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Causal judgments are ubiquitous in our everyday thinking as well as in domains ranging from 
science to the law. We suggest some steps toward the development of an understanding of this 
fundamental process. Future (p.199) theories may benefit from considering how people make 
judgments of prevention as well as causation.
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psychological properties. In this chapter, we explore such methodological claims by 
building on the dimensioned theory of realization and a companion theory of multiple 
realization. Using concrete cases, we show that such an ‘eliminate-and-split’ methodology 
is not always the case in actual practice. Furthermore, we also establish that whether 
scientists postulate unique or multiple realizations is not determined by the neuroscience 
alone, but only in concert with the psychological theory under examination. Thus, in a 
sense we articulate, in the splitting or non-splitting of properties, psychology enjoys a kind 
of autonomy from neuroscience.

Suppose that scientists discover a high level property G that is prima facie multiply realized by 
two sets of lower level properties, F1, F2,…, Fn, and

. One response would be to take this situation at face value and conclude that G is in fact so 
multiply realized. A second response, however, would be to eliminate the property G and instead 
hypothesize subtypes of G, G1 and G2, and say that G1 is uniquely realized by F1, F2,…, Fn, and 
that G2 is uniquely realized by

. This second response would eliminate a multiply realized property in favour of two uniquely 
realized properties.1

Clearly these are two logically possible responses to this type of situation, so when faced with it 
how do scientists respond in real cases? This is a matter of providing a descriptively adequate 
account of actual scientific practice. In support of the view that scientists opt for the ‘eliminate-
and-split’ strategy, one might propose that it is illustrated by the way scientists responded in the
(p.203) case of memory. Once upon a time, it was thought that there existed a single kind of 
memory. With the advance of science, however, it was discovered that it is possible to perform 
certain sorts of brain lesions that would lead to the selective loss of certain memory functions, 
while certain other sorts of brain lesions would lead to selective loss of certain other memory 
functions. These neurobiological dissociation experiments, one might say, support the view that, 
instead of a single overarching type of memory, there are distinct subtypes of memory, 
procedural memory and declarative memory. Thus, generalizing from this example, it might be 
suggested that the eliminate-and-split strategy is always the approach of scientists in such 
cases.

We believe that this argument is based upon serious oversimplifications. To begin with, note 
that there is the assumption that scientists treat all discoveries about differences in realizers in 
the same way. We contend, however, that actual practice is far more complicated than this. For 
one thing, realistic biological and psychological cases typically have a greater diversity of lower 
realizing properties than is commonly appreciated. Consequently, discoveries about differences 
in lower level realizers might be expected to interact in a variety of different ways with the 
higher level realized properties. Once we take this last possibility seriously, we contend that one 
finds that in actual scientific practice not all discoveries about differences in realizing properties 
influence higher level theory in the same way. In particular, scientists do not uniformly adopt 
the eliminate-and-split strategy. As we show by reference to actual examples, discoveries about 
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different lower level realizers are handled in different ways depending upon the nature of the 
higher level theory.

By considering actual cases, we show that finding variations in some lower level realizers, say, 
F1, F2, …Fi, sometimes leads scientists to posit differences in the higher level realized property 
G, thus following the eliminate-and-split strategy. But in other cases even though scientists find 
variation in other realizers, say Fj, …, Fn, such differences do not lead the scientists to posit 
differences in higher level properties. To speak somewhat metaphorically, we might label the 
former sort of realizers ‘parallel realizers’, since findings about differences in the lower level 
realizers give rise to scientists positing parallel differences in our theories about the higher level 
realized property. We might then label the latter sort of realizers ‘orthogonal realizers’ because 
differences among them do not lead researchers to change their theories about the higher level 
property. The idea behind the name for these realizers is, therefore, that differences among 
them are, in some sense, orthogonal to the higher level account. Such examples show that 
scientists do not simply follow an eliminate-and-split strategy. Perhaps more importantly, these 
cases show that, although psychology takes account of neuroscience, the details of how it does 
this are determined by the needs of psychological theorizing in partnership with lower level 
theories.

(p.204) Our cases also reveal that even the distinction between cases involving parallel and 
orthogonal realizers fails to do justice to all the nuances of actual scientific practice. For we 
show that in some cases in biology and psychology, discoveries about differences in lower level 
realizers lead scientists to posit what they term ‘individual differences’ in the same higher level 
property of subjects. These examples indicate that even the distinction between orthogonal and 
parallel realizers needs to be amended in still further ways. On the one hand, the realizers that 
give rise to individual difference are not orthogonal realizers, since discoveries about variations 
in them does lead to changes in our higher level theories about the realized properties. But, on 
the other hand, the realizers that give rise to individual differences affect higher level theories 
about realized properties in a manner distinct from the eliminate-and-split strategy. For 
scientists continue to posit the same higher level property, though distinguishing variations 
within it. We therefore also distinguish between two kinds of parallel realizers, ‘strong’ and 
‘weak’, in the following ways. We have strong parallel realizers in cases where differences in 
these realizers prompt scientists to eliminate the original realized property and posit distinct 
realized properties for the different realizers. Thus strong parallel realizers underpin the 
eliminate-and-split approach. However, we also sometimes have weak parallel realizers in 
examples where the variations in realizers do prompt revisions in our higher level accounts 
about the realized property, but where scientists posit individual differences within the same 
realized property.

Even when variations in realizers prompt changes in our higher level theories, we show that 
such revisions do not always follow the eliminate-and-split model. Once again, we also show that 
the nature of the higher level theory plays a key role in whether scientists take parallel realizers 
to be weak or strong. Thus the autonomy of psychology in the age of neuroscience is, in part, a 
kind of methodological, rather than ontological autonomy. Psychological theory shapes how 
psychology accommodates the discovery of differences in neuroscientific realizers in partnership 
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with lower level theories, rather than the lower level theories simply necessarily dictating 
changes through their discoveries.

Throughout the chapter we focus directly upon the case of properties and their instances, but 
our work has obvious consequences for causal processes and our theorizing about them. Like 
most other writers in the metaphysics of science we endorse the causal theory of properties and 
take properties to be individuated by their contributions of powers.2 Putting things crudely, 
processes in the sciences are grounded by the manifestation of the powers contributed to 
individuals by such properties and we therefore plausibly have (p.205) different kinds of 
process where we have different properties and powers. Consequently, competing views over 
the implications of discoveries about multiple realization for the diversity of higher level 
properties also have implications for the diversity of higher level processes, too. For example, 
the eliminate-and-split strategy entails that we increase the kinds of higher level process we 
accept when we discover cases of multiple realization, since it claims we increase the number of 
higher level properties we posit. Although we do not explicitly focus on the implications for 
processes, our critical work therefore also shows that such claims about higher level processes 
are also too simple and too quick because they fail to reflect the nuances of actual practices.

To articulate and defend these views, in Section 10.1 we briefly review the dimensioned view of 
realization and a theory of multiple realization that naturally and elegantly accompanies it. The 
remainder of the chapter then draws attention to the ways in which current scientific research 
treats the properties of the eye that realize normal human colour vision. This research is 
extremely useful for the study of realization and multiple realization, since scientists have a 
relatively firm grasp of the natures of both realizer and realized properties at multiple levels. 
Section 10.2 reviews some of the basic features of colour processing in the eye. This sets the 
stage for Section 10.3 where we consider three examples from the sciences that illuminate the 
various ways in which discoveries concerning lower level realizers do, or do not, influence the 
properties postulated in higher levels. Finally, Section 10.4 examines the realization of 
procedural and declarative memory as analysed by Craver (2004) and shows how the morals 
developed in the preceding sections bear on this example.

10.1 The dimensioned view of realization and a theory of multiple realization
As the dimensioned view of realization and its companion theory of multiple realization have 
been described and defended in detail in numerous other publications, only a brief review of 
them will be presented here.3 The core idea of the dimensioned view of realization is that, 
typically, many lower level property instances will together realize an instance of a higher level 
property. The official statement of the view is that (p.206)
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Property/relation instance(s) F1–Fn

realize an instance of a property G, in an 
individual s under conditions $, if and 
only if, under $, F1–n together contribute 
powers, to s or s's part(s)/constituent(s), 
in virtue of which s has powers that are 
individuative of an instance of G, but not 
vice versa.

So, to take a very simple example from 
chemistry, let s be an individual water 
molecule with the property G of being polar, 
i.e. more negatively charged in one direction than in another. (See Figure 10.1.) What makes a 
water molecule polar? It has to do with the greater electronegativity of oxygen versus hydrogen 
along with the angle of the bond between the two hydrogen atoms and the oxygen atom. The 
two instances of the hydrogen's electronegativity of 2.2 on the Pauling scale, the one instance of 
the oxygen's electronegativity of 3.44 on the Pauling scale, and the bond angle of 105° between 
the two hydrogen bonds leads electrons to cluster nearer the oxygen atom, hence for the 
‘oxygen side’ of the molecule to be more negative where the ‘hydrogen side’ of the molecule is 
more positive. These facts can be inserted in the schema above in the obvious way.4

The core idea of multiple realization is that one must have instances of one set of properties F1–
Fnthat realizes an instance of G and another set of instances of distinct properties

that realizes another instance of G and that these properties are not identical.5 Things are not
that simple, however, since one does not count the realization of, say, pain at the neuronal level 
and at the biochemical level as multiple realizations of pain. One must add that (p.207) the two 
distinct realizers that multiply realize G must be at the same level. The official formulation of 
multiple realization is, therefore, that

A property G is multiply realized if and only if (i) under condition $, an individual s has an 
instance of property G in virtue of the powers contributed by instances of properties/
relations F1–Fnto s, or s's constituents, but not vice versa; (ii) under condition $* (which 
may or may not be identical to $), an individual s* (which may or may not be identical to s) 
has an instance of property G in virtue of the powers contributed by instances of 
properties/relations

of s* or s*'s constituents, but not vice versa; (iii)

and (iv), under conditions $ and $*, F1–Fn of s and

of s* are at the same scientific level of properties.

To continue with the example of polarity, we can explain how it is multiply realized. A water 
molecule has this property in virtue of the electronegativity of the hydrogen and oxygen atoms 

Fig. 10.1  The polarity of water and 
hydrogen fluoride.
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and the angle at which they are bonded. A hydrogen fluoride molecule, however, is polar in 
virtue of the hydrogen's electronegativity, fluorine's electronegativity, and the bond between 
them. (See Figure 10.1.)

Of the many important features of the dimensioned view, the one that will be most important for 
the present discussion of multiple realization and the possible elimination and subtyping of 
properties is the fact that there are typically many distinct lower level realizers F1–Fn for a 
single higher level property instance G. Once we begin to examine actual scientific cases with 
this in mind we recognize the possibility of different ways in which higher level theory can 
handle discoveries about different lower level realizers. Sometimes different sets of lower level 
realizers may still result in the very same higher level property. Other times, different sets of 
lower level realizers may prompt recognition of individual differences across instances of the 
same higher level realized property. While still other lower level differences may be such that 
they force us to say that these realizers actually result in different realized properties. What we 
will see is that one subset of realizers, F1Fgwill be handled one way, another subset Fh–Fj will be 
handled in another, and still another subset, Fk–Fn will be handled in yet another, depending 
upon features of the higher level theory. Sometimes differences in realizers together result in 
instances of the same realized property–perhaps with individual differences across these 
instances–and sometimes they together result in instances of distinct realized properties.

10.2 The mechanisms of colour vision in the eye
The mechanisms of colour vision are realized in many regions of the body and the central 
nervous system, including the eye, the lateral geniculate nucleus, areas V1, V2, V4, and likely 
very many more. Our present philosophical (p.208)

concerns will, however, be best served by 
limiting our attention to the mechanisms 
within the eye. Insofar as there is 
realization and multiple realization of colour 
vision by the apparatus of the eye, there will 
be at least that much realization and 
multiple realization in the entirety of the 
visual system.
If we begin at the level of the entire eye, we 
can say that the visual system begins to 
interact with light as soon as photons enter 
the cornea. Since the cornea, aqueous 
humor, lens, and so forth, are not perfectly 
transparent, these components influence 
the retina's response to incoming light. 
Moreover, since they do not absorb all 
wavelengths of light equally, they change the spectral distribution of incoming light, hence the 
colour that a person perceives. The pre-receptoral components of the eye that absorb most of 
the incoming light are the lens and the macular region of the eye (which contains the vast 
majority of the colour processing cones of the eye). What will matter for us is the fact that an 

Fig. 10.2  Photopigment absorption curves.
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eye's response to light depends on three distinct components: the lens, the macula, and the 
photoreceptors.

If we descend to the level of the retina, we naturally turn our attention to the colour 
photoreceptors, the cones. On the standard trichromatic theory of human colour vision, the 
ability to perceive colour is based on making comparisons of signals from three distinct types of 
cones–red, green, and blue–each sensitive to a slightly different range of the visible spectrum of 
electromagnetic radiation.6 (See Figure 10.2.) It is well known that abnormalities in the cones 
can lead to abnormalities in colour perception. Protanopes lack red (p.209)

cones and deuteranopes lack green cones. 
They, therefore, perceive the visible 
spectrum of light differently than do those 
with normal colour vision.
Moving to the cellular level, we discover 
that each cone has photopigment molecules 
embedded in the membrane of its outer 
segment. (See Figure 10.4.) Each cone's 
photosensitivity is determined by three 
principal factors: the length of the cone's 
outer segment, the concentration of the 
photopigment in the outer segment, and the 
sensitivity of the individual photopigment 
molecules. These first two features involve 
relatively pedestrian physics, but the final 
one concerns the biochemistry of 
photopigments, a topic of significant 
interest in the sciences of colour vision.

At the biochemical level, a given photopigment molecule consists of a protein component–a red, 
green, or blue cone opsin–and a non‐protein component–an 11–cis‐retinal chromophore. The 
chromophore component of a photopigment is responsible for the actual process of photon 
capture and is the same in all photopigments, where the opsin component modulates the 
frequencies of light to which the chromophore is sensitive. Differences in the amino acid 
sequences of the normal red, green, and blue cone opsins, thus give rise to the differences in 
light sensitivity of the complete photopigment molecules.

As our final bit of scientific information on human colour vision, we note that the photopigments 
are only one component in the biochemical cascade that links photon capture to neuronal 
signaling. (See Figure 10.3.) Upon absorption of a photon, a single photopigment molecule will 
change conformation from 11–cis– retinal to all‐trans‐retinal. After this conformational change, 
the retinal chromophore is released and the opsin molecule is activated. The activated opsin 
binds to a single G protein molecule located on the inner surface of the cell membrane. This G 
protein molecule, in turn, (p.210)

Fig. 10.3  Human cone.
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activates a molecule of an enzyme, cGMP 
phosphodiesterase, which breaks down 
many molecules of cGMP to 5′‐GMP. When 
the intracellular cGMP concentration 
subsequently decreases, cGMP molecules 
are removed from cGMP‐gated Na+

channels, leading to the closure of the 
channels. Closing of the channels blocks the 
influx of Na+ into the cell. In concert, vast 
numbers of photopigment molecules, G 
protein molecules, ion channels, and Na002B;

ions go through this process leading to the 
hyperpolarization of the cell. This hyper— 
polarization propagates from the outer 
segment of the cone to the synaptic contact, 
where it reduces the rate of release of the neurotransmitter glutamate. This reduction in 
neurotransmitter release is the cone' signal that the cell has been illuminated.

10.3 The multiple realization of normal colour vision
Our central concern in this chapter is to explore the ways in which the discovery of differences 
in lower level realizers influences how scientists handle higher level properties. As a first 
philosophical concern, it is important to clarify what is at issue. The debate between the 
splitting versus the non‐ splitting strategy is not a debate about the descriptive powers of 
natural language. When the opponent of multiple realization observes that, faced with a possible 
case of multiple realization of a property G, one might recognize, say, two properties G1 and G2, 
and say that G1 is uniquely realized by F1, (p.211) F2,… Fn, and that G2 is uniquely realized by

, the claim is not merely one about what one or another natural language allows a scientist to 
express. It is uncontroversial to claim that in English we can speak of, say, being a green cone 
that is realized by cone opsin A and being a green cone that is realized by cone opsin B. 
Scientists can certainly use English to discriminate between properties that are realized in one 
way and properties that are realized in another. Such linguistic facts are no more interesting 
than the linguistic fact that scientists can speak of the property of being a green cone that 
realizes trichromatic vision and the property of being a green cone that realizes dichromatic 
vision. That is, the linguistic ability to individuate properties by reference to what realizes them 
is no more interesting than the ability to individuate properties by reference to what they 
realize. The matter of splitting versus not splitting properties is not one of linguistic usage. 
Instead, it is a question about the ontology scientists advance; it is about what properties 
scientists postulate in higher level theories in the face of discoveries at lower levels. Of course, 
the distinction between what is a linguistic matter and what is an ontological or theoretical 
matter is not perfectly clear, but such a distinction appears to be necessary if there is to be a 
substantive issue.
A second philosophical concern is clarity about what is meant by ‘normal colour vision’. In the 
literature being examined here, a person is said to have normal colour vision if that person 
makes normal colour discriminations. Such normalcy does not include other features of colour 

Fig. 10.4  The Phototransduction 
Biochemical Cascade.
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vision, such as rapidity of response, luminance sensitivity, etc. One could perhaps define a more 
robust, multidimensional concept of normalcy or perhaps find another conception of normalcy in 
other segments of the vision science literature, but such conceptions would not be the one in 
play in the research being reviewed here. We can tell that the concept of normalcy being 
invoked here depends only on how one makes colour discriminations, since this is the only type 
of test used to screen for normal colour vision. Thus, in reading through the description of 
methods, one might find that subjects were screened for normal colour vision using the Ishihara 
test. This very simple test involves 24 plates consisting of a circular field of dots of various sizes 
and colours. Normal trichromats easily recognize a numeral in the pattern of dots on each plate, 
where those having one or another colour deficiency will not recognize a numeral on one or 
more plates. Part of what makes this test so popular is how easily and quickly normalcy can be 
determined.7

(p.212) 10.3.1 Normal colour vision and photopigment diversity
With philosophical preliminaries out of the way, we can now relate the science to the 
metaphysics of realization and multiple realization. At first glance, one might think that the 
theory of colour vision would strongly support the splitting of higher level properties. A number 
of studies have documented the existence of polymorphisms in the green and red 
photopigments.8 For the red photopigment, it has been estimated that roughly 44% of the 
population has an amino acid chain, often designated Red (ala180), that has an alanine at 
position 180, where about 56% of the population has an amino acid chain, often designated Red 
(ser180), with a serine at position 180. For the green photopigment, it has been estimated that 
roughly 94% of the population has an amino acid chain, often designated Green (ala180), that has 
an alanine at position 180, where about 6% of the population has an amino acid chain, often 
designated Green (ser180), with a serine at position 180.9 These different amino acid chains 
contribute slightly different absorption spectra, which are properties that they contribute to the 
realization of normal human colour vision. For example, Merbs & Nathans (1992) report that the 
wavelength of maximum absorption, λmax, for Red (ala180) is 552.4 nm and that the Red 
(ser180)λmax = 556.7.10 Thus, one might expect that the property of having normal colour vision 
would be subtyped.11 The subtyping strategy proposes that vision scientists will postulate four 
types of colour vision corresponding to the four combinations of photopigments:

Normal colour vision with Red (ala180), Green (ala180),

Normal colour vision with Red (ala180), Green (ser180),

Normal colour vision with Red (ser180), Green (ala180),

Normal colour vision with Red (ser180), Green (ser180).12

Vision scientists could therefore describe an instance or instances of normal colour vision as 
being realized by one or another of these properties. However, (p.213)

Table 10.1
Pigment Mean λmax SD

Green 529.7 2.0
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Pigment Mean λmax SD

R2G3 529.5 2.6

R3G4 (Ala180) 529.0 1.0

R3G4 (Ser180) 533.3 1.0

R4G5 (Ala180) 531.6 1.8

R4G5 (Ser180) 536.0 1.4

Red (Ala180) 552.4 1.1

Red (Ser180) 556.7 2.1

G2R3 (Ala180) 549.6 0.9

G2R3 (Ser180) 553.0 1.4

G3R4 548.8 1.3

G4R5 544.8 1.8

the fact is that in these actual examples researchers have not abandoned the unitary property of 
having normal colour vision in favor of a set of four higher level properties.
The common red and green photopigment polymorphisms are only the tip of the diversity 
iceberg. There are, in fact, a relatively large number of distinct red and green photopigments 
whose absorption spectra have been determined by a variety of methods. Just to give a hint of 
this diversity, we report, in Table 10.1, data from Merbs and Nathans (1992).

Despite this well—known diversity in the red and green cone opsins and the well-known 
differences in their absorption spectra, vision scientists have not abandoned the category of 
normal colour vision. Nor have they introduced an elaborate and systematic taxonomy of dozens 
of subtypes of normal colour vision as suggested by the property splitting strategy.

Actual practice with regard to normal colour vision does not follow the property splitting 
strategy. Instead, vision scientists appear to accept, or at least tolerate, the existence of non‐
identical realizers of the higher level property of normal colour vision.13 This is not to say, 
however, that scientists simply dismiss differences in lower level realizers as irrelevant to the 
higher level theory or properties. There is not that kind of autonomy of psychology. Scientists 
often study differences in lower level realizers as a means of explaining what they refer to as 
individual differences, differences from one human to the next. In vision science, a common 
approach to studying individual differences among normal colour perceivers begins by creating 
a pool of normal subjects (p.214) by selecting only those who make correct classifications on all 
the Ishihara plates. Once the pool of normals is assembled, a more sensitive test, such as 
Rayleigh matching, is used to measure subjects' ability to make finer colour discriminations. In a 
Rayleigh match, subjects might be shown a target hemi‐ field of 589 nm light, then asked to 
adjust the amounts of 545 nm and 670 nm light displayed in a second test hemifield so as to 
have the two hemifields match.

He and Shevell (1994) report some results that are especially pertinent and illuminating. They 
develop a variant of the Rayleigh match test, a dual‐ Rayleigh match, which essentially involves 
subjects making one match using 545 nm and 670 nm light and another using 545 nm and 620 
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nm light. They argue that this dual match procedure enables them to locate the source of 
individual differences in the photopigments. Thus, the title of their paper is ‘Individual 
differences in cone photopigments of normal trichromats measured by dual rayleigh‐type colour 
matches’. In other words, even among those individuals who have the property of having normal 
colour vision, there are variations in colour matches that arise from differences in photopigment 
absorption spectra. The introduction of He and Shevell's paper emphasizes the same point:

The color matches of normal trichromatic observers show substantial and reliable 
individual differences. This implies the population of normal trichromats is not 
homogeneous, an observation that leads to the question of how one normal trichromat 
differs from another. In general, the physiological mechanisms that contribute to color‐
matching differences among normal observers may be classified as either pre‐ receptoral 
or receptoral. Pre‐receptoral spectrally selective filtering can significantly affect color 
matches and therefore can cause individual differences. The influence of pre—receptoral 
filtering, however, can be eliminated with well‐known techniques,… This implies that 
individual differences among normal trichromats are due in part to receptoral variation 
(He & Shevell, 1994, p. 367)

He and Shevell clearly recognize the impact of lower level realizers on higher level behaviour, 
but they do not deny the existence of normal colour vision and they do not subtype normal 
colour vision by means of receptoral differences. That is, they do not entertain the sorts of 
proposals one finds in the memory literature where, as an apparent result of discoveries about 
differences in real‐ izers, psychologists deny the existence of a unitary kind of memory in favour 
of subtypes of memory, such as long‐term memory and short‐term memory or procedural 
memory and declarative memory. We, thus, have cases that do not follow the eliminate—and—
split strategy. Moreover, we see that an appeal to individual differences is a feature of actual 
scientific practice not recognized in our simple distinction between splitting and non—splitting 
strategies. Finally, we also appear to have some measure of autonomy of psychology from any 
putative dictates of lower level science.

(p.215) 10.3.2 Normal colour vision and pre—receptoral properties
In the abstract to their paper, He and Shevell conclude with a comment that offers some comfort 
to the advocates of the property splitting strategy. They actually broach the possibility of 
subtyping normal colour perceivers on the basis of differences they find in the subjects' cone 
photopigments: ‘The ratio of two Rayleigh—type matches is a rapid and convenient 
measurement for assessing the L—cone [i.e. red cone] λmax in the eye of an individual observer 
and therefore may be useful for classifying normal trichromats into phenotypic sub-types’ (He & 
Shevell, 1994, p. 367). So, scientists are at least willing to entertain the possibility of applying 
the property splitting strategy. The point to be made through our additional examples, however, 
is to indicate that the property splitting strategy is not likely to be invoked as uniformly and 
systematically as might be suggested by the simple formal schema with which this chapter 
began.

Return now to He and Shevell's distinction between the two sources of individual differences: 
pre—receptoral and receptoral. He and Shevell are willing to entertain the possibility of 
subtyping normal colour vision along the lines of differences in photopigments, that is, based on 
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differences among certain realizers of normal colour vision. They do not, however, entertain the 
possibility of subtyping normal colour vision along the lines of differences in the pre—receptoral 
properties. They do not entertain the possibility of subtyping normal colour vision by means of 
combinations of differences in lens optical density and macular pigment optical density even 
when they explicitly note the effect these pre-receptoral features have on colour discriminations. 
Nor does such a taxonomy seem to appear in the vision science literature. As with differences in 
photopigment sensitivity, differences in the optical absorption properties of the lens and macula 
are treated as sources of individual variation among normal colour perceivers.

10.3.3 Normal colour vision and the phototransduction biochemical cascade
To this point, we have claimed that there are two kinds of counterexamples to the property 
splitting strategy in vision science. One is based on the properties of photoreceptors; the other 
is based on the properties of the lens and macula. The most interesting counterexamples, 
however, involve the properties of the elements in the biochemical cascade. Recall that, within a 
single cone, there are multitudes of molecules and ions of many types involved in the 
biochemical cascade that leads from photon capture to a change in neuro— transmitter release. 
There are the cone opsin molecules, the G proteins, the cGMP phosphodiesterase molecules, the 
cGMP molecules, the phospholipid molecules of the cell membrane, the sodium ions, the 
potassium ions, the ion channel components, and so forth. Each of these molecules and ions has 
one (p.216) or more properties that it contributes to phototransduction, hence to normal colour 
vision. Of course, each of these molecules and ions will have properties that are irrelevant to 
normal colour vision, so that those properties will not be among the realizers. But, each 
molecule and ion will still have relevant properties spelled out in standard accounts of 
phototransduction.

Set aside the ions, the water, and cGMP and focus on the proteins in the biochemical cascade. 
Suppose that each of the proteins admits of mutations that only slightly alter the functionality of 
the protein in the cascade.14 That is, just as there are variations in the amino acid sequences of 
the opsins, suppose that there variations in the amino acid sequences of the G proteins, the 
cGMP phosphodiesterases, and the monomeric components of the cGMP— gated Na+ channels. 
If one reflects on the combinatorics of just these proteins, one finds that the number of types of 
normal human colour vision that one would have to postulate would increase dramatically. If we 
bear this in mind, we can see how impractical it would be to develop a theory of colour vision 
that hypothesizes a distinct type corresponding to each distinct set of lower level realizers. We 
do not have a comprehensive account of theoretical virtues in the higher sciences, since this is 
monumental task. None the less, it is plausible that one does not want a theory of human color 
discrimination abilities that tracks literally all the bona fide different realizers of normal colour 
vision given their vast numbers, since this would, to take just one example, mean that we can 
formulate few if any generalizations across subjects.

The problem here is not merely that the combinatorics of subtyping colour vision by way of its 
many lower level property instances is cumbersome. It is also that using all of the lower level 
realizer properties to individuate higher level properties leaves us without higher level theories 
that can track important regularities or generalizations at the higher level. Think of the 
properties of the G proteins, such as the rate at which they are activated by the retinal—free 
membrane—bound opsin or the rate at which they activate cGMP phosphodi— esterase. The 
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many different values of these properties realize, in part, the colour processing properties of 
humans. Nevertheless, these properties, and their differences, are not the kinds of properties 
scientists want in their theory of human colour discriminations. Because these properties do not 
bring about changes in the color discriminations humans make, they are what we are calling 
‘orthogonal’ realizers of colour discriminations.

(p.217) To this point we have mentioned a number of times the idea that scientists do not treat 
all discoveries about differences in realizers equally. Now we are in a position to elaborate on 
this point by connecting our initial taxonomy of types of realizer to the cases we have examined. 
Some of the lower level properties that realize normal human colour vision are such that we 
discover small differences in their natures so that we are forced to posit ‘parallel’ variations in 
colour discrimination capacities. The latter are what we earlier termed ‘parallel’ realizers. And 
with such realizers discovering the differences amongst them entails our accepting variations in 
the colour discriminations persons can make. Differences in the light absorbing properties of the 
lens, macula, and photopigments are thus parallel realizers of colour discriminations. The lower 
level differences along the ‘dimension’ of light absorption lead to parallel higher level 
differences along the ‘dimension’ of colour discrimination.

It is these parallel realizers that have the most ‘intuitive’ appeal as a basis for adopting the 
subtyping and hence eliminate—and—split strategy, but, as we have seen, even in these cases 
this appeal is, at least at times, limited only to recognizing individual differences within a 
broader category. As a result, we can now see why a further distinction needs to be made 
amongst parallel realizers. Where differences amongst realizers leads only to scientists positing 
individual differences in the same higher level property, then we have what we termed ‘weak’ 
parallel realizers; when such discoveries lead scientists to posit two higher level properties, 
following the eliminate—and—split approach, then we have ‘strong’ parallel realizers.

As our last case highlighted, as well as these strong and weak parallel real— izers, there are 
also cases of orthogonal realizers. Discoveries of differences in these orthogonal realizers are 
such that differences in the properties they contribute to normal colour vision–differences in 
such things as the activation rates and reaction rates–do not make a difference to colour 
discriminations. Thus, they do not lead scientists to posit different higher level realized 
properties. Differences along the ‘reaction rate dimension’ are orthogonal to differences in the 
colour discrimination, so differences in orthogonal realizers do not provide even a prima facie 
basis for invoking the property—elimination— and—subtyping strategy.

It is important to forestall some misguided objections to the parallel— orthogonal distinction 
among realizers. So let us emphasize, first, that both parallel and orthogonal realizers are in fact 
realizers. Both types of lower level realizers stand in the kind of non—causal, non—logical 
determination relation we take to be definitive of causal—mechanical realization. The point 
about orthogonal realizers is not that they have no higher level consequences. They have to have 
such consequences in order to be realizers at all. The point is, instead, that orthogonal realizers 
do not have higher level consequences of a particular sort, higher level consequences along a 
particular dimension (p.218) relevant to the higher level property. Second, it is also important 
to note that being a parallel or orthogonal realizer is relative to both the higher level and lower 
level properties in question. Finally, one should not suppose that orthogonal realizers are not to 
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be construed as realizations whose variations have relatively little impact on higher level 
properties. Instead, the idea is that the discovered variations in the orthogonal realizers lead to
no variation in the higher level realized properties. In contrast, weak or strong parallel realizers 
are such that the discovered variations do lead to some variation in the higher realized 
properties.

10.4 Some broader philosophical context
Our chapter began with a succinct question about the nature of scientific theorizing. How do 
scientists accommodate findings about differences in lower level realizers in their higher level 
theories? We believe that the question, and our answer to it, should be of interest to 
philosophers of science who wish to understand the nature of scientific practice. That is one 
motivation for our project, but another stems from the fact that other philosophers have already 
touched on this question and given an answer that differs from our own. These philosophers 
have reasoned, in one way or another, that differences in lower level realizers will always lead to 
higher level differences that block multiple realization.15 Rather than attempting to track all the 
argumentative paths that have been taken, we will select one that fits most closely with the 
framework we have established here, namely, Carl Craver's treatment of ‘dissociable 
realization’ (Craver, 2004). In fact a feature of Craver's analysis is that it also illustrates one of 
the general morals of our analysis–namely, that whether a higher level property is split or not, 
depends, at least in part, on the needs of good theory at the higher level.

Craver's project is to explain the reasoning underlying dissociation experiments in which brain 
lesions can impair one form of memory, such as declarative memory, while preserving another 
form of memory, such as procedural memory, thereby supporting the view that there is no such 
thing as memory simpliciter, but instead two distinct subtypes of memory, namely, declarative 
and procedural memory. At the heart of Craver's analysis is a principle of No Dissociable 
Realization NDR. What we want to show is that, upon clarification (NDR), becomes a principle 
that endorses the properties splitting strategy that we have argued is not uniformly adopted in 
science. Formulated in terms of properties, it is the following:

(p.219) (NDR*) Instances of a property have one and only one realizer. If there are two 
distinct realizers for a putative instance of a property, then there are really two 
properties, one for each realizer. (Cf. Craver, 2004, p. 962).16

The first thing we need to do is to refine Craver's analysis to remove an ambiguity in the notion 
of ‘distinct realizers’. Consider two water molecules. Both of these molecules are polar, so both 
have oxygen and hydrogen atoms with properties that together realize the property of being 
polar. Here we should say that the properties of the water's constituent oxygen and hydrogen 
atoms provide what we might call numerically distinct realizations of the property of being polar. 
However, they do not provide what we might call property distinct realizations of the property of 
being polar. It is property distinct realizations that are implicitly taken to be involved in multiple 
realization. So, it is because a water molecule is polar in virtue of having two instances of 
hydrogen's electronegativity and one instance of oxygen's electronegativity (among other 
properties), where a hydrogen fluoride molecule is polar in virtue of having one instance of 
hydrogen's electronegativity and one instance of flourine's electronegativity (among other 
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properties), that a water molecule and a hydrogen fluoride molecule give us multiple realiza— 
tion.17

So, how should we interpret the phrase ‘distinct realization’ in NDR*? Let us consider the 
options. First, suppose we have a numerically distinct interpretation:

(NDR**) Instances of a property have one and only one numerically distinct realizer. If 
there are two numerically distinct realizers for a putative instance of a property, then 
there are really two properties, one for each numerically distinct realizer. (Cf. Craver,
2004, p. 962).

This, however, cannot be the correct principle. What it says, in essence, is that there cannot be a 
single property of being a kidney. If there are two numerically distinct realizers for the property 
of being a kidney, say, the left kidney and the right kidney, then there are really two properties–
such as the property of being the left kidney and the property of being the right kidney–one for 
each numerically distinct realizer. Craver, however, rightly rejects this proposal (Craver, 2004, 
p. 967). Presumably, scientists do not introduce the (p.220) subtypes of left kidney and right 
kidney, since this would tend to obscure scientific generalizations concerning kidneys. So, 
consider the property distinct interpretation:

(NDR***) Instances of a property have one and only one property realizer. If there are two 
property distinct realizers for a putative instance of a property, then there are really two 
properties, one for each property distinct realizer. (Cf. Craver, 2004, p. 962)

When framed in this manner, we can see that the principle looks to be a statement of the 
necessary property splitting strategy. However, we have now seen this approach faces 
problems. Among the oversimplifications inherent in this position is the tacit presupposition 
that, when we discover variations in realizers, the higher level theory has no role to play in 
deciding whether or not such differences at the lower level do, or do not, necessitate positing 
new properties at the higher level.

In fact, once we consider the role of higher level theory, we can return to our opening example 
of memory and explain how it does not, after all, lend support to our simplistic version of the 
property splitting strategy. Lesion studies by themselves do not distinguish between property 
distinct and numerically distinct realizations. Remove a bit of tissue X1 from location L1 and a bit 
of tissue X2 from location L2 and let these distinct lesions have behavioural consequences. This 
alone does not tell scientists whether X1 and X2 have distinct neuroscientific or psychological 
properties. X1 and X2 might be the left and right instances of a common structure, such as the 
left and right eye, the left and right kidney, or perhaps the left and right halves of area V1. In 
such a case one might have merely numerically distinct, rather than property distinct 
realizations of a neuroscientific property.

Second, even if scientists were to have evidence that X1 and X2 are property distinct realizations, 
that would not tell them whether they are property distinct realizations of distinct higher level 
properties or property distinct realizations of the same higher level property. To put the matter 
in another way, given that declarative memory and procedural memory have property distinct 
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realizations, it is not merely the distinctness of the lower level realizing properties that 
motivates them to split memory into declarative and procedural forms. Distinct sets of lower 
level properties can either give us two property distinct realizations of a single higher level kind 
(hence multiple realization) or two property distinct realizations of two higher level kinds (hence 
unique realizations). But, as we argued in the preceding sections, scientists facing a choice 
between these two options do not simply look to lower level realizers to make this decision. 
Instead, they look to principles of good higher level theory construction in making this choice. 
Higher, psychological level differences between procedural memory and declarative memory 
contribute to the splitting of properties; not mere differences in lower level realizers. (p.221) 

Craver, in fact, implicitly recognizes this when he mentions a number of the psychological level 
differences. He writes,

Declarative memories are triggered by the presentation of facts or the occurrence of 
events in the life of the person, and they play important roles in, for example, 
conversation, autobiography, or the simple act of reminiscing. Nondeclarative forms of 
memory (like procedural memory, iconic memory, priming, etc.) have their own unique 
triggering conditions (procedural memories are acquired by doing things, iconic memory 
by visual impressions, etc.) and play different roles in the life of the organism. These 
differences are reflected in the different kinds of stimuli used to produce and evoke 
memories of the different types (Craver, 2004, p. 966).

So, by our lights, the case of memory does not provide an illustration of the view that scientists 
subtype a higher level property when they find that it has distinct lower level realizers–thus 
taking the findings of the lower level on their own to determine decisions about which properties 
to posit at the higher level. Instead, we can now see that the case of memory supports our view 
that the decision whether to subtype properties at the higher level, or not, is driven, at least to 
some degree, by considerations of what makes for the better higher level theory and hence by 
higher level theory in partnership with the lower level accounts.

10.5 Conclusion
Neuroscientists and psychologists, at least at times, choose not to eliminate and subtype higher 
level properties when faced with the discovery of differences in lower level realizers. They have 
not postulated a myriad of distinct types of normal human colour vision each one of which 
corresponds to a distinct set of realizers. Neuroscientific and psychological theorizing does not 
hew to an extreme view according to which higher level taxonomy is always a slave to lower 
level taxonomy. But scientific practice also does not embrace the other polar extreme according 
to which neuroscience and psychology simply ignore differences in lower level realizers. We 
have shown that scientific theorizing does not necessarily adopt either extreme and we have 
described, at least in outline, how it actually proceeds in certain cases.

Sometimes scientists acknowledge the effects of lower level realizers by using them to explain 
individual differences at higher levels of analysis. To show this, we noted that biochemical 
differences in photopigments explain individual differences in subtle colour discrimination tasks, 
such as Rayleigh matching, even among individuals who are classified as colour normal by 
coarser tests, such as the Ishihara test. We also noted that differences in light absorption by the 
lens and macula are also used to explain individual differences among colour normals. The 
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property of colour normalcy is, thus, retained by vision scientists, despite individual differences 
within that type. In (p.222) other words, colour normalcy is retained in the face of the 
discovery even of parallel realizers and we have thus seen that we need to accept there are both 
weak, as well as strong, parallel realizers.

In addition to cases involving parallel realizers, we also saw there are cases where differences in 
realizers are acknowledged, but where this does not lead scientists to posit individual 
differences in a specific higher level property.18 These are cases of orthogonal realizers. Our 
illustration of this approach was the apparent role of the properties of the components of the 
phototransduc— tion biochemical cascade in normal colour vision. This result will be surprising 
to the philosophers who have reasoned that the discovery of distinct sets of realizers should 
always lead to the subtyping of higher level properties, hence that all distinct sets of realizers 
constitute strong parallel realizers. With orthogonal realizers, differences in realizers result in 
no difference at the higher level relevant to the higher level properties under discussion. Thus 
differences in the properties of the components of the phototransduction biochemical cascade 
do not lead to differences in colour discriminations. In orthogonal realizers, one has discoveries 
about differences in lower level realizer properties that scientists find no interest in 
incorporating into their higher level theories.

What do the foregoing observations about a segment of vision science, if we assume them to be 
descriptively accurate, tell us about neuroscience and psychology? Why do neuroscientists and 
vision scientists reason as they do? As we have seen, the short answer is that there is some 
measure of autonomy of psychology even in the age of neuroscience. Lower level sciences can 
have closer or more distant relations to higher level sciences, as revealed by parallel and 
orthogonal realizers, but exactly how lower level science influences higher level science is 
determined, at least in part, by the needs of higher level science. Higher level science is not a 
mere repository of lower level differences, but a body of theoretical knowledge in its own right 
and thus a partner with lower level science in our ongoing project of investigating the world 
around us.
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Notes:
(1) A third possible scientific strategy would be to keep G and add subtypes G1 and G2. This 
strategy would leave G to be multiply realized, which would make it useless for blocking 
multiple realization.

(2) We thus endorse a weakened version of the theory defended by Shoemaker (1980) under 
which in the actual world all instances of a property contribute the same powers under the same 
conditions.
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(3) The dimensioned view is introduced and defended by Gillett (2002, 2003). It is combined 
with a theory of multiple realization and applied to various neuroscientific and psychological 
examples in Aizawa and Gillett (2009a, 2009b, Unpublished). Those who reject our theories of 
realization and multiple realization might read what follows more restrictively as simply 
articulating what we take to be some of the implications of this combination of views.

(4) It is sometimes held against the dimensioned view that it appeals to property instances, 
rather than simply properties, and that it is overly technical on this score. In the example of 
polarity, however, we can see quite clearly how one really needs to appeal to the number of 
instances of the property of having an electronegativity of 2.2–rather than merely to the 
property of having an electronegativity of 2.2–in order to explain the realization of the polarity of 
a water molecule.

(5) Note that we focus throughout on the multiple realization of properties through the 
differential realization of their instances. However, we should note that a single instance in a 
certain individual may also be multiply realized over time. Having noted this possibility we leave 
it to one side in order to focus on the more usual case of the multiple realization of properties.

(6) The terminology for describing these cones is not consistent across the disciplines that study 
them. In psychology and psychophysics, one is more likely to find the cones described as L-
cones, M-cones, and S-cones or long-wavelength-sensitive (LWS), medium-wavelength-sensitive 
(MWS), and short-wavelength-sensitive (SWS), where biochemical studies of the opsins often use 
red, green, and blue. Nothing, as far as we can tell, depends on our choice of terminology.

(7) One can be worried about what sort of normativity there might be in the concept of ‘normal 
colour vision’, but much of this worry might be avoided by simply changing the higher level 
property that is invoked. So, for example, all of the arguments that are developed here would go 
through essentially unchanged even if we invoked other higher level properties, such as being 
an anomalous trichromat, being a dichromat, being a deuteranope, being a protanope, or being 
a tritanope. The property of having normal colour vision is more useful than these others for two 
reasons. First, the property of having normal colour vision is easily described operationally as in 
the body of the text above. Second, the literature on this property is more extensive than that on 
the other properties.

(8) See (Neitz & Neitz, 1998; Sjoberg, 1998; Winderickx et al. 1992).

(9) This composite data is assembled in Sharpe, Stockman, Jägle, & Nathans (1999).

(10) Using different techniques, Sharpe et al. (1998) report that Red (ala180)λmax = 557.9 and 
that the Red (ser180)λmax = 560.3, where with still different techniques, Asenjo, Rim, & Oprian 
(1994) report that Red (ala180)λmax = 557.9 and that the Red (ser180)=max = 560.3.

(11) In fact, in a paper to be discussed below, the authors actually appear to broach the 
possibility of subtyping normal colour perceivers on the basis of differences they find in the 
subjects' cone photopigments: ‘The ratio of two Rayleigh-type matches is a rapid and convenient 
measurement for assessing the L—cone λmax in the eye of an individual observer and therefore 
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may be useful for classifying normal trichromats into phenotypic sub—types’ (He & Shevell,
1994, p. 367). We shall return to this claim later.

(12) The subtyping strategy does not specify how the higher level psychological properties will 
be named or described; it only asserts that there will be some form of subtyping. Here we 
subtype the properties by reference to the molecules involved.

(13) To repeat a point made in an earlier footnote, there is nothing special in this regard 
concerning normal human colour vision. The argument applies just as well to the property of 
being a tritanope. It applies only slightly less well to being a protanope or being a deuteranope, 
since by definition these deficiencies mean a lack of red or green cones.

(14) Here it would be convenient to be able to cite some studies that document the variability in 
the proteins, but such studies are hard to come by, if they even exist yet. Thus, rather than 
direct measurements of variability in the G proteins, the cGMP phosphodiesterases, etc., one 
must settle for considerations of the general nature of proteins. These are likely to be variable 
due to the supposed underlying genetic variability, which is essential for evolution by natural 
selection. The lack of direct evidence might, thus, be taken to make this illustration more 
speculative than the preceding two.

(15) Here we have in mind Shagrir (1998); Craver (2004); Couch (2005); Shapiro (2008), and 
Polger (2008).

(16) In a late section of his paper, Craver proposes that arguments involving dissociable 
realization only work for properties and activities. This is why we skip over the NDR formulation 
in terms of natural kinds directly to NDR* formulated in terms of properties. This does not 
distort Craver's views.

(17) Some might prefer to mark the distinction we have in mind here by saying that two 
individual water molecules provide two tokens of the same type of realization of polarity, where 
a water molecule and a hydrogen fluoride molecule provide two tokens of two distinct types of 
realization of polarity.

(18) Another sort of case we have not discussed here is when one gets multiple realization of a 
higher level property G by having the differences between F1, F2, … Fn, and

‘cancel each other out’. To take a suggestive example, one might get multiple realization of a 
given stroke volume of an automobile engine's cylinder by distinct combinations of stroke length 
and cylinder area.
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Mechanistic explanation as standardly conceived is a form of causal
explanation, and it requires that the explanatory mechanisms are concrete, implemented 
mechanisms. However, ‘computing mechanisms’ can mean two things. On the one hand, it 
can refer to concrete — causal — computing mechanisms, such as brains (ex hypothesi) or 
man‐made computers, etc. On the other hand, it can also refer to abstract computing 
mechanisms such as abstract Turing machines. Therefore, the notion of computation can 
be used in cognitive science in at least two ways. Since there are computational 
explanations, in which Turing machines are considered as abstract mechanisms, the 
current formulation of mechanistic explanation does not cover those explanations.

11.1 Introduction
Turing machines are simple computational entities which were originally used to define the 
class of computational tasks that may be carried out by mechanical means. In this chapter we 
look at the explanatory roles the Turing machine1 plays in cognitive science. With respect to 
Turing machines’ explanatory role, we assume that (a) rational processes may be defined in such 
a way (viz. as computational functions) that they can be carried out by mechanical systems, and 
(b) the Turing machine specifies a means whereby one can show that a mechanistic system can 
be designed to perform rational processes.

(p.225) A body of recent literature has proposed that the explanation in neu‐rosciences, 
including cognitive neuroscience, is mechanistic (Bechtel & Richardson, 1993; Bechtel & 
Abrahamsen, 2005; Craver, 2005; Craver & Darden, 2005; Machamer, Darden & Craver, 2000). 
Some of these philosophers have argued that the mechanistic model could be extended to cover 
explanations in psychology and computer sciences as well (for instance, Bechtel & Abrahamsen,
2005; Wright & Bechtel, 2007; Bechtel, 2008; Piccinini, 2006b, 2007, 2008). This chapter 
concerns the question: how well does this account of explanation fit explanations based on 
Turing machines.

In what follows we will argue that although the mechanistic organization of Turing machines 
may be important for their explanatory usefulness, not all computational explanations in 
cognitive science that make use of Turing machines conform to the account of mechanistic 
explanation put forward by these mechanistic philosophers. The reason, in a nutshell, is the 
abstract nature of Turing machines. Mechanistic explanation as standardly conceived is a form 
of causal explanation, and it requires that the explanatory mechanisms are concrete, 
implemented mechanisms. However, ‘computing mechanisms’ can mean two things. On the one 
hand, it can refer to concrete — causal — computing mechanisms, such as brains (ex hypothesi) 
or man‐made computers, etc. On the other hand, it can also refer to abstract computing 
mechanisms such as abstract Turing machines. Therefore, the notion of computation can be 
used in cognitive science in at least two ways. Since there are computational explanations, in 
which Turing machines are considered as abstract mechanisms, the current formulation of 
mechanistic explanation does not cover those explanations.

11.2 Computation and cognition
One foundational task of cognitive science is to define and to explain the information processing 
capacities of natural systems, e.g. human brains, and provide a scientific account of how a 
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cognitive system produces the adaptive and systematic ‘intelligent’ behaviour that it does. In 
this enterprise, Turing machines are theoretically significant because they specify a design 
whereby a mechanical system can be perform complex information processing tasks (which 
would seem to require ‘intelligence’), viz. symbolic computation (Turing, 1936, 1950). In 
cognitive science this idea was used as a basis for the hypothesis that cognitive processes 
(complex perceptual processes, problem solving, inference, etc.) can be considered as 
computable functions, and that cognition is a species of computation.

From this perspective, Turing’s work on the concept of computability provides not only the 
theoretical foundation on which theoretical computer science was built, but also forms part of 
the background of cognitive science, and (p.226) has greatly influenced thinking about 
cognition. For instance, the dominant paradigm in cognitive science from the 1950's until the 
early 1980's, the so‐called classical paradigm, viewed the mind as a symbol system (Miller, 
Galanter & Pribram, 1960; Newell & Simon, 1972; Newell, 1980; Fodor, 1975; Fodor, 1983, 
1994; Fodor and Pylyshyn, 1988; Pinker, 1994). The idea is that mechanical or biological 
systems can perform cognitive tasks because they are computers, i.e. mechanisms capable of 
representing information in some appropriate medium, and performing computations on them 
(operations that some Turing machine could be designed for).2

In this classical paradigm, one might view Turing machines as the basis for implementable 
cognitive architectures. In such an approach, explanations based on Turing machines would be 
interpreted to involve not only theories of representations and information processing tasks, but 
also an account of how a cognitive system has, and exercises, a certain cognitive capacity. The 
behaviour of a Turing machine would be interpreted to represent literally the steps a system 
goes trough as it goes through from an input to output. However, few if any supporters of the 
classical paradigm believe Turing machines are mechanical models of the mind/brain in this 
literal sense. Thus, the Turing machine is significant not because it offers a plausible 
mechanistic model of cognitive operations — it does not — but because it offers a more abstract 
way to explain certain features of cognitive systems within a computational framework.

To anticipate the main conclusion, we claim it is useful to consider this theoretical role of Turing 
machines in terms of Marr's (1982) three levels of explanation (computation, representation and 
implementation, discussed in Section 11.4): abstract computational entities such as the Turing 
machine can be used at Marr's computational level to specify the information processing tasks 
as mappings, functions from one kind of information to another. These abstract entities are thus 
used in a computational theory of competence for a specific cognitive capacity — vision, 
language, belief revision, decision making, (p.227) etc.3 The Turing machine figures in such 
explanations,4 and this form of explanation is not mechanistic in the standard sense. It is special 
to cognitive sciences. This form of explanation has no direct analogy in the non‐cognitive and 
non‐representational branches of biosciences and the neurosciences, for which the current 
mechanistic model of explanation was mainly developed. The upshot is that the explanatory 
relevance of Turing machines in cognitive science is not based on a 1:1 correspondence between 
the ‘behaviour’ of the constituent parts of the Turing machine (machine table, tape, symbols) 
and the behaviour of a system of interest, such as the human mind‐brain.5

11.3 Mechanistic explanation in cognitive science
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Historically, one point of contention in the foundations of cognitive science has been the tension 
between general laws and specific models. To what extent are cognitive phenomena subject to 
general, universal, law‐like regularities, such as those observed in many aspects of the physical 
world? German psychophysicists studied empirically the existence of law‐like dependencies in 
the process of sensory transduction. In the domain of learning theory, behaviourists explored 
the possibility of formulating species‐universal laws of learning (conditioning) as relationships 
between stimuli and responses. More recently, computational research6 into inductive 
procedures has been characterized as a search for rational ‘univeral laws or generalization’ for 
cognitive science (Anderson, 1991; Shepard, 1987; Chater & Vitanyi, 2003). (p.228) This 
attitude towards explanation is possibly a result from a comparison with the physical sciences, 
where explanation is not considered to be achieved by modeling the behaviour of the constituent 
parts of a system in mechanistic terms, but only when mechanisms are subsumed under general 
laws.

However, the cognitive revolution in the 1960s moved the strategic focus from the universal 
laws to specific algorithmic models of specific phenomena. Rather than adapting the received 
explanatory strategy of the hard natural sciences, it became natural to think of cognitive science 
as ‘reverse engineering’, and view minds/brains as collections of highly complex computational 
devices. The guiding heuristics of research were borrowed partially from computer sciences and 
combined with the explanatory purposes of psychological sciences. Computer scientists design 
specific solutions to specific problems instead of searching for universal laws. This attitude was 
applied to cognitive science: the primary approach is to decompose complex information 
processing tasks such as problem solving (Newell, 1980) or object vision (Marr, 1982) into 
simpler information processing tasks, and to seek mechanical biological realizations for the most 
basic tasks.

Also philosophers of science have suggested alternatives to the received, nomological view of 
scientific explanation. These ‘mechanistic’ philosophers propose that explanation of the 
behaviour and capacities of complex systems (such as those found in the biological and cognitive 
sciences) does not typically involve laws, but specific models of particular mechanisms.7 These 
philosophers have focused more on biology rather than physics as the prototypical ‘modern’ 
science. Philosophers such as William Bechtel, Stuart Glennan, Lindley Darden and Carl Craver 
have offered an account of explanation in which a phenomenon is explained by describing a 
mechanism that produces the phenomenon. Originally this account was put forward as an 
account of explanation in biochemistry and molecular genetics, and some aspects of 
neuroscience, but it was soon proposed to be extended to explanations in cognitive sciences and 
cognitive psychology (Bechtel & Richardson, 1993; Machamer, Darden & Craver, 2000; Bechtel 
& Abraham‐sen, 2005; Glennan, 2005; Craver, 2005; Craver & Darden, 2005; Wright & Bechtel,
2007; Bechtel, 2008). The account spread to consciousness studies (p.229) as well (Revonsuo,
2006), and simultaneously it was proposed how computational explanations in computer 
sciences can take the form of a mechanistic explanation (Piccinini, 2004, 2006a, 2006b, 2007).

11.3.1 Mechanistic explanation of cognitive phenomena
What is distinctive about mechanistic explanations is their appeal to the components of a system 
and their causal interactions. According to this account, to explain a phenomenon is to give an 
account of how a causal mechanism, a hierarchical system composed of component parts and 
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their properties, gives rise to, sustains, or produces the phenomenon. Each component is able to 
perform (causally) some operation and interact (causally) with other parts of the mechanism so 
that the coordinated operation of the parts is what constitutes the systemic activity of the 
mechanism.

Constructing a mechanistic model involves mapping elements of a mechanistic model to the 
system of interest, so that the elements of the model correspond to identifiable constituent parts 
with the appropriate organization and causal powers to sustain that organization. A mechanistic 
explanation requires a realistic and causal interpretation of the implementation of the 
mechanism. To see this more clearly, think of a clockwork model of the solar system (Ptolemaic 
or Copernican). This model presents a mechanism that allows one to predict the observable 
behaviour of the planets.8 The clockwork clearly does not explain the causes of the regularities 
in a mechanistic way, since there are really no gears and differentials in space that are 
responsible for the behavioural regularities (i.e. the epicyclic geocentric orbits or the 
heliocentric orbits of the two systems, respectively). Indeed, we know now that there are no 
such gears, but instead the regularity is traced back to universal laws (Newton’s laws) 
governing the motions of the planets, resulting in trajectories that unfold ‘as if’ run by the 
mechanism. A genuine mechanistic explanation requires that the trajectories should not merely 
conform to the constraints imposed by the mechanism, but that the (parts of) the mechanism 
should actually causally produce these trajectories.

While mechanists vary slightly in their precise definitions of a mechanism, there seems to be a 
clear consensus in the literature that mechanisms are causally responsible for phenomena, and 
that mechanistic explanation is therefore a form of causalexplanation. For instance, Glennan 
defines a mechanism underlying a behaviour as a complex system which produces that 
behaviour by of the interaction of a number of parts according to direct causal laws (Glennan,
1996, p. 52). The term ‘causal’ distinguishes an actual cause from simple correlations, and the 
‘direct, causal laws’ attempt to capture the idea that one part in the mechanism must be the 
immediate actor on the (p.230) next part (Glennan, 1996, p. 55). Subsequently, Glennan has 
characterized the ‘laws’ as ‘direct, invariant, change‐relating generalizations’ instead of using 
the philosophically loaded concept ‘law’ (Glennan, 2002, p. 345, fn.1). In this formulation a 
mechanism for a behaviour ‘is a complex system that produces that behavior by the interaction 
of a number of parts, where the interactions between parts can be characterized by direct, 
invariant, change‐relating generalizations’ (Glennan, 2002, p. 344). Bechtel and Abrahamsen 
define a mechanism as ‘a structure performing a function in virtue of its component parts, 
component operations, and their organization,’ and add that ‘The orchestrated functioning of the 
mechanism is responsible for one or more phenomena’ (Bechtel & Abrahamsen, 2005, p. 423, 
emphasis added). In Craver's characterization, mechanisms are collections of entities and 
activities, which are organized in the production of regular changes from start or set up 
conditions to finish or termination conditions (Machamer, Darden & Craver, 2000; Craver, 2001; 
Craver, 2007). In this account, a mechanism is a structure performing a function, given initial 
and boundary conditions, in virtue of its component parts, component operations performed by 
those parts, and the organization of the parts into a functional whole (the ‘system’). For 
example, the heart's function, the behaviour to be explained, is to maintain blood pressure and 
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circulation. This is achieved by an intricate system of contractile fibres and a neural mechanism, 
whereby the fibres synchronize their contractions.

The explanandum of a mechanistic explanation is thus some behaviour of the system or some 
output generated by the mechanism (Machamer, Darden & Craver, 2000; Craver, 2005, 2006). 
The explanans of a phenomenon is either the model of the mechanism (the epistemic version) 
that describes the causal factors or the causal mechanism (the ontic version) responsible for 
carrying out the component operations that produce or sustain the phenomenon (Bechtel & 
Abrahamsen, 2005; Craver, 2006).9 In addition, Bechtel and Richardson identified two heuristic 
assumptions, ‘decomposition’ and ‘localization’ (Bechtel & Richardson, 1993). Decomposition as 
an explanatory strategy consists of the assumption that the overall activity results from the 
execution of the component operations, and localization as a scientific strategy rests on the 
assumption that these tasks are performed by particular kinds of components into which we can 
identify and analyse the system.

Now, if we apply the mechanistic account of explanation to cognitive phenomena, then to 
explain a cognitive phenomenon is to explain how a certain cognitive mechanism gives rise to, 
sustains, or produces that phenomenon.

(p.231) The explananda would be systems of cognitive operations, and the behaviours would be 
complex systems performing these operations. If we apply the heuristic strategies of 
decomposition and localization, the mechanistic explanation of a complex cognitive operation 
would present a cognitive mechanism that is able to carry out the complex cognitive operation 
by breaking it up into simpler operations which — ultimately — are made up from primitive 
operations carried out directly by the hardware, explaining how the hardware sustains or 
implements cognition. This has proved to be a very promising strategy in many areas of 
cognitive sciences: It underlies the classical symbolic paradigm in artificial intelligence, and 
cognitive psychology as well as many connectionist models. This strategy is also implicit in the 
epistemic goal of cognitive neuroscience, viz. localizing the neural basis of cognitive phenomena 
and the lower level physiological neural mechanisms.

However, we argue that as a species of abstract mechanisms Turing machines are used in 
computational explanations in a manner that does not conform to this strategy of explanation. 
The problem is not that one could not decompose Turing machines into parts, nor that Turing 
machines would lack the characterizing properties of mechanisms. As we illustrate below, 
Turing machines are mechanisms. However, they are not concrete causal mechanisms. And in 
the standard account of mechanistic explanations, the mechanisms involved are always causal 
mechanisms. A mechanism is not merely a collection of its parts; it also includes the way the 
parts interact with each other, spatially, temporally and causally.

11.3.2 Abstract and concrete mechanisms
If Turing machines are not concrete mechanisms, what kinds of mechanisms are they? A 
mechanism must be something more than just an aggregation of its parts. In standard 
mechanistic accounts this ‘something more’ is the causal organization of the mechanism. For 
example, in Craver's characterization, mechanisms are collections of entities and activities, 
which are organized in the production of regular changes from start or set up conditions to 
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finish or termination conditions (Machamer, Darden & Craver, 2000; Craver, 2001, 2007). In 
Craver's terminology this organization, which distinguishes mechanisms from mere aggregates 
or events is the active organization of a mechanism (Craver, 2001, 2007). Craver illustrates this 
feature of mechanistic organization by comparing the active organization of mechanisms with 
the conditions of aggregation developed by William Wimsatt:10 Suppose that a property or 
activity (ψ) of the whole (S) is explained by the properties or activities {x 1, …, x n} of its parts 
{X1,…, Xm}. The ψ‐property of S is an aggregate of the x‐properties of X's when:

(p.232) (W1) ψ is invariant under the rearrangement and intersubstitution of Xs;
(W2) ψ remains qualitatively similar (if quantative, differing only in value) with the 
addition and subtraction of Xs;
(W3) ψ remains invariant under the disaggregation and reaggregation of Xs; and
(W4) There are no cooperative or inhibitory interactions between Xs that are relevant to 
ψ

Each of these criteria (W1—W4) points to the absence of organization among the parts in mere 
aggregates. This interconnectedness is the essence of a mechanism; the components of 
mechanisms, in contrast to those of mere aggregates, are in various dependecy relations to each 
other. (A model of the mechanism specifies these dependencies.) A part cannot be freely 
intersub‐stituted with another (W1), because other parts depend on the characteristics of that 
part. The parts cannot be removed or multiplied without changes elsewhere (W2). Changing the 
relationships between interdependent components would break down the organization of a 
mechanism (W3), and in the mechanisms there are systematically different kinds of 
dependencies (inhibitory and cooperative interactions) between the components (W4).

Turing machines fulfil criteria W1—W4, and hence they qualify as mechanism. A Turing machine 
clearly is not a mere aggregate. In its canonical representation a Turing machine consists of a 
list of instructions or rules that can be represented as the machine's machine table. The inputs 
and outputs are represented as strings of symbols on a tape. The system is clearly organized in a 
way that is not invariant with respect to rearrangement or inter‐substitution of symbols on the 
tape, or cells in the machine table, as changing the structural arrangement of the components 
(symbols and machine table entries) can dramatically change behaviour (the function 
computed). Further, there is interaction between the components of the machine in that 
operations depend on the location and ‘movements’ of the scanning head. Thus Turing machines 
are mechanisms.

When the notion of computing mechanism is interpreted as a concrete mechanism, symbols are 
understood as states, and symbol structures are spatiotemporal arrangements of these symbols 
(Piccinini, 2007). Under this interpretation computation is a process unfolding in real time. 
However, if we allow that the conceptual glue that binds a mechanism together need not be 
causation, and the relations among the parts of a mechanism need not be spatiotemporal, we 
can apply Wimsatt's criteria to abstract Turing machine, i.e. abstract mechanisms as well.

Computation is mathematically defined in terms of symbol structures (e.g. strings of letters 
produced from a finite alphabet), and instructions that generate new symbol structures from old 
ones in accordance with a recursive (p.233) function. A computation is a proof‐like sequence of 
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symbol structures related to each other by operations specified by the instructions. None of this 
involves the notion of physical causation. Neither do any of the criteria for mechanistic 
organization W1‐W4 strictly imply causal organization. We conclude that there is no good reason 
to question the idea that an abstract computing mechanism is a coherent one.

Thus the term ‘computing mechanism’ can refer to two things. On the one hand, it can refer to 
concrete computing mechanisms such as (ex hypothesi) brains, computers and so on. On the 
other hand, it can refer to abstract computing mechanisms such as abstract Turing machines. In 
a similar way that a concrete Turing machine is more than just an aggregate of its parts and has 
a mechanistic organization, an abstract Turing machine is more than an aggregate of its parts 
and has a ‘mechanistic’ organization as well.

Turing machines and their computations are abstract in a very strong sense: Turing machines 
can be defined to have properties that are not and cannot be implemented in any real 
computational system (infinite memory, unlimited processing time and other idealized 
properties), but the most important thing is that they do not operate in real space and time. 
Their theoretical use does not require one to commit to a literal localization of the parts, or a 
decomposition of the mind/brain into a tape and a read/write head, for example.

This creates a problem for those who would subsume Turing machines under the banner of the 
current mechanistic explanation. The current mechanistic account of explanation, as it stands, 
talks exclusively about concrete mechanisms: they require the mechanisms in explanations to be
implemented. Mechanisms are anchored in their components, and those components occupy 
space and they act in real time (Craver, 2007). In short, mechanistic explanation requires a 
realistic causal interpretation of the implementation of the mechanism whereas Turing machines 
are abstract.

11.4 Computational explanation based on abstract mechanisms
A useful way to look at the basic distinction between concrete and abstract computational 
mechanisms is to view them operating at the different levels of explanation: algorithmic 
(performance) and computational (competence). It is important to understand that these 
theories describe cognitive organization at a different level of abstraction. The theory of abstract 
computational mechanisms lies at a higher level of abstraction than specific, concrete 
mechanisms.

Whereas the abstract computational level specifies the information represented and operated 
on, the level of representations and algorithms describes the syntactic or formal means by which 
the information is explicitly represented and operated on. Using abstract mechanisms at the 
computational (p.234) level does not commit one to the same assumptions regarding the 
internal causal organization of an organism, as assuming concrete mechanisms at the 
algorithmic level would.

This distinction has not always been fully appreciated. However, the computational level is 
indispensable in computational explanations in the neu‐rocognitive sciences, and abstract 
Turing machines are part of the story. They are used in theories that characterize 
representational requirements and constraints. For instance, the recent rational and 
probabilistic approach to cognition includes theories that are formulated at this level of 
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abstraction (for example, Chater, Tenenbaum' Yuille, 2006). The role of this computational level 
is captured nicely in the following quote from Anderson (1991b, p. 471):

A rational theory [.…] provides an explanation at a level of abstraction above specific 
mechanistic proposals. […] One might take the view [.…] that we do not need a 
mechanistic theory, that a rational theory offers a more appropriate explanatory level for 
behavioral data. This creates an unnecessary dichotomy between alternative levels of 
explanation, however. It is more reasonable to adopt Marr's view that a rational theory 
(which he called ‘the computational level’) helps define the issues in developing a 
mechanistic theory (which he called the level of ‘algorithm and representation’). In 
particular, a rational theory provides a precise characterization and justification the 
mechanistic theory should achieve

As an example — chosen here on the basis of involving Turing machines — Chater (1996) 
represents perception as the computational task of encoding perceptual stimuli into the simplest
possible representation. Here simplicity is defined in terms of algorithmic complexity (Chaitin,
1977; Kolmogorov, 1968; Solomonoff, 1964a, 1964b). This is a theory at the computational level, 
because it defines the computational task of perception as producing the simplest possible 
encoding of the stimulus. This is a law of perceptual organization, and the Turing machine is 
part of this law, because it is part of the definition of complexity and simplicity: the complexity 
of an encoding is defined as the length of the shortest Turing machine that will produce that 
encoding. No mechanistic hypotheses of the causal agents, Turing machines or otherwise, are 
put forward. Generally, it is not the case that the encoding would actually be literally produced
by the shortest (or indeed any) Turing machine. The abstract computational mechanisms are 
here used to specify the information processing tasks, mappings from one kind of information to 
another. What the abstract computational theory allows one to do is to specify the information 
processing task precisely and unambiguously. This level constitutes a theory of competence for a 
specific cognitive capacity — here it is perception, but analogous theories can be formed for 
language, reasoning, decision making, etc.

(p.235) The computational theory can be used to characterize the information constraints that 
define the cognitive task which the brain of the organism faces. In that sense the computational 
level is perhaps rather more like the laws of motion governing the motion of the planet, rather 
than mechanically causing them. When the system is working appropriately its behaviour is
governed by the computational principles, though the principles themselves need not be written 
down anywhere and consulted or explicitly represented as constituent elements with causal 
power to drive the behaviour of the system. Descriptions of singular performances are given at 
the algorithmic or implementation levels. In the case of neurocognitive sciences these 
performances would be at the functional (symbolic or connectionist) or neurological (systemic, 
cellular, molecular) levels.11 These levels give a description of the concrete mechanisms that
fulfil the tasks described at the computational level. They explain how one ends up from one 
representation (which makes explicit a piece of input‐information) to another (for output‐
information), such that this derivation respects constraints already defined at the level of 
computation.
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What is the explanatory role of the abstract, Marrian, computational level? This computational 
theory answers ‘what’ questions and ‘why’ questions. These are questions such as ‘what is the 
goal of the computation?’ (e.g. to add natural numbers) and ‘why is it appropriate?’ (Given the 
representational convention of the arabic numerals, the algorithm is faithful to the rules 
governing the operation of addition, which is defined at the level of computation.) The 
algorithmic level answers ‘how’ questions (‘How are the number representations — numerals — 
meant to be manipulated?’) by describing formal means of explicitly representing the 
information and syntactically manipulating these representations.

With a computational theory one can explain many things about the concrete mechanisms. For 
example, if one considers, why this pattern of synaptic changes is such‐and‐such, one can 
answer because they serve to store the value of x needed in order to compute y. Or, why is the 
wiring in this type of ganglion cell such‐and‐such? Because the wiring computes, or 
approximates a computation of, some variable x. In other words we are able to explain many 
phenomena about the lower levels by their representational character, and the appropriateness 
of the mechanism for the computational task. As Marr stressed, although the concrete 
mechanisms are perhaps more readily investigated, since they have causal powers to affect our 
measuring equipment, after all, the computational level is an equally important level from an 
information‐processing theory point of view (Marr, 1982).

(p.236) 11.5 Conclusions
Turing machines are often understood to be abstract entities. As such, they are not part of the 
causal order of things. They do not run in real time. No one has ever built nor started an 
abstract Turing machine. Despite this, they offer not only the theoretical foundation for 
computer science, but also are a part of many theories and explanations in cognitive science.

In this article we have emphasized the role of Turing machines in computational explanations, 
and considered whether the standard account of mechanistic explanations is appropriate for 
describing these explanations. We have argued that although Turing machines are mechanisms, 
computational explanations in cognitive science making use of Turing machines do not conform 
to the standard account of mechanistic explanation. This is because mechanistic explanations, as 
traditionally conceived, require a realistic and causal interpretation of the mechanism, whereas 
abstract computing mechanisms, such as Turing machines, are not concrete causal mechanisms.
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Appendix: Turing machines and algorithmic complexity

An algorithm is a list of instructions that can be followed mechanically (without rational 
understanding), and which, when followed, will compute a function. It will take arguments of the 
function as input, and produce values as output. Turing's (1936) idea was to analyse the concept 
of algorithmic information processing into its essential details. Hence, the idea of the Turing 
machine. We use the definite singular for the common idea behind the various simple abstract 
devices covering the various classes of Turing machines, and the plural when we are talking 
about different machines for computing specific functions.

Here is one way to present the idea of the Turing machine: A Turing machine M has a tape, an 
indefinitely extendable list of cells. Symbols drawn from a finite alphabet A may be written in the 
cells. Without loss of generality, we can assume the symbols to be drawn from the binary 
alphabet consisting of A = {1,0} (as symbols from any finite alphabet may be recoded into finite 
binary strings). The machine has a finite control, a read/write head, which can be in one internal 
state q 1, q 2,…, q n out of a finite number n of internal states. The head scans the tape one cell at 
a time, writes a symbol from the alphabet on the tape (possibly the one already on the tape, 
effecting no change), and moves one step to the left or to the right or stays put. (Again, we could 
give the head the capability of scanning, reading and writing more symbols at a time, but this 
would not make a difference.) The operation of the head is based on a finite list of rules, which 
determines for each ordered pair of scanned symbol and internal state the operation to be 
performed: erasing or replacing the symbol (or leaving it alone), changing its internal state (or 
remaining in the same state), and possibly moving to the left or right (or staying put). The rules 
can be represented as a machine table with two columns for (p.239) the symbols, and n rows, 
one for each of the n possible internal states. The entries in the cells of the table will contain the 
operation to be carried out when scanning a particular symbol in a particular state.

A Turing machine will accept certain inputstrings on the tape x 1, x 2,…., which are finite digital 
objects, and, determined by its list of rules, operate on them. If the machine halts, then it is said 
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to have produced an output, which is the string of symbols on the tape. Different machines (with 
different control rules) will compute different mathematical functions (mappings from input 
strings to output strings).

There are special kinds of Turing machines, called universal machines U1, U2,… which accept as 
input encoded representations of any Turing machine (fully specified by their finite control), and 
inputs the encoded Turing machine would accept, producing as output the very output that the 
encoded machine would produce. The encoding of a Turing machine on the tape of the universal 
machine is called a :program. The symbols corresponding to the input for the simulated machine 
is called data. The universal machine carries out on the data the operations given in the 
algorithmic instructions in the program.

This way a universal machine U can compute any function that there exists some Turing 
machine to compute. According to the Church‐Turing thesis the class of functions which can be 
computed ‘mechanically’ is the class of functions that can be computed by some Turing machine 
and therefore any universal machine U can compute any and all mechanically computable 
functions, by simulating the Turing machine Mk appropriate for computing the function f k.

We can now define the algorithmic complexity of a (digital) object x as the length (in binary 
digits) of the shortest program that will generate that object as its output (with empty input). A 
universal machine U accepts as inputs programs corresponding to the (denumerable) set of all 
Turing machines. For each of those programs, either x is their output or it isn't. Since the set of 
Turing machines is countable, we can enumerate the programs, ordering them by size, and 
select the smallest program. (Assuming we can determine for each Turing machine whether or 
not it will produce x and halt; unfortunately, this halting problem was shown by Turing to be 
non‐computable, and therefore the property of algorithmic complexity is itself non‐computable.)

There are different universal machines which will have slightly different encodings for the 
Turing machines, and thus the length of the program for a given Turing machine will vary 
slightly depending on our choice of universal machine. However, a central result in algorithmic 
complexity theory, the invariance theorem establishes equivalence, up to c, a small additive 
constant. That is, for all universal machines Up, Ur, Kp(x) ≤ Kr (x) + c, where Kp(x) is the length 
of the shortest program for universal machine p that will output x, Kr (x) is the length of the 
shortest program for universal machine p that will output x, and c is a small (positive or 
negative) constant. Therefore, the complexity K (x) of x is intrisic to x and not dependent on our 
choice of unversal machine.

Notes:
(1) There are different ways to present Turing machines (single tape, multiple tapes, etc.) which 
are basically notational variants for different purposes. An intuitive introduction to the concept 
of Turing machines and algorithmic information (discussed in Section 11.4) is given in the 
appendix.

(2) When combined with the view of cognition as information processing, Turing machines also 
specify a specific kind of information processing architecture (the so‐called classical 
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architecture; Fodor & Pylyshyn, 1988, etc.). A variety of approaches have challenged the 
‘classical paradigm’ for a variety of reasons. Some forms of connectionism, dynamical systems 
theory, and some advocates of embodied cognition among others do not view cognition in terms 
of operations on representations (e.g. Van Gelder, 1995). But many advocates of more modern 
computational architectures still view cognition as computation — just not classical 
computation. For instance, Smolensky once wrote that connectionist models might ‘challenge 
the strong construal of Church's Thesis as the claim that the class of well‐defined computation is 
exhausted by those of Turing Machines’ (Smolensky, 1988, p. 3). We are concerned with 
representational/computational explanations in cognitive science generally, and the Turing 
machine's role therein. Therefore, our analyses are meant to apply to both classical modern 
computationalist theories, but not non‐ represenational theories.

(3) The term competence level theory comes from Chomsky's work. Marr explicitly relates the 
two when he writes: ‘Chomsky's (1965) theory of transformational grammar is a true 
computational theory in the sense defined earlier. It is concerned solely with specifying what the 
decomposition of an English sentence should be, and not at all with how that decomposition 
should be achieved’ (1982, p. 28). We use the term ‘theory of competence’ (for a cognitive 
capacity) synonymously with ‘computational level theory’ (for that capacity).

(4) Note that we are not claiming that all explanations involve Turing machines, let alone that all
computational explanation in cognitive science is ‘Marrian’.

(5) The Turing machine can, of course, be used for theoretical purposes other than explanation. 
One can view it, for instance, as a conceptual tool (constraint) on theory formation, and one 
could argue that this is not explaining, and constraints on theory formulation carry no 
explanatory weight, since explanation requires a description of real mechanisms in the world. 
We would rather not take a strong stance on the matter. We simply note that Turing Machines 
are involved in computational explanations, and leave open whether or not they should be 
considered metaphysically ‘real’.

(6) By computational research we mean all research that views cognition in terms of complex 
information processing tasks, i.e. which studies cognition in terms of complex internal 
representations (cf. footnote 2), and explains cognitive phenomena at least in part at from the 
point of view of Marr's (1982) computational level. The implied contrast is thus not that between 
‘computational modeling’ and ‘mathematical modeling’, or between analytic treatment and 
numerical simulation, for instance.

(7) As such, the idea that the explanation of a phenomenon involves the mechanisms responsible 
for that phenomenon is nothing new. The early atomists, such as Democritus, explained things 
by referring to the features of observable objects in terms of the shape and motion of their 
constituents. In the seventeenth century Descartes applied his mechanistic perspective to the 
physical world, which included the living organisms, animal behaviour and that part of human 
behaviour that was not guided by the immaterial mind (which Descartes called reflexes, and 
considered to be shared with animals). In this sense Descartes extended the mechanistic 
explanation into the domains of biology, and partially the domain of psychology. However, since 
Descartes and his contemporaries did not have the conception of rational behaviour (thought 
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and speech) being carried out by mechanical means, i.e. for instance, by Turing machines, they 
were thought to lie beyond the capacity of any mechanism.

(8) It can be interpreted merely as a heuristic device that is able to save the phenomena without 
explaining them (Duhem, 1969).

(9) Mechanists disagree on whether explanation should be considered in ‘epistemic’ or ‘ontic’ 
terms. The distinction derives originally from Salmon (1984). The epistemic view is that a model 
of a mechanism gains its explanatory status based on its being part of an argument, while the 
ontic conception says that a model explains if it represents an actual mechanism in nature (see 
Bechtel & Abrahamsen, 2005; Wright, 2006; Bechtel, 2008).

(10) Originally from Wimsatt (1997), but we use Craver's modified version (Craver, 2007, p. 
135).

(11) These are the levels that Marr calls the levels of algorithms and representation, and 
implementation, but often algorithmic level descriptions are called ‘computational’, which can 
cause some confusion.
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the behavioural sciences involves reasoning across possible worlds that differ in their 
causal structure, which becomes awkward within the basic architecture of Pearl's system. 
A neighbourhood semantics approach could represent this type of reasoning more 
naturally. Consideration of these issues may be helpful both to behavioural scientists 
working to incorporate Pearl's work and also to those working outside the behavioural 
sciences attempting to explain causal reasoning within those sciences.

Following a resurgence of interest in causal inference (Hoover, 2004; Russo and Williamson,
2007), Pearl's (20001) book has helped rejuvenate methodological interest in causal inference in 
psychology and the behavioural sciences. The present chapter explores three issues relating 
Pearl's theory to causal reasoning in these sciences. The axioms of Pearl's theory can be read 
two ways: as universal principles or as assumptions that set the boundaries of application. 
Whereas Pearl (2009) seems to favour the former reading, the first section of this chapter agues 
in favour of the second reading. One can sustain the former reading with respect to the narrow 
issue of the formal account of causal models and the axioms. However, as soon as one broadens 
one's view to (p.241) consider how well these together characterize the domain of causal 
reasoning from models, outside of the formal representation, only the second reading applies.

The second section focuses on Pearl's causal non‐eliminative instrumentalism (causation is 
needed but in the head) and its lack of fit with the tradition of evaluating rival explanatory 
hypotheses (Cook and Campbell 1979; Shadish, Cook and Campbell, 2002) in behavioural 
science research. A detailed discussion of Pearl's proposals regarding causal inference falls 
beyond the scope of the present chapter. The goal is merely to examine prevailing practices of 
causal inference in the behavioural sciences as a backdrop to Pearl's theory of reasoning from 
causal models as it relates to behavioural science research.

The final section argues that the nature of counterfactual reasoning in the behavioural sciences 
motivates allowing causal structure to vary across possible worlds, in addition to value 
assignments. Expanding the model accomplishes this better than approaches that work within 
the model because the expanded model maintains a clearer distinction between variables and 
causal functions. The chapter may be useful both to researchers interested in Pearl's work and 
to those interested in studying causal reasoning in psychology and behavioural science.

12.1 Interpreting Pearl's axioms
We present three properties of counterfactuals — composition, effectiveness, and 
reversibility — that hold for all causal models (Pearl, 2009, p. 228).

With all due respect to multiculturalism, all approaches to causation are variants or 
abstractions of the structural theory presented in this book (Chapter 7) (Pearl, 2009, p. 
353).

This section begins by reviewing the structural account of causal models and the axioms that 
characterize them presented by Pearl (2009, Chapter 7). Some consideration is given to the 
proper interpretation of these components of Pearl's account. Then, several counterexamples 
are considered, including Pearl's theory itself. When considered in relation to the domain of 
causal reasoning with causal models, and not just the particular type of model stipulated early 
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on, it seems clear that Pearl's theory covers only a restricted domain. As such, the axioms that 
characterize the theory serve to delimit the domain of applicability rather than providing 
universal truths that apply to all causal models.

The discussion that follows will take for granted several fundamental concepts. Pearl's theory 
assumes a context in which the cognitive agent (a researcher, say) already has causal 
knowledge and seeks to reason from (p.242) that knowledge (this discussion does not directly 
address the theory of causal induction). This knowledge involves a universe of one or more 
individual property bearers, and sets of mutually exclusive and exhaustive nonrelational 
properties organized as variables over those individuals. Although Pearl's theory does not seek 
to provide a reductive account of causation (Woodward, 2003a, 2003b), it assumes that causal 
reasoning involves determinative relationships between the values of these variables for a given 
unit or set of interconnected units. For example, one variable might code the position of a light 
switch as on or off and another variable might code the state of a light as on or off. The switch 
and the light constitute distinct units, but a causal relation holds between the two variables if 
the position of the light switch causally determines the status (on‐ness or off‐ness) of the light 
(clearly a non‐reductive theory) possibly given some boundary conditions (such as the presence 
of electricity in the line and a working light bulb) which may be included in the causal model or 
simply assumed constant.

The causal relation is further assumed to be non‐extensional as is now commonly accepted 
(Davidson, 2001; Mellor, 1995). In other words, a claim that the light switch position causes the 
light to go on or off does not simply assert that all actual instances of appropriately paired lights 
and switches conform to a general law that rules out disconcordant pairings of switch states and 
light states such as lights shining on a switch in the off position. Such purely extensional 
assertions lack the deductive strength to support the kind of reasoning that the theory seeks to 
provide an account of. Instead, causal assertions carry further content with implications 
constraining the structure of non‐actualized possible states. The causal assertion regarding the 
light and switch implies not only that if the switch is in the on position the light is shining but 
further that had the switch been placed in the on position (although it was not) the light would 
have shone (although it did not). As such, causal claims support counterfactual inferences 
(Collins, Hall and Paul, 2004). Rubin and others (Rubin, 1974; Holland, 1986) have characterized 
these counterfactuals in terms of potential responses. The light has shining as its potential 
response to the placement of the switch in the on position and not shining as its potential 
response to the opposite. The light and switch can only actualize one of these potential 
responses at any given time, but the causal claim entails both even for lights that come in and 
out of existence without ever having been turned on. This approach to causation is sometimes 
referred to as a black‐box approach because it merely maps the nomothetic causal relationships 
between variables without offering an account of the process that maintains these relationships. 
Nonetheless, it is commonly assumed that whatever makes counterfactual assertions true or 
false must exist extension‐ ally in the actual state of affairs, and the underlying processes offer a 
likely candidate for truth‐makers of black‐box assertions about counterfactual states of affairs 
and the causal assertions that entail them (Markus, in press).

(p.243) The current discussion further assumes that Pearl's (2009) theory of causal induction 
(Chapter 2) describes inferences to the kind of causation described in Pearl's theory of causal 
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inference (Chapter 7). A reviewer suggested an alternative reading in which these two aspects 
of Pearl's book are unrelated to one another, making the above stated assumption potentially 
misleading to the reader. For reasons given immediately below, I retain the above assumption 
but hope that clearly acknowledging it here eliminates any potential to mislead. The reviewer is 
certainly correct in pointing to a substantial body of literature in cognitive psychology that 
attempts to work out a computational theory of inference from probabilistic dependence to 
causal beliefs of the form A causes B without attempting to spell out the content of such beliefs 
in much detail (Cheng, 1997; Goodman, 1983). Indeed, operationally defining causal belief as 
assent to statements of the above form might make the reference of such statements inscrutable 
(Quine, 1960). My attempts to construct a satisfactory reading of Pearl's (2009) book along 
these lines have only further convinced me that the integrations of inference to causal beliefs 
with inferences from causal beliefs constitutes an integral element of Pearl's approach and a 
strength ofthat approach, but others may succeed where I have failed. As a practical matter, 
such alternative approaches fall beyond the scope of the present chapter but the reader should 
not take this to suggest that cognitive psychologists have not developed associative learning 
theories of causation or that one cannot consider reading Pearl's work in this tradition.

12.1.1 Pearl's theory of causal inference from causal models
The axioms presented below animate a general theory of causal models. The theory defines a 
causal model, M, as an ordered set of the form ⟨U, V, F⟩. U contains variables that have no 
causes within the model whereas V contains variables that have causes within the model. F
contains a set of functions to each variable in V from the union of U and V omitting the member 
of V for which the function gives the causes from among the causes of itself. The potential 
response Y X(u), then, corresponds to the solution for Y of the set of functions F substituting in 
the value x of X fixed by intervention (Pearl, 2000, pp. 203–204) and the values u of U.2 As 
discussed in more detail in a later section, the term ‘intervention’ may carry some unwanted 
connotations in the present context. The variables are elements of a mental model (possibly 
represented externally by symbolic means) and interventions are therefore mental operations on 
the mental representations. The interventions do not refer to actions on the systems represented 
by the causal models. One can answer counterfactual questions about how one's life might 
change if one won a lottery through interventions on one's mental model even though one (p.
244) cannot intervene in the world to make it transpire that one wins the lottery without 
violating the constitutive conditions of what makes it a (fair) lottery.

To switch to a more behavioural example, consider the Möller–Lyer illusion (Judd, 1905). As 
shown in Figure 12.1, line A appears longer than line B. The lines have equal length, and the 
different orientations of the arrow heads causally influence the perception of line length. The 
experimental phenomenon does not uniquely determine the representation as a causal model, as 
Pearl recognizes. As one approach, one could code the position of the arrow heads as one 
variable (X) and the perceptual judgment as another variable (Y). For convenience, one could 
code both variables to have the values ‘A’ and ‘B’ such that x = ‘A’ means that line A has the 
outward pointing arrowheads and line B inward and y = ‘A’ means that line A is judged longer 
than line B (mutatis mutandis for x = ‘B’ and y = ‘B’). The causal relationship between variable X
and variable Y would then be the identity function such that X = Y. The potential response Y x(u) 
then represents the perceptual judgment of relative length that would result for the observer if 
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the arrowheads were fixed the value x of X (e.g. Y A(u) = ‘A’ for X = ‘A’). Alternatively, one could 
select lines as units, code their arrowhead position and judged length as variables (W and X), 
and then code their judged relative‐length compared to a line of equal length with outward‐
facing arrows (say) as ‘same’, ‘shorter’, or ‘longer’ (Y) in which case one could model a causal 
chain such that W causes X and X causes Y. Additional models can be generated from alternative 
representations with their convenience waning as the choice of units and variables departs 
further and further from common‐sense natural‐language descriptions of the situation.

Pearl (2009, Chapter 7; 2000; Galles and Pearl, 1997, 1998) presents three axioms to 
characterize causal counterfactual assertions of the form Y x(u) = y in the context of such 
models. Y and X refer to variables for which an individual takes determinate values x and y. Each 
of these may be multivariate, consisting of a set of univariate variables. The assertion, then, 
reads that intervening to set X to x has the result of causing Y to take the value y assuming a 
fixed value for u. Roughly, the first axiom asserts that a statement

(p.245) of this form remains invariant to 
manipulations that fix other variables in the 
system to the values that they would have 
without the intervention. The second axiom 
asserts that an intervention to fix the value 
of a variable for a given unit will result in 
the variable taking on that value for that 
unit. The third axiom offers a patch for 
systems with causal loops and adds no 
additional content to causal systems without 
loops. In the potential response notation 
explained above, these axioms take the following form where ‘⊃’ represents the material 
conditional (‘If A then B’ in the very weak sense of ‘not [A and not B]’ for which Pearl uses ‘⇒’), 
the equal signs denote nothing more than material numeric equality (i.e. a purely extensional 
relation that tells us nothing of what is possible or necessary), ‘∃’ represents existential 
quantification (‘For some x’), ‘∀’ represents universal quantification (‘For all x’, which Pearl does 
not formalize), ‘ǀ’ represents a material condition on the quantification (e.g. ‘(∀xǀx = y)(P)’ is 
equivalent to ‘(∀x)((x = y) ⊃ P )’), ‘∧’ indicates logical conjunction (‘and’), and S(∙) indicates that 
the variable inside the parenthesis is univariate (i.e. scalar). For simplicity, the scope of the 
material conditional exceeds that of equality or other logical connectives such that ‘A = B ⊃ C ∧
D’ means the same as ‘(A = B) ⊃ (C ∧ D)’. Finally, to help make them stand out, I enclose the 
formula to which the quantifiers apply in square brackets (‘[… ]’) instead of parentheses.

Composition: (∀uǀu ∈ U)(∀(W, X, Y))(∀xǀx ∈ X)(∀wǀw ∈ W)[W X(u) = w ⊃ Y XW(u) = Y
X(u)].
Effectiveness: (∀⟨W, X⟩)(∀xǀx ∈ X)(∀w ǀ w ∈ W)[X xw(u) = x]
Reversibility: (∀⟨Y, W⟩ǀS(Y) ∧ S(W))( ∀ X)(∀xǀ x ∈ X)(∀wǀw ∈ W)(∀yǀy ∈ Y)[(Y xw(u) = y) 
∧ (W xy(u) = w)⊃ Y x(u) = y]

I have here chosen to render Pearl's axioms as quantifying over ordered sets of variables (e.g. 
∀⟨W, X, Y⟩) rather than sequentially quantifying over each variable (e.g. (∀W)(∀X)(∀Y)) because 

Fig. 12.1  The Möller–Lyer illusion.
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Pearl's verbal statement does not clearly distinguish these and the former seems more general. 
The question of which way to interpret Pearl's verbal statements opens the door to a thicket of 
thorny issues which could easily occupy a separate discussion (Hintikka, 1996). Nonetheless, I 
do not believe that the arguments contained within the present chapter depend on this issue in 
any important way, particularly where only universal quantifiers are used. I have also made 
explicit quantification over w, x, and y, which denote values of the quantified variables W, X, and
Y. I interpret Pearl to have intended an implicit universal quantification over these as well, 
presumably restricted to the range of possible values of the corresponding variable.

Returning to the Möller–Lyer illusion, assume that the arrowhead position of line A is coded as
W, the arrowhead position of line B is coded as X, and the judgment of relative length is coded as
Y with the perceiver taken (p.246) as the unit (W and X representing conditions presented to 
the perceiver and thus a perceiver property and not just a property of two distinct lines). 
Composition implies that if W = ‘inward’ results when X is manipulated (in the model) to X = 
‘outward’, then the potential response to the manipulation of W = ‘inward’ and X = ‘outward’ is 
identical to the potential response to the manipulation of X = ‘outward’ without manipulating W
in its current state of W = ‘inward’. In both cases, the potential response equals the judgment 
that line A is longer than line B as illustrated in Figure 12.1. Readers who feel tempted to over‐
interpret the ‘if‐then’ relation as anything more than the material conditional may find it helpful 
to translate ‘If A then B’ to its logical equivalent ‘Not (A and Not B).’ Applied to the above, this 
states that in no instance does ‘W X=‘outward’(u) = ‘ inward’hold true but ‘ Y X=‘outward’,W=‘inward’(u) 
= Y X=‘outward’(u)’ fail to hold true. Effectiveness implies that if one (mentally) manipulates X to 
‘outward’ in conjunction with manipulating W to any value one likes, the result will be that X
=‘outward’. Somewhat less intuitively, reversibility implies the following. If manipulating X = 
‘inward’ and W = ‘outward’ yields the potential response that line A is judged longer and (as a 
distinct and independent counterfactual) manipulating X = ‘inward’ and Y = ‘A longer than B’ 
yields the potential response that W = ‘outward’, then manipulating only X = ‘inward’ itself 
yields the potential response that Y = ‘A longer than B’. The first conjunct of the antecedent 
phrase (left‐hand side) assures that under the condition that W = ‘outward’, X = ‘inward’ yields 
the expected result. The second conjunct assures that left to its own devices W =‘outward’ (in 
this example because X and Y have no causal impact on W and the potential response on W
remains constant under any intervention on X and Y). These together assure the expected 
potential response to an intervention on X alone (right‐hand side or consequent).

To these three basic axioms, Pearl (2000) adds two supplementary axioms. The first states that a 
potential response on a variable exists for every possible intervention. The second states that no 
more than one such potential response exists. The prime is used to distinguish distinct logical 
variables representing not‐necessarily‐distinct but determinate values of the corresponding 
uppercase causal variable (e.g. x and x′ represent distinct but possibly equal values of X).

1. Existence: (∀uǀu ∈ U)(∀yǀy ∈ Y)(∃xǀx ∈ X)[X y(u) = x]
2. Uniqueness: (∀uǀu ∈ U)(∀Xǀ S(X))(∀xǀx ∈ X)(∀x′ǀx′ ∈ X)(∀yǀy ∈ Y)[(X y(u) = x) ∧ (X y(u) = x′) 

⊃ x = x′]
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Thus, some potential response perceptual judgment (Y) exists for any manipulation on the 
arrowhead directions ( W and X). No manipulation on W and X exists that fails to produce a 
potential response. Moreover, a manipulation to any combination of values for X and W
yields no more than one value (p.247) as the potential response on Y. In every case, the 
potential response takes a value from ‘A longer’, ‘B longer’ and ‘same length’ and in every case 
the potential response has only one of these values.

12.1.2 Counterexamples to Pearl's axioms

Pearl (2000; Galles and Pearl, 1997, 1998) provided proofs that the proposed axioms correctly 
characterize the proposed causal model structure. However, the book does not devote space to 
considering how well either of these characterize the informal domain of discourse and 
reasoning with which the terminology used to present the model and axioms connects them. 
This distinction appears central to evaluating the interpretation of the axioms. If one follows 
Pearl's lead and focuses narrowly on the correspondence of the axioms to the specific model 
structure proposed in the book, then Pearl appears well founded in presenting these as universal 
truths about such models. In contrast, if one focuses more broadly on the correspondence of the 
axioms and model structure to the domain of causal reasoning with causal models as practiced 
in behavioural science research, then this interpretation does not hold up. Examples exist that 
seem like unambiguous examples of causal reasoning from causal models but which do not 
conform to the model structure or axioms presented within Pearl's theory. In this context, then, 
the axioms seem much better interpreted as demarcating the range of applicability of the 
theory. The theory only applies to instances of causal reasoning from models that conform to the 
axioms.

Efficacy versus effectiveness in program evaluation
One example of a form of causal reasoning that does not conform to Pearl's axioms involves the 
distinction between efficacy and effectiveness in the field of program evaluation. Efficacy refers 
to the causal effect of a program, such as a policy, treatment, or service provision, that the 
program would produce under ideal conditions. One can think of efficacy as the optimum 
possible causal effect. In contrast, effectiveness refers to the causal effect of a program that the 
program would produce under realistic conditions. Given that realistic conditions cannot exceed 
ideal conditions, otherwise the realistic conditions would constitute the ideal conditions, 
effectiveness generally remains less than or equal to efficacy.

One can easily assimilate these concepts to Pearl's theory by incorporating a moderator variable 
(discussed in more detail in the final section). At the coarsest level of representation, one might 
introduce a dichotomous variable coded ‘1’ for ideal conditions and ‘0’ for realistic conditions, 
and then make the effect of the program conditional on the value of the conditions variable: 
lower for conditions = 0 and higher for conditions = 1. However, such an assimilation does 
violence to the texture of the initial construction of ideal versus realistic conditions, and here 
lies the interest to the present concern.

(p.248) If a program evaluation researcher had in mind a few key variables that need to have 
the correct values in order for the program to work — for example, children need to have a few 
basic needs met before they can benefit from education — then the above strategy might 
capture this very successfully (but see the third section below). However, in such an instance, 
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the researcher is very unlikely to couch the issue in terms of ideal versus realistic conditions. He 
or she would much more likely list the handful of conditions for the program to produce its 
optimal effect. Talk of ideal versus realistic conditions involves a more diffuse cognitive 
representation. Even if one assumes the number of factors potentially influencing the effect of 
the program to be finite, talk in terms of conditions suggest a very large set of such variables, 
more than can be effectively enumerated and represented in a mental model. Certainly it might 
involve more effects than can be statistically estimated given available sample sizes. As a result, 
an early stage of any modelling endeavour involves the selection of a core set of variables for 
inclusion in the model, relegating the rest to background conditions. Talk of efficacy versus 
effectiveness most naturally describes causal reasoning in which causal effects in the model 
depend upon unmodelled (and probably unmodelable) background conditions. As such, the 
equations in the model cannot provide point estimates of potential responses because the 
parameters in the equations governing causal effects vary over unmodelled background 
conditions rather than having fixed values. This feature introduces an inherent vagueness of 
reference outside the range of what the type of models assumed in Pearl's theory can represent 
(Keefe & Smith, 1997; Williamson, 1994). Nonetheless, talk of efficacy and effectiveness proves 
extremely useful for program evaluation research design, marking important absolute and 
relative distinctions between what alternative research designs estimate and the interpretations 
that various research results support.

To make the above argument concrete, consider the following example. I know that my vacuum 
cleaner does not work as well when it becomes too full. The phase ‘too full’, however, remains 
vague in the sense that it does not refer to a specific degree of fullness. There is no point at 
which the addition of one more grain of dust would cross the semantic threshold from not‐too‐
full to too full, or vice versa for the removal of single grain. As a result, I cannot represent this 
causal knowledge properly using variables and functions because I cannot specify the function 
that relates fullness to suction in anything more than a vague way. Another way of looking at 
this is that vague predicates violate the uniqueness axiom described above, an axiom that Pearl 
correctly describes as implicit in his definition of a causal model. Of course, I could carry out the 
tedious empirical task of adding dust one grain at a time and estimating the function, but the 
point is that I don't need to. I make very useful practical inferences and decisions based on this 
semantically (p.249) vague representation on a regular basis and have no need for a more 
precise representation for any purposes outside of making my inferences conform to Pearl's 
theory of inference from non‐vague representations. In the previous paragraphs, I mean to 
suggest that ‘ideal conditions’ serves as a useful but vague predicate in the context of program 
evaluation in precisely the same way as does ‘too full’ in the context of vacuum cleaner 
maintenance. More broadly, one might consider any causal reasoning from fuzzy logic models 
(McNeill and Freiberger, 1993) as causal reasoning that requires an extension of Pearl's theory.

Non‐modular representations of causal systems
A second example involves the assumption of modularity required by models of the form 
assumed in Pearl's theory (Cartwright, 2007; Pearl, in press). Cartwright's criticisms of 
modularity assumptions may not apply directly to Pearl's theory for reasons developed in some 
detail in the next section. Nonetheless, the kind of causal systems that she considers as 
counterexamples give every appearance of providing examples of the sorts of systems that one 
can model and reason causally about. Indeed, it seems unlikely that readers could comprehend 
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her examples were this not the case. Such reasoning provides a further example of causal 
inference from models that do not conform to Pearl's axioms.

Modularity involves the ability to independently manipulate each cause in a causal system. 
Cartwright gives the example of a toaster in which the lever causes both the rack to move up or 
down and also causes the electrical circuit to open or close activating the heating mechanism. It 
is not possible in this set‐up to manipulate the rack level independently of the circuit or vice 
versa — without interfering with the normal operation of the machine that sustains the causal 
relationships such as by breaking the weld between the rack and the level, or bypassing the 
circuit. As noted above, the issue of manipulation is not of interest at present. One could 
envision imaginary interventions and quite possibly draw correct conclusions about toasters 
from these. What is interesting is that the natural description of Cartwright's toaster violates 
Pearl's effectiveness axiom. If one takes x = lever down, w = rack up, and y = circuit closed for u
representing any further assumed conditions, then Y x(u) = y but Y xw(u) seems indeterminate, 
perhaps violating the existence or uniqueness axiom as well. By definition, it seems impossible 
to have x and w without breaking the toaster and the causal system only applies to a toaster in 
normal working order. Nonetheless, it seems entirely possible to communicate about and reason 
about the causal mechanism of the toaster using a non‐ modular representation despite the fact 
that it violates the stipulated criteria for causal models. Pearl's theory cannot account for such 
causal reasoning. It can replace it with alternatives, but cannot explain it as it stands.

(p.250) Composition, causes and effects
The composition axiom serves the important purpose in Pearl's theory of imposing a common 
assumption for many types of causation, the assumption that causes and effects must constitute 
distinct events. Thus composition incorporates into Pearl's theory the assumption that the causal 
relation has antireflexivity as a property, that nothing can cause itself. To see this, consider x =
switch on, w = switch on or battery disconnected, y = light on. These value assignments satisfy 
the antecedent: W x(u) = w, if switch‐on then switch‐on‐or‐ battery‐disconnected. However, if in 
the consequent, Y xw(u) = Y x(u), we satisfy w by disconnecting the battery, then Y xw(u) = light 
off ≠Y x(u) = light on. What goes wrong in this example involves the fact that the variables X
(switch on?) and W (switch on or battery disconnected?) do not have the property of 
representing distinct events. Instead X constitutes a constituent of W. Thus, one can interpret 
the composition axiom as ensuring, inter alia, that the intended sorts of variables compose the 
model. Of course, such non‐distinct events can create trouble for other axioms as well. For 
example, let ~ w = not w, entailing both that the switch is not on and the battery is connected. If 
one assigns X x~w = x then one violates the effectiveness axiom with respect to ~w because this 
entails that W x~w = w by substitution, if one assigns X x~w = ~x (switch off) then one violates the 
same axiom with respect to x. If one accepts neither or both, one violates either existence or 
uniqueness.

Should one take this as a universal first principle that nothing worth calling causation can hold 
between non‐distinct events and that nothing worth calling causal reasoning can proceed on the 
basis of such events? Consider three horn players playing a musical game in which the 
saxophone player plays a melody and the trumpet and trombone players harmonize with two 
constraints: The trio must voice a triad (three notes separated by continuous major or minor 
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thirds) and the trio cannot play a C major triad. Now suppose that the saxophone player voices 
an E and this cannot change because it is the melody note. The trombone player plays a C and 
the trumpet player plays an A, forming an A minor triad (C–E–A). Had the trumpet player instead 
played a G, this would have violated the C‐major rule (C–E–G). In this circumstance, it seems 
reasonable to say that the trumpet player playing an A caused the trio to voice an A‐minor 
instead of a C‐major triad (because the other instruments voiced notes common to both).

The most natural way to encode this into a model might be to define the triad variable over a 
domain that excludes C‐major. Recall that Pearl defines probability in terms of events, and then 
defines variables as encoding events, in the sense of property bearers taking on certain 
properties, over restricted domains of possible values. One would not want to meddle with this 
restriction because it plays an essential role in allowing Pearl's system to handle causal 
reasoning over restricted domains, such as when scientists do not extrapolate beyond the range 
of their data. However, in this case, it would (p.251) violate existence because the omission of 
the C‐major triad from possible values of the variable would mean that the potential response 
value did not exist when the variables for each player are manipulated to form C–E–G. To avoid 
this problem, we might admit C–E–G (C‐major) as a possible value of the variable encoding what 
triad the trio plays. However, now we violate composition, as above, because jointly 
manipulating the individual horns to, say, C–E–A, and the trio to C‐major (C–E–G) cannot yield 
both due to the fact that these are not distinct events. Nonetheless, it seems quite plausible to 
reason causally about this musical game. Indeed, if the trumpet player voiced a G, we might 
imagine the trombone player dropping the C down to a B to form an E‐minor triad (B–E–G). The 
cognitive processing involved in this game play seems well described in causal terms: If I 
continue to play C and the trumpet player voices a G over the E melody note, then that will 
cause us to play C major, we don't want that, so if I play a B instead of a C, that will cause us to 
play E minor, etc. Other plausible examples of causal reasoning about non‐distinct events 
involving parts and wholes include a holistic state of clinical depression caused by a collocation 
of specific negative cognitions about self and others; global judgments of legal guilt caused by 
specific cognitions about facts of the case; satisfaction caused by cognitions of amount wanted, 
amount had, and importance of the object of satisfaction; and the overall success of an interview 
caused by the success of each question– answer exchange (Markus, 2008a).

Causal reasoning without rigid designators
The existence and uniqueness axioms also serve the purpose of introducing a constraint on the 
universe of property bearers about which causal reasoning takes place and also the domain of 
values of variables about which causal reasoning takes place. Imagine a photocopy machine 
such that the original is placed on the glass, the button is pushed, and the copy comes out onto 
the tray. If the button had not been pushed the copy would not be in the tray, but one hesitates 
to assert that the copy has the property of not being in the tray because the copy does not exist 
and thus has no properties in this possible world. However, if the copy does not exist, then no 
value of the variable exists that the copy has as a property, and thus the example violates the 
existence axiom. Conversely, if the button had been pressed twice a copy would be in the tray 
because both copies would be in the tray. Would the copy be the top copy or the bottom copy in 
the tray? In this case, the copy in the actual world corresponds to two distinct entities in the 
hypothetical possible world, and these two entities may differ in their properties. If ‘the copy’ 
then referred at once to each copy, this would violate the uniqueness axiom. Similar exceptions 
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occur if the domain of variable values varies across possible worlds. If the button were never 
pressed, which would be the top copy in the tray? One could say that the top copy variable 
ranges over all possible copies, but has no (p.252) value in this instance. Alternatively, one 
could say that the domain of values of the variable reduces to the null set in this instance, in 
which case the variable has no possible values that it could take. Either way, one violates the 
existence axiom.

Pearl's system thus seems focused on causal reasoning in which designators of property bearers 
and properties have the property of rigidity: They refer to one and the same entity in all possible 
worlds (Kripke, 1980). Traditionally, this assumption takes the form of assuming that if it is 
possible that an individual exists with a given property then an individual exists that possibly 
has this property (Barcan Marcus, 1993). The Existence axiom nearly states this directly for 
domains of variables if one recognizes possibility in the potential response operator. This seems 
implicit in the way that models fix variable domains. The lack of explicit notation for property 
bearers makes it more complex to derive the assumption with respect to property bearers 
(individuals) but one can take it as implicit in the definition of a model, as Pearl seems to do. 
Nonetheless, it seems clear that people can and do reason causally about situations where the 
assumption does not hold. Complete and consistent systems of modal logic exist which do not 
have this assumption, commonly referred to as the Barcan formula, as a theorem (Barcan 
Marcus, 1993; Hughes & Cresswell, 1996). No obvious reason presents itself to deny that the 
content of such reasoning can involve causation.

Structural explanations in cognitive psychology
A fourth type of example involves structural explanation as commonly formulated in cognitive 
psychology. One example would be the explanation of memory retention in terms of positing 
separate mechanisms for short‐term and long‐term memory (Miller, 1956; Peterson & Peterson,
1959). Another example would be the explanation of semantic memory response times in terms 
of the structure that organizes semantic memory (Collins and Quillian, 1969). However, perhaps 
the most illuminating example in the present context is Pearl's theory itself. Pearl seeks to 
explain causal reasoning in terms of a certain structural account of the representation of causal 
knowledge in causal models, and operations on those models to make inferences from the 
knowledge. Pearl (2009) makes no attempt to present his theory in the form of a causal model, 
and seemingly for good reason. Any attempt to do so would distort the theory and fail to capture 
its explanatory power. Pearl's theory explains how certain types of causal reasoning can take 
place given a certain structure of the cognitive representations of causal information. Simply 
spelling out the causal dependencies between inputs and outputs would not shed the same light 
on the cognitive structure that sustains these causal dependencies. The strength of structural 
explanations seems to come from their ability to show that a set of nomothetic relationships 
such as those presented in a causal model follow naturally from a certain structural 
organization. The structural (p.253) hypothesis explains the nomothetic relationships that a 
causal model only describes. Of course, one could code various structures into a causal variable 
and various causal models into an effect variable, but the substance of the structural explanation 
would still reside in the complex coding of the variables whereas the causal model would only 
encode a relatively trivial portion of the structural explanation. Nonetheless, such structural 
explanations seem to provide potent bases for causal reasoning.
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12.1.3 Section summary
The previous subsections have considered five instances of causal reasoning from bases that 
seem like plausible candidates for models but which do not conform to the axioms of Pearl's 
theory. The general picture seems clear: Pearl's theory does not admit as a causal model 
anything that cannot be represented in the form M = ⟨U, V, F⟩ or support causal reasoning that 
does not conform to his axioms. Nonetheless, much causal explanatory talk in the behavioural 
sciences seems not to fit this prescribed structure. Either Pearl's theory fails to account for a 
large swath of causal reasoning, or it rules out a large swath of seemingly causal reasoning as 
something other than causal reasoning by stipulation.

Despite being called axioms, the axioms are not presented as self‐evident first principles. 
Instead, the definition of a causal model is presented as primitive, and the axioms are shown to 
be implied by the model. In following this procedure, however, it is important to recognize that 
showing that the axioms characterize the proposed model does not show that either fully 
characterizes the domain of discourse or reasoning that they are put forward as an account of. 
In this case, it seems clear that a number of examples present themselves as putative examples 
of causal reasoning in the behavioural sciences that cannot be adequately represented by the 
kind of causal model to which Pearl restricts his theory. As such, the axioms serve not as 
universal truths about causal reasoning but rather as expressions of the limits to the range of 
application of the theory. Of course, none of this detracts from the fact that the axioms 
characterize the formal model presented in the theory. In this narrower context, one can 
interpret them as universal truths. It is just that they hold universally for a restricted universe 
that does not seem to capture the full range of causal reasoning from models found in the 
behavioural sciences.

One might note that Pearl's (2009) presentation waivers to some degree between a descriptive 
and prescriptive account of causal reasoning. The prescriptive reading would excuse the theory 
from covering all cases of causal reasoning. However, this seems like a poor strategy for 
interpreting Pearl's theory. There seems to be little basis to suppose that the examples of causal 
reasoning that fail to conform to the axioms represent substandard or inferior forms of causal 
reasoning. Moreover, even if all behavioural science were to strive toward causal models that 
conform to the axioms, it seems clear that (p.254) researchers cannot defer all causal 
reasoning until after this goal is achieved. They need to reason causally from the models that 
they have as the research proceeds, and these may not conform to Pearl's axioms.

Finally, it is worth noting that one can play the converse of the game played above: One can 
search for examples of non‐causal reasoning characterized by Pearl's axioms. However, such 
examples do not carry much import for the interpretation of Pearl's theory because he offers a 
theory that covers both veridical causal reasoning and mistaken causal reasoning. So long as the 
reasoning itself follows the prescribed pattern, the model used for reasoning can entirely 
mischaracterize the phenomenon to which the causal reasoner applies it.

12.2 Causal eliminativism, causal instrumentalism and causal realism
Symbolic modularity does not assume physical modularity. Surgery [on causal graphs] is a 
symbolic operation which makes no claims about the physical means available to the 
experimenter … (Pearl 2009, p. 364).
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[W]e are dealing here with symbolic, not physical, manipulations. Our task is to formulate 
a meaningful mathematical definition of ‘the causal effect of one variable on another’ in a 
symbolic system called a ‘model.’ This permits us to manipulate symbols at will, while 
ignoring the technical feasibility of these manipulations. Implementation considerations 
need not enter the discussion of definition. (Pearl, 2009, p. 375).

One key dimension on which theories of causation differ involves the degree of literalism that 
they ascribe to causal assertions (Markus, 2004). One can describe a view that characterizes 
causation as a property ascribed instrumen‐ tally within a mental representation as an 
instrumentalist view. On such a view, causation exists only within the cognitive apparatus rather 
than in the objects or processes represented by that apparatus. In short, causation resides in the 
head. In contrast, one can describe a view that characterizes causation as a property ascribed 
literally to the things and processes cognized as they exist independent of that cognition as a 
realist view. Such a view can allow for variation in how different theories or models represent 
the same things and processes, but not so much variation as allowed by an instrumentalist view. 
Any reasonably accurate description would need to represent the same causal relationships in 
some form, allowing that the specific form might vary. To take Hillary Putnam's phrase out of 
context, no matter how you cut it, causation is not in the head. The details of both such views 
remain works in progress (Leplin, 1984) but the broad characterizations are nonetheless useful. 
Although the book involves some important ambiguities, Pearl (2000) appears to present an 
instrumentalist view of causation.

(p.255) How does such a reading make sense of Pearl's professed realism about causation?3 I 
concede that there may not be a possible reading that makes a consistent whole out of every 
stray claim found in Pearl's expansive book. However, I read such claims as Kantian in flavour. 
Pearl makes these claims in response to a pervasive skepticism about causation and efforts to 
explain it away by reducing it to extensional phenomena such as the relative frequency notion of 
probability. In the relevant passages, Pearl asserts an ontology that affirms the existence of 
something in the world that we cannot fully grasp in purely extensional, probabilistic terms, but 
can fully grasp in causal terms. Causal representations constitute our means of representing and 
reasoning about this property of things‐in‐themselves. An alien intelligence based on different 
principles might represent and reason about the same property by different means. Causation is 
our means. Thus asserting realism about causation, for Pearl, comes down to shorthand for 
asserting the reality of the property we grasp through causal representations, although causality 
itself remains internal to our representational system and not an inherent property of what we 
represent by that means. Contrasting Pearl's theory with a robust realism that posits causation 
as an inherent property of real‐world systems in no way diminishes the further contrast between 
Pearl's theory and attempts to eliminate the notion of causation by reducing it to probability or 
something else describable in entirely extensional language. Pearl's is a non‐eliminativist 
instrumentalism.

One way to appreciate this is to consider the importance of an instrumental interpretation to 
rendering plausible the axioms discussed in the previous section. If one adopts a realist notion of 
causation, the axioms seem much less plausible. Under a realist interpretation, the axioms 
would refer not to mental manipulations of a mental model but rather to actual manipulations of 
the system under study. This seems to be the kind of intervention discussed by Cartwright 
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(2007). The efficacy/effectiveness distinction discussed above provides one example of where a 
realist interpretation of Pearl's axioms seems out of step with the discourse of behavioural 
science researchers. The effectiveness axiom states that a manipulation intended to produce the 
value x of variable X will succeed, but the efficacy/effectiveness distinction rests precisely on the 
assumption that this will not always hold true. Instead, the difference between efficacy and 
effectiveness refers to the gap between the intended intervention and the imperfect intervention 
as implemented under realistic conditions. Program evaluation researchers routinely assume
(p.256) that one can expect a gap between the intended intervention and what one actually 
succeeds in bringing about. For example, it is easier to imagine the full implementation of a new 
curriculum than to actually complete such an implementation. Likewise, it is easier to imagine a 
course of treatment than to attain full compliance with that course of treatment.

Another example involves a contrast between the kind of interventions consistent with the 
effectiveness axiom and the kind of interventions discussed by Bollen (1989) in the context of 
empirical studies using structural equation models. The effectiveness axiom describes what 
might be called a poke‐hold intervention. One fixes X = x, and holds X at that value as the causal 
effects of the intervention play out. In contrast, Bollen describes what one might call poke‐
release interventions. One sets X = x, but then releases X so that consequences of the 
intervention can change the resulting value of X as the effects work their way through the 
system.4 As such, poke‐release interventions violate the axioms. When considering an 
instrumental view where interventions are mental operations, poke‐hold interventions seem 
most natural because the purpose is to manipulate the model to determine the predicted result. 
When considering a realist view, however, poke‐release interventions make sense because the 
goal is to learn the ultimate result of a temporally bounded operation. One takes some course of 
action, and then allows it to have its effects after the completion of the action. Poke‐hold 
interventions have some applications under a realist interpretation involving manipulations of 
actual causal systems, but assuming them as universally the only applicable kind of intervention 
has very little plausibility under such an interpretation.

To take an example involving a different axiom, consider how the Composition axiom applies to 
real‐world interventions. Individuals living in the United States saved 1.59% of their personal 
income in 2008 (Bureau of Economic Analysis, 2009). Recall that the composition axiom asserts 
that the potential response associated with an intervention on one variable does not change if an 
additional variable in set by intervention to the value that it would have as a result of the 
intervention on the first variable. Imagine, then, a bill passing through the United States 
congress which implements an economic incentive (X) to save a larger proportion of one's 
income (Y). Imagine that this incentive all by itself would produce a potential response of, say, 
3% savings. Further assume that the intervention would produce a potential response for 
individual outlays as a proportion of disposable income (post‐tax) of 96.59% (W, down from 
98.19% in 2008). Now, in contrast, imagine the same bill with (p.257) an additional component 
legislating that the average personal outlays must not exceed 96.59% of disposable income. The 
composition axiom requires that both bills have the same effect on savings. However, it seems 
entirely plausible that the impact of the second bill might differ due to the shock value of the 
added component, political reaction to it, or the impact that this has on the causal mechanisms 
that link the incentive to savings. Applied to real‐world interventions rather than mental 
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operations, this axiom assures that interventions are transparent in the sense of that they have 
no side effects. This is entirely plausible for mental interventions on mental models because one 
can easily imagine the intervention that way. However, in real‐ world interventions it seems 
unlikely that legislating an upper limit on the proportion of disposable income that can be spent 
would have no impact even if the rate legislated matched the potential response produced by the 
incentive without legislating the maximum outlay rate. As such the axiom loses some of its 
plausibility under a realist interpretation of this particular model.5

12.2.1 Can one have Pearl's cake and idealize it too?
A reviewer thoughtfully asked whether one could interpret Pearl's theory as referring to 
symbolic manipulations in some contexts and real manipulations in others. I do not think so, but 
I do think that it proves very helpful to spell out why not. Indeed, I take this as the crux of my 
argument. The approach to semantics adopted by Pearl assumes that what an assertion is about 
makes the assertion true or false, and what makes it true or false is what it is about. To make 
the argument concrete, imagine that one were interested in the philosophy of spoons and 
presented a semantics for ‘x is a spoon’ that relied only on idealized geometric representations 
that real spoons can only approximate. The truth or falsity of spoon assertions would thereby 
turn only on properties of the representation, not the actual objects in the world that one might 
choose to speak of as spoons. Because these actual objects play no role in fixing the truth of 
spoon assertions, the spoon assertions do not refer to them. Nonetheless, idealized spoon 
models might still play a useful role in reasoning about spooning and spoon collecting with the 
recognition that the spoon‐ness rest in our cognitive representation of these objects rather than 
the objects themselves. Analogously, in the face of criticism that real‐world manipulations do not 
approximate his axioms, Pearl consistently responds that the manipulations that fix the 
semantics of causal assertions involve only symbolic manipulations of the representation, not 
real‐world manipulations. It follows that these symbolic manipulations and their results wholly 
determine the truth of causal assertions, not the behaviour of real‐world systems under (p.258)
manipulation, and that they assertions therefore do not refer to these real‐ world systems. My 
basic argument, then, come down to this: One cannot have it both ways. If causal assertions 
refer to causation as an inherent property of the world, then one cannot brush away the kinds of 
concerns about real‐world manipulations that others have raised (Cartwright, 2007; Woodward,
2003a; 2003b questioned some imaginary manipulations). On the other hand, if the semantics of 
causal assertions rests only on manipulations of the representations themselves and not real‐
world systems, then causation resides in the means of representation of real‐world systems 
rather than inherently in the real‐world systems themselves. Causal assertions may refer to real 
objects when these objects pay into their truth conditions, but the causal element of these 
assertions does not itself refer to an inherently causal element of the objects.

12.2.2 Causal instrumentalism and the praxis of psychological research
One can always argue prescriptively that if behavioural scientists do not currently adopt an 
instrumentalist view of causation, they nonetheless should. As noted, Pearl's exposition 
sometimes waivers between description and prescription, sometimes suggesting that the theory 
is hardwired into the human cognitive system, sometimes presenting a prescriptive methodology 
for researchers. However, it remains useful to note areas of ill fit between Pearl's (2000) theory 
taken as a descriptive theory and how behavioural scientists think about causation.
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This instrumentalism about causation contrasts with attempts to develop a methodology to 
measure causal effects as they exist in the world within the context of Rubin's causal model 
(RCM; Rubin, 1974). Pearl (2000) discusses Rubin's theory of estimating causal effects and 
somewhat awkwardly relates his theory to RCM. Nonetheless, one fundamental difference 
between the RCM perspective and that of Pearl involves the admissibility of causes that one 
cannot actually manipulate. For example, RCM considers demographic characteristics like 
gender and ethnicity non‐causes because one cannot randomly assign experimental participants 
to these factors. Woodward (2003) has suggested that such cases might be explained away in 
terms of inadequately precisely specified counterfactuals. I am not aware that anyone working 
in the RCM tradition has responded to this suggestion, but I would anticipate a response along 
the following lines. The correct counterfactuals are ones that involve changes from the actual 
course of events that do not precede the experiment by any great length of time such that the 
participants can still be reasonably understood as the same people with minor changes in their 
recent life history. To go back before their birth and alter their genes to change their gender or 
ethnicity would precipitate a sufficiently great change in the course of their life events that they 
would no longer be recognizably the same person.

(p.259) In short, RCM involves a form of modest essentialism in which too great a change in 
someone's life history precludes trans‐world identity. There may be a possible world in which a 
female participant's parents had a son with an otherwise genetically identical make‐up, but 
there cannot be a possible world in which that same female participant was born male. This 
stands in stark contrast to Pearl's (2000) view where any manipulation is possible because 
manipulations refer to mental operations operating on the mental representation. The above 
difference gets at a deeper difference between RCM and Pearl's approach. RCM begins with the 
assumption that causal effects exist independently of our causal models, and thus can be 
measured through experiments and other worldly operations.

The instrumentalism in Pearl's approach can be neatly distinguished from the causal realism 
inherent in much behavioural research by an assertion regarding the uniqueness of adequate 
causal descriptions. As a first pass, one might formulate such an assertion as follows.

(1*) If model m 1 is an adequate causal description of system s and m 2 is an adequate 
causal description of s, then m 1 = m 2.

This will not do because causal realism accepts adequate partial descriptions that are not 
identical but do not contradict one another. E.g. ‘C causes M and M causes E’ allows both ‘C
causes E’ and ‘M causes E’ as partial descriptions.

(1) If m 1 and m 2 jointly entail a contradictory statement about s and neither individually 
entails such a contradiction, then at least one of the two models is not an adequate 
causal description of system s.

Causal realist approaches will generally endorse some form of Assertion 1 whereas 
instrumentalist approaches will not. Two causal representations may both be useful even if they 
present contradictory causal representations of the same system. In contrast, if causal processes 
are inherent to the system itself, then only one of two contradictory causal descriptions can hold 
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true of the system. Thus, if one seeks to characterize the meaning of ‘cause’ in terms of what 
one can infer from a causal assertion, then Assertion 1 supports further inferences that the same 
causal assertion would not support if interpreted without Assertion 1. Specifically, a causal 
assertion supports the denial of all contradictory causal assertions under a realist reading 
whereas an instrumentalist reading merely needs to avoid mixing alternative causal assertions 
but need not assume that only one can hold.

Assertion 1 plays a central role in the Campbellian tradition of causal inference (Cook and 
Campbell, 1979; Shadish, Cook and Campbell, 2003). Here the emphasis rests with identifying 
plausible rival hypotheses and designing data collection in a way that allows the researcher to 
rule out such rival hypotheses. Any approach that rejects Assertion 1 runs counter to this 
tradition because it admits contradictory causal explanations as complementary rather than (p.
260) characterizing them as rival hypotheses. The above does not imply that instrumentalist 
approaches view all causal models as equally good, but it does show that they are importantly 
slower to deem models as rival hypotheses.

Pearl's (2009) tendency to assume a set of variables as cognitive givens draws attention away 
from the kinds of situations that most illuminate the above difference. Often times, disputes 
between different groups of researchers investigating a common topic turn on the selection of 
the set of variables used to describe the phenomenon of interest. Three examples will serve to 
illustrate. The first is a simple contrived example involving electrical storms. The second 
provides a realistic example from the psychology literature involving research on gender roles 
and cognitive schema. The final example offers an idealized but plausible example involving 
different levels of explanation and somewhat less clear‐cut interpretation.

As a simple example, consider causal models of electrical storms. From a realist perspective, 
placing causation in the storm process, the correct causal model might have the storm causing 
electrical discharges which in turn cause both lightning and thunder. A simpler model might 
have the storm cause the lightening and the lightning cause the thunder. From a realist 
perspective, either lightning causes the thunder or it does not, thus the two models contradict 
one another and only one can hold true (holding the references of the terms constant). From an 
instrumental perspective, however, causation is just a tool of cognitive organization for 
interacting with the environment. Each of these models might have interactive utility in different 
contexts of action, so there is no problem adopting each of them for use in different contexts. 
Because lightening and thunder tend to come together, either model is likely to serve as a useful 
tool for things like anticipating thunder.

Bem (1975) hypothesized that androgynous individuals — those high in both masculine and 
feminine characteristics — are more able to adapt to different situations by behaving in ways 
associated with either masculine or feminine gender roles because they are less likely to process 
information using cognitive schema associated with those gender roles (Bem 1979, 1981a, 
1981b). Bem developed the Bem Sex Roles Inventory to validate the construct of androgyny 
(Bem 1974). The inventory differed from other measures at the time in having separate scales 
for masculinity and femininity. Bem defined androgynous individuals as those high in both 
masculinity and femininity as compared to those high in one or the other (those low in both, she 
labelled undifferentiated but did not include in the causal hypothesis; Bem, 1981b).
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A literal translation of Bem's hypothesis would involve a causal model in which the causal 
variable distinguishes androgyny from gender differentiation (high on one but not both). This 
variable would then cause individuals to make greater use of gender role cognitive schema, and 
thus behave less flexibly across social situations — forming a chain model with three variables. 
In contrast, one could eliminate the androgyny variable altogether and make (p.261) 

masculinity and femininity the causes with an interactive function requiring high values of each 
to produce the effect. On a realist interpretation, either androgyny causes flexibility or the 
interaction between masculinity and femininity causes flexibility — the two accounts compete as 
rival hypotheses. From an instrumental perspective, they each may provide an adequate guide 
to action and one might thus adopt one or the other as a matter of convenience. The body of 
accepted psychological theory can consistently include both theories on an instrumental reading 
of causation but not a realist reading.

This example illustrates a very general phenomenon in causal modeling. Androgyny equals 
(Masculinity + Femininity)/2 and traditional bipolar Masculinity/Femininity scales equal +/−
(Masculinity — Femininity)/2 depending on the direction of the scale. This is a simple example of 
a 45 degree rotation of the data within the geometric space defined by the two variables 
(Steiger and Schünemann, 1978). One could just as easily define the space in terms of 
androgyny and the traditional bipolar scale and rotate it to derive the Masculinity and 
Femininity variables. Of course, there is nothing unique about a 45 degree rotation, one could 
create alternative pairs of variables with alternative rotations of the initial two variables. Adding 
more causes expands the dimensionality of the space and thus the alternative rotations. 
Moreover, as Pearl (2000) notes, this rotational indeterminacy applies to all variables in a 
model, not just causes. If causal relationships exist in the world prior to description, and they 
hold between determinate sets of variables essentially, then a realist account of causation needs 
to select one such rotation as the correct set of variables in order to identify the correct causal 
relationship. An instrumental view of causation more readily allows for indifference between 
causal relationships formulated between alternative rotations of the variable set. The 
Campbellian emphasis on ruling out rival hypotheses fits more comfortably with the former, and 
Pearl's theory fits more comfortably with the latter.

A third example involves different levels of description, and the problems of reductionism. 
Garfinkel (1981) offers the example of explaining the size of the rabbit population in a particular 
region in terms of the fox population. One could form a model out of a set of variables describing 
individual rabbits and foxes providing a causal explanation of how placing more foxes in the 
model leads to fewer living rabbits. However, such a model would be enormously complex. One 
could produce a more parsimonious model by considering potential responses at the population 
level (g) rather than the individual level (i). Whereas X i might represent rabbit i being caught by 
a fox,

might represent an overall decline in the rabbit population (g). A number of other factors might 
impact on

aside from the size of the fox population, but the model would remain much simpler than one 
specified at the individual level (i).
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(p.262) One way to construe the relationship between these two levels is to incorporate them 
into a two‐level model in which increasing the fox population,

, increasing the occurrence of hungry foxes in proximity to rabbits, W i, which increases the 
number of caught rabbits, X i, which in turn decreases the rabbit population,

. On this model, a causal chain links

to

and thus the model allows the simplification that

causes

. In contrast, however, one could construe the relationship between W and W′ as parallel to that 
between X and X′, such that more individual foxes at the individual level (the proximity clause 
more or less falls out but could be represented as a separate variable if desired) causes the 
larger population at the population level just as fewer rabbits at the individual level causes the 
smaller population at the population level. In this case, the model is not consistent with the 
claim that

causes

but instead, the relationship is merely an artifact of the causal relationship between W i and X i

at the individual level. This latter view might be more consistent with conceptualizing the cross‐
level relationships in terms of part‐whole relationships (Markus, 2008a). Alternatively, one might 
take a more reductionist view, the view that Garfinkle argued against, that the causal 
relationship at the population level reduces to the causal relationship at the individual level, in 
which case the seeming rival hypotheses might dissolve could one successfully address the 
difficulties with such a reduction. In this case, then, the best interpretation seems less clear, but 
the possibility of conflicting causal theories on a realist reading of causation arise under at least 
some interpretations.
The point here is not to argue for or against causal instrumentalism or causal realism. It seems 
possible that one or the other offers a better overall strategy for behavioral science but it also 
seems possible that sometimes one offers a better strategy and sometimes the other, which 
would lead to a form of causal pluralism (Cartwright, 2007; Markus, 2004, 2008a). The present 
discussion does not seek to adjudicate that issue. Instead, the present discussion seeks only to 
develop the more modest point that Pearl's causal instrumentalism contrasts with certain 
aspects of prevailing theory and practice of causal inference in behavioural science research. As 
such, the former may not provide a complete descriptive account of the latter.

12.3 Counterfactuals and causal inference in the behavioural sciences
Pearl (2009) presented three types of inferences (‘queries’ in the jargon of artificial intelligence, 
as in a query to a database) that his theory is designed to explain: Predictions involve inferring 
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the value of some variable from the values of others. Interventions involve inferences about what 
would result from an intervention that changes the values of one or more variables (and fixes
(p.263) them to those values). Counterfactuals involve inferences about the values of variables 
had other variables taken different values given the actual values of the variables in the system. 
(Note that counterfactual queries in Pearl's jargon differ from both counterfactual assertions 
and simple counterfactual conditionals — they are doubly conditional.)

While this is certainly an impressive and ambitious enough list, it omits an important type of 
inference that plays an important role in applied behavioural science. Addressing this omission, 
in turn, places stress on the basic architecture of Pearl's theory. At first blush, each of the 
inferences addressed by Pearl's (2009) theory involves only changes in the values of variables 
for specified individuals (i.e. property bearers such as people or sprinklers). All assume a fixed 
causal structure (although some are answered by blocking various causal effects in the system). 
In contrast, behavioural scientists often wish to make inferences about interventions that aim 
not to change the value of variables for individuals but rather to modify the causal system for 
them (Markus, 2008b). For example: If children are informed about the dangers of smoking, will 
advertisements have a weaker causal effect on smoking? If students have opportunities to ask 
questions in smaller groups, will lectures to larger groups have a larger effect on learning? If 
individuals who lose their jobs receive job training, will the downturn in the economy have less 
of an effect on levels of unemployment?

Formally, of course, one can incorporate at least some such inferences into Pearl's system using 
the same methods commonly applied to statistical models by behavioural science researchers. 
For example, if the effect of class size depends upon opportunities to ask questions in small 
groups, one can model learning (L) as a function of the product of class size (C) and small group 
(S ) variables: L = β 0 + β 1 C + β 2 S + β 3 CS + e, where the β s represent causal effects and e
represents residual variance in L. Rearranging the equation shows that S becomes part of the 
effect coefficient for C:L = β 0 + (β 1 + β 3 S)C + β 2 S + e. Thus the causal effect of C on Ldepends 
upon the value of S. Similarly, including an S 2 term makes it possible for the causal effect of S to 
depend upon the level of S in a similar manner. Clearly, Pearl's theory can handle these sorts of 
models, but they strain the semantics of the proposed model structure, M = ⋨U, V, F⟩. The model 
structure separates variables (U and V) from functions (F) with the intent of manipulating the 
variables to counterfactual values while holding the functions constant. Parameterizing changes 
in causal structure in terms of values of variables that serve as part of the causal functions 
between variables blurs the semantic division between these two sets of elements of the model 
structure and makes their dependencies less than transparent.

One can also handle such questions using the method of augmented directed acyclic graphs 
described by Pearl (2009, pp. 70–72). To use this approach, one explicitly defines new variables 
with functions as values.

(p.264) For example, instead of encoding learning as an interactive function of class size and 
small groups, as above, one would instead encode a variable giving the function linking learning 
(L) to class size (C) as a new variable, F′. Next one encodes F′ as a function of small group 
opportunities (S) and other background variables, if any. This can be a very effective method for 
encoding systems where one variable affects the causal structure relating other variables to one 
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another. However, the approach clearly stresses the basic architecture separating variables 
from functions to the point that the distinction collapses. The set F no longer contains all of the 
functions and the variables in V no longer exclude functions, blurring the basic structure M = ⟨U, 
V, F⟩.

Also, these approaches create an unnecessary tension between the semantic portion of the 
theory, the Do Calculus, used to answer the kinds of questions outlined above (Pearl 2009, 
Chapter 3) and the inductive part of the theory (Chapter 2). The inductive part of the theory 
rests on a central assumption called the stability (or the faithfulness assumption) which requires 
that causes never exactly cancel out. For example, clocks run at the same speed at the poles and 
equator because the effect of the Earth's spin exactly cancels out the effect of increased 
diameter, violating the stability assumption. In a model with an interaction, a variable can have 
zero effect for certain values of a mediating variable. For example, cigarette advertisements 
might have no effect on children saturated with material means to desensitize them to such 
advertisements; or, more blatantly, type size will have no effect on reading speed when any light 
source is absent. This situation can violate the stability assumption,6 creating a tension between 
these two parts of the theory.7

Although he does not formalize it this way, one can understand Pearl's theory as a form of 
neighbourhood semantics (Hughes & Cresswell, 1996, Chapter 12). The Do calculus selects 
certain possible worlds within the model structure, and then evaluates the truth of propositions 
within the selected neighborhoods of worlds. The functions in F place one set of restrictions on 
possible worlds. For example, assume that smaller class sizes (C) improve learning (L) but that 
smaller class sizes also direct spending away from other areas (Sp) which then works against 
improved learning (Figure 12.2). Deleting the equation for C and fixing C = c further restricts the 
neighbourhood of relevant worlds. Finally, following through the implied direct and indirect 
effects on L identifies a world (or possibly set of worlds) corresponding to the unique potential 
response L c(u).

(p.265)

One could broaden the model structure to
M* = ⟨W, R, U, V, F⟩ where W denotes a set 
of possible worlds, R a neighbourhood 
relation, and ⟨U, V, F⟩ Pearl's original model 
structure, where R is chosen to map worlds 
onto sets of functions in F such that 
neighbourhoods correspond to worlds 
sharing the same causal structure. This set 
up assumes that all worlds share the same 
individuals and variables over those 
individuals, although further generalization 
is possible (Barcan Marcus, 1992). This 
expanded structure would more naturally 
allow for inferences regarding changes in F. 
The relevant counter‐ factuals would then 

Fig. 12.2  Causal model for class size, other 
spending, and learning.
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involve a shift from one neighbourhood to another, and the evaluation would then follow the 
same procedure for Pearl's Do Calculus within the counterfactual neighbourhood rather than the 
original, which is to say, with the counterfactual causal structure. This approach does not 
require blurring the lines between variables and causal functions. Stability would naturally hold 
within neighbourhoods if not across the board.
Thinking about Pearl's theory in this way helps bring out some interesting aspects of existential 
quantification, asserting that such and such exists, with respect to Pearl's approach. Consider a 
special substitution instance of the existence axiom: (∀xǀx ∈ X)(∃xǀx ∈ X)(X x(u) = x). By 
substituting x for y, one obtains the rather unusual situation of applying both a quantitative and 
existential quantifier to the same variable, which seems to entail that every value of X exists. 
Clearly, however, Pearl did not intend that his system entail that every value of a variable is 
simultaneously realized in the actual world. Instead, asserting the existence of a value of a 
variable seems to assert a form of abstract mathematical existence equivalent to asserting that 
an abstract value is available to be realized, independent of whether that value (p.266) obtains 
or not. This understanding of existence differs from, say, the usual interpretation of existence 
for an individual, requiring that the actual world contain that individual. This difference may 
reflect a fundamental difference between the ontology of variables and that of individual 
property bearers: Apparently, different types of things exist differently. The above 
considerations also illustrate the critical role played in Pearl's system of restricting the range of 
variable values through the definition of variables in models, only in this way does the system 
block the existence of every imaginable value.

Finally, this window on Pearl's system suggests some further considerations regarding the 
existence, in some sense, of values in some neighbourhoods but not others. Consider a three‐
way lamp such that installation of a three‐ way bulb produces the function linking switch 
settings to luminosity f 1 = {1 = off, 2 = dim, 3 = bright} whereas installation of a two‐way bulb 
produces the function f 2 = {1 = off; 2, 3 = bright}. Thus, possible worlds divide into two 
neighbourhoods on the basis of these two functions. The assertion that ‘dim’ exists as a value 
holds true in any possible world, including f 2 worlds, as Pearl construes things, because ‘dim’ is 
possible in some possible worlds, namely f 1 worlds. However, in some contexts, it does seem 
that it might be useful to distinguish ‘dim’ as existing in f 1 worlds in a way that it does not exist 
in f 2 worlds where one can only bring it about by changing light bulbs and thus shifting to the f 1
neighbourhood of worlds. The proposed expanded model structure makes that easier to 
accomplish.

12.4 Conclusions
The present chapter had three goals. The first section argued that one can best interpret Pearl's 
axioms as delimiters of the range of applicability of his theory rather than as universal truths 
about causal models. This conclusion turns on the distinction between causal models as defined 
by the stipulated model structure and the domain of naturally occurring discourse in which 
people reason causally from models that may or may not conform to Pearl's stipulated structure. 
Although the axioms correspond to the more limited domain, they appear to fall short of fully 
characterizing the broader domain of discourse. The second section argued that the plausibility 
of the axioms rests on a (non‐eliminitivist) instrumentalist view of causation as a characteristic 
of the cognitive mechanism rather than something existing independently in the world. This 
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aspect of Pearl's theory creates a tension with the practice of treating conflicting causal 
accounts as rival hypotheses, at most one of which can prove acceptable. The third section 
briefly suggested a form of inference that plays a crucial role in behavioural science research 
but that proves awkward for Pearl's theory. An extension was suggested that makes such 
inferences less awkward.

(p.267) The overarching goal was to explore Pearl's theory from the perspective of 
psychological or behavioural science research methodology. Researchers and methodologists 
are still struggling to digest Pearl's theory nearly ten years after his book attracted widespread 
attention — much the way it took time for philosophers to digest Lewis's (1986) theory. My own 
view is that in large part the basic assumptions and assertions of the theory have yet to sink in. 
It is my hope that the present chapter will serve the double purpose of clarifying some key 
aspects of Pearl's theory for researchers and methodologists while also offering a useful 
perspective on how the theory lines up with the ways that psychologists and other behavioural 
scientists think about causation for those studying such reasoning from outside of these 
sciences.
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Notes:
(1) The present chapter was written in June 2009 without the benefit of Pearl's (2009) second 
edition. The second edition was incorporated during revisions undertaken in November of the 
same year.

(2) Note that in Pearl's notation u refers to fixed values of background variables whereas in 
Rubin's notation u refers to the unit that has those values.
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(3) This question was raised independently by an anonymous reviewer of the present chapter 
and also by Denny Borsboom in response to Markus (2004). For example Pearl (2009, p. xv–xvi) 
contrasts his earlier view that causation ‘simply provides useful ways of abbreviating and 
organizing intricate patterns of probabilistic relationships’ with his current view that takes 
‘causal relationships to be the fundamental building blocks both of physical reality and of human 
understanding of that reality’.

(4) Pearl (2009, p. 164) describes the total effect associated with poke‐release interventions as 
having ‘no operational significance worthy of the phrase ‘effect of X’ ’. A reviewer points out that 
one could represent poke‐release interventions using dynamic time‐indexed models within 
Pearl's model structure. However, the fact that Pearl does not routinely do this, or define total 
effects in terms of poke‐release interventions still supports the general claim that ideal 
interventions offer a more plausible reading of his theory.

(5) A reviewer correctly points out that the axiom might hold for a more complex model. 
However, Pearl's theory does not limit itself to good models. It seeks to present a theory of 
causal inference from both good and bad models alike.

(6) Specifically, Pearl's (2009, p. 48) stability assumption requires that modifying the parameter 
values in the model not introduce or remove probabilistic independence within the model. The 
interaction effect can violate this principle if the data happens to represent a set of parameter 
values in which the moderator cancels the effect of the causal variable on the outcome, such as 
the lights being off for the reading speed experiment.

(7) Recall here the earlier caveat regarding the assumption that these are two parts of the same 
theory.
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mechanism is fundamental. Causal realism asserts that causal connections between events 
and conditions are real and are conveyed by the powers and properties of entities. It is 
therefore necessary to consider the ontology of a given realm in order to be able to 
identify how mechanisms work in this realm. In the social realm causal mechanisms are 
constituted by the purposive actions of agents within constraints. Examples of social 
mechanisms are considered at several levels of detail, and more extended treatments are 
offered for transportation, violent crime, epidemiological processes, and system safety as 
examples of social domains where we can analyse underlying social mechanisms in order 
to understand the outcomes. The view de‐emphasizes the feasibility of strong predictions 
in the social sciences; even when we have good reason to expect that a given set of social 
mechanisms are at work, it is often impossible to aggregate their interactions with 
confidence.

13.1 Introduction
To explain an outcome is to demonstrate what conditions combined to bring it about–what 
caused the outcome in the circumstances, or caused it to be more likely to occur. The most 
fundamental aspect of an explanation is a hypothesis about what caused the circumstance we 
want to explain. So social explanation requires that we provide accounts of the social causes of 
social outcomes. Why are there disparities in health outcomes between white and black 
populations in the United States? Why are rates of violent crime so different across the cities of 
the world? What accounts for the pattern of the spread of disease in the nineteenth and 
twentieth centuries? Why did labour mobilization on the docks take such different courses on 
the east and west coasts? In each case we want to provide an explanation that identifies the 
causes of these various social outcomes.

What is a cause? Generally speaking, a cause is a condition that either necessitates or renders 
more probable its effect, in a given environment of (p.274) conditions. Often a cause is also 
necessary for the production of its effect–‘if C had not occurred, E would not have occurred’. 
The probabilistic version is analogous: ‘If C had not occurred, the likelihood of E would have 
been lower’. The exception to this feature of causation is the rare set of cases where an outcome 
is ‘overdetermined’–that is, cases in which there are multiple factors present, each of which 
would bring about the outcome in isolation. (J. L. Mackie's work is fundamental in defining what 
we mean by ‘necessary and sufficient causal conditions’ (Mackie 1974), and Wesley Salmon 
explores the intricacies of probabilistic causation in much greater detail (Salmon 1984).)

We can also ask the question, what is a social cause? It is not the case that all social outcomes 
are the result of social causes; for example, the depopulation of New Orleans in 2005 was 
caused by a natural fact, Hurricane Katrina. Social causes involve the actions of individuals 
within the context of social institutions and the actions of others. Actions are purposive 
performances by individual agents within social and natural constraints; institutions are sets of 
rules embodied in the beliefs, values, and behaviours of groups of individuals. We can now limit 
the concept of a social cause in this way: A social cause is a circumstance that ineliminably 
involves the actions and institutions of purposive agents. The circumstance may also involve 
natural and environmental factors; but in order for the circumstance to count as a social cause, 
there must be components of the event or process that involve agency within institutional 
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settings. The breaking of the levees in New Orleans was the result of circumstances that 
included both natural and social components–the occurrence of the storm but also the 
institutional breakdown of the Army Corps of Engineers that had led to the poor condition of the 
levees in 2005. The former event is a natural occurrence while the latter event is a social cause 
of the physical failure of the levees.

This account of social causation depends upon something that Hume abhorred: the idea of 
necessity connecting cause to effect. For natural causes we have a suitable candidate in the 
form of physical mechanisms governed by the laws of nature. When a neutron of such‐and‐so 
energy strikes a U‐235 atom, the atom breaks into two smaller atoms and three neutrons; the 
outcome follows from the laws of nature governing neutrons and nuclei. However, there are no 
‘laws of society’ that function ontologically like laws of nature (Little 1993). A society is not a 
law‐governed system. So how can there be ‘social necessity’? Fortunately, there is an alternative 
to law‐based necessity, in the form of a social mechanism. This chapter will explore the concept 
of a causal social mechanism in some detail. It will examine the social ontology that provides the 
best understanding of the ‘substratum’ of social causation–the idea of methodological localism. 
And it will review some clear examples of mechanisms that have been identified in various areas 
of the social sciences to illustrate how causal reasoning seems to work in several areas of social 
investigation.

(p.275) 13.2 Social mechanisms
The central tenet of causal realism is a thesis about the reality of causal mechanisms or causal 
powers. Causal realists maintain that we can only assert that there is a causal relationship 
between X and Y if we can offer a credible hypothesis about the sort of underlying mechanism 
that might connect X to the occurrence of Y. The sociologist Mats Ekström puts the view this 
way: ‘the essence of causal analysis is … the elucidation of the processes that generate the 
objects, events, and actions we seek to explain’ (Ekstrom 1992, p. 115). Authors who have urged 
the centrality of causal mechanisms for both explanatory and ontological purposes include 
Nancy Cartwright (Cartwright 1989), Jon Elster (Elster 2007), Rom Harré (Harre and Madden
1975), and Wesley Salmon (Salmon 1984). (Hedstrom and Swedberg's collection on mechanisms 
in the social sciences is a key source on this topic (Hedström and Swedberg 1998).)

Nancy Cartwright is one of the most original voices within contemporary philosophy of science. 
Cartwright places real causal mechanisms at the centre of her account of scientific knowledge. 
As she and John Dupré put the point, ‘things and events have causal capacities: in virtue of the 
properties they possess, they have the power to bring about other events or states’ (Dupré and 
Cartwright 1988). Cartwright argues, for the natural sciences, that the concept of a real causal 
connection among a set of events is more fundamental than the concept of a law of nature. And 
most fundamentally, she argues that identifying causal relations requires substantive theories of 
the causal powers (capacities, in her language) that govern the entities in question. Causal 
relations cannot be directly inferred from facts about association among variables. As she puts 
the point, ‘No reduction of generic causation to regularities is possible’ (Cartwright 1989, p. 90). 
The importance of this idea for sociological research is profound; it confirms the notion shared 
by many researchers that attribution of social causation depends unavoidably on the formulation 
of good, middle‐level theories about the real causal properties of various social forces and 
entities–the social mechanisms that convey social causation. The account of social mechanisms 
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to be sketched here concurs with Cartwright's approach in the important sense that it places 
priority on the causal powers of the substrate in which a causal process is thought to be located.

Aage Sørensen summarizes a causal realist position for sociology in these terms: ‘Sociological 
ideas are best reintroduced into quantitative sociological research by focusing on specifying the 
mechanisms by which change is brought about in social processes’ (Sørensen 1998, p. 264). He 
argues that sociology requires better integration of theory and evidence. Central to an adequate 
explanatory theory, however, is the specification of the mechanism that is hypothesized to 
underlie a given set of observations. ‘Developing theoretical ideas about social processes is to 
specify some concept of what brings about (p.276) a certain outcome–a change in political 
regimes, a new job, an increase in corporate performance. … The development of the 
conceptualization of change amounts to proposing a mechanism for a social process’ (pp. 239–
240). Sørensen makes the critical point that one cannot select a statistical model for analysis of 
a set of data without first asking the question, what in the nature of the mechanisms we wish to 
postulate to link the influences of some variables with others? It is necessary to have a 
hypothesis of the mechanisms that link the variables before we can arrive at a justified estimate 
of the relative importance of the causal variables in bringing about the outcome. What 
Sørensen's account does not provide is an analysis of the nature of the mechanisms that need to 
be identified in providing a social explanation; so the account provided below, analysing causal 
mechanisms in terms of features of structured agency, is a natural complement to his view.

A particularly important recent effort to make use of causal mechanisms as a foundation for 
social research is found within the literature on social contention–the occurrence of medium‐ 
and large‐scale episodes of contention in a variety of social settings. Charles Tilly, Doug 
McAdam, and Sidney Tarrow have applied framework of causal mechanisms with a great deal of 
rigour in Dynamics of Contention (McAdam, Tarrow, and Tilly 2001) and a volume of associated 
research. They provide a simple definition of mechanisms: ‘a delimited class of events that alter 
relations among specified sets of elements in identical or closely similar ways over a variety of 
situations’ (p. 24). And processes are concatenations of mechanisms: ‘regular sequences of such 
mechanisms that produce similar (generally more complex and contingent) transformations of 
these elements’ (p. 24). ‘We employ mechanisms and processes as our workhorses of 
explanation, episodes as our workhorses of description. We therefore make a bet on how the 
social world works: that big structures and sequences never repeat themselves, but result from 
differing combinations and sequences of mechanisms with very general scope’ (p. 30). They 
summarize their theoretical ambitions concisely: ‘Our aim is not to construct general models of 
revolution, democratization, or social movements, much less of all political contention whenever 
and wherever it occurs. On the contrary, we aim to identify crucial causal mechanisms that 
recur in a wide variety of contention, but produce different aggregate outcomes depending on 
the initial conditions, combinations, and sequences in which they occur’ (p. 37).

The account of social causation offered below wholeheartedly endorses the idea that social 
explanations need to proceed on the basis of an analysis of underlying social mechanisms. But it 
is important not to reify the concept of a mechanism into a rigid component of higher‐level social 
processes. And in fact, one can justly be skeptical about the discreteness and elementality of the 
items McAdam, Tarrow and Tilly offer as examples of social mechanisms. Take brokerage as a 
mechanism of social contention–isn't this really (p.277) an umbrella term that encompasses a 
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number of different kinds of negotiation and alliance‐formation? So brokerage is not analogous 
to ‘expansion of ice during freezing’–a clear example of a physical causal mechanism that is 
homogeneous across physical settings. Brokerage is rather a ‘family‐ resemblance’ term that 
captures a number of different instances of collective behaviour and agency.

If we find this line of thought somewhat persuasive, it suggests that we need to locate the causal 
connectedness among social settings at an even deeper micro‐level. It is the situation of ‘agents 
with interests, identities, networks, allies, and repertoires’ that constitutes the causal nexus of 
social causation on contention–not a set of frozen mid‐level groups of behaviours such as 
brokerage or radicalization. Instead, these mid‐level concepts are descriptive terms that allow 
us to single out some broadly similar components of social contention. This is the reason for the 
emphasis that I will lay on locating the ‘substrate’ of social causation in structured purposive 
action. The level at which we find real causal connections in the social world is the level of the 
socially situated and socially constituted individual in interaction with other individuals.

13.3 What is a causal mechanism?
What is a causal mechanism? Consider this formulation:

A causal mechanism is (i) a particular configuration of conditions and processes that (ii) 
always or normally leads from one set of conditions to an outcome (iii) through the 
properties and powers of the events and entities in the domain of concern.1

Mechanisms bring about specific effects based on the properties of the substrate of processes 
and events in this domain. For example, ‘over‐grazing of the commons' is a mechanism of 
resource depletion in the context of a non‐ regulated community of users (Hardin 1968). We can 
reconstruct precisely why this would be true for rationally self‐interested actors in the presence 
of a public good: rational agents use more of the ‘free’ public resource to increase their own 
private consumption, and this behaviour aggregates to over‐use of the public resource. This is 
how we specify condition (iii) for the overgrazing mechanism. Further, it is the case that, 
whenever the conditions of the mechanism are satisfied, the result regularly ensues; in any case 
where the dominant motive for agents is rational self‐interest, we can expect that a common 
resource will be over‐used.

So we do not need to postulate ‘laws of society’ in order to see how social causation might work. 
Instead, we can directly identify the features (p.278) of purposive action within given 
structures that make the mechanism work. Human actions and refrainings are the ‘stuff’ of 
social causation, and features of human agency underwrite the ‘necessity’ of social mechanisms. 
So we can properly understand a claim for social causation along these lines: ‘C causes E’ means 
‘there is a set of causal mechanisms working through features of structured agency that convey 
circumstances including C to circumstances including E’. It follows from this analysis that 
mechanisms implicate regularities. But these regularities are low‐level and may not be 
observable in macro‐ level social behaviour (for example, because of the mixing of several causal 
processes and the possibility of countervailing mechanisms in play). So they do not serve to play 
the role of a set of governing laws of society, analogous to laws of nature.

The discovery of social mechanisms often requires the formulation of mid‐ level theories and 
models of these mechanisms and processes–for example, the theory of free‐riding. These 
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theories and models are ‘theories of the middle range’ in much the sense that Robert Merton 
meant to convey when he introduced the term (Merton 1963): accounts of the real social 
processes that take place above the level of isolated individual action but below the level of full 
theories of whole social systems. Marx's theory of capitalism illustrates the latter; Jevons's 
theory of the individual consumer as a utility maximizer illustrates the former. Coase's theory of 
transaction costs is a good example of a mid‐level theory (Coase 1988): general enough to apply 
across a wide range of institutional settings, but restricted enough in its claim of 
comprehensiveness to admit of careful empirical investigation. Significantly, the theory of 
transaction costs has spawned major new developments in the new institutionalism in sociology.

So this provides an answer to the fundamental question: explaining a social outcome or pattern 
involves providing an account of the social‐causal mechanisms that typically bring it about, or 
brought it about in specific circumstances. This position may be described as ‘causal realism’, 
and it serves both as an ontological thesis and as a guide to social‐science methodology. (An 
important advocate for a realist interpretation of science is Roy Bhaskar's A Realist Theory of 
Science (Bhaskar 1975).) But what is the nature of the substrate of social causation? What do 
social mechanisms consist of? What makes them operate in the patterned and regular ways that 
we hypothesize for them?

13.4 Methodological localism
Crucial to a valid understanding of social mechanisms is a general answer to the question, what 
ontological features of the social world facilitate and empower the causal connection from one 
end of a social mechanism to (p.279) another? What stands in the place of ‘causal powers of 
natural entities’ in the social world?

The answer is a fairly straightforward one: it is facts about intentional agents, socially situated 
in embodied social relations, that constitute the motive power of social causation. This 
corresponds to the ontology of ‘methodological localism’ I have developed elsewhere (Little
2006). So let us address this question directly. How do social causes work?

Some social theorists have treated social constructs as unified macro‐ entities with their own 
causal powers. Structuralist theories maintain things like ‘capitalism causes people to value 
consuming more than family time’ or ‘democracy causes social cohesion’. Likewise, some 
theorists have held that moral systems and cultures cause distinctive patterns of 
behaviour–‘Confucian societies produce cohesive families’. Each of these claims places a large 
social entity in the role of a causal factor.

Is this a coherent way of talking? Can large structures and value systems exercise causal 
influence? The problem here is that statements like these look a lot like ‘action at a distance’. 
We are led to ask: How do capitalism, democracy, or Confucianism influence social outcomes? In 
other words, we want to know something about the lower‐level mechanisms through which large 
social factors impact upon behaviour, thereby producing a change in social outcomes. We want 
to know quite a bit about the ‘microfoundations’ of social causation (Little 1994).

One point seems obvious–and yet it is often overlooked or denied. Social behaviours are carried 
out by individuals, and individuals are influenced only by factors that directly impinge upon 
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them (currently or in the past). Consider a particular voter's process of deciding to support 
particular candidate. This person experienced a particular history of personality formation–a 
particular family, a specific city, a work history, an education. So the person's current political 
identity and values are the product of a sequence of direct influences. And at the current 
moment, this socially‐constructed person is now exposed to another set of direct influences 
about the election contest–newspapers, internet, co‐workers' comments, attendance at political 
events, etc. In other words, his or her current political judgments and preferences are caused or 
influenced by a past and current set of experiences and contexts. This story brings in social 
factors at every stage–the family was Catholic, the city was Chicago, the work was a UAW‐
organized factory. So the individual is socially influenced and formed at every stage. But here is 
the important point: every bit of that social influence is mediated by locally experienced actions 
and behaviours of other socially formed individuals. ‘Catholicism’, ‘Chicago culture’, and ‘union 
movement’ have no independent reality over and above the behaviours and actions of people 
who embody those social labels.

The approach taken here to social causation insists on the centrality of concrete social 
mechanisms embedded in the actions of social actors. This (p.280) perspective is sometimes 
called methodological individualism. I prefer to call it methodological localism (Little 2006). This 
is the view that the foundation for the explanation of social action and outcome is the local, 
socially located and socially constructed individual person. The individual is socially constructed, 
in that her modes of behaviour, thought, and reasoning are created through a specific set of 
prior social interactions. And her actions are socially situated, in the sense that they are 
responsive to the institutional setting in which she chooses to act. Purposive individuals, 
embodied with powers and constraints, pursue their goals in specific institutional settings; and 
regularities of social outcome often result.

Methodological localism affirms that there are large social structures and facts that influence 
social outcomes. But it insists that these structures are only possible insofar as they are 
embodied in the actions and states of socially constructed individuals. The ‘molecule’ of all 
social life is the socially constructed and socially situated individual, who lives, acts, and 
develops within a set of local social relationships, institutions, norms, and rules.

So here we have a fairly comprehensive basis for a theory of social mechanisms. There is such a 
thing as social causation. Institutions, structures, demographic features, and widespread social 
arrangements have specific causal effects on the societies in which they exist. The mechanisms 
that convey these causal powers exist in a social ontology of socially situated and socially 
constituted individuals, acting and refraining in response to their own motivations and beliefs 
and the rules, conventions, and constraints that exist around them. And the most basic challenge 
of social inquiry and social explanation is to discover some of the specific arrangements and 
features of mentality that aggregate to bring about surprising social outcomes.

13.5 Varieties of causal mechanisms
The general nature of the mechanisms that underlie sociological causation has been very much 
the subject of debate. Two broad approaches may be identified: agent‐based perspectives and 
social‐influence theories. The former follow the strategy of aggregating the results of individual‐
level choices into macro‐ level outcomes; the latter attempt to identify the factors that work 
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behind the backs of agents to influence their choices. Thomas Schelling's apt title Micro‐ 
motives and Macrobehavior captures the logic of the former approach, and his work profoundly 
illustrates the sometimes highly unpredictable results of the interactions of locally rational 
behaviour (Schelling 1978). Jon Elster has also shed light on the ways in which the tools of 
rational choice theory support the construction of large‐scale sociological explanations (Elster
1989). The second approach, the social‐influence approach, attempts to identify socially salient 
influences such as race, gender, educational status, and to provide detailed (p.281) accounts of 
how these factors influence or constrain individual trajectories–thereby affecting sociological 
outcomes. These should not be understood as being contradictory approaches; rather, they each 
direct explanatory inquiry at different parts of the same nexus of socially situated agency. The 
first set of approaches pays primary attention to the motives and reasonings of agents within a 
given set of constraints; while the second set gives more attention to the broad social factors 
that influence individual agency.

How do social mechanisms work? The basics are fairly clear: individuals have goals, values, and 
beliefs, they exist within social and natural constraints, and their actions bring about a variety of 
social outcomes. But how do features of ‘agents within structures’ bring about social outcomes? 
We can give a somewhat more detailed analysis of some of the ways that social facts might 
cause other social facts by surveying a wide sample of causal explanations from the social 
science literature. This approach leads to an open‐ended list of kinds of social mechanisms.

1. Rational‐intentional mechanisms. Why do empires establish a policy of rotating senior 
military officials? Because emperors want to avoid the creation of warlords.
2. Imitation mechanisms. Why did the no‐huddle offense become so common in the 
National Football League in the 1980s? Because it was successful for a few teams, and 
others copied the offense in the hope that they too would win more games.
3. Conspiracy mechanisms (covert strategems of the powerful). Why did the United 
States move away from passenger railroads as the primary form of intercity 
transportation? Because powerful actors took political actions to assure that private 
automobiles would be encouraged as the primary form of transport.
4. Aggregative mechanisms (aggregate consequences of individual‐level strategies). Why 
does technological innovation occur continuously within a market‐based society? 
Because each firm is constantly looking for lower‐cost and higher‐value‐added methods 
of manufacturing, and these individual efforts aggregate to an industry trend towards 
innovations in products and technologies.
5. Mentality mechanisms (behaviour is changed by changing beliefs and attitudes). Why 
were so many Quaker men conscientious objectors at great personal cost during World 
War II? Because their religious beliefs categorically rejected the violence in war and they 
refused to participate in this immoral activity.
6. Social network mechanisms (information and norms proliferate through concrete sets 
of social relationships among individuals). Why was the Soviet military system less 
adaptive in combat than the Israeli (p.282) military system? Because information flow 
among officers and troops was more rapid and more bidirectional in the latter than the 
former.
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7. Evolutionary mechanisms. Why does the level of firm efficiency tend to rise over time? 
Because the net efficiency of a firm is the product of many small factors. These small 
factors sometimes change, with an effect on the efficiency of the firm. Low efficiency 
firms tend ultimately to lose market share and decline into bankruptcy. Surviving firms 
will have features that produce higher efficiency.
8. Filtering mechanisms. Why are passengers on commercial aircraft better educated 
than the general population? Because most airline passengers are business travellers, 
and high‐level and mid‐level business employees tend to have a higher level of education 
than the general population.
9. Critical mass mechanisms. A new social networking site experiences slow growth for 
the first eighteen months of operation until it reaches N users; it then takes off with 
rapid growth for the next eighteen months. We attempt to explain this change by arguing 
that N is a critical mass of users, stimulating much more rapid growth in the future.
10. Path‐dependency mechanisms. Why do we still use the very inefficient QWERTY 
keyboard arrangement that was devised in 1874? Because this arrangement, designed to 
keep typists from typing faster than the mechanical keyboard would permit, was so 
deeply embodied in the typing skills of a large population and the existing typewriter 
inventory by 1940 that no other keyboard arrangement could be introduced without 
incurring massive marketing and training costs.

This is not an exhaustive list of types of social causation, and there is some overlap among these 
types. The first four examples fall roughly into the broad category of agent‐centred explanations; 
the next three examples illustrate the social‐influence model; and the final three examples 
illustrate ‘system‐level’ features of the environment of social change (selective filtering of 
events, the mathematics of critical mass, and the momentum of prior social choices). There are 
no doubt another dozen examples of explanatory schemata that could be adduced as well. What 
this list illustrates, however, is that there are a variety of ways, both direct and indirect, through 
which social causation can be conveyed from one set of social facts to another. They all involve 
the same basic ontology of social causation–agents acting within structures leading to social 
outcomes–but the nature of the pathway from cause to effect is different in the various types.

Emphasis on causal mechanisms for adequate social explanation has several beneficial effects 
on sociological method. It takes us away from easy (p.283) reliance on uncritical statistical 
models. But it also may take us away from excessive emphasis on large‐scale classification of 
events into revolutions, democracies, or religions, and toward more specific analysis of the 
processes and features that serve to discriminate among instances of large social categories. 
Charles Tilly emphasizes this point in his arguments for causal narratives in comparative 
sociology (Tilly 1995). He writes, ‘I am arguing that regularities in political life are very broad, 
indeed transhistorical, but do not operate in the form of recurrent structures and processes at a 
large scale. They consist of recurrent causes which in different circumstances and sequences 
compound into highly variable but nonetheless explicable effects’ (Tilly 1995, p. 1601).

We do a poor job of understanding industrial strikes if we simply collect a thousand instances 
and perform statistical analysis on the features we've measured against the outcome variables. 
We do a much better job of understanding them if we put together a set of theories about the 
features of structure and agency through which a strike emerges and through which individuals 
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make decisions about participation ‐ the mechanisms that commonly arise in the social 
processes of industrial contention. Analysis of the common ‘agent/structure’ factors that are 
relevant to mobilization will permit us to understand individual instances of mobilization, explain 
the soft regularities that we discover, and account for the negative instances as well.

13.5.1 Examples of social mechanisms
Are there any credible social mechanisms? In fact, a cursory survey of comparative sociology, 
political science, and the new institutionalism provides a very large body of explanations that 
identify common social mechanisms–for example, ‘collective action problems often cause strikes 
to fail’, ‘increasing demand for a good causes prices to rise for the good in a competitive 
market’, ‘transportation systems cause shifts of social activity and habitation’. Here is a small 
sample of familiar social mechanisms that have been invoked to explain important social 
outcomes across a range of social settings.

• public goods problems (Hardin 1982)
• political entrepreneurship (Bates 1981)
• principal‐agent problems (Ensminger 1992)
• features of ethnic or religious group mobilization (Hardin 1995)
• market mechanisms and failures (Akerlof 1970)
• rent‐seeking behaviour (Seligson and Passé‐Smith 1993)
• mechanisms of corruption (Klitgaard 1988)
• the social psychology of race (Steele and Aronson 1995)
• the moral emotions of family and kinship (Hareven 2000)
(p.284) • the dynamics of a transport network (Vance 1986)
• the ‘moral economy’ of the crowd (Thompson 1971)
• the communications characteristics of medium‐size social networks (Latour 2005)
• the psychology and circumstances of solidarity (Taylor 1982).

These are all mechanisms that work at the level of socially situated actors. They characterize 
one or more of the features of agency and structure. We understand how they work; individuals 
with specified motivational and cognitive characteristics, placed within the context of the social 
settings identified by the mechanisms, will behave in ways that bring about the outcome. And 
they are abstract enough that they can be identified in a wide range of settings: the feudal 
manor, the collective farm, the Wall Street law firm. In fact, we might say that the most 
fundamental value of theories in the social sciences is the formulation of models of mechanisms 
at this level, providing a toolkit for social explanation (Elster 2007).

It is important to observe that social mechanisms rarely work in isolation; so their operation 
usually cannot be observed in a pure state. Take the mechanism of ‘collective action failures in 
the presence of public goods’. (Russell Hardin's analysis of collective action problems is highly 
useful; (Hardin 1982).) Here the heart of the mechanism is the analytical point that rationally 
self‐interested decision‐makers will take account of private goods but not public goods; so they 
will tend to avoid investments in activities that produce public goods. They will tend to become 
‘free riders’ or ‘easy riders’ (Popkin 1981). The social regularity that corresponds to this 
mechanism is a ‘soft’ generalization–that situations that involve a strong component of collective 
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opportunities for creating public goods will tend to demonstrate low contribution levels from 
members of affected groups. So public radio fundraising will receive contributions only from a 
small minority of listeners; boycotts and strikes will be difficult to maintain over time; lakes and 
estuaries will tend to be over‐fished. And in fact, these regularities can be identified in a range 
of historical and social settings.

However, the ‘free rider’ mechanism is only one of several that influence collective action. There 
are other social mechanisms that have the effect of enhancing collective action rather than 
undermining it (Ostrom 1990). For example, the presence of competent organizations makes a 
big difference in eliciting voluntary contributions to public goods; the fact that many decision‐
makers appear to be ‘conditional altruists’ rather than ‘rationally self‐ interested maximizers’ 
makes a difference; and the fact that people can be mobilized to exercise sanctions against free 
riders affects the level of contribution to public goods. (If your neighbours complain bitterly 
about your smoky fireplace, you may be incentivized to purchase a cleaner‐burning wood (p.
285) or coal.) The result is that the free‐rider mechanism rarely operates by itself–so the 
expected regularities may be diminished or even extinguished.

Let us look at a few examples of causal explanation of social outcomes in greater detail.

13.5.2 Transportation as a social mechanism
Transportation systems function to move people, goods, and ideas. Rail systems, road networks, 
airline systems, and water transport provide links between places that permit more reliable and 
low‐cost movement of people and goods from point to point than previously available. The 
history of transportation is simultaneously a history of technology change, population 
movement, colonialism, economic growth, business development, and the spread of disease.

Transportation systems are particularly interesting when we consider their capacity for 
conveying social causation. Consider these examples of causal relations mediated by 
transportation systems:

• Extension of a rail network stimulates the growth of new towns, villages and cities 
in North America in the 1880s.
• Establishment of a direct air travel link between A and B causes the more rapid 
spread of disease between these locations.
• Breakdown of the administration of the rail system leads to logistics bottlenecks 
and military defeat of the French army in the Franco‐Prussian War (Howard 1961).
• Regular river travel throughout the Canton Delta in China leads to the rapid 
spread of revolutionary ideas during the Republican Revolution, as travellers and 
merchants move easily from place to place (Hsieh 1978).
• Commodity price correlation increases between Chicago and New York as a result 
of regular and cheap rail transport and communication between these two cities 
(Cronon 1991).
• New business institutions (grain futures markets and grain elevators) are created 
to take advantage of cheap regular rail transport (Cronon 1991).
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A rail system provides convenient transportation among a number of places, while providing no 
service at all between other pairs of locations. So a rail system certainly has direct effects on 
social behaviour; it structures the activities of the several million residents of a major city by 
making some places of residence, work, shopping, and entertainment substantially more 
accessible than other places. And there are a number of other social characteristics that are 
structured by a commuter rail system as a consequence: for example, patterns of class 
stratification of neighbourhoods, patterns of diffusion of infectious disease, patterns of ethnic 
habitation around the city, (p.286) patterns of diffusion of social styles and dialect, and so on 
(Warner 1969). In brief, a rail system has definite social effects. It creates opportunities and 
constraints that affect the ways in which individuals arrange their lives and plan their daily 
activities. And other forms of social behaviour and activity are conveyed through the conduits 
established by the transport system.

Moreover, a rail system is a physical network that has an embodied geometry and spatiality on 
the ground. Through social investments over decades or more, tracks, stations, power lines, 
people movers, and fuel depots have been created as physical infrastructure for the 
transportation network. Lines cross at junctions, creating the topology of a network of travel; 
and the characteristics of travel are themselves elements of the workings of the network–for 
example, the rate of speed feasible on various lines determines the volume of throughput of 
passengers through the system. And neighbourhoods and hotels agglomerate around important 
hubs within the system.

In addition to this physical infrastructure, there is a personnel and management infrastructure 
associated with a rail system as well: a small army of skilled workers who maintain trains, sell 
tickets, schedule trains, repair tracks, and myriad other complex tasks that must be 
accomplished in order for the rail system to carry out its function of efficiently and promptly 
providing transportation. This human organization is surely a ‘social structure’, with some level 
of internal corrective mechanisms that maintain the quality of human effort, react to 
emergencies, and accomplish the business functions of the rail system. This structure exists in 
the form of training procedures, operating manuals, and processes of supervision that maintain 
the coordination needed among ticket agents in stations, repairmen in the field, track 
inspectors, engineers, and countless other railroad workers. And this structure is fairly resilient 
in the face of change of personnel; it is a bureaucratized structure that makes provision for the 
replacement of individuals in all locations within the organization over time.

So a rail network has structural and causal characteristics at multiple levels. The physical 
network itself has structural characteristics (nodes, rates of travel, volume of flow of passengers 
and freight). This can be represented statically by the network of tracks and intersections that 
exist; dynamically, we can imagine a ‘live’ map of the system representing the coordinated 
surging of multiple trains throughout the system, throughout the course of the day. The railroad 
organization has a bureaucratic structure–represented abstractly by the organizational chart of 
the company, but embodied in the internal processes of training, supervision, and recruitment 
that manage the activities of thousands of employees. And the social and technical ensemble 
that these constitute in turn creates an important structure within the social landscape, in that 
these physical and human structures determine the opportunities and constraints that exist for 
individuals to pursue their goals and purposes.
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(p.287) The central point here is that transportation is a robust family of causal mechanisms 
that mediate many important social processes and outcomes. And its causal effectiveness is 
fairly transparent: new transportation opportunities create new options for social actors, who 
take advantage of these opportunities in choosing a place to live and work, in pursuing political 
goals, in moving armies, and in generating income. So transportation is a causal mechanism 
whose microfoundations are especially visible, and whose causal consequences are often very 
large.

13.5.3 What is to explain about violent crime?
Let us turn next to a sociological research problem of great longevity: the explanation of 
variations in the crime rates of different places. Every city has a crime rate–the incidence of 
murders, assaults, car thefts, or burglaries per 100,000 residents. And there are very significant 
differences across cities and countries with respect to the incidence of violent crime. In 
particular, some cities in the world experience extremely high levels in the incidence of violent 
crimes (for example, Johannesburg, South Africa). Compare these national statistics describing 
‘murders per 100,000 population’: England/Wales, 1; USA, 6; Brazil and Russia, 21; Columbia, 
58; South Africa, 59. Why are there such major variations across countries with respect to the 
murder rate? Why are some cities and countries so much more violent than others? What are the 
most important factors that cause a community to have a high (or low) rate of violent crime? 
Why do individuals in some societies have a higher propensity for violent crime than in others?

The study of the causes of violence and crime has been a part of Western sociology since the 
beginning. A variety of causes have been suggested: the incidence of absolute poverty, the 
extent of inequalities, the phenomenon of relative deprivation, the drug trade, the breakdown of 
traditional community and family values, and the effects of racism, to name a few.

Notice that we can put the causal question in several ways:

• What causes variation across communities with respect to crime rates?
• What factors increase the likelihood of a particular individual becoming a violent 
criminal?
• What social factors cause an increase or reduction in the crime rate?

That is, we can ask about explaining variation across cases; we can ask about explaining 
particular individuals' behaviour; we can ask about ‘inducing’ and ‘inhibiting’ causes of changes 
in the crime rate; and there are other causal questions as well.

Consider this small set of possible causal mechanisms that might influence violent behaviour:

(p.288)
• rational incentives (risk and gain calculation)
• material circumstances (unemployment, education)
• community cohesiveness
• a broad sense of injustice (exploitation, unfair exclusion)
• moral and religious values
• alienation and disaffection
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• racial or ethnic polarization
• imitation of the behaviour of others
• organizations (gangs, youth groups, social networks)
• laws and policing.

Now we might try to construct an agent‐centred theory of violent crime based on these sorts of 
factors conjoined with a description of the social environment at the time–and then predict 
variation across time and place as a behavioral result of the incorporation of these factors 
influencing action.

A very different approach–and one that is probably closer to the quantitative‐methodology 
mainstream in sociology today–is to assemble a set of cases (a list of United States cities, for 
example); measure a number of variables for each city (unemployment rate, index of social 
capital, level of education, degree of neighbourhood segregation, presence/absence of mass 
transportation,…); and then test the degree of correlation that one or more of these variables 
has with the observed variation in the crime rate. Do variations in the incidence of violent crime 
correlate with levels of unemployment? Then unemployment is a plausible causal factor in 
determining the level of the crime rate. Does some measure of social capital correlate negatively 
with variations in the crime rate? Then the social cohesion that is hypothetically linked to higher 
scores for social capital in a community is a negative causal factor in variations in the crime 
rate. And so forth.

Both these approaches are compatible with the research methodology associated with trying to 
identify causal mechanisms. If it is in fact true that a young person's disposition to engaging in 
violent crime is decreased if he/she is a member of a church–then we ought to find at the macro‐
level that a higher index of church membership will be associated with a lower crime rate. 
However, given the multiplicity of causal factors that are likely to be at work, the purely 
statistical approach is unlikely to yield satisfactory results. Reciprocally, if we discover a positive 
correlation between ‘degree of neighbourhood segregation’ and the crime rate–then we need to 
be able to disaggregate the story and discover the individual‐level mechanisms through which 
segregation increases individuals' propensity for violent crime.

So explaining differences in crime rates across places requires that we provide hypotheses 
about how various social factors might influence criminal (p.289) behaviour; which is simply 
another way of saying that these explanations require hypotheses about the underlying social 
mechanisms.

13.5.4 Race and asthma
How can a group characteristic be a causal factor in enhancing some other group 
characteristic? What kinds of social mechanisms might convey the group characteristic onto its 
effect on the population?

Suppose the facts are these: that African‐Americans have a higher probability of developing 
asthma, even controlling for income levels, education levels, age, and urban‐suburban residence. 
And suppose that the researcher summarizes his/her findings by saying that ‘being African‐
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American causes the individual to have a higher risk of developing asthma’. How are we 
supposed to interpret this claim?

My preferred interpretation of statements like these is to hypothesize a causal mechanism, 
presently unknown, that influences African‐American people differentially and produces a higher 
incidence of asthma. Here are a few possibilities for a mechanism that might have this effect:

• African‐Americans as a population have a lower level of access to quality 
healthcare and are more likely to be uninsured. Asthma is a disease that is best 
treated on the basis of early diagnosis. Therefore African‐Americans are more likely 
to suffer from undiagnosed and worsening asthma.
• Asthma is an inner‐city disease. It is stimulated by air pollution. African‐ Americans 
are more likely to live in inner‐city environments because of the workings of 
residential segregation. So race causes exposure which in turn causes a higher 
incidence of the disease.
• There might be an unidentified gene that is more frequent in people with African 
ancestry than non‐African ancestry and that makes one more susceptible to asthma.
• There might be a nutritional component to the onset of asthma, and it could be that 
cultural differences between the two communities lead the African‐American 
population to have higher levels of exposure to the nutritional cause of the disease.

And of course we could proliferate possible mechanisms.

In each case the logic of the account is similar. We proceed by hypothesizing a factor or 
combination of factors that increase the likelihood of developing asthma; and then we try to 
determine whether this collateral factor is more common in the African‐American population. 
Some of these stories would amount to spurious correlations, while others would constitute 
stories in which the fact of race (as opposed to a factor with which race is accidentally 
correlated) plays an essential role in the causal story. (Reduced access to healthcare and inner 
city air pollution fall in this category, since (p.290) it is institutionalized racial segregation that 
causes the higher‐than‐normal frequency of urban residence for African‐Americans.)

Race is not itself a causal mechanism, but rather a social factor that plays into a variety of 
mechanisms. So for example, race is associated with differential health outcomes and 
incarceration rates. The task for the sociologist is to discover some of the mechanisms or 
pathways through which one's racial status exercises influence on his/her health or 
incarceration outcomes. Here is one particular pathway:

racial status {affects} residential status in inner city or suburb {affects} exposure to 
airborne pollutants {affects} likelihood of developing respiratory disease.

Essentially the mechanism linking racial status to health outcomes in this story is the package of 
concrete social processes through which segregation is maintained: mortgage and insurance 
redlining practices, neighborhood resistance to new families of another race, real estate 
steering practices, and discrimination in rental housing, for example.
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So this is a potential interpretation of the causal meaning of a statement like ‘race causes an 
increased risk of X’. It provides a schematic explanatory statement along these lines: racial 
status causes propensity to asthma through mechanism M. What would be most perplexing to 
the quantitative researcher is if there were multiple sets of causal mechanisms, each 
independent of the others and each creating a race‐specific difference in incidence of the 
disease. For example, it might be that both exposure to air pollution and lack of health insurance 
lead to a higher incidence of the disease; and further, it might be that inner‐city residents do in 
fact have adequate healthcare but exposure to inner‐city pollution; while suburban African‐
Americans might have less healthcare and limited exposure to air pollution. In this set of facts, 
both African‐American populations would display higher‐than‐normal incidence, but for different 
and unrelated reasons. We explore this possibility in the following section.

13.6 Is sociology analogous to epidemiology?
Sociology attempts, among other things, to establish causal connections between large social 
factors (race, socio‐economic status, residential status) and social outcomes of interest (rates of 
delinquency). This sounds quite a bit like the reasoning done by epidemiologists to assign ‘risk 
factors’ to the occurrence of a disease based on individual and environmental characteristics–for 
example, ‘people exposed to high levels of radiation such as survivors of nuclear reactor 
accidents are at an increased risk for developing non‐ Hodgkin's lymphoma’. The epidemiologist 
works with a large data set of persons with a given disease and then tries to discover factors X, 
Y, Z whose (p.291) statistical distribution differs for the disease population relative to the 
general population. Is quantitative sociology analogous in any way to the use of large disease 
data sets to attempt to identify risk factors? In other words, is there a useful analogy between 
sociology and epidemiology? Are there similarities in the forms of causal reasoning that are to 
be found in the two areas of research?

Suppose that the divorce rate for all American men is 30%. Suppose the rate for New York City 
males with income greater than $200,000 is 60%. We might want to draw the inference that 
something about being a high‐income male resident of New York causes a higher risk of divorce 
for these persons. And we might want to justify this inference by noticing that it is similar to a 
parallel statistical finding relating smoking to lung cancer: the probability of acquiring lung 
cancer is significantly higher for smokers than non‐smokers. So sociology is similar to 
epidemiology. Certain factors can be demonstrated to cause an elevated risk of a certain kind of 
outcome. There are ‘risk factors’ for social outcomes such as divorce, delinquency, or drug use.

Is this a valid analogy? I think it is not. Epidemiological reasoning depends upon one additional 
step: a background set of assumptions about the ontology and etiology of disease, specifying the 
mechanisms and causal environment of disease. A given disease is a specific physiological 
condition within a complex system of cells and biochemical processes. We may assume that each 
of these physiological abnormalities is caused by some specific combination of external and 
internal factors through specific causal mechanisms. The causal pathways of normal 
physiological functioning are discrete and well‐defined, and so are the mechanisms that cause 
disruption of these normal causal pathways. Within the framework of these guiding assumptions, 
the task of the statistics of epidemiology is to help sort out which factors are causally associated 
with the disease. The key, though, is that we can be confident that there is a small number of 
discrete causal mechanisms that link a real causal factor to the disease.
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The case is quite different in the social world. Social processes are not similar to physiological 
processes, and social outcomes are not similar to diseases. In each case the failure of parallel 
derives from the fact that there are not unique and physiologically specific causal systems at 
work. Cellular reproduction has a specific biochemistry. Malignancy is a specific deviation from 
these cellular processes. And specific physical circumstances cause these deviations. But 
becoming a criminal is a much more fluid and multiform process.

The problem is that a social outcome like ‘violent society’ is not the result of a homogeneous 
social process across multiple social settings. Rather, it is a heterogeneous mix of social 
developments and events; and these components are different in different times and places. And 
outcomes that might be considered the social equivalent of disease–a rising murder rate, for 
example–are also composites of many distinct social happenings and processes. So (p.292) 

social systems and outcomes lack the simple, discrete causal uniformity that is a crucial 
underpinning of epidemiological reasoning.

This is not to say that there are not underlying causal mechanisms whose workings bring about 
a sharp increase in, say, the population’s murder rate. Rather, it is to say that there are 
numerous, heterogeneous and cross‐cutting such mechanisms. So the resultant social outcome 
is simply the contingent residue of the multiple middle‐level processes that were in play in the 
relevant time period. And the discovery that ‘X, Y, Z factors are correlated with a rise in the 
incidence of O’ isn't causally irrelevant. But the effects of these factors must be understood as 
working through their influence on the many mid‐level causal mechanisms.

In particular, several basic propositions of epidemiological reasoning cannot be affirmed in the 
case of social causation:

(a) If there is a causal mechanism linking X to Y, then there will be a statistical 
association between X and Y. (And the contrapositive: If there is no statistical association 
between X and Y, then there is unlikely to be a causal mechanism leading from X to Y.)
(b) If there is a statistical association between X and Y, then there is likely to be a single 
causal mechanism leading from X to Y.

Neither of these propositions is routinely true in the case of social out‐ comes. Statement (a) is 
untrue, because there may ceteris paribus conditions and alternative causal pathways that result 
in a lack of correlation between X and Y–in spite of the real causal mechanism linking them. And 
statement (b) is untrue, because the observed correlation between X and Y may be simply the 
aggregate effect of a large number of separate causal processes involving X and Y. So 
quantitative sociological reasoning is not analogous to epidemiological reasoning, for this 
reason: there is a substantially greater possibility of multiple causal pathways and conditions in 
the case of the social world, leading to the result that discovery of gross correlations between 
factors is unlikely to correspond to unique causal mechanisms and pathways leading to the 
observed outcome.

13.7 Conclusion
We have argued for several key points concerning social causation. First, there is such a thing 
as social causation. Causal realism is a defensible position when it comes to the social world: 
there are real social relations among social factors (structures, institutions, groups, norms, and 
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salient social characteristics like race or gender). We can give a rigorous interpretation to 
claims like ‘racial discrimination causes health disparities in the United States’.

(p.293) Second, we have argued in support of the idea that causal relations depend on the 
existence of real social‐causal mechanisms linking cause to effect. Discovery of correlations 
among factors does not constitute the whole meaning of a causal statement. Rather, it is 
necessary to have a theory of the mechanisms and processes that give rise to the correlation. 
Moreover, it is defensible to attribute a causal relation to a pair of factors even in the absence of 
a correlation between them, if we can provide evidence supporting the claim that there are 
specific mechanisms connecting them. So mechanisms are more fundamental than regularities.

Third, we have tried to make good on a key intellectual obligation that goes along with 
postulating real social mechanisms: to provide an account of the ontology or substrate within 
which these mechanisms operate. This we have attempted to provide through the theory of 
methodological localism–the idea that the causal nexus of the social world is the behaviours of 
socially situated and socially constructed individuals. To put the claim in its extreme form, every 
social mechanism derives from facts about institutional context, the features of the social 
construction and development of individuals, and the factors governing purposive agency in 
specific sorts of settings. And different research programs target different aspects of this nexus.

And finally, we have looked at a few typical forms of sociological reasoning in detail, in order to 
see how the postulation and discovery of social mechanisms play into mainstream sociological 
research. Properly understood, there is no contradiction between the effort to use quantitative 
tools to chart the empirical outlines of a complex social reality, and the use of theory, 
comparison, case studies, process‐tracing, and other research approaches aimed at uncovering 
the salient social mechanisms that hold this empirical reality together.
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powers, but rather, in one way or another, about regular sequences. My chapter has two 
parts. In the first part I consider how it is that analytic philosophers of social science have 
been able thus far to side‐step the critique of Humeanism. In the second part, I consider 
how analytic philosophy of social science might look different, were Humeanism no longer 
to be its tacit metaphysics.

Such is the influence of custom, that, where it is strongest, it not only covers our natural 
ignorance, but even conceals itself, and seems not to take place, merely because it is 
found in the highest degree.1–Hume

14.1 Introduction
As anyone who has ever been to a lively meeting governed by Robert's Rules of Order knows, 
one way to block discussion of a difficult issue is on procedural grounds. I don't mean to 
question the need for sound procedures (or, for that matter, to invoke the idea of intentional 
strategy)–only to point to a familiar instance of a shift from substance to method. I'd like to 
suggest that something similar, albeit with an added twist, happens systematically in analytic 
philosophy of social science. The analogue of the blocked substantive proposal is direct 
argument about ontology. In mainstream analytic philosophy of social science, ontological 
discussion is effectively cut short by turning metaphysical questions into questions about norms 
regarding explanation–a conceptual sleight of hand that has been dubbed ‘the epistemic fallacy’ 
by (p.297) Roy Bhaskar.2 The twist is that, in contrast to the lively meeting governed by
Robert's Rules, it is in the nature of the case here that the procedures upon which discussion is 
re‐focused will themselves be ‘partisan’, since alternate methodologies carry with them 
alternate ontological commitments.3 Thus it is not exactly that questions of substance are simply 
tabled (thereby, of course, tacitly preserving the metaphysical status quo), but rather that 
ontological controversies are either transposed into a kind of debate‐by‐proxy at the level of 
methodology, or, in the absence of such debate, resolved unilaterally by methodological fiat.

The metaphysical issue that I want to examine in light of this dynamic is causality. For the first 
time in a long while, there is again a divide amongst metaphysicians between those who are 
realists about causality and those who are not. To be a realist about causality is to think that, in 
one way or another, causality involves a display of powers, by the kinds of things that bear or 
are them inherently, so as to effect changes in other things. To hold this view is to think, contra
Hume and ultimately Kant alike, that there is indeed such a thing as natural necessity. In the 
contemporary literature, Brian Ellis, Stephen Mumford, Alexander Bird and Nancy Cartwright, 
for example, are well‐known proponents of this view–preceded in the recent period by Rom 
Harré and E. H. Madden, George Molnar and Roy Bhaskar. The position, broadly Aristotelian in 
many if not all of its iterations, is sometimes referred to as dispositional realism. Anti‐realism 
about causality, meanwhile, derives in its fully developed empiricist form from Hume, via Mill. 
Mackie and Lewis are Humeans often cited by contemporary analytic philosophers and 
methodolo‐ gists of social science. On the anti‐realist view, dominant within the discipline of 
philosophy throughout the modern period, there are no such metaphysically necessary 
connections. There is simply the fact that there are sequences of event that are constantly 
conjoined–or, for some, conjoined with a high degree of probability.4 From this perspective, 
standard until recently, causality has nothing to do with the exercise of things' inherent powers. 
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Indeed, at the metaphysical core of the anti‐realist position is precisely a disavowal of such 
dispositional properties.

(p.298) Humeanism, as it is often called, is now under significant strain in contemporary 
metaphysics. By contrast, it remains the predominant view in analytic philosophy and 
methodology of social science, where it has been challenged in a sustainedfashion only bycritical 
realists, who have remained marginal within the analytic literature.5 The situation is a curious 
one, however. For one thing, I would venture to suggest that even in the positivist stronghold of 
the US, most philosophers and methodologists of social science would balk at the idea that in 
aligning themselves with Hume, they have forsworn belief in something like regular old 
causality. Only Hume himself, one is tempted to say–and perhaps Kant–was prepared to 
acknowledge the metaphysical import of the anti‐realist stance. Moreover, the Humean position 
tends to be advanced only implicitly. Despite the prevalence of the view, therefore, one can't 
help but wonder what the outcome would actually be, were there to be a floor‐fight on the 
question, i.e. a substantive debate within analytic philosophy and methodology of social science 
on the merits of Humean anti‐realism about causality versus the merits of a powers‐based, 
realist account of causality.

It's the very lack of such an airing that I want to address. Despite the significance of the issue 
for the subject area, Humean‐derived anti‐realism about causality has not been a topic of overt 
discussion within mainstream analytic work in the philosophy and methodology of social science. 
And this, as I say, is odd. As a practical matter, it may simply be that everyone who has been to 
graduate school (especially in the US, and especially in analytic philosophy) has been trained to 
be an anti‐realist about causality, and that no one especially cares to revisit the point–excepting, 
of late, those who specialize in metaphysics. But there's more to it than this. Even allowing for 
broad but ‘soft’ support for Humeanism, it remains the case that the underlying ontological 
question is more difficult to get at, conceptually, than it ought to be. How is it, one wonders, that 
such a fundamental commitment–one pertaining to an issue that goes to the heart of the 
concerns of the specialty–has been sheltered from serious critique?

The answer, I shall argue, has to do with the epistemic fallacy. Operationally, that is, if one were 
to try to force a floor‐fight on the question of whether or not causality is more or less what 
Hume said it is, one would do well to understand the peculiar way in which the focus on 
explanation functions, in this area of specialization, to advance the Humean position while at the 
same time displacing attention from metaphysics onto applied epistemology, such that 
metaphysical considerations appear to be extraneous.

(p.299) 14.2 From causality to explanation
One reason why it may seem plausible to regard questions about explanation and questions 
about causality as interchangeable, akin to fractions versus percentages as designators of 
proportion, is that intuitively it would seem that to offer an explanation of something is to say 
why it happened, and to mean by that ‘what caused it’. It seems hardly a step at all, when one 
thinks of it this way, to go from being able to specify philosophically what the features of a 
proper explanation are to being able to specify what causality is. Yet, no sooner than is 
explanation rather than causality established as the governing category, it turns out that ‘to 
explain’ can be (and often is) taken to mean any number of things other than ‘to say what caused 
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it to happen’; for example, to explain may be thought to mean ‘to render intelligible’, ‘to predict’, 
‘to state the function of’, etc.6 Therefore, although each of these alternate explanation‐ forms 
can be fruitfully mined for its own implicit metaphysics, let me make it clear that I want to focus 
on specifically causal explanation.

Arguably, the single most influential model of causal explanation within twentieth century 
analytic philosophy and methodology of social science was Hempel's–still relevant, if no longer 
orthodoxy, after more than half a century. As is well‐known, on the Hempelian covering law 
model, an explanation consists of a true universal statement expressing a law‐like regularity, 
plus a statement of antecedent conditions relative to the phenomenon which is to be explained, 
such that a description of the phenomenon follows deductively from the conjunction of the major 
and the minor premise.7 Thus, to explain q is to show that its following upon p empirically is an 
instance of a law to the effect that where there's a p, there will subsequently be a q.8 As Hempel 
and Oppenheim put it in 1948, ‘the question “Why does the phenomenon happen?” is construed 
as meaning “according to what general laws, and by virtue of what antecedent conditions does 
the phenomenon occur?”9

This is not the place to rehearse decades of commentary on Hempel, or to try to re‐invent any 
philosophical wheels. For the purposes of the present discussion, however, I do want to stress 
that what is striking about explanations that conform the covering law model is that they do not 
actually tell us (p.300) what produces q. Is it p? If so, if it's something about p itself that 
produces q, we would expect an explanation to identify the relevant property of p that brings 
about the effect q. On the covering law model, however, we don't find out anything about p, 
other than that it seems always to be followed by q, and that a particular p occurred prior to a 
particular q. If it's not p, though, that produces q, then what is it? Is it the law itself, the fact that 
‘In all cases, if p, then q’? This seems less plausible. For one thing, it's not clear what it would 
mean, exactly, to say that the fact that the sequence ‘p, q’ is a regular one is itself what 
produces q's; such a claim seems a befuddled, question‐begging response to the causal question. 
But even if we do assume, for the sake of argument, that the regularity of the sequence ‘p, q’ is 
the kind of thing that can produce q's, then–as above–we would expect an explanation in which it 
was the posited cause to consist of an account of the dispositional property borne by the 
sequence. Instead we have only a dogmatic assertion of order.

What, then, does do the producing, on the covering law model of causal explanation? Hempel 
and Oppenheim themselves fudged the issue, writing:

[i]f E describes a particular event, then the antecedent circumstances described in 
sentences C1, C2, … , Ck may be said jointly to ‘cause’ that event, in the sense that there 
are certain empirical regularities, expressed by the laws L1, L2, … , Lr, which imply that 
whenever conditions of the kind indicated by C1, C2, …, Ck occur, an event of the kind 
described in E will take place.10

A passage such as this invites one to think that it's the antecedent conditions that have the 
causal power after all, that it's p. But upon reflection it's not really so. The antecedent conditions 
only do the causing if we put the concept of cause inside quotation marks, and stipulate that 
what we mean by it is ‘be a minor premise in a syllogism’–one in which the regularity in question 
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is assumed as the major premise.11 Clearly, in fact–and un‐problematically in keeping with 
Hume–nothing does any actual causing, from this perspective. As an explanation‐form, the 
covering law model presupposes a regularity‐ based metaphysics, devoid of necessary 
connections grounded in the powers of things.

Strictly speaking, we might want to label the stance Kantian, rather than empiricist. To put it in 
the language of the Prolegomena, the statement of law that forms the major premise represents 
what Kant calls there a ‘judgment of experience’, rather than a ‘judgment of perception’.12 The 
complication, though, is that the Hempelian empiricist, in virtue of his or her empiricism, in fact 
has legitimate recourse only to the latter. One could respond that the contemporary Humean 
has access to genuine statements of law via the device (p.301) of imagined possible worlds–
though unlike a Kantian, the Humean has no theoretical apparatus with which to translate what 
remains for him or her mere logical necessity into something with even the minimal 
metaphysical traction of Kant's transcendental necessity. However, even if one grants this for 
the sake of argument, little is gained ontologically by moving from Hume to Kant. While the 
Kantian picture includes lawful order as a feature of experience, it no more allows for causality 
construed as the display of powers or dispositional properties than does Humeanism. In this 
respect–decisive, for the present discussion–transcendental idealism is simply a very 
sophisticated form of anti‐realism about causality.13

That a Humean metaphysics is built into the covering law model is an obvious if important point, 
given Hempel's attachment to positivism. Less obvious is the way in which, in general, 
advancing anti‐realism about causality via the category of explanation works to place the issue 
outside of the standard parameters of debate in this area of philosophy. At one level, such an 
elision is possible because those who are involved in the discussion can legitimately claim that 
they are not talking about causality. Patently, they're concerned with epistemological and 
methodological problems, not with metaphysical ones. Professional specialization functions to 
normalize this distinction. Solving problems that have to do with explanation is what 
epistemologists, philosophers of science and methodologists do; determining what causality is is 
what metaphysicians do. Paradoxically, though, the elision is also sustained precisely because it 
would seem strange to say, in response to someone who'd just provided a causal account of q, 
‘Yes, I see that you have given us a good explanation, but tell me–what actually caused q?’ Here 
the logic is reversed: the idea is not that explanation and causality are separate concerns, but 
rather that if the explanatory issues have been resolved, so too, thereby, must have been the 
causal ones. The combination of the hypostatized division between epistemology and 
metaphysics, on the one hand, and a causal explanation‐ form that stands in for causal reasoning 
while precluding reference to actual productive causes, on the other–the combination of these 
two factors results in a situation in which an effort to take on anti‐realism about causality shows 
up as a kind of sub‐disciplinary category mistake.

(p.302) If the covering law model remains a paradigmatic form of explanation in positivist 
social science and analytic philosophy and methodology of social science, its hold has loosened. 
The approach currently favoured by quantitative researchers allows for q–to retain the 
metaphor–now conceived as a dependent variable, to be explained via a statistically significant 
correlation with p (the independent variable[s]). Once identified, the correlation between p and q
is deemed causal, if it is, via reference to a theory that accounts for it, which theory need not 
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necessarily include law‐statements. This approach is so widespread that I'll call it simply the 
generic variable analysis model. For qualitative researchers, the case study takes the place of 
variable analysis. Given that the sample size is smaller in a case study (sometimes as small as 1), 
patterns that emerge tend not to be conceived in terms of statistical regularity.14 Here too, 
however, the idea is that identified patterns may be deemed causal only insofar as they can be 
explained.

The standard quantitative and qualitative models differ metaphysically from the covering law 
model in that, in principle at least, the theories that explain the identified correlations or 
patterns may do so via reference to a causal bearer of some kind, i.e. to something that actually 
has the power to bring about an effect. As Doug Porpora has argued, proponents of a powers‐
based metaphysics are perfectly entitled to run regressions, even if many don't.15 My hunch in 
this regard is that, in practice, the majority of those who do invoke real causal powers (a) 
engage in qualitative rather than quantitative research; (b) are trained in sociology and political 
economy rather than in economics or political science (in political science, more will be found in 
comparative politics than in American politics); and (c) are likely to be based outside the US. 
Certainly critical realism, the school most associated with this approach, is well‐established in 
the UK while remaining virtually unknown in the US.

Still, while it is indeed possible to combine standard quantitative and qualitative explanation‐
forms with a commitment to real causal powers, anti‐Humean realism about causality is not, in 
fact, the norm within positivist social science or analytic philosophy or methodology of social 
science. Rather, Hume prevails–albeit implicitly. The question, then, is this: how is Humeanism 
tacitly advanced by the standard quantitative and qualitative approaches–as well as by meta‐
level reflection upon these models by analytic philosophers of social science and mainstream 
methodologists?

Let's begin with variable analysis. Note that one can imagine a version of this model in which 
statistically significant correlations simply stand on (p.303) their own: if p and q are determined 
to be conjoined a statistically significant percentage of the time, then we may conclude that p
‘causes’ q–by which we just mean, precisely, that p and q are highly likely to be conjoined. As 
Gudmund Hernes observes (himself advancing a anti‐realist model of explanation via 
mechanisms, which I shall address below), ‘It is interesting to note that much that goes under 
the name of “causal analysis” stops at [this] point (e.g. when it [has] established a solid 
correlation between some independent and dependent variables).’16 In defining the variable 
analysis approach in the way that I initially did, however, I wanted to acknowledge that many 
quantitative researchers would argue that beginning and ending with regularity does not allow 
one to distinguish between those correlations that are spurious and those that are genuinely 
causal.17 Thus there is the added stipulation that in addition to identifying a correlation between 
dependent and independent variables, one must be able to explain a correlation in order to infer 
that it is indeed causal. The model in question is both widespread and basic enough that where 
one is most likely to find it articulated is in methods textbooks. For example, the author of Social 
Research Methods: Qualitative and Quantitative Approaches writes, ‘Condition 4: Theory–
Finally, even when you have established nonspurious, consistent, strong covariation, as well as a 
logical time sequence for two or more variables, you need a theory that explains the 
association.’18
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The way that Humeanism is advanced through this model is that the causal dynamics identified 
by the explanatory theory will turn out to be themselves conceived along Humean lines. Thus, in 
the quantitative case, the correlation between dependent variable q and independent variable p
will be deemed non‐spurious via a causal theory to the effect that ‘q depends upon p
because of x’, say, but–albeit now at the level of the authorizing theory–the concept of ‘cause’ 
will be once again understood in an anti‐realist manner, in terms of regularity. There is room for 
variation in this regard: to cause may be thought to mean ‘to always come first, under specified 
conditions’ or ‘to be a necessary and sufficient antecedent of’, or ‘to support subjunctive 
conditional statements that are true in all possible worlds’,19 or (for those attracted to (p.304) 
the idea of an infinite regress) ‘to be a statistically significant independent variable, explicable 
via a theory’. But the options are only alternate versions of the principle of constant conjunction: 
unless one is a realist, a Humean conception of causality will be built into the explanatory theory 
that, for the Humean, is itself charged with sustaining causal inference.

The qualitative model is no different in this regard. As Mahoney and Goertz observe, standard 
qualitative explanations more often presuppose the (Mackie‐ style) view that causality should be 
understood in terms of necessary and sufficient conditions, rather than presupposing what they 
call the ‘correlational’ view, associated with quantitative research. But the conceptual logic that 
I have identified above is unchanged by this, as the former is simply a variation on the Humean 
theme. There is nothing to alter the underlying metaphysics–only an ungrounded insistence 
(explicit, in this version) on the empirical necessity of the order that, on the Humean view, just 
is causality. In this respect, the Mackie approach is tantamount to Kant without a transcendental 
argument. The standard qualitative model too, then, builds Humean anti‐ realism about causality 
into the very explanatory theory that is charged with grounding causal inference in relation to 
given findings. In short, in both the quantitative and the qualitative models, metaphysical 
reliance upon Humean constant conjunction is simply pushed out a frame, from the level of data 
to the level of modality‐conferring theory.

What is especially significant about all of this for my own argument is not so much that 
Humeanism continues to be the default ontology of especially American, often positivist, social 
science; but rather that it can be combined with the idea that it is not–i.e. with the idea that 
competing versions of regularity theory somehow differ in a deep way, or that it is possible to 
remain neutral on what causality is, whilst engaging in causal explanation. I don't want to be 
misunderstood, in saying this. The proponent of a standard approach to quantitative or 
qualitative research is indeed entitled to regard him or herself as rejecting a direct, unadorned 
regularity theory of causation, such as is embedded in the covering law model. The variable 
analysis model, as I've been calling it, differs from the Hempelian model not just in that the law 
requirement has been loosened, but also in that the restriction on what counts as a causal 
connection has, at least ostensibly, been tightened: correlations alone, even apparently constant 
ones, do not add up to causation without a supplementary ‘theory’ to provide the missing 
necessity that we associate with causality. And the same is so of the patterns and/or conditions 
of possibility that figure in the qualitative, case‐study version of the model. But, as I've argued, 
Humean anti‐realism about causality carries the day all the same. Regularity is simply relocated, 
as it were, onto the authorizing theory, (p.305) along with a proviso that it may be expressed in 
terms of INUS conditions or the logic of possible worlds, rather than in terms of correlations. At 
the level of data, causality now shows up as ‘when a regular pattern can be explained’, a view no 
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less odd than is that associated with the covering law model. The upshot philosophically is that 
the standard quantitative and qualitative models seem to save the phenomenon of productive 
causation from Hempel, while at the same time implicitly affirming the Humean view that there 
is in reality no such thing.

An implicit commitment to Humeanism combined with pseudo‐argument over causality can be 
seen even more clearly in the literature related to causal pluralism. One line of discussion in this 
area works by reinforcing the notion that alternate versions of Humeanism are importantly 
different metaphysically. Mahoney and Goertz, for example, in their otherwise‐lovely lexicon for 
translating across the quantitative‐qualitative divide, observe that–as previously noted–one camp 
affirms a correlational or probabilistic conception of causality while the other is concerned with 
necessary and sufficient conditions. This is presented as a genuine dichotomy, with no indication 
of its relative superficiality20 (surprising, given that Mahoney elsewhere criticizes those who 
reduce mechanisms to covariance21). Similarly, though the treatment is more nuanced, in 
‘Models of causal inference’ Henry Brady offers a four‐category typology of definitions of 
causality: regularity, coun‐ terfactual, manipulation, mechanisms or capacities.22 Brady 
correctly, in my view, regards Mackie's INUS account as a version of regularity theory. But 
although he acknowledges that Lewis (with whom he associates the counter‐ factual position) 
makes reference to Hume, he presents the device of possible worlds as a significant 
metaphysical alternative to Humeanism.

A second type of intervention, consistent with the first, is to propose that the (supposed) 
differences between competing definitions of causality should be tolerated, set aside or seen to 
be ultimately reconcilable: in the end, everyone should simply continue on with the business of 
doing social science. Mahoney and Goertz, Brady, David Yang (following Brady), John Gerring 
and Jeroen Van Bouwel and Erik Weber all make arguments of this kind.23 To recall my opening 
analogy, this corresponds to that point in the meeting when someone invariably says ‘We've 
talked this to death. Can't we just move on?’ Of course, ‘just moving on’, amounts to whatever 
was being talked about (p.306) being dropped in favour of a return to the status quo–in this 
instance a ubiquitous, implicit attachment to Humeanism. The version of the move that is of 
most interest philosophically, it seems to me, is the pragmatist one. John Gerring, for example, 
defends a probabilistic account of causality–causality is the increased likelihood that a given 
thing will happen–on the grounds that it captures what practicing social scientists all already 
believe, and so is a definition upon which all or most can agree.24 I say that this version is the 
most interesting because it raises to the level of principle the deflection of genuine ontological 
debate.

The most recent major development in the mainstream literature on explanation in social 
science is talk of ‘mechanisms’. Proponents of the mechanisms model contend that a proper 
explanation should tell us how p's causing q actually happens–to carry through with my original 
metaphor. Jon Elster, for example, one of the authors most widely associated with this approach, 
holds that, as explanatory devices, laws alone are too general; the picture that they yield is not 
‘fine‐grained’ enough.25 Daniel Little goes further, suggesting that explanation via reference to 
regularity lacks causal force entirely, is purely descriptive. Neither correlations nor necessary 
and sufficient antecedent conditions themselves tell a causal story, Little claims.26 Certainly, a 
model of causal explanation that requires the researcher to identify actual causal mechanisms 
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would seem to pose a significant alternative both to the deductions of the covering law model 
and the regularity‐plus‐theory of the standard generic variable analysis and case study models. 
But upon closer examination, the mainstream mechanisms model is more of the same, 
metaphysically.

Elster offers this definition of a mechanism: ‘Roughly speaking’, he says in More Nuts and Bolts, 
‘mechanisms are frequently occurring and easily recognizable causal patterns that are triggered 
under generally unknown conditions or with indeterminate consequences. They allow us to 
explain, but not to predict.’27 He points to folk proverbs as proto‐typical statements of 
mechanisms, e.g. ‘absence makes the heart grow fonder’.28 Though not all mechanisms have 
been or can be articulated as proverbs, the reference to proverbs highlights, for Elster, the 
sense in which mechanisms are not as universal as laws, as well as the fact that mechanisms are 
not a basis for prediction. Proverbs, he notes, often come in contradictory pairs: absence makes 
the heart grow fonder, but so too is it that ‘out of sight, out of mind’.29 Moreover, Elster 
emphasizes, mechanisms as an explanatory category allow one to jump in in the middle of a 
story, as it were, since it is part of their definition that their ‘triggering’ conditions are (p.307) 

generally unknown. (A mechanism whose triggering conditions are known, Elster says, may be 
replaced with a statement of law, albeit what he calls a ‘weak’ law.30) Elster makes much of all 
of this, and of the epistemic gain, to use Charles Taylor's term, associated with moving from 
laws to mechanisms. But what does it add up to metaphysically? Humean constant conjunction. 
Local patterns, in the case of mechanisms; universal regularity, in the case of the laws that 
govern triggering conditions.

Elster is what I will call an anti‐realist about mechanisms in that his so‐ called mechanisms are 
in fact regular (if not constant) conjunctions. Another way to be an anti‐realist about 
mechanisms is to regard them as nothing other than theoretical constructs. For example, the 
following are stated definitions of ‘mechanism’ drawn from a number of articles in Peter 
Hedstrom and Richard Swedberg's well‐known edited collection Social Mechanisms: An 
Analytical Approach to Social Theory, to which Elster was also a contributor. Thomas Schelling 
says,

I propose–and I believe I am paraphrasing Hedstrom and Swedberg in their introductory 
essay–that a social mechanism is a plausible hypothesis, or set of hypotheses, that could 
be the explanation of some social phenomenon … Alternately, a social mechanism is an
interpretation … of a model.31

Gudmund Hernes holds that a mechanism is ‘an abstract, dynamic logic by which social 
scientists render understandable the reality they depict’.32 Diego Gambetta adds, ‘I take 
“mechanisms” to be hypothetical causal models that make sense of individual behavior.’33 Arthur 
Stinchcombe references James Coleman, as does Hernes: ‘I have defined mechanisms before … 
as bits of “sometime true theory” (the phrase is due to James S. Coleman 1964, pp. 516–19).’34

While these authors maintain anti‐realism about causality by equating mechanisms with theories 
(which is not to say that ideas cannot have real causal powers, a view defended by some critical 
realists) rather than with regularities, others in the literature sound more like Elster.35
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Daniel Little does, for example–although I suspect that he doesn't quite believe what he says in
Varieties of Social Explanation. Echoing the title of Elster's original work on the topic, Nuts and 
Bolts for the Social Sciences, Little (p.308) starts off his own book talking about nuts and bolts 
literally. Here's the lengthy passage in which he introduces the concept of a causal mechanism:

I contend that the central idea in causal explanation is that of a causal mechanism leading 
from C to E, so let us begin with that notion. A bolt is left loose on an automobile wheel; 
after being driven several hundred miles the wheel works loose and falls off. The cause of 
the accident was the loose bolt, but to establish this finding we must reconstruct the 
events that conveyed the car from its loose‐bolt state to its missing‐wheel state. The 
account might go along these lines: The vibration of the moving wheel caused the loose 
bolt to fall off completely. This left the wheel less securely attached, leading to increased 
vibration. The increased vibration caused the remaining bolts to loosen and detach. Once 
the bolts were completely gone the wheel was released and the accident occurred. Here 
we have a relatively simple causal story that involves a number of steps, and at each step 
our task is to show how the state of the system at that point, in the conditions then 
current, leads to the new state of the system.36

The example also recalls the Hempel and Oppenheim piece discussed above, in which the 
authors contrast a properly scientific explanation with the sense in which ‘it may be explained 
that a car turned over on the road “because” one of its tires blew out while the car was traveling 
at high speed’.37 Unlike Little, Hempel and Oppenheim judge the latter to be unscientific. But 
what does it turn out to mean, for Little, to say that the loose bolt caused the accident? Just this: 
that it figures into a sequence of events characterized by regularity. Thus he can write, ‘a causal 
mechanism, then, is a series of events governed by lawlike regularities that lead from the 
explanans to the explicandum’.38 Or, more formally, defining the what he calls the causal 
mechanism thesis, CM: C is a cause of E = df there is a series of events Ci leading from C to E, 
and the transition from each Ci to Ci+1 is governed by one or more laws Li.39

Once again it's worth pausing to ask what's going on. If the covering law and regularity‐plus‐
explanation models were metaphysically peculiar, the causal mechanisms model has a downright 
Alice in Wonderland quality to it. Here we find not just a simple, unapologetic appeal to constant 
conjunction, or even an effort to cash out causality in epistemic terms, as ‘when a correlation or 
discernable pattern can be explained’, but something stranger yet, viz., so‐ called causal 
mechanisms that are precisely not mechanisms at all, but simply regularities or conceptual 
posits. As with the other models, nothing on the mainstream mechanisms model is in a position 
of actually doing anything, in the sense of actively producing an effect. Thus here too, with an 
extra bit of ironic panache, the explanation‐form functions as a delivery mechanism (no pun 
intended) for a Humean metaphysics. Finally, what makes the whole (p.309) discussion truly 
surreal is that, despite the anti‐realism about causality built into the model, its proponents have 
been criticized for being overly concerned with the causal question of why things happen.40

14.3 From explanation back to causality
I hope to have shown that anti‐realism about causality is the implicit metaphysics of the leading 
models of explanation in analytic philosophy and methodology of social science, and that at the 
same time the form of the mainstream discourse has largely shielded this same metaphysics 
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from contestation. Having brought the default commitment to Humeanism to light, I want to 
consider now what some of the salient issues might be if one were to extend the current non‐
Humean work in metaphysics to this area of philosophy. The latest thinking in metaphysics, as 
noted at the outset, has at its core the idea of powers or dispositional properties–capacities to 
effect change that things, from a dispositional realist perspective, have or bear intrinsically, as 
non‐contingent features of what they are. Causality–again ‐ from this perspective, consists of the 
display or exercise of such powers.41 How a thing behaves relative to other things is thought to 
be a function of its dispositional properties; which dispositional properties a thing has is thought 
to be connected to what it is. Necessity inheres in this, the actual world; it is a matter of 
metaphysics, not logic.

Three issues that would be raised for analytic philosophers of social science were dispositional 
realism to become the default position, and/or that appear in a different light when viewed from 
a non‐Humean perspective are: (a) the question of what kinds of phenomena may be said to be 
bearers of causal powers; (b) the existence of emergent powers; and (c) the principle of 
methodological individualism. I shall address these points in turn. In so doing, I am not 
undertaking to defend the non‐Humean approach, but rather, as I've just said, to illustrate how a 
shift in underlying metaphysics could be expected to alter the terms of the discussion. Before I 
do this, however, let me make two observations. First, it is important to note that dispositional 
realists also employ the term causal mechanism. Those more accustomed to thinking along 
Humean lines should be careful to appreciate that what realists about causality mean by the 
term is entirely different from what anti‐realists mean by it, or don't mean. For Humeans, as 
we've seen, mechanisms are patterns of events or heuristic devices. For dispositional realists, by 
contrast, mechanisms are real processes, involving the exercise of things' causal powers. 
Second, it (p.310) should also be noted that while those on the cutting edge of work on powers 
in metaphysics are only now beginning to turn their attention to social phenomena, the 
contemporary critique of Humeanism was arguably launched by the publication in 1975 of
Causal Powers, by Harré and Madden and A Realist Theory of Science (followed quickly by The 
Possibility of Naturalism), by Roy Bhaskar, thinkers who were quick to apply the metaphysics in 
question to the philosophy of social science. Bhaskar's work, in particular, spawned the school of 
thought known as critical realism, within which there is now a 30 year history of scholarly 
debate from a non‐Humean, powers‐based perspective.42 This literature is an important resource 
upon which analytic philosophers newly concerned with powers and social phenomena can and 
should draw.

Once one is thinking of causality in terms of powers rather than in terms of regularity, a 
question that comes immediately to the fore is ‘What kinds of things have causal powers?’ With 
respect to the social sciences, the contentious issue will be whether or not it is only individual 
persons who do. What about sociological ‘things’, such as collectivities, institutions, structures, 
etc.? Might they be bearers of causal powers as well? Needless to say, this is an issue that has 
been much discussed by longer‐standing proponents of a powers‐ based approach, as well as by 
structuralists of various persuasion. At the moment, though, I am less interested in the answer 
than I am in the question. Specifically, notice straight away that once one has set aside a 
commitment to Humeanism, one may no longer understand oneself to have resolved the 
ontological concern by turning it into an epistemological one. In this case, for instance, one will 
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not be able to ask (instead) if statements of regularity concerning institutions or structures can 
themselves be explained, or if the existence of institutions or structures appears to be a 
sufficient antecedent condition of certain sorts of outcome. Rather, one will be forced to engage 
with the question of whether or not institutions and/or structures can do things, in the way(s) in 
which, on the non‐Humean view, things that are causes can. Again: not, e.g. ‘Can they be said to 
come first in a non‐spurious correlation, or to be a necessary and/or sufficient condition of 
something?’ but rather, ‘Are they the kind of object that can produce an effect?’

‘Do sociological objects have causal powers, and if so in what sense?’ is not a question that a 
Humean philosopher of social science need ask. It may be tempting to think that this is once 
again a matter of specialization: the question is one for a metaphysician, not for a philosopher of 
social science. And there is, as before, some truth to this. But the philosophical reason why the 
issue is not on the table (as opposed to the matter of how the areas of (p.311) specialization fall 
out within the profession)–the philosophical reason is that Humeans don't believe that anything
can be said to have productive causal powers. Were the dominant metaphysics one that did 
admit of powers–or if it comes to be so once again–there is every reason to think that properly 
conceptualizing the powers of sociological entities would be a central task of philosophers of 
social science.

From a powers‐perspective, the question of whether or not sociological phenomena can be 
bearers of causal powers leads to the closely related issue of emergence. Are there such things 
as emergent powers, powers that social objects have that individuals or aggregates of 
individuals do not have? This question is very close to the first one, but whereas before we 
wanted to know if social objects are the type of entity that can produce effects, here we want to 
know something about powers themselves–specifically, whether or not those that exist at one 
level must be equivalent, ontologically, to those that exist at a ‘lower’ level.

Here too, I want to focus on the question rather than on the answer. The point is this: as with 
the question of whether or not sociological entities may be causal bearers, the question of 
whether or not there are emergent properties is normally reformulated by Humeans such that it 
becomes an epistemological rather than metaphysical question. Thus, in philosophy of mind as 
well as in philosophy of social science, the question of emergent properties is routinely posed 
(and pursued) not as ‘Do properties come into being at one level that do not exist at the lower 
level?’ but instead as ‘Must our explanations at the higher level include concepts that are not 
reducible to those that are relevant at the lower level?’ One might think that a positive answer 
to the latter question would suggest a positive answer to the former, such that the issue is 
merely a matter of having cast an ontological commitment to emergent properties in epistemic 
terms. But this is not how it goes. Standard non‐reductive physicalism, for instance, is precisely 
the view that while the answer to the epistemological question is yes, the answer to the 
ontological one is no. Mental properties can't be explained without reference to higherlevel 
concepts, but it is only physical properties that may be said to exist.

A particularly striking version of the transposition of ontology into episte‐ mology in relation to 
emergent properties is in fact to be found in Hempel and Oppenheim's 1948 article cited above. 
There, Hempel and Oppenheim first define emergent properties in epistemic terms, as 
properties that cannot be ‘inferred’ from ‘information’ about ‘constituent parts’.43 Next they 
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assert that such ‘mysterious’ unexplainables must not be thought to be real. Supposedly 
emergent properties are, using my terminology rather than theirs, simply reifications–illusory 
phenomena produced by sloppy thinking about the contingent character of prediction vis‐à‐vis 
available theoretical resources.

(p.312) There are no ‘non‐reducible’ properties, they maintain; there are only properties the 
existence and nature of which we are not yet able to predict from existing micro‐level theory. 
And non‐controversially, such limitations present no special cause for concern. ‘The 
observations presented in the preceding discussion’, they conclude,

strip the idea of emergence of these unfounded connotations: emergence of a 
characteristic is not an ontological trait inherent in some phenomena; rather, it is 
indicative of the scope of our knowledge at a given time; thus it has no absolute, but a 
relative character; and what is emergent with respect to the theories available today may 
lose its emergent status tomorrow.44

Once more, as with the earlier treatment of causality, what we find is an ontological position–viz. 
the denial of emergent properties–being advanced via an epistemic argument–viz. that the 
partiality of our current knowledge should not be thought to be a cause for undue concern. A
non‐Humean approach does not commit one to affirming the existence of emergent properties. It 
does, however, make the reminder that we don't yet know all there is to be known about the 
world seem a less than compelling reason to reject them. As Timothy O'Connor has observed, 
‘I'm inclined to think that any tendency to suppose that the emergence of macrodeterminative 
properties in material substances is strictly inconceivable must be diagnosed as an instance of 
the withering effect on one's imagination that results from long‐standing captivation by a certain 
picture of the world.’45

Finally, I would like to say a word about the principle of methodological individualism. The first 
thing to note is that, as with the debate over emergent properties, the debate over 
methodological individualism, such as it is, is the form that the relevant would‐be ontological 
debate takes within the Humean context. Rather than asking if holistic, or macro‐level 
sociological objects exist, the question is posed methodologically: ‘Must the unit of analysis in 
social scientific explanations be the individual?’ As it happens, more often than not the answer 
to the reformulated question is yes; adequate explanations in the social sciences must indeed be 
at the micro‐level. Elster, for example, simply treats this as a given. ‘In principle’, he writes,

explanations in the social sciences should refer only to individuals and their actions. In 
practice, social scientists often refer to supraindividual entities such as families, firms, or 
nations, either as a harmless shorthand or as a second‐best approach forced upon them by 
lack of data or of fine‐grained theories.46

(p.313) Daniel Little's epistemic response is more refined than Elster's is here, but the 
underlying ontology is the same.

It's worth looking more closely at Little's version of the transposition that I've identified. Little 
distinguishes between three theses which, he argues, jointly constitute the principle of 
methodological individualism. The first he calls the ontological thesis: ‘all social entities are 
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reducible without remainder to logical compounds of individuals'.47 Second is the meaning 
thesis, the claim that concepts that refer to social entities ‘must be definable in terms of 
concepts that refer only to individuals and their relations and behavior’.48 Third is the 
explanation thesis: ‘all social facts and regularities must ultimately be explicable in terms of 
facts about individuals’.49

Little says that the ontological thesis is ‘manifestly true’, on the grounds that social objects do 
not exist independently of individuals.50 Even Durkheim, he claims, argued only for non‐
reducible norms and meanings, not for nonreducible entities, e.g. institutions, societies.51 (Or, in 
Durkheim's case, a collective consciousness, the existence of which Durkheim clearly did
defend.)52 The meaning thesis, by contrast, Little regards as false. Although nonreducible social 
objects do not in his view exist (as per the ontological thesis), we cannot do without concepts 
that refer to them. And these concepts are not equivalent in meaning to concepts referring to 
individuals. Note that the implications of accepting the ontological thesis while rejecting the 
meaning thesis are ignored. The problem that's glossed over is this: if the ontolog‐ ical thesis is 
true, then the objects to which higher‐level concepts refer do not actually exist. But if the 
objects to which such concepts refer to do not exist, then it is not at all clear why it should be 
necessary, as Little argues it is, to retain said concepts in order to make sense of non‐
pathological, everyday individual behaviour–behaviour that (the love of literature aside) is 
presumably not necessarily and systematically oriented toward imaginary, non‐existent objects. 
Finally, on the explanation thesis, Little equivocates. On the one hand, he argues that there 
should be at least type‐identity between social and individual‐level explanations; on the other 
hand, he concludes that as long as one can identify empirically verifiable regularities, one has a 
viable explanation–at whatever level.53 I have set out Little's position in some detail because, 
notwithstanding the obvious care he has taken not to prejudge (p.314) the issue, it provides 
another example of the way in which (a) metaphysical commitments are transposed, in the 
Humean literature, into epistemic ones (e.g. in this case, social entities deemed not to exist 
reappear as concepts necessary for the explanation of everyday actions of individuals); and (b) 
the prevailing metaphysical position is thereby affirmed. In this case, the ontology that is 
advanced involves atomism as well as anti‐realism about causality.

I do not mean to suggest that dispositional realism entails commitment to holism, either 
ontological or methodological, any more than it entails a commitment to emergent properties. 
With respect to holism, the deciding ontolog‐ ical consideration for the realist about causality 
may well be precisely whether or not a purported object can be shown to exhibit non‐reducible 
causal powers. If there is evidence for the existence of such powers in a given case, then there 
will be an argument to be made for the existence of the entity that bears them. And if an entity 
exists and has causal powers, then there will be reason to think that it ought to be allowed to 
figure in explanations of effects of the type that it has the power to produce. From a 
dispositional realist perspective, the main point is that none of this should be settled 
dogmatically or via appeal to epistemic rather than ontological argument. However, it does seem 
likely that insofar as the hold of methodological individualism is part and parcel with that of 
Humeanism, its soundness may become less self‐evident as the challenges to the metaphysics 
continue to mount. More broadly, there is reason to hope that these same challenges will also 
call into question the routine translation of ontological questions into epistemological ones. After 
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all, the phenomenalist notion that objects are, in the end, nothing other than the experiences of 
subjects, is itself the metaphysical end‐game of empiricism.

14.4 A word on meta‐theory
By way of conclusion, let me emphasize that my primary aim in the foregoing analysis has not 
been to offer a positive argument for realism about causality. Nor have I sought to flesh out a 
powers‐based model of social scientific inquiry. In both cases, I have merely flagged relevant 
literature. The argument that I have been concerned to make is, instead, meta‐theoretical. It 
may be worth asking what the importance is, of such a contribution. Recalling Kuhn's various 
uses of the term paradigm–from an over‐arching theoretical framework to a ‘paradigmatic’ 
puzzle or example–one response might be to say that the significance of meta‐theoretical 
analysis is that it advances philosophical reflection in ways that, by loose analogy to what Kuhn 
called normal science, ‘normal philosophy’ often does not. Crucially, meta‐theoretical discussion 
renders explicit the foundational assumptions of a prevailing paradigm. On Kuhn's model, those 
assumptions are eventually called into question in the course of normal science, via the 
persistence of anomolies–or, in philosophy, irresolvable problems or worries. We might say that 
meta‐theoretical analysis, (p.315) by contrast, allows one to engage in revolutionary science in 
an on‐going way, even if only to remind oneself that the dominant scheme, viable or not, has its 
own internal logic. As a matter of intellectual habit, this more comprehensive style of thinking is 
arguably not as widely cultivated in analytic philosophy as it might be; more common is the idea 
that one is confronted with discrete problems, which one solves as best one can, with the 
requirement only that the totality of one's various theoretical commitments not be self‐
contradictory. Meta‐theoretical argument highlights that there is a there, there, with respect to 
the prevailing approach, which in turn can promote a kind of conceptual bilingualism, or even 
multilingualism. Kuhn may have been right about the limits of inter‐paradigmatic debate. But he 
may not have been, and/or philosophy may be different from natural science in this regard. 
Whatever else is so, fluency across paradigms cannot but facilitate serious and productive 
philosophical exchange. In the present case, my hope is that by delineating the ways in which 
the Humean view of causality has been tacitly fortified within analytic philosophy and 
methodology of social science, I will have helped to clear the ground for a meaningful debate on 
the topic of causal powers to be had in this area.
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that statements about being can always be transposed into statements about our knowledge of 
being’; and passim.

(3) This is a point well explored by Charles Taylor. See, e.g. ‘Value neutrality in political science’
and ‘Interpretations and the sciences of man’, reprinted in Taylor, Philosophy and the Human 
Sciences: Philosophical Papers 2(Cambridge: Cambridge University Press, 1985).

(4) Kant is an anti‐realist about causality on this definition. There are necessary connections, for 
Kant, but the necessity in question derives from the synthetic operation of reason, not from the 
objects of empirical experience.

(5) Beginning with Roy Bhaskar, The Possibility of Naturalism: A Philosophical Critique of the 
Contemporary Human Sciences, originally published in 1979. Other critics of Humean methods 
in social science who were themselves influenced by Aristotle and/or by Marx–e.g. Adorno, 
Horkheimer, Marcuse, Taylor, MacIntyre–either were not realists about causality, or were so 
only ambiguously.

(6) I am reminded of this by Julian Reiss, ‘Do we need mechanisms in the social sciences?’
Philosophy of the Social Sciences, Volume 37, Number 2, June 2007.
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Science, Volume 15, Number 2, April 1948.
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propositions. I use them as a literary trope, to underscore Hempel and Oppenheim's own effort 
to reduce metaphysical necessity to logical necessity. Nor should it matter for the present 
discussion that in some places the metaphor stands in for kinds of event, in others for particular 
events. Thanks to Irem Kurtsal Steen for raising these issues.

(9) Ibid., p. 136.

(10) Ibid., p. 139.

(11) Again, I put it this way to make the point; I do not mean myself to conflate events and 
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54–60.

(13) Cf. Bhaskar, A Realist Theory of Science; Theodor Adorno (trans. Rodney Livingstone)
Kant's Critique of Pure Reason (Stanford: Stanford University Press, 2001), esp. Lecture 13;
Ruth Groff, Critical Realism, Post‐positivism and the Possibility of Knowledge (London:Routledge 
2004), chapter 2. Kant argues in the Critique of Pure Reason that causality is a category of the 
understanding. The synthetic operation of reason supplies the transcendental fact of causal 
order; we can therefore be certain that our experience of phenomenal objects will always be so 
ordered. If one is persuaded by the argument, it shores up the Humean account 



Getting past Hume in the philosophy of social science

Page 19 of 21

epistemologically. But it doesn't change the ontology, as evidenced by Kant's insistence that he 
is a transcendental idealist and an empirical realist, but not a transcendental realist. Bhaskar in 
his early work referred to his own realist, powers‐based view of causality as transcendental 
realism, which he contrasted with both empirical realism and transcendental idealism.

(14) See James Mahoney and Gary Goertz, ‘A tale of two cultures: Contrasting quantitative and 
qualitative research,’ Political Analysis (2006), 14: 227–249, for a useful comparison of the 
structure of quantitative and qualitative research.

(15) Douglas V. Porpora, ‘Do realists run regressions?’ in Jose Lopez and Garry Potter (eds.),
After Postmodernism: An Introduction to Critical Realism (New York: The Athlone Press, 2001).

(16) Gudmund Hernes, ‘Real virtuality,’ in Peter Hedstrom and Richard Swedberg (eds.), Social 
Mechanisms: An Analytical Approach to Social Theory (Cambridge: Cambridge University Press, 
1998), p. 76, n.1.

(17) Of course, the very recognition of such a distinction is already a contradiction, for the 
Humean, who denies that causality involves metaphysically necessary connections.

(18) H. Russell Bernard, Social Research Methods: Qualitative and Quantitative Approaches
(Thousand Oaks, CA: Sage Publications, 2000), p. 55. Russell uses the term ‘mechanism’ and the 
term ‘theory’ interchangeably, but it is clear that correlation must be accompanied by an 
explanation, even if it is unclear what the ontological status of a mechanism is, for Bernard.

(19) Inclusion of the Lewisian option is informed by Henry E. Brady, ‘Models of causal inference: 
Going beyond the Neyman–Rubin–Holland theory,’ conference paper, Annual Meeting of the 
Political Methodology Group (University of Washington, Seattle, WA, July 2002), as paraphrased 
by David Dahua Yang, ‘Empirical social inquiry and models of causal inference,’ The New 
England Journal of Political Science, (2) 1: 51–88, 2006, and as expressed in the original.

(20) Mahoney and Goertz, op. cit.

(21) James Mahoney, ‘Beyond correlational analysis: Recent innovations in theory and method,’
Sociological Forum, 2001, Vol. 16, No. 3.

(22) Brady, op. cit.

(23) Mahoney and Goertz, op. cit.; Brady, Yang op. cit; John Gerring, ‘Causation: A unified 
framework for the social sciences,’ Journal of Theoretical Politics, 2005, 17(2): 163–198; Jeroen 
Van Bouwel and Erik Weber, ‘De‐ontologizing the debate on social explanations: A pragmatic 
approach based on epistemic interests,’ Human Studies, 2008, 31: 423–442.

(24) Gerring, op. cit.

(25) Jon Elster, Explaining Social Behavior: More Nuts and Bolts for the Social Sciences (New 
York: Cambridge University Press, 2007), pp. 24, 33.

(26) Daniel Little, Varieties of Social Explanation (Boulder: Westview Press, 1991), chapter 2.



Getting past Hume in the philosophy of social science

Page 20 of 21

(27) Elster, op. cit., p. 36.

(28) Ibid., p. 37.

(29) Ibid., pp. 37–38.

(30) Ibid., p. 44.

(31) Thomas C. Schelling, ‘Social mechanisms and social dynamics,’ in Hedstrom and Swedberg 
(eds.), op. cit., p. 33.

(32) Hernes, op. cit., p. 74.

(33) Diego Gambetta, ‘Concatenations of mechanisms,’ in Hedstrom and Swedberg, (eds.) op. 
cit., p. 102.

(34) Arthur L. Stinchcombe, ‘Monopolistic competition as a mechanism: Corporations, 
universities, and nation‐states in competitive fields,’ in Hedstrom and Swedberg (eds.), op. cit., 
p. 267.

(35) For excellent overviews of the treatment of mechanisms in the analytic literature, see
Renate Mayntz, ‘Mechanisms in the analysis of social macro‐phenomena,’ Philosophy of the 
Social Sciences, 2004, Vol. 34, No. 2: 237–259; and Mahoney, ‘Beyond correlational analysis: 
Recent innovations in theory and method,’ op. cit.

(36) Little, op. cit., p. 15.

(37) Hempel and Oppenheim, op. cit., pp. 148–149.

(38) Little, op. cit., p. 15.

(39) Ibid., p. 14.

(40) Reiss, op. cit.

(41) For recent statements of the position see, e.g. Brian Ellis, Scientific Essentialism
(Cambridge: Cambridge University Press, 2001); Stephen Mumford, Dispositions (Oxford: Oxford 
University Press, 2003); Anjan Chakravartty, A Metaphysics for Scientific Realism: Knowing the 
Unobservable (Cambridge: Cambridge University Press, 2007).

(42) In addition to the Journal of Critical Realism, see the Journal for the Theory of Social 
Behavior. Routledge publishes critical realist titles under two different series. Representative 
authors of well‐known works on powers‐based philosophy of social science include: Roy Bhaskar, 
Margaret Archer, Andrew Sayer, Doug Porpora, Tony Lawson, Steve Fleetwood, amongst others. 
Much Marxist philosophy of social science is also implicitly powers‐based.

(43) Hempel and Oppenheim, op. cit. pp. 148–150.



Getting past Hume in the philosophy of social science

Page 21 of 21

(44) Ibid., pp. 150–151.

(45) Timothy O'Connor, ‘Agent causation,’ in Gary Wilson (ed.), Free Will, Second Edition (New 
York: Oxford University Press, 2003), p. 263.

(46) Elster, op. cit., p. 13.

(47) Little, op. cit., 183.

(48) Ibid., p. 184.

(49) Ibid., p. 186.

(50) Ibid., p. 184.

(51) Ibid.

(52) See, especially, The Division of Labor in Society, in addition to other works; Durkheim's 
commitment to the existence of non‐reducible sociological entities is beyond question it seems to 
me.

(53) Little, op. cit., pp. 186–189.



Causal explanation: Recursive decompositions and mechanisms

Page 1 of 20

Causality in the Sciences
Phyllis McKay Illari, Federica Russo, and Jon Williamson

Print publication date: 2011
Print ISBN-13: 9780199574131
Published to Oxford Scholarship Online: September 2011
DOI: 10.1093/acprof:oso/9780199574131.001.0001

Causal explanation: Recursive decompositions and mechanisms

Michel Mouchart
Federica Russo

DOI:10.1093/acprof:oso/9780199574131.003.0015

Abstract and Keywords
This chapter deals with causal explanation in quantitative‐oriented social sciences. In the 
framework of statistical modelling, we first develop a formal structural modelling approach 
which is meant to shape causal explanation. Recursive decomposition and exogeneity are given 
a major role for explaining social phenomena. Then, based on the main features of structural 
models, the recursive decomposition is interpreted as a mechanism and exogenous variables as 
causal factors. Arguments from statistical methodology are first offered and then submitted to 
critical evaluation.

Keywords:   structural modelling, mechanism, recursive decomposition, exogeneity

Abstract

This chapter deals with causal explanation in quantitative‐oriented social sciences. In the 
framework of statistical modelling, we first develop a formal structural modelling 
approach which is meant to shape causal explanation. Recursive decomposition and 
exogeneity are given a major role for explaining social phenomena. Then, based on the 
main features of structural models, the recursive decomposition is interpreted as a 
mechanism and exogenous variables as causal factors. Arguments from statistical 
methodology are first offered and then submitted to critical evaluation.

University Press Scholarship Online

Oxford Scholarship Online



Causal explanation: Recursive decompositions and mechanisms

Page 2 of 20

15.1 The quest for causal explanations in the social sciences
Emile Durkheim (1960) had the ambitious goal to explain suicide as a social phenomenon. 
Accordingly, in his masterpiece Le Suicide, he looked for the social causes of suicide. 
Durkheim's interest in the determinants of suicide was motivated by the observation of a great 
variability in the suicide rate. This variability appeared to be quite irrelevant across time within 
the same population, but was instead considerable across different societies. By examining how 
the suicide ratio varied across societies, Durkheim aimed to detect the social factors this 
variation depended on and thus to explain why, for instance, societies with a more integrated 
family structure had lower suicide rates. More recently, the demographer John Caldwell 
proposed a model to explain child survival in developing countries. Notably, Caldwell (1979) 
investigated maternal education as a major causal factor. He observed that maternal education 
alone could account for more variance than all other relevant socio‐economic factors altogether 
(e.g. mother's place of residence, husband's occupation and education, type of marriage, etc.), 
and therefore this factor deserved special attention. López‐Ríos et al. (1992), to give another 
example, were interested in explaining a significant lower mortality rate in Spain in the 1980s 
after socio‐economic policies in the 1970s were carried out. In particular, they were (p.318) 

interested in assessing the causal effect of factors such as economic and social development on 
the one hand, and of the use of sanitary infrastructure on the other hand.

What these examples from various areas in the social sciences have in common is that they all 
seek to provide an explanation of a phenomenon of interest ‐ more specifically, they seek to 
provide a causal explanation. A causal explanation is provided, intuitively, once the factors or 
causes that bring about the phenomenon are identified. This, however, is still too loose a 
characterization. In this chapter we investigate how causal explanations are built in the social 
sciences.

We proceed as follows. Section 15.2 presents the structure of the explanation that a statistician 
provides for a phenomenon of interest. Three aspects are highlighted. First, an explanation is 
incomplete, or partial, because it is based on a stochastic representation of the world where the 
stochastic component stands for what is not explained. Second, an explanation is given by 
decomposing a complex causal mechanism into a sequence of ‘simpler’ explanatory mechanisms. 
Third, the explanation is causal, that is we identify cause‐effect relations through the condition 
of exogeneity. Section 15.3 then addresses the question of the interpretation of the recursive 
decomposition and of why it carries explanatory power. We argue that a recursive 
decomposition is to be interpreted as a causal mechanism and that what allows the causal 
interpretation is exogeneity. The goal is not to provide (yet another) definition of the concept of 
mechanism, but rather to clarify what it is meant when social scientists interpret a component, 
or factor, of a recursive decomposition as a ‘mechanism’.

15.2 The structure of the statistician's explanation
15.2.1 Explanation in a stochastic environment
To explain a social phenomenon, the statistician is usually provided with a data set containing 
observations coming, for instance, from a survey or a census. The statistician's explanation of a 
phenomenon related to a data set is based on a statistical model, which is basically a set of 
probability distributions on an observation space, namely:
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(15.1)
where S is the sample, or observation, space and for each θ ∈ Θ, P θ is a probability distribution 
on S. Thus, θ characterizes a particular distribution P θ and is called a parameter. The 
statistician analyses data as if it had been generated by one of these distributions; at this stage, 
the distributions in (15.1) have only a representational role without structural or causal 
implications ‐ a topic to be considered later in this section. Thus a statistical model can (p.319) 

be thought of as a set of plausible hypotheses to uncover the so‐called data generating process.

Earlier papers (Mouchart et al. 2009; Russo et al. 2008) noticed that a statistical model can be 
seen as a stochastic representation of the phenomenon of interest. This is due to partial and 
incomplete knowledge of a phenomenon that leads the statistician to model the phenomenon 
stochastically. This stochastic representation is the cornerstone of the statistician's explanation: 
the interpretation of parameter θ provides the explanation of the phenomenon whereas the 
stochastic component of the model stands for the unexplained part of the phenomenon. Here, 
‘hazard’ (stochastic, random) is used as opposed to ‘explainable’. We use it as an epistemic 
concept independent of the metaphysical issue of whether the real world is deterministic or 
indeterministic.

Let us illustrate with a very simple example. Suppose we weigh an object n times with imperfect 
scales. We accordingly observe X = (X 1, X 2,…, X n). A simple statistical model might be X i ~ ind.
N(μ, σ 2), i.e. each X i is assumed to be identically independently distributed (iid) as a normal 
distribution with mean μ and variance σ 2. The statistician's explanation then runs as follows: 
because of the imperfection of the scales, the measurements X i are interpreted as a realization 
of a probability distribution and by interpreting the parameter θ = (μ, σ 2) ∈ ℝ × ℝ+ the 
statistician explains that each measurement X i is relative to a same ‘true’ weight μ and that the 
error distribution is characterized by a variance σ 2. The statistician is able to account for the 
fact that the measurements X i tend to cluster around the same value μ but not for the fact that 
the measurements X i are at a distance from that value. In this sense the statistician's 
explanation is partial.

15.2.2 The multivariate aspect of social phenomena
In social contexts, interest is usually given to the multivariate aspect of a phenomenon of 
interest. The statistician who analyses a social phenomenon considers a vector of variables 
selected on the basis of background knowledge and of the available data; this is far from being 
an easy task but a thorough discussion of the criteria to select the variables of interest falls 
beyond the scope of this chapter. This multivariate aspect makes the task of the statistician's 
explanation far more complex. In the sequel, we develop three steps that should be 
distinguished: (i) marginal‐conditional decomposition, (ii) structural modelling, and (iii) 
recursive decomposition.

Marginal‐conditional decomposition
Explaining a complex multivariate phenomenon is typically operated by decomposing it into a 
sequence of simpler ‘pieces’. The natural decomposition of a multivariate probability distribution 
is obtained by a marginal‐conditional decomposition, i.e. in the bivariate case X = (Y, Z): (p.
320)
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(15.2)
Here the bivariate process generating X = (Y, Z) is decomposed into two univariate processes: a 
marginal process generating Z and a conditional process generating Y given Z (‘generating’ in 
the sense suggested in Section 15.2.1). To illustrate, consider the following example. Suppose 
that the statistician observes data on the price, Y, and the quantity, Z, of fish transacted upon 
the fishermen's return from the sea. A simple model might decompose this bivariate process, 
generating X = (Y, Z), into a marginal process generating Z and deemed to represent the good or 
bad fortune of the fishing activity, and a conditional process, generating (Y ǀ Z), representing the 
operation of the auctioning process. Let us now assume, for the sake of simplicity, that each 
distribution is normal. Thus the left‐hand side of (15.2) would be written:

(15.3)
whereas the right‐hand side would be written

(15.4)
Although models (15.3) and (15.4) are mathematically equivalent, model (15.4) is explanatory 
because the parameters

and

characterize the marginal process representing the fishing activity and the auctioning process, 
respectively, at variance from the parameters of (15.3) that only characterize the random 
variability of the data. The statistician's explanation essentially lies in the interpretation of the 
parameters that characterize the distributions, e.g. if β 〈 0, the conditional process generating 
(YǀZ) explains that, when Z increases, Y tends to decrease on conditional average. Similarly, the 
converse decomposition pX = py pzǀy would not provide a convincing explanation from an 
economic point of view.

Structural modelling
Alone, the marginal‐conditional decomposition is not enough for explanation because, in the 
example of the bivariate case, it is mathematically arbitrary to choose pX = pZ pyǀz or pX = py
pzǀy. Thus, an explanation also requires the statistical model to uncover the structure of the data 
generating process. As long as such a structure is latent, i.e. not directly observable, the 
statistician will make systematic use of two ingredients: background knowledge and invariance.

Background knowledge

Broadly speaking, background knowledge, or field knowledge, stands for the whole body of 
knowledge we have of a given field, and may incorporate different aspects such as: knowledge of 
the socio‐demo‐political context, (p.321) knowledge of the same/similar phenomena relative to 
the same population at different times or to other populations, results of analyses performed 
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with different methods, knowledge of related fields such as biomedicine in epidemiology, etc. 
Sometimes such knowledge may be gathered into ‘well established’ theories. In the fish market 
example given above, background knowledge supports the decomposition px = pz pyǀz
rather than px = py pzǀy because the first one allows us to associate a contextually interpretable 
univariate subprocess to each component of the relevant decomposition: this was precisely the 
rationale behind (15.4).

Invariance

We mentioned earlier that an observation of the data set is interpreted as a realization of one of 
the distributions constituting the statistical model. However, a model that specifies a different 
process for each observation of the data set would be rather useless for explanation as it would 
not be structural. Thus a major aim of structural modelling is to distinguish incidental from 
structural components of a data generating process. This means that a structural model should 
display an adequate level of stability or invariance under a suitable class of modifications of the 
environment and/or of interventions. Invariance is a condition of stability of the marginal‐
conditional structure of the model and of the characteristics (parameters) of the distribution; 
parameter stability is indeed an important object of statistical testing. Moreover, the stability of 
the marginal‐conditional decomposition may also be tested by evaluating the parametric stability 
of alternative decompositions. The specification of the invariance property of a structural model 
is also a basic ingredient of the definition of the population of interest or the population of 
reference. In the fish market example, it would be important to test whether the auctioning 
process has the same characteristics in different seasons and/or different harbours. It should be 
stressed that invariance and stability properties are requirements complementary to congruence 
with background knowledge, that does not necessarily imply stability or invariance. For this 
reason invariance and stability are the object of (statistical) testing. In particular, intervention 
may raise difficulties in the stability of the system, a problem already pointed out by Lucas 
(1976).

Recursive decomposition

Let us now consider the general case where a vector of variables X is decomposed into g 
components, namely X = (X 1, X 2,… , X g) (with g typically much larger than 2), and suppose that 
the components of X have been ordered in such a way that in the complete marginal‐conditional 
decomposition

(15.5)
(p.322) each component of the right‐hand side may be considered, in a first step, as a 
structural component with mutually independent parameters, i.e. (in a sampling theory 
framework):

(15.6)



Causal explanation: Recursive decompositions and mechanisms

Page 6 of 20

Under property (15.6) the conditioning variables X 1,…, X j‐1 of each factor of (15.5), px jǀx 1,x 2,‐,x

j−1, are called exogenous for the parameter of the corresponding conditional distribution, θ jǀ1,−

…,j−1. That is to say, the inference on the parameter θjǀ1,….,j−1 of the conditional distribution 
should not depend on the specification of the data generating process of the conditioning 
variables X 1, X 2, …, X j−1. Therefore, exogeneity is a condition that allows the separation of 
inferences, notably of the inferences on θjǀ1,… j−1 characterizing the conditional distribution and 
on θ 1,… j−1 characterizing the marginal distribution of the conditioning variables. More 
explicitly, in a likelihood approach, the separation of inference means that any inference 
concerning (any function of) θ1,…j−;1 would be based on a likelihood function derived from the 
marginal distributions px 1,x 2,‐,x j−1, independently of the specification of the conditional 
distribution px jǀx 1,x 2,…,x 1−1, whereas any inference concerning (any function of) θjǀ1… j−1 
would be based on a likelihood function derived from the conditional distributions px jǀx 1,x 2,‐,x x

−1 independently of the specification of the marginal distribution px jǀx 1,x 2,…,x 1−1. It follows 
that such a separation of inference takes advantage of more parsimonius modelling and 
eventually enjoys more robust properties. Later, in Section 15.3.3, we stress other important 
features of exogeneity.

Remark

The concept of exogeneity has a long history in econometrics. The works of the Cowles 
Commission in the late 1940s and the early 1950s have been path‐ breaking and are still 
influential nowadays; in particular, Koopmans (1950) puts emphasis on exogeneity in dynamic 
models. Barndorff‐Nielsen (1978) is significant in the development of conditions for separation 
of inference. Florens and Mouchart (1980, 1985) and Florens et al. (1980) bridge the work of 
Koopmans (1950) and of Barndorff‐Nielsen (1978), and provide a coherent account of exogeneity 
integrating the separation of inference in dynamic and non‐dynamic models. Engle et al. (1983) 
present a list of different concepts of the econometric literature and display their connections 
with exogeneity through the introduction of supplementary conditions. Florens and Mouchart 
(1985) not only provide a basic concept of exogeneity, but also make the concept explicit in 
different levels of model specification, namely, global, initial, and sequential, before combining 
those concepts of exogeneity with non‐causality. This analysis is further developed by Florens et 
al. (1993). ∎

(p.323) Equations (15.5) and (15.6) characterize a completely recursive system. A recursive 
decomposition is not complete when, in equation (15.5), some components are random vectors 
rather than random variables. This typically happens when we cannot order some of the 
variables due to a lack of knowledge about their causal or temporal priority. In such a case, in 
the factorization (15.5) there is (at least) one factor which is a distribution of a vector of 
variables, say X j, conditional on the antecedent ones (X 1, … , X j−1). In other words, the 
conditional process generating (X j ǀ X 1, … , X j−1) is not decomposed into a sequence of 
univariate conditional processes, hence the recursive decomposition is not complete. This 
situation is met under the heading of ‘simultaneity’ in the econometric literature.

The case of simultaneity is an interesting and quite disputed issue. A classroom example is 
provided by a simple two‐equation market model: supply and demand. When it is known, and 
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specified, that one side is price‐setter and the other side is price‐taker, a complete recursive 
decomposition may be operated and the econometric model completely explains the mechanism 
generating the observed price and quantity and the market equilibrium process is completely 
understood. However, when a standard competitive approach is adopted, the market‐clearing 
process becomes a black box generating the equilibrium price and quantity, and the 
econometric explanation has a different nature. Indeed, the supply and demand equation now 
represents notional concepts, rather than statistical entities such as marginal and conditional 
distributions. These concepts are of the same nature as the counterfactuals used in a large 
portion of the literature on causation. In such a case the identification of the parameters 
requires identifying restrictions that are not empirically testable, but only supported by 
contextual knowledge and/or economic theory. In other words, the explanation provided by the 
econometric model is of a speculative nature and the recursive decomposition among the 
endogenous variables is not operating.

Let us emphasize that a recursive decomposition is essentially an ordering of the variables in 
such a way that each factor of the right‐hand side of (15.5) is structurally valid. Once the number 
of components p increases, background knowledge, possibly substantiated by statistical tests, 
typically provides a simplification of the factors in the form of conditional independence 
properties. More specifically, it is often the case that the distribution of (X j ǀ X 1, … , X j−1) is 
known not to depend on some of the conditioning variables. Thus there is a subset of variables I j
⊂ {X 1, ·… , X j−1} actually relevant for the conditional process generating X j ǀ X 1, … , X j−1 as 
defined by the property

(15.7)
implying that the factor px jǀX 1,X 2,…,X j−1 in (15.5) is actually simplified into pX j ǀI j and I j may 
be called the relevant information of the j‐th factor. Once I j has been specified for each factor,
(15.5) is condensed into (p.324)

(15.8)
This form is accordingly called a condensed recursive decomposition. As argued by Mouchart et 
al. (2009), causes may then be viewed as exogenous variables in the condensed recursive 
decomposition, or, alternatively, as the relevant information of a structurally valid conditional 
distribution.

Readers familiar with the literature on graph models may recognize that a directed acyclic 
graph (DAG) is a graphical representation of a condensed recursive decomposition and that the 
causal structure is depicted by the set of ancestors. Also, in the literature on graph models, the 
concepts of completeness and of recursivity are not identical to those developed in the statistical 
tradition and discussed in this chapter. This is due to the fact that in the statistical tradition 
these concepts relate to multivariate distributions; not all structures of probabilistic 
independences can be represented by graph models. For binary variables, a simple example is 
the case of a trivariate distribution with pairwise independence but not complete mutual 
independence. In simple cases, however, the two families of concepts coincide.
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Summarizing

The statistician's explanation is partial, because it is based on a stochastic representation of a 
phenomenon of interest, and structural, because it is based on a recursive decomposition that 
seeks to decompose a vector of variables into structurally valid components.

15.2.3 Difficulties
As a matter of fact, several problems hinder explanation from being a simple task. Let us focus 
on three of them: (i) partial observability, (ii) time delay, dynamic structure, and feedback 
effects, and (iii) causal chain.

Partial observability
Many models in the social sciences involve latent, i.e. non‐observable, variables. Some of these 
variables could possibly be observed but are non‐ observable for practical, legal, or ethical 
reasons whereas other variables are genuinely non‐observable because they correspond to 
theoretical concepts partially observed through indicators, or proxy variables, and are used in 
framing theoretical models. The statistical model, because it bears on observable variables only, 
is accordingly constructed in two steps: a first step in the form of a structural model involving 
both observable and latent variables, and a second step, the implied statistical model (also 
called the operational model), obtained by integrating out the non‐observable variables.

Statistical models of that type are known in statistical methods as ‘mixture models’, because a 
marginal distribution may be viewed as a mixture of conditional distributions, and are 
characterized by severe difficulties. First, (p.325) the distributions have a complex analytical 
structure, making the inference process often cumbersome. Second, the integration of non‐
observable variables requires the introduction of specific supplementary assumptions often 
impossible to be controlled or to be statistically tested, and justified only by field knowledge. 
Third, the marginalized distributions no longer represent a data generating process supported 
by arguments that it is structural, and their parameters may no longer be given a simple 
structural interpretation. Moreover, integrating the unobservable explanatory variables typically 
jeopardizes the exogeneity of the remaining variables; this problem has been explicitly worked 
out for a simple trivariate case by Mouchart et al. (2009). The econometric literature on 
heterogeneity, i.e. on unobservable explanatory variables, often suggests the recovery of loss of 
exogeneity by introducing further ad hoc assumptions, such as the independence between the 
het‐ erogenous factors and the observable explanatory variables, even though such assumptions 
may be contextually doubtful and empirically not testable (see also Mouchart et al. (2009) for a 
deeper discussion of those supplementary assumptions).

Time delay, dynamic structure, feedback effects
In many cases, a reasonable specification of the structure of the data generating process 
requires the introduction of time delays in order to take into account dynamic features of the 
phenomenon of interest. This makes the observations a sequence of data that are not 
independent. In particular, the effects of a cause require some delay before being operational 
and feedback effects often take place through adjustments of individual behaviours. These facts 
generate further difficulties.
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Firstly, the specification of dynamic models is substantially more demanding than the 
specification of models with mutually independent observations.

Secondly, the time frequency of data is often not high enough for identifying the shortest‐term 
features. In other words, the available data operate a time‐ aggregation and therefore should be 
viewed as partial observability of the dynamic structure of the data generating process. In line 
with the above‐ mentioned difficulties due to partial observability, econometricians, already in 
the early 1950s (Wold and Jureen 1953; Bentzel and Hansen 1955), have argued that time‐
aggregation is the main cause of simultaneity because otherwise an econometric model should 
become completely recursive.

Thirdly, even without time‐aggregation, the presence of feedback effects requires a substantially 
more complex analysis of exogeneity and causality. Moreover, different levels of model 
specification should be distinguished, namely (i) a global one, modelling at once all available 
data, (ii) an initial one, modelling each data conditionally on initial conditions, and (iii) a 
sequential one, modelling items of data sequentially conditionally on their relative history. 
Florens and Mouchart (1985) provide an integrated approach to this topic.

(p.326) Causal chain
The recursive decomposition, be it complete or not, along with the causal interpretation of 
exogenous factors, makes manifest that variables in I j are (direct) causes of X j and, similarly, 
other variables are causing X j−1, accordingly producing a chain of causes within the data X = (X

1,… , X g ). Two issues should be made explicit.

First, the ‘natural’ state of a social phenomenon is not ‘one cause–one effect’ but rather 
‘multiple causes–multiple effects’. This leads us to identify not only direct but also indirect
causes. Thus the crucial aspect of the framework presented here is to provide an ordered 
structure in a ‘systemic’ approach. In other words, it is not enough to say that ‘everything 
depends on everything’: a structure ought to be elaborated in order to explain and shed light 
within an otherwise black box. But there is no free lunch. The cost to be paid is to learn how to 
manage a complex causal structure. In the social sciences this issue is crucial, in particular, for 
policy purposes.

Second, the causal chain constructed within a given data set X = (X 1,… , X g ) is essentially 
truncated. This means that once the data set has been ordered in such a way that X g is 
explained by X 1,… , X g−1,… , X j explained by X 1,… , X j−1, etc., the statistician is still left with 
explaining X 1. One might argue that either there is no plausible explanation for X 1 or, in the 
causal chain, X 1 is far enough from the variables X j , X j+1,… to be explained, so that the indirect 
effect of the explanatory variables of X 1 could be neglected. However, it should be stressed that, 
although necessary from an operational viewpoint, the explanation provided by means of the 
statistical model may fail to be robust with respect to the truncation. The social scientist should 
be particularly aware of that difficulty, and only field knowledge can be of help at this stage. 
Nevertheless, the fact that appealing to field knowledge helps in those cases does not introduce 
a vicious circle nor does it make knowledge to be gained through structural modelling radically 
different from field knowledge. Rather, this reflects the idea that structural modelling (i) does 
establish knowledge to be used in other studies, but (ii) does not establish immutable and 
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eternal ‘causal truths’. Structural modelling is a dynamic process in which field knowledge and 
new knowledge constantly interplay. How precisely they interplay is, however, the object of 
another paper.

15.3 Explanatory mechanisms
15.3.1 Interpreting recursive decompositions
So far we have argued that the statistician's attempt to explain a given phenomenon of interest 
involves two aspects. First, a genuinely partial explanation by incorporating in the statistical 
model a stochastic component (p.327) deemed to represent what is not explained. Second, a 
recursive decomposition over an ordered vector of variables deemed to disentangle a multivari‐ 
ate, i.e. complex, phenomenon into a sequence of univariate (conditional) processes.

It is worth emphasizing that a recursive decomposition is made of two ingredients. First, a 
sequential marginal‐conditional decomposition of a mul‐ tivariate distribution. This is a standard 
operation in the calculus of probability that can be operated over an arbitrary order of a vector 
of variables. Second, a specific order is selected by requiring structural validity of each 
component of the decomposition. Such validity requires a close congruence with background 
knowledge, along with a condition of stability/invariance, which implicitly defines the population 
of reference. These two elements allow us to introduce a specific concept of mechanism that fits 
structural models. Because this concept is not meant to be a general one and consequently may 
not attract unanimous consensus, comparison with other alternative approaches may be useful.

Thus, the guiding questions of this section are the following: How do we interpret the recursive 
decomposition? Why is it explanatory? In a nutshell, recursive decompositions are to be 
interpreted in terms of mechanisms, and we discuss below why mechanisms thus conceived
explain.

15.3.2 Recursive decompositions and mechanisms
In interpreting the recursive decomposition in terms of ‘mechanisms’ we distinguish between 
‘global mechanisms’ and ‘sub‐mechanisms’. The whole recursive decomposition characterizes a
global mechanism, whereas each conditional distribution within the recursive decomposition 
characterizes an (autonomous) sub‐mechanism within the global one. In this context, 
decomposing a global mechanism into a sequence of (autonomous) sub‐ mechanisms is 
tantamount to disentangling the action of each component in a sequence of the sub‐mechanisms 
operating in a global mechanism. In other words, the explanatory power of a mechanism is 
operationalized, in structural models, through the recursive decomposition. For instance, in the 
fish market example, the market, call it the global mechanism, generates a bivariate distribution 
of the price (Y) and quantity (Z); the econometric explanation consists in distinguishing a supply 
process represented by the marginal distribution of Z, a demand process represented by the 
conditional distribution of (YǀZ), and a market equilibrium process based on the quantity‐ taking 
behaviour of the demand side.

Thus a recursive decomposition carries explanatory power insofar as it disentangles a global 
mechanism into sub‐mechanisms in the above sense. But what are the specific features of a 
mechanism in this context of structural models?
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(p.328) Stochastic mechanisms

This concept of mechanism is a stochastic one: a mechanism is not deterministic but it rather 
singles out a stable/invariant and contextually meaningful aspects of the phenomenon of interest 
(see below). The fact that in social contexts causal explanation is essentially mechanistic does 
not imply that it also is mechanicistic, in the sense that it essentially requires physical 
deterministic mechanisms in order to explain social phenomena.

Stable mechanisms
Because a mechanism is meant to identify a stable/invariant, and therefore repeatable, aspect of 
the phenomenon being modelled, identifying a mechanism means separating incidental from 
structural features of the data generating process. By so doing, the statistician is also able to 
distinguish spurious from causal correlations.

Mixed mechanisms
In social contexts, mechanisms are not necessarily ‘physical’, that is made of physical processes 
or physical entities interacting in one way or another. This is so for several reasons, three of 
which are:

1. In statistical models used in the social sciences mechanisms try to depict the working 
forces, i.e. the motivation or rationale for evolving, characterized by variables that 
possibly lack ‘physical’ (or even manifest/observable) counterparts. Many social, 
demographic, or economic variables are conceptual constructs introduced to shape a 
‘theory’, the development of which leads to building measurement devices by means of a 
number of relevant indicators that are distinct from the definition of the concept. For 
instance, ‘socio‐economic status’ might be measured from income and level of education, 
but these indicators are not meant to provide a unique definition of the concept.
2. Many social scientists are interested in mechanisms where very different types of 
variables interplay. For instance, health economics or some branches of epidemiology 
are interested in how economic variables influence health variables and vice versa. In 
this case, although some variables might have a ‘physical’ counterpart (e.g. baby's 
weight at birth), not all of them will (e.g. socio‐economic status). Consequently, we need 
a characterization of mechanism broad enough to include both ‘physical’ and ‘non‐
physical’ components. That is to say, we have to model ‘mixed’ mechanisms.
3. Also, health variables do not influence economic variables (or vice versa) as such, but 
through indirect paths involving intermediate causal variables. Those indirect paths need 
(or may need) to be specified in order to explain the phenomenon of interest. In 
Caldwell's model mentioned (p.329) in Section 15.1, maternal education does not 
influence child mortality as such, and in fact a major improvement of Caldwell's 
framework was provided by Mosley and Chen (1984), who developed an analytical 
framework explaining the indirect paths through which a social variable such as 
maternal education can have a causal impact on a health variables such as child survival.

For details on mixed mechanisms and, more generally, on modelling mechanisms in causal 
modelling, see Russo (2009, ch. 6).
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Alternative views

The very notion of mechanism is currently a matter of vivid debate (Little, 1991, 1998; 
Machamer et al. 2000; Woodward, 2002, 2003; Bunge, 2004; Psillos, 2004; Bechtel and 
Abrahamsen, 2005; Reiss, 2007; Craver, 2007). Alternative accounts may feed debate about the
concept or the role of mechanisms in the social sciences. For expository purposes, we selected 
only two, notably Little (1991, 1998) and Craver (2007).

Little (1991) defends the idea that causal analysis in the social sciences is legitimate but that it 
depends upon identifying social mechanisms. Little goes as far as saying that such social 
mechanisms work through the actions of individuals — a position also known as methodological 
individualism. To discuss the plausibility of a microfoundation approach (see for instance Little,
1991, 1998) would lead us too far away from the main track. Yet, Little's characterization of 
mechanisms will help us in clarifying our claim that the recursive decomposition represents a 
social mechanism. According to Little (1991, p. 15) a causal mechanism is a series of events 
governed by lawlike regularities that lead from the explanans to the explanandum. Mechanisms, 
within a microfoundational perspective, are grounded in meaningful and intentional behaviour of 
individuals. The sort of things having causal properties are, for instance, the actions of 
individuals and groups. One might disagree with Little about the soundness of a 
microfoundation approach, or about the use of lawlike regularities. Notably, Hoover (2001) 
stresses the causal import of the structural approach in econometrics arguing for a reality of 
macroeconomic structures that does not boil down to the reality of microeconomic relations and 
holds the view that mechanisms and causal structures may substitute for laws and do not 
necessarily need to be supported by appeals to laws.

Yet, notwithstanding divergences on those issues, we surely agree with Little on his account of
statistical analysis as a form of causal reasoning in social research (Little, 1991, ch. 8). 
Statistical explanation, in his view, has to be accompanied by a causal story indicating the 
mechanisms. The identification of the mechanism involves (lawlike) statistical regularities, but is 
not the end of the explanation; it is only the first step in establishing causal relations. So 
statistical tools serve to uncover the patterns present in the empirical (p.330) phenomenon, i.e. 
the data set. It is in this sense that Little's and our views are close to each other.

Craver (2007) explores the notion and the explanatory power of mechanisms in the domain of 
neurosciences. At the beginning of his book, Craver (2007, p. 5) discusses the example of how a 
neuron releases neurotransmitters and concludes:

This is a mechanism in the sense that it is a set of entities and activities organized such 
that they exhibit the phenomenon to be explained.

To our understanding, this “skeletal description”, as Craver calls it, is broad enough to account 
for mechanisms in various domains. Should you take the entities to be neurons and the activities 
neurotransmitter release, the above skeletal description will well fit neuromechanisms. Should 
you take entities to be socio‐demo‐economic variables, and activities to be their influence on 
other socio‐demo‐economic variables, the above skeletal description will fit equally well social 
mechanisms. The degree of ‘physical’ reality one wishes to give to entities and activities may 
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lead to different accounts — notably, to a different ontological commitment to the existence — of 
mechanisms. In the social sciences, we do not need to endorse the view that elements and 
relations should always have physical counterparts — see the discussion of mixed mechanisms 
above.

15.3.3 Mechanisms, explanation, causality
Mechanisms and explanation
More on partial explanation

In Section 15.3.1 we have recalled the partial nature of statistical explanation — the stochastic 
component delineates the frontier between what we explain and what we do not explain. But 
there is another sense in which explanation is partial.

In case the statistician can operate a complete recursive decomposition, the explanation is 
complete in the sense that each sub‐mechanism is identified and thus the global mechanism is 
fully disentangled. However, in case the statistician is unable — for a whole variety of different 
reasons, e.g. missing data or insufficient background knowledge — to operate a complete 
recursive decomposition, the explanation itself is partial. In such a case the conditional 
distribution bears simultaneously on several variables that are therefore not explained 
individually.

More on explanatory power

However, whether complete or incomplete, the recursive decomposition — the mechanism — 
provides an explanation of the phenomenon of interest. In other words, mechanisms, we claim, 
carry explanatory power. The question is to understand why it is so. The answer to this question 
resides in considering (p.331) the whole modelling procedure as explanatory on the one hand, 
and in understanding the explanatory import of exogeneity on the other hand. Simply put, when 
a conditional distribution is a component of the recursive decomposition, the conditioning 
variables are exogenous and can be interpreted as causal factors. In the next section, we discuss 
this idea more thoroughly. A related issue concerns the possibility to simulate. The recursive 
decomposition explains because the distribution generating the data can be simulated in a 
contextually meaningful way. In this sense to explain also means ‘being able to reproduce’.

Causal factors and exogeneity

Why do we interpret exogenous variables as causal factors? This is so for three different but 
related reasons.

First, the whole modelling procedure is explanatory. The goal of structural modelling is to 
characterize clearly identified and interpretable mechanisms. We mentioned in Section 15.2 that 
the choice of the marginal‐conditional decomposition may be arbitrary; this is the reason why we 
need background knowledge and invariance: to make a selection among the various possible 
decompositions. In other words, the marginal‐conditional decomposition alone does not provide 
a (causal) explanation of a given phenomenon, but the whole modelling procedure does. Indeed, 
building a structural model is made of a progressive procedure, three steps of which may be 
identified. In the first stage we select the variables of interest, that is the elements of the 
mechanism, out of background knowledge. In the second stage we build the statistical model, in 
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particular, we operate a recursive decomposition over the initial joint probability distribution. 
Finally, in the third stage we confirm or disconfirm the hypothesized mechanism by 
confrontation with empirical evidence and background knowledge. Briefly put, tests on the 
recursive decomposition concern, on the one hand, its invariance or stability and, on the other 
hand, whether it is congruent with background knowledge. Adequacy of the model is also tested 
by measuring goodness of fit and the amount of variability the model can account for. This is a 
very concise presentation of the hypothetico‐deductive methodology of causal models. For a 
thorough discussion of hypothetico‐deductivism in causal modelling see Little (1998, p. 9), 
Cartwright (2007, ch. 2), and Russo (2009, ch. 3).

Such a stepwise methodology provides a causal explanation because it aims to provide an 
understanding of a given phenomenon by showing the causal sub‐mechanisms that underlie it. 
Of course, the question arises as to what guarantees the causal interpretation of the relations or 
the mechanisms established in those models. This is the relation between exogeneity and 
causality, that is why we interpret exogenous factors as causal factors.

Second, before discussing in more detail the relation between exogeneity and causality, another 
issue is worth pointing out. Borrowing Cartwright's (p.332) adage, no causes in, no causes out. 
According to the hypothetico‐deductive methodology used in structural models, the first stage, 
that is the hypothesis formulation stage, exactly concerns a causal hypothesis. Therefore what 
we will (dis)confirm exactly is a causal structure. Causal relations are not inferred from mere 
correlations, taken out from a ‘magical’ statistical hat. Structural models, unlike simple 
associational or descriptive models, have a rich and sophisticated apparatus of assumptions that 
underwrite their causal interpretations (see for instance Russo (2009, ch. 3) who divides them 
into three categories: statistical, extra‐statistical, and causal). Also, specific tests ‐ notably, 
invariance and exogeneity tests ‐ allow us to causally interpret the relations showed in the 
recursive decomposition and therefore the exogenous variables as causes.

Third, here comes the thorny issue: the relation between exogeneity and causality. Identifying 
causal factors with exogenous variables is based on the following considerations:

• Because causality is a latent concept, causal inference can only be of the type ‘to 
the best of our knowledge’; causal relations pertain to the inter pretation of a model 
(i.e. a representation of the data generating process) and are, therefore, relative to a 
model rather than a sole characteristic of the available data. Differently put, 
structural modelling is not a hunt for the ‘true’ model nor a device that enables us to 
discover the ‘true’ causal relations. Structural modelling is a progressive path 
toward making intelligible the observed phenomena while adjusting the window of 
observation to pre‐specified targets.
• Exogeneity is a condition of separation of inference. As mentioned earlier, the 
(partial) explanation of the statistician is cast in the framework of a statistical model, 
in terms of parameters that characterize the distributions of interest (see the 
Section 15.2.2). Thus the exogeneity condition (15.6) does not only allows us to 
separate the inferences on θjǀ1, … j−1 and on θ1,… j−1, but it also allows us to 
distinguish the process generating the causes, characterized by θ 1,… j−1, and the 
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process generating the effect, characterised by θjǀ1,…,j−1. Separating causes from 
effects mirrors the asymmetry of causation. This last point makes clearer and more 
precise the older expression ‘exogenous means generated outside the model’.

Needless to say, this is not to suggest that structural models provide immutable and eternal 
causal explanations of social phenomena. As mentioned above, explanation is intrinsically 
relative and partial, that is relative to the specific conceptual framework and dependent on 
available empirical and theoretical information. This means that nothing prevents future 
explanations to discard previous ones. Furthermore, nothing prevents different (p.333) social 
scientists to provide different explanations of the same phenomenon: a causal explanation 
crucially depends on background knowledge which also includes the social scientist's personal 
or political beliefs. Finally, such causal explanations involve an implicit stopping rule in order to 
avoid an otherwise ad infinitum chain of ‘explaining the explanatory’.

15.3.4 Evaluation/flexibility of explanation
Before closing this section on explanatory mechanisms, two features of causal explanation are 
worth mentioning. The first concerns the evaluation of explanations and the second their 
flexibility.

We can evaluate explanations by considering three interrelated aspects: (i) statistical, (ii) 
epistemic, and (iii) ontological adequacy. We can give (i) a statistical evaluation by measuring, 
with the coefficient of determination, how much variability is accounted for, and by measuring 
the goodness of fit. We can also give (ii) an epistemic evaluation, by asking whether results are 
coherent with background knowledge. (iii) An ontological evaluation is also possible: if 
ontological homogeneity between the variables acting in the mechanism is lacking (for instance 
if the mixed mechanism includes both economic and health variables), it may be desirable to 
identify and justify indirect paths from the causes to the effect. Causal explanations will then be 
good or bad depending on how well they meet statistical, epistemic, and ontological 
requirements.

Such explanations also exhibit high flexibility. The first aspect of flexibility is concerned with 
‘mixed mechanisms’: as discussed earlier, we do not need to stick to a physical concept of 
mechanism. The second aspect relates to the available information we base the explanation 
upon. The example on bargaining powers and market segmentation presented below shows that 
even if available data and background knowledge do not allow us to fully explain the 
phenomenon, some explanation is possible. The third aspect is that such explanations allow a va 
et vient between established theories and establishing theories. Established scientific theories 
are (and ought to be) used to formulate the causal hypothesis and to evaluate the plausibility of 
results on theoretical grounds. But causal models also participate in establishing new theories 
by generalizing results of single studies. This reflects the idea that science is not monolithic, 
discovering immutable and eternal truths. If the model fits the data, the components of the 
recursive decomposition are structurally stable and congruent with background knowledge, then 
we can say, to the best our knowledge, that we hit upon a mechanism that explains a given 
social phenomenon. But what if one of these conditions fails? A negative result may trigger 
further research by improving the modelling strategies or by collecting new data, thus leading 
to new discoveries that may question background knowledge.
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(p.334) We now conclude by briefly presenting two examples. In the first one, researchers 
successfully provided a causal explanation by disentangling the mechanism in a recursive 
decomposition on five variables. In the second one, researchers did not succeed to fully explain 
the phenomenon by providing the marginal recursive decompositions due to a lack of data and 
background knowledge.

Health systems and mortality in Spain

López‐Ríos et al. (1992) were interested in regional mortality in Spain. Spain met deep socio‐
economic changes in the mid‐1970s, and consequently policy in that period tried to intervene on 
improving the social and economic situation. This led to a lower mortality rate at the time of the 
study. This background supported the choice of distinguishing the supply and demand of 
medical care, unlike the majority of similar studies. In fact, previous studies in demography and 
medical geography examined the incidence of the health system on regional mortality coming to 
the conclusion that regional differences in mortality could not possibly be explained by regional 
differences in the health system. López‐Ríos et al. (1992), instead, hypothesized that regional 
mortality is influenced by the health system which was in turn influenced by social and economic 
development. The vector of variables (economic development, social development, sanitary 
infrastructure, use of the medical care system, age structure, mortality) was decomposed into 
basically two sub‐mechanisms. In the first, ‘economic development’ was the exogenous variable 
influencing mortality through ‘social development’ and ‘sanitary infrastructure’; in the second, 
‘age structure’ was the exogenous variable influencing mortality through ‘use of the medical 
care system’.

Bargaining powers and market segmentation in freight transport in Belgium
Mouchart and Vandresse (2007) analysed multivariate data obtained by face‐ to‐face interviews 
with companies using the services of freight transport in Belgium. This data provided 
information, for each contract of a sample, on several characteristics of the contract, such as the 
price, the distance, the speed of delivery, etc. From the interviews it was clear that each 
contract was the result of a bargain between the service user and the service provider. For 
instance, a requirement of quick delivery could be priced at a higher tariff than a slow delivery, 
depending on the availability of the provider. However, there wasn't available data on every step 
of the bargaining process: only the final result was known. Moreover, no economic theory, no 
game‐theoretic strategy, nor any field knowledge was available for substantiating any possible 
recursive decomposition. Consequently, a recursive decomposition of the data generating 
process was not possible and Mouchart and Vandresse (2007) could only provide an analysis of 
the joint distribution of all the available data without (p.335) incorporating any exogeneity 
assumption. This analysis nevertheless provided some explanation of the global functioning of 
the freight transport market in terms of imperfection of the competition and of the bargaining 
power of the actors, but did not provide an explanation about the data generating process of 
each variable separately.

15.4 Concluding remarks
Quite uncontroversially, explanation belongs to the tasks of the social sciences. What is more 
controversial, however, are the features and characteristics of explanations in social contexts. 
This chapter tackled this issue by analysing structural modelling.
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We highlighted three features. (i) Explanation is incomplete, or partial, in the sense that it is 
based on a stochastic representation of the world where the stochastic component stands for 
what is not explained. (ii) An explanation is given by decomposing a complex causal mechanism 
into a sequence of ‘simpler’ explanatory mechanisms. In a nutshell, explaining a complex social 
phenomenon involves two ingredients. First, we operate a recursive decomposition on a 
multivariate distribution that represents the phenomenon of interest; the whole recursive 
decomposition is interpreted as the ‘global mechanism’. Second, we consider each component of 
the recursive decomposition as an ‘autonomous’ sub‐mechanism within the global mechanism 
insofar as it is composed of a univariate conditional distribution. Decomposing a global 
mechanism into a sequence of (autonomous) sub‐mechanisms is tantamount to disentangling the 
action of each component into a sequence of the sub‐mechanisms operating in a global 
mechanism. In other words, the explanatory power of a mechanism is operationalized, in 
structural models, through the recursive decomposition. (iii) Explanation is causal, that is we 
identify cause—effect relations through the condition of exogeneity. We defined exogeneity as a 
condition of separability of inferences on the parameters of the marginal‐conditional 
distribution, which allows us to identify the variables that play a causal role in the mechanism.

We emphasized that providing a complete explanation of a complex phenomenon is not always 
(and often not) possible and that incomplete recursive decompositions have to be accommodated 
in the toolkit of the social scientist.

Rather than proposing new definitions of key concepts used in structural modelling, we offered a 
reassessment of the literature connecting the practice of (structural) statistical modelling to the 
concepts of explanation and mechanism. Notably, we aimed to clarify how social scientists 
explain social phenomena by building structural models and what it means to interpret a 
recursive marginal‐conditional decomposition as a mechanism.
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The structural account easily connects to, enriches, and illuminates graphical or Bayes net 
approaches to causal representation and is able to handle modular, non‐ modular, linear, 
and nonlinear causal systems. The representation is used to illuminate the mutual 
relationship between causal structure and counterfactuals, particularly addressing the 
role of counterfactuals in Woodward's manipulationist account of causation and 
Cartwright's attack on ‘impostor counterfactuals’.
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16.1 Introduction
Causality is closely related to the analysis of counterfactuals. Hume, who is often seen as having 
depreciated the status of causal relations, stressed their importance in political and economic 
contexts:

it is of consequence to know the principle whence any phenomenon arises, and to 
distinguish between a cause and a concomitant effect. Besides that the speculation is 
curious, it may frequently be of use in the conduct of public affairs. At least, it must be 
owned, that nothing can be of more use than to improve, by practice, the method of 
reasoning on these subjects, which of all others are the most important; though they are 
commonly treated in the loosest and most careless manners. (Hume 1754, p. 304)1

The value of causal reasoning is, in part, diagnostic and retrospective: why did X happen? Such a 
backward looking question calls for a counterfactual inquiry: if Y had not happened, would X 
have happened? Causal reasoning is also prospective and related to planning: if Y were 
implemented, would X happen?

A central question addresses the relationship between causes and coun‐ terfactuals. David Lewis 
(1973), for example, defines causes reductively in (p.339) terms of counterfactuals that are 
given an independent account. James Woodward (2003) also defines causes counterfactually, 
albeit non‐reductively. Woodward's account has become increasingly popular among 
philosophers of science, although it is not universally accepted. Nancy Cartwright (2007) attacks 
it, partly over the relationship of causes to counterfactuals. She objects both to defining cause in 
terms of counterfactual manipulations and to the subsequent use of causal knowledge so defined 
to evaluate counterfactuals for policy. Cartwright doubts that Woodward's criterion for cause is 
generally applicable, and she regards the counterfactuals supported by the supposed causal 
knowledge as irrelevant ‘imposters’ (Cartwright 2007, esp. ch. 16).

Woodward's account draws substantially on the graph‐theoretic analyses of Peter Spirtes, Clark 
Glymour and Richard Scheines (2001) and Judea Pearl (2000), in which causes are conceived as 
holding among variables that are connected through functional, but asymmetrical, relations. The 
graphs in these accounts are maps of the asymmetric flow of causal influence. A main purpose of 
the current chapter is to suggest that Woodward's version of the graph‐theoretic approach 
implies an unnecessarily impoverished representation of causal relations and that these 
representations, in turn, lead him to attribute too great a role for counterfactual manipulability 
in defining cause and to support a too highly constrained account of the structure of the 
relationships among causes and effects, laying his account open to many of Cartwright's 
criticisms. I offer an alternative account, the structural account, built on work that long predates 
Woodward's book, but which is less well known to philosophers (Hoover 1990, 1994, 2001). The 
structural account bears a close family resemblance to Woodward's manipulation account. Yet, 
there are key differences that provide a richer set of resources, which are adequate to deal with 
Cartwright's objections and to provide a basis for understanding the connection of 
counterfactuals to causality.

To avoid confusion, it is worth noting that the account proposed here does not fundamentally 
conflict with the general approach of modeling causal relationships graphically, developed 
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especially by Pearl (2000) and Spirtes, Glymour and Scheines (2001), and used by Woodward. 
Rather it clarifies the relationship between graphical representations and systems of equations 
in a manner that both enriches the graphical approach and demonstrates the fundamental 
kinship of the two approaches.

16.2 Woodward's manipulation account
While Woodward's account of causation relies on a counterfactual analysis, it is substantially 
different from the influential counterfactual account due to David Lewis (1973, 1979), which 
relies on a possible‐worlds analysis. (p.340)

Woodward and I agree that Lewis 
unnecessarily privileges the notion of non‐ 
causal, universal laws (Hoover 2001, ch. 4, 
sections 4.2–4.4; Woodward 2003, p. 16, ch.
6). Furthermore, the notion of a metric for 
nearness of possible worlds is 
fundamentally vague (Woodward 2003, p. 
138). Two analysts are vastly more likely to 
agree on a causal claim than on the truth or 
falsity of the counterfactual that is supposed 
to underwrite it or the nearness of the 
possible worlds that are supposed to decide 
the truth value of that counterfactual.
In contrast to Lewis, who sees causal 
relations as connecting token events, Woodward follows Spirtes (2001) and Pearl (2000) as 
seeing causal relations as connecting variables. Fundamentally, then, Woodward's account is 
one of type‐causation. Token‐causation is analysed through assessing the cases in which 
variables take particular values.

Causal relations among variables are represented both graphically and functionally. Thus in 
Figure 16.1, A and B cause C; and C and B (directly as well as indirectly), in turn, cause D. These 
relationships may be made more quantitatively precise by specifying the functional connections 
among the variables. For example, Figure 16.1 might be the graph of a system of equations:

(16.1)

(16.2)
where the α ij , i, j = A, B, C, D are the coefficients that measure the strength of the causal 
connection between variable j and variable i.2

Neither the graphs nor the equations are dispensable, unless we abandon the symmetry of the 
equal sign and rule out functionally equivalent sets of equations as causally adequate. This can 
be done implicitly by adopting a rule: effects on the left; causes on the right. While Woodward 
does not adopt such a convention, both Cartwright (2007, p. 13) and Hoover (2001, p. 40) 

Fig. 16.1
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explicitly convert the symmetrical equal sign into an assignment operator: ‘c=’ for Cartwright; 
‘⇐’ for Hoover. Thus, rewriting (16.1) and (16.2) as (p.341)

(16.1′)

(16.2′)
in effect combines Figure 16.1 with equations (16.1′) and (16.2′).

Causal arrows indicate direct causes, a key concept in Woodward's account:

(DC) A necessary and sufficient condition for X to be a direct cause of Y with respect to 
some variable set V is that there be a possible intervention on X that will change Y (or the 
probability distribution of Y) when all other variables in V besides X and Y are held fixed at 
some value by interventions. (Woodward 2003, p. 55)

Woodward (2003, p. 98) intervention variable (I) for a variable X with respect to a variable Y is 
defined according to four criteria:

1. I causes X;
2. I acts as a switch so that when it takes the right values it can eliminate the effect of all 
other variables in determining X;
3. any causal path from I to Y goes through X;
4. I is independent of any variable Z that causes Y otherwise than through X.

An intervention is defined as a token realization of an intervention variable that is an actual 
cause of the value of X.

Counterfactuals play a role at two key points in Woodward's definition of direct cause. First, the 
definition relies on counterfactuals in that it is enough that the contemplated interventions are 
possible; he does not require them to be actual. The exact modality captured in a possible
intervention (equivalently, possible manipulation) is an open question. On the one hand, 
Woodward rejects as potential causes variables for which we have no notion of manipulation, as 
well as variables, such as race, sex, or species, for which a change would threaten the 
fundamental identity of the subject to which the variable is attached (Woodward 2003, p. 113; cf 
Hoover 2009a). On the other hand, Woodward rejects the notions that manipulations must be 
the result of human agency (naturally occurring ‘interventions’ will suffice) or that they are 
necessarily practically possible (the moon causes the tides, but how can we practically 
manipulate the moon in the right sort of way?) (Woodward 2003, p. 113).

The second point at which counterfactuals play an essential role is in the notion that the causal 
relationship is to be evaluated in isolation by holding other variables fixed. There may, in fact, 
be no way actually to achieve such holding fixed and, like Lewis, Woodward is willing to 
countenance the semantic device of ‘small miracles’ to achieve the necessary isolation (Lewis
1973, p. 560; Woodward 2003, pp. 132,136). And like Lewis, Woodward evaluates the 
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counterfactual manipulation not in the actual world or, more accurately perhaps, in the actual 
causal graph, but in one that is different, though derived from it.

(p.342) The semantic content of the assertion of Figure 16.1 that C is a direct cause of D is 
captured in the counterfactual experiment of manipulating some of its variables. Following 
Pearl, Woodward suggests that we consider an intervention that sets variables other than C and
D to token values — in effect, ‘breaking’ (or ‘wiping out’) the causal connections between 
variables wherever needed to achieve this. Thus Figure 16.1 would be replaced by Figure 16.2 
in which the lower‐case letters indicate token values for the correlative uppercase variables and 
in which the causal arrows into C are removed. C causes D, then, if a change in C, say, from c to
c' results in a change in D, say, from d to d'. The truth of this counterfactual justifies the 
direction of the causal arrow from C to D in Figure 16.1.

Although establishing direct cause relies on the evaluation of a counterfac‐ tual, Woodward's 
account, unlike Lewis's, is not reductive. Manipulation is an admittedly causal relationship. 
Rather than explaining causation in terms of some more basic notion, Woodward explains the 
causal structure of one part of a network of variables in terms of the causal structure of other 
parts. While such a non‐reductive account may be metaphysically unsatisfying to those unwilling 
to take causation as a primitive, it is very much in keeping with Cartwright's (1989, ch. 2) 
slogan, ‘no causes in, no causes out’, and provides a framework for a causal epistemology, which 
explains its appeal to philosophers of science.

How one is to evaluate the truth value of counterfactuals remains an issue. Woodward rejects 
Lewis's appeal to universal natural laws. In the end, he grounds the evaluation of 
counterfactuals in the empirical fact of invariance. The invariant connection of the manipulated 
cause to the effect, under the conditions set out in the definition of direct cause (DC) is relied 
upon to translate the causal map given in the graphs and their associated functions into more 
complex counterfactual assessments that constitute Hume's useful causal knowledge. 
Invariance, in Woodward's view, is not absolute but admits of degrees. A relationship may be 
invariant to some sorts of interventions and not to others (Woodward 2003, ch. 6, section 6.4). 
And, in general, Woodward

(p.343) stresses that causal knowledge 
and the assessments of counterfactuals are 
deeply contextual and that causal 
explanation is contrastive.
Woodward's strategy of defining direct 
cause through a process of counterfactual 
manipulation and then reconstructing 
causal networks out of the pieces requires, 
he believes, that causal relationships 
possess a kind of autonomy that he calls
modularity: Fig. 16.2
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a system of equations will be modular if it is possible to disrupt or replace (the 
relationships represented by) any one of the equations in the system by means of an 
intervention on (the magnitude corresponding to) the dependent variable in that equation, 
without disrupting any of the other equations. (Woodward 2003, p. 48)

The actual systems that, for example, a scientist works with may or not be modular; nonetheless, 
Woodward maintains

that when causal relationships are correctly and fully represented by systems of 
equations, each equation will correspond to a distinct causal mechanism and that the 
equation system will be modular. (Woodward 2003, p. 49)

Modularity, and whether it is essential to causal relationships, is a major point of dispute 
between Woodward and Cartwright (see Cartwright 2007, chs. 7, 8; Hausman and Woodward
1999, 2004; cf. Hoover 2009a).

16.3 The structural account
While it is an alternative to Woodward's manipulation account of causation, the structural 
account bears a family resemblance to it and to the related graph‐theoretic analyses of Spirtes
et al. and Pearl. Its pedigree, however, can be traced back principally to J.L. Mackie's (1980, ch.
3) INUS analysis of causation and to Simon's (1953) analysis of causal order in econometrics 
(see Hoover 2001, ch. 2). Our present focus is on Simon.

16.3.1 Simon on causal order
Simon (1953) proposes a syntax for representing causal relationships that suits the structural 
account very well. Consider the representation of a causal structure in a system of equations, 
such as (16.1) and (16.2) with the addition of

(16.3)
and

(16.4)
These equations, in which A and B are set equal to parameters, complete the system of 
equations, so that once the parameters have been assigned (p.344) values, the system can be 
solved. Call the system (16.1)–(16.4) S. In S, we can solve for the value of A from equation (16.3)
alone without knowledge of the parameters of the other equations, and we can solve for the 
value of B from equation (16.4) alone. Each is a minimal complete subsystem of S; call them S A
and S B. Similarly equations (16.1)–(16.3) form a complete subsystem (S C) in which we can solve 
for A, B, and C. It is minimal for C, though not for A and B. Equations (16.1)–(16.4) form a 
complete subsystem (S D = S) that is minimal for D. For Simon, causal order is about the 
hierarchical relationships of minimal complete subsystems. A and B cause C because S A and S B
are subsystems of S C (written S A ⊂ S C and S B ⊂ S C). C causes D because S C ⊂ S D. A is an
indirect cause of D because A causes C and C causes D and knowing the value of C allows us to 
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dispense with knowledge of the parameters that determine A in solving for D. B is both a direct 
and indirect cause of D because, as with A, there is a chain of causation running through C; but, 
in contrast to A, knowledge of C is not enough to allow us to dispense with knowledge of the 
parameters of B in solving for D.

Simon recognizes that his syntactic approach is inadequate on its own because structures of 
equations can be written in equivalent forms that syntactically yield different systems of 
minimally complete subsystems and, therefore, different causal orderings. For example, let 
system S' consist of equations (16.2), (16.4) and

(16.5)
where

and

(16.6)
where β C = α A α CA and β CB = α CB.

By construction, systems S and S' have identical solutions; yet by Simon's syntactic criteria the 
causal ordering of S' is represented by Figure 16.3 — substantially different from the causal 
ordering of S in Figure 16.1.

Simon's solution to this problem of observational equivalence is to provide a semantic account of 
causal order (Simon 1953, pp. 24–26; 1955, p. 194). Parameters are not, on this view, fixed 
constants, but precisely the things that are altered by interventions or manipulations. If the α‐
parameterization of S were the true one, then any one of its parameters can be set to a new 
value without affecting any of the other parameters in the system. However, the β‐parameters of
S' must change in order to maintain the common solution. It works both ways, if the β‐
parameterization of S' were the true one, then the (p.345)

α‐parameters of S would have to change in 
the face of a change in one of the β‐
parameters.
The true causal order, then, is one that 
allows mutually unconstrained interventions 
among its parameters or, to put it another 
way, any change to the variables of the 
causal system leaves the parameterization 
and, therefore, the functional form of the 
remaining causal relations invariant. 
Invariance of the functional forms in the 
face of specific interventions is, on this 

Fig. 16.3
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view, the hallmark of a true causal representation; while failure of invariance is a key symptom 
of causal misrepresentation.

We can restate Simon's semantics by defining a parameter to be one of a set of variation‐free 
variables that represent the scope for interventions in the causal system, where variation‐free
means that the choice of any particular value for a variable does not constrain the admissible 
choices of values for other variables in the set.

Cartwright objects to this characterization of a parameterization as a set of variation‐free 
variables that govern the values of variables that are constrained by the causal structure: ‘this is 
not generally the distinction intended between the parameters and the variables’ (Cartwright
2007, p. 241). But I submit that defining parameter in this way is consistent with ordinary 
usage. The Oxford American Dictionary defines parameter as ‘a variable quantity or quality that 
restricts or gives particular form to the thing it characterizes.’ Simon treats parameters as 
capable of taking different values and uses the parameterization to define the causal order — 
the form of the causal order of a system of variables.

Cartwright also suggests that this interpretation of Simon's characterization of causal order is 
incorrect (Cartwright 2007, ch. 13, 14). The best rejoinder is to quote Simon at length:

The causal relationships have operational meaning, then, to the extent that particular 
alterations or ‘interventions’ in the structure can be associated with specific complete 
subsets of equations. We can picture the situation, perhaps somewhat metaphorically, as 
follows. We suppose a group of persons whom we shall call ‘experimenters’. If (p.346) we 
like, we may consider ‘nature’ to be a member of the group. The experimenters, severally 
or separately, are able to choose the nonzero elements of the coefficient matrix of a linear 
structure, but they may not replace zero elements by nonzero elements or vice versa (i.e. 
they are restricted to a specified linear model). We may say that they control directly the 
values of the nonzero coefficients. Once the matrix is specified, the values of the n
variables in the n linear equations of the structure are uniquely determined. Hence, the 
experimenters control indirectly the values of these variables. The causal ordering 
specifies which variables will be affected by intervention at a particular point (a complete 
subset) of the structure. (Simon 1953, p. 26)

What Simon refers to as ‘coefficients’ subject to direct control — that is, able to be freely chosen 
by the ‘experimenters’ — is exactly what we call parameters.3 And a specific change in a 
parameter is the manner in which an intervention (or Woodward's manipulation) is 
implemented. We can think of a causal system as a machine whose various operating 
characteristics are the variables which are controlled indirectly by selecting the settings for 
various switches and dials.

Significantly, Woodward (2003, p. 96) uses the analogy of switches as a means of explaining the 
breaking or wiping out of causal arrows involved in intervention. The operation of a switch is not 
analogous to the wiping out of a causal relationship. (This is perhaps more obvious with respect 
to dials that allow the setting of a continuously variable quantity. Not for the first time causal 
analysis is misled by philosophers' penchant for 0/1 or on/off variation.)4 Flipping a switch does 
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not break a causal system; it operates it. Interventions that change the values of parameters 
maintain the topology of the causal relationships among variables, calling for variables to take 
different values but not altering the causal graph itself.

While Simon's conception of causal order in one sense rejects Woodward's approach (causal 
order is not best understood through the comparison of a causal system to a topologically 
different system), in another sense it generalizes it. For the parameters represent the scope of 
possible interventions in a causal system, so that the connection between interventions and 
outcomes for variables is clear. Simon's conception shifts the focus away from specific token 
interventions to parameters that can take a variety of values. These are types, (p.347)

which can instantiate a variety of token 
manipulations. The causal structure is 
defined entirely at the type level.
The structural account takes the minimal 
causal connection between two variables as 
primitive, offering no deeper account. The 
nature even of such a primitive causal 
connection must be understood 
counterfactually. If a cause has a certain 
effect in the right circumstances, then we 
cannot sensibly assert that it has that effect 
when those circumstances are not actual 
but not when they are actual. If diamonds 
scratch glass, the property cannot hold only when a diamond is not actually used to scratch 
glass. This is the sense in which causal relationships are naturally connected to invariance and it 
captures the meaning of what it is for a cause to be necessary in the circumstances for an effect.

Primitive causal connections reflect the natures or capacities (to use Cartwright's 1989 preferred 
term) of the causes. And capacities must be understood as dispositional, subject to a 
counterfactual analysis (see Mackie 1973, ch. 4). Cartwright analyses capacities as dispositions 
that are carried from context to context; yet they do not have to express themselves in every 
context (Cartwright 1989, pp. 3, 146–147, 191, passim). It is no failure of an account in terms of 
capacities that contextual details matter substantially in whether capacities are actualized. And 
a capacity account in no way presupposes modularity, which is a sort of independence from 
context.

While direct causal connections are primitive, they are also relative to the representation or 
model and may or may not be brute facts. For example, we might imagine that a drug (D1) is 
found experimentally to reduce coronary thrombosis (CT). The relationship may be modelled as 
in Figure 16.4a. (Plus or minus signs next to causal arrows indicate whether the causal influence 
promotes or inhibits the effect.)

(p.348) It is not inconsistent with such a model that further research supports a more complex 
model (Figure 16.4b) in which D1 causes CT directly and, in fact, promotes coronary thrombosis, 
while it also reduces blood pressure (BP), while high blood pressure promotes thrombosis; the 

Fig. 16.4
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net affect being to reduce thrombosis. Sometimes a model such as Figure 16.4b is taken to imply 
that the model in Figure 16.4a is defective. A better interpretation is that the models operate in 
different contexts. If there were no known means of intervening independently on blood 
pressure or in such a way as would meliorate the adverse direct effect of D1, then the model in 
Figure 16.4a would be a perfectly fine model and a guide to clinical practice. The model in 
Figure 16.4b would simply explain the mechanism through which D1 inhibits thrombosis.

An advantage of the model in Figure 16.4b, however, is that, in articulating the mechanism of 
operation, it may suggest paths toward better outcomes. For example, knowing that the positive 
effect of D1 operates through BP suggests seeking another drug (say, D2) that would reduce 
blood pressure with no direct effect on coronary thrombosis (Figure 16.4c). If research 
successfully produced such a drug, a better clinical practice might be to administer D2 and omit
D1. There is a sense in which the causal arrow in Figure 16.4a captures a fact that is primitive 
relative to the model, but which is not brute, in that it has a more complex explanation in a finer 
grained model. There is no guarantee that primitive causes can be explained through further 
refinements, though that is often the object of research.

16.3.2 Modularity and difference‐making
The structural account agrees with Woodward (2003, e.g., p. 80) that causes are difference 
makers, yet it marks the difference that they make relative to an intact causal structure, not 
some related, but different, structure constructed by manipulations that, in effect, break the 
system. The difference between our approach and Woodward's becomes important with respect 
to modularity. Where Woodward sees modularity as a fundamental element of a well‐articulated 
causal system, the structural approach does not require modularity at all — a distinct 
advantage, since many intuitively causal systems are decidedly nonmodular.

Different notions of intervention also distinguish the structural account from Woodward's 
manipulation account. A parameter can be thought of as a causal variable, so there is no 
fundamental difference with Woodward's criterion 1 for an intervention variable, cited in 
Section 16.2: I causes X. A significant difference arises with Woodward's criterion 2: I acts as a 
switch so that when it takes the right values it can eliminate the effect of all other variables in 
determining X. As already noted, while parameters may well act as switches or dials (i.e. 
instruments of continuous variation rather than simply on or off), they need not shut off the 
effects of other causes. The critical feature is not the breaking or wiping out but the accounting 
for the (p.349) effects of other causes. Nor does the structural account accept criterion 3: any 
causal path from I to Y goes through X. This criterion is closely related to modularity, and the 
structural account does not require modularity. A parameter may have a direct effect on Y as 
well as an indirect effect on Y though X without undermining a clear causal ordering of X and Y. 
The case in the next subsection illustrates exactly this situation. The structural account suggests 
a different interpretation of criterion 3. When it is fulfilled for parameters (I), then we find 
ourselves in a particularly fortunate position to infer causal direction through an intervention. 
We should not, however, confuse the epistemic issue of how and when causes are inferable from 
data with the conceptual issue of what it means to be a cause or with the question of how to 
represent causal order. The structural account does not accept Woodward's criterion 4: I is 
independent of any variable Z that causes Y otherwise than through X. If I is interpreted as a 
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parameter as we have defined it, then it is required to be independent only of other parameters 
and not of all other variables. This is the requirement that parameters be variation‐free.

An intervention for the structural account is a token realization of a parameter in the same way 
that an intervention for Woodward is a token realization of an intervention variable. But unlike 
Woodward, the type‐relations among the variables and the parameters fully determine the 
causal order without reference to a particular token intervention or manipulation. In relying on 
token interventions in the definition of direct cause, Woodward again seems to confuse the 
causal relationship with a strategy that supports the inference of causal relationship.

We can illustrate the issue with a typical macroeconomic model.5 The demand for real money 
balances (m − p) is given by

(16.7)
where the subscripts t indicate time periods; m is the logarithm of money; p, the logarithm of the 
price level;

, the expectation at time t of the price level at time t + 1; ν, an independent random error; and α
and δ are parameters. The central bank's money supply rule is

(16.8)
where λ is a parameter that governs the growth rate of money and ε is an independent random 
error. Expectations are formed rationally:

(16.9)
which says that the expectation of the price level is the mathematical expectation of actual 
prices conditional on all the information available at time t, including the model itself Ξt. Janssen 
(1993, pp. 137‐139) argues persuasively (p.350) that ‘rational expectations’ are not 
expectations at all, but a consistency criterion or solution concept analogous to the condition 
that markets clear — that is, that prices are assumed to take the values at which supply equals 
demand (see also Hoover 2009b). On that assumption,

, is not a proper variable — or at least not a causally efficacious one ‐ but an instrument for 
imposing a certain nonlinear restriction on the parameters of the model.
On that interpretation, the causally relevant solution to the model is given by (16.9) and

(16.10)
6

The model is nonlinear in parameters, and it is not modular. The appearance of the 
multiplicative coefficient αλ in (16.11) results from the imposition of rational expectations — A 
appears only because it is a parameter of the money‐supply rule (16.9). Thus, it is impossible to 
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perform Woodward's manipulation test of whether money causes prices, which calls for setting
m t in (16.9) to a fixed value come what may and, in effect, wiping out any causal arrows, say, 
from m t or v t to m t + 1; for that would remove the basis for the parameterization of (16.11). The 
causal structure reflected in (16.11) cannot survive such a breaking of the system.

Nevertheless, applying the definition of direct cause from the structural account tells us 
unequivocally that m t causes p t. Rather than calling for miraculous token manipulations, direct 
cause is implied by the constraints on the variables determined by the parameterization.

The model illustrates another important point. Consider a change in the central bank's money‐
supply rule — for example, an increase in the growth rate of money indicated by a higher value 
for λ. As equation (16.11) indicates such an intervention would alter the coefficient αλ in (16.11). 
As a result a statistical test of the relationship of money to prices based on (16.11) would be 
non‐ invariant. Woodward and others have treated invariance under manipulation of causes as 
the hallmark of a causal relationship, and they would, therefore, be tempted to reject the causal 
status of (16.11) (Woodward 2003, pp. 15‐16, ch. 6). What the example actually shows is that a 
more subtle approach to invariance is necessary.

Consider an intervention that changes prices through some other instrument than money; for 
example, consider an intervention that changes δ, then naturally (16.11) is non‐invariant. But
(16.9) is invariant. And this is a general rule in non‐modular systems with one‐way causes: the 
causal structure that determines a cause of an effect is invariant to interventions that alter the 
effect through some other mechanism than the cause in question; while the causal structure that 
connects a cause to an effect is not generally invariant to interventions that alter the cause of 
the effect in question (Hoover 2001, ch. 8; Cartwright 2007, pp. 99, 105). In fact, the differential 
invariance is (p.351) diagnostic of causal direction in non‐modular systems; and invariance in 
both directions is a test of modularity (see Hoover 2001, ch. 8, section 8.1). The more subtle 
analysis of invariance nonetheless supports Woodward's view that one can alter the effect by 
manipulating the cause; one cannot alter the cause by manipulating the effect.

16.3.3 Counterfactual analysis
Lewis explains causal relations by an appeal to counterfactuals and evaluates the truth of 
counterfactuals through a comparison of possible worlds. Mackie (1973, ch. 3) rejects the notion 
that counterfactuals per se have a truth value. He interprets them as enthymemetic or disguised 
arguments, which can be evaluated for validity once their structures are articulated and, 
additionally, for soundness once the truth of their premises is established or, at least, accepted 
‘for the sake of argument’.

The structural account of causation rejects Lewis's account of the counter‐ factual basis for 
causal relationships, but is compatible with Mackie's account. A causal model can be interpreted 
as a map of possible worlds. Unlike the possible worlds in Lewis's account of counterfactuals, 
causal models are precise about what changes are possible and what implications they have for 
the variables in the model. Consequently, they provide an instrument for the construction and 
articulation of the kind of arguments that Mackie sees as underwriting counterfactuals, and they 
avoid the hopeless ambiguities of Lewis's metric for the closeness of possible worlds.
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Naturally, we cannot avoid the question of the adequacy of causal models as representations of 
the real world or the need to choose among competing causal models. But these are the ordinary 
epistemological problems faced in scientific inference. They may be practically difficult and 
subject to other philosophical reservations; but, once we are satisfied that they have been dealt 
with adequately, counterfactual analysis itself is not additionally problematic.7

16.4 Counterfactuals and policy analysis
16.4.1 Impostor counterfactuals

In her recent book, Cartwright (2007, ch. 16) makes a case against the typical uses of 
counterfactual analysis in economics. Her theme is reflected in her title, Hunting Causes and 
Using Them; she suggests that the techniques appropriate to hunting causes are not the ones 
appropriate to using them in counterfactual analysis. The title, however, masks different levels 
of issues. (p.352) It seems off the mark. In the well known story, the recipe for jugged hare 
(usually wrongly attributed to the famous cookbooks of Mrs. Beeton or Mrs. Glasse) begins ‘first, 
catch your hare … ’ In an obvious sense, one surely needs to hunt causes (that is, to establish 
the existence of causal connections empirically) before one can use them for anything.

Cartwright's real concern is with what she calls ‘imposter counterfac‐ tuals’ — that is, cases in 
which the counterfactual that received empirical warrant is not the one that would appropriately 
warrant a counterfactual policy analysis. One of Cartwright's objections is simply an extension of 
her skepticism of modularity. Treated as an empirical strategy, Woodward's manipulation test 
should reveal the causal relationship if the causal structure is, in fact, modular. Cartwright does 
not deny that, but stigmatizes such systems as ‘epistemically convenient’, suggesting that such 
convenience is necessarily rare.

She also objects to the breaking or wiping out of causal connections as part of Woodward's and 
Pearl's approach to evaluating a causal relationship on the ground that it is the intact system, 
not the broken system, that it is needed to evaluate policy counterfactuals. The difficulty is that 
when implementing a policy, we may in fact not be able to manipulate a cause independently of 
other causes, so that the counterfactual that Woodward or Pearl seeks to evaluate is simply not 
a counterfactual that the policy analyst can rely on.

This objection connects to the distinction that Cartwright draws between implementation‐
neutral and implementation‐specific counterfactuals. An implementation‐neutral counterfactual 
is one that implies the same effect no matter what means are used to bring about the causal 
antecedent. An implementation‐specific counterfactual is one in which the effect is sensitive to 
the manner in which the causal antecedent is brought about. For example, in the causal 
structure connecting high blood pressure to coronary thrombosis in Figure 16.4c, the 
counterfactual question, ‘how much would a reduction in blood pressure reduce thrombosis?,’ is 
not well posed because the counterfactual is not implementation‐neutral. A reduction of blood 
pressure to a particular level using drug D2 will be more effective than one using drug D1, since
D1 has a direct promoting affect on thrombosis independent of its indirect inhibiting effect 
operating through its effect on blood pressure.

The structural account of causation suggests that implementation‐specific counterfactuals are 
the rule, in large measure because causal complexity and failures of modularity are the rule. 
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What Cartwright calls implementation‐neutral policies are merely policies that benefit from the 
special features of some causal structures that render them robust to the mode of 
implementation. In such structures, a variety of modes of determining a cause produce the same 
effect. Such robustness is practically useful in many cases and may be sought for that reason, 
but there is no reason to connect it to (p.353) the existence or non‐existence of a causal 
relationship in general. In fact, not infrequently a lack of such robustness is desirable. Pushing 
up on the plastic tab causes the cap to the medicine bottle to come off, but only when the plastic 
tab is aligned with the arrow on the bottle. The lack of robustness contributes to child safety.

Cartwright (2007, p. 254) assumes that we should prefer implementation‐ neutral policies. Yet, 
such a preference is not obvious. And, even if we did prefer them, we would need a more 
detailed, accurate causal representation to be sure that the policies were in fact implementation‐
neutral. For example, a simple model of the relationship of blood pressure to coronary 
thrombosis, BP → CT, might appear to be implementation‐neutral; but, if Figure 16.4.c, truly 
represents the causal structure, whether a fall in blood pressure is brought about by drug D1 or
D2 matters, the policy is implementation‐ specific, and we have made a mistake.

16.4.2 An illustration from monetary economics
We can illustrate some of the key issues and how the structural account deals with them using 
the model in equations (16.8)–(16.11).8 A monetary regime is defined by the parameterization of 
the central bank's money supply rule (16.9), so that any change in the parameter λ represents a 
new regime. Imagine that the model (16.8)–(16.11) is, in fact, a true representation of the 
economy; it is, what econometricians sometimes call the data‐generating process. Equations
(16.9) and (16.11), then describe the actual dynamic process of governing the evolution of 
money and prices. Of course, economists do not know the data‐generating process a priori. A 
central problem for econometrics is identification: how can we recover the parameters of the 
data‐generating process (or of some, close enough approximation) based on observations of the 
variables (here, of m and p)?

Many macroeconomists estimate so‐called structural vector autoregressions. Most of the details 
are not important here, but a few are worth noting. The structural vector autoregression 
technique gives up on learning about all of the parameters of the dynamic process, focusing 
instead only on those that relate the contemporaneous values of variables to each other, letting 
the relationships of lagged to contemporaneous variables be summarized by coefficients that 
may themselves be difficult‐to‐disentangle functions of the parameters of the data‐generating 
process. Estimates of these contemporaneous parameters are obtained under a maintained 
assumption about the causal order of the variables. For example, if we assume (correctly) that in 
the data‐generating process to hand, m t causes p t , we would be able to recover good estimates 
of the true parameters. But most economists make the necessary assumptions (p.354) about 
causal ordering on the basis of a priori guesswork, so that considerable doubt hangs about their 
estimates. This is an area in which the graph‐theoretic (or Bayes net) inferential techniques 
pioneered by Spirtes et al. (2001) and first applied to the problem of structural vector 
autoregressions by Swanson and Granger (1997) have considerable power.9
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Typically, once an economist has estimated a structural vector autoregres‐ sion, it is used to 
evaluate particular counterfactual questions: for example, treating (16.9) and (16.11) as the 
structural vector autoregression, we might ask, ‘what would be the path of prices (p) if money 
(m) were increased for a single period?’ Such a one‐period increase is referred to as a ‘monetary 
shock’ (or ‘impulse’) and the path of prices is referred to as an ‘impulse‐response function’. The 
shock is typically administered by setting the error term (here et ) to a positive value for a single 
period.

The effect of the shock is nonetheless the same as Woodward's or Pearl's experiments forcing a 
variable to take a particular value come what may. Typically, the implied breaking of causal 
relationships is restricted to the current period, so that future values of the money are not fixed 
but allowed to develop in line with the causal structure. However, one could in principle offer a 
series of shocks that had the effect of fixing money at every future time period. That this is not 
often done is partly pragmatic: the own dynamics of the shocked variable are independently 
interesting, so economists prefer not to suppress them.

It is also partly the result of the Lucas critique, the fact that in a model with rational 
expectations, the dynamics are not invariant with respect to changes in the policy rule.10 The 
Lucas critique is exemplified in the point previously made that the coefficient αλ shifts with 
changes in the monetary‐ policy rule (the setting of the monetary growth rate, λ), so that to 
know the path of prices (p), we need to know not only the value of m t but also how m t was 
brought about — that is, the value of λ. Impulse—response analysis is sometimes thought to 
circumvent the Lucas critique. The idea is that a shock to the random‐error term in (16.9) leaves 
the parameters untouched and, therefore, does not induce any failure of invariance in (16.9) or 
(16.11).

Impulse–response analysis provides a good example of what Cartwright criticizes as impostor 
counterfactuals. It is used to say something about the effects of monetary policy — for example, 
what would happen if the Federal Reserve raised the money supply by 1 percent? — and it tries 
to answer that question by treating the Federal Reserve's action as a shock to a stable system. 
The impulse–response function does answer a well‐posed counterfactual ques‐ (p.355) tion, but 
not the one for which we want an answer. The question it actually poses is, what if the money 
supply were to rise unexpectedly and arbitrarily, say, by 1 percent above its dynamic path and 
then fall back the next period by the same amount? It truly asks what would happen if there 
were a shock to the system. But monetary policy is not delivered by shocks. The increases in the 
money stock that the Federal Reserve typically delivers are reactions to economic conditions 
aimed at desired goals for economic variables. Furthermore, while the impulse—response 
function can trace out the effects of a random shock, it cannot trace out the effect of a change in 
systematic policy, since to deliver a series of shocks in one direction, for example, in order to 
force money to evolve along a desired path represents a violation of the randomness 
assumptions that govern the underlying representation of the error term (16.9). It is not that 
such systematic policy could not be analysed; it is that it cannot be analysed while assuming that 
the causal structure of the model, which includes the model of the random errors, is constant 
and — at one and the same time — changes.
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In a discussion of the Great Depression, the economist Christopher Sims (1999) recognizes that 
random shocks to error terms could not adequately address the counterfactual question, what if 
monetary policy in the 1930s had adopted the rules that characterized it in the 1990s? He 
obtained econometric estimates of a model more complex than, but similar to, (16.8)– (16.11) for 
both the 1930s and the 1990s. To evaluate the counterfactual, he, in effect, replaced the 
monetary‐policy rule (16.9) for the 1930s by the one that characterized the 1990s. For our 
purposes, think of this as simply changing λ to a new value — while holding the estimated value 
of αλ and the other parameters of (16.11) constant at values appropriate to the 1930s. The 
counterfactual is evaluated by setting m and p in the first period to the values that they actually 
took at the onset of the Great Depression and then feeding the random error terms from the 
original estimates into the model with the alternative monetary‐policy rule. (Notice that if this 
procedure were undertaken with the original monetary‐policy rule, it would necessarily have 
simply generated the actual path for money and prices over the Great Depression.) With such 
counterfactual estimates, Sims felt free to discuss whether modern central bankers would have 
produced better outcomes.

The ordinary impulse–response analysis was a true impostor counterfac‐ tual, in that it answered 
a counterfactual question, but the wrong one. In contrast, Sims's counterfactual experiment is 
simply incoherent. If, as he holds, the existence of rational expectations subjects the model to 
the Lucas critique, then one cannot simply substitute one monetary‐policy rule for another. The 
incoherence is displayed in simultaneously assuming that λ may change while α and αλ remain 
constant. The difficulty is the non‐modularity of the causal structure. Were the causal structure 
modular, as it might be if (p.356) rational expectations were not an element of the data‐
generating process, then Sims's method would be coherent.

Hoover and Jordá (2001) offer a different counterfactual analysis. Rather than replacing the 
monetary rule of the 1930s by that of the 1990s, they simply transfer the entire model of the 
1990s to the 1930s by setting the initial values of the 1990s model to their values at the onset of 
the Great Depression and then feeding the estimated random error terms from the 1930s model 
into the 1990s model. This procedure makes sense if the elements of the model other than the 
particular shocks and the monetary‐policy rule have not changed between the two time periods. 
The counterfactual question that it answers is well‐posed and not an impostor. Essentially, the 
procedure is that same as if we had changed λ in the estimated 1930s model and, unlike Sims, 
allowed αλ to take a new value, holding α constant. The central message of Hoover and Jordá's 
approach is that one should not ignore non‐modularity but account for it. Accounting for it raises 
difficult, but not necessarily insuperable, inferential problems, which — fortunately — are not 
our direct concern here.

16.4.3 Internal and external validity
Holding α constant is the emblem in our expository model for the constancy of the rest of the 
structure of the model between the two periods. The assumption that we are justified in doing so 
is by no means automatic and raises the classic question of internal versus external validity. The 
issue is whether a causal relationship (indeed, empirical relationships of other kinds as well) 
undercovered in a specific context can be transferred and assumed to hold in other contexts. 
Superficially, it might appear to recapitulate the distinction between implementation‐specific 
and implementation‐neutral counterfactu‐ als. The implementation dichotomy comes down, first, 
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to whether or not an empirically warranted causal structure supports the counterfactual; 
second, to whether the detail in the representation of that structure is fine enough to distinguish 
between alternative policy implementations; and, finally, to whether the target effects are, in 
fact, robust to different implementations. In contrast, external validity comes down, first, to 
whether there is homogeneity in the background conditions between implementations in the two 
situations; and, second, to the domain of possible interventions.11

(p.357) In the case of the monetary‐policy counterfactual, there is no implementation‐neutral 
counterfactual possible: to know what effect a change in the money stock causes we must know 
how it comes about — an increase in m t from a shock to ε t has a different effect than one from a 
rise in λ. Yet, Hoover and Jordá's counterfactual analysis trades on external validity. In order 
that the 1990s may speak to the Great Depression, they assume that the actual history of the 
variables and the causal topology are the same in both periods. And they assume that the 
parameterization, except for the parameterization of the monetary‐policy rule itself (the value of
λ) is also the same.

Hoover and Jordá could easily be wrong: the conditions that underwrite external validity may 
fail. But that is an issue on which empirical evidence can be brought to bear. It is not a special 
problem for causal analysis but a more general problem for the import of empirical results 
derived in one set of circumstances (say, in a particular experiment) for other sets of 
circumstances. Our current concern is not with the problem of external validity but with the 
problem of using causes in situations in which the external validity of the causal model is not in 
question.

A good deal of Cartwright's skepticism about causal knowledge in economics and — one 
presumes — in other fields is apparently generated by a lack of sufficient respect for her own 
distinction between hunting and using. She writes as if the manner in which causes are hunted 
limits their possible uses. The structural account, however, clarifies that there are a variety of 
things we typically need to know to have a useful representation of causal structure. We need to 
know the causal topology — essentially the pattern of arrows connecting variables or, 
equivalently, the parameterization (for example, that the parameter space includes α and λ and 
not, say, θ = λ λ). We also need to know the functional interrelationship of the parameters, 
including the manner of potential nonmodularity. And we need to know, for any real‐world 
counterfactuals, the actual values of the parameters. The structural account tells us both what 
we need to know and where to slot such knowledge as we have obtained into the representation 
of causal structure.

Cartwright (2007, p. 9, passim) characterizes her position as ‘causal pluralism.’ The structural 
account aims at a high enough level of generality that any coherent approaches are nested 
within it. Yet, it is compatible with substantial methodological pluralism: different methods may 
supply different elements of the knowledge needed to fill in the causal structure. For example, 
Bayes net methods, as discussed earlier, are helpful in mapping the causal topology. But there 
are situations — well known to their advocates — in which they are not discriminating, and they 
do not directly address parameter values. Hoover (2001, ch. 8) offers methods that use patterns 
of invariance and noninvariance across regime changes that can sometimes resolve the 
equivalent causal topologies allowed by Bayes net methods. Hoover and Jordá (2001) 
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demonstrate in an (p.358) enriched version of the model (16.8)–(16.11) that knowledge of 
interventions in the monetary‐policy rule (not even the fine details, but simply the timing of 
when they occur) may allow us to recover the functional relationships among parameters of 
nonmodular causal systems. Their approach is an empirical analogue to Woodward's use of 
manipulations in the evaluation of causal counterfactuals, although it does not involve breaking 
of causal arrows, but in the manner of Section 16.3 above, considers manipulations in a 
conserved causal topology.

These empirical methods, at various points, all involve untested assumptions — a number of 
which have been mentioned already with respect to Hoover and Jordá's counterfactual 
experiments. But then so does all empirical investigation. These assumptions may not be tested 
in a particular study, but they are not necessarily untestable or, at least, not necessarily beyond 
empirically based criticism. They are not, however, all jointly testable at the same time. Only a 
thoroughly destructive skeptic would be unwilling to make some assumptions that seem 
reasonable and reliable until there exist reasons to doubt their truth more compelling than the 
mere possibility that they could be false.

16.4.4 Epistemic opportunism
While Cartwright takes the fact that some methods work well only for modular, ‘epistemically 
convenient’ situations to be a significant drawback, from a practitioner's point of view it is 
surprising, but welcome, how often the real world seems to be convenient enough to make 
empirical progress with relatively simple methods. Cartwright is certainly correct that 
modularity is not a general property of causation, but it is common enough — to a reasonable 
approximation — that methods that require it are often practically effective. And where 
modularity fails, there are other methods, such as the methods based on invariance testing 
advocated by Hoover (2001) and methods built on similar principles used by Hoover and Jordá 
(2001). Some nuts have not yet been cracked; some perhaps never will be. Rather than decrying 
methods that require ‘epistemic convenience’ generally, it would be better to embrace epistemic 
opportunism: articulate causal models by any means necessary. The structural account gives us 
a systematic way to interpret what appropriate methods have accomplished.
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Notes:
(1) Nor is this view of the importance and utility of causal knowledge limited to Hume's 
economic and political writings — see Hume (1739, pp. 73, 89; 1777, p. 76).

(2) Woodward restricts attention to acyclical or recursive systems in which there is no mutual 
causation and no causal chains that turn back on themselves.

(3) In light of the fact that Cartwright sees ‘direct control’ as highly restrictive notion and the 
possibility that her view arises partly from an assumption that direct control requires human 
agency, it is worth reiterating that Simon counts ‘nature’ as among the ‘experimenters’ who can 
exercise direct control (Cartwright 2007, p. 252, fn. 27; also p. 205).

(4) And, indeed, Simon is not free of the potential confusion; for he refers to the elimination of a 
causal linkage as the setting of a coefficient to zero; but there is a difference between a 
parameter having no value and having a range of admissible values which happens to include 
zero. Causal analysts frequently — and no doubt inadvertently — equivocate on the meaning of 
zero, failing to distinguish these two cases. See Hoover (2001, p. 45, esp. fn. 13). In the cited 
passage, Woodward contrasts switches and dials: switches break causal connections, while dials 
modulate the strength of causal connections. The structural account sees this as a distinction 
without a difference.

(5) This model is adapted from Hamilton (1995, pp. 326–332).

(6) See Hoover (2001, pp. 64–65) for the derivation of the solution to a slightly more general 
version of this model.

(7) Spirtes (2001) provides an extensive account of the using of information encoded in 
conditional independence relationships of variables as a means of establishing facts relevant to 
causal inference. Hoover (2001, chs. 8–10) provides both a methodological account and case 
studies of causal inference based on interventions of a type that induces structural change in 
causal systems.

(8) Equations (16.8)–(16.11) represent a simplified version of an actual econometric model used 
to conduct counterfactual analyses of US monetary policy (see Hoover and Jordá 2001).

(9) See Demiralp and Hoover (2003), Hoover (2005), Demiralp, Hoover, and Perez (2008), and 
Hoover, Demiralp, and Perez (2009) for further development, evaluation, and applications of 
these techniques to economic problems.

(10) Lucas (1976); Hoover (1988, ch. 8, section 8.3; 2001, ch. 7, section 7.4).

(11) Hoover (2009a) frames the notion of background conditions in a manner consistent with 
Woodward's (2003, pp. 145–146) emphasis on contrastive focus using John Anderson's (1938/
1962) notion of a causal field. The causal field is the set of standing conditions that, while they 
may themselves be causes, do not change relative in relation to our particular causal interests 
and, so, define the boundary conditions for a particular causal relationship. Causal relations may 
be evaluated differently in different causal fields. As a results, causal relationships may be 
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represented or modeled in a variety of (ultimately non‐contradictory) ways depending on our 
differing pragmatic aims.
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Abstract

This chapter explores what the error term represents in structural models in econometrics 
and the assumptions about the error terms that are used for successful statistical and 
causal inference. The error term is of particular interest because it acts as a coverall term 
for parts of the system that are not fully known about and not explicitly modelled. The 
chapter attempts to bring some of the key assumptions imposed on the error term for 
different purposes (statistical and causal inference) and to ask to what extent the 
conditions imposed on the error term can be empirically tested in some way.

17.1 Introduction
Structural econometrics attempts the extremely difficult task of making causal inferences from 
non‐experimental data. Its core approach, which in its modern form dates from the ground‐
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breaking paper of Trygve Haavelmo (1944), is to postulate a statistical model that carries 
structural (or causal) content. The model may be postulated from theory, from observations and 
from other background knowledge. One then uses sample data to test its observable implications 
(to check it is adequacy) and to infer remaining unknown features (for example, to estimate 
parameters if the model is parametric).1

In a highly general form, we can denote a structural model in the following way. Denote the 
variables of interest to the econometrician as a vector of random variables Z, some of whose 
components (though not necessarily all) are observable. The probabilistic part of model 
postulates conditions on the joint probability distribution of Z. Structural content can be 
introduced in several ways. For example, some can be introduced with a partition of Zinto
exogenousvariables, X, and endogenousvariables, Y. Though not all concepts (p.362)

Table 17.1 A general characterization of a structural model
Probabilistic 
assumptions

Z ~ D(Z) where the joint distribution D(Z) is assumed to have certain 
properties (e.g. independence among certain variables, a certain 
distributional form, etc.)

Structural 
assumptions

Z = (Y X), where Y is a vector of endogenous variables, X is a vector of 
exogenous random variables (where the exogeneity concept has structural 
not just probabilistic content) Structural content assigned to probabilistic 
relations (e.g. conditional independencies). G(Z, U) = 0, i.e. a set of 
functional relations (with structural interpretation) that hold among the 
components of Z, where U denotes an unobserveable vector of ‘error’ terms.

of exogeneity are structural,2 in structural models the exogeneity assumption often assumes (in 
some form) that endogenous variables are causally determined by other variables in the model 
while the exogenous variables are not. Further structural content can be introduced by 
interpreting conditional probabilistic independencies among the variables as indicative of causal 
relations3or assumed functional relations among the variables, where these functional relations 
carry some structural interpretation (as would typically be the case when the functional 
relations are derived from economic theory). Importantly, functional relations are also a way 
that error terms are introduced to models, since it is highly unlikely that our knowledge of 
functional relations will be so powerful as to permit us to claim that exact deterministic relations 
hold among (independently defined) random variables. Thus the functional relations will 
typically explicitly represent some omitted content using a vector of error terms, U, to sustain 
the deterministic relation postulated among the other random variables. In summary, the 
general structural model can be presented as shown in Table 17.1.
There is a lot of work in econometrics considering the problems of statistical inference — and to 
a lesser extent causal inference — for general models specified in a way similar to that above. 
For just two examples, see Hendry (1995) and Spanos (1999). As much of this work is highly 
technical, I believe there is space for a work that attempts to keep things simple, yet which 
nevertheless gives a taste of some of the difficult issues facing econo‐ metricians in causal 
inference. In this paper, therefore, I try to raise some of the important issues by looking at the 
error terms in simple, textbook models. Specifically, the chapter looks at the simplest linear 
models with errors‐in‐the‐ equations and, in keeping with their continued use in econometrics, it 
looks at simultaneous equations models. Of course, most structural equations models (p.363) in 
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econometrics are more complicated than this, and as a result it could be argued that what 
follows is of little relevance. This I think is too uncharitable, as any structural model which 
postulates deterministic functional relations among observable random variables will include 
error terms to represent omitted content. Structural equation models of this sort are widely 
used in econometrics and the philosophical and methodological issues raised here are relevant
mutatis mutandisto these more complex models.

Finally, it should be emphasized that what follows is not intended to present a way of doing 
econometric modelling. I am not claiming — though I believe that claims along these lines can 
be reasonably made — that looking at the error term is the right or best way to build or select 
an econometric model. To do this would require a more general and technical approach. Instead, 
the aim of this paper is to be expository, to highlight the kind of issues one ought to be aware of 
when doing econometrics or when trying to understand some of the philosophical challenges to 
doing structural modelling in econometrics. It does this by considering what the error term 
represents in very simple structural models in econometrics and explores some of assumptions 
about the error terms that are used for successful statistical and causal inference. Ultimately, 
this is important for understanding the scope of econometric models. The error term is also of 
particular interest because it acts as a cover‐all term for parts of the system that are not fully 
known about and not explicitly modelled. Therefore, there is always a danger that the error term 
hides important information which should have been modelled, and which may render the model 
inadequate in certain ways. That said, as the general model above shows, the error term is 
merely one part of a more general model, and tests on the error term are ultimately tests of the 
general model proposed. Thus, the more important point, emphasised by Spanos and others, is 
that one should test the general model assumed against observation.

The structure of the chapter is as follows. The first part presents a simple econometric model, 
like that found in introductory textbooks in econometrics, and sets out some of the assumptions 
imposed on the error term for successful statistical inference, in particular, those well‐known 
conditions required for the ordinary least squares (OLS) method of estimation to yield 
‘good’ (consistent, unbiased, etc.) estimates. These assumptions are well‐known and widely 
discussed. The chapter then asks which of these assumptions can be tested from observations on 
the residuals4 for the estimated model. Given the central role of the identification problem for 
simultaneous models in econometrics, the second part of the chapter investigates what 
conditions may be imposed on the error term in order to have an identifiable model. (p.364) 

Again, as in the previous section, the chapter considers to what extent these conditions imposed 
on the error term can be tested. The third part of the chapter briefly presents a causal 
interpretation of the simultaneous equations model based on Herbert Simon (1953). Under this 
reading the error term is seen to denote the net impact of causal factors not explicitly modelled 
in a mechanism. In this section, the chapter also presents a restriction on error terms which is 
necessary for causal inference. To finish, the chapter concludes with an overview of conditions 
imposed on error term in (simple) econometric structural models. It notes that one assumption 
in particular, the orthogonality assumption, that the error terms are uncorrelated with the 
explanatory variables in a model, plays an important role for statistical and causal inference and 
for securing identifiability.
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17.2 The role of the error term in estimation
To provide a concrete focus, consider the following simple ‘textbook’ simultaneous equations 
supply and demand model. This is a simultaneous equation model and as such represents the 
equilibrium relations between price and quantity as determined by underlying dynamic supply 
and demand mechanisms. For the purposes of this discussion, I assume that the equations have 
been chosen by appeal to theory and knowledge of the market being modelled.5

(17.1)

(17.2)
In this model, qdenotes the equilibrium quantity of a good transacted, pdenotes the equilibrium 
price for the good, idenotes consumer income, cdenotes production costs, u 1 and u 2are the 
error terms that denote factors not explicitly modelled in the supply and demand equations. In 
this simple model, assume that q, p, iand care observable. The error terms denote omitted 
factors; the error terms are unobservable. In this model, qand pare determined in terms of i,
cand the error terms. The population parameters α, β, γ and δ are unknown. The functional form 
is assumed to hold and i, cand the error terms are assumed to follow a particular joint 
probability distribution.

To relate this model to the general structural model above, in this model we have Z=(XY)where
X = (ic)and Y = (q p)and U=(u 1 u 2). The functional relations (17.1) and (17.2) are the two 
equations of G(Z, U) = 0. The probabilistic assumptions on Z, follow from the assumptions on the
(p.365) distributions of X(iand c), those on Uand the assumed relationships of (17.1) and (17.2). 
The model is structural in virtue of the assumption that income and costs are not determined by 
the equilibrium quantity and price (the exogeneity assumption) and the assumption the two 
functional relations (17.1) and (17.2) hold in virtue of the demand and supply mechanisms that 
generate the equilibrium relations.

For the purposes that follows, I assume ‐ perhaps artificially ‐ that the model has been selected 
in a reasonable way (either from observation or by good background knowledge). At this stage 
then the econometrician's inferential problem is to infer the parameter values from sample 
observations of q, p, iand c.

The simplest estimation method for estimating linear equations in econometrics is the ordinary 
least squares (OLS) method. This approach picks estimates for the parameters that minimize the 
sum of the square deviations of the estimated values for the left‐hand variable from the observed 
values for that variable. Provided certain assumptions are met, OLS provides consistent, 
unbiased and efficient estimators.6 Of these assumptions, some directly involve the error terms. 
These are: (i) errors have a constant variance (are homoscedastic’); (ii) errors are normally 
distributed; (iii) errors are uncorrelated with the right‐hand variables (orthogonality 
assumption). So in the example above OLS cannot be applied because p,being determined in the 
model, is unlikely to be orthogonal to the error term in either equation.7Therefore, to estimate 
this model one first solves for the reduced form equations (the solutions for pand q):
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(17.3)

(17.4)
where

(*)
Now, if u 1, u 2 are both uncorrelated with cand i, have mean zero, are normally distributed and 
have constant variance then it follows that v 1 and v 2 meet all of these assumptions also. Then 
OLS can be applied to the reduced form equations to yield good (consistent, unbiased) estimates 
for parameters α′, β′, γ′ and δ′. Then consistent estimates for α, β, γ and δ can be obtained by 
using formulae (*) above.8 This method of estimating parameters for simultaneous equation 
models is called ‘indirect least squares’ (ILS).

(p.366) What is important to note here is that although a different estimation method has been 
used for the simultaneous model (ILS rather than OLS) similar assumptions have been imposed 
on the error terms, u, as would have been if OLS were a feasible estimation technique. 
Therefore, the assumptions on the error terms that ensure OLS yield good estimates in the non‐ 
simultaneous equations model, are also assumptions on the error terms that ensure ILS yields 
consistent9 estimates in the simultaneous equations model.10 Of course, the desirable properties 
of ILS (and OLS) estimators depends on these assumptions being met. I now consider these 
assumptions, their significance, and how they might be tested empirically.

The first assumption is that the error terms have constant variance. If this assumption is not met 
then OLS estimates are no longer efficient, though they remain unbiased and consistent.11 There 
is a generalization of OLS, called ‘generalized least squares’ which may — provided there is 
information about the changing variance of the error — be used to provide efficient estimates. 
The second assumption is that the error terms are normally distributed. Interestingly, some 
desirable properties of OLS, such as consistency and unbiasedness hold independently of this 
assumption. Nevertheless, there are important advantages to the normality assumption, since it 
provides the basis for the distributions for a whole host of important test‐statistics. If the 
normality assumption is not met then the distributions of the test statistics and of the estimates 
will almost certainly differ.12 This is a practical problem, however, and in principle if non‐normal 
distributions were specified for error terms it would be possible to numerically construct new 
test statistics and new distributions for the estimates. In conclusion, though these two 
assumptions on the error terms are important, their failure does not jeopardise the most 
desirable properties of the OLS estimates. Though this sounds promising, however, one should 
worry whether one can infer that it is theseassumptions that have failed. I discuss this below.

The third and last assumption is the orthogonality assumption, that the right‐hand variables are 
uncorrelated with the error term. If this assumption (p.367) is not met then the OLS estimates 
of the slope coefficient of an explanatory variable will be biased and inconsistent. Therefore, it is 
a key assumption that the error term must meet in order for the OLS estimates to be acceptable.
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Having set out the significance of these three assumptions on the error terms for OLS 
estimation, I now consider to what extent these assumptions can be empirically tested. When 
attempting to empirically investigate error terms, one place to look is at the residuals for an 
estimated model, that is, at the differences between the estimated value for the left‐hand 
variable and the actual value it takes. If all of the assumptions of the model are met then the set 
of residuals are a sample for the error terms. In this way, the model makes predictions about the 
likely samples of residuals. Investigating the sample residuals can then give useful information 
about the error terms and whether the assumptions about them hold. In the case of normality, if 
one could be sure that all the other assumptions were met, then one could infer from deviations 
from the normal distribution to likely failure of the normality assumption of the errors. Likewise 
with the constant variance assumption, if there were signs of changing variance, there one 
would — provided one were sure all the other assumptions of the model were met — have 
reason to suspect that this assumption for the errors had failed. However, there is a key problem 
here in that one does not typically know that all the other assumptions hold. Thus when one has 
a sample that would be highly unlikely under the assumed model (cf. a low p‐value for a null 
hypothesis) then one has reason to suspect that at least one of the assumptions of the model is 
false, but one cannot infer which has failed. This is a form of the Duhem—Quine problem (see 
Ariew 2007) that one cannot infer from a false implication of a hypothesis which assumption(s) 
of the hypothesis fail. This problem is one reason why writers in econometric methodology, like 
Spanos (1999, p. 739), stress the importance of model specification which tests the model as a 
whole. If one has an incorrectly specified model, then the assumptions of ones statistical tests 
will probably not hold and the tests will be unreliable guides to inference.

The orthogonality assumption is also difficult to test. This can be seen by considering the 
simplest model of all, a regression model with only one explanatory variable, x.

(17.5)
In this case, the sample correlation between residuals and the sample values of xwill be zero by 
definition of the OLS estimate for α. Hence, regardless of the sample, in this simple regression 
model, the residuals are always uncorrelated with the right‐hand variable. Therefore, in this 
case there is no way to test from residuals whether or not the assumption that xis uncorrelated 
with the error term in the model is met. In regression models with more than one right‐hand 
variable, the more general result is that the residuals are uncorrelated with the sum of the 
products of the right‐hand variables with the OLS estimates of their (p.368) slope coefficients. 
Therefore, in these cases the residuals may be correlated in the sample with the one or more of 
the right‐hand variables. Whether or not, however, such correlations can be used to make 
inferences about the covariance between the error term and the right‐hand variables also 
depends on whether there is any covariance between the right‐hand variables.

Econometricians have developed methods for dealing with this problem. They have developed 
tests for whether variables are suitably orthogonal to the error and methods for consistent 
estimation where an explanatory variable is not orthogonal to the error term (instrumental 
variable estimation). Crucially, these methods tend to work by augmenting the model in some 
way so that the variable whose orthogonality with the error is suspect, is itself modelled in 
terms of other variables. For instance, in the case where an explanatory variable is correlated 
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with the error term, the instrumental variables method attempts to find an additional 
‘instrumental’ variable which is correlated with the explanatory variable but not the error term, 
which can be used in place of the non‐orthogonal variable for estimation. In short, testing for 
orthogonality failures between regressors and error terms is difficult, and generally requires 
using methods more sophisticated than the mere analysis of residuals. Importantly, it appears to 
necessitate a specification testing, that is, trying to find out if some important variables have 
been omitted in the model, variables whose explicit inclusion could overcome a failure of 
orthogonality.

17.3 The error term and identifiability
Identifiability is an important condition for performing statistical and causal inference in 
econometrics. If a model has unknowns that cannot be inferred uniquely from observation, then 
(that part of the model) is said to be unidentifiable. The classic, historical example of non‐
identifiability in economics is that of measuring supply and demand curves from observed 
market move‐ ments.13 The problem is that observations of price and quantity transacted in a 
market are the result of both supply and demand mechanisms acting together. Therefore, the 
identification problem in this case is how to attribute any observed shifts in observed price and 
quantity of goods sold to supply and/or demand changes. The solution to the problem is to 
introduce some additional background ‘a priori’14 constraints (using background knowledge) to 
further limit the number of possible models that are consistent with observation.

(p.369) The simple example presented above of a simultaneous equation model is identifiable 
because one can solve uniquely for the structural parameters from the reduced form parameters 
(the coefficients in equations (17.3) and (17.4) above) which can be estimated from observation. 
In this example, identifiability follows from the form of the equations (17.1) and (17.2) which 
have sufficiently few unknown parameters so that their values can be solved for from the 
estimates of coefficients in (17.3) and (17.4). Here identifiability is being secured by the a priori
exclusionof variables from equations (17.1) and (17.2). This method of ensuring identifiability in 
simultaneous equation models is generalized in the well‐known Rank Conditionfor 
identification.15This is a condition on the matrix of parameters in the model which if and only if 
met ensures it can be solved for from the reduced form equations (which can be estimated using 
OLS). This condition is necessary and sufficient for identifiability by using exclusions of 
variables from equations. What is important about identifiability by exclusion here is that it does
notimpose any conditions on the error terms in the model. All that matters for identifiability 
secured in this way is that there be sufficiently many exclusions of variables from the equations 
in the model.

This may seem to suggest that there is no interesting connection between identifiability and 
error terms. However, this is incorrect, since identifiability can also be secured by imposing 
constraints on the covariance matrix of the error terms in a model. A well‐known example is that 
of the general (non‐ simultaneous) recursive model:
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In this model only the first equation is identifiable by exclusions.16 The other equations do not 
meet the rank condition and are thus not identifiable without some further constraint. The 
natural additional constraint to impose here is to assume that the error terms in the equations 
are orthogonal to each other (i.e. have a diagonal covariance matrix) with which the model 
becomes fully identifiable. So in this example identifiability of the model depends on an 
additional assumption that the error terms are orthogonal. Unlike the previous simultaneous 
equations example, identifiability here rests in part on the error terms meeting an orthogonality 
condition.17

(p.370) Interestingly, if one uses OLS to estimate the coefficients in the equations in this model 
then the required orthogonality assumption for OLS implies given the functional form of the 
model that the errors are orthogonal to one another. Therefore, using OLS to estimate this 
model implicitly assumes the orthogonality assumption for the error terms, and this renders the 
model identifiable. Unfortunately, however, this implicit orthogonality assumption is not testable 
from residuals in this case. This is because, as in the case of the two variable regression model 
above (17.5), the residuals that are generated by using an OLS estimation technique will be 
uncorrelated by constructionwith the right‐hand variables, and thus, given the assumed 
functional form, will be uncorrelated by construction with one another. Therefore, regardless of 
the data, the residuals that result from OLS will be mutually uncorrelated. Therefore, analysing 
the residuals will not give any indication as to the correctness or otherwise of the assumed 
orthogonality of the error terms in the model. Justification of the implicit orthogonality 
assumption which ensures identifiability must be provided in some other way.

This type of problem, that constraints used for identification are not directly testable from the 
observations used to parameterise the model, is common. In fact, it is unsurprising since 
constraints used to secure identifiability are provided to supplement the insufficient power of 
the observations for determining a unique model as the most empirically adequate (i.e. solve the 
identification problem). It is only where there is a surplus of identifying constraints, that is, 
where not all the identifiability constraints are required for inferring a unique model that the 
observations used to pick the unique model can be also used to test surplus identifying 
constraints. In such a situation, the model is said to be overidentified. The example just given is 
not overidentified, it is just identified, that is, the observations and the orthogonal error terms 
are together just sufficient to pick out one unique model. Therefore, the chosen model is tailor‐
made to have uncorrelated residuals, since without this assumption, there would not be a unique 
model that fits observation. In short, with the exception of over‐identified models, testing 
identifiability restrictions requires some observations or information in addition to the 
observations used to parameterise the model. This is the case of the orthogonal errors 
assumption used to identify the recursive model presented here.

17.4 The causal interpretation of the error term and its role in causal inference
So far, the chapter has ignored the causal aspect of structural models. Yet what is distinctive 
about structural models, in contrast to forecasting models, is that they are supposed to be — 
when successfully supported by observation — informative about the impact of interventions in 
the economy. As such, they (p.371) carry causal content about the structure of the economy. 
Therefore, structural models do not model mere functional relations supported by correlations, 
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their functional relations have causal content which support counterfactuals about what would 
happen under certain changes or interventions.

This suggests an important question: just what is the causal content attributed to structural 
models in econometrics? And, from the more restricted perspective of this paper, what does this 
imply with respect to the interpretation of the error term? What does the error term represent 
causally in structural equation models in econometrics? And finally, what constraints are 
imposed on the error term for successful causal inference? In order to begin to answer these, I 
first present a simple causal semantics, developed by Herbert Simon (1953) especially for the 
kind of simultaneous (and non‐ simultaneous) equations models looked at in this chapter.

In Simon (1953) a formal definition of casual order for structural equations models is presented. 
To obtain the causal order, one first distinguishes between two types of variables in the model, 
endogenous and exogenous.18The endogenous variables are those that are determined by the 
model (for example qand pin the simultaneous equations example above), while the exogenous 
variables (for example income, i, and cost of production, c) and the error terms have values that 
are taken as given, from outside the model. One then solves for the endogenous variables one‐
by‐one using the fewest equations required to solve for them; this stipulates an order for the 
solution of the endogenous variables. Any variable used to solve for and solved for prior to 
another variable causally precedes it. One variable directly causally precedes another if it 
causally precedes it and if it appears in the same equation as the other variable. The resulting 
ordering among the variables is the causal order.19

Consider the earlier supply and demand example, where one categorizes qand pas endogenous 
and iand cas exogenous.

Here one constructs the causal order by noting that qand pcan only be solved for together in 
terms of iand cand the error terms, using both equations. Moreover, since both iand cappear in 
an equation with qand p,both are direct causes of pand q.Also, since pand qare both determined 
together (in the same minimal set of equations) they are ‘co‐determined’. Thus, the (p.372) 

causal order can be represented by (where the arrows denote direct causal precedence):

Simon's causal order yields an intuitive result for the example since it makes explicit that 
income and production costs are direct causes of equilibrium price and quantity, while 
equilibrium price and quantity are co‐determined, just what one would expect for an equilibrium 
model of supply and demand.

Although Simon's causal order helps to make explicit the content of the functional form of 
structural equations, it is limited progress because it is merely a formal relation among the 
variables defined from the functional form of the equations. Despite its ‘causal’ label, as it 
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stands it says nothing about the content of ‘cause’. Luckily, Simon helps by briefly discussing 
how variables and equations should be interpreted. Simon states that the exogenous variables 
should be taken to denote factors that are directly controllable by an ‘experimenter’ or ‘nature’, 
and endogenous variables taken to denote factors that are indirectly controllable. Equations are 
taken to denote mechanisms and error terms are taken to denote the joint role of omitted 
directly controllable factors in a mechanism. The core idea is that the experimenter or nature 
has hypothetical20 direct access to the directly controllable factors and is free to change them. 
Changing these then has an impact on the other indirectly controllable factors in virtue of the 
mechanisms that connect the indirectly controllable factors to the directly controllable factors. 
Under this interpretation, the causal order arises from the joint action of mechanisms, and maps 
out how changes in a factor will ‘in general’ lead to changes in other factors. It sets out that 
changing a cause ‘in general’ changes its effects, whereas it is possible to change an effect 
without changing one of its causes.21 It is this (p.373) related series of possible changes under 
direct changes that is represented by the formal ordering relation.

With some causal semantics in place, the causal interpretation error term can be investigated in 
some more detail. According to the brief discussion above, the error term denotes the net 
impact of factors in a mechanism, those not explicitly modelled.22 Yet what does it mean? Can 
any variable be omitted from an equation and simply ‘brought into’ an error term? The answer is 
quite simply ‘no’, as the following example illustrates.

Suppose one starts with the earlier simultaneous equation example.

Now imagine that one were to ‘omit’ price from the demand equation, by bringing it into the 
error term (let

), to obtain a new first equation.

For these modified equations, the causal order obtained following Simon's method is:

This causal order is different from that of the original system, even though the first model was 
assumed in constructing the second. By omitting price from the demand equation and bring it, 
as an omitted factor, into the error term changes the causal meaning of the model. Most 
strikingly perhaps, there is no longer an equilibrium relation between price and quantity but 
instead price is a direct cause of quantity transacted. This raises a worry, that the error terms in 
a model should not include as omitted factors, factors like pbecause (p.374) if they do then the 
apparent causal semantics of the model may misrepresent the underlying system.
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Therefore, the causal interpretation of the error term as the joint impact of factors that are 
simply ‘omitted’, i.e. not explicitly modelled is too weak since it does not rule out cases like that 
just presented. To clarify the causal interpretation of the error term, one could perform an 
analysis to attempt to find the weakest interpretation of the error term where the causal 
ordering relations among the explicitly modelled variables remain unchanged (if one were to 
bring out our bring in factors from the error term).23 However, for my purposes here, I will 
simply assume that the factors omitted in the error terms are such that if they were to be 
introduced explicitly into the model they would be denoted by exogenous variables. This 
requires that factors omitted from the model, whose net impact is represented in the error 
terms, be causally prior to the factors whose causes are being modelled by the equations. 
Though this is stronger than necessary, it is intuitive and avoids the difficulty presented above.

To finish this section, I now consider briefly a key constraint that may be necessary for the error 
term to meet to use the model for causal inference. To keep the discussion simple, I look only at 
the simplest model.

Interpreting this model using Simon, where xis exogenous and yendogenous, amounts to reading 
the right hand variable, x,as a direct cause of y, and udenoting the net impact of a set of omitted 
direct causes of y. Here the aim is (as in the problem of statistical inference) to infer the 
unknown value of agiven observations of yand x.In this case though, since the problem is one of 
causal inference, I consider a simple experiment as an ideal way of inferring a.

The obvious experiment that comes to mind is to vary x,to see by how much ychanges as a 
result. This sounds straightforward, one changes x, ychanges and one calculates aas follows

Everything seems straightforward. However there is a concern since uis unobservable: how does 
one know that uhas not also changed in changing x? Suppose that u does change so that there is 
hidden in the change in ya change in u,that is, the change in yis incorrectly measured by

And thus that ais falsely measured as

(p.375) Therefore, in order for the experiment to give the correct measurement for ·, one needs 
either to know that uhas not also changed or to know by how much it has changed. Since uis 
unobservable this cannot be known by observation. This leaves as the only option to know — in 
virtue of the knowledge of how the change was brought about ‐ that in changing x, uhas not also 
been unwittingly changed. Intuitively, this requires that it is known that whatever cause(s) of
xwhich are used to change x, they are not causes of any of factors hidden in u. This is to require 
that xhave what Cartwright (1989, chap. 1) calls an ‘open back path’ with respect to y, that is, a 
cause which only causes yvia x. The open back path provides a channel by which xcould be 
varied to measure its impact on y. Such an open back path provides a ‘clean’ way to intervene in
xfor the purposes of causal inference.24
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More generally, the example above shows a need to constrain the error term in the equation in a 
non‐simultaneous structural equation model as follows. It requires that the each right‐hand 
variable have a cause that causes ybut not via any factor hidden in the error term. This imposes 
a limit on the common causes the factors in the error term can have with those factors explicitly 
modelled.

To finish, consider briefly the testability of the assumptions brought to light in this section. 
Given these assumptions directly involve the factors omitted in the error term, testing these 
empirically seems impossible without information about what is hidden in the error term. But 
given the error term is unobserveable, this places the modeller in a difficult situation: how to 
know that some important factor has not been left out from the model undermining desired 
inferences in some way. It also shows that there will always be element of faith in the 
assumptions about the error term.

17.5 Conclusion: Many different error term assumptions? Or a few in many guises?
This chapter has attempted to draw out what the error term represents in structural models and 
some of the conditions it has imposed upon it for inferential purposes. In the analysis of 
statistical inference (the OLS method of estimation), it was assumed that the error was normally 
distributed, had constant variance and was orthogonal to the explanatory variables. In the 
discussion of identifiability, it was shown that though identifiability can be achieved purely by 
exclusions of variables from the equations, but that this is not always the case, and that 
constraints on the covariance of the errors, (p.376) such as mutual orthogonality, are also used 
to achieve identifiability. Finally, the paper briefly presented a causal interpretation of the error 
term, as the net impact of omitted causal factors from a mechanism, and showed that for causal 
inference purposes, it is important that there be a cause of any explicitly modelled causal factor 
that does not cause the effect of interest through a factor hidden in the error term.

Though this analysis seems to yield a large number of conditions the error term must meet, it is 
important not to assume that these conditions are unconnected. In particular, there is a strong 
connection between the orthogonality assumption, which is central for estimation, and the open‐
back‐path requirement observed for causal inference. This can also be seen by adopting a 
principle which licenses a move from correlations to causes, for instance, Reichenbach's 
principle of the common cause that probabilistic dependencies imply a causal connection or 
common cause(s).25 This principle implies that if the orthogonality assumption between the 
error and an explanatory variable fails, then either there is a factor in the error that causes the 
factor denoted by the variable, vice versa, or that there is a common cause of an explicitly 
modelled factor and a factor hidden in the error term. In the first two cases, no open back path 
is possible, while in third the common causal factor is itself not an open back path. Therefore, 
given Reichenbach's principle, a failure of orthogonality suggests a non open back path is being 
varied, the situation which frustrated causal inference. Therefore, there appears to be an 
intimate connection between the orthogonality requirement and the open‐back‐path 
requirement. This intimate connection is also visible in the instrumental variables method for 
overcoming a failure of orthogonality, in which a vari‐ able(s) is found which is correlated with 
the variable that fails orthogonality but uncorrelated with the error term. Interpreting these 
correlations using Reichenbach's principle, the instrumental variable is a search for some causal 
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structure by which variable (which failed orthogonality with the error) can be varied, without 
varying the error term. In short, it is a search for an open back path.26

In any event, the point here isn't to explore the important connections between the conditions on 
the error term required for causal inference and those for statistical inference, but rather to 
show that such connections exist and are fundamental. This, of course, should not be surprising 
since ultimately the problems of statistical and causal inference overlap greatly. After all, the 
estimation methods of structural methods aim to measure strengths of causal connection.

(p.377) The second point in highlighting the connection between the orthogonality and the 
open‐back‐path condition is to highlight the centrality of this kind of assumption for inference. 
As seen above, their failure frustrates inference, and also their testing is not a straightforward 
matter of analysing residuals. Therefore, this condition, and more specifically the relationship 
between what is hidden in the error term and what is explicitly modelled deserves careful 
scrutiny. In the econometrics literature, this condition is typically discussed under the term 
‘exogeneity’ of the explanatory variables in a model, though there are many different definitions 
of exogeneity and disputes over which is correct for which purposes.27 The analysis of this 
chapter suggests, seen from the orthogonality assumption and its causal cousin the open‐back‐
path requirement, is that such exogeneity assumptions can play different roles (estimation, 
causal inference) when viewed from different perspectives.
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Notes:
(1) In practice the process of model selection and inference of parameters will tend be 
interlinked, for example, inferring certain parameter values (e.g. zero's) may lead one to simplify 
the model.

(2) See, for example, weak exogeneity in Engle et al. (1983).

(3) This assumes a bridge principle from conditional independencies to causal relations. This is a 
key element in theories of probabilistic causality, and has in the last twenty years been 
developed to a highly sophisticated degree in Causal Bayes Net methods. See, for example, the 
faithfulness condition in Pearl (2000).

(4) In the chapter, I use ‘residuals’ to denote the sample of the error terms (assuming the model 
to hold) and ‘error terms’ to denote the population random variable in the model of which 
(provided the model were true) the residuals would be a sample.
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(5) This glosses over a difficult part of model building, particularly in this case where one is 
trying to sustain claims that the equilibrium relation can be represented by two static equations 
as is done here.

(6) See Gujarati (1995, chap. 3).

(7) If OLS were used here then the estimates would be biased and inconsistent.

(8) This assumes that one can solve for the original, structural parameters in terms of the 
reduced form parameters. If this is possible and if the reduced form parameters are identifiable, 
then the model is identifiable. The example chosen here is identifiable so this is not a problem 
here. In the next section, identifiability and the conditions it may impose on the error term are 
considered in more detail.

(9) Note that ILS estimates need not be unbiased nor efficient.

(10) That said, there is an important difference, nevertheless. In OLS the orthogonality 
assumption between the right‐hand variables and the error need only hold between right‐hand 
variables in one equation and the error term in that equation. In contrast, in the ILS case since 
right‐hand variables from other equations may also appear on the right‐hand side of the reduced 
form equations, we have made the stronger assumption that each error term from each 
structural equation is orthogonal to every variable not determined in the model.

(11) See Gujarati (1995, chap. 11) for a more detailed discussion of the consequences of non‐
constant variances of the error terms.

(12) Though if samples are large, a central limit theorem can be used to show that distributions 
of error terms will be approximately normal, see Gujarati (1995, p. 316–317).

(13) See Morgan (1990) for a historical account of the development of ideas in relation to 
identification in econometrics.

(14) The term ‘a priori’ is typically used to describe the knowledge used to secure identifiability. 
This is meant as knowledge prior to that provided by the observations used to parameterize the 
model. It does not mean that this knowledge is not in itself empirical.

(15) For more on the rank condition see Fisher (1966, p. 39–41), Gujarati (1995, p. 657–669) and 
Maddala 2001, p. 348–352).

(16) Though this isn't particularly useful since there is no parameter to estimate in the first 
equation!

(17) See Fisher (1966, chap. 4) for detailed discussion of identification conditions using both 
exclusions and covariance matrix (of the errors) constraints.

(18) The account given here is based on the more detailed analysis of Fennell (2005, chap. 2). 
Note that this version deviates slightly from that of Simon (1953). However, the differences are 
not significant here.
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(19) Note that Simon's causal order depends on the functional form of the equations since the 
order of solution by which the causal order is defined depends on the equations in which the 
variables appear.

(20) It is important that the direct control here is hypothetical. Directly controllable factors need 
not in fact be directly controlled by some actualexperimenter. This is why I believe, Simon 
permited ‘interventions’ by nature. The point is rather that the causal relations are such that if 
the ‘direct controllable’ factor were intervened upon surgically ‐ by an agent or by nature ‐ then 
they would change directly in virtue of these interventions and the other indirectly controllable 
factors would change as a result. I take the idea here to be similar to Woodward's more 
developed (2003) analysis of the causal relation in terms of hypothetical interventions.

(21) Though this gives us some idea of how to causally interpret the structural equations 
models, there is much which is not discussed by Simon. For example, it is also important in his 
interpretation that mechanisms be invariant to changes brought about by the experimenter or 
nature. Otherwise, the equations expressing the mechanisms could be completely changed upon 
intervention and the equations would tell us nothing about what happens to the indirectly 
controllable factors as a result of changes to the directly controllable factors. Also, it is 
important that the directly controllable factors be independent of each other in the sense that 
the experimenter must be ‘free’ to change them. Fleshing out these issues is an important step ‐ 
one which I do not attempt here ‐ in setting out a clear interpretation of the structural models. 
In addition, I do not argue for Simon's semantics over other possibilities, though this too is an 
important work to do.

(22) This type of interpretation of the error term is widespread. For example, according to Kevin 
Hoover ‘error terms might be thought to represent those INUS conditions that, though they help 
to determine the effects and are not constant, are not explicitly measured or modelled’ (2001, p. 
50). While Herbert Simon states that “‘error terms”….measure the net effects of all other 
variables (not introduced explicitly) upon the system’ (1954, p. 40). Nancy Cartwright (1989, p. 
29) states that the error terms are ‘supposed to represent the unknown or unobservable factors 
that may have an effect’.

(23) See Fennell (2005, chap. 3) for an analysis of this kind.

(24) Similar conditions to the open back path requirement appear widely in the literature. For 
instance, James Woodward incorporates a similar condition into his definition of an intervention 
variable, see Woodward (2003, p. 98).

(25) There are related principles such as the Causal Markov condition which also allow one to 
make inferences from correlations to causes. See Spirtes, Glymour and Scheines (1993) for more 
details.

(26) See Reiss (2003) for a causal discussion of instrumental variables.

(27) See Engle et al. (1983).
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Abstract

In this chapter, we consider the concept of causal relationship between two time series 
based on the singular spectrum analysis. We introduce several criteria which characterize 
this causality. The criteria are based on the forecasting accuracy and the predictability of 
the direction of change. The performance of the proposed tests is examined using different 
real time series.

18.1 Introduction
A question that frequently arises in time series analysis is whether one economic variable can 
help in predicting another economic variable. One way to address this question was proposed by 
Granger (1969). Granger (1969) formalized a causality concept as follows: process X does not 
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cause process Y if (and only if) the capability to predict the series Y based on the histories of all 
observables is unaffected by the omission of X's history (see also Granger 1980). Testing 
causality, in the Granger sense, involves using F‐tests to test whether lagged information on one 
variable, say X, provides any statistically significant information about another variable, say Y, in 
the presence of lagged Y. If not, then ‘Y does not Granger‐cause X’.

Criteria for Granger causality typically have been realized in the framework of multivariate 
Gaussian statistics via vector autoregressive (VAR) models. It is worth mentioning that the linear 
Granger causality is not causality in a broader sense of the word. It just considers linear 
prediction and time‐lagged dependence between two time series. The definition of Granger 
causality does not mention anything about possible instantaneous correlation between two 
series X T and Y T. (If the innovation to X T and the innovation to Y T are correlated then it is 
sometimes called instantaneous causality.) It is not rare when instantaneous correlation 
between two time series can be easily revealed, but since the causality can go either way, one 
usually does not test for instantaneous correlation. In this chapter, several of our causality tests 
incorporate (p.380) testing for the instantaneous causality. One more drawback of the Granger 
causality test is the dependence on the right choice of the conditioning set. In reality one can 
never be sure that the conditioning set selected is large enough (in short macro‐economic series 
one is forced to choose a low dimension for the VAR model). Moreover, there are special 
problems with testing for Granger causality in co‐integrated relations (see Toda and Phillips
1991).

The original notion of Granger causality was formulated in terms of linear regression, but there 
are some nonlinear extensions in the literature (see, for example, Chu et al. 2004). Hiemstra and 
Jones (1994) also propose a non‐ parametric test which seems to be most used test in testing 
nonlinear causality. However, this method also has several drawbacks: (i) the test is not 
consistent, at least against a specific class of alternatives (Diks and Panchenko 2005), (ii) there 
are restrictive assumptions in this approach (Bosq 1998) and (iii) the test can severely over‐
reject the null hypothesis of non‐causality (Diks and Panchenko 2006).

It is also important to note that Granger causality attempts to capture an important aspect of 
causality, but it is not meant to capture all. A method based on the information theory has 
realized a more general Granger causality measure that accommodates in principle arbitrary 
statistical processes (Diks and DeGoede 2001). Su and White (2008) propose a non‐parametric 
test of conditional independence based on the weighted Hellinger distance between the two 
conditional densities. There are also a number of alternative methods, but they are rarely used.

We overcome many of these difficulties by implementing a different technique for capturing the 
causality; this technique uses the singular spectrum analysis (SSA) technique; a non‐parametric 
technique that works with arbitrary statistical processes, whether linear or nonlinear, stationary 
or non‐ stationary, Gaussian or non‐Gaussian.

The general aim of this study is to assess the degree of association between two arbitrary time 
series (these associations are often called causal relationships as they might be caused by the 
genuine causality) based on the observation of these time series. We develop new tests and 
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criteria which will be based on the forecasting accuracy and predictability of the direction of 
change of the SSA algorithms.

The structure of the chapter is as follows. Section 18.2 briefly describes the SSA technique. The 
proposed criteria and statistical tests are considered in Section 18.3. Empirical results are 
presented in Section 18.4. Conclusions are given in Section 18.5. Appendix contains some 
necessary technical details about SSA.

18.2 Singular spectral analysis
A thorough description of the theoretical and practical foundations of the SSA technique (with 
many examples) can be found in Golyandina et al. (2001) (p.381) and Danilov and Zhigljavsky 
(1997). There are many papers where SSA has been applied to real‐life time series. In particular, 
the performance of the SSA technique has been compared with other techniques for forecasting 
economics time series (Hassani 2007; Hassani et al. 2009a–c, Hassani et al. 2010, Patterson et 
al. 2010; and see also Hassani 2009d for a new SSA‐based algorithm and its application for 
forecasting).

Consider the real‐valued nonzero time series Y T = (y 1, …, y T) of sufficient length T. The main 
purpose of SSA is to decompose the original series into a sum of series, so that each component 
in this sum can be identified as either a trend, periodic or quasi‐periodic component (perhaps, 
amplitude‐modulated), or noise. This is followed by a reconstruction the original series.

The state of a process at time t is considered to capture the relevant information of the process 
up to time t. Moreover, it is the state of a process that is to be predicted. Assume that the 
process is governed by some linear recurrent formula (LRF), then having the LRF and 
embedding theory, forecasting the process at time t may be regarded as forecasting the state 
vector. According to the SSA terminology, the problem of forecasting a new vector requires (a) a 
window of some suitable length and (b) the number of eigenvalues.

The SSA technique consists of two complementary stages: decomposition and reconstruction, 
both of which include two separate steps. At the first stage we decompose the series and at the 
second stage we reconstruct the original series and use the reconstructed series (which is 
without noise) for forecasting new data points. Below we provide a brief discussion on the 
methodology of the SSA technique (for more description of the SSA algorithm, forecasting 
procedure and parameter estimation, see Appendix A).

18.2.1 A short description of the Basic SSA
We consider a time series Y T = (y 1, …, y T). Fix L (L ≤ T/2), the window length, and let K = T − L
+ 1.

Step 1 (Computing the trajectory matrix): this transfers a one‐dimensional time series Y T = (y 1,
…, y T) into the multi‐dimensional series X 1,…, X K with vectors X i = (y i,…, y i +L−1)′ ∈ R L, where
K = T − L +1. Vectors X i are called L‐lagged vectors (or, simply, lagged vectors). The single 
parameter of the embedding is the window length L, an integer such that 2 ≤ L ≤ T. The result 
of this step is the trajectory matrix
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.
Step 2 (Constructing a matrix for applying SVD): compute the matrix XX T.

Step 3 (SVD of the matrix XX T): compute the eigenvalues and eigenvectors of the matrix XX T

and represent it in the form XX T = PΛP T. Here Λ = diag(λ 1, …, λ L) is the diagonal matrix of 
eigenvalues of XX T ordered so that λ 1 ≥ λ 2 ≥ … ≥ λ l ≥ 0 and P = (P 1, P 2, …, P L) is the 
corresponding orthogonal matrix of eigen–vectors of XX T.

(p.382) Step 4 (Selection of eigenvectors): select a group of l (1 ≤l ≤ L) eigenvectors

.
The grouping step corresponds to splitting the elementary matrices X i into several groups and 
summing the matrices within each group. Let I = {i 1,…, i l} be a group of indices i 1, … ,i l. Then 
the matrix X I corresponding to the group I is defined as

.
Step 5 (Reconstruction of the one‐dimensional series): compute the matrix

as an approximation to X. Transition to the one– dimensional series can now be achieved by 
averaging over the diagonals of the matrix X ̃.

18.2.2 Multivariate singular spectrum analysis: MSSA
Multivariate (or multichannel) SSA is an extension of the standard SSA to the case of 
multivariate time series (see e.g. Broomhead and King 1986). It can be described as follows. 
Assume we have two time series X T = x 1, …, x T and Y T = y 1, …, y T simultaneously (a bivariate 
approach), and let L be window length. Using embedding terminology, we can define the 
trajectory matrices M X and M Y of the one‐dimensional time series X T and Y T, respectively. The 
trajectory matrix M can then be defined as

(18.1)
Note also that the matrix M can be represented as follows:

(18.2)
The other stages of the Basic Multivariate SSA (or MSSA) procedure are identical to the Basic 
SSA. The generalization to the case of several series is straightforward. There are numerous 
examples of successful application of the multivariate SSA (see, for example, Plaut and Vautard,
1994; Danilov and Zhigljavsky, 1997).

18.3 Causality criteria
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18.3.1 Forecasting accuracy based criterion
The first criterion we use here is based on the out‐of‐sample forecasting, which is very common 
in the framework of Granger causality. The question behind Granger causality is whether 
forecasts of one variable can be improved using the history of another variable. Here, we 
compare the forecasted value obtained using the univariate procedure, SSA, and also the 
multivariate one, MSSA. We then compare the forecasted values with the actual values to 
evaluate the forecasting error. If the forecasting error using MSSA is significantly (p.383) 

smaller than the forecasting error of the univariate SSA, we then conclude that there is a casual 
relationship between these series.

Let us consider in more detail the procedure of constructing a vector of forecasting error for an 
out‐of‐sample test. In the first step we divide the series X T = (x 1,…, x T) into two separate 
subseries X r and X F: X T = (X R, X F) where X R = (x 1, …, x R), and X F = (x R+1, …, x t). The 
subseries X R is used in reconstruction step to provide the noise free series XR. The noise free 
series XR is then used for forecasting the subseries X F using either the recurrent or vector 
forecasting algorithm, see Appendix A. The subseries X F will be forecasted using the recursive h
‐step ahead forecast with SSA and MSSA. The forecasted points XF = (xr+1,…, xT) are then used 
for computing the forecasting error, and the vector (x R+2, …, x t) is forecasted using the new 
subseries (x 1, … , x R+1). This procedure is continued recursively up to the end of series, 
yielding the series of h‐step‐ahead forecasts for univariate and multivariate algorithms. 
Therefore, the vector of h‐step‐ahead forecasts obtained can be used in examining the 
association (or order h) between the two series. Let us now consider a formal procedure of 
constructing a criterion of SSA causality of order h between two arbitrary time series.

Criterion

Let X T = (x 1, …, x T) and Y T = (y 1,.…, y T) denote two different time series of length T. Set 
window lengths L x and L y for the series X T and Y T, respectively. Here, for simplicity assume L x
= L y. Using the embedding terminology, we construct trajectory matrices X = [X 1, …, X K] and Y
= [Y 1, …, Y K] for the series X T and Y T.

Consider an arbitrary loss function ℒ. In econometrics, the loss function ℒ is usually selected so 
that it minimizes the mean square error of the forecast. Let us first assume that the aim is to 
forecast the series X T. Thus, the aim is to minimize

, where the vector

is an estimate, obtained using a forecasting algorithm, of the vector

of the trajectory matrices X. Note that, for example, when H x = 1, XK+1 is an estimate of the 
vector X K+1 = (x T+1, …, x T+h) where h varies between 1 and L. In a vector form, this means that 
an estimate of X K+1 can be obtained using the trajectory matrix X consisting of vectors [X 1,…, X
K]. The vector
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can be forecasted using either univariate SSA or MSSA. Let us first consider the univariate 
approach. Define

(18.3)
where

is obtained using univariate SSA; that is, the estimate

is obtained only from the vectors [X 1,…, X K].
Let X T = (x 1, …, x T) and Y T+d = (y 1, …, y T+d) denote two different time series to be considered 
simultaneously and consider the same window length L for both series. Now, we forecast x T+1, 
…, x T+h using the information provided by the series Y T+d and X T. Next, compute the following 
statistic: (p.384)

(18.4)
where

is an estimate of

obtained using multivariate SSA. This means that we simultaneously use vectors [X 1, …, X K] 
and

in forecasting vector

. Now, define the criterion:

(18.5)
corresponding to the h step ahead forecast of the series X T in the presence of the series Y T+d; 
here d shows the lagged difference between series X T and Y T+d, respectively. Note that d is any 
given integer (even negative). For example,

indicates that we use the same series length in h step ahead forecasting series X; we use the 
series X T and Y T simultaneously.

can be considered as a common multivariate forecasting system for time series with the same 
series length. The criterion

can then be used in evaluating two instantaneous causality. Similarly,

indicates that there is an additional information for series Y and that this information is one step 
ahead of the information for the series X; we use the series X T and Y T+1 simultaneously.
If
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is small, then having information obtained from the series Y helps us to have a better forecast of 
the series X. This means there is a relationship between series X and Y of order h according to 
this criterion. In fact, this measure of association shows how much more information about the 
future values of series X is contained in the bivariate time series (X, Y) than in the series X alone. 
If

is very small, then the predictions using the multivariate version are much more accurate than 
the predictions by the univariate SSA. If

, then we conclude that the information provided by the series Y can be regarded as useful or
supportive for forecasting the series X. Alternatively, if the values of

, then either there is no detectable association between X and Y or the performance of the 
univariate version is better than the multivariate version (this may happen, for example, when 
the series Y has structural breaks which may misdirect the forecasts of X).
To asses which series is more supportive in forecasting, we need to consider another criterion. 
We obtain

in a similar manner. Now, these measures tell us whether using extra information about time 
series Y T+d (or X T+d) supports X T (or Y T) in h‐step forecasting. If

, we then conclude that X is more supportive than Y, and if

, we then conclude that Y is more supportive than X.
Let us now consider a definition for a feedback system according to the above criteria. If

and

, we then conclude that there is a feedback system between series X and Y. We shall call it F‐
feedback (p.385) (forecasting feedback) which means that using a multivariate system 
improves the forecasting for both series. For a F‐feedback system, X and Y are mutually 
supportive.

Statistical test
To check if the discrepancy between the two forecasting procedures are statistically significant 
we may apply the Diebold and Mariano (1995) test statistic, with the corrections suggested by 
Harvey et al. (1997). The quality of a forecast is to be judged on some specified function ℒ as a 
loss function of the forecast error. Then, the null hypothesis of equality of expected forecast 
performance is E(D t) = 0, where

and
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and

are the vectors of the forecast errors obtained with the univariate and multivariate approaches, 
respectively. In our case, ℒ is the quadratic loss function. The modified Diebold and Mariano 
statistic for a h step ahead forecast and the number of n forecasted points is

where D ̄ is the sample mean of the vector D t and

is, asymptotically

, where

is the k‐th autocovariance of D t and can be estimated by

.The S statistic has an asymptotic standard normal distribution under the null hypothesis and its 
correction for a finite samples follows the Student's t distribution with n − 1 degrees of freedom.

18.3.2 Direction of change based criterion

Ash et al. (1997) argue that for some purposes, it may be more harmful to make a smaller 
prediction error yet fail in predicting the direction of change, than to make a larger directionally 
correct error. Clements and Smith (1999) discuss that the value of a model's forecasts may be 
better measured by the direction of change. Heravi et al. (2004) argue that the direction of 
change forecasts are particularly important in economics for capturing the business cycle 
movement relating to expansion versus contraction phases of the cycle. Thus as another 
measure of forecasting performance, we also compute the percentage of forecasts that correctly 
predict the direction of change.

Criterion
The direction of change criterion shows the proportion of forecasts that correctly predict the 
direction of the series movement. For the forecasts obtained using only X T (univariate case), let

take the value 1 if the forecast observations correctly predicts the direction of change and 0 
otherwise. Then

shows the proportion of forecasts that correctly predict the (p.386) direction of the series 
movement (in forecasting n data points). The Moivre–Laplace central limit theorem implies that, 
for large samples, the test statistic

is approximately distributed as standard normal. When ZX is significantly larger than 0.5, then 
the forecast is said to have the ability to predict the direction of change. Alternatively, if ZX is 
significantly smaller than 0.5, the forecast tends to give the wrong direction of change.
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For the multivariate case, let Z XǀY,i takes a value 1 if the forecast series correctly predicts the 
direction of change of the series X having information about the series Y and 0 otherwise. Then, 
we define the following criterion:

(18.6)
where h and d have the same interpretation as for

. The criterion

characterizes the improvement we are getting from the information contained in Y T+h (or X T+h) 
for forecasting the direction of change in the h step ahead forecast.
If

, then having information about the series Y helps us to have a better prediction of the direction 
of change for the series X. This means that there is an association between the series X and Y
with respect to this criterion. This criterion informs us how much more information we have in 
the bivariate time series relative to the information contained in the univariate time series alone 
with respect to the prediction of the direction of change. Alternatively, if

, then the univariate SSA is better than the multi‐ variate version.
To find out which series is more supportive in predicting the direction of change, we consider 
the following criterion. We compute

in a similar manner. Now, if

, then we conclude that that X is more supportive (with respect to predicting the direction) to Y
than Y to X.
Similar to the consideration of the forecasting accuracy criteria, we can define a feedback 
system based on the criteria characterizing the predictability of the direction of change. Let us 
introduce a definition for a feedback system according to

and

. If

and

, we conclude that there is a feedback system between the series X and Y for prediction of the 
direction of change. We shall call this type of feedback D‐feedback. The existence of a D‐
feedback in a system yields that the series in the system help each other to capture the direction 
of the series movement with higher accuracy.
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Statistical test
Let us describe a statistical test for the criterion

. As in the comparison of two proportions, when we test the hypothesis about the difference 
between two proportions, first we need to know whether the two proportions are dependent. 
The test is different depending on whether the proportions are (p.387)

Table 18.1 An arrangement of Z X and Z XǀY in forecasting n future points of the 
series X.

Z XǀY Z X Number

1 1 a

1 0 b

0 1 c

0 0 d

Total n =a+b+c +d

independent or dependent. In our case, obviously, Z X and Z X ǀY are dependent. We therefore 
consider this dependence in the following procedure. Let us consider the test statistic for the 
difference between Z X and Z X ǀY. Assume that Z X and Z X ǀY, in forecasting n future points of the 
series X, are arranged as Table 18.1.
Then the estimated proportion using the multivariate system is P X ǀY = (a + b)/n, and the 
estimated proportion using the univariate version is P X = (a + c)/n. The difference between the 
two estimated proportions is

(18.7)
Since the two population probabilities are dependent, we cannot use the same approach for 
estimating the standard error of the difference that is used for independent case. The formula 
for the estimated standard error for the dependent case was given by Fleiss (1981):

(18.8)
Let us consider the related test for the difference between two dependent proportions, then the 
null and alternative hypotheses are:

(18.9)
The test statistic, assuming that the sample size is large enough for the normal approximation to 
the binomial to be appropriate, is:

(18.10)
where 1/n is the continuity correction. In our case Δ0 = 0. The test statistic then becomes:



A comprehensive causality test based on the singular spectrum analysis

Page 11 of 29

(18.11)
(p.388) The test is valid when the average of the discordant cell frequencies, (b + c)/2, is equal 
or more than 5. However, then it is less than 5, a binomial test can be used. Note that under the 
null hypothesis of no difference between samples Z X and

is asymptotically distributed as standard normal.

18.3.3 Comparison with Granger causality test
Linear Granger causality test

Let X T and Y T be two stationary time series. To test for Granger causality we compare the full 
and the restricted model. The full model is given by

(18.12)
where

is an iid sequence with zero mean and variance σ x ǀy, ϕ i and ψ i are model parameters. The null 
hypothesis stating that Y T does not Granger cause X T is:

(18.13)
If the null hypothesis holds, the full model (18.12) is reduced to the restricted model as follows:

(18.14)
where

is iid sequence with zero mean and variance σ x. The forecast‐ing results obtained by the 
restricted model (18.14) are compared to those obtained using the full model (18.12) to test for 
Granger causality. We then apply the F‐test (or some other similar test) to obtain a p‐value for 
whether the full model results are better than the restricted model results. If the full model 
provides a better forecast, according to the standard loss functions, we then conclude that Y T
Granger causes X T. Thus, Y T would Granger cause X T if Y t occurs before and contains 
information useful in forecasting X T. As the formula of Granger causality shows, the test, in fact, 
is a mathematical formulation based on the linear regression modelling of two time series. 
Therefore, the above formulation of Granger causality can only give information about linear 
features of the series.
Let us now compare the similarity and dissimilarity of the proposed algorithm which is based on 
the SSA forecasting algorithm with the Granger causality procedure. As mentioned in the 
description of the SSA forecasting algorithm, the last component X L of any vector X = (x 1, …, x
L)T ∈ r is a linear combination of the first L − 1 components (x 1,…, x l−1) such that:
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where A = (α 1, …, α L−1) can be estimated using equation (18.24) of Appendix A. Thus, the 
univariate version of SSA is given by

(18.15)
(p.389) As can be seen from (18.15), a univariate SSA forecasting formula is similar to the 
restricted model. However, the procedure of parameter estimation in the SSA technique and the 
Granger model are quite different. Both are linear combinations of previous observations, and 
from this point of view both are similar. The multivariate version of SSA is a system in which X T
and Y T are considered simultaneously to estimate vectors A and B as follows. The multivariate 
forecasting system is:

(18.16)
where the vectors A = (α 1, …, α L−1) and B = (β 1,…, β L−1) are estimated using the multivariate 
system. As equation (18.16) shows, the multivariate SSA is not similar to the Granger full model. 
An obvious discrepancy is that we use the value of the series Y in parameter estimation and also 
in forecasting series X in the Granger based test, while we use the information provided in the 
subspaces generated by Y in multivariate SSA and not the observed values. More specifically, 
the Granger causality test uses a linear combination of the values of both series X and Y in the 
full model, whereas multivariate SSA uses the information provided by X and Y in construction of 
the subspace and not the observations themselves.

Nonlinear Granger causality test

It is worth mentioning that the simultaneous reconstruction of the trajectory matrices X and Y in 
the MSSA technique is also used in testing for Granger causality between two nonlinear time 
series. Let us consider the concept of nonlinear Granger causality in more detail. Let Z = [X, Y] 
be the joint trajectory matrix with lagged difference zero (same value of K in the trajectory 
matrix X and Y). In the joint phase space consider a small neighbourhood of any vector. The 
dynamics of this neighbourhood can be described via a linear approximation and a linear 
autoregressive model can be used to predict the dynamics within the neighbourhood. Assume 
that the vectors of prediction errors are given by e Xǀ Y and e YǀX. The reconstruction and the 
fitting procedure are now employed for the individual time series X T and Y T in the same 
neighbourhood and the vector of prediction errors e X and e Y are then computed. Now, we 
compute the following criteria

(18.17)
The above procedure is then repeated for various regions on the attractor, each column of 
trajectory matrices X and Y, and the average of the above criteria are used. The above criteria, 
clearly, can be considered as a function of neighbourhood size. If the ratios are smaller than 1, 
we then conclude that there is a nonlinear Granger causal relation between two series. The 
similarity (p.390) of nonlinear Granger causality test with SSA causality test is only in the 
construction of the trajectory matrices X and Y using embedding terminology, which is only the 
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first step of SSA. Otherwise, the Granger nonlinear test is different from the test considered 
here. Moreover, the major drawback of the standard nonlinear analysis is that it requires a long 
time series, while the SSA technique works well for short and long time series (see, for example, 
Hassani and Zhigljavsky 2009a).

Further discussion of the difference between Granger causality and the SSA‐based techniques
One of the main drawbacks of the Granger causality is that we need to assume that the model is 
fixed (we then just test for significance of some parameters in the model); model can be (and 
usually is) wrong. The test statistics used for testing the Granger causality are not 
comprehensive. In the certain case of the linear model, testing for Granger causality consists in 
the repeated use of the standard F‐test which is sensitive to various deviations from the model, 
and the Granger causality is only associated with the lag difference between the two series.

In our approach, the model of dependence (or causality) is not fixed a priori; instead, this is built 
into the process of analysis. The models we build are non‐parametric and are very broad (in 
particular, causality is not necessarily associated with a lag) and flexible.

The tests for Granger causality consider the past information of other series in forecasting the 
series. For example, in the linear Granger causality test, we use the series X up to time t and the 
series Y up to time t − d; and the series Y T−d is used in forecasting series X T. Whereas in the 
proposed test here, the series Y T+d is employed in forecasting series X T.

Furthermore, the tests for Granger causality are based on the forecasting accuracy. In this 
chapter, we have also introduced another criterion for capturing causality which is based on the 
predictability of the direction of change. As we mentioned above, it may be more harmful to 
make a smaller prediction error yet fail in predicting the direction of change, than to make a 
larger directionally correct error (Ash et al. 1997).

The definition of Granger causality does not mention anything about possible instantaneous 
correlation between two series X T and Y T, where the criteria introduced enable an 
interpretation of an instantaneous causality. In fact, the proposed test is not restricted to the 
lagged difference between two series. It works equally well when there is no lagged difference 
between series.

Furthermore, real world time series are typically noisy (e.g. financial time series), non‐
stationary, and can have small length. It is well known that the existence of a significant noise 
level reduces the efficiency of the tests (linear and nonlinear) for capturing the amount of 
dependence between two financial series (see, for example, Hassani et al. 2010).

(p.391) There are mainly two different approaches to examine causality between two time 
series. According to the first one, that is utilized in current methods, the criteria of capturing 
causality is computed directly from the noisy time series. Therefore, we ignore the existence of 
the noise, which can lead to misleading interpretations of causal effects. In our approach, the 
noisy time series is filtered in order to reduce the noise level and then we calculate the criteria. 
It is commonly accepted that the second approach is more effective than the first one if we are 
dealing with the series with high noise level (Soofi and Cao 2002).
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18.4 Empirical results
18.4.1 Exchange rate
Given the high correlation between the UK (pound/dollar) and EU (euro/dollar) exchange rates, 
Hassani et al. (2009c) used a two‐variable vector autoregressive (VAR) model and SSA 
(univariate and multivariate model) in exchange rate predicting. This approach to prediction is 
called a‐theoretical, since there is no theoretical justifications in asserting that one exchange 
rate is a predictor of another one. They showed that VAR model is not a good choice in 
predicting exchange rate series, while SSA (specifically multivariate version) decisively 
outperforms the VAR model. They also found that the exchange rate series has a unit root, which 
implies the series is non‐stationary.

Moreover, using Johansen maximum‐likelihood method, they also found that the exchange rates 
are cointegrated, and the Granger causality test showed that the UK/dollar rate does Granger 
cause the EU/dollar exchange rate series and vice versa.

Next we consider testing for causality between the two exchange rate series using the criteria 
we have introduced in previous section. First, we consider univariate SSA to forecast one step 
ahead of the UK and EU exchange rate series, and then compare the MSSA and SSA forecasting 
results to find

and

. In this particular example, examining

also shows whether exchange rate series is martingale or not.
To find the vector of forecasting errors, we forecast all observations of the UK and EU series 
from 1 May 2009 to 26 June 2009. Figure 18.1 shows these series over the period 3 Jan 2000 to 
26 June 2009, in these prediction exercises. Each of these series contain 2452 points. It is very 
clear that the UK and EU series are highly correlated (indeed, the nonlinear correlation 
coefficient between UK and EU series is about 0.75). It must be mentioned that this correlation 
only shows the relationship between the main trends of the series. One source of the relation 
between the UK and EU exchange rate series is obvious as the two series are each a ratio of US 
series.

(p.392)
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We perform one‐step ahead forecasting 
based on the most up‐to‐date information 
available at the time of the forecast. Note 
that we first use SSA in prediction of a 
single series, e.g. in prediction of the UK 
series without using euro series. Next, we 
use both series simultaneously, e.g. we use 
the EU time series in forecasting the UK 
series and vice versa. We shall refer to the 
results of this step

and

. We also use one‐step ahead information of 
EU time series as additional information in 
forecasting UK series and vice versa. We 
shall call this version of results

and

. Note that we select window length 3 for both single and multivariate SSA in forecasting 
exchange rate series. The symbol ∗ indicates the significant results on the 1% level.
It can be observed from Table 18.2 that the difference between the MSSA predictions and SSA is 
significant with respect to

and

. The results confirm with that we have improved both accuracy and direction of change of the 
forecasting results. For example, in forecasting one step ahead for the EU series and d = 0, 
compared to the univariate case, we have improved the accuracy and the direction of change of 
the forecasting results up to 19% and 8% (column 3 of Table 18.2), respectively. Similarly for the 
UK exchange rate series with zero lagged difference, MSSA enable

Fig. 18.1  The exchange rate series UK (thick 
line) and EU (thin line) exchange rate series 
over the period 3 Jan 2000 to 26 June 2009.
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Table 18.2 The value of F UKǀEU, D UKǀEU, F EUǀUK and D EUǀUK in forecasting one‐step ahead of the UK and EU exchange rate 
series for d = 0 and 1.

0.94 0.92 0.63* 0.88 0.81∗ 0.92 0.45* 0.84
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(p.393) an improvement in forecasting accuracy and prediction of the direction of change up to 
6% and 8% (with respect to

and

, respectively. Thus, using the information of the UK and EU exchange rate (with zero lagged 
difference) enable an improvement the results.
The results obtained so far can be considered as zero‐lag correlation between two exchange rate 
series or multivariate version of the SSA with zero lagged difference. These results can be 
considered as an evidence that there is the SSA causal relationship between the UK and EU 
exchange rate of order zero. It should be noted that the SSA causality of zero order confirms 
that there exists instantaneous causality. The SSA causality of zero order, instantaneous 
causality, suggests that there might be SSA causal relationship of higher order.

To examine this, next we consider MSSA with one more additional observation for one series. 
For example, we use the UK exchange rate series up to time t, and the EU exchange rate series 
up to time t + 1 in forecasting one step ahead of the UK exchange rate series to obtain

. In fact, there is one lagged difference between two series in one step ahead forecasting. We 
use a similar procedure in forecasting the EU series. We expect this additional information gives 
better results in both forecasting accuracy and the direction of change prediction.
Tt can be observed from columns

and

, thus the errors for the MSSA forecast and direction of change, with only one additional 
observation, are much smaller than those obtained using univariate version. These results are 
also better than the results obtained using the multivariate approach with zero lag difference. 
This is not surprising though as the additional data used for forecast is highly correlated with 
the values we are forecasting. As the results show, the accuracy performance of MSSA has been 
significantly increased. This means using only one additional observation enable an 
improvement in forecasting accuracy up to 37% and 55% relative to the univariate version for 
the UK and EU series (according to

and

, respectively. Similarly for the direction of change, using only one additional observation enable 
an improvement in predicting the direction of change up to 12% and 16% (with respect to

and

.
These results imply that the exchange rate time series are not martingales with respect to all 
available information available at the currency exchange markets. In fact, the results confirm 
that the series are SSA causal of order 1. Moreover,
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indicates that, in forecasting this period of the series, the UK exchange rate series is more 
supportive than the EU series. Furthermore,

is other evidence for this. This means for this particular example, the SSA casual of order zero 
then consequences SSA casual of order one as well. However,

and the discrepancy between

and

is not substantially indicating that neither is more directive.
(p.394) Finally, the results of Table 18.2 strongly confirm that there exists F‐ feedback and D‐
feedback between the UK and EU exchange rate series. This means, considering both the UK 
and EU exchange rate series simultaneously, with and without one additional observation, will 
improve both the accuracy of forecasting and predictability of the direction of change.

18.4.2 Index of industrial production series
As the second example, we consider the index of industrial production (IIP) series. The IIP series 
is a key indicator of the state of the UK's industrial base and regarded as a leading indicator of 
the general state of the economy. The IIP series is published on a monthly basis by the Office for 
National Statistics (ONS). The index is first released as a provisional estimate and then revised 
each month to incorporate the information that was not available at the time of the preliminary 
release. A number of studies have been concerned with the size and nature of revisions to 
important economic time series. Patterson and Heravi (1991a, b, 1992) have extensively 
analysed the key national income and expenditure time series. There are many other studies for 
modelling and forecasting of data revision. For example, Patterson (1995a, b) have used state 
space approach in forecasting the final vintage of the IIP series and real personal disposable 
income. For more information about the data revision see Patterson and Heravi (1992, 1994,
1995c).

The overall data period for the study includes 423 monthly observations for 1972:1 to 2007:3 on 
12 vintages of data seasonally adjusted IIP. The first vintage, which is published one month after 
the latest month of published data, refers to the first publication in the monthly Digest of 
Statistics. The second vintage refers to the next published figure and so on. For this study we 
take the 12th vintage as the final vintage (m), then having 12 vintages of data on the same 
variables.

Let

be the vth vintage (v = 1, … , m) of the data on variable y for the period t, where v = 1 indicates 
the initially published data and v = m the finally published data. (In practice, m may be taken to 
indicate the conditionally final vintage.) Here m = 12. The structure of the data which is 
published by Monthly Digest of Statistics (MDS) is as follow:
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(18.18)
(p.395) Thus, publication from a particular issue of MDS traces back a diagonal of this data 
matrix which is a composite of data of different vintages. We expect that there is a SSA causal 
relationship between preliminary vintage (vth vintage) and final vintage (mth vintage). To 
answer this, we need to forecast h step ahead (h = 1, … , 11) of the final vintage, v = m, giving 
the information at time t. The forecast could be obtained using classical univariate time series 
methods. However, the forecasts are not optimal since other information (vintages) available at 
time t are not used. For example, in forecasting

we also have available information of

for v = 1, … ,m − 1, each of which could itself be regarded as a forecast of

. This matter motivates us to use a multivariate method for forecasting h step ahead of

. For example, to obtain the final vintage value at time

, we can use the information for the first vintage data

and the final vintage data

. If the results of h step ahead forecast MSSA are better than SSA, e.g.

and

, we then conclude that there is a SSA causal relationship of order h between i th vintage and 
final vintage. To asses this, SSA and MSSA models were estimated using data to the end of 2000 
and post‐sample forecasts are then computed for 64 observations of 2001:1 –2006:3. Thus, we 
have 64 one step ahead post sample forecast errors, at horizon h = 1. The number of forecast 
errors available decreases as the forecast horizon increases, so that at horizons of h = 2, 3, … ,
12 the number of forecast errors are 63, 62, … , 52, respectively. The value of

and

for each vintage and relative to single SSA are given in Table 18.3. The two parameters L
(window length) and r (number of eigenvalues) chosen in the decomposition and reconstruction 
are also presented in the table.
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From Table 18.3, observe that there are gains to using MSSA throughout the revision process, 
these being between 87% and 67% for vintage up to

Table 18.3 The value of

and

in forecasting of ith vintage of the index of industrial production series.

ith Vintage L r

1 13 5 0.22* 0.45*

2 12 5 0.24* 0.47*

3 11 5 0.27* 0.48*

4 10 5 0.31* 0.50*

5 9 5 0.33* 0.55*

6 8 4 0.36* 0.61*

7 7 4 0.39* 0.65*

8 6 3 0.41* 0.70*

9 5 3 0.45* 0.73*

10 4 3 0.49* 0.77*

11 3 2 0.55* 0.82

(p.396) v = 5, reducing to 50% or slightly less for latter vintages (according to the column 
labeled

. This is because, as the structure of the data matrix (18.18) shows, even one observation is very 
important in forecasting a new vector of the data matrix (18.18). All results are statistically 
significant at the 1% significant level.
For the direction of change results, for each preliminary vintage v, we compare the true 
direction of

with the direction of vintage v estimate

and the SSA estimate

. Table 18.3 provides the percentage of forecasts that correctly predict the direction of change 
for each vintage. As the results show the percentage of correct signs produced by MSSA are 
significantly higher than those given by SSA, these being between 55% and 45% for vintage up 
to v = 5, reducing to 18% for latter vintages (according to the column labelled

.
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Thus, these results, without exception, confirm that there exists a SSA causal relationship 
between each vintage and the final vintage. In fact the results strongly indicate that there is SSA 
causality between ith vintage and final vintage is of order m − i. It should be noted that here i
is equal to h step ahead forecast which is the time lag difference between ith vintage and final 
vintage. Here, as the results show, SSA causality holds for lower lag order such as in the case of 
the exchange rate series. This confirms that SSA causality of order m − i has consequences for 
other orders of causality. Note that here the problem of interest is one‐side causality as the final 
vintage is forecasted.

The results of Granger causality tests, also showed that there is a Granger causal relationship 
between these series. This is not surprising as each column of the data matrix is a revised 
version of the previous column and therefore they are high correlated. Also, it should be noted 
that the results of VAR model in forecasting these series are worse than the MSSA results.

18.5 Conclusion
In this chapter, we developed a new approach in testing for causality between two arbitrary 
univariate time series. We introduced a family of causality tests which are based on the singular 
spectrum analysis (SSA) analysis. The SSA technique accommodates, in principle, arbitrary 
processes, including linear, nonlinear, stationary, non‐stationary, Gaussian, and non‐Gaussian. 
Accordingly, we believe our approach to be superior to the traditional criteria used in Granger 
causality tests, criteria that are based on autoregressive integrated moving average (p,d, q) or 
multivariate vector autoregressive (VAR) representation of the data; the models that impose 
restrictive assumptions on the time series under investigation.

Several test statistics and criteria are introduced in testing for casuality. The criteria are based 
on the idea of minimizing a loss function, forecasting (p.397) accuracy and predictability of the 
direction of change. We use the univariate SSA and multivariate SSA in forecasting the value of 
the series and also prediction of the direction.

The performance of the proposed test was examined using the euro/dollar and the pound/dollar 
daily exchange rates as well as the index of industrial production (IIP) series for the United 
Kingdom. It has been shown here that the euro/dollar rate causes the pound/dollar rate and vice 
versa. Moreover, it has been documented that, without exception, there exists a SSA causal 
relationship between each vintage and final vintage of the IIP data.
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(p.399) Appendix A: Formal description of SSA

Stage 1: Decomposition
First step: Embedding
Embedding can be regarded as a mapping that transfers a one‐dimensional time series Y T = (y 1, 
…, y T) into the multi‐dimensional series X 1, …, X K with vectors X i = (y i, …, y i+L−1)′ ∈ R L, 
where K = T − L +1. Vectors X i are called L‐lagged vectors (or, simply, lagged vectors). The 
single parameter of the embedding is the window length L, an integer such that 2 ≤ L ≤ T. The 
result of this step is the trajectory matrix X = [X 1,…, X K]:

(18.19)
Note that the trajectory matrix X is a Hankel matrix, which means that all the elements along 
the diagonal i + j = const are equal. Embedding is a standard procedure in time series analysis. 
With the embedding performed, future analysis depends on the aim of the investigation.

Second step: Singular value decomposition (SVD)
The second step, the SVD step, makes the singular value decomposition of the trajectory matrix 
and represents it as a sum of rank‐one bi‐orthogonal elementary matrices. Denote by λ 1, …, λ L
the eigenvalues of XX′ in decreasing order of magnitude (λ 1 ≥ … λ L ≥ 0) and by U 1, …, U L the 
orthonormal system (that is, (U i, U j )=0 for i ≠ j (the orthogonality property) and ǁ U iǁ=1 (the 
unit norm property)) of the eigenvectors of the matrix XX′ corresponding to these eigenvalues. 
(U i, U j) is the inner product of the vectors U i and U j and ǁ U i ǁ is the norm of the vector U i. Set

If we denote

, then the SVD of the trajectory matrix can be written as:

(18.20)
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(p.400) where

. The matrices X i have rank 1; therefore they are elementary matrices, U i (in SSA literature they 
are called ‘factor empirical orthogonal functions’ or simply EOFs) and V i (often called ‘princi pal 
components’) stand for the left and right eigenvectors of the trajectory matrix. The collection

is called the ith eigentri ple of the matrix

are the singular values of the matrix X and the set

is called the spectrum of the matrix X. If all the eigenvalues have multi plicity one, then the 
expansion (18.20) is uniquely defined.
SVD (18.20) is optimal in the sense that among all the matrices X (r) of rank r 〈 R, the matrix

provides the best approximation to the trajectory matrix X, so that ǁ X − X (r) ǁ is minimum. Note 
that

and

for i = 1, …, d. Thus, we can consider the ratio

as the characteristic of the contribution of the matrix X i to expansion (18.20). Consequently,

, the sum of the first r ratios, is the characteristic of the optimal approximation of the trajectory 
matrix by the matrices of rank r.

Stage 2: Reconstruction
First step: Grouping

The grouping step corresponds to splitting the elementary matrices X i into several groups and 
summing the matrices within each group. Let I = {i 1, …, i p} be a group of indices i 1, …, i p. 
Then the matrix X I corresponding to the group I is defined as

. The spilt of the set of indices J = 1, …, R into the disjoint subsets I 1, …, I m corresponds to the 
representation

(18.21)
The procedure of choosing the sets I 1, …, I m is called the eigentriple grouping. For given group
I the contribution of the component X I into the expansion (1) is measured by the share of the 
corresponding eigenvalues:
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.

Second step: Diagonal averaging

Diagonal averaging transfers each matrix I into a time series, which is an additive component of 
the initial series Y T. If z ij stands for an element of a matrix Z, then the kth term of the resulting 
series is obtained by averaging z ij over all i, j such that i + j = k + 2. This procedure is called
diagonal averaging, or Hankelization of the matrix Z. The result of the Hankelization of a matrix
Z is the Hankel matrix ℋZ, which is the trajectory matrix corresponding to the series obtained as 
a result of the diagonal averaging.

The operator ℋ acts on an arbitrary L × K ‐matrix Z = (z ij) with L ≤ K in the following way: for i +
j = s and N. = L + K − 1 the element zij of the matrix ℋZ is

(p.401) Note that the Hankelization is an optimal procedure in the sense that the matrix ℋZ is 
the nearest to Z (with respect to the matrix norm) among all Hankel matrices of the 
corresponding size (for more information see Golyandina et al. 2001, chap. 6, sec. 2). In its turn, 
the Hankel matrix ℋZ uniquely defines the series by relating the value in the diagonals to the 
values in the series. By applying the Hankelization procedure to all matrix components of
(18.21), we obtain another expansion:

(18.22)
where

. This is equivalent to the decomposition of the initial series Y T = (y 1, …, y T) into a sum of m
series:

(18.23)
where

corresponds to the matrix

.

Selection of parameters
Here we consider a version of SSA where we split the set if indicies {1,2, …, L} into two groups 
only: I = {1, …, r} and Ī = {r + 1, …, L}. We associate the group I with signal and the group Ī 
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with noise. The SSA method requires then the selection of two parameters, the window length L
and the number of elementary matrices r. There are specific rules for selecting these 
parameters; their choice depends on structure of the data and the analysis we want to perform. 
Detailed description of parameter selection procedures is given in Golyandina et al. (2001). Here 
we summarize a few general rules.

The window length L is the single parameter that should be selected at the decomposition stage. 
Selection of the proper window length depends on the problem in hand, and on preliminary 
information about the time series. For the series with a complex structure, too large window 
length L can produce an undesirable decomposition of the series components of interest, which 
may lead, in particular, to their mixing with other series component. Let us, for example, 
consider the problem of trend extraction in GCM. Since trend is a relatively smooth curve, its 
separability from noise requires small values of L. It should be noted that the values of L should 
not be smaller than the true eigenvalues r. The chosen L also should results good separability 
between the reconstructed series using I = {1, …, r} and Ī = {r + 1, …, L}. In growth curve 
model that we are dealing with only trend extraction, usually the first or second eigenvalue is 
considered for reconstruction step.

The first elementary matrix X 1 with the norm

has the highest contribution to the norm of X in X = X 1 + … ,X L and the last elementary matrix
X L with the norm

has the lowest contribution to the norm of X. The plot of the eigenvalues λ 1, … , λ L gives an 
overall view concerning the values of the eigenvalues and is essential in deciding where to 
truncate the summation of X = X 1 + … , X L in order to build a good approximation of the 
original matrix. A slowly decreasing sequence of eigenvalues typically indicate the presence of 
noise in the series.
(p.402) A group of r (with 1 ≤ r 〈 L) eigenvectors determine an r ‐dimensional hyperplane in 
the L‐dimensional space ℝL of vectors X j. The distance between vectors X j(j =1, …, K) and this r‐
dimensional hyperplane can be rather small (it is controlled by the choice of the eigenvalues) 
meaning that the projection of X into this hyperplane is a good approximation of the original 
matrix X. If we choose the first r eigenvectors U 1, …, U r, then the squared L 2‐distance between 
this projection and X is equal to

. According to the Basic SSA algorithm, the L‐dimensional data is projected onto this r‐
dimensional subspace and the subsequent averaging over the diagonals allows us to obtain an 
approximation to the original series.

Forecasting algorithm
Let us formally describe the forecasting algorithm under consideration (for more information 
see Golyandina et al. 2001):
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Algorithm input:

(a) Time series Y T = (y 1, …, y T).
(b) Window length L, 1 〈 L 〈 T.
(c) Linear space r ⊂ R L of dimension r 〈 L. It is assumed that e L ∉ r, where e L = (0, 
0, …, 1) ∈ R L.
(d) Number M of points to forecast for.

Procedure:

(a) X = [X 1, …, X k] is the trajectory matrix of the time series Y T.
(b) U 1, …, U r is an orthonormal basis in r.
(c)

. The vector Xi is the orthogonal projection of X i onto the space r.
(d) X ̃ = ℋ X = [X1 : … : XK] is the result of the Hankellization of the matrix X ̂.
(e) For any vector Y ∈ R L we denote by Y Δ ∈R L −1 the vector consisting of the last L − 1 
components of the vector Y, while Y Δ ∈ R L−1 is the vector of the first L − 1 components 
of the vector Y.
(f) We set

, where π i is the last component of the vector U i (i = 1, …, r).
(g) Suppose that e L ∉ r. (In the other words, we assume that r is not a vertical space.) 
Then v 2 〈 1. It can be proved that the last component y L of any vector Y = (y 1, …, y L)T
∈ r is a linear combination of the first L − 1 components (y 1, …, y L−1):

Vector A = (α 1, …, α L−1) can be expressed as

(18.24)
(p.403) and does not depend on the choice of a basis U 1, …, U r in the linear space r. In the 
above notations, define the time series Y t+m = (y 1, …, y t+m) by the formula

(18.25)
The numbers y T+1, … , y T+M from the M terms of the SSA recurrent forecast. Let us define the 
linear operator ℛ(r) : r ↦ R L by the formula

If we set
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(18.26)
the matrix Z = [Z 1, …, Z k+m] is the trajectory matrix of the series Y t+m. Therefore, (18.26) can 
be regard as the vector form of (18.25).

The SSA recurrent forecasting algorithm can be modified in several ways. For example, we can 
base our forecast on the Toeplitz SSA or SSA with centering rather than on the basic SSA. 
Perhaps the most important modification is the so‐called SSA vector forecasting algorithm 
developed in Golyandina et al. (2001).

So far we considered SSA recurrent forecasting algorithm. In the following we consider SSA 
vector forecasting algorithm. The SSA vector forecasting algorithm has the same inputs and 
conditions as the SSA recurrent forecasting algorithm. The notation in (a)–(g) is kept. Let us 
introduce some more notations. Consider the matrix

where

. The matrix Π is the matrix of the linear operator that performs the orthogonal projection

, where

. We define the linear operator (v) : r ↦ R L by the formula

In the notation above we define the vectors Z i as follow:

By constructing the matrix Z = [Z 1, …, Z K+M+L−1] and making its diagonal averaging we obtain 
a series y 1, …, y T+M+L−1. The numbers y T+1, … , y T+M form the Mterms of the SSA vector 
forecast. (p.404)
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more precise genotyping and more adequate classical explanations). This chapter provides 
a new way of analysing the relationship between classical genetics and molecular biology 
capable of resolving this tension. The proposed solution makes use of the properties of 
mechanism schemas and sketches, which can be completed by elucidating some or all of 
their remaining ‘black boxes’ and instantiated via the filling‐in of phenomenon–specific 
details. This result has implications for the reductionism‐antireductionism debate since it 
shows that molecular elucidations have a positive impact on classical explanations without 
entailing the reduction of classical genetics to molecular biology.

19.1 Introduction
It is widely accepted by scientists (Morange 1998; Muller 1951) and philosophers (Darden 1991;
2006; Schaffner 1969; Waters 2004) alike that the development of molecular biology was driven 
by an attempt to answer the questions: ‘What is the physical nature of genes?’ and ‘How do 
genes determine phenotypes?’ Such questions fall outside the immediate explanatory scope of 
classical genetics, which is mainly concerned with the transmission of inherited traits (Morgan
1935; Moss 2003; Waters 2004).

Given the seemingly distinct explanatory scopes of classical genetics and molecular biology, 
Philip Kitcher (Culp and Kitcher 1989; Kitcher 1982, p. 357; 1999, p. 199) proposed the 
‘explanatory extension’ thesis, according to which molecular biology explains aspects of 
inheritance not explained by classical genetics. Kitcher (1989) embedded this thesis in the 
larger context of his own unificationist account of explanation, which relies on the notion that
(p.408) explanation requires a particular kind of deductive argument schema. However, it has 
been repeatedly pointed out that most theories and explanations in biology cannot be accounted 
for in terms of laws and logical derivations (Hull 1979; Rosenberg 1985; Sober 1993), but are 
best characterized as descriptions of productive mechanisms (Bechtel and Abrahamsen 2005; 
Machamer, Darden, and Craver 2000; Skipper, 1999; Wimsatt, 1976). Given this shortcoming, 
Lindley Darden articulated a mechanistic version of the ‘explanatory extension’ thesis, more 
readily applicable to explanations in biology. Darden argues that

[t]he general knowledge in molecular biology is best characterized not in terms of laws or 
a theory but as a set of mechanism schemas [where a] mechanism schema is a truncated 
abstract description of a mechanism that can be easily instantiated by filling it with more 
specific descriptions of component entities and activities. (2006, pp. 111–112)

Building on this new approach, Darden (2006, p. 98) argues that classical genetics and 
molecular biology elucidate ‘separate but serially connected mechanisms’. According to this 
account, Mendel provided a highly schematic outline of a series of events explaining inheritance 
phenomena. Then, classical genetics elucidated in more detail some elements contained in this 
scheme (e.g. the mechanism of allelic segregation, explained by meiosis, and recombination, 
explained by chromosomal crossing‐over) while relegating other elements to ‘black‐boxes’ (the 
ability of alleles to replicate and determine phenotypes), thus providing a first incomplete 
general schema of a series of mechanisms. Finally, molecular biology gradually filled in the 
remaining ‘black‐boxes’ with more and more mechanistic details (most famously, the 
mechanisms of DNA replication and gene expression), until the present‐day picture of genetics 
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emerged. The ‘serially connected mechanisms’ account specifies the aspects of inheritance 
explained by classical genetics and those explained by molecular biology, and shows how the 
mechanisms postulated by classical and molecular explanations fit together without leaving gaps 
in the productive continuity from start (the genotype of the parents) to finish conditions (the 
expression of specific traits in the offspring).

While the ‘serially connected mechanisms’ account provides an adequate description of the 
relationship between classical genetics and molecular biology, it fails to explicitly address a 
major point of disagreement between reductionists and antireductionists: Does the elucidation 
of molecular details impose revisions of classical explanations? If the ‘explanatory extension’ 
thesis is true, then the intuitive answer is ‘No.’ Indeed, Hull (1974) and Kitcher (1982; 1989) 
suggest that the elucidation of molecular details must be neutral in respect to individual 
classical explanations: the molecular details (p.409) contribute to a better understanding of 
aspects of inheritance not explained by classical genetics, but they do not provide a better 
explanation of the transmission patterns already explained by classical explanations. While 
tempting, this answer is incorrect. In this chapter, I discuss examples of ‘explanatory 
interference’, that is, cases when the accommodation of data from molecular biology results in a 
more precise genotyping and more adequate classical‐style explanations of the transmission 
patterns associated with certain inherited conditions. Such examples constitute a problem, since 
they seem to contradict the ‘explanatory extension’ thesis and raise the possibility that a 
reductionist or eliminativist account might, after all, provide a better account of the relationship 
between classical genetics and molecular biology.

This chapter has two aims. First, I identify instances of ‘explanatory interference’ in 
contemporary research practice. This is an important achievement, since, despite vigorous 
debates in the past, it has never been conclusively shown that the elucidation of molecular 
details impacts specifically on the empirical adequacy of classical explanations dealing with 
issues of transmission. Second, I show that both the ‘serially connected mechanisms’ account 
and instances of ‘explanatory interference’ can be accommodated without contradiction. To this 
end, I propose a new way of analysing the relationship between classical genetics and molecular 
biology hinging on the properties of mechanism schemas, which can be completed, on the one 
hand, by elucidating some or all of the remaining ‘black boxes’ and, on the other, by 
instantiation via the filling‐in of phenomenon‐specific details. This result has implications for the 
reductionism–antireductionism debate since it shows that molecular elucidations have a positive 
impact on classical explanations, yet does not entail the reduction of classical genetics to 
molecular biology.1

The chapter is organized as follows: In section 19.2, I review presently available answers to the 
question ‘Do molecular elucidations have a positive impact on classical explanations?’ In section
19.3, I proceed to show that molecular elucidations have in fact a positive impact on classical‐
style explanations. In section 19.4, I provide a solution to the apparent incompatibility between 
the ‘explanatory extension’ thesis underlying the ‘serially connected mechanisms’ account and 
instances of ‘explanatory interference’ demonstrated in actual scientific practice. Finally, in 
section 19.5, I summarize my arguments and discuss implications for the reductionism‐
antireductionism debate in genetics.
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(p.410) 19.2 Do molecular elucidations have a positive impact on classical 
explanations?
The issue of reductionism in genetics takes, in part, the form of a debate about whether the 
elucidation of molecular details requires a revision of previously accepted classical explanations. 
In Alex Rosenberg's words, antireductionism is the claim that

nonmolecular biological explanations are adequate and need no macromolecular 
correction, completion, or grounding. (2007, p. 120)

All parties agree that molecular biology elucidates the lower‐level mechanistic and structural 
details of the entities and activities hypothesized by classical explanations. Furthermore, both 
reductionists and antireductionists acknowledge the causal relevance of the molecular 
structures and mechanisms underlying cytological, developmental and other higher‐level 
biological phenomena. For example, nobody is denying that a phenomenon such as 
recombination is explained at the cytological level by chromosomal crossing‐ over, itself 
explained at the molecular level by a mechanism involving Spo11‐ mediated double‐strand DNA 
break followed by the formation of a Holliday junction (for a more detailed example and 
philosophical discussion, see levels of mechanisms, Craver 2007, chap. 5)). Rather, the 
disagreement is about the explanatory relevance of the molecular details to already successful 
nonmolec-ular explanations. Thus, the question is ‘Does the elucidation of the molecular 
mechanisms underlying cytological entities and activities contribute to the ability of classical 
genetics to provide more adequate explanations of the transmission of inherited traits 
phenomena?’

Several attempts to assess the impact of molecular elucidations on classical explanations have 
been made during exchanges between reductionists and antireductionists, yet no definitive 
conclusion was ever reached. Kitcher (1984) claims that taking into account the molecular 
details muddles the crispy‐ clear explanations of classical genetics, while Rosenberg (1985, p. 
101) sees an unbridgeable degree of complexity separating classical and molecular explanations. 
In both cases, the argument is that molecular analysis reveals a multiplicity of interacting and 
redundant gene products involved in the production of any single phenotype, while transmission 
genetics explains the same phenotype more simply and elegantly by assigning it a small number 
of alleles associated with a single locus. The argument is however rather vague, as no particular 
examples are discussed in thorough scientific detail. Equally problematic, the argument hinges 
on an alleged virtue of simplicity which, as I will show, is not reflected in the views and results 
of prominent geneticists such as T. H. Morgan or S. Benzer. Finally, neither Kitcher, nor 
Rosenberg discusses the possibility that taking into account molecular details (p.411) sacrifices 
simplicity in favour of a much more valuable increase in empirical adequacy.

In his more recent work, Rosenberg claims that

[m]olecular information about the location and structure of the genetic material [… ] helps 
the Classical geneticist understand where Mendel's ‘laws’ go wrong, and what exceptions 
to these rules of thumb are to be expected. (1997, p. 447)

He concludes that
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molecular biology shows why Classical genetics is a useful instrument, even pedagog-
ically indispensable, but is fundamentally flawed. (1997, p. 447)

It can be retorted though that Mendel's laws were corrected not so much by molecular biology, 
but within classical genetics itself after the discovery of linkage, recombination and 
complementation. Furthermore, claiming that classical genetics is ‘fundamentally flawed’ 
doesn't sit well with the generally accepted view that classical genetics offers satisfactory 
explanations of certain aspects of inheritance.

Kenneth Waters (1990, pp. 132–133) argues against Kitcher that knowledge of the molecular 
mechanisms underlying chromosomal crossing over must somehow contribute to our 
understanding of inheritance. This must be indeed the case, but the claim is too general to 
conclude something specifically restricted to the impact of molecular elucidations on classical 
explanations. More recently, Waters adopts a different approach to the reductionism– 
antireductionism debate. He argues that

[t]he developments following Watson and Crick's discovery that mattered were not 
primarily theoretical. [… ] What changed biology so dramatically was a retooling of the 
investigative strategies used in genetics. (2008, p. 239)

The example discussed (a RNAi knockout study) shows how molecular biology provides 
additional means of experimental investigation and control in the context of a classical‐style 
(forward) genetic analysis. Waters is making a valid point, but this cannot be the whole story. As 
it stands, his account seems to entail that molecular biology is nothing but a set of experimental 
techniques and not a scientific field proper, endowed with its own theoretical and experimental 
resources. This is a counterintuitive conclusion that very few biologists would endorse. 
Furthermore, even if the contribution of molecular biology is primarily experimental, it is still 
not clear how the knowledge generated by classical and molecular techniques fits together. Do 
the two sources of information complement each other by providing knowledge about distinct 
aspects of the phenomena under study? Or do they make claims about the same aspects, and 
therefore there is a possibility that contradictions may arise? These questions remain 
unanswered.

(p.412) 19.3 Mendelian errors and molecular genotyping
My answer to the question ‘Does the elucidation of molecular details have an impact on classical 
explanations?’ is ‘Yes.’ The key element in understanding how molecular elucidations can have 
an impact on classical explanations rests on the notion of ‘schema instantiation.’2 For example, 
the ‘Central Dogma’ is an abstract mechanism schema highlighting the common elements of the 
mechanisms responsible for prokaryotic and eukaryotic gene expression in general.

However, if it is generally understood that genes determine phenotypes via a universal 
mechanism of gene expression involving transcription and translation, molecular explanations of 
individual phenotypes require the elucidation of many further details, such as the DNA 
sequences involved, the mechanisms regulating the expression of these sequences and the 
mechanisms by means of which the expressed gene products contribute to the phenotype under 
investigation. In other words, in order to provide a satisfactory explanation of the genetic 
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underpinnings of any given trait, the ‘Central Dogma’ schema needs to be instantiated by 
elucidating and filling in phenomenon‐specific details.

A similar comment applies to classical genetics. The Machamer–Darden (2000) characterization 
of mechanisms is compatible with the notion that classical genetics offers a general schema 
explaining the transmission of inherited traits by appealing to the segregation and 
recombination of alleles located at specific chromosomal loci (see Figure 19.1). However, this 
schema too needs to be instantiated before it can account for the peculiarities of any given 
inheritance phenomenon. To give a very striking example, as early as 1911, Morgan discovered 
the complementation of the white and pink eye mutants in Drosophila (Morgan 1911). 
Complementation refers to a situation whereby the crossing of two different kinds of 
homozygous recessive mutants yields a wild‐type phenotype (Lewis 1951; Benzer 1955). 
Classical geneticists interpreted complementation as an indication that the two mutations affect 
two distinct ‘genetic units’, dubbed ‘functional units.’ If the mutations were in the same unit, 
then the offspring could not have received a copy of the wild‐type unit since none of the parents 
had one to begin with. This immediately indicates that, in many cases, more than one functional 
unit is required for the expression of any given phenotype. Furthermore, mutations (p.413)

targeting apparently unrelated traits can 
complement, meaning that mutation in one 
gene can affect several traits/biological 
functions. Finally, since non‐ 
complementing mutations can map at 
distinct chromosomal loci it is possible to 
distinguish between mutations in the same 
functional unit that result in an identical 
phenotype, meaning that classical 
geneticists were able to distinguish 
mutations that cannot be directly 
differentiated by observing phe‐ notypes 
before DNA sequencing techniques became 
available. This indicates that the general 
schema postulating segregation and 
recombination of alleles located at specific 
chromosomal loci provides only the rough 
guideline for a genetic explanation. A 
considerable amount of further research is 
required in order to work out genetic maps capable of accounting for every single instance (p.
414) of linkage, recombination and 
complementation associated with the 
specific transmission patterns under 
investigation.3

Since schema instantiation is dependent on 
further information, it becomes interesting 
to investigate the nature (experimental data 
vs. theoretical assumptions) and origin (the 

Fig. 19.1  Explanatory extension as serially 
connected mechanism schemas. (From 
Darden 2006, used with permission).

Fig. 19.2  The Central Dogma of molecular 
biology.
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theory's own internal vs. external theoretical and experimental resources) of this information. In 
the case of classical genetics, genes can be identified via classical techniques involving analyses 
of linkage and complementation (or cis‐trans) assays; this strategy relies on the internal 
resources of classical genetics and can be referred to as intra‐theoretical schema instantiation. 
Alternatively, genes can be identified as transcription units characterized by the presence of 
structural motifs (e.g. TATA box followed by an open reading frame) and homology with known 
gene product sequences (Altschul et al. 1990; Wain et al. 2002); this strategy relies on the 
external resources of molecular biology, and can be referred to as cross‐theoretical schema 
instantiation. Cross‐theoretical instantiations of the general explanatory schema of classical 
genetics are possible because loss of function mutations in the regulatory and coding sequences 
of distinct transcription units required for the synthesis of gene products involved in the same 
metabolic or signal transducing pathway complement each other. Hence, transcription units 
identified via molecular techniques behave like classical functional units. Furthermore, 
transcription units were shown to overlap extensively with functional units, as mapped via 
classical analysis (Benzer 1966; Mosig and Eiserling 2006).

Next, since the same general schema can be instantiated intra‐ and cross‐ theoretically, it 
becomes interesting to establish whether the two instantiations coincide, or whether they 
conflict with each other. If conflicts arise, it is important to find out how they are settled. In the 
case of classical genetics, it can be shown that taking into account theoretical assumptions and 
experimental data from molecular biology force distinct, and usually more complex, schema 
instantiations. Furthermore, such cross‐theoretical instantiations are typically more adequate 
than straightforward intra‐theoretical instantiations relying solely on the internal resources of 
classical genetics.

Let us imagine that a particular metabolic pathway involves three enzymes E1, E2 and E3. Given 
this piece of information from biochemistry, it becomes reasonable to hypothesize that at least 
three distinct genes must be expressed. Let us further assume that GE1, GE2 and GE3 are then 
identified as alleles encoding functional products, while alternative alleles ME1, ME2 and ME3, 
naturally occurring or created in the lab, encode mutated, non‐functional (p.415) products. In 
order for the normal/wild‐type phenotype NPh to obtain, an organism must have at least one 
copy of the genes GE1, GE2 and GE3 (in classical terms, the wild‐type allele is dominant). A 
mutant phenotype MPh obtains when at least one gene is mutated on both chromosomes (the 
mutant allele is recessive). Consider now that GE1 is never mutated in the populations accessible 
to classical analysis and that GE2,/sub〉/ME3 and ME2/GE3 fail to complement because, it turns out, their respective 

products E,sub〉2 and E3 form a functional hetero‐dimer.4 If a geneticist ignores these details from 
biochemistry and molecular biology, he or she ends up identifying a single gene required for 
normal metabolism and concludes that two alleles of the same gene are associated with 
metabolic function and dysfunction. This is a case when intra‐theoretical schema‐filling diverges 
from cross‐theoretical schema‐filling. One gene or three, the general explanatory scheme 
remains the same. However, in this hypothetical case, theoretical assumptions justified by a 
partial elucidation of the metabolic pathways underlying the phenotype under investigation (i.e. 
the one‐enzyme one‐gene assumption, Beadle and Tatum, 1941) prompts a distinct schema 
instantiation that does not coincide with the simpler one favoured by straightforward classical 
analysis.
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Subtle, yet measurable differences in symptoms and responses to treatment always puzzled 
clinical geneticists. Simplified genotypes provide adequate explanations only by ignoring a host 
of minute variables, such as the severity of the symptoms, the onset of the disease, secondary 
complications, and differences in response to treatment. In contrast, a more minute analysis 
taking into account the molecular details is often able to account for the diversity of sub‐
phenotypes. A famous example is that of Huntington disease. Classical analysis notoriously 
failed to explain why 5% of the individuals inheriting the dominant allele for Huntington don't 
develop the disease while the remaining 95% are affected to various degrees (in classical terms, 
the allele is said to be partially penetrant and to display various degrees of expressivity). In 
contrast, the molecular analysis reveals that the affected gene (HTT) contains multiple repeats 
of the CAG sequence, coding for glutamine. The normal gene codes for less than 27 glutamine 
amino‐acid repeats, while the mutated version codes for 36 or more (Kieburtz et al. 1994). The 
number of additional glutamines in the final gene product is related to the rate of neuronal 
decay, and thus to the severity of the symptoms (Chong et al. 1997). As it turns out, it is not the 
case that a single allele displays different degres of penetrance and expressivity; instead, a 
whole series of mutations is responsible for the variability of the observed symptoms (Figure
19.3). The molecular instantiation provides a more satisfactory explanation both from an 
empirical adequacy (p.416) point of view, as well as by avoiding giving metaphysical weight to 
the purely hypothetical properties of ‘penetrance’ and ‘expressivity.’ Note also that, for the time 
being, the mechanism underlying the disease, as well as the function of HTT, are not fully 
understood. The molecular analysis does not elucidate the ‘black box’ mechanism linking 
genotype and phenotype. Rather, it provides a more adequate ‘classical‐style’ characterization of 
the genotype associated with the disease and its transmission patterns.

Subtle differences between the postulated genotypes also make an important difference when it 
comes to providing accurate predictions of offspring phenotypic frequencies required for 
medical applications such as genetic counseling. A very striking example where a more complex 
genotype resulting from cross‐theoretical schema filling is more adequate than the simpler 
genotypes resulting from straightforward intra‐theoretical schema filling is that of Marfan, 
Loeys‐Dietz and Ehlers‐Danlos syndromes. Since they are all autoso-mal dominant diseases 
characterized by similar symptoms, they were, and still are often confused as a unique genetic 
disease. It turns out Marfan syndrome is caused by mutations in the fibrillin‐1 gene, coding for a 
glycoprotein found in the extracellular matrix. Although the exact mechanism of the disease is 
not known, the favoured explanation is that fibrillin‐1 binds TGFβ (known to inhibit cell growth 
and induce apoptosis) keeping it inactive; dysfunctional or reduced levels of fibrilin‐1 result in a 
TGFβ‐induced inflammatory reaction leading to connective tissue degradation (Pereira et al.
1999). In contrast, Loeys‐Dietz syndrome is caused by mutations in the TGFβ receptor genes 
resulting in enhanced TGFβ signaling (Loeys et al. 2005). Finally, the Ehlers‐ Danlos family of 
syndromes is due to mutations that affect the structure or production of collagen (reviewed by 
Beighton et al. 1998). It follows that TGFβ receptor inhibitors may help alleviate the symptoms of 
Marfan, but not those of Loeys–Dietz and Ehlers–Danlos syndromes. Targeting intracellular 
components of the TGFβ signaling pathway may provide a cure for the Loeys– Dietz and Marfan 
syndromes, but should have no impact on patients affected by Ehlers–Danlos syndromes. Finally, 
gene therapy targeting the collagen genes may provide a cure to the Ehlers–Danlos family of 
syndromes, but are expected to be ineffective in treating the Marfan and the Loeys–Dietz 
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syndromes. An empirically adequate explanation must explain such minute clinical differences. 
In this respect, the simpler explanation postulated in light of the classical analysis (i.e. 
mutations in one gene are responsible for one disease) is less adequate than the more complex 
explanation taking into account partial knowledge from molecular biology.

In the above examples, a partial elucidation of the molecular details prompts a revision of the 
genotypes underlying the inherited condition. A revision of the genotype counts as an instance 
of ‘explanatory interference’ because it prompts a further revision of the predictions made by 
classical‐style explanations (e.g. the patterns of transmission associated with that condition). 
Since (p.417)

(p.418) these revisions result in a better 
empirical fit (e.g. explain the spectrum of 
phenotypic differences associated with 
Huntington disease), more satisfactory 
explanations (e.g. dispense with the notions 
of ‘penetrance’ and ‘expressivity’) and an 
ability to explain potential anomalies (e.g. 
differences in response to treatment), I 
conclude that the elucidation of the 
molecular details has a positive impact on 
classical explanations.

19.4 An alternative approach to 
reductionism– antireductionism 
debate in genetics
If molecular elucidations have a positive 
impact on the empirical adequacy of 
classical explanation, does this mean that classical genetics reduces to or is replaced by 
molecular biology? The reductionism–antireductionism debate in genetics hinges, in part, on the 
issue of ‘explanatory extension’ vs. ‘explanatory interference.’ Some philosophers of biology 
(Hull 1974; Kitcher 1984) rejected reductionism on the grounds that molecular biology explains 
aspects of inheritance not explained by classical genetics and, therefore, the elucidation of 
molecular details shouldn't affect classical explanations. Paradoxically, this claim is falsified by 
the discussed examples, yet reductionism is by no means vindicated. Reductionism posits a 
stronger thesis, summarized by Waters as follows:

Watson and Crick's discovery [… ] led to a deeper and more fundamental, molecular‐ level 
theory. The new theory allegedly improves upon higher‐level explanations of the classical 
theory by explaining its core theoretical principles in terms of molecular processes. (2008, 
p. 239)

Even if the examples discussed in this paper show that classical explanations need corrections 
and are enhanced by taking into account molecular elucidations, terms like ‘meiotic 
segregation’, ‘recombination’ or ‘complementation’ are not recast in molecular terms. Nor does 
there seem to be any motivation for such a recasting. Data from molecular biology are used to 
identify functional units, which are classical gene concepts (genes as ‘difference makers’, 

Fig. 19.3  Alternative, intra‐ vs. cross‐
theoretical schema instantiations in classical 
genetics. (The arrows indicate the import of 
specific details into the general schema of 
classical genetics.)
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Griffiths and Stotz 2007; Rheinberger and Müler‐Wille 2008; Waters 1994) and provide the basis 
for classical‐style explanations concerned with transmission and not the mechanisms linking 
phenotype and genotype (Morgan 1935; Moss 2003; Waters 2004). It seems therefore safe to 
conclude that despite the improvements brought about by molecular biology, the general 
explanatory schema of classical genetics is not derived, inferred or reconstructed in any way 
from biochemistry or molecular biology.

The solution to this paradoxical situation whereby classical genetics doesn't seem to reduce to 
or be replaced by molecular biology, yet there is a clear sense in which molecular biology 
represents an improvement over classical genetics (p.419)

lies in the peculiarities of mechanism 
schemas. According to the ‘serially 
connected mechanisms’ account, the ‘black‐
boxes’ of the general schema of classical 
genetics are elucidated in order to generate 
the general explanatory schema of 
molecular biology. This is a form of inter‐
theoretical schema‐filling accounting for the 
‘explanatory extension’ aspect of the 
relationship between classical genetics and 
molecular biology. At the same time, the 
same general schema of classical genetics is 
also instantiated by filling in phenomenon‐ 
specific details in order to generate 
individual explanations of inheritance 
phenomena. This can be achieved intra‐
theoretically, by using the internal 
resources of classical genetics; or cross‐
theoretically, by taking into account data 
and assumptions from molecular biology 
(Figure 19.4).
As exemplified in the previous section, there can be a clash between intra‐ and cross‐theoretical 
schema instantiation, typically resolved in favour of a cross‐theoretical instantiation taking into 
account molecular findings. How‐ ever, this clash has no bearing on inter‐theoretical schema‐
filling and the (p.420) ‘explanatory extension’ aspect of the relationship between classical 
genetics and molecular biology. Inter‐theoretical schema‐filling is about elucidating the ‘black 
boxes’ of the general schema of classical genetics, while intra‐/cross‐ theoretical schema‐filling 
is a matter of instantiating individual explanations by filling in the details specific to a particular 
inheritance phenomenon.

19.5 Conclusion
In this chapter I argue that the details of a general mechanism schema can be completed:

(i) inter‐theoretically, by elucidating some or all of the ‘black boxes’ of a previous general 
explanatory schema in order to generate another general explanatory schema, as 

Fig. 19.4  Inter‐, intra‐ and cross‐theoretical 
schema‐filling.
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illustrated by Darden's ‘serially connected mechanisms’ account of the transition from 
classical genetics to molecular biology (horizontal bold arrow at the top of Figure 19.4);
(ii) intra‐theoretically, by filling in phenomenon‐specific details using the theory's own 
internal theoretical and experimental resources in order to instantiate individual 
explanations of particular phenomena (vertical bold arrows in Figure 19.4); and
(iii) cross‐theoretically, whereby theoretical and experimental considerations from one 
theory contribute specific details required for the instantiation of individual explanations 
derived from another general explanatory schema without explicitly elucidating any of 
the ‘black boxes’ of the latter (diagonal bold arrow in Figure 19.4).

Distinguishing between the three types of schema‐filling is crucial for a clear understanding of 
the complex relationship between classical genetics and molecular biology. As expounded by 
Darden (2006), and on occasions by Kitcher (1982; 1999), the ‘explanatory extension’ thesis is a 
claim about inter‐theoretical schema‐filling. In as much as molecular biology elucidates the 
‘black boxes’ of the general schema of classical genetics, the relationship between the two 
sciences is neither reductive, nor eliminative, but rather a form of cumulative completion. To 
this day, genetics combines classical experimental and explanatory strategies, such as breeding 
and genetic linkage mapping of phenotypes, with cloning, sequencing and reverse genetic 
analysis later introduced by molecular biology (Falk 2003; Vance 1996; Waters 2008). 
Furthermore, the fact that experimental data and theoretical assumptions from molecular 
biology have a positive impact on classical‐style explanations hints to a high level of integration 
of the two sciences in a unique field of research. In these respects, the transition from classical 
genetics to molecular biology is theoretically‐cumulative, ruling out reductionism in favour of
(p.421) inter‐field integration (Darden and Maull 1977; Darden 2006). Finally, since classical 
genetics and molecular biology provide explanations at different levels of organization (e.g. 
cytological vs. molecular), claims to a ‘mosaic’ of multilevel explanations in biological sciences 
(Craver 2007) are also vindicated.

In contrast, according to a non‐integrative brand of antireductionism held sometimes by Kitcher 
(1984) and identified by Rosenberg (2007) as defining antireductionism in biology, molecular 
biology fails to contribute in a positive way to the ability of classical genetics to provide 
adequate explanations of inheritance phenomena. This thesis is a combination of the 
‘explanatory extension’ thesis doubled by the claim that classical genetics generates its most 
successful explanations in virtue of intra‐theoretical schema instantiation, while ‘explanatory 
interference’ from molecular biology (cross‐theoretical instantiation) is impossible, irrelevant or 
damaging. If this is how antire‐ ductionism is construed, then antireductionism is false. I showed 
by means of examples that data from biochemistry and molecular biology needs to be 
accommodated by changes in genetic explanations resulting in a more precise genotyping. In 
turn, a more accurate knowledge of genotypes plays an important role in making more accurate 
predictions of phenotypic distributions, assessing the risk of disease and response to treatment, 
providing more accurate diagnosis and genetic counseling.

In order to resolve the apparent problem, I argued that instances of ‘explanatory interference’ 
do not conflict with the ‘explanatory extension’ aspect of the relationship between classical 
genetics and molecular biology as long as a distinction is made between two distinct degrees of 
abstraction. At the degree of abstraction associated with the general explanatory schemas of 
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classical genetics and molecular biology, molecular biology extends classical genetics by 
elucidating some of its ‘black boxes’ (inter‐theoretical schema‐ filling). In contrast, at the level of 
specific instantiations associated with individual explanations, data from molecular biology can 
and often is used to fill‐in phenomenon‐specific details (cross‐theoretical schema‐filling). As 
exemplified in the chapter, taking into account the molecular details results in more adequate 
explanations.

Although this complex issue transcends the more modest scope of this paper, I would like to 
conclude with a few words on the possible implications for the connection between causation 
and explanation. The ‘explanatory extension’ aspect of the relationship between classical 
genetics and molecular biology indicates that not all causally relevant factors are necessarily 
deemed explanatorily relevant. For most philosophers, this conclusion is hardly a surprise. What 
may come as a surprise is that the explanatory relevance of causally relevant factors seems to be 
context‐sensitive. At the degree of abstraction associated with general explanatory schemas, the 
molecular details (e.g. the molecular mechanisms underlying chromosomal crossing‐over) are 
acknowledged to be causally relevant for the production of (p.422) inheritance phenomena, 
with all that this may entail in terms of experimental manipulability and practical applications, 
yet their elucidation did not prompt a rethinking of previously accepted classical explanations 
(e.g. recombination as an explanation of certain anomalies in offspring phenotypic frequencies). 
However, as shown in this paper, at the level of particular instantiations of classical‐style 
explanations, some molecular details become highly relevant.
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Notes:
(1) In response to initial attempts to model the relationship between classical genetics and 
molecular biology as a form of inter‐theoretical reductionism, it has been convincingly argued 
that such a form of reductionism is not something biologists are actively interested in achieving 
(Darden 2006, 105–105; Schaffner 1974; 1993, p. 512; Waters 2008, p. 249).

(2) Kitcher (1989) proposed that general knowledge in science consists of ‘schematic 
arguments’ (sequences of ‘schematic sentences’ in which some non‐logical expressions are 
replaced with dummy letters) that can be instantiated by means of a set of ‘filling instructions’ 
for each term of the schematic argument. In the case of mechanistic explanations, Darden 
(2006) argues that general knowledge is best described as a set of mechanisms schemas, often 
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represented via diagrams, that can be instantiated by filling it with specific descriptions of 
component entities and activities.

(3) The discovery of complementation also shows that the simplicity advertised by Kitcher 
(1984) and Rosenberg (1985, p. 101) dissolves away in the kind of complexity typically 
associated with molecular analysis. By the same token, Rosenberg's (1997, p. 447) argument 
that classical genetics is false because nothing in the physical world corresponds to its level of 
simplicity is also considerably weakened.

(4) Two peptide chains, coded by distinct genes, combining to form a single functional protein; 
in such cases complementation experiments were shown to be inconclusive (Garen and Garen
1963).
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20.1 Introduction
In everyday English language contexts, the term ‘chance’ has multiple meanings.1 For example:

I'd give that horse a 50–50 chance (degree of belief) of winning.
I hope I get the chance (i.e. opportunity) to see you.
I found this great restaurant just by chance (i.e. accident).
I'm sorry, but I just can't take the chance (i.e. risk).

As a number of biologists and philosophers have emphasized, ‘chance’ also has multiple 
meanings in evolutionary biology (see, e.g. Monod 1971; Beatty 1984; Eble 1999; Millstein
2000a, 2006; Gayon 2005; Lenormand et al. 2009; Merlin 2009). Elsewhere (Millstein 2000a,
2006), drawing on Beatty (1984) and Eble (1999), I argue that there are at least six conceptions
(p.426) of chance that are potentially relevant to evolutionary theory. To that list, I add a 
seventh, chance as contingency (Gould 1989; Beatty 1995, 2006a), as follows:

1. indeterministic chance (‘pure’ chance)
2. chance as ignorance of the real underlying causes
3. chance as not designed
4. chance as sampling (both discriminate and indiscriminate)
5. chance as coincidence
6. evolutionary chance (independent of the generally adaptive direction of natural 
selection)
7. chance as contingency.

This list may still not be exhaustive; however, I will limit my comments here to these seven. As I 
will show, each of these seven concepts of chance has a distinct meaning, and each plays a role2

within evolutionary biology (although some play a greater role than others).3

The question of the nature of chance, and related questions of determinism and indeterminism, 
are longstanding philosophical problems that have occupied philosophers for centuries. More 
recently, philosophers of science in general and philosophers of physics in particular have 
looked to quantum mechanics to settle issues concerning the nature of chance and to settle 
questions concerning the fundamentally probabilistic nature of the universe. However, 
evolutionary theory itself has a decidedly probabilistic character (indeed, probabilities are 
ubiquitous in evolutionary theory), one which in some sense does not seem to rest on any new 
discoveries in quantum mechanics; evolutionary biology was given a probabilistic formulation 
prior to and independently of the development of quantum mechanics. And as will be discussed 
below, chance played a role in Darwin's evolutionary thinking prior to evolutionary theory's 
twentieth‐century probabilistic formulations. Thus, the study of the various concepts of chance 
in evolutionary biology may shed light on the study of chance in quantum mechanics and in 
other areas of science and philosophy.

The fact that there are many concepts of chance within evolutionary biology raises the following 
questions: Is there something that all of the concepts (p.427) have in common that can serve as 
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a unified concept of chance? Or is this a heterogeneous collection? If there is a unified 
conception of chance, what is it? What makes all the chance concepts ‘chance’? And what can a 
unified concept of chance be used for?

I will argue that there is a unified concept of chance, which I call the UCC (Unified Chance 
Concept). However, it will turn out to be quite general, almost trivial; indeed, like many 
unifications, it is achieved only through a loss of content.4 Because of this loss of content, it 
cannot replace the other concepts of chance. In other words, though I seek one concept of 
chance, the end result is not monism, but pluralism.

Nonetheless, I will argue, the UCC is not without utility: It tells us that the seven different 
concepts do have something in common, and identifies that common core, perhaps aiding in 
identifying future concepts both within and outside of evolutionary biology. It can be used to aid 
in comparisons among the different concepts. And perhaps most importantly, it will allow us to 
characterize our concepts of chance in probabilistic terms (i.e. provide a way to translate 
between ‘chance’ and ‘probability’).

20.2 Characterization of the Unified Chance Concept (UCC)
We will see each of the seven concepts of chance has a somewhat different meaning (although 
they can be hard to differentiate because a particular biological phenomenon might manifest 
more than one concept simultaneously). However, one striking commonality between them, as 
will become clearer below, is that there are all described in the negative, in contrast to various 
causes. What is interesting about this is that indeterminism is — though a bit misleadingly, I 
think — sometimes characterized as meaning ‘uncaused’.

To see why ‘uncaused’ is a misleading definition of indeterminism, consider, for example, 
radioactive decay under the assumption that it is an inde‐ terministic phenomenon.5 When one 
compares the half‐lives of two elements (e.g. carbon‐14 and uranium‐238), it is their different 
structures that give rise to (cause) their different half‐lives. Even a particular decay event is 
caused by the structure of the particular atom. It may be, however, that two identical atoms in 
identical environments may not (indeed, are likely not to) decay at the same time. This is the 
intuition behind the idea that indeterministic events are ‘uncaused’, but again, that overlooks 
the causal role played by the structure of the atom.

(p.428) Thus, even as indeterministic events are not fully caused, they are still (to an extent) 
caused. Similarly, it will turn out that ‘chance’ is defined both by what causes are left out and 
what causes are included (this will be explained further below).

Another commonality (again, as will become clearer below), is that both indeterminism and the 
various concepts of chance imply more than one possible outcome. These commonalities suggest 
that an analogy between indeterminism, as an empirical claim about the world, might prove 
fruitful for understanding the various concepts of chance. That is, examining the commonalities 
between each concept of chance and indeterminism gives rise to a set of characteristics that are 
common to all of the concepts of chance and also helps illuminate why they are considered to be 
concepts of chance (i.e. because they are similar to indeterminism). I won't walk the reader 
through that particular exercise, but rather, describe the analogy and the UCC and then in 
subsequent sections show how each concept of chance fits.
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But we need a new definition of indeterminism. Here is a slightly better6 one: Given the
complete state of the world at one point in time, the state of the world at every future point in 
time is not uniquely determined; for a given point of time in the future, more than one state is 
possible.7 Now suppose that the UCC were analogous — but not identical — to the definition of 
indeterminism. In particular, suppose we consider not the complete state of the world, but 
rather, some subset of it. This yields, I will argue, the UCC:

UCC: Given a specified subset of causes, more than one future state is possible.

This might seem trivial. But the key will be to identify the subset of causes for each type of 
chance. Identifying the subset of causes involves identifying, for each concept of chance, which 
causes are taken into account (what I will call the considered causes), which causes are 
operating but ignored,8 and which causes are prohibited from operating altogether if the 
particular concept of chance is to be manifested (if any). The particular chance concepts differ 
in the types of causes that are considered, ignored, and prohibited; they also differ in the 
relevant types of possible outcomes. Figure 20.1 will serve as a basic template for the UCC, to be 
filled in with specifics for each concept of chance. (p.429)

20.3 The seven chance concepts
Now I need to show that the UCC genuinely 
unifies the seven concepts of chance. I will 
explain each concept, give examples from 
evolutionary biology, and then show how 
the concept fits the UCC.

20.3.1 Indeterministic chance (‘pure’ 
chance)
Above, I discussed indeterminism as a thesis 
about the world in general. Here I focus 
more locally, on the indeterminism of 
particular processes or types of processes. 
Indeterminism is said to be a true 
description of microlevel processes by, e.g. those who argue for the Copenhagen interpretation 
of quantum mechanics. A typical example of a such a process is radioactive decay. But what 
about macrolevel processes, and evolutionary processes in particular — are they 
indeterministic? For example, if cloned plants grown under (purportedly) identical conditions 
nonetheless differ considerably in height, weight, etc., is this an example of an indeterministic 
macrolevel process? Brandon and Carson (1996) argue, on the basis of examples such as these, 
that a scientific realist ought to conclude that the evolutionary process is indeterministic.9

Of course, if it were the case that the height of a cloned plant were due to indeterministic 
chance, it would not follow that the plant could be any height at all. A California poppy, which 
typically grows to a height of about 5–60 centimeters, would not grow to a height of 1 meter. 
Rather, the claim (p.430) is that given certain physical characteristics of the plant and the 
conditions in which it grows, there is a range of possible heights that it can achieve. If the 

Fig. 20.1  The unified conception of chance.
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plant's height really is due to indeterministic chance, then identical conditions can yield more 
than one possible height, with nothing further to be said (there are no ‘hidden variables’ to 
distinguish one case from another). Thus, indeterministic chance, unsurprisingly, fits the UCC 
quite cleanly: all the causes at a given point in time are considered, yielding a range of possible 
future outcomes with respect to the phenomenon of interest. No causes are ignored or 
prohibited.

However, one might reasonably ask just how relevant this notion of chance is for evolutionary 
biology, a point that Richardson (2006) has emphasized. Indeed, a recent exploration by three 
biologists of the meanings of chance in evolution states very clearly that describing evolution as 
a stochastic process ‘has nothing to do with the claim that the natural world is, in fine, 
deterministic or not’ (Lenormand et al. 2009, 158). Moreover, Brandon and Carson (1996) 
arguments for the indeterminism of evolution are not by any means universally accepted. 
Graves, Horan, and Rosenberg (1999) argue that at the macrolevel of evolutionary processes, 
there is ‘asymptotic determinism’. And as I argue (Millstein 2000b), given our current state of 
knowledge, even a scientific realist ought to be an agnostic on debate between the indetermin‐ 
ists and the ‘asymptotic determinists’; most discussions end up trading one philosophical 
intuition for another rather than engaging in the painstaking task of tracing uncontroversially 
indeterministic microlevel phenomena to widespread macrolevel evolutionary processes (see 
Millstein 2003a for further discussion).

Even if evolutionary processes are to some extent indeterministic (as is likely to be the case if 
there is indeterminism at the microlevel — even the determinists concede that microlevel 
phenomena could occasionally ‘percolate up’ to the macrolevel), it does not seem plausible that 
observed statistical outcomes of evolutionary processes (such as variations in cloned plants 
given purportedly identical treatment) could be fully explained by indeterminism (Weber 2001). 
It is unlikely that in either our models or in any particular case we know all of the relevant 
causes; surely some of the observed statistical outcomes are due to these unknown causes. Thus, 
for the remainder of this paper, I will remain neutral on the indeterminism question, i.e. the rest 
of the chance concepts assume neither determinism nor indeterminism. Some might think that 
the indeterministic chance concept is the only ‘real’ chance concept; the subsequent discussion 
will show that the other meanings of chance in evolutionary biology are equally ‘real’ and 
equally useful, just different in meaning. That is, each chance concept describes a particular way 
that the world could be, and when a concept of chance is ascribed to a particular phenomenon, 
it is an empirical matter whether or not the phenomenon in fact manifests that description.

(p.431) 20.3.2 Chance as ignorance of the real underlying causes
Sometimes, we say that a future event is a matter of chance because we are unaware of some of 
the causes. To use an everyday example, we think of the flip of a fair coin as having a 50% 
chance of turning up heads. And yet (again, barring the occasional percolation of microlevel 
indeterminism), we generally think that is because there are numerous unknown causes, such as 
the way the coin is flipped or wind resistance, that are responsible for the outcome on each toss. 
In other words, we might say that the our ascription of the coin's 50% chance of turning up 
heads is really just a reflection of our ignorance of these other causes.
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In the evolutionary realm, Darwin invoked chance as ignorance when he said that new variations 
were due to chance (though this was not the only sense of chance that Darwin ascribed to new 
variations):

I have hitherto sometimes spoken as if the variations—so common and multiform in 
organic beings under domestication, and in a lesser degree in those in a state of nature—
had been due to chance. This, of course, is a wholly incorrect expression, but it serves to 
acknowledge plainly our ignorance of the cause of each particular variation (Darwin 1859, 
p. 131).

And the use of this sense of chance, chance as ignorance, persists among biologists today, as 
Lande et al. make clear:

Fluctuations in population size often appear to be stochastic, or random in time, reflecting 
our ignorance about the detailed causes of individual mortality, reproduction, and 
dispersal (Lande et al. 2003, p. 1).

Of course, we are not completely ignorant about the causal factors influencing fluctuations in 
population size. Known causal factors include the current population size, the typical life span of 
organisms of the species in question, and density dependent population regulation (Lande et al.
2003). These causal factors are the considered causes, and they determine which outcomes (in 
this cause, which range of fluctuations in population size) are possible. The causes we are 
ignorant of are ignored. No type of cause is prohibited from operating altogether.
Here one might worry that this is just the Laplacean notion of chance, and so only a 
deterministic notion. However, this is not the case. Even if evolution is indeterministic, we still 
might be ignorant of some of the underlying causes, and so, this concept of chance might still be 
relevant. In such a case, the range of possible outcomes is mediated both by the unknown causal 
factors and the inherent indeterminism.

A related worry is that determinism, combined with ‘chance as ignorance’, is sometimes seen as 
exhausting all the possible meanings of chance. In other words, some authors have written as 
though ‘chance as ignorance’ is the only concept of chance that makes sense under determinism 
(e.g. Rosenberg 1994; (p.432) but see Bouchard and Rosenberg 2004 for an alternate view). As 
Henri Poincaré noted, such a position is wrong‐headed.10 The fact that the ‘laws of chance’ can 
correctly predict phenomena such as the motions of molecules of a gas shows that ignorance 
does not exhaust the meaning of chance and that ‘the information given us by the calculus of 
probabilities will not cease to be true upon the day when these phenomena shall be better 
known’ (Poincaré 1921: p. 396). Indeed, we will see that each of the following concepts of 
chance is sensible in deterministic (as well as indeterministic) contexts.

20.3.3 Chance as not designed
Events that appear planned or designed, but are not in fact so, are often attributed to chance. 
For example, one might say that the shape of a running horse appearing in the clouds was due 
to chance in this sense.11 For Darwin, new variations were chance in this sense:
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… if we do not admit that the variations of the primeval dog were intentionally guided in 
order that the greyhound, for instance, that perfect image of symmetry and vigour, might 
be formed,—no shadow of reason can be assigned for the belief that variations, alike in 
nature and the result of the same general laws … were intentionally and specially 
guided”(Darwin 1868, pp. 431–432).

Here we see that the same phenomenon can be chance in more than one sense: in the previous 
section, I noted that Darwin also held that new variations were due to chance in the sense that 
he was ignorant of the true causes.12 This form of chance is often not explicit in contemporary 
practice, but it is made explicit in responding to proponents of creationism or so‐called 
‘Intelligent Design’. Neither the new variations nor selection itself (nor any evolutionary 
process, for that matter) are thought to be designed; thus, they are all due to chance in this 
sense, though this is not to imply the other senses of chance are relevant. One of the sources of 
confusion in the creationist debates is the conflation between ‘chance as not designed’ and the 
other senses of chance, but clearly, the former sense does not imply the latter, as Richard 
Dawkins notes:

The argument from improbability states that complex things could not have come about by 
chance. But many people define ‘come about by chance’ as a synonym for ‘come about in 
the absence of deliberate design’. Not surprisingly, therefore, they think (p.433) 

improbability is evidence of design. Darwinian natural selection shows how wrong this is 
with respect to biological improbability (Dawkins 2006, p. 139; emphasis in original).

In order for an undesigned process to be operating, there must be a complete absence of any 
‘intentionally guided’ causes; thus, these causes are prohibited from this concept of chance. Any 
other cause may be considered; none need be ignored (though there may be other reasons, such 
as pragmatic reasons, for ignoring certain causes). Undesigned processes may give rise to 
outcomes that appear designed (what Dawkins calls ‘designoids’), but they may not.

If no causes are ignored, under determinism a token non‐intentional cause will of course 
uniquely determine one future outcome. In such cases, chance as undesigned can be construed 
as being true of a type of non‐intentional cause whose tokens can give rise to different possible 
outcomes, some of which appear designed and some of which do not.

20.3.4 Chance as sampling (both discriminate and indiscriminate)
Discriminate sampling processes are processes in which physical differences among entities are 
causally relevant to differences in which entities are ‘picked’. It can be thought of as ‘sloppy’ 
picking; the physical characteristics of some of the entities are the reason that they get picked, 
but they will not necessarily get picked; other entities that lack the characteristic in question 
might get picked instead. Natural selection is a chance evolutionary process in this sense. That 
is to say, natural selection is a process in which heritable physical differences among entities 
(e.g. organisms) are causally relevant to differences in reproductive success.

Indiscriminate sampling processes, on the other hand, are processes in which physical 
differences among entities are causally irrelevant to differences in which entities are ‘picked’. 
This is the sort of picking that would occur if one were picking while blindfolded and if the 
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physical differences in question were color differences only. Random drift is a chance 
evolutionary process in this sense. That is to say, as I have argued elsewhere (Millstein 2002,
2005), random drift is a process in which heritable differences among (for example) gametes13

are causally irrelevant to which gametes are successfully joined (i.e. which gametes participate 
in successful fertilizations that yield zygotes). Biologists have also developed macroevolutionary 
models in which physical differences between taxa are causally irrelevant to difference in rates 
of branching and extinction within the taxa (see Millstein 2000a for a discussion).

(p.434) A sampling process takes into account the proportion of types within the population 
that is being sampled, the size of the sample, and the picking mechanism(s); these are the 
considered causes. Given those causes (and possibly indeterminism), there are different samples 
that can be produced; the samples differ in the proportion of types. A discriminate sampling 
process will also consider the physical characteristics that give rise to relative capacities to be 
‘picked’; this will further constrain the possible outcomes, or at least their expected frequency of 
appearance. ‘Petty influences’, such as the locations of entities within the population, are 
ignored; no causes are prohibited from operating. Sampling processes give rise to different 
possible proportions of types subsequent to picking (in evolutionary cases, this is the next 
generation).

20.3.5 Chance as coincidence, i.e. ‘accident’
This concept of chance is associated with Aristotle; it implies the confluence of independent 
causal chains. For example, there may be a causal chain that leads to a white Toyota Prius being 
in the intersection of 3rd St. and B St. at 1:02 PM — and an entirely different and independent 
causal chain that led a green Ford Expedition to be in the same intersection at the same point in 
time. The collision of the cars was due to chance; it was a coincidence that they were in the 
intersection at the same time.

Note that under determinism, no two causal chains are truly independent, i.e. it is likely that 
there is a common cause if one looks back far enough in time (to the Big Bang, if necessary). 
Cournot (1843) provides a useful way of handling chance as coincidence under determinism. He 
describes two pairs of brothers — one pair serves in the same army, one pair serves in different 
armies, and yet in both cases the brothers perish on the same day. The brothers' deaths are both 
independent to a degree, yet the latter is more independent than the former, and thus chance to 
a greater degree.

In evolutionary biology, the question has arisen as to whether extinction is a chance process in 
this sense; for example, David Raup writes:

The main question, to be visited again and again, is whether the billions of species that 
died in the geologic past died because they were less fit (bad genes) or merely because 
they were in the wrong place at the wrong time (bad luck) (Raup 1992, p. xi; emphasis 
added).

So, for example, consider a causal chain that ends with an asteroid impact on the Earth and the 
causal chain of the persistence of a particular species. If these two causal chains intersect 
without having had a common cause, then their confluence was a coincidence. Genetic draft 
(Gillespie 2000a b; Skipper 2006) also exhibits this sense of chance. Genetic draft14 is a process 
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of linked selection where it is a matter of chance which of two neutral alleles (p.435) (in a two‐
locus model) happens to be linked to a site that undergoes an advantageous mutation, and 
where the timing of these mutations, followed by a rapid selective ‘sweep’ to fixation, is random. 
In models of genetic draft, the linking of a particular neutral allele to a locus where an 
advantageous mutation occurs represent two independent causal chains that intersect in a point 
in space‐time.
Thus, chance as coincidence takes into account the two (or more) causal chains, while 
prohibiting those causal chains that have a (recent, under determinism) common cause. By 
ignoring the timing and/or location of the causal chains, as possible outcomes the chains may or 
may not intersect. Returning to the example I gave at the outset of this section, this captures the 
sense that had things been just a little bit different (had I left a little earlier, or gone a different 
route), the accident would not have occurred.

20.3.6 Evolutionary chance

Evolutionary chance (the term is due to Eble 1999) is exhibited when phenomena are 
independent of the generally adaptive direction of natural selection. This sense of chance has its 
origins in Darwin's thinking; it is one of the several senses in which he held new variations to be 
chance (we have seen two others so far, chance as ignorance and chance as not designed) but it 
is perhaps the sense that has been most influential and persistent in evolutionary biology. That 
is to say, Darwin (in his non‐Lamarckian moments) believed that new variations were not 
directed, but rather that they were due to chance in the sense that they did not arise because 
they would be beneficial for the organism. Today, biologists generally believe that mutations, as 
a source of new variations in a population, are chance in this sense — mutations may be 
adaptive, maladaptive, or neutral — although there is some debate over whether all mutations 
are chance mutations.15 Recombination (the chromosomal crossover between chromosome pairs 
that occurs during meiosis, giving rise to new gene combinations) is another source of new 
variation in populations and is similarly conceived of in terms of evolutionary chance.

Random drift, which as we saw earlier is a form of chance as indiscriminate sampling, also 
exhibits evolutionary chance. Although drift may sometimes proceed in an adaptive direction, it 
is no more likely to do so than it is to (p.436) proceed in a maladaptive or neutral direction, in 
contrast to natural selection, which is weighted in an adaptive direction (and thus natural 
selection does not exhibit evolutionary chance, though it is chance in the sense of discriminate 
sampling, as we saw above). Similarly, the stochastic models of macroevolution that were 
mentioned earlier manifest evolutionary chance.

An anonymous referee has raised the concern that if drift exhibits more than one type of chance, 
the concepts of chance as indiscriminate sampling and evolutionary chance are not actually 
different from one another. However, such a concern is misplaced. Clearly, indiscriminate 
sampling is manifested in many non‐evolutionary contexts, such as the sampling of coloured 
balls from an urn (a model that is used to aid in understanding drift, but which is not itself 
random drift; to name one obvious difference, there is no reproduction involved in sampling 
balls from an urn as there is with random drift). Evolutionary chance, on the other hand, can be 
manifested in phenomena where indiscriminate sampling is not manifested, such as chance 
mutation, where it is not the case that there is some standing variation from which some 
variants are ‘picked’ and some are not. Rather, mutations are ‘mistakes’ made during the DNA 
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replication process with the consequence that the new nucleotide sequences differ from the 
previous nucleotide sequences. The fact that there are phenomena that exhibit indiscriminate 
sampling, but not evolutionary chance, and phenomena that exhibit evolutionary chance, but not 
indiscriminate sampling, shows that the two concepts are different — as does the fact that they 
differ in their considered causes, ignored causes, and prohibited causes, as previously 
described. (See Millstein 2000 for arguments concerning the distinctiveness of some of the other 
concepts of chance.)

Thus, evolutionary chance is primarily characterized by the causes that it prohibits entirely, 
namely, causes that proceed primarily in an adaptive direction. All other causes are taken into 
account, except for those that might be ignored for other (e.g. pragmatic) reasons. As a 
consequence, outcomes may be in an adaptive direction, but they may also be in maladaptive or 
neutral directions.

If no causes are ignored, under determinism a token not‐adaptively‐biased cause will of course 
uniquely determine one future outcome. In such cases, evolutionary chance can be construed as 
being true of a type of not‐adaptively‐ biased cause whose tokens can give rise to adaptive, 
maladaptive, or neutral outcomes.

20.3.7 Chance as contingency

Stephen Jay Gould's Wonderful Life: The Burgess Shale and the Nature of History makes the 
case for the role of contingency in the evolution of life on his (p.437) planet, using the movie
It's a Wonderful Life as a metaphor.16 Gould explains that when Clarence (a guardian angel) 
shows George what life in the town of Bedford Falls would have been like without him, the 
movie gave ‘the finest illustration that I [Gould] have ever encountered for the basic principle of 
contingency — a replay of the tape yielding an entirely different but equally sensible outcome;
small and apparently insignificant changes, George's absence among others, lead to cascades of 
accumulating difference’ (Gould 1989, p. 287; emphasis added). Similarly, Gould says, ‘[a]lter 
any event, ever so slightly and without apparent importance at the time, and evolution cascades 
into a radically different channel’ (Gould 1989, p. 51; emphasis added). In other words, if we 
replay the tape of life with small (and seemingly ‘insignificant’) changes at the outset, a radically 
different outcome will result: this is an example of what Gould calls (and what I will call) 
contingency.17 Contingency thus involves sensitivity to initial conditions.

Other examples of chance as contingency occur in evolutionary biology. For example, Beatty 
describes how differences in the order of mutations in similar ancestral orchid populations can 
account for the vast diversity of orchids species (Beatty 2006b). Genetic draft, mentioned above, 
may be analogous here, if different timing of mutations to advantageous alleles that are linked 
to neutral alleles would lead to very different outcomes (Gillespie 2000a b; Skipper 2006). These 
examples show that the initial conditions to which the relevant processes are sensitive can be 
small changes in timing as well as small qualitative changes, e.g., ‘If Pikaia does not survive in 
the replay, we are wiped out of future history — all of us, from shark to robin to 
orangutan’ (Gould 1989, 323).
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If a causal process is sensitive to initial conditions (the considered causes), then small 
differences in initial conditions (the ignored causes) will yield very different possible 
outcomes.18 These processes are contingent. Causal (p.438) processes that are not sensitive to 
initial conditions (i.e. that will tend to yield the same outcome even if the initial conditions differ 
slightly), are not contingent (so, these processes are ‘prohibited’).

An anonymous referee has raised the concern ‘that the notion of chance as sensitivity to initial 
conditions does not directly refer to the unpredictability of the final result due to our ignorance 
of little differences at the level of initial conditions. Rather, it refers to the disproportion 
between little changes at the level of causes (initial conditions) and big changes at the level of 
effects (result). Chance is this disproportion, which makes the prediction very difficult and even 
impossible in the long term. If it is so, there are no ignored causes in this case (but there can be 
always ignored causes for other reasons, like in the case of other concepts of chance).’ Here I 
would reply that what makes a phenomenon contingent is not our ignorance about the effects of 
small changes in initial conditions; the phenomenon would still be sensitive to initial conditions 
even if we knew those differences in initial conditions and their effects. Rather, I draw attention 
to the wide range of possible outcomes from similar initial conditions, a characteristic that 
chance as contingency shares with the other concepts of chance.

See Table 20.1 for a summary of the seven concepts of chance.

20.4 Connecting the UCC to probability
I have shown how each of the seven concepts of chance can be characterized in terms of the 
UCC. Note, however, that the seven concepts of chance are not to be ‘eliminated’ or made 
unnecessary simply because a common conception has been found. Each of them is more precise 
than the general definition; each ‘gets at’ a different aspect of chance. To put the point another 
way — each of the concepts of chance entails the general concept, but not vice versa. That is not 
to say that a particular phenomenon can't manifest more than one concept of chance. For 
example, as we have seen, random drift exhibits more than one concept of chance (chance as 
sampling and evolutionary chance), as do new variations (chance as ignorance, at least for 
Darwin; chance as not designed; and evolutionary chance). Which concepts of chance a given 
phenomenon manifests (if any) is an empirical question (though there may of course be a 
conceptual/theoretical component); again, note in particular that indeter‐ ministic chance may 
or may not be appropriate for a given phenomenon, and that it may be manifested in conjunction 
with one or more of the other concepts.

One benefit of characterizing the seven concepts of chance in terms of the UCC is that it 
provides a straightforward way for us to translate these more colloquial uses of chance into 
probabilistic terms. The translation between (p.439)

Table 20.1 Summary of the seven concepts of chance, using the parameters of 
the UCC as illustrated in Figure 20.1
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Concept of 
chance

Considered causes Ignored causes Prohibited 
causes

Different possible 
outcomes

Indeterministic 
chance

All (more precisely 
the complete state 
of the world at t n).

None. None. Any type of 
outcome in 
principle, though 
possibilities will be 
restricted by the 
included causes.

Chance as 
ignorance

All the causes that 
we know (or whose 
effects can calculate 
easily).

All other causes. None. Any type of 
outcome, though 
possibilities will be 
restricted by the 
included causes.

Chance as not 
designed

Any type of causes 
other than 
‘intentionally 
guided’ causes.

None by 
definition, 
though some 
may be ignored 
for other 
reasons.

Intentionally 
guided 
causes.

Events that appear 
designed or events 
that do not appear 
designed.

Chance as 
sampling

Proportion of types 
within the 
population, size of 
sample, ‘picking’ 
mechanism. If 
discriminate, also 
includes relative 
capacities to be 
picked.

‘Petty 
influences’, such 
as the locations 
of entities.

None. Different 
proportions of 
types in the 
population 
subsequent to the 
‘picking’.

Chance as 
coincidence

Two or more causal 
chains.

The timing and/
or location of 
the causal 
chains.

A common 
cause for the 
causal chains.

The causal chains 
intersect or the 
causal chains do 
not intersect.

Evolutionary 
chance

Any cause that does 
not proceed 
primarily in an 
adaptive direction.

None by 
definition 
though some 
may be ignored 
for other 
reasons.

Any cause 
that proceeds 
primarily in 
an adaptive 
direction.

Outcomes may be 
adaptive, 
maladaptive, or 
neutral.

Chance as 
contingency

Causal processes 
that are sensitive to 
initial conditions.

Small, 
seemingly 
‘insignificant’ 
causes.

Causal 
processes that 
are not 
sensitive to 
initial 
conditions.

Very different 
outcomes, 
depending on 
which small causes 
are ignored.

(p.440) UCC and a (conditional) probability19 is as follows. The UCC corresponds to the
probability of a particular outcome given the specified subset of causes. Or, more formally, a 
given instantiation of the UCC can be translated to Pr(outcome/subset of causes), where ‘subset 
of causes’ are the considered causes and ‘outcome’ is one of the possible outcomes, for that 
instantiation of the UCC.20
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Here is an example of how this works. As described above, for chance as indiscriminate 
sampling, the considered causes are the proportion of types within the population, the size of 
sample, and the ‘picking’ mechanism. For chance as sampling petty influences are ignored, and 
so are not included in the subset of causes; no causes are prohibited, however. For random drift 
in particular, the UCC might be instantiated with the current proportions of phenotypes with 
respect to a given heritable trait, a given size of the population, and the particular 
environmental factor(s) that interact with that trait. This subset of causes yields different 
possible outcomes, where the different outcomes are different proportions of phenotypes in the 
subsequent generation.

So, for this sort of random drift, chance as indiscriminate sampling can be characterized as:

Pr (a particular proportion of phenotypes in the subsequent generation / current 
proportions of phenotypes with respect to a given heritable trait & size of population & 
environmental factor(s) interacting with those traits)

or, in a particular case, where the population consists of yellow, brown, and pink snails:

Pr (0.6 yellows, 0.3 pinks, and 0.1 browns in the subsequent generation /0.5 yellows, 0.4 
pinks, and 0.1 browns (heritable colors) & 200 snails & drought to which all snails are 
equally susceptible).

Once the translation is effected, it may now be possible to characterize our fairly colloquial uses 
of chance in quantitative terms for a particular case. For example, for random drift and chance 
as indiscriminate sampling, we could calculate the probability of a particular change in the 
population through (p.441) the usual means of calculating such probabilities (laboratory 
experiments, observations of similar populations, etc.).

The other concepts of chance can be translated into probabilities in the same way: we can 
describe the probability of a particular outcome given the subset of causes for the concept of 
chance at hand (including the considered causes and excluding the ignored and prohibited 
causes), and then determine the values of those probabilities in the usual way that such 
probabilities are estimated. Although it might seem strange to quantify what seem like colloquial 
concepts of chance, this is not completely new for evolutionary biology. For example, 
Lenormand, Roze, and Rousset (2009) describe mathematical models of evolutionary chance. In 
principle, we could use the quantitative probability measures to compare different colloquial 
senses of chance. For example, we could compare an instance of chance as sampling (say, an 
outcome with a probability of 0.3) to an instance of chance as contingency (say, an outcome with 
a probability of 0.6). It remains to be seen, however, whether such comparisons would prove 
useful.

Also, if we had reason to think that a particular interpretation of probability was the appropriate 
interpretation for a particular case, we could link it to our chance concepts via the UCC. For 
example, we have good reason to think that our random drift probabilities are propensities, 
either deterministic or indeterminisitic (Millstein 2003b). Propensities are grounded in, and 
arise from, the physical characteristics of a system. The physical characteristics of the system, 
however, are just what I have been calling the considered causes, and it is their dispositions that 
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are the source of the probability measures. In such cases, we would have good reason to think 
that this form of chance as indiscriminate sampling was a (deterministic or indeterministic) 
propensity.

However, the concepts of chance themselves can in principle be understood through any 
defensible interpretation of probability (with the exception of indeterministic chance, which is 
most naturally understood in terms of inde‐ terministic propensities). Consider, for example, 
chance as ignorance. This might seem like an epistemic probability (that is, a probability that is 
concerned with the knowledge or beliefs of human beings), and it could indeed be interpreted 
that way; however, it need not be. Consider again the case of the coin flip; we need not be truly 
ignorant of the causes apart from the flipping mechanism and the coin itself (such as wind 
resistance). More to the point, we can understand the 50% probability we ascribe as arising 
from the physical characteristics of that type of setup (the considered causes) or the possible 
outcomes of that type of setup, making one of the objective probability interpretations 
(propensity or frequentist, respectively) a possible interpretation. On the other hand, by 
construing the relevant considered causes and observed outcomes as Bayesian evidence, one 
can likewise translate any of the concepts of chance into subjective probabilities.

(p.442) 20.5 Conclusion
There are at least seven particular, colloquial uses of chance in evolutionary biology. With the 
exception of indeterministic chance, each is meaningful regardless of whether the evolutionary 
process is deterministic or indetermin‐ istic. Each of the seven can be translated into the Unified 
Chance Concept (UCC) by specifying the types of causes that are taken into account (i.e. 
considered), the types of causes that are ignored or prohibited, and the possible types of 
outcomes. Again, however, let me emphasize that the existence of a more general concept does 
not entail that the more specific meanings are eliminated; the plurality of concepts is useful in 
illuminating different aspects of chance phenomena.

The UCC has the following benefits: The UCC reveals what is in common to the different chance 
concepts (what makes ‘chance’ chance). The UCC may aid in finding other concepts of chance, 
perhaps even outside of evolutionary biology. And most importantly, the UCC connects 
colloquial concepts of chance to probability, permitting them to be quantified, compared, and 
understood in terms of more formal interpretations of probability.
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Notes:
(1) It also has multiple synonyms, or almost synonyms, ‘stochasticity’ and ‘randomness’ in 
particular. However, for the most part I will restrict myself to the broader term ‘chance’, since 
both stochasticity and randomness often have particular mathematical connotations that not all 
concepts of chance have.

(2) Possible roles include explanatory, instrumental, representational, and/or justificatory (see 
Millstein 2006 for discussion).

(3) One possible exception here is indeterministic chance. I myself don't think that it plays a 
direct role in evolutionary theory, in part for philosophical reasons I have discussed elsewhere 
(Millstein 2000b) and in part because it is simply my impression that it is not what biologists 
usually mean when they invoke chance and probability. However, as we shall see below, others 
do think that indeterminism plays a role in evolution. Moreover, it at least plays an indirect role 
in the sense that it is often explicitly rejected in order to begin to clarify which sense of chance
is being used in a particular context.

(4) My favourite example: All scientific theories could be unified under the assertion that ‘things 
happen’. (Slightly modified from a version suggested to me by Frédéric Bouchard.) This would 
be true, but so general as to be completely uninformative.

(5) See Earman (1986) for a far more detailed and sophisticated discussion for why ‘uncaused’ is 
an inaccurate description of the sort of indeterminism suggested by quantum mechanics.

(6) Most importantly, the definition is an ontological one (and thus is a claim about the world), 
rather than an epistemological one (which would be a claim about our, or a Laplacean demon's, 
ability to make predictions about the future).

(7) That is, physically possible. Here, I leave the characterization of physical possibility open; for 
example, one may do so in terms of laws if one is convinced that laws will clarify the notion. I am 
not so convinced.
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(8) As should become clear below, the fact that we ignore certain causes does not necessarily 
imply that we are ignorant of them.

(9) As will become clearer below, I do not find these arguments persuasive; my reason for 
including this example is to incorporate the full range of the types of claims that have been 
made about chance in evolution. Indeed, I think it is rare — if ever — that indeterministic chance 
is invoked in evolutionary contexts. However, it is important to leave open the conceptual 
possibility, as well as to emphasize that the other concepts of chance do not assume 
indeterministic chance.

(10) See also Weber (2001) and Millstein (2003b).

(11) The famous 1965 ‘tomahawk toss’ on The Tonight Show Starring Johnny Carson is a classic 
example of an unplanned event that looks like it could have been planned. Another example is 
the rock formation in New Hampshire that was known as ‘The Old Man of the Mountain’.

(12) Beatty (1984) has emphasized the fact that Darwin used a multiplicity of chance concepts in 
characterizing the origin of new variations.

(13) Note that both discriminate and indiscriminate sampling processes can occur at any level of 
the biological hierarchy, e.g. DNA bases, gametes, organisms, groups, etc. Also, they can occur 
simultaneously, as in the nearly neutral theory of molecular evolution (see Dietrich and Millstein
2008 for a discussion).

(14) The phenomenon is called ‘genetic draft’ because some of its predicted outcomes are 
similar to those of genetic drift and because it involves ‘hitchhiking’, i.e. linked selection.

(15) See Millstein (1997) and Merlin (2009) for a discussion. In order to account for the nuances 
of this complicated debate, the concept of chance mutation needs further refinement. Mill‐ stein 
(1997) argues that a mutation is directed if and only if it is specifically caused by environmental 
stress in an exclusively adaptive manner. Otherwise (if the mutation is non‐specific, or specific 
but not exclusively adaptive, or not caused by environmental stress) it is a chance mutation. 
Merlin (2009) modifies this account of chance mutation. However, these refinements, while 
crucial for a full understanding of the debates over directed mutation, are not essential for the 
discussion here.

(16) Beatty (1995, 2006a) analyses Gould's concept of ‘contingency’ in detail; my presentation of 
it differs slightly from his. In particular, Beatty describes two meanings of contingency: 
unpredictability and causal dependence. Beatty describes unpredictability as ‘different, 
unpredictable outcomes from the same or indistinguishable prior states’ (Beatty 2006a, p. 339). 
If the prior states are truly identical, then contingency is the same concept as what I have called 
‘indeterministic chance’ above. It seems to me that Gould denies this meaning when he 
differentiates contingency from the ‘truly random’ (Gould 1989, p. 284). Causal dependence, on 
the other hand, is described as ‘the particular outcome depends strongly on which particular 
states preceded it’ (Beatty 2006a, p. 339). That is closer to the view that I will describe.
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(17) Sixty‐eight years earlier, Poincaré describes chance in the same way, where ‘slight 
differences in the initial conditions produce great differences in the final phenomena’ (1921, p. 
397). One of his examples is a perfectly symmetrical cone on a perfectly vertical axis, with no 
forces acting on it. I do not know whether Gould read Poincaré; no doubt this idea has been 
articulated many times.

(18) Chaotic processes are examples of contingent processes; however, being sensitive to initial 
conditions is only one characteristic of chaotic processes. That is, all chaotic processes are 
contingent, but not all contingent processes are chaotic.

(19) Hájek (2007) argues that all genuinely informative theories of probability suffer from the 
reference class problem, a problem that can (in its metaphysical form) be dissolved by 
recognizing that conditional probabilities are the proper primitive of probability theory. I have 
much sympathy with his arguments, although nothing turns on them here.

(20) Here I make no claim as to whether the product of such a translation would satisfy all of 
Kolmogorov's axioms; such a demonstration would take us astray from the main points of this 
paper. Here I will simply note that some of the main candidates for interpretations of 
probability, such as the propensity interpretation, do not satisfy all of the Kolmogorov axioms, 
either (see, e.g. Hájek 2009 for a discussion).
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population limit, the standard results without drift also obtain. The stochastic dynamical 
interpretation is contrasted with the views that evolution is a theory of forces and the 
statistical interpretation of evolution.

21.1 Introduction
Consider an infinite population obeying Mendel's rules of inheritance. We will track evolution at 
a single locus at which there may be several alleles.1 We will assume that the population is of 
the simplest type satisfying all the criteria listed in Table 21.1. This simple model, often called 
the ‘standard selection’ model, is used for didactic simplicity in elementary textbooks of 
population genetics — in fact much of the technical discussion of this paper will use an even 
simpler model in which we will ignore diploidy (paired chromosomes) and assume that the 
population is haploid (chromosomes occur singly) as, for instance, in bacterial species. (p.446)

Table 21.1 Assumptions of the standard selection model. For further discussion 
of these assummptions, see, e.g. Nagylaki (1992).

Condition Further explanation

1 Infinite population

2 Full diploidy Diploid organism; the locus being considered is not on a sex 
chromosome (which would have no locus homologous to it).

3 Two sexes

4 Dioecy Each individual will be of only one sex.

5 Initial genotypic 
frequencies same for 
both sexes

6 Random mating Only necessary for the locus under consideration.

7 Co-equal segregation of 
alleles into gametes

8 Independent assortment 
of alleles

At this locus; together with Condition (7) this is Mendel's first 
rule of inheritance.

9 Discrete generations

10 Non-overlapping 
generations

11 Selection operating at 
one locus

12 Frequency-independent 
genotypic fitnesses

13 Time-independent 
genotypic fitnesses

14 No mutation

15 No migration

Two results make the standard selection model particularly salient in philosophical discussions 
of evolutionary theory. First, assume that all fitnesses are the same.2 Then the frequency of 
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every allele remains constant through time. Moreover, after the first generation, the frequency 
of each genotype also does not change and is equal to the product of the frequencies of the two 
alleles that comprise that genotype. Let p i and p j be the frequencies of the i–th and j–th alleles, 
respectively. Then, this constant genotypic frequency for the {i, j}–th genoptype, p ij , is equal to
p i p j. This is known as the Hardy— Weinberg rule after its independent discoverers, the British 
mathematician, (p.447) G. C. Hardy, and German physician, Wilhelm Weinberg.3 The 
deification of this rule will be criticized later in this chapter (see Section 21.4) but that is 
because there is much more to evolution than the standard selection model. In the context of 
this model the constancy of genotypic frequencies is, indeed, quite remarkable.

Second, when not all fitnesses are equal, the rate of change of the mean fitness of the population 
(from one generation to the next) is proportional to the variance in fitness in the original 
generation. R. A. Fisher (1930), one of the founders of theoretical population genetics, regarded 
this result (which he was the first to derive) as the ‘fundamental theorem of natural selection’. 
How important this result really is for biology remains controversial. However, there should be 
little doubt that it is philosophically interesting because it shows that the power of selection 
depends on how much variation there is in the population, and this conclusion is not challenged 
by any of the controversies surrounding the so‐called fundamental theorem. In any case, issues 
regarding the ‘proper’ interpretation of Fisher's result (and its many extensions) are not 
germane to the concerns of this chapter.

Returning to the Hardy—Weinberg rule and the standard selection model, it is instructive to see 
what happens when the assumptions of Table 21.1 are relaxed. Perhaps what is most interesting 
is that many types of non‐random mating may change genotypic frequencies from one 
generation to the next but will not change allele frequencies. Non‐random mating includes 
assorta‐ tive mating (‘like’ mates preferentially with ‘like’), its opposite (disassortative mating), 
and inbreeding.

What changes allele frequencies? The usual answer–and we are no longer limiting ourselves to 
the standard selection model — lists five mechanisms: drift (random changes during 
reproduction), meiotic drive, migration, mutation, and selection. Meiotic drive is irrelevant to 
this analysis: it is the result of non‐Mendelian mechanisms, for instance, preferential 
segregation of one of the alleles into the gametes. The discussions of this paper are restricted to 
Mendelian and haploid populations. Migration will also be ignored; instead, it will be assumed 
that populations are closed, as in the standard selection model. All the conceptual problems that 
concern this chapter remain unmitigated in spite of this simplifying assumption. This leaves 
drift, mutation, and selection to be discussed. The relative role of each in evolution has been one 
of the major debates within recent evolutionary theory (Kimura, 1983; Gillespie, 1994).

This chapter is about the question whether drift is a ‘cause’ of evolution. Section 21.2 is about 
how ‘cause’ will be construed. However, what constitutes evolution also remains a live question. 
First, there is the controversial relation (p.448) between macroevolution (evolution at 
taxonomic levels higher than that of species) and microevolution (within species) (Gould, 2002; 
Plutynski, 2008). It will be assumed here that macroevolution can be reduced (sensu Sarkar 
(1998)) to microevolution, that is, the facts of macroevolution can be explained by the operation 
of microevolutionary processes over long times. Those who are uncomfortable with this 
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assumption should simply regard this chapter as being about whether drift is a cause of 
microevolution. After all, if drift is a cause of microevolution, ipso facto, it is a cause of evolution 
because the former is part of evolution, whether or not macroevolution can be reduced to 
microevolution.

Second, within the microevolutionary context, Dobzhansky (1937) popularized the definition that 
evolution consists of changes of allele frequencies and this definition has often been endorsed by 
biologists.4 Note that this is a very restrictive definition in the sense that phenotypic changes in 
populations resulting, for instance, from genotypic, but not allelic, changes do not constitute 
evolution. Dobzhansky's restrictive definition will not be endorsed here. Rather we will explore 
the consequences for the definition of evolution to require either a change of allele frequencies 
or, less restricively, a change of genotype frequencies.5

As mentioned earlier, Section 21.2 of this chapter will elaborate the causal framework adopted 
for this analysis. It will be assumed that evolving populations are dynamical systems that are 
described by a minimal set of assumptions. This set will be partitioned into constitutive 
assumptions which establish the identity of a system, and facultative assumptions which can 
vary without challenging this identity. The latter embody the relevant causes which operate 
against the background conditions provided by the constitutive assumptions. In order to explore 
the relation between drift and selection, Section 21.3 will construct and solve a haploid model 
with a finite population. Stochastic reproduction will be modelled explicitly. In this model, death 
rates of different types will give rise to fitness differences and, thus, to selection. Fitnesses are 
summary parameters incorporating birth and death rates; all uncertainties arise from the finite 
population size, that is, because finite samples are being drawn from a finite population.6 Thus, 
drift is a result of population size. If we take as constitutive the assumption whether a (p.449) 

population is finite or infinite, drift is not a cause of evolution but results from the conditions in 
which a population is evolving; selection remains a cause. Finally, Section 21.4 turns to how this 
analysis coheres with the most common philosophical interpretations of evolution. It is almost 
entirely at odds with the so‐called ‘statistical’ interpretation which has recently gained some 
prominence. It also does not agree with details of most versions of the dynamical interpretation. 
But it is a dynamical interpretaion, perhaps best called a stochastic dynamical interpretation of 
evolution.

21.2 Causality and evolutionary dynamics
Potentially evolving populations are ‘dynamical systems’ in the minimal sense that they are 
modelled by a set of equations that specify (deterministically or probabilistically) the future 
state of a system, given its present state (Hirsch and Smale 1974).7 Defined in this way, 
population models satisfy Lewontin's (1974) requirement of dynamic sufficiency, and we will 
assume that they do so by embodying within them a minimal set of assumptions for that 
purpose.8 Minimality will be construed as meaning that the assumptions are jointly 
(dynamically) sufficient and each one is necessary. We will make a distinction between 
‘constitutive’ and ‘facultative’ assumptions. The former are privileged in the sense that they 
cannot be changed without changing the identity of the sytem (i.e. changing what is being 
modeled): this is the sense in which they are constitutive. The latter may change without 
changing the identity of the system.
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Three subtleties about constitutive assumptions must be noted. First, what a system is 
(obviously, as represented in a model–no position will be taken here on realism or related issues) 
depends on the context of inquiry. This means that what should be taken as the constitutive 
assumptions of a model is context‐dependent. Consider mating patterns. Suppose what interests 
us is what happens to a population as mating becomes more assortative progres‐ sively.9 In that 
case the assumption about mating behaviour will be a facultative assumption rather than a 
constitutive one: we would be studying the same (p.450) population as mating behaviour 
changes. In contrast, in the standard selection model, the assumption of random mating is 
constitutive, for instance, when we are mostly interested in how rapidly a system may respond 
to different types of selection pressure.

Second, in many situations, the constitutive assumptions alone will not be dynamically sufficient. 
Return to the case of mating behaviour. For dynamic sufficiency in models of Mendelian 
populations, we must make some assumption about mating, whether it be random, assortative, 
disassor‐ tative, inbreeding, obligate outcrossing, etc. But, as we noted earlier, in many 
situations we may want to let mating behaviour vary in what we regard as the same system — 
indeed we may even be interested in the evolution of mating behavior. For instance, Otto et al. 
(2008) explore the evolution of assortative mating in a two‐locus model in which this mating 
pattern is indirectly selected for whenever heterozygotes are less fit than homozygotes at one of 
the two loci.10 They show that, if assortative mating increases in frequency, it can lead to 
reproductive isolation of different groups in a sympatric population (one that is geographically 
localized ‘at the same place’) potentially leading to speciation without geographical separation. 
Thus, the mating assumption is not constitutive, and the constitutive assumptions are not 
dynamically sufficient.

Third, when the constitutive assumptions are dynamically sufficient, because of the presumed 
minimality of the set of assumptions, there is no further facultative assumption made in the 
model. This would mean that the system cannot be conceptualized in any other way. Suffice it 
here to note this logical possibility; we will return below to the question whether this case is of 
any biological relevance: briefly, if we take the finiteness of a population to be a constitutive 
assumption, we will have a dynamically sufficient set of constitutive assumptions if we want to 
explore neutral evolution (that is, evolution in the absence of fitness differences).

Is there a canonical list of constitutive assumptions for evolutionary models? There cannot be. 
We — all entities of the biosphere — have evolved from some rather nondescript molecules of 
the distant past. Every aspect of living systems is a product of evolution and the history of its 
emergence presents questions to be potentially explored. What is constitutive about a living 
system depends on the stage of evolutionary history and the questions we choose to ask. We owe 
this insight primarily to Fisher (1928) who realized that even the properties that define 
Mendelian systems may evolve and are potentially subject to modification through natural 
selection.11

(p.451) We will restrict ourselves to Mendelian and haploid systems. The restriction to 
Mendelian systems is standard in much of evolutionary theory though this may reflect little more 
than the fact that we are Mendelian organisms and most of our biological intuitions are 
developed in the context of large animals which share the same property.12 We will leave further 
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discussion of this issue for another occasion though a consideration of polyploidy (and around 
half of flowering plant species are polyploid) may well lead to a different assessment of the 
causes of evolution.13 Haploid systems are also included here because the mathematics of drift 
(see Section 21.3) is much simpler for haploid systems than for Mendelian systems and the 
conceptual problems that concern this chapter remain unmitigated in the simpler context. 
Moreover, because Mendelian organisms go through a haploid phase (as gametes) in their life‐
cycle, considerable insight into the evolution of Mendelian systems can still be obtained from 
haploid models (Kimura, 1983).

Evolutionary models are typically constructed to explain dynamical patterns of systems, more 
often than not differences in dynamical patterns of the same system in different circumstances. 
Here, the ‘causes’ of those patterns will be construed as the factors that are embodied in the 
facultative assumptions of a model. The constitutive assumptions provide the ‘background 
conditions’ against which these causes operate.14 On this account, causes make differences but 
what counts as causes depends on the context in two ways: what we are trying to explain, and in 
which system at what stage of its history.15 The former correspond to what Menzies (2004), 
following Gorovitz (1965), calls the context of inquiry, the latter to what he calls the context of 
occurrence. Both, but especially the latter, determine what the constitutive assumptions are.

But, somewhat counterintuitively, on this account, systems may undergo changes of state 
variables without any causal story to be told. A system may change just because of what it is. 
The standard way in which this may happen is when a system consists of a finite number of 
constituent parts and there is some sampling of the parts during dynamical evolution.16 We may 
want to (p.452) say that randomness is a cause of change, or that what a system is includes 
causes of its change. The former possibility has generated much philosophical work (Forber and 
Reisman, 2007) but it has largely remained imprecise: ‘randomness’ does not specify any single 
thing. We need to specify what distribution random variables must be drawn from, that is, the 
sampling process: if there are alternatives we will have to make a facultative assumption. The 
latter possibility amounts to maintaining that even when we have explained a process of change, 
and have incorporated the results into our definition of a system, we are still searching for 
causes; rather, in the causal framework of this paper, we should be construing these 
assumptions as the conditions against which causal analysis takes place.

In the case in which there is no facultative assumption in a model, its constitutive assumptions 
are dynamically sufficient. For the reasons mentioned in the last paragraph, the account of 
causality used here has the implication that there are no causes to investigate. But, once again, 
does that make sense? Digressing, briefly, into physics, consider a Newtonian system consisting 
of particles with no mass, no charge, and so on, so that no force is acting on it or any of its 
constituent parts.17 Assume that what we are interested in is the dynamical evolution of the 
system. The constitutive assumptions are sufficient to determine the system's dynamics: each 
particle continues in a state of rest or of uniform rectilinear motion indefinitely. It is clear that 
there are no causes to investigate. Now, consider, instead, a system in which the particles just 
have some mass. What are the constitutive assumptions about the system? In a classical context, 
presumably the number of particles and their masses would fall under this category. Almost 
certainly (depending on the context of inquiry), the distances between particles and their 
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velocities would not, and the constitutive assumptions would no longer be dynamically sufficient. 
We are allowed to investigate causes. At least Newtonian physics presents no problem.18

In microevolutionary models, presumably (once again depending on the context of inquiry), a 
system would not lose its identity just because it is placed in a different environment. This 
means that fitness values are not constitutive (p.453) assumptions even if they remain constant 
in a particular environment over generations, as in the standard selection model. Consequently, 
in all contexts in which we are interested in selection, we will not face the problem that 
constitutive assumptions are dynamically sufficient and we are thus left with no cause to 
investigate. Neutral evolution is different. In diploids, if the context allows some non‐random 
mating assumption to be constitutive, genotypic frequencies may change from the constitutive 
assumptions alone. Much of this chapter will be about how allele frequencies change in finite 
populations even without selection. If the finiteness of a population is constitutive, we have 
change without causes. Evolution is rather different from the Newtonian world.

It is time to turn to the causes of evolution. Given the characterization of evolution in Section
21.1, there are two cases to consider, corresponding to whether we define evolution as solely a 
change in allele frequencies, or we also allow changes of genotypic frequencies in the definition:

• If evolution is viewed as requiring a change in allele frequencies, what was said 
earlier about fitness values implies that selection is a cause of evolution. This is not 
controversial; in fact, any analysis of the causes of evolution that denies such a role 
to selection would be absurd.19 What about mutation? Because mutations arise 
stochastically (that is, random processes are involved), it would be odd to suggest 
that which mutations are supposed to occur should be part of the definition of a 
system. Mutation trivially changes allele frequencies and are, thus, a cause of 
evolution.20 The dialectic between mutation and selection has been extensively 
explored, starting with the pioneering work of another of the founders of theoretical 
population genetics, J. B. S. Haldane (1927).
• Allele frequency changes will lead to genotypic frequency changes except in highly 
contrived examples. Consequently, if genoypic frequency changes are also presumed 
to constitute evolution, selection and mutation remain causes of evolution. What is 
more interesting is mating behaviour. As noted earlier, a large array of mating 
patterns (assortative and disassortative mating, inbreeding, etc.) can lead to 
genotypic frequency changes without allele frequency changes. Should assumptions 
about mating patterns be regarded as constitutive or facultative? As usual, (p.454) 

the answer will depend on context. For instance, as was noted earlier in the case of 
assortative mating, if the evolution of a mating pattern is itself the focus of inquiry, 
the assumptions are bound to be facultative. There are also systems in which some 
mating pattern is obligatory: for instance, plants with self‐incompatibility alleles 
cannot self‐fertilize and two plants may not be able to cross‐fertilize if they share as 
few as one self‐incompatibility allele (Levin, Kelley and Sarkar, 2009). In almost all 
such contexts, highly constrained mating pattern assumptions will be constitutive, 
part of the definition of the system. However, allele frequencies may also change, for 
instance when the same locus admits both self‐ incompatibility and ‘ordinary’ 
alleles.21
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We have not yet discussed drift. The crucial issue will be whether the initial size of a population 
— at the very least, whether it is finite or infinite — is a constitutive assumption. There is no 
trivially obvious answer. If initial allelic or genotypic frequencies are different in the different 
populations, we arguably have different systems. But the interesting situation, as we shall see in 
Section 21.3, is the one in which such frequencies remain the same even as the population size 
changes (including an increase to the idealized infinite limit). Should the initial size of a 
population be viewed in analogy with the initial conditions from which a physical dynamical 
system evolves? If so, then the same system may have different initial population sizes. 
However, for evolutionary systems the analogy seems misleading for two reasons:

1. Evolutionary changes, and many other biological processes, are much more history‐
dependent than typical physical systems.22 Some processes cannot even be modelled 
accurately as Markov processes in which the state of a system at one time stage only 
depends on its state at the previous time stage though, because of mathematical 
complexities, non‐ Markov processes remain poorly explored (Iizuka and Matsuda, 1982). 
Consequently, the initial size of a population may be definitive to what it will be, part of 
what establishes its identity.
2. Even without taking drift into account, we know that small populations are very 
different from large ones in the context of both evolution and ecology. For instance, a 
moderate amount of inbreeding may have qualitatively different effects in the two 
situations (Crow and Kimura, 1970). Sometimes entirely different methods have to be 
used to model processes in the two situations. For instance, in large populations 
mutation may be sometimes modeled deterministically (Crow and Kimura, 1970); (p.
455) in contrast, models of mutation in small populations require a stochastic treatment 
of the mutation process (Stewart, Gordon and Levin 1990; Ma, Sandri and Sarkar 1992; 
Sarkar, Ma and Sandri 1992). In ecology, the techniques of population viability analysis 
are even more different in the two situations, with large populations typically modeled as 
if they are infinite in size (Caughley, 1994; Sarkar, 2005).

In what follows, assuming that the context of inquiry specifies that we are interested in the 
eventual composition of a population, we will treat whether the initial size of a population is 
finite or infinite as a constitutive assumption. This is an intermediate position between treating 
the exact initial size as constitutive and not regarding size as constitutive at all.

It is time to model evolution in a finite population explicitly and see what happens. Though the 
philosophical literature on drift is large (and defies easy summary), there has been surprisingly 
little precise analysis of the evolutionary dynamics of a fully specified model — for instance, 
even as a Gedankenexperiment.23 We will consider a very simple model. Nevertheless, the 
mathematics is a little complex. Moreover, only a few parts of the mathematical analysis are 
new. Those not interested in technical detail should skip to Section 21.3.3. As noted earlier, for 
mathematical simplicity, we will use a haploid model.

21.3 The haploid model
Besides requiring that the population is haploid and finite, this model differs somewhat subtly 
from the standard selection model in how selection is imposed. An informal description here will 
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be followed by an exact specification in Section 21.3.1. We will assume the population size is 
fixed, for instance, due to resource constraints.24 Fitness differences will be modeled as viability 
differences: at each temporal stage (which may loosely be interpreted as a generation), 
individuals of different types have different probabilities of dying. All individuals have the same 
probability of reproducing. These probabilities all remain constant over time. In this sense 
fitnesses are constant. However, in disanalogy to the standard selection model, because the 
population size (p.456) is fixed, relative fitnesses of the types will not remain constant over 
time.25 In order to compare predictions of this model to one in which the population is infinite, 
we will be interested in computing the probability that one type will eventually prevail over the 
others. We now turn to this model in detail.

21.3.1 Model specification

Let the fixed size of the population be N. As in the discussion of the standard selection model, 
we will assume non‐overlapping time stages indexed by time, ti, i ∈ ℤ+.26 Evolution will be 
tracked at one locus and, for simplicity, it will be supposed that there are only two alleles, A and
a; because this is a haploid model, alleles and genotypes will not be distinguished.27 At t1 it is 
assumed that there are k individuals of type A and, therefore, N − k individuals of type a. The two 
types have different fitnesses because of different death rates (that are constant over time): at 
any time stage, let these death rates of A and a be μ A and μ a, respectively. The model assumes 
no difference in reproductive capabilities for A and a, that reproduction occurs at the beginning 
of each time stage (that is, before potential death), and that each individual reproduces at most 
once. Thus, if μ A 〉 μ a, a has higher fitness than A and vice versa.

Because the population is finite, one of the two types will prevail over time (that is, it will be the 
only one left after an infinite number of time steps). The parameter that is of most interest is p(a
∞), the probability that this type is a. At time stage, t n, let there be j individuals of type A. Then 
there are N − j individuals of type a. Then, at the stage, t n, the probability of an A death is

while for a, it is

. The probability of replacement by a new A individual is

and that by an a individual is

. It is trivial to check that the total number of individuals will remain at N for stage t n+1

(because the probabilities of replacement by either an A or an a individual add up to 1).
In this model the state of a population is described by the number of A individuals (or, 
alternatively, the number of a individuals because the sum of the two numbers must always add 
up to N). Given the arguments of the last paragraph, state changes of the population are 
described by a Markov chain with transition probabilities:28 (p.457)
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(21.1)
where p i,j is the probability of transition from a state in which A individuals number i to one in 
which they number j. (Since, at any stage, the number of A individuals may change at most by 1, 
there are only three non‐zero transition probabilities.)

21.3.2 Analysis
The solution of the Markov chain model described by Equation (21.1) to obtain p(a ∞) is 
straightforward.29 It depends critically on the initial number, k, of A individuals at t 1:

(21.2)
The exact form of the result when there is selection, μ a ≠ μ a, is sensitive to the details of the 
model. If we had modeled selection differently, a different expression would be found. (The 
implications of this aspect of Equation (21.2) will be noted in Section (21.3.3).) The result for the 
case when there is no selection, μ a = μ a, is more robust and remains the same for a large class 
of similar models.

To connect Equation (21.2) to the haploid version of the standard selection model of Section 21.1
(that is, to an infinite population haploid model), consider the limit N →∞ with

held constant. First, let

and

. Then Equation (21.2) can be rewritten as:

(21.3)
Now, consider the case of μ 1 = μ2 first, that is, when there is no selection. Then p(a ∞) is the 
initial frequency of a which is not surprising. The case with selection, μ1 ≠μ μ2, is a little more 
interesting. Now, (p.458)

(21.4)

(21.5)
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If

and, because

. Consequently,

. Similarly, if

. This means that, if a has higher fitness than A (which corresponds to a 〉 1), then a eliminates A
from the population if the initial population size was infinite (and vice versa).

21.3.3 Interpretation and implications
Though neither model specification nor analysis mentioned drift, we have modeled drift fully 
(and exactly, that is, without recourse to approximations to solve our model). In particular, we 
obtained the well‐known result ‐ usually obtained using a diffusion approximation (Kimura,
1983) ‐ that, in the absence of selection, the probability that a type gets fixed in a population 
(that is, it is the only one that remains after an infinite number of time steps) is equal to its 
initial frequency (Equation 21.2). As noted earlier, the expression for this probability when there 
is selection is quite sensitive to the details of the model of selection whereas the result in the 
absence of selection is robust. For instance, Moran (1958, 1962) analylsed a haploid model with 
fixed finite population. At each time step, two individuals are selected, one for death and the 
other for reproduction. The one that dies is replaced by the one that is reproduced. Selection 
can be imposed through the way these individuals are chosen. In the absence of selection we get 
the same result as Equation (21.2); when selection is present we get something very different.30

From Equation (21.3), in the infinite population limit, we encounter another familiar result: the 
type that has the higher fitness has a probability of 1 of being fixed, irrespective of its initial 
frequency. Thus, with one notable exception discussed at the end of this paragraph, our 
stochastic haploid model is seamlessly transformed into a haploid version of the standard 
selection model. In fact, what is distinctive about this model is the probability of a type reaching 
fixation in a finite model with selection which depends both on the initial frequencies and the 
fitnesses (Equation 21.2) ‐ and this is the parameter that is sensitive to the details of the model. 
The exception mentioned earlier in this paragraph is the infinite population limit after an infinite 
number of time steps: the probability that a type gets fixed in a population remains equal to its 
initial frequency rather than being 0 as one would get from a deterministic model which predicts 
that no type changes in frequency at all.

(p.459) To see if drift is a cause of evolution in this model, we must examine the facultative 
assumptions. There was only one, that which specified the fitnesses of the two types. There was 
not even a constitutive assumption — a background condition — that explicitly mentioned drift. 
There was only the condition that the population had a finite size, and that was all that was 
necessary. The mythology of drift as a cause of evolution needs some deflation.
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In contrast to treating drift as a cause, the story that should be told is the following: the finite 
size of a population is part of the conditions under which evolutionary causes — selection and 
mutation — operate.31 What these causes can achieve under such conditions is different from 
what they could have achieved were the population infinite. That is all there is to drift.32 Another 
way of putting it is that, because reproduction involves sampling from the population in 
evolutionary models, stochastic models needed to capture the dynamics of populations make 
different predictions than deterministic models needed for infinite models. This happens 
irrespective of whether all fitnesses are the same (no selection) or not (selection). Drift and 
selection commingle necessarily.33 Moreover, the quantitative difference between models 
allowing drift (e.g. Equation 21.2) and infinite population models with the same facultative 
assumptions provide a natural quantitative measure of drift.

The reason (background condition) why type frequencies change in the absence of selection in 
stochastic models is that there is sampling during reproduction, exactly the same assumption 
that, in the standard selection model, generates the Hardy—Weinberg ratios. Drift occurs for the 
same reason that Hardy—Weinberg ratios obtain in the standard selection model. Finally, our 
haploid model set up reproduction and state transitions of the population in a standard way — 
the conclusions reached here about the nature of drift are not a result of some idiosyncratic 
feature of the model.

Before concluding this chapter with some defence of the framework for evolutionary dynamics it 
uses, an interesting technical point warrants brief mention. Holding

constant as N → ∞ means that the frequency (p.460) of A (and, therefore, of a) remains constant 
as the size of the population changes.34 This limiting process is a direct analogue of the 
thermodynamic limit in statistical physics in which the number of particles in the system is 
taken to infinity while the density remains constant (Thompson, 1972). This is the analogue of 
using Equation (21.4) to see if the infinite population limit gives the same results as 
deterministic models, with frequencies rather than densities kept invariant during the limiting 
process. The question of interest is whether the expressions for physical parameters at the level 
of statistical mechanics converge to their thermodynamic counterparts at the limit. This 
suggests that we may usefully think of deterministic (infinite) population models as 
‘macroscopic’ analogues of ‘microscopic’ stochastic (finite) population models, at least for the 
purpose of formal analysis. But, recall that there was some discrepancy between the infinite 
population limit and predictions of deterministic models in the case of no selection. Analogous 
problems abound in classical statistical mechanics: the existence of the thermodynamic limit has 
been proved for precious few systems.35

21.4 Discussion
Walsh (2007) has recently distinguished ‘dynamical’ and ‘statistical’ interpretations of modern 
evolutionary theory (the so‐called ‘synthesis’ — but see Sarkar (2004) for skepticism on this 
point — of the early 1930s). According to him, dynamical interpretations invoke causes such as 
selection and drift to explain patterns of evolutionary change. This is a somewhat eccentric 
construal of ‘dynamic’, a point that will be discussed below since we have taken it to be trivially 
unproblematic that evolutionary models are models of dynamical systems (at the beginning of 
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Section 21.2). In contrast, two assumptions are supposed to define the statistical interpretation: 
evolutionary explanations invoke only statistical properties of populations, and selection and 
drift are not causes but ‘mere statistical effects’ (which are not defined but illustrated by an 
example that has no bearing on evolutionary models).

Assuming that statistical properties include stochastic ones (those defined using a random 
variable), the first assumption is not controversial:36 most dynamical interpretations — including 
the influential one of Sober (1984) — make the same assumption. According to Walsh (2007, p. 
292), drift and (p.461) selection are not causes because they are not ‘description‐independent’. 
Now, description‐independence is not the same as context‐independence: rather, the idea is 
that, even after the context is fully specified, the quantitative consequences of drift and selection 
are underspecified. This is tantamount to claiming that, in a model such as the one described by 
Equation (21.1), the sampling distribution for each type is not unique.

But this claim is manifestly false for any fully specified model no matter whether the population 
is infinite (in which case we have a deterministic model) or finite (in which case we have a 
stochastic model). Strangely, Walsh (2007) provides no biological example.37 The model 
described by Equation (21.1) included a full description of the reproductive properties of the 
types to make the point that, in a fully specified model, these properties, which Walsh (2007) 
accepts as causal, uniquely specify fitness differences which provide the basis for selection. If 
reproduction were to occur any differently than in the model of Equation (21.1), except in 
accidentally degenerate cases, the formulae in Equation (21.2) would be different. As was noted 
earlier, Moran's (1958, 1962) model provides an example.

Let us turn to the dynamical interpretation. The sense in which this chapter has interpreted 
evolving populations as dynamical systems was indicated at the beginning of Section 21.2 and 
goes back to the pioneering discussion of Lewontin (1974). This minimal dynamical 
interpretation only assumes that the causes of evolution (the facultative assumptions) and the 
conditions under which it occurs (the constitutive assumptions) are jointly dynamically sufficient 
to specify the future trajectory of the system (at least probabilistically). Once we embed our 
account of causes in the minimal interpretation, selection is a cause of evolution because it 
arises from fitness differences between types (p.462) in a population; the quantitative effects of 
selection are unequivocally assigned in fully specified evolutionary models. Like the statistical 
interpretation, our account denies that drift is a cause of evolution; however, the quantitative 
effects of finite population size — that is, drift — are also unequivocally assigned in fully 
specified evolutionary models. Most adherents of the dynamical interpretation would probably 
accept the minimal interpretation, whether or not they accept the causal framework adopted 
here.
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However, especially in philosophical circles, the dynamical interpretation is typically construed 
as endorsing one or more of three additional claims of increasing strength: (1) that populations 
persist unchanged (in some specified sense) in the absence of causal factors responsible for 
evolution; (2) the list of such factors that are all on par with each other include selection and 
drift; and (3) evolutionary theory is a theory of forces. We will consider each of them in turn:

1. The most plausible version of this claim is that due to Kimura (1983): allele 
frequencies do not change. The trouble with this is that it is only true if populations are 
infinite. Kimura's (obvious) response is to allow drift to be a factor of evolution which, 
roughly, would be a cause of evolution in this construal. The question boils down to 
whether being finite or infinite is a constitutive assumption about a population, setting 
conditions against which causal factors operate. Kimura's claim is also at odds with his 
assertion, quoted earlier, that evolution includes ‘all changes, large and small, visible 
and invisible, adaptive and nonadaptive (1983, p. xiv)’, unless we interpret this claim to 
be implicitly restricted to allelic changes. The analysis of this paper denies Kimura's 
claim: finite populations may evolve over time even in the absence of causal factors 
operating on them, simply because of one of their constitutive features: sampling during 
reproduction. This analysis thus also denies the much stronger claim of Sober (1984) for 
whom populations persist in Hardy—Weinberg equilibrium (that is, with the Hardy–
Weinberg geno‐ typic ratios) in the absence of causes of evolution operating on them.38

Here, Sober is following a venerable textbook going back to the third edition of 
Dobzhansky's (1951) highly influential Genetics and the Origin of Species.39 Like Sober 
(1984), textbooks often claim that evolution consists of departures from Hardy—
Weinberg evolution while, sometimes, inconsistently also defining evolution as consisting 
of changes in allele frequencies. Kimura (1983, pp. 5–6) has correctly criticized the 
deification of the Hardy–Weinberg rule on the ground of its lack of generality. Against 
Sober's position, we may also add that it assumes ex cathedra (p.463) that random 
mating is constitutive (in our terms, not his) of what an evolving population is, and it is 
the only type of mating that can play this role.
2. Once again, Dobzhansky (1937) seems to be responsible for introducing ‘parity’ 
between drift and selection (with ‘parity’ being construed as being the same type of 
factor). Earlier statements were much more careful. In the paper that introduced the 
term ‘drift’ to evolutionary biology, Sewall Wright (1931) (who, along with Fisher and 
Haldane, was the third founder of theoretical population genetics) wrote of genes and 
gene frequencies drifting, not of drift as a factor of evolution. The next year, in the first 
relatively complete statement of the shifting balance theory of evolution, Wright (1932, 
356) wrote that ‘evolution depends on a certain balance of its factors’ but these factors 
did not include drift; rather, they included mutation, selection, inbreeding or 
outbreeding, and population structure. Wright and his followers–and his critics — should 
have stuck to these early formulations. Both Fisher (1922) and Haldane (1927) also 
modelled finite populations during this period but neither of them thought of drift (using 
this term or some equivalent one) as a ‘cause’ of evolution.40 In the analysis presented 
here, drift results from the (background) conditions against which a population evolves, 
whereas selection is a cause of evolution. Thus, not only are drift and selection different, 
they are different kinds of things — there is no question of parity. Moreover, as in the 
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model discussed above (Equation 21.1), drift and selection act together and a 
quantitative measure of the consequences of drift can be the difference between what 
would happen in an infinite population and what happens in the (finite) population being 
modelled. There is no clear sense in which drift and selection should be regarded as 
opposing factors, let alone ‘forces’ — which brings us to the third point.
3. The view that evolutionary dynamics should be viewed as being analogous to 
Newtonian mechanics and that the factors of evolution should be viewed as ‘forces’ goes 
back to Sober (1984). It has been highly influential among philosophers but has also 
been extensively criticized, especially by the ‘statisticalists’ (Walsh, 2007). It is the 
presumed Newtonian analogy that led Sober to venerate the Hardy—Weinberg ratios 
which, in his view, serve the analogue of the Newtonian state of inertia, not disturbed 
unless some external force acts on it. We have already noted the problems with giving 
such a privileged role to random mating. For Sober, the operative forces in evolutionary 
contexts include selection, mutation, and drift. In the case of drift, a change in 
population size — and (p.464) not even what led to such a change ‐ is supposed to be 
analogous to a Newtonian force: this is counterintuitive. Ultimately, however, there are 
two reasons for rejecting this view of evolutionary theory: (a) thinking of evolution as a 
departure from Hardy‐Weinberg equilibrium is a myopic view of the subject (for the 
reasons mentioned above); and (b) the Newtonian analogy does not work. With respect 
to (a) Sober and his followers do have the option to resort to Kimura's (1983, 6) 
alternative ‐ define the ‘no‐force state’ as one of unchanging allele frequencies. The 
difficulties of this position were noted in (1) above. With respect to (b) no credible 
response is forthcoming. We do not build evolutionary models by beginning an analog of 
the force equation expressing Newton's second law of motion (F = ma, where F is the 
force, m is the mass, and a is the acceleration) and substituting for the force term. 
Rather, we use the strategy of Section 21.3 and follow a model construction protocol that 
integrates constitutive and facultative assumptions which are far more interlinked than 
Newtonian dynamical laws and their initial conditions.41

For future reference, the interpretation of modern evolutionary theory advocated in this chapter 
will be called the stochastic dynamical interpretation. It includes: (i) the minimal dynamical 
interpretation; (ii) a distinction between constitutive and facultative assumptions; (iii) an 
identification of the former with the conditions under which a population evolves and uses the 
latter to identify the causes operating in those conditions; and, perhaps more controversially, 
(iv) that whether or not a population is finite is a constitutive assumption; and (v) fitnesses used 
in models are summary parameters incorporating causes of differential survival and 
reproduction. This interpretation is stochastic simply because the dynamics of finite populations 
must be modeled stochastically, with infinite populations treated as (mathematically) degenerate 
cases of finite populations. This last insight goes back to the pioneering work of Bartlett (1955) 
and Moran (1962).

Finally, denying drift to be a cause of evolution is not intended to suggest that it is not important 
for evolutionary change. Rather we must interpret evolution differently than received 
philosophical analyses, for instance, those of Sober (1984) and Brandon (1990). The future 
dynamics of a system depends on both causes and conditions, with the latter defining what the 
system is in the context of any inquiry. The same causes may result in radically different 
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consequences under different conditions. Consider evolutionary history. There have been two 
major debates since modern evolutionary theory was formulated: that between the followers of 
Fisher and Wright (Provine, 1985), and (p.465) the debate between the selectionists and 
neutralists (with respect to fitness differences) (Lewontin, 1974).

In the first debate, for Fisher, evolutionary change occurred most easily when selection acts on 
small fitness differences in large populations with random mating (‘panmictic’ populations). For 
Wright, evolution occured most easily in small sub‐divided populations. To the extent that these 
two proposals can be investigated analytically, what the various causes — that is, mutation and 
selection — can accomplish was resolved quite quickly with little disagreement between Fisher 
and Wright. Since then, because of the mathematical complexities involved, the dispute has 
largely been explored by simulation with no final resolution immediately forthcoming (Coyne, 
Barton and Turelli, 1997; Peck, Ellner and Gould, 1998; Peck, Ellner and Gould, 1998; Wade and 
Goodnight, 1998; Coyne, Barton and Turelli, 2000). But the continuing dispute is one about the 
conditions in which evolution occurs, large or small sub‐divided populations, with obvious 
implications for the reconstruction of the evolutionary history of life on Earth.

In the debate over the neutral theory of evolution (which holds that most mutations are either 
neutral with respect to fitness or slightly deleterious; the latter is often called the ‘nearly 
neutral’ theory), once again what is at stake are both causal differences — the mutation rates 
and selective differences — and the conditions in which these causes operate: the size of the 
population. Most biologists would probably view this debate as having swung in alternating 
directions over the last four decades, with the selectionists currently in ascendancy (Dietrich,
2008). But the point is that what selection can do also depends on the size of the population as 
was emphasized in Section 21.3.3. Conditions — the constitutive assumptions of our models — 
matter. Perhaps the most important moral to draw is that evolution is a historical process; the 
sooner we move beyond the simplistic Newtonian analogy, the better. Drift may not be a cause 
of evolution, but it may well have been one of the most important determinants of the 
remarkable diversity of life we see around us.
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Notes:

(1) An allele is a version of a gene. So, in a diploid species, which form Mendelian systems, an 
individual has two alleles at each locus not on a sex chromosome. This is because these 
chromosomes occur in homologous pairs. Depending on the taxon, in sexual species, one of the 
sexes has a homologous pair of sex chromosomes (females are XX in Homo sapiens) while the 
other does not (males are XY in Homo sapiens). A locus corresponds to a ‘position’ on a 
chromosome that can be occupied by an allele. The two alleles at a locus specify the genotype at 
that locus. Subtleties about the abstract organization of the genome and its physical realization 
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on chromosomes are being ignored here–for a discussion, see Sarkar (1998, Chapter 5). 
Stephens (2008) provides a good introduction to population genetics for philosophers.

(2) Throughout this chapter, selection will be viewed as synonymous with dynamical change 
under differential fitness of types in a population. Thus, if selection is a cause of evolution, so 
are fitness differences. This formulation ignores many subtleties but these do not surface in the 
models discussed in the paper either because they have infinite populations with fitnesses 
depending on a single factor, or they explicitly model reproduction stochastically (that is, with 
an element of chance) while incorporating differential reproduction and survival. (See Sober 
(1984), for arguments designed to show that fitness is causally inert.) However, what is being 
assumed about fitness is not compatible with the propensity interpretation of fitness (Brandon
1978; Mills and Beatty 1979). For a philosophical discussion of the relation of selection to 
fitness, see Sober (1984) though this is now somewhat dated.

(3) The Hardy–Weinberg rule dates to 1908; for an account of this history, see Provine (1971) 
and Sarkar (2007).

(4) It has on occasion also been endorsed by philosophers, most notably, by Sober (1984) in his 
influential analysis of evolution. Magnus (1998) provides an interesting counter‐example.

(5) Even this is a restrictive definition. As Kimura (1983, p. xiv, emphasis in the original) has 
correctly pointed our, evolution includes ‘all changes, large and small, visible and invisible, 
adaptive and nonadaptive’. However, the restrictive definition used here suffices to capture 
what is controversial within microevolutionary theory.

(6) Thus, as noted earlier, this framework is incompatible with a propensity interpretation of 
fitness–a discussion of this issue will be left for another occasion; it is beyond the scope of this 
chapter.

(7) Given the focus of this chapter, the discussion will largely be limited to microevolutionary 
models. However, the causal framework that is being introduced here is intended to be 
generally applicable to dynamical systems. For expository simplicity we ignore the fact that 
models, especially computer models for simulation, may sometimes not be explicitly presented 
using equations. It does not make any difference to the conclusions reached here. Finally, 
objections to the dynamical interpretation of evolution will be taken up in Section 21.4.

(8) In this framework, theories are construed as more general models, that is, as models 
intended to apply to larger domains. Theories are thus of the same logical type as models — 
however, the results of this analysis do not depend on this assumption.

(9) See, for example, Williams and Sarkar (1994) who show that assortative mating allows 
traversals of valleys in adaptive surfaces in a two‐locus model. Similarly, we may want to explore 
how — and to what extent — assortative mating may encourage speciation — see, for instance 
Otto et al. (2008) which is discussed later in the text.

(10) A heterozygote has different alleles at a locus; a homozygote does not.
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(11) Fisher (1928) was interested in the evolution of dominance in Mendelian systems when the 
heterozygote at a locus has the same phenotype as one of the two homozygotes. It is clear now 
that Fisher's selectionist model for the origin of dominance is incorrect (Orr, 1991) but that does 
not detract from the insight that constitutive features of Mendelian systems are subject to 
evolutionary explanation.

(12) A similar point is made by Kimura (1983, pp. 5–6).

(13) A polyploid has more than two homologous chromosomes; for instance, a tetraploid has four.

(14) This distinction between causes and background conditions goes back at least to Mackie 
(1974) but, see, especially, Hart and Honoré (1985) for the explication most relevant to the 
discussion here.

(15) While this claim is intended to be read counterfactually, it differs from counterfactual 
accounts that go back to Lewis (1973) influential treatment because of the explicit context‐ 
dependence — see Menzies (2004) for more detail on this issue.

(16) Whether this is the only way in which such a situation — change without causes — may 
happen is an issue that will be set aside for another occasion. The quantum domain provides 
potential examples of such changes without sampling being involved.

(17) The particles must have no mass because, otherwise (in Newtonian physics) gravitational 
forces would act between them. However, once we specify that a particle has no mass, it is far 
from clear that we have a coherent concept of a particle in Newtonian physics — at the very 
least, Newton required particles to have mass. What adds to the potential incoherence is that 
the moment we attribute any physical property to a particle, it seems amenable to being subject 
to forces. But if a particle has no physical properties, it is unclear how it is to be individuated. 
So, this example is contrived, perhaps illegitimate, even as an idealization, and philosophical 
conclusions drawn from it remain suspect.

(18) This discussion requires little modification when extended to classical fields or to special 
relativity (masses change with velocity — so, we would have to specify rest masses as being 
constitutive); general relativity and the quantum domain present problems which will be left for 
a different occasion. Especially in the latter case, questions of identity are much more 
complicated.

(19) But this is what the statisticalist interpretation (Walsh, Lewens and Ariew, 2002; Walsh
2007) asserts; we will turn to it in Section 21.4.

(20) For want of space, some subtleties are being glossed over in this assessment. Briefly, some 
organisms are more prone to mutation than others (e.g. laboratory strains specially created with 
this property in mind), and this property should then be part of the system's identity. Moreover, 
we can often predict which class of mutations is more likely than others. The point is that we 
cannot predict which mutation will occur.

(21) It is also not completely clear that we should not view such phenomena as selection — we 
will return to this topic in another occasion.
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(22) There are exceptions — see, for instance, Rabotnov (1980) for a discussion of Boltzmann— 
Volterra hereditary mechanics. These apply to elastic materials which are also history‐
dependent in their physical properties.

(23) What is perhaps even more unfortunate is that the few precise discussions that there have 
been — see, for instance, Walsh (2007) — typically make use of coin tossing and similar 
examples which have no clear biological interpretation. Brandon (2005) is an exception.

(24) In ecology this corresponds to the situation in which the population has reached the 
carrying capacity of the environment. Abrams (2007) partially analyses a related slightly more 
complex model. His model leads to the same conclusions if the mathematical analysis is 
completed. For a set of similar models, used very effectively to describe evolutionary dynamics, 
see Nowak (2006, Chapter 6).

(25) The reasons for specifying the selection process in such ‐ perhaps excruciating ‐ detail will 
become obvious in Section 21.4 when we turn to the issue of‘statisticalism’ in the interpretation 
of modern evolutionary theory.

(26) This formulation of the model (Equation 21.1) and its solution (Equation 21.2), are due to 
Karlin and Taylor (1974,114).

(27) More alleles only make the mathematical analysis more algebraically complicated without 
providing new insight.

(28) The transitions are from one state (parameterized by j) to another at any time stage.

(29) For details of the calculation, see Karlin and Taylor (1974, p. 114).

(30) For a penetrating dicussion of this model ‐ and many others ‐ see Nowak (2006).

(31) Recall that in Section 21.1 we decided to exclude migration and all non‐Mendelian 
mechanisms from the discussions of this paper. For a different route to the same conclusion, see 
Rice (2004) who points out that the expectation of the change of type frequencies due to drift is 
0. Consequently, for Rice, drift cannot be a cause of evolution. The intended contrast is with the 
effects of mutation and selection which are non‐zero. This argument coheres well with those 
made in this paper.

(32) For what appears to be an almost diametrically opposite interpretation of drift, see Brandon 
(2005) who seems to identify drift with neutrality.

(33) Beatty (1984) seems to have been the first philosopher to have noted this point. Sober 
(1984, 38n) also noted that drift always occurs in ‘real’ populations because they are necessarily 
finite. However, this obvioulsy does not make drift and selection identical, a point emphasized 
by Pfeifer (2005) who continues to view drift as a cause with no explicit consideration of what 
constitutes causes in dynamical systems.

(34) Note that this does not contradict the fact that these frequencies change over time. The 
limit is being taken at a given time.



Drift and the causes of evolution

Page 24 of 25

(35) See Thompson (1972); there has been little progress since in classical statistical mechanics. 
For once, the situation is a little better in the quantum domain, at least in quantum 
electrodynamics (QED).

(36) However, the consensus is not unanimous–see, for instance, Bouchard and Rosenberg 
(2004).

(37) Instead he offers the following coin‐tossing case the relevance of which to evolution is at 
best obscure. The experiment has a paired design involving two coins and five paired 
treatments, with each treatment being a sequence of 10 tosses by a different experimenter. 
Each coin is simultaneously tossed 10 times in parallel by two different experimenters, and then 
a new pair of experimenters takes over, with the process repeated five times. According to 
Walsh, there are three possible ways to describe the experiment: a single series of 100 tosses, 
two series of 50 tosses, and 10 series of 10 tosses. According to him choosing between them is 
entirely arbitrary. In a sense he is correct but only because none of these interpretations is 
appropriate. The third comes closest but ignores the fact that there are two coins. The veridical 
interpretation — the one that is isomorphic in structure to the experiment — is that of 5 paired 
treatments of two systems. What techniques should be used to analyse the data (including the 
type of simulations which Walsh uses, even though analytic computation of the sampling 
distributions is straightforward) depends on the question being asked which was not specified in 
the first place. If it is to test whether a single coin is fair, this is an inappropriate experimental 
design: why use two coins? If it is to test whether there is a difference between the coins, the 
array of tests developed by Fisher (1935) remain the most appropriate among relatively simple 
techniques. We are simply not told. The ‘statisticalistas’ — this is Walsh's (2007, p. 281n) term 
— seem to have some rather peculiar views about statistics. But the most important objection to 
this example is that it has no biological relevance.

(38) Sober's explicit claim is obviously only applicable to diploid populations but analogues exist 
for other types of ploidy.

(39) Dobzhansky (1951) was the first to refer to a Hardy—Weiberg ‘rule’.

(40) There is thus some additional historical support for treating the finiteness (or not) of a 
population as a constitutive assumption.

(41) Abner Shimony (personal communication) has often emphasized this point. For a recent 
defense of the Newtonian analogy, see Stephens (2004a).
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namely that one explanation is better than another insofar as it provides a greater amount 
of causal information. In this chapter I consider various challenges to these causalist 
claims. There is a common and influential formulation of the causalist requirement — the 
‘Causal Process Requirement’ — that does appear vulnerable to these anti‐causalist 
challenges, but I argue that they do not give us reason to reject causalism entirely. 
Instead, these challenges lead us to articulate the causalist requirement in an alternative 
way. This alternative articulation incorporates some of the important anti‐ causalist 
insights without abandoning the explanatory necessity of causal information. For example, 
proponents of the ‘equilibrium challenge’ argue that the best available explanations of the 
behaviour of certain dynamical systems do not appear to provide any causal information. I 
respond that, contrary to appearances, these equilibrium explanations are fundamentally 
causal, and I provide a formulation of the causalist thesis that is immune to the 
equilibrium challenge. I then show how this formulation is also immune to the ‘epistemic 
challenge’ — thus vindicating (a properly formulated version of) the causalist thesis.

22.1 Introduction
Let us identify a causalist about scientific explanation as one who is committed, in some way or 
other, to the following thesis from David Lewis: ‘to explain an event is to provide some 
information about its causal history’ (Lewis, 1986 p. 217). The tricky part, of course, is 
specifying what sort of causal information we are talking about. One important explication of 
‘causal information’ comes from Wesley Salmon, a causalist who developed the original and 
influential causal‐mechanical model of explanation.1 On this model, to explain an event (p.471) 
is to provide some subset of the causal processes (and interactions between causal processes) 
that brought about that event. The causal‐mechanical model falls under a general conception of 
explanation that Salmon calls the ‘ontic’ conception — according to which explaining an event 
involves locating that event (the explanandum event) within certain nomologically necessitated 
regularities, or patterns, in the world.2 Moreover, he views these regularities as causal 
regularities governing interactions between causal processes.3

Salmon's approach to causal information (as information about causal processes) gives us a 
slightly better handle on what exactly the causalist is committed to. As a first approximation, 
then, in deference to Lewis and with help from Salmon, we can say that a causalist is committed 
to something like the following causal requirement:

The Causal Process Requirement: An explanation of an event must specify some of the 
causal processes that constitute that event's causal history.

The Causal Process Requirement (CPR) is a plausible way of spelling out the general causal 
requirement on explanation to which all causalists are commit‐ ted.4 It also gives us with an 
initial gloss on ‘providing causal information’: to provide causal information about an event is to 
list some of the causes of that event.

If CPR is apt, then it seems reasonable to suppose that, given two competing explanations of the 
same event, the one that provides more causal information will be better than the other. Hence, 
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the proponent of CPR will often be committed to this additional thesis, which I will call
Proportionality:

Proportionality: Explanatory power increases in direct proportion to the amount of causal 
information provided.5

(As with the notion of ‘causal information’ itself, it is difficult to specify exactly what we mean by 
the ‘amount’ of causal information. I will say more about this problem below.) If providing causal 
information involves providing the (p.472) causes themselves, then we can see that 
Proportionality presupposes CPR.6 (And in general we can say that the proponent of 
Proportionality is also committed to some variation or instantiation of the causalist requirement 
— whether it be CPR or some alternative formulation.) With these two theses in hand, we can 
define an anti‐causalist as one who rejects CPR, and thus by extension Proportionality as well. 
Most commonly, anti‐causalists base this rejection on putative counterexamples in which the 
best explanation of some phenomenon appears to be completely non‐causal.

My claim is this: the anti‐causalists are being too hasty if they let their rejection of CPR lead 
them to eschew causalism in general — because the causalist requirement can be reformulated 
in a way that renders it immune to the anti‐causalist challenge. Proportionality, on the other 
hand, turns out to be unsalvageable. The examples cited by anti‐causalists do indeed show that 
more is not always better, when it comes to causal information; but to extend this conclusion to 
a complete rejection of causal requirements more generally is not warranted. Instead, I argue, 
these examples lead us to articulate the causalist requirement in an alternative way. This 
alternative articulation incorporates some of the important anti‐causalist insights without giving 
up on the explanatory necessity of causal information.

As I defend my claim, I will consider what I take to be two of the strongest challenges to the 
causal requirement. The first challenge, which I will characterize as an ‘equilibrium challenge’, 
comes from Elliott Sober. He argues that the best available explanations for the behaviour of 
certain dynamical systems do not appear to provide any causal information, thus refuting CPR 
(Sober, 1983). In response to the equilibrium challenge, I argue that, despite appearances, these 
equilibrium explanations are fundamentally causal. Thus, even if equilibrium explanations do not 
satisfy CPR, there will be an alternative formulation of the causalist thesis that does apply to 
those explanations. I will propose just such a formulation. I will then take the conceptual 
apparatus developed in response to the equilibrium challenge and apply it to instances of the 
second challenge, which I will characterize as an ‘epistemic challenge’. Proponents of this 
challenge point out that understanding can actually be obscured when we focus on providing 
causal information. The insights gleaned from the equilibrium challenge provide a way of 
responding to the epistemic challenge as well — once again vindicating (a revised version of) the 
causalist thesis.

My project here is, in short, a focused attempt to trace and develop the dialectic surrounding 
causal requirements on scientific explanation. The general causalist requirement comes from 
Lewis, and is fleshed out in a particular (p.473) way by Salmon. Sober presents a criticism of 
this fleshed out requirement, which inspires various revisions and reformulations. Along the 
way, I will be strengthening my defense (and revision) of the causalist requirement by pointing 
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out how other, more recent authors have arrived at similar conclusions via different routes. I 
will consider, for example, James Woodward's (2003) influential manipulationist account of 
explanation. One of the lessons learned from the equilibrium challenge is that an important part 
of the explanation of a dynamical system is a description of the system that provides some set of 
constraints on its behavior. These constraints will indicate what sort of factors need to be 
present (or absent) for the system in question to reach equilibrium. Thus, when the system 
satisfies these constraints, it can be characterized by a certain sort of invariance — and for 
Woodward (2003, p. 183), ‘invariance is the key to explanatoriness.’ I will also consider Michael 
Strevens's (2008) ‘kairetic’ account of explanation, according to which one of the key 
explanatory virtues is depth. The equilibrium challenge forces us to reject Proportionality, and 
Strevens's notion of explanatory depth provides, among other insights, an elegant way of 
characterizing the motivation for that rejection.

22.2 Equilibrium challenges to causalism about explanation
Perhaps the most difficult examples for causalists to deal with are those involving equilibrium 
explanations — which explain an observed equilibrium state of a dynamical system by providing 
a range of possible initial states and possible causal trajectories. Given the possible causal 
trajectories of the system, each of the possible initial states would have led to the observed 
equilibrium.7 Even if providing an explanation usually consists in providing causal information 
(i.e. consists in listing some of the causes of the explanandum event), equilibrium explanations 
appear to be an exception. They explain the equilibrium state of a dynamical system by 
providing a disjunction of possible causal trajectories — and, as Sober points out, ‘disjunctions 
of causal scenarios will sometimes fail to say what the cause is’ (Sober, 1983, p. 205). Thus, it 
would seem that we have a counterexample to CPR, in which the explanatory work is done sans
causal information.

This, at least, is the argument as advanced by Sober.8 And although it may succeed against CPR 
as stated above, it does not succeed against an alternative formulation of the causalist 
commitment — or so I claim. In other words, the (p.474)

argument is too hasty if meant to apply to 
causal requirements in general. In order to 
see why, we need to have a closer look at 
the example Sober utilizes.
Sober's example of an equilibrium 
explanation involves a fitness function from 
population genetics. Given some population 
with two traits (A and B), the fitness 
function for each trait specifies the 
expected number of offspring for that trait, 
according to its frequency in the population. 
The system can be modeled as in Figure
22.1.

Among other things, this diagram 
represents the selection forces at work in this population: each of the two traits is favoured by 

Fig. 22.1
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selection when it is in the minority.9 Several points on this diagram are especially salient. Note 
first that E is an equilibrium value, at which the proportion of type A to type B does not change. 
Furthermore, E is a stable equilibrium, because any deviation from E will trigger selection forces 
that will push the system back toward E. (An unstable equilibrium would be the opposite — e.g. 
if the fitness functions of A and B were reversed. In that case, given a deviation from E, the 
selection forces would move the system away from E.) The other salient states of the system are 
the absorbing states, as represented by the four endpoints (or absorbing points) of the two 
fitness functions. If these absorbing states are reached, the forces represented in the model will 
not be able to move the system to a different state. In the system modeled above, then, 
absorbing points are points of no return.

In addition to the distinction between stable and unstable equilibria, we can also draw a 
distinction between global and local equilibria. This distinction is understood in terms of the 
range of initial conditions that will lead to the equilibrium state (Sober, 1983 p. 204). A global 
equilibrium is such that the system (p.475) will end up in that state no matter which initial 
conditions obtain, whereas a local equilibrium is such that a range of initial conditions must be 
specified, outside of which the system might not reach that particular equilibrium. Thus we can 
think of an explanation of a dynamical system in terms of the degree to which initial conditions 
must be specified: no specification is required in the case of global equilibria, whereas some 
specification is required in the case of local equilibria. And of course local equilibria themselves 
come in degrees — some equilibria are more local than others. So the ‘locality’ of an equilibrium 
is directly proportional to the amount of information that needs to be specified, with respect to 
the system's initial conditions, in order to explain that system's equilibrium state (Sober, 1983
pp. 208–209).

We can now return to the received anti‐causalist wisdom, as nicely encapsulated in the following 
passage from Sober (1983, p. 209).

When we are at one end of the continuum — when the equilibrium is a global one — an 
event can be explained in the face of considerable ignorance of the actual forces and 
initial conditions that in fact caused the system to be in its equilibrium state. In this 
circumstance, we are, in one natural sense, ignorant of the event's cause, but explanation 
is possible nonetheless.

This received wisdom maintains a sharp dichotomy between causal explanation and equilibrium 
explanation, on the basis of which CPR, among other causal requirements, is rejected. As we will 
see, equilibrium explanations apparently do show that CPR is inadequate. However, rather than 
leading us to reject causal requirements altogether, I will attempt to show how Sober's 
treatment actually provides the resources for a reformulation of the causalist thesis — one which 
renders it immune to challenges from equilibrium explanations (and to related challenges). The 
crucial element of this reformulation project, as we will see below, is the claim that equilibrium 
explanations can actually be characterized in terms of two distinct continua: in addition to the 
continuum of locality (i.e. the continuum of information about the initial conditions) that Sober 
identifies, there is also a continuum of causal information.
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22.3 Causal information
The first step in this reformulation project is to acknowledge that, if causal information is 
construed in terms of the processes that constitute an event's actual causal history, then it does 
appear to be true that equilibrium explanations do not provide any causal information, and thus 
constitute a class of counterexamples to CPR.10 In the face of this problem, I propose that the
(p.476) causalist can modify his requirement so that it will no longer be vulnerable to such 
counterexamples, while at the same time retaining the spirit of causalism. I will begin fleshing 
out this proposal by examining the notion of the amount of causal information that an 
explanation provides, in light of what we have learned about equilibrium explanations. This 
examination will point to a replacement for CPR that is immune to the equilibrium challenge.

As noted above, it is difficult to know what exactly it means to say that one explanation provides 
a greater amount of causal information than another. One clear case is when the explanans of 
one explanation entails the explanans of a different explanation; in this case the logically 
stronger explanans provides a greater amount of information than the logically weaker 
explanans. But when there is no entailment relation, it is less clear how to compare two different 
explanans.11 We could begin the comparison, however, by drawing upon the resources of 
information theory.12 We could say that an explanans provides more information to the extent 
that it rules out possibilities. If we construe ‘causal history’ as it is construed in CPR — i.e. as 
incorporating information about the actual causal processes leading up to and bringing about 
the explanandum event — then this information‐theoretic suggestion amounts to the following 
claim: the narrower the range of possible causal histories (of the explanandum event) allowed by 
the explanans, the more information it will provide. But this suggestion will not do, because 
explanations are always given in a context. This point is strongly emphasized in Wright (n.d.), 
and can be better understood if we consider one of his examples: an explanation of one's house 
burning down.13 He imagines that a contributing cause to this fire was a candle falling down on 
a curtain, and we might think it straightforward to say that an explanation citing the candle 
falling on the curtain would provide more information than, say, an explanation merely citing the 
curtain's catching fire. After all, the explanation citing the candle provides more restrictions on 
the causal history leading up to the event (for example, it rules out the curtain's catching fire as 
a result of an electrical short). However, as Wright points out, the context of inquiry might affect 
which of the two competing explanations is more informative. For example, if the curtain has 
been treated with fire retardant, and we are not surprised that the candle fell on the curtain 
(perhaps this has happened before; perhaps it is because this has happened before that (p.477)
the curtain was treated with fire retardant), then even a detailed and colourful causal history of 
the candle's fall on the curtain might not be as informational as the simple fact that the 
retardant was abraded by a recent cleaning of the curtains. In short, what counts as a greater 
amount of causal information is going to vary from explanatory context to explanatory context. 
As a result, there may not be any simple, absolute, one‐dimensional scale on which we can map 
the various ‘amounts’ of causal information that an explanation might provide. If there were a 
general scale that we could use to measure differing amounts of causal information, it would 
likely involve several dimensions, and thus be quite complex.

Nevertheless, I think our consideration of equilibrium explanations does point us toward a 
helpful way of providing some restrictions on what we mean by a greater (or lesser) amount of 
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causal information. First, however, let us try to quantify the information about initial conditions 
that is provided by an equilibrium explanation of a dynamical system. Recall that, because the 
equilibrium point E in the diagram above is a stable, global equilibrium, no information about 
the initial conditions need be provided in the equilibrium explanation (apart from the stipulation 
that the population cannot begin in one of the absorbing states).14 But notice that if E were 
instead a local equilibrium, then the equilibrium explanation would have to provide a range of 
possible initial conditions, within which selection forces would move the system toward E. Thus, 
returning to information theory, we can say that in the context of the dynamical system being 
modelled, an explanation of a local equilibrium will provide a greater amount of information 
about initial conditions — will rule out more possibilities — than will an explanation of a global 
equilibrium. This point extends to a comparison of two local equilibria, about which we can say 
that the more local the equilibrium (i.e. the more detail required when specifying the initial 
conditions), the more information provided by the explanation. Thus, we can flesh out Sober's 
notion of the continuum of locality as follows. At the extreme local end of this continuum, the 
maximal amount of information is required: the range of initial conditions specified will consist 
simply of the actual initial conditions. At the other (p.478) endpoint of this continuum (i.e. the 
point represented by global equilibria), the minimal amount of information is required: the only 
restriction on the initial conditions of the system is that the population cannot start in one of the 
absorbing states. So the equilibrium point of any given dynamical system can be mapped on this 
continuum according to the amount of information required when specifying the initial 
conditions.

Within the context of equilibrium explanations, then, we have a straightforward and illuminating 
way of cashing out the notion of a greater or lesser amount of information. A global equilibrium 
can be specified using the minimal amount of information regarding the initial conditions, 
whereas a maximally local equilibrium will have to be specified using the maximal amount of 
information: the actual initial conditions. The amount of information that an equilibrium 
explanation provides can thus be measured in terms of the locality of the relevant equilibrium 
point.

So far we are in agreement with Sober. But recall that he uses this continuum to represent two 
kinds of information: information about initial conditions as well as information about causal 
forces: ‘When we are at one end of the continuum — when the equilibrium is a global one — an 
event can be explained in the face of considerable ignorance of the actual forces and initial 
conditions that in fact caused the system to be in its equilibrium state’ (Sober, 1983 p. 209 
[emphasis mine]). My claim here is that there are actually two separate continua: one 
corresponding to information about initial conditions, and one corresponding to information 
about causal forces. Moreover, the equilibrium points of different dynamical systems (and thus 
the equilibrium explanations of those systems) can vary independently with respect to these two 
continua.

If this is right, then the next natural step is an attempt to use the results of the above discussion 
to make more sense of the notion of a greater or lesser amount of causal information. Here again 
we can learn from equilibrium explanations, which, in addition to providing information about 
initial conditions, also provide a disjunction of possible causal trajectories. In other words, 
equilibrium explanations refer, not just to the relevant initial conditions, but also to the relevant
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causal forces — forces that, up to this point, I have been largely ignoring (in order to focus on 
local and global equilibria, which are distinguished according to initial conditions). But now we 
can (and should) extend our treatment of the initial conditions to cover the causal trajectories as 
well. For just as we can locate various equilibrium explanations on a continuum from minimal to 
maximal amounts of information about initial conditions, we can also locate these explanations 
on a continuum from minimal to maximal amounts of information about the causal forces leading 
to equilibrium. Explanations toward the minimal end of this continuum will provide very little 
information about the causal trajectories; i.e. they will only rule out a relatively small number of 
the possible trajectories that might have (p.479) led to the observed equilibrium. Explanations 
toward the maximal end of this continuum, on the other hand, will provide a great deal of 
information; i.e. they will provide significant constraints on the ways in which the system 
reaches equilibrium. At the extreme maximal end of this continuum, all possible causal 
trajectories will be ruled out save one: the actual causal trajectory taken through the phase 
space of the system in which the equilibrium was observed. Moreover, in this (admittedly 
unlikely) scenario, the equilibrium explanation will after all satisfy the Causal Process 
Requirement. Most equilibrium explanations will in fact violate CPR, but nothing about the 
structure of such explanations dictates that they must violate CPR.15

Let us now take stock of our progress. We have seen, first of all, that the equilibrium explanation 
that Sober provides does not satisfy CPR; it offers a disjunction of possible causal histories, but 
it does not cite any of the causal processes that constitute the actual causal history. We have 
also seen that in general we can describe equilibrium explanations as offering more or less 
information about (1) the initial conditions of the dynamical system and (2) the possible 
combinations of causal forces leading to equilibrium. Finally, we have seen that a hypothetical 
equilibrium explanation at the maximal information end of the causal forces continuum will 
specify the exact causal forces that brought about the equilibrium — i.e. the actual causal 
processes that constituted the history of the equilibrium event. This hypothetical equilibrium 
explanation would satisfy CPR.

I suggest that the most reasonable move, in light of these considerations, is not a rejection of 
causalism but a replacement of CPR with a closely related variant of the causalist requirement. 
We cannot require a specification of the actual causal trajectory (i.e. we cannot require the 
maximum amount of information on the causal forces continuum), because equilibrium 
explanations typically explain without providing that level of detail. So why not discard CPR (and 
related causal requirements) entirely? Because even equilibrium explanations must provide
some sort of causal information. Since any given equilibrium explanation can be located on a 
continuum that represents the amount of causal information provided, the only way in which an 
equilibrium explanation could do its explanatory work sans causal information is if it fell on the 
extreme minimal endpoint of the causal forces continuum: if it provided absolutely no 
information about the causal forces at work in the system. Such an explanation would tell us 
only that there is a certain range of initial conditions needed to reach equilibrium, and when the 
system begins within those initial conditions, it somehow reaches equilibrium.

(p.480) This ‘explanation’, however, is next to useless, as it tells us only that we are dealing 
with a dynamical system — a fact which presumably we already knew.
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Perhaps, though, we presume too much. Perhaps an equilibrium explanation would be useful 
despite providing no information about the causal forces at work in the relevant system. 
(Imagine that the relevant system, as above, is a relatively simple one consisting of a population 
with two traits.) Such an explanation would identify some distribution of the population as the 
equilibrium state, and then provide a range of initial conditions within which the population 
would reach that state. From these two pieces of information (the equilibrium state and the 
initial conditions) would follow a third: that the population we are trying to explain is (or at least 
can be represented as) a dynamical system. This might seem to be enough to make the 
explanation a useful one. But if we consider an analogy, then I think it will become clear that the 
proposed (non‐causal) equilibrium explanation is no good.

Consider an explanation of the state of a gas in terms of the behaviour of its component 
molecules. While it does not seem explanatorily useful (or even feasible) to attempt to describe 
the causal history of any (much less all) of the component molecules, it also does not seem 
useful to explain the state of the gas by merely pointing out that it is composed of molecules, 
which collide with each other according to certain causal laws (e.g. the laws of Newtonian 
mechanics), and that those collisions somehow produce the relevant state. Intuitively, this latter 
explanation seems unsatisfactory. (As Woodward says, this would appear to be a ‘trivial, non‐
serious explanation of the behavior of the gas’.) If this intuition is correct, then the same can be 
said of the equilibrium explanation that we are considering. For it seems that this trivial and 
non‐serious explanation of the state of the gas is structurally similar to the equilibrium 
explanation in question. The proposed equilibrium explanation essentially says that, given 
certain initial conditions, features of the system somehow produce the equilibrium state. If the 
imagined explanation of the state of the gas is trivial and non‐serious, then surely the proposed 
non‐causal equilibrium explanation is trivial and non‐serious as well.

Can we put any flesh on the bones of this triviality intuition? I think we can, if we appeal to one 
of Strevens's (2008) criticisms of an explanation similar to the wholly non‐causal equilibrium 
explanation we have been considering. He claims, in short, that explanations that include ‘black 
boxes’ are unacceptably ‘shallow’ (Strevens, 2008 pp. 130–132). (For Strevens, a black box is 
essentially a functional definition, ‘which explains c's causing e by citing only the fact that c has 
the property of being e‐producing’ (Strevens, 2008 p. 131)). And it seems that the proposed non‐
causal equilibrium explanation is a black box explanation of the equilibrium state. It makes no 
claims about causes, but (p.481) it does explain a system S's ending up in its equilibrium state
E by citing a function. This function tells us only that the system has the property of being E‐
producing (given certain initial conditions). We might conclude that insofar as a completely non‐
causal equilibrium explanation relies on a black box to do its explanatory work, it should be 
dismissed as shallow.

Thus, once we see that equilibrium explanations can be classified according to where they fall 
on a continuum representing the amount of causal information provided, we can also see that 
equilibrium explanations falling on the minimal endpoint of the continuum will not really serve 
as explanations at all. Such explanations will be trivial and non‐serious, not to mention shallow 
(among perhaps other explanatory vices).
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In addition to these negative reasons for construing even equilibrium explanations as causal, 
there are — returning to Strevens — also positive reasons for making the same claim. Consider a 
different equilibrium explanation, of the fact that a ball released on the lip of a basin will end up 
resting at the lowest point of the basin no matter where on the lip the ball is released. Strevens 
(2008, p. 268) points out that

while a casual inspection of the equilibrium model might give the impression that it says 
nothing about the particular causal process leading to the explanandum event, in fact the 
model is exclusively concerned to describe this very token process, but at an extremely 
abstract level, so abstract that the description is satisfied by every process by which the 
ball might have reached the bottom of the basin.

In other words, as we move toward the minimal end of the causal information continuum, we are 
moving in the direction of increasingly abstract description. Nevertheless, what is being 
described is still a causal process (or causal force, as the case may be).

In short: we have both negative and positive reasons in support of the claim that even 
equilibrium explanations are in some sense causal explanations.

22.4 From causal processes to causal factors
Since the Causal Process Requirement (CPR) is inadequate, and since we cannot entirely eschew 
causal information, we should reformulate the causalist requirement while insisting that an 
explanation provide some sort of causal information. How should we specify the sort of causal 
information required in a way that is general enough not to exclude equilibrium explanations? 
My suggestion is that we avoid reference to the actual causal history leading up to the 
explanandum event, and instead require simply that an explanation give us information about 
the causal factors that influence, in one way or another, whether or not the explanandum event 
occurs. (I say more about what counts (p.482) as a ‘causal factor’ below.) Thus, I propose the 
following alternative causalist requirement:

The Causal Factors Requirement: An explanation of an event must provide information 
about the causal factors that influenced whether or not that event occurred.

Causal‐mechanical explanations that provide actual causal history will easily meet this 
requirement; but what about equilibrium explanations? Well, since the function describing the 
behaviour of the dynamical system being explained is going to represent the interplay of causal 
forces, it will provide some constraints, however minimal, on the ways in which the objects in 
the system interact with each other. Thus, it strikes me as perfectly legitimate to describe this 
function as providing information about the causal factors that influence whether or not the 
explanandum event occurs.

In fact, thinking in terms of constraints on the behaviour of a system is a useful way of fleshing 
out the admittedly vague notion of ‘causal factors’. Thus I also propose that we think of 
providing ‘causal information’ — i.e. providing ‘information about causal factors’ — as providing 
some sort of causal law governing the behavior of the system within which the explanandum 
event occurs. Within the context of the relevant system, an explanatory causal law, at least in 
the sense I intend, should indicate which combinations of causal interactions will result in the 
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occurrence of the explanandum event, and likewise which combinations of causal interactions 
will fail to result in the occurrence of the event (within a certain range of initial conditions). The 
force of this causal law will simply be that if it is violated, then, ceteris paribus, the 
explanandum event will not occur.16

In Sober's equilibrium example, the fitness function, governing selection forces, is serving as the 
sort of causal law I am suggesting. What this function is telling us is that certain systemic 
changes to the selection forces (including the introduction of different forces, or the deletion of 
selection forces entirely) will have the result that equilibrium is not reached. When it comes to 
more standard causal explanations — as, for example, in Wright's explanation of the house 
burning down in terms of the candle falling on the curtain — the causal law will be much more 
specific (in keeping with that explanation's placement toward the maximal end of the causal 
information continuum). In that case, (p.483) the information about causal factors is telling us 
that, holding certain initial conditions fixed, the house will not burn (ceteris paribus) unless the 
candle falls on the curtain.

My suggestion here resembles something that Woodward says in his important and immediately 
influential (2003).17 He rejects any sort of nomothetic model of explanation according to which 
explanation involves subsumption under laws, but he does want to appeal to explanatory 
generalizations — where a generalization counts as explanatory if it is invariant in the right way. 
(For Woodward, recall, invariance is the key to explanatoriness.) Although Woodward's 
treatment of invariance is certainly worth considering in more detail, all I will say here is that 
for him a generalization has the right kind of invariance if it represents a pattern of 
counterfactual dependence — which is to say that it is stable under some specifiable range of 
interventions (2003, p. 17).18 The ‘causal laws’ that, I claim, are required for explanation share 
this invariance that Woodward finds crucial to explanatoriness, but they also include a 
contextual parameter that indicates which features of the relevant system must be held fixed 
(e.g. the initial conditions) in order for the necessary invariance to obtain.

The schema I am proposing, then, is one in which an explanation will provide more or less 
information about the initial conditions of the relevant system or context, and more or less — but 
some — information about the causal trajectory of that system. At this point it is worth noting 
that the causal requirement I favour suggests a model of explanation that closely resembles the 
one that Hempel and Oppenheim (1948) proposed in their groundbreaking work on scientific 
explanation. Recall, briefly, that their deductive‐nomological (DN) model of explanation required 
a set of explanans statements, which included a statement of the antecedent conditions and a 
statement corresponding to each applicable general law. An explanation consisted in providing 
these explanans statements such that the explanandum — a sentence describing the 
phenomenon to be explained — could be logically derived from the explanans. Although I do not 
wish to attempt a rehabilitation of the DN model (the counterexamples are numerous and well‐
established), I do find it interesting that consideration of equilibrium explanations, as providing 
a challenge to models of explanation that endorse CPR, leads us to reformulate the causalist 
requirement in a way that evokes the DN model. The important difference, of course, is that my 
proposal replaces the DN model's inadequate notion of a ‘general law’ with a notion that 
requires causal information (and more closely resembles a generalization with the right sort of 
invariance, in Woodward's (p.484) sense). But whereas a view that endorses CPR requires that 
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the causal information come in the form of information about the actual causal history of the 
explanandum event, my proposal (CFR) does not require this. Instead, my proposal allows the 
required causal information to be represented in a wide variety of ways, depending upon the 
nature of the explanandum. The causal information might (and often will) come in the form of a 
causal history, in which case the causal law will be very specific. But the relevant causal law 
might also prescind from individual causal processes in order to make a more abstract 
statement about the system in question: it might come in the form of a fitness function, or a 
probabilistic description of molecular movement, or some other specification that represents a 
move toward the minimal end of the causal information continuum. (This flexibility of 
representation is in part what I am trying to suggest by using the ‘causal factors’ locution.) To 
summarize, we might say that in moving from CPR to CFR, we have moved from providing the 
causes themselves to providing information about those causes. Along the way, we have learned 
a few lessons from Sober's treatment of equilibrium explanations. The first lesson is one we 
should have learned from the DN model: initial conditions are important. The second lesson that 
we learn from equilibrium explanations is that CPR is inadequate. Together, these two lessons 
suggest CFR — which replaces CPR while preserving the importance of both initial conditions 
and causal information.

The revised causal requirement I am suggesting also has affinities with certain aspects of 
Strevens's kairetic account of explanation. One of the building blocks of his account is a ‘causal 
model’, which has the form of a DN explanation but also ‘purports to represent a chain of causal 
influence running from the states of affairs identified by the premises to the event identified by 
the conclusion’ (Strevens, 2008 p. 72).19 Thus, Strevens's approach, like mine, is crucially 
different from the DN approach in that the relevant entailment represents a causal, rather than 
a logical relation (Strevens, 2008 pp. 92–93). But we take different routes to this destination. 
Strevens begins with some of the famous counterexamples to the DN model, and points out that, 
in these cases, there is an explanatory asymmetry where there is no logical asymmetry.20 The 
basis for this asymmetry is the causal relation, which suggests causal entailment rather than 
logical entailment. I, on the other hand, have built in causal relations from the beginning, and 
attempted to show that these (p.485) causal relations are an essential part of even equilibrium 
explanations. In so doing, I have revised the causalist requirement in a way that evokes the DN 
model.

We are now in a position to see whether the revised causal requirement CFR can hold up in the 
face of further challenges. But before we move beyond the equilibrium challenge, I would like to 
draw out a third lesson from equilibrium explanations.

22.5 Explanatory depth and the rejection of the Proportionality thesis
The third thing we learn from equilibrium explanations is that we should jettison the 
Proportionality thesis. In order to see why, let us return once again to the dual continua that 
characterize an equilibrium explanation: information about initial conditions and information 
about causal forces. In both cases, less is more; in both cases, reducing the amount of 
information increases the power of the explanation. If the equilibrium is global, then minimal 
specification of initial conditions is necessary; in this case, we have an explanation that applies 
(almost) no matter what the system's initial state is. To provide more information about the 
initial conditions is to offer an explanation that does not apply as broadly, and hence is not as 
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powerful. And the same holds for the causal information continuum: at least some causal 
information is required, but the more general the causal law, the more possible trajectories (and 
hence states of the system) will be covered by the explanation. A more specific causal law, which 
provides more information about (and hence more restrictions on) the possible causal pathways 
leading to the explanandum event, will not apply as broadly and thus will not be as powerful.

There are various ways to understand this claim that, contra the Proportionality thesis, a more 
general causal law is preferable. The first is in terms of the unification approach to explanation. 
According to unification approaches, an explanation is better insofar as it has greater unifying 
power; and one of the key elements of unifying power is generality.21 Despite the fruitfulness of 
thinking about explanation as unification, I will focus on a different way of understanding the 
claim: in terms of explanatory depth.

Another way to put the point, then, is to say that the virtue of explanatory depth sometimes 
conflicts with the Proportionality requirement. And in cases of conflict, we should choose 
greater explanatory depth over greater amounts of causal information. And just what is 
explanatory depth? Strevens (2008, p. 137) provides an elegant characterization: (p.486)

Explanations having depth … strip away vast quantities of apparently relevant, large‐ scale 
causal detail, showing thereby that the phenomenon to be explained depends on only a 
kind of ‘deep causal structure’ of the system in question, a structure that is deep now not 
because it is so physical (though it is that) but because it is so abstract. The salient but 
irrelevant causal details are the shallows, then, and the more abstract — that is, more 
general — properties of the system are its depths, fleshed out by the details but 
inconsequentially so.22

As Strevens (2008, p. 137) points out, equilibrium explanations in particular represent the ideal 
of explanatory depth,

combining as they do two monumental abstractions: first, the abstraction of a highlevel 
dynamics from the physical underpinnings, … and second, in the equilibrium stage, the 
abstraction of a certain even higher‐level property of the dynamics — the universality of a 
particular end point — from the high‐level dynamics obtained in the first step.

Thus, consideration of doubly and elegantly abstract equilibrium explanations, in light of the 
explanatory virtue of depth, leads us to reject Proportionality.

Of course, one need not go quite so far in rejecting Proportionality. One could pursue a more 
ecumenical or pluralistic approach to the question of whether higher‐level explanations are 
preferable to lower‐level explanations (which provide more causal information at the expense of 
explanatory depth). Frank Jackson and Philip Pettit (1992), for example, argue that the choice 
between the two levels of explanation is pragmatic: whether one prefers the higher‐ or lower‐
level explanation depends on one's perspective or purpose: ‘Explanations of different levels 
provide complementary bodies of information on one and the same topic; we do not throw any 
explanation away just because we have access to another’ (Jackson and Pettit, p. 16).23 Sober 
himself (1999, p. 560) also advocates a similar sort of pluralism, when he points out that
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higher‐level sciences ‘abstract away’ from the physical details that make for differences 
among the micro‐realizations that a given higher‐level property possesses. However, this 
does not make higher‐level explanations ‘better’ in any absolute sense. … The reductionist 
claim that lower‐level explanations are always better and the antireduc‐ tionist claim that 
they are always worse are both mistaken.24

(p.487) I join these authors in rejecting Proportionality. I also lean toward Strevens's view, 
according to which depth (or generality, or a higher level of abstraction) is a greater explanatory 
virtue than causal detail — but that tendency is not essential to my defense of causalism. The 
causalist can opt for a pluralist approach instead.

22.6 Applying the causal factors requirement
If what I have said in response to the challenge from equilibrium explanations is right, then we 
should expect a parallel response (i.e. a response that appeals to CFR) to succeed in the face of 
other sorts of challenges to CPR. Thus, as a way of vetting my proposal, I will briefly consider 
two examples of another type of challenge.

The first example I will consider involves another dynamical system, but the challenge is more of 
an epistemic challenge, rather than an equilibrium challenge. The basic point of this challenge is 
that additional causal detail can actually obscure understanding, and hence an explanation25 — 
especially when one wants to use the explanation in question as a part of practical reasoning. 
Alan Garfinkel (1991, p. 53) uses an example from population ecology to make the point clear:

Suppose we have an ecological system composed of foxes and rabbits. There are periodic 
fluctuations in the population levels of the two species, and the explanation turns out to be 
that the foxes eat the rabbits to such a point that there are too few rabbits left to sustain 
the fox population, so the foxes begin dying off. After a while, this takes the pressure off 
the rabbits, who then begin to multiply until there is plenty of food for the foxes, who 
begin to multiply, killing more rabbits, and so forth.26

As Garfinkel points out, a rabbit that is trying to avoid a predator will not be interested in an 
explanation of another rabbit's death that includes the specific details of the causal history of 
that rabbit's death (eaten by which fox, at what time, etc.). In fact, the particular fox and the 
particular time do not make a difference; had it not been that fox, chances are good (given a 
large enough (p.488) fox population) that it would have been another.27 A more useful 
explanation would instead point to the large fox population as a whole. Additional causal detail 
is irrelevant and therefore unhelpful.

Garfinkel's example is clearly telling against Proportionality. An explanation of a rabbit's death 
that cites the large fox population provides less causal information than an explanation that cites 
the specific causal trajectory leading up to the event. And yet this explanation, given that it 
applies to a much broader range of rabbit deaths (and would be more useful for rabbits trying to 
avoid getting eaten [or humans trying to preserve the rabbit population]), is at the same time 
more powerful than an alternative explanation that provides a greater amount of causal 
information. It is, in short, the deeper of the two alternatives. Moreover, as also evidenced in 
this example, less causal information can be better if it allows us to explain not only what 
happened, but what could have happened, had certain things been otherwise. The higherorder 
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explanation of the rabbit's death (in terms of the large fox population) makes it plain that had 
the first fox not eaten him, the second (or third, etc.) likely would have. Similarly, as we saw 
above, Sober's equilibrium explanation is superior to a maximal causal detail (i.e. actual causal 
history) explanation: it explains not just why the population took the actual trajectory it did, but 
why the population would have still ended up at the same place, even had it taken a different 
trajectory. If Proportionality were correct, then the explanation at the maximal causal detail end 
would be the better explanation; but, as we have seen, it is clearly not. Sometimes, then, pace
proponents of Proportionality, less causal detail makes for a better causal explanation — in 
particular, when less causal detail allows us to pick out modal features of the system being 
explained.

It seems, then, that we have another good reason to give up on Proportionality. Are these 
considerations from Garfinkel similarly telling against CPR? And what about CFR? Hopefully it is 
clear by now that even if the answer to the first question is ‘Yes’, the answer to the second is 
‘No’. As we have already noted, the best explanation of the rabbit's death (i.e. the one that is 
most useful for those concerned with keeping rabbits safe from predators) is one that abstracts 
away from causal history, and instead points to a structural feature of the system: the large fox 
population. Hence, the best explanation of this system violates CPR, and thus endangers 
causalism — unless there is an alternative to CPR that can accommodate examples such as 
Garfinkel's. Fortunately for the causalists, there is such an alternative, and it is represented by 
CFR — which, recall, says that explanation requires only some information about the causal 
factors influencing the occurrence of the explanandum event (p.489) (about the ‘causal laws’ 
governing the behaviour of the system). And this is precisely what Garfinkel's explanation is 
providing. His explanation is telling us that without a certain distribution of rabbit and fox 
populations, the rabbit's death would not have occurred (or, more precisely, it says that a 
certain number of rabbit deaths would not have occurred.) The behaviours being modelled — 
predation and reproduction chief among them — most certainly involve causal processes, which 
means that information about the various relationships between those behaviours reasonably 
counts as information about the relevant causal factors. It seems, then, that this explanation of 
the rabbit's death satisfies CFR for much the same reason that Sober's equilibrium explanation 
satisfies CFR.

Another example of an epistemic challenge comes from an earlier article by Woodward, who is 
addressing Salmon's causal‐mechanical model of explanation (as utilized above when 
formulating CPR). His criticism (1989, pp. 362–363) thus pertains to both CPR and 
Proportionality:

More also needs to be said about how Salmon's model applies to complex physical systems 
which involve large numbers of interactions among many distinct fundamental causal 
processes. In such cases it is often hopeless to try to understand the behavior of the whole 
system by tracing each individual process. Instead one needs to find a way of representing 
what the system does on the whole or on average, which abstracts from such specific 
causal detail.

Woodward goes on to apply this point to an explanation of the behaviour of a gas that appeals to 
the ideal gas laws. The reason why the ideal gas laws are useful for explaining the behaviour of 



In defense of a causal requirement on explanation

Page 16 of 22

a gas is precisely because they omit (abstract from) the individual causal processes that 
constitute the gas's behaviour. With respect to a particular state of the gas, we could say that 
the ideal gas laws abstract from the individual causal processes that constitute the causal 
history of that state.

Notice first of all that Woodward makes another strong case against Proportionality. The 
explanation of the behaviour of a gas is yet another example of many in which (1) there are two 
competing explanations, (2) which differ markedly in terms of the amount of causal information 
they provide, and yet (3) the explanation with less causal information is clearly the superior 
explanation (i.e. the explanation with greater power). In other words, there will be many cases 
in which, as Woodward says, it would be ‘hopeless to try to understand the behavior of the 
whole system by tracing each individual process.’ (Woodward, 1989 p. 363) And since tracing 
individual processes is precisely what CPR requires, it seems that Woodward's example is also 
telling against CPR.

As with Garfinkel's case, however, a retreat to CFR remains available. If we consider the 
behaviour of the gas in question as the behaviour of a system, then an explanation of any 
particular state must posit some restric‐ (p.490) tion on the initial conditions, and moreover 
will posit the ideal gas laws as accurately governing the behaviour of this system. Considered in 
light of the continuum of causal information, it does appear that this explanation provides less 
causal information than does, for example, Sober's equilibrium explanation. Nonetheless, the 
interactions represented by the gas laws are causal interactions, and thus even this explanation 
is not completely devoid of causal information. CFR once again appears vindicated.

There might be a concern here that the move I am suggesting is just as trivial and non‐serious 
as the move we saw Woodward criticizing above. According to Woodward, recall, a putative 
explanation of the behaviour of a gas that posits molecules that collide with each other 
according to the laws of Newtonian mechanics — and says only that these collisions somehow 
produce the behavior in question — is a trivial and non‐serious causalist explanation. (We also 
saw that an equilibrium explanation completely devoid of causal information is akin to this trivial 
and non‐serious explanation of the behaviour of a gas.) Since Woodward directs this criticism 
against a (hypothetical) causalist view that appeals to an objectionable form of abstraction, it 
might seem as though my own proposal is vulnerable to this criticism as well. But it is not. To 
see why, first recall the equilibrium explanations considered above. The causal approach I am 
suggesting does not replace those equilibrium explanations with corresponding causal 
explanations; rather, it simply points out that equilibrium explanations (or at least the ones in 
the examples given) are already causal to begin with. So the point I am making here is not 
analogous to any attempt to provide an abstract (but unhelpful) version of a ‘causal processes’ 
explanation. Instead, I am suggesting a slightly, but crucially, different treatment of Woodward's 
example. This treatment points out that the best explanation of the behaviour of a gas, whatever 
that turns out to be, is already causal to begin with. This is because the equation(s) used in the 
best explanation, much like the fitness function in Sober's equilibrium explanation, represent 
causal processes. The causal information that satisfies CFR can be abstracted away from, or 
selectively highlighted, or what have you; but such information remains, even if under the 
surface, a crucial part of any explanation. The causal nature of explanation is inescapable.
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22.7 Conclusion
I will conclude by briefly returning to Sober's equilibrium explanation. It is true that his 
example, and related examples, do cause trouble for certain formulations of the causal 
requirement on explanation — in particular, the Causal Process Requirement. However, as I 
have tried to show, Sober's distinction between local and global equilibria provides an 
explanatory framework that (p.491) we can fruitfully extend by taking into account the amount 
of causal detail as regards not just initial conditions, but also causal trajectories. And if we do 
take into account causal trajectories, then once we are told that the graph is about selection, 
there is a sense in which we have already got a causal explanation. Moreover, this point 
complements certain themes in Woodward and Strevens — two different authors who have 
converged upon a similar conclusion via different routes.

Therefore Sober's equilibrium explanation, contrary to the received wisdom, is after all a causal 
explanation (in virtue of its reference to selection forces). Whether he originally intended it or 
not, Sober appears to have pointed the way toward a causal gloss on equilibrium explanation.28

Moreover, this treatment of equilibrium explanations can be extended to other sorts of 
explanations in a way that supports a revised causal requirement — the Causal Factors 
Requirement.
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Notes:
(1) Salmon's view is laid out in, among other places, his (1993b). For a book‐length treatment of 
his view, see his (1984).

(2) Salmon (1993, pp. 79–81) characterizes the other conceptions of explanation as either
epistemic (i.e. as arguments in which the explanandum statement follows deductively from the 
statements in the explanans) or modal (i.e. as exhibiting the physical necessity of the 
explanandum fact, given the facts in the explanans). There is reason to question this taxonomy 
of the different conceptions of explanation, but for now the important part is Salmon's focus on 
causal processes.

(3) For more on the important notions of ‘causal process’ and ‘causal interaction,’ see Salmon's 
(1993a).

(4) Note that CPR is relatively weak, at least insofar as it leaves open the question of which (and 
how many) causal processes must be cited. Nevertheless, as we will see, there are certain 
explanations that do not appear to satisfy even this weak version of CPR.

(5) This dictum is perhaps most evident in Railton's deductive‐nomological‐probabilistic (DNP) 
account, which adverts to the ‘ideal explanatory text’ — the full‐fledged explanation of an event, 
including all of the relevant causal detail. For more on the DNP model and the ideal text, see 
Railton's (1978).

(6) Although, as we will see below (cf. note 23), we can also leave open the question of whether 
all explanation is causal explanation and ask whether Proportionality is true if we restrict our 
discussion to causal explanations only.

(7) For a representation of this viewpoint regarding equilibrium explanations, see Batterman 
(1992).

(8) Another instance of the anti‐causalist strategy can be found in Berger (1998). In her 
example, the unpredictable growth patterns of Dungeness crabs are explained by the linear 
distribution of their eggs.

(9) The example, including the diagram, is taken directly from Sober (1983, pp. 207–8). 
Referring to natural selection as a ‘force’ is somewhat contentious, but for simplicity of 
exposition I will nevertheless continue to do so. (But see Walsh et al. (2002)).
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(10) There is room, perhaps, for the causalist to resist the conclusion that equilibrium 
explanations do not provide causal process information. For example, if one subscribes to 
something like Railton's DNP model of explanation, then one might think that a disjunction of 
possible causal trajectories could be incorporated into the ideal explanatory text, and thus count 
as causal information in some minimal sense. For an implementation of a similar strategy, see 
note 27.

(11) Thanks to an anonymous reviewer for helping me with this point.

(12) Salmon very briefly considers an information‐theoretic approach to unification theories of 
explanation in Chapter 4 (p. 131) of his (2006). Railton briefly discusses the usefulness (as well 
as some of the shortcomings) of information theory in his (1981).

(13) The context‐sensitivity of explanation is also emphasized in Scriven (1962). (See especially 
Section 3, pp. 52–3.)

(14) The parenthetical qualification, particularly in light of what I say below, might lead one to 
ask whether we have properly identified the endpoint of the continuum of information about the 
initial conditions. (Recall that a global equilibrium is defined as one in which there is only one 
restriction on initial conditions, namely that the population not begin in one of the system's 
absorbing states.) It could be argued, for example, that there might be some dynamical systems 
that will reach equilibrium no matter what state they start in (which would preclude those 
systems from having any absorbing states). If that is correct, then the specification of a true 
global equilibrium need not refer to absorbing states. But such a claim would not affect my own 
argument. In principle I can accept either definition of ‘global equilibrium,’ since I am only 
concerned to argue that equilibrium explanations cannot appeal to an equilibrium that falls on 
the extreme minimal endpoint of the causal information continuum. (Thanks to an anonymous 
referee for helping me clarify this point.)

(15) Note also that since we are restricting our consideration of possible causal trajectories to a
particular system, we are respecting Wright's (n.d.) claims about the contextual nature of 
explanation and avoiding the difficulties that would plague a more general information‐ theoretic 
attempt to specify the amount of causal information provided by various competing 
explanations.

(16) The ceteris paribus clause is designed to address, among other things, the concern that this 
counterfactual construal of causal laws is too strong — because there could be backup 
processes, operating according to different laws, that would bring about the explanandum event 
even if the explanatorily relevant causal factors were subtracted. In the context of Sober's 
equilibrium explanation, for example, mutation could serve as a backup process: a mutation 
could occur which would move the population toward equilibrium even if the selection forces 
were altered significantly. Thus, one of the ‘other conditions remaining the same’ is the absence 
of mutation (cf. Sober (1983, p. 207), where he explicitly rules out mutation as part of the model 
of the system). Thanks to an anonymous referee for bringing this concern to my attention.

(17) Woodward's theory is a causal theory, but he is not interested in arguing that all 
explanation is causal in nature; instead, he explicitly restricts his discussion to causal 
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explanations. Nevertheless (2003, p. 6), he thinks that Sober's explanation would count as causal 
by his criteria.

(18) Ibid., p. 17. See also Chapter 6 for Woodward's extended discussion of invariance.

(19) His 2008 discussion of the notion of a causal model begins on p. 71.

(20) Strevens discusses this in his (2008, section 1.4). The two examples he considers are the 
famous flagpole and barometer examples. From the length of a flagpole's shadow, together with 
the position of the sun (along with some laws about how light behaves), we can logically deduce 
the height of the flagpole; but the length of its shadow (etc.) does not explain the height of the 
flagpole. Similarly, we can deduce from a certain barometer reading that a storm is 
approaching; but the barometer reading does not explain the occurrence of the storm. In both of 
these cases, what is wrong with the logical derivation is that it runs counter to the direction of 
causation.

(21) For more on unification approaches to explanation, see Friedman (1974). See Kitcher 
(1981, 1989).

(22) Strevens (2008, p. 137). Strevens also advocates (pp. 147–148) small tradeoffs in the 
accuracy of a particular explanatory model in exchange for greater generality — i.e. greater 
explanatory depth.

(23) Jackson and Pettit (1992) endorse causalism about explanation (cf. p. 13), but they argue 
against ‘explanatory or methodological fundamentalism’ (p. 7), which always recommends the 
lower‐level explanation and thus considers a micro‐physical explanation to be objectively 
superior. Insofar as lower‐level explanations provide greater amounts of casual detail, 
explanatory fundamentalists will be very much in sympathy with proponents of proportionality.

(24) Insofar as I have construed Proportionality as presupposing CPR (or some alternate 
formulation of the causalist requirement), then it is obvious that Sober rejects Proportionality –
since he rejects CPR on the basis of equilibrium explanations. But in this article he is restricting 
his discussion to causal explanations, and even in that context he rejects (or would reject) 
Proportionality.

(25) I am not here advocating an identification between explanation and understanding, merely 
pointing out that one way to weaken an explanation is to reduce the amount of understanding it 
generates.

(26) Garfinkel is arguing specifically against reductionism (pp. 53–57), but his reasons for 
eschewing reductionism also militate against Proportionality. Hilary Putnam also argues against 
reductionism, particularly in his (1975). Putnam says (p. 296) that a micro‐story about why a 
square peg won't fit in a round hole is either a terrible explanation or no explanation at all.

(27) In certain ‘difference‐making’ respects, Garfinkel's approach anticipates Strevens's kairetic 
account of explanation, especially as laid out in his (2004) — material from which was 
incorporated into Depth.
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(28) Sober has acknowledged as much in personal correspondence. Zachary Ernst, in his 
defense of Railton's DNP model (2002) provides another causal gloss on this type of equilibrium 
explanation: he construes it as providing information about the ‘ideal explanatory text’ (which is 
a crucial element of the DNP model; see note 5), and thus causal even if indirectly so.



Epistemological issues raised by research on climate change

Page 1 of 9

Causality in the Sciences
Phyllis McKay Illari, Federica Russo, and Jon Williamson

Print publication date: 2011
Print ISBN-13: 9780199574131
Published to Oxford Scholarship Online: September 2011
DOI: 10.1093/acprof:oso/9780199574131.001.0001

Epistemological issues raised by research on climate change

Paolo Vineis
Aneire Khan
Flavio D'Abramo

DOI:10.1093/acprof:oso/9780199574131.003.0023

Abstract and Keywords
Climate change has become a reality, and much research on its causes and consequences is 
currently conducted. To our knowledge, very little attention has been paid to epistemological 
issues raised by climate change research. Randomized experiments cannot of course be done, so 
that climate change research needs to be observational, usually spanning over many decades or 
centuries. The amount and quality of information is often limited, at least as far as extrapolation 
to the remote past or future is concerned. In general causality assessment poses special 
problems, both in attributing meteorological events like tornados to man‐made climate change, 
and in attributing health effects to meteorological changes. We exemplify some of the major 
epistemological challenges in this chapter. This chapter stresses that climate change leads to 
extreme consequences the application of the Precautionary Principle: the consequences of 
certain forecasts would be so devastating (e.g. the melting of permafrost, that would free 
enormous quantities of CO2) that we have to act to prevent them, though their likelihood is 
extremely low. The usual balancing of the seriousness of the consequences vs. their likelihood of 
occurrence becomes very challenging.

Keywords:   causality assessment, IPCC, health effects, experiments, Precautionary Principle, Bangladesh

Abstract

Climate change has become a reality, and much research on its causes and consequences 
is currently conducted. To our knowledge, very little attention has been paid to 

University Press Scholarship Online

Oxford Scholarship Online



Epistemological issues raised by research on climate change

Page 2 of 9

epistemological issues raised by climate change research. Randomized experiments 
cannot of course be done, so that climate change research needs to be observational, 
usually spanning over many decades or centuries. The amount and quality of information 
is often limited, at least as far as extrapolation to the remote past or future is concerned. 
In general causality assessment poses special problems, both in attributing meteorological 
events like tornados to man‐made climate change, and in attributing health effects to 
meteorological changes. We exemplify some of the major episte‐ mological challenges in 
this chapter. We stress that climate change leads to extreme consequences the application 
of the Precautionary Principle: the consequences of certain forecasts would be so 
devastating (e.g. the melting of permafrost, that would free enormous quantities of CO2) 
that we have to act to prevent them, though their likelihood is extremely low. The usual 
balancing of the seriousness of the consequences vs. their likelihood of occurrence 
becomes very challenging.

23.1 The relevance of epistemological issues to different areas of climate change
The Intergovernmental Panel on Climate Changes considers climate change from three angles: 
the physical science of climate change; the impact of climate change on human populations, 
including health; and mitigating strategies. Epistemological issues refer to each of these 
chapters, but we mainly refer to the health field, and make a comparison with epistemological 
approaches in biomedical sciences.

23.2 New sources of uncertainty in observational climate change research
The case of climate change exemplifies the challenges posed by recent environmental and social 
changes. Discussing ‘uncertainty’ is insufficient in (p.494) climate change research, not only 
because the term has become too vague, but also for more specific reasons. We will make a 
comparison with biomedical sciences. Uncertainties are very common in medicine, and they are 
related to the small size of samples, or their biased nature (opportunistic sampling in selected 
subpopulations). But with climate change uncertainty rises to a different scale, another order of 
magnitude. First, in biomedicine we can do limited randomized experiments, mainly with 
preventive or curative purposes. Should we stick to the Galilean experimental paradigm, we 
would probably stop making causal inferences on climate change. We do not have two worlds to 
randomize to climate change; the most we can do is to set up micro‐ experiments, created 
artificially in the laboratory, where microenvironments are subject to experimental change. But 
the results of such experiments could not be easily extrapolated to the real world.

Second, even if we stick to an observational paradigm, still we face unprecedented challenges 
when dealing with climate change. One problem is the time scale: we are used (particularly in 
the biomedical sciences) to making observations on a very limited time scale, usually a few 
years, while climate change spans a much longer period (particularly if we want to make long‐
term predictions, for example on the health implications for humankind, or for species diversity). 
Another reason is that, in additional to being observational–like most biomedical research–the 
science of climate change cannot easily rely upon repetition of the observations in similar 
settings (for example, smokers have an increased risk of lung cancer in all continents and in 
different time periods). It is difficult to appreciate regularities in climate, particularly at the 
local level.
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23.3 Causality assessment in observational climate change research on health: An 
example
Causality assessment has always been difficult for observational disciplines, including 
epidemiology (Vineis 2009). The main objection raised by supporters of experimental science 
was that observation alone does not allow the researcher to rule out confounders, i.e. 
unobserved or observed variables that underlie the association and can explain it away. 
Consider the following example related to climate change: salt‐water intrusion in Bangladesh. 
For decades, salinity levels in surface and ground water in coastal Bangladesh have been rising 
at unprecedented rates (Mirza et al. 2004, Tanner et al. 2007), and currently higher sea levels 
are likely to further increase salinization (Mondal et al. 2001, Salim et al. 2007). Salt water from 
the Bay of Bengal is reported to have penetrated over 100 km along tributary channels currently 
affecting 20 million people and 830,000 ha of arable land by varying degree of salinity in 
Bangladesh. This has raised serious public health concerns as salt‐related (p.495) diseases 
have been reported in those areas, in particular hypertension, eclampsia in pregnancy (Khan et 
al. 2008), and cholera outbreaks as a consequence of changes in water quality and temperature 
that facilitate the proliferation of Vibrio cholerae. One would thus conclude that at least three 
kinds of diseases may be the direct consequence of climate change (without considering heat 
waves and flood‐related deaths): hypertension, eclampsia and outbreaks of cholera. (In fact, 
based on my recent experience, even tiger assaults can be attributed to climate change! I 
recently visited an area that was heavily hit by the Aila cyclone in South Bangladesh. At the 
Chalna hospital there were two fishermen attacked by tigers. In fact, the cyclone had killed all 
the prey of tigers–mainly deer–on one island, so that the hungry tigers attacked fishermen on 
their boats, something that did not happen before.)

However, other factors also contribute to the effects of climate change and can confound them. 
In particular, the shrimp farming business, which requires high levels of salt in pond water for 
cultivation, has risen in the same region and has become a major export industry (Mondal et al.
2001), further worsening the ecological situation. In addition, farming of the fresh‐ water prawn 
(Macrobrachium rosenbergii) has spread in the region, and the latter group of farmers have 
started using banned antibiotics like nitrofurans (Ahmed et al. 2008), due to temperature‐related 
bacterial proliferation. The diseased prawns that are rejected from international markets 
(sometimes found to be contaminated with bacteria like Vibrio cholerae) are distributed and 
consumed by the local communities, resulting in outbreaks of cholera, diarrhoea, dysentery and 
skin diseases on the one hand (Ahmed et al. 2008, USAID 2006), and antibiotic resistance on the 
other hand. On top of all that, and to complicate the picture even further, India has built a dam 
(Far‐ raka) that diverts towards Calcutta the fresh waters of the big rivers flowing from 
Himalaya to Bangladesh. This also interacts with the impact of climate change.

The causal pathway between the rise in sea levels and salinity‐related health effects is therefore 
confounded by this complex scenario, since cholera out‐ breaks can either be due to climate 
change (via modifications in water salinity, pH and temperature) or to the consumption of 
infected shrimps, and can even be exacerbated by exposure to antibiotics. The association 
becomes even more complex when we address other variables or ‘effect modifiers’ that change 
the salinity and health relationship.
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To be clearer, salt water shrimp farming can be a confounder of the association between climate 
change and cholera outbreaks, because of the spatial and temporal association between farming 
and climate change in certain areas, but it can also be an effect modifier, since it adds upon the 
conditions created by climate change. The case of Bangladesh exemplifies the fact that sticking 
to causality models that address single variables is becoming more and more difficult in contexts 
in which experiments cannot be conducted.

(p.496) 23.4 Problems in inference: Direct and indirect health effect
On epistemological grounds, the work done by the Intergovernmental Panel for Climate Change 
(IPCC) is remarkable, because it introduces the management of uncertainty into science. IPCC 
has introduced a ‘graduation of evidence’ similar to the one used in the Monographs on the 
Carcinogenicity of Chemicals of the International Agency for Research on Cancer (www.iarc.fr) 
to assess the carcinogenicity of chemicals. The basic idea is to use a ‘weight‐of‐ evidence’ 
language that summarizes the process of literature search and evaluation done by Working 
Groups. As said, this work is much more standardized and well‐defined in the methodological 
Preamble of the IARC Monographs, but the basic idea is the same. Thus, the reader knows 
exactly what a ‘Group 3’ carcinogen is, i.e. not a chemical that is free of carcinogenic activity, 
but a chemical that has been studied inadequately or with contradictory findings. Similarly, the 
reader of the IPCC reports knows what the graduation of the evidence means and approximately 
what the level of evidence is for a given problem, thus avoiding gross misinterpretations. We 
believe this is an important epistemological principle, which allows a transparent 
communication between scientists, decision‐makers and the community at large (see also Sheila 
Jasanoff 2005, on related issues).

If we accept, as IPCC does with a ‘high level of confidence’, that CO2 is increasing, and this is 
due to human activity, what will be the time scale of effects on human health and well‐being? 
Possible events range from rapid and catastrophic to very mild: for example, IPCC does not rule 
out (though it is very unlikely) a cascade of events leading for example to Bangladesh being 
swept away because of rapid Himalaya glacier melting; or an increase of the sea level of several 
meters in a few decades; or even an inversion of the Gulf Stream.

Strata of complexity and uncertainty further increase when we come to human health. Direct 
consequences of certain climate events are simple and can be easily perceived, such as the 
deaths related to heat waves in Europe in 2003, or catastrophic floods, or the Katrina storm. The 
death toll in these cases is clear, it does not require any sophisticated epidemiological 
technique. But still: were these events all due to climate change? Was the flood in Bangladesh in 
1974 the first attributable to climate change, or the last not due to it? And what about the one in 
1998? What about tigers in Bangladesh?

Uncertain inferences on the causal nature of events also concern attributing indirect health 
effects, such as infectious disease outbreaks, changes in food quality and availability, water 
salinization and the ensuing epidemic of hypertension. Even wars and conflicts (like in Darfur), 
mass migrations and effects on mental health have been attributed to climate change. In a 
prospective cross‐sectional survey conducted among children aged between 2 and 9 in 
Bangladesh, Durkin et al. (1993) found post‐flood changes in behaviour and (p.497) 

bedwetting. Children were reported to have ‘very aggressive behaviour’ after floods, with a 
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significant increase compared to the pre‐flood situation (p 〈 0.0001). While 16% of children wet 
their beds before the flood, the proportion became 40% post flood (p 〈 0.0001). A qualitative 
study explored the experiences of female adolescents during the 1998 floods in Bangladesh, 
focusing on the implications of socio‐cultural norms related to notions of honour, shame, purity 
and pollution. A number of the girls were vulnerable to sexual and mental harassment through 
exposure to unfamiliar environment of flood shelters and relief camps. Their difficulty in trying 
to follow social norms had far‐reaching implications on their health, identity, family and 
community relations.

The spectrum of health consequences related to trauma that could occur in a demoralized 
population following climate‐induced displacement need to be better investigated. Common 
mental health disorders include anxiety, depression, post‐traumatic stress disorder, irritability, 
sleeplessness and suicide. There is a huge psychological burden associated with losing a child, a 
sibling or a family member during or after natural disasters. During the recent cyclone Sidr in 
2007, even with warnings, those ‘washed away’ by the tidal bore were mostly children. For 
example, among 200 children in Majher Char, a remote island in the southern district of 
Bangladesh, only 12 survived the devastating cyclone, leaving the population deeply 
traumatized. Moreover, conflict situations that may arise among farmers in times of climate‐
induced natural disasters like droughts and floods need to be addressed.

Is all of this attributable to climate change? Where are the borders between the burden of 
events that would occur anyhow, particularly in low‐income countries, even in the absence of 
climate change, and those attributable to the latter? It should be noticed that the effects we 
have described are mainly occurring or foreseen in low‐income countries, where disentangling 
new threats from the old ones is not straightforward. However, perhaps there is no need to 
dichotomize the issue, i.e. asking ‘is this due to climate change or not’. Climatology is in fact 
much more developed than biomedicine in considering reality as a continuum and in studying 
fluctuations rather than dichotomies. Thus, floods in Bangladesh, for example, could be depicted 
as a fluctuating (e.g. sinusoidal) curve. If climate change increases the probability of floods, this 
will be observed as a gradually increasing fluctuating curve. There is no need of dichotomies.

23.5 Proximate vs distant causes
Part of the problem with attribution involves a well known epistemological issue, that of 
proximate vs distant causes. The most convincing causal factors belong to proximate causes: in 
medicine Mycobacterium is ‘the’ cause of (p.498) tuberculosis, though it is well known that it 
does not explain why only some people develop the disease, and the geographic and temporal 
variation of the disease occurrence. Causal webs in medicine require a more sophisticated 
approach than looking for necessary and proximate causes, and this holds true for climate 
change as well.

Most causal inferential procedures in biomedicine have dealt with one or another approach 
aiming at an evaluation of the strength of evidence, partly relying on statistical tools. However, 
when we come to complex causal pathways like the ones described in Bangladesh, a ‘strength‐
of‐evidence’ reasoning plus statistical inference are insufficient, because they do not incorporate 
the direction and strength of the different vectors that are operating, such as the Farraka dam, 
shrimp farms, increasing sea levels, etc. The main objective of causal inference is in fact to 
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connect the language of statistical association with the language of causality. To this end 
graphical models for causal inference have been developed, that have the goal of elucidating the 
web of relationships between different potential risk factors, other circumstances (such as 
vulnerability) and disease. Directed acyclic graphs (DAGs) are graphical representations of 
relationships among variables, and they can be used to disentangle causal relationships from 
simple statistical associations. However, causal assumptions must be applied to distinguish the 
causal edges from the merely associational ones, and this external information needs to be 
explicitly stated as it is not in itself contained in a DAG. In particular DAGs derived from 
observational data without interventions are just representations of conditional independences
and are thus purely probabilistic until additional causal information can be brought to bear (see 
e.g. Dawid 2002, and Geneletti 2005).

23.6 Experiments on climate: From cloud seeding to the control of climate change
It is in fact not totally true that experiments are not done with climate, but their purpose is not 
scientific. An influential but yet unrecognized cause of climate change is represented by cloud 
seeding and geo‐engineering, a series of techniques used to control the weather. These 
techniques, consisting in dispersing chemicals into the atmosphere, have been developed since 
the first years of the last century when rain making and rain enhancement was funded by 
farmers, to irrigate their crops, and sometimes also by municipalities to fill their reservoirs with 
rain. Facing the dry weather, in 1951 New York City asked the intervention of Wallace Howell, a 
‘rain maker’. The effect was a dreadful flood. There were 169 damage claims totaling over $2 
million of damages. Catskill communities and citizens obtained a permanent injunction against 
New York City, which ceased further cloud seeding activities (Fleming 2006).

(p.499) Scared by lawsuits, General Electric Research Laboratory decided to transfer its 
research on cloud seeding to the military. These techniques were then utilized and developed 
also as weapons. Between 1967 and 1972 weather modification took place in a huge area 
between Vietnam, Laos and Cambodia. After some accusations, in 1973 the American Senate 
adopted a resolution ‘to prohibit and prevent, at any place, any environmental or geophysical 
activity as a weapon of war’ (Fleming 2006, p. 14).

At least since 1965, with president Johnson, the possibility of modifying climate and to restore 
‘the quality of our environment’ through geo‐engineering, by dispersing buoyant reflective 
particles on the sea surface, was taken into account as a realistic opportunity (Fleming 2006).

In 2003 a Pentagon report concluded with the recommendation that the government ‘explore 
geo‐engineering options that control the climate’ (Fleming 2006, p. 21). In the symposium 
‘Macro‐engineering Options for Climate Change Management and Mitigation’ held in Cambridge 
in January 2004, the Tyndall Centre for Climate Research and the MIT identified, debated and 
evaluated macro‐engineering options for the management of climate to put this plan into 
operation. Among the techniques used, one was the albedo modification on planetary scale, for 
example, by launching mirrors of reflective particles into orbit, adding aereosols to the 
stratosphere, enhancing cloud reflectivity, and modifying land surface (http://
www.tyndall.ac.uk).
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Proposed as an option for CO2 reduction, these techniques are very similar to those considered 
in restoration ecology (Yearley 2007), and raise a number of concerns. For instance, they create 
problems for the modeling of climate change as they modify empirical factors taken into account 
within the GCM (General Circulation Model) used by IPCC scientists. The military management 
of geoengineering techniques means that this kind of technology is not shared within the 
scientific communities, is not open to criticism and to the judgment of social institutions, in a 
word it is black‐boxed. Moreover, if these techniques are already widespread, every single 
model of forecast, based on the evaluation of classical factors cannot be considered reliable.

23.7 Climate change: Changes in the image of science
Climate change is also changing the image of science and of humankind itself. First, while we 
cannot stick to a strict Galilean paradigm, still we have to make sound inferences on climate 
change for very practical reasons. Inferences on climate change are based on a counterfactual 
logic, i.e. they consider ‘how things would have gone had they not gone just like that’. This kind 
of inference is often based on thought experiments, not on real, well planned experiments, 
which has a broad historical and methodological impact, i.e. we have to give up with the deeply 
rooted Galilean ideal of controlled experiments.

(p.500) Another impact has to do with our own human identity: there is no longer on the Earth 
any place that has not been touched by civilization and technology, including climate. Finally, 
climate change leads to extreme consequences the application of the Precautionary Principle: 
the consequences of certain forecasts would be so devastating (e.g. the melting of permafrost, 
that would free enormous quantities of CO2) that we have to act to prevent them, though their 
likelihood is extremely low. The usual balancing of the seriousness of the consequences vs. their 
likelihood of occurrence becomes almost impossible.

Even the rules of confirmation and falsification within the scientific community are changing. 
The strong emphasis on the consensus obtained around the climate change forecasts (in 
particular within IPCC) has in practice exhausted the number of available experts and therefore 
of potentially dissenting voices or critical opinions. Should IPCC'ss work be submitted to ‘peer 
review’, according to the best tradition of science, it would not be easy to find prominent 
scientists who were not involved in the exercise. While IPCC is an extremely good example of 
broad consensus, it also risks undermining the basic principle of open and critical scientific 
practice.
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Abstract

We propose an empirical explication of the notion of ‘causation’, which we call a
generalized explication of ‘causation’ (GEC), based on the numerical balance between 
instantiations of extensive quantities. In this way, it will be shown that both the conserved 
and the non‐conserved quantities have a role. It follows that the Salmon– Dowe approach 
should be considered valid only in particular cases.

24.1 Introduction
Nowadays causation is widely discussed. Philosophers of mind, philosophers of action, 
philosophers of science, epistemologists and metaphysicians all deal with the subject. We wish 
to enter this field of investigation by trying to improve understanding of what we mean when we 
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speak of causation and causal interactions. In particular, we will offer an explication à la
Carnap.1 Note that Carnap (1950) discussed two kinds of explication. Both of them are obtained 
by turning a somewhat imprecise and ambiguous term (the explican‐ dum) into a precise and 
unambiguous term (the explicatum). In the first case, the explication is reached by inserting the
explicatum into a well‐constructed system of logical‐mathematical concepts, i.e. by adopting 
logical‐mathematical language. Whereas in the second case, the explication is obtained by 
inserting the explicatum into a system of empirical concepts, i.e. by adopting an empirical 
language pertaining to empirical sciences such as physics or biology. It is this second kind of 
Carnapian explication that we will apply to the notion of ‘causation’. Furthermore, it was this 
way of explicating that was implicitly or explicitly used, for example, by Russell (1912–1913,
1948), who introduced the notion of ‘causal line’; by Aronson (1971) and Fair (1979), who 
proposed the so‐called ‘transference theory of causation’; by Salmon (1984, 1997), who (p.503) 

suggested the ‘mark transmission theory of causation’; and by Dowe (1992, 2000), who argued 
for a ‘conserved quantity theory of causation’, creatively putting together the best part of the 
transference theory and the best part of the mark theory. Our proposal for a generalized 
explication of ‘causation’ (GEC), as we wish to call it, is an attempt to continue this tradition 
focused on the empirical explication of concepts.

Note that this way of clarifying philosophical concepts has a long history that we cannot go into 
here but that started with Aristotle, passed through Kant and Husserl and arrived, for example, 
at Carnap (recall his explication of the notion of ‘confirmation’), Tarski (recall his explication of 
the notion of ‘truth’), and Hempel (recall his explication of the notion of ‘explanation’).

At this point, two aspects should be considered. Firstly, even if, in the case of empirical 
explication, we use a physical language, this, of course, does not imply that the resulting 
empirical explication works only in the physical field. For example, in what follows we will adopt 
a physical language to explicate ‘causation’, but our explication will work also for biological 
causation and not only for physical causation. The formal language adopted does not fix the 
application field, but the way of ‘speaking’ about that field. This means that what we will present 
can be applied to any field, satisfying only the one condition, as we will show: that there must be 
extensive quantities.

Secondly, the empirical explication of a notion has no direct implications for the reality referred 
to in that notion. That is, the philosophical aim of an empirical explication does not lie in telling 
us what the ontological structure of the world is, or in particular what the causal structure of 
the world is (if any). Rather, as has already been said, its philosophical aim concerns the 
clarification of the notion (in particular of ‘causation’) by using a scientific language. This means 
that, hereinafter, the reader will not find any ontological commitment to the causal structure of 
the world. And it cannot be otherwise, considering the philosophical level at which the 
explication is placed. In other words, the ‘real and intrinsic’ causal structure of the world cannot 
be our concern. We limit ourselves to showing how the physical language enables us to explicate 
the concept of ‘causation’. We deal with an empirical conceptual analysis and not with the 
epistemological status of the physical representations we use.2
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(p.504) We want to illustrate how a precise and unambiguous discussion of causation 
developed through a physical language can clarify imprecise and ambiguous discussions 
developed through ordinary language. All of this, of course, does not at all imply any 
commitment to a reconstructionist approach to ordinary language.

Summing up, we do not want to propose a theory of causation, especially at a metaphysical 
level, but an empirical explication of ‘causation’; something totally different.

Let us come to a methodological issue. Our proposal will be proffered via a step‐by‐step 
preparation of the required explicative framework, in order to arrive at the concept‐explicatum
in a self‐contained way. This means, first the system of empirical concepts by means of which we 
explicate is prepared, and then the concept‐explicatum is proposed. This is strictly coherent, as 
is well‐known, with the four‐step process designed by Carnap (1950, ch. I). The process must 
comprehend: (1) the identification, as we have done in this introduction, of the ambiguous and 
imprecise concept‐explicandum; (2) the setting up of a system of empirical concepts (Section
24.2); (3) the explication in terms of the empirical concepts just discussed (Section 24.3); and (4) 
the conclusion showing that the unambiguous and precise concept‐explicatum is fruitful and 
similar enough to the ambiguous and imprecise concept‐ explicandum (Section 24.4).

Before beginning, it is worth adding two further remarks, which are essential in order to better 
understand what we are going to propose. The first concerns the kind of empirical language we 
will adopt. It is the typical language used to describe the continuous variations of quantities, 
especially adopted in fluid dynamics but which can be found in all those physical domains where 
we have to speak in terms of continuity equations.

The second remark regards the conceptual framework in which we will move. Our conceptual 
background, even if we cannot discuss it here, is Salmon and Dowe's conserved quantity theory 
of causation. As is well known, it is based on the idea that we have a causal interaction 
whenever we have an intersection of the world‐lines of two bodies with an exchange of 
conserved quantities. Following this thread, a causal process should be described by a world‐
line possessing a conserved quantity. This theory has been discussed a lot from a philosophical 
point of view, but few papers have paid attention to the scientific details. Among these few, 
Lupher (2009) heavily criticizes it mainly because not all conserved ‘quantities’ could be 
properly used and because Salmon and Dowe's account would fail in explicating causal 
interactions in stationary situations. If Lupher's paper may be considered as a pars destruens, 
what we are going to propose might be thought of as a pars construens. For, in our empirical 
explication we will show that we can understand causation independently from the conserved 
quantities but in terms of the so‐called extensive quantities (and we will define what they are) 
instead, some of which could also (p.505) be conserved quantities. By the way, it is precisely 
this more comprehensive account of causation than the one offered by the conserved quantity 
approach that has induced us to speak of a generalized explication of‘causation’ (GEC).

The chapter has two appendixes. The first concerns the discussion of some aspects involving 
time. The second regards the analysis of the case of the stationary states mentioned by both 
Dowe (2000) and Lupher (2009).

24.2 The explicative framework



Explicating the notion of ‘causation’: The role of extensive quantities

Page 4 of 23

Def1 : System and state of the system

Let us assume a theoretical context T and a system P. We can know, inside a given theoretical 
context T, which system we are speaking of by indicating the set of quantities {P 1, …, P r} (e.g. 
velocity, mass, charge, etc.) defining it in T. Let P T = {P 1,…, P r} be the system at stake. Since P
T is an empirical system, knowing, via measurements, the instantiations of {P 1, …, P r} becomes 
necessary. This means knowing the state of the system in a given space‐time point whose 
coordinates are x i = (x, y, z, t), where (x, y, z) are the spatial ones and t the temporal one. 
Therefore,

is the state of the system P T in x i, where {p 1, …, p n} are the instantiations of the quantities {P

1, …, P r}.3

Remark 1
Clearly the number r indexing the {P 1, …, P r} can be rather large if we want to specify all the 
quantities we are interested in, but, in general, there are relations among some of them. For 
instance, in a black body the peak frequency of the emitted radiation, the energy density, and 
the temperature are mutually dependent. Let us agree to select one set of independent
quantities that are necessary and sufficient to define the system in T. In general there are 
various different possible sets and the specific choice will depend on the nature of the problem 
the observer is dealing with.

As mentioned, ‘system’ and ‘state of the system’ are theoretical context dependent notions. By 
this we mean simply that different theories deal with these notions differently, providing, 
therefore, different representations. The particular choice of the theoretical context may be 
naturally suggested by what we want to observe, or by the constraints on the system. In other 
situations, it may be determined by more fundamental conditions, as in the case of physics in 
which we have to shift from a classical to a relativistic, or to a quantum‐ mechanical, 
description. A paradigmatic example of context dependency of the notion of ‘state of the system’ 
concerns neutrons and protons. They have to be considered as two different systems in a 
theoretical context emphasizing (p.506) the electromagnetic interactions, but they have to be 
regarded as two quantum states of the same system (the nucleon) if we move to a theoretical 
context emphasizing the strong interactions.4

Def2: Extensive quantities
Our approach to causation is based on the notion of extensive quantity. There are various 
definitions of this later. Some authors define it as a quantity which scales with mass; others 
make reference to additivity: additive quantities are defined as those quantities whose value for 
the entire system is the sum of the corresponding values for any partition into ‘subsystems’ (see 
Guggenheim 1950; Tisza 1966; Callen 1985). Let us adopt the most general definition, since it is 
the only one which is suitable for generalizations on arbitrary spacetime metrics:

Given a system P T and given the quantities defining it, by extensive quantity we mean any 
quantity E whose value is given by the volume integral of a function ε(x i ), called density, of E in 
the point x i.
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Remark 2

(p.507) Note that in the definiens above, volume plays the main role. For volume is, by 
definition, extensive and homogeneous, thanks to the homogeneity of space‐ time. Keeping this 
definition in mind, the ‘additivity property’ often used to define extensive quantities acquires a 
rigorous and general meaning: if we considered the system P T as if it were subdivided into n
sub‐systems, in the sense of volume (n sub‐volumes), the value of E would be given by the ‘sum’ 
of the n values of E within the n sub‐systems (by the additivity of integrals).

The mass of a system is a paradigmatic example of extensive quantity, since it can be thought of 
as the volume integral of the mass density. Only in this sense can we affirm that the mass of the 
whole is the ‘sum’ of the parts; this would no longer be true, in general, if we ‘put together’ the 
parts. Other extensive quantities are the total energy, the momentum and the angular 
momentum, the electric charge, the number of moles, entropy, etc.5

Def 3: Intensive quantities

Given a system P T and given the quantities defining it, by intensive quantity we mean any 
quantity I whose value is defined in every point of the system, but not for the system as a whole.

Remark 3
An instance of intensive quantity is given by the velocity, which is defined at a point. For, strictly 
speaking, we cannot talk of the velocity of an extended body unless it is rigid and in translational 
motion. Likewise for the temperature: it is defined in every point. Only in the case of the 
isothermal body do we use the convention of speaking of‘the temperature of the body’. The 
pressure, the electric potential, the field intensities, the chemical potential, and, of course, all 
the densities of the various extensive quantities are examples of intensive quantities.

Each intensive quantity is defined as the partial derivative of an extensive quantity with respect 
to another extensive quantity (of course keeping some others constant; the latter depends on the 
choice of the variables we consider as independent). That is, given an intensive quantity I, two 
extensive quantities E and E′ exist so that

For example, temperature τ is defined as

(p.508) where U is the energy and S is the entropy (U and S are two extensive quantities and 
the derivative must be carried out at constant volume).

This is a crucial point for our proposal and we must spend some time on it. It appears that the E‐
quantities play a fundamental role in the definition of a system while the I‐quantities can be 
considered as sort of ‘second rank’ parameters. Actually the latter tell us how rapidly an 
extensive parameter varies when another is varied in a given way. Nevertheless, an extremely 
relevant consequence of the above regards the definition of the state of the system. Now it can 
be fixed by resorting only to extensive quantities. For a quantity can be either extensive or 
intensive and in the latter case it can be defined as a function of the former. That is,
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(where the E 1,…, E n are mutually independent).
Needless to say, what we are affirming, and what we will affirm, in terms of extensive and 
intensive quantities can be applied also to non‐physical domains, such as, for example, chemistry 
and biology. It is sufficient to individuate, for that particular chemical or biological system, the 
suitable sets of extensive and intensive quantities.

Th 1: Extensive quantities and the balance equation

Given a theoretical context T and a system P T, any variation of an extensive quantity E of P T can 
be described by a balance (or continuity) equation, whose integral form is

where C e is the ingoing flux of the extensive quantity E, and ∑E is its production rate within the 
volume occupied by the system.

Remark 4
The proof concerning the above balance equation comes as an application of a general theorem 
called Transport Theorem or Reynolds' Theorem, which is well known in the mathematical 
theory of continuous media (Gurtin and Morton 1981). The flux term of the balance equation, C
e, is an integral over the surface K surrounding the physical system P T, where the surface K is 
oriented inward. Instead the production rate term,∑E, is an integral over the volume V bounded 
by the surface K. Both terms contribute to representing the observed change in the extensive 
quantity E but in a substantially different way. The production rate term, ∑E, describes the 
contribution due to processes occurring in the system. It depends only on the state of the system 
and does not depend on the state of the external environment (other system). The C e term 
describes a ‘flux’ of the quantity E across the surface and it describes the ‘exchange’ of the 
quantity E with the external environment in which P T is embedded.

(p.509) Note that, actually, ‘flux’, ‘exchange’ and ‘transmission’ must be interpreted 
metaphorically: there is no quantity which flows, nor which is exchanged or transmitted! 
Hereinafter this extremely important question will be better clarified.

Def 4: Conserved quantity

Given a theoretical context T and a physical system P T, an extensive quantity E of P T is a
conserved quantity if and only if

6

Remark 5
One of the most paradigmatic examples of a conserved quantity is given by energy. In our 
account, the principle of energy conservation states that the total energy of any system P T can 
vary only by ‘exchanges’ with the environment in which P T is embedded. Hence any change of 
energy in P T must be exactly and numerically balanced by the opposite change in its 
environment. The same applies to momentum, angular momentum, electric charge, etc.
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Among the non‐conserved quantities we may recall the total number of moles n and the numbers 
of moles of the various components n i. In this case, if the measured variation of n i is not 
numerically balanced with the C n term (in particular, this happens when the system cannot 
exchange matter), then something must be occurring within the system and accounting for the 
difference.

Entropy (S) is a non‐conserved quantity that is particularly relevant. In this case the ∑ S term of 
the balance equation contains the core of the second principle of thermodynamics. for

(a) ∑S = 0 for changes in a system in internal equilibrium. Notice that this works only in 
an ideal and asymptotic case. In real processes, equilibrium and change are incompatible 
concepts, at least on a macroscopic scale;
(b) ∑S 〉 0 for any real case;
(c) ∑S can be written as the sum of various terms, that is, (p.510)

Though with different notations this is a fundamental relation in non‐equilibrium 
thermodynamics (see, for instance, Callen 1985, p. 30; Prigogine 1955, p. 40). Note that each 
term on the right‐hand side is written as the product of the time derivative of an extensive 
quantity E i times a suitable intensive quantity χ i, called the entropy‐conjugate quantity of the 
extensive quantity E i. This equation is extremely general, since it connects entropy and each 
possible extensive quantity E (to be more precise, their time variations). For example, if the 
extensive quantity is the energy U, one of the terms can be given by the scalar product

grad (1/τ) , where

is the flux of energy (supposed, in this case, as a heat flux), and τ is the absolute temperature.7

The three points above are of fundamental importance. Point (a) characterizes equilibrium 
states, that is, those ideal states in which every small change is, by definition, reversible. 
Actually reversible changes do not exist in the real processes, but the former can approximate 
the latter with the highest accuracy in a very large number of cases. Point (b) separates allowed 
directions from forbidden directions in all real processes. It states a sort of thermodynamical 
arrow of time. Point (c), as just observed, explains the profound meaning of the distinction 
between extensive quantities and intensive quantity.

Remark 6
The ‘exchange’ of an extensive quantity is completely symmetrical between the two systems, 
owing to the balance condition. The direction of the ‘exchange’ is merely conventional since any 
situation can be depicted as an ‘exchange’ of the opposite quantity in the opposite direction. To 
illustrate this symmetric scenario, one could note the analogy with the content of the third law 
of Newtonian physics for a mechanical context, in which interactions consist in the ‘exchange of 
quantity of movement’ (momentum). As we will show, our explication of the ‘causal interaction’ 
will be given in a more general sense, and the explication will not imply a time succession, as 
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can also be intuitively inferred from what has just been said on the symmetry property of the 
‘exchanges’.

(p.511) At this point, in order to avoid misunderstandings, it is worth recalling some useful 
definitions, in particular those of ‘open’, ‘closed’ and ‘isolated’ systems,8 and those of‘stationary’ 
and ‘rest state’.

Given a theoretical context T and a physical system P T, let

and

be the states of the system at t and t′, respectively. In Δt = ǀt — t—ǀ,
(1) P T is an open system relatively to an extensive quantity E if that extensive quantity 
can be ‘exchanged’ with the environment; in this case we may have C E ≠0.
(2) P T is a closed system relatively to an extensive quantity E, if C e is bound to be always 
equal to zero; that is, if there is a constraint such that this extensive quantity cannot be 
‘exchanged’ with the environment;
(3) P T is an isolated system if C e is bound to be zero for any extensive quantity E; that is,
P T is isolated if it is closed with respect to all the extensive quantities defining its state.

And,

(1) the system P T is said to be in a stationary state in the time interval Δt if the initial 
state

(defined in x i) does not vary, that is, we have

for every extensive quantity E in Δt. Note that, as a consequence of what is stated above, 
in a stationary state even

for any intensive quantity I;
(2) the system P T is said to be in a rest state in the time interval Δt if for every point of P
T there is an intensive quantity υ→, called velocity, so that υ→ = 0. The notion of ‘rest 
state’ is observer‐dependent and therefore, from this point of view, it can be naturally 
considered as a synonym of ‘inertial state’ if the observer is an inertial observer.

24.3 Causation: The explication
So far, step by step, we have pointed out all we need to arrive at the conclusion of the 
explication, that is, to arrive at the concept‐explicatum. Up to now we (p.512) should have 
accepted the idea that all causal interactions, connected with changes of states, are 
characterized by the ‘exchange’ or the ‘transference’ of some physical extensive quantity since 
we defined the state in terms of those quantities. Nevertheless, differently from Salmon and 
Dowe, we claim that we do not rely on conserved quantities but on extensive quantities, since by 
the former we cannot explicate all the uses of the term ‘causation’.
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But now the time has come for the last step in the explicative process and we must give the
concept‐explicatum. Actually, we shall give it in two different forms. In the first, that will offer 
an ‘integral explicatum ’, we will consider the systems at stake as a whole; in the second, that 
will give a ‘local explicatum’, we will take into consideration only small (infinitesimal) parts of 
the systems.

24.3.1 Causation: The integral explicatum

Let us fix a theoretical context T and let us have two systems P T and P/T in the states.

and

, respectively, determined by the respective instantiations of the extensive quantities E 1, …, E n. 
We are allowed to speak of integral causal interaction between P T and P/T, in the time interval 
Δt = ǀt − t′ǀ, if and only if:

(1) We observe, relatively to an extensive quantity E i, that

and C Ei≠0;
(2) P T and P/T form a system G that is closed with respect to the quantity E i.

We call this ‘integral explicatum’, since we want to stress that it is written in integral form and 
by this we mean that the ‘exchange’ of the extensive quantity E i between the two systems is 
given by the total amount of E ‘flowing’ through the whole surface separating the two systems.

Let us dwell on the relations between the two requirements above. Suppose that, as a result of 
our observations, we measure the two fluxes C Ei and

and we see that (1) is fulfilled. Is this sufficient to claim that P T and P /T are in causal 
interaction? The answer is negative: (2) also has to be satisfied, for we have to be sure that the 
‘exchange’ of E takes place between P T and P ′T only.
Suppose now that (2) is fulfilled. We expect that (1) is satisfied as a natural consequence if we 
have that

. Indeed it states simply that the amount ‘transferred’ from P T to P /T is equal and opposite in 
value to the amount ‘transferred’ from P /T to P T and this is well known in the case of conserved 
quantities. For instance if two bodies P T and P /T form an isolated system G with respect to 
energy, the non‐zero variation of the energy in one of the two is compensated by the opposite 
variation in the other, and (1) is automatically satisfied. The same does not necessarily happen 
for non‐conserved quantities too, but in this case a deeper knowledge of the occurring processes 
will be necessary, i.e. we should know the values of ∑ei and

, which may now be (p.513) non‐zero. Hence (1) is fulfilled provided that the adopted 
theoretical context is safe, which means: first, the closure of the total system G with respect to E
i is assured and, second, our knowledge of the two source terms is also secure. If (1) is not 
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verified then the entire description is to be re‐examined and nothing can be said about causal 
interactions.
One further comment devoted to the ‘closure condition’ explicitly required in point (2) of the 
above integral explicatum must be made. Prima facie the condition seems to be more restrictive 
than what is required by Salmon and Dowe's account where nothing is said concerning the 
closure condition. Actually, Salmon and Dowe's account does not offer an operational expression 
telling us how the exchange of some conserved quantity between two systems can be 
recognized. On the other hand, we want to face this aspect (in a more generalized framework) 
and this means entering into details, including having to deal with the ‘closure condition’.

Let us consider one example with conserved quantities and one with non‐ conserved quantities. 
With regards the first case, let us suppose we have two systems P T and P /T and we observe 
variations of their respective momenta m and m′. Let us call those variations Δ m and Δ m′ 
respectively. If we think that momentum is a conserved quantity and the system G = P T + P ′T is 
closed respect to momentum, then we are allowed to speak in terms of causal interaction 
between P T and P ′T. For we have:

(a) the momentum of the entire system mG is, by definition, the sum of m + m′;
(b) the variation of mG is zero by the above closure condition; hence Δ(m + m′) = 0;
(c) we have Δ m = C m and

, because we assume that the momentum is a conserved quantity (Δm = 0);
(d) hence, we have C m = −

which is precisely condition (1) which proves that some extensive quantity (momentum in 
this case) has been ‘transferred’ from one system to the other.

To further exemplify what has just been said, let us consider two colliding billiard balls within 
the theoretical context of classical mechanics. Prima facie, the system can be considered 
isolated with respect to momentum, but we could wonder how our account works if we release 
the closure condition. This is exactly what happens in real situations if we consider that 
something else is interfering with the two balls' interaction; for instance, the friction with the 
billiard table, the presence of the air, etc. In this case, the balance equation between the two 
balls is no longer satisfied and we have to consider a more complex situation in which the 
‘exchange’ of the extensive quantity (p.514) is among three, or more systems. Some effect on 
the new partners can be estimated by observing their modifications and, hopefully, we can 
argue that some momentum has been ‘exchanged’ between the two balls; in any case we must 
reach a quantitative estimation no matter how large the error will be.

One further point concerning the closure condition is worth discussing. It appears that closure 
condition is necessary to our causation account but, at the same time, the closure condition is 
equivalent to an ‘absence of causal interaction with the external world’ and it seems that we are 
in a circular situation. Actually, in every theoretical context we use there have to be principles 
stating what the non‐interaction situation is. For instance, Newton's first law defines the non‐
interaction situation in mechanical systems, and with respect to that we are entitled to 
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acknowledge interactions. Only successively are we able to formulate the concept of ‘isolated 
system’. The set of all known ‘things’, which is frequently called the universe, is isolated by 
definition; then a system is isolated from ‘the rest of the universe’ (external world) if, according 
to the theoretical context in use, no variation from the ‘inertial’ state is observed outside, 
whatever happens within the system. Finally, we are now able to speak of conserved quantities, 
their existence and their fundamental role with regards the theoretical context at issue.

As a final remark on the supposed restrictive nature of the closure condition, let us anticipate 
that this condition will be completely abandoned below, when we shall formulate our account in 
the local form. This latter statement will represent the complete generalisation of the integral 
account we are discussing here in the sense that we shall seek ‘fluxes’ of extensive quantities 
point by point instead of global ‘fluxes’. So we may have local interactions even if we have zero 
global interactions, and we do not need any closure requirement. However concepts like 
‘closure’ or ‘isolation’ are still included in the definition of conserved and non‐conserved 
quantities.

In the case of non‐conserved quantities E, the determination of the internal production rate ∑E

also has to be considered. Suppose we are given a container (for instance, a room), which is 
exchanging molecular oxygen with another container (another room) in such a way that the two 
containers form a system which is closed with respect to O 2. Let us suppose that the extensive 
quantity we are observing is the amount of molecular oxygen O 2 inside it. Actually, for our 
convenience, we will deal with the mole number

and measure its variation, say

, in a definite time interval. Suppose, further, that we know that the following chemical reaction 
is at work inside the system

It is important, for what follows, that we know that a given process (in this case ‘that’ chemical 
reaction) is at work within the system. For instance, in the above example, we could have a 
monitoring of the temporal growth (p.515) (positive or negative) of both calcium and calcite. 
Then we are able to measure the production rate of oxygen within the system by measuring the 
amount of calcium, Δn ca, destroyed in the same time interval (negative production). Now we can 
evaluate the flux term, i.e. the

, and have a complete understanding of the balance equation with respect to the variations in 
molecular oxygen. At this point, according to our proposal, we are able to speak in terms of 
causal interaction since the two requirements indicated above regarding the concept‐
explicatum ‘causation’ are satisfied. This means we are allowed to claim that there is a causal 
interaction even if there are no conserved quantities at stake.
The above also enables us to understand precisely what we mean by ‘exchange’ and by the 
correlated notions. As we have already seen, we are allowed to speak of‘causal interaction’ if we 
have two systems P T and P /T in the states
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and

respectively and we note (1) a variation in the numerical values of the instantiations of E in P T

and P /T, where E is the extensive quantity relative to which P T and P /T form a closed system; (2) 
that

. At this point, any time we affirm that there has been an ‘exchange’ of the quantity E, or a ‘flux’ 
of E, between the two systems, we actually mean that we have measured a numerical balance 
between the values of E in the two systems. Therefore, if we were to be extremely punctilious 
and reconstructivist, the exchange‐talk, or the flux‐talk could be replaced completely with the 
more correct talk in terms of numerical balance and balance equation. Nevertheless, there is no 
point in doing this if the real meaning of the term ‘exchange’ and its metaphorical use have been 
grasped.
It should be noted that the approach developed so far uses concepts and terminology from fluid 
dynamics. This is quite common in many domains of physics (electrodynamics and relativity 
theory are two examples), and in many mathematical models of chemical and biological 
situations. It emphasizes the nature of extensive quantities of a system (see Herrmann 1986). 
There is no need to be reminded that the fluid‐dynamical approach is characterized by a flux‐talk 
and an exchange‐talk, according to which, for example, we may say that bodies ‘contain a 
certain amount of’ electric charge, which ‘flows’, is ‘accumulated’, ‘concentrated’, ‘diluted’, 
‘distributed’, ‘lost’, ‘collected’, ‘transferred’, etc. But, as we have just argued, this could be 
replaced by a different and more correct balance equation‐talk. Nevertheless, this should not be 
a problem if we really know what we are referring to when we metaphorically use the former.

24.3.2 Causation: The local explicatum
Let us move on to the inquiry into how the GEC deals with complex situations which also involve 
more than two systems. In this way, we will provide a deeper insight into the explication of the 
notion of ‘causation’. In particular, we could offer what we call a ‘local explicatum of causation’, 
since it allows us to speak about causation considering only (differential) parts of the systems at
(p.516) stake, and not necessarily the systems as a whole, as occurred in the integral
explicandum.

Let us begin by reconsidering the example given above of the two communicating rooms, let 
them be A and B. Let us suppose that there is a third room C communicating with A but not with 
B. Let us call

and

the integral fluxes of O2 entering rooms A, B and C respectively. We have to measure the 
variation of

and monitor the source terms in A, B and C. Then, by using the balance equation, we can 
instantiate the three fluxes. At this point, a system of simple equations must be solved and the 



Explicating the notion of ‘causation’: The role of extensive quantities

Page 13 of 23

flux terms can be obtained. If requirements (1) and (2) above are satisfied we can speak of 
causal interactions.
However, if the requirements are not satisfied, we could go deeper and analyse what happens. 
Let us begin.

In the balance equation introduced in Section 24.2, the flux term C E is, by definition, an integral 
quantity or, in other words, it takes into account the amount of extensive quantity E 
‘transferred’, per time unit, as a whole to the system under consideration. In the example of the 
three rooms it was natural to separate the flux through door A‐B from the flux through door A‐ C 
and to solve the consequent system of equations. In this case

has a structure: it is the sum of two contributions, each describing the flux of the quantity E
through two different regions of the boundary

. We should note that this separation of the different contributions to the integral flux term can 
be thought about at a more detailed and deeper level by considering all the infinitesimal 
contributions. In this case we have

where Γ E is the flux density (a vector); K denotes the surface surrounding the volume occupied 
by one system; d ξ the area of the surface element; and n the unit vector normal to the element d
ξ and directed inward towards the volume.

Suppose that we know the flux density Γ E at every point of the surface. In this case, we can 
describe the ‘exchange’ of a given extensive quantity point by point through the entire surface, 
limiting the volume. It follows, and by taking into account all that has been said until now, that 
we are able to speak in terms of ‘local causation’, and thus to study causal interactions between 
small (as small as we wish) subsystems.

Let us take a step forward. To deal with flux densities allows us to speak of local (differential) 
causal interactions as a function of the different points of the boundary. Given a certain area of 
the surface, there we can have some definite flux of the extensive quantity through it; but that 
local flux could be the superposition of various fluxes flowing through the same area. In this 
case, (p.517) how can we distinguish between two sub‐fluxes flowing through the same 
surface?

We can do it only if we know (and this depends on our T) that the different sub‐fluxes are 
‘exchanging’ the quantity E between different parts of our system P T and different parts of the 
other system P ′T, the candidate to be in causal interaction with P T. We could say, more simply, 
that the sub‐fluxes are “connecting” P T with different subsystems.

Evidently this discussion implies that the ability to separate the total flux C einto different fluxes 
and each flux into different sub‐fluxes is entirely dependent on our theoretical context T. 
However, now we can propose the local explicatum.

Let us fix a theoretical context T and let us have two systems P T and P ′T in the states
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, and

respectively, determined by the respective instantiations of the extensive quantities E 1, …, E n. 
Let d κ be the area of an infinitesimal element of the surface separating P T and P /T; let n and n′ 
be the two corresponding normal unit vectors both perpendicular to the surface in that point 
and directed inward towards P T and P ′T respectively; and let ΓE be the flux density in that point
x i. By defining the (infinitesimal) flux entering P T and P ′T we have that

. Thus, we are able to speak of local causal interaction between P T and P ′T, if and only if:

This implies

, where dC E and

are the infinitesimal fluxes entering P T and P /T respectively, through the element d κ of the 
surface K at point x i. Needless to say, now we no longer need to introduce the condition 
according to which P T and P ′T form an isolated system G together.

24.4 Discussion
We wish to emphasize that, according to our GEC, we need not restrict ourselves to conserved 
quantities in determining what we mean when we talk about two causally interacting systems. 
The non‐conserved quantities are also introduced. And this generalization is really one of the 
innovative aspects of our approach. It permits us to cope with all those situations, in particular 
those concerning complex systems, in which, if we want to speak about causation 
unambiguously and precisely, we are forced to introduce the non‐conserved quantities, since by 
using solely the conserved quantities we would not be able to account for it.

Generally speaking, according to the GEC, if there is a variation of an extensive quantity E, there 
are two possibilities: (p.518)

(1) E is a conserved quantity, i.e. we must have ∑E = 0, and the possibility of speaking 
about causation is rooted only in the determination of the variation of said E; then the 
consideration of the balance equation containing only the C e term becomes almost 
trivial;
(2) E is a non‐conserved quantity, i.e. we may have ∑E ≠ 0, and the possibility of speaking 
about causation is rooted in the determination of the variation of said E and in the 
determination of the ‘source’ term ∑E. The latter, in general, requires the determination 
of the variation of some other extensive quantities of the system, and then, by 
considering the balance equation containing both the dE/dt term and the ∑E term, we are 
able to determine C e, which is the fundamental quantity in order to acknowledge the 
causal interaction.

To better clarify our GEC let us return to the example above where the extensive quantity was 
the amount of molecular oxygen O 2 which we described, as usual, with the mole number
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. In particular it allows us to illustrate the reason why the generalization to non‐conserved 
quantities is conceptually (and not only practically) necessary. In the process under 
consideration, the extensive quantity, the ‘mole number’, is obviously non‐conserved, while the 
total number of atoms is conserved. Then a question could be raised; whether a non‐conserved 
quantity could be, at a different level of analysis, translated into conserved quantities. If this 
were the case, the generalisation regarding the non‐conserved quantities would be useful in 
practice (since it would solve some technical difficulties) but not conceptually necessary (since 
the non‐ conserved description could be reduced to the conserved description). Actually this is 
not the case, and for two reasons:

(1) The statement affirming that the atom number is a conserved quantity can be 
assumed to be true (with a good degree of approximation) only in a relatively limited 
number of cases. It ceases working if, for instance, the energy involved in the process is 
high enough. So it works for our ordinary life, but not in other less ordinary physical 
situations. Hence we see that the property of being conserved is not an ‘absolute’ 
property but depends on the theoretical context inside which the problem is considered, 
and on the degree of depth of analysis permitted by that theoretical context.
(2) Let us suppose we are in a case in which we accept the conservation of the atom 
number. It is commonly said that a molecule of oxygen is ‘composed of’ two atoms of 
oxygen. In general, expressions of the type: object A is ‘composed’ of object B ‘plus’ 
object C are widely used in chemistry as well as in physics and in other sciences. They 
are, however, very gross and approximate, and are to be accepted only within a definite 
theoretical context. One molecule of oxygen is different from a set of two (p.519) atoms 
of oxygen: indeed we need a certain density of O 2 to live and we would not be satisfied 
with an equivalent quantity of oxygen atoms in different states of aggregation. Generally 
speaking, a complex system is not equivalent to the ‘sum’9 of its constituent parts. As far 
as the causal interaction is concerned, we may easily conceive a situation in which 
molecular oxygen is transferred in one direction while atomic oxygen is replaced at the 
right rate backwards. In such a case, no interaction would be present if we rely on one 
extensive quantity only (the so‐ called ‘conserved’ one in this example, but this is 
irrelevant). Hence we see that the presence of a causal interaction is unveiled only if we 
explore all possible extensive state parameters. Notice, however, that we may speak of 
causal interaction only in relation to a definite extensive quantity.

The two points above allow us to set out an important feature of our account properly: they show 
that the possibility of speaking in terms of causal interaction between two systems depends on 
the choice of both the extensive quantity and the theoretical context. Therefore another 
conceptual improvement offered by our explication begins becoming clearer: we understand 
that the ordinary way of speaking in terms of tout court causally interacting systems is not only 
ambiguous and imprecise, but also misleading. Actually we must speak of systems causally 
interacting with respect to the extensive quantity we have decided to observe inside that given 
theoretical context. Moreover, our explication shows that even the property of being conserved 
or non‐conserved depends on the theoretical context adopted.10

In conclusion, the generalization of the explication of ‘causation’ in terms both of conserved 
quantities and non‐conserved quantities is to be considered a real improvement not only for 
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practical reasons but, most importantly, for conceptual reasons. Therefore, to also satisfy the 
four steps of the explicative process, we may claim that the explication proposed is fruitful, since 
it permits us a deeper comprehension of what we should really mean by ‘causation’.

Moreover, not only is the concept‐explicatum ‘causation’ fruitful but it is also similar enough to 
the starting concept‐explicandum ‘causation’, as to be rather intuitive.

24.5 Conclusion
In the above, we have given a rigorous and unambiguous empirical explication of the notion of 
‘causation’. We have arrived at this result by offering a strongly (p.520) consistent analysis and 
by resorting to an approach based on extensive quantities and on the balance equation. In this 
way we have proposed what we have called a generalized explication of ‘causation’ (GEC), both 
in the integral and less complex form and in the local form in which both conserved and non‐
conserved quantities have the same role.

Note that the possibility of dealing with non‐conserved quantities is of fundamental importance. 
We can easily consider several examples in which we naturally have to deal with non‐conserved 
quantities, as occurs in chemical processes or in population dynamics, but there is at least one 
more fundamental reason which makes this generalization necessary. For the GEC, which is a
theoretical context sensitive approach, enables us to assert that two systems, discussed inside a 
given theoretical context, are causally connected if and only if a particular balanced change of 
their respective extensive quantities is observed.

To conclude, we believe that the GEC provides a well‐grounded platform allowing us to 
understand precisely and unambiguously what we are affirming whenever we speak of causation 
in many different contexts, provided that there is the possibility of characterizing the systems 
under discussion in terms of extensive quantities. In these cases, our GEC can be applied (and it 
can be applied without any reductionist or reconstructionist purpose).
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Appendices

A1: On ‘action at a distance’ and time
Some could object that, according to the GEC, if a molecule on Alpha Centauri and a molecule 
on Earth each happen to lose and gain, respectively, the same magnitude of momentum, then 
they are in causal interaction. Prima facie, this might appear strange (p.522) since some sort of 
spatial contiguity condition (and also some sort of ‘time contiguity’ or ‘time correlation’) should 
be called for. Actually, this is exactly what we defend, provided that all the mentioned 
requirements are fulfilled. In particular we require that: (1) the two molecules form a system 
which is closed with respect to the extensive quantity E under consideration (in this case the 
momentum); (2) we know that two molecules undergo those changes of momentum.

Notice, on the other hand, that the spatial contiguity remains a part of the very definition of the 
two (or more) systems under consideration. In our case, if we focus on the two molecules 
mentioned above, there certainly are some (infinite in number) surfaces between here and Alpha 
Centauri that we may select as separating them. Any of them would be suitable. However it is 
not necessary to go so far apart. The same objection could be raised for two molecules some μm 
apart. This seems to be a severe limitation because it substantially considers actions at a 
distance. But it is not so, and the objection could be rebutted if we refer to interaction as 
mediated by some field, so that the case can be treated as a chain of more than one ‘causal 
interaction’: (System A, e.g. a molecule on Alpha Centauri)‐(field)‐(…)‐(field)‐(System B, e.g. a 
molecule on Earth).

Along the same line of thought, we would like to comment very briefly on the connection 
between causation and time ordering. As is well known, the problem has been widely discussed 
(see Ben‐Yami 2006) and, of course, in solving it we cannot disregard the constraints posed by 
the postulates of relativity. As previously mentioned, in the GEC there is no specific role for 
time. In particular no relation is required between the times of observation of the two events in 
the two systems P T and P ′T.

One possible and frequently adopted perspective could be a Newtonian one, in which the two 
events occur simultaneously according to an ‘action at a distance’ assumption. This assumption 
is equivalent to the requirement that interactions propagate at infinite speed and therefore 
causation can refer only to simultaneous events. Instead, according to a relativistic approach, 
interactions propagate at finite speeds and, accordingly, events have to occur at different times 
if they are to be causally connected. In this case the time relations are constrained by the 
requirements imposed by relativity. Nevertheless, in both perspectives the balance between the 
changes of extensive quantities has to be satisfied. And the GEC focuses on this aspect, 
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decoupling, in such a way, causal connection from time ordering. Please note, but unfortunately 
we cannot spend any longer on this point, that this view, according to which ‘the notion of 
causation is a‐temporal’, has had a long history exemplified, for instance, by the positions of J.F. 
Herbart, in the philosophical field, and B. Riemann, in the scientific field.

A2 : On causation in equilibrium and non‐equilibrium stationary states
Let us think about systems in stationary states (remembering the definition of ‘stationary state’ 
in Remark 6), in particular the case in which they are in mechanical equilibrium. Should we 
claim that they are not, by definition, in a causal interaction? This could be one possible outcome 
based on the fact that systems in stationary states do not undergo any change and one would 
possibly want to associate causal interactions with some modifications. Prima facie, this would 
not seem so odd. Indeed (p.523) we are used, from a commonsense point of view, to associating 
a cause to some ‘visible’ change, thought of as effect. This, however, would lead to the 
consequence that in order to keep a bow drawn no causal interaction is needed, and this type of 
account would appear unsatisfactory for many reasons. Let us discuss why and how our GEC 
can cope with these situations.

It should be remembered that by ‘mechanical systems’ we mean those systems whose dynamics 
are entirely determined by the action of Newtonian forces. Even though they can be of various 
origins (contact forces, gravitational forces, electromagnetic forces, etc.) they have their 
Newtonian definition in common: the application of a force to a body is equivalent to the 
‘transfer’ to that body, at the point where the force is applied, of momentum at the rate given by 
Newton's second law. Therefore, a continuous distribution of forces, i.e. a field of forces, is 
equivalent to a field of momentum currents ‘flowing’ with certain rates and lines of flow in 
complete analogy with the representations of fluid dynamics.

By current methods in potential theory we can describe the field lines for gravitational, 
electrostatic, magnetostatic, etc. fields. Each field line corresponds to a line of force, and each 
line of force to a flux of momentum of the right density. The description of fields of forces as 
distributions of momentum currents has been already introduced by Herrmann and Schmid 
(1985) for electrostatic and magnetostatic fields, and by Heiduck, Herrmann and Schmid (1987) 
for weak gravitational fields.

At this point we can consider a couple of examples. We would like to start with the one proposed 
by Dowe (2000, p. 177). Let us consider the case of two wooden planks leaning on each other on 
a vertical plane and, therefore, staying in a position of equilibrium. Is it true, as Dowe claims, 
that each plank causally interacts with the other? Let us apply our account on causation in 
relation with momentum, selected as the extensive quantity under consideration. Our 
observation shows that for each plank its momentum is constant and, in this case, equal to zero. 
However, each plank may be exerted by two contact forces in two different parts: one at the 
surface shared with the soil, and the other at the surface shared with the other plank. Besides 
these two forces, each plank is acted upon by the gravitational field of the Earth and this is a 
‘volume force’. Therefore, each plank is traversed by a complicated system of momentum 
currents. To our aims, a simplified description suffices: one momentum current is the almost 
parallel and vertical bundle of current‐lines describing the volume force (gravity) acting 
between the plank and the Earth. The other two momentum flows take place in the two contact 
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regions between a plank (plank 1) and the soil and the other plank (plank 2). The vector sum of 
these three momentum‐currents must be equal to zero, as required by our observation and 
because we assume that momentum is a conserved quantity (see balance equation), but each 
momentum current may be non‐zero. Now in order to recognize the existence of causal 
interaction between the two planks we needto know enough about the existence and the 
structure of the other two momentum currents; the one generated by gravity is sufficiently 
known but we need further information concerning the plank–soil momentum flow. By playing 
with these two parameters and by using the balance equation we can get almost any value for 
the momentum flux across the plank–plank surface. For instance, we may imagine being in 
absence of gravity in a space shuttle, or in a situation in which the two planks are fixed to the 
soil in a particular way. Then we may prove that the momentum flux across (p.524) the plank–
plank surface is zero and hence they are not in mutual causal interaction. Otherwise it can be 
easily proven that in the contact region between the two planks, the momentum flux from one 
plank to the other has to be non‐zero and it satisfies the Newtonian required symmetry condition 
(i.e. the flux of momentum from plank 1 to plank 2 is equal in magnitude but opposite in sign to 
the previous one). In general it is worth recalling that our ability to recognize causal interactions 
between systems relies on our theoretical context (theories and information).

Thanks to our GEC, in particular to the local explicatum of causation, we can claim that the two 
planks are in mutual causal interaction, but it would not be correct to affirm: ‘The equilibrium of 
the plank 1 is caused by plank 2 (and vice versa)’. Actually, the equilibrium of plank 1 is ensured 
by the combined contribution of plank 2 and other systems like, for instance, the ground and the 
Earth (Garbois and Hermann 2000). So in Dowe's example, each plank is in causal interaction 
with various systems and this is easily visible because the three momentum fluxes are spatially 
separated.

Likewise in the example of the bow we would be unsatisfied with the ‘non‐causal interaction 
hypothesis’. We have previously learned that some muscular sensations are equivalent to the 
onset of some momentum fluxes (i.e. forces); for instance they can balance a weight, etc.

Indeed we could draw a bow by applying a weight and, as in the case of the two planks, the 
interaction with the Earth gravity creates a flux of momentum.

In other words in both examples we (should) know that there is some external agent taking part 
in the game (the gravitational field, for instance). Seeing the two planks in contact does not 
mean, by itself, that they are in causal interaction. We can say whether they are or not only 
because we know enough about the Earth's gravity, or about our muscular sensations and we 
are able to apply our balance condition. In other words, our theoretical context is ‘too highly 
developed’ and the ‘non‐causal hypothesis’ gives rise to a conceptual emergency. It is possible 
that there might be some other causal connections that we are not able to recognise only 
because our theoretical context is insufficient.

So that's it for mechanical equilibrium but, for the sake of thoroughness, our discussion about 
causation in stationary states must also concern stationary non‐ equilibrium configurations. It is 
well known that this possibility does not occur in mechanical systems (fluctuations cannot be 
reduced to zero) but it is quite common in thermodynamical (macroscopical) systems. The 
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example of an electric heater powered by a constant electromotive force and observed after a 
long enough time for it to have reached a stationary state well explains the situation. In this 
example the resistor (our system) has a constant volume, temperature, energy, mass, entropy, 
and so on. Therefore it can be said to be in a stationary state.

Does this mean that such a system is not causally interacting with other systems? Not at all. If 
we examine the fluxes of various extensive quantities entering and leaving the heater we can 
easily estimate the following: energy ‘enters’ at a certain rate from the electric plant, and it 
‘goes out’ at the same rate into the room. In this case we are in an analogous situation to the 
two planks in Dowe's example, but if we look for entropy we have a net outflow of it towards the 
room while its content in the heater is constant (stationary condition). This is due to the fact that 
entropy is a non‐conserved quantity: (p.525) it is continuously produced within the system and 
therefore it can only be maintained constant within the system (stationary state) thanks to the 
possibility of it flowing towards the room at the right rate. Hence the stationary state can be 
maintained under the condition that our system interacts causally with the external world: in 
this case the extensive quantities accounting for the existence of a causal interaction between 
the resistor and the room are energy and entropy. Notice that the latter can be evidenced simply 
by the global explicatum (lower complexity account) since the global flux of entropy, C S, is 
different from zero while the causal interaction with respect to the former can be recognized 
only through the local explicatum since the total ingoing flux of energy is zero (C E = 0) but it is 
the result of two equal and opposite fluxes which can be separated in a higher complexity 
theoretical context.

This is a typical non‐equilibrium stationary state.

We can conclude this appendix regarding equilibrium and, in general, stationary states with the 
following: our account on causation, based on an accurate evaluation of the balance equation for 
the exchanges of extensive quantities among systems, can also successfully be employed to give 
a satisfactory representation of causal interactions in the case of mechanical equilibrium and of 
non‐equilibrium stationary states. Causal interactions are once again recognized by the 
existence of some fluxes (or more precisely flux densities) of some extensive quantity in some 
portion of the surface separating two parts.

Notes:
(1) We are well aware of the objections of Bontly (2006) to the explication process, but this is 
not the right place to discuss them as deeply as they would merit.

(2) That is, we do not discuss if how the physical theories represent the world tells us something 
on how the real world is, or should be. Note, however, that those who took this step should solve 
the many problems it brings up. In particular those regarding (1) the historical awareness that in 
different times different scientific theories have told us different things about ‘the structure of 
the world’; (2) the epistemological awareness that our knowledge of the external world is theory‐
laden; (3) the methodological awareness that our theories are not true but, at best, only well 
confirmed (if you prefer a Carnapian‐like approach) or well corroborated (if you prefer a 
Popperian‐like approach); (4) the rhetorical awareness that an a posteriori argument based on 
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scientific concepts and results cannot be strong enough to unquestionably support a 
metaphysical claim, as the whole history of western philosophy has taught us.

(3) Note that n ≤r since it is not said that all the quantities can be instantiated.

(4) The notions of ‘system’ and ‘state of the system’, and the fact they are theoretically context 
dependent are extremely useful for our aims. In particular the usefulness concerns the problems 
regarding the so‐called ‘timewise gerrymanders’ and ‘spacewise gerrymanders’. The former 
would be ‘putative objects defined over a time interval where the definition changes over time’, 
while the latter would be ‘putative objects consisting of many independent objects’ (Dowe 2000, 
p. 99). We could avoid the difficulties concerning them simply by ruling them out of our 
analyses. But it is not that easy. According to the definition above, a particle beam is a 
spacewise gerrymander, and, of course, we cannot eliminate it from our discussions. Similarly 
we cannot eliminate another spacewise gerrymander, that is, a population of living beings such 
as a flock of birds or a school of fish. Nevertheless we must eliminate a spacewise gerrymander 
such as ‘my pen + my jacket + the light bulb in front of me + the hostess in a restaurant 2000 
km away from me’. But we cannot eliminate ‘my pen in my pocket + my jacket + the light bulb 
in my hand + the hostess in the hall of the restaurant I am just entering’ if I must physically 
discuss the impact between me and the hostess. I must take into account all the masses, all the 
velocities, etc. How can I demarcate the ‘good’ spacewise gerrymanders from the ‘not‐good’ 
ones? The same goes for the timewise gerrymanders. Usually, the timewise gerrymanders 
should be ruled out. But why? Simply because we do not like them? Should all of them be 
banned? Let us think about the whole phylogenetic tree starting more or less 3.5 · 109 years ago 
and arriving at our age. Are not the definitions of the different living species valid for a certain 
time period (of course here at issue is not the notion of species qua category but qua taxon)? Do 
they not change over time? How can we demarcate a ‘good’ timewise gerrymander from a ‘not‐
good’ one? The solution is pragmatically contained in the proposed notion of ‘system’ and ‘state 
of systems’. Both are theoretically contextualized, and note that the system is something which 
is structured in a certain way, that is, it is characterized by its elements and by its relations 
among the elements. Yet which are the relations that can be considered ‘good’ relations so that 
the system can be considered a ‘good’ system, and the timewise or spacewise gerrymander a 
‘good’ timewise or spacewise gerrymander? The answer is: the theoretical context. That is, if we 
have a ‘good’ theory about that system (be it or not a timewise or spacewise gerrymander), then 
that system is a ‘good’ system. We are perfectly aware that the way out we are proposing could 
suffer of the same objections that could be raised against Goodman's solution to the green‐blue 
theory versus grue‐bleen theories on emeralds. But this is not the right place to embark upon 
this question ourselves.

(5) For the discussion of their ‘extensiveness’, see Guggenheim (1950); Callen (1985); Tisza 
(1966); Herrmann (2000).

(6) Note that the definition above could be rethought, in a different formal approach, as a 
theorem. That is, given a theoretical context T and a physical system P T, an extensive quantity E
of P T is a conserved quantity if and only if ∑E = 0. In this case the proof goes along these lines: 
(1) Given a theoretical context T, in it the system P T is characterized by a particular symmetry 
group. (2) Thanks to Nöther's theorem, we find the correlated conserved quantities E i. (3) We 
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prove that for any conserved quantity E, ∑E =0 holds. Moving along the opposite way the 
sufficient clause could be proven. Note, again, that this is not an ‘intuitive demonstration’, but a 
way of sparing the reader from complex calculi involving Nöther's theorem.

(7) It is worth recalling that in scientific formalism the time derivative of extensive quantities (d
E i/dt) is named ‘generalized flux’ while the intensive entropy‐conjugated quantity χ i is named 
‘generalized force’ or ‘generalized affinity’ in order to underline its role of ‘cause’ (like the 
Newtonian force) in governing the evolution of the system.

(8) We are perfectly aware that there is not a unanimous consensus on the definitions of these 
notions. Our proposal is grounded on how they are commonly used and defined in 
thermodynamics. Other definitions, however, could be proposed. What is important is that they 
are coherent amongst themselves and not erroneously interpreted. For, an erroneous or 
noncoherent interpretation of them can lead to an erroneous explication of causation, as 
happens in Choi (2003). For a critique, see Sant'Anna (2005).

(9) Note that the notion of ‘sum’ is totally undefined; usually we mean simply that if we break 
the whole we see some pieces.

(10) On theoretical context dependency, see Boniolo, Faraldo and Saggion (2009).
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causally independent random events. A number of propositions are presented that 
characterize causal closedness. Generalizing the notion of Reichenbachian common cause 
in terms of non‐classical probability spaces, where the Boolean algebra of random events 
is replaced by a non‐distributive orthocomplemented lattice, the notion of causal 
closedness is defined for non‐classical probability spaces and propositions are presented 
that state causal closedness of certain non‐classical probability spaces as well. Based on 
the generalization of the notion of common cause to a common cause system containing N
random events, causal N‐closedness is defined with respect to a common cause system 
both in classical and non‐classical probability spaces, and the problem of causal N‐
closedness is formulated. Characterizing causal N‐closedness remains a largely open 
problem.

25.1 The Common Cause Principle and causal completeness informally
The aim of this chapter is to investigate the problem of causal completeness (closedness) of 
classical and non‐classical (quantum) probability spaces. Causal closedness of a probabilistic 
theory means that the theory is causally rich enough to be able to explain causally all the 
correlations it predicts. It is natural to ask whether probabilistic theories are causally closed if 
one assumes that Reichenbach's Common Cause Principle holds: this principle states that if two 
events A and B are probabilistically correlated then either the correlation is due to a causal 
interaction between A and B, or, if A and B are causally independent, R ind(A, B), then there exists 
a third event C, a so‐ called common cause, that explains the correlation by being related to A
and B probabilistically in a specific way (see Definition 25.1). Causal closedness of a 
probabilistic theory is intended to express that the theory complies with (p.527) the Common 
Cause Principle; accordingly, and more precisely, a probability theory is defined to be causally 
closed with respect to a causal independence relation R ind defined between pairs of random 
events if for any correlation between elements A and B such that R ind(A, B) holds, there exists a 
common cause C in that theory of the correlation between A and B (Definition 25.3). The problem 
is then: under what conditions on the probability space and on R ind is the probability space 
causally closed?

We will see that causal closedness is non‐trivial and not impossible in classical probability 
spaces, not even if the probability space contains a finite number of random events only — but 
causal completeness is not typical either. There does not seem to be any regular and easily 
characterizable behaviour of probability spaces from the perspective of causal closedness; one 
has to check in each and every case by brute force whether the causal closedness holds.

The notion of causal closedness of classical probability spaces was introduced by Gyenis and 
Rédei (2004) but the notion of common cause can be naturally defined in non‐classical 
(quantum) probability spaces as well; hence the notion of causal closedness also makes perfect 
sense for such probability theories. Little is known about causal closedness of such general 
probability spaces. The known results are summarized in Section 25.4.

The status of the Common Cause Principle and the notion of the common cause has been widely 
discussed in the philosophical literature. A significant part of this discussion focuses on 
evaluating the validity of the Principle by means of analysing informally constructed putative 
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counterexamples; for a review the Reader is referred to Arntzenius (2005). It quickly becomes 
apparent, however, that the results of these analyses are highly sensitive to the way one 
identifies the space of relevant events, the probability structure, the definition of correlation 
between events, and the notion of the common cause. In addition different authors operate with 
different implicit assumptions about the importance of temporal precedence of causes, issues of 
locality, the importance of a distinction between microscopic and macroscopic events, and so on. 
It is difficult to assess, then, the validity of the Principle without being more cautious about the 
notions and requirements with which we operate with. Formal clarity becomes especially 
important when one discusses the case of Algebraic Quantum Field Theory, where relying on an 
informal characterization may easily lead us astray.

With this cautionary note we now turn to Reichenbach's original definition of the common cause.

25.2 The notion of common cause and some terminology
In what follows (X, S, p) denotes a classical (Kolmogorovian) probability space with Boolean 
algebra S of subsets of a set X (with respect to the set (p.528) theoretic operations ∩, ∪ and A ⊥

= X \ A as Boolean algebra operations) and with the probability measure p on S. To simplify 
notation, occasionally we write (S, p) instead of (X, S, p), when the precise nature of X is not 
important. For instance, when S has a final number of elements, then S is the set of all subsets of 
a finite set having n 〈 ∞ elements, in which case we write (S n, p).

Given (S, X, p), the quantity Corrp(A, B) defined by

(25.1)
is called the correlation of A, B in p. Events A and B are said to be positively correlated if Corrp(A, 
B) 〉 0. A correlation Corrp(A, B) ≠0 is called non‐ degenerate (and (A, B) a non‐degenerate 
correlated pair) if A ≠ B. A correlation is called maximal if

(25.2)
The next definition specifies the notion of common cause. Since the definition was first given by 
Reichenbach (1956), this type of common cause is called ‘Reichenbachian’; however, since in 
this chapter only Reichenbachian common causes feature, the qualifier ‘Reichenbachian’ will be 
omitted.

Definition 25.1. C is a common cause of the correlation (25.1) if the following (independent) 
conditions hold:

(25.3)

(25.4)

(25.5)

(25.6)



Causal completeness of probability theories — Results and open problems

Page 4 of 14

where

denotes the conditional probability of X on condition Y, C ⊥ denotes the complement of C and it is 
assumed that none of the probabilities p(X) (X = A, B, C, C ⊥) is equal to zero.

Since the notion of common cause is a measure theoretic one, measure zero sets have to be 
dealt with. The next definition takes care of this and summarizes some terminology used later.

Definition 25.2.

1. Let

(p.529) be the symmetric difference of sets X, Y. A common cause C of the correlation 
between A, B is called proper if

(25.7)
That is to say, a common cause C of the correlation Corrp(A, B) = 0 is proper if the 
common cause differs from the correlated events by more than a measure zero event. 
Otherwise C is called improper.
2. It can happen that, in addition to being a probabilistic common cause, the common 
cause event C logically implies both A and B, i.e. C ⊆ A ∩ B. If this is the case then we call
C a strong common cause. If C is a common cause such that C ⊆ ̸A and C ⊆ ̸B then C is 
called a genuinely probabilistic common cause.
3. A common cause C will be called deterministic if

(25.8)

(25.9)

25.3 Causal closedness of classical probability theories
Given the notion of common cause one can define the concept of common cause closedness in a 
very natural manner:

Definition 25.3. Let (X, S, p) be a probability space and R ind be a two‐place causal 
independence relation between elements of S. The probability space (X, S, p) is called common 
cause closed with respect to R ind, if for every correlation Corrp(A, B) 〉 0 with A ∈ S and B ∈ S
such that R ind(A, B) holds, there exists a common cause C in S. If there are no elements A, B in S
that are positively correlated, then (X, S, p) is called trivially common cause closed.

Proposition 1 (Gyenis and Rédei 2004) Let (S n, p) be a finite probability space. If R ind

contains all the pairs of events A, B in S n that are correlated in p, then (S n, p) is not non‐trivially 
common cause closed with respect to R ind.
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Proposition 1 shows that a probability space containing a finite number of random events 
contains more correlations than it can account for exclusively in terms of common causes. But 
this is not surprising because common cause closedness with respect to a causal independence 
relation that leaves no room for causal dependence is unreasonably strong. One can of course 
make a probability space (X, S, p) causally closed by stipulating that R ind(A, B) does not hold (i.e. 
that A and B are causally related) whenever A and B are correlated but there exists no common 
cause C ∈ S of the correlation. But this is unacceptable in general since this move makes the 
notion of causal closedness trivial and the causal dependence so defined (and the causal 
independence (p.530) relation R ind so defined) may turn out not to have reasonable features. 
One needs a disciplined, independent definition of the causal independence relation.

In general, the causal independence relation R ind depends on the characteristics of the 
probabilistic theory predicting the correlations and little can be said in advance about its 
structure. However, on the basis of general considerations, some reasonable conditions can be 
imposed on R ind. Intuitively, causal independence of A and B should imply that from the 
presence or absence of A one should not be able to logically infer either the occurrence or non‐
occurrence of B. Conversely, when from the presence or absence of A one is able to logically 
infer either the occurrence of non‐occurrence of B, the two events are suspect to be in direct 
causal relation and hence their correlation doesn't need to be explained by a common cause. 
Hence there is a strong connection between the notions of causal independence and logical 
independence. Taking then, as it is common, the partial ordering ⊆ in the Boolean algebra S as 
the implication relation between events (equivalently: between propositions that the 
corresponding events occur), this requirement about R ind can be expressed by the demand that
R ind(A, B) should imply all of the following relations

This requirement can be expressed compactly by saying that R ind(A, B) implies that A and B are 
logically independent; equivalently, that

are logically independent Boolean subalgebras of S in the sense of the following Definition 25.4:

Definition 25.4. Two Boolean subalgebras ℒ1, ℒ2 of the Boolean algebra S are called logically 
independent if

(25.10)
The pair

of Boolean subalgebras of Boolean algebra S is called a maximal logically independent pair, if 
logical independence of Boolean subalgebras ℒ1 and ℒ2 containing respectively

and

as Boolean subalgebras implies
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and

.
For later purposes we also need the following notions:

Definition 25.5. The pair (A, B) is called logically independent modulo zero probability if there 
exist A′, B′ such that

(25.11)
(p.531) and (A\ A′) and (B \ B′) are logically independent.

This motivates the following definition, which formulates a natural notion of causal closedness.

Definition 25.6. (X, S, p) is called common cause closed with respect to the pair (ℒ1, ℒ2) of 
logically independent Boolean subalgebras of S, if for every A ∈ ℒ1 and B ∈ ℒ2 that are correlated 
in p, there exists a common cause C in S of the correlation between A and B.

Proposition 2 (Gyenis and Rédei 2004) Let (S 5, p u) be the probability space with the Boolean 
algebra S 5 generated by five atoms and with p u being the probability measure defined by the 
uniform distribution on atoms of S 5. Then (S 5, p u) is common cause closed with respect to every 
pair of logically independent Boolean subalgebras (ℒ1, ℒ2) of S 5.

The next proposition shows that the behaviour of the probability space (S 5, p u) described in 
Proposition 2 is exceptional.

Proposition 3 (Gyenis and Rédei 2004) If the probability space (S n, p) is not (S 5, p u), then it is 
not non‐trivially common cause closed with respect to every pair of logically independent 
Boolean subalgebras.

But causally not closed probability spaces can be extended in such a manner that the extension 
contains common causes of a finite number of correlations in a given pair of logically 
independent sublattices:

Proposition 4 (Gyenis & Rédei 2004; Hofer‐Szabó et al. 1999) If(X, S, p) with finite S is not 
common cause closed with respect to a logically independent pair (ℒ1, ℒ2), then it can be 
extended into a (X′, S′, p′), with S′ being also finite, in such a manner that (X′, S′, p′) is common 
cause closed with respect to the logically independent pair (h(ℒ1), h(ℒ2)), where h(ℒi) is the 
homomorphic image in S′ of ℒi (i = 1, 2).

By an extension is meant here that there exists a Boolean algebra embedding h of S into S′ that 
preserves the probability in the sense that p(X) = p′(h(X)) for all X ∈ S. Note that the images of
ℒ1, ℒ2 under h will not necessarily be maximally logically independent, not even if ℒ1, ℒ2 is a 
maximally logically independent pair; so we have the following Problem, which is open:
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Problem 1. Does Proposition 4 remain true if ‘logically independent’ means maximal logically 
independent?

The following problem is also open:

Problem 2. Let (S, p) be a probability space with S having an infinite number of elements and 
assume that (ℒ1, ℒ2) is a logically independent pair of Boolean subalgebras of S such that there 
exist an infinite number of pairs (A i, B i) of (p.532) events A i ∈ ℒ1 and B i ∈ ℒ2 that are correlated 
in p. Does there exist and extension (S′, p′) of(S, p) such that (S′, p′) is common cause closed with 
respect to (h(ℒ1), h(ℒ2))? Does there exist such an extension so that (h(ℒ1), h(ℒ2)) is a maximal pair 
of logically independent sub‐Boolean algebras in S′?

Probability spaces with infinite Boolean algebras can however be causally closed as the next 
proposition shows. Before stating the proposition recall that a probability space (X, S, p) is 
called atomless if for any A ∈ S, p(A) ≠0 there exists B ⊆ A, B ∈ S such that 0 〈 p(B) 〈 p(A).

Proposition 5 (Gyenis and Rédei 2004) If(X, S, p) is an atomless probability space, then it 
contains uncountably many proper common causes of every non‐ degenerate correlation in it. 
Moreover if A and B are correlated, logically independent modulo measure zero events, then S 
contains both uncountably many strong and uncountably many genuinely probabilistic common 
causes of the correlation between A and B.

The notion of common cause can be naturally generalized to cover the case when the correlation 
is not explainable by a single common cause but by system of common cause like events. One 
such generalization was given by Hofer‐Szabó and Rédei (2004, 2006):

Definition 25.7. Let (X, S, p) be a probability space and A, B be two events in S. The partition 
{C i}i∈I of S is said to be a Reichenbachian common cause system (RCCS for short) for the pair 
(A, B) if the following two conditions are satisfied

(25.12)

(25.13)
The cardinality of the index set I (i.e. the number of events in the partition) is called the size of 
the RCCS. Since C, C ⊥ with a Reichenbachian common cause C is a RCCS of size 2, we call a 
RCCS proper if its size is greater than 2.

The motivation behind the definition of RCCS is that the correlation between A and B may not be 
explainable by displaying a single common cause but may be the cumulative result of a number 
of different ‘partial common causes’, none of which can in and by itself yield a complete 
common‐cause‐type explanation of the correlation, but all of which, taken together, can account 
for the entire correlation. Explaining a correlation by such a system of ‘partial common causes’ 
means that one can partition the statistical ensemble into more than two subensembles in such a 
manner that (i) the correlation disappears in each of the subensembles, (ii) any pair of such 
subensembles behaves like the two subensembles determined by a common cause and its 
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negation and (iii) the totality of ‘partial common causes’ explains the correlation in the sense of 
entailing it.

(p.533) It was shown by Hofer‐Szabó and Rédei (2004, 2006) that Reichenbachian Common 
Cause systems of arbitrary finite size exist for any non‐maximal correlation in the sense that for 
any such correlation in any probability space there exists an extension of that probability space 
that contains a Reichenbachian Common Cause system of the prescribed size.

In view of this, a natural refinement of the definition of causal closedness of (X, S, p) is obtained 
if one replaces the notion of common cause with the concept of common cause system:

Definition 25.8. (X, S, p) is called causally N‐closed with respect to a causal independence 
relation R ind if for any correlation Corrp(A, B) 〉 0 such that R ind(A, B) holds, there exists in (X, 
S, p) a Reichenbachian common cause system of size N for the correlation.

There are a number of questions one can ask in connection with causal N‐ closedness:

Problem 3. On what condition on (X, S, p) and R ind is (X, S, p) causally N‐ closed for a fixed N?

We have seen that probability spaces may or may not be causally 2‐closed — causal 2‐closedness 
depends sensitively on how R ind is defined. This leads to the following open problems:

Problem 4. Can a probability space which is not causally 2‐closed be causally N‐closed for some 
fixed N 〉 2 (with respect to some non‐trivial causal independence relation R ind)?

Problem 5. Can a probability space be causally N‐closed for every N (with respect to some non‐
trivial causal independence relation R ind)?

We conjecture that atomless probability spaces are causally N‐closed for every N with respect to 
every pair of logically independent Boolean subalgebras.

25.4 Causal closedness of non‐classical probability spaces
The notion of common cause can be defined in non‐classical (quantum) probability spaces (ℒ, ϕ), 
where an orthomodular lattice ℒ takes the place of the Boolean algebra and ϕ is an additive (or σ
additive) map from ℒ into [0,1] (generalized probability measure), replacing a classical 
probability measure. Special examples of such spaces are the quantum probability spaces (Ƥ( ),
ϕ) where Ƥ( ) is the projection lattice of a von Neumann algebra  and ϕ is a (normal) state on
 (see Kadison & Ringrose 1986 and Takesaki 1979 for the theory of von Neumann algebras). An 
even more specific example of the latter is the probability space when Ƥ( ) is the von Neumann 
lattice of all (p.534) projections on a Hilbert space ℋ (in this case we write (ℋ, Ƥ(ℋ), ϕ); this latter 
non‐classical probability space describes standard, non‐relativistic quantum systems.

Two elements A, B ∈ ℒ are called compatible if they belong to the same Boolean subalgebra of ℒ. 
This condition is equivalent to

If A, B are compatible and
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(25.14)
then A and B are called (positively) correlated with respect to the state ϕ.

Definition 25.9. If A and B are positively correlated, then C ∈ ℒ is called a common cause of the 
correlation (25.14) if C is compatible with both A and B and the following conditions hold.

(25.15)

(25.16)

(25.17)

(25.18)
where

denotes the conditional probability of X on condition Y and it is assumed that none of the 
probabilities ϕ(X), (X = A, B, C, C ⊥) is equal to zero.

Extension of (ℒ, ϕ), logical independence of events in ℒ and causal independence relation R ind on
ℒ can all be defined in complete analogy with the classical definitions, which makes it possible to 
define causal completeness as well in complete analogy with the classical case:

Definition 25.10. Let (ℒ, ϕ) be a non‐classical probability space and R ind be a two‐place causal 
independence relation between elements of ℒ. The probability space (ℒ, ϕ) is called common 
cause closed with respect to R ind, if for every correlation Corrϕ(A, B) 〉 0 with A ∈ ℒ and B ∈ ℒ

such that R ind(A, B) holds, there exists a common cause C in ℒ (in the sense of Definition 25.9). If 
there are no compatible elements A, B in ℒ that are positively correlated, then (ℒ, p) is called
trivially common cause closed.

Problem 6. On what conditions on (ℒ, ϕ) and R ind is the probability space (ℒ, ϕ) common cause 
closed with respect to R ind?

This problem is largely open in this generality. The only general result known is

(p.535) Proposition 6 (Kitajima 2007) If ℒ is an atomless, complete, orthomodular lattice and
ϕ is a faithful state then (ℒ, ϕ) is causally closed with respect to every pair of logically 
independent sublattices.

The above result is the quantum counterpart of Proposition 5; and the key fact that it rests on is 
that if ℒ is an atomless lattice and ϕ is a faithful state on ℒ then (ℒ, ϕ) is atomless as a measure 
space in the sense that for any 0 ≠ A ∈ ℒ, and for any real number 0 ≠r 〈 p(A) there exists B ≤ A, 
B ∈ ℒ such that p(B) =r. This latter fact was proved by Rédei & Summers (2002) (see also Rédei 
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& Summers 2007) for the specific quantum probability space (Ƥ( ), ϕ) where  is a type III von 
Neumann algebra and ϕ is a faithful normal state on , and Kitajima (2007) showed that the 
proof of can be carried over from the von Neumann algebra framework to more general non‐ 
classical probability spaces. It is known that the projection lattices of type II von Neumann 
algebras are also atomless; so one has as a specific case of Proposition 6 the following

Proposition 7. Let (Ƥ( ), ϕ) be a quantum probability space with  as a type III or type II von 
Neumann algebra and ϕ as a faithful normal state on . Then (Ƥ( ), ϕ) is causally closed with 
respect to every pair of logically independent sublattices.

Note that the lattice Ƥ(ℋ) of all projections on a Hilbert space ℋ is not atomless (it is atomic) 
irrespective of the dimensionality of the Hilbert space ℋ (Rédei, 1998); moreover, the quantum 
probability spaces (ℋ, Ƥ(ℋ), ϕ) are not atomless in a measure theoretic sense; consequently, 
Propositions 6 and 7 do not say anything about the causal closedness of the quantum probability 
space (ℋ, Ƥ(ℋ), ϕ) and it is not known under what conditions such quantum probability spaces are 
causally closed (with respect to some R ind).

Just like in the classical case, the notion of a (Reichenbachian) common cause system also can 
be formulated in a non‐classical probability space, and one can define naturally a more general 
notion of causal N‐closedness of a non‐classical probability space: The set {C i, i ∈ J] of elements 
(J being an index set, C i ∈ ℒ) is called a partition in ℒ if v i C i = I and C i and C j are orthogonal 
whenever i ≠ j; i.e.

for i ≠ j.
Definition 25.11. A partition {C i, i ∈ J] is a (Reichenbachian) common cause system for the 
correlation (25.14) between compatible elements A and B if C i is compatible with both A and B
for every i ∈ J and the following conditions (analogous to (25.12)–(25.13)) hold

(25.19)

(25.20)
(p.536) The cardinality of the index set J is called the size of the common cause system.

Definition 25.12. The probability space (ℒ, ϕ) is called causally N‐closed (with respect to some 
causal independence relation R ind) if for any correlation between elements that stand in the 
causal independence relation there exists in (ℒ, ϕ) a Reichenbachian common cause system of 
size N.

There are a number of open problems in connection with Reichenbachian common cause 
systems in non‐classical probability spaces and causal N‐ closedness of such probability theories:

Problem 7. Given a correlation in a general probability space (ℒ, ϕ) that does not have a 
common cause system of a given size N 〉 2 of the correlation, does there exist an extension (ℒ′,
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ϕ′) of (ℒ, ϕ) such that there exists a Reichenbachian common cause system of size N of the 
correlation in the extension (ℒ′, ϕ′)?

We conjecture a positive answer to the above question.

Problem 8.

1. Do there exist non‐classical probability spaces that are causally N‐closed for some 
fixed N (with respect to some nontrivial R ind)?
2. Do there exist non‐classical probability spaces that are causally N‐closed for every N 
(with respect to some decent R ind)?
3. Do there exist non‐classical probability spaces that are causally closed (with respect to 
some non‐trivial causal independence relation R ind) in such a way that every correlation 
in the space has a common cause system of countably infinite size?

These questions have not been investigated.

25.5 Closing comments on causal closedness
Further generalization can be achieved by treating the specific form the correlation measure 
Corr takes as a variable of the notion of the common cause. By allowing Corr to measure 
correlation between pairs of ordered partitions it becomes possible to handle the case of 
common cause‐type explanations of correlating variables, not just that of events. This allows a 
more detailed analysis of causal closedness and of falsification attempts against the Common 
Cause Principle. It can be shown that Reichenbachian common cause systems are special cases 
of the resulting notion of a generalized Reichenbachian (p.537) common cause. By imposing 
mild conditions on Corr extension theorems analogous to Proposition 4 can be proven. However 
the question of common cause closedness of general probability spaces with respect to 
generalized Reichenbachian common causes is still open. For further details the Reader is 
referred to Gyenis & Redei (2008).

One can strengthen Reichenbach's notion of common cause by requiring the common cause to 
satisfy some additional conditions. The additional conditions can be motivated by physics: after 
all, the probability measure spaces in terms of which the concept of common cause is formulated 
are not just abstract mathematical entities in physics but physically interpreted structures. 
Being organic parts of specific physical theories, these measure spaces offer means to express a 
possibly large variety of physical facts and principles. Two of such important principles are
locality and causality. Both locality and causality are rich and many‐layered concepts and there 
is no unique way of expressing them in terms of probability measure spaces. But it can happen 
that a physical theory entails both some additional conditions as necessary for the common 
cause C of a correlation between A and B to be ‘local’ and a causal dependence relation between 
random events. In such a situation the problem of causal closedness should be reformulated by 
taking into account these further restrictions.

This happens in local, algebraic, relativistic quantum field theory (AQFT). The theory predicts 
correlations between localized, causally independent (specelike separated) observables 
(Summers & Werner 1985, 1987a, 1987b, 1987c, 1988; Summers 1990a, 1990b), and the 
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common causes of these correlations have to be localized (Rédei 1997). It turns out that there is 
no unique way of defining locality of the common cause and, consequently, causal closed‐ ness of 
AQFT can also be specified in different ways (Rédei & Summers 2007): strong, weak and right 
(‘desirable’) localizability of common causes lead to the concepts of ‘strong’, ‘weak’ and 
‘desirable’ causal closedness of AQFT. To decide which of these causal closedness hold for AQFT 
is a difficult matter. While it is easy to see that strong causal closedness is violated in AQFT 
(Rédei and Summers 2007), and it could be shown that AQFT is weakly causally closed (Rédei
2002) (see also the review Rédei & Summers 2002), it remains an open problem whether AQFT 
is causally closed in the most desirable sense.
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26.1 Introduction
Uncovering cause–effect relationships is central in many aspects of our every‐ day life: what 
affects our health, the economy, climate changes, world conflicts, and which actions have 
beneficial effects? Causal discovery is a problem of fundamental and practical interest in many 
areas of science and technology, including biology, medicine and pharmacology, epidemiology, 
climatology, economy, sociology, psychology, law enforcement, neurosciences, manufacturing, 
computer security, and marketing. The need for assisting policy making while reducing the cost 
of experimentation and the availability of massive amounts of ‘observational’ data prompted the 
proliferation of proposed causal discovery techniques, mostly evaluated on toy problems. Each 
scientific discipline has its favourite approach, e.g. Bayesian networks in biology (Friedman et 
al. 2000) and structural equation modelling in social sciences (Kaplan 2000), not necessarily 
reflecting better match of techniques to domains, but rather historical tradition. Hence, 
standard benchmarks are needed to foster scientific progress, but the design of good 
benchmarks, not biased in favour of a particular model or approach, is not trivial. Difficulties 
include finding large representative datasets with known ground truth and devising methods for 
evaluating the validity of causal relationships in datasets where the causal structure is unknown. 
This chapter describes our contribution to that endeavour.

(p.544) One important goal of causal modelling is to predict the consequences of given actions, 
also called interventions, manipulations, or experiments. This is fundamentally different from the 
classical machine learning, statistics, or data mining setting, which focuses on making 
predictions from observations. Observations imply no manipulation on the system under study 
whereas actions introduce a disruption in the natural functioning of the system. In the medical 
domain, this is the distinction made between ‘diagnosis’ (prediction from observations) and 
‘treatment’ (intervention). For instance, smoking and coughing are both predictive of respiratory 
disease and helpful for diagnosis purpose. However, acting on the cause (smoking) can change 
your health status, but not acting on the symptom or consequence (coughing). Thus it is 
extremely important to distinguish between causes and symptoms to predict the consequences 
of actions like predicting the effect of forbidding smoking in public places. Part of our effort is 
dedicated to bring such problems to the awareness of researchers in machine learning who have 
mostly focused recently on i.i.d. data (identically and independently distributed data), neglecting 
(with some notable exceptions, such as, Quiõnero‐Candela et al. 2009) problems of distribution 
shifts between training and test set and the study of the mechanisms underlying the generation 
of the data. To that end, we devised datasets and tasks, which closely resemble machine 
learning problems and extend the problem of feature or variable selection to that of finding 
variables influencing a target variable.

Despite recent progresses in causal discovery algorithms, it is fair to say that causal models in 
science and engineering are still not widespread. This points to the need of illustrating the 
power of such methods on a variety of applications and addressing problems of efficiency. Part 
of our benchmarking effort is dedicated to collecting problems from diverse application 
domains. To address problems of efficiency, we are making available datasets with a large 
number of variables. We are planning future events in which costs will be associated with 
acquiring observational and experimental training data.
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We have successfully channelled the effort of dozens of researchers to solve new problems of 
scientific and practical interest and identified effective methods. However, competition without 
collaboration is sterile. Recently, we have started introducing new dimensions to our effort of 
research coordination: stimulating creativity, collaborations, and data exchange. We are 
organizing regular teleconference seminars. We have created a data repository for the Causality 
Workbench already populated by 15 datasets. All the resources, which are the product of our 
effort, are freely available on the Internet at http://clopinet.com/causality.

(p.545) 26.2 What are ‘causal problems’?
Causal discovery is a multi‐faceted problem. The definition of causality itself has eluded 
philosophers of science for centuries, even though the notion of causality is at the core of the 
scientific endeavour and also a universally accepted and intuitive notion of everyday life. But, 
the lack of broadly acceptable definitions of causality has not prevented the development of 
successful and mature mathematical and algorithmic frameworks for inducing causal 
relationships.

The type of causal relationships under consideration have often been modeled as Bayesian 
causal networks or structural equation models (SEM) (Pearl 2000; Spirtes et al. 2000; 
Neapolitan 2003). In the graphical representation of such models, an arrow between two 
variables A → B indicates the direction of a causal relationship: A causes B. A node in of the 
graph, labelled with a particular variable X, represents a mechanism to evaluate the value of X
given the parent node variable values. For Bayesian networks, such evaluation is carried out by 
a conditional probability distribution P(XǀParents(X)) while for structural equation models it is 
carried out by a function of the parent variables, plus some noise. Learning a causal graph can 
be thought of as a model selection problem: Alternative graph architectures are considered and 
a selection is performed, either by ranking the architectures with a global score (e.g. a marginal 
likelihood, or a penalty‐based cost function), or by retaining only graphs, which fulfil a number 
of constraints such as dependencies or independencies between subsets of variables. Bayesian 
networks and SEMs provide a convenient language to talk about the type of problem we are 
interested in, but we made an effort to design tasks, which do not preclude of any particular 
model. Our objective is not to reduce causality to a simple or convenient definition or to a family 
of models, but rather to define tasks with clear objectives and give ourselves means of assessing 
how well these objectives are reached.

In designing our first benchmark tasks we have focused on some specific aspects of causal 
discovery:

Causality between random variables. We have so far addressed mostly causal relationships 
between random variables, as opposed to causal relationships between events, or objects.

Multivariate problems. Many early efforts in causal studies have concentrated on the study of 
cause–effect relationships between two or just a few variables. The availability of large 
observational datasets with thousands of recorded variables (in genomic studies with microarray 
data, in pharmacology with high throughput screening, in marketing with logs of internet 
customers, etc.) has drawn our attention to multivariate problems in which an array of 
eventually weak causes might influence an outcome of interest, called ‘target’.
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(p.546) Time dependency. Our everyday‐life concept of causality is very much linked to time 
dependencies (causes precede their effects). However, many machine learning problem are 
concerned with stationary systems or ‘cross‐sectional studies’, which are studies where many 
samples are drawn at a given point in time. Thus, sometimes the reference to time is replaced by 
the notion of ‘causal ordering’. Causal ordering can be understood as fixing a particular time 
scale and considering only causes happening at time t and effects happening at time t + δ t, 
where δ t can be made as small as we want. In practice, this means that the samples in our 
various training and test sets are drawn independently, according to a given distribution, which 
changes only between training and test set versions.1 We are offering tasks with or without time 
dependencies.

Learning from observational or experimental data. We call observational data, data 
collected from a system let to evolve according to its own dynamics. In contract, experimental 
data is obtained as a result of interventions on the system of interest by an external agent who 
disrupts the system by imposing values to certain variables. Generally, experimenting is the only 
way to ascertain causal relationships. However, in many domains, experimenting is difficult and 
costly compared to collecting observational data. Hence, we have investigated settings in which 
only observational data are available for training. The tasks we collected also include settings in 
which both observational and experimental data are available.

We have so far mostly addressed two tasks of interest:

Predicting the consequences of manipulations. In one challenge we organized, our data 
included training samples drawn from a ‘natural’ pre‐manipulation distribution and test data 
drawn from various post‐ manipulation distributions (in which the values of a subset of variables 
has been set to given values by an external agent, bypassing the natural functioning of the 
system). The objective was to predict withheld values of a target variable.

Discovering causal structures. Causal graphs (e.g. Bayesian networks or structural equation 
models) are powerful to represent mechanisms at a level sufficient to reason and plan for future 
actions. A common exercise is to investigate whether the structure of such models can be 
reconstructed from artificial data generated by the models, in an effort to reassure ourselves 
that structures generated from real data may be meaningful.

The first task has a clear objective and it does not preclude of any particular modelling 
technique. In particular, it is not required to produce a causal (p.547) graph. Operational 
definitions of causality (Glymour and Cooper 1999) use the notion of manipulation to evidence 
cause–effect relationships. Hence, predicting the consequences of manipulations is a ‘causal 
question’ that can serve to evaluate causal models against non‐causal models. The second task is 
more explicitly ‘causal’ but it lacks of a generic mathematical statement of the objective, free of 
modelling assumptions. Evaluating causal structures poses major challenges (see Section 26.5), 
and such evaluations may be biased in favour of the class of models that generated the data.
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There are many other causal questions, which we will progressively address:

• Determine what manipulations are needed to reach a desired system state with 
maximum probability (e.g. select variables and propose values to achieve a certain 
value of a response/target variable).
• Propose system queries to acquire training data, i.e. design experiments, with 
perhaps an associated cost per variable and per sample and perhaps with 
constraints on variables, which cannot be controllable.
• Determine a local causal region around a target variable (causal adjacency).
• Determine the source cause(s) for a target variable.
• Predict the existence of unmeasured variables (not part of the set of variables 
provided in the data), which are potential confounders (are common causes of an 
observed variable and the target).
• Predict which variables called ‘relevant’ by feature selection algorithms are 
potentially causally irrelevant because their correlation to the target is due to an
experimental artifact (e.g. sampling bias or systematic error).
• Determine causal direction in time series data in which one variable is causing the 
other.
• Estimate counterfactuals. What would have occurred had a given variable taken 
a value that is different then the one it actually took? We cannot rewind time and 
find out. But, our evaluation platform using artificial systems will allow us to 
evaluate algorithms who can deal with counterfactuals.

26.3 Lessons from past challenges
Before entering into the technical details of challenge design, we wish to briefly outline some 
important results and lessons learned from past challenges:

• Causation and prediction: a negative result. In our first challenge we wanted 
to demonstrate that identifying causal relationships helped (p.548) building better 
models to predict the consequences of interventions. Indeed, the knowledge of the
true causal relationships allowed the organizers to build baseline predictive models 
performing considerably better than regular non‐causal machine learning models. In 
contrast, the challenge participants had to face the problem of uncovering the causal 
relationships unknown to them, from observational data only, and built predictive 
models with such data. Although on average over all participants and all datasets,
better knowledge of the causal structure correlated with better prediction 
performance, the variance of the results was so large that one could not claim that 
trying to unravel the causal structure provided an advantage over building a 
predictive model ignoring causal relationships.
• Cause–effect pairs: a positive result. In our second challenge, one task 
proposed by a participant drew a lot of attention: the cause–effect pair task. The 
problem was to try to determine in pairs of variables (of known causal relationships), 
which one was the cause of the other. This problem is hard for a lot of algorithms, 
which rely on the result of conditional independence tests of three or more variables. 



Causality Workbench

Page 6 of 17

Yet the winners of the challenge succeeded in unraveling 8/8 correct causal 
directions.

From a challenge design perspective, we discovered that there is a lot of value in offering to the 
participants the possibility of contributing problems, which can evidence the power of causal 
discovery algorithms (Guyon et al. 2008b). From an algorithmic perspective, we stubbled on the 
multivariate problem. Moving from a multivariate variable selection task in an i.i.d. setting 
(Guyon et al. 2006) to a similar task in a non‐i.i.d. setting (Guyon et al. 2008a) magnified the 
problem of overfitting, familiar to machine learning scientists: in the i.i.d. setting, multivariate 
algorithms struggled to outperform univariate algorithms (selecting variables for their individual 
predictive power); in the causation and prediction challenge, ‘causal’ variable selection 
algorithms struggled to outperform non‐ causal algorithms. From a methodology perspective, we 
realized that learning causal relationships reliably from observational data only may not be 
realistic. Experiments are needed to firm up hypotheses made by analysing observational data. 
This is particularly critical in a multivariate setting where errors cumulate and propagate. 
Finally, from a practical point of view, we learnt that causal discovery algorithms might serve 
better the Industry by ranking factors that might significantly influence a given outcome than by 
unraveling in details the causal structure of a web of interrelated variables.

These findings had a direct impact on the design of new benchmarks described in the remainder 
of this chapter.

(p.549) 26.4 Important problems and good benchmarks
Uncovering cause–effect relationships is of great practical importance in many domains, 
however, many real world problems are not suitable bench‐ marks. A good benchmark problem 
should be a problem featuring either:

1. A data generative system available to generate data as needed (for example an 
electrical circuit).
2. A low‐cost experimental setup to identify the system (for example a temperature 
regulation problem).
3. Data available from a large study, including many examples drawn from the 
‘natural distribution’ and from relevant ‘post‐manipulation distributions’ (for example a 
large medical trial).

In addition, the task should be such that guessing causal relationships at random or ignoring 
them altogether yields performances significantly worse than accurately uncovering them. 
Hence a good benchmark requires uncovering many causal relationships. Problems of practical 
importance not suitable for benchmarking include:

• Non‐reproducible single events, e.g. what caused a candidate to lose an 
election, what caused an economic or a social crisis, what caused a person to commit 
suicide?
• Unrealistic experimental setups. For instance, we cannot manipulate sunspots 
to verify their alleged causal influence on the Earth's climate. For other problems 
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experimentation is too limited or scarce. This is the case of economic policies like tax 
cuts or subsidies.
• Unobservable or uncontrollable systems. Problems with too few directly 
observable and actionable variables to establish causation with confidence, for 
example, non‐invasive neuroscience.
• Problems with too few variables. If only a few causal relationships must be 
uncovered, it is easy to win by chance (e.g. determining whether smoking causes 
lung cancer is important, but you have 50% chance of being right); so, unless many 
instances of the same or similar problems are available, problems with few variables 
are unfit for benchmarking.

We are making an effort to collect in the workbench repository a variety of tasks using real data 
sets (see Tables 26.1 and 26.2). But, when practical problems of interest do not fulfil all the 
requirements of good bench‐ marks, because of one of the reasons above mentioned, we 
complement these resources with designed semi‐artificial datasets. We have adopted two 
strategies: (p.550)

Table 26.1 Atemporal datasets. ‘TP’ is the data type, ‘NP’ the number of 
participants who returned results and ‘V’ the number of views as of December 
2008. The semi‐artificial datasets are generally ‘re‐simulated’ data, i.e. data 
obtained from simulators of real tasks, usually trained with real data. Two 
datasets of LOCANET are made of real data augmented with artificial ‘probe’ 
variables (SIDO and CINA). N is the number of variables and P is the number of 
examples (in training data; some datasets have test data too)
Name (TP; 
NP; V)

Size Description Objective

CEP (Real; 
5; 218)

P = 8 pairs of var. N = 2 
variables.

Cause Effect Pairs. Pairs of real 
variables with known causal 
relationships.

Find the causal 
direction.

CYTO (Real; 
2; 394)

P ≃800 samples per 
experimental condition* 9 
conditions. N = 11 
proteins.

Causal Protein‐Signalling 
Networks in human T cells. 
Protein activity monitored by flow 
cytometry. ‘Heavy‐handed’ 
manipulations are performed 
using chemical activators or 
inhibitors.

Learn the 
architecture of 
the protein 
signalling 
network.

LOCANET
(Semi‐
artificial; 
10; 558)

REGED & MARTI: P = 
500 patients; N = 999 
genes + target (disease). 
CINA: P = 16, 033 
persons; N = 132 
attributes + target 
(earnings). SIDO: P = 12, 
678 drugs; N = 4932 
descriptors + target 
(activity).

LOcal CAusal NETwork. Four 
datasets: REGED and MARTI 
(genomics), CINA (marketing), 
and SIDO (drug discovery). The 
datasets also include large test 
sets that were used in the 
‘causation and prediction 
challenge’ (Guyon et al. 2008a).

Find the local 
causal 
structure 
around a target 
variable.
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Name (TP; 
NP; V)

Size Description Objective

SECOM
(Real; NA; 
59)

P = 1567 wafers. N = 591 
QC measurements + 1 
binary target (pass/fail) 
and 1 date of processing

Semiconductor 
manufacturing. Production 
entities (wafers) are associated 
with quality control (QC) 
measurements on a fabrication 
line. The labels represent a pass/
fail yield in line testing 
(classification problem).

Predict pass/
fail and identify 
predictive 
features.

TIED
(Artificial; 1; 
330)

P = 750 training ex. N = 
1000 variables (including 
target).

Target Information Equivalent 
Dataset. A Bayesian network 
with 72 equivalent Markov 
boundaries of the target variable.

Find all 
Markov 
boundaries.

(p.551)

Table 26.2 Time dependent datasets. ‘TP’ is the data type, ‘NP’ the number of 
participants who returned results and ‘V’ the number of views as of December 
2008. The semi‐artificial datasets are obtained from simulators of real tasks. N
is the number of variables, T is the number of time samples (not necessarily 
evenly spaced) and R the number of simulations with different initial states or 
conditions
Name (TP; 
NP; V)

Size Description Objective

MIDS
(Artificial; 
NA; 65)

T = 12 sampled values in 
time (unevenly spaced);
R = 10000 simulations.
N = 9 variables.

Mixed Dynamic Systems. 
Simulated time‐series based 
on linear Gaussian models 
with no latent common 
causes, but with multiple 
dynamic processes.

Use the training data 
to build a model able 
to predict the effects 
of manipulations on 
the system in test 
data.

NOISE
(Real + 
artificial; 
NA; 43)

Artificial: T = 6000 time 
points; R = 1000 simul.;
N = 2 var. Real: R = 10 
subjects. T ≃200,000 
points sampled at 
256Hz. N = 19 channels.

Real and simulated EEG 
data. Learning causal 
relationships using time 
series when noise is 
corrupting data causing the 
classical Granger causality 
method to fail.

Artificial task: find 
the causal dir. in pairs 
of var. Real task: 
Find which brain 
region influences 
which other one.

PROMO
(Semi‐
artificial; 3; 
570)

T = 365*3 days; R = 1 
simulation; N = 1000 
promotions + 100 
products.

Simulated marketing task. 
Daily values of 1000 
promotions and 100 product 
sales for three years 
incorporating seasonal 
effects.

Predict a 1000×100 
Boolean matrix of 
causal influences of 
promotions on 
product sales.

SEFTI
(Semi‐
artificial; 
NA; 35)

R = 4000 manufacturing 
lots; T = 300 async. 
operations (pair of 
values {one of N=25 tool 
IDs, date of proc.}) + 
cont. target (circuit perf. 
for each lot).

Semiconductor 
manufacturing. Each wafer 
undergoes 300 steps each 
involving one of 25 tools. A 
regression problem for 
quality control of end‐of‐line 
circuit performance.

Find the tools that are 
guilty of performance 
degradation and 
eventual interactions 
and influence of time.
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Name (TP; 
NP; V)

Size Description Objective

SIGNET
(Semi‐artif.; 
2; 415)

T = 21 asynchronous 
state updates; R = 300 
pseudodynamic 
simulations; N = 43 
rules.

Abscisic Acid Signalling 
Network. Model inspired by 
a true biological signalling 
network.

Determine the set of 
43 Boolean rules that 
describe the network.

(p.552) • Re‐simulated data: We train a causal model (e.g. a causal Bayesian 
network) with real data. The model is then used to generate artificial training and 
test data for the challenge. Truth values of causal relationships are known for the 
data generating model and used for scoring causal discovery results.2

• Real data with probes: We use a dataset of real samples. Some of the variables 
may be causally related to the target and some may be predictive but non‐causal. 
The nature of the causal relationships of the variables to the target is unknown 
(although domain knowledge may allow us to validate discoveries to some extent). 
We add a number of distractor variables called ‘probes’, which are generated by an 
artificial stochastic process, including explicit functions of some of the real variables, 
other artificial variables, and/or the target. All probes are non‐causes of the target, 
some are completely unrelated to the target. The identity of the probes in concealed.

Both strategies have advantages and disadvantages. The first approach allows us to generate as 
much data as desired and to simulate experiments. In addition, the structure of the data 
generative model is known. Hence a wide range of causal questions can be posed and evaluated. 
The disadvantages are that the model used to generate data may not be realistic and that the 
benchmark may be biased in favor of the family of models to which the data generative model 
belongs. The second approach has the advantage of including real data, with all the potential 
complexity of distributions generated by a real process. The disadvantages are that only the 
probes can be manipulated (not the real variables), that truth values of causal relationships are 
known only for the probes, and that we are limited to the available sample size. Furthermore, 
even though the distribution of the probes may be designed to mimic that of the real variables, 
the data generative process of the probes is artificial and not necessarily realistic.

26.5 Methods of evaluation
The best established way of assessing causal theories is to carry out randomized controlled 
experiments to test hypothetical causal relationships. In the 1930s, Fisher laid the 
mathematical foundations for experimental design (Fischer 1953). The central idea is the 
systematic use of randomization to avoid confounding, that is to avoid confusing mere 
correlation due to the (p.553) existence of a common cause with real causation. For example, 
in the medical domain, a causal relationships C → E between a treatment (a cause) C and an 
effect E may be tested in a Randomized Controlled Trial (RCT). Variable C may be the choice 
of one of two available treatments for a patient with lung cancer and E may represent five‐year 
survival. If we randomly assign a large number of patients to the two treatments by flipping a 
fair coin and observe that the probability distribution for five‐year survival differs between the 
two treatment groups, it may be concluded that the choice of treatment causally determines 
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survival in patients with lung cancer. The double blind placebo‐ controlled Randomized 
Controlled Trial, where allocations are randomized and neither patient nor doctor knows which 
treatment has been assigned, is now standard in clinical trials.

Systems to stratify evidence by quality have been developed, such as those by the US Preventive 
Services Task Force and by the Oxford Centre for Evidence‐based Medicine. Both rank evidence 
about the effectiveness of treatments or screening in a hierarchical way: (1) Experimental 
evidence: Evidence obtained from at least one properly designed Randomized Controlled Trial. 
(2) Statistical analysis of observational data: Evidence obtained from well designed retrospective 
studies (observational data) from more than one research group. (3) Expert opinions: Opinions 
of respected authorities, based on clinical experience, descriptive studies, or reports of expert 
committees.

An ideal benchmark of causal discovery methods (uncovering causal relationships from 
observational data) would compare predictions obtained by applying algorithms to large 
observational databases (level 2 evidence) with the outcome of well designed experimental 
studies (level 1 evidence). Because of the rarity of large observational data sets paired with 
appropriate randomized experiments, to our knowledge no such comparisons have been made. 
The Causality Workbench project is exploring alternative methods of evaluation:

• Comparing causal relationships inferred from observational data (level 2 evidence) 
to ‘ground truth’ established from human expertise (level 3 evidence).
• Using non‐parametric statistical methods involving artificial variables (probes) 
added to real variables.
• Using realistic simulated systems to generate observational data and perform 
virtual experiments.

Such methods of evaluation must come with metrics to quantitatively assess causal models. The 
metrics evidently depend on the tasks. For instance, in prediction tasks, we have used the
prediction error on manipulated test data of a given target variable. In tasks involving structure 
discovery, we have used the (p.554) precision and recall of the set causes of a given target 
variable.3 In artificial data any variable may be used for evaluation while in real data with 
probes, only the probes may be manipulated and/or used to evaluate the causal structure.

In the following section, we give several examples.

26.6 Tasks proposed
We have made available on our website a repository of causal problems. We summarize in 
Tables 26.1 and 26.2 the tasks proposed. These tasks span a wide range of domains 
(bioinformatics, medicine, pharmacology, marketing, manufacturing) and difficulties:

• Several assumptions commonly made in causal discovery are violated, including 
‘causal sufficiency’,4 ‘faithfulness’,5 ‘linearity’, and ‘Gaussian‐ ity’.
• Relatively small training sets are provided, making it difficult to infer conditional 
independencies and learning distributions.



Causality Workbench

Page 11 of 17

• Large numbers of variables are provided, a particular hurdle for some causal 
discovery algorithms that do not scale up.
• Some problems are time independent, others involve time series.

To evaluate prediction under manipulation, some tasks use metrics such as the Area Under the 
ROC Curve (AUC),6 commonly used to assess classification problems (e.g. the LOCANET task), 
others used the mean square error, commonly used to assess regression problems (e.g. the 
MIDS task).

To evaluate structure discovery, some tasks use ‘ground truth’ established from human 
expertise.7 For instance the Cause Effect Pairs (CEP) dataset includes the pairs Altitude →
Temperature, Longitude → Precipitation in German cities, and Age → Length for the snail 
Abalone. In biology, regulatory pathways obtained by curating thousands of peer reviewed 
papers (p.555) constitute reference human knowledge for discovery studies performed with 
genomic and proteomic observational data (Kanehisa et al. 2006). CYTO is an example of dataset 
using this type of ‘ground truth’. It is to be noted however that due to many inconsistencies in 
the biological literature there is a lot of uncertainty in the reference regulatory pathways. Using 
artificially generated data is another way of having access to an established ground truth (i.e. 
the structure of the data generative model). For example, the dataset TIED is purely artificial 
and was designed to illustrate a particular technical difficulty. The datasets REGED and MARTI 
were build from a simulator of a gene regulatory network influencing lung cancer, trained with 
real data. The dataset SIGNET was simulated from a set of Boolean rules representing 
knowledge of a plant regulatory pathway gathered from several published papers. Yet another 
way of assessing the validity of a proposed set of causes of a target variable is to compute the 
fraction of probes (all non‐causes of the target) in that subset. Large fractions of probes cast 
doubt to the validity of the proposed causes. The probability of getting a number of probes 
smaller than a certain threshold can serve as a basis for a statistical test. Such methods were 
used for the datasets SIDO and CINA.

26.7 Events organized
We have organized two events so far: the ‘causation and prediction challenge’, with a workshop 
at WCCI 2008 (Guyon et al. 2008a) and the ‘causality pot‐luck challenge’, with a workshop at 
NIPS 2008 (Guyon et al. 2008b).

Causation and prediction challenge
This first event achieved a number of goals: familiarizing many new researchers and 
practitioners with causal discovery problems and existing tools to address them; pointing out the 
limitations of current methods on some particular difficulties; fostering the development of new 
algorithms.

The setting of the challenge purposely resembled a classical machine learning competition (with 
a training set and a test set, with omitted labels) to encourage the participation of data mining 
and machine learning researchers. We adopted such a predictive modelling perspective in an 
effort of distancing ourselves from the interpretation of causal models as data generative 
models. The goal of this first challenge was not to reverse engineer a data generative process, it 
was to make accurate predictions of a target variable. To sharpen this distinction, we made 



Causality Workbench

Page 12 of 17

available only a limited amount of training data, such that the learner may not necessarily be 
able to reliably determine all conditional dependencies and independencies. Hence, modelling 
strategies making radical simplifying assumptions might do better than strategies trying to be 
faithful to the data generative process, because of the well‐known fit (p.556) vs. robustness (or 
bias vs. variance) tradeoff. The participants were asked to return prediction scores or
discriminant values υ for the target variable on test examples, and a list of features used for 
computing the prediction scores, sorted in order of decreasing predictive power, or unsorted. 
The classification decision is made by setting a threshold θ on the discriminant value υ: predict 
the positive class if υ 〉 θ and the negative class otherwise. The participants were ranked 
according to the area under the ROC curve (AUC) computed for test examples (called Tscore). If 
results were provided for nested subsets of features, the best Tscore was retained. We also 
computed other statistics, which were not used to rank participants, but used in the analysis of 
the results. Those included the number of features used by the participants, and a statistic 
assessing the quality of causal discovery in the feature set selected (called Fscore).

We proposed four datasets from various domains (genomics, pharmacology, and marketing), two 
of which came from re‐simulated data (REGED and MARTI), and two were real data with 
‘probes’ (CINA and SIDO). Each task had three test sets, with increasing levels of difficulty. The 
first one was identically distributed as the training set. The two other test sets simulated 
manipulations by external agents, and thus were not distributed like the training set. In this way 
we illustrated the relationships between causation and prediction under manipulations and 
investigated whether causal models using ‘causally relevant’ features would perform better than 
regular statistical models on manipulated test sets.

Several algorithms demonstrated the effectiveness of discovering causal relationships, as 
indicated by a large Fscore. On average over all datasets and tasks, the Fscore correlated 
significantly with the Tscore, confirming the link between causation and prediction. As 
anticipated, non‐causal feature selection methods did well on the first type of datasets (training 
and test data identically distributed). For the other two types of datasets (test data manipulated) 
designed to make non‐causal methods fail, some causal method obtained good results, but many 
failed. Non‐causal methods performed better than anticipated. The results indicate that 
informative causal prediction from observational data is possible, but it remains challenging. 
See Guyon et al. (2008a) for a detailed analysis.

Causality challenge pot‐luck
The first challenge performed a quantitative evaluation of algorithms on four problems from 
various application domains. While quantitative evaluations are needed, there are so many 
constraints placed on their design that they rule out a lot of interesting problems. The second 
challenge aimed at enlarging the scope of causal discovery algorithm evaluation by encouraging 
creativity and diversity. We invited members of the community to submit their own problems 
and/or solve problems proposed by others. While we expected that (p.557) the evaluation may 
not be as quantitative because of variance in data quality and number of entries on each 
problem, we achieved other important goals: the identification of new problems of interest, the 
formulation of new and interesting causal questions, and the development of new methods of 
evaluation.
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We bootstrapped the competition by proposing five tasks (CYTO, LOCANET, PROMO, SIGNET 
and TIED) and the participants then added their own contributions (see Tables 26.1 and 26.2). 
The participant‐contributed task Cause Effect Pairs (CEP) was particularly popular. Innovative 
solutions were proposed to:

• reverse engineering Boolean networks (the SIGNET task),
• finding local causal relationships around a target variable (the LOCANET task),
• finding all possible Markov blankets, when there is a large number of possible 
solutions (the TIED task),
• learning a causal network from ‘heavy handed’ manipulations affecting several 
variables simultaneously (the CYTO task),
• learning causal relationships among pairs of variables isolated from their context–
therefore making impossible the use of conditional dependencies to unravel causal 
direction (the Cause Effect Pairs task),
• quantifying the causal effect of promotions on sales (the PROMO task).

See Guyon et al. (2008b) and references therein for more details. Some datasets, which were 
contributed too late into the challenge, will be used as part of future evaluations.

26.8 Planned events
One of the objectives of the Causality Workbench is to provide an interactive platform, which 
will allow researchers to conduct virtual experiments: a virtual laboratory. We are presently 
implementing such a platform. Several data generative models will be interfaced to the 
platform, including some of those proposed by participants of the pot‐luck challenge. Using this 
platform, we are planning two competitions briefly described in this section.

Experimental Design in Causal Discovery (ExpDeCo)
Methods for learning cause–effect links without experimentation (learning from observational 
data) are attractive because observational data is often available in abundance and 
experimentation may be costly, unethical, impractical, or even plain impossible (London and 
Kadane 2002). Still, many causal relationships cannot be ascertained without the recourse to 
experimentation (p.558) and the use of a mix of observational and experimental data might be 
more cost effective. Since standard experimental design has not concentrated on discovering 
thousands of causal relations, as in a genetic regulatory network, there is a need for developing 
solutions suitable to such large dimensional problems. The challenge ExpDeCo (Experimental 
Design in Causal Discovery) will benchmark methods of experimental design (Rubin 1974; 
Shadish 2001; Quinn 2002; Montgomery 2004; Meganck et al. 2006; Rubin 2007; Eberhardt
2009) and query/active learning (Spirtes et al. 2000; Tong and Koller 2001; Murphy 2001; 
Eberhardt 2006), in application to causal modelling. The goal is to identify effective methods to 
unravel causal models, requiring a minimum of experimentation. There are several ways in 
which the models of the participants could be evaluated, including verifications of the 
correctness of the causal structure of their model, and verification of the predictive power of the 
model. We favour this last type of metrics because they do not preclude of any particular causal 
model and do not even require defining causality.
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A budget of virtual cash will be allocated to participants to buy the right to observe or 
manipulate certain variables, manipulations being more expensive than observations. The 
participants will place queries for data records, setting certain variables to given values and 
requesting to observe certain variables. They will have to plan for an optimal way of spending 
their budget to make optimal predictions on test data.

Causal Models for System Identification and Control (CoMSICo)
The second planned challenge called CoMSICo for ‘Causal Models for System Identification and 
Control’ is more ambitious in nature because we will perform a continuous evaluation of causal 
models rather than separating training and test phase. In contrast with ExpDeCo in which the 
organizers will provide test data with prescribed manipulations to test the ability of the 
participants to make predictions of the consequences of actions, in CoMSICo, the participants 
will be in charge of making their own plan of action (policy) to optimize an overall objective (e.g. 
improve the life expectancy of a population, maximize profit, etc.) and they will be judged 
directly with this objective, on an on‐going basis, with no distinction between ‘training’ and ‘test’ 
data. The participants will be given an initial amount of virtual cash, and, as previously, both 
actions and observations will have a price. New in CoMSICo, virtual cash rewards will be given 
for achieving good intermediate performance, which the participants will be allowed to re‐invest 
to conduct additional experiments and improve their plan of action (policy). The winner will be 
the participant ending up with the largest amount of virtual cash. Both time independent tasks 
(e.g. assuming a static system, a stationary system or a population averaged within a short time 
period) and time dependent tasks (assuming a dynamic system) will be considered. As indicated 
by the name of the challenge, there are obvious ties between the problems we are (p.559) 

interested in and control problems. We very much hope that this will trigger cross‐fertilization 
between the control community and the causal discovery community. Unlike in classical control 
problems (like temperature regulation, navigation, robot arm control), the system identification 
part of the problem includes a causal variable selection component, namely finding those 
variable, which will significantly affect the objective in a desirable manner, among a possibly 
very large number of candidates. Another difference with classical control problems is that we 
also consider time independent tasks.

26.9 Conclusion
Standard benchmarks foster scientific and technical progress, but the design of good 
benchmarks for causal problems is not trivial. Our program of data exchange and benchmark 
challenges the research community with a wide variety of problems from many domains and 
focuses on realistic settings. Causal discovery is a problem of fundamental and practical interest 
in many areas of science and technology and there is a need for assisting policy making in all 
these areas while reducing the costs of data collection and experimentation. Hence, the 
identification of efficient techniques to solve causal problems will have a widespread impact. By 
choosing applications from a variety of domains and making connections between disciplines as 
varied as machine learning, causal discovery, experimental design, decision making, 
optimization, system identification, and control, we anticipate that there will be a lot of cross‐
fertilization between different domains. Our activities, such as teleconference seminars, data 
and tool exchange, competitions and post‐ competition collaborative experiments, will cement 
collaborations between researchers and ensure a rapid and broad dissemination of the results. 
Our project has also several educational components, the playful nature our competition 
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program is attractive to students and encourages them to work on difficult high‐impact 
problems; teachers will be able to use our interactive platform for practical work on causal 
discovery.
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Notes:
(1) When manipulations are performed, we must specify whether we sample from the 
distribution before or after the effects of the manipulation have propagated. Here we assume 
that we sample after the effects have propagated.

(2) Are the models realistic? Does it matter? Artificial problems might be arbitrarily too hard, 
too easy, or very different from real problems. We propose realistic problems and use the 
literature and domain knowledge to verify the model structure and parameters. But artificial 
data will never be as good as real data.

(3) Precision is the ratio of correctly retrieved causes over the total number of variables ‘called’ 
causes of the target, i.e. TruePositive/(TruePositive+FalsePositive). Recall is the ratio of 
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correctly retrieved causes over the total number of real causes of the target, i.e. TruePosi-tive/
(TruePositive+FalseNegative).

(4) ‘Causal sufficiency’ roughly means that there are no unobserved common causes of the 
observed variables.

(5) ‘Faithfulness’ roughly means that every conditional independence relation that holds in the 
population is entailed to hold for all values of the free parameters.

(6) The AUC is the Area Under the ROC Curve plotting sensitivity vs. (1− specificity) when the 
threshold is varied on the classifier discriminant value. We call ‘sensitivity’ the error rate of the 
positive class and ‘specificity’ the error rate of the negative class.

(7) In the pattern recognition jargon, ‘ground truth’ refers to verified information obtained by 
scouting the terrain on the ground as opposed to information collected from far away 
observations, like satellite images.
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The principle of Kolmogorov minimal sufficient statistic (KMSS) states that the meaningful 
information of data is given by the regularities in the data. The KMSS is the minimal 
model that describes the regularities. The meaningful information given by a Bayesian 
network is the directed acyclic graph (DAG) which describes a decomposition of the joint 
probability distribution into conditional probability distributions (CPDs). If the description 
given by the Bayesian network is incompressible, the DAG is the KMSS and is faithful. We 
prove that if a faithful Bayesian network exists, it is the minimal Bayesian network. 
Moreover, if a Bayesian network gives the KMSS, modularity of the CPDs is the most 
plausible hypothesis, from which the causal interpretation follows. On the other hand, if 
the minimal Bayesian network is compressible and is thus not the KMSS, the above 
implications cannot be guaranteed. When the non‐minimality of the description is due to 
the compressibility of an individual CPD, the true causal model is an element of the set of 
minimal Bayesian networks and modularity is still plausible. Faithfulness cannot be 
guaranteed though. When the concatenation of the descriptions of the CPDs is 
compressible, the true causal model is not necessarily an element of the set of minimal 
Bayesian networks. Also modularity may become implausible. This suggests that either 
there is a kind of meta‐mechanism governing some of the mechanisms or a wrong model 
class is considered.

27.1 Introduction
Inductive inference comes to modelling the patterns in the data. Patterns or regularities in 
observations are — most likely — not coincidences, but give us valuable information about the 
system under study. A regularity is identified by its ability to compress the data, i.e. to describe 
the data using fewer symbols than the number of symbols needed to describe the data literally. 
Compressiveness is objectively defined by the Kolmogorov complexity. The concept is, however, 
not directly applicable since there does not exist an algorithm that computes the shortest 
program for a string. Kolmogorov complexity is therefore mainly used for giving preference 
within a given set of models.

(p.563) This has given rise to different methods for inductive inference, such as minimum 
message length and minimum description length. These methods are used for selecting the best 
model from a given set of models, the model class. The choice of model class, however, 
determines the regularities under consideration.

For analysing the validity of causal inference, we do not want to stick to an a priori chosen set of 
regularities, but search for all relevant regularities. This idea is captured by the concept of 
Kolmogorov minimal sufficient statistic (KMSS). The KMSS is the minimal model such that the 
model together with the data is described minimally. The model should capture all regularities 
and nothing more.

For causal inference, the set of Bayesian networks is used as a model class. The DAG of a 
Bayesian network gives a minimal description of the conditional independencies following from 
a causal structure. A system can, however, contain other regularities. Then, the assumptions and 
implications of causal model theory, such as faithfulness, modularity and the correctness of 
causal inference, may become invalid. It can give rise to other independencies so that the DAG 
becomes unfaithful. We will show that the presence of other regularities cannot be ignored.
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In Section 27.2, we will introduce the concept of KMSS. In Section 27.3, we will give a survey of 
causal model theory and the learning algorithms. Section 27.4 discusses related work. In Section
27.5 we apply the principle of KMSS to inductive inference and show that a Bayesian network 
captures dependencies between variables. Section 27.6 establishes the link between minimality 
of Bayesian networks, compressibility and faithfulness. In Section 27.7 we will argue that causal 
inference is plausible if the minimal Bayesian network is the KMSS. Section 27.8 discusses 
various cases in which the minimal Bayesian network does not provide the minimal description.

27.2 Meaningful information
The Kolmogorov complexity of a string x is defined to be the length of the shortest computer 
program that prints the string and then halts (Li and Vitányi, 1997):

(27.1)
with  a universal computer and l(p) the size in bits of program p. Patterns in the string allow 
for its compression, i.e. to describe the data using fewer symbols than the number of symbols to 
describe the data literally.

The string ‘0001000100010001000100010010001000100010001’ can be described shorter by 
program REPEAT 11 TIMES ‘0001’. But not all bits (p.564) of this program can be regarded as 
containing meaningful information. We consider meaningful information as the properties of the 
string that allow for its compression (Vitányi, 2002). Such properties are called patterns or
regularities. The regularity of the example string is the repetition. The number of repetitions 
(11) or the substring ‘0001’ is random information. A random string, which is incompressible, 
has no meaningful information at all.

For inductive inference, we will look for a minimal description in two parts, one containing the 
regularities or patterns of the data, which we put in the model, and one part containing the 
remaining random noise. Such a description is called a two‐part code. This results in a generic 
approach for inductive inference, called minimum description length (MDL), according to which 
we have to pick out the model M mdl from model class ℳ where M mdl is the model which 
minimizes the sum of the description length of M and of the data D encoded with the help of M
(Grünwald, 1998):

(27.2)
with L(∙) the description length.

The MDL approach relies on the a priori chosen model class. It does not tell us how to make 
sure the models capture all regularities of the data. The KMSS provides a formal separation of 
meaningful and meaningless information. We limit the introduction of KMSS to models that can 
be related to a finite set of objects, called the model set. In the context of learning, we are 
interested in a model set S that contains string x and the objects that share x's regularities. All 
elements of a set S can be enumerated with a binary index of length log2 ǀ Sǀ with ǀ Sǀ the size of 
set S. We therefore say that x is typical for S if
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(27.3)
with K(x ǀ p S) the conditional Kolmogorov complexity. P S denotes the shortest program that 
describes S and β an agreed upon constant. Given set S, x cannot be described shorter than by 
the set's index. Atypical elements have regularities that are not shared by most of the set's 
members and can therefore be described by a shorter description. Note that most elements of a 
set are typical, since, by counting arguments, only a small portion of it can be described shorter 
than log2 ǀ Sǀ.

The construction of S can be understood with the Kolmogorov structure function KSF. KSF(k, x) 
of x is defined as the log2‐size of the smallest set including x which can be described with no 
more than k bits (Cover and Thomas, 1991):

(27.4)
(p.565)
A typical graph of the structure function is 
illustrated in Figure 27.1. By taking k = 0, 
the only set that can be described is the 
entire set {0, 1}n containing 2n elements, so 
that the corresponding log set size is n. By 
increasing k, the model can take advantage 
of the regularities of x in such way that each 
bit reduces the set's size more than halving 
it. The slope of the curve is smaller than −1. 
When k reaches k*, all regularities are 
exploited. There are no more patterns in the 
data that allow for further compression. 
From then on each additional bit of k
reduces the set by half. We proceed along 
the line of slope −1 until k = K (x) and the 
smallest set that can be described is the 
singleton {x}. The curve K(S) +log2 ǀSǀ is 
also shown on the graph. It represents the 
descriptive complexity of x by using the two‐
part code. With k = k* it reaches its 
minimum and equals to K(x). When k 〈 k*, S is too general and is not a typical set for x. x is only 
typical for S if k ≥ k*. For random strings the curve starts at log2ǀ Sǀ = n for k = 0 and drops with 
a slope of −1 until reaching the x‐axis at k = n. Each bit reveals one of the bits of x, and halves 
the model set. The Kolmogorov minimal sufficient statistic (KMSS) of x is defined as the shortest 
program p* which describes the smallest set S* such that the two‐ stage description of x is as 
good as the minimal single–stage description of x (Gács et al., 2001; Vitányi, 2002):

Fig. 27.1  Kolmogorov structure function for
n‐bit string x, k* is the KMSS of x.
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(27.5)
The descriptive complexity of S* is then k*. Program p* minimally describes the meaningful 
information present in x and nothing else. The definition ensures that x is a typical element of S*.

(p.566) 27.3 Graphical causal models
This chapter will introduce graphical causal models and the accompanying learning algorithms 
(Pearl, 2000; Spirtes et al., 1993).

27.3.1 Representation of causal relations
Graphical causal models intend to describe with a directed acyclic graph (DAG) the structure of 
the underlying physical mechanisms governing a system under study. The state of each variable, 
represented by a node in the graph, is generated by a stochastic process that is determined by 
the values of its parent variables in the graph. All variables that influence the outcome of the 
process are called causes of the outcome variable. An indirect cause produces the state of the 
effect indirectly, through another variable. If there is no intermediate variable among the known 
variables, the cause is said to be a direct cause.

Each process represents a physical mechanism. In its most general form it can be described by a 
conditional probability distribution (CPD) P(X ǀ Pa(X)), where Pa(X) is the set of parent nodes of X
in the graph and constitute the direct causes of the variable. A causal model consists of a DAG 
over all variables and a CPD for each variable. The combination of the CPDs results in a joint 
probability distribution:

(27.6)
For a discrete variable, the CPD is encoded by means of a tabular representation: for each 
possible assignment of values to the parents of X i, we need to specify a distribution over the 
values that X i can take. This is called a conditional probability table. For continuous variables, 
one often relies on prior knowledge or assumptions about the structure of the distribution. If one 
assumes linearly‐related variables, the CPDs can be described by the following structural 
equations:

(27.7)
where U i represent the stochastic variations which cannot be explained by the model and c i a 
constant term. One often assumes that U i is normally distributed.

27.3.2 Modularity and the effect of changes to the system
A causal model represents a collection of processes that could account for the generation of the 
observed data. Each process is a stable and autonomous physical mechanism. It is then 
conceivable to change one such relationship (p.567) without changing the others. This
modularity permits one to predict the effect of external interventions or local reconfigurations of 
the mechanisms (Pearl, 2000). An intervention is defined as an atomic operation that fixates a 
variable to a given state and eliminates the corresponding factor (CPD) from the factorization 
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(Eq. 27.6) (Pearl, 2000). Applied on a causal graph, an intervention on variable X sets the value 
of X and breaks all of the edges in the graph directed into X and preserves all other edges in the 
graph, including all edges directed out of X. This is called the Manipulation Theorem (Spirtes et 
al. 1993, p. 51). Intervening on a variable only affects its effects. Causes have to be regarded as 
if they were levers which can be used to manipulate their effects.

This approach does not directly define causality, but defines the implications of having a 
thorough knowledge of the mechanisms that make up a system. Manipulability puts a constraint 
of independentness on the mechanisms. The accuracy of the mutilated model relies on autonomy 
or modularity; a mechanism can be replaced by another without affecting the rest of the system. 
It is defined by Hausman and Woodward (1999, p. 545) as follows. They relate each CPD to a 
structural equation (Eq. 27.7).

Definition 27.1 (Modularity) For all subsets Z of the variable set V, there is some non‐empty 
range R of values of members of Z such that if one intervenes and sets the value of the members 
of Z within R, then all equations except those with a member of Z as a dependent variable (if 
there is one) remain invariant.

27.3.3 Representation of independencies
The key for causal inference is the conditional independencies entailed by the system's causal 
structure. They are based on the property of Markov chains and v‐structures. If X is affected by Y
and Z, then we do not expect that X is independent of Y conditional on Z, except if Y affects X via 
Z. This is represented by a Markov chain. Random variables X, Z, Y are said to form a Markov 
chain in that order, denoted by X → Z → Y, if the joint probability mass function can be written as

(27.8)
which is equivalent to the conditional independence of X and Y given Z. Conditional 
independence of X and Y given Z, written as X ⊥⊥ Y ǀ Z, is defined as

(27.9)
The conditional independence expresses that learning the value of X does not provide additional 
information about Y once the state of Z is known. We say that Z ‘screens off’ X from Y. Once the 
state of Z is observed, the state of Y no longer depends on that of X. For a v‐structure on the 
other hand, (p.568) for example X → Z ← Y, X and Y are independent, but become dependent 
when conditioned on Z.

For a causal model, the causal Markov condition gives us the independencies that follow from 
the causal structure: each variable is probabilistically independent of its non‐effects conditional 
on its direct causes. This condition is defined by Spirtes et al. (1993) as follows:

Definition 27.2 (Causal Markov condition) Let G be a causal graph with vertex set V and P be a 
probability distribution over the vertices in V generated by the causal structure represented by
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G. G and P satisfy the causal Markov condition if and only if for every W in V, W is independent of
V\ Descendants(W) \ Parents(W) given Parents(W).

These independencies are irrespective of the nature of the mechanisms, of the exact 
parameterization of the conditional probability distributions P(X i ǀ Pa(X i)). Pearl and Verma 
constructed a graphical criterion, called d‐ separation, for retrieving, from the causal graph, all 
independencies following from the Causal Markov Condition.

A graph is called faithful to a distribution if all conditional independencies of the distribution 
correspond to a d‐separation in the graph and vice versa. In other words, faithfulness means 
that if a graph represents a causal structure, all conditional independencies follow from the 
system's causal structure.

27.3.4 Correspondence with Bayesian networks

Graphical causal models provide a probabilistic account of causality (Spohn, 2001). This resulted 
in a close correspondence with Bayesian networks. In contrast to causal models, Bayesian 
networks are only concerned with offering a dense and manageable representation of joint 
distributions. A joint distribution over n variables can be factorized relative to a variable 
ordering (X 1, …, X n):

(27.10)
Variable X j can be removed from the conditioning set of variable X i if it becomes conditionally 
independent from X i by conditioning on the rest of the set:

(27.11)
Such conditional independencies reduce the complexity of the factors in the factorization. The 
conditioning sets of the factors can be described by a directed acyclic graph (DAG), in which 
each node represents a variable and has incoming edges from all variables of the conditioning 
set of its factor. The joint distribution is then described by the DAG and the conditional 
probability (p.569) distributions (CPDs) of the variables conditional on their parents. A
Bayesian network is a factorization that is edge‐minimal, in the sense that no edge can be 
deleted without destroying the correctness of the factorization.

Although edge‐minimality of a Bayesian network, the graph depends on the chosen variable 
ordering. Some orderings lead to the same networks, while others result in different topologies. 
Take five stochastic variables A, B, C, D and E. Figure 27.2(a) shows the graph that was 
constructed by simplifying the factorization based on variable ordering (A, B, C, D, E) by the 
three given conditional independencies. However, the Bayesian network, describing the same 
distribution, but based on ordering (A, B, C, E, D), depicted in Figure 27.2(b) contains two edges 
less because of five useful independencies. Both networks represent the probabilities just as 
well, except that the first one is more complex. We call the minimal factorization as the 
factorization which has the least total number of variables in the conditioning sets. The 
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corresponding Bayesian network is called the minimal Bayesian network of a probability 
distribution.

Analogous to the causal Markov condition, the Markov condition gives the conditional 
independencies that follow from the structure of a Bayesian network: each variable is 
independent from all its non‐descendants by conditioning on its parents in the graph. The 
equivalence of the Markov condition and factorizability can be proven (Hausman and Woodward, 
1999, p. 532). This ensures the correspondence: causal models are also Bayesian networks. The 
difference lies in the causal component; causal models attribute a causal interpretation to the 
edges of the graph and are therefore called causally interpreted Bayesian networks.

27.3.5 Causal inference
The goal of causal inference is to learn the causal structure of a system based on observational 
data. Causal structure learning algorithms fall apart in two categories: scoring‐based and 
constraint‐based algorithms.

(p.570) Scoring‐based algorithms are 
based on an optimized search through the 
set of all possible models, which tries to find 
the minimal model that best describes the 
data. Each model is given a score that is a 
trade‐off between model complexity and 
goodness‐of‐fit. Different scoring criteria 
have been applied in these algorithms, such 
as a Bayesian scoring method (Cooper and 
Herskovits, 1992; Heckerman et al., 1994), 
an entropy based method (Herskovits,
1991), a minimum message length (MML) 
method (Oliver et al., 1992), and one based 
on the minimum description length (MDL) 
(Suzuki, 1996). As explained in the introduction, we are not investigating how to select the 
minimal model from the a priori chosen model class, but the model class which should be 
considered.

Constraint‐based learning algorithms rely on the conditional independencies detected that 
follow from the system's causal structure. It is a kind of evidence‐based construction, the 
decisions to include an edge and on the edge's orientation is based on the presence or absence 
of certain independencies. The algorithms assume the existence of a faithful graph, i.e. that all 
independencies follow from the causal structure. They also assume that the correct model is the 
minimal model. Minimality, faithfulness and the causal Markov condition give the three 
assumptions that ensure correct learning (Spirtes et al., 1993). The minimality condition is an 
edge‐minimal condition on the true causal graph.

It must be noted that some algorithms, such as the PC algorithm, also require causal sufficiency, 
i.e. that all common causes should be known: variables that are the direct cause of at least two 
variables. More sophisticated learning algorithms exist that are capable of detecting latent 

Fig. 27.2  Factorization of the same 
distribution according to variable ordering 
(A, B, C, D, E) and reduction by three 
independencies (a), and according to 
variable ordering (A, B, C, E, D) and five 
independencies (b).
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common causes. For now we will not take the presence of latent variables into consideration and 
discuss the consequences of this in Section 27.8.

27.4 Related work
The causal interpretation of a Bayesian network and the validity of faithfulness are often 
criticized (Freedman and Humphreys, 1999; Cartwright, 2001; Williamson, 2005; Hausman and 
Woodward, 1999). This paper would like to contribute to the discussion by giving an additional 
viewpoint through the concept of the KMSS. Some of the examples on which criticism on the 
possibility of causal inference is based will be discussed in Section 27.8. Hausman and 
Woodward (1999) on the other hand are strong defenders of linking the causal interpretation of 
models to modularity. They defend the equivalence of modularity and the causal Markov 
condition (Hausman and Woodward, 1999, p. 554). We will contribute to the discussion by 
motivating why and when modularity is a valid assumption, and showing the limitations of 
assuming faithfulness.

(p.571) Pearl and others use stability as the main motivation for the faithfulness of causal 
models (Pearl, 2000, p. 48). Consider the model of Figure 27.2(b). In general, one expects A to 
depend upon D. A and D are independent only if the stochastic parameterization is such that the 
influences via paths A → B → E → D and A → C → D cancel out exactly. This system is called 
unstable because a small change in the parameterization results in a dependency. The unhappy 
balancing act is a measure zero event, the probability of such a coincidence can therefore be 
regarded as zero. Hence, the majority of distributions compliant with a DAG are faithful (Pearl,
2000, p. 18). We argue that indeed typical distributions are faithful, but that nonetheless, 
unfaithful distributions appear.

Milan Studeny was one of the first to point out that the Bayesian networks cannot represent all 
possible sets of independencies. He constructed a different framework, called imsets (Studeny,
2001), which is capable of representing broader sets of independencies. We advocate a different 
approach. We will not look for a different representation of conditional independencies, but stick 
to Bayesian networks. Yet, we will try to find explanations (referring to regularities) for the 
presence of conditional independencies not coming from the system's causal structure.

27.5 Minimal description of distributions
In this section we start the analysis of causal inference by applying the KMSS principle on 
observed data of a collection of independent and identically distributed random variables. A 
minimal description for the data corresponds to the construction of a efficient code which on its 
turn corresponds to the description of a probability distribution (Grünwald et al., 2005, Chapter
2). We thus have to investigate how distributions can be described compactly.

From the theory of Bayesian networks (Section 27.3.4), we know that a joint distribution can be 
described shorter by a factorization that is reduced by conditional independencies of the form of 
Eq. (27.11). The minimal factorization leads to P(X 1, …, X n) = Π CPDi, with CPDi the CPD of 
variable X i. The descriptive size of the CPDs is determined by the number of variables in the 
conditioning sets. A two‐part description of a joint distribution is then:
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(27.12)
With descr(x) the description of x. Note that the parents' lists are described very compact by a 
DAG. If the description according to Eq. 27.12 is shorter than the literal description of the joint 
distribution, than the reduction of the factorization contains meaningful information. This 
meaningful information is described by the parents' lists or the DAG of the Bayesian network.

(p.572) Theorem 27.3 If the two‐part code description of a probability distribution, given by
Eq. 27.12 in which the CPDs are described literally, results in an incompressible string which is 
shorter than the literal description of the joint probability distribution, the first part is the 
Kolmogorov minimal sufficient statistic.

Proof 1 The CPDs do not contain meaningful information (regularities), since they are literally 
described and they are incompressible. This last follows from the incompressibility of the total 
description. Since the total description is shorter than the literal description, the reduction of 
the factorization outweighs the description of the parents' lists. The parents' lists therefore 
contain meaningful information. Their incompressibility ensures that it is the KMSS.

◻

Concluding, we end up with a three‐part code for the description of the observations:

(27.13)
The data is described with the help of a probability distribution, which on its turn is described by 
a DAG and a list of CPDs. The regularities that allow the compact description of the data are the 
dependencies among the variables; knowing one variable gives information about the state of 
another variable. Conditional independencies, on the other hand, reduce the model's complexity. 
They reduce the number of variables to consider when describing the dependencies among the 
variables.

27.6 Minimality of Bayesian networks
The following two theorems show that the Bayesian network corresponding to the minimal 
factorization is the KMSS and faithful if its DAG and CPDs are random and incompressible.

Theorem 27.4 If a faithful Bayesian network exists for a distribution, it is the minimal Bayesian 
network, i.e. the Bayesian network with the minimal number of edges.

Proof 2 Recall that the absence of an edge between two variables X and Y in a Bayesian network 
implies that there exists a set of variables S not containing X and Y that makes X and Y
conditionally independent: X ⫫ Y ǀ S. In case of faithfulness, the presence of an edge forbids the 
existence of such a set. Let A be a graph that has fewer edges then the faithful graph B. It 
follows that B contains an edge between two variables X and Y that A does not contain. The 
absence of the edge in A implies that X and Y become independent by (p.573) conditioning on 
some set of the other variables. But this contradicts with the faithfulness of B which implies that
X and Y cannot become independent. ◻
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Neapolitan (2003, p. 107) provides a proof for edge‐minimality, while here minimality in the 
global sense is considered.

The DAG of a Bayesian network corresponds to a set of conditional independencies. Intuitively 
we would expect that two variables are dependent if they are not d‐separated. When this is true, 
the DAG is faithful to the probability distribution. The next theorem proves that two variables 
that are not d ‐separated can only be independent if there is a constraint between the 
probabilities. To illustrate the theorem, consider the model of Figure 27.2(b) and the set of 
distributions compatible with the DAG. For typical distributions, dependencies D  E and A  E
hold. There are, however, specific parameteriza‐ tions which lead to independencies D⫫E or
A⫫E. Such independencies only follow if specific equations between the free parameters are 
satisfied.

Theorem 27.5 A Bayesian network for which the concatenation of the descriptions of the 
conditional probability distributions (CPDs) is incompressible, is faithful.

Proof 3 Recall that a Bayesian network is a factorization that is edge‐minimal. This means that 
for each parent pa i,j of variable X i:

(27.14)
Variables cannot be eliminated from the factors of the factorization. The proof will show that any 
two variables that are not d ‐separated are dependent, unless the probabilities of the CPDs are 
‘related’, in the sense that some probabilities can be calculated from others and the set of CPDs 
is compressible. We derive the relations for discrete variables. For continuous variables, the 
analysis results in relations among the free parameters of the CPDs.

We have to consider the following possibilities. The two variables can be adjacent (a), related by 
a Markov chain (b),1 a v‐structure (c), a combination of both or connected by multiple paths (d).

First we prove that a variable marginally depends on each of its adjacent variables (a). Consider 
adjacent nodes D and E of the Bayesian network of Figure 27.2(b). We will demonstrate that P(D
ǀ E) = P(D) results in a regularity. We expand the first term with all other parents of D:

(27.15)
(p.574) C is also a parent of D, thus, by Eq. (27.14), there are at least two values of C dom for 
which P(D ǀ E, c) ≠P(D ǀ E).2 Take c 1 and c 2 being such values for which

(27.16)
There are also at least two such values of E dom, take e 1 and e 2. Equation (27.15) should hold for 
all values of E and equal to P(D) to get an independency. This results in the following relation 
among the probabilities:
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(27.17)
Note that the equation cannot be algebraically simplified: the conditional probabilities are not 
equal to P(D) (Eq. 27.14) nor to each other (Eq. 27.16). The proof can easily be generalized for 
variables having more parents.

Next, by the same arguments it can be proved that variables connected by a Markov chain are 
by default dependent (b). Take A → B → E in Figure 27.2(b), independence of A and E requires 
that

(27.18)
and this would also result in a regularity among the CPDs.

In a v‐structure, both causes are dependent when conditioned on their common effect (c), for C
→ D ← E, P(D ǀ C, E) ≠P(D ǀ E) is true by Eq. (27.14). Finally, if there are multiple unblocked paths 
connecting two variables, then independence of both variables implies a regularity as well (d). 
Take A and D in Figure 27.2(b):

Note that P(c,e ǀ A) = P(c ǀ A).P(e ǀ A) follows from the independence of C and E given A. All 
factors from the equation satisfy Eq. (27.14), so that, again, the equation only would equal to
P(D) if there is a relation among the probabilities.    ◻

From the theorem it follows that a Bayesian network with random CPDs is the minimal 
factorization. Bayesian networks not based on a minimal factorization, such as the one of Figure
27.2, are compressible, namely by the regularities among the CPDs that follow from the 
independencies not represented by the graph. Pearl hypothesizes that there is no bounded set of
(p.575) conditions that would ensure the existence of a faithful graph (Pearl, 1988, p. 131). 
Indeed, as shown by the theorem, every dependence can be turned into an independence by a 
balanced parameterization of some CPDs.

It must be noted that if there exists a faithful Bayesian network, it is not necessarily unique. 
Multiple faithful models can exist for a distribution. These models represent the same set of 
independencies and are therefore statistically indistinguishable. They define a Markov‐
equivalence class. It is proved that they share the same skeleton and v‐structures. They only 
differ in the orientation of some edges (Pearl, 2000). This set can be represented by a partially 
directed acyclic graph in which some of the edges are not oriented. The corresponding 
factorizations have the same number of conditioning variables and thus all models of a Markov‐
equivalence class have the same complexity.

27.7 When the minimal Bayesian network is the KMSS
In this section we will discuss the case in which there is exactly one minimal Bayesian network 
which is also the minimal description. This means that there are no other regularities and no 
other independencies than the conditional independencies represented by the model. The DAG 
is then the KMSS and minimally represents all regularities. It is also faithful.
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The minimal Bayesian network decomposes the description of a joint distribution into a list of 
CPDs. This means that the minimal description of the system is a concatenation of descriptions, 
namely the description of the individual CPDs. In other words, we have found a unique and 
minimal decomposition of the model. This brings us to modularity and manipulability. We have 
discovered that the minimal description is a concatenation of unrelated components. The CPDs 
are independent; the concatenation of their descriptions cannot be compressed. Then, among all 
possible explanations, the simplest is that each CPD corresponds to an independent part of 
reality. Thus, following Occam's razor, modularity is the most likely hypothesis about the system 
under study. The correctness of Occam's razor cannot be proven, the principle must be 
interpreted as the most effective strategy for deciding among competing explanations 
(Grünwald, 1998). Modularity of the minimal Bayesian network must be regarded as the top‐
ranked hypothesis, which can be verified with background knowledge or experiments with 
interventions. Thus, the three conditions for causal inference are valid (Section 27.3.5): 
minimality and faithfulness are fulfilled, and the causal Markov condition follows from 
modularity. Description minimality is linked to causality through modularity.

Occam's razor is contradicted when the real system is more complex than suggested by the 
complexity of the observations. Take the impact of Tax rate increase on Tax revenue as shown in 
Figure 27.3(a). A Tax rate increase (p.576) has a negative effect on the Economy which could 
neutralize the increase of the tax revenues, such that Tax rate ⫫ Tax revenue. If so, the system 
is minimally described by the model of Figure 27.3(b). This model is faithful, incompressible and 
simpler than the true model. From observations alone, one cannot find indications for the more 
complex true model. Although not minimal in the global sense, the model of Figure 27.3(a) is 
edge‐minimal: no edge can be removed without destroying the correctness of the model.

The CPD of a variable is also called the variable's causal Markov kernel. Note that by 
representing a causal model with a graph, the representation suggests that the edges — instead 
of the CPDs — are the basic components. This is however not true. A graphical model can 
therefore be misleading. A better representation is shown in Figure 27.4. It represents the same 
system as the causal model of Figure 27.2(b), but emphasizes that CPDs are the basic 
components.

Decomposition and thus also causality matches with a reductionist view, according to which the 
world can be studied in parts. Indeed, if the system cannot be decomposed, if there are no 
conditional independencies that simplify a factorization, then the DAG does not contain 
meaningful information. We end up with a Holist system in which everything depends on 
everything.

Note that uniqueness of the minimal Bayesian network is not essential. As discussed in the 
previous section, if the minimal Bayesian network is not unique, the Markov‐equivalence class 
indicates exactly which parts are undecided (the orientation of some edges). So, we know 
exactly for which parts of the model we do not have enough information to decide upon the 
decomposition.
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(p.577) 27.8 When the minimal 
Bayesian network is not the KMSS
To study the validity of faithfulness and the 
modularity property, we will in this section 
not assume incompressibility of the minimal 
Bayesian networks. They are denoted with
BN min. Instead, we will study a wide variety 
of cases, appearing throughout literature, in 
which regularities appear that are not 
described by a Bayesian network. We will 
analyse the properties of the True Causal 
Model (CM true) and those of the BN min.

Table 27.1 gives an overview of the answers 
for the next questions, which will be 
discussed in the following.

• Is the CM true compressible? If so, 
is the compressibility due to the 
compressibility of the description of 
a single CPD or the compressibility 
of the concatenation of the 
descriptions of multiple CPDs?
• Is the compressibility of the minimal Bayesian networks due to the compressibility 
of the description of a single CPD or the compressibility of the concatenation of the 
descriptions of multiple CPDs?
• Is the CM true present in BN min? The answer to this and the next question 
determines the feasibility of causal inference.
• Is there a unique BN min? Are the regularities under consideration responsible for 
the presence of multiple minimal Bayesian networks?
• Is the true causal model faithful to the system?
• Are the minimal Bayesian networks faithful to the system?
• Does modularity holds for the true causal model?

27.8.1 Compressibility of a single CPD
First we consider cases in which the description of an individual CPD is compressible. 
Faithfulness and the uniqueness of the minimal Bayesian network

Fig. 27.3  Model in which the impact of Tax 
rate increase on Tax revenue is neutralized 
by the negative effect on the Economy (a). 
The minimal Bayesian network describing 
the system (b).

Fig. 27.4  Decomposition of the system 
represented by the causal model of Fig.
27.2(b) into independent components.
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Table 27.1 Answers to questions for the different case studies. A † indicates that Markov networks are considered. A ‡ 
indicates that Bayesian networks with latent variables are considered.

Compress. CM true Compress. BN min CM true ∈ BN min Unique BN min CM true faithful BN min faithful Modular CM true

1. Local single single Yes Yes Yes Yes Yes

2. PIM single single Yes No No No Yes

3. Determ single single Yes No No No Yes

4. Unfaithf concat. concat. Yes Yes No No No/Yes

5. Markov No† concat. No No Yes† No ‐

6. Latent No‡ concat. No No Yes‡ No Yes‡

7. OO‐nets concat. concat. Yes Yes Yes Yes No/Yes
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(p.578) are not guaranteed, but the cases show that the modularity assumption still holds. The 
CPDs are independent.

Case 1. When individual CPDs can be compressed, we call this type of regularity local 
structure (Friedman and Goldszmidt, 1996). For discrete variables, the conditional 
probability tables are exponential in the number of parents of a variable X: for each 
possible assignment of values to the parents of X, we need to specify a distribution over 
the values X can take. When regularities among the probabilities appear these tables can 
be described more compactly, for example by decision trees. The regularities to 
construct the tree are called context‐specific independencies (Boutilier et al., 1996). On 
top of the independencies following from the causal structure, the system exhibits 
additional regularities. But the model remains faithful and the decomposition is correct.
Case 2. Variables in pseudo‐independent models are pairwise independent but 
collectively dependent (Xiang et al., 1996). For example, consider a binary variable X 3
that is determined by two other binary variables X 1 and X 2 by an exclusive or relation: X

3 = X 1 EXOR X 2. This system can be represented by causal model X 1 → X 3 ← X 2. 
Because of the pairwise independencies X 3⫫X 1 and X 3⫫X 2, the model is not faithful. 
There are three minimal Bayesian networks: besides the correct X 1 → X 3 ← X 2, also X 1 → 
X 2 ← X 3 and X 2 → X 1 ← X 3. The CPD P(X 3 ǀ X 1, X 2) exhibits a strict regularity. Yet, 
pseudo‐independent models fit in the reductionist approach of causal models. The only 
problem is that the conditional independencies do not provide enough information to 
conclude about the causal connections.
Case 3. Deterministic or functional relations among variables result in CPDs with a very 
specific form. Distributions with deterministic relations cannot be represented by a 
faithful graph (Spirtes et al., 1993). Consider the system X → Y → Z in which Y is a 
function of X: Y = f (X). From the model (Markov chain) it follows that X⫫Z ǀ Y. By the 
functional relation, variable X got all information about Y, which implies Y⫫Z ǀ X. Both 
independencies imply a violation of the intersection condition, one of the conditions that 
Pearl imposes on a distribution in the elaboration of causal theory and its algorithms 
(Pearl, 1988). In (Lemeire, 2007) we call X and Y information equivalent with respect to Z, 
both variables have in some sense the same information about Z. Then, the set of 
minimal Bayesian networks contains graphs that connect X with Z and graphs that 
connect Y with Z. From the information about the conditional independencies alone we 
cannot decide upon which variable, X or Y, directly relates to Z. The solution we proposed 
for causal inference is to connect the variables that have the simplest relation (Lemeire,
2007). We defined an augmented causal model which also incorporates information of 
deterministic relations.

(p.579) 27.8.2 Compressibility of aset of CPDs
When the description of some CPDs taken together can be compressed, the CPDs are in some 
way related.

Case 4. The most‐known example of unfaithfulness is when in the model of Figure
27.5(a), A and D appear to be independent (Spirtes et al., 1993). This happens when the 
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influences along the paths A → B → D and A → C → D exactly balance, so that they cancel 
each other out and the net effect results in an independence. For continuous variables 
this happens when an exact correspondence of the free parameters is fulfilled. The 
model is not faithful. This balancing act can give an indication of a global mechanism or
meta‐ mechanism, such as evolution (Korb and Nyberg, 2006), controlling the 
mechanisms such that the parameters are calibrated until they neutralize. Modularity 
and autonomy of the CPDs depends on the meta‐mechanism. Evolution works on the 
long‐term, so modularity holds for a limited time period. For meta‐mechanisms 
controlling the mechanisms instantly, the CPDs cannot be considered as being 
independent.
Case 5. Consider a system that is minimally described by a Markov network, as shown in 
Figure 27.5(b). Variables which are connected by a path in the network are dependent, 
unless each path is blocked by the conditioning variables. So is B  C | A, but B⫫C ǀ {A,
D]. For describing the same network with a DAG, we have to orient the edges of the 
network. For acyclicity, we have to create at least one v‐structure. We can choose for 
example B–D–C. But then, for keeping the same dependencies, we have to add an edge, 
as shown in Figure 27.5(c). Without B → C we would have B⫫C ǀ A. Clearly, this Bayesian 
network is not minimal; the description is longer than that of a Markov network. The 
parameterizations of the CPDs contain redundancies. In the model of Figure 27.5(c), the 
parameterizations must ensure that B⫫C ǀ {A, D], an independency which is not captured 
by the DAG. The causal interpretation of the CPDs (modularity) is not correct for the 
minimal Bayesian networks. It's unclear how and if a Markov network can be interpreted 
causally, so we leave the question open.
(p.580) Case 6. Causal sufficiency, 
the knowledge of all common 
causes, is an important property for 
correct causal learning. Take the 
system depicted in Figure 27.6(a) in 
which L is an unknown variable 
which is the cause of B and C. This 
gives rise to multiple minimal 
Bayesian networks, none of which 
models the system correctly. One of 
them is depicted in Figure 27.6(b). B
and C are correlated, but none of the 
other known variables is the cause of both, so either B should be oriented towards C or 
vice versa. A should be connected to C to reflect dependency A  C | B. But A⫫C, thus 
there is a dependency between P(B ǀ A) and P(C ǀ A, B, D). The Bayesian network is 
therefore compressible and not faithful (A⫫C is not represented). The solution is to look 
for an alternative model class. Spirtes et al. (1995) propose the use of a partially‐oriented 
acyclic graph (PAG) by which one can express the possibility of latent variables.
Case 7. Another regularity is the repetition of similar mechanisms in a system. This 
results in a causal model in which identical CPDs appear. The model is therefore 
compressible. The compressibility does not necessarily result in a dependence of the 

Fig. 27.5  O‐structure in which A is 
independent from D (a). A Markov network 
(b) and one of the minimal Bayesian 
networks describing the same system (c).
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CPDs in terms of manipulability. As for case 4, it depends on the meta‐mechanism 
responsible for the regularities in the system. The system could, for example, be 
designed by an engineer, such as a digital circuit. Then, modularity holds; one 
mechanism can be replaced by another without affecting the rest of the model. Object‐
oriented nets provide a representation format that explicitly capture similarities of 
mechanisms (Koller and Pfeffer, 1997).

27.9 Conclusions
A Bayesian network decomposes the description of a joint probability distribution into 
conditional probability distributions (CPDs). If a Bayesian network provides the Kolmogorov 
minimal sufficient statistic (KMSS) of a system, it gives the most plausible hypothesis about the 
causal structure of the system.

(p.581)

The CPDs can be matched up with 
mechanisms of the underlying system. 
Decomposition reflects the causal 
component of graphical causal models.

Causal model theory expresses what 
typically can be expected from a causal 
structure. Typical distributions that are 
compatible with a causal structure are 
faithful. However, atypical distributions 
contain additional regularities and may 
invalidate the above conclusions. The 
minimal Bayesian networks of a probability 
distribution are then compressible and do not represent the KMSS.

If the description of a single CPD is compressible, this can result in unfaithfulness of the causal 
model. Causal inference is still possible, since the true model is an element of the set of minimal 
Bayesian networks and modularity is plausible. If on the other hand the concatenation of the 
CPDs is compressible, then the CPDs are no longer independent and the mapping of CPDs onto 
independent mechanisms becomes invalid. This can be due to a kind of meta‐mechanism 
governing other mechanisms, or the incorrectness of considering the set of Bayesian networks 
as model class.
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28.1 Introduction
It is well‐known that Bayesian networks are so‐called, at least in part, because of their use of 
Bayes' theorem for probabilistic inference. However, such networks are not generally Bayesian 
as the term is used in Bayesian statistics because of the nature of their prior distributions, which 
use frequentist probabilities. Bayesian networks that are objectively Bayesian, in other words 
those whose prior distribution is derived from both subjective and frequentist probabilities, 
themselves based on all and only the available information and knowledge pertinent to the 
domain of application, have certain desirable properties and strengths over and above those 
based solely on the frequen‐ tist approach to probability. Jaynes, among others, supported the 
objective Bayesian interpretation of probability; in his view, probabilities should satisfy those 
constraints imposed on them by prior knowledge, whilst remaining as uncertain as possible. 
These specially constructed Bayesian networks may be used in otherwise intractable situations 
where data is unavailable or scarce and decisions need to be made. The crucial role of defining a 
prior distribution is the main topic for discussion, providing as it does the foundation upon 
which all decisions using a Bayesian network are based. Before focusing on the prior (p.584) 

distributions of Bayesian networks, we discuss briefly the motivation for an objective Bayesian 
approach in general.

28.2 Objective Bayesianism
The paradoxes of probability emerged as part of the broader foundational crisis mathematics 
was experiencing in the early years of the twentieth century; indeed Keynes's Treatise on 
Probability (1921) was, by his own account, directly influenced by Russell's programme to 
reduce mathematics to logic. Whilst Keynes's view contrasts sharply with Venn's view that 
probabilities exist as a physical property of the world, he was determined to maintain the desire 
of the day for scientific objectivity and the supposed central role of logic as the all‐pervading 
foundation. So, for Keynes, although probabilities were to be interpreted as rational degrees of 
belief, these were seen as leading to an objective or consensual belief. Since Keynes's 
foundational work is largely concerned with economics, it is hardly surprising that he was 
interested in the psychology of ‘where do the numbers come from’ and recognized that it was 
not always possible to assign numerical values to probabilities. However, in those cases where 
numerical values were deemed appropriate, he appealed to Bernoulli's principle of indifference 
(also known as the principle of insufficient reason). For Keynes, this was necessarily a logical 
principle and although some of the paradoxes it resulted in were eventually resolved by Keynes's 
modification of the principle, others proved intractable. See Ramsey (1931). Interestingly, but 
perhaps not surprisingly, just as Russell's programme led to paradox, so did Keynes's logical 
theory of probability.

The subjective theory of probability, proposed by both De Finetti (1974) and Ramsey (1931), 
came about as a response to the problems inherent in the logical theory that had become 
apparent by the 1920s. The crux of subjective theory is that probabilities are to be interpreted 
as an individual's rational degree of belief, in contrast with the consensual rational degrees of 
belief suggested by Keynes. A useful consequence of this interpretation is that repeated 
experimental trials are not necessary in order to assign probabilities; a feature which, as we will 
see, is particularly germane to the arguments presented below. Although there was initial 
criticism of this interpretation Ramsey (1931), Cox (1946), De Finetti (1974) and others 
successfully countered these arguments by showing that the axioms of probability may be 
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justified in terms of their compliance with a number of rational, common‐sense, intuitive or 
judicious properties. The choice of term is largely determined by the various authors' feel for the 
philosophical and psychological connotations attached to it, for example, Tribus (1969) favours
(p.585) ‘rational’. This connection, between the formalization of probability as a set of axioms 
and the subjective interpretation of probability as a measure of belief in a proposition, has been 
made in different ways by various authors, notably Cox (1946), Schrodinger (1947a, b), 
Reichenbach (1949) and Tribus (1969). Each has shown that the axioms of probability are a 
necessary consequence of a set of properties, which we intuitively feel a measure of belief 
should have.

The question immediately arises as to how we determine these individual rational degrees of 
belief. Prior knowledge from relevant experience is the key. For example, in a medical scenario, 
a medical expert's individual rational degree of belief would quite clearly carry more weight 
than that of a non‐ medically trained person. As Suppes (2007) points out, there are thus many 
possible priors. So, although we may easily narrow our choice to domain‐ specific experts, it is 
not quite so simple to determine the optimal priors. On a practical level, subjective assessment 
is always possible and we can also perform sensitivity analysis subsequently. Clearly, we can 
start from a position in which total ignorance reigns, in which case we might consider it rational 
to assign equal probability to all possible outcomes; a position known as the principle of 
insufficient reason. Much of the work in this chapter relies on the application of this principle, 
which is justified initially by Jaynes's arguments supporting it as a useful tool in physics. See 
Jaynes (2003). For a detailed discussion of the psychological mechanisms at work in the 
formation of Bayesian priors, see Suppes (2007).

Jaynes developed a theory, based on Shannon and Weaver's (1948) information model, in which 
he propounded that an individual's probability should satisfy all the constraints known to be 
imposed on the system and further that from the many that fulfil this requirement, we should 
choose the one that maximizes entropy. Jaynes's interpretation of probability, known as the 
maximum entropy principle, is the fundamental principle of objective Bayesian‐ ism. See Jaynes 
(2003), Rosenkrantz (1977).

The theoretical work on which the current author's philosophical position is based is referred to 
in the foundational work of Williamson (2004, 2005) who is also very much in favour of applying 
maximum entropy to Bayesian networks. As noted in Rhodes et al. (1998) and Wiiliamson (2005) 
the main stumbling block in applying maximum entropy to Bayesian networks is that of 
computational feasibility. However, for the case under consideration in this chapter, that of 
multivalued, multiway trees, this did not prove to be an intractable problem; the linearity of the 
constraints leads to O(n) processes and thus maximum entropy is applicable. In all other cases, 
non‐linear constraints are unavoidable but even so closed‐form solutions have been derived and 
the resulting algorithms, at least for inverted trees, lead to reliable approximations.

(p.586) 28.3 Bayesian networks
Bayesian networks, as first introduced by Pearl, grew out of a desire to represent multinomial 
probability distributions efficiently. Informally, a Bayesian network is a directed acyclic graph 
with nodes representing variables from a probability space. Each variable is independent of its 
non‐descendents, given its parents and so the edges of the graph represent conditional 



Why making Bayesian networks objectively Bayesian makes sense

Page 4 of 16

probabilities. In order to construct a Bayesian network we must identify the information that 
influences our belief in a proposition as well as all the dependencies and independencies implied 
by this knowledge. Of course, we need to be sure that our graphical structure identifies just 
those independencies and dependencies that we have identified as pertinent. In order to do this, 
we use a result from graph theory, which provides a means of identifying the independencies 
under which any such system is constrained. D‐separation, so‐called in contrast to the analogous 
separation property of undirected graphs, comprises a set of rules devised by Pearl (1988) using 
which it is possible to decide for any set of variables in a network, whether they are independent 
from any other set of variables. D‐separation is fundamental to the formal definition of a 
Bayesian network and also to the proof of Verma and Pearl's theorem, which determines all the 
conditional independencies implied by a directed acyclic graph in a Bayesian network. To define
d‐separation, let G = (V, B} be a directed acyclic graph with W⊆ V and vertices u,v in V − W. 
Then u,v are said to be d− separated by W if every chain between u,v is blocked by W. By ‘chain’ 
we mean a sequence of edges in the graph. If a chain is ‘blocked’ then there is a pair of arrows, 
somewhere on the chain, that meet either head‐to‐head, head‐to‐ tail or tail‐to‐tail. Having 
defined d‐separation, we may now define a Bayesian network. This particular form of definition 
is chosen so as to be useful later when maximum entropy is used, and because of this it contains 
certain redundancies; indeed, only constraint (2iii), those independence relationships implied by
d‐separation in the directed acyclic graph, is actually required, but it will be helpful to be able to 
refer to the constraints (2i) and (2ii) explicitly, in what follows.

Let:

(i) V be a finite set of vertices;
(ii) B be a set of directed edges between vertices with no feedback loops. The vertices 
together with the directed edges form a directed acyclic graph G = (V, B);
(iii) a set of events be represented by the vertices of G and hence also represented by V, 
each event having a finite set of mutually exclusive outcomes;
(iv) E i be a variable which can take any of the outcomes

of the event i, j = 1,…, n i;
(p.587) (v) P be a probability distribution over the combinations of events, i.e. P
consists of all possible

.

Let C be the following set of constraints:

(2i) The elements of P sum to unity. (Although this constraint is already fulfilled by (v) 
above, it will be useful in what follows, to never to the sum to unity explicitly.)
(2ii) For each event i with a set of parents M i there are associated conditional 
probabilities
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for each possible outcome that can be assigned to E i and E j. Probabilities are assumed 
non‐zero.
(2iii) Those independence relationships implied by d ‐separation in the directed acyclic 
graph.

Then N = 〈G, P, C〉 is a Bayesian network if P satisfies C.

When the tree is represented by a graph, the nodes of the tree are the vertices of the graph and 
the branches of the tree are the edges of the graph. In this chapter, the topology of the graph 
will be restricted to the special case of a multivalued tree. The information in (2ii) above is 
therefore always of the form

except at the source nodes s, where it is of the form P(E s). The information required to specify 
the tree is thus given by:
1. (3i) the marginal probabilities of the sources nodes.

2. (3ii) the conditional probability of each non‐source node c i given the state of its parents

for m = 1, …, (n ci − 1) when

where

and

are constants.

The general state S of the network is given by the conjunction

. A particular state is obtained by assigning some

to each E i. Subtrees can have their states defined in a similar manner. Hence, any tree or 
subtree can only be in one of a finite set of states and the state of the tree is the conjunction of 
the states of any set of subtrees which constitutes a partition of the tree.
As mentioned previously, all independencies in a Bayesian network can be identified through 
Verma and Pearl's theorem. The reader is referred to Neapolitan (1990) for a proof of this 
theorem, which will be used later. We note that d ‐separation finds all independencies in a 
system and not a minimally sufficient set. When it comes to estimating missing or unknown (p.
588)
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probabilities in a Bayesian network using 
maximum entropy, we find the smallest set 
of independencies that is algebraically 
equivalent to the set determined by d‐
separation. The chain rule is used then in 
conjunction with d‐ separation to determine 
the joint probability distribution of the 
system being considered.
Figure 28.1 represents part of the induced 
graph of a Bayesian tree N. The nodes a 0, a

1,b 1, … ,b q, c 1,…, c t etc. are vertices of V. 
Triangles represent all the subtrees below a 
node and are labelled with bold capital 
letters. The polygon labeled T indicates the 
entire graph except for the subtree rooted 
at a 1 and is itself a multiway Bayesian tree. 
A state s i of the Bayesian tree is an 
assignment of some outcome

, to each variable E i. For notational 
convenience, we note that

where sel j is a solution function which 
chooses the outcome j that corresponds to the ith state. Subtrees can have their states defined in 
a similar manner and hence any tree or subtree can only be in one of a finite set of states and 
the state of the tree is the intersection of the states of its subtrees.
Let T denote a state of T in Figure 28.1, X 2…X q and W 1…W t denote the descendants of b 2 … b q
and c 1… c t respectively, and X 2….X q and W 1…W t denote a state of X 2 …X q and W 1…W t

respectively. Then the probability of any state S of N is given by: (p.589)

(28.1)
Expanding (28.1) using the chain rule and simplifying using those independence relationships 
implied by d ‐separation we get:

(28.2)
Consider next the state of the Bayesian tree N where all variables are assigned arbitrary values; 
event a 1 is instantiated by

, event b 1 is instantiated by

Fig. 28.1  A multiway Bayesian tree with a 
small part shown in detail.
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and so on. The instantiation of events in Tby arbitrary values is denoted by T u, those in X by X x

and those in W by W w. Denote this state by

. Then,

(28.3)
Finally, consider the state

where the eventb1 is instantiated by its final or n th value

, and all other events take on the same values as before. Thus:

(28.4)
Dividing (28.3) by (28.4) after first expanding both equations results in:

(28.5)
This ratio is of particular interest because so many of the terms have cancelled and we will 
return to it subsequently.

28.4 The principle of maximum entropy and Bayesian networks
Bayesian networks can only be used for inference when all the information in 3(i) and 3(ii) has 
been provided; that is, when a prior distribution has been specified. Prior information, 
knowledge or experience, the modelling of which is an integral part of problem solving using 
Bayesian networks, is ignored by the classical paradigm. Objective Bayesianism contends that 
each problem as uniquely defined by its context and the experience of the analyst; this 
experience being expressed by the prior distribution. So the prior distribution incorporates what 
is known, both from experimentation relevant as it applies (p.590) to a particular problem in 
the form of frequentist probabilities and as expert knowledge.

Although it is a necessary condition that each person's degrees of belief are consistent, i.e. they 
must obey the laws of probability, different people may have different degrees of belief in the 
same proposition because they have different information, knowledge or experience. Using 
frequentist probabilities alone results in a rigid network since new knowledge regarding prior 
probabilities cannot be accommodated once the network is built and clearly the results of 
Bayesian networks are only as good as their prior distribution. The term ‘expert system’ became 
unfashionable and was replaced by the term ‘intelligent system’ but the former seems more 
apposite to the present discussion since these systems rely on experts for their accuracy and 
usefulness, rather than on data exclusively.
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Jensen (1996) points out that in a given domain there may be no sound theoretical method for 
determining all the required probabilities, and gives examples of how they are ascertained in 
practice. Sometimes they are guessed; sometimes a complex heuristic procedure is devised in 
order to produce an approximate and necessarily biased value. When multivalued events are to 
be modelled, the situation becomes complex. In some situations, there are inevitably too many 
conditional probabilities for an expert to reliably estimate. Thus, the need for a theoretically 
sound technique for estimating them in a minimally prejudiced fashion becomes apparent. The 
maximum entropy formalism, which grew out of the principle of insufficient reason, first 
formulated by Bernoulli, provides just such a technique.

The principle of insufficient reason states that if an event has many possible outcomes and there 
is insufficient reason for doing otherwise, equal values should be assigned to the probability of 
each possible outcome. A generalization of this principle, the principle of maximum entropy, is 
capable of determining a probability distribution for any combination of partial knowledge and 
partial ignorance; further, it has been shown by Jaynes (2003) to give the minimally prejudiced 
distribution. When ignorance is complete, to say that a distribution is minimally prejudiced is 
simply to say that it complies with the principle of insufficient reason. Hence, if we are 
completely ignorant about a situation, and have no evidence relevant to the probability 
distribution, we require the principle of maximum entropy to choose the uniform distribution 
and be equivalent to the principle of indifference and indeed, it has been proved that the 
uniform distribution has maximum entropy among all distributions supported on an interval.

The maximum entropy solution to a given problem takes into account ignorance of a situation, 
whilst conforming to the current state of knowledge and thus takes into account that ignorance 
may be reduced when more information becomes available. In the case where our ignorance is 
not total, we require that our inferences from Bayesian networks are based on all and (p.591) 

only the information or knowledge we have available. To this end, we need to eliminate all those 
probability distributions that are in conflict with this knowledge and choose the one that 
maximizes entropy. To do this, we solve the optimization problem in which we find the maximum 
entropy distribution subject to those constraints that are imposed by our existing knowledge. 
Maximum entropy thus provides a technique for eliciting knowledge from incomplete 
information, without making any groundless assumptions. Since entropy can be interpreted as a 
mathematical measure of ignorance or partial knowledge, where higher entropy corresponds to 
greater ignorance, we are able to obtain knowledge that is consistent with the available 
information, but otherwise has maximum entropy.

There have been many justifications of the use of entropy as a measure of uncertainty. Those 
based on Shannon's (1948) original argument include Jaynes (2003) and Tribus (1969). Each has 
its own attractions. Wallis (2003) presents an argument that does not rely on any connection 
between probability and frequency. Hence, it does not assume that prior distributions result 
from repeatable experiments and this is highly attractive to those committed to Bayesian 
techniques. The many arguments supporting the use of entropy as a measure of uncertainty 
suggests that none is definitive and indeed, mathematical derivations continue to proliferate. 
Following a conjecture of Jaynes (2003), Shore and Johnson (1980) proved that any information 
measure other than entropy would eventually lead to inconsistencies. Shore and Johnson have 
also shown that the principle of maximum entropy can be derived from a set of consistency 
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axioms for uncertain reasoning. Indeed, Klir and Folger (1995) note that any one of a set of 
requirements is sufficient for the characterization of Shannon entropy.

Whilst this is in itself cheering, it does not provide a link to real‐world reasoning that the non‐
mathematician is likely to be convinced by. Much of the reasoning familiar to those who might 
wish to use a decision‐support system or expert system, uses what is typically thought of as 
common‐sense. In an attempt to fill this gap Paris and Vencovska (1996a) have evolved a set of 
desiderata which characterize common‐sense reasoning. Paris and Vencovska (1997b) have 
proved that only the maximum entropy inference process conforms to the tenets of common‐
sense reasoning thus defined. These common‐sense principles provide a means of convincing the 
end‐ user of an expert system that the support it gives is reliable or at least explicable.

When the prior information that individuals have concerning a problem differs, this results in 
different probability distributions, hence the results provided by maximum entropy are 
dependent on the person providing the prior information. Maximum entropy provides a rule for 
inductive reasoning, which is attractive to researchers in many fields. Most of the research in 
maximum entropy has focused on problems in physics. Application of the principle (p.592) to 
areas as diverse as town planning and crystallography, as well as physics, is now being made. 
However, image processing is one of the current dominant areas of activity and Cheeseman has 
applied the principle of maximum entropy to this problem in the LandSat project. In particular, 
Cheeseman's work has made extensive use, at different times, of both Bayesian techniques and 
maximum entropy.

Using maximum entropy, we can thus accurately model subtle dependencies among variables in 
a way that is simply not possible with traditional predictive modelling techniques. This is 
particularly useful when modelling real‐world problems, because nearly all of these involve prior 
information that is not reflected in other techniques. Traditional predictive models, such as 
decision trees, logistic regression, and neural networks, make assumptions about their data. 
However, in the maximum entropy model, all the available information is used to form the 
constraints for the optimization problem and nothing else. Hence, maximum entropy does not 
make any assumptions about its data and thus provides an unprejudiced distribution. 
Furthermore, of all the possible probability distributions that fit any available data, we are 
required to choose the one that maximizes entropy within the constraints imposed. If we were to 
choose any other it would necessarily have lower entropy and this would imply that information 
or knowledge other than that available had been incorporated.

A further objection is that since the probabilities obtained using maximum entropy have no 
experimental basis, they cannot give rise to physical predictions. In response to this objection, 
Jaynes (2003) points out that maximum entropy is applicable both in situations where a problem 
is represented by a single situation, where a repeatable experiment is not possible and thus the 
probabilities have no frequency connection and also, in situations where observed frequencies 
are available, in which case he demonstrates that the maximum entropy probabilities have a 
formal connection with frequencies. Much work has been done in this area and the reader is 
referred to the annual Bayesian Inference and Maximum Entropy Methods in Science and 
Engineering conference proceedings. Indeed, one important aspect of this work that is not 
covered here is that we must prove that the maximum entropy probability distribution preserves 
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the conditional independence relationships implied by d‐separation in the Bayesian model. See 
Holmes (1998). These conditional independence relationships are, in fact, only preserved in the 
case of a tree; in all other cases, the maximum entropy formalism does not preserve them and 
they must, therefore, be included as explicit nonlinear constraints.

In the case under discussion, that of a Bayesian tree, the constraints are all linear. However, 
when an inverted tree or a generalized Bayesian network is considered, nonlinear constraints 
must also be taken into consideration. For details of these cases the reader is referred to 
Holmes (2005). The current paper deals only with the case of discrete random variables with 
linear (p.593) constraints. A further development by Holmes (2006), is the incorporation of 
inequality constraints. However, several authors have expressed concern about the more 
general use of the maximum entropy principle; in particular, Neapolitan (1991) offers an 
alternative to maximum entropy where interval constraints are concerned. In the case of a 
Bayesian network, any such constraint must be stated explicitly prior to maximization and this 
work has yet to be completed. However, following Neapolitan, suppose that we have a three‐ 
sided die, with sides labelled 1, 2 and 3, then in the case of total ignorance, the maximum 
entropy formalism assigns equal values as estimates of the unknown probabilities, as does 
Neapolitan's principle of interval constraints. We can further add that, should information 
become available, for example, P(2) = 0.5 then the maximum entropy formalism will assign P(1) 
= 0.25 and P(3) = 0.25, again the same as Neapolitan's generalization of the symmetric Dirichlet 
distribution. Since both Neapolitan's principle of interval constraints and the principle of 
maximum entropy are based on the principle of indifference, it is not surprising that both 
methods yield the same results in this case.

It can be shown that maximizing entropy is computationally infeasible in general. In a naive 
implementation, the time required to make a prediction is proportional to the number of possible 
outcomes, and the time required to optimize the model is proportional to the number of logically 
possible events. In real‐world prediction problems, the number of logically possible events is 
infeasibly large. For such problems, a naïve implementation would require more computation 
than is available on all the world's computers. However, for problems that can be modeled using 
two‐valued singly connected causal networks, it has been shown computationally feasible. We 
thus use the maximum entropy formalism to optimally estimate the prior distribution of a 
Bayesian network, using all and only the information available.

28.5 Maximum entropy in Bayesian networks
Consider again the knowledge domain represented by the multiway tree in Figure 28.1. The 
number of states N S in the Bayesian tree N is given by

where n i is the number of values taken by the i th event. Denoting states by S i where i = 1, …, N
S, the maximum entropy formalism requires us to maximize

ln P(S i) whilst conforming to the constraints 2(i)‐(iii). The requirement that the probability 
distribution sums to unity, referred to as the zeroth constraint is given by
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. Using the Lagrange multiplier technique to maximize H, Jaynes (2003) showed (p.594) that 
the general expression for the probability of a state given a set of linear constraints is given by

with i = 1,…, N S where σ i,j is the coefficient of the ith state in the jth constraint and N c is the 
number of required constraints excluding the sum to unity. Holmes (1999) has extended these 
results and applied them to Bayesian networks to find an expression for the ratio of probabilities 
of states found in (28.5).
Let

be the constraints governing states T, X 2,…, X q,W 1…, W t respectively. Then the ratio of the 
probabilities of any two states in which the probabilities of these states remain the same, will 
not contain any terms arising from

since they will cancel. Similarly, the Lagrangian terms arising from the edges (a 1, b 2),…, (a 1, b

q) will cancel if the outcomes of a 1, b 1, …, b q are the same in both numerator and denominator. 
However, Lagrangian terms associated with the edges (a 1, b 1)(b 1, c 1),…, {b 1, c t) will not 
cancel. Consider the constraints arising from (a 1, b 1), which will be denoted as follows:

Holmes (1999) has shown that by first expressing these constraints in terms of marginal 
probabilities, it is possible to re‐express them in terms of state probabilities thus:

(28.6)
where

Equation (28.6) determines a family of constraint equations for the edge (a 1, b 1). When 
information is complete, that is when all the probabilities in 2(i)‐2(iii) are known, every edge will 
have such a family of constraint equations associated with it. With each constraint we associate 
a Lagrange multiplier A. For the edge (a 1, b 1) the Lagrange multipliers are

where event a 1 has p outcomes and event b 1 has n outcomes. λ 0 denotes the Lagrange 
multiplier associated with the zeroth constraint. Partially differentiating constraints expressed 
in the form of state probabilities, an expression analogous to that found in (28.5) for the 
probability of states is found: (p.595)

(28.7)
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Equating (28.5) and (28.7) leads to the following expression for missing information in the 
Bayesian network in Figure 28.1.

(28.8)
Thus, all Lagrange multipliers on the edge between a given node and its children can be found 
in terms of known probabilities and the Lagrange multipliers associated with the edges between 
the children and the grandchildren. We are particularly interested in the situation where one or 
more of the prior probabilities is unknown. By removing those constraint equations for which 
there is no information given, it is possible to estimate the missing information. Suppose that

is missing, in which case the maximum entropy solution no longer generates the term

and (28.8) becomes

where

denotes a minimally prejudiced estimate of

. For example, if b 1 is a leaf node and all information is missing equal probabilities are assigned 
by this method.
Since estimating the probabilities at the leaves is always possible, all the missing information 
can be estimated by propagating up the tree, using a post‐order traversal, to estimate missing 
information as required. It is then possible to use a pre‐order traversal of the tree to propagate 
the information (p.596) down the tree calculating values for marginals as it proceeds. Both of 
these are O(n) operations, so the marginals can be found with an O(n) process when the 
maximum entropy method has been used to estimate missing information. For details of special 
cases see Holmes and Rhodes (1998).

The conceptual justification of the formula (28.8) is that it incorporates maximum uncertainty. In 
failing to model ignorance, an unnecessarily biased prior distribution would have been used, 
leading to untenable conclusions. One of the advantages of the maximum entropy formalism is 
that it may lead to a very broad probability distribution, the interpretation of which is that there 
is insufficient information upon which to base a prediction. The distribution can always be 
interpreted in terms of what we are able to predict, based on the information given as a system 
of constraints.

In the case under discussion, that of a Bayesian tree, the constraints are all linear. However, 
when an inverted tree or a general Bayesian network are considered, non‐linear constraints 
must also be taken into consideration. For details of these cases the reader is referred to 
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Holmes (2005). A further development is the incorporation of inequality constraints (Holmes 
(2006)). This work is, however, far from complete.

28.6 Applications
Bayesian networks are being used in many applications; from ecology and medicine to printer 
trouble‐shooting and educational testing. For an example of their use in ecological modeling, see 
McCann (0000). Sometimes reliable data is available and within an objective Bayesian 
interpretation, there is no problem in using it; however, it still presents problems for 
representation by a Bayesian network since, as well as the inflexibility of the prior distribution, 
it requires the closed‐world assumption for success. In any situation where an expert has 
provided the underlying graphical structure, he will undoubtedly be able to estimate some of the 
information required by the Bayesian network. However, it is almost impossible for a person to 
provide an actual probability distribution. For example, in cases of rare diseases, even the most 
experienced expert may have no usable prior knowledge. The National Institute of Health 
classifies a rare disease as one with fewer than 200,000 cases in the country and so diseases 
exist that even he most experienced specialist may not see in an entire career. On a practical 
level, to conclude that a useful prior probability of any rare disease is 〈 200, 000/N is a useful 
prior, although strictly accurate, is not a directly usable piece of prior knowledge in a Bayesian 
network. Using the maximum entropy approach provides the option of distinguishing between P
(disease) 〈 200, 000/N and P(disease) = 200, 000/N; we can set the probability of the disease as 
missing and find the optimal value for it based (p.597) on P(disease) 〈 200, 000/N and all the 
other information in the network. An experienced, expert health‐care professional can provide a 
better estimate of the probability of a rare disease than that given by this definition and it is this 
valuable subjective knowledge that we wish to use.

The maximum entropy method would be particularly useful in models when empirical data is 
missing or where we wish to test the effect of hypothesized interactions between variables.

28.7 Conclusion
We have discussed objective Bayesianism as it relates to Bayesian networks. It has been argued 
that only one of the many possible prior distributions is the correct one to use in a given 
knowledge domain and a method was described for constructing such a minimally prejudiced 
prior distribution. Bayesian networks designed to assist diagnosis must provide theoretically 
sound priors for very low probability outcomes and this is precisely what maximum entropy 
affords.
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A number of theories of causation posit that causes raise the probability of their effects. In 
this chapter, we survey a number of proposals for analysing causal strength in terms of 
probabilities. We attempt to characterize just what each one measures, discuss the 
relationships between the measures, and discuss a number of properties of each measure.

One encounters the notion of ‘causal strength’ in many contexts. In linear causal models 
with continuous variables, the regression coefficients (or perhaps the standardized 
coefficients) are naturally interpreted as causal strengths. In Newtonian mechanics, the 
total force acting on a body can be decomposed into component forces due to different 
sources. Connectionist networks are governed by a system of ‘synaptic weights’ that are 
naturally interpreted as causal strengths. And in Lewis's account of ‘causation as 
influence’ (Lewis 2000), he claims that the extent to which we regard one event as a cause 
of another depends upon the degree to which one event ‘influences’ the other. In this 
chapter, we examine the concept of causal strength as it arises within probabilistic 
approaches to causation. In particular, we are interested in attempts to measure the 
causal strength of one binary variable for another in probabilistic terms. Our discussion 
parallels similar discussions in confirmation theory, in which a number of probabilistic 
measures of degree of confirmational support have been proposed. Fitelson (1999) and 
Joyce (MS) are two recent surveys of such measures.

29.1 Causation as probability-raising
The idea that causes raise the probabilities of their effects is found in many different approaches 
to causation. In probabilistic theories of causation, of the sort developed by Reichenbach (1956), 
Suppes (1970), Cartwright (1979), Skyrms (1980), and Eells (1991), C is a cause of E if C raises 
the probability of E in fixed background contexts. We form a partition {A 1, A 2, A 3, …, A n}, 
where each A i is a background context. Then C is a cause of E in context A i just in case P(EǀC ∧
A i) 〉 P(Eǀ ~C ∧ A i), or equivalently, just in case P(EǀC ∧ A i) 〉 P(EǀA i).1 The idea is that each 
background context controls (p.601) for confounding causes of E, so that any correlation that 
remains between C and E is not spurious. According to Cartwright (1979), each background 
context should hold fixed (either as being present, or as being absent), every cause of E that is 
not itself caused by C. Eells (1991) has a similar proposal. If we construct the background 
contexts in this way, we would expect the conditional probabilities of the form P(EǀC ∧ A i) and
P(Eǀ ~C ∧ A i) to take values of 0 or 1 if E is caused deterministically. However, as Dupré (1984) 
points out, this carves up the background conditions more finely than is needed if the goal is 
simply to avoid confounding. For this purpose, it suffices to hold fixed the common causes of C
and E. If we construct the more coarsegrained partition in this way, the conditional probabilities
P(EǀC ∧ A i) and P(Eǀ~C ∧ A i) might take intermediate values even if determinism is true. An 
issue remains about what it means to say that C causes E simpliciter: whether it requires that C 
raise the probability of E in all background contexts (the proposal of Cartwright 1979 and Eells
1991), whether it must raise the probability of E in some contexts and lower it in none (in 
analogy with Pareto-dominance, the proposal of Skyrms 1980), or whether C should raise the 
probability of E in a weighted average of background contexts (this is, essentially, the proposal 
of Dupré 1984; see Hitchcock 2003 for further discussion). We will avoid this issue by confining 
our discussion to the case of a single background context.
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In his paper (1986), Lewis offers a probabilistic version of his counterfactual theory of causation. 
Lewis says that E causally depends upon C just in case (i) C and E both occur, (ii) they are 
suitably distinct from one another, (iii) the probability that E would occur at the time C
occurred was x, and (iv) the following counterfactual is true: if C had not occurred, the 
probability that E would occur would have been substantially less than x. Lewis takes causal 
dependence to be sufficient, but not necessary, for causation proper. In cases of preemption or 
overdetermination, there can be causation without causal dependence. We will largely ignore 
this complication here. The reliance on counterfactuals is supposed to eliminate any spurious 
correlation between C and E. The idea is that we evaluate the counterfactual ‘if C had not 
occurred‖’ by going to the nearest possible world in which C does not occur. Such a world will 
be one where the same background conditions obtain. So common causes of C and E get held 
constant on the counterfactual approach, much as they do in probabilistic theories of causation.

The interventionist approach to causation developed by Woodward (2003) can also be naturally 
extended to account for probabilistic causation. The idea would be that interventions that 
determine whether or not C occurs result in different probabilities for the occurrence of E, with 
interventions that make C occur leading to higher probabilities for E than interventions that 
prevent C from occurring. The key idea here is that interventions are exogenous, independent 
causal processes that override the ordinary causes of (p.602) C. Thus even if C and E normally 
share a common cause, an intervention that determines whether or not C occurs disrupts this 
normal causal structure and brings C or ~C about by some independent means.

29.2 Assumptions
We will remain neutral about the metaphysics of causation, and about the best theoretical 
approach to adopt. For definiteness, we will work within the mathematical framework of 
probabilistic theories of causation. Conditional probabilities are simpler and more familiar than 
probabilities involving coun-terfactuals or interventions, although the latter are certainly 
mathematically tractable (e.g. in the framework of Pearl 2000). We will assume that we are 
working within one particular background context A i. Within this context, C and E will be 
correlated only if C is causally relevant to E. We will leave open the possibility that the context is 
not specified in sufficient detail to ensure that the conditional probabilities P(EǀC ∧ A i) and P(Eǀ
〈C ∧ A i) take extreme values if determinism is true. To keep the notation simple, however, we 
will suppress explicit reference to this background context. Moreover, when we are considering 
more than one cause of E, C 1 and C 2, we will assume that the background condition also fixes 
any common causes of C 1 and C 2. In addition, we shall assume that C 1 and C 2 are 
probabilistically independent in this background context. This means that we are ignoring the 
case where C 1 causes C 2 or vice versa.

In all of our examples, we will assume binary cause and effect variables, X c and X E, 
respectively. These can take the values 1 and 0, representing the occurrence or non‐occurrence 
of the corresponding events. We will also write C as shorthand for X C = 1, and ~C as shorthand 
for X C = 0, and analogously for X E. We will have a probability function P defined over the 
algebra generated by X C and X E, and also including at a minimum the relevant background 
context. P represents some type of objective probability. We do not assume that this objective 
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probability is irreducible. For instance, it may be possible to assign probabilities to the outcomes 
of games of chance, even if the underlying dynamics are deterministic. We leave it open that it 
may be fruitful to understand causation in such systems probabilistically.

It will often be useful to make reference to a population of individuals, trials, situations, or 
instances in which C and E are either present or absent. For instance, in a clinical drug trial, the 
population is the pool of subjects, and each subject either receives the drug or not. In other 
kinds of experiments, we may have a series of trials in which C is either introduced or not. Eells 
(1991, Chapter 1) has a detailed discussion of such populations. We will call the members of 
such populations ‘individuals’, even though they may not be people or even objects, but trials, 
situations, and so on. P(C) is then understood as the probability that C is present for an 
individual in the (p.603) population, and likewise for other events in the algebra on which P is 
defined. This probability is approximated by the frequency of C in the population, although we 
do not assume that the probability is identical to any actual frequency.

When we discuss counterfactuals, these are to be understood as non-backtracking
counterfactuals, in the sense of Lewis (1979). The antecedents of these counterfactuals are to be 
thought of as brought about by small ‘miracles’ (Lewis 1979) or exogenous interventions 
(Woodward 2003). We will abbreviate the counterfactual ‘if A had occurred, then B would have 
occurred’ by A 〉 B. In some cases, we will want to explore the consequences of assuming
counterfactual definiteness. Counterfactual definiteness is an assumption similar to 
determinism. It requires that for every individual in a population, either C 〉 E or C 〉 ~E is true, 
and either ~C 〉 E or ~C 〉 ~E. (This assumption is also called conditional excluded middle, and 
it implies that counterfactuals obey the logic of Stalnaker (1968) rather than Lewis (1973).) If 
counterfactual definiteness is true, we will assume that holding the relevant background 
condition fixed suffices to ensure that P(EǀC) = P(C 〉 E) and P(Eǀ ~C) = P(~C 〉 E).2 We will not, 
however, assume that counterfactual definiteness is true in general. In particular, 
counterfactual definiteness seems implausible if determinism does not hold. If counterfactual 
definiteness is not true, we will assume that holding the relevant background condition fixed 
ensures that C 〉 P(E) = p, where p = P(EǀC), and likewise for ~C. In other words, if C were the 
case, then the probability of E would have been p, where p is the actual conditional probability
P(EǀC).

We are interested in measures of the causal strength of C for E. We will write generically CS(E,
C) for this causal strength. Specific measures to be discussed will be denoted by appending 
subscripts to the function CS. These measures are to be characterized in terms of formulas 
involving probabilities such as P(EǀC), P(Eǀ ~C), and perhaps others as well. It will be convenient 
to write CS(E, C) to represent the result of applying the mathematical formula to C and E, even if 
this cannot naturally be interpreted as a causal strength (for example, if C does not raise the 
probability of E).

When we are considering multiple causes, we will represent the causal strength of C 1 for E in 
the presence of C 2 as CS(E, C 1; C 2). This will be defined in the same way as CS, but using the 
conditional probability P(• ǀ C 2) instead of P(•).
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We will also be interested in measures of preventative strength, which we will denote PS(E,
C). We define the preventative strength of C for E in the following way: (p.604)

That is, the preventative strength of C for E is just the causal strength of C for ~E, with a change 
in sign.3

We will consider a variety of candidate measures of causal strength. Some of these have been 
explicitly proposed as measures of causal strength; others are naturally suggested by various 
probabilistic approaches to causation. We will discuss the properties of each measure, and try to 
give an informal explanation of what each one is measuring. Although our overall approach is 
pluralistic, we will make a few remarks regarding what we take to be the merits and demerits of 
each measure. We will also discuss the relationships between the measures.

For purposes of comparing measures, we will convert all measures to a unit scale. That is, we 
will adopt the following two scaling conventions for all measures of causal strength (CS) and 
preventative strength (PS):

If C causes E, then CS(E, C) ∈ (0, 1].

If C prevents E, then PS(E, C) =−CS(~E, C) ∈[−1, 0).

Measures that are based on differences in probabilities will typically already be defined on a 
[−1,1] scale. But, measures that are based on ratios of probabilities will generally need to be 
rescaled. We adopt two desiderata for any such rescaling: (a) that it map the original measure 
onto the interval [−1,1], as described above, and (b) that it yields a measure that is ordinally 
equivalent to the original measure, where CS1(E, C) and CS2(E, C) are ordinally equivalent iff

For all C, E,C ′ and E ′: CS1(E, C) ≥ CS1(E ′, C ′) iff CS2(E, C) ≥ CS2(E ′, C ′).

There are many ways to rescale a (probabilistic relevance) ratio measure of the form pǀq, in 
accordance with these two rescaling desiderata. Here is a general (parametric) class of such 
rescalings, where λ ≥ 0, and p 〉 q4

When λ = 0, we get:

(p.605) and, when λ= 1, we have:

We will discuss several applications of each of these two kinds of rescalings, below.

29.3 The measures
Although we will spend much of the chapter introducing the measures in leisurely fashion, we 
will begin by presenting all of the measures that we will discuss in tabular form. These are 
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shown in Table 29.1. For example, the Eells measure will be represented with a subscript e, and 
defined as the difference in conditional probabilities: CSe(E, C) = P(EǀC) − P(Eǀ ~C).

29.4 Venn and Boolean representations
In presenting and discussing the various measures, it will be helpful to represent the 
probabilities pictorially using Venn diagrams. These will facilitate gaining an intuitive 
understanding of each measure. Figure 29.1 represents a situation in which C raises the 
probability of E. The square has an area of one unit. It represents the entire space of 
possibilities. This space is divided into six cells. The right side of the rectangle corresponds to 
the occurrence of C, the left half to ~C. The shaded region corresponds to the occurrence of E. 
The height of the shaded region on the right‐hand side corresponds to the conditional 
probability P(EǀC), and the shaded column on the left side corresponds to P(Eǀ ~C). The two 
dotted lines are the result of extending the top of each shaded column all the way across the 
diagram. They are a

Table 29.1 Measures of causal strength.
Eells: CSe (E,C) = P(EǀC) − P(Eǀ ~C)

Suppes: CSs (E;C) = P(EǀC) − P(E)

Galton: CSg (E, C) = 4P(C)P(~C)[P(EǀC) − P(Eǀ ~C)]

Cheng: CSc (E,C) = (P(EǀC) − P(Eǀ ~C))−P(~Eǀ ~C)

Lewis ratio: CSlr (E,C) = P(EǀC)/P(EǀC)

CSlr1(E,C) = [P(EǀC) − P(Eǀ ~C)]−[P(EǀC) + P(Eǀ ~C)]

CSlr2(E,C) = [P(EǀC) − P(Eǀ ~C)]−P(EǀC)

Good: CSij (E,C) = P(~Eǀ ~C)−P(~EǀC)

CSij1(E, C) = [P(~Eǀ ~C) − P(~EǀC)]−[P(~Eǀ ~C) + P(~EǀC)]

CSij2(E, C) = [P(~Eǀ ~C) − P(~EǀC)]−P(~Eǀ ~C.)

(p.606)

Table 29.2 Pictorial representations.
Eells: CSe (E,C) = c + d

Suppes: CSs (E, C) = c

Galton: CSg (E,C) = 4cd

Cheng: CSc (E,C) = d−(b + d)

Lewis ratio: CSlr (E,C) = (d + f)− f

CSlr1(E,C) = d−(d + e + f )

CSlr2(E,C) = d−(d + f)

Good: CSij (E, C) = (b + d)−d

CSij1(E,C) = d−(2b + d)

CSij2(E,C) = d−(b + d)
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mathematical convenience: they don't 
necessarily correspond to any events that 
are well‐defined in the probability space. 
We will use the lower case letters a through
f to denote the six regions in the diagram, 
and also to represent the areas of the 
regions. The ratios a :c : e are identical to 
the ratios b : d : f. With this diagram, we can 
write, for example: P(C) = b + d + f; P(Eǀ 
~C) = e + f; P(,EǀC) − P(Eǀ ~C) = c + d; and 
so on. The representations of the measures 
in terms of this figure are summarized in 
Table 29.2.
Additionally, several of the measures we will 
discuss can be given simple Boolean 
representations. A Boolean representation 
for CS(E, C) is a probability space that has 
the following features:

(a) it includes as events C and E, and two additional events A and Q
(b) E can be expressed as a Boolean function of the other three events: specifically, E ≡ A
∨ (Q ∧ C);
(p.607) (c) the probabilities on the algebra generated by C and E are the same as the 
objective probabilities figuring in the measures of causal strength;
(d) CS(E, C) is the (conditional or unconditional) probability of some event in the space 
involving Q.

Condition (b) is reminiscent of Mackie's definition of an INUS condition (Mackie 1974). C is an 
INUS condition for E just in case it is an insufficient but non‐redundant part of an unnecessary 
but sufficient condition for E. In the expression E ≡ A∨ (Q ∧ C), Cis insufficient for E, since Q
must also be present. Q ∧ C is a sufficient condition for E, and C is not redundant: Q alone is 
insufficient. C is not necessary for E, since A may produce E even in the absence of C. Roughly, 
we may think of A as the proposition that conditions are right for E to occur in the absence of C, 
and we may think of Q as the proposition that conditions are right for C to cause E. If 
determinism is true, we may think of A as representing other causes that are sufficient for E, and 
of Q as representing the other background conditions that are necessary for C to be a cause of E. 
However, if there is genuine indeterminism, A and Q will not correspond to any physically real 
events, but are rather just mathematical conveniences; they may be thought of metaphorically 
as the results of God's dice rolls. The disjunctive form of the representation for E in (b), together 
with its probabilistic nature, has given it the name of a ‘noisy or’ representation.

We will give Boolean representations for four of our measures. These representations differ 
along two dimensions. First, they differ in the assumptions they make about the probabilistic 
relations that the new events A and Q bear to C and E and to each other. Second, they identify 

29.1



Probabilistic measures of causal strength

Page 8 of 28

causal strength with the probabilities of different events, or with probabilities conditional upon 
different events. The Boolean representations are often helpful for giving an intuitive feel for 
just what the measures are measuring.

29.5 The Eells measure
Eells (1991) offers a probabilistic theory of causation according to which C is a (positive) cause 
of E just in case P(EǀC ∧ A i) 〉 P(Eǀ ~C ∧ A i) for every background context A i5 He then defined 
the ‘average degree of causal significance’ of C for E as: ADCS(E, C) = +i[P(EǀC ∧ A i)− P(Eǀ ~C ∧ 
A i)]P(A i).6

(p.608)

This naturally suggests that when we 
confine ourselves to a single background 
context, we define causal strength as:

This is equal to the area c + d in Figure
29.1. Equivalently, it is the difference 
between the heights of the two shaded 
columns. The Eells measure is identical to 
what psychologists call the probability 
contrast–PC or ΔP for short (see e.g. Cheng 
and Novick 1990).

The Eells measure may be given a simple 
Boolean representation. We make the 
following assumptions about the new events
A and Q:

(i) A and Q are mutually exclusive;
(ii) A and C are probabilistically 
independent; and
(iii) Q and C are probabilistically independent.

As is standard, we identify E with A∨ (Q ∧ C). These assumptions are all shown diagrammatically 
in Figure 29.2. Given these assumptions, we have:

7

(p.609) Intuitively, the Eells measure measures the difference that C's presence makes to the 
probability of E. If we had a population of individuals who all belonged to the relevant 
background context, and conducted a controlled experiment in which C is present for some 
individuals, and absent in others, the Eells measure would be an estimate of the difference 
between the relative frequencies of E in the two groups.

29.2
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The Eells measure is related to a concept that statisticians call causal effect. Assume 
counterfactual definiteness, and let X and Y be two quantitative variables. Let x and x′ be two 
possible values of X, and let i be an individual in the population. The causal effect of X = x vs. X =
x= on Y for i (abbreviated CE(Y, X = x, X = x′, i)) is the difference between the value Y would take 
if X were x and the value Y would take if X were x′for individual i. That is, CE(Y, X = x, X = x′, i) =
y − y′, where X = x 〉 Y = y and X = x′〉 Y = y′ are both true for i. Intuitively, the causal effect is 
the difference that a hypothetical change from X = x′ to X = x would make for the value of Y. 
Assuming counterfactual definiteness, the Eells measure is the expectation of the causal effect 
of C vs. ~C on XE: CS e(E, C) = E[CE(X E, C, ~C)]. For example, if an individual i is such that C 〉

E and ~C 〉 ~E, then for that individual, the causal effect of C vs. ~C on E is 1. The Eells 
measure corresponds to the expectation of this quantity. On the other hand, suppose that 
counterfactual definiteness is false. Then the Eells measure is equal to the causal effect of C vs. 
~C on the probability of E, or equivalently, the expectation of X E. Note that while the Eells 
measure itself is indifferent as to whether counterfactual definiteness is true or false, its 
interpretation in terms of causal effect is different in the two cases.

The Eells measure is also closely related to what Pearl (2000) calls the probability of necessity 
and sufficiency or PNS. Pearl assumes counterfactual definiteness, and defines PNS(E, C) =
P(C 〉 E∧ ~C 〉 ~E). Intuitively, PNS(E, C) is the probability that C is both necessary and 
sufficient for E, where necessity and sufficiency are understood counterfactually. Monotonicity is 
the assumption that P(C 〉 ~E ∧ ~C 〉 E) = 0. Intuitively, this means that there are no 
individuals that would have E if they lacked C, and also would have ~E if they had C. Under the 
assumption of monotonicity, CS e(E, C) = PNS(E, C). This is most easily seen by referring to 
Figure 29.1. Monotonicity is the assumption that no individuals in cell e are such that if they had
C, they would be in cell b; and no individuals in cell b are such that if they lacked C, they would 
be in cell e. Then we can interpret the figure in the following way: e and f comprise the 
individuals for which C 〉 E and ~C 〉 E;a and b comprise the individuals for which C 〉 ~E and 
~C 〉 ~E; and c and d comprise the individuals for which C 〉 E and ~C 〉 ~E. The Eells measure 
is then the probability that an individual is in the last group. In other words, it is the proportion 
of the population for which C would make the difference between E and ~E. We reiterate, 
however, that this interpretation assumes both counterfactual (p.610) definiteness and 
monotonicity. In particular, if counterfactual definiteness fails, the Eells measure can continue 
to take positive values, while PNS is identically zero.

The Eells measure exhibits what we might call ‘floor effects’.7 If the background context A i is 
one in which E is likely to occur even without C, then this will limit the size of CS e(E, C): there is 
only so much difference that C can make. In our Boolean representation, this is reflected in the 
assumption that A and Q are exclusive. If A is large, then Q must be small. This seems 
appropriate if we think of causal strength in terms of capacity to make a difference. On the other 
hand, if we think that the causal strength of C for E should be thought of as the intrinsic power 
of C to produce E, then it might seem strange that the causal strength should be limited by how 
prevalent E is in the absence of C.



Probabilistic measures of causal strength

Page 10 of 28

29.6 The Suppes measure
Suppes (1970) required that for C to cause E, P(EǀC) 〉 P(E). As we noted above, this is 
equivalent to the inequality P(EǀC) 〉 P(Eǀ ~C). However, the two inequalities suggest different 
measures of causal strength. Thus we define the Suppes measure as

This quantity is equal to the area of region c in Figure 29.1.

The Suppes measure can be given a simple Boolean representation. Under the same 
assumptions as those made for the Eells measure, shown in Figure 29.2, we have

The Suppes measure is related to the Eells measure as follows:

Table 29.3 provides a summary of all the mathematical inter-definitions. Note that we will only 
explicitly give the expression of a measure in terms of measures that have been previously 
introduced. The expression of the Suppes measure in terms of, e.g. the Galton measure can be 
derived simply by taking the appropriate inverse: e.g. CSs(E, C) = CSg(E, C)/4P(C).

The Suppes measure may be understood operationally in the following way: it is the amount by 
which the frequency of E would increase if C were present for all individuals in the population. 
Indeed Giere (1979) offers a (p.611)

Table 29.3 Inter‐definability of the measures.
Suppes: CSs (E, C) = P(~C)CSe (E, C)

Galton: CSg (E, C) = 4P(C)P(~C)CSe (E,C) = 4P(C)CSs (E,C)

Cheng: CSe(E,C) = CSe(E,C)−P(~E|~C) = CSs(E,C)−P(~E∧~C) = CSg(E, C)−4P(C)
P(~E∧ ~C)

Lewis 
ratio:

CSlr1(E, C) = [CSlr(E, C) − 1]−[CSlr(E, C) + 1]

= CSe(E,C)−[P(EǀC)+P(Eǀ~C)]

CSlr2(E, C) = 1 − 1−CSlr(E, C)

= CSe(E,C)−P(EǀC)

= CSs(E,C)−P(EǀC)P(~C)

= CSg(E, C)−4P(E ∧ C)P(~C)

= CSc(E,C)[P(~Eǀ~C)−P(EǀC)]

CSij(E, C) = CSlr(~E, ~C)

Good: CSlr1(E,C) = [CSij(E,C)−1]−[CSij(E,C) + 1]

= CSlr1(~E,~C)

= CSe(E,C)−[P(~EǀC)+P(~Eǀ~C)]

CSij2(E, C) = 1 − 1−CSij(E, C)
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= CSc(E, C)

= CSe(E,C)−P(~Eǀ~C)

= CSs(E,C)−P(~E∧~C)

= CSg(E, C)−4P(C)P(~E∧ ~C) = CSlr2(~E,~C)

probabilistic theory of causation in which causation is defined in just this way. This way of 
understanding the Suppes measure is only correct, however, if there is no frequency‐dependent 
causation or inter‐unit causation. In biology, mimicry is an example of frequency‐dependent 
causation. For example, the tasty viceroy butterfly protects itself by mimicking the colour 
patterns of the unpalatable monarch butterfly. But the more prevalent the viceroys become, the 
less effective this ruse will become. So it may be that among butterflies, mimicking the monarch 
does in fact raise the probability of survival, but if all butterflies did it, the rate of survival would 
not go up. For an example of inter‐unit causation, consider the effects of second-hand smoke. If 
everyone were to smoke, lung cancer rates would go up, in part because there would be more 
smokers, but also because at least some people would be exposed to greater amounts of second-
hand smoke. In this case, the Suppes measure would underestimate the amount by which lung 
cancer would increase. Intuitively, what is going on in each of these cases is that the Suppes 
measure predicts (p.612) the amount by which the prevalence of E will change within a fixed 
background context. However, when we increase the prevalence of C in the population, we also 
change the background context to which at least some members of the population belong. This 
will have an impact on the prevalence of E that goes beyond that predicted by the Suppes 
measure within a fixed background context.
The Suppes measure will exhibit floor effects in much the same way the Eells measure does. The 
Suppes measure is also sensitive to the unconditional value of P(C): for fixed values of P(EǀC) 
and P(Eǀ ~C), CSs (E, C) decreases as P(C) increases. The feature seems prima facie undesirable 
if we construe causal strength as a measure of the intrinsic tendency or capacity of C to cause E. 
Such an intrinsic capacity should be independent of the prevalence of C.

29.7 The Galton measure
We name this measure after Francis Galton. With quantitative variables X and Y, we often 
evaluate the relationship between them in terms of the covariance or correlation. The covariance 
of two variables is defined as follows:

When X and Y are replaced by the indicator functions X c and X E, a little calculation gives us

The multiplier P(C)P(~C) takes a maximum value of ¼ when P(C)=0.5, so if we want to convert 
this measure to a unit scale we will need to normalize. One way to do this is to divide by the 
standard deviations of X C and X E, yielding the correlation. We will adopt the simpler expedient 
of multiplying by 4. Thus:

This is equal to 4 times the product of c and d in Figure 29.1. The Galton measure is related the 
Eells and Suppes measures as follows:
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Like the Suppes measure, the Galton measure will exhibit floor effects, and it will be sensitive to 
the unconditional probability of C. The Galton measure intuitively measures the degree to which 
there is variation in whether or not E occurs that is due to variation in whether or not C occurs. 
CSg (E, C) will take its maximum value when P(EǀC) is close to 1, P(Eǀ ~C) is close to 0, and (p.
613) P(C) is close to 0.5. In these circumstances, P(E) will be close to 0.5, so there is a lot of 
variation in the occurrence of E ‐ sometimes it happens, sometimes it doesn't. When C occurs, 
there is very little variation: E almost always occurs; and when C doesn't occur, E almost never 
occurs. So there is a lot of variation in whether or not E occurs precisely because there is 
variation in whether or not C occurs. By contrast, suppose that P(C) is close to 1. Then any 
variation in whether or not E occurs will almost all be due to the fact that P(EǀC) is non-extreme:
Esometimes happens in the presence of C, and sometimes it doesn't. Likewise if P(C) is close to 
0. For example, it might be natural to say that smallpox is lethal: it is a potent cause of death. So 
we might think that the causal strength of smallpox for death is high. But the Galton measure 
would give it a low rating, perhaps even 0, since none of the actual variation in who lives and 
who dies during a given period is due to variation in who is exposed to smallpox: thankfully, no 
one is any more.

Note that the standard measure of heritability used in genetics and evolutionary biology is 
essentially a measure of correlation, and behaves much like the Galton measure. Because of the 
sensitivity of the heritability measure to the absolute level of variation in some trait among the 
parents in a population, heritability is a poor measure of the intrinsic tendency of parents to 
produce offspring that resemble them with respect to the trait in question.

29.8 The Cheng measure
The psychologist Patricia Cheng proposed that we have a concept of ‘causal power’, and that 
this explains various aspects of our causal reasoning (1997). Under the special assumptions we 
have made, causal power reduces to the following formula:

In our pictorial representation (Figure 29.1), this is equal to the ratio d/(b + d).

It is well-known that the Cheng measure has a ‘noisy or’ representation (see, e.g. Glymour
1998). We make the following assumption:

A, Q, and C are both pairwise and jointly independent.

As always, E is identified with A ∨ (Q ∧ C). These assumptions are shown schematically in Figure
29.3. Then we can identify

Note that while both CSe and CSc are identified with P(Q), the probabilistic assumptions 
underlying the two representations are different.

The Cheng measure is related to our other measures by the following formulae: (p.614)
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Only the first of these is particularly intuitive. One way of thinking about the Cheng measure is 
that it is like the Eells measure in focusing on the difference P(EǀC) − P(Eǀ ~C), but eliminates 
floor effects by dividing by P(~Eǀ ~C). The idea is that it is only within the space allowed by
P(~Eǀ ~C) that C has to opportunity to make a difference for the occurrence of E, so we should 
rate C's performance by how well it does within the space allowed it.

Cheng conceives of her causal power measure in the following way. Assume that E will occur 
just in case C occurs and ‘works’ to produce E, or some other cause of E is present and ‘works’ to 
produce E. In our Boolean representation, shown in Figure 29.3, Q corresponds to C's ‘working’, 
and A corresponds to some other cause's working. CSc(E, C) is then the probability that C
‘works’. These ‘workings’ are not mutually exclusive: it is possible that C is present and ‘works’ 
to produce E, and that some other cause also ‘works’ to produce E. Thus Cheng's model is 
compatible with causal overdetermination. A high probability for E in the absence of C needn't 
indicate that Cisn't working most of the time when it is present. But this is at best a heuristic for 
thinking about causal power. The nature of this ‘working’ is metaphysically mysterious. If the 
underlying physics is deterministic, then perhaps we can understand C's ‘working’ as the 
presence of conditions that render C sufficient for E (represented by Q in our Boolean 
representation). If the causal relationship is

(p.615) indeterministic, however, it is hard 
to see what this ‘working’ could be. C and 
various other causes of E are present. In 
virtue of their presence E has a certain 
probability of occurring. On most 
conceptions of indeterministic causation, 
that is all there is to the story. (See, e.g. 
Lewis 1986 and Humphreys 1989, sections
29.10 and 29.11; Woodward (1990) 
challenges this conception. See also 
Hitchcock (2004) for discussion of the two 
different models.)
The Cheng measure is related to what Pearl 
(2000) calls the probability of sufficiency or 
POS. Assuming counterfactual definiteness, 
Pearl defines POS(E, C) = P(C 〉 Eǀ ~C ∧ 
~E). That is, in cases where neither C nor E
occur, POS(E, C) is the probability that E
would occur if C were to occur. Conditioning 
on ~C ∧ ~E means that we are in the 
rectangle occupied by a and c in Figure 29.1. Now assume monotonicity: that no individuals in 
region e would move to b if C were to occur, and no individuals in b would move to e if Cdid not 

29.3
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occur. Then the result of hypothetically introducing C to the individuals in region a and c is to 
move them straight over to the right-hand side. So the proportion of individuals in regions a
and c that will experience E when C is introduced is equal to d/(b + d). So under the assumptions 
of counterfactual definiteness and monotonicity, CSc(E, C) = POS(E, C). If counterfactual 
definiteness does not hold, however, this interpretation cannot be employed. In this case, CSg

may still take positive values, while POS is identically zero.

The Cheng measure does not exhibit floor effects, and it is not sensitive to the absolute value of
P(C). For this reason it is a more plausible measure of the intrinsic capacity of C to produce E
than any of the others we have discussed.

29.9 The Lewis ratio measure
In formulating the probabilistic extension of his counterfactual theory of causation, Lewis (1986) 
required that in order for E to be causally dependent upon C, the probability that E would occur 
if C had not occurred had to be substantially less than the actual probability of E. Lewis then 
remarks that the size of the decrease is measured by the ratio of the quantities, rather than their 
difference. This naturally suggests the following measure:

This is the ratio (d + f)/f in Figure 29.1. The Lewis ratio measure is equivalent to the quantity 
called ‘relative risk’ in epidemiology and tort law: it is the risk of experiencing E in the presence 
of C, relative to the risk of E in the absence of C (see Parascandola 1996 for a philosophically 
sensitive discussion of these topics).

(p.616) The Lewis ratio measure rates causes on a scale from one to infinity (and it gives 
numbers between zero and one when P(EǀC) 〈 P(Eǀ ~C)). Thus if we want to compare it directly 
with our other measures we will need to convert it to a unit scale. As discussed above, there are 
a number of ways of doing this. We will consider two. The first, corresponding to setting λ = 1 in 
our parametric rescaling formula above, is:

This is equal to d/(d+e+f) in Figure 29.1. This re‐scaling of the Lewis ratio measure is related to 
the Eells measure as follows:

Its mathematical relationship to the other measures is insufficiently elegant to be illuminating.

The second rescaling corresponds to setting λ = 0:

This is the ratio d/(d + f) in Figure 29.1. This rescaling of the Lewis measure can be given a 
Boolean representation, using the same probabilistic assumptions as those used for the Eells 
and Suppes measures (shown in Figure 29.2). Then we have:

This rescaling is related to our other measures via the following formulae:
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CSlr2(E, C) is equivalent to the quantity called the probability of causation in epidemiology and 
tort law. It is also related to what Pearl (2000) calls the probability of necessity, or PN. It will be 
helpful to consider the latter connection first. Assuming counterfactual definiteness, Pearl 
defines PN(E, C) = P(~C 〉 ~EǀC ∧ E). That is, given that C and E both occurred, PN(E, C) is the 
probability that C is necessary for E, where necessity is understood counterfactually. If we 
assume monotonicity, then PN(E, C) = CSlr2(E, C). The idea is if C and E both occur, we are in 
the region d ∪ f in Figure 29.1. Under the assumption of monotonicity, the effect of 
hypothetically removing C will be to shift individuals straight to the left. Thus the proportion of 
those in region d ∪ fthat would no longer experience E if C did not occur would be c/(c + e) = d/
(d + f). If we define causation directly in terms of (definite) (p.617) counterfactual dependence, 
as is done in the law, then CSlr2(E, C) is the probability that C caused E, given that C and E both 
occurred: hence the name ‘probability of causation’. In our Boolean representation, Q can be 
thought of as C's being necessary for E, or C's causing E. ‘Probability of causation’ is important 
in tort law. In civil liability cases, the standard of evidence is ‘more probable than not’. Thus if a 
plaintiff has been exposed to C, and suffers adverse reaction E, in order to receive a settlement 
she must establish that the probability is greater than one‐half that C caused E. This is often 
interpreted as requiring that the ‘probability of causation’ is greater than 0.5.

It is worth remembering, however, that the interpretation of CSlr2(E, C) as the probability that C
caused E depends upon three assumptions. The first is that counterfactual dependence is 
necessary for causation. This assumption fails in cases of preemption and overdetermination. We 
have chosen to ignore these particular problems, although as we have seen, the Cheng measure 
seems to be compatible with causal overdetermination. The second assumption is monotonicity. 
The third, and most important, is counterfactual definiteness. If counterfactual definiteness fails, 
then all we can say about those individuals that experience both C and E is that if C had not 
occurred, the probability of E would have been p, where pis P(Eǀ ~C). Thus it is true for all the 
individuals that experience both C and E that the probability of E would have been lower if C had 
not occurred. So to the extent that there is a ‘probability of causation’, that probability is 1: for 
all the individuals that experience both C and E, C was a cause of E (although there may be other 
causes as well). This is how Lewis himself interprets indeterministic causation (Lewis 1986).8

Like the Eells, Suppes, and Galton measures, the Lewis ratio measure and its rescalings will 
exhibit floor effects. Like the Eells and Cheng measures, the Lewis ratio measures and its 
rescalings are not sensitive to the unconditional probability of C.

29.10 The Good measure
Good (1961–2) sought to define a measure Q(E, C) of the tendency of C to cause E. The measure 
he ultimately proposed was Q(E,C)=log[P(~Eǀ~C)/P(~EǀC)]. We propose to simplify this formula 
(in a way that does not affect its ordinal scale) by not taking the log (or equivalently, raising the 
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base (e or 10) to the power of Q). Since we have already used the subscript ‘g’ for the Galton 
measure, we will use Good's well‐known first initials ‘ij’.

(p.618) This is equal to the ratio (b + d)/d in Figure 29.1. The Good measure is related to the 
Lewis ratio measure via the formula:

Like the Lewis ratio measure, the Good measure yields a scale from one to infinity when
P(EǀC) 〉 P(Eǀ ~C), and from zero to one otherwise. So we will consider two rescalings.

This is equal to the ratio d/(2b + d) in Figure 29.1. This rescaling is related to other measures via 
the following formulae:

It mathematical relationship to the other measures is insufficiently elegant to be illuminating. 
The second rescaling is:

which is equal to d/(b + d). Interestingly, this second rescaling of the Good measure is identical 
to Cheng measure. Obviously, then, this rescaling will have the same properties, and be 
susceptible to the same interpretations, as the Cheng measure. Since the original Good measure 
and the first rescaling are ordinally equivalent to the second rescaling, they will be ordinally 
equivalent to the Cheng measure and also share many of its properties. Here are some other 
equivalences involving the second rescaling of the Good measure:

29.11 Other measures
It is fairly easy to generate other candidate measures. One would be the difference between the 
Eells and the Suppes measures, namely:

This could be understood operationally as the amount by which the frequency of E would decline 
if C were completely eliminated (modulo worries about (p.619) frequency dependent and inter‐
unit causation). We might think of this as the extent to which C is in fact causing E. Noting that 
the Lewis ratio measure is simply the ratio of the two quantities whose difference is the Eells 
measure, we could define a measure that is the ratio of the two quantities whose difference is 
the Suppes measure:
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And of course we could then take different rescalings of this measure to convert it to a unit 
scale. We could also construct an analog of the Cheng measure that makes use of the difference 
that figures in the Suppes measure:

And so on. Since the measures that we have already discussed are more than enough to keep us 
busy, we will leave an exploration of the properties of these new measures as an exercise for the 
reader.9

29.12 Properties and comparisons
In the remaining sections, we will explore some further properties of the measures that we have 
introduced, and examine some relationships between them. First, we will consider whether any 
of our measures are ordinarily equivalent, or partially ordinally equivalent. Second, we will 
examine a number of continuity properties of measures ‐ these involve the behaviours of the 
measures as P(EǀC) decreases from a value greater than P(Eǀ ~C) to a value less than P(Eǀ ~C). 
Finally, we will examine what the measures tell us about causal independence, and compare the 
independence judgments of the various measures.

29.13 Ordinal relationships between measures
Our two rescalings of the Lewis ratio measure are, by design, ordinally equivalent to the original 
Lewis ratio measure, and to each other. Likewise for the rescalings of the Good measure. 
Moreover, as we have already seen, one of our rescalings of Good's measure is numerically 
identical to Cheng's measure.

(p.620)
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Table 29.4 Ordinal equivalences between measures.

Eells Suppes Galton Cheng Lewis ratio Good

Eells G‐E II‐E II‐E None None None

Suppes II‐E G‐E II‐E None None None

Galton II‐E II‐E G‐E None None None

Cheng None None None G‐E None G‐E

Lewis ratio None None None None G‐E None

Good None None None G‐E None G‐E
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Apart from these cases, no other pair of measures we're discussing here are numerically 
equivalent. Indeed, it turns out that no other pair of measures we're discussing here are
ordinally equivalent (in general). But, some other pairs of measures are ordinally equivalent in 
special types of cases. Consider the following two special types of cases:

I. Cases involving a single effect (E) and two causes (C 1 and C 2).
II. Cases involving a single cause (C) and two effects (E 1 and E 2).

If two measures (CS1 and CS2) are such that, for all E,C 1 and C 2:

then CS1 and CS2 are ordinally equivalent in all cases of Type I (or ‘I-equivalent’, for short). And, 
if CS1 and CS2 are such that, for all C, E 1 and E 2:

then CS1 and CS2 are ordinally equivalent in all cases of Type II (or ‘II‐equivalent’, for short). 
Various pairs of measures (which are not ordinally equivalent in general) turn out to be either I‐
equivalent or II‐equivalent. For example, the Eells, Suppes, and Galton measures are all II-
equivalent. This can be seen readily by examing the identities in Table 29.3. For a fixed C, the 
Eells, Suppes, and Galton measures are all fixed multiples of one another. Thus, for a fixed C, 
they will agree on comparative judgments of causal strength. Table 29.4 summarizes all ordinal 
relationships between measures (a ‘G-E’ in a cell of Table 29.4 means that the two measures 
intersecting on that cell are generally ordinally equivalent, a ‘I-E’ means they are I-equivalent, 
and a ‘II-E’ means they are II-equivalent).

29.14 Continuity properties of measures
(p.621) Some of our measures exhibit the following continuity between causation and 
prevention (‘Causation-Prevention Continuity’):(CPC)

Recall that we are defining PS(E, C) as − CS(~E, C). As such, we can also express (CPC) as 
asserting that the absolute value of CS(E, C) is the same as the absolute value of PS(E, C). If a 
measure satisfies (CPC), then we can plug probabilities into the measure without regard to 
whether C causes E or prevents E. If the measure yields a positive value, that is the causal 
strength of C for E; if it yields a negative value, that is the preventative strength of C for E. By 
contrast, if a measure does not satisfy (CPC), then we must first determine whether C causes E
or prevents E before we know which probabilities to plug into the formula. If a measure violates 
(CPC), it would suggest that causation and prevention are somehow conceptually different ‐ 
there is a ‘discontinuity’ where P(EǀC) = P(Eǀ ~C).10 For example, the Eells measure is simply 
the difference between P(EǀC) and P(Eǀ ~C). The effect of switching E and ~E is simply to 
reverse the sign. We can continue to use the same formula regardless of whether P(EǀC) 〉 P(Eǀ 
~C) or P(EǀC) 〈 P(Eǀ ~C). The Suppes and Galton measures similarly obey (CPC). By contrast, 
the Cheng measure of the causal strength of C for E includes the term P(~Eǀ ~C) in its 
denominator. Thus if C prevents E, and we want to assess PSc(E, C) = −CSc(~E, C), we will need 
to replace P(~Eǀ ~C) in the denominator with P(Eǀ ~C), as well as merely changing the sign. So 
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except for the special case where P(~Eǀ ~C) = 0.5, we will need to know whether C causes E or 
prevents E in order to know how to use the formula correctly.

Some measures exhibit the following continuity between causation and omission (‘Causation-
Omission Continuity’):(COC)

CS(E, ~C) may be thought of as the causal strength with which the omission or absence of C
causes E. If a measure satisfies (COC), then, when C prevents E, CS(E, C) will give us a measure 
of the extent to which the absence of C causes E (with the sign reversed) Thus such a measure 
may be thought to treat causation and causation by omission as on a par. For example, the Eells 
measure satisfies (COC): swapping ~C for C has the effect of switching the two terms, resulting 
in a change of sign. The Galton measure also satisfies (COC).

(p.622)

Table 29.5 Continuity properties of measures.

(CPC) (COC) (CPO)

Eells Yes Yes Yes

Suppes Yes No No

Galton Yes Yes Yes

Cheng No No No

Lewis Ratio rescaling #1 CSlr1 No Yes No

Lewis ratio rescaling #2 CSlr2 No No No

Good rescaling #1 CSij1 No Yes No

Good rescaling #2 CSij2 No No No

Interestingly, one of our rescalings of the Lewis ratio measure satisfies (COC) while the other 
does not; similarly for the Good measure. This suggests that the choice of rescaling will make a 
substantive difference to how the measures treat causation by omission. It also suggests that 
there is more to rescaling than simply preserving ordinal equivalence.
Finally, some measures exhibit the following continuity between causation, prevention, and 
omission (‘Causation = Prevention by Omission’):(CPO)

Given our definition of PS, (CPO) says that the causal strength of C for E is equal in magnitude 
and opposite in sign to the preventative strength of ~C for E. It is easy to see that (CPO) is a 
logical consequence of the conjunction of (CPC) and (COC). So, any measure that satisfies both 
(CPC) and (COC) must also satisfy (CPO). But, the converse does not hold. That is, (CPO) is 
strictly weaker than (CPC) & (COC).11 As reported in Table 29.5, the Eells and Galton measures 
satisfy both (CPC) and (COC). As a result, they both satisfy (CPO) as well. None of our other 
measures satisfy (CPO). Table 29.5 summarizes the behaviour of our measures of causal 
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strength, with respect to these three continuity properties (see Section 29.5 of Eells and Fitelson
2002 for a formally similar table).

29.15 Causal independence
Causes sometimes operate independently of one another, and sometimes they do not. In this 
section, we will introduce a notion of causal independence and discuss some of its properties 
(vis‐à‐vis the measures of causal strength we are studying). First, we need a way of 
characterizing when two causes C 1 and C 2 of an effect E operate independently of one another 
(regarding E). The (p.623) intuitive idea behind our formal definition of causal independence is 
that C 1 and C 2 are independent in causing E just in case the causal strength of C 1 for E does not 
depend on whether or not C 2 is also present, and vice versa. This is not to say that C 1 and C 2

are (probabilistically) independent of each other.12 Formally, this intuitive idea is best captured 
by the following definition:

C 1 and C 2 are independent in causing E, according to a measure of causal strength CS iff 
CS(E,C 1;C 2) = CS(E,C 1;~C 2).

We will abbreviate this relation ICS(E,C 1,C 2). To avoid embedded subscripts, we will use In to 
label the independence relation generated by CSn. Because we are assuming that C 1 and C 2 are 
probabilistically independent (given the background condition), the following two basic facts can 
be shown to hold − for all of our measures of causal strength CS (assuming each of C 1, C 2

causes E):

•ICS(E,C 1,C 2) iff ICS(E, C 2, C 2). [ICS is symmetric in C 1, C 2.]

•ICS(E,C 1,C 2) iff CS(E, C 1; C 2). 
= CS(E,C 1)

[ICS can be defined in terms of the absenceofC
2,orjustinterms of conditional vs unconditional CS‐ 
values.]

While all of our measures converge on these two fundamental properties of ICS, there are also 
some important divergences between our CS‐measures, when it comes to ICS.

First, we will consider whether it is possible for various pairs of distinct CS‐measures to agree
on judgments of causal independence. That is, for which pairs of measures CS1, CS2 can we have 
both ICS 1 (E,C 1, C 2)and ICS 2 (E,C 1,C 2)? It should be apparent that ordinal equivalence is 
sufficient for agreement in independence judgments, although it is not necessary. It follows that 
the different rescalings of the Lewis ratio measure will always agree on their independence 
judgments, as will the different rescalings of the Good measure. Moreover, the Good measure 
and its rescalings yield all the same independence judgments as the Cheng measure. 
Interestingly, among all the measures we're discussing here, not all pairs can agree on ICS‐
judgments (apart from the trivial cases where one of C 1 or C 2 is not a cause of E). And, those 
pairs of measures that can agree on some ICS‐judgments, must agree on all ICS‐judgments. Table
29.6 summarizes these ICS‐agreement results.

(p.624)
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Table 29.6 Do measures C1 and C2 agree on all, some, or none of their ICS‐judgments?

Eells Suppes Galton Cheng Lewis ratio Good

Eells All All All None None None

Suppes All All All None None None

Galton All All All None None None

Cheng None None None All None All

Lewis ratio None None None None All None

Good None None None All None All
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Second, we will consider whether a measure CS's judging that ICS(E, C 2, C 1) places substantive 
constraints on the individual causal strengths CS(E, C 1), CS(E, C 2). Interestingly, some 
measures CS are such that ICS(E, C 2, C 1) does impose substantive constraints on the values of 
CS(E, C 1), CS(E, C 2). Specifically, the Eells, Suppes, and Galton measures all have the following 
property:

Moreover, only the Eells, Suppes, and Galton measures have property (†). None of the other 
measures studied here are such that ICS(E, C 2, C 1) places such a substantive constraint on the 
values of CS(E, C 1), CS(E, C 2) for independent causes. (†) Strikes us as an undesirable property: 
it seems to indicate that there are a priori restrictions on which kinds of causes can act 
independently of one another.

Finally, we ask whether ‘the conjunction of two independent causes is better than one’. More 
precisely, we consider the following question: which of our measures satisfy the following 
property for conjunctions of independent causes:

The intuition behind (S) is that if C 1 and C 2 are independent causes of E, then their conjunction 
should be a stronger cause of E than either individual cause C 1 or C 2. It is interesting to note 
that some of our measures appear to violate (S).13 That is, if we think of (S) informal terms, then 
measures like Eells and Cheng appear to violate (S). The problem here lies with the proper way 
to unpack. ‘CS(E, C 1 ∧ C 2)’ for measures like Eells and Cheng, which compare P(EǀC) andP(Eǀ 
~C). When calculating CS(E, C 1 ∧ C 2) for such measures, we should not simply compare P(EǀC 1
∧ C 2) and P(Eǀ ~(C 1 ∧ C 2)), (p.625) since that involves averaging over different possible
instantiations of causal factors that might undergird the truth of ‘~(C 1 ∧ C 2)’. Rather, we should 
compare P(EǀC 1 ∧ C 2) and P(Eǀ ~C 1∧ ~C 2). Thus, for example, forthe Eells measure, we would 
have CSe(E, C 1 ∧ C 2) = P(EǀC 1 ∧ C 2)− P(Eǀ ~C 1∧ ~C 2). Once we correct for this misleading 
way of unpacking ‘CS(E, C 1&C 2)’ in (S), then it follows that almost14 all of our measures of 
causal strength satisfy (S).

Note that if we redefine CS(E, C 1 ∧ C 2) in this way, then some of the identities in Table 29.3 will 
not hold for conjunctive causes. For instance, the identity CS s(E, C) = P(~C)CSe(E, C) relating 
the Eells and the Suppes measure for atomic causes, is not preserved. That is, it will not be the 
case that either CSs(E, C 1 ∧ C 2) = P(~(C 1 ∧ C 2)) CSe(E, C 1 ∧ C 2) or CSs(E, C 1 ∧ C 2) = P(~C 1∧ 
~C 2)CSe(E, C 1∧ C 2) in general. Moreover, the redefinition of CS(E, C 1 ∧ C 2) entails that in 
order to calculate causal strengths, we must identify the appropriate level of atomic causes. 
Most of the results in this chapter have to do only with such atomic (or fundamental/primitive) 
causal factors (and that is the intended domain for Table 29.3). The general problem of
combining atomic causal factors into complex causal factors is a subtle one, which is beyond the 
scope of the present discussion.

Finally, we note that with this new definition of CS(E, C 1∧ C 2), several of our measures yield 
fairly simple expressions for CS(E, C 1∧ C 2) in terms of CS(E, C 1) and CS(E, C2) in the case of 
independence:
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It bears remembering, however, that the antecedents are not all mutually satisfiable.15
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Notes:
(1) Note that both inequalities fail, albeit for different reasons, if P(~Cǀ A i)=0.

(2) Note that we are assuming that C and E do not themselves include counterfactuals. As Lewis 
(1976) shows, if we allow embeddings, we cannot equate probabilities of conditionals with 
conditional probabilities under pain of triviality.

(3) This definition assumes that each measure CS(E, C) has a corresponding measure of 
preventative strength PS(E, C) with the same functional form (although replacing E with ~E in 
the formula will sometimes result in different terms appearing in the expressions for CS(E, C) 
and PS(E, C) ‐ see the discussion of continuity properties below). In the recent literature on 
measures of confirmational strength, some authors have proposed that confirmation and 
disconfirmation should be measured using different functional forms (Crupi et al. 2007). We will 
not discuss any such ‘piecewise’ measures of causal∕preventative strength here, but this is an 
interesting (possible) class of measures that deserves further scrutiny.

(4) We thank Kenny Easwaran for suggesting this general parametric way of representing 
rescalings of measures.

(5) In Eells' theory, causal claims are relativized to a population and a population type. We 
ignore this complication here.

(6) The proposal of Dupré (1984) that we should count C as a cause of E if it raises the 
probability of E in a ‘fair sample’ amounts to the claim that C is a cause of E just in case ADCS(E,
C) 〉 0. Interestingly Eells seems not to have understood this proposal. He was adamantly 
opposed to Dupré's suggestion and even suggests that it is conceptually confused. In particular, 
he seems to interpret Dupré's call for averaging over background contexts ‐ which is clearly 
done in the formula for ADCS ‐ as equivalent to saying that C causes E just in case P(EǀC) 〉 P(Eǀ 
~C), where we do not control for confounding factors.

(7) All of the mathematical claims that appear in this chapter are verified in a companion
Mathematica notebook, which can be downloaded from the following URL: http://fitelson.org/
pmcs.nb [a PDF version of this notebook is available at http://fitelson.org/pmcs.nb.pdf]. The 
companion Mathematica notebook makes use of the PrSAT Mathematica package (Fitelson
2008), which can be downloaded from the following URL: http://fitelson.org/PrSAT/.

(7) This terminology is slightly non‐standard, since we are describing an upper bound on CS e

rather than a lower bound. However, looking at Figure 29.1, the bound results not from a ceiling 
that is low, but rather from a floor that is high.

(8) See also the discussion in Parascandola (1996) and Hitchcock (2004).
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(9) The computational tools developed in the companion Mathematica notebook (see footnote 7) 
are quite general, and can be applied to various other possible measures of causal strength, and 
various other properties of measures as well.

(10) We do not mean a literal discontinuity. All of our measures will take the value 0 when
P(EǀC) = P(Eǀ ~C), and will approach this value from below and above.

(11) See (Eells and Fitelson 2002) for a discussion of these (and other) formal continuity 
properties of probabilistic relevance measures (in the context of confirmation).

(12) It is true that we are assuming (for simplicity) that C 1 and C 2 are probabilistically 
independent, relative to the background context. But, conceptually, this assumption is distinct 
from the assumption of the causal independence of C 1 and C 2 vis‐à‐vis E. A similar distinction 
needs to be made in the context of confirmational independence of two pieces of evidence, 
regarding a hypothesis. Various accounts of confirmational independence mistakenly conflate 
these two notions. See (Fitelson 2001, chapter 3).

(13) It is important to note here that all probabilistic relevance measures of degree of causal 
strength must satisfy the following, weaker, qualitative variant of (S):(S0) If ICS (E, C 2, C 1), then 
CS(E, C 1 ∧ C 2) 〉 0 [i.e. C 1 ∧ C 2 is a cause of E]. And, this will be true on either way of 
unpacking ‘CS(E, C 1∧ C 2)’ discussed below.

(14) This question is particularly difficult to analyse for the Galton measure. We haven't been 
able to find any plausible redefinition of CSg(E, C 1 ∧ C 2) which ensures the satisfaction of (S) 
for the Galton measure. We suspect that the anomalous result occurs for CSg because of the way 
we are trying to force what is essentially a covariation measure into a measure designed for 
binary random variables. Intuitively from a perspecitive of covariation, it makes more sense to 
somehow think of ‘C 1 ∧ C 2’ as a four-valued random variable. Considered just as a binary 
variable, it stands to reason that sometimes variation in whether or not ‘C 1 ∧ C 2’ occurs won't 
capture some of the variation in whether E occurs, since some of the latter is due to variation in 
the different ways ~(C 1 ∧ C 2) can occur. This is a nice illustration of the subtlety of combining 
the causal strengths of individual (‘atomic’) causal factors.

(15) For more detailed treatment of the properties of conjunctive causes, see the accompanying 
notebook at http://fitelson.org/pmcs.nb or http://fitelson.org/pmcs.nb.pdf pp. 22–30.
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The causal power of C over E is (roughly) the degree to which changes in C cause changes 
in E. A formal measure of causal power would be very useful, as an aid to understanding 
and modelling complex stochastic systems. Previous attempts to measure causal power, 
such as those of Good (1961), Cheng (1997), and Glymour (2001), while useful, suffer from 
one fundamental flaw: they only give sensible results when applied to very restricted types 
of causal system, all of which exhibit causal transitivity. Causal Bayesian networks, 
however, are not in general transitive. We develop an information‐theoretic alternative,
causal information, which applies to any kind of causal Bayesian network. Causal 
information is based upon three ideas. First, we assume that the system can be 
represented causally as a Bayesian network. Second, we use hypothetical interventions to 
select the causal from the non‐causal paths connecting C to E. Third, we use a variation on 
the information‐theoretic measure mutual information to summarize the total causal 
influence of C on E. Our measure gives sensible results for a much wider variety of 
complex stochastic systems than previous attempts and promises to simplify the 
interpretation and application of Bayesian networks.

30.1 Theories of causal power
Intuitively, causal power is the strength of the connection from a cause to an effect: the power of 
a drug to palliate a patient; the power of a medicine to cure a patient; the power of a carcinogen 
to kill a patient. Probably everyone concerned with understanding causal relationships would 
prefer to replace our intuitions about these powers with a formal measure of causal power. AI 
researchers would like a tool which could explain observed effects in terms of the most 
important observed causes in a causal Bayesian network. Cognitive psychologists studying 
human causal reasoning want a well‐founded account of causal power in order to better assess 
human judgment and the effectiveness of training in causal reasoning. Philosophers of science 
would like a criterion that could help with theories of causation (both type and token). Perhaps, 
eventually, we can hope for tools to help us assess moral and legal responsibility. While these 
aims are all distinct, they are also all related.

(p.629) Over the last century there have been several notable attempts at producing such an 
analysis of causal power. We begin by briefly reviewing these.

30.1.1 Wright's theory
The first such theory can fairly be attributed to Sewall Wright (1934). He developed the first 
formal theory of graphical causal models, namely linear path models, which gave rise to the 
structural equation modelling which has dominated causal analysis in the social and biological 
sciences ever since. Path models are standardized linear models, where every variable takes the 
unit normal distribution N(0,1), directed arcs between variables indicate direct causal 
connections (e.g. C → E ), and each arc is assigned a path coefficient ρ EC relating its cause C (or
parent) to its target E (or child). Wright demonstrated a strict relation between the path 
coefficients and linear correlations, allowing path coefficients to be calculated from observed 
correlations and vice versa. Between any two variables X and Z:

1. Each active path contributes a correlation equal to the product of the path coefficients 
along it (e.g. X → Y → Z contributes ρ yx ρ zy).
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2. The total correlation is the sum of the contributions of all active paths.

Φk is an active path from X to Z if and only if it is a sequence of arcs connecting X to Z where no 
arc points backwards after an arc has pointed forwards. Active paths, therefore, are either 
chains, forwards or backwards, or paths that relate two variables via a common ancestor. They 
cannot include collisions (e.g. X → Y ← Z).1

Wright did not explicitly attempt to characterize causal power. However, one straightforward 
way of doing so with path models would be to select only those paths that are forward chains 
from X to Y, and calculate the amount of correlation due to these paths. Another possibility is to 
apply the concept of intervention. Interventions can be represented by variables new to the 
modelled system, intentionally introduced to influence the value of one or more system 
variables. What we can call perfect interventions are those which successfully target a single 
variable, setting it to a particular distribution in a deterministic way, without regard for the 
original parents. While in reality perfect interventions are rare (Korb et al., 2004), they can be 
very useful in developing theory; for one thing, graphically they can be represented simply by 
setting the target variable to its intended distribution and cutting all in‐bound arcs to it. 
Suppose we apply such an intervention to C in a path model, imposing the unit normal 
distribution N(0,1). Only the forward chains from C to E will transmit the results of our 
intervention, and (p.630) thus the resultant correlation with E will be equivalent to picking out 
these paths by hand. Whichever way we apply Wright's theory for analysing causal power, the 
resultant formula is:

Definition 30.1 (Wright's (implicit) causal power measure)

The causal power of C for E is:

for all forward chains Φk = C →…→E and for all X m → X i ∈ Φk.

We believe this is a perfectly fine theory of causal power, as far as it goes. It is limited to 
recursive models, since non‐recursive models lack directionality for some of their arcs. This can 
be interpreted as ignorance, either about arc orientation or about the possibility of unknown 
common causes relating the correlated variables. In either case, recursive models can be viewed 
as representing the underlying reality, with causal power being unknown until that reality is 
better revealed. So this limitation is not a defect in Wrightean power theory; it is a feature that 
all causal power theories ought to share. The problem is that Wright's theory is limited to linear 
Gaussian models, and many systems are nonlinear.

30.1.2 Good's theory
Good (1961) made the earliest explicit proposal for a causal power measure. He intended it to be 
more generally applicable than Wright's measure, by encompassing all kinds of multinomial 
networks (i.e. ones with discrete variables). Good made some general assumptions about the 
nature of a putative causal power measure, and thereby derived something equivalent to his 
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Bayesian ‘weight of evidence’ formula (and vaguely analogous to electrical conductivity and 
resistance):

Definition 30.2 (Good's basic causal power measure)

The causal power of C = c to produce E = e is:

provided that any dependency is entirely due to C affecting E.

Q(e : c) plays a similar role to CP(C, E) in Wright's theory. Like Wright, Good suggests a formula 
for calculating the causal power of a chain by combining the causal power of component arcs 
and also for additively calculating the causal power of multiple causal chains.

Unfortunately, Good's general assumptions do not hold in many multinomial networks. (p.631)

• He assumes he can treat all variables as if they are binary, e.g. comparing c to ¬c
while ignoring any differences between sub‐states of ¬c.
• Hence, his method of calculating the power of a causal chain, while it may hold for 
genuine binary variables, fails in general for discrete networks. For example, it 
entails causal transitivity: positive causal power from c to d and d to e implies 
positive causal power from c to e. This is inevitable for linear causal models, and for 
some others discussed below, but not for all multinomial networks. His formula can 
also give different answers depending upon the precise path, even if the end‐to‐end 
dependency is the same (Salmon, 1980), which contradicts his own assumptions.
• Good assumes that the power of multiple chains can simply be added, a method 
that fails wherever there is any causal interaction (even in binary networks).
• Good also provides no way of distinguishing causal from non‐causal dependency 
paths.

Clearly, then, Good's theory is unsatisfactory as a general account of causal power.

30.1.3 Cheng's theory
Patricia Cheng (1997) developed her ‘power PC’ theory as an improvement over Rescorla and 
Wagner (1972), and it has been further developed by Glymour and Cheng (1998), Novick and 
Cheng (2004), and Glymour (2001). Cheng begins with a measure of positive statistical 
relevance, or ‘positive probabilistic contrast’

which indicates ‘candidate generative causation’, echoing Suppes (1970), who called this prima 
facie causation. c is only a prima facie cause because the probabilistic contrast may actually be 
caused by a common ancestor that raises the probability of c and e occurring together. Suppes 
went on to lay down temporal and statistical conditions aiming to rule such cases out. These 
efforts have now been subsumed by developments in Bayesian network technology (cf. Twardy 
and Korb, 2004). Cheng rules these cases out by laying down some very stringent requirements 
for the causal relationships permitted in her models. First, the occurrence of c must be 
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independent of all other parents of E. This implies either a limited causal structure in which 
there are no causal paths between C and these parents, or that the effect of these paths can be 
cancelled by fixing some background variables (which is not possible in some graphs). Second, 
the dependency between c and e must be independent of the dependency between e and any 
other parent, implying that there can be no causal interaction between C and any other parents 
of E.

(p.632) Given these restrictions, it is clear that the probabilistic contrast must be caused by c. 
In other words, the occurrences of c must be ‘generating’ the additional occurrences of e. Cheng 
now defines the causal power of c for e as the probability that any given occurrence of c will 
generate e. This causal power of c is labelled p c, leaving e implicit. Her basic insight is that ΔP is 
not a fair measure of p c. There is a specific background rate at which e occurs even without c, 
namely P(eǀ ¬ c). This means that we can only detect the impact of c on the remaining instances 
of E, by measuring how many background occurrences of ¬ e are converted to e. ¬ e occurs with 
a background frequency of 1 − P(eǀ ¬ c); it is converted with a frequency of Δ P; and therefore, 
the success rate of c must be the ratio of these two quantities.2 Hence:

(30.1)
In contrast, a negative Δ P indicates ‘candidate preventive causation’, in which c appears to 
prevent e from occurring. To analyse this, Cheng places the same stringent restrictions on the 
parental relationships. She then defines the causal power of c to prevent e in an analogous way, 
as the probability that any given occurrence of c will prevent e. To distinguish prevention from 
generation, we write preventive powers as pc. By similar reasoning, we can only detect the 
success rate of c against the background rate of e, namely P(eǀ ¬ c). Thus:

(30.2)
Cheng claims that these formulae are a significant improvement on previous theories, such as 
that of Rescorla and Wagner (1972), because (among other reasons) the formula for p c provides 
the correct answer when e always occurs. If e always occurs, then the value for p c is undefined, 
rather than a power of zero, as Rescorla and Wagner had suggested. Cheng deems leaving p c

unspecified to be correct because we should be unable to statistically assess the candidate 
causes of a universal event. Similarly, the value of pc is undefined when e never occurs. 
However, we do not see this feature of her theory as a significant advantage. Rescorla and 
Wagner might well reply that no candidate cause could demonstrate any statistical power over a 
universal event, and therefore in such cases zero is a reasonable statistical assessment of causal 
power.
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(p.633) The fundamental problem with Cheng's measure is that it has an extremely limited 
range of application.

• Like Good's theory, it is only applicable to questions about causal relations 
between values, as opposed to the variables themselves (which were addressed by 
Wright's theory).
• Like Good, Cheng treats all variables as if they are binary. Admittedly, this does 
not lead to the same contradictions in calculating the causal power of chains and 
networks with complex relations or structures. But then Cheng does not offer any
way to calculate causal power in such cases.
• The structural independence restrictions upon parents are very severe, and will 
not be met by many Bayesian networks. This just leaves causal power undefined, 
despite the fact that C is clearly affecting E.
• Cheng's blanket ban on any causal interactions between parent variables are 
necessary to make her derivations of (30.1) and (30.2) work, but as Glymour (2001) 
has shown, it limits Cheng's theory to noisy‐OR Bayesian networks. Novick and 
Cheng (2004) relax this last restriction by combining interactive parents in new 
variables. However, that ad hoc solution is, on the one hand, computationally 
infeasible when many parents of large arity are involved, and, on the other hand, 
leaves the restriction to non‐interaction between all remaining parents untouched.3

• A notable consequence of the restriction to noisy‐OR networks is causal 
transitivity. This, in fact, is a property of all the accounts discussed so far. Yet any 
account of causal power that entails transitivity is misleading, since causation in 
general is not transitive–a fact which is reflected in other types of Bayesian network. 
Take, for example, Richard Neapolitan's case of finesteride (Neapolitan, 2003). 
Finesteride reduces testosterone levels; lowered testosterone levels can lead to 
erectile dysfunction. However, finesteride fails to reduce testosterone levels
sufficiently to cause erectile dysfunction. Such threshold effects do not occur in 
linear or noisy‐OR networks, but they are common elsewhere.

Cheng's theory was intended, in part, to provide a psychological model for the causal 
attributions made by ordinary folk. Whatever its merits may be for this purpose, it lacks the 
generality that we would like from a sophisticated causal power measure.

30.1.4 Desiderata for causal power

(p.634) Having briefly reviewed prior accounts of causal power, we can invert the list of their 
several or collective drawbacks to generate a list of features that would be desirable in a new 
account:

1. Wright's implicit causal power theory for linear models appears to be fine within its 
domain. Hence, if any new theory is applied to linear models, we should like it to 
attribute powers that directly correspond to Wright's. Specifically, causal powers 
between variables in linear networks should be ranked in the same order.
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2. The measure should additionally be more general than Wright's theory by being 
applicable to all kinds of Bayesian network: even those with complex variables, 
structures, and dependencies.
3. The measure should not entail transitivity–simply because causation is not, in general, 
transitive. Of course, the measure needs to reflect transitivity when it appears.
4. The measure should be compatible with intervention. It should support the 
fundamental idea, illustrated above with Wright's theory, that interventions test causal 
power.
5. The measure should have an information‐theoretic interpretation. This desideratum is 
not motivated by prior considerations, but we adopt it since causality gives rise to 
probabilistic relationships, which then ought to be interpretable using Shannon's 
information measure.4

Prior measures fulfil some of these requirements, but none of them successfully fulfils them all.

30.2 Causal Bayesian networks
There is a new paradigm for modelling probabilistic causal systems, arising from new 
technology, namely causal Bayesian networks. Such networks offer a powerful and general way 
to represent all kinds of stochastic causal relationships, and are being deployed in both 
theoretical and practical applications across a wide range of disciplines. Our own proposal for 
analysing causal power is (simultaneously) a proposal for reading the causal stories implicit 
within these networks, even if the entire network is too complex to fully comprehend.

Bayesian networks, popularized by Pearl (1988), use directed acyclic graphs to represent 
probabilistic relationships between random variables, e.g. C → D → E. There is an elementary 
conditional probability function P(Dǀπ D) (p.635)

associated with each node, which specifies a 
probability distribution for its variable, D, 
that depends only upon its parents, π p (here 
only C), and not upon other variables (such 
as E). The linear models of Wright and the 
noisy‐ OR networks of Cheng are special 
cases. But in general the conditional 
probability functions are unrestricted and 
can include nonlinear interactions such as 
XOR relationships or threshold effects.
Bayesian networks were not originally intended to be interpreted causally: they were simply 
maps of probabilistic dependence, in which the arcs might be oriented in an anti‐causal 
direction (e.g. C ← D). But in a causal Bayesian network the arcs are also supposed to reflect the 
direction of causation, and this interpretation has become increasingly important. Many causal 
discovery algorithms have been developed to learn causal Bayesian networks from data, and 
they have been quite successful (e.g. Verma and Pearl, 1990; Spirtes, Glymour, and Scheines,
2000; Neapolitan, 2004; Korb and Nicholson, 2004).

Fig. 30.1  (a) Fisher's smoking model; (b) 
Fisher's model with intervention.
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Given an explicitly causal Bayesian network, it becomes possible to model the implied effects of 
interventions–and this can be crucial for determining the causal story. For example, the fact that 
smoking is correlated to cancer is usually explained by the model Smoking → Cancer. But Sir 
Ronald Fisher proposed Figure 30.1(a) as an alternative model. His point was two‐fold: (1) 
observational, correlational data alone cannot distinguish between the two models; (2) 
interventional data can do so. If his model were right and we intervened to force people to 
smoke, as in Figure 30.1(b), then there would be no resulting increase in cancers–whereas the 
usual model implies just such an increase. Thus, interventions can't be modeled without 
causation, and conversely, interventions can expose the difference between correlation and 
causation.

30.3 Causal information
Given these tools, we can now present our solution to the problem of measuring causal power: 
causal information.5 Given some causal Bayesian network, (p.636) the problem is to state the 
causal power of one variable, C, over another variable, E, implied by that network.6

30.3.1 Background conditions: ψ h

Causal questions are always put relative to some background conditions. The propensity of 
smoking to induce lung cancer, for example, is likely to be an issue for a large class of adult 
humans, but not, perhaps, for humans who already have cancer. A full account of how 
background context should be modelled is a difficult and unsolved problem and one which surely 
must involve a treatment of conversational implicature and psychological theory. What is 
counted as an appropriate context depends upon our interests, perhaps varying from moment to 
moment as we shift from a historical query to a counterfactual query. Without attempting to 
provide an analysis of such complex issues, we simply point out that Bayesian networks offer 
some useful resources for representing context. Here we will simply represent such conditions 
by identifying a set of network variables whose values should be fixed, Ψ = ψ h.7 Thus, all the 
probabilities discussed in the following sections will be conditional probabilities of the form P(∙ 
ǀψ h), but for brevity we will omit this condition in our formulae for causal power.

30.3.2 Hypothetical interventions: P*(C)

As we have seen, intervention upon C provides a straightforward way to distinguish between 
non‐causal paths to E, e.g. those that run through common ancestors, and causal paths to E, i.e. 
forward chains. For this purpose we will apply hypothetical interventions that are targeted 
strictly at C, independent of any other parents of C and overwhelm their effects, and which 
impose a specific distribution on C.8 So we augment the model M to M*, with just one new 
intervention node and arc I C → C, and just one new elementary conditional probability function
P*(Cǀ π c, I c) over C, replacing the original P(Cǀ π c). Since the intervention is overwhelming, 
when I C = Yes all inferential paths that begin backwards from C are cut. Since the intervention 
is stochastic, C still varies, and therefore dependency can still be transmitted by any path that 
begins forwards from C. For brevity, we will assume that I C = Yes has been added to ψ h

whenever we refer to P*(∙).

(p.637) But what intervention distribution should be imposed upon C? There are three 
alternative choices that strike us as reasonable, each serving a slightly different purpose.
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Original P*(C)

The first option is to reassert the original distribution over C. The new model M* will still differ 
from M; however, by reimposing the original distribution on C we minimize those differences. 
Not only are all the causal paths between C and E preserved, but also the variation in C itself. 
The similarity between M and M* means that the causal power of C over E in M* reflects the 
original situation in M as closely as possible. For example, we can use M* to consider, ‘Given the 
variation in blood pressure among the general population, how much is this variable affecting 
heart attack outcomes?’ We should note, however, that even if we impose the original 
distribution upon C, the resulting distribution upon E may still be considerably different in M* 
than it was in M, simply because (as intended) C is no longer dependent on its original parents.

Uniform P*(C)

We may not always wish to measure causal power relative to the original distribution over C. For 
example, in some subpopulation which regularly exercises and mostly eats fish, there may be 
very little natural variation in blood pressure. In consequence, the connection between blood 
pressure and heart attack outcomes will be concealed by this healthy lifestyle. So one way to 
bring out this latent feature of M is to consider a different intervention distribution over C, even 
though it is not the naturally occurring distribution in M. Any investigation into the power of 
blood pressure in M would certainly not randomize its subjects so that they all fell into the low 
blood pressure group; instead, it might mimic randomized experimental design by distributing C
uniformly, with equal numbers across blood pressure categories. Thus, one plausible choice is a 
uniform distribution on C, so that there are equal numbers of subjects in every blood pressure 
group. In comparing the effects of different blood pressures, this provides a ‘level playing field’ 
in which the results are not biased by different actual frequencies for these blood pressures. 
Similarly, in comparing the influence of variables, it provides a standard distribution for 
comparison.

To be most exact, we would impose some intervention distribution P*(C) such that after we take 
into account the background conditions, the resulting distribution P*(C ǀ ψ h,) is uniform. That is,

for each c i. We note that to achieve this, P*(C) itself will not always be uniform.

Maximizing P*(C)

Another reasonable question to ask is: what is the maximum impact that C could possibly have 
on E, according to M? To be precise, we can search the (p.638) space of possible intervention 
distributions P*(C), to find those that maximize our causal power measure given the background 
conditions.

Note that this will not always be the uniform distribution considered above, even though for 
unbiased channels the uniform distribution maximizes mutual information. The ‘channel’ here–of 
causal power–will frequently be biased. Suppose, for example, that there are only three blood 
pressure categories, and while both low and medium blood pressures result in a similar risk of 
heart attack, high blood pressure results in a much higher risk. Then the maximum probabilistic 
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dependence between Blood Pressure and Heart Attack will result from a distribution in which 
nearly 50% of subjects have high blood pressure, rather than 33%.

These three possible intervention distributions are complementary, attempting to measure three 
different forms of causal power of C over E: the original causal power, a uniform causal power, 
and the maximum causal power. Either of the latter two standardize causal power comparisons 
between models in that they eliminate the influence of diversity in prior distributions over C. In 
the formulae that follow we leave open the choice of intervention distribution, which is simply 
denoted P*(C). But to make illustrative computations, we will imagine that the original 
distribution has been imposed upon Blood Pressure to measure its causal power over Heart 
Attack, as in Figure 30.2.

30.3.3 Causal information formulae
Two values: c and e
We begin with the simplest formula and then work our way through the more complicated ones. 
Each formula answers a slightly different causal question.

In particular, we begin with the question: what is the causal power of one value, c, to affect 
another value, e? Value‐to‐value questions such as ‘If I have high blood pressure, then how much 
does this affect my risk of having a heart attack?’ are quite common. The causal information 
answer is:

(p.639)

(30.3)
In information theory, this formula gives the 
information about e that is provided by the 
discovery that C = c compared to knowing 
the prior distribution P*(C). Given that only 
causal paths are active, we suggest that this 
formula can also serve as a good measure of 
the causal power of C = c to affect the 
probability of E = e. For example, suppose 
we observe that a patient has high blood pressure, c. This increases the probability of having a 
fatal heart attack, e, from the average probability P*(e) = 0.14 to P*(eǀc) = 0.23. So P*(eǀc)/ P*(e) 
= 1.63. This is converted to a logarithm base 2,9 which takes the positive value 0.71. It is 
multiplied by the probability of having a heart attack given high blood pressure, 0.23. So the 
causal power of high blood pressure to promote heart attack is 0.16.

Causal information compares P*(eǀ c) to the marginal probability P*(e), rather than the 
complementary probability P*(eǀ¬c). This is similar to the standard formula for statistical 
relevance (SR) used in philosophy, rather than the standard formula used in psychology (Δ p). 
Causal information compares these two probabilities as a ratio rather than a difference, thus 
measuring the proportional change (like the Bayes factor in confirmation theory) rather than the 

Fig. 30.2  An original intervention on blood 
pressure, to measure its causal power.
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absolute change (like SR). This proportion is converted to a logarithm, which is usual in 
information theory. This logarithm is then weighted by the probability P*(eǀc). The CI(c,e) 
measure is positive for promoting causes and negative for preventive causes, just like Δ p.

Note that in this formula the prior probability of high blood pressure, P*(c), does not feature as a 
weighting factor. C = c is treated as a given, as in the example question ‘If I have high blood 
pressure,…’, so we set P*(c) = 1.

Variable causes: C and e

The next formula addresses the question: what is the causal power of one variable, C, to affect a 
particular value, e?

(30.4)
This formula gives the expected information about e that will be provided by discovering the 
value of C, whatever that turns out to be, compared to knowing the distribution P*(C). The 
difference between this and Equation 30.3 is that the value of C is no longer treated as a given. 
Instead, we take the information (or power) from each individual value c i, and weight this by the 
probability P*(c i), to calculate the expected value. We suggest that this formula can also serve 
as a good measure of the causal power of C to affect the probability of (p.640) E = e. For 
example, ‘How much does variation in blood pressure affect the risk of having a heart attack?’ is 
a variable‐to‐value question.

Note that some of the individual figures for causal power will be positive, and other figures will 
be negative. If we took a weighted average of the absolute magnitudes, then this would be the 
expected magnitude of the causal power exerted when C takes a specific value. However, the 
information‐theoretic formula given above does not use absolute magnitudes, and negative 
individual powers will partially offset the positive ones. Therefore, CI(C, e), while useful for 
comparing alternative models, cannot be directly compared to the magnitude of CI(c, e). The 
CI(C, e) measure will always be positive, provided that C has some effect, i.e. ∃i, j : P*(eǀ c i) ≠
P*(eǀ C j), and otherwise it will be zero (see Appendix B).

Variable effects: c and E

What is the causal power of one particular value, c, to affect a variable, E?

(30.5)
This formula gives the total information about E that is provided by the discovery that C = c
compared to knowing the distribution P*(C). The difference between this and Equation 30.3 is 
that we are interested in all the values of E, not just one e. So we take the information from c for 
each individual value e i, and add them to calculate the total value. We suggest that this formula 
can also serve as a good measure of the total causal power of c to affect the probability of E. For 
example, ‘How much does having high blood pressure affect heart attack outcomes?’ is a value‐
to‐variable question. Again, note that our information‐theoretic formula does not use absolute 
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magnitudes, and the negative individual powers will partially offset the positive ones. The CI(c, 
E) measure is equivalent to the Kullback–Leibler divergence between P*(Eǀ c) and P*(E), which is 
always positive, provided that there is some difference between the distributions.

Two variables: C and E

What is the causal power of one variable, C, to affect another variable, E?

(30.6)
This formula gives the expected information about E that will be provided by discovering the 
value of C, whatever that turns out to be. It uses both the weighted average over the values of C
and the sum over the values of E. We suggest that this formula can also serve as a good measure 
of the total causal power of C to affect the probability of E. For example, ‘How much (p.641) 

does variation in blood pressure affect heart attack outcomes?’ is a variable‐ to‐variable 
question. Again, the negative individual powers will partially offset the positive ones, but the 
CI(C,E) measure will always be positive, provided that C has some effect on E.

The number of alternative formulae reflect the fact that there are several related questions 
about the causal power of C over E. So it is important to disambiguate informal queries such as 
‘How much does blood pressure affect heart attacks?’ before attempting to find an answer.

30.3.4 Mutual information
This last variable‐to‐variable equation can be transformed as follows:

(30.7a)

(30.7b)

(30.7c)

(30.7d)
This shows that causal information is identical to the information‐theoretic quantity mutual 
information (MI), when applied to the two variables C and E, given the intervention upon C. The 
mutual information formula looks a little different. It compares the probability that c and e will 
occur together, P*(c,e), to the probability that they would occur together if the two variables 
were independent, P*(c) P*(e). Thus, it measures the amount of dependency that exists between 
each pair of variable values. The accumulated dependency for the two variables is obtained by 
weighting these ratios according to the probability that this pair of values will actually arise, P* 
(c, e). In fact, the causal information formula does the same thing, but it has been expressed in 
an asymmetrical fashion to suit the asymmetry between cause and effect.
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By definition, mutual information is the expected amount of information that one variable 
provides about another (or the loss of information that arises by falsely assuming that they are 
independent).10 But, as above, it can also be interpreted as the amount of dependency between 
them. Therefore, it would be a good measure of causal power–except that some of this 
dependency can arise from non‐causal links. Causal information corrects this defect.

30.3.5 Entropy

(p.642) Mutual information is also closely related to the entropy measure of randomness. The 
information entropy on the variable E is defined as follows (Cover and Thomas, 1991):11

(30.8)
Entropy is zero when P(E = e i) = 1 for some value e i, when there is no uncertainty about the 
value of E. It is maximized when P(E) is uniform across all the possible values of E, when 
uncertainty is highest.

Similarly, conditional entropy measures the randomness of one variable given knowledge of 
another:

(30.9)
Thus:

(30.10)
This supports the interpretation of mutual information as the reduction in the uncertainty of E
due to the knowledge of C.

30.4 Comparisons
Causal information has some clear advantages over the rival measures of causal power.

• Causal information is well defined for all causal Bayesian networks. This includes 
all the restricted classes of network for which other measures were designed: linear 
models, Cheng's binary models and their extensions, and whatever models Good had 
in mind. But it also includes classes of network for which these rival measures are 
not well‐defined: e.g. ones with interactive causes, intransitivity, or multinomial 
(discrete) variables.
• Causal information is well defined for a wider variety of questions. It relates any 
causal variable or value (either observed or observable) to any effect variable or 
value. It does so with a uniform approach, unlike Cheng's measure (for example), 
which uses a different formula for promoting and preventive causes.
• Causal information yields appropriate results in all the restricted classes of 
network, where it mirrors the local properties. For example, in any (p.643) network 
that exhibits causal transitivity, C → D → E implies that E is dependent upon C. But it 
follows immediately that CI(C, D) ≠0, CI(D, E) ≠0, and CI(C, E) ≠0. So causal 
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information itself exhibits causal transitivity, simply by accurately summarizing the 
true amount of dependency. Similarly, in linear path models, causal information is a 
monotonically increasing function of the magnitude of correlation (Hope, 2008, Chap
6). Therefore, the fact that other measures are necessarily transitive offers no 
advantage, even when they are applied to their own preferred class of network.
• Causal information yields appropriate results in the other classes of network, 
where it does not impose inappropriate properties. For example, in any network that 
exhibits causal intransitivity or interaction, causal information itself exhibits 
intransitivity or interaction, since it is based directly upon the corresponding 
probability distributions. It follows that causal information can be applied uniformly, 
without making restrictive assumptions about the structure of the network or its 
dependencies.

30.4.1 Quantitative comparisons
We will now provide some quantitative comparisons of the competing causal power measures, 
by applying them to appropriate graphs.

30.4.2 CI versus Wright
Since Wright's coefficients are only defined for linear models, we have constructed a linear 
approximation of our discrete blood pressure graph, depicted in Figure 30.3. This includes just 
the variables Exercise, Blood Pressure, and Heart Attack. We have assumed that these variables 
have been converted to scalar quantities that are distributed according to the standardized 
Gaussian distribution N(0,1). Positive numbers therefore represent higher than average levels, 
and negative numbers represent lower than average levels.

(p.644) The size and direction of the 
dependencies in the discrete graph have 
been converted to similar path coefficients: 
−0.8 between Exercise and Blood Pressure; 
−0.2 between Exercise and Heart Attack; 
and +0.4 between Blood Pressure and Heart 
Attack.

The challenge is to measure the causal 
power of Blood Pressure over Heart Attack, 
despite their common cause Exercise, which 
forms the backpath

Since there are two paths between Blood 
Pressure and Heart Attack, Wright's equations tell us that the total correlation between them is 
the sum of the correlations due to each of these paths:

(30.11)

Fig. 30.3  Linear approximation to the Blood 
Pressure graph.
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This figure obviously depends upon the strength of the backpath. Yet the arc directions imply 
that Blood Pressure does not actually exert any causal influence by this path. In fact, since this is 
a linear graph, either changing the path coefficients on this path or conditioning upon Exercise
can have no effect upon the causal dependency between Blood Pressure and Heart Attack. So, it 
follows that any measure that is affected by the backpath is incorrect.

To convert Wright's approach to a measure of causal power, we can pick out just the directed 
causal paths from Blood Pressure to Heart Attack, and calculate their contribution alone:

(30.12)
This is a plausible measure since it only depends upon the causal path and increases with the 
size of the correlation that it induces. Ignoring causal direction in this case would result in a 
40% overestimate of causal power (as measured by correlation).

To apply the CI measure, we can simulate an overwhelming intervention upon Blood Pressure
with an intervention distribution that is the original marginal distribution, i.e. N(0,1). This 
overwhelms the arc between Exercise and Blood Pressure. Since the intervention has removed 
the backpath, the total correlation is now equal to the causal correlation. As noted above, CI is a 
strictly monotonically increasing function of this restricted causal correlation; i.e. the CI 
approach is equivalent to Wright's approach for determining which paths are causal and 
combining them to form a total causal correlation. The only substantial differences are (a) the 
information‐theoretic rescaling, and (b) the CI approach does not need any additional algorithm 
to identify the paths or make the calculations–once the intervention is added, any standard 
Bayesian updating algorithm can do that work. (p.645)

30.4.3 CI versus Cheng
Cheng's measure can be applied to any 
discrete graph, but, unlike CI, it will not 
generally be valid if her strict assumptions 
are not met. To illustrate, we have 
constructed an alternative version of our 
discrete blood pressure graph, which has 
been simplified to accommodate Cheng's 
restrictions (Figure 30.4):

1. We have removed the connection 
between Exercise and Blood Pressure, so that they are not marginally dependent.
2. Cheng's formulae are defined for binary variables. We can only apply the power PC 
theory to our ternary variables by partitioning the states into two mutually exclusive 
subsets. We shall let the causal event c be high blood pressure, so that ¬c is either 
medium or low blood pressure. We assume that the relative marginal probabilities of 
these two sub‐states of ¬c remain the same. We shall let the effect event e be a fatal 
heart attack, and the other possible cause of this event be low exercise.

Fig. 30.4  Noisy‐OR approximation to the 
blood pressure graph.
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3. We have altered the effects of low exercise and high blood pressure on fatal heart 
attacks so that their true interaction is replaced by a noisy‐ OR approximation. 
Specifically, there is a 20% chance that high blood pressure alone will result in a fatal 
attack; 12.5% for low exercise alone; 30% for both factors together; and 0% where 
neither factor is present. All necessary adjustments to the rates of fatal heart attack have 
been balanced by changes to the rates of non‐fatal heart attack.

These simplifications are not very realistic, but these or similar changes are necessary in order 
to satisfy Cheng's restrictions.

We can now apply Cheng's formula to assess the power of high blood pressure to promote fatal 
heart attacks. We are supposed to ignore Exercise, since it is assumed that this does not affect 
the causal power of Blood Pressure. So we shall just assume the marginal distribution over this 
variable. The result is (see Appendix A for computation details): (p.646)

Cheng's figure of 0.20 is a measure of causal power, but it can also be given a straightforward 
probabilistic interpretation. It is supposed to be the probability that high blood pressure will kill 
someone, given that without high blood pressure they would survive. Since this is a noisy‐OR 
graph, this figure is perfectly accurate relative to that graph and is a perfectly reasonable way 
to measure how much high blood pressure promotes fatal heart attacks. Nevertheless, even in 
this case, CI does interestingly differ from Cheng's measure, beyond its different scaling.

The CI formula, where we assume an intervention upon Blood Pressure that imposes the original 
marginal distribution, reports the causal power:

The CI figure of 0.37 is the expected number of bits saved by learning that C = c, when 
efficiently encoding the fatal outcome E = e. Whereas PC reflects only the proportional increase 
in risk, CI reflects the absolute increase in risk, through the weighting by P*(eǀ c): the absolute 
probability of a fatal heart attack given high blood pressure. In consequence, the CI measure, 
unlike power PC, can report different amounts of causal power depending upon the state of
Exercise. For example, suppose that one does some exercise, so the chance of dying is low. In 
that case, high blood pressure would result in bigger absolute increase to the chance of dying, 
and accordingly, CI(c, e) = 0.44. On the other hand, if one does low exercise, then the chance 
dying is higher anyway, so having high blood pressure would result in a smaller absolute 
increase, and accordingly, CI(c, e) = 0.26. Clearly, there is a sense in which Exercise does affect 
the power of high blood pressure for fatal heart attacks. CI reflects this, whereas Cheng's 
measure does not.

So far we have found some differences between CI and power PC, without establishing any 
advantage over the latter. Suppose now that we reintroduce the original connection between
Exercise and Blood Pressure. By violating Cheng's assumptions, this will increase the divergence 
between the CI and PC analyses. The power PC theory's assessment of causal power becomes:
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The backpath has caused Cheng's causal power estimate to increase by 10%. But in fact the 
noisy‐OR interaction has not changed, so the true probability that high blood pressure will kill 
has not changed. Regardless of one's level of exercise, high blood pressure still reduces the 
chance of survival by 20%. The 10% difference therefore represents an error in Cheng's 
estimate of (p.647)

causal power, overstating the power of high 
blood pressure. In contrast, the CI measure 
is unchanged, since the reintroduced arc is 
overwhelmed by the intervention 
distribution. This is a clear advantage of CI.
Now let us revert to our original graph, 
relating Exercise, Blood Pressure, and Heart 
Attack, as depicted in Figure 30.5. The PC 
calculation for it yields:

While Cheng's measure can again be applied, it is now vulnerable to two sources of error: the 
backpath and the messy interaction. The interaction between Exercise and Blood Pressure
creates an additional kind of problem for PC. Cheng's theory suggests that we can afford to 
ignore the state of Exercise and gives us only one figure for the power of Blood Pressure. But 
unlike the noisy‐OR graph, the true probability may differ depending upon one's specific level of
Exercise–for example, low exercise and high blood pressure may have a synergistic effect in 
promoting fatal heart attacks. Given any such interaction, Cheng's measure will be unreliable 
for specific states of Exercise. The CI account acknowledges such possibilities and avoids errors 
due either to backpaths or to interaction effects.

Note also that for Figure 30.5 Cheng's causal power estimate has decreased from 0.20 to 0.15, a 
difference of 25%. The CI formula calculates causal power as CI(c, e) = 0.16, which is less than 
50% of the 0.37 obtained from the noisy‐ OR graph. This shows that on either measure, major 
errors resulted from using the noisy‐OR approximation–and so we are much better off using a 
more general measure applicable to arbitrary causal networks.

30.4.4 Cl versus MI
Finally, we will contrast causal information with mutual information, again using the original 
graph in Figure 30.5. The MI formula applied to Blood Pressure and Heart Attack (assuming the 
original marginal distributions) is equivalent to: (p.648)

(30.13)
which reports the mutual information as 0.28. In contrast, the CI formula is:

Fig. 30.5  The original Blood Pressure graph 
with messy interaction and backpath.
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(30.14)
calculating the causal power as 0.13, if we impose the original distribution on Blood Pressure. 
The difference between MI and CI is not due to scaling; it is because MI is affected by the 
backpath Blood Pressure ← Exercise → Heart Attack, while CI is not. So MI would be very 
misleading as a measure of causal power here: it doubles the realistic figure for the power of
Blood Pressure over Heart Attack. It could lead to over‐prescription of blood pressure 
medication, rather than recommending lifelong exercise!

30.5 Conclusions
Causal information, our new measure of causal power, is theoretically well‐ founded. Causal 
Bayesian networks provide a very general and powerful way to represent complex stochastic 
systems. Hypothetical interventions, when properly modelled in causal Bayesian networks, 
provide a clear separation of causal from non‐causal paths. In mutual information, information 
theory provides an appropriate summary measure for cumulative causal influence, which applies 
to all sorts of networks and interventions, and can be tailored to specific purposes. The 
combination of the two, interventions and mutual information, yields causal information.

The result is a measure of causal power that has much wider application than previous accounts. 
Causal information can be applied to a wider variety of systems, including those with nonlinear 
probabilistic influences and intricate structural relationships between variables. In such cases it 
still yields sensible results, unlike the alternative measures put forward by Cheng (1997), 
Glymour (2001), and Good (1961). These alternative measures were designed for simpler cases, 
such as noisy‐OR networks that exhibit causal transitivity. But in these cases, too, our measure 
still yields appropriate results. And causal information is the only measure that is well defined 
for relating any combination of values and variables.

We look forward to applying causal information to theoretical problems in philosophy and AI. 
Causal information is also a promising measure for summarizing explanatory information 
encoded in a Bayesian network and so offers new means for simplifying the interpretation of 
complex Bayesian networks.
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Appendix A: CI versus Cheng computations
The following computations were made for the examples in Section 30.4.3. The first Cheng 
computation:

The first CI computation:

The CI computation for high and medium exercisers:

(p.651) The CI computation for low exercisers:

The Cheng computation with the backpath reintroduced:
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The Cheng computation with both the backpath and interaction reintroduced:

Appendix B: CI for variables is non‐negative
Theorem 30.1. CI(C, E), CI(c, E) and CI(C, e) are always non‐negative.

(p.652) Proof.

(a) CI(C, E) is equivalent to the mutual information MI(C, E) under the specified interventions, 
as shown in Section 30.3.4. Mutual information is always non‐negative (Cover and Thomas,
1991).

(b) CI(c, E) is equivalent to Kullback–Leibler divergence between P*(Eǀc) and P*(E). Kullback–
Leibler divergence is always non‐negative (Cover and Thomas, 1991).

(c) The Kullback–Leibler divergence between P*(Cǀe) and P*(C) is
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Since P*(e) and the Kullback–Leibler divergence are always non‐negative, so is 
CI(C,e).                   ◻

Notes:
(1) So, Wright's rule for identifying paths that contribute to the correlation between pairs of 
variables is essentially the definition of d‐connection (Pearl, 1988), although Wright did not 
consider conditioning upon a collider, which will activate the path through it.

(2) Strictly speaking, this only gives us the success rate where ¬ e would otherwise have 
occurred. The success rate of c where e would have occurred anyway is a moot point. Cheng can 
either assume that it is the same, or else ignore these cases altogether, as being unimportant for 
assessing causal power.

(3) Luhmann and Ahn (2005) make the curious objection to power PC theory that it implies that 
all causes have powers of 0 or 1 to bring about their effects. They claim this follows from 
Cheng's assumptions ‘unless for some inexplicable reason, the causal link between c and e is 
intrinsically indeterminate’ (Luhmann and Ahn, 2005, p. 686). It is true that if all other causes of
e are included in the model, and the model is deterministic, then powers of 0 or 1 will result. But 
this would not be unreasonable, nor is it a special problem for Cheng's account. The complaint 
amounts to the observation that Cheng plus determinism implies determinism!

(4) For an excellent introduction to information theory, see Cover and Thomas (1991).

(5) Causal information was first introduced by Hope and Korb (2005); here we further develop 
the account and compare it to earlier theories. Ay and Polani (2008) have subsequently 
developed a similar information‐theoretic approach.

(6) Thus, we are here concerned with accounting for the total power of one variable to influence 
another, under various background conditions, across all causal paths connecting them. It would 
also be of interest to account for the causal powers of individual paths and relate them to the 
total causal power of all paths; that is a matter of current research.

(7) We will assume that Ψ does not include any common effect variable that activates a non‐ 
causal path from X to Y.

(8) We emphasize that these interventions are only hypothetical. Their purpose is simply to 
reveal features already implicit in the given causal Bayesian network. So it is not necessary that 
they be practical or even physically possible; it is sufficient that they can be modeled by 
augmentation.
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(9) The base is unimportant, and frequently natural logs are used. We use base 2 here to 
simplify the interpretation of causal information as code length.

(10) From Shannon (1948), the negative log of the probability of an event is the optimal code 
length to describe that event. Hence, mutual information can also be interpreted as the expected 
excess code length involved in recording the values of X and Y while wrongly assuming that they 
are independent.

(11) Entropy is defined subject to the common assumption that 0 log 0 = 0, which is justified by 
continuity arguments.
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Abstract

A primary problem in causal inference is the following: From a set of time course data, 
such as that generated by gene expression microarrays, is it possible to infer all 
significant causal relationships between the elements described by this data? In prior 
work (Kleinberg and Mishra, 2009), we have proposed a framework that combines notions 
of causality in philosophy, with algorithmic approaches built on model checking and 
statistical techniques for significance testing. The causal relationships can then be 
described in terms of temporal logic formulæ, thus reframing the problem in terms of 
model checking. The logic used, PCTL, allows description of both the time between cause 
and effect and the probability of this relationship being observed. Borrowing from 
philosophy, we define prima facie causes in terms of probability raising, and then 
determine whether a causal relationship is significant by computing the average 
difference a prima facie cause makes to the occurrence of its effect, given each of the 
other prima facie causes of that effect. However, this method faces many interesting 
issues confronted in statistical theories of hypothesis testing, namely, given these causal 
formulæ with their associated probabilities and our average computed differences, instead 
of choosing an arbitrary threshold, how do we decide which are ‘significant’? To address 
this problem rigorously, we use the concepts of multiple hypothesis testing (treating each 
causal relationship as a hypothesis), and false discovery control. In particular, we apply 
the empirical Bayesian formulation proposed by Efron (2004). This method uses an 
empirical rather than theoretical null, which has been shown to be better equipped for 
cases where the test statistics are dependent–as may be true in the case of complex causal 
structures. The general approach may be used with many of the traditional philosophical 
theories where thresholds for significance must be identified.

31.1 Introduction
Large temporal data sets such as gene expression microarrays, neural spike trains, and stock 
price movements are prevalent and ripe for causal inference, as one may hypothesize that there 
are underlying causal structures or rules governing the behaviours of these systems. One 
neuron causes another to fire; two genes being active for some period of time until a third joins 
them cause (p.654) another to become active; a fluctuation in a key economic factor may cause
two stock prices to move against each other. However, in the case of these large scale 
experiments involving thousands of ‘elements’, there are astronomically many possible causal 
hypotheses to consider. Starting with the simple idea of ‘a causes b’ (disregarding the time 
between a and b and other possibly relevant factors), and without any preconceived ideas to 
guide our testing, we already face a minimum of O(ǀNǀ2) (where ǀNǀ is the number of genes or 
neurons, etc.) hypotheses to test. In these experiments ǀNǀ can be in the thousands, so it is not 
possible to carry out a manual analysis to evaluate the merits of each hypothesis on its own. 
However, it is still possible to make valuable causal inferences assuming that we can devise a 
systematic way of determining which of these should be accepted and which rejected. Since 
there is always the possibility of making errors in how we accept and reject, it would be 
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hopeless to require that we make these types of inferences in a way that guarantees completely 
error‐free results.

In this chapter we focus on how multiple hypothesis testing and false discovery control may be 
applied to identify causal hypotheses that are statistically interesting. We are aware that the 
approach is a general one that can be utilized with many probabilistic definitions of causality. 
Nevertheless, we illustrate its use primarily in conjunction with an efficient computational 
method of causal inference, which is based on temporal logic and model checking. The basic 
premise of the approach is the following: we wish to study a system, for which a lot of data 
(usually time‐course) is available but without any a priori hypotheses about the underlying 
causal structure; we want our attention drawn to the most promising relationships concealed in 
these vast data sets. For example, in the case of microarray gene expression data, we will not 
necessarily uncover the complete and correct story of a biological process with this method, but 
we can direct biologists’ attention to a relevant subset and suggest future experiments that may 
refute or validate certain hypotheses suggested by the data analysis.

31.2 Causal hypotheses
Probabilistic definitions of causality — based generally on the idea that causes raise the 
probability of their effects — lead to many events erroneously being labelled as causes. In one 
classic example, a falling barometer may seem to raise the probability of rain. However, once we 
find that the air pressure is decreasing, this accounts for both the falling barometer and the 
rain. That is, the barometer is no longer informative once we know about the decreasing air 
pressure. To address this difficulty, much work has centered on distinguishing between spurious 
and genuine causes using probabilities and time of occurrence of the events. These include 
calling the earliest cause that can account (p.655) for an effect genuine and all others spurious 
(Suppes, 1970), looking for earlier common causes that screen effects off from one another 
(Reichenbach, 2000), extending this to inference from graphs by enforcing these properties 
(Spirtes et al., 2000), and holding fixed sets of situations and requiring causes to raise the 
probability of their effects in all such situations (Cartwright, 1979; Eells, 1991).

With any method that leads to a numerical assessment — be it a probability, an average of some 
tests, etc. — of a cause's ‘value’, we must decide which values correspond to genuine causation. 
For example, we may compute an average degree of causal significance as Eells (1991) 
suggests, but then we are confronted with many unanswered questions: e.g. what average 
values are acceptable? In a small‐scale experiment, we can look at the computed values for all 
possible causes of a particular effect on a case‐by‐case basis. However, with many hypotheses 
and no priors, we need a method of determining where the cutoff should be. Fortunately, we can 
use the idea that, when testing a large number of possible causes, we expect only a small 
portion to be genuine. For example, we would not expect every gene to be causally related to 
every other gene.

When determining the following: (1) how we plan to infer causal relationships and (2) what 
constitutes a genuine (or, more accurately in our case, significant) causal relationship, we must 
keep in mind the types of data being analysed and how we plan to use the results. In the wide 
range of areas where we seek to apply these ideas — biology, neuro‐science, finance, politics, to 
name a few — finding simply the earliest or most likely cause will not do. For instance, there 
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may be known constraints on the problem. In the case of synthetic data simulating the activity of 
neurons, there was known to be a window of time after one neuron fired before it could cause 
another to fire. In that case, the time is restricted such that if we only looked for the earliest 
cause, we would not correctly infer the desired network. In other cases, such as that of 
microarray gene expression data, there may be a large number of genes being tested and a 
large number of spurious associations. Rather than defining some arbitrary threshold for the 
probability of a causal relationship, or testing against a standard null hypothesis, we must 
exploit the structure of the large quantity of data to aid our testing. That is, we can use an 
empirical null hypothesis that would be suggested by an empirical Bayes approach.

Finally, we must address the question of which causal hypotheses should be tested. While most 
methods test for conditional independence between events or types of events (Pearl, 2000), this 
may not always give us the whole story. This method tells us nothing about the time between 
cause and effect, which, as seen in the examples above, can be quite important. Were we to find 
causal relationships in a biological system, but have no information on the time between the 
cause and effect, we could miss an opportunity for intervention (p.656) via a drug or vaccine, 
which must be used in a time‐ and dosage‐restricted manner to have their intended effect. 
Further, some causal relationships are more complicated than the ones suggested by the form ‘A
causes B’. A may be a conjunction of events that must act in concert for some period of time until 
they are joined by an intermediate event D, before ultimately causing B. These types of 
relationships can be arbitrarily complex and the only limitations on their inference are 
computing power and the available data. While it is not currently practical to generate vast 
amounts of such hypotheses or perform microarray experiments with hundreds of time‐points, 
that will not always be the case. We foresee a time, in not too distant a future, when we will be 
able to routinely generate and test such hypotheses as better bio‐ and nano‐ technologies 
revolutionize the experimental methods. Thus we ignore objections concerning the data sizes 
needed to infer causality reliably, and simply focus our discussion on a description of how 
hypotheses are represented and later, expand it with illustrative and realistic examples of how 
they are tested.

31.2.1 Using temporal logic
In order to represent complex causal hypotheses, we propose a framework that defines causal 
relationships in terms of a probabilistic temporal logic and then treats the problem of inference 
as one of model checking. We will briefly describe the method and then discuss how it is 
enhanced through the use of multiple testing methods. Further details can be found in Kleinberg 
and Mishra (2009).

Suppose we are given a series of data describing events over time, with some labels for the 
types of events. Then, at each instant in time, we know which events are true. That is, we can 
view each time instant as a state (that is labelled with the properties, or events, true within it). 
So, when we view the progression of the system over time, we have seen one possible run of the 
system: a series of transitions between these states. If the run is sufficiently long, then we have 
seen almost all of the states it can occupy as well as their occupation probabilities (estimated by 
counting how frequently the system occupies those states). From that observation, we want to 
find the underlying structure of the system. For example, we can imagine watching a game of 
checkers and trying to determine the rules of the game from just that observation.



Multiple testing of causal hypotheses

Page 5 of 19

When we attempt to determine if some ‘cause’, c (possibly a complex logical formula) causes 
some ‘effect’, e, we wish to answer the following: if we are in a state where c is true, how likely 
is it that we will transition to a state where e is true? As long as we can represent c as a logical 
formula, we can test it as a causal hypothesis. The main steps of the procedure are representing 
our causal hypotheses as logical formulæ, checking whether the system satisfies (p.657) the 
formulæ, and determining which of the satisfied formulæ are significantly causal.

Our approach is founded upon two premises: (i) causes raise the probability of their effects, and 
(ii) causes occur temporally prior to their effects.1 Then, using the logic described by Hansson 
and Jonsson (1994), which is a probabilistic variant of Computation Tree Logic (CTL) called 
PCTL, we define possible, or prima facie, causes as follows.

Definition 31.1. c is a prima facie cause of e iff:

1.

,
2.

, and
3.

.

This means that (1) the system is eventually in a state where c is true with nonzero probability, 
and (3) the probability of eventually being in a state where e is true is (2) less than the 
probability of being in a state where e is true after being in a state where c is true, with at least 
one transition between the c and e state. Next, we need to decide if such a pattern may have 
been satisfied by happenstance, and the causal relation inferred is likely to be insignificant. To 
test whether a prima facie cause is insignificant, we take our cues from the methods that have 
been proposed in the philosophical literature (Suppes, 1970; Eells, 1991). More specifically, to 
determine whether a particular c as a cause of e is insignificant, we take the set X of prima facie
causes of e and for each x e X/c, compute the difference c makes to the probability of e in relation 
to x. That is, this process estimates c's average value as a cause, by examining the the 
probability of e after c ∧ x in comparison to that after c̄ ∧ x.

With

(31.1)
we compute:

(31.2)
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This ε avg is then used to determine whether c is a significant cause of e. Note that c and x lead to
e with certain time bounds, but these have been omitted here. We define that:

Definition 31.2. A cause, c, is an ε‐insignificant cause of an effect, e, iff: c is a prima facie cause 
of e and ε avg 〈 ε.

(p.658) Definition 31.3. A prima facie cause, c, of an effect, e, is an ε‐significant cause of e, iff 
it is not an ε‐insignificant cause of e.

To determine what value of ε is appropriate, one may use background knowledge of the problem 
or simulations. Another method is to determine this value statistically, using multiple hypothesis 
testing methods.

31.3 Multiple hypothesis testing and the false discovery rate
When testing a single hypothesis, we can make the decision about whether to accept or reject 
the null hypothesis based on the probability that the result would occur if the null hypothesis 
were true. However, when we are testing multiple hypotheses at once, the probability that we 
will get such results ‐ even under the null hypothesis ‐ increases and we must account for this. 
For example, we may test the fairness of a coin by flipping it 10 times and seeing how many 
times it comes up heads and how many times it comes up tails. If there were nine heads, we 
would likely say that it is biased, as the probability of this happening when the coin is fair is 
0.01, and the p‐value 0.022. Frequently, a significance level of p 〈 a = 0.05 is sufficient to reject 
the null hypothesis, and thus we would call the coin unfair. In the case where we are testing 100 
fair coins, we may incorrectly deem 5 unfair (n tests × a). In fact, the probability of doing so is 
over 99%. Thus it is necessary to account for the fact that we are performing many tests 
simultaneously, increasing our chances of seeing unlikely or anomalous behaviour (Storey and 
Tibshirani, 2003; Efron, 2004; Benjamini and Yekutieli, 2001).

31.3.1 Basic definitions

First, we define two types of error. Type I errors(a) are those where we reject a true null 
hypothesis. The per‐comparison error rate is the probability of making such an error during each 
significance test. Type II errors(β) are those where the null hypothesis is not rejected when it 
should be. Whereas Type I errors mean we have made a false discovery (false positive), Type II 
errors mean we have missed an opportunity for discovery (false negative). While it is desirable 
to reduce both types of error, it may only be possible to trade one kind off against the other. The 
best trade‐offs are judged in terms of the relative costs of these errors in a particular domain of 
application.

Thus, we define next the error rates over all the hypotheses being tested. The familywise error
(FWE) rate is the probability of rejecting one or more true null hypotheses (i.e. the probability of 
having at least one Type I error), during all tests. For the FWE to approach a desired bound of a
⪡ 1 we need each of the, say, n tests to be conducted with an even stricter bound, such as

, as required by the so‐called Bonferroni correction (Benjamini and Yekutieli, (p.659) 2001). 
However, the FWE has low power, meaning that we have a good chance of making a Type II 
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error (Benjamini and Hochberg, 1995). Another measure, called the False Discovery Rate (FDR), 
estimates the proportion of Type I errors among all rejected hypotheses (that is, the number of 
false discoveries divided by the total number of discoveries). This measure results in more 
power than the FWER while still bounding the error. The main idea is that, if we are rejecting 
only a few null hypotheses, then each false discovery we make in that case is more significant 
than rejecting a large number of null hypotheses and making more false discoveries. That is, in 
the first case, the false discoveries are a larger percentage of the overall number of discoveries 
than they are in the latter case. In this work we concentrate on applying the FDR to partition all
prima facie causes into significant and insignificant causes.

31.3.2 Controlling the FDR
The introduction of the FDR and procedures for controlling it are described by Benjamini and 
Hochberg (1995). The procedure is as follows. Using a method similar to that of Bonferonni, 
when testing m hypotheses, order the p‐values P (1) ≤ P (2) … ≤ P (m). Then with k selected as the 
largest i such that:

(31.3)
we reject all H (i), i = 1, 2, …, k. In the case when all hypotheses are true this controls the FWE, 
and otherwise controls the proportion of erroneous rejections. For independent test statistics, 
this procedure controls the FDR at rate a. However, it was later shown that this also holds for 
positively dependent test statistics and can be modified to control the FDR in other cases 
(Benjamini and Yekutieli, 2001).

31.3.3 Using an empirical null hypothesis
In the methods described so far, it was necessary to use a theoretical null hypothesis, namely, 
that values have a standard normal distribution. However, this may not be appropriate for all 
data. It is possible, then, to take advantage of the multitude of hypotheses being tested and to 
determine the correct null hypotheses from the data. The use of an empirical null hypothesis 
was described by Efron (2004), and provides a novel empirical Bayesian solution to the problem. 
In that work, Efron described how one may estimate the empirical null distribution and how the 
choice of null hypothesis has a large impact on the discoveries made. Take, for example, Figures
31.1, 31.2, and 31.4 below showing the results of analysis described in Section 31.4. Each of 
these data sets has a different underlying distribution and thus their empirical nulls vary from 
the theoretical null in different ways. In the example shown (p.660) in Figure 31.1, using the 
theoretical null would lead to no null hypotheses being rejected, while many would be rejected 
under the empirical null. This is an extreme example, as the tests are highly dependent, but it 
illustrates the importance of selecting a proper null hypothesis as well as the importance of this 
choice when examining causal inferences from data, where we cannot avoid assuming at least 
some level of dependence. In practice, most methods for inferring the null hypothesis 
empirically attempt to fit to the central peak of the data.

31.3.4 Computing the FDR

Here, we use local false discovery rate (fdr) calculations, which use densities, as our N's are 
large, though these methods may also be used with standard tail‐area FDR methods such as that 
described in Section 31.3.2 (Efron, 2007). We follow the formulation described by Efron (2004).
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With N hypotheses H 1, H 2,…, H N we have the corresponding z‐values z 1, z 2,…, z n. These 
values, also called the standard score, are the number of standard deviations by which a result 
deviates from the mean. In the case of our causal analyses, these z‐values are computed from 
the ε avgs. We begin by assuming the N cases fall into two classes: one where the effects are 
either spurious or not large enough to be interesting (and thus where we accept the null causal 
hypotheses), and another where the effects are large enough to be interesting (and where we 
will accept the non‐null hypotheses as true). We also assume the proportion of non‐null cases 
are small relative to N, say, around 10%. Then, p 0 and p 1 = 1 − p 0 are the prior probabilities of 
a case (here, a causal hypothesis) being in the ‘uninteresting’ or ‘interesting’ classes 
respectively. The densities, f 0(z) and f(z), of each class describe the distribution of these 
probabilities. When using a theoretical null, f 0(z) is the standard N(0, 1) density. Note that we 
need not know f 1(z), though we must estimate p 0 (usually p 0 ≥ 0.9). We define the mixture 
density:

(31.4)
then the posterior probability of a case being uninteresting given z is

(31.5)
and the local false discovery rate, is:

(31.6)
Note that, in this formulation, the p 0 factor is ignored, yielding an upper bound on fdr(z). 
Assuming that p 0 is large (close to 1), this simplification does not lead to massive overestimation 
of fdr(z). One may also choose to estimate p 0 and thus include it in the FDR calculation, making
fdr(z) = Pr{nullǀz}. The procedure is then: (p.661)

1. Estimate f(z) from the observed z‐values;
2. Define the null density f 0(z) either from the data or using the theoretical null;
3. Calculate fdr(z) using equation (31.6);
4. Label H where fdr(z i) is less than a threshold (say, 0.10) as interesting, or in our case, 
causally significant.

Overall the procedure is to enumerate a set of causal hypotheses (represented by logical 
formulæ), test these in the data to see which satisfy the conditions for prima facie causality, then 
for each identified prima facie cause, compute its associated ε avg. The causes where ε avg

correspond to z‐values with fdr less than a small threshold are called ε‐significant, and the rest ε‐ 
insignificant.

31.4 Examples
We illustrate the proposed method on three different types of data: biological microarrays, 
political speeches and favorability ratings, and neural spike trains. For all examples, the 
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empirical null was calculated using the method of Jin and Cai (2006) and the R program they 
have made publicly available.

31.4.1 Microarrays
The data is a set of time‐course gene‐expression microarrays covering the 48 hour 
Intraerythrocytic Developmental Cycle(IDC) of Plasmodium falciparum (Bozdech et al., 2003). 
Microarray data, where expression levels may be measured for thousands of genes at a time, 
have been the subject of many studies on both multiple hypothesis testing (Efron and Tibshirani,
2002; Dudoit et al., 2003) as well as causal inference (Friedman et al., 2000; Spirtes et al., 2001; 
Opgen‐Rhein and Strimmer, 2007; Murphy and Mian, 1999).

In this example, we want to find causal relationships between genes that may enlighten the 
complex mechanisms underlying this cycle. All P. falciparum genes are active at some point 
during the IDC, forming a so‐called ‘cascade’ of activity. We look at relationships over the entire 
time course without taking into account the structures imposed by individual IDC stages, but 
hope to address the finer causal properties by considering these stages separately. The 
relationships we wished to test were generated, using the PCTL formulation, by taking all pairs 
of genes where the influence occurs at the next unit of time. In other words, we have considered 
all formulæ of the form:

, where c and e represent the under‐ or over‐expression of particular genes.
(p.662) After restricting our data set such that only genes that are known to be involved in 
protein—protein interactions were tested, we were left with N = 2846 unique genes. To estimate
f (z), we used a spline fit to the histogram.

In Figure 31.1, we notice that the data falls mostly within the plotted theoretical null N(0,1). 
Were we to use that as our null hypothesis, we would hardly find any interesting cases. 
However, a visual examination of the data indicates that the data follow almost a normal 
distribution, but with a positive skew (longer right tail). The empirical null N(‐1.00, 0.89) takes 
this into account and is thus shifted much further over than the theoretical null. Note that in this 
case, we have thousands of prima facie causes where f (z i ) 〈 0.1. There are a few ways to 
explain this structure of the null distribution, which convinced us that the empirical null is 
correct and we should indeed detect a multitude of non‐insignificant causes. As is usually 
believed, biological systems are, by necessity, quite robust (Kitano, 2004), giving rise to a large 
number of correlated cause—effect relationships that orchestrate the system's dynamics in a 
fail‐safe manner. In this particular example, we have three main phases of the IDC, and during 
each the genes related to that phase act in concert producing the cascade. It is quite likely that 
the dependencies arise in two important manners: (1) many genes are causally related to many 
other genes that are active in the same IDC stage, and are organized in a complex network of 
interactions, and (2) there are many back‐up mechanisms to allow the cascade to continue 
uninterrupted in case of some perturbation to the system. In this case we could use a lower 
value for the acceptable FDR or speculate two classes of causal relationships: primary causes, 
and backup causes. These and other such finer analyses are deferred to future research.
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(p.663) 31.4.2 Neural spike trains
In our next example, we consider another 
time‐course data set from a different 
domain: neural‐activity data. This data set 
consists of a series of synthetically 
generated patterns, and thus has the ability 
to eventually reveal the assumed true causal 
neural networks that were embedded in the 
simulations.2 The data were created to 
mimic multi‐neuronal electrode array 
experiments, in which neuron firings may be 
tracked over a period of time. We ran our 
inference algorithm on this set of data, each 
containing 100,000 firings of a set of 
neurons, each denoted by a character of the 
English alphabet. Each data set was 
embedded with a different causal network. At each time point a neuron can fire randomly 
(dependent on the noise level selected) or may be triggered to fire by one of its ‘cause neurons’. 
Additional background knowledge was known and used by the inference algorithm: there is a 20 
unit refractory period after which a neuron fires before it may trigger another, and then a 20 
unit window of time when it may trigger the other to fire. Consequently, our algorithm only 
needed to search for relationships, where one neuron causes another to fire during a window of 
20–40 time units after the causal neuron fires. Full results for all five structures and comparison 
with the PC algorithm of Spirtes et al. (2000) and Granger causality (Granger, 1969) are 
available at: http://people.dbmi.columbia.edu/samantha/papers/tlcs.html. We discuss one of the 
structures in detail here. In this example, the underlying structure was a binary tree of four 
levels. Our algorithm enumerated 642 prima facie causal hypotheses, satisfied by the data.

The results are shown in Figure 31.2, which indicate that there are far fewer significant causal 
relationships than in the previous example. The empirical null in this case is given by N(‐0.14, 
0.39), so it is shifted slightly to the left of the theoretical null, and is significantly narrower. The 
tail of the distribution extends quite far to the right, continuing up to eight standard deviations 
away from the mean. A close up of this area is shown in Figure 31.3. The results obtained here 
are consistent with the known causal structures that were used to create the simulated data and 
agree with our earlier work on this data. The ten genuine causal relationships were the only 
hypotheses with z‐values greater than three, though there were seven others that, like these, 
had an FDR of zero. With no prior knowledge, there are two methods for determining the actual 
causes. First, in a case where there are few causal relationships found, such as in this example, 
we can look at the individual hypotheses and manually filter the causal hypotheses. For 
instance, if there are two causes of an effect, say, one with z‐value 7.2 and the other with a value 
1.3, we may speculate that the former is more likely to be the genuine cause. If the data were 
experimental, we could do further testing to validate (or refute) this (p.664)

Fig. 31.1  P. Falciparum microarray example. 
Here we are testing causal relationships 
amongst all pairs of genes over the entire 
time‐course. The histogram shows the 
number of prima facie causes with a given z‐
value.
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claim. Second, had there been a larger 
number of prima facie causes of each effect, 
we could treat each of those as a family of 
hypotheses, conducting the procedure after 
the computation of ε avg on each of these 
families individually.
While, constrained by space, we relegate 
the full comparison to the website cited 
earlier, we will briefly summarize the 
results here. This synthetic dataset is the 
only one of those tested where the true 
structure is known, thus allowing us to 
assess our performance. We used the 
TETRAD IV implementation of the PC 
algorithm with the chi‐square significance 
test (using default parameters α = 0.05 and 
depth = 0.01), and the granger.test function 
in the MSBVAR R package (with a lag of 20 
time units). For the Granger tests, we 
applied the same FDR control procedure as 
for our own tests. In the case of the PC 
results, unlike the other two algorithms, 
both directed and undirected edges are 
returned, but we did not include the 
undirected edges in computing the FDR (p.
665)

Table 31.1 Comparison of false discovery rate (FDR), false non‐discovery rate 
(FNR) and intersection between runs. Results are over all synthetic MEA 
structures.
Method FDR FNR Intersection

Kleinberg—Mishra 0.0093 0.0005 0.9583

Granger 0.5079 0.0026 0.7530

PC 0.9608 0.0159 0.0671

and FNR results. Over all five structures (ranging from chains of neurons, to a binary tree, to 
single, multiple and linked scatter—gather relationships) and both noise levels, the results are 
as follows.
The false discovery rate (FDR) is the number of false positives divided by all positives, and the 
false non‐discovery (or false negative) rate (FNR) is the number of false negatives divided by all 

Fig. 31.2  Neural spike train example. In this 
example, we tested pairwise causal 
relationships, taking into account the known 
temporal constraints on the system.

Fig. 31.3  Neural spike train example.
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negatives.3 As shown in Table 31.1 our FDR is quite low, at 0.0093, while for the Granger test 
more than half of all discoveries were erroneous, and nearly all PC discoveries were false. While 
the FNR is low for all algorithms, we note that after accounting for the usual trade off between 
false positives and negatives, our algorithm still achieved the lowest rate for both measures. 
Finally, since for each parameter setting (noise level and underlying structure), two datasets 
were generated, we compared how many of the discoveries were made in both runs for a 
particular setting. That is, this is the proportion of relationships found in both runs out of all 
relationships found. According to this measure, our results were also the most consistent.

31.4.3 Politics
The final example, considered next, consists of a set of political speeches and job approval 
ratings. We collected President Bush's weekly radio addresses for a seven year period along 
with his Gallup job approval polls for the same period. The speeches were processed into 
phrases (corresponding to either exact wordings in the text, manually defined synonyms, or 
categories containing more specific wordings), and their dates of use. We operated under the 
assumption that a phrase's effect on job approval rating (causing it to go either up or down), 
would be reflected in the immediately following poll, and not any later polls.

The results are shown in Figure 31.4. Unlike the other two examples, the underlying distribution 
appears to be bimodal. The empirical null, N(0.39, 0.96) is very close to the theoretical null, 
shifted slightly to the right. (p.666)

Interestingly, if we look at the positive z‐
values, there appear to be few interesting 
hypotheses. In fact, no phrases were found 
to be significantly causal. However, when 
we look at the left side of the figure, the 
negative z‐values, we see a spike around ‐3. 
There were three such phrases with f dr
〈 0.1. This is saying that the use of the 
phrases with those z‐values does not have a 
causal influence on the changing speech 
ratings but rather this area of the graph 
represents causation by omission. That is, 
failure to use these phrases has an effect on 
job approval. In general, data sets of this 
nature are expected to be much harder to analyze, as in these cases there are many unmodeled 
states (for instance, the contexts created by knowledge and belief propagation among the voters 
that remain hidden and highly history‐dependent).

31.5 Related work
Many methods exist for determining the significance of causal relationships. They include the 
purely philosophical — looking primarily at what it means to be a cause, as well as the 
computational — using mathematical properties to identify causes. We outline the main 
approaches and how they relate to the method we have described.

Fig. 31.4  Political example, where phrases 
were tested as potential causes of changes in 
job approval ratings.
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31.5.1 Philosophical
The closest methods to ours in the philosophical literature are those concentrating on 
probabilistic causality. In these methods, a cause C raises the probability of its effect E
beyond the normal probability of E. That is, P(EǀC) 〉 P(E). One problem for probabilistic theories 
of causality is that there may be cases where two events are the result of an earlier common 
cause. In one commonly used example, we may frequently see yellow stained (p.667) fingers 
and lung cancer together. However, we cannot simply say that yellow stained fingers cause lung 
cancer, or that lung cancer causes yellow stained fingers. Using more information, we can find 
an earlier common cause of both ‐ smoking. Here, smoking ‘screens‐off lung cancer from yellow 
stained fingers. That is, when we hold fixed that someone is a smoker, the relationship between 
stained fingers and lung cancer disappears. This idea of earlier ‘screening off causes was 
introduced by Reichenbach (2000).

Later work, such as that by Suppes (1970) and Eells (1991), also focuses on finding other causes 
that better account for the effects in question. In Suppes’ theory, a prima facie cause is one that 
raises the probability of its effect and occurs strictly earlier than the effect. Spurious causes are 
defined in a few ways by Suppes, but all look for strictly earlier events or classes of events that 
render a prima facie cause uninformative. One such definition is:

Definition 31.4.

, a prima facie cause of A t, is a spurious cause iff there is a partition,

where t″ 〈 t′ and for every C t″ in π t″
1. P(B t′C t″) 〉 0
2. P(A tǀB t′C t′) = P(A tǀC t′).

Here, a partition, πt may be of either the sample space or universe and consists of ‘pairwise 
disjoint, nonempty sets whose union is the whole space (Suppes, 1970)’. Similarly, Suppes 
defines ε‐spuriousness, with the difference being that

(31.7)
This definition raises the question: what is an appropriate value for ε? This is a place where no 
fixed threshold can be offered as an answer, especially when testing a multitude of causal 
hypotheses. Note that when we have many prima facie causes and do not necessarily wish to 
select the extreme cases (corresponding to only one or several genuine cause(s)), we can obtain 
a more flexible solution as follows: compute the differences shown in equation (31.7), convert 
those differences to z‐values, then use the methods described here to determine what that cutoff
ε should be.

Similarly, Eells (1991) provides probabilistic definitions of positive causal factors as well as 
measures of causal relevance. Eells states:

Definition 31.5. C is a positive causal factor for E iff for each i
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(31.8)
where the K i's are causal background contexts. By causal background contexts, we mean that if 
there are n factors independently of C relevant to E there are 2n ways of holding these fixed. 
Those that occur with nonzero probability in conjunction with C as well as ¬C (i.e. P(C ∧ K i) 〉 0 
and P(¬C ¬ K i) 〉 0) (p.668) constitute a background context. For example, if we have three 
factors, say, x 1, x 2, and x 3, one possible background context would be K i = x1 ∧ x 2 ∧ x3. We 
may also define negative as well as neutral causal factors by changing the 〉 in equation 31.8 to
〈 and = respectively.

A cause C, may also have mixed relevance for effect, E ‐ it is not negative, positive or neutral. 
This situation corresponds to C's role varying depending on the context (as may have happened 
in our political examples). Eells defines that C is causally relevant to E if it has mixed, positive, or 
negative relevance for E, i.e. it is not causally neutral.

In addition to determining whether or not C is causally relevant to E, we may also wish to 
describe how relevant C is to E. As in Suppes’ theory, it is possible to have causally relevant 
factors with small roles. One method Eells gives for measuring the significance of a factor X to a 
factor Y is:

(31.9)
This approach once again leads us to the problem of determining what values we may deem 
significant. In this case, we could also convert these sums to z‐values, and apply the multiple 
hypotheses testing procedure to determine whether to accept or reject each hypothesis.

31.5.2 Computational
In additional to the philosophical foundations for detecting causality, we need algorithmic 
methods that allow us to infer it automatically from data (whether experimental or 
observational). One of the primary efforts in this area, that of Spirtes et al. (2000) (SGS), uses 
Bayesian networks (BNs). In general, this approach as well as the work of Pearl and Verma 
(1991), uses graphical models where the causal structure is represented as a graph, with nodes 
representing variables and directed edges between nodes representing conditional dependence. 
In order to infer these models from data, which is not necessarily time‐ course, a number of 
assumptions must be made in order to find both the relationships and their direction. The result 
of the inference is one or a set of possible directed acyclic graphs (DAGs) where a directed edge 
between two nodes is given the interpretation that the node at the tail causes the node at the 
head. We will primarily review the work of SGS, but note that there are many variants on this 
general framework.

The first assumption, called the causal Markov condition (CMC), is that every node in the graph 
is independent of its non‐descendants, given its parents. Graphs are also assumed to be 
complete, in that common causes of any two nodes are included and that all causal relationships 
among the variables are included in the graph. The second necessary assumption, Faithfulness, 
is that the independence relations in the graph are exactly those of distributions produced by 



Multiple testing of causal hypotheses

Page 15 of 19

the graph. That is, the independence relations obtained (p.669) from the graph are due to the 
causal structure and not coincidence or latent variables (for example, a positive effect and 
indirect negative effect canceling out). Finally, the last assumption is causal sufficiency, which is 
that the set of measured variables includes all common causes of pairs on that set. When this 
does not hold, some methods will produce a set of graphs accounting for the observed 
distribution that include nodes representing unmeasured common causes.

One issue with this approach is that there is little discussion about the idea of conditional 
independence. It is highly unlikely that one will find exact independence from a finite data 
sample, so it is necessary to determine at what point pairs are considered independent. While 
most methods use standard significance tests (such as mutual information or chi‐square) with a 
set threshold, it is possible to use a multiple hypothesis testing method such as the one 
described here in order to define a threshold for this value. Another issue is that in these 
models, there is no innate method of representing the time between the cause and effect or 
more complex relationships than simply one variable causing another.

Recently, extensions using dynamic Bayesian networks (DBNs) have been proposed to address 
the temporal component of the causal relationships. In their simplest form, DBNs begin with a 
prior distribution (described by a DAG) as well as two more DAGs: one that represents the 
system at time t and one that represents the system at t + 1, where these relationships hold for 
any values of t. The two DAGs are connected to denote how a variable at t influences another at 
the next time point. Thus it is assumed that the structure and dependencies persist over time 
without change (since the relationships from t to t + 1 are the same as those from t + 10 to t + 
11). The DAGs have the same structure as those previously described, with each variable 
denoted by a node in the graph. There is still no representation of the length of time between 
cause and effect in this model, but recent work by Eichler and Didelez (2007) has focused on 
capturing that information. This work builds on prior work by Granger (1969) who defined a 
type of causality, applied primarily to economics, between time series. There, one time series 
Granger‐causes another if lagged values of the first are informative about the second. Similarly, 
in the method of Eichler and Didelez, one time series is said to cause another if an intervention 
on the first alters the other at a later time. Thus the lag between cause and effect may have any 
arbitrary value, and this value is found as part of the inference process. One could potentially 
extend this approach to represent more complex relationships, but the framework does not lead 
to a general method for testing such relationships. Similarly, while DBNs can compactly 
represent distributions in sparse structures, it can be difficult to extend them in the case of 
large data sets (thousands or tens of thousands of variables) that are highly dependent.

(p.670) While we can define variables in arbitrary ways, the difficulty comes in finding their 
probabilities and whether they are satisfied by the data. This process still requires model 
checking. Further, we want to be able to test new formulæ, as one can in structures built for 
model checking. Recent work by Langmead et al. (2006) has attempted to bridge the gap 
between temporal logic model checking and DBNs by translating the DBNs into structures that 
allow for such model checking. In this method, DBNs may be used for inferring relationships 
described by temporal logic formulæ. However, later work by Langmead (2008) showed that not 
all DBNs may be translated in this manner, so this approach is limited compared to one where 
we use a model that already allows for model checking.
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31.6 Conclusion
Trying to understand and explain our natural and social worlds in terms of a complex and 
intertwined causal network has been at the core of the Western scientific tradition. In many 
cases, these ideas have been surprisingly successful, but also in few rare but important cases, 
the idea of causality has been a major source of bewilderment. While there are some who have 
even proposed abolishing the very notion of causality from our vocabulary, there are others 
(mainly philosophers) who have made clear progress in creating a more meaningful 
philosophical notion of causality that to a large extent coincides with its common‐sense meaning 
while containing enough structure to permit the qualitative causal reasoning that remain 
necessary in understanding complex phenomena in biology, and social sciences, where our 
theories are still incomplete and fragmentary.

We noticed and exploited the fact that these ideas from philosophy naturally lend themselves to 
being expressed in a probabilistic temporal logic, thus allowing these logical formulæ to be 
checked by automated model‐checking processes. Furthermore, since the data that are mined to 
excavate causal relations are noisy and non‐deterministic, they frequently yield insignificant 
causal rules that by pure coincidence resemble the structural patterns of genuine causes. 
Fortunately, using an empirical Bayesian approach, one can, from the data itself, extract an 
empirical null‐distribution for such insignificant causes and filter out putative genuine causes 
(which can then be tested by appropriate experiments). Because of these two important tools 
from computer science (an efficient algorithm for model checking) and statistics (an empirical 
method of false discovery control), it is now possible to consider the accepted views of causality 
from philosophy and systematically and agnosti‐ cally verify them in many data‐rich domains of 
discourse (e.g. biology, neuro‐ science, economics, social sciences, etc.)

(p.671) Such an approach has a clear pay‐off: if our ideas of causality are sound and effective, 
they will give us enough useful capabilities, for instance, to diagnose and cure diseases, to 
exploit arbitrages and transient inefficiencies in the market, to strategically manipulate 
elections, or to auction off worthless goods to unsuspecting virtual friends in our social 
networks. If on the other hand, there are serious shortcomings in these notions of causality, they 
will be exposed in their particular contexts, thus suggesting to philosophers how they may think 
about these ideas more rigorously. To illustrate this process, we mention two situations we have 
already observed. One occurs in the example from biology (in the study of malaria parasites) 
which makes it clear that the causal relations must respect a strict notion of locality in time (for 
instance, causal structures may vary from stage to stage in the parasite's life cycle), and need to 
incorporate the notion of a natural temporal scale at which causes and effects relate to each 
other within the system. By examining the empirical null‐distributions in a multi‐scale manner 
these time‐scale properties can be automatically discovered. The other example occurs in the 
domain of politics where it becomes clear that there are many hidden variables, and few 
relationships of significance.
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error is known, then causal effects can be identified in a variety of scenarios. 
Unfortunately, a strictly theoretical approach for formalizing a measurement model is 
error prone and does not provide alternative models that could equally or better explain 
the data. We introduce an algorithmic approach that, given a set of observed indicators of 
latent phenomena of interest and common assumptions about the causal structure of the 
world, provides a set of measurement models compatible with the observed data. This 
approach extends previous results in the literature which would select an observed 
variable only if it measured a single latent variable. Our extensions cover cases where 
some variables are allowed to be indicators of more than one hidden common cause.

32.1 Introduction
Discovering latent representations of the observed world has become increasingly more relevant 
in the artificial intelligence literature (Hinton and Salakhutdinov, 2006; Bengio and Cun, 2007). 
Much of the effort concentrates on building latent variables which can be used in prediction 
problems, such as classification and regression.

A related goal of learning latent structure from data is that of identifying which hidden common 
causes generate the observations. This becomes relevant in applications that require predicting 
the effect of policies.

As an example, consider the problem of identifying the effects of the ‘industrialization level’ of a 
country on its ‘democratization level’ across two different time points. Democratization levels 
and industrialization levels are not directly observable: they are hidden common causes of 
observable indicators which can be recorded and analysed. For instance, gross national product 
(GNP) is an indicator of industrialization level, while expert assessments of freedom of the press 
can be used as indicators of democratization. Extended (p.674) discussions on the distinction 
between indicators and the latent variables they measure can be found in the literature of 
structural equation models (Bollen, 1989) and error‐in‐variables regression (Carroll, Ruppert 
and Stefanski, 1995).

Causal networks can be used as a language to represent this information. We postulate a 
graphical encoding of causal relationships among random variables, where vertices in the graph 
representing random variables and directed edges V i → V j represent the notion that V i is a 
direct cause of V j. Formal definitions of direct causation and causal networks are given by 
Spirtes, Glymour and Scheines (2000) and Pearl (2000).

In our setup, we explicitly represent latent variables of interest as vertices in the graph. For 
example, in Figure 32.1 we have a network representation for the problem of causation between 
industrialization and democratization levels. This model makes assumptions about the 
connections among latent variables themselves: e.g. industrialization causes democratization, 
and the possibility of unmeasured confounding between industrialization and democratization is 
not taken into account (which, of course, can be criticized and refined).

Following the mixed graph notation (Richardson and Spirtes, 2002; Spirtes et al., 2000; Pearl,
2000), we also use bi‐directed edges V i ↔ V j to denote implicit paths due to latent common 
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causes. That is, V i ↔ V j denotes a set of causal paths (e.g. V i ← X → V j) that originate from 
common causes that have been marginalized (such as X in the previous example), as discussed in 
full detail by Richardson and Spirtes (2002). The distinction between ‘explicit’ and ‘implicit’ 
latent variables is problem dependent: if we do not wish to establish causal effects for some 
hidden variables, then they can be marginalized.

(p.675) Establishing the causal 
connections among latent variables is an 
important causal question, but it is only 
meaningful if such hidden variables are 
connected to our observations. A 
complementary and perhaps even more 
fundamental problem is that of finding 
which latent variables exist, and how they 
cause the observed measures.

This will be the main problem tackled in our 
contribution: given a dataset of indicators 
assumed to be generated by unknown and
unmeasured common causes, we wish to 
discover which hidden common causes are 
those, and how they generate our data. 
Using a definition from the structural 
equation modelling literature, we say we 
are interested in learning the measurement 
model of our problem (Bollen, 1989). Our 
contribution generalizes the approach 
introduced by Silva et al. (2006).

In the context of the example of Figure 32.1, 
suppose we are given a dataset with 11 indicators, and wish to discover the respective latent 
common causes and measurement model. Assuming Figure 32.1 as the unknown gold standard, 
we are successful if we predict that {Y 1, Y 2, Y 3} are generated by a particular hidden common 
cause, {Y 4, … , Y 7} are generated by another hidden common cause and so on.

The approach of Silva et al. (2006) works as follows:

1. for each pair of observed variables Y i and Y j , search for constraints in the observed 
covariance matrix that support the fact that Y i and Y j do not have a common parent in 
the true graph;
2. for each pair of observed variables Y i and Y j , search for constraints in the observed 
covariance matrix that support the fact that Y i and Y j are conditionally independent 
given some hidden variable in the true graph.

These two pieces of evidence allow for the identification of substructures: notice that in order to 
find a measurement model where each observed has a single parent, we can use the second 

Fig. 32.1  A causal diagram connecting 
industrialization levels (IL) of a country, in 
1960, to democratization levels in 1960 and 
1965 (DL60 and DL65, respectively). In our 
diagrams, we follow the standard structural 
equation modelling notation and use square 
vertices represent observable variables, 
circles represent latent variables (Bollen, 
1989). The industrialization indicators are: Y
1, gross national product; Y 2, energy 
consumption per capita; Y 3, percentage of 
labor force in industry. The democratization 
indicators are: Y 4/Y 8, freedom of press; Y 5/Y
9, freedom of opposition; Y 6/Y 10, fairness of 
elections; Y 7/Y 11, elective nature of 
legislative body. Details are given by Bollen 
(1989).
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condition above. To identify that two or more latent variables are different variables in the true 
graph, we use the first condition. The limitation of this procedure, however, is that it discards 
any observed variable that has more than one latent parent. We will introduce a method that 
generalizes Silva et al. (2006) by allowing for indicators with multiple hidden causes.

The solution to this problem lies at the intersection of artificial intelligence techniques to infer 
causal structures, statistical models and the exploitation of assumptions commonly made in 
some applied sciences such as psychology and social sciences.

Success will depend on how structured the real‐world causal network is and how valid our 
assumptions are. If the postulated true network that generated our data is not sparse, for 
instance, then there will be so many models compatible with the observed data that no useful 
conclusion can be made. This (p.676) situation, however, is not different from the limitations of 
standard causal network discovery procedures (with no latent variables) (Spirtes et al., 2000), 
which rely on the existence of many conditional independence constraints. Even if we learn only 
some partial information about the measurement model, in principle it is still possible to infer 
some of the causal structure among the latent variables — the ultimate goal in many 
applications of latent variable models (Silva et al., 2006; Spirtes et al., 2000).

We describe our assumptions and a formal problem statement in full detail in Section 32.2. An 
algorithm to tackle the stated problem is provided in Section 32.3. Experiments are show in 
Section 32.4, followed by a Conclusion. Before that, however, we discuss what is the current 
common practice for unveiling the causal measurement structure of the world, and why they fall 
short on providing a reasonable solution.

A motivating example

Exploratory factor analysis is still the method of choice for suggesting hidden common cause 
models in the sciences. A detailed description of the method within the context of psychology 
and social sciences is given by Bartholomew and Knott (1999). In this section, we will illustrate 
the weaknesses of factor analysis. This motivates the need for more advanced methods resulting 
from artificial intelligence techniques in causal discovery.

In a nutshell, the main assumption of factor analysis states that each observed variable Y i should 
be the effect of a set of latent factors X ≡ {X 1,…, X L} plus some independent error term ϵ i:

(32.1)
Variables are assumed to be jointly Gaussian, although this is not strictly necessary. The 
measurement model is given by the coefficients {λ ij} and variances of the error terms {ϵ i}. 
Learning the measurement model is the key task, which is required in order to understand what 
the hidden common causes should represent in the real world. The factor analysis model is 
agnostic with respect to the causal structure of X, but knowing the measurement model would 
also help us to learn the causal structure among latent variables (Spirtes et al., 2000). In the 
following discussion, we will assume that we know how many latent variables exist, and then 
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illustrate how such a widely used method is unreliable even under this highly favourable 
circumstance.

Given the observed covariance matrix of Y ≡ {Y 1, …, Y p}, it is possible to infer the coefficients λ

ij and the covariance matrix of X, but not in an unique way. Without going into details, there are 
ways of choosing a solution among this equivalence class such that the measurement structure 
is as simple ‘as possible’ (within the selection criterion of choice) (Bartholomew and Knott,
1999). (p.677) Simplicity here means having many coefficients {λ ij} set to zero, indicating that 
each observed variable measures only a few of the latent variables. Getting the correct sparse 
structure is essential in order to interpret what the hidden common causes are. Notice that this 
corresponds to a directed causal network, where non‐zero coefficients are encoded as directed 
edges in the graph.

Such methods will work when the true model that generated the data is in fact a ‘simple 
structure’, or a ‘pure measurement model’, in the sense that each observed variable has a single 
parent in the corresponding causal network. However, any deviance from this simple structure 
will strongly compromise the result.

We provide an example in Figure 32.2. We generated data from a linear causal model that 
follows the causal diagram of Figure 32.2(a).1 Given data for the observed variables Y 1, … , Y 6, 
we ideally would like to get a structure such as the one in Figure 32.2(b), where the question 
marks emphasize that labels for the latent variables should be provided by background 
knowledge.
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(p.678) Notice that in this contribution our 
aim is not to learn the structure connecting 
the latent variables, and the bi‐directed 
edge in this case denotes an arbitrary 
causal connection.

Exploratory factor analysis fails to provide 
sensible answers.2 In Figure 32.2, we show 
results obtained with different numbers of 
latent variables. Figure 32.2(c) shows a 
common outcome when we indicate that the 
model should have two hidden common 
causes. There exists no theory that provides 
a clear interpretation for these edges. Even 
worse, results can easily become 
meaningless. In Figure 32.2(d), we depict 
the result of exactly the same procedure, 
but where now we allow for three hidden 
common causes. The method we describe in 
our contribution is able to recover Figure
32.2(b).

32.2 Problem statement and 
assumptions
We start this section with a general view of 
the problem, and how it relates to previous 
work and other issues of scientific 
discovery. This is followed by a formal 
characterization of the problem and its 
assumptions. We end this section by 
describing which kind of results we can and cannot obtain by using by our methods.

32.2.1 Fundamentals

Exploratory factor analysis has been an important tool in applied sciences (Loehlin, 2004), when 
the goal is to identify hidden common causes responsible for the observed associations among 
recorded variables. However, it is well‐known that factor analysis provides no basis for choosing 
among different causal hypotheses that generate undistinguishable probability distributions 
among the observed variables. As briefly discussed in the previous section, and demonstrated in 
detail by Silva et al. (2006) through several experiments, exploratory factor analysis is 
unreliable.

Our work fully embraces the framework of Spirtes et al. (2000) and Pearl (2000): it assumes that
there is a causal structure that generates the observed data, and that such causal structure can 
be formally represented as a directed acyclic graph (DAG) using the axioms discussed by Spirtes
et al. (2000). The consequence is that different DAG structures will imply different constraints in 
the observed distribution, which can be tested from data. The view of this work is that assuming 

Fig. 32.2  In (a), we show a synthetic 
structure from which we generated 200 data 
points. Our algorithm is able to reconstruct 
the causal graphical structure in (b), which 
captures several features of the original 
model. Bi‐directed edges represent 
conditional association and the possibility of 
some unidentified set of hidden common 
causes of the corresponding vertices. 
Inferred latent variables are not labelled, but 
can then be interpreted from the resulting 
structure and the explicit assumptions 
discussed in Section 32.2. In (c), the 
resulting structure obtained with exploratory 
factor analysis using two latent variables and 
the promax rotation technique. One 
implication of this structure is that Y 3 and Y
4 are now independent given two latent 
variables, contrary to (a). This extra 
constraint leads to biases in the estimation 
of the model. In (d), the factor analysis result 
we got when attempting to fit three latent 
variables.
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the existence of a true structure (be it a DAG or some (p.679) other mathematical object) is 
unavoidable for both theoretical and practical reasons.

The postulated DAG structure contains both observed and unobserved (hidden, latent) variables 
as vertices. Such hidden variables are unknown unknowns: we assume they represent real 
entities, but we do not know which ones exist and how they are related to the observations. We 
regard this practice as fundamentally different from some typical applications of factor analysis: 
the resulting structures that we obtain from our analysis, as well as the generation of hidden 
common causes, follow from our data and assumptions, not from a post‐hoc reification of 
equivalent models fit to the data.

Interpreting the resulting latent variables and linking them to real entities and possible 
interventions still requires knowledge of the domain. However, such latent variables are a 
consequence of the core assumptions discussed in the next section. If assumptions are not to be 
believed, then conclusions should not be warranted. However, if for a particular domain 
assumptions are deemed reasonable, we can provide some guarantees concerning the set of 
models that is compatible with the data. Although the result is underdetermined, it can still 
report valuable information, as we will see through several examples.

Notice that the DAG structure can also have a non‐causal meaning and the results that follow 
could in principle refer to models of independence constraints only, as in the applications 
described by Hinton and Salakhutdinov (2006). However, this does not change the fact that 
DAGs provide a formal language for encoding causal statements. Since it is commonly accepted 
that causation and probabilistic independence are partially related, this is not coincidental.3 As a 
matter of fact, exploiting independence constraints is indeed the source of underdetermination, 
because the concepts of causation and conditional independence are not the same despite 
sharing a common notation.

Underdetermination does not imply that the problem leads to no solution, but that solutions 
should deal with underdetermination. As discussed by Leplin (2004), even postulated 
unobserved entities later discarded by further evidence (such as phlogiston) can have 
identifiable successors in later theories (such as oxygen): new evidence narrows down 
properties of latent variables discovered from previous data, but partial knowledge about such 
hidden variables and their measurements can still be used to formulate useful scientific theories 
(such as the link between combustion and rust).

Our main motivation is an extension of the methods of Silva et al. (2006). Those methods allows 
for the identification of causal structures indicating hidden common causes of observed 
variables. The main idea is to exploit (p.680) constraints in the covariance matrix of such 
variables (which can be estimated from data) to rule out causal structures that fail to satisfy 
such constraints or, that support constraints that are not in the covariance matrix. The key 
advantage of such a method is that it allows for the identification of substructures that are 
common to all possible DAGs compatible with said constraints. However, this is a conservative 
procedure that can discard many variables for which no causal information can be discovered. 
The main goal of the contribution is to generalize the procedure, so that other latent variables 
and more of their causal relationships to observed variables can be identified.
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32.2.2 Formal problem statement
Assume that that our data follows a distribution Ƥ generated according to a directed acyclic 
causal graph (DAG)  (Spirtes et al., 2000; Pearl, 2000) with observed nodes Y and hidden nodes
X. We also assume that the resulting distribution Ƥ is faithful to  (Spirtes et al., 2000), that is, a 
conditional independence constraint holds in Ƥ if and only if it holds in  (using the common 
criterion of d‐separation — please refer to Pearl (2000) for a definition and examples). These are 
all standard assumptions from the causal discovery literature.4

Our more particular assumptions are

• no observed node Y ∈ Y is a parent in  of any hidden node X ∈ X;
• each random variable in Y ∪ X is a linear combination of its parents, plus additive 
noise, as in Equation (32.1).

The first assumption is motivated by applications in structural equation modelling (Bollen,
1989), where prior knowledge is used to distinguish between standard indicators and ‘causal 
indicators’, which are causes of the latent variables of interest. Both of these assumptions can 
be relaxed to some extent, although any claims concerning the resulting causal structures 
learned from data will be weaker. Silva et al. (2006) discuss the details.

For the purposes of simplifying the presentation of this chapter, we also introduce the following 
two assumptions:

• no observed node Y ∈ Y is an ancestor in  of any other observed node;
• every pair of observed nodes in Y has a common latent ancestor5 in .

These two assumptions can be dropped without any loss of generality (Silva et al., 2006), but 
they will be useful for presentation purposes. Notice that the latter assumption implies that 
there are no conditional independence constraints in the marginal distribution of Y. As such, a 
standard causal (p.681) inference algorithm such as the PC algorithm (Spirtes et al., 2000) 
cannot provide any information.

Notice also that we do not assume any other form of background knowledge concerning the 
number of latent variables or particular information concerning which observed variables have 
common hidden parents.

Having clarified all assumptions on which our methods rely, the problem we want to solve can 
be formalized. Let the measurement model ℳ of  be a graph given by all vertices of , and the 
edges of  that connect latent variables to observed variables. In order to be agnostic with 
respect to the causal structure among latent variables, we connect each pair of latent variables 
by a bi‐directed edge as a general symmetric representation of dependency. Ideally, given the 
distribution Ƥ over the observed variables and that our assumptions hold, we would like to 
reconstruct ℳ. Since Ƥ has to be estimated from the data, it is of practical interest to use only 
features of Ƥ that can be easily estimated. As such, we rephrase our problem as learning ℳ given 
Σ, the covariance matrix of Y.
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However, in general this is only possible if the true model entails that Σ is constrained in ways 
that cannot be explained by other models. For instance, if there are more latent variables than 
observed variables, and each latent variable is a parent of all elements of Y, then Σ has no 
constraints and an infinite number of models will be compatible with the data.

Silva et al. (2006) formalize the problem by extracting only pure measurement submodels of the 
true model, subgraphs of ℳ where each observed variable Y has a single parent, and where this 
parent d‐separates Y from all other vertices of the submodel in . Such single‐parent vertices 
are also called pure indicators. Moreover, the output of the procedure described by Silva et al.
(2006) only generates submodels where each latent variable has at least three pure indicators. If 
such models exist, they can be discovered given Σ. The scientific motivation is that many 
datasets studied through structural model analysis and factor analysis support the existence of 
pure measurement submodels. As we mentioned in the previous section, methods for providing 
‘simple structures’ in factor analysis are hard to justify unless some pure measurement 
submodel exists. Therefore, it would be hard to justify factor analysis as a more flexible 
approach, since its output would be unreliable anyway. An important advantage of the causal 
discovery approach discussed here is that it knows its limitations: if there is no pure 
measurement submodel for all latent variables in the true model, it will report a model for a 
subset of the variables only. This also means that an empty structure might be reported if no 
pure submodel exists.

Our contribution is to extend the work of Silva et al. by allowing several ‘impurities’ in the 
output of our new procedure. To give an example where this is necessary, consider Figure
32.2(a) again. It is not possible to include both latent variables using the procedure of Silva et 
al.: if latent variables X 1 (p.682) and X 2, and their respective three indicators, are included, it 
turns out Y 3 is not d‐separated from Y 4 by either X 1 or X 2. The best Silva et al. (2006) can do is 
to include, say, X 1 and its indicators, plus one of its descendants as an indirect indicator which 
does not violate the separations in the true model. For instance, the model with edges X 1 → Y i, 
for i ∈ {1,2, 3,5} and no other variable, satisfies this condition. In contrast, the new procedure 
described here is able to generate Figure 32.2(b).

In practice, Σ has to be estimated from data. In the discussion that follows, we assume that we 
know Σ so that we can concentrate on the theory and the main ideas. Section 32.4 provides 
methods to deal with an estimate of Σ and which practical issues arise in this case.

32.2.3 Description of output

Our output is a measurement pattern ℳP which, under the above specified assumptions and given 
the population matrix Σ of a set of observed variables Y, provides provably correct causal claims 
concerning the true structure ℳ. The measurement pattern is a directed mixed graph with 
labeled edges (as explained below), with hidden nodes {L i} and observed nodes that form a 
subset of Y. ℳP includes directed edges from latent variables to observed variables, and bi‐
directed edges between observed variables.
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Before introducing the new procedure in Section 32.3, we formalize the causal claims that a 
measurement pattern ℳP provides:

1. each hidden variable L i in ℳP corresponds to some hidden variable X j in . In the items 
below, we call this variable X(L i). Moreover, for two different latent variables L i and L j

in ℳP, X(L i) ≠X(L j) in any possible mapping from hidden variables in ℳP to hidden 
variables in ;
2. if Y i is in ℳP but it is not a child of latent variable L j, then Y i is independent of X(L j) in
 given its parents in ℳP;
3. given any pure measurement submodel of ℳP with at least three indicators per latent 
variable, and a total of at least four observed variables, then at most one of the latent‐to‐
indicator edges L i → Y j does not correspond to the true causal relationship in . That is, 
it is possible that for one pair, X(L i) is not a cause of Y j and/or the relationship is 
confounded;

The last item needs to be clarified with an example, since it is not intuitive. Let Figure 32.3(a) be 
a true causal structure from which we can measure the covariance matrix of Y 1, …, Y 6. The 
structure reported by our procedure is the one in Figure 32.3(b). Five out of Six edges 
correspond to the correct causal statement, except L 2 → Y 6 (which should be confounded). We 
cannot know which one, but at least we know this is the case. As in any causal discovery 
algorithm (Spirtes et al., 2000; Pearl, 2000), background knowledge is necessary to refine the 
information given by an equivalence class of graphical (p.683)

structures. In our case, such models are 
equivalent in the sense they imply the same 
testable constraints.
Finally, edges are labelled as 
‘confirmed’ (they do correspond to actual 
paths in the true graph) or 
‘unconfirmed’ (we cannot decide whether a 
corresponding path exists in the true 
graph). In the next section we clarify how 
‘unconfirmed’ edges appear. Unless 
otherwise stated, all other edges are 
‘confirmed’ edges.

32.3 An algorithm for inferring an 
impure measurement model
Let a one‐factor submodel of  be a set 
composed of one hidden variable X and four 
observed variables {Y A, Y B, Y C, Y D}, such 
that each pair of distinct variables is d‐
separated by X.

Fig. 32.3  A covariance matrix obtained from 
the true model in (a) will result in the 
structure shown in (b). This structure should 
be interpreted as making claims about an 
equivalence class of models: in this case, at 
most one of the directed edges does not 
correspond to the exact claim that there is 
an unconfounded causal relationship 
between the latent variable and its 
respective child. But notice that there are 
only Seven models compatible with this 
claim, instead of the 26 = 32 possibilities 
(each of the six relations L i → Y j being 
confounded or not) that the same 
adjacencies could provide.
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One‐factor submodels play an important role in our procedure. A vertex Y i will be included in 
our output measurement pattern ℳP if and only if it belongs to some one‐factor submodel of . 
Also, X will correspond to some output latent if and only if it belongs to some one‐factor 
submodel. Figure 32.2(a) illustrates the concept: the sets {X 1, Y 1, Y 2, Y 3, Y 5} and {X 2, Y 4, Y

5, Y 6, Y 1} are one‐factor submodels. No one‐factor submodels exist for X 3 and X 4.

This fact should not be surprising. It is well‐known in the structural equation modelling 
literature that the folllowing model is testable:

(32.2)
where i ∈ {1, 2, 3, 4}, and X and {ϵ i} are mutually independent Gaussian variables of zero 
mean. This corresponds to a Gaussian causal network with (p.684) corresponding edges X → Y i. 
Adding an extra edge, and hence a new parameter, would remove one degree of freedom and 
make the model undistinguishable from models with two latent variables (Silva et al., 2006).
One way to characterize which constraints are entailed by this model is by writing down the
tetrad constraints of this structure. If σ ij is the covariance of Y i and Y j, and

is the variance of X, then for the model (32.2) the following identify holds:

(32.3)
Similarly, σ 12 σ 34 = σ 14 σ 23. For a set of four variables {Y A, Y B, Y C, Y D}, we represent the 
statement σ AB σ CD = σ AC σ BD = σ AD σ BC by the predicate ℐ(ABCD). Notice this is entailed by 
the graphical structure, since the relationship does not depend on the precise values of {λ i} or

.
For the causal discovery goal, however, the relevant concept is the converse: given observable 
constraints that can be tested, which causal structures are compatible with them? Concerning 
one‐factor submodels, the converse has been proved6 by Silva et al. (2006):

Lemma 1. If ℐ (ABC D) is true, then there is a latent variable in  that d‐ separates {Y A, Y B, Y C,
Y D}.

For example, in Figure 32.3(a), X 1 d‐separates each pair of distinct variables in {Y 1, Y 2, Y 3, Y

4}, although it is not a cause of Y 4. A result such as Lemma 1 is important for discovering latent 
variables, but it is of limited use unless there are ways of ruling out the possibility that some 
latent variables are causes of some indicators. It turns out that the ℐ(∙) constraint can also be 
used for this purpose.

Consider Figure 32.3(a) again. If we pick all three indicators of one latent variables along with 
some indicator of the other latent variables, we have a one‐factor model that passes the 
conditions of Lemma 1. One possibility is that all six indicators are pure indicators of a single 
latent cause: after all, each pair {Y A, Y B} is d‐separated by some single latent variable. 



Measuring latent causal structure

Page 12 of 23

However, this does not tell us whether the latent variable that separates one group is the same 
as the one that separates another group. This is clear from Figure 32.3(a): X 1 d‐separates any 
pair in {Y 1, Y 2, Y 3} × {Y 4, Y 5, Y 6}. However, it does not d‐separate any pair in {Y 4, Y 5, Y 6} × 
{Y 4, Y 5, Y 6}. We have to deduce this information without looking at the true graph, but only at 
the marginal covariance matrix of Y.

(p.685) One way of discarding connections from latents to indicators, and deducing that two 
unobserved variables are not the same, is given by the following result:

Lemma 2. Consider the observed variables {Y A, Y B, Y C, Y D, Y E,Y F}. If both ℐ(ABCD) and
T(ADEF) are true, but σ AB σ DE ≠σ AD σ BE, then Y A and Y D cannot have any common parent in

.

A detailed proof is given by Silva et al. (2006). The intuitive explanation is that, if Y A and Y D did 
have a common parent (say, X AD), then this latent variable would be precisely the one, and only 
one, responsible for both constraints ℐ(ABCD) and ℐ(ADE F). It would not be hard to show that 
this would imply σ AB σ DC = σ AD σ BE, contrary to the assumption.

Notice that these two results are already enough to find a pure measurement submodel. The 
general skeleton of the procedure is to find a partition {X 1, …, M C} such that

and
1. elements in M i are d‐separated by some hidden variable (using Lemma 1);
2. elements in M i and M j cannot have common parents (using Lemma 2).

Many more details need to be described in order to provide an equivalence class of pure 
measurement models with three indicators per latent variable, but this is the general idea. What 
is missing from this procedure is a way of coping with impure measurement models so that a 
structure such as the one in Figure 32.2(b) can be obtained. We now introduce the first 
theoretical results that accomplish that.

32.3.1 Finding impure indicators
Consider what can happen if we observe the covariance matrix generated by the model of Figure 
32.2(a). We know that there is no single latent variable that d‐separates (say) {Y 1, Y 2, Y 3, Y 4}. 
However, we know that there is some hidden L that d‐separates {Y 1, Y 2, Y 3, Y 5}, as well as 
some hidden L′ that d‐separates {Y 1, Y 4, Y 5, Y 6}. So far, we could infer an approximate graph 

such as:

However, we cannot stop here and report this as a possible solution: we will get an inconsistent 
estimate for the covariance of the latent variables, which can lead to wrong conclusions about 
the causal structure of the latents. We would like to account for the possibility that the 
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impurities arise not from our (p.686) identified latents, but from some other source. This is the 
result summarized by Lemma 3:

Lemma 3. Consider the observed variables {Y A, Y B, Y C, Y D, Y E, Y F}. If the foll‐ lowing 
predicates are true:

and the following predicates are false

then in the corresponding causal graph , we have that:

•  contains at least two different latent variables, L 1 and L 2;
• L 1 d‐separates all pairs in {Y A, Y B, Y C} × {Y D, Y E, Y F, L 2}, except Y C × Y D;
• L 2 d‐separates all pairs in {Y A, Y B, Y C, L 1} × {Y D, Y E, Y F}, except Y C × Y D;
• Y C and Y D have extra hidden common causes not in {L 1, L 2}.

A formal proof of a slightly more general result is given by Silva (2006). The core argument is as 
follows. The existence of L 1 and L 2 follows from Lemma 1 and the constraints ℐ(ABCE) and
ℐ(ADEF). That L 1 ≠L 2 follows from Lemma 2 and the fact that ℐ(ABEF) is false. The other d‐ 
separations follow from Lemma 1 and the given tetrad constraints. Finally, if Y C and Y D did not 
have any other hidden common cause, we could not have both ℐ(A B C D) and ℐ(C D E F) falsified 
at the same time, contrary to our hypothesis.

In our diagrams, we represent such extra hidden common causes by bi‐ directed edges Y C ↔ Y D. 
That is, we do not specify how many hidden common causes for this pair exist or how they are 
connected to other latent variables. Notice that we never claim that the implicit latent variables 
represented by bi‐directed edges are independent of the discovered latent variables. Figure 32.4
illustrates a case.

The second type of impurity we will account for nodes that have more than one represented 
latent parent.

Lemma 4. Consider the observed variables {Y A, Y B, Y C, Y D, Y E, Y F, Y G}. If the folllowing 
predicates are true:

and the following predicates are false

then in the corresponding causal graph , we have that: (p.687)
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•  contains at least two different 
latent variables, L 1 and L 2;
• L 1 d‐separates all pairs in {Y A, Y

B, Y C, Y D};
• L 2 d‐separates all pairs in {Y D, Y

E, Y F, Y G};
• L 1 d‐separates all pairs in { Y A, Y
B, Y C} × {Y E, Y F, Y G, L 2},but not Y
D × L 2;
• L 2 d‐separates all pairs in { Y A, Y
B, Y C, L 1} × {Y E, Y F, Y G},but not Y
D × L 1.

The nature of this result complements the 
previous one: instead of searching for 
evidence to remove edges from latents into 
indicators, this result provides identification 
of edges that cannot be removed. That is, if 
no third identifiable latent variable L i can 
separate Y D from L 1 and L 2, then edges L 1
→ Y D and L 2 → Y D cannot be removed. 
Doing so would imply d‐separations (e.g. Y D
and L 2 given L 1) contrary to the 
implications of our assumptions.

The argument again exploits Lemmas 1 and 
2. A more detailed proof is given by Silva 
(2006). Notice the need for extra indicators in this case: this is another illustration of the need 
for one‐factor models for each latent variable. Without Y 7 in the example of Figure 32.5(a), the 
result would be the measurement pattern of Figure 32.5(b).

Notice that if there are indicators that share more than one common parent in  then, by using 
tetrad constraints only, we cannot separate them (i.e. avoid a bi‐directed edge) even if their 
parents are identified in the model. Figure 32.6 illustrates what the measurement pattern should 
report. Using higher‐ order constraints than tetrad constraints might be of help in this situation
(p.688)

Fig. 32.4  A model such as the one in (a) 
generates the measurement pattern in (b). 
Notice that the indication of extra hidden 
common causes, as represented by, e.g. Y 1 ↔ 
Y 2, does not imply that these unrepresented 
causes are independent of the represented 
ones. Moreover, notice that if the edge X 1 ←
X 2 is switched in (a) to X 1 → X 2
instead, the corresponding pattern would 
still be the one in (b). In this case, it is clear 
that both edges L 1 → Y 1 and L 1 → Y 2 are not 
representing the actual causal directions of 
the true graph: in the modified (a), we now 
have the path Y 1 ← X 1 → X 2. Since L 1 is 
mapped to X 2, edge L 1 → Y 1 should not be 
interpreted as X 2 being a cause of Y 1. This 
does not contradict our previous claims: the 
corresponding measurement pattern claim is 
about pure submodels. In this case, a pure 
submodel could be the one containing Y 1, Y
3, Y 4 and Y 5 only. One edge, L 1 → Y 1, still 
does not explicitly indicate the confounding 
given by X 1, but this is compatible with the 
measurement pattern description.
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(Sullivant and Talaska, 2008), but this is out 
of the scope of the current contribution.
To summarize:

• Lemma 1 provides the evidence to 
include latent variables;
• Lemma 2 provides the evidence to 
distinguish between different latent 
variables;
• Lemma 3 allows for the removal of 
extra edges from latents into 
indicators and proves the necessity 
of some bi‐directed edges;
• Lemma 4 proves the necessity of 
some edges from latents into 
indicators, but does not prove the 
necessity of adding some bi‐directed 
edges.

32.3.2 Putting the pieces together
So far, we have described how to identify 
particular pieces of information about the 
underlying causal graph. While those 
results allow us to identify isolated latent 
variables and to remove or confirm particular connections, we need to combine such pieces 
within a measurement pattern. Unlike the procedure of Silva et al. (2006), this pattern should be 
able to represent several (p.689) pure measurement submodels within a single graphical object 
and to possibly include more latent variables than any pure model.

In this section, we assume that we have the population covariance matrix Σ. Important practical 
issues arising from the need of estimating the covariance matrix from data are discussed in the 
next section. We start by finding groups of variables that are potential indicators of a single 
latent variable. We first build an auxiliary undirected graph ℋ as follows:

INITIAL PASS: this procedure returns an undirected graph ℋ.

1. let ℋ be a fully connected undirected graph with nodes Y;
2. for all groups of six variables {Y A, Y B, Y C, Y D, Y E, Y F} that form a clique in ℋ, if
ℐ(ABCD) and ℐ(ADEF) are true but σ AB σ DE ≠σ AD σ BE, remove the edge Y A–Y D;
3. if for a given Y A in ℋ there is no triplet {Y B, Y C, Y D] suchthat ℐ(ABCD) holds, then 
remove Y A from ℋ, since there will be no one‐factor model including Y A;
4. return ℋ.

Notice that if two vertices are not adjacent in ℋ, they cannot possibly be children of the same 
latent variable (it follows from Lemma 2). This motivates us to look for one‐factor models within 

Fig. 32.5  The graph in (a) can be rebuilt 
exactly. However, without a fourth indicator 
of X 2 (e.g. Y 7), this latent variable can not 
be detected and the result would be the 
graph in (b).

Fig. 32.6  The graph in (a) is not fully 
identifiable with tetrad constraints only. A 
conservative measurement pattern needs to 
report the structure in (b).
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cliques of ℋ only. In Step 3, we discard variables not in one‐factor models, since nothing 
informative can be claimed about them using our methods.

In the next step, we obtain a set of tentative subgraphs, where each subgraph contains a single 
latent variable and its indicators:

SINGLE LATENTS: given ℋ, this procedure returns a set S of graphs with a single latent variable 
each.

1. initialize S as the empty set;
2. for each clique C in ℋ

3. if there is no {Y A, Y B, Y C] ⊂ C and Y D ∈ Y such that ℐ(ABCD) holds, continue to next 
clique;
4. create a graph i with latent vertex L i, i = ǀSǀ + 1, and with children given by C;
5. for each {Y A, Y B] ⊂ C, if there is no Y C ∈ C and Y D ∈ Y such that ℐ (ABCD) is true, then 
add edge Y A ↔ Y B to i. Mark this edge as ‘unconfirmed’;
6. add the new graph to S;
7. return S.

(p.690) By Lemma 1, every single latent variable created in this procedure corresponds to at 
least one possible latent variable in . The rationale for Step 5 is that L i does not d‐separate Y A
and Y B. It is possible to confirm many such edges using an argument similar to Lemma 4, but we 
leave out a detailed analysis to simplify the presentation.7

Finally, all single graphs are unified into a coherent measurement pattern:

FIND MEASUREMENT PATTERN: returns a measurement pattern ℳP given S.

1. let ℳP be the union of all graphs in S, where all latents are connected by bi‐directed 
edges;
2. for every pair {S i, S j} ⊂ S do
3. consider all triplets {Y A, Y B, Y C} ⊂ S i ∪ S j such that ℐ(ABCD) holds for some Y D. If 
such triplets are also in S i ∩ S j, set the children of L j to be children of L i and discard L j. 
Set all L i → Y k to be ‘unconfirmed’ if Y k is not in S i ∩ S j. Continue to next pair;
4. for every pair {Y C, Y D} ⊂ S i ∩ S j, add ‘unconfirmed’ edge C ↔ Y D to ℳP. If Lemma 3 
can be applied to {Y C, Y D} where {Y A, Y B} ⊂ S i and {Y E, Y F} ⊂ S j, then remove edges
L j → Y C and L i → Y D and mark C ↔ Y D as ‘confirmed’;
5. if Y j has more than one parent, mark all directed edges L i → Y j unsupported by 
Lemma 4 as ‘unconfirmed’;
6. return M p.

The justification for most steps follows directly from our previous results.8 To understand Step 3, 
however, we need an example. In Figure 32.7(a), we have a true model. We can separate Y 4
from Y 8 using Lemma 2. The result of FIRST PASS is the graph ℋ shown in Figure 32.7(b). Sets 
{Y 4, Y 5, Y 6, Y 7} and {Y 5, Y 6, Y 7, Y 8} are cliques in ℋ, but they refer to the same latent variable 
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X 2. There will be edges L 2 → Y 4 and L 2 → Y 8 in the measurement pattern, but they will not be 
confirmed edges. Notice that there might be ways of removing L 2 → Y 4 and L 2 → Y 8, but they 
are out of the scope of this chapter. Our goal is not to provide complete identification methods, 
but to show the main tools and the difficulties of learning impure measurement models. (p.691)

To summarize:

• different latent variables in the 
output cannot be mapped to the 
same latent variable in the true 
graph;
• lack of edges in the measurement 
pattern correspond to conditional 
independence constraints in the 
true graph;
• the two main sources of causal 
indeterminacy are: some edges are 
labelled as unconfirmed, in the 
sense the corresponding causal path 
might not exist in the true graph; 
some of the causal relationships 
indicated by edges X i → Y j might be 
confounded, but no more than one 
is confounded within any pure 
measurement submodel of the 
output measurement pattern.

32.4 Experiments
In this section, we illustrate how the theory can be applied by analysing two simple datasets.

In practice, we will not know Σ, but only an estimate obtained from a sample. Robust statistical 
procedures to score models and test constraints from finite samples are described at length by 
Silva et al. (2006).

In the following experiments, we assume data are multivariate Gaussian. Wishart's tetrad test 
can be used to evaluate ℐ(∙), which we accept as true if the p‐value for the test is greater or 
equal to 0.05 (Silva et al., 2006). In the (p.692) SINGLE LATENTS procedure, for each clique C
we add extra bi‐directed edges to i by a greedy search procedure: we look at each pair of 
variables and evaluate the Bayesian information criterion (BIC, Schwarz (1978)) for the model 
with the added edge. If the best model is better than the current one, we keep the edge. 
Otherwise, we stop modifying i. An analogous procedure is performed to add bi‐directed edges 
in FIND M EASUREMENT PATTERN.

In the worst‐case scenario, the procedure scales at an exponential rate in the number of 
variables due to the necessity of finding cliques in a graph (the SINGLE LATENTS procedure). 

Fig. 32.7  With the true graph being (a), we 
obtain two cliques of variables {Y 4, Y 5, Y 6,
Y 7} and {Y 5, Y 6, Y 7, Y 8} in ℋ (b), since we 
can discover that Y 4 and Y 8 are indicators of 
different variables. However, these two 
cliques are related to the same true latent X
2 and have to be merged. The side‐effect is 
that we cannot confirm the edges L 2 → Y 4
and L 2 → Y 8, although we know both cannot 
possibly exist at the same time.
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The examples are small and sparse enough so that this is not a problem. Some heuristics for 
larger problems are described by Silva et al. (2006).

32.4.1 Democratization and industrialization example

This is the study described at the beginning of Section 34.1 and discussed by Bollen (1989). A 
sample of 75 countries was collected. We will discuss the outcome of our procedure and how it 
relates to the ‘gold standard’ of Figure 32.1.9

If the true model is indeed Figure 32.1 and if we had access to an oracle that could answer 
exactly which tetrad constraints hold and do not hold in the true model, then the result of our 
algorithm would be Figure 32.8(a). The result obtained with our implementation is shown in 
Figure 32.8(b). With only 75 samples, it is not surprising that the BIC score tends to produce 
models with fewer edges than expected. Still, the model reveals a lot of information present in 
the expected pattern. It also suggests ways of extending the procedure, such as allowing for the 
background knowledge that some variables have the same definition, but recorded over time. 
Recall that the resulting model was obtained without any extra information.

32.4.2 Depression example
The next dataset is a depression study with five indicators of self‐steem (SELF), four indicators 
of depression (D E P R E S) and three indicators of impulsiveness (IMPULS). This dataset is one 
of the examples that accompany the LISREL software for structural equation modeling. The 
depression data and the meaning of the corresponding variables can also be found at

• http://www.ssicentral.com/lisrel/example1-2.html

(p.693)
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A theoretical gold standard is show in 
Figure 32.9(a). It is worth mentioning that, 
treated as a Gaussian model, this graphical 
structure does not fit the data: the chi‐
square score is 122.8 with 51 degrees of 
freedom. The sample size is 204.

Our result is shown in Figure 32.9(b). It was 
impossible to find a hidden common cause 
for the indicators of impulsiveness: the 
correlations of IMPULS1 and IMPULS2 with 
the other items were just too low, and those 
items had to be discarded. The only major 
difference against the gold standard was 
assigning SE L F5 with the incorrect latent 
parent (the role of IMPULS3 in the solution 
is compatible with the properties of a 
measurement pattern). Given the number of 
bi‐directed connections into SE L F5, 
however, this indicator seems particularly 
problematic.

It is relevant to stress that in this study, the indicators are ordinal (in a 0 to 4 scale), not 
continuous. We were still able to provide relevant information despite using a Gaussian model. 
In future work, methods to deal with ordinal data will be developed. The theory for ordinal data 
is essentially identical, as discussed by Silva et al. (2006). However, non‐Gaussian models need 
to be used, which increases the computational cost of the procedure considerably. (p.694)

Fig. 32.8  In (a), the measurement pattern 
that corresponds to the gold standard. In (b), 
the result of our procedure. All directed 
edges are correct. With small sample sizes, 
the BIC score tends to produce models 
simpler than expected, so it is not surprising 
that the model lacks several of the bi‐
directed edges.
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32.5 Conclusion
Learning measurement models is an 
important causal inference task in many 
applied sciences. Exploratory factor analysis 
is a popular tool to accomplish this task, but 
it can be unreliable and causal assumptions 
are often left unclear. Better approaches 
are needed. Loehlin (2004) argues that 
while there are several approaches to 
automatically learn causal structure, none 
can be seem as competitors of exploratory 
factor analysis. Procedures such as the one 
introduced by Silva et al. (2006) and 
extended here are important steps that fill 
this gap.

The new procedure introduced in this work 
allows for impure indicators. For the 
ultimate goal of estimating causal 
relationships among latent variables, this is 
sometimes essential: in the example of 
Figure 32.2, we are not (p.695) able to 
keep both latent variables in our model if 
we use the method of Silva et al. (2006), 
which requires three pure indicators per 
latent variable. In other cases, the 
advantage is statistical: in the example of 
Figure 32.5, by keeping more indicators we 
have more data that can be used to better 
estimate the measurement model and the 
corresponding causal parameters 
connecting the latent variables. As future work, we plan to perform a full theoretical and 
practical study of the advantages of discovering impure measurement models as a way of 
obtaining better estimates of latent causal effects.

The inclusion of impure indicators is an important step to make such approaches more generally 
applicable. As hinted in our discussion, other identification results to confirm or remove edges 
can be further developed. Higher‐order constraints in the covariance matrix, besides tetrad 
constraints, are yet to be exploited (Sullivant and Talaska, 2008). Exploring the higher‐order 
moments of the observed distribution (i.e. not only the covariance matrix) has been a successful 
approach to identify the causal structure of linear models (Shimizu et al., 2006), but how to 
adapt them to discover a measurement model is still unclear. Finally, some progress on allowing 
for nonlinearities has been made (Silva and Scheines, 2005), but more robust statistical 
procedures and further identification results are necessary.
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Fig. 32.9  In (a), the gold standard of the 
depression study. The measurement pattern 
is precisely the same (except for the latent 
connections). In (b), the result of our 
procedure. The inferred model cannot 
contain the impulsiveness latent variables, 
as it turns out the correlation of IMPULS1
and IMPULS2 with other variables are 
statistically too close to zero at a 0.10 level.
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Notes:
(1) Coefficients were generated uniformly at random on the inverval [−1.5, −0.5] ∪ [0.5,1.5] 
while variances of error terms were generated uniformly in [0, 0.5].

(2) The number of latent variables can be chosen by a variety of standard techniques (Loehlin,
2004). For instance: by maximizing a score function that trades‐off the complexity of the model 
against its fitness, or by choosing the minimal number such that the model passes a statistical 
significance test. In our example, a model with three latent variables passed a chi‐square test at 
a 0.05 significance level.

(3) For instance, if an intervention on variable X at its different levels always results in the same 
distribution for a variable Y, X is not considered a cause of Y, other things being equal.

(4) More precisely, we assume a stronger version of faithfulness in which the constraints we 
describe later in this section are linearly implied by . See Chapter 6 of Spirtes et al. (2000).

(5) As a reminder, this is not the same as having parents in common.

(6) To avoid unnecessary repetition, from now on we establish the convention that all results use 
the assumptions of Section 32.2, without explicitly mentioning them in the theoretical 
development.

(7) An example: in Figure 32.5(b), all bi‐directed edges can be confirmed, because each of {Y 4,
Y 5, Y 6} is separated from {Y 1, Y 2, Y 3} by L 1. We can therefore isolate the failure of having a 
one‐factor model composed of {L 1, Y 1, Y 2, Y 4, Y 5} down to the Y 4 ↔ Y 5 edge.

(8) Notice also that, among all confirmed edges, it is still the case that the directionality is not 
individually determined, as stated in Section 32.2.3: within any given measurement submodel, at 
most one edge L i → Y j might not correspond to a direct, unconfounded, causal relationship.

(9) Caveat emptor: in our setup, a gold standard means a theoretical model, one that might be 
wrong but that reflects substantive prior knowledge. Since indicators are built with the purpose 
of measuring particular latent variables, and are frequently used across several different 
studies, we believe that the existence of the chosen latent variables and edges connecting latent 
variables to indicators are to be trusted. Incorrect choices of bi‐directed edges are not unlikely, 
however, as well as the the possibility of extra directed edges and latent variables not accounted 
by the theoretical model. We do not have an objective way of evaluating them.
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This chapter presents a general theory of causation based on the Structural Causal Model 
(SCM) described by Pearl (2000a). The theory subsumes and unifies current approaches to 
causation, including graphical, potential outcome, probabilistic, decision analytical, and 
structural equation models, and provides both a mathematical foundation and a friendly 
calculus for the analysis of causes and counterfactuals. In particular, the chapter 
demonstrates how the theory engenders a coherent methodology for inferring (from a 
combination of data and assumptions) answers to three types of causal queries: (1) 
queries about the effects of potential interventions, (2) queries about probabilities of 
counterfactuals, and (3) queries about direct and indirect effects.

University Press Scholarship Online

Oxford Scholarship Online



The structural theory of causation

Page 2 of 30

33.1 Introduction
Twentieth‐century science has witnessed a lingering tension between the questions that 
researchers wish to ask and the language in which they were trained–statistics.

The research questions that motivate most studies in the health, social and behavioural sciences 
are not statistical but causal in nature. For example, what is the efficacy of a given drug in a 
given population? Whether data can prove an employer guilty of hiring discrimination? What 
fraction of past crimes could have been avoided by a given policy? What was the cause of death 
of a given individual, in a specific incident? These are causal questions because they require 
some knowledge of the data‐generating process; they cannot be computed from distributions 
alone.

Any conception of causation worthy of the title ‘theory’ must be able to (1) represent these 
questions in a formal language, (2) provide a precise language for communicating assumptions 
under which the questions need to be answered, (3) provide a systematic way of answering at 
least some of these questions and labelling others ‘unanswerable’, and (4) provide a method of 
determining what assumptions or new measurements would be needed to answer the 
‘unanswerable’ questions.1

(p.698) A ‘general theory’ of causation should do more. In addition to embracing all questions 
judged to have causal character, a general theory must also subsume any other theory or 
method that scientists have found useful in exploring the various aspects of causation, be they 
epistemic, methodological or practical. In other words, any alternative theory need to evolve as 
a special case of the ‘general theory’ when restrictions are imposed on either the model, the 
type of assumptions admitted, or the language in which those assumptions are cast.

This paper presents a theory of causation that satisfies the criteria above. It is based on the 
Structural Causal Model (SCM) developed by Pearl (1995; 2000a) which combines features of 
the structural equation models (SEM) used in economics (Haavelmo, 1943) and social science 
(Duncan, 1975), the potential‐outcome notation of Neyman (1923) and Rubin (1974), and the 
graphical models developed for probabilistic reasoning (Pearl, 1988; Lau‐ritzen, 1996) and 
causal analysis (Spirtes et al., 2000; Pearl, 2000a). The theory presented forms a coherent whole 
that supercedes the sum of its parts.
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Although the basic elements of SCM were introduced in the mid‐1990s (Pearl, 1995), and have 
been adapted warmly by epidemiologists (Greenland et al., 1999; Glymour and Greenland,
2008), statisticians (Cox and Wermuth, 2004; Lauritzen, 2001), and social scientists (Morgan 
and Winship, 2007), its potentials as a comprehensive theory of causation are yet to be fully 
utilized. Some have congratulated the SCM for generalizing econometric models from linear to 
non‐parametric analysis (Heckman, 2008), some have marvelled at the clarity and transparency 
of the graphical representation (Greenland and Brumback, 2002), others praised the flexibility of 
the do(x) operator (Hitchcock, 2001; Lindley, 2002; Woodward, 2003) and, naturally, many have 
used the SCM to weed out myths and misconceptions from outdated traditions (Meek and 
Glymour, 1994; Greenland et al., 1999; Cole and Hernán, 2002; Arah, 2008; Shrier, 2009; Pearl,
2009b) Still, the more profound contributions of SCM, those stemming from its role as a 
comprehensive theory of causation, have not been fully explicated. These include:

1. The unification of the graphical, potential outcome, structural equations, decision 
analytical (Dawid, 2002), interventional (Woodward, 2003), sufficient component 
(Rothman, 1976) and probabilistic approaches to causation; with each approach viewed 
as a restricted special aspect of the SCM.
2. The axiomatization and algorithmization of counterfactual expressions.
3. Defining and identifying joint probabilities of counterfactual statements.
4. Reducing the evaluation of actions and policies to algorithmic level of analysis.
(p.699)
5. Solidifying the mathematical foundations of the potential‐outcome model, and 
formulating the counterfactual foundations of structural equation models.
6. Demystifying enigmatic notions such as ‘confounding’, ‘ignorability’, ‘exchangeability’, 
‘superexogeneity’ and others, which have emerged from ‘black‐box’ approaches to 
causation.
7. Providing a transparent language for communicating causal assumptions and defining 
causal problems.

This chapter presents the main features of the structural theory by, first, contrasting causal 
analysis with standard statistical analysis (Section 33.2), second, presenting a friendly formalism 
for counterfactual analysis, within which most (if not all) causal questions can be formulated and 
resolved (Sections 33.3 and 33.4) and, finally, contrasting the structural theory with two other 
frameworks: probabilistic causation (Section 33.5) and the Neyman– Rubin potential‐outcome 
model (Section 33.6). The analysis will be demonstrated by attending to three types of queries: 
(1) queries about the effect of potential interventions (Section 33.3.1 and 33.3.2), (2) queries 
about coun‐ terfactuals (Section 33.3.3) and (3) queries about direct and indirect effects (Section 
33.4).

33.2 From statistical to causal analysis: Distinctions and barriers
33.2.1 The basic distinction: Coping with change
The aim of standard statistical analysis, typified by regression, estimation, and hypothesis 
testing techniques, is to assess parameters of a distribution from samples drawn of that 
distribution. With the help of such parameters, one can infer associations among variables, 
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estimate the likelihood of past and future events, as well as update the likelihood of events in 
light of new evidence or new measurements. These tasks are managed well by standard 
statistical analysis so long as experimental conditions remain the same. Causal analysis goes one 
step further; its aim is to infer not only the likelihood of events under static conditions, but also 
the dynamics of events under changing conditions, for example, changes induced by treatments 
or external interventions.

This distinction implies that causal and statistical concepts do not mix. There is nothing in the 
joint distribution of symptoms and diseases to tell us that curing the former would or would not 
cure the latter. More generally, there is nothing in a distribution function to tell us how that 
distribution would differ if external conditions were to change–say from observational to 
experimental setup–because the laws of probability theory do not dictate how one property of a 
distribution ought to change when another property (p.700) is modified. This information must 
be provided by causal assumptions which identify relationships that remain invariant when 
external conditions change.

These considerations imply that the slogan ‘correlation does not imply causation’ can be 
translated into a useful principle: one cannot substantiate causal claims from associations alone, 
even at the population level–behind every causal conclusion there must lie some causal 
assumption that is not testable in observational studies.2

33.2.2 Formulating the basic distinction
A useful demarcation line that makes the distinction between associational and causal concepts 
crisp and easy to apply, can be formulated as follows. An associational concept is any 
relationship that can be defined in terms of a joint distribution of observed variables, and a 
causal concept is any relationship that cannot be defined from the distribution alone. Examples 
of associational concepts are: correlation, regression, dependence, conditional independence, 
likelihood, collapsibility, propensity score, risk ratio, odd ratio, marginalization, 
conditionalization, ‘controlling for’, and so on. Examples of causal concepts are: randomization, 
influence, effect, confounding, ‘holding constant’, disturbance, spurious correlation, faithfulness/
stability, instrumental variables, intervention, explanation, attribution, and so on. The former 
can, while the latter cannot be defined in term of distribution functions.

This demarcation line is extremely useful in causal analysis for it helps investigators to trace the 
assumptions that are needed for substantiating various types of scientific claims. Every claim 
invoking causal concepts must rely on some premises that invoke such concepts; it cannot be 
inferred from, or even defined in terms statistical associations alone.

33.2.3 Ramifications of the basic distinction
This principle has far reaching consequences that are not generally recognized in the standard 
statistical literature. Many researchers, for example, are still convinced that confounding is 
solidly founded in standard, frequentist statistics, and that it can be given an associational 
definition saying (roughly): ‘U is a potential confounder for examining the effect of treatment X
on outcome Y when both U and X and U and Y are not independent’. That this definition and all 
its many variants must fail (Pearl, 2000a, Section 6.2)3 is obvious from the demarcation line 
above; if confounding were definable in terms (p.701) of statistical associations, we would have 
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been able to identify confounders from features of non‐experimental data, adjust for those 
confounders and obtain unbiased estimates of causal effects. This would have violated our 
golden rule: behind any causal conclusion there must be some causal assumption, untested in 
observational studies. Hence the definition must be false. Therefore, to the bitter 
disappointment of generations of epidemiologist and social science researchers, confounding 
bias cannot be detected or corrected by statistical methods alone; one must make some 
judgmental assumptions regarding causal relationships in the problem before an adjustment 
(e.g. by stratification) can safely correct for confounding bias.

Another ramification of the sharp distinction between associational and causal concepts is that 
any mathematical approach to causal analysis must acquire new notation for expressing causal 
relations–probability calculus is insufficient. To illustrate, the syntax of probability calculus does 
not permit us to express the simple fact that ‘symptoms do not cause diseases’, let alone draw 
mathematical conclusions from such facts. All we can say is that two events are dependent–
meaning that if we find one, we can expect to encounter the other, but we cannot distinguish 
statistical dependence, quantified by the conditional probability P(diseaseǀsymptom) from causal 
dependence, for which we have no expression in standard probability calculus. Scientists 
seeking to express causal relationships must therefore supplement the language of probability 
with a vocabulary for causality, one in which the symbolic representation for the relation 
‘symptoms cause disease’ is distinct from the symbolic representation of ‘symptoms are 
associated with disease’.

33.2.4 Two mental barriers: Untested assumptions and new notation

The preceding two requirements: (1) to commence causal analysis with untested,4 theoretically 
or judgmentally based assumptions, and (2) to extend the syntax of probability calculus, 
constitute the two main obstacles to the acceptance of causal analysis among statisticians and 
among professionals with traditional training in statistics.

Associational assumptions, even untested, are testable in principle, given sufficiently large 
sample and sufficiently fine measurements. Causal assumptions, in contrast, cannot be verified 
even in principle, unless one resorts to experimental control. This difference stands out in 
Bayesian analysis. Though the priors that Bayesians commonly assign to statistical parameters 
are untested quantities, the sensitivity to these priors tends to diminish with increasing sample 
size. In contrast, sensitivity to prior causal assumptions, say that treatment does not change 
gender, remains substantial regardless of sample size.

(p.702) This makes it doubly important that the notation we use for expressing causal 
assumptions be meaningful and unambiguous so that one can clearly judge the plausibility or 
inevitability of the assumptions articulated. Statisticians can no longer ignore the mental 
representation in which scientists store experiential knowledge, since it is this representation, 
and the language used to access it that determine the reliability of the judgments upon which 
the analysis so crucially depends.

How does one recognize causal expressions in the statistical literature? Those versed in the 
potential‐outcome notation (Neyman, 1923; Rubin, 1974; Holland, 1988), can recognize such 
expressions through the subscripts that are attached to counterfactual events and variables, e.g.
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Y x(u) or Z xy. (Some authors use parenthetical expressions, e.g. Y(0), Y(1), Y(x, u) or Z(x, y).) The 
expression Y x(u), for example, stands for the value that outcome Y would take in individual u, 
had treatment X been at level x. If u is chosen at random, Y x is a random variable, and one can 
talk about the probability that Y x would attain a value y in the population, written P(Y x = y) (see 
Section 33.6 for semantics). Alternatively, Pearl (1995) used expressions of the form P(Y =
yǀset(X = x)) or P(Y = yǀdo(X = x)) to denote the probability (or frequency) that event (Y = y) 
would occur if treatment condition X = x were enforced uniformly over the population.5 Still a 
third notation that distinguishes causal expressions is provided by graphical models, where the 
arrows convey causal directionality.6

However, few have taken seriously the textbook requirement that any introduction of new 
notation must entail a systematic definition of the syntax and semantics that governs the 
notation. Moreover, in the bulk of the statistical literature before 2000, causal claims rarely 
appear in the mathematics. They surface only in the verbal interpretation that investigators 
occasionally attach to certain associations, and in the verbal description with which 
investigators justify assumptions. For example, the assumption that a covariate not be affected 
by a treatment, a necessary assumption for the control of confounding (Cox, 1958, p. 48), is 
expressed in plain English, not in a mathematical expression.

Remarkably, though the necessity of explicit causal notation is now recognized by many 
academic scholars, the use of such notation has remained (p.703) enigmatic to most rank and 
file researchers, and its potentials still lay grossly underutilized in the statistics based sciences. 
The reason for this, can be traced to the unfriendly semi‐formal way in which causal analysis has 
been presented to the research community, resting primarily on the restricted paradigm of 
controlled randomized trials advanced by Rubin (1974).

The next section provides a conceptualization that overcomes these mental barriers; it offers 
both a friendly mathematical machinery for cause–effect analysis and a formal foundation for 
counterfactual analysis.

33.3 Structural Causal Models (SCM) and the language of diagrams
33.3.1 Semantics: Causal effects and counterfactuals
How can one express mathematically the common understanding that symptoms do not cause 
diseases? The earliest attempt to formulate such relationship mathematically was made in the 
1920s by the geneticist Sewall Wright (1921), who used a combination of equations and graphs. 
For example, if X stands for a disease variable and Y stands for a certain symptom of the disease, 
Wright would write a linear equation:

(33.1)
where x stands for the level (or severity) of the disease, y stands for the level (or severity) of the 
symptom, and u Y stands for all factors, other than the disease in question, that could possibly 
affect Y. In interpreting this equation one should think of a physical process whereby Nature
examines the values of x and u Y and, accordingly, assigns variable Y the value y = β x + u Y. 
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Similarly, to ‘explain’ the occurrence of disease X, one could write x = u X, where U X stands for 
all factors affecting X.

To express the directionality inherent in this process, Wright augmented the equation with a 
diagram, later called a ‘path diagram’, in which arrows are drawn from (perceived) causes to 
their (perceived) effects and, more importantly, the absence of an arrow makes the empirical 
claim that Nature assigns values to one variable while ignoring the other. In Figure 33.1, for 
example, the absence of arrow from Y to X represent the claim that symptom Y is not among the 
factors U X which affect disease X.

The variables U X and U Y are called ‘exogenous’; they represent observed or unobserved 
background factors that the modeller decides to keep unexplained, that is, factors that influence 
but are not influenced by the other variables (called ‘endogenous’) in the model.

If correlation is judged possible between two exogenous variables, U Y and U X, it is customary to 
connect them by a dashed double arrow, as shown in Figure 33.1(b).

(p.704)

To summarize, path diagrams encode causal 
assumptions via missing arrows, 
representing claims of zero influence, and 
missing double arrows (e.g. between U X
and U Y), representing the assumption
Cov(U Y, U X) = 0. Note that, despite its 
innocent appearance in associational 
vocabulary, the latter assumption is causal, 
not statistical, for it cannot be confirmed or 
denied from the joint distribution of 
observed variables, in case the U's are 
unobservable.
The generalization to nonlinear systems of 
equations is straightforward. For example, 
the non‐parametric interpretation of the 
diagram of Figure 33.2(a) corresponds to a 
set of three functions, each corresponding 
to one of the observed variables:

(33.2)
where U Z,U X and U Y are assumed to be 
jointly independent but, otherwise, 
arbitrarily distributed.

Fig. 33.1  A simple structural equation 
model, and its associated diagrams. 
Unobserved exogenous variables are 
connected by dashed arrows.

Fig. 33.2 (a)  The diagram associated with 
the structural model of equation (33.2). (b) 
The diagram associated with the modified 
model,

, of equation (33.3), representing the 
intervention do(X = x 0).
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Remarkably, unknown to most economists and pre‐2000 philosophers,7 structural equation 
models provide a formal interpretation and symbolic machinery for analysing counterfactual 
relationships of the type: ‘Y would (p.705) be y had X been x in situation U = u’, denoted Y x(u) =
y. Here U represents the vector of all exogenous variables.8

The key idea is to interpret the phrase ‘had X been x 0’ as an instruction to modify the original 
model and replace the equation for X by a constant x 0, yielding the sub‐model.

(33.3)
the graphical description of which is shown in Figure 33.2(b).

This replacement permits the constant x 0 to differ from the actual value of X (namely f X(z, u X)) 
without rendering the system of equations inconsistent, thus yielding a formal interpretation of 
counterfactuals in multi‐stage models, where the dependent variable in one equation may be an 
independent variable in another (Balke and Pearl, 1994a b; Pearl, 2000b). For example, to 
compute

, the expected effect of setting X to x 0 (also called the average causal effect of X on Y, denoted
E(Yǀdo(x 0)) or, generically, E(Yǀdo(x))), we solve equation (33.3) for Y in terms of the exogenous 
variables, yielding

, and average over U Y. It is easy to show that in this simple system, the answer can be obtained 
without knowing the form of the function f Y(x, u Y) or the distribution P(u Y). The answer is given 
by:

which is computable from the distribution P(x, y, z), hence estimable from observed samples of
P(x, y, z). This result hinges on the assumption that U Z, U X, and U Y are mutually independent 
and on the topology of the graph (e.g. that there is no direct arrow from Z to Y).

In general, it can be shown (Pearl, 2000a, Chapter 3) that, whenever the graph is Markovian (i.e. 
acyclic with independent exogenous variables) the post‐interventional distribution P(Y = yǀdo(X
= x)) is given by the following expression:

(33.4)
where T is the set of direct causes of X (also called ‘parents’) in the graph. Again, we see that all 
factors on the right‐hand side are estimable from the distribution P of observed variables and, 
hence, the counterfactual probability Y(u x = y) is estimable with mere partial knowledge of the 
generating (p.706) process–the topology of the graph and independence of the exogenous 
variables is all that is needed.
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When some variables in the graph (e.g. the parents of X) are unobserved, we may not be able to 
learn (or ‘identify’ as it is called) the post‐intervention distribution P(yǀdo(x)) by simple 
conditioning, and more sophisticated methods would be required. Likewise, when the query of 
interest involves several hypothetical worlds simultaneously, e.g. P(Y x = y,Y x′ = y′),9 the 
Markovian assumption may not suffice for identification and additional assumptions, touching on 
the form of the data‐generating functions (e.g. monotonicity) may need to be invoked. These 
issues will be discussed in Sections 33.3.3 and 33.6.

This interpretation of counterfactuals, cast as solutions to modified systems of equations, 
provides the conceptual and formal link between structural equation models, used in economics 
and social science and the Neyman– Rubin potential‐outcome framework to be discussed in 
Section 33.6. But first we discuss two long‐standing problems that have been completely 
resolved in purely graphical terms, without delving into algebraic techniques.

33.3.2 Confounding and causal effect estimation
The central target of most studies in the social and health sciences is the elucidation of cause–
effect relationships among variables of interests, for example, treatments, policies, 
preconditions and outcomes. While good statisticians have always known that the elucidation of 
causal relationships from observational studies must be shaped by assumptions about how the 
data were generated, the relative roles of assumptions and data, and ways of using those 
assumptions to eliminate confounding bias have been a subject of much controversy. The 
structural framework of Section 33.3.1 puts these controversies to rest.

Covariate selection: The back‐door criterion

Consider an observational study where we wish to find the effect of X on Y, for example, 
treatment on response, and assume that the factors deemed relevant to the problem are 
structured as in Figure 33.3; some are affecting the response, some are affecting the treatment 
and some are affecting both treatment and response. Some of these factors may be 
unmeasurable, such as genetic trait or life style, others are measurable, such as gender, age, 
and salary level. Our problem is to select a subset of these factors for measurement and 
adjustment, namely, that if we compare treated vs. untreated subjects having the same values of 
the selected factors, we get the correct treatment effect in that subpopulation of subjects. Such 
a set of factors is called a ‘sufficient set’ or a set ‘appropriate for adjustment’. The problem of 
defining a sufficient set, let (p.707)



The structural theory of causation

Page 10 of 30

alone finding one, has baffled 
epidemiologists and social science for 
decades (see Greenland et al., 1999; Pearl,
1998, 2003b for reviews).
The following criterion, named ‘back‐door’ 
by Pearl (1993a), settles this problem by 
providing a graphical method of selecting a 
sufficient set of factors for adjustment. It 
states that a set S is appropriate for 
adjustment if two conditions hold:

1. No element of S is a descendant of X.
2. The elements of S ‘block’ all ‘back‐
door’ paths from X to Y, namely all paths 
that end with an arrow pointing to X.10

Based on this criterion we see, for example, that the sets {Z 1, Z 2, Z 3}, {Z 1, Z 3}, and {W 2, Z

3}, are each sufficient for adjustment, because each blocks all back‐door paths between X and Y. 
The set {Z 3}, however, is not sufficient for adjustment because, as explained above, it does not 
block the path X ← W 1 ← Z 1 → Z 3 ← Z 2 → W 2 → Y.

The implication of finding a sufficient set S is that, stratifying on S is guaranteed to remove all 
confounding bias relative the causal effect of X on Y. In other words, it renders the causal effect 
of X on Y estimable, via

(33.5)
Since all factors on the right‐hand side of the equation are estimable (e.g. by regression) from 
the pre‐interventional data, the causal effect can likewise be estimated from such data without 
bias.

The back‐door criterion allows us to write equation (33.5) directly, after selecting a sufficient set
S from the diagram, without resorting to any algebraic manipulation. The selection criterion can 
be applied systematically to (p.708) diagrams of any size and shape, thus freeing analysts from 
judging whether ‘X is conditionally ignorable given S’, a formidable mental task required in the 
potential‐outcome framework (Rosenbaum and Rubin, 1983). The criterion also enables the 
analyst to search for an optimal set of covariate–namely, a set S that minimizes measurement 
cost or sampling variability (Tian et al., 1998).

General control of confounding
Adjusting for covariates is only one of many methods that permits us to estimate causal effects 
in non‐experimental studies. A much more general identification criterion is provided by the 
following theorem:

Theorem 33.1. (Tian and Pearl 2002)

Fig. 33.3  Graphical model illustrating the 
back‐door criterion for identifying the causal 
effect of X on Y. Error terms are not shown 
explicitly.
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A sufficient condition for identifying the causal effect P(yǀdo(x)) is that every path between X and 
any of its children traces at least one arrow emanating from a measured variable.11

For example, if W 3 is the only observed covariate in the model of Figure 33.3, then there exists 
no sufficient set for adjustment (because no set of observed covariates can block the paths from
X to Y through Z 3), yet P(yǀdo(x)) can nevertheless be estimated since every path from X to W 3
(the only child of X) traces either the arrow X → W 3, or the arrow W 3 → Y, both emanating from 
a measured variable (W 3). In this example, the variable W 3 acts as a ‘mediating instrumental 
variable’ (Pearl, 1993b; Chalak and White, 2006) and yields the estimand:

(33.6)
More recent results extend this theorem by (1) presenting a necessary and sufficient condition 
for identification (Shpitser and Pearl, 2006a), and (2) extending the condition from causal effects 
to any counterfactual expression (Shpitser and Pearl, 2007, 2009). The corresponding unbiased 
estimands for these causal quantities are readable directly from the diagram.

The mathematical derivation of causal effect estimands, like equations (33.5) and (33.6), is 
merely a first step toward computing quantitative estimates of those effects from finite samples, 
using the rich traditions of statistical estimation and machine learning. Although the estimands 
derived in (33.5) and (33.6) are non‐parametric, this does not mean that one should (p.709) 

refrain from using parametric forms in the estimation phase of the study. For example, if the 
assumptions of Gaussian, zero‐mean disturbances and additive interactions are deemed 
reasonable, then the estimand given in (33.6) can be converted to the product

, where r YZX is the (standardized) coefficient of Z in the regression of Y on Z and X. More 
sophisticated estimation techniques can be found in Rosenbaum and Rubin (1983), and Robins 
(1999). For example, the ‘propensity score’ method of Rosenbaum and Rubin (1983) was found 
to be quite useful when the dimensionality of the adjusted covariates is high and the data is 
sparse (see Pearl, 2009a, pp. 348–52).
It should be emphasized, however, that contrary to conventional wisdom (e.g. Rubin, 2009), 
propensity score methods are merely efficient estimators of the right‐hand side of (33.5); they 
cannot be expected to reduce bias in case the set S does not satisfy the back‐door criterion 
(Pearl, 2009a b c).

33.3.3 Counterfactual analysis in structural models

Not all questions of causal character can be encoded in P(y ǀdo(x)) type expressions, in much the 
same way that not all causal questions can be answered from experimental studies. For 
example, questions of attribution (also called ‘causes of effects’ (Dawid, 2000), e.g. I took an 
aspirin and my headache is gone, was it due to the aspirin?) or of susceptibility (e.g. I am a 
healthy non‐ smoker, would I be as healthy had I been a smoker?) cannot be answered from 
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experimental studies, and naturally, this kind of questions cannot be expressed in P(yǀdo(x)) 
notation.12 To answer such questions, a probabilistic analysis of counterfactuals is required, one 
dedicated to the relation ‘Y would be y had X been x in situation U = u’, denoted Y x(u) = y.

As noted in Section 33.3.1, the structural definition of counterfactuals involves modified models, 
like

of equation (33.3), formed by the intervention do(X = x 0) (Figure 33.2b). Call the solution of Y in 
model M x the potential response of Y to x, and denote it by the symbol Y x(u). In general, then, 
the formal definition of the counterfactual Y x(u) in SCM is given by (Pearl, 2000a, p. 98):

(33.7)
The quantity Y x(u) can be given experimental interpretation; it stands for the way an individual 
with characteristics (u) would respond, had the treatment (p.710) been x, rather than the 
treatment x = f X(u) actually received by that individual. In our example, since Y does not depend 
on v and w, we can write:

Clearly, the distribution P(u Y, u X, u Z) induces a well‐defined probability on the counterfactual 
event

, as well as on joint counterfactual events, such as

AND

, which are, in principle, unobservable if x 0 ≠ x 1. Thus, to answer attributional questions, such 
as whether Y would be y 1 if X were x 1, given that in fact Y is y 0 and X is x 0, we need to compute 
the conditional probability

which is well defined once we know the forms of the structural equations and the distribution of 
the exogenous variables in the model. For example, assuming linear equations (as in Figure
33.1),

the conditions Y = y 0 and X = x 0 yield u X = x 0 and u Y = y 0 − βx 0, and we can conclude that, 
with probability one,

must take on the value:

. In other words, if X were x 1 instead of x 0, Y would increase by β times the difference (x 1 − x 0). 
In nonlinear systems, the result would also depend on the distribution of U and, for that reason, 
attributional queries are generally not identifiable in nonparametric models (Pearl, 2000a)
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In general, if a and x′ are incompatible then Y x and Y x′ cannot be measured simultaneously, and 
it may seem meaningless to attribute probability to the joint statement ‘Y would be y if X = x and 
Y would be y′ if X = x′’.13 Such concerns have been a source of objections to treating 
counterfactuals as jointly distributed random variables (Dawid, 2000). The definition of Y x and Y
x′ in terms of two distinct submodels neutralizes these objections (Pearl, 2000b), since the 
contradictory joint statement is mapped into an ordinary event, one where the background 
variables satisfy both statements simultaneously, each in its own distinct submodel; such events 
have well defined probabilities.

The structural interpretation of counterfactuals also provides the conceptual and formal basis 
for the Neyman–Rubin potential‐outcome framework, an approach to causation that takes a 
controlled randomized trial (CRT) as its starting paradigm, assuming that nothing is known to 
the experimenter about the science behind the data. This ‘black‐box’ approach, which has thus 
far been denied the benefits of graphical or structural analyses, was developed by statisticians 
who found it difficult to cross the two mental barriers discussed in Section 33.2.4. Section
33.6establishes the precise relationship between the (p.711) structural and potential‐outcome 
paradigms, and outlines how the latter can benefit from the richer representational power of the 
former.

33.4 Mediation: Direct and indirect effects
33.4.1 Direct versus total effects

The causal effect we have analysed so far, P(y ǀdo(x)), measures the total effect of a variable (or a 
set of variables) X on a response variable Y. In many cases, this quantity does not adequately 
represent the target of investigation and attention is focused instead on the direct effect of X on
Y. The term ‘direct effect’ is meant to quantify an effect that is not mediated by other variables 
in the model or, more accurately, the sensitivity of Y to changes in X while all other factors in the 
analysis are held fixed. Naturally, holding those factors fixed would sever all causal paths from X
to Y with the exception of the direct link X → Y, which is not intercepted by any intermediaries.

A classical example of the ubiquity of direct effects involves legal disputes over race or sex 
discrimination in hiring. Here, neither the effect of sex or race on applicants' qualification nor 
the effect of qualification on hiring are targets of litigation. Rather, defendants must prove that 
sex and race do not directly influence hiring decisions, whatever indirect effects they might have 
on hiring by way of applicant qualification.

Another example concerns the identification of neural pathways in the brain or the structural 
features of protein‐signalling networks in molecular biology (Brent and Lok, 2005). Here, the 
decomposition of effects into their direct and indirect components carries theoretical scientific 
importance, for it predicts behavior under a rich variety of hypothetical interventions.

In all such examples, the requirement of holding the mediating variables fixed must be 
interpreted as (hypothetically) setting the intermediate variables to constants by physical 
intervention, not by analytical means such as selection, conditioning, or adjustment. For 
example, it will not be sufficient to measure the association between gender (X) and hiring (Y) 
for a given level of qualification Z, because, by conditioning on the mediator Z, we may create 
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spurious associations between X and Y even when there is no direct effect of X on Y. This can 
easily be illustrated in the model X → Z ← U → Y, where X has no direct effect on Y. Physically 
holding Z constant should eliminate the association between X and Y, as can be seen by deleting 
all arrows entering Z. But if we were to condition on Z, a spurious association would be created 
through U (unobserved) that might be construed as a direct effect of Z on Y.

Using the do(x) notation, and focusing on differences of expectations, this leads to a simple 
definition of controlled direct effect:

(p.712) or, equivalently, using counterfactual notation:

where Z is any set of mediating variables that intercept all indirect paths between X and Y. 
Graphical identification conditions for expressions of the type E(Yǀdo(x), do(z 1), do( z 2), …, do(z

k)) were derived by Pearl and Robins (1995) (see Pearl 2000a, Chapter 4) and invoke sequential 
application of the back‐door conditions discussed in Section 33.3.2.

33.4.2 Natural direct effects
In linear systems, the direct effect is fully specified by the path coefficient attached to the link 
from X to Y; therefore, the direct effect is independent of the values at which we hold Z. In 
nonlinear systems, those values would, in general, modify the effect of X on Y and thus should be 
chosen carefully to represent the target policy under analysis. For example, it is not uncommon 
to find employers who prefer males for the high‐paying jobs (i.e. high z) and females for low‐
paying jobs (low z).

When the direct effect is sensitive to the levels at which we hold Z, it is often meaningful to 
define the direct effect relative to some ‘natural’ baseline level that may vary from individual to 
individual and represents the level of Z just before the change in X. Conceptually, we can define 
the average direct effect DE x,x′(Y) as the expected change in Y induced by changing X from x to x′ 
while keeping all mediating factors constant at whatever value they would have obtained under
do(x). This hypothetical change, which Robins and Greenland (1991) called ‘pure’ and Pearl 
(2001) called ‘natural’, mirrors what lawmakers instruct us to consider in race or sex 
discrimination cases: ‘The central question in any employment‐discrimination case is whether 
the employer would have taken the same action had the employee been of a different race (age, 
sex, religion, national origin, etc.) and everything else had been the same’. (In Carson versus 
Bethlehem Steel Corp., 70 FEP Cases 921, 7th Cir. (1996)).

Extending the subscript notation to express nested counterfactuals (Pearl, 2001) gave the 
following definition for the ‘natural direct effect’:

(33.8)
Here,
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represents the value that Y would attain under the operation of setting X to x′ and, 
simultaneously, setting Z to whatever value it would have obtained under the original setting X = 
x. We see that DE x , x′(Y), the natural direct effect of the transition from x to x′, involves 
probabilities of nested counterfactuals and cannot be written in terms of the do(x) operator. 
Therefore, the natural direct effect cannot in general be identified, even with the help of ideal, 
controlled experiments, for we cannot rerun history and re‐condition (p.713) on an action 
actually taken (see footnote 12). Pearl (2001) has nevertheless shown that, if certain 
assumptions of ‘no confounding’ are deemed valid,14 the natural direct effect can be reduced to

(33.9)
The intuition is simple; the natural direct effect is the weighted average of the controlled direct 
effect, using the causal effect P(zǀdo(x)) as a weighing function.

In particular, expression (33.9) is both valid and identifiable in Markovian models, where each 
term on the right can be reduced to a ‘do‐free’ expression using equation (33.4).

33.4.3 Natural indirect effects

Remarkably, the definition of the natural direct effect (33.8) can easily be turned around and 
provide an operational definition for the indirect effect–a concept shrouded in mystery and 
controversy, because it is impossible, using the do(x) operator, to disable the direct link from X
to Y so as to let X influence Y solely via indirect paths.

The natural indirect effect, IE, of the transition from x to x′ is defined as the expected change in
Y affected by holding X constant, at X = x, and changing Z to whatever value it would have 
attained had X been set to X = x′. Formally, this reads (Pearl, 2001):

(33.10)
which is almost identical to the direct effect (equation (33.8)) save for exchanging x and x′.

Indeed, it can be shown that, in general, the total effect TE of a transition is equal to the
difference between the direct effect of that transition and the indirect effect of the reverse 
transition. Formally,

(33.11)
In linear systems, where reversal of transitions amounts to negating the signs of their effects, 
we have the standard additive formula

(33.12)
Since each term above is based on an independent operational definition, this equality 
constitutes a formal justification for the additive formula used routinely in linear systems.
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(p.714) Note that, although it cannot be expressed in do‐notation, the indirect effect has clear 
policy‐making implications. For example: in the hiring discrimination context, a policy maker 
may be interested in predicting the gender mix in the work force if gender bias is eliminated and 
all applicants are treated equally–say, the same way that males are currently treated. This 
quantity will be given by the indirect effect of gender on hiring, mediated by factors such as 
education and aptitude, which may be gender‐dependent.

More generally, a policy maker may be interested in the effect of issuing a directive to a select 
set of subordinate employees, or in carefully controlling the routing of messages in a network of 
interacting agents. Such applications motivate the analysis of path‐specific effects, that is, the 
effect of X on Y through a selected set of paths (Avin et al., 2005).

Note that in all these cases, the policy intervention invokes the selection of signals to be sensed, 
rather than variables to be fixed. Pearl (2001) has suggested therefore that signal sensing is 
more fundamental to the notion of causation than manipulation; the latter being but a crude way 
of stimulating the former in experimental setup. The mantra ‘No causation without 
manipulation’ must be rejected. (See Pearl, 2009a [Section 11.4.5.])

It is remarkable that counterfactual quantities like DE and ID that could not be expressed in 
terms of do(x) operators, and appear therefore void of empirical content, can, under certain 
conditions be estimated from empirical studies. A general characterization of those conditions, 
including a complete identification of ETT, is given by Shpitser and Pearl (2007, 2009).

Additional examples of this ‘marvel of formal analysis’ are given by Pearl (2009a, Chapters 7, 9, 
and 11). It constitutes an unassailable argument in defence of counterfactual analysis, as 
expressed in Pearl (2000b) against the stance of Dawid (2000).

33.5 Structural versus probabilistic causality
Probabilistic causality (PC) is a branch of philosophy that has attempted, for the past several 
decades, to characterize the relationship between cause and effect using the tools of probability 
theory (Hitchcock, 2003; Williamson, ming). Our discussion of Section 33.2 rules out any such 
characterization and, not surprisingly, the PC program is known mainly for the difficulties it has 
encountered, rather than its achievements. This section explains the main obstacle that has kept 
PC at bay for over half a century, and demonstrates how the structural theory of causation 
clarifies relationships between probabilities and causes.

33.5.1 The ‘probability raising’ trap
The idea that causes raise the probability of their effects has been the engine behind most of PC 
explorations. It is a healthy idea, solidly ensconced in (p.715) intuition. We say, for example, 
‘reckless driving causes accidents’ or ‘you will fail the course because of your laziness’ (Suppes,
1970), knowing quite well that the antecedents merely tend to make the consequences more 
likely, not absolutely certain. One would expect, therefore, that probability raising should 
become the defining characteristic of the relationship between a cause (C) and its effect (E). 
Alas, though perfectly valid, this intuition cannot be expressed using the tools of probabilities; 
the relationship ‘raises the probability of’ is counterfactual (or manipulative) in nature, and 
cannot, therefore, be captured in the language of probability theory.
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The way philosophers tried to capture this relationship, using inequalities such as15

(33.13)
was misguided from the start–counterfactual ‘raising’ cannot be reduced to evidential ‘raising’, 
or ‘raising by conditioning’. The correct inequality, according to the structural theory of Section
33.3, should read:

(33.14)
where do(C) stands for an external intervention that compels the truth of C. The conditional 
probability P(EǀC), as we know from Section 33.3 represents a probability resulting from a 
passive observation of C, and rarely coincides with P(Eǀdo(C)). Indeed, observing the barometer 
falling increases the probability of a storm coming, but does not ‘cause’ the storm; if the act of 
manipulating the barometer were to change the probability of storms, the falling barometer 
would qualify as a cause of storms.

Reformulating the notion of ‘probability raising’ within the calculus of do‐ operators resolves the 
difficulties that PC has encountered in the past half‐ century.16 Two such difficulties are worth 
noting here, for they can be resolved by the analysis of Section 33.3.

33.5.2 The mystery of ‘background context’

Recognizing that the basic inequality P(EǀC) 〉 P(E) may yield paradoxical results in the 
presence of confounding factors (e.g. the atmospheric pressure in the example above), 
philosophers have modified the inequality by conditioning on a background factor K, yielding the 
criterion: P(EǀC, K = k) 〉 P(EǀK = k) where K consists on a set of variables capable of creating 
spurious (p.716) dependencies between the cause and the effect. However, the question of 
what variables should enter K led to speculations, controversies and fallacies.17

Cartwright (1983), for example, states that a factor F should enter into K if and only if F is
causally relevant to the effect, that is, F tends to either promote or prevent E. Eells (1991) on the 
other hand dropped the ‘only if’ part and insisted on the ‘if’ The correct answer, as we know 
from our analysis of Section 33.3, is neither Cartwright's nor Eell's; K should merely satisfy the 
back‐door criterion of Section 33.3.2, which may or may not include variables that are causally 
relevant to the effect E.

The background‐context debate is symptomatic of the fundamental flaw of the probabilistic 
causality program; the program first misrepresented the causal relation P(Eǀdo(C)) by a 
conditional probability surrogate P(EǀC), and then, to escape the wrath of spurious associations, 
attempted to patch‐ up the distortion by adding remedial conditionalizations, only to end up with 
a contested P(EǀC, K). The correct strategy should have been to define ‘probability raising’ 
directly in terms of the do(x) operator (or counterfactual variables Y x), which would have yielded 
general and coherent results with no need for remedies.18
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33.5.3 The epistemology of causal relevance and probability raising
The introduction of a ‘causal relevance’ relation into the definition of ‘cause’ is of course 
circular, for it compromises the original goal of reducing causality to purely probabilistic 
relations. It gave rise however to an interesting epis‐ temological problem whose aim is not 
reductive but interpretative: Given that humans store experience in the form of qualitative 
‘causal relevance’ relationships, (with variable X being ‘causally relevant’ to Y whenever it can 
influence Y in some way), we ask whether this knowledge, together with a probability function P
is sufficient for determining whether event X = x is a cause of event Y = y in the ‘probability 
raising’ sense.19

The problem is interesting because it connects judgments of three different types: judgments 
about ‘causal relevance’ (R), about probabilities (P), and about cause–effect relations (C E). 
There is little doubt that causal‐relevance relationships form part of an agent epistemic state; 
such relationships are implied by people's understanding of mechanisms, and how mechanisms 
are put together in the world around them. It is also reasonable to assume that an (p.717) 

agent's epistemic state contains some representation of a probability function P that summarizes 
facts, observations, and associations acquired by the agent, either directly or indirectly (say 
through hearsay, or reading scientific reports). Finally, people usually reach consensus judging 
whether a given event X = x ‘causes’ event Y = y, and generally agree with the ‘probability 
raising’ maxim.

The epistemic question above amounts to asking whether the three types of judgments, R, P, and
CE, are compatible with each other. Put differently, the question we may ask is whether CE
judgments are compatible with the pair ⟨R, P⟩ and the probability raising maxim given in (33.14). 
To answer such questions we must first determine whether the pair ⟨R, P⟩ is sufficient for 
deriving inequalities of the type given in (33.14).

The structural theory of causation gives a definitive solution to this problem which reads as 
follows:

Given: A graph G on a set V of variables, such that there is a directed path from X to Y in V
iff X is judged to be ‘causally relevant’ to Y.

Also given: a probability measure P(v) that is compatible with G.

Problem: Decide, for a given X and Y in V, whether the probability raising inequality
(33.14) holds for C : X = x and E : Y = y, namely whether the causal effect

(33.15)
is greater than zero, given G and P.

The solution follows immediately from the identification of causal effects in Markovian models, 
which permits the derivation of CE from G and P, for example, by the causal effect formula of 
equation (33.4).
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The solution is less obvious when P is defined over a proper subset W of V, where {V − W] 
represents the set of unmeasured variables. The problem then reduces to that of identifying CE
in semi‐Markovian models such as those addressed in Theorem 33.1. Fortunately, the 
completeness results of Tian and Pearl (2002) and Shpitser and Pearl (2006b) reduce this 
problem to algorithmic routine on the graph G and, furthermore, they provide a guarantee that, 
if the algorithm fails, then any algorithm would fail, namely the causal effect of x on y does not 
have a unique value, given R and P.

I venture to conjecture that every epistemic problem concerned with the relationship between 
causes and probabilities is now amenable to algorithmic solution, provided that one explicates 
formally what is assumed and what needs to be decided.

33.5.4 Is probabilistic causality subsumed by the structural theory?
In view of the difficulties described above, it is fair to ask whether PC should be regarded as a 
special case of the structural theory, or, for that matter, whether it should qualify as a theory of 
causation by the four criteria set (p.718) forth in Section 33.1. The answer is that, although PC 
fails to satisfy these criteria, its aspirations were to provide a formal language for causal 
assertions of the ‘probability raising’ variety. While the notation chosen for the task was 
inadequate, the reasoning behind most PC investigations was clearly guided by structural 
considerations. The introduction of a ‘causal relevance’ relation into the theory attests to the 
structural nature of that reasoning. The structural theory now permits PC investigators to re‐
articulate philosophical and epistemological problems in an unambiguous formal language and 
derive, using the notational machinery provided by the SCM, answers to pending questions in 
this area of inquiry. Section 33.5.3 demonstrates the benefits of this machinery; similar benefits 
were demonstrated in problems posed by Woodward (Pearl, 2003a) and Cartwright (Pearl,
2009a, pp. 362–5).

33.6 Comparison to the potential‐outcomes framework
The primitive object of analysis in the potential‐outcome framework is the unit‐based response 
variable, denoted Y x(u), read: ‘the value that outcome Y would obtain in experimental unit u, had 
treatment X been x’ (Neyman, 1923; Rubin, 1974). Here, unit may stand for an individual patient, 
an experimental subject, or an agricultural plot. In Section 33.3.3 we saw that this 
counterfactual entity has the natural interpretation as representing the solution for Y in a 
modified system of equations, where unit is interpreted a vector u of background factors that 
characterize an experimental unit. Each structural equation model thus carries a collection of 
assumptions about the behavior of hypothetical units, and these assumptions permit us to derive 
the counterfactual quantities of interest. In the potential‐outcome framework, however, no 
equations are available for guidance and Y x(u) is taken as primitive, that is, an undefined 
quantity in terms of which other quantities are defined; not a quantity that can be derived from 
some model. In this sense the structural interpretation of Y x(u) given in (33.7) provides the 
formal basis for the potential‐outcome approach; the formation of the submodel M x explicates 
mathematically how the hypothetical condition ‘had X been x’ could be realized, and what the 
logical consequence are of such a condition.
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33.6.1 The ‘black‐box’ or ‘missing‐data’ paradigm
The distinct characteristic of the potential‐outcome approach is that, although investigators 
must think and communicate in terms of undefined, hypothetical quantities such as Y x(u), the 
analysis itself is conducted almost entirely within the axiomatic framework of probability theory. 
This is accomplished, by postulating a ‘super’ probability function on both hypothetical and real 
events. If U is treated as a random variable then the value of the counterfactual Y x(u) becomes a 
random variable as well, denoted as Y x. The potential‐outcome (p.719) analysis proceeds by 
treating the observed distribution P(x 1, ….,x n) as the marginal distribution of an augmented 
probability function P* defined over both observed and counterfactual variables. Queries about 
causal effects (written P(y ǀdo(x)) in the structural analysis) are phrased as queries about the 
marginal distribution of the counterfactual variable of interest, written P*( Y x = y). The new 
hypothetical entities Y x are treated as ordinary random variables; for example, they are 
assumed to obey the axioms of probability calculus, the laws of conditioning, and the axioms of 
conditional independence.

Naturally, these hypothetical entities are not entirely whimsy. They are assumed to be 
connected to observed variables via consistency constraints (Robins, 1986) such as

(33.16)
which states that, for every u, if the actual value of X turns out to be x, then the value that Y
would take on if ‘X were x’ is equal to the actual value of Y. For example, a person who chose 
treatment x and recovered, would also have recovered if given treatment x by design. Whether 
additional constraints should tie the observables to the unobservables is not a question that can 
be answered in the potential‐outcome framework, which lacks an underlying model.

The main conceptual difference between the two approaches is that, whereas the structural 
approach views the intervention do(x) as an operation that changes the distribution but keeps 
the variables the same, the potential‐ outcome approach views the variable Y under do(x) to be a 
different variable, Y x, loosely connected to Y through relations such as (33.16), but remaining 
unobserved whenever X≠/x. The problem of inferring probabilistic properties of Y x, then 
becomes one of ‘missing‐data’ for which estimation techniques have been developed in the 
statistical literature.

Pearl (2000a, Chapter 7) shows, using the structural interpretation ofY x(u), that it is indeed 
legitimate to treat counterfactuals as jointly distributed random variables in all respects, that 
consistency constraints like (33.16) are automatically satisfied in the structural interpretation 
and, moreover, that investigators need not be concerned about any additional constraints except 
the following two:

(33.17)

(33.18)
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Equation (33.17) ensures that the interventions do(Y = y) results in the condition Y = y, 
regardless of concurrent interventions, say do(Z = z), that may be applied to variables other than 
Y. Equation (33.18) generalizes (33.16) to cases where Z is held fixed, at z.

(p.720) 33.6.2 Problem formulation and the demystification of‘ignorability’
The main drawback of this black‐box approach surfaces in problem formulation, namely, the 
phase where a researcher begins to articulate the ‘science’ or ‘causal assumptions’ behind the 
problem at hand. Such knowledge, as we have seen in Section 33.1, must be articulated at the 
onset of every problem in causal analysis–causal conclusions are only as valid as the causal 
assumptions upon which they rest.

To communicate scientific knowledge, the potential‐outcome analyst must express assumptions 
as constraints on P*, usually in the form of conditional independence assertions involving 
counterfactual variables. For instance, in our example of Figure 33.2(a), to communicate the 
understanding that the Z is randomized (hence independent of U X and U Y), the potential‐
outcome analyst would use the independence constraint Z⫫ {Y z1, Y z2, …, Y zK}.20 To further 
formulate the understanding that Z does not affect Y directly, except through X, the analyst 
would write a, so called, ‘exclusion restriction’: Y xz = Y x.

A collection of constraints of this type might sometimes be sufficient to permit a unique solution 
to the query of interest. For example, if one can plausibly assume that, in Figure 33.3, a set Z of 
covariates satisfies the conditional independence

(33.19)
(an assumption termed ‘conditional ignorability’ by Rosenbaum and Rubin (1983)), then the 
causal effect P(yǀdo(x)) = P*(Y x = y) can readily be evaluated to yield

(33.20)
The last expression contains no counterfactual quantities (thus permitting us to drop the 
asterisk from P*) and coincides precisely with the standard covariate‐adjustment formula of 
equation (33.5).

We see that the assumption of conditional ignorability (33.19) qualifies Z as a sufficient covariate 
for adjustment; it is entailed indeed by the ‘back‐door’ (p.721) criterion of Section 33.3.2, 
which qualifies such covariates by tracing paths in the causal diagram.

The derivation above may explain why the potential‐outcome approach appeals to mathematical 
statisticians; instead of constructing new vocabulary (e.g. arrows), new operators (do(x)) and 
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new logic for causal analysis, almost all mathematical operations in this framework are 
conducted within the safe confines of probability calculus. Save for an occasional application of 
rule (33.18) or (33.16), the analyst may forget that Y x stands for a counterfactual quantity–it is 
treated as any other random variable, and the entire derivation follows the course of routine 
probability exercises.

However, this mathematical orthodoxy exacts a very high cost: all background knowledge 
pertaining to a given problem must first be translated into the language of counterfactuals (e.g. 
ignorability conditions) before analysis can commence. This translation may in fact be the 
hardest part of the problem. The reader may appreciate this aspect by attempting to judge 
whether the assumption of conditional ignorability (33.19), the key to the derivation of (33.20), 
holds in any familiar situation, say in the experimental setup of Figure 33.2(a). This assumption 
reads: ‘the value that Y would obtain had X been x, is independent of X, given Z’. Even the most 
experienced potential‐ outcome expert would be unable to discern whether any subset Z of 
covariates in Figure 33.3 would satisfy this conditional independence condition.21 Likewise, to 
derive equation (33.6) in the language of potential‐outcome (see Pearl (2000a, p. 223)), one 
would need to convey the structure of the chain X → W 3 → Y using the cryptic expression: W 3x ⫫

{Y w3, X}, read: ‘the value that W 3 would obtain had X been x is independent of the value that Y
would obtain had W 3 been w 3 jointly with the value of X’. Such assumptions are cast in a 
language so far removed from ordinary understanding of scientific theories that, for all practical 
purposes, they cannot be comprehended or ascertained by ordinary mortals. As a result, 
researchers in the graph‐less potential‐outcome camp rarely use ‘conditional ignorability’
(33.19) to guide the choice of covariates; they view this condition as a hoped‐for miracle of 
nature rather than a target to be achieved by reasoned design.22

Replacing ‘ignorability’ with a simple condition (i.e. back‐door) in a graphical model permits 
researchers to understand what conditions covariates must fulfil before they eliminate bias, 
what to watch for and what to think about (p.722) when covariates are selected, and what 
experiments we can do to test, at least partially, if we have the knowledge needed for covariate 
selection.

Aside from offering no guidance in covariate selection, formulating a problem in the potential‐
outcome language encounters three additional hurdles. When counterfactual variables are not 
viewed as byproducts of a deeper, process‐based model, it is hard to ascertain whether all
relevant counterfac‐ tual independence judgments have been articulated, whether the 
judgments articulated are redundant, or whether those judgments are self‐consistent. The need 
to express, defend, and manage formidable counterfactual relationships of this type explain the 
slow acceptance of causal analysis among health scientists and statisticians, and why 
economists and social scientists continue to use structural equation models instead of the 
potential‐outcome alternatives advocated by Angrist et al. (1996); Holland (1988); Sobel (1998).

On the other hand, the algebraic machinery offered by the counterfactual notation, Y x(u), once a 
problem is properly formalized, can be extremely powerful in refining assumptions (Angrist et 
al., 1996), deriving consistent estimands (Robins, 1986), bounding probabilities of necessary and 
sufficient causation (Tian and Pearl, 2000), and combining data from experimental and non‐
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experimental studies (Pearl, 2000a). Pearl (2000a, p. 232) presents a way of combining the best 
features of the two approaches. It is based on encoding causal assumptions in the language of 
diagrams, translating these assumptions into counterfactual notation, performing the 
mathematics in the algebraic language of counterfactuals (using (33.16), (33.17), and (33.18)) 
and, finally, interpreting the result in plain causal language. The mediation formulas derived in 
Section 33.4 illustrate such symbiosis.

In comparison, when the mediation problem is approached from an orthodox potential‐outcome 
viewpoint, void of the structural guidance of equation (33.7), pardoxical results ensue (Rubin,
2004). For example, the direct effect is definable only in units absent of indirect effects. This 
means that a grandfather would be deemed to have no direct effect on his grandson's behaviour 
in families where he has had some effect on the father. This leaves us mostly with odd families, 
absent of grandfathers or fathers. In linear systems, to take a sharper example, the direct effect 
would be undefined whenever indirect paths exist from the cause to its effect. Such paradoxical 
conclusions underscore the wisdom, if not necessity of a symbiotic analysis, in which the 
counterfactual notation Y x(u) is governed by the structural semantics of the SCM.

33.7 Conclusions
Theories of causation require two ingredients that are absent from probabilistic or logical 
theories; a science‐friendly language for articulating causal (p.723) knowledge, and a 
mathematical machinery for processing that knowledge, combining it with data and drawing 
new causal conclusions about a phenomenon. This chapter introduces a general theory of 
causation, based on non‐ parametric structural equation models, that supplements statistical 
methods with the needed ingredients. The algebraic component of the theory coincides with the 
potential‐outcome framework, and its graphical component embraces Wright's method of path 
diagrams (in its non‐parametric version). When unified and synthesized, the two components 
offer empirical investigators a powerful and comprehensive methodology for causal inference, 
and a general framework for viewing other, less general approaches to causation, including 
probabilistic causation (Section 33.5) and the potential‐outcome model (33.6).
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Notes:
(1) For example, a theory may conclude that the information at hand is not sufficient for 
determining the efficacy of a drug unless certain assumptions are deemed plausible, or unless 
data from a specific experimental study were made available. Such conclusion constitutes a valid 
‘solution’, provided no better solution exists.

(2) The assumption of ‘faithfulness’ or ‘stability’ as defined in the ‘causal discovery’ literature 
(Spirtes, et al. 2000; Pearl, 2000a, chapter 2) is likewise a causal assumption, albeit a genetic 
one, for it restricts any causal model from generating data that hide the structure of the model 
(e.g. by cancellation).

(3) For example, any intermediate variable U on a causal path from X to Y satisfies this definition, 
without confounding the effect of X on Y.

(4) By ‘untested’ I mean untested using frequency data in non‐experimental studies.

(5) Clearly, P(Y = yǀdo(X = x)) is equivalent to P(Y x = y), This is what we normally assess in a 
controlled experiment, with X randomized, in which the distribution of Y is estimated for each 
level x of X. Still, the former can be defined without resorting to counterfactual notation (Pearl,



The structural theory of causation

Page 29 of 30

2000a, pp. 23–4) to the delight of those who prefer to deny mathematical notation to any 
assertion that is not experimentally testable in isolation (Dawid, 2002).

(6) These notational clues should be useful for detecting inadequate definitions of causal 
concepts; any definition of confounding, randomization or instrumental variables that is cast in 
standard probability expressions, void of graphs, counterfactual subscripts or do(*) operators, 
can safely be discarded as inadequate.

(7) Connections between structural equations and a restricted class of counterfactuals were 
recognized by Simon and Rescher (1966). These were generalized by Balke and Pearl (1995) 
who used modified models to permit counterfactual conditioning on dependent variables. This 
development seems to have escaped Collins et al. (2004).

(8) Because U = u may contain detailed information about a situation or an individual, Y x(u) is 
related to what philosophers called ‘token causation’, while P(Y x = yǀZ = z) characterizes ‘Type 
causation’, that is, the tendency of X to influence Y in a subpopulation characterized by Z = z.

(9) Read: The probability that Y would be y if X were x and y′ if X were x′.

(10) A set S of nodes is said to block a path p if either (i) p contains at least one arrow‐emitting 
node that is in S, or (ii) p contains at least one collision node that is outside S and has no 
descendant in S. See (Pearl, 2000a, pp. 16–7). If S blocks all paths from X to Y it is said to ‘d ‐
separate X and Y’ and, then, X and Y are independent given S.

(11) Before applying this criterion, one may delete from the causal graph all nodes that are not 
ancestors of Y.

(12) The reason for this fundamental limitation is that no death case can be tested twice, with 
and without treatment. For example, if we measure equal proportions of deaths in the treatment 
and control groups, we cannot tell how many death cases are actually attributable to the 
treatment itself; it is quite possible that many of those who died under treatment would be alive 
if untreated and, simultaneously, many of those who survived with treatment would have died if 
not treated.

(13) For example, ‘The probability is 80% that Joe belongs to the class of patients who will be 
cured if they take the drug and die otherwise.’

(14) One sufficient condition is that Z x⫫Y x′ ,z ǀW holds for some set W of measured covariates. 
See details and graphical criteria in Pearl (2001, 2005) and in Petersen et al. (2006).

(15) Some authors write P(EǀC) 〉 P(Eǀ¬C), which is equivalent to (33.13); the latter is easier to 
generalize to the non‐binary case.

(16) This chapter focuses on ‘type causation’ namely, the tendency of the cause to bring about 
the effect. Token causation, also known as ‘actual causation’ (Pearl, 2000a, Chapter 10) requires 
heavier counterfactual machinery.
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(17) Conditioning on all factors F preceding C (Good, 1961; Suppes, 1970) would lead to counter 
intuitive conclusions (Pearl, 2000a, p. 297).

(18) Lewis (1986) proposed indeed to treat probability raising in the context of his 
counterfactual theory. However, lacking structural semantics, PC advocates viewed Lewis's 
counterfactuals as resting on shaky formal foundation ‘for which we have only the beginnings of 
a semantics (via the device of measures over possible worlds)’ (Cartwright, 1983, p. 34).

(19) This is my interpretation of Eell's (1991) epistemic consistency problem (Pearl, 2000a, p. 
252).

(20) The notation Y⫫XǀZ stands for the conditional independence relationship P(Y = y, X = xǀZ =
z) = P(Y = yǀZ = z)P(X = xǀZ = z) (Dawid, 1979).

(21) Inquisitive readers are invited to guess whether X z⫫ZǀY holds in Figure 33.2(a).

(22) The opaqueness of counterfactual independencies explains why many researchers within 
the potential‐outcome camp are unaware of the fact that adding a covariate to the analysis (e.g.
Z 3 in Figure 33.3) may actually increase confounding bias. Paul Rosenbaum, for example, 
writes: ‘there is no reason to avoid adjustment for a variable describing subjects before 
treatment’ (Rosenbaum, 2002, p. 76). Rubin (2009) goes as far as stating that refraining from 
conditioning on an available measurement is ‘nonscientific ad hockery’ for it goes against the 
tenets of Bayesian philosophy (see (Pearl, 2009b c) for a discussion of this fallacy).
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ETT has usually been expressed and analysed in terms of potential responses. Here we 
describe a new approach to formulating and evaluating ETT, based on an alternative 
decision‐theoretic framework for causal inference. We give simple conditions under which 
ETT is well‐defined, and identifiable given data from both an observational study and a 
control group, and further conditions allowing identification of ETT from purely 
observational data, with the assistance of a suitable instrumental variable.

We further show that the potential response formulation can be treated as a special case 
of our decision‐theoretic approach.

34.1 Introduction
One rôle of labour economics is to evaluate the impact of government initiatives, such as 
employment and education schemes, on economic indicators such as income, the purpose being 
to inform the introduction of future schemes and policy changes: Should more adult training 
programmes be funded? Should education be made compulsory until the age of 18? Evaluating 
the effect of such policies is far from straightforward, most especially on account of the 
fundamental problem of self‐selection (Heckman, 1979). Because of self‐selection it is typically 
unclear whether, and to what extent, changes in economic indicators can be attributed to 
government programmes where participation is voluntary, since individuals that take part in 
such programmes (i.e. the self‐selected) tend to be more motivated and receive higher incomes, 
irrespective of participation.

A similar problem emerges in epidemiologic contexts. A recent ruling in the US (Okie, 2006) 
gives terminal cancer patients the right to be treated with experimental (Phase I) drugs. This 
means that patients can (p.729) self‐select themselves into the treatment group, without 
randomization. Data on response from this group of patients will not yield reliable estimates of 
the average causal effect (ACE) as estimates will be confounded by the patients’ attitude and 
health.

We will use the following two examples, one from labour economics and another from 
epidemiology, where effect evaluation is hampered by unknown selection criteria, to illustrate 
aspects of the methodology we develop in this chapter.

Example 34.1 Training programme
As a local government initiative, a mathematics refresher course aimed at adults with no higher 
education is introduced into a community. After some time, the local government wants to know 
whether and to what extent the course has had an impact on the income of the participants, as it 
plans to introduce more refresher courses and make participation in such courses a requirement 
for job‐seekers enrolled in employment schemes. The problem with evaluating the impact of the 
inititative is that it will be confounded by partially unobserved individual characteristics. Thus 
estimates of the effect are typically obtained by relying on additional ‐ and generally untestable ‐ 
assumptions (Heckman, 1979). ◻

Example 34.2 Invalid randomization
Consider an epidemiologic trial where drug treatment is not appropriately randomised to 
patients, for instance in clinical trials with invalid blinding schemes. This may be due to a faulty 
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protocol or it may be that doctors involved in the trial are aware of the health status of the 
patients. In contrast to Example 34.1, it is the doctor in charge of administering treatment who 
does the ‘selecting’: if he believes that the drug works, he will tend to give it to patients he 
thinks will benefit the most, e.g. those that are younger or fitter. The doctor's ‘hunch’ will thus 
be a confounder for the effect of the drug, as it will both determine treatment assignment and 
be predictive of health outcomes. ◻

Although the situations described above are formally analogous, they differ in focus. In Example 
34.1 the quantity of interest is the effect of participation for those who chose to participate. This 
is termed the effect of treatment on the treated (ETT). This is also sometimes referred to as the 
average treatment effect on the treated (ATET) (Hotz et al. 2006). In contrast, in Example 34.2 
the quantity of real interest is the average causal effect (ACE), as this is what is required for 
FDA drug approval, for example. The average causal effect can not usually be identified from 
confounded observational data unless strong additional assumptions are made. However, with 
weaker assumptions it may still be possible to identify ETT. This may not be exactly what is 
really wanted, but can provide some useful information on treatment effects.

(p.730) Potential responses
Current statistical approaches to defining and estimating ETT are almost exclusively based on 
the potential response (PR) framework (Rubin, 1974, 1978). Thus Heckman and Robb (1985) 
introduced ETT in the following terms:1

(34.1)
Here T is the treatment variable, with value 1 for a subject receiving active treatment and 0 for a 
control; while Y 1 and Y 0 are the putative ‘potential responses’ (Rubin, 1978) of a subject to each 
of these treatments. By definition, it is possible to observe at most one of the two potential 
responses for any given subject — the other then becoming counterfactual. Inference about 
coun‐ terfactuals is sensitive to arbitrary and necessarily untestable assumptions (Dawid, 2000).

Equation (34.1) can also be expressed as

(34.2)
It appears prima facie that, in order for the expectation in (34.1) to be meaningful, we must have 
a joint probability distribution for (Y 1, Y 0, T) — or at the very least, using (34.2), a conditional 
distribution for (Y 1 ǀ T = 1) and one for (Y 0 ǀ T = 1). However since we can never observe Y 0

when T = 1, learning the latter distribution from data — and, thus, learning ETT — appears, on 
the face of it, problematic.

Another approach
The above formulation employs counterfactual logic and assumptions. We consider that the 
current evaluation literature is unnecessarily complicated by the many typically untestable 
assumptions2 needed to use counterfactuals.
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Our principal aim in this chapter is to demonstrate how a different formalism, eschewing 
counterfactuals, can helpfully be used to interpret and identify ETT. Our approach is grounded 
on the decision theoretic (DT) framework for causal inference introduced by Dawid (2002, 2007). 
This supplies a formal language by means of which causal questions can be rigorously posed and 
analysed, using clear and meaningful assumptions; moreover, fewer such assumptions are 
typically required than for other approaches such as PR. (p.731) In the DT framework, causal 
assumptions are expressed in terms of conditional independence statements, that can, in 
principle if not always in practice, be tested, since all quantities involved are jointly observable. 
Thus the DT framework provides a more concise, economical and justifiable approach to 
inference on treatment effects.

We shall present two alternative descriptions of ETT in decision‐theoretic terms, and show that 
they are equivalent. In particular, we show that, contrary to first impressions, ETT is well‐
defined, being fully determined by the probabilistic behaviour of observable variables. We 
further show how the PR framework can be formally subsumed within the DT framework as a 
special case, and deduce that (again, contrary to first impressions) the PR formulation of ETT is 
itself well‐defined in this sense.

Outline

The chapter is laid out as follows. Section 34.2 introduces the basic principles of the DT 
framework. In Section 34.3 we provide a DT definition of ETT in terms of a ‘preference variable’, 
governing treatment choice whenever that can be exercised freely, and show that ETT can be 
identified from observational and interventional data. In Section 34.4 we develop an alternative 
DT account based on a ‘sufficient covariate’, and prove that this leads to a unique definition, also 
agreeing with the earlier one. Moreover, the traditional PR account can be subsumed as a 
special case of this treatment, and so must deliver the identical answer. In Section 34.5 we 
provide a DT description of two approaches for estimating ETT, using randomised availability 
trials, or instrumental variables to estimate ETT from observational data alone. We make some 
concluding remarks in Section 34.6.

34.2 Decision‐theoretic approach to causal inference
The decision‐theoretic approach to causal inference (Dawid, 2002, 2003; Dawid and Didelez,
2010; Dawid, 2007) is grounded in the statistical theory of decision‐making under uncertainty 
(Raiffa, 1968; Smith, 1988). Rather than split the response Y of a subject into several potential 
responses, we consider a variety of stochastic behaviours for the single variable Y (jointly with 
other relevant variables), under various different regimes that may be operating. Our principal 
purpose is to identify and compare the distributions of Y for a variety of contemplated
interventional regimes. However data may only have been collected under some observational
regime. From this standpoint, the major problems to be addressed are whether, when and how 
probabilistic information can usefully be transferred across regimes.

For simplicity we restrict attention here to a comparison of two treatments, ‘active’ and 
‘control’, and the three corresponding regimes, one observational (p.732) and two 
interventional. These represent respectively, the circumstances in which a particular 
observational study of interest is conducted, and those in which one or other of the treatments is 
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administered to a subject. Within each regime, subjects are regarded as exchangeable. We can 
consequently regard their values on all relevant variables as being drawn, independently across 
subjects, from some fixed (though generally unknown) joint distribution — which will however 
generally differ across regimes. The real‐world meaning of these regimes will necessarily be 
context‐specific, and the plausibility of any assumptions that may be made about them must be 
assessed in relation to those real‐world meanings.

It is the interventional regimes that are the objects of principal interest, and about which we 
should like to learn from data, since these will be of direct relevance for guiding future action or 
policy choice. Thus the government, in deciding whether or not to introduce a new initiative, 
would want to assess, and compare, the consequences both of action and of inaction. A patient, 
faced with the decision as to whether or not to take a treatment, needs to assess what the 
response might be if he did, or if he did not. In either case, knowledge of the distribution of the 
response under each proposed intervention is exactly what is required to support rational choice 
between the options. But these interventional distributions may be difficult to identify directly 
from data collected under observational conditions. One might, naïvely, regard the observational 
distribution of the response, among those patients who happened to get the treatment, as 
directly informative about a new patient's response, if he were to decide to take the treatment; 
but this would be valid only if he could consider himself exchangeable (on relevant pre‐
treatment variables) with that observational group. Likewise, for the control group data to be 
directly relevant for this patient, he would need to regard himself as exchangeable with the 
observational control group. However it will clearly be impossible to satisfy both conditions 
simultaneously if — as is common in observational studies — those two groups are not even 
exchangeable with each other. Then some more refined analysis, typically requiring extra 
assumptions to be imposed and justified, becomes essential.

34.2.1 Formal set‐up

Denote the treatment variable by T, taking value 1 for active treatment, and 0 for control 
treatment. We introduce a further variable F, the intervention variable or regime indicator. The 
possible values for F are ø, 0 and 1, indexing the regimes under consideration. When F ø θ, this 
indicates that variables are being generated under observational conditions, whereas F = t (t = 
0, 1) indicates that they are generated under an intervention that sets T = t.

Whereas T and Y are chance variables, F is a decision or parameter variable, and has no 
uncertainty associated with it. In particular, this means that all probability statements made 
must be explicitly or implicitly conditional on F. (p.733) We denote the distribution [resp., 
expectation] of the chance variables under regime F = τ (τ = 0, 1, θ) by p τ( ∙) [resp., Eτ(∙)]. We 
note that, under our interpretation of F, we must have, for t = 0, 1:

(34.3)
so that

(34.4)
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Average causal effect

The average causal effect (ACE) (of treatment T = 1, relative to treatment T = 0) on Y is defined 
as follows:

(34.5)
This is a simple comparison of the expected value (implicity assumed to exist) of Y under 
intervention to apply treatment 1, with that under intervention to apply treatment 0. When 
utility is linear in the value of the outcome Y, a rational subject with no additional relevant 
information would prefer treatment 1 to treatment 0 if and only if ACE 〉 0.3

No confounding
In some cases (e.g. randomised trials) we might be prepared to assume that the following 
conditional independence relation (Dawid, 1979, 2000, 2002) holds:

(34.6)
This says that, for t = 0,1, pθ(y ǀ T = t) = p t(y ǀ T = t) (= pt(y), by (34.3)); i.e. given either 
treatment, the distribution of the response is assumed the same in both the observational 
regime and the relevant interventional regime. This is the case of ‘no confounding’, when, for 
the purpose of estimating the distributions of Y given T, we can treat the observational regime 
exactly as if it had been interventional. When (34.6) holds, ACE = Eθ(Yǀ T = 1)−Eθ(Yǀ T = 0), and 
so can be identified directly from observational data.

The conditional independence assumption (34.6) can be represented graphically by means of the
influence diagram (Dawid, 2002) of Figure 34.1. This is a decision‐theoretic version of a directed 
acyclic graph (DAG), with chance variables represented by round nodes, and decision variables 
by square nodes. Associated with the arrow from F to T is a specification of the distribution of T
in each regime specified by F (in fact degenerate for F = 0 (p.734)

or 1, though non‐degenerate for F = θ). 
Associated with that from T to Y is a 
specification of the conditional distribution 
of the response Y, given that treatment T
has been administered. The absence of any 
arrow from F to Y encodes assumption
(34.6): that this conditional distribution 
does not further depend on which regime is 
in operation. (Note however that the property (34.4) is not encoded in the graph, and has to be 
introduced explicitly when needed.) Finally we remark that, since F is a decision variable, no 
probability distribution is associated with it.
In most contexts (34.6) can not reasonably be assumed (the case of confounding). It is such cases 
that form the focus of this chapter.

34.3 Decision‐theoretic formulation of ETT. I. Preference variable
34.3.1 Treatment allocation and treatment application

Fig. 34.1  Influence diagram representing 
the conditional independence assumption Y
⊥ FǀT.
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When we compare the responses in two or more treatment groups in an observational setting, 
what we actually see is a combination of two quite distinct effects:

Treatment effect
The specific power of the treatment to make a difference to the outcome of interest.

Selection effect
The fact that we are not observing random subsets of the population of interest.

In particular, even if there were no treatment effect whatsoever, the existence of a differential 
selection effect would typically lead to systematic differences between the outcomes in the 
different treatment groups, because we would not be comparing like with like: this is the 
essence of the problem of confounding.

We will find it helpful to elaborate our description and notation to make the above important 
distinction explicit. We introduce a preference variable D, describing the treatment which an 
individual would choose/be chosen to take if free to do so. Quite separately we have the
treatment variable T, which (p.735) indicates which treatment is actually taken or applied. In 
the observational setting the preferred treatment will be applied, T = D: thus D and T are 
completely confounded with each other. However, in an interventional setting we could override 
the initial preference, and so need not have T = D.

A similar construction was used by Robins et al. (2006). However their analysis involved an 
additional latent variable U. In Section 34.4, in an alternative to our approach above, we too 
introduce such a variable U — but as we never need to consider both U and D, our description 
and analysis are more straightforward.

Consider Example 34.1. We are interested in the effect of the programme on the income of 
potential participants, i.e. ETT. Each eligible individual, once made aware of the opportunity, 
makes a personal choice, D, whether to participate or not. We now consider two scenarios. In 
the first, participation is voluntary: this is the observational regime, F = θ, in which T = D. The 
second is the interventional setting: e.g. a controlled trial run by the local government that 
randomizes all eligible adults to participate or not in the programme, irrespective of their 
personal preferences. This gives rise to two interventional regimes, F = t (t = 0, 1). These would 
also be relevant to the considerations a new subject who needs to decide whether or not to 
participate.

In the context of Example 34.2, the observational regime, F = θ, describes the scenario in which 
the doctor has a treatment preference D, based perhaps on his hunches about the patient's likely 
recovery, and then actually gives the corresponding treatment. The interventional regimes F = t
(t = 0, 1) refer to the case where the hospital management overrules the doctor's preference and 
administers treatment t, or to the treatment decision problem faced by a new patient. We will 
know the value of D in the observational regime, since it is then identical with the treatment T
actually received; but we generally will not know it in an interventional regime, where this need 
not hold.
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34.3.2 Assumptions
Certain variables can be classified as ‘pre‐treatment’ variables: their values are supposed fully 
determined before the point at which treatment is actually applied. In particular this applies to a 
‘covariate’, i.e. a permanent pre‐existing attribute of a subject. Other variables will be ‘post‐
treatment’ variables, arising only after the point of treatment application. Although this is not a 
formal description, in most contexts it will be clear whether a variable belongs to one or other of 
these groups. Our models will involve only pre‐treatment variables, together with a single post‐
treatment variable, the response Y − and, of course, the treatment variable T itself.4

We require the following assumptions: (p.736)

(i) D is a pre‐treatment variable.
(ii) Pre‐treatment variables have the same distribution in all regimes, interventional and 
observational.
(iii) A subject's response to a treatment does not depend on whether the treatment is 
self‐selected or externally imposed.

Assumption (i) is usually plausible, since it will be reasonable to suppose that, for example:

• An individual knows whether he would wish to participate in a programme, before, 
and regardless of whether, he is forced to participate or not participate.
• A doctor can decide which treatment he would like to assign to whom, before, and 
regardless of, whatever the hospital management might decide to do.

At first glance assumption (ii) appears tantamount to assuming ‘no backwards causation’, which 
appears entirely reasonable. However, it can fail if, for example, the observational study was 
done in one population but the proposed interventions relate to a new population, or for a 
subject who can not be treated as exchangeable (on pre‐treatment variables) with those in the 
study.

While little formal progress can be made without an assumption such as (iii), we warn that it 
may well be unreasonable in many contexts. Thus in Example 34.1 an individual might well 
respond differently to the training programme if forced to undertake it from how he would if he 
himself had chosen to do so; in Example 34.2, the placebo effect could lead to a patient who 
knows (or whose doctor knows) what treatment has been assigned to him responding differently 
from how he would if the same treatment had been applied in a double‐blind clinical trial. (Note 
that these effects are quite distinct from those associated with confounding.) In such cases we 
should really regard the ‘same’ treatment applied in different settings as constituting several 
distinct treatments, and in such a case our analyis may simply not apply. In any case, whenever 
we talk about ‘the effect of treatment’ we should be very clear as to the nature of the treatment 
we are referring to, and of that with which we are comparing it.

34.3.3 Regimes

Suppose we have fully specified the preference variable D, and the joint distribution of all 
relevant observables in the two interventional regimes F = t (t = 0, 1). By assumption (ii), these 
must agree when restricted to pre‐ treatment variables ‐ including, by assumption (i), D. We can 
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now explicitly construct the joint observational distribution, F = θ, of all variables as follows. We 
first generate all relevant pre‐treatment variables, including D, from their joint distribution 
(which, by (ii), is the same in both interventional regimes); (p.737) and then use the realized 
value of D to determine which treatment T to give.5 Finally, if, e.g. D = 1, we assign to Y the 
distribution it would have in the active treatment regime, F = 1, conditional on D = 1 (here we 
use assumption (iii)).

Note that this process cannot be reversed: knowing only the observational distribution, in which 
necessarily T = D, we cannot in general identify, e.g. the distribution of Y given D = 0, T = 1, 
which is a necessary ingredient of the interventional regime F = 1.

It is easy to see that D has the following properties:

(34.7)

(34.8)
Here (34.7) says that D has the same distribution in all regimes, be they interventional or 
observational; while (34.8) says that the distribution of Y given D and T is the same in all 
regimes, whenever it is meaningfully defined: because of the deterministic dependence of T on F
and D, this means that, for t = 0, 1, the distribution of Y given D = t is the same in the 
observational regime F = θ and the interventional regime F = t.

The effect of treatment on the treated is now defined as:

(34.9)
This is essentially ACE, as defined in (34.5), but calculated for a specific subpopulation of 
patients: those having D = 1, i.e. those who would choose/be chosen to receive treatment 1 ‐ 
whether or not they actually receive it.

We remark that (34.9) displays a clear separation of ‘treatment effect’ from ‘differential 
selection effect’. The former is effected by the comparison of expected responses under the two 
interventional regimes F = 1 and F = 0; the latter is excluded because we only compare 
interventional regimes, and condition on the identical property (namely preference for active 
treatment, D = 1) in both.

34.3.4 ETT is identifiable

In a randomised controlled trial, if we could record the preference variable D for all subjects, we 
could identify ETT straightforwardly. In practice, however, we will not usually be able to observe 
D in interventional regimes ‐ although we can do so indirectly in observational regimes, since 
then we know D = T, and T is observed. It thus appears a priori that it would be impossible to 
identify the term E0(Y ǀ D = 1) from available data, and thus impossible to identify ETT.
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(p.738) The following analysis shows that, contrary to this initial appearance, ETT can be 
identified ‐ so long as we can gather data under both observational and (some) interventional 
circumstances. (We must also suppose pθ(T = 1) 〉 0.)

The first term in (34.9), E1(Y ǀ D = 1), presents no difficulty. We have:

(34.10)
where the first equality holds because F = 1 ⇒ T = 1, the second from (34.8), and the third 
because T = 1 ⇒ D = 1 under F = 0. Thus E1(Y ǀ D = 1) is directly identifiable from observational 
data on (T, Y).

To get a handle on the problematic second term of (34.9), E0( Y ǀ D = 1), we argue as follows. We 
have

(34.11)
From data gathered under ‘control’ conditions, F = 0, we can identify the left‐ hand side of
(34.11), E0(Y).

From (34.8), p 0(D = 0) = p ø(D = 0), and this in turn is p ø(T = 0), since D = T in the 
observational regime F = ø. Likewise, p 0(D = 1) = p ø(T = 1). So these terms can be identified 
from observational data.

Suppose for the moment (an extreme special case) that p ø(T = 1) = 1, whence p ø(T = 0) = 0. 
Then from (34.11) we deduce E0(Y ǀ D = 1) = E0(Y). Also, (34.10) becomes E(Y). We thus have, 
from (34.9),

(34.12)
In this case the observational group behaves just like an interventional treatment group, Eø(Y) = 
E1(Y), and ETT = ACE.

Otherwise, we have, in parallel fashion to (34.10), E0(Y ǀ D = 0) = E0(Y ǀ T = 0), which can be 
identified from observational data on (T, Y). The remaining term in equation (34.11), E 0(Y ǀ D = 
1), can thus be solved for. Since we now have both E1(Y ǀ D = 1) from (34.10) and E0(Y ǀ D = 1) 
from (34.11), we can obtain ETT from (34.9). Doing the algebra, we obtain:

(34.13)
a general form that also includes the special case (34.12).

It follows that ETT is fully identified by the distributions of the observables (T, Y) in the various 
regimes: indeed, we can identify ETT so long as, in addition to observational data on Y and T, we 
have data on Y from experimental subjects under control conditions.
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Although based on different assumptions, formula (34.13) is essentially the same as formula 
(8.20) in Pearl (2009). In Section 34.4.2 we shall see why this must be.

(p.739) 34.4 Decision‐theoretic formulation of ETT. II. Unobserved confounder
The above development of ETT relies on the existence and meaningfulness of the preference 
variable D in all regimes, observational and interventional. While this may be a reasonable 
assumption in, e.g. economic contexts, where agents may be supposed to form preferences in 
accordance with rational principles such as maximization of expected utility, in other contexts it 
may seem somewhat far‐fetched.

We now present an alternative, more general, construction ‐ which, as we shall see, is fully 
consistent with that described above based on the preference variable. We consider a (typically 
multivariate, typically unobserved) covariate U (i.e. a permanent attribute of a subject) that can 
be considered as determining treatment choice ‐ typically only probabilistically ‐ in the 
observational regime. For Example 34.1, U might comprise the personal characteristics of the 
individuals, their motivation, natural talent, confidence, etc. For Example 34.2, U could 
represent the attributes of the patient that determine the doctor's hunches as to who will benefit 
more from the treatment. Such an unobserved variable U, associated with treatment in the 
observational regime, will be a confounder if it is also predictive of outcome.

In contrast to our analysis in Section 34.3.1, we do not now directly construct the observational 
regime F = θ from the interventional regimes; rather, we regard it as having an entirely 
independent existence. Then to make progress we must make (and justify!) assumptions relating 
this to the interventional regimes. Our fundamental requirement is that U be a sufficient 
covariate (Dawid, 2002): that is, for F ∈ {0, 1, ø}:

(34.14)

(34.15)
Here (34.14) requires that U (being a pre‐treatment variable) have the same distribution in all 
regimes; while (34.15) requires that, if only we knew, and conditioned on, U, the distribution of 
the response to an applied treatment would be the same, no matter whether that treatment had 
been applied under interventional or observational conditions.

The conditional independence relations (34.14) and (34.15) can be represented graphically by 
means of the influence diagram of Figure 34.2. Note that the arrows in Figure 34.2 represent 
stochastic dependence: in particular, T and U need not fully determine Y, but merely modify its 
distribution. This probabilistic interpretation of a ‘causal model’ may be contrasted with that of 
Pearl (2009, Section 7.1), which would treat U as an undefined exogenous (‘error’) (p.740)
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variable, and Y as functionally determined 
by T and U.6 Our stochastic model is more 
general, and appropriate to our intended 
interpretation of U as a preexisting real‐
world attribute of a subject, that could, in 
principle at least, be identified and 
measured. It also explicitly allows treatment 
choice, even in the interventional regime, to 
incorporate an element of randomization. 
However, so far as the mathematics is 
concerned, Pearl's functional interpretation can be treated as a special case of our model.
Specific causal effect

We now introduce the specific causal effect of treatment, relative to the specified sufficient 
covariate U. This is a a function of U, defined by

(34.16)
i.e.

That is, SCEU(u) is the average causal effect in the subpopulation of individuals having the 
specified value u for U.

By (34.15) we can also express

(34.17)
Thus SCE U could be identified from observational data if U were to be observed in addition to T
and Y.7 However typically this will not be the case.

We remark that, by (34.14), for t = 0, 1,

whence

(34.18)
(p.741) In particular, Eθ(SCE U) cannot depend on the choice of sufficient covariate U. 
Formulas (34.17) and (34.18) enable us to identify ACE from an observational study whenever 
we can measure some sufficient covariate.8

34.4.1 Definition and uniqueness of ETT

After the above preliminaries, we are ready to define the effect of treatment on the treated in 
this setting:

Fig. 34.2  A sufficient covariate U.
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(34.19)
That is, ETT U is the average, in the observational regime, of the specific causal effect (relative 
to U), for those individuals who in fact receive the active treatment T = 1.9 This could be 
identified if we had observational data on all three variables (T, U, Y). But in general U will not 
be observable, in any regime: a seemingly fatal handicap to identifying ETTU.

When a sufficient covariate exists, it need not be unique. The above definition of ETTU appears,
prima facie, to depend on the specific choice of sufficient covariate U, and its probabilistic 
relationship with the observables (T, Y). However, Theorem 34.1 below (a generalization of the 
argument of Section 34.3.4) will show that this is not in fact the case: ETTU does not depend on 
the choice of U, but only on the joint distributions of the observables in the various regimes. In 
particular, it can be identified from such data even when we do not specify, or observe, any 
sufficient covariate.

Theorem 34.1. Suppose p θ(T = 1) 〉 0. Then, for any sufficient covariate U,

(34.20)
Proof Suppose first p θ(T = 0) 〉 0. For t = 0, 1, define

(34.21)

(34.22)
by (34.15). In particular, k(0) = Eθ(Y ǀ T = 0).

By (34.17) and conditional independence property (34.15), (34.19) is equal to

(34.23)
(p.742) Also,

(34.24)
by (34.15) and (34.14). It follows that

Hence

(34.25)
Formula (34.20) now follows on substituting into (34.23).



Defining and identifying the effect of treatment on the treated

Page 14 of 22

Finally, the special case p θ(T = 0) =0 can be handled by a similar (and simpler) argument. ◻

In the light of the above result, we no longer need to specify which sufficient covariate U is used 
to define the effect of treatment on the treated; consequently we can just use the notation ETT.

Comments

(i) Our analysis in Section 34.3.1 in terms of the preference variable D can be treated as a 
special case of that above, on identifying U with D.
(ii) Suppose that in fact there is no confounding. In that case E θ(Y) = E0(Y) × p θ(T = 0) 
+ E1(Y) × p θ(T = 1), and formula (34.20) reduces to ETT = ACE.
(iii) It is surprising, though of no ultimate significance, that to identify ETT we do not 
need data on subjects receiving the treatment by intervention.
(iv) The fact that ETT is well‐defined in terms of observable distributions in the various 
regimes does not mean that, in Example 34.1, it would be the same for two communities 
with different population distributions and attitudes ‐ since the relevant observational 
regimes would be different. Similarly in Example 34.2, different distributions of patients, 
or different behaviour of the doctors, would typically yield different values for ETT. It is 
thus a matter for careful consideration whether, and under what circumstances, ETT will 
be informative about subjects who can not be regarded as exchangeable with those in 
the study population.
(v) Although the value of ETT does not depend on which sufficient covariate U is being 
considered, its definition and interpretation require that some such variable U should 
exist. In some contexts we might not be willing to accept this assumption. Then ‐ 
notwithstanding (p.743) the fact that we could still calculate the right‐hand side of
(34.20) from knowledge of the distributions of observables in the observational and 
control regimes ‐ we perhaps should not attempt to interpret this as ‘the effect of 
treatment on the treated’.

34.4.2 Application to potential response framework
In the potential response framework we conceive of the existence of the pair of potential 
responses (Y 0, Y 1). These are implicitly supposed to have the same values, and the same joint 
distribution, no matter what regime operates.

That is:

(34.26)
It is also assumed that, no matter what regime operates, the actual response Y is fully 
determined by the pair (Y 0, Y 1) and the treatment T applied: Y = Y T. This functional dependence 
implies, in particular:

(34.27)
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Comparing (34.26) and (34.27) with (34.14) and (34.15), we see that we can formally treat U* = 
(Y 0, Y 1) as a sufficient covariate. Since Et(Y ǀ U*) = Y t, the associated specific causal effect is 
SCE* = Y 1 − Y 0, and hence the associated definition of ETT is ETT* = Eθ(Y 1 − Y 0 ǀ T = 1). This 
recovers the ‘traditional’ definition (1) of ETT in the potential response framework.

Now Theorem 34.1 shows that:

(i) The PR definition can be expressed as in (34.20).
(ii) It agrees with the definition of ETT given in Section 34.3.1, as well as with any of the 
variations, as in (34.19), in terms of an arbitrary sufficient covariate U.

34.5 Estimating ETT
34.5.1 Availability trials and policy analysis

It follows from (34.20) that we could readily identify ETT if, in addition to having data on T and Y
from an observational study, we had data on Y from a group of subjects (randomly selected from 
the same population) who were made to take the control treatment.

One way of obtaining the required data is by performing a randomised availability trial: a study 
in which the treatment is made available to (but not forced on) a random subgroup of the 
population, while being denied to another such subgroup. Assuming that both the take‐up and 
the response (p.744) behaviour of the individuals in the first (availability) subgroup is 
unaffected by the conduct of the trial, we can use the data from that subgroup directly to 
estimate Eθ(Y) and p θ(T = 1); while E0(Y) can be estimated from the other (control) subgroup. 
We can then substitute into formula (34.20) to estimate ETT.

Such a trial would be of obvious direct relevance to policy analysis, where the aim is to assess 
the benefit of the policy decision to make the treatment available. The numerator of (34.13) is 
exactly what is being estimated by the simple contrast between the average responses in the 
two arms of the availability trial: it directly measures the additional benefit, per individual in the 
population, of introducing this policy. This average benefit could then be balanced against the 
average cost per individual of introducing the policy, to aid the decision as to whether or not to 
make treatment available.

The further inclusion of the denominator in formula (34.20) has the effect of adjusting it to 
measure the benefit of the policy introduction per individual taking up the treatment − so 
supplying a simple and intuitive interpretation of formula (34.20). It could be argued that this is 
of less direct value for policy analysis than the straightforward use of the numerator without this 
adjustment. If, however, the cost of introduction were directly proportional to the number taking 
up the treatment, then it would indeed be appropriate to base the decision on ETT. In more 
realistic scenarios, one would need to combine, appropriately, the overall benefit (proportional 
to the numerator of (34.20) and population size), fixed set‐up costs, costs pro rata to population 
size, and costs pro rata to the number taking up the treatment. While such an analysis would 
still use the ingredients of (34.20), it could do so in a more flexible manner.

34.5.2 Estimation using an instrumental variable
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When no controlled randomization is possible, we can sometimes substitute pseudo‐
randomization devices, such as instrumental variables (Heckman and Navarro‐Lozano, 2004; 
Heckman, 2005; Didelez and Sheehan, 2007).

Consider Example 34.2 with a twist. The doctor visits a group of patients and, based on his 
initial diagnosis, he prescribes some of them the new drug. After the doctor has completed this 
process, these patients are given a preliminary allergy test, and a subset group of them is 
identified as allergic to some of the components of the drug. As a consequence, the doctor's 
prescription is overruled for these patients and they are not administered the drug.

We assume:

(i) The presence of the allergy is independent of the doctor's treatment preference.
(p.745)
(ii) Conditional on the doctor's treatment preference, response to control treatment (in 
this case, not taking the drug) is independent of the presence of allergy.

Property (i) will be plausible when the doctor cannot tell which patients are allergic just by 
talking to them; it also requires that the patient's medical records do not contain information on 
allergies to the drug ingredients. This might be the case for instance, when the drug is new, or 
the ingredients it contains are not in commonly available medication and thus allergy has not 
been reported. Property (ii) will be plausible if the physiological systems responsible for the 
allergy and the disease under study are unconnected. Thus, for patients who do not receive the 
treatment (whether due to the doctor's treatment preference, or because they have the allergy), 
response will not be systematically different amongst those who have the allergy. When (i) and 
(ii) hold, the allergy status of a patient is an instrumental variable.

In this case we can use the allergic patients, from whom treatment is withheld, as a proxy for an 
experimental control group, and so estimate E0( Y) from these; the remaining patients form, 
essentially, an observational study group, allowing us to estimate E(Y) and p θ(T = 1). Hence we 
can identify ETT from (34.20).

Formal construction
Informal arguments such as the above can be valuable and revealing, but it is necessary to have 
a rigorous formal system to express and derive such results. To demonstrate how this is 
provided by our decision‐theoretic framework, we present the formal construction below.

We frame our argument in the set‐up of Section 34.3 (a similar argument could be applied for 
that of Section 34.4). We have variables F, D, T, Y as before ‐ except now we only need to 
consider F ∈ {0, θ}. In addition we have a binary pre‐treatment variable A (indicating presence 
of allergy) such that p( A = 0) 〉 0, and in the observational regime F = 0, whatever be the value 
of U:

(34.28)
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In particular, when A = 0 this overrides the original treatment preference D. Clearly D, being a 
pre‐treatment variable, continues to satisfy (34.7). However our original argument for (34.8) no 
longer stands. We replace it by

(34.29)
which says that, conditional always on treatment preference, the observational distribution of 
response among those who receive the control treatment is the same as its distribution in the 
control interventional regime. In particular this will hold if D is a sufficient covariate.

(p.746) We further assume that in the observational regime F = ø:

(34.30)

(34.31)
Here (34.30) and (34.31) formalize (i) and (ii) above, respectively. Property (34.30) must in fact 
hold in all regimes, since A and D are pre‐treatment variables. Condition (34.31) could have been 
imposed for active as well as control treatment, but this turns out not to be required for our 
analysis below.

Note that (34.28), (34.30) and (34.31) are analogous to (34.3) (for t =0), (34.7) and (34.29), 
respectively, but with A replacing F.

Theorem 34.2. Under the above conditions, Eθ(Y ǀ A = 1) = E0(Y).

Proof

◻
Using (34.13), the above result now enables us to identify ETT from data collected under purely 
observational conditions. The proof extends trivially to the whole distribution of Y, not merely its 
expectation, allowing us to consider alternative loss functions.
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IV identification in practice
For the above identification of ETT to work, we only need use an IV to create a proxy for the 
response of an experimental control group. We are thus more likely to be able to find an 
appropriate instrument than when IV methods are used to identify ACE, requiring both 
experimental treatment and control proxies.

A disadvantage is that (34.31) cannot be empirically tested if, as would be common, we can not 
observe D when A = 0. We will often need to rely on bold and debatable arguments as to the 
suitability of a purported IV

(p.747) For example, Denmark has recently outlawed the use of trans‐fats (trans fatty acids) in 
packaged foods (Stender et al. 2006). Thus, if we wanted to investigate the effect of trans‐fats on 
some health outcomes in Nordic countries, where diets might plausibly be assumed similar, we 
might treat ‘being Danish’ as an IV, so using a random sample of the Danish population as a 
proxy for an experimental control group, and a random sample of the population of other Nordic 
countries as the non‐experimental treatment group. The assumption of similar diets and 
lifestyles is debatable, and trans‐fats are so widespread in packaged foods that it might be 
difficult to find a large enough sample of non‐experimental untreated. However, it is a plausible 
approach that might provide valuable information.

34.5.3 Matching and control functions

Two other methods commonly used to identify ETT from observational data are matching and 
control functions (Heckman and Navarro‐Lozano, 2004; Heck‐man and Vytlacil, 2005; Rubin,
2006), developed for use in the context of labour economics.

Matching essentially defines the problem away by assuming we have an observable sufficient 
covariate, so allowing identification of ETT by (34.19), or indeed of ACE by (34.18).

Control functions seek to relate the observed variables to unobserved variables via deterministic 
functions — in particular, in an econometric setting personal utility functions, which are used to 
measure the likelihood of self‐ selection, are of crucial importance. Although the method of 
control functions can be given a DT formulation, we do not consider it further here, since we 
seek to avoid strong assumptions about unobservable deterministic relations. We do however 
recognize that in particular contexts, such as the economic problems for which they were 
introduced, such strong assumptions may be acceptable.

34.6 Discussion
We have described two related ways in which the concept of ‘effect of treatment on the treated’ 
can be given a meaningful decision‐theoretic interpretation. The first operates by distinguishing 
between ‘selection for treatment’ and ‘receipt of treatment’. The second makes use of the 
existence of an unobserved ‘sufficient covariate’ U. We have shown that the latter approach 
yields a unique value for ETT, no matter what choice may be made for U, and that this agrees 
with the value delivered by the former approach. There is also a formal connexion with the 
approach based on potential responses, ensuring agreement with that too. We have further 
shown that ETT can be (p.748) identified so long as we have data both from the observational 
regime and from an experimental control group.
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We have also proposed two alternative ways of estimating ETT and by using the availability trial 
approach in Section 34.5.1 have given an alternative interpretation of ETT as effectiveness of 
making treatment available per individual taking up the treatment.

Identifying ETT in our DT framework relies only on the standard probabilistic machinery once 
the assumptions (i)–(iii) in Section 34.3.2 are deemed to hold. We do not need to impose 
additional assumptions, required in the potential response framework to construct 
counterfactuals, such as consistency (Robins, 1986) or stable unit‐treatment value assumption 
(Rubin, 1974). The DT approach should be more acceptable to those who appreciate the overall 
stochastic emphasis of the enterprise of statistical science, since it does not demand a 
deterministic understanding of causality such as advocated by e.g. Heckman (2005).

Whether our assumptions (i)–(iii) in Section 34.3.2, or alternatively (34.14)– (34.15) in Section
34.4, are appropriate will depend on the context under consideration, and must be evaluated in 
the light of specific information. But since these assumptions relate only to the actual world, not 
to counterfactual parallel worlds, they are relatively straightforward to think about.
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Notes:
(1) Their general definition of ETT allows for further conditioning on a set of observed covariates 
X, as well as on T. For simplicity we shall omit X wherever this does not affect the thrust of our 
argument.

(2) Some of these are ignorability and the stable unit‐treatment value assumption (Rubin, 1986). 
The former requires that the counterfactual outcomes be independent of the treatment received, 
the latter requires that the potential response to a treatment of one individual be well‐defined, 
independently of the treatments assigned to other individuals. Another assumption usually 
invoked in counterfactual theory is consistency (Robins, 1986), which requires that the realized 
response, when treatment t is actually applied, be the same as the corresponding potential 
response.

(3) We could, without adding any real complication, replace Y in (34.5) by some function of Y, 
e.g. a nonlinear measure of the utility of outcome Y. Still more generally, we could compare 
some other chosen feature, e.g. variance, of the distributions of Y under the two experimental 
regimes F = 1 and F = 0.

(4) Thus we do not here consider situations such as that treated by Robins (1989), involving 
sequential decisions based on accruing time‐varying information.

(5) Note that T is functionally determined by D and F: T = t when F = t (t = 0,1), and T = D when
F = ø.

(6) There appears to be a common perception that graphical models are somehow tied to such a 
deterministic interpretation. In fact the opposite is true: they are fundamentally tools for 
representing and handling probability distributions, not functional relationships.

(7) We also need that, for each value of U, both values of T are observed in the data ‐ which in 
particular would disallow the choice U = D.

(8) Of course, if we could also measure U on a new individual, it would be SCEU, rather than 
ACE, that would be relevant for his decision problem.

(9) For this to be meaningful we need to assume p θ(T= 1) 〉 0. Note also that (34.16) defines 
SCE U only up to a set of probability 0 under the distribution (common to all regimes considered) 
of U; but since such a set also has probability 0 in the observational regime conditional on T = 1, 
ETTU is well‐defined.
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implement it. Despite widespread recognition of the problem of external validity, it is all 
too easy to suppose that conclusions of the first sort provide strong evidence for those of 
the second sort. This chapter argues that this is not the case. Further, ‘external validity’ is 
the wrong way to characterize the problem. Usually the only reliable way to use an it‐
works‐somewhere result as evidence for ‘It will work for us’ is via what J.S. Mill calls a 
‘tendency’ claim (and I call a ‘capacity’ claim). This however points out how weak ‘It works 
somewhere’ is in support of ‘It will work for us’, for two reasons. (1) It takes a great deal 
of theory, observation and experiment, far beyond the statistical study itself, to establish a 
tendency/capacity claim; (2) Reliable prediction requires in addition a great deal of local 
knowledge supplied by neither the statistical study nor the capacity claim.

35.1 Introduction
The topic of this chapter is ‘external validity’ and its problems. The discussion will be confined to 
a special class of conclusions: causal conclusions drawn from statistical studies whose 
fundamental logic depends on J.S. Mill's method of difference. These include randomized control 
trials (RCTs), case control studies and cohort studies.

These kinds of studies aim to establish conclusions of the form ‘Treatment T causes outcome O’ 
by finding a difference in the probability (or mean value) of O between two groups, commonly 
called the ‘treatment’ and the ‘control’ groups.1 Given the method‐of‐difference idea, in order for 
the causal (p.751) conclusion to be justified the two groups must have the same distribution of 
causal factors for O except T itself and its downstream effects. The underlying supposition is 
that differences in probabilities require a causal explanation; if the distribution of causes in the 
two groups is the same but for T yet the probability of O differs between them, the only possible 
explanation is that T causes O. The studies differ by how they go about trying to ensure as best 
possible that the two study groups do have the same distribution for causal factors other than T. 
There are, as we know, heated debates about the importance of randomization in this regard but 
these debates are tangential to my topic.

I want to separate issues in order to focus on a question of use. Suppose, contrary to realistic 
fact, that we could be completely satisfied that the two groups had identical distributions for the 
other factors causally relevant to O. I shall call this an ideal Mill's method‐of‐difference study. 
What is the form of the conclusion that can be drawn from that and of what use is it? In 
particular of what use is it in predicting whether T will cause O, or produce an improvement in 
the probability or mean of O, ‘for us’–in a population we are concerned with, implemented as it 
may be implemented there?

The basic problem is that the kinds of conclusions that are properly warranted by the method‐of‐
difference design are conclusions confined to the population in the study. That is seldom, indeed 
almost never, the population that we want to know about.2 A difference in the probability of the 
outcome in this kind of study can at best establish what I call ‘it‐works‐somewhere’ claims and 
the somewhere is never where we aim to make further predictions. We want to know, ‘Will it 
work for us in our target population as it would be implemented there?’ This questions often 
goes under the label of an ‘effectiveness’ claim. I call it more perspicuously an ‘it‐will‐work‐for‐
us’ claim. The problem of how to move from an it‐works‐somewhere claim to an it‐will‐work‐for‐
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us claim usually goes under the label ‘external validity’ and is loosely expressed as the question 
‘Under what conditions can the conclusion established in a study be applied to other 
populations?’

In this chapter I shall argue for two claims: a negative claim that external validity is the wrong 
idea and a positive claim that what I call ‘capacities’ and Mill called ‘tendencies’ are almost 
always the only right idea. The currently popular solution to the problem of external validity 
from philosophers and statisticians alike is to study the ‘invariance’ characteristics of the 
probability distribution that describes the population in the study. I shall argue that external 
validity is the wrong way to express the problem and invariance is a poor strategy for fixing it. 
Probabilistic results are invariant under only the (p.752) narrowest conditions, almost never 
met. What's useful is to establish not the invariance of the probabilistic result but the invariance 
of the contribution the cause produces, where the concept of ‘contribution’ only applies where a 
‘tendency claim’ is valid. Tendencies, I shall argue, are the primary conduit by which ‘it‐works‐
somewhere’ claims can support that it will work for us.

This raises a serious problem that I want to stress: Reasoning involving capacities/tendencies 
requires a lot more evidence and evidence of far different kinds than we are generally instructed 
to consider and we lack good systematic accounts of what this evidence can or should look like.3

In particular I shall argue:

1. We need lots more than statistics to establish tendency claims.
2. The very way tendencies operate means that building a good model to predict 
effectiveness is a delicate, creative enterprise requiring a large variety of information, at 
different levels of generality, from different fields and of different types.
3. Correlatively we need a large amount of varied evidence to back up the information 
that informs the model.

35.2 What can Mill's method of difference establish, even in the ideal?
I should begin with a couple of caveats. My discussion takes ‘ideal’ seriously. What can be done 
in the real world is far from the ideal and I will not discuss how to handle that obvious fact. I 
want to stress problems that we have even where some reasonable adjustment for departures 
from the ideal is possible. The second caveat is that I discuss only inferences of a narrow kind, 
from ‘T causes O somewhere’ to ‘T, as T will be implemented by us, will cause O for us’. For 
most practical policy purposes, inferences that start from ‘T cause O somewhere’ need to end up 
with conclusions of a different form from this, often at best at ‘T’ will cause O' for us’ where T' 
and O' bear some usually not very well understood relation to T and O. I suppose here that the 
inferences made assume at least that T and O are fixed from premise to conclusion, though 
other causal factors may be changed as a result of our methods of implementation.4 With these 
caveats in place, turn now to the meat of what I want to discuss.

(p.753) If the conclusion that we look for in answer to the question in the title of this section is 
to be a causal claim (as opposed to a merely probabilistic claim) about T and O, then here is at 
least one valid conclusion that can be drawn using Mill's methods, supposing them applied 
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ideally (which of course we can only hope to do approximately and even then, we seldom are in a 
strong position to know whether we have succeeded):

The treatment, T, administered as it is in the study, causes the outcome, O, in some 
individuals in the study population, X.

This conclusion depends on the assumption that if there are more cases of O in the 
subpopulation of X where T obtains (the ‘treatment group’) than in the subpopulation in which it 
does not (the ‘control group’), then at least some individuals in the treatment group have been 
caused to be O by T.

Since this conclusion depends on taking causal notions seriously and in particular on taking the 
notion of singular causation5 as already given, those who are suspicious about causation tend 
instead to look for mere probabilistic conclusions. The usual one to cite is mean effect size: the 
mean of O in the treatment group minus the mean of O in the control group (⟨O⟩T − ⟨O⟩C).

What about the external validity of this conclusion?

ESEV (effect size external validity): When will the mean difference be the same 
between the study population X and a target population θ?
• ESEV Answer 1: If T makes the same difference in O for every member of X and θ.

This, however, is a situation that we can expect to be very rare. Usually the effect of a cause will 
be relational, depending in particular on characteristics of the systems affected. Consider an 
uncontroversial case, well‐known and well‐understood. The effect of gravity or of 
electromagnetic attraction and repulsion on the force an object is subject to depends, for 
gravity, on the mass ofthat object, and for electromagnetism, on the magnetic or electric charge 
of the affected object.

A more widely applicable answer than ESEV Answer 1 is available wherever the probabilistic 
theory of causation holds. This theory supposes that the probability (in the sense of objective 
chance) of an effect O is the same for (p.754) any population that has all the same causes of O 
and for which the causes of O all take the same value; i.e. the probability is the same for all 
members of a causally homogeneous subclass.6 Loosely, ‘The probability of an effect is set once 
the values of all its causes are fixed’. The set of causes of O that are supposed fixed in this 
assumption are those characteristics that appear in the antecedent of a complete and correct 
causal law for O.7 The probabilistic theory of causation then provides a second sufficient 
condition for effect size external validity.

• ESEV Answer 2: When X and θ are the same with respect to
(a) The causal laws affecting O AND
(b) Each ‘causally homogeneous’ subclass has the same probability in θ as in 
X.

Sufficiency follows from the probabilistic theory of causation. In addition, these two are also 
almost necessary. When they do not hold then ESEV is an accident of the numbers. This can be 
seen by constructing cases with different causal laws (hence different subclasses that are 
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causally homogenous) or with different probabilities for the causally homogeneous subclasses 
(e.g. shifting weights between those subclasses in which T is causally positive for O and those 
for which it is causally negative or less strongly positive).8

These are strong conditions, and they are recognized as such by many scholars who try to be 
careful about external validity. One good example appears in a debate about the legitimacy of 
reanalysing the results from RCTs on the effects on families from disadvantaged neighbourhoods 
of moving to socioeconomically better neighbourhoods. In ‘What Can We Learn about 
Neighborhood Effects from the Moving to Opportunity Experiment?’9 Ludwig et al. take the 
purist position: They oppose taking away lessons that the study was not designed to teach. In a 
section titled ‘Internal versus External Validity’, these authors further caution:

… MTO defined its eligible sample as … [see below]. Thus MTO data… are strictly 
informative only about this population subset–people residing in high‐rise public housing 
in the mid‐1990s, who were at least somewhat interested in moving and sufficiently 
organized to take note of the opportunity and complete an application. The MTO results 
should only be extrapolated to other populations if the other families, their residential 
environments, and their motivations for moving are similar to those of the MTO 
population.

(p.755) The trouble here is that RCTs are urged in the first place because we do not know what 
the other causes of the outcome are, let alone knowing that they have the same distribution in 
the study population as in possible target populations. This is a fact the authors themselves 
make much of in insisting that only conclusions based on the full RCT design can be drawn. For 
instance, they explain

The key problem facing nonexperimental approaches is classic omitted‐variable bias.

and

A second problem…is our lack of knowledge of which neighborhood characteristics 
matter… Suppose it is the poverty rate in a person's apartment building, and not in the 
rest of the census tract… [BUT an experimental] mobility intervention changes an entire 
bundle of neighborhood characteristics, and the total impact of changing this entire 
bundle … can be estimated even if the researcher does not know which neighborhood 
variables matter.

The overall lesson I want to urge from this is that effect size will seldom travel from the study 
population to target populations and even when it does, we seldom have enough background 
knowledge to be justified in assuming so.

Effect size is a very precise result however. Perhaps we would be happy with something weaker, 
for instance, the direction of the effect. So we should ask:

Effect direction external validity (EDEV): When will an increase (resp. decrease or no 
difference) in the probability or mean of O given T in a study population X be sufficient for 
an increase (resp. decrease or no difference) in a target population θ?
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There are a variety of answers that can supply sufficient conditions, including

• EDEV Answer 1: If X and θ
(a) Have the same causal laws, AND
(b) Unanimity: T acts in the same direction with respect to O in all causally 
homogeneous subpopulations.

• EDEV Answer 2: If θ has ‘the right’ subpopulations in the ‘right’ proportions.

Both these answers are still very demanding. Clearly they require a great deal of background 
knowledge before we are warranted in assuming that they hold. In the end I shall argue that 
there is no substitute for knowing a lot, though there will be different kinds of things we need to 
know to follow the alternative route I propose–that of exporting facts about the contributions of 
stable tendencies. The tendency route is often no more epistemically demanding10 than (p.756)
what these answers require for exporting effect direction or effect size and tendencies are a far 
more powerful tool more widely applicable: Tendencies can hold and be of use across a wide 
range of circumstances where ESEV Answer 1 fails; they also underwrite condition EDEV 1b 
when it holds yet can be of use even where it fails; and they do not depend, as EDEV 2 and ESEV 
2 do, on getting the weights of various subpopulations right in order to be a reliable tool for 
predicting direction of changes in the outcome.

Let us turn then to this alternative route, which involves exporting not probabilistic facts but 
causal facts. Doing so requires that we be careful in how we formulate causal claims. In 
particular it is important for this purpose to distinguish three different kinds of causal claim.

35.3 Three kinds of causal claim
The distinctions that matter for our discussion are those among

1. It‐works‐somewhere claims: T causes O somewhere under some conditions (e.g. in 
study population X administered by method M).
2. Tendency claims: T has a (relatively) stable tendency to promote O.
3. It‐will‐work‐for‐us claims: T would cause O in ‘our’ population θ administered as it 
would be administered.

35.3.1 T causes O somewhere
This is just the kind of claim that method‐of‐difference studies can provide evidence for; and it is 
important information to have. In saying this I follow, for instance, Curtis Meinert11 when he 
says: ‘There is no point in worrying whether a treatment works the same or differently in men 
and women until it has been shown to work in someone.’12

It‐works‐somewhere claims are the kind of claim that medical and social sciences work hard to 
establish with a reasonably high degree of certainty. But what makes these claims evidence for 
effectiveness claims: T will cause O for us? I have reviewed the standard answer: external 
validity. My alternative is tendency claims: T has a (relatively) stable tendency to promote O.

(p.757) 35.3.2 T has a stable tendency to promote O
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What are tendencies?
I have written a lot about the metaphysics, epistemology and methodology of tendencies 
already.13 Here I hope to convey a sense of what they are and what they can do with a couple of 
canonical examples. For instance,

• Masses have a stable tendency to attract other masses.
• Aspirins have a relatively stable tendency to relieve headaches.

The driving concept in the logic of tendencies is that of a stable contribution. A feature, like 
having a mass, has a stable tendency when there is a fixed contribution that it can be relied on 
to make whenever14 it is present (or properly triggered), where contributions do not always 
(indeed in many areas seldom) result in the naturally associated behaviours. The contribution 
from one cause can be ‐ and often is ‐ offset by contributions from features as well as 
unsystematic interferences. The mass of the earth is always pulling the pin towards it even if the 
pin lifts into the air because the magnet contributes a pull upwards. What actually happens on a 
given occasion will be some kind of resultant of all the contributions combining together plus 
any unsystematic interferences that may occur.

Reasoning in terms of contributions is common throughout the natural and social sciences and 
in daily life. Consider the California class‐size reduction failure.15 Here is a stripped down 
version of the widely accepted account of what went wrong.

There were well conducted RCTs in Tennessee showing that small class sizes improved reading 
scores there (that is, providing evidence for an it‐ works‐somewhere claim). But when California 
cut its class sizes almost in half, little improvement in scores resulted. That is not because there 
was a kind of holisitc effect in Tennessee where the result depended on the special interaction 
among all the local factors there. Rather, so the story goes, the positive contribution of small 
class size was offset by the negative contributions of reduced teacher quality and inadequate 
classroom and backup support. These latter resulted because the programme was rolled out 
statewide over the course of a year. This created a demand for twice as many teachers and twice 
as many classrooms that couldn't be met without a dramatic reduction in quality. The positive 
contribution of small class size was not impugned by these results but possibly even borne out: 
The presumption seems to be that scores would have been even worse had the poorer quality 
teaching and accommodation been introduced without reducing class sizes as well.

(p.758) The reasoning is just like that with a magnet and gravity acting together on a pin.

Tendency claims are thus a natural conduit by which it‐works‐somewhere claims come to count 
as evidence for it‐will‐work‐for‐us claims. It should be noted however that a stable tendency to 
contribute a given result is not in any way universally indicated by the fact that a feature like 
class size participates in causing that result somewhere. Nevertheless, if a result is to be 
exported from a study to help predict what happens in a new situation, it can seldom be done by 
any other route.

The big problem for tendency logic
The central problem for reasoning involving tendencies is that we do not have good systematic 
accounts of what it takes to establish such claims. We have nice histories of establishing 
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particular claims, especially in physics, but little explicit methodology. This contrasts, for 
instance, with it‐work‐ somewhere claims. We have a variety of well‐known well‐studied methods 
for establishing these, methods for which we have strong principled accounts of how they are 
supposed to work to provide warrant for their conclusions and of where we must be cautious 
about their application. Recently, for instance, there has been a great deal of attention and 
debate devoted to Mill's‐method‐of‐difference studies and to the advantages and disadvantages 
of various methods for ensuring that the requisite conditions are met that allow them to deliver 
valid conclusions. But if I am right that tendencies are the chief conduit by which it‐works‐
somewhere claims come to support it‐will‐work‐for‐us, this attention focuses on only a very small 
part of the problem. For an it‐works‐somewhere claim is at best a single rock in the kind of 
foundation needed to support a tendency claim.

So I want to plead for more systematic work to lay out the kinds of studies and types of evidence 
that best support tendency claims. As best I can tell ultimately we need a theory to establish 
tendency claims, though admittedly often we will have to settle for our best stab at the 
important relevant features of such a theory. That's because contributions come in bundles and 
are characterized relative to each other. We only have good evidence that gravity is still working 
when the pin soars into the air because we can ‘subtract away’ the contribution of the magnet 
and thus calculate that gravity is still exerting its pull. To do that we need to have an idea both 
about what other factors make what other contributions and what the appropriate rule of 
composition for them is.16

(p.759) Of course we most often have to proceed to make it‐will‐work‐for‐us predictions 
without a well‐developed theory. In that case we make our bets. My point is that we must be 
clear what we are betting on and what evidence is available to back up the bet, even what kind 
of further evidence we should be setting out to learn. Are we betting on, and using the logic of, 
stable tendencies, and if so, to what extent does our evidence back us up in this? Or are we 
betting on facts about identical causal laws and correct distributions of other causal factors 
between study and target populations, and if so, to what extent does our evidence support that?

Tendencies versus external validity
My overall message is that sometimes there are tendencies to be learned about. Where there is 
a stable tendency, this provides a strong predictive tool for a very great range of different kinds 
of target populations. It naturally does not tell us what the observed result will be unless we 
know there are no unsystematic interferences at work, we have good knowledge of the 
contributions that will be made by the other causal factors present and we can estimate how 
these contributions combine, which is very seldom the case outside the controlled environment 
of a physics laboratory. But when we know a tendency claim we can make a prediction about the 
direction of change. Whatever the result would have been, if the cause is added the new result 
will differ by just the amount predictable from the contribution. But beware. The comparison we 
can make is with what the result would have been post implementation, just subtracting the 
effect of T itself. So, even restricting ourselves just to claims about direction of change, we still 
have not arrived at an ‘it will work for us’ claim, as I have characterized that.
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Let us return to a comparison of tendencies versus external validity–predicting that ‘the same’ 
effect, either effect size or effect direction, will hold in the target as in the study population.

• Neither can be taken for granted.
• Both require a great deal of evidence to warrant them, though of different kinds.
• With respect to effect direction:

• Stable tendencies: Post‐implementation effect direction can be predicted 
from knowledge that T has a stable tendency to promote O (that it makes, say, a 
known contribution) without requiring knowledge of the distribution of other 
causal factors in the target.
• External validity:

• Recall by contrast that under EDEV 2 the distribution of causally 
homogeneous subpopulations must be ‘right’ in order for the effect direction 
to be the same in the target as in the study population; and (p.760) of 
course for cases in which some set of right conditions holds, it takes 
considerable background knowledge of what the other causal factors are 
and what the target situation is like to be warranted in assuming they do.
• T has a stable tendency to promote O implies EDEV 1.b.
• What about EDEV 1.a? I have not gone into the issue of the range across 
which a cause must make the same contribution in order to be labelled as a 
tendency. Obviously there is no firm answer. What matters is that there 
should be good reasons to back up whatever range is presupposed in a 
given application. Many well‐known tendencies, however, can survive a 
change in the other causes that affect the same outcome. Philosophers keen 
on modularity as a mark of genuine causation often insist that this is a 
widespread feature and it is often supposed in science as well. For instance 
most of us are familiar from elementary economics with exercises to 
calculate what happens if the demand laws change while the contribution to 
exchange from the supply side stays fixed, and vice versa. When that's the 
case tendency reasoning can provide predictions of effect direction that 
EDEV 1 cannot, though of course the assumptions that a tendency is stable 
across changes in other causal laws needs good arguments to back it up.

• With respect to effect size:

• Stable tendencies. Effect size can be calculated when the contributions of all 
major tendencies present in a situation are known, or reasonably approximated, 
along with the appropriate rule of combination. This is typically what we 
demand from an engineering design but can surely never be supposed for social 
and economic policies for effects on crime, education or public health. Various 
narrow medical cases are generally thought of as lying in between these 
extremes.
• External validity. It is seldom the case that the target and study populations 
have the same causal laws and same distribution of causal factors, and even 
more rare that we should be warranted in supposing so. So if the external 
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validity of effect size is our primary method for learning something about target 
populations from Mill's method‐of‐difference studies, these studies will be of 
very little use to us.

• Use of the logic of tendencies is epistemically demanding. But so is external 
validity, only in different ways. Tendency knowledge, where available, can do more 
than traditional external validity reasoning and is far more widely applicable. 
Moreover tendency logic is well established to work well in a variety of domains. So 
it is wasteful and capricious to refuse to use this logic when evidence is available for 
it. Of course often some evidence will be available but not enough to clinch our 
conclusions. That (p.761) is the human condition and it applies in spades to 
external validity reasoning as well. When clinching evidence is missing, we had best 
proceed with caution and, if we can, hedge our bets.

35.3.3 It will work for us
Counterfactuals: Case‐specific versus general‐purpose causal models

Julian Reiss and I17 each argue that it‐will‐work‐for‐us claims are best supported by case‐specific 
causal models. It is not unusual among causal theorists nowadays to urge that these kinds of 
claims are best evaluated via causal models. After all, these are singular counterfactual claims: 
T would cause O if it were implemented in our population as it would be implemented there. The 
central difference between our claims and many others is the emphasis on ‘case‐specific’–i.e. on 
models built specifically for the counterfactual at hand, as it will be implemented.

For contrast consider the models of Judea Pearl, who has developed what must be the most 
detailed and thorough semantics for causal counterfactuals now available.18 In Pearl's semantics 
counterfactuals are, as I advocate, evaluated on the basis of a causal model. I think I can explain 
the kinds of difficulties that face the use of general‐purpose as opposed to case‐specific models 
by reference to Pearl's models, without laying out details of his approach.

Causal models for Pearl are of a very specific form. The form connects neatly with our general 
probabilistic methods for discovering ‘it‐works‐ somewhere’ claims; and this is both their 
strength and their weakness. For the somewhere is never here. Even if–contrary to what can 
ever realistically happen–a study encompasses the entire target population, the population of 
the study is not literally the same as the one about which future predictions are made. One may 
suppose that the same causal model will describe the ‘same’ population in the future as in the 
past but that is a strong assumption of external validity and it should have evidence, reason and 
argument to back it up.19

Reiss and I both stress that a causal model for evaluating ‘it‐will‐work‐for‐us’ claims needs to be 
built to the case at hand–for the given cause as, where (p.762) and when it will implemented. A 
causal model for the system as it has been functioning or for similar systems is neither 
necessary nor sufficient. It is not sufficient because implementations of a cause often bring 
about importantly relevant changes, not only in the arrangement of other causes but also in the 
basic governing causal principles. It is not necessary because, as with external validity, the same
as before or as elsewhere is the wrong idea. How the system has behaved so far or how ‘similar’ 
systems behave can be a clue to what will happen when the cause is implemented, but only a 
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clue. We often have reason to suppose that it is the central clue; often we have reason to think it 
is not because we know how easily the system of laws or the arrangement of causes at work in 
our case might be disturbed. ‘The same’ causal model is just as much a hypothesis about a 
future case as is any new causal model proffered in its stead.

In the ideal a case‐specific causal model to evaluate a specific it‐will‐work‐ for‐us counterfactual 
will contain two essential ingredients:

• a list of ‘all’ the causes (or all the ones that can have a significant effect on the 
outcome) that will be present once the targeted cause is implemented
• a tool for calculating what happens with respect to the targeted effect when these 
all act together.

With this information we can predict the effect.

The trouble with causal models of this form is that we are seldom in a position to produce them 
with anything like a high degree of reliability. It is thus a good thing that for many kinds of 
predictions they are not necessary. Sometimes there are ‘shortcut’ models, or what following 
Gerd Gigerenzer20 we might call ‘cheap heuristics’, that predict approximately enough the same 
result, sometimes even provably so, without mirroring the causal narrative that will unfold in 
nature as an ideal case‐specific causal model does. Alternatively, sometimes there are good 
partial models that predict aspects of the effect, for example, estimates of effect size difference. 
Moreover when we are lucky an already constructed model laying out the causal laws that have 
governed the system till now or that govern similar systems can be taken over wholesale to 
serve for the specific case. But to repeat, the case‐specific model that we get by this strategy is 
as much in need of justification as any other.

Tendencies and causal models for it‐will‐work‐for‐us claims
Tendency claims play an important role in constructing causal models for evaluating singular 
causal counterfactuals. Where causes act with stable tendencies we can be in a powerful 
situation with respect to either full or partial models because in this case the causes contribute 
by a systematic rule that we can learn about and encode in our theories. Otherwise prediction is
(p.763) more piecemeal and local and though we often do it well, there is little good 
philosophical work on how to do so. So where tendencies can be relied on,21 these will be a huge 
help in constructing a causal model for the evaluatsion of a specific causal counterfactual. Even 
if not all the causes present have a stable tendency so there are unsystematic interferences, if 
the targeted one has a known contribution then it may at least be possible to calculate an effect 
direction or even an effect difference. And certainly tendency claims are the central way by 
which it‐works‐somewhere claims can come to count as evidence that it will work for us.

Where we know of no stable tendencies then we are more at sea. I take it that we are often good 
at local detailed causal reasoning but that we need a great deal more concerted research on 
what strategies are reasonable to pursue in these areas. What matters, I believe, is to recognize 
the epistemic and ontological situation we are in when we want to judge if a treatment will work 
for us and do the best we can, hedging our bets and recognizing when we are making heroic 
assumptions in constructing our causal model and when not.
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Given the limitations of tendency logic it is important to recognize that Pearl's semantics, and 
others like it, presuppose tendencies.22 Pearl's causal models consist of a set of causal claims in 
functional form, one for each effect under study, with a dependent variable as effect and the 
independent variables as causes, plus a probability measure over the exogenous variables (i.e. 
those variables representing quantities not caused by other quantities represented in the set 
under study). To evaluate the counterfactual ‘T would produce O for us’23 Pearl substitutes for 
the law in the model for t(t = ƒ (x, y, z, …)), t = T, leaving all other laws in the model the same. 
This represents setting the value of t ‘surgically’, as should be done in a method‐of‐difference 
study. The assumption that this is always possible for any cause in the model is called
modularity. The value of O that results is ultimately calculated from the law in the model for O, a 
law of the form O = g(r, s, t, …).

What we should note is that the general assumption that a system of laws is modular 
presupposes that the causes in that model have stable tendencies, stable at least across all the 
uses to which the model and its accompanying semantics is put. The contribution of a cause to 
an effect is given by (p.764) the term in which that cause appears in the law for the effect; the 
rule of combination, by the functional form. Consider for instance the law, acc = GM/r 2 + ε q 1 q

2/r 2, for the acceleration of a particle of charge q 2in the vicinity of the Earth (of mass M) and of 
another particle of charge of q 1. The mass of the Earth makes a stable contribution of the size of 
its mass (M) multiplied by the acceleration of gravity G and the inverse of the square of the 
distance of its centre of mass from the particle. This adds vectorially with the contribution that 
the charge q 1 makes, which is its size multiplied by ε q 2/r 2. Ask now ‘Would setting q 1 = Q 1
increase the particle's acceleration?’ To answer, following Pearl, calculate acc = GM/r 2 + ε Q 1 q

2/r 2, substituting for the other values in this equation the values they take in the situation at 
hand. The assumption that the mass of the earth continues to contribute in exactly the same way 
as the value of the charge is changed is to suppose that the mass has a stable tendency. 
Similarly, to assume that the functional form for the electrostatic term stays the same, and 
indeed the overall functional form for acceleration does too, is to assume that charge has a 
stable tendency.24 So to assume modularity for changes under every variable in the model is to 
make very strong tendency assumptions.25

I obviously have no quarrel with tendencies, having defended them for well over two decades. 
But we need to keep clearly in mind the lesson of Section 35.3.2. Causes often act holistically; 
tendencies cannot be taken to be the rule. Mill himself felt that the logic of tendencies applied in 
physics and in political economy but not in chemistry or more generally in the study of society26

and Julian Reiss argues that they are not all that common even in political economy.27 Nor are 
the conventional methods by which we test causal claims sufficient to establish tendency claims, 
especially not the wide‐ranging claims about tendencies presupposed in taking a causal model to 
be modular. And I should stress that this is true not only for the method‐of‐difference (p.765) 

methods discussed in this chapter but for a wide variety of other valid methods for causal 
inference as well, including various econometric methods and many that trace causal pathways.

Aside on representation
This brings me to a point about representation that is somewhat more complex than the issues I 
have discussed so far, but one that matters to the question of how causal models help in the 
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evaluation of it‐will‐work‐for‐us claims. Pearl, faced with challenges like mine to strong 
modularity assumptions, maintains that when the model is not modular that just means it is 
misspecified; that is, we haven't written down the right model. Whether he is right or not 
depends on how one conceives of his causal models. One way is to start with an independent 
notion of ‘causal law’, one that meshes at least reasonably well with our accepted methods for 
testing/establishing causal laws. Then one can consider how this model can be used (if at all!) to 
evaluate singular causal counterfactuals. If we read Pearl this way then it looks as if he offers a 
semantics that should allow us to evaluate any counterfactual with any variable from the 
model28 in the antecedent and any variable from the model in the consequent.

This I believe is what Pearl is generally taken to be doing; and as a strategy it has exactly the 
problems I have described here. First, we do not have sufficient reason to take tendencies to be 
the rule, or even the fallback position. The causal laws governing situations are often holistic so 
that they are not much of a guide about what happens when the whole causal complex is no 
longer the same. Second is the point I have mentioned but not developed in any detail here,29

that causal laws generally depend on some underlying structure that gives rise to and maintains 
them and many of the ways we implement antecedents in counterfactuals can undermine this 
structure in ways that destroy the very causal laws we hope to use to evaluate the counter‐ 
factual.

A usual fix for these problems is to try to extend the variables in the model. In this case the new 
variables would have to include descriptions of the possible underlying structures that could 
arise from any method of implementing a change on any variable in the model plus all new 
variables implicated in causal relations that the various new substructures would give rise to. Of 
course this is no fix for the problem of holism. As a fix for the problem that causal laws as we 
usually think of them and test for them depend on vulnerable substructures to support them, it 
seems impossible. Moreover, it is a cheat. We cannot define a proper variable whose values are 
the unending open‐ended array of possible substructures that could exist once we start to (p.
766) intervene;30 and if we could, it certainly would not be a random variable of the kind 
required in Pearl's models: Neither nature nor we supply a probability measure over any such 
array of possibilities.

The second way to interpret the causal laws in a model is to backread the ‘causal laws’ for a 
situation from the proffered semantics and the set of counterfactuals true for a given set of 
features in that situation. That is, the causal laws are whatever they have to be to allow the 
semantics to give correct results for the counterfactuals. This interpretation fits more closely 
with the claim that if the models aren't modular then they are misspecified. Probably it is easy to 
show that a model of Pearl form can be created that gives the correct results for any targeted 
counterfactual. But there is no guarantee that such a model can be created for an arbitrary 
collection of true counterfactuals over features under consideration, let alone a full set of them.

My own version of a causal model falls between these two. It is a model purpose built for 
evaluating a particular counterfactual as it would be implemented. Write down the causes of the 
targeted effect that will be in place given the implementation and consider what together they 
produce. The strength of this proposal is that it is sure to produce correct answers if we can 



Predicting ‘It will work for us’: (Way) beyond statistics

Page 14 of 19

carry it off. This is just the flip side of its chief weakness: We do not have set procedures for 
doing this and often are at sea.

One may wish for more. Indeed a referee for this paper expresses just this: ‘We are told that we 
need to model the causal situation with tendencies but there is little detail on what such models 
would look like.’ I am happy that sometimes such models will look like Pearl models, and that we 
could then use Pearl's semantics to generate counterfactuals with them. What I do not accept is 
that we can give much advice about how to build the model. I have spent a lot of time studying 
very successful models in physics–like models for lasers or for the gyroscopes that reveal 
precession due to space‐time coupling in the Stanford Gravity‐probe experiment, and also 
studying promising models in economics that are less predictively successful but are not 
disasters. The most I can say is that the modelling enterprise and importantly the enterprise of 
figuring out how good these models are ex ante–before they are used for prediction–seems to 
have no fixed rules and little good substance‐neutral advice. But that I think is not only a 
fundamental fact about evidence; it is the human condition, better to be acknowledged and 
managed than denied or ignored.

(p.767) 35.4 Conclusion
My focus here has been on Mill's method‐of‐difference studies and what they can teach us about 
whether proposed interventions will have targeted effects when implemented as they would in 
fact be implemented (i.e. ‘it‐will‐work‐for‐ us’, claims). These methods, I have argued, can 
establish claims of the form ‘It works somewhere.’ But it's a long road from ‘It works 
somewhere’ to ‘It will work for us’.

The central problem I raise is that we do not have very good methodological guides for how to 
traverse this road. I argue that ‘external validity’ is generally a dead end: it seldom obtains and, 
because it depends so delicately on things being the same in just the right ways, it is even rarer 
that we can have reasonable warrant that it obtains. Instead tendency claims are the chief 
conduits by which ‘it‐works‐somewhere’ claims come to be evidence that a proposed 
intervention will work for us. This narrows the problem but does not solve it. For we do not have 
good explicit methodologies for how to establish tendency claims. Nor do we have explicit 
methodologies for how to use them to build case‐specific models for evaluating whether the 
proposed intervention will work. And if I am right about how predicatively successful models are 
usually built even in physics, we haven't much reason to think any such methodology will be 
forthcoming.

What then is the role of the highly vaunted Mill's method‐of‐difference studies, including the 
current favourite, the RCT, in providing evidence that T will work for us to promote O? The ideal 
RCT can show that T works somewhere; a real RCT is one fallible indicator in what is hopefully a 
far fuller evidence base that T works somewhere. That T works somewhere can be a part, albeit 
a small part, of an evidence base to support T's capacity to contribute to O. That T has a 
capacity to promote O can serve as part, again probably only a small part, of the evidence that 
supports the case‐specific causal model that is the eventual base for our predictions about 
whether T will work for us. So it is indeed a long road and most often an insecure one. But it is 
better to understand and acknowledge that than to presuppose heroic assumptions without 
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admission, without examination, without evidence and without all the hedging that responsible 
betting calls for.
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Notes:
(1) Naturally only a difference in frequency is observed. There is thus a preliminary question of 
statistical inference: what probabilities to infer from the observed frequencies. I set this 
question aside here because I want to focus on the issue of causal inference.

(2) Even if the entire target population were enrolled in the study, predictions will be about 
future effectiveness where there may be no guarantee that this population stays the same over 
time with respect to the causally relevant factors.

(3) Consider as a smattering of examples the evidence use guideliness from the US Dept of 
Education (2003), the Scottish Intercollegiate Guideline Network (2008), Sackett et al. (2000), 
Atkins et al. (2004) or the Cabinet Office (2000).

(4) Exactly what counts as changing T versus changing additional factors that were in place in 
the study but are not in place in the target implementation is a little arbitrary. But drawing a 
rough distinction helps make clear what additional problems still face us even if T and O are 
entirely fixed. (Thanks to John Worrall for urging me to make these two caveats explicit. For 
more on both issues, I suggest looking at Worrall's many papers on these subjects. Cf. Worrall
(2007) and references therein.)

(5) That is, that‘T causes O in individual i’ is already understood. Alternatively, one could 
presuppose the probabilistic theory of causality in which T causes O in a population ϕ that is 
causally homogeneous but for T and its downstream effects just in case in ϕ, Prob(O/T) 〉
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Prob(O/−T). Then if Prob(O) in the experimental population with T 〉 Prob(O) in the 
experimental population with −T, we can be assured that there is a subpopulation of X in which 
‘T causes O’. (But note that if the two probabilities are equal, we have no reason to judge that T 
causes O in no subpopulations rather than that its positive effects in some cancel its negative 
effect in others.)

(6) These probabilities will be zero or one where determinism holds but not in cases where 
causality can be purely probabilistic.

(7) What counts as ‘complete’ and correct here requires some care in defining; delving into this 
issue takes us too far from the main topic of this chapter.

(8) The constructions resemble those illustrating Simpson's paradox. Cf Cartwright (1979); 
Salmon (1971).

(9) Ludwig et al. (2008).

(10) Nor, sadly, do I think we can hope for answers that are less demanding epistemically if we 
want sound and valid arguments. And that's the point: we need to know what the premises are 
for a valid argument; only then can we get on with the serious job of seeing to what degree they 
can be warranted.

(11) Meinert is a prominent expert on clinical trial methodology and outspoken opponent of the 
US NIH diversity act demanding studies of subgroups because they generally cannot be based 
on proper RCT design. I agree with him about the importance of knowing it works somewhere. 
But my point in this chapter is that that knowledge is a tiny part of the body of evidence 
necessary to make reasonable predictions about what will work for us.

(12) Quoted from Epstein (2007).

(13) Cf. Cartwright (1989) and (2007a).

(14) Though note that some tenancies can be purely probabilistic and also the range of 
application can be limited.

(15) Bohrnstedt et al. (2002).

(16) Note though the tension here: Most advocates of RCTs like them because, they claim, no 
substantive theory is required to do what they purport to do–i.e. establish an ‘it‐works‐ 
somewhere’ claim.

(17) Reiss (2007); Cartwright (2007b).

(18) Pearl (2000).

(19) It should be noted that this is not just a reappearance of Hume's problem of induction. For 
the problem itself presupposes that there are general principles of some kinds at work in nature 
and even that we can find out about them, understand how they work and predict what kinds of 
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conditions are required for a system to continue to operate as before. This is how we can often 
be confident that our interventions will not be successful because they will shift the 
arrangements of causes at work or undermine the operating principles. A better label for the 
problems for invariance I raise here is ‘Mill's problem of induction’ since it is the kind of worry 
that he described in arguing that economics cannot be an inductive science. (Mill1836; for 
further discussion see Cartwright, forthcoming.)

(20) Gigenerzer et al. (1999).

(21) But be careful. Many tendencies are conditional: They hold relative to an underlying 
structure that gives rise to them. So in using them we are betting on the stability of the 
underlying structure–in my language, a ‘nomological machine’; and, as always, it is best to have 
as much evidence as possible to decide which way and how much to bet. (For a longer 
discussion see Cartwright, forthcoming, and1989.)

(22) Although James Woodward (2004) does not offer a detailed semantics for counterfactuals, 
he is another causal theorist who makes very strong modularity assumptions, hence very strong 
tendency assumptions.

(23) Here I suppose that T and O are specific values that some random variable, t, o, can take.

(24) This can be a misleading example because these tendencies are, or are often supposed to 
be basic, hence universal. As mentioned in footnote 21, most tendencies, however, depend 
instead on some stable underlying structure to give rise to and maintain them. So they are 
stable across changes that affect only arrangements in the superstructure, not necessarily 
across those that affect the substructure.

(25) Again, there is a serious caution to be urged. I said that Pearl's equations were of a familiar 
kind that we have rules for how to estimate and sufficient conditions (as with instrumental 
variable models or others I describe in Cartwright2007) for determining if they can be 
interpreted causally. But neither these standard methods nor the sufficient conditions I know 
about warrant the modularity assumptions necessary to use the equations as instructed to draw 
counterfactual conclusions. This remark is essentially a repeat of my two‐fold point that the 
equations, given their prescribed use in warranting counterfactual predictions, presuppose 
tendencies and that tendencies need a good deal more evidence to be warranted than that 
provided by the standard methods that warrant it‐works‐somewhere conclusions.

(26) Mill (1836). This would have placed Mill in the later methodenstreit (the battle of methods) 
more on the side of Schmoller and the holists, as opposed to Menger and those who believed in 
the wide applicability throughout the social sciences of the analytic method.

(27) Reiss (2007).

(28) Actually the semantics is stronger than that for it allows a mix of variables in the 
antecedent.

(29) For more on this point see my various discussions of nomological machines (to be found in 
the two references from footnote 21 plus further references in those).



Predicting ‘It will work for us’: (Way) beyond statistics

Page 19 of 19

(30) John Worrall, in the referee's comments, suggests that many people think that the array of 
structures that could exist is not open‐ended. I suppose they take a view of the world reflected 
in Wittgenstein's Tractatus: crudely, there are a fixed number of features in the world and the 
possible facts are exactly all the combinations of all the possible values of all the possible 
features. If I had to indulge in metaphysics, this is not one I would go for. But even if it were 
true, this does little in aid of establishing that there are random variables to represent this vast 
array since that requires reason to believe that there is a proper probability measures over it. 
And where does that come from?
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of energy. The gist of this critique is that mechanical mechanisms are too easy to get to be 
informative, provided that energy is conserved. Section 36.4 motivates the quasi‐
mechanical conception of mechanism and traces it to Kant's Critique of Judgement and to 
C.D. Broad's critique of pure mechanism. Section 36.5 reconstructs Hegel's critique of the 
idea of quasi‐mechanism, as this was developed in his Science of Logic. Hegel's problem, 
in essence, was that the unity that mechanisms possess is external to them and that the 
very idea that all explanation is mechanical is devoid of content. Section 36.6 brings 
together Poincaré's problem and Hegel's problem and concludes that though mechanisms 
are not the building blocks of nature, the search for mechanisms is epistemologically and 
methodologically welcome.

36.1 Introduction
When we think about mechanisms, there are two general issues we need to consider. The first is 
broadly epistemic and has to do with the understanding of nature that identifying and knowing 
mechanisms yields. The second is broadly metaphysical and has to do with the status of 
mechanisms as building blocks of nature (and in particular, as fundamental constituents of 
causation). These two issues can be brought together under a certain assumption, which has had 
long historical pedigree, namely that nature is fundamentally mechanical.

What exactly does it mean to say that nature is mechanical? What is the content of this thesis? 
This assumption has had no concrete ahistorical conceptual content. Rather, its content has 
varied according to the dominant conception of nature that has characterized each epoch. Nor 
has it been the case that the very idea of mechanism has had a fixed and definite content. Even 
if in the seventeenth century and beyond, the idea of mechanism had something to do with 
matter in motion subject to mechanical laws, current conceptions (p.772) of mechanism have 
only a very loose connection with this. A mechanism, nowadays, is virtually any relatively stable 
arrangement of entities such that, by engaging in certain interactions, a function is performed 
or an effect is brought about. To call a structure a mechanism is simply to describe it in a certain 
way — focusing on the steps or processes through which an effect is brought about.

This broad understanding of mechanism is typical of the new mechanical philosophy, as it is 
sometimes called, that has started to become a vocal, if not the dominant, approach to causation 
and explanation.1 Take a very typical characterization of mechanism by Bechtel and Abrahamsen 
(2005, p. 423):

(M) A mechanism is a structure performing a function in virtue of its component parts, 
component operations, and their organization. The orchestrated functioning of the 
mechanism is responsible for one or more phenomena.

On this conception,2 a mechanism is any structure which is identified as such (that is as 
possessing a certain causal unity) via the function it performs. Moreover, a mechanism is a
complex entity whose behaviour (that is, the function it performs) is determined by the 
properties, relations and interactions of its parts. This priority of the parts over the whole — and 
in particular, the view that the behaviour of the whole is determined by the behaviour of its 
parts — is the distinctive feature of this broad account of mechanism.



The idea of mechanism

Page 3 of 17

It will be helpful and accurate to distinguish between two concepts of mechanism — or, if you 
like, between two ideas of mechanism. We may call the first mechanical mechanism and the 
second quasi‐mechanical mechanism. The first conception of mechanism is narrow: mechanisms 
are configurations of matter in motion subject to mechanical laws (the laws of mechanics). It is 
this conception that has been associated with the rise and dominance of the mechanical 
conception of nature in the seventeenth century. The key features of this conception are nicely 
captured by Margaret Wilson (1999, p. xiii, note 1):

The mechanism characteristic of the new science of the seventeenth century may be 
briefly characterised as follows: Mechanists held that all macroscopic bodily phenomena 
result from the motions and impacts of submicroscopic particles, or corpuscles, each of 
which can be fully characterised in terms of a strictly limited range of (primary) 
properties: size, shape, motion and, perhaps, solidity and impenetrability.

As already noted, the second conception of mechanism is broader. A quasi‐ mechanical 
mechanism is any arrangement of parts into wholes in such a (p.773) way that the behaviour of 
the whole depends on the properties of the parts and their mutual interactions. Rom Harré 
(1972, p. 116) has called this kind of mechanism generative mechanism. The focus is not on the 
mechanical properties of the parts, nor on the mechanical principles that govern the behaviour 
of the parts and determine the behaviour of the whole. Instead, the focus is on the causal 
relations there are between the parts and the whole. Generative mechanisms are taken to be the 
bearers of causal connections.3 It is in virtue of them that the causes are supposed to produce 
the effects. There is a concomitant conception of mechanical explanation as a kind of de‐ 
compositional explanation: an explanation of a whole in terms of its parts, their properties and 
their interactions. This second conception is, arguably, associated with Kant's idea of 
mechanism in his third critique.

In this chapter, I will disentangle these two ideas of mechanism and point to the key problems 
they face. Section 36.2 will offer an outline of the mechanical conception of mechanism, as this 
was introduced in the seventeenth century and developed later on. Section 36.3 will present 
Poincaré's critique of mechanical mechanism in relation with the principle of conservation of 
energy. The gist of this critique is that mechanical mechanisms are too easy to get to be 
informative, provided that energy is conserved. Section 36.4 will motivate the quasi‐mechanical 
conception of mechanism and will trace it to Kant's Critique of Judgement and to C.D. Broad's 
critique of pure mechanism. Section 36.5 will reconstruct Hegel's critique of the idea of quasi‐
mechanism, as this was developed mainly in his Science of Logic. Hegel's problem, in essence, 
was that the unity that mechanisms possess is external to them and that the very idea that all
explanation is mechanical is devoid of content. Section 36.6 will bring together Poincaré's 
problem and Hegel's problem and conclude that though mechanisms are not the building blocks 
of nature, the search for mechanisms is epistemologically and methodologically welcome.

36.2 Mechanical mechanism
In the seventeenth century, the mechanical conception of nature was taken to be a weapon 
against the Aristotelian view that each and every explanation was not complete unless some 
efficient and some final cause were cited. The emergent mechanical philosophy placed in centre‐
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stage the new science of mechanics and left Aristotelian physics behind. Accordingly, the call for 
a mechanical explanation of phenomena has had definite content: all natural phenomena are
produced by the mechanical interactions of the parts of matter according to mechanical laws.

The broad contours of the mechanical conception of nature were not under much dispute, at 
least among those who identified themselves as mechanical (p.774) philosophers. The key ideas 
were that all natural phenomena are explicable mechanically in terms of matter in motion; that 
efficient causation should be understood, ultimately, in terms of pushings and pullings; and that 
final causation should be excised from nature.4 Though definite, this conception was far from 
monolithic. As Marie Boas (1952) has explained in detail, there had been different and opposing 
conceptions as to the structure of matter (atomistic vs corpuscularian); the reality of the void 
(affirmation of the existence of empty space vs the plenum); the primary qualities of matter 
(solely extension vs richer conceptions that include solidity, impenetrability and other 
properties). And yet, the unifying idea was that all explanation is mechanical explanation and 
proceeds in terms of matter and motion. As Robert Boyle put it, matter and motion are ‘the two 
grand and most catholick principles of bodies’ (quoted by Boas, p. 468).

Part of the appeal of the mechanical conception of nature was that it stood against a rival 
framework for the explanation of natural phenomena and fared better than it. For Boyle, for 
instance, at stake were not the details of what he called the mechanical hypothesis, but its being 
superior to its Aristotelian rival. This was judged by Boyle to be the case on the basis of the fact 
that the mechanical hypothesis possessed virtues such as consistency, simplicity, 
comprehensiveness and applicability to the phenomena that outrun its rival.

With Newton, the content of the mechanical conception of nature was altered and broadened.5

The category of force was firmly introduced alongside the traditional mechanical categories of
matter and motion. Actually, though this category was not strictly speaking new, it was for the 
first time set in a mechanical framework in which it was measured by the change in the quantity 
of motion it could generate. But Newton insisted that his concept of force was mathematical (cf.
Principia, Book I, Definition VIII). Mechanical interactions were enriched to include attractive 
and repulsive forces between particles. Mechanical explanation was taken to consist in the 
subsumption of phenomena under Newton's laws.

Capitalizing on Gregor Schiemann's enlightening (2008), it can be argued that even within what 
I have called the mechanical conception of mechanism, there have been two distinct senses of 
mechanism, one wide and another narrow. The wide sense takes it that matter in motion is the 
ultimate cause of all natural phenomena. As such, mechanism covers everything, but its content
(p.775) is quite unspecific, since there is no commitment to specific laws or principles that 
govern the workings of the mechanism. The narrow sense of mechanism, on the other hand, has 
it that mechanisms are governed by the laws of mechanics, as enunciated paradigmatically by 
Newton and Lagrange. Mechanics becomes privileged because it offers universal structural 
principles. But then, the form of the mechanical conception of nature depends on the details of 
the principles of mechanics and the content of the concept of mechanical mechanism is specified 
by the historical development of mechanics.
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Schiemann draws an important distinction between monistic and dualistic conceptions of 
mechanics and, consequently, of mechanisms. On the monistic conception, there is only one 
fundamental mechanical category; on the dualistic conception, there are two fundamental 
categories. The monistic conception is further divided into two sub‐categories: one takes matter 
to be the fundamental mechanical concept (called materialist, by Schiemann) while the other 
takes force to be the single fundamental mechanical category (called dynamic, by Schiemann). 
Huygens and Descartes had materialist conceptions of mechanical mechanism, while Leibniz 
and Kant had dynamic conceptions. The dualist conception of mechanical mechanism admits two 
distinct fundamental mechanical concepts — matter and force. Newton was a dualist in this 
sense and so was Helmholtz, according to Schiemann. Helmholtz's case is particularly 
instructive since he enunciated the principle of conservation of energy. It is precisely this 
principle that, as we shall see in the next section, holds the key to the very possibility of a 
mechanical explanation of all phenomena.6

With the emergence of systematic theories of heat, electricity and magnetism, one of the central 
theoretical questions was how these were related to the theories of mechanics. In particular, did 
thermal, electrical and magnetic phenomena admit of mechanical explanations?

This question was addressed in two different ways. One, developed mostly in Britain, was by 
means of building of mechanical models. These models were meant to show (a) the realizability 
of the system under study (e.g. the electromagnetic field) by a mechanical system; and (b) the 
possible inner structure and mechanisms by means of which the physical system under study 
operates. The other way was developed mostly in continental Europe and was the construction 
of abstract mechanical theories under which the phenomena under study were subsumed and 
explained. These theories were mechanical because they started with principles that embodied 
laws of mechanics and offered explanation by deductive subsumption. This tradition scorned the 
construction of mechanical models (especially of the wheels‐and‐pulleys (p.776) form that 
many British scientists of the time were fond of). But even within this model‐building tradition, 
especially in its mature post‐Maxwellian period, mechanical models were taken to be, by and 
large, heuristic and illustrative devices — the focus being on the development of systematic 
theories (mostly based on abstract theoretical principles such as those of Lagrangian dynamics) 
under which the phenomena under study were subsumed and explained. Joseph Larmor (1894, 
p. 417) drew this division of labour clearly when he noticed

(t)he division of the problem of the determination of the constitution of a partly concealed 
dynamical system, such as the aether, into two independent parts. The first part is the 
determination of some form of energy‐function which will explain the recognised 
dynamical properties of the system, and which may be further tested by its application to 
the discovery of new properties. The second part is the building up in actuality or in 
imagination of some mechanical system which will serve as a model or illustration of a 
medium possessing such an energy function.

36.3 Poincaré's problem
How exactly was the idea of a mechanical explanation to be rendered? The problem here was 
not so much related to the nature of explanation as to what principles count as mechanical. In 
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1900, Henri Poincaré addressed the International Congress of Physics in Paris with the paper 
‘Relations entre la Physique Expérimentale et de la Physique Mathématique’ (cf. 1900; this 
paper was reproduced as chapters 9 and 10 of his 1902). He did acknowledge that most theorists 
had a constant predilection for explanations borrowed from mechanics. Historically, these 
attempts had taken two particular forms: either they traced all phenomena back to the motion of 
molecules acting‐at‐a‐ distance in accordance to central force‐laws; or, they suppressed central 
forces and traced all phenomena back to the contiguous actions of molecules that depart from 
the rectilinear path only by collisions. ‘In a word’ Poincaré said, ‘they all [physicists] wish to 
bend nature into a certain form, and unless they can do this they cannot be satisfied’. (ibid.) And 
he immediately queried: ‘Is nature flexible enough for this?’

The answer is positive, but in a surprising way. Poincaré's ground‐breaking contribution to this 
issue was the proof of a theorem that a necessary and sufficient condition for a complete 
mechanical explanation of a set of phenomena is that there are suitable experimental quantities 
that can be identified as the kinetic and the potential energy such that they satisfy the principle 
of conservation of energy.7 Given that such energy functions can be specified, (p.777) Poincaré 
proved that there will be some configuration of matter in motion (that is, a configuration of 
particles with certain positions and momenta) that can underpin (or model) a set of phenomena. 
As he put it:

In order to demonstrate the possibility of a mechanical explanation of electricity, we do 
not have to preoccupy ourselves with finding this explanation itself; it is sufficient to know 
the expressions of the two functions T and U which are the two parts of energy, to form 
with these two functions the equations of Lagrange and, afterwards, to compare these 
equations with the experimental laws (1890/1901, p. viii).

Poincaré presented these results in a series of lectures on light and electro‐ magnetism — 
delivered at the Sorbonne in 1888 and published as Électricité et Optique in 1890 — which 
primarily aimed to deliver Maxwell's promise, i.e. to show that electromagnetic phenomena 
could be subsumed under, and represented in, a suitable mechanical framework. As Poincaré 
put it, he aimed to show that ‘Maxwell does not give a mechanical explanation of electricity and 
magnetism; he confines himself to showing that such an explanation is possible’ (1890/1901, p. 
iv). In effect, Poincaré noted that once the first part of Larmor's foregoing division of labour is 
dealt with, the second part (the construction of configurations of matter in motion) takes care of 
itself. Maxwell's achievement, according to Poincaré, was precisely this and he ‘was then certain 
of a mechanical explanation of electricity’ (1902, p. 224).

The irony was that Poincaré's demonstration had the following important corollary: if there is 
one mechanical explanation of a set of phenomena, i.e. if there is a possible configuration of 
matter in motion that can underpin a set of phenomena, there is an infinity of them. And not just 
that. Another theorem proved by the French mathematician Gabriel Königs suggested that for 
any material system such that the motions of a set of masses (or material molecules) is 
described by a system of linear differential equations of the generalized coordinates of these 
masses, these differential equations (which are normally attributed to the existence of forces 
between the masses) would be satisfied even if one replaced all forces by a suitably chosen 
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system of rigid connections between these masses. Indeed, Heinrich Hertz (1894) had made use 
of this result to develop a system of mechanics that did away with forces altogether.

Poincaré thought that these formal results concerning the multiplicity of mechanical 
configurations that could underpin a set of phenomena described by a set of differential 
equations were natural. They were only the mathematical counterpart of the well‐known 
historical fact that in attempting to form potential mechanical explanations of natural 
phenomena, scientists had chosen several theoretical hypotheses, e.g. forces acting‐at‐a‐
distance, retarded potentials, continuous or molecular media, hypothetical fluids, etc. Poincaré 
was sensitive to the view that even though some of these attempts had been discredited in 
favour of others, more than one potential mechanical (p.778) model of, say, electromagnetic 
phenomena were still available (cf. 1900, pp. 1166–1167).8

So, the search for a complete mechanical explanation of electromagnetic phenomena was heavily 
underdetermined by possible configurations of matter in motion. Different underlying 
mechanisms could all be taken to give rise to the laws of electromagnetic phenomena. By the 
same token, though the possibility of a mechanical explanation of electromagnetic phenomena is 
secured, the empirical facts alone could not dictate any choice between different mechanical 
configurations that satisfy the same differential equations of motion. The choice among 
competing underlying mechanisms (possible configurations of matter in motion) was heavily 
underdetermined by the empirical facts. How then can one choose between these possible 
mechanical configurations? How can one find the correct complete mechanical explanation of 
electromagnetic phenomena? For Poincaré this was a misguided question. As he said ‘The day 
will perhaps come when physicists will no longer concern themselves with questions which are 
inaccessible to positive methods and will leave them to the metaphysicians’ (1902, p. 225). His 
advice to his fellow scientists was to content themselves with the possibility of a mechanical 
explanation of all conservative phenomena and to abandon hope of finding the true mechanical 
configuration that underlies a particular set of phenomena. He (1900, p. 1173) stressed:

We ought therefore to set limits to our ambition. Let us not seek to formulate a mechanical 
explanation; let us be content to show that we can always find one if we wish. In this we 
have succeeded.

According to Poincaré, the search for mechanical explanation (i.e. for a configuration of matter 
in motion) of a set of phenomena is of little value not just because this search is massively 
underdetermined by the phenomena under study but mainly because this search sets the wrong 
target. What matters, for Poincaré, is not the search of mechanism per se, but rather the search 
for unity of the phenomena under laws of conservation. Understanding is promoted by the 
unification of the phenomena and not by finding mechanical mechanisms (p.779) that bring 
them about. As he said ‘The end we seek (… ) is not the mechanism. The true and only aim is 
unity’. (ibid.).

One may question the status of the law of conservation of energy as a mechanical principle. But 
that's beside the point. For the point is precisely that there is no fixed characterization of what 
counts as mechanical. It may well be that Poincaré's notion of mechanical explanation is too 
wide from the point of view of physical theory, since it hardly excludes any phenomena from 
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being subject to mechanical explanation. Still, and this is quite important, it does block certain 
versions of vitalism that stipulate new kinds of forces. As is well known, in the twentieth 
century, the search for mechanisms and mechanical explanations was taken to be a weapon 
against vitalism. One key problem with vitalist explanations (at least of the sort that C.D. Broad 
has dubbed substantial vitalism) is that they are in conflict with the principle of conservation of 
energy and in this sense, they cannot be cast, even in principle, as mechanical explanations.

The significance of Poincaré's problem for the mechanical conception of mechanism can hardly 
be overestimated. But we should be careful to note exactly what this problem is. It is not that 
mechanical mechanisms are unavailable or non‐existent. It is not that nature is not mechanical. 
Hence, it is not that mechanical explanation — that is, explanation in terms of mechanical 
mechanisms — is impossible. On the contrary, Poincaré has secured its very possibility, thereby 
securing, as it were, the victory of traditional mechanical philosophy over Aristotelianism. 
Rather, the problem for the mechanical conception of mechanism that Poincaré has identified is 
that mechanical mechanisms are too easy to get, provided nature is conservative. Under certain 
plausible assumptions that involve the principle of conservation of energy, the call for 
mechanical explanation is so readily satisfiable that it ceases to be genuinely informative.

36.4 Quasi‐mechanical mechanisms
In his (1969, p. 216), A.C. Ewing drew a distinction between two conceptions of mechanical 
necessity in Kant's Third Critique. The first is related to what I have called the mechanical 
conception of mechanism: a determination of the properties of a whole by reference to matter in 
motion, and in particular by the mechanical properties of its parts and the mechanical laws they 
obey. The second, which Ewing calls ‘quasi‐mechanical’, is still a determination of the properties 
of the whole by reference to the properties of its parts, but with no particular reference to 
mechanical properties and laws. This quasi‐mechanical conception of mechanism is broader 
than the mechanical conception since there is no demand that the laws that govern the 
behaviour of the parts, or the properties of these parts, are mechanical — at least in the strict 
sense associated with the mechanical conception.

(p.780) Peter McLaughlin (1990) has developed a similar account Kant's conception of 
mechanical explanation, according to which the mechanism of nature is a form of causation, 
whose differentia is that it takes it that the whole is determined by its parts. Thus understood, a 
mechanical explanation is a kind of de‐compositional explanation: an explanation of a whole in 
terms of its parts, their properties and their interactions. McLaughlin bases his account on the 
following point made by Kant in his Critique of Judgement (1790/2008, p. 408):

Now where we consider a material whole, and regard it as in point of form a product 
resulting from the parts and their powers and capacities of self‐integration (including as 
parts any foreign material introduced by the co‐operative action of the original parts), 
what we represent to ourselves in this way is a mechanical generation of the whole.

Accordingly, what renders a structure a mechanism is the fact that it possesses a reductive 
unity: its behaviour is determined by the properties its part have ‘on their own, that is 
independently of the whole’ (McLaughlin 1990, p. 153).
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This is not the place to discuss in any detail whether this was indeed Kant's own conception.9

The key point is that if this conception is viable at all (and, as the current mechanistic turn 
demonstrates, it is), then the concept of mechanism is not tied to mechanics; nor to the 
operation of specifically mechanical laws; nor to the ultimate determination of the behaviour of 
mechanism by reference to mechanical properties and interactions. Rather, the mechanism is
any complex entity which exhibits reductive stability and unity in the sense that its behaviour is 
determined by the behaviour of its parts.

Kant, to be sure, contrasted mechanical explanation to teleological explanation. In its famous 
antinomy of the teleological power of judgement, he contrasted organisms to mechanisms. Qua
material things, organisms (like all material things) should be generated and governed by 
merely mechanical laws. And yet, some material things (qua organisms, and hence natural 
purposes, as Kant put it) ‘cannot be judged as possible according to merely mechanical laws 
(judging them requires an entirely different law of causality, namely that of final causes)’. The 
defining characteristics of an organism — that is of a non‐mechanism — are two: (a) the whole 
precedes its parts and, ultimately, determines them; and (b) the parts are in reciprocal relations 
of cause and effect. Famously, Kant claimed that the very idea of non‐mechanism (organism) is 
regulative and not constitutive — we have the right to proceed as if there were organisms (non‐
mechanisms) but this is not something that can (p.781) be known or proved, though Kant did 
think that this regulative principle is a safe presupposition, not liable to refutation by the 
progress of science.

This contrast of mechanism and non‐mechanism suggests that the key feature of mechanism — 
what really sets it apart from organism — is the priority of the parts over the whole in the 
constitution of the mechanism and the determination of its behaviour.10 It is also worth noting 
that it is precisely this contrast that C.D. Broad (1925) has had in mind in his own critique of 
mechanism.

Broad mounted an attack on what he called ‘the ideal of Pure Mechanism’. This is an extreme 
and purified version of what I have called the mechanical conception of mechanism. Broad's 
Pure Mechanism is a worldview, which he (1925, p. 45) characterizes thus:

The essence of Pure Mechanism is

(a) a single kind of stuff, all of whose parts are exactly alike except for differences 
of position and motion;
(b) a single fundamental kind of change, viz., change of position (…);
(c) a single elementary causal law, according to which particles influence each 
other by pairs; and
(d) a single and simple principle of composition, according to which the behaviour 
of any aggregate of particles, or the influence of any one aggregate on any other, 
follows in a uniform way from the mutual influences of the constituent particles 
taken by pairs.
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The gist of Pure Mechanism is that it is an ontically reductive thesis and in particular a 
reductive thesis with a very austere reductive basis of a single kind of fundamental particle, a 
single kind of change and a single causal law governing the interaction of the fundamental 
particles. Broad contrasted this view with two others. The first is what he called emergent 
vitalism. This is the view that living organisms and their behaviour cannot be fully and 
exhaustively determined by the properties and behaviour of their component parts, as these 
would be captured by the ideal of Pure Mechanism. Emergent vitalism is also opposed to a view 
we have already noted in Section 36.3, viz., (p.782) substantial vitalism: that living organisms 
are set apart from mechanism by an extra element (a kind of life‐conferring force) that they 
share while pure mechanisms do not. In denying substantial vitalism, emergent vitalism puts 
emphasis on the structural arrangement of the whole vis‐à‐vis its parts and on the interaction 
among the parts when they are put together in a whole. A certain whole W may consist of 
constituents A, B, C placed in a certain relation R(A, B, C). There is emergence — emergent 
properties — when A, B, C cannot determine, even in principle, the properties of R(A, B, C).

Broad (1925, p. 61) put this point in terms of the lack of an in principle deducibility of the 
properties of R(A, B, C) ‘from the most complete knowledge of the properties of A, B, and C in 
isolation or in other wholes which are not of the form R(A, B, C)’. This way to put the matter 
might be unfortunate, since what really matters is the metaphysical determination (or its lack 
thereof) of the whole by its parts and not deducibility per se — which is dependent on the 
epistemic situation we might happen to be in. But what matters for our purposes is Broad's 
thought that the denial of Pure Mechanism need not lead to the admission of spooky forces and 
mysterious powers, associated with substantial vitalism.

Still, our main concern here is not the opposition of Pure Mechanism to emergent vitalism, but 
rather its opposition to what Broad rightly took it to be a milder form of mechanism. This form, 
which Broad associated with what he called Biological Mechanism, is committed to the view that 
the behaviour of a whole (and of a living body in particular) is determined by its constituents, 
their properties and the laws they obey, but relies on a broader conception of what counts as a 
constituent and what laws are admissible. As Broad (1925, p. 46) put it:

Probably all that he [a biologist who calls himself a ‘Mechanist’] wishes to assert is that a 
living body is composed only of constituents which do or might occur in non‐living bodies, 
and that its characteristic behaviour is wholly deducible from its structure and 
components and from the chemical, physical and dynamical laws which these materials 
would obey if they were isolated or were in non‐living combinations. Whether the 
apparently different kinds of chemical substance are really just so many different 
configurations of a single kind of particles, and whether the chemical and physical laws 
are just the compounded results of the action of a number of similar particles obeying a 
single elementary law and a single principle of composition, he is not compelled as a 
biologist to decide.

This is, clearly, what we have called a quasi‐mechanical conception of mechanism, and as Broad 
rightly notes, this kind of conception is enough to set the mechanist biologist apart from the 
emergent vitalist. The controversy need not be put, nor is it useful to be put, in terms of the 
ideal of Pure Mechanism.11
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(p.783) Enough has been said, I hope, to persuade the reader that there is a distinct quasi‐
mechanical idea of mechanism, which — to recapitulate — proclaims a form of determination of 
a whole by its parts, their properties and interactions, as these would occur independently of 
their presence in the whole. With this in mind, let us now see what the key problem of this quasi‐
mechanical conception of mechanism is.

36.5 Hegel's problem
Long before Poincaré's critique of mechanical mechanism, Georg Hegel had, in his Science of 
Logic, attacked the idea that all explanation must be mechanical. According to James Kreines 
(2004), Hegel argued that making mechanism an absolute category — applicable to everything 
— obscures the distinction between explanation and description and hence undermines itself.

Hegel's writings on mechanism are rather cryptic (and perhaps, obscure). Essentially, he took 
the characteristic of mechanism to be that it possesses only an external unity. Its constituents 
(the objects that constitute it) retain their independence and self‐determination, although they 
are parts of the mechanism. As he put it in his The Encyclopaedia Logic (1832/1991, p. 278) ‘the 
relation of mechanical objects to one another is, to start with, only an external one, a relation in 
which the objects that are related to one another retain the semblance of independence’. And in 
his Science of Logic (2002, 711) he stressed:

This is what constitutes the character of mechanism, namely, that whatever relation 
obtains between the things combined, this relation is one extraneous to them that does not 
concern their nature at all, and even if it is accompanied by a semblance of unity it 
remains nothing more than composition, mixture, aggregation and the like.

The determinant of the unity of a mechanism, or as Hegel put it ‘the form that constitutes [its] 
difference and combines [it] into a unity’ is ‘an external, indifferent one; whether it be a mixture, 
or again an order, a certain arrangement of parts and sides, all these are combinations that are 
indifferent to what is so related’ (2002, p. 713). And elsewhere, he stressed that being external, 
the unity of the mechanism ‘is essentially one in which no self‐determination is 
manifested’ (2002, p. 734).

On Kreines's reading of Hegel's critique of mechanism, Hegel raised a perfectly sensible and 
quite forceful objection to the view that all explanation (p.784) is mechanical explanation; that 
the only mode of explanation is mechanical; that to explain X is to offer a mechanical 
explanation of it.

Hegel's argument against the idea of mechanism — qua an all‐encompassing explanatory 
concept — goes like this. Mechanistic explanation proceeds in terms of breaking an object down 
to its parts and of showing its dependence on them and their properties and relations. 
Explanation, then, amounts to a certain de‐composition of the explanandum, viz., of a composite 
object whose behaviour is the result of the properties of, and interactions among, its parts. But 
there are indefinitely many ways to decompose something to parts and to relate it and its 
behaviour to them. For the call for explanation to have any bite at all, there must be some 
principled distinction between those decompositions that are merely descriptions of the 
explanandum and those decompositions that are genuinely explanatory. In particular, some 
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decomposition — that which offers the mechanical explanation — must be privileged over the 
others, which might well reflect only pragmatic criteria or subjective interests. But how is this 
distinction to be drawn within the view that all explanation is mechanical? If all explanation is 
indeed mechanical, and if mechanical explanation amounts to decomposition, no line can be 
drawn between explanation and description — no particular way to decompose the explanandum 
is privileged over the others by being mechanical; mechanical as opposed to what? All 
decompositions will be equally mechanical and equally arbitrary. Hence, there will be no 
difference between explanation and description.

Hegel was pushing this line of argument in order to promote his own organic view of nature and, 
in particular, to reinstate a teleological kind of explanation — one that explains the unity of a 
composite object in terms of its internal purposeful activity.12 But the point he makes is very 
general. In essence, Hegel's problem is that something external to the mechanism (considered 
as an aggregate of parts) is necessary for understanding how mechanistic explanation is 
possible. His general point is that the unity of a mechanism is not just a matter of arranging a 
set of elements into a whole; nor is it just a matter of listing their properties and mutual 
relations. Nor is it determined by the parts of the mechanism, as they are independently of their 
occurrence within the mechanism. There are indefinitely many ways to arrange parts into 
wholes, or to decompose wholes into parts. Most of them will be arbitrary since they will not be 
explanatorily relevant. The unity of the mechanism comes from something external to it, viz., 
from its function — from what it is meant to be a mechanism for. The function that a mechanism 
performs is something external to the description of the mechanism. It is the function that fixes 
a criterion of explanatory relevance. Some descriptions of (p.785) the mechanism are 
explanatorily relevant while others are not because the former and not the latter explain how 
the mechanism performs a certain function.

Let me illustrate this point with a couple of examples. Consider a toilet flush — a very simple 
mechanism indeed. What confers unity to it qua mechanism is the function it performs. As a 
complex entity, it can be decomposed into elements in indefinitely many different ways. Actually, 
in all probability, there is a description of it in terms of the interactions of the molecules of 
water and their collisions with the walls of the tank, etc. What fixes the explanatorily relevant 
description is surely the function it performs. Or consider telephone conversation through which 
some information is passed over from one end to the other — a very simple social mechanism. 
What confers unity to it qua mechanism is its function, viz., to transfer information between two 
ends. In all probability, there is a description of this mechanism in terms of the interactions of 
sound waves, collisions of particles, triggering of nerve‐endings, etc. But this description is 
explanatorily irrelevant when it comes to explaining how this simple social mechanism performs 
its function. Notice that a point brought out by these examples, and certainly a point that Hegel 
had in mind, is that the truth of a description (supposing that it is to be had) does not 
necessarily render this description explanatorily relevant.

We could sum up Hegel's problem like this: first the function, then the mechanism.13 The 
functional unity of the mechanism determines, ultimately, which of the many properties that the 
constituents of the mechanism have are relevant to the explanation of the performance and 
function of the whole. Hegel (1832/1991, p. 275) did think that mechanism is a form of 
objectivity, claimed that it is applicable to areas other than ‘the special physical department 
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from which it derives its name’ but denied that it is an ‘absolute category’, that is constitutive of 
‘rational cognition in general’.

36.6 Concluding thoughts
Qua thinkers, Hegel and Poincaré were as different as chalk and cheese. Yet, they both point — 
with different philosophical arguments — towards a decline of the mechanistic worldview. It's 
not that there are no mechanisms. Actually, mechanisms, in the broad sense of stable 
arrangements of matter in motion, are ubiquitous. But it does not follow from this that nature 
has a definite mechanical structure (or, if that's too strong, that we can know which definite 
mechanical structure is the one actually characterizing nature). This (p.786) is, in essence, 
Poincaré's problem. How the mechanisms are individuated is a matter external to them — what 
counts as a mechanism, where it starts and where it stops, what kind of parts are salient and 
what kind of properties are relevant depend on the function they are meant to perform. The 
unity of the mechanisms is not intrinsic but extrinsic to them. This is, in essence, Hegel's 
problem. But even after a function has been determined, there are indefinitely many ways to 
configure mechanical mechanisms that perform it; that is, to offer a mechanical model (a 
configuration of matter in motion) that performs it. This is a corollary of Poincaré's problem.14

Nature, even if it is mechanical, does not fix the boundaries of mechanisms. When it comes to 
the search for mechanisms, anything can count as a quasi‐mechanism provided it performs a 
function that it is meant to explain. This is a corollary of Hegel's problem.

So, are mechanisms the ultimate building blocks of nature? The answer is both positive and 
negative. It is positive, given that the world is governed by conservation laws. But it is negative, 
given that mechanisms are functionally individuated: there are many ways to skin the cat!

Does the search for mechanism improve understanding? The answer is unequivocally positive. 
The description of a mechanism is a theoretical description and, as such, it tells a story as to 
how the phenomenon under study is brought about — if the story is true, our understanding of 
nature is enhanced. Insofar as mechanisms are taken to be functionally individuated stable 
explanatory structures (whose exact content and scope may well vary with our best conception 
of the world) which enhance our understanding of how some effects are brought about or are 
the realizers of certain functions, they can play a useful role in the toolkit of explanation.
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Notes:
(1) For defences of mechanical approaches to causation and explanation see Machamer, Darden 
and Craver (2000), Glennan (2002; 2008) and Craver (2007). Craver and Darden (2005) offer a 
nice summary/survey of recent conceptions of mechanism. For a critique of the mechanistic 
perspective, see Psillos (2004).

(2) For similar accounts of mechanism, see Machamer et al. (2000).

(3) As (Harré 1972, p. 118) has put it: ‘not all mechanisms are mechanical’.

(4) To be sure, most mechanical philosophers did find a role for final causation via God's design 
of the world, but crucially, this design was precisely that of a mechanism. More specifically, 
mechanical philosophers denied the presence in nature of immanent final causes such as 
Aristotelian forms. Indeed, an important characteristic of the mechanical conception of nature 
was its denial of forms as part of the acceptable ontology.
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(5) Not necessarily to the eyes of his contemporaries. To some (e.g. Leibniz) Newton had just 
abandoned the principles of mechanical philosophy, especially in light of the admission of action 
at a distance.

(6) As Schiemann (2008, p. 90) notes, what made the principle of conservation of energy special, 
at least for Helmholtz, was that energy can ‘be used directly for measuring things (particularly 
mechanical work and heat) and their conserving properties can be examined experimentally in 
physical processes’.

(7) The details of the proof (as well as further discussion of Poincaré's conception of mechanical 
explanation) are given in my (1995).

(8) The turning point in Poincaré's thinking about mechanics is in his review of Hertz's (1894) 
for Revue Générale des Sciences. Concerning the ‘classical system’, which rests on Newton's 
laws, Poincaré agreed with Hertz that it ought to be abandoned as a foundation for mechanics 
(cf. 1897, p. 239). Part of the problem was that there were no adequate definitions of force and 
mass. But another part was that Newton's system was incomplete precisely because it passed 
over in silence the principle of conservation of energy (cf. 1897, p. 237). Like Hertz, Poincaré 
was more sympathetic to the ‘energetic system’, which was based on the principle of 
conservation of energy and Hamilton's principle that regulates the temporal evolution of a 
system (cf. 1897, pp. 239–240). According to Poincaré (1897, pp. 240–241) the basic advantage 
of the energetic system was that in a number of well‐defined cases, the principle of conservation 
of energy and the subsequent Lagrangian equations of motion could give a full description of the 
laws of motion of a system.

(9) There are competing views on this. Hannah Ginsborg takes it that Kant's conception of 
mechanism is closely tied to his account of forces and mechanical laws. For her, according to 
Kant, ‘we explain something mechanically when we explain its production as a result of the 
unaided powers of matter as such’ (2004, p. 42). For an attempted synthesis of Ginsborg's and 
McLaughlin's views, see Breitenbach (2006).

(10) In her (2004), Ginsborg takes it that qua natural purposes, organisms are non‐machine‐like 
(and hence mechanically inexplicable) in the sense that ‘they are not assemblages of 
independent parts, but that they are instead composed of parts which depend for their existence 
on one another, so that the organism as a whole both produces and is produced by its own parts, 
and is thus in Kant's words ‘cause and effect of itself’ (2004, p. 46). This way to read Kant's 
account of organism distinguishes it from mechanism in two senses. (a) Organism cannot be 
explained in terms of the powers of matter as such; and (b) organism is such that its parts 
depend on the whole and cannot ‘exist independently of the whole to which they belong’ (2004, 
p. 47). Hence, what renders mechanism distinctive is precisely the fact that its unity and 
behaviour is determined by its parts, as they are independently of their presence in the whole. 
For a useful attempt to synthesise Kant's antinomy in the light of modern evolutionary biology, 
see Walsh (2006).

(11) In his very useful (2005), Garland Allen notes that ‘operative, or explanatory mechanism 
refers to a step‐by‐step description or explanation of how components in a system interact to 
yield a particular outcome (…)’ (cf. 2005, p. 261). He contrasts this with what he calls 
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‘philosophical mechanism’ which he takes it to assert that living things are material entities. He 
then offers an instructive historical account of approaches to biological mechanism in the early 
twentieth century (and their opposition to vitalism), emphasising that ‘the form that Mechanistic 
thinking took in the early twentieth century (…) differed from earlier (eighteenth and 
nineteenth‐century) mechanistic traditions. It was physico‐chemical not merely mechanical 
(…)’ (2005, p. 280).

(12) For an informative and intelligible account of Hegel's organic world view, see Beiser (2005, 
chapter 4).

(13) This is indeed something that many modern mechanists have come to accept — but it is 
certainly not universally acknowledged among the new mechanists.

(14) Hegel was confident that ‘not even the phenomena and processes of the physical domain in 
the narrower sense of the word (such as the phenomena of light, heat, magnetism, and 
electricity, for instance) can be explained in a merely mechanical way (i.e. through pressure, 
collision, displacement of parts and the like’ (1832/1991, p. 195). Poincaré proved him wrong on 
this.
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regularity or law. The singularist view holds the converse position. Singular causal 
relations can obtain even if they are not instances of causal regularities or laws, and what 
makes causal generalizations true, when they are true, is that they correctly describe a 
pattern of singular instances of causally related events.

In this chapter I make a case for the singularist view of causal relations from the 
perspective of a mechanistic account of causation. I explore the role of causal 
generalizations in the mechanistic approach, as well as in the related process and 
manipulability approaches to causation. I argue that, notwithstanding the centrality of 
such generalizations to describing mechanisms and explaining causal relationships, the 
most plausible metaphysical view is that singular rather than general causal relations are 
fundamental.

37.1 Introduction
Causal claims can be divided into two kinds — singular (token) and general (type). For instance, 
we claim generally that heating butter causes it to melt and, regarding a single case, that the 
heat that I applied to the butter in my kitchen yesterday evening caused it to melt. One of the 
central puzzles about the nature of causation concerns the relationship between these sorts of 
claims and the causal relations that underlie them. There seem to be two main options. What I 
shall call the generalist view holds that singular causal relations obtain because they are 
instances of a general causal regularity or law. What makes it true that the heat I applied to the 
butter last night caused it to melt is that there is a general causal law that whenever butter is 
heated past a certain point it will melt. What I shall call the singularist view holds the converse 
position. Singular causal relations can obtain even if they are not (p.790) instances of causal 
regularities or laws, and what makes causal generalizations true, when they are true, is that 
they correctly describe a pattern of singular instances of causally related events. It is a basic 
fact that last night my heating the butter caused it to melt, and the general claim that heating 
butter causes it to melt is true only because it happens that in most or all of the individual cases, 
heating butter causes it to melt. To put the matter succinctly, the generalist holds that general 
causal relations make singular causal claims true, while the singularist holds that singular 
causal relations that make general causal claims true.1

My aim in this chapter is to make a case for the singularist view from the perspective of a 
mechanical theory of causation (Glennan 1996, 1997, 2010a, 2010c), and to explain what, from 
this perspective, causal generalizations mean, and what role they play within the mechanical 
theory. Prior to making this argument, it is important to clarify the relationship between the 
singularist/generalist distinction and another distinction widely discussed in the contemporary 
literature on causality. It is now commonly held that there are two concepts of cause — or at 
least that our causal assertions make two different sorts of claims (Hall, 2004, Hitchcock 2007, 
Godfrey‐Smith 2010, Glennan 2010c). On the one hand, causes are said to produce or bring 
about effects. On the other hand, causes are said to depend upon, be relevant to, or make a 
difference to their effects. The case for thinking of these concepts as distinct is that there 
appear to be instances in which something can be a cause in one of these senses and fail to be a 
cause in the other. Two phenomena that illustrate this point are overdetermination and 
causation by omission. A paradigmatic example of overdetermination is a prisoner being 
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executed by firing squad. In such a case a particular soldier's shot produces a wound that causes 
death, but the soldier's shot does not make a difference to the prisoner's death because the 
other soldiers' shots were each sufficient to cause the death. Had the first soldier's shot not hit 
the prisoner, the prisoner still would have died. In cases of causation by omission, on the other 
hand, we appear to have causes that make a difference but that are not productive. Suppose I 
rear‐end a car because I fail to brake. In such a case my failure to brake clearly made a 
difference to the occurrence of the accident. Had I braked, I would not have hit the car. But my 
omission cannot be said to have produced the collision, because my omission is not, properly 
speaking, an event or occurrence. What produced (p.791) the collision was the forward 
momentum of my car, which was produced by my earlier pressing of the accelerator.

In what follows, I shall refer to these two concepts of cause as productivity and relevance. The 
significance of the productivity/relevance distinction for our discussion of singular and general 
causes is that the singularist view seems to fit more naturally with the productivity approach, 
while the generalist view seems to more naturally make sense of relevance or difference‐
making. The connection between these two distinctions is evident in an early paper by Sober 
(1984) that makes a case for there being two concepts of cause. Sober's two concepts of cause 
are not causal productivity and causal relevance but are rather token causation and property (or 
type) causation. Nonetheless, Sober makes the case that token and type causation are distinct 
by appealing to the difference between productivity and relevance. Sober does this in the 
context of probabilistic theories of causality. Most probabilistic theories of causality are type‐
level difference‐making accounts. Probabilistic theories of causality typically assert that causes 
must raise the probabilities of their effects. The standard problem for difference‐making 
accounts is that there appear to be singular causal processes in which events that lower the 
probability of an outcome nonetheless are productively connected to the effect — sometimes 
called the problem of ‘doing it the hard way’. Many of these examples involve golf balls and 
squirrels. Suppose I have hit a putt that is heading cleanly toward the hole and there is a high 
probability of the ball going in. As the ball rolls towards the hole, a squirrel runs up and kicks it 
off its path, but fortuitously the ball ricochets off an acorn that has just dropped to the green 
and bounces into the hole. Sober argues that the correct way to analyze this case is to argue 
that ‘the kind of kick’ the squirrel made is a type‐level negative cause of holing putts, in the 
sense that such kicks are negatively probabilistically relevant to holing putts, but that the 
particular squirrel kick is a token cause of holing this particular putt, because the particular 
process by which the putt made it to the hole ‘traces back’ to the squirrel's kick.

Notwithstanding Sober's argument, causal relevance is not essentially a property or type‐level 
notion. Difference‐making can be understood in the single case by appeal to counterfactuals. 
The case of omission discussed above is an example of just such a case. When I say that my 
failure to brake was causally relevant to my rear‐ending the car, I am talking about an omission 
that made a difference in a particular case. But while intuitive appeal to counterfactuals allows 
us to make sense of singular causal relevance claims, it remains to be seen whether we can 
understand these singular counterfactuals in a way that does not implicitly make reference to 
general causal claims. The central claim of this paper is that the mechanical theory will provide 
a way to meet this challenge.
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In the next section of the chapter we will review some traditional arguments for and against 
singularism. The remainder of the chapter is con‐ (p.792) cerned with describing the 
relationship between three sorts of theories of causation: process theories, mechanical theories 
and manipulability theories. Section 37.3 contrasts process and mechanical theories, arguing 
that both theories support a singularist account of causal relations, but that mechanical theories 
are superior to process theories in their treatment of the problem of causal relevance. In Section
37.4, I examine the relationship between mechanical theories and manipulability theories. The 
upshot of this examination is that the two sorts of theories should not be thought of as 
competitors but as describing different aspects of the nature of causal relations. In the final 
section of the chapter I make the case that the mechanical theory as it has been developed in 
the previous sections really supports a singularist metaphysics.

37.2 Preliminary arguments for and against singularism
The modern singularist view begins as a reaction to Hume's regularity theory of causation. 
Hume's belief that all knowledge of matters of fact derives ultimately from impressions, 
combined with his view that we have no impression of a necessary connection in a single case, 
leads to his view that singular causal claims are true because they are instances of regular 
patterns of association. So, for instance, billiard ball a's striking billiard ball b causes billiard ball
b to move, because (1) billiard ball a did strike billiard ball b, (2) billiard ball b did start to move, 
and (3) ceteris paribus, whenever one billiard ball strikes another, the second begins to move. 
The motivation for his regularity theory is essentially epistemological and pragmatic. Singular 
causal sequences are instances of regular causal sequences, because, unless a singular causal 
sequence is an instance of a regular causal sequence, it would be impossible to recognize it as 
causal. Moreover, if cause–effect sequences are instances of regularities, then it is possible to 
predict and control effects by observing or manipulating their regular causes.

Two of the most widely discussed singularist critiques of Hume come from Ducasse ([1926] 
1993) and Anscombe ([1971] 1993). Both reject the episte‐ mological strictures that suggest it is 
not possible to observe causal relations in the single case. Ducasse argues that the problem 
arises from Hume's presumption that the connection between causally related events was some 
third entity, analogous to the relata. He writes:

Hume's view that no connection between a cause and its effect is objectively observable 
would be correct only under the assumption that a ‘connection’ is an entity of the same 
sort as the terms themselves between which it holds, that is, for Hume and his followers, a 
sense impression. … [But] the fact is the causal connection is not a sensation at all, but a 
relation. … We observe it whenever we perceive that a certain change is the only one to 
have taken a place immediately before, in the immediate environment of another. 
(Ducasse [1926] 1993)

(p.793) In describing causality as a relation, Ducasse is suggesting that it is like contiguity. 
When we observe two people sitting beside each other, we do not observe the first person, the 
second person and some third thing — ‘besideness’, but rather we just observe that the first 
person is beside the second person. Similarly, Ducasse argues, when one event causes a second, 
we observe the first event, the second event, and the fact that they are causally related.
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Anscombe's argument is Wittgensteinian in character. People learn to use a variety of specific 
causal concepts — her examples are ‘scrape, push, wet, carry, eat, burn, knock over, keep off, 
squash, make (e.g. noises, paper boats), hurt’ (Anscombe [1971] 1993, 93). Only when one has 
mastered specific causal concepts is one able to master the highly general concept of cause. For 
Anscombe, as for Wittgenstein, acquisition of a concept involves mastery of certain techniques. 
These techniques are parts of language games in which a variety of words — nouns, verbs and 
other kinds — are connected to behaviours and social practices. There is no ‘observation’ apart 
from mastery of these techniques, and once such mastery is achieved, observation of causal 
connections is no more or less problematic than observations of the objects that enter into them.

These arguments about how causal knowledge is acquired are helpful to the singularist's case 
but not decisive. The singularist's position is a metaphysical rather than an epistemological one, 
and the possibility of acquiring singular causal knowledge is neither necessary nor sufficient for 
establishing this metaphysical position. Davidson's position, for instance, is that Ducasse was 
correct that it was possible to know that a singular causal relation obtained without knowledge 
of a general causal law, but that the fact that a singular causal relation obtained entailed that 
there exists some law, even if we do not know what it is. ([1967] 1993, pp. 84–5).

Both Anscombe and Ducasse believe however that there are metaphysical or conceptual grounds 
for singularism. Anscombe's singularism stems from an observation she finds

so obvious as to seem trite. … Causality consists in the derivedness of an effect from its 
causes. This is the core, the common feature, of causality in its various kinds. Effects 
derive from, arise out of, come of, their causes. For example, everyone will grant that 
physical parenthood is a causal relation. Here the derivation is material, by fission. Now 
analysis in terms of necessity or universality does not tell us of this derivedness of the 
effect; rather it forgets about that (Anscombe [1971] 1993, p. 92)

Anscombe here articulates the productive conception of cause. The fetus was produced by the 
interaction of one egg and one sperm, and the arrival of the baby in the world was produced by 
the act of labour. It may be the case that this is how all babies are conceived and most babies 
come into the world, but these general facts need not be true for the singular causal claims to 
hold. Greek myths tell us that the goddess Athena had a most unusual birth — springing fully 
armored from Zeus' head after Hephaestus cracked it open (p.794) with an axe. The story is 
doubtless false, but there is nothing inconceivable in such a singular birth; the fact that in 
general whacking heads with axes is not a way to produce children does not entail that the story 
of Athena's birth is wrong. Ducasse echoes this point about the relation between singular causal 
claims and causal generalizations:

… [T]he cause of a particular event [is defined] in terms of but a single occurrence of it, 
and thus in no way involves the supposition that it, or one like it, ever has occurred before 
or ever will again. The supposition of recurrence is thus wholly irrelevant to the meaning 
of cause; that supposition is relevant only to the meaning of law. And recurrence becomes 
related at all to causation only when a law is considered which happens to be a 
generalization of facts themselves individually causal to begin with. (Ducasse [1926] 1993, 
p. 129)
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While Ducasse and Anscombe have made a strong case for the singularist intuition, in my view 
neither of them has provided an adequate explanation of just what this singular causal 
relationship is. Ducasse does offer a reductive definition of cause, but, for reasons I shall not 
explore, it seems wholly inadequate. Anscombe does not attempt to define what she means by 
determination. Presumably this is because she feels that this relation is both unanalysable and 
directly observable. While I do not doubt that in an ordinary sense we are quite capable of 
observing causal relationships, I do not think Anscombe's conclusion will do. While our 
conception of causality may originate in our typically successful observations of ordinary things 
pushing and scraping, identifying causal relationships can be far more complex. In the first 
place, there are circumstances — like magic shows — where our observations of ordinary causal 
relationships can be quite off the mark. Secondly, we often make causal inferences without 
observing a causal relation — as when we infer from a patient's symptoms that they have 
interacted with an infectious agent. An advocate of a singularist approach must then say 
something more about the nature of the causal relation.

While the arguments of Anscombe and Ducasse provide prima facie grounds for doubting 
Hume's view and for adopting a singularist perspective, the singularist perspective faces some 
important difficulties. Hitchcock's (1995) discusses one difficulty, which concerns the semantic 
relationship between singular and general causal claims. What Hitchcock calls the 
generalization strategy supposes that singular causal claims are basic, and that general causal 
claims should be analysed as generalizations over these singular causal claims. For instance, the 
general causal claim that smoking causes cancer is true because it generalizes over true 
singular causal claims — that Emily's smoking caused her to get cancer, that Edward's smoking 
caused him to get cancer, and so on. The problem with this strategy is there is not a simple 
relationship between generalizations and their instances. In probabilistic causal generalizations 
it is too strong to suppose that every instance (p.795) of the singular causal relation obtain. 
Notwithstanding the general causal connection, not all who smoke get lung cancer. Perhaps one 
might treat a generalization like this as an existential one, but Hitchcock argues that there are 
true causal generalizations that have no instances. His example (ibid., p. 265) is that eating one 
kilogram of uranium 235 causes death. This generalization, he claims, ‘is true in virtue of certain 
features of human physiology and the physics of nuclear chain reactions; however, no one has 
ever died in this unusual way and it is unlikely that anyone ever will.’ (ibid.). Hitchcock's 
example cannot be analysed either as:

(x)(x's ingesting 1 kg of U235 causes x to die)

or

(∃x)(x's ingesting 1 kg of U235 causes x to die).

Because no one has ingested 1 kg of U235, the first claim is vacuous and the second claim is 
false.

I would argue here that while Hitchcock's objection undercuts a natural sort of analysis of the 
relationship between singular and general causal claims, it doesn't undermine singularism as 
such. The problem here though doesn't have to do with singularism but with the fact that 
general causal claims have counterfactual import. Hitchcock's example is plausibly analysed as:
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(x)(if x were to ingest 1 kg of U235, x's ingesting 1kg of U235 would cause x to die).

The singularist can maintain that the truth of this general counterfactual claim would depend 
upon the truth of singular counterfactual claims — for instance, that if Emily were to ingest 1kg 
of U235 her ingesting it would cause her to die.

Russo and Williamson (2011) raise an epistemological objection to singu‐ larism, arguing that 
the singularist (or as they call it, the bottom‐up) causal metaphysics is hard to square with 
actual practices of inference in the sciences. They divide the sorts of evidence available into 
evidence of (singular) mechanisms and evidence of (general) difference‐making, and claim that 
in the health sciences at least to establish a cause one must have evidence of both types. Their 
argument is based upon the analysis of causal inference in the case of autopsy:

To determine that Alf's heart attack was a cause of his death, the medical practitioner 
needs to have evidence both that there is a viable biological mechanism linking heart‐
attack and death and that the heart attack made a difference to his death. … At the 
generic level, in order to establish that pneumonia is a cause of death in hospital patients, 
those conducting an academic autopsy need to be aware of evidence both of a mechanism 
linking pneumonia and death, and that pneumonia makes a significant difference to death 
in the population in question. … The proponent of the mechanistic (p.796) analysis 
cannot explain why, in cases where there is excellent mechanistic evidence, evidence of 
difference‐making is also required.

Contrary to Russo and Williamson, I think the mechanistic analysis can easily explain why 
evidence of difference‐making is required. In their first case, the ‘viable biological mechanism 
linking heart attack and death’ is a generic description of a mechanism. Not all heart attacks 
cause death. Whether one does depends upon the details of the heart attack, the state of the 
victim's other vital systems and the place and circumstances of the heart attack. The fact that 
heart attacks on some occasions are linked via a physiological mechanism to a person's death 
makes a heart attack a prima facie candidate for the cause of a particular death. But to establish 
the heart attack as a cause of death in Alf's case, one would have to show that it made a 
difference in this case. One would have to show that had Alf not had the heart attack, he would 
not have died. If, for instance, Alf was suffering from sepsis and the sepsis brought about a 
failure of a number of organs including the heart, and that, given all these conditions, the heart 
attack did not make a difference to the death.2 Similar arguments could be offered in response 
to other cases to show that a diversity of epistemic methods does not undermine the 
metaphysical position of the singularist.

37.3 The mechanical approach and the process approach3

Probably the most prominent attempt to provide a positive account of the nature of singular 
causal relations involves what I call process theories.4 Process theories assert that a cause is 
related to an effect via a series of processes and interactions. Processes are world lines of 
objects that propagate causal influence through space‐time, while interactions involve 
intersections of these world lines in which properties of the processes are changed. Here is a 
simple example: Gretchen's throwing a baseball causes the window to break because the motion 
of her throw (an interaction of the ball and arm processes) leads to the flight of the ball (a 
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process) that leads to the impact with the window (p.797) (an interaction between the ball 
process and the window process) that produces the break. Note here that the process is 
question is a particular process involving particular objects at a particular place in space and 
time.

Process theories emerge historically as a response to difficulties with probabilistic theories of 
causality. Salmon (1980) suggests such a theory is required as a response to probability‐
lowering cause cases like the squirrel/golf ball scenario, and Sober's (1984) suggestions about 
token causation are also in keeping with this view. The view has been most thoroughly 
developed in the work of Wesley Salmon (1984, 1994) and, more recently, in Dowe's conserved 
quantity theory (2000). On Dowe's conserved quantity theory, causal processes are world lines 
of objects that possess conserved quantities, while causal interactions are intersections of causal 
processes in which conserved quantities are exchanged (Dowe, 2000, p. 90). Conserved 
quantities are things like mass‐ energy, linear momentum and charge (ibid., p. 91).

While process theories offer the promise of yielding a theory of singular causation, they appear 
to fall victim to a series of objections involving causal relevance. A first class of objections 
involve cases where there are processes and interactions linking irrelevant events and 
properties to an effect. In Hitchcock's (1995) well‐known example, a chalked cue strikes a ball, 
changing both the colour of the ball and its linear momentum. The marking of the ball with the 
chalk is an interaction, but it is causally irrelevant to the outcome of the shot. A second class of 
objections involves causation by omission or prevention. In cases of omission, it is the non‐
occurrence of some potential preventing cause that causes (or at least allows) some effect to 
occur. For instance, my failure to turn off the alarm when I walked in the door caused the police 
to come to my house. In cases of prevention, the occurrence of some event prevents another 
event from occurring. For instance, my catching the vase as it topples off the shelf prevents it 
from breaking on the floor. The problem with omission and prevention is that either the putative 
cause (in omission) or the putative effect (in prevention) is a non‐occurrence. These non‐
occurrences are problematic for process theories because there can be no set of processes that 
link non‐occurring omissions to effects or preventive events to non‐occurring effects. A third 
important objection concerns what might be called the reductionist character of process 
theories. Process theories are typically theories of physical causation, in the sense that they seek 
to identify properties of causal connection in terms of concepts drawn from current physics. But 
the great majority of causal claims made both in ordinary and scientific discourse involve events 
and processes not described in the language of physics. We seem to have good evidence for the 
truth of causal claims in biology, psychology, economics, history, etc. that do not make any 
reference to the exchange of conserved quantities or any such concept drawn from physical 
theory. In fact, there is a long history arguing for the autonomy of these higherlevel causal 
claims from physical theory (e.g. Fodor 1974, Kitcher 1984). These (p.798) arguments suggest 
that the ‘gory details’ at the physical level are irrelevant to the truth of causal‐explanatory 
claims in the higher‐level sciences.

In the remainder of this section I will argue that the mechanical approach to causation is a 
singularist approach that avoids problems with causal relevance. While the mechanical 
approach to causation is quite different from the process approach, readers would be excused 
for thinking that processes and mechanisms come down to very much the same thing. In my first 
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paper on the subject (Glennan 1996), I argued that, roughly speaking, two events were causally 
connected just in case there was an intervening mechanism. This sounds very much like the 
process theory. Matters are not helped by the fact that some process theorists have 
characterized their approach as mechanistic. Salmon (1984), for instance, calls his approach to 
explanation ‘causal‐mechanical’.

The difference between the process theory and the mechanical theory lies in their rather 
different conceptions of what a mechanism is. For the process theorist, a mechanism just is a 
process of the sort described by their theory. To the mechanical theorist, however, a mechanism 
is a system. To get a sense of what this distinction amounts to, consider two widely discussed 
attempts to characterize a mechanism.

Mechanisms are entities and activities organized such that they are productive of regular 
changes from start or set‐up to finish or termination conditions. (Machamer et al. 2000, p. 
3).

and

A mechanism for a behavior is a complex system that produces that behavior by the 
interaction of a number of parts, where the interactions between parts can be 
characterized by direct, invariant, change‐relating generalizations (Glennan 2002, p. 
S344).

Machamer, Darden and Craver argue that mechanisms are organized and that they are 
productive of regular changes. Glennan argues that mechanisms are systems of interacting 
parts, where these interactions are characterized by generalizations. In both of these cases we 
see that mechanisms are systems that have a certain degree of stability. If we consider, for 
instance, the circulatory mechanism in vertebrates, this system contains a number of parts — 
heart, arteries, capillaries, veins, and blood — that are stable in their organization and operate 
in a regular way over the lifetime of an organism. A second important and shared feature of 
these conceptions of mechanisms is their hierarchical character. The parts that comprise a 
mechanism may themselves be complex systems whose capacities and dispositions are explained 
by the regular operations of the parts' own parts. Within the circulatory system, a part of that 
system — say the heart — will have parts (valves, chambers, and so forth) and these parts will 
have parts, and the parts at each level will have characteristic activities and interactions that 
are productive of the behaviour (p.799) of the mechanism of which they are a part. On this 
systems conception of mechanism, causal processes are understood as instances of the 
operation of mechanical systems. The circulation of blood through a particular animal's body is a 
continual process that results from the operation of the circulatory system.5

Both the regular and hierarchical nature of this approach to mechanisms contrasts with the view 
of process theories. The process theory focuses on a single process at a single point in space and 
time, as in our example of Gretchen throwing the ball and breaking the window. The collection 
of entities — Gretchen, the ball and the window — do not in any ordinary sense form a system. 
They do not act in a regular way to produce a repeatable behaviour. The Gretchen‐breaking‐the‐
window process is also not hierarchical, because the properties that are required to establish 
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that Gretchen's throw caused the window to break are basic physical properties — exchanges of 
conserved quantities like momentum. It is the regular and hierarchical nature of mechanisms 
that provide the resources to address relevance problems. Consider first the example of the 
chalked cue stick. If we treat the situation in terms of the account of mechanisms given in 
Glennan (2002) we consider the chalk, the cue stick, the player, the balls, the table and the 
pocket as parts of a system describe the direct invariant change‐relating generalizations that 
describe interactions between these parts. Some of the generalizations involved in this case 
would be in the form of equations describing the change in momentum of a part as a function of 
the momentum of a previous part at the moment of their impact. Other generalizations would 
describe the effect of the table on the ball as it rolled along the table and was slowed by friction. 
The chalking would not be part of the description of the system because changes in the chalking 
would not produce changes in the motion of the ball.6

The hierarchical character of the mechanical approach is important in avoiding the objection 
leveled against process accounts that the account of causation is overly reductive. Unlike the 
process theories, which seek to identify a physical criterion like exchange of conserved 
quantities that characterizes all physical interactions, on the hierarchical mechanical approach,
(p.800) causal interactions can occur at multiple levels of organization. In a circulatory system 
for instance, one characterizes an interaction between the blood (as a fluid) and the heart as an 
interaction between parts that can be characterized in terms of change‐relating generalizations 
describing the relationship between variables such as heart rate, blood pressure and rate of 
blood flow. What makes these relationships causal is that they can be described by these 
invariant generalizations of physiology. While there is a further mechanistic explanation of why 
these generalizations are true, the behaviour of the mechanism will be largely invariant with 
respect to changes in the structure of blood and tissue at the cellular and sub‐cellular level.

Craver has argued that my version of the mechanistic approach does not in fact provide a 
suitable solution to the problem of causal relevance. He makes his case by providing a 
description of a particular mechanism that characterizes that mechanism in terms of a set of 
causally irrelevant properties. The mechanism in question is the mechanism of long‐term 
potentiation (LTP)—a mechanism for strengthening the connection between pre‐ and post‐
synaptic neurons by rapidly stimulating pre‐synaptic neurons (Craver 2007, 92). Craver offers a 
‘bizarre description’ of this mechanism:

A glutamate molecule with molecular weight w crosses the synaptic cleft at velocity v, 
collides with a passing protein, alters the position of amino acids in the NMDA receptor, 
and lowers the concentration of Na+ in the intracellular fluid.

He goes on:

This description includes a set of parts and mechanistically explicable interactions. Each 
stage is linked via a mechanism to its predecessor. Yet no one would claim this is a good 
explanation of LTP. This is because the putative explanation is composed of irrelevant 
features of the synapse. It is not the molecular weight of the glutamate molecule or its 
velocity that matter, but rather its conformation and charge configuration … (ibid., p. 92)
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Craver's strategy is just an application of Hitchcock's chalked ball argument to a neuroscientific 
example. He claims that my approach cannot rule out this bizarre description, but I think this is 
incorrect. What it means to say that a feature like the velocity of a particular glutamate 
molecule is irrelevant is to say (counterfactually) that if the velocity of the molecule had been 
different, the mechanism would still have produced the same behaviour, and to say (actually) 
that the mechanism, which involves a large number of these molecules that will move across the 
cleft at a variety of velocities, will produce the behaviour it does in spite of these variations — 
both among molecules in the synapse at a particular time and between molecules travelling 
across the synapse at different times. The mechanism that produces long‐term potentiation will 
utilize interactions that can be characterized by invariant change‐relating generalizations. 
Change‐relating generalizations describe functional relations (p.801) between two or more 
variables where an ideal intervention on one variable will bring about a change in another 
variable. According to Craver's ‘correct’ description of the LTP mechanism for instance, the 
binding of glutamate to an NMDA receptor changes the conformation of the receptor in order to 
open a channel for Ca2+ (ibid., p. 70). This is an interaction between glutamate molecules and 
the receptor in which one change — binding to the receptor — produces another change — 
opening a channel. The reason that irrelevant characteristics, like the velocity of the glutamate 
model, are not included in a description of the interactions is that the behaviour of the 
mechanisms (and the generalizations describing interactions between its parts) are invariant 
under interventions that change these characteristics.

What appears to have happened here is that in his criticism Craver has appealed implicitly to 
the Salmon‐Dowe conception of an interaction, as opposed to the sort that I advocate, in which 
the interactions must be interactions that are part of a mechanism that produce a particular 
behaviour and must interact in accordance with invariant change‐relating generalizations. While 
the version of the mechanistic account I favor addresses the causal relevance problem, potential 
objections to the mechanical theory remain. First of all, it may be, because of the centrality of 
my appeal to invariant change‐relating generalizations in characterizing what constitutes a 
mechanism, that the mechanistic theory is in reality just a version of Woodward's 
counterfactual‐based manipulability theory. Second, it may also appear that the prominent 
appeal to generalizations solves the relevance problem only by moving away from the singularist 
stance. I shall address the first of these concerns in Section 37.4 of this chapter and the second 
in Section 37.5.

37.4 The mechanical approach and the manipulability approach
There has been considerable discussion in the literature about the relationship between the 
mechanistic approach and counterfactual approaches to causation. In Glennan (1996) I argued 
that the mechanistic approach explained the truth conditions for counterfactuals in a way that 
was more epistemically and scientifically helpful than that of Lewis (1973); but in Glennan 
(2002) I suggested that Woodward's counterfactual account of invariant generalizations was 
essential to characterizing an interaction between parts of a mechanism. Machamer and Bogen 
have argued that a mechanistic approach to causation allows one to avoid counterfactuals 
altogether, a point that has been criticized by Psillos, Woodward and myself (Bogen 2004, 
Glennan 2010a, Psillos 2004, Woodward 2004). Woodward has suggested that one can give a 
definition of a mechanism, or at least a mechanical model, in terms of manipulability criteria 
(Woodward 2002). For myself, I have come to believe that the mechanical (p.802)
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theory and the manipulability theory — at 
least as it is advocated by Woodward 
(2003), Pearl (2000), and Spirtes, Glymour 
and Scheines (2000) — are not really rival 
theories, but rather highlight different 
features of a unified conception of 
causation. The manipulability account 
emphasizes procedures for discovery, 
prediction and control. The mechanical 
account provides different sorts of resources for discovery and prediction, a metaphysical 
underpinning for the manipulability approach and an enriched conception of causal explanation.
To understand how the manipulability theory and the mechanical theory are related, it is 
necessary to examine how causal relationships are typically represented in the manipulability 
theory. I base my exposition on Pearl (2000) and Woodward (2003), which I take to represent 
different pieces of a single approach to causation7 Pearl and Woodward assume that causal 
relationships can be represented as relations between variables, where variables can take 
Boolean values representing the occurrence or non‐occurrence of an event, integer valued 
variables representing discrete states, or continuous quantities representing different values of 
variable magnitudes. Causal relationships between variables are represented by causal models 
(or structural equation models). Causal models consist of a set of exogenous variables, a set of 
endogenous variables, and for each endogenous variable, a function from some subset of the 
variables (endogenous or exogenous) — its parents — to that variable (Pearl 2000, p. 203). A 
causal model will determine a directed acyclic graph (DAG). For instance, Figure 37.1 shows a 
DAG involving two exogenous and three endogenous variables:

This graph would be determined by a causal model involving functions of the following 
variables:

Causal models provide a way of factoring dependence relationships among variables, so that the 
value of a variable depends only upon some subset of (p.803) other variables — its Markovian 
parents. Parents are clearly represented in the DAG notation. We can see, for instance, that V 3's 
parents are V 1 and V 2, and that conditional on its parents, the value of V 3 will be independent 
of U 1 and U 2.

I claim that a causal model is a representation of a mechanism in the sense described in the 
mechanical theory. I will argue for this by way of an example. In Glennan (1996), one of the 
examples I used of a mechanism was a toilet. A toilet is a mechanism for a certain behaviour, 
which for purposes of illustration we can describe as follows: When the handle is pulled, water is 
released from the storage tank into the bowl, and the storage tank is refilled. Here is how the 
mechanism works. Pulling the handle (H) pulls a chain (C) which opens the flapper valve at the 
bottom of the tank (B 1). The open flapper valve allows the water to empty out of the tank (T 1), 
which has two effects. First, it causes the bottom valve to close (B 2) and second it causes a float 

Fig. 37.1  A directed acyclic graph.
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to drop (F 1). The dropping of the float opens the float valve (V 1) allowing water to enter the 
tank. The opening of the float valve together with the closing of the flapper valve causes the 
tank to fill (T 24) which causes the float to rise (F 2) and the float valve to close (V 2). Figure 37.2
shows the DAG.

This graph is a representation of a system of parts whose interactions can be characterized by a 
set of direct invariant change‐relating generalizations. These generalizations will be in the form 
of equations characterizing the relation between each endogenous variable and its parent or 
parents (the f i 's). This representation does lose some information one might want in the model 
of a mechanism. First, the model characterizes the mechanism with a set of binary‐valued 
variables. In fact the system contains some continuously varying magnitudes — the level of the 
water, the amount that the valve is opened, and so on. The causal modelling approach can 
however handle quantitative variables. Perhaps more importantly, the variables here do not 
represent parts (like the float valve) but rather changes in the state of the parts (like the 
opening or closing of the float valve). This is connected to the fact that the DAG representation 
does not illustrate the cyclical nature of the toilet mechanism, in which a part like a valve begins 
in a closed position, is opened, and is closed again.

If a causal model is to be a representation of a mechanism, it requires another feature, which 
Woodward calls modularity. If a model is modular, it must be possible in principle to intervene in 
order to change the value of a

(p.804) dependent variable without 
altering any of the other functional 
relationships in the model. Modularity so 
defined is a property of models, but it 
corresponds to an important property of the 
mechanisms modeled. In the case of the 
toilet, for instance, the modularity condition 
implies that one should be able to intervene 
on the state of one part and not thereby alter any of the functional relationships downstream of 
that part. For instance, one ought to be able to intervene on the chain, pulling it up, and not 
thereby interfere with the functional relationship between the water level and the float. 
Woodward offers the following motivation for the modularity requirement:

It is natural to suppose that if a system of equations correctly and fully represents the 
causal structure of some system, then those equations should be modular. One way of 
motivating this claim appeals to the idea that each equation in the system should 
represent the operation of a distinct causal mechanism. (Correlatively, each complete set 
of arrows directed into each variable in a directed graph should also correspond to a 
distinct mechanism.) If we make the additional plausible assumption that a necessary 
condition for two mechanisms to be distinct is that it be possible in principle to interfere 
with the operation of one without interfering with the operation of the other and vice 
versa, we have a justification for requiring that systems of equations that fully and 
correctly represent causal structure should be modular. (Woodward 2003, p. 48)

Fig. 37.2  A DAG for a toilet mechanism.
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While I have suggested that the causal model as a whole is, given the modularity assumption, a 
model of a mechanism, here Woodward (cf. Pearl 2000, sections 1.3, 7.2.4) suggests that a 
single structural equation, representing the causal relationship between a node and its parent 
nodes, represents a ‘distinct causal mechanism’. So, continuing with our example, an equation 
describing how pulling the chain relates to opening the flapper valve represents a distinct causal 
mechanism. Thus, it is clear in this instance that what Woodward and Pearl mean by a causal 
mechanism is what I have called an interaction between parts.

In another article, where Woodward responds directly to the systems account of mechanism he 
understands mechanisms more in the manner of Glennan (1996) and Machamer, Darden and 
Craver (2000). He offers the following description of a necessary condition for a causal model to 
be a model of a mechanism:

(MECH) a necessary condition for a representation to be an acceptable model of a 
mechanism is that the representation (i) describe an organized or structured set of parts 
or components, where (ii) the behavior of each component is described by a generalization 
that is invariant under interventions, and where (iii) the generalizations governing each 
component are also independently changeable, and where (iv) the representation allows 
us to see how, in virtue of (i), (ii) and (iii), the overall output of the mechanism will vary 
under manipulation of the input to each component and changes in the components 
themselves. (Woodward 2002, p. S375).

In this characterization, the whole causal model (or directed graph) is the representation of a 
mechanism. My supposition is that when Woodward says (p.805) that the behaviour of each 
part is characterized by an invariant generalization, he really means that there are 
generalizations (perhaps multiple) describing both activities (behaviour of the part) and 
interactions (relations between the behaviour of one part and the behaviour of directly 
connected parts). Given this definition, his view of what constitutes a mechanical model 
essentially coincides with Glennan (2005). His view is similar to that of Machamer, Darden and 
Craver, except that he insists, contrary to Machamer (2004) and Bogen (2004) that the 
characterization of activities and interactions between parts of mechanisms requires 
counterfactuals.

It may be significant that Woodward says both that causal models as a whole and equations 
representing the relation between parts of a mechanical system are both representations of 
mechanisms. This suggests that Woodward is in agreement with the account I sketched earlier 
regarding the hierarchical character of mechanisms, and specifically with a thesis I have 
defended elsewhere (Glennan 1996, 1997) that the generalizations describing the interactions 
between parts of mechanisms are in most cases mechanically explicable. Consider again the 
toilet mechanism. The chain connecting the lever to the flapper valve is a part of the toilet 
mechanism, but it is also itself a mechanism. The chain has parts (links) whose properties and 
interactions explain the behaviour of the chain as a whole. Thus, an invariant change‐relating 
generalization describing how pulling on the top of the chain will change the position of the 
bottom of the chain, will be a mechanically explicable generalization. Similarly, we can treat 
each link of the chain as a part of the chain and we can describe how each link is connected via 
a mechanically explicable change‐ relating generalization.
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A final important similarity between the mechanical and manipulationist approach concerns the 
understanding of the semantics and epistemology of counterfactuals. In Glennan (1996) I argue 
that one of the virtues of the mechanical approach over Lewis' counterfactual approach is that it 
provides an unproblematic way to understand and evaluate counterfactuals by reference to 
mechanisms. Given a model of a mechanism that exhibits the functional dependence of variables 
that represent the mechanism's parts and their properties, one evaluates a counterfactual claim 
by using the model to calculate what would happen if one were to intervene and fix the value of 
a variable to the antecedent of the counterfactual. For instance, in the case of the toilet one 
knows that if the chain were broken then the tank would not empty, because, if one were to 
intervene and break the link between C (the chain being pulled) and B 1 (the flapper valve 
opening), then all the events downstream of C would not occur.

Judea Pearl (2000, chapter 7) has developed a complete analysis of what he calls ‘structure‐
based counterfactuals’ that formalizes this approach in terms of structural equation models and 
his ‘do operator’. Like Glennan (1996), Pearl sees this analysis of providing an analysis of the 
truth conditions of (p.806) counterfactuals that does not rely on the metaphysically extravagant 
and cog‐ nitively/epistemologically problematic possible‐worlds semantics of Lewis:

In contrast with Lewis' theory, counterfactuals are not based on an abstract notion of 
similarity among hypothetical worlds; instead they rest directly on the mechanisms (or 
‘laws’ to be fancy) that produce those worlds and on the invariant properties of those 
mechanisms. Lewis' elusive ‘miracles’ are replaced by principled minisurgeries, do(X = x) 
which represent the minimal change (to a model) necessary for establishing the 
antecedent X = x (for all [values of exogenous variables] u) (Pearl 2000, p. 239)8

Pearl appears to understand the term ‘mechanism’ here as Woodward does in his discussion of 
modularity — as productive relationships between parts of systems that can be manipulated by 
interventions. It is interesting here how Pearl equates mechanisms and laws. It suggests a 
deflationary view of laws in which laws are simply descriptions of dependence relations between 
parts of particular systems rather than exceptionless universals. Pearl's view appears, like 
Woodward's, to be consistent with the position argued for in Glennan (1996, 1997) that laws are 
mechanically explicable.

These observations about the relationship between my analysis of causality and the 
manipulationist counterfactual approach of Woodward and Pearl should suffice to show how the 
two approaches are interconnected. The mechanical approach relies on the counterfactual 
approach because there is no way to define interactions between parts of mechanisms except by 
appeal to counterfactual‐supporting generalizations. The counterfactual approach relies on the 
mechanical approach because the truth‐conditions for counterfactuals depend upon the 
structure of mechanisms.

Psillos (2004) has also argued for an account of causation that seeks to ‘harmonize’ mechanisms 
and counterfactuals, and most of what I have said here is consistent with Psillos' explication of 
the relation between mechanisms and counterfactuals. Psillos has, however, argued that ‘there 
is a sense in which the counterfactual approach is more basic than the mechanistic one in (p.
807) that a proper account of mechanisms depends on counterfactuals while coun‐ terfactuals 
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need not be supported (or depend on) mechanisms’ (Psillos 2004, p. 288). To complete our 
analysis of the relationship between the mechanical and manipulationist approaches, we need to 
assess Psillos' claim.

The feature of my account upon which Psillos bases his claim is my claim that most but not all
causal generalizations (or laws) are mechanically explicable. According to my account, the 
relationship between causes, causal generalizations and mechanisms is this: Two events are 
causally connected when there is an intervening mechanism. An intervening mechanism consists 
of a number of interacting parts, and these interactions are truly interactions (as opposed to 
accidental correlations) because they are described by invariant change‐relating 
generalizations, which support counterfactuals. But if these generalizations are mechanically 
explicable, then what ultimately makes it true that the parts interact is that these interactions 
are produced by the operation of further, lower‐level mechanisms. These mechanisms will in 
turn be systems of parts interacting in accordance with invariant change‐ relating 
generalizations, and these generalizations may too be mechanically explicable. Ultimately, 
however, one will reach a level where the parts of a mechanism interact, but where there is no 
further mechanism that explains this interaction. These are the fundamental interactions. What 
makes it the case that these relationships are truly interactions? The answer would seem to be 
that there is some basic, mechanically inexplicable, counterfactual dependence between events, 
perhaps one that holds in virtue of a fundamental law. As Psillos sees it, ‘the presence of a 
mechanism is part of a metaphysically sufficient condition for the truth of certain 
counterfactuals; the fully sufficient condition includes some facts about the fundamental laws 
that, ultimately, govern the behavior of the mechanism’ (ibid., p. 310).

Psillos is correct that the mechanical approach cannot eliminate counter‐ factuals, and because 
of this that it cannot provide a complete and reductive analysis of causal relations. This fact does 
not, however, entail Psillos' asymmetry claim. In the first place, it appears that counterfactuals 
really do need mechanisms. We have seen in the above analysis of the manipulability theory that 
causal models are models of mechanisms and that in Pearl's analysis of the semantics of 
counterfactuals, their truth conditions depend upon the structure of mechanisms. At least on 
Pearl's analysis, and arguably on Woodward's, what makes a certain counterfactual claim true is 
that there is a mechanism that would respond in a certain way to a manipulation. And like the 
mechanical theory, the manipulability approach faces a charge of a prima facie circularity and 
uses the same strategy to respond to that circularity. Woodward, as he himself notes (2003, pp. 
103–107), defines causal relations in terms of the outcomes of possible interventions, and 
interventions are themselves kinds of causing. Woodward's response to this potential objection 
is to argue that the circularity is not vicious. To determine whether (p.808) two variables X and
Y are causally related, we must know something about other causal relationships (e.g. between 
an intervention I and X), but not about the causal relationship between X and Y we are seeking to 
establish. True enough, but how do we know that an intervention I causes a change in X? 
Presumably we know this because there is a mechanism connecting I and X. This will involve 
further variables (representing further parts and interactions), and how can we know that these 
variables are connected? By further interventions of course! Just as the mechanist must 
ultimately run out of nested mechanisms, Woodward must ultimately get to an intervention that 
cannot be further analysed in terms of interventions on further mechanisms. One is left with the 
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brute claim that if one were to intervene on X a change in Y would result. But this is not an 
analysis of the counterfactual dependence of X and Y; it is just a restatement of it. Thus I would 
contend that the truth of causal claims according to the manipulability theory will depend upon 
an unanalysed notion of counterfactual dependence.

Psillos' argument for the asymmetry of mechanisms and counterfactuals is really an 
epistemological one (Psillos 2004, pp. 315–317). It is possible to construct a perfectly 
randomized experiment that establishes a causal connection between a treatment and a control. 
One can establish this connection without having any idea of what the mechanism is, and 
indeed, one could establish this even if there is no mechanism, but just a brute pattern of causal 
dependence. But one should not let this fact mislead one into thinking that the manipulationist 
approach has provided a metaphysical grounding for causal relations any more than the 
mechanistic account has. I do not think Woodward would object to this characterization of the 
situation, because he is emphatic that his analysis of causation is not reductive. It does not seek 
to ground the truth of causal claims in some ultimately non‐causal state of affairs, but rather to 
explain the relationship between certain causal claims and others. This seems like a wise idea, 
especially given Woodward's focus on causal explanation, but, like the mechanical theory, 
Woodward's theory leaves crucial metaphysical questions unanswered. These have to do with 
the ultimate truth grounds for claims of counterfactual dependence at the level of fundamental 
physics, where the notion of causal interaction cannot be explicated by appeal to further 
mechanisms. How we understand these truth grounds will turn out to have a crucial impact on 
our understanding of our original question — whether causal claims are ultimately singular.

37.5 The mechanical approach and the grounding of singular causal claims
We are now finally in a position to make the argument that the mechanical approach supports a 
singularist view of causation. The basic reason why (p.809)

the mechanical approach is a singularist 
one is that it suggests that causal 
interactions are mediated by mechanisms, 
and mechanisms are particular systems of 
interacting parts, where these interactions 
occur at a particular place and time. On this 
view, causal generalizations are 
generalizations about the behavior of 
mechanisms, and they are true because 
mechanisms do or would behave in the way 
described on actual or hypothetical 
occasions. The problem that remains is that our definition of mechanism frequently makes 
reference to causal generalizations, and the suspicion will arise that the truth of singular causal 
claims depends ultimately on the truth of these generalizations, especially the non‐mechanically 
explicable generalizations upon which the causal productivity of mechanisms would ultimately 
seem to depend.
Because the central issue concerns the implications of the hierarchical character of mechanisms 
for the status of singular causal relations, it will be helpful to have an abstract representation of 
a hierarchical mechanism, as in Figure 37.3.

Fig. 37.3  A hierarchical mechanism.
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The top of the diagram is a representation of two parts of a mechanism interacting. The dotted 
lines represent constitutive relations and the solid arrows represent causal interactions. The 
constitutive lines indicate that the part a is itself a mechanism with three parts and part b is a 
mechanism with two parts, where these parts interact as indicated by the arrows. The 
interaction between a and b may involve the operation of a further mechanism, as indicated by 
the parts i 1 and i 2. Although not pictured in this diagram, we should imagine that the parts in 
the lower level of the diagram themselves have parts, and that the arrows representing 
interactions between these parts are themselves complex mechanisms with subparts. This 
hierarchy of mechanisms can go a long way down but will ultimately bottom out with 
fundamental parts and interactions. Imagine the parts to be atoms or corpuscles, much in the 
way Descartes imagined, and that these parts have some set of basic properties (e.g. mass, 
charge), interacting with each other in a manner determined by these properties.9

(p.810) To defend the singularist interpretation, we must explicate the role of causal 
generalizations in this picture. The definition of a mechanism in Glennan (2002) claims that 
interactions between parts ‘can be characterized by direct, invariant, change‐relating 
generalizations’. What exactly are these generalizations and what is their relation to the 
interaction? One reading would be to treat these generalizations as a form of causal law, and to 
argue that the causal interactions are governed by these causal laws. If this were the case, the 
singular causal claim that a change in a property of a produces a change in a property of b would 
be made true by the causal law. This reading would undermine the singularist account, but it is 
not consistent with the hierarchical character of mechanisms and the mechanical explicability of 
these generalizations. The hierarchical picture suggests a second reading in which change‐
relating generalizations are statements that ‘characterize’ the interaction, but the interaction 
itself involves the operation of the underlying mechanism and is not governed by the 
generalization. For example, there might be a change‐relating generalization indicating that 
when I ingest caffeine, my motor activity increases. This generalization is true and reliable, but 
it simply characterizes the outcome of a complex metabolic mechanism.

Ontologically, the crucial point to observe is that mechanisms are not universals but particulars. 
They are structured collections of parts which occupy a certain region of space and which 
interact over a certain definite period of time. We characterize these mechanisms by 
generalizations because very often a mechanism's behaviour is repeatable. My body is a 
mechanism that on repeated occasions interacts with coffee, and coffee repeatedly and reliably 
has an effect on my behaviour. Not only does the very same mechanism exhibit repeatable 
behaviour, but particular mechanisms may be instances of types with consistent behaviour. My 
metabolic mechanisms are broadly similar to those of other human beings and, as a 
consequence, there will be generalizations (say about the ingestion of caffeine) that hold true of 
my body and the bodies of many others. But these generalizations are true in virtue of the fact 
that these mechanisms can and do operate in particular ways on particular occasions, rather 
than conversely. This understanding of these generalizations also accounts for why they always 
involve approximations and are only true ceteris paribus.

(p.811) This explanation of the role of causal mechanisms is available so long as the 
generalizations are mechanically explicable, but here we come to what may seem the key 
metaphysical issue. If mechanisms are truly going to explain how one event produces another, 
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all of the interactions between parts, at all levels in the hierarchy of mechanisms, will need to be 
genuinely causally productive. If it were to turn out that these interactions at the fundamental 
level were not truly interactions, then none of the putative causal relations mediated by 
mechanisms would be genuine (cf. Psillos 2004, Craver 2007).

We are now concerned with an interaction between two (or more) parts at the bottom of a 
mechanistic hierarchy. These parts interact (by hypothesis) in accordance with a change‐
relating generalization or law. But how are we to understand the relationship between the 
generalization and this interaction? There seem to be three main metaphysical possibilities:

(1) Humean lawlessness — The interaction nothing more than an instance of a pattern 
that is described by a generalization.
(2) Nomological determination — The interaction is governed by the generalization 
(law).
(3) Singular determination — The interaction is a singular case of causal 
determination and any generalizations describing interactions are true in virtue of there 
being a general pattern of such singular instances.

The first view is the position that fits most naturally with the Mill–Ramsey– Lewis (MRL) view of 
laws.10 On this view, laws are statements that provide the best balance of simplicity and 
strength in characterizing events within the world. If there are (as there appear to be in our 
world) a relatively small number of kinds of fundamental‐level parts and some relatively simple 
generalizations describing how these parts behave in relation to each other, then these 
generalizations would be obvious candidates for MRL laws. This small set of laws, together with 
a much larger volume of information about how these parts are organized into hierarchies of 
mechanisms, will provide a simple and powerful description of the pattern of events in the 
world. I borrow the term ‘Humean lawlessness’ from Stephen Mumford (2004), who argues 
persuasively, that the MRL laws aren't truly laws, because they supervene on particulars of the 
actual world. They describe a pattern, but they do not create or explain the pattern. Such a view 
is anti‐realist with respect both to laws and to causes.

The second view — nomological determination — holds that fundamental interactions are 
governed by laws. This view requires some form of nomolog‐ ical realism about fundamental 
laws, such as the Armstrong–Dretske–Tooley (ADT) view. A law on this view is some third 
metaphysically real entity, apart (p.812) from the particular events, which makes it true that 
one event produces the second. Causal relations are real but subordinate to nomological 
relations.

The third view, singular determination, holds that there are genuine interactions between parts 
at the bottom of the mechanistic hierarchy, but that these parts are not governed by laws. In 
calling these interactions genuine, I am suggesting that the relationship is a modal one. We can 
express the modality of the relationship counterfactually: When a change in a produces a change 
in b, it follows (with the usual caveats about overdetermination, etc.) that if a had not changed, b
would not have changed. But the counterfactual locution should be understood not as a claim 
about non‐actual worlds, but a claim about the determining power of a in this world. The 
singular determination view is the view that is consistent with Anscombe's and Ducasse's 
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arguments for singular determination, in the sense that it supports the basic idea that whether a 
particular event (or change in an object) causes another is at bottom a fact about the 
relationship between these two events and is ultimately independent of any facts about other 
events.

Because the mechanistic approach to causation requires that there be genuine causal 
connections between parts all of the way down the mechanistic hierarchy, it appears that the 
question of whether or not the mechanistic approach is a genuinely singularist one would 
essentially depend upon which of these metaphysical options is correct. If Humean lawlessness 
is operative at the fundamental level, then mechanisms are simply parts of the pattern of events 
in the world and they cannot imbue relations between those events with any genuine sort of 
causal necessity. Alternatively, if fundamental interactions are governed by fundamental laws, 
then the truth of all claims about productive relations between entities at any level in a 
mechanistic hierarchy will depend upon these laws. Finally, if causal relationships between 
events at the fundamental level involve singular determination, then so too will events at all 
levels of the mechanistic hierarchy.

Each of these metaphysical possibilities is genuine in the sense that each of them is consistent 
with the pattern of objects and events that both science and common experience reveal in the 
world. If this is the case, which of them should we accept? One approach would be to reject this 
question as meaningless on the grounds that the options are not empirically distinguishable. 
While I am not entirely unsympathetic to this sort of anti‐metaphysical response, I do think there 
are arguments that may lend credence to one or more of these metaphysical positions. I cannot 
hope to survey the many arguments that have been offered in support or criticism of these 
positions. I can only offer here some explanation of why I think the metaphysic of singular 
determination fits naturally with the mechanistic approach to causation that I have argued for.

In the first place, it is difficult to reconcile our intuitions about manipulation, which are central 
to the mechanistic view, with the Humean view. On the Humean view there are no such things 
as genuine modal relationships (p.813) (or necessary connections as Hume would say) between 
events. Moreover, singular counterfactual claims are not really claims about what would have 
happened in a single case. Causal and counterfactual expressions are elliptical ways of talking 
about complicated patterns in the experience of the actual world. Because of this, manipulations 
or interventions are not modally effective ways to change the world; they are simply part of the 
pattern of the actual world. Manipulation, like all other forms of causing, is shown to be a fiction 
of the human mind. What patterns or regularities there are in the world just are. There are no 
explanatory principles to account for them. I concur with Mumford's summary judgment of this 
sort of metaphysical view — ‘irrefutable, but neither compelling, appealing nor 
intuitive’ (Mumford 2004, p. 33). What I think makes it unappealing and non‐intuitive is that it is 
inconsistent with the belief that we manipulate things and cause things in the single case.

The main argument in favour of the nomological determination view is simply that it is 
implausible to suppose that the order and regularity that we find in nature would exist without 
laws.11 Suppose, for the sake of illustration, that patterns of gravitational attractions between 
bodies are correctly described by the generalizations we call Newton's laws of motion and the 
law of universal gravitation, and furthermore that these generalizations are not mechanically 
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explicable. Statements of these laws collectively entail certain claims about regular patterns of 
behavior in the objects — for instance, that satellites will travel around planets in elliptical 
orbits. It seems quite reasonable, the defender of nomological determination would contend, 
that these objects behave as they do because they are governed by these general laws. If these 
laws do not govern their instances, there would be no explanation for the existence of this 
regularity in nature.

In response to this argument, the singularist must contend that in each particular interaction, 
the change in one entity produces a change in the other entity, and the fact of this productive 
relationship does not depend in any way on a general relationship between properties or 
instances. In the gravitational case, each body acts in each instant on the other body, producing 
accelerations which, over time, produce elliptical orbits. We do live in a world in which 
fundamental interactions fit within general patterns, but from this it does not follow that it is in 
virtue of falling under those patterns that the productive relationship holds. It is possible that 
we could live in a higgledy‐piggledy world in which causes determined effects but in which these 
determination relations were not regular.12

(p.814) Woodward's view of the relationship between invariant generalizations and 
counterfactuals appears to support the singularist view. Woodward suggests that 
generalizations used in explanations are explanatory only if those generalizations support a 
particular sort of interventionist counterfactual — which he calls a ‘same object’ counterfactual. 
If a generalization characterizes an interaction between parts of a mechanism, the relevant 
counterfactuals that must be true would have to do with what would happen if one were to 
intervene to change a property of one of those very same parts. It is explanatorily irrelevant 
whether or not those generalizations hold counterfactually of other objects.13

One potential objection to the singularist interpretation concerns the relevance of properties to 
causation. A proponent of nomological determination would point out that causal relations 
appear to hold in virtue of properties of the related events. For instance, the ringing of the 
alarm clock caused me to wake in virtue of its loudness. Thus, if one takes laws to be relations 
between properties, it may seem natural to infer that causes depend upon laws. The singularist, 
however, can argue that on a particular occasion a causal relation between events may hold in 
virtue of certain properties of those events but not hold to a nomological theory of causation. 
The singularist does not deny the importance of properties in characterizing causal relations, 
but insists that it is not essential to causal relations that the relationship between cause and 
effect be the same on different occasions.

This argument is moreover bolstered by the mechanistic view on the nature of properties and 
their relations to objects. I have argued (Glennan 2010c) that much of the literature on 
causation and laws suffers from a property bias — a tendency to think of causal relations as 
relations between properties without recognizing how properties themselves depend upon 
particulars. Consider for example a property of butter — whether it is in a solid or liquid state. 
Butter is not a basic substance, but a combination of a number of different types of fats — 
saturated and unsaturated. Whether a fat is saturated or not is in turn dependent upon the 
molecular structure of the fat. When we say that heating the butter will cause the butter to melt, 
this is, on the face of it, a change‐ relating generalization involving properties — changing the 
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temperature of the butter will change the solid/liquid state of the butter. But the properties 
themselves are not basic facts about the substance butter, but depend instead upon the 
particular structure of the butter — the molecules that make it up and their arrangement, as 
well as the arrangement and bonding of submolecular structures within these fat molecules. One 
consequence of this is that there is no such property as the melting point of butter. Different 
samples of butter will have different kinds and proportions of fat molecules which will have 
different consequences for their interaction with heat.

(p.815) This point about properties applies only to higher‐level properties. If an object has 
fundamental properties like mass and charge whose presence or causal role cannot be explained 
by reference to the organization and interaction of parts of that individual, then we cannot show 
how those properties depend upon particulars. For this reason, the observation about property 
bias is not decisive at the fundamental level. In favour of the singularist interpretation of 
fundamental interactions we can only say that it has the advantage of providing a consistent 
picture of the role of properties and laws in characterizing causal relations.

Where does this all leave us with regard to our original question about the relationship between 
singular and general causal relations? If the argument has succeeded it has shown that a 
mechanistic approach to causation is consistent with a singularist causal metaphysics. This is so 
even though causal generalizations are part and parcel of the apparatus we use to describe and 
manipulate mechanisms and to formulate causal explanations. Moreover, the singularist picture 
is the simplest one for the defender of a mechanistic approach to causation, because it fits most 
naturally with the view that the causal mechanisms which are the truth‐makers for causal claims 
operate at particular locations in space and time. One of the virtues of the mechanistic approach 
to causation is that it at once fits nicely with a singularist metaphysics and explains the 
centrality of causal generalization to our epistemic and explanatory practices.
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Notes:
(1) Two other papers which explicitly discuss the relationship between singular and general 
causal claims are Hitchcock's (1995) and Russo and Williamson (2011). What I call singularist 
and generalist approaches, Russo and Williamson call bottom‐up and top‐down strategies and 
Hitchcock calls Humean (or neo‐Humean) and generalization approaches. A third option holds 
that the truth of singular and general causal claims is independent of one other. This position 
has been argued for principally by Eells (1991). I shall not discuss this position directly, but I 
hope to argue indirectly against it by providing a singularist account that addresses the 
concerns that motivate it.

(2) Identifications of cause of death would seem to involve a host of pragmatic factors, including 
social and legal conventions. How does one choose between proximal and distal causes, between 
environmental or internal causes, between various overdetermining causes? I am inclined to 
think that there is no objective answer to the question of what is ‘the cause of death’.

(3) The material in this section summarizes an analysis of the relationship between mechanical 
and process approaches to causation and explanation that I have developed elsewhere (Glennan
2002, 2010a, 2010c). My discussion of process theories is of necessity very brief. For a more 
nuanced discussion of types of process theories, as well as rejoinders to concerns about 
problems of causal relevance see Dowe (2000, 2008, 2010).

(4) Process theories are sometimes called transference accounts (cf. Craver 2007) or causal‐ 
mechanical accounts, or physical accounts.

(5) It is not plausible to suppose that all causal processes involve regular operations of a 
mechanical system of this sort. The squirrel who kicks the ball against the acorn into the hole is 
a clear example of such an irregular causal process. Processes of this sort are examples of what 
I call ephemeral mechanisms (Glennan 2010b). A complete mechanistic account of causation 
needs to explain what these ephemeral connections are, how they are related to mechanisms on 
the systems conception, and how one can provide an account of productivity and relevance for 
connections mediated by such mechanisms.

(6) We should note here that there is a simplification involved. I am no pool player, but I suppose 
that if chalking is anything more than a ritual affectation, it does have an effect on the 
trajectories of balls — presumably by making the cue surface less slippery and allowing the 
player to impart spin to cue balls. So, on a careful analysis, chalking may be relevant. What 
couldn't be relevant is any inadvertent colouring of the ball.
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(7) Woodward (2003, p. 38) acknowledges his debt to Pearl. As Woodward sees it, his theory 
complements Pearl's. While Pearl is more focused on questions of inference, Woodward is more 
concerned with providing explicit definitions of notions like being a total or contributing cause, 
and more generally with relating Pearl's approach to causation to the philosophical literature.

(8) The formal analysis is not without difficulties. In particular, it may strike readers as 
problematic that the truth of a counterfactual claim is relativized to a model of a mechanism 
rather than to the mechanism itself. Of course if we are to appeal to mechanisms to make 
judgments about the truth of counterfactuals, we must inevitably rely on our models of these 
mechanisms, but we would like the truth itself not to depend on our representation. A second 
issue has to do with background conditions. For Pearl, a counterfactual ‘If it were the case that
X = x, then it would be the case that Y = y’ will be true only if the model calculates Y = y for all 
values of background variables U. This may be too strict. For instance, consider the 
counterfactual ‘If the flapper valve weren't to close properly, water would keep running into the 
bowl’. Intuitively, this seems to be true, but its truth depends upon a certain background 
condition remaining constant, namely that the water supply to the toilet is kept on. If the water 
supply were included as an exogenous variable in the model, then the counterfactual would not 
be true. These complications do not seem to me to undermine the structural approach, but 
rather to be an inevitable consequence of the vagueness of counterfactuals.

(9) A problem that I can only allude to here has to do with the implications of quantum 
mechanics for how we understand fundamental interactions. The picture I offer of a fundamental 
inter‐action is essentially a classical Cartesian/Newtonian one. Indeterminism in quantum 
mechanics raises some problems for this picture. More significant though are problems raised 
by the measurement problem and by violations of locality. The mechanistic picture seems to 
require bottom‐level interactions that are local and have definite properties independent of 
measurement. I don't have anything constructive to say about this problem. I can only offer as 
consolation the fact that except under special conditions quantum mechanical peculiarities wash 
out as one gets past sub‐atomic scales. Wherever this point is, we can treat it as the 
fundamental level with respect to the hierarchy of mechanisms.

(10) There has been a good deal of recent literature on alternate interpretations of laws of 
nature, including the MRL and ADT views. Two helpful introductions are Psillos (2003) and 
Carroll (2008).

(11) This is what Mumford (2004, chapter 5) refers to as the nomological argument.

(12) Not all will agree. Heathcote (1991, pp. 63–73), from whom I borrow the term ‘higgledy‐ 
piggledy world’, conclude that this situation , while conceivable, is not possible, and that there is 
an a posteriori necessary connection between laws and causes.

(13) I am grateful to an anonymous referee for this observation. See Woodward (2003, section 
6.9.)
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explanation that we call ‘epistemic explanation’ and ‘physical explanation’. We argue that 
mechanistic explanation requires that mechanisms are both real and local. We then go on 
to argue that real, local mechanisms require a broadly active metaphysics for mechanisms, 
such as a capacities metaphysics.

38.1 Introduction
Mechanisms have become much‐discussed in the current philosophy literature, to begin to 
match the long‐enduring interest in mechanisms in the sciences. Yet there is still no consensus 
as to the best way to characterize mechanisms. A brief glance at only three major papers 
attempting to characterize mechanisms illustrates:

Machamer, Darden and Craver: ‘Mechanisms are entities and activities organized such 
that they are productive of regular changes from start or set‐up to finish or termination 
conditions.’ (Machamer, Darden and Craver, 2000, p. 3)

Glennan: ‘A mechanism for a behavior is a complex system that produces that behavior by 
the interaction of a number of parts, where the interactions between parts can be 
characterized by direct, invariant, change‐relating generalizations.’ (Glennan 2002, p. 
S344)

Bechtel and Abrahamsen: ‘A mechanism is a structure performing a function in virtue of 
its component parts, component operations, and their organization. The orchestrated 
functioning of the mechanism is responsible for one or more phenomena.’ (Bechtel and 
Abrahamsen 2005, p. 423)

In this chapter, we will start with one thing everyone–including both philosophers and 
scientists–agrees on about mechanisms: mechanisms (p.819) explain. We will investigate what 
constraints this imposes on a metaphysics of mechanisms. In Section 38.2 we examine two 
important premises about mechanistic explanation shared by many in the mechanisms debate: 
that mechanisms offer a form of explanation distinct from laws‐based explanation, and that 
there two senses of explanation, that we call epistemic explanation and physical explanation. In 
Section 38.3 we argue that both kinds of explanation require real mechanisms, and in Section
38.4 we argue that scientific explanation using mechanisms requires that mechanisms must be 
local. In Section 38.5 we argue that real, local mechanisms require what we call a broadly active
metaphysics, such as a capacities metaphysics, rather than a more passive best‐system laws‐
based metaphysics. In Section 38.6 we deal with two possible objections to our view.

Dialectically, we take our argument to be important because the general trend in characterizing 
mechanisms in the literature is to use a more passive metaphysics, which our argument shows 
to be at odds with the basic reasons we examine in Section 38.2 that are often given for 
developing an account of mechanisms at all. Further, if you think, as many do, that mechanistic 
explanation is causal explanation, then everything argued here transfers to this important 
species of causal explanation.
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38.2 Mechanistic explanation
There are various views about the nature of mechanistic explanation which are sometimes 
implicit, sometimes explicit in the mechanisms literature. In this section, we will pick out two 
views which, while not universal, are widely shared by those writing about mechanisms. They 
are first that mechanistic explanation is a distinct alternative to laws‐based explanation, and 
secondly that there is something which we will call ‘physical’ explanation, where the mechanism 
in the world produces the phenomenon of interest. We agree with both of these deep premises 
of thinking about mechanisms and mechanistic explanation. We will argue that they impose 
constraints on a plausible metaphysics of mechanisms.

The first view is that mechanistic explanation is a new form of explanation that is distinct from 
traditional laws‐based approaches to explanation–and far more promising as an account of 
explanation across much of the sciences. As Torres writes: ‘The mechanistic model of 
explanation represents an appealing alternative to classical covering‐law (CL) models’ (Torres 
forthcoming, Section 38.1). There are three independent reasons for this, which influence 
different philosophers in different ways. All three reasons are important.

The first reason is simple: mechanistic explanation as distinct from law‐ based explanation fits 
the practice of the special sciences in a way that law‐ based explanation fails quite drastically to 
do. And the special sciences now (p.820) amount to a great deal of science.1 They proceed by 
identifying phenomena requiring explanation, and decomposing them. They look for the parts of 
the mechanism underlying the phenomenon, and start trying to figure out what they do. They 
work out how the parts go together where, so that what the parts can do in conjunction changes, 
and ultimately the way the organized behaviour of the whole mechanism produces the 
phenomenon becomes clear. What such scientists do not do is look for laws and try to build up 
any kind of explanation resembling a law‐based one. Bechtel and Abrahamsen are influenced by 
this: ‘The received view of scientific explanation in philosophy (the deductive‐nomological or D‐
N model) holds that to explain a phenomenon is to subsume it under a law. … However, most 
actual explanations in the life sciences do not appeal to laws in the manner specified in the D‐N 
model.’ (Bechtel and Abrahamsen 2005, p. 421–2)

The second reason for thinking an alternative to traditional laws‐based explanation is vital is 
also simple, and has been extensively argued elsewhere. There are no laws–no exceptionless 
non‐accidental generalisations–in the special sciences and no reason to suppose there ever will 
be.2 Those ‘laws’ that do exist in the special sciences are nothing more than generalizations 
backed up by an understanding of the mechanisms underlying those laws.3 This is the direction 
of explanation between laws and mechanisms that many scientists adhere to. It seems to us that 
a reductive faith that there will ultimately be discoverable laws everywhere has been seriously 
empirically undermined by the huge success of science without laws–such as the extraordinary 
amount now known about the detailed mechanisms of protein synthesis–and should be 
abandoned. Leuridan mentions this reason for preferring mechanistic explanation: ‘If there are 
no strict laws, there are no D‐N explanations. Hence the mechanicist alternative, which states 
that explanation involves mechanistic models (i.e. descriptions of mechanisms) instead of strict 
laws, might be very welcome.’ (Leuridan forthcoming Section 38.1, emphasis in original)
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The third reason is that even if fundamental laws were available in the special sciences–
exceptionless non‐accidental generalizations that we could treat as brute nomological facts 
about the universe–it is hard to see how they could explain in the way that mechanisms explain. 
Brute nomological (p.821) facts themselves call for explanation, which is precisely why 
scientists do try to explain laws–and they often use mechanisms to try to do this. Glennan 
(2002) is concerned about this issue, concluding that at least the fundamental laws of physics 
are not mechanically explicable, or explicable at all. It seems to us that this is acceptable if it is 
assumed that there is a final, fundamental, lowest, level of physics. But so far we have not 
discovered such a final level, and we don't have empirical reason to believe there must be one. 
Mechanisms offer a more accurate characterization of genuine special science explanation. This 
reason clearly influences Bechtel and Abrahamsen: ‘For present purposes we leave laws in place 
as statements of particularly robust and general phenomena. However, we suggest that 
explanation is to be found in the mechanisms that account for these laws, not in the laws 
themselves.’ (Bechtel and Abrahamsen 2005, p. 422, footnote 1)

So the first view that mechanistic explanation is a promising and much‐ needed alternative to 
laws‐based explanation is widely shared and important.4

The second view is sometimes only implicit in the literature, but it is clearly present. It is the 
view that there are two different kinds of mechanistic explanation in line with Salmon's more 
general distinction between epistemic and ‘ontic’ explanation (Salmon 1998a, 1998b). The first, 
epistemic, sense is of explanation as a human practice, aimed at increasing understanding of the 
world. It often involves the passing of information between human beings. Although it is aimed 
at understanding the world, it is highly sensitive to the cognitive abilities and background 
knowledge of human beings.5 The second, ontological, sense of explanation, particularly 
important in the scientific practice of explanation using mechanisms, we will call physical 
explanation. This second sense of explanation is the sense in which mechanisms explain the 
phenomena they explain by being responsible for them. This happens whether human beings 
understand what is going on or not.6 Knowledge of the mechanisms involved in physical 
explanation might in some cases be beyond our cognitive capacities. There is certainly no a 
priori reason to be sure we will always be able to know such mechanisms.

(p.822) The two senses of explanation are naturally intertwined, of course. If the epistemic 
sense of explanation is to succeed in increasing understanding of the world, rather than merely 
making up interesting stories about it, the stories had better be describing the mechanisms in 
the world. In the other direction, as soon as we start trying to describe the physical mechanism 
that produces the phenomenon, we begin to abstract, to prioritise salient details and so on, so 
that our description takes on some epistemic features. But while these two senses of explanation 
are so intertwined that they can be difficult to separate, they are not the same.7 This can be 
clearly seen by realising that they are subject to different constraints. For example, an epistemic 
mechanistic explanation should be perspicuous to its audience, while the correctness of a 
description of a physical mechanism producing a phenomenon does not depend on whether its 
audience understands that description. A second important difference is that the epistemic 
sense of explanation allows for the imposing of normative desiderata that would be 
inappropriate to apply to physical mechanisms. For example, one might reasonably attempt to 
make epistemic mechanistic explanations modular–very crudely, organised so that you can 
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wiggle one bit of the mechanism without affecting the working of other bits.8 But you couldn't 
possibly demand that every physical mechanism be modular. They may be or they may not. 
These differences exist because in the epistemic sense of explanation it is the description of the 
mechanism that explains, while in the physical sense, the mechanism itself does the explaining.

This distinction is implicit in much of the literature on mechanisms, and explicit in some papers. 
In many papers, an explicit distinction is made between mechanisms as they are in the world, 
and the models, schema or descriptions of mechanisms that we construct to explain the 
phenomena.9 In the construction of models or schema we are involved in an explanatory project 
that is epistemic. This notion is much explored by Bechtel and Abrahamsen, among others, and 
of course has a very important place in science. But Machamer, Darden and Craver, Bechtel and 
Abrahamsen, and Glennan all recognize the deeper relation between mechanisms and 
phenomena. The mechanism as it is in the world is responsible for the phenomena we observe.
(p.823) Machamer, Darden and Craver phrase it as the mechanism being ‘productive of regular 
changes’; Glennan says that the mechanism ‘produces that behavior’; and Bechtel and 
Abrahamsen say that mechanisms are ‘responsible for one or more phenomena’. They all mean 
much the same thing.

Bechtel and Abrahamsen don't want to call this kind of thing explanation. We do, following both 
scientific and common practice. Sometimes a request for explanation is a request to identify the 
responsible portion of the world. For example, when asking why the Sun looks larger at the 
horizon, the requested explainer is something about the world, even though it is described in 
terms of something epistemic–a story about the world. So this physical sense of explanation is a 
genuine sense of explanation, and it is this physical sense of explanation that we are most 
concerned with in this paper. It comes in at least two varieties–decompositional and etiological. 
In the first case, mechanisms explain phenomena by being the lower‐level entities and activities 
that are organized to produce the higher‐level observed phenomena. In the etiological case, 
mechanisms explain events by being the detailed causal history leading up to these events. 
Although a decompositional mechanistic explanation for a one‐off event could be sought, we will 
focus on the case where mechanisms are the decomposition of a regularly occurring 
phenomenon. There are interesting relations between these slightly different kinds of 
mechanistic explanation which we do not have space to explore here.10

In conclusion, scientific practice allows for two distinct understandings of mechanistic 
explanation: epistemic, where the description of the mechanism explains, and physical, where 
the mechanism itself explains. The literature on mechanisms has followed this, and the view that 
physical explanation exists, where the mechanism produces the phenomenon of interest, is 
widely shared. Similarly, the view that mechanistic explanation is a crucial alternative to laws‐
based explanation is a driving force of the mechanisms literature, widely shared in it.

38.3 Mechanistic explanation requires mechanisms to be real
For now, we put aside the view that mechanistic explanation is distinct from laws‐based 
explanation, although it will become crucial to the overall argument again in Section 38.6. In 
this section and the next, we focus on teasing out two implications for the metaphysics of 
mechanisms arising from the use of mechanisms in explanation: mechanisms must be real in this 
section and local, in Section 38.4.
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For mechanisms to yield physical explanations, they must be real. That is, at least some of the 
mechanisms posited by scientists must exist as worldly (p.824) entities responsible for the 
phenomena we take them to explain.11 This fits scientific practice, matching how scientists treat 
mechanisms in mechanistic explanation. The mechanism of protein synthesis is a system in the 
world that produces proteins; natural selection is a complex of worldly processes that produces 
the adaptation of a population to its environment.12 It also fits the interesting uses to which 
mechanisms might be put, in causal inference, for example. Leuridan and Weber (2011, this 
volume) suggest that identification of an underlying mechanism can be important in addressing 
the problem of external validity–working out whether a causal relation established in one 
population will apply in another. If knowing the underlying mechanism is to help, it is because 
you have identified a worldly entity that you can with reasonable confidence expect to be 
present/absent or more or less similar in altered circumstances. Cartwright (2006 and 
forthcoming) suggests that knowing social mechanisms is important to making social policy 
decisions, which seems to make the same assumption. Physical explanation is the most 
important kind of mechanistic explanation, because epistemic explanation is parasitic upon it. If 
epistemic explanations are to explain, rather than merely being stories, there must be real 
mechanisms to describe. So both kinds of mechanistic explanation require real mechanisms.

So the mechanisms literature is implicitly or explicitly committed to mechanisms being real. The 
claim is seldom made so baldly: perhaps it has seemed too obvious to comment on. A more 
detailed understanding of how mechanisms are real is slightly tricky. There are two problems, 
which we will take in turn: non‐‘physical’ mechanisms, and the functional individuation of 
mechanisms.

The problem of non‐‘physical’ mechanisms arises because not all mechanisms are completely 
independent of what people believe of them and how people describe them–the existence of 
social and psychological mechanisms means that that independence comes in degrees. Whatever 
social and psychological mechanisms are, they are partly constituted by people, and some may 
include the beliefs of people as components. For example, enough people believing that the 
economy is going into recession, and behaving accordingly, might be a necessary step in the 
economy entering recession. In terms of traditional debates about the existence of the external 
world, the dependence of such mechanisms on minds, their representational or constructed 
nature, might be thought to be an unacceptable mind‐dependence of such mechanisms, 
undermining their reality.

(p.825) However, this does not mean that social and psychological mechanisms must be merely 
explanatory schemas or models, thoroughly and essentially dependent on human minds, and so 
forever restricted to merely epistemic explanation. So long as people, and their minds, exist, are 
part of the ontology of the world, such mechanisms exist and are susceptible to scientific 
investigation. Such mechanisms are still worldly entities. Further, although models and schemas 
might under some circumstances themselves be mechanisms, they cannot themselves be part of 
the mechanisms that they describe. This view also contrasts with the view that such explanatory 
posits are merely instruments–instruments for making accurate predictions about the behaviour 
of observables.13 An instrumentalist view renders science less explanatory. There is no 
commitment to anything that can explain why the predictions work.
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The second problem for the reality of mechanisms is that mechanisms are at least partially 
functionally individuated. This is a light sense of ‘function’, where the function of a thing is the 
role it plays in a system. That role does not require a selective history. Mechanisms are 
conceived of as the mechanism for producing a particular behaviour, where the behaviour is 
identified as a phenomenon of interest by scientists, when characteristically producing that 
behaviour is the role of that mechanism in that system.

This partial functional individuation of mechanisms is clear in scientific practice. Take for 
example the discussions of the mechanism of protein synthesis in three biochemistry textbooks. 
The notion of function is ubiquitous: all three texts took the function of protein synthesis to be 
the decoding of the information in DNA to produce proteins, and many lower‐level mechanisms 
involved were functionally described.14 For example, regulatory mechanisms are understood in 
terms of ensuring that the right proteins come out. All three texts talk about some kind of repair 
mechanisms, and they all mean mechanisms whose function is to correct various kinds of 
malfunction.

This kind of functional individuation of mechanisms is also recognized in the philosophical 
literature. Both Glennan, and Bechtel and Abrahamsen, are explicit that mechanisms have 
functions. For Bechtel and Abrahamsen a mechanism is a structure ‘performing a 
function’ (2005, p. 423), while for Glennan a mechanism is a mechanism ‘for a behaviour’ (2002, 
p. S344). Machamer, Darden and Craver's characterization does not explicitly make a function 
an essential aspect of a mechanism, but they don't explicitly rule it out either. Independent work 
by Darden and by Craver makes the link between a (p.826) mechanism and its explanandum 
phenomenon explicit (see Darden 2006 and Craver 2007).

The possible problem for the reality of mechanisms is probably clear. A function is required for 
something to be a mechanism. But the role something plays in a system seems to be a matter of 
description–the description of the system it is in. The same object individuated structurally, such 
as the heart, can have different functions according to the description of the system it is in. It 
might have the function of pumping blood when considered as part of the circulatory system, or 
the function of making a thump‐thump noise when considered as part of a system for comforting 
a newborn baby. Then functions seem to be not wholly in the world, but set by the description of 
the system. This is not a spurious unscientific example. In scientific practice, the very same 
thing individuated structurally can sometimes have one function, sometimes another–and 
sometimes has no function at all.

Consider an example of this from a discussion of branch migration, the moving of the crossover 
point at which two molecules of DNA exchange excised strands of DNA. Voet and Voet write: 
‘such a process moves forward and backward at random and, moreover, is blocked by as little as 
a single mismatched base pair. In E.coli, and most other bacteria, branch migration is an ATP‐
dependent unidirectional process that is mediated by two proteins … ’ (Voet and Voet 2004, p. 
1189.) In the context of protein synthesis as having the function of decoding DNA to produce 
proteins, branch migration doesn't have a function. It just happens, being a nuisance that the 
cell has to have various mechanisms to fix. That is why it is described as a process here.
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The same responsiveness to description occurs for other kinds of mechanisms. Take natural 
selection. When it's the mechanism for adaptation, then it has a function–the bringing about of 
fit between organism and environment–and so is properly described as a mechanism. But when 
something else is being described and natural selection is just something happening in the 
background, then it doesn't have a function, and is described as a process. There are many other 
examples showing that both biochemists and evolutionary biologists consistently use 
‘mechanism’ to describe only something that has a function, using the word ‘process’ when 
there is no function. So mechanisms are mechanisms for, while processes are just processes in 
themselves. Mechanisms, of course, are still what is used in explanation because once in the 
domain of explanation, you are thinking in terms of a behaviour or phenomenon to be explained. 
Once you identify that phenomenon, then you are looking for something that has a function–the 
mechanism that produces that phenomenon, which is thought of as the mechanism for that 
phenomenon.

This looks like a more serious problem for the reality of mechanisms than it really is. It is true 
that what function a mechanism performs can vary according to our description of the system it 
is in. But this is because many (p.827) entities really do belong to more than one system. The 
heart really does circulate blood, and it really does make a thump‐thump noise which is 
comforting to newborns because it is familiar. When we consider different systems we will 
naturally identify a different role‐function for the heart, but this is because of the variation 
between systems, not because of our description of that system. The role an entity plays in any 
particular system is not a matter of description–it is a worldly fact. Functionally individuated 
mechanisms are real.

In conclusion, both scientific practice and much of the philosophical literature on mechanisms is 
committed to real mechanisms, either in physical explanation, or as items to be described in 
epistemic explanation. That is, mechanisms exist as worldly entities that are responsible for the 
phenomena they produce. The mechanism itself is different from any model, schema or other 
description or representation of that mechanism, and the mechanism itself is real. Mechanisms 
are physical explainers, while representations of mechanisms are epistemic explainers. This is 
the first important constraint on a metaphysics of mechanisms.

38.4 Mechanistic explanation requires mechanisms to be local
The second interesting constraint on a metaphysics of mechanisms comes from a feature of the
kind of explanation you get when you get a physical mechanistic explanation. The explanation is 
local to the phenomenon produced. Mechanistic explanations use parts organized to produce the 
phenomenon, and may also look to containing systems to set the phenomenon, but both parts 
and systems are local to the phenomenon. This is true of scientific practice, and is also reflected 
in the philosophical literature on the issue.

Mechanisms, recall, are individuated by their explanandum phenomena. Mechanistic 
explanation begins by identifying a phenomenon, usually a regularly occurring one, to be 
explained. What then occurs is the process of examining the area local to the explanandum 
phenomenon to see how the phenomenon is produced. This is how characteristic mechanistic 
explanation proceeds.15 Take protein synthesis as an example. Scientists have a phenomenon 
that they wish to explain–the production of proteins. What they want to know about is the 
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underlying mechanisms that produce proteins, and the (p.828) conditions in the cell at the 
time. So scientists examine the details of the cells where proteins are produced. What is going 
on when proteins are produced? What kinds of molecules and so on are involved, and what do 
they do? They discover that there is a stage where DNA is copied, a stage where (various kinds 
of) RNA are made from DNA, and a stage where protein is made from mRNA. In fact, they 
discover vastly more information than this about all of these stages. But what they are doing 
certainly involves decomposing into local parts, and investigation of the local cell conditions. 
They look for the lower level stuff that produces the higher‐level stuff, and the conditions under 
which this happens. In this sense, a great deal of what is described at great length in 
biochemistry textbooks just is protein synthesis.

Precisely because of the functional individuation of mechanisms, the extent of the locality you 
expect in a mechanism is set by the phenomenon the mechanism produces. Protein synthesis is 
very constrained, happening within a single cell. This is where the proteins appear, and where 
we look for the mechanisms that produce them. Compare natural selection, which happens 
within entire populations–much larger entities than single cells. Nevertheless, if you are 
interested in how natural selection has produced a particular distribution of trait types in a 
population, you study the history of the happenings in that population. You will also have to 
study the environment of that population, but that is also local–you don't look anywhere else. 
Investigating social mechanisms might lead you to look at social relations in an entire country, 
or even internationally. Investigating emission mechanisms for gravitational waves would lead 
you to look at something much bigger–the behaviour of binary pulsars, or even the movement of 
entire galaxies. But in each case the phenomenon sets the extent of appropriate locality. It isn't 
that mechanisms are always the size of 200 molecules, or three galaxies, it is that they are 
constrained in locality by where the phenomenon is that they are thought to produce. Other 
regions of space are not investigated, since they are not considered relevant.

Locality is implicit in much philosophical discussion of mechanisms, and explicit in some cases. 
Although he doesn't use the word ‘locality’, Craver, for example, gives the matter some extended 
discussion. Craver thinks that mechanisms are generally hierarchically nested, and mechanisms 
at different levels fall in (certain sorts of) part‐whole relations. He writes ‘The primary 
difference is that LM levels [levels in the multilevel mechanism for spatial memory] are 
relationships between a whole and its parts, while levels of processing are relationships between 
distinct items.’ (Craver 2007, p. 178) Clearly, parts of wholes are local to those wholes, so 
Craver thinks that lower‐ level mechanisms are local to higher‐level ones.

Craver also examines the issue of what, in the local area of the explanandum phenomenon, 
might be left out of the mechanism for the phenomenon. Not everything local is relevant. Writing 
again of his spatial memory case study, he (p.829) claims: ‘Components at lower levels are 
organized to make up the behaviours at higher levels, and lower‐ and higher‐level items stand in 
relationships of mutual manipulability …’ (Craver 2007, p. 170) By mutual manipulability, he 
means, very crudely, that if you wiggle one, the other wiggles, and vice versa. Not all parts of 
the cell, for example, are components of the mechanism of protein synthesis in this sense. And 
this is generally true of mechanistic explanation. If you are investigating social relationships the 
behaviour of the atoms or molecules of people are irrelevant, and a star collapsing will emit 
gravitational waves quite independently of the behaviour of any nearby life. While this shows 
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that not everything that is local will be part of the mechanism, it is true that the parts of the 
mechanism will be local to where the phenomenon they produce exists. Mechanisms come in 
different sizes because the phenomena they produce come in different sizes. The extent of 
mechanisms that produce various phenomena is part of what is learned by scientists as the 
mechanisms for the phenomena are better understood. One of the things that is surprising about 
various subatomic phenomena in physics, for example, is how non‐local their causes and effects 
might be.16 Nevertheless scientists in different fields come to have a good idea of how dispersed 
the mechanisms they are looking for are likely to be. Once that is established, they do not look 
further afield. It is, if you like, an empirical discovery of any mechanism what extent of local 
space‐time is relevant to the explanation. In all cases, that locality is limited.

Our discussion of the locality of mechanisms sails confusingly close to debates elsewhere in 
philosophy. It is worth pausing to make clear that the locality claim is a claim about mechanistic 
explanation in scientific practice and how it is understood in the mechanisms literature. We are 
not here concerned with metaphysical debates about causality, such as the claim that causal 
relations are intrinsic.17 The locality of mechanisms might imply that a precise copy of a 
mechanism is still a mechanism, which is an interesting parallel of some ways of understanding 
the intrinsicality claim. But this debate is not what concerns us here. We are also not concerned 
with alternative scientific claims about locality. A familiar locality claim from physics is that 
there can be no covariation of physical properties that are spacetime separated, where the 
covariation would demand that the propagation of any causal influence would have to be faster 
than the speed of light. This might be recast in less scientific terms as a doctrine of no action at 
a distance, which confusingly enough seems to be what some philosophers mean by locality 
when they talk about (p.830) causality.18 If these are basic laws of physics, then no doubt 
mechanisms will not violate them. But such laws require support from physics more generally–
examining how mechanisms are used in explanation cannot establish that nothing moves faster 
than the speed of light! Since we are looking for a claim supported by the use of mechanisms in 
explanation, it should be clear that this is not the locality claim we have in mind.

To reiterate, the claim is that in decompositional mechanistic explanation, the mechanism that 
produces the phenomenon of interest is looked for and discovered in the area of the 
phenomenon produced. This makes perfect sense of the idea that the mechanisms discovered 
are the mechanisms underlying the phenomenon. Other regions of space and time are not 
considered relevant.

Before ending this section, we will raise three possible problems for the locality of mechanisms: 
the functional individuation of mechanisms, the existence of non‐‘physical’ mechanisms, and 
omissions. We will argue that none puts paid to locality, although examining them does yield a 
better grasp of the locality claim.

The first problem is that mechanisms having functions potentially damages the locality of a 
mechanism. If functions are relative to a description of a system, and that description, along 
with the wider system, is not part of the world where the mechanism is, then mechanisms are 
not wholly local. However, just as for the reality of mechanisms, this problem can be resolved by 
recognising that functions are more accurately thought of as objective, worldly relations 
between a mechanism and the (perhaps several) different systems it is in. Consider the heart 
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again, as structurally individuated. Its role as blood‐circulator is set by the higher‐level system 
of blood circulation it is a part of, while its role of baby‐comforter is set by that different system. 
But this is not a matter of description, just a relation between the heart and two different (and 
local) systems it really is a part of. This is not a serious problem for locality any more than it is 
for reality.

Again, the possibility of non‐‘physical’ mechanisms requires careful thought. We have pointed 
out already that locality is always relative to the phenomenon explained, so that some 
non‐‘physical’ mechanisms, such as social mechanisms, might be very large indeed. But it is also 
true that how thoroughgoing the locality is, how deeply it extends, varies from mechanism to 
mechanism, affecting effective strategies of decomposition.

Craver recognizes this: ‘Localization is one of the most fundamental spatial constraints on 
interlevel integration (Bechtel and Richardson 1993). Not all mechanisms have easily localized
components, but when they do, the location (p.831) of different processes can be crucial to 
understanding a mechanism that incorporates them.’ (Craver 2007, p. 261–2) This is a 
particularly interesting issue for psychological mechanisms, where there is great debate on 
localization strategies. There is disagreement, for example, on whether specific psychological 
functions are localized to particular parts of the brain, or processed in a way far more dispersed 
through the brain.19 Nevertheless, this becomes an issue once the description of the 
phenomenon is underway, which is once the locality of the mechanism is already set. In these 
cases, both sides of the debate still agree that the mechanisms producing psychological 
phenomena are in the brain. That is local enough.

There is a far trickier problem case.20 Some decompositional psychological mechanisms cite 
content‐bearing mental states as part of the mechanism. For example, the behaviour of a rat in a 
maze might routinely require explanation in terms of false beliefs about where food is–where of 
course the content of the false belief is crucial to the explanation. If mental content is external, 
depending on the history of the interaction of the organism with its environment, then this 
particular decompositional mechanism is not local. The phenomenon may arise in the brain, but 
some of its constituents are elsewhere.

This is of course a controversial case. It seems to us there are three options. The first is to say 
that psychological mechanisms are just quite different from other mechanisms in this way. This 
is a position one might be driven to, but is ad hoc as a first move. The second option is a denial 
of externalism about content. All that is necessary for mechanisms is the narrow content of any 
content‐bearing mental state, which supervenes only on the local brain state. Our third option is 
to take externalism about content more seriously–perhaps as seriously as the extended mind 
thesis does. Then, we re‐construe the appropriate extent of mental phenomena, so that external 
items are appropriate parts for decomposition of mental events.21 These are interesting issues 
worthy of wider consideration, but we lack space to develop them here. We have said enough to 
indicate the defence of our locality thesis, because on either the second or the third story, the 
case doesn't violate locality.

The third problem is difficult. The problem is that if omissions are part of any mechanism, which 
they routinely seem to be, then that mechanism will not be local. The mechanism might depend 
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on features thoroughly nonlocal to the phenomenon it produces–perhaps on features that have 
no location at all. The problem of locating omissions is well known from the vast literature on 
omissions and causation.22 To illustrate, suppose I, your (p.832) neighbour, promise to water 
your plants when you are on holiday. I don't, and they die.23 It seems my omitting to water the 
plants causes their death. But where is my omission located? Is it in your house where I fail to 
turn up? Or is it wherever I am, busy not watering plants? There seems to be no satisfactory 
answer. Yet it is not impossible that omissions are routinely part of some mechanisms. In the 
context of causation, Schaffer discusses the example of a gunshot through the heart causing 
death, but it isn't difficult to see the circulatory system and the internal workings of a gun that 
he describes as mechanisms. Schaffer writes: ‘But heart damage only causes death by negative 
causation: heart damage (c) causes an absence of oxygenated blood flow to the brain (~d), 
which causes the cells to starve (e).’ Later he considers the gun: ‘But trigger pullings only cause 
bullet firings by negative causation: pulling the trigger (c) causes the removal of the sear from 
the path of the spring (~d), which causes the spring to uncoil, thereby compressing the 
gunpowder and causing an explosion, which causes the bullet to fire (e).’ (Schaffer 2004, p. 199) 
Examples in biochemistry are numerous. Cells routinely alter which enzymes they produce in 
response to which metabolites are available. A cell stops producing lactase, for example, in 
response to the absence of lactose diffusing into the cell's cytoplasm.

Our view is that omissions are not a problem for the locality of mechanisms in the same way that 
they are for causation. Causal relations are often subject to absences. Just as my failure to water 
your plants caused their death, so the Queen's failure to water them caused their death, and so 
on. There is no location for these omissions. But the kinds of omissions that are routinely part of 
mechanisms are locatable, and they are local. This is clear in all three examples above. The 
deoxygenated blood is part of the circulatory system within the body; the removal of the sear 
from the path of the spring is part of the gun mechanism, and the alteration of gene expression 
within the cell is in response to differing levels of metabolites within that cell. All of these are in 
the familiar area where we would attempt a decomposition of the relevant phenomena.

Causation and mechanisms are different here because difference‐making is important to 
causation and not to mechanisms. Often, the conviction that difference‐making is crucial to 
causation is decisive on thinking that absences cause. This is because in the causation case an 
absence often stands in a difference‐making relation to the effect. To illustrate, it is missing the 
bus that made the difference to my lateness, not the empty bus‐stop when I got there.24 That is 
why it is the absence that causes my lateness, rather than the positive (p.833) story about 
where the missing bus actually is. This idea of difference‐making is plausibly very important to 
causation, but it isn't central to a mechanism. So such external omissions are not in the same 
way relevant to mechanisms, being outside the relevant mechanisms. This means that only local 
omissions are relevant to mechanisms.

In conclusion, and in spite of some challenging problems, it is a genuine feature of mechanisms 
that they are local. This is a kind of locality that scientific practice is committed to in how it 
explains using real mechanisms, and a locality that is, albeit sometimes implicitly, reflected 
widely in the mechanisms literature. This is the second important constraint on a metaphysics of 
mechanisms. Mechanisms are both real and really there, and the right metaphysics of 
mechanisms must respect that.



Mechanisms are real and local

Page 13 of 25

38.5 Reality and locality require an active metaphysics
The problem for a good metaphysics of mechanisms is to characterize the interactions in 
mechanisms. Recall that all characterizations of mechanisms have two components, with 
something about the parts of mechanisms, and something about how the parts interact. The 
metaphysics of the parts of mechanisms has been uncontroversial. They have had different 
names–‘entities’, ‘parts’ and ‘component parts’ in the characterizations above–but they have not 
been much discussed. What is controversial is how to characterize what the parts of 
mechanisms do, the activities or interactions of the parts. It is not surprising that this is 
controversial, since the interactions are more interesting metaphysically. Unlike the parts, or 
entities, which are actual, understanding mechanisms also involves understanding what those 
entities will do in non‐ actual situations. Scientists seem to know of many mechanisms what they 
would do when the initial conditions are changed in various ways.

It is in characterizing the interactions of parts of mechanisms that the reality and locality of 
mechanisms becomes relevant, because not all metaphysical approaches to the interactions 
allow mechanisms to be real and local. Understanding the metaphysics of mechanisms on this 
level is now a philosophical problem with no immediate bearing on scientific method, of course. 
It does, however, bear on our understanding of science. Since both scientific practice and many 
philosophical treatments of mechanisms are committed to their locality and reality, our 
argument should be of wide interest.

There are broadly two approaches to characterizing the interactions in mechanisms, and we will 
argue that all the approaches to metaphysics that allow mechanisms to be real and local lie 
within only one of these approaches. We call these broad approaches ‘passive’ and ‘active’. 
Passive approaches characterize interactions using laws or some counterfactual notion or other–
either relatively simple counterfactuals, or their more sophisticated cousin (p.834) the 
invariance relation. They then use either a best‐system laws grounding for such counterfactual 
claims, or a modally realist grounding.25 We call this approach ‘passive’ because broadly the 
grounding for counterfactual claims is just patterns of the objects in this or in other worlds.

Passive approaches contrast with active approaches. These latter approaches give an account of 
interactions in terms of the capacities, powers or activities of entities. So active approaches 
include Machamer, Darden and Craver's activities approach, where activities are varied things 
that entities can engage in, like bonding, breaking, pushing and coiling. Also included are Nancy 
Cartwright's capacities approach, which claims that capacities are properties of objects, and 
Carl Gillett's powers approach, which follows Shoemaker in individuating properties by their 
causal powers, so that having a property implies action in certain conditions.26 We will argue 
that only active approaches give a local characterization of a mechanism.

We take the points we make about the metaphysical systems to be well‐ understood aspects of 
these systems. They also have well‐known problems, which we shall not repeat here. 
Nevertheless the significance of these points for thinking about the metaphysics of mechanisms 
needs to be spelled out. Dialectically, this is interesting to the mechanisms literature because–
outside of traditional metaphysics–passive approaches are generally regarded as metaphysically 
less problematic than active approaches. This yields a dialectical reason for philosophers 
working on philosophy of science, but not inclined to do traditional metaphysics, to plump for 



Mechanisms are real and local

Page 14 of 25

passive characterizations of interactions in mechanisms. In the core mechanisms literature, only 
Machamer, Darden and Craver are trying to use an active approach to characterize interactions 
in mechanisms, but the novelty and apparent extremity of their approach is off‐putting to many. 
Recent work by Gillett using a powers approach is interesting too, but has yet to be picked up 
extensively in the mechanisms literature. We wish to oppose this dialectical trend towards 
passive approaches by pointing out that there are well‐worked‐out metaphysical systems 
available that do a better job for mechanisms than passive approaches.

Using some counterfactual account or other of the interactions in a mechanism has been 
popular. This is the approach of Woodward, Psillos and later Glennan. We will raise concerns 
about the status of this claim later on, but suppose for now that it is a claim about the nature of 
mechanisms. (p.835) Whether such a view yields real, local mechanisms or not depends on 
what you take to ground counterfactuals. Take the passive views first. Suppose the truth‐
conditions for counterfactuals–whether simple or sophisticated–are grounded in a best‐system 
account of laws of nature, where the best‐system is judged by the simplicity and strength of 
laws.27 If this is so, then mechanisms are not local. Mechanisms depend on two kinds of non‐
local features. The first is features of many other places and times in this world, those necessary 
to determine the laws of nature. As we have said in the previous section, this is in tension with 
the actual practice of mechanistic explanation in the sciences, which examines only local regions 
of spacetime in constructing mechanistic explanations. The second kind of feature is the 
simplicity and strength of laws that establish what is the best system of laws. No such features 
are local, being dependent first on the entire universe, and second on the abstract concepts 
simplicity and strength, which cannot be located clearly at all. Such mechanisms might also fail 
to be real–depending on the status of laws. In general, an anti‐realist account of laws clearly 
yields non‐real mechanisms; while any passive realist account of laws still has truthmakers 
widespread in the universe for law, so mechanisms based on such laws will be non‐local.28

Take the alternative modal realist account of truthmakers for counterfactu‐ als, where the truth 
of any counterfactual claim depends on what happens to counterparts in nearby possible 
worlds.29 Mechanisms involving such coun‐ terfactuals might well be real. But the situation 
regarding locality is worsened. This view makes the truth of counterfactual claims depend not 
only on what happens elsewhere in this world, but also on what happens in nearby possible 
worlds. This is the most radically non‐local account of the interactions in mechanisms it is 
possible to have. In general, any passive metaphysical grounding for such counterfactual claims 
as part of mechanisms will yield non‐local, and in some cases also non‐real, mechanisms.30

(p.836) The only prospect for a real and local metaphysics is some variety of active 
metaphysics, a metaphysics such as Machamer, Darden and Craver's activities, or Cartwright's 
capacities. We begin here with Cartwright's capacities view, since it is a more familiar real and 
local metaphysics. We will raise the issue of how far our arguments transfer to other active 
approaches later.

On the capacities approach, the interactions between parts of a mechanism are described in 
terms of the capacities of the entities in the mechanism. Cartwright holds that most general 
causal claims such as ‘aspirins relieve headaches’ or ‘electromagnetic forces cause motions 
perpendicular to the line of action’, are really ascriptions of capacities–the capacity to relieve 
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headaches ascribed to aspirin, and the capacity to cause motions perpendicular to the line of 
action ascribed to electromagnetic forces. Capacities are properties, and their instances are 
real.31 Cartwright allows for special science ‘laws’ of the kind we allow for–the rule of thumb, 
ceteris paribus generalizations that are produced in the special sciences; laws with exceptions 
that can be explained using a mechanism. But these laws arise out of the reasonably regular 
reactions of entities with similar capacities: the truthmakers for laws are capacities. She writes: 
‘It is not the laws which are fundamental, but rather the capacities….Whatever associations 
occur in nature arise as a consequence of the actions of these more fundamental 
capacities.’ (Cartwright 1989, p. 181)

Using capacities in an account of mechanisms allows what a mechanism is to be local. For 
Cartwright, the capacities of the entities in a mechanism are properties of the entities, not 
dependent on anything anywhere else in this world or any other. This nicely fits scientific 
practice since scientists in many domains spend a lot of time figuring out the capacities of the 
entities in mechanisms underlying the phenomena that are interesting to them. When scientists 
point to a mechanism and identify it as the mechanism responsible for certain phenomena, on 
this view they are pointing to something real and really there.

Cartwright ensures that her metaphysics is real and local. An ontology using entities and their 
powers is structurally similar to that of Cartwright. This approach might also yield real and local 
mechanisms. See the work of Carl Gillett (2006) and recent as yet unpublished work by Stephen 
Mumford, both using an active powers metaphysics in their approach to (p.837) mechanisms.32

Machamer, Darden and Craver are also trying to use an active approach as a good metaphysics 
for mechanisms, but the view remains as yet under‐developed. We think it an interesting view 
worthy of the necessary development.33

These views are promising approaches to mechanisms, but note that not all active metaphysical 
approaches will do. Dispositional approaches are structurally similar to Cartwright's capacities 
approach and the powers approach, having a basic ontology of entities plus their dispositional 
properties, rather than entities and their capacities or powers. But the further detail of most 
dispositional approaches would create problems. First, many accounts of what dispositions are, 
are non‐local. This would apply to either conditional or law‐ based accounts of dispositions. 
Second, the local approach to characterizing dispositions is the one which claims that 
dispositions are intrinsic properties of objects. This makes it an acceptable approach to those 
wanting a real and local metaphysics and willing to accept metaphysical claims about intrinsic 
properties, but we are not inclined to accept them. All science needs is clusters of capacities 
that stick around together for long enough and produce a phenomenon regularly enough for us 
to get interested in it and look for the mechanism. As Cartwright says of capacities: ‘They do 
indeed endure; on the other hand, their characteristics may evolve naturally through time, and 
they may be changed in systematic, even predictable, ways as a consequence of other factors in 
nature with which they interact.’ (1989, p. 157)

In conclusion, those wishing for a local and real metaphysics of mechanisms should not use 
counterfactual notions grounded in laws or other possible worlds in their characterization of 
mechanisms. There are alternative available metaphysics, along the capacities or active powers 
lines, which are real and local. These aspects of the capacities or active powers metaphysics are 
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well‐known in the core metaphysics literature, of course, but their existence seems to have been 
largely ignored in the mechanisms literature.

38.6 Objections: Laws, capacities and fundamental explainers
In this section we introduce two major objections to our line of argument. The first objection 
claims that capacities or powers cannot explain anything at (p.838) all. We argue that they can, 
and do a job more suited to the special sciences use of mechanisms than laws or 
counterfactuals. The second objection is an argument attempting to show that on laws or 
counterfactuals‐based stories, mechanisms can still be local. We argue that whether this 
succeeds depends on precisely what you are claiming in characterizing mechanisms. On one of 
the cases we identify, there is no serious disagreement, on the other account we argue that 
mechanisms remain non‐local.

38.6.1 Capacities cannot explain
Recall that the major reason for introducing mechanisms is to explain. The most uncontroversial 
claim about mechanisms is that they explain, whether in a physical or in an epistemic way. It 
might be objected to our arguments that positing an active metaphysics such as capacities or 
powers as explainers, particularly as fundamental explainers, is illegitimate, because capacities 
and powers do not explain anything. To say A produced B because it has a capacity or power to 
produce B, or engaged in the activity which brings about B, explains nothing–it might be thought 
a mere assertion of ‘dormitive virtue’.

The first thing to notice in this debate between capacities or powers, and laws or 
counterfactuals, is that a parallel complaint can be made about laws or counterfactuals. To say 
that A produced B because there is a law that A produces B might also be thought to explain 
nothing. The only ‘explanation’ offered by a law is the recognition that things just tend to 
happen that way, that things like A tend to produce things like B. Intuitions on whether to prefer 
something like capacities or something like laws as fundamental explainers do seem to vary.

There is something odd in considering a law or a capacity, alone, as a complete explanation. The 
explanations we do get tell us so much more. Consider the explanation of how the cell produces 
proteins. Neither the claim that it has a capacity to do so, nor the claim that cells like it also 
produce proteins, tell us much. Mechanisms explain in terms of lower‐level entities and their 
capacities, powers, activities or some such item of an active metaphysics. Mechanisms as a 
whole are neither just capacities, nor just laws. Mechanistic explanation generally starts with a 
regularity: the identification of a phenomenon requiring explanation–usually a regularly 
occurring phenomenon. In the case of protein synthesis, distinguishing between kinds of 
proteins produced, and so further dividing the explanandum phenomenon is important. 
Mechanistic explanation then proceeds by identifying the parts that make up the phenomenon–
the production of each protein, and what those parts do, and can do under similar 
circumstances. To see this as the identification of the entities present, and the capacities or 
powers that those entities have, seems natural. Lawlike regularities can be useful in describing 
mechanisms, but as we have explained, this is consistent with an active metaphysics account of 
mechanisms. On this view lawlike regularities are not fundamental. For those (p.839) 

influenced by the widespread concern of those in the mechanisms literature that there are no 
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special science laws, which we identified as a key reason for turning to consideration of 
mechanisms, this mechanistic view of explanation is far superior.

38.6.2 Mechanisms using laws or counterfactuals can still be local
There may be a deeper objection to our argument that using passive grounds for counterfactual 
notions to characterize mechanisms renders them nonlocal. This is as follows: the status of 
mechanisms as mechanisms depends only on the natural properties that the mechanisms have. 
Although these natural properties depend on the laws of nature, or other possible worlds, 
nevertheless the natural properties are local. Thus, the mechanisms themselves are local. The 
broad idea seems to be to push the underlying nonlocal metaphysics into the background, and 
insist that in general, say, protein synthesis depends only on the natural properties of the 
molecules in the cell, while natural selection depends only on the natural properties in the 
population and its local environment. This, the claim would go, yields the required locality in 
spite of the fact that these natural properties only produce anything or interact with anything in 
virtue of things widely spread in time and space. Thus mechanisms are constitutively local since 
what makes a mechanism a mechanism is these natural properties, the laws being merely some 
kind of inert background conditions.

This is an interesting possibility, which raises the issue of what a characterization of 
mechanisms is intended to do. Over the course of this chapter we have identified a number of 
differences in approaches to mechanisms. A genuine possibility here is that some in the debate 
are not concerned to make any claims about the nature of mechanisms–that is, no claims that 
really impinge on the metaphysics of mechanisms.34 This might be a way to defend Woodward, 
Psillos and Glennan. Perhaps they are merely trying to give an account of mechanisms that will 
let you pick them out, so that you can discriminate mechanisms from non‐mechanisms–rather 
than illuminate what they actually are. Perhaps the best characterisation uses counterfactuals or 
invariance relations because they best let you pick out the mechanisms.

It is possible to read both Woodward and Glennan as merely characterizing how you pick out 
mechanisms. Woodward's paper is titled, ‘What is a mechanism? A counterfactual account,’ but 
his abstract summarizing his argument is less clear. He writes: ‘This paper presents a 
counterfactual account of what a mechanism is. Mechanisms consist of parts, the behavior of 
which conforms to generalizations that are invariant under interventions, and which are 
modular in the sense that it is possible in principle to change the behavior of one part 
independently of the others. Each of these features can be captured by (p.840) the truth of 
certain counterfactuals.’ (Woodward 2002, S366, emphasis added) Perhaps he is only claiming 
something about what the parts of mechanisms typically do, not what they are. Glennan is also 
open to this interpretation. He writes: ‘ “Interaction” is a causal notion that must be understood 
in terms of the truth of certain counterfactuals. The stipulation that these interactions can be 
characterized by invariant, change‐relating generalizations is meant to capture the relevant 
counterfactual truth claims.’ (Glennan 2002, S344, emphasis added) If you read ‘must be 
understood in terms of’ fairly lightly, this may not be a claim about a deeper metaphysics.

If this is indeed the aim Woodward, Psillos and Glennan have in mind, then their accounts would 
fit that aim. Mechanisms do typically exhibit a stability which can very naturally be 
characterized using various counterfac‐ tual notions. If this is the claim then it is perfectly 
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legitimate to say that a counterfactual characterization using a laws or modal realist grounding 
for counterfactuals is compatible with a local deeper metaphysics. A characterization of this sort 
says nothing about metaphysics. When serious questions about the nature of mechanisms arise, 
the non‐local metaphysics used merely to pick out mechanisms can fade quietly into the 
background.

That is one possibility. However, it seems that Woodward, Psillos and Glen‐ nan all have at least 
some intention of arguing for a claim about the nature of mechanisms. In some form or other, 
they all argue that some counterfactual notion is essential or ineliminable in characterizing 
mechanisms. This might well be taken as a stronger claim about the nature of mechanisms, 
beyond any claim about a handy way to pick them out. The quotes from Woodward and Glennan 
above are certainly open to this stronger reading. Psillos must be read in this stronger way.35 He 
argues extensively that counterfactuals are indispensable to a characterization of mechanisms, 
repeating this kind of claim at several points in his paper. He summarizes the thesis he has 
argued for towards the end of the paper: ‘mechanisms need counterfactuals; but counterfactuals 
do not need mechanisms. In other words, mechanistic causation requires counterfactual 
dependence but not conversely. It is in this sense, that the counterfactual approach is more 
basic than the mechanistic.’ (Psillos 2004, p. 315) To claim that the counterfactual approach is 
more basic than the mechanistic does look like a metaphysical claim in this chapter.

If the claims of any of the three are claims about the basic–ineliminably basic–metaphysics for 
mechanisms, then it is a claim about the nature of mechanisms. It is not clear how such a claim 
can fade into the background to allow mechanisms to be considered constitutively local. It is 
claimed that the nature of mechanisms is to have the natural properties that they do lead to the 
interactions that they do only in virtue of the laws of nature, or facts about (p.841) other 
possible worlds. But then what mechanisms are is non‐local. Depending on the detail of the 
further claims, mechanisms might also turn out to be non‐real.

Another thought is that Psillos, Woodward and Glennan are in various ways concerned with 
understanding causation, as well as mechanisms. Perhaps the claim that a non‐local metaphysics 
doesn't make causal claims non‐local is plausible in a way that the parallel claim for mechanisms 
is not. In considering causal claims, we immediately focus on salient causes, and standardly 
assume vast amounts of stable background conditions. Perhaps in this context the claim that 
natural properties are local, treating a passive metaphysics as background, is not unreasonable. 
But in the context of physical mechanistic explanation–not epistemic mechanistic explanation–we 
are not in the same situation. For mechanisms, the entire structural background is crucial to 
what a mechanism is. On this metaphysical view, such mechanisms are non‐local.

Perhaps the objection discussed in this section could be read as intending merely to deflect the 
counterintuitiveness of mechanistic explanation turning out to be non‐local.36 If this is so, it 
seems to fail. Non‐local mechanistic explanations of this sort are committed to the core claim 
that the behaviour of other people like me in this world, or my counterparts in other possible 
worlds, is in some way relevant to explaining why I bump into lampposts. This is precisely the 
counterintuitive claim that we deny. A mechanistic explanation of my clumsiness depends only 
on facts about me. There is a metaphysics available without such a counterintuitive 
consequence–a metaphysics of capacities, powers or activities, which should be preferred.
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In conclusion, capacities can explain and mechanisms are still non‐local on any claim that 
counterfactual notions are part of their nature, their metaphysics. The active metaphysics of 
capacities or powers clearly comes out better, thoroughly satisfying both locality and reality.

38.7 Conclusion
We have argued extensively that both scientific practice and much of the mechanisms literature 
is committed to mechanisms being both real and local. We further argued that if mechanisms 
are to be real and local, so that they can be used in physical explanations of phenomena, in a 
form distinct from laws‐ based explanation, they require an active metaphysics such as 
Cartwright's capacities approach, a powers approach, or an activities approach.

We have framed all our arguments here about mechanistic explanation. We believe that 
exploring mechanistic explanation will be illuminating to meta‐ (p.842) physical debates about 
causation, but not necessarily in a simple way, meaning that it is best to understand mechanistic 
explanation thoroughly, and then go on explicitly to consider its relation to causation and causal 
explanation. For those interested in scientific methodology more than metaphysical debates, it is 
probably sufficient to note that scientists involved in mechanistic explanation of the sort we 
describe see themselves as straightforwardly involved in causal explanation. See for example the 
work of an evolutionary biologist: ‘The main purpose of evolutionary biology is to provide a 
rational explanation for the extraordinarily complex and intricate organization of living things. 
To explain means to identify a mechanism that causes evolution and to demonstrate the 
consequences of its operation.’ (Bell 1997, p. 1, emphasis added.) Or consider the view of a 
biochemist: ‘Uncovering the cellular mechanisms resulting in sequential transfer of information 
from DNA (our genes) to RNA and then to protein represents one of major achievements of 
biochemistry in the 20th century.’ (Whitford 2005, p. 247, emphasis added) Both clearly see 
themselves as investigating causes. From this point of view, all our arguments apply 
straightforwardly to this important variety of causal explanation.
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Notes:
(1) The special sciences span from chemistry to psychology, economics and social science. Some 
areas traditionally thought of as physics might still best be thought of as special sciences, as 
James Ladyman has argued in private communication. He suggests optics, cosmology and solid‐
state physics. We don't mean to imply that mechanistic explanation is absent from physics, just 
that it is ubiquitous in the special sciences.

(2) Cartwright has been very influential here. She even argues that many of the classic universal 
laws of fundamental physics describe only idealized, closed systems, so are in fact not universal 
laws when applied to the real world. See Cartwright (1983).

(3) Glennan (2002) discusses this extensively. Note that idealised models are a different issue, 
quite distinct from physical mechanisms–consider that they are models. See also Mitchell (2007.

(4) It is not universal. We will show later that careful study of Psillos' views suggests that he 
believes mechanistic explanation collapses to laws‐based explanation. And see Leuridan 
(forthcoming) for an interesting examination of mechanisms and laws‐based explanation using 
Sandra Mitchell's understanding of ‘pragmatic’ laws, which are intended to be available in the 
special sciences.

(5) It is in this sense of explanation that the explanation a biologist gives his small son is very 
different from the one he will give in a research seminar. It is also the sense in which an 
explanation which is strictly speaking false might often be the best way of explaining something 
to a particular audience. One might say, for example, ‘Mummy is getting fat because she has a 
baby in her tummy’. Strictly speaking Mummy is not getting fat, nor is the baby in her stomach. 
Thanks to Julia Tanney for suggesting this useful example.

(6) We will discuss the tricky cases of social and psychological mechanisms in Sections 38.3 and
38.4.

(7) Achinstein explores the relation between explaining acts and worldly explainers. See 
Achinstein (1983).

(8) Woodward does this. His section 5 is all about modularity, and he writes: ‘The basic idea that 
I want to defend is that the components of a mechanism should be independent in the sense that 
it should be possible in principle to intervene to change or interfere with the behavior of one 
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component without necessarily interfering with the behavior of others.’ (Woodward 2002, p. 
S374).

(9) See Glennan (2002), Machamer, Darden and Craver (2000), and Bechtel and Abrahamsen 
(2005). Craver goes on to make the distinction thoroughly explicit. He talks of explanations as 
texts, models or representations used to convey information. He goes on: ‘Other times, the term 
explanation refers to an objective portion of the causal structure of the world, to the set of 
factors that bring about or sustain a phenomenon.’ (Craver 2007, p. 27).

(10) See Glennan (2002) and Craver (2007) for interesting discussion.

(11) The claim that mechanisms are real does not commit us to some variety of physical 
reductionist thesis. We believe there is serious reason to doubt whether science really proceeds 
by classical reduction. See for example Craver (2007) for an argument that the field of 
neuroscience has not advanced in ways remotely resembling the reductive paradigm.

(12) Skipper and Millstein argue that natural selection is not a mechanism–at least not one that 
fits the characterizations of mechanisms offered by MDC and by Glennan. We disagree. See our 
examination of natural selection in Illari and Williamson (2010).

(13) Instrumentalism has a long intellectual history, being traceable to work of Mach and 
Duhem, among others. See van Fraassen (1980) for a more recent discussion.

(14) See Adams et al. (1992), Voet and Voet (2004), and Whitford (2005). For example: 
‘Uncovering the cellular mechanisms resulting in sequential transfer of information from DNA 
(our genes) to RNA and then to protein represents one of major achievements of biochemistry in 
the 20th century.’ (Whitford 2005, p. 247) Or consider: ‘How do genes function, that is, how do 
they direct the synthesis of RNA and proteins, and how are they replicated?’ (Voet and Voet
2004, p. 92).

(15) This understanding of decompositional mechanistic explanation is uncontroversial in the 
mechanisms literature. See for example Bechtel and Abrahamsen: ‘The quest to understand the 
mechanism responsible for a given phenomenon requires decomposing the responsible 
system.’ (2008, p. 560) They also discuss the importance of looking upwards to higher‐level 
mechanisms. For this chapter, we set aside etiological mechanistic explanation. We suspect that 
it will exhibit the same kind of locality as decompositional mechanistic explanation, but lack 
space to establish that here.

(16) In this way, quantum non‐locality isn't a counterexample to our locality claim, since 
quantum phenomena are still local to the system. What's surprising is how spread out in space 
that system can be.

(17) Ned Hall characterises this informally: ‘Intrinsicness: The causal structure of a process is 
determined by its intrinsic, non‐causal character (together with the laws).’ (Hall 2004, p. 225).

(18) Ned Hall, for example, uses the following sense of locality: ‘Locality: Causes are connected 
to their effects via spatiotemporally continuous sequences of causal intermediates.’ (Hall 2004, 
p. 225).
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(19) See the debate about core realizers. Advocates include Block (2005) and Wilson (2004). 
These are very interesting issues we intend to examine at length elsewhere.

(20) Thanks to Anthony Everett for raising this point.

(21) See the forthcoming Menary collection for extensive discussion of the extended mind thesis.

(22) See for example Schaffer (2004) and Dowe (2004) for an interesting symposium.

(23) This useful example is originally Helen Beebee's. See for example her (2004).

(24) We take this important point to be a central view of David Lewis' later work. See Lewis 
(2004). For further discussion of the idea of difference‐making and its relation to causation, see 
Hall (2004). Difference‐making itself might be tracked in different ways, such as using simple 
counterfactual notions, invariance relations, or correlations.

(25) These familiar ideas derive from Ramsey, through significant development by David Lewis. 
Ramsey discusses the possibility of us systematizing our knowledge in a deductive system, 
suggesting that the laws are the axioms of such a system. See Ramsey (1990, p. 143). We focus 
on the best‐system laws grounding for counterfactuals as it is Stathis Psillos' explicit view (see 
Psillos 2004), and include modal realism as the major alternative.

(26) See Cartwright (1989), Machamer et al. (2000) and Gillett (2006). There is considerable 
variation within the active tradition, with Machamer, Darden and Craver's essentially dynamic 
activities the most ‘active’. We will come to some of these distinctions later.

(27) This is Psillos' view. He writes: ‘The one [story] I favor ties the truth‐conditions of counter‐ 
factual assertions to laws of nature.’ He adds later: ‘Laws are those regularities that are 
members of a coherent system of regularities, in particular, a system which can be represented 
as an ideal deductive axiomatic system striking a good balance between simplicity and
strength.’ (Both from Psillos 2004, p. 299).

(28) David Lewis seems committed to this, since he accepts the parallel implication for a laws‐ 
based account of causation: ‘Like any regularity theory, the best‐system analysis says that laws 
hold in virtue of patterns spread over all of space and time. If laws underlie causation, that 
means that we are wrong if we think, for instance, that the causal roles of my brain states here 
and now are an entirely local matter. That's an unpleasant surprise, but I'm prepared to bite the 
bullet.’ (Lewis 1994, p. 479) Note that if the best‐system view of laws is as a best system in a 
world consisting of four‐dimensional spacetime, then mechanisms today will also depend on the 
future.

(29) No one in the mechanisms literature explicitly holds this view, to our knowledge. However, 
given the history of metaphysical theorizing about counterfactuals, it is too important an 
alternative to neglect.

(30) We do not discuss Woodward's test‐conditions for the truth of counterfactuals because 
Woodward claims that his view is not a metaphysical one. See Woodward (2003). Nevertheless, 
if you did take Woodward's position to be a metaphysical one, his invariance relations would be 



Mechanisms are real and local

Page 25 of 25

nonlocal, albeit more local than either a modal realist or best‐system laws view. Invariance 
relations would still depend on what happened elsewhere and at other times in this world.

(31) Cartwright argues this extensively. See her (1989). She also argues against the possibility 
of describing away capacities in terms of regularities. She writes: ‘One does not just say the acid 
and the base interact because they behave differently together from the way they behave 
separately; rather, we understand already a good deal about how the separate capacities work 
and why they should interfere with each other in just the way they do.’ (Cartwright 1989, p. 
165).

(32) One might hold that powers are a better prospect for the metaphysics of mechanisms than 
dispositions, since dispositions can be seen as structural properties of static objects, whereas 
powers are more dynamic. On this point, see also Machamer (2004). See Illari and Williamson 
(forthcoming) for further discussion of the dynamic nature of activities.

(33) We argue elsewhere that Machamer, Darden and Craver's activities‐entities dualism 
compares well to Cartwright's entities‐capacities ontology, on various criteria for ontology. See 
Illari and Williamson forthcoming.

(34) This might be partially due to their primary concern being with epistemic explanation.

(35) Note that Psillos could defend himself by retreating into a general anti‐realism. But then we 
think his general anti‐realist views will support his views on mechanisms, not vice versa.

(36) We thank an anonymous reviewer for raising this possibility.
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continuities that connect the steps of some important biological processes. Far from being 
‘little more than a metaphor that masquerades as a theoretical concept’ (as Sarkar 
claims), we believe the relevant notion of information can be well enough understood to 
qualify as a useful and perfectly acceptable scientific concept. As our title suggests, this 
paper's treatment of information develops from Machamer, Darden, and Craver's 
mechanistic account of causally productive causal processes. We suppose that what we 
are calling mechanistic information can be understood in terms of goals served by 
mechanisms, and the influence on connections among the initial and final stages of their 
operation. We use the examples of Crick's early conception of gene expression and a 
sensory‐motor reflex in the leech to illustrate our account and to contrast ours to some 
familiar ideas of information including Shannon and Weaver's, Millikan's teleo‐ semantic 
notion, and Crick's own conception of information transmission as pattern replication.

39.1 Introduction
Since the middle of the twentieth century neuroscientists, evolutionary theorists, molecular 
geneticists and other biologists, have talked as though informationand information floware 
important explanatory notions. However, some influential recent literature in philosophy of 
science disagrees. Paul Griffiths says that although

… there is a genetic code by which the sequence of DNA bases in the coding regions of a 
gene corresponds to the sequence of amino acids in the primary structure of one or more 
proteins, … the rest of 'information talk' in biology is no more than a picturesque way to 
talk about correlation and causation. (Griffiths 2001, p. 395)

In conceding that ‘there is a genetic code’ all Griffiths commits himself to is a simple (though 
degenerate) mapping relationship between sequences of (p.846) DNA codon bases and amino 
acids on protein precursors. In rejecting the rest of ‘information talk’ he denies that 
explanations and descriptions of biological phenomena couched in terms of information flow can 
tell us anything that cannot be said simply by talking about causes and correlations. He 
endorses Sahotra Sarkar's claim that no matter how much working biologists talk about 
information

… there is no clear, technical notion of ‘information’ in molecular biology. It is little more 
than a metaphor that masquerades as a theoretical concept and…leads to a misleading 
picture of possible explanations in molecular biology. (Sarkar 1996, p. 187)

We agree with the biologists.1 Ideas about information have been and continue to be important 
to the development and articulation of exemplary explanations of some fundamental biological 
phenomena.2

Standard biology textbooks invoke information to answer questions about biological processes 
they seek to explain. We maintain that information talk in biological explanations cannot always 
or often be satisfactorily replaced by descriptions of correlations and non‐informational causal 
connections. Crick's On Protein Synthesisis a classic illustration (Crick 1958). Although we don't 
agree with much of what Crick says about information flow, we follow him in thinking that the 
continuities of some fundamental biological processes do depend upon information storage and 
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transmission. This chapter's main examples of this are DNA expression and a sensory‐motor 
reflex which functions to move leeches away from things that press against them.

The poet Frank O'Hara described the development of his poems as taking the form: I do this, I 
do that (http://findarticles.com/p/articles/mi_m1248/is_2_88/ai_59450177/). The continuity of a 
causal process might be analogously described by saying that this causes (or contributes to the 
production of) this, and that causes (or contributes along with such and such other factors (p.
847) to the production of) that. Frank O'Hara style causal descriptions can tell us all there is to 
know about how a number of biological processes develop from step to step. As we discuss in 
Section 39.3 and 39.4, the Krebs cycle is a case in point. But they fail to capture important facts 
about connections between the steps that take the mechanism of protein synthesis from the 
transcription of a segment of DNA to the production of a polypeptide string of amino acids. The 
same holds for connections between the steps of the leech reflex whose operation is initiated by 
something pressing on the organism's body and completed (if all goes well) by muscle 
contractions that move the leech away from the source of the pressure. In cases like these, 
causal factors at work in the initial steps of the process exert a strong influence on the 
development of the process and the result that completes it. The kind of influence they exert 
distinguishes these processes from processes whose continuities can be explained without 
appeal to information. In the remainder of this chapter we set out the notion of information that 
we take to be appropriate to the explanation of the continuities of DNA expression, the leech 
escape reflex and other biological mechanisms whose initial causal factors make similar 
contributions to their continuities.

39.2 Processes and mechanisms
The processes we consider in this chapter — informational and non‐ informational alike — are 
operations of mechanisms in the sense of Machamer et al.(MDC) (2000). An MDC mechanism is 
an arrangement of entities which engage in an ordered sequence of activities. The activities that 
entities engage in move the mechanism from an initial or start‐up condition through one or more 
steps3 to a result that marks the end of its successful operation. The activities move the 
mechanism forward by initiating, sustaining, modifying and damping the activities of other 
entities and in some cases, by incorporating or producing new component entities and 
eliminating or modifying preexisting ones. Mechanistic explanations answer questions about the 
entities, the activities and the parts they play in producing results to be explained.4As MDC 
observe, ideal mechanistic explanations

… exhibit productive continuity without gaps from the set‐up to termination conditions. 
Productive continuities are what make the connection between stages intelligible. 
(Machamer, Darden and Craver 2000, p. 3)

(p.848) All mechanisms

… have productive continuity from one stage to the next … [such that] entities and 
activities of one stage give rise to the next stage… but few mechanisms have information 
flow through multiple stages of the [operation of the] mechanism. (Darden 2006, p. 283)
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Whether information ought to be invoked to explain how a mechanism operates depends in part 
on the interpretive stance taken by its investigators. For example, molecular biologists found it 
useful to interpret certain features of DNA expression in terms of information when biochemical 
interpretations proved unfruitful (Darden 2006, p. 280 ff.). But the correctness of their 
explanatory claims depends on facts about the makeup and the operation of the mechanism that 
obtain independently of interpretive or explanatory strategies. One crucial difference between 
the operations of mechanisms that do, and those that do not involve information turns on what 
we call the reachof causal influences exerted by initial factors. To illustrate what this means we 
will sketch some differences between DNA expression (an informational process) and the Krebs 
cycle (a non‐informational process).

A second crucial difference is that the continuity of an informational mechanism is a function of 
its teleological structure. Informational biological mechanisms operate for the sake of achieving 
or promoting goals of the organism (or one or more of its component subsystems) to which they 
belong.5 Information, as we think of it, consists of the causal influences that achieve or promote 
relevant goals. When the system is in good working order and the mechanism functions as it 
should, the information an entity or activity transmits (i.e. the causal influence it exerts on other 
components of the mechanism) contributes to the production of a result that achieves or 
promotes the goal for the sake of which the mechanism operates. We discuss this below in 
Section 39.6. But mechanisms are subject to different kinds of malfunction. In some 
malfunctions — e.g. where interfering factors keep the mechanism from operating or from 
moving all the way to its final step — information plays no significant role. In others, e.g. the 
expression of mutant DNA responsible for cystic fibrosis, information contributes to malfunction 
by moving the mechanism toward a result that prevents the achievement of its normal goal. We 
discuss this in Section 39.7.

(p.849) 39.3 Reach
To illustrate the notion of reach, consider how DNA codons direct the selection and arrangement 
of amino acids to form protein precursor polypeptides. The production of amino acid strings 
begins when the bases on a DNA segment bind weakly to their complements6 to produce a string 
of nucleotides which is then detached to form a strand of pre‐mRNA. Later the pre‐mRNA strand 
is cut and spliced to produce a strand of mRNA. Still later, amino acids attached to ribosomes 
decorated with the complements of mRNA bases are carried and attached to mRNA strands. The 
bases to which ribosome bases bond are the complements of codon bases on the DNA segment 
that is expressed. As a result the amino acids carried by the ribosomes are arranged on the 
polypeptide to stand in the same spatial relations as the bases on the DNA codons. Because the 
bases bind weakly only to their complements, DNA codon bases exert a direct influence on the 
production of pre‐mRNA and a strong indirect influence that extends to the products of 
subsequent steps of polypeptide construction.

To make the notion of reach more vivid, compare the extensive influence of DNA codon bases on 
polypeptide construction to the weak influence the oxaloacetate molecule that interacts with 
other chemicals to begin each round of the Krebs (citrate) cycle.7 Each round of the cycle 
consists of eight chemical reactions. Each reaction uses chemicals supplied by a number of 
different mechanisms to produce a molecule that serves as a substrate for the next step in the 
cycle. Many of the mechanisms that supply chemicals to interact with the substrates operate 
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more or less independently of one another. And they are part of the Krebs cycle only to the 
extent that some of its byproducts contribute to the production of energy carriers and other vital 
molecules needed to sustain their operation. Thus, none of the substrates of Krebs cycle 
reactions exert an influence of any considerable reach on subsequent steps.

In slightly more detail, a number of different chemicals from different sources enter into the first 
two steps of the cycle. Oxaloacetate (the substrate for step one) does little by itself to limit the 
number of results that can be produced in step two. Moreover, the influence of oxaloacetate 
diminishes from step to step as the new substrates are produced. For example what goes on in 
step 5 in Figure 39.1 depends upon the chemical behaviour of succinyl‐CoA, the substrate 
supplied by step 4, together with additional chemicals (including (p.850)

(p.851) GDP, water, inorganic phosphate 
molecules and synthetase enzyme, for 
example) that are made available by 
interactions that do not belong to the cycle 
itself.
These chemicals work together to produce 
succinate, the substrate for step 6. The 
chemical makeup of succinyl‐CoA places 
some constraints on what molecules can be 
produced at subsequent steps. But these 
constraints are so weak that a great many 
different interactions producing a great 
many different molecules would occur if 
different enzymes and reactants were 
present instead of the ones that are 
normally available to help move the cycle 
forward. According to Peter Wipf

For the 9 small molecules8 involved in 
the citric acid cycle, any good chemist 
could draw you upwards from 200 
different reactions giving different 
products from the specific enzyme‐
mediated processes. For somebody 
trained in the art of synthesis, the 
number would go up to maybe 5,000. 
(Personal correspondence)

The burden of deciding which of these 
molecules can be produced falls mainly to 
the influence of the reactants and enzymes 
that various mechanisms provide after the 
completion of step 1.

We characterize reachin terms of strength and independence of influence as follows:

Fig. 39.1  Top: The Krebs cycle, courtesy of 
Georgia State Chemistry Department, http://
chemistry.gsu.edu/Glactone/PDB/Proteins/
Krebs/Krebs.html. Bottom: Step five of the 
Krebs cycle.
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39.3.1 Strength of influence
The strength of an entity's or activity's influence depends on how many alternative results it 
rules out or renders significantly improbable in subsequent steps in the operation of the 
mechanism.9 The more downstream outcomes it leaves open, the weaker is its influence.

39.3.2 Independence of influence
This is a robustness condition. The less a factor's influence depends on background conditions 
over which it has no control, and the greater the range of different background conditions under 
which it can produce or contribute to the production of the same downstream results, the more 
independent is its influence on the operation of the mechanism.10 Because bases bind to their 
complements independently of the background conditions under which (p.852) binding occurs, 
the influence DNA codons exert on the construction of RNA strands and polypeptide chains is 
considerably more independent than the influence that the oxaloacetate molecule exerts on the 
production of molecules in the Krebs cycle.11

39.3.3 Reach
The reach of an entity's or an activity's influence depends on how many steps are strongly 
influenced by it and how independently it influences them. It should be clear that the reach of 
the influence exerted by DNA base sequences extends to the ordering of the amino acids. (We 
discuss the reach strength and independence of initial causal factors in the leech's pressure 
escape mechanism below in Section 39.5 and note 20.)

While the reach of initial factors is important, it is not sufficient to distinguish informational 
from non‐informational continuities. Consider the example of a very smooth block that slides 
down a very smooth plane in response to a gentle tap, strikes a domino at the bottom of the 
incline and knocks it over.12Absent interfering causes, the tap that starts it on its way exerts a 
strong and independent influence on its direction and velocity at every step of its slide and on 
the fall and final position of the domino, but this is by no means an information system. A Frank 
O' Hara style description of the relevant causal sequence suffices to explain what happens from 
the tap to the domino's falling over and coming to rest. Similarly, there is no information in the 
process that takes a drinker from alcohol ingestion to intoxication even though the alcohol 
exerts an influence of great reach. Furthermore, the notion of reach applies only trivially to 
causal influences in mechanisms that move from start up to end states in a single step. The 
teleological structure of DNA expression and the leech reflex is what distinguishes them from 
the falling dominos.

39.4 Teleological structure and reach differentiate the Krebs mechanism from 
informational mechanisms
To recapitulate, we've seen that the mechanisms responsible for the leech reflex and for DNA 
expression operate to satisfy needs for the organisms they belong to. These mechanisms are 
activated by factors that indicate what results they must produce in order to serve their 
purposes. Thus in response to pressure, sensory neurons engage in activities whose reach 
extends far enough through the operation of the reflex mechanism to direct it toward the (p.
853) production of teleologically appropriate muscular activity. A crucial difference between 
the pressure escape reflex and the Krebs cycle is that in comparison to the factors that set it in 
motion, the factors that begin the Krebs cycle have very little influence on what happens 
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downstream. But reach doesn't explain why the operation of the block‐incline‐domino 
mechanism is non‐ informational. The tap that starts the block on its way toward the domino has 
a great deal to do with the fall of the domino. With regard to mechanistic information, the 
crucial difference between the escape reflex and the block‐ incline‐domino mechanism is 
teleological. The block‐incline‐domino mechanism does not belong to a system with goals for the 
block to promote by knocking over the domino. DNA expression differs from the operation of the 
block‐incline‐domino mechanism in the same way — by virtue of operating to help satisfy needs 
of the organism.13

Someone will want to know how we can accommodate what we've just been saying to the fact 
that the Krebs cycle benefits organisms by producing energy carrying GTP and NADH, and other 
beneficial molecules including the precursor of energy carrying ATP (Alberts et al. 2002, pp. 92, 
102, 106). It is arguable that this is why the Krebs cycle survived natural selection. We are 
indebted to Lindley Darden for commenting that philosophers who identify the goals of 
biological mechanisms with functions for which they were selected might conclude from this 
that the Krebs cycle operates for the sake of supplying the organism with certain vital 
molecules. But even so, biologists and biochemists seldom invoke information to explain how the 
cycle operates as they do in connection with DNA expression. According to us that is as it should 
be because the molecules that figure in its first step have next to no influence on the direction 
the cycle takes in moving toward the result that marks its final step. As we said, reactants that 
originate outside of the mechanism do much of the work in selecting products to be produced, 
e.g. at steps 5 through 8 of the cycle. As a result, the strength and independence of the influence 
of oxaloacetate molecules diminishes to relative insignificance as the cycle moves on.

Furthermore, although the Krebs cycle plays a teleological role it does not have the kind of 
teleological structure that is required for a mechanistic informational process. When all goes 
well the operations of the leech reflex and the DNA expression mechanisms end with the very 
result whose tele‐ ological appropriateness was indicated by entities and activities belonging to 
their first steps. By contrast, the oxaloacetate molecule whose production completes the Krebs 
cycle benefits the organism only as a substrate for the first step of its next round. In 
contributing to the continuation of the cycle, the (p.854) benefit oxaloacetate provides is no 
different from that of the products of every other step. The vital molecules the Krebs cycle 
produces for the organism are released as byproducts before the cycle reaches its final step.

Jason Byron objected in discussion that the Krebs cycle resembles DNA expression more closely 
than we acknowledge. The molecules that interact with oxaloacetate to begin the cycle are 
obtained from carbohydrates whose ingestion is typically increased by hunger which indicates a 
need for energy carried by GTP and NADH. Thus if hunger tracks energy closely enough, and 
sugars are metabolized efficiently enough, hunger could regulate the rate at which the Krebs 
cycle mechanism produces needed energy carriers.14 But this doesn't imply that the Krebs cycle 
has the teleological structure exemplified by DNA expression and the leech reflex. Over and 
above the fact that GTP, FADH, etc., are byproducts rather than results completed by the cycle's 
final step, we've seen that the molecules that set the cycle in motion don't even do much to 
direct the cycle toward the production of its beneficial byproducts. Thus Frank O'Hara style 
causal accounts can tell us all we need to know about the continuity of the Krebs cycle. But 
trying to explain the continuity of polypeptide construction or the pressure escape reflex without 
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appeal to the goals their mechanisms serve, and connections between their goals and the 
control that first step factors impose on their operation would be like trying to explain the 
continuity of a chess game without reference to the object of the game or the influence of 
tactical considerations.

39.5 Mechanistic information
We use the term ‘mechanistic information’ in connection with the notion of information that we 
think is appropriate for explaining continuities in the operation of goal directed mechanisms that 
Frank O'Hara descriptions cannot account for. We turn now to our characterization of 
mechanistic information, beginning with the first of several comparisons to other notions of 
information.

As Lindley Darden explains, Crick believed that information flows from DNA to direct protein 
precursor construction and that information flow consists of pattern replication. Amino acid 
strings are encoded after the manner of Morse code messages by sequences of DNA codon 
bases (Darden 2006, p. 282–3). The pattern into which these bases are arranged is instantiated 
on RNA strands by codons whose bases are the complements of the bases in their (p.855) DNA 
codon counterparts. According to Crick the same pattern is replicated from step to step until its 
final instantiation — a string of amino acids that will be folded to complete the protein encoded 
in the DNA segment.15 We agree with Crick in thinking of DNA information in terms of ‘… the 
specification of the amino acid sequence of the protein’ that has been selected for synthesis 
(Crick 1958, p.144; Cp.p.153). But we disagree with his ideas about information flow. As we 
said, DNA segments are expressed in order to supply the organism (or one or more of its 
subsystems) with proteins it needs. So‐called housekeeping genes are expressed more or less 
continuously to provide proteins the organism needs at all times, e.g. to support cell metabolism. 
Other DNA segments are expressed occasionally to satisfy temporary needs for proteins to 
support special functions (e.g. muscle contractions and relaxations in the execution of a dance 
step). The construction of a protein precursor actually does begin with the replication of a 
pattern; a DNA segment is selected to serve as the template for the production of a strand of 
pre‐mRNA whose nucleotide bases stand to one another in the same spatial relations as their 
DNA complements. Anti‐codons are sequences of nucleotides. Like codons, each anti‐codon is a 
sequence of three nucleotides. Anti‐codon nucleotides complement and stand in the same 
special relations to one another as those of the corresponding DNA codons. Thus pre‐mRNA 
anti‐codons instantiate the same pattern as codons. But pre‐mRNA is cut and spliced to produce 
mRNA, and in the process molecules standing in between anti‐codons are removed. As a result 
anti‐codons that were spatially separated on the pre‐mRNA strand are adjacent to one another 
on the mRNA strand. Suppose CUCAGCGU‐ UACCAU are the bases on a string of anti‐codon 
nucleotides that comprises a part of the mRNA strand. As it stands this string could function as 
any one of several different sequences of anti‐codons, each of which codes for a different 
arrangement of amino acids.16 Because the string is ambiguous with regard to alternative 
nucleotide sequences, it is neither plausible nor illuminating to think of it as the replication of 
any specific DNA codon pattern. Further failures of pattern replication result from a variety of 
editing, erasing and other processes. If all goes well, a pattern once filled by DNA bases will be 
replicated (p.856) by an amino acid sequence completed in its final step. But that pattern is by 
no means unambiguously instantiated at every step of the process.
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The leech's pressure escape reflex provides even more vivid examples of information 
transmission without pattern replication. Its pressure sensing neurons synapse on interneurons. 
The interneurons synapse on the motor neurons that drive muscle fibres. Each interneuron 
receives inputs from sensory neurons that originate at different locations on the leech's body. 
Because they are subjected to different pressure stimuli they fire at different rates or intervals. 
To produce information to transmit to motor neurons, interneurons must process and resolve the 
multiple inputs they receive from sensory neurons (Churchland and Sejnowski 1992, p. 34). As a 
result temporal organizations of sensory and interneuron spike trains are too different to be 
usefully construed as instances of the same spatial or temporal pattern.17

Teleology is essential to our alternative to Crick's pattern replication story. As Ruth Millikan 
emphasized, in order to understand what makes biological information informationone must 
consider its role in directing DNA expression toward the production of precursors of needed 
proteins (Millikan 1993, p. 186). As things stand before a DNA segment is selected for 
transcription the mechanism can be set in motion toward the production of many different 
protein precursors. The selection and transcription of a specific DNA segment in response to a 
specific need drastically reduces the number of results that could otherwise have been produced 
and promotes the production of results that move the mechanism toward the assembly of the 
teleologically appropriate protein precursor. If all goes well the activities that entities engage in 
at subsequent steps eliminate more and more teleologically inappropriate results until the 
appropriate amino acid string has been assembled. Had a segment encoding a different protein 
precursor been selected, the mechanism would have eliminated different possibilities and 
promoted different results.

We will use the term ‘function indicator’ to refer to features like temporal organizations of leech 
reflex spike trains and arrangements of codon bases of entities and activities in mechanisms like 
DNA expression and the leech reflex. Like Crick's replicated patterns, they help direct the 
operation of the mechanism toward teleologically appropriate results. But they do not supply 
direction after the manner of a series of pattern replications, or a navigational map, an 
architectural plan, a diagram, a recipe, or any other sort of representation of the relevant result. 
Nor do they convey semantic content. Instead, they help move the mechanism toward its goal by 
determining or limiting (p.857) the causal influences that the entities or activities they belong 
to can bring to bear on other components of the mechanism. For example firing rates or 
temporal distributions of action potentials determine what causal influence a pre‐synaptic spike 
train can bring to bear on a post‐synaptic neuron or muscle fibre to move the leech reflex 
toward its goal of getting the leech away from a putatively harmful environmental influence. The 
teleological significance of the relevant temporal features and the way in which they guide the 
reflex depend upon their causal history. When the reflex mechanism operates properly under 
conditions conducive to its serving its purpose, the temporal organization of sensory spike trains 
varies with the locations of pressure sensors relative to the part of the leech's body that is 
pressed. As a result, the function indicating temporal features of sensory spike trains vary with 
location and intensity of the pressure source and therefore with the direction in which the reflex 
must move the leech to serve its purpose. The causal influence that sensory spike trains exert on 
interneuron spiking depends upon their function indicators; interneurons don't respond in the 
same way to sensory inputs that differ with regard to their temporal organization. When all goes 
well sensory neurons are thus constrained by their function indicators in such a way as to 



Mechanistic information and causal continuity

Page 10 of 19

promote interneuron electrical activity that moves the mechanism closer to its goal. The same 
holds for function indicators on interneuron and motor neuron spike trains. Thus upstream 
function indicators influence the production of downstream function indicators. This, together 
with the constraints function indicators impose on the activities that entities engage in accounts 
for the goal directed reach of first step factors in the leech reflex. This is how sensory spike 
trains provide the organism with information about the location of the harmful stimulus that it 
needs in order to move away from that stimulus. In this sense it is information about what 
direction to move to avoid a pressure source.

In our other example DNA segments are expressed to supply proteins needed by the organism or 
one or more of its subsystems on a regular or temporary basis. The expression mechanism is set 
in motion by transcription factors and other molecules made available and set to work in 
response to specific needs. The part they play in selecting and beginning the transcription of 
DNA segments that encode teleologically appropriate protein precursors is roughly analogous to 
the role pressure stimuli play in setting up teleologi‐ cally appropriate spike trains in leech 
pressure sensors. Nucleotide bases and their spatial arrangements are the function indicators 
that belong to DNA codons. Their contribution to transcription is analogous to the contribution 
of teleologically significant temporal features of leech pressure sensor spike trains. We call such 
things function indicators because when all goes well they and the constraints they place on the 
operation of their bearers are indicative of the functions that entities and activities must carry 
out in order for the mechanism to serve its purpose.

(p.858) Mechanistic information is the causal influence that entities and activities at one step 
in the operation of a mechanism exert to select teleologi‐ cally appropriate results for production 
in one or more subsequent steps. In short, mechanistic information is selective causality. The 
mechanistic information transmitted by a segment of DNA or RNA consists in its contribution to 
such processes as assembling, cutting and splicing strings of nucleotides. In this case 
mechanistic information is transmitted through bonding and bond breaking. The DNA and RNA 
segments are constrained by their function indicators to transmit information that moves the 
mechanism toward the production of precursors of needed proteins. It is information for protein 
production.18 Function indicators constrain the influence of spike trains at every step of the 
leech's pressure avoidance reflex to promote the selection of results that move the mechanism 
toward the teleologi‐ cally appropriate muscular responses.19 This is information for an 
avoidance response.

More generally, the mechanistic information an entity or activity transmits is the causal 
influence it exerts on other entities or activities to select teleologically appropriate results for 
production and to prevent or discourage teleologically inappropriate results at one or more 
subsequent steps. The mechanistic information an entity or activity receives is the teleologically 
significant causal influence the relevant entity or activity exerts on it. To store mechanistic 
information is to have the ability to exert a teleologically significant influence on the selection of 
downstream results.
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(p.859) 39.6 Some differences between mechanistic, Shannon–Weaver, semantic, 
and teleo‐semantic conceptions of information
Some weak points of analogy hold between the selection of results produced in mechanistic 
informational processes and the communication of a message by Shannon–Weaver signal 
transmission. Like Shannon and Weaver we think of information in connection with the 
reduction of uncertainty. But Shannon–Weaver information is a measure of uncertainty as to 
which of a number of alternative possible messages or signals has been chosen for transmission, 
or which message or signal is to be received. If noise interferes with the signal to increase 
uncertainty, Shannon–Weaver information increases in the sense that more possibilities remain 
open (Shannon and Weaver 1998, p.19). Thus Shannon–Weaver information decreasesas more 
and more of the transmitted signal reaches the receiver intact. By contrast mechanistic 
information is a causal influence that decreases uncertainty with regard to which of a number of 
alternative results a mechanism is to produce.

An important disanalogy is that mechanistic information can and often does do its work without 
benefit of any biological counterpart to a Shannon–Weaver signal (e.g. a sequence of electrical 
pulses) that conveys a message by traveling through a channel from a transmitter to a receiver. 
For example, we saw that no single sequence of electrical of electrical spikes moves (or is 
duplicated) intact from pressure sensors through interneurons and motor neurons to muscles in 
the leech reflex. Thus we reject Crick's characterization of a ‘flow of information’ specifying an 
amino acid as a flux analogous to a flow of energy or a flow of matter (Crick 1958, pp.133–4). We 
maintain that his talk of information flow should be replaced by descriptions of causal and 
teleological relations between function indicators and mechanistic information.

Shannon–Weaver information has no semantic meaning.

… [T]wo messages, one of which is heavily loaded with meaning and the other of which is 
pure nonsense can be exactly equivalent …as regards [Shannon–Weaver] information. 
(Shannon and Weaver 1998, p. 8)

Mechanistic information lacks semantic content for a different reason: neither mechanistic 
information nor function indicators are, or function as symbols. An instance of mechanistic 
information is meaningful in the sense that it selects results to move a mechanism toward its 
goal. But in doing so it functions as the causal influence it is, not as a symbolic representation, 
e.g. a description, recipe, plan, map, or set of instructions.20 One can of course use semantically 
meaningful expressions to describe the results that information selects. However, that is no 
reason to think that mechanistic information is, (p.860) or consists of symbols belonging to a 
language. Nor is it any reason to think that mechanistic information has syntax, signification, a 
pragmatics, or an inferential role. One can produce a semantic representation of a home run 
pitch and the features that explain how the batter hit it into the stands. But that is no reason to 
think the pitch has semantic content (e.g. that it expresses instructions) for the bat to receive 
and respond to. Similar considerations hold, of course, for function indicators.21

Ruth Millikan's early bio‐semantic account of information proposed that informational content 
depends upon the evolutionary history of the mechanism in whose operation it figures (Millikan
1993, pp. 83–102). Our main objection to this is that it rules out attributing information or 
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identifying its significance to the continuity of mechanisms whose evolutionary history is 
unknown or irrelevant. Moreover, biologists typically don't rest their cases for claims about the 
function of a mechanism or the role of information on theories about the adaptive value or 
evolutionary history of it or similar mechanisms. Crick knew that DNA expression and genetic 
coding were important to variation, adaptation and natural selection. But his account of the role 
of genetic information in protein synthesis neither implies nor assumes any specific account of 
how the mechanism of DNA expression evolved. The same holds for investigations of sensory‐
motor reflexes since Sherrington. Investigators typically don't need to find out how a mechanism 
evolved in order to develop or test accounts of its function and its use of biological information. 
Indeed, they sometimes rely on what they know on independent grounds about a mechanism's 
function and the purposes it serves to draw conclusions about its adaptive value or evolutionary 
history.

(p.861) A further difficulty for bio‐semantics arises from the idea that a mechanism can use 
information only for purposes it was naturally selected to serve. Adapting an example of Rick 
Grush's, imagine two leeches with similar nervous systems and other body parts living in similar 
environments with similar predators, food sources, etc. and similar needs for self maintenance. 
Suppose their nerves and muscles behave in the same way to produce the same responses to the 
same pressure stimuli. According to bio‐semantics, they could not transmit the same information 
if their neuro‐muscular systems did not evolve in the same way. Suppose one of them is an 
artificial leech designed and assembled by engineers who gave no thought to how or whether its 
nerves and muscles might function to benefit it. According to bio‐semantics its sensory neurons 
could not carry information even though they behave in exactly the same way as their 
counterparts in the natural leech and benefit both leeches by helping them escape 
environmental perils (Cf. Grush 2001, p. 166ff ).

Mechanistic information is subject to no such difficulties. Even though it is to be understood 
teleologically, the goals it serves need not be fixed by any evolutionary history. Many biological 
mechanisms function to promote goals that are learned or acquired during the individual 
organism's career rather than having been evolutionarily conferred on the species it belongs to. 
They often serve to promote the satisfaction of temporary desires.22 Factors whose presence is 
susceptible to evolutionary explanation often serve mechanisms without determining the 
purposes they function to serve.23 And as we said, investigators may have to learn how a 
biological mechanism functions and what goals it serves before they can begin to draw 
conclusions about its evolutionary history.24

(p.862) 39.7 Mechanistic information and malfunction
We have been describing the role of information in prototypically successful operations of 
mechanisms like DNA expression and leech bending. But some mechanisms malfunction to 
produce results that make no contribution to, or run contrary to the achievement of goals they 
would promote if they were functioning as they should. The expression of the mutant gene 
responsible for cystic fibrosis is an example of the role that mechanistic information can play in 
the kind of malfunction we have in mind.

Cystic fibrosis is caused by a mutation in a DNA segment that encodes the precursor of a protein 
involved in transporting chlorine ions through cell membranes. Without that protein, chlorine 



Mechanistic information and causal continuity

Page 13 of 19

ions are trapped inside lung cells where they promote an unhealthy accumulation of mucous. In 
sweat ducts chlorine ions are trapped outside cells. There they attract sodium ions to produce 
an abnormally high concentration of salt in perspiration. Both cystic fibrosis mutants and their 
counterparts in healthy subjects are expressed to supply a protein the organism needs. Mutant 
cystic fibrosis proteins could further the attainment of the organism's goals if they could get to 
the plasma membranes of the cells that need them. But structural abnormalities in the mutant 
proteins trigger a quality control mechanism that discards them before they reach their 
destinations (Alberts et al. 2002, p. 631, 728). Thus the result that completes the operation of 
the expression mechanism in a cystic fibrosis patient prevents rather than promotes the 
attainment of the goal the properly functioning mechanism serves. But in many respects 
information plays the same role in the malfunctioning mechanism that it would play if the 
mechanism were functioning properly. In both cases DNA segments are selected for 
transcription in response to the organism's need for Cl− transport proteins. In both cases they 
transmit information to move the mechanism toward the satisfaction of the same need. Thus the 
teleological structures of the healthy and the malfunctioning mechanism are surprisingly 
similar. The only difference is that because the cystic fibrosis gene encodes a defective protein, 
the result of its expression fails to promote the goal for the sake of which the mechanism 
operates.

39.8 Conclusion
We have tried to describe the ways in which and the reasons for considering some mechanisms 
as carrying mechanical information. Basically, the claim is that some mechanisms carry 
information about upstream stages that is (p.863) used to produce what is needed by the 
organism (or system) downstream. The causal specificity of these selective influences produce 
what is needed to fulfil a goal or purpose. We have tried to detail these functions in terms of 
reach (independence and strength of influence), and most importantly the teleology of the 
information carrying mechanism. It is because of these features that mechanistic information 
supplies a unique from of continuity for the working of certain mechanisms.
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Notes:

(1) The debate over whether informationis a helpful concept in biology often focuses on the role 
of genes and genetic expression in evolutionarily significant processes involving the emergence 
and transmission of the adaptive effects of heritable traits (see Smith 2000, 2000a Sterelny
2000, Godfrey‐Smith 2000, Sarkar 2000). A further focus is on the question whether genotypes 
and phe‐ notypes are coupled closely enough to support controversial versions of genetic and 
evolutionary determinism. We agree with Griffiths' skepticism about the idea that ‘genes’ code 
or transmit information about phenotypes, but we disagree with him about the role of 
information in the synthesis of protein precursors and in some other biological processes.

(2) Sarkar grants that the concept of information can be play a useful heuristic role ‘in the 
construction of some scientific entity’ but denies that it ‘explicitly occurs in that entity’. (Sarkar
2000 p. 209). If this means that it was useful for biologists like Crick to think about information 
in constructing their theories, we agree. We don't know how Sarkar distinguishes ideas which 
occur explicitly and do real scientific work from those that don't. But we maintain contrary to 
Sarkar that over and above its heuristic value informationdoes do important explanatory work. 
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Furthermore we maintain that information transmission plays a causally significant role in the 
biological processes it is invoked to explain.

(3) Steps are individuated in terms of causal sub‐processes. We lack space to say more.

(4) For details see Machamer, Darden, Craver (2000) passim, and Darden (2006 pp. 1–12, 13–98, 
271–312).

(5) Information may figure in the operation of artificial as well as natural mechanisms. The goals 
that the mechanisms (help) satisfy may be natural or imposed on them by humans or other 
organisms that use them. We focus on natural mechanisms and ignore what they do to satisfy 
the goals of human and other users. For example, what we have to say should apply to 
fermentation as a metabolic process in yeast, but not as a step in intentionally producing wine.

(6) For example, cytosine bonds weakly to guanine, and adenine bonds weakly to thymine or 
uracil (Alberts et al. 2002, p. 302).

(7) The production of citrate from oxaloaetate is customarily singled out as the first step of the 
cycle because of its place in the metabolic process that takes the organism from food intake and 
breakdown to the production of physiologically useful energy carriers. (For details see Alberts et 
al. 2002, pp. 95–108, 126–7.) But treating any other step as the beginning of the cycle would 
make no difference to what we have to say here.

(8) The nine small molecules are the substrates that begin each step together with acetyl CoA.

(9) By ‘alternative results’, we mean outcomes which are physically, chemically, anatomically 
and physiologically possible rather than outcomes which are just logically possible or 
conceivable from the vantage point of the armchair from which philosophers think about ‘nearby 
possible worlds’. A detailed account of what this amounts to must await a further paper.

(10) We distinguish independence from strength because a factor, X, that influences the 
production of results at a number of different steps may do so only in connection with different 
factors, y 1, …, y n, at every step. If the yfactors decide which results are produced and Xhas no 
control over which of the yare available at any given step, X's influence can be strong but not 
independent.

(11) We are indebted to Jim Woodward for conversation on this topic and for making available a 
draft of a paper in progress on causality in biology that develops a related idea.

(12) We stipulate that the block, the incline, and the domino have not (as perhaps they could 
have) been incorporated into some sort of Rube Goldberg mechanism whose proper functioning 
depends upon the way the domino falls.

(13) See previous note. We are indebted to Ken Schaffner for pointing out how often biologists 
describe biological functions in terms of needs. For just a few examples see Alberts et al.(2002, 
p. 380), and Lewin (1994, p. 418).
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(14) For the sake of the argument, ignore people like us who eat when they have no 
physiologically good reason to do so. Byron's example was an athlete who eats after exercise in 
response to hunger caused in part by energy depletion.

(15) For simplicity we ignore the influence of DNA bases which do not encode polypeptide amino 
acid sequences but contribute instead to the production of non‐coding RNA molecules that help 
move the mechanism forward through a number of interactions including the selection of sites 
for cutting, splicing, and editing. DNA base sequences play roughly the same role in producing 
non‐coding RNA molecules as they do in polypeptide construction. See e.g. Mendes, Soares and 
Valcárcel (2006).

(16) The string could be read as CUC, AGC, GUU, and ACC followed by two members, AU of an 
anti‐codon whose third base is located to the right of our string. Alternatively, the leftmost C 
could be read as the last base of an anti‐codon whose other bases are to the right of the string. If 
so, the complete anti‐codons would be UCA, GCG, UUA, CCA, followed by U. Another alternative 
would be CA followed by CAG, CGU, UAC, and CAU (Alberts et al. 2002, p. 336).

(17) We ignore highly contrived, mathematical definitions of higher level variables produced just 
for the purpose of describing trivially similar patterns that are of no particular functional 
significance.

(18) As an anonymous referee pointed out, the sketch of protein precursor construction we use 
to illustrate our account ignores recent investigations of complicated, widespread, and diverse 
contributions of small non‐coding RNA molecules to protein synthesis. In addition to setting the 
mechanism of DNA expression in motion in response to the organism's needs, non‐coding RNAs 
and other molecules participate in promotion, inhibition, splicing, reassembling, editing, and 
other functions. Under their influence, the same DNA segments can be expressed to construct 
more than one polypeptide, and contribute to the synthesis of more than one protein (see 
Mendes, Soares and Valcárcel 2006). It is plausible, as Richard Burian suggests, that the most 
the genome contains is instructions about how the mechanism of protein construction is

… to respond when the information it contains is unpacked in specific contexts and 
settings… [T]he contingencies that go into when and how that information is unpacked, 
and how it is processed before or during its use cannot be specified by DNA alone. 
(Burian, personal communication.)

We suppose that our simplified, textbook style picture is faithful enough relative to specific 
settings and contexts in which DNA is typically expressed to illustrate our ideas about 
mechanistic information. We lack the space to consider whether or how mechanistic information 
figures in the contributions of non‐coding RNA and other molecules to polypeptide construction 
in any given context.

(19) The influence of sensory neuron spike trains extends throughout the operation of the reflex 
mechanism even though it loses some of its independence because each interneuron resolves 
and fires in response to inputs from more than one sensory neuron.

(20) Pace Stegman (2005).
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(21) The fact that semantic notions don't fit the processes by which mechanistic information 
contributes to the selection of results to be produced argues against construing biological 
information on the model of Millikan's inferential account of how signs represent. Ignoring 
details, Millikan thinks that a sign, s, carries information about something, r, only if there is a 
‘natural connection’ between sand rsuch that a system that is properly attuned to the connection 
can do something analogous to inferring rfrom s. For example, she thinks a mitten she found on 
the path outside her house carries information about her daughter's whereabouts for anyone 
who knows enough to infer that her daughter's having come home and dropped it on the way in 
is the best explanation of how the glove got there (Millikan 2004, p. 37). Millikan characterizes 
the inferential process as a matter of ‘tracking’ the connection between the glove, and the 
daughter or her whereabouts (ibid.). Although there certainly are cases in which signs are said 
to carry information about something by virtue of what we can infer from them, it sheds no light 
on biological information to think of DNA codons or leech spike trains as signs from which the 
relevant mechanisms draw conclusions about what results they should produce. Such inferences 
would be impossible unless the spike trains or codons carried information with semantic content 
or the expression or reflex mechanisms produced semantically meaningful descriptions of the 
codons or spike trains to draw conclusions from. If any tracking goes on in DNA expression or 
leech bending, the tracking must be understood non‐inferentially in terms of function indicators 
and the teleologically significant influences they enable their bearers to exert.

(22) A number of mechanisms belonging to Venus and Serena Williams function from time to 
time to promote the goal of winning a tennis tournament. Evolutionary psychology and socio‐ 
biology to the contrary, there is no good reason to think that evolutionary history accounts for 
their pursuit of that goal.

(23) For example, voltage gated channels which control the flow of electrical currents carried by 
K+ ions through neuron membranes are similar enough to voltage gated K+ channels in certain 
bacteria membranes to suggest that the former evolved from the latter. But the mechanisms 
these channels belong to have remarkably different functions (Jiang, et al 2003).

(24) An anonymous reviewer asks whether one can reject evolutionary accounts as we do 
without treating goals and proper functioning as relative to investigators' interests in such a way 
that there is no objective fact of the matter as to which of a number of possible alternatives is 
the goal that a mechanism operates to promote. Biologists often approach such questions by 
asking what contribution the mechanism of interest makes to functions (involved in processes as 
various as nutrition, respiration, hair and fingernail growth, body temperature regulation, and 
disease resistance) which can be identified without appeal to evolutionary history. For example, 
we submit that there are facts of the matter about the proper functioning of neuronal systems 
such that there are objective but non‐evolutionarily based answers to such questions as whether 
temperature regulation is the main function of the brain as Aristotle thought (Aristotle, 1991, pp. 
1015–18), or whether the lung's main contribution to an animal's life is respiration. How such 
facts are established and how disputes about them are adjudicated is a topic for another paper.
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hence to feature in causal explanations, but it is not compatible with the claim that causal 
explanation needs to appeal to causal processes understood in terms of conserved 
quantities. I therefore offer an account of mechanisms, in particular the role of causal 
relevance in mechanisms, which can respect the theory that causation involves causal 
processes understood in terms of conserved quantities, but which also allows absences to 
figure in causal explanation.

40.1 Introduction
In some areas of science, the right correlations are routinely taken to indicate causality. In other 
areas, it's common enough that a scientist might be unwilling to infer causality from correlations 
without also knowing how one factor is responsible for another. Some philosophers take this to 
show that correlations are insufficient for causation. They might alos take this to indicate that 
scientific explanation, in those areas of science at least, involves appeal to mechanisms. I agree, 
for some areas of science, that this indicates both that correlations are insufficient for causation 
and that mechanisms are the basis for scientific explanation.

In what follows I survey two attempts to give an account of mechanistic explanation, namely 
those due to Salmon (1984) and Craver (2007). The question to be addressed is: what theory of 
mechanisms can account for the idea that scientists sometimes seek mechanisms that underlie 
correlations. I will assume that the answer cannot be ‘more correlations’.

(p.866) 40.2 Salmon's mechanistic theory of explanation
Wesley Salmon draws the following lesson, notably in Scientific Explanation and the Causal 
Structure of the World (1984). There are two tiers to scientific explanation. The first tier 
involves set of statistical relevance relations. But this is not enough to guarantee causation. We 
need a second tier, which involves exhibiting the causal connections. Together, this provides an 
account of explanation which is ‘ontic’ rather than epistemic. Hempel's account of explanation 
as arguments, for example, makes explanation an epistemic matter, but Salmon's account in 
terms of objective facts of statistical relevance and causal connection makes for an ontic 
account.

According to Salmon's Statistical Relevance Criterion, explanations involve first an assemblage 
of facts, facts which are statistically relevant to the thing to be explained. An event C is 
statistically relevant to another event E if the probability of E is affected by whether or not C
occurs: C is statistically relevant to E iff P(EǀC) ≠P(E) and C is statistically irrelevant to E iff 
P(EǀC) = P(E). For Salmon these probabilities are to be understood as relative frequencies.

An explanation of an event E involves four steps. First, we begin with the prior probability of E — 
the likelihood of that event relative to an appropriate reference class (R). This will be of the form 
P(EǀR). Second, we need to find relevant partitions of this reference class. A partition is relevant 
if the probability of E is different in the relevant cells (parts of the reference class). For example, 
if the probability that a female will die of lung cancer is the same as the probability that a male 
will, the male/female partition is not relevant to death by lung cancer. However, whether an 
individual smoked or not will be relevant if the probability of the individual getting cancer if they 
smoke is different to the probability that they get cancer if they don't smoke. Third, we need to 
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know the posterior probabilities, that is, the probabilities in each cell after we make the 
partition. We need to know the probability of getting cancer if one smokes, and if one doesn't 
smoke; ie P(EǀS) and P(Eǀ ~ S). Finally, we need to locate the individual in one of these cells. 
Then, if we are satisfied that there are no further relevant partitions, the explanation involves 
citing all the factors in the definition of that cell.

Salmon gives a fictional example of an American teenager Albert who is convicted of the offence 
(O) of stealing a car. Albert is a male from an urban environment. Take the class of American 
teenagers (T) as the reference class. Dividing it into male (M) and female (F) happens to be a 
relevant partition (it's more likely that teenage males will commit offences in America than 
female teenagers) and so does dividing into urban (U) and rural (R) background (city bred 
teenagers are more likely to commit offences than those who are rural bred). This gives four 
cells in the reference class: male‐urban, male‐rural, female‐urban, female‐rural. The 
probabilities for each will be different. We select the relevant cell: male‐urban, and the fact that 
the probability in that (p.867) cell is higher than the prior probability — provided there are no 
further relevant partitions — explains the teenager's being convicted. One of the advantages of 
this approach as Salmon sees it is that it allows for low probability explanations. Explanatory 
factors raise the probability of the thing they explain, but don't necessarily make it probable.

Exhibiting the statistically relevant facts is the first step in explanation, but this needs to be 
added to, by exhibiting the causal links between the fact to be explained and the statistically 
relevant facts. When we have statistically relevant facts linked by a causal process to the thing 
to be explained, then we have a satisfactory explanation. Salmon therefore turns his attention to 
the question of causality. His contribution here is twofold: he offers a persistent line of criticism 
against the probabilistic theories of causation, and he offers his own positive account.

The essence of the probabilistic theory of causality is the idea that a cause raises the probability 
of its effect (Suppes 1970). Salmon's argument against this theory concerns counterexamples 
where a particular causal chain contains elements that do not stand in the probability raising 
relation. In an example due originally to Deborah Rosen a golfer slices her shot, but by sheer 
fortune hits a tree branch, and the ball bounces back onto the green and into the hole. The slice 
lowered the chance of a hole in one, but in fact caused it.

Salmon's positive account treats causation primarily as a property of individual processes. 
Salmon proposes to overcome traditional difficulties with determining the nature of the causal 
relation by treating causation as primarily a characteristic of continuous processes rather than 
as a relation between events. This treatment involves two elements, the production and the 
propagation of causal influence. The latter is achieved by causal processes. Salmon's views on 
how to characterize causal processes underwent various changes which are not relevant to our 
purposes. In his 1997 Philosophy of Science paper Salmon presents the following revised theory 
of causality:

A causal process is the world line of an object that transmits a non‐zero amount of a 
conserved quantity at each moment of its history (each spacetime point of its trajectory) 
(Salmon 1997, p. 468)

The concept of transmission is to be understood by the following definition:
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A process transmits a conserved quantity between A and B (A ≠ B) if and only if it 
possesses [a fixed amount of] this quantity at A and at B and at every stage of the process 
between A and B without any interaction in the open interval (A, B) that involve an 
exchange of that particular conserved quantity (Salmon 1997, p. 463)

Thus, Salmon appeals to a special kind of regularity which involves the possession of a fixed 
amount of a conserved quantity at every spacetime point of the process (for my attempt to do 
the same, in the context of the causal theory of explanation see Dowe 1992).

(p.868) So a causal process is a worldline of an object that possesses a conserved quantity, a 
causal interaction is an intersection of worldlines involving exchange of conserved quantities. 
For one event to stand in a causal relation to another they must be connected by a set of causal 
processes and interactions. This, however, gives us a necessary condition, but not a sufficient 
condition. We also need to say in what respects an object at one time is causally relevant to an 
object at another time. (For a discussion of my attempt to satisfy this requirement, and 
objections to that see Dowe, 2007.) However, that it is only a necessary condition won't matter 
in this context because Salmon conjoins the causal processes‐interactions requirement with the 
statistical relevance requirement, which should rule out irrelevances.

What will matter is the problem of chance lowering causes, as identified by Salmon himself, and 
used by him to rule out the chance‐raising theory of causation. While it is true that a process 
theory of causation will not be open to an objection from chance‐lowering causes, Salmon's 
theory of explanation will be, because it conjoins the process theory with a statistical relevance 
requirement. This means we cannot appeal to chance‐lowering causes to explain their effects.

In any case, Salmon's account doesn't go far enough to give us an account of explanations or 
mechanisms. First, the account seems geared to explaining particular events, whereas 
mechanisms provide general explanations. Explaining why Albert was convicted no doubt needs 
to establish that he was an actual cause of the offense, and this may well be done in terms of 
causal processes. But a mechanism of the sort appealed to for example in medical sciences 
would provide a general explanation.

Take the following example from lipid metabolism research:

The association between abdominal fat accumulation and risk of chronic diseases, 
including type II diabetes and coronary heart disease, has long been recognized. Insulin 
resistance may be a key factor in this link. Many studies have pointed to an association 
between insulin resistance and intra‐abdominal fat accumulation (visceral obesity). 
However there is no clear proof of a causal link between visceral fat accumulation and 
insulin resistance. In assessing the probability of a causal link, it is useful to consider 
potential mechanisms. One such potential causal link is the release of non‐esterified fatty 
acids from visceral fat into the portal vein, so that they have direct effects on hepatic 
metabolism. Visceral fat has been shown in many studies to exhibit a high rate of lipolysis 
compared with subcutaneous fat depots. However, if the idea that visceral fat releases 
fatty acids into the portal vein at a high rate is examined critically, a number of difficulties 
appear. Not least of these is the fact that continued high rates of lipolysis should lead to 
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the disappearance of the visceral fat depot, unless these high rates of fat mobilization are 
matched by high rates of fat deposition. There is far less evidence for high rates of fat 
deposition in visceral adipose tissue, and some contrary evidence. Evidence for high rates 
of visceral lipolysis in vivo from studies involving catheterization of the portal vein is not 
strong. If this potential link is discounted, then other reasons for the relationship between 
visceral fat and (p.869) insulin resistance must be considered. One is that there is no 
direct causal link, but both co‐correlate with some other variable. A possibility is that this 
other variable is subcutaneous abdominal fat, which usually outweighs intra‐abdominal fat 
several‐ fold. Subcutaneous fat probably plays the major role in determining systemic 
plasma non‐esterified fatty acid concentrations, which are relevant in determining insulin 
resistance. (Frayn 2000, p. S71)

Note that correlations by themselves are open to at least two causal interpretations, a direct 
causal connection and a common causal connection: two factors are the effects of a common 
cause. There are of course plenty of techniques to distinguish the two interpretations in terms of 
correlations. But these are neither conclusive, nor representative of how scientists in certain 
areas approach the question. Scientists rather seek mechanisms, as Salmon urges.

But in this example, we want a mechanism to explain insulin resistance in general in the first 
instance, not an explanation of what occurred in one particular instance. Mechanisms explain 
how things work, and this entails saying how various alternatives operate. Mechanisms typically 
have more than one possible value of an input. If we are, for example, to appeal to the effects of 
non‐esterified fatty acids in the portal vein on hepatic metabolism, we cannot simply trace the 
connections between single values of the relevant variables.

And finally, to explain how something works we sometimes need to account for the fact that 
something of interest didn't happen (Woodward 2003, pp. 227ff). For example, the idea that high 
rates of lipolysis lead to the disappearance of the visceral fat depot, not to mention the notion of 
insulin resistance itself, seems to involve absences rather than positive occurrences (see below 
for more examples). But there's no causation by or of absences according to the causal process 
theory, so there must be more to a mechanism than just an actual set of actual causal processes 
and interactions.

40.3 Craver's account of mechanisms
Carl Craver's Explaining the Brain: Mechanisms and the Mosaic Unity of Science (2007) 
provides an account which does each of these things, with a specific orientation to neuroscience. 
According to Craver a mechanism is a set of entities with associated productive activities 
organised so as to constitute some phenomenon. ‘Activities’ is a ‘filler term’ for a set of causal 
components, meaning that to count as a mechanism the entities that constitute the phenomenon 
must be linked by “causal relevance”. To count as a mechanism the entities must also be linked 
with the phenomenon they constitute by ‘constitutive relevance’, which in turn is understood in 
terms of mutual manipulability: change the phenomenon and you change the parts, change a 
part and you change the phenomenon.

(p.870) Drawing on Salmon's distinction between ‘ontic’ and ‘epistemic’ explanation, a 
distinction to which he subscribes, Craver notes an ambiguity in the word ‘explanation’:
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Sometimes explanations are texts — descriptions, models, or representations of any sort 
that are used to convey information from one person to another. Explanatory texts are the 
kinds of things that are spoken and written, and drawn. They are the kinds of things that 
can be more or less complete and more or less accurate. They are representations. Other 
times explanations are objective portions of the causal structure of the world, the set of 
factors that bring about or sustain a phenomenon (call them objective explanations). What 
explains the accident? The ice on the road, the whiskey, the argument, the tears, and the 
severed brake cables. What explains the release of neurotransmitters? The action 
potential, Ca2+ influx, vesicular binding, and fusion. There are mechanisms (the objective 
explanations) and there are their descriptions (explanatory texts). Objective explanations 
are not texts; they are full‐bodied things. They are facts, not representations. They are the 
kinds of things that are discovered and described. There is no question of objective 
explanations being ‘right’ or ‘wrong,’ or ‘good’ or ‘bad’. They just are. (Craver 2007, p. 27)

Causes and mechanisms, then, are “things in the world”. A second implication of explanations 
being ontic — the first is that they aren't arguments — is that they aren't representations.

According to Craver mechanisms are typically multi‐level, requiring at the level of description 
what he calls the ‘mosaic’. This includes multi‐level causation and in particular the fact that 
higher levels can be causal. As he sees it this ties in with integrative neuroscience, where 
mechanisms, and hence explanations, involve multiple levels and cross multiple fields so that 
entities dealt with in different fields jointly constitute explanations. This notable aspect of 
Craver's account will not be dealt with in this chapter.

To give an account of causal relevance Craver draws heavily on Woodward (2003): a ‘variable X
is a cause of variable Y in conditions W, if and only if it is possible in conditions W to change the 
value of Y with an ideal intervention that changes the value of X’ (Craver 2007, p. 94), where an
ideal intervention I on X with respect to Y is a change in the value of X that changes Y, if at all,
only via the change in X. More specifically, this requirement implies that:

(11) I does not change Y directly;
(12) I does not change the value of some causal intermediate S between X and Y except 
by changing the value of X;
(13) I is not correlated with some other variable M that is a cause of Y; and
(14) I acts as a ‘switch’ that controls the value of X irrespective of X's other causes, U. 
(Craver 2007, p. 96)

Craver provides a number of detailed examples. One (Craver 2007, pp, 65–72) is a certain type 
of ‘Long‐Term Potentiation’ (LTP), where (p.871) changes to a synapse are produced which are 
thought to underlie certain kinds of learning. Two neurons are involved, the pre‐synaptic and 
post‐ synaptic. Firing of the pre‐synaptic neuron releases the neurotransmitter glutamate, which 
crosses the synapse and binds to the receptors on the post‐synaptic cell. There are two types of 
receptors relevant here, NMDA receptors (because they are responsive to N‐methyl‐D‐aspartate) 
and AMPA receptors (because they are responsive to α‐amino‐3‐hydroxyl‐ 5‐methyl‐4‐ 
isoxasolepropionic acid). The function of the NMDA receptor is to create a Ca2+ selective 
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channel. However, if the post‐synaptic cell is polarized, the Ca2+ channel is blocked by large 
Mg2+ ions. The function of the AMPA receptor is to depolarize the post‐synaptic cell and thereby 
repel the Mg2+ ions from the channel, enabling Ca2+ to flow through the MNDA receptor. The 
increase in Ca2+ concentrations in the post‐synaptic neuron in turn activates a number of 
intracellular biochemical pathways including those responsible for the production of proteins 
used to alter the structure of the synapse. The firing of the pre‐synaptic neuron can be induced 
experimentally, and this intervention is correlated with changes in synaptic efficiency (see 
Craver 2007, p. 67). This is already an impressive amount of detail, and I've only summarized 
the bare bones of Craver's example.

At first pass, the idea of singular productive activities looks like it might provide the right ‘ontic 
something’ that underlies and explains correlations. But there are worries, ironically, about both 
whether the account really is ontic in the relevant sense, and also whether it can be said to 
provide that something beyond correlations which explain correlations. Both concerns focus on 
the Woodwardian explication of causal relevance. It's true that there's more to Craver's 
mechanisms than causal relevance — they also exhibit constitutive relevance (although arguably 
the same worries re‐emerge) and organization. If the concerns have merit then it would seem 
the latter must be what really does the work. I don't want to sound too pessimistic about the 
prospects of its doing so, as there is much to commend the account in Craver's book including 
the detailed workings of examples. My point is that the account of causal relevance per se raises 
these concerns. And it is apparent that Craver intends the notion of causal relevance to indeed 
carry the burden (i.e. to be that ontic something which explains correlations). He says:

In saying that activities are productive, I mean that they are not mere correlations … and 
most fundamentally, that they can potentially be exploited for the purposes of 
manipulation and control. (Craver 2007, p. 6)

More explicitly: what it means to say that one stage of a mechanism is productive of 
another (as I suggest in Machamer et al. 2000; Craver and Darden 2001; Darden 2002), 
and to say that one item (activity, entity, or property) is relevant to another, is to say, at 
least in part, that one has the ability to manipulate one item by intervening to change 
another. (Craver 2007, pp. 93–4)

(p.872) Talk of ‘one having the ability’ should not be taken too literally. As for Woodward, this 
is a way of appealing to certain counterfactuals, as outlined above. However, as there is no 
account of the truth conditions of the counterfactuals, but rather an appeal to experimentation 
to discern their truth, Craver is open to the charge that the account of causal relevance and 
hence mechanisms cannot provide that something beyond correlations. It is simply a particular 
subset of correlations (not the ‘mere’ correlations) that the account rests on. I say ‘might be 
open to the concern’ because, given the absence of an account of causation per se, and indeed of 
the truth conditions for the counterfactuals, the theory is sufficiently incomplete to allow that it 
may be elaborated in such a way that obviates the concern.
The second concern, again tied up with the appeal to causal modelling, is that the account 
seems to make mechanisms epistemic rather than ontic, contrary to Craver's stated aim. The 
causal modelling approach to causation, and the manipulability approach derived from (or 
inherent in) it, involves models which are abstractions (see Menzies 2004, pp. 154–7). There are 
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many ways to abstract, and thus, as is well known, causal modeling makes causation (here 
causal relevance) model relative. This in itself makes the notion of causal relevance — a key 
component in a mechanism on Craver's account — look rather more like a representation than 
an objective feature of the world.

But whether that is so or not, it's clear that we never will get beyond correlations on this 
account. To illustrate these concerns, let's return to Craver's example. We could simply model 
some of the phenomena in LTP by the following model:

S = 1 if the pre‐synaptic neuron is stimulated, S = 0 if not.
R = 1 if there is an increase in post‐synaptic response time, R = 0 if not.
Pr(R = 1ǀS = 1) 〉 Pr(R = 1ǀS = 0).

S is causally relevant to R by the definition: an intervention on S raises the probability of R = 1, 
and only does so via S. But all we've done is encode the correlations that we should explain in an 
adequate explanation. So let's give a slightly more detailed model:

S = 1 if the pre‐synaptic neuron is stimulated, S = 0 if not.
C = 1 if the concentration of Ca2+ in the post‐synaptic neuron are above a certain 
threshold, C = 0 if not.
M = 1 if Mg2+ ions block the Ca2+ channel, M = 0 if not.
Pr(C = 1ǀS = 1) 〉 Pr(C = 1ǀS = 0).
Pr(M = 0ǀS = 1) 〉 Pr(M = 0ǀS = 0).
Pr(C = 1ǀM = 1) = 0.
Pr(C = 1ǀM = 0) ≠/ 0.

(p.873) Causal modelling would represent this on a two‐pathway graph with an arrow from S to
C, an arrow from S to M and an arrow from M to C. An intervention on S would change the values 
of M and C, and an intervention on M would change the value of C. This nicely captures the way 
in which experiments inform our understanding of causation and mechanisms. But, again, all we 
have done is encode more correlations. This is inadequate if our task is figuring out what it 
means to move beyond correlations to a mechanism.
I suggest that we rather appeal to causal processes to begin to capture the force of Craver's 
impressive examples. What carries the argument is the appeal to processes such as the 
movement of neurotransmitters, and the flow of Ca2+ ions. These processes qualify as causal 
processes on the account set out above because glutamate and Ca2+ ions have conserved 
quantities like mass and charge. Charge in particular is most pertinent to explanations in 
neuroscience. Craver objects that the conserved quantity theory drives us to fundamentalism: 
‘CQ also presents a view of causation tailor‐made for physicalist/fundamentalist metaphysics. If 
causal interactions are exchanges of conserved quantities, and if conserved quantities are found 
only at the fundamental level, then all causation is located at the fundamental level.’ (Craver
2007, p. 77). However, this misreads the account set out above. The CQ theory appeals to the 
trajectories of objects possessing conserved quantities. A steel ball possesses mass and charge 
as much as an electron does, and so too for a Ca2+ ion.
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However, we still have the problem of absence causation. In the example just discussed, both S
= 1 and M = 0 cause C = 1. M = 0 is the absence of Mg2+ ions in the Ca2+ channel, and Craver 
makes a convincing case for admitting absences such as this one into explanatory mechanisms 
in neuroscience (e.g. 2007, pp. 80–81). I think this has to be accepted. But absences are not 
causes and the CQ theory rules them out as causes. But the problem with absence causation is 
not just that the CQ theory rules them out. On a coun‐ terfactual theory of causation (for 
example Lewis 2004), absence causation violates relativity (Dowe 2009). (Ironically, Craver's 
initial characterization of a mechanism as involving singular productive mechanisms looks like it 
would rule out absences: how can something's not occurring be ‘productive’.)

Nevertheless, Craver also runs into trouble trying to say exactly how absences figure in 
explanations. Or more specifically, why they don't when they don't. The problem concerns what 
Peter Menzies calls ‘profligate causation’ (Menzies 2004, p. 145). If absences are causes then 
there are far more causes than we expect intuitively. Craver notes

A … problem raised against the acceptance of negative causes is that there are too many 
of them, and most negative causes are of no use for understanding explanation in 
neuroscience. As Dowe (2004) and Beebee (2004) argue, many instances of negative 
causation run counter to our common sense, scientific, and theoretical uses of the (p.874) 
concept of ‘cause’, and there is no available account of negative causation that allows in 
all and only the intuitively satisfactory instances. (Craver 2007, p. 83)

It would seem, then, that a satisfactory account of mechanistic explanation should tell us when 
we can and cannot appeal to absence causation. Craver's response is this:

The extravagant cases of negative causation can be handled in a number of ways. Some 
negative causes are too improbable or abnormal to be included in explanatory texts or 
even counted as causes. Others are ruled out by, for example, legal, moral, and epistemic 
factors that determine the salience of a fact in a particular discussion (see Beebee 2004). 
… Consider a neuroscientific example: is the gasoline in my car's tank a cause of the 
instance of LTP in the Petri dish? It is likely true that if I had doused the dish with the 
gasoline, then the cells would not induce LTP, but it seems odd to think of the absence of 
gasoline as a cause of LTP. Although I do not have a general formula for ruling out non‐
explanatory causes of this sort, it is clear enough that gasoline is neither normally part of 
cells nor part of their extracellular environment. Gasoline is not part of the set‐up or 
background conditions under which the cell normally operates. It is not a cellular 
constituent. Gasoline levels do not vary as the mechanism works. The distinction between 
intuitive and counterintuitive cases is a psychological distinction that is drawn on a 
number of different grounds in different epistemic contexts. (Craver 2007, p. 85)

This appears to make what counts as a mechanisms dependent on an individual's or a group's 
psychology. But perhaps a better interpretation is to take the above response to apply not to 
explanations but to explanatory texts, and objective explanations just do involve numerous 
absences, all of which are actually causally relevant. Given that Craver refers here to ‘normal 
operation’, certain approaches (Menzies 2004, Hitchcock 2007), which attempt to deal with the 
problem of profligate absence causation by appeal to a notion of normal operation might be of 
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use to Craver here, if one could establish an objective notion of ‘normal operation’ for 
neuroscience. However, this is not the direction I want to take.

40.4 Causal process mechanisms
Drawing together some of the lessons from our discussion of Salmon's and Craver's accounts, 
we shall require the following desiderata of an account of a mechanism:

1. Mechanisms should explain correlations, setting out for example how one correlate 
causes the other.
2. Mechanisms should encode alternatives.
3. Mechanisms should include absences.
4. Mechanistic explanation should be ontic not epistemic.

(p.875) A mechanism is not necessarily named as a phenomenon, but often is when used to 
explain. A mechanism can but need not involve sub‐mechanisms. Mechanisms are glued 
together by causation.

We start with a model of a type of situation. We have a choice of the variables, U, V, W, … and a 
choice of a partition of each variable into incompatible and jointly exhaustive values: u 1, u 2,u 3,
v 1, v 1, etc. There are laws which apply to this kind of situation. Based on the laws, for some set 
of values of initial variables (yet to be defined) each pair of values of a variable pair, either will 
or won't be connected in the right way by causal processes and interactions. (This account 
would also work with other physical connection theories, such as that of Fair 1979, but for my 
reasons for rejecting that account see Dowe 1995. For an attempt to combine causal modeling 
and causal processes in an account of causation, see Handfield et al. 2008.)

To generate a Causal Process Model we write down all values that are thus connected, with an 
arrow indicating the connections:

u i →v j
v j → w k
etc.

When two variable values are connected by such an arrow, the antecedent is a cause and the 
consequent is an effect (the process theory of causation). The Relevance Condition on a 
mechanism requires that some value of every variable in the model is connected one way or 
another to some value of every other variable. Where a causal connection depends on some 
variable value which is not a cause of the variable value named as the antecedent (compare 
Hitchcock 2001), write down the required value before the antecedent, say:

w k ,u i → v j.

The motivation for this technique is to make transparent what conditions would interrupt the 
causal connection. We remove indirect connections by the following rule:

Non redundancy: Remove any connection in the set that can be generated by 
Transitivity from other connections in the set.
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Transitivity: If u i → v j and v j → w k then u i → w k.

This minimal set of connections together with the variable value set constitutes the causal 
process model. (Whether causation is transitive is a controversial matter. For the case that it is 
see Lewis 2004; for the case that it isn't see Hitchcock 2001. I side with the former, but won't 
argue for that here.)

Take as an example the standard late preemption case. Billy and Suzi throw rocks at a glass 
bottle, Suzi's throw is slightly stronger and will smash the (p.876) glass, but were Suzi not to 
throw, Billy's throw would smash the glass. Let B(1,0) stand for Billy's throwing or not, S(1,0) for 
Suzi's throwing or not, and G(1,0) the glass bottle being smashed or not. We model the following 
causal connections:

s 1 → g 1
s 0,b 1 →g 1.

This is not a case that we would normally call a mechanism, but the analysis will apply to any 
simple backup mechanism where a signal S and its back‐up B both typically fire, and when they 
both do S causes effect G, but when S doesn't fire, B causes H. The mechanism represented by 
the Causal Process Model enables us to explain various outcomes, depending on the input values 
of S and B. We then understand how the mechanism works in general, because we know the 
possible causal processes, and how their operation depends, or not, on other variables. So 
mechanisms explain in both the particular and general sense. They explain particular events, 
and they explain how in general a system works. In the particular case, the explanation can 
appeal to actual causal connections that connect the actual values, and possible connections 
that connect non‐actual values. In the general case, explanations appeal to possible connections 
between possible values.

Any thus defined mechanism will be an approximation in an important sense. If a mechanism is a 
system of connections that would hold given certain values of certain variables, then there will 
always be another more detailed mechanism which the first mechanism approximates. That the 
system of connections would obtain given certain values of certain variables holds only on the 
assumption that other interfering factors — factors not modelled — are not present. A more 
detailed mechanism would include some of these factors. In practice no model would be so 
completely detailed as to avoid such an assumption. As Mill pointed out, ‘a special enumeration 
of … the negative conditions … of any phenomenon … would generally be very prolix’ (Mill 1843, 
pp. 370–1). Nevertheless mechanisms explain correlations between the variables in the 
mechanism. We are interested in certain stable correlations which arise because other possible 
interfering factors are held fixed; perhaps because they are rare or easily controlled in an 
experimental situation.

On this account explaining by appeal to mechanisms is an ontic matter. Actual causal 
connections are things that are ‘in the world’ no matter how they are represented, and possible 
causal connections are guaranteed by the laws. Is this claim threatened by the fact that it is 
model (mechanism) relative which interfering factors are included? No. First, whether a 
particular actual causal connection obtains or not is not model relative. It's true that what causal 
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connections one appeals to in order to explain something depends on the (p.877) choice of 
model; i.e. on which mechanism one appeals to. That doesn't mean the explanation is not ontic. 
Second, it is model relative which interfering factors a non‐actual causal connection depends on. 
But again, this does not mean the account is not ontic, just that different mechanisms specify 
differently — more or less completely — the conditions under which the connection would hold.

The discussion of interfering factors leads us into the question of how absences enter into 
mechanisms and explanations. Take our model of LTP

S = 1 if the pre‐synaptic neuron is stimulated, S = 0 if not.
C = 1 if the concentration of Ca2+ in the post‐synaptic neuron is above a certain 
threshold, C = 0 if not.
O = 1 if the Ca2+ channel is open, O = 0 if not.
M = 1 if Mg2+ ions block the Ca2+ channel, M = 0 if not.
P = 1 if the post‐synaptic cell is polarized, P = 0 if not.
N = 1 if there is sufficient Ca2+outside the post‐synaptic cell, N = 0 if not. A causal 
process model is then
S(1,0), C(1,0), O(1,0), M(1,0), P(1,0), N(1,0) and s 1 →o 1
s 1 → p 0
o 1,p 1 → m 1
m 0,, o 1,n 1 → c 1.

The opening of the Ca2+ channel, and the absence of Mg2+ ions each allow the Ca2+ flow, but do 
not cause it. Nevertheless, they are part of the mechanism, and enter into the explanation. 
(Compare my account of prevention and omission, originally in Dowe 1999.) So, in a particular 
case the absence of Mg2+ ions might help explain the Ca2+ concentration (the explanation 
appeals to an omission). In another case the presence of Mg2+ ions explains the absence of 
adequate Ca2+ concentration (the explanation appeals to a prevention).

What about the problem of profligate omissions? Craver's position is that some absences enter 
into mechanisms, others do not. The absence of gasoline in the Petri dish is not part of the 
mechanism of LTP. The problem then is that the definition of the mechanism becomes interest 
relative. On my account there are two mechanisms, one that includes the absence of gasoline, 
and another, an approximation to the first, which omits that interfering factor. Gasoline floods 
don't normally occur in the brain, and are controlled for in experimental situations, so the 
second mechanism is what we appeal to in neuroscience. That mechanism explains the 
correlations that obtain because of the general absence of that interfering factor. But that 
certain causal con‐nections (p.878) in that mechanism would occur under certain conditions is 
true only because we assume the absence of that interfering factor.
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attention to another, radically different kind of complex system, in fact one that many 
scientists regard as the only genuine kind of complex system. Instead of being 
compositionally complex these systems rather exhibit highly non‐trivial dynamical patterns 
on the basis of structurally simple arrangements of large numbers of nonlinearly 
interacting constituents. The characteristic dynamical patterns in what I call ‘dynamically 
complex systems’ arise from the interaction of the system's parts largely irrespective of 
many properties of these parts. Dynamically complex systems can exhibit surprising 
statistical characteristics, the robustness of which calls for an explanation in terms of 
underlying generating mechanisms. However, I want to argue, dynamically complex 
systems are not sufficiently covered by the available conceptions of mechanisms. I will 
explore how the notion of a mechanism has to be modified to accommodate this case. 
Moreover, I will show under which conditions the widespread, if not inflationary talk about 
mechanisms in (dynamically) complex systems stretches the notion of mechanisms beyond 
its reasonable limits and is no longer legitimate.

41.1 Introduction
In recent debates mechanisms are often discussed in the context of ‘complex systems’, with 
certain biological examples, for instance concerning biochemical processes, as paradigmatic 
cases. Complex systems of this kind often have a complicated compositional structure. I want to 
draw the attention to the fact that there is still another, radically different kind of complex 
system, in fact one that many scientists — in particular in the physical sciences — regard as the 
only genuine kind of complex system. Instead of being compositionally complex these systems 
rather exhibit highly non‐trivial dynamical patterns, on the basis of structurally simple 
arrangements of large numbers of nonlinearly (p.881) interacting constituents. To be sure, I 
want to call this kind ‘dynamically complex systems’. The characteristic dynamical patterns in 
dynamically complex systems arise from the interaction of the system's parts largely irrespective 
of many properties of these parts. One example, which has been studied extensively in statistical 
physics, is the ferromagnet with a surprising dynamical behaviour despite the fact that it 
consists of nothing more than a simple array of numerous identical dipoles. Analyses of 
dynamically complex systems are by no means limited to physics. For instance, it is common 
practice to model socio‐economic contexts by using dynamical multi‐agent systems, which deal 
with ‘microscopic’ agents with a very simple individual behaviour in a very simple arrangement.

Whereas for a compositionally complex system it is usually feasible to predict its behaviour once 
the compositional structure and the behaviour of its parts is known, this is completely different 
in the case of dynamically complex systems. Here the knowledge of the compositional structure, 
e.g. agents with only two possible actions arranged on a square lattice, together with the 
knowledge of the behaviour of its parts in isolation as well as in simple composites, often allows 
for hardly any straightforward predictions of the dynamical behaviour of a given complex 
system. Nevertheless, an ensemble of similar complex systems can exhibit surprising statistical 
characteristics, the robustness of which calls for an explanation in terms of underlying 
generating mechanisms. Thus, not only for compositionally complex systems, but also for 
dynamically complex systems, the identification of generating mechanisms is essential in order 
to explain their often surprising behaviour.
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However, I want to argue, dynamically complex systems are not sufficiently covered by the 
available conceptions of mechanisms. Whereas for mechanisms in compositionally complex 
systems the decomposition into modules is an essential and non‐trivial task, it is usually largely 
a non‐issue for dynamically complex systems. Instead, the recognition and detailed (statistical) 
analysis of dynamical patterns that are to be explained becomes one main task, besides the 
identification of generating mechanisms. The most important novelty in dynamically complex 
systems is the fact that the material nature of the mechanisms’ parts in dynamically complex 
systems is irrelevant in a far more drastic way than in many classical biological mechanisms, for 
instance. Structurally similar dynamical patterns can occur in materially completely diverse 
phenomena such as traffic jams, avalanches, earthquakes, tsunamis and financial market 
crashes. In each of these cases one has a system with a large number of elements, which 
displays a surprising macroscopic behaviour that results purely from the local
interaction of the system's components. Due to the resulting predominance of structural over 
material considerations in complex systems (p.882) research, which is underlined by the 
formation of numerous interdisciplinary projects and even whole scientific fields, mechanisms in 
dynamically complex systems must be construed in a more abstract structural fashion.1 Despite 
these and other differences, it is still appropriate to talk about ‘mechanisms’ both for 
compositionally as well as for dynamically complex systems, since, among other things, in both 
cases the interaction of parts and the robustness regarding the resulting behaviour of the 
composite system are essential, albeit these features need to be filled in in a different way.

Many widely used notions in complex systems research, such as complexity, emergence and 
mechanisms, are notoriously and to some extent inevitably vague. Among other things this 
vagueness manifests itself in various lists, e.g. of emergent phenomena or nonlinear 
mechanisms, whose items are neither on the same level nor situated in any clear conceptual 
hierarchy. It is one of my aims in this paper to go some way towards a clarification, either by 
characterizing some notions or by highlighting certain hidden ambiguities. My main goal is to 
explore whether and how the notion of a mechanism has to be modified in the case of 
mechanisms in (dynamically) complex systems. Moreover, I will show under which conditions 
the widespread, if not inflationary talk about mechanisms in (dynamically) complex systems 
stretches the notion of mechanisms beyond its reasonable limits and is no longer legitimate. 
Thus, I want to explore the boundary of the notion of mechanisms by giving reasons for 
distinguishing warranted from unwarranted claims about successful mechanistic explanations. 
To this end I will carve out a minimal notion of mechanisms that allows theorists, first, to 
incorporate many complex systems analyses into the mechanistic programme and, second, to 
say in which cases claims for a mechanistic explanation are at least premature. I will present 
two detailed examples, one of which I see on the (yet) unwarranted and the other one on the 
warranted side of the boundary of a minimal notion of mechanisms.

(p.883) 41.2 Dynamical complexity
41.2.1 Compositional versus dynamical complexity
The most important distinction in my analysis is that between compositional and dynamical 
complexity. What I call compositional complexity is also discussed under the labels structural,
combinatorial or detail complexity.2 Alternatively, one could also talk about set‐up complexity 
because the complexity is due to a complicated organization of the set‐up. Note that my usage of 
the term ‘compositional complexity’ should not be understood in the sense of complex rules of 
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composition, which play a role in the discussion of emergence.3 The compositionally complex 
systems I have in mind are typically linear systems which obey the principle of superposition, i.e. 
the behaviour of the compound system is the summation of the behaviours of its component 
parts in the sense that the system behaviour can be predicted by the traditional reductionist 
procedure of identifying components and characterising their individual input–output 
behaviours. In compositionally complex systems the complexity resides in the large number of 
relevant variables that characterise the component parts together with the detailed organization 
which is one out of very many possible combinations of the component parts. I call such a 
system compositionally complex because the individual behaviours of its parts and the detailed 
way how these parts are organized in the compound system are decisive for the overall system 
behaviour. Change the behaviour or the input of one of its parts or change the relation of two 
parts and you will in general change the behaviour of the whole system. Thus in compositionally 
complex systems many micro details have a measurable (linear) effect on the studied behaviour 
of the whole system.

In contrast, for dynamically complex systems very few parameters are usually sufficient to 
describe the behaviour of the whole system one is interested in. In most cases the vast majority 
of micro details is irrelevant, in the sense that a change of most microscopic variables as well as 
a change of most interrelations of the component parts will have no effect at all on the overall 
system behaviour.4 Dynamical complexity is characterized by the fact that (p.884) even in 
compositionally simple systems with simple (but nonlinear) rules that determine the dynamics 
the resulting time series can be unexpectedly complex. For instance, a nonlinear double 
pendulum, i.e. a pendulum with another pendulum attached to it, exhibits complex chaotic 
behaviour, due to the non‐linearity of the rules that determine its dynamics, while the 
compositional complexity is as low as one can think. Thus, dynamical complexity arises from the 
nonlinear interactions of the subunits over time.

The example of the double pendulum allows me to forestall a possible misunderstanding. 
Dynamically complex systems also do have components, no less than compositionally complex 
systems. However, most facts about the nature of these components as well as their initial 
arrangement have no bearing on the complex system behaviour one wants to explain. In the 
case of the double pendulum, for instance, it makes no difference for the complexity of its 
behaviour how long the two pendulums are, out of which material they are made and in which 
initial state they are arranged. To put it another way, dynamically complex systems don't need to 
look differently from compositionally complex systems. They may still have recognizable 
components which behave and interact in a regular fashion and thereby give rise to a particular 
behaviour of the whole system. However, knowledge about the detailed nature of these 
components and the way how they are organized in the whole does not render the complexity of 
the system behaviour understandable.

Strictly speaking, a system exhibits either compositional or dynamical complexity only with 
respect to a certain behaviour to be explained. That is, one and the same system can be 
compositionally complex with respect to the behaviour of, e.g. one quantity and dynamically 
complex with respect to the behaviour of another quantity, or not complex at all with respect to 
the behaviour of still another quantity. For instance, the community of financial market traders 
may be compositionally complex with respect to the money they spend on travelling, dynamically 
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complex with respect to the stock market prices they generate and not complex at all with 
respect to their collective weight. The dependence of complexity on the particular quantity or 
phenomenon one is studying is reflected by the fact that the issue of compositional versus 
dynamical complexity as well as the issue of mechanisms in such systems play a major role in 
the broader context of explanations. And the quality of an explanation in turn depends on that 
aspect of a phenomenon one seeks to understand. Thus complexity, mechanisms and 
explanations are pragmatic matters, which depend decisively on one's explanatory interests.

Talk about ‘dynamical complexity’ in complex systems’ research has a certain further ambiguity 
since the term refers to two intimately connected but still different perspectives, strictly 
speaking. The first meaning is dynamically emerging complexity, i.e. an unpredictable 
complexity in the system behaviour that arises while the system evolves in time, although the 
rules for the interactions between its components are very simple (albeit nonlinear). The (p.
885) second meaning is complexity displayed in the statistical characteristics of the dynamics, 
i.e. it refers to a complex measurable phenomenology of the dynamics. Roughly the ambiguity 
concerning ‘dynamical complexity’ is the difference between process and result. Examples for 
such a complex coming about are the endogenous formation of abrupt changes and extreme 
events through the nonlinear interaction of the system's subunits without an abrupt or extreme 
external influence. An example for a ‘complex result’ is statistical self‐similarity, e.g. of the 
fluctuations of some quantity (see below). If some given dynamics is statistically self‐similar, it is 
often referred to as ‘fractal dynamics’. But of course, while the system evolves, fractality cannot 
be recognized. The fractality involved here shows up only in the statistical analysis of the data 
set of the whole time series, which results from the dynamics of the system. To a certain degree 
the ambiguity of ‘dynamical complexity’ is already inherent in the term ‘dynamics’, which is 
often referred to almost as an object, whereas the paraphrase of ‘dynamics’ as the ‘evolution of 
a system in time’ exhibits the procedural character.

Dynamical complexity in the first sense emerges only in the temporal evolution, i.e. in the 
dynamics of a compound system without any need for complex initial conditions. In other words, 
even if the set‐up of the system is very simple, its dynamics can exhibit an unpredictable 
complexity. In addition, the composition of the system may, in concrete cases, also be 
complicated or, if one wishes to say so, ‘complex’, but this compositional complexity is not 
responsible for the dynamically emerging complexity I am addressing. In order to isolate and 
understand how complexity arises it is therefore advisable to make the assumptions about the 
initial set‐up of the system as simple as possible. Although some kind of dynamical complexity in 
the second sense, i.e. a complex statistical phenomenology of the dynamics, could in principle 
result from the compositional complexity of the initial set‐up or complex influences from the 
system's environment, there are very powerful and subtle methods for discriminating complex 
statistical characteristics that most likely emerged only in the temporal evolution of 
compositionally simple systems. One of the main reasons behind this assessment is the 
experience with other systems that are well understood and where a complex dynamical 
phenomenology emerged purely endogenously by the (nonlinear) interaction of the system's 
otherwise simple subunits.
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41.2.2 Dynamical complexity: From data analysis to mechanisms
Often, significant complex dynamical patterns are very difficult to identify because they are 
hidden beneath other regular or random processes (see the ‘DFA method’ below). Since the non‐
trivial identification of certain characteristic features in the dynamics of a system is taken as a 
strong indicator for corresponding underlying ‘mechanisms’, it becomes hard to disentangle 
description and analysis on the one side and explanation on the other (p.886) side. 
Interestingly, Goldberger (2006), for instance, makes no clear distinction between phenomena 
(which are to be explained) and mechanisms (on which the explaining is usually taken to rest) 
when he presents his list of ‘nonlinear/complexity‐related mechanisms and phenomena in 
physiology’.5 Since, on the one hand, dynamically emerging complexity necessarily results in 
complexity displayed in the statistical characteristics of the dynamics and, on the other hand, 
the occurrence of such statistical characteristics is in turn the most important indication of 
underlying dynamically emerging complexity (of the corresponding kind), these two aspects are 
often identified without further reflection about their difference.

As one can see in the later examples, the ambiguity of the expression ‘dynamical 
complexity’ (i.e. process versus result) is, to a certain degree, transferred to the way the term 
‘mechanism’ is used in complex systems’ research. For instance, there is, side by side, talk about 
‘feedback mechanisms’ and ‘fractal mechanisms’, although these two issues, feedback and 
fractality, are not on the same conceptual level. Whereas feedback is a process that can occur in 
the evolution of a system, fractality is (in this context) a characteristic property of the statistics 
of a time series. Thus, strictly speaking, fractality itself is not a process in time at all — although 
it may be a strong indicator for a certain underlying process or mechanism that generates 
fractality. I can see two options now. Either one ‘simply’ points out that the expression 
‘mechanism’ is inappropriate in such cases. Or one explores under which conditions one can 
make sense of this common use. I will go for the second option.

As mentioned above, investigations of dynamically complex systems are — due to the crucial 
role of structural considerations — often pursued in interdisciplinary research groups. 
Econophysics, for instance, is a relatively young special science between physics and economics 
that tries to analyse and explain economical phenomena by using models, techniques and 
analytical tools from physics.6 Although the possibility of econophysics first appears puzzling, it 
is ‘simply’ grounded on the insight that important properties of, e.g. financial markets can be 
understood if one adopts a complex systems framework. The same reasoning stands behind 
many other, mostly computer‐aided analyses of, e.g. traffic flow, opinion dynamics, social 
networks, avalanches, earthquakes, turbulences, tsunamis, etc., and in a more general fashion in 
chaos theory, game theory or the theory of self‐organization. In these diverse contexts one 
observes similar dynamical patterns, which is (p.887) seen as an indication that they are 
generated by structurally similar mechanisms. For this reason, it is often possible to use the 
same methods, models and analytical strategies, many of which were first devised in physics. 
Although in the case of econophysics the use of analytical tools from physics is particularly 
dominant, the general reasoning, the concepts, and the strategies are very similar in various 
other investigations of complex systems. Outstanding examples for the success of econophysics 
are the analysis and description of financial market crashes by using the advanced physical 
theory of phase transitions, where the common characteristic is a sudden occurrence of a 
comprehensive change of the state of affairs.



Mechanisms in dynamically complex systems

Page 7 of 24

Scale‐invariance/self‐similarity, power‐law behaviour and the closely connected occurrence of 
‘universal behaviour’ and criticality are important indications that one is dealing with a 
dynamically complex system. The existence of long‐range correlations in fluctuating quantities is 
particularly interesting because it indicates that there may be an underlying long‐memory 
process, i.e. that the fluctuation at a given time depends on what has happened at earlier times. 
By contrast, a Gaussian random walk process exhibits no long‐range correlations because each 
change of the respective quantity is an independent event, so to say, which is not affected by 
previous changes. Long‐range correlations are an implication of statistical self‐similarity, which 
in turn is tantamount to power‐law behaviour. The equivalence of statistical self‐similarity and 
power‐law behaviour is primarily a mathematical issue. A power law looks the same everywhere, 
i.e. if you take a small piece of a power‐law tail and inflate it, it is identical with a larger piece of 
the initial curve. This is different, in particular, for exponential functions like the Gaussian, 
which drops sharply towards zero for small values already and then lies almost on the x‐axis. The 
next point to be explained is the connection between statistical self‐similarity and long‐range 
correlations. For random processes like coin tossing there is no correlation between, in this 
case, two coin tosses. There is a fifty‐fifty chance for either side in each toss. Even if you had 
heads ten times in a row, there is still a fifty percent chance for heads in the eleventh toss. And 
if you look at the probability distribution for many samples of 10 consecutive coin tosses you will 
get a completely different result than for samples of 100 consecutive coin tosses. The probability 
distributions for sequences of independent random variables are not self‐similar, i.e. they have 
different statistical properties on different scales. This is very different, say, for (healthy) 
heartbeat intervals or stock prices. If there are days with drastic stock price movements there is 
a much higher chance for still more days with large changes in the immediate future than in 
quiet times (even though there is no correlation between the direction of these changes, i.e. up 
or down, which is the reason why it is not easy to exploit this knowledge). Thus changes of stock 
prices have a memory.

(p.888) Another important and closely connected point is that for independent random 
processes (e.g. coin tosses) there is a negligible probability that very many subunits (e.g. 
individual tosses) all do the same, which would lead to extreme events like 100 consecutive 
times heads. If such an extreme event happens, there is either an external cause, e.g. a 
magnetic heads‐detecting device, or the subunits most likely interacted with a coordinating 
effect. Thus statistical facts about a complex system can supply strong reasons for specific 
inferences about the existence or non‐existence of underlying interactions between the system's 
parts with a collective effect.

Scientists in complex systems research make every effort to discover power‐law and therefore 
scale‐invariant relations because it has far‐reaching implications for the behaviour of the system 
under investigation. Most importantly, under certain conditions, most microscopic details 
become irrelevant for the dynamics of the system on the macroscopic level. As one can learn 
from studies of so‐called critical phenomena in statistical physics, the occurrence of scale‐
invariance and hence self‐similarity is the deeper reason why diverse systems can exhibit very 
similar or even identical behaviour, a fact that physicists call ‘universal behaviour’.7

‘Universality’ in this sense can be explained via the method of renormalization involving 
iterative coarse graining, which in turn would not be possible without self‐similarity. Thus there 
is a direct road from power‐law behaviour, scale‐invariance and self‐similarity to understanding 
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why certain universal structural mechanisms can account for phenomena in physics as well as in 
economics.8 More specifically, power‐law behaviour allows applying ‘scaling methods’, which 
were first devised in physics, in very different contexts such as economics.

In the context of dynamically complex systems, and also in my two examples in the next section, 
statistical self‐similarity is of particular importance. Spatial self‐similarity is relatively well‐
known from branching trees, snowflakes and coastlines which display spatial structures of the 
same type on small and large scales (see Figure 41.1). The temporal kind of self‐similarity shown 
in the right diagram is more abstract. It refers to the statistical properties of a temporal process, 
namely the probability distribution of the deviations of some quantity from one time step to 
another. For this reason one talks about ‘statistical self‐similarity’.

One practically important aspect of scale‐invariance stems from the fact that it is a symmetry 
principle. As in the well‐known spatio‐temporal cases, e.g. translational, rotational or Galilean 
invariance, the corresponding symmetry principles often allow for simple and elegant solutions 
of otherwise (p.889)

intractable problems. For instance, 
symmetry considerations often make it 
possible to derive important aspects of a 
system's dynamics without solving the 
underlying equations of motion. In other 
words, in certain important respects the 
dynamical behaviour of a system can be 
understood by abstract reasoning 
concerning its symmetries without any 
detailed knowledge about the behaviour of 
its fundamental constituents. The 
significance of these facts for econophysics, 
for instance, is straightforward. The 
application of physics to economical issues 
is, to a large extent, possible because 
financial market behaviour exhibits 
invariances that allow neglecting certain 
micro details, thus making way for 
analytical methods and explanatory models 
developed in physics, in order to understand 
the behaviour of systems in those special 
circumstances where, just as in financial 
markets, many micro details lose their 
relevance in a sharply specified sense.
In the following section I will exemplify the 
significance of scale‐invariance in two 
different concrete contexts. More 
importantly, I will discuss the connection 

Fig. 41.1  Schematic comparison of spatial 
(left diagram) and dynamical or temporal 
(right diagram) self‐similarity. In both cases, 
zooming repeatedly into parts of the initial 
spatial structure/dynamics reveals 
structures/dynamics with similar or even 
identical characteristics as the initial one. 
Reprinted from Goldberger et al. 2002. 
(Copyright (2002) National Academy of 
Sciences, U.S.A.)
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with mechanisms in dynamically complex systems.

(p.890) 41.3 On heartbeat and financial market crashes
41.3.1 Congestive heart failure
Traditionally, cardiologists have described the normal heart beat activity as a regular sinus 
rhythm. However, in contrast to our subjective impression and to the traditional cardiologists’ 
assumption, interbeat intervals normally fluctuate, even for individuals at rest, in a complex 
way, which appears to be erratic. The upper time series (a) in Figure 41.2 shows the heart rate 
dynamics of a healthy person, while the lower one (b) the dynamics of a person with congestive 
heart failure.

Although the ‘healthy dynamics’ exhibits a far more complex pattern of variability than the 
‘unhealthy dynamics’ with its rather periodic temporal structure, their mean values as well as 
their variances are almost identical. Thus the unexpectedly irregular behaviour of heart beat 
activity defies conventional methods of analysis, which only work for stationary or ‘well‐
behaved’

(p.891) time series. In order to analyse 
such data sets with fluctuations on multiple 
time scales one needs sophisticated 
techniques of ‘fractal analysis’, one of which 
is depicted in Figure 41.3.
The detrended fluctuation analysis, or short 
‘DFA method’, is very useful in revealing to 
what extent there are so‐called long‐range 
correlations in a given non‐stationary time 
series, where non‐stationarity means that 
the statistical

Fig. 41.2  Comparison of (a) healthy and (b) 
unhealthy heart rate dynamics. Contrary to 
one's expectation, healthy heart rate activity 
is far more complex, and seemingly erratic, 
than the relatively regular heart rate activity 
of unhealthy individuals. Only subtle data 
analysis is the first important step towards 
explaining this surprising difference. 
Reprinted from Ivanov et al. (2002) (with 
kind permission from Springer Science
+Business media).
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(p.892) properties of the time series, such 
as the mean value, vary with time.9 In such 
cases one needs a sophisticated method 
since linear or higher order polynomial 
trends in the data often lead to the spurious 
detection of long‐range correlations. In the 
first step of the DFA method, applied to 
heart beat dynamics, a time series of 
interbeat intervals such as the one in 
diagram A of Figure 41.3 with N beats in 
total) is integrated, where the average 
interbeat interval RR ave is subtracted from 
each interbeat interval RR(i), so that one 
gets

as the integrated time series (see diagram B 
in Figure 41.3).10 Note that if the interbeat 
intervals were all equal, then RR(i) − RR ave

and thereby y(k) would vanish and the DFA 
method would be redundant. Moreover, if 
the interbeat interval time series were 
stationary, i.e. if the interbeat intervals 
would randomly fluctuate around a constant 
mean value, then y(k) would also vanish, 
again making the DFA method redundant. 
Thus, a non‐vanishing integrated time series
y(k) reveals fluctuations that are not evenly 
distributed around some mean value, i.e. it 
makes the non‐stationarity of the time 
series visible and quantifiable. In particular, 
it allows detecting whether the heart beat 
intervals temporarily tend into one 
direction, e.g. becoming either shorter or 
longer. That this happens is well‐known to 
everyone by first‐hand experience.
The DFA method allows investigators to 
extract and put aside these 
‘trends’ (therefore the name ‘detrended fluctuation analysis’) in order to get an undisturbed view 
into hidden statistical patterns which may indicate certain underlying processes. This removal of 
trends is done in the following way. The integrated time series gets divided into equal boxes and 
in each box a ‘least squares line’ is fitted to the data, which is taken to represent the trend in 
that box (see diagram B in Figure 41.3). In the next step, the integrated time series gets
detrended by subtracting the local trend in each box of the chosen size n. Eventually, one 
calculates the root‐mean‐square fluctuation of the integrated and detrended time series and 
repeats the same procedure over all time scales, i.e. all box sizes, in order to determine the 

Fig. 41.3  The method of detrended 
fluctuation analysis (DFA) allows uncovering 
hidden dynamical patterns, which are strong 
indicators for specific underlying 
mechanisms. The above diagrams depict the 
stepwise isolation of a power law in a 
seemingly erratic time series of heart beat 
(see main text for further explication). 
Reprinted from Goldberger et al. (2002). 
(Copyright (2002) National Academy of 
Sciences, U.S.A.)
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relationship between the average fluctuation F(n) and the respective box size n. If, on a double 
logarithmic plot one finds a linear relationship, this indicates the presence of power law scaling 
and thereby of a fractal structure of the time series.11 In this case the fluctuations can be 
characterized by a scaling exponent, which is the slope of the line in diagram C of Figure 41.3. 
At this stage it may be helpful to consult Section 41.2.2 again, where I already explained the 
more general implications of these issues.

(p.893) Thus using the DFA method one finds that the fluctuations of the healthy (but not the 
unhealthy) heart rate dynamics are statistically self‐similar, i.e. the statistical properties of heart 
rate fluctuations are identical on different time scales. Thus healthy heart rate regulation
generates statistically self‐similar fluctuations, which is tantamount to long‐range correlations in 
the time series.12 Goldberger, one of the pioneers of ‘fractal physiology’, offers the following 
conclusion:

A defining feature of healthy function is adaptability, the capacity to respond to often 
unpredictable stimuli. [ … ] Fractal physiology, exemplified by long‐range correlations in 
heartbeat and breathing dynamics, may be adaptive for at least two reasons [ … ]: (1) 
long‐range correlations serve as an organizing mechanism[my emphasis, M. K.] for highly 
complex processes that generate fluctuations across a wide range of time scales and (2) 
the absence of a characteristic scale may inhibit the emergence of very periodic behaviors 
that greatly narrow system responsiveness. This hypothesis is supported by findings from 
life‐threatening conditions, such as chronic heart failure where the breakdown of fractal 
correlations is often accompanied by the emergence of a dominant mode [ … ] The 
paradoxical appearance of highly ordered dynamics with pathologic states (“disorders”) 
exemplifies the concept of complexity loss (decomplex‐ification) in aging and disease [ … ]. 
Physiologic stability appears to relate in part to complex patterns of variability that 
incorporate long‐range correlations [ … ] The opposite of a fractal (scale‐free) system [ … ] 
is one dominated by a characteristic frequency [ … ]. (Goldberger 2006)

Goldberger directly (although tentatively) interprets the long‐range correlations in the time 
series of healthy heart beat, as found by means of the DFA method, as an ‘organizing
mechanism’ that helps to generate fluctuations across many time scales, which secure the 
responsiveness of a healthy heart to unpredictable influences.

What is it that justifies Goldberger's (and others’) hypothesis that a mechanism has been 
identified? The first, very important point is the robustness of the statistical characteristics that 
the DFA method allows one to identify in healthy heartbeat dynamics. For different healthy 
individuals in the same context (e.g. sleep or wake phase) one always finds the same 
characteristics. Second, there has been some transfer of knowledge from structurally similar 
situations.13 In particular there is a large body of experience with complexly fluctuating 
quantities in condensed matter physics. From these cases one (p.894) knows that certain 
statistical characteristics of fluctuations imply long‐range correlations, which arise purely 
endogenously by the nonlinear interaction of the system's subunits in the absence of any 
coordinating external force. If this inference is justified, it suggests an (endogenous) mechanism 
that leads to correlations between (spatially or temporally) distant subunits of the system. As a 
third point, a mechanistic interpretation of the results of data analysis such as Goldberger's 
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always rests on specific contextual knowledge. For instance, one needs to know, I want to argue, 
that the responsiveness of heartbeat to unpredictable influences is an important ability of 
healthy individuals, so that one can surmise that there is some corresponding mechanism. 
Despite of these points in favour of Goldberger's mechanistic interpretation the question is not 
yet conclusively answered whether he is in fact justified in claiming the discovery of a 
mechanism. In my evaluation such an interpretation is not sufficiently grounded as long as not 
even a sketch has been supplied as to how the component parts may, by their compositional and 
interactive organization, generate the phenomenon of interest. I will come back to this point in 
the final discussion. Before doing so I want to present another example which is closely related 
to the first one in some structural aspects, whereas materially we will be concerned with a 
completely different subject matter. Moreover, the situation will be different regarding the 
legitimacy of talking about mechanisms.

41.3.2 Financial markets
My second candidate for a mechanism in a dynamically complex system occurs in so‐called 
microscopic models of financial markets, within the context of econophysics (see above). Since 
mechanisms are always relative to some behaviour that is to be explained, it is necessary to 
describe what it is that econophysicists want to explain and why they rate complex systems 
theories, as developed in condensed matter physics, as the appropriate framework for this end. 
The endogenous formation of financial market crashes, i.e. without any particular external 
causes, is one particularly well‐known example for a characteristic dynamical pattern that calls 
for an explanation. Put more generally, financial markets experience far more large changes and 
extreme events, like crashes and bubbles, than one would traditionally expect for random 
processes, such as Brownian motion. Econophysics often talk about ‘fat tails’ in the probability 
distributions for price changes in assets like stocks or commodities, since the corresponding 
functions stay way above the x‐axis much longer than in Gaussian probability distributions for 
random variables like body size or IQ. Another closely connected example for a characteristic 
dynamical feature in financial markets that calls for an explanation is the so‐called volatility 
clustering, i.e. the tendency of quiet and turbulent market periods to cluster together in 
packages. These characteristics of financial markets indicate that the interaction between 
market participants is of crucial (p.895) significance. That is, the best explanation for the high 
probability of extreme events in financial markets involves the assumption that financial markets 
are complex systems with nonlinearly interacting constituents, just as many other composite 
systems that show a similar tendency for the endogenous formation of extreme events in the 
absence of any dramatic external causes.14

One main research activity in econophysics is the construction of so‐called microscopic models 
of financial markets15 that reproduce the observed statistical features of market movements 
(e.g. fat tailed return distributions, clustered volatility, crashes) by employing or inventing 
highly simplified models with large numbers of agents (market participants).16 Thereby one tries 
to understand the main statistical characteristics of observed probability distributions in terms 
of underlying random processes, e.g. random walk. The relevant parts of physics that are used 
to build microscopic models of financial markets are usually models and methods from 
condensed matter physics and statistical physics. Microscopic models of financial markets are 
highly idealized as compared to what they are meant to model. Often all agents have identical 
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properties or there are very few subgroups. Another option is to have a set of agents with 
random variations. The interaction between agents is usually modelled as extremely simple, like 
‘do what your nearest neighbour does’.

A paradigm case of a microscopic model for financial markets arose from the collaboration of 
the economist T. Lux and the physicist M. Marchesi.17 Their stochastic multi‐agent model rests 
on the empirical fact that the universal characteristics of price change statistics (fat tails, 
clustered volatility) are structurally similar to scaling laws in physics. In physics, scaling laws 
arise from the interaction of a large number of interacting units, e.g. particles, where most 
microscopic details are irrelevant. This structural similarity of observed phenomena in physics 
and finance suggests an equally similar explanation. In the Lux–Marchesi model there are two 
types of traders, ‘fundamentalists’ and ‘noise traders’ (or ‘chartists’).18 Whereas fundamentalists
are rational traders who base their action on the comparison of the fundamental value p f of the 
traded asset (e.g. stocks, bonds or currencies) and the actual market price p, the behaviour of
noise traders only depends on the current price trend and the opinion of other traders. A crucial 
feature of the setting used by (p.896) Lux and Marchesi refers to the dynamics for the 
fundamental value p f, more precisely its relative (logarithmic) changes between two time steps, 
which are assumed to be Gaussian random variables. This assumption is decisive for the Lux–
Marchesi approach because it means that changes of p f cannot be the reason for the typical 
statistical features of financial assets like fat tails and clustered volatility, which the model is 
meant to reproduce in its dynamics. Figure 41.4 shows the result of one ‘computer simulation 
run’.

The intuitively most compelling impression of the result can be gained by comparing the time 
developments of the market price p(upper curve) and the fundamental value p f (lower curve), 
first, with each other, and, second, with respect to their statistical properties. The most 
interesting statistical property is the frequency of price changes from one time step to another. 
The crucial point of the result is that the time developments of the market price and the 
fundamental value are very similar whereas, at first sight surprisingly, their statistical 
properties differ remarkably. The two lower diagrams show the relative price changes which are 
extracted from the time developments shown
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(p.897) in the first diagram. Only after this 
extraction does the difference between the 
distribution of changes of the market price 
and the fundamental value become visible. 
Although the market price tracks the 
fundamental value in average it deviates 
significantly on a short time scale, allowing 
for the typical ‘extreme events’ and the 
clusters of high volatility which are 
observed in real markets. Lux and Marchesi 
conclude that the market is efficient in the 
sense that the market price follows the 
fundamental value. This does not apply to 
the short term, however, where the relative 
changes of the market price deviate from 
the normal distribution, which was assumed 
for the relative changes of the fundamental 
value.
In their analysis Lux and Marchesi also use 
the DFA method which I introduced above 
for the investigation of heart rate dynamics. 
The analysis of the scaling properties (in 
particular the extraction of critical 
exponents) shows that the exponents for the 
exogenous input series (i.e. the random 
changes of the fundamental price p f) do not 
allow for fluctuations of the order of empirically observed price changes. Lux and Marchesi 
show that the emergence of a power‐law distribution of price changes is produced by changes 
from quiet to volatile periods, which are due to transitions of agents from one group to another, 
more precisely from fundamentalists to noise traders. This behaviour, which is sometimes called 
‘switching’, will play an important role in my own analysis of how Lux and Marchesi contribute 
to the scientific explanation of financial market behaviour. Another result of Lux and Marchesi is 
that a system loses its stability when the number of noise traders exceeds a certain critical 
value, and they observed so‐called ‘on‐off intermittency’, i.e. the fact that instabilities are 
recurrent but only temporary. Eventually, it should be stressed that the qualitative results of Lux 
and Marchesi are very robust since temporary instability (high volatility) occurs for a wide range 
of parameter values.

Again, let me ask the question, whether it is justified to say that certain mechanisms have been 
found? Similarly as in the heart beat example, the first important point in favour of talking about 
mechanisms is the robustness of the statistical characteristics which have been identified in 
financial market dynamics. For Lux and Marchesi's microscopic models of a financial market, 
fat‐tailed probability distributions and volatility clustering are stable characteristics of their 
computer simulations that do not depend on any particular parameter values or any particular 
initial configuration. And the other two points in my evaluation of the heart beat example, 
namely about the transfer of knowledge from structurally similar situations as well as about 

Fig. 41.4  Result of (a) typical simulation run 
for a stochastic multi‐agent model of a 
financial market. Most importantly, in 
comparison to the assumed input series in 
diagram (c), the resulting time series in 
diagram (b) shows far more large changes as 
well as packages or clusters of very volatile 
asset prices. Both of these characteristics 
must have been produced purely 
endogenously by the interaction of the 
market participants. (Reprinted from Lux 
and Marchesi 1999, with permission by 
Nature.)
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additional contextual knowledge, are also in place. But in the financial market case, compared to 
the heart beat example, much more has been said about component parts (the agents) and their 
compositional and interactive organization (different groups of traders, certain rules for buying 
and selling behaviour). And one also gets a clearer picture about how the compositional and 
interactive organization (p.898) of the component parts can generate the phenomenon of 
interest. Nevertheless, this is still much less than in classical mechanisms. In comparison to the 
well‐known multifacetedness and irrationality of real financial markets the described model of a 
financial market seems ludicrously simple. This observation seems a crucial point to me to which 
I will come back in my final evaluation.

Summing up, for both the heart beat and the financial market example, one strong point in 
favour of talk of mechanisms is the fact that certain subtle statistical characteristics of the 
respective dynamics can be shown to arise in a robust way. However, although the reference to 
the level of component parts and their compositional and interactive organization also remains 
more or less vague in both cases, when compared to the complexity of the phenomena that are 
investigated, the sketch of the ‘microscopic’ processes are far more convincing in the financial 
market case. In the next section I will argue that this difference is in fact crucial regarding 
claims about mechanistic explanations.

41.4 Complex systems and mechanical philosophy
How could the potential mechanisms in dynamically complex systems be incorporated into the 
program of mechanical philosophy? Thorough answers are hard to be found. A promising and 
very recent answer is presented in Bechtel and Abrahamsen (2011). Although Bechtel and 
Abrahamsen come closest to how I see the matter there remain some diverging points. One of 
their central claims is that despite of terminological differences19 there is a consensus about the 
crucial steps of what they call a ‘basic mechanistic explanation’, namely ‘(1) the identification of 
the working parts of the mechanism, (2) the determination of the operations they perform, and 
(3) an account of how the parts and operations are organized so that, under specific contextual 
conditions, the mechanism realizes the phenomenon of interest.’20 Bechtel and Abrahamsen 
concede that, as it stands, the basic notion of mechanistic explanation is too limited to account 
for the insights into the complex dynamics of biological mechanisms which have been achieved 
by complexity theories. However, they argue, there is no need to supplant the mechanistic 
philosophy of science by the new paradigm of complex systems modelling since it is possible and 
preferable to correct and thus modify the mechanistic approach appropriately by incorporating 
the relevant ideas of complex systems theories. The resulting notion of what they call ‘dynamic
(p.899) mechanistic explanation’ is meant to recognize the ‘previously neglected temporal 
dynamics and the implications for our understanding of how operations are orchestrated in real 
time’ or in other words, the ‘temporal dynamics that orchestrate the functioning of biological 
mechanisms’.

I agree with Bechtel and Abrahamsen that the idea of mechanistic explanations should not be 
given up in favour of complex systems theories since many tools and concepts of complex 
systems theories can and should be integrated into the more comprehensive conception of 
mechanistic explanations. However, I think the phenomenon of dynamical complexity that I am 
focussing on cannot be fitted into the existing theories of mechanisms by adding insights into the 
complexity of the dynamics of mechanisms, by recognizing how operations are ‘orchestrated in 
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real time’, to use a phrase by Bechtel and Abrahamsen. Instead, I claim that in the case of what I 
call dynamically complex mechanisms, understanding the robust dynamical patterns of the 
system is in fact the core task of the researcher whereas the identification of parts, operations, 
and their organization loses much weight, although it is not completely lost. Detailed analyses of 
the parts and the operations of these parts and the organization, including the detailed 
organization of their interactions, are of minor interest, since they have, to a surprisingly high 
degree, no effect on the dynamical characteristics of interest. They constitute the set‐up but 
nothing much is understood if only the parts, their interaction behaviour and the initial 
arrangement of the whole system are specified. Rather, one has to identify the dynamical 
patterns of the compound system of interacting parts. When complex systems researchers try to 
understand by which mechanisms these dynamical patterns are generated they usually make 
certain assumptions about the parts of the complex system, their interaction behaviour, and the 
basic arrangement of the whole system so that it displays the phenomenon one wants to be 
explained. But finding an appropriate set of assumptions as such by no means exhausts the 
identification and understanding of mechanisms in dynamically complex systems. Moreover, 
often the parts in dynamically complex systems can change their nature completely while the 
complex system evolves in time, as one can quickly see in the econophysics example. Traders 
can switch from one group to another, which is in fact a crucial characteristic of the model. But 
if the parts are taken to be identified by their behaviour, then one is forced to say that that there 
isn't even a stable set of entities in a dynamically complex system.

So what should we conclude concerning the question how complex systems research and 
mechanical philosophy are related? Bechtel and Abrahamsen offer the following conclusion:

Dynamic mechanistic explanation stands in contrast not only to purely mechanistic 
explanation but also to theoretical inquiries that emphasize complex dynamics in living 
systems conceived abstractly — at best neglecting but in some cases explicitly rejecting
(p.900) the mechanistic project. Artificial life research, for example, is conducted on a 
plane removed from research on actual biological mechanisms. While accounts oriented 
purely to complexity or dynamics can make unique and valuable contributions, they 
provide no understanding of how the dynamic relations are actually realized in living 
systems if they do not get anchored to component parts and operations of actual 
mechanisms. That is, they are empty. We contend that complexity and dynamical systems 
theory find their best use as tools in a more integrated endeavor. (Bechtel and 
Abrahamsen, 2011)

Again, I agree with Bechtel and Abrahamsen that an understanding of complex dynamics does 
and should not supplant mechanistic explanations. However, as I have shown in the two 
examples above, mechanisms in dynamically complex systems are not appropriately covered by 
the standard notions of mechanisms. To some extent this judgement is in agreement with 
Bechtel and Abrahamsen, but a closer look reveals important differences. In order to see that it 
is helpful to consult two other writings by Bechtel, together with Richardson:

The interactions between subsystems become increasingly important as the units engage 
in more complex modes of interaction, such as [ … ][different] kinds of feedback [ … ]. 
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[ … ] Thus, emergence is a consequence of complex interaction. Different models are 
needed to characterize the interactions between the components in a complexly organized 
system than are needed to characterize the behavior of the independent components. With 
emergent phenomena, it is the interactive organization[my emphasis, M.K.], rather than 
the component behaviour, that is the critical explanatory feature. (Bechtel and Richardson
1992, p. 285)

In what Bechtel and Richardson (1993) call ‘integrated systems’ the behaviour of the whole 
system is mostly determined by the (nonlinear) interaction of its components. And in still more 
extreme cases ‘the activities of the parts seem to be different in kind from, and so far simpler 
than those performed by the whole. The parts can be so simple, in fact, that they do not seem to 
contribute anything of interest to understanding the behavior of the whole; in some cases it is 
possible to destroy or disable much of the system without significantly affecting performance.’21

While Bechtel and Richardson think of network models of cognition something similar applies to 
microscopic models of financial markets, for instance. Here the statistical patterns are not 
altered by adding or removing however many specific traders, as long as we are still dealing 
with a large number of nonlinearly interacting heterogeneous subunits.

For a better understanding of mechanisms in dynamically complex systems I think the eventual 
shift away from classical mechanistic thinking is not radical enough as long as the basic idea 
remains that we have a certain number of working parts, say, A, B, C, D, E, F and G, each of 
which can (p.901) perform certain operations and which interact with each other in a nonlinear 
way thus giving rise, for instance, to self‐sustained oscillations like in the circadian rhythm. I do 
not intend to reject this analysis in the cases Bechtel in particular is studying but I want to point 
out that not all explanations in terms of nonlinear mechanisms are appropriately represented by 
this description. In those dynamically complex systems I am focusing on in this chapter it is 
inappropriate to emphasize the identification of particular working parts and certain operations 
they perform. The kind of nonlinear mechanisms I scrutinize work largely irrespective of the 
detailed individual natures of the subunits that are involved and their initial compositional as 
well as their detailed interactive organization in the whole system.

Since it is apparent from complex systems that are microscopically well‐understood that most 
micro details can be irrelevant (relative to one's explanatory target), it is only consistent that 
detailed investigations about the organization of mechanisms become less important in the case 
of dynamically complex systems. Instead, the focus is shifted towards studying the dynamics. 
For instance, it is of great interest, under which conditions the dynamics is robust and in which 
cases instabilities occur. However, if the attention is exclusively directed towards analysing the 
(statistical) characteristics of the dynamics, then the point is reached where, in my judgement, 
the researchers’ use of the term ‘mechanism’ is no longer justified since it transgresses the 
limits of even the most minimal notion of mechanisms. For example, one can sometimes find talk 
about ‘fractal mechanisms’, although fractality is a feature that only refers to the statistics of 
time series. Without any further knowledge, all one is warranted to say in this case is that the 
statistical characteristics one has found indicate certain underlying mechanisms. But no 
mechanism has been identified unless at least some indication has been given about how an 
interaction of subunits may be involved to generate the phenomenon of interest. The inevitably 
vague qualification ‘at least some indication’ is of crucial importance. Requiring more than that 



Mechanisms in dynamically complex systems

Page 18 of 24

would, in my view, make too many complex systems studies non‐explanatory. And more 
importantly, the valuable explanatory perspective of complex systems theories would be 
diminished if its structural focus were given up, where specific material details are deliberately 
faded out.

The difficulties in fitting the potential mechanisms in dynamically complex systems into the 
existing notions of mechanisms prompts the question whether one should talk about 
mechanisms at all in this case. Is there any need or at least are there good reasons for 
construing explanations for the behaviour of dynamically complex systems in terms of 
mechanisms? A first strong indication that one should indeed be talking about mechanisms is 
that the term is ubiquitous in actual analyses of complex systems. For instance, there is an 
extensive discussion about the ‘mechanisms’ that generate power (p.902) law behaviour, which 
is closely connected with scale‐invariance (see above).22 Although in some cases the term 
‘mechanism’ seems inappropriate, widespread terminology among scientists should be taken 
seriously. Nevertheless, this point alone does not yield a conclusive justification. A closer look at 
the econophysics example from above already provides a firmer basis. In the actual scientific 
practice of econophysics there are clearly two different areas of research. On the one hand we 
have statistical analyses which provide the systematic identification of explananda. But on the 
other hand, many investigations are concerned with the formulation of explanatory microscopic 
models, i.e. models that reproduce or ‘generate’ the observed phenomena, in particular their 
statistical characteristics. And it seems that the underlying conception of explanation is 
mechanistic, partly because there are no established laws on the micro level that would allow 
invoking the covering law model, for instance. Moreover, to a certain degree, interdisciplinary 
approaches such as econophysics rest on the transfer of mechanistic models from one scientific 
field to another, e.g. from condensed matter physics to economics. Eventually, there are two 
further reasons why a construal of explanations in complex systems theories in terms of 
mechanisms is attractive. First, it supplies important means in order to answer questions 
concerning the reducibility of complex systems behaviour. Naturally, this point is only attractive 
if one is interested in micro reductions. Second, mechanistic explanations are arguably the best 
way towards finding effective interventions and many investigations in complex systems 
research have this goal.

41.5 Towards a more structural notion of mechanisms
Structural explanations that rest, for instance, on basic symmetries independently of any 
particular ontology have a long and successful history in physics. Elementary particle physics 
lives on considerations where symmetry principles are the cornerstones. With the advent of the 
statistical mechanics of complex systems and modern computing, structural explanations spread 
into various fields far beyond fundamental physics, at first within physics, eventually into almost 
each science. Today, the same analytical techniques, concepts, models and explanatory 
strategies are applied across radically different sciences such as physics, biology, economics and 
social science. Apparently, the success of this transfer does not rest on a common ontology — 
unless one wants to reify structures, which I do not advocate. In a sense these sciences have the 
same underlying ontology since, for instance, market traders, human hearts and ocean waves 
ultimately all consist of elementary particles. But this common fundamental ontology is not the 
reason why the same explanatory (p.903) strategies can successfully be applied. In the context 
of complex systems theories the reason is the observable fact that there are structural 
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similarities in the dynamics of compound systems with completely different kinds of subunits. 
These structural similarities can be classified in terms of certain dynamical patterns that can in 
turn be represented and discriminated in a mathematically precise and subtle way.

A concrete example for structural similarities in the dynamics of extremely diverse complex 
systems is probably more helpful than a thousand words. Fer‐romagnets have the surprising 
ability to form a macroscopic magnetization if the temperature falls below a certain threshold. 
Detailed analyses revealed, roughly sketched, that the underlying mechanism involves the 
endogenous, i.e. not externally coordinated, parallel alignment of neighbouring dipoles (spins) 
across the whole piece of matter, whereas the dipoles are irregularly oriented for higher 
temperatures. Physicists talk of a phase transition, which results in long‐range correlations of 
otherwise uncorrelated dipoles (and of course in self‐similarity, power laws, and all that). 
Reasoning in structural analogies helped enormously to understand that something very similar 
happens in financial markets. Here as well it is the mutual interaction between traders 
(analogous to dipoles) and their ability to change the neighbour's trading behaviour (analogous 
to the orientation of the dipoles) that is crucial for understanding the endogenous formation of 
large changes and even comprehensively collective behaviour (e.g. financial market crashes). 
Once this structural analogy is understood it allows for far‐reaching explanatorily valuable 
conclusions without the need for detailed analyses of the micro details. What still needs to be 
done, however, is a convincing proof that the analogy actually holds. That is, sufficient 
grounding in the actual situation of financial markets must be supplied, for otherwise one just 
has an interesting speculation. But insisting on a complete specification of the microscopic 
situation would spoil the explanatory efficacy of this approach, since one of its crucial 
characteristics is the insight into the irrelevance of most micro details.

Today, complex systems with large numbers of nonlinearly interacting subunits have a similar 
significance as analytically tractable systems in the past. The behaviour of complex systems is 
much harder to understand and to predict than the behaviour of simpler classical systems. 
Nevertheless, for good reasons complex systems theorists firmly believe that — bearing in mind 
the much higher complexity of the subject matter — they can do more than just describe 
similarities of dynamical patterns. For instance, one can show under which conditions the 
statistical characteristics of dynamical patterns are robust and how these patterns arise on the 
basis of nonlinear interactions of subunits — subunits that need not be described more than in a 
rough structural way. Moreover, in some cases it can precisely be said at which point a system 
may lose its stability. This is less than in the classical cases since (p.904) the further 
development cannot be accurately predicted, but still something explanatorily helpful can be 
said, e.g. for purposes of intervention.

Summing up one can say that complex systems theories can contribute substantially to the 
explanation of when and why certain structural dynamical patterns23 are generated in a robust 
way by the nonlinear interaction of the system's parts, even if these parts and their 
compositional and interactive organization in the whole system are only roughly sketched. 
Therefore, I think it is justified to say that complex systems theories supply mechanistic 
explanations, provided a sufficient grounding in concrete interacting parts is supplied. In many 
cases, more detailed and concrete grounding may be desirable, but still a large number of cases 
will remain, where more details will be very hard to supply without deteriorating the 
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explanatory efficacy. However, if one is willing to follow this step, the notion of mechanisms 
must be modified or adapted in a rather drastic way. Even the more sophisticated gloss that the 
understanding of mechanisms comprises the identification of parts, of the input–output 
behaviours of these parts and how the compositional and interactive organization can bring 
about the phenomenon of interest has an inappropriate focus in the case of dynamically complex 
systems. Here, the emphasis lies not on the identification of material parts, their detailed 
behaviours and the initial set‐up of the whole system but on identifying the structural conditions 
for the robust generation of characteristic dynamical patterns. To this end, a very simple 
description of the lower‐level organization can be sufficient for a mechanistic explanation, and 
sometimes even the best one can do.
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Notes:
(1) In short, I use the term ‘structural’ in the philosophy of physics fashion (structural versus 
material) and not the philosophy of biology one (structural versus functional). For philosophers 
of biology, ‘functional descriptions’ abstract from everything other than input–output relations 
or the function that a part has in a given whole, whereas ‘structural descriptions’ go beyond 
functional ones by referring to the inner material structure that underlies or may underlie a 
given functional relation. In contrast to that, the philosophy of physics’ usage of ‘structural’ 
refers to abstracting from any particular material entities. This usually means that one focuses 
on abstract mathematical structures, such as the harmonic oscillator or certain symmetries or 
dynamical patterns like bifurcations in chaotic systems. In physical contexts the focus on 
abstract mathematical structures often reveals decisive insights into essential features of a 
physical system that are invisible with a detailed material description.

(2) For instance, see Sterman (2000 p. 21) and Érdi (2007 p. 1). Moreover, I should point out 
that there is also a divergent technical notion of ‘compositional complexity’ as ‘a measure of bias 
in the sequence composition’ (Zvelebil/Baum 2007 p. 151), which is used in particular in the 
analysis of DNA sequences.

(3) See Hüttemann (2004, chapter 3) and Hüttemann and Terzidis (2000).

(4) The occurrence of the so‐called butterfly effect, a well‐known characteristic feature of dynam 
ically complex systems is not in conflict with how I characterized dynamical complexity and 
explains the addition ‘In most cases’. In some cases, tiny variations of the initial conditions are 
sufficient to generate a drastic effect for the whole system. But even this effect does not occur 
for compositionally complex systems where, due to their linearity, similar variations of the initial 
conditions always lead to similar effects for the whole system.

(5) Among other things, Goldberger's list (p. 469) contains abrupt changes (e.g. bifurca tions, 
intermittency and other bursting behaviours, bistability/multistability, phase transitions), 
complex periodic cycles and quasiperiodicities, nonlinear oscillations (e.g. limit cycles, phase‐
resetting, entrainment phenomena, pacemaker annihilation) and scale‐invariance (diffusion 
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limited aggregation, fractal and multifractal scaling, long‐range correlations, self‐organized 
criticality).

(6) See, for instance, Mantegna and Stanley (2000) and Johnson et al. (2003).

(7) See Binney et al. (1992) for a detailed account of the physical and Batterman (2002) of the 
philosophical perspective.

(8) Newman (2005) cautions that the mechanism discovered for critical phenomena is only one 
among various different mechanisms generating power‐law behaviour.

(9) The DFA method was first presented by Peng et al. (1994) for the analysis of DNA 
nucleotides.

(10) ‘RR’ stands for Scipione Riva‐Rocci, who invented the traditional procedure for measuring 
blood pressure.

(11) In a double logarithmic plot, i.e. if the logarithm of both the x‐ and the y‐coordinate of a 
function y(x) is taken, a power law y(x) = x a becomes a straight line.

(12) See Binney et al. (1992) for the connection between the statistical self‐similarity of 
fluctuations and the existence of long‐range correlations.

(13) The following quote by condensed matter physicists indicates the fundamental significance 
of this point: What makes continuous phase changes especially interesting is the scale‐freedom 
of the fluctuations at [ … ]. Not only is the creation of long‐range structure by short‐range inter‐ 
molecular forces intriguing, but any example of scale‐freedom is worthy of close examination 
since this phenomenon occurs in several physical systems that are inadequately understood. 
(Binney et al. 1992, p. 30)

(14) See Mantegna and Stanley (2000, p. 5), Sornette (2003, p. 15) and Schweitzer (2003, 
section 1.1).

(15) In the last decade economists and physicists investigated various microscopic (or ‘agent‐
based’) models of financial markets, for instance the Kim–Markowitz, the Levy–Levy–Solomon, 
the Cont–Bouchaud, the Solomon–Weisbuch, the Lux–Marchesi, the Donangelo–Sneppen and the 
Solomon–Levy–Huang model. See Samanidou et al. (2007) for a review of these models.

(16) See Voit (2001) and Johnson et al. (2003) as well as Casti (1997) for the wider background.

(17) See Lux and Marchesi (1999).

(18) The coinage of and the distinction between ‘fundamentalists’ and ‘noise traders’ is not due 
to Lux and Marchesi, but is established in economics.

(19) For instance, Machamer et al. (2000) stress the dichotomy of ‘entities’ and ‘activities’, 
whereas Glennan (1996, 2002) emphasizes the interaction between the parts of a mechanism.
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(20) See Bechtel and Abrahamsen (2011); all following quotes come from this paper, unless 
otherwise stated.

(21) Bechtel and Richardson (1993, p. 202f).

(22) See, for instance, Newman (2005) and Sornette (2006, chapter 14).

(23) By ‘structural dynamical patterns’ I mean patterns independently of any particular 
ontology.
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42.1 Introduction
Pluralism about causation is an attractive option. All theories of causation face counterexamples 
and all attempts to fix them lead to new counterexamples. Though, as always in philosophy, 
guarantees are hard to come by, there is ample prima facie evidence that there is no single 
essential property or set of essential properties that is shared among all causal relations. In 
response, a growing number of philosophers have considered pluralistt stances towards 
causation (Anscombe 1971; Campaner and Galavotti 2007; Cartwright 1999; 2007; De Vreese
2006; Godfrey‐Smith 2009; Hall 2004; Hitchcock 2003; Long‐worth 2006a, b; Psillos forthcoming; 
Reiss 2009; Russo and Williamson 2007; Weber 2007).

Pluralism about causation is, however, more of an assortment of ideas than a definite theory.1

Most fundamentally, one can distinguish pluralism about causation at three different levels: (p.
908)

• evidential pluralism: the thesis that there are more than one reliable ways to find 
out about causal relationships;
• conceptual pluralism: the thesis that ‘cause’ and its cognates has more than one 
meaning; and
• metaphysical pluralism: the thesis that there is no one kind of thing in the world 
that makes a relationship causal.

This chapter is concerned with a specific form of conceptual pluralism about causation, one 
Chris Hitchcock terms ‘Wittgensteinian’ (Hitchcock 2007, pp. 216–7). I will present three such 
accounts in detail. All three accounts share the rejection of attempting to define ‘cause’ in terms 
of necessary and sufficient conditions, and they regard instances of causal relationships to share 
family resemblance at best. After criticizing and rejecting two already existing accounts, I will 
develop an alternative that, to the best of my knowledge, does not suffer from the deficiencies of 
its fellows and is more firmly grounded in some of Wittgenstein's ideas about meaning.

42.2 Wittgensteinian pluralism, takes one and two
Wittgenstein famously claimed that we cannot give a definition of the concept ‘game’. He asks 
us whether all games–board games, card games, ball games, Olympic games–had something in 
common and observes that although some kinds of games have some characteristics in common 
there is no one characteristic or set thereof common to all instances games. Hence, we cannot 
define ‘game’ in terms of necessary and sufficient conditions (Wittgenstein 1953, §66). Instead, 
he argues, ‘we see a complicated network of similarities overlapping and criss‐crossing: 
sometimes overall similarities, sometimes similarities of detail’. Further, ‘I can think of no better 
expression to characterize these similarities than “family resemblance”; for the various 
resemblances between members of a family: build, features, colour of eyes, gait, temperament, 
etc. etc. overlap and criss‐cross in the same way.–And I shall say, “games” form a family’ (§66–
7).

Although the focus of her paper is an attack on two Humean dogmas–that causes necessitate 
their effects and that causal relations are not observable–Elizabeth Anscombe presents an 
account of causation that understands ‘cause’ as analogous to ‘game’ (Anscombe 1971 [1992]). 
She explains (ibid. p. 93; emphasis original),
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The word ‘cause’ itself is highly general. How does someone show that he has the concept
cause? We may wish to say: only by having such a word in his vocabulary. If so, then the 
manifest possession of the concept presupposes the mastery of much else in language. I 
mean: the word ‘cause’ can be added to a language in which are (p.909) already 
represented any causal concepts. A small selection: scrape, push, wet, carry, eat, burn, 
knock over, keep off, squash, make (e.g. noises, paper boats), hurt. But if we care to 
imagine languages in which no special causal concepts are represented, then no 
description of the use of a word in such languages will be able to present it as meaning 
cause.

If such causatives or ‘thick causal verbs’ (Cartwright 2004)2 are understood as constituting the 
meaning of ‘cause’, the account faces various problems. To see these, let us define:

Wittgensteinian Pluralism X causes Y if and only if X stands in relation r ∈ R to Y, where 
each element of R can be described using a causative in Anscombe's sense.

An immediate problem with this formulation is that causal relations are typically transitive but it 
is hard to describe the resulting relation using a causative. Consider the following example. A 
child upsets a glass of milk. The milk flows on the table, creating a white puddle. Observing the 
puddle alarms a parent who rushes to fetch a cloth and wipe it off. It is perfectly meaningful to 
say that the child (or the child's action) caused the cloth to be milky. But the child didn't wet or
stain or soak the cloth. A possible solution would be the following amendment:

Wittgensteinian Pluralism* X causes Y if and only if X stands in relation r ∈ R to Y, or such 
that there is a chain of relations Xr 1 C 1 r 2 C 2 … C n−1 r n Y with r 1, r 2,…r n ∈ R, where 
each element of R can be described using causative in Anscombe's sense.

In this formulation there may remain problems regarding transitivity because it builds 
transitivity into the concept of cause and not all causal relations are transitive (see for instance 
McDermott 1995). I will not pursue difficulties relating to the transitivity of causation any 
further here because they are not specific to the Wittgensteinian account at stake here.

There are, however, two objections that require closer attention. The first is that this proposal 
limits causation to cases where there is an active agent, mechanism or process that produces 
the effect, and not all cases in which ‘cause’ is used meaningfully involve such an agent, 
mechanism or process. The second objection is that the account fails to provide a criterion to 
distinguish genuine causatives from non‐causal transitive verbs.

The first objection concerns cases of causation by absences. Absences can figure in causal 
claims both on the side of the cause as well as on the side (p.910) of the effect. Cases of the 
former type are omissions. For instance, Billy's failure to water the plants caused their wilting. 
Cases of the latter type are preventions. For instance, Suzy's catch caused the ball not to hit the 
window; it prevented the shattering of the window. In neither case can the abstract ‘cause’ be 
substituted by a more concrete causative. Whatever Billy did when he failed to water the plants, 
he did not desiccate, dehydrate or dehumidify them. Billy did not act, he failed to act. Likewise, 
Suzy (or Suzy's catch), while stopping the ball, did nothing to the window.
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Proponents of process or mechanistic theories of causation bite the bullet and deny that 
omissions and preventions are genuine cases of causation. Phil Dowe, for one, uses a 
(counterfactual) concept of pseudo‐causation to describe such cases (Dowe 2000). Peter 
Machamer thinks that these are not cases of causation, but that can be causally explained 
(Machamer 2004, 35f.):

Non‐existent activities cannot cause anything. But they can, when other mechanisms are 
in place, be used to explain why a given mechanism did not work as it normally would, and 
why some other mechanism became active. Failures and absences can be used to explain 
why another mechanism, if it had been in operation, would have disrupted the mechanism 
that actually was operating. Maybe we should draw a distinction and say they are causally 
relevant rather than causally efficacious. They are not, to use an old phrase, true causes.

But such responses cut no ice when the meaning of causal claims is at stake. Neither ordinary 
language nor the language of science makes a difference to whether the causal relation involves 
‘presences’, i.e. entities that can act and be acted upon or absences of such entities. Below I will 
discuss in detail an example from the health sciences that involves causation by absences at the 
generic level. In some cases it may not even be clear whether or not a relatum is present or 
absent, and causal language can be used to describe the case perfectly meaningfully (Schaffer
2004).

The second objection was that the Anscombe account lacks a criterion to distinguish causatives 
from non‐causal verbs. How do we demarcate verbs that belong in the category used to describe 
the relation R from those which don't? Certainly not all verbs belong in this category. Even 
though many causal processes are involved in someone walking, we don't describe a causal 
relation by saying ‘Billy is walking’. Nor are all transitive verbs causal: ‘Billy measures five foot 
nine’ does not describe a causal relation. There are many relations that are non‐causal and that 
can be described using transitive verbs: ‘A entails B’, ‘5 and 7 sum up to 12’, ‘H2O consists of 
two hydrogen and one oxygen molecules’; ‘The fall in the barometer reading predicts the storm’.

It seems to be the case that once we discover that a certain transitive verb applies to some 
situation, it is an additional discovery that this verb belongs to the set of causal verbs. Moreover, 
there are numerous verbs that can have causal and non‐causal meanings: determine, induce, fix, 
lead to, depend on. And (p.911) perhaps this phenomenon is more wide‐spread than seems at 
first sight. Many verbs have numerous meanings, only some of which are causal in the way 
required for Anscombe's account to work. ‘To scrape’ means ‘⟨1a⟩ to remove from a surface by 
usually repeated strokes of an edged instrument’ (causal) or ‘(1b) to make (a surface) smooth or 
clean with strokes of an edged instrument or an abrasive’ (causal) but also ‘(2a) to grate harshly 
over or against’ (non‐causal); ‘to carry’ means ‘(1) to move while supporting’ (causal) but also 
‘(14b) to provide sustenance for ⟨land carrying 10 head of cattle⟩’ (non‐causal); ‘to eat’ means 
‘⟨3a⟩ to consume gradually’ (causal) but also ‘(1) to take in through the mouth as food’ (non‐
causal).3 Thus, for every verb we have to discover that it can be used causally and for some we 
have to discover in addition that it is used causally on a given occasion.

A potential way out is to say that certain cases of causal verbs are paradigm cases, and whether 
or not a new verb is causal is determined by its family resemblance with paradigm cases. This, 
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however, is an unpromising route. Take, for the sake of the argument, Anscombe's verbs: scrape, 
push, wet, carry, eat, burn, knock over, keep off, squash, make (e.g. noises, paper boats) and
hurt as paradigms, and yield as a yet‐to‐be‐determined case. How could we say that ‘yield’ bears 
a family resemblance to, say, ‘scrape’? Any two things are similar and dissimilar in many, 
perhaps indefinitely many ways. There simply is no sense in which two things are similar to each 
other simpliciter. Rather, things are similar with respect to some feature or another. ‘Yield’, 
then, is supposed to be similar to ‘scrape’ with respect to its causal content, but how do we 
determine that without having an independent grasp on the concept of cause?

An alternative to Anscombe's theory, also Wittgensteinian in spirit, is to regard causation as a 
cluster concept. For the concepts of ordinary language, we apply one or the other of the 
standard tests for causality. To take an example, consider the claim ‘Jim used a blanket to
smother the fire’. First of all, presumably on this occasion we mean by this something like ‘Jim 
used a blanket to suppress the fire by excluding oxygen’ (cf definition (2c) from Merriam–
Webster). Did Jim's action cause the fire to end? Yes: Had Jim not thrown the blanket over the 
fire, it would have persisted; Jim's action increased the probability of the fire's death; covering a 
fire with a blanket is an effective strategy to end it; there is a regularity between covering fires 
with blankets and their end; there is a mechanism by which the blanket kills the fire; and so 
forth. Unless the case answers positively to some or all of these tests (I will discuss the details of 
how many tests have to be satisfied in the next section), we do not have a case of causation. 
Hence, satisfying the tests is basic for causation, not the application of a verb that's presumed to 
be causal.4

(p.912) Are we committing a fallacy here, mistaking test for identity or truth conditions? I don't 
think so. If‘X causes Y’ is true if and only if ‘XRY’ is true, where R is a relation ⟨or an activity or 
capacity⟩ described by a thick causal verb, then we need some principled way of telling which 
verbs do describe relationships that are causal. And this cannot be done, or so I've been trying 
to argue, unless we have an independent concept of cause. The tests I've mentioned are meant 
to help us in determining which transitive verbs are causal, not to define causation.

Francis Longworth has developed this proposal in detail. He regards causation as a cluster 
concept, by which he means the following (Longworth 2006a, p. 112f):

Cluster concept. There are a number of features that are relevant to, or ‘count towards’ an 
individual's being an instance of the concept. X is a cluster concept if and only if the 
following conditions are jointly satisfied:

(1) The presence of the entire set of features (the ‘cluster set’) is sufficient for the 
concept to be applied.
(2) No feature is necessary.
(3) At least one feature from the cluster set must be instantiated.
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Longworth suggests that (perhaps, among others) the following features are members of the 
cluster set (Longworth forthcoming; this is a paraphrase):

• Counterfactual dependence (‘ E counterfactually depends on C’);
• Lawlike regularity (‘There is a law such that “whenever C, then E”’);
• Manipulability (‘Changing C is an effective strategy to change E’);
• Probability raising (‘P(EǀC&K) 〉 (CǀK), where K is a set of background factors’);
• Mechanism (‘There is a local physical process from C to E’);
• Responsibility (‘C is [morally] responsible for E’).

Counterexamples to univocal theories of causation show that none of these features is necessary 
for causation. For example, cases of redundant causation (p.913) demonstrate the non‐
necessity of counterfactual dependence, in indeterministic cases that of lawlike regularity and so 
forth. However, some subsets of the cluster set are sufficient, e.g. counterfactual dependence 
and responsibility; production and responsibility; and dependence holding fixed some G and 
responsibility.

Longworth argues that his cluster theory is superior to other accounts in that it explains the 
truth of five theses regarding the concept of causation (2006a, p. 100; the discussion of how the 
cluster theory meets these desiderata occurs on pp. 119ff.):

1. Counterexamples: There are many extant univocal theories of causation and all of 
them have counterexamples.
2. Disagreement: There are some cases about which individuals disagree in their 
intuitive causal judgements.
3. Vagueness: There are borderline cases of causation.
4. Error: Individuals' intuitions are sometimes clearly mistaken.
5. Degrees of Typicality: Some cases of causation appear to be ‘better’ or more typical 
examples of the concept than others.

Univocal theories must fail because they inflate a single feature of causation into a necessary 
and sufficient condition; hence, there are counterexamples. Disagreements and vagueness 
obtain because it is not always clear what precise subset of criteria is sufficient for the 
application of the concept. Individuals' intuitions are sometimes mistaken because they take the 
fact that the envisaged scenario has one feature from the cluster set as sufficient to apply the 
concept while closely analogous cases (which have that and only that feature) are judged 
differently. Degrees of typicality, naturally, stem from the fact that scenarios have smaller and 
larger numbers of features from the cluster set.

42.2.1 Understood as account of our ordinary concept of causation

Longworth's account is successful. I know of no case of causation that has none of the mentioned 
features. Whether or not a case that has some but not other features is judged as causation 
depends on the subsets of the cluster set we take to be sufficient. Longworth does not give a 
final answer to that question but this flexibility is an advantage of the account. Language is in 
flux and the subsets of features that are taken to be sufficient for causation and how important 
the satisfaction of each criterion is each may change over time.
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According to this theory, then, ‘cause’ is ambiguous, vague, gives rise to disagreements in 
individuals' judgements as well as occasional error, and it comes in degrees. But what seems 
advantageous from the point of view of our ordinary concept of causation may turn out to be 
unfavourable for science and policy. For science and policy we require concepts that have a 
definite (p.914) meaning and clear conditions of application. Disagreements, so they arise, 
should be resolvable with reference to an external standard, not individuals' intuitions.

Perhaps it is not a problem for our ordinary concept of causation that some people believe that 
the father's inattention was a cause of the child's drowning while others think that it was only a 
quasi‐cause because the there was no physical process of the appropriate kind; or that, for 
some, the fact that a murderer's parents met at a ball in Vienna is a cause of her criminal deed 
while for others this thought appears ridiculous. For science and policy having clear answers to 
such questions matters greatly. In determining whether the father should be held liable for his 
child's accident, we don't only have to know whether certain normative considerations apply but 
also whether he was causally responsible for the accident. And it won't do to answer the 
question whether he was causally responsible with ‘according to some intuitions yes, according 
to others, no’. Nor will it do to answer ‘in some sense, yes; in another, no’.

The account that I develop in the three sections that follow might answer the question ‘does X 
cause Y?’ with ‘in some sense, yes; in another, no’, depending on the case. But unlike other 
forms of conceptual pluralism, this one has a methodology built into it how disagreements can 
be resolved. One could say that it makes cause unspecific rather than ambiguous. ‘Cause’ here is 
an unspecific term that is specified by what I will call an ‘inferential analysis’: an analysis of 
what set of propositions the claim in which ‘cause’ occurs is inferentially connected with. So let 
us now look at what causation has to do with inference.

42.3 Causation and inference
To develop my own Wittgensteinian account of causation I need to digress for a moment. My 
account builds on the idea that causation and inference are intimately related. This is most 
easily seen in Hume's theory of causation because within that theory causation and inference 
are the two sides of the same medal.

In Hume's theory, for any two independent, spatially contiguous and temporally ordered events
A and B, if one knows that A causes B, one is entitled to infer B upon observing A. And if one is 
entitled to infer B upon observing A, one knows that A causes B. The problem is only that one 
cannot know that A causes B because one cannot see it. Concomitantly, one is never entitled to 
infer B upon observing A because the future might not resemble the past. The problems of 
causation and induction thus collapse into one.

But they do so only because Hume held a regularity view of causation, and that view is well 
known to be false. Without the regularity view, the relation (p.915) between causation and 
inference is less tight. Few of us hold that an effect must follow its cause–an effect might fail to 
follow its cause for instance because an intervening factor prevents it from doing so or because 
the cause is indeterministic. Therefore, an observer of the cause is not entitled to infer the effect 
(but rather something weaker such as ‘the probability of the effect is high’ or ‘ceteris paribus, 
the effect will obtain’). Likewise, few of us hold that if an agent is indeed in the position to infer 
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a later event from an earlier that the earlier event must be the cause of the later–for instance 
because the relation may be due to a common cause such that earlier and later event are 
epiphenomena. Knowing that A is regularly followed by B then does not entitle a language user 
to infer that A causes B (but rather something weaker such as the disjunctive proposition “‘A
causes B” or “A and B share a common cause” or “there is some non‐causal reason for the 
association between A and B”’). More tenuously than in Hume, causation and inference are 
nevertheless related.

An inferentialist theory of the meaning of causal claims explains simply and elegantly why this 
should be so. Inferentialist theories of meaning hold, roughly, that the meaning of an expression 
is given by its inferential connections to other expressions. According to some interpreters, 
Wittgenstein held such a theory in the period between the Tractatus and developing the theory 
of meaning as use in the Philosophical Investigations. For instance, in his Remarks on the 
Foundation of Mathematics he says (quoted from Peregrin 2006, p. 2):

The rules of logical inference cannot be either wrong or right. They determine the 
meaning of the signs …We can conceive the rules of inference–I want to say–as giving the 
signs their meaning, because they are rules for the use of these signs.

Building on this idea I propose the following for causal claims. The meaning of a causal claim is 
constituted by the system of propositions with which it is inferentially connected; that is, the 
system comprised of those propositions that entitle a language user to infer the causal claim as 
well as those she is entitled to infer from it.

Let us call such a system an ‘inferential system for causal claim CC’ or short ‘inferential system‐
CC’. An inferential system‐CC can roughly be divided into inferential base, inferential target and 
the causal claim CC itself. The inferential base (for CC) comprises all those propositions from 
which a language user is entitled to infer CC. The inferential target (of CC) comprises all those 
propositions that a language user is entitled to infer from CC.

Scientists seldom establish causal claims for their own sake but rather because they take them 
to be conducive to the more ultimate goals of science such as scientific explanation, policy and 
prediction (to give some examples). If a causal claim together with the relevant background 
knowledge entitles a user to infer a scientific explanation, a policy claim or a prediction, then 
these latter propositions constitute what I call the inferential target of the causal (p.916) claim. 
In concrete terms, consider a claim such as ‘aflatoxin is hepatocarcino‐ genic’ (‘exposure to 
aflatoxin causes liver cancer’). An epidemiologist might be interested in explaining the 
population‐level correlation between aflatoxin exposure and liver cancer and thus whether it is 
due to the carcinogenicity of the substance; a policy maker in inferring ‘controlling aflatoxin is 
an effective strategy to reduce mortality’; finally, a person exposed to aflatoxin in knowing 
whether consumption of aflatoxin will lead to (an increased chance of) liver cancer in him and 
thus in prediction. Below, I will illustrate the kinds of propositions that must be part of the 
inferential base in order for a language user to be entitled to these inferences in the context of 
this case.
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Here I will say no more about inferential systems‐CC in general save two brief remarks. First, 
the inferences that form the connections between the propositions contained in it are material 
rather than formal inferences. Formal models of inference (such as modus ponens), as the name 
suggests, are valid in virtue of their form and independently of the propositions that they take as 
arguments. Material inferences, by contrast, are valid due to the content of the propositions. To 
illustrate, consider John Norton's example of contrasting the two inferences ‘Some samples of 
the element bismuth melt at 271°C, therefore all sample of the element bismuth melt at 271°C’ 
and ‘Some samples of wax melt at 91°C, therefore all samples of wax melt at 91°C’ (Norton
2003, p. 649). It is subject and domain specific (or as Norton calls it, ‘material’) background 
knowledge that entitles a language user to the former but not the latter inference. In this case, 
that background knowledge includes the empirical generalization that chemical elements tend 
to share physical properties and the fact that bismuth is an element whereas wax is a generic 
name for a variety of substances. Importantly, proponents of theories of material inference hold 
that it is not the case that there must be implicit premisses that turn the material argument into 
a formally valid one once made explicit. Rather, the inferences are licensed by the material facts 
concerning the subject matter of the propositions involved (Norton 2003; Brigandt forthcoming).

Second, I use the rather clumsy formulation ‘inferences a language user is entitled to’ in an 
attempt to strike a balance between a descriptive and prescriptive perspective on meaning. It is 
clearly the case that ordinary folk as much as sophisticated scientists sometimes make mistakes 
when inferring a causal claim from evidence or some other claim in the inferential target from a 
causal claim. It would therefore be incorrect to take those inferences language users actually 
make as the basis for meaning. On the other hand, there aren't many hard‐and‐fast rules that 
philosophers can use to prescribe scientists and ordinary folk what inferences they should and 
shouldn't make. The best guide to what's doable and what isn't is scientific practice and 
therefore I won't make highly general claims about what a language user is entitled to. Instead, 
in the next section I will show how tightly inferential base and target are connected on the basis 
of a brief analysis of two brief case studies.

42.4 An inferentialist analysis of two causal claims
(p.917) In this section I consider the kinds of material inferences a user is entitled to make 
when she knows, first, that ‘aflatoxin causes liver cancer’ and second, that ‘lack of sunlight 
causes multiple sclerosis’. In particular I will ask under what conditions knowing the causal 
claim entitles the user to infer (a) a more specific causal claim; (b) a claim about explanation; (c) 
a claim about policy; (d) a claim about prediction; and (e) a mechanistic claim.

42.4.1 Is aflatoxin carcinogenic in humans?
The carcinogenicity of aflatoxin is more like Norton's wax example than his bismuth example in 
that there is a great deal of variability of the toxicity of substances among different species and 
populations in general. Aflatoxin turns out to be carcinogenic in human populations but the 
inference could only be made on the basis of population‐specific evidence.5 Thus, in general, 
when the causal claim concerns the toxicity of a substance, language users are entitled to 
inferences about a given population only when the inferential base contains evidence claims 
about just that population.
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42.4.2 Does the carcinogenicity of aflatoxin explain the (human) population‐level correlation 
between the substance and incidence of liver cancer?
It turns out that the inferential base for the human population specific causal claim contains 
mostly evidence regarding the mechanism of its operation. That is, it contains a claim such as 
‘There exists a pathway through which aflatoxin produces cancerous growths in liver cells’. For 
at least two reasons this claim does not entitle to infer the explanatory claim. First, the 
existence of one or several mechanisms through which aflatoxin causes and therefore increases 
the chance of liver cancer is compatible with the existence of further mechanisms through which 
aflatoxin prevents the disease. In this particular case, it is implausible that there should exist a 
pathway such that exposure to aflatoxin is actually beneficial (e.g. Steel 2008, p. 116). But this is 
an additional claim the inferential base must contain, which in no way follows from the claim 
about the carcinogenicity of aflatoxin.

Second, the population‐level association is likely to be confounded. In the given case it is 
infection with the hepatitis‐B virus (HBV) that may be responsible for the association. 
Populations subject to high exposure to aflatoxin are (p.918) also populations where HBV 
prevalence is high, and HBV is a known cause of liver cancer. Moreover, HBV is known to
interact with aflatoxin but in ways that are not fully appreciated (Wild and Ruggero 2009). That 
is, the carcinogenicity of aflatoxin itself depends on whether or not the compound is co‐present 
with other causes of liver cancer, and it may be the case that even though aflatoxin causes liver 
cancer in some humans, in populations also affected by HBV aflatoxin is causally irrelevant for 
cancer (or is even a preventative) so that the association is entirely due to the carcinogenicity of 
HBV. It is thus no surprise that in one and the same article we can read the following 
statements: ‘Aflatoxins, which are the metabolites of some Aspergillus species, are among the 
most potent hepatocarcinogens known’; ‘Several ecological studies have shown a correlation 
between liver cancer incidence and aflatoxin consumption at the population level, but findings 
are not entirely consistent’; and ‘Case‐ control studies with dietary questionnaires or biomarkers 
of recent exposure to aflatoxin have also provided inconsistent results’ (Henry et al. 1999, p. 
2453).

Thus, it may or may not be that the association between exposure to aflatoxin and liver cancer 
incidence can be explained by the causal claim. Hence the inference cannot be made on the 
basis of the causal claim alone. In addition, knowledge about other pathways through which the 
compound affects liver cancer as well as about confounders and modes of interaction is 
required.

42.4.3 Is control of aflatoxin an effective strategy to reduce mortality of the affected 
populations?
The usual approach to controlling aflatoxin exposure is to set standards for a maximum level of 
contamination of finished food products. According to the best available estimates lowering the 
standard does indeed achieve a small reduction of liver cancer incidence (ibid.). However, for 
two reasons setting stricter contamination standards is not considered a good strategy to reduce 
mortality. First, higher food standards will lead countries to limit the import of affected 
products, which may mean that the least contaminated foods and feeds are exported, leaving the 
more highly contaminated products in the most affected countries. Second, it may lead to food 
shortages in those countries (ibid.). Thus, controlling aflatoxin is not an effective strategy to 
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reduce mortality in the affected populations because the intervention, while decreasing 
mortality along one path–through aflatoxin consumption and liver cancer–increases mortality 
along another, viz. food deprivation.

Such an intervention would certainly be ‘ham‐fisted’, to use Elliott Sober's term (Sober 2009). A 
ham‐fisted intervention is one that affects the target variable through pathways that do not go 
through the cause variable of interest. But there is no guarantee that there exist interventions 
that are not ham‐ fisted. Nor is there a guarantee that an intervention that affects, if at all, the
(p.919) effect (mortality) only through the cause (exposure to aflatoxin) leaves the causal 
relation intact. Especially in the social sciences interventions might be structure altering and 
therefore unable to be exploited for policy purposes. Again, therefore, a claim about policy can 
only be inferred when a number of additional pieces of knowledge is contained in the inferential 
base.

42.4.4 Does exposure to aflatoxin predict liver cancer in the individual case?
Just as there is much variability between species, there is often much variability within a single 
species. Therefore, whether the causal claim is relevant for an individual depends on whether or 
not the individual belongs to the precise population for which the causal claim has been 
established. In the aflatoxin case, the toxicity of the substance depends on details of the 
metabolism that are widely shared among humans, hence establishing carcinogenicity for some 
humans is likely to be relevant for all humans (and this, once more, is an additional proposition 
that has to be part of the inferential base if a prediction is to be made). However, even if that is 
the case, three possible circumstances may drive a wedge in between the truth of the causal 
claim and successfully using the claim for prediction. First, even if aflatoxin is toxic in most 
humans, some may have a rare genetic make‐up that makes them immune to aflatoxin (that this 
is not an idle possibility is demonstrated by the fact that some species such as mice are 
immune). Second, even if a given individual is susceptible to aflatoxin, intervening factors may 
prevent the causal relation from realising. People might swallow antidotes or die before 
aflatoxin has made its way through the metabolism. Third, even if the individual is susceptible 
and nothing intervenes, the cause may fail to produce its effect because the mechanism operates 
indeterministically. None of these possibilities can be excluded without additional evidence.

Let us now examine a case in which a causal claim has been established by means of 
epidemiological–that is, probabilistic–data. It has long been known that there is a characteristic 
pattern in the global distribution of multiple sclerosis (MS): high latitude is associated with a 
high risk for MS (Kurtzke 1977). But it is difficult to disentangle genetic factors and various 
environmental factors such as nutrition and culture. Strong evidence that sunlight exposure is 
the relevant factor came from a quasi natural experiment in Australia. Australia presents a very 
favourable case for causal analysis because it displays enormous latitudinal spread and climatic 
variation at the same time as genetic and cultural homogeneity (van der Mai et al. 2001, p. 169; 
references suppressed):

In Australia, a more than sixfold increase in age‐standardized MS prevalence has been 
demonstrated from tropical Queensland to Tasmania. Within Europe and the United 
States, there is also an at least two‐ to threefold gradient of increasing MS prevalence (p.
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920) with increasing latitude. These geographical differences were initially interpreted to 
represent environmental influences which varied by latitude, such as climatic factors, 
dietary characteristics and infectious agents. More recent analyses indicate that 
geographical MS variation, at least in North America, may result from a complex interplay 
of genes and environment. The marked Australian latitudinal gradient found in the 
national prevalence survey of 1981 is unlikely to be explained by genetic factors only, 
because the gradient is evident even among UK and Irish immigrants to Australia, a 
population subgroup that is predominantly Caucasian. These findings together with the 
large latitudinal spread across the continent, stretching from 10° to 44° South in latitude, 
and a uniform health care system provide a good opportunity to examine the relationship 
between latitude‐related factors and MS.[…]

The aim of this study was to conduct an ecological analysis of the extent to which UVR 
[ultraviolet radiation] levels might explain the regional variation of MS in Australia. We 
contrasted the relationship between UVR and MS prevalence with that of UVR and 
melanoma incidence, because the latter association has previously been demonstrated to 
be causal.

42.4.5 Is there a mechanism from (lack of) sunlight to multiple sclerosis?

Let us suppose then that it is true that lack of sunlight causes MS.6 The first thing to note is 
what has been established is a probabilistic causal claim. That is, in a certain population 
(caucasians, say), lack of sunlight increases the probability of MS, holding fixed other causes of 
MS. Many of the limitations described above hold here too. For instance, the claim is population 
relative and without population‐specific evidence no inferences can be made about a hitherto 
unexamined population. Above I also argued that a mechanistic causal claim does not license an 
inference regarding the corresponding population‐level probabilistic claim. Here let me ask the 
reverse question: does a population‐level probabilistic causal claim entail anything about 
mechanisms? My answer is once more no but the reasoning requires some elaboration.

When some time passes between the occurrence of a cause and the onset of an effect, it is 
plausible to assume that there exist some intermediaries that transport the causal message from 
cause to effect. In the type of biomedical cases I have been talking about, there lie long 
stretches of time between cause and effect, often many years. There is some evidence, for 
instance, that (p.921) sunlight exposure during age 6–15 is an important risk factor associated 
with MS (van der Mei 2003). The onset of the disease typically occurs much later, between the 
ages 20 and 40 (van Amerongen et al. 2004).

Sunlight is required for the skin to metabolise vitamin‐D3. UV‐B radiation photolyses provitamin 
D3 to previtamin D3, which, in turn, is converted by a thermal process to vitamin‐D3. Vitamin‐
D3 is biologically inactive but when converted into 1, 25–(OH)2D, the hormonally active form of 
vitamin‐ D, involved in an abundance of biological functions including calcium home‐ ostasis, cell 
differentiation and maturation and, most relevantly, immune responses. How precisely 1, 25–
(OH)2D affects MS is unknown but studies with mice have shown that the hormone successfully 
prevents the onset of experimental autoimmune encephalomyelitis (EAE), which is recognized as 
a useful animal model for MS (van Etten et al. 2003). Moreover, there is some evidence that 
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vitamin D interacts with the major genetic locus which determines susceptibility to MS 
(Ramagopalan et al. 2009).

None of this shows, however, that there is a mechanism from sunlight exposure to onset of MS. 
It is the lack of sunlight that causes vitamin‐D deficiency. As vitamin D is an important preventer
of MS, it is the absence of vitamin D that causes MS. Now, one might call this a (sketch for a) 
mechanism. But it is important to see the differences between the causal relations involved in 
this example and those involved in other cases such as the aflatoxin case that was described 
above. Exposure to aflatoxin causes cancer through a series of intermediate stages, all of which 
contain markers that have a clear (and, in fact, unique) association with the toxin. At least in 
principle, therefore, the causal effect of aflatoxin on liver cells could be learned by both forward 
as well as backward chaining. Forward chaining uses the early stages of a mechanism to make 
inferences about the types of entities and activities that are likely to be found downstream and 
backward chaining reasons conversely from the entities and activities in later stages about 
entities and activities appearing earlier (Darden 2002, p. 362). Forward chaining thus would 
start with the consumption of aflatoxin, examine the various stages of its metabolism and 
eventually establish an effect of an aflatoxin metabolite on liver cells. Backward chaining 
proceeds by examining these cells, asking what could possibly have caused the characteristic 
mutation and then backtracking further. As the mechanism is fully present in each individual in 
which aflatoxin has caused liver cancer, it could (again, in principle) be discovered on the basis 
of a single individual.

The role of sunlight is not analogous to a chemical compound making its way through the human 
metabolism. Sunlight is a factor that enables the skin to synthesise vitamin D, which, after 
several transformations, plays an active role in regulating immune responses among other 
things. There would be no use in attempting forward or backward chaining in an individual 
suffering from MS. Even if that individual were deficient in vitamin D, there would (p.922) be 
no sense in which ‘lack of sunshine’ could be regarded as ‘the’ cause of the deficiency, 
analogously to the sense in which exposure to aflatoxin is ‘the’ cause of the presence of its 
various metabolites in the blood stream. We might say that lack of sunlight was among the 
causes of the vitamin‐D deficiency because of the truth of the counterfactual ‘had the individual 
been more exposed to sunlight, her vitamin‐D levels would have been higher’. But alternative 
antecedents (e.g. ‘had the individual eaten more oily fish’ or ‘had the individual taken dietary 
supplements’) also make the counterfactual true and with it the associated causal claims. Such 
counterfactual claims we judge in turn on the basis of population‐level epidemiological–i.e. 
probabilistic–data.

Aflatoxin is an entity that damages liver cells by way of various activities the compound and its 
metabolites engage in. Nothing analogous is true in the sunlight/MS case. Using the well‐known 
Machamer–Darden–Craver definition of a mechanism according to which ‘Mechanisms are 
entities and activities organized such that they are productive of regular changes from start or 
set‐up to finish or termination conditions’ (Machamer et al. 2000, p. 3), it is straightforward to 
conclude that there is a mechanism in the former but not in the latter case.7

Another way of describing the difference is the following. If it is true that at the population level 
aflatoxin causes liver cancer, then there must be some individuals whose liver cancer was 
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brought about by aflatoxin. But it is not the case that if at the population level lack of sunlight 
causes MS, there must be some individuals whose MS was brought about by lack of sunlight. 
When a mechanism is present, a causal generalization entails something about singular causal 
relations. When no mechanism is present, there is no such entailment either.

42.5 Re‐enter Wittgenstein
Even the more patient among the readers might have wondered by now what these musings 
about inference have to do with Wittgenstein, pluralism and Wittgensteinian pluralism. Let us 
look at Wittgenstein first.

Wittgenstein is famous for having remarked that ‘the sense of a proposition is the method of its 
verification’ in a conversation with the Vienna Circle (McGuinness 1985, p. 352). But apparently 
he himself expressed out‐ (p.923) rage when the ‘verification principle’ was attributed to him 
(Anscombe 1995, p. 405) and at least according to some interpretations (e.g. Medina 2001; 
Peregrin 2006) held an inferentialist theory of meaning in the period between the Tractatus and 
developing the theory of meaning as use in the Philosophical Investigations. For instance, in his
Remarks on the Foundation of Mathematics we can read (quoted from Peregrin 2006, p. 2):

The rules of logical inference cannot be either wrong or right. They determine the 
meaning of the signs… We can conceive the rules of inference–I want to say–as giving the 
signs their meaning, because they are rules for the use of these signs.

According to this theory, then, the meaning of an expression is given by the role it plays in our 
inferential practises. On this view, then, there is a perfectly natural and simple explanation why 
causation and inference are so intimately related: the meaning of a causal claim is given by its 
inferential role.

How do we know with what other expressions a given expression is inferen-tially connected? 
This is where in Wittgenstein's theory of verification comes in. José Medina explains its role as 
follows (Medina 2001, p. 308; emphasis is Medina's):

That the verificationism of the Satzsystem view is at the service of an inferentialist 
semantics becomes explicit when Wittgenstein remarks that the import of asking of a 
proposition ‘What is its verification?’ is that ‘an answer gives the meaning by showing the 
relation of the proposition to other propositions. That is, it shows what it follows from and 
what follows from it. It gives the grammar of the proposition.’ [Wittgenstein 1979: 19–20] 
So, for Wittgenstein, verificationism seems to be a heuristic tool that enables us to analyze 
the content of propositions in terms of their inferential use.

Thus, whereas the meaning of an expression is given by its inferential connections with other 
expressions in a system of propositions, its method of verification determines what these 
inferential connections are. This latter point is precisely what I've argued in the preceding 
section: the method of verifying a causal claim–of evidentially supporting it–determines with 
what other claims it is inferentially related.

Moreover, it is easy to see how this theory of meaning leads to a form of pluralism about 
causation. If its inferential connections to other propositions constitute the meaning of a causal 
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claim and the kinds of propositions from which a causal claim can be inferred and those that can 
be inferred from a causal claim differ from claim to claim, the case for pluralism has been made. 
Very roughly, we can define identity conditions for causal claims as follows. Suppose the term 
‘cause’ is used on two different occasions and it is not known whether it has the same meaning 
on both occasions. Two such claims would have the form ‘X α‐causes Y ’ and ‘Z β‐causes W’. We 
can then say that ‘α‐causes’ has the same meaning as ‘ β‐causes’ (on these occasions) to the 
extent that ‘X α‐causes Y’ is inferentially connected to the same kinds (p.924) of propositions 
regarding the relation between X and Y as ‘Z β‐causes W’ is inferentially connected to 
propositions regarding the relation between Z and W. If, to give a fictional example, both ‘X α‐
causes Y’ and ‘Z β‐causes W’ have been established by RCTs and both license claims about 
effective strategies (such as ‘promoting X is an effective means to raise the chance of Y’ and 
likewise for Z and Y), then ‘α‐causes’ means the same as ‘β‐causes’ (on these occasions).

There is no guarantee that the kinds of propositions found in inferential base and target are the 
same for different instances of ‘cause’.8 Different methods of supporting a causal claim license 
different kinds of inference: this is just what the previous section aimed to establish. Therefore, 
the meaning of ‘cause’ in ‘Aflatoxin causes liver cancer’ and ‘Lack of sunlight causes MS’ 
differs–as these claims differ both with respect to the kinds of propositions in their inferential 
base as well as those in their inferential target.

42.6 Conclusions
The advantages of the account proposed here over its two Wittgensteinian competitors are easy 
to see. Unlike Anscombe's account inferentialism has no difficulty with cases of causation by 
absence, as was shown in the discussion of the causal claim about lack of sunlight and MS. The 
issue whether or not a given transitive verb is a genuine causative simply doesn't arise.9 Unlike 
Longworth's account, inferentialism doesn't make causal claims ambiguous or vague or both. 
There is a definite set of propositions with which any causal claim is inferentially related. True, 
we might not always have a very clear idea of what these sets are. But this is a question of 
epistemology, not of semantics.

Finally, inferentialism has an answer to Jon Williamson's challenge: ‘If one can't say much about 
the number and kinds of notions of cause then one can't say much about causality at 
all’ (Williamson 2006, p. 72). It is certainly the case that the type of pluralism entailed by an 
inferentialist theory of meaning is of the indeterminate variety in that number and kinds of 
notion of cause are not (p.925) fixed once and for all times. But, as the inferentialist analyses of 
section four have shown, there is a great deal one can say about causality.
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(1) In a recent survey paper, for instance, Chris Hitchcock distinguishes no less than nine forms 
of pluralism (Hitchcock 2007).
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(2) Hitchock (2007) regards Cartwright's theory as a form of Wittgensteinian pluralism. This 
theory is one of physical causation rather than meaning and therefore not necessarily subject to 
the criticisms raised here.

(3) If that is not convincing, ‘ingest’ and ‘absorb’ can very clearly be used causally and non‐ 
causally. All definitions are taken from the Merriam‐Webster online dictinary www.merriam-
webster.com. Accessed on 27.10.2009.

(4) Stathis Psillos makes a very similar point about the Machamer–Darden–Craver (MDC) notion 
of‘activity’, focusing on the counterfactual test (Psillos 2004, p. 314; emphasis original): 
‘Activities, such as bonding, repelling, breaking, dissolving etc., are supposed to embody causal 
connections. But, one may argue that causal connections are distinguished, at least in part, from 
non‐causal ones by means of counterfactuals. If “x broke y” is meant to capture the claim that “x 
caused y to break,” then “x broke y” must issue in a counterfactual of the form “if x hadn't struck
y, then y would have broken.” So talk about activities is, in a sense, disguised talk about 
counterfactuals'. Notice that Psillos doesn't say ‘x broke y’ means ‘x caused y to break’, leaving 
open the possibility of extra content.

Though the authors seem to disagree, I believe that the M DC notion of ‘activity’ is very close to 
Cartwright's notion of thick causal verbs in that thick causal verbs describe activities. Hitchcock 
makes a similar observation (2007, p. 300), pointing out that a difference lies in the fact that 
MDC use activities as building blocks for their more fundamental notion of a mechanism.

(5) Steel (2008) argues that the example is a case of successful extrapolation from a claim about 
animal models (in particular Fischer rats) to humans. I am doubtful whether he is right (Reiss 
forthcoming). But even if we go along with Steel, the reasoning he presents depends in large 
part on evidence regarding the human metabolism. The important point is that causal claims 
about toxicity are almost always population specific.

(6) If it is indeed the case, as I believe it is, that this causal hypothesis is widely accepted in the 
biomedical community, the vitamin‐D/MS link provides an interesting case study against the so‐
called Russo–Williamson thesis according to which both mechanistic as well as probabilistic 
evidence is required to establish a causal claim (Russo and Williamson 2007). Whereas parts of 
the vitamin‐D metabolism are understood fairly well, the etiology of MS is still completely 
unknown (e.g. Ramagopalan and Giovannoni 2009).

(7) This is not to deny that there is something similar to a mechanism at the type level. It is 
certainly true that the variable ‘exposure to sunlight’ is causally relevant to the variable 
‘vitamin‐D level’, which in turn is relevant to the variable ‘1,25‐(OH)2D’, which, finally, is 
relevant to the risk of MS. One way to put my point is to say that that if we want to call that a 
mechanism we can infer at best a mechanism of this type but not a mechanism of the type that 
mediates the influence of aflatoxin on liver cancer.

(8) Though if the Russo–Williamson thesis were true, researchers in the health sciences did 
indeed always require both difference‐making evidence and evidence about mechanistic 
connections in order to establish causal claims, and in addition the kinds of propositions one is 
entitled to infer from causal claims were also the same, then conceptual monism about causation 
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in the health sciences, which they favour, would be supported. I do not think that that thesis is 
true, and I think that my second case can serve as a counterexample (footnote 5) but it is 
interesting to note that the thesis (plus one further assumption) entails conceptual monism 
under an inferential conception of meaning.

(9) An issue that does arise is the parallel one of justifying the inferences among base, causal 
claim and target. But this is one we ought to leave to science. As I claimed above, the best guide 
to what works and what doesn't is scientific practise, and there is no reason why this area 
should be exempt from the general principle.
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