
Самостійна робота №1 

1. Довести рівність множин. 

2. Визначити, в якому співвідношенні (𝑋 = 𝑌, 𝑋 ⊂ 𝑌, 𝑋 ⊃ 𝑌) знаходяться 

множини 𝑋 і 𝑌. 

3. Методом математичної індукції довести рівність. 
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