

Technologies for high efficiency solar cells

ECM Group

PV production equipment leader

Benjamin Deneux | Sales Manager | Crystallization focus | 6th of September 2016

ECM Greentech 109 rue Hilaire de Chardonnet 38100 Grenoble - France

ECM GROUP

320 EMPLOYEES - 80 M€ REVENUES

AUTOMOTIVE NUCLEAR

ICBP[®] Vacuum furnace Induction furnace Special furnace

AEROSPACE

Conventional furnace VPA furnace Retrofit

PHOTOVOLTAICS

Ingot and cell production equipment Crystallization Furnace Diffusion furnace PECVD Turnkey line

MICROELECTRONICS

Photovoltaic Silicon treatment Electrostatic Chucks Gas flow components

8 000 m² of workshop

Boilermaking – Welding – Moly – Refractory brick lining – Piping – Machining – Assembling

Engineering Office

Expertise Process – Electronical Automatism – Mecanic – Thermal

2 metallurgical testing facilities

In France and in US

1 agency in Grenoble

ECM GREENTECH

SEMCO Technologies 2 agencies in Montpellier, North and South

1 000 m² of workshop

Engineering Office Process Expertise - Electronical Automatism - Mecanical - Thermal

1 Laboratory of equipment development and clean room process

ECMGROUP

TECHNOLOGIES

ECM: A leading vacuum furnace maker

- >3000 vacuum furnaces in production (Photovoltaic, automotive, aeronautic, electronic, nuclear)
- 1000 carburizing ICBP Cells in the automotive industry (WORLD LEADER)
- More than 50 crystallization furnaces in the field (France, China, Germany, Norway, Kazakhstan). Expert in Silicon crystallization since 1983

Heat treatment experts since 1928...

DESIGN BUILD	DEVELOP PROCESS	TRANSFER TECHNOLOGY	LONG TERM SUPPORT
--------------	-----------------	------------------------	-------------------

Experience in crystallization: ECM pioneer

References crystallization furnace

Reference in PV turnkey line

ECM has successfully delivered and started up an ingot and wafer manufacturing line in Kazakhstan

Technology: Multicrystalline

- Capacity: 60MW, extendable to 100MW
- Location: Ust-Kamenogorsk, Kazakhstan

Contract type: Turnkey

Reference in PV turnkey line

ECM is the only equipment supplier whom has successfully delivered such I&W line.

Reference in PV turnkey line

ECM PV600 : Crystallization furnace

CONFIDENTIAL

CRYSTALMAX: Ultra High Performance

<100> oriented wafers at the cost of multicrystalline

Traditional technologies:

INNOVATION ECM:

R&D Partner: CEA INES

400 researchers dedicated to photovoltaics

Furnace productivity for CrystalMax

ECM PV 600 CrystalMax

Furnace output	≥11 MW per year Assuming 20% cell efficiency and 190µm thickness for mono wafers with 120µm kerf
Ingot size	100 x 100 cm ²
Ingot weight	650 Kg
Mass ingot yield (MIY)	≥63%
Cycle time	≤78 hrs

A **1 GW** mono wafer line would require about **330** Czochralski pullers or only **90** ECM furnaces with the CrystalMax process

CrystalMax production ingots

CONFIDENTIAL

CRYSTALMAX: Ultra high efficiency

<100> oriented wafers at the cost of multicrystalline

Cell technology	Efficiency average with CrystalMax	Maturity
Std Al BSF	19.0%	Production
PERC	>20.0%	Production
Bifacial n type	>20.0% + rear side	Production
HIT	21.3%	R&D

"CrystalMax wafers are oriented <100> which make it compatible with alkaline etching

CrystalMax wafers are compatible with all high efficiency cell processes

Unique thermal control for growing mono ingot

ECM design is unique on the market, achieving unmatched results in CrystalMax technology

Scan map, Mono/Multi %

Remaining multicrystalline Zone on the sides only. The useful part of the bricks are 100% mono

Isoresisitivity map (p type), representative of the solidification front

The resistivity mapping shows a uniform and slightly convex shape for the front of solidification which enables segregation of impurities on the sides and top part of the ingot and a proper control of initial crystal growth on mono STIAL seeds

CONFIDENTIAL

CrystalMax: Characterization Gen 6

Gen 6 ingot: 36 bricks <100>

Infrared:

100% of bricks oriented <100> → Reproducibility

Low dislocation density → high cell efficiency

IR defects free ingot → Diamond slicing

CrystalMax with diamond wafering

CrystalMax is a material which is compatible with **diamond** based wire sawing process.

This enables CrystalMax to follow current and future **cost reductions** that roadmaps are displaying thanks to diamond cutting (thinner wafers, reduced kerf, reduced cost, no slurry management)

CrystalMax:

Inclusion free → Easy cut with diamond <100> crystal orientation → Alkaline texturing Monolike bricks cut on diamond platform

CrystalMax Competitiveness per wafer

Manufacturing cost per wafer (OPEX+CAPEX)

DW= Diamond wire wafering

Competitiveness mapping

Why invest in CrystalMax ?

ULTRA HIGH EFFICIENCY WAFER PROCESS: Crystalmax A technology backed up by CEA-INES

- Mono full square wafers cheaper than multi with ECM furnace
- **High cell efficiency** (e.g. >20% average in PERC)
- **Diamond** wafering solution + KOH texture (reduced kerf, thinner wafers, no slurry)
- Automatic process, easy to integrate in a new fab
- Enabling production of **n type** mono wafers for **bifacial** application
- Low CAPEX and safe investment (Flexible and high productivity multi furnace)
- **Highly productive furnace** = savings on building requirement, utilities and manpower

Our references in Photovoltaics...

Thank you

M. Benjamin DENEUX Sales Manager +33 6 30 92 61 22 b.deneux@ecmtech.fr

Photovoltaic Division 109 rue Hilaire de Chardonnet 38100 Grenoble France