
ПОШУКОВІ АЛГОРИТМИ

Лекція 4

Дисципліна «Алгоритми та структури даних»

Поняття пошуку даних

Пошук даних (Data Search) - це процес

знаходження одного або декількох

елементів даних, які задовольняють певним

критеріям, усередині більшого набору

(масиву, списку, бази даних або іншої

структури даних)

Задача пошуку відповідає на питання: “Чи

існує елемент X у множині S, і якщо так,

то де він знаходиться?"

Класифікація алгоритмів пошуку
1. За вимогою до впорядкованості даних

1.1. Пошук у невпорядкованих даних (Unsorted Search)

Ці алгоритми можуть працювати з будь-яким набором даних, незалежно від того, чи відсортовані вони

Лінійний (послідовний) пошук (Linear/Sequential Search) - найпростіший метод. Елементи

перевіряються по черзі, починаючи з першого, доки не знайдеться потрібний або не буде досягнуто кінця

Складність: O(n), де n - кількість елементів

1.2. Пошук у впорядкованих даних (Sorted Search)

Ці алгоритми вимагають, щоб дані були відсортовані, але працюють значно швидше

Бінарний (двійковий) пошук (Binary Search) - порівнює цільове значення із середнім елементом

масиву. Якщо значення не збігається, пошук продовжується в одній із половин (лівій чи правій)

Складність: O(logn)

Інтерполяційний Пошук (Interpolation Search) - варіант бінарного пошуку, який, ґрунтуючись на

припущенні про рівномірний розподіл даних, обчислює більш імовірне місце розташування цільового

елемента (аналогічно тому, як людина шукає слово у словнику)

Складність: у найгіршому випадку O(n)

Класифікація алгоритмів пошуку
2. За методикою виконання пошуку (для складних структур)

Ця класифікація стосується пошуку в графах, деревах та інших структурах даних

2.1. Пошук на основі хешування (Hashing)

Використовує хеш-функцію для обчислення індексу (адреси), де, ймовірно, знаходиться елемент; забезпечує

надзвичайно швидкий доступ.

Пошук у хеш-таблиці (Hash Table Search) - в ідеальному випадку дозволяє знаходити елемент за

константний час

Складність: У середньому O(1)

2.2. Пошук у деревах (Tree Search)

Використовується для ієрархічно структурованих даних.

Пошук у двійковому дереві пошуку (Binary Search Tree - BST) - кожен вузол має не більше двох нащадків;

усі вузли лівого піддерева менші, а правого - більші

Складність: У середньому O(logn), у найгіршому випадку O(n)

2.3. Пошук у графах (Graph Search)

Застосовується для знаходження шляхів або вузлів у складних мережевих структурах

Пошук у ширину (Breadth-First Search - BFS) - обходить граф рівень за рівнем, знаходячи найкоротший

шлях до цілі у кількості ребер

Пошук у глибину (Depth-First Search - DFS) - обходить граф, заходячи якомога глибше по одній гілці, перш

ніж повертається назад

Повний перебір і лінійний пошук

Повний перебір (Exhaustive Search), відомий також як груба сила
(Brute-Force Search), є одним із фундаментальних алгоритмів
пошуку даних

Повний перебір - це алгоритмічна техніка, яка перевіряє кожен
можливий елемент у заданому просторі пошуку (наприклад, у
масиві, списку або множині) для того, щоб знайти той, що відповідає
певним критеріям, або для того, щоб знайти оптимальне рішення
задачі

У контексті пошуку елементів у неструктурованому списку чи
масиві, повний перебір еквівалентний лінійному (послідовному)
пошуку (Linear Search)

Лінійний (послідовний) пошук
Лінійним або послідовним пошуком називається алгоритм відшукання
елемента серед заданого набору шляхом послідовного перебору всіх елементів

Починаючи з першого елемента в списку, послідовно рухаємося по елементах
послідовності (у порядку зростання індексів), до тих пір, поки або не
знайдемо те, що шукаємо, або не досягнемо останнього елемента (це означає,
що послідовність не містить шуканого елемента)

Приклад реалізації на Python

def linear_search(data_list, target):

1. Ітеруємо через кожен елемент списку за його індексом

for index in range(len(data_list)):

2. Перевіряємо, чи поточний елемент дорівнює цільовому
значенню

if data_list[index] == target:

3. Якщо знайдено, повертаємо його індекс

return index

4. Якщо цикл завершився, і елемент не був знайдений,
повертаємо -1

return -1

Розглянемо, як функція шукає

число 90 у списку

[45, 88, 72, 90, 65, 50]

Лінійний пошук у найгіршому випадку виконується за лінійний час, тобто O(n)

У випадку, якщо шуканий елемент знаходиться на першій позиції, то лінійний

пошук здійснюється за сталий час O(1)

Однією з класичних задач, що розв’язуються
повним перебором, є задача про рюкзак

Турист зібрався у похід і вирішив відповідально підійти до вибору того, що він
візьме з собою. У туриста є n речей, які він міг би взяти з собою у рюкзаку. Кожна річ
важить 1 кілограм. Речі мають різну "користність" для туриста. Похід очікується
досить тривалий, і турист хотів би носити рюкзак вагою не більше w кілограм.
Допоможіть йому визначить максимальну сумарну "корисність" предметів у нього в
рюкзаку при вазі рюкзака не більше w кілограм

Задачу можна розв’язати, повністю перебравши всі можливі розв’язки. Отже, у нас є
n речей, які можна укладати в рюкзак. Для кожного предмета існує 2 варіанти:
предмет або кладеться в рюкзак, або ні

Тоді, алгоритм, що використовує повний перебір всіх можливих варіантів має
складність O(𝟐𝒏)

Це дозволяє його використовувати лише для невеликої кількості предметів. З ростом
кількості предметів задача стає нерозв'язною даним методом за прийнятний час

Бінарний пошук
Бінарний пошук - двійковий пошук, пошук діленням навпіл; може бути застосований для

впорядкованих послідовностей за незменшенням або незбільшенням

Незменшення: 2 2 2 2 3 3 3 5 5 5

Незбільшення: 5 5 5 3 3 3 2 2 2 2

Асимптотична складність – O(logn)

Алгоритм

1) Знаходимо індекс середнього елементу;

2) Порівнюємо значення, яке шукаємо з середнім елементом послідовності. Розглядаємо 3

можливі випадки:

•шукане значення = середньому елементу, тоді пошук завершено;

•шукане значення < середнього елементу, тоді здійснюємо пошук у лівій половині

послідовності;

•шукане значення > середнього елементу, тоді здійснюємо пошук у правій половині

послідовності.

3) Продовжуємо поки інтервал пошуку не перетвориться в одне число або поки не буде

знайдений елемент.

Алгоритм, що знаходить випадковий
елемент із співпадаючих з шуканим

L - Індекс початку поточного діапазону пошуку

R - Індекс кінця поточного діапазону пошуку

Середній індекс, обчислюється як ціла частина (L+​ R)/2

X<A[i], 31<38. Цільовий елемент менший

Це означає, що потрібний елемент знаходиться у лівій частині (від індексу 0 до 4), тому R=i-1=5-1=4

i = ціла частина((L+R)/2)=5

X>A[i], 31>18. Цільовий елемент більший. Це означає, що потрібний елемент

знаходиться у правій частині (від індексу 3 до 4), тому L=i+1=2+1=3

i = ціла частина((L+R)/2)=(4+0)/2=2

i = ціла частина((L+R)/2)= ціла частина((4+3)/2)=3

X>A[i], 31>24. Цільовий елемент більший. Це означає, що потрібний елемент

знаходиться у правій частині (від індексу 4 до 4), тому L=3+1=4, R=4

i = ціла частина((L+R)/2)=(4+4)/2=4

X=A[i], 31=31, і=4

А якщо шукати не 31, а елемент 32? X>A[i], 32>31. Переставляємо ліву границю

L=4+1=5, а права границя залишається R=4. Границі перетнулись, діапазону

пошуку немає:

Елемент не знайдено

Обчислення середнього індексу

Краще робити за формулою: 𝑖 = 𝐿 +
𝑅−𝐿

2
 замість 𝑖 =

𝐿+𝑅

2

Формула 𝑖 = 𝐿 +
𝑅−𝐿

2
 позбавлена потенційної помилки виходу значення індексу

за межі діапазону значень свого типу у випадку великих обсягів даних і
використовується для запобігання цілочисельному переповненню (integer
overflow)

Якщо L (нижня границя) і R (верхня границя) є дуже великими індексами, їхня
сума може перевищити максимальне значення, яке може зберігати
стандартний 32-розрядний або навіть 64-розрядний цілочисельний тип даних,
який використовується в конкретній мові програмування

Якщо відбувається переповнення, результат L+R стає неправильним (зазвичай,
від'ємним числом або дуже малим позитивним), що призводить до некоректного
індексу i і, як наслідок, до збою (crash) програми або нескінченного циклу

Приклад реалізації на Python
def binary_search(data_list, target):

low = 0

high = len(data_list) - 1

step_count = 0 # Лічильник кроків

while low <= high:

step_count += 1

Безпечне обчислення середнього індексу для уникнення переповнення

mid = low + (high - low) // 2

current_value = data_list[mid]

Крок 1: Елемент знайдено

if current_value == target:

print(f"Елемент {target} знайдено! Він має індекс {mid}.")

return mid

Крок 2: Цільовий елемент менший, відкидаємо праву половину

elif current_value > target:

high = mid - 1

Крок 3: Цільовий елемент більший, відкидаємо ліву половину

else:

low = mid + 1

Якщо цикл завершився і елемент не знайдено

print(f"Елемент {target} не знайдено у списку.")

return -1

Алгоритм, що знаходить «найлівіший» та
«найправіший» елемент із співпадаючих із шуканим

Стандартний бінарний пошук повертає один з індексів цільового
елемента, якщо він трапляється кілька разів, але не гарантує, що це буде
саме найлівіший (перший) або найправіший (останній) індекс

Щоб знайти найлівіший елемент, модифікують алгоритм бінарного
пошуку. Ключова зміна полягає в тому, що коли знаходиться збіг, пошук
не зупиняється, а зберігається знайдений індекс і продовжується пошук в
лівій половині послідовності

Щоб знайти найправіший елемент із співпадаючих з цільовим
значенням у відсортованій послідовності, використовується модифікація
бінарного пошуку, аналогічну тій, що застосовується для пошуку
найлівішого елемента. Ключова ідея: коли знаходиться збіг, зберігається
цей індекс і продовжується пошук у правій половині масиву, щоб
перевірити, чи немає там ще подальших входжень

	Слайд 1: ПОШУКОВІ АЛГОРИТМИ
	Слайд 2: Поняття пошуку даних
	Слайд 3: Класифікація алгоритмів пошуку 1. За вимогою до впорядкованості даних
	Слайд 4: Класифікація алгоритмів пошуку 2. За методикою виконання пошуку (для складних структур)
	Слайд 5: Повний перебір і лінійний пошук
	Слайд 6: Лінійний (послідовний) пошук
	Слайд 7: Приклад реалізації на Python
	Слайд 8: Однією з класичних задач, що розв’язуються повним перебором, є задача про рюкзак
	Слайд 9: Бінарний пошук
	Слайд 10: Алгоритм, що знаходить випадковий елемент із співпадаючих з шуканим
	Слайд 11
	Слайд 12
	Слайд 13: Обчислення середнього індексу
	Слайд 14: Приклад реалізації на Python
	Слайд 15: Алгоритм, що знаходить «найлівіший» та «найправіший» елемент із співпадаючих із шуканим

