
НЕЛІНІЙНІ СТРУКТУРИ
ДАНИХ

ХЕШ-ТАБЛИЦІ

Лекція 7

Дисципліна «Алгоритми та структури даних»

Обмеження лінійних структур та бінарних дерев

Лінійні структури зберігають елементи послідовно, тому основні операції пошуку
(Search), вставки (Insert) та видалення (Delete) мають такі характеристики:

Навіть у найкращому випадку (для несортованого

масиву) пошук елемента вимагає перегляду, в

середньому, N/2 елементів, що дає лінійну

складність O(N). При великій кількості даних це

дуже повільно

Дерева були створені, щоб подолати лінійну складність пошуку. У збалансованих

деревах операції Search, Insert та Delete виконуються логарифмічний час:

Складність: O(log N). Це значне покращення.

Наприклад, для N= 1,000,000 елементів, O(log N) ≈20

операцій, тоді як O(N) = 1,000,000 операцій

Хоча логарифм росте дуже повільно, він все ж

залежить від розміру вхідних даних N

Мета хеш-таблиць: досягти ідеальної швидкості операцій (Search, Insert, Delete) за константний час O(1)

в середньому випадку, незалежно від загальної кількості елементів N

Це досягається шляхом відображення ключа безпосередньо в адресу пам'яті за допомогою математичної

функції (хеш-функції), замість того, щоб шукати його через порівняння або переходи по дереву

Таблиці прямої адресації (Direct Address Tables)
Таблиця прямої адресації (T) - це специфічна структура даних, яка реалізує словник
(dictionary) або асоціативний масив, де ключ елемента (key) використовується
безпосередньо як індекс у масиві

Припускаємо, що:

1) Університет має максимум 100 кафедр

2) ID кафедри є унікальним цілим числом від 0 до 99

1. Налаштування:

Множина ключів (U): {0, 1, …, 99}

Розмір таблиці (M): 100.

Таблиця (T): Масив розміром 100, де кожен індекс

відповідає ID кафедри

2. Виконання Операцій O(1):

Припустимо, є такі ключі (ID) та значення (Назва

кафедри):

k_1 = 15 (Кафедра комп'ютерних наук)

k_2 = 7 (Кафедра математики)

k_3 = 88 (Кафедра фізики)

Розглянемо невелику інформаційну систему для університету, яка зберігає дані про кафедри

Для подолання цього неефективного використання пам'яті (Space Inefficiency)

переходимо до хеш-таблиць, які використовують хеш-функцію для відображення

величезного ключа (k=1000000000) на маленький індекс (i=15) у доступному масиві

Визначення хеш-таблиці та асоціативного масиву

Асоціативний масив (словник, Map) - абстрактний тип даних, який зберігає колекцію
пар (ключ, значення). Кожен унікальний ключ асоціюється з одним значенням

Основні операції:
• додати пару (ключ k, значення v);
• знайти та повернути значення, асоційоване з ключем k;
• видалити пару з ключем k.

Хеш-таблиця (Hash Table) - структура даних, яка реалізує асоціативний масив,
використовуючи масив (таблицю) та хеш-функцію для відображення ключів на індекси
цього масиву.

Таблиця (T) - масив, який зберігає самі дані
Хеш-функція (h) - функція, яка приймає ключ k і повертає індекс i у таблиці T

тобто i = h(k)

Принцип роботи: Замість використання ключа безпосередньо як індексу (як у прямій
адресації), хеш-таблиця використовує хеш-функцію для стиснення великого діапазону
ключів до меншого діапазону індексів таблиці.

Хеш-таблиці. Колізії

Перетворення значень ключа до виду, придатного для використання в хеш-таблиці,
називається хешуванням і описується особливими математичними хеш-функціями.
Хешовані значення ключів часто схожі, тому хороші хеш-функції розподіляють їх таким
чином, щоб вони розташовувалися в різних позиціях в таблиці

Кожен ключ з множини ключів K зіставляється з індексом

в таблиці, що генерується за допомогою хеш-функції

Ключі K2 і K6, а також K5 і K7 демонструють виникнення

колізії (конфлікту). Рядки таблиці з індексами 1, 4-6 і 8 є

порожніми і готовими до розміщення нових записів

Якщо в хеш-таблиці розміщується досить багато значень,

рано чи пізно все одно знайдуться два ключа, які

виявляться пов'язаними з однією і тією ж позицією в

таблиці. Така ситуація називається колізією.

Коефіцієнт заповнення хеш-таблиці відображає те, наскільки

багато в ній записів з даними у порівнянні з її об'ємом. Цей

показник впливає на ймовірність виникнення колізій. Більше

шансів, що вони будуть мати місце при додаванні ключа в

таблицю, заповнену на 95%, ніж на 10%

Хеш-функція. Властивості
Хеш-функція являє собою математичну формулу, яка при застосуванні до ключа
обчислює ціле число, яке може бути використане в якості індексу для хештаблиці

Властивості хеш-функції:

Бюджетність. Витрати на обчислення хеш-функції повинні бути невеликими, так щоб
час хешування був меншим, ніж використання інших підходів до представлення даних.
Наприклад, якщо алгоритм бінарного пошуку може шукати елемент у відсортованій
таблиці з N елементів за час O(log2N), то хеш-функція повинна виконуватися ще
швидше

Детермінізм. Для одного й того ж ключа хеш-функція повинна повертати один і той
самий індекс. Цей критерій виключає хеш-функції, які залежать від зовнішніх
параметрів середовища виконання (наприклад, часу доби) і від адреси пам'яті
хешованого об'єкта (так як адреса об'єкта може змінюватися в процесі обробки)

Однорідність. Гарна хеш-функція повинна генерувати індекс в таблиці по ключу
якомога більш рівномірно по всій своїй області значень. Це означає, що ймовірність
появи кожного значення хеш-функції в області значень повинна бути однаковою.
Властивість однорідності дозволяє звести до мінімуму число колізій

Обчислення залишку (метод ділення)

Це найпростіший метод хешування цілого ключа k. Цей метод ділить
націло ключ k на число М (k > M), а потім використовує отриманий в
результаті залишок. В цьому випадку, хеш-функція може бути задана у
вигляді

h(k) = k mod М

k – ключ, ціле число;

М – розмір хеш-таблиці

Індекс є залишком від ділення ключа на розмір таблиці

Як правило, краще всього вибирати M простим числом, тому що просте
число збільшує ймовірність того, що генерація хеш-значення по ключу
відбуватиметься рівномірно по всій області значень функції

Приклад: хешування ID товарів
(метод ділення)

Завдання. Невеликий склад використовує 4-значні ідентифікатори (ID) для своїх
товарів (від 1000 до 9999). Оскільки активний запас товару рідко перевищує 15
одиниць, керівництво вирішило використати невелику хеш-таблицю для швидкого
пошуку інформації про товар

Мета. Здійснити відображення унікальних 4-значних ID товарів на індекси таблиці
розміром 13

Таблиця (T) - масив розміром M=13. Валідні індекси: 0, 1, …, 12

Розмір таблиці (M) - 13. (Це просте число, що є практикою для методу ділення,
оскільки сприяє кращому розподілу ключів)

Хеш-функція - використовуємо метод ділення (обчислення залишку):

h(k) = k mod 13

Вхідні Ключі (ID Товарів)

Припустимо, потрібно вставити

інформацію про такі товари:

k1 = 4371 (Монітор 27'')

k2 = 8105 (Дротова клавіатура)

k3 = 6930 (Оптична миша)

k4 = 1001 (USB-кабель)

Обчислення індексу для кожного ключа за формулою
h(k) = k mod 13

Ключ

(k)
Обчислення: k mod 13

Індекс

(h(k))

4371 4371 div 13 = 336 (залишок 3) 3

8105 8105 div 13 = 623 (залишок 6) 6

6930 6930 div 13 = 533 (залишок 1) 1

1001 1001 div 13 = 77 (залишок 0) 0

Виконання операції пошуку O(1)

Припустимо, менеджеру потрібно швидко знайти

інформацію про товар з ID 4371.

Обчислення: h(4371) = 4371 mod 13 = 3

Пошук: Менеджер прямо звертається до слота

T[3]

Результат: Отримує інформацію: "Монітор 27''".

Висновок: Завдяки хеш-функції, система

миттєво (за O(1)) перетворює великий, довільний

ID на конкретний індекс пам'яті, що значно

прискорює пошук записів

Індекс
Збережені Дані

(Товар)

0 ID 1001 (USB-кабель)

1

ID 6930 (Оптична

миша)

2 NULL

3 ID 4371 (Монітор 27'')

4 NULL

5 NULL

6

ID 8105 (Дротова

клавіатура)

7 NULL

... ...

12 NULL

Мультиплікативний метод (метод множення)

Приклад. Хешування адрес пам'яті
(метод множення)

Вхідні ключі (адреси ам'яті)

Припустимо, хешуємо такі 16-бітні
адреси (у десятковій системі):

k1 = 12345

k2 = 20000

Висновок: адреса k1=12345 буде
збережена у слоті T[61], а адреса
k2=20000 - у слоті T[43]

Крок Дія
Обчислення для

k1 = 12345

Обчислення для

k2 = 20000

1 Множення на A

12345 *0.61803 =

7630.95758

20000 * 0.61803 =

12360.6797

2.

Взяття дробової

частини (mod 1)

7630.95758 mod 1 =

0.95758

12360.6797 mod 1 =

0.6797

3.

Множення на

M=64 64 * 0.95758 = 61.285 64 * 0.6797= 43.5008

4.

Взяття цілої

частини 61.285 = 61 43.5008 = 43

Результат Індекс h(k) 61 43

Поліноміальний хеш (Polynomial Rolling Hash)

Використання - ідеально підходить для рядкових ключів (strings)

Принцип - розглядає рядок як число в системі числення з основою p (де p
- невелике просте число, наприклад, 31 або 37), а потім обчислює це
число по модулю M

Функція:

S[i] - ASCII-значення i-го символу рядка

L - довжина рядка

p - основа (просте число)

M - розмір хеш-таблиці (модуль); це значення гарантує, що
кінцевий хеш-індекс потрапить у діапазон [0, M-1]

Перевага: Дуже добре розподіляє рядкові ключі та є основою для
багатьох ефективних алгоритмів обробки рядків

Приклад. Поліноміальний хеш для рядків
Завдання: Обчислити хеш-індекс для рядка "CAT"

Параметр Значення Призначення

Ключ (S) "CAT" Рядок для хешування

Розмір таблиці (M) 101 Модуль (залишок від ділення)

Основа (p) 31 База поліному

Функція:

Числові значення символів (ASCII-

коди)

Спочатку перетворимо символи на їхні

числові значення S[i]:

Символ Індекс (i) ASCII-код (S[i])

C 0 67

A 1 65

T 2 84

Покрокове обчислення поліному

Обчислення кінцевого хеш-індексу

Тепер застосовуємо операцію mod на
суму поліному:

h("CAT") = 82806 mod 101

Для обчислення залишку ділимо суму на
модуль:

82806 div 101 = 820 (з залишком) 86

Таким чином:

h("CAT") = 86

Обчислюються значення поліному для кожного символу, починаючи з i=0:

Символ Обчислення (S[i]*𝒑𝒊) Результат

C 67 * 310 = 67 * 1 67

A 65 * 311 = 65 * 31 2015

T 84 * 312 = 84 * 961$ 80724

Сума 82806

Висновок: Рядок "CAT" буде збережено у слоті хеш-таблиці з індексом 86

Розв'язання колізій

Яким би не був вибір хеш-функції, колізії будуть відбуватися кожного
разу, коли хеш-функція h(k) повертає однаковий індекс для двох
різних ключів k1 ≠ k2

Механізми вирішення колізій гарантують, що обидва ключі можуть
бути збережені та знайдені

Два з найбільш популярних методів розв'язання колізій у хешуванні:

1. Метод відкритої адресації

2. Метод ланцюжків (пряме зв'язування)

Метод ланцюжків (Separate Chaining)

Принцип роботи:

Замість того, щоб зберігати безпосередньо дані в кожному слоті таблиці
T[i], кожен слот стає покажчиком на зв'язаний список (ланцюжок)

Якщо ключ k хешується до індексу i (тобто h(k)=i), то ключ k та його
значення додаються в кінець зв'язаного списку, розташованого у слоті T[i]

Якщо слот T[i] порожній, створюється новий список із цим елементом

Операції

Вставка: обчислити h(k) і додати елемент на початок або кінець списку в
T[h(k)] (O(1) у середньому)

Пошук: обчислити h(k) і пройти по зв'язаному списку в T[h(k)] до
знаходження ключа. Складність залежить від довжини списку

Метод ланцюжків

У хеш-таблиці з прямим зв'язуванням значення ключів зберігаються в спеціальних
наборах записів - блоки переповнення. Кожен з елементів самої хеш-таблиці є
фактично дескриптором (покажчиком) зв'язного списку, в якому знаходяться
прив'язані до блоку переповнення елементи. У самій таблиці в позиції, що задається
хеш-функцією, зберігається тільки значення покажчика адреси "прив'язаного" до цього
місця блоку (так званий метод із зовнішніми ланцюжками). Тобто, хеш-таблиця є
простою адресною таблицею, і записів з інформаційними полями (даними) не містить

Зв’язані списки в оперативній

пам'яті створюються у

динамічній області пам'яті, коли

для кожного елемента

виділяється пам'ять і для кожної

хеш-адреси створюється свій

блок переповнення (ланцюжків)

Приклад: хешування ID товарів. Колізія

Вхідні ключі (ID товарів)

Припустимо, нам потрібно
вставити інформацію про такі
товари:

k1 = 4371 (Монітор 27'')

k2 = 8105 (Дротова клавіатура)

k3 = 6930 (Оптична миша)

k4 = 4384 (Кабель HDMI) - новий
ID для демонстрації колізії

Ключ

(k)
Обчислення: k mod 13

Індекс

(h(k))

4371 4371 div 13 = 336 (залишок 3) 3

8105 8105 div 13 = 623 (залишок 6) 6

6930 6930 div 13 = 533 (залишок 1) 1

4384

4384 div 13 = 337 (залишок 3)

КОЛІЗІЯ з ID 4371 3

Хеш-таблиця після використання методу ланцюжків

Індекс Збережені Дані (Товар)

0 ID 1001 (USB-кабель)

1 ID 6930 (Оптична миша)

2 NULL

3

ID 4371 (Монітор 27'') → ID

4384 (Кабель HDMI)

(Ланцюжок)

4 NULL

5 NULL

6 ID 8105 (Дротова клавіатура)

7 NULL

... ...

12 NULL

Виконання операції пошуку з колізією

Припустимо, менеджеру потрібно швидко

знайти інформацію про товар з ID 4384

Обчислення: h(4384) = 4384 mod 13 = 3

Пошук: Менеджер звертається до слота T[3]

Вирішення колізії: Оскільки слот T[3]

містить ланцюжок, менеджер повинен

перебрати елементи ланцюжка, порівнюючи

ключі:

Перший елемент: Ключ 4371 ≠ 4384

Другий елемент: Ключ 4384 = 4384

ЗНАЙДЕНО!

Результат: менеджер отримує інформацію:

“Кабель HDMI"

Метод відкритої адресації
На відміну від методу ланцюжків, відкрита адресація зберігає всі елементи
безпосередньо у слотах самої хеш-таблиці. У таблиці не використовуються зв'язані
списки

Принцип роботи:

Якщо слот T[i] зайнятий (колізія), система послідовно "зондує" (пробиває, шукає)
наступні альтернативні слоти, поки не знайде вільний.

Функція зондування:

h(k, i) = (h'(k) + f(i)) mod M

h' (k) - основна хеш-функція (наприклад, метод ділення)

i - номер спроби (зондекса), починаючи з i=0

f(i) - функція, що визначає послідовність зондування

Операції:

Вставка - послідовно перевіряти h(k, 0), h(k, 1), h(k, 2), … до знаходження
вільного слота

Пошук - послідовно перевіряти ту ж саму послідовність слотів, поки не буде
знайдено ключ k або порожній слот (що означає, що ключа немає)

	Слайд 1: НЕЛІНІЙНІ СТРУКТУРИ ДАНИХ ХЕШ-ТАБЛИЦІ
	Слайд 2: Обмеження лінійних структур та бінарних дерев
	Слайд 3: Таблиці прямої адресації (Direct Address Tables)
	Слайд 4
	Слайд 5: Визначення хеш-таблиці та асоціативного масиву
	Слайд 6: Хеш-таблиці. Колізії
	Слайд 7: Хеш-функція. Властивості
	Слайд 8: Обчислення залишку (метод ділення)
	Слайд 9: Приклад: хешування ID товарів (метод ділення)
	Слайд 10
	Слайд 11
	Слайд 12: Мультиплікативний метод (метод множення)
	Слайд 13: Приклад. Хешування адрес пам'яті (метод множення)
	Слайд 14:
	Слайд 15: Поліноміальний хеш (Polynomial Rolling Hash)
	Слайд 16: Приклад. Поліноміальний хеш для рядків
	Слайд 17: Покрокове обчислення поліному
	Слайд 18: Розв'язання колізій
	Слайд 19: Метод ланцюжків (Separate Chaining)
	Слайд 20: Метод ланцюжків
	Слайд 21: Приклад: хешування ID товарів. Колізія
	Слайд 22: Хеш-таблиця після використання методу ланцюжків
	Слайд 23: Метод відкритої адресації

