
JAVA PROGRAMMING BASICS

Module 2: Java Object-oriented Programming

Training program

1. Classes and Instances
2. The Methods
3. The Constructors
4. Static elements
5. Initialization sections
6. Package
7. Inheritance and Polymorphism
8. Abstract classes and interfaces
9. String processing
10. Exceptions and Assertions
11. Nested classes
12. Enums
13. Wrapper classes for primitive types
14. Generics
15. Collections
16. Method overload resolution
17. Multithreads
18. Core Java Classes
19. Object Oriented Design

Module contents

• Classes and Instances

– Overview of class declarations. Class Fields and Methods.

– Access modifiers

– Encapsulation

– Creating Objects

– null literal

– this Keyword

Module contents

• Classes and Instances

– Overview of class declarations. Class Fields and Methods.

– Access modifiers

– Encapsulation

– Creating Objects

– null literal

– this Keyword

What Is a Class?

• A class is a blueprint or prototype from which
objects are created.

• A class models the state and behavior of a real-
world object and class can cleanly model state and
behavior.

What Is an Object?

• An object is a software bundle of related state and behavior.
Software objects are often used to model the real-world objects.

• An object is a software bundle of variables and related methods.
• Objects are related to real life scenario
• Class is the general thing and object is the specialization of

general thing
• Objects are instance of classes.

• An object is characterized by concepts like:
-Attribute
-Behavior
-Identity

Classes and Instances

• “Class” means a
category of things

• – A class name can be
used as the type of a
field or local variable

• “Object” means a
particular item that
belongs to a class

• – Also called an
“instance”

Class Instances (Objects)

Class declaration

Car c1 = new Car(…);
Car c4 = new Car(…);

Creating Instances
of a Class

…

Class Fields and Methods

1. package com.brainacad.oop1;

2. public class Car {

3. private String model;
4. private int maxSpeed;
5. private int year;
6. private int speed;
7. //...

public Car(String model,int year){
8. this.model = model;
9. this.year = year;

}
10. //...
11. public int getMaxSpeed() {
12. return maxSpeed;
13. }

public int getSpeed() {
14. return speed;
15. }

//...
16. }

• Package

• Fields

• Constructor

• Methods

Class declaration

Module contents

• Classes and Instances

– Overview of class declarations. Class Fields and Methods.

– Access modifiers

– Encapsulation

– Creating Objects

– null literal

– this Keyword

Access modifiers

1. public

2. private

3. protected

4. default (not actually an access specifier)

public access modifier

1. public class Car {
2. //...
3. public int speed; // public access modifier
4. //...
5. public int getSpeed() { // public access modifier
6. return speed;
7. }
8. //...
9. public void testModifier() {
10. getSpeed();// access in same class -Ok!
11. }
12. }

default (package) Access Modifier

1. public class Car {
2. //...
3. int speed; // default access modifier
4. //...
5. int getSpeed() { // default access modifier
6. return speed;
7. }
8. //...
9. public void testModifier() {
10. getSpeed();// Ok!
11. }
12. }

protected access modifier

1. public class Car {
2. //...
3. protected int speed; // protected access modifier
4. //...
5. protected int getSpeed() { // protected access modifier
6. return speed;
7. }

//...
8. public void testModifier() {
9. getSpeed();// Ok!
10. }
11. }

private access modifier

1. public class Car {
2. //...
3. private int speed; // private access modifier
4. //...
5. private int getSpeed() { // private access modifier
6. return speed;
7. }

//...
8. public void testModifier() {
9. getSpeed();// Ok!
10. }
11. }

Access modifiers 1/2
Visibility Public Protected Default Private

From the same
class

Yes Yes Yes Yes

From any class in
the same package

Yes Yes Yes No

From a subclass in
the same package

Yes Yes Yes No

From a subclass
outside the same
package

Yes Yes, through
inheritance

No No

From any non-
subclass outside the
package

Yes No No No

Access modifiers 2/2

• Access Level

private

default(package-
private)

protected

public

Module contents

• Classes and Instances

– Overview of class declarations. Class Fields and Methods.

– Access modifiers

– Encapsulation

– Creating Objects

– null literal

– this Keyword

Encapsulation 1/3

• The problem:

1. public class Car {
2. //...
3. // public access modifier
4. public int speed;

//...
5. // public access modifier
6. public int getSpeed() {
7. return speed;
8. }
9. //...
10. }

The problem: value field
"speed" can be changed
from anywhere outside
the class

Encapsulation 2/3

• Encapsulation is one of the
four fundamentals of the
Object oriented
programming.

• What is Encapsulation?

• Encapsulation is a language
mechanism to restrict the
access of the Objects
components to other
Objects or Classes.

Class

Public Methods

Non-public
Methods

Encapsulation 3/3

1. public class Car {
2. //...
3. // private access modifier
4. private int speed;
5. //...
6. // public access modifier
7. public int getSpeed() {
8. return speed;
9. }
10. //...
11. }

Module contents

• Classes and Instances

– Overview of class declarations. Class Fields and Methods.

– Access modifiers

– Encapsulation

– Creating Objects

– null literal

– this Keyword

Creating Objects 1/3

• Car myCar = new Car();

Class name
(type of
variable)

Name of
variable

Calls the
Constructor

Create new
Object

Declaration

Instantiation

Initialization

Creating Objects 2/3

1. public static void main(String[] arg) {

2. Car car1 = new Car();

3. Car car2 = new Car();

4. Car car3 = new Car();

5. }

Heap

Creating Objects 3/3

1. public static void main(String[] arg) {

2. Car car1 = new Car();
3. Car car2 = new Car();
4. Car car3 = new Car();

5. // call method "getSpeed" of car1
6. int speed1 = car1.getSpeed();
7. // call method "getSpeed" of car2
8. System.out.println(car2.getSpeed());
9. }

Module contents

• Classes and Instances

– Overview of class declarations. Class Fields and Methods.

– Access modifiers

– Encapsulation

– Creating Objects

– null literal

– this Keyword

The null 1/3

• A reference variable refers to an object.

• When a reference variable does not have a value
(it is not referencing an object) such a reference
variable is said to have a null value.

• The null reference can always be assigned or cast
to any reference type

The null 2/3

• null indicates that the object reference is not
currently referring to an object

Heap

value

reference

null An instance

aPrimitiveVariable

aReferenceVariable

aReferenceVariable

The null 3/3

1. String str1 = null; // null can be assigned to String
2. Car car1 = null; // null can be assigned to Car
3. int i = null; // type mismatch : cannot convert from null to int

4. String str2 = (String) null; // null can be type cast to String
5. Car car2 = (Car)null; // null can be type cast to Car

6. System.out.println(null == null); // true
7. System.out.println(car1 == null); // true
8. System.out.println(car1 == car2); // true

9. car1.getMaxSpeed();

• Exception in thread "main“ java.lang.NullPointerException

Module contents

• Classes and Instances

– Overview of class declarations. Class Fields and Methods.

– Access modifiers

– Encapsulation

– Creating Objects

– null literal

– this Keyword

this keyword 1/2

• this is a reference to the current object — the
object whose method or constructor is being
called.

• You can refer to any member of the current object
from within an instance method or a constructor
by using this.

this keyword 2/2

• public class Car {

private String model;
private int maxSpeed;
private int year;
private int speed;
//...

public void setSpeed(int speed) {
this.speed = speed;

}

//...
}

