JAVA PROGRAMMING BASICS

Module 2: Java Object-oriented Programming

I
Training program

Classes and Instances

The Methods

The Constructors

Static elements

Initialization sections

Package

Inheritance and Polymorphism
Abstract classes and interfaces
String processing

10. Exceptions and Assertions

11. Nested classes

12. Enums

13. Wrapper classes for primitive types
14. Generics

15. Collections

16. Method overload resolution
17. Multithreads

18. Core Java Classes

19. Object Oriented Design

WoONOUAWN =

Module contents

Classes and Instances
Overview of class declarations. Class Fields and Methods.
Access modifiers
Encapsulation
Creating Objects
null literal
this Keyword

Module contents

- Classes and Instances
— Overview of class declarations. Class Fields and Methods.
— Access modifiers
— Encapsulation
— Creating Objects
— null literal
— this Keyword

What Is a Class?

A class is a blueprint or prototype from which
objects are created.

A class models the state and behavior of a real-

world object and class can cleanly model state and
behavior.

What Is an Object?

An object is a software bundle of related state and behavior.
Software objects are often used to model the real-world objects.

An object is a software bundle of variables and related methods.
Objects are related to real life scenario

Class is the general thing and object is the specialization of
general thing

Objects are instance of classes.

An object is characterized by concepts like:
-Attribute

-Behavior
-ldentity

Classes and Instances

“C|aSS" means a Class declaration

category of things o e o .

- Aclass name canbe | =mEET &

used as the typeofa | "hwtﬁf {

field or local variable -

‘Object’ meansa e Corel-pew cart.

particular item that
belongs to a class

Class Instances (Objects)

- Also called an
“instance”

Class Fields and Methods

Package

Fields <«

Constructor

Methods < |

package com.brainacad.oop1;

public class Car {

private String model;
private int maxSpeed;
private int year;
private int speed,;

/...
public Car(String model,int year){

this.model = model;
, this.year = year;
/.

pl]i:lic int getMaxSpeed() {
return maxSpeed;

}
public int getSpeed() {
return speed;

}
/...

— (Class declaration

Module contents

- Classes and Instances
— Overview of class declarations. Class Fields and Methods.
— Access modifiers
— Encapsulation
— Creating Objects
— null literal
— this Keyword

I 0 0 0 0
Access modifiers

oublic
orivate

1.
2.
2. protected
/.. default (not actually an access specifier)

public access modifier

public class Car {

/...

public int speed; // public access modifier

//...

public int getSpeed() { // public access modifier
return speed,;

}

/...

public void testModifier() {
getSpeed();/ access in same class -Ok!

}
}

default (package) Access Modifier

7. public class Car {

2. M.

5. Intspeed; // default access modifier

4. /..

5. int getSpeed() { // default access modifier
6. return speed;

7o}

8. /.

9. public void testModifier() {

10 getSpeed();/ Ok!
17}
12}

protected access modifier

public class Car {
/...
protected int speed; // protected access modifier
/...
protected int getSpeed() { // protected access modifier
return speed,;

}
/...

public void testModifier() {
getSpeed();/ Ok!

}
}

private access modifier

public class Car {
/...
private int speed; // private access modifier
/...
private int getSpeed() { // private access modifier
return speed,;

}
/...

public void testModifier() {
getSpeed();/ Ok!

}
}

Access modifiers 1/2

Visibility Public Protected Default | Private
From the same Yes Yes Yes Yes
class

From any class in Yes Yes Yes No
the same package

From a subclassin | Yes Yes Yes No
the same package

From a subclass Yes Yes, through | No No
outside the same inheritance

package

From any non- Yes No No No

subclass outside the
package

Access modifiers 2/2

- Access Level

A
B
y--~ N
AR

Module contents

- Classes and Instances
— Overview of class declarations. Class Fields and Methods.
— Access modifiers
— Encapsulation
— Creating Objects
— null literal
— this Keyword

L
Encapsulation 1/3

* The problem:

7. public class Car {

2. M I The problem: value field

3. //pu.b//.caccessmoa’/fer "'speed" can be changed

4, public int speed; :
. from anywhere outside

5, // public access modifier the class

6. public int getSpeed() {

7. return speed;

8. }

9. /...

10}

Encapsulation 2/3

Encapsulation is one of the
four fundamentals of the

Object oriented :
programming. Public Methods

What is Encapsulation?

Encapsulation is a language
mechanism to restrict the Non-public
access of the Objects Methods
components to other
Objects or Classes.

Encapsulation 3/3

7. public class Car {
2. /..
3. //private access modifier
4. private int speed,;
5. /..

6. // public access modifier
/. public int getSpeed() {
return speed,;

3.

9o}
10. /..
1

1o}

Module contents

- Classes and Instances
— Overview of class declarations. Class Fields and Methods.
— Access modifiers
— Encapsulation
— Creating Objects
— null literal
— this Keyword

Creating Objects 1/3

Declaration

Name of
variable

- Car myCar

Class name

(type of
variable)

Initialization

Calls the
Constructor

new Car();

Create new
Object

Instantiation

Creating Objects 2/3

public static void main(String[] arg) {

Car car1 = new Car(); ~__
Car car2 = new Car();
Car car3 = new Car(); T

-
~{

Creating Objects 3/3

public static void main(String[] arg) {

Car car1 = new Car();
Car car2 = new Car();
Car car3 = new Car();

/7 call method "getSpeed" of carl
int speed1 = carl.getSpeed();

/7 call method "getSpeed” of car?
System.out.printin(car2.getSpeed());

Module contents

- Classes and Instances
— Overview of class declarations. Class Fields and Methods.
— Access modifiers
— Encapsulation
— Creating Objects
— null literal
— this Keyword

The null 1/3

A reference variable refers to an object.

When a reference variable does not have a value
(it is not referencing an object) such a reference
variable is said to have a null value.

The null reference can always be assigned or cast
to any reference type

The null 2/3

null indicates that the object reference is not
currently referring to an object

aPrimitiveVariable value

aReferenceVariable Y -

aReferenceVariable @Yl 2@

Heap

The null 3/3

String str1 = null; // null can be assigned to String
Car carl =null; // null can be assigned to Car
int i = null; //type mismatch : cannot convert from null to int

String str2 = (String) null; // null can be type cast to String
Car car2 = (Can)null; // null can be type cast to Car

System.out.printin(null == null); // true

System.out.printin(car1 == null); // true
System.out.printin(car1 == car2), // true

carl1.getMaxSpeed(); \

Exception in thread "main” java.lang.NullPointerException

Module contents

- Classes and Instances
— Overview of class declarations. Class Fields and Methods.
— Access modifiers
— Encapsulation
— Creating Objects
— null literal
— this Keyword

this keyword 1/2

this is a reference to the current object — the
object whose method or constructor is being
called.

You can refer to any member of the current object
from within an instance method or a constructor
by using this.

this keyword 2/2

public class Car {

private String model;
private int maxSpeed,;
private int year;
private int speed;

//...
ublicvoid setSpeed(int speed) {
pm#:.spe/w:sgeed;/e

}

/...

