
JAVA PROGRAMMING BASICS

Module 2: Java Object-oriented Programming

Training program

1. Classes and Instances
2. The Methods
3. The Constructors
4. Static elements
5. Initialization sections
6. Package
7. Inheritance and Polymorphism
8. Abstract classes and interfaces
9. String processing
10. Exceptions and Assertions
11. Nested classes
12. Enums
13. Wrapper classes for primitive types
14. Generics
15. Collections
16. Method overload resolution
17. Multithreads
18. Core Java Classes
19. Object Oriented Design

Module contents

• The Constructors

– Constructors declaration

– Default Constructors

– Constructors overloading

– Calling one constructor from another

Module contents

• The Constructors

– Constructors declaration

– Default Constructors

– Constructors overloading

– Calling one constructor from another

Constructor declaration 1/4

1. public class Car {
2. private int maxSpeed;
3. //...
4. public Car(int maxSpeed) {
5. this.maxSpeed = maxSpeed;
6. }
7. //...
8. public int getMaxSpeed() {
9. return maxSpeed;
10. }
11. }

Constructor
declaration

Constructor declaration 2/4

• Constructors are special methods defined in a
class that create and return an object of the class
in which they're defined.

1. public Car(int maxSpeed) {

2. this.maxSpeed = maxSpeed;

3. }

Constructor
body

Constructor parameters
Access
modifier

Constructor declaration 3/4
Get a block of unused memory in the
heap, large enough to hold an object of
the specified type

Call the default constructor of the
superclass if no constructor is defined

Initialize member variables to the
specified values (or default initial value
is used)

Executes the body of the constructor

Constructor declaration 4/4

1. public class Main {
2. public static void main(String[] arg) {
3. Car myCar1 = new Car(100);
4. Car myCar2 = new Car(120);
5. Car myCar3 = new Car(160);
6. System.out.println(myCar1.getMaxSpeed());
7. System.out.println(myCar2.getMaxSpeed());
8. System.out.println(myCar3.getMaxSpeed());
9. }
10. }

Module contents

• The Methods

– Constructors declaration

– Default Constructors

– Constructors overloading

– Calling one constructor from another

Default Constructors 1/4

• When we don’t define any constructor, the compiler creates the
default constructor

1. public class Car {
2. private int maxSpeed;
3. //...
4. public int getMaxSpeed() {
5. return maxSpeed;
6. }
7. //...
8. }

• equivalent to the declaration: public Car() { }

Default Constructors 2/4

1. public class Main {

2. public static void main(String[] arg) {

3. Car myCar1 = new Car();

4. Car myCar2 = new Car();

5. Car myCar3 = new Car();

6. System.out.println(myCar1.getMaxSpeed());

7. System.out.println(myCar2.getMaxSpeed());

8. System.out.println(myCar3.getMaxSpeed());

9. }

10. }

compiler create a no-
arg default constructor

Default Constructors 3/4

• When we define any constructor, the compiler don’t
creates the default constructor

1. public class Car {
2. private int maxSpeed;
3. //...
4. public Car(int maxSpeed) {
5. this.maxSpeed = maxSpeed;
6. }
7. //...
8. public int getMaxSpeed() {
9. return maxSpeed;
10. }
11. }

Default Constructors 4/4

1. public class Main {

2. public static void main(String[] arg) {

3. Car myCar1 = new Car();

4. Car myCar2 = new Car(100);

5. Car myCar3 = new Car(120);

6. System.out.println(myCar1.getMaxSpeed());

7. System.out.println(myCar2.getMaxSpeed());

8. System.out.println(myCar3.getMaxSpeed());

9. }

10. }

compiler doesn’t create
a no-arg constructor

Module contents

• The Methods

– Constructors declaration

– Default Constructors

– Constructors overloading

– Calling one constructor from another

Constructors overloading 1/4

1. public class Car {

2. private int maxSpeed, milage;

3. public Car() {

4. this.maxSpeed = 100;

5. this.milage = 1;

6. }

7. public Car(int maxSpeed) {

8. this.maxSpeed = maxSpeed;

9. this.milage = 1;

10. }

11. public Car(int maxSpeed, int milage) {

12. this.maxSpeed = maxSpeed;

13. this.milage = milage;

14. }

15.}

Constructor with
no arguments

Constructor with
one argument

Constructor with
two arguments

Constructors overloading 2/4

• The overloading is resolved at compile time by each class
instance creation expression

1. public class Main {
2. public static void main(String[] arg) {
3. // Invokes no-argument constructor
4. Car myCar1 = new Car();
5. // Invokes one int argument constructor
6. Car myCar2 = new Car(140);
7. // Invokes two int argument constructor
8. Car myCar3 = new Car(130, 10000);
9. }
10. }

Constructors overloading 3/4

1. public class Car {

2. private int maxSpeed, milage;

3. public Car() {

4. this.maxSpeed = 100;

5. this.milage = 1;

6. }

7. public Car(int maxSpeed) {

8. this.maxSpeed = maxSpeed;

9. this.milage = 1;

10. }

11. private Car(int maxSpeed, int milage) {

12. this.maxSpeed = maxSpeed;

13. this.milage = milage;

14. }

15.}

Public Constructor with
no arguments

Public Constructor with
one argument

Private Constructor
with two arguments

Constructors overloading 4/4

• The overloading is resolved at compile time by each class
instance creation expression

1. public class Main {
2. public static void main(String[] arg) {
3. // Invokes no-argument constructor
4. Car myCar1 = new Car();
5. // Invokes one int argument constructor
6. Car myCar2 = new Car(140);
7. // Invokes two int argument constructor
8. Car myCar3 = new Car(130, 10000);
9. }
10. }

private
constructor

cannot be called
from anywhere

outside the class

Module contents

• The Methods

– Constructors declaration

– Default Constructors

– Constructors overloading

– Calling one constructor from another

Calling one constructor from another 1/3

1. public class Car {

2. private int maxSpeed, milage;

3. public Car() {

4. this(100,1) ;

5. }

6. public Car(int maxSpeed) {

7. this(maxSpeed,1);

8. }

9. public Car(int maxSpeed, int milage) {

10. this.maxSpeed = maxSpeed;

11. this.milage = milage;

12. }

13.}

Calling one constructor from another 2/3

1. public class Car {

2. private int maxSpeed, milage;

3. public Car() {

4. System.out.println("Test Car()");

5. this(100,1) ;

6. }

7. public Car(int maxSpeed) {

8. this(maxSpeed,1);

9. System.out.println("Test Car(int)");

10. }

11. public Car(int maxSpeed, int milage) {

12. this.maxSpeed = maxSpeed;

13. this.milage = milage;

14. }

15.}

The first statement of a
constructor body may be an
explicit invocation of another
constructor of the same
class or of the direct
superclass

Calling one constructor from another 3/3

1. public class Car {

2. private int maxSpeed, milage;

3. public Car() {

4. this(100,1) ;

5. }

6. public Car(int maxSpeed) {

7. this(maxSpeed,1);

8. }

9. private Car(int maxSpeed, int milage) {

10. this.maxSpeed = maxSpeed;

11. this.milage = milage;

12. }

13.}

A private constructor can
still get called from other

constructors

