JAVA PROGRAMMING BASICS

Module 2: Java Object-oriented Programming

I
Training program

Classes and Instances

The Methods

The Constructors

Static elements

Initialization sections

Package

Inheritance and Polymorphism
Abstract classes and interfaces
String processing

10. Exceptions and Assertions

11. Nested classes

12. Enums

13. Wrapper classes for primitive types
14. Generics

15. Collections

16. Method overload resolution
17. Multithreads

18. Core Java Classes

19. Object Oriented Design

WoONOUAWN =

Module contents

The Constructors
Constructors declaration
Default Constructors
Constructors overloading
Calling one constructor from another

Module contents

- The Constructors
— Constructors declaration
— Default Constructors
— Constructors overloading
— Calling one constructor from another

Constructor declaration 1/4

public class Car {
private int maxSpeed,;
“public Car(int maxspeed) { |

Construct
this.maxSpeed = maxSpeed:; onstructor

declaration

public int getMaxSpeed() {
return maxSpeed;

}

Constructor declaration 2/4

Constructors are special methods defined in a
class that create and return an object of the class
in which they're defined.

Access
modifier Constructor parameters

A A
'public‘ Car(int maxSpeed) {

this,maXSPEEd = maXSpeed; - Constructor
body

—

}

Constructor declaration 3/4

Get a block of unused memory in the
heap, large enough to hold an object of
the specified type

Call the default constructor of the
superclass if no constructor is defined

Initialize member variables to the
specified values (or default initial value
IS used)

Executes the body of the constructor

Constructor declaration 4/4

public class Main {
public static void main(String[] arg) {
Car myCar1 = new Car(100);
Car myCar2 = new Car(120);
Car myCar3 = new Car(160);

System.out.
System. out.
System. out.

orint
orint

orint

n(myCar1.getMaxS
n(myCar2.getMaxS
n(myCar3.getMaxS

peed
peed

peed

(),
(),
());

Module contents

- The Methods

— Constructors declaration

— Default Constructors

— Constructors overloading

— Calling one constructor from another

Default Constructors 1/4

When we don't define any constructor, the compiler creates the
default constructor

public class Car {
private int maxSpeed,;
/..
public int getMaxSpeed() {
return maxSpeed,;

}
/...

}

equivalent to the declaration: public Car() {}

Default Constructors 2/4

public class Main {

public static void main(String[] arg)
Car myCar1 = new Car();
Car myCar2 = new Car();
Car myCar3 = new Car();

System.out.print
System.out.print
System.out.print

n(myCar1.getMaxS
n(myCar2.getMaxS
n(myCar3.getMaxS

peed
peed

peed

compiler create a no-
arg default constructor

(),
(),
(),

Default Constructors 3/4

When we define any constructor, the compiler don't
creates the default constructor

public class Car {

private int maxSpeed,;

/...

public Car(int maxSpeed) {
this.maxSpeed = maxSpeed;

}

/...

public int getMaxSpeed() {
return maxSpeed,;

}
}

Default Constructors 4/4

public class Main {

public static void main(String[] arg

Car mycar1 = new Car(): compiler doesn’t create
a No-arg constructor

Car myCar2 = new Car(100);
Car myCar3 = new Car(120);
System.out.printin(myCar1.getMaxSpeed());
System.out.printin(myCar2.getMaxSpeed());
System.out.printin(myCar3.getMaxSpeed());

Module contents

- The Methods

— Constructors declaration

— Default Constructors

— Constructors overloading

— Calling one constructor from another

Constructors overloading 1/4

public class Car {

private int maxSpeed, milage;

public Car() {
this.maxSpeed = 100;

—_

Constructor with

this.milage = 1; no arguments

} _

public Car(int maxSpeed) {) _
this.maxSpeed = maxSpeed; _ Constructor with
this.milage = 1; one argument

} o -/

public Car(int maxSpeed, int milage) { .
this.maxSpeed = maxSpeed; _ Constructor with

this.milage = milage;
}
}

two arguments

————
Constructors overloading 2/4

The overloading is resolved at compile time by each class
instance creation expression

public class Main {

public static void main(String[] arg) {
// Invokes no-argument constructor
Car myCar1 = new Car(),
// Invokes one int argument constructor
Car myCar2 = new Car(140),
// Invokes two int argument constructor
Car myCar3 = new Car(130, 10000);

Constructors overloading 3/4

public class Car {
private int maxSpeed, milage;

public Car() { N
this.maxSpeed = 100; _ Public Constructor with
this.milage = 1; no arguments

} —

public Car(int maxSpeed) {
this.maxSpeed = maxSpeed,;
this.milage = 1;

) -

private Car(int maxSpeed, int milage) {
this.maxSpeed = maxSpeed,;
this.milage = milage;

}

}

—_

Public Constructor with
one argument

—_

Private Constructor
with two arguments

—

Constructors overloading 4/4

The overloading is resolved at compile time by each class
instance creation expression

public class Main {
public static void main(String[] arg) {
// Invokes no-argument constructor
Car myCar1 = new Car(),
// Invokes one int argument constructor
Car myCar2 = new Car(140); private
// Invokes two int argument constructq constructor

Car myCar3 = new Car(130, 10000); cannot be called
} from anywhere
} outside the class

Module contents

- The Methods

— Constructors declaration

— Default Constructors

— Constructors overloading

— Calling one constructor from another

Calling one constructor from another 1/3

public class Car {
private int maxSpeed, milage;
public Car() {

this(100,1);
} N

public Car(int maxSpeed) {

this(maxSpeed,1);
}
public Car(int maxSpeed, int milage) { <://

this.maxSpeed = maxSpeed,;
this.milage = milage;

}

}

Calling one constructor from another 2/3

1. public class Car { :

. private int maxSpeed, milage; The first statement of a

~ public Car(){ constructor boply may be an

: " . explicit invocation of another

4. System.out.printin("Test Car()");

- this(100.1) * constructor of the same
Is(100,1): class or of the direct

ol . . superclass

7 public Car(int maxSpeed) {

8 this(maxSpeed,1);

0. System.out.printin("Test Car(int)");

00}

17, public Car(int maxSpeed, int milage) {
12. this.maxSpeed = maxSpeed,;

13. this.milage = milage;

14. }

15}

Calling one constructor from another 3/3

1. public class Car {

2. private int maxSpeed, milage;

~. public Car() {

4. this(100,1) ;

SR

6 public Car(int maxSpeed) {

7 this(maxSpeed,1);

SR

9. private Car(int maxSpeed, int milage) {

10. this.maxSpeed = maxSpeed; A private constructor can
117, this.milage = milage; still get called from other
120} constructors

12}

