JAVA PROGRAMMING BASICS

Module 2: Java Object-oriented Programming

I
Training program

Classes and Instances

The Methods

The Constructors

Static elements

Initialization sections

Package

Inheritance and Polymorphism
Abstract classes and interfaces
String processing

10. Exceptions and Assertions

11. Nested classes

12. Enums

13. Wrapper classes for primitive types
14. Generics

15. Collections

16. Method overload resolution
17. Multithreads

18. Core Java Classes

19. Object Oriented Design

WoONOUAWN =

Module contents

Initialization sections
Class fields initialization
Nonstatic initialization block
Static initialization block
Order of Initialization block execution
Initialization of final variable

Module contents

1. Initialization sections
— Class fields initialization
— Nonstatic initialization block
— Static initialization block
— Order of Initialization block execution
— Initialization of final variable

Class fields initialization 1/5

Fields that are declared but not initialized will be
set to a reasonable default by the compiler

Data Type Default Value (for fields)
byte 0

short 0

int 0

long OL

float 0.0f

double 0.0d

char “\u0000”

String (or any object) null

boolean false

Class fields initialization 2/5

public class ClassInitDemo1 {

private static boolean 5;

private static byte by,

private static int /

private static double ¢

private static char ¢

private static String s¢;

private static int[] ar7;

public static void main(String[] arg)
System.out.printin("boolean: "+5);
System.out.printin("byte : "+5));
/...
System.out.printin("String : "+s%);
System.out.printin("Array: "+arrn);

Console output:

boolean : false
byte : 0

int:0

double : 0.0
char:

String : null
Array: null

Class fields initialization 3/5

You can often provide an initial value for a field in its
declaration:

public class ClassInitDemo1 {
private static boolean 6 = true;
private static byte by =127,
private static int /= 2000;
private static double ¢=5.89;
private static char c="A;
private static String st= "Hi !";
private static int[] arr={1,2,3};

/...

N
Class fields initialization 4/5

You can sEecify the name of a previously declared class
field's in the expression of a declared class field's:

public class ClassInitDemo1 {
/..
private static byte Hy= 127,
private static int /= 234%py,
/..
public static void main(String[] arg) {
System.out.printin("int : " + /),

}
}

N
Class fields initialization 5/5

You can call static methods for fields initialization :

public class ClassInitDemo1 {
/...
private static int /= do/niK);
p
private static int dolnit() {
System.out.printin("Init i value:");

return 123;

}// Console output:

pl'J"b"C static void main(String[] arg) { Init| Valu.e:
System.out.printin("Start main"); Start main
System.out.printin("int : " +)); int: 123

}

}

Module contents

1. Initialization sections
— Class fields initialization
— Non-static initialization block
— Static initialization block
— Order of Initialization block execution
— Initialization of final variable

N
Non-static initialization block 1/3

Initializer blocks for instance variables used to share a block of code
between multiple constructors:

public class ClassInitDemo1 {

/...

private int i;

private String str;

/...

{
i= 12345,
str = "Hi!";

}

public static void main(String[] arg) {
ClassInitDemo1 cdm = new ClassInitDemo1();
System.out.printin("int : " + cdm.i);
System.out.printin(“String: " + cdm.str);

}
}

N
Non-static initialization block 2/3

public class Car {

private static int nrumOfCars,

/...

public Car() {
/..
numaorCars++,

}

public Car(int maxSpeed) {
/..

numorcars++;

}
}

Non-static initialization block 3/3

7. public class Car {

2. private static int numOfCars,
3. /...

4, {

5. numofrfCars++;

6. }

7. public Car() {

8. /...

9. }

10, public Car(int maxSpeed) {
11. /...

)

Module contents

1. Initialization sections
— Class fields initialization
— Nonstatic initialization block
— Static initialization block
— Order of Initialization block execution
— Initialization of final variable

Static initialization block 1/2

A static initialization block is a normal block of code
enclosed in braces { }, and preceded by the static keyword:

public class ClassInitDemo1 {
private static int x;

/...

static {
x=1234;

}

public static void main(String[] arg) {
System. out.print(x);

}
}

Static initialization block 2/2

public class ClassInitDemo1 {

/...
private static char[] a/p/;
/...
static {
alph = new char[26];
inti=0;
for (char c ='a’; i < alph.length; c++,i++) {
alphli] = ¢,
}
}

public static void main(String[] arg) {
System.out.print(Arrays.toString(alph));

}
}

Module contents

1. Initialization sections
— Class fields initialization
— Nonstatic initialization block
— Static initialization block
— Order of Initialization block execution
— Initialization of final variable

Order of Initialization block execution 1/3

Console output:

public class ClassInitDemo1 {

public ClassInitDemo1() { static block
System.out.printin("constructor"); main
} non-static block

{ /7 non-static
System.out.printin("non-static block");
}
static { //static
System.out.printin("static block");
}
public static void main(String[] arg) {
System.out.printin("main");
ClassInitDemo1 cdm = new ClassInitDemo1();

}
}

constructor

N
Order of Initialization block execution 2/3

Console output:
static block 1

public class ClassInitDemo1 {
private static int x= 100;

static { //static 1 static block 2
x=1, | . main
System.out.printin("static block 1"); x=2

}

static { //static ?

X=2;
System.out.printin("static block 2");

}

public static void main(String[] arg) {
System.out.printin("main");
System.out.printin("x="+x);

}
}

Order of Initialization block execution 3/3

public class ClassInitDemo1 {

}

private inty = 100;

{ y=1,/non-static 7
System.out.printin("non-static block 1");

}

public ClassinitDemo1() {
y=3
System.out.printin(“constructor");

}

{ y=2,//non-static 2
System.out.printin("non-static block 2");

}

public static void main(String[] arg) {
System.out.printin("main");

ClasslnitDemo1 cdm = new ClassInitDemo1();

System.out.printin("y=" + cdm.y);
}

Console output:

main

non-static block 1
non-static block 2
constructor

y=3

Module contents

1. Initialization sections
— Class fields initialization
— Nonstatic initialization block
— Static initialization block
— Order of Initialization block execution
— Initialization of final variable

Initialization of final variable 1/3

public class ClassInitDemo1 {

private final int X = 100;

private final int Z;

private final int W;

{
Z =200;
System.out.printin("non-static block");

}

public ClassInitDemo1() {
W = 300;
System.out.printin("constructor");

}

public static void main(String[] arg) {
System.out.printin("main");
ClasslInitDemo1 cdm = new ClassInitDemo1();
/...

}
}

Initialization of final variable 2/3

public class ClassInitDemo1 {
private final int Z;
public ClassInitDemo1() {
Z = 300;
System.out.printin("constructor 1");
}
public ClassinitDemo1(int z) {
Z=12
System.out.printin("constructor 2");
}
public static void main(String[] arg) {
System.out.printin("main");
ClassinitDemo1 cdm = new ClassInitDemo1();
/...
}
}

Initialization of final variable 3/3

public class ClassInitDemo1 {
private final int Z = 100;
{
Z = 200;
System.out.printin("non-static block");
}
public ClassinitDemo1() {
Z = 300;
System.out.printin("constructor");
}
public static void main(String[] arg) {
System.out.printin("main");
ClassInitDemo1 cdm = new ClassInitDemo1();
/...
}
}

