JAVA PROGRAMMING BASICS

Module 2: Java Object-oriented Programming
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Initialization sections
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Order of Initialization block execution
Initialization of final variable
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Class fields initialization 1/5

Fields that are declared but not initialized will be
set to a reasonable default by the compiler

Data Type Default Value (for fields)
byte 0

short 0

int 0

long OL

float 0.0f

double 0.0d

char “\u0000”

String (or any object) null

boolean false




Class fields initialization 2/5

public class ClassInitDemo1 {

private static boolean 5;

private static byte by,

private static int /

private static double ¢

private static char ¢

private static String s¢;

private static int[] ar7;

public static void main(String[] arg)
System.out.printin("boolean: "+5);
System.out.printin("byte : "+5));
/...
System.out.printin("String : "+s%);
System.out.printin("Array: "+arrn);

Console output:

boolean : false
byte : 0

int:0

double : 0.0
char:

String : null
Array: null



Class fields initialization 3/5

You can often provide an initial value for a field in its
declaration:

public class ClassInitDemo1 {
private static boolean 6 = true;
private static byte by =127,
private static int /= 2000;
private static double ¢=5.89;
private static char c="A;
private static String st= "Hi !";
private static int[] arr={1,2,3};

/...
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Class fields initialization 4/5

You can sEecify the name of a previously declared class
field's in the expression of a declared class field's:

public class ClassInitDemo1 {
/..
private static byte Hy= 127,
private static int /= 234%py,
/..
public static void main(String[] arg) {
System.out.printin("int : " + /),

}
}




N
Class fields initialization 5/5

You can call static methods for fields initialization :

public class ClassInitDemo1 {
/...
private static int /= do/niK);
p
private static int dolnit() {
System.out.printin("Init i value:");

return 123;

}// Console output:

pl'J"b"C static void main(String[] arg) { Init| Valu.e:
System.out.printin("Start main"); Start main
System.out.printin("int : " + )); int: 123

}

}
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Non-static initialization block 1/3

Initializer blocks for instance variables used to share a block of code
between multiple constructors:

public class ClassInitDemo1 {

/...

private int i;

private String str;

/...

{
i= 12345,
str = "Hi!";

}

public static void main(String[] arg) {
ClassInitDemo1 cdm = new ClassInitDemo1();
System.out.printin("int : " + cdm.i);
System.out.printin(“String: " + cdm.str);

}
}
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Non-static initialization block 2/3

public class Car {

private static int nrumOfCars,

/...

public Car() {
/..
numaorCars++,

}

public Car(int maxSpeed) {
/..

numorcars++;

}
}




Non-static initialization block 3/3

7. public class Car {

2. private static int numOfCars,
3. /...

4, {

5. numofrfCars++;

6. }

7. public Car() {

8. /...

9. }

10, public Car(int maxSpeed) {
11. /...

)
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Static initialization block 1/2

A static initialization block is a normal block of code
enclosed in braces { }, and preceded by the static keyword:

public class ClassInitDemo1 {
private static int x;

/...

static {
x=1234;

}

public static void main(String[] arg) {
System. out.print(x);

}
}




Static initialization block 2/2

public class ClassInitDemo1 {

/...
private static char[] a/p/;
/...
static {
alph = new char[26];
inti=0;
for (char c ='a’; i < alph.length; c++,i++) {
alphli] = ¢,
}
}

public static void main(String[] arg) {
System.out.print(Arrays.toString(alph));

}
}
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Order of Initialization block execution 1/3

Console output:

public class ClassInitDemo1 {

public ClassInitDemo1() { static block
System.out.printin("constructor"); main
} non-static block

{ /7 non-static
System.out.printin("non-static block");
}
static { //static
System.out.printin("static block");
}
public static void main(String[] arg) {
System.out.printin("main");
ClassInitDemo1 cdm = new ClassInitDemo1();

}
}

constructor




N
Order of Initialization block execution 2/3

Console output:
static block 1

public class ClassInitDemo1 {
private static int x= 100;

static { //static 1 static block 2
x=1, | . main
System.out.printin("static block 1"); x=2

}

static { //static ?

X=2;
System.out.printin("static block 2");

}

public static void main(String[] arg) {
System.out.printin("main");
System.out.printin("x="+x);

}
}




Order of Initialization block execution 3/3

public class ClassInitDemo1 {

}

private inty = 100;

{ y=1,/non-static 7
System.out.printin("non-static block 1");

}

public ClassinitDemo1() {
y=3
System.out.printin(“constructor");

}

{ y=2,//non-static 2
System.out.printin("non-static block 2");

}

public static void main(String[] arg) {
System.out.printin("main");

ClasslnitDemo1 cdm = new ClassInitDemo1();

System.out.printin("y=" + cdm.y);
}

Console output:

main

non-static block 1
non-static block 2
constructor

y=3
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Initialization of final variable 1/3

public class ClassInitDemo1 {

private final int X = 100;

private final int Z;

private final int W;

{
Z =200;
System.out.printin("non-static block");

}

public ClassInitDemo1() {
W = 300;
System.out.printin("constructor");

}

public static void main(String[] arg) {
System.out.printin("main");
ClasslInitDemo1 cdm = new ClassInitDemo1();
/...

}
}




Initialization of final variable 2/3

public class ClassInitDemo1 {
private final int Z;
public ClassInitDemo1() {
Z = 300;
System.out.printin("constructor 1");
}
public ClassinitDemo1(int z) {
Z=12
System.out.printin("constructor 2");
}
public static void main(String[] arg) {
System.out.printin("main");
ClassinitDemo1 cdm = new ClassInitDemo1();
/...
}
}




Initialization of final variable 3/3

public class ClassInitDemo1 {
private final int Z = 100;
{
Z = 200;
System.out.printin("non-static block");
}
public ClassinitDemo1() {
Z = 300;
System.out.printin("constructor");
}
public static void main(String[] arg) {
System.out.printin("main");
ClassInitDemo1 cdm = new ClassInitDemo1();
/...
}
}




