
JAVA PROGRAMMING BASICS

Module 2: Java Object-oriented Programming

Training program

1. Classes and Instances
2. The Methods
3. The Constructors
4. Static elements
5. Initialization sections
6. Package
7. Inheritance and Polymorphism
8. Abstract classes and interfaces
9. String processing
10. Exceptions and Assertions
11. Nested classes
12. Enums
13. Wrapper classes for primitive types
14. Generics
15. Collections
16. Method overload resolution
17. Multithreads
18. Core Java Classes
19. Object Oriented Design

Module contents

• Packages

– The Package

– Package import

– Adding class to Package

– Static import

– Package organization

– The jar utility

– Executable jars

Module contents

• Packages

– The Package

– Package import

– Adding class to Package

– Static import

– Package organization

– The jar utility

– Executable jars

The Package 1/3

• A package is a collection of related classes and
interfaces providing namespace management

The Package 2/3

• Packages support hierarchical organization, and
are used to organize large programs into logical
and manageable units

Java

land utill awt

System.class String.class Arraylist.class Map.class Button.class

javapackage

Subpackage of java

The Package 3/3

• Java packages are namespaces. They allow
programmers to create small private areas in
which to declare classes.

Module contents

• Packages

– The Package

– Package import

– Adding class to Package

– Static import

– Package organization

– The jar utility

– Executable jars

Package import 1/4

• If class Main and Car are located
in the same Java package:

1. package com.brainacad.oop1.testclass;
2. public class Main {
3. public static void main(String[] arg) {
4. Car myCar1 = new Car();
5. }
6. }

Package import 2/4

• If class Main and Car are located
in the same Java package:

1. package com.brainacad.oop1.testclass;
2. import com.brainacad.oop1.testcars.Car;
3. public class Main {
4. public static void main(String[] arg) {
5. Car myCar1 = new Car();
6. }
7. }

Import
Car class

Package import 3/4

• If class Main and Car are located
in the same Java package:

1. package com.brainacad.oop1.testclass;
2. import com.brainacad.oop1.testcars.*;
3. public class Main {
4. public static void main(String[] arg) {
5. Car myCar1 = new Car();
6. }
7. }

Import
all classes

Package import 4/4

• If class Main and Car are located
in the different Java packages:

1. package com.brainacad.oop1.testclass;
2. public class Main {
3. public static void main(String[] arg) {
4. com.brainacad.oop1.testcars.Car myCar1 =
5. new com.brainacad.oop1.testcars.Car();
6. }
7. }

Fully Qualified
Class Name

Module contents

• Packages

– The Package

– Package import

– Adding class to Package

– Static import

– Package organization

– The jar utility

– Executable jars

Adding class to Package

• To create a new class in package

Module contents

• Packages

– The Package

– Package import

– Adding class to Package

– Static import

– Package organization

– The jar utility

– Executable jars

Static import 1/3

1. package com.brainacad.oop1.testclass;

2. public class Main {

3. public static void main(String[] arg) {

4. double theta = 1;

5. double r = Math.cos(Math.PI * theta);

6. }

7. }

Static import 2/3

• Static imports allow the static items of one class to be
referenced in another without qualification.

1. package com.brainacad.oop1.testclass;
2. import static java.lang.Math.PI;
3. import static java.lang.Math.cos;
4. public class Main {
5. public static void main(String[] arg) {
6. double theta = 1;
7. double r = cos(PI * theta);
8. }
9. }

Static import 3/3

• Static imports allow the static items of one class to be
referenced in another without qualification.

1. package com.brainacad.oop1.testclass;

2. import static java.lang.Math.*;

3. public class Main {

4. public static void main(String[] arg) {

5. double theta = 1;

6. double r = cos(PI * theta);

7. }

8. }

Module contents

• Packages

– The Package

– Package import

– Adding class to Package

– Static import

– Package organization

– The jar utility

– Executable jars

Package organization 1/5

• Package Naming Conventions

• To prevent package name collisions, the
convention is for organizations to use their
reversed Internet domain names to begin their
package names.

• For example, com.brainacad

Package organization 2/5

• Package Naming Conventions

• If the Internet domain name contains an invalid
character, such as a hyphen, the convention is to
replace the invalid character with an underscore.

• If a domain name component starts with a digit or
consists of a reserved Java keyword, the
convention is to add an underscore to the
component name.

• For example, com.brainacad._1java

Package organization 3/5

• The sub-directory structure corresponding to the
package name for the classes will be created
automatically if it does not already exist.

Package organization 4/5

• Package By Feature

• Package-by-feature uses packages to reflect the
feature set. It tries to place all items related to a
single feature (and onlythat feature) into a single
directory/package. This results in packages with
high cohesion and high modularity, and with
minimal coupling between packages.

• com.mycompany.report
• com. mycompany.security
• com. mycompany.util

Package organization 5/5

• Package By Layer

• The competing package-by-layer style is different.
In package-by-layer, the highest level packages
reflect the various application "layers", instead of
features, as in:

• com. mycompany.action

• com.mycompany.model

• com. mycompany.dao

Module contents

• Packages

– The Package

– Package import

– Adding class to Package

– Static import

– Package organization

– The jar utility

– Executable jars

The jar utility 1/3

• jar-The Java Archive Tool

• jar combines multiple files into a single JAR archive
file.

• Java Archive (JAR) is a platform-independent file
format that allow you to compress and bundle
multiple files associated with a Java application,
into a single file. JAR is based on the popular ZIP
algorithm, and mimic the Unix's tar file format

The jar utility 2/3

• Creating JAR File

1. Via the command-line jar tool: JDK provides a
command-line tool called "jar.exe"

2. Via the "export" option of IDE such as IntellijIDEA
or Eclipse, in practice.

The jar utility 3/3

• Create JAR File using Command-Line "jar" Tool

• To create a JAR file using the jar tool, issue
the jar command (on CMD shell) with 'c' option:

• > jar cvf jarFile inputFileDir1 inputFileDir2 ...

• For example, create a JAR file named MyJar.jar by
entering the following command:

• >jar cvf MyJar.jar MyPackage/*.class

Module contents

• Packages

– The Package

– Package import

– Adding class to Package

– Static import

– Package organization

– The jar utility

– Executable jars

Executable jars 1/4

• JAR functions, such as main-class specification, are
supported though a file called manifest.

• The manifest is a special file, called
"MANIFEST.MF" under the "META-INF" sub-
directory, that contains information about the files
contained in a JAR file

Executable jars 2/4

• In the jar "META-INF\MANIFEST.MF“ file can
specifies the main-class that contains the
entry main() method for launching the application:

1. Manifest-Version: 1.0

2. Created-By: 1.7.0_06 (Oracle Corporation)

3. Main-Class: MyPackage.Main

4.

Executable jars 3/4

• To run the application directly from JAR file, invoke
the JRE with option "-jar":

• > java -jar Hello.jar

Executable jars 4/4

• Setting an Entry Point with the JAR Tool

• >jar cfe app.jar MyApp Main.class

