JAVA PROGRAMMING BASICS

Module 2: Java Object-oriented Programming
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The Package 1/3

A package is a collection of related classes and
interfaces providing namespace management

~—com.somecompany.project—— F‘rm

one
(— ~subpackage—, ) %mpany/
:> /project
First.java: /one
public class | ™ First.java
First {...} [ First.class
class Cls {...} Second.java Cls.class
,L:—another . Second.java
D~ Second.class
Third.java /subpackage
\k ) lanother
Third.java

Third.class




The Package 2/3

Packages support hierarchical organization, and
are used to organize large programs into logical
and manageable units

Java javapackage

awt Subpackage of java

System.class String.class | Arraylist.class

\WETREESS Button.class




The Package 3/3

Java packages are namespaces. They allow
programmers to create small private areas in
which to declare classes.

java
lang awt i
Math Graphics
sqricy ldrawRect(]]
randorm) setColor()
string Button
Thread Color

subroutines nested in classes nested in two layers of packages.
The full name of sgrtiyis javalang.Math.sgriil
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Package import 1/4

™ sre
. [+ brai d. 1
If class Main and Car are located T:”," rasase
in the same Java package: [ testelass
C 'a Car
Ch'h Main

package com.brainacad.oop1.testclass;
public class Main {
public static void main(String[] arg) {
Car myCar1 = new Car();

}
}




Package import 2/4

) src

157 comn.brainacad. oopl
[£7] initsections

57 testcars
If class Main and Car are located b Car
: th k . 157 testclass
In the same Java package: & o wain

package com.brainacad.oop1.testclass;
Import com.brainacad.oop1.testcars.Car;
public class Main {
public static void main(String[] arg) {
Car myCar1 = new Car(),

}

Import

Car class

}




Package import 3/4

If class Main and Car are located
in the same Java package:

package com.brainacad.oop1.testclass;
iImport com.brainacad.oop1.testcars.*;
public class Main {
public static void main(String[] arg) {
Car myCar1 = new Car();

}

}

) src

157 comn.brainacad. oopl
[£7] initsections
57 testcars
C h Car
157 bestclass
c* & Main

Import

all classes




Package import 4/4

If class Main and Car are located
in the different Java packages:

package com.brainacad.oop1.testclass;
public class Main {
public static void main(String[] arg) {

) src

157 comn.brainacad. oopl

[£7] initsections
57 testcars
C ' Car
157 bestclass
c* & Main

com.brainacad.oop1.testcars.Car myCar1 =
newlcom.brainacad.oom testcars.Ca rp;

Fully Qualified

Class Name




Module contents

- Packages
— The Package
— Package import
— Adding class to Package
— Static import
— Package organization
— The jar utility
— Executable jars




Adding class to Package

To create a new class in package

D
vy &1 EDmiI:u-raina }é Cut Ol
w27 initsect Ijnl Copy ChrheC '+ Package
i J Fest -i '
[ tes f:r Copy Path Chri+Shiftec | L Package-info.java
LI |

_ l._,_”H:I_FI_L_ _opy Reference kel +5hift4+C IE HTML File
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Static import 1/3

package com.brainacad.oop1.testclass;
public class Main {
public static void main(String[] arg) {
double theta = 1;
double r = Math.cos(Math. P/ * theta);

}
}




Static import 2/3

Static imports allow the static items of one class to be
referenced in another without qualification.

package com.brainacad.oop1.testclass;
iImport static java.lang.Math.PI;
iImport static java.lang.Math.cos;
public class Main {
public static void main(String[] arg) {
double theta = 1;
double r = cos(P/ * theta);

}
}




Static import 3/3

Static imports allow the static items of one class to be
referenced in another without qualification.

package com.brainacad.oop.testclass;
import static java.lang.Math.*;
public class Main {
public static void main(String[] arg) {
double theta = 1;
double r = cos(P/* theta);

}
}
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Package organization 1/5

Package Naming Conventions

To prevent package name collisions, the
convention is for organizations to use their
reversed Internet domain names to begin their
package names.

For example, com.brainacad




Package organization 2/5

Package Naming Conventions

If the Internet domain name contains an invalid
character, such as a hyphen, the convention is to
replace the invalid character with an underscore.

If a domain name component starts with a digit or
consists of a reserved Java keyword, the
convention is to add an underscore to the
component name.,

For example, com.brainacad._7java




Package organization 3/5

The sub-directory structure corresponding to the
package name for the classes will be created
automatically if it does not already exist.

S MyClass3.java

. testclass

= L:
= . src Ili javaproject
=] |. com ' ----- i src
= . brainacad b —_ com
= . oopl : e .i 27z
. initsections . '”I_ FE}]ECH _
5 - 1 subproject?

---------------- MyClass4.java




Package organization 4/5

Package By Feature

Package-by-feature uses packages to reflect the
feature set. It tries to place all items related to a
single feature (and on/ythat feature) into a single
directory/package. This results in packages with
high cohesion and high modularity, and with
minimal coupling between packages.

com.mycompany.report
com. mycompany.security
com. mycompany.util




Package organization 5/5

Package By Layer

The competing package-by-layer style is different.
In package-by-layer, the highest level packages
reflect the various application "layers", instead of
features, as in:

com. mycompany.action
com.mycompany.mode/
com. mycompany.aao
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The jar utility 1/3

jar-The Java Archive Tool

jar combines multiple files into a single JAR archive
file.

Java Archive (JAR) is a platform-independent file
format that allow you to compress and bundle
multiple files associated with a Java application,

into a single file. JAR is based on the popular ZIP
algorithm, and mimic the Unix's tar file format




The jar utility 2/3
Creating JAR File

Via the command-line jar tool: JDK provides a
command-line tool called "jar.exe"

Via the "export" option of IDE such as IntellijIDEA
or Eclipse, in practice.




The jar utility 3/3

Create JAR File using Command-Line "jar" Tool

To create a JAR file using the jar tool, issue
the jar command (on CMD shell) with 'c' option:

> jar cvf jarFile inputFileDir1 inputFileDir2 ...

For example, create a JAR file named Myjar.jar by
entering the following command:

>jar cvf MyJar.jar MyPackage/*.class
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Executable jars 1/4

JAR functions, such as main-class specification, are
supported though a file called manifest.

The manifest is a special file, called
"MANIFEST.MF" under the "META-INF" sub-
directory, that contains information about the files
contained in a JAR file




Executable jars 2/4

In the jar "META-INFAMANIFEST.MF" file can
specifies the main-class that contains the
entry main() method for launching the application:

Manifest-Version: 1.0
Created-By: 1.7.0_06 (Oracle Corporation)
Main-Class: MyPackage.Main




Executable jars 3/4

To run the application directly from JAR file, invoke
the JRE with option "-jar":

> java -jar Hello.jar




Executable jars 4/4

Setting an Entry Point with the JAR Tool

>jar cfe app.jar MyApp Main.class




