JAVA PROGRAMMING BASICS

Module 2: Java Object-oriented Programming

I
Training program

Classes and Instances

The Methods

The Constructors

Static elements

Initialization sections

Package

Inheritance and Polymorphism
Abstract classes and interfaces
String processing

10. Exceptions and Assertions

11. Nested classes

12. Enums

13. Wrapper classes for primitive types
14. Generics

15. Collections

16. Method overload resolution
17. Multithreads

18. Core Java Classes

19. Object Oriented Design

WoONOUAWN =

Module contents

Packages
The Package
Package import
Adding class to Package
Static import
Package organization
The jar utility
Executable jars

Module contents

- Packages
— The Package
— Package import
— Adding class to Package
— Static import
— Package organization
— The jar utility
— Executable jars

The Package 1/3

A package is a collection of related classes and
interfaces providing namespace management

~—com.somecompany.project—— F‘rm

one
(— ~subpackage—,) %mpany/
:> /project
First.java: /one
public class | ™ First.java
First {...} [First.class
class Cls {...} Second.java Cls.class
,L:—another . Second.java
D~ Second.class
Third.java /subpackage
\k) lanother
Third.java

Third.class

The Package 2/3

Packages support hierarchical organization, and
are used to organize large programs into logical
and manageable units

Java javapackage

awt Subpackage of java

System.class String.class | Arraylist.class

\WETREESS Button.class

The Package 3/3

Java packages are namespaces. They allow
programmers to create small private areas in
which to declare classes.

java
lang awt i
Math Graphics
sqricy ldrawRect(]]
randorm) setColor()
string Button
Thread Color

subroutines nested in classes nested in two layers of packages.
The full name of sgrtiyis javalang.Math.sgriil

Module contents

- Packages
— The Package
— Package import
— Adding class to Package
— Static import
— Package organization
— The jar utility
— Executable jars

Package import 1/4

™ sre
. [+ brai d. 1
If class Main and Car are located T:”," rasase
in the same Java package: [testelass
C 'a Car
Ch'h Main

package com.brainacad.oop1.testclass;
public class Main {
public static void main(String[] arg) {
Car myCar1 = new Car();

}
}

Package import 2/4

) src

157 comn.brainacad. oopl
[£7] initsections

57 testcars
If class Main and Car are located b Car
: th k . 157 testclass
In the same Java package: & o wain

package com.brainacad.oop1.testclass;
Import com.brainacad.oop1.testcars.Car;
public class Main {
public static void main(String[] arg) {
Car myCar1 = new Car(),

}

Import

Car class

}

Package import 3/4

If class Main and Car are located
in the same Java package:

package com.brainacad.oop1.testclass;
iImport com.brainacad.oop1.testcars.*;
public class Main {
public static void main(String[] arg) {
Car myCar1 = new Car();

}

}

) src

157 comn.brainacad. oopl
[£7] initsections
57 testcars
C h Car
157 bestclass
c* & Main

Import

all classes

Package import 4/4

If class Main and Car are located
in the different Java packages:

package com.brainacad.oop1.testclass;
public class Main {
public static void main(String[] arg) {

) src

157 comn.brainacad. oopl

[£7] initsections
57 testcars
C ' Car
157 bestclass
c* & Main

com.brainacad.oop1.testcars.Car myCar1 =
newlcom.brainacad.oom testcars.Ca rp;

Fully Qualified

Class Name

Module contents

- Packages
— The Package
— Package import
— Adding class to Package
— Static import
— Package organization
— The jar utility
— Executable jars

Adding class to Package

To create a new class in package

D
vy &1 EDmiI:u-raina }é Cut Ol
w27 initsect Ijnl Copy ChrheC '+ Package
i J Fest -i '
[tes f:r Copy Path Chri+Shiftec | L Package-info.java
LI |

_ l._,_”H:I_FI_L_ _opy Reference kel +5hift4+C IE HTML File

Module contents

- Packages
— The Package
— Package import
— Adding class to Package
— Static import
— Package organization
— The jar utility
— Executable jars

Static import 1/3

package com.brainacad.oop1.testclass;
public class Main {
public static void main(String[] arg) {
double theta = 1;
double r = Math.cos(Math. P/ * theta);

}
}

Static import 2/3

Static imports allow the static items of one class to be
referenced in another without qualification.

package com.brainacad.oop1.testclass;
iImport static java.lang.Math.PI;
iImport static java.lang.Math.cos;
public class Main {
public static void main(String[] arg) {
double theta = 1;
double r = cos(P/ * theta);

}
}

Static import 3/3

Static imports allow the static items of one class to be
referenced in another without qualification.

package com.brainacad.oop.testclass;
import static java.lang.Math.*;
public class Main {
public static void main(String[] arg) {
double theta = 1;
double r = cos(P/* theta);

}
}

Module contents

- Packages
— The Package
— Package import
— Adding class to Package
— Static import
— Package organization
— The jar utility
— Executable jars

Package organization 1/5

Package Naming Conventions

To prevent package name collisions, the
convention is for organizations to use their
reversed Internet domain names to begin their
package names.

For example, com.brainacad

Package organization 2/5

Package Naming Conventions

If the Internet domain name contains an invalid
character, such as a hyphen, the convention is to
replace the invalid character with an underscore.

If a domain name component starts with a digit or
consists of a reserved Java keyword, the
convention is to add an underscore to the
component name.,

For example, com.brainacad._7java

Package organization 3/5

The sub-directory structure corresponding to the
package name for the classes will be created
automatically if it does not already exist.

S MyClass3.java

. testclass

= L:
= . src Ili javaproject
=] |. com ' ----- i src
= . brainacad b —_ com
= . oopl : e .i 27z
. initsections . '”I_ FE}]ECH _
5 - 1 subproject?

---------------- MyClass4.java

Package organization 4/5

Package By Feature

Package-by-feature uses packages to reflect the
feature set. It tries to place all items related to a
single feature (and on/ythat feature) into a single
directory/package. This results in packages with
high cohesion and high modularity, and with
minimal coupling between packages.

com.mycompany.report
com. mycompany.security
com. mycompany.util

Package organization 5/5

Package By Layer

The competing package-by-layer style is different.
In package-by-layer, the highest level packages
reflect the various application "layers", instead of
features, as in:

com. mycompany.action
com.mycompany.mode/
com. mycompany.aao

Module contents

- Packages
— The Package
— Package import
— Adding class to Package
— Static import
— Package organization
— The jar utility
— Executable jars

The jar utility 1/3

jar-The Java Archive Tool

jar combines multiple files into a single JAR archive
file.

Java Archive (JAR) is a platform-independent file
format that allow you to compress and bundle
multiple files associated with a Java application,

into a single file. JAR is based on the popular ZIP
algorithm, and mimic the Unix's tar file format

The jar utility 2/3
Creating JAR File

Via the command-line jar tool: JDK provides a
command-line tool called "jar.exe"

Via the "export" option of IDE such as IntellijIDEA
or Eclipse, in practice.

The jar utility 3/3

Create JAR File using Command-Line "jar" Tool

To create a JAR file using the jar tool, issue
the jar command (on CMD shell) with 'c' option:

> jar cvf jarFile inputFileDir1 inputFileDir2 ...

For example, create a JAR file named Myjar.jar by
entering the following command:

>jar cvf MyJar.jar MyPackage/*.class

Module contents

- Packages
— The Package
— Package import
— Adding class to Package
— Static import
— Package organization
— The jar utility
— Executable jars

Executable jars 1/4

JAR functions, such as main-class specification, are
supported though a file called manifest.

The manifest is a special file, called
"MANIFEST.MF" under the "META-INF" sub-
directory, that contains information about the files
contained in a JAR file

Executable jars 2/4

In the jar "META-INFAMANIFEST.MF" file can
specifies the main-class that contains the
entry main() method for launching the application:

Manifest-Version: 1.0
Created-By: 1.7.0_06 (Oracle Corporation)
Main-Class: MyPackage.Main

Executable jars 3/4

To run the application directly from JAR file, invoke
the JRE with option "-jar":

> java -jar Hello.jar

Executable jars 4/4

Setting an Entry Point with the JAR Tool

>jar cfe app.jar MyApp Main.class

