
JAVA PROGRAMMING BASICS

Module 2: Java Object-oriented Programming

Training program

1. Classes and Instances
2. The Methods
3. The Constructors
4. Static elements
5. Initialization sections
6. Package
7. Inheritance and Polymorphism
8. Abstract classes and interfaces
9. String processing
10. Exceptions and Assertions
11. Nested classes
12. Enums
13. Wrapper classes for primitive types
14. Generics
15. Collections
16. Method overload resolution
17. Multithreads
18. Core Java Classes
19. Object Oriented Design

Module contents

• Inheritance and Polymorphism
– The Inheritance
– Inheritance and "is-a" relationship
– Method overriding
– Fields hiding
– Class Object
– Object methods: toString(), equals(), hashCode(), e.t.c.
– The "super" keyword
– Covariant return types
– Constructors chaining
– Initialization order and inheritance
– Type cast and conversion
– The instanceof keyword
– Polymorphism. Early binding & late Binding
– Objects cloning
– Final class and final methods
– The protected access modifier
– The protected access modifier

Module contents

• Inheritance and Polymorphism
– The Inheritance
– Inheritance and "is-a" relationship
– Method overriding
– Fields hiding
– Class Object
– Object methods: toString(), equals(), hashCode(), e.t.c.
– The "super" keyword
– Covariant return types
– Constructors chaining
– Initialization order and inheritance
– Type cast and conversion
– The instanceof keyword
– Polymorphism. Early binding & late Binding
– Objects cloning
– Final class and final methods
– The protected access modifier

The Inheritance 1/5

• Inheritance is the concept of a
child class (sub class)
automatically inheriting the
variables and methods defined in
its parent class (super class).

• Object-oriented programming
allows classes
to inherit commonly used state
and behavior from other classes.

The Inheritance 2/5

• Benefits of Inheritance in OOP : Reusability

• – Once a behavior (method) is defined in a super class,

that behavior is automatically inherited by all subclasses

• – Once a set of properties (fields) are defined in a
super class, the same set of properties are inherited
by all subclasses

• – A subclass only needs to implement the differences

between itself and the parent.

The Inheritance 3/5

• To derive a child class, we use the extends keyword.

1. public class Car {

2. //...

3. }

4. class SportCar extends Car{

5. //...

6. }

Car

SportCar
Child
class

Parent
class

The Inheritance 4/5

• A subclass inherits all of the “public” and
“protected” members (fields or methods) of its
parent, no matter what package the subclass is in

• If the subclass is in the same package as its
parent, it also inherits the package-private
members (fields or methods) of the parent

The Inheritance 5/5

1. class Car {
2. private int maxSpeed=180;
3. public int getMaxSpeed() {
4. return maxSpeed;
5. }
6. }
7. class SportCar extends Car{
8. }
9. public class Main {
10. public static void main(String[] arg) {
11. SportCar myCar = new SportCar();
12. myCar.getMaxSpeed();
13. }
14. }

Module contents

• Inheritance and Polymorphism
– The Inheritance
– Inheritance and "is-a" relationship
– Method overriding
– Fields hiding
– Class Object
– Object methods: toString(), equals(), hashCode(), e.t.c.
– The "super" keyword
– Covariant return types
– Constructors chaining
– Initialization order and inheritance
– Type cast and conversion
– The instanceof keyword
– Polymorphism. Early binding & late Binding
– Objects cloning
– Final class and final methods
– The protected access modifier
– The protected access modifier

Inheritance and "is-a" relationship 1/2

• IS-A is a way of saying : This object is a type of that
object.

Car

SportCar

Inheritance and "is-a" relationship 2/2

1. public class Animal{
2. //...
3. }

4. class Mammal extends Animal{
5. //...
6. }

7. class Reptile extends Animal{
8. //...
9. }

10. class Dog extends Mammal{
11. //...
12. }

Animal

Mammal Reptile

Dog

Module contents

• Inheritance and Polymorphism
– The Inheritance
– Inheritance and "is-a" relationship
– Method overriding
– Fields hiding
– Class Object
– Object methods: toString(), equals(), hashCode(), e.t.c.
– The "super" keyword
– Covariant return types
– Constructors chaining
– Initialization order and inheritance
– Type cast and conversion
– The instanceof keyword
– Polymorphism. Early binding & late Binding
– Objects cloning
– Final class and final methods
– The protected access modifier

Method overriding

• An instance method in a subclass with the same
signature (name, plus the number and the type of
its parameters) and return type as an instance
method in the superclass overrides the
superclass's method.

Method overriding

1. class Car {
2. public void testMethod(){
3. System.out.println("Car");
4. }
5. }
6. class SportCar extends Car{
7. @Override
8. public void testMethod(){
9. System.out.println("SportCar");
10. }
11. }
12. public class Main {
13. public static void main(String[] arg) {
14. Car myCar1 = new Car();
15. SportCar myCar2 = new SportCar();
16. myCar1.testMethod();
17. myCar2.testMethod();
18. }
19. }

Console output:
Car
SportCar

Module contents

• Inheritance and Polymorphism
– The Inheritance
– Inheritance and "is-a" relationship
– Method overriding
– Fields hiding
– Class Object
– Object methods: toString(), equals(), hashCode(), e.t.c.
– The "super" keyword
– Covariant return types
– Constructors chaining
– Initialization order and inheritance
– Type cast and conversion
– The instanceof keyword
– Polymorphism. Early binding & late Binding
– Objects cloning
– Final class and final methods
– The protected access modifier

Fields hiding

• Within a class, a field that has the same name as a
field in the superclass hides the superclass's field,
even if their types are different.

• Don't recommend hiding fields as it makes code
difficult to read

Fields hiding
1. class Car {

2. protected int maxSpeed = 160;

3. public void testMethod(){

4. System.out.println(maxSpeed);

5. }

6. }

7. class SportCar extends Car{

8. protected int maxSpeed = 280;

9. public void testMethod2(){

10. System.out.println(maxSpeed);

11. }

12. }

13. public class Main {

14. public static void main(String[] arg) {

15. SportCar myCar2 = new SportCar();

16. myCar2.testMethod();

17. myCar2.testMethod2();

18. }

19. }

Console output:
160
160
280

Hiding fields
is discouraged!!!

Module contents

• Inheritance and Polymorphism
– The Inheritance
– Inheritance and "is-a" relationship
– Method overriding
– Fields hiding
– Class Object
– Object methods: toString(), equals(), hashCode(), e.t.c.
– The "super" keyword
– Covariant return types
– Constructors chaining
– Initialization order and inheritance
– Type cast and conversion
– The instanceof keyword
– Polymorphism. Early binding & late Binding
– Objects cloning
– Final class and final methods
– The protected access modifier

Class Object 1/3

• At the top of the hierarchy, Object is the most
general of all classes

Class Object 2/3

• class MyClass {

• }

• public class Main {

• public static void main(String[] arg) {

• MyClass my = new MyClass();
my.

}
}

Class without any declared methods or fields

The inherited
Methods from
Class Object

Class Object 3/3

• class MyClass extends Object {

• }

• public class Main {

• public static void main(String[] arg) {

• MyClass my = new MyClass();
my.

}
}

Explicit extends Object

The inherited
Methods from
Class Object

Module contents

• Inheritance and Polymorphism
– The Inheritance
– Inheritance and "is-a" relationship
– Method overriding
– Fields hiding
– Class Object
– Object methods: toString(), equals(), hashCode(), e.t.c.
– The "super" keyword
– Covariant return types
– Constructors chaining
– Initialization order and inheritance
– Type cast and conversion
– The instanceof keyword
– Polymorphism. Early binding & late Binding
– Objects cloning
– Final class and final methods
– The protected access modifier

Object methods: toString(), equals(),
hashCode() 1/12

Modifier and Type Method and Description

protected Object clone()

Creates and returns a copy of this object.

boolean equals(Object obj)

Indicates whether some other object is "equal to" this one.

protected void finalize()
Called by the garbage collector on an object when garbage
collection determines that there are no more references to
the object.

Class<?> getClass()

Returns the runtime class of this Object.

int hashCode()

Returns a hash code value for the object.

String toString()

Returns a string representation of the object.

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlclone()
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlfinalize()
http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlgetClass()
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlhashCode()
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmltoString()

Object methods: toString(), equals(),
hashCode() 2/12

Modifier and Type Method and Description
void notify()

Wakes up a single thread that is waiting on this object's
monitor.

void notifyAll()
Wakes up all threads that are waiting on this object's
monitor.

void wait()

Causes the current thread to wait until another thread
invokes the notify() method or the notifyAll()method for
this object.

void wait(long timeout)

Causes the current thread to wait until either another
thread invokes the notify() method or
thenotifyAll() method for this object, or a specified
amount of time has elapsed.

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlnotify()
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlnotifyAll()
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlwait(long)

Object methods: toString(), equals(),
hashCode()… 3/12

• public String toString()
• Returns a string representation of the object.

1. class Car {
2. }
3. public class Main {
4. public static void main(String[] arg) {
5. Car myCar = new Car();
6. System.out.println(myCar);
7. }
8. }

Result: com.brainacad.oop1.testclass.Car@1e893df

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

Object methods: toString(), equals(),
hashCode()… 4/12

1. class Car {
2. @Override
3. public String toString(){
4. return "This is Car";
5. }
6. }
7. public class Main {
8. public static void main(String[] arg) {
9. Car myCar = new Car();
10. System.out.println(myCar);
11. }
12. }

Result: This is Car

Object methods: toString(), equals(),
hashCode()… 5/12

• public boolean equals(Object obj)

• Indicates whether some other object is "equal to"
this one.

• The equals method for class Object implements
returns true if x and y refer to the same object

(x == y has the value true).

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

Object methods: toString(), equals(),
hashCode()… 6/12

1. class Car {
2. private long id;
3. public Car(long id){
4. this.id = id;
5. }
6. }
7. public class Main {
8. public static void main(String[] arg) {
9. Car myCar1 = new Car(12345);
10. Car myCar2 = new Car(12345);
11. Car myCar3 = myCar1;
12. System.out.println(myCar1.equals(myCar2));
13. System.out.println(myCar1.equals(myCar3));
14. }
15. }

Console output:
false
true

Object methods: toString(), equals(),
hashCode() 7/12

• The equals method implements an equivalence
relation on non-null object references:

• It is reflexive

• It is symmetric

• It is transitive

• It is consistent

Object methods: toString(), equals(),
hashCode()… 8/12

1. class Car {
2. private long id;
3. public Car(long id){
4. this.id = id;
5. }
6. @Override
7. public boolean equals(Object o) {
8. if (this == o) return true;
9. if (o == null || getClass() != o.getClass()) return false;
10. Car car = (Car) o;
11. if (id != car.id) return false;
12. return true;
13. }
14. }

Console output:
true
true

Object methods: toString(), equals(),
hashCode() 9/12

• public int hashCode()

• Returns a hash code value for the object

• A hash function is any function that can be used
to map digital data of arbitrary size to digital data
of fixed size. The values returned by a hash
function are called hash values, hash
codes, hash sums, or simply hashes.

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Data_(computing)

Object methods: toString(), equals(),
hashCode() 10/12

• public int hashCode()
• Returns a hash code value for the object.

1. public class Main {
2. public static void main(String[] arg) {
3. Car myCar1 = new Car(12345,180);
4. Car myCar2 = new Car(12345,180);
5. Car myCar3 = new Car(44444,120);
6. System.out.println(myCar1.hashCode());
7. System.out.println(myCar2.hashCode());
8. System.out.println(myCar3.hashCode());
9. }
10. }

Console output:
28027784
25853693
26680060

Object methods: toString(), equals(),
hashCode() 11/12

1. class Car {
2. private long id;
3. private int maxSpeed;

4. public Car(long id,int maxSpeed) {
5. this.id = id;
6. this.maxSpeed = maxSpeed;
7. }

8. @Override
9. public int hashCode() {
10. int result = (int) (id ^ (id >>> 32));
11. result = 31 * result + maxSpeed;
12. return result;
13. }
14. }

Console output:
382875
382875
1377884

Object methods: toString(), equals(),
hashCode()

1. public class PhoneNumber {
2. private int areaCode;
3. private int prefix;
4. private int lineNumber;
5. //...
6. @Override public int hashCode() {
7. int result = 17;
8. result = 31 * result + areaCode;
9. result = 31 * result + prefix;
10. result = 31 * result + lineNumber;
11. return result;
12. }
13. }

Object methods: toString(), equals(),
hashCode() 12/12

• If two objects are equal according to
the equals(Object) method, then calling
the hashCode method on each of the two objects
must produce the same integer result.

• If you override the equals(), you MUST also
override hashCode().

Module contents

• Inheritance and Polymorphism
– The Inheritance
– Inheritance and "is-a" relationship
– Method overriding
– Fields hiding
– Class Object
– Object methods: toString(), equals(), hashCode(), e.t.c.
– The "super" keyword
– Covariant return types
– Constructors chaining
– Initialization order and inheritance
– Type cast and conversion
– The instanceof keyword
– Polymorphism. Early binding & late Binding
– Objects cloning
– Final class and final methods
– The protected access modifier

The "super" keyword

• Usage of java super Keyword

• super() is used to invoke immediate parent class
constructor

• super is used to invoke immediate parent class
method

• super is used to refer immediate parent class
instance variable

The "super" keyword

1. class Car {
2. public String toString(){
3. return "This is Car";
4. }
5. }
6. class SportCar extends Car{
7. public String toString(){
8. return super.toString() + ":SportCar";
9. }
10. }
11. public class Main {
12. public static void main(String[] arg) {
13. Car myCar1 = new Car();
14. SportCar myCar2 = new SportCar();
15. System.out.println(myCar1);
16. System.out.println(myCar2);
17. }
18. }

Console output:
This is Car
This is Car:SportCar

The "super" keyword

1. class Car {
2. protected int maxSpeed = 160;
3. }
4. class SportCar extends Car{
5. protected int maxSpeed = 280;
6. public void testSuper(){
7. System.out.println(super.maxSpeed);
8. System.out.println(this.maxSpeed);
9. }
10. }
11. public class Main {
12. public static void main(String[] arg) {
13. SportCar myCar2 = new SportCar();
14. myCar2.testSuper();
15. }
16. }

Console output:
160
280

Hiding fields
is discouraged!!!

Module contents

• Inheritance and Polymorphism
– The Inheritance
– Inheritance and "is-a" relationship
– Method overriding
– Fields hiding
– Class Object
– Object methods: toString(), equals(), hashCode(), e.t.c.
– The "super" keyword
– Covariant return types
– Constructors chaining
– Initialization order and inheritance
– Type cast and conversion
– The instanceof keyword
– Polymorphism. Early binding & late Binding
– Objects cloning
– Final class and final methods
– The protected access modifier

Covariant return types

1. class Car {
2. public Car getNewCar(){
3. return new Car();
4. }
5. }
6. class SportCar extends Car{
7. @Override
8. public SportCar getNewCar(){
9. return new SportCar();
10. }
11. }

Module contents

• Inheritance and Polymorphism
– The Inheritance
– Inheritance and "is-a" relationship
– Method overriding
– Fields hiding
– Class Object
– Object methods: toString(), equals(), hashCode(), e.t.c.
– The "super" keyword
– Covariant return types
– Constructors chaining
– Initialization order and inheritance
– Type cast and conversion
– The instanceof keyword
– Polymorphism. Early binding & late Binding
– Objects cloning
– Final class and final methods
– The protected access modifier

Constructors chaining 1/4

• Calling one constructor from other is
called Constructor chaining in Java

• Constructors can call each other automatically or
explicitly using this() and super() keywords.

• this() denotes a no argument constructor of same
class and super() denotes a no argument or
default constructor of parent class

http://javarevisited.blogspot.sg/2012/12/what-is-constructor-in-java-example-chainning-overloading.html

Constructors chaining 2/4

1. class Car {
2. public Car(){
3. System.out.println("Car Constructor");
4. }
5. }
6. class SportCar extends Car{
7. public SportCar(){
8. System.out.println("SportCar Constructor");
9. }
10. }
11. public class Main {
12. public static void main(String[] arg) {
13. SportCar myCar = new SportCar();
14. }
15. }

Console output:
Car Constructor
SportCar Constructor

Constructors chaining 3/4

1. class Car {
2. public Car(long id){
3. System.out.println("Car Constructor");
4. }
5. }
6. class SportCar extends Car{
7. public SportCar(long id){
8. super(id);
9. System.out.println("SportCar Constructor");
10. }
11. }
12. public class Main {
13. public static void main(String[] arg) {
14. SportCar myCar = new SportCar(1);
15. }
16. }

Console output:
Car Constructor
SportCar Constructor

Constructors chaining 4/4

• class Car {
public Car() {

System.out.println("Car Constructor 1");
}
public Car(long id){

System.out.println("Car Constructor 2");
}

}
class SportCar extends Car{

public SportCar(long id){
System.out.println("SportCar Constructor");

}
}
public class Main {

public static void main(String[] arg) {
SportCar myCar = new SportCar(1);

}
}

Console output:
Car Constructor 1
SportCar Constructor

Module contents

• Inheritance and Polymorphism
– The Inheritance
– Inheritance and "is-a" relationship
– Method overriding
– Fields hiding
– Class Object
– Object methods: toString(), equals(), hashCode(), e.t.c.
– The "super" keyword
– Covariant return types
– Constructors chaining
– Initialization order and inheritance
– Type cast and conversion
– The instanceof keyword
– Polymorphism. Early binding & late Binding
– Objects cloning
– Final class and final methods
– The protected access modifier

Initialization order and inheritance

1. class SuperClass{

2. }

3. class SubClass extends SuperClass{

4. }

5. public class Start {

6. public static void main(String[] arg){

7. SubClass c = new SubClass();

8. }

9. }

Polymorphism. Early binding & late Binding

• Inheritance and Polymorphism
– The Inheritance
– Inheritance and "is-a" relationship
– Method overriding
– Fields hiding
– Class Object
– Object methods: toString(), equals(), hashCode(), e.t.c.
– The "super" keyword
– Covariant return types
– Constructors chaining
– Initialization order and inheritance
– Polymorphism. Early binding & late Binding
– Type cast and conversion
– The instanceof keyword
– Objects cloning
– Final class and final methods
– The protected access modifier

Polymorphism. Early binding & late Binding
1/5

• Polymorphism is the ability of an object to take
on many forms. The most common use of
polymorphism in OOP occurs when a parent class
reference is used to refer to a child class object.

• Subclasses of a class can define their own unique
behaviors and yet share some of the same
functionality of the parent class.

Polymorphism. Early binding & late Binding
2/5

Polymorphism

Ad-hoc
Polymorphism

Overloading/
Overriding

Operator Function

Coercion
Polymorphism

Widening Narrowing

Universal
Polymorphism

Inclusion
Polymorphism

Covariant Contravariant

Parametric
Polymorphism

Generics

Static Binding or Dynamic Binding

Polymorphism. Early binding & late Binding
3/5

1. class Car {
2. //...
3. }
4. class SportCar extends Car{
5. //...
6. }
7. class Truck extends Car{
8. //...
9. }
10. public class Main {
11. public static void main(String[] arg) {
12. Car myCar = new Car();
13. myCar = new SportCar();
14. myCar = new Truck();
15. }
16. }

Polymorphism. Early binding & late Binding
4/5

1. class Car {
2. public void move(){
3. System.out.println("Car move");
4. }
5. }
6. class SportCar extends Car{
7. @Override
8. public void move(){
9. System.out.println("SportCar move");
10. }
11. }
12. class Truck extends Car{
13. @Override
14. public void move(){
15. System.out.println("Truck move");
16. }
17. }

Polymorphism. Early binding & late Binding
5/5

• Late binding, or dynamic binding, is a computer programming
mechanism in which the method being called upon an object is
looked up by name at runtime.

1. public class Main {

2. public static void main(String[] arg) {

3. Car[] myCars = {new Car(), new SportCar(), new Truck()};

4. for(Car myCar:myCars){

5. myCar.move();

6. }

7. }

8. }

Console output:
Car move
SportCar move
Truck move

Module contents

• Inheritance and Polymorphism
– The Inheritance
– Inheritance and "is-a" relationship
– Method overriding
– Fields hiding
– Class Object
– Object methods: toString(), equals(), hashCode(), e.t.c.
– The "super" keyword
– Covariant return types
– Constructors chaining
– Initialization order and inheritance
– Polymorphism. Early binding & late Binding
– Type cast and conversion
– The instanceof keyword
– Objects cloning
– Final class and final methods
– The protected access modifier

Type cast and conversion 1/2

• Java object typecasting one object reference can
be type cast into another object reference. The
cast can be to its own class type or to one of its
subclass or superclass types or interfaces:

• CastExpression:
(ReferenceType)RelationalExpression

• Example:
1. Object obj = "abcd";

2. String str = (String)obj;

Type cast and conversion 2/2

• It is an ClassCastException which occurs if you attempt to
downcast a class, but in fact the class is not of that type.

1. public class Main {

2. public static void main(String[] arg) {

3. Car myCar = new SportCar();

4. SportCar MyCar2 = (SportCar)myCar; // OK!
5. Truck MyCar3 = (Truck)myCar; // ClassCastException!
6. }

7. }

Module contents

• Inheritance and Polymorphism
– The Inheritance
– Inheritance and "is-a" relationship
– Method overriding
– Fields hiding
– Class Object
– Object methods: toString(), equals(), hashCode(), e.t.c.
– The "super" keyword
– Covariant return types
– Constructors chaining
– Initialization order and inheritance
– Polymorphism. Early binding & late Binding
– Type cast and conversion
– The instanceof keyword
– Objects cloning
– Final class and final methods
– The protected access modifier

The instanceof keyword 1/2

• At run time, the result of the instanceof operator
is true if the value of the RelationalExpression is
not null and the reference could be cast to
the ReferenceType without raising a
ClassCastException. Otherwise the result is false.

The instanceof keyword 2/2

1. public class Main {
2. public static void main(String[] arg) {
3. Car myCar = new SportCar();
4. if(myCar instanceof SportCar) {
5. System.out.println("SportCar");
6. SportCar MyCar2 = (SportCar) myCar;
7. }
8. if(myCar instanceof Truck) {
9. System.out.println("Truck");
10. Truck MyCar3 = (Truck) myCar;
11. }
12. }
13. }

Module contents

• Inheritance and Polymorphism
– The Inheritance
– Inheritance and "is-a" relationship
– Method overriding
– Fields hiding
– Class Object
– Object methods: toString(), equals(), hashCode(), e.t.c.
– The "super" keyword
– Covariant return types
– Constructors chaining
– Initialization order and inheritance
– Polymorphism. Early binding & late Binding
– Type cast and conversion
– The instanceof keyword
– Objects cloning
– Final class and final methods
– The protected access modifier

Objects cloning 1/7

• The object cloning is a way to create exact copy of
an object.

• For this purpose, clone() method of Object class is
used to clone an object.

Objects cloning 2/7

1. public class Car {
2. protected int maxSpeed;
3. protected Date manufDate;
4. public Car(Date manufDate, int maxSpeed){
5. this.manufDate = manufDate;
6. this.maxSpeed = maxSpeed;
7. }
8. @Override
9. public String toString() {
10. return "Max Speed = "+ maxSpeed +
11. " Manufacture date = "+ manufDate;
12. }
13. public Object clone() throws CloneNotSupportedException {
14. return super.clone();
15. }
16. }

Objects cloning 3/7

1. public class Main {

2. public static void main(String[] arg) throws Exception {

3. SimpleDateFormat sdf = new

4. SimpleDateFormat("dd.MM.yyyy");

5. Date dt = sdf.parse("12.09.2009");

6. Car myCar1 = new Car(dt, 180);

7. System.out.println(myCar1);

8. Car myCar2 = (Car) myCar1.clone();

9. System.out.println(myCar2);

10. }

11. }

Console output:
Exception in thread
"main"
java.lang.CloneNotSu
pportedException …

Objects cloning 4/7

1. public class Car implements Cloneable {
2. protected int maxSpeed;
3. protected Date manufDate;
4. public Car(Date manufDate, int maxSpeed){
5. this.manufDate = manufDate;
6. this.maxSpeed = maxSpeed;
7. }
8. @Override
9. public String toString() {
10. return "Max Speed = "+ maxSpeed +
11. " Manufacture date = "+ manufDate;
12. }
13. public Object clone() throws CloneNotSupportedException {
14. return super.clone();
15. }
16. }

Console output:
Max Speed = 180
Manufacture date =
Sat Sep 12 00:00:00
EEST 2009
Max Speed = 180
Manufacture date =
Sat Sep 12 00:00:00
EEST 2009

Objects cloning 5/7

• Shallow copy

• myCar1

• myCar2

Car object 1
manufDate

Car object 2
manufDate

Date object 1
12.09.2009

Objects cloning 6/7
1. public class Car implements Cloneable {
2. protected int maxSpeed;
3. protected Date manufDate;
4. public Car(Date manufDate, int maxSpeed){
5. this.manufDate = manufDate;
6. this.maxSpeed = maxSpeed;
7. }
8. @Override
9. public String toString() {
10. return "Max Speed = "+ maxSpeed +
11. " Manufacture date = "+ manufDate;
12. }
13. public Object clone() throws CloneNotSupportedException {
14. Car car = (Car)super.clone();
15. car.manufDate = (Date)this.manufDate.clone();
16. return car;
17. }
18. }

Objects cloning 7/7

• Deep copy

• myCar1

• myCar2

Car object 1
manufDate

Car object 2
manufDate

Date object 1
12.09.2009

Date object 2
12.09.2009

Module contents

• Inheritance and Polymorphism
– The Inheritance
– Inheritance and "is-a" relationship
– Method overriding
– Fields hiding
– Class Object
– Object methods: toString(), equals(), hashCode(), e.t.c.
– The "super" keyword
– Covariant return types
– Constructors chaining
– Initialization order and inheritance
– Polymorphism. Early binding & late Binding
– Type cast and conversion
– The instanceof keyword
– Objects cloning
– Final class and final methods
– The protected access modifier

Final class and final methods 1/3

• A class that is declared final cannot be
subclassed.

• final class Car { //…

}

• You use the final keyword in a method declaration
to indicate that the method cannot be overridden
by subclasses.

• public final void move() {//…

}

Final class and final methods 2/3

1. final class Car {

2. //...

3. }

4. class SportCar extends Car{

5. //...

6. }

cannot be
subclassed

Final class and final methods 3/3

• class Car {
//...
public final void move() {

System.out.println("Car move");
}

}
final class SportCar extends Car {

//...
public void move() {

System.out.println("Car move");
}

}

cannot be
overridden

Module contents

• Inheritance and Polymorphism
– The Inheritance
– Inheritance and "is-a" relationship
– Method overriding
– Fields hiding
– Class Object
– Object methods: toString(), equals(), hashCode(), e.t.c.
– The "super" keyword
– Covariant return types
– Constructors chaining
– Initialization order and inheritance
– Polymorphism. Early binding & late Binding
– Type cast and conversion
– The instanceof keyword
– Objects cloning
– Final class and final methods
– The protected access modifier

The protected access modifier 1/4

• The protected modifier specifies that the member can only be
accessed within its own package (as with package-private) and,
in addition, by a subclass of its class in another package.

The protected modifier No-modifier (package-private)

The protected access modifier 2/4

1. package com.brainacad.oop1.mycars;

2. public class Car {

3. protected int maxSpeed = 180;

4. //...
5. protected void move() {

6. System.out.println(maxSpeed);

7. }

8. }

The protected access modifier 3/4

1. package com.brainacad.oop1.spcars2;

2. import com.brainacad.oop1.mycars.Car;

3. public class SportCar extends Car {

4. //...
5. @Override

6. public void move() {

7. System.out.println(maxSpeed+100);

8. }

9. }
allowed

The protected access modifier 4/4

1. package com.brainacad.oop1.test;
2. import com.brainacad.oop1.mycars.Car;
3. import com.brainacad.oop1.spcars2.SportCar;
4. public class Main {
5. public static void main(String[] arg){
6. Car myCar1 = new Car();
7. SportCar myCar2 = new SportCar();
8. int s1 = myCar1.maxSpeed; //inaccessible
9. int s2 = myCar2.maxSpeed; //inaccessible
10. myCar1.move();//inaccessible
11. myCar2.move();// allowed
12. }
13. }

