JAVA PROGRAMMING BASICS

Module 2: Java Object-oriented Programming

I
Training program

Classes and Instances

The Methods

The Constructors

Static elements

Initialization sections

Package

Inheritance and Polymorphism
Abstract classes and interfaces
String processing

10. Exceptions and Assertions

11. Nested classes

12. Enums

13. Wrapper classes for primitive types
14. Generics

15. Collections

16. Method overload resolution
17. Multithreads

18. Core Java Classes

19. Object Oriented Design

WoONOUAWN =

Module contents

Inheritance and Polymorphism
The Inheritance
Inheritance and "is-a" relationship
Method overriding
Fields hiding
Class Object
Object methods: toString(), equals(), hashCode(), e.t.c.
The "super" keyword
Covariant return types
Constructors chaining
Initialization order and inheritance
Type cast and conversion
The instanceof keyword
Polymorphism. Early binding & late Binding
Objects cloning
Final class and final methods
The protected access modifier
The protected access modifier

Module contents

+ Inheritance and Polymorphism
— The Inheritance
— Inheritance and "is-a" relationship
— Method overriding
— Fields hiding
— Class Object
— Object methods: toString(), equals(), hashCode(), e.t.c.
— The "super" keyword
— Covariant return types
— Constructors chaining
— Initialization order and inheritance
— Type cast and conversion
— The instanceof keyword
— Polymorphism. Early binding & late Binding
— Objects cloning
— Final class and final methods
— The protected access modifier

The Inheritance 1/5

Inheritance is the concept of a I
child class (sub class)
automatically inheriting the - superclass

variables and methods defined in
its parent class (super class). .
Object-oriented programming l

allows classes -

to /inherit commonly used state
and behavior from other classes.

subclass

The Inheritance 2/5

Benefits of Inheritance in OOP : Reusability
- Once a behavior (method) is defined in a super class,
that behavior is automatically inherited by all subclasses

- Once a set of properties (fields) are defined in a
super class, the same set of properties are inherited
by all subclasses

- A subclass only needs to implement the differences
between itself and the parent.

The Inheritance 3/5

To derive a child class, we use the extends keyword.

—_

public class Car {
Y, B Parent
\ class

_

class SportCar extends Car{ |
/... —

}

Child
class

The Inheritance 4/5

A subclass inherits all of the “public” and
“protected” members (fields or methods) of its
narent, no matter what package the subclass is in

f the subclass is in the same package as its
parent, it also inherits the package-private
members (fields or methods) of the parent

N
The Inheritance 5/5

class Car{
private int maxSpeed=180;
public int getMaxSpeed() {
return maxSpeed,;

}
}
class SportCar extends Car{
}
public class Main {
public static void main(String[] arg) {
SportCar myCar = new SportCar(),
myCar.getMaxSpeed();

}
}

Module contents

* Inheritance and Polymorphism
— The Inheritance
— Inheritance and "is-a" relationship
— Method overriding
— Fields hiding
— Class Object
— Object methods: toString(), equals(), hashCode(), e.t.c.
— The "super" keyword
— Covariant return types
— Constructors chaining
— Initialization order and inheritance
— Type cast and conversion
— The instanceof keyword
— Polymorphism. Early binding & late Binding
— Objects cloning
— Final class and final methods
— The protected access modifier
— The protected access modifier

Inheritance and "is-a" relationship 1/2

- IS-A'is a way of saying : This object is a type of that
object.

SportCar

Inheritance and "is-a" relationship 2/2

public class Animal{
/...

}

wN S

class Mammal extends Animal{
/...

}

o P

7. class Reptile extends Animal{
A/
9

}

10. class Dog extends Mammal{
11. /..
12}

Module contents

+ Inheritance and Polymorphism
— The Inheritance
— Inheritance and "is-a" relationship
— Method overriding
— Fields hiding
— Class Object
— Object methods: toString(), equals(), hashCode(), e.t.c.
— The "super" keyword
— Covariant return types
— Constructors chaining
— Initialization order and inheritance
— Type cast and conversion
— The instanceof keyword
— Polymorphism. Early binding & late Binding
— Objects cloning
— Final class and final methods
— The protected access modifier

Method overriding

An instance method in a subclass with the same
signature (name, plus the number and the type of
its parameters) and return type as an instance

method in the superclass overrides the
superclass's method.

Method overriding

class Car { Console output:
public void testMethod(){
System.out.printin("Car"); Car
} } SportCar
class SportCar extends Car{
@Override

public void testMethod(){
System.out.printin("SportCar");

}

}
public class Main {

public static void main(String[] arg) {
Car myCar1 = new Car();
SportCar myCar2 = new SportCar();
myCar1.testMethod();
myCar2.testMethod();

}

}

Module contents

+ Inheritance and Polymorphism
— The Inheritance
— Inheritance and "is-a" relationship
— Method overriding
— Fields hiding
— Class Object
— Object methods: toString(), equals(), hashCode(), e.t.c.
— The "super" keyword
— Covariant return types
— Constructors chaining
— Initialization order and inheritance
— Type cast and conversion
— The instanceof keyword
— Polymorphism. Early binding & late Binding
— Objects cloning
— Final class and final methods
— The protected access modifier

————
Fields hiding

Within a class, a field that has the same name as a

field in the superclass hides the superclass's field,
even if their types are different.

Don't recommend hiding fields as it makes code
difficult to read

Fields hiding

class Car {
protected int maxSpeed = 160;
public void testMethod({
System.out.printin(maxSpeed);
}
}

class SportCar extends Car{
protected int maxSpeed = 280;
public void testMethod?2(){
System.out.printin(maxSpeed);
}
}

public class Main {
public static void main(String[] arg) {
SportCar myCar2 = new SportCar();
myCar2.testMethod();
myCar2.testMethod2();

}

}
.

Console output:

160
160
280

Hiding fields

Is discouraged!!!

Module contents

+ Inheritance and Polymorphism
— The Inheritance
— Inheritance and "is-a" relationship
— Method overriding
— Fields hiding
— Class Object
— Object methods: toString(), equals(), hashCode(), e.t.c.
— The "super" keyword
— Covariant return types
— Constructors chaining
— Initialization order and inheritance
— Type cast and conversion
— The instanceof keyword
— Polymorphism. Early binding & late Binding
— Objects cloning
— Final class and final methods
— The protected access modifier

Class Object 1/3

- At the top of the hierarchy, Object is the most
general of all classes

| oven

Class Object 2/3

class MyClass {
©)
public class Main {

MyClass my = new MyClass();

my.
_
}

m o hashCode [

} m b toString () atring
:lﬂ'h getlClasz () Clazs<? extends Car>-
M % notify () woid
M0 b notifvall {) void
M s wait () woid
i = wait (long timeout) woid

ﬁﬂ'h wait (long timeout, int nanos) woid

Class without any declared methods or fields

public static void main(String[] arg) {

The inherited

Methods from
Class Object

Class Object 3/3

©)
public class Main {

MyClass my = new MyClass();
my.
_
}

hashCode []
} m toitring () atring
:ITI getlClaszs () Clazs<? extends Car>-
% notify () woid
M0 % notifyall () void
M 5 wait () woid
{fim walt (long timeout) woid
i walt (long timeout, int nanos) woid

class MyClass extends Object { Explicit

public static void main(String[] arg) {

The inherited
Methods from
Class Object

Module contents

+ Inheritance and Polymorphism
— The Inheritance
— Inheritance and "is-a" relationship
— Method overriding
— Fields hiding
— Class Object
— Object methods: toString(), equals(), hashCode(), e.t.c.
— The "super" keyword
— Covariant return types
— Constructors chaining
— Initialization order and inheritance
— Type cast and conversion
— The instanceof keyword
— Polymorphism. Early binding & late Binding
— Objects cloning
— Final class and final methods
— The protected access modifier

————
Object methods: toString(), equals(),

hashCode() 1/12

Modifier and Type Method and Description

protected Object
boolean

protected void

Class<?>

int

String

clone()

Creates and returns a copy of this object.

equals(Object obj)

Indicates whether some other object is "equal to" this one.
finalize()

Called by the garbage collector on an object when garbage

collection determines that there are no more references to
the object.

getClass()
Returns the runtime class of this Object.

hashCode()
Returns a hash code value for the object.

toString()
Returns a string representation of the object.

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlclone()
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlfinalize()
http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlgetClass()
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlhashCode()
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmltoString()

Object methods: toString(), equals(),
hashCode() 2/12

Modifier and Type Method and Description

void notify()
Wakes up a single thread that is waiting on this object's
monitor.

void notifyAll()
Wakes up all threads that are waiting on this object's
monitor.

void wait()
Causes the current thread to wait until another thread

invokes the notify() method or the notifyAll()method for
this object.

void wait(long timeout)

Causes the current thread to wait until either another

thread invokes the notify() method or

thenotifyAll() method for this object, or a specified

amount of time has elapsed.
S

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlnotify()
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlnotifyAll()
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.htmlwait(long)

Object methods: toString(), equals(),
hashCode()... 3/12

public String toString()
Returns a string representation of the object.

class Car{
}
public class Main {
public static void main(String[] arg) {
Car myCar = new Car();
System.out.printin(myCar);

}
}

Result: com.brainacad.oopl.testclass.Car@1e893df
e —

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

Object methods: toString(), equals(),
hashCode()... 4/12

class Car{
@Override
public String toString(){
return "This is Car™;

}
}

public class Main {
public static void main(String[] arg) {
Car myCar = new Car();
System.out.printin(myCar);

}
}

Result: This is Car
e —

Object methods: toString(), equals(),
hashCode()... 5/12

public boolean equals(Object obj)

Indicates whether some other object is "equal to"
this one.

The equals method for class Object implements
returns true if x and y refer to the same object

(x ==y has the value true).

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

Object methods: toString(), equals(),

hashCode()... 6/12

class Car{
private long id;
public Car(long id){
this.id = id;
}
}

public class Main {
public static void main(String[] arg) {
Car myCar1 = new Car(12345);
Car myCar2 = new Car(12345);
Car myCar3 = myCari1,

System.out.printin(myCar1.equals(myCar2));
System.out.printin(myCar1.equals(myCar3));

Console output:

false
true

Object methods: toString(), equals(),
hashCode() 7/12

The equals method implements an equivalence
relation on non-null object references:

It is reflexive

It is symmetric
It is transitive
It is consistent

Object methods: toString(), equals(),
hashCode()... 8/12

class Car { Console output:
private long id; true
public Car(long id){ true
this.id =id;
}
@Override

public boolean equals(Object 0) {
if (this == 0) return true;

if (0 == null | | getClass() != o.getClass()) return false;
Car car = (Car) o;

if (id != car.id) return false;

return true;

Object methods: toString(), equals(),
hashCode() 9/12

public int hashCode()
Returns a hash code value for the object

A hash function is any function that can be used
to map digital data of arbitrary size to digital data
of fixed size. The values returned by a hash
function are called hash values, hash

codes, hash sums, or simply hashes.

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Data_(computing)

Object methods: toString(), equals(),

hashCode() 10/12

public int hashCode()
Returns a hash code value for the object.

public class Main {
public static void main(String[] arg) {
Car myCar1 = new Car(12345,180);
Car myCar2 = new Car(12345,180);
Car myCar3 = new Car(44444,120),

Console output:

28027784
25853693
26680060

System.out.printin(myCar1.hashCode());
System.out.printin(myCar2.hashCode());
System.out.printin(myCar3.hashCode());

Object methods: toString(), equals(),
hashCode() 11/12

claln)srsgvi‘atr;a {Iong - Console output:

private int maxSpeed; 382875
382875
public Car(long id,int maxSpeed) { 1377884
this.id = id;
this.maxSpeed = maxSpeed,;
}
@Override

public int hashCode() {
int result = (int) (id ~ (id >>> 32));
result = 31 * result + maxSpeed,;
return result;

}
}

Object methods: toString(), equals(),
hashCode()

public class PhoneNumber {

private int areaCode;

private int prefix;

private int lineNumber;

/...

@Override public int hashCode() {
int result =17,
result = 31 * result + areaCode;
result = 31 * result + prefix;
result = 31 * result + lineNumber;
return result;

Object methods: toString(), equals(),
hashCode() 12/12

If two objects are equal according to
the equals(Object) method, then calling
the hashCode method on each of the two objects
must produce the same integer result.

If you override the equals(). you MUST also
override hAashCode().

Module contents

* Inheritance and Polymorphism
— The Inheritance
— Inheritance and "is-a" relationship
— Method overriding
— Fields hiding
— Class Object
— Object methods: toString(), equals(), hashCode(), e.t.c.
— The "super" keyword
— Covariant return types
— Constructors chaining
— Initialization order and inheritance
— Type cast and conversion
— The instanceof keyword
— Polymorphism. Early binding & late Binding
— Objects cloning
— Final class and final methods
— The protected access modifier

————
The "super" keyword

Usage of java super Keyword

super() is used to invoke immediate parent class
constructor

super is used to invoke immediate parent class
method

super is used to refer immediate parent class
instance variable

The "super" keyword

class Car {
public String toString(X{ Console output:
return "This is Car"; This is Car
) ' This is Car:SportCar

class SportCar extends Car{

public String tostring({ _
return Isuper toStrlng()-+ ":SportCar”;

}
}

public class Main {
public static void main(String[] arg) {
Car myCar1 = new Car();
SportCar myCar2 = new SportCar();
System.out.printin(myCar1);
System.out.printin(myCar2);

}
}

The "super" keyword

class Car { Console output:
protected int maxSpeed = 160; <~ 160
} 280

class SportCar extends Car{

protected int maxSpeed = 280;

public void testSuper({ __..___ _J Hld!ng fields
System.out.printin(super.maxSpeed) s discouraged!!
System.out.printin(this.maxSpeed);

¥

}

public class Main {
public static void main(String[] arg) {
SportCar myCar2 = new SportCar();
myCar2.testSuper();

}
}

Module contents

* Inheritance and Polymorphism
— The Inheritance
— Inheritance and "is-a" relationship
— Method overriding
— Fields hiding
— Class Object
— Object methods: toString(), equals(), hashCode(), e.t.c.
— The "super" keyword
— Covariant return types
— Constructors chaining
— Initialization order and inheritance
— Type cast and conversion
— The instanceof keyword
— Polymorphism. Early binding & late Binding
— Objects cloning
— Final class and final methods
— The protected access modifier

Covariant return types

class Car{
public Car getNewCar(){
return new Car();

}
}

class SportCar extends Car{
@Override
public SportCar getNewCar(){
return new SportCar();

}
}

Module contents

* Inheritance and Polymorphism
— The Inheritance
— Inheritance and "is-a" relationship
— Method overriding
— Fields hiding
— Class Object
— Object methods: toString(), equals(), hashCode(), e.t.c.
— The "super" keyword
— Covariant return types
— Constructors chaining
— Initialization order and inheritance
— Type cast and conversion
— The instanceof keyword
— Polymorphism. Early binding & late Binding
— Objects cloning
— Final class and final methods
— The protected access modifier

Constructors chaining 1/4

Calling one constructor from other is
called Constructor chaining in Java

Constructors can call each other automatically or
explicitly using this() and super() keywords.

this() denotes a no argument constructor of same
class and super() denotes a no argument or
default constructor of parent class

http://javarevisited.blogspot.sg/2012/12/what-is-constructor-in-java-example-chainning-overloading.html

Constructors chaining 2/4

class Car { Console output:
public Car(X{ Car Constructor
System.out.printin("Car Constructor"); SportCar Constructor

}

}

class SportCar extends Car{
public SportCar(){
System.out.printin("SportCar Constructor");

}
}

public class Main {
public static void main(String[] arg) {
SportCar myCar = new SportCar();

}
}

Constructors chaining 3/4

class Car { Console output:
public Car(long id)}{ Car Constructor
System.out.printin("Car Constructor"); SportCar Constructor
}
}

class SportCar extends Car{
public SportCar(long id)}{

super(id);

System.out.printin("SportCar Constructor");
}

}

public class Main {
public static void main(String[] arg) {
SportCar myCar = new SportCar(1);

}
}

Constructors chaining 4/4

class Car { Console output:

public Car() {
System.out.printin("Car Constructor 1"); Car Constructor 1
SportCar Constructor

}
public Car(long id){
System.out.printin("Car Constructor 2");

}

class SportCar extends Car{
public SportCar(long id){
System.out.printin("SportCar Constructor");

}

public class Main {
public static void main(String[] arg) {
SportCar myCar = new SportCar(1);

}
}

Module contents

* Inheritance and Polymorphism
— The Inheritance
— Inheritance and "is-a" relationship
— Method overriding
— Fields hiding
— Class Object
— Object methods: toString(), equals(), hashCode(), e.t.c.
— The "super" keyword
— Covariant return types
— Constructors chaining
— Initialization order and inheritance
— Type cast and conversion
— The instanceof keyword
— Polymorphism. Early binding & late Binding
— Objects cloning
— Final class and final methods
— The protected access modifier

Initialization order and inheritance

class SuperClass{

}

class SubClass extends SuperClass{

}
public class Start { SuperClass

public static void main(String[] arg){

SubClass ¢ = new SubClass();
) SubClass

main(){

}

new SubClass();

Polymorphism. Early binding & late Binding

* Inheritance and Polymorphism
— The Inheritance
— Inheritance and "is-a" relationship
— Method overriding
— Fields hiding
— Class Object
— Object methods: toString(), equals(), hashCode(), e.t.c.
— The "super" keyword
— Covariant return types
— Constructors chaining
— Initialization order and inheritance
— Polymorphism. Early binding & late Binding
— Type cast and conversion
— The instanceof keyword
— Objects cloning
— Final class and final methods
— The protected access modifier

Polymorphism. Early binding & late Binding
1/5

Polymorphism is the ability of an object to take
on many forms. The most common use of
polymorphism in OOP occurs when a parent class
reference is used to refer to a child class object.

Subclasses of a class can define their own unique
behaviors and yet share some of the same
functionality of the parent class.

Polymorphism. Early binding & late Binding
2/5

Static Binding or Dynamic Binding

l Polymorphism |
Ad-hoc Universal
Polymorphism Polymorphism
Overloading/ Coercion Inclusion Parametric
Overriding Polymorphism Polymorphism Polymorphism

l Operator Il Function Il Widening Il Narrowing Il Covariant Il Contravariant Il Generics

Polymorphism. Early binding & late Binding
3/5

class Car{
/...
}
class SportCar extends Car{
/...
}
class Truck extends Car{
/...
}
public class Main {

public static void main(String[] arg) {
Car myCar = new Car();
myCar = new SportCar();
myCar = new Truck();

Polymorphism. Early binding & late Binding
4/5

class Car {
public void move(){
System.out.printin("Car move");

}
}

class SportCar extends Car{
@Override
public void move(){
System.out.printin("SportCar move");

}
}

class Truck extends Car{
@Override
public void move(){
System.out.printin("Truck move");

}
}

Polymorphism. Early binding & late Binding
5/5

Late binding, or dynamic binding, is a computer programming
mechanism in which the method being called upon an object is
looked up by name at runtime.

public class Main {
public static void main(String[] arg) {
Car[] myCars = {new Car(), new SportCar(), new Truck()};
for(Car myCar:myCars){

myCar.move();
) Console output:

Car move
SportCar move
Truck move

}
}

Module contents

* Inheritance and Polymorphism
— The Inheritance
— Inheritance and "is-a" relationship
— Method overriding
— Fields hiding
— Class Object
— Object methods: toString(), equals(), hashCode(), e.t.c.
— The "super" keyword
— Covariant return types
— Constructors chaining
— Initialization order and inheritance
— Polymorphism. Early binding & late Binding
— Type cast and conversion
— The instanceof keyword
— Objects cloning
— Final class and final methods
— The protected access modifier

Type cast and conversion 1/2

Java object typecasting one object reference can
be type cast into another object reference. The
cast can be to its own class type or to one of its
subclass or superclass types or interfaces:

CastExpression:
(ReferenceType)RelationalExpression

Example:
Object obj = "abcd";
String str = (String)obj;

Type cast and conversion 2/2

It is an ClassCastException which occurs if you attempt to
downcast a class, but in fact the class is not of that type.

public class Main {
public static void main(String[] arg) {
Car myCar = new SportCar();
SportCar MyCar2 = (SportCar)myCar; // OK/
Truck MyCar3 = (Truck)myCar; // ClassCastException!

}
}

Module contents

* Inheritance and Polymorphism
— The Inheritance
— Inheritance and "is-a" relationship
— Method overriding
— Fields hiding
— Class Object
— Object methods: toString(), equals(), hashCode(), e.t.c.
— The "super" keyword
— Covariant return types
— Constructors chaining
— Initialization order and inheritance
— Polymorphism. Early binding & late Binding
— Type cast and conversion
— The instanceof keyword
— Objects cloning
— Final class and final methods
— The protected access modifier

The instanceof keyword 1/2

At run time, the result of the instanceof operator
s true if the value of the RelationalExpression is
not null and the reference could be cast to

the ReferenceType without raising a
ClassCastException. Otherwise the result is false.

The instanceof keyword 2/2

public class Main {
public static void main(String[] arg) {

Car myCar = new SportCar();

if(myCar instanceof SportCar) {
System.out.printin("SportCar");
SportCar MyCar2 = (SportCar) myCar;

}

if(myCar instanceof Truck) {
System.out.printin("Truck");
Truck MyCar3 = (Truck) myCar;

}
}
}

Module contents

* Inheritance and Polymorphism
— The Inheritance
— Inheritance and "is-a" relationship
— Method overriding
— Fields hiding
— Class Object
— Object methods: toString(), equals(), hashCode(), e.t.c.
— The "super" keyword
— Covariant return types
— Constructors chaining
— Initialization order and inheritance
— Polymorphism. Early binding & late Binding
— Type cast and conversion
— The instanceof keyword
— Objects cloning
— Final class and final methods
— The protected access modifier

Objects cloning 1/7

The object cloning is a way to create exact copy of
an object.

For this purpose, clone() method of Object class is
used to clone an object.

Objects cloning 2/7

public class Car {

protected int maxSpeed,;

protected Date manufDate;

public Car(Date manufDate, int maxSpeed){
this.manufDate = manufDate;
this.maxSpeed = maxSpeed;

}

@Qverride

public String toString() {
return "Max Speed ="+ maxSpeed +
" Manufacture date = "+ manufDate;

}

public Object clone() throws CloneNotSupportedException {
return super.clone();

}
}

Objects cloning 3/7

public class Main {
public static void main(String[] arg) throws Exception {
SimpleDateFormat sdf = new
SimpleDateFormat("dd.MM.yyyy");
Date dt = sdf.parse("12.09.2009");
Car myCar1 = new Car(dt, 180);
System.out.printin(myCar1);

Car myCar2 = (Car) myCar1.clone(); Console output:
System.out.printin(myCar2); Exception in thread
) "main"
) java.lang.CloneNotSu
pportedException ...

Objects cloning 4/7

public class Car|implements Cloneable|{

protected int maxSpeed,;

protected Date manufDate;

public Car(Date manufDate, int maxSpeed){
this.manufDate = manufDate;
this.maxSpeed = maxSpeed,;

}

@Override

public String toString() {
return "Max Speed ="+ maxSpeed +
" Manufacture date = "+ manufDate;

Console output:

Max Speed = 180
Manufacture date =
Sat Sep 12 00:00:00
EEST 2009

Max Speed = 180
Manufacture date =
Sat Sep 12 00:00:00
EEST 2009

}

public Object clone() throws CloneNotSupportedException {

return super.clone();

}
}

Objects cloning 5/7

- Shallow copy

/

o myCa r1— Car object 1
manufDate
Date object 1
12.09.2009
; myca r2— Car object 2
manufDate

Objects cloning 6/7

public class Car implements Cloneable {
protected int maxSpeed,;
protected Date manufDate;
public Car(Date manufDate, int maxSpeed){
this.manufDate = manufDate;
this.maxSpeed = maxSpeed,;
}
@Override
public String toString() {
return "Max Speed ="+ maxSpeed +
" Manufacture date = "+ manufDate;
}
public Object clone() throws CloneNotSupportedException {
Car car = (Car)super.clone();
car.manufDate = (Date)this.manufDate.clone();

return car;

Objects cloning 7/7

© Deep copy
i mycar1 — Car object 1
manufDate Date object 1
12.09.2009
. myCa r2— Car object 2
manufDate Date object 2
12.09.2009

Module contents

* Inheritance and Polymorphism
— The Inheritance
— Inheritance and "is-a" relationship
— Method overriding
— Fields hiding
— Class Object
— Object methods: toString(), equals(), hashCode(), e.t.c.
— The "super" keyword
— Covariant return types
— Constructors chaining
— Initialization order and inheritance
— Polymorphism. Early binding & late Binding
— Type cast and conversion
— The instanceof keyword
— Objects cloning
— Final class and final methods
— The protected access modifier

Final class and final methods 1/3

A class that is declared final cannot be
subclassed.

final class Car {//...

}

You use the final keyword in a method declaration

to indicate that the method cannot be overridden
by subclasses.

public final void move() {//...

}

Final class and final methods 2/3

7.| final|class Car {

2. /..

S \
4. class SportCar extends Car{

5. /..
SH

cannot be
subclassed

Final class and final methods 3/3

class Car{
/...
public final|void move() {
System.out.printin(*Car move");

}
Y
final class SportCar extends Car {
/...
public void move() { cannf)t be
System.out.printin("Car move"); overridden
}

}

Module contents

* Inheritance and Polymorphism
— The Inheritance
— Inheritance and "is-a" relationship
— Method overriding
— Fields hiding
— Class Object
— Object methods: toString(), equals(), hashCode(), e.t.c.
— The "super" keyword
— Covariant return types
— Constructors chaining
— Initialization order and inheritance
— Polymorphism. Early binding & late Binding
— Type cast and conversion
— The instanceof keyword
— Objects cloning
— Final class and final methods
— The protected access modifier

The protected access modifier 1/4

The protected modifier specifies that the member can only be
accessed within its own package (as with packgge-private) and,
in addition, by a subclass of its class in another package.

No-modifier (package-private) The protected modifier
Package B

Package B

Class G Class G

Class E

The protected access modifier 2/4

package com.brainacad.oop1.mycars;
public class Car {
protected int maxSpeed = 180;
/...
protected void move() {
System.out.printin(maxSpeed);

}
}

The protected access modifier 3/4

package com.brainacad.oop1.spcars2;
Import com.brainacad.oop1.mycars.Car;
public class SportCar extends Car {

/...

@Override

Iv_u%r;lvoid move() {
m.out.printin(maxSpeed+100);

}
}

]
The protected access modifier 4/4

package com.brainacad.oop1.test;
import com.brainacad.oop1.mycars.Car;
import com.brainacad.oop1.spcars2.SportCar;
public class Main {
public static void main(String[] arg){
Car myCar1 = new Car();
SportCar myCar2 = new SportCar();
int s1 = myCaril.maxSpeed; //inaccessible
int s2 = myCar2.maxSpeed; //inaccessible
myCaril.move();/inaccessible
myCar2.move();// allowed

