

1. Classes and Instances
2. The Methods
3. The Constructors
4. Static Elements
5. Initialization sections
6. Package
7. Inheritance and Polymorphism
8. Abstract classes and Interfaces
9. String processing
10. Wrapper classes for primitive types
11. Exceptions and Assertions
12. Nested classes
13. Enums
14. Generics
15. Collections
16. Method overload resolution
17. Multithreads
18. Core Java classes
19. Object Oriented Design
20. Functional Programming

String s5 = "\u041f\u0440\u0438\u0432\u0435\u0442\u01fe"; //ПриветǾ

Text Blocks

Since Java 15

• Text block starts and ends with a “”” (three double-
quote marks) followed by optional whitespaces
and a newline.

• Inside the text block, we can freely use newlines
and quotes without the need for escaping line breaks.

String page = """

<html>

<head>

<meta charset="UTF-8">

<title>Simple Servlet</title>

</head>

<body>

<h2>Simple Servlet at %s</h2>

%s

</body>

</html>

"""

New line required

Quote escape does not
required

String(char[] value, int offset, int count);

String(byte[] bytes, int offset, int length, String charsetName);

public final class String implements java.io.Serializable,
Comparable<String>, CharSequence {

private final char value[]; //2 bytes per character
...

public final class String implements java.io.Serializable,
Comparable<String>, CharSequence, Constable, ConstantDesc {
@Stable
private final byte[] value; //1-2 bytes per character
/*The identifier of the encoding used to encode the bytes in value.
The supported values in this implementation are LATIN1 and UTF16*/
private final byte coder; //LATIN1 = 0, UTF16 = 1
...

The String class
Before Java 9

String are a major component of heap usage (approx. 20%) and
most String objects contain only ISO-8859-1 or Latin-1 characters.

Since Java 9 - Compact Strings

The String class

With Compact Strings, only the implementation details have
changed for class String starting Java 9. There are no API changes
for class String.

Non LATIN1 char

char charAt(int index)
int indexOf(String str)
int indexOf(String str, int fromIndex)
int lastIndexOf(String str)
int lastIndexOf(String str, int fromIndex)
int length()

- Query position of chars

String concat(String str)
String replace(char oldChar, char newChar)
String replace​(CharSequence target,

CharSequence replacement)
String replaceAll(String regex, String replacement)
String substring(int beginIndex)
String substring(int beginIndex, int endIndex)
String repeat​(int count)
String[] split(String regex)
String intern()
...

- Seem to modify String

...
String toLowerCase()
String toString()
String toUpperCase()
String trim()

- Seem to modify String

boolean isBlank()
boolean isEmpty()
boolean matches(String regex)
boolean endsWith(String suffix)
boolean equals(Object anObject)
boolean equalsIgnoreCase(String anotherString)
boolean startsWith(String prefix)
boolean startsWith(String prefix, int toffset)
...

- Other

...
int compareTo(String anotherString)
int compareToIgnoreCase(String str)
char[] toCharArray()
void getChars(int srcBegin, int srcEnd,

char[] dst, int dstBegin)
byte[] getBytes(String charsetName)
static String valueOf(primitive data type x)

- Other

The method returns
a NEW string

and += operator

str4 +="!!!";
System.out.println(str4);

Hello World!!!!!!

The method returns a NEW string

String methods chaining

String result = "Sunday ".replace(' ', 'Z').trim().concat("M n");

System.out.println(result); //SundayZZM n

2 whitespaces at the end

The methods are evaluated from left to right.
The first method to execute in this example is replace,
not concat.

You can print str.hashcode() in the loop to see that instances are different

no final modificator mutable String

StringBuffer - since Java 1.0 StringBuilder - since Java 5

and capacity string.length() + 16.

and capacity string.length() + 16.

StringBuilder append(String s)
StringBuilder insert(int offset, String s)
StringBuilder delete(int startIndex, int endIndex)
StringBuilder deleteCharAt(int index)
StringBuilder replace(int startIndex, int endIndex,

String str):
StringBuilder reverse()

- Method modified StringBuilder/StringBuffer
(synchronized for StringBuffer)

int capacity()
ensureCapacity(int minimumCapacity)
charAt(int index)
int indexOf(String str)
int indexOf(String str, int fromIndex)
int lastIndexOf(String str)
int lastIndexOf(String str, int fromIndex)
int length()
String substring(int beginIndex)
String substring(int beginIndex, int endIndex)
String toString()
int compareTo(StringBuilder another)

- Other methods

StringBuilder append​(boolean b)
StringBuilder append​(char c)
StringBuilder append​(char[] str)
StringBuilder append​(char[] str, int offset, int len)
StringBuilder append​(double d)
StringBuilder append​(float f)
StringBuilder append​(int i)
StringBuilder append​(long lng)
StringBuilder append​(CharSequence s)
StringBuilder append​(CharSequence s, int start, int end)
StringBuilder append​(Object obj)
StringBuilder append​(String str)
StringBuilder append​(StringBuffer sb)

StringBuffer insert(int offset,
boolean b):

similarly!

Reloaded StringBuilder/StringBuffer methods

" Java"

whitespace

• The JVM can make this optimization only because
String is immutable.

Before Java 7

PermGen

From Java 7

Because the == operator checks for identity, all it has to do
is compare two pointers, and obviously this will be much faster
than equals(). So if you're going to compare the same strings
multiple times, you can get a significant performance
advantage by object identity checking instead of character
comparison.
The basic algorithm:
1) Create a hash set of strings
2) Check that the string (as a sequence of characters) with

which you are dealing is already in the set
3) If yes, then use a string from the set
4) Otherwise, add this string into a set and then use it

Method intern()

public native String intern();

String s1 = "abcd";
String s2 = "abcd";
String s3 = new String("abcd");
System.out.println(s1 == s2); //true
System.out.println(s1 == s3); //false
/*Add s3 to string pool*/
String s3Interned = s3.intern();
System.out.println(s1 == s3Interned); //true

Method intern()
• When the intern method is invoked, if the pool already contains

a string equal to this String object as determined by
the equals(Object) method, then the string from the pool is
returned. Otherwise, this String object is added to the pool and a
reference to this String object is returned.

String s = new String("Some string"); adds "Some string" literal to pool

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#equals-java.lang.Object-

String concatenation
public static void main(String[] args) {

String s1 = "Hello ";
String s2 = "World!";

/*Runtime concatenation - s3 is not treated as literal*/
String s3 = s1 + s2;
String s4 = "Hello World!";

/*The strings computed by concatenation at runtime
are newly created and distinct*/

System.out.println(s3.equals(s4)); //true
System.out.println(s3 == s4); //false

...

String concatenation
...

final String s5 = "Hello ";
final String s6 = "World!";

/*Compile time concatenation - s7 is treated as literal and added
to string pool*/

String s7 = s5 + s6;

/*String values created from concatenation of constant expressions
are computed at compile time and are treated as if they
were literals*/

System.out.println(s7.equals(s4)); //true
System.out.println(s7 == s4); //true

...

String concatenation
...

String s8 = stringConcatenation(s5, s6);
System.out.println(s8.equals(s4)); //true
System.out.println(s8 == s4); //false

}
/*The returned value wouldn’t be known at compile time

so it is not treated as literal*/
static String stringConcatenation(String firstVal, String secondVal) {

return firstVal + secondVal;
}

Instead use split() method of String:
String[] split​(String regex);

tokens is a parts of the initial string

• delim - is a string with one or set of characters that separate
tokens. First constructor uses default delimeter - " \t\n\r\f" -
the space, tab, newline, carriage-return and form-feed chars.

• If returnValue argument is true, delimiter characters are
considered as separate tokens. If it is false, delimiter characters
serve to separate tokens and don't print to output.

The StringTokenizer class 3/5

public class StringTokenizer implements Enumeration<Object>

Main methods:
public boolean hasMoreTokens()
public String nextToken()

public String nextToken(String delim)

public boolean hasMoreElements()

public Object nextElement()

public int countTokens()

Implementation of
Enumeration abstract
methods

java.util.regex

• Regular Expression can be used to search, edit
or manipulate text.

"." - any character ".*" - any number of any characters

public static boolean matches(String regex, CharSequence

input)

• Pattern pattern = Pattern.compile(".*http://.*",
Pattern.DOTALL);for multi-line searched text

or

System.out.println(Pattern.matches(".*http://.*",

"searched in string http://mycompany.com"));

//true

boolean matches();
boolean find();
boolean find​(int start);
int start();
int start​(int group)
int end();
int end​(int group)
String group();
String group​(int group)

String patternString = "(This is the text)";

group

For a matcher m with input
sequence s, the expressions
m.group() and
s.substring(m.start(), m. end()) are
equivalent.

true - if entire input sequence
matches with pattern

true - if part or entire input
sequence matches with pattern

String text = "This is the text to be searched. ";
String patternString = "(This is the text)";
Pattern pattern = Pattern.compile(patternString);
Matcher matcher = pattern.matcher(text);
int count = 0;
while (matcher.find()) {

count++;
System.out.println("\nfound: " + count + " : "

+ matcher.start() + " - " + matcher.end());
System.out.println("found: " + matcher.group());

} Output: found: 1 : 0 - 16
found: This is the text

In Java, you will need to “double escape” these backslashes.
String pattern = "\\b\\d \\D \\W \\w \\S \\s\\b";

• \b - word boundary, e.g. "\\b(\\w{2})\\b"

(greedy - matches as much
as possible from the input string)

add ? at the end of quantifier
make it reluctant (non-greedy)

See GreedyReluctantQuantifiers

The dot character in RegExp have to be escaped: "\\."

The RegExp for Ukrainian alphabet is: "[А-Яа-яёЁЇїІіЄєҐґ']"
"

, [^] is inversion

Capturing group allow us to query the Matcher to find out what the
part of the string was that matched against a particular parts of the
regular expression pattern. This parts are embraces in () and
autonumbered. Index 0 represents the whole Pattern.

The Regular Expressions in Java -
Capturing group

Pattern datePattern = Pattern.compile("([0-9]{4})-([0-9]{2})-([0-9]{2})");
String now = "Today is " + LocalDate.now().toString();
System.out.println(now); //Today is 2022-11-25
Matcher m = datePattern.matcher(now);
if(m.find()){

int year = Integer.parseInt(m.group(1));
int month = Integer.parseInt(m.group(2));
int day = Integer.parseInt(m.group(3));
System.out.println(day + "/" + month + "/" + year); //25/11/2022

}

The Regular Expressions in Java -
Capturing group - greedy vs reluctant

String regex = "(.*)(\\d+)"; // greedy quantifier
Pattern pattern = Pattern.compile(regex);
String text = "The order number is 8983";
Matcher matcher = pattern.matcher(text);
while (matcher.find()) {
System.out.println(matcher.group(1)); //The order number is 898
System.out.println(matcher.group(2)); //3

regex = "(.*?)(\\d+)"; // reluctant (non-greedy) quantifier
pattern = Pattern.compile(regex);
matcher = pattern.matcher(text);
while (matcher.find()) {

System.out.println(matcher.group(1)); //The order number is
System.out.println(matcher.group(2)); //8983

}

The Regular Expressions in Java
- String methods

• public boolean matches(String regex)

• public String replaceFirst(String regex, String replacement)

• String replaceAll(String regex, String replacement)

• public String[] split(String regex, int limit)

• public String[] split(String regex)

The Regular Expressions in Java
- String methods

String sentence = "This is the sentence.";

String[] words = sentence.split(" ");

for (String word : words) {

System.out.println(word);

}

String sentenceWithExtraSpaces = "This is the sentence.";

String spaceDeleted = sentenceWithExtraSpaces

.replaceAll(" +", " ");

System.out.println(spaceDeleted);

one spaceone and
more space

Output:
This
is
the
sentence.

Output:
This is the sentence.

The Regular Expressions in Java 7/7
Simple email validation

String email = "test@ukr.net";

String simplePattern = "^(.+)@(\\S+)$";

if (email.matches(simplePattern)) {

System.out.println("This is email address");

} else {

System.out.println("This is not email address");

}

The Regular Expressions in Java 7/7
Strict email validation

String emailPattern = "^(?=.{1,64}@)[A-Za-z0-9_-]+(\\.[A-Za-z0-9_-]+)*

@[^-][A-Za-z0-9-]+(\\.[A-Za-z0-9-]+)*(\\.[A-Za-z]{2,})$";

local-part

• It allows numeric values from 0 to 9.

• Both uppercase and lowercase
letters from a to z are allowed.

• Allowed are underscore “_”, hyphen
“-“, and dot “.”

• Dot isn't allowed at the start and end
of the local part.

• Consecutive dots aren't allowed.

• For the local part, a maximum of 64
characters are allowed.

domain-part

• It allows numeric values from 0 to 9.

• We allow both uppercase and
lowercase letters from a to z.

• Hyphen “-” and dot “.” aren't allowed
at the start and end of the domain
part.

• No consecutive dots.

The Scanner class

• The java.util.Scanner class is a simple text scanner,
which can parse strings and primitive types
using regular expressions.

• Scanner can get text data from the String instance,
console input, text file, et al.

• Scanner breaks its input into tokens using a delimiter
pattern, which is whitespace by default.

• A scanning operation may block waiting for input.

• A Scanner is not safe while multithreaded use
without external synchronization.

The Scanner instance creation
String s1 = "Java is a general-purpose programming"

+ " language";

Scanner scanner = new Scanner(s1);

System.out.println(scanner.nextLine());

scanner = new Scanner(System.in);

System.out.println("Enter a line:");

String s2 = scanner.nextLine();

System.out.println(s2);

scanner = new Scanner(new File("src/mypackage/textfile.txt"));

while (scanner.hasNextLine()) {

System.out.println(scanner.nextLine());

}

scanner.close();

The Scanner basic methods

public Scanner useDelimiter(String pattern)

public boolean hasNext()

public boolean hasNext(String pattern)

public String next()

public boolean hasNextLine()

public boolean hasNextLine(String pattern)

public String nextLine()

public boolean hasNextType()

public type nextType()

public void close()

type = boolean, byte,
short, int, long, float,
double, BigInteger,
BigDecimal

The Scanner basic methods
String s = "Java is a general-purpose programming language "

+ "with current JDK 19";

Scanner scanner = new Scanner(s);

while(scanner.hasNext()){

System.out.println(scanner.next());

}

scanner = new Scanner(s).useDelimiter("-");

while(scanner.hasNext()){

System.out.println(scanner.next());

}

scanner = new Scanner(s);

while (scanner.hasNext()) {

if (scanner.hasNextInt()) {

System.out.println(scanner.nextInt());

} else {

scanner.next(); } } ...

Output:
Java
is
a
general-purpose
...

Output:
Java is a general
purpose programming ...

Output:
19

The Scanner basic methods
...

scanner = new Scanner(s1);

/*Initialize the String pattern which signifies

that the String token contains '-' character*/

String pattern = "(\\w*)-(\\w*)";

while (scanner.hasNext()) {

// check if the token consists of declared pattern

if (scanner.hasNext(pattern)) {

System.out.println(scanner.next());

} else

scanner.next();

}

scanner.close();

Output:
general-purpose

