JAVA PROGRAMMING BASICS

Module 2: Java Object-oriented Programming

Training program

Classes and Instances
The Methods
The Constructors
Static Elements
Initialization sections
Package
Inheritance and Polymorphism
Abstract classes and Interfaces
String processing
. Wrapper classes for primitive types
. Exceptions and Assertions
. Nested classes
. Enums
. Generics
. Collections
. Method overload resolution
. Multithreads
. Core Java classes
. Object Oriented Design
. Functional Programming

RN ARWNRE

=
= O

N R R RRRR R @R
CLVLWONOTULDWN

Module contents

String processing
The String class
Operations with Strings
Immutable String in Java
The StringBuilder and StringBuffer
String pool in Java
The StringTokenizer class
The Regular Expressions in Java
The Scanner class

Module contents

+ String processing
— The String class
— Operations with Strings
— Immutable String in Java
— The StringBuilder and StringBuffer
— String pool in Java
— The StringTokenizer class
— The Regular Expressions in Java
— The Scanner class

The String class 1/4

Strings, which are widely used in Java
programming, are a sequence of characters.

In the Java programming language, strings are
objects.

The Java platform provides the String class to
create and manipulate strings.

String greeting = "Hello!";

String
literal

String s5 = "\u041f\u0440\u0438\u0432\u0435\u0442\u01fe"; //MpunseTtd

Text Blocks

Text block starts and ends with a “”” (three double-
guote marks) followed by optional whitespaces
and a newline.

Inside the text block, we can freely use newlines

and quotes without the need for escaping line breaks.
String page = """

<html> < New line required
<head>
<meta charset="UTF-8">
<title>Simple Servlet</title>
</head>
<body>
<h2>Simple Servlet at %s</h2>

%s
</body>

</html>
o wm

Quote escape does not
required

Since Java 15

The String class 2/4

String constructors:
String()
String(String value)
String(char[] value)

String s1 = new String();
String s2 = new String("Hello");

The String class 3/4

1. public static void main(String[] arg) {
char[] helloArray = {'H’, 'e', 'I', 'I',"\u0048’};
String str = new String(helloArray);
System. out.printin(str);

.}

2 3 4

String(char[] value, int offset, int count),
-1

The String class 3/4

. public static void main(String[] arg) {
throws UnsupportedEncodingException {

byte [] helloArray = {0x48, 0x65, 0x6C, 0x6C, Ox6F };
String str = new String(helloArray, “UTF-8");
System.out.println(str);

)

The String class 4/4

The length() method returns the number of
characters contained in the string object

public static void main(String[] arg) {
String str = "Hello World!!!";
Int len = str.length();

System.out.printin("String Length is : " + len);

}

Console output:
String Length is : 14

The String class

Before Java 9
public final class String implements java.io.Serializable,
Comparable<String>, CharSequence {

private final char value[]; //2 bytes per character

Since Java 9 - Compact Strings

public final class String implements java.io.Serializable,
Comparable<String>, CharSequence, Constable, ConstantDesc {
@Stable

private final byte[] value; //1-2 bytes per character

/*The identifier of the encoding used to encode the bytes in value.
The supported values in this implementation are LATIN1 and UTF16*/

private final byte coder; //LATIN1 =0, UTF16=1
String are a major component of heap usage (approx. 20%) and

most Strmﬁ ob]ects contain only ISO-8859-1 or Latin-1 characters.

The String class

1 byter’ character

3003

stringLatinl >| J a Latin1

stringUTF16 > | a '} a UTF16

, SRR

Non LATIN1 char 2 bytes/ character

With Compact Strings, only the implementation details have
changed for class String starting Java 9. There are no API changes
for class String.

Module contents

+ String processing
— The String class
— Operations with Strings
— Immutable String in Java
— The StringBuilder and StringBuffer
— String pool in Java
— The StringTokenizer class
— The Regular Expressions in Java
— The Scanner class

Operations with Strings 1/6

The String class has a number of methods for
examining the contents of strings, finding
characters or substrings within a string, changing
case, and other tasks.

Query position of chars Seem to modlfy Szring Others

e Nl AN N

charat indexOf supstring T g reolace lengta startswith erdsWita

String class basic methods
- Query position of chars

char charAt(int index)

int indexOf(String str)

int indexOf(String str, int fromlIndex)

int l[astindexOf(String str)

int lastIndexOf(String str, int fromlIndex)
int length()

String class basic methods
- Seem to modify String

String concat(String str)
String replace(char oldChar, char newChar)
String replace(CharSequence target,
CharSequence replacement)
String replaceAll(String regex, String replacement)
String substring(int beginindex)
String substring(int beginindex, int endindex)
String repeat(int count)
String[] split(String regex)
String intern()

String class basic methods
- Seem to modify String

String toLowerCase()
String toString()
String toUpperCase()
String trim()

String class basic methods
- Other

boolean isBlank()

boolean isEmpty()

boolean matches(String regex)

boolean endsWith(String suffix)

boolean equals(Object anObject)

boolean equalslignoreCase(String anotherString)
boolean startsWith(String prefix)

boolean startsWith(String prefix, int toffset)

String class basic methods
- Other

int compareTo(String anotherString)

int compareTolgnoreCase(String str)

char[] toCharArray()

void getChars(int srcBegin, int srcEnd,
char[] dst, int dstBegin)

byte[] getBytes(String charsetName)

static String valueOf(primitive data type x)

Operations with Strings 2/6

The String class includes a method for concatenating
two strings or you can use “+” operator and += operator

String str1 = "Hello *;

String str2 = "World!!"; The method returns
String str3 = stri.concat(str2); @ NEW string

String strd = str1 + str2; Console output
System.out.printin(str3); Hello World!!!
System.out.println(str4); Hello World!!!

str4 +="111"" Hello World!!!!!!

System.out.println(str4);
- W

Operations with Strings 3/6

Getting Characters by Index
String str = "Hello World!™;

char aChar0 = str.charAt(0);
char aChar1 = str.charAt(1);
char aChar11 = str.charAt(11);
System.out.printin(aChar0);
System.out.printin(aChar1); Console output:
System.out.printin(aChar11); H

e

Operations with Strings 4/6

Getting Substrings
String str = "Hello World!";
String substr1 = str.substring(6);
String substr2 = str.substring(6,11);
String substr3 = str.substring(7,9);

System.out.printin(substr1); Console output:
System.out.println(substr2); wor:g!
System. out.printin(substr3); Oror

The method returns a NEW string

Operations with Strings 5/6
Searching for Characters in a String
String str = "Hello World!™;

int i1 = str.indexOf('o");
int i2 = str.lastindexOf('0");

int i3 = str.indexOf("x");

. . Console output:
System.out.printin(i1); 4
System.out.printin(i2); 7
System.out.printin(i3); -1

Operations with Strings 6/6

Searching for Substrings in a String

String str = "Hello World!";
int i1 = str.indexOf("Hello");

int i2 = str.lastindexOf("World");

int i3 = str.indexOf("world");

System. out.

System. out.
System. out.

orint
orint

orint

n(i1);
n(i2);
n(i3);

String methods chaining

2 whitespaces at the end

String result = "Sunday ".replace(' ', 'Z').trim().concat("M n");

System.out.printin(result); //SundayZZM n

The methods are evaluated from left to right.
The first method to execute in this example is replace,
not concat.

Module contents

+ String processing
— The String class
— Operations with Strings
— Immutable String in Java
— The StringBuilder and StringBuffer
— String pool in Java
— The StringTokenizer class
— The Regular Expressions in Java
— The Scanner class

Immutable String in Java 1/3

The String class is immutable, so that once it is
created a String object cannot be changed.

public final class String
implements java.io.Serializable, Comparable<String>, CharSequence ({

:f:t:t

* The value is used for character storage.

* @implNote This field is trusted by the VM, and is a subject to

e
1

constant folding if String instance is constant. Overwriting this

ield after construction will cause probl

B

Additionally, it is marked with {@link Stable} to trust the contents
* of the array. No other facility in JDK provides this functionality (yet).
* {@link Stable} 1s safe here, because value 1s never null.
* /

@Sstable

| private final byte[] value;

Immutable String in Java 2/3

1. String s = "abcd";
/. String s2 = s,

String reference variable

String reference variable

Immutable String in Java 3/3

1. String s = "abcd";
2. s=st+"ef",

String reference variable

.—"
-
-

- “abcdef”

String reference variable

Module contents

+ String processing
— The String class
— Operations with Strings
— Immutable String in Java
— The StringBuilder and StringBuffer
— String pool in Java
— The StringTokenizer class
— The Regular Expressions in Java
— The Scanner class

The StringBuilder and StringBuffer 1/6

Objects in heap:

String str = "A0"; A0
for(inti=1;i<7;i++) =%
Str+:“P"+i; AO
1 AOP1P2
System. out.printin(str); AOP1P2P3
. . AQP1P2P3P4
- Each time creating new ,
Object in heap AOZ, 32 33 34353
Bad for performance e (e i

You can print str.hashcode() in the loop to see that instances are different
7

StringBuilder/StringBuffer

public final class StringBuilder
extends AbstractStringBuilder

implements java.io.Serializable, Comparable<StringBuilder>, CharSequence

{
abstract class AbstractStringBuilder implements Appendable, CharSequence {

__,.-’:‘?:!?

* The value i1s used for character storage.
* /

byte[] wvalue;

no final modificator =) mutable String

StringBuffer - since Java 1.0 StringBuilder - since Java 5
-

The StringBuilder and StringBuffer 2/6

StringBuffer - thread-safe, mutable sequence of
characters

StringBuffer(): creates an empty string buffer
with the initial capacity of 16.

StringBuffer(String str): creates a string buffer
with the specified string and capacity string.length() + 16.

StringBuffer(int capacity): creates an empty
string buffer with the specified capacity as length.

The StringBuilder and StringBuffer 3/6

StringBuilder - non-thread-safe, mutable sequence
of characters

The Java StringBuilder class is same as StringBuffer
class except that it is non-synchronized.

StringBuilder(): creates an empty string Builder with the
initial capacity of 16.

StringBuilder(String str): creates a string Builder with
the specified string. and capacity string.length() + 16.
StringBuilder(int length): creates an empty string
Builder with the specified capacity as length.

StringBuilder/StringBuffer basic methods
- Method modified StringBuilder/StringBuffer
(synchronized for StringBuffer)

StringBuilder append(String s)

StringBuilder insert(int offset, String s)

StringBuilder delete(int startIndex, int endindex)

StringBuilder deleteCharAt(int index)

StringBuilder replace(int startindex, int endindex,
String str):

StringBuilder reverse()

StringBuilder/StringBuffer basic methods

- Other methods
int capacity()

ensureCapacity(int minimum~Capacity)
charAt(int index)

int indexOf(String str)

int indexOf(String str, int fromindex)

int lastindexOf(String str)

int l[astindexOf(String str, int fromindex)

int length()

String substring(int beginindex)

String substring(int beginindex, int endindex)
String toString()

int compareTo(StringBuilder another)
-

StringBuilder/StringBuffer basic methods

StringBuilder append(boolean b)
StringBuilder append(char c)
StringBuilder append(char(] str)
StringBuilder append(char][] str, int offset, int len)
StringBuilder append(double d)
StringBuilder append(float f) | stringBuffer insert(int offset,
StringBuilder append(int i) boolean b):
StringBuilder append(long Ing) similarly!
StringBuilder append(CharSequence s)
StringBuilder append(CharSequence s, int start, int end)
StringBuilder append(Object obj)
StringBuilder append(String str)
StrinﬁBui der appenc (StringBuffer sb)

Reloaded StringBuilder/StrineBuffer methods

The StringBuilder and StringBuffer 4/6

StringBuilder.append(String str) method appends
the specified string to this character sequence.

StringBuilder sb = new StringBuilder("A0");
for(inti=1;i<7;i++){

sb.append("P");

sb.append(i);

}
System.out.printin(sb.toString());

The StringBuilder and StringBuffer 5/6

. StringBuilder sb = new StringBuilder(10);

'. sb.append("Hello...");

5. charc=";

L. sb.append(c),”/ append a character

5. sb.insert(8, " Java™),// /nsert a string at index 5
>. sb.delete(5, 8);,// Delete substring at index 5 to 8
. System.out.printin(sb);

The StringBuilder and StringBuffer 6/6

StringBuilder sb = new StringBuilder(10);
o 1 2 3 4 5 6 7 8 9

sb.append(“Hello...");
0 1 2 3 4 5 6 7 8 2

Hlel|ll ||]o

sb.append(");
0 1 2 3 4 5 6 7 8 9

Hlel|l |l |l ol .|.].]!

11 1
sb.insert(8,"Javal);——/ 'fva
10 11 12 13 14

o 1 2 3 4 5 6 7 8 9

whitespace

Hlel|ll |l |lofl.|.|.| |J [a |v |a |!

)
sb.delete(5,8—
c 1 2 3 4 5 66 7 8 9 10 11 12 13 14

Hliel|ll |l |lo] [|J]a|v]|a |!
i

Module contents

+ String processing
— The String class
— Operations with Strings
— Immutable String in Java
— The StringBuilder and StringBuffer
— String pool in Java
— The StringTokenizer class
— The Regular Expressions in Java
— The Scanner class

String pool in Java 1/4

Java has provided a special mechanism for
keeping the String literals - in a so-called string
common pool.

If two string literals have the same contents, they
will share the same storage inside the common
pool.

The JVM can make this optimization only because
String is immutable.

L S B

String pool in Java 2/4

String s1 = "Hello™; // String literal
String s2 = "Hello"; /7 String literal
String s3 = s1; // same reference

String s4 = new String("Hello"); // new String object
String s5 = new String("Hello™);, //new String object

String pool in Java 3/4

Before Java 7

s4 S5
S
s2

535\\ %

X
g ==
“Hello” | | |
“Hello” el

\PermGen) U)

“Common pool” for String literals "Heap”

N

String pool in Java 3/4

From Java /
S
S2
s3

r
A\ Hello”

. 4

“Common pool” for String literals “Heap”

String pool in Java 4/4

System.out.printin(s1 == s1); // true, same pointer

System.out.printin(s1 ==s2);, //true, s7 and s1 share
storage in common poo/

- System.out.printin(s1 == s3); //true, s3 is assigned same
pointer as s7

System.out.printin(s1.equals(s3));, // true, same contents

System.out.printin(s1 == s4); // false, different
pointers

System.out.printin(s1.equals(s4)), //true same contents

System.out.printin(s4 == s5); // false, different
pointers in heap

. System.out.printin(s4.equals(s5)), //true, same contents
N

Method intern()

Because the == operator checks for identity, all it has to do

is compare two pointers, and obviously this will be much faster

than equals(). So if you're going to compare the same strings

multiple times, you can get a significant performance

advantage by object identity checking instead of character

comparison.

The basic algorithm:

1) Create a hash set of strings

2) Check that the string (as a sequence of characters) with
which you are dealing is already in the set

3) If yes, then use a string from the set

4) Otherwise, add this strinQo a set and then use it

public native String intern();

Method intern()

 When the intern method is invoked, if the pool already contains
a string equal to this String object as determined by
the equals(Object) method, then the string from the pool is
returned. Otherwise, this String object is added to the pool and a
reference to this String object is returned.

String s1 = "abcd";

String s2 = "abcd";

String s3 = new String("abcd");
System.out.printin(s1 == s2); //true
System.out.printin(s1 == s3); //false
/*Add s3 to string pool*/

String s3Interned = s3.intern();
System.out.println(s1 == s3Interned); //true

E—————————
String s = new String("Some string"); adds "Some string" literal to pool

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#equals-java.lang.Object-

I @
String concatenation

public static void main(String[] args) {
String s1 = "Hello "
String s2 = "World!";

/*Runtime concatenation - s3 is not treated as literal*/
String s3 =s1 +s2;
String s4 = "Hello World!";

/*The strings computed by concatenation at runtime
are newly created and distinct*/

System.out.printin(s3.equals(s4)); //true

System.out.println(s3 == s4); //false

I 4@
String concatenation

final String s5 = "Hello ";
final String s6 = "World!";

/*Compile time concatenation - s7 is treated as literal and added
to string pool*/
String s7 = s5 + s6;

/*String values created from concatenation of constant expressions
are computed at compile time and are treated as if they
were literals*/

System.out.printin(s7.equals(s4)); //true

System.out.println(s7 == s4); //true

- =
String concatenation

String s8 = stringConcatenation(s5, s6);
System.out.printIn(s8.equals(s4)); //true
System.out.printIn(s8 == s4); //false

}

/*The returned value wouldn’t be known at compile time
so it is not treated as literal*/

static String stringConcatenation(String firstVal, String secondVal) {
return firstVal + secondVal;

}

Module contents

+ String processing
— The String class
— Operations with Strings
— Immutable String in Java
— The StringBuilder and StringBuffer
— String pool in Java
— The StringTokenizer class
— The Regular Expressions in Java
— The Scanner class

The StringTokenizer class 1/5

The java.util.StringTokenizer class allows an
application to break a string into tokens.

tokens is a parts of the initial string

This class is a legacy class that is retained for
compatibility reasons although its use is
discouraged in new code.

Instead use split() method of String:
String|[] split(String regex);

The StringTokenizer class 2/5

StringTokenizer constructors:

StringTokenizer(String str) creates StringTokenizer
with specified string.

StringTokenizer(String str, String delim)creates
StringTokenizer with specified string and delimeter.

StringTokenizer(String str, String delim, boolean
returnValue) creates StringTokenizer with specified
string, delimeter and returnValue.

delim - is a string with one or set of characters that separate
tokens. First constructor uses default delimeter - " \t\n\r\f" -
the space, tab, newline, carriage-return and form-feed chars.
If returnValue argument is true, delimiter characters are

considered as separate tokens. If it is false, delimiter characters

serve to separate tokens and don't print to output.
.

The StringTokenizer class 3/5

public class StringTokenizer implements Enumeration<Object>

Main methods:
public boolean hasMoreTokens()
public String nextToken()

public String nextToken(String delim)
Implementation of

Enumeration abstract
methods

public boolean hasMoreElements()
public Object nextElement()
public int countTokens()

The StringTokenizer class 4/5

Using StringTokenizer

String str = "Its methods do not distinguish
among identifiers, numbers, and quoted
strings";

StringTokenizer s1 = new StringTokenizer(str);
while(s1.hasMoreElements()){

System.out.printin(s1.nextElement());

}

Console output:

Its
methods
do

not
distinguish
among
identifiers,
numbers,
and
quoted
strings

The StringTokenizer class 5/5

Using StringTokenizer

String str = "Its methods do not distinguish
among identifiers, numbers, and quoted
strings";

StringTokenizer s2 = new StringTokenizer(str,",");
while(s2.hasMoreElements()){

System.out.printin(s2.nextElement());
}

Console output:

Its methods do not distinguish among identifiers
numbers

and quoted strings

Module contents

+ String processing
— The String class
— Operations with Strings
— Immutable String in Java
— The StringBuilder and StringBuffer
— String pool in Java
— The StringTokenizer class
— The Regular Expressions in Java
— The Scanner class

The Regular Expressions in Java 1/7

Regular expression (abbreviated regex or regexp)
IS @ sequence of characters that define a search
pattern, mainly for use in pattern matching with
strings, or string matching, i.e. "find and replace"-
like operations.

The java.util.regex package primarily consists of
three classes: Pattern, Matcher, and
PatternSyntaxException.

Regular Expression can be used to search, edit
or manipulate text.

java.util.regex

The Regular Expressions in Java 2/7

The Java Pattern class (java.util.regex.Pattern), is
the main access point of the Java regular
expression API.

A Pattern object is a compiled representation of a
regular expression.

Pattern pattern = Pattern.compile(” . *http://.*"),

Pattern pattern = Pattern.compile(".*http://.*",
for multi-line searched text - Pattern.DOTALL);

. -any character ".*" -any number of any characters

public static boolean matches(String regex, CharSequence
iInput)

The Regular Expressions in Java 3/7

The Java Matcher class (java.util.regex.Matcher)
IS used to search through a text for multiple
occurrences of a regular expression.

You can also use a Matcher to search for the same
regular expression in different texts.

Matcher matcher = pattern.matcher("searched
in string http://mycompany.com");
boolean matches = matcher.matches();

or
System.out.printin(Pattern.matches(".*http://.*",
"searched In string http://mycompany.com"));
[ltrue

Matcher methods

boolean matches(); } __— true - if entire input sequence

_ matches with pattern
boolean find();

boolean find(int start);
int start();
int start(int group)

true - if part or entire input
sequence matches with pattern

int end(); For a matcher m with input
int end(int group) sequence s, the expressions
String group(); m.group() and

String group(int group) s.substring(m.start(), m. end()) are

equi\lalen/t. group

String patternString = "(This is the text)";
-

Matcher methods
String text = "This is the text to be searched. ";
String patternString = "(This is the text)";
Pattern pattern = Pattern.compile(patternString);
Matcher matcher = pattern.matcher(text);
int count = 0;
while (matcher.find()) {

count++;
System.out.printIn("\nfound: " + count + " : "
+ matcher.start() + " - " + matcher.end());
System.out.printIn("found: " + matcher.group());
} Output: found: 1:0- 16

found: This is the text

The Regular Expressions in Java 4/7

Character Classes

. Dot, any character

\d A digit: [0-9]

\D A non-digit: [*0-9]

\s A whitespace character: [\t\n\xOB\f\r]
\S A non-whitespace character: [M\s]

\w A word character: [a-zA-Z_0-9]

\W A non-word character: [M\w]

\b - word boundary, e.g. "\\b(\\w{2})\\b"

In Java, you will need to “double escape” these backslashes.

String pattern = "\\b\\d \\D \\W \\w \\S \\s\\b";

The Regular Expressions in Java 5/7

(greedy - matches as much
Quantifiers as possible from the input string)

* Match 0 or more times

+ Match 1 or more times

? Match 1 or O times

{n} Match exactly n times

{n,} Match at least n times

{n,m} Match at least n but not more than m times

add ? at the end of quantifier
make it reluctant (non-greedy)

|
See GreedyReluctantQuantifiers

The Regular Expressions in Java 6/7

Meta-characters

\ Escape the next meta-character (it becomes a
normal/literal character)

A Match the beginning of the line
$ Match the end of the line (or before newline at the

end)
| Alternation (‘or’ statement)
() Grouping

[] Custom character class, [*] is inversion

The RegExp for Ukrainian alphabet is: "[A-Aa-aéElili€ert']"

The dot character in RegExp have to be escaped: "\\."
-

S — . |
The Regular Expressions in Java -

Capturing group

Capturing group allow us to query the Matcher to find out what the
part of the string was that matched against a particular parts of the
regular expression pattern. This parts are embraces in () and
autonumbered. Index O represents the whole Pattern.

Pattern datePattern = Pattern.compile("([0-9]{4})-([0-9]{2})-([0-9]{2})");
String now = "Today is " + LocalDate.now().toString();
System.out.printin(now); //Today is 2022-11-25
Matcher m = datePattern.matcher(now);
if(m.find()){

int year = Integer.parselnt(m.group(1));

int month = Integer.parselnt(m.group(2));

int day = Integer.parselnt(m.group(3));

System.out.printin(day + "/" + month +"/" + year); //25/11/2022

—

=
The Regular Expressions in Java -
Capturing group - greedy vs reluctant

String regex = "(.*)(\\d+)"; // greedy quantifier

Pattern pattern = Pattern.compile(regex);

String text = "The order number is 8983";

Matcher matcher = pattern.matcher(text);

while (matcher.find()) {

System.out.printin(matcher.group(1)); //The order number is 898
System.out.printin(matcher.group(2)); //3

regex = "(.*?)(\\d+)"; /[reluctant (non-greedy) quantifier
pattern = Pattern.compile(regex);
matcher = pattern.matcher(text);
while (matcher.find()) {
System.out.printin(matcher.group(1)); //The order number is
System.out.println(matcher.group(2)); //8983

R

= — /1
The Regular Expressions in Java

- String methods

public boolean matches(String regex)

public String replaceFirst(String regex, String replacement)
String replaceAll(String regex, String replacement)

public String[] split(String regex, int limit)

public String[] split(String regex)

S ———|
The Regular Expressions in Java

- String methods

String sentence = "This is the sentence.”; 0‘{"9”"1

String[] words = sentence.split(" “); Th's

for (String word : words) { Lsh .
System.out.println(word); centence.

}

String sentenceWithExtraSpaces = "This is the sentence.";
String spaceDeleted = sentenceWithExtraSpaces

replaceAll(" +","");
System.out.printin(spaceDeleted); \

Output: oneand one space
This is the sentence. more space

e ———
The Regular Expressions in Java 7/7

Simple email validation

String email = "test@ukr.net";

String simplePattern = "(.+)@ (\S+)$";

If (email.matches(simplePattern)) {
System.out.printin("This is email address");

} else {
System.out.printin("This is not email address");

}

The Regular Expressions in Java 7/7
Strict email validation

String emailPattern = "(?=.{1,64}@)[A-Za-z0-9 -]+(\\.[A-Za-z0-9 -]+)*
@["-][A-Za-z0-9-]+(\\.[A-Za-z0-9-]+)*(\\.[A-Za-z]{2,})$";

local-part
* |t allows numeric values from 0 to 9.

* Both uppercase and lowercase
letters from a to z are allowed.

* Allowed are underscore “ ", hyphen
ll_ll’ and dOt ll.”

* Dot isn't allowed at the start and end
of the local part.

* Consecutive dots aren't allowed.

* For the local part, a maximum of 64
characters are allowed.

domain-part
* |t allows numeric values from 0 to 9.

* We allow both uppercase and
lowercase letters from a to z.

* Hyphen “-” and dot “” aren't allowed
at the start and end of the domain

part.
* No consecutive dots.

Module contents

+ String processing
— The String class
— Operations with Strings
— Immutable String in Java
— The StringBuilder and StringBuffer
— String pool in Java
— The StringTokenizer class
— The Regular Expressions in Java
— The Scanner class

-
The Scanner class

The java.util.Scanner class is a simple text scanner,
which can parse strings and primitive types
using regular expressions.

Scanner can get text data from the String instance,
console input, text file, et al.

Scanner breaks its input into tokens using a delimiter
pattern, which is whitespace by default.

A scanning operation may block waiting for input.

A Scanner is not safe while multithreaded use
without external synchronization.

=
The Scanner instance creation

String s1 = "Java is a general-purpose programming"
+ " language”;

Scanner scanner = new Scanner(sl);

System.out.printin(scanner.nextLine());

scanner = new Scanner(System.in);
System.out.printin("Enter a line:");
String s2 = scanner.nextLine();
System.out.printin(s2);

scanner = new Scanner(new File("src/mypackage/textfile.txt"));
while (scanner.hasNextLine()) {
System.out.println(scanner.nextLine());

sc:anner.(:losen'I

=
The Scanner basic methods

public Scanner useDelimiter(String pattern)

public boolean hasNext()

public boolean hasNext(String pattern)

public String next()

public boolean hasNextLine()

public boolean hasNextLine(String pattern)

public String nextLine()

public boolean hasNextType() type = boolean, byte,
: short, int, long, float,

public type nextType() double, Biglnteger,

public void close() BigDecimal

=
The Scanner basic methods

String s = "Java is a general-purpose programming language "

+ "with current JDK 19"; Output:
Scanner scanner = new Scanner(s); f:“’a
while(scanner.hasNext()){ a
System.out.printin(scanner.next()); general-purpose
)
scanner = new Scanner(s).useDelimiter("-");
while(scanner.hasNext()){ Output:
System.out.printin(scanner.next()); Java is a general
} purpose programming ...

scanner = new Scanner(s);
while (scanner.hasNext()) {

If (scanner.hasNextint()) {
System.out.printin(scanner.nextint()); _p_(139ut ut:
} else {

scanner.next(); }}
-

=
The Scanner basic methods

scanner = new Scanner(sl);
[*Initialize the String pattern which signifies
that the String token contains '-' character*/
String pattern = "(\w*)-(\w*)";
while (scanner.hasNext()) {
// check if the token consists of declared pattern

If (scanner.hasNext(pattern)) { Output:
System.out.printin(scanner.next()); general-purpose

} else
scanner.next();

}

scanner.close();

The Scanner class 4/4

The scanner can also use delimiters other than

whitespace

String input = "1 fish 2 fish red fish blue fish";

Scanner s = new

Scanner(input).useDelimiter("\\s*fish\\s*"),

System.out.printin(s.nextint());
System.out.printin(s.nextint());
System.out.printin(s.next());
System.out.printin(s.next());
s.close();

Console output

1

2
red
blue

