JAVA PROGRAMMING BASICS

Module 2: Java Object-oriented Programming

Training program

Classes and Instances
The Methods
The Constructors
Static Elements
Initialization sections
Package
Inheritance and Polymorphism
Abstract classes and Interfaces
String processing
. Wrapper classes for primitive types
. Exceptions and Assertions
. Nested classes
. Enums
. Generics
. Collections
. Method overload resolution
. Multithreads
. Core Java classes
. Object Oriented Design
. Functional Programming

RN ARWNRE

=
= O

N R R RRRR R @R
CLVLWONOTULDWN

Module contents

Generics

The Generics

Declaring and using generic types
Declaring and using generic methods
Generics and JVM

Restrictions on Generics

Generic and inheritance

Generic arguments in methods
Covariance problem

Wildcards. extends and super keywords

Module contents

- Generics
* The Generics
« Declaring and using generic types
« Declaring and using generic methods
« Generics and JVM
« Resriction of generic types
« Generic and inheritance
« Generic arguments in methods
« Covariance problemm
« Wildcards. extends and super keywords

The Generics 1/4
List<E> list

Java 5 introduces generics, which allows us /
to abstract over types (or parameterized types).

The class designers can be generic about types in
the definition, while the users can be specific in
the types auring the object instantiation or
method invocation.

Generics make it possible to create classes
(interfaces), methods (constructors) in such a way
that they can operate with different data types
without implementing several different classes
(interfaces), methods (constructors).

The Generics 2/4

Generics are described as follows:
Provide compile-time type safety
Eliminate the need for casts

-~ Provide the ability to create compiler-checked
homogeneous collections

Examples:
List<E> list

static <T> void sort(List<T> list, Comparator<? super T> c)

The Generics 3/4

A generic class is defined with the following
format: public class MyClass<T>

class name<T1, T2, ..., Tn>{/* ... */}

The type parameter section, delimited by angle
brackets (<>), follows the class name. It specifies

the type parameters (also called type variables) T1,
T2, ...,and Tn,

public class Main {
public static void main(String[] args) {
MyClass<String> strings = new MyClass<>();

}

}
T1, T2, ... Tn —type parameters (variables)

eString>, <Integer>, ... - type arguments

The Generics 4/4

Formal Type Parameter Naming Convention

Use an uppercase single-character for formal type
parameter. For example,

<E> for an element of a collection;

<T> for type;

<K, V> for key and value.

<N> for number

S,UV, etc. for 2nd, 3rd, 4th type parameters

Module contents

- Generics
— The Generics
— Declaring and using generic types
— Declaring and using generic methods
— Generics and JVM
— Restrictions on Generics
— Generic and inheritance
— Generic arguments in methods
— Covariance problemm
— Wildcards. extends and super keywords

Declaring and using generic types 1/7

public class MyBox {
private Object object;
public void set(Object object) {
this.object = object;
}
public Object get() {
return object;

}
}

Declaring and using generic types 2/7

. MyBox mb1 = new MyBox();
- mb1.set(Integer.valueO10));
~ Integer x1 = (Integer)mb1.get(); // OK! type casting
mb1.set("Hello!"): // is necessary

Integer x2 = (Integer)mb1.get(); // Exception!

- =

Exception in thread "main"
java.lang.ClassCastException: java.lang.String
cannot be cast to java.lang.Integer

at
com.brainacad.oop1.testgenerics.Main.main

Declaring and using generic types 3/7

Generic type declaration

public class MyBox<T> {
// T stands for "Type” T - type parameter

private T t; (or type variable)
public void set(T t) {
this.t =t
}
public T get() {
return ¢;

}
}

Declaring and using generic types 4/7

A generic type invocation, which replaces T with
some concrete value, such as Integer
Integer - type argument
. MyBox<Integer> mb1 = new MyBox<Integer>();
- mb1. set(lnterger Va/ueOf(1 0));
0 casting neede
~ Integer x1 = mb1.get(); // OK/

.. mb1.set("Hello!"); Compile error!
5. Integer x2 = mb1.get();

Declaring and using generic types 5/7

In Java SE 7 and later, you can replace the type
arguments required to invoke the constructor of a
generic class with an empty set of type arguments
(<>) as long as the compiler can determine, or
infer, the type arguments from the context

MyBox<Integer> mb1 = new MyBox<>();

<> - diamond operator

Declaring and using generic types 6/7

A generic class or interface can have multiple type
parameters
generic interface
interface Pair<K, V> {
public K getKey();
public VV getValue();

)

Declaring and using generic types 7/7

generic class implementing

generic interface
class OrderedPair<K, V> implements Pair<K, V> {

private K key;

private V value;

public OrderedPair(K key, V value) {
this.key = key;
this.value = value;

}

public K getKey() { return key; }

public V getValue() { return value; }

@@= 171
Using generic class

implemented generic interface

public static void main(String[] args) {

OrderedPair<Integer, Character> charPair =
new OrderedPair<>(0, 'A'");

OrderedPair<Integer, Double> doublePair =
new OrderedPair<>(1, Math.Pl);

System.out.printf("charPair's key= %d and value =
%c%n", charPair.getKey(), charPair.getValue());

System.out.printf("doublePair's key= %d and value =
%f%n", doublePair.getKey(), doublePair.getValue());

Module contents

- Generics
— The Generics
— Declaring and using generic types
— Declaring and using generic methods
— Bounded Type Parameters
— Generics and JVM
— Restrictions on Generics
— Generic and inheritance
— Generic arguments in methods
— Covariance problemm
— Wildcards. extends and super keywords

Declaring and using generic methods 1/4

public class Main {

public static void main(String[] arg) {
Integer[] arr1 ={1, 2, 3,4, 5}, type cast required
Integer res = (Integer)testGenerics(arri, 2),
Ko

} non-generic method

public static Object testGenerics(Object[] a, int x) {
Object someResult = a[x];
A
return someResult;

}
}

Declaring and using generic methods 2/4

public class Main {

public static void main(String[] arg) {
Integer[] arr1 ={1, 2, 3, 4, 5}; no type cast required
Integer res = testGenerics(arri, 2);
/...

¥ generic method with the type parameter T

public static <T> T testGenerics(T[] a, int x) {
T someResult = a[x]; introduces type parameter
/.. in the declaration
return someResult; of the method

}

¥
ﬁeneric method - generic algorithm!

- 1]
Generic class with generic method

public class MyBox<T> {
private final T t;

pUbI.'C MyBox(T t) { A class and a method can have
this.t = t; :
the same variable of type,

} —— but corresponding arguments

public <T> T tricky(T t) { of types can be different.
return t;

}

@Override
public String toString() {
return "MyBox{" + "t="+t + '},

}

} MyBox<String> mb = new MyBox<>("Hello"); //Tis String
System.out.printin(mb.tricky(LocalDate.now())); //T is LocalDate

Module contents

- Generics
— The Generics
— Declaring and using generic types
— Declaring and using generic methods
— Bounded Type Parameters
— Generics and JVM
— Restrictions on Generics
— Generic and inheritance
— Generic arguments in methods
— Covariance problemm
— Wildcards. extends and super keywords

Bounded Type Parameters 1/6

Upper boundtype parameter
public class MyBox<T extends Number> {
// T must by Number or its subtype

private T t;
public void set(| Number
this.t =t
} | |
public T get() { ‘ s ‘ Double ‘ Float
return t;
} ‘ Integer ‘ Short

.}

Bounded Type Parameters 2/6

1. MyBox<Integer> mb1 = new MyBox<>();
. mb1.set(Integer.valueOAf10));

. MyBox<Double> mb2 = new MyBox<>(),
1. mb2.set(Double.valueOAf5.5));

. MyBox<5tring> mb3 = new MyBox<>();

T must by Number
or its subtype

Bounded Type Parameters 3/6

Bounded type parameters allow you to invoke
methods defined in the bounds type

public class MyBox<T extends Number> {
// T must by Number or its subtype
private T t;
/...
public boolean isEven() {
return t.intValue() % 2 ==

} } |
oy

‘ Integer

MNumber

|
-

-
M | e |

Bounded Type Parameters 4/6

MyBox<Integer> mb1 = new MyBox<>();
mb1.set(Integer.va/ueOR10));
System.out.printin(mb1.isEven());
MyBox<Double> mb2 = new MyBox<>();
mb2.set(Double.valueOA5.5));
System.out.printin(mb2.isEven());

- =%
Bounded type generic method

Bounded Type Parameter

class Util { —

public <T extends Comparable<T>> int countGreaterThan(T[] arr,
T maxelm) {
int count = 0;
for (T elm : arr) {
if (elm.compareTo(maxelm) > 0) {
count++;

}
i

return count;

}
}

@@= 171
Bounded type generic method using

class Main {
public static void main(String[] args) {

Util util = new Util();
String[] StrArr — {"abC"’ ||if||’ ||n0||’ ||yes||};
Integer[] intArr = {1, 3, 2, 5, 4};

System.out.printIn("Number of elements > \"if\" ="
+ util.countGreaterThan(strArr, "if"));

System.out.printIn(" Number of elements >2 ="
+ util.countGreaterThan(intArr, 2));

Bounded Type Parameters 5/6

Multiple Bounds

The preceding example illustrates the use of a

type parameter with a single bound, but a type
parameter can have multiple bounds:

<T extends B1 & B2 & B3>

cla/s15 \/

or interfaces
interface

Bounded Type Parameters 6/6

A type variable with multiple bounds

classA{/*... %/}

_interfaceB{/*... %/}

. interface C{/*... %/}

- class D <T extends A& B & C>{/*... */}

Module contents

- Generics
— The Generics
— Declaring and using generic types
— Declaring and using generic methods
— Generics and JVM
— Restrictions on Generics
— Generic and inheritance
— Generic arguments in methods
— Covariance problemm
— Wildcards. extends and super keywords

Generics and JVM 1/2

Generics were introduced to the Java language to
provide tighter type checks at compile time and to
support generic programming.

To implement generics, the Java compiler applies
type erasure - the Java compiler does not create
different versions of a generic class for different type
arguments. It deletes all information about generic
types (change it to Object) and performs the necessary
typecasting operations to make the behavior of the
application code look like a specific version of the
generic class has been created.

Generics and JVM 2-2

Replace all type parameters in generic types with
their bounds or Object if the type parameters are
unbounded. The produced bytecode, therefore,
contains only ordinary classes, interfaces, and
methods.

Insert type casts if necessary to preserve type
safety.

Generate bridge methods to preserve
polymorphism in extended generic types

T
Type erasure revelation

MyBox<Integer> integerBox = new MyBox<>();

MyBox box = integerBox; //Row type
MyBox<String> stringBox = box;

stringBox.set("Hello world");
System.out.println("Integer value =" + integerBox.get());

public class MyBox<T> {

private T t;
Output: public T get() {
Integer value = Hello world return t;

}
public void set(T t) {

this.t =t;
}

- }

Declaring and using generic types - Row Type

A row type is the name of generic class or
interface without any type arguments

: ldc2 w

: invokestatic
: invokevirtual
: getstatic

: aload 2

: invokevirtual
: invokevirtual

: invokestatic
: invokevirtual
: getstatic

: aload_1

: invokevirtual
: checkcast

: invokevirtual
: bipush

: iadd

: invokevirtual

double 5.5d

Method java/lang/Double.valueOf:(D)Ljava/lang/Double;
Method generics/typeerasure/MyBox.set:(Ljava/lang/Object;)V
Field java/lang/System.out:Ljava/io/PrintStream;

Method generics/typeerasure/MyBox.get:()Ljava/lang/Object;
Method java/io/PrintStream.println:(Ljava/lang/Object;)V
Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
Method generics/typeerasure/MyBox.set:(Ljava/lang/Object;)V
Field java/lang/System.out:Ljava/io/PrintStream;

Method generics/typeerasure/MyBox.get:()Ljava/lang/Object;
class java/lang/Integer
Method java/lang/Integer.intValue:()I

Method java/io/PrintStream.println:(I)V

// System.out.printin(mb2.get() + 5.5);

}

Repeat
Bounded Type Parameters 3/6
Bounded type parameters allow you to invoke
methods defined in the bounds type
public class MyBox<T extends Number> {
// T must by Number or its subtype
private T t;
/7 ...
public boolean isEven() {
return t.intValue() % 2 == .
} umber
| |
} o |l | e
‘ Integer ‘ Short Long

Repeat

Bounded Type Parameters 4/6

MyBox<Integer> mb1 = new MyBox<>();
mb1.set(Integer.va/ueOR10));
System.out.printin(mb1.isEven());
MyBox<Double> mb2 = new MyBox<>();
mb2.set(Double.valueOA5.5));
System.out.printin(mb2.isEven());

: bipush 16
: invokestatic #10
: invokevirtual #16
: getstatic #20
: aload_1

: invokevirtual #26

: invokedynamic #30,

: invokevirtual #34

// Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
// Method generics/boundedtype/MyBoundedBox.set: (Ljava/lang/Number;)V
// Field java/lang/System.out:Ljava/io/PrintStream;

// Method generics/boundedtype/MyBoundedBox.get:()Ljava/lang/Number;
// InvokeDynamic #©:makeConcatWithConstants:(Ljava/lang/Number;)Ljava/lang/String;
// Method java/io/PrintStream.println:(Ljava/lang/String;)V

Module contents

- Generics
— The Generics
— Declaring and using generic types
— Declaring and using generic methods
— Generics and JVM
— Restrictions on Generics
— Generic and inheritance
— Generic arguments in methods
— Covariance problemm
— Wildcards. extends and super keywords

Restrictions on Generics 1/8
Type arguments cannot be primitive types

You cannot create instances of type parameters

You cannot declare static fields with types
that is type parameters

You cannot cast to or use instanceof with type parameters

You cannot create arrays of types that is type parameters
(but You can declare such arrays in generic classes
and generic methods)

You cannot catch or throw exceptions of type parameters
(but You can declare such exception in method throws
clause if methods belongs to the generic class

with type parameter T extends Throwable or it descendants)

You cannot overload generic methods with the same
methods with different type arguments

You cannot implement the same generic interfaces

with different txee arﬁuments

most restrictions - due to type erasure

Restrictions on Generics 2/8

- Type arguments cannot be primitive types

Pair<Integer, Character> p2 = new OrderedPair<>(12, 'k"); // OK!

2. Pair<int, char> p1 = new OrderedPair<>(12, 'k");

unexpected type
Compile-time error required: reference
found: int

Restrictions on Generics 3/8

* You cannot create instances of type parameters

- public static <E> E test() {
E elem = new E();
return elem;

unexpected type
required: class
found: type parameter E
where E is a type-variable:
E extends Object declared
in method <E>test()

Compile-time error

Restrictions on Generics 4/8

- You cannot declare static fields with types
that is type parameters

static fields can be used
by different objects

1. class MyClass<T> { of a generic class
private static T /m0s;

with different type arguments

non-static type variable T
Compile-time error [eclalglsls be referenced
from a static context

Restrictions on Generics 5/8

* You cannot cast to or use instanceof

with type parameters
illegal generic type for instanceof

1. public static <K, V> void test(Pair<K, /> pr) {
2. if (pr instanceof OrderedPair<Integer, String>) {
/g

Compile-time error

Restrictions on Generics 6/8

You cannot create arrays of types that is type
parameters (but You can declare such arrays
in generic classes and generic methods)

1. Pair<Integer, Character>[] parr1 = new
OrderedPair<Integer, Character>[10];

Compile-time error e R e VR v raTols

Restrictions on Generics /7/8

You cannot catch or throw exceptions of type parameters
(but You can declare such exception in method throws
clause if methods belongs to the generic class with type
parameter T extends Throwable or it descendants)

1. class MathException<T> extends Exception {
/...

-}
a public class cannot extend
java.lang.Throwable

Compile-time error

= S §
Cannot catch type parameter example
public class GenericsException {
public static <T extends Exception, J> void execute(List<J>

jobs) {

try {
for (J job : jobs) {
System.out.println(job);

} Compile-time error:
} catch (T e) { unexpected type
required: class
found: type parameterT
} finally { where T,J are type-variables:
jobs.clear(); T extends Exception declared in method

th TO; <T,J>execute(List<J>)
row new it); J extends Object declared in method

t <T,J>execute(List<J>)

I 4@
Methods can throws type parameter

example

class Parser <T extends Throwable> {

public void parse(File file) throws T{ // OK
/] ...

Restrictions on Generics 8/8

- You cannot implement the same generic interfaces
with different type arguments

1. class MyExample {
public void test(OrderedPair<Integer, String> a) {
/...
}
public void test(OrderedPair<String, Double> a) {
/...

na‘m%clash: -
test(OrderedPair<Double,String>) Compile-time error

and test‘OrderedPair<InteﬁeriStri 0
ave the same erasure

Cannot implement two same interfaces
with different type parameters

public class DecimalString implements Comparable<Number>,
Comparable<String> {}

Compile-time error:

repeated interface
Comparable cannot be inherited with different arguments:

<java.lang.String> and <java.lang.Integer>

Module contents

- Generics
— The Generics
— Declaring and using generic types
— Declaring and using generic methods
— Generics and JVM
— Restrictions on Generics
— Generic and inheritance
— Generic arguments in methods
— Covariance problemm
— Wildcards. extends and super keywords

Generic and inheritance 1/2

Given two concrete types A and B (for

example, Number and Integer), MyClass<A> has
no relationship to MyClass, regardless of
whether or not A and B are related.

The common parent
of MyClass<A> and MyClass is Object.

Generic and inheritance 2/2

+ Box<Integer> is not a subtype of BoxxNumber> even
though Integer is a subtype of Number

Generics are invariant

Sox<ML .

‘ Box<Integers

Generics inheritance investigation
public class Genericlnherit {

static class MyClass<T> {

}

public static void main(String[] args) {
String str = "abc"; //String extends Object
Object obj = new Object();
obj = str; // works because String is-a Object, inheritance in Java

MyClass<String> myClass1 = new MyClass<String>();

MyClass<Object> myClass2 = new MyClass<Object>();

myClass2 = myClass1; // compilation error since MyClass<String>
// is not a MyClass<Object>

myClass1 = (MyClass<String>)myClass2; //the same error - generics

// can not be casted
obj = myClassi; // MyClass<T> parent is Object

—
1

Module contents

- Generics
— The Generics
— Declaring and using generic types
— Declaring and using generic methods
— Generics and JVM
— Restrictions on Generics
— Generic and inheritance
— Generic arguments in methods
— Covariance problemm
— Wildcards. extends and super keywords

Generic arguments in methods 1/2

The Java compiler also erases type parameters in
generic method arguments

public static <T> int count(T[] anArray, T elem) {
intcnt=0;
for (T e : anArray)
if (e.equals(elem))
++cnt;
return cnt;

76: ldc #3 // String yes
78: invokestatic #12 // Method count:([Ljava/lang/Object;Ljava/lang/0Object;)I

Generic arguments in methods 2/2

Because T is unbounded, the Java compiler
replaces it with Object:

public static int count(Object[] anArray, Object elem) {
intcnt =0;
for (Object e : anArray)
if (e.equals(elem))
++cnt;
return cnt;

}

76: ldc #3 // String yes
78: invokestatic #12 // Method count:([Ljava/lang/Object;Ljava/lang/0Object;)I

=
Generic arguments in methods

Bounded types Java compiler replaces it with bounds

public static <T extends Comparable<T>> int
countGreaterThan(T[] anArray, T elem) {
int count =0;
for (T e : anArray) {
if (e.compareTo(elem) > 0) {
++count;

}
}

return count;

57: invokestatic #4 // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
60: invokestatic #10 // Method countGreaterThan:([Ljava/lang/Comparable;Ljava/lang/Comparable;)I

Module contents

- Generics
— The Generics
— Declaring and using generic types
— Declaring and using generic methods
— Generics and JVM
— Restrictions on Generics
— Generic and inheritance
— Generic arguments in methods
— Wildcards. extends and super keywords

Wildcards. extends and super keywords 1/3

The unbounded wildcard type is specified using the
wildcard character (?)

Because ? is Object, we can override the generic instance

of the class to the same class instance with any type
arguments

Pair<?, 7> p2 = new OrderedPair<Integer, Character>(12, 'k")
p2 = new OrderedPair<String, String>("aaa", "bbb");
p2 = new OrderedPair<int[], Long>(new int[]{1,2,3}, 100L),

Unbounded generic wildcard type arguments are useful:

In the implementation of methods using the functionality
of the Object class (not so much methods)

When using methods that are independent of the type
parameter

Wilcards are not allowed to be on the right side of an assienment

Unbounded Wildcard Type

public static void printList(List<Object> list) {
for (Object x : list) {
System.out.printin(x);
}
}

public static void main(String[] args) {
List<String> keywords = new ArrayList<>();
keywords.add("java");
printList(keywords); //incompatible types: List<String> cannot
// be converted to List<Object>

Unbounded Wildcard Type

public static void printList(List<?> list) {
for (Object x : list) {
System.out.printin(x); takes any type of list
} as a parameter

}

public static void main(String[] args) {
List<String> keywords = new ArrayList<>();
keywords.add("java");
printObjList(keywords); //OK, List<String> match to any type list

You cannot use metacharacters, either unlimited or limited,

as type arguments.
—_——

Wildcards. extends and super keywords 2/3

Bounded wildcards define what types can be used in

a wildcard and what corresponding methods we can use
- Upper Bounded Wildcards
- Pair<? extends Number, ? > p2

= new OrderedPair<Integer, Character>(12, 'k’);
p2 = new OrderedPair<Number, String>(99, "bbb");
p2 = new OrderedPair<Double, String>(9.99, "bbb");

p2 = new OrderedPair<int[], Long>(new int[]{1,2}, 100L);

Compile-time error

Upper Bounded Wildcard Type

public static double sumNumberA(List<? extends Number> list) {
double sum =0;
for (inti=0;i< list.size(); i++) { takes Number or
sum += list.get(i).doubleValue(); any of it descendant

public static double sumNumberA(java.util.List<? extends java.lang.Number>);
Code:

17: invokeinterface #57, 2 // InterfaceMethod java/util/List.get:(I)Ljava/lang/Object;
22: checkcast #61 // class java/lang/Number
25: invokevirtual #63 // Method java/lang/Number.doubleValue: ()D

public static <T extends Number> double sumNumberB(List<T> list) {
double sum =0;

for (TM method use the type
sum += n.doubleValue(};

argument

public static <T extends java.lang.Number> double sumNumberB(java.util.List<T>);
Code:

19: invokeinterface #77, 1 // InterfaceMethod java/util/Iterator.next:()Ljava/lang/Object;
24: checkcast #61 // class java/lang/Number
27: astore <

Upper Bounded Wildcard Type

public static void main(String[] args) {
List<Integer> ints = Arrays.aslList(1, 3, 5);
List<Double> doubles = Arrays.aslist(2.2, 4.4, 6.6);

System.out.printin(sumNumberA(ints));
System.out.printin(sumNumberA(doubles));

System.out.printin(sumNumberB(ints));

System.out.printin(sumNumberB(doubles));
} Output:

9.0
13.2
9.0
13.2

Wildcards. extends and super keywords 3/3
Lower Bounded Wildcards

. Pair<? super Integer, 7 > p2
| = new OrderedPair<Integer, Character>(12, 'k");
. p2 = new OrderedPair<Number, String>(99, "bbb");
- p2 = new OrderedPair<Object, String>(99, "bbb");
. p2 =new OrderedPair<int[], Long>(new int[]{1,2,3}, 100L);

Compile-time error

- 1]
Lower Bounded Wildcard Type

public static void addIntegers(List<? super Integer> list, Object obj) {

list.add((Integer) obj); / \
} takes Integer or

method does not use Number or Object
the type argument as a type argument

public static <T super Integer> void addIntegersAgain(List<T> list,
Compile Error!!! bject obj) {
list.add((T) obj);

}

method use the type
argument

We can not use lower bounded regular type variables!!!
_—

=
Lower Bounded Wildcard Type

public static void main(String[] args) {
List<Integer> intList = new ArrayList<>();
List<Number> numList = new ArrayList<>();
List objList = new ArrayList();
inta =5;
addIntegers(intList, a);
addintegers(numlList, a);
addintegers(obijList, a);
Number num = 20;

System.out.printin(intList);
System.out.printIin(numList);
System.out.println(objList);

addIntegers(intList, num); }

addintegers(numList, num);

addIntegers(objList, num); Output:
Object obj = 30; 5, 20, 30]
addIntegers(intList, obj); :5, 20, 301
addIntegers(numlList, obj); :5’ 20, 30:

addintegers(obijList, obj);
-~

