

1. Classes and Instances
2. The Methods
3. The Constructors
4. Static Elements
5. Initialization sections
6. Package
7. Inheritance and Polymorphism
8. Abstract classes and Interfaces
9. String processing
10. Wrapper classes for primitive types
11. Exceptions and Assertions
12. Nested classes
13. Enums
14. Generics
15. Collections
16. Method overload resolution
17. Multithreads
18. Core Java classes
19. Object Oriented Design
20. Functional Programming

Generics

• Generics make it possible to create classes
(interfaces), methods (constructors) in such a way
that they can operate with different data types
without implementing several different classes
(interfaces), methods (constructors).

List<E> list

Examples:

List<E> list

static <T> void sort(List<T> list, Comparator<? super T> c)

T1, T2, ... Tn – type parameters (variables)
<String>, <Integer>, ... - type arguments

public class Main {
public static void main(String[] args) {

MyClass<String> strings = new MyClass<>();
}

}

public class MyClass<T>

type casting
// is necessary

T - type parameter
(or type variable)

Integer - type argument

no casting needed

<> - diamond operator

generic interface

generic class implementing
generic interface

Using generic class
implemented generic interface

public static void main(String[] args) {

OrderedPair<Integer, Character> charPair =
new OrderedPair<>(0, 'A');

OrderedPair<Integer, Double> doublePair =
new OrderedPair<>(1, Math.PI);

System.out.printf("charPair's key= %d and value =
%c%n", charPair.getKey(), charPair.getValue());

System.out.printf("doublePair's key= %d and value =
%f%n", doublePair.getKey(), doublePair.getValue());

}

non-generic method

type cast required

generic method with the type parameter T

introduces type parameter
in the declaration
of the method

generic method - generic algorithm!

no type cast required

Generic class with generic method

public class MyBox<T> {

private final T t;

public MyBox(T t) {
this.t = t;

}

public <T> T tricky(T t) {
return t;

}

@Override
public String toString() {

return "MyBox{" + "t=" + t + '}';
}

}

A class and a method can have
the same variable of type,
but corresponding arguments
of types can be different.

MyBox<String> mb = new MyBox<>("Hello"); //T is String
System.out.println(mb.tricky(LocalDate.now())); //T is LocalDate

//true

//false

Bounded type generic method

class Util {

public <T extends Comparable<T>> int countGreaterThan(T[] arr,
T maxelm) {

int count = 0;
for (T elm : arr) {

if (elm.compareTo(maxelm) > 0) {
count++;

}
}
return count;

}
}

Bounded Type Parameter

Bounded type generic method using

class Main {

public static void main(String[] args) {

Util util = new Util();
String[] strArr = {"abc", "if", "no", "yes"};
Integer[] intArr = {1, 3, 2, 5, 4};

System.out.println("Number of elements > \"if\" = "
+ util.countGreaterThan(strArr, "if"));

System.out.println(" Number of elements > 2 = "
+ util.countGreaterThan(intArr, 2));

}
}

class
or

interface
interfaces

- the Java compiler does not create
different versions of a generic class for different type
arguments. It deletes all information about generic
types (change it to Object) and performs the necessary
typecasting operations to make the behavior of the
application code look like a specific version of the
generic class has been created.

Type erasure revelation

MyBox<Integer> integerBox = new MyBox<>();
MyBox box = integerBox; //Row type
MyBox<String> stringBox = box;
stringBox.set("Hello world");
System.out.println("Integer value = " + integerBox.get());

public class MyBox<T> {
private T t;
public T get() {

return t;
}
public void set(T t) {

this.t = t;
}

}

Output:
Integer value = Hello world

Declaring and using generic types - Row Type
• A row type is the name of generic class or

interface without any type arguments

public static void main(String[] args) {
MyBox<Integer> mb1 = new MyBox<>();
mb1.set(10);
System.out.println(mb1.get() + 10);

MyBox mb2 = new MyBox();
mb2.set(5.5);
/*Bad operand types for binary operator '+', first type: Object,

second type: double*/
// System.out.println(mb2.get() + 5.5);

}

Row Type of MyBox<T>

Repeat

Repeat

Restrictions on Generics 1/8
1. Type arguments cannot be primitive types
2. You cannot create instances of type parameters
3. You cannot declare static fields with types

that is type parameters
4. You cannot cast to or use instanceof with type parameters
5. You cannot create arrays of types that is type parameters

(but You can declare such arrays in generic classes
and generic methods)

6. You cannot catch or throw exceptions of type parameters
(but You can declare such exception in method throws
clause if methods belongs to the generic class
with type parameter T extends Throwable or it descendants)

7. You cannot overload generic methods with the same
methods with different type arguments

8. You cannot implement the same generic interfaces
with different type arguments

most restrictions - due to type erasure

unexpected type
required: reference
found: int

Type arguments cannot be primitive types

unexpected type
required: class
found: type parameter E
where E is a type-variable:
E extends Object declared
in method <E>test()

You cannot create instances of type parameters

non-static type variable T
cannot be referenced
from a static context

You cannot declare static fields with types
that is type parameters

static fields can be used
by different objects
of a generic class
with different type arguments

You cannot cast to or use instanceof
with type parameters

illegal generic type for instanceof

• You cannot create arrays of types that is type
parameters (but You can declare such arrays
in generic classes and generic methods)

generic array creation

a public class cannot extend
java.lang.Throwable

• You cannot catch or throw exceptions of type parameters
(but You can declare such exception in method throws
clause if methods belongs to the generic class with type
parameter T extends Throwable or it descendants)

public class GenericsException {
public static <T extends Exception, J> void execute(List<J>

jobs) {
try {

for (J job : jobs) {
System.out.println(job);

}
} catch (T e) {

...
} finally {

jobs.clear();
throw new T();

}
} }

Cannot catch type parameter example

Compile-time error:
unexpected type
required: class
found: type parameter T
where T,J are type-variables:
T extends Exception declared in method
<T,J>execute(List<J>)
J extends Object declared in method
<T,J>execute(List<J>)

class Parser <T extends Throwable> {

public void parse(File file) throws T { // OK

// ...

}

}

Methods can throws type parameter
example

name clash:
test(OrderedPair<Double,String>)
and test(OrderedPair<Integer,String>)
have the same erasure

You cannot overload generic methods with
the same methods with different type arguments
You cannot implement the same generic interfaces
with different type arguments

Cannot implement two same interfaces
with different type parameters

public class DecimalString implements Comparable<Number>,
Comparable<String> {}

Compile-time error:
repeated interface
Comparable cannot be inherited with different arguments:
<java.lang.String> and <java.lang.Integer>

Generics are invariant

public class GenericInherit {

static class MyClass<T> {
}

public static void main(String[] args) {
String str = "abc"; //String extends Object
Object obj = new Object();
obj = str; // works because String is-a Object, inheritance in Java

MyClass<String> myClass1 = new MyClass<String>();
MyClass<Object> myClass2 = new MyClass<Object>();
myClass2 = myClass1; // compilation error since MyClass<String>

// is not a MyClass<Object>
myClass1 = (MyClass<String>)myClass2; //the same error - generics

// can not be casted
obj = myClass1; // MyClass<T> parent is Object

}
}

Generics inheritance investigation

Generic arguments in methods

public static <T extends Comparable<T>> int
countGreaterThan(T[] anArray, T elem) {

int count = 0;
for (T e : anArray) {

if (e.compareTo(elem) > 0) {
++count;

}
}
return count;

}

• Bounded types Java compiler replaces it with bounds

Unbounded generic wildcard type arguments are useful:
• In the implementation of methods using the functionality

of the Object class (not so much methods)
• When using methods that are independent of the type

parameter

• Because ? is Object, we can override the generic instance
of the class to the same class instance with any type
arguments

Wilcards are not allowed to be on the right side of an assignment

public static void printList(List<Object> list) {
for (Object x : list) {

System.out.println(x);
}

}

public static void main(String[] args) {
List<String> keywords = new ArrayList<>();
keywords.add("java");
printList(keywords); //incompatible types: List<String> cannot

// be converted to List<Object>

Unbounded Wildcard Type

public static void printList(List<?> list) {
for (Object x : list) {

System.out.println(x);
}

}

public static void main(String[] args) {
List<String> keywords = new ArrayList<>();
keywords.add("java");
printObjList(keywords); //OK, List<String> match to any type list

Unbounded Wildcard Type

takes any type of list
as a parameter

You cannot use metacharacters, either unlimited or limited,
as type arguments.

• Bounded wildcards define what types can be used in
a wildcard and what corresponding methods we can use

public static double sumNumberA(List<? extends Number> list) {
double sum = 0;
for (int i = 0; i < list.size(); i++) {

sum += list.get(i).doubleValue();
}
return sum;

}

public static <T extends Number> double sumNumberB(List<T> list) {
double sum = 0;
for (T n : list) {

sum += n.doubleValue();
}
return sum;

}
...

Upper Bounded Wildcard Type

takes Number or
any of it descendant
as a type argumentmethod does not use

the type argument

method use the type
argument

...
public static void main(String[] args) {

List<Integer> ints = Arrays.asList(1, 3, 5);
List<Double> doubles = Arrays.asList(2.2, 4.4, 6.6);

System.out.println(sumNumberA(ints));
System.out.println(sumNumberA(doubles));

System.out.println(sumNumberB(ints));
System.out.println(sumNumberB(doubles));

}

Upper Bounded Wildcard Type

Output:
9.0
13.2
9.0
13.2

public static void addIntegers(List<? super Integer> list, Object obj) {
list.add((Integer) obj);

}

public static <T super Integer> void addIntegersAgain(List<T> list,
Object obj) {

list.add((T) obj);
}
...

Lower Bounded Wildcard Type

takes Integer or
Number or Object
as a type argument

method does not use
the type argument

method use the type
argument

Compile Error!!!

We can not use lower bounded regular type variables!!!

public static void main(String[] args) {
List<Integer> intList = new ArrayList<>();
List<Number> numList = new ArrayList<>();
List objList = new ArrayList();
int a = 5;
addIntegers(intList, a);
addIntegers(numList, a);
addIntegers(objList, a);
Number num = 20;
addIntegers(intList, num);
addIntegers(numList, num);
addIntegers(objList, num);
Object obj = 30;
addIntegers(intList, obj);
addIntegers(numList, obj);
addIntegers(objList, obj);

...

Lower Bounded Wildcard Type

...
System.out.println(intList);
System.out.println(numList);
System.out.println(objList);

}

Output:
[5, 20, 30]
[5, 20, 30]
[5, 20, 30]

