JAVA PROGRAMMING BASICS

Module 2: Java Object-oriented Programming

Training program

Classes and Instances
The Methods
The Constructors
Static Elements
Initialization sections
Package
Inheritance and Polymorphism
Abstract classes and Interfaces
String processing
. Wrapper classes for primitive types
. Exceptions and Assertions
. Nested classes
. Enums
. Generics
. Collections
. Method overload resolution
. Multithreads
. Core Java classes
. Object Oriented Design
. Functional Programming

RN ARWNRE

=
= O

N R R RRRR R @R
CLVLWONOTULDWN

Module contents

Collections
Java Collection Framework, Interfaces
ne Collection Interface
ne |terators
ne List Interface
ne Queue and Deque Interfaces
ne Set Interface
ne Map Interface
ne Collection Class

o i e B e =

K
Module contents

* Collections
~ Java Collection Framework, Interfaces
~ The Collection Interface
" The lterators
~ The List Interface
~ The Queue and Deque Interfaces
~ The Set Interface
~ The Map Interface
~ The Collection Class

=
Java Collection Framework

We group instances of some class into a Collection
to get a convenient way to handle them during iteration.

Collections

1.0 Vector, HashTable

Data Structures 1.2 Collection Framework
5 Generics
Collections 6 Deque, NavigableSet, NavigableMap
util methods 8 Functional programming
‘ 9 Static methods for collection
creating

Algorithms

Java Collection framework. Interfaces 1/3

A collection, as its name implied, is simply an
object that holds a collection (or a group, a
container) of objects.

Each item in a collection is called an element.

A framework, by definition, is a set of interfaces
that force you to adopt some design practices. A
well-designed framework can improve your
productivity and provide ease of maintenance,

It also contains a set of classes that
implements such interfaces

It also contains classes with methods utilizing

common algorithms (sort, search etc.)
|

==
Java Collection Framework Interfaces 2/3

There are four main interfaces in the Java Collections
Framework:

List: A list is an ordered collection of elements that
allows duplicate entries. Elements in a list can be
accessed by an int index.

Set: A set is a collection that does not allow duplicate
entries.

Queue: A queue is a collection that orders its elements
in a specific order for processing. A Deque is a
subinterface of Queue that allows access at both ends.

Map: A map is a collection that maps keys to values,
with no duplicate keys allowed. The elements in a map

are key/value pairs.

since Java 1.2
S —

Java Collection framework. Interfaces 3/3

- Collections

iterator()

paCkage - java-UtiI Iterable<E> > Iterator<E>

1

Col Le_ction(b
Set<E>

SortedSet<E>

List<E> Queue<E> Map<K, V>

A

Deque<E> SortedMap<K, V>

Programming at
these Interfaces Q

NavigableSet<E> NavigableMap<K, V>
) ArraylList HashSet PriorityQueue HashMap
Implementation LinkedList LinkedHashSet ArrayDeque(Deque) HashLinkedMap
Classes Stack TreeSet(SortedSet) LinkedList(Deque) HashTable(sync)

Vector(sync) TreeMap(SortedMap)

K
Module contents

* Collections
~ Java Collection Framework, Interfaces
~ The Collection Interface
" The lterators
~ The List Interface
~ The Queue and Deque Interfaces
~ The Set Interface
- The Map Interface
~ The Collection Class

The Collection interface 1/5

The Collection interface
Is used to pass around
collections of objects
where maximum
generality is desired

No DIRECT
implementations

Subinerfaces List<E>,
Set<E>, Queue<E>
are implemented

Collection

+add(element : Object) : boolean
+addAll(collection : Collection) : boolean
+clear() : void

+contains (element : Object) : boolean
+containsAll(collection : Collection) :
boolean

+equals(object : Object) : boolean
+hashCode() : int

+iterator() : Iterator

+remove(element : Object) : boolean
+removeAll(collection : Collection):
boolean

+retainAll(collection : Collection) :
boolean

+size() : int

+toArray() : Object(]

+toArray(array : Object[]) : Object[]

The Collection interface 1/5

Collection

isEmpty() : boolean

The Collection interface
Is used to pass around
collections Of ObJECtS removelf(Predicate<? super E> filter) :
Where maXImum boolean

genera“ty is desired spliterator() : Spliterator<E>

stream() : Stream<E>

parallelStream() : Stream<E>

The Collection interface 2/5

Basic operations perform on an entire collection

Collection<String> myColl = new ArrayList<>();

myColl.add("aaa");

myCO ac d("bbbb"); myCO| haS'Only
Coll.add("ccecee™): Collection's methods,

Iy ' : ! but not ArrayList!

System.out.printin(myColl);

int sizeOfColl = myColl.size();

System.out.printin(sizeOfColl);

Console output
myColl.clear();

[aaa, bbbb, cccec]

System.out.printin(myColl); 3
myColl.add(null);]
[null]

Collection<String> myColl =

The Collection interface 3/5

new ArrayList<>(),

myCo
myCo
myCo

.add("aaa");
.add("bbbb");
.add("cccecc™);

System.out.printin(myCo
System.out.printin(myCo
System.out.printin(myCo
System.out.printin(myCo
System.out.printin(myCo
System.out.printin(myCo

e
See more examples in Edu Project - CollectionBasicOpsRunnetr...

Console output
[aaa, bbbb, ccccc]
true

false

[aaa, cceec]

true

): false

remove("bbbb")); //myColl changed
.remove("abcd")); //myColl unchange
);
.contains(aaa"));

.contains("bbbb™));

The Collection interface 4/5

Bulk operations perform on an entire Collection
Collection<String> myColl1 = new ArrayList<>();
Collection<String> myColl2 = new ArrayList<>();
myColl1.add("aaa"); myColl1.add("bb");

myColl1.add("c");

myColl2.add("aaa"); myColl2.add("bb");
1.containsAll(myColl2));
1.removeAll(myColl2)); //myColl1

System.out.print
System.out.print

System.out.print

N
N
N

myCo

)
(myCo
(
(myCo

e
See more examples in Edu Project - CollectionBulkOpsRunnet...

1);

Console output //changed

true
true

[c]

The Collection interface 5/5
Collection Interface Array Operations

Collection<String> myColl1 = new ArrayList<>();
myColl1.add("aaa"); myColl1.add("bb"), myColl1.add("c");
Object[] myArrObj = myColl1.toArray();

String[] myArrStr = myColl1.toArray(new String[3]);
System.out.printin(Arrays.toString(myArrODbj));
System.out.printin(Arrays.toString(myArrStr));

Console output
[aaa, bb, c]
[aaa, bb, c]

e
See more examples in Edu Project - CollectionArravOpsRunner...

K
Module contents

* Collections
~ Java Collection Framework, Interfaces
~ The Collection Interface
~ The Iterators
~ The List Interface
~ The Queue and Deque Interfaces
~ The Set Interface
- The Map Interface
~ The Collection Class

Java Collection framework. Interfaces 2/3

- Collections

iterator()
Iterable<E> > Iterator<E>

Collection<E>

package - java.util

_________________ Pim—— d

Programming at
these Interfaces d)

Map<K, V>

List<E> Set<E> Queue<E>
JAN 7A AN

SortedSet<E> Deque<E> SortedMap<K, V>

NavigableSet<E> NavigableMap<K, V>
) Arraylist HashSet PriorityQueue HashMap
Implementation LinkedList LinkedHashSet ArrayDeque(Deque) HashlLinkedMap
Classes Stack TreeSet(SortedSet) LinkedList(Deque) HashTable(sync)

Vector(sync) TreeMap(SortedMap)

= |
public interface java.lang.lterable<T>

public interface Collection<E> extends Iterable<E> { .. }

Modifier and

Method

Description

Type

default void forEach(Consumer |Performs the given action for each
<? super T> action)|element of the Iterable until all

elements have been processed or
the action throws an exception.

lterator<T> iterator() Returns an iterator over elements

of type T.

default Splitera

spliterator()

tor<T>

Creates a Spliterator over the
elements described by
this Iterable.

Since Java 1.5

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Iterable.htmlforEach(java.util.function.Consumer)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Consumer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Iterable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Iterator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Iterable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Iterable.htmliterator()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Spliterator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Iterable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Iterable.htmlspliterator()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Spliterator.html

public interface java.util.lterator<E>

Modifier

and Type

Method

Description

default void

forEachRemaining|(
Consumer<?
super E> action)

Performs the given action for each
remaining element until all elements
have been processed or the action
throws an exception.

boolean hasNext() Returns true if the iteration has more
elements.

E next() Returns the next element in the
iteration.

default void [remove() Removes from the underlying

collection the last element returned
by this iterator (optional operation).

Since Java 1.2

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Iterator.htmlforEachRemaining(java.util.function.Consumer)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Consumer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Iterator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Iterator.htmlhasNext()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Iterator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Iterator.htmlnext()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Iterator.htmlremove()

The Iterators 2/4

B?/ using this iterator object, you can access each
element in the collection

Collection<String> myCol = new ArrayList<>();
myCol.add("aa"); myCol.add("bbb");
myCol.add("cccc"); myCol.add("ddddd");
Iterator<String> itr = myCol.iterator();
while(itr.nasNext()) {
String element = itr.next();
System.out.print(element + " *);

}

=T
The Iterators

Collection<String> myColl = new ArrayList<>
(Arrays.aslList("aa", "bbb", "cccc", "ddddd"));
iterator = myColl.iterator();
System.out.printin(iterator.next()); //aa
System.out.printin(iterator.next()); //bbb
System.out.printin(iterator.next()); //cccc
System.out.printin(iterator.next()); //ddddd
/*java.util.NoSuchElementException*/
System.out.printIn(iterator.next());

It need to re-get the iterator for the collection

The Iterators 3/4

Collection<String> myCol = new ArrayList<>();
myCol.add("aa"); myCol.add("bbb");
myCol.add("cccc”); myCol.add("ddddd");

for (String str: myCol){ no implicit iterator obtaining
myCol.remove(str);

U

}

Exception in thread "main"
java.util.ConcurrentModificationException

The Iterators 4/4

Iterator.remove is the only safe way to modify a
collection during iteration

Collection<String> myCol = new ArrayList<>();
myCol.add("aa"); myCol.add("bbb");
myCol.add("cccc"); myCol.add("ddddd");
Iterator<String> itr = myCol.iterator();

while (itr.hasNext()) { while (itr.hasNext()) {

!tr.next(); itr.remove();
Itr.remove();

\ }
System.out.print(myCol); lllegalStateException

-1
See more examples in Edu Project - IteratorRunner...

K
Module contents

* Collections
~ Java Collection Framework, Interfaces
~ The Collection Interface
" The lterators
~ The List Interface
~ The Queue and Deque Interfaces
~ The Set Interface
~ The Map Interface

~ The Collection Class
The List interface is a collection of ordered elements (for example,
by the order of adding to the collection), which are accessed by

index (positions in the collection).
IS

!
I
I
I
|
1

/ ‘ArrayList! Vector‘|

Java Collection framework. Interfaces 3/3

‘-‘_,.--aa -------
- oo
-

, AbstractCollection

4
¥
4
4

: Abstractlist

I
' I
f |

L
i
1
1
1
1
1
1
'
'
1
I

I

A TS
I

I

i

i

I

I

i

1

- o e - -

- =
i s

- i gy
- -

Iterable<E>
o

iterator()

- |>i Collection<E> I '

...... K N ———

s

S

e i—;[)l List<E> I

|

AbstractSequentiallist

(non-synchronized)

hé"}. ized ZP
(synchronized) Link

edlList f---"--'

’

-
-
-
-
-

|
lQ;ueue<E> l Set<E> |

I Deque<E> lSortedSet<E> |

- lNavigabLeSetd:')I /

-

—— F
Interfaces P

-

1
I
I
]
1
1
]
1
1
]
\
|
1
1
1
]
]
I
T

List implements a mathematical abstraction of the list,
can store the same elements

The List interface 1/12

The List Interface

+add(element : Object) : boolean +lastindexOf(element : Object) : int Vv
+add(index : int, element : Object) : void v +listlterator() : Listlterator v
+addAll(collection : Collection) : boolean +listlterator(startindex : Int) ; Listlterator v/
+addAll(index : int, collection : Collection) 4 +remove(element ; Object) : boolean
boolean +remove(index : int) : Object v/
+clear() : void +removeAll(collection : Collection) :
+contains (element : Object) : boolean boolean
+containsAll(collection : Collection) : boolean +retainAll(collection : Collection) :
+equals(object : Object) : boolean boolean
+get(index : int) : Object v +set(index : int, element ; Object):
+hashCode() : int Object
+indexOf(element : Object) : int +size() : int
+iterator() : Iterator +sublList(fromlndex : int, tolndex : int):
List

- +toArray() : Object([]

v - added in List interface +toArray(array : Object[]) : Object[]

List implementation as ArrayList

1 lterable I
« 1 & Collection =

ST

|
€ = AbstractCollection | | @ % List I

T A A

‘ T = RandomAccess | | (€ = AbstractList I

\

I Serializable | I Cloneable

. A B— .

| |
‘€ = ArraylList

public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable

The List interface 3/12
ArrayList creation

-~ public static void main(String[] arr){
_ist<String> Ist = new ArrayList<String>();
st.add("aa");

st.add("bbb");

st.add("ccec™);

System.out.printin(lst); //[aa, bbb, cccc]

}

- 1]
The List interface - Arraylist creation

List<String> list1 = Arrays.asList("aaa", "bbbb", "ccccc”);
System.out.printin(list1.get(0)); //2a2 Fetttgrniadflgeotl?ze
list1l.set(0, "ddd"); Ist backed by the

. . specified array
listl.add("somestr"); //UnsupportedOperationException

Returns an

/*Since Java 9*/ / unmodifiable list
("aaa", "bbbb", "ccccc");

List<String> list2 = List.of
System.out.printin(list2.get(0)); //aaa

list2.set(0, "ddd"); //UnsupportedOperationException
list2.add("somestr"); //UnsupportedOperationException

listl = new ArrayList<>(Arrays.asList("aaa", "bbbb", "ccccc"));
listl.add("somestr");
list2 = new ArrayList<>(List.of("aaa", "bbbb", "ccccc"));

Iist2.add"'somestr"='i

Creating a List with a Factory

Can add | Can replace | Can delete
Description
elements? | elements? | elements?

Arrays.asList(Returns fixed size list

varargs) backed by an array
List.of(varargs) Returns immutable No No No
list
List.copyOf{(Returns immutable No No No
collection) list with copy of
original collection's
values

List<Integer> fabricList = List.of(1, 2, 3, 4, 5);
List<Integer> forCopyList = new ArrayList<>(fabricList);
forCopyList.add(6);
forCopyList.remove(0);
forCopylList.set(0, 7);
System.out.printIn(forCopyList); //[7, 3, 4, 5, 6]

—
Wrapping immutable list while creating new list make new list mutable

The List interface methods
List<String> list = new ArrayList<>(List.of("aaa", "bbbb", "ccccc", "fff"))
list.add(1, "alalal");
System.out.printin(list); //[aaa, alalal, bbbb, ccccc, fff]
List<String> anotherList = new ArrayList<>();
anotherList.add(0, "eeee");
list.addAll(4, anotherList);
System.out.printin(list); //[aaa, alalal, bbbb, ccccc, eeee, fff]
String s1 = list.get(3);
System.out.printin(s1); //ccccc
list.remove(1);
list.add("aaa");
System.out.printin(list); //[aaa, bbbb, ccccc, eeee, fff, aaal
list.remove("aaa");
/*Remove first element*/

System.out.printin(list); //[bbbb, ccccc, eeee, fff, aaal
—

N
The List interface methods

//[bbbb, ccccc, eeee, fff, aaa]
list.set(2, "bbbb");
System.out.printin(list); //[bbbb, cccce, bbbb, fff, aaa]
int pos1 = list.indexOf("bbbb");
System.out.printin(posl1); //0
int pos2 = list.lastindexOf("bbbb");
System.out.printin(pos2); //2
List<String> sublist = list.subList(1, 4);
System.out.printin(sublist); //[cccece, bbbb, fff]

The List interface methods
... //[bbbb, ccccc, bbbb, fff, aaa]
list.replaceAll(new ListStringUnaryOperator());
System.out.printin(list); //[4bbbb4, ccccc, 4bbbb4, fff, aaal

static class ListStringUnaryOperator implements UnaryOperator<String>{
@OQverride
public String apply(String t) {
String s;
if (t.length() ==4) {
s=4+t+4
} else {
s=1;
}

return s;

} public void replaceAll (UnaryOperator<E> operator)

ILIIIIIIIIIIIIIIIIIIIIIII

N
The List interface methods

... //[4bbbb4, ccccc, 4bbbb4, fff, aaa]

list.sort(null);
System.out.printIn(list); //[4bbbb4, 4bbbb4, aaa, ccccc, fff]]

list.sort(new StringLengthComparator());
System.out.printin(list); //[aaa, fff, ccccc, 4bbbb4, 4bbbb4]

static class StringLengthComparator implements Comparator<String> {
@Override
public int compare(String o1, String 02) {
return ol.length() - o2.length();
}
}

N
The Listlterator interface methods

... //[aaa, fff, ccccc, 4bbbb4, 4bbbb4]
Listlterator<String> listlterator = list.listlterator();
/*Iterator in foreach cycle*/ alternative while cycle
for (listlterator = list.listlterator(); listlterator.hasNext();) {
String element = listlterator.next();
System.out.print(element+" "); //aaa fff ccccc 4bbbb4 4bbbb4

}
System.out.printin();

/*Iteration in reverse direction*/

listlterator = list.listlterator(list.size());

while (listlterator.hasPrevious()) {
System.out.print(listlterator.previous() + " ");

} //4bbbb4 4bbbb4 ccccc fff aaa

System.out.printin();
-
public interface Listlterator<E> extends Iterator<E>

=
The Listlterator interface methods

List<String> list = new ArrayList<>(Arrays.asList("aaa", "bbbb", "ccccc",
"bbbb", "fff"));

Listlterator<String> listlterator = list.listlterator();

listlterator.add("ggg");

System.out.printin(list); //[ggg, aaa, bbbb, ccccc, bbbb, fff]

String s2 = listlterator.previous(); //ggg

// s2 = listlterator.previous(); //NoSuchElementException

listlterator.remove();

System.out.printin(list); //[aaa, bbbb, ccccc, bbbb, fff]

int prevldx = listlterator.previousindex();

System.out.printin(prevldx); //-1 -index out-of-bounds

int nextldx = listlterator.nextIndex();

System.out.printin(nextldx); //0 - beginning of the list

int nextldx1 = listlterator.nextIndex();

System.out.printin(nextldx1); //0

-
public interface Listlterator<E> extends Iterator<E>

N
The Listlterator interface methods

String s3 = listlterator.next();

System.out.printin(s3); //aaa

System.out.printin(list); //[aaa, bbbb, ccccc, bbbb, fff]
listlterator = list.listlterator(2);

String s7 = listlterator.next();

System.out.printin(s7); //ccccc

listlterator.set("eeee");

System.out.printin(list); //[aaa, bbbb, eeee, bbbb, fff]

String s8 = listlterator.next();

System.out.printin(s8); //bbbb

String s9 = listlterator.next();

System.out.printin(s9); /[fff

int nextldx2 = listlterator.nextIndex(); //index after the last element
System.out.printin(nextldx2); //5 - returns the size of the list

int nextldx3 = listlterator.nextindex(); //fetching the index further
mmtnnextwd); //5 - returns the size of the list

N
The List inner work

public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable {

private static final int DEFAULT_CAPACITY = 10;

/**

* The array buffer into which the elements of the ArrayList are stored.
*/
transient Object[] elementData;

/**

* The size of the ArrayList (the number of elements it contains).
*/

private int size;

The List interface 4/12

* ArraylList
1 LiSt<String> myL|St = new Arl’ayLISt<>();

elementData = {}, size=0, capacity=0

’. myList.add("0"); size=1, capacity=10

0 1 2 3 4 o & 7 g8 9

null | null | null | null | null | null | null | null null

The List interface 5/12

- Arraylist

1. myList.add("1");

2. ..

2. mylList.add("9"); | ™" | ™| "

!13’! H4i1 ”5,, ”E?! ll?” ”8!! ‘ ”91, |

‘. mylList.add("10");
5 s\\ 8

0 1 2 3 4 9 10 1 12 13 14 15
Hu” ”1 ” 152” ”3” 1!4” }!5’, HE'II ”7” %,\ ”9“ nu“ nu“ nu“ nu“ nu" nu" |
\ e
N
Hn” H-'l ” ”2'” "3” ’?4” 5!5,! HE’! !I?I, Hs’! Hg'ﬂ | 1’1 05, | nu“ nu“ nu“ nu“ nu"

newCapacity = o
15 22 33 ...

dCapacity + (o

dCapacity >> 1)

- 1]
The List Interface methods implementation

public boolean add(E e) {
modCount++;
add(e, elementData, size);
return true;
}
private void add(E e, Object[] elementData, int s) {
if (s == elementData.length)
elementData = grow();
elementData[s] = e;
size=s+1;
}
private Object[] grow() {
return grow(size + 1);

)

The List Interface methods implementation
private Object[] grow(int minCapacity) {

return elementData = Arrays.copyOf(elementData,
newCapacity(minCapacity));
}
private int newCapacity(int minCapacity) {
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity <=0) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
return Math.max(DEFAULT_CAPACITY, minCapacity);
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return minCapacity;

}
return (newCapacity - MAX_ARRAY_SIZE <= 0) ? newCapacity

m(minCapacity); }

The List interface 6/12

myList.add("14");

0 1 2 3 4 1] 6 12 1 14 15

”0” ”1 7” ”’2" ”3” ”4” ”5” HG” ”‘? 7 ”8” !’9” ”1 0” ”1 1 L1 !!1 2’! ”1 3!3 !!1 4!! nu"
* 1 1] iy,
myList.add(5, "100");

0 1 2 3 4 i 6 7 8 9 10 1 12 13 14 15
ﬂ“” ”1 L1 ”2” ”3” ”4” 555” !’5!! “6” H?” ”8” 119” ”1 n’l H1 1 L] ”1 2” !71 3” !,1 4_”
0 1 2 3 4 i 6 7 8 9 10 1" 12 13 14 15

v
H“” ”1 % ”‘2” ’33” ”4” ”1 0 o” 515” !16” l!?” !18” !19” ”1 0” ”1 1 EL] ”1 2” 171 3” ”1 4”

=
The List Interface methods implementation

public void add(int index, E element) {
rangeCheckForAdd(index);
modCount++;
final int s;
Object[] elementData;
if ((s = size) == (elementData = this.elementData).length)
elementData = grow();
System.arraycopy(elementData, index,
elementData, index + 1,
s - index);
elementData[index] = element;
size=s+1;

_—
See Edu Project ArraylListinnerWork...

|
The List Interface

0 1 2 3 4 5 6
“White” | “Black” “Red” “White” | “Yellow” “Red” “White”
remove(3)
Y
“White” “Black” “Red” “Yellow” “Red” “White” —3 After remnrn:_;j ﬂ'u; element
0 1 2 3 4 5

() wiresource.com

=
The List Interface methods implementation
public E remove(int index) {
Objects.checkindex(index, size);
final Object|[] es = elementData;
@SuppressWarnings("unchecked")
E oldValue = (E) es[index];
fastRemove(es, index);
return oldValue;

}
private void fastRemove(Object[] es, int i) {
modCount++;
final,jnt newsize; src array Src array position
if ((newSize = size - 1) >Ki)/ . length
System.arraycopy(es, i + 1, es, iQWSize - i);
} es[size = newSize] = nu”"dst/:rray dst array position

_—
See Edu Project ArraylListinnerWork...

The Arraylist class

ArrayList<String> list = new ArrayList<>();

list.add("aaa");

System.out.printIn("size=" + list.size() + ", capacty="+
ArrayListinnerWork.getCapacity(list));

list.trimToSize();

System.out.printin("size=" + list.size() + ", capacty="
+ ArrayListinnerWork.getCapacity(list));

list.ensureCapacity(3);

System.out.printin("size=" + list.size() + ", capacty=" +
ArrayListinnerWork.getCapacity(list));

static int getCapacity(ArrayList<?> list) throws Exception
is the ArrayListinnerWork Reflection method in

Educational Project

—_————
See more examples in Edu Project - ArravListRunner...

The Arraylist class

public void trimToSize() {
modCount++;
if (size < elementData.length) {
elementData = (size == 0)
? EMPTY _ELEMENTDATA
: Arrays.copyOf(elementData, size);

I 4@
List implementation as LinkedList

lterable
T extends
Collection
fextends
List Queue
Y
! implements Textends
AbstractSequentialList Deque
A
extends | implements
| 1
LinkedList

The List interface 7/12

A linked list is a data structure in which data is
stored in structures called nodes and every node
has a pointer to the next node in the list

it Single Linked List

=" NULL

NULL ~=eh | :r:: 7 Zl: 3 :j:;‘: 1 =|='->NULL

HEAD node

The List interface 8/12

List<String> Ist = new LinkedList<String>();
st.add("aa");
st.add("bbb");
st.add("cccc™),
System.out.printin(Ist);
String str = Ist.get(0);

System.out.printin(str); Console output
Ist.add(1,"test"); [aa, bbb, cccc]

System.out.printin(Ist); dd
[aa, test, bbb, cccc]

The LinkedList specific methods

LinkedList<String> linkedList = new LinkedList<>(Arrays
.asList("ltem1”, "ltem2", "Item3", "ltem4", "ltem5"));
System.out.printin(linkedList); //[ltem1, Item2, Item3, Item4, ltem5]
linkedList.addFirst("First ltem");
linkedList.addLast("Last Item");
System.out.printin(linkedList); //[First Iltem, Item1, ltem?2, l[tem3,
//ltem4, ltem5, Last Item]
System.out.printin(linkedList.getFirst()); //First Item
System.out.printin(linkedList.getLast()); //Last ltem
System.out.printin(linkedList); //[First Item, Item1, ltem?2, Item3,
//ltem4, Item5, Last Item]
System.out.printIn(linkedList.removeFirst()); //First [tem
System.out.printin(linkedList.removelast()); //Last ltem
System.out.printin(linkedList); //[ltem1, Item?2, [tem3, Item4, [tem5]

The LinkedList specific methods

Iterator<String> desclterator = linkedList.descendinglterator();
while (desclterator.hasNext()) {
String s = desclterator.next();

System.out.print(s +" "); //1tem5 Item4 Item3 Item?2 ltem1
}

System.out.printin();
//Additional methods for queues
String s1 = linkedList.element(); //does not remove == getFirst()
System.out.printin(s1); //Iltem1
boolean b = linkedList.offer("ltem6"); //== add(e)
System.out.printin("b="+b +", " + linkedList); //b=true, [Iltem1,
//ltem2, ltem3, Item4, Item5, Item 6]
boolean b1 = linkedList.offerFirst("ltem0"); //==addFirst(e)
boolean b2 = linkedList.offerLast("Item7"); //==addlast(e)
System.out.printin(linkedList); //[ItemO, ltem1, Item?2, ltem3, Item4,
s //1tem5, Ttemb, Ttem7/]

The LinkedList specific methods

System.out.printin(linkedList.peek()); //gets 1st elem, doesn't remove
System.out.printin(linkedList.peekFirst()); //Item0 == peek()
System.out.printin(linkedList.peekLast()); //gets last elem, doesn't
//remove
System.out.printin(linkedList); //[ltemO, Item1, [tem2, [tem3, ltem4,
//ltem5, Item6, Item7] - not remove
System.out.printin(linkedList.poll()); //gets 1st elem, removes it
System.out.printin(linkedList.pollFirst()); //Item1 == poll()
System.out.printin(linkedList.pollLast()); //gets last elem, removes it
System.out.printIn(linkedList); //[ltem2, Item3, ltem4, ltem5, Item6]
System.out.printin(linkedList.pop()); //gets 1st elem, removes it
System.out.printin(linkedList); //[Item3, [tem4, Item5, Item6]
linkedList.push("ltem2"); //adds 1st elem

System.out.printin(linkedList); //[ltem2, Item3, Item4, Item5, Item6]
-

The LinkedList specific methods

Add element Add element Get element from Get element

to start of list to end of list start of list from end of list

throws NoSuchElementException
for empty list

void addFirst(Ee) void addLast(E e) E getFirst() (Deque) E getlLast()
Element

(Deque) (Deque) E element() (Queue) (Deque)
does not -
emove returns null for empty list

from boolean offerFirst(E boolean offer(E e) E peek() E peekLast()

the list e) (Queue) (Queue) (Deque)

(Deque) boolean offerLast(E e) E peekFirst()

void push(E e) (Deque) (Deque)

(Deque)
throws NoSuchElementException
for empty list
E remove() (Queue) E removelast()
E removeFirst() (Deque)
(Deque)
E pop() (Deque)
returns null for empty list
E poll() (Queue) E pollLast()
E pollFirst() (Deque) (Deque)

Element
removes
from
the list

LinEedList inner work

public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable {

transient int size = 0;
transient Node<E> first;
transient Node<E> last; node

private static class Node<E> {

E item;
next node
Node<E> next; <
Node<E> prev; < orevious
Node(Node<E> prev, E element, hode
Node<E> next) {...}
ik

1

The List interface 9/12

+ List<String> list = new LinkedList<>();

assert (size == 0)
— ? (first == null && last == null)

— 1 (first.prev == null && last.next == null);

- list.add("0™);

0 first = last

LinEedList inner work

public boolean add(E e) {
linkLast(e);
return true;

}
void linkLast(E e) {

final Node<E> | = last;

final Node<E> newNode = new Node<>(l, e, null);

last = newNode; \

If (| —— nuII) prev. next
. node node
first = newNode;

else
|.next = newNode;

Size++;

modCount++;

—

The List interface 10/12

+ list.add("1");

first Iast
list
first Iast
list

r '

LinEedList inner work

public void add(int index, E element) {
... if (index == size)
linkLast(element);

y3en, nocne
else -
KOTOpOro

linkBefore(element, node(index)); BCTaBKa
} /

void linkBefore(E e, Node<E> succ) {
final Node<E> pred = succ.prev;
final Node<E> newNode = new Node<>(pred, e, succ);

succ.prev = newNode; \ \
chep,

if (pred == null) npea.

first = newNode; ysen y3en
else

pred.next = newNode;
size++; modCount++; }

The List interface 11/12

- list.add(1, "100");

last

last

The List interface 12/12

+ list.remove("100"); .

last

EmkedLlst inner work

public boolean remove(Object o)
if (0 == null) {
for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null) {
unlink(x);
return true;
}
}

} else {
for (Node<E> x = first; x != null; x = x.next) {
if (0.equals(x.item)) {
unlink(x);
return true;
}
}

_

return false: }

f,r{ﬂzedList inner work

E unlink(Node<E> x

// assert x = null;
final E element = x.item;
final Node<E> next = x.next;
final Node<E> prev = x.prev;
if (prev == null) {

first = next;
} else {

prev.next = next;

x.prev = null;

}
if (next == null) {
last = prev; X.item = null;
} else { size--;
next.prev = prev; modCount++;

x.next = null: return element;
_————————

b

ArraylList and LinkedList Performance Comparison

Start The list End Homogeneous
of the list middle of the list in the list

K
Module contents

* Collections
~ Java Collection Framework, Interfaces
~ The Collection Interface
" The lterators
~ The List Interface
~ The Queue and Deque Interfaces
~ The Set Interface
- The Map Interface
~ The Collection Class

The Queue Interface 1/6

-

-
e -
-

-

o
.-'-"-- = ";
=T AbstractCollection -:t. ---------- hmmmmm———
- T
o 7% 1, S
£ 1 i
Pl | \ ; I
! -
/| Abstractlist [AbstractQueue [[-=%""""" ftﬁ Queue<E>
J . ~. H T
S Wit F N -

-
-

Iterable<E>

AN

- -
- £l
-

—> Iterator<E> E

iterator()

Collection<E>

L /

- i

I ! '

| List<E> | Set<E> |
"'15?"'J \

4
s
i
¢

-
-
- -
-

) 1
L]]
AbstractSequentiallist PFiDFi‘t}!QUEUE| ArrayDeque |-:-"{? Deque<E> SortedSet<E> \
' i
i . [
= - S
% - - - - [
v, LinkedList } -------------------- SISy ;

The Queue interface 2/6

The Queue

The first element that is inserted is the first to be
removed

Often referred to as First-in First-out (FIFO)
collection

The Deque is a linear collection that supports
element insertion and removal at both ends

B
Queue vs Deque

E peek() ets, doesn't remove
E element() gets, boolean offer(E e)
Queue

Take Insert
here here

Head Tail
E poll()
E remove() gets, remove
ets,

E peekFirst() \ E peekLast() s .

) gets, doesn't remove E getlast() doesn't remove
E getFirst()

Deque

void addFirst(E e)
boolean offerFirst(E e)
void push(E e)

void addLast(E e)
boolean offerLast(E e)

=
The Queue interface methods

boolean add(E e) -> linkLast(e); LinkedList implementation
return true;
boolean offer(E e); ->return add(e);

E element() -> return getFirst();
E peek(); -> final Node<E> f = first; | remain in
return (f == null) ? null : f.item; the queue
E poll(); -> final Node<E> f = first; S
return (f == null) ? null : unlinkFirst(f);. "€M°Ved
E remove(); ->return removeFirst(); from the
| queue
public E getFirst() { public E removeFirst() {
final Node<E> f = first; final Node<E> f = first;
if (f == null) if (f == null)
throw throw

new NoSuchElementException(); new NoSuchElementException();

er urn f.item; return unlinkFirst(f); }

N
The Queue interface methods

private E unlinkFirst(Node<E> f) { LinkedList implementation
// assert f == first && f = null;
final E element = f.item;
final Node<E> next = f.next;
f.item = null;
f.next = null; // help GC
first = next;
if (next == null)
last = null;
else
next.prev = null;
size--;
modCount++;
return element;

The Queue interface 3/6

Queue<String> g = new LinkedList<>();
g.add("aa"); g.add("bbb");

g.add("cccc”); g.add("dddddd™);

System.out.print
System.out.print
System.out.print
System.out.print
System.out.print

g.remove();
g.remove();

n(c
n(q.
n(Q
n(Q

n(Q

);

remove());
.remove());
.remove());

);

NoSuchElementException!!!

Console output

[aa, bbb, cccc, dddddd]
aa

bbb

cccc

[dddddd]

The Queue interface 4/6

Queue<String> g = new LinkedList<>();

g.offer("aa"); g.offer("bbb");
g.offer("cccc"); g.offer("dddddd™);

System.out.printin(q);
System.out.printin(qg.poll());
System.out.printin(qg.poll()); Console output
System. out.printin(qg.poll()); [aa, bbb, cccc, dddddd]
System.out.printin(q); aa
q.poll(); bbb
System.out.printin(q.poll()); cece

[dddddd] null

See Edu Project QueueRunner...

The Deque interface 5/6

Stack void push(E e) E pop()
Elements are stored in
order of insertion and the pusm ﬂp()
elements are removed in
reverse order

top

Often referred to as a Last-
in First-out (LIFO) collection

The Deque interface -
stack implementation

Deque<String> stack= new LinkedList<>();
stack.push(”aaa");

stack.push("bbbb");
stack.push("ccccc");
Systen.out.println(stack); //[ccccc, bbbb, aaa]

System.out.print
System.out.print
System.out.print
System.out.print

n(stac
n(stac
n(stac
n(stac

K.pop()); //cccee
K.pop()); //bbbb
.pop()); //aaa

K.pop());

java.util.NoSuchElementException

See Eau I’roject DequeRunner and StackRunner...

K
Module contents

* Collections
~ Java Collection Framework, Interfaces
~ The Collection Interface
" The lterators
~ The List Interface
~ The Queue and Deque Interfaces
~ The Set Interface
- The Map Interface
~ The Collection Class

The Set interface 1/6

A Set is a Collection that cannot contain duplicate
elements

Set interface models the mathematical set abstraction.

The Set interface contains only methods inherited from
Collection and adds the restriction that duplicate elements
are prohibited.

Set also adds a stronger contract on the behavior of the
equals and hashCode operations, allowing Set instances to
be compared meaningfully even if their implementation
types differ.

Two Set instances are equal if they contain the same
elements.

The Set interface 2/6

—— o E o o B
._._.---——J-'-—-"_'- ——
-

- Iterable<E> ——> Iterator<Ex

JUDU e LN iterator()
..-""". ."'-.. ’ !
% # -
s AbstractCollection =% ---=--==-=--=-=t-—=--- [> Collection<E> S
r 1 i f
L 3
S FE
.fj I / I i | ri
r:’ AbstractSet [~~~ 1:— T ','[> Set<E> | List<E> | Queue<E> .
. ! I
J: tf\l_\‘ xh"'- " zil ﬁil :
| | | I !
.'; HashSet |l inkedHashSet EnumSet | SortedSet<E> | Deque<t> 1;’
' 7y ﬁ:\—\ -
\1. ot I i __.-“J
% & 1 L=
. TreeSet ~-------------z-<2---[% NavigableSet<E> | T
S e -1\ -_.."'
R - Interfaces

Set Implementation

The Set interface 3/6

HashSet no guarantees concerning the order of iteration
Set<String> mySet = new HashSet<>();
mySet.add("aaa"); //returns true
mySet.add("bbbb"); //returns true
mySet.add("bbbb"); //returns false
mySet.add("aaa"); //returns false
mySet.add("cccec"); //returns true
mySet.add("a"); //returns true

mySet.add("cc"); //returns true| Console output
System.out.printin(mySet); [bbbb, aaa, cccceg, a, cc]

e |
See Edu Project HashSetRunner and Student...

/]

/]
/]

/]
/]

Immutable and Mutable Sets

Set<Character> lett = Set.of('z', '0', '0'); //duplicate element: o
Set<Character> letters = Set.of('z', '0');
System.out.printin(letters); Z, O]
letters.add('!"); //UnsupportedOperationException
letters.remove('z'); //UnsupportedOperationException

Set<Character> copy = Set.copyOf(letters); .~ Immutable

System.out.printin(copy); //lz, o]
copy.add('!"); //UnsupportedOperationException
copy.remove('z'); //UnsupportedOperationException

Set<Character> mutSet = new HashSet<>(letters);
System.out.printin(mutSet); //[z, o]

mutSet.add('!"); Mutable
mutSet.remove('z');

System.out.printin(mutSet); //[!, o]

N
The Set interface - HashSet inner work

public class HashSet<E> extends AbstractSet<E> implements Set<E>,

Cloneable, java.io.Serializable {

private transient HashMap<E,Object> map;

// Dummy value to associate with an Object in the backing Map
private static final Object PRESENT = new Object();

public boolean add(E e) {
return map.put(e, PRESENT)==null;

public boolean remove(Object o) { Inner work will be
return map.remove(o)==PRESENT; explored for Map<K,v>

—

The Set interface 4/6

TreeSet orders its elements based on their values
Set<String> mySet = new TreeSet<>();
mySet.add("aaa"); //returns true
mySet.add("bbbb"); //returns true
mySet.add("bbbb"); //returns false
mySet.add("aaa"); //returns false
mySet.add("ccccc");//returns true
mySet.add("a"); //returns true

mySEt.add("cc");//rEtU rns true Console output
System.out.printin(mySet); |[a, aaa, bbbb, cc, cccec]

See Edu Project TreeSetRunner and Student...

N
The Set interface - TreeSet inner work

public class TreeSet<E> extends AbstractSet<E>

implements NavigableSet<E>, Cloneable, java.io.Serializable {

private transient NavigableMap<E,Object> m;

// Dummy value to associate with an Object in the backing Map
private static final Object PRESENT = new Object();

public boolean add(E e) {
return m.put(e, PRESENT)==null;

public boolean remove(Object o) {
return m.remove(o)==PRESENT;

—

The SortedSet interface

public interface SortedSet<E> extends Set<E> {
Comparator<? super E> comparator();
SortedSet<E> headSet(E toElement);
SortedSet<E> tailSet(E fromElement);
SortedSet<E> subSet(E fromElement, E toElement);
E first();
E last();
default Spliterator<E> spliterator() {...}

stores elements in sorted form (sort ascending)

=
See Edu Project SortedSetRunner...

-7
The NavigableSet interface
public interface NavigableSet<E> extends SortedSet<E> {

Iterator<E> descendinglterator();

NavigableSet<E> descendingSet();

NavigableSet<E> subSet(E fromElement, boolean fromlInclusive,
E toElement, boolean tolnclusive);

NavigableSet<E> headSet(E toElement, boolean inclusive);

NavigableSet<E> tailSet(E fromElement, boolean inclusive);

E floor(E e);

E ceiling(E e); allows to retrieve

E Icfwer(E e); elements based on

E higher(E e); their values

E pollFirst();

E pollLast(); since Java 6

—

See Edu Project NavigableSetRunner...

The Set interface 5/6

LinkedHashSet elements based on the order in which
they were inserted

Set<String> mySet = new LinkedHashSet<>();
mySet.add("aaa");
mySet.add("bbbb");
mySet.add("bbbb");
mySet.add("aaa");
mySet.add("ccccc™);
mySet.add("a");

mySet.add("cc"); Console output
System.out.printin(mySet); [aaa, bbbb, ccccc, a, cc]

7
See Edu Project LinkedHashSetRunner...

-]
The Set interface - LinkedHashSet inner work

public class LinkedHashSet<E> extends HashSet<E>
implements Set<E>, Cloneable, java.io.Serializable {

NO INNER WORK - EXTENDS HashSet

The Set interface 6/6

Constructs a new set containing the elements in the
specified collection

List<String> myList = new ArrayList<>();
myList.add("aaa");

myList.add("bbbb");

myList.add("bbbb");

myList.add("aaa");

myList.add("cccec");

Set<String> mySet = new HashSet<>(myList);
System.out.printin(myList);
System.out.printin(mySet);

K
Module contents

* Collections
~ Java Collection Framework, Interfaces
~ The Collection Interface
" The lterators
~ The List Interface
~ The Queue and Deque Interfaces
~ The Set Interface
- The Map Interface
~ The Collection Class

The Map interface 1/13

AbstractMap |---- > Map(K, V)
7 A

SortedMap (K<V)

NavigableMap (K, V)

| | | | TA
HashMap Hashtable EnumMap TreeMap |-----

{nnn—syrfwi;hmnized} (synchronized)

L inkedHashMap Map Implementation

@@= 171
The Map interface abstract methods

public interface Map<K, V> {
boolean containsKey(Object key);
boolean containsValue(Object value);
Set<Map.Entry<K, V>> entrySet();
V get(Object key);
Set<K> keySet();
V put(K key, V value);
void putAll(Map<? extends K, ? extends V> m);
V remove(Object key);
Collection<V> values();

... default and static methods

}

The Map interface 2/13

The HashMap

Map<String, Integer> hm = new HashMap<>();
nm.put(“one”, 1);

nm.put("two", 2);
nm.put(“three”, 3);
System.out.printin(hm);

int x = hm.get("two"); console output

See Edu Project HashMapRunner...

@@= 171
Getting Values Safely

The get() method returns null if the requested key is not
in the map.

Sometimes you prefer to have a different value returned.

public default V getOrDefault(Object key, V defaultValue)

Map<Character, String> map = new HashMap<>();

map.put('x’, "spot");

System.out.printIn("X marks the " + map.get('x'));
System.out.printin("X marks the " + map.getOrDefault('x', ""));
System.out.printIn("Y marks the " + map.get('y'));
System.out.printIn("Y marks the " + map.getOrDefault('y', ""));

Since Java 8

*1

Factory methods to create Map

/*Inconvenient way - Passing keys and values is harder to read

because you have to keep track of which parameter is which*/

Map<String, String> fabrMap = Map.of("key1", "valuel”, "key2",

"value2");

/*Convenient way*/

Map<String, String> fabricMap = Map.ofEntries(
Map.entry("keyl", "valuel™
Map.entry("key2", "value2"));

System.out.printin(fabricMap); //{keyl=valuel, key2=value2}

// fabricMap.put("key3", "value3"); UnsupportedOperationException
// fabricMap.remove("key1"); //UnsupportedOperationException
// fabricMap.replace("key2", "abc"); //UnstypportedOperationException

Immutable map
Map<String, String> copyMap = Map.copyOf(fabricMap);

System.out.printin(copyMap); //{keyl=valuel, key2=value2}
// copyMap.put("key3", "value3"); //UnsupportedOperationException

éé cowl\/lag.remove“"keyl"); //UnsupportedOperationException
copyMap.replace("key2", "abc"); //UnsupportedOperationException

- 1]
Factory methods to create Map

Map<String, String> mutMap = new HashMap<>(fabricMap);

System.out.printin(mutMap); /{keyl=valuel, key2=value2}
mutMap.put("key3", "value3");
Mutable map

mutMap.remove("keyl");
mutMap.replace("key2", "abc");
System.out.printin(mutMap); //{key2=abc, key3=value3}

The Map interface 3/13

Map<String, Strlng> hashmap = new HashMap<>();

array of bucket

public class HashMap<K,V/Z/ extends AbstractMap<K,v>

implements Map<K,V/>, Cloneable, Serializable {

1

2

3

4

null

null

null

null

null

13

14

15

transient Node<k, \/>[] table;

static class Node<K, V> implements Map.Entry<K, V> {

s

{
final K key;
V value;
Node<kK, /> next;
final int hash;
s

null

null

null

The Map interface

size - number of HashMap elements
capacity - size of Node<K, V> array (initial = 16, max =1 073 741 824);

loadFactor - the measure that decides when to increase the capacity
of the Map, the default value is 0.75;

threshold - the maximum number of elements at which
the Node<K, V> array size is doubled. It is calculated by the formula
(capacity * loadFactor) - default is 16 * 0.75 = 12;

The Map interface 4/13

1. hashmap.put("0", "zero");

0 1 2 3 4 13 14 15

$
null | null | null \ . 2 null | null | nul
\

length

N—

static int’ indexFor(int ﬁ, int Ienwgth)

{
}

return h & (length - 1); i=51 & 15=3

The Map interface 5/13

* hashmap.put(key”, "one");

0 1 2 3 4 13 14 15

null | null | null I null S o [null null

i= 99486 & 15=14

The Map interface 6/13

__—|value can be arbitrary
* hashmap.put(null, null);

0 1 2 3 4 13 14 15

null 1 null } o Z null 1 null

static final int hash(Object key) { i—0& 15=0
int h;
return (key == null) ? 0 : (h = key.hashCode()) * (h >>> 16);

The Map interface 7/13

* hashmap.put(“idx”, "two");

0 1 2 3 4 13 14 15

I null null‘ I null 3{ null 1 null

i=101603 & 15=3
if (newKey != oldKey) - collision

else {replace oldValue by newValue}

The Map interface 8/13

0 1 2 3 4 13 14 15

T » 3 Z » " Default initial capacity: 16
I I S] Default load factor : 0.75
Threshold = capacity* load factor

o

I null | null I null I null

i=101603 & 31=3 i=51 & 31=19 i=98486 & 31=30

The Map interface 11/13

LinkedHashMap<String, Integer> hm = new LinkedHashMap<>();

hm.put("one", 1);

hm.put("two", 2);

hm.put("tree”, 3);

hm.put("four"”, 4);

hm.put("five"”, 5);
Iterator<Map.Entry<String, Integer>> itr1 =
hm.entrySet().iterator();

while (itr1.hasNext()) {

Map.Entry<String,Integer> entry = itr1.next(),

Console output

one=1
two =2
tree =3
four=4
five=5

System.out.printin(entry.getKey() + " =" + entry.getValue());

}

The Map interface 9/13

- LinkedHashMap - defines the iteration ordering, which
is normally the order in which keys were inserted

- Map<Integer, String> hm = new LinkedHashMap<>();

linkedHashMap HashMapS$Entry

null | null | null | null | null S i Z null | null | null

0 1 2 3 4 13 14 15

The Map interface 10/13

1. linkedHashMap.put(1, "obj1");
2. linkedHashMap.put(15, "obj15");

HashMap$Entry
linkedHash
_Mﬂ)- null 1 null | null | null 3 . i null | null | |
0 2 3 4 13 14

The Map interface 13/13

Map<String, Integer> hm = new TreeMap<>();

NIMm.
NMm.
1M
NMm.

NMm.
NMm.

out(“ee”, 5);
out(“cc”, 3);
out("aa”, 1);
out("bb", 2);

.put("dd", 4):

out("ff", 6);

console output

{aa=1, bb=2, cc=3, dd=4, ee=5, ff=6}
4

System.out.printin(hm);
int x = hm.get("dd");
System.out.printin(x);

See Edu Project TreeMapRunner...

The Map interface 12/13

TreeMap - red-black tree based Map implementation.

keys of all left descendants
<=k < keys of all right descendants

by keys comparing

00— 1
TreeMap class

public class TreeMap<K,V> extends AbstractMap<K,V>
implements NavigableMap<K,V>, Cloneable, java.io.Serializable {

static final class Entry<K,V> implements Map.Entry<K,V> {
K key;

V value;

Entry<K,V> left;

Entry<K,V> right;

Entry<K,V> parent;

boolean color = BLACK; //true, RED=false

K
Module contents

* Collections
~ Java Collection Framework, Interfaces
~ The Collection Interface
" The lterators
~ The List Interface
~ The Queue and Deque Interfaces
~ The Set Interface
- The Map Interface
~ The Collection Class

The Collections class 1/6

The java.util.Collections class consists exclusively
of static methods that operate on or return
collections

It contains polymorphic algorithms that operate
on collections, "wrappers", which return a new
collection backed by a specified collection

The methods of this class all throw a
NullPointerException if the collections or class
objects provided to them are null.

The Collections class 2/6

Adds all of the specified elements to the specified collection
addAll(Collection<? super 7> ¢, T... elements)

Sorts the specified list into ascending order
sort(List<T> list)
sort(List<T> list, Comparator<? super T> ¢)

Swaps the elements at the specified positions in the
specified list
swap(List<?> list, int i, int j)

The Collections class 3/6

List<String> list = new ArrayList<String>();
Collections.addA/[list,"bb","a","ff","cc","b","d");
System.out.printin(list);
Collections.sortlist);

)

I
.
I

Collections.reverse(list); a, b, bb, cc, d, ff]
System.out.printin(list); bb, b, 3, cc, d, ff
Collections.shuffle(list); t[ff, d, cc, a, b, bb]
System. out.printin(list); -[d, bb, 3, cc, b, ff]

System.out.printin(list

Collections.swap(list,0,2); Console output

System.out.printin(ist);\“jbb, a, ff, cc, b, d]
\

The Collections class 4/6

Returns an unmodifiable view of the specified

collection

unmodifia
unmodifia
unmodifia
unmodifia
unmodifia
unmodifia

eCollection(Collection<? extends T>)
eList(List<? extends T> list)

eMap(Map<? extends K,? extends V> m)
eSet(Set<? extends T> s)
eSortedMap(SortedMap<K,? extends V> m)
eSortedSet(SortedSet<T> s)

The Collections class 5/6

List<String> myList = new ArrayList<String>();

myList.add("aaa");

myList.add("bbbb");

myList.add("ccccc™);

List<String> readOnlyList =
Collections.unmodifiableLisq(myList);

readOnlyList.add("fff");

Exception in thread "main" java.lang.UnsupportedOperationException
at java.util.CollectionsSUnmodifiableCollection.add

The Collections class 6/6

Returns a synchronized (thread-safe) collection
backed by the specified collection

synchronizedCollection(Collection<T> ¢)
synchronizedList(List<T> list)
synchronizedMap(Map<K,\V> m)
synchronizedSet(Set<T> s)
synchronizedSortedMap(SortedMap<K,\V> m)
synchronizedSortedSet(SortedSet<T> s)

7
See Edu Project CollectionsRunner...

