

1. Classes and Instances
2. The Methods
3. The Constructors
4. Static Elements
5. Initialization sections
6. Package
7. Inheritance and Polymorphism
8. Abstract classes and Interfaces
9. String processing
10. Wrapper classes for primitive types
11. Exceptions and Assertions
12. Nested classes
13. Enums
14. Generics
15. Collections
16. Method overload resolution
17. Multithreads
18. Core Java classes
19. Object Oriented Design
20. Functional Programming

• Collections
⁻ Java Collection Framework, Interfaces
⁻ The Collection Interface
⁻ The Iterators
⁻ The List Interface
⁻ The Queue and Deque Interfaces
⁻ The Set Interface
⁻ The Map Interface
⁻ The Collection Class

Module contents

• Collections
⁻ Java Collection Framework, Interfaces
⁻ The Collection Interface
⁻ The Iterators
⁻ The List Interface
⁻ The Queue and Deque Interfaces
⁻ The Set Interface
⁻ The Map Interface
⁻ The Collection Class

Module contents

Java Collection Framework

We group instances of some class into a Collection
to get a convenient way to handle them during iteration.

Collections

Data Structures

Collections
util methods

Algorithms

JDK Features

1.0 Vector, HashTable

1.2 Collection Framework

5 Generics

6 Deque, NavigableSet, NavigableMap

8 Functional programming

9 Static methods for collection
creating

• It also contains a set of classes that
implements such interfaces

• It also contains classes with methods utilizing
common algorithms (sort, search etc.)

Java Collection Framework Interfaces 2/3

There are four main interfaces in the Java Collections
Framework:

• List: A list is an ordered collection of elements that
allows duplicate entries. Elements in a list can be
accessed by an int index.

• Set: A set is a collection that does not allow duplicate
entries.

• Queue: A queue is a collection that orders its elements
in a specific order for processing. A Deque is a
subinterface of Queue that allows access at both ends.

• Map: A map is a collection that maps keys to values,
with no duplicate keys allowed. The elements in a map
are key/value pairs.

since Java 1.2

package - java.util

• Collections
⁻ Java Collection Framework, Interfaces
⁻ The Collection Interface
⁻ The Iterators
⁻ The List Interface
⁻ The Queue and Deque Interfaces
⁻ The Set Interface
⁻ The Map Interface
⁻ The Collection Class

Module contents

• No DIRECT
implementations

• Subinerfaces List<E>,
Set<E>, Queue<E>
are implemented

Collection

isEmpty() : boolean

parallelStream() : Stream<E>

removeIf(Predicate<? super E> filter) :
boolean

spliterator() : Spliterator<E>

stream() : Stream<E>

10. myColl.add(null);
[null]

• Basic operations perform on an entire collection

myCol has only
Collection's methods,
but not ArrayList!

See more examples in Edu Project - CollectionBasicOpsRunner...

//myColl changed

//myColl unchanged

See more examples in Edu Project - CollectionBulkOpsRunner...

//myColl1

//changed

See more examples in Edu Project - CollectionArrayOpsRunner...

• Collections
⁻ Java Collection Framework, Interfaces
⁻ The Collection Interface
⁻ The Iterators
⁻ The List Interface
⁻ The Queue and Deque Interfaces
⁻ The Set Interface
⁻ The Map Interface
⁻ The Collection Class

Module contents

package - java.util

public interface Collection<E> extends Iterable<E> { .. }

public interface java.lang.Iterable<T>

Modifier and
Type

Method Description

default void forEach​(Consumer
<? super T> action)

Performs the given action for each
element of the Iterable until all
elements have been processed or
the action throws an exception.

Iterator<T> iterator() Returns an iterator over elements
of type T.

default Splitera
tor<T>

spliterator() Creates a Spliterator over the
elements described by
this Iterable.

Since Java 1.5

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Iterable.htmlforEach(java.util.function.Consumer)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Consumer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Iterable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Iterator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Iterable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Iterable.htmliterator()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Spliterator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Iterable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Iterable.htmlspliterator()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Spliterator.html

public interface java.util.Iterator<E>

Since Java 1.2

Modifier
and Type

Method Description

default void forEachRemaining​(
Consumer<?
super E> action)

Performs the given action for each
remaining element until all elements
have been processed or the action
throws an exception.

boolean hasNext() Returns true if the iteration has more
elements.

E next() Returns the next element in the
iteration.

default void remove() Removes from the underlying
collection the last element returned
by this iterator (optional operation).

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Iterator.htmlforEachRemaining(java.util.function.Consumer)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/Consumer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Iterator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Iterator.htmlhasNext()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Iterator.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Iterator.htmlnext()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Iterator.htmlremove()

The Iterators

Collection<String> myColl = new ArrayList<>
(Arrays.asList("aa", "bbb", "cccc", "ddddd"));

iterator = myColl.iterator();
System.out.println(iterator.next()); //aa
System.out.println(iterator.next()); //bbb
System.out.println(iterator.next()); //cccc
System.out.println(iterator.next()); //ddddd
/*java.util.NoSuchElementException*/
System.out.println(iterator.next());

It need to re-get the iterator for the collection

no implicit iterator obtaining

See more examples in Edu Project - IteratorRunner...

while (itr.hasNext()) {
itr.remove();

}

IllegalStateException

• Collections
⁻ Java Collection Framework, Interfaces
⁻ The Collection Interface
⁻ The Iterators
⁻ The List Interface
⁻ The Queue and Deque Interfaces
⁻ The Set Interface
⁻ The Map Interface
⁻ The Collection Class

Module contents

The List interface is a collection of ordered elements (for example,
by the order of adding to the collection), which are accessed by
index (positions in the collection).

List implements a mathematical abstraction of the list,
can store the same elements

✔

✔

✔

✔

✔
✔

✔

✔

✔

✔

✔ - added in List interface

List implementation as ArrayList

//[aa, bbb, cccc]

ArrayList creation

The List interface - ArrayList creation
List<String> list1 = Arrays.asList("aaa", "bbbb", "ccccc");
System.out.println(list1.get(0)); //aaa
list1.set(0, "ddd");
list1.add("somestr"); //UnsupportedOperationException

/*Since Java 9*/
List<String> list2 = List.of("aaa", "bbbb", "ccccc");
System.out.println(list2.get(0)); //aaa
list2.set(0, "ddd"); //UnsupportedOperationException
list2.add("somestr"); //UnsupportedOperationException

list1 = new ArrayList<>(Arrays.asList("aaa", "bbbb", "ccccc"));
list1.add("somestr");
list2 = new ArrayList<>(List.of("aaa", "bbbb", "ccccc"));
list2.add("somestr");

Returns a fixed-size
list backed by the
specified array

Returns an
unmodifiable list

Creating a List with a Factory

Method Description
Can add

elements?
Can replace
elements?

Can delete
elements?

Arrays.asList(
varargs)

Returns fixed size list
backed by an array

No Yes No

List.of(varargs) Returns immutable
list

No No No

List.copyOf(
collection)

Returns immutable
list with copy of
original collection's
values

No No No

List<Integer> fabricList = List.of(1, 2, 3, 4, 5);
List<Integer> forCopyList = new ArrayList<>(fabricList);
forCopyList.add(6);
forCopyList.remove(0);
forCopyList.set(0, 7);
System.out.println(forCopyList); //[7, 3, 4, 5, 6]

Wrapping immutable list while creating new list make new list mutable

The List interface methods
List<String> list = new ArrayList<>(List.of("aaa", "bbbb", "ccccc", "fff"));
list.add(1, "a1a1a1");
System.out.println(list); //[aaa, a1a1a1, bbbb, ccccc, fff]
List<String> anotherList = new ArrayList<>();
anotherList.add(0, "eeee");
list.addAll(4, anotherList);
System.out.println(list); //[aaa, a1a1a1, bbbb, ccccc, eeee, fff]
String s1 = list.get(3);
System.out.println(s1); //ccccc
list.remove(1);
list.add("aaa");
System.out.println(list); //[aaa, bbbb, ccccc, eeee, fff, aaa]
list.remove("aaa");
/*Remove first element*/
System.out.println(list); //[bbbb, ccccc, eeee, fff, aaa]
...

The List interface methods
... //[bbbb, ccccc, eeee, fff, aaa]
list.set(2, "bbbb");
System.out.println(list); //[bbbb, ccccc, bbbb, fff, aaa]
int pos1 = list.indexOf("bbbb");
System.out.println(pos1); //0
int pos2 = list.lastIndexOf("bbbb");
System.out.println(pos2); //2
List<String> sublist = list.subList(1, 4);
System.out.println(sublist); //[ccccc, bbbb, fff]
...

The List interface methods
... //[bbbb, ccccc, bbbb, fff, aaa]
list.replaceAll(new ListStringUnaryOperator());
System.out.println(list); //[4bbbb4, ccccc, 4bbbb4, fff, aaa]

static class ListStringUnaryOperator implements UnaryOperator<String>{
@Override
public String apply(String t) {

String s;
if (t.length() == 4) {

s = 4 + t + 4;
} else {

s = t;
}
return s;

}
}
...

The List interface methods
... //[4bbbb4, ccccc, 4bbbb4, fff, aaa]
list.sort(null);
System.out.println(list); //[4bbbb4, 4bbbb4, aaa, ccccc, fff]]
list.sort(new StringLengthComparator());
System.out.println(list); //[aaa, fff, ccccc, 4bbbb4, 4bbbb4]

static class StringLengthComparator implements Comparator<String> {
@Override
public int compare(String o1, String o2) {

return o1.length() - o2.length();
}

}
...

The ListIterator interface methods
... //[aaa, fff, ccccc, 4bbbb4, 4bbbb4]
ListIterator<String> listIterator = list.listIterator();
/*Iterator in foreach cycle*/
for (listIterator = list.listIterator(); listIterator.hasNext();) {

String element = listIterator.next();
System.out.print(element + " "); //aaa fff ccccc 4bbbb4 4bbbb4

}
System.out.println();

/*Iteration in reverse direction*/
listIterator = list.listIterator(list.size());
while (listIterator.hasPrevious()) {

System.out.print(listIterator.previous() + " ");
} //4bbbb4 4bbbb4 ccccc fff aaa
System.out.println();

alternative while cycle

public interface ListIterator<E> extends Iterator<E>

The ListIterator interface methods
List<String> list = new ArrayList<>(Arrays.asList("aaa", "bbbb", "ccccc" ,

"bbbb", "fff"));
ListIterator<String> listIterator = list.listIterator();
listIterator.add("ggg");
System.out.println(list); //[ggg, aaa, bbbb, ccccc, bbbb, fff]
String s2 = listIterator.previous(); //ggg
// s2 = listIterator.previous(); //NoSuchElementException
listIterator.remove();
System.out.println(list); //[aaa, bbbb, ccccc, bbbb, fff]
int prevIdx = listIterator.previousIndex();
System.out.println(prevIdx); //-1 - index out-of-bounds
int nextIdx = listIterator.nextIndex();
System.out.println(nextIdx); //0 - beginning of the list
int nextIdx1 = listIterator.nextIndex();
System.out.println(nextIdx1); //0

public interface ListIterator<E> extends Iterator<E>

The ListIterator interface methods
String s3 = listIterator.next();
System.out.println(s3); //aaa
System.out.println(list); //[aaa, bbbb, ccccc, bbbb, fff]
listIterator = list.listIterator(2);
String s7 = listIterator.next();
System.out.println(s7); //ccccc
listIterator.set("eeee");
System.out.println(list); //[aaa, bbbb, eeee, bbbb, fff]
String s8 = listIterator.next();
System.out.println(s8); //bbbb
String s9 = listIterator.next();
System.out.println(s9); //fff
int nextIdx2 = listIterator.nextIndex(); //index after the last element
System.out.println(nextIdx2); //5 - returns the size of the list
int nextIdx3 = listIterator.nextIndex(); //fetching the index further
System.out.println(nextIdx3); //5 - returns the size of the list

The List inner work
public class ArrayList<E> extends AbstractList<E>

implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
...
private static final int DEFAULT_CAPACITY = 10;
...
/**
* The array buffer into which the elements of the ArrayList are stored.

*/
transient Object[] elementData;
/**
* The size of the ArrayList (the number of elements it contains).
*/
private int size;

elementData = {}, size=0, capacity=0

size=1, capacity=10

newCapacity = oldCapacity + (oldCapacity >> 1)

15, 22, 33, ...

public boolean add(E e) {
modCount++;
add(e, elementData, size);
return true;

}
private void add(E e, Object[] elementData, int s) {

if (s == elementData.length)
elementData = grow();
elementData[s] = e;
size = s + 1;

}
private Object[] grow() {

return grow(size + 1);
}

The List Interface methods implementation

private Object[] grow(int minCapacity) {
return elementData = Arrays.copyOf(elementData,

newCapacity(minCapacity));
}
private int newCapacity(int minCapacity) {

int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);

if (newCapacity - minCapacity <= 0) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)

return Math.max(DEFAULT_CAPACITY, minCapacity);
if (minCapacity < 0) // overflow

throw new OutOfMemoryError();
return minCapacity;

}
return (newCapacity - MAX_ARRAY_SIZE <= 0) ? newCapacity

: hugeCapacity(minCapacity); }

The List Interface methods implementation

public void add(int index, E element) {
rangeCheckForAdd(index);
modCount++;
final int s;
Object[] elementData;
if ((s = size) == (elementData = this.elementData).length)

elementData = grow();
System.arraycopy(elementData, index,

elementData, index + 1,
s - index);

elementData[index] = element;
size = s + 1;

}

See Edu Project ArrayListInnerWork...

The List Interface methods implementation

The List Interface

public E remove(int index) {
Objects.checkIndex(index, size);
final Object[] es = elementData;
@SuppressWarnings("unchecked")
E oldValue = (E) es[index];
fastRemove(es, index);
return oldValue;

}

private void fastRemove(Object[] es, int i) {
modCount++;
final int newSize;
if ((newSize = size - 1) > i)

System.arraycopy(es, i + 1, es, i, newSize - i);
es[size = newSize] = null;

}

See Edu Project ArrayListInnerWork...

The List Interface methods implementation

src array src array position

dst array dst array position

length
src array src array position

length

ArrayList<String> list = new ArrayList<>();
list.add("aaa");
System.out.println("size= " + list.size() + ", capacty= " +

ArrayListInnerWork.getCapacity(list));
list.trimToSize();
System.out.println("size= " + list.size() + ", capacty= "

+ ArrayListInnerWork.getCapacity(list));
list.ensureCapacity(3);
System.out.println("size= " + list.size() + ", capacty= " +

ArrayListInnerWork.getCapacity(list));

The ArrayList class

static int getCapacity(ArrayList<?> list) throws Exception
is the ArrayListInnerWork Reflection method in
Educational Project

See more examples in Edu Project - ArrayListRunner...

public void trimToSize() {
modCount++;
if (size < elementData.length) {

elementData = (size == 0)
? EMPTY_ELEMENTDATA
: Arrays.copyOf(elementData, size);

}
}

The ArrayList class

List implementation as LinkedList

node

The LinkedList specific methods
LinkedList<String> linkedList = new LinkedList<>(Arrays

.asList("Item1", "Item2", "Item3", "Item4", "Item5"));
System.out.println(linkedList); //[Item1, Item2, Item3, Item4, Item5]
linkedList.addFirst("First Item");
linkedList.addLast("Last Item");
System.out.println(linkedList); //[First Item, Item1, Item2, Item3,

//Item4, Item5, Last Item]
System.out.println(linkedList.getFirst()); //First Item
System.out.println(linkedList.getLast()); //Last Item
System.out.println(linkedList); //[First Item, Item1, Item2, Item3,

//Item4, Item5, Last Item]
System.out.println(linkedList.removeFirst()); //First Item
System.out.println(linkedList.removeLast()); //Last Item
System.out.println(linkedList); //[Item1, Item2, Item3, Item4, Item5]
...

The LinkedList specific methods...
Iterator<String> descIterator = linkedList.descendingIterator();

while (descIterator.hasNext()) {
String s = descIterator.next();
System.out.print(s + " "); //Item5 Item4 Item3 Item2 Item1

}
System.out.println();

//Additional methods for queues
String s1 = linkedList.element(); //does not remove == getFirst()
System.out.println(s1); //Item1
boolean b = linkedList.offer("Item6"); //== add(e)
System.out.println("b= " + b + ", " + linkedList); //b= true, [Item1,

//Item2, Item3, Item4, Item5, Item 6]
boolean b1 = linkedList.offerFirst("Item0"); //==addFirst(e)
boolean b2 = linkedList.offerLast("Item7"); //==addLast(e)
System.out.println(linkedList); //[Item0, Item1, Item2, Item3, Item4,

//Item5, Item6, Item7]
...

The LinkedList specific methods
...
System.out.println(linkedList.peek()); //gets 1st elem, doesn't remove
System.out.println(linkedList.peekFirst()); //Item0 == peek()
System.out.println(linkedList.peekLast()); //gets last elem, doesn't

//remove
System.out.println(linkedList); //[Item0, Item1, Item2, Item3, Item4,

//Item5, Item6, Item7] - not remove
System.out.println(linkedList.poll()); //gets 1st elem, removes it
System.out.println(linkedList.pollFirst()); //Item1 == poll()
System.out.println(linkedList.pollLast()); //gets last elem, removes it
System.out.println(linkedList); //[Item2, Item3, Item4, Item5, Item6]
System.out.println(linkedList.pop()); //gets 1st elem, removes it
System.out.println(linkedList); //[Item3, Item4, Item5, Item6]
linkedList.push("Item2"); //adds 1st elem
System.out.println(linkedList); //[Item2, Item3, Item4, Item5, Item6]

The LinkedList specific methods
Add element
to start of list

Add element
to end of list

Get element from
start of list

Get element
from end of list

Element
does not
remove

from
the list

throws NoSuchElementException
for empty list

void addFirst(E e)
(Deque)

void addLast(E e)
(Deque)

E getFirst() (Deque)
E element() (Queue)

E getLast()
(Deque)

returns null for empty list
boolean offerFirst(E
e)
(Deque)
void push(E e)
(Deque)

boolean offer(E e)
(Queue)
boolean offerLast(E e)
(Deque)

E peek()
(Queue)
E peekFirst()
(Deque)

E peekLast()
(Deque)

Element
removes

from
the list

throws NoSuchElementException
for empty list

E remove() (Queue)
E removeFirst()
(Deque)
E pop() (Deque)

E removeLast()
(Deque)

returns null for empty list
E poll() (Queue)
E pollFirst() (Deque)

E pollLast()
(Deque)

public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable {

transient int size = 0;
transient Node<E> first;
transient Node<E> last;

...

...
}

LinkedList inner work

first
node

last node

private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;

Node(Node<E> prev, E element,
Node<E> next) {...}

}

next node

previous
node

assert (size == 0)
? (first == null && last == null)
: (first.prev == null && last.next == null);

first = last

public boolean add(E e) {
linkLast(e);
return true;

}
void linkLast(E e) {

final Node<E> l = last; //take header.last value
final Node<E> newNode = new Node<>(l, e, null);
last = newNode; // set last to last node
if (l == null) //if list empty

first = newNode; //set first to first node
else

l.next = newNode; //set next pointer of last node
size++;
modCount++;

}

LinkedList inner work

prev.
node

next
node

first last

first last

public void add(int index, E element) {
… if (index == size)

linkLast(element);
else

linkBefore(element, node(index));
}

void linkBefore(E e, Node<E> succ) { // assert succ != null
final Node<E> pred = succ.prev; //ук-ль на пред.
final Node<E> newNode = new Node<>(pred, e, succ);
succ.prev = newNode;
if (pred == null)

first = newNode;
else

pred.next = newNode;
size++; modCount++; }

пред.
узел

след.
узел

узел, после
которого
вставка

LinkedList inner work

first last

first last

first last

first last

first last

public boolean remove(Object o) {
if (o == null) {

for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null) {

unlink(x);
return true;

}
}

} else {
for (Node<E> x = first; x != null; x = x.next) {

if (o.equals(x.item)) {
unlink(x);
return true;

}
}

}
return false; }

LinkedList inner work

E unlink(Node<E> x) {
// assert x != null;
final E element = x.item;
final Node<E> next = x.next;
final Node<E> prev = x.prev;
if (prev == null) {

first = next;
} else {

prev.next = next;
x.prev = null;

}
if (next == null) {

last = prev;
} else {

next.prev = prev;
x.next = null;

} ...

LinkedList inner work

...
x.item = null;
size--;
modCount++;
return element;

}

ArrayList and LinkedList Performance Comparison

Start
of the list

The list
middle

End
of the list

Homogeneous
in the list

Insert LinkedList ArrayList ≈ ArrayList

Remove LinkedList ArrayList ArrayList ArrayList

Update ArrayList ArrayList ArrayList ArrayList

Get ArrayList ArrayList ArrayList ArrayList

• Collections
⁻ Java Collection Framework, Interfaces
⁻ The Collection Interface
⁻ The Iterators
⁻ The List Interface
⁻ The Queue and Deque Interfaces
⁻ The Set Interface
⁻ The Map Interface
⁻ The Collection Class

Module contents

The Queue Interface 1/6

• The Deque is a linear collection that supports
element insertion and removal at both ends

boolean offer(E e)

E peek()
E element()

E poll()
E remove()

gets, remove

void addFirst(E e) void addLast(E e)
boolean offerFirst(E e) boolean offerLast(E e)

void push(E e)

gets, doesn't remove

E peekFirst()
E getFirst()

E peekLast()
E getLast()gets, doesn't remove

gets,
doesn't remove

E pollFirst()
E removeFirst()
E pop()

gets, remove
E pollLast()
E removeFLast()

gets,
remove

Queue vs Deque

The Queue interface methods
boolean add(E e) -> linkLast(e);

return true;
boolean offer(E e); -> return add(e);

E element() -> return getFirst();
E peek(); -> final Node<E> f = first;

return (f == null) ? null : f.item;

E poll(); -> final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);

E remove(); ->return removeFirst();

public E getFirst() {
final Node<E> f = first;
if (f == null)

throw
new NoSuchElementException();

return f.item; }

public E removeFirst() {
final Node<E> f = first;
if (f == null)

throw
new NoSuchElementException();

return unlinkFirst(f); }

remain in
the queue

removed
from the
queue

LinkedList implementation

The Queue interface methods
private E unlinkFirst(Node<E> f) {

// assert f == first && f != null;
final E element = f.item;
final Node<E> next = f.next;
f.item = null;
f.next = null; // help GC
first = next;
if (next == null)

last = null;
else

next.prev = null;
size--;
modCount++;
return element;

}

LinkedList implementation

q.remove();
q.remove();

NoSuchElementException!!!

See Edu Project QueueRunner...

q.poll();
System.out.println(q.poll());

null

E pop()void push(E e)

The Deque interface -
stack implementation

Deque<String> stack= new LinkedList<>();
stack.push("aaa");
stack.push("bbbb");
stack.push("ccccc");
Systen.out.println(stack); //[ccccc, bbbb, aaa]
System.out.println(stack.pop()); //ccccc
System.out.println(stack.pop()); //bbbb
System.out.println(stack.pop()); //aaa
System.out.println(stack.pop());

java.util.NoSuchElementException

See Edu Project DequeRunner and StackRunner...

• Collections
⁻ Java Collection Framework, Interfaces
⁻ The Collection Interface
⁻ The Iterators
⁻ The List Interface
⁻ The Queue and Deque Interfaces
⁻ The Set Interface
⁻ The Map Interface
⁻ The Collection Class

Module contents

The Set interface 2/6

See Edu Project HashSetRunner and Student...

//returns true
//returns true
//returns false
//returns false
//returns true
//returns true

//returns true

// Set<Character> lett = Set.of('z', 'o', 'o'); //duplicate element: o
Set<Character> letters = Set.of('z', 'o');
System.out.println(letters); //[z, o]

// letters.add('!'); //UnsupportedOperationException
// letters.remove('z'); //UnsupportedOperationException

Set<Character> copy = Set.copyOf(letters);
System.out.println(copy); //[z, o]

// copy.add('!'); //UnsupportedOperationException
// copy.remove('z'); //UnsupportedOperationException

Set<Character> mutSet = new HashSet<>(letters);
System.out.println(mutSet); //[z, o]
mutSet.add('!');
mutSet.remove('z');
System.out.println(mutSet); //[!, o]

Immutable and Mutable Sets

Immutable

Mutable

public class HashSet<E> extends AbstractSet<E> implements Set<E>,

Cloneable, java.io.Serializable {
...
private transient HashMap<E,Object> map;

// Dummy value to associate with an Object in the backing Map
private static final Object PRESENT = new Object();

...
public boolean add(E e) {

return map.put(e, PRESENT)==null;

}

...
public boolean remove(Object o) {

return map.remove(o)==PRESENT;

}

The Set interface - HashSet inner work

Inner work will be
explored for Map<K,V>

See Edu Project TreeSetRunner and Student...

//returns true
//returns true
//returns false

//returns false

//returns true

//returns true
//returns true

public class TreeSet<E> extends AbstractSet<E>

implements NavigableSet<E>, Cloneable, java.io.Serializable {
...

private transient NavigableMap<E,Object> m;

// Dummy value to associate with an Object in the backing Map
private static final Object PRESENT = new Object();

...
public boolean add(E e) {

return m.put(e, PRESENT)==null;

}

...
public boolean remove(Object o) {

return m.remove(o)==PRESENT;

}

The Set interface - TreeSet inner work

public interface SortedSet<E> extends Set<E> {

Comparator<? super E> comparator();

SortedSet<E> headSet(E toElement);

SortedSet<E> tailSet(E fromElement);

SortedSet<E> subSet(E fromElement, E toElement);

E first();

E last();

default Spliterator<E> spliterator() {...}

The SortedSet interface

stores elements in sorted form (sort ascending)

See Edu Project SortedSetRunner...

public interface NavigableSet<E> extends SortedSet<E> {

Iterator<E> descendingIterator();

NavigableSet<E> descendingSet();

NavigableSet<E> subSet(E fromElement, boolean fromInclusive,

E toElement, boolean toInclusive);

NavigableSet<E> headSet(E toElement, boolean inclusive);

NavigableSet<E> tailSet(E fromElement, boolean inclusive);

E floor(E e);

E ceiling(E e);

E lower(E e);

E higher(E e);

E pollFirst();

E pollLast();

}

The NavigableSet interface

allows to retrieve
elements based on
their values

since Java 6

See Edu Project NavigableSetRunner...

See Edu Project LinkedHashSetRunner...

public class LinkedHashSet<E> extends HashSet<E>

implements Set<E>, Cloneable, java.io.Serializable {
...

NO INNER WORK - EXTENDS HashSet

The Set interface - LinkedHashSet inner work

• Collections
⁻ Java Collection Framework, Interfaces
⁻ The Collection Interface
⁻ The Iterators
⁻ The List Interface
⁻ The Queue and Deque Interfaces
⁻ The Set Interface
⁻ The Map Interface
⁻ The Collection Class

Module contents

The Map interface 1/13

The Map interface abstract methods
public interface Map<K, V> {

boolean containsKey(Object key);

boolean containsValue(Object value);

Set<Map.Entry<K, V>> entrySet();

V get(Object key);

Set<K> keySet();

V put(K key, V value);

void putAll(Map<? extends K, ? extends V> m);

V remove(Object key);

Collection<V> values();

... default and static methods

}

See Edu Project HashMapRunner...

Getting Values Safely

Map<Character, String> map = new HashMap<>();
map.put('x', "spot");
System.out.println("X marks the " + map.get('x'));
System.out.println("X marks the " + map.getOrDefault('x', ""));
System.out.println("Y marks the " + map.get('y'));
System.out.println("Y marks the " + map.getOrDefault('y', ""));

• The get() method returns null if the requested key is not
in the map.

• Sometimes you prefer to have a different value returned.

public default V getOrDefault(Object key, V defaultValue)

Since Java 8

*1

Factory methods to create Map
/*Inconvenient way - Passing keys and values is harder to read

because you have to keep track of which parameter is which*/
Map<String, String> fabrMap = Map.of("key1", "value1", "key2",

"value2");
/*Convenient way*/
Map<String, String> fabricMap = Map.ofEntries(

Map.entry("key1", "value1"),
Map.entry("key2", "value2"));

System.out.println(fabricMap); //{key1=value1, key2=value2}
// fabricMap.put("key3", "value3"); //UnsupportedOperationException
// fabricMap.remove("key1"); //UnsupportedOperationException
// fabricMap.replace("key2", "abc"); //UnsupportedOperationException

Map<String, String> copyMap = Map.copyOf(fabricMap);
System.out.println(copyMap); //{key1=value1, key2=value2}

// copyMap.put("key3", "value3"); //UnsupportedOperationException
// copyMap.remove("key1"); //UnsupportedOperationException
// copyMap.replace("key2", "abc"); //UnsupportedOperationException

Immutable map

Factory methods to create Map
...

Map<String, String> mutMap = new HashMap<>(fabricMap);
System.out.println(mutMap); //{key1=value1, key2=value2}
mutMap.put("key3", "value3");
mutMap.remove("key1");
mutMap.replace("key2", "abc");
System.out.println(mutMap); //{key2=abc, key3=value3}

Mutable map

array of bucket

The Map interface
size - number of HashMap elements

capacity - size of Node<K, V> array (initial = 16, max = 1 073 741 824);

loadFactor - the measure that decides when to increase the capacity
of the Map, the default value is 0.75;

threshold - the maximum number of elements at which
the Node<K, V> array size is doubled. It is calculated by the formula
(capacity * loadFactor) - default is 16 * 0.75 = 12;

i= 51 & 15= 3

i= 99486 & 15= 14

static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);

}

i= 0 & 15= 0

value can be arbitrary

i= 101603 & 15= 3
- collisionif (newKey != oldKey)

else {replace oldValue by newValue}

i=101603 & 31= 3 i=51 & 31= 19 i=98486 & 31= 30

See Edu Project TreeMapRunner...

by keys comparing
keys of all left descendants
<= k < keys of all right descendants

public class TreeMap<K,V> extends AbstractMap<K,V>
implements NavigableMap<K,V>, Cloneable, java.io.Serializable {

...
static final class Entry<K,V> implements Map.Entry<K,V> {

K key;
V value;
Entry<K,V> left;
Entry<K,V> right;
Entry<K,V> parent;
boolean color = BLACK; //true, RED=false
...

}
....
}

TreeMap class

• Collections
⁻ Java Collection Framework, Interfaces
⁻ The Collection Interface
⁻ The Iterators
⁻ The List Interface
⁻ The Queue and Deque Interfaces
⁻ The Set Interface
⁻ The Map Interface
⁻ The Collection Class

Module contents

See Edu Project CollectionsRunner...

