

Training program

1. Java I/O Streams
2. Java Serialization
3. Java Database Connectivity
4. Java GUI Programming
5. The basics of Java class loaders
6. Reflections
7. Annotations
8. The proxy classes
9. Java Software Development
10. Garbage Collection

Module contents

Java GUI Programming
₋ An Introduction to Swing
₋ Swing - Controls Basics
₋ Event Handling
₋ Layout Managers
₋ Components

Module contents

Java GUI Programming
₋ An Introduction to Swing
₋ Swing - Controls Basics
₋ Event Handling
₋ Layout Managers
₋ Components

until Java 11

since Java 11 -> https://openjfx.io/

https://openjfx.io/

AWT - Swing

Top-level containers

Top-level containers structure

See basic\SwingDemo

Module contents

Java GUI Programming
₋ An Introduction to Swing
₋ Swing - Controls Basics
₋ Event Handling
₋ Layout Managers
₋ Components

Swing - Composite pattern

• Composite is a structural design pattern that lets you
compose objects into tree structures and then work
with these structures as if they were individual
objects.

• Swing uses this pattern to group Component objects
with Container and represent both Container and
Component instances as leaves of the same tree.

See compositepattern

Module contents

Java GUI Programming
₋ An Introduction to Swing
₋ Swing - Controls Basics
₋ Event Handling
₋ Layout Managers
₋ Components

Listener (observer) pattern

See listenerpattern

See basic\TwoButtonsFrameListenerDemo

See basic\TwoButtonsFrameDemo

Event class Description Listener interface
java.awt.event

ActionEvent
A semantic event which indicates that a
component-defined action occurred.

ActionListener

AdjustmentEvent
The adjustment event emitted by
Adjustable objects like Scrollbar and
ScrollPane.

AdjustmentListener

FocusEvent
A low-level event which indicates that a
Component has gained or lost the input
focus.

FocusListener

ItemEvent
A semantic event which indicates that an
item was selected or deselected.

ItemListener

KeyEvent
An event which indicates that a
keystroke occurred in a component.

KeyListener

MouseEvent
An event which indicates that a mouse
action occurred in a component.

MouseListener и
MouseMotionListener

Events & Listeners

Event class Description Listener interface
java.awt.event

MouseWheelEvent
An event which indicates that the mouse
wheel was rotated in a component.

MouseWheelListener

WindowEvent
A low-level event that indicates that a
window has changed its status.

WindowListener

javax.swing.event

AncestorEvent
An event reported to a child component
that originated from an ancestor in the
component hierarchy.

AncestorListener

CaretEvent
It is used to notify interested parties that
the text caret has changed in the event
source.

CaretListener

ChangeEvent
It is used to notify interested parties that
state has changed in the event source.

ChangeListener

HyperlinkEvent
It is used to notify interested parties that
something has happened with respect to
a hypertext link.

HyperlinkListener

ListDataEvent
Defines an event that encapsulates
changes to a list.

ListDataListener

Events & Listeners

Event class Description Listener interface
javax.swing.event

ListSelectionEvent
An event that characterizes a change in
selection.

ListSelectionListener

MenuEvent

It is used to notify interested parties
that the menu which is the event
source has been posted, selected, or
canceled.

MenuListener

TableModelEvent
It is used to notify listeners that a table
model has changed.

TableModelListener

TreeExpansionEvent
An event used to identify a single path
in a tree.

TreeExpansionListener

TreeModelEvent

Encapsulates information describing
changes to a tree model, and used to
notify tree model listeners of the
change.

TreeModelListener

TreeSelectionEvent
An event that characterizes a change in
the current selection.

TreeSelectionListener

Events & Listeners

Module contents

Java GUI Programming
₋ An Introduction to Swing
₋ Swing - Controls Basics
₋ Event Handling
₋ Layout Managers
₋ Components

450

140

100
100

2030
50

Swing Layout Managers
0

X

Y

See basic\ComponentsPositioningDemo

See layouts\BorderLayoutDemo

See layouts\FlowLayoutDemo

See layouts\BoxLayoutDemo

See layouts\GridLayoutDemo

See layouts\CompositeLayoutDemo

Responsive GUI

Responsive GUI

Responsive GUI

Responsive GUI

Using a single thread - see multithreading\LongRunningEvent

Responsive GUI

Using a helper thread -
see multithreading\LongRunningEventThreading

Responsive GUI

see multithreading\LongRunningEventBySwingWorker

• SwingWorker is an abstract class used to perform lengthy GUI
interaction tasks in a background thread.

• Java language has three threads, namely listed below as follows:

1. Current Thread (Initial Thread): this is the thread on which the
initial application logic executes.

2. Event Dispatch Thread: all event handling code executes on this
thread.

3. Worker Threads: also known as background threads where all
time-consuming background tasks are executed.

• SwingWorker allows users to schedule the execution of background
tasks on Worker Thread.

• It is necessary to run the Swing GUI in the Event Dispatch Thread
(EDT) because the Swing components are not thread-safe and all
Swing based code should be accessed/modified/interacted with
from the context of the EDT.

Module contents

Java GUI Programming
₋ An Introduction to Swing
₋ Swing - Controls Basics
₋ Event Handling
₋ Layout Managers
₋ Components

JTextField

See components\TextFieldDemo

JTextField

See components\TextFieldDemo

JTextArea

See components\TextAreaDemo

JToggleButton

• JToggleButton is the button with 2 states.

• Several JToggleButtons are usually combined into
a javax.swing.ButtonGroup.

See components\ToggleButtonDemo

Output:
You like Tea

JCheckBox and JRadioButton

• Several JCheckBoxes or JRadioButtons are usually
combined into a javax.swing.ButtonGroup

See components\CheckBoxRadioButtonDemo

JList

See components\ListDemo

JList
• The javax.swing.ListModel<E> interface defines

the methods to get the value of each list item and the
length of the list.

• Logically the model is a vector, indices vary from 0
to ListDataModel.getSize() - 1.

• Any change to the contents or length of the data model
must be reported to all of the ListDataListeners.

• The DefaultListModel<E> class implements ListModel<E>
interface, has
private Vector<E> delegate
field and provides Vector's methods for getting, adding,
changing, removing and searching list items.

See components\ListModelDemo

JComboBox

See components\ComboBoxDemo

• There is Editable mode for ComboBox that allows
the user to type into the field or to edit selected item.

• The DefaultComboBoxModel<E> class implements
ListModel<E> interface and provides methods for getting,
adding, changing, removing and searching list items.

ImageIcon

See components\ImageIconDemo

• Many Swing components, such as labels, buttons
and tabbed panes, can be decorated with an icon —
a fixed-sized picture.

• An icon is an object that implements javax.swing.Icon
interface.

• Swing provides implementation of the Icon interface:
javax.swing.ImageIcon, which paints an icon from a GIF,
JPEG, or PNG image.

• ImageIcon has constructors that receive as parameters
byte array or image file name or image URL or
java.awt.Image instance.

• ImageIcon class does not extend Component class, so we
have to wrap it with some Component, such as labels,
buttons, and tabbed panes with sizes equal or more than
image size.

JTable

See components\TableDemo

• The DefaultTableModel<E> class implements
TableModel<E> interface and provides column and row
add and remove and cell values set and get methods.

JMenuBar, JMenu & JMenuItem

• We will use FileChooser component for this example.

See components\MenuDemo

JOptionPane

• The JOptionPane class is used to provide standard dialog
boxes such as message dialog box, confirm dialog box
and input dialog box.

public void actionPerformed(ActionEvent e) {
try {

double num1 = Double.parseDouble(tfNum1.getText());
double num2 = Double.parseDouble(tfNum2.getText());
tfRes.setText(String.valueOf(num1 + num2));

} catch (NumberFormatException ex) {
JOptionPane.showMessageDialog(this, "Invalid input data",

"Error", JOptionPane.ERROR_MESSAGE);
}

}

JOptionPane

JOptionPane
• void showMessageDialog(Component parentComponent,

Object message, String title, int messageType, Icon

icon)

• int showConfirmDialog(Component parentComponent, Object

message, String title, int optionType, int messageType,

Icon icon)

• Object showInputDialog(Component parentComponent,

Object message, String title, int messageType, Icon

icon, Object[] selectionValues, Object

initialSelectionValue)

• int showOptionDialog(Component parentComponent, Object

message, String title, int optionType, int messageType,

Icon icon, Object[] options, Object initialValue)

- JOptionPane.QUESTION_MESSAGE
- JOptionPane.INFORMATION_MESSAGE
- JOptionPane.WARNING_MESSAGE
- JOptionPane.ERROR_MESSAGE

no icon - JOptionPane.PLAIN_MESSAGE

messageType:

JOptionPane.DEFAULT_OPTION
JOptionPane.YES_NO_OPTION
JOptionPane.YES_NO_CANCEL_OPTION
JOptionPane.OK_CANCEL_OPTION

optionType:

See components\OptionPaneDemo

about:blank*1
about:blank*2
about:blank*3
about:blank*4
about:blank*5
about:blank*6
about:blank*7

UI Designer

UI Designer

UI Designer

Create GUI Form MyCalculator in Swing UI Designer
and see MyCalculator.form

UI Designer

