

1

Лабораторна робота № 8

Розробка додатків з графічним інтерфейсом користувача

Мета роботи: Вивчити способи розробки додатків Java з графічним інтерфей-

сом користувача з використанням бібліотек AWT і Swing.

1. Теоретичні відомості

Додаток з графічним інтерфейсом користувача (Graphic User Interface -

GUI) - це додаток, в якому застосовуються класи і інтерфейси, що представля-

ють собою набори компонентів або віджетів - багаторазово використовуваних

класів і інтерфейсів, що формують стандартні елементи управління графічного

інтерфейсу користувача та виконують стандартну обробку взаємодії користува-

ча з ними. Платформа Java містить класичні засоби побудови графічного інтер-

фейсу користувача - бібліотеки AWT (Abstract Window Toolkit) і Swing, а також

засоби побудови додатків з сучасним інтерфейсом - так званих додатків з наси-

ченим інтерфейсом (Rich Internet Application - RIA) - JavaFX, які можуть запус-

катися як настільні додатки, додатки браузерів або мобільні додатки. Кожна із

зазначених бібліотек надає багатий набір візуальних компонентів, наприклад,

форм, написів, кнопок, текстових полів, прапорців та інших компонентів, ро-

зроблених так, щоб їх можна було успішно застосовувати в самих різних додат-

ках.

Технологія Swing з'явилася як спроба подолання проблем історично першої

бібліотеки - AWT. В AWT був визначений базовий набір елементів управління і

вікон, що дозволяє створювати графічні інтерфейси. Суттєвим обмеженням

AWT була платформово-орієнтована підтримка візуальних компонентів, тобто

засоби AWT просто викликали функції API операційної системи для створення

візуального компонента. В результаті зовнішній вигляд інтерфейсних елементів

визначався не засобами Java, а використовуваною платформою, і відрізнявся

для різних операційних систем. Елементи, що створюються засобами AWT, на-

зивалися великоваговими. Всі компоненти Swing, за невеликим винятком, є лег-

ковагими, їх зовнішній вигляд визначає Swing, а не операційна система. Тому

інтерфейсні елементи, створені за допомогою Swing, виглядають однаково на

всіх платформах. Вони можуть мати форму, відмінну від прямокутної, зміню-

вати прозорість і т.д. Таким чином, такі компоненти є більш ефективними і

гнучкими. Оскільки кожен компонент відтворюється за допомогою Java-коду,

його зовнішній вигляд повністю контролюється засобами Swing. Це означає, що

зовнішній вигляд компонента можна переналаштувати в залежності від резуль-

татів виконання операторів програми. Більш того, можна створювати глобальні

стилі (look and feel - L&F), що визначають, як буде виглядати інтерфейс в ціло-

му. При перемиканні стилю зовнішній вигляд всіх елементів змінюється авто-

матично. його зовнішній вигляд повністю контролюється засобами Swing.

Незважаючи на те, що Swing усуває ряд обмежень, властивих AWT, він не

замінює даний інструмент. Оскільки обробка подій взаємодії користувача з

візуальними компонентами інтерфейсу ніяк не залежить від зовнішнього вигля-

2

ду останніх, в GUI-додатках для побудови графічного інтерфейсу використо-

вують компоненти Swing, а для обробки подій взаємодії з користувачем - засо-

би AWT.

До складу графічного інтерфейсу користувача, створеного засобами Swing,

входять елементи двох типів: компоненти і контейнери. Такий поділ багато в

чому умовний, так як контейнери є в той же час і компонентами. Різниця між

ними в їх призначенні. Компоненти - це незалежні елементи, наприклад, кноп-

ки або текстові поля. Контейнер може містити в собі кілька компонентів (та

контейнерів) і являє собою спеціальний тип компонента. Прикладами контей-

нерів є форми, панелі, вкладки та ін. Щоб компонент відобразився на екрані,

його необхідно помістити в контейнер. Таким чином, у складі GUI-додатка по-

винен бути присутнім хоча б один контейнер. Оскільки контейнери є компо-

нентами, один контейнер може перебувати в складі іншого. Це дозволяє фор-

мувати так звану ієрархію контейнерів, на вершині якої повинен знаходитися

контейнер верхнього рівня. Контейнери Swing організовуються з використан-

ням шаблону проектування Компоновник (Composite), який дозволяє групі

об'єктів бути представленою у вигляді єдиного об'єкта з подібними властиво-

стями, підтримуючи при цьому однаковість взаємодії з групою і об'єктами, що

входять до неї.

Класи, що представляють всі компоненти Swing, містяться в пакеті

javax.swing. Переважна більшість компонентів Swing створюється за допомогою

класів, які є нащадками абстрактного класу JComponent (Мал. 1) (Для компо-

нентів Swing було прийнято рішення давати їм імена, що починаються з великої

літери J). Клас JComponent реалізує функціональні можливості, загальні для всіх

компонентів, наприклад, містить список обробників подій даного компонента і

підтримує стилі. JComponent успадковує властивості класів AWT java.awt.Container

і java.awt.Component. Таким чином, компоненти Swing будуються на базі AWT-

компонентів і сумісні з ними.

У Swing визначені два типи контейнерів. До першого типу відносяться кон-

тейнери верхнього рівня: JApplet, JWindow, JFrame і JDialog. Вони не належать до

числа підкласів JComponent, тим не менш, є нащадками java.awt.Container і

java.awt.Component. На відміну від інших компонентів Swing, контейнери верхнь-

ого рівня не можуть включатися до складу інших контейнерів і повинні перебу-

вати на вершині ієрархії компонентів GUI-додатку, тобто бути контейнерами

для всіх інших компонентів програми. Для настільних додатків в якості такого

контейнера використовують об'єкт класу JFrame, для виконуваних браузерами

додатків, інтегрованих у Веб-сторінки - об'єкт класу JApplet. Об'єкти класу

JWindow є контейнери-вікна, які не містять заголовка з кнопками управління

вікном, а об'єкти класу JDialog дозволяють створювати модальні і немодальні

діалогові вікна. Контейнери другого типу - це легковагові контейнери, які є на-

щадками JComponent. Як приклади легковажних контейнерів можна привести

JPanel (Панель) і JScrollPane (Прокрутка панелі), які використовуються для

групування компонентів, JInternalFrame, що дозволяє створювати вікна-

3

контейнери з заголовками з кнопками управління вікном всередині великоваго-

вого JFrame, та ін.

Мал. 1. Ієрархія класів Swing

У кожному контейнері верхнього рівня, а також легковаговому контейнері

JInternalFrame реалізований набір панелей, представлений на Мал. 2. На вершині

ієрархії знаходиться коренева панель - екземпляр класу JRootPane, автоматично

створювана при створенні зазначених вище контейнерів. Це легковаговий кон-

тейнер, мета якого - управління іншими панелями і, при необхідності, меню

(що зазвичай містить команди для роботи з додатком).

4

Мал. 2. Структура контейнера Swing верхнього рівня

Коренева панель включає в себе скляну панель (Glass Pane), панель шару

(Layered Pane) і панель вмісту (Content Pane). Скляна панель - це прозора па-

нель верхнього рівня, яка розташована поверх інших панелей і заповнює всю

область кореневої панелі. Скляна панель (Glass Pane) дозволяє управляти

подіями миші, що відносяться до всього контейнера, а не до компонентів, які

містяться в ньому.

Панель шару (Layered Pane) являє собою екземпляр класу JLayeredPane, та-

кож заповнює всю область кореневої панелі. Вона підтримує "третій вимір" для

компонентів, тобто визначає правила перекриття одних компонентів іншими. У

складі панелі шару знаходиться панель вмісту і може також перебувати рядок

меню. Незважаючи на те, що скляна панель і панель шару - невід'ємні частини

контейнера верхнього рівня і виконують важливі функції, їх дії здебільшого

приховані не тільки від користувачів, але і від розробників.

Додаток в основному взаємодіє з панеллю вмісту (Content Pane), оскільки

саме в неї включаються візуальні компоненти. Іншими словами, додаючи ком-

понент, наприклад кнопку, до контейнера верхнього рівня, Ви насправді до-

даєте його до панелі вмісту. За замовчуванням панель вмісту являє собою

"непрозорий екземпляр" JPanel.

Розглянемо як приклад просту програму, створену з використанням засобів

Swing (Мал. 3). Дана програма демонструє ключові властивості Swing і дає уяв-

лення про контейнер верхнього рівня JFrame (Форма або фрейм), що зазвичай

використовуються в настільних додатках, і компоненті JLabel (Напис), за допо-

могою якого можливе виведення текстової інформації на формі. У даній про-

грамі створюється контейнер JFrame, в який поміщається екземпляр компонента

JLabel, що відображає текстове повідомлення:

5

package swingapppackage;

/*Подключение библиотеки классов Swing*/

import javax.swing.*;

public class SwingDemo {

 /*Создание формы в конструкторе*/

 public SwingDemo() {

 /*Создание контейнера верхнего уровня с заданием текста

 заголовка окна*/

 JFrame jfrm = new JFrame("Простая программа Swing");

 /*Установка начальных размеров формы*/

 jfrm.setSize(370, 100);

 /*Конфигурирование завершения работы программы

 при закрытии пользователем окна приложения*/

 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 /*Создание надписи*/

 JLabel jlab = new JLabel("Swing - основа современных Java "

 + "GUI!");

 /*Включение надписи в форму-контейнер*/

 jfrm.add(jlab);

 /*Отображение формы*/

 jfrm.setVisible(true);

 }

 /*Главный метод приложения*/

 public static void main(String args[]) {

 /*Создание формы в потоке, отдельном от потока

 обработки событий*/

 SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 SwingDemo swingDemo = new SwingDemo();

 }

 });

 }

}

Мал. 3. Простий додаток Swing

На початку програми здійснюється імпортування пакета javax.swing, який

містить засоби Swing. Зокрема, в ньому визначені класи, що реалізують візу-

альні компоненти і контейнери. Цей пакет повинен бути включений в кожну

програму, яка використовує Swing.

import javax.swing. *;

6

Далі в програмі оголошується клас SwingDemo і його конструктор. Саме в

конструкторі виконується велика частина дій програми. Код конструктора по-

чинається зі створення об'єкта-контейнера JFrame з ім'ям jfrm:

JFrame jfrm = new JFrame("Проста програма Swing");

Контейнер jfrm визначає прямокутне вікно, що містить заголовок, в який

виводиться рядок, зазначений як параметр конструктора, кнопки, призначені

для закриття, мінімізації, максимізації і відновлення розмірів вікна. Потім за

допомогою методу setSize, який клас JFrame успадковує від класу ja-

va.awt.Component, встановлюються горизонтальний і вертикальний розміри вікна

форми в пікселах.

jfrm.setSize(370, 100);

За замовчуванням при закритті вікна контейнера верхнього рівня (для цього

призначена кнопка у верхньому правому куті) вікно видаляється з екрану, але

програма не завершує свою роботу. Зазвичай бажано, щоб при закритті вікна

контейнера верхнього рівня додаток завершував роботу. Зробити це можна

викликом методу класу JFrame setDefaultCloseOperation() із зазначенням

для нього параметра JFrame.EXIT_ON_CLOSE:

jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Замість значення параметра JFrame.EXIT_ON_CLOSE методу можна переда-

вати і інші значення - JFrame.DISPOSE_ON_CLOSE, JFrame.HIDE_ON_CLOSE

JFrame.DO_NOTHING_ON_CLOSE. Імена констант відображають їх призначення.

Всі вони визначені в інтерфейсі javax.swing.WindowConstants, що реалізується кла-

сом JFrame.

Наступний рядок коду створює Swing-компонент JLabel (Напис) з ім'ям

jlab:

JLabel jlab = new JLabel("Swing - основа сучасних Java GUI!");

Рядок, зазначений як параметр конструктора класу JLabel, буде відображе-

ний в написі на формі.

Наступний рядок коду додає напис до контейнера jfrm:

jfrm.add(jlab);

Слід зазначити, що метод додавання компонентів безпосередньо контейнеру

з'явився, починаючи з Java 5, до цього необхідно було явно вказувати додаван-

ня компонента до панелі вмісту контейнера, в цьому випадку розглянутий вище

оператор виглядав би так:

jfrm.getContentPane().add(jlab);

Метод getContentPane() повертає посилання на панель вмісту форми.

Незважаючи на відсутність явної вказівки в першому операторі (що використо-

вується, починаючи з Java 5), компоненти за замовчуванням додаються саме до

панелі вмісту контейнера.

7

Останній оператор конструктора SwingDemo() забезпечує відображення

вікна.

jfrm.setVisible(true);

Метод setVisible() успадкований від java.awt.Component, він має такий ви-

гляд:

void setVisible(boolean flag)

Якщо значення параметра flag є true, вікно відображається на екрані. В

іншому випадку воно залишається прихованим. За замовчуванням фрейм неви-

димий, тому для його відображення треба викликати метод setVisible(true).

У методі main() створюється об'єкт класу SwingDemo, в результаті чого

вікно з написом з’являється на екрані.

SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 SwingDemo swingDemo = new SwingDemo();

 }

 });

Наведений вище фрагмент коду створює об'єкт swingDemo не в основному

потоці виконання (thread), а в окремому потоці, який створюється за допомогою

анонімного класу, що реалізовує інтерфейс java.lang.Runnable. Такий підхід доз-

воляє розділити потік, в якому вимальовується графічний інтерфейс користува-

ча від потоку, в якому виконуються методи обробки подій взаємодії користува-

ча з візуальними компонентами. Утилітарний клас javax.swing.SwingUtilities

підтримує два методи створення додаткового потоку: invokeLater() та in-

vokeAndWait():

static void invokeLater(Runnable obj)

static void invokeAndWait(Runnable obj)

 throws InterruptedException, InvocationTargetException

Різниця між двома методами, представленими вище, полягає в тому, що

invokeLater() відразу ж повертає керування методу, який його викликає, a

invokeAndWait() очікує завершення методу obj.run().

Необхідно відзначити ще одну особливість розглянутої вище програми - во-

на не реагує на дії користувача, оскільки компонент JLabel використовують

тільки для виведення текстової інформації і при цьому зазвичай відсутня необ-

хідність взаємодії компонента з користувачем (хоча, як і для будь-якого компо-

нента, її можна організувати). З цієї причини в програму не були включені ме-

тоди обробки подій взаємодії з користувачем. Однак існують компоненти, які

зазвичай генерують події взаємодії з користувачем, у відповідь на які програма

повинна виконувати певні дії. Наприклад, події генеруються клацанням на

кнопці миші, натисканням клавіші на клавіатурі або при виборі елемента спис-

ку. Існують події, безпосередньо не пов'язані з діями користувачів, наприклад,

генерування подій після закінчення інтервалу часу таймера. Незалежно від при-

8

чини виникнення тієї чи іншої події, засоби, які перехоплюють і обробляють їх,

є важливою частиною будь-якого Swing-додатку.

Як зазначалося вище, в Swing використовується той же механізм обробки

подій, що і в AWT. Він носить назву модель делегування подій і реалізований з

використанням шаблону проектування Оглядач (Observer) (Мал. 4). Джерело

(Source - зазвичай візуальний компонент) при взаємодії з користувачем генерує

об'єкт-подію (Event), який передається об'єктам-слухачам події (Listener), поси-

лання на які додані в список слухачів об'єкта-джерела, і викликає з об'єктів-

слухачів метод обробки події. В рамках даної моделі слухачі лише очікують

виникнення події. При отриманні об'єкта-події вони обробляють його (викону-

ють якісь необхідні в програмі дії) і повертають управління. Перевага такого

підходу в тому, що логіка обробки подій відділена від логіки побудови інтер-

фейсу користувача, який генерує ці події. Елемент інтерфейсу "делегує" оброб-

ку події окремому фрагменту коду.

Згідно з моделлю делегування, подія є об'єктом, що описує зміни стану

джерела. Подія може бути наслідком дій користувача з елементом графічного

інтерфейсу або згенерована програмними засобами. Суперкласом всіх подій є

java.util.EventObject. Багато подій оголошені в пакеті java.awt.event, але деякі

містяться в javax.swing.event.

Мал. 4. Модель обробки подій в Swing

Реєстрація слухачів подій в Swing здійснюється шляхом виклику методу

addТипListener(ТипListener l) класу-джерела події (компонента), де Тип -

це ім'я події, а параметр l являє собою посилання на слухач з методом обробки

події. Для кожного типу події визначений власний слухач. Наприклад, метод,

який додає слухач подій клавіатури, називається

addKeyListener(KeyListener l). Для додавання слухача подій, пов'язаних з

переміщенням миші, використовується метод

addMouseMotionListener(MouseMotionListener l) і т.і.

9

Джерело (компонент) має також метод, що дозволяє видалити слухача подій

певного типу зі списку слухачів джерела:

public void removeТипListener(TunListener el)

Наприклад, для того, щоб видалити слухача подій клавіатури, треба викли-

кати метод removeKeyListener(KeyListener l).

Методи, що дозволяють отримувати і обробляти події, визначені в інтер-

фейсах, що містяться в пакетах java.awt.event, javax.swing.event і java.beans. Напри-

клад, в інтерфейсі ActionListener оголошений метод, який викликається тоді, коли

користувач виконує клацання мишею на кнопці або виконує іншу дію, яка

зачіпає компонент.

Класи, що представляють події, лежать в основі механізму обробки подій

Java. Ці класи формують ієрархічну структуру, на вершині якої знаходиться

клас java.util.EventObject (Мал. 5). Він є суперкласом для всіх подій. Абстрактний

клас java.awt.AWTEvent є підкласом EventObject. Він, в свою чергу, є батьківським

класом для всіх класів-подій AWT, використовуваних в моделі делегування

подій. Swing використовує події AWT і, крім того, визначає кілька додаткових

подій, визначених в пакеті javax.swing.event.

Мал. 5. Ієрархія подій, які використовуються в AWT і Swing

В Табл. 1 описані деякі класи подій і відповідні їм інтерфейси слухачів, ви-

значені в пакетах javax.awt.event і javax.swing.event.

Табл. 1. Деякі класи подій з пакетів java.awt.event і javax.swing.event

Клас події Опис Слухач
java.awt.event

ActionEvent

Генерується при виконанні дій з інтер-

фейсним елементом, наприклад після

клацання на кнопці

ActionListener

AdjustmentEvent Генерується при виконанні дій зі смугою AdjustmentListener

10

прокрутки

FocusEvent
Генерується тоді, коли компонент отримує

або втрачає фокус введення
FocusListener

ItemEvent

Генерується при виборі або скасування ви-

бору елемента, наприклад, при клацанні на

прапорці опцій

ItemListener

KeyEvent
Генерується при введенні даних з клавіату-

ри
KeyListener

MouseEvent

Генерується при переміщенні або перетягу-

ванні миші, натисканні чи відпусканні її

клавіш, а також при приміщенні курсору

миші на компонент або виведенні курсору

за межі компонента

MouseListener і
MouseMotionListener

MouseWheelEvent Генерується при русі коліщатка миші MouseWheelListener

WindowEvent
Генерується при активізації, деактивизации,

закритті, згортанні і розгортанні вікна
WindowListener

 javax.swing.event

AncestorEvent
Генерується при додаванні, переміщенні або

видаленні пращура компонента
AncestorListener

CaretEvent
Генерується при зміні позиції курсора в тек-

стовому компоненті
CaretListener

ChangeEvent Генерується при зміні стану компонента ChangeListener

HyperlinkEvent
Генерується при діях з гіпертекстовим по-

силанням
HyperlinkListener

ListDataEvent Генерується при зміні вмісту списку ListDataListener

ListSelectionEvent
Генерується при виборі або скасування ви-

бору пунктів списку
ListSelectionListener

MenuEvent
Генерується при виборі або скасуванні ви-

бору пунктів меню
MenuListener

TableModelEvent Генерується при зміні моделі таблиці TableModelListener

TreeExpansionEvent
Генерується при розгортанні або згортанні

дерева
TreeExpansionListener

TreeModelEvent Генерується при зміні моделі дерева TreeModelListener

TreeSelectionEvent Генерується при виборі вузла дерева TreeSelectionListener

Одним з найпростіших і часто використовуваних елементів управління

Swing є Кнопка, що представляє собою екземпляр класу JButton. Цей клас є на-

щадком абстрактного класу AbstractButton, в якому визначені методи, загальні

для всіх компонентів, що реалізують функціонал кнопки (чек-боксів, радіокно-

пок), а також для меню і його елементів. На кнопці може відображатися текст

та/або зображення. Клас JButton містить кілька конструкторів. Найбільш часто

використовуваними є:

JButton(String text);

JButton(Icon icon);

JButton(String text, Icon icon);

Параметр text визначає рядок, який буде відображатися на кнопці, а пара-

метр icon - зображення на ній, що завантажується з файлу, наприклад так:

JButton btnWithIcon = new JButton(new ImageIcon("filname.png");

11

Слід зазначити, що аналогічні конструктори має і напис JLabel.

Після клацання на кнопці генерується подія ActionEvent. Для реєстрації та

відключення слухачів даної події JButton надає наступні методи (вони успадко-

вані від класу AbstractButton):

void addActionListener(ActionListener al)

void removeActionListener(ActionListener al)

Тут параметр al задає об'єкт-слухач, який буде сповіщений про виникнення

подій взаємодії користувача з кнопкою. Об'єкт повинен являти собою екзем-

пляр класу, що реалізовує інтерфейс ActionListener. В інтерфейсі ActionListener

визначений тільки один метод обробки події: actionPerformed(ActionEvent

ае). Даний метод викликається по клацанню на кнопці, тобто він займається

обробкою подій, пов'язаних з діями користувача з кнопкою. Об'єкт

ActionEvent ае, що передається методу actionPerformed(ActionEvent ае),

дозволяє отримати інформацію про компонент-джерело події, наприклад рядок

команди дії. За умовчанням як команда дії приймається рядок, що відобра-

жається на кнопці. Для отримання команди дії треба викликати метод

getActionCommand(), що належить об'єкту події. Він оголошується наступним

чином:

String getActionCommand()

Команда дії ідентифікує кнопку. Таким чином, якщо в додатку є кілька кно-

пок, команда дії дозволяє досить просто визначити, яка з них стала джерелом

події. Нижче наведено вихідний код і зовнішній вигляд програми, що демон-

струє використання двох кнопок, які реагують на дії користувача.

package buttonapppackage;

import java.awt.FlowLayout;

import java.awt.event.*;

import javax.swing.*;

/*Пример, демонстрирующий работу с кнопками*/

public class ButtonDemo implements ActionListener {

 JLabel jlab;

 ButtonDemo() {

 JFrame jfrm = new JFrame("Программа Swing с кнопками");

 /*Установка диспетчера компоновки FlowLayout*/

 jfrm.setLayout(new FlowLayout());

 jfrm.setSize(380, 100);

 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 /*Создание ДВУХ кнопок*/

 JButton jbtnFirst = new JButton("Первая");

 JButton jbtnSecond = new JButton("Вторая");

 /*Связывание с кнопками слушателя события (текущий класс

 является слушателем события, т.к. он реализует

 интерфейс ActionListener)*/

12

 jbtnFirst.addActionListener(this);

 jbtnSecond.addActionListener(this);

 /*Добавление кнопок на форму*/

 jfrm.add(jbtnFirst);

 jfrm.add(jbtnSecond);

 /*Создание текстовой надписи*/

 jlab = new JLabel("Нажмите кнопку");

 /*Включение надписи в состав формы*/

 jfrm.add(jlab);

 jfrm.setVisible(true);

 }

 /*Обработчик событий ActionEvent, генерируемых кнопками*/

 public void actionPerformed(ActionEvent ae) {

 /*Использование команды действия для идентификации кнопки*/

 if (ae.getActionCommand().equals("Первая")) {

 jlab.setText("Нажата первая кнопка");

 } else {

 jlab.setText("Нажата вторая кнопка");

 }

 }

 public static void main(String args[]) {

 SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 ButtonDemo buttonDemo = new ButtonDemo();

 }

 });

 }

}

Мал. 6. Додаток Swing, який демонструє роботу з кнопками

Розглянемо текст програми і звернемо увагу на нові для нас рішення. В

першу чергу зверніть увагу на те, що в цій програмі додатково імпортуються

клас java.awt.FlowLayout і класи пакету java.awt.event. Клас диспетчера компонуван-

ня FlowLayout використовується для визначення принципу розміщення компо-

нентів у фреймі (це детально буде розглянуто далі). Пакет java.awt.event необ-

хідний, оскільки в ньому визначені інтерфейс ActionListener і клас ActionEvent.

Далі в програмі оголошується клас ButtonDemo, який реалізує інтерфейс

ActionListener. Це означає, що об'єкт ButtonDemo використовується і як GUI-

інтерфейс, і для обробки подій, відповідних дій користувача з інтерфейсом.

Далі оголошується посилання на об'єкт JLabel. Він буде використаний в методі

обробки подій actionPerformed (ActionEvent ae) для відображення інфор-

мації, на якій кнопці виконав клацання користувач.

Конструктор ButtonDemo() починається зі створення об'єкта JFrame, на

який посилається змінна jfrm. Потім в конструкторі для фрейма встановлюєть-

ся диспетчер компонування FlowLayout, який вибирає для компонентів, що

розміщуються в формі, розмір, який визначається розмірами їх вмісту (в даному

13

випадку - розміром рядків на кнопках і в написі) (за замовчуванням з панеллю

вмісту пов'язаний диспетчер компонування BorderLayout, про диспетчерів компо-

нування буде розказано далі). FlowLayout розміщує компоненти "в рядок", ма-

ючи в своєму розпорядженні кожен наступний елемент праворуч від попе-

реднього. Коли черговий рядок заповнюється, диспетчер компонування формує

наступний рядок. Незважаючи на те, що дана схема забезпечує низький рівень

контролю за розміщенням елементів, використовувати її дуже просто. Ви мо-

жете поекспериментувати,

Для зв'язування диспетчера компонування з панеллю вмісту форми викори-

стовується наступний оператор:

jfrm.setLayout(new FlowLayout());

До Java 5 був необхідний явний виклик методу getContentPane() і опера-

тор повинен був виглядати так:

jfrm.getContentPane().setLayout(new FlowLayout());

Після установки розміру вікна і визначенні операції завершення програми

при закритті вікна додатка в конструкторі ButtonDemo() створюються дві

кнопки.

JButton jbtnFirst = new JButton("Первая");

JButton jbtnSecond = new JButton("Вторая");

На першій кнопці відображається напис JButton jbtnFirst = new JBut-
ton("Первая");

JButton jbtnSecond = new JButton("Вторая");, а на другій - Друга.

Далі до кнопок додається слухач подій, за допомогою методу

addActionListener(this), аргумент якого вказує на об'єкт-слухач події, в ролі

якого виступає екземпляр класу ButtonDemo (оскільки клас реалізує інтерфейс

ActionListener). Відповідні рядки коду наведені нижче.

jbtnFirst.addActionListener(this);

jbtnSecond.addActionListener(this);

В результаті виконання даних операторів об'єкт, який створив кнопки (тоб-

то екземпляр класу ButtonDemo), буде отримувати сповіщення про дії з ними.

При кожному натисканні на кнопці вона генерує подію, про яку сповіща-

ються зареєстровані на кнопках слухачі. При цьому методу обробки подій слу-

хача actionPerformed(ActionEvent ae) передається як параметр об'єкт-подія

ActionEvent, що представляє подію взаємодії користувача з кнопкою. У про-

грамі ButtonDemo метод обробки подій має такий вигляд:

 public void actionPerformed(ActionEvent ae) {

 if (ae.getActionCommand().equals("Первая")) {

 jlab.setText("Нажата первая кнопка");

 } else {

 jlab.setText("Нажата вторая кнопка");

 } }

14

У тілі методу з об'єкта-події ае методом getActionCommand() витягується

команда дії, яка відповідає напису на кнопці, що згенерувала подію. Залежно

від вмісту рядка, що представляє команду дії, встановлюється текст напису.

Розташування компонентів в складі контейнера визначається диспетчером

компонування (Layout Manager), пов'язаним з цим контейнером. Диспетчери

компонування визначають розмір і розташування компонентів, а при зміні роз-

міру контейнера пропорційно масштабують компоненти. В Java визначено

кілька таких диспетчерів. Більшість з них входять до складу AWT (пакет

java.awt), але кілька додаткових диспетчерів компонування надає Swing. Всі

диспетчери є екземплярами класів, що реалізують інтерфейс

java.awt.LayoutManager (деякі з диспетчерів реалізують інтерфейс

java.awt.LayoutManager2). Нижче описані кілька популярних диспетчерів компо-

нування, доступних програмістам, які використовують засоби AWT та Swing.

Табл. 2. Популярні диспетчери компонування AWT та Swing
FlowLayout Розміщує компоненти в рядку зліва направо; наступний рядок роз-

міщується під попереднім (налаштування для деяких країн передбача-

ють розміщення компонентів в рядку справа наліво). Цей диспетчер

компонування пов'язаний з контейнером JPanel за замовчуванням
BorderLayout Поміщає компоненти в п'яти областях, розташованих по центру і по

краях контейнера, "розтягуючи" їх на всю область. Цей диспетчер ком-

понування пов'язаний з панеллю вмісту контейнера JFrame за замовчу-

ванням
GridLayout Розміщує компоненти у вигляді таблиці з вказаною кількістю рядків і

стовпців і інтервалами між ними. Розтягує розмір компонентів на всю

область комірки
GridBagLayout Розміщує компоненти у вигляді таблиці з комірками різних розмірів
ВохLayout Розміщує компоненти у вертикальній або горизонтальній смузі
SpringLayout Використовує при розміщенні компонентів спеціальні обмеження
GroupLayout Розкладає компоненти по групах. Групи мають напрямок по осі і мо-

жуть бути паралельними і послідовними. У послідовній групі у кожного

наступного компонента координата уздовж осі на одиницю більше

(мається на увазі координата в сітці), в паралельній - компоненти мають

одну і ту ж координату. Використовується за замовчуванням візуаль-

ним редактором графічного інтерфейсу IDE NetBeans

До сих пір нам зустрічалися два диспетчера: BorderLayout (який за замовчу-

ванням пов'язаний з панеллю вмісту JFrame) і FlowLayout (є диспетчером компо-

нування за замовчуванням контейнера JPanel).

Диспетчер BorderLayout визначає в складі контейнера п'ять областей, в яких

можуть розміщатись компоненти. Перша область розташована по центру вікна,

решта чотири - по краях. Відповідно, області називаються центр (Center), північ

(North), південь (South), схід (East) та захід (West). За замовчуванням компонент,

який розміщується в панель вмісту, розташовується в центральній області. Явно

управляти розміщенням компонентів можна, використовуючи спеціальну фор-

му методу додавання компонента:

void add(Component comp, Object loc);

15

де параметр comp задає компонент, що додається до панелі, а параметр loc

визначає область, в якій цей компонент буде розміщений. Допустимі такі зна-

чення параметра loc (Мал. 7):

Верхня частина

вікна

Права частина

вікна

Нижня частина

вікна

Ліва частина

вікна

Центральна

частина вікна
BorderLayout

.PAGE_START

BorderLayout

.LINE_END

BorderLayout

.PAGE_END

BorderLayout

.LINE_START

BorderLayout

.CENTER

BorderLayout

.NORTH

BorderLayout

.EAST

BorderLayout

.SOUTH

BorderLayout

.WEST

BorderLayout

.CENTER
"North" "East" "South" "West" "Center"

Мал. 7. Додаток з кнопками, розміщеними в областях

диспетчера компонування BorderLayout

Диспетчер компонування BorderLayout найбільш зручний, якщо ви створюєте

об'єкт JFrame, який повинен містити лише один компонент (він розміщується в

центрі вікна), або якщо вам необхідно розмістити в різних областях об'єкти-

панелі, що угруповують візуальні компоненти.

При необхідності розташування компонентів на перетині рядків і стовпців

таблиці (Мал. 8) менеджером компонування контейнера встановлюється об'єкт

GridLayout, який створюють, наприклад, так:

GridLayout gl = new GridLayout(4, 0, 5, 12);

Перший параметр конструктора передає бажану кількість рядків, другий -

кількість стовпців (якщо кількість рядків або кількість стовпців встановити в 0,

то вони обчислюються динамічно при додаванні компонентів, але один з цих

параметрів повинен бути вказаний явно). Третій і четвертий параметр задають

інтервали в пікселах між рядками і стовпцями, відповідно.

16

Мал. 8. Додаток з кнопками, розміщеними з використанням

диспетчера компонування GridLayout

Нижче наводиться текст програми, яка використовує комбінацію диспет-

черів компонування, і зовнішній вигляд відповідного додатку (Мал. 9):

package layouts;

import java.awt.BorderLayout;

import java.awt.Color;

import java.awt.FlowLayout;

import java.awt.GridLayout;

import javax.swing.*;

/**

 * Пример совместного использования менеджеров компоновки.

*

 */

public class CompositeLayoutSample extends JFrame {

 public CompositeLayoutSample() {

 super("GridLayout, FlowLayout and BorderLayout combination "

 + "sample");

 setSize(600, 200);

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 /*Используем для панели кнопок GridLayout (1 ряд 2 столбца)

 с целью обеспечения одинаковых размеров кнопок*/

 JPanel grid = new JPanel(new GridLayout(1, 2, 5, 0));

 /*Обрамим панель кнопок рамкой синего цвета*/

 grid.setBorder(BorderFactory.createLineBorder(Color.blue));

 grid.add(new JButton("OK"));

 grid.add(new JButton("Cancel"));

 /*Панель, содержащая панель кнопок, использует FlowLayout

 для обеспечения постоянных размеров кнопок (равного размеру

 максимальной) независимо от размера формы.

 Панель кнопок выравнивается по правому краю*/

 JPanel flow = new JPanel(new FlowLayout(FlowLayout.RIGHT));

 /*Обрамим панель, содержащую панель кнопок, рамкой

 красного цвета*/

 flow.setBorder(BorderFactory.createLineBorder(Color.red));

17

 flow.add(grid);

 /*Панель содержимого формы использует BorderLayout,

 размещаем в нижней её части панель flow,

 содержащую панель кнопок*/

 add(flow, BorderLayout.PAGE_END);

 /*Для заполнения основного пространства формы добавим

 надпись, конструктор надписи содержит параметр выравнивания

 по центру по горизонтали, выравнивание по центру

 по вертикали обеспечивает BorderLayout*/

 add(new JLabel("Frame content", JLabel.CENTER));

 /*Выравниваем форму относительно центра экрана*/

 setLocationRelativeTo(null);

 setVisible(true);

 }

 public static void main(String[] args) {

 CompositeLayoutSample app = new CompositeLayoutSample();

 }

}

Мал. 9. Додаток, що використовує комбінацію диспетчерів компонування

Звернемо увагу, що панель з диспетчером компонування GridLayout, на

відміну від BoxLayout, забезпечує однаковий розмір кнопок (визначається розмі-

ром напису максимального розміру на кнопці). Також продемонстровано вико-

ристання конструктора диспетчера компонування FlowLayout з параметром, що

визначає вирівнювання вмісту панелі:

new FlowLayout(FlowLayout.RIGHT);

Для виділення панелей на формі використовується обрамлення панелей

лініями різних кольорів із задіянням функціоналу класів javax.swing.BorderFactory і

java.awt.Color:

grid.setBorder(BorderFactory.createLineBorder(Color.blue));

Результатом використання комбінації диспетчерів компонування є

зовнішній вигляд інтерфейсу, у якого кнопки управління "прив'язані" до ниж-

ньої правої частини вікна і не змінюють свого розміру і взаємного розташуван-

ня при змінах розміру форми.

Зверніть увагу на оператор

setLocationRelativeTo(null);

який дозволяє вирівнювати вікно форми додатка по центру екрану під час

запуску програми.

18

Крім написів і кнопок до числа широко використовуваних компонентів

відноситься текстове поле JTextField. Цей компонент дозволяє користувачеві

вводити рядок тексту. JTextField є підкласом абстрактного класу

javax.swing.text.JTextComponent, який виступає в ролі суперкласу не тільки для

JTextField, але і для інших текстових компонентів.

У класі JTextField визначено кілька конструкторів. Один з них виглядає

наступним чином:

JTextField(int cols)

де параметр cols визначає ширину текстового поля, виражену в кількості

позицій для введення символів. Відзначимо, що довжина рядка, що вводиться,

не обмежується шириною поля, яка відображається на екрані.

Закінчивши введення тексту в поле, користувач натискає клавішу Enter, в

результаті чого компонент JTextField генерує подію ActionEvent. Клас JTextField на-

дає розробнику методи addActionListener(ActionListener al) і remove-

ActionListener(ActionListener al). Для обробки подій необхідно ре-

алізувати метод actionPerformed(ActionEvent ae), оголошений в інтерфейсі

ActionListener. Обробка подій текстового поля здійснюється так само, як і обробка

подій кнопки, про яку йшла мова раніше.

Щоб отримати рядок, що відображається в компоненті, треба з об’єкта

JTextField викликати метод getText(). Оголошення цього методу наведено ниж-

че.

String getText ();

Задати текст для компонента JTextField дозволяє метод setText, який має

наступний вигляд:

void setText(String text)

Рядок тексту передається компоненту за допомогою параметра text.

Далі наведено вихідний код і зовнішній вигляд програми, що демонструє

використання компонента JTextField (Мал. 10). Додаток показує можливість ро-

боти з Буфером обміну операційної системи за допомогою операцій вирізання,

копіювання і вставки рядків. Зверніть увагу на те, що клас TextFieldDemo успад-

ковує клас JFrame, що робить непотрібним створення форми в конструкторі

(тобто клас TextFieldDemo - це форма).

package textfieldapppackage;

import java.awt.FlowLayout;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.event.*;

/*Демонстрация работы с текстовым полем*/

public class TextFieldDemo extends JFrame {

 JLabel jlabAll; //отображает всю строку

 JLabel jlabSelected; //отображает выделенную часть строки

19

 JLabel jlabCurPos; //отображает позицию курсора

 JTextField jtf;

 JButton jbtnCut;

 JButton jbtnCopy;

 JButton jbtnPaste;

 public TextFieldDemo() {

 setTitle("Работа с компонентом JTextField");

 setLayout(new FlowLayout());

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setSize(400, 200);

 jlabAll = new JLabel("Выделите часть текста в поле ");

 jlabSelected = new JLabel("и нажмите Enter");

 add(jlabAll);

 add(jlabSelected);

 /*Создаётся текстовое поле с первоначальной фразой

 и предпочитаемой шириной*/

 jtf = new JTextField("Это тестовая фраза", 35);

 add(jtf);

 /*Добавление слушателя события - нажатия клавиши Enter

 организуется через создание объекта анонимного класса,

 реализующего интерфейс ActionListener */

 jtf.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 jlabAll.setText("Полный текст в поле: "

 + jtf.getText());

 jlabSelected.setText("Выделенный текст: "

 + jtf.getSelectedText());

 }

 });

 /*Добавление кнопок*/

 jbtnCut = new JButton("Вырезать");

 jbtnCopy = new JButton("Копировать");

 jbtnPaste = new JButton("Вставить");

 add(jbtnCut);

 add(jbtnCopy);

 add(jbtnPaste);

 /*Добавление слушателя события - нажатия кнопки Вырезать*/

 jbtnCut.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 /*Вырезание выделенного текста в буфер обмена*/

 jtf.cut();

 /*Отображение оставшейся части текста*/

 jlabAll.setText("Полный текст в поле: "

 + jtf.getText());

 /*Создание вспомогательного текстового поля,

 куда копируется текст из буфера обмена

 для вывода его в метке*/

 JTextField buftf = new JTextField();

 buftf.paste();

 jlabSelected.setText("Текст в буфере обмена: "

 + buftf.getText());

 }

20

 });

 /*Добавление слушателя события нажатия на кнопку Копировать*/

 jbtnCopy.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 /*Копирование выделенного текста в буфер обмена*/

 jtf.copy();

 /*Создание вспомогательного текстового поля,

 куда копируется текст из буфера обмена

 для вывода его в метке*/

 JTextField buftf = new JTextField();

 buftf.paste();

 jlabSelected.setText("Текст в буфере обмена: "

 + buftf.getText());

 }

 });

 /*Добавление слушателя события нажатия на кнопку Вставить.

 Перед нажатием на кнопку Вставить можно менять позицию

 курсора, указывая место вставки*/

 jbtnPaste.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 jtf.paste();

 jlabAll.setText("Полный текст в поле: "

 + jtf.getText());

 jlabSelected.setText("");

 }

 });

 /*Добавление слушателя, отслеживающего события

 изменения позиции курсора*/

 jlabCurPos = new JLabel("Позиция курсора: ");

 jtf.addCaretListener(new CaretListener() {

 @Override

 public void caretUpdate(CaretEvent e) {

 jlabCurPos.setText("Позиция курсора: "

 + jtf.getCaretPosition());

 }

 });

 add(jlabCurPos);

 setVisible(true);

 }

 public static void main(String[] args) {

 SwingUtilities.invokeLater(new Runnable() {

 @Override

 public void run() {

 TextFieldDemo tfd = new TextFieldDemo();

 }

 });

 }

}

21

Мал. 10. Додаток, яке демонструє роботу з текстовим полем

Операції роботи з Буфером обміну файлової системи забезпечують методи

абстрактного класу javax.swing.text.JTextComponent void copy(), void cut() і

void paste(). У програмі вміст Буфера обміну дублюється в додатковому тек-

стовому полі для можливості його передачі в напис.

У наведеній вище програмі до текстового поля додається слухач

javax.swing.event.CaretListener, що відслідковує зміну позиції курсора в текстовому

полі.

Подібно JButton, з компонентом JTextField пов'язана команда дії. За замовчен-

ням як рядок такої команди приймається поточний вміст поля редагування. Од-

нак Ви можете встановити команду явним чином, викликавши метод

setActionCommand.

void setActionCommand(String cmd)

Рядок, переданий за допомогою параметра cmd, стає новою командою дії;

при цьому текст в текстовому полі не змінюється. Як правило, розробники

вдаються до явного налаштування команди дії для того, щоб забезпечити

розпізнавання компонента, який згенерував подію. Так доводиться поступати у

тому випадку, якщо в формі знаходиться декілька елементів управління, для

22

яких розроблений загальний обробник подій. Встановивши команду дії, Ви от-

римуєте зручний засіб ідентифікації компонента.

Іншими спадкоємцями абстрактного класу javax.swing.text.JTextComponent є

JTextArea і JEditorPane. Обидва дозволяють відображати багаторядковий текст,

але перший - написаний тільки одним шрифтом, а другий - підтримує формату-

вання шрифтів і вставку зображень.

Популярними компонентами також є JCheckBox (прапорець) і JRadioButton

(перемикач). Для забезпечення функціональності останнього кілька примір-

ників JRadioButton зазвичай об'єднуються в групу - об'єкт ButtonGroup. Нижче

наводиться текст і звонішній вигляд програми, що демонструє використання

зазначених компонентів:

import java.awt.BorderLayout;

import java.awt.event.ItemEvent;

import java.awt.event.ItemListener;

import javax.swing.*;

/**

 * Демонстрация использования компонентов JRadioButton и JCheckBox,

 * а также динамической замены контейнеров JPanel.

 */

public class ComponentRadioButtonCheckBox extends JFrame {

 private final JPanel pnlChoose;

 private final JPanel pnlContent;

 private final JPanel pnlFruitContent;

 private final JPanel pnlVegetableContent;

 private final JCheckBox chkApple;

 private final JCheckBox chkGrape;

 private final JCheckBox chkPear;

 private final JCheckBox chkTomato;

 private final JCheckBox chkCucumber;

 private final JCheckBox chkPotato;

 private final JLabel lblInfo;

 public ComponentRadioButtonCheckBox() {

 super("JRadioButton and JCheckBox Using Example");

 setSize(600, 200);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 /*Панель выбора фрукты или овощи - группа радиокнопок*/

 pnlChoose = new JPanel();

 JRadioButton rbtnFruits = new JRadioButton("Fruits");

 JRadioButton rbtnVegetables = new JRadioButton("Vegetables");

 ButtonGroup btngrChoose = new ButtonGroup();

 btngrChoose.add(rbtnFruits);

 btngrChoose.add(rbtnVegetables);

 pnlChoose.add(rbtnFruits);

 pnlChoose.add(rbtnVegetables);

 add(pnlChoose, BorderLayout.NORTH);

 pnlContent = new JPanel();

 add(pnlContent, BorderLayout.CENTER);

 /*Панель выбора фруктов - чекбоксы*/

 pnlFruitContent = new JPanel();

23

 chkApple = new JCheckBox("Apple");

 chkGrape = new JCheckBox("Grape");

 chkPear = new JCheckBox("Pear");

 pnlFruitContent.add(chkApple);

 pnlFruitContent.add(chkGrape);

 pnlFruitContent.add(chkPear);

 /*Панель выбора овощей - чекбоксы*/

 pnlVegetableContent = new JPanel();

 chkTomato = new JCheckBox("Tomato");

 chkCucumber = new JCheckBox("Cucumber");

 chkPotato = new JCheckBox("Potato");

 pnlVegetableContent.add(chkTomato);

 pnlVegetableContent.add(chkCucumber);

 pnlVegetableContent.add(chkPotato);

 /*Информационная строка - отображает список выбранных фруктов

 или овощей*/

 lblInfo = new JLabel("", JLabel.CENTER);

 add(lblInfo, BorderLayout.SOUTH);

 MyRadioButtonsListener radioButtonsListener =

 new MyRadioButtonsListener();

 rbtnFruits.addItemListener(radioButtonsListener);

 rbtnVegetables.addItemListener(radioButtonsListener);

 MyCheckBoxListener fruitsCheckBoxListener =

 new MyCheckBoxListener(chkApple, chkGrape, chkPear);

 chkApple.addItemListener(fruitsCheckBoxListener);

 chkGrape.addItemListener(fruitsCheckBoxListener);

 chkPear.addItemListener(fruitsCheckBoxListener);

 MyCheckBoxListener vegetablesCheckBoxListener =

 new MyCheckBoxListener(chkTomato, chkCucumber, chkPotato);

 chkTomato.addItemListener(vegetablesCheckBoxListener);

 chkCucumber.addItemListener(vegetablesCheckBoxListener);

 chkPotato.addItemListener(vegetablesCheckBoxListener);

 setVisible(true);

 }

 public static void main(String[] args) {

 SwingUtilities.invokeLater(new Runnable() {

 @Override

 public void run() {

 new ComponentRadioButtonCheckBox();

 }

 });

 }

 /**

 * Слушатель выбора радиокнопок фрукты или овощи.

 */

 private class MyRadioButtonsListener implements ItemListener {

 @Override

 public void itemStateChanged(ItemEvent e) {

 /*Очистка*/

 pnlContent.removeAll();

24

 lblInfo.setText("");

 chkApple.setSelected(false);

 chkGrape.setSelected(false);

 chkPear.setSelected(false);

 chkTomato.setSelected(false);

 chkCucumber.setSelected(false);

 chkPotato.setSelected(false);

 /*Перерисовка компонента - указывает Swing, что нужно

 удалить компоненты, удалённые методом remove() или

 removeAll()*/

 pnlContent.repaint();

 /*Указывает менеджеру компоновки на необходимость

 пересчёта компоновки, что необходимо при добавлении

 новых компонентов*/

 pnlContent.revalidate();

 /*Установка панели, соответствующей выбранной

 радиокнопке*/

 if ("Fruits".equals(((JRadioButton) e.getSource())

 .getText())) {

 pnlContent.add(pnlFruitContent, BorderLayout.CENTER);

 } else {

 pnlContent.add(pnlVegetableContent,

 BorderLayout.CENTER);

 }

 pnlContent.repaint();

 pnlContent.revalidate();

 }

 }

 /**

 * Слушатель выбора овощей или фруктов.

 */

 private class MyCheckBoxListener implements ItemListener {

 private final JCheckBox[] items;

 public MyCheckBoxListener(JCheckBox… items) {

 this.items = items;

 }

 @Override

 public void itemStateChanged(ItemEvent e) {

 StringBuilder selected = new StringBuilder();

 for (JCheckBox item : items) {

 if (item.isSelected()) {

 selected.append(item.getText()).append(" ");

 }

 }

 lblInfo.setText(selected.toString());

 }

 }

}

25

Мал. 11. Додаток, яке демонструє роботу з перемикачами і прапорцями

Зверніть увагу на використання в програмі для угруповання компонентів

об'єктів JPanel, а також організовану в класі слухача MyRadioButtonsListener ди-

намічну заміну і відображення об'єктів JPanel в залежності від обраної користу-

вачем радіокнопки.

Swing також підтримує компоненти вибору зі списку елементів, такі як JList

і JComboBox. Наведена нижче програма демонструє використання компонента

JList:

import java.awt.*;

import javax.swing.*;

import javax.swing.event.ListSelectionEvent;

import javax.swing.event.ListSelectionListener;

/**

 * Класс, демонстрирующий работу с компонентом JList.

 */

public class ComponentList {

 public ComponentList() {

 final JFrame jfrm = new JFrame("Компонент JList");

 jfrm.setLayout(new FlowLayout());

 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 jfrm.setSize(500, 300);

 final JLabel jlab = new JLabel();

 jfrm.add(jlab);

 /*Массив с данными списка (вместо массива также могут

 использоваться вектор и модель списка)*/

 final String[] data = {"one", "two", "three", "four", "five",

 "six", "seven", "eight", "nine", "ten"};

 /*При создании списка передаём в конструктор массив строк*/

 final JList datalist = new JList(data);

 /*Установка режима, позволяющего выбирать только один элемент

 списка, ещё варианты SINGLE_INTERVAL_SELECTION

 и MULTIPLE_INTERVAL_SELECTION*/

 datalist.setSelectionMode(ListSelectionModel

 .SINGLE_SELECTION);

 /*Для отображения списка в прокручиваемом окне создаём объект

 JScrollPane, в конструктор которого передаём созданный

 список*/

 JScrollPane jscpane = new JScrollPane(datalist);

 /*Установка размера прокручиваемой панели*/

 jscpane.setPreferredSize(new Dimension(120, 160));

 jfrm.add(jscpane);

26

 /*Создаём слушатель события выбора элемента в списке

 и реализуем абстрактный метод valueChanged класса

 ListSelectionListener, получающий событие

 ListSelectionEvent*/

 ListSelectionListener lsldatalist =

 new ListSelectionListener() {

 @Override

 public void valueChanged(ListSelectionEvent e) {

 /*Получаем индекс выбранного элемента, если ни один

 элемент не выбран возвращается -1*/

 int i = datalist.getSelectedIndex();

 if (i != -1) {

 jlab.setText("You choose " + data[i]);

 } else {

 jlab.setText("You don't choose list item");

 }

 }

 };

 datalist.addListSelectionListener(lsldatalist);

 jfrm.setVisible(true);

 }

 public static void main(String[] args) {

 SwingUtilities.invokeLater(new Runnable() {

 @Override

 public void run() {

 ComponentList comlst = new ComponentList();

 }

 });

 }

}

Конструктор об'єктів JList приймає як параметр масив рядків, існують пере-

вантажені конструктори, які приймають колекцію java.util.Vector або об'єкт класу,

що реалізуює інтерфейс javax.swing.ListModel (часто javax.swing.DefaultListModel, який

має методи додання, отримання, видалення та пошуку елементів списку) в

якості параметра.

Для списку існує можливість завдання режиму вибору елементів списку

шляхом передачі в метод void setSelectionMode (int selectionMode) об'єкта

JList константи ListSelectionModel.SINGLE_SELECTION - для режиму вибору

тільки одного елемента зі списку, ListSelectionMod-

el.SINGLE_INTERVAL_SELECTION - для режиму вибору одного діапазону розташо-

ваних підряд елементів списку і ListSelectionMod-

el.MULTIPLE_INTERVAL_SELECTION - для вибору декількох діапазонів елементів

списку.

З огляду на те, що список може не вміщатися у відведену йому область, ча-

сто список обертають в компонент JScrollPane (Панель з прокруткою). Розмір

такої панелі встановлюється методом void setPreferredSize(Dimension

27

preferredSize), який отримує в якості параметра об'єкт java.awt.Dimension, який

інкапсулює ширину і висоту області, відведеної для панелі з прокруткою.

Вибір елементів в списку відстежується слухачем подій

javax.swing.event.ListSelectionListener з методом обробки події void

valueChanged(ListSelectionEvent e). У реалізації цього методу зазвичай отри-

мують індекс елемента списку (методом getSelectedIndex() класу JList), за до-

помогою якого витягують і використовують відповідні дані з масиву, передано-

го конструктору списку.

Компонент JComboBox відрізняється від JList можливістю організації редагу-

вання вибраного елементу списку. Також, на відміну від JList, об'єкт JComboBox

має тільки один режим вибору - дозволяє вибирати тільки один елемент. Наве-

дений нижче код демонструє роботу компонента JComboBox. Зверніть увагу на

те, що клас ComponentComboBox є одночасно і формою, і слухачом подій.

import java.awt.BorderLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.*;

/**

 * Демонстрация работы компонента JComboBox.

 */

public class ComponentComboBox extends JFrame

 implements ActionListener {

 private final JLabel jlab;

 public ComponentComboBox() {

 super("Компонент JComboBox");

 setSize(600, 400);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JPanel pnlRoot = new JPanel();

 /*Массив с данными списка (вместо массива также могут

 использоваться вектор и модель списка)*/

 final String[] data = {"one", "two", "three", "four", "five",

 "six", "seven", "eight", "nine", "ten"};

 JComboBox comboBox = new JComboBox(data);

 /*Делаем компонент редактируемым*/

 comboBox.setEditable(true);

 comboBox.addActionListener(this);

 JScrollPane scrollPane = new JScrollPane(comboBox);

 pnlRoot.add(scrollPane);

 add(pnlRoot, BorderLayout.NORTH);

 jlab = new JLabel("", JLabel.CENTER);

 add(jlab, BorderLayout.SOUTH);

 setVisible(true);

 }

 @Override

 public void actionPerformed(ActionEvent e) {

 JComboBox jcb = (JComboBox) e.getSource();

 String item = (String) jcb.getSelectedItem();

 jlab.setText("Ваш выбор: " + item);

28

 }

 public static void main(String[] args) {

 SwingUtilities.invokeLater(new Runnable() {

 @Override

 public void run() {

 new ComponentComboBox();

 }

 });

 }

}

У обробнику події продемонстровано отримання з події методом Object

getSource() посилання на компонент-джерело події.

Для віконних додатків часто необхідно створювати меню команд. Swing

підтримує створення меню за допомогою декількох компонентів: JMenuBar (Ря-

док меню), JMenu (Меню команди), JMenuItem (Пункт меню). Наступний при-

клад демонструє побудову і організацію роботи з меню:

import java.awt.BorderLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.event.KeyEvent;

import java.io.*;

import javax.swing.*;

import javax.swing.filechooser.FileFilter;

import javax.swing.filechooser.FileNameExtensionFilter;

/**

 * Демонстрация построения и работы с меню.

*/

public class SimpleMenu extends JFrame {

 static JTextArea info = new JTextArea(500, 300);

 public SimpleMenu () {

 setTitle("Работа с меню и его элементами");

 setSize(600, 400);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 add(info, BorderLayout.CENTER);

 JMenuBar menuBar = new JMenuBar();

 JMenu file = new JMenu("File");

 file.setMnemonic(KeyEvent.VK_F);

 JMenuItem exit = new JMenuItem("Exit");

 exit.setMnemonic(KeyEvent.VK_X);

 exit.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 System.exit(0);

 }

 });

 JMenuItem open = new JMenuItem("Open");

 open.setMnemonic(KeyEvent.VK_O);

 open.addActionListener(new OpenActionListener());

29

 JMenuItem saveAs = new JMenuItem("Save As");

 saveAs.setMnemonic(KeyEvent.VK_S);

 saveAs.addActionListener(new MenuActionListener(info));

 file.add(open);

 file.add(saveAs);

 file.addSeparator();

 file.add(exit);

 menuBar.add(file);

 /*Устанавливаем панель меню в форму*/

 setJMenuBar(menuBar);

 setVisible(true);

 }

 private static class OpenActionListener implements ActionListener

 {

 @Override

 public void actionPerformed(ActionEvent e) {

 File currentDirectory =

 new File(System.getProperty("user.dir"));

 JFileChooser fileChooser =

 new JFileChooser(currentDirectory);

 FileFilter filter =

 new FileNameExtensionFilter("Text files", "txt");

 fileChooser.setFileFilter(filter);

 int result = fileChooser

 .showOpenDialog((JMenuItem) e.getSource());

 if (result == JFileChooser.APPROVE_OPTION) {

 File selectedFile = fileChooser.getSelectedFile();

 try (BufferedReader br = new BufferedReader(new

 InputStreamReader(new FileInputStream(selectedFile), "CP1251"))) {

 StringBuilder sb = new StringBuilder();

 String s;

 while ((s = br.readLine()) != null) {

 sb.append(s+"\n");

 }

 info.setText(sb.toString());

 } catch (IOException ex) {

 System.out.println(ex.getMessage());

 }

 }

 }

 }

 private class MenuActionListener implements ActionListener {

 JTextArea info;

 public MenuActionListener(JTextArea info) {

 this.info = info;

 }

 @Override

 public void actionPerformed(ActionEvent e) {

 String item = e.getActionCommand();

 info.setText(item);

 }

30

 }

 public static void main(String[] args) {

 SwingUtilities.invokeLater(new Runnable() {

 @Override

 public void run() {

 new SimpleMenu();

 }

 });

 }

}

За допомогою методу void setMnemonic(int mnemonic) для об'єктів JMenu-

Item можна задавати клавіатурні комбінації виклику, використовуючи як аргу-

мент відповідну обраній клавіші (використовується разом з Alt) константу класу

java.awt.event.KeyEvent. До об'єкту JMenu, крім елементів меню, за допомогою

виклику методу void addSeparator() може бути доданий роздільник. У оброб-

нику подій MenuActionListener текст елемента меню отримується із об'єкта події

методом getActionCommand() і додається до компоненту JTextArea (Текстова об-

ласть).

Для елемента меню відкриття файлу використовується окремий обробник

OpenActionListener, що використовує компонент JFileChooser для вибору файлу,

вміст якого відображається в області тексту. Для зменшення операцій переходу

між каталогами в конструктор цього об'єкту можна передати об'єкт File, який

вказує на каталог з якого запускається додаток, що отримується методом

getProperty("user.dir") класу java.lang.System. У наведеному нижче прикладі

список відображуваних об'єктом JFileChooser файлів обмежується об'єктом FileFil-

ter. У Swing існує реалізація цього інтерфейсу -

javax.swing.filechooser.FileNameExtensionFilter, що дозволяє побудувати фільтр по од-

ному або декільком розширень імен файлів. Вікно вибору файлів відкривається

викликом з об'єкта JFileChooser методу showOpenDialog((JMenuItem)

e.getSource()), якому передається посилання на джерело події вибору даного

пункту меню. Відзначимо, що в класі JFileChooser також існують методи:

int showSaveDialog(Component parent)

int showDialog(Component parent, String approveButtonText)

Перший відкриває вікно збереження файлу, а другий - вікно з кнопкою з на-

писом-рядком, який передається другим параметром (наприклад Run). Усі три

методи повертають код виконання операції, який пов'язаний з константами:

JFileChooser.APPROVE_OPTION - у разі успішного вибору файлу

JFileChooser.CANCEL_OPTION - у разі скасування вибору

JFileChooser.ERROR_OPTION - у разі помилки

Обраний файл у вигляді об'єкта File повертається об'єктом JFileChooser при

виклику з нього методу getSelectedFile(). Відзначимо, що з об'єкта JFileChooser

також може бути викликаний метод File getCurrentDirectory(), який повер-

тає у вигляді об'єкта File обраний каталог.

31

У додатках часто необхідно повідомити користувачеві про якісь проблеми

або зажадати від нього додаткові дані. Це можна виконати за допомогою мо-

дального і немодального діалогового вікна - екземпляра класу JDialog. Оскільки

частіше використовуються модальні діалогові вікна, в Swing доданий відповід-

ний клас javax.swing.JOptionPane з багатим функціоналом. Нижче наведений при-

клад коду метода обробки події натискання на кнопку, який складає два числа,

отриманих з текстових полів, і вид додатка з повідомленням про помилку (Мал.

12):

 public void actionPerformed(ActionEvent e) {

 try {

 double num1 = Double.parseDouble(tfNum1.getText());

 double num2 = Double.parseDouble(tfNum2.getText());

 tfRes.setText(String.valueOf(num1 + num2));

 } catch (NumberFormatException ex) {

 JOptionPane.showMessageDialog(this, "Invalid input data",

 "Error", JOptionPane.ERROR_MESSAGE);

 }

 }

Мал. 12. Додаток, який демонструє роботу модального діалогового вікна

з повідомленням про помилку

В разі. якщо вводяться не числа або числа, що перевищують допустимий

діапазон, генерується виключення NumberFormatException, в блоці перехоплення

якого викликається модальное діалогове вікно статичним методом void

showMessageDialog(Component parentComponent, Object message,

String title, int messageType). Параметр parentComponent вказує бать-

ківський для діалогового вікна контейнер, message - відображається як текст

напису у вікні, title - текст заголовка, а messageType - передає константу, що

визначає іконку, яка додається у вікно. Доступні такі іконки:

 - JOptionPane.QUESTION_MESSAGE

 - JOptionPane.INFORMATION_MESSAGE

 - JOptionPane.WARNING_MESSAGE

 - JOptionPane.ERROR_MESSAGE

без іконки - JOptionPane.PLAIN_MESSAGE

32

З об'єкта JOptionPane альтернативно можуть бути викликані статичні методи

(показані їх перевантажені версії з максимальною кількістю параметрів):

int showConfirmDialog(Component parentComponent, Object message,

String title, int optionType, int messageType, Icon icon)

int showOptionDialog(Component parentComponent, Object message,

String title, int optionType, int messageType, Icon icon, Object[] op-

tions, Object initialValue)

int showInternalConfirmDialog(Component parentComponent, Object mes-

sage, String title, int optionType, int messageType, Icon icon)

Object showInputDialog(Component parentComponent, Object message,

String title, int messageType, Icon icon, Object[] selectionValues, Ob-

ject initialSelectionValue)

Object showInternalInputDialog(Component parentComponent, Object mes-

sage, String title, int messageType, Icon icon, Object[] selectionVal-

ues, Object initialSelectionValue)

Вони дозволяють за допомогою параметра int optionType керувати роз-

міщенням кнопок через константи:

JOptionPane.DEFAULT_OPTION

JOptionPane.YES_NO_OPTION
JOptionPane.YES_NO_CANCEL_OPTION
JOptionPane.OK_CANCEL_OPTION

Два останніх методи дозволяють розміщувати компоненти, що підтримують

введення даних користувачем. Параметр Icon icon дозволяє замінювати іконку

за замовчуванням у вікні на користувацьку (це можливо і для методу

showMessageDialog).

Слід зазначити, що крім описаних вище компонентів в бібліотеці Swing

присутні і інші, як прості, такі як JPasswordField, JToggleButton, JProgressBar та ін.,

так і більш складні, засновані на використанні моделей - JTable і JTree та ін.

Вивчити роботу з ними рекомендується за допомогою літератури, наведеної в

кінці даної лабораторної роботи.

2. Виконання роботи

GUI Builder IDE NetBeans дозволяє візуально створювати додатки на мові

Java з графічним інтерфейсом з використанням компонентів Swing. Розглянемо

розробку проекту графічного інтерфейсу з додаванням ряду кнопок і текстових

полів. Текстові поля призначені для отримання даних, які вводяться користува-

чем, і виведення результату роботи програми. Кнопка ініціюватиме роботу

функцій, вбудованих в клієнтську частину програми. Створюваний додаток яв-

ляє собою простий калькулятор.

Першою дією є створення проекту у IDE. Дамо проекту ім'я NumberAddition.

Виберіть Файл-Створити проект, в області Категорії виберіть вузол Java. В

області Проекти виберіть Додаток Java. Натисніть кнопку Далі. Введіть

NumberAddition в поле Ім'я проекту і вкажіть шлях до цього проекту, наприклад, в

домашньому каталозі. Якщо встановлений прапорець Зробити головним про-

ектом, видаліть прапорець. Натисніть кнопку Завершити. Оскільки не реко-

about:blank*1
about:blank*2
about:blank*3
about:blank*4
about:blank*5
about:blank*6
about:blank*7
about:blank*7

33

мендується створювати класи в пакеті за замовчуванням у вікні Проекти клац-

ніть на вузлі Пакети вихідних файлів правою кнопкою і виберіть команду

Створити-Пакет Java. Введіть ім'я numaddpackage в поле Ім'я пакета, потім

натисніть Завершити. Пакет numaddpackage замінює собою пакет за замовчу-

ванням.

Для продовження процесу створення інтерфейсу необхідно створити кон-

тейнер Java, в який будуть поміщені інші необхідні елементи графічного інтер-

фейсу. У цій дії контейнер буде створений за допомогою елемента JFrame.

Контейнер буде поміщений в новий пакет, який буде відображатися в вузлі Па-

кети вихідних файлів. У вікні Проекти клацніть правою кнопкою миші вузол

NumberAddition і виберіть Створити-Форма JFrame. Введіть ім'я класу

NumberAdditionUI. Виберіть пакет numaddpackage. Натисніть кнопку Завершити.

Середа IDE створює форму NumberAdditionUI і клас NumberAdditionUI в додатку

NumberAddition і відкриває форму NumberAdditionUI в Конструкторі GUI Builder

(Мал.13).

GUI Builder містить такі елементи: Область проектування - основне вікно

GUI Builder для створення і редагування форм графічного інтерфейсу Java.

Кнопки перемикання між уявленнями Вихідний код і Конструктор дозволяють

переглядати вихідний код класу або графічне представлення компонентів

графічного інтерфейсу. Додаткові кнопки панелі інструментів надають швид-

кий доступ до часто використовуваних команд, наприклад, перемикання між

режимами вибору і підключення, вирівнювання компонентів, установка авто-

матичної зміни розміру для компонентів і попередній перегляд форм.

У вікні Інспектор всі компоненти програми (як видимі, так і невидимі)

представлені у вигляді дерева ієрархії. Вікно Інспектор також відображає реда-

гований в поточний момент в GUI Builder компонент дерева, а також дозволяє

змінювати розташування компонентів на доступних панелях.

34

Мал.13. Створення фрейму JFrame в GUI Builder IDE NetBeans

Вікно Палітра представляє собою список різних компонентів з вкладками

для компонентів JFC/Swing, AWT, і JavaBeans, а також диспетчерами компо-

нування. Крім того, існує можливість створення, видалення і зміни порядку

проходження категорій, що відображаються у вікні Палітра.

Вікно Властивості відображає властивості обраного зараз компонента GUI

Builder, вікон Інспектор, Проекти або Файли. Додайте в вікні властивостей

форми для параметра title заголовок Простий калькулятор, який буде виводитися в

заголовку вікна програми (Мал.13).

При натисканні кнопки Вихідний код IDE виводить в редакторі вихідний код

програми на Java, при цьому автоматично створені засобом GUI Builder розділи

коду (захищені блоки) виділяються фоном з сірим кольором. Код в захищених

блоках неможливо змінити в поданні Вихідний код. Функція редагування до-

ступна в цьому поданні лише для коду на білому фоні вікна редактора. При

необхідності зміни коду в захищеному блоці натисніть кнопку Конструктор

для повернення у вікно GUI Builder, що надає можливість зміни форми. При

збереженні змін IDE оновлює вихідний код файлу.

При натисканні на кнопку Вихідний код можна побачити автоматично зге-

нерований код, що виводить форму на екран.

35

package numaddpackage;

// Класс создаваемой формы наследует javax.swing.JFrame

public class NumberAdditionUI extends javax.swing.JFrame {

 /*Создаётся новая форма NumberAdditionUI путём вызова конструктора,

 выполняющего метод initComponents()*/

 public NumberAdditionUI() {

 initComponents();

 }

 /** Метод initComponents() вызывается из конструктора формы

 * и выполняет её инициализацию

 * ПРЕДУПРЕЖДЕНИЕ: НЕ СЛЕДУЕТ модифицировать следующий код.

 * Он всегда генерируется Редактором форм.

 */

 @SuppressWarnings("unchecked")

 private void initComponents() {

 /*Завершение программы при закрытии пользователем окна*/

 setDefaultCloseOperation(javax.swing.WindowConstants

 .EXIT_ON_CLOSE);

 /*Установка диспетчера компоновки GroupLayout*/

 javax.swing.GroupLayout layout =

 new javax.swing.GroupLayout(getContentPane());

 getContentPane().setLayout(layout);

 layout.setHorizontalGroup(

 layout.createParallelGroup(javax.swing.GroupLayout.

 Alignment.LEADING).addGap(0, 400, Short.MAX_VALUE)

);

 layout.setVerticalGroup(

 layout.createParallelGroup(javax.swing.GroupLayout.

 Alignment.LEADING).addGap(0, 300, Short.MAX_VALUE)

);

 pack();

 }

 public static void main(String args[]) {

 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 new NumberAdditionUI().setVisible(true);

 }

 });

 }

 // Объявления переменных - не изменять

 // окончание объявления переменных

}

У порівнянні з програмами, розглянутими в теоретичній частині, в створе-

ному GUI Builder коді є відмінності. Так, конструктор класу NumberAdditionUI

виконує метод initComponents(), в якому відбувається ініціалізація компо-

нентів, розташованих в цьому ж класі. Оскільки метод є закритим, його опера-

тори застосовуються для поточної форми і її компонентів. Відзначимо, що в

цьому методі також відбувається налаштування на завершення програми при

натисканні кнопки закриття вікна і налаштовується диспетчер компонування

36

GroupLayout, що дозволяє гнучко налаштовувати розміри і розташування компо-

нентів на формі. Форма створюється в потоці обробки подій, проте для цього

використовуються не SwingUtilities, а java.awt.EventQueue. Оскільки поки на формі

відсутні компоненти, методи обробки подій не повинні додаватися в форму.

Далі за допомогою вікна Палітра зовнішній інтерфейс програми запов-

нюється панеллю JPanel шляхом перетягування елемента Панель з вкладки

Палітри Контейнери Swing (якщо Палітра в верхньому правому куті IDE від-

сутня, виберіть команду з основного меню Вікна-Палітра). Виділіть панель

JPanel клацанням на ній. Перейдіть до вікна Властивості і натисніть кнопку з

трьома крапками (...) поряд з полем border (межа) для вибору стилю межі. У діа-

логовому вікні Border виберіть Рамка з написом зі списку і введіть Number

Addition в поле Заголовок. Тут же Ви можете змінити колір напису і зробити

напівжирним шрифт. Для збереження змін і закриття діалогового вікна натис-

ніть кнопку OK. Після цього додайте три елементи JLabel (Напис), три елемен-

ти JTextField (Текстове поле) і три елементи JButton (Кнопка). Третя кнопка

jButton3 повинна знаходиться за межами панелі jPanel1 (Мал. 14а). Перей-

діть до вихідного коду форми. Зверніть увагу на автоматичне додавання опера-

торів створення компонентів, завдання їх назв і включення в конфігурацію дис-

петчера компонування в методі initComponents(). Також компоненти з'явили-

ся в області опису змінних класу NumberAdditionUI.

Перейдіть у вікно Конструктора, виконайте подвійне клацання на напису

jLabel1 і змініть властивість тексту на Перше число:. Аналогічно змініть текст

jLabel2 на Друге число: і jLabel3 - на Результат:. Виділіть всі три написи,

виконуючи клацання мишею по кожній з них, утримуючи клавішу Shift. Зробіть

напівжирним шрифт написів, змінивши у вікні Властивості параметр font. За-

лишивши виділеними все три написи, вирівняйте їх по правому краю, натис-

нувши на кнопку (Вирівнювання направо в стовпці). Видаліть стандартний

текст з текстових полів. Для цього спочатку виконайте клацання на текстовому

полі і через деякий час виконайте клацання ще раз. Текст буде виділено і Ви

зможете його видалити. Аналогічним способом змініть текст на кнопках

jButton1 на Скласти, jButton2 - на Очистити і jButton3 - на Вихід. Альтер-

нативним способом зміни тексту є вибір команди Змінити текст з контекстно-

го меню після клацання на кнопці. Тепер готовий графічний інтерфейс повинен

виглядати так, як показано на Мал. 14б. Відкрийте вихідний код і вивчіть зміни

в методі initComponents().

37

а) б)

Мал. 14. Створення фрейму з палітрою, написами, текстовими полями

і кнопками в GUI Builder IDE NetBeans

Для того щоб кнопки стали функціональними, кожній з них необхідно при-

власнити обробник подій, який буде реагувати на дії користувача. У нашому

випадку потрібно ідентифікувати подію натискання кнопки - шляхом клацання

мишею або за допомогою клавіатури. Тому буде використовуватися інтерфейс

ActionListener, призначений для обробки подій ActionEvent.

Виконайте клацання правою кнопкою миші по кнопці Вихід. В меню

оберіть Події-Action-actionPerformed. Зверніть увагу на те, що меню містить

безліч інших подій, на які може реагувати програма! При виборі події

actionPerformed IDE автоматично додає інтерфейс ActionListener до кноп-

ки Вихід і створює метод-обробник, який буде відповідати за обробку методу

actionPerformed(ActionEvent evt). В IDE автоматично відкривається вікно

Вихідний код, де відображається місце вставки дії, яка повинна виконуватися

кнопкою при її натисканні (за допомогою миші або клавіатури). Вікно Вихідний

код має містити наступні рядки:

private void jButton3ActionPerformed(java.awt.event.ActionEvent

 evt) {

 // TODO add your handling code here:

}

Тепер додамо код дії, яке має виконувати кнопка Вихід. У наведеному вище

коді слід замінити рядок // TODO add your handling code here: текстом

System.exit(0);. Готовий код кнопки Вихід повинен виглядати наступним

чином:

private void jButton3ActionPerformed(java.awt.event.ActionEvent

 evt) {

 System.exit(0);

}

Перейдіть у вікно Конструктора і виконайте клацання правою кнопкою

миші на кнопці Очистити (jButton2). В меню оберіть Події-Action-

actionPerformed. Натискання кнопки Очистити повинно призводити до вида-

лення всього тексту з будь-яких текстових полів. Готовий вихідний код оброб-

ника повинен виглядати наступним чином:

38

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt){

 jTextField1.setText("");

 jTextField2.setText("");

 jTextField3.setText("");

}

Обробник події від кнопки Скласти (jButton2) повинен виконувати три дії.

Спочатку прийняти дані, введені користувачем в полях jTextField1 і

jTextField2, і перетворити їх з типу String в тип Float. Потім має прово-

дитися складання двох чисел. Отримана сума повинна бути перетворена в тип

String і розміщена в поле jTextField3. Перейдіть у вікно Конструктора і ви-

конайте клацання правою кнопкою миші на кнопці Скласти (jButton1). В ме-

ню оберіть Події-Action-actionPerformed. Додайте наступний код в обробник:

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt){

 // Создание переменных типа float для хранения слагаемых и суммы

 float num1, num2, result;

 // Преобразование типов значений из String в float и присваивание

 // значений переменным слагаемых

 num1 = Float.parseFloat(jTextField1.getText());

 num2 = Float.parseFloat(jTextField2.getText());

 // Сложение и присваивание результата переменной суммы

 result = num1+num2;

 // Вывод суммы в текстовом окне Результат с одновременным

 // преобразованием типа из float в String

 jTextField3.setText(String.valueOf(result));

}

Кожен раз при виборі події в меню Події IDE автоматично створює інтер-

фейс прослуховування подій (event listener) і прив'язує його до компонента. У

методі initComponents() знайдіть наступний фрагмент:

jButton3.setText("Выход");

jButton3.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton3ActionPerformed(evt);

 }

});

У цьому місці до елементу графічного інтерфейсу, в даному випадку до

jButton3, додається об'єкт прослуховування подій ActionListener. Інтерфейс

ActionListener має метод actionPerformed об'єкта ActionEvent, який ре-

алізується шляхом виклику обробника подій jButton3ActionPerformed. Тепер

ця кнопка реагує на події, що ініціюються користувачем. Кожен раз при натис-

канні кнопки створюється об’єкт ActionEvent, який передається в метод ac-

tionPerformed інтерфейсу прослуховування подій, і ініціює виконання коду,

передбаченого розробником для цієї події в обробнику подій. Як правило, для

отримання можливості реагування кожен інтерактивний елемент графічного

інтерфейсу повинен бути зареєстрований у якомусь інтерфейсі прослуховуван-

ня подій і мати пов'язаний обробник подій. Однак IDE забезпечує автоматичну

прив'язку інтерфейсу прослуховування, що дозволяє розробнику приділити ос-

новну увагу реалізації бізнес-логіки, яка повинна ініціюватися подією.

39

Запустіть проект. При появі вікна з повідомленням про те, що для проекту

NumberAddition не встановлено головний клас, виберіть у якості головного класу

numaddpackage.NumberAdditionUI і натисніть кнопку OK. Перевірте роботу

програми.

Для запуску програми поза IDE виберіть команду Виконати-Очистити і

побудувати головний проект (Shift-F11). За допомогою провідника файлової

системи або Диспетчера файлів перейдіть в каталог NumberAddition/dist. Двічі

виконайте клацання на файлі NumberAddition.jar.

3. Завдання

1. Виберіть завдання у наведеній нижче таблиці (Номер варіанта вибирайте за

формулою V = (№ mod 16) +1, де № - Ваш порядковий номер в журналі ака-

демгрупах.
V завдання V завдання
1 Створити додаток "Гуртожиток", що

відображає у вигляді кнопок поверхи

гуртожитку, при натисканні на одну з

яких відображається план поверху з 8

квартирами-кнопками, при натисканні

на одну з яких відображається список

мешканців квартири. Передбачити

додавання і редагування мешканців

9 Створити додаток "Стипендія", що

дозволяє вводити прізвища студентів

обраної зі списку спеціальності разом з

їх середнім балом за сесію. Додаток

має будувати рейтинг для студентів

однієї спеціальності і виводити в об-

ласть тексту відсортовані в порядку

убування середнього балу рейтинги, в

яких задається з інтерфейсу відсоток

кращих студентів виділених жирним

шрифтом

2 Створити додаток "Тестування", що

відображає питання і кілька відповідей

до нього (передбачити одноваріантні і

багатоваріантні відповіді). Система

повинна пропонувати кілька питань, і

в кінці тестування виводити розрахо-

ваний бал

10 Створити додаток "Прапори країн", що

відображає в напису за допомогою

об'єкта ImageIcon прапор, випадково

виведений з масиву файлів із зобра-

женнями прапорів, і дозволяє вибрати

зі списку країну, що має цей прапор.

Завдання має повторюватися десять

разів з виведенням після закінчення

кількості вгаданих варіантів
3 Створити додаток "Список посилань",

що дозволяє завантажувати текстовий

файл з html-кодом і виводити список

всіх посилань, що зустрічаються в

цьому коді. Посилання повинні бути

без повторів, проте із зазначенням

кількості повторень для перевірки

11 Створити додаток "Щоденник" для

додавання, редагування та видалення

заміток. Замітка відноситься до однієї з

категорій, які зберігаються в списку.

Для замітки вказуються тема і текст

замітки.

4 Створити додаток "Геометричні фігу-

ри", який обчислює периметр і площу

для квадрата, трикутника, прямокут-

ника і трапеції по необхідним даним,

які вводить користувач

12 Створити додаток "Конвертор валют".

Користувач вводить суму, вибирає з

першого списку вихідну валюту, потім

з другого - результуючу і отримує

еквівалент в іншій валюті

40

V завдання V завдання
5 Створити додаток "Тригонометричні

функції", що дозволяє обчислювати

тригонометричні функції sin, cos, tg

заданих кутів від 0 до 90º з кроком 5º.

Інтерфейс повинен відображати в

першому стовпці значення градусів

або відповідні значення радіанів

(вибираються перемикачем), а в дру-

гому стовпці - значення функцій

(вибираються зі списку)

13 Створити додаток "Геометричні тіла",

що обчислюють площу поверхні і

об'єм для куба, прямокутного парале-

лепіпеда, кулі і прямого кругового ко-

нуса по необхідним даним, введеним

користвачем

6 Створити додаток "Телефонний

довідник", що дозволяє додавати, ре-

дагувати і видаляти записи: прізвище,

ім’я, по-батькові - номер телефону.

Передбачити можливість пошуку за-

писів по прізвищу і по номеру телефо-

ну

14 Створити додаток "Покупки", що доз-

воляє вводити назву, ціну та кількість

куплених товарів. Додаток має забез-

печувати збереження введених даних в

файл і зчитування їх з файлу, а також

розрахунок суми покупки

7 Створити додаток "Пошук чисел", що

дозволяє знаходити в масиві 15х15

числа, які є ступенем або 2, або 3.

Створіть інтерфейс програми: в таб-

лиці 15х15 числа отримати випадко-

вим чином; створити кнопки вико-

нуваних дій; результат дій підсвічува-

ти кольором; в написі виводити кіль-

кість знайдених чисел

15 Створити додаток "Перетворення ве-

личин", що дозволяє перетворювати

введене значення градусів Цельсія в

градуси Фаренгейта, кілометрів на

милі, кілограмів у фунти, барів в Пас-

калі, літрів в галони

8 Створити додаток "Бінарний калькуля-

тор", що дозволяє виконувати операції

NOT, AND, OR і XOR над двома біто-

вими числами розмірів 8 або 16 або 32

біта

16 Створити додаток "Арифметичний

калькулятор", що дозволяє виконувати

операції додавання, віднімання, мно-

ження і ділення. Передбачити мож-

ливість обчислення виразу, що скла-

дається з декількох операторів, при

цьому введення знака будь-якої опе-

рації або знака "дорівнює" повинен

супроводжуватися обчисленням і

відображенням проміжного результа-

ту. Передбачити можливість редагу-

вання і скасування останньої операції.

2. Розробіть програму, що реалізовує обране за варіантом завдання, на мові

Java з графічним інтерфейсом користувача з використанням бібліотек класів

AWT і Swing з вручну виначеними компонентами.

3. Для розміщення компонентів використовуйте найбільш відповідний диспе-

тчер компонування або їх комбінацію.

4. Передбачте в програмі відповідне меню команд і по можливості, викори-

стання текстових полів, радіокнопок, прапорців і списків.

5. Передбачте захист від невірних дій користувача з виведенням повідомлень

за допомогою компонента JOptionPane.

41

6. Повторіть розробку програми, використовуючи GUI Builder IDE NetBeans.

7. Наведіть код обох проектів і скріншоти з інтерфейсом розробленої програ-

ми в звіт.

4. Контрольні питання

1. Що називають додатком з графічним інтерфейсом користувача? Дайте

визначення компонентам (віджетам). Назвіть бібліотеки Java, які надають

засоби створення додатків з графічним інтерфейсом користувача.

2. Що являють собою технології AWT і Swing? Опишіть їх призначення і

відмінності. У яких пакетах містяться класи і інтерфейси цих бібліотек?

3. Опишіть ієрархію класів і інтерфейсів бібліотек Swing і AWT. Поясніть її,

вказавши великовагові контейнери, легковагові контейнери і компоненти, а

також поясніть можливість спільного використання засобів цих бібліотек.

4. Що являє собою компонент і контейнер? Назвіть контейнери Swing верхнь-

ого рівня і наведіть приклади легковагових контейнерів Swing. У чому їх

відмінність? На базі якого шаблону проектування побудовані контейнери

Swing?

5. Опишіть призначення панелей контейнерів верхнього рівня і легковагового

контейнера JInternalFrame.

6. Опишіть зазвичай використовувані оператори в конструкторі створення

форми. Які існують варіанти конфігурації завершення роботи програми?

7. Які засоби пропонує Swing для запуску об'єкту, що реалізує графічний ін-

терфейс, в окремому потоці виконання? Які переваги забезпечує такий

підхід?

8. Опишіть механізм обробки подій, що використовується в Swing та AWT.

Що є джерелом події, слухачем події, подією? Де розташований метод

обробки подій? Наведіть приклади подій.

9. Назвіть події, які генерують: кнопка - при натисканні на неї, текстове поле -

при переміщенні курсору між символами, список - при виборі елемента,

прапорець - при установці, елемент меню - при виборі за допомогою

клавіатурної комбінації і при виборі мишею.

10. На основі якого шаблону проектування реалізована модель обробки подій в

Swing та AWT? Поясніть елементи цього шаблону. Яким методом

здійснюється реєстрація слухача події в джерелі?

11. Перерахуйте конструктори JButton. Наведіть приклад створення кнопки з

текстом і з графічним зображенням.

12. Опишіть оператори організації обробки подій при натисканні на кнопку.

Для чого використовується команда дії? Як визначити команду дії події, що

відбулася?

13. Що виконують диспетчери компонування AWT-Swing? Опишіть відомі Вам

диспетчери компонування і наведіть приклади завдань, коли вони можуть

бути використані.

42

14. Опишіть диспетчер компонування BorderLayout. Наведіть приклад коду, який

розміщує компоненти в різних областях форми. Який контейнер має цей

диспетчер за замовчуванням?

15. Опишіть диспетчер компонування GridLayout. Наведіть приклад коду, що ви-

користовує цей диспетчер. Як підтримується динамічна зміна кількості ряд-

ків або стовпців?

16. Наведіть приклад використання комбінації диспетчерів компонування для

створення стандартної форми з фіксованою рядком меню і кнопками, при-

тиснутими до правого краю. Чим GridLayout з одним рядком відрізняється від

BoxLayout?

17. Опишіть оператори організації обробки подій при натисканні на клавішу

Enter після введення в текстове поле. Як отримати введений в поле текст?

Наведіть організацію роботи текстового поля з Буфером обміну.

18. Опишіть відомі Вам конструктори JTextField. Наведіть оператори організації

обробки подій при зміні положення курсору в текстовому полі. Назвіть

спадкоємців абстрактного класу javax.swing.text.JTextComponent.

19. Опишіть оператори організації обробки подій при виборі елемента JCheckBox

і елемента JRadioButton. Наведіть приклад організації радіокнопок в групу.

Які методи дозволяють динамічно перемальовувати панель?

20. Опишіть оператори організації обробки подій при виборі елемента JList. Які

режими вибору підтримує цей компонент? Як відобразити довгий список на

обмеженій площі?

21. Опишіть оператори організації обробки подій при виборі елемента

JComboBox. Як відобразити довгий список на обмеженій площі?

22. Опишіть оператори організації меню. Як встановити клавіатурні комбінації

вибору меню? Як згрупувати елементи меню?

23. Опишіть організацію вибору файлу з використанням компонента

JFileChooser. Який клас допомагає реалізувати фільтрацію відображуваних

файлів по розширенню?

24. Наведіть приклад організації виклику модального діалогового вікна для по-

відомлення користувачу про помилку, що виникла при виконанні програми.

25. Опишіть статичні методи класу JOptionPane, що відображають діалогові вік-

на різних типів і поясніть призначення їх параметрів.

26. Опишіть інтерфейс NetBeans IDE GUI Builder і способи роботи з ним. Яка

частина коду автоматично генерується?

27. У чому полягають особливості створюваного GUI Builder коду? Як він ор-

ганізовує обробку подій?

28. Як скомпілювати проект з можливістю його запуску поза IDE?

5. Література

1. Шілдт Г. SWING: Керівництво для початківців: Пер. з англ. -М .: ТОВ "І.Д.

Вільямс", 2007. -704с.

43

2. Портянкін І.А Swing: Ефектні користувальницькі інтерфейси - Бібліотека

програміста. СПб .: Пітер, 2005. -528 с.

3. Гал С., Певек Т., Кастерер Р., Кіген П. Введення в розробку графічного ін-

терфейсу - http://NetBeans.org/kb/docs/java/gui-functionality_ru.html.

http://netbeans.org/kb/docs/java/gui-functionality_ru.html

