
MySQL

Replication Tutorial

Lars ThalmannLars Thalmann
Technical lead

Replication, Backup, and Engine Technology

Mats Kindahl
Lead Developer

Replication Technology

MySQL Conference and Expo 2008

ConceptsConcepts

3

Why?

1. High Availability
Possibility of fail-over

2. Load-balancing/Scale-
out

MySQL Replication

How?

Snapshots (Backup)

1. Client program mysqldump
With log coordinates

2. Using backupout
Query multiple servers

3. Off-site processing
Don’t disturb master

2. Using backup
InnoDB, NDB

Binary log

1. Replication
Asynchronous pushing to slave

2. Point-in-time recovery
Roll-forward

Master MySQL Server

• Changes data

• Has binlog turned on

• Pushes binlog events to slave after slave has requested them

Slave MySQL Server

• Main control point of replication

Terminology

MySQL
Server

Master

• Main control point of replication

• Asks master for replication log

• Gets binlog event from master

Binary log

• Log of everything executed

• Divided into transactional components

• Used for replication and point-in-time recovery

MySQL
Server

Replication

Slave

Synchronous replication

• A transaction is not committed until the data

has been replicated (and applied)

• Safer, but slower

• This is available in MySQL Cluster

Terminology

MySQL
Server

Master

Asynchronous replication

• A transaction is replicated after it has been

committed

• Faster, but you can in some cases loose

transactions if master fails

• Easy to set up between MySQL servers

MySQL
Server

Replication

Slave

Configuring

ReplicationReplication

Required configuration – my.cnf

� Replication Master

log-bin

server_id

� Replication Slave

server_id

Optional items in my.cnf – What to replicate?

� Replication Master

binlog-do-db

binlog-ignore-db

� Replication Slave

replicate-do-db, replicate-ignore-db

replicate-do-table, replicate-ignore-table

replicate-wild-do-table

replicate-wild-ignore-table

More optional configuration on the slave

� read-only

� log-slave-updates

� skip-slave-start

Configuration – grants on master

GRANT REPLICATION SLAVE on *.*

TO ‘rep_user’@’slave-host’

IDENTIFIED BY ‘this-is-the-password’

How to deploy replication

Step 1: Make a backup of the master

Master

Either an “offline backup”
or an “online backup”...

Configuration – Good advice

� Start the binary log on the master immediately following the
backup. e.g.:

Make the GRANTs on the master server

Shut down mysqld on the master server

Edit my.cnf Edit my.cnf

Make the backup

Restart mysqld on the master

� Do not try to configure master_host, etc. in my.cnf on the
slave.

(this is still allowed, but it was always a bad idea)

Restore the backup onto the slave

Master

Slave

Configure the slave: part 1

Master
CHANGE MASTER TO

master_host = “dbserv1”,

master_user = “rep-user”,

master_password =

Slave

“this-is-the-password”;

Configure the slave: part 2

CHANGE MASTER TO

master_host = “dbmaster.me.com”,

master_log_file = “binlog-00001”,

master_log_pos = 0;

Master

Slave

Start the slave!

Master

START SLAVE;Slave

Replication

TopologiesTopologies

Master with Slave

Master

Slave

Master with Slave

Master

binary
log

Slave

TCP connection

Replication is independent of Storage Engines
� You can replicate between any pair of engines

InnoDB to InnoDB

MyISAM to MyISAM

InnoDB to MyISAM

MEMORY to MyISAM

etc...

� The binary log is not the InnoDB transaction log (or the
Falcon log, or ...)

Master with Many Slaves

Master

SlaveSlave Slave Slave

Chain

Master/
Master

Master/
Slave

Slave

log_slave_updates = 1

Chain – Server 2 goes down...

Master/XMaster
Master/
Slave

SlaveX

... Server 3 is still up, but out of sync

Master/XMaster
Master/
Slave

SlaveX

Each server has a unique “server_id”

Master/

server_id=1 server_id=3

Master
Master/
Slave

Slave

server_id=2

... and every event in a binary log file contains the

server id number of the server where the event

originated.

Ring

Master/

Master/
Slave

server_id=2

Master/
Slave

Master/
Slave

server_id=1

server_id=3

The ring topology is not a recommended

configuration

Master/

Master/
Slave

Master/
Slave

Master/
SlaveX

Pair of Masters

Master/
Slave

Master/
SlaveSlave Slave

The pair is a “special case” of the ring topology used

for

high availability.

The two most common topologies

for MySQL Replication

Master/ Master/

Master

Master/
Slave

Master/
Slave

Slave

Slave

Slave

The “Relay Slave”

Master

Relay

The master has to

handle only one

TCP connection.

Relay
Slave

SlaveSlave Slave SlaveSlave

log_slave_updates

And now introducing...

the blackhole storage engine

Master

Relay
The relay slave engine = blackhole

Relay
Slave

SlaveSlave Slave SlaveSlave

The relay slave

manages replication

logs, but not actual

data.

Replication

CommandsCommands
A quick run-through of the commands

SHOW MASTER STATUS

� Used on master

� Requires SUPER or REPLICATION CLIENT privileges

� Gives log file and position master is writing to

� Also shows database filters used

mysql> SHOW MASTER STATUS;

+---------------+----------+--------------+------------------+

| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |

+---------------+----------+--------------+------------------+

| mysql-bin.003 | 73 | test | manual,mysql |

+---------------+----------+--------------+------------------+

SHOW BINARY LOGS

� Used on master

� Requires SUPER privileges

� Will display a list of binary logs on the server

� Use it before using PURGE BINARY LOGS

mysql> SHOW BINARY LOGS;

+---------------+-----------+

| Log_name | File_size |

+---------------+-----------+

| binlog.000015 | 724935 |

| binlog.000016 | 733481 |

+---------------+-----------+

SHOW BINLOG EVENTS

� Used on master

� Requires REPLICATION SLAVE privileges

� Show events in binary log

� Also check mysqlbinlog utility

mysql> SHOW BINLOG EVENTS FROM 390 LIMIT 1\G

*************************** 1. row ***************************

Log_name: slave-bin.000001

Pos: 390

Event_type: Query

Server_id: 2

End_log_pos: 476

Info: use `test`; create table t1 (a int)

1 row in set (0.00 sec)

SHOW SLAVE HOSTS

� Used on master

� Requires REPLICATION SLAVE privileges

� Shows list of slaves currently registered with the master

� Only slaves started with report-host option are visible

mysql> SHOW SLAVE HOSTS;

+-----------+-----------+------+-----------+

| Server_id | Host | Port | Master_id |

+-----------+-----------+------+-----------+

| 2 | 127.0.0.1 | 9308 | 1 |

+-----------+-----------+------+-----------+

1 row in set (0.00 sec)

PURGE BINARY LOGS

� Used on master

� Requires SUPER privileges

� Removes log files before a certain log file or date

� MASTER can be used in place of BINARY

� Alternative is to use variable EXPIRE_LOGS_DAYS� Alternative is to use variable EXPIRE_LOGS_DAYS

SET SQL_LOG_BIN

� Used on master

� Requires SUPER privileges

� Session variable

� Controls logging to binary log

� Does not work for NDB!� Does not work for NDB!

mysql> SET SQL_LOG_BIN=0;

mysql> INSERT INTO t1 VALUES (1,2,3);

mysql> SET SQL_LOG_BIN=1;

SET GLOBAL EXPIRE_LOGS_DAYS

� Used on master

� Require SUPER privileges

� 0 means ”never expire”

� Positive value means expire logs after this many days

� Logs will be removed at startup or binary log rotation� Logs will be removed at startup or binary log rotation

� Can be used with running slave

� Logs are removed! Make sure you have backup!

RESET MASTER

� Used on master

� Requires RELOAD privileges

� Deletes all binary logs in the index file!

� Resets binary log index

� Used to get a ”clean start”� Used to get a ”clean start”

� Use with caution! You lose data!

SHOW SLAVE STATUS

� Used on slave

� Requires SUPER or REPLICATION CLIENT privileges

� Shows some interesting information:

If the slave threads are running

What position the I/O thread read last

What position the SQL thread executed last

Error message and code, if thread stopped due to an error

SHOW SLAVE STATUS (5.1)

� mysql> SHOW SLAVE STATUS\G

****************** 1. row ******************

Slave_IO_State:

Master_Host: 127.0.0.1

Master_User: root

Master_Port: 10190

Connect_Retry: 1

Master_Log_File:

Read_Master_Log_Pos: 4

Relay_Log_File: slave-relay-bin.000001

Relay_Log_Pos: 4

Last_Errno: 0

Last_Error:

Skip_Counter: 0

Exec_Master_Log_Pos: 0

Relay_Log_Space: 102

Until_Condition: None

Until_Log_File:

Until_Log_Pos: 0

Master_SSL_Allowed: NoRelay_Log_Pos: 4

Relay_Master_Log_File:

Slave_IO_Running: No

Slave_SQL_Running: No

Replicate_Do_DB:

Replicate_Ignore_DB:

Replicate_Do_Table:

Replicate_Ignore_Table:

Replicate_Wild_Do_Table:

Replicate_Wild_Ignore_Table:

Master_SSL_Allowed: No

Master_SSL_CA_File:

Master_SSL_CA_Path:

Master_SSL_Cert:

Master_SSL_Cipher:

Master_SSL_Key:

Seconds_Behind_Master: NULL

Last_IO_Errno: 0

Last_IO_Error:

Last_SQL_Errno: 0

Last_SQL_Error:

1 row in set (0.00 sec)

CHANGE MASTER TO

� Used on slave

� Requires SUPER privileges

� Configures the slave server connection to the master

� Slave should not be running

� The user need REPLICATION SLAVE privileges on master� The user need REPLICATION SLAVE privileges on master

CHANGE MASTER TO

MASTER_HOST=’adventure.com’,

MASTER_USER=’dragon’,

MASTER_PASSWORD=’xyzzy’;

START SLAVE and STOP SLAVE

� Used on slave

� Used to start or stop the slave threads

� Defaults to affecting both I/O and SQL thread

� ... but individual threads can be started or stopped

START SLAVE SQL_THREADSTART SLAVE SQL_THREAD

START SLAVE IO_THREAD

RESET SLAVE

� Used on slave

� Removes all info on replication position

Deletes master.info, relay-log.info and all relay logs

� Relay logs are unconditionally removed!

... even if they have not been fully applied... even if they have not been fully applied

SET GLOBAL SQL_SLAVE_SKIP_COUNTER

� Used on slave

� Global server variable

� Requires SUPER privileges

� Slave SQL thread shall not be running

� Slave will skip events when starting� Slave will skip events when starting

� Useful when recovering from slave stops

� Might leave master and slave with different data in tables

... so be careful when you use it

Use CasesUse Cases

Use Cases, Part 1 – Basic Replication

Master/ Master/

Master

Intensive Reads High Availability

Master/
Slave

Master/
Slave

Slave

Slave

Slave

“Specialist” slaves – backups and reporting

Master

Slave

Slave

Slave

Slave

backups

Slave

reports

“Specialist” slaves – per-application

Master
friends: 10 GB
messages: 30
GB

Slave

Slave
Slave

Slave

“friends list” queries “message board” queries

“Specialist” slaves – Blackhole Engine

Master

Slave

Slave

Slave
Slave

“friends list” queries
(message table in black
hole)

“message board” queries
(friends table in black
hole)

Things to think about in basic replication

� Initial snapshot of slaves

� load balancing of clients

� Failover of clients to new master� Failover of clients to new master

HA + Scale out?

Master/
Slave

Master/
Slave

Slave

Slave

Slave

Any better?

Master/
Slave

Master/
Slave

Proxy
Master

Slave

Slave

Slave

Problem: slave failover to a new master

� Look at SHOW SLAVE STATUS. This gives the file and
position on the failed master.

� “File 34 position 6000” on the failed master may correspond
to “File 33 position 22000” on the new master. Find the
corresponding file and position.

� CHANGE MASTER TO� CHANGE MASTER TO

master_host = ...

master_log_file = ...

master_log_pos = ...

� START SLAVE

Handling the failover problem

1. Automate it (scripting)

2. Avoid it

Architecture 1: Pair of masters –
Active & Standby

Heartbeat Manager

Virtual IP address

Slave

Use Cases, Part 2 – HA and Scale Out

Master Master

Shared Disk Array
Slave

Use Cases, Part 2 – HA and Scale Out

Cluster Cluster

2: MySQL Cluster as master, MySQL slaves

Slave

Slave Slave

Use Cases, Part 2 – HA and Scale Out

Shared
Disk Array

Virtual IP address

Master Master

Virtual IP address

Virtual IP address

Slave

Slave

Proxy
Master

Proxy
Master

Slave

3: Master and
proxy master are
both HA pairs

Use Cases, Part 2 – HA and Scale Out

Virtual IP address

Proxy
Master

Proxy
Master

Cluster Cluster
4: Replicate from
Cluster through
HA proxy pair

NDB

Blackhole

Shared Disk Array

Slave

Slave

Master Master

Slave

Blackhole

InnoDB

Friends
Master

Message
Master

How to JOIN friends table with
message table?

Application-level partitioning and the Federated

Engine

Slave

Slave

Slave
Slave

“friends list” slaves
“message board” slaves

Slave

“friends list”
slaves

Application-level partitioning and the Federated

Engine
Friends
Master

Message
Master

Slave
Slave slaves

CREATE TABLE messages (

id int unsigned ...

) ENGINE=FEDERATED

CONNECTION=”mysql://feduser:fedpass@message-master/

friendschema/messages”;

New YorkSan Jose

Use Cases, Part 3 – Multiple Data Centers

Active
Master

Master

secure
tunnel

rep

wr wr

Slave

Slave

app app

Slave

Slave

wrwr

rdrd

(Jeremy Cole – MySQL Users Conf 2006)

New YorkSan Jose

After Failover

Master
Active
Master

secure
tunnel

rep

wrwr

Slave

Slave

app app

Slave

Slave

(Jeremy Cole – MySQL Users Conf 2006)

wrwr

rdrd

Row-based

replicationreplication

Row-based replication (MySQL 5.1)

� Statement-based replication

Replicate statement doing changes

Requires up-to-date slave

Requires determinismRequires determinism

� Row-based replication

Replicate actual row changes

Does not require up-to-date slave

Can handle any statement

Comparison of replication methods

� Row-based replication

Can handle ”difficult” statements

Required by clusterRequired by cluster

� Statement-based replication

Sometimes smaller binary log

Binary log can be used for auditing

Row-based replication features

� Log is idempotent

... provided all tables in log have primary key

� Statement events and row events can be mixed in log� Statement events and row events can be mixed in log

... so format can be switched during run-time

(slave switches automatically as required)

... and even different formats for different threads

Row-based replication as a foundation

� Conflict detection and conflict resolution

� Fine-grained filtering

� NDB Cluster replication� NDB Cluster replication

� Multi-channel replication

� Horizontal partitioning

... sending different rows to different slaves

Filtering

� For statement-based replication:

Statements are filtered

Filtering is based on current (used) database

Master filtering are on database only

� For row-based replication:

Rows are filtered

Filtering is based on actual database and table

Master filtering for individual tables possible

... but not implemented

Want both statement and row format?

Master Slave

STMT ROW

� Master in STATEMENT mode, slave in ROW mode

� Slave converts statements executed into row format

� Once in row format, it stays in row format

Binary LogBinary Log
Modes and Formats of the Binary Log

Logging modes

� Three modes: STATEMENT, MIXED, and ROW

� Server variable BINLOG_FORMAT controls mode

� Mode is used to decide logging format for statements

Logging format is representation of changesLogging format is representation of changes

More about that in just a bit

SET BINLOG_MODE

� SET BINLOG_FORMAT=mode

� Session and global variable

� Mode is one of STATEMENT, ROW, or MIXED

� STATEMENT: statements are logged in statement format� STATEMENT: statements are logged in statement format

� ROW: statements are logged in row format

� MIXED (default)

Statements are logged in statement format by default

Statements are logged in row format in some cases

Switching modes

� Mode can be switched at run-time

... even inside a transaction

� Switching mode is not allowed:

If session has open temporary tables

From inside stored functions or triggers

If ‘ndb’ is enabled

MIXED mode

� Safe statements are usually logged in statement format

� Unsafe statements are logged in row format

� Heuristic decision on what is unsafe, currently:

Statement containing UUID() or calls to UDFs

Statements updating >1 table with auto-increment columns

INSERT DELAYED statements

problems with RAND() and user-defined variables

Binary logging formats

� The format tells how changes are stored in log

� Two formats: statement and row

� Formats can be mixed in binary log

mysql> show binlog events;

+----------+-----+-------------+---+--+

| Log_name | Pos | Event_type | … | Info |

+----------+-----+-------------+---+--+

| ... | 4 | Format_desc | … | Server ver: 5.1.17-beta-debug-log... |

| ... | 105 | Query | … | use `test`; CREATE TABLE tbl (a INT) |

| ... | 199 | Query | … | use `test`; INSERT INTO tbl VALUES (1) |

| ... | 290 | Table_map | … | table_id: 16 (test.tbl) |

| ... | 331 | Write_rows | … | table_id: 16 flags: STMT_END_F |

+----------+-----+-------------+---+--+

5 rows in set (0.00 sec)

Statement logging format

� The statement executed is logged to the binary log

� Statement logged after statement has been executed

� Pro:

Usually smaller binary logs

Binary log can be used for auditing

� Cons:

Cannot handle partially executed statements

Cannot handle non-deterministic data

Does not work with all engines (e.g., NDB)

Row logging format

� The actual rows being changed are logged

� Rows are grouped into events

� Pro:

Can handle non-deterministic statements

Can handle UDF execution

Idempotent

� Cons:

No easy way to see what rows are logged

Does not work with all engines (e.g., blackhole)

Example: multi-table update

� UPDATE t1,t2 SET t1.b = ..., t2.b = ...

mysql> show binlog events from 480;

+----------+-----+-------------+---+--+

| Log_name | Pos | Event_type | … | Info || Log_name | Pos | Event_type | … | Info |

+----------+-----+-------------+---+--+

| ... | 480 | Table_map | … | table_id: 16 (test.t1) |

| ... | 520 | Table_map | … | table_id: 17 (test.t2) |

| ... | 560 | Update_rows | … | table_id: 16 |

| ... | 625 | Update_rows | … | table_id: 17 flags: STMT_END_F |

+----------+-----+-------------+---+--+

4 rows in set (0.00 sec)

Example: CREATE-SELECT

� CREATE t3 SELECT * FROM t1

mysql> show binlog events from 690;

+----------+-----+-------------+---+--+

| Log_name | Pos | Event_type | … | Info |

+----------+-----+-------------+---+--++----------+-----+-------------+---+--+

| ... | 480 | Table_map | … | use `test`; CREATE TABLE `t3` (

a INT(11) DEFAULT NULL,

b INT(11) DEFAULT NULL

) |

| ... | 520 | Table_map | … | table_id: 18 (test.t3) |

| ... | 625 | Write_rows | … | table_id: 18 flags: STMT_END_F |

+----------+-----+-------------+---+--+

3 rows in set (0.00 sec)

Special cases

� TRUNCATE vs. DELETE in row mode

TRUNCATE is logged in statement format

DELETE is logged in row format

� GRANT, REVOKE, and SET PASSWORD

These statements changes rows in mysql tables:

tables_priv, columns_priv, and user

Replicated in statement format

Other statements on these tables are replicated in row format

How objects are logged

� Databases

� Tables

� Views

� Stored functions

� Triggers

� Events

� Stored procedures � Users

We are here only considering how these objects are logged

when using row mode

For statement mode, everything is logged in statement format

Databases and Tables

� Database manipulation statements

Logged in statement format

� Table manipulation statements� Table manipulation statements

Statement format: CREATE, ALTER, and DROP

Row format: INSERT, DELETE, UPDATE, etc.

Views

� CREATE, ALTER, and DROP logged in statement format

� Changes are logged by logging changes to the tables

mysql> UPDATE living_in SET name='Matz' WHERE name=’Mats’;

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0Rows matched: 1 Changed: 1 Warnings: 0

mysql> show binlog events from 1605;

+----------+------+-------------+-----+--------------------------------+

| Log_name | Pos | Event_type | ... | Info |

+----------+------+-------------+-----+--------------------------------+

| maste... | 1605 | Table_map | ... | table_id: 17 (test.names) |

| maste... | 1648 | Update_rows | ... | table_id: 17 flags: STMT_END_F |

+----------+------+-------------+-----+--------------------------------+

2 rows in set (0.01 sec)

Stored procedures

� CREATE, ALTER, and DROP are replicated in statement
format (with a DEFINER)

� CALL is logged in row format by logging all changes done by
the call

mysql> create procedure foo(a int) insert into t1 values(a);

mysql> show binlog events from 102\Gmysql> show binlog events from 102\G

*************************** 1. row ***************************

Log_name: master-bin.000001

Pos: 102

Event_type: Query

Server_id: 1

End_log_pos: 244

Info: use `test`; CREATE DEFINER=`root`@`localhost` procedure foo(a

int) insert into t1 values(a)

1 row in set (0.00 sec)

Stored functions

� CREATE, ALTER, and DROP are replicated in statement
format (with a DEFINER)

� The effects of calling a stored function are logged in row
format

mysql> select a, bar(a) from t2;

mysql> show binlog events from 557;

+----------+-----+------------+-----+--------------------------------+

| Log_name | Pos | Event_type | ... | Info |

+----------+-----+------------+-----+--------------------------------+

| maste... | 557 | Table_map | ... | table_id: 18 (test.t1) |

| maste... | 596 | Write_rows | ... | table_id: 18 flags: STMT_END_F |

+----------+-----+------------+-----+--------------------------------+

2 rows in set (0.01 sec)

Triggers

� CREATE, ALTER, and DROP are replicated in statement
format (with a DEFINER)

� The effects of a trigger are logged in row format

mysql> insert into t1 values (1,2);

mysql> show binlog events from 780;

+----------+-----+-------------+---+--++----------+-----+-------------+---+--+

| Log_name | Pos | Event_type | … | Info |

+----------+-----+-------------+---+--+

| ... | 780 | Table_map | … | table_id: 16 (test.t1) |

| ... | 820 | Table_map | … | table_id: 17 (test.t2) |

| ... | 860 | Write_rows | … | table_id: 16 |

| ... | 925 | Write_rows | … | table_id: 17 flags: STMT_END_F |

+----------+-----+-------------+---+--+

4 rows in set (0.00 sec)

Events

� CREATE, ALTER, and DROP are replicated in statement
format (with a DEFINER)

� The event is disabled on the slave

� Effects of a event are logged in row format

ImplementationImplementation
How replication works

Application Application

Master

Application Application

Slave

Parse/optimize/execute Statements
flushed at

commit

SBR

MySQL Replication Architecture
MySQL 4.0-5.0

MySQL ServerMySQL Server

SE2SE1

Storage Engines

Master

Binlog

Replication

SE2SE1

Storage Engines

Slave

Relay

Binlog
Binlog

SQL
thread

I/O
thread

Rows

SBR

Storage
engine

interface

MySQL Replication Architecture
MySQL 5.1: Row-based replication (RBR)

Application Application

Master

Application Application

SlaveSBR

Parse/optimize

MySQL Server MySQL Server

SE2SE1

Storage Engines

Master

Binlog

Replication

SE2SE1

Storage Engines

Slave

Relay

Binlog
Binlog

SQL
thread

I/O
thread

SBR

RBR

Row-based Replication

Comparision between SBR and RBR

Advantages of Row-based Replication (RBR)

• Can replicate non-deterministic statements (e.g. UDFs, LOAD_FILE(),

UUID(), USER(), FOUND_ROWS())

• Makes it possible to replicate between MySQL Clusters (having multiple

MySQL servers or using NDB API)MySQL servers or using NDB API)

• Less execution time on slave

• Simple conflict detection (that is currently being extended)

Advantages of Statement-based Replication (SBR)

• Proven technology (since MySQL 3.23)

• Sometimes produces smaller log files

• Binary log can be used for auditing

Four new binlog events
1.Table map event

–Semantics: “This table id matches this table definition”

2.Write event (After image)

–Semantics: “This row shall exist in slave database”

3.Update event (Before image, After image)

–Semantics: “This row shall be changed in slave database”

4.Delete event (Before image)

–Semantics: “This row shall not exist in the slave database”–Semantics: “This row shall not exist in the slave database”

Various optimizations:

•Only primary key in before image. Works if table has PK

•Only changed column values in after image. Works if table has PK

Log is idempotent if PK exists and there are only RBR events in log.

Slave can execute both SBR and RBR events.

Cluster

ReplicationReplication

MySQL Cluster Replication
Local and Global Redundancy

Application Application Application

MySQL
Server

MySQL
Server

MySQL
Server

Application Application Application

MySQL
Server

MySQL
Server

MySQL
Server

Replication

DB DB

DBDB

DB DB

DBDB

Global

Asynchronous

Replication

Local Synchronous

Replication –

two-phase commit

Tools

and

TechniquesTechniques

Making a snapshot from a master database

� This is necessary for bringing new slaves online.

� Options:

Shut down master & take offline backup

Use “ibbackup” to make an online physical backup Use “ibbackup” to make an online physical backup

www.innodb.com

Use mysqldump --master-data

Table Checksums

� How do you know the slave really has the same data as the
master?

� Guiseppe Maxia

Taming the Distributed Data Problem – MySQL Users Conf
2003

� Baron Schwartz

MySQL Table Checksum

http://sourceforge.net/projects/mysqltoolkit

“Delayed Replication”

� Bruce Dembecki, LiveWorld

Lessons from an Interactive Environment – MySQL Users
Conf 2005

� Provides hourly log snapshots and protection against “user
error” (e.g. DELETE FROM important_table)

Time

I/O

SQL

3:10 4:00 4:01 4:05

Flush
logs

4:10

2:05 to 3:05 3:05 to 4:05

Managing Virtual IP addresses

� Fof failover and high availability. (Always prefer virtual IP
addresses rather than DNS changes)

� Heartbeat – www.linux-ha.org

also runs on Solaris, BSD, Mac OS X

� Several other software alternatives

Sun Cluster, HP ServiceGuard, etc.

� Or a hardware load balancer

F5 Big IP, Foundry ServerIron, etc.

Shared Storage for Active/Standby pairs

� DRBD

www.drbd.org

� Hardware SAN

� Hardware NAS

NetAppNetApp

Tunnels & proxies to use for managing multiple

data centers

� Master & slaves can use SSL

� ... or offload the SSL processing to other servers using
stunnel

www.stunnel.org

� Proxy writes to masters as in Jeremy Cole’s example

TCP Proxy software

Hardware load balancer

References

• MySQL Manual (http://dev.mysql.com/doc/)
Chapter: Replication

• MySQL Manual (http://dev.mysql.com/doc/)
Chapter: MySQL Cluster Replication

• MySQL Forums (http://forums.mysql.com/)
MySQL Replication forum

lars@mysql.com, mats@mysql.com
www.mysql.com

• Replication Tricks and Tips
Tuesday 4:25pm

• BOF: Replication
Tuesday evening, first slot (probably 7:30pm)

Common Event Header – 19 bytes

Field Length Description

Timestamp 4 bytes Seconds since 1970

Type 1 byte Event type

Master Id 4 bytes Server Id of server that created this event

Total size 4 bytes Event total size in bytes

Master position 4 bytes Position of next event in master binary logMaster position 4 bytes Position of next event in master binary log

Flags 2 bytes Flags for event

time stamp

flags

type master id

total size master position

Statement-based INSERT 1/2: Query event header

$ mysqlbinlog --hexdump master-bin.000001

at 235

#060420 20:16:02 server id 1 end_log_pos 351

Position Timestamp Type Master ID

000000eb e2 cf 47 44 02 01 00 00 00

Size Master Pos Flags

74 00 00 00 5f 01 00 00 10 00

000000fe 02 00 00 00 00 00 00 00

04 00 00 1a 00 00 00 40 |................|

0000010e 00 00 ... |.............std|

0000011e 04 08 ... |.......test.INSE|

Statement-based INSERT 2/2: Query event data

$ mysqlbinlog --hexdump master-bin.000001

0000011e 04 08 ... |.......test.INSE|

0000012e 52 54 ... |RT.INTO.t1.VALUE|

0000013e 53 20 ... |S...A...B......X|

0000014e 27 2c ... |...Y......X...X.|

0000015e 29 |.|

Query thread_id=2 exec_time=0 error_code=0

SET TIMESTAMP=1145556962;

INSERT INTO t1 VALUES ('A','B'), ('X','Y'), ('X','X');

at 235

#060420 20:07:01 server id 1 end_log_pos 275

Position Timestamp Type Master ID

Row-based INSERT 1/2: Table map event

$ mysqlbinlog --hexdump master-bin.000001

Position Timestamp Type Master ID

000000eb c5 cd 47 44 13 01 00 00 00

Size Master Pos Flags

28 00 00 00 13 01 00 00 00 00

000000fe 0f 00 00 00 00 00 00 00

04 74 65 73 74 00 02 74 |.........test..t|

0000010e 31 00 02 fe fe |1....|

Table_map: `test`.`t1` mapped to number 15

BINLOG 'xc1HRBMBAAAAKAAAABMBA...3QAAnQxAAL+/g==';

at 275

#060420 20:07:01 server id 1 end_log_pos 319

Position Timestamp Type Master ID

00000113 c5 cd 47 44 14 01 00 00 00

Size Master Pos Flags

$ mysqlbinlog --hexdump master-bin.000001

Row-based INSERT 2/2: Write event

Size Master Pos Flags

2c 00 00 00 3f 01 00 00 10 00

00000126 0f 00 00 00 00 00 01 00

02 ff f9 01 41 01 42 f9 |............A.B.|

00000136 01 58 01 59 f9 01 58 01

58 |.X.Y..X.X|

Write_rows: table id 15

BINLOG 'xc1HRBQBAAAALAAAAD...EBQvkBWAFZ+QFYAVg=';

Application Application Application

MySQL
Server

MySQL
Server

MySQL
Server

Replication

MySQL Cluster Replication
Where to get the log events?

DB DB

DBDB

MySQL Cluster

Application

Application

Application
using NDB API

MySQL Cluster Replication
Concurrency control inside master cluster

ApplicationApplication

MySQL
Server

MySQL
Server

TC (DB x)TC (DB y)

DB 3DB 1

DB 2

Node group 1

TC (DB x)

Row-level
locking

on primary
replica

TC (DB y)

Node group 2

DB 4

MySQL Cluster Replication
Log shipping inside master cluster

ApplicationApplication

MySQL
Server

MySQL
Server

TC (DB x)TC (DB x)

Changed
row data

MySQL
Server

Replication

DB 4

DB 1

DB 2

Node group 1 Node group 2

TC (DB x)

Row-level
locking

on primary
replica

TC (DB x)

Replication
server

DB 3

MySQL Replication Architecture
MySQL 5.1

Application Application

Master

Replication

server
Replication

Application Application

Slave

SQL
I/O

SBR

MySQL ServerMySQL Server

SE2SE1

Storage Engines

server

Binlog

SE2SE1

Storage Engines

Relay

Binlog
Binlog

SQL
thread

I/O
thread

Injector
interface

NDB
Injector

RBR

Row-based log from
cluster data nodes

MySQL Cluster Replication
Behaves like ordinary MySQL Replication

Application Application Application

MySQL
Server

MySQL
Server

MySQL
Server

Application Application Application

MySQL
Server

MySQL
Server

MySQL
Server

Replication

DB DB

DBDB

DB DB

DBDB

Global

Asynchronous

Replication

Local Synchronous

Replication –

two-phase commit

