12 |IEEE TRANSACTIONSON INFORMATION THEORY, VOL.1T-27,NO. 1, JANUARY 1981

Universal Modeling and Coding

JORMA RISSANEN AND GLEN G. LANGDON, JR, SENIOR MEMBER, IEEE

Abstract—The problems arigng in the modding and coding of grings
for compresson purposes are discussad. The notion of an information
ourcethat smplifiesand sharpensthetraditional oneisaxiomatized, and
adaptiveand nonadaptive moddsare defined. With ameasureof complex-
ity assigned to the modds, a fundamental theorem is proved which gates
that moddsthat useany kind of alphabet extengon areinferior tothe best
modds usng no alphabet extengons at all. A general dass of so-called
firg4n firg-out (FIFO) arithmetic codes is described which require no
alphabet extenson devicesand which ther efore can be usad in conjunction
with the best modds Because the coding parameters are the probabilities
that define the modd, their design is easy, and the application of the code
isgraightforward even with adaptively changing sourcemodds

[INTRODUCTION

ATA compresson problems arisng in digita
processing differ in one important respect from the
traditionally studied ones in communication theory: there

Manuscript received July 26, 1979; revised October 18, 1979.
Theauthorsarewith the IBM Corporation, 5600 Cottle Rd., San Josg,
CA 95193.

is no well defined satistical information source to which
the code can be tuned. Moreover, often a st of dtrings to
be compressed cannot even be adequately modeled by a
single source, of say, the Markov type. Instead, one is
given a long string of symbols in some aphabet, often
binary, after which another different string is received and
0 on. An example of thisis the finite but indefinite set of
scanned black and white documents consgting of text,
drawings, tables, and o forth.

What is needed in such problems is a universd modeler
encoder. In broad terms, modeling involves a determina-
tion of certain source-string events and their contexts,
which uniquely describe the source string. We regard the
model as consgting of two parts. 1) the structure which is
the set of events and their context, and 2) the parameters
which are the probabilities assigned to the events.

The structure is intended to capture the redundancies in
the entire st of source strings under condderation, such
as the st of black and white documents, while the param-
eters are tailored to each individua string separately. This

0018-9448/81/0100-0012$00.75 ©1981 |EEE

RISSANEN AND LANGDON: UNIVERSAL MODELING AND CODING

way a degree of "universdity" can be achieved. The
encoder, in turn, encodes the sring using the datigtics
provided by the modd. It should clearly be capable of
doing itsjob without imposng redtriction on the modder,
and it should produce a code string with a length dose to
the ided that the modeled source can provide.

Modd building starts with the decison whether or not
to use an aphabet extenson of some kind. The sdection
of the dphabet is particularly important because it affects
the nature and complexity of the source modd. Usudly
aphabet extenson is done by grouping the initidly given
symbols into fixed or variable-length blocks. Particularly
with binary aphabets, the groups formed of runs of zeros
or ones, or of both, are popular. In the case of scanned
black and white images, some of the early modd struc-
tures used graight run-lengths while other more sophidti-
cated ones condition the end of a white run to that on the
line above, the deviations forming a new aphabet. Yet
other modds read two lines at a time which are converted
into run-like segments as further-derived symbols. All of
these structures appear to be based on and intertwined
with a presdected coding technique that tends to obscure
the important role played by the source itsdlf.

In the light of such a multitude of models, it may seem
appropriate to study the problems of modeing in a sys
tematic manner with the hope of demongtrating that some
models are inherently better than others. We begin with a
notion of an information source which differs from the
customary one in a subtle but significant manner. The
modes for such sources are partitioned into two dasses
those that use the original symbolsin which the strings are
described, and those that use some form of aphabet
extenson, i.e, extended sources. We further distinguish in
each dass between stationary and adaptive models, where
the latter in particular are not just nonstationary but
nonstationary in a specid way which permits their param-
eters to change only in accordance with certain sound
estimation principles. In order to be able to compare the
performance of different models we introduce a model
cost, which essentidly is the number of independent
parameters needed to describe that part of the moded
which is not shared by al of the strings to be encoded.
This enables us to prove the main result in this paper:
there is nothing to gain and something to lose with d-
phabet extenson, and the best models with a given cos
use no aphabet extenson of any kind.

An implication of this theorem is that the coding must
be done without the use of tables larger than the number
of parameters in the model. This means in particular that
with smal aphabets, the traditiona "concatenation” codes
that require alphabet extenson for good code efficiency,
are very difficult to gpply. How then is the coding to be
done? One answer is by arithmetic coding. (This should
not be confused with "arithmetic error coding” which is
an entirely different subject.) Arithmetic coding was intro-
duced by Rissanen in 1975 in the form of alagt-in-first-out
(LIFO) code [1], which may be regarded as a practicable
derivative of the earlier enumerative codes due to Lynch

13

[13], Davisson [14], Schakwijk [4], and Cover [5], in that
the inherent problem of a growing precison was solved.
In the following year, Pasco condructed a firgt-in-first out
(FIFO) code [2], garting from Elias code [6]. A dud pair
of LIFO and FIFO codes were further described by
Rissanen and Langdon [3], and recently other versons of
FIFO arithmetic codes under different names have been
proposed [7], [§. In Section VI we study a very large dass
of arithmetic codes in an abgtract manner, making them
thereby independent of specific program and hardware
implementations. This dass includes dl of the above
codes as ecid cases

Il. INFORMATION SOURCE

In this paper we sdect a datistica framework within
which we wish to describe, or equivadently, encode the
principal objects of interest—the trings. The most obvi-
ous choice for the datistica structure in question is a
random varigble. In some way we characterize a family of
strings with a probability distribution such that our given
string is one of the outcomes. The string can then be
encoded with a coddength determined by its probability.
The dtrings we are interested in are very long, however,
and to caculate their extremely small probabilities in a
practicable manner, we must be able to assgn a prob-
abiligic meaning to their prefixes. In other words, in
addition to the entire string, we dso want their parts and
above al their prefixes, to be valid outcomes. This means
that we need another statistical structure—the informa-
tion source.

Traditionaly, for communication purposes an informa:
tion source has been taken to be arandom process {x(i)}
that emits outcomes of random variables x(i) in a never-
ending stream. Thetime index i then runs through al the
integers. In addition to the random variables x(i), the
process dso defines al the finite joint variables
(x(1),X(),* * *). The most frequently studied information
sources are elther independent, stationary, or Markovian.

In the traditional notion of an information source, we
particularly object to the idea of a source emitting sym-
bols in anever-ending manner. Wefeel that such aview is
not only unrealistic but that it also puts an emphasis upon
the wrong things concerning an information source and its
coding problems. We therefore construct a different and
more redigtic notion of an information source. The st of
events of interest in thisisthe set S* of dl finite sequences
of the symbols from ad-element alphabet S, including the
empty string "null*. The absolute-time instance of the
occurrence of the ith symboal in the string, and in particu-
lar that of the first symbol, is totaly irrdlevant. The
relevant thing ingtead, is the symboal's postion counted,
for example, from the left end of the string. Similarly, we
are not interested in outcomes which are not sequences.

The sat S of valid outcomes, adso caled messages, can
be conveniently viewed as ad-ary tree with the null string
as the root at the top. From the node representing string s
there is an arc corresponding to each symbol x and

14 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 1, JANUARY 1981

connecting s to the successor node sx, associated with the
gring sx. Formaly, we define an information source, or
just a source, to be the pair <S*, P>, where Pisafunction
from S into [0,1] satisfying the conditions

P(null) = 1,

P(s)= xgsl’(sx), (2.2)
fordl sin S*. Accordingly, we may view an information
source as the infinite d-ary tree S* where each node s has
the number P(s) attached to it. Condition (2.1) States that
the sum of the numbers attached to the immediate succes-
sors of node s equals its own number P(S).

The interpretation here is that P assgns a probability to
each outcome or sequence. However, the sum of these
probabilities over dl sequences is generdly greater than
unity; in fact, the probabilities of the d sequences of
length one dready add up to one, which means that an
information source is not a random variable. Neverthe-
less, the important condition (2.1) insures that the proba-
bility P(s) of string s is unambiguous and independent of
the countably many random variables that include s as an
outcome that we might wish to pick. To make this more
precise, consider a finite subtree T of S* sharing the root.
Cdl T completeif dl of itsinterior nodes have dl their d
immediate successors in T. The noninterior nodes are
cdled leaves. It follows from (2.1) that the set of leaves of
each complete subtree with null as the root defines a
random variable; i.e, the sum of the numbers P(s) over
the leaves is one. Clearly, each node s of S¢ belongs to the
countably many such random varigbles, and in all of them
the probability of sis the same, namely P(s).

To further clarify the difference between a random
variable and an information source, we add that the
outcomes of a random variable are independent objects
competing for the total probability mass In contrast, the
outcomes of an information source are not independent
by their very condruction, snce each gring is a nested
collection of its prefixes. Condition (2.1) reflects this
generic congtraint in the congtruction of the grings. F-
ndly, (21) is rdaed to the compatibility condition for
random processes An information source however, is a
weaker structure than a random process because the valid
events are only sequences. This is what reduces the more
complex compatibility conditions for random processes to
the sngle condition (2.1).

Further, we can express dtationarity in this setting as
follows. Aninformation sourceis called stationary if

P(s)= X P(xs)
xES
for dl sin S*. Observe the perfect symmetry between (2.1)
and (22). This notion of dationarity implies the usud
shift-invariance property of the joint probabilities as the
reader can easly verify. Finadly, asourceis cdled indepen-
dent if

2.2)

P(ss)=P(s)P(s)
fordl sand s in S.

23

In the context where s is an outcome of a random
variable with probability P(s), the quantity

1(s)=-log P(s) 249
is known as the sdf-information. Because of the unam-
biguity of P(s) in the notion of an information source, we
can now extend the same interpretation to information
sources, and we rename I (s) as the information content of
the string s. There are various ways tojustify the informa-
tion content as the ideal codelength for gtring s. For
ingtance, its mean, i.e, the entropy,

H(n)=(1/n) ES P(s)I(s),
s&€S*n
over the s&t S' of al strings with length nisfor largen an
increasingly good gpproximation of the minimum mean
per symbol codelength, where a code is defined to be any
oneto-one function from S into B*, B denoting the
binary alphabet. The reason we do not require the code to
be a concatenation code, i.e, one which preserves the
concatenation, let alone aprefix code, is that the powerful
arithmetic codes are of neither kind. Because of this, the
entropy above is not a lower bound on the minimum
codelength, and the "ided codeength” interpretation
loses some of its judtification. Other justifications exig,
however, which we hope to be able to discuss in another
context; for some such results we refer to [12). Somewhat
curioudly, as seen in Subsection 111-B, the idedl codelength
in an optimized modd ds0 has the interpretation of an
entropy.
To conclude this section we write the probability of a
string s=S(1) « * S(n) asfollows:

P(9=P((L)P(SKD)
e P(S(S(L)+S(n-1)), (26)

where the conditiona probabilities are uniquely defined
by P:

25

P(x |9)=P(sX)/P(9). @2.7)

Conversdly, such conditiona probabilities determine P;
hence they serve as generators for P. When we congtruct
moddls for sources, the information source function P has
to be generated. The conditiona probabilities serve as a
convenient way for doing this as discussed further in the
next sections

Ill. MODELING

The discusson of an abdract information source in
Section |1 does not say how to obtain or cdculae the
function P which assgns the probabilities to the drings.
The purpose of this section is to describe how such
functions P can be condructed when one or more srings
are given. In other words, rather than first having an
information source as a generator of grings, we redigti-
cdly gart with a string and congtruct or modd a source to
fit it. We first consder the case where the atomic events
are the origind symbols and defer the more generd d-
phabet extension case to Section IV.

RISSANEN AND LANGDON: UNIVERSAL MODELING AND CODING

A. Model Structure

The problem of obtaining the function P is basically the
problem of estimating P from the data provided by the given
string or strings. As in any estimation, we somehow must select
a structure within which the numerical values determining P
can be estimated. A quite natural structure is suggested by (2.6)
and (2.7) that define P in terms of the conditional probabilities.
Conditional probabilities concern events with context
formalized as follows. Let f: S*>Z, Z= {0, » « », K—1}, be a
general recursive function which partitions the set of all strings
into K equivalence classes or "contexts". We call fa structure
function, and the equivalence classes (conditioning) classes.

The conditioning classes will be used as a means to simplify
the estimation of the conditional probabilities P(x|s) of (2.7).
Depending on how the estimation is to be done, we distinguish
between two basic cases: the adaptive and the nonadaptive
models discussed in detail in the subsequent two subsections.
Here we merely describe the essential features of these two
cases which are pertinent to the structure of models. In the
nonadaptive models, the dependency of the conditional
distribution on s is restricted to the conditioning class f{s)
determined by s, which means that we only need to estimate the
numbers P(x|f(s)). If d is the size of the alphabet, this involves
the estimation of K(d—1) numbers, because for each class the d
probabilities add up to one. In the adaptive models we permit
P(x|s) to depend both on z=f{s) and on the sequence of the
"next" symbols at the previous occurrences of the conditioning
class z in the string. To make this more precise, consider a
string s=s(1)s(2)* * * s(¢). Let fs(1))* * * s(i)) = z be the first
occurrence of class z, f{s(1)* * ¢ s(j)) = z the second, and so on.
Denote by s[z] the string s(i+1)s(j+1) * « of the "next" symbols
at the successive occurrences of class z in the string s. Then in
adaptive models we put

P(x|s)=P(x|z,s[z]),
3.1

where z=f{s). The nature of the function P will be specified in
Subsection III-C. Clearly the nonadaptive models form the
special case where s[z] is taken as the null string, and we write
P(x|z, null) = P(x]|z).

The structure function and the probability assignment define
the source <S§*, P>, where P is obtained by

P(sx) = P(s)P(x|f(s),s[f(s)]), P(null)=l. (3.2)

The term (recursive) model is now refined to mean the set of
strings S* together with the structure function f and the
algorithm specifying the conditional distributions (3.2). Often
we do not distinguish between a model and the source induced
by it.

We define the complexity of the model to be the number
K(d—1). In the nonadaptive models, the complexity is seen to
be the number of free parameters required to specify the
conditional probabilities P(x|z). Another related way to view
the complexity is to imagine that each probability is to be
written with, for example, ¢ binary digits. Then it takes K(d—
1)g binary digits to specify P if

15

we exclude the lengths of the algorithms needed to describe f
and the product (3.3), which may be regarded as overhead costs
shared by all the strings to be encoded for which the same
structure function is being used. In contrast, these K(d—1)q bits
of information must be communicated to the decoder for each
string. In adaptive models, these parameters need not be sent to
the decoder, because there is an algorithm calculating values
for each symbol along the string. The decoder needs K(d—1)
registers, however, each having width ¢, to store these param-
eter values for decoding the symbol. In either case K(d— 1) is
seen to be an appropriate measure of the complexity in
implementing the coding system based on these models.

The structure function permits one to model an information
source schema for a set of strings that are similar in some
respects. Each string will get its own information source
defined by the common structure function and the probabilities
(3.2) tailored to that string. This is very important because
often such natural sets of strings cannot be adequately modeled
by a fixed information source. An example which the authors
have worked on quite extensively [9], is the set of black and
white scanned documents. There obviously is something that
such documents have in common; for instance, text documents
have a characteristic of their own due to the predominance of
printed letters in their makeup which differs from that in, for
example, black and white photographs. The purpose of the
structure function is to capture such characteristic features.
Exactly how this is to be done is a different matter; a
consolation however, is that to find an optimum structure
function is an undecidable problem, as can be shown by
arguments similar to those used by Kolmogorov [10].

A familiar and attractive subclass of recursive sources is
obtained by restricting the structure function so that it is
definable by a finite state machine (FSM) as follows:

x(®) = F(x(z-1),5(£)), x(0)=a,
z(1) = G(x(7)),

where x(?) is a state from, for example, the set {0, ¢+, N
— 1}, z(¥) is a conditioning class in Z, and the input s(f), an
element of the alphabet S, denotes the successive symbols in s
= s(1)* * * s(n). The output z(n)=G(x(n)), resulting from the
terminal state x(n) where the machine stops after s has been
processed, defines the value of the structure function fat s.

The purpose in separating the conditioning classes from the
internal state is to permit a large number of states and still have
a relatively small number of classes and hence a small number
of free parameters in the source: namely, K(¢— 1). An example
of this is the FSM model used in black and white image
processes, where the state x(z—1) is taken as the string s(t — 1)
see 5(t — M) with M as large as 2000. The output G(x(— 1)),
on the other hand, is the binary number z(#—1) defined by the
substring s(t — 1)s(t — M + 1)s(=—M). In geometric terms,
s(t— 1) is the symbol preceding the "current" symbol s(¢), s(t —
M+ 1) is the symbol above s(¢) in a two-dimensional raster scan
of the

(3.3)

16 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 1, JANUARY 1981

image, and S(t—M) is the symbol nearest to S(t) in the
upper left direction. These three symbols can be expected
to have a strong influence on the value of the current
symbol s(t) and hence cause the conditiona probability
P(s(t)) = 0\z(t-1)) to be far away from 1/2.

B. Nonadaptive Models

For a given structure function f and siring s, the condi-
tional probabilities P(xX\z) can be determined in such a
manner that the probability P(s) of (32) is maximized,
and hence the ideal length —logP(s) is minimized. It is
readily shown that such optimizing probabilities are given
by the ratios

P(X|2)=c(x|2)/c(2), (3.4)

where c(z) denotes the number of times dass z "ooccurs'
in the string s, and ¢(x|2) denotes the number of times
the "next" symbol at these occurrences is x. More pre-
cisaly, c(x\2) denotes the number of times the following
pairs of equdlities hold:

f(null) =0, and (1) =x,
f(s(1))=z, and (2)=x
f(s(1)eses(n-1)) =2 and s(n)=x,

and c(2) isthe sum of the c(x|z) over the symbolsxin S
Here we have arbitrarily set the value of f(null) to be zero.
The minimized ided codelength itsdf is given by

K-1 K-1
I(s)= Zoc(z)logc(z)-— 20 Esc(xlz)logc(xlz).

(35)

Observe that this expresson is adso the same as the
entropy of the random variable whose outcomes are the
srings of the same length as s in the just-optimized
source. SO in this sense we may perfectly well spesk about
the entropy of the string s. We illustrate nonadaptive
models with an example.

Example 1: For the string s =00011010100101, put S=
{0,1} and count the symbols conditioned on the previous
symbal; i.e, modd this as a first-order Markov source.
With the initid state as zero we get the conditiona counts

c(0[0)=4, c(1/0)=5,
c0j) =4, c(11) = I.

Put P(0|0) =4/9, and P(0|1) =4/5, and define P(s) recur-
sively by (3.2). We find that the ideal codelength with this
modd is

[(s) = 910g9 + 510g5-(510g5 + 8logd) = 1253,
where the result is given to two decimal places Two
parameters are required to describe P.

C. Adaptive Models

From a practicd standpoint the main shortcoming of
the nonadaptive recursive modes is the fact that the string

must be prescanned by the encoder to get the optimum
probabilities (34). Moreover, these or their equivaents
must be transmitted to the decoder as a preamble in the
code string. To avoid a prescan and the preamble, as well
as to provide an opportunity to adjust the probabilities as
the giring is being encoded, we condder adaptive modds
in this section. The main problem here is to define the
currently prevalent diffuse notion of adaptation in a
meaningful manner.

In Subsection I11-A we showed how the structure func-
tion permits consideration of the conditional probabilities
of the form P(x|z, 92]), where 5[z] denotes the string of
the "next" symbols at the successive past occurrences of
the class z=1(s). Here s refers to a growing prefix of the
string to be encoded that enables the decoder to decode
the symbols shortly after they have been encoded.

The fact that the estimates of the conditional probabili-
ties are to be made from the processed portion s of the
string implies certain natural restrictions on the recursive
function P performing the esimation. For instance, sup-
pose that we have estimated the probabilities P(x|z, 52])
at dass z=1(s) from the past string s = s(1)* * * 5(i), and
we observe s(i+ 1)=y. Let the next occurrence of the class
z be z=f(S(1)* * * S(t)). Because the latest observed symbol
a cdass z was 'y, and we are not supposed to have
information about the string other than what can be
extracted from the scanned string s = S(1)e « S(t), we
must not decrease the old estimate; i.e, we must require

that
P(ylzs[Z))<P(y|zs[2]), (36)

for dl y, where the symbol immediately following sisy,
and s is the shortest extension of ssuch that f(s)=z This
condition serves as a criterion for what we mean by
adaptive recursive modes, provided that the adjustments
of the probabilities are done at every occurrence of dass
z. For practical reasons, however, it may be desrable to
perform the adjustments only after certain s&ts of obsarva
tions are made, which is why we wish to modify the
criterion accordingly.

Let an adjustment of the conditiona probabilities a a
dass z be made after the string s has been received; i.e,
f(s)=z, and let the next adjustment at the same dass be
made after s has been recaved, hencef(s)=z Of course,
aruleis required to specify what these adjustment points
S, S,***, ae Suppoxe that in the examination interva,
i.e, in the segment between s and s, the symbol y was
obsarved in dass z, atotad of c(y|2) times. Let

c(z)= 2 c(y|z).
yES
The genera adaptation criterion can now be expressed as
follows. If
o(x|z)/e(z) > P(x|z,s[z]),
then
P(x|z,s[z]) < P(x|z,s'[s]). (3.7)

As a matter of notation we write P(y|s) if the adaptive
model has only the trivia conditioning dass S*. A smple

RISSANEN AND LANGDON: UNIVERSAL MODELING AND CODING

example of adaptive recursive sources is obtained by putting
P(yls) = c(yls)/sl,

where c(y|s) denotes the number of times the symbol y occurs
in s and |s| denotes the length of s. Clearly (3.6) holds. Fairly
sophisticated adaptive sources for black and white documents
are constructed in [9] with performance quite superior to that of
the nonadaptive ones of the same complexity.

IV. ALPHABET EXTENSION

Frequently the symbols in which the string to be encoded has
originally been given are extended to certain segments of the
primary symbols. This is done in particular for small alphabets
in order to achieve a better per-symbol codelength. Another
reason is the fact that the per-symbol entropy of a source
decreases as the size of the groups is increased; a frequently
quoted example of this is the family of sources for an English
text resulting when first the individual letters, then every pair,
and finally all words are regarded as independent. In fact, there
is a strong feeling that a suitable grouping of the symbols
captures certain natrual features of the strings, and thereby a
low entropy source should result.

For the purpose of the main theorem in the next section we
describe a quite general alphabet-extension process. For a d-
element alphabet S, let 7(0), * », T(m - 1) denote the subsets of
S* such that: 1) in each 7(i) no string is a substring of another
(the prefix property); and 2) the subtree of S* defined by 7(i)
with its elements as the leaves is complete. Further, there is
defined an m-state machine with state space {0, * ¢, m - 1}
whose input space T is the union of the 7(i). The state
transitions are defined by a function R(w, ¢), where w is a state,
and ¢ is an (extended) symbol in T(w).

A string s in S* is parsed into segments as follows. Starting
at the initial state zero, a string #(0) in 7(0) is recognized by the
prefix property as the first segment in s. The machine moves to
the next state R(0, #0)), and the process is repeated with s=#(0)
* » » {(k)s' as the result. The last segment s’ is a proper prefix of
some of the symbols in the final tree determined by the final
state R(k, #(k)). To simplify matters we "pad" such leftovers to
form a complete extended symbol in the last tree, so that s' is
null, and we regard s to be a sequence in 7% i.e., a sequence
over the extended alphabet.

Example 2: For a binary alphabet, let 7 = 7(0) = {1,01,00}.
Observe how these symbols appear as leaves in a binary tree as
illustrated in Fig. 1. The leaves represent "runs" of symbol zero
of lengths zero and one, while the last symbol is used to
describe runs of any length. These symbols occur in the string s
of Example 1, a total of two, four, and two, times, respectively,
which gives the probabilities P(1) = 1/4, P(01) = 1/2, and
P(00)=1/4 for the symbols. Extend these to strings by
independence, which defines a nonadaptive run-length model.
We get the ideal

17

bl

00 o1
1

1
7 2

Fig. 1. Binary tree for run-length source.

codelength for the string s of Example 1 to be

1(s) = 8log8 - (41og4 + 410g2) = 12.
Two parameters are again enough to describe P, so this model
is better for the given string than the one in Example 1.

Example 3: This is an example of a double run-length
extension. There are four extended symbols for runs of zero
and three for runs of one. Let 7(0)= {1,01,001,000}, and 7(1) =
{0,10,11}. Put R(0,1)=R(0,01) = R(0,001)=1, R(0,000)=0, and
R(1,0)=R(1,10)=0, R(1,11)=1. When starting at state zero, the
string s=000110101001011 parses into the segments 000, 1, 10,
1,0,1,001,0, 11.

The recursive models of Section III can also be constructed
for extended alphabets. The states of the machine affecting the
alphabet extension are then included as a component of the
equivalence classes, so that the structure function maps 7%, i.c.,
the set of all strings in the extended alphabet, into {0, * * *, K-
1} x {0, « » », m - 1}. This means that we may write the
structure as (f, g), where f: T*> {0, « », K-1} is any recursive
function as discussed in Section III, and g: T*>{0,* ¢, m - 1}
takes each parsed sequence s = #0) ¢ * « #(k) to the terminal
state w=g(s) = R*0, s), where the machine stops after
receiving the successive symbols in s when started in the initial
state zero.

Because the symbol following the last read-in symbol #(k) in
s must be taken from 7(w), which is determined by the last state
w=R*(0, s), the parameters in the extended model are the
conditional probabilities

Pt (z,w), s[z,w]), tin T(w), 4.1
in which z=f{ss), w=g(s), and s[z,w] denotes the sequence of the
past occurrences of the "next" symbols in 7 at the conditioning
class (z, w) as explained in Subsection III-A. These, of course,
must satisfy the condition (3.6).
If T(w) has D(w) symbols, then D(w) — 1 probability
parameters are required for every pair (z, w). Hence the total

number of parameters in an extended model is given by
m—1

Z (") =DK(w),

where K(w) denotes the number of classes in the set
{f(s)lg(s) =w, s in T*}.
We illustrate these notions with an example.
Example 4: We construct a first-order Markov model of the
extended symbols in Example 3, i.e., of the runs of

(4.2)

18 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 1, JANUARY 1981

zero, T(0), and the runs of one, T(1). We have to construct
the overdl sructure function (f, g). The two-dtate ma
chine in Example 3 defines the second component g by
9(s)= R*(0,), wheres=t(0) « « « t(k). The first component
f is defined by f(t(0)e « « t(k)) = t(k). We next define the
conditional probabilities (4.1). For the symbols in T(0),
define the conditional probabilities a each conditioning
dass (f(s), g(s)) = (preceding symbol, sate) by the follow-
ing table.

1 01 001 000

0,1) 1/2 1/4 1/8 1/8
(10,1) 1/4 1/4 1/4 1/4
(000,0) 5/8 1/8 1/8 1/8

Observe that only the symbols 0, 10 and 000 can possibly
precede those in T(0). Hence K(0) in (4.2) is three. Simi-
larly, only the symbols 1, 01, 001, and 11 can precede
those in T(I), and we define the probabilities for T(1) by

0 10 11

(1,0) 1/2 1/4 1/4
(01,0) 3/4 1/8 1/8
(001,0) 2/3 1/6 1/6
(11,1) 1/8 5/8 1/4

The total number of free parameters in this modd is
9+8=17.

V. MAIN THEOREM

Markov models of some order k, such as illudrated in
Example 1 for k=1, and block models with block length k
illustrate the familiar tug of war between the two tech-
niques in modeling, Markov conditioning, and blocking.
Without imposing a cogt on the complexity of the modd,
there is no winner, and even with the cogt introduced
above, the best type of model depends on the string to be
encoded. However, if we widen the Markov models to the
st of recursive models, either adaptive, nonadaptive, or
both, then we can say something about the best way to do
modeling. At the same time we may include in the contest
any aphabet extension of the kind described above rather
than just smple blocking.

Theorem 1: For every adaptive or nonadaptive recur-
sve mode using alphabet extension, there exists another
adaptive or nonadaptive recursve mode respectively,
using no aphabet extenson, which has the same number
of parameters (and hence requiring the same number of
binary digits for its description), and which has the same
ideal codelength —logP(s) for every string s. The con-
verse is not true.

Remarks: The meaning of the converse part of the
theorem is that there exiss an FSM binary source such
that no adaptive or nonadaptive source satisfying the
condition (3.7) exists using any kind of aphabet exten-
gon, which can produce the same or better ided code-

length with the same number of parameters. Hence, d-
though stationary binary sources can be smulated by
extended sources, the required source must have a greater
complexity.

Proof: The heart of the proof is to show that the
process affecting the aphabet extenson can be described
or Smulated by a finite-state machine modd. Before
showing thisin full generdity required in the theorem, we
illugtrate the smulation process with a smple example,
We smulate the run-length model of Example 2 with a
two-state FSM model which therefore will dso have two
parameters.

Assgn one state A, which is taken as the initid State, to
the set of nodes consgting of the root and the leaves of
the tree in FHg. 1, and another B to the node aso marked
B. Define the state transition function as follows:

F(A,00=B, F(B,0)=A,
F(AL)=A, F(B,1)=A.
Assign the two conditiona probabilities as follows:
P(0JA)=P(B)=P(00)+ P(01)= 3/4,
P(0|B) = P(00)/P(B) = (1/4)/(3/4) = 1/3.

Extend these conditional probahilities to the strings in S
by the independence of the transitions:

P(sx) = P(s)P(X|z(s)), x=0,1,

where z(s) is the state which the machine reaches when
darted at state A and given the string s. Observe how each
extended symbol aways takes the machine to the gate A.
Because of this and the way the conditiona probabilities
were chosen from the tree, every string has the same
probability and hence the same idedl coddength with this
model as with the run-length modd.

We now describe the general condruction. The given
extended modd assgns the probabilities to the srings of
T* by the recursion

P(st) = P(s)P(t|(zw),5z,w]), (GXD)

where s=t(0) « ¢ t(k), t is an extended symbol in T(w),
z= f(s), and w =g(s). This notation is explained further in
Section 1V.

In order to smulate this mode, we first congruct for
each tree T(w), an FSM moded under which every ex-
tended symbol t (leaf) gets the correct probability
P(t|(zw),gzw]). The congruction was illustrated above
in a specid case; the generd caseis quite Smilar. We dtart
by assgning a state marked "null" to the set of nodes in
T(w) conssting of the root and the leaves. Further, we
asign one date to each internd node. If X(1) ees X(j)
denotes the path from the root to an interna mode, then
we denote the corresponding state by this path. Hence the
dates are in one to one correspondence with the proper
prefixes of dl drings in T(w). The state trandtion func-
tion of this machine is Smply given by

(uX)-->ux, (5.2
where u is a proper prefix of a string in T(w) and x a

RISSANEN AND LANGDON: UNIVERSAL MODELING AND CODING

symbol in S; the right side becomes the state "null" if ux is a
leaf in T(w).

We next combine these FSM's with the extended model to
form a recursive source with alphabet S. The new structure
function is

su-->(f(s), g(s),),

where su is any string in S*, s is the unique prefix of su which
is in 7*, and hence either "null" or a string of the form t(0)e « «
#(k), and u is a proper prefix of some symbol in 7(w).

We need to define the conditional probabilities

P(x|(z,w,u), su[z,w,u]).

We define them as follows:

P(x|(z, w, u), sulz, w, u])
_ probability of node ux in T(w)
probability of node u in T(w) ’

(5.3)

where z=f(s), w=g(s), u is a proper prefix of some string in
T(w), and x is symbol of S. Further, the probability of a node in
the tree T(w) is defined to be the sum of the probabilities of its
descendant leaves. These conditional probabilities generate the
probability of any string su in S* by the rule (3.2), which says

P(sux) = P(su)P(x|(z,w,u), su[z,w,u]). 5.4
It follows from (5.3) and (5.4) that this probability agrees with
that in (5.1) for every string in 7%

The tree 7(w) has (D(w)-1)Ad-1) internal nodes. Hence the
FSM constructed for 7(w) has the same number of states, and
for each z and w the number of free probability parameters
P(x|(z, w, u), sulz, w, u]), one of each state, is (d - 1)(D(w) -
DAd - 1) = D(w) - 1. This is the same as the number of free
parameters in the extended model for each z and w.
Accordingly, we have completely simulated the extended
model by a nonextended one, which proves the first part of the
theorem.

It remains for us to exhibit a nonextended model that cannot
be matched by any extended one with the same number of free
parameters. It is in this part that condition (3.7) is needed.
Consider the two-state binary source where at state 4 the next
state for symbol zero is 4, and for symbol one is B. At state B
the next state for symbol zero is B and for symbol one is A. The
symbol probabilities are P(0|4) = 3/4 and P(0|B) = 1/2.

Any extended source with two free parameters must have
three symbols as leaves in a complete binary tree. Hence they
are either 1, 00, and 01, or the binary complements of these, for
example, the former. The probabilities Q(1]s) and Q(00]s)
assigned to the first two symbols may depend on the past string
s, and they determine the third symbol probability.

Consider the three strings 1, 00, and 01. The binary source
with A as the starting state assigns to these the probabilities 1/4,
9/16, and 3/16, respectively. To match

19

these, the extended source must have
O(1|null) > 1/4,
Q(00|null) > 9/16,
O(01|null) > 3/16,

which can be satisfied only when the equalities hold. Next,
consider the strings 11, 100, and 101. To these the binary
source assigns the probabilities 1/8, 1/16, and 1/16,
respectively. Again, to match these the extended source must
have Q(100) = Q(nul)Q(00|)=1/16. Finally, consider the
strings 1001, 10001, and 10000, to which the binary source
assigns the probabilities 1/32, 1/64, and 1/64, respectively. To
match these we must have Q(00/100) > 1/4, Q(01|/100) > 1/4,
and Q(1/100) > 1/2. If this adjustment is made, then we have a
contradiction to (3.6), because Q(00| 100) = 1/4 < Q(00|null).
On the other hand, if we keep the value 9/16 for Q(00/100), as
we are allowed to do within the wider notion of adaptation
according to (3.7), then, O(1|100) must be chosen smaller than
1/2. But then the largest probability we can generate for the
string 1001 is smaller than 1/32, or less than what the binary
source assigns to the same string. Hence, regardless of when the
adjustments of the probabilities are made, we cannot match the
performance of the binary source. This completes the proof.

O

Remarks: The first implication of this theorem is that an
alphabet extension has no inherent value; absolutely nothing is
lost if we confine the search for a good model to the class of
recursive d-ary sources without extending the alphabet. This is
true if the performance is measured in terms of available
compression; if we include other performance measures such as
the speed with which the coding operations can be performed,
alphabet extension may well have advantages. Secondly, for
any set of strings arising in real applications, a given number of
parameters is strictly better spent in letting them describe
probabilities in the d-ary model than wasting them in the
description of the probabilities of the extended symbols, no
matter what these symbols are. This result may be somewhat
counter intuitive, because one is tempted to believe that by
picking the extended symbols in a 'matural' way an economical
usage of the available parameters results. Actually, there is a bit
of truth behind this belief since if the symbols are perfectly
independent, then the resulting model cannot be improved.
However, there still is an equally optimum d-ary model. More
important, in 'real' strings where the new symbols as random
variables are not independent, better d-ary models with the
same number of parameters can be found.

Finally, in some respect the most devastating implication of
this theorem is that it makes the use of all the traditional codes
in conjunction with the best models cumbersome and wasteful,
above all when the original alphabet size is small. This is
because an alphabet extension is needed for the code to have a
near-optimal length. To illustrate the inherent difficulty,
suppose that a binary adaptive model assigns the probability
P(0ls) for the

20 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 1, JANUARY 1981

symboal following s to be zero, and we wish to design a
ran-length code for this source with the symbols
1,01, ¢ee,0e¢0L0¢*0, up to thelength n. Suppose that
the string to be encoded isSO01 « « «, where the last symbol
of the so far encoded string s is a one. The task then, is to
encode the run 001 following s. If the encoder wishes to
use a compact code, i.e, a Huffman code, he must first
work out the probabilities of all the runs with help of the
binary model

P(1)=P(1]s),
P(01)=P(0|s)P(1|s0),**
P(0+0)=P(0]s) * * * P(O]s0* * «).

Only then can he construct the optimum codeword for the
run 001 actually occurring, the calculation of al the other
probabilities is wasted. The same is true for the decoder.
Because of the adaptive nature of the run probabilities,
this entire optimum-code tree can be used only once! It is
essy to show that this problem is not peculiar to the
Huffman agorithm, which proceeds backwards. There is
no forward-progressing agorithm for the construction of
the compact codes. all probabilities are needed for the
construction of even the very first codeword. It is obvi-
oudly possible to construct forward moving ad hoc code
trees, but they are not generaly optimal.

VI. CODING UNIT

In our view al coding should be a matter of represent-
ing sequences as numbers in an order-preserving manner.
The sequences are then thought to have a natural order
such as the lexical one, and the numbers of course, are
ordered by magnitude. The most familiar example of such
coding is the decima number representation of decimd
sequences. The decima string 3407 can be represented or
encoded as the integer 7+4x10? +3x10°, or as the
fractional number 3x10* +4x107%+7x10*, pre-
cisely because these codes preserve the lexicd ordering of
the decima sequences. Similarly, in enumerative codes
([4] and [9]), in which a sequence is encoded as itsindex in
a certan lexically ordered s, the order is evidently
preserved, and the same is true in the closdy related Elias
code, which in fact can now be viewed as a dual of the
enumerative codes[11].

When the numerica coding of gtrings is done for com-
pression purposes the strings to be compressed are nor-
mally long, and the numbers used for their representation
are very large indeed, requiring hundreds of thousands of
binary digits. It is clear that in the generations of such
numbers or codes, gpecid attention must be paid to the
question of how to do the caculaions in norma-sze
regigers This problem was addressed and solved in [1]
with the first "arithmetic code’ as the result. The con-
structed code was of the LIFO type in which the last
encoded symbol was decoded first, i.e, the code string
medium was of the nature of a pushdown storage. Subse-
quently Pasco [2] consdered the same problem for Elias
code [6] and congtructed a FIFO arithmetic code which

decoded the symbols in the same order in which they were
encoded. One advantage of FIFO codes is that the decod-
ing process can be started dmost immediately after the
first symbol has been encoded; that is to say, ‘instanta-
neoudy' in the practical sense that only a few adjacent
symbols need be dtered when a symbol is encoded or
decoded. Evidently the same criterion for instantaneous-
ness is gpplicable even to LIFO codes We should add
that because of a carry-over problem, which is inherent in
FIFO arithmetic codes, Pasco's code is not ingtantaneous
in our sense. In fact, he specificaly wanted a prefix block
code. Another dass of LIFO and FIFO codes has been
discussed in detail in [3], and recently, further versions of
Pasco's type of FIFO codes were rediscovered by Jones
[7] and Martin [8] both with knowledge of and reference
to the originad LIFO code in [1].

In view of the severd different versons of FIFO codes
proposed by the authors referred to previoudy, it seems
appropriate to introduce arithmetic codes from an ab-
stract number representation viewpoint. The number rep-
resentation viewpoint is natural and free from specific
implementation details, and it is sufficiently generd to
include al the known arithmetic codes as specid cases

In the decima representation of decimd gtrings, each
term added to the code depends both on the symbolss
position in the alphabet and on its postion in the string;
for instance, the fourth symbol "7 in the aove given
example string, encodes in the fractional representation as
the fourth power of 1/10 multiplied by seven. In arith-
metic coding this same principle is generdized. We dis-
cuss here the FIFO codes because of ther practicdity.
For each symbol k of the alphabet S ={0,es,d—1} as
the next symbal to the string s (yielding string sk), we add
aterm, B(sk), cdled augend, which depends on the sym-
bol's pogtion k in the dphabet as well as on s, rather than
merely on the symbol's position in the string. With C(9)
denoting the code of gtring s as a number, we then have
the recurson

C(null) =0,
C(sk) = C(9)+B(sK). (6.1
A convenient way to encode k for a given s is to make
B(sk) an increasing function of k starting from B(s0) =0.
With this convention we can write it as
B(sk) = A(S0)+ e+ * + A(s(k-1)), (6.2
where the increments A(si) are cdled addends. Because
the right-most zeros in the strings cannot be decoded, we
append a dummy nonzero symbol to the end of the strings
to be encoded.

The decoding is done by magnitude comparison with

the following rules. Let s' run through dl proper prefixes

of s gtarting a null gdring. The symbol following s is
decoded as that index k for which

Rule = C(9)-C(s)-B(sk)> 0O
Rule2: C(9)-C(s)-B(s(k+1))<0;

the second condition is not needed if Rule 1 holds for
k=d-1.

RISSANEN AND LANGDON: UNIVERSAL MODELING AND CODING

Because we have not yet added any precison require-
ments to these codes, we may cdl them "pre-arithmetic”
codes We have ddiberately removed the dependency of
the addends and the augends of any given source proba
bilities, as opposed to Elias scheme, to achieve greater
freedom in their sdection. It then becomes important to
understand when such codes are decodable; which issue
we will settle next. The main decodability theorem for the
dass of FIFO codes (6.1) is as follows.

Theorem 2: All strings with the right-most symbol non-
zero can be decoded by Rules 1 and 2 if and only if for dl
s=sk, knotd—1,

) A(s)>1im[B(s(d-1)) + B(s(d-1)(d-1)")+ ee].
If A(null) = 1 then i) implies C(s)<1. In particular,
decodability is implied by

i) A(s)> B(sd)

= A(SO)+ e +A(s(d-1)) >0, for dl s.
Proof: We show that ii) implies i), and i) implies the
decodability. By (6.2)
B(sd) = B(s(d-1))+A(s(d-1))
> B(s(d-1)) + B(s(d-1)(d-1))
+A(s(d-1)(d-1),
which by iteration and by one more application of ii)
givesi). Lets =s(d- 1)s". By (6.1), (6.2) and the fact that
addends are positive, Rule 2 of the decoding process fails
for k<d- 1 while Rule 1 holds for k=d-1. Hence d-1
is decoded correctly. Let s=sks" for k not d-1. By (6.1)
C(s) - C(s)> C(sk) - C(s) = B(Sk),
and Rule 1 holds. Consider
C(s)-C(s)-B(s(k+1)) = -A(sk) + B(skj)+ = =,

wherej is the first symbol of s, or s* is null. By an
application of i) to A(Sk) we see that Rule 2 holds, and k
gets decoded correctly.

Suppose next that i) fails; i.e,

A(S)<B(S(d-1))+e ¢ » +B(s(d-1) e =« (d- 1)),
m repeated symbols d— 1, for some s=sk, k<d— 1 Pick
S'=sk(d—1)e ¢ * (d—1), where the number of repeated
symbolsis m. Then
C(s")-C(s)-B(SK)=B(sk(d-1))+ eee
+ B(sk(d-1) e+ (d-1))> O
C(s")-C(s)-B(s(k+1))=-A(sk) + B(sk(d-1))
+e o o+ B(Sk(d-1)ee+(d-1))>0.

Hence Rule 1 holds, and Rule 2 fails, which means that k
will not be correctly decoded. The proof is complete. [

Remark: Observe that the equdlity in ii) is just an
instance of (2.1), and the code matches a source precisely
if A(s)=P(s).

For practical reasons we wish to put further restrictions
on the augends. Above dl, we require that the addition in
(6.1) must be done in a fixed-gze register, and it must not

21

affect more than a fixed number of digits in C(s), when
the latter is written for example in a binary notation. In
FIFO codes this amounts to the requirement that the
augends are added to the right end of the code string and
they can have no more than, for example, r sgnificant
floating-point binary digits; i.e, there are r—1 digits fol-
lowing the first one. Such "instantaneous’ codes are cdled
(proper) arithmetic codes.

The purpose of usng arithmetic codes is to obtan
compression, which is possble only if the augends are
sdected appropriately. 1dedlly, the length of C(s) should
be —logP(s), se Section I, where we assume that the
string is taken from an information source with a proba
bility function P. But because the length of the code string
is nearly the same as that of the last added augend, the
leading zeros included, that has no more than r significant
floating-point digits, it follows that the A(sk) must be
gpproximately P(sk). Observe that this argument relies on
the assumption that the addends and the augends have a
fixed maximum number of significant floating-point digits
only. We give now two examples of classes of arithmetic
codes.

Example 5: Let

A(sK) = [A(s)p(K|s)]" 63

where [X]" denotes the number obtained when the binary
number x has been truncated to r significant floating-point
binary digits, and p(k|s) is a number dso with no more
than r significant floating-point digits satisfying the condi-
tion

P(Ols)+ « « «p((d-1)|s) <1, (6.4)

for dl s. Idedly, p(k|s) should be taken as the conditional
probability of the symbol following s being k given s.

The code (6.1)-(6.3) is a modification of Pasco's code.
One differenceisthat here the precison of dl the parame-
tersp(j|s) is the same, and the addition in (6.1) can be
made in the same Sze register, namely r, as that needed
for the caculation of the addends, provided though, that
we add the individua A(si) to the code one at a time
rather than first collecting them to form the augend (6.2).

Example 6 (N. Martin): Letp(i|s) be the numbers hav-
ing r- 1 fractional digits which satisfy (6.4) with equality,
and put

P(kls) = p(0ls) + e+« + p(k-1|s), P(Qls)=0.

Clearly the numbers P(k|s) dso have r — 1 fractional
digits. Suppose A(S) is a number with r— 1 digits follow-
ing the first one (the last may well be a zero). The product
A(s)P(k|s) has no more than 2r —1 significant floating-
point digits, and because the smalest p(ils) is a least
2!, the leading one of this product remains within the
range of the significant digits of A(s). Let [A(s)P(K|s)]"
denote the truncation of the product to the range of the
significant digits of A(s). In other words, the length of the
truncated product is the same as the length of A(s). Asan
example let r=5, A(s) = 000010100, and P(l|s) = .0110.
Then [A(s)P(1]s)]" = 0.00000111. Now put

ASK) = [A(s)P(k+1[)]" - [A(s)P(k[s)]".

22 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 1, JANUARY 1981

Clearly, each A(sk) has no more than r significant digits, and ii)
in Theorem 2 holds with equality.

Remarks: For a binary alphabet these examples simplify, For
instance, in Example 6 we may write the param-eters p(ils) with
a maximum of r significant floating-point digits, and still
maintain the same for A(s) provided that we keep track of the
symbol which has the higher conditional probability. Let x be
that symbol and x’ the other symbol. Put A(sx) = [A(s)p(x|S)],
truncated to r significant floating-point digits, and A(sx") = A(s)
— A(sx). A(s) will then have no more than r significant floating-
point digits. Finally, and more importantly, the multiplication
involved in these codes can be avoided with only a small loss of
compression. One such scheme is described in [9]. In the
nonbinary case, again the multiplications can be avoided by
constructing the codes from length parameters rather than from
the probabilities p(k|s) as discussed in [3].

It is clear from these remarks that there is great flexibility in
the design of arithmetic codes, with ample room for
engineering trade-offs, which in view of the great variety of
coding needs is highly valuable. Several questions of both
conceptual and practical nature arise in this number
representation view of coding. For instance, we would like the
binary strings that result when the fractional numbers C(s) are
first written in binary notation and then the binary point
deleted, to fill the tree defined by all binary strings terminating
at a one. It is easy to show that this certainly is not achievable
unless perhaps the equality in ii) holds. Hence the code in
Example 6 is a good candidate for such an onto or "almost"
onto map.

We illustrate the coding operations by a specific instance of
the code in Example 5. Let d = 3, and s = 0212. Let p(0|null) =
p(1jnull) = 0.011, p2/null) = 0.010, p(0/0) = 0.011, p(1]0) =
0.001, p(2|0) = 0.1, and for the remaining prefixes s’ let p(0}s") =
0.01, p(1}s") = p(2|s") = 0.011. With » =3 we get the following
table.

N A(s) B(s) C(s)

0 0.011 0 0

2 0.00110 0.00110 0.00110
1 0.000100 0.0000110 0.001111
2 0.00000110 0.00000100 0.01

This example also illustrates the carry-over problem, which
causes only the first trivial prefix code, namely, zero to be a
prefix of the final code.

We sketch a solution to the carry-over problem. After an
agreed number of consecutive ones, say ¢, has been detected in
the code string, the remaining symbols to the right of the # ones
in the code string are shifted right one position and a zero is
inserted in the vacated position immediately to the right of the ¢
ones. Moreover, all the future addends are halved so as to
preserve their correct position relative to the tail (the working
end) of the code string. In reality the addends are added in a
fixed register, and the generated symbols of the code string are
shifted left out of the register, but the equations above are
written

as if the addends were shifted right along the code string.
Because the decoding is done by magnitude comparison, the
important aspect of the code generation is the relative position
of the code string and the addends.

Then the decoder, when seeing ¢ consecutive ones, removes
and examines the 7 + 1'th symbol. If it is a zero, the decoding
proceeds as usual, but if it is a one, a carry-over must have
occurred and been stopped by the added zero. Accordingly, this
one is added to the #'th one so that the carry-over one ripples
through the preceding #— 1 ones. In either case one can show
that the decoder has the correct code string as the result. The
proof, which we omit, rests on the crucial property that once
any symbol in the code string is beyond the » augend bit range
(or the working end of the code string), it can receive at most
one carry-in. We illustrate this by the preceding example,
rewritten for ¢ = 2.

s A(s) B(s) C(s) C'(s)

0 0.011 0 0 0

2 0.00110 0.00110 0.0011 0.0011

1 0.000100 0.000011 0.001111 0.0011011
1 0.00000011 0.0000001 0.00111

Here we wrote C'(s) for the modified code string which the
decoder receives, and after seeing two consecutive ones,
converts to the original code string as described above. Finally,
if the code string is a random Bernoullian sequence as it ideally
should be, then the probability of having 7 consecutive ones is
27, which is also the per symbol increase in the code string due
to this carry-over blocking mechanism. For a typical value of ¢
= 16, the length increase is normally quite insignificant.

If we arrange things in such a way that the last added augend
is the smallest, then the length of the code string is determined
by the last augend, arid the per-symbol length of the code in
Example 6 satisfies

(1/n)|C(s)| < -(1/n)logP(s)+r/n+27",

where P(s) denotes the probability of the string as the product
of the conditional probabilities p(k|s). This inequality shows
that the mean per-symbol length does not exceed, the ideal
codelength defined by the conditional probabilities by more
than the two right-most terms.

ACKNOWLEDGMENT

The authors are greatly indebted to Frank King for suggesting
the line of research which led to the main modeling theorem in
Section V. They are also indebted to Stephen Todd for
stimulating discussions.

REFERENCES

[1] J. Rissanen, "Arithmetic coding of strings," IBM Res. Rep.
RJ 1591, June 3, 1975. This appeared in a revised form as
"Generalized kraft inequality and arithmetic coding," IBM
J. Res. Dev., vol. 20, No. 3, pp. 198-203, May 1976.

[2] R. Pasco, "Source coding algorithms for fast data

compression,"

|IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 1, JANUARY 1981

(3
4
(5]

(1
8

Ph.D dissartation, Dept. of Elec. Eng.,, Stanford University, Stan-
ford, CA, May 1976.

J Rissanen and G. G. Landgon, ., "Arithmetic coding,” I1BM J.
Res.Dev.,val. 23 no. 2, pp. 149-162, Mar. 1979.

J P. M. Schakwijk, "An dgorithm for source coding,” |EEE
Tram. Inform. Theory, val. IT-18, no. 3, pp. 395-398, May 1972
T. M. Cove, "Enumerative source encoding,” IEEE Trans. In-
form. Theory, val. IT-19, no. 1, pp. 73-77, Jan. 1973.

N. Abramson, Information Theory and Coding. New York: Mc-
Gran-Hill, 1969.

C B. Jones, "An efficient coding system for long source sequences”
(submitted to IEEE Trans. on Inform. Theory).

G. N. N. Martin, "Range encoding: An agorithm for removing
redundancy from a digitized message" presented at the Video &
Data Recording Conf., Southampton, July 1979.

El

(19

[11]
(12

[13]
(14

23

G. G. Landgon, Jr. and J. Rissanen, "Compression of black-white
images with binary arithmetic coding,” IBM Res Rep., Dec. 1979
(submitted to IEEE Trans. Common.).

A. Kolmogorov, "Three gpproaches to the quantitative definition
of information," Prob. Peredach. Inform., val. 1, no. 1, pp. 311,
1965, (Russian).

J Rissanen, "Arithmetic codings as number representations,” Acta
Polytech. Scandinavica, Math. 31, pp. 44-51, Dec. 1979.

S K. Leung-Yan-Cheong and T. Cover, "Some equivaences be-
tween shannon entropy and Kolmogorov complexity,” |EEE Trans.
Inform. Theory, val. 1T-24, no. 3, pp. 331-333, May 1978.

T. J. Lynch, "Seguence time coding for data compresson,” Proc.
|EEE (Lett), vol. 54, pp. 1490-1491, Od. 1966.

L. D. Davisson, "Comments on 'Sequence time coding for data
compresson,” Proc. |EEE (Lett.), vol. 54, p. 2010, Dec. 1966.

0018-9448/81/0100-0023$00.75 ©1981 | EEE

