
12 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 1, JANUARY 1981

Universal Modeling and Coding
JORMA RISSANEN AND GLEN G. LANGDON, JR, SENIOR MEMBER, IEEE

Abstract—The problems arising in the modeling and coding of strings
for compression purposes are discussed. The notion of an information
source that simplifies and sharpens the traditional one is axiomatized, and
adaptive and nonadaptive models are defined. With a measure of complex-
ity assigned to the models, a fundamental theorem is proved which states
that models that use any kind of alphabet extension are inferior to the best
models using no alphabet extensions at all. A general class of so-called
first-in first-out (FIFO) arithmetic codes is described which require no
alphabet extension devices and which therefore can be used in conjunction
with the best models. Because the coding parameters are the probabilities
that define the model, their design is easy, and the application of the code
is straightforward even with adaptively changing source models.

I. INTRODUCTION

ATA compression problems arising in digital
processing differ in one important respect from the

traditionally studied ones in communication theory: there

Manuscript received July 26, 1979; revised October 18, 1979.
The authors are with the IBM Corporation, 5600 Cottle Rd., San Jose,

CA 95193.

is no well defined statistical information source to which
the code can be tuned. Moreover, often a set of strings to
be compressed cannot even be adequately modeled by a
single source, of say, the Markov type. Instead, one is
given a long string of symbols in some alphabet, often
binary, after which another different string is received and
so on. An example of this is the finite but indefinite set of
scanned black and white documents consisting of text,
drawings, tables, and so forth.

What is needed in such problems is a universal modeler
encoder. In broad terms, modeling involves a determina-
tion of certain source-string events and their contexts,
which uniquely describe the source string. We regard the
model as consisting of two parts: 1) the structure which is
the set of events and their context, and 2) the parameters
which are the probabilities assigned to the events.

The structure is intended to capture the redundancies in
the entire set of source strings under consideration, such
as the set of black and white documents, while the param-
eters are tailored to each individual string separately. This

0018-9448/81/0100-0012$00.75 ©1981 IEEE

RISSANEN AND LANGDON: UNIVERSAL MODELING AND CODING 13

way a degree of "universality" can be achieved. The
encoder, in turn, encodes the string using the statistics
provided by the model. It should clearly be capable of
doing its job without imposing restriction on the modeler,
and it should produce a code string with a length close to
the ideal that the modeled source can provide.

Model building starts with the decision whether or not
to use an alphabet extension of some kind. The selection
of the alphabet is particularly important because it affects
the nature and complexity of the source model. Usually
alphabet extension is done by grouping the initially given
symbols into fixed or variable-length blocks. Particularly
with binary alphabets, the groups formed of runs of zeros
or ones, or of both, are popular. In the case of scanned
black and white images, some of the early model struc-
tures used straight run-lengths while other more sophisti-
cated ones condition the end of a white run to that on the
line above, the deviations forming a new alphabet. Yet
other models read two lines at a time which are converted
into run-like segments as further-derived symbols. All of
these structures appear to be based on and intertwined
with a preselected coding technique that tends to obscure
the important role played by the source itself.

In the light of such a multitude of models, it may seem
appropriate to study the problems of modeling in a sys-
tematic manner with the hope of demonstrating that some
models are inherently better than others. We begin with a
notion of an information source which differs from the
customary one in a subtle but significant manner. The
models for such sources are partitioned into two classes:
those that use the original symbols in which the strings are
described, and those that use some form of alphabet
extension, i.e., extended sources. We further distinguish in
each class between stationary and adaptive models, where
the latter in particular are not just nonstationary but
nonstationary in a special way which permits their param-
eters to change only in accordance with certain sound
estimation principles. In order to be able to compare the
performance of different models we introduce a model
cost, which essentially is the number of independent
parameters needed to describe that part of the model
which is not shared by all of the strings to be encoded.
This enables us to prove the main result in this paper:
there is nothing to gain and something to lose with al-
phabet extension, and the best models with a given cost
use no alphabet extension of any kind.

An implication of this theorem is that the coding must
be done without the use of tables larger than the number
of parameters in the model. This means in particular that
with small alphabets, the traditional "concatenation" codes
that require alphabet extension for good code efficiency,
are very difficult to apply. How then is the coding to be
done? One answer is by arithmetic coding. (This should
not be confused with "arithmetic error coding" which is
an entirely different subject.) Arithmetic coding was intro-
duced by Rissanen in 1975 in the form of a last-in-first-out
(LIFO) code [1], which may be regarded as a practicable
derivative of the earlier enumerative codes due to Lynch

[13], Davisson [14], Schalkwijk [4], and Cover [5], in that
the inherent problem of a growing precision was solved.
In the following year, Pasco constructed a first-in-first out
(FIFO) code [2], starting from Elias' code [6]. A dual pair
of LIFO and FIFO codes were further described by
Rissanen and Langdon [3], and recently other versions of
FIFO arithmetic codes under different names have been
proposed [7], [8]. In Section VI we study a very large class
of arithmetic codes in an abstract manner, making them
thereby independent of specific program and hardware
implementations. This class includes all of the above
codes as special cases.

II. INFORMATION SOURCE

In this paper we select a statistical framework within
which we wish to describe, or equivalently, encode the
principal objects of interest—the strings. The most obvi-
ous choice for the statistical structure in question is a
random variable. In some way we characterize a family of
strings with a probability distribution such that our given
string is one of the outcomes. The string can then be
encoded with a codelength determined by its probability.
The strings we are interested in are very long, however,
and to calculate their extremely small probabilities in a
practicable manner, we must be able to assign a prob-
abilistic meaning to their prefixes. In other words, in
addition to the entire string, we also want their parts and
above all their prefixes, to be valid outcomes. This means
that we need another statistical structure—the informa-
tion source.

Traditionally, for communication purposes an informa-
tion source has been taken to be a random process {x(i)}
that emits outcomes of random variables x(i) in a never-
ending stream. The time index i then runs through all the
integers. In addition to the random variables x(i), the
process also defines all the finite joint variables
(x(i), x(j),• • •). The most frequently studied information
sources are either independent, stationary, or Markovian.

In the traditional notion of an information source, we
particularly object to the idea of a source emitting sym-
bols in a never-ending manner. We feel that such a view is
not only unrealistic but that it also puts an emphasis upon
the wrong things concerning an information source and its
coding problems. We therefore construct a different and
more realistic notion of an information source. The set of
events of interest in this is the set S* of all finite sequences
of the symbols from a d-element alphabet S, including the
empty string "null". The absolute-time instance of the
occurrence of the ith symbol in the string, and in particu-
lar that of the first symbol, is totally irrelevant. The
relevant thing instead, is the symbol's position counted,
for example, from the left end of the string. Similarly, we
are not interested in outcomes which are not sequences.

The set S* of valid outcomes, also called messages, can
be conveniently viewed as a d-ary tree with the null string
as the root at the top. From the node representing string s
there is an arc corresponding to each symbol x and

14 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 1, JANUARY 1981

connecting s to the successor node sx, associated with the
string sx. Formally, we define an information source, or
just a source, to be the pair <S*, P>, where P is a function
from S* into [0,1] satisfying the conditions:

P(null) = l,

(2.1)

for all s in S*. Accordingly, we may view an information
source as the infinite d-ary tree S* where each node s has
the number P(s) attached to it. Condition (2.1) states that
the sum of the numbers attached to the immediate succes-
sors of node s equals its own number P(s).

The interpretation here is that P assigns a probability to
each outcome or sequence. However, the sum of these
probabilities over all sequences is generally greater than
unity; in fact, the probabilities of the d sequences of
length one already add up to one, which means that an
information source is not a random variable. Neverthe-
less, the important condition (2.1) insures that the proba-
bility P(s) of string s is unambiguous and independent of
the countably many random variables that include s as an
outcome that we might wish to pick. To make this more
precise, consider a finite subtree T of S* sharing the root.
Call T complete if all of its interior nodes have all their d
immediate successors in T. The noninterior nodes are
called leaves. It follows from (2.1) that the set of leaves of
each complete subtree with null as the root defines a
random variable; i.e., the sum of the numbers P(s) over
the leaves is one. Clearly, each node s of S* belongs to the
countably many such random variables, and in all of them
the probability of s is the same, namely P(s).

To further clarify the difference between a random
variable and an information source, we add that the
outcomes of a random variable are independent objects
competing for the total probability mass. In contrast, the
outcomes of an information source are not independent
by their very construction, since each string is a nested
collection of its prefixes. Condition (2.1) reflects this
generic constraint in the construction of the strings. Fi-
nally, (2.1) is related to the compatibility condition for
random processes. An information source however, is a
weaker structure than a random process because the valid
events are only sequences. This is what reduces the more
complex compatibility conditions for random processes to
the single condition (2.1).

Further, we can express stationarity in this setting as
follows. An information source is called stationary if

(2.2)

for all s in S*. Observe the perfect symmetry between (2.1)
and (2.2). This notion of stationarity implies the usual
shift-invariance property of the joint probabilities, as the
reader can easily verify. Finally, a source is called indepen-
dent if

P(ss')=P(s)P(s') (2.3)

for all s and s' in S*.

In the context where s is an outcome of a random
variable with probability P(s), the quantity

I(s)=-log P(s) (2.4)

is known as the self-information. Because of the unam-
biguity of P(s) in the notion of an information source, we
can now extend the same interpretation to information
sources, and we rename I(s) as the information content of
the string s. There are various ways to justify the informa-
tion content as the ideal codelength for string s. For
instance, its mean, i.e., the entropy,

(2.5)

over the set Sn of all strings with length n is for large n an
increasingly good approximation of the minimum mean
per symbol codelength, where a code is defined to be any
one-to-one function from S* into B*, B denoting the
binary alphabet. The reason we do not require the code to
be a concatenation code, i.e., one which preserves the
concatenation, let alone a prefix code, is that the powerful
arithmetic codes are of neither kind. Because of this, the
entropy above is not a lower bound on the minimum
codelength, and the "ideal codelength" interpretation
loses some of its justification. Other justifications exist,
however, which we hope to be able to discuss in another
context; for some such results we refer to [12]. Somewhat
curiously, as seen in Subsection III-B, the ideal codelength
in an optimized model also has the interpretation of an
entropy.

To conclude this section we write the probability of a
string s=s(1)• • • s(n) as follows:

P(s)=P(s(1))P(s(2)s(1))

•••P(s(n)s(1)•••s(n-1)), (2.6)

where the conditional probabilities are uniquely defined
by P:

P(x s)=P(sx)/P(s). (2.7)

Conversely, such conditional probabilities determine P;
hence they serve as generators for P. When we construct
models for sources, the information source function P has
to be generated. The conditional probabilities serve as a
convenient way for doing this as discussed further in the
next sections.

III. MODELING

The discussion of an abstract information source in
Section II does not say how to obtain or calculate the
function P which assigns the probabilities to the strings.
The purpose of this section is to describe how such
functions P can be constructed when one or more strings
are given. In other words, rather than first having an
information source as a generator of strings, we realisti-
cally start with a string and construct or model a source to
fit it. We first consider the case where the atomic events
are the original symbols and defer the more general al-
phabet extension case to Section IV.

RISSANEN AND LANGDON: UNIVERSAL MODELING AND CODING

A. Model Structure

The problem of obtaining the function P is basically the

problem of estimating P from the data provided by the given

string or strings. As in any estimation, we somehow must select

a structure within which the numerical values determining P

can be estimated. A quite natural structure is suggested by (2.6)

and (2.7) that define P in terms of the conditional probabilities.

Conditional probabilities concern events with context

formalized as follows. Let f: S* Z, Z= {0, • • •, K—1}, be a

general recursive function which partitions the set of all strings

into K equivalence classes or "contexts". We call f a structure

function, and the equivalence classes (conditioning) classes.

The conditioning classes will be used as a means to simplify

the estimation of the conditional probabilities P(x|s) of (2.7).

Depending on how the estimation is to be done, we distinguish

between two basic cases: the adaptive and the nonadaptive

models discussed in detail in the subsequent two subsections.

Here we merely describe the essential features of these two

cases which are pertinent to the structure of models. In the

nonadaptive models, the dependency of the conditional

distribution on s is restricted to the conditioning class f(s)

determined by s, which means that we only need to estimate the

numbers P(x|f(s)). If d is the size of the alphabet, this involves

the estimation of K(d—1) numbers, because for each class the d

probabilities add up to one. In the adaptive models we permit

P(x|s) to depend both on z=f(s) and on the sequence of the

"next" symbols at the previous occurrences of the conditioning

class z in the string. To make this more precise, consider a

string s=s(l)s(2)• • • s(t). Let f(s(1))• • • s(i)) = z be the first

occurrence of class z, f(s(1)• • • s(j)) = z the second, and so on.

Denote by s[z] the string s(i+1)s(j+1)• • • of the "next" symbols

at the successive occurrences of class z in the string s. Then in

adaptive models we put

(3.1)

where z=f(s). The nature of the function P will be specified in

Subsection III-C. Clearly the nonadaptive models form the

special case where s[z] is taken as the null string, and we write

P(x|z, null) = P(x|z).

The structure function and the probability assignment define

the source <S*, P>, where P is obtained by

P(sx) = P(s)P(x|f(s),s[f(s)]), P(null)=l. (3.2)

The term (recursive) model is now refined to mean the set of

strings S* together with the structure function f and the

algorithm specifying the conditional distributions (3.2). Often

we do not distinguish between a model and the source induced

by it.

We define the complexity of the model to be the number

K(d—1). In the nonadaptive models, the complexity is seen to

be the number of free parameters required to specify the

conditional probabilities P(x|z). Another related way to view

the complexity is to imagine that each probability is to be

written with, for example, q binary digits. Then it takes K(d—

1)q binary digits to specify P if

15

we exclude the lengths of the algorithms needed to describe f

and the product (3.3), which may be regarded as overhead costs

shared by all the strings to be encoded for which the same

structure function is being used. In contrast, these K(d—1)q bits

of information must be communicated to the decoder for each

string. In adaptive models, these parameters need not be sent to

the decoder, because there is an algorithm calculating values

for each symbol along the string. The decoder needs K(d—1)

registers, however, each having width q, to store these param-

eter values for decoding the symbol. In either case K(d— 1) is

seen to be an appropriate measure of the complexity in

implementing the coding system based on these models.

The structure function permits one to model an information

source schema for a set of strings that are similar in some

respects. Each string will get its own information source

defined by the common structure function and the probabilities

(3.2) tailored to that string. This is very important because

often such natural sets of strings cannot be adequately modeled

by a fixed information source. An example which the authors

have worked on quite extensively [9], is the set of black and

white scanned documents. There obviously is something that

such documents have in common; for instance, text documents

have a characteristic of their own due to the predominance of

printed letters in their makeup which differs from that in, for

example, black and white photographs. The purpose of the

structure function is to capture such characteristic features.

Exactly how this is to be done is a different matter; a

consolation however, is that to find an optimum structure

function is an undecidable problem, as can be shown by

arguments similar to those used by Kolmogorov [10].

A familiar and attractive subclass of recursive sources is

obtained by restricting the structure function so that it is

definable by a finite state machine (FSM) as follows:

x(t) = F(x(t-1),s(t)), x(0) = a,

z(t) = G(x(t)), (3.3)

where x(t) is a state from, for example, the set {0, • • •, N

— 1}, z(t) is a conditioning class in Z, and the input s(t), an

element of the alphabet S, denotes the successive symbols in s

= s(1)• • • s(n). The output z(n)=G(x(n)), resulting from the

terminal state x(n) where the machine stops after s has been

processed, defines the value of the structure function f at s.

The purpose in separating the conditioning classes from the

internal state is to permit a large number of states and still have

a relatively small number of classes and hence a small number

of free parameters in the source: namely, K(d— 1). An example

of this is the FSM model used in black and white image

processes, where the state x(t—1) is taken as the string s(t — 1)

••• s(t — M) with M as large as 2000. The output G(x(t — 1)),

on the other hand, is the binary number z(t—1) defined by the

substring s(t — 1)s(t — M + 1)s(t—M). In geometric terms,

s(t— 1) is the symbol preceding the "current" symbol s(t), s(t —

M+ 1) is the symbol above s(t) in a two-dimensional raster scan

of the

16 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 1, JANUARY 1981

image, and s(t—M) is the symbol nearest to s(t) in the
upper left direction. These three symbols can be expected
to have a strong influence on the value of the current
symbol s(t) and hence cause the conditional probability
P(s(t)) = 0\z(t-1)) to be far away from 1/2.

B. Nonadaptive Models

For a given structure function f and string s, the condi-
tional probabilities P(x\z) can be determined in such a
manner that the probability P(s) of (3.2) is maximized,
and hence the ideal length —logP(s) is minimized. It is
readily shown that such optimizing probabilities are given
by the ratios

P(x|z)=c(x|z)/c(z), (3.4)

where c(z) denotes the number of times class z "occurs"
in the string s, and c(x|z) denotes the number of times
the "next" symbol at these occurrences is x. More pre-
cisely, c(x\z) denotes the number of times the following
pairs of equalities hold:

must be prescanned by the encoder to get the optimum
probabilities (3.4). Moreover, these or their equivalents
must be transmitted to the decoder as a preamble in the
code string. To avoid a prescan and the preamble, as well
as to provide an opportunity to adjust the probabilities as
the string is being encoded, we consider adaptive models
in this section. The main problem here is to define the
currently prevalent diffuse notion of adaptation in a
meaningful manner.

In Subsection III-A we showed how the structure func-
tion permits consideration of the conditional probabilities
of the form P(x|z, s[z]), where s[z] denotes the string of
the "next" symbols at the successive past occurrences of
the class z=f(s). Here s refers to a growing prefix of the
string to be encoded that enables the decoder to decode
the symbols shortly after they have been encoded.

The fact that the estimates of the conditional probabili-
ties are to be made from the processed portion s of the
string implies certain natural restrictions on the recursive
function P performing the estimation. For instance, sup-
pose that we have estimated the probabilities P(x|z, s[z])
at class z=f(s) from the past string s = s(1)• • • s(i), and
we observe s(i+ 1)=y. Let the next occurrence of the class
z be z=f(s(1)• • • s(t)). Because the latest observed symbol
at class z was y, and we are not supposed to have
information about the string other than what can be
extracted from the scanned string s' = s(1)• • • s(t), we
must not decrease the old estimate; i.e., we must require
that

P(y|z,s[z])<P(y|z,s'[z]), (3.6)
for all y, where the symbol immediately following s is y,
and s' is the shortest extension of s such that f(s')=z. This
condition serves as a criterion for what we mean by
adaptive recursive models, provided that the adjustments
of the probabilities are done at every occurrence of class
z. For practical reasons, however, it may be desirable to
perform the adjustments only after certain sets of observa-
tions are made, which is why we wish to modify the
criterion accordingly.

Let an adjustment of the conditional probabilities at a
class z be made after the string s has been received; i.e.,
f(s)=z, and let the next adjustment at the same class be
made after s' has been received, hence f(s')=z. Of course,
a rule is required to specify what these adjustment points
s, s', • • •, are. Suppose that in the examination interval,
i.e., in the segment between s and s', the symbol y was
observed in class z, a total of c(y|z) times. Let

The general adaptation criterion can now be expressed as
follows. If

then

As a matter of notation we write P(y|s) if the adaptive
model has only the trivial conditioning class S*. A simple

f(null) = 0,

f(s(1))=z,

f(s(1)•••s(n-1)) = z,

and s(1) = x,
and s(2)=x,

and s(n)=x,

(3.7)

and c(z) is the sum of the c(x|z) over the symbols x in S.
Here we have arbitrarily set the value of f(null) to be zero.

The minimized ideal codelength itself is given by

(3.5)

Observe that this expression is also the same as the
entropy of the random variable whose outcomes are the
strings of the same length as s in the just-optimized
source. So in this sense we may perfectly well speak about
the entropy of the string s. We illustrate nonadaptive
models with an example.

Example 1: For the string s = 00011010100101, put S=
{0,1} and count the symbols conditioned on the previous
symbol; i.e., model this as a first-order Markov source.
With the initial state as zero we get the conditional counts

c(0|0) = 4, c(1|0) = 5,

c(0|1) = 4, c(1|1) = l.

Put P(0|0) = 4/9, and P(0|1) = 4/5, and define P(s) recur-
sively by (3.2). We find that the ideal codelength with this
model is

I(s) = 91og9 + 51og5-(51og5 + 81og4) = 12.53,

where the result is given to two decimal places. Two
parameters are required to describe P.

C. Adaptive Models

From a practical standpoint the main shortcoming of
the nonadaptive recursive models is the fact that the string

RISSANEN AND LANGDON: UNIVERSAL MODELING AND CODING

example of adaptive recursive sources is obtained by putting

P(y|s) = c(y|s)/|s|,

where c(y|s) denotes the number of times the symbol y occurs

in s and |s| denotes the length of s. Clearly (3.6) holds. Fairly

sophisticated adaptive sources for black and white documents

are constructed in [9] with performance quite superior to that of

the nonadaptive ones of the same complexity.

IV. ALPHABET EXTENSION

Frequently the symbols in which the string to be encoded has

originally been given are extended to certain segments of the

primary symbols. This is done in particular for small alphabets

in order to achieve a better per-symbol codelength. Another

reason is the fact that the per-symbol entropy of a source

decreases as the size of the groups is increased; a frequently

quoted example of this is the family of sources for an English

text resulting when first the individual letters, then every pair,

and finally all words are regarded as independent. In fact, there

is a strong feeling that a suitable grouping of the symbols

captures certain natrual features of the strings, and thereby a

low entropy source should result.

For the purpose of the main theorem in the next section we

describe a quite general alphabet-extension process. For a d-

element alphabet S, let T(0),• • •, T(m - 1) denote the subsets of

S* such that: 1) in each T(i) no string is a substring of another

(the prefix property); and 2) the subtree of S* defined by T(i)

with its elements as the leaves is complete. Further, there is

defined an m-state machine with state space {0, • • •, m - 1}

whose input space T is the union of the T(i). The state

transitions are defined by a function R(w, t), where w is a state,

and t is an (extended) symbol in T(w).

A string s in S* is parsed into segments as follows. Starting

at the initial state zero, a string t(0) in T(0) is recognized by the

prefix property as the first segment in s. The machine moves to

the next state R(0, t(0)), and the process is repeated with s=t(0)

• • • t(k)s' as the result. The last segment s' is a proper prefix of

some of the symbols in the final tree determined by the final

state R(k, t(k)). To simplify matters we "pad" such leftovers to

form a complete extended symbol in the last tree, so that s' is

null, and we regard s to be a sequence in T*, i.e., a sequence

over the extended alphabet.

Example 2: For a binary alphabet, let T = T(0) = {1,01,00}.

Observe how these symbols appear as leaves in a binary tree as

illustrated in Fig. 1. The leaves represent "runs" of symbol zero

of lengths zero and one, while the last symbol is used to

describe runs of any length. These symbols occur in the string s

of Example 1, a total of two, four, and two, times, respectively,

which gives the probabilities P(l) = l/4, P(01) = l/2, and

P(00)=1/4 for the symbols. Extend these to strings by

independence, which defines a nonadaptive run-length model.

We get the ideal

Fig. 1. Binary tree for run-length source.

codelength for the string s of Example 1 to be

I(s) = 81og8 - (41og4 + 41og2) = 12.

Two parameters are again enough to describe P, so this model

is better for the given string than the one in Example 1.

Example 3: This is an example of a double run-length

extension. There are four extended symbols for runs of zero

and three for runs of one. Let T(0)= {1,01,001,000}, and T(1) =

{0,10,11}. Put R(0,1)=R(0,01) = R(0,001)=1, R(0,000)=0, and

R(1,0)=R(1,10)=0, R(1,11)=1. When starting at state zero, the

string s=000110101001011 parses into the segments 000, 1, 10,

1, 0, 1, 001, 0, 11.

The recursive models of Section III can also be constructed

for extended alphabets. The states of the machine affecting the

alphabet extension are then included as a component of the

equivalence classes, so that the structure function maps T*, i.e.,

the set of all strings in the extended alphabet, into {0, • • •, K-

1} x {0, • • •, m - 1}. This means that we may write the

structure as (f, g), where f: T* {0,• • •, K-1} is any recursive

function as discussed in Section III, and g: T* {0,• • •, m - 1}

takes each parsed sequence s = t(0) • • • t(k) to the terminal

state w=g(s) = R*(0, s), where the machine stops after

receiving the successive symbols in s when started in the initial

state zero.

Because the symbol following the last read-in symbol t(k) in

s must be taken from T(w), which is determined by the last state

w=R*(0, s), the parameters in the extended model are the

conditional probabilities

P(t|(z,w), s[z,w]), t in T(w), (4.1)

in which z=f(s), w=g(s), and s[z,w] denotes the sequence of the

past occurrences of the "next" symbols in T at the conditioning

class (z, w) as explained in Subsection III-A. These, of course,

must satisfy the condition (3.6).

If T(w) has D(w) symbols, then D(w) — 1 probability

parameters are required for every pair (z, w). Hence the total

number of parameters in an extended model is given by

 (4.2)

where K(w) denotes the number of classes in the set

{f(s)|g(s) = w, s in T*}.

We illustrate these notions with an example.

Example 4: We construct a first-order Markov model of the

extended symbols in Example 3, i.e., of the runs of

17

18 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 1, JANUARY 1981

zero, T(0), and the runs of one, T(1). We have to construct
the overall structure function (f, g). The two-state ma-
chine in Example 3 defines the second component g by
g(s) = R*(0, s), where s=t(0) • • • t(k). The first component
f is defined by f(t(0)• • • t(k)) = t(k). We next define the
conditional probabilities (4.1). For the symbols in T(0),
define the conditional probabilities at each conditioning
class (f(s) , g(s)) = (preceding symbol, state) by the follow-
ing table.

(0,1)
(10,1)
(000,0)

1
1/2
1/4
5/8

01

1/4
1/4
1/8

001

1/8
1/4
1/8

000

1/8
1/4
1/8

Observe that only the symbols 0, 10 and 000 can possibly
precede those in T(0). Hence K(0) in (4.2) is three. Simi-
larly, only the symbols 1, 01, 001, and 11 can precede
those in T(l), and we define the probabilities for T(1) by

(1,0)
(01,0)
(001,0)
(11,1)

0

1/2
3/4
2/3
1/8

10

1/4
1/8
1/6
5/8

11

1/4
1/8
1/6
1/4

The total number of free parameters in this model is
9+8=17.

V. MAIN THEOREM

Markov models of some order k, such as illustrated in
Example 1 for k=1, and block models with block length k
illustrate the familiar tug of war between the two tech-
niques in modeling, Markov conditioning, and blocking.
Without imposing a cost on the complexity of the model,
there is no winner, and even with the cost introduced
above, the best type of model depends on the string to be
encoded. However, if we widen the Markov models to the
set of recursive models, either adaptive, nonadaptive, or
both, then we can say something about the best way to do
modeling. At the same time we may include in the contest
any alphabet extension of the kind described above rather
than just simple blocking.

Theorem 1: For every adaptive or nonadaptive recur-
sive model using alphabet extension, there exists another
adaptive or nonadaptive recursive model respectively,
using no alphabet extension, which has the same number
of parameters (and hence requiring the same number of
binary digits for its description), and which has the same
ideal codelength —logP(s) for every string s. The con-
verse is not true.

Remarks: The meaning of the converse part of the
theorem is that there exists an FSM binary source such
that no adaptive or nonadaptive source satisfying the
condition (3.7) exists using any kind of alphabet exten-
sion, which can produce the same or better ideal code-

length with the same number of parameters. Hence, al-
though stationary binary sources can be simulated by
extended sources, the required source must have a greater
complexity.

Proof: The heart of the proof is to show that the
process affecting the alphabet extension can be described
or simulated by a finite-state machine model. Before
showing this in full generality required in the theorem, we
illustrate the simulation process with a simple example.
We simulate the run-length model of Example 2 with a
two-state FSM model which therefore will also have two
parameters.

Assign one state A, which is taken as the initial state, to
the set of nodes consisting of the root and the leaves of
the tree in Fig. 1, and another B to the node also marked
B. Define the state transition function as follows:

F(A,0) = B, F(B,0) = A,

F(A,1) = A, F(B,1) = A.

Assign the two conditional probabilities as follows:
P(0|A) = P(B) = P(00) + P(01) = 3/4,

P(0|B) = P(00)/P(B) = (l/4)/(3/4) = l/3.

Extend these conditional probabilities to the strings in S*
by the independence of the transitions:

P(sx) = P(s)P(x|z(s)), x=0,1,

where z(s) is the state which the machine reaches when
started at state A and given the string s. Observe how each
extended symbol always takes the machine to the state A.
Because of this and the way the conditional probabilities
were chosen from the tree, every string has the same
probability and hence the same ideal codelength with this
model as with the run-length model.

We now describe the general construction. The given
extended model assigns the probabilities to the strings of
T* by the recursion

P(st) = P(s)P(t|(z,w),s[z,w]), (5.1)

where s=t(0) • • • t(k), t is an extended symbol in T(w),
z = f(s), and w = g(s). This notation is explained further in
Section IV.

In order to simulate this model, we first construct for
each tree T(w), an FSM model under which every ex-
tended symbol t (leaf) gets the correct probability
P(t|(z,w),s[z,w]). The construction was illustrated above
in a special case; the general case is quite similar. We start
by assigning a state marked "null" to the set of nodes in
T(w) consisting of the root and the leaves. Further, we
assign one state to each internal node. If x(1) ••• x(j)
denotes the path from the root to an internal mode, then
we denote the corresponding state by this path. Hence the
states are in one to one correspondence with the proper
prefixes of all strings in T(w). The state transition func-
tion of this machine is simply given by

(u,x)-->ux, (5.2)

where u is a proper prefix of a string in T(w) and x a

RISSANEN AND LANGDON: UNIVERSAL MODELING AND CODING

symbol in S; the right side becomes the state "null" if ux is a

leaf in T(w).

We next combine these FSM's with the extended model to

form a recursive source with alphabet S. The new structure

function is

su-->(f(s), g(s), u),

where su is any string in S*, s is the unique prefix of su which

is in T*, and hence either "null" or a string of the form t(0)• • •

t(k), and u is a proper prefix of some symbol in T(w).

We need to define the conditional probabilities

P(x|(z,w,u), su[z,w,u]).

We define them as follows:

P(x|(z, w, u), su[z, w, u])

where z=f(s), w=g(s), u is a proper prefix of some string in

T(w), and x is symbol of S. Further, the probability of a node in

the tree T(w) is defined to be the sum of the probabilities of its

descendant leaves. These conditional probabilities generate the

probability of any string su in S* by the rule (3.2), which says

P(sux) = P(su)P(x|(z,w,u), su[z,w,u]). (5.4)

It follows from (5.3) and (5.4) that this probability agrees with

that in (5.1) for every string in T*.

The tree T(w) has (D(w)-1)/(d-1) internal nodes. Hence the

FSM constructed for T(w) has the same number of states, and

for each z and w the number of free probability parameters

P(x|(z, w, u), su[z, w, u]), one of each state, is (d - 1)(D(w) -

1)/(d - l) = D(w) - 1. This is the same as the number of free

parameters in the extended model for each z and w.

Accordingly, we have completely simulated the extended

model by a nonextended one, which proves the first part of the

theorem.

It remains for us to exhibit a nonextended model that cannot

be matched by any extended one with the same number of free

parameters. It is in this part that condition (3.7) is needed.

Consider the two-state binary source where at state A the next

state for symbol zero is A, and for symbol one is B. At state B

the next state for symbol zero is B and for symbol one is A. The

symbol probabilities are P(0|A) = 3/4 and P(0|B) = 1/2.

Any extended source with two free parameters must have

three symbols as leaves in a complete binary tree. Hence they

are either 1, 00, and 01, or the binary complements of these, for

example, the former. The probabilities Q(1|s) and Q(00|s)

assigned to the first two symbols may depend on the past string

s, and they determine the third symbol probability.

Consider the three strings 1, 00, and 01. The binary source

with A as the starting state assigns to these the probabilities 1/4,

9/16, and 3/16, respectively. To match

these, the extended source must have

Q(1|null) l/4,

Q(00|null) 9/16,

Q(01|null) 3/16,

which can be satisfied only when the equalities hold. Next,

consider the strings 11, 100, and 101. To these the binary

source assigns the probabilities 1/8, 1/16, and 1/16,

respectively. Again, to match these the extended source must

have Q(100) = Q(l|null)Q(00|l)=l/16. Finally, consider the

strings 1001, 10001, and 10000, to which the binary source

assigns the probabilities 1/32, 1/64, and 1/64, respectively. To

match these we must have Q(00|100) 1/4, Q(01|100) 1/4,

and Q(1|100) 1/2. If this adjustment is made, then we have a

contradiction to (3.6), because Q(00| 100) = 1/4 Q(00|null).

On the other hand, if we keep the value 9/16 for Q(00|100), as

we are allowed to do within the wider notion of adaptation

according to (3.7), then, Q(1|100) must be chosen smaller than

1/2. But then the largest probability we can generate for the

string 1001 is smaller than 1/32, or less than what the binary

source assigns to the same string. Hence, regardless of when the

adjustments of the probabilities are made, we cannot match the

performance of the binary source. This completes the proof.

Remarks: The first implication of this theorem is that an

alphabet extension has no inherent value; absolutely nothing is

lost if we confine the search for a good model to the class of

recursive d-ary sources without extending the alphabet. This is

true if the performance is measured in terms of available

compression; if we include other performance measures such as

the speed with which the coding operations can be performed,

alphabet extension may well have advantages. Secondly, for

any set of strings arising in real applications, a given number of

parameters is strictly better spent in letting them describe

probabilities in the d-ary model than wasting them in the

description of the probabilities of the extended symbols, no

matter what these symbols are. This result may be somewhat

counter intuitive, because one is tempted to believe that by

picking the extended symbols in a 'natural' way an economical

usage of the available parameters results. Actually, there is a bit

of truth behind this belief since if the symbols are perfectly

independent, then the resulting model cannot be improved.

However, there still is an equally optimum d-ary model. More

important, in 'real' strings where the new symbols as random

variables are not independent, better d-ary models with the

same number of parameters can be found.

Finally, in some respect the most devastating implication of

this theorem is that it makes the use of all the traditional codes

in conjunction with the best models cumbersome and wasteful,

above all when the original alphabet size is small. This is

because an alphabet extension is needed for the code to have a

near-optimal length. To illustrate the inherent difficulty,

suppose that a binary adaptive model assigns the probability

P(0|s) for the

19

20 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 1, JANUARY 1981

symbol following s to be zero, and we wish to design a
ran-length code for this source with the symbols
1,01, • • • , 0 • • • 01, 0 • • • 0, up to the length n. Suppose that
the string to be encoded is s001 • • • , where the last symbol
of the so far encoded string s is a one. The task then, is to
encode the run 001 following s. If the encoder wishes to
use a compact code, i.e., a Huffman code, he must first
work out the probabilities of all the runs with help of the
binary model

P(1) = P(1|s),

P(01) = P(0|s)P(1|s0),• • •

P(0 • • • 0) = P(0|s) • • • P(0|s0• • • 0).

Only then can he construct the optimum codeword for the
run 001 actually occurring, the calculation of all the other
probabilities is wasted. The same is true for the decoder.
Because of the adaptive nature of the run probabilities,
this entire optimum-code tree can be used only once! It is
easy to show that this problem is not peculiar to the
Huffman algorithm, which proceeds backwards. There is
no forward-progressing algorithm for the construction of
the compact codes: all probabilities are needed for the
construction of even the very first codeword. It is obvi-
ously possible to construct forward moving ad hoc code
trees, but they are not generally optimal.

VI. CODING UNIT

In our view all coding should be a matter of represent-
ing sequences as numbers in an order-preserving manner.
The sequences are then thought to have a natural order
such as the lexical one, and the numbers of course, are
ordered by magnitude. The most familiar example of such
coding is the decimal number representation of decimal
sequences. The decimal string 3407 can be represented or
encoded as the integer 7 + 4x102 + 3x103, or as the
fractional number 3x10-1 + 4 x 1 0 - 2 + 7x10- 4, pre-
cisely because these codes preserve the lexical ordering of
the decimal sequences. Similarly, in enumerative codes
([4] and [5]), in which a sequence is encoded as its index in
a certain lexically ordered set, the order is evidently
preserved, and the same is true in the closely related Elias
code, which in fact can now be viewed as a dual of the
enumerative codes [11].

When the numerical coding of strings is done for com-
pression purposes the strings to be compressed are nor-
mally long, and the numbers used for their representation
are very large indeed, requiring hundreds of thousands of
binary digits. It is clear that in the generations of such
numbers or codes, special attention must be paid to the
question of how to do the calculations in normal-size
registers. This problem was addressed and solved in [1]
with the first "arithmetic code" as the result. The con-
structed code was of the LIFO type in which the last
encoded symbol was decoded first, i.e., the code string
medium was of the nature of a pushdown storage. Subse-
quently Pasco [2] considered the same problem for Elias'
code [6] and constructed a FIFO arithmetic code which

decoded the symbols in the same order in which they were
encoded. One advantage of FIFO codes is that the decod-
ing process can be started almost immediately after the
first symbol has been encoded; that is to say, 'instanta-
neously' in the practical sense that only a few adjacent
symbols need be altered when a symbol is encoded or
decoded. Evidently the same criterion for instantaneous-
ness is applicable even to LIFO codes. We should add
that because of a carry-over problem, which is inherent in
FIFO arithmetic codes, Pasco's code is not instantaneous
in our sense. In fact, he specifically wanted a prefix block
code. Another class of LIFO and FIFO codes has been
discussed in detail in [3], and recently, further versions of
Pasco's type of FIFO codes were rediscovered by Jones
[7] and Martin [8] both with knowledge of and reference
to the original LIFO code in [1].

In view of the several different versions of FIFO codes
proposed by the authors referred to previously, it seems
appropriate to introduce arithmetic codes from an ab-
stract number representation viewpoint. The number rep-
resentation viewpoint is natural and free from specific
implementation details, and it is sufficiently general to
include all the known arithmetic codes as special cases.

In the decimal representation of decimal strings, each
term added to the code depends both on the symbols's
position in the alphabet and on its position in the string;
for instance, the fourth symbol "7" in the above given
example string, encodes in the fractional representation as
the fourth power of 1/10 multiplied by seven. In arith-
metic coding this same principle is generalized. We dis-
cuss here the FIFO codes because of their practicality.
For each symbol k of the alphabet S = {0,•••, d— 1} as
the next symbol to the string s (yielding string sk), we add
a term, B(sk), called augend, which depends on the sym-
bol's position k in the alphabet as well as on s, rather than
merely on the symbol's position in the string. With C(s)
denoting the code of string s as a number, we then have
the recursion

C(null) = 0,

C(sk) = C(s)+B(sk). (6.1)
A convenient way to encode k for a given s is to make
B(sk) an increasing function of k starting from B(s0) = 0.
With this convention we can write it as

B(sk) = A(s0) + • • • +A(s(k-1)), (6.2)

where the increments A(si) are called addends. Because
the right-most zeros in the strings cannot be decoded, we
append a dummy nonzero symbol to the end of the strings
to be encoded.

The decoding is done by magnitude comparison with
the following rules. Let s' run through all proper prefixes
of s starting at null string. The symbol following s' is
decoded as that index k for which

Rule 1: C(s)-C(s')-B(s'k) 0,
Rule 2: C(s)-C(s')-B(s'(k+1))<0;

the second condition is not needed if Rule 1 holds for
k=d-1.

RISSANEN AND LANGDON: UNIVERSAL MODELING AND CODING 21

Because we have not yet added any precision require-
ments to these codes, we may call them "pre-arithmetic"
codes. We have deliberately removed the dependency of
the addends and the augends of any given source proba-
bilities, as opposed to Elias' scheme, to achieve greater
freedom in their selection. It then becomes important to
understand when such codes are decodable; which issue
we will settle next. The main decodability theorem for the
class of FIFO codes (6.1) is as follows.

Theorem 2: All strings with the right-most symbol non-
zero can be decoded by Rules 1 and 2 if and only if for all
s=s'k, k not d — 1,

i) A(s)>lim[B(s(d-1)) + B(s(d-1)(d-1)')+•••].

If A(null) = 1, then i) implies C(s)<1. In particular,
decodability is implied by

ii) A(s) B(sd)

= A(s0)+ ••• +A(s(d-1)) >0, for all s.

Proof: We show that ii) implies i), and i) implies the
decodability. By (6.2)

B(sd) = B(s(d-1))+A(s(d-1))

B(s(d-1)) + B(s(d-1)(d-1))

+A(s(d-1)(d-1),

which by iteration and by one more application of ii)
gives i). Let s = s'(d - 1)s". By (6.1), (6.2) and the fact that
addends are positive, Rule 2 of the decoding process fails
for k<d - 1 while Rule 1 holds for k=d-1. Hence d-1
is decoded correctly. Let s = s'ks" for k not d-1. By (6.1)

C(s) - C(s') C(s'k) - C(s') = B(s'k),

and Rule 1 holds. Consider

C(s) - C(s') - B(s'(k+1)) = -A(s'k) + B(s'kj)+ • • •,

where j is the first symbol of s", or s" is null. By an
application of i) to A(s'k) we see that Rule 2 holds, and k
gets decoded correctly.

Suppose next that i) fails; i.e.,

A(s)<B(s(d - 1))+ • • • +B(s(d - 1) • • • (d - 1)),

m repeated symbols d— 1, for some s=s'k, k<d — 1. Pick
s"=s'k(d — 1)• • • (d — 1), where the number of repeated
symbols is m. Then

C(s") - C(s') - B(s'k) = B(s'k(d-1))+ • • •

+ B(s'k(d-1) ••• (d-1)) 0

C(s") - C(s') - B(s'(k+1)) = -A(s'k) + B(s'k(d-1))

+ • • • +B(s'k(d-1) ••• (d-1))>0.

Hence Rule 1 holds, and Rule 2 fails, which means that k
will not be correctly decoded. The proof is complete.

Remark: Observe that the equality in ii) is just an
instance of (2.1), and the code matches a source precisely
if A(s) = P(s).

For practical reasons we wish to put further restrictions
on the augends. Above all, we require that the addition in
(6.1) must be done in a fixed-size register, and it must not

affect more than a fixed number of digits in C(s), when
the latter is written for example in a binary notation. In
FIFO codes this amounts to the requirement that the
augends are added to the right end of the code string and
they can have no more than, for example, r significant
floating-point binary digits; i.e., there are r — 1 digits fol-
lowing the first one. Such "instantaneous" codes are called
(proper) arithmetic codes.

The purpose of using arithmetic codes is to obtain
compression, which is possible only if the augends are
selected appropriately. Ideally, the length of C(s) should
be —logP(s), see Section II, where we assume that the
string is taken from an information source with a proba-
bility function P. But because the length of the code string
is nearly the same as that of the last added augend, the
leading zeros included, that has no more than r significant
floating-point digits, it follows that the A(sk) must be
approximately P(sk). Observe that this argument relies on
the assumption that the addends and the augends have a
fixed maximum number of significant floating-point digits
only. We give now two examples of classes of arithmetic
codes.

Example 5: Let

A(sk) = [A(s)p(k|s)]' (6.3)

where [x]' denotes the number obtained when the binary
number x has been truncated to r significant floating-point
binary digits, and p(k|s) is a number also with no more
than r significant floating-point digits satisfying the condi-
tion

p(0|s)+ • • •p((d-1)|s) 1, (6.4)

for all s. Ideally, p(k|s) should be taken as the conditional
probability of the symbol following s being k given s.

The code (6.1)-(6.3) is a modification of Pasco's code.
One difference is that here the precision of all the parame-
ters p(j|s) is the same, and the addition in (6.1) can be
made in the same size register, namely r, as that needed
for the calculation of the addends, provided though, that
we add the individual A(si) to the code one at a time
rather than first collecting them to form the augend (6.2).

Example 6 (N. Martin): Let p(i|s) be the numbers hav-
ing r - 1 fractional digits which satisfy (6.4) with equality,
and put

P(k|s) = p(0|s) + ••• + p(k-1|s), P(0|s)=0.

Clearly the numbers P(k|s) also have r — 1 fractional
digits. Suppose A(s) is a number with r — 1 digits follow-
ing the first one (the last may well be a zero). The product
A(s)P(k|s) has no more than 2 r — 1 significant floating-
point digits, and because the smallest p(i|s) is at least
21—r, the leading one of this product remains within the
range of the significant digits of A(s). Let [A(s)P(k|s)]"
denote the truncation of the product to the range of the
significant digits of A(s). In other words, the length of the
truncated product is the same as the length of A(s). As an
example let r = 5, A(s) = 0.00010100, and P(l|s) = .0110.
Then [A(s)P(1|s)]" = 0.00000111. Now put

A(sk) = [A(s)P(k+1|s)]" - [A(s)P(k |s)]".

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 1, JANUARY 1981

Clearly, each A(sk) has no more than r significant digits, and ii)

in Theorem 2 holds with equality.

Remarks: For a binary alphabet these examples simplify, For

instance, in Example 6 we may write the param-eters p(i|s) with

a maximum of r significant floating-point digits, and still

maintain the same for A(s) provided that we keep track of the

symbol which has the higher conditional probability. Let x be

that symbol and x' the other symbol. Put A(sx) = [A(s)p(x|S)]',

truncated to r significant floating-point digits, and A(sx') = A(s)

— A(sx). A(s) will then have no more than r significant floating-

point digits. Finally, and more importantly, the multiplication

involved in these codes can be avoided with only a small loss of

compression. One such scheme is described in [9]. In the

nonbinary case, again the multiplications can be avoided by

constructing the codes from length parameters rather than from

the probabilities p(k|s) as discussed in [3].

It is clear from these remarks that there is great flexibility in

the design of arithmetic codes, with ample room for

engineering trade-offs, which in view of the great variety of

coding needs is highly valuable. Several questions of both

conceptual and practical nature arise in this number

representation view of coding. For instance, we would like the

binary strings that result when the fractional numbers C(s) are

first written in binary notation and then the binary point

deleted, to fill the tree defined by all binary strings terminating

at a one. It is easy to show that this certainly is not achievable

unless perhaps the equality in ii) holds. Hence the code in

Example 6 is a good candidate for such an onto or "almost"

onto map.

We illustrate the coding operations by a specific instance of

the code in Example 5. Let d = 3, and s = 0212. Let p(0|null) =

p(1|null) = 0.011, p(2|null) = 0.010, p(0|0) = 0.011, p(1|0) =

0.001, p(2|0) = 0.1, and for the remaining prefixes s' let p(0|s') =

0.01, p(1|s') = p(2|s') = 0.011. With r =3 we get the following

table.

s A(s) B(s) C(s)

0 0.011 0 0

2 0.00110 0.00110 0.00110

1 0.000100 0.0000110 0.001111

2 0.00000110 0.00000100 0.01

This example also illustrates the carry-over problem, which

causes only the first trivial prefix code, namely, zero to be a

prefix of the final code.

We sketch a solution to the carry-over problem. After an

agreed number of consecutive ones, say t, has been detected in

the code string, the remaining symbols to the right of the t ones

in the code string are shifted right one position and a zero is

inserted in the vacated position immediately to the right of the t

ones. Moreover, all the future addends are halved so as to

preserve their correct position relative to the tail (the working

end) of the code string. In reality the addends are added in a

fixed register, and the generated symbols of the code string are

shifted left out of the register, but the equations above are

written

as if the addends were shifted right along the code string.

Because the decoding is done by magnitude comparison, the

important aspect of the code generation is the relative position

of the code string and the addends.

Then the decoder, when seeing t consecutive ones, removes

and examines the t + 1'th symbol. If it is a zero, the decoding

proceeds as usual, but if it is a one, a carry-over must have

occurred and been stopped by the added zero. Accordingly, this

one is added to the t'th one so that the carry-over one ripples

through the preceding t — 1 ones. In either case one can show

that the decoder has the correct code string as the result. The

proof, which we omit, rests on the crucial property that once

any symbol in the code string is beyond the r augend bit range

(or the working end of the code string), it can receive at most

one carry-in. We illustrate this by the preceding example,

rewritten for t = 2.

s A(s) B(s) C(s) C'(s)

0

2

1

1

0.011

0.00110

0.000100

0.00000011

0

0.00110

0.000011

0.0000001

0

0.0011

0.001111

0

0.0011

0.0011011

0.00111

Here we wrote C'(s) for the modified code string which the

decoder receives, and after seeing two consecutive ones,

converts to the original code string as described above. Finally,

if the code string is a random Bernoullian sequence as it ideally

should be, then the probability of having t consecutive ones is

2
-t
, which is also the per symbol increase in the code string due

to this carry-over blocking mechanism. For a typical value of t

= 16, the length increase is normally quite insignificant.

If we arrange things in such a way that the last added augend

is the smallest, then the length of the code string is determined

by the last augend, arid the per-symbol length of the code in

Example 6 satisfies

(1/n)|C(s)| -(1/n)logP(s)+r/n+22-r
,

where P(s) denotes the probability of the string as the product

of the conditional probabilities p(k|s). This inequality shows

that the mean per-symbol length does not exceed, the ideal

codelength defined by the conditional probabilities by more

than the two right-most terms.

ACKNOWLEDGMENT

The authors are greatly indebted to Frank King for suggesting

the line of research which led to the main modeling theorem in

Section V. They are also indebted to Stephen Todd for

stimulating discussions.

REFERENCES

[1] J. Rissanen, "Arithmetic coding of strings," IBM Res. Rep.

RJ 1591, June 3, 1975. This appeared in a revised form as

"Generalized kraft inequality and arithmetic coding," IBM

J. Res. Dev., vol. 20, No. 3, pp. 198-203, May 1976.

[2] R. Pasco, "Source coding algorithms for fast data

compression,"

22

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 1, JANUARY 1981 23

Ph.D dissertation, Dept. of Elec. Eng., Stanford University, Stan-
ford, CA, May 1976.

[3] J. Rissanen and G. G. Landgon, Jr., "Arithmetic' coding," IBM J.
Res. Dev., vol. 23, no. 2, pp. 149-162, Mar. 1979.

[4] J. P. M. Schalkwijk, "An algorithm for source coding," IEEE
Tram. Inform. Theory, vol. IT-18, no. 3, pp. 395-398, May 1972.

[5] T. M. Cover, "Enumerative source encoding," IEEE Trans. In-
form. Theory, vol. IT-19, no. 1, pp. 73-77, Jan. 1973.

[6] N. Abramson, Information Theory and Coding. New York: Mc-
Graw-Hill, 1969.

[7] C B. Jones, "An efficient coding system for long source sequences,"
(submitted to IEEE Trans. on Inform. Theory).

[8] G. N. N. Martin, "Range encoding: An algorithm for removing
redundancy from a digitized message," presented at the Video &
Data Recording Conf., Southampton, July 1979.

[9] G. G. Landgon, Jr. and J. Rissanen, "Compression of black-white
images with binary arithmetic coding," IBM Res. Rep., Dec. 1979
(submitted to IEEE Trans. Common.).

[10] A. Kolmogorov, "Three approaches to the quantitative definition
of information,'' Prob. Peredach. Inform., vol. 1, no. 1, pp. 3-11,
1965, (Russian).

[11] J. Rissanen, "Arithmetic codings as number representations," Acta
Polytech. Scandinavica, Math. 31, pp. 44-51, Dec. 1979.

[12] S. K. Leung-Yan-Cheong and T. Cover, "Some equivalences be-
tween shannon entropy and Kolmogorov complexity," IEEE Trans.
Inform. Theory, vol. IT-24, no. 3, pp. 331-338, May 1978.

[13] T. J. Lynch, "Sequence time coding for data compression," Proc.
IEEE (Lett.), vol. 54, pp. 1490-1491, Oct. 1966.

[14] L. D. Davisson, "Comments on 'Sequence time coding for data
compression," Proc. IEEE (Lett.), vol. 54, p. 2010, Dec. 1966.

0018-9448/81/0100-0023$00.75 ©1981 IEEE

