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Preface

Positive dynamical systems come into play when relevant variables of a system take on
values which are nonnegative in a natural way. This is the case, for example, in fields
as biology, demography and economics, where the levels of populations or prices of
goods are positive. Positivity comes in also if the formation of averages by weighted
means is relevant since weights, for example probabilities, are not negative. This is
the case in quite diverse fields ranging from electrical engineering over physics and
computer science to sociology. Thereby averaging takes place with respect to signals
in a sensor network or in a swarm (of birds or robots) or with respect to velocities
of particles or the opinions of people. In the fields mentioned the dynamics is often
modeled by difference equations which means that time is treated as discrete. Thus,
in reality one meets a huge variety of positive dynamical systems in discrete time.

In many cases these systems can be captured by a linear mapping given by a non-
negative matrix. The dynamics (in discrete time) then is given by the powers of the
matrix or, equivalently, by the iterates of the linear mapping which maps the positive
orthant into itself. A powerful tool then is the Perron—Frobenius Theory of nonnega-
tive matrices (including the asymptotic behavior of powers of those matrices) which
has been successful since its inception by O. Perron and G. Frobenius over about hun-
dred years ago. Concerning theory as well as applications there are two insufficient
aspects of Perron-Frobenius Theory which later on drove this theory into new direc-
tions. The first aspect is that this theory is not just about nonnegative matrices but
applies happily also to certain matrices with negative entries. This means that the
theory should be understood as dealing with linear selfmappings of convex cones
in finite dimensions not just of the standard cone, the positive orthant. The second
aspect is that even simple positive dynamical systems are not linear. Thus, what is
needed is an extension of classical Perron-Frobenius Theory to nonlinear selfmap-
pings of convex cones in finite dimensions. Moreover, with respect to theory as well
as applications, such an extension is needed also in infinite dimensions. Since classi-
cal Perron-Frobenius Theory has already so many applications one can imagine the
great variety of applications such an extension to nonlinear selfmappings in infinite
dimensions will have.

It is the aim of the present book to provide a systematic, rigorous and self-
contained treatment of positive dynamical systems based on the analysis of the it-
erations of nonlinear selfmappings of a convex cone in some real vector space. To
pursue this task, help comes from a beautiful approach developed for the linear case
by G. Birkhoff considering Jentzsch’s Theorem in infinite dimensions and, indepen-
dently, by H. Samelson considering Perron—-Frobenius Theory in finite dimensions.
The crucial point of this approach is the translation of a strong positivity property of
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the linear mapping into a contractivity property with respect to some metric internal
to the convex cone. This metric has been used long before by D. Hilbert within the
completely different area of the foundations of geometry and is called Hilbert’s pro-
jective metric (a quasi—metric, actually). The extension of this approach, also called
the Birkhoff program, to nonlinear selfmappings of convex cones is a cornerstone of
the present book. As it turns out the investigation of the nonlinearity is made easier
by having it based on a convex cone and its analysis. Since the convex cone reflects
the positivity of the system one might say that positivity helps to tame nonlinearity.
Many beautiful results are available which are impossible without positivity.

The following paragraphs sketch briefly the content of each of the eight chapters
of the book.

Chapter 1 motivates the study of positive dynamical systems (in discrete time) by
means of examples from biology and economics. As for biology a nonlinear exten-
sion of the classical Leslie model used in population dynamics and demography is
presented by taking population pressure into account. Considering economics, for
the likewise classical Leontief model of commodity production a nonlinear extension
is treated which captures the choice of techniques. There are much more examples
of nonlinear positive dynamical systems. The example of opinion dynamics under
bounded confidence has recently attracted much attention and will be investigated
in the last chapter of the book.

Chapter 2 on “Concave Perron-Frobenius Theory” presents an extension of classi-
cal Perron—Frobenius Theory from linear to concave mappings (including linear ones).
In the proofs Hilbert’s projective metric makes its first appearance. The point thereby is
that for this metric concave mappings are contractions and the interior of the standard
cone is complete. By this Perron—Frobenius theorems can be proved using Banach’s
contraction mapping principle. Though only a particular form of nonlinearity con-
cavity covers the nonlinearities in the models of Leslie and Leontief. Whereas in later
chapters more general nonlinearities will be tackled on, this chapter concentrates just
on concave mappings since for these a variety of results is possible comparable to
those of classical Perron—Frobenius Theory. It should be noted, however, that even
concave selfmappings of the standard cone in finite dimensions exhibit already spec-
tral properties in sharp contrast to the linear case in that there may be infinitely many
eigenvalues.

Whereas in the first two chapters positivity is restricted to the standard cone in
finite dimensions, theory as well as applications in later chapters require more general
convex cones in infinite dimensions.

Chapter 3 on “Internal metrics on convex cones” treats general convex cones in
topological vector spaces with a focus on internal metrics. The latter are (quasi-) met-
rics solely determined by the cone’s convex structure. Hilbert’s projective metric and
the Thompson metric or part metric are the most relevant internal metrics but there
are much more. Besides certain geometrical properties of internal metrics the chapter
concentrates on criteria for a convex cone to be complete for an internal metric. For
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later use the topology of the vector space is related to the one induced by an inter-
nal metric and criteria for internal completeness are obtained in terms of the vector
space topology. A particular case is the result obtained first by G. Birkhoff that the
positive cone of a Banach lattice — as well as its interior — are complete for Hilbert’s
projective metric. Extending the method applied in Chapter 2 for finite dimensions, by
Chapter 3 selfmappings of a convex cone can be looked at as selfmappings of a com-
plete metric space. Since later on contractivity with respect to internal metrics will
play a role, Chapter 4 on “Contractive dynamics on metric spaces” investigates var-
ious types of contractivity in general metric spaces. Conditions are specified which
guarantee pointwise convergence of the iterates of a selfmapping to a fixed point. An
important principle states that this global property applies already if it holds locally
in case of power-lipschitzian mappings (including nonexpansive mappings). For later
applications to nonautonomous positive systems the composition of infinitely many
selfmappings and its asymptotic behaviour is analyzed.

Both, Chapter 3 and Chapter 4 supply in a general setting tools needed in subse-
quent chapters. Beside this, both chapters present known and new results which are
interesting in itself.

Chapter 5 on “Ascending dynamics in convex cones of infinite dimension” presents
a far-reaching extension of Chapter 2 to convex cones in infinite dimensions and cor-
responding selfmappings including concave ones. An ascending operator is, roughly
speaking, a selfmapping of a convex cone, the values of which, on a subset of the cone,
increase with respect to the cone’s ordering on vectors as well as with respect to the
common order on positive scalars. It is an important feature of ascending operators
to be positive without being necessarily monotone.

In the linear case the uniformly positive linear operators introduced by G. Birkhoff
are examples. Nonlinear examples are the u,—concave operators studied by M. Kras-
noselskii and his collaborators. Whereas these mappings need to be monotone, this
is, however, not the case for ascending operators in general. Using Hilbert’s projective
metric for ascending operators relative stability is proven, meaning the iterates of the
normalized operators do converge to an eigenvector. Using the part metric for weakly
ascending operators, absolute stability is shown that is the iterates converge to a fixed
point. Applications concern nonlinear difference equations and a nonlinear version
of Jentzsch’s Theorem on integral operators, including an approximation algorithm to
compute the unique solution.

Chapter 6 on “Limit set trichotomy” investigates a fundamental phenomenon of
positive dynamical systems which means that either all orbits tend to infinity or all
orbits tend to zero or all orbits tend to a fixed point in the interior of the cone. Vari-
ous conditions for this phenomenon to happen are specified. Limit set trichotomy can
be used in many ways, it guarantees, for example, the existence of a globally stable
fixed point in the interior if there exists an orbit positively bounded from below and
above. For the case of differentiable selfmappings in finite dimensions easy to check
conditions for limit set trichotomy are given. An application is to nonlinear difference
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equations including a generalized nonlinear Fibonacci equation. Another application
considers cooperative systems of differential equations with a biochemical control cir-
cuit as a particular example.

Chapter 7 on “Nonautonomous positive systems” deals with the asymptotic behav-
ior of compositions of infinitely many selfmappings of a convex cone. Various kinds
of behaviour as path stability, asymptotic proportionality, weak and strong ergodicity
are analyzed. The result on concave weak ergodicity is an extension of the famous (lin-
ear) Coale-Lopez Theorem in demography. Another nonlinear extension concerns the
classical strong ergodicity theorem for nonnegative matrices. Furthermore, a beautiful
theorem of H. Poincaré on nonautonomous linear difference equations is extended to
include nonlinear difference equations. Also, the nonlinear versions of the models of
Leslie and Leontief introduced in the first chapter are investigated for survival reates
dependent on time and for time—dependent technical change, respectively. Finally,
for populations being under enforcement from the environment conditions on popu-
lation pressure are given which still yield path stability.

The last and longest chapter, Chapter 8, is on the “Dynamics of interaction: Opin-
ions, mean maps, multi—agent coordination, and swarms”. It is the aim of this chapter
to develop a systematic and rigorous analysis for the dynamics of several fascinating
kinds of interaction. Such interactions have been addressed recently in a widespread
and fastly growing literature by researchers from quite different fields which range
from electrical engineering over physics and computer science to sociology and eco-
nomics. The leading question thereby asks under what conditions a group of agents,
being it roboters or humans or other kinds of animals, is able to coordinate themselve
to reach a consensus. Mathematically, the latter means for a dynamical system with
several components whether these converge all to the same state. In its most simple
case one considers a nonnegative matrix with all rows summing up to one and asks
for conditions under which the powers of the matrix converge to a matrix having all
its rows equal. The answer in this special case is that this happens precisely if the ma-
trix has a power which is scrambling. This is (a sharpened version of) the well-known
Basic Limit Theorem for Markov Chains. Already simple cases of interaction, however,
are nonlinear (or time—variant) as for the model of opinion dynamics under bounded
confidence (also known as Hegselmann-Krause model in the literature) which has at-
tracted many researchers in recent years. A nonlinear analogue of a (row-) stochastic
matrix is a mean map. Concerning time—variance one considers a sequence of stochas-
tic matrices. Both cases lead to positive dynamical systems as considered in previous
chapters. Facing the particular type of convergence to consensus tools adapted to that
are developed in Chapter 8. In case of time—variance these are tools to handle infinite
products of stochastic matrices. What is needed are conditions on the structure and
intensity of interaction which make the infinite product convergent to a matrix with
equal rows. An often used tool, the theorem of Wolfowitz, is generalized. The chapter
concludes with an application to the dynamics of swarms of birds. The recently much
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discussed Cucker—Smale model is treated and a new model of swarming is developed
where birds are forming swarms under some weaker conditions on interaction.

Each chapter is subdivided into sections the material of which is illustrated by ex-
amples and contains exercises ranging from simple verifications over additional top-
ics to open problems. Remarks comment on results obtained and provide links to the
literature. In each chapter results, examples, remarks are consecutively numbered by
a.b.c where a refers to the chapter, b to the section and c to the particular item. Each
chapter appended is a bibliography specific to it. A list of notations and an index con-
clude the book.

The book is directed to researchers from various disciplines and graduate stu-
dents, too, who are interested in positive dynamical systems.

The book is self-contained and organized in a manner such that its material can
also be used in courses and seminars. Chapters 1 and 2 require only a basic knowledge
in linear algebra and analysis and could be used for an introductory course in nonlin-
ear Perron-Frobenius Theory including applications. Chapters 3, 4, and 5 could serve
as material in a course or seminar for graduate students and require some familiar-
ity with fundamental concepts in topology and functional analysis. The same applies
to Chapters 6 and 7 which could be used as material in an advanced course. The last
Chapter 8 can be read independently of the previous ones and could serve as an intro-
duction into recent applications of positive dynamical systems. The fascinating topics
are suitable for graduate students to work on, analytically as well as by doing com-
puter simulations.

This book grew out of several courses and seminars I held over the years at the
University of Bremen. It was a great experience to share with the students the enthu-
siasm for a field which is just in the beginning. I like to thank all the students for their
contributions and I want to mention in particular Tim Nesemann and Jan Lorenz. The
reader will consult the references given in the book to their work and that of other stu-
dents as well as to the work of researchers I enjoyed to write joint papers with. Here I
like to thank Christian Bidard, Rainer Hegselmann, Diederich Hinrichsen, Takao Fu-
jimoto, Tim Nesemann, Roger Nussbaum, Mihaly Pituk, Peter Ranft, Dietrich Weller.

Furthermore, I want to thank Birgit Feddersen from the Department of Mathemat-
ics for her experienced and nice translation of the manuscript into LaTex, including
the figures.

For many careful and helpful comments I have to thank the three anonymous re-
viewers of the manuscript.

Finally,  want to thank the publisher De Gruyter and in particular Friederike Ditt-
berner and Silke Hutt, who have been most helpful in the process of publication.

The book I dedicate to my wife Carola and to our son Daniel who stayed so friendly
to someone who lived with a desk for days, months and years.

Bremen, November 2014 Ulrich Krause



Contents

Preface —vi

Notation — xiv

List of Figures —— xvi

1 How positive discrete dynamical systems do arise —1

1.1 Non-linear population dynamics in one dimension—1
Exercises—— 6

1.2 The density dependent Leslie model——7
Exercises —11

1.3 Non-linear price dynamics in one dimension —— 12
Exercises —13

1.4 The Leontief model with choice of techniques — 14
Exercises — 16

1.5 Opinion dynamics under bounded confidence — 18
Exercises —— 19

Bibliography — 19

2
2.1

2.2

2.3

2.4

2.5

2.6

2.7

Concave Perron-Frobenius theory — 21
Iteration of normalized concave operators — 21
Exercises —— 30
Indecomposability and primitivity for ray-preserving concave
operators —— 32
Exercises — 41
Concave operators which are positively homogeneous —— 42
Exercises — 51
A special case: Linear Perron—Frobenius theory —— 53
Exercises ——56
Applications to difference equations of concave type —— 57
Exercises — 61
Relative stability in the concave Leslie model —— 62
Exercises — 67
Price setting and balanced growth in a concave Leontief model —— 68
Exercises —71

Bibliography ——72

Internal metrics on convex cones — 76

Extraction within convex cones —76
Exercises — 82



xii

3.2

3.3

3.4

= (Contents

Internal metrics —— 84

Exercises — 89

Geometrical properties —— 90

Exercises —— 100

Completeness for internal metrics ——101
Exercises — 114

Bibliography —— 115

4
4.1

4.2

4.3

Contractive dynamics on metric spaces — 118
Iteration of contractive selfmappings —— 118
Exercises — 122
Non-autonomous discrete systems —— 122
Exercises — 128

A local-global stability principle for power-lipschitzian
mappings —— 129
Exercises — 132

Bibliography — 133

5.2

5.3

5.4

Ascending dynamics in convex cones of infinite dimension —— 135
Definition and examples of ascending operators —— 135
Exercises —— 145

Relative stability for ascending operators by Hilbert’s projective
metric—— 146

Exercises —— 155

Absolute stability for weakly ascending operators by the part
metric—— 156

Exercises — 164

Applications to nonlinear difference equations and to nonlinear integral
operators — 166

Exercises — 171

Bibliography — 173

6
6.1
6.2

6.3

Limit set trichotomy — 176

Weak and strong forms of limit set trichotomy in Banach spaces — 177
Differentiability criteria for non-expansiveness and
contractivity —— 188

Applications to nonlinear difference equations and cooperative systems
of differential equations —— 199

Exercises — 211

Bibliography — 214



Contents = Xiii

7 Non-autonomous positive systems — 216

7.1 The concepts of path stability, asymptotic proportionality, weak and
strong ergodicity —— 217

7.2 Path stability and weak ergodicity for ascending operators — 221

7.3 Strong ergodicity for ascending operators —— 229

7.4 A nonlinear version of Poincaré’s theorem on nonautonomous
difference equations — 234

7.5 Price setting in case of technical change — 241

7.6 Populations under bounded and periodic enforcement —— 246
Exercises —— 251

Bibliography —— 254

8 Dynamics of interaction: opinions, mean maps, multi-agent coordination,
and swarms — 257

8.1 Scrambling matrices —— 258

8.2 Consensus formation and opinion dynamics under bounded
confidence —— 269

8.3 Mean processes, mean structures and the iteration of mean
maps — 273

8.4 Infinite products of stochastic matrices: path stability, convergence and
a generalized theorem of Wolfowitz —— 289

8.5 Multi-agent coordination and opinion dynamics —— 300

8.6 Swarm dynamics —— 323
Exercises —— 334

Bibliography —— 339

Index —— 345



Notation

N={0,1,2,3...}

R field of real numbers

R, = {x e Rlx > 0}

R"={x=(x,....,.x)Ix; e R1<i<n}

RY = {x = (x;,...,%)Ix; € R,, 1 < i < n} positive orthant
intRY ={xeR |x;>0,1<i<n}

R,x = {rx | r > 0} ray through x € R"

x| = (Ix,], %51, . . ., |x,|) absolute value of x = (x4,...,x,) € R"
Tx normalized/rescaled operator, 25

G(T), graph associated to T, 42, 151

A(x,y) order function/extraction grade for cones, 77
uxy), 77

xCy, x ~ y component, part relation, 84

d(x,y) projective Hilbert metric, 85

p(x,y) Thompson metric or part metric, 85

h(x,y) Harnack metric, 85

g(x,y) Gleason metric, 85

b(x,y) Bear metric, 85

k(x, y) Kobayashi metric, 86

B (x,y) order function for convex sets, 91

a(x,y), 91

[x,y] interval, 95

B,.(x,r) closed ball for internal metric m, 95

C(T) space of continuous functions on T, 99

[Il -l sup—inf norm, 99

w (x) (omega) limit set, 118

w,(x) nonautonomous (omega) limit set, 123

intK = K interior of cone K, 142

x < y strict order relation fory — x € I°< , 142

D(T) ascending domain of T, 147

W(T) weak ascending domain of T, 156

N(P) set of nonexpansive selfmappings on part P, 179
¢(T) contraction constant of T for part metric, 188
Jr(x) Jacobian of T at x, 200

6(T) 200

F(t, x) cooperative system of differential equations, 204
AM diameter of M, 259

c(A) scrambling factor of matrix A, 259

S(M) 264



I(i, x) confidence set, 271

diagS" diagonal of S", 275

¢(x) consensus, 275

S" complement of diagonal, 275
N(i, t) neighbors of i at t, 279

U(i, t) neighborhood of i at t, 279
M(t, s) matrix product, 291

palx) 293

B(I) matrix product, 294

S, (M) 297

U (A) strength of matrix A4, 301
A(A), 6 (A), T(A) coefficients of ergodicity, 303
M(i) smallest saturated set, 314
v valuation, 319

¥ set of all mean maps, 335
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1 How positive discrete dynamical systems do arise

1.1 Non-linear population dynamics in one dimension

Consider a population of individuals, which could be plants, animals or human be-
ings. living in a fixed environment. In the course of time the number of individuals
may increase or decrease or stay constant. Let p(t) denote the number of individuals
living at time t with ¢t being measured in discrete steps like days, months or years that
iste N: ={0,1,2,3,...,}. The growth rate of the population at time ¢ is by definition
p(t+1)-p(t)
gt)y=——+—"". 1.1.1)
p(O)
Of course, 0 < p(t) and -1 < g(t).
Let us first see what happens if we assume the growth rate to be constant over
time, i.e., g(t) = g for all t. The dynamics of the population is then given by

p(t+1)=(1+g)p(),teN, (11.2)

where p(t) € Nand 0 < 1 + g. The solution of the difference equation 1.1.2 is easily
obtained by iteration as

pt)y=(1+ g)tp(O) forall t € IN. (1.1.3)

From this one concludes that the dynamic behavior of the population must be of one

of the following three types:

- Ifg > 0(and p(0) > 0) then there holds exponential growth without limits, i.e.
tlir({lop (&) = co.

— If g < 0 then the population decreases to zero, i.e. tllglo p(t) = 0.

— If g = 0 then the population stays constant, i.e. p(t) = p(0) for all ¢.

In particular, it is impossible for the population to approach in the long run a finite
number which is (strictly) positive and different from the initial population level. Al-
though a population can show a behavior of the above types for a while it is very un-
realistic that one single type will last forever. The unrealistic dynamic behavior in this
model stems, of course, from the assumption that the growth rate is the same all of
the time. (By the way, the same thing happens if we choose to model in continuous
time instead in discrete time, obtaining a differential equation instead of difference
equation (1.1.2). There are many reasons, discussed in detail in the biological litera-
ture for the growth rate not being constant (Edelstein—Keshet [7], Hoppensteadt [14],
Murray [24], Pielou [27], Pollard [28]). Among others, the growth rate will depend on
the actual level of population p(t) due to population pressure. The latter means that
by limitations in food and living space the growth rate will decrease if the population
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level is increasing. Therefore our model (1.1.2) has to be replaced by a model of the
type

p(t+1)=f(pt), teN, (1.1.4)
where f: R, — R, is the so called reproduction function (or curve).
Since the growth rate is, according to (1.1.1), given by % -1, population pressure
means that
j% is (strictly) decreasing in x (for x > 0). (1.1.5)

Equation (1.1.4) together with condition (1.1.5) constitutes a positive discrete dynam-
ical system in one dimension. An equation as (1.1.4) is called a difference equation
of first order. (For difference equations see Elaydi [8], Kocic and Ladas [15].) The rele-
vant magnitude p(t) is not only a (real) number but a positive number (including 0).
Furthermore, the ’law of motion’ f maps positive numbers into positive numbers and
satisfies a condition (1.1.5) which also employs the ordering relation < of real numbers.
The dynamics of (1.1.4) is given by the iterates f' = f o ... o f (¢-times) of mapping f,
namely

p(t) = f{(p(0)) forall teN. (1.1.6)

In contrast to (1.1.3), however, it is not easy to find out what types of dynamic behavior
are concealed in equation (1.1.6). Actually, depending on the particular function f, it
might be very difficult to determine the dynamic behavior for (1.1.6) which even for
simple reproduction functions can be very complicated.

Let us discuss two examples on the extreme, whereas the general equation (1.1.4)
will be taken up again in a later chapter. Of course, our ealier equation (1.1.2) is a spe-
cial case of (1.1.4), namely the linear case f(x) = (1 + g)x. In taking care of population
pressure, however, we have to turn to non-linear selfmappings f of R,. An example of
such a mapping is given by the reproduction function

px

fx) = P (1.17)
discussed by biologists and going back to the early mathematical biologist P.F. Ver-
hulst (Edelstein—Keshet [7], Pielou [27]). The function f, which obviously satisfies con-
dition (1.1.5), depends on two parameters, where p > 0 is the maximal possible size of
the population and where K > 0 is a measure for the strength of the populaton pres-
sure. Of special interest is a possible equilibrium population, measuring a population
level p* which does not change through time. In spite of (1.1.4) this amounts to

oty = PP
p - f (p ) p* + I< >
which admits two solutions p* = 0 and p* = p - K, the latter being meaningful only if
p > K.The main question considering the dynamic behavior is whether the system will
approach an equilibrium, provided there exists one. In one dimension often a graphic
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procedure may help which is called graphic iteration or cobwebbing and which, in our
particular example, goes as follows:

)
(%)

foot - - -

0 x=p0) fx fPr p-K

Fig. 1.1. Graphic iteration for f(x) = £%.

This graphic iteration shows that in case of p > K the iterates f*(x), for x > 0, converge
to the equilibrium p — K for t — co. In case of p < K, the reproduction curve is be-
low the 45° line and graphic iteration then shows that f(x) converges to 0 for t — co.
(Of course, for x = p(0) = 0 the population stays at O all the time.) In any case, the
population level p(t) approaches an equilibrium if ¢ tends to infinity. Contrary to the
constant growth case we now observe the possiblity that the population approaches
a (strictly) positive equilibrium. Since such a graphical method is only heuristic and
not fully convincing (not to think of higher dimensions), one should be able to demon-
strate the above observations in an analytic manner. For the case p > K this can be
done as follows. Since f(x) = px(K + x)7t = p(g + 1)_1 the function f is increasing.
Hence forp* =p - K:

O<x<p"=pEK+x'21=x<f(x)<f(p*)=p"

By iterating we get f"(x) < f™'(x) < p*. As an increasing sequence which is
bounded from above the sequence (f"(x)),,., must converge to some g € R,. By conti-
nuity of f, f(q) = gand g = p* if x > 0. Thus,

nlLrg()f"(x) =p* forall O0<x<p".

Similarly,
p<x=pK+x'<1=p =f@")<fx) <x
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By iteration p* < f™'(x) < f"(x) and the sequence (f"(0)),50 is decreasing and
bounded from below. As above, this implies HILIQO f'(x) = p* for all p* < x. For the
population level, we, therefore, obtain by using (1.1.6)

tlim pit)y=p-K
if there is any initial population at all, i.e. p(0) > 0.

The reproduction function (1.1.7) discussed is just one possibility to model population
pressure, there are many others. Another reproduction function proposed for popu-
lation pressure models the decreasing growth rate by “ subtraction”, that is f(T") =
p(P-x),,wherep > 0, P > 0 are parameters, P being a maximal possible population
level and where r, = max({r, O} for any real number r. Note that @ =pK+ x) ! asin
(1.1.7) models the decreasing growth rate by “division”. In other words, consider the
model

p(t+1) =f(p(t)) = pp)(P - p(1)),. (11.8)
Introducing x(t) = ’% we obtain
x(t + 1) = ax(t)(1 - x(t)), (1.1.9)

where a = pP and x(t) is in the unit interval [0, 1] for all ¢ provided O < a < 4. Equa-
tion (1.1.9) is the famous logistic difference equation which is known to generate for
certain values of parameter a very complicated dynamics dubbed chaotic dynamics
(May [22], Peitgen, Jiirgens, and Saupe [26], Zaslavskii [35]). An impression of that dy-
namics can be obtained by doing graphic iteration:

45°

etc.

0 x(0) x* 1
Fig. 1.2. Graphic iteration for the logistic difference equation.
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For this model there exists a unique (strictly) positive equilibrium x* = ”%.1 (for
a > 1) but x(t), and hence p(t) = Px(t), does for certain values of the parameter a
not approach the equilibrium x* or p* = Px*, respectively. The population model un-
derlying the logistic difference equation has been sometimes also attributed to Ver-
hulst. It seems, however, that Verhulst used a logistic differential equation, namely
% = pp(t)(P - p(t)), the solution of which approaches P for t — oo for all possible
valuesp > 0, P > 0, in contrast to what happens for the logistic difference equation.
(See Exercises to 1.1, Problem 4.)

Although the models (1.1.7) and (1.1.8) both picture population pressure the resulting
dynamics are completely different — the kind of modeling does matter. (For various
dynamic models see Beltrami [1], Farina and Rinaldi [9], Krause and Nesemann [18],
Luenberger [21], Sandefur [30].) Equation (1.1.8) is a rather extreme case of modeling
negative growth rates. It has been argued by biologists that a reproduction function

fO) =Ax(1 + ax)’b with parameters A,a,b > 0 (1.1.10)

gives an empirical description of density limited population growth. (Edelstein—
Keshet [7]; Hassel [12]; see Cull [4] for a mathematical investigation of one dimen-
sional models admitting negative growth rates.) Consider as a special case of (1.1.10)
the function

f(x) =5x(1 + x)"z. (1.1.12)

This function has a unique positive equilibrium x* = /5 — 1. In contrast to the logistic
model, this reproduction function tends smoothly to O for population levels above the
equilibrium level.

0 1 x*

Fig. 1.3. Density limited population growth.

It turns out that for this model tllglo p(t) = /5 — 1 for all p(0) > 0. In case the repro-
duction function is differentiable the equation (1.1.5) expressing population pressure
amounts to

xf'(x) < f(x) forall x > 0. (1.1.12)
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In a later section (Section 5.3, Exercise 7 (d)) we will see that if there holds the stronger
condition
x|f'x)|<fx) forall x>0 (1.1.13)

and if there exists a (strictly) positive equilibrium p* then we must have tlim pt)=p*
for all p(0) > 0. In example (1.1.11) we have that

x| |1=5x11-x]1+x)72 <5x(1+x)2=f(x) forall x>0,

and, hence, condition (1.1.13) is satisfied. This condition is also satisfied for the func-
tion given by (1.1.7) but it is not satisfied for the logistic model (1.1.8). For the latter,
(1.1.12) does hold but not (1.1.13) (where, of course, x is restricted to 0 < x < 1).

Although much more can be said about population pressure in one dimension we stop
its discussion for turning to multidimensional situations which are more realistic by
taking the age structure of populations into account.

Exercises

1. Prove for the reproduction function given by equation (1.1.7) that
lim p(t) =0 forall x>0,
t—o0

provided 0 < p < K.
2. Show for the selfmapping of R, given by f(x) = vx

tlim fi(x) = 1forallx > 0.
3. Find for the logistic difference equation (1.1.9) with a = 4 a 2-cycle that is some

x € [0, 1] such that f2(x) = x but f(x) # x.

4. Solve the logistic differential equation

% = pp(®)(P-p(), 0<p(t)<P

and show that tlim p(t) = P for all p(0) > 0.

5. Find a direct argument showing for the reproduction function f(x) = 5x(1 + x)?
that tlim pt) = 5 -1 forall p(0) > 0.

6. By using condition (1.1.13) prove that for the logistic equation (1.1.9) tlim x(t) exists
—00

for all x(0) € [0, 2] if the value of the parameter a lies between 0 and g.
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1.2 The density dependent Leslie model

The earliest population model at all is the one formulated by Leonardo di Pisa, better
known as Fibonacci, in the early 13th century about the reproduction of rabbits. Sup-
pose rabbits produce in pairs in such a way that any pair being at least two months
old produces each month a new pair without any rabbit dying. Measuring time t € N
in number of months and denoting by p(t) the number of pairs at time ¢t we then have
that

pt+2)=p(t+1)+p(t) forall telN. (1.2.1)

Assuming p(0) = p(1) = 1, that is starting with one (newborn) pair of rabbits, this
linear difference equation of second order generates the famous Fibonacci numbers
1,1,2,3,5,8,13 etc. Setting x,(t) = p(t), x,(t) = p(t + 1) equation (1.2.1) may be
rewritten as x;(t + 1) = x,(), x,(t + 1) = p(t + 2) = p(t + 1) + p(t) = x.(£) + x,(¢t) ox,
in matrix notation,

x(t+1) = [2 1] x(t) forall t=>0, (1.2.2)

where x(t) = (x;(t),x,(t)) € R?, x(0) = (1,1) and F = [9!] is the Fibonacci matrix.
(Vectors x € R" will always be understood to be column vectors; a row vector will be
denoted by the transposed vector x'. R” is the positive orthant in R", R" = {x € R" |
X=Xq,...,%,), 0<x;for1 <i<n}.)

This two-dimensional representation reflects the underlying age structure, that
is, x,(t) is the number of young rabbits (in pairs) which are less than 2 months old
and x,(t) is the number of old rabbits (in pairs) which are at least 2 months old. The
equation x; (t + 1) = x,(t) reflects the assumption that every old pair produces a new
pair one month later and x, (¢t + 1) = x;(¢) + x,(t) means that old pairs next month
stem from old or young pairs this month. By iteration, equation (1.2.2) has as solution

x(t) = F'x(0), teN,

which is uniquely determined by x(0). To know the solution for arbitrary x(0) means
to know all the matrix powers F'. Though the model is linear a constant growth rate g
asin (1.1.2), i.e., p(t + 1) = (1 + g) p(¢t) for all t, is not always possible. For, this would
mean x(t + 1) = (1 + g)x(t) and, hence, Fx(0) = Ax(0) with A = 1 + g. But x(0) =
(1, 1) is not an eigenvector of the matrix F. By choosing, however, initial vectors x(0)
which are eigenvectors of F one obtains two possibilities for constant growth. Matrix
F has as its eigenvalues A; = %E and A, = %g with corresponding eigenvectors
x! = (1,A,) and x* = (1,A,), respectively. An arbitrary given initial vector x(0) = (a, b)
we can obtain as a linear combination of the two linearly independent vectors x* and
x*, namely

b—a/\le+a/11—bx2

0) =
X0 =—7 NG
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For the uniquely determined solution starting in x(0) this implies

x(t) = F'x(0) = b=k pa, Pi=b o
b-al A, - b g
—any y¢ o1 AM — t.2
= A X+ Axe.
N N

For the components of x(t) this means

x,(6) = (V5)H(ahA, (A" = AL + B[ - A3))

X () = (VB Hal Ay Af = A) + ALY - ALY)).
On the other hand, x(t) = F'x(0), and by using A A, = =1 we conclude that forall ¢ > 1
AT AT AL

t t t+1 t+1
A1 - Az Al - /\2

F'=(V5)™

Thus, we have determined the powers of the Fibonacci matrix F in terms of the eigen-
values A, A, of F. Hence, we can compute the solution x(¢) for any given x(0), which
in case of the Fibonacci numbers yields

pt) = (VB AT+ AL - (AT + A)
_ (\/g)—l(/llﬁl _A2t+1)

that is the Binet formula

p(t) = (@)‘1(< ! +2\/§)M - ( ! _zvg)tﬂ) for teN. (123)

This formula shows, as one would expect, that the number of rabbit pairs tends to
infinity for t — co but it also shows that the ratio of old rabbits to young rabbits, i.e.,

X (t) _ p(t+1) 1 1+V5
0 = 20 stabilizes to the golden mean 5=

As has been argued in the previous section, population pressure should be taken
into account leading thereby to a non-linear model.
Hence instead of (1.2.1) we should better consider a non-linear Fibonacci model,

as, e.g.,
p(t+2) =p(t+1) +p(t) for telN. (1.2.4)

In this model the survival rates are no longer constantly equal to 1 but decrease by
population pressure with an increase in the population size. The non-linear difference
equation of second order (1.2.4) cannot easily be handled by graphic iteration. For the
corresponding two-dimensional system equation (1.2.2) has to be replaced by

0 1
x(t+1)= x(t), (1.2.5)
() (M)

(NI
(NI
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where the matrix now depends on the state x(t). The matrix analysis done for the Fi-
bonacci matrix is no longer applicable. In a later section we shall show that for the
above model the size of the rabbit population will not tend to infinity but will approach
a positive equilibrium. What has been said can be extended from two age classes to
an arbitrary number of age classes. This more realistic model is known as the Leslie
model and will be described in the following. (For the history and theory of classical
Leslie models see Leslie [20], Caswell [3], Hansen [11], Hoppensteadt [14], Pollard [28].)

Consider a population for which n > 1 age classes are to be distinguished and denote
by x;(t) the number of individuals in age class i at period t € IN. (Being concerned
with individuals capable of reproduction, the individuals usually will be females or
will be taken in pairs.) All classes are assumed to contribute with certain birth rates to
class 1 representing the youngest group in the population. The members of class i will
survive with a certain rate to become members of class i + 1 in the next period. Due
to population pressure birth rates b; and survival rates s; (= 1 — m;, m; mortality rate)
depend on the population levels of the various classes. Furthermore, those rates may
depend in addition explicitly on time t. Denoting by x(t) = (x;(t),...,x,(t)) € R the
population vector at period t € IN, the assumptions made amount to the equations

X (t+1) = ibi(t,x(t))xi(t)

i=1
X (E+ 1) = s;(6,x(0)x;(t) forall 1 <i<n-2 (1.2.6)

Xy (t + 1) = 5,1 (£, x())x,_1 (1) + 5,(t, x(t))x,,(£).

Here, of course, O < b;, s; < 1. The last equation in (1.2.6) means that with a certain
rate s, members of the oldest group remain when becoming older in this group. If
S, = 1, as in the Fibonacci model, then members of class n will never die. If s, = O,
as we shall often assume, members of class n will die out in the next period. In matrix
notation (1.2.6) becomes

x(t+ 1) = L(t,x(t))x(t) for t € N, (1.2.7)
where, for x € R
b,(t,x) by(t,x) ... b, 1(tx) b,(tx)
S1(t,x) 0 .. 0 0
L(t,x) = 0 S,(tx) ... 0 0 1.2.8)
0 (0] .0 s,1(tx)  s,(tx)

denotes the (generalized) Leslie matrix.
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In case the Leslie matrix L(t, x) does not explicitly depend on time ¢ it is called the
density-dependent Leslie matrix L(x); in case L(t, x) does neither depend on t nor
on x, it is called the constant Leslie matrix

bl bz bn—l bn
s; O 0 0
L=| 0 s, 0 0
0 0 ...0 s, s,

The Fibonacci matrix is a special case of a constant Leslie matrix, and the non-linear
Fibonacci matrix in (1.2.5) is a special case of a density-dependent Leslie matrix.
The model (1.2.7) is an example of a non-autonomous positive discrete dynamical
system

x(t + 1) = T(t)x(t) forall t € N, x(0) € R, (1.2.9)

where the selfmapping T(t) of R} is given by the Leslie matrix, T(t)x = L(t,x)x. If
T(t) = T forallt,i.e. T is given by the Leslie matrix L(x), the system (1.2.9) is called au-
tonomous. The dynamical system (1.2.9) is non-linear for a density-dependent Leslie
matrix L(x) and it is linear for a constant Leslie matrix L. The most interesting ques-
tions considering the dynamical system (1.2.9) are if there exists an equilibrium and
whether this is stable or not; more generally, one wants to know the behavior of the
system (1.2.9) for t — oo. As for equilibria in the autonomous case one has to find the
non-trivial fixed points x* of T in RY, i.e. 0 # x* € R such that Tx* = x*. As already
shown by the simple (linear) example of Fibonacci’s rabbits such a non-trivial equi-
librium need not exist. In this example, however, there exists for the matrix F = [? 1]
an eigenvalue A, = “ng > 0 with eigenvector x* = (1,A;) € R2. By Fx! = A,x" it holds
x(t) = }lltxl for all ¢, that is a constant growth solution which may be considered a
generalization of a (stationary) equilibrium; the latter corresponds to an eigenvalue
equal to 1. Hence, it will be important also in the general case to find solutions to the
non-linear eigenvalue problem

Tx" =A"x" with0 # x" e Rl and A" > 0. (1.2.10)
Introducing the normalized mapping
~ Tx
X = —, (1.2.11)
I Tl

where |z|| = |z;| + ... + |z,| denotes the sum-norm on R", the eigenvalue prob-
lem (1.2.10) with a normalized eigenvector, i.e. |[x*| = 1, can be formulated as
Tx* = x*, that is as a fixed point problem for the mapping T. This normalization
is related to the age structure in our population model. The age structure at time t
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may be described by comparing the number x;(t) of individuals in age class i to the

total population number [x(f)[| = x;(¢t) + .-+ + x,(t), i.e. by y;(t) = “); ((tt))” To know

the numbers y,(t) for 1 < i < n s, of course, equivalent to know the ratios Et; for all
XZEg A, and, hence, for
y(®) = (y,(0), yz(t)) one has that hm y(t) = y* with y* = ((1 + )75 A4, + AT,

Xl

Since y* = "X1” it follows from Tx* = A,x* that Ty* = ||Tx1 i = y*. Thus, in the
Fibonacci case there exists a stable equilibrium age structure which, after normaliza-
tion, is the unique (non-trivial) fixed point of T. The above convergence to y* can be

expressed also by the normalized operator as

1 < i,j < n. As already remarked, in the Fibonacci case hm

tlim T'y(0) = y*, y(0) being any initial age structure.
—00

What has been said for the (linear) Fibonacci model can be extended to the Leslie
model with a constant Leslie matrix L. An elegant way of doing this is to employ the
so called Perron-Frobenius theory for non-negative matrices (see Gantmacher [10],
Seneta [32]). But how to handle the density-dependent Leslie model? In the next chap-
ter we will develop a concave Perron-Frobenius theory which generalizes many
results of the (linear) Perron—Frobenius theory and which will prove to be useful
in handling non-linear Leslie models. Since in that chapter we will obtain the most
important results of the standard Perron—Frobenius theory as a by-product it is not
required that the reader has some prior knowledge of that theory.

Exercises

1. Determine all eigenvalues and eigenvectors of the Fibonacci matrix [ ¢ 1 ].

p(t+1)

G for the Fibonacci

2. Find by graphic iteration the dynamic behavior of the ratio
numbers p(t),t € N.

3. Examine the behavior of the powers L' for t — co for the following Leslie matrix

01 1
L=11 0 0
01 1

4. How could the method of graphic iteration be extended to illustrate the dynamics
of the following non-linear Fibonacci equation

p(t+2)={pt + 1) + {p(0)

5. Find a direct proof showing for the non-linear Fibonacci equation of Exercise 4
that tlim p(t) does exist for all p(0) > 0.
—00
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1.3 Non-linear price dynamics in one dimension

In economic theory sometimes pretty stylized models are analyzed which involve one
single good only. This method was already used by the classical economists in their
corn model (cf. Ricardo [29]) and it reappeared later on in the one sector growth models
involving one single capital good. Consider the production of one single good, say
corn, by using corn as seed together with labor. Assume the production of one bushel
of corn needs as inputs a bushels of corn and  hours of labor with0 < a < 1and 0 < L.
If p is the price per bushel corn and w is the wage for one hour of labor then the cost
of production for one bushel of corn is given by c(p) = ap + lw. Assume also that time
is measured in discrete steps t € IN and that the price p(t + 1) for the next period ¢ + 1
is given by the cost of the present period ¢, that is

p(t + 1) = c(p(t)) = ap(t) + lw. (1.3.)

To simplify, we assume w to be constant over time and a possible profit to be in-
cluded in w. Starting with an arbitrary initial price p(0), the price p(t) then is given
by

-1
p(t) = ( Y ai>lw +a'p(0) for ¢>1. 1.3.2)
i=0

This immediately yields tllglo p(t) = p* withp* = (1 - a)"tiw. Thus, in this simple
(affine) linear model there exists a unique price equilibrium p*, defined by p* = c(p*),
and the prices set according to the positive discrete dynamical system (1.3.1) ap-
proach the equilibrium for ¢t — oo, irrespective of the initial price p(0) > 0. In reality,
however, there is not just one single technique of production available but there are
often several possibilities. In our example, to grow corn one method may require less
corn for seed than another method by doing seeding more carefully, that is by employ-
ing more labor. A technique being described by a pair (a, I) of inputs, suppose a set of
techniques {(a;, ;) | 1 < i < m} is available among which the producer can choose.
Of course, for a given price the producer will choose a technique which minimizes the
cost of production Our little model, enriched by a choice of techniques then becomes

p(t + 1) =min{a;p(t) + Lw; | 1 <i<m} (1.3.3)

This model is no longer (affine) linear, but we may try graphic iteration as in Sec-
tion 1.1.
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p(t+1)

3w

Lw,

lywy

45°

> p(t)

s }b---——--"-"-—— - - - - — -

Fig. 1.4. Choice of techniques.

In the above figure there are three techniques possible and the line starting in ;w; rep-
resents the cost of technique i. As is obvious from the figure, depending on the price in-
deed different techniques will be choosen. It may happen that a technique with g; > 1
will be choosen provided the wage cost ;w; is low enough. Analytically, since the min-
imum in (1.3.3) is concave in p(t) (the boldfaced curve in the above figure), there will
be a unique equilibrium price p* as long as a; < 1 for at least one technique i. Also by
concavity, a similar argument as in section 1.1 shows that tllrgo p(t) = p* forall p(0) > 0.

(An explicit formula for p(t) like (1.3.2) is possible but not very transparent.) Concave
cost curves are quite common in economics and, different from the reproduction curve
in population dynamics, the cost c(p) must increase with p. Since the cost function in
(1.3.3) is not differentiable in all points the earlier criterion (1.1.13) cannot be applied
to check the behavior of prices in the long run. Next we turn to the more realistic situ-
ation where more than one good is involved.

Exercises

1. Suppose that a producer has the three techniques (2, 1), (0.8, 3.4) and (0.5, 4) at
his disposal for producing a single good.
(a) Determine for w = 1 the price intervals for each of the above techniques to be
choosen.
(b) Determine the equilibrium price p* and show by cobwebbing that tliglo p(t) =
p* for all p(0) > 0.
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(c) Examine how the choice of techniques and the price equilibrium depend on
the wage rate w.

2. Show analytically for the model given by equation (1.3.3) that under the assump-

tion {njn a; < laprice equilibrium p* exists and that tlim p(t) = p* forall p(0) > 0.
<ign —00

3. Explore the generalization of the model (1.3.3) where a minimum wage w,, is guar-
anteed and where for w > w,, the real wage %, instead of the money wage w, is
held constant. That is, let w = w(p) = max{w,, cp} for w, > 0, ¢ > 0 fixed.

(@) Find the asymptotic behavior of prices p(t) for w, = 1,¢ = 1 and techniques
given as in Exercise 1.

(b) Determine all values of minimum wage w, and real wage c for which the prices
p(t) are converging for t — co.

(c) Isit possible that for certain values of w,, and c the prices behave periodic?

1.4 The Leontief model with choice of techniques

Consider finitely many producers who are interdependent in that each of them pro-
duces a specific good by means of the goods produced by all the other producers
and by employing (homogeneous) labor. Periodically each producer may set a new
price for his product according to his cost of production which depends possibly on
all prices set by the other producers one period before.

We want to know if there exist equilibrium prices on all markets and, even more
important, whether the process of price setting will lead the producers towards equi-
librium prices. More specifically, denote by {1, ..., n} the set of producers where any
producer i can be identified with the specific good he is producing. Every producer
may choose a technique within a certain technology set. A technique is described by
a pair (a, l) where a is a vector in R} with components a;,1 < j < n, specifying the
input of good j used for producing one unit of the producers good and where l > 0 is
the labor input required thereby, measured, say, in hours. Let A;(t) denote the (non-
empty) set of techniques which producer i has at his disposal and which may depend
on time due to technological development. By p;(t) > 0 we denote the price of one unit
of good i in period ¢, by p(t) the price vector with components p;(t) for 1 < i < nand by
w; > 0 the constant money wage per hour paid by producer i. Forced by competition
each producer will produce for a given vector of prices p € R at minimum cost which
is for producer i in period t € IN given by

¢(p,t) = inf{pa + w;l | (a,]) € A;(t)}, (1.4.1)

where pa: = Z}Ll p;a; is the inner product.
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From the various rules of price setting one could think of we shall adopt the clas-
sical economists rule of prices driven by cost, that is

pit+1) _ c(p(®)1)
pt+1)  cpt)t)

for 1<i, j<n, teN.

This rule does not require prices of the next period to be equal to cost of this period
but requires only proportionality, that is p(t + 1) = k(t)c(p(t), t) with a factor k(t) >
0 which may depend on time and where c(p(t), t) is the vector having components
c;(p(), t). Introducing the cost operator T(t): RY — R} by T(t)p = c(p, t) with ¢;(p, t)
given by (1.4.1) we arrive at the positive discrete dynamical system

p(t+1)=k@®)T(t)p(t), teN, p(0)e R (14.2)

This system is non-autonomous and non-linear. If the technology sets A;(t) do not
depend on t, that is if technological development is not taken into account, then there
is just one cost operator T: = T(t) for all ¢; if in addition k(t) is constant, in particular
if k(t) = 1 for all t, then the system (1.4.2) is autonomous. Disregarding technological
development, the non-linear operator T defined by Tp = c(p) (omitting now variable
t) is concave, namely for 0 < a < 1 and p, g € R we have

¢i(ap + (1 - a)q) = infla(pa) + (1 - a)(ga) + aw;l + (1 —a)w;l | (a,1) € A;}
> ainf{pa + wil | (a,]) € A;} + (1 —a)inf{ga + w;l | (a,]) € A;}
> aci(p) + (1 - a)(g),

and, hence, T(ap + (1 -a)q) = aTp + (1 — a)Tq componentwise, that is T is concave.

Concavity comes in very naturally by taking a choice of techniques into account.

If no choice of techniques is admitted then (in the autonomous case) A; must con-
sist of one technique (a', l;) only and, hence, the i-th component T; of T is given by
Tp = ¢(p) = pd + w;l;. Thus, T is an affine-linear mapping given by Tp = Ap + b
where A is the matrix having a’, .. ., a" as its rows and b is a column vector with com-
ponents w;l;,. .., w,l,. In this linear case, matrix A is called the Leontief matrix and
the model of production the Leontief model or the input-output model of produc-
tion. (For linear models of Leontief type or Sraffa type see Cassels [2], Nikaido [25],
Schwartz [31] and, taking choice of techniques into account, Kurz and Salvadori [19],
Woods [34].) A model as the above which combines a Leontief model of production
with a choice of techniques may be called Morishima model because the dynamics of
such a model has been first analyzed in (Morishima [23]).

In economics it is often more meaningful to consider relative prices instead
of absolute prices. If |p| =p; +---+p, for p € R} then the relative price in
period t is given by q(t) = p(t)llp(t)ll’l. To know the vector g(t) is equivalent to
know all the ratios p,-(t)(p]-(t))‘1 for 1 <i,j<n. Casting system (1.4.2) in rela-
tive prices amounts to g(t + 1) = k(t)T(t)q(t). Because of |g(t + 1)| = 1 this implies
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q(t + 1) = TOq@OUTEg@®™). Introducing the normalized cost operator T(t) defined
by T(t)p: = T()p(IT()pl™") (provided T(t)p # 0), we obtain the new system

g(t + 1) = T(Hq(e), t € N, |lg(O)| = 1. (1.4.3)

This equation describes a non-autonomous and non-linear positive discrete dy-
namical system on the positive unit sphere S = {p € R} | |]p|| = 1}. (For systems of this
type see Krause [16].) In general, the systems described by (1.4.2) and (1.4.3) respec-
tively, need not be equivalent. The equations, however, model the same system if we
assume a constant real wage instead of a constant money wage w;. Here, a constant
real wage is a basked of goods b' € R’ such thatw; = pb' (inner product) for the ruling
price vector p. By this change the minimum cost becomes

c;(p,t) = inf{p(a + Ib") | (a,1) € A,(t)}

and, hence, ¢;(Ap,t) = Ac;(p,t) for arbitrary scalars A > 0. This implies T(t)(Ap) =
AT(t)p for A > 0 and equation (1.4.2) becomes

att + 1) = pit + D(Ip(e + DI) = KOTOPOOIT PO
-1
- TOEO PO (ITOEOIROI))
= TOgOTMHaOI™) = T()q(),

which is equation (1.4.3).

From the concave Perron—Frobenius theory which we shall develop in the next
chapter it will follow for the autonomous case that under certain assumptions, roughly
by assuming producers to be interdependent strongly enough, system (1.4.3) has a
unique equilibrium price vector g*, i.e. ¢* = Tq"*, such that tllrg) q(t) = q" for all
q(0) € S. This is an important finding because it means that the producers who self-
ishly minimize own costs without being guided by some external central agency are
nevertheless able to find a joint price equilibrium by setting prices according to costs.

Exercises

1. Consider two producers each equipped with two technologies. Suppose producer
1 (producing good 1) can use a technique with a = (0, 1) and I = 1 or a technique
with a = (0.5,0.5) and | = 1. Similarly, producer 2 (producing good 2) can use a
techniquea = (1,0)andl=2ora = (0.1,0)and [ = 1.

Assume further for both producers a given real wage b = (1, 1), thatisw = p; + p,
for prices (p;,p,) given.
(a) Calculate the cost operator T: R? — R? and show that lim T'p = oo for all

peRLp+0.
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(b) Show there exists a unique positive equilibrium g* in relative prices, i.e. Tg* =
g% llg" Il = 1 (take [IxI| = Ix;| + |x;)).
(c) Develop an argument demonstrating that relative prices must converge to g*,
ie. lim T'q=q" forallg e R%, |q| = 1.
—00

Consider two producers equipped with techniques as in Exercise 1. Different, how-

ever, from 1. assume a variable real wage of the type b = (s, 0) with s > 0, which

means that the real wage is measured in terms of good 1. That is to say, assume for
both producers a wage-price relationship of w = sp;.

(@) Determine the scalar A > O for the equilibrium Tp = Ap in dependence on the
real wage s.

(b) Interprete the relationship between s and A as a so called wage-profit curve,
that is as a relationship between s and r whereby r is the uniform rate of profit
givenby r = I%df)w fori=1,2.

Determine the maximal possible values for the rate of profit and the real wage,
respectively.

(c) Discuss (a) and (b) above for the case that the real wage is measured in terms
of good 2, that is w = sp,.

(d) What can be said for a varying real wage s with respect to the questions asked
in Exercise 17

Let A be a non-negative n x n-matrix which is productive, i.e. there exists some
x € R" such that Ax < x (where < is with respect to all components). Prove that
@ Jima®-0
and
(b) (I-A)™! exists and is given by the Neumann series, [-A) > =T + A + A> + ...
(I the n x n-identity matrix).

Let T: RT — R be concave and suppose that for some x € R} Tx < x and that
forall 0 < € < 1 T(ex) < Tx. Prove that
(a) tlim T" = 0 (T" the n-th iterate of T, O the zero mapping)

—00

and

() S: =Y T" S: RT — R} existsand S - So T = I. (I the identity map on
R’.)

Find examples of non-(affine-)linear mappings T: R? — R? such that

(a) T satisfies the assumptions of Exercise 4
and

(b) T satisfiesinadditionSo(I-T)=(I-T)oS=1.
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1.5 Opinion dynamics under bounded confidence

Consider a group of n expertsi = 1,...,n who have to assess a certain magnitude
like the world’s wheat production in the year 2030. Each of the experts has his own
expertise but is open to revise it by taking into account expertises by colleagues he
trusts in. This process of revision iterates and the question arises whether the experts
will oscillate in their assessments or run into disagreement or reach a consesus.

Let t € IN denote a round of the discussion and let x;(t) the assessment of expert i
in round ¢. Considering trust among the experts let

fL<j<n|gO-x)l<e

denote those experts the expert i has trust in where € > 0 is a certain confidence level.
Denote this confidence set by I(i, x(t)) where x(t) = (x;(t)), ..., x,(t)) is the collection of
the assessments in round ¢t. Among the many ways to model the iterative formation of
assessments a rather simple one is given by

x;(t + 1) = |I(, x(t))l’1 Z xi(t) for t € N, x(0) € ]Rf, (1.5.1)
JeI(ix(t))

that is, the revised assessment is made by taking the arithmetical mean of those one
trusts in. Instead of an assessment of some (positive) magnitude, x;(t) could be any
opinion as long as it can be measured by a real number.

System (1.5.1) describes opinion dynamics under bounded confidence as it has
been developed in [13] and [17]. This system is a positive dynamical system in dis-
crete time. The positivity lies not so much in the state variables x;(t), which could be
negative, but in the positivity of the weights given to other experts.

The system (1.5.1) is non-linear in the state variables and it is not easy to analyze.
Alternatively, one could put system (1.5.1) as a linear but non-autonomous system. To
see this define a n x n-matrix A(t) with entries a;(t) = |I(i, x()| ™ forj e I(i,x(t)) and
a;(t) = 0, otherwise. Then system (1.5.1) is equivalent to

x(t + 1) = A()x(t), t € N,x(t) € RY. (1.5.2)

In later chapters we shall develop methods to handle non-linear as well as non-
autonomous positive dynamical systems. System (1.5.2), however, has the advantage
that A(t) is a (row-) stochastic matrix, that is each row sums up to one. By this meth-
ods especially adapted to stochastic matrices can be used which will be done in full
detail in Chapter 8. Developing methods to treat infinite products of stochastic ma-
trices we will be able in Chapter 8 to answer in particular the questions raised above
considering consensus or disagreement.
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Exercises

Examine the model of opinion dynamics under bounded confidence for n = 2 and

different confidence levels €; and ¢, of the two experts.

(a) Show that convergence to consensus holds if and only if |x;(0) - x,(0)| <
max{e;, €,}.

(b) Show that in case of convergence to consensus the latter is reached for a

number of rounds which is given by the smallest natural number above
log 1%, (0)-x,(0)]
2 " minfe, 6}

2. Investigate the system (1.5.1) for n = 3 by computer simulations.

(a) What can be said about the dependence of the dynamics on the initial condi-
tions x(0)?
(b) What can be said about the dependence of the dynamics on the confidence
level €?

3. Find an example of system (1.5.1) which converges to a consensus which is not the
arithmetic mean of x, (0), ..., x,,(0).

4. Investigate system (1.5.1) for initial conditions given by x;(0) = (i — 1)e,1 <i < n.
(a) Check small values of n.
(b) Try big values by computer simulations.
(See also Exercise 16 to Chapter 8.)
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2 Concave Perron—Frobenius theory

In this chapter we develop an extension of the (linear) Perron-Frobenius theory which
is applicable to the concave operators encountered in Chapter 1. No use will be made of
classical Perron—Frobenius theory, on the contrary, many results of the latter will turn
out to be special cases of our approach which at the same time provides new proofs
for some classical results.

Concave mappings are attractive in that on the one hand they represent a first
step in capturing non-linear phenomena and on the other hand they still admit some
systematic theory. There is, however, not such a strong tool as it is linear algebra for
linear mappings. Actually, whereas a linear mapping on a finite dimensional space
can be described by finitely many parameters in form of a matrix one needs in general
infinitely many parameters even in one dimension, to describe a concave mapping.
(See Exercise 8 of Section 2.1.)

2.1 Iteration of normalized concave operators

Let R": ={x = (x;,...,X,) | x; € Rfor 1 <i < n} denote the n-dimensional Euclidean
space. For x,y € R" we employ the following notations:

x<y iff x;<y; forall i
xsy iff x<y but x#y,
x<y iff x<y; forall i

Let K = R: = {x € R" | O < x} denote the cone of non-negative vectors in R". For
simplicity we denote the elements of R" by row vectors. A different use, as with respect
to matrices, will be mentioned explicitly.

Definition 2.1.1. A subset D ¢ R" is convex if for any x,y € Dand a € [0, 1] it holds
thatax + (1-a)y € D. For a convex subset D ¢ R" an operator (mapping) T: D — R™
is concave if for any x,y € Dand a € [0, 1]

alx + (1-a)Ty < T(ax + (1 - a)y).

T(ax + (1 -a)y)

Fig. 2.1. Concave mapping.
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An operator T: D — R™ is concave iff all its components T; are concave, where
T;: D — R, is defined by T;x = (Tx);. Furthermore, Definition 2.1.1 yields immedi-
ately that for a concave operator

DM~
=
=
IN
i-\]
—
M~
2
=
~

i=1 i=1
for arbitrary k € N, x' € D, a; > 0 with fozl a; = 1.

Definition 2.1.2. An operator T: D — R™,D c R", is monotone if
x<y implies Tx < Ty.

Lemma 2.1.3. A concave operator T: K — K is monotone.

Proof. For x,y € Kwithx < yand k € {1, 2,...} one has that x + k(y - x) € K and
y =01 -k Hx +k(x + k(y - x)). Concavity of T implies Ty > (1 — k™ *)Tx + k"' T(x +
k(y - x)) for all k and, hence, Ty > Tx. O

Remark 2.1.4. A concave operator T: D — K for D convex in K, D # K need not be
monotone.

Examples 2.1.5. (i) T affine-linear,i.e. T: K — K, Tx = Ax + awherea € Kand A is
a non-negative n x n-matrix, i.e. a; > O for all entries a; of A. (Here the elements of K
are to be understood as column vectors.)

(ii) T: K — K is of Verhulst type, i.e.
n
Tix = Zrijx)-(x]- + s,-)-)_1 for xeK,ie{l,...,n}
j=1

with constants rj 2 0,s; > 0.

(iii) T: K — K is the infimum of affine linear mappings, i.e.
Tx = inf{(A(j)x)i + ai(j)|j e]} for xeK; ief1,...,n}

where for an arbitrary (non-empty) index set J and j € J A(j) is a non-negative n x n-
matrix and a(j) € K. (Elements of K are to be understood as column vectors.)
Since in all three cases T: K — K is concave it is also monotone by Lemma (2.1.3).

Definition 2.1.6. A (vector) norm | - | on R" is monotone if
0<x<y implies |x| <|yl.

Examples of monotone norms on R" are the max-norm ||x| = max{| x; | |1 <i<n}, the

1
sum-norm |x|| = Y1, | x; | and the Euclidian norm |x|| = (Y1, x7)2.

For a monotone norm we rescale the operator T as we did already in Section 1.4.
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Definition 2.1.7. For an operator T: D — K,D ¢ R", and any monotone norm | - | on
R" the normalized or rescaled operator T is given by
Tx = (Tx)(lITxII’l) for xeD with Tx+0.

Geometrically, normalizing an operator means to project its images on the unit sphere
of the norm.

Tx

x./

Fig. 2.2. Normalized operator (Euclidean norm).

It is important, as indicated in Fig. 2.2, to distinguish between (T)" and (FIT) A simple
example where these two iterates are different is given by T: R? — R?, Tx = (1 +
X1, 1) (see Exercises to 2.1, Problem 3).

To prove our main result in this section we need to define a special metric for which
we shall apply Banach’s contraction mapping principle.

Definition 2.1.8. Onf( = {x € R" | 0 < x} Hilbert’s projective quasi-metric or Hilbert’s
metric for short, is defined for x,y € I°< by

dix,y) = -log <min {)ﬂl <i< n} - min {%'1 <i< n}) (2.1.1)
i i

The following lemma confirms that by this definition d is a quasi-metric, where
d(x,y) = 0 for x + y may happen.

Lemma 2.1.9. d as defined by (2.1.1) has the following properties for x,y, z € K:
i) dxy) e R;
(ii) d(x,y) = 0iffx = ry forsomer > 0;
(i) d(x,y) = d(y, x);
(iv) dix,z) < d(x,y) + d(y, 2);
(V) d(rx,sy) = d(x,y) for arbitrary scalarsr,s > 0
and
diz-x,z-y) =d(x,y) wherez - x = (21X, ..., ZpXp)-

Proof. (i) Since the product of the two minima in (2.1.1) is strictly positive and must
be less than or equal to ’yﬁ -4 = 1 we have that d(x,) € R,.
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(ii) If x = ry then d(x,y) = —log(r - ') = 0. Conversely, if d(x,y) = O and r =
min{x"ll <i<n}thenr- min{y"|1 <i<n}=1.Hence,r > Oandmin{%ll <i<n}=

ThlS shows r < y’ as well as J 3 < rforalli, thatis x; = ry; for all i.

(iii) Immediate from (2.1. 1)

(iv) From

. X; . . i . . X; .
mln{—l|1 SlSH}-mln{&'l szsn} Smln{—’|1 SISI’I}
Yi Zi Zi
and
. i . . [z . . [z .
mln{)ﬁ‘l s:sn]»-mm{—"l Szgn} Smm{—‘|l Slsn}
X; Vi X;

it follows by multiplying the two inequalities and applying the decreasing function
—log to the result that d(x, y) + d(y,z) = d(x, ).
(v) The first equation follows from

. rXi . . Syi . _ . Xi . . yi . .
miny—|1<i<ny-mini—|1<i<nr=min{—|1<i<ny-miny=|1<i<ng;
SYi rX; Vi Xi
the second equation follows from

ZX; X;
min{#|1sisn}=min{—’}1sisn}. O

2Yi Vi
To prove our first version of a concave Perron Theorem we need the following Lemma.

Lemma 2.1.10. ThesetX = {x elz' | |xll = 1} equipped with Hilbert’s metric is a complete
metric space.

Proof. By Lemma 2.1.9 d is a metric on X. First we show for x, y € X the inequality
I -yl < 3(1 - exp(-d(x.)) ). (212

Let a = min { > %1 <i<n},b=min y'|1 <i<n}andc =d(x,y) = —log(ab). Since
ay <x, bx <yand |x]| = |yl = 1 we must have 0 < a < 1, 0 < b < 1. This gives

exp(-c)=ab<a and exp(c)=(ab)* >b".
Therefore

exp(—o)y < x < exp(c)y (%)
and
0 < (x-y) +y(1-exp(-c)) < x(1 - exp(-c)) + y(1 - exp(-0)).
By the monotonicity of the norm

I(x —y) + y(1 — exp(=0))lIl < 2(1 - exp(-c)),

and applying the triangle inequality to the left hand side we arrive at (2.1.2). Now, if
(xk )i is @ Cauchy sequence for d in X then by inequality (2.1.2) (x* ), must be a Cauchy
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sequence for || - ||. Therefore, (xk)k converges for | - || to some x* € R} with |x*| = 1.
Since (x*) « is @ Cauchy sequence for d, to € > 0 given there exists N € IN such that with
the help of (*)

exp(—e)x* < x' < exp(e)x* forall k> N.

Taking I — oo it follows that
exp(—e)x* < x* <x*exp(e) forall k> N.
Therefore, x* > 0 thatis x* € X, and
Aok, x*) < log (exp(e) - exp(e)) = 2e forall k= N.

This shows that (x) « converges to x* also with respect to d. Hence, (X, d) is a complete
metric space. O

Theorem 2.1.11 (First Concave Perron Theorem). For any concave operatorT: K — K
such that Tx > O for all x z O the following properties hold (| - | being any monotone
normon R").

(i) The conditional eigenvalue problem

Tx = Axwith A € Rand x restricted to x € K, x| = 1 (21.3)

has a unique solution x = x*,A = A*; moreover,x* > 0andA™ > 0.
(ii) For the iterates of the normalized operator one has (with respect to | - |)

klim Thx =x* forall 0+xeKk. (2.1.4)

Ifroof. By Lemma 2.1.10 we have that (X, d) is a complete metric space where X = {x €
K| x|l = 1}. i

(i) In a first step we show that T: X — X is a contraction for d. Choose for each
1<i<navectore €K, ||ei|| = 1 and such that all the components other than the i-th
component are 0. Every x € X = {x € K | ||x| = 1} has a representation x = ?:1xiei
with x; > 0, and by monotonicity of || - ||

0 <x = el < Ix = L.

This implies x < efore: = Y1, €.

Also for x € X,
n n
1=l < ) xle'l = ) x
i=1 i=1
-1 n

(. Xi) ineisx.

n
j=1 i=1

and, hence,
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Since T is concave and, by Lemma 2.1.3, monotone it follows for all x € X that

. noo\-1n
min{Te' | 1 <i<n} < (ij) ZXiTe' < Tx < Te.

j=1 i=1

By assumption Te' > O forall 1 < i < n and there exists some 0 < r < 1 such that
rTe < Te' for all 1 < i < n. For u, v € X arbitrary we must have, therefore,

rTu < Tv. (%)

Letx,y € Xand suppose/\ mm{y‘ [1 <i<n}<1. 1Itfollowsthatz =y —-Ax € Kand
y=Ax+(1- A) 7 which, by concav1ty of T, implies

)

Inequality (+) together with 1 = |y| < A + |z| implies that

Ty>ATx + (1 - A)T(

rTx < T— z

and we arrive at
Ty 2ATx+ (1 -A)rTx=(1-nA +r)Tx. (%)

In the case where A = mln{y' |1 <i<n}>1wemusthaveby |x|| =yl =1thatA =1
and x < y. Thus, for this case (*=) holds by monotonicity of T. The function log being
concave from (=) it follows that

log(min{%ll <i< n} ) >log((1-NA +r-1)2(1-r)logA.
i

Since x,y € X are arbitrary we may exchange the roles of x and y to obtain altogether

( : {Tiy : _(Tx| . .
log ( min —‘131£n -min { — 1slsn}
Tx Ty
z(l—r)log(min{ﬁllsisn}~min{ﬁ|1sisn}>
Xi Vi

and, according to Definition 2.1.8, d(Tx, Ty) < (1 - r)d(x,y) for all x,y € X.
Lemma 2.1.9 (v) finally yields

d(Tx, Ty) < (1 -nd(x,y) forall x,yeX (2.1.5)

that is, T is a contraction ford, 0 < 1 -r< 1 being the contraction constant.

(ii) By step (1) and Lemma 2.1.10 we can apply Banach’s contraction mapping
principle (for this see, e.g., Deimling [9]) to the space (X, d) and the mapping T: X —
X to obtain

lim T*x =x* forall xeX,

k—o00
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x* being the unique fixed point of T in X. Tx* = x* implies Tx* = A*x* with 1* =
[Tx*] > 0. Conversely, Tx = Ax with x € K, x| = 1, A € R implies that Tx =
Ax(JAx|™!) = x and, hence, x = x* and A = ||Tx|| = |Tx*|| = A
This shows part (i) of Theorem 2.1.11. Furthermore, by (2.1.2) the convergence of
T*x to x* for d implies convergence for | - ||. Finally, if 0 # x € K then by assumption
Tx € X and, hence,
lim T*x = lim T(Tx) = x*  (for | - ]

k—oo
Remark 2.1.12. The first step in the proof of Theorem 2.1.11 yields by Banach’s con-
traction principle the estimate
k

d(Thx, x*) <7 d(Tx, x) forall xeK~{0}, all keN,

wherec =1 - mm{ | 1 < i,j < n}. Inequality (2.1.2) yields the estimate ||T x-x"]|
3 —d(Tx, X).

Also by the first step in the proof of Theorem 2.1.11, any concave operator T: K —
K is monotone and non-expansive for d, i.e. d(Tx, Ty) < d(x,y) forall x,y € K ~ {0}.

Beside concavity, the assumption Tx > 0 for x 3 0 is crucial in Theorem 2.1.11. As it is
obvious from the identity map Tx = x, this assumption cannot be simply relaxed. From
Theorem 2.1.11, however, it follows that the existence statement of part (i) remains true
for any concave operator on T. To show this, we need the following well-known fact
about concave operators.

Lemma 2.1.13. Any concave operator T: D — R™ is continuous on the interior D of
D c R"

Proof. It suffices to show that a concave function f: D — R is continuous on D# 0.
To x €D fixed there exists d > 0 such that

={zeR"||z-x|<d}cD

for the max-norm | - ||. The cube B has finitely many vertices and every point of Bis a
convex combination of these vertices. If m denotes the minimum of f on the vertices
we have f(z) > mforallz € B.Fory € B,y + xleta = %HX —yYl.Then0 < a < 1
and u = l(y X)+x€B,vs= l(x y) + x € B. Therefore,y = (1 — a)x + au and
x=-—Ly+ 1+a ——v and, by concavity of f,

1+a
f) z A -a)f () +af(w) =2 (1 -a)f(x) + am

and
a

O+ —f( )27 af(y)+ m,

1+a

fx) 27

yielding
fO) =f®) < a(f(x) - m)
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and
fO) = f00) < a(f(x) - m).
Putting together,
1
[fX)-fy) I < EIIX = YI(fG) - m),
which proves the continuity of f in x € D O

Now, we are ready to prove

Theorem 2.1.14 (Concave Perron—Frobenius Theorem). For any concave operator
T: K — K the eigenvalue problem Tx = Ax has at least one solution x € K~{0}, A € R,.

Proof. (1) We first prove that the inequality Tx < Ax has a solution x € K\ {0}, A € R,
of a kind such that Tx = Axincase of x > 0. Lete = (1,...,1) ¢ Kand

T(k)x = Tx + %e for ke N~{0}, xe€K
The operator T(k): K — K is concave with T(k)x > %e > 0 for all x € K. Hence, by
Theorem 2.1.11 for every k the equation T(k)x = Ax has a solution x = x(k), |[x(k)|| =
1, A = A(k) € R,(]| - | the max-norm). By monotonicity of T and x(k) < e we have
Tx(k) < Te and, hence,

A(k) = ITM)x(Ol < ITx(F)ll + 1 < [ Te|l + 1,

i.e., the sequence (A (k)); is bounded.
This together with ||x(k)|| = 1 for all k allows us to assume without loss of gener-
ality that
I}LIEOA(k) =A and I}irﬁlox(k) =x, x| = 1.

To € > 0 given there exists N € N such that x < (1 + €)x(k) for all k > N. Concavity
of T yields forany A > 1, x € K Tx = T(;Ax + (1 - 1)0) > $ T(Ax), thatis T(Ax) < A Tx.
Taking A = 1 + € this gives forall k > N
Tx < T((1 + e)x(k)) < (1 + e)Tx(k) < (1 + e)T(k)x(k) = (1 + e)A(k)x(k). Letting
k — oo we arrive at Tx < (1 + €)Ax and, hence, Tx < Ax since ¢ > 0 was arbitrary.
Furthermore, suppose that x > 0. Since T is continuous on f( by Lemma 2.1.13, we
obtain

I}LIEO T(k)x(k) = klggo (Tx(k) + %e) =Tx

and, from T(k)x(k) = A (k)x(k),

Ix = klim Ak)x(k) = Ax.

(2) The assertion of the theorem we now prove by induction over the dimension
nof K = R}. For n = 1 the assertion holds trivially with, e.g., x = 1, A = T1. Suppose
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the assertion holds for dimK < n, n fixed, and let T: R™' — R be any concave
operator. By step (1) there exist x* € R"™'~{0}, A* € R, such that Tx* < A*x*. Consider
I={1<i<n+1]|x’ >0} Obviously, I # 6 and, by step (1), the assertion holds true
forn+ 1if|I|=n+ 1. Assume, therefore, 1 <| I | < n.Ifx € RT*" withx; = 0 forj ¢ I
then there exists A > 1 such that x < Ax*. Concavity of T implies Tx < ATx* < A1 *x*
and, hence, (Tx)j = 0 forj ¢ I. This allows us to define an operator S: lRﬂ — IRI+ by
(Sy); = (Ty); fory € RL, i € I, where y ¢ R™ is given by y; = y, for i € I and y; = 0 for
j ¢ I. The operator S is concave since y — y is linear. Because of | I |< n there exists
by assumption some y € IRI+ ~{0}and A € R, such that Sy = Ay. From this we obtain

(Ty); = (Sy); =Ay; =Ay; for iel
and
(Ty);j=0=Ay; for jelI,
thatis Ty = Ay wherey € R™! < {0}, 1 > 0. O

As remarked already, one has to distinguish (D), the iterates of the normalized op-
erator, from (77‘), the normalization of the iterates. In Theorem 2.1.11 only the former
ones are relevant. It may happen that also (’IT"J) converges for k — oo but then not
necessarily to an eigenvector, as shown by the following example.

Example 2.1.15. The operator T: R2 — R2, Tx = (1 + x;, 1) is concave with Tx > 0
for x > 0. By Theorem 2.1.11 therefore, klim Tkx = x* forall x > 0 and Tx* = A*x* with
—00

x* > 0. Taking the sum-norm the unique solution is given by

X*_(L ;> qro3+V5
1++5 3++5/ 2

On the other hand,

Tkx=(k+x1,1)and(7:’7)x=< k+x ! )

1+k+x 1+k+x

The latter converges for k — oo to (1, 0), independently of x, which is different from
x* and which is not an eigenvector of T.

The next example illustrates the case where Theorem 2.1.14 is applicable but not
Theorem 2.1.11.

Example 2.1.16. Let T: R> — R be given by

Tx = (VX1X3, 1 + x5, X3) for x;>0,x,>0,x3>0
(min{x;,x,}, 1, min{x,,x5}) for x;=0 or x,=0 or x;3=0.

The operator T is concave but we do not have Tx > O for x 2 0. Thus, Theorem 2.1.11
is not applicable. Indeed, Tx = Ax has no solution with x > 0 and A > 0. According
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to Theorem 2.1.14, however, there must be at least one solution x 2 0, A > 0. Indeed,
there are three solutions of this kind namely (for the sum-norm)

A=1 with x=(0,1,0)

and

1++/5 1 1 1 1
A= with x=(—, - 0)0r(0,—,—)
2 A2 A A7 A2
By Lemma 2.1.13 the operator T has to be continuous in the interior of ]Rf. T is, how-
ever, not continuous on the whole of IRz, e.g. in none of the above eigensolutions T is
continuous.

Remark 2.1.17. The concave Perron—-Frobenius theorem applies in particular to linear
self-mappings given by non-negative matrices, yielding the existence of a (maximal)
non-negative eigenvalue (see also Section 2.4 below). This existence can be obtained
very easily also as a consequence of Brouwer’s fixed point theorem. (Another approach
isdeveloped in [19, 66].) The latter theorem for arbitrary but continuous mappings was
used also by the economists Solow and Samuelson and, later on, for a more general
model, by the economists Morishima, Nikaido to study what seems to be the first non-
linear version ever of the Perron-Frobenius Theorem ([43, 47, 62]; for an approach em-
ploying differentiability and the Kuhn-Tucker theorem see [44]). Observe, however,
that in Theorem 2.1.14 the self-mapping need not be continuous on the whole cone.
Indeed, Example 2.1.16 exhibits a case where the concave Perron—Frobenius theorem
guarantees the existence of a (maximal) non-negative eigenvalue which cannot be ob-
tained from Brouwer’s fixed point theorem. (In addition, Theorem 2.1.14 is constructive
in that it rests on induction and iteration.) In the recent monograph [37] selfmappings
are examined which are monotone with aTx < T(ax) for a € [0, 1] and, hence, are
more general than concave ones.

Exercises

1. Find a (vector) norm on R" which is not monotone and depict its unit ball.

2. Letd be Hilbert’s metric on K for K = RY.
(a) Show that
d(xy) = —log(A(x,y) - A(y, x)),

where A(x,y) = sup{d € R, | Ax <y} forx,y eIQ(.
(b) Describe geometrically the balls for d.
(c) For the case n = 2 show that %d(x, y) equals the area determined by the rays
R,x, R,y and the standard hyperbolau -v = 1.
3. Consider the operator T: R? — R? given by Tx = (1 + x;, 1).
(a) Compute all eigenvalues A € R with Tx = Ax,x 2 O.
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(b) Show that forall k € N .
TX + TK,
(c) Compute the smallest contraction constant ¢ > O such that

d(Tx, Ty) < cd(x,y) for all x,y in the interior of lRf.
4. Consider the operator T: R — R? given by

T = (Xq + x3,x,) for x;>0,x,>0
0 for x,=0 or x,=0.

(a) Show that T is concave.

(b) Determine all points in which T is not continuous.

(c) Find all solutions x* € R? ~ {0}, 1* > 0 of the eigen equation Tx = Ax.

(d) Check whether the unique solution (x(k), A (k)) of the eigen equation T'(k)x =
Ax for T(k)x = Tx + (1,...,1), where x(k) € R, [x(k)|| = 1 (|| - | max-norm),
A(k) > 0, converges to a solution (x*,A*) of Tx = Ax.

5. LetT: R? — RZ? be given by Tx = (x; + X5, X;).

(a) Show that T?x > 0 for all x 2 0and T* = Tk forall k € N.

(b) Show that ,}Lr{)lo IT"x|"*T"x = x* forall x 2 O, where | - || is any monotone
norm and x* uniquely determined by the conditional eigenvalue problem Tx =
Ax, xz0,]lx| =1, A = 0.

(c) Obtain from (b) that for the Fibonacci sequence (f,), given by f,.o = fo1 + fa
for n € Nwithf, = f; = 1 it holds that

6. Let T: R? — R? be given by Tx = (/X + /X5, \X7)-
(a) Show that T?x > O forall x 2 0 and T = T* for all k € IN.
(b) Show that
nll)Igo 1T "1 T"x = x* forall x 2 0,

where | - || is any monotone norm and x* uniquely determined by the condi-
tional eigenvalue problem Tx = Ax,x 2 O, |x]| = 1,A > 0.
(c) Derive from (b) that
Jlim T'x = xforallx 2 0,

where X is the unique solution of Tx = x, | x| = 1 for some suitable monotone
norm | - ||.
(d) Obtain from (c) that the root Fibonacci sequence (r,), given by r,,, = \/Toq +

\/\/_r—,, converges for arbitrary (r,,7;) 2 O to the same limit 7 and compute 7.
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7. Let T be a selfmapping of R” given by
n
Tx=Yagp(x), l<i<n
j=1

where A = (a;) > 0 and ¢ is a continuous selfmapping of R, with ¢ (r) > 0 for
r> 0.
(a) Show that for each a > 0 the conditional eigenvalue problem

Tx =Ax,A >0,x € RY, x| =a (||| any norm)

has at least one solution.

(b) Show that for ¢p concave the solution of the conditional eigenvalue problem
in (a) is unique (for each a > 0).

(c) Find a function ¢p and a > 0 such that the conditional eigenvalue problem in
(a) has two solutions (A, x), (u,y) with A # p,x # y.

8. Let C be the convex cone of all concave selfmappings of R, and let D be the set of

differences from C restricted on the fixed interval [a, b] for 0 < a < b.

(a) Show that D is a linear subspace of the space C[a, b] of all real valued contin-
uous functions on [a, b] which separates the points of [a, b] and contains the
constant functions.

(b) Show that for f in D the function |f| defined by |f|(x) = |f(x)| belongs to D.

(c) Apply the Stone-Weierstraf3 theorem to obtain that D is dense in C[a, b] with
respect to the supremum norm.

(d) Conclude that the convex cone C is not finitely generated whereas the convex
cone of all linear selfmappings of R, has just one generator.

2.2 Indecomposability and primitivity for ray-preserving concave
operators

The two kinds of iterates 7% and T which are different in general turn out to be equal

if the operator T maps rays into rays. As before by K we denote the cone R7.

Definition 2.2.1. The operator T: K — K is homogeneous of degree d for d € R if
T(Ax) = A%Tx forall xeKk, al A>0 and TO=0.

T is positively homogeneous if it is of degree d = 1.
T is ray-preserving if for every x € KandA > O there existssomeA’ = A'(x,A) > 0
such that
TAx)=A'Tx and TO =0.

Geometrically, T ray-preserving means that T mapsaray R, x: = {Ax|A € R,}intoa
ray again, namely into the ray R, Tx.
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Examples 2.2.2. (i) T: K — K, K = R, Tx = Ax, A anon-negative n x n-matrix. T is
positively homogeneous.
(i) T: R? — R?, Tx = (XX, X,), is not linear, (i.e., not of the type in (i)) but it
is still positively homogeneous.
(iii) T: R? — R?, Tx = (yX;, +/X;) is ray-preserving with A'(x,A) = VA but it is
not positively homogeneous.
(x1,X%5), Xy <X,
(VX V) Xg > X,
A, X<,
VA, Xy > X,

(iv) T: ]Rf — lRf, Tx = {

TAx) = A" (x,A)Tx where A’ (x,1) = {

does depend on both, A and x.

(v) T: R2 — R?, Tx = (X7, X, ) is not ray-preserving; it maps the rays R, (1,0)
and R, (0, 1) into itself but destroys all other rays. The mapping T: R?> — R?
Tx = (1 + x4, 1) does not map any ray at all (+ {0}) into a ray again.

Definition 2.2.3. For T: K — K and | - | a norm on R" the operator T |- defined by

Tpyx = ||x||T"§—|| for x+#+0 and T,0=0

is the homogenized operator for T.

It follows directly from the definition that T}, (Ax) = AT, x forall x € K, A € R, and,
hence, the homogenized operator is always positively homogeneous. E.g., for the self-
mapping of R? given by Tx = (1 + x;, 1) the homogenized operator for the sum norm is

2 1
1 1

X
T""X = (Xl + Xz)TX

=(2x] + X3,X] +X5) =
1+x2(1 22X 2)[

] x  (x acolumn vector),
which is even linear. (See also Exercise 1.) It may happen, however, that a concave
operator when homogenized remains no longer concave whatever norm is choosen.
(See Exercise 2.) Because of

X X

T,.x =Ax ifandonlyif T =
I YR T

the eigenvalue problems for T and T, correspond to each other. In the next lemma
also the dynamics of T and T}, will be related.

Lemma 2.2.4. Let T: K — Kand | - || be a norm on R".
(i) IfTis ray-preserving and x € K such that Tx + 0 for all k € N then

(T)*x = (Tx  forall ke N.
(ii) If Tx # O for all x + O then

(T, )kx = T forall xeK with x| =1.



34 — 2 Concave Perron-Frobenius theory

Proof. (i) For x fixed we prove the equality by induction over k.

For k = 1, the assertion is trivial. Suppose (T)kx = (TT‘)X for some k > 1.

Since (T¥)x = "ﬁ’;" # 0 we have that (T)*x # 0. Therefore (T)**'x is defined and
by induction hypothesis

k

_ T((T)kx) _ T(";ki")
IT(TYOI 1T(-Z2))

IT%x1

(T)'x = T((T)*x)

For T ray-preserving there exists some A’ > 0 (possibly dependent on k and x) such
k
that T(:5%) = A'T(T*x) = A'T*'x. Thus

IT%x]

(T)kﬂ _ Aer+1X _ Tk+1X
IVT* ] T x|

= (TFL)x.

(ii) We have that T;x # O for all x # 0 because of Tx # O for all x # 0. Therefore
(T”A")kx # 0 for all x # 0 and by positive homogeneity of T}, if follows from (i) that

(T, x = Wx for x €K\ {0}.

By definition of T}, Tjyx = Tx for |x|| = 1. Therefore, T, and T coincide on {x € K |
[Ix|l = 1} which implies the equality of (m)k and T¥on {x e K | |Ix] = 1}.
Putting together we obtain the equality of (T "_")k andTFon{xeK||x|=1}. O

Remark 2.2.5. Using Lemma 2.1.9 (ii) we may reformulate the convergence statement
(2.1.4) of Theorem 2.1.11 also as

(T _ .
o =X forall x e K\ {0}.
k—oo | (T )
This statement does not hold in general given the assumptions of Theorem 2.1.11, if T,
is replaced by T as we have seen from the example Tx = (1 + x;, 1). If T is assumed to
be ray-preserving, however, by Lemma 2.2.4 (i) T),; may be replaced by T in the above
convergence statement.

Definition 2.2.6. T: K — K isindecomposable if for any indexset@ ¢ I ¢ {1,...,n}
(n = 2 given) there exist indices i € I, j ¢ I such that T;e; > 0. (T; the i-th component
map of T, e; € K the j-th unit vector.)

T: K — K is weakly indecomposable if for any indices 1 < i,j < n there exists
some p = p(i,j) € N such that Tf’ej: = (T”)iej > 0.

Lemma 2.2.7. Let T: K — K be ray-preserving and monotone. If T is indecomposable
then T is weakly indecomposable.

Proof. (1) Forl1<j<nletl;={l1<i<n| Tf’ej > 0 for some p € IN}. We show that for
T ray-preserving and monotone we must have that for arbitrary indices i, j, k

iel; and jel imply i€l (*)
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For this, suppose Tf’ e; > 0 and T)f’ek > 0 for some p,q € IN. T}?ek > 0 implies
Tie, > ce; for some ¢ > 0 and, hence, e, > T (ce;). Since T is ray-preserving it
follows by iteration that T (ce;) = c(p) T”e; with some c(p) > 0. Thus, T?*%e, > c(p)T”e;
and by assumption T} "?e; > c(p)T} e; > 0. This proves ().

(2) Suppose T is indecomposable and i and j are given indices. Because of n > 2
we have that I; # 0. Suppose that I; # {1,...,n}. Applying the definition of indecom-
posability to I = {1,...,n} \ Jj there exist k € I,1 ¢ I such that Tie; > 0 and, hence,
k € I,.Sincek € [;andl € I;it follows from (x) of step (1) that k ¢ I - which contradicts
k € I. Therefore, we must have [; = {1,...,n} and i € I, O

Remarks 2.2.8. (1) Lemma 2.2.7 fails if T is not monotone or not ray-preserving (see
Exercise 3).

(2) In contrast to the linear case (see below) it may occur that an operator T, even
if it is positively homogeneous and concave, is weakly indecomposable but not inde-
composable. Consider T: R? — R Tx = ({5, X; + X5 + X3, X; + X5 + X3). T
is positively homogeneous and concave (and, a fortiori, monotone). T is weakly inde-
composable because T;e; > 0 for2 <i < 3and1 <j < 3 and, since Tox = X1 + X, +
X3, Tfej > 0for 1 <j < 3. Tis, however, not indecomposable because T;x = /X, X5
implies T;e; = 0 for 2 <j < 3.

Definition 2.2.9. T: K — K is primitive if there exists p € N such that T"x > 0 for
allm > pandall x € K\ {0}.

Lemma 2.2.10. Let T: K — K be ray-preserving and monotone. If T is weakly inde-
composable and there exists some h such that Tye;, > O then T is primitive.

Proof. Since T is weakly indecomposable there exists p;; € N such that Tf"" e; > Oforall
1<i,j<n. Letp = 2qwith g = max{p;; | 1 < i,j < n}. For c = Tye;, obviously Te, > ce,.
Since T is ray-preserving for any givenr, s € IN there exist constants ¢’,c”, ¢’ > 0 such
that

T*(cey) = T'(T°(cey)) = T'(c'T’ey) > T'(c"ey) = """ T'ey,

and, hence,
T"%(ey) = ¢T'e, with ¢> 0.

If m > q it follows with r = p;, and s = m - p, that T"(e,) > ¢T""e, and, hence,
T"(ey) > cT ey, > 0.
Thus we obtain

T"e, >0 forall mz>gq. (%)
On the other hand, Tf""ej > 0 implies T"ve; > c(j)e, with c(j) > 0. Form > p =

2g,m' = m - py; it follows that

T"e; = T’"'(Tp'v'ej) > 7" (ctiey) = c(j)'T’”/eh with  c(j)’ > 0.
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Since m' = m - py; > m - q > q by (x) we have
T"e;>0 forall 1<j<n.

If x € K\ {0} then there exists an index j such that x > x;e; with x; > 0. The above then
implies T"x > x; T™e; > 0 forallm > p, i.e., T is primitive. O

The above Lemmas and the concepts involved are extensions from the linear case
of non-negative matrices to certain non-linear situations. A non-negative matrix A =
(@i)1<ijen- @ 2 Oforall 1 < i, j < nis called indecomposable (or irreducible) if for
any indexset® ¢ I ¢ {1,...,n} there existi € I, j ¢ I such thata; > 0. It is well-
known (cf. [61]) that a non-negative matrix is indecomposable iff for any two indices i
and j there exists a p = p(i, j) such that the (i, j)-entry of the matrix power AP is strictly
positive. Therefore, for linear operators Tx = A - x, x being a column vector, it is not
necessary to introduce the notion of weak indecomposability. We have seen, however,
that for non-linear operators the two notions do not coincide. A non-negative matrix A
is called primitive if some power of A is a strictly positive matrix. Thus, in the matrix
case Lemma 2.2.10 states that a non-negative and indecomposable matrix is primitive
provided that there is at least one strictly positive element on the diagonal of A. The
latter condition cannot be omitted as can be seen from the simple example A = [ 1 ].

In the literature concerning non-linear extensions of the Perron—Frobenius the-
ory there occur several different notions extending those of indecomposability and
primitivity of matrices (cf. [28, 32, 42-44, 46, 47, 50, 51]). Dealing with continuous
selfmappings T: K — K which are monotone and positively homogeneous, M. Mor-
ishima and H. Nikaido introduced the following notions [42, 43, 46, 47]. Call T MN-
indecomposable (indecomposable in the sense of Morishima and Nikaido) if for any
indexset0 ¢ I ¢ {1,...,n}and any x,y € K with x; = y; foralli € I and x; < y; for all
j ¢ I it follows for some k € I that T\ x # T,y. Furthermore, T is globally primitive if for
every x € K there exists s = s(x) > 1 such that x § y for y € K implies that T°x < T%y.

If T is linear then T is MN-indecomposable iff T is indecomposable, and T is glob-
ally primitive iff T is primitive and, hence, the notions coincide with the ones above
for the linear case. In general, however, the notions are quite different. In particular,
it is easy to give examples, even for T continuous, monotone and positively homoge-
neous, where T is indecomposable and primitive but neither MN-indecomposable nor
globally primitive (see Exercise 8).

Another extension of the concept of an indecomposable matrix to monotone and
homogeneous (of degree 1) mappings is made by S. Gaubert and J. Gunawardena in
[18]; see also [37]. (A monotone homogeneous mapping need not be concave and the
latter need not be homogeneous.) In [18] and [37] a graph G(T) associated to T is re-
quired to be strongly connected which, in case of a matrix, is equivalent to indecom-
posability. If T is indecomposable in the sense of Definition 2.2.6 then G(T) is strongly
connected but not the other way round (see Exercise 9). In [18] and [37] a generalized



2.2 Indecomposability and primitivity for ray-preserving concave operators = 37

Perron—-Frobenius Theorem is proven for monotone and homogeneous mappings un-
der the assumption that G(T) is strongly connected. This theorem provides even an
eigenvector in the interior of R}. Later on, when dealing with ascending operators, we
will obtain as a particular case an extension of the above theorem to monotone and
subhomogeneous mappings (see Corollary 5.2.5 part (ii)(b)).

Now we are ready to prove a refined version of the Concave Perron Theorem in
which for a ray-preserving operator the positivity assumption is weakened and the
conclusions are strengthened at the same time.

Theorem 2.2.11 (Second Concave Perron Theorem). Forany concave operatorT: K —
K which is ray-preserving, weakly indecomposable with T,e,, > O for some 1 < h < n the
following properties hold (|| - || being an arbitrary monotone norm on R"):

(i) Theeigenvalue problem Tx = Ax withA € Randx € K\{O} has a solutionx = x* > 0
with |x*|| = 1LandA = A~ > 0. Moreover, for any solution (x,A) € K\ {0} x Rx = rx*
forsomer > 0and A > 0. If, in addition, T is positively homogeneous then A = A*.

(ii)

T*x

lim =x" forall xeK~{0
iemeo [ T F ~

(Convergence with respect to || - || ). This statement is equivalent to

(Mx _ X

koo (TH)x Z

forall xeK~{0}, all 1<i, j<n

Proof. We first prove the second part of the Theorem.

(ii) By Lemma 2.2.10 T is primitive (as already remarked, a concave operator has
to be monotone). Hence, there exists p € N such that for S = TP we have Sx > 0 for
all x € K\ {0}. Since any iterate of a concave operator is concave again we can apply
Theorem 2.1.11 to S to obtain

lim §x =x* forall xeK~ {0},

k—o00

wherex* > 0, |x*| = 1. Since any iterate of a ray-preserving operator is ray-preserving
too, by Lemma 2.2.4 we have that

SK—Sk=Thw forall keN.

Therefore,
T
lim ——— =x"forallx € K ~ {0}. (%)
k—oo || T*x|
Considerx = T'yfory e K~{O}and 1 <i < p.Ifx = Othen TPy = TP"'x = TP0 = 0
since T is ray-preserving; this, however, contradicts the primitivity of T and we must
have x = T'y # 0. Applying () to starting points x = T'y yields

~N .
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Obviously, this implies

1
1m —.
m—oo (T™M )].X X;

(Tx X

Conversely, the latter, for some x* > 0 with ||x*| = 1, implies

1

n n
Z(T’"))X z x*
1 1)

. (T™);x x;
lim — & =
m—o00

or, | - | denoting the sum-norm,

. T™ x*
lim = .
m—oo |[TMx|  |x*|

Since || - || is continuous it follows

. IT™X| 1
lim = >
m—oo |TMx|  |x*|
and, hence,
T"x .

lim =X
m—oo || TMx|
This proves part (ii) of the theorem.

(i) From Theorem 2.1.11, part (i), we also have that Sx = uxwithx € K, x| = 1, u €
Riff x = x*. Since T is ray-preserving and Tx" # O we have that

*

Tx
T

S(llg*H) —pT? X" = pT(Sx") = pT(ux*) = x
wherep >0, x > 0.

It follows that "g:" = x" and, therefore, Tx = Axhasthesolutionx = x* > 0, ||x*| =
1,A=A"=|Tx"|| > 0.

Suppose Tx = Ax with x € K~ {0}, A € R. By the primitivity of T we have A =
IxI~ 1 Tx|l > O and, therefore, Sﬁ = T”";‘—" =pTPx = Kﬁ withp > 0, k > 0, which
implies ﬁ =x".

If, in addition, T is positively homogeneous then Tx = A x implies

A(lIxIx™) = T(lIxllx™) = x| Tx*
andA = A" = | Tx"|. (|

The following remarks will illustrate that none of the assumptions in Theorem 2.2.11
can simply be omitted.

Remarks 2.2.12. (1) It is clear from part (ii) of the proof of the Theorem that weak
indecomposability and T,e, > O for some h was used to get the primitivity of T by
Lemma 2.2.10. Hence the Theorem remains true if these conditions are replaced by
that of primitivity.
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(2) The identity map T: K — K satisfies all assumptions of Theorem 2.2.11 with
the exception of weak indecomposability. Since none of the conclusions of Theo-
rem 2.2.11 does hold for the identity map the assumption of weak indecomposability
cannot simply be omitted.

(3) The map T: R? — RZ%, T(x;,X,) = (x,,X,;) satisfies all assumptions of the
Theorem with the exception that T, e, = O for all h. Whereas conclusion (i) of the The-
orem holds for this map, conclusion (ii) does not hold. Thus, the assumption T,e;, > 0
for some h cannot simply be omitted.

(4) For the map T: R} — R?, T(x;,X;) = (1 + xy,1) it holds that Tie; > 0 for
all i,j. Therefore, T satisfies all assumptions of the Theorem except that T is not ray-
preserving. Considering conclusion (i), Tx = Ax for (x,A) € (K \ {0}) x R is equivalent
tox = x(A) = ((A = 1)"5 A7) for arbitrary A > 1. Hence, all solutions belong to
different rays, in contrast to (i). In Example 2.1.15 we have already seen that for all
x € K the sequence of || TkX||_1 T*x converges to (1, 0) for k — oo which is not a solution
of the eigenvalue problem. Thus, conclusion (ii) of the Theorem does not hold in this
case. Thus, none of the conclusions (i) and (ii) holds in this case, showing that the
assumption of T being ray-preserving cannot simply be omitted.

(5) Themap T: R?> — R?, T(x;,X,) = (vX; + VX35> VX, + +/X;) does satisfy all
assumptions of Theorem 2.2.11. Hence, for any solution (x,1) € (K\ {0}) x R of Tx = Ax
it holds that x = rx* for some r > 0 and A > 0; for the sum-norm one has x* = (%, % .
The value of A, however, is not uniquely determined. Indeed, for any A > O one has
Tx(A) = Ax(A) with x(A) = Sx".

Thus, in contrast to the linear case, a non-linear self-mapping of the standard cone
in n dimensions may have more than n eigenvalues — it may even be a continuum. In
case the self-mapping is monotone and positively homogeneous, however, there are
only finitely many non-negative eigenvalues. (Cf. Exercise 7.)

The following example meets all the conditions appearing in Theorem 2.2.11.

Example 2.2.13. Let T: R> — R? be defined by T(x;,x;) = (4x; + 2x, +
VX1X,, min{x; + X,,2x;}). Obviously T is concave and even positively homogeneous.
Furthermore, Te; = (4,1) and Te, = (2,0). To check weak indecomposability we cal-
culate Tze2 = T(2,0) = (8,2). Thus, T is weakly indecomposable and T,e, > O for
h = 1. Solving the eigenvalue problem means to find x € IRE \ {0} and A such that

4x1 + 2x, + XX, =Ax; and min{x; + x,,2x;} = Ax,. (%)

Obviously, we must have x; > 0 and x, > 0.

Suppose first that 2x; < x; + x,, i.e., x; < x,. The second equation then becomes

X, = %xz and putting this into the first equation we obtain 24 + 2 + "5 = "2—2 and,

hence, in particular 2 < g, thatis A > 2. This, however, contradicts x; < x,. Thus,
this case is impossible and we must have that 2x; > x; + x,, i.e.,, x; > x,. From (x)
we obtain x; + x, = Ax,,ie,x; = (A -1)x,,and4A -1) +2 + VA-1=A(A -1)
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which equation we have to solve for A. Putting u = VA -1 the equation becomes

u* = 3u® —u — 2 = 0. By inspection we find a root u* = 2 and conclude that all

other roots must satisfy y> + 2u® + u + 1 = 0. Thatis, u* = 2 is the only positive

root and hence we must have that1* =1 + u = s, Employing the sum-norm, from
4 1

x; = (A" =1)x, = 4x, weobtainx" = (3, z). The Theorem yields the stability statement

(ii) which is not easy to verify directly due to the non-linear character of T.

The above Theorem 2.2.11 holds also for certain operators which are not necessarily
concave, provided that the relative magnitudes behave like those of a concave opera-
tor. More precisely, we have the following consequence of Theorem 2.2.11.

Corollary 2.2.14. Suppose T: K — K is an operator as in Theorem 2.2.11 and define
Rx = r(x)Tx wherer: K — R, with r(x) > O for x + 0. Then statements (i) and (ii) of
Theorem 2.2.11 hold also for R with a solution (y*,u ™) linked to that of T by y* = x* and
ur=r("A.

Proof. For the rescaled operators we have that Rx = ”g—i" = ";—i" = Tx for x # 0. Fur-
thermore, for A > 0 we have
!
ROX) = rA)T(Ax) = rAon T = ’(ﬁ(xx))" Rx,

that is, R is also ray-preserving. By Lemma 2.2.4

R*x —~ - ~ = T*x

T=kzkzkzkxzT

IR x| | T*x||
and part (ii) of Theorem 2.2.11 gives klim % = x* for all x € K ~ {0}. Furthermore,
Rx* =r(x")Tx* = r(x")A*x* = u*x* withu* = r(x*)A*. If Ry = uyy withy € K ~ {0} and
u € Rthen Ty = r(y) *uy and y = rx* for some r > 0 by part (i). O

Simple examples of non-concave operators of the type admitted in Corollary 2.2.14 can
be obtained from linear operators by choosing

n n
r(x) = (Z al-x,-) 1(2 bl-xi)
i=1 i=1
with certain positive weights a;, b;. It is, however, easy to construct non-concave op-
erators which are not of the type considered in Corollary 2.2.14 but satisfy all other
assumptions appearing in Theorem 2.2.11 and for which none of the conclusions of
Theorem 2.2.11 does apply. (Cf. Exercise 6.)
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Exercises

1. LetT: K — K, Tx = Ax + a be affine-linear (cf. Example 2.1.5, K = R}).
(a) Find a norm || - | such that the homogenized operator for T is linear.
(b) Use (a) to describe the unique solution (x*,A*) of Tx = Ax, x e K, ||x]| = 1, A €
R in terms of matrices.
(c) Tlustrate (a) and (b) for the special case T: R? — R?, Tx = (1 + x;, 1).

2. Find a concave operator T: K — K such that for all norms || - | the homogenized
operator T} is not concave.

3. Find for each of the following cases an operator T which is indecomposable but
not weakly indecomposable.
(a) Tis monotone but not ray-preserving.
(b) T is positively homogeneous but not monotone.

4. LetT: RT — R7 be defined by

n
Tx = (in,xl,xz,...,xn,l).

i=1

(a) Show that T is primitive.
(b) Calculate the primitivity index of T that is the smallest p € IN such that T’x > 0
forall x € R} \ {O}.

5 Let T: R? — R? be defined by

Tx - (2xy + X5, 3% +x,) for x; <x,
(X1 + 2x5, x5 +3xy) for x; >x,.

(a) Show that T is concave, positively homogeneous and weakly indecomposable
with T,e;, > 0 for some h.

(b) Use Theorem 2.2.11 to calculate a solution (x*,A*) of Tx = Ax,x € lRf, x|l =
1, A € R(]| - || being the sum-norm) and show that it is unique.

(c) Illustrate the statement klim % = x* by means of computer simulations for
—00

some particular values of x € ]Rf ~ {0}.
6. Construct an example of an operator S: IRE — IRE which is positively homoge-
neous with Sx > 0 for x € IRf ~ {0} and which is not of the form Sx = s(x)Tx for T
concave and for which none of the conlusions (i), (ii) of Theorem 2.2.11 holds true.

7. [43] Let T be a self-mapping of R} that is monotone and positively homogeneous.
Show that T has only finitely many non-negative eigenvalues (with non-negative
eigenvectors).

8. Let T be a selfmapping of K.
(a) Show that for T with TO = 0
— globally primitive implies primitive,
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(b)

(0

— MN-indecomposable, positively homogeneous and convex implies inde-
composable.

Show that for T positively homogeneous and concave

— primitive implies globally primitive,

— indecomposable implies MN-indecomposable and this implication can-
not be reversed.

Find a continuous, monotone and positively homogeneous selfmapping of lRf

which is indecomposable and primitive but neither MN-indecomposable nor

globally primitive.

9. LetK = R! and T:f( - f(.Foru > 0,1 <j < n, define u(j) € Io(byu(j)i = uif
i = jand u(j); = 1, otherwise. Let G(T) the graph with vertices 1,2,...,n and an
arc from i to j if ulLIg) Tu(j) = co. G(T) is strongly connected if there is a directed
path between any two distinct vertices. (Cf. [18, p. 4932] and [37, p. 131].)

(a)

(b)

(0

Let T be a monotone and homogeneous (of degree 1) selfmapping of K which

is indecomposable ( Definition 2.2.6). Show that T maps K into itself and that
G(T) is strongly connected. Find a monotone and homogeneous selfmapping

T of K, mapping K into itself, for which G(T) is strongly connected but T is not
indecomposable.

Let T be a selfmapping of K for which G(T) is strongly connected. Suppose
Ax < yimplies ATx < Ty, where A € [0,1],x,y € K. Prove the following
property for T: Toc > O given there exists¢ > Osuchthatfore = (1,...,1) € K

and each x € K with |x|| = 1 for the [;-norm | - |
Tx < cx implies x < ¢A (e, x)e. (%)

(Cf. [18] for arguments in a topical framework and [37, pp. 131/132].)
Let T be a continuous selfmapping of K mapping K into itself and such that
Ax < yimpliesATx < Ty(A € [0,1],x,y € K). Show that property (*) in (b)

implies that for each ¢ > 0 the set {x € f( | Ixll = 1, Tx < cx} is closed for the
l,-norm || - |.

2.3 Concave operators which are positively homogeneous

Dealing with concave operators T: K — K for K = R in this chapter, until now we
obtained two concave versions of Perrons theorem. In the first version, Theorem 2.1.11,
we obtained a convergence result for the iterates of the normalized operator T by
assuming a strong positivity assumption, viz. Tx > 0 for x 2 0. This assumption
was weakened in the second version, Theorem 2.2.11, which gave us the convergence

T x
of —=
I T%x]

by assuming that T is ray-preserving. Now we will strengthen the latter as-
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sumption to positive homogeneity to obtain convergence results which are much more
pleasant.

Theorem 2.3.1. LetT: K — K be concave, primitive and positively homogeneous. Then
there exist A* > 0 and x* > 0, ||x*|| = 1 such that the solutions (x,A) € K x R of the
eigenvalue problem Tx = Ax are given precisely by x = rx* forsomer > 0andA = 1™
The solution (x*,A ™) has the following properties:

(i) Foreach x € K the limit Sx: hm Akk exists (with respect to | - ||) and defines a

mapping S: K — R, x* which i lS concave and positively homogeneous with Sx > 0
for x z 0. Furthermore, the mapping S satisfies the equations ST = TS = A*S and
S§S=SonKk.

(ii) For any x % O there holds

Ty , 1
" ” = lim [T * =2
k—o00 ||TkX|| k—o00

Proof. We will apply Theorem 2.2.11 (cf. Remark 2.2.12 (1)). From this we get x* and
A*, where by positive homogeneity A is uniquely determined because Tx = Ax implies
that rTx* = T(rx*) = A(rx*) and, hence, A = |Tx*|| = 1".

(i) From Theorem 2.2.11 we have for fixed x % O that hm I'x

N g = = x*.Sincex* > 0

to € > 0 given, there exists N(e) such that
(1 -9l xx* < T'x < (1 + &)|T*x|x* forall k> N(e).

Applying T to these inequalities, yields by monotonicity and positive homogeneity of
T that

1 -)ITIN X" < T < (1 + )|IT*xIA %" forall k>N(e), all leN.

Combining these two sets of inequalities, yields

1-e\Tx _ T 1+e)\ T
(1+s)}l*kgil*(k+’>£(l—s)}l_*k forall k>N(), all leN. (x)

Setting x;, = /1 =X, (*) means that

l—sx <x <1+ex
11 ok =Xt = 7 %k
and by the monotonicity of | - || it follows that
Pt =350 < Pt = =S+ —= g
ket =Xl < Weer = Xl 4 I
1l+e 1-¢
< X X
(155 - 1) bl + bl

< 16£2||ku| forall k>N(e), all leN.
—&



44 — 2 Concave Perron-Frobenius theory

This shows, in particular, that the sequence (x;), is bounded in K for | - || and, hence, it
must bea Cauchy sequence for all | -||. Thus, (x;), converges to some element of K, that

is Sx: hm ;’k‘ € K forx 3 0and, trivially, SO = 0.IfSx 3 0 then X ||s i = lim T
Koo TR

and, therefore S: K — R,x". By definition S is concave, positively homogeneous,
and by primitivity of T, it follows from (*) that Sx > O for x % 0. Furthermore, S(Tx) =

_X*

AT hm /1 —5 = A"Sxand, because T is continuous on the interior of K by Lemma 2.1.13
we have for x 2 0 that T(Sx) = 11m T;k = S(Tx). Thus, ST = TS = A*S. From Sx* = x*

and S: K — R, x" it follows that SS =SonkK.
(ii) From (i) we have for x 2 O that Sx = 11m I'X and A*Sx = 11m

oo A* el 0o
ke
IT U _ ATISY _ g+
I~ I

T X which

implies lim
k—00

Finally, |Sx|| = hm 'T A for x 3 0 implies 11m("T "")k = 1, thatis hm ||T"x||k =

A, O
Remarks 2.3.2. (1) Without primitivity it may happen that for all x 2 0 11m "ﬁki’ﬁ”
and 11m ||Tk|| k exist and are equal but different from A * and that Sx = hm }f =X also

ex1sts for all x > 0 but S does not project on the one dimensional ray IR+x ThlS is the
case, e.g., for T being the identity map.

(2) Without primitivity it may also happen that conclusion (ii) of the Theorem
holds true but not conclusion (i). This is the case, e.g., for the mapping T ]Rf — IRf
defined by T(x;,x,) = (X5, x;). This mapping is concave, positively homogeneous and

indecomposable but not primitive. Tx = A x has the unique solutionA* = 1, x* = (%, %)
(up to a positive multiple for x*) and for any x 2 0 hm "”TTk ’l‘l" =1land klim ||Tkx||% =1.
k—o00 —00

The first statement, however, does not hold for all monotone norms, in contrast to the
second statement. The sequence (,{—tf) « does not converge for x = (x;, x,) with x; # x,.

(3) Without positive homogeneity it may happen that none of the conclusions (i)
and (ii) holds true, although all the limits do exist. For T(x;,x,) = (1 + x;, 1), which is
primitive but not even ray-preserving, I}erolo T klirr;o IT*x|x = 1 # A* (for the

I x|
sum-norm) for all x 2 0 and klim ;L’k‘ = 0 for all x > 0. Similar for the mapping
—00
T(x1,%,) = (VX; + /X3, vX; + X3) which is primitive and ray-preserving but not
positively homogeneous. (Cf. Exercise 1 below.)

Example 2.3.3. Let us look again at Example 2.2.13 with T(x;,x,) = (4x; + 2x, +
\VX1X,, min{x; + x,,2x;}). As we have seen already T is concave, primitive and posi-
tively homogeneous with A * = 5 and x* = (%, 2). In addition to what we obtained by

5°5
Theorem 2.2.11 we now ave by Theorem 2.3.1 that Sx = 11m T—kx = c(x) ( ) forxz 0

and some c(x) > 0. That is, for every starting point x 2 0 the path k — T*x grows
with the factor 5. In particular, the only bounded path is the trivial one staying at O.
To determine the mapping S one has to calculate c(x) which, however, is not an easy
task. By Theorem 2.3.1 the mapping c(-): R? — R, is concave and positively homo-
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geneous. To determine c(-) we also have the useful property that c(Tx) = 5c(x), for all
x > 0, which follows immediately from STx = A *Sx. For T linear c(-) also must be linear
and can easily be computed from T as we shall see in the next section. (Cf. also Exer-
cise 4 below.) In the above example, however, c(-) cannot be linear as the following
considerations show. From Te, = 2e, we get 2c(e;) = c(2e,) = c(Te,) = 5c(e,). Linear-
ity of c(-) would imply that c(re, + se,) = rc(e;) + sc(e,) = (r + %s)c(el) forallr,s > 0.
But we have for r = 4 and s = 1 that c(4e, + e,) = c(Te;) = 5¢c(e;) # (4 + %)c(el).

As remarked already, Theorem 2.3.1 ceases to hold if the assumption of positive ho-
mogeneity is omitted. Also, it is not enough to replace the latter assumption by homo-
geneity of degree d for d + 1. It follows easily, however, that for 0 < d < 1 the iterates
of T itself converge as the following Corollary shows.

Corollary 2.3.4. Let T: K — K be concave, primitive and homogeneous of degree d
with 0 < d < 1. Then the fixed point equation Tx = x has a unique solution x* in
K ~ {0}. Moreover, x* > 0 and lim T*x = x* forall x € K ~ {0}.

k—o00

Proof. Obviously, T is ray preserving and by Theorem 2.2.11 (cf. Remarks 2.2.12 (1))

there exist x > O, ||X]| = 1, A > 0 such that Tx = Ax. Furthermore, Tx = Ax for
x %z O implies x = rx withr > 0Oand A > 0. For x* = AT it holds that x* > 0 and
Tx* = AT Tx = A79A% = x*.

Concerning uniqueness, suppose Tx = x for x z 0. It follows that x = rx withr > 0
and, hence, r‘Ax = rx. Therefore, r = A = and x = x*. Moreover, by Theorem 2.2.11 (ii)

it holds for x 2 O given that klim % = x and, hence, to € > 0 there exists N(¢) such
—00
that

(1 - )Tl < T'x < (1 + )| T*x||)x forall k= N(e).

Applying the monotone mapping T to this inequality [ times gives
T((1 - o)IT*xI%) < T"'% < T'((1 + &)IT*x|x) forall k> N(e).

For any given A > 0 induction over [ yields
. -1
T'(Ax) =A%A*"% with s() =Y d for I>1.

i=0
By assumption 0 < d < 1 and we obtain llim T'Ax) = A Tax = x* for arbitrary A > 0.

Thus, from the inequalities we obtain x* < lim T < x* forallk > N (e) and, hence,

-0
klim T*x = x*. a
Example 2.3.5. Let T: R2 — R? be given by T(x,x,) = (min{3 vX; + VX3, 3 X7 +
%\/x_z}, 2X + X3). Obviouslyll, T is concave and Tx > O for x 2 O, i.e., T is primitive.
Furthermore, T(A(x;,x,)) = A2T(x;,x,) and T is homogeneous of degree d = % By
Corollary 2.3.4, therefore, lim T*x = x* for any x 2 0. To compute the unique fixed

k—o0
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point x* of T consider for x % 0 the equation Tx = x, that is min{$ \/_ NIoHE Vool
2\/_} = x1 and 2/X; + /X, = X,. Suppose x; < x,. It follows that —\/_1 + 4\/_ <
4\/_<5\/_+ \/_andz\/_+4\/_ x;. This implies x, = 2/x7 + VX, = 4x;
and 4x; = 2/X] + \/4x; = 4x;. Thus, x; = 1 and x, = 4, thatis x* = (1, 4). (This we
infer from the uniqueness of the fixed point but one could argue also that Tx = x has
no solution for x; > x,.) Thus, we obtain lim Trx = =(1,4)forallx 2 0.

k—oo

Similarly as in the previous section, from Theorem 2.3.1 we obtain the following result
considering operators which are not necessarily concave.

Corollary 2.3.6. Suppose T: K — K is an operator as in Theorem 2.3.1 and define

Rx = r(x)Tx where r: K — R, with r(x) > 0 for x 2 0. Then the solutions (y,u) €

(K \ {0}) x R of the eigenvalue problem Ry = uy are given by y = rx* withr > 0 and

M =r(x")A*, where (x*,1") is the solution of the eigenvalue problem for T according

to Theorem 2.3.1. Moreover, the following statements hold.

(i) Ifr: K — R, is continuous on the interior of K with r(cx) = r(x) for all ¢ > 0, all
x € Kthenforallx 2 0

R1x . 1
IR i IRKx||F = r(x)A*.
k— o0 "RkX" k—o0

(ii) If, in addition to the assumptions of (i), r(Tx) > r(x) for all x € K then forall x € K

R*x

Sx: = lim ——
koo (r(x*)A* )

exists and defines a mapping S: K — R, x" with SR = RS = r(x")A *id and SS = S.
(iii) If, in addition to the assumptions of (ii), the non-negative sum Y 22, r(x*) - r(T*x)
is finite then S(x) > 0.

Proof. The statement about the solutions (y, u) is immediate from Theorem 2.3.1.
(i) From Rx = r(x)Tx it follows by induction, using positive homogeneity of T, that

Rfx = r(Rk_lx) ... r(Rx)r(x)Tkx for k>1, x eK. (2.3.1)

By the assumptions on r(-) and Corollary 2.2.14 one has

Kk k

hm r(R¥x) = r( ka ) r(lim ka ) =r(x").

[R*x]| k—co [|R*x||
Hence,
k+1 k+1
R i b - gim I ey

k—oo [|[RKx]| k—> oo | Tkx]|

Furthermore,

IR x| % = (r(Rk—lx) - r(Rx)r(x)) TR E. 232)
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Fora, = r(RkX) we just proved that klim a; = r(x") and, hence, to £ > 0 given there
—00
exists N = N(e) € N such thatr(x*) —e < a; < r(x") + eforall k > N. Thus, for k > N

v /N1 \E 1\ 1 N-1 \F v
(r(x*)—e)l‘?maf) S(Haf) S( “f) (roc) + o' %,
i0 i=0 i=0

which implies

k1 N\ k1 N\
r(x*)—e< ligglf(n al-) < limsup< Ha,-) <r(x*) + e

i=0 k—co  \ -0

Since ¢ > 0 was arbitrary chosen it follows that lim,Hoo(]'[f.‘;O1 al-)% = r(x*) and by

(2.3.2) therefore

k-1 X 1
lim R = li - lim 1T = re)A
Jlim IR x| kggo(ll:[ al) Jim T = r(e)
using the result for T from Theorem 2.3.1.
(i) Fora, = r(R*x) we have by (2.3.1) that a = r(T*x). The assumption r(Tx) > r(x)
for all x € K implies that a; < a,,, for all k and, using klim a, = r(x*) from step (i), we

obtain that a; < r(x*) for all k. This shows that

k-1
m [Tiso 4

u(x): = lim e

(2.3.3)

exists for all x € K. Putting together we obtain

. Rkx . H’fol a; Tkx . Trx .
Sx: = ]}LH;JW = klg(r)lo( r(lx*)" k) T u(X)kll»IEoW = u(x)c(x)x

by using Theorem 2.3.1 for T with c(x) > 0 for x 2 0. The remaining properties for S
follow as in Theorem 2.3.1.
(iii) We have to show that u(x) > 0 for x 2 O where u(-) is defined by (2.3.3). If

* k
Yoo T(X™) = r(T*x) is finite the same is true for Yoo % and, because of r(x) <

r(Tkx) for all k, we must have that Z,‘:ZO %{gk") is finite. Since r( T"x) <r(x*)forall k

and log(1 + t) < t for non-negative real numbers t we obtain

o ﬁ r(x") —ilo r(x") <§r(x*)—r(Tkx)

ro (T"%) ) o TrTx) & (T

and, hence, [, r'((;‘k;) must be finite. By the definition of u(-) therefore u(x) cannot be
zero, i.e., u(x) > 0. |

Example 2.3.7. Let T: RZ — R? be the linear operator defined by T(x;,x,) = (5x; +

2 2 1 . M2 : — X1+X5
3% 53X + 3X)and r: RY — R, be given by r(x;,x,) = i ] forx z 0 and
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r(0) = 0. The solution of the eigenvalue problem Tx = Ax is given by x* = (%, %)

(normed with respect to the sum norm) and A* = 1. Therefore, the solution of the
eigenvalue problem for Rx = r(x)Tx is givenbyy = rx*, r > 0, and p = r(x™")A* = 2.
Furthermore, r(-) is continuous on the interior of lRf, r(cx) = r(x) for c > 0 and

X, t X, X1 t X,

r(Tx) = = r(x).

max{3X; + 2x,, 3x; + 3x;}  max{x;, x,}

Thus, the conclusions of Corollary 2.3.6, parts (i) and (ii), hold. Obviously, the oper-
ator R is not concave; actually, none of the components of R is concave in any of the
variables. Considering part (iii) of the Corollary we have for x € R? withx; + x, = 1
that max{T,x, T,x} = 3 + 3 max{x,, x,}. By induction this implies

1

3k 1
max{T’l‘x, T’z‘x} = EC 7 max{x;, x,} (2.34)
forall x € R%, x; + X, = 1 and k € N. Since
1 1
= + =
rx’) = —=2—2_ =2,
max 7> E}
this implies
1
. 2 Em(x)
r(x*) = r(T"x) = 2 - - =2 31
1+ 3—km(x) 1+ 3—km(x)

X1 X>

AT X1+X2} -1 > 0forx %z 0. Since m(x) < 1 it follows that
r(x*) —r(T*x) < 32—k forallx 2 Oand k € N. Thus Y2, r(x") - r(T*x) is finite forall x 2 0
and, by part (iii) of the corollary, it holds that Sx > O for all x 2 0. Actually, in this
Example the iterates T¥x can be computed explicitly and, hence, the iterates R*x =

r(Tk_lx) .. r(Tx)r(x)T"x and the operator Sx = klim Rz—kk", too. (Cf. Exercise 3 below.)
—00

where m(x) = 2 max{

The results of Theorem 2.3.1 and Corollary 2.3.6 provide quite strong properties for
positively homogeneous concave operators in case these operators are primitive. As
mentioned already, convergence for the iterates of the operator cannot be expected if
the operator is only assumed to be indecomposable instead of being primitive. There
are, however, some interesting properties as, in particular, certain dominance prop-
erties for the eigenvalue A* which apply already to indecomposable operators. For
these operators the statement made by the Concave Perron—-Frobenius Theorem (The-
orem 2.1.14) on the existence of a (non-trivial) solution of the eigenvalue problem can
be considerably sharpened as shown in the following theorem.

Theorem 2.3.8. Let T: K — K be concave and indecomposable, where K = R”.

(i) The eigenvalue problem Tx = Ax has a strictly positive solution (x,A), i.e., x > 0 and
A > 0, and any solution (x,A) with x 2 0 must be strictly positive.

(ii) If T is positively homogeneous then the eigenvalue problem Tx = Ax has a solution
x*,A")withx* > 0and 1™ > 0 and such that the following properties hold.
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(@) IfAx < Tx holds for some x 2 O thenA < A*.

(b) IfA*x < Tx holds for some x 2 O then x = rx* withr > 0.

(c) The solution of the non-negative eigenvalue problem is essentially unique, i.e.,
the solutions of Tx = Ax withx 2 0and A > O aregivenby A = A" and x = rx*
withr > 0.

(iii) Suppose T is positively homogeneous and can be extended to R", T: R" — R".
Consider the eigenvalue problem Tx = Ax for arbitrary x € R", x + 0and A € R.
The eigenvalue A * possesses the following dominance property:

If |Tx| < T|x| for all x € R" then |A| < A* and if, moreover, |T’x| < T?|x| for some

p e Nandallx € R" withx # |x| thenA = A" or |A| < A",

(Here |x| is understood to be componentwise, i.e., |x| = (|x1|, [x5],...,|x,|) for x =

(X1, X5 .05 X))

Proof. (1) Let Tx = Ax with x 2 0. Suppose thesetI = {1 < k < n | x, = 0} is non-
empty. Then @ ¢ I ¢ {1,...,n} and by indecomposability of T there existi € I and
j ¢ I such that Tie; > 0. Fora = min{x)-, 1} we have that 0 < @ < 1 because of j ¢ I,
and x = ae; + (1 - a)y withy € K. Concavity of T implies that T;x > aT;e; > 0 which
contradicts T;x = Ax; = 0. Therefore, we must have that I = 0 and, hence, x > 0.
Similarly, we must have A > 0. Otherwise Tx = 0 and indecomposability of T would
imply for I = {1} that T;x > aT,e; > O for somej # 1 which is a contradiction. Finally,
by Theorem 2.1.14 there exist x 2 0 and A > 0 such that Tx = Ax.

(ii) Suppose first that T is even primitive and let (x*, A *) be a solution of the eigen-
value problem according to Theorem 2.3.1. If Ax < Tx forsomex 2 OandA > O
then AX||x|| < |IT*x| for all k € N. Theorem 2.3.1 implies that A* = Lim IT* ) F >
—00

A klim ||X||% = A. This proves property (a). Property (c) follows immediately from The-
—00

orem 2.3.1. To show property (b) let A*x < Tx for some x 2 Oandu = Tx - A *x. By

Theorem 2.3.1 it suffices to show that u = 0. Assume this is not the case, i.e., u 2 O.

Primitivity of T implies TPu > 0 for some p € . Since T? is concave and positively
homogeneous we obtain that

TP x = TP(u + A*x) > TPu + 1" TPx > A *PVx,

Hence, there exists u > A *?*Y with TP*x > ux. This implies, as in the proof of prop-
erty (a), thatu <A *+1) _ 3 contradiction. Thus, we must have that u = 0.

Now we shall relax the primitivity assumption on T. For this let T be concave,
indecomposable and positively homogeneous and consider the operator S: K — K
defined by Sx = x + Tx. This operator also is concave, indecomposable and posi-
tively homogeneous. Moreover, S is primitive by Lemma 2.2.7 and Lemma 2.2.10 be-
cause Sye, = 1 + Tye, > O foreach h € {1,...,n}. Thus, by the above there is a
solution (x*, u*) of Sx = ux with x* > 0, u* > 0 and such that properties (a) - (c) hold
with respect to this solution. Obviously, Tx* = A*x* forA* = y* - 1and A* > 0. This
shows property (a) for T. If A*x < Txforx 2 Othenu*x = (A + 1)x < Sx and we
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obtain x = rx* for some r > 0. This shows property (b) for T. In the same way property
(c) does follow for T.
(iii) If Tx = Ax with x € R" ~ {0}, A € R then by assumption

[AlIx] = [Ax] = |Tx| < Tlx].

Property (a) of part (ii) implies that |A| < A*. Suppose now |T?x| < T?|x| for some p
and all x # |x| and let Tx = Ax with x ¢ R" ~ {0} and A € R such that |1| = A*. Then
A*|x| = |Tx| < T|x| and by property (b) of part (ii) we have that |x| = rx* for some
r> 0.Ifx # |x| then rA™Px* = A™P|x| = |[APx] = |TPx| < TP|x| = rT’x* = rA"Px* - a
contradiction. Thus, we must have x = |x| which impliesAx = Tx = T|x| = A" |x] =A"x
and, hence, A = A" O

By the following examples we shall illustrate some of the assumptions and statements
made in Theorem 2.3.8.

Examples 2.3.9. (i) Consider the mapping T: R> — R? defined by Tx = (min{2x, +
X3, X1 + 2X,}, X; + X,). T maps R? into itself and restricted to R? the mapping is con-
cave, positively homogeneous, indecomposable and even primitive. The eigenvalue
problem Tx = Ax means min{2x; + x5, x; + 2x,} = Ax; and x; + x, = Ax,.

For x; < x, this means 2x; + x, = Ax; and x; + x, = AXx,. As eigenvalues and
related eigenvectors in R? one obtains in this case (up to a scalar for eigenvectors)

A = 23 + VB withx! = —(3(1 + V5),1)and A, = 2(3-V5) withx* = (3(1-+5),1).

For x; > x, the eigenvalue problem amounts to x; + 2x, = Ax; and x; + x, = Ax,,
thatisA; = 1 + V2 withx® = (vV2,1)and A, = 1 - V2 with x* = (v2,-1).

The (essentially) unique positive solution of the eigenvalue problem according to
Theorem 2.3.8 is given by A* = 1 + V2 with x* = (v/2,1). It holds that |A,| < A* and
[A4] <A™ but |A;] > A*. Indeed, the corresponding assumption in (iii), viz. |Tx| < T|x|,
is not fulfilled since, e.g., for x = (-1, 0) one has Tx = (-2,-1) but T|x| = (1, 1).

(ii) The next example addresses the strict dominance of A * according to part (iii)
of the Theorem. Let T: R?> — R? be defined by

Tx — (x; +x5)(1,1)  for XEIRE
(x; - x,)(-1,1) for x¢R2.

Obviously, T: IRf — IRf is concave, positively homogeneous, indecomposable and
even primitive. The eigenvalue problem Tx = Ax amounts for x € R? to x; + x, = Ax;
and x; + x, = Ax, and, hence, A, = 2 with x* = (1,1). For x ¢ R? the eigenvalue
problem amounts to x; — x, = -Ax; and x; — x, = Ax, and, hence, A, = 0 with
x? = (1,1) and A; = -2 with x> = (1,-1). The unique positive solution according
to the Theorem is given by A* = 2 and x* = (1, 1) (up to a positive scalar). It holds
that |4, < A* and |A;] < 1™ and, indeed, the corresponding assumption of part (iii)
is fulfilled because for x ¢ IRf, ITx| = Ix; — x,|(1,1) < (Ix1] + |x)(1,1) = Tlx|.
Strict dominance, however, does not hold for A* since A; # 1™ and |A;] = A*. The



2.3 Concave operators which are positively homogeneous =— 51

corresponding assumption of part (iii) is not fulfilled because, e.g., for x = (1,-1) one
has x # |x| but [Tx| = (2,2) = T|x|.

(iii) A non-linear operator T: R* — R? for which all assumptions of the Theo-
rem are satisfied is given by

Ty (x; +x,)(1,1)  for xeR?
20q +x)(1,1) for x¢ R

T is not linear because, for x € R} ~ {0}, T(-x) = 3(x; + x,)(1,1) = 3Tx # -Tx.
Obviously, T: ]Rf — ]Rf is concave, positively homogeneous, indecomposable and
even primitive. For x ¢ R? one has |Tx| = 2(Ix; + x,)(1,1) < (Ixq| + [x,1)(1, 1) = Tx|
and, obviously, |Tx| < T|x| for x € lRf. For eigenvalues and eigenvectors, respectively,
one obtains for x € R? A; = 2 with x* = (1,1) and for x ¢ R? A, = 0 withx* = (1,-1)
and A; = 1 with x> = (-1,-1). Thus, A* = 2 and x* = (1, 1) (up to a positive scalar)
and |A;| < A* with |A;] <A™ for A; # 17, according to the Theorem.

Remarks 2.3.10. Hilbert’s metric (cf. Definition 2.1.8) was initially introduced by
Hilbert [23] in his investigations on the foundations of geometry for convex bodies
in finite dimensional space. Sometimes this metric has been also associated with
the names of A. Cayley and F. Klein. Birkhoff [5] applied this metric to cones in
infinite dimensions and to linear operators mapping a cone into itself. (See also
Ostrowski [52].) About the same time Samelson [57] used the Cayley—Hilbert met-
ric to give a short proof of Perron’s theorem on positive matrices. Hilbert’s metric
then became a useful tool to investigate, in finite as well as in infinite dimensions,
linear operators as well as non-linear ones which leave a cone invariant. See, e.g.,
[6, 14, 28-30, 34, 63, 65] and, in particular, in [48] and [49]. For the extension of var-
ious parts of classical Perron—Frobenius theory to certain non-linear mappings see
[13, 26, 37, 42, 44, 47, 48, 50, 51, 63]. The concave version of Perron—Frobenius theory
as presented in this chapter has its roots in [29, 30, 35]. In Chapter 3 we will come back
in a more general setting to Hilbert’s metric and other metrics intrinsic to a cone.

In the next section we shall see how many statements of the common linear Perron-
Frobenius Theory appear as special cases of the results we obtained for concave oper-
ators.

Exercises

1. Demonstrate for the mapping T: R? — R2, T(x;,X,) = (X7 + Xos VX7 + VX5)
the following properties.
(a) T is concave, primitive but not positively homogeneous and the conditional
eigenvalue problem Tx = Ax, A > 0, ||x| = 1 (]| - || the sum-norm) has a unique
solutionA™ > 0,x* > O.

(b) The limit Sx = klim }Tk’k‘ exists and Sx = 0 for all x € R.
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(c) Statement (ii) of Theorem 2.3.1 does not apply to T.
2. LetT: R? — R? be defined by
X1
x |

(a) Compute the unique solution A* > 0, x* > 0 (|x*| = 1 for the sum-norm)
for T.
(b) Compute Sx = hm dlrectly from the iterates TX.

T(xy,x,) = [

W B
DR DWW

(c) Verify statement (11) of Theorem 2.3.1 directly by computing the iterates TX.
3. LetT: R: — RZ, T(xy,x,) = (3x; + 2x5, 2x; + 1xy)andr: R2 — RZ, r(xy,x,) =
m;(l{;fxz} forx 2 0, r(0) = 0. (See Example 2.3.7).
(a) Calculate explicitly the iterates T*.
se (a) to calculate the iterates R"x = r(T" "x) ... r(Ix)r(x)T"x.
(b) Use (a) to calculate the i Rx = (T¥x) ... r(Tr(0) T
k
(c) Determine the limit Sx = lim .
—00

4. Consider a concave operator T: R? — R” which is primitive and positively ho-
mogeneous and such that there exists some concave operator T': R} — R” with
the property that (T'y, x) = (y, Tx) holds forallx, y € R. ((u,v) = ¥, u;v; denotes
the inner product in R".) Show that the operator Sx = hm Akk can be computed as

Sx = <;§‘>>x forall x € R} with a fixed vector X € R ~ {O} and (x*,A™) the solution

according to Theorem 2.3.1.

5. For finitely many non-negative matrices A(k) = (ail-(k))1 <ijen> 1 < k < m consider
the operator T: R — R defined by

Tx = 1rr}<1<n Zau(k)x for1<i<n.

(a) Show that T is concave and positively homogeneous.

(b) Find conditions on the matrices such that T is primitive.

(c) Apply Theorem 2.3.1 to the special case where A(1) = [%1],
A@) = [13).
Calculate the solution (x*,A ™) (for the sum-norm) and check whether the op-
erators are linear.

6. Find an operator T: IRE — ]Rf which is concave, ray preserving and primitive
and for which, however, part (ii) of Theorem 2.3.8 does not hold.

7. Check assumptions and statements of Theorem 2.3.8 for the operator T: R" — R"
given by Tx = A|x| where A is a (strictly) positive n x n-matrix.

8. Let T be a continuous and monotone selfmapping of R} which maps R into its
interior and for which it holds that T(Ax) > ATx for 0 < A < 1 and x € int R}.
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(a) Show that T has a unique fixed point x* € int R" with klim T = x* if x° ¢
—00

int R” with Tx° < x°.
(b) Find an example which satisfies the general assumptions and for which con-
dition and conclusion in (a) do not hold. (Cf. [25, Appendix B].)

2.4 A special case: Linear Perron—Frobenius theory

LetA € R} or A > 0 denote a real nxn-matrix which is non-negative, i.e. all entries a;;
of A are non-negative. The mapping T: R} — R defined by Tx = Ax, where x is un-
derstood to be a column vector, is concave, positively homogeneous and continuous.
Because of Tje; = a;; the operator T is indecomposable in the sense of Definition 2.2.6
iff forany indexset® ¢ I ¢ {1,...,n} there exist indicesi € I and j ¢ I such thata; > 0.
A non-negative matrix enjoying the latter property is called indecomposable or irre-
ducible. Also, T is weakly indecomposable in the sense of Definition 2.2.6 if for any
two indices 1 < i,j < n there exists some p = p(i,j) € N such that the (i, j)-entry of the
matrix power AP is strictly positive. As already remarked (see also Exercises below),
this property is equivalent to the indecomposability of A. Furthermore, T is primitive
in the sense of Definition 2.2.9 if there exist some p € N such that A™ > Oforallm > p
or, equivalently, A’ > 0. Such a matrix is called primitive. Here B > 0 for a matrix B
means that all entries of B are strictly positive.

By specializing results of the previous section we arrive at the following state-
ments of classical Perron—Frobenius Theory involving the dominant eigenvalue A*
of a non-negative matrix.

Theorem 2.4.1 (Classical Perron—Frobenius Theorem). Let A be a non-negative n x n-
matrix.
(i) A has a maximal non-negative eigenvalue A* and there exists x* % 0 such that
Ax* = A%x".
(ii) For A indecomposable the following statements hold.
(@) ForA* asin (i) one has A* > 0 and there exists x* > 0 such that Ax* = A*x".
Furthermore, if Ax = Ax for some x 2 O thenA =A™ and x = rx* withr > 0.
(b) IfAx < Ax forsomex 2 OthenA <A*.
IfA*x < Ax for some x 2 O then x = rx* withr > 0.
(c) IfA is areal eigenvalue of Athen|A| <A*.
(iii) For A primitive the following statements hold.
(a) IfA is areal eigenvalue of A different from A ™ then |[A| < A*.
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(b) The dominant eigenvalue A* and its eigenvector x* with |x*| = 1 can be ob-
tained as limits of the iterates by
Ax A X

1
lim —= - — = lim A% = A"
k—oo ||A%X]| k—oo ||A%X]| k—o0

for arbitrary x z 0 and any monotone norm of R".

(c) Let B be the matrix with entries b; = x; X; where x* and x are positive vectors
such that Ax* = 1*x*, A'x = A*x and Y, xx; = 1 (A’ being the transposed
matrix of A). Then there holds

k

Jm Ak

Proof. (i) follows from Theorem 2.1.14. Statements (a) and (b) of (ii) follow from part (ii)
of Theorem 2.3.8; statement (c) of (ii) follows from part (iii) of Theorem 2.3.8. The latter
also yields statement (a) of part (iii) because A” > 0 for some p by assumption and,
hence, APx < AP|x| for all x € R" with x # |x|. Statement (b) of part (iii) follows from
Theorem 2.3.1 part (ii). Part (i) of Theorem 2.3.1 yields klir& f—; = B with a non-negative

matrix B such that BA = AB = A*Band BB = B. From AB = A *B it follows that the j-th
column of B must be r;x" for some r; > 0. For the column vector x with components r;
equation BA = 1*B implies that A'x = A *x and BB = B implies that Y[, x;x; = 1. This
proves statement (c) in part (iii) of Theorem 2.4.1. O

In addition to the statements given by Theorem 2.4.1 there are many more results con-
sidering eigenvalue problems for non-negative matrices. In particular, interesting re-
sults are available concerning complex eigenvalues and the decomposability structure
of the matrix (cf. [2, 19, 41, 66]). Since these issues, however, are less closely related to
our concave framework we will not consider it here. Instead we like to point out some
features of Linear Perron-Frobenius Theory connected with Theorem 2.4.1 which seem
to have received less attention in the linterature.

Usually the assumption of indecomposability for a non-negative matrix is made
to guarantee that Ax = Ax has a unique (up to a scalar) strictly positive solution
x* > 0, A > 0. To get this property, however, indecomposability is by no means
necessary (see Exercise 2 below) . Actually, many properties derived usually for inde-
composable matrices can be otained under weaker conditions (Exercise 1). By employ-
ing the Gantmacher or Frobenius normal form of a non-negative matrix (cf. [1, 19]) it
can be shown that the eigenvalue problem has a unique strictly positive solution iff
the matrix is what is called a Sraffa matrix (cf. [36]).

Furthermore, primitivity is commonly assumed to obtain the results on limits of
the iterates as in part (iii) of Theorem 2.4.1. Again, for these results primitivity is a suf-
ficient but not a necessary condition (see Exercises 1 and 2). In case A is assumed to be

k
indecomposable, however, it can be easily shown that khm AA—,,k exists iff A is primitive.
—00
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Linear Perron-Frobenius Theory is commonly thought to be a theory about matri-
ces which are non-negative. There are, however, many matrices having some entries
negative to which many statements of this theory also apply. For example, to the ma-
trix A = [2 2 ] all the statements of Theorem 2.4.1 do apply (Exercise 3; see also [14]).
That this matrix has a negative entry means that the linear mapping defined by it does
not map the convex cone ]Rf into itself. There are, however, other convex cones as, e.g.,
K = {(x,x;) € ]Rf | x, < 2x;}, which this mapping leaves invariant. By developing a
linear Perron-Frobenius Theory for mappings leaving other cones than R” invariant
the realm of applicability of this theory can be considerably extended (cf. [1, 14, 59]).
This point of view we will adopt in the chapters which follow where non-linear map-
pings will be considered which leave invariant some convex cone within a real Banach
space.

Concerning our method of proof, the main idea was to show for the operator in
question that it is contractive or a contraction with respect to Hilbert’s projective met-
ric on the convex cone R’. This idea we shall pursue also in the following chapters
with respect to certain non-linear operators on a convex cone within a Banach space. It
seems remarkable that this goal cannot be achieved by employing instead of Hilbert’s
projective metric a metric induced by a norm on the vector space under considera-
tion. This is already the case in very simple situations. Consider, e.g., the linear op-
erator T: R2 — R? defined by the matrix A = [} }] (cf. [16]). As it is clear from

Remark 2.1.12 the operator given by Tx = "ﬁ—f" for x 2 0 and || - || being the sum norm is
a contraction for Hilbert’s metric d, i.e., d(Tx, Ty) < cd(x,y), with a contraction factor
c=1- min{TT"Teex | <ij<n =1-min{}, 1,8} = ¢ < 1. Considering, however,
any (semi-) norm ||| - ||| on R? and the metric m induced by it one finds for the points
x = (1,0)and y = (0.99,0.01) in R? that

m(Tx,Ty) = 7 = Tylll = 72=111(0.01,~0.01)| = ==m(x,y) > m(x.y).

Thus, there is no norm induced metric on R? for which the operator is T is a con-
traction.

In concluding this section we shall shortly discuss what seems to be the first exten-
sion of the Perron-Frobenius theory to non-linear mappings (cf. Remark 2.1.17). Con-
cerning balanced growth of an economy the economists P. A. Samuelson and M. Solow
prove in [62] relative stability for a selfmapping T of K = R’ which is continuous,
positively homogeneous and strictly increasing, i.e., x § y implies Tx < Ty. Rela-

<

tive stability means that tlim %g = c(x(0)) forall 1 < i < nwhere u(t) = A*)x* is

the balanced growth path and x(t) = T'x(0) is any actual growth path. This nice re-
sult has been generalized by a “Japanese School” of economists. M. Morishima [43,
Theorem 10, p. 206]and H. Nikaido [47, Theorem 10.7, p. 160] show that relative stabil-
ity holds for T continuous, positively homogeneous, monotone, MN-indecomposable
and primitive in 0 and x*. If, moreover, T is globally primitive then x(0) £ x'(0) im-
plies c(x(0)) < c(x'(0)) ([43, Theorem 11, p. 207]). (See also Section 2.2 and Exercise 8
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there.) Further interesting contributions in this direction are by T. Fujimoto and Y. Os-

hime [13, 44, 50]. Relative stability in the sense of 11m ”122" = x* for all x(0) € K~ {0} is

shown in [14] (see also [28, 29, 32]) for T strictly i 1ncreasmg and satisfying some weak
from of homogeneity and in [51] for T continuous, positively homogeneous, mono-
tone, primitive and (power) real analytic. All these results do not employ concavity but
continuity (to apply Brouwer’s fixed point theorem) and homogeneity which excludes
affin-linear maps (which are covered by the first concave Perron-Frobenius theorem).
The methods used to develop concave Perron-Frobenius theory we will extend later
on in Chapter 5 to ascending selfmappings in infinite dimensions which need not be
concave and not even monotone.

Exercises

1. Examine the non-negative matrix A = [4 9], where 0 < a < 1, with respect to the

statements of Theorem 2.4.1

(a) Show that all three statements of part (ii) hold for the decomposable matrix
A with the exception of x* > 0.

(b) Show that all three statements of part (iii) hold for A, though A is not primitive.
(Take || - || to be the sum norm.)

(c) Show that the linear mapping defined by A is not a contraction for Hilbert’s
metric.

(d) Find a non-negative matrix P such that PAP™! is a strictly positive matrix.

2. LetA=[¢%]besuchthata,c>0andb > 0.
(a) Show that Ax = Ax possesses a unique positive solution x* > 0, A* > 0 (up to
a scalar for x*) if and only if ¢ < a.
(b) Examine A with respect to the statements of Theorem 2.4.1 (Take || - || to be the
sum norm.)
3. Consider the matrix A = [2 2 | which is not non-negative.
(a) Show that all three statements of part (ii) of Theorem 2.4.1 hold true for A.
(b) Verify that A" = 3"B + (-2)"CwithB=;[4%]and C = [ % 72].
(c) Use (b) to show that all three statements of part (iii) of Theorem 2.4.1hold true
for A. (Take | - || to be the sum norm.)
4. Show that for any A € R7" the dominant eigenvalue A * satisfies the inequalities
n

m1nZa <At < maxZa
1<1<n 1<1<n

and that these inequalities are strict if A is indecomposable with row sums not all
equal.

5. Show that a matrix A € R™* is indecomposable if and only if it is weakly inde-
composable.
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6. Work out a direct proof for part (iii) of Theorem 2.4.1 by employing Hilbert’s pro-
jective metric similar to the proof of Theorem 2.1.11.

2.5 Applications to difference equations of concave type

Consider the difference equation
u(t +n) = f(u@®),u(t + 1),...,u(t + n-1)) (25.1)

ofordern > 1 wheret € N,u(t) € R, and f: R} — R,.

The function f defines in a canonical way a particular discrete dynamical system
T: R} — RIby Tx = (X5,..., X%, f(x)) for x = (xq,...,x,). To apply results of the
previous sections to this system we need to find conditions on f which guarantee that
T is indecomposable and primitive, respectively.

Lemma 2.5.1. For an arbitrary function f: R} — R,,n > 2, the discrete dynamical
system T defined by f is indecomposable iff f(e;) > 0, where e; denotes the i-th unit
vector.

Proof. Suppose first that T is indecomposable and letI = {2,..., n}. By Definition 2.2.6
there exists some i € I such that T;e; > O, T; being the i-th component function of T.
Since Tje; = Ofor 1 < i < n - 1 we must have that f(e;) = T,e; > 0. Conversely,
suppose that f(e;) > 0 and consider @ ¢ I ¢ {1,...,n}. Let k be the smallest number
in I. For k = nwe have Tye; = f(e;) > Owherek € ITand 1 ¢ I.If k < n and there
exists some i € I withk <i < nsuchthati + 1 ¢ Ithen T,e; = 1 > O wherei € [ and
j=1+1 ¢ I. As the remaining case we have to consider k < n where for any i € I with
k <i<nitholdsthati + 1 € I. In other words, I = {k,k + 1,k + 2,...,n} where k > 2.
In this case T,e; = f(e;) > Owherenel, 1 ¢ I. a

From Theorem 2.3.8 we obtain the following consequence for difference equation (2.5.1)
with characteristic equation

A" =f(LAAL AT for A eRR,.

Theorem 2.5.2. Assumethatf: R? — R, is concave and positively homogeneous with

f(ey) > 0.

(i) The characteristic equation has a unique strictly positive solution 1 *.

(ii) For any given u(0) > O the function u(t) = A'u(0), t € N, is a solution of the differ-
ence equation (2.5.1) iff A = 1",

Proof. Since statements (i) and (ii) hold trivially for n = 1 we assume n > 2. (i) The
operator T: R} — R defined by Tx = (x,,...,X,,f(x)) is concave, positively homo-
geneous and indecomposable by Lemma 2.5.1. By Theorem 2.3.8 there exist x* > 0 and
A* > Osuchthat Tx = Axholds forx 3 Oand A > 0iff A = A" and x = rx* withr > 0.
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Equation Tx = Ax is equivalent to x, = Axy,x3 = Ax5,...,X, = Ax,_; and f(x) = Ax,.
Positive homogeneity of f implies that A = A* > 0 is a solution of the characteristic
equation f(1,A,A%,...,A™1) = A". Conversely, for any solution A > 0 of this equation
by setting x = (1,A,A2,...,A™1) we have that Tx = Ax and, therefore, A = A*.

(ii) By positive homogeneity of f the function u(t) = A‘u(0) is a solution of (2.5.1)
iff f(1,A,A2,...,A™ ) = A" which by (i) means that A = A*. O

Example 2.5.3. Consider the difference equation of second order given by
u(t + 2) = u(t) + Vulu(t + 1).

The function f: lRf — R,, f(x) = x; + /X1X;, is concave, positively homogeneous
with f(e;) > 0. By Theorem 2.5.2 the characteristic equation 1 + VA = A has a
unique solution A* > 0. Furthermore, for given initial conditions u(0), u(1) > 0 the
resulting solution is of type u(t) = A‘u(0) with A > 0 if it is either constant zero or if
u(1) = A*u(0). Thus, non-trivial solutions with constant growth rate must have initial
conditions u(0) > 0, u(1) = A *u(0).

To handle the primitivity of T we employ the following comparison principle for so-
lutions of the difference equation.

Lemma 2.5.4. Let f: RT — R, be monotone, i.e. 0 < x < y implies f(x) < f(y), and
suppose there existn,,...,n, € {1,...,n}withr > 2, ny = landgcdin-n, + 1,...,n—
n, + 1} = 1 such that the following strict monotonicity property holds:

0 <x<yandx, <y, forsomel <i<rimplies that f(x) < f(y) (25.2)

If u(-) and v(-) are two solutions of the difference equation (2.5.1) satisfying
u(0),...,u(n - 1)) £ (v(0),...,v(n - 1)) then u(t) < v(t) forallt € N and there ex-
ists some t, € N, independently of u, v, such that u(t) < v(t) forall t > t,.

Proof. Obviously, by induction equation (2.5.1) yields u(t) < v(t) forall t € N.

(i) thatu(k) < v(k) for some k > n; — 1 implies that u(k + gm;) < v(k + gm;) for all
g€ N.Fork =n;-1+1 1 € N, wehave thatu(k + m;) = u(l + n) = f(u(),...,ul +
n-1)). Foru(l + n; — 1) < v(l + n; - 1) the strong monotonicity property (2.5.2) yields

flu®,...,ul+n-1)) <f(v()),...,v(l+ n-1)),
that is, u(k + m;) < v(k + m;). By iterating this argument we arrive at
utk + gm;) <v(k + gm;) forall gqeNN.

(ii) By assumption there exists some O < j < n — 1 with u(j) < v(j). Sincej > 0 =
n, - 1 step (i) yields

u(j +q,my) <v(j +qym,) forall gq; e N.
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Forg, > 1wehavek =j + g;m; > m; =n > n, - 1 and applying step (i) again yields
u(j + g,my + g,m,) <v(j +q,my; +q,m,) forall g, >1, g, € N.
By iterating step (i) in this way we obtain
uj + gumy + -+ gm,) <v(j+qmy +---+qm,) forall g, >1, g; € N. ()

Now, by assumption gcd{m;,...,m,} = 1 and, therefore, 1 = ¥|_, ;m; with [; € Z.
Defined = Y|, |;lm;and t, =j + n+ d*.Fort > t,we have thatd® <t -j-n=qd +s
withg € N, 0 < s < dand, hence, d < g + 1. It follows that

r
t—-j—-n=qd+s-1 =Z(q|li| + sl)m;
i=1
where q|l;| + sl; ¢ N becauseof g > d -1 > s.Thus,t =j + gym; + --- + g,m, with
g, = 1, g; € N and from (x) we obtain u(t) < v(t) for t > ¢,. Since d does not depend
on u and v, t, can be chosen independent of u,vasn -1 + n + d°. O

Remark 2.5.5. For the comparison principle to hold it is not sufficient to require f to
be monotone and strictly increasing in just one component as can be seen from Exam-
ple 2.5.3 (see also Exercise 1).

Using Lemma 2.5.4 from Theorem 2.3.1 the following result for difference equations
follows.

Theorem 2.5.6. Let f: RT — R, be concave, positively homogeneous and suppose

there exist ny,...,n, € {1,...,ny withr > 2, n; = landgedin-n, + 1,...,n—-n, +

1} = 1suchthat0 < xand 0 < Xn, forsome 1 < i < rimplies 0 < f(x). Then the

characteristic equation of difference equation (2.5.1) has a unique strictly positive root

A* and the following statements hold.

(i) Every solution u(-) of equation (2.5.1) with initial conditions i = (u(0),...,u(n- 1))
is relatively stable, i.e.,

hm ﬂ = s(i1)
where the function s: R? — R, is concave, positively homogeneous and satisfies
s(x) > 0forx 2 0,5(x,, ..., X, f(x)) = A*s(x) forx € R ands(1,A*,...,A*™" V) = 1,
(ii) Every solution u(-) of equation (2.5.1) which is not constant zero grows asymptoti-
cally with the same factor 1*, i.e

~I

m ut+ 1) = limu(®)®* =A".

t—oo u(t) t—oo

Proof. By assumption in particular f(e;) > 0 and, hence, by Theorem 2.5.2 the char-
acteristic equation has a unique strictly positive root A *. Furthermore, the operator
T: R} — R defined by Tx = (x,,...,X, f(x)) is concave and positively homoge-
neous. Concavity of f together with positive homogeneity imply for 0 < x < y that
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fo)=f (%(Zx) + %(Z(X—y))) > f(x) + f(y—x). Thus, the positivity assumption made for
f implies the strong monotonicity property (2.5.2) for f. For x = (u(0),...,u(n-1)) = 0
we have by induction that T'x = (u(t),...,u(t + n-1))forall t ¢ Nwhereu(-)is asolu-
tion of (2.5.1). Fory = (v(0),...,v(n-1)) and x 5 y we, therefore, obtain by Lemma 2.5.4
that there exists some t, € N such that T'x < T'y for all t > t,. In particular, T is prim-
itive and we may apply Theorem 2.3.1. For any solution u(-) of equation (2.5.1) with
initial conditions we obtain

. u(t) u(t+1),. ut+n-1) . n-1)
Su_tlirgo(/l*t’ A *(t+1) 2 T (L) )
= s@(1,A%,...,A*"D)
with (@ = Jim %0,

This proves part (i) since the properties stated for S in Theorem 2.3.1 imply those for
s: R! — R,. Finally, part (ii) follows immediately from hm ”(t) = s(q). O

Examples 2.5.7. (i) Consider the difference equation (2.5.1) where f is given as the min-
imum of finitely many linear functions by

f(x) = 1In<ii<1;ln(ailxl Tt ainxn)’

where the m x n-matrix A = (ay) is non-negative with a set J of at least two strictly
positive columns including the first one and gcd{n—j + 1 | j € J} = 1. The assumptions
of Theorem 2.5.6 being satisfied it follows for any solution u(-) with initial conditions

ut that hm ';(t) = s(it) where A* > 0 is the unique root of the characteristic equation
-1
1121<r1(a11 +apd + -+ aqp A" =AM

(if) A special case of Example (i) is given by linear difference equations as, e.g.,
the Fibonacci difference equation

u(t +n) = Zu(t + 1)
iel
with a subset I of {0,...,n — 1} containing O and such that the set of numbers n — i
fori € I is relatively prime. A * is given as the unique positive root of Z,.e[)li = A"
The common Fibonacci difference equation u(t + 2) = u(t) + u(t + 1) represents the
special case wheren = 2, T = {0, 1} and A * is the unique positive root of 1 + A = A.In
this particular case, the asymptotic statements made by Theorem 2.5.6 can be obtained
also directly from Binet’s formula (see Chapter 1.2).
Consider the difference equation given by the sum of arithmetic and geometric mean

as follows .

u(t +n) = iZu(t+l—1)+(Hu(t+i—1))%-

) i-1
The corresponding function f is concave and positively homogeneous with f(x) > 0
for x z 0. For the unique positive root A * of the characteristic equation % AT+



2.5 Applications to difference equations of concave type —— 61

AT =A"onehasA* > 1 which implies in particular that all solutions different from
the zero-solution are unbounded.

(iii) The particular positivity assumption made in Theorem 2.5.6 for f is crucial
as can be seen from Example 2.5.3 or from the simple difference equation u(t + 4) =
2(u(t) + u(t + 2)). In the latter case f(x;,X,,x3,X,) = 3(X; + X3) and ged{4 — 1 +
1,4 -3 + 1} = 2 # 1. The positive root of the characteristic equation (1 + 1) = 1*
isA* = 1. The solution for the initial conditions & = (1, 2, 1, 2) is given by

1, teven
u(t)_{ 2, todd

u(t+1)

and, hence, % )

) does not converge for t — oo. Also, does not converge, whereas

) /1*[
lim u(t)T =1=71"
t—o00

Exercises

1. Show that the conclusion of the comparison principle (Lemma 2.5.4) does not hold
foru(t + 2) = u(t) + Vu(t)u(t + 1), t € N, u(t) € R,.

2. Compute for the difference equation

u(t+2) = W \/u(t)u(t +1), teN, u(t) €

the unique positive root of the characteristic equation, and show that any solution
u(-) is either identically zero or unbounded.

3. Compute for the difference equation
u(t + 2) = min {lu(t) + 1u(t +1) iu(t‘) + %u(t + 1)} teN, u(t) e R
N 8 4 > 10 5 ’ ’ v

the unique positive root of the characteristic equation, and show that all solutions
u(-) converge to 0.

4. Determine for the difference equation

u(t) +u(t+1)

u(t+2) = 3

+amin{u(t),u(t + 1)}, teN, u(t) e R,,

the values of the parameter a > O for which all solutions tend to 0 and all solutions
(except the zero-solution) are unbounded, respectively.

5. Check for the difference equation of Exercise 1 if any of the following statements
holds true for all positive solutions (A * being the unique positive root of the char-
acteristic equation):

- lim Q exists;

t—»oo
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ult+1) ..
t—»To u(t)

B

~ limu(®)t = A",

t—oo
6. Compute for the Fibonacci difference equation u(t + 2) = u(t) + u(t + 1), t €
N, u(t) € R, the function s: R> — R, of Theorem 2.5.6.

2.6 Relative stability in the concave Leslie model

As an application of concave Perron—Frobenius Theory we consider a concave version
of the density dependent Leslie model discussed in Section 1.2. According to equa-
tion (1.2.7) the model is in the autonomous case given by

x(t+ 1) = T(x(t)) for teN, (26.1)
where for x € R,
b,x) by(x) ... b,_;(x) b,(x)
S1(x) 0 0 0
Tx = L(x)x and L(x) = 0 s 0 0
0 0 .0 5.0 s,(x)

For the concave Leslie model we make the following assumptions:

(a) The mappings x — b;(x)x; and x +— s;(x)x; of R” into R, are concave for all
l1<i<n

(b) There exists ky,...,k, € {1,...,n}, r > 2, k, = nwith gcd{k,,...,k,} = 1 such that
foralll<i<r
by (x) > 0 for x € R} with x;. > 0.
Furthermore, forall 1 <i < n - 1 suppose s;(x) > 0 for x € R} with x; > 0.

(c) Forany x € R} and any A > O there exists a number c(x,A) such that b;(Ax) =
c(x,A)b;(x) and s;(Ax) = c(x,A)s;(x) forall 1 <i < nwithx; > 0.

Assumption (a) means that for each age class the number of newborn and surviving in-
dividuals, respectively, grows with a non-increasing rate due to population pressure.
According to assumption (b), for non-empty age classes all survival rates are positive
(with the possible exception of the last class) and birth rates are positive for some spec-
ified selection of classes. Assumption (c) requires that a uniform population pressure
where each age class grows with the same factor does not affect the ratio of birth and
survival rates. It is clear that this concave Leslie model contains as a special case the
classical (linear) Leslie model.

From assumption (b) we will conclude later on that the mapping T must be primi-
tive. Without primitivity results like Theorem 2.6.1 below cannot be expected, not even
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in the linear case as can be seen from the following example discussed already in [3].
Let Tx = Lx be given by the Leslie matrix

0 0 6
1
L=|1 0 o0
1
o lo

Obviously, assumptions (a) and (c) are satisfied but not assumption (b). One has that
Tx* = A*x* withx* 2 0, |[x*|] = 1, A = 0 has a unique solution, namely x* =
(&.2,%)and 1* = 1, but age structures do not approach x* as in Theorem 2.6.1.
Indeed, L? is the identity matrix, therefore L is not primitive, and there are population
waves as already observed by H. Bernardelli, that is every population path repeats
itself after three periods.

A solution t — x(t) of equation (2.6.1) is called a population path and it is normal-
izedif Y, x;(t) = 1 for allt € N. Any (non-zero) population path can be normalized
by ﬁ which is called the age structure of the population path (where ||x| = ZL [x;]
for x e R").

A population path has the uniform growth rate g i
all t € N with x;(¢) > 0.

The following Theorem collects our main results for the concave Leslie model. The

properties 2.6.2 and 2.6.3 are sometimes referred to as relative stability.

f X;(t+1)-x;(t)

O =gforalll <i<n,

Theorem 2.6.1. (i) There exists precisely one stationary age structure x* > 0 and for
every population path with x(0) z O the age structure converges to x*, that is

x© .
o @1

(2.6.2)

(ii) Suppose for the concave Leslie model that the vital rates do not increase with the
population level in the sense that for some 0 < d < 1 it holds for each 1 < i < n that
b;(Ax) = M%dbi(x) and s;(Ax) = ﬁsi(x)for allA > 0, all x > 0 withx; > 0.

Then there exists a uniquely (up to a positive factor) determined population path x(t) =
%(0)(1 + g)" with uniform growth rate g and each population path x with x(0) 2 0 grows
finally uniformly with g, more precisely

Xi(t)

lim 2 ® =c(x(0)) >0 forall 1<i<n. (2.6.3)
In particular,
@+ Dl 1
—— = =lim x(®)|*=1+g. (2.6.4)
R PO TR &

For d = 1 the path X is determined by g = g* and X(0) = cx* for some c > 0
where x* and g* are uniquely determined by the eigenvalue problem Tx* = (1 + g*)x",
x>0, |x*| = 1.

For 0 < d < 1 the path X is determined by g = 0, x(0) the unique non-zero fixed
point of T and in (2.6.3) holds c(x(0)) = 1 for all x(0) 2 0.
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Proof. From assumption (a) for the concave Leslie model it follows that the mapping
T: R? — R7, Tx = L(x)x is concave. Assumption (c) implies T(Ax) = Ac(x,A)Tx for
allx > 0, A > 0 and, hence, T is ray preserving. By assumption (b) T is primitive as
will be shown towards the end of this proof.

(i) A stationary age structure is defined by "ﬁg" = x* forall t € N for some x* 2 0
with [[x*| = 1. (Assuming without loss that x(t) # O for all t € IN.) Since T is ray

preserving it follows
[x(1)lIx* = x(1) = Tx(0) = T(|x(0)x*) =A'Tx* forsome A'>O0.

Thus, Tx* = Ax* for some A > 0.

Conversely, from Tx* = Ax* for some A > 0 and some x* 2 O, |x*| = 1 it follows
that x(t) = T'x* = A(t)x* for A(t) > 0, all t € N. This implies "ﬁg" = x"forallt € N.
Therefore, the stationary age structures correspond to the solutions x* of Tx* = Ax*
withx* 2 0, |x*|| = 1and A > 0. Theorem 2.2.11 (and Remarks 2.2.12 (1)) yields that x*

is uniquely determined, x* > 0 and tllm ""8" = x* for all x(0) z O.
—00

(ii) The assumptions made imply that c(x,A) =

1
e
hence, T(Ax) = A%Tx, that is T is homogeneous of degree d. Consider first the case
d = 1. Then for any population path x Theorem 2.3.1 yields hm X(t) ' (x(0))x* with

independently of x and,

constant ¢'(x(0)) > 0 for x(0) 2 0 and, in particular, thm "’ﬁg&)lu)” = 11m ||x(t)||r ="
Thereby, x* 2 O, [x*|| = 1, A > Oand Tx* = A*x". Furthermore, Tx = Ax for
some x 2 Oand A > O implies x = rx* withr > 0and A = A*. Obviously,

any path X with uniform growth rate g satisfies x(t) = %(0)(1 + g)'. For such a
path lim "“”“*g) c'(X(0))x* and for X(0) 2 O we must have 1 + g = A* and
x(0) =c¢ (x(O))x Putting g* = 1™ — 1 we have that g = g" and Tx" = (1 + g")x". This
also shows that, conversely, %(t) = cx*(1 + g*)! defines a path with uniform growth
rate for any ¢ > 0. Finally, for any path x with x(0) 2 0 it holds that

im 5O _ %O ' (x(0))

i %, () oo (1+g)

= c(x(0)).

Consider now the case 0 < d < 1. Then for any population path x with x(0) 2 0
Corollary 2.3.4 yields lim x(t) = x where X is the unique non-zero fixed point of T.

Thus, for a path x(t) = x(O)(l + g)! with uniform growth rate and X(0) 2 0 we must
have g = 0 and X(0) = x. Conversely, x(t) = x for all t € N defines a path with uniform
growth rate O because of Tx = X. Furthermore, for any path x with x(0) z 0 it holds
that

x;(t) 1 B .
e )_(—1 tllglo x;(t) = c(x(0)) forall i,

where ¢(x(0)) = 1. In particular, for any path x with x(0) 2 0

lIx(e + DI

1
=lim [x(®t =1=1+g.
t—oo  |Ix(t)| t—c0
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Finally, it remains to show that T is primitive. For x € R let m(x) be the minimum of
the numbers bk,- (x) with X, >0, 1< i<rand 5;(x) with x>0, 1<j<n-1
Let

a a a,
1 0 0
L= 0 ,
| 0 ... 01 O |

where g; = 1 forj = k; with 1 <i < rand g; = 0 otherwise.
First we show by induction that forallk > 1, x 2 0,

T*x > m(T* Y)m(T*?x) - - - m(x)L*x 3 0. (%)

From the definition of T it follows Tx > m(x)Lx and m(x)Lx 2 O because of m(x) >
0. Thus, () holds for k = 1. If () holds for k then

T = T*(Tx) > m(TOm(T* %) ... m(T0)L¥ T,

and using Tx > m(x)Lx it follows that () holds for k + 1.

Next we show that the mapping induced by L is primitive which by () implies the
wanted primitivity for T. Let p (x3, ..., X,) = (X Xp_1> - - - » X3, X1 ) and M the selfmapping
of R! defined by Mx = (pLp)x. For f(x) = a,x; + a,_1X, + --- + a;x, we have that
Mx = (x5,...,X,,f(x)). By assumption (b) of the concave Leslie model f satisfies the
assumptions of Lemma 2.5.4 if we setn; = n—k,,,_; + 1for1 < i < r. This Lemma yields
that for some t, € Nand x = (u(0),...,u(u — 1)) % 0 it holds that M'x = (u(t),...u(t +
n-1)) > Oforallt > t,. Therefore, M is primitive and because of Lx = (pMp)x the
mapping for L is primitive, too. O

The following example illustrates the various conclusions in Theorem 2.6.1, in partic-
ular part (ii), and makes a connection to what has been said previously in Section 1.2
about the Leslie model.

Example 2.6.2. Consider vital rates given for 1 <i < n, x € R} by
b;(x) = b,-x;i"1 and s;(x) = sl-x;i"1 if ;>0

and b;(x) = b;, s;(x) = s;ifx; = 0. Suppose0 <d <1, 0<s;foralll <i<n-1,0<s,
and O < b;, 1 <i < n, such that there exist k;,...,k, € {1,...,n}, r > 2, k, = nwith
gediky, ...k} =1land b, >0forl <i<r.

The functions b;(x)x; = b,-xf and s;(x)x; = sl-x? are concave in x on R”. Furthermore,
b;(Ax) = c(x,A)b;(x) and s;(Ax) = c(x,A)s;(x) with c(A, x) = Al—l,d forallx e R}, 1<i<n
and A > 0. Thus, the dynamical system given by (2.6.1) satisfies assumptions (a), (b),
(c) for the concave Leslie model. By Theorem 2.6.1 (i) the age structure of each popu-
lation path x with x(0) 2 O converges to the unique stationary age structure x* > 0.
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Even more can be said since for this example the assumptions of Theorem 2.6.1 (ii) are
satisfied.

Consider first the case d = 1. In that case b;(x) = b; and s;(x) = s;for1 <i<n
and for any x one has L(x) = L where L is the classical (constant) Leslie matrix (cf.
Section 1.2). By Theorem 2.6.1 (ii) the matrix L has the dominant rootA* = 1 + g* with
unique eigenvector x* > 0, ||x*|| = 1. The reference path X is (up to a positive factor)
given by (t) = x*(1 + g*)" and for each population path x with x(0) 2 0 one has

x@t) .
lim xii*(l e c((x(0)) forall 1<i<n

and
im P DLy ot =1+ g7,

oo XOI oo
A special case is given by the Fibonacci model (1.2.1) of Section 1.2 which by inter-
changing the indices for the age classes we may represent also by the Leslie matrix
L = [1}]instead of the Fibonacci matrix F = [? }].
The assumptions of the concave Leslie model are satisfied for L(x) = L and we

obtain
A*_1+\/§g*_\/§—1 and X*_(1+x/§ 2 )
2 2 3+V5 3+15

and for any population path x

. x,(t) . X, (t) 2
lim —1~ = lim = c(x(0)).
oo (1+@)“1 t—00 <1+\/§)t 3+4/5 (x(0)
2 2

In particular, tlim ilﬁg = “2\/5, which we now obtain without knowing the explicit
—00 ‘2

solution given by the Binet formula (1.2.3).
Consider next the case 0 < d < 1. From Theorem 2.6.1 (ii) we obtain that each
population path must converge and tlim x(t) = x for x(0) z 0. Thus, one only has to
—00

find the unique non-zero fixed point x of T. The condition Tx = L(x)x = x means that

n

d d ; d d
Zbixi =x; and sx; =X, for 1<i<n-2,s, 1%, +SX, =X,
i=1

The problem to determine X can be reduced to determine X, as the (strictly) positive
2 n
solution of the equation a;x? + ax? + --- + ax? = x, with coefficients a; > 0

computable from the given coefficients b; and s;. With the exception of d = 0 this is,
however, a quite difficult task.

For O < d < 1 we illustrate the procedure in the special case givenbyn =2, b, = b, =

1, s; =1, s, = 0. Then Tx = x amounts to x‘f + xg = x; and x‘f = X,. Eliminating x,

2 2 _ _ .
we obtain x¢ + x¢ = x; and x¢ ! + x4 — 1 = 0 since we solve for a non-zero fixed

point. Putting y = x?~® we obtain the non-linear equation y™*#’ —y — 1 = 0. This
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equation has exactly one positive solution y as we know on general grounds but which
also can be confirmed easily by direct computation. The dynamics x(t + 1) = Tx(t) in
this special case is given by x;(t + 1) = xl(t)d + xz(t)d and x,(t + 1) = xl(t)d or,
equivalently, by putting p(t) = x; (t), by the non-linear Fibonacci equation

p(t+2)=p(t+ 1)d + p(l‘)d2 for teN, p(t) = 0.

Obviously, for p(0), p(1) given this equation has a unique solution t — p(t) and by
the above we have that tlim p(t) =pwithp =%, =ya-a,

Remark 2.6.3. A particular kind of population pressure has been already analyzed by
P.H. Leslie in [38]; cf. also [21, 22, 24, 64]. The model amounts to Rx = r(x)Lx where L
is a (constant) Leslie matrix and r(x) = m

Thereby, U measures environmental capacity, r is the dominant eigenvalue of L
and ||lx|| = Y1, x; for x € R7. The mapping R is not concave but satisfies the assump-
tions of Corollary 2.2.14 which implies that for any non-zero path the age structure
converges to the unique stationary age structure. Non-concave Leslie models of the
type Rx = r(x)Tx, where Tx = L(x)x is a concave Leslie model but the scalar r(x) mea-
sures in addition some uniform population pressure, may be analyzed also with the
help of Corollary 2.3.4.

Other non-linear Leslie models Tx = L(x)x which are not concave have been stud-
ied in the literature, especially for vital rates of the type b;(x) = b; exp(— Z;‘:l ¢jx;) and
S;(x) = s;exp(- Z}Ll djxj) with certain coefficients Cj> dj > 0. In contrast to the concave
model global properties as relative stability can no longer be expected, on the contrary,
chaotic behavior may occur as shown by computer simulations. Cf. [10, 20, 39, 53].

Exercises

1. Demonstrate for the concave Leslie model given by Tx = (/X; + X5, /X7) the
following properties.
(@) Theeigenvalue problem Tx = A x has for everyA > 0 aunique positive solution
x =x(A).
(b) ForeveryA >0
lim T'x(A) = A°x(Q).

(c) Explain why property (b) does not contradict Theorem 2.6.1 (ii) for d = %

2. Consider the Leslie model given for n = 2 by the vital rates b;(x) = b; + (f—i)“
forx; > 0 and b,(x) = b, forx; = 0, b,(x) = by, 5;(x) = 54, S,(x) = 0. Thereby,
bi,by,s; >0and0 < a < 1.

(a) Show that by the above a concave Leslie model is defined.
(b) Compute for a = % the stationary age structure x* and the growth rate g*
according to Theorem 2.6.1.
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40

(c) Given a non-zero population path x derive a difference equation for y(t) = G

and show that y oscillates in approaching ﬁ—l
2
3. Consider for 0 < d < 1 the non-linear equation y“% -y -1 = 0in one real
variable y.
(a) Show that the equation has a unique positive root.

(b) Compute the root for d = % by Cardano’s formula.
(c) Determine for the non-linear Fibonacci equation

pt+2)= %\/p(t +1) + %\/p(t), teN, p(t)=0

the limit p = [lim p(t).

2.7 Price setting and balanced growth in a concave Leontief
model

As mentioned at the end of Section 1.4, concave Perron—Frobenius theory is useful
to handle price setting in a Leontief model with choice of techniques. As discussed
already in Section 1.4 the price setting modeled by equation (1.4.2) specializes for time-
invariant technology sets A; and constant real wages b' to

p(t +1) = k(t)Ip(t), Q.71)

where T is a selfmapping of the cone R’ given by Tp = c(p) with

¢;i(p) = inf{p(a + lbi) | (a,)e A} for 1<i<n (27.2)
Since r;(t) = W is the rate of profit for producer i at time ¢ equation 2.7.1

amounts to p(t + 1)l= (1 + r(t))Tp(t) with r(t) = k(t) — 1 the uniform rate of profit
for all producers at time t. Obviously, the cost operator T is concave and positively
homogeneous and, as shown already in Section 1.4, by introducing relative prices
q(t) = p®)l p(t)ll’l, the positive discrete dynamical system (2.7.1) can be written as

gt +1) =Tqt), teN, |qO)]=1, @73)

where the normalized cost operator T is given by Tq = Tq| Tq|™* for Tq # 0.
Using knowledge from concave Perron—Frobenius theory we obtain the following
results concerning the above price setting process.

Theorem 2.7.1. For the price setting process (2.7.1) with cost function (2.7.2) denote by
d,-j = inf{q; + lbf | (a,]) € Aj} the minimal overall expenditure of good i in the production
of one unit of good j for 1 < i,j < n. If the matrix D = (d;) is indecomposable then the
following statements hold.
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(i) There exists an equilibrium rate of profit r* > -1 with equilibrium prices p* > 0,
[p*Il = 1suchthatp® = (1 + r*)c(p*). The equilibrium is unique, i.e.,p = (1 + r)c(p)
forr>-1andp z Oimpliesr =r* and p = sp* for some s > 0.

Moreover

P oip) Cl_(;l)(p)ki(p) > O} _

(ii) Assume in addition that for at least one good its overall expenditure is strictly posi-
tive. Then for any given initial prices p(0) 2 0 it holds that tlirglo q(t) = p* for relative

r* = minmax
pz0 1<i<n

prices q(t) = p(t)|p(t)|~*. Moreover,

lim <(1 + 1ty PO > =147,

lp(t + D

in particular, [lim r(t) = r* if absolute prices p(t) have a non-zero limit.
—00

Proof. (i) From (2.7.2) we have that ¢;(e;) = inf{q; + lb; | (a,]) € A;} = d;. Therefore,
the mapping Tp = c(p) is indecomposable and parts (i) and (ii)(c) of Theorem 2.3.8
imply existence and uniqueness of r*, p*. Let s(p) = max {"CL@%'” | ¢;(p) > 0} forpz 0
andr = inf{s(p) | p 2 O}. Fromp* = (1 + r*)c(p*i it follows that s(p*) = r* and
r < r*. Since (1 + s(p))c(p) = p 2 O from part (ii) (a) of Theorem 2.3.8 it follows that
(1 + s(p))™ < (1 + r*)! and, hence, r* < s(p). This shows r* < randr* = r =
min{s(p) | p 2 0} because of s(p*) = r*.

(ii) Since T is positively homogeneous, concave, weakly indecomposable by
Lemma 2.2.7 and Tye;, = cp(ey) = dyy, > O for some h, Theorem 2.2.11 yields that

q(t) = T'q(0) = Tiq(0) = T'q(0)IT'q(0)]I ™"

converges to p* for t — co. Furthermore, p(t + 1) = (1 + r(t))c(p(t)) implies that
qit+1)=(1+ r(t))”ﬂﬁ(f)l")" c(q(t)) and, hence,
. Ip@ll . . R
11m<1+r(t)7 cp’)=p  =A+1r)cp). O
t—00 Ipt + 1)l
Remark 2.7.2. Concave Perron—Frobenius theory is applicable also in cases where the
cost function is different from the one considered in equation (2.7.2). For example, if
the (unit) cost function is given by a Cobb—Douglas technology, that is

n
¢(p) = kin;.x"" +Lw;, 1<i<n,
j=1
with constants k; > 0, a; > 0 with Z;'Zl a; =1, >0andw; = pb', b' > 0. The self-
mapping T of R? given by Tp = c(p) is concave, positively homogeneous with Tp > 0
for p 2 0. Therefore, Theorem 2.2.11 applies and yields conclusions as those in Theo-
rem 2.7.1. (See Exercises 2 and 3 below.) For models of price setting similar to the one
considered the reader is referred to the references [15, 28, 29, 31, 33, 43] and the liter-
ature given therein.
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Concave Perron-Frobenius theory can be applied also to analyze balanced growth in
a non-linear closed model of production. (Such a model was first investigated in [62]
and in full detail subsequently in [43] and [47].)

A closed model of production is given by a mapping T £ 0 which transforms a
given input of goods into an output of the same goods. If x(t) € R is the input in
period ¢ then one period later output x(t + 1) € R’ is produced and

x(t +1) = Tx(t), forall teN. (2.74)

A solution of (2.7.4) is called a balanced growth path x(-) if forall goods 1 < i, j<n
the ratio % is constant over time. Equivalently, there exists a time dependent scalar
o(t) > 0 such that x(t) = o (t)x(0) forall t € N and ¢ (0) = 1.

Suppose the selfmapping T of R” satisfies the homogeneity condition T(Ax) =
f(A)Tx with some functionf: R, — R,. For a balanced growth path x(-) with x(0) 2 0

it follows that
a(t + 1)x(0) = x(t + 1) = Tx(t) = T(a(t)x(0)) = f(a(t))Tx(0)

and, hence,
Tx(0) =A"x(0) and o(t+1)=f(c(t)A"

for someA™* > 0. Conversely, these conditions determine a balanced growth path and,
therefore, x(-) with x(0) 3 0 is a balanced growth path iff

x(t) = h'(1)x(0) forall teN, and Tx(0)=A"x(0), 2.75)

where h(1) = f(A)A* and k' is the t-th iterate of the mapping h.

Theorem 2.7.3. For the growth model (2.74) let T be concave with T(Ax) = f(A)Tx for
allA € R,, x € R} and some function f: R, — R,. Then there exists 0 < d < 1 with
fQl) = }ld, i.e., T is homogeneous of degree d, and the following statements hold.

(i) Let T be indecomposable. For d = 1 there exists a unique (up to a positive scalar)
non-zero balanced growth path, namely u(t) = (1*)'u(0) where A* > 0 and u(0) > 0
satisfy Tu(0) = A *u(0).

For 0 < d < 1 there exists a unique non-zero fixed point x* of T, x* > 0 and u(-) is a
balanced growth path iff u(t) = ATyt forsome A > 0.

(ii) If, in addition, Tye;, > O for some h then any non-zero solution x(-) of (2.7.4) is rela-

tively stable, that is
x;(t)

lim —= =c¢(x(0)) >0 forall 1<i<n
t—o0 ”i(t)

where u(-) is any non-zero balanced growth path.

Proof. From T(Aux) = f(Au)Tx and T(Aux) = f(A)T(ux) = f(A)f(u)Ix it follows that
fAu) = f(A)f(u) for all A, u € R, because of T £ 0. Concavity of T implies concavity
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and, hence, monotonicity of f. It is well-known that a monotone mapping satisfying
f(Au) = f(A)f(u) must be of the form f(A) = A% for some d > 0. Concavity of f implies
ds<1.

(i) Let T be indecomposable and assume first that d = 1. T is positively homo-
geneous and Theorem 2.3.8 assures that Tu(0) = A*u(0) has a unique solution A * >
0, u(0) > 0 (up to a positive scalar). According to (2.7.5) there exists a unique (up to
a positive scalar) non-zero balanced growth path, namely u(t) = (1*)'u(0). Consider
now the case 0 < d < 1. By Theorem 2.3.8 there exist A > 0 and X > O such that
Tx = AX.

Forx* = AT4x > 0 one has that

- _d - d -
=A=Tx =114 Ax = x".

Ifx 2 Ois any fixed point of T then X > 0 by Theorem 2.3.8. There exista > 0, § > 0
with aX £ x* < B% and applying T yields a? % < x* < f%x forall t € N.

*

Fort — oo it follows that x £ x* £ x. This shows that x* is the unique (non-

zero) fixed point of T. By (2.7.5) any balanced growth path is given by u(t) = h'(1)u(0)
where for some A > 0 one has Tu(0) = Au(0) and h(u) = yd)\. Induction over ¢ yields
hi(1) =2 11_—‘1; From Tu(0) = Au(0) it follows that u(0)A = is a fixed point of T anq, by
the uniqueness of the fixed point, u(0)A T4 = x". Therefore, u(t) = h'(1)u(0) = A = x*.
Obviously, such a path is a balanced growth path for arbitrary A > 0.

(ii) If T is indecomposable and T,e, > O for some h then T is primitive by Lem-
mas 2.2.7 and 2.2.10. For d = 1 relative stability of x(-) follows from Theorem 2.3.1 (i).
For d < 1 Corollary 2.3.4 yields tlirglox(t) = x*. For any non-zero balanced growth path

x;(t)

u(+) it follows that 11m 20

= 1forall 1 <i < nand arbitrary x(0) 2 O. |

Remarks 2.7.4. Theorem 2.7.3 is conceived to illustrate concave Perron—Frobenius
theory. It is possible, however, to prove similar results for the growth model (2.7.4) by
weakening the assumption of concavity to that of monotonicity, see [43, 47, 62].

Exercises

1. Consider three producers each equipped with two technologies Suppose pro-
ducer1 (producmg good 1) can use a technique (a, I) with a = (0, 2 5 8) andl=1or
with a = (0, 1 3 10) and 1 = 3, producer 2 (producing good 2) can use a technique
(a,1) with a = ( ,0 ) and [ = 2 or witha = (3,0, 5) and | = 1; producer 3
(producmg good 3) can use a technique (a, l) with a = (3 6,O) and [ = 1 or with
a=(% » g’ 0) with I = 2. Suppose further the real wage for all producers is given
byb = 55(3,1,1).
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(a) Compute the equilibrium (p*,r*) (Ip*|l = p] + p5 + p3 = 1) analytically and
by simulation on the computer.
(b) Determine the techniques applied by the producers at equilibrium prices.

2. Analyze the price setting model (2.7.1) for a Cobb—Douglas technology, i.e., Tp =
c(p) with ¢;(p) = k; H;Llp;.x"" + Lw; with constants k; > 0, @; 20, ¥, a; = 1, ; > 0
and w; = pb, b' > 0.

(@) Verify that T is concave, positively homogeneous and primitive.
(b) Prove that there exists a unique equilibrium

n
p =1+, p >0, Ipl=)Yp =1 r>-1L
i=1

(c) Prove that relative prices converge to p* and find conditions on the constants
such that absolute prices converge, too.

3. Let for two producers a Cobb—Douglas technology given as in Exercise 2 with k; =
sk =11,=0L=1and

(aij) = [

(a) Compute the equilibrium (p*,r*).

(b) Simulate on the computer the convergence of relative prices to p*.

(c) Check convergence of absolute prices analytically and by doing iterations on
the computer.

Wl N[=
WIN N[
| S
[l
N
|
| =
—
=
—
[l
N
|
[N
al=
—
[
—_—

4, Consider the growth model given by
T(x;,X,) = ((ax1 + bx,)" (cx, + dxz)ﬁ,x‘fﬂ)

where a, b, ¢, d are strictly positive constants and a, 8 are non-negative constants

witha + f < 1.

(@) Verify that T is concave, homogeneous of degree @ + § and primitive.

(b) Discuss the dependence of balanced growth pathsona and 8 fora=b =c =
d=1.

(c) Compute the balanced growth pathsin (b) fora = = %
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3 Internal metrics on convex cones

In the previous chapter we have seen how to deal with concave mappings that leave
invariant the standard cone R” (or its interior). For many applications a finite dimen-
sional space is not sufficient because the states of the model are no longer points in
the usual sense but real valued functions which in general constitute an infinite di-
mensional space. For positive systems this means to consider as state space a cone
in an infinite dimensional space and non-linear operators leaving this cone invariant.
In the present chapter we will carry out the analysis of convex cones which will be
needed later to treat particular kinds of non-linear selfmappings of convex cones, in-
cluding concave operators. A cornerstone for the analysis of a selfmapping T of the
cone K = R” in the previous chapter was Hilbert’s projective metric on the interior K
(see Definition 2.1.8). Thus, in this chapter we will study Hilbert’s projective metric on
cones in infinite dimensional spaces. This can be done, actually, not only for standard
cones but for quite general convex cones, which provides more flexibility for applica-
tions. Already in finite dimensions are convex cones other than the standard cone of
interest, in applications as well as theoretically. The general notion of a convex cone
is so important because it allows for a concept of positivity which is coordinate-free.
Moreover, we will study besides Hilbert’s projective metric also other metrics which
are called internal metrics because they are derived from the structure of the convex
cone, too. This again provides more flexibility for applications because a selfmapping
of a cone might be contractive for one internal metric but not for another one.

3.1 Extraction within convex cones

The most convenient way to introduce the various kinds of internal metrics is by using
extraction within convex cones, in particular by using the order function as a building
block, as explained in the following.

Let V be an arbitrary vector space over R. A (non-empty) subset K ¢ V is called
a cone if K contains for every x € K the ray through x, i.e. {Ax | A > 0}. A cone K is
called convex if it is closed for addition, i.e. K + K ¢ K. According to this definition,
any linear subspace of V is a convex cone, e.g. V and {0} are convex cones. The convex
cones we are interested in, however, will be pointed, i.e., K n (-K) c {0}, or pointed
with 0, i.e., K N (-K) = {0}(-K = {-x | x € K}). Any convex cone K induces a transitive
relation < on V by

x<yiffy-xeK, forany x,yeV.

This relation is a partial order on V, i.e., < is reflexive, antisymmetric and transitive
iff the convex cone K is pointed with O.
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Definition 3.1.1. The functionA(-,-): K x K — [0, co] defined by
Ax,y)=supfd 20|y -Ax € K}

is called the order function or the extraction grade on K. u (x, y) = min{A (x,y), A (y, x)}
is the symmetric order function (extraction grade).
The mapping e: K x K — K defined by

e(xy)=y-A0y)x (withoo-0=0)

is called the extraction function on K.
For x,y € K~{0} the element x is called a component of y if A (x,y) > 0, and e(x, y)
is called the rest after extracting x from y.

The idea of extraction is, for any two given elements x and y to extract from y as much
as possible of the element x contained in y (see Figure 3.1). The maximal amount of x
contained in y is measured by the order function A. The rest that remains after extract-
ing x from y is given by the extraction function e.

Al y)x

Fig. 3.1. Order function and extraction
0 function.

Remark 3.1.2. In a way similar to the above, extraction can be defined also for arbi-
trary convex sets or for abstract monoids, in particular for the multiplicative monoid
of an integral domain. Though we will stick here solely to convex cones, the pro-
cess of extraction turns out to be a quite fundamental operation in many areas (see
[24, 25, 37, 41]).

Examples 3.1.3. (1) K = R the standard cone in V = R". Obviously, K is a convex
cone pointed with 0. For x,y € K, x # 0 one hasA(x,y) = min {iﬁ |x;>0, 1<i<n}=

Yi
% and e06y); = 2= (7, = ¥ipX)-
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Furthermore, ify # 0 and ;i is the minimum of all the values ’yi fory; > O then
i1 i

U(x,y) = min {yi, Xi} .
Xi, Vi,
Obviously, one has A (x,y) = co iff x = 0.

(2) A little bit more involved is the computation of A for the ice cream cone K,
ie,K={ur |ueR", reR,, |ul <r}, where |u|® = (u,u) and (,-) the standard
scalar product in R". The double cone K U (-K) is called the light cone or Lorentz cone
since for u € R> the coordinates in space and r the time, the double cone is just the
light cone of special relativity theory (cf. [57], [58]).

One finds (see Exercise 4) for x = (u,r) and y = (v, s) in K that

2 2
s* — vl

—Z(rs— ) for Ju|=r

A(X’}’) =

and

rs — (wv) = V(s — (wv))* - (r* - ul?)(s* - [vI?)
r? = lull?

Axy) = for Jull <r.

For what follows we need various properties of the order function dependent on prop-
erties of K. Concerning the latter, K is said to be lineless if K does not contain an affine
line. K is said to be archimedean for a linear subspace U with K c U (or integrally
closedin U)ifx,y e Uand y + nx € K for alln € N imply x € K.

Lemma 3.1.4. Let K be a convex cone in the real vector space V and let x,y,z € K ~ {0}.
(i) IfKislineless then K is pointed and A (x,y) € R,.
() Aax.By) = EA(cy) foralla,p > 0.
(i) ACoy)-AW,2) <A(x,2).
(iv) AQoy) +A(xz) <Ay +2).
V) QA2 +A120H T <A+ y,2) < min{A (x, 2), A(y,2)}.
(vi) min{A(x,y), A(y,x)} =sup{A >0 |Ax<y< Alx}
(< induced by K, sup @ = 0).
(vil) A06y)-A(y,x) = sup{Au | A,u >0, Ax<y< }%x}.
(viii) min{A (x,y), 1} = sup{a € [0,1] | y = ax + (1 — &)z for some z € K}.
(ix) K is pointed iff min{A (x, ¥),A (y,x)} < 1 forall x,y € K~ {0} iffA(x,y) - A(y,x) < 1
forallx,y € K ~ {0}.
(x) ForK pointed and u(x,y) = min{A (x, y), A(y, x)}
HOGY) + u(,2) <1+ u(x, 2).
(xi) IfK is pointed and archimedean in K — K then K is lineless.
(xii) IfKis archimedeaninK — K and A (x,y) < co then A (x,y)x < y.
(xiii) Kis linelessiff u(x,y) < 1 forallx,y € K~ {0}, x # y.
(xiv) Suppose K is given by

K={xeV|f(x)=0 forall fe3},
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where F is a non-empty family of linear functionalsf: V — R. Then K is a convex
cone which is archimedean in V with O € K and one has that
. [fy)
Ax, )=1nf{— |fedF fix)>0r¢.
Y f00
(xv) Letu,ve Vsuchthatx+tueKandy+veKandletx' =x+auek,y =y+
BveKwithO<a, B <1.Then
1 —

%Mx,y) <ALy <

1+

1-a

Ax,y).

Proof. (i) If x € K n (-K) then Rx c K. If K is lineless then the line given by Rx must
be a point that is x = 0, and K is pointed. Suppose now A (x,y) is not finite, that is
Alx,y) > A forallA > 0. If follows that y — Ax € K and, because of y + Ax € K,
thaty + Ax € K forall A € R. Therefore the affine line determined by y and y + x is
contained in K.

(ii) By - A(ax) € K is equivalent toy—/l(%)x € KforanyA > 0.
(iii) If Ax <yandA'y <zforA,A’ > 0 (< induced by K) then A1 'x < z.
(iv) IfAx <yandA'x < zforA,A’ > 0thenAx +A'x <y + z.

(v) Consider the firstinequality. It is trivial for A (x,z) = 0 or A (y, z) = 0. Otherwise,
letA,A" > 0Oand Ax < z, A'y < z. It follows that x < %,y < &, and, hence x + y <
z(3 + 1)

This proves the first inequality. For the second inequality let A (x + z) < zforA > 0.
Obviously, Ax < A(x + y) <z, Ay < A(x + y) < z which proves the second inequality.

(vi) We may assume that A(x,y) < A(y,x)and A(x,y) > 0. For 0 < A < A(x,y) we
must have that Ax < y and, because of 1 < A(y, x), also that Ay < x.

This proves that min{A (x,y), A(y,x)} <sup{fd >0 |Ax <y < %x}. Conversely, if
Ax<y< Alxthen)l(x,y) >AandA(y,x) = A.

(vii) ForA(x,y) = 0 or A(y,x) = O the asserted equation holds trivially (sup @ = 0).
For A(x,y) > 0 and A(y, x) > O one has that

AXy) - A(y,x) =supfAu | A,u >0, Ax <yand uy < x}.

(viii) Suppose A(x,y) < 1. Then Ax < yis equivalenttoy = Ax + (1 - A)ﬁ for
z=y-Ax, 0 <A < 1.Suppose A(x,y) > 1. Then Ax < y for some A > 1 and, hence,
foranyO<e<1

y=([1Q-€ex+ez

withz = @ e K.
This shows, by taking e — 0, that the right hand side of (viii) is equal to 1.

(ix) Assume first that K is not pointed, i.e., there exists x € K n (-K), x # O.
Fory = —x € K one has that y — 2x = -3x € K and x — 2y = 3x € K and, hence,
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Ax,y) = 2, A(y,x) > 2. Conversely, assume that for some x,y € K ~ {0} one has
min{A (x,y), A(y,x)} > 1, which, obviously, is equivalent to A (x, y) - A(y,x) > 1. By (vi)
thereexistsA > 1suchthatAx <y < ;xand, hence,A°x < x. This implies x(1-A%) € K
and because of 1 — 1% < 0 it follows that 0 # x € K n —K. Thus, K is not pointed.

(x) LetAx <y < ixandA'y <z < fryforA,A" > 0. Then M'x < z < -x and
by (vi)
M < minfA (x,2), A(z, %)} = u(x, 2).

By (ix) one has that A < u(x,y) < 1, A’ < u(y,z) < 1and, hence,A + A' -’ =
A1-A")+A" <1,

Thus,A + A’ <1 + A’ <1 + u(x,z) which, by (vi), proves (x).

(xi) Suppose x + A(y —x) € Kforall A € R. In particular, x + n(y - x) € K and
x + n(x-y) € K foralln € N. Since K is archimedean in K — K we must have that
y—-x € Kand x-y € K. Since K is pointed we must have that x = y, that is K is lineless.

(xii) Let A = A(x,y) < oo. It follows that (A — %)x < yforall n € N and, hence,
x +n(y-Ax) € Kforalln € IN. Sincey — Ax € K - K and K is archimedean one has
thaty - Ax € K.

(xiii) Suppose first that K contains an affine line, i.e., x + A(y—x) € KforallA € R,
wherex,y € K~{0}, x # y.ForA > 1oneobtainsAy > (A-1)xand, hence, A (x,y) > A/\;l
ForA — oo thisyieldsA(x,y) > 1. For A < 0 one obtains (1 -A1)x > (-A)y and, hence,
A,x) = % For A — oo this yields A(y,x) > 1. Thus, u(x,y) = 1. Conversely,
suppose that py(x,y) > 1 for some x,y € K ~ {0}, x # y. This implies forany 0 < e < 1
that (1 —e)x < yand (1 —¢)y < xand, hencey —x + ex € K, x —y + €y € K for all
0 < € < 1. Consider the affine line given by x + A(y — x) for A € R. For A > 0 we have
that

x+/1(y—x)=/I((y—x)+ex+<%—e>x) ek,

provided that O < € < 1 is small enough such that Al —€ > 0.ForA < 0 we have that

X+Ay-x)=y+Q1-Nx-y)=(1- )l)(x y+ey+ (% —e)y) ek,
provided that O < e < 1 is small enough that = — € > 0. Thus, the affine line consid-
ered is contained in K.

(xiv) Obviously, K is a convex cone with O € K. Let x,y € V such thaty + nx € K
for all n € IN. It follows that f(y) + nf(x) = f(y + nx) > 0 and, hence, f(x) > ——f(y)
for all n € IN. Thus, f(x) > 0 and, since this holds for every f € &, we must have that
x € K. This shows that K is archimedean in V. Finally, let Ax < y for x,y € K and

A > 0. It follows that Af(x) < f(y) and, hence, 1 < ;?’; for all f € F with f(x) > 0.

This shows that A (x,y) < 1nf{f 8{'; | f € F, f(x) > 0}. Conversely, for x,y € K and

r= inf{fgg | f € F, f(x) > O} we have that f(y — rx) = f(y) —rf(x) = Oforallf € F. By

definition of K, therefore, y — rx € K which implies that A (x,y) > r.
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(xv) From the identities x = ﬁ(x +au) + 1f—a(x—u) andx + au = (1-a)x + a(x +
u) together with the assumptions it follows that A (x',x) > ﬁ andA(,x") > 1-a,
respectively. Similarly, A(y',y) > —= and A(y,y') > 1 — B. Together with property (iii)

1+8
we obtain

1 ! ! ! !
Y S AGXHAGLY)AY,y) <Alxy) and

ﬁm,y)(l “B) < AW A YAMY) < AKLY)

(1-DALY)

from which the assertion follows. O

The property (xiv) in the Lemma admits a dual computation of the order function in
case one has a description of the cone in terms of the dual space of V. Since K = R
in V = R" is given by the projections f;(x) = x; from property (xiv) one gets immedi-
ately that A(x,y) = min{ i—: | x; >0, 1 <i < n}in this case (cf. Example 3.1.3 (i)).
Since any convex cone in R? which is closed can be described just by two linear func-
tionals, the order function in this case can be easily obtained by the two functionals
according to property (xiv). This, actually, is no longer true in R>, where for example
ice cream cones cannot be described by finitely many but by infinitely many linear
functionals (cf. Example 3.1.3 (ii)). More generally, property (xiv) applies to convex
cones K in an arbitrary vector space V which are closed with respect to a locally con-
vex Hausdorff topology on V (e.g., to closed convex cones in a Banach space). From
the Hahn—-Banach Theorem it follows that K = {x € V | f(x) > 0, f € F} where Fis a
set of continuous linear functionals on V.

Though the above description by linear functionals is not available in general one can,
however, describe the order function of any lineless convex cone by concave func-
tionals similar to property (xiv). Denote for a convex cone K by K¢ the set of all con-
cave functions f: K — R, which are positively homogeneous. Any f € K¢ must be
monoton with respect to < induced by K. (See Lemma 2.1.3 and the definitions given
in Section 2.1) Obviously, a function f: K — R, is in K¢ iff f is superadditive, i.e.,
f(x +y) = f(x) + f(y), and positively homogeneous. The set K¢ is itself a convex cone
within the vector space of real valued functions.

Two subsets A, B of K are said to satisfy a (both sided) Harnack inequality if there
exists a constant ¢ > 0 such that

) < F(y) < %f(X)

forallf € K¢ allx € A, ally € B.

Lemma 3.1.5. Let K be a lineless convex cone.

(i) Foranyx € K~{0} the functiony — A (x,y) is concave and positively homogeneous.

(ii) for anyy € K ~ {0} the function x — (A(x,y))™" is convex and positively homoge-
neous (value + oo admitted).
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(iii) For any x € K ~ {0} it holds that

Ay - {f(y)

fog €K f(x)>0}
inf{f(y) | f e K", f(x)=1}.

(iv) Two subsets A, B of K satisfy a Harnack inequality iff inf u(x, y) is not zero which, in

this case, is the smallest possible constant c. xedyeB

Proof. (i) Follows from Lemma 3.1.4, properties (i), (ii), (iv).

(ii) Follows from Lemma 3.1.4, properties (ii), (v).

(iii) For f € K and Ax < y one has that Af(x) < f(y) and, hence,
Alx,y) < inf{ﬁ—)’g | f € K, f(x) > 0}. Forx € K~{0} the function defined by g(y) = A (x,y)
is in K¢ by (i) and, hence, A (x,y) = % > 1nf{]{g; | f € K5 f(x) > 0}.

(iv) Suppose cf (x) < f(y) < i f(x)forall f € K, all x € A, ally € B. From (iii) it
follows that

csinf{% |f e KS, fx) > o} =A(xy)

and

csinf{f( X) 'feK fy) > O} =A(y,x).

Therefore, 0 < ¢ < min{A(x,y),A(y,x)} = pu(x,y)all x € A, y € B. Conversely, if
c =infu(x,y) > O then A, B satisfy a Harnack inequality with c. O
xeA,yeB

Remark 3.1.6. It is possible to define an order function like A for arbitrary convex sets
CbyB(x,y) = sup{f €[0,1] | y = Bx + (1 — B)x' for some x' € C}. For B similar prop-
erties as those in Lemmas 3.1.4 and 3.1.5 can be proven. (Cf. [37, Sections 2 and 3]; for
convex sets and an abstract version of Harnacks inequality see also [4], [5]). The order
function A or some equivalent concept appear in almost all approaches to Hilbert’s
projective metric and the part metric, respectively and are studied more or less explic-
itly. (See [57] and also the references in the next section.)

Exercises

1. Consider forr,s € R the convex cone in R? given by
K={xeR”| rX; < X5,5X%1 < X5}

(a) Show that K is archimedean in R?.
(b) For which values of r and s is K pointed and lineless, respectively?
(c) Compute the order function for K.
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Let K = R” be the standard cone in R".

(a) Compare the order functions for the cones K and K (interior of K).

(b) For which x € K ~ {0} is the mapping y + A (x,y) linear on K?

(c) Show that the standard representation x = Y\, x;e; of x € K by the standard
basis (e;, ..., e,) can be obtained by extracting successively from x the vectors
of the standard basis. Does the ordering in which the e; are extracted play any
role for the representation?

Let K = {f € €[0,1] | f(x) = O for all x € [0, 1]} be the standard cone in the vector

space of all real continuous functions on the interval [0, 1].

(a) Show that K is a convex cone that is lineless and archimedean.

(b) ComputeA(f,g) for f,g € K and show that for f € €[0, 1] the supremum norm
is given by [f]l = A(Ifl, 1)™".

(c) Show that for no f € K the mapping g — A(f, g) is linear on K.

Consider the ice cream cone
K={x=uneR"xR, | |ul <7}

where |ul|? = (u,u), () standard scalar product.
(a) Proof that for flu| < r

rs — (u,v) — V(rs — w,v))? - (r> — ul®)(s? — [Iv]?)
r? — |lull?

/\(Xsy) =

where x = (u, 1),y = (v, 5).
(b) Forcosh¢ = %(e"S + e ?) define @ = O(x,y) by
B rs —(u,v)
V- P - VD
Show that —log(A (x,y) - A (y, x)) = 2.

cos hd

(c) Demonstrate (a) and (b) for the infinite dimensional ice cream cone

o0
K = {x=(u,r)e]R]N><lR+ | JZu?sr}.
i=1

A subset M of a normed vector space is symmetrically bounded if every symmet-

ric subset of M is bounded. (A subset S of a real vector space is symmetric if there

exists some c € S, called a center of S, such that 2c - S ¢ S.)

(a) Show that every symmetrically bounded set M is lineless.

(b) Find a convex set in a normed space that is lineless but not symmetrically
bounded.

(c) Find a convex cone in a normed space that is pointed with 0 but not lineless.
(By Lemma 3.1.4 every lineless convex cone is pointed.)
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3.2 Internal metrics

From the order function A and using its properties (Lemma 3.1.4) we can construct
various metrics on a convex cone. Because A (x, y) = 0 may happen some of the metrics
may be extended, i.e., can have the value + co. This does not happen on parts of the
cone defined as follows.

Definition 3.2.1. Let K be a convex cone in some real vector space with order function
A.For x,y € K ~ {0} let xCy if x is a component of y, i.e., A(x,y) > 0, and let x ~ y if
xCy and yCx. A non-empty subset O ¢ P c K is called a part of Kify ~ x for x € Pis
equivalent to y € P.If O € K then {0} is called the zero-part.

Lemma 3.2.2. Let K be a convex cone.

(i) Cis a reflexive and transitive relation and ~ is an equivalence relation on K ~ {0}.

(ii) The parts of K are convex cones.

(iii) K is the disjunctive union of its parts.

(iv) If P # {0} is a part of K, Ay and Ap are the order function of K and P, respectively,
then Ap and Ay coincide on P x P.

(v) Forx,y € K ~ {0} it holds that x ~ y iff x + r(y — x) € K for somer < 0 and some
1<r.

Proof. (i) C is reflexive and transitive by Lemma 3.1.4 (iii). Thus, ~ is an equivalence
relation.

(ii) Obviously, the zero-part is a convex cone. Let P be a part, P = [x] the equiv-
alence class for some 0 #+ x € P.Ify € P,ie., A(x,y) > O0and A(y,x) > O, then
by property (ii) of Lemma 3.1.4 it holds that A(x,y) > 0 and A(By,x) > O for all
B > 0. Therefore, fy € P and P is cone. Furthermore, if y € P and z € P then
Ay + z) =2 A(x,y) + A(x,z) > 0 by Lemma 3.1.4 (iv). From property (v) we obtain
Ay +2,%) > A0 %) + Az,x)™)™! > 0and, hence, y + z € P. Thus, P is a convex
cone.

(iii) Obvious, since the parts are the equivalence classes for ~.

(iv) Forx,y € Pitholds Ap(x,y) < Ag(x,y) because of P ¢ K. Without loss suppose
that Ax(x,y) > Oand y — Ax € K for some A > 0. For any O < ¢ < A one has that
z =y —Ax + ex € K and xCz. Furthermore, zC(y + ex) and, by y + ex € P, (y + ex)Cx.
Therefore, zCx which shows that z € P. Thus,y - (A —€)x =z € Pand Ap(x,y) = A —e.
Since O < € < A is arbitrary it follows that Ap(x,y) = A and, hence, Ap(x,y) > Ax(x,y).

(v) By definition, x ~ y iff there exist 0 < A, u suchthaty-Ax € Kand x - puy € K.
We may assume that A, < 1. Now, y — Ax € K is equivalent to x + r(y — x) € K for

r= ﬁ and x — uy € Kis equivalenttox + r(y —x) € Kforr = —1“71. O

Property (v) of Lemma 3.2.2 presents a particular simple description of the part rela-
tion ~, as illustrated in the following figure.
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0 Fig. 3.2. Part relation x ~ y.

This description of ~ by extending the segment [x, y] a little bit to the right and to the
left is used in [2-6] to study parts and the part metric within arbitrary convex sets.
The following figure illustrates the concept of parts for the cone R>.

Fig. 3.3. Parts of cone R2.

P, is the zero part; the halflines (without 0) P;, P,, P; are the 1-dimensional parts; the
cones (without boundary) P,, Ps, P, are the 2-dimensional parts; the interior P, of R?
is the 3-dimensional part. All parts are convex cones and lRf is the disjunctive union
oftheP;, 0<i<7.

For an arbitrary convex cone K in some real vector space we define the following
entities which will turn out to be metrics under certain conditions specified in Theo-
rem 3.2.3.

For x,y € K~ {0}, A(x,y) the order function and u(x,y) = min{A (x,y), A(y,x)} the
symmetrized order function consider
- the projective Hilbert metric: d(x,y) = —1og[A(x,y) - A(y,X)];

— the Thompson metric or part metric: p(x,y) = —logu(x,y);

— the Harnack metric: h(x,y) =1 - u(x,y);

~  the Gleason metric: g(x,y) = 2 1:%’
1-p(xy)

— the Bear metric: b(x,y) =

L+u(xy)’
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- the Kobayashi metric: k(x,y) = —logv(x,y), where

V(X ) — H(X,,V) if max{/\(x,y)) A(y,X)} >1
5% Axy)-A(y,x) if max{A(x,y), A(y,x)} < 1.

The following result shows that all these “metrics” are just “ecarts” m in the sense
of Bourbaki [13] which means that m is symmetric, satisfies the triangle inequality
and m(x,x) = O for x # O (see also Remark 3.2.4). By this result also, on a lineless
part of the cone the definitions of p, h, g, b, k give neat metrics, whereas d gives only
a quasi-metric. In what follows we will, however, simply speak of metrics. Since all
these metrics are built up from the order function we call them internal metrics on
the cone.

Theorem 3.2.3. Let K be a convex cone and let P be a non-zero part of K.

(i) On P xP the expressions for d, p, h, g, b, k are well-defined, real-valued and symmet-
ric.

(ii) IfPis pointed then d,p, h, g, b, k are all non-negative.

(iii) d, p and k satisfy the triangle inequality on P x P. If P is pointed then h, g, b satisfy
the triangle inequality on P x P.

(iv) If Pislineless thenp, h, g, b, k are O for (x,y) € PxPiffx = y. Furthermore, d(x,y) = 0
iff y = Ax for some A > 0.

(v) IfPislineless thenp,h, g, b, k are metrics on P and d is a quasi-metric (with d(x,y) =
0 iff x and y are on the same rag).

Proof. (i) Obvious, because of x ~ yiff A(x,y) > 0O and A (y,x) > O.
(ii) This follows from Lemma 3.1.4 (ix).
(iii) From property (iii) of Lemma 3.1.4 one has that

Ay A 0] - [A1,2) Az Y)] < [AXYy) - Az, X)),

which proves the triangle inequality for d on P x P.
Also by property (iii)

u6y) - uy,z) <A y),A(z,x) and, hence, p(x,y) - u(y,z) < u(x,2),

which proves the triangle inequality for p. Also, these inequalities imply the triangle
inequality for k.
Furthermore, for h

h(x,2) =1 -pu(x,2) <1 -uxy) - uy,z)
=1-puy)+ A -u,2) - A -puxy)A -uy,2)
= h(x,y) + h(y,z) — h(x,y)h(y, z).

If Pis pointed then h(x, y)h(y, z) = 0 by (ii) and, hence, h(x, z) < h(x,y) + h(y, z). To ob-
tain the triangle inequality for b and g, respectively, observe the following inequality
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for non-negative numbers a, ,y withaff <y

1-a 1-8

-y _ _Ta T
- 1-a 1-8°
Lvy 1+ 1y

Putin (x)a = u(x,y), B =u,2), y = u(x,2).
The definition of b gives

b(x,y) + b(y,2)

b(x,z) < 1+ b(x,y) - b(y,z)

< b(x,y) + b(y, 2).

because b > 0 by (ii).
Similarly, putting in () & = \/ju(x,y), B = Vi (y,2), y = Vi (x, z) one obtains

s(xy) + 8y, 2)
(x,z) <
SEPET 18(6y) - 8(y,2)

<gxy) +gW,2).

(iv) The statement concerning p, h, g, b, k follows from Lemma 3.1.4 (xiii). Con-
cerning d suppose that d(x,y) = 0O, thatis A(x,y) - A(y,x) = 1. Fora = A(x,y) > O
property (ii) of Lemma 3.1.4 yields

Aax.y) = %A(x,y) - 1and A(y,ax) = aA (v,x) = 1.

Therefore u(ax,y) = 1 and, by Lemma 3.1.4 (xiii), we must have y = ax. Conversely, if
y = Ax with A > 0 then, by Lemma 3.1.4 (ii), we must have d(x,y) = —log[A - Al] = 0.
Also, k can be extended on K with + oo as a possible value.

(v) Follows from (i)—(iv) since a lineless convex cone is pointed. a

Remark 3.2.4. If K is any lineless convex cone then Theorem 3.2.3 (v) applies to all
non-zero parts of K. The metrics p, h,g, b can easily be extended to a metric on the
whole K since for x,y € K in different parts pu(x,y) = 0 and by setting p(0,0) = 1.
For p, however, it may happen that p(x,y) =+ co. Since A(x,y) - A(y,x) = 0 for x and
y in different parts, also d can be extended to K with d(x,y) =+ oo in this case and by
setting d(0, 0) = 0. Also, k can be extended on K with + co as a possible value.

The metrics just defined play important roles in such different disciplines as poten-
tial theory, complex functions, function algebras, (non-Euclidean) geometry, and in
various parts of functional analysis as positive operators, convexity, Dirichlet forms.
Since these metrics also have along and interesting history some additional comments
may be in order. What today is called the projective Hilbert metric was considered by
Hilbert in his investigations on the foundations of geometry for general convex bodies
in R" (see [23] and the discussion in the next Section 3.3). Actually, this metric has
been already investigated by A. Cayley [19] and F. Klein [29] in their models of hyper-
bolic geometry where the metric is given as the logarithm of the cross ratio for two
points in the open unit disc. For that reason, what we call the projective Hilbert met-
ric is sometimes called the Cayley—Hilbert metric (e.g. in [18, 50]) or the Klein—Hilbert
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metric (e.g. in [6, 49]) or simply hyperbolic length.(G. Birkhoff in a letter from 1984 to
the author remarked with respect to this metric: “... which Felix Klein says goes back
to Legendre.”) For the role of Hilbert’s projective metric in geometry see [15, 16]. In a
complete different setting, namely for positive linear operators on infinite dimensional
spaces, Hilbert’s projective metric was first introduced by G. Birkhoff into functional
analysis. (See [10] and, with improvements, [12]. See also [38].) About the same time H.
Samelson [50] used this metric in finite dimensions to give a rather elementary proof of
the Perron—Frobenius Theorem (see also [8]). The first use of this metric for non-linear
operators was made by P. Bushell [17], A.]. B. Potter [48], and M.A. Krasnoselski et al.
[36]. A modern monography with applications to non-linear operators is by R. D. Nuss-
baum [44, 45] and one of the few textbooks treating this metric is V.I. Istratescu [27].

The Thompson metric was first introduced by A. C. Thompson in his Ph.D. thesis
[53] (see [54] for major results) in dealing with non-linear positive operators. There
Thompson refers to the use of Hilbert’s projective metric made by Birkhoff and Samel-
son. There is another, quite interesting source, for Thompson’s metric and this is the
reason why it is called the part metric. For the maximal ideal space of a function al-
gebra A.M. Gleason studied in 1957 an equivalence relation, the equivalence classes
of which were later on called Gleason parts. The equivalence x ~ y can be described
by G(x,y) < 2 for a certain metric called later on Gleason metric (see [4, 5] and [32, 33]
for details). Related to G two other metrics were investigated (which we called in the
context of cones part metric and Bear metric) and non-trivial relations between them
were established which are reflected in the definitions of part metric, Gleason metric,
and Bear metric we gave here within the framework of convex cones, namely

1+Db06Y) _ 5 0e 2+ 8Y)

px.y) =log 1-b(xy) 2-g(xy)

(for function algebras see [33, p. 100] and [5, p. 3]). Bear, Weiss, and Bauer then made
stepwise the important and beautiful finding that the concepts of parts and corre-
sponding metrics are linked essentially, to convex sets [3, 4, 7].

What is here called the Harnack metric has been less well considered in the liter-
ature though this metric occurs already in [53]. Though almost the same as the part
metric, the Harnack metric is much simpler defined and has the advantage of being
finite also across parts. Metric & is called the Harnack metric because it is strongly
connected to Harnack inequalities, e.g., 1 — h(x,y) = u(x,y) is the smallest constant
¢ for which {x} and {y} satisfy a Harnack inequality (see Lemma 3.1.5 (iv); for the Har-
nack metric with respect to harmonic functions see [31]). Concerning the naming of
the various metrics one has to pay attention, e.g., is the part metric also called Har-
nack metric in [33] and Birkhoff metric in [35] (though the metric employed by Birkhoff
was the projective Hilbert metric).

The Kobayashi metric has its background in the search for invariant metrics in
complex analysis. Another, very well studied invariant metric goes back to Carathéo-
dory. Invariant means that distances do not increase when holomorphic mappings are
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applied. Both metrics have been considered also on convex cones as the Kobayashi-
type pseudo-distance and the Carathéodory-type pseudo-distance (see [20]). Invari-
ance here means that distances do not increase when linear selfmappings of the cone
are applied or, equivalently, all linear self-mappings of the cone are non-expansive for
the metric considered. Actually, the latter turns out to be equal to the part metric and
the former equal to the Kobayashi metric as defined here (see also Exercise 4 (a)). This
follows from two results in [20, pp. 22 and 26] which together characterize invariant
metrics on a one-part lineless cone of dimension greater than one as the metrics of
the form m(x,y) = f(log A (x,y), —1log A (y, x)) where f is a so-called special function, a
function f: R> — R, defined by certain properties. (See also Exercise 5.) This nice
result describes invariant metrics by A (x,y) and, hence, as internal metrics. In later
chapters it will be a major concern for which non-linear selfmappings of the cone the
metrics under consideration are invariant, too. From a view-point completely differ-
ent from the one in [20], a characterization of Hilbert’s projective metric was given in
[;O]. Let K be a closed convex cone in R" which is pointed and has non-empty interior
K. Then Hilbert’s projective metric is the only projective metric on K, up to a strictly
increasing scaling, for which every linear mapping of K ~ {0} into K is a contraction
30, p. 204].

Exercises

1. Show that for any convex lineless cone K in a real vector space V the following
properties hold. (See [3]).
(@) For any concave function u: K — R, and any part P of K one has the follow-
ing alternative:
Either u(x) > O forall x € Poru(x) = O forall x € P.
(b) Parts are connected sets (with respect to the part metric).
(c) Let Vbeanormed space and x € intK. Fory € K one has thaty ~ xiffy € intK.

2. LetK = {(u,r) | u € R, r € R,, |u| < r}be the ice cream cone (see Exercise 4
to 3.1).
(a) Describe all parts of K.
(b) Compute the projective Hilbert metric on K.
(c) Compute the part metric and the Kobayashi—metric on K.

3. Letp,g, b part metric, Gleason metric and Bear metric, respectively as defined in
Section 3.2.
(@) Prove for any part # {0} the equations

1+ b(x,y) _ 21 + g(x,y)
1-bxy) 1-g(xy)

pxy) =

(b) Compute explicitly p, g, b for K = intR%.
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(c) Prove that every linear selfmapping f of a lineless convex cone is non-
expansive for the metrics m = p, g, b, i.e., m(f(x), f(x)) < m(x,y) for all x, y.

4. Let k be the Kobayashi metric on K.
(a) Show that k(x,y) = max{p(x,y),d(x,y)}.
(b) By using (a) show that k is a metric on each non-zero part of K.
(c) Compute explicitly the Kobayashi metric on K = inthf.

5. Let K be a convex cone in some real vector space V. A metric m on K is called
special if all linear mappings f: V — V with f(K) c K are non-expansive for m.
A function g: R> — R, is called special if it stems from a special metric in the
sense that
g(a, b) = m((1,1), (e% e?)) for all (a, b) € R* for some special metric m on intR?.
(See [20].)
(a) Prove that for {0} + K lineless and consisting of one part only and for any

special function g

m,(x,y) = glog A (x, y), —1logA(y,x))

defines a special metric on K.

(b) Show that for any special metric m on intR? one has that m = m, where
g(a,b) = m((1,1), (¢%,€")).

(c) Consider for x,y € intR? and any special function h

X
m(x,y) = my(x,y) + |arctan X—Z _ arctan 22|,

1 V1

Show that m is a metric on intR? which is not special.

3.3 Geometrical properties

It is often convenient to visualize or analyse a convex cone by a cone base, in the case
the latter exists.

Definition 3.3.1. Let K be a convex cone in a real vector space Vandf: V — Ra
linear functional with f(x) > 0 for x € K ~ {0}. Theset B = {x € K | f(x) = 1} is called a

base of K. For x € K ~ {0} the point X = f("—x) € Bis called base point of x.

Obviously, a base need not exist and, if it exists, it is a convex set that is not
uniquely determined. Furthermore, every x € K ~ {0} has a unique representation
x = AxwithA > 0 and X € B; thereby, x is the base point of x and A = f(x). (See
Exercise 1.)

Any convex set C can be viewed as a base of some convex cone. Namely, define for
a (non-empty) convex subset of a real vector space W the cone K = R, (C x {1}) =
{Au,A) | A = 0, u € C}in the real vector space V =W x R.
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Obviously, K is a convex cone in V and f(Au,A) = A defines a linear functional
f: W — Rwithf(Au,A) > 0for (Au,A) € K~{0}. Furthermore, Cx{1} = {(Au,A) € K |
f(Au,A) = 1} is a base of K. Therefore, though convex cones are special convex sets,
there are “no more” convex sets than there are convex cones because the former can
serve as basis of the latter.

The above correspondence between convex cones and general convex sets can be
used to relate the order functions, where for an arbitrary convex set C in a real vector
space its order function is given for x,y € C by

BGy) =sup{a € [0,1] |[y=ax+ (1 -a)z, z € C}

(cf. [25, 37]).

Employing the function a(x,y) = min{f(x,y), B(y,x)} instead of u(x,y) one can
define the metrics considered for convex cones in the same manner for general convex
sets.

Lemma 3.3.2. Let K be a convex cone with base B = {x € K | f(x) = 1}. Forx,y € K~{0}

with base points X,y € B one has the following relationships

@) A(y) = BBX.).

(ii) d(x,y) = d(x,y), whered(u,v) = —1o0g[B (u, v)-B (v, u)] is the projective Hilbert metric
onB.

(iii) p(x,y) = - log min{f2B (x.7), KB (7.%).

Proof. (i) LetAx <yforA > 0, thatisy = Ax + z with z € K. It follows that

yo L Aﬂm_+ 1

f  f» - fo

Ifz=0thenf(y) =Af(x)andy = 1-x + 0 - x which imply thatA = /fg; ’;E—Qﬂ(fc,y).
If z + O then
__Mx o f@),

R T

which implies that Af’z(’;) < B(x, 7). In both cases we obtain A (x,y) < L E)y( ; B (x,y). Con-

versely, lety = fx + (1 — B)z for some z € B. It follows that

Bf(y)
fx)

which implies A (x, y) > ]fcgiﬂ *x.y)-

FD) g ) SO g s
FooP @95y B0

(iii) Immediate from (i). O

y=fyy=

x+(1-B)f(y)z

Bf»)

and, hence, A(x,y) > 00

(ii) By (i)
Ay) A, x) =

The above Lemma says in particular that for a convex cone with base the projective
Hilbert metric for the cone can be as well computed from the corresponding metric
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of any base. Thus, e.g., the projective Hilbert metric for an ice cream cone in three
dimensions can be computed from the corresponding metric of a circle (or ellipse)
in two dimensions. Generalizing considerations of Klein [29] for ellipses, Hilbert [23]
defined an internal length within arbitrary convex bodies (cf. also [15, Section 18]).
The points of his general geometry Hilbert mapped into a nowhere concave body in
Euclidean space. Thus, let C be a convex subset of R" which is closed and bounded
and consider two points A, B € C which intersect the boundary of C in X, Y as in the
following figure.

Fig. 3.4. Projective Hilbert metricin a
convex set.

As distance of A and B in the general geometry Hilbert defined

AVB=log{£-£}.
YB XA

3B _ (E) (@ )_1 is the cross ratio of the four points 4, B, X, Y where PQ
ﬂ ﬁ ﬁ p b bl b

is the Euclidean distance between two points P, Q given by the Euclidean norm on R",
that is PQ = |P - Q|. As is obvious from Figure 3.4,

A=pBB+(1-B)X, By =pB(BA)
B = ﬁZA +(1 _BZ)Y’ )82 = .B(A)B)

YA
Here 75

Therefore,
YB = [B-Y| = B,lA- Y| = B,YA
XA = |A-X|l = B,IB-X| = B, XB
and, hence,
AB = log —— = —log[B(A, BB (B, A)].
BB,

This shows that the distance defined by Hilbert for points of the general geome-
try is exactly what was called the projective Hilbert metric with respect to the order
function of a convex body.

The following proposition collects various useful inequalities considering inter-
nal metrics and semi-norms. Thereby, g: V — R, is a semi-norm on the real vector
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space Vif g(Ax) = |A|g(x) forA € R, x € Vand g(x + y) < q(x) + q(y) forx,y € V.
(Locally convex topologies on V are defined by those semi-norms; see the next section
for related results.)

Proposition 3.3.3. Let K be a lineless convex cone and let x,y € K ~ {0}. The following
inequalities hold.

(i) dxy) <2pxy).

(i) h(oy) < pxy) < 1?;"(3(’;) forx ~y.

(i) h(,y) <g06y) < 2b(xy) < 2h(x,Y).

(iv) p(x,y) < k(x,y) < 2p(x,y).

(v) For every monotone semi-norm q on V it holds that

qx-y) < [3 - (a + b + max{a, b})] max{q(x), q(y)}

where a = min{A (x,y), 1}, b = min{A (y, x), 1}.
(vi) For every monotone semi-norm q on V it holds that

q(x - y) < 3h(x,y) max{q(x), q(y)}
and for q(x) = q(y) = 1
g(x —y) < 3(1 - exp(-d(x,))).
(vii) For every monotone semi-norm q on V it holds that
pxy) <d(x,y) + |log q(x) - log q(y)| for q(x),q(y) > O

and for q(x) = q(y) > 0
p(x,y) < d(x,y).

Proof. (i) Follows immediately from min{A (x,y), A(y,x)}> < A(x,y) - A (¥, X).
(ii) For r = p(x,y) one has h(x,y) = 1 — e”". If x ~ y then r > 0 and the mean value
theorem applied to 1 — e yields

re’<1-e"<r,

that is
p(,y)(1 - h(x,y)) < h(x,y) < p(x,y).
(iii) By definition of the metrics one has to show that for 0 <y = u(x,y) < 1
1 _
LoV,
2 1+yg~ 1+
The first inequality holds because of

1-u
2 <2a-p).
. M

1 _14 2 51K,
=00+ VD) = 5=V + VR < 25220 - V).
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The second inequality follows from u < /i and the third inequality is obvious.
(iv) Follows from k(x,y) = max{d(x,y), p(x,y)} (see Exercise 4 (a) of Section 3.2)
by (i).
(v) Letx,y e KwithAx <yanduy <xforO <A, p < 1.
It follows that
-y -p)<x-y<x(1-1)

and, hence,
O<x-y+yQ-pu)<x(1-21)+y(1-p).

Since q is a monotone semi-norm, one obtains

qx-y)—qy(1 - p)) < qx -y + y(1 - p)) < q(x(1 - 1)) + q(y(1 - u))
and, hence,
qx-y) < ((1 - A) + 2(1 — p)) max{q(x), g(y)}.

Exchanging the roles of x and y one obtains
q(y —x) < ((1 - p) + 2(1 - A)) max{q(y), g(0)}.
This yields altogether
qx—y) < (3 - (A + p + max{A, u})) max{q(x),q(y)}.

Taking suprema over A and y this proves the required inequality.
(vi) From (v) one obtains

U(y) =min{A(x,y),A(y,x)} <a,b

and
qx -y) < [3 - 3u(x, y)] max{g(x), )},

which shows the first inequality.
For g(x) = q(y) = 1 one must have that A (x,y) < 1 and A(y, x) < 1 and (v) yields

qx-y)< [3-QAKy) + Ay, x) + max{A(x,y),A(y, X)})]
< [B3-3A06y)-A@y,x)].

Since A (x,y) - A(y, x) = exp(—d(x, y)) this yields the required inequality.
is i i av) ax) i )
(vii) Ax < yimplies A < 20 and, hence, A (x, y)m < 1. Slm1lar1y,/1(y,x)@ <1
and, therefore,

_ qx) ) : qx) av)
A6y - A0 = A6V Ay, 092 < min {406 )49, Ay, 022}

< min{A(x,), Ay, )} - max {44, 40}

The assertion follows by taking the logarithm in this inequality and taking the defini-
tions of d and p into account. O
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Remark 3.3.4. The statements (i)—(iv) of Proposition 3.3.3 show that for any of the
metrics p, h, g, b, k the distance between two points is small iff this holds for any of
the other metrics. This does not apply to the projective Hilbert metric d. By (i) one has
that d(x,y) < 2p(x,y) but, e.g., if y = Ax for A > 0 arbitrary then d(x,y) = 0 and

p(x,y) = —logmin{A, Al} = |log A|. Proposition 3.3.3 implies inequalities obtained in
the literature. Property (vi) implies that g(x - y) < 3 max{q(x), q(y)}(}ﬁy) - 1) (see [54,

pp. 438/39]). Since e’ — 1 > 1 — e for r € R property (vi) implies that

q(x —y) < 3 max{q(x), q(y)}(exp p(x,y) - 1)
and that
q(x —y) < 3(expd(x,y) — 1)
for q(x) = q(y) = 1 (see [44, pp. 14, 15]).
Employing the notation [x,y] = {z € K | x < z < y} for intervals and B,,(x,r) = {y €

K | m(x,y) < r} for a closed ball with center x and radius r for the internal metric m we
can describe balls for internal metrics as follows:

Lemma 3.3.5. Let K be a lineless convex cone which is archimedean in K — K.
For x € K~ {0} and r > 0 one has

(i) By(x,r) = R,[x, e'x], a convex cone

(i) B,(x,r) = [e7'x,€'x]

(i) By (1) = [(1 - r)x, 7=x] forr < 1

(iv) Bi(x,1) = R,[x,e'x] N [e7"x, e'x].

Proof. (i) By definition
dix,y) <riffe” <A(xy) Ay, x).

Ify € R,[x,e'x] thenAx <y < Ae'x for some A > 0 and, hence, A(x,y) - A(y,x) =
% = e, Conversely, since K is archimedean, Lemma 3.1.4 (xii) implies that

x <A(x,y)e'x

1
/l(x,y)xsyA(y )

and, hence, ﬁy) € [x, e'x].
(ii) Because K is archimedean the following equivalences hold
Uxy)zu >0 Axy)=u and
Ay, x) >u ©ux<y and

Uy <xoye [px,%x].

Since p(x,y) < r © e < u this proves (ii).

(iii) Follows from the equivalences in (ii).

(iv) Follows from k(x,y) = max{d(x,y), p(x,y)} (see Exercise 4 (a) to Section 3.2)
and (i) and (ii). O
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From property (iii) one obtains in an obvious way also a description of the balls for
the Gleason metric and the Bear metric. The following figure depicts balls for some
internal metrics.

Hilbert’s projective metric part metric

ex

Harnack metric Kobayashi metric

Fig. 3.5. Closed balls with center x and radius r for some internal metrics.

In case the convex cone is given by a family of linear functionals, internal metrics have
a dual description in terms of these functionals. The following lemma gives a descrip-
tion for d, p and h; similar descriptions can be obtained for other internal metrics.

Lemma 3.3.6. Let K be a lineless convex cone such that for some family F of linear func-
tionals on V
K={xeV|f(x)=0forallf € 5}.

The following formulas hold for x,y € K ~ {0}:

d(x,y) = supflogf(x) —logf(y) | f € F,f(x) > 0}
—inf{log f(x) -logf(y) | f € F,f(y) > O}



3.3 Geometrical properties =—— 97

p(x,y) = sup{llogf(y) —log f(If € F, f(x) > O, f(y) > 0}

_ If ) - f)l
h(x,y) = sup {7max{f(x),f(y)} If € F, fOO >0, f(y) > 0} )

Proof. By Lemma 3.1.4 (xiv)

Aoy) = inf{f(y) \fed, f0) > 0}
f(x)
Therefore,
dx.y) = 10g 55— logA(y,x)
= sup{logf(x) - logf(y) | f € F, f(x) > O}
= inf{logf(x) - logf(y)|f €3, f(y) > O}.
Furthermore,

fo f&x)

minfA (x,y), A(y,x)} = inf {mln {f( ) f)

}If 7, f(x) > 0, f(y) >O}

and, hence,

p(x,y) = —logmin{A(x,y), A(y,x)}

) 0
o f(y)} e ”(X)>°f(”>°}

= sup {|logf(y) - logf()| |f € F, f(x) > 0, f(y) > O}

= sup { log min {

because of
—log min {f W 1 (X)} max{log f(x) - log f(y), logf(y) - log f(x)}.
f)" fy)
Finally,
1-A(xy) = 1+sup{—%b‘e?,f(x)>0}
= sup{f(x}( ) If € F, f(x) >0}
and, hence,

h(X>)’) =1- min{A(X)y)’ A(}’)X)} = maX{l —A(X)Y), 1 _A(y’x)}
_ fO)-f) fo)-fx)
- Sup {m‘“ { o f®

_ If () - f)l
= sup {7max{f(x),f(y)} If € F, fO0) >0, f(y) > 0}. O

Remark 3.3.7. In case of the standard cone in R" one can choose as family F the
finitely many projections f(x) = x; for 1 < i < n. Lemma 3.3.6 shows that

} [fe&",f(x)>0,f(y)>0}

d(x,y) = max{log x; — logy; | x; > 0} — min{log x; — logy; | y; > O},
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which coincides with definition given in Chapter 2 (see Definition 2.1.8), and

p(xy) = max{|logx; - logy;| | x; >0, y; > 0}

Ix; — il Ix
max{x; y;}

In particular, forn=1andx > 0,y > 0

h(x,y) = max { ->O,y,->0}.

d(x,y) = logx —logy — (logx —logy) =0
p(xy) = |logx —logy]

__x-vyl
htoy) = max{x,y}’

From Lemma 3.3.6 one easily obtains the following result which demonstrates that a
part of a convex cone when equipped with the projective Hilbert metric and the part
metric, respectively, is isomorphic as a metric space to a subset of a normed vector
space.

Proposition 3.3.8. Let K be a lineless convex cone in a real vector space V such that
K={xeV|f(x) =0, f € F} for some family F of linear functionals on V.
DefineK = {x e K | f(x) > O, f € F} and suppose there exist functions c,d: K — R

such that 0 < c(x) < f(x) < d(x) for all f € F, all x € K.
Let W be the real vector space of all bounded real valued functions on the set F,
equipped with the supremums norm | - |.

(i) Setting Y (x)(f) = logf(x) defines an injective mapping i : K — W with px,y) =

Y (x) =Y W)l forallx,y € K.
(if) Pick some f, e I and let Wy = {F € W | F(f,) = 0}. The mapping i defined in (i

maps {x € K | fo(x) = 1} into W, and it holds
doey) =11y -yl |

forallx,y € K, where || | || | is a norm on W,, defined by || | F|| |= sup{F(f) | f €
F} —inf{F(f) | f € F}.
Proof. (i) Forx € K and f € F one has that f(x) > 0 and, hence, Y (x)(f) is defined.
Furthermore, c(x) < sup{y (x)(f) | f e T} <dx),forx e K and, hence, i maps K into

W. From Lemma 3.3.6 for x, y € K one has

pOGy)=sup{lp CO) - P WA | f € F}
=lpx)-yPpWI.

(i) If x € K with fy(x) = 1 then ¢ (x)(fy) = logf,(x) = 0 and, hence, ) maps
X € K | f,(x) = 1} into W,.
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From Lemma 3.3.6 for x,y € K one has

d(x,y) = sup{ CO) —Yp ) | f € I} = inf{h () - P W) | f € T}
=11 -PpWII
with || | -] | as defined in (ii).

Obviously, | | F|| |le R, forallf € W.If| | F|| |= O for F € W, then F must
be constant on F and, because of F(f,) = 0, one must have that F = 0. Finally, for
F, Ge3d,

sup{(F + G)(f) | f € F} < sup{F(f) | f € F} + sup{G(f) | f € F}

and
inf{F(f) | f € F} +inf{G(f) | f € F} <inf{(F + G)(f) | f € F},

and, hence, | [F+ Gl |< [ FIl [+ 1 | Gl | O

Proposition 3.3.8 applies in particular to a lineless convex cone which is closed in a
normed vector space. In this case F can be taken to be the dual cone of K and it holds

intK = K, where intK is the interior of K with respect to the norm topology. This is
illustrated in the following example for the normed space of all continuous functions
on a compact space.

Example 3.3.9. (Cf. [44, pp. 20, 22], [58, pp. 29, 30].) Let T be a (non-empty) compact
space, V = @€(T) the real vector space of all real continuous functions on T and K =
{x € &T) | x(t) = 0, all t € T} the standard cone in €(T). Obviously, K = {x € V |
€(x) = 0, ¢ € F} where JF is the set of all evaluation functionals ¢, t € T, on €(t), i.e.,

€(x) = x(¢t) for x € C(T). It is easily seen that f( ={x e CT) | x(t) >0,allt € T}is
the interior intK of K with respect to the supremums norm || - || on &(T). The functions
¢,d: K — R can be taken to be c(x) = inf{x(t) | t € T} and d(x) = sup{x(t) | t € T}.
By identifying F with T we have that ¢ (x)(t) = log x(t) defines an injective mapping
Y : K — C(T). Moreover, § is surjective because of i (expy) = y fory € C(T). Thus
we obtain that i yields an isometry of the metric spaces (intK, p) and (C(T), | - |I). This

isometry, however, is not an isomorphism with respect to the cone structure of Io( .

In a similar way, from part (ii) of Lemma 3.3.6 it follows that i yields for any given
point ¢, € T an isometry between the metric space given by intK n {x € K | x(¢,) = 1}
equipped with Hilbert’s projective metric and the vector space {f € C(T) | f(t,) = O}
equipped with the norm

I 1 x|l |= sup{x(t) | t € T} - inf{x(t) | t € T}.

By choosing for T the discrete space T = {1,...,n} the results obtained specialize to
V = R"and K = R the standard cone. It follows that intR” equipped with the part met-
ric is isometric to R" with max-norm and that intR""* equipped with Hilbert’s projec-
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tive (pseudo-)metric is isometric to R"! with a pseudo-norm given by |l | x|l |= maxx;-
1

minx;. As already pointed out, this isometries do not respect the cone-structure.
1

Exercises

1.

a) Let K be a convex cone with base B in some real vector space V. Show that B
is a convex set such that every x € K ~ {0} has a unique representation x = 1x

withA > 0andx € B.
b) Find a base of the ice cream cone

K={x=uWr) eR"xR, | |ul|<r},
where ||Ju||® = (u,u); (-, -) standard scalar product.

c) Find an archimedean and lineless convex cone which possesses no base.

Sketch the unit ball with center x for

a) the Gleason metric on ]Rf,

b) the Bear metric on R?,

c) the projective Hilbert metric on the ice cream cone

2 2, .2 _ 2
{06 e R xR, [ x] +X5 <r'h

Let K be a lineless convex cone in a real vector space V such that K = {x € V |

f(x) > 0 for all f € F} for some family F of linear functionals on V.
a) Describe the Gleason metric on K in terms of F (cf. Lemma 3.3.6).
b) Describe the Kobayashi metric on K in terms of F.

c) Find for the ice cream cone {(x,7) € R*> x R, | xf + xg < r?} a representation

by a family F and describe the projective Hilbert metric in terms of F.

d) Characterize for K all its parts in terms of F. Find the number of parts for F

finite, in particular for K = R.

Letl; = {x € RN | Y2, x| <+ oo} with norm |Ix|| = Y2, Ix;] <+ oo and K the

convexconeK ={x e l; | x; > 0foralli € N}.

a) Find arepresentation of K by a family F of continuous linear functionals on [;.

b) Compare f( ={xeK|f(x) >0, f € F} with intK with respect to | - |.

¢) Describe the metric space (I°<, p) isometrically by a subset of a normed space.

Let K be a convex cone in a normed vector space V.

a) Show that K is symmetrically bounded (cf. Exercise 5 to 3.1) iff every subset of
K open for the restriction of the norm topology on K is open also for the part

metric.

b) Show thatifintK + @ and K is symmetrically bounded it is normal, i.e., there

exists a constant ¢ > 0 such that ||x|| < c||x + y| forall x,y € K.
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c) Let K be the convex cone of all sequences x = (x;,X,,...,) € RN withx; # 0
only for finitely many i € Nand Y, x; > O foralln > 1. Consider V = K - K
with the norm ||x|| = max|x;|. Show that intK = @, K is symmetrically bounded

1

but not normal.

3.4 Completeness for internal metrics

An important step in the analysis of concave Perron-Frobenius theory was the fact
that the interior of the standard cone in R” (or a certain subset of it) is complete for
Hilbert’s projective metric. This fact was easily established by an adhoc-argument
(Lemma 2.1.10). To get completeness for general cones in infinite dimensions a more
detailed investigation is needed. The main step will be the characterization of internal
completeness, i.e., completeness of a cone with respect to any of the internal metrics,
in terms of so called guided sequences of elements in the cone. This then will lead to
various criteria which assure internal completeness provided the cone meets certain
topological requirements. As remarked already, in general the internal metrics are just
“écarts” and topological notions as well as uniform structures will be understood in
the sense of Bourbaki [13].

The following lemma will allow us to concentrate without loss on cones consisting
of one part only and on the internal metrics d and h only.

Lemma 3.4.1. Let K + {0} be a lineless convex cone in some real vector space.

(i) For m any of the internal metrics d, p, h,g, b and k on K, the cone K is complete for
m if and only if every part of K is complete for m.

(ii) For m any of the internal metrics p, g, b and k, the completeness of K for m is equiv-
alent to the completeness of K for h.

Proof. (i) By Lemma 3.2.2 the order functions A; and A, of K and of a part P of K, respec-
tively, coincide on P x P. Since all internal metrics are defined by the order function it
follows that the internal metrics my and m; coincide on P x P. Two points x,y € K~ {0}
are in the same part iff Ax(x,y) > 0 and Ag(y, x) > O or, equivalently, iff m(x,y) < oo for
m=d,p,k, m(x,y) < 1form = h,band g(x,y) < 2. This proves (i).

(ii) From the inequalities (ii)—(iv) of Proposition 3.3.3 it follows that K is complete
for hiff K is complete for one of the metrics m = p, g, b, k. O

Later on we will see that completeness for d, too, is equivalent to completeness for h.
The following concept of a guided sequence will be useful later on to describe more
explicitly Cauchy sequences for internal metrics.

Definition 3.4.2. A sequence (x,) ¢ K is a sequence guided by e, or shortly, a guided
sequence if there exist e € K and a sequence (g,) of non-negative real numbers con-
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verging to O such that
€ <Xy < Xpun <X, + €, forall mynelN.

(< is the order relation induced by the convex cone K.)

Obviously, a sequence (x,,) in K is guided by e iff it is an increasing sequence of ele-
ments above e such that x,,,,, € x, + [0,e,e] where [a,b] = {x € K | a < x < b}
denotes an interval with respect to K. In particular, a guided sequence is increasing
and order-bounded, i.e., contained in some order interval. The converse implication
may hold or not as explained by the following examples.

Examples 3.4.3. (a) Consider the standard cone K = IRiV . For this cone one has that

any increasing order-bounded sequence is also a guided sequence. If (x,,) is increasing

and order-bounded then there exists x = (x',...,x") € K such that x' = sup x; for
n

all i. Let I be the set of all 1 < i < N such that x, > O for at least one n and define
e = min{x; [ x; > 0} fori e Iand ¢’ = O fori ¢ I. Obviously, e € Kand e < x,, < X,

i
x'=x,
o

for all m,n € N. By ¢, = max{ | i € I} and e, = O in case of I = 0 a sequence of
non-negative numbers is defined which convergers to 0. It follows that x' < x,, + €,€'
fori € I and, trivially, fori ¢ I and, hence,

Xipan < X < Xy + €€.

Thus (x,,) is a sequence guided by e.

(b) Consider the standard cone K = C,([0, 1]) in the infinite dimensional vector
space of all continuous functions on the unit interval.

We construct an increasing and order-bounded sequence in the cone K which not
even possesses a guided subsequence. Let f,, € K be defined by

2", 0

1

S
1, L<t<1
> n =

t
fn(t) = { ¢

<
<

Obviously, f,, < f,.1 and 0 < f,, < 1 on [0, 1] for all n. One has that for the supremums
norm | - |

1
”fm+n _fn” 2 |lfn+1 _fn" > E

for all m > 1. Suppose (f,;) is a subsequence of (f,,) that is guided by some e € K. In
particular, O < f,,» — fy < e and, hence,

1
E < ||fm’+n’ _fn’ ” < (o] ”e"
with €, converging to 0. This, however, is not possible.

The following lemma establishes a connection between Cauchy sequences for any of
the internal metrics and guided sequences.
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Lemma 3.4.4. Let K be a lineless convex cone and m an internal metric on K.

(i) Every guided sequence is a Cauchy sequence for m.

(ii) If (x,), is a Cauchy sequence in K for m then there exists a subsequence (X, ), and a
sequence of real numbers A > 0 such that (z;),. for z, = Ax,, Is a guided sequence.

Proof. Without restriction we consider sequences in K ~ {0}.
(i) By Proposition 3.3.3 it suffices to consider m = h. Let (x,,) be a sequence guided
by e € K. Then A (x,,, X;,,,) = 1. Furthermore,

Xppan < Xy + €8 < X + €%, = (1 + €)X,

1
1+e, "

yields that A (X, X)) =
Therefore,
h(X> Xpan) = 1 — MinfA (X, Xppin)> A s X)}
1 e
1+ € 1+ €n

< <€

n

forall m, n. Since (¢,) converges to O forn — co it follows that (x,,) is a Cauchy sequence
for h.

(ii) By Proposition 3.3.3 it suffices to prove the assertion for m = d. Let (x,)
be a Cauchy sequence for d. For ¢, = (1 + 47871 there exists a subsequence
Yk = Xgg» N(): N — N strictly increasing, such that d(y,,y,) < —loge for all
k e N.

Therefore,

AW Vi) - AW Vis1) > €

which implies that for every k € N there exist a;, > 0,8, > 0 with ;f; > ¢, and

i < Yierr BVisa < Ve
Define recursively A, > 0by A; = 1, 4,1 = A ' and z; = Ay, for k € N.
We shall show that (z;) is a guided sequence with e = z,.
It holds that

A
2y = /\kyk < a_)’k+1 = Ak+1yk+l = Z41
k

and

Ay 1 1
Ziy = A < Hly = — A < =z
i1 = M1 Yier1 B, Vi 2B 1Yk o k
This yields forn e N
< - (1 1 1
O0<zyy-2z1= Z(Zk+1 -z) < z <_ - 1)Zk S 3% S T
k=1 k=1 \ €k 3 3

and, hence,
Zp < %zl forall neN.
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From this we obtain form,n e N

m+n-1 m+n-1 m+n-1

- 3 _ _
Zmin—Zn= ). @G-z Y 4kzk£5( D 4")2132-4"21.
k=n k=n k=n

Therefore, for e = z;, €, = 2 - 47" we obtain that forallm,n ¢ N
€ <2, < Zyy <2, €l O

By Lemma 3.4.4 guided sequences are a special kind of internal Cauchy sequences and,
of course, the latter are not guided in general. The next lemma describes the special
kind of internal convergence for guided sequences.

Since the cones we are considering are not necessarily archimedean, we consider
for a lineless convex cone K in a real vector space V beside the order-relation < the
following order-relation <, also induced by K. For x,y € Vletx < yifand only if x < ry
forallr > 1.

The relation < is reflexive and transitive and x < y implies x < y. In general, x < y
does not imply x < y. The latter implication holds iff K is archimedean.

Lemma 3.4.5. Let K be a lineless convex cone and m an internal metric on K. A guided
sequence (x,,) in K converges for m if and only if (x,)) has a supremum in K with respect
to the order relation <.

Proof. (i) Let (x,) be a guided sequence that converges for m. We shall show that (x;,,)
has a supremum in K for <. By Proposition 3.3.3 we can assume that m = d. If (x,,)
converges for d to x € K, without loss x # 0, then A (x,, x) - A(x, x,,) converges to 1 for
n — oo. We show that the limits nlgg() A(x,,x) = sand nlggo A(x,x,) = S do exist and,
hence, s - S = 1. As a guided sequence (x,) is increasing and, therefore, A (x,,x) <
A (X, x) for m < n. Thus (A(x,, x)) is decreasing and, hence, s = nll»%lo A (x,, X) exists.
Similarly, A (x, x,,,) < A(x, x,,) for m < n and the sequence (A (x, x,,)) is increasing. Since
(x,,) is guided one has that x,, < x,,,; < (1 + €)x; and, hence,

AGx,) <ACG(L +e)xy) = (1 +€)A(xxq) forall n

By Lemma 3.1.4 (i) and x # O one has that A (x, x;) < co and, therefore, (A (x, x,,)) is
bounded from above. Thus, S = nll»%lo A(x, x,,) exists.

Next we show that Sx is a supremum of (x,,) for <. Obviously, A (x,,, x)x,, < rx for all
r > landn € N. Together with s < A(x,,, x) we obtain sx,, < rxand, hence, x,, < %x = Sx
for all n. Furthermore, let x,, < yforsomey € Kandalln € N. Obviously, A (x, x,)x < rx,
forallr > 1 and n € N, and we conclude that A (x, x,)x < r’yforallr > 1,alln € N. By
definition of S, tor > 1 there exists n, € N with S < A(x, x, )r. Altogether we obtain
that

Sx < Ax, xno)rx < rrzy.

Sincer > 1 arbitrary this implies that Sx < y. This shows that Sx is a supremum of (x,,).
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(ii) Let (x,) be a guided sequence with a supremum x for <. By Proposition 3.3.3
it suffices to show that nllg)lo h(x,,x) = 0. Since x,, < x for all n one has that x,, < rx for
allnand all r > 1 and, therefore, A (x,,x) > 1 for all n. Furthermore, because (x,) is
guided we have that x; < x,, for k < nand x,,,, < x, + €, < (1 + ¢,)e, and, therefore,
X < (1 + ¢)x, and all k,n € N. Since x is a supremum of (x,,) for < it follows that
x < (1 + e,)x, for all n € N. This implies that A(x,x,) > — > 1 - ¢, and, hence,

1+e, —
1-A(x,x,) < ¢, for all n. Altogether we obtain

h(x, x,;) = max{l — A(x,,x), 1 — A(x, x,)}
< max{0,¢,} = €,

and, hence, 0 < lim h(x,x,) < lime, = 0. O
n—oo n—-oo

From the two lemmata we obtain immediately the following main result on internal
completeness of cones.

Theorem 3.4.6 (Internal completeness theorem). Let K be a lineless convex cone in
some real vector space and let m be an internal metric on K (i.e., m is one of the metrics
d,p,h,g, b, and k). K is complete for m if and only if every guided sequence in K has a
supremum in K with respect to <.

Proof. (i) Suppose, K is complete for m. If (x,) is a guided sequence in K then by
Lemma 3.4.4 (i) it is a Cauchy sequence for m. Therefore, (x,) converges for m and,
by Lemma 3.4.5, has a supremum in KX for <.

(ii) Suppose, every guided sequence in K has a supremum in K for <. If (x,) is a
Cauchy sequence in K for m then, by Lemma 3.4.4 (ii), there exists a sequence in K
given by z; = Ayxpqy> A¢ > 0, which is guided. By assumption, this guided sequence
has a supremum in K for < and, by Lemma 3.4.5, it must converge to some z € K for m.
Suppose, that m = d. From Lemma 3.1.4 (ii) we have that

d(Xn(k), Z) = - lOg[A (Xn(k),Z) . A (Z, Xn(k)]
~log[NA (2, 2) - Aik)\(z,zk)]
d(z;, 2).

Therefore, (x,y,) converges to z and, since (x,) is a Cauchy sequence for d, (x,)
must converge to z for d. Thus, K is complete for d.

Suppose, now, that m + d.

By Proposition 3.3.3 we may assume that m = h. Since (x,,) is a Cauchy sequence
for h, there exists n, € N such that A (x, ,x,) > % for all n = n,. Since (z;) is a guided
sequence, there exists v € K such that z;, < v for all k, and, therefore, A (x,),v) = A,
for all k. From Lemma 3.1.4 (iii) it follows for k, € IN with n(k,) > n, that

1
A > V) 2 A s X))+ A Xy, V) 2 5 A

forall k > k.
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Therefore, supA, is finite and there exists an increasing subsequence (A;) converg-
k

ing to some A > 0.
Using Lemma 3.1.4 (ii) we obtain that

. z z . (A A .
min {/1 (xn(l), 1 ), A (X’X”(l))} > min {Xl’ }TI} -min{(A(z;,2),A (2, 2)}.

Since min{%, %} and min{A(z;, z), A(z, z;)} converge to 1 for | —» co, we must have
that llim h(n» }51) = 0. By assumption (x,) is a Cauchy sequence for h and, hence, (x,)

must converge to /% for h. Thus, K is complete for h. [

The internal completeness theorem implies in particular that a cone which is complete
for one internal metric must be complete for any other internal metric. Therefore, we
call alineless convex cone simply internally complete if it is complete for any internal
metric.

Remark 3.4.7. For an earlier version of the internal completeness theorem see [38,
p. 554]. Theorem 3.4.6 (together with Lemma 3.4.1) implies in particular the following
criterion of [21, p. 20]:

A lineless convex cone is complete for the part metric if for every part P it holds
that any increasing and order-bounded sequence (for P) has a supremum in P with
respect to < (for P). The conditions of this criterion are sufficient but not necessary,
as can be seen from the example of all non-negative continuous functions on the unit
interval (cf. Examples 3.4.3 b).

From the internal completeness theorem we can derive a characterization of inter-
nal completeness in terms of relative uniform convergence, a concept which is mainly
used in vector lattices (see also Remark 3.4.10).

Definition 3.4.8. Let K be a convex cone in a real vector space V and let < be the or-
dering relation induced by K. A sequence (x,) in V converges to x in V for relative
uniform convergence (r.u. convergence) if there exist u € K and a null-sequence
(6,)) such that

-Su<x-x,<6,u forall neN.

A sequence (x,,) in V is a Cauchy sequence for r.u. convergence, if there exist u € K
and a null-sequence (g,) such that

—€pU < Xppn — X, < €u forall m,neN.

A subset M of V is complete for r.u. convergence if every r.u. Cauchy sequence in M
converges for r.u. convergence in M (with the same u).

Corollary 3.4.9. A lineless convex cone K in the vector space V is internally complete
if and only if with respect to relative uniform convergence every increasing Cauchy se-
quence in K converges in V (with the same u). In particular, K is internally complete if it
is complete for relative uniform convergence.
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Proof. 1t suffices to prove the first statement.
(i) Let K be internally complete. If (x,) is an increasing Cauchy sequence for r.u.
convergence then
0 < Xpyn — Xy <€u forall mnelN.

Lety, = x,, —x; + u € V. Obviously, y,, € K and
USYn<Ymn S Yn + 6l

that is, (y,) is a sequence guided by u. By Theorem 3.4.6 (y,) has a supremum y for <
in K. From y,,,, <y, + euit follows thaty, <y, + e,u for fixednand all k € N and,
hence, y, <y, + €,u.

The latter impliesy < (1 + %)yn + 2¢e,u for all n € N and, hence,

1 1
V=Vn< Hy" +2e,u < H(elu +U) + 2e,u

1+¢

< 8,uwith §, = + 2¢

ne

On the other hand, from y,, < y it follows thaty, < (1 + %)y and because of y, <
(1 + €;)u, we obtain

1+e Y,
Su<-—u<-_<y-y.
" n n+1 -7 O

Putting together, we obtain
O u<s(y+x,—€)—x, <0,u

with a null-sequence (6,,).

Thus, the sequence (x,) converges for r.u. convergencetoy + x; —e € V.

(if) Suppose, every increasing Cauchy sequence in K converges for r.u. conver-
gencein V. Let (x,) be a guided sequence in K, i.e., e < X, < X;p,n < X, + €€

Obviously, (x,,) is an increasing Cauchy sequence for r.u. convergence and, by as-
sumption, (x,,) is r.u. convergent to x € V with u = e, thatis -8,e < x — x,, < §,e for all
n, where (6, is a null-sequence.

In particular, for n big enough 0 < (1 - §,)e < x,, — §,e < x and, hence, x € K.

Furthermore, x,, < x + §,e < x + 6,x,, and, hence, (1 - §,)x,, < x.

For r > 1 given there exists n, € N such that§, < 1 - % for n > n,, and we obtain
X, < 1—%3"" < rxforn > n,.

Since (x,,) is increasing, this implies that x,, < rx for all n € N and, hence, x,, < x
foralln e N.

Finally, letx, <y € Kforalln € N. From x < x,, + §,e < (1 + 6,)x, we obtain that
x < (1+ 6, ryforallr > 1,alln € N. Since this implies that x < y we conclude that (x,,)
has for < the supremum x € K. By Theorem 3.4.6 the cone K is internally complete. [

Remarks 3.4.10. (i) For the notion of relative uniform convergence and related results
see in particular [10, 11, 43, 47, 51, 56] (where it is called convergence with respect to
a regulator).
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(if) Corollary 3.4.9 contains the following criterion due to G. Birkhoff ([11, p. 49],
[12, p. 387]):

If K is a pointed and archimedean convex cone in a real vector space V = K - K
which is complete for r.u. convergence then K is complete with respect to Hilbert’s
projective metric.

For a pointed convex cone that is archimedean (in K - K) the internal completeness
theorem can be rephrased as follows: K is internally complete if and only if every in-
creasing Cauchy sequence for r.u. convergence has a supremum in K (for <).

If in addition V' = K - K is a vector lattice for <, Corollary 3.4.9 simplifies to the
following characterization: K is internally complete if and only if K is complete for r.u.
convergence.

Since a Banach lattice(or, more general, a complete vector lattice) is complete for r.u.
convergence, it follows that the positive cone of a Banach lattice is internally complete
(cf. [10, p. 227], [11, p. 50]).

Next we will derive criteria for internal completeness which employ topological
assumptions. First we recall some related notions.

A semi-norm on a real vector space V is a mapping g: V — R, such that g(x +
y) < qx) + q(y) and g(Ax) = |[A|g(x) for x,y € Vand A € R. A semi-norm g is a norm
if in addition g(x) = O implies x = 0. If K is a convex cone in V with order relation
< a semi-norm or norm ¢ is called monotone or increasing if 0 < x < y implies that
q(x) < q(y).

A locally convex topology on a vector space V is the coarsest topology on V for
which all semi-norms g from a given family Q are continuous. A locally convex topol-
ogy can be described by the following base for the neighborhood system of 0

{xeV|qgx)<e forall qeF}

where ¢ > 0 and F is a finite subset of Q. By translation one obtains a base for any
y € V. The locally convex topology is separated or Hausdorff iff g(x) = 0 forallg € Q
implies that x = 0. In the following a locally convex topology is always assumed to be
Hausdorff.

A vector space V equipped with such a topology 7 is called a locally convex vec-
tor space, denoted by (V, 7).

Definition 3.4.11. A convex cone K in alocally convex vector space (V, T) is called nor-
mal if there exists a family Q of monotone semi-norms on V that defines 7.

For the special case of a normed space (V, | - ||) a convex cone K in V is normal
iff there exists a constant ¢ > 0 such that 0 < x < y implies ||x|| < cl|ly|. (See [47] for
normal cones.)

Before turning to topological criteria for internal completeness we will explore the
relationship between the vector space topology T and the internal topologies, that is
the topologies belonging to internal metrics h, p, d, g, b, k (see also Exercises 2 to 5).
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Proposition 3.4.12. Let K be a lineless convex cone in a locally convex vector space
(V,1).Let P + {0} be a part of K and let (L, T) be the smallest subspace L of V containing
P equipped with the restriction of T on L.

(i) Letx,y € Pandsupposex + U < Pandy + U < P for some U from the base of the
neighborhood system of 0 in (L, 7). Forx' e x + aU, y' ey + BUwithO < a, B < 1
it holds that

-B B

A(x y) <A,y < A(x y). 3B41)

1+
(ii) Letx € Pwithx + U ¢ Kwhere U={uel)| q(u) <r, q € F} for a finite subset F of
Q. For X' € x + U it holds that

!
h(x',x) < M forall qeF with q(x'-x)#0. (34.2)

(iii) If P has non-empty interior P in(L,T) then P = P and the order function A(-,-) and
all internal metrics are T -continuous on P x P.

(iv) Internal open subsets of Pare openin (L, T).

(v) IfPisnormalin (L, T) then the topologies for the internal metrics with the exception
of Hilbert’s metric coincide on P with the topology induced on P by 1. The topology
of Hilbert’s metric coincides with the topology induced by T on T-bounded subsets
Sof P with the property that for x,y € S neither x < y nory < x (“<” the partial order
defined by P).

(vi) Suppose T is given by a monotone norm | - || on K such that K + 0.

(@) Letx,y € f( with B(x,r),B(y,r) < K, where B(x,r) is the open ball {z € K |
|z - x|| < r}. Then

Ix -yl

h(x,y) € —————,
Y S =y

p(x,y) < lIx ;yll) d(x,y) < M

(b) Foreachset M = u + K with u € K and each internal metric m there exists a
positive constant K,,, such that

m(x,y) < K,llx -yl forall x,ye M.

On each norm-compact subset C of K each internal metric m # d is equivalent to the
metric induced by the norm, that is with positive constants k,,, K,

klx -yl < mx,y) <K,lx-yl forall xyecC.

For m = d such an equivalence holdsonCn{z € K | |iz|| = 1}.

Proof. (i) Thereexistu,v € Uwithx' =x +au,y =y + Bvandx+tueP, y+veP.
By Lemma 3.2.2 (ii) part P is a convex cone and A(-,-) = Ap(-,-). Applied to the convex
cone P, Lemma 3.1.4 (xv) yields formula (3.4.1).
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(ii) Fixagq € Fwithq(x' - x) # 0. ForA = M andu = r% one has that

1 B '
_1+/\X+1+A(X u)y and x =1 -A)x+ A+ u.
Therefore, A (x', x) > ﬁ A06x) > 1 -2 and h(x',x) = 1 — min{A (', x), A (x,x")} <A.

(iii) Let x, € P and x, + U ¢ P with U from the base of 0 in (L, 7). Since P is a part,
X ~ X, for x € P and, therefore, x = Ax, + y with 0 < A and y € P. For u € U it follows

thatx + Au =Axg + Au+y =A(xy + u) +y € AP + P c P. Therefore, x € Igwhich
provesP=1°3.

From step (i) it follows that the order function is 7-continuous on P = P. The
assertion on the internal metrics then follows according to their definitions by the
order function.

(iv) From (ii) it follows that each h-open subset of p isopenin (L, 7). From Propo-

sition 3.3.3 it follows that a subset of P which is open for one of the internal metrics
must be open for h.
(v) Because of statement (iv) and Proposition 3.3.3 it suffices to show that a T-open

subset O ¢ Io’isopenforh.Letx eOandx+UcOforU={uelL]|qu)<e, qc¢€F}
F finite. Let § = m and consider y € P with h(x,y) < §. Since P is normal
we may assume that the seminorms g defining 7 are all monotone. Proposition 3.3.3
(vi) implies that g(x — y) < 3h(x,y) max{q(x), q(y} for g € F. Furthermore, h(x,y) < §
implies that A(y,x) > 1 — § and, hence, (1 — §)y < x. Therefore, (1 - §)q(y) < q(x) for

q € Fand

max{q(x—y) | g€ F} < h(x,y) - %max{q(x) | q e F}

<

13—56 max{q(x) | q EF} =€

by the definition of €. This shows thaty — x € U and, hence,y =x +y —x € O.
Concerning the topology for Hilbert’s metric d, let S be a subset of P as in (v) and
x,y € S.IfA(x,y) > 1theny—(1 + €)x € Pand, hence, y—x € P + ex. This impliesy > x
which is impossible by assumption. Therefore, we must have A (x,y) < 1 and, similarly,
A(y,x) < 1. From Proposition 3.3.3 (v) it follows for every monotone seminorm q that

qx -y) <3(1 - A(xy) - Ay, x)) max{q(x), q(y)}.

By assumption, S is 7-bounded and, therefore, for any finite set F of monotone semi-
norms
max{g(x-y) | ¢ € F} <3cp(1 - ™) forall x,yeS

for some constant c; > 0. The assertion for d follows then as for h above.

(vi) (@) Let, without loss, x # y. From B(x,r) < K it follows for a = m

ax+x-ay=x+a(x-y)eBkxr)cK
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and, hence, ay < (1 + a)x This gives A (y,x) > — 1+a = m In the same way B(y, r) €
K implies A (x,y) > r+"X R Thus, min{A (x,y),A(y, x)} > H"X i and, hence,
r _x =yl

h(xy) =1 -min{A(x,y),A(y,x)} < 1 - = )
g Y g Ry Py

Furthermore, by Proposition 3.3.3 (i) and (ii)

h(x,y) < Ix=yl

p.y) < 1-h(xy) =~ r

and d(x,y) < 2p(x,y) < 2||xr—y||_

(b) LetM =u + K,u € f(andB(u,r) cK.Ifx e Mand ||x - z| < rforz ¢ L then
U+ z-x € B(u,r). Therefore,u + z—x=v € Kandz = v + x — u € K. This shows
B(x,r) € K. Thus, for x,y € M from (a) it follows that

h(x,y) < Kyllx = yl, p(x,y) < K, lIx = yl, d(x,y) < Kyllx = yll,

with K, = K, = %,Kd = % By Proposition 3.3.3 (iii), (iv) similar inequalities follow for
m=bh,g,k.

Consider now a norm-compact subset C of f(. We shall show that C ¢ u + K for
someu € K.Forx € C,U(x) = %x + K is an open set for | - || and x € U(x). Compactness

of C for | - || implies a finite covering C < (Ji., U(x;). Since x; € K,1 < i < nA =

mln/l(xl,x) >0andAx; < x;forl < i < n.Defineu = %xl. Obviously, u € K and
1<i<n

Ulx) = in +K=u+(5xi—u) +K§u+K.Thus,C§u+K.

By the above, therefore, for each internal metric m there exist K, such that
m(x,y) < Kpllx — y| for all x,y € C. From Proposition 3.3.3 (vi) it follows by com-
pactness of C that k,[lx — y| < h(x,y) for some positive constant k, and all x,y € C.
From Proposition 3.3.3 (ii), (iii), (iv) similar inequalities follow for allm # d. Form = d
such an inequality follows on C n {z € K | |z| = 1} by Proposition 3.3.3 (vii). O

Theorem 3.4.13. Let K be a convex cone which is sequentially complete in a locally con-
vex vector space (V, T). Every part P of K for which the order intervals {x € P | u—x € P}
with u € P are T-bounded is lineless and internally complete.

Proof. Let < be the ordering relation induced by K and <, the ordering relation in-
duced by P c K. First we show that P is lineless. Suppose that x + A(y — x) € P for all
A € R.Obviously,u =2x e Pandu—-(x + A(y —x)) =x + (-A)(y —x) € PforallA € R.
Since the order interval [0,u] ¢ P is 7-bounded, it follows that for every g of a
defining family Q of semi-norms for 7 there exists a constant ¢, > 0 such that g(x +
Ay —x)) < Cq forall A € R.
This yields forallA € R

Alg(y = x) = qA(y = x)) < q(x + A(y = X)) + q(-=x) < ¢, + g(-x)
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and, hence,
qy-x)=0 forall geQ, thatis y=x

This shows that P is a lineless cone.

Next, we show that any guided sequence (x,,) in P has a supremum in P for <p.
Theorem 3.4.6 then yields internal completeness for P. From

e <p Xp <p Xpun <p X, + €, Where e € P and (g,) a null sequence, it follows
that El(xmm - X,,) is contained in the order interval [0, e] of P and, hence, T-bounded.
There"fore, (x,) is a Cauchy sequence for 7 in K and, by assumption, (x,,) converges for
to some x € K. Obviously, e < x,, < X,,,., < X,, + €,e and, therefore, x,, < x < x,, + ¢,e for
all n. Together with x,, € P, e € Pthisimplies that x € P. We show that x is a supremum
of (x,,) for <p. Letr > 1andy = rx — x,,. From O < x,, < xweobtain (r - 1)x <y < rx
and , hence, y € P. This shows that x,, <p rxfor all n, allr > 1, thatis, x,, <p x for
all n. Finally, suppose that x,, <p sz for some z € P,alln,alls > 1. Foranyr > 1
andany O < € < r—1onehasthats = r—e¢ > 1 and, hence, x,, <p (r — €)z. Thus,
(r —e)z — x, € P c K for all n, which implies (r — €)z — x € K. Therefore,

ez<ez+(r-€z-x=rz-x<rz,

which shows that rz - x € Pforallr > 1, thatis x <, z. We conclude that x is a
supremum of (x,,) for <p. O

Corollary 3.4.14. Let K be a convex cone which is sequentially complete and normal
in a locally convex vector space (V, 7). Then K is lineless and internally complete and,
in particular, the interior K with respect to 1 is internally complete. Furthermore, {x €

K | p(x) = 1} is an internally complete metric space for any functional p on V that is
non-negative on K, positively homogeneous with p(x) = 0 only for x = 0.

Proof. Since K is normal there exists for 7 a defining family Q of monotone semi-norms
onV.Forx,y € K givenand z € [x,y], thatisx < z <y, it follows that g(x) < q(z) < q(y)
for all ¢ € Q. Therefore, order intervals [x, y] of K are T-bounded. In particular, K is
lineless (cf. proof of Theorem 3.4.13) and for every part P of K the order intervals [0, u]
in P are T-bounded. From Theorem 3.4.13 it follows that every part P of K is internally
complete and, by Lemma 3.4.1, K is internally complete. Being a part of K, P = K is
internally complete. Finally, let (x,,),, be a Cauchy sequence in K for d with p(x,)) = 1
for all n. This sequence converges toy € P and there exist A > 0,z € K such that for
some n it holds thaty = Ax, + z € f( +Kc K Therefore p(y) > 0 and (x,), converges

fordtox = L. O
p(y)

Example 3.4.15. Let (V, || - ||) be a Banach lattice with positive cone K. The cone K is
closed and normal [51, p. 235]. By Corollary 3.4.14, K and, in particular, K are internally

complete. Furthermore, X = {x € K | |x|| = 1} and X = {x € K | |x|| = 1} are internally
complete.
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This applies in particular to the Banach lattice V = G(T) of all continuous func-
tions on a compact space with positive cone K = {f € &(T) | f(t) > Oforall t € T}. Espe-
cially, for T = {1,...,n} one obtains that for V = R" the standard cone K = R, as well

as its interior, is internally complete. Also, the completeness of X = {x € K | |x|| = 1}
with respect to Hilbert’s projective metric which we proved in Lemma 2.1.10 directly is

a special case. The case of K also makes clear that in the internal completeness theo-
rem < cannot be replaced by < in general.

Remarks 3.4.16. (i) The first result on internal completeness was established by
G. Birkhoff ([10, 11]; see also [50]) in 1957 when he showed that the positive cone of a
Banach lattice is complete for Hilbert’s projective metric (see Remarks 3.4.10).

The first result on internal completeness for more general spaces was established
by A. C. Thompson ([53, p. 69], [54]) in 1963 when he showed the statement of Corol-
lary 3.4.14 for the part metric. From a different point of view M.A. Krasnoselskii and
his group ([59]; see also [35, 36]) showed for a closed and pointed convex cone in a Ba-
nach space that a part is complete for the part metric if and only if all order intervals
[0, x] of the part are (norm) bounded. Thus, in the particular case of Banach spaces
the condition in Theorem 3.4.13 is not only sufficient but also necessary. For results on
completeness of cones for the part metric and Hilbert’s projective metric, respectively,
see also [17, 21, 22, 38, 44, 58].

(ii) As mentioned already (cf. Remarks 3.1.6 and Section 3.3) the part metric and
Hilbert’s projective metric have been studied also for general convex sets. Thompson’s
result for convex cones has been extended by H. Bauer [2] to (sequentially) complete
convex sets in a locally convex vector space which are normal in a sense that gen-
eralizes normality of cones. H. S. Bear [5] and Bauer and Bear [3] also showed that a
complete lineless convex set in a weak space is complete for the part metric. It has
been observed (cf. [9], see also Section 3.3) that a convex set can be interpreted also as
the base of a certain convex cone by which results on cones may be transformed into
results on general convex sets. Furthermore, there is a strong relationship for con-
vex sets between completeness for the part metric and superconvexity or ¢ -convexity
(cf. [40]).

The results obtained, in particular the internal completeness theorem, indicate that
internal completeness of a convex cone is strongly related to a principle of monotone
convergence to hold for the order relation induced by the cone. Such a principle is of
interest in its own and is exemplified in the context of normed spaces by the following
concept of regularity due to M. A. Krasnolselskii et al. [35, 36].

Let K be a closed and pointed convex cone in a real normed space (V, | - ||) and let
< be the order relation induced by K on V. The cone K is regular if every increasing
sequence (x,,) in K with x,, < y for all n converges for || - | to some x € K. The cone is
called completely regular if every increasing sequence in K which is norm-bounded
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converges in K [36, p. 47]. The following implications hold:
completely regular = regular = normal,

but no one can be reversed in general [36, p. 48]. Furthermore, if K is normal then K is
symmetrically bounded but not vice versa in general (see Exercise 5 to Section 3.1 and
Exercise 5 to Section 3.3). In case the interior of K is not empty it can be shown that
K is symmetrically bounded if and only if every continuous linear functional on V is
the difference of two continuous linear functionals on V which are non-negative on K.
This property, in turn, is equivalent to the normality of K. In case the space (V, | - |)
is complete it follows from Corollary 3.4.14 that K is internally complete. Therefore, a
closed, pointed convex cone K with non-empty interior in a Banach space V which is
completely regular is internally complete. If V is finite dimensional then every closed,
pointed convex cone K and, without loss, with non-empty interior, is completely reg-
ular (cf. [35, p. 51]) and, therefore, regular, normal, symmetrically bounded and in-
ternally complete. Moreover, it has been shown for the finite dimensional case that
even any convex cone which is lineless possesses the properties just mentioned [42,
p. 547]. Thereby it turns out that for every lineless convex cone in finite dimensions any
bounded increasing sequence is guided (see Examples 3.4.3 (a) for the special case of
the standard cone) and that any guided sequence converges for the norm.

Exercises

1. Consider the ice cream cone
K={uwr |ueR, reR,,|ul<r}.

(a) Show that K is a normal cone for || - |.

(b) Show that K is internally complete.

(c) Examine if every increasing sequence in K which is bounded from above is a
guided sequence.

2. Let K beaconvex cone in a locally convex vector space (V, 7). K is called symmet-
rically bounded if every symmetric subset of K is bounded for 7. (Cf. Exercises 5
of Section 3.1)

(a) Show that K is symmetrically bounded iff the topology generated by the part
metric on K is finer than the restriction of 7 to K.

(b) Assume there exists x, € K such that A(x,x,) > O for all x € K. Demonstrate
that K is symmetrically bounded iff for every continuous functional f on (V, 1)
there exists two functionals f; and f, on V which are non-negative on K and
such thatf = f; - f.

(c) Consider the convex cone K of all sequences x = (x, X, ...) € RN withx; # 0
only for finitely many i € Nand Y, x; > O for all n > 1. In the normed space
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givenby V = K-K, |x|| = max|x;| the cone K is symmetrically bounded but not
1

normal (see Exercise 5 (c) to Section 3.3). Show that f(x) = Y, ("n%)"xn, X =

(X1,X5,...) defines a continuous functional on (V, | - ||) which cannot have a
decomposition as in (b) with f; and f, both continuous on (V, | - ).

(Cf. [1-3]) Let C be a convex set in a real vector space which has one part only and
with0 € CLet V = {Ax | A = 0,x € C} and g the Minkowski-norm for C, i.e., for
xeV

g(x) = max{p(x), p(-x)},p(x) =inf{A >0 | x € AC}.

(a) Show that g is a semi-norm on V which is a norm iff C is lineless.

(b) Show that a lineless C is complete for the part metric iff (V, q) is a Banach
space.

(c) Show that every lineless and finite dimensional convex set is complete for the
part metric.

(d) Findabounded convex subset of a Banach space which has one part only but
which is not complete for the part metric.

(Cf. [40]). A subset C of a locally convex space (V, ) is called superconvex or -

convex if for any sequence (x,,) in C and any sequence (a,,) in [0, 1] with Z;,’il a, =

1 the sequence of sums Zﬁ'ﬂ a,x, converges for N — oo and belongs to C. Con-

sider a convex set C, V and g as in Exercise 3 above, and let 7 be a locally convex

topology on V.

(a) Show that every T-open set is open also for g, provided that C is T-bounded
and that the converse holds, provided that C has non-empty interior for 7.

(b) Suppose that C is superconvex in (V,7) and has non-empty interior for 7.
Show that C is complete for the part metric.

(c) Suppose that C is complete for the part metric, 7-bounded and has non-empty
interior for 7. Show that C is superconvex.

Prove the following characterization: A convex set is lineless, complete for the
part metric and consists of one part only if it can be embedded as an open and
symmetrically bounded subset into some complete locally vector space. (Compare
Exercises 3 and 4 above.)
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4 Contractive dynamics on metric spaces

The previous chapter has shown how a convex cone can be made into a complete met-
ric space by employing one of the several internal metrics of the cone. Thus, a self-
mapping of a cone becomes a selfmapping of a complete metric space. The crucial
point then is that this induced selfmapping of a metric space is contractive or at least
non-expansive for a great variety of non-linear selfmappings of the cone. As an exam-
ple we have already seen the First Concave Perron Theorem (Theorem 2.1.11) where a
concave selfmapping of the standard cone in finite dimensions became a contraction
of an appropriate complete metric space for Hilbert’s projective metric.

In the present chapter we now study systematically the contractive dynamics on
metric spaces, that is the asymptotic behavior of the iterates of a selfmapping of a
metric space which does contract in one way or another distances. In particular, we
treat (¢, 6 )-contractive mappings and contractive sequences of selfmappings and non-
expansive or, more generally, power-lipschitzian selfmappings for which we prove a
very useful local-global stability principle. Metric fixed point theory is a wide field
and we shall concentrate on those questions which are relevant for the non-linear
selfmappings of convex cones to be dealt with in the next chapter.

4.1 Iteration of contractive selfmappings

Let (X, d) be a metric space and let f: X — X be a selfmapping of X. The forward orbit
O(x) of a point x € X with respect to fis O(x) = {f"(x) | n = 0,1,2,...}, where f"
is the n-th iterate of f. The (omega) limit set w (x) of a point x € X with respect to f
iswkx) = ﬂ,f:o {f1(x) | n > k}, where 4 is the closure of a subset A of (X, d). It is well
known thaty € w (x) iff y = limf™(x) for a sequence n; — oco. Obviously, limit sets are
closed and invariant under lf_,mi(.)e., flw(x)) c w(x). Limit sets may be empty and it will
be an interesting point below when they are not.

Already in Section 2.1 we made use of contractivity properties of certain selfmap-
pings of cones. Now we will study contractivity properties more systematically and
in detail. The following definition collects some interesting contractivity properties,
roughly in increasing generality.

Definition 4.1.1. A selfmapping f of a metric space (X, d) is called a

(i) contraction if there exists a constant 0 < ¢ < 1 such that d(f(x), f(y)) < cd(x,y)
forallx,y € X;

(ii) ¢p-contraction if there exists a function ¢ : R, — R, with¢(0) =0and ¢ (¢t) < ¢
for t > O such that d(f(x), f(¥)) < ¢ (d(x,y)) forall x,y € X;
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(iii) generalized contraction if for any given pair 0 < @ < B < oo there exists a
constant 0 < L(a,B) < 1 such thata < d(x,y) < B implies d(f(x), f(y)) <
L(a, B)d(x, y);

(iv) (e, 8)-contractive if for any given € > O there exists § > O such that forallx,y € X
e <d(x,y) < e+ 6 implies d(f(x), f(y)) < €;

(v) contractive if d(f(x), f(y)) < d(x,y) forall x,y € X with x # y;

(vi) non-expansive if d(f(x), f(y)) < d(x,y) forall x,y € X.

All these notions make sense when restricted in an obvious way to points x,y € A for
anon-empty subset A of X.

Having stated these properties we like to add some comments, in particular with re-
spect to the widespread literature on contractivity and fixed points. Property (i), of
course, is the one which is used in Banach’s fixed point theorem or the contraction
mapping principle to guarantee, together with completeness of (X, d), for arbitrary
initial x € X the convergence of the iterates f*(x) to the unique fixed point x* of
f. A contraction is, of course, a ¢ -contraction. The reverse implication, however, is
not true. ¢ -contractions have been considered by several authors, as, e.g., in [20] for
¢ (t) = a(t)t with a(t) decreasing, in [2] for ¢ increasing and continuous from the
right, in [1] for ¢ upper semicontinuous from the right, in [16] for ¢ increasing with
nli—»nolo ¢"(t) = 0.In all these cases it was proved by the authors for (X, d) complete that
for every initial value the iterates of a ¢ -contraction f converge to the unique fixed
point of f. This conclusion, however, is not possible for an arbitrary ¢ -contraction
(see Exercise 2). For ¢ (t) = a(t)t with a(t) decreasing or for ¢p upper semicontin-
uous from the right, a ¢ -contraction needs to be a generalized contraction (see Ex-
ercise 1 a), b)). A generalized contraction is necessarily (e, § )-contractive but the re-
verse implication does not hold (see Exercises 3 and 4). Obviously, property (iv) im-
plies property (v), which in turn implies property (vi) and none of these implications
can be reversed. It is easily be seen that the conclusion of Banach’s fixed point theo-
rem no longer holds in general if f is assumed to be contractive only instead of being
a contraction. Below we will see, however, that for (X, d) complete the conclusion of
Banach’s fixed point theorem holds already for (e, § )-contractive selfmappings and,
a fortiori, for selfmappings which are a ¢ -contraction (with ¢ satisfying additional
properties as above) or a generalized contraction. (See [12] for generalized contrac-
tions and [17] for (e, § )-contractive mappings which are called there weakly uniformly
strict contractions.) Further generalizations of Banach’s fixed point theorem can be
found in [5] and [9]. In the following we shall show that contractivity together with
non-empty limit sets is sufficient for the conclusion of Banach’s fixed point theorem
to hold (cf. [6, 14]).

Lemma 4.1.2. Let (X,d) be a metric space, let f: X — X be non-expansive and let
x € X.
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(@) Ifw(x) is not a singleton then for each y € w (x) there exists c(y) > O such that

a(f"y),f™ ) = c(y) forallm > 0.

(b) Ifw(x) +# 0 and f is contractive on w (x) then f has a fixed point x* with }LIEO f(x) =

*

X .

Proof. Since f is non-expansive the two sequences defined by
a, = d(f"(x),f"" (x)) and b, = d(f"(x),f"(y)) fory € X

are monotone decreasing. Therefore, the limits a = lim a,, and b = lim b, exist.
(@ Ify e w(x),y = klim f(x), then for c(y) = d(y,f(y)) by the above

cly) = klim d(f"™ (x), f** (x)) = klim a, =a= klim Ay om
= lim d(F" 00, 4 00) = d(F" ). )

for all m > 0. Suppose c(y) = 0, that is f(y) = y. Therefore, for the second sequence
(by)n
lmd(f"(0.y) = limb, = b = limb,, = limd(f"(0.y) = 0.
This yields thgO f*(x) = y.Thus w (x) < {y} and w (x) = {y} is a singleton.
(b) Since f is contractive on w (x) it is impossible for y € w(x) to have that 0 <
d(y,f(y)) = d(f(y),f*(y)). Therefore, (a) implies w (x) = {x*}. It follows f(x*) = x* and,
asin (a), for x* = ’}Lrgof”k (x)

. n *\ _ 131 L Y
Y}Lrglod(f (x),x") = kIHEO(f (x),x*) =0.
Thus, lim f"(x) = x*. O
n—oo
As an immediate consequence of this lemma we obtain the following characterization
in case of contractive selfmappings.

Theorem 4.1.3. Let (X,d) be a metric space and let f: X — X be contractive. There
exists a unique fixed point x* of f with nli_)lglof"(x) = x* for all x € X if and only if all limit
sets of points of X are non-empty.

Proof. Suppose w(x) + 0 for all x € X. Lemma 4.1.2 (b) yields that nlLrEO ffx) = x*
where x*, by contractivity of f on X, is the unique fixed point of f. The latter, obviously,
implies w (x) # ¢ for all x € X. O

As a useful criterion we obtain the following generalization of Banach’s fixed point
theorem.

Theorem 4.1.4. Let (X, d) be a complete metric space and let f be a selfmapping of X
for which some iterate f* is (e, 8 )-contractive. Then f has a unique fixed point x* and
’}ngof"(x) =x"forallx € X.
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Proof. Forx € Xand x,, = f"(x) for n > 1 we will show that for n; = ki the subsequence
(Xn,-) of (x,) is a Cauchy sequence. This then implies w (x) # 0 and Theorem 4.1.4 follows
from Theorem 4.1.3

To simplify notation let g = f* and Yo = 8"(X) = x,. Since g is, in particular,
contractive it follows that the sequence given by a,, = d(y,,,.1) is non-increasing
and, hence, a = r}erDlo a, = 0 exists. Suppose that a > 0.

For e = a choose § > 0 according to the (e, § )-contractivity of g. Since there exists
m € N withe < a,, < e+ 6§ we obtain that d(g(y,,), 8¥m+1)) < €. This yields a,,,; =
d(Yms1>Ym+2) < @, which is a contradiction. Therefore, we must have that a = 0, that
is nh_)rgo a, = 0.

Now, let ¢ > O be arbtrarily given and choose § > 0 according to the (e, 8)-
contractivity of g, where we may assume that § < e. Choose N € N such thatay < 6.
Consider j € N for which it holds that d(yy, y;) < € + §. Obviously,

d(yn,Yji1) < dyn>Yne1) + d(8n).8)).-

Ifd(yy.y;) < e then
dg(yn),8(y;) <dyn.yj) <€

and, hence,
d(yn,Yjs1) <6 +e.

If, on the other hand, d(yy,y;) > ethene < d(yy,y;) < € + 6 and by the (¢,6)-
contractivity of g we obtain d(yy, yj,1) <6 +e.

Thus, in any case we have that d(yy,y;,;) < € + 6. By choice of N we have that
d(yy,Yn+1) < 6 < 2e and, therefore, we obtain that

d(Yn>Ynsp) < 2eforallp € N.

This proves that the sequence given by y,, = x,; forn > 1isaCauchysequence. [l

Remarks 4.1.5. (i) If (X,d) is complete and f is a contractive selfmapping of X for
which all orbits are relatively compact then Theorem 4.1.3 yields nhﬂ}o ffx) = x*,x"
being the unique fixed point of f. (Cf. [6] and [13]). In particular, the latter conclusion
holds for any contractive selfmapping of a compact metric space.

(ii) For k = 1 Theorem 4.1.4 is obtained in [17]. The proof given here is a sim-
plified version of the one given in [17]. By the comments made following Definition
4.1.1, various generalizations of Banach’s fixed point theorem as the one for general-
ized contractions in [12] and the ones for ¢ -contractions in [1, 2, 16, 20] follow from
Theorem 4.1.4.

(iii) Since the selfmappings f of (X, d) considered above are all non-expansive, a
fixed point x* of f is automatically stable in the sense that for e > 0 given there exists
6 > O such that for all x € X from d(x,x*) < § it follows that d(f"(x),x") < e for all
n > 0. Hence, nlggo f*(x) = x* for all x € X means that x* is globally asymptotically
stable.
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Exercises

1. Letf be a selfmapping of a metric space (X, d) which is a ¢ -contraction (see Defi-
nition 4.1.1 (ii)).
(a) Show that f is a generalized contraction if ¢ is upper semicontinuous from
the right.
(b) Show that f is a generalized contraction if ¢ (t) = a(t)t with a(t) decreasing.

2. [17]LetX = {¥;_,(1 + %) | n > 1} be equipped with the Euclidean distance d.
(a) Show that (X, d) is complete.
(b) Letf: X — X be defined by

f(i(l + 1)) Sash,
k=1 k k=1 k

Show that f is a ¢ -contraction for an appropriate ¢ .
(c) Show that f has no fixed point.

3. Prove that a generalized contraction is always (¢, § )-contractive.

4, [17] Let
X=[0,1Ju{B3n|n=1lu{B3n+1|n>1}

be equipped with Euclidean distance d and let f: X — X be defined by
O0<x<1

X
E)
f(x) = 0, X=73n

1 _
1—m, x=3n+1.

(a) Show that f is (e, 6 )-contractive.
(b) Show that f is not a generalized contraction.

4.2 Non-autonomous discrete systems

Whereas the previous section was about just one single selfmapping of a metric space
(X, d) we now consider a whole sequence (f,), of those mappings. In terms of dynam-
ical systems, whereas f defines an autonomous system by x,.; = f(x,), a sequence
defines a non-autonomous system by x,,,; = f,(x,), x; = x € X. Sometimes the term
inhomogenous iteration is used for such a system.

Definition 4.2.1. A sequence (f,), of selfmappings of a metric space (X, d) is called an
(asymptotically) contractive sequence on a subset A c X if there exists a continuous
mapping c: A x A — R such that the following two conditions are satisfied

(i) cxy) <d(x,y)forallx,y e Awithx #y

(ii) To every e > O there exists a N(e) € IN such that

df,x), f,) <clx,y) +e forall n=N(e), all x,yeA.
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For an autonomous system, that is f,, = f for all n, this definition reduces to that of a
contractive mapping f as studied in the previous section.

Let (X, d) be a metric space and let f,: X — X forn > 1 define a sequence of
selfmappings of X.

The (forward) orbit O4(s) of a point x € X with respect to this sequence is

O0s0) ={fyofpro.. o i) In=0,1,2,.. .},

where the inhomogeneous iteration f, «. ..o f; for n = 0is the identity. For a given point
x; = x € X we will also consider the sequence defined by x,,,; = f,(x,,) for n > 1, that
isXp1 = fno...of1(x) and, hence, O,(x) = {x,,, | n > O}.

The (omega) limit set w(x) of a point x € X with respect to (f,,),, is

000 = 0 o for o100 Tn =K,

or, equivalently, w¢(x) consists of all points y = limx,_ for a sequence n; — co.
i—oo !

Occasionally we will consider the joint limit set w(x, y) for two points x,y € X,
which consists of all pairs (limx,, limy, ) for the same sequence n; — co.

In what follows we will leﬁg% corgiﬁ)er for a sequence (f,,),, of selfmappings of X the
sequence of lumped mappings (F,,),,, defined for a given r > 1 by

Fm =fm+r—1 O °fm+1 °fm for m>1.

Even under strong contractivity assumptions one cannot expect orbits of a non-
autonomous system to converge. The following theorem shows, however, that under
assumptions similar to those for the autonomous case in Theorem 4.1.3, orbits become
independent of their starting point, a property sometimes called path stability or weak
ergodicity.

Theorem 4.2.2. Let (f,), be a sequence of selfmappings of the metric space (X, d) such
that the sequence (F,,),, of lumped mappings for some r > 1 is a contractive sequence
consisting of non-expansive mappings. For any two orbits x,,,.1 = f,(x,) and y,.1 = f(V,)
with x,,y; € X, respectively, the following statements hold.

i) nlgglo d(x,,y,) and '}Lrgo c(x,, y,) exist and coincide.

(i) Ifwy(xy,y;1) #+ 0 then lim d(x,,y,) = 0.

Proof. (i) Letfor 0 < 1 < rfixed g,, = F(,_y),,; for m > 1. First, we show by induction
over m that

8m e 0 81(X) = Xy (%)
Form=1
8106) = Fi() = firo1 o+ o i) = X,y
If () is true for some m > 1, then
8ms1(8m ©*+ 8106)) = Fipsi Kprsd) = Frnrwinr—1 ©**+ © Frrrsi Komrad) = X(mayraiv

which proves formula (x).
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Obviously, the sequence (g,), is a contractive sequence consisting of non-
expansive mappings. In particular, for the orbits given by (g,),,, that is X,,.,
Sme-re81(x)and ¥y = g o0 81(yy), and a,, = d(Xy,, ¥,,) We have that a,,,; < ay,.
Therefore, a = ﬂllgrgo a,, exists. Furthermore, for ¢ > 0 there exists M(¢) such that for all
m > M(e)

Xy Vi) < d(Xy ¥) <@+ € and

ac< d()_(m+1)ym+1) < C()_(m,)_/m) teE

Therefore, —e < c(X,,,, V) — a < € for all m = M(e). This shows rggrolo Xy V) = a =
Tim d(Xy V)-
Next we show that this equality holds also for sequences (x,,), and (y,),. By prop-
erty (=)
X X

me1 = Xmrei @0d, similarly, V.1 = Virsi-

Therefore,
”!illgod(xmni’ Yirsi) = r%ilIéOC(er+i’ Ymr+i)-
Let sy = d(Xpriis Vinrs1) = CXopiis Vimrs) = 0. Since 0 < i < r was arbitrary we have
that lim s, ; = O forall 0 < i < r. That s, for e > 0 given there exists M'(e) such that

Sm; < € forallm > M'(e). Choose N(e) = (M'(e) + 1)rand let n > N(e). Since n = mr + i
withm > 1,0 < i < rit follows that mr + i > (M'(¢) + 1)r and, hence, m > M'(¢). Thus,

0 < d(xp,Yy) — cXpsYy) = Sy <€ for n=Ne),

which proves lim d(x,,y,) = lim c(x,, y,)-
(ii) By assumption there exists (x*,y*) € wy(x;,y;), thatis x* = klgg) Xnk’y* =

klim Yn,- From step (i) it follows

dix*,y*) = klilgod(xnk,ynk) = rllLrgod(xn,yn) and
c(x®,y") = lim c(y,, yy,) = 1im c0e, y,)-

Therefore, d(x*,y*) = c(x*,y") and since, by assumption, c(u,v) < d(u,v) for u + v we
must have x* = y*.
Thus, }Lrglod(xn,yn) - d(x*,y*) = 0. o

Later in Section 7.2, Theorem 4.2.2 will prove to be useful in the analysis of weak ergodi-
city for ascending operators. Then the metric setting is specialized to the part metric
and the Hilbert metric, respectively. Originally, the notion of weak ergodicity stems
from the theory of inhomogeneous Markov chains and its applications to demography
(see Section 7.1 for this background). There also the notion of strong ergodicity arose
which says that, different from weak ergodicity, the sequence given by x,,,; = f,(x,,)
does converge in case the mappings f,, converge to some f. This question will be pur-
sued in the following. The first result, Theorem 4.2.3, states that strong ergodicity does
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hold in two cases, (i) and (ii). Whereas case (i) requires some compactness and is use-
ful in finite dimensions, case (ii) assumes instead a stronger contraction property mak-
ing it useful in infinite dimensions. This tradeoff between compactness and contrac-
tiveness is already visible for the autonomous systems of the previous section.

Theorem 4.2.3. Let (X, d) be a metric space and let (f,,),, be a sequence of selfmappings
which converges to some selfmapping f. For the orbit given by X,,,1 = f,(X,),X; = X sup-
pose that (f,),, converges uniformly to f on the orbit. Then (x,,),, converges to the unique
fixed point x* of f in each of the following cases.

Case (i). f is contractive and the orbit is relatively compact.
Case (ii). f is a generalized contraction, (X, d) is complete and the orbit is bounded.

Proof. Case (i). We show for the limit set w (x) of the sequence (x,), that w(x) con-

sists of the unique fixed point x* of f. This then proves case (i). Pick y € w(x), that is

y = limx,_ for some sequencen; — co. Since (x,,), is relatively compact there exist sub-
i»oco !

sequences n; — oo and ny — oo of n; — oo such that limx, ; = uand limx, ,; =v
j i k—oco "k

]—00

exist. Obviously,

Ay, fW) < d(y,X%y,) + d(fy 1 0 1),f (1)) + A1), F(10))
and

d(f(}’),V) S d(f(y)’f(xnk)) + d(f(xnk))fnk(xnk)) + d(xnk+1’ V)

for all j and k, respectively.
Since (f,,),, converges uniformly to f on the orbit, we obtain

dy,fw)) =0 and d(f(y),v) =0,

respectively.

Therefore, we must have that y = f(u) and f(y) = v, where u,v € w(x). Thus, we
have shown that f(w (x)) = w(x). In particular, f is a contractive selfmapping of the
compact metric space (w (x), d). Furthermore, by iteration we obtain for every n > 1
and given y € w(x) an element u,, € w (x) such thaty = f"(u,). Since w (x) is compact
there exists some sequence n; — oo such that llir?o Uy, = u* € w(x) exists.

By a well-known version of Banach’s fixed point theorem (see Remarks 4.1.5(i)) it
follows that nangO f"(u*) = x* is the unique fixed point of f in w(x) and, hence in X.
Finally from

d(y,x™) < d(f" (u,), f" @) +d(f" @), x")
< d(uy,u’) + d(fm(u*),x*) forall 1

it follows that d(y,x*) = 0, i.e., y = x*. Since y € w(x) was arbitrary this shows that
w (x) = x* as required.

Case (ii). Since a generalized contraction is in particular (e, 6 )-contractive, from
Theorem 4.1.4 it follows that f has a unique fixed point x* for which nllg)lo flx) = x*

holds for all x € X. Let e > O be given and r,, = d(x,,, x*). By uniform convergence of f,,
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to f on the orbit there exists N(e) such that d(f(x,,), f,,(x,,)) < e for n > N(e) and, hence,
Tpep = A(Xi1, X7) < d(f (), (%) + d(f(x,), X*) < € + 1.
By assumption, 7 = supr, < co.Letr = irnlf r, and assume firstr > 0. Since O < r <
n

d(x,,x") < 7 from the definition of a generalized contraction (Definition 4.1.1 (iii)) we
obtain for all n

d(f(x"),f(x,) < pd(x*,x,),

wherep = L(r,7) < 1.
Therefore, for n > N(e)

e S €+ d(f(x,). f(X")) <€+ pry.

By iteration this implies for every k > 1 and n > N(e)

k=1
i SPMTat ey p' <p'T 4 5 ip-
i=0
For K(e) such that pK(E)? < ewearrive atr,, < 6% form > K(e) + N(e). Since
€ > 0 was arbitrary we arrive at nlLrgo r, = 0, provided r > 0. Consider now the case
that r = 0. Choose for e > 0 given N (e) such that d(f(x,), f,(x,)) < £ for n > N'(¢). We
show, r, < € for some n > N'(¢) implies r,,,; < e. For, if not,

€
€<Ipy STt s

and, hence, 5 <1, <e.

Since f is a generalized contraction, this gives
€
Ze
2
which is a contradiction. By iteration we obtain r, < e for some n > N'(e) implies
ek < €forall k > 1. By assumption irr}frn = r = 0 and there exists n, > N'(¢) such
thatr, <e. Thusr, , <eforall k > 1 which proves nlLr& r, = Oin case of r = 0. This

€<y <L(=e)r, <1 <6

proves case (ii) and, hence, Theorem 4.2.3. 0

The following consequence of Theorem 4.2.3 weakens assumptions made to certain
assumptions on the lumped operators.

Corollary 4.2.4. Let (X, d) be a metric space and let (f,)), be a sequence of selfmappings
such that for some r > 1 the sequence (F,,),, of lumped mappings converges uniformly
on X to some selfmapping F. For x € X the orbit given by x,,., = f,(x,), X, = X converges
to the unique fixed point x* of F in each of the following cases.

Case (i). F is contractive, in particular (F,,),, is a contractive sequence of non-expansive
mappings, and the orbit (x,,), is relatively compact.
Case (ii). F is a generalized contraction, (X, d) is complete and the orbit (x,,), is bounded.
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Proof. Consider for i fixed, 0 < i < r, the selfmapping g,, = Fy1ypir1 for m > 1.
The sequence (g,,),, converges uniformly on X to F. If (F,,,) is a contractive sequence of
non-expansive mappings this holds for (g,,), too. Therefore, by uniform convergence
to e > 0 exists M(¢) such that

d(F(x), F(y)) < d(F(x), 8, (x)) + d(87 (%), 8n(¥)) + d(8r(¥), F(¥))

<e+cxy)+e+e forall m=> M),

where c(x,y) < d(x,y) for x # y. Thus, in case (i) F is contractive. Let (y,,),, be a se-

quence defined by y,,.,1 = 8n2 (Vi) ¥1 = Xi.1. By the definition of lumped mappings

Sme°8m-1°'"'°81 :fmr+i °fmr+i—1 e °f;'+1

and, hence, y,,,1 = X;prei01- I (X,,),, is relatively compact or bounded, respectively, the

same applies to (¥,,),,- Theorem 4.2.3 implies in both cases, (i) and (ii), that r}glgo Vin =

x* with x* the unique fixed point of F. Let n = mr + i where m = m(n) > 0 and

0 <i=i(n) < r.By the above for 0 < i < r we have that ”1[1_1)130 Xmrsis1 = X and, hence,

lim x,, = x". O

n—oo

For the next Corollary from Theorem 4.2.3 we need the following

Lemma 4.2.5. Let (X, d) be a metric space and let (f,), be a sequence of selfmappings

which converges uniformly on X to some uniformly continuous selfmapping f. Then to
every e > 0 and every k > 1 there exists N(e, k) such that

d(f*(x),fny o fny o -+ o f(x)) <€ for n;=N(e,k) andall xeX.
Proof. By assumption, to ¢ > O there exist § (¢) > 0, N(e) such that
d(f (), fu ) < d(FC, F) + df W), i) < 5 + 5

2
provided that d(x,y) < 6 (¢) and n > N(e).
This shows the above assertion for k = 1, N(¢, 1) = N(e). Suppose, the assertion
holds for some k > 1. Then

d(fk(x), fn2 °-~-°fnm x)) <b(e) for ny,...,m,q =N(6(e),k), all xeX.
Setting N(e, k + 1) = max{N(e), N(6 (¢), k)} we obtain
A0, fr, o fpy 0 eee o fr, (0) = AFECON S, oy 0o fr ) S €

forn;,n,...,m,q = N(e, k + 1).
By induction, this proves the above assertion. a

=€

Corollary 4.2.6. Let (X, d)) be ametric space and let (f,,),, be a sequence of selfmappings
which converges uniformly on X to some uniformly continuous selfmapping f. For x € X
the orbit given by x,,,, = f,(x,), X, = X converges to the unique fixed point x* of f in each
of the following cases.
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Case (i). f" is contractive, in particular (F,,),, is a contractive sequence of non-expansive
mappings, and (x,), is relatively compact.
Case (ii). f" is a generalized contraction, (X, d) is complete and (x,,),, is bounded.

Proof. By Lemma 4.2.5to € > O there exists N(e, r) such that forall x € X
d(f’ (%), Fpr(¥)) = d(fT (X), fpar_1 o=+ o fn()) <€ for m=N(e,r).

Therefore, (F,,),, converges uniformlyon X to F = f'.
Corollary 4.2.4 yields ,}Lr{)lo X, = X", x" the unique fixed point of f’. Finally,

d(f(x),x™) < d(f(x7), f(x,)) + d(f(x,), fn(x)) + A(Xp1,X7).

For n — oo this implies d(f(x*),x") = O, thatis f(x*) = x*. Thus x" is a fixed point of f
and it is the unique fixed point of f because it is the unique fixed point of f". O

Remark 4.2.7. For the results of this section see [7, Section 2]. There, however, it is
assumed that the f, and F,,, respectively, map X into a compact subset Y ¢ X whereas
here orbits are assumed to be relatively compact. The latter assumption is employed
in [18, Section 4.1] to obtain similar results; the proofs, however, are different from the
proofs given here.(See Exercises 2, 3.) For non-autonomous systems on metric spaces
see also [3] and [4]. In [4, Theorem 2.2] case (ii) of Theorem 4.2.3 is shown, with a
different proof, under the weaker assumption that (f,,),, converges uniformly to f on
any bounded subset of X. From a different point of view sequences of selfmappings of
a metric space are considered in [9, Section 7.1]. There, the main interest is, however,
in the behavior of fixed points x;, of f, (see Exercise 4).

Exercises

1. Let(f,), be a sequence of selfmappings of the metric space (X, d) which converges
uniformly on X to a selfmappings f.
(@) Show that f is a contractive mapping if (f,,), is a contractive sequence.
(b) Show that (f,), is a contractive sequence if f is a contractive mapping.
(c) Find an example where (f,), is a contractive sequence but none of the map-
pings f,, is non-expansive.

2. [18] Let (f,,), be a sequence of selfmappings of the metric space (X, d) and let (x,),,
and (y,,), be defined by x,,,; = f,,(x,), x; = xandy,,; = f,(v,), ¥1 = ¥, respectively.
(a) Show that lim d(x,,y,) = 0 implies that the limit sets of (x,), and (y,), coin-
cide.
(b) Find an example for which the implication in (a) cannot be reversed.

3. [18] Let (X, d) be a (non-empty) compact metric space and let f be a continuous
selfmapping that is surjective and has a contractive iterate. Show that X consists
solely of the fixed point of f.
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4. [9]Let (X, d) be acomplete metric space and let (f,),, be a sequence of selfmappings
of X which converges uniformly on X to a selfmapping f. Suppose each f, has at
least one fixed point x;,, n > 1.

(a) Supposefisa contraction. Show that }Lrgo x, = x* where x" is the unique fixed
point of f.

(b) Suppose some iterate of f is a contraction. Show that nlerolo x, = x* where x* is
the unique fixed point of f.

4.3 Alocal-global stability principle for power-lipschitzian
mappings

In the previous two sections we were concerned with proper contraction dynamics
for selfmappings in the sense that distances are strictly contracted. Under additional
assumptions we obtained the existence of a globally attractive fixed point x* of f,
thatis '11er010 f*(x) = x* forall x € X. In this section we want to find out conditions under
which we may infer global attractivity from local attractivity of a fixed point x* of
f, that is nlggo f*(x) = x* for all x in some neighborhood U of x*. As we will see this
is quite possible for selfmappings which do not increase distances on certain metric
spaces. More general, we shall show such a local-global principle for mappings which
are power-lipschitzian in the following sense.

Definition 4.3.1. A selfmapping f of a metric space (X, d) is called power-lipschitzian
if there exists a constant ¢ > 0 such that for every two points x,y € X there exists
N(x,y) € N such that

df"(x),f"(y)) < cd(x,y) forall n=N(x,y).

Obviously, if f is nonexpansive (cf. Definition 4.1.1 (vi)) then f is power-lipschitzian
with constant ¢ = 1. There exist, however, power-lipschitzian mappings that are not
non-expansive (see Exercise 1). The concept of a power-lipschitzian selfmapping is
invariant with respect to equivalence among metrics, that is for two equivalent met-
rics d and d’ it holds for d iff it holds for d' (see Exercise 2(a)). In contrast, the con-
cept of a non-expansive selfmapping is not invariant, that is a selfmapping which is
non-expansive for metric d need not be non-expansive for an equivalent metric d’ (see
Exercise 2(b)).

To infer for a fixed point global attractivity from local attractivity, we need beside an
assumption on the selfmapping also an assumption on the underlying metric space.
Obviously, if the fixed point is an isolated point then the pass from the local to the
global will fail. Actually, we will characterize global attractivity of a fixed point x* of
a selfmapping f by its local attractivity together with the power-lipschitzian property
for f and the condition that x* is not isolated in the following sense.
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Definition 4.3.2. Let f be a selfmapping of a metric space (X, d). A point x, € X is
strongly isolated for f if there exists a neighborhood U of x, which as well as its non-
empty complement is invariant for f and such that

inf{d(x,y) | x € U,y ¢ U} > O.

Obviously, if x, is strongly isolated for f then x, must be isolated in the topological
sense. Therefore, if (X, d) is connected then there are no strongly isolated points what-
ever f may be (see Lemma 4.3.4 below).

Theorem 4.3.3 (Local-global stability principle). Let f be a selfmapping of the metric
space (X,d). A fixed point x* € X of f is globally attractive if and only if x* is locally
attractive and not strongly isolated for f and that f is power-lipschitzian.

Proof. (1) Let x* be a globally attractive fixed point of f. Obviously, f is locally attrac-
tive as well as not strongly isolated for f. Furthermore, for x, y € X given, x # y, there ex-
ist N(x), N(y) € N such that d(f"(x), x*) < d(x,y) for n > N(x) and d(f"(y), x*) < d(x,y)
for n > N(y). It follows that

d(f" (0, f" ) < d(f" (00, x7) + dO, £ () < 2d(x, y)

for alln > N(x,y) = max{N(x), N(y)}. Therefore, f is power-lipschitzian.
(2) Suppose the fixed point x* is locally attractive and not strongly isolated for f
and that f is power-lipschitzian. To show global attractivity for x* we show that the set

U={xeX|]| Y}Lrgod(f"(x),x*) =0}

coincides with X. Suppose that not, that is U # X. The set U as well as its complement
are non-empty and invariant for f. Since x* is locally attractive there exists ¢ > 0 such
that B(x*,e) = {z e X | d(x",2z) <€} c U.

In particular, U is a neighborhood of x* and inf{d(x,y) | x € U,y ¢ U} = 0 because
x* is not strongly isolated for f. Select x, € Uandy, ¢ U such thatd(xy,y,) < 5, where
¢ > O is a constant for which f is power-lipschitzian. There exists N(x,) € N such that
d(f" (xg), x*) < 5 forall n > N(xo). Since f is power-lipschitzian we have that

d(f"(yo), x™) < d(f" (o), f(x0)) + d(f" (xg), X*)

< cd(Xp,Yo) + 5 <€

for alln > N(x,). Therefore, f"(y,) € B(x",¢) c U for n big enough and, hence, y, € U.
But this contradicts y, ¢ U and, therefore, U = X which proves the theorem. O

The next lemma supplies conditions on the metric space which guarantee that there
are no strongly isolated points whatever f may be.

Lemma 4.3.4. Let (X, d) be a metric space which is

(i) connected, i.e., thereis no subset ® ¢ U & X which is open and closed.
or

(ii) e-chainable for every e > 0, i.e., for x,y € X and € > O arbitrarily given there exist
z; € X such that d(z;,z;_,) < eforl <i<n=n(xy,e)andzy = X, z, = y.
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or

(iii) complete and metrically convex, i.e., for any two distincs points x, y € X there exists
z € X distinct from x and y such that d(x,z) + d(z,y) = d(x,y).

Then for every x, € X and every neighborhood U of x,, with non-empty complement it

holds that inf{d(x,y) | x e U, y ¢ U} = 0.

Proof. Let U be a neighborhood of x, € X with non-empty complement and let a =
inf{d(x,y) | x € U, y ¢ U} > 0. We shall show that this leads in each case to a
contradiction.

(i) It follows that B(x,a) c U for any x € U and, hence, U contains all its limit
points. Therefore, U is open and closed, § ¢ U ¢ X, which contradicts connectedness.

(ii) Letx € U, y ¢ U. For € = a there exist z; € X such that d(z;,z;_;) < a. Since
z, = x € Uit follows that z; € U which in turn implies z, € U etc. Thus,y = z, € U
which is a contradiction.

(iii) There existx € U, y ¢ U such that a < d(x,y) < 2a. If (X, d) is complete and
metrically convex then by a theorem of Menger (see [19, p. 24]) there exists an isometry
¢ : [0,r] —» Xwith¢(0) =xand ¢ (r) = y, wherer = d(x,y). Since 0 < r — a < a there
exists swithr — a < s < a. For z = ¢ (s) it follows that

d(x,z) = d(¢(0), ¢ (s)
d(z>)’) = d(¢ (S)> ¢(r))

Since x € U we must have that z € U which in turn implies that y € U - a contradic-
tion. a

s<a and
r-s<a.

Remark 4.3.5. For power-lipschitzian mappings in normed spaces see also [8] where
they are called uniformly lipschitzian mappings. The property in Lemma 4.3.4 (ii) can
be considered also for uniform spaces where it is called uniform connectedness [11].
For the property of e-chainable in case of a fixed ¢ > 0 see [6] and [9]. Property (i)
in Lemma 4.3.4 implies property (ii) whereas the reverse implication is not true (see
Exercise 3).

With the help of Lemma 4.3.4 from Theorem 4.3.3 we immediately obtain the following
result.

Corollary 4.3.6. Let (X,d) be a metric space which is e-chainable for every ¢ > 0 (in
particular, (X, d) is connected) or which is complete and metrically convex. Then a fixed
point x* of a selfmapping is globally attractive if and only if it is locally attractive and f
is power-lipschitzian.

The following useful extension of Theorem 4.3.3 is obtained by employing almost the
same proof.

Theorem 4.3.7. Let f be a selfmapping of the metric space (X,d) which is power-
lipschitzian. Let F be a non-empty subset of fixed points of f such that F is locally
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attractive in the sense there exists e > 0 such that
nli_)rglof"(x) €F forall x with d(x,y)<e forsome yc¢eeF.
Then F is globally attractive, that is
}Lr&f"(x) €F forall xelX,

provided F is not strongly isolated (that is, for any neighborhood U of F withX ~ U # 0
and both U and X ~ U invariant for f it holds inf{d(x,y) | x € U,y ¢ U} = 0).

Proof. Consider U = {x € X | lirrlnf"(x) € F}. Obviously, U # 0,f(U) < U. By assump-
tion, F ¢ UyeF B(y,e) € U where B(y,e) = {x € X | d(x,y) < €} and, hence, U is a
neighborhood of F. Suppose U & X. By definition f(X~ U) ¢ X~ U. By assumption F is
not strongly isolated and we must have x, € U, y, ¢ U such that d(x,,y,) < 5, where
¢ > 0is a constant for which f is power-lipschitzian. Furthermore, d(f"(x,),y) < 5 for
somey € F,n = N(x,,). Since f is power-lipschitzian we have that

df" (Vo) y) < df" (Vo). f"(xo)) + d(f"(x0),y)
< cd(yg, xo) + % <e for n=x=N(xy o) N(xgy).

Thus, f"(y,) € UYEF B(y,e) < U forn > N(xy,Y,), N(xy,y). This, however, is a contra-
diction to f(X ~ U) ¢ X ~ U. Therefore, U = X, that is li’{nf"(x) € Fforallx € X. O

To the setting of Theorem 4.3.7 the Corollary 4.3.6 applies analogously, in particular F
is not strongly isolated if the topological space (X, d) is connected.

Remarks 4.3.8. (i) For the case of a connected metric space with a non-expansive
selfmapping, Corollary 4.3.6 follows from [19, Lemma 2.3].

(ii) For the case of a complete and metrically convex metric space with a power-
lipschitzian selfmapping, Corollary 4.3.6 is contained in [13, Theorem 2.1]. See also [15,
Proposition 3.2.3].

(iii) Since a fixed point of a power-lipschitzian selfmapping is automatically sta-
ble (see Exercise 4) the term “globally attractive” in Corollary 4.3.6 can be replaced by
the term “globally asymptotically stable”.

Exercises

1. LetX = {x € R| x > 0} be equipped with the Euclidean distance. Find a selfmap-
ping of X which is power-lipschitzian (with ¢ = 1) but which is not non-expansive.

2. Let X be a non-empty set which carries two equivalent metrics d and d',i.e., there
exist constants a > 0, b > 0 such that

ad(x,y) <d'(x,y) < bd(x,y) forall x,yeX.

(a) Show that a selfmapping f of X is power-lipschitzian for d if and only if f is
power-lipschitzian for d'.
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(b) Find an example such that f is a selfmapping of X which is non-expansive for
dbut not for d'.

Let (X, d) be a metric space.

(a) Show that (X, d) is e-chainable for every e > 0 if (X, d) is connected.

(b) Find an example of a metric space for which the reverse statement of a) is not
true.

Let (X, d) be a metric space and let f be a power-lipschitzian self-mapping of X
with fixed point x*. Show that x* is stable, i.e., to € > O there exists § > 0 such
that d(x, x*) < 6 implies d(f"(x),x*) < eforalln > 0.
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5 Ascending dynamics in convex cones of infinite
dimension

In this chapter we continue the investigation of non-linear selfmappings of cones we
started in Chapter 2 for finite dimensions. Now we will consider arbitrary dimensions
and for this we will make use of the instruments developed in Chapters 3 and 4. In the
center of interest is the asymptotic behavior of the iterates of an ascending selfmap-
ping of a convex cone in arbitrary dimensions. The notion of an ascending operator
comprises the strictly positive and concave operators in finite dimensions of Chap-
ter 2 as well as various well-known concepts of strong monotonicity for operators in
arbitrary Banach spaces.

The advantage in considering ascending operators — which contrary to concave
mappings need not be monotone — is that they lead to contractions with respect to
internal metrics of the cone. Therefore, in this chapter we make use of internal metrics
and their properties from Chapter 3 as well as of contraction dynamics from Chapter 4.

Historically, the first extension of the Perron-Frobenius theorem to infinite di-
mensions was made in 1912 by R. Jentzsch who considered instead of non-negative
matrices integral operators with a positive kernel on function spaces. Since then the
analysis of positive operators developed into a field of its own. Considering even only
those contributions that use methods based on internal metrics of convex cones, one
observes several schools as, e.g., an Anglo-American school, a Russian school and a
Japanese school.

5.1 Definition and examples of ascending operators

In the following let K be a convex cone in some real vector space and let “<” the partial
order defined by K (see Section 3.1 for the definitions). Throughout K is assumed to be
non-empty and non-trivial, that is not {0}. But otherwise K can be arbitrary, it can be
closed or open or just one part etc.

Definition 5.1.1. A mapping or operator T: K — K is called monotone increasing or
monotone for short if 0 < x < y implies Tx < Ty.
T is called positively homogeneous if T(A1x) = A Tx forall x € K, all scalarsA > O.

The following simple lemma gives some general information about the number of non-
negative eigenvalues of mappings as above.

Lemma 5.1.2. Let K be a convex cone in some real vector space that is pointed and
archimedean (in K — K). Every selfmapping T of K that is monotone and positively ho-
mogeneous has the following properties.
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(i) T possesses no more than one non-negative eigenvalue for eigenvectors in the same
part of K. In particular, T has finitely (including 0) many non-negative eigenvalues
if K consists of finitely many parts.

(ii) For K = R} the number of non-negative eigenvalues of T is at most 2" — 1.

Proof. (i) Let Tx = Ax, Ty = uy withx,y € K~{0}and A, u > 0. We suppose x ~ y and
show that A = u. From Lemma 3.1.4 it follows for the order function that 0 < A(x,y) <
oo and A(x,y)x < y. The assumptions on T imply that A(x,y)Tx < Ty and, hence,
A(x,y)Ax < py. By definition of A(x, y) it follows that A (x, y)% < Alx,y) foru > 0.
Therefore, A <y fory > 0.1f u = O then A = 0 because of A (x,y) > 0. Exchanging the
roles of x and y we obtain in addition 4 < A.

(ii) The parts of K have dimension k ranging from O to n. There are (}) possibilities
of forming a part of dimension k. Therefore, K possesses at most Y;_ (}) = 2" parts.
Since 0 is not an eigenvector, the assertion follows from (i). O

Remark 5.1.3. In contrast to linear mappings, the maximal possible number 2" - 1
in part (ii) of Lemma 5.1.2 can actually occur (see Exercise 1). Lemma 5.1.2 implies in
particular the result about finitely many eigenvalues in [32] (compare also Exercise 7
to Section 2.2). In [29, Theorem 5.2.3] it is shown for any solid polyhedral cone K in fi-
nite dimensions, which includes K = R”, any monotone and positively homogeneous
selfmapping of K has at most m — 1 non-negative (distinct) eigenvalues, where m is
the number of faces of K. Moreover, there exists a selfmapping as above which is con-
tinuous and has precisely m — 1 non-negative eigenvalues. (See also Exercise 1.)

Let us have a first look at the connection between order properties and metric prop-
erties for a selfmapping T of a convex cone K which we assume to be lineless. Ob-
viously, if T is monotone and positively homogeneous, then for x,y € KandA > 0
from Ax < y it follows that A Tx < Ty. Since the extraction process is monotone (see
Section 3.1) it follows that A(x,y) < A(Tx, Ty). Since internal metrics on the cone K
are defined via the order function A (., -) it follows, e.g., for Hilbert’s projective metric
d(x,y) = —1log[A (x,y) - A(y,x)] that d(Tx, Ty) < d(x,y). Thus, every monotone and pos-
itively homogeneous mapping is non-expansive with respect to d. Furthermore, the
internal completeness theorem (Theorem 3.4.6) and related results supply conditions
under which K is a complete metric space. This brings us into the area of contractive
dynamics on metric spaces. To apply, however, the results of the previous chapter we
need to make some more assumptions on T.

For this let K be a convex cone in a locally convex vector space V and suppose that

the interior int K of K, or K for short, is non-empty. The interior of K is again a convex
cone and the corresponding strict order relation for x, y € V is defined by

x <y ifand onlyif y—ero(.

The relation “< ” is transitive and antisymmetric if K is pointed.
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A selfmapping T of K is called strictly monotone if x £ y implies that Tx < Ty. A
selfmapping T of K (also called a positive mapping) is called strictly positive if 0 5 x

implies that 0 < Tx, or equivalently, T(K ~ {0}) c K.

Obviously, in the particular case of K = R} the notion x < y coincides with the
earlier definition as x; < y; forall 1 < i < n (see Section 2.1; there x § y means x < y
and x # y which carries over to arbitrary cones).

If the selfmapping T of K is positively homogeneous and strictly monotone then
Ax £ yimplies A Tx < Ty and, by the definition of an interior point, there exists some
A" > A such that A'Tx < Ty. This implies for x,y € K ~ {0} which are not on the
same ray that A(x,y) < A(Tx, Ty) and, hence, d(Tx, Ty) < d(x,y) (assuming that K
is archimedean). Thus, T is contractive (across rays) with respect to Hilbert’s metric.
This step to ascend from A to A’ > A is the point of the following definition which,
however, neither assumes T to be monotone nor positively homogeneous.

Definition 5.1.4. Let T be a selfmapping of the convex cone K and let D be a non-empty
subset of K.

T is ascending on D (with ¢) if there exists a selfmapping ¢ of the open unit
interval ]O, 1[ with A < ¢ (1) and such that for every 0 < A < 1 and every x,y € D

Ax £y implies ¢ A)Tx < Ty. (5.1.1)

T is weakly ascending on D (with ¢ ) if there exists a ¢p as above such that for
every0 <A < landeveryx,y € D
1
$ )

T is a cone mapping on D if for every 0 < A < 1 and everyx,y € D

Axsys %x implies ¢ A)Tx < Ty < Tx. (51.2)

AXsy s %x implies ATx < Ty < %Tx. (5.1.3)

Remark 5.1.5. (i) The above notion “ascending on D” originates from the special case
of a “p-ascending” operator in [22] where D is given by a functionalpon Vas D = {x €
K | p(x) = 1} (the definition given above follows [26]; see also [24, 25]).

(ii) Obviously, if T is ascending on D it is weakly ascending on D (with the same
¢ ) which latter is always a cone mapping on D. None of these implications can be
reversed (see Exercise 2). For the notion of a cone mapping on D = K see [26].

(iii) For K archimedean, T ascending on D implies that T is monoton on D. This
implication does not hold for weakly ascending operators or cone mappings (see Ex-
ercise 2). Furthermore, that an operator T is ascending on D < K does in general not
imply that T is monotone on K (see Exercise 3).

The next lemma enables one to build up complex ascending operators from simple
ones.



138 =— 5 Ascending dynamics in convex cones of infinite dimension

Lemma5.1.6. (i) Let K be archimedean (in K - K) and let D be a non-empty subset
of K such that for x,y € D, 0 < A < 1 with Ax 5 y there exists z € D such that
Ax + (1 - A)z < y.If T is a concave selfmapping of K such that for some e € K and
scalars O < r < s it holds that

re<Tx<se forall xeD (5.1.4)

then T is ascending on Dwith g (1) = A + (1 - A)x.

(ii) Let S and T be selfmappings of K which are ascending on D c K. Then the pointwise
sum S + T and multiple cT for ¢ > 0 are ascending on D, that is, those selfmappings
of K which are ascending on D form a convex cone. Moreover, if the pointwise mini-
mum min{S, T} or maximum max{S, T} of S and T exist with respect to the ordering
< induced by K, then min{S, T} and max{S, T} are ascending on D. The above state-
ments remain true if “ascending” is replaced by “weakly ascending” or by “cone
mapping”.

(iii) Let K and D be as in (i) and let {T;};; be a family of concave selfmappings of K
such that for every i € I there exists e; € K together with scalars O < r; < s; with
rie; < Tix < sye;foralli € Iandx € D.If Tx = inf{T;x | i € I} (or Tx = sup{T;x | i € I})
exists for every x € K (with respect to <) and if ¢ = inf{;—j |iel} >0thenTis
ascendingonDforp(A)=A + (1 -A)c.

Proof. (i) Since K is archimedean and T concave it follows as in Lemma 2.1.3 that T
is monotone. Suppose x,y € Dwith Ax £ y for 0 < A < 1. By assumption there exists
z € D such that by concavity of T

Ty>TAx+(1-A)2) 2ATx + (1 -A)Tz.

Furthermore, by (5.1.4) Tz > re > ng and, hence, Ty > A Tx + (1 —/l)ng =p(A\)Tx
with ¢ (A) =A + (1 - A)z. Obviously, A < (A1) for0 <A < 1.

(ii) By assumption, there exist selfmappings ¢ and i of ]0, 1[ such thatA < ¢ (1)
and A < Y (1) and such thatforx,y e D, 0 <A <1
Ax £ yimplies ¢ (1)Sx < Syand ¢ (A)Tx < Ty.
Defining y (1) = min{¢p (1), Y (A)},x is a selfmapping of ]O, 1[ with A < y(A). Further-
more, one has that forAx sy

XA)NS + T)(x) < (S+ T)(x), x(A)(cT) < cTy and
xA)min{S, T}x) < min{S, T}, y (1) max{S, T}(x) < max{S, T}(x),
provided that min and max exist.
The same reasoning applies to weakly ascending operators and to cone mappings.
(iii) By (i) each mapping T;is ascending with ¢p;(A) = A + (1—/1)2 >A +(1-A)c=
¢ (A). ¢ is a selfmapping of ]0, 1[ withA < p(A).Forx,y e D, 0 <A < 1
Ax £ yimplies ¢p (A)T;x < T;y for all i € I which proves (iii). O
Now we relate the concept of an ascending operator to some other useful concepts
applied in the literature on positive operators.
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Example 5.1.7 (Uniformly positive linear operators). This concept was introduced by
G. Birkhoff [2, 3] in 1957 in extending a Theorem by Jentzsch (see below Section 5.4)
to linear operators on general vector spaces. Let V be a real vector space, K an
archimedean convex cone in V inducing the partial order <and lete € K ~ {0}, k > O.
A linear operator T on V which leaves K invariant is uniformly positive if for all
x € K~ {0}

Ae<Tx<kle with A =A(x)>0. (5.1.5)

Obviously, as a linear operator T must be monotone and condition (5.1.5) looks similar
to condition (5.1.4). To make the connection with the concept of an ascending operator
precise (cf. [22]) let p be a monotone norm on V. It follows from (5.1.5) that A (x)p(e) <
p(Tx) < kA (x)p(e) and for p(Tx) = 1 that @e <Tx < 1%'

Taking D = {x € K | p(Tx) = 1} and choosing for x,y € D, 0 < A < 1 with
Ax £ y and the element z = I#AAXTX), all assumptions of Lemma 5.1.6 (i) are satisfied.
Therefore, by this lemma, T is ascending on Dwithp(A) =A + (1 -A) - k% (In [3]itis
allowed that A (x) = 0 which requires a separate consideration of nilpotent operators.)

A concept very close to that of a uniformly positive operator is that of an e-positive
operator [50, 51]. An arbitrary selfmapping of K is called e-positive with respect to

some e € K ~ {0} if for all x € K ~ {0}
axe<TIx<B(xe with ax) >0, fB(x)>O0. (5.1.6)

Obviously, a uniformly positive operator is the special case of an e-positive operator
for which % is independent of x.

Example 5.1.8 (Zigzag operators). An example of an e-positive operator is given by
the affine-linear operator Sx = Tx + b where T is a linear selfmapping of K and

b in the non-empty interior K of K (with respect to a locally convex topology on V).

Since b € f( there exists for every x € K some r(x) > 0 such that x < r(x)b. Therefore,
forall x € K ~ {0}
b <Sx<r(x)Th < r(x)r(Tb)b

and (5.1.6) is satisfied for e = b,a(x) = 1, B(x) = r(x)r(Th). In particular, if r(-) is
bounded on a set D ¢ K, consider, e.g., D = {x € K | x < kb} for some k > O,
then S is by Lemma 5.1.6 (i) ascending on D — but S need not be uniformly positive in
the sense of (5.1.5). Furthermore, from Lemma 5.1.6 (ii) we may conclude that zigzag-
operators, that is finitely many successive maxima or minima (taken in any order) of
affine operators Tx + b as above, are ascending on a set of type D = {x € K | x < k*b}
for some k* > 0. A zigzag-operator need neither be concave nor convex nor monotone
increasing nor monotone decreasing as the following example shows.
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Consider the selfmapping T of ]Rf which is given as the pointwise maximum of
the following selfmappings (see [23])

. 1 .
T'x = (mm {le + Xy, 5% + %xz}, min{x; + 2x2,1}>
1
T’x = (min {le + v X, + 4x2}, min{x; + 2x,, 1}).

ForD={x € R’ | x; + X, = 1},x € Done findsr,e; < T'x < s,e, and r,e, < T’x <
s,eywithe! =e* = (1,1), 1, = 3,5, =2, 1,= 2,5, = 1.

Thus, T is ascending on D by Lemma 5.1.6 (ii) but T is neither concave nor convex
and neither monotone increasing nor decreasing.

Example 5.1.9 (u,-concave operators). This concept has been introduced in 1964 by
M. A. Krasnoselskii and his collaborators [17-21] for monotone selfmappings T of the
positive cone K of an ordered Banach space V without assuming that T is linear on V.
For u, € K ~ {0} the monotone operator T is called u,-concave if for all x € K ~ {0}
condition (5.1.6) is satisfied with e = u, and if the following condition holds.

For x € K ~ {0} satisfying a; (x)u, < x < B;(x)u, with a;(x) > 0, 8,(x) > 0 and for
0 < t; < 1 there exists n = n(x,t,) > 0 such that

T(tox) = (1 + )ty Ix. (5.1.7)

Equivalently, for T monotone T is u,-concave iff T is u,-positive and for each x in the
part of u, and each O < ¢, < 1 there exists i (¢,, x) > t, such that

tox < yfory e K implies  (¢y, x)Tx < Ty. This property reminds of the defining prop-
erty (5.1.1) for an ascending operator. Indeed, a monotone u,-concave operator is as-
cending on each subset of K~ {0}. Concerning the reverse implication, linear operators
can be ascending on subsets of K but being positively homogeneous they cannot be
uy-concave for any u,, € K ~ {0}. (See Exercises 4, 5 and Corollary 5.1.14 below.)

A weakened form of a u,-concave operator was considered by M.A. Krasnoselskii and
his collaborators in [18, 20]. A selfmapping T of the positive cone K with non-empty in-
terior of a Banach space V is called uniformly concave on the conic interval [u, v] if

- uvek, [u,vl]={xeK|u<x<viforu<y,

— Tismonotoneon [0,v] and Tu € K
— for any two real numbers 0 < a < b < 1 there exists = n(a, b) > 0 such that for
all x € [u,v]and all A € [a, b]

(1 +n)ATx < T(Ax). (5.1.8)
Obviously, a uniformly concave operator T is ascending on the conic interval [u,v].

Conversely, let T be ascending with ¢p on the conic interval [u, v] and define n(a, b) =
inf{@ | A € [a,b]} — 1. If ¢ is continuous then it follows that = n(a,b) > 0.
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Because of ¢ (A) = (1 + n)A for A € [a, b] it follows that
Q+mMATx < PpA)Tx < T(Ax).

Even for ¢ continuous, however, T need not be uniformly concave. Indeed a positively
homogeneous operator can be weakly ascending but it can never be uniformly concave
(compare Corollary 5.1.14). A similar but weaker concept is that of an e-monocave
mapping introduced in [50] and which is defined by the following properties for a
selfmapping T of a cone K:

— T maps the part K° generated by e ¢ K into itself.

- Foru,v e K% 0O < r < 1 there exists M = M(r,u,v) > 0 with M > 0 for ru # v such

thatru < vandrv < uimply (r + M)Tu < Tvand (r + M)Tv < Tu.

Obviously, an e-monocave mapping is weakly ascending on K® with ¢ (1) = A + M(A),
provided M(r) = M(r, u,v) is independent of u, v.

Example 5.1.10 (Subhomogeneous operators). Operators of this type were consid-
ered by various authors and first introduced by A. C. Thompson [47, 48]. All types are
selfmappings of the convex cone of the form that foreachx ¢ Kand 0 < A(< 1)

there exists 0 < A’ such that T(Ax) > A'Tx. In the extreme case for “<” equal to
“=” and A’ = A the operator is positively homogeneous. For “<” equal to “=” and
A" = 24 d > 0, the operator is positively homogeneous of degree d (see Defini-
tion 2.2.1). For d < 1 those operators play arolein [5]. IfFA’ = A for0 <A < 1 then Tis
commonly called subhomogeneous or sublinear [45] or co-radiant [15]. For A’ = 1¢

witha € Rand x € K, 0 < A < 1 the operator is called a-concave ([39], where for “<”
instead of “>”, T is called a-convex; see also the power non-linearities in [20]). For

A= 21%@D) with 0 < a(a,b) < 1, x € Kand A € [a, b] for some fixed numbers a, b the
operator T is called a-sublinear, provided T is monotone in addition ([8]). Obviously,
a monotone operator which is a-concave (including positively homogeneous opera-
tors of degree d < 1) is ascending on the whole cone. Also, a-sublinear operators are
closely linked to ascending operators. More generally, call a selfmapping ¢ of ]0,1[ a
root function if there exsits another selfmapping r of ]0, 1[ such that

o) = A with supr(I) <1 oncompactintervals I c]O,1[. (5.1.9)

In case of an a-sublinear operator the function r(1) can be obtained from the values
a(a, b) as a piecewise constant function.

Thompson introduced the following weak form of subhomogeneity for a selfmapping
T of a convex cone K [48]: There exists p with 0 < p < 1 such that forall x,y € K

x<ay and y<px imply Tx<a'Ty and Ty<p'Tx (5.1.10)

with max{a’, B'} < max{a?, B}.
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If T is monotone and positively homogeneous of degree d or a-concave with 0 <

d,a < 1 ora-linear, then T is ascending on K or K with a root function ¢ . If T satisfies
(5.1.10) then T is weakly ascending on K with a root function ¢ .

Example 5.1.11 (Strongly monotone operators with homogeneity properties). Let V
be alocally convex vector space and K a closed convex cone with non-empty interiorK.

The convex cone I°< induces a relation “<” by x < yiffy—x € K . A selfmapping T of K is

— strongly monotone or strictly increasing if for all x,y € K, x £ y implies Tx < Ty;

— strongly subhomogeneous [45] if for all x € K~ {0}, all0 <A < 1,ATx < T(Ax);

—  with (k, K) property [27] if forall x € K, all 0 < A < 1, AT*x < T*(Ax) (k € N);

- weakly homogeneous [11] if forallx € K, A > 0, T(Ax) = c¢(A)Tx, wherec: R, —
R, with ¢(0) = 0 and %’U non-increasing.

If T is strongly monotone and subhomogeneous and 0 < A < 1, then
0<Axsy=TAx)<Ty=>ATx < Ty,

and if T is monotone and strongly subhomogeneous, then
O0sAx<sy=>TAx)<Ty=ATx < Ty.

Despite the similarity of the properties “strongly monotone and subhomoge-
neous” and “monotone and strongly subhomogeneous”, none implies the other one
(see Exercise 5). Both properties imply ATx < Ty which, under additional assump-
tions, yields an ascending T as in the following result.

Proposition 5.1.12. Let (V, 1) be a locally convex vector space and K c V a convex cone
with non-empty interior K (for T). Let T be a selfmapping of K and @ + D c K such that
T is continuous on D and for x,y € D, A €]0, 1] it holds that

Ax <y implies ATx < Ty. (5.1.11)

If D is compact then T is ascending on D.
If D is convex in addition then T is ascending on D with ¢ upper semicontinuous.

Proof. (i) First we show that T is ascending on D with ¢ defined for0 <A < 1 by
¢ A) =inf{A(Tx, Ty) | Ax <y, x,y € D}. (5.1.12)

By Proposition 3.4.12 (iii) the order function A(,-) is continuous on K X I°< in(V,1) x
(V,T); From condition (5.1.11) it follows forx € D, A = % that %Tx < Tx and, hence,
Tx € K. Therefore, A(T-, T-) is continuous on D x D by the continuity of T on D. Since
C, ={(x,y) e Dx D | Ax <y} is compact there exist x;,y;, € DwithAx; <y, such that
¢ (L) = A(Tx,, Ty,). Condition (5.1.11) yields A (Tx,, Ty, ) > A and, hence, ¢ (1) > A.

By the definition of ¢, forx,y e Dand 0 < A < 1, Ax < y implies ¢ (A)Tx < Ty
which proves that T is ascending on D with ¢ .
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(ii) Next we consider any selfmapping T of an arbitrary convex cone K in some
vector space which has the property that for a convex set D ¢ K
Ax <yimpliesATx < Ty, forany 0 < A < 1,anyx,y € D.
Then it is an easy exercise in extraction analysis to verify the following formula for
x,yeDandO<y<1

ADCTx + (1 =-y)y) - AGy) < AT Ty)(y + (1 - pAy)). (51.13)

Namely, Ax <y implies that A (yx + (1 - y)y) < (y + (1 - y)A)y and, by convexity of D,
one has that
ATpx + A -py) < (y + 1 =) Ty

and, by taking supremum over A, A(T(yx + (1 — p)y), Ty)(y + (1 - PA(x,Y)) = A(x,y).
Therefore,

AT, Tiyx + (1 =p)y) - A%, y)
SADGT(yx + (1= p)y) - A(T(yx + (1 = p)y), Ty)(y + (1 - p)A(x,y))
<A(Tx, Ty)(y + (1 = pAKX,y)).

(iii) Now we show that the function ¢ defined by equation (5.1.12) is upper semi-
continuous. Let ¢p (A,] < a for some A, €]0, 1[. We show that there exists e > 0 such
that (1) < a for A €]y — €, Ay + €[. From the definition of ¢ it is obvious that ¢
is increasing and, hence, it satisfies to show that ¢ (A, + €) < a. Since ¢ (4,) < a,
there exist x,y € D with A;x < yand 0 < A(Tx,Ty) < a. Choose ¢ > 0 such that
€ < min{)lo(/ﬁjy) -1), 1-AAandy = lon. Since D is convex, x' = x and
Y =y + (Q-y)yareinDand A4, + ex' = Ay + e)x < ypx + (1 —y)y = y' by
choice of y. Furthermore, by step (ii)

ATX', Ty') = A(Tx, T(yx + (1 = p)y)) < A(Tx, Ty)Ly)/l(x,y)

Axy)
Now, %@;X” < (/{’—0 +(1-p) <1+ Aio and by choice of e we arrive at A (Tx', TY') < a.
Since (A, + €)X’ <y’ it follows that ¢ (A, + €) < a. O

It should not be overlooked that condition (5.1.11) in Proposition 5.1.12 may hold also
for linear operators on subsets which are sectional in the following sense.

Definition 5.1.13. A non-empty subset D of a convex cone is called sectional if each
ray of K meets D in at most one point, i.e., if

Ax=y for x,yeD, A >0 impliesthat A =1 and x=y.

An example of a sectional set is given by any base of a convex cone (see Defini-
tion 3.3.1).

Corollary 5.1.14. Let (V, 1) be a locally convex vector space and K ¢ V a convex cone

with non-empty interior K. Let T be a concave (in particular, a linear) selfmapping of
K which is strictly positive. Then the following statements hold.
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(i) Tisascending on every sectional compact subset of K and it is ascending with an
upper semi-continuous function ¢ on every compact subset of a base of K.

(ii) If T is a compact operator and M is a bounded subset of V mapped by T into a
closed base of K then T is ascending on D = T(M) (for ) with ¢p upper semicon-
tinuous.

Proof. (i) LetD c K be sectional and compact. By Proposition 5.1.12 it suffices to show
condition (5.1.11). Let Ax < y for x,y ¢ Dand 0 < A < 1. Since D is sectional we must
have Ax £ yandy = Ax + z with z € K ~ {0}. Since T is concave and strictly positive

(i.e., T(K ~ {0}) ¢ K) it follows that

z
1-1
Consider an arbitrary base Bof K, B = {x € K | f(x) = 1} where f is a linear functional
with f(x) > 0 for x € K ~ {0}. Let C ¢ B be compact. By the continuity of the vector
space operations it follows that the convex hull convC is compact, too. Because of
convC ¢ B, the set conv( is sectional and the remaining assertion of (i) follows from

Ty=T(Ax+(1—}l)ﬁ)2}lTx+(1—)l)T< )>ATX.

Proposition 5.1.12.
(ii) Since D = T(M) is a compact subset of a closed base of K the assertion follows
from (i). O

Remark 5.1.15. For finite dimensions, condition (5.1.11) plays an essential role in [23].
For V = R", K = R" and | - || the /;-norm on R" the set D = {x €| K||x| = 1} is a sec-
tional set which is compact and convex. From Corollary 5.1.14 it follows that a concave
operator on K with Tx > 0 for x 2 0 is ascending on D with an upper semicontinu-
ous function ¢. Concerning the Concave Perron Theorem (Theorem 2.1.11), it was an
essential step in its proof to get by direct calculation that T is ascending on D.

In [27] a property like (5.1.11) results from monotonicity and the (k, Io( )-property for T.
There a functin ¢ is constructed like the one in the proof of Proposition 5.1.12, but
simpler due to finite dimensions. In [11, 24] strongly monotone self-mappings T are
considered which are weakly homogeneous. If T possesses these properties on a sub-
set D which is sectional then T must be ascending on D.

A concept close to that of an ascending operator is the property of “strong contrac-
tivity” for selfmappings of R} in [38]. Concepts close to those of a weakly ascending
operator and a cone mapping, respectively, are the various forms of order contractivity
in [46]. The main difference between these concepts and the ones introduced here, is
that the former are required globally for the whole cone (or its interior) whereas the
latter are required only locally on a subset D of K. It is only in the local sense that the
concept of an ascending operator or an operator satisfying condition (5.1.11) applies
to linear operators.

A locally ascending (weakly ascending) operator need not to be globally ascend-
ing (weakly ascending) (see Exercise 4). Furthermore, global concepts, as the one in
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[38], often imply monotonicity on the whole cone, which is not necessary for ascend-
ing operators (see Exercise 3, Exercise 4 (a)). Actually, it is an important feature of pos-
itive dynamical systems, in contrast to monotone dynamical systems, that non-linear
operators may fail to be monotone.

Exercises

1.

A selfmapping T as in Lemma 5.1.2 (ii) may have indeed the maximal number of

non-negative eigenvalues.

(a) Show that the following selfmapping T of R? has 3 different non-negative
eigenvalues,

T(x1,x,) = (minf{x; + 2x,,3x;}, min{3x,,x; + 2x,}).

(b) Find a selfmapping of ]Rf which has 7 different non-negative eigenvalues.
(c) Find a continuous, monotone, and positively homogeneous selfmapping of
R" which has 2" - 1 different non-negative eigenvalues.

Prove the following statements.

(@) Every ascending mapping is weakly ascending (for the same D and ¢ ).

(b) Every weakly ascending mapping is a cone mapping.

(c) Amapping which is ascending on a subset D of an archimedean cone is mono-
tone on D.

(d) The statement (c) fails if “ascending” is replaced by “weakly ascending” or
by “cone mapping”.

(e) The implications in (a) and (b) cannot be reversed.

Let T be the selfmapping of R? given by TO = 0 and

X1 + X,

x2 +x3
T(xy,X,) = <\/¥, X+ x2> for (x;,X,) # (0,0).

Show that

(@) T is neither increasing nor decreasing (with respect to the ordering given by
RY).

(b) TisascendingonD = {x € R? | x; + x, = 1}.

(cf. [22]) Consider the selfmapping T of K = lRf given by

(X +x5,1) for O<x;+x,<1

1
(1, X1+X2) for x; +x, > 1.

T(xy,x5) = {

(a) Find a subset of K on which T is ascending and show that T is neither mono-
tone nor u,-concave for any u, € K, ~ {0}.

(b) Show that T is not weakly ascending on the whole cone K.

(c) Show that T is a cone mapping on the whole cone K.
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(d) If Sis the selfmapping of K defined by S(x;,x,) = (x; + x,,1) and || - || is the
max-norm on R?, then
Tx = S for x € K~ {0}.
[1Sx]l
Show that S is neither a-concave nor a-convex.
(e) Show that neither S nor T are superadditive.

5. Find examples of selfmappings of a cone which show that of the properties
“strongly monotone and subhomogeneous” and “monotone and strongly sub-
homogeneous” none implies the other one.

5.2 Relative stability for ascending operators by Hilbert’s
projective metric

As for operators in finite dimensions (Section 2.1) we need to consider for general vec-
tor spaces the normalized or rescaled operator. This will be done more general for a
scale in the following sense of which a monotone norm is a special case.

Definition 5.2.1. For a convex cone K in a real vector space a scale s on K is a mapping
s: K — R, that is not identically 0 and such that s is positively homogeneous and
monotone, i.e., forallx,y e K, A € R,

s(Ax) =As(x) and s(x) <s(y),

provided x < y.
The set U = {x € K | s(x) = 1} is non-empty and called the unit set for s.
A selfmapping T of K is proper for a scale s if

s(Tx) # 0 for s(x)=1.

For an operator T: D — K, D c K, and a scale s on K the normalized or rescaled
operator T is defined by Tx = (Tx)(s(Tx))* for x € D with s(Tx) # 0. In the following
it will often be used that for a selfmapping T of K which is proper for a scale on K the
normalized operator T is defined and maps the unit set U into itself. Note the caveat
that in general (T)k and (5"7‘) have to be distinguished (compare Figure 2.2).

As observed earlier, Hilbert’s metric d gives distance zero for points on the same ray
but by scaling elements we can obtain a metric space as follows.

Lemma 5.2.2. IfK is a lineless and internally complete convex cone then (PN U, d) is a
complete metric space for every non-zero part P of K.

Proof. (PnU,d)isametric space by Theorem 3.2.3 (v). Let (x,,),, be a Cauchy sequence
for din P n U. Since K is internally complete there exists x € P with nlglolo d(x,,x) = 0.
In particlar, there exists m € N with A (x,,, x) > 0 and, hence, Ax,, < x for some A > 0.
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For the scale s it follows that As(x,,,) < s(x) which implies 0 < A = As(x,,) < s(x). Thus,
Y = 59 € PN Uand limd(x,,y) = lim d(x,,x) = 0. -

The next definition describes, roughly speaking, the set of all points of the cone for
which the selfmapping T is ascending on a tail of the T-orbit which is required to be-
long to a part of the cone.

Definition 5.2.3. Let K be a convex cone in a real vector space with scale s and let T

be a proper selfmapping of K. The ascending domain D(T) of T consists of all points

x € K such that

— there exists a non-zero part P, of K;

— there exists a non-empty subset D, ¢ K on which T is ascending with some ¢,;

- s(Tx) > 0and there exists for the normalization T (with respect to s) some n(x) € N
such that for M = {T"x | n > n(x)} it holds that M c P, and M c D, where M is the
closure of M in the metric space (P, N U, d).

The main results of this section and the next section state that under certain condi-
tions for every point in the ascending domain of T the iterates of the normalized oper-
ator T (or of T itself) converge to an eigenvector of T with strictly positive eigenvalue.
We shall refer to the convergence of the iterates of T as relative stability (for this term
see [32]). If, in contrast, the iterates of T itself converge to a fixed point of T we em-
ploy, for short, the term absolute stability. Note that by our method of non-expanding
maps, a fixed point of T, or of T, is automatically stable in the usual sense (compare
Remark 4.1.5 (iii)).

Theorem 5.2.4 (Relative stability for ascending operators). Let K be a convex cone in
arealvector space V with scale s and let T be a proper selfmapping of K with non-empty
ascending domain D(T).

A. Suppose that K is lineless and internally complete.

(i) For every x € D(T) for which ¢, is upper semicontinuous on 0, 1[ the orbit
(T"x) e COnverges with respect to Hilbert’s projective metric d to an eigenvec-
tor x* = x*(x) of T with s(x™) = 1 with eigenvalue A* > 0.

(ii) Letx,y € D(T)such that forsomek > 1 both T"x and T"y belong for n > k jointly
to some part and their d-closures belong to a subset on which T is ascending
with an upper semicontinuous function ¢ . Then it holds in (i) that x* = y~.

(iii) For every subset D of K, on which T is ascending with an upper semicontinuous
¢ and for every part P of K, there is at most one eigenvector of T with scale 1
contained in D n P.

B. Lett be alocally convex topology on the vector space V for which K is sequentially
complete and normal.

(iv) The above statements (i) to (iii) do hold where in (i) the orbit (T"x) .y cOnverges
to x* also with respect to T.
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(v) IfT is ray preserving then for each x as in (i)

lim Ix x* for T
naoos(Tnx) '

If T is positively homogeneous and monotone then nll)rgo }Lff = c(x)x*,c(x) = 0.

Proof. Suppose that K is lineless and internally complete.

(i) Fix x, € D(T) as well as a non-zero part P of K and a non-empty subset D ¢
K, according to Definition 5.2.3. Let X be the closure of M = {T"xo | n > n(xy)} in
the complete metric space (P n U, d), where U is the unit set of s (see Lemma 5.2.2).
Obviously, (X, d) is a complete metric space contained in D.

We show that T is a selfmapping of the metric space (X, d) which is a generalized
contraction in the sense of Definition 4.1.1(iii).

Let0 < @ < B < oo and consider x,y € X with a < d(x,y) < B. Therefore,
e? < A(x%y) - A(y,x) < e® and, because of x,y € X ¢ U, we must have that 0 <
A(X,y),A(y,x) < 1. Considering 0 < A,u < 1 withAx <y, uy < x we have that A (x,y)
and A (v, x) is the supremum of those A and y respectively. Because of x,y € U, neither
Ax = ynor uy = x is possible and we must have that Ax § y and py 5 x. Since T is
ascending on D with ¢p we obtain ¢ (1)Tx < Ty and ¢ (u)Ty < Tx. This implies that
A(Tx, Ty) = ¢ (A) and A (Ty, Tx) > ¢ (u) from which it follows that

A(Tx, Ty) - A(Ty, Tx) = A(Ix, Ty) - A(Ty, T) 2 Q) - ().
Thus, we obtain for x,y € X with a < d(x,y) < B that

d(Tx, Ty) < —loglp (A) -  (w)]. (5.2.1)

forallO <A, u < 1withAx sy, uy s x.

Now consider the compact set I = {(r;,1,) | 11,15, € [0, 1], e b < r.r, < e}, in
RR?. By assumption ¢ is upper semicontinuous on ]0, 1[ and ¢ becomes upper semi-
continuous on ]0, 1] by setting ¢p (1) = 1.

Since for (r;,r,) € I we must have thatr;,r, > 0 and that both r, and r, cannot be
1 we have that ¢ (r;)¢ (r,) > ryr, for (r;,1,) € I. Therefore, —log(r,r,) > —log(¢p(r;) -
¢ (ry)) = 0for (ry,r,) € I. Thus the function f defined on I by
log ¢ ()¢ (r,)

log(rir,)

is upper semicontinuous on I (see Exercise 2) and attains therefore its supremum o (I)
on the compact set I,

f(ry,ry) =

log ¢ (r)¢b (1)

<1.
log(r}r)

o(I) =sup{f(ry,ry) | (r,ry) €1} =

Since (A, u) € I from (5.2.1) we obtain that
d(Tx, Ty) < -logl¢p (A) - ¢ ()] < o (I)(-log(Ap)).
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By taking the infimum over A, u and by setting L(a, ) = o(I) we obtain finally
that forx,y € Xand a < d(x,y) < f it holds that

d(Tx, Ty) < L(a, B)d(x,y) with L(a,B) < 1. (5.2.2)
In particular, T is d-continuous on X. Therefore, for x € X, x = tlimxn,xn € M (for d)

it follows that Tx = Jlim Tx,. This implies, because of Tx € P n U that Tx € X. Thus

we obtain that T is a selfmapping of X which by (5.2.2) is a generalized contraction on
(X,d).

Since a generalized contradiction is always (e, 6 )-contractive (cf. Exercise 3 to 4.1)
from Theorem 4.1.4 it follows that T has a (unique) fixed point X5 € X and ”111_1»1;10 T™x =

x; for all x € X with respect to d. For x = T"xo, n = n(x,) it follows in particular
that lim T"x, = x;. Obviously, s(x) = 1 and Txg = x; implies T; = A”xg with
A" =s(Txg) > 0. This proves statement (i) of part A of the theorem.

(i) Letx,y e D(T)and M = {T"x | n 2 k}u{T"y | n > k} withX =M c DnP,
where D and P are joint ascending set and joint part, respectively. As in the proof of
statement (i) it follows that T has a unique fixed point z* in X such that r}grgo ™z=2z"

forall z € X. In particular, lim T"x =z* = lim T™y.

(iii) Let x € D n P be an eigenvector of T with s(x) = 1. If in Tx = Ax one would
have that A < 0 then x € K n (-K) c {0} because K is lineless. Therefore, A > 0 and
A = s(Ax) = s(Tx) > 0 because T is proper. It follows that Tx = s(’;’; 5 = % = x and,
hence, x € D(T). Similarly y € D(T) for an eigenvector y € D n P with s(y) = 1. From
statement (ii) it follows that x = hm T"x = 11m T"y y. Therefore, there is at most
one eigenvector of T with scale 1 1n D nP.

(iv) Now we turn to part B of the theorem. From Corollary 3.4.14 it follows that K is
lineless and internally complete. Therefore, statements (i) to (iii) of part A do hold. Fur-
thermore, for x,y € U, that is s(x) = s(y) = 1 it follows that A (x,y) < 1and A(y,x) < 1
From Proposition 3.3.3 (v) for each of the monotone semi-norms g which define 7 it

follows that
qx-y)

[3-AMy) + Ay, x) + max{d(x,y), A(y,x)})] max{g(x), q(y)}
3(1 - exp(-d(x,y))) max{q(x), q(y)}.

IN N

By statement (i), lim x,, = x* holds for d with x,, = T"x. In particular, there exists N

such that d(x,, x") < % and, because of x,,, x* € U, e’%xn < x* foralln > N. Thus, we
obtain foralln > N

406, - x*) < 3(1 — exp(-d(x,, ")) - €7 g(x").

Since nll»rgo d(x,,x*) = 0 it follows that nanQO q(x, — x*) = 0 for all g defining 7 that is
Jim x,, = x* holds for 7.

(v) If T is ray preserving, x € D(T) then it follows that T"x = (T,, 5 since s(Tx) > 0
and T is proper (cf. Lemma 2.2.4 (i)). Suppose now that T is positively homogeneous
and monotone. Denote x,, = %‘ and let A, = A(x", x,)), 4y = A(x,, x™). From A, x* < x,
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and u,x, < x" it follows that A, Tx" < Tx, and u,Tx, < Tx" by the assumptions made.
Since Tx* = A*x" by (i) we get A, x" < x,,; and y,x,,; < x*. Thus, A, < A,,; and
Mn < Mpyq for all n. Since Ay, < 1 and p; > O the sequence (A,), is bounded and,
hence, converges to some ¢ = ¢(x) > 0. By (i) we have that nlggo d(T"x, x*) = 0 which by
the properties of Hilbert’s metric implies that lim. d(x,,x*) = 0, that is Jim A, = 1.

Thus, we must have ¢ > 0 and nhlg) U, = % From

* * 1 *
A, —ox" <x,—cx s(——c)x
n

we obtain for each of the monotone semi-norms g defining 7 that

A, = clg(x™) < qlx, —cx™) < Iyl —clg(x™) for all n.
n
T"x

Therefore, with respect to T lim I
n—.oo

= lim x,, = c(x)x™. O
n—-oo
From Theorem 5.2.4 we obtain the following conclusions.

Corollary 5.2.5. Let (V,T) be a locally convex vector spaceowith a convex cone K which

is sequentially complete and normal. Assume further that K # 0 and that K has a base

B = {x € K | f(x) = 1} with a scale f continuous for T. Define for 0 < A < 1 the set

Ci ={xy) I x,y € BAx <y}

(i) Let T be a selfmapping of K, continuous on B and such that the set {(Tx, Ty) | (x,y) €
C,} is compact for the product topology and

(xy)eC, for 0<A<1 implies ATx < Ty. (%)
Then the conditional eigenvalue problem
Tx=Ax with A eR, x€Kk, f(x)=1
has a unique solution x = x* € f(, A = A" > 0and it holds for f as scale and with

respect to T that
Y}LIQOT"X =x" forall xeK with f(Tx)> 0.

If, in addition, T is positively homogeneous then nlglgo /{"’,f = c(x)x* with respect to

T, wherec: {x € K | f(Ix) > 0} — R, is positively homogeneous and strictly
monotone.

(ii) Let V = R" with Euclidean topology, K < V a closed convex cone with K # 0 and
base B = {x € K | x|l = 1} withnorm ||x|| = ¥, Ix;| on V. Let T be a continuous
selfmapping of K.

(@) If T has property (x) of (i) then the conclusions stated in (i) do hold for T with
fO) =x1 + - + X, .
(b) ForK = R}, T has an eigenvector in K with positive eigenvalue if

Ax<y implies ATx< Ty for x,yef(, 0<Ac<1 (%%)

and T maps K into itself with a strong connected graph G(T).
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Proof. (i) Let p(A) = inf{A(Tx,Ty) | (x,y) € C,}. Since {(Tx,Ty) | (x,y) € C;}is
assumed to be compact it follows from Proposition 5.1.12 and its proof that T is as-
cending on B with ¢ upper semicontinuous. For x € B by (x) it follows from %x $£X

that 0 < %Tx < Tx, thatis T(B) ¢ K This shows in particular that T is proper for the

scale s = f. Furthermore, for Tx = f(T 5

choose P, = K and D, = B.SinceM = {T"x | n > 2} c K and M ¢ B for the clo-
sure of M in the metric space (f( N B, d), from the definition of the ascending domain
it follows that D(T) = {x € K | f(Tx) > O}. From Theorem 5.2.4 B (iv) it follows that
,}Lr{)lo T"x = x* (for 7) where (by statements (ii) and (iii)) (x*,A*) with A* = f(Tx*) is the
unique solution of Tx = Ax, x € K, f(x) = 1.

Suppose now that T is positively homogeneous. According to Theorem 5.2.4 B (V)
it suffices to show that T is monotone. For 0 £ x § ywemust have 0 < f(x) < f(y).
Setting A = ;E"; < 1 we have that)lf( ;< f(y) and by condition (*), /IT(f(X)) < T(f(y))
Thus Tx < Ty. Therefore, T is monotone and c(x) < c(y). Obviously, 0 < c(y) for 0 5 y.

(ii) Obviously, K is sequentially complete and normal for the Euclidean topology
7. Since B is compact and T is continuous the set {(Tx, Ty) | (x,y) € C,} is compact for
the product topology. Thus, part (a) follows from (i). Concerning part (b) we shall apply
an approximation of T as used already in the proofoof Theorem 2.1.14. Namely, define
T(k)x = Tx + %e forx e K,k > 1,e = (1,...,1) € K. Obviously, T(k) is a continuous
selfmapping of K. Furthermore, if Ax < yforx,y ¢ Kand 0 < 1 < 1 from (%) we
obtain by continuity of T that

AT(k)x = ATx + %e <y+ %e.
Thus, T(k) has property (*) of (i) and part (a) implies in particular the existence of
x(k) € Bn K and A (k) > 0 such that T(k)x(k) = A (k)x(k) for all k > 1. By compactness
of Bwe may assume without loss that lim x(k) = x. From A (k)x(k) = T(k)x(k) = Tx(k) +

Fe we obtain hm)l(k)x(k) = Tx and, hence ITx| = lim/l(k) This yields Tx = Ax with

A = |Tx||, |x|| = 1. It remains to show that x € K By assumption T maps K into itself,
G(T) is strongly connected and from parts (b) and (c) of Exercise 9 to Chapter 2 we have

that for each ¢ > O the set {x € K | Ixll = 1, Tx < cx} is closed for || - ||. Since x(k) € B nf(
and
Tx(k) < T(k)x(k) = A(k)x(k) < (|Tx]| + 1)x(k)

for k big enough we arrive at x € K. This proves part (b) of (ii). |

Remark 5.2.6. Condition () in Corollary 5.2.5 is related to mappings T discussed un-
der Example 5.1.10 and Example 5.1.11, respectively. For example, if T is monotone and
positively homogeneous of degree d < 1 or a-sublinear for 0 < a < 1 then T satisfies
condition (%) (provided T(B) c K). It is not difficult to see that adding operators satis-
fying (*) to monotone operators which are subhomogeneous yields operators which
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again satisfy condition (). (See [36] for this type of operators.) For mappings satisfy-
ing condition (*) see [11, 23, 27, 45]. As a combination of homogeneity and monotonic-
ity condition () appears in the early approach [32] to non-linear Perron-Frobenius
theory in finite dimensions by the economist M. Morishima.

A particularly interesting consequence of condition () is the existence of an eigenvec-
tor in the interior of the cone. The special case given in part (ii) (b) of Corollary 5.2.5 ex-
tends the Generalized Perron—Frobenius Theorem of Gaubert and Gunawardena (see
[12, 29]) to mappings which are not homogeneous but subhomogeneous.

The next consequence of Theorem 5.2.4 concerns stochastic operators which can
be viewed as infinite generalizations of column stochastic matrices. (See [41] for this
and the dual concept of a Markov operator which is defined there more special for
linear operators on Banach lattices.)

Definition 5.2.7. Let (V, | -||) be a normed vector space with a convex cone K on which
[l - || is additive. A selfmapping T of K is called a stochastic operator if | Tx| = 1 for all
x € Kwith x| = 1.

The following result can be viewed as an infinite generalization of the Basic Limit The-
orem for Markov chains (see [30]).

Corollary 5.2.8 (Basic limit theorem for stochastic operators). Let (V,| - ||) be a Ba-

nach space with a closed normal cone K with IO( # 0. Let T be a stochastic operator (onK)
which is compact, concave, and primitive, i.e., there exists p € N such that T"x > 0 for
allm > p, all x € K ~ {0}. Then T has a unique fixed point x* € K with |x*| = 1 and it
holds that

nli_)rroloT"x =x">0 forall xeK, |x|=1.

Proof. ThesetB = {x e K| |x|| = 1} E closed base for K. By Corollary 5.1.14 (ii) the
operator S = T? is ascending on D = S(B) with ¢ upper semicontinuous.

Obviously, Sx € Bn 10( for x € B. For fixed x, € Bitholds that M = {S"x, |> 2} =
{S"%, |n>2}cBn Io(. Let x € M, the closure M taken in (B n f(, d),and x = r}LIIoloX” for
d. Since ||x| = 1 = |lx,|l, from Proposition 3.3.3 (vi) it follows that x = nlLI& x, for || - |.
Therefore, M(for d) ¢ M(for| - ||) ¢ S(B)(for | - ||) = D.

Obviously, M (for d) ¢ K. Therefore, by the definition of the ascending domain, we
have that x, € D(T). Since x,, € B was arbitrarily chosen, the corresponding set M for
any x € Bis contained in D n K Thus, by Theorem 5.2.4, part B, it follows for some
x* with |x*|| = 1 that nli_)rglog"x = x* (for || - ||) for all x € B. Since Sx = Sx for x € Bit
follows that nlggo T™x = x* for all x € B. For x € B one has that T'x € B and, hence,
lim T™*x = x*. This implies that '11er010 T"x = x* for all x € Band, by continuity of T, x*

n—oo

is a fixed point of T. Obviously, x* is the unique fixed point of T in B. |
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From Theorem 5.2.4 we obtain the following extension to infinite dimensions of the
First Concave Perron Theorem (Theorem 2.1.11) and the Second Concave Perron Theo-
rem (Theorem 2.2.11).

Theorem 5.2.9 (Relative stability for concave and zigzag-operators). Let (V,T) be a
locally convex vector space with a convex cone K which is sequentially complete and
normal. Let q be an arbitrary seminorm on K with unit set U and let T be a concave
selfmapping of K.

(i) Assume there are numbers 0 < r < s and e € K with q(e) > O such that

re<Tx<se forall xeU. (%)
Then the conditional eigenvalue problem
Tx=Ax with A €R, xek, qx)=1
has a unique solution x = x*, A = 1™ > 0 and it holds with respect to T that
lim T"x = x* forall xe K with q(Tx)> 0.

n—-oo

If, in addition, T is ray-preserving or positively homogeneous, respectively, then for

T and q(Tx) > 0, ,}Lrgo % =x" or ,}Lrgo 1" = c(x)x*, respectively. Thereby, c(-) is

concave and positively homogeneous.

(ii) Suppose f( # 0 and let q be a norm on V. Assume T is continuous, ray-preserving,
primitive, and for some k the closure of T*(U) (for T )is a compact subset of K which
does not contain zero.

Then the eigenvalue problem

Tx=Ax with A €R, x € K~ {0}

has a solution x* > Owithq(x*) = LandA* > 0. For any solutionx € K~{0}, A € R
it holds that x = rx* for somer > 0 and A > 0. Moreover, with respect to T and
x € K~ {0}
) T"x . . T .
nlgglom =x" and nll»rgo/l_*” =c(x)x".
if T is positively homogeneous.
(iil) Let {Ti};; be a family of concave operators as in (i) withO < r; < s;and e; € K
with q(e;) > 0 and such that inf{( | i € I} > 0.If Tx = inf{Tix | i € I} (or
Tx = sup{T;x | i € I}) exists for every x € K then the conclusion of (i) applies to T.

Proof. (i) Lemma 5.1.6 (i) yields for D = U = {x € K | q(x) = 1} that T is ascending on
Dwithp (1) =1 +(1 —)l)g. From (=) it follows for x € U that g(Tx) > 0 and, hence,
T is proper for scale g. Fix x, € K with q(Tx,) > 0 and let P, the part generated by
uy = Tx,. For u € U from (x) it follows that

s s
Tu<se< -Tu, and Tu,<se< -Tu.
r r
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Therefore, M = {T“xo | n = 2} ¢ P, and the closure M taken in the complete metric
space (P, N U, d) (see Lemma 5.2.2) is contained in D. Thus, D(T) = {x € K | g(Tx) > 0}
for the ascending domain of T and the conclusion of (i) follows from Theorem 5.2.4.
(ii) By assumption T*(U) is compact in K (for 7) and does not contain 0. Since
T is primitive and continuous, T? (T¥(U)) , and hence, C = TP*k(U) is compact and

contained in K. By Proposition 3.4.12 (iii), A (-, -) is T-continuous and strictly positive

on f( . For e € C arbitrary but fixed this implies that

r=inf{A(e,x) | x € C} >0 and s=sup{ |xeC}<oo

1
A(x, e)

Therefore, re < x < seforallx € Candre < TP**u < seforallu e U. For
S=T"m-=p + k, from part (i) it follows that Sx =Ax, A € R, x € K, qx) =
has a unique solution x = x*, A > 0 and 11m (sn 5 = =x" > Oforallu € U. To confer
these results from S to T, consider y = T’x for x € K~ {0}. For 1 < i < p one has that
0 < TPx = TP7{(T'x) = TP"y. Since T is ray-preserving, TO = 0, and, hence, y # 0.

Therefore, y = T'x # 0 for x € K ~ {0}, i € N. Applying

. T™u .
Y}erolom =X forall ueU
tou = q(T,X), 0 <i<m,x e K~ {0}yields
. T'x .
lim —— =
n—»ooq(Tnx)

Similarly the assertion for T positively homogeneous is obtained from part (i). Finally,
from Sx* = Ax™ we obtain that

*

Tx
q(Tx*)’

S<q(T;;*)> =pT™'x* =pT(Sx*) =pTAX*) = u
wherep > 0, u > 0. By uniqueness, q(TX 5 = x* and, hence, Tx = Ax has the solution
x=x">0,A" = q(Tx*) > 0. Finally, suppose Tx = Ax with x € K ~ {0}, A € R. Since
Tx € K~ {0} it follows thatA = ’{;(TX)) > 0. Therefore, S5 o =aTl’x=p ﬁ witha,B > 0,
which implies ﬁ = x", thatis, x = rx" withr = g(x) > 0

(iii) From Lemma 5.1.6 (iii) it follows that T is ascending on D = U with ¢p (A) =
A+ (1 -A)cwithc = mf{— | i € I} > 0. As in the proof of (i) it follows that the

conclusion of (i) applies to T. O

A common extension of the Perron—-Frobenius theorem as well as of Jentzsch’s theo-
rem on integral operators to linear operators in infinite dimensions is the well-known
Krein—-Rutman theorem (see [28, 51]; for an elegant proof see [44]). This extension
treats existence and properties of the dominant eigenvalue but it is not concerned with
the “dynamical aspect”, that is the convergence of the normalized iterates. The results
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presented above, although mainly directed towards dynamical features of operators,
yield also variants of Jentzsch’s theorem as well as of the Krein Rutman theorem (see
Exercises 4 and 6 and Section 5.4); for a generalization of parts of the Krein—Rutman
theorem to non-linear operators see [4, 35]).

Exercises

1. Consider the selfmapping T of R? with component mappings given by (see Exam-
ple 5.1.9 and [23])

Tix = max {min {le + X5, %xl + %XZ}, min {le + %, Xy + 4x2}}
T,x = min{x; + 2x,,1}.
(a) Obtain from Corollary 5.2.5 that the conditional eigenvalue problem
Tx=Ax,A € R, x € ]Rf, x|l = |x1] + Ix,] =1
has a unique solution x = x*, A = A1* > 0 and that for scale | - ||

lim T"x = x* forall x € K ~ {0}.

n—.oo
(b) Compute x* and A*.

(c) What can be said about the asymptotic behavior of ";—")(”7

2. Afunction f: X — R on a topological space X is called upper semicontinuous
if for every a € R and r € R with f(a) < r there exists a neighborhood U(a) of
a such that f(x) < rfor all x € U(a). (f is lower semicontinuous if —f is upper
semicontinuous.)

(a) Show that every upper semicontinuous function on a compact topological
space attains its supremum on X.

(b) Show that for two upper semicontinuous functions f and g on X with non-
negative values the function (x,y) — f(x)g(y) is upper semicontinuous on
X x X (with the product topology).

(c) Find two upper semicontinous functions on X for which the conclusion of (b)
does not hold.

3. Consider a lineless convex cone K in some real vector space and a part P # {0} of
KwithV=P-P.
(a) Show that there exists a norm on Vwith respect to which each point of P is an
interior point in V.
(b) Find an example of a closed, convex, normal cone K in some normed real
vector space and a part P # {0} of K such that P has empty interior in V.

4. Obtain as a special case of the Theorem on relative stability for concave operators
(Theorem 5.2.9 (i)) the following Birkhoff-Jentzsch Theorem (see [2, Theorem 3,
p. 224], cf. also [22] and Example 5.1.7):
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Let (V, |- |) be a Banach lattice with K = V, the cone of positive elements. Let T be
a linear, bounded operator on ¥V which maps K into itself and which is uniformly
positive. Then the eigenvalue problem Tx = A x has a unique solution (x A*)with

x* €K, |x*| =1, A* > 0 and for every x € K ~ {0} it holds that hm ”THX" =x".

5. Obtain as a special case of Theorem 5.2.9 (i) Thompson’s theorem (see [47, The-
orem 4.3.4, p. 83]; cf. also Example 5.1.7):
Let (V, 1) be a locally convex vector space, K a convex cone which is normal and
sequentially complete. Let T be a linear operator on V which maps K into itself
and which is uniformly positive with e such that s(e) = 1 for a linear functional
s: K - R,, s(x) > 0 for x # 0. Then the eigenvalue problem Tx = Ax has a unique
solution (x* A*)withx* € K, s(x*) = 1, A* > 0 and for every x € K ~ {0} it holds
that llm T"x) =x".

6. Obtain from Theorem 5.2.9 (ii) the following variation of the Krein-Rutman the-
orem (see also [51, Theorem 7.C, p. 290]):
Let (V, ||-) be a real Banach space with a closed, convex, pointed cone with int K +
0. Let T be a linear, compact operator on V which maps K into itself. Suppose
that T is primitive and strictly positive in the following sense (see [4, p. 51]), for
X, €K, nlLIgO Tx,, = 0 implies that HILI& X, = 0.

Then T has exactly one eigenvector x* € K with ||x*|| = 1. The corresponding
eigenvalue is A* > 0 and x* > 0. Furthermore, for all x € K ~ {0} it holds that
lim # =x".

n=oo IT"x||

5.3 Absolute stability for weakly ascending operators by the part
metric

Whereas in the last section we treated the relative stability for ascending operators we
now turn to the absolute stability for weakly ascending operators. The latter means
that, on a subset of the cone, the iterates of the mapping itself converge to a unique
fixed point in this subset. Whereas in the previous section Hilbert’s projective metric
was the main tool, it is now the part metric we shall employ. Despite this difference
we can proceed in what follows in many respects similarly to the previous section.

Definition 5.3.1. Let K be a convex cone in a real vector space and let T be a selfmap-

ping of K. The weak ascending domain W(T) of T consists of all points x € K such

that

— there exists a non-zero part P, of K;

— there exists a non-empty subset W, ¢ K on which T is weakly ascending with
some ¢,;

- there exists n(x) € N such that for M = {T"x | n > n(x)} it holds that M ¢ P, and
M c W, where M is the closure of M in the metric space (P,, p), p the part metric.
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The following result is similar in spirit to Theorem 5.2.4 on relative stability.

Theorem 5.3.2 (Absolute stability for weakly ascending operators). Let K be a convex
cone in a real vector space V and let T be a selfmapping of K with non-empty weak
ascending domain W(T).

A. Suppose that K is lineless and internally complete.

() Letx € W(T) for which ¢, has the property (P) to be upper semicontinuous or
lower semicontinuous from the left on ]0, 1] or to be a root function.

Then the orbit (T"x),n cOnverges with respect to the part metric p to a unique
fixed point x* = x*(x) of T.

(ii) Let x,y € W(T) such that for some k > 1 both T"x and T"y belong forn > k
jointly to some part and their p-closures belong to a subset on which T is weakly
ascending with a function ¢, which has property (P). Then it holds in (i) that
X" =y".

(iii) For every subset W of K on which T is weakly ascending with a ¢ that has prop-
erty (P) and for every part P of K there exists at most one fixed point of T in
WnP.

B. Let T be alocally convex topology on the vector space V for which K is sequentially
complete and normal. Then the above statements (i) to (iii) do hold where in (i) the

orbit (T"x),,c converges to x* also with respect to T.

Proof. Suppose that K is lineless and internally complete.

(i) Fixx, € W(T) as well as a non-zero part P of K and a non-empty subset W ¢ K
and a mapping ¢ according to Definition 5.3.1. Let X be the closure of M = {T"'x, |
n > n(x,)} in the complete metric space (P, p) (Theorem 3.2.3 (v)). Obviously, (X, p) is
a comlete metric space contained in W. We shall show that T is a selfmapping of the
metric space (X, p) which is a generalized contraction or (g, § )-contractive in the sense
of Definition 4.1.1.

Suppose first that ¢ is upper semicontinuous. In this case we proceed similarly
to the proof of Theorem 5.2.4. Let 0 < @ < < oo and consider x,y € X with a
p(xy) < B. Therefore, e < min{A (x,y), A(y,x)} < e . Consider A satisfying eh
A < e™®. By Lemma 3.1.4 (vi) we conclude that min{A (x,y), A(y,x)} = sup{d > 0 | Ax
S %x}. Since T is weakly ascending on W with ¢ it follows that¢p (1)Tx < Ty < ﬁ Tx
and, hence,

<
<

p(Tx, Ty) < —log ¢ (A). (5.3.1)

From ¢ upper semicontinuousonI = {r | e? <r<e® clo,1[and ¢(r)>rforrel
we obtain that
log ¢ (r)

logr

U(I)=sup{ |reI}<1.

Obviously, this is true also for a root function ¢ (see Example 5.1.10). From (5.3.1) we
have that
p(Ix, Ty) < —log ¢ (A) < (=logA)a(I)
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and, by taking the infimum over A, we arrive with L(a, ) = o(I) at

p(Ix, Ty) < L(a, B)p(x,y). (53.2)

In particular, T is p-continuous on X and, hence, T(X) ¢ X. This shows that T is a
generalized contraction on (X, p).

Next, consider the case that ¢ is lower semicontinuous from the left. Fore > 0
given and A, = e, ¢ (A,) > A, and, hence, there exists § > 0 such that

Aoe™® <A <A, impliesthat @A) > A,
Consider x,y € X with e < p(x,y) < € + § or, equivalently,

e <sup{/\ >0|)lxsys%x}sei

€

Therefore, there exists A such that

Aoe_5<As}l0 and Axsys-—x

> =

Since T is weakly ascending with ¢p we obtain that
1

PpMIx<Ty< 0

Tx.

Putting together, we get
min{A(Tx, Ty), A(Ty, T\)} = p(A) > Ay = €°°

and, hence, p(Tx, Ty) < €. Thus, to any € > 0 given there exists § > 0 such that for all
x,yeX
e<plxy)<e+d6 impliesthat p(Tx,Ty) <e. (5.3.3)

In particular, T is contractive and, hence, T is p-continuous. Therefore, T is a selfmap-
ping of (X, p) which is (e, 6 )-contractive.

In any case, from Theorem 4.1.4 we obtain that T has a unique fixed point xj in X
and lim T"x = x; forall x € X.

n—-oo

(i) Letx,y € W(T)and M = {T"x | n > k}u{T"y | n > k} withX = M c WnP where
W and P are joint weak ascending set and joint part, respectively. As in (i) above, T has
a unique fixed point z* in X and '}erolo T"z = z* for all z € X. In particular, "111_(20 T"x =
= imI%.

(iii) This follows directly from (ii).

(iv) Part B follows similarly as for Theorem 5.2.4. From Corollary 3.4.14 it follows
that K is lineless and internally complete. Therefore, statements (i) to (iii) of part A do
hold. It remains to show that in (i) for a sequence given by x,, = T"x convergence to
x* for p implies convergence for 7. From Proposition 3.3.3 (vi) (together with (ii)), for
each of the monotone seminorms g which define 7 it follows that

q(x - y) < 3p(x,y) max{q(x),q(y)} for x,y e K~{0}.
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From nll»%lo p(x,, x*) = 0 it follows in particular that p(x,, x*) < % for n > N and, hence,
e’%x,, < x*. Therefore,

0, —x*) < 3p(, X" Ve g0x),
which implies that nlLIElo x, =x" fort. d
From Theorem 5.3.2 we easily obtain the following bundle of consequences.

Corollary 5.3.3. Let (V, 1) be a locally convex vector space with a convex cone K that is

sequentially complete and normal and let T be a selfmapping of K.

(i) Let W be an internally closed subset of a part of K and let T be weakly ascending
on W with a ¢ that has property (P). Then each orbit of T which stays finally within
W converges for T to the unique fixed point of T in W.

(ii) Let P be a non-zero part of K and let T be weakly ascending on P with a ¢ that has
property (P). Then T has a fixed point in P if and only if T sends some point of P into
P. Furthermore, each fixed point of T in P is absolutely stable in P. In particular, if T
is weakly ascending on K with a ¢ as above then each fixed point of T is absolutely
stable in the part generated by it.

(iii) Let [u, v] be a conical interval in a non-zero part of K on which T is uniformly concave
with n (a, b) depending continuously on a, b. Then each orbit of T which stays finally
within [u, v] converges for T to the unique fixed point of T in [u, v].

(iv) Let K® be the part generated by e € K ~ {0} and let T be e-monocave on K° with
M(r,u,v) independent of u, v and continuous in r. Then K¢ contains exactly one fixed
point of T which is absolutely stable in K°.

(v) Suppose there exists 0 < p < 1 such that for all x,y € K

x<ay and y<pfx imply Tx<a'Ty and Ty<pB'Tx (53.4)

where a,8,a’, B’ are non-negative numbers with max{a’, B'} < max{a?, B*}.

Then each non-zero part of P for which T sends some point of P into P contains ex-
actly one fixed point of T and this fixed point is absolutely stable in P. This conclusion
holds in particular for T monotone and p-concave or T concave and homogeneous
of degree p on K.

Proof. (i) Consider x,, € K, x, # 0 without loss, such that its orbit stays finally in W,
i.e., M = {T"x, | n = n(x,)} ¢ W for some n(x,). By assumption on T the assertion of
(i) follows from Theorem 5.3.2.

(ii) Let W = Pin (i). If x* € P is a fixed point of T and x € P then x ~ x™ which
yields Tx ~ Tx* = x* since T is weakly ascending. Therefore, the orbit of x belongs to
P. The same holds for a point x € P with Tx € P. Therefore, the assertion of (ii) follows
from (i).

(iii) Follows for W = [u, v] from (i) together with Example 5.1.9.

(iv) Since an e-monocave mapping leaves K¢ invariant, the assertion follows for
W = K€ from (i) together with Example 5.1.9.
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(v) Conditions (5.3.4) imply that T is weakly ascending on K with ¢ (1) = A?.
Therefore, the assertions of (v) follow from (ii). O

Remarks 5.3.4. (i) In Corollary 5.3.3, set W in (i) and part P in (ii) need not contain a
fixed point of T in case no orbit stays finally within W and no point of P is sent into
P, respectively (see Exercise 2 (d)) For T ascending with a particular root function and
T given by a mixed monotone operator, part (ii) can be found in [7, Theorem 3.1] (see
Example 5.1.11 and Exercise 3).

(ii) For (V,7) a Banach space, K a normal cone with I°< # ¢ and a conical interval

in I°< that is mapped by T into itself, part (iii) of the above Corollary can be found in
[18, Theorem 10.3] and [20, Theorem 3.7], where however, a continuity assumption on
n is missing.
(iii) Part (iv) of the above Corollary can be found essentially in [50, Theorem 5.7].
(iv) For normed vector spaces and mappings with (5.3.4) part (v) of the above
Corollary can be found in [49, Theorem] (compare Example 5.1.10).

The conclusion in (v) concerning concave operators generalizes what we obtained ear-
lier in Corollary 2.3.6 for finite dimensions. It also has the following consequence: If
T sends some point of P into P then for every A > 0 there exists a unique eigenvalue
X, € P, thatis Tx; = Ax,. (For such a property concerning monotone and p-concave
operators see [39, Theorem 3.5].)

From Corollary 5.3.3 together with a criterion for T to be weakly ascending we ob-
tain the following result:

Corollary 5.3.5. Let (V, 1) be a locally convex vector space with a convex cone K that
is sequentially complete, normal, and with K # 0. Let T be a selfmapping of K that
is continuous on a convex and compact subset W of K (for T) such that for x,y € W,
0<A<1l,

Ax<y< %x implies ATx < Ty < %Tx. (53.5)

Then each orbit of T that stays finally within W converges for T to the unique fixed point
of TinW.

Proof. We show that T is weakly ascending on W with ¢ upper semicontinuous. Since
W is internally closed by Proposition 3.4.12 (v), the result then follows from Corol-
lary 5.3.3 (i). For the function ¢ defined for0 < A < 1 by

¢ A) = inf{min{A (Tx, Ty), A(Ty, Tx)} [ Ax <y < /\lx forx,y € W}

we proceed similar to the proof of Proposition 5.1.12. By Proposition 3.4.12 (iii), the
order function A (., -) is T-continuous on f( X I°< in (V,1) x (V,1). By the T-continuity
of T on W the mapping A(T-, T+) is T-continuous on W x W. Since W, = {(x,y) € W x
WlAx <y < %x} is compact there exist x;,y; € W withAx; <y, < %x,l and
¢ A) = min{A(Txy, Ty,), A(Ty,, Tx;)}. Condition (5.3.5) yields A(Tx;, Ty,) > A and
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A(Ty,,Tx;) > A and, hence, ¢ (1) > A. Obviously, p (A)Tx < Ty < ﬁTx for x,y €
W,0<A<1lwithAx<y< Alx. Thus, T is weakly ascending on W with ¢.

To see that ¢ is upper semicontinuous let ¢ (A;) < a for some A, €]0, 1[. We show
that there exists ¢ > 0 such that ¢ (1) < a forA €]A, — €, A, + €[. Obviously, ¢ is
increasing and it suffices to show that ¢ (A, + €) < a.

Since ¢ (A,) < a, there exist x,y € W withApx <y < Aix and

-p(Tx, Ty) = log min{A (Tx, Ty), A(Ty, Tx)} < log a.

Choose 0 < e < min{A,(ae’®™ - 1), 1 - Ay, Ay} and y = 1_€A0. Since W is convex, x' = x

andy’ = ypx + (1 - y)yarein W and (A, + €)X’ < y'. Now, similarly as in part (ii) of the
proof of Proposition 5.1.12 (see Exercise 5) one has that

p(TxX', Ty') = p(Tx, Ty) — log(ye’™ + (1 - y)).

Since Apx <y < Alox it follows that e?® < L

<3 and, hence,
0

yep(x,y)+(1_y)g y +(1-y)<1+ i.
Yo Ao

This gives
p(IX, Ty") = p(Tx, Ty) - 1og<1 + %)
0
and, because of 1 + Aio < aeP™M) it follows that p(Tx', Ty') > —loga. Since (A, +
€)x' <y’ this shows that ¢ (A, + €) < a O

Specializing to concave and to zigzag operators (see Example 5.1.8) we obtain the fol-
lowing result.

Corollary 5.3.6 (Absolute stability for concave and for zigzag operators). Let
(V, 1) be a locally convex vector space with a convex cone K that is sequentially com-

plete, normal and with K + 0.
(i) Let T be a concave selfmapping of K which maps K ~ {0} into K and which maps

continuously a non-empty convex, sectional, and compact subset W ¢ K into itself.
Then T has a unique fixed point in W that is absolutely stable in W.

(ii) Let T be a selfmapping of K given by Tx = Ax + a, where A is a cone mapping and
a € K. Suppose there exists b € K ~ {0} such that Ab < rb for some 0 < r < 1 and
that a is contained in the part generated by b — Ab. Then T has a unique fixed point
in the part P generated by b that is absolutely stable in P.

(iii) Let S be a zigzag operator on K, that is, S is obtained by taking finitely many suc-
cessive maxima or minima of finitely many affine operators Tx = Arx + ar with
Ar a linear selfmapping of K, a; € K. Suppose, there exists b € K ~ {0} such that
Arb < rpb for some O < rp < 1 for all T and ay is contained in the part generated
by b — Arb. Then S has a unique fixed point in the part P generated by b that is
absolutely stable in P.
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Proof. (i) For x,y € Wand 0 < A < 1 we have for Ax < y by assumoption that Ax +
(1 -A)z = ywithz € K ~ {0}. Since T is concave on K and Tz € K it follows that
ATx < ATx + (1 - A)Tz < Ty. Thus T satisfies condition (5.3.4) of Corollary 5.3.3 and
each orbit of T that finally stays within W converges to the unique fixed point. Because
of T(W) c W, T has a unique fixed point which is absolute stable in W.

(ii) By assumption, there exists 1 < s with %(b — Ab) < a < s(b — Ab). Fix such
an s and consider W = {x € K | %b < x < sb}. We show that T maps W into itself and
is ascending on W with ¢ (1) = a + (1 — a)A, where a = % Since A is a cone
mapping we have for x € W by assumption that

%bs%Ab+asAx+assAb+assb.

Therefore, Tx = Ax + a maps W into itself. Furthermore, from the assumptions we

have that 1 11
1= gp - . (;Ab —Ab) <

1
rs S

(b-Ab)<a

and, hence, forx e W
2

Ax < sAb < 1rs a= a.

-r a
LetAx<y< %x forx,y e Wand 0 < A < 1. Since A is a cone mapping, we obtain

PMAx-Ay < pM)Ax - AAx=(p(A) -AVAx=a(1-N)Ax< (1 -a)(1 -A)a.
Putting together,

PMIx=pN)Ax+a)<Ay+ (1 -a)1-Aa+PpA)a=Ay +a=Ty.

1

Changing the roles of xand y we arriveat ¢ (A)Tx < Ty < )

with ¢ on W.

Now, we can apply Corollary 5.3.3 (i). Let P be the part generated by b. Obviously,
W is an internally closed subset of P. As seen above, T is ascending on W with ¢,
where ¢ (1) > A and ¢ is continuous. Since T(W) c W it follows that T has a unique
fixed point x* in W which is aboslutely stable in W. Finally, consider z € P arbitrary
and choose s' = s(z) big enough such thatz € {x e K | b < x < s'b} = W',x* ¢ W'
and S—l,(b —Ab) < a < s'(b - Ab). The above, when applied to W' yields that the orbit of
z converges to x*. Thus, x* is the (unique) absolutely stable fixed point of T in P.
(iii) By assumption, there exists 1 < s such that %(b —A;b) < ap < s(b-Arb) for all
T.Fixsuchansandlet W = {x € K | %b < x < sb}. We show, S maps W into itself and

is ascending on W with¢ (1) = a + (1 - a)A, where a = % withr = m?x rp < 1.

Tx, thatis, T is ascending

Since A is linear, for x € W we obtain
1 1
;b < gATb +ar <Arx +ar <sArb + ar < sh.

Therefore, éb < Tx < sbfor all T and by performing maxima or minima of the T’s with
respect to “<” (provided, they exist) we obtain that S maps W into itself. Obviously,
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Arb < rb for all T and we may continue for T fixed with Ay, ay as in part (ii). First,
we obtain for x € W that Arx < 1;—“aT. Furthermore, since A is linear, it is a cone
mapping and forAx <y < %x with x,y € W, 0 <A < 1 we obtain

¢ M)Az~ Agy < (1-A)(1 - a)ay
and, hence,
PMN)Ix =pA)Arx + ap) <Ary + ap = Ty.

L

Changing roles of x and y we arrive at ¢ (A)Tx < Ty < Tx and, taking maxima and

P )
minima, we arrive at ¢ (1)Sx < Sy < ﬁSx, that is, S is ascending with ¢ on W. For P
the part generated by b, W is an integrally closed subset of P and from Corollary 5.3.3 (i)
we obtain that S has a unique fixed point x* in W. For z € P arbitrary there exists
s’ = s(z) big enough such that z € {x € K | S—l,b <x<s'bh} =W and sl,(b —Arb) <ay <
s'(b - Arb). As above for W, it follows for W', too, that the orbit of z converges to x*.
Thus, x* is the (unique) absolutely stable fixed point of S in P. d

Remarks 5.3.7. (i) Whereas Corollary 5.3.6 (i) yields an absolutely stable fixed point,
Theorem 5.2.9 (i) only yields a relatively stable eigenvector. For example, in constrast
to Theorem 5.2.9 (i) which covers arbitrary strictly positive matrices, Corollary 5.3.6 (i)
addresses more specifically strictly positive (column-) stochastic matrices. More gen-
erally, let (V, 7) and K as in Corollary 5.3;6 and let T be a concave selfmapping of K as in
Theorem 5.2.9 (i) with, ion addition, e € K, g anorm, T continuous with T(U) c U. It fol-
lows that T(K ~ {0}) c K. Consider now the convex and sectional set W = {x e U | re <
x < se}. T maps W into itself and if W is compact then Corollary 5.3.5 (i) implies that T
has an absolutely stable fixed point in W. Obviously, W is compact in finite dimensions
which case can be generalized to reflexive locally convex spaces (V, 7) by considering
for W the weak topology o (V, V') on V and requiring T to be weakly continuous. (For
reflexive spaces and weakly compact sets see [13, 41]; see also Corollary 5.2.8.)

(ii) A mapping Tx = Ax + a as in part (ii) of Corollary 5.3.6 appears in finite di-
mensions in connection with a non-linear Leontief model. There, a > 0 and it is
assumed that A is a monotone and subhomogeneous selfmapping of K which is pro-
ductive in the sense that Ax, < x, for some x, € K. Then T has a unique fixed point
which can be obtained by iteration (see [50, Section 6.3] and [34] for Leontief models
in general). Obviously, Corollary 5.3.6 (ii) applies with b = x,,, but A is neither required
to be monotone nor subhomogeneous. Furthermore, the space may be infinite dimen-
sional, allowing non-linear Leontief models with infinitely many commodities (see [9]
for those models). Moreover, part (iii) of Corollary 5.3.6 can be used to treat the choice
of techniques for non-linear Leontief models (see also Sections 1.3 and 1.4 as well as
Sections 2.6 and 2.7).

In proving the main result of this section, Theorem 5.3.2, it was essential that the map-
ping under consideration was a generalized contraction with respect to the part met-
ric. This property is interesting already in one dimension in that it is strongly related
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to reproduction functions in population dynamics. More precisely, call a selfmapping
of R, with f(x) > 0 for x > 0 a cave function if f(x—") is strictly decreasing and xf(x) is
strictly increasing for x > 0. The first condition means population pressure (see Sec-
tion 1.1). The second condition, which holds in particular for f increasing, means that
the population does not decrease too fast. Special cases of cave functions are con-
cave functions and quasiconcave functions, that is increasing functions for which
@ is strictly increasing (see [17, § 3] [18, § 46]). There are, however, relevant reproduc-
tion functions which are cave but neither concave nor quasiconcave (see the example
given by (1.1.11). It turns out that a reproduction function is cave on a compact interval
if and only if it is a generalized contraction for the part metric on that interval. (See
Exercises 7, 8, 9 for cave functions).

Exercises

1. Afunctionf: O — R on a non-empty open subset O of R is lower semicontinu-
ous from the left (from the right) in a € O if for every r € R with f(a) > r there
exists e > O such that

fe)>r forall xp-e<x<xy, (Xg<Xx<Xy+E€).

(a) Find a selfmapping ¢ of the open interval ]0, 1[ with ¢ (r) > r which is lower
semicontinuous from the left but not from the right.

(b) Find an openset @ + O ¢ R, a function f: O — R lower semicontinuous
from the left and a compact subset of O on which f does not attain its (finite)
infimum.

2. Let F be the Banach space of all bounded real valued functions on IN equipped
with norm |f|| = sup{|[f(n)| | n € N}. Let K = {f € F | f(n) > O foralln € N} and let
T be the selfmapping of K given by (Tf)(n) = vf(n).

(@) Describe all parts of K by subsets of IN.

(b) Show that T is weakly ascending on the whole of K ~ {0} with ¢p continuous.
Show that each part of K contains exactly one fixed point of T which is abso-
lutely stable in this part.

(c) Lett: N> N, 7(n) =n+ 1,and S = T o 7. Show that S is weakly ascending
with the same ¢ as T and find the fixed points of S.

(d) Show that only the parts {0} and int K contain each an absolutely stable fixed
point of S and that no other part contains a point which is sent to it by S.

3. [7] Let V be a real Banach space containing a closed and normal convex cone K
and let P be a non-zero part of K. An operator A: PxP — P is a mixed monotone
operator if A(x,y) is monotone in x an antimonotone in y, i.e., y < y' implies
A(x,y") < A(x,y). Let T be given by Tx = A(x, x).
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(a) Suppose that for each interval [a, b] c ]0, 1] there exists a(a, b) € 10, 1[ such
that forall x € P, t € [a, b] it holds that

A <tx, %x) > 5@ A (x, x).

Show that T is a selfmapping of P which is (weakly) ascending on P with a
root function.

(b) Obtain from Corollary 5.3.3 (ii) Chen’s Theorem which states that T has a
unique fixed point in P that is absolutely stable in P ([7, Theorem 3.1]).

Let (V, 7) be alocally convex vector space with a convex cone K that is sequentially
complete, normal and with I°< # 0. Let T be a selfmapping of K which maps con-
tinuously a non-empty convex, sectional and compact subset W ¢ I°< into itself.
Show for T strongly monotone (monotone) on W and subhomogeneous (strongly
subhomogeneous) on K~ {0} that T has a unique fixed point in W that is absolutely
stable in W.

Let T be a selfmapping of an arbitrary convex cone K in some vector space which
has the property that for a convex subset D ¢ K it holds that Ax < y implies
ATx < Tyforany 0 < A < 1,anyx,y € D. Thenforx,y ¢ Dand O < y < 1 the
following formula holds for the part metric

p(Tx, T(yx + (1 - p)y) = p(Tx, Ty) — log(ye"™ + (1 - y))

(compare Proposition 5.1.12).

(a) Find a selfmapping T of K as in Corollary 5.3.5 (ii), except that a is not con-
tained in the part generated by b — Ab, and show that the conclusion of Corol-
lary 5.3.5 (ii) does not hold.

(b) Let Tx = cx + d be a selfmapping of R, with 0 < ¢ < 1 and O < d. Compute for
T the set W and the function ¢ as in the proof of Corollary 5.3.5 (ii).

LetK = R,, P = {x € K | x > 0} the non-zero part of K, f a continuous selfmapping
of K which maps P into itself and I a non-empty compact interval in P.
(@) Show that the following conditions are equivalent
- fisageneralized contraction for the part metric PonI (i.e., Definition 4.1.1
(iii) applies to points in I).
— fiscave onlI, thatis on I is ﬂTX) strictly decreasing and xf(x) strictly in-
creasing.
(b) Show for f differentiable on P that f is cave if and only if the following condi-
tion holds for all x € I
fw
fx)
(c) Show that f is ascending on I if and only if f is cave and increasing on I.
(d) Let f differentiable with |x - f'ﬁl < 1lonPandletx” € Pbe a fixed point of f.

fx)
Prove nanQO f"(x) = x* forall x € P.

[x | < 1.
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8. For the set € of all cave functions show that
(a) €isaconvex cone.
(b) € contains with two functions their pointwise maximum and minimum.
(c) € contains all zigzag operators in one dimension.

9. (a) Determine the combinations of parameters A, a, b > 0 for which f(x) = Ax(1 +
ax)*b defines a cave function that is neither concave nor quasiconcave (see
also Section 1.1).
(b) Determine the combinations of parameters a,b > O witha + b > Oand ¢,d >
0 for which f(x) = ‘C‘:Zj(‘ with r, s > 0 given defines a cave function.
(c) Discuss, analytically and by computer simulations, the asymptotic behavior
of the iterates of cave functions that are increasing, like f(x) = 3452 and of

4+4x2
those that are not, like f(x) = 75

5.4 Applications to non-linear difference equations and to
non-linear integral operators

The results obtained on ascending operators enable us to go beyond the concave op-
erators in finite dimensions as studied in Chapter 2. On the one hand we may consider
in finite dimensions operators which are not necessarily concave. This we will illus-
trate by an application to difference equations which are not of the concave type as
considered in Section 2.5. On the other hand we may consider concave operators in
infinite dimensional function spaces. This we will illustrate by an application to in-
tegral operators of concave type. This yields at the same time a sharpening and an
extension of Jentzsch’s theorem on linear integral operators which itself carries over
some of Perron—Frobenius theory to infinite dimensions.
First consider the difference equation

u(t +n) = f(u@®), ut + 1),...,u(t + n-1))

of ordern > 1 with u(t) € R, fort € Nand f: R — R, with the associated charac-
teristic equation
A" = f(LAAL AT for A eR,.

Call f increasing in component i if 0 < x < y and x; < y; implies f(x) < f(y). From
Corollary 5.2.5 we obtain the following

Theorem 5.4.1. Supposef: R — R, is continuous, positively homogeneous and there
exists a set ] of at least two increasing components such that 1 € J and the numbers
n + 1-j, j € J, arerelatively prime. Then the characteristic equation has a unique strictly
positive root 1™ and every solution u(-) of the difference equation with initial conditions
u(u(0),...,u(n - 1)) is relatively stable, i.e.,
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where the function c: R} — R, is positively homogeneous and satisfies c(x) < c(y) for
X5V, (XX f(X) = A*c(x) and c(1,A%,..., A" V) =1

Proof. Apply Corollary 5.2.5 to the Euclidean vector space V = R" with cone K = R7.

Obviously, K # @ and taking f the [;-norm K has the compact base B = {x € K |
f(x) = 1}. Define Tx = (x5,...,X,,f(x)). T is a continuous selfmapping of K which is
positively homogeneous. For it = (u(0), ..., u(n-1)) and u(-) a solution of the difference
equation we have that T'ii = (u(t),...,u(t + n-1)). By Lemma 2.54 from &t § 7 we
obtain that u(t) < v(t) for all t and u(t) < v(¢) for t > t,. Therefore, for any two vectors
0 < x 5 y we have that T'x < Ty for all t > t,. This shows that T% satisfies condition
(%) of Corollary 5.2.5. Since T® is posmvely homogeneous we get that Tox = Ax, A >

0, f(x) =

Denoted™ = u 0.
Applying T' we obtain

= c(x)x" for Tx + O.

ton+i X
*l _ i _ ET I
nlL OOW = c()T'x™ = cCOA X",
and, hence, 11 /{— = c(x)x*. For this note that

*

Tf°<f(T]’;*)) =pTo"x* = pT(Tx*) = pT(ux*) = 0 f(T;;*)
with certain scalars p and o and, by uniqueness, f(T 5 = x*. Actually, we must
have ™ = f(Tx*) and A" is unique. Finally, Tx = Ax is equivalent to x, = Ax;, x5 =
AXy, ... X, = AX,_1, f(x) = Ax, which by positive homogeneity of f implies that
f(1,A,...,A"™1) = A™ Conversely, if this equation holds then Tx = Ax for x =
(1,A,...,A™ ). Therefore, A* is the positive unique solution of the characteristic
equation of f. The properties of c(-) carry over from those of T and the definition
of T. a

The following examples illustrate the theorem and, different from the earlier Exam-
ples 2.5.7 none of them needs to be concave.

Examples 5.4.2. (i) Consider a difference equation with a right hand side f given as
the maximum of finitely many linear functions

f(X) = {Egz(n(ailxl BRI ainxn))

where the m x n-matrix A = (a;) is non-negative with a set J of at least two strictly
positive columns including the first one and such that the numbersn + 1 -j, j € J,
are relatively prime. Whereas Example 2.5.7 (i), given as the minimum of finitely many
linear functions, exhibits a concave f, the f above is convex. Obviously, Theorem 5.4.1
does apply to this convex f and yields hm U0 - ¢(@), where A* > 0 is the unique root

of the characteristic equation max(al1 + alzil +o+ apA = A,
1<ism
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If A is row-stochastic A = 1 is a root and, hence, we must have that A* = 1. Thus
all solutions with initial condition & # O converge to a positive value.
(ii) Consider

1
p
FOsexy) = <2xf’> ,
i€e]
ford +J c{1,...,nfandp # 0.For]J = {1,...,n} the value ilf(xl,...,xn) is sometimes
npb
called a power mean or a Holder mean. For the same J but p > 1 f(x) coincides on R}
with lp-norm llxl - Therefore, f is convex on R7. For p > 1 but] # {1,...,n} f is still
convex but corresponds only to a semi-norm. Forp > 0, 1 € J, |J| > 2 and such
that the numbersn + 1 —j, j € J, are relatively prime, f satisfies the assumptions
u(t)

of Theorem 5.4.1. Therefore, tlim 1 = c(u) where A * > 0 is the unique root of the
—00

characteristic equation APU=D = APn Equivalently, Zie]}l‘p(””‘” = 1. Therefore,
we cannot have that A* < 1 and, since |J| > 2, we cannot have that A* = 1. Thus,
A* > 1 and all non-zero solutions must tend exponentially to infinity.

(iif) The above two examples are special cases of the following “zigzag”-mapping

n p
f(0 = min max (j_zlaij(p)Xf’ > :
Thereby, P is a finite set of values p > 0 and A(p) is a non-negative m x n-matrix with
a set ], of at least two strictly positive columns, including the first one and such that
the numbers n + 1 —j, j € ], are relatively prime.

If the intersection of the J, p € P, contains at least two elements then f satisfies
the assumptions of Theorem 5.4.1. The study of solutions for these examples seems
hopeless but Theorem 5.4.1 enables one to judge the asymptotic behavior by examin-
ing the characteristic equation whetherA* = 1, A* > 1, A* < 1. Consider the special
case P = {1,2}, m = n = 2 and strictly positive 2 x 2-matrices A(1) = (a;(1)) and
A(2) = (a;(2)). The characteristic equation then becomes

min (r(A),s(1)) = A2
where
r(A) = max(a; (1) + a;5(1)A, a,;(1) + a5,(1)A) and

s(A) = max((all(z) + alz(Z)Az)%, (ay,(2) + azz(Z)/\z)%).

Depending on the matrices A(1), A(2) all three cases for A * are possible (see Exer-
cise 1(c)).

Qualitatively, Theorem 5.4.1 provides conditions under which the asymptotic
behavior of non-zero solution of the difference equation exhibits the following tri-
chotomy: Either all solutions tend to infinity or all solutions converge to a positive
value or all solutions converge to zero. As the Examples 5.4.2 illustrate one has to
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check whether the unique root of the characteristic equation is 1, above 1 or below 1.
The characteristic equation may be given by a combination of minima and maxima of
certain polynomials. In the next chapter we will investigate the phenomenon of limit
set trichotomy for positive discrete dynamical systems in a more general way.

Next we consider eigenvalue problems for non-linear integral operators. Let X be a
non-empty compact subset of R™, let V be the vector space C(X) of all real continuous
functions f on X, equipped with norm |f]| = sup{|[f(x)| [x € X}. (V, |-||) is a Banach space
and the convex cone K of all non-negative functions in V is sequentially complete and
normal. Consider the following integral operator T: V — V given by

(Tf)(u) = Jk(u,v)d) (fv)dv, for feV; uveX ()
X
where k: X x X — R, is a continuous and strictly positive kernel, ¢ : R, — R, a
continuous function and dv is the normalized Lebesgue measure on X, IX dv =1.

A classical theorem by Jentzsch [14] states that for ¢ = identity the eigenvalue
problem Tf = Af has a unique solution f = f* € K, |f*| = 1,A = A" > 0. Furthermore,
f* and A are strictly positive and |A| < A* for every real eigenvalue A + A*. As far as
these statements are considered there are various generalizations of Jentzsch’s Theo-
rem to non-linear integral operators with ¢ a non-linear function. (See, e.g., [51] and
the references given there.)

Since we want to obtain a non-linear version of Jentzsch’s Theorem which gives
also an iterative approximation of the unique eigenvector we have to make more re-
strictive assumptions on the non-linearity ¢ . The following result will be an applica-
tion of Theorem 5.2.9.

Theorem 5.4.3 (Concave Jentzsch Theorem). (i) Suppose for the integral operator T
given by (x) the function ¢ : R, — R, is concave and satisfies for nonnegative
numbers a and b with a + b > 0 the inequality ar + b < ¢ (r) forallr € R,.

Then the following conclusions hold for the conditional eigenvalue problem

TF=Af with A€¢R feKk, jf(v)dv=1.

It has a unique solutionf = f*,A = A" > 0; f* and A* are strictly positive.

Furthermore, for Tf = jf(T—\{)dv’ f € K~ {0}, it holds that

lim T"f = f*.

n—oo

(i) Let {T;};; be a family of integral operators given on K by

T = [kewviasm) + bay
X
with a;, b; non-negative and a; + b; > 0.
Then the conclusions of (i) hold for the operators given by (Tf)(u) = inf{(T,f)(u) |
i € I} and, provided it exists, (Tf)(u) = sup{(Tf)(u) | i € I}.
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Proof. (i) To apply Theorem 5.2.9 we choose as seminorm on V g(f) = Ix If(v)|dv and
e = 1 on X. To show the required inequalities observe that the concavity of ¢ implies
forr € R, that¢p(1) > ﬁ(b(r) + (1 - ﬁ)g‘b(l) > ﬁ(;b(r). Therefore, ¢ (r) < (1 +
r¢ (1) and

[ smyar <9 [+ ronav - g + )

From this we obtain according to the definition of T by (x)

(THW) = J k(u, V)¢ (f(v))dv < max k(u,v) - 2¢ (1) for q(f) = 1.

u,veX

Thus Tf < se with s = 2¢p (1)max k(u, v).
u,veX
The other inequality follows from ¢ (r) > ar + b,

(Tf)(u) = min k(u,v) J ¢ (f()dv > mink(u,v)(a + b) for gq(f) = 1.

u,veX u,veX

That is, for r = min k(u, v)(a + b), we have that re < Tf < sefor q(f) = 1 withO < r <s.
u,veX

Thus the conclusions follow from part (i) of Theorem 5.2.9; observe that ¢ must be
continuous on the interior of R, and, hence, Tf > 0 for f € K ~ {O}.

(ii) The operator (Tf)(u) = _[k(u,v)(af(v) + b)dvwitha + b > 0 satisfies the assump-
tions in part (i). Actually, re < Tf < se for g(f) = 1 withr = (a + b)min k(u, v) and

veX
s = (a + b)max k(u, v). Setting a = a;,b = b;,r = r;,s = s; it follows that e
u,veX
inf{ 2 ie1} - minkw,v)
S; max k(u, v)
and the conclusion follows from part (iii) of Theorem 5.2.9. O

The following examples illustrate the theorem and connect it to other results.

Examples 5.4.4. (i) The classical Jentzsch Theorem. This is the special case of
part (i) of Theorem 5.4.3 where ¢ (r) = r. Since in this case T is positively homoge-
neous, properties additional to those of Theorem 5.4.3 are available. According to
Theorem 5.2.9 it follows that

n
}Lrgo}% =c(f)f for feK~{0} with c(f)>O0.
Forf =f, - f withf,,f EO one obtains that

n n Tn
limTf: limTﬂ - lim f-

n—-co ] *M  n-ooo A*M  n—ooco ] *N

=c(ff" - c(fOf" = c(Hf".
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From this for any norm | - | on V one has that

T
1,

=o(f)f* forall feV~{0},

where o (f) € {0,+ 1,-1} depending on c(f,) —c(f_) =0 or > 0or < O.
These approximation properties are commonly not stated as part of Jentzsch’s
Theorem. From the approximation it follows in particular for Tf = Af,A € R,f € V~{0}

n

tim () f = e

Therefore, we must have that A = 1*, and f proportional to f*, or |A| < A*.

An extension of Jentzsch’s Theorem to linear operators on vector spaces has been
developed by G. Birkhoff ([2]; see also [22]).

A “Generalized Jentzsch’s Theorem” is proven in [51, Proposition 7.2.3, p. 289]
which yields for certain non-linear functions ¢ , not necessarily concave, the existence
of a solution of the conditional eigenvalue problem, without, however, an approxima-
tion property as in Theorem 5.4.3 (Cf. also Exercise 7 to Section 2.1.)

(ii) A particular case of part (i) of Theorem 5.4.3 is an affine version of Jentzsch’s
Theorem, that is ¢ (r) = ar + b witha + b > 0. Moreover, ¢ can be taken to be
an infimum of affine functions, ¢ (r) = inf{a;r + b; | i € I} where a;,b; > 0 and
infa; + infb; > 0. Indeed, any concave function ¢ : R, — R,,¢(r) > ar + band
alil b > Ol,eéan be obtained in this way. In general, the operator T defined according
to part (i) for such a ¢ is different from the infimum of operators according to part (ii).
(See Exercise 4.)

Thus, parts (i) and (ii) represent two different kinds of a non-linear extension of
Jentzsch’s Theorem.

Exercises

1. Consider the zigzag-difference equation u(t + 1) = f(u(t), u(t + 1)),t € N,u(t) €
R,, where f is given by the (pointwise) minimum of the functions

f1(x1,x5) = max{a;; (1)x; + a;,(1)xy, a5, (1)x; + a5,(1)x,}
fHrx1,x5) = max{[all(z)xf + a12(2)x§]%, [a21(2)xf + a22(2)x§]%}

with all a;(k) > 0.
(a) Verify the assumptions of Theorem 5.4.1 for the above difference equation.
(b) Show that the following dichotomy holds:

“Either all non-zero solutions u(-) are unbounded”

or

“tlil’élo u(t) exists for all solutions™.
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(c) Discuss the possible roots of the characteristic equation A? = f(1,1). Supply
a numerical example for each of the casesA1* = 1,A* > 1,A* < 1.

2. Prove your own zigzag-version of Jentzsch’s Theorem by showing that the conclu-
sions of Theorem 5.4.3 hold for the (pointwise) maximum of the operators

(T)w = min [kt )@y OF0) + ay @)dv, [ (@ OF0) + a @)dv}
X X
fori=1,2andall a,,(i) > 0.

3. Prove for any concave function ¢ : R, — R,:
(@) ¢ is continuous on the interior of R,.
(b) Foreach? > 0itholds that inf @ > 0.

O<rsr
(c) The following conditions are equivalent:

(a) Thereexista,b € R, witha + b > Osuchthat¢ (r) > ar + bforallr € R,.
(B) ¢(0) > 0 or there exists 7 > 0 such that inf @ > 0.
rzr

4. Find X, k(-, -), and positive numbers a,, a,, b;, b, such that the operator defined by

(T = [k, vy min{a,f©) + by, axf®) + bldv
X

is different from the operator defined by

(T'F)w) = min“k(u, V(@ fv) + bydv, Jk(u,v)(azf(v) + bz)dv}.
X X
5. Letk: [0,1] x [0,1] — R, be a continuous and strictly positive kernel and let
¢ : R, — R, be a continuous function.
(a) Prove the following special case of the “Generalized Jentzsch’s Theorem” (see
[51, Proposition 7.23, p.289]). Suppose there exist r > 0 and u > 0 such that
¢ (x) > uxforall 0 < x < r. Then

1
Jk(u, V)P (f(v))dv = Af(u) forallu € [0, 1] (%)
0

has asolutionA > Oand f € €, [0, 1] with |f|| = p, forany given0 < p <.

(b) Show that (a) applies for ¢p concave.

(c) Find a kernel k(-,-) and a function ¢p with ¢ (x) > ax + bforx € R, (0 <
a,band a + b > 0) such that the problem (*) has a solution, which, however,
is not unique. (According to Theorem 5.4.3, ¢ cannot be concave.) Conclude
that the approximation property in Theorem 5.4.3 does not hold in this case.

(d) Find a kernel k(-,-) and positive numbers a,, a,, b;, b, such that the conclu-
sions of part (i) of Theorem 5.4.3 hold for

1 1
(TH(u) = max{Jk(u, v)(a,f(v) + by)dv, Jk(u,v)(azf(v) + bz)dv}
0 0
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but not for

1
(T'fw) = Jk(u, v)max{a,f(v) + by, a,f(v) + b,}dv.
0
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6 Limit set trichotomy

For a positive system the orbits of different starting points show in general a very differ-
ent convergence behavior. For example, one orbit may tend to infinity whereas another
one tends to zero or still another one converges to a point in the interior of the under-
lying cone. This is true even in one dimension as exemplified by the mapping Tx = x*.
The situation is, however, completely different if the positive system is linear. In finite
dimensions, the positive system defined by a primitive matrix shows a uniform behav-
ior for all starting points in R" ~ {0} that is either all orbits tend to infinity or all orbits
tend to zero, or all orbits converge to a fixed point in the interior of R". This property
is called limit set trichotomy. (For the precise definition see Section 6.1) For a sys-
tem given by a primitive matrix this property follows from classical Perron-Frobenius
Theory, where the trichotomy is due to the three cases whether the dominant eigen-
value is greater or smaller or equal to 1 (see Theorem 2.4.1 (iii) (c)). More general, from
concave Perron—-Frobenius Theory a limit set trichotomy follows from the trichotomy
of the dominant eigenvalue as above, provided that the concave selfmapping of R
is primitive and positively homogeneous (see Theorem 2.3.1 (i)). For positive systems
in infinite dimensions a limit set trichotomy can be inferred in a similar manner for
concave and positively homogeneous operators which satisfy a certain boundedness
condition (see Theorem 5.2.9 (i)).

In this chapter limit set trichotomy will be investigated for more general positive
systems. As it turns out it plays a role whether, with respect to the part metric, the op-
erator of the system is contractive, or — for a weaker form of limit set trichotomy - is
non-expansive. A stylized picture of limit set trichotomy gives the following illustra-
tion in one dimension:

0 K Fig. 6.1. Limit set trichotomy.

Mapping f; stands for the case that for all points in the interior the orbit tends to in-
finity; for example, f;(x) = x + +/x. For mapping f, all orbits converge to 0, as is the
case with f, (x) = % For f5 all orbits starting in the interior of K converge to a unique
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fixed point in the interior, as for f;(x) = V/x. It is easily seen, that in all three cases, the
mapping is contractive for the part metric on the interior of K = R,.

The next section presents our main results on weak and strong versions of limit
set trichotomy in Banach spaces. Limit set trichotomy made its first appearance in a
paper by H. Smith [23] on cooperative systems of differential equations. Generaliza-
tions to non-linear positive systems were obtained in [15] for finite dimensions, in [16]
for Banach spaces and in [26] for ordered topological cones. Further results including
various extensions, have been obtained in [1, 20, 22]. Subsequently differentiability
criteria will be developed to check whether a positive operator is contractive or non-
expansive with respect to the part metric. These criteria will be useful when dealing
with various applications to difference — and differential equations and models from
biology.

6.1 Weak and strong forms of limit set trichotomy in Banach
spaces

The first result on limit set trichotomy will be a weak form, which by strengthening
the assumptions will lead us to a strong form as well as to other conclusions.

Theorem 6.1.1. LetK be a closed convex cone in a Banach space (E, || - ||) such that K is

normal with non-empty interior K Let T be a norm continuous selfmapplng of K which

maps K into itself and which is non-expansive for the part metric p on K
A. The following weak limit set trichotomy holds for T. Either
(i) forallix € K the orbit O(x) is unbounded (for | - |),
or
(ii) forallx € K the orbit O(x) is bounded and the limit set w (x) (for ||-|) is contained

in the boundary of K,
or

(iii) for all x € K the orbit O(x) is bounded and the following alternative applies:

w (x) is a singleton in K or for each 'y € w(x) N K there exists c(y) > 0 such that

p(T*Yy, T'y) = c(y) for all k > 0. (6.1.1)

Furthermore, w(x,) N K # 0 for at least one x,, € K.

B. Ifsome iterate of T maps K ~ {0} into I°< then case (i) above can be sharpened to
(") forall x € K ~ {0} the orbit O(x) is unbounded
and case (ii) can be sharpened to
(ii") for all x € K ~ {0} the orbit O(x) is bounded and w (x) = 6 or w (x) = {0}.
If some iterate of T is contractive on K for p then (iii) can be sharpened to

(iii') T has a fixed point x* € IO< andw(x) =0orw(x) = {x"}forallx € K
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Proof. (1) Since T is non-expansive on (K, p), p(T"x, T"y) < p(x,y) foralln > 0, x,y €
K. By definition of p,

AT < Ty < AT for A >expp(x,y). (%)
Since K is normal we may assume || - | to be monotone which yields

TN < IT"YI < AT ).

Therefore, either all orbits O(x) for x € K are bounded or they are all unbounded.

(2) Assume that neither (i) nor (ii) hold. Then O(x) is bounded for all x € K and
there exists x, ¢ K with w(xo) nK # 0. We shall show that for x « K the limit set
w' (x) of x in the metric space (K, p) coincides with w (x) N K .For,ify e w(x) n K then
y= kILIEO T™x (for || - ). Sinc:e y € K and by Proposition 3.4.12 the topologies induced by
| - | and p do coincide on K, it follows that y € w'(x). For the same reason, y € w'(x)

impliesy € w(x) n K Since T is non-expansive on (K, p) from Lemma 4.1.2 (a) we
obtain that w'(x) is a singleton or for each y € w'(x) there exists c(y) > 0 such that
p(Ty, T¥y) = c(y) for all k > 0. This proves part A of the theorem.

(3) Considering part B, let S be an iterate of T with S(K ~ {0}) ¢ K. Case (1") is
obvious. For case (ii’) letx €¢ K~ {0}andy € w(x),y = klim T™x. It follows Sy =

I}Lrgo T™Sx € w(Sx) and, by (ii), Sy must be contained in the boundary of K. Thus,
y ¢ K ~ {0}, that is w (x) = 6 or w (x) = {0}.

Considering case (iii’) assume an iterate S = T™ is contractive for p on K First we
show that for x € K with w(x) N K # 0 we must have that w(x) is a smgleton in K
Otherwise, by (iii) we would have that p(Tk”y, T"y) =c(y) >0forally € w(x) nK and
k > 0. It follows that Ty € w (x) n K and

p(S(Ty),Sy) = p(T™'y, T™y) = p(Ty,y) > O.

But this contradicts the contractivity of S and we must have that w (x) is singleton in
K. By (iii), w (xo) N K + @ for some x,, € K and by the above w (x) = {x*} and x" is a fixed

point of T. For x € K arbitrary from () in step (1) we have A "'x* < T"x < Ax* for some
scalar A and all n.
Therefore, w (x) € K. If w (x) # 0 then w (x) is a fixed point of T in K. By contractivity

of S, x* is the unique fixed point of T in K and, hence, w (x) = {x*}. O
This theorem yields immediately the following strong form

Corollary 6.1.2. In the general setting of Theorem 6.1.1 assume that some iterate of T

maps K~ {0} into K and some iterate of T is contractive on K for the part metric. Suppose
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further that norm bounded orbits O(x) for T and x € 10( have compact closure in the norm
topology.
Then the following strong limit set trichotomy holds.

Either
(i) forallx € K ~ {0} the orbit is unbounded (for | - ||),
or
(ii) forallx € K, }LI&T"X =0 (for| - ),
or

(iii) for all x € K ~ {0}, nll»rgo T"x = x* (for | - ||), where x* € K is the unique fixed point of
TinK ~ {0}.

Proof. Since norm bounded orbits have compact closure it holds w (x) # 0 for x € K .
Since S(K ~ {0}) ¢ K for some iterate S of T it follows that w (x) # 0 for all x € K ~ {0}.
The strong limit set trichotomy then follows from the weak form together with part B
of Theorem 6.1.1. O

Concerning the threefold alternative in a limit set trichotomy, in many examples and
applications all three cases appear, depending on the values of parameters. (See Ex-
ercises 1, 7, 12.)

The following lemma collects some useful properties of mappings which are non-
expansive with respect to the part metric.

Lemma 6.1.3. Let K be a lineless and archimedean convex cone in some real vector
space. Denote by < the ordering induced by K and by N(P) the set of all non-expansive
selfmappings on a part P + {0} of K.

(i) T e N(P)ifandonlyif forany x,y € P,A > 1

A'x <y <Ax implies A7 Tx < Ty <ATx

or, equivalently, T maps intervals [A~'x, Ax] into [A ' Tx, A Tx].
(ii) p(Tx,Ty) < p(x,y) holds for x,y € P,x #+ y if and only if for A > 1 there exists
1 < u < A such that

A'x <y <Ax implies pu'Tx<Ty<uTx.

(iii) N(P) is a convex cone and the composition of two mappings in N(P) is in N(P) again.
If T is a selfmapping of P, which is the restriction of a concave selfmapping of K,
thenT € N(P).

(iv) If T € N(P) then T is subhomogeneous on P, i.e., TAx) > ATxforx e P, 0 <A < 1.
If T is subhomogeneous on P and T is monotone on P, then T € N(P).

(v) Suppose T has the following property, where <p denotes the ordering induced by the
cone P:

Forx,y € P, A™'x £ y £ Ax implies A\"'Tx <p Ty <p ATx. Then T € N(P) and
p(Tu, Tv) < p(u,v), provided u # Av forall A > 0.
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Proof. For x,y € P we have that p(x,y) = inf{logA | A7 x < y < Ax,1 < A}and
p(x,y) = logA, is a non-negative real number and A, 'x <y < Ayx. (See Lemma 3.1.4,
(vi), (xii).)

(i) Let p(Tx, Ty) = po. Suppose uy < Ay. If A 7*x < y < Axthen p, < A, < A and
Uo'Tx < Ty < poTx implies A7 Tx < Ty < ATx. Conversely, A;'x < y < Ayx implies
Ay Tx < Ty < Ay Tx and, hence, p, < A,.

(ii) Similarly as above, let py < Ay and e = Ay — uy. fFA™'x < y < Axthenpu =
Ay — € < A and u'Tx < Ty < uTx. Conversely, the implication in (ii) yields for A = A,
some 1 < u < A such that ™ Tx < Ty < uTx. Therefore, p(Tx, Ty) < u < A, = p(x,y).

(iii) ForS,T € N(P)and &, € R, from A 'x <y < Ax it follows by (i) that
AN aSx + BTx) < aSy + BTy < A(aSx + B Tx).

Therefore, by (i), aS + BT € N(P).If S,T € N(P) then A"'x < y < Ax implies that
A 1Tx < Ty < ATx which in turn implies A "1S(Tx) < S(Ty) < AS(Tx). Thus, SoT € N(P).

Finally, A™'x < y < Ax implies for A > 1thaty = A™'x + (1 -A Huand x =
A7ly + (1 - A Yy with u,v € K. If T is a concave selfmapping of K then Ty > A ' Tx
and Tx > A~ !Ty. This holds also for A = 1, in which case x = y and Tx = Ty. Thus,
T € N(P).

(iv) Obviously, A™'x < y < Axholds fory = A7'x,1 < A. Then for T «
NP),ATx < Ty < T(A “1x). Therefore, T is subhomogeneous. Conversely, for T
subhomogeneous and monotone, A ~'x < y < Ax implies that
A Tx < TA™x) < Ty < T(Ax) for A > 1.

Since A1 Tx < T(A"*Ax) = Tx one obtains A "*Tx < Ty < T(Ax) < ATx. Thus, T € N(P).

(v) From A 'x <y < Axit follows fore > O that (A + ¢)"'x £y £ (A + e)xand, by
assumption, (A + €)™ 1Tx < Ty < (A + €)Tx. For € converging to O this shows that T €
N(P). Furthermore, let p(u,v) = logAyand A lu<vs Aguforu,v, e P. Assuming u and
v not proportional, we must have A; Ty $ Vv 5 Apu and, hence, A] 1Ty <p Tv <p AyTu.
Thatis, A\yTu = Tv + p;,AgTv = Tu + p, with p;,p, € P. Since Tu, Tv, p; are all in the
same part P, there exists some O < € < A, such that eTu < p, and eTv < p,. Therefore,

Ag-€)Tu=Tv+p,—-eTu>Tv and Ay-€)Tv=Tu+p,-€elv>Tu.

It follows that p(Tu, Tv) < log(A, — €) < logA, = p(u,v). This proves (v) and the
lemma. O

Remark 6.1.4. From Lemma 6.1.3 (i) it follows that for a selfmapping T of P that T is
non-expansive if and only if T is a cone mapping on P in the sense of Definition 5.1.4.
From (iii) and (iv) it follows in particular that a selfmapping of K which is concave or
wh1ch is monotone and subhomogeneous is non-expansive on (K P) for K + 0 and
T(K) c K In general, however, T € N (K) need not possess these properties. This is
true even in the most simple case of one dimension as the selfmapping Tx = x + %{
of K = R, shows. (See Exercise 4.) For further examples see the population model
(1.1.11) in Section 1.1, the Exercises 7 and 9 to Section 5.3 and the population models in

Section 7.6 including Exercise 11 to Chapter 7.
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Using Lemma 6.1.3 we obtain from Theorem 6.1.1 the following form of the limit set
trichotomy which is not covered by Corollary 6.1.2.

Theorem 6.1.5. LetK be a closed convex cone in a Banach space (E, ||-||) which is normal
with non-empty interior K Let T be a continuous selfmapping of K which maps K into
itself and for which bounded orbits O(x), x € K have compact closure (for || -||). Suppose
T has the following property for any x,y € K, A>1

A 'x<y<Ax impliess AT'Tx < Ty <ATx (6.1.2)
and for some iterate S of T

A 'xsysAx implies A7 Sx < Sy <ASx

(5, < the orderings induced by K and K, respectively).

Assume further, T is monotone on rays, i.e., T(rx) < T(sx) forO <r <s,x € K
The following limit set trichotomy does hold (with respect to || - ||).
Either

(i) forallx € K the orbit is unbounded,
or

(ii) forallx € K the orbit is bounded and w (x) + 0 is contained in the boundary of K,
or

(iii) for all x € K the orbit is bounded and nlLIEo T"x = c(x)x*

where x* € K is a fixed point of T and c(x) > 0 a scalar.

If in addition S(K ~ {0}) ¢ K then (i) and (iii) of the limit set trichotomy hold for
x € K ~ {0} and (ii) becomes
(i) foralix € K, Jlim T"x = 0.

Proof. The Theorem we obtain from Theorem 6.1.1, part A. To apply this theorem we
need that T is non-expansive for the partmetric which follows from Lemma 6.1.3 (i)
and the property (6.1.2). Thus, from Theorem 6.1.1 we have weak limit set trichotomy
with cases (i) and (ii) as wanted. Concerning case (iii) of Theorem 6.1.1 suppose we

have for some y € K that
p(TFYy, Ty) = c(y) forall k= o0.
It follows with S = T™ for all k
p(Ty, T') < p(Ty,y) = p(T"ly, T™y) = p(S(T'y), S(T'y)) < p(T*y, T'Y),

which implies p(S(T*"y), S(TXy)) = p(T*'y, T"y).
Lemma 6.1.3 (v) applied to S and P = K yields, due to property (6.1.2), that T kely,
A Ty with A, > 0.1t follows TXy = p,y with p; > 0 for k > 0.
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In case of p; < i, monotonicity of T on the ray R,y implies

My = TNy = T(TYY) = Tayy) < TGry) = T(TY) = Weyoy

and, hence, py,q < Yi,o- Similarly, py > py,, implies py,; = py,,. That is, the y; form
a sequence in R, which is increasing or decreasing. Since the orbit of y is bounded,
the sequence (y, ), must converge and, hence, (T* ¥), converges in the part topology to
some X € K. Thus,

k+1y’ Tky) _ p()-() )—() =0

cy) = klirgop(T
From Theorem 6.1.1, part A. (iii) we obtain for x € K that w (x) is a singleton or w (x) N
K = ¢. Furthermore, w(xo)ﬂK + @ forsomex, € K and, hence, w (x,) = {x*} withx* € K
being a fixed point of T. For x € K arbitrary it holds that (see part (3) of the proof for
Theorem 6.1.1) A "1x* < T"x < Ax* for some scalar A and all n. Therefore, w (x) € K and
since w (x) # @ we conclude that w (x) is a fixed point of T. If x,, x, are two fixed points
of T then p(Sx;, Sx,) = p(x;,x,) and, by Lemma 6.1.3 (v), x, = Ax; with some scalar
A > 0. Putting together, w (x) = {c(x)x*} for x € K and,hence, HILIEO T"x = c(x)x* for all

X € K with c(x) > 0 a scalar.

Finally, assume in addition S(K ~ {0}) ¢ K The assertions made concerning (i)
and (ii) hold trivially. Consider (iii), that is, for x € K w(x) # 0 is contained in the
boundary of K. If 0 £ y € w(x) then Sy € K N w (x) which is a contradiction. Therefore,
w (x) = {0} which implies ’}LrgoT”x = {0} forx € K. Since TO = 0 and S(K ~ {0}) ¢ Kit
follows that all orbits must converge to O. O

Finally, we come back to the limit set trichotomy for concave (in particular linear) map-
pings as discussed earlier in the introduction and illustrated by the stylized picture.
This time we do not require positive homogeneity and we do not need to assume finite
dimensions. Moreover, we obtain a limit set trichotomy for monotone and subhomo-
geneous mappings.

Corollary 6.1.6. With general assumption as in Theorem 6.1.5 let S be some iterate of T.
(@) Suppose T is monotone and subhomogeneous. The limit set trichotomy of Theo-

rem 6.1.5 holds provided S is strictly monotone on K (for x,y € K x 5 yimplies
Sx < Sy) or S is strictly subhomogeneous on K (aSx < S(ax) forx € K O<a<1)

In the latter case, (iii) holds with c(x) = 1. If in addition S(K ~ {0}) ¢ K then the
following limit set trichotomy does hold.

Either

(i) forallx € K ~ {0} the orbit is unbounded

or

(ii) forallx € K, nlEIgO T'x=0

or
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(@) forallx e K~ {0}, nlggo T"x = c(x)x*

where x* € f( is a fixed point of T and c(x) > 0 a scalar (with c(x) = 1if T is strictly
subhomogeneous).

(b) If T is concave, in particular T is linear, and S(K ~ {0}) ¢ K then the above limit set
trichotomy holds for T.

Proof. (a) We show that property 6.1.2is satisfied. The part for T holds since T is mono-
tone anod subhomogeneous. If S is strictly monotone on K then A™'x £ y £ Ax for
x,y € K,A > 1implies that A7'Sx < S(A™'x) < Sy < S(Ax) < ASx. If S is strictly
subhomogeneous we obtain A "1Sx < S(A "1x) < Sy < S(Ax) < ASx. In both cases prop-
erty (6.1.2) does hold. In the latter case, for (iii) we have Sx* = x*, S(c(x)x*) = c(x)x*
and for c(x) < 1 S(c(x)x* > c(x)Sx* = c(x)x* which is a contradiction. Similarly for
c(x) > 1. Thus we must have c(x) = 1 if S is strictly subhomogeneous. This shows that
(a) follows from Theorem 6.1.5.

(b) We show that property 6.1.2 is satisfied. The part for T holds since a concave
selfmapping T of K is monotone and subhomogeneous.

IfA'x g yforx,y e KandA > 1theny = A "1x + (1 - A= withz € K~ {0}

Concavity of S gives

V4

-1 -1
Sy= A8+ (1-279) (=5

) > A7 Sx
because of S(K ~ {0}) ¢ K . Similarly, from y £ Ax it follows Sy < ASx. The assumptions
of Theorem 6.1.5 being satisfied this proves (b). a

As the stylized picture in the introduction illustrates, all three cases of a limit set tri-
chotomy can occur even if the mapping is contractive or strongly concave. If, however,
the mapping has a fixed point in the interior then only the third case survives and the
fixed point is globally attractive.

This is a general feature as the following theorem will show. Furthermore, in the
stylized picture the fixed point x* = 1 of f;(x) = +/x is locally attractive. By the local-
global stability principle (Section 4.3) it is a general feature, too, that a locally attrac-
tive fixed point of a non-expansive mapping (for p) must be globally attractive.

Theorem 6.1.7. Let K be a closed convex cone in a Banach space such that K is normal
with non-empty interior f(. Let T be a norm continuous selfmapping of K which maps
K into itself and the norm bounded orbits of which have compact closure in the norm
topology. If T has a fixed point x* € K then x* is unique and globally attractive (within
IO< and with respect to the norm) in each of the following cases:

(a) T is non-expansive for the part metric on K and x™ is locally attractive (for the norm

on f().
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(b) T is non-expansive and some iterate of T is contractive for the part metric on K.
(c) Tis concave and some iterate of T is strongly concave on K.

Proof. (a) By Proposiotion 3.4.12 the topologies induceed by the norm | - || and the part
metric p coincig:'le on K. Therefore, the metric space (K, p) is connected. Since T is non-
expansive on (K, p) it follows for this space from Corollary 4.3.6 that a locally attractive
fixed point must be globally attractive. By Proposition 3.4.12 again the same is true with
respect to the norm topology.

(b) Since Tx* = x* only case (iii) in the weak limit set trichotomy of Theorem 6.1.1
survives. Since an iterate of T is contractive, case (iii’) of part B of that theorem applies.
Finally, w (x) # 0 by the general assumptions made.

(c) The assertion follows from part B of Theorem 6.1.5. O

If in the setting of Theorem 6.1.5 the mapping T has a fixed point x* in K then only
case (iii) survives and lim T"x = c(x)x*,c(x) > 0, forall x € I°( Also, if in the setting of
Theorem 6.1.7Thasa ﬁxed point x* which is locally attractive then hm T"'x = x* forall
X € K In what follows we shall more general place local condmons on the fixed point
set of T to obtain global convergence of the iterates T™ to the fixed point set. For this we
need the following lemma which uses an argument from the proof of Theorem 6.1.5.

Lemma 6.1.8. Let K be a closed convex cone in a Banach space (E, | - |) which is normal
with non-empty interior I°<. Let T be a non-expansive selfmapping of (Io(, p), p the part
metric. Suppose T is monotone on the ray R(y) = {ry|r > 0} for a fixed point y of T. Then
nli_g)lO T"x exists in R(y) for each x € f( which has a non-empty and bounded limit set w (x)

in (K, p) with w (x) < R(y).

Proof. For z € w(x) we have T*z € w (x) and by assumption T*z = Wy with0 <r <
M < sforall k > 0. Suppose y < ., for some k. Since T is monotone on R(y) it
follows py1y = T(T*2) = T(y) < T(Mgeqy) = T’z = g,y and, hence, py,;y < Py
Therefore, (y;) is increasing in case of u, < p;. Similarly, (i) is decreasing in case of

Mo = Up.SinceO<r<yu <s,u= li{nyk exists and u > 0. It follows liIEnTkz = puy and,

hence, lim p(T*z, T**'z) = 0. By Lemma 4.1.2 w (x) must be a singleton and 1i£nT”x

k
exists and belongs to R(y). O

A fixed point of a non-expansive mapping need not be attractive as, for example, there
might be points “rotating” around the fixed point. The result below provides a local
condition on such rotating points which guarantees a globally attractive fixed point
ray.

Definition 6.1.9. For a selfmapping f of a metric space (X, d) a point x is said to be
rotating around y for a fixed point y of f if d(f™(x),y) = a > 0 forallm > 0.

Theorem 6.1.10. Let K be a closed convex cone in a Banach space (E, | - ||) which is
normal with non-empty interior K. Let T be a non-expansive selfmapping of (K, p) with
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a fixed point x* € K such that T is monotone on the ray R(x*). Supppose, there exists
€ > 0 such that for each fixed point y of T withy € R(x*) and each x € K withp(x,y) < €
the limit set w (x) (for || - ||) is non-empty and has points rotating around y only in R(y).
Then ,}Lr{)lo T"x = c(x)x* with c(x) > O forall x € K

Proof. We shall show that the set F of all fixed points y € R(x*) is locally attractive,
that is

nli_}I‘I.}oTnX eF forall xe K with p(x,y) <e forsome yecF.

Then the conclusion of the theorem follows from Theorem 4.3.7 since (K ,p) is con-
nected and, hence, F is not strongly isolated.

To prove (x) fixy € Fand X € B = {x € K | p(x,y) < €}. Since T is non-expansive
and Ty = y, T maps B into itself. Therefore, ¢ # w(x) < B. In what follows we will use
that the topologies for | - || and p coincide on K (Proposition 3.4.12 (v)).

1. First we show that p(T™x,y) = a for all x € w(x) and all m > 0. For a,, = p(T"x, )
we have a,,; = p(T(T"%), Ty) < p(T"x,y) = a, and, hence a = lima, exists. If
x € w(x) thenx = li{nT"k)'( (for || - || and p, too). Thus, for m > 0 p(T"x,y) =
lilfnp(T TR, Y) = lilfnammk =a.

2. By the above, a = 0 implies x = y forall x € w(X). If a > 0O then all points of
w (%) are rotating around y. By the assumption made in the theorem we must then
have that w(x) < R(¥). Since T is monotone on R(x*) and, hence, on R(y) it fol-
lows from Lemma 6.1.8 that lirgnT”)’( exists in R(y). Since y € F and X € B where
chosen arbitrarily this demonstrates (*) and the conclusion of the theorem does
follows. O

From this result we obtain the following corollary where the condition on rotating
points is guaranteed by monotonicity assumptions on T.

Corollary 6.1.11. Let K be a closed convex cone in a Banach space (E, | - ||) which is
normal with non-empty interior K Let T be a selfmapping of K which is compact for | - ||
and non-expansive for p with Tx* = A*x* for some x* € K and A* > 0. Consider for a
selfmapping f of K the following dual properties where x,y € K, m=m(x,y)ande >0

P,(y,e):p(x,y)<e and xgy imply f"(x) <f"(y)
P,(y,e) : p(x,y) <e and ysx imply fM(y) <fmx).

(@) Assume T is monotone on R(x*) and subhomogeneous on K and let Tx = Ai Tx on

K.Suppose there exists € > O such that for all fixed points y of T in R(x*) both prop-
erties P, (y,€) and P, (y, ) hold for f = T.

Then nll)rgo T™x = c(x)x* with c(x) > O for all x € K

()
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(b) Assume T is monotone on R(x*) and positively homogeneous on K. Suppose for some
€ > 0 properties P, (x*,€) and P,(x",€) hold for f = T. Then
T"x

JLIEIOS(Tnx) =x" forall xeK

where s: K — R is any continuous, positively homogeneous mapping with s(x) > 0
onK and s(x*) = 1.
(c) Assume T is monotone and positively homogeneous on K. Then the conclusion in

(b) holds provided at least one of the properties P, (x", €) and P, (x", €) does hold for
somee>0andf =T.

Proof. (1) It is easily verified that for the part metric p and for any A > O and u,v € IO( it
holds that

p(Au,v) < —log min {/1, %} + p(u,v). (%)

This inequality implies for p(u,v) < 6,8 > 0,and e™® < A < € that p(Au,v) < 26.
Letting A any of the values a = A(u,v),8 = A(v,u),u = min{a,} we obtain that
p(u,v) < 8 implies p(Au,v) < 26 and p(A ~u,v) < 26.

. (2) Concerning (a) we have that Tx* = x*, T is a non-expansive selfmapping of
(K,p), T is monotone on R(x*) and T is a compact map. Letoe > 0 according to prop-
erties P, (y,€), P,(y,€). Fix y € R(x*) with T)’/ = yand x € K with p(x,y) < % Since
p(I"%,y) < 5 for all n and T is compact it follows thag w(x) # 0 for T keeping in
mind that norm topology and part topology coincide on K. To apply Theorem 6.1.10 to
T we shall show that for x € w(X) rotating around y we must have that x € R(y). By
(1) we have for p = min{A(x,¥),A (7, x)} because of p(x,y) < 5 that p(ux,y) < € and
p(u~'x,¥) < e. Obviously, ux < y < u~'x and suppose none of these inequalities is an
equality. From properties P, (y, €) and P, (j, €) we obtain for f = T

M(ux) < f™F) < f™(u"*x) and, since T is subhomogeneous, uf™(x) < f™(y) <
U Lf™(x). Therefore, A (f™(x),f™(¥)) > u and A(f™(¥),f™(x)) > u which implies that
p(F™(x),f™()) < p(%, 7). Thus, if x € w (%) is rotating around y (for T), thatis p(T™x, ) =
a > 0 for all m > 0, we must have that yx =yory = y‘lx and, hence, x € R(¥). From
Theorem 6.1.10 we conclude that

lim T"x = c()x*,c(x) >0, forall xe K.

(3) Concerning (b), observe that P, (x",€), P,(x", €) imply P, (y,€), P,(y,¢) for all
y € R(x"). Considering P, (x*, €) note that p(x,rx*) < eand x s rx* implyp(%x,x*) =
p(x,rx*) < eand %x s x" aswell as

i (%x) <f"() implies f"(x) < f"(rx")

due to homogeneity of f = T. Similarly for P, (x*, €). From part (a) we obtain lirrlnT"x =
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c(x)x*,c(x) > 0, forall x € K. Since T is positively homogeneous we have that lilgn P =

T"x
A *n

c(x)x* as well as lirrlns( ) = c(x) which imply that

. T'x
lim =
n s(T"x)

x*  forall xef(.

(4) Concerning (c), we go back to the proof of Theorem 6.1.10, considering A (-, -)
instead of p(-,-). Let € > O as in property P, (x*, €) or P,(x", €) with respect to f = T. Fix
X € f(withp()'(,x*) < 3.

Let a, = A(f*(X),x"). Since T is monotone and f, too, it follows a,,,
AF("(x),x*) = A(f1(X),x™) = a,. Therefore, (a,) is increasing and because of a,, < €°
we have that a = lign a, exists. As in step (1) of the proof for Theorem 6.1.10 we con-
clude that A (f™x,x*) = a for all x € w(X), all m > 0. Similarly, for b, = A (x*, f"(x)) we
conclude that A (x*, f™(x)) = B for all x € w(k),m > 0. In particular, a = A(x,x*) and
ax < x" aswellas B = A(x",x) and Bx" < x. Since p(x,x") < 5 we have p(x,x") < 3
for all x € w(X). From step (1) we obtain p(ax,x*) < e and p(8'x,x*) < e. Suppose
property P, (x*, €) applies. If ax s x* then af™(x) = f™(ax) < x* which yields that
A(f™x,x*) > a = A(x,x*) — a contradiction. Therefore, we must have ax = x*. In case
property P, (x", €) applies and S x* £ x it follows

ox* < fM(B7'x) = B f™(x) which yields that

A, f™(x)) > B =A(x",x), acontradiction again,

and we must have Sx* = x. Thus, in any case x € R(x") and, hence, w (X) € R(x"). Since
T and, hence, f = T is monotone on K from Lemma 6.1.8 it follows lignf” (%) € R(x™) for

p(.x*) < 5. Finally, let F = R(x*) and y € F,x € IO< with p(x,y) < 5.Sincey = rx* it
follows for x = %x that p(x,x*) = p(x,7x") < 5 and by the above lirrlnf"(x) = rlirrlnf“()’() €
R(x*) = F. This shows that F is locally attractive for f = 7. Theorem 4.3.7 yields that F
is globally attractive and lirrlnT'" = c(x)x*,c(x) > 0, forallx € K . The conclusion follows
as in step (3) for (b). This proves parts (a), (b), (c) of the corollary. O

Remarks 6.1.12. The strong version of limit set trichotomy as in Corollary 6.1.2 was
first obtained in [16, Theorem 3.1]. The first strong limit set trichotomy, in finite di-
mensions and for monotone mappings with a strongly subhomogeneous iterate (as
in part B of Theorem 6.1.5), appears in [15, Corollary 1]. An extension of this result to
Banach spaces can be found in [9, Theorem 5.20]. The case of a subhomogeneous map-
ping with a strongly monotone iterate (as in part B of Theorem 6.1.5) has been dealt
with in [25, Theorem 1.1]; in a later paper the same author obtains a rather general tri-
chotomy [26, Theorem 3.1], which admits also for 2-periodic points. This result requires
an iterate to be ray-contractive, a condition which is connected to condition (6.1.1) of

Theorem 6.1.1and which, for T itself, is defined as follows: T is non-expansive on (f( D)
and p(T*x, T*y) = p(x,y) does hold only for all k > 1ify = Ax for some A > 0. See also
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[3, Theorem 3.3] for a different proof of the above trichotomy. Independently, a similar
result for ray-preserving mappings has been obtained in [27, Theorem 2.1]. Concern-
ing Corollary 6.1.11 see also [17, Section 6.5, in particular Theorem 6.5.1, Theorem 6.5.6].
Various interesting extensions of a limit set trichotomy within different settings have
been made in [20] to non-autonomous systems (see the next chapter), in [1] to random
dynamical systems and in [22] to two-parameter semiflows on time scales.

6.2 Differentiability criteria for non-expansiveness and
contractivity

For limit set trichotomy as in the last section the assumptions of non-expansiveness
and contractivity, respectively were crucial. Concerning applications, as in the next
two sections, it is very useful to check these assumptions by criteria in terms of dif-
ferentiability. Throughout this section let the Banach space be R" with a norm || - |
which is monotone for the standard cone K = R. For a self-mapping T of R" denote
by %(X) the partial derivatives for 1 < i,j < n and by J;(x) the Jacobian, the n x n-
matrilx of all partial derivatives. The following theorem describes non-expansiveness
and contractivity in terms of the partial derivatives of T.

Theorem 6.2.1. ForK = R let D ¢ K be open and log-convex, that is x'y*™" € D (com-
ponentwise) for x,y € D,0 < t < 1. For T a continuously differentiable selfmapping of D
let

X.
c(T) = sup maxz

xeD 1<1<n

oh (x)‘ ) (6.2.1)
0%;

(i) Ifc(T)is finite, then it is the contraction constant of T on D for the part metric p, that
is ¢(T) is the smallest constant c such that p(Tx, Ty) < cp(x,y) for all x,y € D.
(i) If

<C

o (X)

forall1 <i<nandx e Dthenp(Tx, Ty) < cp(x,y) forallx,y € D,x # .

Proof. (1) Fix i € {1,...,n} and consider the real function f defined by f(u) =
log T;(exp u), where exp u is taken componentwise, expu = (expu;,...expu,) and
u € E = {logx|x € D},logx componentwise, too. f is continuously differentiable on

the open set E with
of . €XpY
ouy; U T J(expu) ax (e Xpu).
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The mean value theorem yields on E which is convex since D is log-convex,

1 n af
fo) -fw = j(z —(u(t))h,-)dt (6.22)

~ ou;

o =1 ]

whereu,ve E, h=v—-u, u(t) =u+th,0 <t < 1.
(2) Since expu € D from the definition of ¢(T) we have that Z] 1 |af )| < c(T)

and, hence,

Fv) - f)l < J(Z Ly (®)) Iy )de < o(T) max Iv; - .

j=1 }

For x,y € D given there exist u,v € E with x = expu,y = expv and, hence, f(u) =
log Tix, f(v) = log T;y. This yields |log T;y - log T;x| < ¢(T) max |logy; - log x;|. Since i
was arbitrary chosen we arrive at p(Tx, Ty) = max |log Tix — log T;y| < c(T)p(x,y) for
allx,y € D. l

(3) Next we prove the existence of x,y € D,x # y with p(Tx, Ty) = c(T)p(x,y). By
definition of ¢(T), to O < € < ¢(T) there exists some x € D and some 1 < i < nsuch that
X.

L X |aT,
T) - = =)
o(T) e<]_=z1 T an(X)I

Since T is continuously differentiable we may choose a neighbourhood U = {y eD|
| logy —log x| < r} of x such that the above inequality holds still in U and (z) does
not change its sign for z € U.

Define h € R" by
h=<‘ roif g_f;(x)zo

e 0T
-r if B_x;(x)<0'

For f(u) = log T;(expu) as in step (1) we have for u = logx that g_lf.(“)hi
u(e) ’

% %(X)' -r.Foru(t) = u + thand x(t) = e“® = xe™ we have that | log x(t) — log x||

t|lh|| < r and, hence, x(t) € U. Therefore,

n X(t);
;—(u(t)) 1= L7 (t)

-r>(c(T)-e)

by the choice of U. The mean value theorem gives

F(u(D) - F(u©)) - j(z;f ()l )t = (e(T) - €) max ).

For x = exp u(0),y = exp u(1) we obtain

log Ty - log Tix = f(u(1)) - f(u(0)) = (c(T) - ¢) m}ax lu;(1) - u;(0)].
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Since € > 0 was arbitrary chosen we arrive at
p(Tx, Ty) > log Tyy — log Tyx > ¢(T)p(x, y).

This proves part (i) of the theorem.
(4) For part (ii) of the theorem suppose that

L X |oT

] i

= 5o )| <
].;Tix 0x

for all i and all x € D. Let for i fixed f(u) = logT;(expu),u € E. Since aa—l’:(u) =
expy; ’
T(exp u) ax

L (exp u) it follows that

—(u)

<C

n
o
for all u € E. By the mean value theorem, therefore, as in step (2),

) - fl < | (Z

1

Bf (u(t) I |h|)dt<cmax|v -y

and, for x = expu,v = expy,

|log T;y - log Tjx| < ¢ max |logy; - log x;].
j

Thus p(Tx, Ty) < cp(x, y) which proves part (ii). O

A first consequence of this Theorem is the following version of Corollary 6.1.2 in terms
of differentiability.

Corollary 6.2.2. Let K = R” and T a continuous selfmapping of K which is a continu-
ously differentiable selfmapping of K such that

<Tx

— (X)

foralll <i<nandx €K.
Suppose further that some iterate of T maps K ~ {0} into K and that some iterate S
of T satisfies
n
j=1

< Sx

% (X)

foralll <i<nandx e f(.
Then strong limit set trichotomy (as in Corollary 6.1.2) holds.
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Proof. Theorem 6.2.1yields for D = K that, both, T is non-expansive and S is contrac-

tive on (f(, p). Since in K norm bounded orbits have compact closure, the conclusion
follows from Corollary 6.1.2. O

It should be noted that the assumptions in the above corollary do not imply mono-
tonicity. This is relevant even in one dimension. The following figure illustrates for
this case the conditions in the above corollary.

/ fx)

a) f'®)

Fig. 6.2. Cave function.

At any point P the tangent must be contained in the convex cone (or its interior)
spanned by uand v. At P, f'(x) > O and f'(x) < ’%; atQ, f'(x) < 0and # < f'(x).
One might say that, when increasing (decreasing), f must not increase (decrease)
too much. The condition x|f' (x)| < f(x) for all x > 0 is equivalent to f being a cave
function, that is, @ is strictly decreasing and xf(x) is strictly increasing. (See the
last paragraph of Section 5.3 and Exercise 7 (b). See also Figure 1.3 and the example
discussed there.) The above geometric interpretation applies similarly in higher di-
mensions. The (positive) tangent space must be contained for P = (x, Tx) € lRf” in
P + C where .
n n
C= {(u,v) eR, xR"| {ré%)ﬂvil < ci;u,-}

is a convex polyhedral cone with ¢ = max IX (see Exercise 5).
1<ij<n %

Though Corollary 6.2.2 is useful in many cases, it is not applicable in many others.

For example, if T is linear, Tyx = Y, a;x; with A = (ay) > 0, one hase that for each

iterate Sx = A™x equality ;’:1 xl % (x)] = S;x holds for all i. From Theorem 6.1.5 part B,
]
however, we conclude that limit set trichotomy holds in this case if A is primitive. In

what follows, therefore, we will improve the criterion given by Corollary 6.2.2. This
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will be achieved by examining more closely the condition (6.1.1) for the weak limit set
trichotomy in Theorem 6.1.1. To do so the following lemma proves to be crucial.

Lemma 6.2.3. ForK =R letf: I°< —> int R, be continuously differentiable and let, for
Xy ek, (xy)={zeK|z=x-y ', t€[0,1], 1 <j<n}. Assume forallz € K

n af
i;zj 8_x] @) < f(2), (6.2.3)
and let forz € 10(
1@ = {;lg—f @ > 0} J.2) = HLZ) < 0} .
X; axj
If for x + y given it holds that
[log f(x) —log f(y)| < p(x,y), (6.2.4)

then in (6.2.3) equality holds for all z € {x,y) and there exists some A > O such that for
eachz € (x,y)

x;=Ayjforje].(z) and x;= A"lyj for jeJ (2)
or

x,-=/l_1y,- for jeJ.(z) and x;=Ay; for je] (2).

Proof. Asinstep (1)for the proof of Theorem 6.2.1 consider g(u) = log f(exp u) for D = I°<
and u € R", where exp u is taken componentwise. For x, y there exist v,w € R" such
that x = exp v,y = exp w. By the mean value theorem

1 n
gW) -g(w) = j <Z%(v(t>)hj> dt,
o \=1"7

where h = v -w,v(t) = w + th, t € [0,1]. For z(t) = expv(t) we have that z(t) =
(expv))" - (expw;)'™" = x{ - y; " and, hence, z(t) € (x,y). For a;(t) = g—f_(v(t)) we have

that a;(t) = ff’z% g—)’;(z(t)). From assumption 6.2.3 if follows that Z]'-Ll la;(t) < 1 forall

t € [0, 1]. For m = max |;| > O we have that
j
m = max |v; - w;| = max | logx]- - logy]-I = px,y).
j j

From the assumption 6.2.4 together with the mean value theorem we obtain

1
m < |logf(x) - logf)| = Igv) - gl < j|za,-<t>h,-|dt.
07
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Since
1 1
[[Zaomac < [(Tlaon - mi)de <m
0 0 J

we conclude by the continuity of a;(t) that

Z|a]~(t)| =1and |Za]-(t)hj| = mZIaj(t)l forallt € [0,1].
j j j

The first formula means that in 6.2.3 we must have equality for all z € (x,y). As for the
second formula suppose first that }; a;(t)h; > 0 for some ¢ € [0, 1]. Then

Z (la]-(t)lm - a]-(t)hj) =0 and, hence, |a;(t)im = a;(t)h; forall j.
j

That means hj = m for a;(t) > 0 and hj = -m for a;(t) < 0. Equivalently, for A = expm
we have that
X; = expv; = expw;-exph; =Ay; for a;(t)>0

and, similarly, x; = A"y, for a;(¢) < 0.
In the same manner Y, a;(t)h; < 0 for some ¢ € [0, 1] implies
X; = )l_ly)- for a;(t)>0 and x;=Ay; for at)<O.

Finally, for z € (x,y) there exists t € [0, 1] with z = z(t) and by definition of a;(t)

a;(t) > 0(< 0) iff %(z) > 0(< 0) iffj € J, (2)J_(2)).
j
This proves the lemma. a
Theorem 6.2.4. LetK R’ and T a continuous selfmapping of K some iterate of which
maps K ~ {0} into K Assume T is a continuously differentiable selfmapping of K which
satisfiesforall1 <i<n,x € K

< Tyx. (6.2.5)

n
in
j=1

oT;
a—xj(X)

Suppose further each orbit O(z),z € K satisfies the following conditions:
(@) There exists a partitionJ, U], = {1,...,n} (J, or ], may be empty) such that in case

of equality in (6.2.5) fori and x ¢ O(z) it holds that (x) > Oforallj € J; and
—(x) < Oforallj € J,.
(b) In case of equality in (6.2.5) for i and z it holds that —(u) > Oforallj € J, and

—(u)<0f0ralI]e]zforallueszthu—r ]ejlandu—s -,je]zfor
somer>Os>0
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Then the following limit set trichotomy holds. Either
(i) forallx € K ~ {0}, O(x) is unbounded

or
(ii) forallx € K, lim T"x = 0
n—.oo
or

(iii) for each x € K ~ {0}, Y}LrgloT"x = X is a fixed point of T with

_ c(x)x;, jel,
Xj = -1_=% .
)X, jel,

where x* ¢ K is some fixed point of T, c(x) > O a scalarand I, U1, = {1,...,n} a
partition (belonging to x*).

Proof. By Theorem 6.2.1 assumption (6.2.5) implies that T is non-expansive on (f(, p).
The assumptions of Theorem 6.1.1 being satisfied, part B (i) yields (i) of the trichotomy
stated in Theorem 6.2.4. Since bounded orbits have compact closure, part B (ii')
yields (ii).

(1) Considering case (iii) we shall show first that condition 6.1.1 of Theorem 6.1.1

cannot hold. For this, suppose there exists y € w(x) n K such that

p(TYy, Ty) = c(y) >0 forall k> 0.

Then for each k there exists some i = i(k) € {1,...,n} such that for f(z) = Tiz,z € I°< we
have

llog f(T**'y) - log f(T*y)| = p(T**'y, T'y) > 0.

From Lemma 6.2.3, condition (6.2.4) being satisfied, we conclude that in (6.2.5) holds
equality for i = i(k) and y* = T*y. Applying the assumptions made in (a) on the orbits
to orbit O(y) and by Lemma 6.2.3 again there exists A, > 0 such that

k+1

% iy

=7‘k)’,’~( for jeJ; and yj+1=/1k"1y]'.‘ for jeJ,.

For any two vectors u,v € K and A > O we shall writeu = A * vifu; = Av; forj € J;

and y; = )l‘lvj for j € J,. In this notation we have that Yt = Ag = yX for all k and, by

iteration, y* = y, * y where i, = H;‘:—Ol A; for k > 1. Furthermore, since in 6.2.5 equality

holds for i = i(0) and y° = T% = y we may apply part (b) of the assumptions. For
0 < a < f the mean value theorem yields

1 n

oT;

T8 ) - Tia +y) = [(Y 2 Lo )de

o =1

withh=8 «y—a «yandu(t) =a =y + th.
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We have that h; = (8; - a))y; forj € J, and h; = (8" — a; ")y for j € J, as well as
u(t); = ry;forj € J; and u(t); = sy; forj € J, withr = ¢ + (1 - ) and s = Bt +
(1 - t)a~t. By part (b) of the assumptions on orbit O(y) we have for t € [0, 1]

oT; . oT; .
a—xj(u(t)) >0 for jeJ;, and a—xj(u(t)) <0 for jeJ,,
and, hence,
L oT; oT; oT; a4
;a_x;(u(t))hi = 2 o WOIB -y + Y L UO)B - a Ty,
Jj= jel, 7 jel,

Since for every t each of the two terms on the right hand is non-negative, we conclude
that for i = i(0)

T(a =y)<T,(B =y) for a<B§B.
Suppose now, we have for some k that y;, < py,4. It follows that

Ve = Ty = Ty + ) < Tigey +y) = Ty =y

and, hence, yi,q Vi < Uisa Vis thatis py,; < Yy, Similarly, py > i, implies yy; >

Myso- Thus, the sequence (y,), is either increasing or decreasing. Since in case (iii)

all orbits are bounded klim M, = M = 0 exists. Since in case (iii) w(x,) N K # 0 for
—00

some x, € K we must have for some A > O that A%, < T"y < AT"x, for n big
enough as well as llim T'xg=ue€ K. Therefore,A 'u < puy < Au which implies y > 0.
Thus, we conclude that klim YK = 1y holds with respect to p. Finally, from 0 < c(y) =

p(Tty, T*y) for all k > 0 we obtain 0 < c(y) = klimp(Tk”y, T%y) = p(uy,uy) = 0 -
which is a contradiction. o

(2) By step (1), in case (iii) we must have that for each x € K either w (x) is a sin-
gleton in K or w(x) N K = 0. From w(xy) N K # 0 for some x,, € K we conclude that
w(xy) = {x*} with x* € K being a fixed point of T. For x € K arbitrary }l‘lT"x0 <
T"x < AT"x, for some A > 0 and n big enough. Since Jim T"x, = x" it follows that
wkx) < A7 Ax"] Kanda)(x) is a singleton, too. Thus, for x € K~ {0}, }LIEOT"X =X
and x a fixed point of T in K. Suppose X # x*. Then p(Tx, Tx*) > p(x, x*) and there ex-

istsisuch that for f = T; we have |log f(x) -log f(x*) |= p(X,x*) > 0. From Lemma 6.2.3
it follows that in (6.2.5) holds equality for i and all x € {(x,x*) and for some A > 0

= * . * = -1 _ % . *
xj=/\xj for jeJ (x') and x]-=/1 X; for jeJ (x7).

The orbit assumption for O(x*) = {x*} yields a partition I, U I, = {1,..., n}, belonging
to x*, such that %(x*) > O forallj e I, and %(X*) < O forallj € I,, Therefore,
/) )

X;=Ax; forall jel; and )’(j=)l_1x]-* forall jel,.

This proves the theorem. O
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In view of the applications in the next two sections the following consequences of
Theorem 6.2.4 prove to be very useful.

Corollary 6.2.5. Let K = R and T a continuous selfmapping of K which is a continu-
ously differentiable selfmapping of K. For an iterate S = T™ assume it maps K ~ {0} into
K and satisfies forall1 <i<n, x € K

n

2%

j=1

Si
B_X]-(X)

< Six. (6.2.6)

A. Ifforeveryz e Io( there exists some k = k(z) such that in (6.2.6) strict inequality
holds for x = S*z and all 1 < i < n then strong limit set trichotomy applies to T:
Either
(i) forallx € K ~ {0}, O(x) is unbounded

or
(ii) forallx € K, nlLrgo T'x=0
or

(iii) for all x € K ~ {0}, Y}LrgoT"x =x*

where x* € I°< is the unique fixed point of T in K ~ {0}.

B. Suppose there exists a partition J; U J, = {1,...,n} such that for all x € K and all
l1<i<n

%(x) >0 forall je], and %(x) <0 forall je],.

0x; ;

Then a limit set trichotomy holds for T with (i) and (ii) as in A and where (iii) is
replaced by
(iii') forallx e K~ {O}and allO <i<m-1

()X, jely

lim T™x = x' where X = {
1 .
! (07X, jel,

n—-oo
with ¢;(x) > 0 and x* a fixed point of T™ in K In particular, if], =0or], =0and T
is positively homogeneous then with a scalar c(x) > 0

,}LIEOTHX =c(x)x* forall x e K~{0}

where x* is a fixed point of T in K, unique up to a positive scalar.

Proof. (1) Consider first the case S = T. Parts (i) and (ii) of the trichotomy follow as in
the proof of Theorem 6.2.4. For parts (iii) and (iii’), respectively, conclusions A and B
will be treated separately. For A we refer to arguments in the proof of Theorem 6.2.4.
As there in part (1) it follows from the assumptions in A that condition (6.1.1) of The-
orem 6.1.1 cannot apply. As in part (2) it follows for each x € K ~ {0} that nlgglo T'xisa
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fixed point of T in 10( . The assumptions applied to a fixed point yield its uniqueness.
Thus, the strong limit set trichotomy does hold.

For B, Theorem 6.2.4 yields (iii’) for m = 1.

(2) Suppose now S = T™ with m > 2. For A, part (1) above for S instead of T yields
the strong limit set trichotomy for S. If an orbit is unbounded for S it is unbounded for
T, too. If ’}LIEOS”X = 0 forall x € K then

lim T™x = nlglgo SMT'x) = 0forallx € K,alli € N,

n—oo

and, hence, nlggO T"x = 0. Considering (iii) we have nlgglo S"x = x* forx € K~ {0}, x*
the unique fixed point of S. Since S(Tx*) = T(Sx*) = Tx" it follows that Tx* = x* and,
hence,
’}LI&Tmn+iX _ Ti (,,ILIEOTmnX> _ TiX* - X"
Thus, nh_)rrolo T"x = x* forall x € K ~ {0}, x* the unique fixed point of T in K ~ {0}.
(3) For S = T™, m > 2, and B it remains to show (iii'). By part (1) above for S we

have nlggo S"x = x° for x € K where, with a scalar co(x) > 0,

O - { cox;,  jel
co0'X, jel,,

and x”* is a fixed point of S. Since T(I°<) C I°< it follows for 0 < i < m — 1 that
nll)n.}o SY(T'x) = x' where ¥ = Tix°.

Setting c;(x) = ¢,(T'x) this yields (iii’).
Finally, suppose J, = @ and T to be positively homogeneous. In that case

Tim T x = T ( lim s“x) = T'(co(0X") = o) T'x".
Furthermore,
x* = Y}LrgOS"(TX*) = Tx*0 = ¢o(Tx" )x7,
which implies x* = T"x" = ¢,(Tx")™x". Therefore, c,(Tx*) = 1 and, hence, Tx"* = x".
Thus, we obtain for alli € IN

s mn+i i *
r}LrgoT x=co()TXx" =cy(x)x".

This shows ,}Lrgo T = c(x)x" with ¢c(x) = ¢y(x) —incase of J, = 0 — and c(x) = co(x)’1
in case of J; = 0. O

For all the forms of limit set trichotomy considered, the existence of a fixed point in
I°< implies that neither of the alternatives (i) and (ii) can hold and, hence, alternative
(iii) applies. In case of the strong limit set trichotomy, (iii) means that the assumed
fixed point must be globally attractive. The latter can be obtained also, by weaken-
ing the assumptions for strong limit set trichotomy to that of a non-expansive T, but
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assuming in addition that inequality (6.2.6) holds strictly for the fixed point. This is
a consequence of the local-global stability principle, Theorem 4.3.3, as the following
result demonstrates.

Theorem 6.2.6. Let K = R” and T a selfmapping of K which is continuously differen-
tiable. Suppose for an iterate S = T™ it holds forall 1 <i<n,x € K

n

2

j=1

Broey
X

n
< Sxand ) x;

j=1

0S;
a_X]-(X)

< Sx* 6.2.7)

for a fixed point x* of S. Then x* is the unique fixed point of T in K and it is globally
attractive, that is nangO T"x = x" forallx € K.

Proof. (1) It suffices to prove the theorem for m = 1. If the theorem holds in this case its
application to S = T™ yields Jlim T"x = x* for all x € K. Therefore, Jlim T™(T'x) = x*

foralli e N, all x € f(, which implies nll)rgo T'x =x" forall x € f(.

(2) Assume m = 1, S = T. By assumption 6.2.7 Theorem 6.2.1 implies that T is
a non-expansive selfmapping of the metric space (I°<, p), p the part metric. Since by
Proposition 3.4.12 on f( the part topology coincides with the Euclidean topology the
space (f( ,p) is connected. To obtain the conclusion of the theorem from nCorollary 4.3.6

it suffices to show that the fixed point x* of T is locally attractive in (K, p). From the
second part of assumption 6.2.7 we get that

n

27

j=1

oT;
B_Xj(z)

< Tz (%)

holds for all 1 < i < n and all z in some Euclidean neighbourhood U of x*. By the

coincidence of the two topologies we can assume that U = {z € K | p(z,x") < €} for
somee > 0. Letforx,y e U, x #y,

xy) = {Zelzlzj =x;~yjH, te[0,1],1<j<n}
Forz € (x,y)

log z; - logx]-* = tlogx; + (1 -t)logy; - logx].*
= t(log x; - long*) + (1 - t)(logy; —x].*),

and, hence, p(z.x*) < tp(x,x*) + (1 = )p(y, x™).

Therefore, (x,y) € U and (*) holds for all z € (x,y). Lemma 6.2.3 applied to f = T;
yields that | log T;x — log T;y| < p(x,y). Therefore, p(Tx, Ty) < p(x,y) for x,y € U,x # y.
It follows for x € U,

p(Tx,x*) = p(Tx, Tx*) < p(x,x*) <e and, hence, Tx e U.
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Thus T is a contractive selfmapping of the metric space (U, p). Since U is compact in
(K, p), we obtain that nlggo T"x = x* in (K, p) for all x € U (cf. Remarks 4.1.5 (i)). That is,

x* is locally attractive in (K ,p). By Proposition 3.4.12 again we finally arrive for x € K
at nlLIgO T"x = x* with respect to the Euclidean topology. O

The following example taken from the study of insect populations illustrates how the
above theorem may be useful even in one dimension (cf. [14, 19]).

Example 6.2.7. For K = R, let f be a selfmapping of K given by f(x) = /lx(l +x)7F
with parametersA > 1, > 0 f has the unique fixed point x* = A% 7 - 1in K. One has
that x|f' (x)| < f(x) forallx € K allA > 1andf < 2. Also, for this range of parameters,
If'(x*)| < 1. Therefore, by the above theorem, x* is globally attractive. It is easily seen
that x* is globally attractive for all A > 1 if and only if 8 < 2. There are, however,
values of the parameters for which x* is locally but not globally attractive.

Indeed, for values of the parameters big enough the dynamics of this example are
very complicated (see [19]; see also [6] and Exercise 7).

6.3 Applications to non-linear difference equations and
cooperative systems of differential equations

Consider the difference equation
u(t +n) = fu@®),u(t + 1),...,u(t + n—1)) (6.3.1)

of ordern > 1 withu(t) € R, fort € N, f: Rl — R, and with initial conditions
it = (u(0),...,u(n-1)) € R}

From results in the previous section we shall obtain the following limit set tri-
chotomy for difference equations:

For solutions u of (6.3.1) either
(i) forall0 <@ # 0, uis unbounded,

or
(ii) forall O < @, tlim u(t)=0
or

(iii) forall 0 < @ # O, tlim u(t) = c(@)r* where c(t) > 0 and r* is the unique positive
—00
solution of f(r,...,r) =r.

As in earlier Sections 2.5, 5.4 to the difference equation we associate the selfmapping
T of RY given by T(xy,...,X,) = (X3, ., X, f(X).

To apply differentiability criteria from the previous section, we have to deal with
inequalities like Zl 1 ]| o (x)| < Txfor 1 < i < n. To this extent we introduce for

a selfmapping T of K = R’ which maps continuously differentiable K into itself the
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mapping 6 (T), defined by

§(T)(x) = Tx - J)Ix for x ek,

where J(x) = Jr(x) is the Jacobian of T and |J(x)| is the matrix of the absolute values
of J(x). The following lemma provides conditions under which & (T™)(x) > 0 or > 0,
which will be very useful in dealing with difference equations as well as with differ-
ential equations.

Lemma 6.3.1. (i) Form > 1 it holds

m-1
S(T™E) 2 Y I 1 U™ 20l T 08 (T ). (632
k=0

(ii) Suppose 6 (T)(x) > O forallx € f( and let m > 1. Assume further, fory € K there
exists some p = p(y) such that there exists from each i a chain to p in the following
sense: For a;(x) = %(x) and certain indices i = iy,..., 1

)

a;,;, (T™'y) # 0,4, (T"%y) # 0,..., a4, ,(T"*y) # 0,6 (T)(T™ " 'y), > 0

Zi3
(where for k = 0 the condition on the a;; is empty).

Then 6§ (T™)(y) > O forally € K.
(iii) If T is monotone and

0<J(x) £J(tx) forall xe I°<, all 0<t<1,
then 8 (T*)(x) > O forallx € K.
Proof. (i) First, we prove

O(T o S)(x) = 6(T)(Sx) + J1(Sx)|6(S)(x), (6.33)

where Sis another selfmapping of K, mapping I°< continuously differentiable into itself.
By definition, § (T o S)(x) = (T o S)(x) — [J7.s(¥)|x.
Using the chain rule we obtain

6(ToS)x) = (ToS)x) = r(Sx) - Js(x)lx
2 (T 5)(x) = Ur(SX)] - Us(x)Ix.

Expanding the right hand side as
(ToS)) = TS Sx + (S| Sx = [Jr(Sx) |- s x
and collecting the terms

§(T)(Sx) + Ur(Sx) (Sx = Js(x)] x)
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yields inequality (6.3.3). Now we prove inequality (6.3.2) by induction on m. The case
m = 1 is trivial. Suppose (6.3.2) holds for m. From inequality (6.3.3) we obtain for
S=T"

S(T™H(x) 2 8(T)(T™x) + [J(T"x)| 6(T™)(x), where J =],

and by induction hypothesis for the right hand side

m-1
§(D(T™0) + Y T 0] -+ T 018 (DT o).
k=0
This expression is just the right hand side of inequality (6.3.2) with m replaced by m +
1. This proves inequality (6.3.2).
(ii) Lety,p = p(y),ibe given.
From inequality (6.3.2) and 6 (T)(:) > 0, it follows

ST™)W); 2 ay;, (T™ W) - @y, (T" 20+ lay, (T )8 (DT ),

1i2 2i3
and by the chain assumption § (T™)(y); > 0. Since i was arbitrary this proves part (ii).
(iii) By the mean value theorem for x € K given
n n
Tx = Zai]-(tl-x)xj +T,0 > Zal-j(t,-x)x-, where 0<t; <1
=1 j=1
For 1 > s > max{t; | 1 <i < n} by assumptions a(tx) = aii(%sx) > a;;(sx) and, hence,

6(T)(x) = Tx = J(x)x = J(sx)x = J(x)x = (J(sx) = J(x))x.

Since J(sx) 2 J(x) there exists for x € K ap = p(x) such that § (T)(x), > 0. Since
J(Tx) > 0, for any i we have that a;,(Tx) > 0. Therefore, for m = 2 there exists a chain
from i to p and from part (ii) it follows & (T%)(x) > 0. O

With the help from Lemma 6.3.1 we obtain the following result.

Theorem 6.3.2. Let K = R and T a continuous selfmapping of K some iterate of which
maps K ~ {0} into K Assume T to be a continuously differentiable selfmapping of K and

T.
i

0x;

n

2%

j=1

<Tx

foralll <i< nandallxe]o(.

(i) Assume for each x € K given there exists i = p(x) such that the inequality holds
strictly. Suppose further there is some m > 1 such that foreachx ¢ Kand1 <i<n
there exist indicesi = i,,...,1; with

A Rp—_— .
F(T xX)#0, 1<r<k i, =pkx).
1

r+1

Then strong limit set trichotomy holds for T.



202 —— 6 Limitsettrichotomy

(ii) If T is monotone and for some iterate S of T it holds that

0<Js(x) 5 Js(tx) forall xe Io(, all 0<t<1
then strong limit trichotomy holds for T.

Proof. (i) Forx € I°< by assumption 6 (T)(x) = Tx — |Jz(x)|x = 0 and 5(T)(x)1[J > 0 for
p = p(x). The additional assumptions made imply there exists from each i a chain to p
which by Lemma 6.3.1 (i) implies for the iterate S = T™ that 6 (S)(x) > 0 for all x € K.
By Corollary 6.2.2 limit set trichotomy holds for T.

(ii) By Lemma 6.3.1 (ii), 6 (S*)(x) > 0 for all x € K. Again, Corollary 6.2.2 implies
limit set trichotomy for T. O

A first consequence of Theorem 6.3.2 is the following result on difference equations.

Theorem 6.3.3. LetK = R andf: K — R,,f(x) > O forx > 0.

(i) Assume f is monotone and subhomogeneous. If f is strongly monotone then for the
difference equation (6.3.1) limit set trichotmy holds and if f is strongly subhomoge-
neous then limit set trichotomy holds with c(it) = 1 forall0 < i #+ 0.

(ii) Iff is continuously differentiable on I°<, f(x) > 0forx 2z 0and Z;’;l Xl g—)’:(x)l < f(x)
)

forallx € K then for the difference equation (6.3.1) limit set trichotomy holds with
ci) =1forall0 <u + 0.

(iii) Assume f continuously differentiable on K and Z]'.Ll x]-|aa—£(x)| < f(x) forall x € I°<
)

and Z;Lllg—j:(?)l < 1for¥=(r,...,r) wherer > O with f(F) = r. Then tlimu(t) =r for
] —00
all solutions u(-) of the difference equation (6.3.1) with O g . r is the unique positive

solution of the equation f (s, ...,s) = s.

Proof. Let Tx = (x3,..., X, f(X)), x € K.

(i) T maps 10( into itself, T is monotone and subhomogeneous. By iteration, T"x =
(FO, f(TX), ... f(T"X)).

If f is strongly monotone, x £ y implies f(x) < f(y) and, hence, Tx £ Ty. This
in turn implies f(Tx) < f(Ty). By iteration it follows that T"x < T"y. That is, T" is
strongly monotone. In the same way, f strongly subhomogeneous implies the same
for T". Theorem 6.1.5 B implies limit set trichotomy, with c(x) = 1 in case f is strongly
subhomogeneous.

From the difference equation u(t + n) = f(u(t),...,u(t + n - 1)) it follows
Tu(t),...,u(t + n—1)) = (u(t + 1),...,u(t + n)). By iteration T'a = (u(t),...,u(t +
n-1)). Thus, the limit set trichotomy for T implies the limit set richotomy for the differ-

ence equation (6.3.1). Thereby, a fixed point x* € K of T becomes x* = ..., r'),r >
o,f(r,....r")y=r".
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(ii) Tis continuousand T" maps K ~ {0} into K by step (i). Since f is continuously

differentiable on K , T is a continuously differentiable selfmapping of K . Because of
Tx = (X3, ..., X, f(x)) we have
oT; oT,

a(x) 1+1,j for 1<i<n-1 and axj

_o
(x) = ox, (0.

Limit set trichotomy for the difference equatlon follows from Theorem 6.3.2 (i). For

this take p(x) = nforall x € K Obviously, Z] 1%l (x)| X = Tixifl<i<n-1,
and, by assumption

n

Yx ()‘ —(x) <f(x) = Tpx.

j=1

Let m = n and choose fori # n as indicesi,i + 1,i + 2,...,n— 1. Fori = n choose just
i = i; = n. For this choice the required assumptions are satisfied.
(iii) Th}s part follows from Theorem 6.2.6. T is a continuously differentiable self-
mapping of K. x* =7 = (r,...,r) is a fixed point of Tx = (x,,...,X,,f(x)). Assumption
pys 1|af (7)| < 1 implies

W

a] X" <r=fx")

X
j=1

As in the proof of part (i) it follows Y"j = 1x | x)l < Txforalll <i<n,allx ¢ K.

That is, 6 (T)(x) = 0, and, by Lemma 6.3.1 (i), 6(5)(x) >0,forS = T" allx ¢ K.

Furthermore, Z] 1 ] af (x")| < f(x*) by putting y = x" in Lemma 6.3.1 (ii) implies

6(S)(x*) > 0. From Theorem 6.2.6 it follows that tlim Tix = x* forall x € K Since

T = (u(t),...,u(t + n— 1)) for a solution u(-) and f(i1) > O for t 3 O this proves
part (iii). a

Examples 6.3.4. of difference equation (6.3.1)
u(t +n) = fu(®),ut+1),...,u(t+n-1)), for n>2.

(i) Letf(xp,xp,...,X,) = XL 1)(]"’ pj€[0,1,1 <j<n.Forn=2,p, =p, = 1the
difference equations generates for &t = (1, 1) the famous Fibonacci numbers whence
one may consider the above setting a generalized non-linear Fibonacci equation.
Obviously, f is monotone (increasing) and subhomogeneous. If a = min{p; | 1 < j <
n} > 0 then f is strongly monotone and by Theorem 6.3.3 (i) limit set trichotomy holds
for f. If, otherwise, a = 0 then f is strongly subhomogeneous and by Theorem 6.3.3 (i)
again, limit set trichotomy holds (with c(i1) = 1). It is interesting to know which of the
three alternatives actually applies. Since f(1,1,...,1) > 1 case (ii) is impossible. It is
easy to verify that the equation Z]’.’Zl P = r has a solution if and only if b = max{p; |
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1 <j < n} < 1. This shows, case (iii) holds if and only if b < 1. Consequently, case (i)
holds if and only if b = 1 (as for the Fibonacci numbers).

(if) Consider the following “multiplicative version” of the generalized Fibonacci
equation, that is,

n
fOuxas. ) = [ [p € [0,1], 1<j<n
i=1

(For Z}Ll p; = 1 this is the so called Cobb—Douglas production function employed in
economics.)
Obviously, f(x) > 0 for x > 0 and the general assumptions of Theorem 6.3.3 are
satisfied. Because of of
3™ = pd T
i#j
one has for Y, p; < 1 that

n

()l Zp, f(x) < fx).

Assume 2}1:1 p;j < 1. Part (i) of Theorem 6.3.3 is not applicable because on R” fis
neither strictly monotone nor strictly subhomogeneous. Part (ii), too, is not applicable
because f(x) = 0 is possible for x z 0. Part (iii), however, is applicable because for

r=1,f(r)=rand
n n
Z dp<1
j=1 j=1

Thus, by Theorem 6.3.3, thm u(t) = 1 for all solutions of the difference equation

(r)

(6.3.1) with « = 0. In case of Z;l=1 p =1, however, none of the three parts of The-
orem 6.3.3 does apply. Indeed, limit set trichotomy does not hold in this case since
fora = (1,...,1) the solution u is constant 1, excluding cases (i) and (ii), and for
= (1,0,...,0) the solution u is constant O which excludes case (iii). On the other
hand, one verifies, nevertheless, by direct calculation that tll%lo u(t) = 1 holds true for

it > 0. Later on we shall examine the reasons for this phenomenon. (See the dynamics
of means in Chapter 8.)

A further application of our results on limit set trichotomy is to the theory of coop-
erative systems of differential equations as developed by M. Hirsch and H. Smith [6,
7,9, 23, 24]. This beautiful theory has many applications, in particular to biology. We
will improve a main result in this area and illustrate it by the example of biochemical
control circuits.

Consider a dynamical system in continuous time given by differential equations

X'(t) = F(t,x(t)), x(t)eR", teR, (6.34)

where F: R x R! — R" is continuous and x — F(t, x) continuously differentiable.
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(As always, for x,y € R" we write x < yifx; < y;foralli,x s yifx < ybutx # y
and x < yif x; < y; for all i.)

That (6.3.4) is a dynamical system means in particular that for each x > 0 there
exists a unique solution x(t) = ¢ (¢, x) with x(0) = ¢ (t,0) = x. Furthermore, the map-
ping on int R’ given for ¢ fixed by x — ¢ (¢, x), as well as its inverse, is continuously
differentiable. (See [4, 5, 8] where conditions are specified for the property to hold.)

Definition 6.3.5. The system (6.3.3) is called cooperative if for 1 <i,j < n

OF;

a—x’(t,x) >0fori+j,allt>0,allx>0. (6.3.5)
J

Equivalently, if the Jacobian Jp(¢, x) is a Metzler matrix for all ¢ > 0,x > 0. Thereby,

a square matrix is a Metzler matrix if all non-diagonal entries are nonnegative. A

Metzler matrix is irreducible if for some ¢ > 0 the matrix cI + M is irreducible as a

nonnegative matrix (cf. Section 2.4).

In what follows we shall derive a limit set trichotomy for the solutions ¢ of sys-
tem (6.3.3) from Theorem 6.3.2 part (ii) by setting Tx = ¢ (7, x) for some fixed 7. For
this we have to translate assumptions on F into properties of T. For the required
translation the following lemma will be crucial.

Lemma 6.3.6. (i) Suppose F as in system (6.3.3) satisfies the Kamke condition, that
is,foreach1 <i<n,eacht > 0,0 < xand 0 = x; implies 0 < F;(t, x).
Then for each solution x(-) of system (6.3.3) x(0) > O implies x(t) > O forall t > O.
(ii) Let for a solution ¢ (-, x),x > 0, of system (6.3.3)and 1 <i,j <n,t >0

OF; og;

ij t) = —L t) t) d i t; = - t) . 6.3.6

a;(t, x) axj( ¢ (tx) and uy(t,x) % (t,x) (6.3.6)
If the matrix A(t, x) of the a;(t,x)isa Metzler matrix for allt > O then U(t, x) > O for
allt > 0, U(t, x) being the matrix of the u;(t, x).

(iii) Suppose A(t, x) is a Metzler matrix for x > 0,t > O such that for 1 < i # j < n there
existiy, ..., 1, pairwise different and different from i, j with

a;; (t,x) > 0,a; ; (,x) > 0,...,a; ;(t,x) > 0.

Then u;(t,x) > 0 and uy, ,(t,x) > O for all h.

Proof. (i) Let x'(t) = F(t,x(t)),x(0) > 0. Consider for n € N the system x'(t,n) =
F(t,x(t,n)) + e(n),x(0,n) = x(0) + e(n), where the vector e(n) has all components
equal to % We shall show that x(¢,n) > O for all t > 0. If this does not hold then there
existiand s > 0 such that x(¢,n) > 0 for 0 < t < s by continuity but x(s,n); = 0.
Therefore, x'(s, n); < 0and 0 > x'(s, n); = Fi(s,x(s,n)) + % Since x(s,n) > 0 by
continuity and x;(s,n) = 0 it follows from the Kamke condition that F;(s, x(s, n)) > 0.
This implies 0 > % — a contradiction. Thus, we must have x(t,n) > O foralln € N,
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allt > 0. For n — o0, x(0, n) approaches x(0) and x(t, n) approaches x(t). This shows
x(t) > O0forallt > 0.
(ii) By the chain rule we obtain from (6.3.3) for 1 <i,j < n

- OF; ¢
u(t,x) = Y =—L(t, @ (t, X)) == (t, %),
] kzlaxk an
and, hence,
n
u(t,x) = Y ag(t, uy(t, x). (6.3.7)
k=1

For j and x given let v;(t) = uy(t, x) for all i. Equation (6.3.7) gives for the vector v(t)
VI(t) = G(t,v(t)) with G(t,v) = A(t,x)v, t=> 0.

If v > 0 with v; = 0 then by assumptio- A(t, x), G;(t,v) = a;(t, X)v; + X4 Ay (&, X)v; = 0.
Thus, G satisfies the Kamke condition and (ii) folllows from (i) because of v;(0) =
;= 0.
(iii) Fixx > Oand t > O and let A = A(t, x), U = U(t, x). First we show for any h, k, |
with k # [ that

Uy =0 and ay>0 imply uy=0 (%)

From (ii) we have for U(s) = U(s, x) that U(s) > O for all s > 0. Equation (6.3.7)
therefore implies ul',h(s) > Ay, (S)Upp(S) for all p, h, s. By integration we obtain for 0 <
s<t
Upp(t) = Uy exp(fst @y, (r)dr). Since uy,;,(0) = 1 it follows that uy,, > 0 for all h. Further-
more, U, (t) = 0 implies uy,(s) = 0 for 0 < s < t and, hence, uy,(s) = 0. From equation
(6.3.7) it follows that Y}_; ay(s)uy(s) = uy,(s) = 0 for 0 < s < t. Thus
U, = 0 and ay; > O for k # limplies uy, = 0, which proves (x).

Next, we show for i # j as in (iii) and any h that

Uy =0 implies wuy; =0 (%)

Together with u; >0 this shows u; > 0, the conclusion wanted in (iii). To show (s *)
let uy, = 0. By assumption there exists i; # i,j such that a;; > 0. Property (*) for
k =11 =i, yields u; , = 0. This together with a; ; > O implies in the same way that
u;, , = 0. By iteration we arrive aty; , = 0 and g; ; > 0. By (x) again this gives uy, = 0.
This proves (= *) and, hence, part (iii) of the lemma. O

With the help of this lemma we will obtain the following limit set trichotomy for the
solutions of a cooperative system of differential equations.

Theorem 6.3.7. Assume the system (6.3.3) satisfies the following conditions where
Jr(t, x) denotes the Jacobian of F(t,-) at (t,x) fort = 0,x > 0.

(a) Fis periodic with period T > 0, thatis F(t + T,x) = F(t,x) forall t > 0,x > 0.

(b) F satisfies the Kamke condition.
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(c) Jg(t,x) is an irreducible Metzler matrix for eacht > 0,x > 0.

(d) IfO<x<yandt > 0thenJ(t,y) £ Jp(t, x).
Then the following limit set trichotomy holds for the solutions ¢ (t,x),x z O.

Either

- all solutions are unbounded,

or

— all solutions converge to 0,

or

— all solutions converge to x* > 0. For x = O the solution ¢ (-, 0) is either identically O
or it converges to x*, too.

Proof. (i) Let ¢ (t,x) a solution with ¢ (0,x) = x > 0. From Lemma 6.3.6 (i) we have
that ¢ (¢,x) > 0 for all ¢. For O < x < y by the mean value theorem fort > 0,1 <i < n,

¢:(t,y) - it x) = [Ut,2)(y - 0], z=x+6(y-x),

for some 0 < © < 1. Since z > 0, assumption (c) and Lemma 6.3.6 (iii) imply that
U(t,z) > 0. Therefore, 0 < ¢ (t,x) < ¢ (t,y). In particular, ¢ (t,y) > O fory > 0 and
0<¢(tx) <g(ty) for 0 < x <y by continuity.

Now define for a solution ¢ (¢, x), x > 0, Tx = ¢ (7, x). By the above, T is a continu-
ous selfmapping of R’ which is monotone and maps int R into itself. We will obtain
the limit set trichotomy wanted from Theorem 6.3.2 (ii) for S = T.

(i) Next we show 0 < J;(y) £ Jr(x) for O < x < y. Obviously, g—:]f(x) = g;f(’}f(r,x) and
T is a continuously differentiable selfmapping of int R’. From assumption (c) and
Lemma 6.3.6 (iii) it follows that g—z(y) = ?’%(T,y) = u;(1,y) > 0 and, hence, J7(y) > 0.

Consider Q(t) = U(t,x) — U(t,y). The chain rule gives

Q,(t) = A(t)X)U(t>X) —A(t>)’)U(t>)’)
= A(t,)(U(t,x) - U(t,y)) + (A(t,x) - A(t,))U(t,y).

With B(t, x, y) = (A(t,x) — A(t,y))U(t,y) we have that
Q'(t) = A(t,0)Q(t) + B(t,x, ). (%)

Since Q(0) = U(0,y) — U(0,x) = I — I = 0, the solution of the system () is given by
t
QO) = [X(6:)B(s.x.y)ds, (+%)
0
where X(t,s),t > s is the fundamental solution of the homogeneous system to (x).
Since the latter coincides with equation (6.3.7) we have that

X(t,s) = Ut,x)U(s,x)"" = U(t - 5, (5, %)).

By Lemma 6.3.6 (iii) U(r, z) and, hence, X(t, s) is strictly positive. From (i) we have
foru = ¢(t,x) and v = ¢ (t,y) that u < v and, by assumption (d), Jz(t,v) § Jp(t,u).
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From J(t,u) = A(t, x),Jr(t,v) = A(t,y) we conclude from the definition of B(t, x, y) that
B(t,x,y) 2 0. From equation (x#*) we obtain Q(t) 2 O for all ¢ > 0. Finally from the
definition of Q(¢) it follows that J;(x) — J;(y) = U(zr,x) - U(t,y) = Q(r) z O. This
proves (ii).

(iii) To apply Theorem 6.3.2 (ii) it remains to show that ¥, xi|%(x)| < Tyx for
x > 0, alliand that Ty > O for y 2 0. By the mean value theorem and st]ep (i),

Tix = z (ex)_z (x for x>0,

which together with J;(x) > 0 yields the first required condition. Furthermore, toy 2 0
there exists z > O withy < z. For 0 < € < 1 arbitraryand x = y + ez itholds 0 < x < 2z.
Therefore, using step (ii)

X > )% a—T x)>Zx —’(Zz)_Zy] a'(ZZ)
j=1

Letting ¢ — O this yields, because of J;(2z) > 0, T,y > Z} 1 yJ o (2z) > 0. This proves
Ty > 0.

(iv) By (i) to (iii) all the assumptions of Theorem 6.3.2 (ii) are satisfied and the
strong limit set trichotomy applies to T. Since Tx = ¢ (1, x) we have for the iterates
T*x = ¢ (kt,x).Ift >0,t =kt +5,0 <s <1, then

o t,x) =kt +5,x) =P (kT, P (s,x)) = Tk(l) (s, x).

If (Tkx)k is unbounded for all x z 0 then the solution ¢ (¢, x) is unbounded for all x 2 0.
If lim T*x = O for all x > O then 11m¢ (t,x) = 0 for all x > 0. Finally, consider the case

k—o0

khm T*x = x* for all x 2 O where x* > 0 is the unique non-zero fixed point of T. For
—00
x20,5>0,k>1

¢kt +5,%) = P (k- 1T, P (5, (1,%)) = T p (s, ¢ (7,X)).

From (iii) ¢ (t,x) = Tx > 0 and by (i), ¢ (s, ¢ (r,x)) > 0. Therefore, klimgb(k‘r +
s,x) = x* and for any neighborhood U of x* there exists k(s) > 1 such that ¢ (k1 +
s,x) € U for k > k(s). By continuity of ¢ (-, x) there exists a neighborhood V of s such
that ¢ (kt + s',x) e Ufors' e Vand k > k(s). Since [0, 7] is compact there exists K
such that ¢ (kt + s',x) e Uforallk > K, all 0 < s’ < 7. From this we conclude that
tlimqb(t, x) = x* for x 3 0. Finally, let x = 0 and suppose ¢ (s,0) 2 O for some s > 0.
Then ¢ (t,0) = ¢ (t-s,¢ (s,0)) for t > sand, hence, tlimqb (t,0) = tlim(,b (t-s, ¢ (s,0)) =

x*. This completes the limit set trichotomy for the solutions ¢ (-, x). O

In terms of solutions we may view the limit set trichotomy of Theorem 6.3.7 as follows.
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Corollary 6.3.8. Assume in addition to conditions (a)—(d) of Theorem 6.3.7 that there
exists at least one non-zero bounded solution. Then there exists a unique constant and
global attractive solution. This solution is either the zero solution or, if F(-, 0) is not iden-
tically 0, a strict positive solution.

Proof. By the additional assumption only cases (ii) and (iii) in the limit set trichotomy
of Theorem 6.3.7 are possible. In case (ii) we have tlimqb (t,x) = Oforall x > 0. By
continuity, for any s > 0

¢ (s,0) = ¢ (0, tllmqb(t,x)) = tlimq,') (s, (t,x) = tlimq,')(s +t,x)=0.

That is, ¢ (-, 0) is the zero solution and, since tlirglo(¢ t,x) - (t,0)= tlirglo¢ (t,x) = 0,
it is globally (for x > 0) attractive. There is, of course, in case (ii) no other constant
solution globally attractive. Furthermore, since ¢ (-, 0) is a solution of X' (t) = F(t, x(t))
we must have that F(¢,0) = O for all t > 0. For case (iii) we have tllglo ¢ (t,x) = x* forall
x 2z 0. By continuity, as above, ¢ (s,x™) = x* for all s > 0, that is the solution ¢ (-, x*) is
constant to x* > 0. It is globally attractive (for x 2 0) since tllrgo (p(t,x)-¢p(t,x™)) =0.
No other constant solution is, in case (iii), globally attractive. Finally, if F(-, 0) is not
identically zero, case (ii) is not possible by the above. Thus, we must have case (iii)
and the solution under consideration must be strictly positive. a

The last Theorem as well as its Corollary will be illustrated by the following example
from biology.

Example 6.3.9 (Biochemical control circuit (cf. [7, 23, 24]). A biochemical control cir-
cuit (or a single loop positive feedback system), which models for example the control
of protein synthesis in the cell (cf. [24, p. 58]), is given by the system of equations

X, (8) = f(t.%,(6)) — ay ()1 ()

, (6.3.8)
x;(t) = xi_1(6) —(t)x;(H) for2 <i<n.

wheref: RxR, — R, andf(t,) is continuously differentiable on int R’. Assume the
following concavity condition for f

0 < v < wimplies 0 < %(t, w) < % (t,v) for t > 0. Furthermore, we assume for some
T > 0 that &;(-) and f(-, u) are T-periodic in t. We write system (6.3.8) as

X'(t) = F(t,(x)) with

Fi(t,x) = f(t,x,) — a1 ()xy, Fi(t,x) =x_; —a;(t)x;, 2<i<n (6.39)
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This system, obviously, is of the type 6.3.3 considered earlier, it is T-periodic and it
satisfies the Kamke condition. Furthermore, for x > 0 the Jacobian of F(t, -) is

—a;(t) 0---0 L(t,x,)
1 —ayt) O-- 0
Jr(t,x) = 0 1 —-a5(t) -0
0 01 -ayt)

Therefore, Jx(t, x) is a Metzler matrix which is irreducible for ¢ > 0,x > 0. The concav-
ity condition implies Jp(t,y) 5 Jp(t,x) for 0 < x < y. Thus, all assumptions of Theo-
rem 6.3.7 are satisfied and the limit set trichotomy obtained holds for system (6.3.8).
According to Corollary 6.3.8, if there exists a bounded orbit and F(t, 0) # O for some ¢
then there exists a unique strictly positive solution which is constant and attracts all
solutions not beginning in 0. (This may be, however, also the case if F(t,0) = O for all
t. For a particular example of a biochemical control circuit see Exercise 12.)
We shall conclude with some further remarks concerning the literature.

Remarks 6.3.10. (i) Theorem 6.3.2, part (ii) generalizes results in [15, Theorem 2] and
[25, Theorem 2.1]. (See Exercise 8.) The condition J5(x) £ Js(tx) in part (ii) is a strong
concavity condition which, however, is weaker than the condition Js(y) £ Js(x) for
0 < x < yin [23] which in turn is weaker than a similar condition in [6] (see [23,
p. 1038)).

(if) With a different proof, Theorem 6.3.3 (ii) was obtained in [14, Theorem 2(ii)].
Example 6.3.4 (ii) can be found there, too [14, Example 1].

(iii) More on the Kamke condition (Lemma 6.3.6), sometimes also called Miiller—
Kamke condition, can be found in [4], [9], [24]. Part (iii) of Lemma 6.3.6 refines results
in [7, Theorem 1.1] and [24, Theorem 1.1], respectively, where it is proven that U(t,x) > 0
for A(t, x) irreducible.

(iv) Though not in terms of a limit set trichotomy Theorem 6.3.7 can be found es-
sentially in [23, Theorem 3.1]. Example 6.3.9 can be found there, too [23, p. 1049].

(v) The theory of monotone dynamical systems developed in [6, 7, 9, 23, 24] is
about semiflows on a partially ordered metric space. When applied to selfmappings
of a convex cone this theory requires the selfmapping to be monotone. This is different
from positive dynamical systems as treated in this book. For linear selfmappings, of
course, positivity is equivalent to monotonicity, for non-linear selfmappings of a con-
vex cone, however, this need not necessarily be the case. As remarked already, cone
mappings (or mappings non-expansive for the part metric) as considered for limit set
trichotomy need not be monotone (see Remark 6.1.4).



6.3 Applications to non-linear difference equations = 211

Exercises

1. For Theorem 6.1.1 A find examples which show that each of the three cases of the
weak limit set trichotomy is possible.

2. Let T be a selfmapping of a cone K which satisfies the general assumptions of
Theorem 6.1.1 and which maps K ~ {0} into itself. Show that the (strong) limit set
trichotomy holds for T if it holds for an iterate of T.

3. Find an example of a concave selfmapping T of R’ such that the strong limit set
trichotomy holds for T but does not follow from the trichotomy for the dominant
eigenvalue (in the sense of Theorem 2.3.1 (i)).

4. Show for the selfmapping of R, given by Tx = x + 1+X
(a) T is neither monotone nor antimonotone nor subhomogeneous.
(b) T isnon-expansive for the part metric.

5. Let K be a closed convex cone in a Banach space (E, | - ||) which is normal with
non-empty interior K. Let T be a selfmapping of K which is compact for | - ||, non-
expansive for p and monotone (for K). Suppose T has a fixed point x* € K such

that
x* §T(ax*) and T(a'x*)sa'x*

forall 0 < a < 1 and strict inequalities (< for f() ifag < a < 1 for some 0 < a.
Obtain from Theorem 6.1.10 that hm T'x = x* forall x € K (Cf. [10] where the
above conclusion is obtained for a monotone and subhomogeneous selfmapping
T of K for K = R" and a fixed point x* € K of T which satisfies

a’x* < T(ax) and T(a x*) <a®x*

forsome0 <6 <landallO<a < 1.)

6. Prove the following geometric interpretation of

n

oT; . °
Yx a—x’(x)sTix, 1<i<n xeK
j=1 j

where T is a selfmapping of K = R and a continuously differentiable selfmapping
of I°< .

IfA;(x) = (x, Tx) + {(u,Jr(x)u) | u € K} is the (positive) affine tangent space at
P(x) = (x, Tx) then

Ar(x) < P(x) + C(x)

n
i}
=1

where

Cx) = {(u,v) e KxR"

is a polyhedral convex cone with ¢ = max Iix,
1<ij<n Xi
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10.

11.

12.

Let f be a selfmapping of R, given by f(x) = Ax(1 + x)P with A > 1,8 >0.

(a) Prove the statements made in Example 6.2.7.

(b) Show that the contraction constant c(f) (see Theorem 6.2.1) is given by c(f) =
max{|1 - ], 1}.

(c) Find for the unique fixed point x* = AF —1a parameter value A, > O such
that x™ is globally attractive forall 1 < A < Ajandall § > 0.

(d) Find values for parameters A and 8 for which x* is locally but not globally
attractive.

Consider the following population models u(t + 1) = f(u(t)),u(0) € R,,f: R, —
R,:
(i) The generalized Pielou equation with

fx) =Ax(1 +ax)’b+cx+d with A >0, a>0, b>0; ¢c,d=0.
(ii) The bobwhite quail population with
fx)=Ax(1 + x")’1 +cx+d with A,k>0 and c¢,d=>0.

(a) Show that the limit set trichotomy holds for i) if b < max{2, < + 1}.

(b) Show that limit set trichotomy holds for ii) if k < 2 + 3 f

(c) Find for both models parameter values for the three cases of the limit set tri-
chotomy to hold.

Deduce the following result from Theorem 6.3.2 (ii) [15, Theorem 2].
Let K = R and T a continuous selfmapping of K which is a continuously differ-

entiable selfmapping of K satisfying the following assumptions
(@ 0<x<yimpliesO < J;(y) < Jp(x),
(b) for some iterate S of T it holds that

0<Js(x) 5 Js(tx) forall xe Io(, all O0<t<1.

Then T has strong limit set trichotomy.

Find an example of a non-constant mapping T which satisfies the general assump-
tions of Theorem 6.3.2 and to which part (i) applies but not part (ii).

Find an example of a concave mapping f: R, — R,,f(x) > 0,f not constant to
which part (iii) of Theorem 6.3.3 applies but not part (ii).

Prove the following superposition principle for difference equations [12, p. 333].
Let, forK =R}, f: K — R,,f(x) > 0forx 2 0
andf =Y, f* where for each 1 < i < m the mapping f': K — R, is continuously

differentiable on K with

n

2%
j=1

Then for the difference equation of order n defined by f (equation (6.3.1)) the limit

of!

a—Xj(X) <fX). ()
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set trichotomy does hold provided that for each x € K one of the two following
conditions is met:
(i) there exists an index k = k(x) for which strict inquality holds in (*) fori = k,
or
(ii) there exist indices h, k, I (depending possibly on x) such that
h k

ZLXI(X) . ZLXI(X) < 0.

Consider the following biochemical control circuit with parameter a;,a, > 0

Xj(t) = V@) — axq(t)
X5 = x (1) = ax,(0).

(a) Prove that the assumptions of Theorem 6.3.7 are satisfied (for any T given).

(b) Show that each of the three cases of the limit set trichotomy in Theorem 6.3.7
can occur for appropriate values of the parameters a,, a,.

(c) Show that the zero solution as well as a constant strictly positive solution oc-
curs as the unique constant globally attractive solution for certain values of
the parameter a, a,. lllustrate by computer simulations the behavior of the
solutions for such values of the parameters.

14. (a) Obtain from the weak limit set trichotomy in case of linear operators the fol-

lowing result [18, Theorem 3].
Let T be a linear and continuous operator on the Banach space (E, | - |) which

leaves a closed convex and normal cone K in E as well as its interior K invari-

ant. Suppose K # @, T has a bounded orbit for some x € K and T satisfies the
following positivity condition:

for each x € K ~ {0} there exists n(x) € N such that T"®x ¢ K. (%)

Then all orbits of T are bounded and either rIIL% T"x = 0 for all x ¢ K with
wx) +0
or

}LH;OTHX =c(x)x* forall xeK~{0} with w()+0,

where x* € I°< is a fixed point of T and c(x) > O.

(b) (Cf.[18, Example 2].) Let E be the vector space of all converging real sequences
equipped with the sup-norm with K consisting of all non-negative sequences.
Let T the linear operator on E defined for x = (x,), by T,x = Y| 2X; + 3 Xp.;.
Show that all assumptions in (a) are satisfied and that nlgglo T = c(x)x*
where x* is the sequence consisting of 1 and c(x) = Y2, (c, — C,_1)x, with

(n—-1)n
=2 2
(c) Use the example in (b) to show that property (*) does not necessarily imply
S(K ~ {0}) < K for some iterate S of T.
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7 Non-autonomous positive systems

Already in Chapter 1 “How positive discrete dynamical systems do arise” we met non-
autonomous systems, that is systems where the law governing the dynamics does ex-
plicitly depend on time. For the Leslie model in population dynamics as well as for the
Leontief model in economic production the dynamics were modelled as

x(t + 1) = T(t)x(t), teN, x(0) € R}

(see equations (1.2.9) and (1.4.2)).

The reason for considering the “law” T(t) as dependent on time ¢ was in the case of
population dynamics the dependence of birth- and survival rates on time, due possibly
to changes in the environment. In the case of economic production the cost function
depends on time due to changes in the technology of production. From Chapter 1 up
to Chapter 6 our focus was on the non-linearity of the selfmapping T and the asymp-
totic behavior of its iterates. To analyse the asymptotic behavior of a non-autonomous
system one has to consider the iteration of time-dependent operators T'(t), also called
inhomogeneous or nonhomogeneous iteration. In the particular case where T(t) con-
verges for t — oo to some operator T one has — under certain assumptions — conver-
gence of the inhomogeneous iterates T(t) o T(t — 1) o --- o T(1) o T(0) in which case
one speaks of strong ergodicity. In general, however, such a convergence cannot be
expected (see Exercise 8). A new kind of stability comes into play which we call path
stability. Roughly speaking, this means that a path given by x(t + 1) = T(t)x(t) for
t > 0, when disturbed suddenly at some ¢, comes asymptotically back to its original
behavior. A strongly related notion is that of weak ergodicity. (The precise definitions
are given below in Section 7.1.)

The concepts of weak and strong ergodicity were developed within the fields of
demography and Markov chains and do have an interesting history which we shortly
sketch. (The reader can find more details in the informative articles [5, 42, 43] and
in Seneta’s book [44]). As early as 1931 the concept of weak ergodicity was conceived
of by A. N. Kolmogoroff who called it “das Ergodenprinzip”, the ergodic principle [26,
p. 424]. For an inhomogeneous Markov chain, i.e., a sequence (P;);.; of row stochas-
tic non-negative matrices consider the forward product

. . K
T,x =P, 1P, ...P, withentries tl(s’ ),

Following [42, p. 507] the sequence (P),.; is weakly ergodic in the sense of Kol-
mogoroffif foralli,j,s=1,...,nandr >0

: (r.k) (riY _
lim (tis - t].s ) =0.

k—oo

Subsequently, conditions for weak ergodicity to hold have been obtained by W. Doe-
blin in 1937, S. N. Bernstein in 1946, T. A. Sarymsakov in 1956. Independently of this
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“Russian School”, work by ]. Hajnal from 1958 on became very influential. In partic-
ular, his work was employed by A. Lopez in 1961 to prove an empirically based con-
jecture by the demographer A.]. Coale in 1957. This conjecture, now famous as the
Coale-Lopez Theorem in demography, states that the age structure in a population is
determined by the vital rates and not by the age structure years ago. Demographers
had observed earlier the phenomenon that the age structure when disturbed by a war
approaches the one prior to the war. One might say, equivalently, that weak ergodic-
ity amounts to path stability with respect to the structure under consideration. Inter-
estingly enough, considering time-continuous population dynamics, weak ergodicity
has been already recognized by H. T.]. Norton in 1928, wherefore sometimes the name
Norton—Coale-Lopez Theorem is used. For time-continuous population dynamics see
[22, 23] where a rigorous proof of this theorem in this setting is given. Kolmogoroff in
his fundamental paper [26], too, treats mainly time-continuous processes.

In what follows, Section 7.1 supplies precise definitions as well as relationships
between the concepts involved.

Sections 7.2 and 7.3, the central part of this chapter, are devoted to an analysis of
weak and strong ergodicity for time dependent and non-linear operators on Banach
spaces which are ascending for a convex cone. In particular, a concave extension of
the Coale-Lopez Theorem for Banach spaces is proven. Also, the classical results on
weak and strong ergodicity of inhomogeneous Markov chains are obtained as special
cases.

Section 74 then applies the general results to obtain a non-linear extension of a
classical result of H. Poincaré on non-autonomous linear difference equations.

Sections 75 and 7.6 present applications to the already mentioned non-autono-
mous systems in population dynamics and economic production, respectively.

7.1 The concepts of path stability, asymptotic proportionality,
weak and strong ergodicity

The notion of weak ergodicity for Markov chains has been extended to sequences
of non-negative matrices [44, p. 85]. A sequence (P});-; of non-negative matrices is
weakly ergodic if for the entries tg’k) of the forward product T, = P, - -+ P, itholds

for all i, j, s and r that
t(r,k)

s _ 0
Koo (00 Vi (711)
s

exists and is independent of s. In other words, any two rows i and j of T,; become
propotional for k approaching infinity. In the homogeneous case, that is P, = P for all
k, weak ergodicity means that any two rows of the power P¥ become proportional for
k approaching infinity. Actually, this is part of the classical Perron-Frobenius theory
as described earlier for a primitive matrix P (Theorem 2.4.1, part (iii) (c)). In the special
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case of a stochastic matrix P this is the so called basic limit theorem for Markov chains.
It is easily seen that equation (7.1.1) implies in the case of stochastic matrices the weak
ergodicity in the sense of Kolmogoroff. Obviously, more demanding than (7.1.1) is for a
sequence (Py),-; the following notion of strong ergodicity ([44, p.92])
(r.k)
lim —L— =y
k—oo ’
e
s=1

(71.2)

In other words, the sum-normed rows of T, ; become equal for k approaching in-
finity. In the homogeneous case, P, = P for all k, the two notions of weak and strong
ergodicity do coincide.

In the following we shall extend the concepts of weak and strong ergodicity, as
well as the related results, to non-linear and non-autonomous systems in normed
spaces. For doing so, we formalize the proportionality properties in equations (7.1.1)
and (7.1.2) in a way which will allow us to make a connection to the part metric and
the Hilbert metric, respectively. This in turn will allow us to apply our results on non-
autonomous systems in metric spaces from Section 4.2.

The following definition distinguishes three different kinds of a generalized pro-
portionality, where the last two are taken from [45, p. 242].

Definition 7.1.1. Let K be a convex cone in a real vector space V. Two sequences (x,,)

and (y,) in K are called

(a) asymptotically linked if there exist two sequences of positive real numbers (y,)
and (y,) such that y,x,, <y, < j,x, for finally all nand nlggo ;—: = 1 (< order relation
induced by K).

(b) asymptotically proportional if, in addition to (a), nlggo y, and '}Lrgo 7, exist and
are (strictly) positive.

(c) asymptotically equal if, in addition to (b), T}Lrgo p, = 1.

These notions are connected to part metric p and Hilbert metric d, as well as to a given
norm as follows. (See also Exercise 1.)

Lemma 7.1.2. Let K be a lineless, archimedean, convex cone in a real vector space V
and let || - || be a monotone norm on V. For two sequences (x,), (y,) contained in K ~ {0}
the following properties do hold.

(i) (x,) and (y,) are asymptotically equal if and only if

Jim p(x,,y,) = 0.
(ii) (x,) and (y,) are asymptotically linked if and only if

nli_{‘l)lod(xn’)/n) =0.
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(iii) If nlngo p(x,,¥,) = 0 and at least one of the sequences is bounded for | - || then
nll»rgo ” Xn = Yn ||= 0.

(iv) If}ilglod(xn,yn) = 0 then

1im|| Yo I || -o0.

ool X, | Iyl

™) Ifll x, =1 y, = 1 for finally all n then the properties }LILIO p(Xpy,) = 0and
}Lrgo d(x,,y,) = 0 as well as all three types in Definition 7.1.1 are equivalent to each

other.
These equivalent statements are all equivalent to ,,ILIEO | x, -y, lI= Oif, in addition,

one of the sequences is contained in z + K for some z € K.
Proof. (1) Let y,x, < ¥, < X, With y,, y,, > O for, without loss, n > 1. It follows
A(Xn’)/n) 2 Vn and A(Xn’yn)xn S ’}7an
and, hence, y, < A(x,,y,) < ¥,. Similarly,
o'V <X <9, Vu implies 7" <A(m ) <,
Therefore,
)7;1%1 < A(men) . A(Yn’xn) < yn)jgl‘
If the two sequences are asymptotically linked then
Jim d(x,, yy) = = lim 108[A (x» YA (Vs X)) = O.
In case, the sequences are asymptotically equal it follows that n]lglo A(Xp V)
nlgg/\ (V> X,) = 1 and, hence, }L‘&P(XnaYn) = _nlLrgo log min{A (x,,, ¥,,), A (V> X,)} = O.

(2) Conversely, if lim p(x,, y,) = O or lim d(x,,y,) = 0 we may assume that y, =
A(Xpyy) > 0and 7,' = A(y,, X,) > 0. By definition of A(-,-) we have that y,x, <y, <
PpXn. If nILH.}O d(x,,y,) = 0 then nlg{)lo YoP," = 1 and the two sequences are asymptotically
linked.

If lim p(x,,y,) = O then lim min{y,,7,'} = 1. To e > O there exists N such that
1 - € < min{y,,7,'}and, hence, 1 - e <y, <y, < (1 —¢) ' foralln > N.

This shows rlango Yo = nlerolo P = 1.

Steps (1) and (2) together proof the two equivalences (i) and (ii).

(3) Considering property (iii) let nllg)lo p(x,,y,) = 0 and at least one of the se-
quences bounded for ||-||. By (i) the two sequences are asymptotically equal and, hence,
both sequences are bounded for || - ||. Proposition 3.3.3 (vi) implies nhﬂrgo | x, -y, lI=0.
Furthermore, this proposition implies property (iv), too.

(4) As for property (v), from Proposition 3.3.3 (i) we have d(x,y) < 2p(x,y) and,
hence, }Lq}op(xn,yn) = 0 implies }Lrglod(xn,yn) =0.If|l x, =1 y, | = 1then
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p(x,,y,) < d(x,,y,) by Proposition 3.3.3 (vii) and, hence, nlggo p(x,,y,) = 0is equiv-
alent to }Lrglo d(x,,y,) = 0. By properties (i) and (ii), parts (a) and (c) in Definition 7.1.1
are equivalent and, hence, all three parts in this definition are equivalent. Finally, let
(x,) € z + K for some z ¢ K By property (iii), nan.}O | x, =y, lI= 0. From Proposi-

tion 3.4.12 (ii) it follows for P = f(, F consisting of || - || that

! "

! "
X —Xx
M for ||x -x"|<r,

h(x',x") <
where h(x,y) = 1 - min{A (x,y), A (y, x)} is the Harnack metric. Thus, )11er010 | x,-y, =0
implies nlLr& h(x,,y,) = 0 and a fortiori HILHOIO p(x,,¥n) = 0. This proves property (v) and
the lemma altogether. [

In concluding this section we give the following precise definitions for path stability
and the ergodic properties.

Definition 7.1.3. Let (X, p) be a metric space and a non-autonomous discrete dynami-
cal system given by a sequence (T,), of selfmappings of X, that is

Xpo1 = TpXp, n21, x; € X,

This system has path stability for the metric on D ¢ X if nanc;lo p (X, y,) = O for all
X1,Y; € D.In particular, if (V, || - ||) is a normed space with a metric given by || - || then
the system has path stability for the norm on D c V if nlLrEO | x, -y, l= 0 for all
X1,¥1 € D. The system has weak ergodicity on D ¢ V ~ {0} if lim I "j‘(—n” - IIz 4l =0 for
all x;,y, € D. It has strong ergodicity on D ¢ V \ {0} if there exists x* € D such that
lim || 2% — x*|| = 0 forall x; € D.

n—ooll lIx,

xYl
al

In the light of Lemma 7.1.2 we can describe the above concepts also in the following
way. Let (OV, [l - I) be a normed space with a normal, closed, pointed, convex cone K.
Let D ¢ K + ¢ and a non-autonomous system on D given by a sequence of selfmap-
pings (T,),, of D. For the part metric p on K the path stability on D is equivalent to
asymptotic equality of any two paths starting in D. For the Hilbert metric d on f( the
path stability on D is equivalent to asymptotic linkedness of any two paths starting in
D. Furthermore, in this case path statility for d implies weak ergodicity. It also fol-
lows from Lemma 7.1.2 that '}Lrgo d(x,,y,) = 0 is equivalent to nllg)lo p(x,,y,) = Oon
Dn{x € V || x |= 1}. Moreover, in this case these properties are equivalent to
weak ergodicity provided for one sequence, say (x,), one has x,, > || x,, | zforall n
and some z € I°<. This yields in particular that strong ergodicity with x* € I°<, I x* =1
is equivalent to nlLrQO d(x,,x*) = 0 or nlggo p("’;ﬁ,x*) = 0, respectively. Strong ergodic-
ity is, of course, stronger than weak ergodicity and, as remarked earlier, the former
cannot be expected for a non-autonomous system in general. Weak ergodicity or path
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stability, however, play an important role in applications, especially to population dy-
namics. The name “path stability” is due to the following interpretation. Suppose a
path (x,,) of a non-autonomous system in a metric space (X, p) is at a certain point of
time n, pushed from x,, to a different value y € D. If (y,) is the path which starts in
y then path stability on D gives HILIEO p (X, ¥,) = 0. Thus, path stability means that a
path when disturbed (within D) comes finally back to its original behavior. Further-
more, consider two paths (x,) and (y,) and let x = klirgo X, @ limit point of (x,). Then
p(ynk,)'() < p(y,,k,xnk) + p(xnk,)'() and, in case of path stability, klggo Yn, = X. Thus, an im-

portant consequence of path stability is that all possible paths have the same limit set.

7.2 Path stability and weak ergodicity for ascending operators

Dealing with non-autonomous systems we extend the notion of an ascending selfmap-
ping (operator) to a sequence (T,) of operators. (For simplicity, ¢ is assumed to be
continuous.)

Definition 7.2.1. Let K be a convex cone (not 0, {0}) in a real vector space V and let “<”
be the partial order defined by K. A sequence (T,),»; of selfmappings of K is uniformly
ascending on D ¢ K (with ¢) if there exists a continuous selfmapping ¢ of the open
interval ]O, 1[ with A < ¢ (1) such that forevery 0 < A < 1 and everyx,y € D

Axsy implies ¢A)T,x<T,y forall n>1.

A sequence (T,,),; is called uniformly weakly ascending on D ¢ K (with ¢ ) if there
exists a ¢p as above such that for every 0 < A < 1 and everyx,y € D

1
Axsys —x impli MTx<T,y<—=Tx forall > 1.
x*y*)lx implies ¢ (A)T,x ¢>(/\) x forall n
For the following result which will be fundamental for what follows we draw on earlier
results on non-autonomous systems on metric spaces (Section 4.2).

Theorem 7.2.2. Let (V,] - ||) be a normed real vector space and let K < V be a convex
cone which is closed and normal with non-empty interior K. Let (T,,) -1 be a sequence of

selfmappings of # ¢ D < K and let, forsomer > 1,S,, = Typ,y_q © -+ - o T, be a sequence
of lumped operators for m > 1. Consider the system on D, deﬁned by

=Tx, for n>1 and x, €D (7.2.1)

n+1

(i) If(S,)m is uniformly weakly ascending on D then for the system (7.2.1) path stability
holds for the part metric on D and any two sequences (x,) and (y,) are asymptoti-
cally equal. In particular, for (7.2.1) weak ergodicity does apply.

If one of these sequences is norm-bounded then path stability holds for the norm
onD.
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(i) LetU =Dn{x € V| |Ix| = 1} and assume ﬁ € D for x € D.If (T,), is uniformly
ascending on U, then for the rescaled system given by the rescaled operators (T,),,
path stability holds for the Hilbert metric and the part metric as well as for the norm
on U. In case only (S,;),, is assumed to be uniformly ascending on U but the T, are
ray-preserving on D, then for the system (7.2.1) path stability holds for the Hilbert

metric on D and weak ergodicity for the norm on D.
Proof. (i) Letu(x,y) =supfAd >0 |Ax<y< Alx} for x,y € D. Since (S,,) is uniformly
weakly ascending on D with ¢p continuous we obtain for all n that

/\xsys%x implies ¢ (A)S,x < S,y < Spwx for x,yeD, 0<A <1l

1
$)
Therefore, u(S,,xS,y) = ¢ (u(x,y)) and, hence, for the part metric p(S,x,S,y) <
- log [¢ (u(x,y))].

Let c(x,y) = —log[¢p (u(x,y))]. If p(x,y) = 1then x = y because K is normal.
Therefore, for x # y we have that c(x,y) < -logu(x,y) = p(x,y). (D,p) is a metric
space with selfmappings T,, and lumped operators S,, for which p(S,.x, S,,y) < c(x,y).
Thus, (S,,) is a contractive sequence consisting of non-expansive mappings. For any
two orbits given by x,,; = TpXpVne1 = Tnyn and x3,y; € D we obtain from The-
orem 4.2.2 (i) that nlggo PXp, V) = nlggo ¢(x,,ypn)- By definitions of p and c therefore,

Jim g1 (%, ) = Jim [ (2 (% ¥))]-

By continuity of ¢p this means for a = nIHEO U(x,,y,) that ¢ (a) = a. Since A < p(A)
for 0 < A < 1 we must have that a = 0 or a = 1. The former is impossible since
)}Lrgo p(x,,y,) = —log a exists.

Thus, we arrive at nlLII.}O p(X,»¥,) = —log 1 = 0 showing that path stability holds for
the part metric on D. The remaining statements follow from Lemma 7.1.2.

(i) Letv(x,y) =sup{Au |A,u >0,Ax<y< %x} forx,y € D.

(1) Consider first the case that (T,),, is uniformly ascending on U. By continuity of

¢ wehavethatAx <y < }%x impliesp (A)T,x < T,y < ﬁTnx and, hence,

v(T,x, T,y) = sup {(p(/\)(p(y) [A,u>0,Ax<y< %x}

This shows v(T,x, T,y) = ¢ (A(x,y))- ¢ (A(y,x)) forall n < 1 and, hence, for the Hilbert
metricdon U
A(Tx, T,y) = d(Tx, T,y) < c(x,y) for x,yeU,

where c(x, y) = —log[¢ (A (x,y)) - ¢ (A (y,x))].

Forx,y e Uwehave 0 < A(x,y),A(y,x) < 1.IfA(x,y) =10orA(y,x) = 1 thenx =y
because K is normal. Thus, for x # y we must have that A(x,y)A(y,x) < ¢ (A(x,y)) -
¢ (A(y,x)) and, hence, c(x,y) < —log[A (x,¥)-A(y,X)] = d(x,y). Thus, the sequence (T,),
of rescaled operators is on the metric space (U, d) a contractive sequence consisting
of non-expansive mappings. For any two orbits given by X,,,; = T,%,,, V1 = 1,7, With
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X, = x1,¥;, =Y, in U we obtain from Theorem 4.2.2 (i) that lim d(%,, y,) = Jim c(X,, 7).
By definitions of d and c, therefore,

T [A (% F)A G )] = 1 [ A (s 7)) A s %))

Since 0 < A(u,v) < 1for|| u || =| v | = 1 there exists a sequence of natural num-
bers (ny), such that kILIEO AKXy V) = A,l}irgo A(Yp,>X,,) = u. By continuity of ¢ we
arrive at Ay = ¢ (1)¢ (u). Because ,}Lrgo d(X,,¥,) exists we cannot have Ay = 0, that
isA >0andyu > 0.IfA < loru < 1thenA < ¢(A) or u < ¢ (u) which implies
A < p(A)p (u) — a contradiction. Thus, A = y = 1 which yields nlggo d(x,,7,) =
kll)rg) d()'(nk, )‘/,,k) = —log(Au) = 0, that is, for the rescaled system path stability holds for
Hilbert’s metric on U. Path stability holds for the part metric as well as for the norm
on U by Lemma 7.1.2, (iv) and (v).

(2) Consider now the case where (S,,) is uniformly ascending on U and the T,
are ray-preserving on D. As in step (1) it follows for x,y € U that d(S,x.S,y) <
c(x,y),cx,y) < d(x,y) for x # y where c(x,y) = -log[¢ (A(x,y))p (A(y,x))]. Now,
for the rescaled operators of ray-preserving mappings S, T: D — D it holds with some
a>0

S(Tx) aS(Tx) (SoT)x —
e IO _ _ - (S T)x.
IS(Tx) || laS) Il 1(SeDx |
Therefore, by iteration S,, = T, o -+ o T(,_1).,; and for the lumped operators

we have d(5,x,S,y) = d(S,xS,y) < c(xy). From Theorem 4.2.2 (i) we obtain
,}Lrgo d(X,, 7,) = nllg)lo C(X,, 7). As in step (1) this yields ’}LI(I)IO d(x,,7,) = 0. Since the
T, are ray-preserving, X, is obtained by applying the rescaled operator of T,,_; o---o T}

to x,, thatis x,, = ”)f—"" Therefore, }Lrglo d(x,,y,) = 0 and for the original system holds
path stability for the Hilbert metric on D. Finally, weak ergodicity for the norm on D
follows from Lemma 7.1.2 (iv). O

Theorem 7.2.2 has interesting consequences. (For an example see Exercise 2.) It yields
in particular the following extension of the Coale-Lopez theorem mentioned earlier
to non-linear operators in infinite dimensions.

Corollary 7.2.3 (Concave weak ergodicity/concave Coale-Lopez theorem). Let K be a
convex cone in the normed space (V, || - ||) as in Theorem 7.2.2. Let (T,,) be a sequence of
concave selfmappings ofI°< andletS,, = T,,,_1°--°T,,m =1 be asequence of lumped
operators. Consider the system on K given by x4 = Tpx, forn > 1,x, € K

(i) If, forsomee € Io( and real numbers 0 < r < s,

re<T,x<se forall n>1, all xeU={xe f( | IIxIl = 1}, (7.2.2)

then for the rescaled system given by (T,), path stability holds on U for the Hilbert
metric, the part metric as well as for the norm.
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(ii) Ifre<S,x <seforallm > 1, all x € U and the T, are ray-preserving on K then for
the original system x,,,, = T,x, path stability holds for the Hilbert metric and weak

ergodicity for the norm on K. If the T, are even positively homogeneous, then any
two orbits of the original system are asymtotically proportional.

Proof. (i) LetAx gyforx,ye Uand0 <A <1.If0 <A’ <Atheny-A'x=(y-2Ax) +

(A - A")x € K and, hence, z = AL e U.Since 1 = llyl <y -A'x I+l A'x | it
follows that | y —A'x > 1 - A" and, hence,y =A'x +| y-A'x [ z=2A'x + 1 -1')z.

Condition (7.2.2) and concavity of T, imply that
Ty=A'Tx+ (1 —A')ngx ="+ —A')g)Tnx for all n.
Since 0 < A’ < A is arbitrary it follows
Ty>¢M)Tx forall n with ¢@A)=21+(1 —A)g.

Thus, the sequence (T,) is uniformly ascending on U with ¢ and (i) follows from The-
orem 7.2.2 (ii).

(ii) Obviously, each S, is concave and therefore from the assumption made on S,,
it follows as under (i) that (S,,,) is uniformly ascending on U with¢p (1) = A + (1 - A )g.
By Theorem 7.2.2 (ii) the original system has on I°< path stability for the Hilbert met-
ric and weak ergodicity for the norm. Suppose now the T, are positively homoge-

neous. Being concave, T,, is monotone on K and, hence, A (x,,y,)x, < Yy, implies
Ay ) Thx, < T,y, for any wo orbits (x,), (y,) of the original system. It follows
/1 (Xn+1>yn+1) 2 /1 (eryn) Ell'ld, Similaﬂy, A (yn+1>xn+1) 2 A (yn’Xn)'

Since A (X, ¥,)A (V> X)) < 1 for all n it follows A (x,,, y,)A (¥4, x;) < 1 for all n. Thus,
(A(x4¥n)), is a monotone bounded sequence and converges to some A. Similarly,
A(¥» x,,) converges to some y. From ,}Lrgo d(x,,y,) = 0wehave nll)n.}o (A YA Vs X)] =
1 and, hence Ay = 1.

Thus, for y, = A(X,,y,) and §, = A(y,, X,)”" we have that y,x, < y, < ,X, with
limy, =A, lim 7, = u™". Because of A = u~" the two orbits are asymptotically propor-
tional which proves (ii). O

Corollary 7.2.3 applies especially to linear operators and we obtain in particular the
classical weak ergodicity result or common Coale-Lopez theorem for non-negative
matrices as discussed in Section 7.1.

Corollary 7.2.4 (Linear weak ergodicity/linear Coale-Lopez theorem). (i) Let K be a
convex cone in the normed space (V, ||- ||) as in Theorem 7.2.2. Let (T,,) be a sequence
of linear selfmappigs of K such that for some e € K and O < r < s for the lumped

operators S, it holds
re<Syx<se forall m>1, all xeU.

Then any two orbits of the sytem x,,,, = T,x,, on I°< are asymptotically proportional.
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(ii) Let (P,), be a sequence of non-negative d x d-matrices such that uniformly for all
n > 1 the maximal entry of P, is bounded from above and the minimal strictly pos-
itive entry is bounded from below. If for some r > 1 the products P,,,,_; --- P, are
strictly positive for allm > 1 then forall 1 < i,j,k < d

i P P
n—oo (Pn .. ’Pl)ij

= V>

that is the columns of the matrix P, - - - P, tend to be proportional as n tends to co.

Proof. (i) is a special case of Corollary 7.2.3 (ii).
(ii) By assumption, for the entries p;(n) of P,

p(n) < B,p;(n) =0 or a < p;n)
for all i, j, n and some real numbers 0 < a < f.ForS,, = Py,,,_1 -+ Ppand x € IR‘f < {0}

(SmX)l = z(ipw,iyq,j) piil (m +r- 1,j) .. 'pi’fl,]'(m)xj' al’ld, hence,

d d
a"yx; < (Spx); <B7Yx forall m, all i
-1

j=1

ForK = R},e = (1,...,1)" € Kand x| = Zil |x;| from part (i) it follows for any two
orbits (x,), (v,) of x,,; = P,x, on K

YnXn < Vn < VuX, forall n and )}L@Oyn = nli_%lo?" =y>0.

Since S,, is strictly positive we can choose as starting points x; = e;,y; = ¢ (e; the i-th
unit vector) to obtain

(ps1)i = (Pp...Pp)y and  (Vpyq); = (Py... Py foralli

Therefore,
fim BP0 g Omeddi ooy
n—eo (Pn ce Pl)ij n—eo (Xn+1)i
where y does depend on k and j only. a

Another consequence of Theorem 7.2.2 is the following differentiability criterion in fi-
nite dimensions which will be useful later on for an application to non-autonomous
population dynamics (see Section 7.4, for examples see Exercises 4, 5, 6). This criterion
is complementary to Corollary 7.2.3. Whereas the latter assumes concavity and positive
homogeneity (for the original system) none of these assumptions is required for this
criterion. On the other hand, the criterion does not apply to positive homogeneous,
especially linear, operators (see Example 7.2.7 below).
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Corollary 7.2.5. Let V = R4 K = IRf, [l - | any monotone norm on R Fora log-convex
subset D < K let (T,)) be a sequence of selfmappings of D differentiable on K and let for
lumped operators S, and x € K

X A8
A(x) = sup max ! m
D ]Zl S| o,

).
Consider for the system x,,,, = T,x,,x; € D, the following two cases:

Case (a). A(x) < c < 1forallx € D.
Then all orbits of the system are asymptotically equal and weak ergodicity does apply.
If at least one orbit is norm-bounded then path stability for the norm holds on D.

Case (b). A(x) < 1 forallx € D.
Then any two orbits contained in a bounded and closed subset of D are asymptotically
equal. Path stability for the norm holds for all orbits contained in a bounded and closed
subset of D.

Proof. For 1 < i < d fixed let f,,: E — R where E = log D, be defined by f,,,(u) =
log(S,,);(exp u). The mean value theorem yields

1y o
0 = 1) < [ Y] 2 e | - e,
o =1
where u(t) = u + t(v —u) and u, v € E. By the chain rule
fm eXpY;  d(Sp)i
= (u) = exp u).
au,-( )= Bodepw o (expu)

For x,y € D given and u = log x, v = log y (componentwise),
t
u(t) = logx + t(logy — log x) = log (x (%) ) = log(xHyt).

Since exp u(t) = x*™'y" € D it follows by definition of A(x)

d
9 m 1-t t
— @) <A y).
;' auj |

It follows that

in case (a): suplf,, (W) - (V)| < ¢ max|v; - y;| = ¢ max|log x; - log y;| (%)
m ] ]

in case (b): suplf,,(u) - f(v)| < max|log x; — log y;|for x # y. (%)
m ]

Considering case (a) from () it follows that Ax < y < %x implies A°(S,,);(x) <
S)i®) < 1= (Sp)i ).

Since i was arbitrary choosen this means that (S,,) is uniformly weakly ascending
on Dwith (1) = A€,
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Thus, for case (a) it follows from Theorem 7.2.2 (i) that any two orbits are asymp-
totically equal, weak ergodicity applies and path stability holds for the norm provided
that one bounded orbit exists.

Considering case (b), (+*) means that for the part metric sup p(S,,x, S,,y) < p(x,y)
forx +y. "

Thus, (S,,) is a contractive sequence of non-expansive mappings on (D, p). Let
(x,,)> (v,) orbits contained in a bounded and closed subset of D. Since bounded sub-
sets are relatively compact in (IRd, [l - II) there exist subsequences (xnk), (ynk) converg-
ing in norm to x* € Dandy* e D, respectively. Norm topology and part topology
coincide on K by Proposition 3.4.12 (v) and the convergence holds also for p. There-
fore, the joint limit set w,(x,,y;) in (D, p) is non-empty and Theorem 4.2.2 (ii) implies
nllglo p(X,,¥,) = 0. Finally, from Lemma 7.1.2 parts (i) and (iii) we obtain for case (b) that
(x,) and (y,) are asymptotically equal as well as T}Lr{}o I x, -y, I=0. O

Remarks 7.2.6. Particular cases of Theorem 7.2.2 can be found in [16, 36]. For the con-
cave Coale-Lopez Theorem see [16, 35]. For Corollary 7.2.4 in finite dimensions, the
classical linear weak ergodicity see [44], where the dual result for “forward products”
of matrices is proven. See also [21]. For other results on non-linear weak ergodicity see
[2, 3, 34, 37, 45]. For a general approach to non-autonomous systems in discrete time
which is based on 2-parameter semigroups see [40].

The results obtained we shall illustrate by non-linear Leslie models as considered al-
ready in Sections 1.2 and 2.6 for which we now admit the birth rates and survival rates
to depend on time. (See also [16].

Example 7.2.7 (Nonlinear and non-autonomous Leslie models). (1) Consider first a
concave and non-autonomous Leslie model given by x(t + 1) = Tx(t) for ¢t = 0,1,...
and x(0) € R” where T,x = L(t, x)x for x € R" and

bi(t,x) by(t,x) -+ b,1(tx) b,(tx)

S1(t,x) 0 .. 0 0

L(t,x) = 0 S,(tx) .- 0 0
0 0 -0 s,_1(6x)  su(t,x)

is the (generalized) Leslie matrix (see Section 1.2). On the vital rates we make similar

assumptions as for the concave Leslie model in Section 2.6 taking care, however, of

the time dependence:

(a) The mappings x — b;(t, x)x; and x — s;(t, x)x; of RY into R, are concave for each
l<i<nandeacht=0,1,2....

(b) There exist functions y and v from R’} ~ {0} into R, ~ {0} such that for all i, ¢, x

HX) < bi(t,x),s;(t,x) and  b;(t, x)x;, s;(t, X)x; < v(X).

Assume further for 0 £ x < ythat u(y) < u(x) and v(x) < v(y).
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(c) Foranyx € R7,t € NandA > O there exists a number ¢,(x, A1) such that b;(t,Ax) =

c;(x, A)b(t, x) and s;(t, Ax) = c;(x,A)s;(t, x) forall 1 < i < nwithx; > 0.

As in Section 2.6, (a) models population pressure and implies that T, is a concave self-

mapping of R” for each t.

Similarly, assumption (c) means that a population pressure uniform over age
classes does not affect the ratio of birth and survival rates. By this assumption,
T,(Ax) = Ac,(x,A)T,x and, hence, the operators T, are ray-preserving. We want to
apply part (ii) of Corollary 7.2.3 for the norm x| = Y}, Ix] on K = R'. For this it

remains to show for some 0 < a < fande € K

ae<S,x<fe forall m=>1, xeKk, |x]|=1.
ForS,,, = Tyyy_q © -+ © T,, we show by induction over r

u(r,x) < Spx <v0(x) for x e R~ {0}

where u(r, x) = ]‘[{;& y(v(i) ()L x, v (x) the i-th iterate of v(x) = (nv(x),..

11 1
10 0
L-| 01 0
00 -1 0

()

.,V(x)and

Assertion () for r = 1 means that u(x)Lx < T,,x < v(x) which is true by assumption

(b). If (*) holds for r then

U (S XOLS X < Sy i1 X = Ty (S 1 X) < V(S X).

From S, ,x < v (x) it follows by assumption on v that V(S %) < v (x)) = v (x).

From S, ,x < v (x) and the assumption on y it follows that

r-1
H(SmyXLS x = p (" () Lu(r, x) = p(v” )] Ju P )L™ x.

i=0
Thus

r
Hy 0L x < Sprs1X < v D (),
i=0

which proves property (x). Now, since L" > 0 it follows for r = nand S,, = S,,, from

(*) that

(n)

O<u(ne)<S,e;<vi’e for 1<i<n andall m,

where g, is the i-th unit vector.
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Since S,, is concave it follows for x = Y, xe; with Y, x; = 1 that S,x >

YiixSqe; > ae where a = m1n u(n,e;)); > 0 and e the vector with all entries
l]<

equal to 1. Finally, as a concave mapping S,, is monotone and x < e implies that
S x < Sye < v (e) by property (+). Since v(e) > 0 we have v"(e) < e for some
B > 0Oandarriveatae < S,,x < feforallmand x € f(, [Ix] = 1. All assumptions being
satisfied, from Corollary 7.2.3 (ii) we conclude that weak ergodicity for the norm | - ||
holds on K and, hence, on RY ~ {0}.

By the way, for T, = T for all t from weak ergodicity we get back earlier results.
Since by the Concave Perron—Frobenius Theorem (Theorem 2.1.14) the eigenvalue

problem Tx = Ax has a solution 0 £ x*,0 < A* (by assumption (b)) it follows ||T"x i =

7oy since Tis ray preserving. Thus, weak ergodicity yields lim || i~ e —| = 0. that
is lim = forallx 2 0.
n=co T X|| ||X I

(2) Consider now the special case of a linear and non-autonomous Leslie model
where Tyx = L(t)x with

bi(t) by(t) -+ b4 (t) byt
i)y 0 .. 0 0
L= 0 s - 0 0
0 0 -0 s, 4(t)  su(D)

Concerning the assumptions made for (1), (a) holds trivially and (c) holds with
¢(x,A) = 1 for all t,x,A. Assumption (b) means that uniformly for all ¢ the maximal
entry of L(t) is bounded from above and the minimal strictly positive entry is bounded
from below. Being a special case of (1) under these assumptions we obtain weak ergod-
icity. Actually, since T, is not only ray-preserving but positively homogeneous we have
that any two orbits are asymptotically proportional. This illustrates Corollary 7.2.3 part
(i) as well as part (ii) since lumped products L(m + n-1) - - - L(m) are strictly positive for
all m by the very structure of L(t).(For non-linear and non-autonomous Leslie models
see also Exercises 3, 4, 7.)

7.3 Strong ergodicity for ascending operators

In this section we extend the strong ergodicity property as it is known from inhomoge-
neous Markov chains, population dynamics and demography to non-linear mappings
in not necessarily finite dimensional vector spaces.

Consider for a (non-empty) subset D ¢ V ~ {0} of a normed vector space (V, | - |)
a sequence (T,), of selfmappings of D defining a non-autonomous system by

Xpi1 = InXp, n=1, x;€D. (73.0)
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According to Definition 7.1.3 this system has strong ergodicity on D if there exists x* €
Dsuch that lim || 7%, —x*|| = 0 forall x, € D. As in the case of inhomogeneous Markov
chains we shall assume that the mappings T, converge to a selfmapping T of D. If T, or
some iterate of T, has a contraction property for an internal metric, we will be able to
obtain strong ergodicity from results for non-autonomous systems on metric spaces in
Section 4.2. To ensure the contraction property we assume T to be ascending — where
throughout this section the function ¢ in Definition 5.1.4 is assumed to be continuous.
For the particular case that T, = T for all n, we are back to the case of an autonomous
system defined by an ascending operator T as it has been studied in Chapter 5.
The main result in this section is the following theorem.

Theorem 7.3.1. Let (V, ||-||) be a normed real vector space andlet K < V be a convex cone
which is closed and normal with non-empty interior K. Let (T,,),, and T be selfmappings
of 0+ D c K.
(i) Suppose (T,), converges uniformly to T and T is uniformly continuous (for the
norm). Suppose, furthermore, an iterate T is weakly ascending on D and for some
uce K it holds that u < T*x for all x € D.
Then for each orbit (x,), of system (7.3.1) with compact closure (for the norm) in D
it holds that

,}i_,IEO”Xn — x| = 0 where x* is the unique fixed point of T in D.

(ii) Let (V,| - |l) be a Banach space, U = {x € D | |x|| = 1}, D internally closed in I°< and
assume ﬁ € D for x € D. Suppose on U the sequence (T,),, converges uniformly to
T, T is uniformly continuous and a < ||Tx| for some a > 0 and all x € U. Suppose,
further for somek > 1, T¥ is ascending and norm-bounded on U and for some u € I°<
it holds that u < T*x for all x € U. Then for each orbit of the rescaled system given

by
Xpo1 =T%,, n=1, X,=x,€D (73.2)

one has for k = 1 or T ray-preserving that nlLILIO %, — x*|| = O where x* is the unique
solution of Tx = Axin U with A > 0. Moreover, in case T and T,,n > 1, are ray-

preserving it holds for k arbitrary nlLIgO I ")f" i x*|| = O with x* as above.

Proof. (i) The result will be obtained from Corollary 4.2.4 for the metric space (D, p), p
the part metric on K. For the lumped mappings S,, = T44-1 ©- - - T, from Lemma 4.2.5
it follows for the metric space (D, | - ||) that (S,,),, converges uniformly to S = T*. Next
we show this holds true in (D, p), too. For u € K we have that for some r > 0 the open
ball B(%u, r) is contained in K. Since ||S,,x — Sx|| < r for m > N(r) and all x € D we have
that Ju + S,.x - Sx € B(3u,r) < K and, hence,

SmXZSx—%uzu—%u= %u forall m > N(r), all x e D.
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From Proposition 3.4.12, part (vi)(b), it follows
DS, SX) < K, [ISx — Sx|| forall m > N(r), all x e D.

Similarly, p(Sx, Sy) < K, [ISx - Sy|| for all x,y € D, where K, > 0 is a constant. To apply
Corollary 4.2.4 (i) we show that S = T * is contractive on (D, p). By assumption, S is
weakly ascending, therefore (see Proof (i) for Theorem 7.2.2)

1
Ax <y < —x implies A)Sx < Sy <
ys3 p dpQ) y < ¢(/l)

with u(x,y) =sup{d >0 |Ax<y< %X}, therefore,

H(Sx,Sy) = ¢ (u(x,y)) and p(Sx,Sy) < —logle (u(x,y))l.

Since 0 < u(x,y) < 1, for x # y, it follows ¢ (u(x,y)) > u(x,y). Thus, p(Sx, Sy) < p(x,y)
for x # y, that is, S is contractive on (D, p). If (x,,),, has compact closure (for | - ||) in D
then, by Proposition 3.4.12 (v), (x,),, has compact closure in (D, p). Thus, Corollary 4.2.4
yields nlLIEO p(x,,x*) = 0 and, hence, HILIEO lx,, — x*|| = 0. Thereby, x™ is the unique fixed

point of S = TX in D. Now,
ITx" = x* < ITX" = Txull + 1T, = Tl + g = X1

and the assumptions made imply Tx* = x*. This proves part (i) of the theorem.

(ii) The result will be obtained from Corollary 4.2.4 for the metric space (U, d), d
the Hilbert metric on U. Consider the rescaled operators T, and T which are selfmap-
pings of U. For any two z,w € V ~ {0} it holds that || "j" IImI | < Ilill |z — w|. Therefore,
I1Tx = T,xll < g I Tx = Txll and by assumption it follows that | Tx - T,xil < 21T - T,
for x € U. Thus, Tn converges uniformly to T on (U, | - ||). Similarly, T is uniformly con-
tinuous on (U, | - ||). From Lemma 4.2.5 it follows for the metric space (U, || - ||) that the

lumped operators F,, = T.j_q © ... o T,, converge uniformly to F = T, From u < T*x

T*x

IIT"XII < T = Tkx and, since |T*x|| < b for some b > 0 and for

for x € U it follows

x € U, wehave thatv = % 7 < Tkx for x € U.

Let us assume that T = T*. This assumption is satisfied if k = 1 or if T is ray-
preserving. Then we have that v < Fx for all x € U where v € K. The uniform con-
vergence of F,, to F implies, as in step (i), F,,x > %v forallx € U,allm > N. By
Proposition 3.4.12, part (vi)(b), therefore d(F,x, Fx) < K ||F,,x — Fx| for all x € U, all
m > N. Furthermore, d(Fx, Fy) < K,||[Fx — Fy| for all x,y € U. To apply Corollary 4.2.4
(ii), we shall show that (x,) is bounded in (U, d) and F is a generalized contraction on
(U, d). For the former observe that X,,,, = F, X, and F,x > %v forallx e U,allm > N.
Therefore d(X,,. 1 Xn.i) < KallXmer — Xnaill < 2K; for m > N.

This shows boundedness of (x,,) in (U, d). To see that F is a generalized contraction
we proceed as in part (i) in the proof of Theorem 7.2.2. Since S = T is ascending on U,
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it follows forx,y € U,0 < A,y < 1and Ax < y,puy < x that ¢ (1)Sx < Sy, ¢ (u)Sy < Sx.
Consider for 0 < a < f given the compact set I = {(A,u) € [0, 1]% | e? < A< e}
and the function I(A, u) = W well-defined on I. Since 0 < Ay < 1for (A, pu) eI
and ¢ is a strictly increasing selfmapping of 0, 1[ it follows that ¢p (1)¢ (u) > Au and,
hence, I(A, ) < 1. Since ¢ is continuous, [ is continuous, too, and supl(I) = ¢ < 1.

Thus, we have
d(Fx, Fy) = d(Sx,Sy) = d(Sx, Sy) < —log(¢ (A)¢ (u)) < 0o(-log(Ap))

and arrive for a < d(x,y) < B at d(Fx, Fy) < od(x,y), which means F is a generalized
contraction on (U, d). Since D is internally closed, the metric space (U, d) is complete
by Corollary 3.4.14.

Thus, Corollary 4.2.4 yields nh—>r§o d(x,,x") = 0, and, hence, '11er010 I%,—x*|l = 0, where
x* is the unique fixed-point of F in U. Furthermore,

”TX* _X* ” < ”TX* - T)‘Zn” + ”Ti(n - Tnxn" + ||)~(n+1 _X* ”)

which implies Tx* = x*. Since x* is the unique fixed point of F in U, it is the unique
fixed point of T in U, too. Equivalently, x* is the unique solution of Tx = Ax in U with
A > 0. Moreover, if T,, is ray-preserving,

X T T Tpo---oTixy Xn+1
Xy = TporroTix, = 2 - ,
" " ”Tn orrro T1X1 " "Xn+1||
and we arrive at lim | >= — x*|| = 0. 0
n—ooll Xl

Corollary 7.3.2. ForD = K the conclusion nli_pg()ll ";‘—"” —x"|| = 0 of Theorem 7.3.1, part (ii),
holds true if the norm closure B = {x € K | ||x|]| = 1} of U is assumed to be norm-compact
and the requirement on T¥ to be ascending on U is replaced by the weaker one (all other

assumptions being unchanged)
xyeU, O0<A<1, Axsy implies AT*x < Tky.

Proof. The above follows as in the proof of Theorem 7.3.1, part (ii), by employing part (i)
of Corollary 4.2.4 instead of part (ii). Namely, the assumption made implies for S = T*
that v(Sx, Sy) > v(x,y) for x,y € U, x # y. Therefore, with F = §

d(Fx,Fy) <d(x,y) for x,yeU, x#+y.

Furthermore, since X,,,,; = Fp. X, > %v form > Nwehavethatx, e C={x e B|x >
%v} c Uforn = N + k. C is norm-compact by assumption and from Proposition 3.4.12
(vi) (b) it follows that C is compact in (U, d). Thus (%) is relatively compact in (U, d)
and by Corollary 4.2.4 (i) we arrive at }Lrgo d(x,,x") = 0,x” being the unique fixed point

of Fin U. As in the proof of Theorem 7.3.1, part (ii), this implies rllLrgo I ")’:" i -x*|l=0. O

Similarly to the case of weak ergodicity as a corollary we obtain the following special-
ization to concave operators.
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Corollary 7.3.3 (Concave strong ergodicity). Let (V, || -|) be a Banach space containing
a convex cone K whzch is closed and normal wzth K # 0. Let (T,), be a sequence of
selfmappings of K which converges on U = {x € K | x|l = 1} uniformly to a concave
selfmapping T of K which is uniformly continuous on U (for | - |).

(i) If for some u,v € K it holds u < Tx < v for all x € U then the orbit (X,), of the
rescaled system

X1 = ToXy n=1, X =x,€K
converges in norm to the unique solution x* of Tx = Ax in U with A > 0.

(ii) If for some u,v € K,k > 1 it holds u < T, Tx < v,a < ||Tx| for some a > 0
forallx € Uand T,T,,n > 1, are ray-preserving then for the orbit (x,), given by

XYl
Xps1 = TyXp X, € K the sequence (

o] ), converges in norm to the unique solution x*
of Tx = Axin U withA > 0.

Proof. (i) For D = f(, concavity of T together with u < Tx < v for x € U implies,
as in the proof for part (i) of Corollary 7.2.3, that T is ascending on U. Furthermore,
0 < |lull < ITx| < |Ivll for x € U. From Theorem 7.3.1 (ii) the assertion follows for k = 1.
(i) T*isconcave and T*x < T¥(v) € K. By step (i) T* is ascending on U. Again, the
assertion follows from Theorem 7.3.1 (ii) Ol

Specializing further to linear operators we obtain in particular the classical strong
ergodicity result for non-negative matrices as discussed in Section 7.1.

Corollary 7.3.4 (Linear strong ergodicity). (i) Let (V,]- ||) be a Banach space contain-

ing a convex cone K which is closed and normal with K + 0. Let (T, )n be a sequence
of ray-preserving selfmappings of K which converges on U = {x € K | x|l = 1} uni-
formly to a uniformly continuous and linear selfmapping T of K If for some u,v €
I°<,k > 1, it holds u < T*x, Tx < v and as | Tx]| with a > O for all x € U then for the
orbit (x,)), given by x,,1 = TpXp X € K the sequence (2
the unique solution x* of Tx = Ax in U with A > 0.

(ii) Let (P,), be a sequence of non-negative dxd-matrices without zero row which con-
verges elementwise to a primitive matrix P then forall 1 <i,j < d

(Py ... Py .

. * * *
nhﬁrgodi =x", Px* =|Px"|l,x7,

2 (P Py
h=1

), converges in norm to

Ixll /10

that is the sum-normed columns of the matrix P, ...P; become equal, for n ap-
proaching infinity, to the unique sum-normed right eigenvector of P.

Proof. (i) The assertion follows immediately from Corollary 7.3.3 (ii).
(ii) Since P, has ano zero row the linear mapping given by T, x = P, x is a selfmap-

ping of K for K = R,V = (R%, || - ||,) (I - [l the sum-norm). Since U is compact for || - [,
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the mappings T,, converge uniformly to Tx = P - x. Primitivity of P implies T*x > 0 for
x € U and, hence, T > u > 0forallx e U. Furthermore, T is a uniformly continuous
selfmapping of K suchthata < ||Tx| witha > 0and Tx < vforsome O < vandallx € U.
From step (i) it follows for x,,,; = P, - x,, X; € IO( that nlg{)lo ”:ﬁ = x*,Px* = |Px"|x".

This holds also for x; thej-th unit vector e; and from (x,,,); = (P, ... P;€)); the assertion
follows. 0

A further consequence of Theorem 7.3.1 is the following differentiability criterion for
strong ergodicity in finite dimensions.

Corollary 7.3.5. Let V = R%,K = R, || - || any monotone norm on RY. For a log-convex

subset D of K let (T,), be a sequence of selfmappings of D which converges uniformly to
a selfmapping T of D, which is uniformly continuous on D. Suppose 0 < u < Tx for all

x € D and T is differentiable on K such that for the Jacobian J of T* it holds |J(x)|x < T*x
for all x € D. If the orbit defined by x,,,; = T,x,,x; € D, is contained in a closed and
bounded (for the norm) subset of D then it converges in norm to the unique fixed point
of TinD.

Proof. From assumption [J(x)|x < T"x,x € D, we obtain by Theorem 6.2.1 (ii)
p(T*x, T*y) < p(x,y),x # y, thatis, T is contractive on (D, p). Since bounded sets
have compact closure in (R%, || - ||) the assertion follows as in the proof of part (i) of
Theorem 7.3.1. O

Remark 7.3.6. For particular cases of Theorem 7.3.1 see [15, 16]. For Corollary 7.3.2 see
[16]. For Corollaries 7.3.2 and 7.3.3 in finite dimensions see [15]. For Corollary 7.3.4 in
finite dimensions, the classical strong ergodicity, see [44], where the dual result for
“forward products” of matrices is proven.

The next section presents an application of strong ergodicity to a non-linear version
of a theorem of Poincaré on difference equations. (For examples of strong ergodicity
see also Exercises 7, 8, 10.)

7.4 A non-linear version of Poincaré’s theorem on
non-autonomous difference equations

Consider the following linear difference equation of order n with time-dependent co-
efficients

u(t + n) = pou) + pyOut + 1) +--- + pp_;(Ou(t + n-1), teN. (74.0)

Assuming
tlimpi(t) =p; forall 0<i<n-1 (74.2)
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the question arises on how solutions of equation (7.4.1) are connected to solutions of
the corresponding autonomous equation given by

u(t + n) = pou(t) + pju(t + 1) +--- + p,_ju(t+n-1), teNN. (74.3)

Since the solutions of equation (7.4.3) are given by the roots of the characteristic equa-
tion
Do+ PiA + poA® + o+ p, AT =20, (74.4)

and the multiplicities of these roots, the question above becomes on how solutions of
(7.4.1) are related to the roots of the characteristic equation (7.4.4).
In this respect Poincaré proved in 1885 the following result ([41]; see also [10]):

Poincaré’s Theorem. Assume for equation (7.4.1), with coefficients and solutions in
C, that beside assumption (7.4.2) it holds for the roots A,, ..., A, of equation (7.4.4) that

Al # 14 for i#) (74.5)

(| - | the absolute value of a complex number). Then for any solution u of (7.4.1) which
is not asymptotically zero there exists an A; such that

mu(t+1) _

im =0 A (7.4.6)

A natural question considering Poincaré’s theorem is what can be said if the addi-
tional assumption (7.4.5) is not being satisfied. Surprisingly, this question has been
answered only very recently by M. Pituk [39] with a nice result on Poincaré’s differ-
ence systems. The latter are discrete dynamical systems

x(t+1)=(A+B@®)x(t), teN (74.7)
where A and B(t) are complex n x n-matrices and
tlimB(t) = 0 (with respect to some norm | - ||.)
—00

Obviously, equation (7.4.1) is a special case of a Poincaré difference system where
equation (7.4.2) corresponds to equation (7.4.7).

Pituk’s Theorem. If x is a solution of (74.7) which is not asymptotically zero then there
exists an eigenvalue A of A such that

lim X117 = 1A,

(For an extension of Pituk’s Theorem to linear operators see Exercise 9.)

Both theorems may be interpreted as results on the behavior of solutions of a per-
turbed system in case the perturbation vanishes in the limit. The difference between
the two theorems lies in the two different “growth rates” considered for solutions. The
following lemma makes this more explicit.
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Lemma 7.4.1. Let (x,),., be a sequence in the (complex) vector space V with norm || - |
such that there exists m such that x,, # 0 for alln > m.

For the following types of a growth rate with value r > 0 for (x,)),»; does (a) imply
(b) and (b) imply (c):
(@) lim 2 exists in V ~ {0},

(b) l1m |Xn+1 I =7,

I

(©) Jlim 7 = .
Proof. (a) = (b). }Lrgo hm "":i # 0 implies

X1l
. X .
lim Xaoll_ rlim [ 2 | =7
n=co x|l n—oo \  Ixll

m

(b) = (c). Leta, = ”"’;"*ﬁ I'forn > m.

By assumption, to ¢ > 0 exists n; such that1 —e¢ < a, < 1 + eforn > n,. Since
el — Wl gl gl
m 11 lIr Iy llr 7

for n > n,, it follows

1
. . I 17

pa (@p_1 @y )" -b, with b, = i .

Obviously llmb = 1. Furthermore (1 - ¢) < (a,_; - anl)% <1l+eforn=n; + 1.

Since1 -¢€ < b <1 + eforn > n, with some n, > n; + 1 it follows

1
2 Il 2
(1-e) sr"—ns(1+e) for n > n,.

. . 1
This proves nhﬁrgl0 x|l =r. O

None of the implications in Lemma 74.1 is reversible. This is so even in the particu-
lar case of equation (7.4.1) with real and non-negative coefficients, as the following
examples show. (For the implicatons in Lemma 7.4.1 see [1].)

Examples 7.4.2. (i) Consider the following particular case of (7.4.1)

u(t +2) = 2tt++21 ut) + u(t + 1)), teN.

For po(t) = p,(t) = M, Po=D1 = %, hence, the characteristic equation is %(1 +A) =
A?.Therootsared; = 1,4, = -2 > and have different absolute value whence Poincaré’s

theorem applies. Especially, for u(0) = 1,u(1) = 2 itholds that hm “(i+)1 = 1.Induction

shows, however, that u(t) > t + 1 for all t and thm u(t) does not converge. Thus, for the
—00

sequence x;, = u(t) and r = 1, property (b) of Lemma 7.4.1 applies but not property (a).
(ii) Consider the following case of (7.4.1) where the coefficients are even all con-
stant
u(t + 4) = %(u(t) +u(t+2)), telN.
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For u(0) = 1,u(1) = 2,u(2) = 1,u(3) = 2 the solution is given by u(t) = 1 for ¢t
even and u(t) = 2 for t odd. Obviously, for the sequence x; = u(t) and r = 1 property
(c) of Lemma 7.4.1 applies but not property (b). Actually, this example satisfies the
assumption of Pituk’s theorem but not those of Poincaré’s theorem because +1 are
roots of the characteristic equation A* = %(1 +A2).

From results of the previous section we will obtain a version of Poincaré’s theorem for
non-linear difference equations and non-linear Poincaré difference systems, respec-
tively. This will be done in the frame work of positive systems within Banach spaces.
Under certain assumptions on the unperturbed system it follows that the growth rate
as in Poincaré’s theorem (type (b)) is equal for all positive solutions to the dom-
inant eigenvalue. Contrary to Poincaré’s theorem this is true even if some different
eigenvalues have equal modulus. Furthermore, the growth rates as in Pituk’s theorem
(type (c)), too, are equal for all positive solutions to the dominant eigenvalue.

Theorem 7.4.3. Let (V,| - ||) be a real Banach space containing a convex cone K which
is closed and normal with non-empty interior K. Let T;,t > 0, and T be positively homo-
geneous selfmappings of K mapping K into itself. Let

x(t+1)=Tx(t), teN (7.4.8)

be a Poincaré system, that is tlim T:x = Tx uniformlyonB = {x e K | |x|| = 1} and T
—00

is continuous on K. In each of the following cases it holds for every solution x of (7.4.8)

with x(0) € K ~ {0} that

X _ . - x(E + D)
zlrilonx(t)u x t—oo  [Ix(8)|

= Jim IOl =A%, (74.9)

where (x*,A™) is the unique solution of Tx = Ax withx ¢ Band A > 0.
Case (i). T is concave, uniformly continuous on B and there exist 0 < a,1 < k and

u,v e I°< such that
a<|Txl, u<T Tx<v forall xeB.
Case (ii). B is compact (for || - ||) and for some 1 < k

x,yeB, 0<A<1, Axsgy implythat ATkx<Tky.

Proof. (1) First we show that in both cases tlim "ﬁg" = x* for x(0) € K. In case (i) this
—00

follows from Corollary 7.3.3 (ii). In case (ii) the assertion will follow from Theorem 7.3.1
(ii) and Corollary 7.3.2. For this we show that, up to concavity, the assumptions of case
(i) are satisfied.

Obviously, T is uniformly continuous on B and C = T¥(B) < K is compact (for
| - I). For x € B, %x £ x and by assumption %Tkx < T*x. Therefore, 0 < T*x and

Cc K. For z € C the set U(z) = %z + K is an open neighborhood of z in (V, | - |)). By
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compactness there exists a finite covering, C < |J{; U(z). Since z; € K it follows that

A= 1rnln/l(zl, z;) > 0 and, hence, u = Azl cK.TozeC given there existiand y € K
<i<m
A

such that z = §Zi + y and, hence, z > zl 237 =U. This shows u < TXx for allx € B.
Furthermore, fory € C' = T(B)and any e € K theset U(y) = y + e — K is an open
neighborhood of y in (V, || - ||). Again there exists a finite covering C' ¢ Ule U(y;). To
y € C' given there existiand w € K such thaty = yjte-ws Z{’Zl y; + e. This shows
forv = Zﬁlyi +ecKthatTx <vforallx € B.

Finally, TO = 0 by positive homogeneity and Tx = 0 implies Tx = T*"*0 = 0 and
x = 0. Therefore, O < || Tx| for all x € B and by compactness a < | Tx| for some 0 < a
and all x € B.

(2) By (1) it holds in both cases, (i) and (ii)

0<ac<|Tx|, usTkx, Tx<v forall xeB

and notonlyon U = {x € I°< | x|l = 1}. Therefore, according to the proof of Theo-

rem 7.3.1 (ii) and Corollary 7.3.2, we have hm ||§8|| = x* not only for x(0) € U but for
x(0) € Band, hence, for x(0) € K ~ {0}. It follows

X(t+1) x(t) X(f)

" Xl Bl =1, ‘@l IIX(t)II

By assumptions on T;, T it follows

X(t+1)_ * ok k

x(t)
lIx (Il

I +17

- T

X,
t=co [x(6)]
and, hence, 11m ”)ﬁ(t(;)lu)" = A*. Since x(t) € K ~ {0} for x(0) € K ~ {0} from Lemma 74.1 it
t—00
follows that thm Ix(®)]2 P =A% (|
—00

Taking up Poincaré’s theorem for the linear difference equation (7.4.1) we obtain the
following non-linear version within the framework of positivity.

Corollary 7.4.4 (Non-linear Poincaré Theorem). Let
ut +n) = fi(u(t),u(t + 1),...,ut +n-1)), teN (74.10)

be a non-autonomous difference equation of order n. Assume f;: Rl — R,,fi(x) > 0

for x > O,f; positively homogeneous. Suppose tlim fi(x) = f(x) uniformlyon B = {x €
—00

RY| x| = 1}. (Il - | a monotone norm) where f: R} — R, withf(x) > 0 forx > Oisa

continuous, positively homogeneous mapping which satisfies the following property

O<x<y implies f(x)<f(y)

and there exist 1 < ny,n,,...,n,n; = 1,r > 2withgedin-n, +1,...,n-n, + 1} =1
such that
0 <x <yandx, <y, forsomeiimply f(x) < f(y).
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Then for every solution u of (7.4.10) with (u(0),...,u(n - 1) 2 0 it holds

I

u(t+1) ..
fm = - dmo

1"

where A* is the unique positive root of the “characteristic equation” f(1,A,A2,..., A" 1)
=AM

Proof. Let Tx = (Xg,..., X f(X)), TX = (X5,..., X, f(x)) for x € RY. By assumption,

T, and T are positively homogeneous and map the interior of R into itself. Further-

more, tlim T,x = Tx uniformly on B, B is compact and T continuous on B. To apply
—00

case (ii) of Theorem 7.4.3 we show that for some k > 1 T¢ is strictly increasing that is,
0 < x § y implies Tx < Ty. Consider solutions u, v of (7.4.10) with initial conditions
u(0),...,u(n-1)) = xand (v(0),...,v(n — 1)) = y. By Lemma 2.5.4 there exists k > 1
such that u(t) < v(t) for all k < t. From the definitions of T; and T it follows by iteration
fort>0

Tio--roTox=(u(t+1),...,u(t+n)) and T'x = u(t),...,u(t+n-1)).

Therefore, T’ kx < Tky and all assumptions for case (ii) of Theorem 7.4.3 are satisfied.
The eigenequation Tx = Ax is equivalent to

X1 =Ax;, 1<i<n-1 and f(x) =x,
which in turn is equivalent to
Xy =A'Xy, 1<is<n-1 and f(1,A,A%.., A" =A"

Therefore, A1* is the unique positive root of the ’characteristic equation’ and x* =
r(1L,A%,A%2, .., A*® D) for some r > 0. Furthermore, for x = (u(0),...,u(n - 1)) 3 01t
follows lim 2% = x* and , hence,

t= o0 Xl
limu(t+ 1) _ T x(8), _ X_; _ 7 At
t—oo  U(t) t=oox(t); X3 r
Finally, from Lemma 74.1 it follows tlim u(t)% =A% O
—00

The corollary applies in particular to minima and maxima of linear equations as the
following example shows.

Example 7.4.5. Consider the difference equation u(t + n) = f,(u(t),...,u(t + n- 1))
with f;(x) = 1Insiisrrln(ail(t)x1 + -+ @y (Bx,) for x € RY and a;(t) = 0. Assume tl—ig})aii(t) =
a; and let f(x) = 111151151}" (a;x; + -+ + a;x,). It is easily seen that [Ergoﬂ(x) = f(x) uni-
formly on B.

Assume the matrix A = (a;) is non-negative with strictly positive columns j € J
where 1 € J,|J| > 2and gcd{in—j + 1 | j € J} = 1. All assumption of Corollary 7.4.4
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are satisfied. (Since f(x) > 0 for x > 0 we may assume f;(x) > 0 for x > 0.) Therefore

we obtain for (u(0),...,u(n - 1)) 2 0 that hm “(t(;)l) = hm u(t)r = A" where 1" is the

unique positive root of 1m'in (aq + aph + -+ + a A" 1) = A". A similar result holds
<ism

in case of fi(x) = {n_ax(ail(l‘)x1 + .-+ + a;,(t)x,). For m = 1 we are back to the linear
<i<m

case of the Poincaré theorem, this time, however, within a positive framework. Thus,
let m = 2 and consider for simplicity the numerical example

1
alz(t) = 2 + ?, a21(l’) = 2 +

t 1 t+1
all(t) = t—) t_z, azz(t) = t+—2 for t>1

+1
for which A = [ 12]. The characteristic equation for A * reads min{1 + 24,2 + A} = 1%
Incaseof 1 + 24 < 2 + A wehave 1 + 21 = A? with roots A, = 1 + V2. None
of these roots gives A* since 1 + V2 > 1and 1 - V2 < 0. Therefore, we must have
1+20 22+ Aand2 + A = A* withroots 4,, = 3 + 2. Since ; - 2 < O we
conclude withA ™ = 2 which indeed solves the characteristic equation. Thus, we arrive

at thm “([(“) = hmu(t)t = 2, provided (u(0), u(1)) z O.

Similarly one obtains for A = [12] and the case max{l + 24,2 + A} = 1% as
unique solution A* = 1 + 2.

As the numerical example indicates to solve the characteristic equation for A * in
general one faces sets of inequalities of real polynomicals in one variable.

A single linear difference as it is considered in Poincaré’s theorem is a special case of
the above example, taken, however, within the framework of positive systems. Though
arather simple case it allows some interesting observations as shown by the following
remarks.

Remarks 7.4.6. Consider the linear difference equation of order n with time-depen-
dent coefficients

u(t +n) = p,(Ou(t) + p,(Out + 1) +--- + p,(Ou(t + n- 1),

and assume tgrgopi(t) =p;foralll <i<n.

Assume further for n > 2 all pi(t) 2 0 andpj > Oforje Jwherel € ],|J]| > 2and
gedin-j+1]je ]} = 1. Then by Example 7.4.5 we have for (u(0),...,u(n-1)) 2 O that
lim “(“)1) = hm u(t) i = A*, where A* is the unique positive root of the characteristic

t—o0
equation ofp1 + oA+ p AT = A
Thus, within the positive framework the conclusion (7.4.6) in Poincaré’s theorem

holds in the sharper form that the eigenvalue can be chosen the same for all solutions.

;‘fﬂ to exist in Poincaré’s
00

theorem not even when coefficients are positive.
(b) Letn = 4,p, = p, = %,pz = p, = 0. Therefore, ] = {3, 4} and by the above

lim “CD — limu(f): = 1, where A* = 1 is the unique positive root of 1 + 11 = A%,
t500 UMD t—oo 2 2

Therefore, the conclusion (7.4.6) of Poincaré’s theorem does hold, though the assump-
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tions of the theorem are not fulfilled since % + %}l = A“ has two different conjugate
roots.

(c) Letn = 4,p, = p; = %,pz = p, = 0. Therefore ] = {2,4} and gcd{n —j +
1|je]J} =2+ 1, that is the monotonicity assumptions are not satisfied. Indeed,

as Examples 7.4.2 (ii) show, [lim “ff(;)l) = A" does not hold. Since ; + A% = A1“ has
—00

the roots +1 this is in line with Poincaré’s theorem. Furthermore, tlim u(t)% = A" does
—00

hold forA* = 1 which is in line with Pituk’s theorem. This case shows also that even in
the restricted domain of positive systems the conclusion of Pituk’s theorem may hold
whereas the one of Poincaré’s theorem does not.

7.5 Price setting in case of technical change

The dynamics of price development in economics has been considered previously in
Chapters 1 and 2 (Sections 1.3, 1.4, 2.7). There it has been pointed out that by technical
change one arrives at a non-autonomous and non-linear discrete dynamical system
given by (see equation 1.4.2)

pt+1)=k(®T(t)pt), teN, p0)e R

Thereby, p(t) is the price vector at ¢, k(t) > 0 a scalar factor and T(t): R} — R the
cost operator given by T(t)p = c(p, t) with a (unit) cost function c(p, t). As a function
of prices costs are often concave, for example if there is a choice of techniques. If the
technology changes with time then the cost function depends explicitly on time. The
latter has been modeled in the previous chapters but for the results obtained we had
to assume an autonomous system. With the tools developed in chapter 7 we are now
ready to treat technical change and to find out conditions under which the price dy-
namics is stable in the sense of weak ergodicity. (One can ask, of course, for conditions
of strong ergodicity; this, however, is less likely in case of technical change.)

In what follows we shall simplify notation by integrating the scalar factor into the
cost function, that is we consider the dynamical system

pt+1)=T(Hpt), Tt)p=cpt), teN, p0)eR] (75.1)

with T(t) a selfmapping of R. It is quite natural to consider a norm for prices ||p|| =
Yo, pi»p € R].If there is a choice of techniques, minimal costs of producer 1 <i < n
can be specified as (see equation 1.4.1)

¢;i(p,t) = inf{pa + wl|(a, ) € A;(t)}. (7.5.2)

Thereby, A;(t) denotes the (non-empty) set of techniques which producer i has at his
disposal which consists of pairs (a, l) with a € R being material inputs and [ > 0 the
labour input to produce one unit of good i. (pa is the inner product of vectors p and a.)
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Furthermore, w; is the wage paid per hour in the production of good i. The wage can be
considered to be independent of prices as a “rigid wage” or to be varying with prices
asw; = pb' where b’ ¢ R" is the “real wage” corresponding to w;. In the latter case
equation (7.5.2) becomes (see also section 1.4)

¢;(p,t) = inf{p(a + Ib")|(a, 1) € A,(t)}. (75.3)

(For literature concerning these models as well as for the background in economics
see the relevant references given in chapters 1 and 2.) The following result is easily
obtained from part (ii) of Corollary 7.2.3.

Proposition 7.5.1. Consider a price dynamics given by equation (7.5.1).

(i) Let the cost function c(p, t) for each t be concave, positively homogeneous and such
that sgp ci(e t)is finitefor 1 <i < n(e = (1,...,1)). Assume the matrix D = (dij)
of minimal expenditures di]- = il’tlf ci(e;, t) (ej the j-th unit vector) is indecomposable
with d,;, > O for some h.

Then there holds weak ergodicity (for || - ||) on R’ ~ {0} and any two non-zero orbits
are asymptotically proportional.

(ii) The above conclusion holds in particular for a cost function as in equation (7.5.3) sat-
isfying the assumptions on matrix D and such that for each i the technology satisfies
Ai(t) € Ai(t + 1) for all t or sup|A;(t)| is finite.

t

Proof. (i) Forp = p,e; +--- + pye, withp; > Oforalliand ||p| = Y., p; = 1 concavity
of costs implies

n n
¢i(p,t) 2 ijci(ej’ t) > ijdij = (Dp);,
=1 =1

that is c(p,t) = Dp for all t. By Lemma 2.2.10 the assumptions made imply D" > 0
for some r > 1. For K = R the selfmapping given by T(t)p = c(p,t) is concave and
positively homogeneous with T(¢t)p > Dp for all t. Therefore,

SOp=Tt+r-1)o---oT(t)p=D'p
and

n n
(SOp), = (D'p); = Y Djp; 2 {ngisr;ng(gpj).
z

Jj=1

For the vector u with y; = {ninD{i one has thatu € Kandu < S(t)pforalltallp € K
<j<n

with |pll = 1. Furthermore, (T(t)p); = ¢;(p,t) < c;(e,t) and, hence, for some scalar
k > 0itholds T(t)p < ku for p € K with ||p|] = 1. In particular, for p = ﬁ, one has that
T(t)u < kllullu for all t and, hence, u < S(t)p < ku with some scalar k > 0 for all ¢, all
p € K, |p|l = 1. Since S(t) maps K ~ {0} into I°< the conclusion in (i) follows from part

(ii) of Corollary 7.2.3.
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(ii) A cost function according to equation (7.5.3) obviously is concave and posi-
tively homogeneous. If 4;(t) < A;(t + 1) then ¢;(p,t + 1) < ¢;(p, t) and it follows that
sup c;(e, t) is finite. The latter holds, too, in case sup|4;(t)| is finite. So, part (ii) follows

t t

from part (i). O

The following result considers the case of “rigid wages” and is easily obtained from
Corollary 7.2.5.

Proposition 7.5.2. Consider a price dynamics given by equation (7.5.1) with a cost func-

tion c(p,t) = c"(p,t) + c"(t) consisting of two parts, material costs c™ and wage costs

¢” (both non-negative). Suppose c"(p,t) > 0 is for p > 0 increasing, differentiable and

positively homogeneous of degree 0 < r < 1, that is cC"(Ap,t) = A'c"(p,t) for 0 < A.

Suppose further that sup c"(e, t) is finite for alli (e = (1,...,1)).

(i) Ifr < 1thenthere ;lOldS weak ergodicity (for || - |) and any two orbits are asymptot-
ically equal (on strictly positive prices).

(ii) Ifr =1and il’tlf c!'(t) > O for all i then any two bounded (for | - ||) orbits are asymp-
totically equal and path stability (for || - ||) applies.

Proof. The price dynamics is driven by T(t)p = c™(p, t) + c*(t). For K = R differenti-

ation on K yields
n m

u a( T(t)p)1 1 >
5200 - $pf
j=

ap]

by taking into account that ¢ (p, t) is increasing in p.
By Euler’s Theorem on homogeneous functions

0 t)
Zp, 2O o,
and, hence,
v aTop)y, e )
Laop, ap | TG00 )

(1) Ifr < 1thenforc =randD = f( the assumptions in case (a) of Corollary 7.2.5
are satisfied and the conclusion in part (i) does follow.

(ii) Letr = 1 and, by assumption ¢*(t) > u > O for all t. From the assumptions on
c™(p, t) it follows forp > 0

WmDﬂM6ﬁ]Q<Mkm0ﬂwvbmHt

wherev; = sup c}'(e, t). Since u € K there exists s > 0 with v < suand, hence, c"(p, t) <
t
Ipllsc”(t) for all p > 0, all t. Thus, we arrive at

gt 1 1

= <
c™(p,t) + c(t g - 1
PP+ gy e R T

< 1.
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This inequality together with (x) shows that the assumptions in case (b) of Corol-
lary 7.2.5 are satisfied for D = K and the conclusion in part (ii) does follow. O

The results on price dynamics obtained we illustrate by some examples.

Examples 7.5.3. (i) Consider the following simple numerical example of two produc-
ers, each producing one single good by just one technique, this time, however, the
choice of technique depends on time. To make calculations simple assume for pro-
ducers 1 and 2, respectively, the following techniques:

((0,1);1), teven
((3,3)1), todd

((1,0); 2), teven
((2,0);1), todd.

A () = {(at); U(1)} = {

Ay (t) = {a®):; 1)} = {

As real wages assume b! = b% = (1, 1).
Regarding the cost functions we obtain for ¢;(e;, t) = a; + lb]’. with (a, 1) € A;(t) that

c(ent) = {1,teven C(ent) = {Z,teven
1\*1> - 3 1\*2»> - 3
3 todd, 3> tOdd,

3, teven 2, teven
e h) = {3 todd, 0= {1 t odd

For the matrix D we obtain

dy; = min{l, %} -1, dy, = min{3,3} = 3
. 3 3 .
dy, = mm{z, 5} =5 d,, = min{2,1} = 1.

Thus, Dis a (strictly) positive matrix and the assumptions of part (ii) in Proposition 7.5.1
are met. Therefore, weak ergodicity as well as asymptotic proportionality do hold for
price orbits. We illustrate this result by examining directly the price formation as fol-
lows.

Since A, (t) and A, (t) consist of one technique only, in this example c(p, t) is linear
in p and we have that T(¢t)p = c(p,t) = p;c(e;,t) + p,c(e,, t). Using the numbers we
obtain

P1 [;] + D, [2 , t even
T(tp = 3 3-
p1[§]+p2[i_, t odd
or ) s
Ap, teven . 1 2 > s
T(t)p = th A= , B=|2 2[.
(Op { Bp, todd 3 2] [3 1]

From 4, B > [ 1 1] it follows that each price path for p(0) 2 0 tends to infinity. Further-
more, p(2t) = (BA)'p(0) and p(2t + 1) = A(BA)'p(0) for t > 0.
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Since BA is a (strictly) positive matrix we obtain from the classical Frobenius the-

orem (Theorem 2.4.1) for p(0) 2 0 arbltrary that hm "5 83" = x* where (x*,1%) is the

unique positive solution of (BA)x* = A*x*(|x*| = 1) From pQ2t + 1) = Ap(2t) it fol-

p2t)
pQ2t+l) Aol Ip0)l pQt+l) )
lows PGEDT ~ gy and, hence, llr(x)lo beEDl = 1 AX i This shows that hm || o~

|| = 0 for arbitrary p(0), q(0) 2 0, that is we have weak ergodicity. By Theorem 241

4@
llg@®ll

again, thm ’% = x* and, hence, thm% = Ax". It follows, for p(0), q(0) 2 O given
—00 —00
to € > 0 there exists s(e) such that for t > s(¢)

A1 -ex* <p2t), q2t) <A*(1 +e)x*

and, hence
1

—-€ 1
——q(t) < p(t) <
1+€q() p(t) 1

<400
fort > 2s(e) + 1.

These inequalities imply that orbits with p(0), q(0) z O are asymptotically propor-
tional. Moreover, the inequalities show asymptotical equality. Possibly, does strong
ergodicity even hold in this example? If this would be the case we should have that
% = x* and, hence, A *x* = (BA)x™ = | Ax™||Bx".

This would mean A and B have a common positive eigenvector. Any positive eigen-
vector of A must be x* = r[2] with r > 0 which, however, is not an eigenvector of B.
Thus, weak ergodicity does hold for this example but not strong ergodicity.

(ii) The second example addresses another kind of technology, so called Cobb-
Douglas technology (see Remark 2.7.2 for the autonomous case). Consider a cost func-
tion c(p, t) = " (p, t) + c"(t) where

n
e 0 =k [p and ') = wiOl() 20
=1
with 0 < k;(¢), Sl:p k;(t) finite for all i and 0 < a(t), Z;Ll agt) =r<1 for all i. For
K = R}, c"(p, t) is increasing, differentiable and positively homogeneous of degree r
inpon I°< .

Forr < 1 by Proposition 7.5.2 (i) it holds weak ergodicity and asymptotical equality
on f( .

For r = 1 suppose il’tlf w;(0)(t) > O for all i. Then by Proposition 7.5.2 (ii) any two
bounded orbits are asymptotically equal and path stability applies. The assumption
of boundedness cannot be simply omitted as the following calculation shows.

Let k;(t) = 1 and w;(8)};(t) = f(¢) for all i and all ¢. The assumptions made in part

(ii) of Proosition 7.5.2 are satisfied. Since (T(t)p); = In—[p;l""(t) + f(¢) it follows for A > 0
=1
ande = (1,...,1) that ]
T(t)(Ae) = (A + f(t))eandT(s)T(t)e = (1 + f(t) + f(s))e.
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It follows by induction

pt+1) = (1 + if(i))e and gt + 1) = (/l . if(i))e.
i1 =1

Consider two price orbits starting in p(0), g(0) > 0. Since irtlff (t) > 0 both orbits are

unbounded. ForA # 1, however, ||p(t + 1)—q(t + 1)|| = |A —1||e| and path stability (for
|l - II) does not hold. Similarly, the two orbits are not asymptotically equal. (For strong
ergodicity in this model of price setting see Exercise 10.)

7.6 Populations under bounded and periodic enforcement

Consider the non-linear population dynamics in one dimension given by the Bever-
ton-Holt model hbox to 100pt

Ex(t)

X+ D) = - @

x(0) = 0, (76.1)
where y > 1 is the so called inherent growth rate and K > 0 the so called carrying ca-
. : . _ _ ukx fo)_ _K
pacity. For the reproduction function f(x) = KT One has le(_x)l = Tx < 1 for
x > 0. Equivalently, f is a cave function, that is, @ is strictly decreasing but xf(x) is
strictly increasing. This means, there is population pressure which, however, is mod-
est since the population decreases not too fast.(For cave functions see also Section 5.3

and the related Exercise 7).
We shall call for any reproduction function f the magnitude c(x) = x|%| the
population pressure for f at state x. Since c(x) < 1 for the Beverton—Holt model

the reproduction function has a unique non-zero fixed point x* = K and tlim x(t) = x*
—00

for each x(0) > 0. (This is easily verified and does follow also from Exercise 7 (d) to
Section 5.3).

The interaction of a population with its environment and changes in the envi-
ronment, like seasonal fluctuations, can enforce essential parameters of the popula-
tion like u and K to change. To take this enforcement into account, we treat parame-
ters time dependent which for the example considered yields the non-autonomous
Beverton—-Holt model

HOKOX(D)
K©® + @© - Dx(@’

with u(t) > 1,K(t) > Oforall t = 0, 1,.... An interesting question then is under what
conditions the population shows a stability behaviour in the sense of path stability or
weak ergodicity. Also interesting is the question of strong ergodicity in the less likely
case the time dependent parameters tend to certain values. Particularly relevant is
the question whether periodicity of the parameters due to seasonal fluctuations lead
to an asymptotically periodic behavior of the population. The latter question has been

x(t+1)=

x(0) = 0, (76.2)
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taken up in a sequence of papers by Cushing/Henson and Elaydi/Sacker, respectively
([7, 8, 11, 12]; see also [25, 31], and see [46] for more general for mathematical popu-
lation models). These questions are, of course, of interest also for many other kinds
of populations and their reproduction functions. It will turn out that for the questions
raised the population pressure plays a fundamental role.

In the following we shall consider the general situation of several populations
which depend on each other in their development within a changing environment.
The above non-autonomous Beverton—Holt model as well as others constitute the spe-
cial case of just one population. Suppose there are n populations with x;(t) the level
of population i at time ¢ which develop according to

x;(t + 1) = fi(t, x (8),...,x,(1), x(0) = (x1(0),...,x,(0)) >0 (7.6.3)

fori = 1,...,nand t = 0,1,..., where f; is the extended reproduction function
of population i which takes into account also the levels of populations other than i.
Suppose further for each i and t differentiability of f;(t, -) in the interior of R” and let D
be a subset of the interior such that x(0) € D implies x(t) € D for all ¢t. We define

X; |ofi(t,x)
ci(t,x) = ——2—| = (76.4)
v fit,x)l ox
to be the population pressure of population j on population i and
n
ci(t,x) = Y cyi(t,x) (76.5)
j=1

the total population pressure on population i in state x at time ¢t. (For an interpre-
tation similar to the one dimensional case see Figure 6.1 and Exercise 5 to Chapter 6.)

The following theorem provides answers to the three questions mentioned con-
sidering path stability, periodicity, and strong ergodicity.

Theorem 7.6.1. For the non-autonomous population system (7.6.3) with D log-convex the

following properties hold true.

(i) Iffor each population i the total population pressure c;(t, x) is bounded fort > 0,x €
D by c; < 1 then all orbits (x(t)) starting in D are asymptotically equal. If at least
one orbit has compact closure in D (for the norm) then path stability holds (for the
norm).

For the weaker assumption c;(t,x) < c;(x) < 1,t > 0,x € D, asymptotic equality
holds for bounded orbits and path stability holds for orbits with compact closure
inD.

(ii) Suppose D is internally closed and the population system (7.6.3) is periodic with
period k, that is fi(t + k,-) = fi(t,-) fort = 0 and k > 1 minimal. If ¢;(t,x) < ¢; < 1
fort > 0,x € D then each orbit (x(t)) starting in D converges to a unique k-cycle
0%y ...y ) in D given by y*' = fi(,y)) for0 < j < k- 1,1 < i < n. For the
weaker assumption ¢;(t,x) < ¢;(x) < 1,t > 0,x € D, the convergence to the cycle
holds for each orbit with compact closure in D.
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(iii) Suppose for each i there exists a differentiable function f; on f( with bounded deriva-
tive on D such that fi(t, -) converges in t uniformly on D to f;(-) and f;(-) has a strictly
positive lower bound on D. If for each i the total pressure for f;(-) satisfies c;(x) < 1
for each x € D then each orbit with compact closure in D converges (in norm) to the
unique population equilibrium x* € D defined by f,(x*) = x{ for1 <i<n.

Proof. (i) Applying Corollary 7.2.5, case (a), to selfmappings T, of int R defined by
(Tex); = fi(t,x) and S; = T, one obtains for x € D

n
Alx) = supmachij(t, X) = supmaxc;(t, x) < maxc; < 1.
t i 4 t i i
j=1

This proves the first part of property (i). The second part follows from case (b) of Corol-
lary 7.2.5.

(ii) Bythe mean value theorem it follows (as in the proof of Corollary 7.2.5 for cases
(@) and (b), respectively)

p(Tx, Ty) <cp(x,y) for x,yeD and c=maxc<1
1
and, for the weaker assumption ¢;(x) < 1,
p(Tx, Ty) < px,y) for x,yeD, x+#y.

For Tx = T)_; o ... Tyx for x € D it follows that T is a contraction in the first case and
a contractive mapping in the second case. Since int R, is internally complete and, by
assumption, D internally closed the metric space (D, p) is complete. In the first case it
follows from Banach’s contraction principle that T has a fixed point x* € D. For the
second case consider an orbit (x(t)) with compact closure (for the norm) in D. There
exists a subsequence (x(t;)) Corolverging in norm to x* € D and, since norm topology
and part topology coincide on K, this convergence holds for p, too. Thus, w (x(0)) + 0
in (D, p) and from Lemma 4.1.2 (b) it follows that T has a fixed point x* € D.

Let y*! = T,o...0 Tox" the orhit starting in x* and y° = x*. By periodicity, for
t=nk+i0<i<k-1

yt= wiei © 0 T T'X" = Tyo w0 Tox".
Since the orbit (/") is finite, from (i) it follows for any orbit (x(t)) and any orbit with
compact closure in D, respectively, that tlim Ix(&) — ¥l = 0.
—00

Thus, for the cycle € = (%, y%,...,y*!) we have that tlim ingllx(t) — ¢l = 0 which
—00Ce

proves (ii).

(iii) For (Tyx); = fi(t,x) and (Tx); = f;(x) it follows that (T,) converges uniformly to
T on D. Since f; has bounded derivative on D one has that T is uniformly continuous
on D. Furthermore, Tx > u for all x € D and some u > 0. The total population pressure

offiinx e Dis Y, fl)((_ic) ag)(:)l < 1and, hence, Z;‘=1|ag;)" |x; < (Ix);. From Corollary 7.3.5
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follows for k = 1 the convergence of orbits to the unique fixed point x* of T in D which
proves property (iii). |

Theorem 7.6.1 we illustrate by two examples in one dimension.

Examples 7.6.2. (i) (Non-autonomous Beverton—Holt model). The extended repro-

duction function according to equation (7.6.2) is f(t,x) = K(t})lii;f% for x > 0 with

u(t) > 1,K(t) > 0fort = 0, 1,.... For the (total) population pressure on the population

we obtain
of (t,x) K(t)

C(t,X) - f(t )l I((t) + (H(t) - 1)X'

Suppose
inf}l(t) -1 > 0.

112fK(t) >0 and Q)

(7.6.6)

Choose 0 < a < irtlfK(t) and put D = [a, col.
For x > a one has that

HOK(t)x - K(t)a = (u(t) — 1)K(t)x > (u(t) - 1)ax

and, hence,

UOK(E)x
K@)+ (u(t) - Dx =
that is, f(t, -) maps D into itself. Furthermore, from assumptions (7.6.6) it follows that
c(t,x) <c< 1forallt > 0,all x € D. Since D is log-convex it follows from property (i)
of Theorem 7.6.1 that all orbits starting in D are asymptotically equal. For x(0) > 0,
y(0) > 0 given choose a < min{x(0),y(0)},0 < a < il’tlfK(t) to obtain that all orbits

ft,x) =

(x(t)) with x(0) > 0 are asymptotically equal. This holds also in case all orbits are un-
bounded as for example u(t) =t + 2,K(t) = t + 1 which satisfies assumptions (7.6.6).
Considering property (ii) suppose u(t + k,-) = u(t,-),K(t + k,-) = K(t,-) for all
t, some k > 1. From Theorem 7.6.1 (ii) it follows that all orbits (x(t)) with x(0) > a
converges to the same k-cycle. As above this follows also for any x(0) > 0.
Considering property (iii) suppose hmy(t) y > 1and tliToK(t) = K > 0. For

a(t) = I((t()t)l,a = “ Land f(x) = 11mf(t x)

-p@k | pa) - p@al’
A+ax)@Q+a®x) 1 +ax)(1+a®)x)’

If ) - f(t&,x)] <

which yields uniform convergence of f(t,-) to f(-) on D = [a,00[,0 < a < irtlfK(t).

Furthermore, mff (x) >0and |f'(x)| = <uon K

(1+0(x)Z
The populatlon pressure of f at x € D is given by 1+ax < 1 for x > 0. Thus, The-
orem 7.6.1 (iii) implies that each orbit with compact closure in D converges to x* = K

the unique fixed point of f in K. This holds, obviously, for every orbit with compact
closure in the positive reals.
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For the Beverton—Holt model orbits can be unbounded also if the assumptions
(7.6.6) are met. If, however, in addition to assumptions (7.6.6) one has that sup u(t) < co
t

U(OK(t) K(t) K(t)
%w(r)q) <p(®) (-1 and 51t1p u-1 <0

by assumption. Therefore, the compact closure of an orbit is contained in D = [a, oo
for some a > 0 and path stability holds for the norm. In case of periodicity, every
orbit then converges to a common cycle also in the case of the weak assumption on
population pressure. Furthermore, strong ergodicity holds under the augmented as-
sumptions for each orbit.

To illustrate the case of periodicity further, consider the simple case of two sea-
sons only, say spring and autumn with equal growth rates yu, = y; = ¢ > 1 but
different positive capacities K, # K;. The assumptions (7.6.6) as well as sup u(t) < oo

t

then all orbits are bounded. For, x(t + 1) =

are satisfied, it follows that each orbit converges to a common cycle. This cycle is given
by {x*,f,(x*)} where x* is the unique fixed point of f; o f,. One obtains x* = %
which depends not only on the two capacities but also on the common growth rate.
The fixed points of f, and f; are K, and K, respectively. Since K,, # K; we cannot have
fo(x*) = x* which means that the cycle is a 2-cycle. This means in particular, we do
have path stability but not strong ergodicity.

(ii) (Non-autonomous Hassell-May Model). The extended reproduction function

is given by
A(t)x

(1 + a(t)y)>®
with A (t), a(t), b(t) > O for t = 0, 1,.... For the (total) population pressure on the pop-
ulation one obtains

for x>0

f(t,X) =

c(t,x) =

b |af(t,x) |1 +a(®)(1 - b®)x|
fex)l ox | 1+ a(t)x '

Suppose a = iItlf a(t) > 0,8 = irtlf b(t) > 0,
y =sup a(t) < co and sup b(t) < 2 (7.6.7)
t t

Then, for b(t) < 1, or b(t) > 1 and a(t)(1 - b(t))x < 1

a(t)b(t)x <1 affx

<1- <1 for x>0
1+ a(t)x 1+ax

ct,x)=1-

and, for b(t) > 1 and a(t)(b(t) - 1) > 1
_a®b®-Dx-1 _at)x-1  yx-1

c(t,x) = < < <1 for x>0.
1+ a(t)x 1+a(t)x  1+yx
Defining c(x) = max{1 — 1‘?;){, ﬁ:}i} we arrive at ¢(t,x) < c(x) < 1 forx > 0. Since

D = int R, is log-convex, from Theorem 7.6.1, part (i), if follows that bounded orbits
are asymptotically equal and path stability (for the norm) holds for orbits with com-
pact closure in D. Considering periodicity, part (ii) of Theorem 7.6.1 implies that all
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orbits with compact closure in D converge to a common cycle. As for strong ergodic-
ity, property (iii) does not supply meaningful conditions on the parameters beside the
case b(-) = 1 which comes back to the Beverton—Holt model.

For further examples see Exercise 11. For an example of a coupled system of two
Beverton—Holt populations see Exercise 12.

Exercises

1.

2.

(@) Show for V = R" and K = R that none of the three asymptotic properties of
linkedness, proportionality and equality is equivalent to another one.

(b) Find two sequences (x;), (v;) with [|x, || = [yl = 1 forall kand kll)rg X =Vl = O
for which none of the above asymptotic properties does hold (|| - || some norm
onR").

Let G([0, 1]) be the space of all real valued continuous functions on the unit inter-

val and

(T, f)(w) = J kwv)(F)dv for u e [0,1].
[0,1]
Thereby, k: [0,1] x [0,1] — R, is a continuous strict positive kernel, f €
C.([0,1]) and I, € [0,1],n = 1, withl = sup l, < 1. Consider the positive
n

dynamical system given by

fn+1 = Tnfnifl € (?+([0, 1])

(a) Prove that any two paths (f,), (g,) are asymptotically equal.
(b) Find conditions on the kernel such that path stability holds for the sup-norm.

[36] Let a non-linear and non-autonomous Leslie model given by

ibi(t)(\/fi +1)
Xq i=1

T, | : _ Si(xg +1)

Spe1(Xpp + 1)

with birth rates b;(t) > b > 0 and survival rates s; > s > 0.

(a) Show that there exists a bounded orbit.

(b) Prove path stability (for any norm).

(c) IMlustrate path stability for n = 3 by computer simulation for some chosen
example of birth and survival functions.

4. Leta Leslie model given by

1
T, ot (11 VR andlet S;=TyyoT,.
X, X
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(a)
(b)
(c)

Prove that case (b) of Corollary 7.2.5 does apply.
Show that case (a) of this corollary is not applicable.
Show that unbounded orbits do exist.

Consider a “reversed” continued fraction given by x(t + 1) = fi(x(t)),t = 0,1,...,

x(t) € R, where

(a)

(b)
6. (a)

(b)

(c)

(d)

7. (a)

(b)

8. (a)

1

f[(X) _ 1+x
2 todd.

2+x

, teven

Use Corollary 7.2.5 to prove path stability, that is tlim [x(t) — y(t)| = O for any
x(0),y(0) € R,.
Determine the limit set of (x(t)) for x(0) € R,.

Consider the non-autonomous affine dynamical system x(t + 1) = f,(x(¢)), t =
0,1,...,x(t) € R, wheref;(x) = a,x + b, with a;, b, € R, and sup a; < 1. Prove
path stability (for the absolute value on R). ‘

Let w,(x; (a;), (b;)) denote the limit set for a path with x(0) = x. Show that
the “Cantor dust”, that is the union of all w,(x; (a;), (b;)) over all possible se-
quences with (a,, b,) = (5, 3) or (a,, b,) = (3,0) is independent of x.

Consider the system x(t + 1) = fi(x(t)),t = 0,1,...,x(t) > 0 where f;(x) =
a,vx + b, with a, > 0, b, > 0. Show that all orbits are asymptotically equal
and find sequences (a;), (b;) for which path stability does not hold.

Let for the system in (c) w,(x; (a,), (b;)) be the limit set for a path with x(0) =
x > 0. Show that the “non-linear Cantor dust” defined as in (b) (for the system
in (c)) is independent of x.

Prove strong ergodicity for the non-linear and non-autonomous Leslie model
given by

n
Zbi(t)x?
X4 i=1
T| _ s, (Ox§ ,
. .

Sn—1(f)Xﬁ-1
whereO0 < a < 1and b; = tlim b;(t) > O,s; = tlimsi(t) > 0.
—00 —00

Compute the equilibrium solution (A *,x*) in terms of b;,s;(|x"|| = 1 for the
l,-norm).

Let A;: R — R}t = 0,1,..., be a sequence of cone mappings which con-
verges, uniformly on bounded sets, to a continuous mapping A and let (a,) be
a sequence in R}, which converges to some a > 0. If there exists b € R” such
that 0 < A(b) < b, then each orbit given by x(t + 1) = A,(x(t)) + a; with x(0) >
0 which is bounded, converges to the unique solution x* of A(x) + a = x.
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(b) Find asequence of cone mappings A;: R} — R which converges, uniformly
on bounded sets, to a continuous mapping A, and find a sequence (a,) which
converges to some a > 0 such that no orbit converges to a solution of A(x) +
a=x.

Prove the following extension of Pituk’s Theorem to linear operators in a positive
setting. Let (V, | - ||) be a Banach space, K a closed and normal convex cone with

non-empty interior K . Consider the Poincaré difference system
x(t+1) = (T +S@)x(t), x(0)eK

where T and S(t) are bounded linear operators on V which leave K invariant. Sup-
pose T(B) € [u,v] c K(B={x e K| |Ix| =1}, [u,v] ={x € K| u < x <v})and
tlim [S(®)] = O for the pertubation S(t) of T.

Then

*

tnmux(t)n% -A* forall x(0)%0,

where 1* > 0 is the unique positive eigenvalue of T (with eigenvector in K).

Consider a dynamical system of price setting given by

p(t+1)=c"(p(t),t) + c"(t),t =0,1,...,p(t) € R}

with material costs c"(p, t); = k(t) 1'[]7’=1 p;l"’(t) and labor costs c}'(t). Assume 0 <

a;(t), Y1 az(t) = r €]0,1[,¢f'(t) = 0.

Assume further, clggo a;(t) = ay, clggo k(t) = kand tllr(r)lo c'(t) = ¢ > 0.

(a) Prove strong ergodicity, that is [llnolo p(t) = p* for each bounded orbit with
p(0) > 0.

(b) Which price vectors p* can be asymptotically reached by controlling asymp-
totically the labor costs?

[31] Prove for the following non-autonomous population models f(t,-): D —
D,D = {x € R | x > 0}, path stability as well as the existence of a globally stable
cycle under the conditions specified.

(a) Riccati model:
a(t) + b(t)x

ct) +d(t)x’

i s e a(t)d() a(t)d(t)
Path stability if 0 < 1rt1f DO < sgp DO < 00

Existence of a stable k-cycle if f is k-periodic and the coefficients are strictly
positive.
(b) Power Riccati model:

f(t,x) =

a(t) + b(t)x®

f6X) = T a0

with non-negative coefficients, c(t) + d(t) > O.
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12.

Path stability if sup r(t), sup s(t) < 1.
Existence of a staf)le k-cyctle if f is k-periodic and r(t), s(t) < 1 for all t.
(c) Maynard Smith model:
B A(t)x
1+ (A(t) - 1)x20°
If irtlf A(t) > 1 then path stability holds and x* = 1 is a globally stable fixed
point.

f(t,x)

Consider the following system of two coupled Beverton—-Holt populations

) KX,
F6X) = N g -

VL(t)x,
S RS )
Assume there are two seasons, K(t) = K, L(t) = L, for t even and K(t) = K;, L(t)
L, for t odd.
Suppose, K = min{K,,K;} > 1,L = min{L,,L,;} >1andu > 2K + 1,v > 2L + 1.
(@) Prove for f(t,x) = (f,(t,x),f,(t, x)) that f(t,-) maps for each t the set D = {x =
(x1,%,) € R? | 1 < x;,1 < x,} into itself.
(b) Prove that each orbit given by x(t + 1) = f(t, x(t)), x(0) € D is bounded.
(c) Show path stability for the system on D.
(d) Show that all paths (x(t)), x(0) € D converge to a unique 2-cycle {x*,f(0, x*)}
and compute x”*.
(e) Explore by computer simulations the behavior of x(t)) for x, (0) < 1,x,(0) < 1.

, X1>0, x, >0.
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8 Dynamics of interaction: opinions, mean maps,
multi-agent coordination, and swarms

In previous chapters we met already applications of the theory of positive dynamical
systems to questions of interaction within groups of actors. For example, the price set-
ting of economic actors based on the prices set by other actors or cooperative systems
modeled by differential equations. In this chapter we investigate systematically the
dynamics of interaction as it has been addressed in recent years within quite diverse
fields. An essential feature thereby is that interaction takes place as the formation of
means or of averages or of convex combinations. For example, in the most simple case
of interaction given by a single matrix A, averaging means that A is nonnegative with
each row summing up to one. A fundamental result for such a (row)-stochastic ma-
trix states that the powers of A converge to a matrix B with equal rows if and only if
some power of A is scrambling. Thereby, a stochastic matrix is scrambling if any two
rows have a strictly positive entry in a common column. A special case of this result
is the famous Basic Limit Theorem for regular Markov chains. In that case a row of B
corresponds to the equilibrium distribution of the Markov chain. For linear interac-
tion Markov chains figure as the most prominent example. In Section 8.1, beside the
scrambling property, other and weaker structures will be investigated as, for example,
coherent matrices and Sarymsakov matrices.

Section 8.2 exhibits models of how a group of individuals, called agents, can reach
a consensus by themselves, both for linear and for nonlinear interaction. In the linear
case consensus will be asymptotically reached precisely if some power of the under-
lying matrix is scrambling. In the more realistic nonlinear case interaction depends
on the state in that an agent takes only opinions into account which are not too dis-
tinct from his own. This model of opinion dynamics under bounded confidence
has during the last years found a lot of attention across the disciplines, ranging from
physics over electrical engineering and biology to economics and sociology (see the
references given).

A general form of nonlinear interaction is treated in Section 8.3 as a mean map T
(or compromise map) which sends a collection x = (x', ..., x") of points into another
collection whithin the convex hull of x!,...,x". The interaction is only local in the
sense that T;x may depend only on a subset of “neighbors” of i in state x. It will be
shown that the iterates of T converge to consensus, a collection of points being equal,
if T satisfies a shrinking property. A particular example is a Gauss soup where each
component T; is given by a weighted arithmetic or geometric mean (or other means,
too).

Time-dependent interaction in nonautonomous positive systems is the topic of
Section 8.4. Different from Chapter 7, however, the infinitely many matrices A(t) are
assumed to be stochastic and asymptotic behavior is with respect to consensus. It is
shown that the latter will be approached if the strength of interaction does not vanish
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“too fast” and the structure of interaction becomes not ”too loose” in the course of
time. For a tool often used, a theorem of Wolfowitz on infinite products of stochastic
matrices, an extended version will be presented and proved.

The results obtained in Section 8.4 are used in Section 8.5 for interactions called
broadly multiagent coordination. A fundamental condition on local interaction to get
consensus is the principle of the third agent (printh) which, roughly, says that the
neighbors of of any two agents have one agent in common. In case there is no (global)
consensus it is still possible that consensus holds locally within subgroups. This is
true in particular for reciprocal interaction. It is here where the results on opinion dy-
namics under bounded confidence as appearing in Section 8.2, as well as extensions,
will be proven.

In Section 8.6 previous results will be used to investigate swarm dynamics. The
motivating question in behind is how a group of birds is able to coordinate them-
selves flying in a swarm together. The latter means that the birds by local interaction
approach asymptotically the same velocity and their relative distances do converge.
The recently much discussed Cucker—Smale model of bird flocking in discrete time is
treated. Another model which requires less conditions on local interaction is devel-
oped. Actually, swarm dynamics is not confined to birds, fishes or other animals but
appears also in jams of people, distributed computing in networks or selforganizing
groups of robots.

8.1 Scrambling matrices

The notion of a scrambling matrix has been introduced by J. Hajnal in his analysis of
the weak ergodicity in non-homogeneous Markov chains, where he explains the term
as follows:

“A scrambling matrix is one in which the probabilities of transition from different
initially states are not all in distinct columns, but, as it were, scrambled.” ([39, p. 235].
For scrambling matrices and the history behind this concept see [40, 91, 93].)

Definition 8.1.1. A non-negative n x n-matrix A = (ay) is (row-)stochastic if all rows
sum up to 1. A, not necessarily stochastic, is scrambling if for any two rows i and j
there exists a column k = k(i,j) such that a; > 0 and a; > 0. Equivalently, AA'isa
strictly positive matrix (A’ being the transposed matrix of A).

Compared with two other important notions already dealt with in Section 2.4, that
of a primitive and indecomposable matrix, respectively, there is no direct relationship.
More precisely, a scrambling matrix need neither be indecomposable nor primitive as
the example A = | % 2 | shows; conversely, an indecomposable or primitive stochastic

0

matrix need not be scrambling as the examples A = [} ] and A = [ ] show.

QOwlmNI=
O wikNIm

1
3
1



8.1 Scrambling matrices =— 259

In the following we shall characterize a stochastic and scrambling matrix by the

way it operates on R% LetA = (a;) be a stochastic n x n-matrix and let x = (x%,...,x")
be a collection of points in le(d >1).
Define

n
fix) = Zaikxk for 1<i<n

Obviously,

conv{f; (X),...,f,(x)} < convix’,...,x"}

where convM = {Y @M | 0 < @y Y pepr A = 1} denotes the convex hull of a
subset M of R%.

Let ||-]| denote an arbitrary but fixed norm on R and denote by AM = sup{|lm-m'|| |
m,m' € M} the diameter of a subset M of RY. Notice that

AconvM =AM for M ¢ R%

Obviously, AconvM > AM. To see AconvM < AM observe that

Y aym- Y Bym' = Y a,By(m-m).

meM m'eM m,m'eM

Using the Hilbert metric H on int R} we shall characterize a scrambling matrix
also by the way it operates multiplicatively, that is we consider the selfmapping g of
int R’ given by

n
g =[[x" 1<isn x=(q,....x) €intRy.

Theorem 8.1.2. Let A = (a;) be a stochastic n x n-matrix.
A (i) The following equalzty does hold

n

— max Zlalk ayl =1~ min z min{ay, a;}. (8.1.1)

2 1<i ]<n <1]<n

(i) Let c(A) € [0, 1] be the quantity defined by equation (8.1.1) and let fi(x) =
Y aikxk. Then c(A) is the smallest constant c such that

Aconvif, (x), ..., f,(X)} < c - Aconv{x’, ..., x"} (8.1.2)

for all collections x = (x!,...,x") with x' e RY
(iii) Let g be the selfmapping of int R] defined by g;(x) = ]'7=1 xfi" forl1 <ic<n
Then c(A) is the smallest constant c such that

H(g(x),g(y)) < c-H(x,y) (8.1.3)

for all collections x = (X1,...,X%,),¥ = (V1,...,Y,) inint RY.
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B The following statements are equivalent.
(@) Aisscrambling.
(b) A has contraction property (8.1.2) for some ¢ < 1.
(c) A has contraction property (8.1.3) for some ¢ < 1.
(d) A has the following shrinking property

conv{f; (x),...,f,(x)} G convix',...,x"} (8.1.4)

for all collections x = (x*,...,x") withx' € R? and not all X' being equal.

Proof. First we address part A.
(i) Fora,b € R one has
|a - b| + 2min{a, b} = a + b.

Since A = (ay) is stochastic this yields for 1 <i,j < n.
n
Z(Iaik - | + 2 min{ay, ay}) = 2
k=1
which proves equation (8.1.1).

(ii) First we show inequality (8.1.2) for ¢ = c(4). Let Ay = ay — min{ay, ay} for
h = i,j. We haVe that Ahk > O and Zk Aik = Zk A]k = ri}' Wlth rii =1- Zk min{aik, ajk}. Wlth
Qpy = ’% for ry > Oit holds },; ay = Y a3 = 1. Therefore,
ij

;%) = £;00ll = ||z (ay - ajk)xk” = "Z Ay - Ajk)xk”
k k
=l g = Y |
[ k
which implies, for r; >0,

Ifix) - f;0ll < ryAconvix',...,x"} forall i,j.

For r;; = 0 we must have that a; = a; for all k and the above inequality holds trivially.
Using AconvM = AM for M c R? we arrive at

Aconvif; (x),...,f,(x)} < max r; - Aconvix’,...,x"}
1<ij<n

which proves (8.1.2) with ¢ = c(4).

Conversely, suppose inequality (8.1.2) holds for some c and all x. For i,j fixed
choose x defined by x* = %e if ay > ay and Xk = —%e if ay < ay for some e € R?~ {0}.
It follows

Ifi(3) - £l < Aconvify (%), ..., f,(0)} < cAX', ..., %"} < clel.
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NOW’ f;()_() _f}()_() = Zk (aik - ajk))_(k = % Zk |aik - a]'k|e and, hence
1
> 2l = ayl llel < cllel.
k

Since i, j were arbitrary chosen, it follows from inequality (8.1.1) that

1 n
c(Ad) = = max Z lay — aikl <c.
k=1

1<ijs<n

This proves (ii).
(iii) From Definition 2.1.8 of the Hilbert metric on int R we have

H(x,y) = —log(minZ - min%)
i Vi i X
X; . . X;
= —logmin— + log max N max <log % log —}>.
j y]- iy 1<ij<n Vi y}-
From the definition of g we obtain log % =Y, a;log ;—t and, hence,

H(g(0.8(y) = max ) (ay - a) log 3t
Tk

Let z € R" be defined by z; = log ;—: For f(z) = Y\ ayz, and x, y given the inequality
H(g(x),g(y)) < cH(x,y) (%)

is equivalent to
max |fi(z) - f;(z)| < c max |z; - z]. (%)
1<ij<n 1<ij,<n

Since AconvM = AM, from part (ii), for d = 1 we see that (*) holds for ¢ = c(A4).
Furthermore, if (+) holds for all x,y € int R] then (x=) holds for all z € R" (choose, for
example, x; = e*,y, = 1). By part (ii) again we get c(4) < c.

Consider now part B of Theorem 8.1.2. By equation (8.1.1) we have that A is scram-
bling if and only if c(A) < 1. Therefore, part A (ii) yields the equivalence of (a) and (b).
Similarly, part A (iii) yields the equivalence of (a) and (c). Since Aconv{x?,...,x"} = 0
if and only if the x' are all equal we have that (b) implies (d).

To complete the proof of part B we show that (d) implies (a). Suppose A is not
scrambling. Then there exist i and j such that min{ay, ay} = 0 forall k. Let I = {1 <
k < n| ay = 0}. Since A is stochastic there exist h and Il such that a; > 0O and q; > 0
and, hence, a; = 0. Therefore, 0 # I ¢ {1,...,n}. Let a, b two different points in R? and
define x* = afor k ¢ I and x* = b for k € I. It follows

fix) = Z aikxk =a and fi(x) = Za]-kxk =b.
kel kel
Thus, convix?,...,x"} = conv{a, b} ¢ conv{f; (x), ..., f,(x)}. Since the x* are not all
equal the shrinking property does not hold. Therefore, (d) implies (a). This completes
the proof of Theorem 8.1.2. O
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The above theorem characterizes a scrambling matrix by certain contraction and
shrinking properties, respectively. Notice that whereas the contraction property (8.1.3)
means a proper contraction property in the sense of metric spaces, this is not the case
with property (8.1.2) which states only that the diameter of certain sets is contracting.

From Theorem 8.1.2 we obtain some further useful properties for scrambling ma-
trices.

Corollary 8.1.3. Let A und B stochastic n x n-matrices.

(i) IfAis scrambling then AB and BA are scrambling. Furthermore, any finite product
of stochastic n x n-matrices is scrambling whenever at least one of these matrices is
scrambling.

(ii) A is scrambling if and only if for any stochastic B and any x € R"

BAx = ximpliesx = (r,...,r) for some reR. (8.1.5)

Proof. (i) Let foran x n-matrix M = (my)
n
!
fu00; = Zmi]-xj,x = (Xp5...5X,) € R
j=1

For
fap(¥) = faly) with y=fp(0)
fpa(¥) = fp(z) with z=f,(0)
it follows from Theorem 8.1.2 part A

Aconv{fyg(X) 1, ..., fap(X),} = Aconvify ()1, .. .. fa(V)n}
< c(A)Aconviyy,...,y,} < c(A)Aconvixy,...,x,}

and

Aconvi{fgy (X)1, ... fpa(0)p} = Aconvifp(2)y, . ..., fp(2)}
< Aconvizy,...,z,} < c(A)Aconvix,, ..., X,}.

For A scrambling we have c(A) < 1 and, hence, by theorem 8.1.2 part B it fol-
lows that AB and BA are scrambling. Furthermore, a finite product of stochastic n x n-
matrices where, say, A is scrambling is of the form AB or BA or BAC. The above implies
that the finite product is scrambling.

(ii) First, we show for a scrambling matrix A that Ax = x implies x = (r,...,r)".
If Ax = x then for f(y) = Ay it follows conv{f; (x), ..., f,(x)} = conv{x,,...,x,} and, by
part B of Theorem 8.1.2, x = (r,...,r)’. For A scrambling and B stochastic by part (i)
BA is scrambling and, hence, BA has property (8.1.5). Conversely, assume property
(8.1.5) and suppose conv{x,,...,x,} < conv{f;(x),...,f,(x)}. Then there exist b; > 0
with ¥, by = 1 forall i such that foreach 1 <i<n

X; = jilbijf}()() = ibii( 1ajkxk> = Z(ibijajk>xk,

=1 k= k=1 j=1

n
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that is, x = BAx. B being stochastic from property (8.1.5) we must have x = (r,...,7)".
Thus property (8.1.4) in part B of Theorem 8.1.2 is satisfied and A must be scram-
bling. a

The next theorem presents a most important feature of scrambling matrices. This the-
orem generalizes also our earlier result from linear Perron—Frobenius theory, Theo-
rem 2.4.1 (iii) (c), which states, for the case of a stochastic matrix, primitivity of A im-
plies the existence of lim A* with all rows being equal. This is a fundamental property

k—o00

of Markov chains (A’ being stochastic), also referred to as ergodic theorem for primi-
tive Markov chains in [92] or basic limit theorem for regular Markov chains in [76]. See
also the infinite generalization of this theorem obtained previously in Corollary 5.2.8.

Theorem 8.1.4. For a stochastic matrix A it exists klim A¥ = B with all rows of B being

—00
equalif and only if a power of A is scrambling. In that case for the row b determining B the
transpose b’ is the unique normalized eigenvector for the eigenvalue 1 of the transposed
matrix A'.

Proof. (i) Let a power AP be scrambling. Let f(x) = Ax,x € R", and C(k) =
conv{fk(x)l, .. fk(x) } for x fixed, k > 0, f* the k-th iterate of f. Obviously, C(k + 1)
C(k) forall kand C = n C(k) # @ by compactness of C(k). From part A of Theorem 8.1.2
we have that k=0

N

AC(k + p) < c(AP)AC(k) with c(4P) < 1.
Therefore, klim AC(k) = 0 and for ¢ = c(x) € C it follows klimfk(x)i =cforalll <i<n
because of |c — fk(x)l-l < AC(k) for all k. In particular, for x the j-th unit vector e we
obtain klimf"(e]-)i =c(e) foralll1 <ij<n.
If B denotes the matrix with each row equal to b = (c(e;), ..., c(e,) it follows that
klim (Ak)ij = Bjforall 1 < i,j < n. Furthermore, since BA = klimAk+1 = B it follows
that Y}, byay; = by, thatis, A'b’ = b’ and Y'; b; = 1. If A'x = x with Y} x = 1

thenx = limA* = B'x, that is X; = b; Y1 X = b;. Thus, b’ is the unique normalized

k—o00

eigenvector for the eigenvalue 1 of A’.

(i) Assume lim AF = Bwhere B has all rows equal. If A? is not scrambling for all

)

e 204 G
of AP we must have that mln{a i)k ](p) k} 0. Sincei(p),j(p) € {1,...,n} there exists a
sequence (p,), such thati(p,) = i and j(p,) = j for all r € N. From lim A¥ = Bit follows

(pr

p > 1 then for each P there ex1st i(p) and j(p) such that for the entries a.

that limA”f Band, hence, 11ma = by and llma = by for all k

Thus min{by, b} = llm mm{alk > Wy )} =
Sinceallrows of Bare equal we must have that by = by = Oforall k. This, however,

is a contradiction since each row of B sums up to 1. Therefore, klim AK = Bwhere Bhas
—00

equal rows implies that A is scrambling for some p > 1. O
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Since for a primitive matrix some power is strictly positive and, hence, scrambling
the above theorem implies the mentioned fundamental theorem on Markov chains,
where b’ is also called the equilibrium or stationary distribution. As already seen, a
scrambling matrix need not be primitive and, hence, Theorem 8.1.4 sharpens the fun-
damental theorem on Markov chains.

In the following we analyze the relationship of scrambling matrices to related
kinds of matrices such as Markov matrices and Sarymsakov matrices of which the for-
mer notion is stronger than that of a scrambling matrix and the latter ia a weaker one.
For that reason we introduce a little calculus for the positivity structure of matrices.
Define for a stochastic n x n-matrix A = (a;) and a non-empty subset M of {1,...,n}

s(M) ={jef{l,...,n} | a; >0 forsome ie M} (8.1.6)

Since A is stochastic, s maps the set of non-empty subsets of {1, ..., n} into itself and
we can define iterates of s for M # ¢ by

SO (M) = M, sV (M) = s(s¥(M))  for k= 0.

For M = {i} we abbreviate s*({i}) by sk(i). In the following we list some elementary
properties of the mapping s(-) which will be used later on.

Properties of s(-) 8.1.5. Let M, M' be non-empty subsets of {1,...,n}.

(i) M < M implies s(M) < s(M'")

(i) s(MuM') = s(M)usM’")

(iii) s(M N M') < s(M) n s(M")

(iv) MnM' + @ impliess(M) ns(M') + 0

(v) Forp = 1,k € s’(M) if and only if there exists a chain of length p from M to k,
thatis there exist k;, ..., k, in{1,...,n}, k; € M with

gk, > 0>, 1, > 0,.. o Qg > 0.

Equivalently, k € s?(M) if and only ifag(’) > 0 for somei € M(A? = (ag’))).

Proof. Properties (i) to (iv) are obvious. For (v), k € s”(M) is equivalent to @Gk > 0
for some k, ¢ sP"1(M). In turn, k, € sP~1(M) is equivalent to k> 0 for some
k, 1 € sP~2(M). By iteration there exist ky_2,.... ks, ki such that k, € s(M),a; , > 0
for some k; € M. Furthermore, agf) > 0 for some i € M is equivalent to the existence of

asequencei = ky,...,k, such that g ; >0,.. -y > 0. O

Definition 8.1.6. Let A be a stochastic matrix. A is a Markov matrix if A has a (strictly)
positive column.

Ais a Sarymsakov matrix if for any two non-empty subsets M and M’ of {1,...,n}
with s(M) n S(M') = @ it holds that

IMuUM'| < |s(M)us(M)|
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(IM| the number of elements in a finite set M). Call @ # M < {1,...,n} saturated if
s(M) ¢ M. A is called coherent if any two saturated subsets have a non-empty inter-
section.

Proposition 8.1.7. Consider the following properties for a stochastic n x n-matrix A:
(1) Markov matrix;

(2) scrambling matrix;

(3) Sarymsakov matrix;

(4) A™'is scrambling;

(5) coherent matrix.

(i) The following implications do hold:

1)=2)=03)=(“)=05).

Furthermore, if A is scrambling then A" is a Markov matrix.
(ii) None of the implications in (i) can be reversed in general.
(iii) Some power of A is scrambling if for any i,j € {1,...,n} there exist k = k(i,j) €
{1,...,n} and p;, p; > O such that a?f") >0, a](.,f") > 0and ay > 0.
If A has a positive diagonal then properties (3), (4), (5) are equivalent.
Proof. (i) Obviously, a Markov matrix has to be scrambling. Let A be scrambling and
M, M' two non-empty subsets of {1,...,n}. There existi € M,j € M and, since 4 is
scrambling, it holds s(i) N s(j) # 0. Properties 8.1.5 (i) implies s(i) N s(j) < s(M) N
s(M') and, hence, s(M) n s(M') + @. Thus, A is a Sarymsakov matrix. Next, let A be a
Sarymsakov matrix. Let M, M’ non-emtpy subsets of {1,...,n} and assume s"* (M) n
s"1(M') = 0. The definition of a Sarymsakov matrix yields

IsS"2(M) us" (M) + 1 < s E ) usTTE ).
By property (iv) of s(-) this step can be iterated and we arrive finally at
1My u s M)+ n—1 < |s"H M) usTH)).

Since s°M) u sS°M") = MuM' MM = 0and M,M' + ¢ we must have that 2 <
1s°(M) u s°(M")| and, hence,

n+1<|s"™'WM)ust ),
which, however, is impossible. This shows that
sTHM) NS + 0.

Especially, for M = {i}, M’ = {j} we obtain k € s"(i) and k € s"!(j). By property (v) of
s this means ag("l) > 0and a](.,:"l) > 0, that is, A"! is scrambling.

Finally, let AP be scrambling for some p > 1. By property (v) of s we have for any
i,j that sP(i) n s (j) # 0. Let M, M’ saturated sets with, say, i € M,j € M'. M being
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saturated it follows s(i) ¢ Mand, by iteration, s”(i) ¢ M. Similarly, s”(j) < M’ and we
obtain @ # s”(i) nsP(j) € MnM'. This shows that A is coherent and the first part of (i) is
proven. For the second part of (i) we must show that for A scrambling the power A" ! is
a Markov matrix. By induction over k we show that for any collection M, ..., M;, k > 2
of non-empty subsets of {1,...,n} satisfying M\; N M;,; # 6 for1 <i < k - 1 we must
have

M) NS 2L N L. 0SSR # 0. (%)

For k = 2 assertion (*) amounts to M; N M, # @ which is true by assumption. Suppose
(*) holds for some k > 2 and any collection M, ..., M, satisfying M; n M;,, # 0. Then
there exist

ies"2M)n...ns2My) and jesEM,)n...nsEM) nsAML, )

where M, satisfies M; N M, # 0. For A scrambling we have that s(i) N s(j) # #. Using
property (i) of s we get

s() nsG) < <My, UM, .., s

as well as
s()) ns() € 1), $ L), L 8T (M), ST M),

which implies
0+ si) ns@G) < s M) N 0SS NS, ).

This proves assertion (x).
Especially, for M; = s(i), 1 <i < n,k = nwehavethat M;nM;,, #+ 0for1 <i<n-1
because A is scrambling. Thus, for this case, () yields.

sSTHD) ns"'2)n...ns" () # 0.

That is, there exists k € s" (i) forall 1 < i < n, which, by property (v) of s, means that
a§,':‘1) > 0 for all i. Thus, the k-th column of A" is positive which proves part (i) of
Proposition 8.1.7.

(ii) For counter-examples proving (ii) see Examples 8.1.8 below.

(iii) By assumption k € s”i(i), k € s”i(j), k € s(k). Forp = {n}?xph it follows that k €
<hsn

sP7Pi(k) and, hence, k € sPPi(sPi(i)) = s (i) and, similarly, k € s”(j). Thus, s? (i)ns?(j) + 0
for the p above and all i, j. Therefore, A? is scrambling.

Suppose, finally, A has a positive diagonal. Then for any non-empty subset M of
{1,...,n} it holds M < s(M). Therefore, M is saturated if and only if s(M) = M. Let
M, M’ two non-empty subsets of {1,...,n} such that s(M) n s(M') = @. By property (iv)
of s we must have that M n M’ = 9. If A is a coherent matrix then M and M’ cannot be
both saturated and, hence, M UM’ G s(M) U s(M').

Therefore, [M U M'| < |s(M) U s(M')| and A is a Sarymsakov matrix. Together with
(i) it follows that (3), (4), (5) must be equivalent. [
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The notions introduced we illustrate by some simple examples which also provide
counterexamples to the reversal of the implications as mentioned in part (ii) of Propo-
sition 8.1.7.

Examples 8.1.8. (a)

(b)

(0

(d

(e)

()

1 1
7 2 0
_ 11
A=|o 1 1
1 1
7 0 3

is scrambling with a positive diagonal. A is not a Markov matrix, and, hence in
Proposition 8.1.7 property (2) does not imply (1).

r -

0

N =
Nl= NI O
= O O

2

L

is not scrambling and has a positive diagonal. Since

1

A? =

DR DW=
Nk BN O
= O O

r

A? is a Markov matrix and, hence, A? is scrambling. Part (iii) of Proposition 8.1.7
shows that A is a Sarymsakov matrix. Thus property (3) does not imply (2).
Examples (a) and (b) also show that even in case of a positive diagonal neither (1)

nor (2) are equivalent to one of (3), (4), (5).

100 1007. .
For A = [ (1) (1) 8] the power A% = [ % 8 8 ] is a Markov matrix and, hence, a scram-

bling matrix. A is not a Sarymsakov matrix. For M = {3}, M’ = {1, 2} one has that
s(M) = {2}, s(M") = {1} and, therefore, s(M) n s(M') = @ but

Is(M) us(M")| = |{1,2}| < IMuM'|.

This shows, property (4) does not imply (3).

For A = [9 1] no power is a scrambling matrix. A is a coherent matrix since M =
{1, 2} is the only saturated set. Thus, property (5) does not imply (4).

Examples (b) and (c) show that A> may be a Markov matrix for A not scrambling.
Thus, the additional implication in part (i) of Proposition 8.1.7 cannot be reversed
and, as example (b) shows, this is true even in case of a positive diagonal.
Considering part (iii) of Proposition 8.1.7, for the example

=

I
S~
NI, O O
Nie O O
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itholds a;; > 0,a,; > O and a(;l) > 0. Therefore, with k(i,j) = 1 for all i, j, a power

of A must be scrambling; indeed, A?is scrambling. A is, however, not a Sarym-
sakov matrix. For this let M = {1,2},M' = {3}, in which case s(M) = {1},s(M’) =
{2,3} and

Is(M) us(M)| = 1{1,2,3}| = IMUM'|.

Thus, although (4) implies (3) if there is a positive diagonal, this need not be the
case if just one entry in the diagonal is not positive.

(g) Part (iii) of the proposition shows that positive entries in the diagonal of A play
its role. It is, however, by no means necessary for a scrambling matrix to have a
positive entry in the diagonal as the example

I
Ni= N O
NI, O NI~
O NIk N=

shows.

Remarks 8.1.9. (1) The concept of a Sarymsakov matrix has been defined in [91] and
[40] for arbitrary nonnegative matrices, too.

(2) Scrambling matrices can be investigated also in terms of eigenvalues. In [34]
the following result is proven: For a stochastic matrix A it holds ’(ILIEO A¥ = Bwith all
rows of B being equal if and only if
(a) A has beside 1 no other eigenvalue of absolute value 1,

(b) 1is a simple root of the characteristic equation of A.

By Exercise 2 below this result does follow from Theorem 8.1.4. The formula in
Exercise 2 (a) provides a calculation by the entries of A for the second eigenvalue which
plays an important role for the rapid mixing of Markov chains. (See for the latter [5,
Chapter 10].)

(3) As mentioned already, the contraction property (8.1.2) is different from a con-
traction with respect to the metric defined by a norm, that is ||[f(x) — f¥)Il < cllx -y
for some ¢ < 1, all collections x, y. For example, the matrix A in Examples 8.1.8(a) is
scrambling and, hence, contraction property (8.1.2) holds for any norm but for each
norm ||4e — A0| = |le = O], wheree = (1,...,1)".

The analysis of scrambling matrices carried out in this section we want to extend later
on (see Section 8.3) to certain nonlinear mappings. For this reason we did not consider
an analysis in terms of eigenvalues but put emphasis on the contraction and shrinking
properties of scrambling matrices. The latter turn out to be fruitful to handle “scram-
bling processes” tending to a “consensus” as in the cases of opinion dynamics and
swarm dynamics to be considered in the following sections.
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8.2 Consensus formation and opinion dynamics under bounded
confidence

Consider a group of experts who have to assess a certain magnitude like the world’s
wheat production in the year 2030. Each of the experts has his own expertise but is
open to some extent to revise it in case of opposing expertises by his colleagues. Know-
ing the revisions may lead to further revisions and the question occurs whether this
iterative process of opinion making will tend to a consensus among the experts con-
cerning the value of the magnitude under consideration.

Methods to deal with a problem like this were developed around 1960 as Opinion
Pool [97] and Delphi-method [25] and later on as a simple Matrix Model ([26, 69]; see
[36] for a survey). Within a time-dependent matrix model an agreement algorithm was
developed around 1980 - this time for the communication among electronic proces-
sors [8, 98, 99]. Denote by x;(t) € R the assessment made by experti € {1,...,n} at
timet € {0, 1, 2, ...} of the magnitude under consideration. Let x;(t + 1) be the revised
opinion of expert i by taking the assessments x;(t) of the previous period into account
with certain weights a;. If A = (a;) denotes the matrix of weights then the matrix
model is

x(t + 1) =Ax(t) fort =0,1,..., (8.2.1)

where the matrix A is stochastic since weights are nonnegative and add up to 1; x(-) is
the column-vector with components x;(-).
The main question is whether the experts will reach a consensus among them-
selves, that is
t@r&x,-(t) =c forall ie{1,...,n}, (8.2.2)

where the consensus ¢ depends on initial opinions x(0).
From Theorems 8.1.2 and 8.1.4 of the previous section we obtain the following an-
swer.

Theorem 8.2.1. The following statements are equivalent.
(i) A consensus will be reached for each x(0) € R".
(ii) Some power of A is scrambling.
(iii) The map given by f(x) = Ax has an iterate fP such that for some c < 1
(maxfl‘J (x); — minf? (x)i> < C(maxxi - minxi)
1<i<n 1<i<n 1<i<n 1<isn
forallx = (xq,...,x,)" € R"
(iv) There exists an iterate f? such that

[minfq(x)i, maqu(x)i] g [minxi, maxxi]
1<i<n 1<i<n 1<isn = 1<i<n

forallx = (x,,...,x,)" € R", except for a consensus where the x; are all equal.
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Proof. Since x(t) = A'x(0), reaching a consensus means tllrg) (A‘X(O))i = ¢(x(0)) for all
i. This holds for all x(0) € R" if and only if tlim (A‘)i]- = c(e;) forall 1 <i,j < nwhere e
is the j-th unit vector. The matrix B = (bij) wiotoh bij =c(gj)isa stochastic matrix with
equal rows. From Theorem 8.1.4 it follows that a consensus is reached for all x(0) if
and only if a power A? is scrambling. This proves the equivalence of (i) and (ii). The
equivalence of (ii), (iii) and (iv) follows from part B of Theorem 8.1.2. For this notice
thatford=1andy = (y;,...,y,) € R" one has that

conv{yy,...,Y,} is the interval [minyi, maxyi]
1<i<n 1<i<n
and
Aconv{y,...,y,} = maxy; — miny;. O
1<i<n 1<i<n

Using Proposition 8.1.7 we obtain the following sufficient condition for a consensus.

Corollary 8.2.2. A consensus will be reached for each x(0) € R" if for any two experts
i and j there exists a third one k = k(i,j) and p;, p; > 0 such that a?f") > 0, a;fi) > 0 and
ai > 0.

Proof. By Proposition 8.1.7 (iii) a power of A must be scrambling which by Theo-
rem 8.2.1 yields the conclusion. O

Whereas Theorem 8.1.2 provides equivalent conditions for reaching a consensus, in
the literature, e.g., in [26] and [69], mainly sufficient conditions are given. For the suf-
ficient condition supplied in Corollary 8.2.2 the assumption ag(’f) > 0 means that there
exists a chain of length p; from i to k, that is there exist k..., kp,- in {1,...,n} with
ky = isuch that a;;, > O,..., Ak > 0 (see part (v) of Properties of s(-) 8.1.5). Us-
ing a formulation from [69] we can rephrase the sufficient condition in Corollary 8.2.2
by saying that for any two experts there exist chains of respect to a third one who
respects himself.

An interesting result in [69, Theorem 7.2] states that consensus will be reached if
there exists a chain of respect from every expert to a particular expert k who respects
himself. This result follows immediately from Corollary 8.2.2. The latter, however, ad-
mits an expert k with self-respect to depend on i and j. Without the assumption on
self-respect Corollary 8.2.2 may fail as Examples 8.1.8 (d) exhibits. Indeed, as Propo-
sition 8.1.7 (iii) shows positive entries on the diagonal of A and, hence, experts with
self-respect play an important role. On the other hand, as Examples 8.1.8 (g) shows, a
matrix A with zero diagonal may be scrambling and, by Theorem 8.2.1, consensus will
be reached although none of the experts possesses self-respect.

Now we want to introduce another model which is nonlinear and more realistic in
that experts do not trust necessarily all the other experts — depending on the assess-
ment made by other experts. In the following we outline the model of bounded con-
fidence, which was introduced in 2000 ([54] and developed further in 2002 [43]) and
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has found much attention since then. (In [43] also the history and background of the
model are considered and references to the literature are given. See also Remarks 8.2.6
below.) We will present some major results but without giving a proof since in the next
chapters we develop a general framework which yields these results as special cases.
(See Theorem 8.5.7 and the consequences drawn from it.)

Using the language of multi-agent systems we consider nagentsi = 1,...,nwhere
x;(t) € R, fort = 0,1,... denotes the opinion of agent i at time ¢. In making up his
opinion in the next period, agent i takes into account from the previous period the
opinions of those agents he is confident in. More precisely, depending on an opinion
profile x = (x,...,x,) € R the confidence set of agent i is given by

IGx)={1<j<n|lx-xl<el

where € > 0 is a certain confidence level assumed to be equal for all agents. The
dynamics of opinion formation under bounded confidence is given by

X(t + 1) = [IGx(@0) ™) x;(0) (8.23)
Jel(ix(t))

fori=1,...,n,t =0,1,...and given initial opinions x(0) € R’.

It is easy to solve this system for n = 2 but for the general case no analytical so-
lution is available. Although there are still many questions open concerning the be-
havior of solutions of model (8.2.3) many results have been obtained. Thereby, the
following concept plays a major role. A chain of confidence of agent i to agent j from
period s to period ¢ > s is a sequence of agents (i, i;,...,i;_;) such that i, = i,i,_ ; = j
andi, € I(i,_;,x(t—r)) foralll <r<t-s.

Theorem 8.2.3. If for any two agents i and j there exists a third agent k = k(i,j) such
that a chain of confidence goes from i to k and fromj to k, from s to s + h for some fixed
h > 1 and all s, then consensus will be reached in finite time, that is for some T € N

x(t)=c forall 1<i<n and t=T.
where the consensus c depends on initial conditions.

An immediate consequence of this theorem is the following result.

Corollary 8.2.4. Consensus will be reached in finite time if for alli,jand t > T
I(i, x(t)) N I(j, x(t)) + 0.

Without making any assumptions on model (8.2.3) it can be shown that always in finite
time a fragmentation of opinions will be reached.

Theorem 8.2.5. For the model of bounded confidence an opinion fragmentation is
reached in finite time, that is there is a disjunctive decomposition of {1,...,n} into
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non-empty subsets A;, 1 < j < k such that for some T
x(t)=¢ forall ieA; and t=>T

where the partial consensus c; of agents in group A; depends on initial conditions.

For proofs of the results above see [28, 43, 44, 54, 71, 72].

As mentioned already there are still unsolved problems concerning the
model (8.2.3) of bounded confidence. One such problem considers the distance be-
tween two opinion clusters according to Theorem 8.2.5 which, backed by computer
simulations is conjectured to be roughly equal to 2e¢ (see [9]).

A major question is, how, in case of reaching a consensus, this consensus depends
on intial condition x(0). For the linear model discussed above this question is easily
answered. From Theorem 8.1.4 it follows

n
C(X) = Zle],
j=1

where b’ = (by,...,b,) is the unique normalized eigenvector of A'.

Opinion dynamics is since some years quite an expanding field in its own. We
give some further references with emphasis on the model of bounded confidence as
described above.

Remarks 8.2.6. Various models of opinion dynamics are presented in [47], with appli-
cations to sociology in [51, Chapter 8]. Various aspects and applications of the model
of bounded confidence have been considered and explored further in [9, 10, 28, 31—
33, 44, 45, 47, 55-57, 61, 62, 71-75, 78, 87].

A model of bounded confidence which is driven randomly by pairwise interaction of
agents is developed in [27, 102]. Computer simulations have shown similarities in the
dynamics of this model and the one presented here (see, for example, [72, 74]).

Among recent contributions concerning the model (8.2.3) we mention [79] which
addresses the dynamics in case the agents have different confidence levels; see also
[74, 96] where the “phase transition” between consensus and fragmentation is inves-
tigated by computer simulations and [21] where, within a broader framework, an al-
gorithmic approach is pursued to get for the dynamics bounds on the convergence
rates.
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8.3 Mean processes, mean structures and the iteration of mean
maps

The action of a stochastic matrix A on a vector x can be viewed as formation of arith-

metic means (Ax); = 2111 a;x; with weights a;;. It has the nice property that

minyx; < (Ax); <maxx; forall 1<i<n (8.3.1)
1<j<n 1gj<n
which is shared also by nonlinear means like the geometric mean given by (Gx); =
[Tigj<n xf"" or the power mean given by

(Px); = (jan:ainr>%

for r # 0. (For more on those concrete means see below.) Actually, inequalities (8.3.1)
are precisely what one would expect of means — a value between the extremes. Map-
pings satisfying these inequalities are called abstract means in [12].

Since for x € R" the closed interval [minx;, maxx;] equals the convex hull of
1<jsn 7 1gj<n

X1,---,X, one might extend inequalities (8.3.1) to higher dimensions as (Ax); ¢
conv{x,,...,x,}. This has been considered already in Section 8.1 for stochastic ma-
trices A. In this section the analysis will be extended to nonlinear mappings called
mean maps. Actually, the extension to nonlinear mappings in higher dimensions
(that is x; € RY) is needed to treat opinion dynamics (for example, the model (8.2.3)
in Section 8.2) and other models of interaction dynamics.

Definition 8.3.1. LetSbe a non-empty convex subset of R%(d > 1) and S” the cartesian
product of n copies of S. A sequence (x(t)),t € {0,1,...} with x(t) € S*(n = 1) is called
a mean process on S" if x'(t + 1) € conv{x'(t),...x"(t)} forall 1 <i<n,allt > 0. Or,
in short,

convix(t + 1)} < conv{x(¢t)} forall t>0 (8.3.2)

where convix} = conv{x?,...,x"} forx = (x},...,x") € S".

We speak of a mean structure M on S" if for each x € S" a mean process (x(t))
with x(0) = x is specified. A selfmaping T of S” is a mean map on S" if its iterates
defined by x(t) = T'x, x € S" is a mean structure on S".

Obviously, the composition of mean maps is a mean map, too. By this simple principle
a huge variety of mean maps can be generated from a given set of concrete means. If
T(t),t € {0,1,...} is an infinite sequence of mean maps then by x(t + 1) = T(t)x(t) a
mean process is defined which is not given by a mean map. A mean process, in par-
ticular a mean map, can be described by stochastic matrices as follows. By equation
(8.3.2) there exist a stochastic matrix A(t) such that x(t + 1) = A(t)x(t), and vice versa.
Thus, the asymptotic analysis of a mean process amounts to that of an infinite product
of stochastic matrices. This point of view will be taken up in the next section.
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The main aim of this section is to find for a mean map T conditions which yield
the following property, which occurs already in Section 8.1 and as consensus in Sec-
tion 8.2:

(P)lim T'x = ¢(x)
t—oo

for all x, where ¢(x) = (c(x),...,c(x)), c(x) = 0.
The following lemma will be crucial to obtain such conditions.

Lemma 8.3.2. Let (x(t)) be a mean process on S" and w the limit set of (x(t)).
(i) Fory € w it holds conviy} = (o, convix(t)} # 0.
(i) For C =, convix(t)} andall1 <i<n

liminf|x'(t) - ¢| = 0
t—ooceC

(I - | be any norm on R%.)

Proof. Let C(t) = conv{x(t)} for t > 0. From the definition of a mean process we have
C(t + 1) € C(t) for all t > 0. Since all the C(t) are non-empty and compact it follows
that C = (5 C(¢) is non-empty and compact, too.

(i) Since x(t) is contained in the compact set C(0)" the limit set w is non-empty.
Lety € w,yi = SlLrgloxi(ts) for 1 < i < n. Obviously, xi(ts) € C(t,) < C(t) fort < t, and,
hence, yi € C(t) for all i, all t. Therefore, yi € C and conv{y} ¢ C. For the converse let
x € Cand 6 > Obegiven. Toy € w exist a sequence (t;) and s, such that ||xi(ts) -yl<é
foralls > sy, alli. From x € C ¢ C({,; ) we have x = p aixi(tso) with ; = a;(x, ¢, ) > 0
and Y}, a; = 1. Thus,

n ) n i X n
= Yoyl = 1Y a(X'(ts,) -y < Y 6 = 6.
i=1 i=1

i1
Since § > 0 is arbitrary and conv{y} is closed it follows x € conv{y} which proves (i).
(ii) Lety € w and for § > O given ||xi(ts) Y| < 6 fors > s, alli. For t > t, it
holds x/(t) € C(t) < C(tso) and for a convex combination x!(t) = Z}’Zl a;(i, )% (tso). Let
c(i,t) = Yo a@, 1)y
By part (i) C = conviy} and c(i,t) € Cforall i, t > ¢, . This yields

IX(0) - ¢, Ol = 1Y &, (X () V)l < Y a0, £)8 = 6.
j=1 j=1
Thus, . .
ing||x'(t) —c| < Ix'() - c@, )| < 6 alli,all t > ts,-
ce

This shows part (ii). O

In Section 8.1, Theorem 8.1.2 part B, a scrambling matrix has been characterized by a
shrinking property with respect to convex hulls. Inspired by this we define a shrinking
property for the nonlinear case as follows.
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Definition 8.3.3. A mean process (x(t)) on S" is said to be shrinking for t if conv{x(t)}
G conv{x(0)}.

The process is shrinking if it it is shrinking for some ¢.

A mean structure M on S" is shrinking at x for ¢ if the mean process specified for
x = x(0) is shrinking for t.

The mean structure is shrinking at x if it is shrinking at x for some ¢.

A mean map T is said to have a property as above if it holds for the mean structure
given by T.

Shrinking is not possible at x € diagS" = {C = (c,...,¢)|c € S}.

If M denotes for M c S" the set M = M ~ diagS™ then shrinking is possible only at
points x € §".

Using the language above our earlier result on stochastic matrices can be re-
phrased by saying that A is scrambling if and only if the linear mapping induced by
A is shrinking at each point of $*(S = IRd). Our main result on stochastic matrices,
Theorem 8.1.4, can be rephrased by saying that tliréloAtx = ¢(x) = (c(x),...,c(x)) for
each x if and only if the map induced by A is shrinking at each x € 5" globally for some
common ¢,.

The following theorem presents an extension of this result to mean maps in general
and to mean structures, too.

Theorem 8.3.4. Let S be a non-empty convex subset of R%.

(i) For a mean process (x(t)) with x(0) = x € S" it holds tlimx(t) = ¢(x) if and only if
w(x) N diagS™ + 0. In this case the process must be shrinking for x € S".

(ii) For a mean structure M on S" tlim x(t) = &(x) for all x € S™ does hold if and only if for

each x e §" the structure M is shrinking at x and w (x) is invariant, thatisy € w (x)
implies y(t) € w(x) for all t.
(iii) For a continuous mean map T on S™ tlim T'x = &(x) for all x € S" does hold if and

only if T is shrinking at each x € S".
Proof. (i) Obviously, if tlimx(t) = ¢(x) then w(x) = {c(x)} ¢ diagS". Conversely, if

y € w(x) ndiagS" then conv{y} is a singleton. From Lemma 8.3.2 it follows that C = {c}
and [lim Ix'(t)—c|| = O foralli, thatis tlim x(t) = ¢.Itremains to show that [lim x(t) = ¢(x)

implies (x(t)) is shrinking for x € §". Suppose conv{x(t)} = conv{x} for all t. Then there
exist 0 < ay(t), Z;‘Zl a;(t) = 1 such that

X = Zaij(t)x’ (t) foralli, allt.
=1

Since t — (ay(t),;j<n is @ bounded sequence in R™" there exists a sequence (t; ), such
that lim a;(f;) = a;; forall 1 < i,j < n. From limx(¢) = ¢(x) and, hence, lim x(f;) = ¢(x)
k—o00 t—oo k—o0
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we obtain for all i

) n ) n
x = lim gaij(tk)x’(tk) = gaﬁcm = c(x).
J= J=

Therefore, x € diagS™ which shows that (x(t)) is shrinking for x € S".
(ii) Let tlim x(t) = ¢(x) for all x € S™. By (i) the structure M is shrinking at each x ¢

S". Since, by assumption, w (x) = {¢(x)} and (x(t)) is a mean process w (x) is invariant
for each x € S". Conversely, suppose M is shrinking and w (x) is invariant for each
x € $".Ify € w(x) then by Lemma 8.3.2 conv{y} = conv{y(t)} for all t. Therefore, y ¢ S"
and, hence, y € diagS™ and we have w(x) ¢ diagS". Part (i) implies }irélox(t) = ¢(x) for
allx € S".

(iii) For a continuous mean map on S it holds T(w(x)) € w(x) for all x € S". For
the mean structure on S" given by x(t) = T tx,x e S", part (ii) implies part (iii). O

Later on applications of this theorem will be given to soups made of various well-
known means and to opinion dynamics (in Section 8.5). Before doing so some ex-
amples and counter-examples will shed some light on the assumptions used in the
theorem.

Examples and counter-examples 8.3.5. (1) Parts (i) and (ii) apply also to non-con-
tinuous maps as the following simple example will show. For S = R,n = 2,1let T
be the selfmapping of S given by

(x,x1) ifxg <xy
(x5,x,) otherwise,

T(xy,x5) = {

for x = (x;,x,) € §%.

Obviously, T is a mean map which is not continuous on S°. If x; < x, then Tx =
(x;,x;) and T'x = (x5, x,) for t > 2.1f x; > x, then T'x = (x,,x,) forall t > 1. Therefore,
w(x) = (x5,x,) forx € S2. Part (i) of the theorem yields tllglo T'x = ¢(x) forall x € S?,
which is obvious in this simple example. The example shows also that the assumption
on w(x) made in part (ii), though implied by continuity, is weaker than continuity.
Furthermore, it is easy to check that T is shrinking at each x ¢ §? (for t = 1). This
shows that the equivalence stated in part (iii) may hold without continuity.

(2) In contrast to example (1) the following case of a non-continuous mean map
shows that the equivalence stated in part (iii) of the theorem can fail if T is not contin-
uous. For S = R, n = 3, let T be the selfmapping of $> given by

1 1. : .
(X1, X2, 5x3 + 5 min{xy, X,}) if x3 < min{xy, x,}

T(xq,x5,X3) = .
(12 23X5) {(xl,xl,xl)othermse.

Obviously, T is a non-continuous mean map. T is shrinking at each x € §° fort = 1
as the following calculation shows. Let min z = min{z, ..., z,} for short and similarly
for max z.
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In case of x; < min{x;, x,} we have
. 1 1 .
min Tx = §x3 + 5 min{x;, x,}, max Tx = max{x;, x,}
which implies
1 1 .
conv{Tx} = S6Gt 5 mln{xl,xz},max{xl,xz}] G [x3, max{x,, x,}] = convix}.

Thus, T is shrinking at x for t = 1.
In case of x; > min{x;, x,} we have

min Tx = max Tx = {x;},

and, hence,
conv{Tx} = [x1,x;] & [minx, max x] = conv{x}

holds trivially for x € 5. This demonstrates T is shrinking at each x € §> for t = 1.
It is easily checked that in case of x> < min{x,, x,}

T'x = (X1, X5, f()),

with f(t) = X3 + (1 - %)min{x;,x,}). Therefore, in that case, [lir‘x)lo T'x =
(x4, X5, min{xy, x,}). This shows tllrgo T'x ¢ diagS’ for x; < min{x;,x,},x; # x,. There-
fore, the equivalence stated in part (iii) fails.

Furthermore, considering part (ii), the assumption of invariance is not satisfied.
Let x € S? with x; < min{x;, x,},X; # x,. By the above w (x) = {(x, x,, min{x;, x,})} but
T'(xy, X, min{x;, x,}) = (x4, x3,x;) forall t > 1 and (x;,x;,x;) ¢ w (x) since x; # x,.

(3) As a simple example of a nonlinear mean map consider for S = R,,n = 2, the
selfmapping of S* defined by T(x,, x,) = (ax, + (1—a)x2,x’13x(21’ﬂ))f0r0 <a,B < 1.For
a more general setting see the Gauss soup later on. The particular case of a = f = %
is that of the famous arithmetic-geometric mean. Since minx < Tx < maxx for
i = 1,2 we have conv{Tx} ¢ conv{x} and T is a mean map. Whether T is shrinking or
not depends on parameters a and f3. First, consider the case 0 < a, < 1.Ifx; # x,
then ax; + (1 — a)x, < maxx as well as x’f x;’ﬁ < max x. Therefore, T is shrinking at
each x € § for t = 1. Since T is continuous from part (iii) of Theorem 8.3.4 it follows
that tlirglo T'x = &(x) for each x € S2.

Notice that T is a concave selfmapping of K = ]Rf but none of the Concave Perron
Theorems (2.1.11, 2.2.11) does apply because neither Tx > 0 forall x 2 0 nor T is weakly
idecomposable.

Consider next the cases where a, 8 € {0, 1}. Then Tx = (x;,x,) or Tx = (x;,x;) and
T is not shrinking at any x € $2. The remaining cases to discuss are 0 < a < 1 and
B €{0,1}or0 < p < 1anda € {0,1}. In the first case T shrinks at each x € 5. In the
second case, ifa = 0, T shrinks at each x € $?, except forx = (0,r)withO < r. Ifa =1,
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T shrinks at x € $* with the exception of x = (r,0) with r > 0. In this example, T may
shrink at some points but not on others (in $?).

To find the value of ¢(x), provided it exists, is not as easy. In the classical case
a=f-= % it is well-known that c(x) is given by a complete elliptic integral of the first
kind

-1

c(x) = T i ¢
z 5 \/x1 (0)2 cos? ¢ + x,(0)2 sin® ¢

which shows in no way any similarity with the means initially given. For general 0 <
a,B < 11do not know of any such formula.

(4) Another simple example of a nonlinear mean map is for S = R,,n = 3, given
by

T(x1,%5,x3) = (min{xy, x5}, X3, X1).

T is a concave selfmapping of lRf which is positively homogeneous and seems there-
fore to be a candidate for concave Perron—Frobenius Theory as considered in Chap-
ter 2. It satisfies, however, not the conditions of the First or Second Concave Perron
Theorem (Theorems 2.1.11 and 2.2.11, respectively) because neither Tx > 0 for x 2 0
nor Tye, > O for some 1 < h < 3. Nevertheless, from part (iii) of Theorem 8.3.4 it fol-
lows tlg(r)lo T'x = ¢(x) forall x € lRf and x* = ¢(x) is a fixed point of T. To see this we

show that T is shrinking at each x € §> for t = 4. From the definition of T we obtain
T?x = (min{x;, x,, X3}, X;, min{x;, x,}).
Thus, fory = T?x
T'x = sz = (min{y;,y,,y3} y1, minfy;, y,1)
= (min{x,, X5, X3}, min{x;, X5, x5}, min{x;, x5, x3}).

Therefore, conv{T*x} = {min{x,,x,,x;}} which equals conv{x} if and only if x €
diagRR?. This shows that T is shrinking at each x € > for t = 4. Actually, this does not
hold for t < 3 since T is not shrinking at x = (1,0, 0) for ¢t = 2 and not shrinking at
x=(1,1,0) fort = 3.

(5) Examples 3 and 4 show in particular that a mean map can, for some t, shrink
at all points or shrink at some points but not at others. We examine in more detail the

linear case that is Tx = Ax, where x € R",A € R} stochastic. Let x be any point,

x ¢ diagR". conv{Ax} = conv{x} is equivalent to
min ) a;x; <minx and max) a;x; > maxx
; ; iy i ; g

which is equivalent to

mim;ai}-(x]- -minx) <0 and m?x;aij(xj —maxx) > 0.

Let I,(x) = {j | minx < xj} and I, (x) = {j | Xj < max x}.
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Since x ¢ diagRR" these two sets are non-empty. Therefore, conv{Ax} = conv{x}
holds if and only if there exist iy, i, such that a;; = 0 forj € I(x) and g; ; = O for
Jj € I,(x). This shows that in general a stochastic matrix will, for ¢ = 1, be shrinking
at certain points and not shrinking at others. From Theorem 8.1.2 part B we know al-
ready that a stochastic matrix is, for some t, shrinking at all x ¢ diagRR" if and only if
Al is scrambling. What are the matrices on the opposite side, that is those stochastic
matrices which are not shrinking at any x ¢ diagR"? Suppose conv{Ax} = conv{x} for
all x ¢ diagR". Forx = ek, the k-th unit vector in R", we obtain by the above I, (x) = {k}
and I (x) = {1,...,n}~ {k} and there exist iy, {; such that g, , = 0,a; ; = 0ifj # k. Since
A is stochastic we must have g; ; = 1. Defining o (k) = i; we have a, gy = 1, d5¢ = 0
if j # k. This defines a selfmapping o of {1,...,n} for which k # l implies o (k) # o(l)
because of a, )y = 0 and a,(y = 1. In other words ¢ is a permutation of {1,..., n} for
which a,; = 6;; forall 1 < k,j < n, § being the Kronecker symbol. Therefore, A must
be a permutation matrix, where for a permutation 7 a permutation matrix A(t) is
defined by a;;(1) = 6, ;. In the above A = A(7) for 7 = o .

Conversely, if A = A(t) then (Ax); = Z}Ll a;(7)x; = X, and conv{Ax} = conv{x}
for all x € R". We conclude that a stochastic matrix is, for t = 1, not shrinking at any
x ¢ diagR" if and only if A is a permutation matrix. It follows that A is not shrinking
atany x ¢ diagR" if and only if A is a permutation matrix.

To draw conclusions from Theorem 8.3.4 we analyze in the following the crucial as-
sumption of a shrinking behaviour. For this we introduce the concepts of neighbor
and neighborhood. Let (x(t)) be a mean process on S" where S is a non-empty convex
subset of RY. The defining property conv{x(t + 1)} < conv{x(t)} implies the existence
of a stochastic matrix A(t) such that x(t + 1) = A(t)x(¢t) for all t > 0. Note that these
matrices are not uniquely determined. With respect to a fixed sequence of matrices
A(t)wecallfori e {1,...,n}andt >0

NG, t) = {j € {1,...,n} | a;(t) > O},

a set of neighbors of i at t, and
UGt = X |j e NG, D)},

a neighborhood of i at t.

To the collection of all the sets N(i, t) and U(i, t) we will refer also as a neighboring
system of x(t). Since A(t) is stochastic the sets N(i, t) and U(i, t) are non-empty. For
asequence T = (t;,...,t,) with t; > 0 and the matrix B(tr) = A(t;)--- A(t,) we define
more general

N(,7) = {j | by(t) > 0}

as neighbors of i via T and
UG,7) = (¢ 1j € NG, 7))

as neighborhood of i via 7.
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The following lemma describes shrinking by neighborhoods and presents criteria
for shrinking.

Lemma 8.3.6. Let (x(t)) be a mean process with x(0) = x.

(i) The process is for none t > 0 shrinking at x € S" if and only if for each extreme point
x of convix} and each T = (t + p,...,t + 1,t) there exists k = k(i, ) € {1,...,n}
such that the neighborhood U(k, T) consists only of x'.

(ii) Consider for a neighboring system and a sequence T, = (t, + pg,...,ty + 1,t,) the
following properties
(@ N(,75) NN(j, 7o) #0foralll <i,j<n.

(b) UG, 15) nU(,7y) # Bforalll <i,j<n.
(c) Foralll <i,j<nwithU(i,1,) + U(j,T,)
it holds |U(i, 7,)| = 2 or |U(j, o)| = 2.
Then (a) implies (b) and (b) implies (c) and the process (x(t)) is shrinking at x € S"
for some t if one of the above properties does hold.

Proof. (i) By definition (x(t)) is not shrinking at x for ¢ if and only if conv{x(t)} =
conv{x}. If this is the case, then any extreme point x' of conv{x} must be equal to some
x (t). If (x(t)) is for none ¢t shrinking at x, then to T and extreme point X! given, there
exists k = k(i, 7) such that x' = xk(t + p + 1). Since

x(t+p+1)=A(t+p)---Alt + DA(t)x(t) = B(T)x(t),

it follows

n
X = xk(t +p+1)= Zbkj(r)xj(t).
j=1
Because of conv{x} = conv{x(t)} the point X' is an extreme point of conv{x(t)} and,
hence, xj(t) = x'if bkj(r) > 0. This proves U(k,T) < {xi} and Uk, T) = {xi} since
Uk, T) # 0.
For the converse choose p = 0 and 7 = (t) and for an extreme point x' of conv{x}
a k = k(i,7) such that U(k,T) = {xi}. It follows x' = xj(t) for some j € N(k,T7) and
x' € conv{x(t)} because of T = (t). This holds for all extreme points of conv{x} and,
hence, conv{x} ¢ conv{x(t)}, that is conv{x(t)} = conv{x}, t being arbitrary.
(ii) (a)implies (b) by definition of U(i, 7). (b) implies (c) since for A = U(i, 1), B =
U(j, 7o) suchthat AnB # 0 and A N B ¢ A it follows that

[Al=]AnB|+|A~(ANB)| = 2.

Furthermore, suppose the process is for none t > 0 shrinking at x € S". Then
conv{x} must have at least two different extreme points, say x'' and x*2. Part (i) yields
Uk, 1) = {x'1} and Uky, 1) = {x2} with 1 < ky,k, < nwhich contradicts property
(c). This proves part (ii). O
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With the help of Lemma 8.3.6 from Theorem 8.3.4 we obtain immediately the following
result.

Theorem 8.3.7. Let T be a mean map on S for a non-empty and convex subset S of R%.
It holds tlim T'x = ¢(x) for all x € S"if T is continuous and for each x € S" the mean
—00

process given by x(t) = T'x has a neighboring system with one of the properties (a), (b),
(c) of Lemma 8.3.6.

From this theorem we obtain the following result which demonstrates the role of
scrambling matrices also for general mean maps.

Corollary 8.3.8. Let Tx = A(x)x,x € S", S a non-empty convex subset of R? and A(x) a
stochastic matrix the entries of which depend continuously on x. It holds

lim T 'x=t(x) forall xe§"

in each of the following cases.

(@) Foreachx e S"existt = t(x) and p = p(x) such that on the orbit of x given by
x(t) = T'x the product
Ax(t + p)) --- A(x(t)) is scrambling.

(b) Foreach x € S" at least one of the matrices A(x(t)) has a scrambling power and all
these matrices are of the same type , that is a;(x(t)) = 0 if and only if a;(x(0)) = 0
where1l <i,j<n,t=>0.

(c) All matrices A(x) are of the same type and A(x,) has a scrambling power for some
Xg € S".

Proof. By assumption T is a continuous mean map on S" to which we will apply The-
orem 8.3.7.

(a) Fixx(0) = x € §". A neighboring system for the mean process given by x(t) =
T'x is defined by taking A(x(t)) as A(t). Fort = (t + p,...,t) then B(t) = A(x(t +
p)) - --A(x(t)). By definition of N(i, T) the condition N(i,7) N N(j,t) # 0 for1 <i,j <n
means that B(t) is scrambling. Thus, Theorem 8.3.7 implies the conclusion for (a).

(b) This follows from the above. Let A(x(t,)) be a matrix, the p-th power of which
is scrambling. Since all matrices A(x(t)) are of the same type the product A(x(t +
p)) -+ A(x(t)) is scrambling for each t¢.

(c) is a special case of (b). a

The following consequence of Corollary 8.3.8 provides a criterion in terms of the Jaco-
bian for differentiable mean maps.

Corollary 8.3.9. Let T be a mean map on int R} which is positively homogeneous and
continuously differentiable. If there exist ap > 1 such that for all x the Jacobian J(x) of T
is stochastic at x and products taking for any p points are scrambling, then lim T'x = &(x)
forallx € int R". e
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Proof. Since T is positively homogeneous by Euler’s Theorem T;x = 2;1:1 %
7

all i, that is Tx = J(x)x. The assertion follows from Corollary 8.3.8 (a). O

()x; for

Particular examples of mean maps are given by the well-known means as arithmetic
mean, geometric mean, harmonic mean, power mean, Lehmer mean, and many oth-
ers. All these means we admit in a weighted version.

Definition 8.3.10. Let a, 1 < k < nbe any weights thatis 0 < @, and }_; a; = 1.
A mapping f: int R} — R, is a weighted mean called
- arithmetic mean if

n
fx) = Zakxk, X =(Xp,...,X,) € R
k=1

— geometric mean if
n
foo =T 1xs
k=1
— harmonic mean if .
n —_
fo = (Zakxgl) ;
k=1
— power mean if for somer € R ~ {0}

fx) = (kilakxz)’

(also called Holder mean);
— Lehmer mean if for somer € R

fo) = (kéakx,rfl ) (éakx,Z)_l

(also called contraharmonic mean).

With the exception of the Lehmer mean all these means can be looked at as cases of a
power mean.

This is obvious for the arithmetic mean, taking r = 1. Similarly, the harmonic
mean is a power mean for r = —1. It is not difficult to see that

1 n
: r\" _ ai
im( L) =

and, hence, the geometric mean can be viewed as a power mean for r = 0. In the
following we consider selfmappings of int R where each component mapping is given
by one of the means above. Since for all these means we have that

minx, < f(x) < maxx;, xeR"
1<k<n k f 1<ksn k +



8.3 Mean processes, mean structures and the iteration of mean maps =— 283

the mixture T of these means is a mean map as defined earlier. Since such a mean
map stirs up various means, call it a soup. A particular case is a Gauss soup, where
only the arithmetic mean and geometric mean are involved. A special case, the fa-
mous arithmetic-geometric mean we discussed already as axample (3) in Examples
and counter-examples 8.3.5. More precisely, we have the following definition.

Definition 8.3.11. Let A € R7*" be a stochastic matrix. A selfmapping T of int R’ is a
soup based on A if for each 1 < i < n the component mapping T; is one of the means
in Definition 8.3.10 with the i-th row of A as weights. T is a Gauss soup if T; is for each
i either an arithmetic or a geometric mean.

On soups we have the following fundamental result.

Theorem 8.3.12. Let T be a selfmapping of int R,.
(i) IfTis asoup based on a scrambling matrix then tlim T'x = ¢(x) for all x € int R".

(ii) If T is a soup based on a matrix which has a scrambling power, then tlim Tix = &(x)
—00

for all x € int R} provided the soup does not contain a Lehmer mean as component
as it is the case for a Gauss soup.

Proof. As already remarked T is a mean map and T is obviously continuous on int R.
To apply Theorem 8.3.4 (iii) we show that T is shrinking, for ¢ = 1, at each x € int R7.
(i) Letminy = {njnyi, maxy = rlnaxyi fory e int R}. By definition T is shrinking for

<i<n <i<n

t = 1atx € R if and only if [min Tx, max Tx] = conv{Ix} ¢ conv{x} = [min x, max x]
that is, either min Tx # minx or max Tx # max x. To prove this we show that T;x =
min x together with Tjx = max x forany 1 < i # j < nimplies min x = max x. This will
follow from the properties of each of the means considered

f(x) = minx,a; >0 forsome kimpliesx, = minx and
f(x) =maxx,aq; >0 for some limplies x; = max x.

()

Namely, assume properties (*) to hold for each mean f. Since by assumption the ma-
trix A on which T is based is scrambling, for i # j given there exists a k such that a; > 0
and a; > 0 which together with T;x = minx and Tjx = maxx yields x; = minx and
X, = maxx, that is min x = maxx.
It remains to show properties (+) for each mean f as in Definition 8.3.10.
Consider first a power mean

fx) = (iakx,:)%, r+0.
k=1

If f(x) = minx then Y, a;x; = (minx)" and Y a,(x; - (minx)") = 0. If @, > O then
X, = (minx)" and x;, = minx. The same reasoning applies in case of f(x) = maxx.
This covers for r = and r = —1 the cases of an arithmetic mean and harmonic mean,
respectively. Consider next a geometric mean, f(x) = [];_; ka. If f(x) = minx then
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Ik xzk = [ (minx)%. If @, > O then because of x € int R? we must have that xi" =
(min x)% that is x; = min x. Similar for f(x) = max x.
As the last case consider a Lehmer mean

£ = (Zakx'”)(kiakx;)l
-1

If f(x) = minx, then ¥, ax}" = ¥, ax} minx and ¥, ax},(x; — minx) = 0. If g, > 0
then because of x € int R we must have x; = min x. Similar for f(x) = max x. Thus,
properties () hold for each mean considered which proves part (i).

(ii) Let T be a soup based on A and containing no Lehmer mean as a component.
We show that for all t > 0 T' is a soup based on A. Let T; be a component given by a

power mean,
n 1
r r
X = < z aikxk>
k=1

for all x € int R”. Suppose for some ¢ we have that

(o oor ®
Tix - <Za1k Xk) > Ay
k

being the entries of A'. Then

T - Tf(Tx)—(Za@(Tkx)) [Za (Zakhxbr
- [%@“f?“kh))’(] - (Sax)

By induction this proves that Tl-‘ is a power mean with weights given by the i-th row of
A" This covers for r = 1 and r = —1 arithmetic and harmonic mean, respectively. The
remaining case to be considered is a geometric mean, T;x = [[;_, x;*. Similarly as the

above we obtain
<t)

T = T{(T) = [[(Teo = H(nx“k”) "
k

(Zam ayy)

T - Tl

By induction T f is a geometric mean with weights given by the i-th row of A’. Thus, by

induction for each t the iterate T* is a soup based on A’. If AP is scrambling for some

p from part (i) we obtain that tlim TP'x = &(x), for all x € int R". Since T is continuous
—00

we get tlim TPHSx = TS¢(x) = ¢(x) which proves the desired result. O
—00
The conclusion in part (i) of Theorem 8.3.12 still holds if we stir up a soup even fur-

ther. To see this we use the following simple lemma which extends what we know by
Corollary 8.1.3 about scrambling matrices to shrinking mean maps.
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Lemma 8.3.13. Let R, T be mean maps on S".

(i) The compositions R o T and T - R are mean maps on S™ and are both shrinking, for
t = 1, at each x € S" if this is the case for T. Furthermore, any finite composition of
mean maps on S" is shrinking, for t = 1, at each x € 5" whenever this is true for one
of these mean maps.

(ii) T is shrinking, fort = 1, any x € S" if and only if for each mean map R and each x it
holds that (R o T)x = x implies x = € for some c € S.

Proof. (i) Obviously, Ro T and T o R are mean maps. If T is shrinking, for t = 1, at
x then conv{(R o T)x} ¢ conv{Tx} ¢ conv{x}. If T is shrinking, for t = 1, at Rx then
conv{(T o R)(x)} ¢ conv{Rx} < convix}. If x € S" but Rx ¢ S, that is Rx = ¢ for some
c € S, then (T o R)x = T¢ = ¢ and, hence, conv{(T « R)x} = {c} ¢ {x}. Thus, T o R is
shrinking on $". This proves the first statement in (i). The second statement follows
immediately.

(ii) If Tisshrinking, fort = 1, atallx € $" and R a mean map such that (ReT)x = x,
then conv{x} = conv{(R-T)x} < conv{Tx} and, hence x ¢ S" thatis x = ¢ for somec ¢ S.
Conversely, suppose conv{Tx} = {x} for x € S". Then x' € conv{Tx} for all i and there
exists an n x n-stochastic matrix B such that for Ry = By it follows x = (R0 T)x. R being
a mean map from the assumption it follows x = ¢ for some c € S. This shows that T is
shrinking, fort = 1, at any x € s, O

Using this lemma Theorem 8.3.4 yields the following result.

Corollary 8.3.14. For a soup T on S" and any stir up P, that is P is a composition of
continuous mean maps containing T, it holds lim tlimP’x = ¢(x) for all x € S" if the soup
—00

is not too viscous, that is for each mean map R and each x € §" it holds (R o T)x # x.
The latter condition is equivalent for T to be shrinking, for t = 1, at each x € §" and is
satisfied if T is based on a scramling matrix.

Proof. If T is shrinking, for t = 1, on $" then by Lemma 8.3.13 (i) this holds for the
composition P, too. From Theorem 8.3.4 (iii) it follows that tlim P'x = &(x) on S". By
—00

Lemma 8.3.13 (ii) T is shrinking, for ¢t = 1, on §" if and only if for each mean map and
eachx € §" (Ro T)x # x.If T is based on a scrambling matrix then according to the
proof of Theorem 8.3.12 T is, for t = 1, shrinking on s, O

Examples 8.3.15. (1) Anobviousconsequence of Corollary 8.3.14 is that tlim P'x = ¢(x)
—00

holds on S" also for a weighted soup P, that is P;x = Z]f':l b;Tix where B = (by) is

a stochastic matrix and T based on a scrambling matrix. For T consisting of Lehmer

means only and A primitive this result can be found in [84, Proposition 3.4].

(2) Let T be a soup based on a scrambling matrix A. Consider a selfmapping R of
int R} with R;x equals min{x; | j € I(i)} or max{x; | j € I(i)} where I(i) is a non-empty
subset of {1, ..., n} for each i. By Lemma 8.3.13 each zigzag mapping P is shrinking, for
t = 1, on S", where P is defined to be a composition of T and finitely many mappings R
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of the type as above. Corollary 8.3.14 yields that tlim P'x = &(x) on S". Particular cases
are P;x equals

n n n
min{Zaki | k € I(i)} or max{Zakj | k € I(i)} and Qux = Zaijm(j)
j=1 j=1 j=1
where (i) is a non-empty subset of {1,...,n} and m(j) = min{x, | k € I(j)} or m(j) =
max{x; | k € I(j)}. (See also the treatment of zigzag mappings in Corollary 5.3.6 (iii) and
Examples 5.4.2 (iii), where without assuming stochastic matrices just the existence of
(absolute) stable fixed points has been shown.)
(3) The following example which stems from population biology we take from [85,
equations 3.6.4] (see also [70, p. 160]). Let T be the following selfmapping of int R

ax, + b9(x;,x) + ¢ 9(xx,) + di9(x5,x3)

o | 3%t b,9(x1,x;) + ¢ 9(x,x,) + dy9(X,X3) ()
asx; + b39(x3,x,) + c39(x,x,) + d39(xy,x3)
axs + b 90x3,x,) + ¢, 9(x,x,) +  d9(xp,x3)

where a;,b;,¢j,d; > 0 for 1 < j < 4 and 9 is one half of the harmonic mean, 9 (s, t) =
%h(s, t) = ssft for s, t > 0. By detailed analysis in [85] complicated conditions are given
which determine exactly when T has an eigenvector in int lRf (see [70]; actually the
analysis in [85] allows also a; to be negative). We shall prove that under certain as-
sumptions on the coefﬁc1ents it will follow that 11m T'x = ¢(x) on int R". To apply
Theorem 8.3.4 (iii) we first assume that a; + 5 (b + c +d;) = 1forall 1 <j < 4, which
assures that T is a continuous mean map on S" for S = int R,. It remains to show that T
is shrinking on $" For this we proceed as in the proof for Theorem 8.3.12 (i) by showing
that T;x = min x together with Tjx = max x for 1 <i # j < 4 implies min x = max x. The
i-th component of T has by (*) the form

TiX = ale + %blh(.’ ') + %Clh(') ) + %dlh('a ')‘ (**)

Thus, T;x, though not one of the means as in Definition 8.3.10 it is a combination of
two of them, of arithmetic and harmonic means. As with the latter we proceed with
(**) and obtain for T;x = min x, depending on which of the coefficients is positive,
that either x; = min x or h(s, ) = min x, in which case we must have that s = t = min x.
Similar for T;x = max x. Instead of carrying out the details we illustrate the method
by a numerical example. (See also Exercise 8.) Suppose the matrix M = [a b c d] is
given by

0 10 1 shOa, X)) + 3h(g,x3)
1 1
0110 Thix,x) + Lhixg,x,)
M= ; and Tx=| 2 P2 2 1754
2 010 3X3 +  5h(x;,x,)
0 0 1 1 Th(x;,x,) + 2h(x,x3)
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The method described above for (=) yields in this case if T;x = min x or T;x = max x
fori = 1: x; = x;, = x5, fori = 2: x; = x, = x4, fori = 3: x;, = x3 = x, and for
=4 X =X, =X3 =X,

This shows that T;x = minx and Tjx = max x must give minx = maxx. Thus T is
shrinking, though the matrix M is not scrambling. This proves the conclusion wanted.
It should be pointed out, however, that the assumptions made are stronger than in
[85]; by the assumption a; + %(bj + ¢ +d;) = 1for 1 <j < 4 the mere question for an
eigenvector in int R becomes trivial.

In concluding this section we relate results obtained to those in the literature.

Remarks 8.3.16. (1) In[12]a continuous mappingf: int R} — Ris called an abstract
mean if min x < f(x) < maxx (actual, the definition is given for n = 2). An abstract
mean is called strict, if f(x) = min x or f(x) = max x holds precisely if all components
of x are equal. In case of tlgglg T'x = ¢(x), T a mean map, the common limit ¢(x) is called

the compound of the component mappings T; (in case of n = 2). It is shown in [12,
Theorem 8.2], for n = 2 that a compound exists if one of the component mappings is
strict. This is, even for n = 2, just a special case of a shrinking map. (Actually, a further
assumption is made to establish monotonicity of the iterates.) In general strictness is
neither necessary nor sufficient for tllr(l)lo T'x = &(x) to hold on int R" (see Exercise 4).

(2) Considering Definition 8.3.3, a mean map which is shrinking, for t = 1, at
each x € §"is called a compromise map in [59]. There part (ii) of Theorem 8.3.4 is
shown for such maps by using arguments similar to Lemma 8.3.2. See also [60], where
only an iterate of the mean map is required to be a compromise map. Maps similar to
mean maps or compromise maps are considered in [81]. For the results obtained there
a condition of strict convexity is used which we do not assume. (See Examples and
counter-examples 8.3.5 (4) and Exercise 12.)

(3) Corollary 8.3.8 (c) is proven in [84, Proposition 3.3] under the stronger assump-
tion that A(x,) is primitive.

In [84, 85] as well as [70] the iteration of nonlinear means is analyzed where each
component of a selfmapping f of R’ is a positive linear combination of power means
on int R}, including the limit case of a geometric mean. Various conditions are given
which guarantee tlg(r)lo f{(x) = A(x)u on int R} with A (x) > 0,u € int R! an eigenvector
of f. In [84, Proposition 3.4] such a result is proven if the components of f are convex
combinations of Lehmer means (see Examples 8.3.15 (1)). Also the model from biology
given in Examples 8.3.15 (3) is analyzed in detail in [85] for the existence of eigenvectors
inint RY.

(4) The area of means and their iterations is as old as it is fascinating and the lit-
erature on it is quite widespread. The book [12] is a beautiful account which presents
many examples and hints at the literature. The article [2] is very illuminating and treats
also means in infinite dimensions. A classic is [15] which treats a lot of famous exam-
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ples in a systematic manner. All these references address also the history of the subject
and give further references.

(5) For Gauss soups see [44, 59, 60]. Stated in the language used here it is proven
by different reasoning, in [29] and [37] that for a soup with geometric mean and power
mean as components it holds }L‘g}, T'x = &(x) provided the soup is based on a stochastic
matrix which has all its rows equal and strictly positive. This result is a special case of
Theorem 8.3.12, of part (i) as well as of part (ii).

(6) As already remarked, to determine for a mean map T the limit ¢(x), provided
it exists, can be very difficult and is known only in a few cases. It is easy for T given by
a scrambling stochastic matrix. For, by Theorem 8.1.4 llim A = B where all rows of B

K—00
are equal to vector b the transpose of which is the unique normalized eigenvector of
the transpose A’. From this it follows c(x) = Z} 1 byx; for all x. In the most simple case
of a Gauss soup, n = 2 and based on

N

c(x) is given by a complete elliptic integral of the first kind (see Examples and counter-
examples 8.3.5 (3); for a proof see [12]). Following Gauss, later on Borchardt [11] inves-
tigated the case n = 4 and the following selfmapping f of int R] given by composing
arithmetic and geometric mean in the following manner:

Nl N
Nl N=

[0 = 700000 10, f00 = (S + )
f3(0) = %( X1X; + \X5Xy,), falx) = ( XXy + X3X3)

This, of course, is a mean map and it is easily confirmed that f is, for t = 1, shrinking
at each x € int lRi. (See a generalization in Exercise 9.) Therefore, by Theorem 8.3.4 it
holds tlir(r)lo T'x = ¢(x) for all x. Borchardt proved that c(x) is given by an integral over a
Kummer’s quartic surface [2, 11].

(7) Considering the determination of c(x) there is a close relationship to invariants
for T (first integrals), that is mappings H: int R} — int R such that H(Tx) = H(x) for
all x € int R}. If H is a continuous invariant for T and tllglo T'x = &(x) then H(x) =
H(c¢(x)). Therefore, knowing an invariant H one possibly could calculate c(x) from it.
Conversely, in case of tllglo T'x = ¢(x), H(x) = ¢(x) yields an invariant. Actually, the
latter is the only continuous mean map H which is invariant. For, H(Tx) = H(x) for all
ximplies H(x) = tlilgH (T'x) = H(¢(x)) = ¢(x). (This s called the “ Invariance Principle”

in [12].) For examples for the use of integrals see Exercises 12, 13.



8.4 Infinite products of stochastic matrices =— 289

8.4 Infinite products of stochastic matrices: path stability,
convergence and a generalized theorem of Wolfowitz

A mean process (x(t)) on S", that is conv{x(t + 1)} ¢ conv{x(t)} for all t > 0 by defi-
nition, can be equivalently described by x(t + 1) = A(t)x(t) with stochastic matrices
A(t) for t > 0. (See Definition 8.3.1 and the remarks thereafter.) Therefore, x(t + 1) =
AA(t - 1)...A(1)A(0)x(0) and the question whether [lirélox(t) = ¢(x(0)) € diagS" be-
comes one of the matrix products A(t) - - - A(0) tending to a matrix with all rows equal.
To find conditions for the latter is the main aim of the present section. For the special
case A(t) = A for all t we know already from Theorem 8.1.4 as a necessary and suffi-
cient condition that a power of A has to be scrambling. One might expect, therefore,
as condition for A(t) - - - A(0) to tend to a matrix with equal rows that products of the
matrices A(s) should be scrambling. Whereas such a condition is necessary it is by no
means sufficient. What is needed, moreover, is a structure of being scrambling which
is not weakened too fast for t tending to infinity. This phenomenon is illustrated by
the following simple examples which also foreshadows the general relationships as
set out in Theorem 8.4.2 and later results.

Examples 8.4.1. We consider two examples of sequences of 2 x 2-matrices A(t),
stochastic and acting on R.
Example A. Let
1 0
A(t) = [ 1 1 ]
i 1-1
for t > 2. One confirms easily by induction that

1 0

P(t) = ADA(t - 1)... AQ2) = [1 L
t

] for t>2.

~|=

Therefore, lim P(t) = [13] - amatrix with all rows equal.
Example B. Let

A(t)_[1 0 ]
z (1-7)

for t > 2. One confirms easily by induction that

t
P(t) = ADA(t - 1) ... AQ2) = [1 _la(t) a(()t)] with a() =[] (1 - %)
i=2

Also by induction follows a(t) = 3(1 + 1) and, hence,

lim P(t) = [} ?] ,
t—o0 3 3

a matrix with not all rows equal.
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In both examples the matrices A(t) are all scrambling as well as the limits tIH(I)lO P(t)
which, however, are quite different considering equality of rows. In the following we
analyze this phenomenon under various aspects. Roughly speaking, the point of dif-
ference is that the convergence in example B is “too fast”.

Let c(-) be the coefficient for matrices introduced in Theorem 8.1.2 A. For example A we
have c(P(t)) = % which converges to 0, whereas for example B we have c(P(t)) = a(t)
which does not converge to 0. This is related to Y ;°, % = 0O Versus Yo, [iz < 00. (See
also Example 8.4.10 and Theorem 8.4.5 for the general case.)

The difference between examples A and B can also be recognized by checking for
path stability. Consider the mean process (x(t)) defined by x(t + 1) = A(t)x(t) and,
hence x(t + 1) = P(t)x(2). For example A we obtain x(t + 1) = (x;,(1 - %)x1 + %xz)
where x = x(2). Therefore, ||x;(t + 1) — x,(t + 1)|| = %lel — X, || converges to O for
t — oo. That is, path stability holds with respect to any norm on D = R in the sense
of Definition 7.1.3. For example B, on the other hand, we obtain x(t + 1) = (x;,(1 -
a(t)x; + a(t)x,) and, hence, |Ix,(t + 1) - x,(t + | = a(t)lx; — x,| which shows
because of tlgg a(t) = % that path stability does not hold.

Path stability can also be considered for internal metrics in the sense of Chapter 3.
For this we need a convex cone K in the interior of which the mean process can be
embedded. Let X = conv{x,,x,} < R which we embed into int R? as follows. Define
X ={(a+x,r)| x € X},withasuchthata + x >0Oforallx e Xandr =supf{a + x| x €
X} > 0.Fory = (y;,y,) € R? by [yl = max{[y,|, [y,|} a norm monotone on ]Rf is defined.
Obviously, for X = (a + x,r),x € X it holds ||| = max{|la + x|,r} = r. To compute an
internal metric we consider the order function A (-,-) on lRf. Ifu,v € X then

A, i) = mmg— = min{

a+u r}
<2

a+vrl

This gives

min{A (¥, &), A (it, )} = min{“ tuatv } _ a+minfu,v}

a+va+u a + max{u, v}’

In case of example A we obtain for u = x;(t + 1), v = x,(t + 1)

a + min{x;, (1 — Y)x, + 1x
min{A (7, ), A (& 7)} = b, (1 - g + %)

a +max{x;, (1 - 1)x; + 1x,}
which converges to 1 and, hence, for the part metric p tlim p(;(t),x,(t)) = 0. That is,
—00

path stability for p on int R2. In contrast, a similar calculation for example B yields
foru=x,(t+1),v=x,(t +1)

a + min{xy, (1 - a(t))x; + a(t)x,}

minA (v, ), A (& )} = a + max{x;, (1 - a(®)x; + a(t)x,}’

which converges because of tlim a(t) = % to a limit different from 1 for x; # x,. There-
fore, [lim p(x,(t), x,(t)) # 0 for x; # x, and path stability for p does not hold.
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For the Hilbert metric we obtain for u,v € X

A, ) - A @@L, 7) =min{a+u,1} -min{a+",1}
a+v a+u

_a + min{u, v}
T a + max{u, v}
Thus, Hilbert metric and part metric are equal in this case and the same distinction
as for the part metric applies.
Finally, we may check the two examples for assymptotic equality in the sense of
Definition 7.1.1.
In case of example A we have, for t > 2, y(t)x; < X,(t + 1) < J(t)x; for y(t) =
1- %% ) =1+ %% which proves that the sequences (¥, (t)) and (X, (t)) are

assymptotically equal. This is not so for example B, since, for t > 2, the existence of
y(t) and y(t) as above would require % < a < 1 for t big enough and, hence, (X, (t))
and (X, (t)) are not even asymptotically linked.

The next theorem provides necessary and sufficient conditions for a mean process
to converge to a point on the diagonal diagS". The theorem shows in particular that
this convergence is equivalent to path stability, for a norm or for any of the internal
metrics taken with respect to an appropriate convex cone. The case of stochastic ma-
trices differs here greatly from the case of general nonnegative matrices. For the latter
weak ergodicity or path stability and strong ergodicity do not coincide. Compare in
particular the results in Chapter 7 (Corollaries 7.2.4 and 7.3.4) to part (iv) of the follow-

ing theorem.

Theorem 8.4.2. Let (A(t)) be a sequence of stochastic matrices, M(t,s) = A(t +
s)---A(s) for s,t > 0 and (x(t)) the mean process defined by x(t + 1) = A(t)x(t) for
t > 0,x(0) = x € S® where S is a non-empty convex subset of RY.

(i) Fors=>0,x e S" fixed, tlir(r)lox(t +s) € diagS™ holds if and only if

tlim ||xi(t +5) —xj(t +98)=0 forall 1<ij<n

(|l - || any norm on IRd,x(t) = (D), ..., XND).
(ii) Fors = 0 fixed, tlimM (t,s)x € diagS" holds for all x € R? if and only if
tlim c(M(t,s)) = 0.

(iii) For s > 0,x € S" fixed suppose there exists a lineless closed convex cone K in R%
which contains convi{x} in its interior and which admits a norm || - | on R monotone
for X. Then tlll})lox(t +s) e diagS™ holds if and only if one of the following equivalent
properties applies.

(a) Foranyi,j € {1,...,n} the sequences (xi(t + 5)) and (xj(t + §)) are asymptoti-
cally equal (for X).

(b) Foranyi,j € {1,...,n} and any internal metric m on X it holds
tlLI(I)lo m(xi(t + s),xj (t + s)) = 0. In case of the Hilbert metric assume the norm
constant on conv{x}.
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(iv) Fors > O fixed, tlimM(t, S)x = €(x) > 0 holds for all x € R” ~ {0} if and only if one of
the following equivalent properties applies.

M ..
@ hm& =v® > 0foralll <i,j<n,
t=co ZM(t,s)ik

(b) 11m ﬁgig‘k =1foralll <ijk<n.
( The entries of M(t, s) being finally positive.)

Proof. To simplify assume without loss s = 0.

(i) Obviously, tlimx(t) ¢ diagS" implies tlim I (t) = ¥(t)| = 0. For the converse

let C(t) = convix(t)} and C = (5 C(¢). Since AC(t) = max Ixi(t) — X ()|l it follows
= <ij<n

tlimAC(t) = 0 and, hence, AC = 0. That is C = {c} and from Lemma 8.3.2 (ii) we obtain

tlimxi(t) = cfor alli.

(ii) For x(t + 1) = M(t, 0)x we obtain Aconv{x(t + 1)} < c(M(t, 0))Aconv{x} from
Theorem 8.1.2 A (ii). Therefore, tlim c(M(t,0)) = 0 implies tlimAconv{x(t +1)} =0and
by part (i) it follows tlim M(t,0)x € diagS". Conversely, if the latter holds for each x then
A= tlim M(t, 0) exists and all rows of A are equal. This shows [lim c(M(t,0)) =c(A) =0

(iii) Since conv{x}is compactinintK, from Proposition 3.4.12 (vi) if follows that all
internal metrics for K are on conv{x} equivalent to the metric given by | - ||. Therefore,
(b) holds for any internal metric if and only if tlim Ix'(t) =X (t)]| = O for alli, j. By part (i)
the latter is equivalent to tlimx(t) € diagS". By Lemma 7.1.2 (i) property (a) is equivalent
to property (b) for the part metric.

(iv) Let e(k) € R7 be the k-th unit vector. Obviously, tlim Yo M(t,0)ux; = c(x)
for all x € R is equivalent to tliI?oM(t’ 0)y = ¢ forall 1 < k < nwhere ¢, = c(e(k)).
Therefore, limM (t,0)x = ¢(x) > Oforallx € R"~\{0}is equivalent to limM t,0)y = ¢4 >

0 for all i, all k. Since M(t, 0) is stochastic, the latter is equivalent to hm zﬂﬁttog’)’k =G
for alli, j. This proves the equivalence of property (a) and thm M(t,0)x = c(x) > 0 forall
x € R ~ {0}. Obviously, property (a) implies property (b), with strictly positive entries
of M(t, 0) for t big enough. Finally, suppose property (b) and let y(t) = mm M (f 8%* for t

big enough. It follows

1 - c(M(t,0)) = min) min{M(t, 0)y, M(t,0);} = min M(t,0); - min{1, y(t)}
5 X ] X

and, hence, 1 — c(M(t,0)) > min{1, y(t)}. Now, tlim p(t) = 1 implies tlim c(M(t,0))=0
Part (ii) yields tlim M(t, 0)x = ¢(x) and due to the positive entries of M(t, 0) we must

have ¢(x) > 0. This proves part (i) to (iv) of the theorem. O

By part (ii) of Theorem 8.4.2 we have that tlimM (t,0)x € diagS" for all x is equivalent to

tlim c(M(t,s)) = 0 for all s > 0. Our next purpose is to find criteria for the latter to hold
—00
which then, later on, can be used when dealing with opinion dynamics as well as with
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swarms. Obviously, for c(A(t) - - - A(s)) to converge to O the matrix A(t) - - - A(s) must be
scrambling for ¢ big enough. This, however, is not sufficient as shown already in Ex-
amples 8.4.1. Necessary and sufficient conditions will be presented in Theorem 8.4.5.
One condition is geometrical and employs the distance p,(x) between conv{x} and its
subset conv{Ax} in connection with the notion of a simple set, a finite set most simple
next to that of the diagonal.

Definition 8.4.3. A non-empty set X ¢ " is simple if for some e ¢ RY, llel =1
X={x=0x4.... X"} | X =+e foreach 1<i<n}.

Obviously, a simple set must be finite. In Theorem 8.1.2 A we obtained a characteriza-
tion of c(A) as a contraction factor with respect to the diameters of all sets conv{x}. The
following lemma describes c(A) by the action of A on just one arbitrary chosen simple
set.

Lemma 8.4.4. For any stochastic matrix A and any simple set X it holds

1 .
cA)=1- > 1)1(161)1(1 P4(X), (8.4.1)
where
pa(x)= sup  inf [ly-z| (84.2)

yeconv{x} Z€conviAx}
forx € S, || - || @ norm on R

Proof. Let A and X be given. For x € X the sets conv{x} and conv{Ax} are intervals
in Re and, therefore, p,(x) = Aconv{x} — Aconv{Ax} (AM the diameter of a set M). By
definition x € §" and, hence, Aconv{x} = 2. Furthermore,

Aconv{Ax} = max IIZaika - Zajkxk”
1] k k
k
< Ian;lX zlaik - ajkl . mI?X X"
U

which yields Aconv{Ax} < 2c(A) using Theorem 8.1.2 A. Thus, we obtain
pa(x) = 2 — Aconv{Ax} > 2 — 2¢c(A)

and
minp, (x) > 2(1 - c(4)).

For the reverse inequality consider indices i and j with different corresponding rows
of AandletI = {k | ay > a;}. Obviously, I G {1,...,n}. Definey € Xbyy* = efork e I
and y¥ = —e for k ¢ I. We have that

Z(aik - ajk)yk = (Z(aik = Q) - Z(aik - ajk))e = Zlaik - ajle,
k=1 k=1

kel kel



294 — 8 Dynamics of interaction

which implies

n n
minp, (x) < p,(y) = 2 - Aconvi{dy} < 2 - 1) (ay - a)y < 2 - Y lag - al.
pa pat

Since the latter inequality holds trivially in case the rows for i and j are equal, we obtain

n
i 2 - mi i — @yl = 2(1 - c(A)).
min p, (x) < rr}}ngllalk azl = 2(1 - c(4))

This proves equation (8.4.1) O
Theorem 8.4.5. Let (A(t)) be a sequence of stochastic matrices.
(1) tlim C(A(t + s)...A(s)) = 0 holds for each s > 0 if and only if there exists a set J of

disjunct intervals I = [a, b],a < b, in N such that for
B(I) = A(b)A(b - 1)...A(a + 1)A(a) it holds

z<1 - c(B(I))) = 00, (8.4.3)
Ied

or, equivalently,
IEZ]TQ)?’)B(” (x) = 00 (8:4.4)

for some simple set X.
(ii) (a) Condition (8.4.2) is satisfied for each I = [a,b] € T if

B(I) = A(b) - -- A(a) is scrambling, and
Ya =oo (8.4.5)

Ied
wherea(I) = a(b)---a(a) with a(t) = ngn{al-j(t) | a;(t) > O}.

(b) Condition (8.4.4) is satisfied if the set of matrices B(I) is equiproper on a sim-
ple set X that is, for each x € X there exists 6 (x) > 0 such that

ppy(x) 26(x) forall Iel. (8.4.6)

Proof. (i) Suppose tl_igloc(A(t + 5)...A(s)) = Oforeachs > Oandlet0 < ¢ < 1 be
given. Define inductively a set of intervals I; = [a;, b;] in N as follows. For k = 1 let
a; = 0and b; =t + a, with a t such that c(A(t)...A(0)) < e.If I}, = [a}, b, ] fork > O
choose a;,; = by + 1,by,; =t + a,, with a t such that c(A(t + ay,q) ... A(as,1)) < €.
Obviously, all the intervals I, are disjunct. For B(I;) = A(b;)...A(q,) one has that
c(B(y)) < eforall k > 1. Therefore, Y72, (1 - c(B(I))) = Yo, (1 - €) = oo which proves
(8.4.2). Conversely, suppose condition (8.4.2) holds for a set J of intervals I. Because of
c(AB) < c(A)c(B) for any two stochastic matrices A, B (by Theorem 8.1.2 A(ii)) it holds
fors > O that c(A(t) ... A(S)) < [ljea) c(B(I)) where J(¢t) < T consits of all I < [s, t]. For
any finite subset 3’ of J one has

[TeB)- Y (1 -cB)) < [[eBD) - [](2-cBU)) <1

Ied Ied Ied Ied
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and, hence,
c(A(t)...A(s)) < [ z (1 - c(B()))
1€3(t)
Since only finitely many I € J can intersect [0,s] from (8.4.2) it follows that tlim
c(A(t)---A(s)) = 0. This proves the case for condition (8.4.2). The equivalence of con-
ditions (8.4.2) and (8.4.4) follows immediately from Lemma 8.4.4.

(i) This part will follow from part (i). For (a) let M denote the incidence ma-
trix of a matrix M e RT™, thatis m; = 1if m; > 0and m; = 0if m; = 0. Obvi-
ously, M > a(M)M where a (M) = mln{m | m; > O} Therefore, BI) > a(B(I))B{).
Ifa(I) = a(b)...a(a) then a(B(I)) = a(I) and, hence, BI) = a(I)B{). For B(I) =
min Yy, min{by, Bjk} it follows 1 — ¢(B(I)) = a(I)B (I) for all I € 3. Since B(I) is scram-

ij

bling by assumption the same is true for B(I) which, however, need not be stochastic.
This shows B (I) > 0 forall I € 3. Since for each I the incidence matrix B(I) consists of
0 and 1 there are only finitely many different matrices B(I) for I € J. Thus, because of
Elyfﬁ (I) = B > 0 we finally get

Y(1-cBM)) =Y al) =
Ied Ied
As for case (b) condition (8.4.6) implies mi}?p By (X) = mi}?(S (x) > Osince a simple set is
XE. XE€
finite. Therefore, condition (8.4.4) is satisfied. This proves part (ii) of the theorem. O
Corollary 8.4.6. Let (A(t)) be a sequence of stochastic matrices such that for some p €

N each product of p consecutlve matrices is scrambling. If for some t,, from a;(t) > O it
follows that a;(t) > + L forallt > tpandalli,j € {1,...,n} then
tp

tlimc(A(t +5)...A())=0 forall s=>0.

Proof. Let I = [a,b] an interval in N with a = kp,b = (k + 1)p — 1. The set J of

all the I for k > 0O consists of disjunct intervals. We will apply Theorem 8.4.5 (ii). By

assumption B(I) = A(b)...A(a) is scrambling. Let a(t) = min{a;(t) | a;(t) > 0} for
ij

t >ty and a(t) = 0, otherwise. It follows for a(I) = a(b)...a(a)
p
a(l) = ilil > (%) -1 in case of a > ¢,
b» b

br ar
and a(I) = 0, otherwise. If k > k, = max{t,, p} then

a() =

! >< ! )1 and, hence
(k+1)p 1 \p+t,/) k ’ ’

1
I >
Za() +t0k>k k-

Ied

From Theorem 8.4.5 (ii) the assertion of the corollary follows. O
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Examples 8.4.1 do illustrate the above corollary. In case of example A the corollary
yields convergence for p = 1. In case of example B, however, the corollary does not
apply for any p > 1. Indeed, we know that in this case convergence does not hold.

The crucial condition in Corollary 8.4.6 requiring the existence of a p such that all
products of p matrices are scrambling is connected, as will be seen in the following,
to the following property.

Definition 8.4.7. A set M of matrices from RT" has the Wolfowitz property or
W-property for short if each finite product of matrices from M has a power which
is scrambling. This definition extends the fundamental property in Section 8.1 for a
stochastic matrix to possess a scrambling power to collections of several matrices.

Lemma 8.4.8. Let M be a set of stochastic n x n-matrices.

(i) There exists p(M) € N such that all products of p(M) matrices from M are scram-
bling if and only if M has the W-property. In that case p(M) can be chosen to be
Q"-1)"+ 1.

(ii) Ifeach A € M is a Sarymsakov matrix then M has the W-property and p(M) accord-
ing to (i) can be chosen to ben — 1.

Proof. Call A = (ay), B = (by) from RT™" equivalent, A ~ B if for any pair (i, j)a; = 0 is
equivalent to b;; = 0. Obviously, “~” is an equivalence relation on R™", indeed it coin-
cides with the equivalence relation introduced earlier in Section 3.2 (Definition 3.2.1)
for the convex cone K = R}*"; the equivalence classes coincide with the parts of K.
Obviously, in case of A ~ B matrix A is scrambling if and only if this is true for B. Fur-
thermore, A ~ Band C € R7" implies AC ~ BC. The number q of equivalence classes
(parts) of stochastic matrices in R7" is ¢ = (2" — 1)" which can be seen as follows.
Face for a stochastic matrix a particular row and replace positive entries by 1. There
are 2" possibilities for a row consisting of 0's and 1's. Since the matrix is stochastic
we cannot have a zero-row which leaves 2" — 1 possibilities. For the n rows then we
get (2" — 1)1" possibilities.

(i) Suppose first, M has the W-property. Letp =g+ 1and P = A; ... A, with 4; €
M.Oftheq + 1 products A;, A 4,,..., A4, ... A, atleast two must be equivalent, that
isthereexist1 <i<j < psuchthatP,; = A,;...A;and P, = A, ... A;are equivalent.This
means P; ~ P,P; where P; = A;,;...A;. By assumption P’B‘ is scrambling for some
k. By iteration from P, ~ P,P; it follows that P; ~ PlP’;. By Corollary 8.1.3, PlP’; is
scrambling and, hence, P, is scrambling. From P = P;A;,, ... A, it follows that P is
scrambling, too. This shows that any product of p(M) = p factors from M is scrambling.

Conversely, suppose the latter for some p € IN. Let P be a product of k factors from
M. In case of k > p we have P = P, P, with P, scrambling and, hence, P is scrambling,
too. In case of k < p there exists m € N such that mk = p + p’,p’ > 0. Therefore,
P™ = P, P, where P; and P, are products of p and p' factors from M, respectively. By
assumption P; is scrambling and, hence, P™ is scrambling, too. This shows that M has
the W-property.
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(ii) We show that the product of n — 1 Sarymsakov matrices of order n is
scrambling. For this we proceed as in Proposition 8.1.7 to obtain (4) from (3). Let
A(1),...,A(n - 1) be S-matrices and let for 0 + M c {1,...,n}

SKM) = {j € {1,...,n} | q;;(k) > O for some i € M}.

Similarly, for A(1)...,A(k) let

SiM) = {jef1,...,n} | (A(1)...A(k)); > O for some i € M}.

It is easily seen that S (M) = s;(S;_;(M)) for 1 < k < n — 1 where Sy(M) = M. We
show that S, ; (M) n'S,_,(M') # @ for any two non-empty disjoint subsets M and M’
of {1,...,n}. Suppose on the contrary S, ;(M) n S,_,(M') = 0 for some M, M'. Since
A(n - 1) is an S-matrix we have that

1Sn-2 (M) U S5 (M")] < I8, (Soz (M) U 5,1 (So (M)
and S, ,(M)nS,_,(M') = @ by Properties 8.1.5 (iv). Thus,
1S, (M) U S, ,(M")] + 1 < S,y (M)US,_, (M),
and by iteration
|So(M) U So(M')| +n =1 < 1S, 1 (M) US,_,(M)].
The latter inequality implies
n+1=2+n-1<MuM|+n-1<|S,_,(M)uS, ,(M)| <n

which is impossible. This proves S,_; (M)nS,_; (M) # 8.Chosing M = {i}, M' = {j} fori +
j this shows there exists k € S,_; ({i}) and k € S,_; ({j}). Therefore, for A = A(1)... A(n—-
1) we have Ay > 0 and Ay > O for some k which proves that A is scrambling. d

Using this lemma from Theorem 8.4.5 and Corollary 8.4.6, we obtain the following
generalized Wolfowitz Theorem of which the original Wolfowitz Theorem proven
in [103] is the special case of a finite set {A(t)}.

Theorem 8.4.9. Let (A(t)) be a sequence of stochastic n x n-matrices.

(i) If {A(t)} has the Wolfowitz property with p(M) as in Lemma 8.4.8 then tll>r(1;lo c(A(t +
s)...A(s)) = 0 foralls > 0 holds provided the following condition is satisfied. There
exists a set J of disjoint intervals I = [a,b] in N with b — a > p(M) - 1 such that
Yieza() = cowhere a(I) = ¥, a(t), a(t) = Ir}}n{aij(t) | a;(t) > O}.

(ii) The condition in (i) is especially satisfied in the following cases
(@) a(t) =+ forp=pM),t >ty €N,

(b) a(t) = t;p> Ofort>t,eN,
(c) {A(t)}is finite.

(iil) If A(t) is a Sarymsakov matrix for each t > t, € N then tlirgo c(A(t +5)...A(s)) =0

holds for all s > 0 if the condition in (i) (or in (ii) (a)) is satisfied for p(M) = n — 1.
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Proof. Each matrix B(I) = A(b)...A(a) consists of at least p(M) factors and is scram-
bling by Lemma 8.4.8. Therefore, parts (i) and (iii) follow from Theorem 8.4.5 together
with Lemma 8.4.8. Corollary 8.4.6 yields case (a) in (ii) which trivially implies cases (b)
and (c). O

The following examples illustrate this theorem.

Examples 8.4.10. (a) Whereas Wolfowitz’ theorem [103, p. 733] assumes a finite set of
matrices, Theorem 8.4.9 allows also for infinite sets. Consider the following example
which slightly extends Examples 8.4.1. For r > 0 given let

A(t)=[i (1?1)] for t>2.
ra

tr

Since all A(t) are scrambling (and Sarymsakov matrices, too) the infinite set {A(t)} has
the Wolfowitz property withp(M) = 1.Fort > t, = 27 wehavethata(t) = tl, Therefore,
from case (a) of Theorem 8.4.9 (ii) tlim c(A(t)...A(2)) = 0 follows for r < 1. To see that

this bound is sharp consider r > 1. By induction it follows

t

1 0 . 1
A(t)~-~A(2)=[1_q(t) q(t)] with q(t)=ll_:2[<1—i—,)-

Since the sequence (g(t)) is decreasing on R, the limit g exists. It is not difficult to see
that g > 0 (cf. [53, p. 96/97]). Therefore,

1 0
1-q q
Hmc(A)---A2) = c(UimA@®)---A(2) =1-(1-¢q) =g >0.

tlimA(t)mA(Z) = [ ] and

For case (b) of Theorem 8.4.9 (ii) see also [93, Theorem 4.19]. As the above example
shows tgrgo c(A(t)...A(2)) = 0 may hold also in case a(t) is not positively bounded
from below.

(b) For the case of on single matrix A the Wolfowitz property means that a power
of A is scrambling. By Theorem 8.1.4 we have already seen that the latter is equivalent
to kILIgO A being a matrix with equal rows which in turn is equivalent to tllglo c(Ah = 0.
For the next simple case of two stochastic matrices A and B one might expect, there-
fore, that for a sequence (A(t)) consisting of A and B only tllrglo c(A(t)...A(0)) = O holds
if both A and B have a scrambling power. This, however, is not true as the following
example demonstrates. Let

and B=

b
I
S R R
= o O
o O O
o O O
O O -
™)
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Neither A nor B is scrambling but

1 0 0 0 0 1
A’={1 0 0| and B*=|0 0 1
1 0 0 0 0 1
both are scrambling. Furthermore,
010 010 01 0
AB=|0 1 0|, (4B?=|0 1 0|=AB and BAB=|0 0 1|=B
0 0 1 0 0 1 0 0 1

This shows that none of these matrices is scrambling. Define A(t) = A if t is odd and
A(t) = Biftis even. It follows that c(A(t) --- A(0)) = 1 for all t > 0. The finite set {A, B}
does not possess the Wolfowitz property though A% and B? are scrambling. (See also
[39, p. 235] and [103, p. 734].)

According to part (ii) of Lemma 8.4.8 at least one of the two matrices cannot be a
Sarymsakov matrix; actually, neither A nor B is a Sarymsakov matrix (see also Exam-
ples 8.1.8 (c)).

To conclude this section we connect the results obtained to the literature.

Remarks 8.4.11. (1) Theorem 8.4.2 shows that for a mean process the convergence to
a point on the diagonal is equivalent to path stability. In part (i) with respect to a norm,
in part (iii) with respect to internal metrics. Part (iv) shows that for stochastic matri-
ces weak and strong ergodicity coincide. More precisely, this equivalence holds for
row-stochastic matrices A(t) and backward products of those, that is A(t) ... A(s) for
t > s (see also [93, Theorem 4.17]). Such an equivalence does not hold for nonnegative
matrices in general as shown in part (i) of Examples 7.5.3. For nonnegative matrices
one might change from a backward product to a forward product, that is A(s) ... A(t)
for t > s by taking the transpose of matrices. In case of row stochastic matrices this
means, however, to switch to column-stochastic matrices. (For the two kinds of prod-
ucts as well as weak and strong ergodicity see [93] and the earlier Corollaries 7.2.4(ii)
and 7.3.4 (ii).)

(2) The first result in Theorem 8.4.5(i) concerning condition (8.4.2) goes back to
[39, Theorem 3]. See also [93, Theorem 4.18] with references to the work of J. Hajnal
and W. Doeblin. Theorem 8.4.5 (ii) (a) generalizes [57, Theorem 2]. For a weaker ver-
sion see [93, Theorem 4.19]. In [59, p. 3] the term proper compromise mapping is
used for a mean map which is shrinking at each point not on the diagonal. For a mean
map given by a stochastic matrix this means that the matrix must be scrambling. In [75,
p. 94] a family F of mean maps is called equiproper if for each x € S" the distance be-
tween conv{x} and conv{f(x)} is bounded from below by § (x) > O for all f € F. There it
is proved [75, Theorem 1] that for F equiproper and equicontinuous f; o f,_; o ... o f;(x)
converges to a point on the diagonal, where f, € F,x € S". As part (ii)(b) of Theo-
rem 8.4.5 shows, in case of mean maps given by stochastic matrices the condition of
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equicontinuity can be omittted and the condition of being equiproper is required only
for products B(I) on just one simple, hence, finite subset.

(3) The proof that the product of (n — 1) Sarymsakov matrices of order n is scram-
bling (in the proof of Lemma 8.4.8 (ii)) follows [40, Theorem 4.8]. The original the-
orem of Wolfowitz [103, Theorem p. 733] states, in our language, that for a finite set
{A(t)} having the Wolfowitz property it follows that tlir(r)lo c(A(t)...A(s)) = 0. The proof
of Lemma 8.4.8 (i) follows in part [103, Lemma 4].

In [103] a stochastic matrix A is called a SIA matrix if lim A* is a matrix with equal

k—o0

rows; other terms used sometimes are that of an ergodic or regular matrix. By Theo-
rem 8.1.4, these notions are equivalent to A having a power which is scrambling. Wol-
fowitz’ Theorem has many applications, see, for example [52, 90], which, however, are
restricted by the assumption of finitely many matrices. Considering mean processes
one faces in a natural way infinitely many matrices which requires an extension of
Wolfowitz’ Theorem. The most simple form is given perhaps by part (ii) (b) of Theorem
8.4.9 which says that for a sequence (A(t)) of infinitely many matrices with the Wol-
fowitz property and min" A(t) > a > 0 for all t one has that tlirglo C(A(t +5s)...A(s) =0
foralls > O (x).

A different extension of Wolfowitz’ Theorem to infinitely many matrices is ob-
tained in [46, Proposition 1] under the assumptions that all matrices are type-symme-
tric with positive diagonal and a connected graph associated to the sequence. It is re-
marked that such an extension can be useful in dealing with quite general nonlinear
systems. Using our terminology this remark states that a solution of a nonlinear dis-
crete system converges to consensus if it is a mean process satisfying, for example, the
above extension (*) of Wolfowitz’ Theorem. Actually, in Section 8.3 mean processes
have been used to handle nonlinear systems as the arithmetic-geometric mean amd,
more general, Gauss soups.

8.5 Multi-agent coordination and opinion dynamics

In this section we come back to the question of consensus formation in opinion dy-
namics as treated already in Section 8.2. Actually, we shall generalize the framework
and consider interaction and coordination of agents which, beside humans in a social
setting comprises swarms of birds, electronic networks of sensors or groups of robots
seeking for a rendezvous. Often the term “multi-agent coordination” is used to cover
these and other quite diverse areas. (See for example [8, 16, 21, 47, 51, 64, 79, 81, 98,
991].)

Let N = {1,...,n} be a finite set of agents with states in a multidimensional state
space S which is assumed to be a non-empty convex subset of R%. Denote by xi(t)
the state of agenti € N attimet € N = {0, 1,2,...}. By the column vector x(t) =
xL(t),...,x"(t)), t € N and x(0) € S" adynamical system in discrete time is defined on
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S" which we assume to be a mean process in the sense of Section 8.3 that is
Xt + 1) € convix}(¢),...,.x"(t)} for ieN, teN (8.5.1)
Our focus will be on the convergence to consensus, that is
tlirgoxi(t) =c(x(0)) forall ieN (8.5.2)

or, equivalently, tlir})lo x(t) € diagS", where diagS" is the diagonal of S” defined by the
points ¢ = (c,...,c) forc € S.

As examples we considered in Section 8.2 opinion formation according to the ma-
trix model x(t + 1) = A(t) and opinion formation under bounded confidence given
by

X(t+1) = IGx@®)™" ) x(t), ieN, teN
Jel(ix(®))
where I(i,x) = {j e N | |x; - x| < €} with € > 0. In both examples the state space
is one-dimensional, S = Rand S = R,, respectively, and the dynamics is given by a
mean process with initial opinion profile x(0).

The results obtained in the previous section we shall apply to multi-coordination
in general. A special case will be opinion formation in a generalized setting.

Considering the interaction of agents we introduce the following concept of the
strength or intensity of interaction based on the extraction of scrambling matrices
with entries O and 1 only.

Definition 8.5.1. Let A(-,-) be the order function on the convex cone R?*" of nonneg-
ative matrices and 901 the subset of R7*" consisting of all scrambling matrices with
entries 0 and 1. The scrambling strength of A € RT" is

U =max{A(M,A) | M e M} =max{u e R, |[uM < A,M € 9M}.

The following properties are useful when dealing with the strength of A(t), which
measures the strenght of interaction in multi-agent coordination.

Lemma 8.5.2. Let A = (a;) € RT™.

®
uA) = 111}16111\} I‘?SVX min{ay, a]-k}. (8.5.3)

(ii)
U(A) <1 -c(A) <nu(h) forAstochastic. (8.5.4)

(iii) For B e R?™"r e R,

(@) A < Bimplies u(A) < u(B)
(b) p@A) =ru(a) (8.5.5)
() u(Au(B) < u(4B).
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(iv) Define
ut(A) = 2161]51 r?ea}vx{min{aik, a;} | min{ay, az} > 0} (8.5.6)
(where u* (A) = 0 in case of min{ay, ay} = O for alli,j, k).
Then u(A) < u*(A) and equality holds if A is scrambling; if A is not scrambling
u(A) < u*(A) is possible.

Proof. (i) Letv = m'{ll max min{ay, a;}. Suppose uM < A fory € R,,M € M. Since

ijeN ke
M is scrambling, folr i,j € N there exists k € N such that my = my = 1. Therefore,
¥ < min{ay, az} and, hence, p < v which proves u(A4) < v. For the converse define
a matrix M with my; = 1if a; > v and m;; = 0, otherwise. Obviously, vM < A. M is
scrambling since for i,j given, there exists k such that v < min{ay, ajk} and, hence,
My = my = 1. Therefore, u(A) = v which proves u(4) = v.

(ii) Using the definition of c(4) = 1 - {1}1511 Y keny Min{ay, a;} (see equation (8.1.1)

in Theorem 8.1.2) one has from (i) that u(A) < min ¥, min{ay, a} = 1 - c(A).
L]

Furthermore,

1-c(A) = min) min{ay, a} < min{nml?x min{ay, a;}}
1) 1]
x

and, by (i), 1 - c(4) < nu(A).

(iii) The first two properties follow immediately from the definition of p(A). For
property (c) let A,B € R?" and uM < A,vP < Bwithu,v € R,,M, P € 9. It follows
uvMP < AB where yv € R, and MP is a scrambling matrix. Define C € R”" with
¢; = 1if (MP); > O and ¢; = 0, otherwise. Since MP is scrambling C is scrambling,
too. If (MP); > O then (MP); > 1 = ¢; and if (MP); = O then ¢; = 0 and (MP); > c;;.
Therefore, C < MP and uvC < uvMP < AB. Therefore, u(AB) > uv which proves
H(AK(B) < u(AB).

(iv) From the definition of u*(A) and (i) it follows u(A) < u*(A) and pu(A) = u*(A4)
if A is scrambling. For u(A) < u*(A) consider for example the stochastic matrix

2
<

1 0 O
A=|7 3 O
1 1
0 5 3
A is not scrambling and p (A) = 0 whereas p " (A) = % O

From the previous section we obtain the following result on the convergence to a con-
sensus for multi-agent coordination.

Theorem 8.5.3. Consider multi-agent coordination among n agents given by a mean
process (x(t)) on S" and let x(t + 1) = A(t)x(t), x(0) € S" and A(t) a stochastic matrix
fort e IN. It holds convergence to a consensus if there exists a set J of disjoint intervals
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I=[a,b] €N, a < bsuch that for B(I) = A(b)...A(a)

Y u(B()) = co, (857)
Ied
or, equivalently, for an infinite family 3* in 3 B(I) is scrambling for all 1 ¢ 3% and
Yier 1 (B() = co.

Proof. The result will follow from Theorem 8.4.5 (i). Condition (8.4.4) of that Theorem
is by Lemma 8.5.2 (ii) equivalent to Y ;.4 u(B(I)) = co. Together with part (ii) of Theo-
rem 8.4.2 this shows that convergence to consensus is guaranteed by condition (8.5.7).

Let 3* = {I € 3 | u(B(I)) > 0}. From Lemma 8.5.2 it follows that Condition (8.5.7)
implies B(I) to be scrambling for I € 3* and ¥, 5. u*(B(I)) = co. Obviously, the latter
two properties for some J* in J implies condition (8.5.7). O

As Theorem 8.5.3 exhibits the condition (8.5.7) is crucial for convergence to consensus.
The condition means that in some sense the intensity of interaction should not be too
weak and we will analyze the condition further in that direction. Before doing so, how-
ever, we shall in the following remarks mention and analyze some measures different
from y (-) which were important in the history of inhomogeneous Markov chains. The
connection to the latter is seldom reflected in the recent literature on multi-agent co-
ordination.

Remarks 8.5.4. (1) For the asymptotic analysis of inhomogeneous Markov chains

so called coefficients of ergodicity 7(-) play an important role. Thereby 7(A) for a

stochastic matrix A is just a number in [0, 1] which depends continuously on A. It is

proper if 7 (A) = 0 if and only if all rows of A are equal (see [93, Definition 4.6]).
Relevant examples are for A = (a;) € R}

A(A) = max min a; and 6(A) = Z min a;;. (8.5.8)
jEN ieN jeN ieN

Also p(A) just introduced and c(A), considered earlier, are coefficients of ergodicity.
From the definitions one obtains easily the following relationsships
AA)<b6(A)<1-c(Ah)
and A(A) <u(A),6(A) <ni(A).
One does not have necessarily § (A) < u(A) or u(A) < r6(A) withr > 0 as can be seen
from the examples

(8.5.9)

1 1
11 0 3 3
2 2 _ |1 1
A= 1 l} and A= 5 0 51,
2 2 1 1
3 3 0

respectively. Since for the second example A (A) = 0 and § (A) = 0 and u(I) = O for the
identity matrix, the coefficients of ergodicity (), A(-), 6 (-) are not proper. One verifies
easily that c(-) is proper, another proper coefficient would be 1 — 6 (-).
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(2) According to E. Seneta ([93, p. 145], [91]) the coefficient A (A) is related to the
work of A.A. Markov (and S.N. Bernstein), the coefficient 1 — 6 (A) to the work of W.
Doeblin and the coefficient c(4) to that of R. L. Dobrushin. (In [91, p. 137] 6 (4) is de-
noted by a(A4), see also [93, p. 137]). Weak ergodicity (in the sense of Kolmogorov, see
Section 7) holds for a sequence of stochastic matrices (Py) if Y2, A (P;) = oo, a result
which is known also as Markov’s Theorem. (This result is with respect to forward
products but applies also to backward products, cf. [91, pp. 153].)

Thelittle known work of W. Doeblin is addressed in [91] and related to the work of].
Hajnal. According to E. Seneta, W. Doeblin arrived at the conclusion, Doeblin’s asser-
tion, that weak ergodicity holds for (P,) if and only if there exists a strictly increasing
sequence (i;),j = 1,2,...in N such that Zj°=°1 6 (T(I;)) = oo where [; = [i; + 1,i;,,] and
T(I)=P,...P,forl =[a,bl,a<bh.

(3) The results of 2. can be obtained from Theorem 8.4.5 (i) by using the inequal-
ities (8.5.9). (For simplicity we consider backward products.) For any collection J of
disjunct intervals I = [a, b] in N and B(I) = P,,...P, we have that };.; A(B(I)) = co is
equivalent to ) ;.5 6 (B(I)) = co.

Because of A (4) < 1-c(A) from ;.4 A (B(I)) = oo it follows that Y, .4(1—c(B(I))) =
0o. The converse, however, is not true as can be seen from

o

for all k.

[«

Pk:

N~ N[=
O NIk NR

N[

To see this, let J be the collection of intervals I = [a, a] for a € IN. Obviously, c(P;) = %
and Y ;.4(1-c(B(I))) = co.On the other hand, A (B(I)) = A(P;) = Oand ;.4 A(B(I)) = 0.
By selecting a different collection J, however, from Y;.4(1 - ¢(B(I))) = oo it follows
Y13 AB()) = oo. For, from ¥, 4(1 - c(B(I))) = oo we obtain, using Theorems 8.4.5
and 8.4.2, that 1i1£n Py,;...P; = Q;for all l and Q; a stochastic matrix with equal rows.

Therefore, lilzn §(Pyyy---P) = 6(Q)) = 1forall L. As in the proof of Theorem 8.4.5 (i) it

follows the existence of a collection J = {I;} such that Y ;.5 6 (B(I)) = oo and, hence,
Y i A(B()) = 0o. We arrive at the conclusion that liII<n Py, ... Pjisforeachlastochastic

matrix with equal rows if and only if for some collection J one has Y ;.; A(B(I)) = oo
or, equivalently, ). 6 (B(I)) = oo. Notice, however, concerning Markov’s Theorem
as well as Doeblin’s assertion, Y2, A(P,) = oo, or Y2, 6(P,) = oo, is a sufficient
but not a necessary condition. As the above reasoning shows, to obtain a sufficient
and necessary condition the sum has to be taken over A(B(I)), or § (B(I)), that is by
lumping the P, together.
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(4) Considering the ergodic coefficients A (4), § (A), u(A) it is a particular feature
of the scrambling strength u(A) that it dominates the other two, that is A(4), 6 (4) <
ru(A) for somer > 0 and all stochastic matrices A. Neither A (4) nor 6 (A) dominates the
other two. As a consequence whenever for a collection J the criterion ;.4 p(B()) = oo
isforp = A orp = § conclusive for convergence to consensus the same is true for
p = u. The converse, however, does not hold in general, that is it may happen that
Y 13 P(B(I)) = oo for p = u but neither for p = A nor p = §. An example is given by

o

Pk=P=

N, O NI~
O NI NIR

Nl= N[

for all k and J the collection of intervals I = [a, a],a € IN. Of course, there must exist
a collection J such that ;.5 A(B(I)) = oo and Y ;.5 8 (B(I)) = oo. In this simple case
one has A(P?) = 1 and §(P*) = 2 and, hence, a possible choice for J is the set of all
intervals [2m, 2m + 1] for m € N.

(5) Another often used coefficient of ergodicity is min* A = Irl;ijn{ai]- | a; > 0}. Ob-

viously, for A scrambling min® A < u*(A) and by Theorem 8.5.3 convergence to consen-
sus holds if for some collection J one has that (B(I)) is scrambling and Y ;.; min* B(I) =
oo (see also part (ii) of Theorem 8.4.5). It may happen, however, that all B(I) are scram-
bling but Y., min* B(I) < co and convergence to consensus does hold, nevertheless.
For example, consider the following slight variation of Examples 8.4.1 part B. Let

A(t)=[ ! ?]

1
-7z ¢

for t > 2 and J the collection of I = {m} for m > 2. Obviously, B(I) = A(m) is scram-
bling, min* B(I) = % and ¥;I € Imin* B(I) < co. Considering scrambling strength,
however, we have u*(B(I)) = u(BI)) = 1 - 5 and ¥y " (BI) = Ypw ,(1 - -5) = o0.
Therefore, convergence to consensus holds by Theorem 8.5.3.

As mentioned already the crucial condition (8.5.7) in Theorem 8.5.3 for reaching a con-
sensus may be interpreted as the intensity of interaction becoming not too weak. For
one part, the requirement of scrambling matrices B(I) may be seen as letting the struc-
ture of interaction of agents becoming not too loose in the course of time. And as the
other part the condition Y ;.4 u " (B(I)) = oo requires the intensity or strength of inter-
action vanishing not too fast. In some models, for example in the one of bounded con-
fidence, the latter requirement is fulfilled in that the intensity is positively bounded
from below, in particular min* A(¢) > a > 0 for all t. (See below for further examples of
this kind.) In those cases the condition for reaching a consensus reduces to assume all
matrices B(I) for I € J to be scrambling. It is this requirement which we shall examine
in more detail in the following. The multi-agent coordination we will describe by local
interaction in terms of neighbors as introduced already in Section 8.3.
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Let (x(t)) be a mean process on S" given by x(t + 1) = A(t)x(t) with x(0) ¢ S"
and stochastic matrices A(t) for t € IN. Fori € N the set of neighbors of i at t is
N(i,t) ={j e N | ai]-(t) > 0}.Forasequencet = (t,...,t,)inNand B(r) = A(t;) ... A(t,)
the set of neighbors of i via 7 is N(i,7) = {j € N | b;(t) > 0}. We say there exists a
chain of neighbors of agentito agentjviat = (t;,...,t,)ifj € N(i, 1), or explicitly,
if there exists a sequence of agents (i, i;, . ..1,) with iy = i,i, = j such that

aioil(tl) > 0, ailiz(tz) > 0""’air,1,ir(tr) > 0.

In this language, for I = [a,b], T = (b,b - 1,...,a + 1,a) the matrix product B(I) =
B(t) = A(b)...A(a) is scrambling if and only if for any two agents i,j € N there exists
a third one k such that chains of neighbors via 7 exist from i to k and from j to k. (See
also the chains of confidence in case of opinion dynamics under bounded confidence.)
This concept of the principle of the third agent we generalize as follows.

Definition 8.5.5. A sequence (A(t)) of stochastic matrices satisfies the principle of
the third agent or printh for short on a sequence 7 in N if for any two i,j € N there
exist finite subsequences 7 (i, j) and o (i, j) of T such that

N(@,7(i,j)) N NG, 0 (0,5)) # 0.

Incaseofr = (b,b-1,...,a + 1,a) for a < b we will instead of printh on sequence 7
also speak of printh on [a, b].

Obviously, if A(t;) ... A(t,) is scrambling then printh holdson v = (t,,...,¢,), for
this just take 1(i,j) = 0(i,j) = 7. The converse, however, is not true in general, as can
be seen already in simple cases as the following one. Taking up Examples 8.4.10, case

(b), let A = [i § z], B = [§ é (11J] and define a sequence (A(t)) by A(t) = A if t is odd
and A(t) = B if t is even. This sequence satisfies printh on 7 = (0, 1, 2) by chosing

T(i,j) = 0ij) = (0,2) forany 1 < i,j < 3 because B? = [ggﬂ is scrambling. The

product A(0)A(1)A(2) = BAB = [ § é ? ], however, is not scrambling.

In a similar manner one obtains that the sequence (A(t)) just defined satisfies
printh on all sequences (t,t + 1,¢ + 2) for t € N. Though this seems to be a structure
of interaction not too loose, we know from case (b) of Examples 8.4.10 that conver-
gence to consensus does not hold. The following lemma shows that the principle of
the third agent implies, other than in the example above, the scrambling property in
case of matrices with a positive diagonal.

Lemma 8.5.6. (i) Let A(1),A(2),...,A(p) stochastic n x n-matrices with positive diag-
onalandlett = (ky,k,,...,k,) asubsequenceof (1,2,...,p). Thenforanyi,j e N =
{1,...,n}

[A(kl)A(kz)...A(kq)]ij >0 implies [A(l)A(z)...A(p)]U. > 0.

(ii) Let (A(t)) a sequence of stochastic n x n-matrices with positive diagonal and let
T = (ty,...,t,) asequence in N.



8.5 Multi-agent coordination and opinion dynamics = 307

If printh holds on T then the matrix A(t,) ... A(t,) is scrambling.

Proof. (i) Suppose [A(k;).. .A(kq)],.j > 0 fori,j € N. Then there exists a sequence
(iy,...,14_1) such that a; (k;) > 0,a; ; (k;) > 0,...,aiqflyj(kq) > 0. We augment this
sequence by terms a,,(t) > O to obtain a sequence over 1, 2,...,p. Consider 1 < I < p.
If I < k; choose a;(1) > 0,a;(2) > O,...,a;(k; = 1). If k; <1 < k, then augment by
a; i (ky + 1),a;; (ky +2),...a;; (k, — 1). Similar, for ky <1<k, with2 <s<g-1.
If kq < lthen augment by aﬁ(kq +1) >0, a}»]-(kq +2)>0,...,q5p) > 0. This gives a
sequence (.., jp_1) such that aijl(l) > 0, ajljz(Z) > 0,...,a]-p71,]-(p) > 0 and, hence,
[A(DA(2) ...A(p)]i]. > 0.

(ii) If printh holds on 7 then for i,j given there exist subsequences 7 (i, j), 0 (i, j)
of T and k € N such that k € N(i,7(i,j)) and k € N(j,0(,j). ff t(i,j) = (ky,...,k,)
then [A(k,)...A(k,)]; > O and part (i) implies [A(t,)A(t,) ... A(t,)]; > O. Similarly,
from k € N(j,a(i,j)) it follows that [A(t;)A(t,) . . .A(t,)]].k > 0. Thus, A(t;)A(t,) ... A(t,)
is scrambling. O

With the help of this lemma from Theorem 8.5.3 we obtain the following result.

Theorem 8.5.7. Consider multi-agent coordination among n agents given by a mean
process (x(t)) on S™" and let x(t + 1) = A(t)x(t), x(0) € S" and A(t) a stochastic matrix for
t € IN. There holds convergence to consensus provided the following assumptions are
met:
(@) A(t) has a positive diagonal for t > t for some t € N.
(b) There exists a sequence t; < t, < t; < --- in N such that the principle of the third
agent holds on [t + 1,t,,,] for k > k for some k € N.
(©
Y B = o, (8.5.10)
k=k
where B, is the smallest positive entry in all the matrices A(t) for t € [t, + 1,t;,1]

Proof. Let I, = [t; + 1,t,4] for k > k such that ¢, > k. Obviously, the collection
J of the I, consists of disjoint intervals in N. From Lemma 8.5.6 (ii) we obtain that
B(I;) = A(ty,q1) - - - At + 1) is scrambling for I, € J. Furthermore,

U (B@)) = Irgn{b,-,-(lk) | b;(L) > 0} = B}llkl’
and, since || = ,,; — t;, we obtain by assumption sze] u*(B(I)) = co. From Theo-
rem 8.5.3 convergence to consensus does follow. O

In what follows we draw several interesting consequences from Theorem 8.5.7. The
first one presents an extension of Theorem 8.2.3 on opinion dynamics under bounded
confidence.
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Corollary 8.5.8. Let for a convex subset S of R% a mean process on S" given by

X+ 1) =Exo)™ Y 2 (8.5.11)
Jel(ix(®))

forie N={1,...,n},t € N,x(0) € S* and I(i,x) < N for x € S" such that i € I(i, x).

(i) Convergence to consensus holds provided for any i,j € N there exists k = k(i,j) € N
such that chains of confidence go from i to k and from j to k from s to s + h(s) with
1<h(s)<heNforalls € N.

(ii) Assume in addition there exists 6 > O such that

IX —x'| <6 implies j e I(i,x) (8.5.12)

foreachx € S",i,j € N.
Then consensus will be reached in finite time, that is for some T € N x\(t) = c for all
ieNandt>T.

Proof. (i) The process defined by (8.5.11) we write as x(t + 1) = A(t)x(t) with a;(t) =
[I(G, x(t))|™* forj e I(i,x(t)) and a(t) = 0, otherwise. Since i € I(i,x) each A(t) has a
positive diagonal. Let t; = (I - 1)h for [ > 1. A chain of confidence of agent i to agent j
from period s to t > s means a chain of neighbors ofitojviat = (t - 1,...,s), thatis
j € N(i,7). By assumption k e N(i, 7) N N(j,7) for = (h(s) +s-1,...,s).Fors =, + 1
the sequence is containedin [¢; + 1, t;,;] and therefore printh holdson [¢; + 1, ¢,,,] for
each l. To apply Theorem 8.5.7 it remains to show that ) ;. Bl(t“l’tl) = 00. This follows,
sincet,,,—t; = hand f§; > % for all I by the definitions of ¢; and a;(t), respectively. Thus,
convergence to consensus follows from Theorem 8.5.7.

(ii) By part (i) for§ > 0according to (ii) there exists T € N such that [|x'(t)-x/ ()] <
6 foralli,j € N,t > T. By assumption (8.5.12) j € I(i,x(t)) for all i,j € N,t > T and,
hence, I(i,x(t)) = N for alli € N, t > T. Therefore

n
X(t+1)= 1Zx’(t) forall ieN, t>T.
n&

With ¢ = %2}121 X (T) it follows by induction over s that X(T + s) = c for all
ieN,s>0. O

This corollary contains Theorem 8.2.3 for the special case d = 1,I(i,x) = {j € N |
Ix' = ¥|| < €} and h(s) constant for all s. In this case I(i,x) is symmetric in thatj €
I(i, x) is equivalent to i € I(j, x). This symmetry is not required in Corollary 8.5.8 which
therefore allows for heterogeneous levels of confidence that is I(i,x) = {j € N |
Ixt = X < ¢;} with different ¢; > 0. In this more general case condition (8.5.12) is
satisfied, too, by taking § = 121151 ¢;. (For a detailed analysis of this case, called “the

heterogeneous HK model”, see [79].)
In Corollary 8.5.8 the condition (8.5.10) of Theorem 8.5.7 is fulfilled in a simple
matter in that ¢, — ¢, is bounded from above by a constant and f; is bounded from
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below by a positive constant. The same applies to the following consequences of The-
orem 8.5.7 which were obtained in the literature by different proofs and which we col-
lect in the following corollary. (Different from the other parts, part (i), however, allows
for B, tending to 0.)

Corollary 8.5.9. For a sequence of stochastic matrices A(t),t € IN, with positive diag-
onal fort > t,t € N, the mean process on S" given by x(t + 1) = A(t)x(t),x(0) € S"
converges to consensus in each of the following cases.
(i) There exists a sequence (r;) in N with 1 < 1., — 1, < 1 forall k and somep € N
such that
—  A(p) - - - A(ry,q) Is scrambling for k > k € N,
and
Yk BY = co where By is the smallest positive entry in all the matrices A(t) for
kpr+ 1 <t<(k+1)pr.
(ii) There exists B € N and for each t € N an agent m(t) such that
— foreachi a chain of neighbors leads from i to m(t) via a sequence in [t,t + B],
and
- min"A(t) 2 a >Oforallt € N.
(iii) Following an arbitrary time there is a chain of neighbors from any agent to any other
via a sequence in N and
- min"A(t)>a >0forallt e N,
and
— there exists B € N such that for any two agents i, j with a;(s) > 0 for infinitely
many s € N and for any t € N there exists v = v(i,], t), 0 < v < Bwith
a;(t +v) > 0 (condition of “bounded intercommunication intervals”).

Proof. (i) Lett, = kpr. Sincer;,; —r; < r there exist points ., ..., 74,1 in [fy, £,q]. By
assumption A(ry,,) ... A(rg,,) is scrambling for ¢ > k and printh holds on [t; + 1, ;4]
for k > k. Since ty,; - t, = prand ¥,.; BY" = ocoit follows ¥, B ™ = oo and
convergence to consensus follows from Theorem 8.5.7.

(ii) Lett, = k(B + 1). The assumptions imply in particular that printh holds on
[t,t + B] for each t € N. Especially, for t = ¢, + 1, printh holds on[t, + 1,¢, + 1 + B] =
[t + 1,t,4]. Since ., — t, = B + 1 and ; > a for all k it follows } ;. ﬁ,fk”_tk = 00.
Thus, the assertion follows from Theorem 8.5.7.

(iii) Let E be the set of all pairs (i, j) for which g; i(s) > 0 holds for infinitely many
s € N. There exists t' € N such that a;(t) =0fori,j ¢ E,t > t'. By assumption for any
two agents i and j there is a chain of neighbors g;; (s;) > 0,..., a;, (s,,1) > Ofors; > t'.
Furthermore, by the condition of bounded intercommunication intervals, for each ¢
exists s € [t, t + B] such that a, (s ) > 0,. N (sm) > 0. Therefore, printh holds on
[t,t + B] for each t. In particular, for t, = k(B + 1) printh holds on [t + 1, t;,,] for all
k.Because of t;,, — t, = B + 1 and §; > a for all ¢ it follows Y, Blﬁk“_[k = oo and the
assertion follows from Theorem 8.5.7. O
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In contrast to the assumptions made for the last two corollaries, Theorem 8.5.7 does al-
low also B, to tend to O and ¢, — t; to tend to infinity. Actually, what condition (8.5.10)
in Theorem 8.5.7 requires is some interplay of the intensity of interaction, modeled
by B, and the structure of interaction, modeled by chains of neighbors on [t + 1,f;,1]-
Condition (8.5.10) can be satisfied for an intensity decreasing to O as long as t;,; — t;
increases not too much, as for example in case of ¢,,; — ; < c. (As in case A of Exam-
ples 8.4.1with t,,; —t, = 1.) Considering the structure of interaction, t,,, — t, may tend
to infinity for 8, decreasing not too fast, in particular for 8, > a > 0 for all k. Moreover,
condition (8.5.10) allows §, tending to O - if this is not too fast — and, ¢, — t; tending
to infinity - if this is slow enough (see Example 8.5.14 below and Exercise 15). Roughly
speaking, condition (8.5.10) holds if the intensity of interaction does not decrease too
fast and the structure of interaction does not become too loose.

In what follows we derive two more results from Theorem 8.5.7 which allow the
intensity of interaction to decrease to zero. Thereby, we make assumptions on the sat-
urated subsets in the sense of Definition 8.1.6 with respect to the matrices A(t). For
the first result we assume that each matrix A(t) is coherent, that is any two saturated
subsets for A(t) have a non-empty intersection.

Corollary 8.5.10. For a sequence of stochastic matrices A(t),t € N, which are coher-
ent and possess a positive diagonal for t > t,t € N the mean process on S" given by
x(t + 1) = A(t)x(t), x(0) € S™ does converge to consensus, provided for some k, € N

Zﬂ/?_l = 00,

k=k,

where B, is the smallest positive entry in all the matrices A(t) fork(n—-1) <t < (k + 1)
(n-1).

Proof. Lett, = k(n - 1),k € IN. By Proposition 8.1.7 (iii) for t > t each matrix A(t) is a
Sarymsakov matrix. Lemma 8.4.8 yields that any product of n— 1 matrices A(t), t > t, is
scrambling. Therefore, A(t;,,) ... A(t;, + 1) is scrambling for k > k with k(n—1) > tand
printh holds on [t + 1, f;,,] for k > k. By the assumptions made on the 5, convergence
to consensus follows from Theorem 8.5.7. O

The earlier Examples 8.4.1 illustrate this result for n = 2.
In both cases A and B all matrices A(t), t > 2, are coherent with positive diagonal.

In case A one has f;, = Wl(n—n and, hence, the condition on the §; in the corollary

is satisfied. In case B one has 3, = [m]2 and the condition on the f; is not
satisfied — in accordance with the fact that convergence to consensus does not hold.

For the second result we employ a new condition introduced by J.M. Hendrickx
and J. N. Tsitsiklis in [49].

Definition 8.5.11. A stochastic matrix n x n-matrix A is cut-balanced if for any subset
0#MgN ={1,...,n} there exist i € M,j ¢ M with q; > 0 if any only if there exist
i' e M,j' ¢ Mwitha;, > 0.
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This condition means that a group M of agents being influenced by the other ones does
also influence the other ones. Obviously, a type-symmetric matrix 4, that is a; > O is
equivalent to a; > 0, and, in particular, a symmetric matrix is cut-balanced. More
general, A is cut-balanced if there exists a strictly positive vector w such that wA =
wA' (A' being the transpose of A), which includes double stochastic matrices (see [49,
Proposition 1]).

We need the following lemma which in part (i) describes cut-balance in terms of
saturated sets and which in part (ii) yields that for cut-balanced matrices the min* of
arbitrary long products can be bounded from below by finitely many products.

Lemma 8.5.12. (i) A stochastic matrix A is cut-balanced if and only if A and its trans-
pose A' have the same saturated sets, or, equivalently, for each saturated set of A, the
complement (if + 0) is saturated, too.

(ii) Let A(1),...,A(p) stochastic n x n matrices with positive diagonal which are
cut-balanced. Then there exist 1 < k; < p,1 <1i < g, such that

min" (A(p) ... A(1)) = min"A(k,) ... min"A(k,), (8.5.13)
withq <n®> —n+ 1.

Proof. (i) By Definition 8.1.6 aset® + M ¢ N is saturated for Aifi € M and a; > 0
implies j € M. Therefore, M is not saturated precisely if a; > O for some i € M and
j ¢ M. It follows that the cut-balance condition is equivalent to the condition that M is
not saturated for A if and only if M is not saturated for A’. Furthermore, M is saturated
for A precisely if N ~ M is saturated for A’. This shows part (i).

(ii) Let for a stochastic matrix P(4) = {(i,j) € N x N | a; > O}. For A(k,1) =
A(k)...A(1) Lemma 8.5.6 implies P(A(k, 1)) < P(A(k + 1,1)). Let

q(k) = {1 <j < kIP(AG, 1)) S P(AG + 1,1))}| for 1<k<p-1.

Since A(1, 1) has at most n” —n zeros and for each j in the definition of g(k) at least one
zero of A(j, 1) turns into a positive entry of A(j + 1, 1) we must have g(k) < n? — n for
each k. Now we show by induction over p the inequality (8.5.13) holds for g = q(p) + 1.
The assertion is trivial for p = 1. For the step from p to p + 1 we distinguish two cases.

First case: Assume P(A(p, 1)) ¢ P(A(p + 1,1)).

Obviously, min*(A(p + 1,1)) > min* A(p + 1) -min* A(p, 1) and q(p + 1) = q(p) +
1. By induction hypothesis we have 1 < k; < p,1 < i < g = q(p + 1) such that
min® A(p,1) > min" A(k,) ... min" A(k,). Putting k,,, = p + 1 we obtain inequality
(8513)forp + 1withg+1=qp)+1+1=qp+1)+1<n*-n+1.

Second case: Assume P(A(p,1)) = P(A(p + 1),1)). Let A = A(p + 1),B = A(p, 1).
Then P(AB) = P(B). We shall show that

min*(AB) > min'B, (%)

which by induction hypothesis proves inequality (8.5.13) for p + 1. Up to now we have
not yet used the cut-balanced condition which will be done now to prove (x).
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Suppose (AB); > O for some (i,k) € N x N. From P(AB) = P(B) we get by > 0. If

M={jeN|b]-k=O}then
(AB)y = Y a;by > min'BY aj.
jeM jeM

We show that ), a; = 1 fori ¢ M which will prove (x). Because of by > 0 we have
M + N and, without loss, M + @. M is saturated for A because from q; iy > 0 forje M
we have by = 0 and, hence, (AB); = 0 which implies by, = 0, thatis h € M. For A cut-
balanced from part (i) we obtain that M is saturated for A’, too. Therefore, j € Mand
a; > 0implyi € M, thatis a; = Ofori ¢ M,j € M.Thus, ¥,y a; = Ofori ¢ M, and,
hence, ¥,y a; = 1 fori ¢ M. This finishes the proof of the lemma. O

With the help of this lemma, from Theorem 8.5.7 we obtain the following corollary.

Corollary 8.5.13. For a sequence of stochastic matrices A(t),t € N, which are cut-

balanced and possess a positive diagonal for t > t,t € N the mean process on S" given

by x(t + 1) = A(t)x(t),x(0) € S" does converge to consensus, provided the following

conditions are met,

— there exists a sequence t; < t, < ---inN such that the principle of the third agent
holdson [t, + 1,t,,] fork = k, € N,

— it holds
Zﬂn(n 1)+1
k=k,
where f, is the smallest positive entry in all the matrices A(t) for t;, + 1 <t < t;,4.

Proof. Similarly as in the proof of Theorem 8.5.7 the assertion follows from Theo-
rem 85.3. Let I, = [t; + 1,,,] and B(I}) = A(ty,1)... A(f, + 1) fork > kyand ; > t.
B(I}) is scrambling by Lemma 8.5.6 (ii) and from Lemma 8.5.12 (ii) we have that

min*B(l}) > min*A(k,) ... min"A(k, ),

witht, + 1 <k < tk+1,1 <i<gq<n(n-1) + 1. Therefore, min* B(I,) > g™ V!
and, hence, Zk>k min” B(I;) = co with k > k, t; > t. Since for any stochastic matrix
u*(A) > min" A all assumptions of Theorem 8.5.3 are satisfied. O

The printh assumptions in the above corollary cannot simply be omitted as the case,
where all A(t) are equal to the identity matrix, shows for which all assumptions of
Corollary 8.5.13 with the exception of the printh assumption are satisfied. The con-
ditions of coherence and cut-balance assumed in Corollaries 8.5.10 and 8.5.13 are in
some sense opposite to each other. Whereas coherence requires any two saturated sets
to have a non-empty intersection, cut-balance requires saturated sets to have a satu-
rated complement. Of course, both assumptions may hold together which, however,
happens precisely if the respective matrix has N as the only saturated set.

The following example illustrates Corollary 8.5.13 and presents the case already
mentioned of convergence to consensus though min* A(t) decreases to 0 and t;.,; — t,
increases to co.
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Example 8.5.14. Lett, < t, < t; < --- an arbitrary sequence in N and define forn = 3

a(t) 1-al(t) 0
A(t) = 0 a(t) 1-a() fort =t
1-a() 0 a(t)

and
at) 1-a(t) O
At)=]a() 1-a(t) O fort + t;
0 0 1

with O < a(t) < 1 forallt € IN.

A(t) has a positive diagonal for t € IN. For ¢t = ¢, the matrix A(t) is cut-balanced
because it is double stochastic. (A(t) is neither symmetric nor type-symmetric.) For
t + t, the matrix A(t) is cut-balanced, too, though not necessarily double stochastic,
since the saturated sets are (beside N = {1, 2, 3}) the sets {1, 2} and {3} which are
complements of each other. Since A(¢t) is for t = ¢, scrambling, printh holds on [¢, +
1, t,1]. Printh does, however, not hold on proper sub-intervals.

Suppose now t; = k* and a(t) = £ fort > 1. Obviously, t,; -t = 2k + 1
increases to co for increasing k. For ; we have that §; > (tkﬂ)‘ﬁ = (k + 1)‘% and
sincen(n - 1) + 1 = 7 for n = 3 we obtain Y, ﬁ,:'(""l)” > Y o =00

All assumptions of Corollary 8.5.12 being satisfied convergence to consensus does
hold. Thus, in this case consensus is approached though intensity min* A(t) of inter-
action tends to 0 and the structure of interaction weakens steadily since ¢, — t, tends
to infinity.

In the results so far we addressed the question of convergence to consensus. Now we
turn to the more general question if by relaxing conditions convergence can still be
obtained, in particular with a consensus on certain subgroups. Actually, considering
opinion dynamics under bounded confidence this is what Theorem 8.2.5 states in this
case without any further assumptions. For the more general model of multi-agent co-
ordination we need some assumptions and additional concepts. The concepts of sat-
urating sets and coherence introduced in Section 8.1 for a single matrix we extend to
sequences of matrices as follows.

Definition 8.5.15. For a sequence (A(t)) of stochastic n x n-matrices a non-empty sub-
set Mof N = {1,...,n}is called saturated if for any i € M and j € N such that for each
t € Nexistst' > t with aij(t’) > 0 it follows that j € M. The sequence (A(t)) is coherent
if any two saturated sets for (A(t)) have a non-empty intersection.

The following lemma helps in dealing with these concepts.

Lemma 8.5.16. Let (A(t)) be sequence of stochastic matrices.
(i) Thereexists t* € N such that M is saturated for the sequence (A(t)) if and only if M
is saturated for each A(t), t > t*, or equivalently a;(t) = O foralli € M,j ¢ M, t > t*.
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(if) Assume all A(t) possess a positive diagonal fort > t,t € N. Giveni € N there exists
a smallest for (A(t)) saturated set M(i) containing i and

M) = (NG, 1), (8.5.14)
t>0 t<1
where fort = (t;,...,t,) t < Tmeansthatt <t,1<j<r.

Proof. (i) Let M be saturated for (A(t)). If i € M,j ¢ M then by definition there exists
t.(i,j) such that a;;(t) = Ofor t > ¢, (i, j). For t,(M) = max ¢, (i,j) and t* = max{t,(M) | M
ij

saturated for (A(t))} it follows a;(t) = O fori € M,j ¢ M,t > t*. Conversely, let the
latter hold for some t* € N. Assume i € M,j € N such that for each t exists t' > t with
ai]-(t') > 0. By assumption for t = t* we cannot have j ¢ M, that is j ¢ M. Furthermore,
for a matrix A a set M # 0 is saturated precisely if a; = O fori € M,j ¢ M.

(ii) Let M saturated for (A(t)) with i € M. By definition for ¢ given exists t' > t
such that N(i,t') ¢ M. By iteration for t exists t < 7 such that N(i,7) < M. Therefore,
for M(i) given by equation (8.5.14) it follows M(i) < M. It remains to show that M(i)
is saturated for (A(t)) and contains i. Since A(t) has a positive diagonal we must have
i € M(i). Furthermore, letj € M(i) and k € N such that for each ¢ exists t' > t with
a]-k(t') > 0. For t givenj € N(i,7) for some t < 7. Since ajk(t') > 0 for some t' >t
it follows for the sequence v’ = (r,t') that k € N(i,7’) with t < 7’. This shows that
k € M(i) and, hence, M(i) is saturated for (A(t)). O

By using this lemma we prove the following result.

Theorem 8.5.17. Let (A(t)) be a sequence of stochastic matrices which are cut-bal-
anced, possess a positive diagonal for t > t,t € N withmin® A(t) > @ > O forallt > t.
Then for the mean process on S™ given by x(t + 1) = A(t)x(t),x(0) € S" there exists a
decomposition

N=M,U---UM, (8.5.15)

of N into disjoint non-empty subsets M;such that
tlimxj(t) = ¢;(x(0)) forall jeM, 1<i<r (8.5.16)

Proof. (i) In a first step we derive the decomposition (8.5.15). Let @ #+ M ¢ N be satu-
rated for (A(t)). Since all A(t) are cut-balanced for ¢ > t it follows from Lemma 8.5.12 (i)
and Lemma 8.5.16 that N ~ M is saturated for (A(t) and t > max{t,t"}. From this we
obtain for i,j € N and M(i), M(j) as in Lemma 8.5.16 (ii)

ie M(j) implies je M(i) (%)

fori € M(j) and j ¢ M(i) imply M(j) € N ~ M(i) since N ~ M(i) is saturated for (A(t))
which, however, contradicts i € M(j).

Now, suppose M(i) N M(j) + @ fori,j € N. For k € M(i),k € M() from (x) we
obtaini € M(k),j € M(k) and, hence, M(i) = M(k) = M(j). Let M;, ..., M, the pairwise
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different sets among the sets M(i),i € N. From what we have just shown, we must have
M,nM, = 0forp # qand since N is the union of the M(i) we arrive at the decomposition
N =M, U...UM, as wanted.

(ii) Letfori e N fixed M = M(i), f = max{t, t"} and A(t) the matrix with entries
a;(t) for i,j € M. Since M is saturated by Lemma 8.5.16 (i) we have that a;(t) = 0 for
ieM,j¢ M,t >t Therefore, Yjem a(t) = 1forie M, t > t and the matrices A,(t) are
stochastic for t > . Furthermore, fori ¢ M,t > ¢t

. n . .
X(t+1) = Yag®X () = ) ag(O)X ().
j=1 jeM
Thus, the sequence (4,(t)) of stochastic matrices defines a mean process on S™,m =
IM|, by
y(t+1) = Ay(y(t) with y(t) = (y;(t)) € " (8.5.17)

fort > t,y(f) € S™.

We shall apply to this mean process Corollary 8.5.13. Concerning the assumptions
Ay (t) with t > f obviously has a positive diagonal. Also, A,(t) is cut-balanced for t > ¢
which can be seen as follows. Let @ + U ¢ M be saturated for matrix Ay (t), t > f that
isa;(t) = Ofori € U,j € M~ U. Since A(t) is cut-balanced for ¢ > t and a;(t) =0 for
i € M,j € N~ M we obtain a;(t) =0 fori € U,j € N~ U and, hence, a;(t) =0 for
ie NNU,j e U.Thus A (t) is cut-balanced for t > ¢.

(iii) Next we show that for the mean process given by (8.5.17) printh holds on [t; +
1, t,,,] for some sequence (t;) in N. From Lemma 8.5.16 (ii) we have that, i € N fixed,
M = M@) = (Vs0 U r N(@,7), where neighborhoods N(i, T) are defined for (A(t)).
Therefore, forj € M and t > 0O given there exists t < 7(t,j) such thatj € N(i, 7 (¢,j)).
Since N is finite there exists m(t) > t such that 7(¢,j) < [t,m(t)] forallj € N,t > 0.

Let . = m(t, + 1) + 1 fork > 1,¢; = 0. Obviously, ¢, < t,q, [ty + 1, m(t, + 1)] €
[ty + 1, t;,1]. This shows that for (4,,(t)),t > £, printh holds on [t, + 1, t;,].

(iv) Since by assumption min* A(t) > a > O for all ¢ > f also the last assumption
of Corollary 8.5.13 is satisfied for the mean process given by (8.5.16). Thus we obtain
tlirgoxj(t) = lim Y(t) = cforallj € M. If applied to each M = M(i) = M, we obtain

assertion (8.5.16) which proves the theorem. a

The following lemma gives a description of the cut-balanced property which enables
an interpretation of Theorem 8.5.17 and of its consequences.

Lemma 8.5.18. Let A be a stochastic n x n-matrix and s(M) = {j € N | a; > O for some
ieM}ford+ M c N. Ais cut-balanced if and only if for any i,j € N and iterations skof
S

ie sk(j) forsome ke N implies je s() forsome leN (8.5.18)

Proof. The set M(j) = (-0 S(j) is the smallest saturated set (for A) which contains i
(cf. Definition 8.1.6).
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(1) Suppose A is cut-balanced and let i € s*(j). If j € N ~ M(i) then M(j) < N ~ M(i)
by Lemma8.5.12 (i). This is a contradiction to i € M(j), and hence, j € M(i), that is
je sl(i) for some .

(2) Suppose condition 8.5.18 and let M & N be saturated. If i € s(N ~ M) then
i € s(j) for somej € N~ M and by (8.5.18) j € s'(i) for some L. Since j € N ~ M we must
havei € N~ M. This shows s(N ~ M) < N~M and N ~ M is saturated. Lemma 8.5.12 (i)
yields that A is cut-balanced. O

The above descritpion of cut-balanced suggests the following definition.

Definition 8.5.19. A mean process x(t + 1) = A(t)x(t) on S" is reciprocal at t € N if
the stochastic matrices A(-) satisfy the following conditions
— 1ieN(,s)forallie N,alls,

and
— 1€ N(j,7) for some 7 implies j € N(i, o) for some o,
where 7, 0 are finite sequences in N consisting of t only.

In the special case of T = 0 = (t), thatisi € N(j, t) implies j € N(i, t) the process is
said to be mutual at £.

From Theorem 8.5.17 and Lemma 8.5.18 we obtain the following result.

Theorem 8.5.20. Let x(t + 1) = A(t)x(t), x(0) € S™ be a mean process which is recipro-

cal ateach t > t € N and such that min* A(t) > a > O fort > t.

(i) The formulas (8.5.15) and (8.5.16) of Theorem 8.5.17 do hold.

(ii) Convergence to consensus (on N) does hold for each x(0) € S™® where S = R? if and
only iffor alli,j € N,t € N a chain of neighbors fromitojexistsviat = (t,...,t,)
witht; > tforl1 <i<r.

Proof. (i) For a sequence T = (t,...,t) of length k one has i € N(j,7) if and only if
i € sk(j) where s = s(t) is defined with respect to A(t). For a reciprocal process therefore
A(t) has a positive diagonal and i € s*(j) implies j € s'(i). By Lemma 8.5.18, A(¢) is cut-
balanced for t > t. Thus (i) follows from Theorem 8.5.17.

(i) For M(i) = N0 Ui<r N(,7) the condition in (if) means that j € M(i) for all
i,j € N. Therefore, this condition is equivalent to M(i) = M(j) for all i,j € N and, by
part (i), equivalent for N = M(i) for all i € N. Since the decomposition (8.5.14) does
depend only on (A(t)) and not on x(0), the condition in (ii) implies convergence to
consensus for each x(0) € S” with S = RY. Conversely, suppose the latter. Let M = M(i)
for some i € N and choose x(0) € S" with x(0Y = 1 forj ¢ M and x(0Y = 0 for
j ¢ M.Lety(t + 1) = Ay (t)y(t) be the mean process defined on M as in the proof for
Theorem 8.5.17, part (2). Since y(0) = 1,, on M it follows that on My(t) and, hence, x(t),
converges to a consensus of value 1. Since M ¢ N part (i) implies a M(j) € N ~ M.
Since x(0Y = 0 forj ¢ M we must have that x(t) converges to 0 on M(j). This is a
contradiction and we must have, therefore, N = M(i) for all i € N. By the above this
implies the condition given in (ii). O
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Since in case of opinion dynamics under bounded confidence N(i,t) = {j € N |
IX(6) =X (B)]| < €} the corresponding process is mutual. Theorem 8.5.20 is applicable to
this case and yields, for example, Theorem 8.2.5 presented earlier without proof. The
following result covers even more general cases of bounded confidence.

Theorem 8.5.21. Let for a convex subset S of R? a mean process on S" given by

X (e + 1) = HGEx@enl™ Y (0 (8.519)
jel(i.x(t))
forieN,t € N,x(0) € S"and I(i,x) < N forx € S".
(i) If this process is reciprocal then there exists a decomposition N = M,U. ..UM, into
disjoint non-empty subsets M; such that

tlimxj(t) = ¢(x(0)) forall jeM, 1<i<r. (8.5.20)
Assume in addition there exists 6 > O such that
IxX" = x| <6 implies jeI(hx) (8.5.21)

foreach x € S" and all h,j € M;,1 < i < r. Then consensus on each M; will be
reached in finite time, that is for some T € N

xj(t)=ci forall jeM;, 1<i<r t>T.

(ii) Assumei € I(i,x(t)) for alli € N, t € IN. Consider the following properties of process
(8.5.19) for some t € N
(@) foreacht > t exists a numbering N = {i,,...,i,} (dependent on t) such that

iy € Iy, x(0), iy € I(iz X()), ..., 1,y € I(in, X(6)),

(b) foreacht > tandi,j € N given there exists a chain fromi to j or fromj to i where
the latter means there exist iy, .. . i, (dependent on t, i,j) such that

i eIy, x(®),...,1, € I(, x(t)),

(c) foreacht > tandi,j € N given exist k € N and chains fromi to k and fromj to
k as in (b) (dependent on t,1i, j).
Then property (a) implies (b), (b) implies (c) and property (c) implies for process (8.5.19)
and x(0) given convergence to consensus (on N). Properties (a), (b), (c) are all equivalent
to convergence to consensus, provided the condition (8.5.21) holds for each x € S" and
all h,j € N. In this case convergence holds in finite time.

Proof. Let x(t + 1) = A(t)x(t) with a(t) = \IG, x(£)| ™t forj e I(i,x(t)) and a;t) =0
otherwise.

(i) It holds min* A(t) > % for all t and for neighborhoods N(i,t) = I(i,x(t)) the
decomposition with statement (8.5.20) follows from Theorem 8.5.20 (i). The statement
on finite time follows from condition (8.5.21) as in Corollary 8.5.8 (ii).
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(ii) First, assume property (a) and let i,j € N. Given a numbering N = {i;,...,i,}
we must have i = i,,j = i, and, without loss, r < gq. Then i,,,,...,i, yield a chain
as required in (b). Property (b) implies, obviously, property (c). To see that property
(c) implies convergence to consensus we show that property (c) forces each matrix
A(t),t > t, to be coherent. For this let M, M’ be non-empty subsets of N which are
saturated for A(t) with t > ¢ fixed. Ifi € M,j € M’ then by property (c) there exist k ¢ N
and chains from i to k and from j to k. Since M, M’ are saturated we obtaink e MnM’.
Thus, A(t) is coherent for each t > t. Because of i € I(i, x(t)),t € N, A(t) has a positive
diagonal. From Corollary 8.5.10 convergence to consensus follows.

Finally, suppose (8.5.21) holds for each x € S" and h,j € N. If convergence to
consensus holds then for § > 0 given ||x"(¢) — x/(t)|| < & forall h,j € N and t > T for
some T € IN. Condition (8.5.21) implies j € I(h, x(t)) for all h,j € N,t > T which yields
(a) with t = T. Convergence holds in finite time as for Corollary 8.5.8 (ii). O

Theorem 8.5.21 admits also for heterogeneous confidence levels ¢; as well as for other
asymmetric confidence intervals I(i, x). This as well as some other aspects we illustrate
by the following examples.

Examples 8.5.22. (1) As mentioned already, Theorem 8.5.21 yields in particular The-
orem 8.2.5 which was presented for motivation but without a proof. Theorem 8.5.21
admits, moreover, a generalization to different confidence levels ¢; (and to multidi-
mensional opinions as well). Let in Theorem 8.5.21 I(i,x) = {j € N | Ixt - ¥ < €}
fore; > 0,1 < i < n, given. Obviously, i € I(i,x) and condition (8.5.21) is met for
6 = rgi}glei. By part (i) a result as in Theorem 8.2.5 does hold (including convergence in

finite time) provided the process is reciprocal with neighborhoods N(i, t) = I(i, x(t)).
(For a particular case see (2) below.)

Of course, in Theorem 8.2.5 the process is automatically mutual and no additional
assumption is needed. Without requiring the process to be reciprocal, part (ii) of The-
orem 8.5.21 provides a characterization of convergence for heterogeneous confidence
levels. In the particular case of one dimension and ¢; = € property (a) of part (ii) is
well-known. It amounts to an e-profile or e-chain, that is for x = x(t) exists a number-
ing N = {is,....i;}suchthatx; <x, <---<x andx; -x, <eforl<k<n-1.
Therefore, in this special case the equivalence of property (a) and convergence to con-
sensus means that the latter holds if and only if for ¢ big enough x(¢) is an e-profile
(see [28, 43, 54]). Actually, if x(t) is an e-profile for all ¢ > t it must be an e-profile for all
t € IN. In particular, for convergence to consensus x(0) has to be an e-profile. In case
of 2 < n < 4 this condition is sufficient, too. For n > 5 this is no longer true (see [54]
and Exercise 14).

(1) Consider the mean process (8.5.19) in Theorem 8.5.21for S = Rand I(i,x) = {j €
N| Ix; - x| < ¢}, 1 € N. Assume for the confidence levels thate; > e, > --- > ¢, and
€ +€ + - +e,4 <€, Letx € R" be given by x; = Z]’: gfor2 <i<nandx; =0.
One finds that I(i,x) = {i,i + 1} for 1 <i < n-1andI(n,x) = {1,...,n}. Therefore, if
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x(t) = x the transition matrix to x(¢t + 1) is given by

1 1
> 2 0
1 1
ol 1 0o ..o
A=
1 1
0 0 11
11 11
L n n n n ]

This shows that the process is reciprocal at t (but not mutual).

(2) Beside its application to bounded confidence, Theorem 8.5.20 covers also
opinion dynamics for the simple matrix model (8.2.1). For A(t) = A allt € N the
corresponding mean process is reciprocal precisely if A has a positive diagonal and
(Ap)l-j > 0 for some p = p(i,j) implies (Aq)]-,- > O for some q = q(i,j). By part (i)
of Theorem 8.5.20 for any such matrix N has a decomposition into subsets on which
convergence to consensus holds. This applies especially to a type-symmetric or double
stochastic matrix. By part (ii), if the process given by A is reciprocal, then convergence
to consesus holds for all x(0) € RY precisely if a power of A is irreducible. Since in this
case A has a positive diagonal, the latter is equivalent to A being primitive. From an
earlier result (Theorem 8.1.4) we know for any stochastic matrix that powers converge
to a consensus if and only if the matrix has a scrambling power. Indeed, one easily
verifies directly that a matrix is primitive with positive diagonal if and only if it has a
scrambling power and the corresponding mean process is reciprocal. For this equiva-
lence the latter condition cannot be omitted. Of course, a primitive matrix must have
a scrambling power, the converse, however, is not true, not even in case of a positive
diagonal as the example

b

I
IS
Ni= D= O
&= O O

shows. Indeed, the mean process for this matrix is not reciprocal since 4,; > O but
(A7),, = O forall ¢ € IN. This again shows that assuming a stochastic matrix to be
primitive is stronger than requiring a power to be scrambling.

(3) Theorem 8.5.21 allows beside neighborhoods given by a norm, as discussed
in example (1), also more general neighborhoods. Consider on the state space S ¢ R?
instead of a metric given by a norm some valuation v: S x S — V and let I(i,x) =
j e N|v(x,x) e V,o}, where V,, is a non-empty subset of the abstract valuation set
V serving as a measure of confidence. Such an abstract framework can be attacked
by Theorem 8.5.21. To illustrate this we treat the particular case where V = R™ and
v(%,y) = f)—f(y) withf: S - R™,0 # V, < R™. ThusI(i,x) = {j € N | f(x)—f(¥') € V,}
fori € N,x € S". A natural candidate for V, to consider is a closed convex cone K in
R™. Since 0 € K we have that i € I(i, x). Suppose for the ordering induced by K that for
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each t > t a numbering exists such that f(xil) < f(xiz) <--- < f(xi") for x = x(t). Part
(ii) of Theorem 8.5.21 then yields convergence to consensus . For V, = K the process is
reciprocal precisely if for each monotone chain f(x!) < f(x') < --- < f(x)) with x = x(t)
there exists a monotone chain from j to i, too.

Another choice of ¥, would be a subset V,, of R containing 0 and symmetric with
respect to 0, that is V; < —V,. Such a set needs not to be convex in which case it
cannot be given by a norm. Nevertheless, the process is mutual and Theorem 8.5.21 is
applicable.

Still another choice of V,, is an interval [a, b] for a, b € R™ thatis V, = {y € R™ |
a; <y; < b;for1 <i < m}. Suppose f is continuous and q; < 0 < b;for1 <i < m.
Then i € I(i,x) and there exists § > 0 such that for x € S" from ||x' — /|| < & it follows
f(d)-f(¥) € V,. Thus, in this setting part (i) of Theorem 8.5.21 yields a decomposition
of N into subsets on which convergence to consensus does hold, provided the process
is reciprocal for V;,. By Theorem 8.5.21 convergence to consensus on N does hold for
such a V,, precisely if for each x = x(t),t > t, a numbering N = {i;,...,i,} exists such
that

asf()-fo*)<b for 1<k<n-1. (%)

Very special but still interesting cases of () are the following ones. Consider first
f:S - Randthecone Vy = {r ¢ R | r < 0}. One might think of f as attach-
ing a reward to state x or as giving the number of all agents being in state x. Then
I(i,x) = {j € N | f(xX) < f(X)} and for the mean process given by equation (8.5.19)
an agent takes all agents with a higher reward than his own into account or all agents
having more followers than he has. Since f(x(t)) is a real number there exists for each ¢
a numbering as required by property (a) in Theorem 8.5.21. Thus, the agents’ opinions
will converge to a consensus.

As the second special case consider S = R, f the identity on Rand V, = {y €
R | - <y < ¢} withO0 < ¢,¢,. V, is an asymmetric confidence interval when the
confidence level ¢ to the left differs from the confidence level ¢, to the right. Being a
special case of (x) convergence to consensus holds precisely if for each t > ¢t a num-
bering N = {i,...,1,} exists such that —¢ < xik+1(t) - xik(t) < €,. Opinion dynamics
under bounded confidence in this asymmetric case has been extensively explored by
computer simulations in [43].

To conclude, we add further remarks connecting the results of this sectin to those ob-
tained in the literature.

Remarks 8.5.23. (1) Asremarked already, it is difficult in general to compute the con-
sensus ¢(x(0)) in dependence of initial conditions x(0) € S". One has, however, the fol-
lowing sensitivity property for x(0), y(0) € S™ and ¢(x(0)), ¢(y(0)) provided the latter
exist

€(x(0)) — c(y(O)Il < max Ix'(0) - y'(0)]I.
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This follows immediately from
¢(x(0)) € convix*(0),...,x"(0)}, &y(0)) € conv{y (0),...,y"(0)}

and, hence, ¢(x(0)) — ¢(y(0)) € convix'(0) —)/(0) |1<i,j<n}

(2) To link the results on convergence to consensus of this section to those ob-
tained in the literature, we collect some criteria which arise immediately from our re-
sults. (Only multi-agent coordination in discrete time will be addressed.)

For a sequence (A(t)) of stochastic matrices let a mean process given on S™ for a
convex subset S of R? by x(t + 1) = A(t)x(t),x(0) € S". In the literature mainly the
one dimensional case is treated, that is S € RR. As it is often assumed in the literature
suppose min* A(t) > a > 0 for all t € N. Then each of the following criteria does
assure convergence of x(t) to consensus.

(a) There existsa collection J of disjoint intervalsI = [a, b] € NsuchthatA(b)...A(a)
is scrambling and ¥, @' = co.
(b) {A(t)} has the Wolfowitz property.

Another often made assumption is that all A(t) have a positive diagonal. Assuming this
together with min* A(t) > a > 0 the following criteria yield convergence to consensus.
(c) The principle of the third agent (printh) holds on an infinite collection J of disjoint

intervals I ¢ IN with |I| < p for some p € N.

(d) All A(t) are cut-balanced and printh holds on an infinite collection of disjoint in-
tervals in IN.

(e) The processisreciprocal and connectivity holds in the sense that a chain of neigh-
bors exists for any two agents across infinitely many intervals in IN.

Criterion (a) follows from Theorem 8.5.3, (b) follows from Theorem 8.4.9, (c) follows

from Theorem 8.5.7, (d) follows from Corollary 8.5.13 and (e) follows from Theo-

rem 8.5.20.

(3) In [72, Theorem 3.2.37] various conditions are considered which yield conver-
gence to consensus if min* A(t) > a > 0. Criterion (a) settles one of the cases where a
collection of intervals I, in IN is assumed with |I;| < T'log(logs) for some T € N and
all s € N, s > 2. Actually, criterion (a) allows to weaken this condition to

I| < T(logs + log, s + -+ +10g,,, 5),

where log; s is the iterated logarithm given by log;., s = log(log, s) and log,s = s
(s = sy € IN.) This follows easily from the divergence of the so called Abelian series
[53, p. 63]

Z(s logslog, slog;s...log, s

5>2
by putting T = —(log a)~. The cases 3 and 4 in [72, Theorem 3.2.37] do follow from
criteria (b) and (c), respectively.
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(4) A major impact in the area of multi-agent coordination had the article [100] in
which a simple but intricate model was explored by means of computer simulations.
This article, however, does not supply an analytical explanation of the quite surpris-
ing phenomenon of consensus. Such an explanation was undertaken in [52] for the
Vicsek’s model as the model in [100] has been named afterwards. The main result in
[52, Theorem 2] can be obtained from criterion (c). In [52] it is assumed in addition that
A(t) is type-symmetric and there are only finitely many A(t). The latter assumption is
made in order to apply the (original) Theorem of Wolfowitz. Actually [52] analyses a
simplified version of Vicsek’s model (see [46, 47, 81]) which is equivalent to the model
of bounded confidence as in [54]. Therefore, the main result in [52] can be obtained
from Corollary 8.5.8, too. The result in [52] has been extended in [88] by not requiring
type-symmetric and allowing for more general matrices A(t). It is assumed, however,
that the entries of A(t) are taken from a fixed finite set. To apply Wolfowitz’ Theorem
it is, moreover, assumed there are only finitely many A(t). The main result in [88, The-
orem 3.10] for discrete time can be obtained also from criterion (c). Another extension
of [52] can be found in [46] where, to cover a proper infinite sequence (A(t)), an infi-
nite version of Wolfowitz’s theorem is developed. For the latter in [46, Proposition 1]
the matrices A(t) are assumed to be type-symmetric which makes criteria (d) and (e)
applicable (see also Remarks 8.4.11 (3)). Various extensions of Viscek’s model can be
found in [13].

(5) Much earlier to the Vicsek model and its analysis later on is the pioneering
work of J.N. Tsitsiklis [98, 99]. Actually, the results obtained there are more general
than the ones obtained in [52]. (Cf. [6, 8, 47]). Furthermore, the “agreement algorithm”
obtained allows also for delays. Corollary 8.5.9 (iii) is proven invoking an assumption
called “bounded intercommunication intervals”. Corollary 8.5.9 (ii) can be found in
[47, Corollary 9.1]. There it follows from [47, Theorem 9.2] which itself can be obtained
from criterion (a) in (2). Whereas parts (ii) and (iii) of Corollary 8.5.9 require min* A(t) >
a > 0, part (i) admits also for min* A(t) approaching 0 [57].

The notion of a cut-balanced matrix is introduced in [49]. Theorem 8.5.17 is proved
in [49, Theorem 2] for the onedimensional case S = R. For type-symmetric matrices, a
particular case of cut-balanced matrices, Theorem 8.5.17 was proven in [71, Theorem 2],
[72, Theorem 3.2.39], and [46, Theorem 1].

Concerning the crucial Lemma 8.5.12 (ii) an optimal lower bound of n — 1 in case
of type-symmetric matrices has been obtained in [21, Theorem 2.5]. [46] discusses also
the question of necessary conditions in case of type-symmetric matrices with positive
diagonal. (See part (ii) of Theorem 8.5.20 for such conditions.) Theorem 8.5.21 pro-
vides sufficient and necessary conditions in case of bounded confidence which cover
in particular the well-known characterization of convergence to consensus in one di-
mension by e-chains or the lacking of a “split” [28, 54, 72]). See similarly [95, Theorem
1] and the neat concept of condensation introduced therein. See also [104].

A major question in opinion dynamics under bounded confidence is what hap-
pens if confidence levels are different. Theorem 8.5.21 admits for those but does not
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give a conclusive answer. The question has been extensively investigated by computer
simulations in [79] leading to the conjecture that every trajectory converges to a limit-
ing opinion vector [79, Conjecture 2.1 and 2.2].

(6) The field of multi-agent coordination and opinion dynamics has been rapidly
developed during the last years. Surveys can be found in [16, 47, 73, 86]. Topics not
considered in this section are, among others, the cases of differentiable system [86],
systems with delays [8], infinitely many agents [10], random variables [22], conver-
gence rates and speed of algorithms [13, 21], non-convex domains [1, 90].

8.6 Swarm dynamics

In this last section we shall use results obtained to analyse the dynamics of swarms
of birds and other animals. Doing so we need first to examine for the convergence to
consensus in multi-agent coordination the rate of convergence, what we have not done
yet. In case the intensity of interaction is bounded from below by a positive constant
one expects convergence to be exponential. This is not true in general where conver-
gence can be rather slow. More precisely we prove the following theorem which sup-
plements Theorem 8.5.3 with respect to the rate of convergence.

Theorem 8.6.1. Let (A(t)) be a sequence of n x n-stochastic matrices and let J a se-
quence of disjoint intervals I, € N,k > 1, witht, < t, <--- fort, = max{t e N | t € [;}.
(i) Letforle 3,I=[a,b],B(I)=A(b)...A(a) andp; = c(B(L)))...c(B(,)). Then

-1 k-1
Y c(A(s)... A(0)) £ Y (tiq — t)pis (8.6.1)
s=0 i=0

where t, = 0,p, = 1.
(ii) Letx(t + 1) = A()x(t),t € N, x(0) € S" where S is a non-empty convex subset of]Rd.
If Y22, u(B(})) = oo then tlimxi(t) = cforalli € N with ¢ = ¢(x(0)) € S and

max|x(t) - c|l < pymax|x'(0) — ¥ (0)| (8.6.2)
ieN ijeN

fort>t,k>1.
(iii) If for some k € N,a > 1

H(BIY) = for k=k, (8:6.3)

a

k
then Y32, py < co.

Especially,ifu(B(I)) = B > Ofork > kthen the convergence to consensus is exponential

in the sense that

max|x'(t) - c|| < (1 - B)** max|x'(0) - ¥ (0)]| (8.6.4)
ieN ijeN

fort>t,k=>k
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Proof. (i) Let a(s) = c(A(s)...A(0)),s € N.Ifs > ¢t then a(s) < c(B{)) -
c(B(I;_y))-..c(B(I;)) = p; because of c(AB) < c(A)c(B) and c(A) € [0, 1]. Therefore,
incaseoft > t;,

te-1 t-1 t,-1 t-1
Za(s)= Za(s)+Za(s)+---+ Z a(s)
s=0 s=0 s=t; s=ty_1

St + (- t)py +oee ot (b - Bo)Prea-

This proves inequality (8.6.1).

(ii) Theorem 8.5.3 yields tlimxi(t) = cforalli € N. Furthermore, since x(t +
1) = A(t)...A(0)x(0) from Theorem 8.1.2 A (ii) it follows that Ax(t + 1) <

c(A(t)...A(0))Ax(0). (Thereby, for y € S" one has Ay = A{y',...,y"} = Aconviy} =
ma}\)}(”)/i —yI) From xX'(t + 1 + s) € convix(t + 1)} fors > 0 it follows that
ije

c € conv{x(t + 1)} for all t € N. Thus

m:—}]xllxi(t + 1) = c|| < Aconvix(t + 1)} < c(A(¢). .. A(0))Ax(0).

Since by step (i) a(t) < p, for t > t; this proves inequality (8.6.2).
(iii) By definition of p; and Lemma 8.5.2 (ii) we have

Pir1 = C(B1))px < (1 = p(BIs1) )P

and, hence, by assumption p;,; < (1 - l%)pk for k > k. Since a > 1 from Raabe’s Test
[53, p. 136] we obtain Y2, p; < co. Especially, if u(B(I;)) > f > O for k > k we have
Pis1 < (1 = B)py for k > k. Therefore,

Prar < (1-BY ' Hp <@ -p* for k>k.
From step (ii) we obtain for t > ¢,k > k
max|X'(t) - cll < (1 - ) *max|x'(0) - ¥ (0),
ieN ijeN

that is, inequality (8.6.4). O

Considering now swarms of birds or other self-organized groups of animals, the main
assumption we shall make on the movement of the animals is that they “match ve-
locity with nearby neighbors”. Many observations and experiments with real animals
suggest such a behavior. (See the instructive review [68] for experiments, biological
roots and principles concerning the organized flight of birds.) Further, in computer
simulations such an assumption is usual since the pioneering work of C. Reynolds [89]
on “boids” (artificial birds). By the assumption of velocity matching, the averaging of
velocities, the framework developed in the previous section provides useful tools to
investigate swarms. Of course, swarms thereby function as an abstract concept, like
the concept of an ideal gas, and should not be confounded with swarms outside in
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nature. Nevertheless, it is the aim of such a model to point out essential features of
real swarms.

Consider a number n of birds in R3, or without much more effort, in a convex
region S in some RY. Assuming discrete time ¢ € N let x/(t) in S denote the position of
bird i at time t. The velocity Vi(t) of bird i at time ¢ is given by Vi(E) = X(t + 1) =X (b).
The velocity matching or, according to [89], the “alignment” which “steers towards the
average heading of local flockmates” we model by a convex combination of velocities,
that is vVi(t + 1) € conv{v'(¢),...,v"(t)} for each bird i € N, each t € N. Thus the
velocity vectors v(t) form a mean process in the sense of Definition 8.3.1. Equivalently,
there exists a sequence of stochastic matrices A(t) such that v(t + 1) = A(t)v(t) for
the vectors v(t) of velocities vi(t). Thus we arrive at the following swarm model for
x(t),v(t) € S"

x(t + 1) —x(t) = v(t)

v(t + 1) = A(t)v(t), (8.6.5)

with ¢ € N and initial conditions x(0), v(0) € S°.

What makes the birds a swarm is that all birds tend asymptotically to the same
velocity, in other words, a consensus in terms of velocities. Considering the positions
one would not speak of a swarm if the relative position x'(t) — X(t) of any two birds
would tend to infinity. Stronger than this boundedness of relative positions we require
for a swarm relative positions to converge asymptotically. It is this property for which
we will need Theorem 8.6.1 on the speed of convergence because the position x'(t) is
an accumulation of all the velocities v!(s) from 0O up to t. For the swarm model (8.6.5)
“local flockmates” or “nearby neighbors” play a role which refers to structure and
intensity of interaction. The following main result of the present section states that the
birds will form a swarm if the interaction among birds is coherent often enough and
the intensity of interaction within certain intervals does not approach zero too fast. It
is remarkable that to form a swarm birds need not follow always definite rules, except
the one of matching velocities. In other words, the birds can form a swarm even in case
of interruptions or pertubations. Later on we will interprete the result below and show
how coherence corresponds to certain flight regimes as line formations, especially V
or J formations. Also, the result below generalizes Corollary 8.5.10 in that coherence
is required only for certain periods.

Theorem 8.6.2. For the swarm model (8.6.5) let (A(t)) be a sequence of stochastic ma-
trices with positive diagonal and such that for a sequencer, =0 <r; <1, < ...of time
periods A(ry,) is coherent fork = 1,2,.. ..

Letfork = 1,2,... Iy = [rg_1)m-1)+1>Tkn-1)) AN interval in N, py, = || and my, =
min{min* A(t)|t € I, }.

Then for arbitrary initial conditions x(0), v(0) € S the following properties do hold.
(i) IfYe, m¥ = oo then lim Vi(t) = v* (v(0)) for alli € N.
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(ii) (@) Foranyi,je Nandt € N,

IX'() = X' ()] < 1x'(0) = ¥ (O)] + tmaxv"(0) - V/(0)]. (8:6.6)
(ii) (b) Ifr = sup (1,1 — 1) < 0o and for some k and a > 1 it holds m’Zk > %for k>k
k
then _ .
tlim (x'(t) =X () = x"(i,j,x(0),v(0)) for i,jeN. (8.6.7)

Proof. (i) To apply Theorem 8.5.3 we show that B(I) = A(b)...A(a) is scrambling for
I = [a,b] and, for k fixed, a = ry_1yp-1y+1-D = Txuo1)- The interval I in N contains
the (n — 1) values t; = 1y _q)n_1),; for 1 < i < n - 1. By assumption the matrices
A(t),1 < i < n- 1 are coherent. Since these matrices have a positive diagonal they
are Sarymsakov matrices by Proposition 8.1.7 (iii). By Lemma 8.4.8 (ii) the product
A(t, 1) ...A(t;) is scrambling. The sequence ¢ = (t;) for 1 < i < n - 1 is contained in
T = [a, b] and we have fori,j € N and 7(i,j) = 0(i,j) = o that

NG, t(0,j)) NN(,0(i,j)) + 0 where N(h,0) = {l|[A(t,_1)...A(t;)]y > O}

Thus, the principle of the third agent holds on 7 and A(b)...A(a) is scrambling by
Lemma 8.5.6 (ii). Since B(I) is scrambling we have that

u (B() = min*(B(I)) = min"A(b) ... min"A(a),

and, hence, u*(B(I)) > m'klk| = m’,’(’k. Theorem 8.5.3 yields property (i).
(ii) (@) For anyt > 1 we have from model (8.6.5)

t-1
X () =X (t) = x'(0) - K(0) + Y (V(5) - V(s)).
s=0

Also from the model

v(t + 1) = A(t)...A(0)v(0) and, by Theorem 8.1.2 (ii),
Av(t + 1) < c(A(t) ... A(0))Av(0) < Av(0) = rhnlagllvh(O) O

This shows (ii) (a).
(ii) (b) This property follows from Theorem 8.6.1 applied to v(t + 1) = A(t)v(t). By
assumption we have for 1 <i <j

G=Ti=T—tig+- -+l -n<@-0r

By definition of I, we have for t;, = max{t € N|t € [} = r,_, and, hence, t;,; - ; <
(n - 1)r. Part (i) of Theorem 8.6.1 yields

t-1 k-1

c(A(s)...A(0)) < (n- 1)r2pi.

0 i=0

=

s
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Fromv(s + 1) = A(s)...A(0)v(0) we have fori,j € N
V(s + 1) = V(s + 1] < Av(s + 1) < c(A(S) ... A(0))Av(0).

Putting together, with w(s) = vi(s) — V/(s) for i,j fixed

te-1 te-1 k-1
Y lw(s + 1)l < [Z c(A(s) ... A0)) |[Av(0) < (n - 1)rAv(0) Y p;.
s=0 s=0 i=0

From part (iii) of Theorem 8.6.1 we obtain by assumption that ) p; < co and because
oft, <t, < ...we must have that Y o> [w(s)|| < co. Therefore, lim Z; o W(s) exists

and the conclusion in (ii) (b) follows from x'(t) — ¥ (t) = x'(0) - ¥/ (0) + ZS ow(s). O

For the particular case where all matrices A(t) are scrambling the proof of Theo-
rem 8.6.2 yields the following simpler variant of Theorem 8.6.2.

Corollary 8.6.3. For the swarm model (8.6.5) let (A(t)) be a sequence of scrambling ma-
trices.

i) If ¥ min® A(t) = oo then tliglov"(t) =v*(v(0)) foralli € N.

(ii) (a) Foranyi,je Nandt € N,

IX'(6) - X (@Ol < I¥'(0) - X (O)]| + tglnlg;éuvh(m V().
(ii) (b) If for some t and a > 1 it holds min" A(t) > % fort >t then
lim (&) - X (1) = x*(i,j,x(0),v(0)) for 1i,jeN.

Proof. Since A(t) is scrambling we can apply directly Theorem 8.5.3 with I, = {t}. Since
u*(B(I,)) = min* A(t) Theorem 8.5.3 yields (i). Parts (ii)(a) and (ii)(b) follow as in The-
orem 8.6.2. O

The following examples show that swarm formation is possible also if the intensity of
interaction goes to zero and they demonstrate also the importance of the assumption
a > 1 for the convergence of the relative positions.

Examples 8.6.4. (a) Consider a swarm model as in Theorem 8.6.2 and assume r =

sup (g — rk) < oo and min* A(t) > a[ %=X l)’] fort > twithp = 2)H1,a >0.1ft e I
k

then 1 > r( Fromr -r < (j-drforl <i<jweobtainr; <jr. Therefore, T2 k(n o

fort e I and my > a[ =3 = &. Furthermore,

1
Pi = Il = "oy = Toenymeyrr + 1< (=2)r+ 1 = 1_7
It follows that m’,ik > aPk. % ;1 From Theorem 8.6.2 it follows llmv (t)=v* fora >0
and tlim o) - X () = x*(, j) fora > 1. Obviously, min* A(t) goes to zero for t tending
—00
to infinity.
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(b) Consider the following special case of the example above. Let r, = k, k > 1.
Thenr=1,I, = [(k-1)(n-1) + 1,k(n - 1)] and p; = n— 1. The assumption in (a) be-
comes min* A(t) > a("';tl)ﬁ . In this case all matrices A(t) are coherent and min* A(t)
goes to zero as (%)”‘1 for a > 0. Again, swarm formation takes place. Actually, in case
of r, = k part (i) of Theorem 8.6.2 gives back Corollary 8.5.10.

(c) Consider the following variation of Examples 8.4.1 A: A(t) = | % (19%)] for
a > 0,t > a. These matrices are of the kind considered above and we could apply
Theorem 8.6.2. Since these matrices are scrambling it is easier to apply Corollary 8.6.3.
From part (i) we obtain for the swarm model (8.6.5) that tllrglo Vi(t) = v* for a > 0. Actu-
ally, from Examples 8.4.1 A we know this convergence already for a = 1. In this case
we calculate directly v, (t + 1) —v,(t + 1) = %(vl(z) - v,(2)) for t > 2. Therefore, for

t>2
¢

Xt D=+ ) =32 - 0@ + (Y =5 )0 - 1)
s=2
This is in accordance with part (ii) (a), however, the relative position of the two birds
does not converge for v,(2) # v,(2). According to part (ii) (b) of Corollary 8.6.3 the
relative position does converge for & > 1. Let us check this directly for a = 2. Similar
as in Examples 8.4.1 A we obtain by induction A(t)...A(3) = [ 1_4 ai ] Where a(t) =
(1-32)...(1 - 2)fort > 3. One finds

t t
Y 01(6) - va(6) = ( Yats - 1)), (0) - v,(0)).
s=3 s=3

Since 2223 a(s — 1) converges to some w we obtain tlllllo (x1(6) = x5(8)) = x1(0) — x5(0) +
w(v,(0) - v,(0)).

(d) Different from example (c) the next example shows that swarm formation can
happen also for « < 1. Let A(t) = [ i (1‘09] for t > 2. Since A(t) is scrambling and
min* A(t) = % from Corollary 8.6.3 it follows that velocities converge to a common
value. (Notice, A(t) has no positive diagonal which is admitted in Corollary 8.6.3.) For
w(t) = v,(t)-v,(t) one findsw(t + 1) = —(1 - %)W(l‘) and, hence, w(t + 1) = %w(Z).

Therefore, x; (t) — x,(t) = x;(2) = x,(2) + Z;; w(s) does converge for t — co. Thus
swarm formation takes place although the assumption in part (ii)(b) of Corollary 8.6.3
that min* A(t) > “7 for some a > 1 is not satisfied. This example also shows that the
convergence of velocities need not be monotone.

For the swarm model (8.6.5) the assumptions made in Theorem 8.6.2 and Corol-
lary 8.6.3 do not stipulate any cause for the change of intensity or structure in the
interaction. In particular there is no assumption on how the latter are connected to
the positions of the birds. Such a connection is not unplausible and it is assumed
often in the literature on swarms that the intensities a;(t) depend on the distance
[Ix'(t) — ¥(t)|| between the birds. An example are the famous Cucker-Smale model
of bird flocking and variations of it. The original articles of F. Cucker and S. Smale
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are [23] and [24]. Related contributions are [14, 19, 21, 38, 82, 94]. From Theorem 8.6.2
and Corollary 8.6.3, respectively, we obtain the following result which admits a rather
general dependence of intensities on distances among birds and which, moreover,
admits a structure of interaction much weaker than the one considered in the litera-
ture mentioned above. (All this, however, for discrete time only. See also the remarks
at the end of this section.)

Theorem 8.6.5. For the swarm model (8.6.5) let (A(t)) be a sequence of stochastic ma-
trices such that

a;(t) = f(IX'(t) =X () incase of a;(t) > 0 and i # j, (8.6.8)

where f is an antitone selfmapping of R, with f(0) < L.
(i) Suppose thereis a sequencery =0 <r; <1, <--- Withr = sup (1, — 1) < co and
k

such that A(r,) is coherent fork = 1,2, ... and let

P =Ll for I = [Fg_1yn-1)+1> Tkn-1) | (iNIN).
@) IfzfP(z)2c>0forallz>z e R,,allk >k € N,
then [llrglo Vi(t) = v* (v(0)) for all i € N.
(Thereby, f? the p-fold productf ...f.)
(b) IfzfPx(z) > ¢ > (n - 1)rAv(0) forz > z,k > k,
then lim ((t) = X(t)) = x* (i, j, x(0), v(0)) fori,j € N.
(ii) Suppose all matrices A(t) are scrambling.
(@ Ifzf(z) 2c>O0forallz>z € R,
then E,Tovi(t) =v*(v(0)) foralli € N.
(b) Ifzf(z) 2 ¢ > (n— 1)Av(0) forallz > z € R,
then lim (X (t) = X(t)) = x* (i, j, x(0), v(0)) fori,j € N.

Proof. (i) From part (ii) (a) of Theorem 8.6.2 we have ||x'(t)-x/(t)|| < ¢, + c,tfori,j € N
where c; = Ax(0), ¢, = Av(0). Fixi # j € N with a;(t) > 0. Since f is antitone, we obtain
a(t) = f(IX'(6) = X)) = f(c; + cyt) and, using the assumption made in (a) and (b),
respectively,

a; (P = f(cy + cyt)P > fort >tk > k. (%)
116
Choose a such that 0 < & < ———— (%%)
(n-1rc,

In case of (b) we have that m > 1 and, hence, in that case a > 1 can be chosen.

Because of (#x) we can choose k > k such that ¢ < k(§ —(n-1rc,) fork > k. For
t € I we have that t < r;,,_4) < k(n — 1)r and, hence, t < k(n - 1)r < @ for k > k.
2

Thus, ¢; + ¢t < Zkfor t € I, k > k. Choosing k big enough we can assume that t > t
fort e 1,k > k and obtain from (x)

c a

2 —

c;+ct  k

ai].(t)pk > for tel, k= k.
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Since for j + i we have q; i(6) < f(0) we obtain

a;(t) =1 - Y ay(t) > c; with ¢; =1-(n-1)(0) > 0.
j#

Furthermore, py = ryn_1) — "k-1yi-13+1 + 1 < (n = 2)r + 1 and, hence,

ay(OP = ay(®" P > I s where k>k' € N.

a
k
Thus, we arrive at m‘zk > % for all k > k, k'. Therefore, statements (a) and (b) follow
from parts (i) and (ii) (b) of Theorem 8.6.2.

(if) This part follows from Corollary 8.6.3 in the same manner as in part (i) above.
Now I; = {t},p; = 1and r = 1. Asin (*x) choosea suchthat0 < a < ﬁ In case of
(b) we can choose a > 1 since by assumption —— e 1)c > 1. O

Theorem 8.6.5 we illustrate by discussing in some detail the Cucker-Smale model of
bird flocking in discrete time. In this model x(t), v(t) € (R*)" and

x(t + 1) — x(t) = v(t)

Vit + 1) = Vi) = Y fd)(V(0) - V() (8:69)
i#j=1
with ﬁJ(X) W’H>Oﬁ >Oandl#]€N

This model is of the form of our swarm model (8.6.5) but not exactly, since the in-
tensities f;;, though nonnegative, do not give a stochastic matrix. Since there are no
f;; in this model we will define those to obtain a stochastic matrix — for this, how-
ever, we shall assume that H < 1 .Letfori + j,t € N a(t) = f,-j(x(t)) or a(t) = 0
and a;(t) = 1 - ZI# 1 (). Slnce fl}(x(t)) < H < 1 we have that Z;’#Zl a;(t) <
Zl -1 fU(X(t)) < (n-1)H < 1. Thus, the matrix A(t) of the a(t) is stochastic and has a
positive dlagonal In case of a;;(t) > O fori # j we have a;(t) = f;(x(t)) = f(||x GEY0])

where f(z) = Doz 2)/, is an antitone selfmapping of R, with f(0) = H < .= . Thus, The-

orem 8.6.5 is applicable to discrete Cucker—Smale flocking for H < H' Part (i) of Theo-

rem 8.6.2 generalizes the latter in that A(t) is required to be coherent only for certain
points in time. In the model (8.6.9) intensities are required to be strictly positive at each
point in time and A(t) is strictly positive for each t € IN. To this quite strong structure
of interaction part (ii) of Theorem 8.6.5 applies.The assumption in (ii) (a) means that
(:Tzz)ﬁ >c¢>0forz > z € Ry, or equivalently, B < 1. Thus, for 8 < 1 (and H < 3)in
the model (8.6.9) Ve10c1t1es converge to v*(v(0)) for any given v(0). The assumption in
(ii) (b) means that (1+ 2)/, > ¢ > (n-1)Av(0) for z > z, or, equivalently, § < % orff ==
and H > (n - 1)Av(0). Therefore, for model (8.6.9) we have in case of 8 < % conver-
gence of velocities to a common value as well as convergence of the relative positions
x!(t)—x/(t) and this holds for any initial conditions. In case of § = % convergence of rel-
ative positions does, according to part (ii) (b) of Theorem 8.6.4, hold if relative initial
velocities are not too big. In [23, 24] also for the case of § > % conditions on the initial
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conditions are specified which guarantee convergence of velocities to a common value
and convergence of relative positions.

In concluding this section we like to link it to the biological literature and to in-
terprete the main result Theorem 8.6.2 and the consequences drawn from it. Thereby
we concentrate on the “how” of organized flights and leave the “why” aside. A cru-
cial assumption made in Theorem 8.6.2 is the one that the matrices A(t) are coherent
at certain points in time. According to Definition 8.1.6 a stochastic matrix A is coher-
ent if any two saturated subsets of the set of agents N have a non-empty intersection.
Equivalently, the intersection of all saturated subsets is non-empty. Calling the lat-
ter set the core C for A one verifies easily that C = [,y c(i) where c(i) is the small-
est saturated set containing i. Using the map s(-) defined for a subset 8 + M ¢ N
by s(M) = {j € N | a; > O for some i € M} (see equation (8.1.6)) one finds that
(@) = Uren sk(i) (where s(i) = s({i}) and s*(-) is the k-th iterate of s(-)). Thus, we obtain
the following description of the core

c= Us‘. (8:6.10)

ieN keIN

Therefore, j € C if and only if for each i € N there exists k € N such thatj € sk(i). Let G
be the directed graph defined by A where N is the set of nodes and (i, j) is a (directed)
edge for i,j € N precisely for a;; > 0 or, equivalently, j € s(i). In the language of graph
theory j € s¥(i) means there is a (directed) path of length k from i to j, especially j is
reachable from i. In this language, j € N is in the core C if and only if it is reachable
from each i € N. The following picture depicts a typical case of a core for a coherent
matrix A in the most simple case where C is a singleton.

A

./\_/' ./ ./'\_
NN \./\
NSNS

\\/
/

. . Fig. 8.1. Swarm formation.
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In the picture the dots are the elements of N and an edge is represented by a dash,
directed from bottom to top. The dot at the top of the figure is the core since it is reach-
able from any other dot and no other dot does have this property. Of course, Figure 8.1
is just a pictorial presentation of graph G for a coherent matrix A with C being a single-
ton. Thinking of swarms, however, one is tempted to look at this figure as a formation
of birds called an echelon in biology [68]. The famous V-formation of birds and the J-
formation as its asymmetric variant are cases of such an echelon. To substantiate this
impression remember that a dash from i to j means an edge (i, j) that is a; > 0. With re-
spect to the swarm model (8.6.5) this means that bird i matches its velocity with bird j.
This requires a communication between the birds, say that “bird i sees bird j”. Vision
is considered to be an important communication channel among birds, sometimes as
the appropriate one compatible with experimental data [4] Therefore, we interprete
the neighborhood N; = {j € N | a; > 0} of bird i as the birds seen by i. Since “seeing”
refers to the positions of birds, Figure 8.1 can be interpreted as showing the positions
of birds and a dash (i, j) means bird i sees bird j. The “wavy lines” in Figure 8.1 then
are due to the conical field of vision of birds.

In case the core is a singleton as in Figure 8.1 one might think of this single bird
as a leader. This applies in particular to the special cases of V- or J-formations. For a
general line formation with many birds, however, such a leadership is rather indirect
and mediated possibly by a lot of birds between leader and followers. Even less pro-
nounced is leadership if the core consists of several birds. Of course, any two birds in
the core do interact, either directly or indirectly. Therefore, two or more independent
leaders are not possible. It has been observed, however, that big swarms of migratory
birds are sometimes lead by a spherical sub-formation of birds. The opposite extreme
to a core as in Figure 8.1 would be a core consisting of the whole swarm. (This is the
case for the Cucker—Smale model (8.6.9).) In its most simple form this amounts to a cy-
cle, where each bird is followed by just another one. For migrating birds such a cyclic
formation would not make much sense, possibly with the exception of processes of
starting and landing. Below we will argue that big cores and cycles in particular play
a role for cluster formations.

Up to now a single matrix A and the formation of birds induced by interaction
have been considered. In Theorem 8.6.2 a swarm is described by a sequence (A(t))
of matrices with A(r,) coherent at certain points in time r,. Thus at each r, there is a
flight regime as discussed above. These regimes can differ and exhibit different cores.
Even if the core is a singleton at each r;, k € N, leaders (and followers) can change
from time to time. Moreover, during flight different types of leadership according to
cores of different size can occur. The change in leader and leadership enables the
swarm to change the direction of flight, make even a turn. It is an important feature of
Theorem 8.6.2 that the points in time r, need not follow a specific rule and that, more-
over, during the rest of time no particular flight formation is required. That means the
swarm can change flight freely with irregular patterns of re-organization in between.
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A major distinction concerning swarms is made in biology between line forma-
tions and cluster formation [68]. The interpretation put forward above was directed
to line formations which are observed usually for migrating birds as various kinds
of geese which fly in groups not too large. The above analysis of the core applies,
however, also to huge groups of small birds as the European starling. The spectac-
ular dynamics of the latter over a roost (as in Rome) has been empirically investigated
recently employing modern stereo photography ([4], see also [50]). An important con-
clusion drawn in [4] is the one that interaction among the starlings does depend on
the “topological distance” and not on the metric distance. This means that “each
bird interacts on average with a fixed number of neighbors (six to seven), rather than
with all neighbors within a fixed metric distance.” [4, p. 1232]. Interaction as modeld
in Theorem 8.6.2 does not presume any particular kind of concrete neighborhood as
topological or metric distance or any other. (In the empirical study [77] on large flocks
of surf scoters metric distance has found to be an appropriate tool.) In Theorem 8.6.5,
as well as in the Cucker—Smale model, the intensity of interaction depends on met-
ric distance without, however, specifying fixed distance neighborhoods. (A kind of
neighborhood beyond topological or metric distance is discussed in Examples 8.5.22
(4) under the heading of “valuation”.) In Theorem 8.6.2 as well as in Corollary 8.6.3
coherence of matrices may rest on topological distance (actually, maybe combinato-
rial distance would be a better name). Indeed, a stochastic matrix A(t) is coherent if
foreachi € N the number ofj € N such that a;(t) > 0 exceeds a fixed number m which
depends on n.

Concerning the “turn and wheeling together” which is characteristic for huge
swarms of the European starling over a roost, this is possibly due to a large core
within the centre of a swarm. Actually, in 3 dimensions the interior of the polytope
spanned by the swarm admits movements not only from the outside to the inside, but
also in reverse directions, allowing for various kinds of spiraling and swirling. In con-
trast to a line formation the birds in a cluster formation are smaller and more swiftly,
larger in number and more densely packed. Whereas in a line formation which is es-
sentially 2-dimensional, cylces do not make sense, in 3 dimensions cycles of different
orientation are to be expected. Furthermore, at times different from the r; irregular
patterns of re-organization, present also in line formations, become more dramatic in
cluster formations due to small and swift birds densely packed in three dimensions.
The cohesion of the swarm rests on the interaction according to coherent matrices
which iteratively take hold at times r;. Possible perturbations or re-organizations in
between can be looked at as changes in “initial” conditions which after a while lead
qualitatively to the same dynamics as before. In this view the point of Theorem 8.6.2
is that the tendency to common velocities and definite relative positions provides the
law which governs the “reelin’ and rockin” of the swarm.

Finally we add some more remarks concerning the literature.
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Remarks 8.6.6. (1) For scalar opinion dynamics under bounded confidence an upper
bound for convergence of O(n?)) is given in [80] and in [7]. Lower bounds are obtained
in [7, 66, 101]. A general framework to bound the time of convergence for a class of
bidirectional multi-agreement systems, including opinion dynamics as well as bird
flocking, has been developed in [19-21]. Surprisingly, the bound to reach a steady state
is in general very high, a “tower-of-twos of hight linear in the number of birds”. The
framework developed is directed to a general study of “Natural Algorithms” [19].

(2) For the swarm model (8.6.5) and the role of coherent matrices in swarm dy-
namics see [64]. There [64, Theorem 3] a special version of Thorem 8.6.2 is proven.

(3) The Cucker-Smale model of bird flocking, for discrete time as well as for con-
tinuous time, has been developed in [23, 24]. This model and variants of it were further
investigated in [14, 20, 38, 64, 82, 94]. Hierarchical leadership in the dicrete as well
as in the continuous Cucker—Smale model is investigated in [94], where convergence
rates for flocking are established. Results on flocking in the continuous Cucker—-Smale
model are obtained in [38] via a system of dissipative differential inequalities and in
[14] by relating it to a Boltzmann-type equation. In [82] the continuous Cucker—-Smale
model is generalized by admitting non-symmetric interaction matrices based on rel-
ative distances. The proof makes use of an ineresting “energy functional” introduced
in [38]. (For such a functional in the discrete case see Exercise 16.)

(4) The interpretation of Theorem 8.6.2 draws on the review of organized flight in
birds [68] and the empirical studies [4, 77]. A model addressing the empirical data in
[4] can be found in [50]. An informative general review of pattern formation in swarms
as well as in other group-living species as ants, fishes, and humans is [83].

Exercises

1. Consider for a stochastic matrix A € R7*" the property
Ax = x,x € R"implies x = (r,...,r)' for somer € R.
(a) Show that the above property holds if A is indecomposable or has a scram-
bling power.
(b) Find an example A for which the above property holds though the condition
in (a) is not satisfied.

2. Let A € RP" a stochastic matrix and A a second eigenvalue of absolute value,
that is A is an eigenvalue of A for which |A| is the maximal absolute value of all
eigenvalues different from 1.

(a) Obtain from Theorem 8.1.2 A that

- P
A] =klimc(A )k

if 1is a simple eigenvalue.
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(b) Show that for 1 not simple c(A¥) = 1 for all k. Find an example A for which the
reverse implication does not hold.

(c) Derive from (a) and (b) that A has a scrambling power if and only if 1 is a
simple eigenvalue and the only eigenvalue with absolute value 1.

Prove for a stochastic matrix A € RT" the following properties.

(a) Ais coherent if and only if for any two i,j € {1,..., n} exist p;, p; > 0 such that
s@Pin sy + 0.

(b) A has a power which is a Markov matrix if there exists j € s”*(1) n... n
sPr(n), p; = 0, with a;; > 0.

(@) Prove that a (weighted) arithmetic mean f(xy,...,x,) = Y, ax; is a strict
abstract mean on int R if and only if @; > O for all i.

(b) Let Tx = Ax for a stochastic matrix A € R7" and x € int R}. Show by way of
examples that for tliglo T'x = &(x) to hold on int R” it is neither necessary nor

sufficient T; is a strict abstract mean for some i.

Consider aring of agents where each agent spends a fixed percentage of his money
to his next neighbor and retains the rest, that is for x;(t) € R, the amount of money
of agent i at time ¢t € IN one has x;(t + 1) = ayx;(t) + (1 - a;_1;_1)x;_1(t) where
a; € [0,1],1 <i<n,ayy = Ay, Xo(£) = X,(8).
(a) Show that tlir(l)lo)((l’) exists for each x(0) € R" if 0 < a; < 1 forall i.
(b) What can be said in (a) if one or more agents do not share their money with
others, thatis a; = 1?
(c) Under what conditions will in (a) the money be equally distributed in the limit
among the agents?
(For the special case of the exercise where a;; = % forallisee [17, Theorem 7.1].)

Prove that the product of finitely many Sarymsakov nxn-matrices is a Sarymsakov
matrix again.

Let T be the set of all mean maps on S" for a non-empty convex subset S of RY.

Prove the following properties of <.

(a) Tisaconvex subsetof the set F of all selfmappings of S” (for pointwise convex
combination).

(b) T is closed for the composition of maps.

(c) Ford =1, Tis closed for componentwise minima and maxima.

(d) IfSis compact in R then ¥ is compact in § with respect to the product topol-
ogy.

Consider the selfmapping Tx = A(x)xon S", S ¢ RY convex, with A(x) = (a;(x)) €

R™" given by

1- Yeuf(x =Xk ifi=j
k+#i

cf (I = X1 ifi+j
a;(x) =
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10.

11.

wheref: R, — [0,1]and C = (cj)isa stochastic n x n-matrix (| - | any norm on
RY).
(a) Find conditions on f and C for which

tlim T'x = &(x) forall x € S".
(b) Investigate the case of f(r) = ™",y > 0. (Cf. the ENDA Model in [78, pp. 125
128].)
Consider the weighted Gini mean on int R defined by

1
=S

n
¥ qxg
k=1
n

f) =
> akxi
k=1
forr,s € R,r + sand weights 0 < a;, Y;_; a; = 1.
(a) Prove mkin X < fx) < max x, on int R].
K
(b) Prove that a; > O for some i and f(x) = mkin x(fx) = ml?x x;) implies x; =
mkin X (x; = ml?x X))
(c) Argue that part (i) of Theorem 8.3.12 holds true in case the soup has compo-
nents given by weighted Gini means.

For the model from population biology considered in Examples 8.3.15 (3) let

a by ¢ 4
a, b, ¢, d, with a;, b;, d; > 0
613 b3 C3 d3 anda}+%(b]+cl+d])=1f0r1 SjS4.

a, b, ¢, 4d,
(a) Find further cases of M, besides the one given in Examples 8.3.15 (3) for which
the mapping T: ]Rﬁ — ]Rf defined by M satisfies
lim T'x =¢(x) on intR’,

(b) Find cases of M for which the above conclusion does not hold.

Consider the following generalization of Borchardt’s example (cf. Re-
marks 8.3.16 (6)) where T is a selfmapping of R’ given by

n
Tx =Y a; [] XKD <i<n
i1 kel(y)

with A = (a;) a stochastic matrix, 0 < (i,j) and } & (i,j)) = 1,0 ¢ I(i,j) <

kel
{1,...,n}forall1 <i,j<n. €l



12.

13.

14.

15.
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(@) Show that T is a mean map on R’.

(b) Prove tlim T'x = ¢(x) on int R", provided O < a;(i,j) for k € I(i,j),1 <i,j<n
and the sets I(i) = Ual_}_>0 I(i,j) satisfy I(i) N I(i') # @ forany i #i'.

(c) Do you have any idea for a closed formula of the value c(x)?

Let a Gauss soup T on int R” given by

for a stochastic matrix A = (a;).
(a) Show that H(x) = ;’=1 x;./f on int RY is an invariant for T, where v € R is an
eigenvector of the transpose A’ for the eigenvalue 1.
(b) Show that for A scrambling tlim T'x = &(x) on int R” and compute c(x) using
—00
the invariant H (cf. Remarks 8.3.16 (7)).

[35, 63] Consider the variation of the arithmetic-geometric mean given for (x;, x,) €
int R? by

X, + X X, + X
T,(x},X,) = \/x1 L2 T,(xp,x,) = \sz 1 5 =
2 2
(a) Verify that H(x;,X,) = —2——, X, # X, is an invariant for T.

log x,-log x;

(b) Prove tlim T'x = ¢(x) on int IRf and compute c(x) using the invariant H.
—00

Let T be the selfmapping of int R? given by

X, + X X2+ x2
Tx=< 22 3,\/x1—x,\j 12 2>.

(a) Show that the iterates of T converge for each x € int R’ to a value &(x).
(b) What can you say about the value c(x)?
(c) Checkif T is strict, that is

min x; < Tix < max x;
j j

fori =1, 2,3 and not all components of x € int IRf being equal.

Let K be the convex cone R™" and A(, -) be the order function of K (see Defini-

tion 3.1.1).

(a) Verify that the part [A] in K generated by A € K (see Definition 3.2.1) is given
by [A] = {B € K | B; = O equivalent to A; = O forall 1 < i,j < n}.

(b) Let A € [A] be a representative with A;; = 1 for A; > 0. Show for a stochastic
scrambling matrix A that

1-nA(4,A) <c(A) <1-A(4,A).
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(c) Prove that condition (8.4.2) in Theorem 8.4.5 is equivalent to

Y ABW), B()) = oo,

Ied,

where 7, is the set of I € J with B(I) scrambling.

16. [54] Let (x(t)) be the mean process of opinion dynamics under bounded confidence

17.

in one dimension, that is

Xt + 1) = [IGx(@) ™) x;(0)
JEI(ix(t))
for1 <i<nteN,x(0) e RLI(L,x)={1<j<n| I%;—x;| < e} forx = (xq,...,x,) €
R e > 0.
(@) Prove for 2 < n < 4 that convergence to consensus holds if and only if x(0) is
an e-profile, that is for some numbering (i;,...,i,) of (1,...,n)

x;, (0) < -+~ <x; (0) and x; (0)-x,(0)<e for 1<k<n-1.

U1

(b) Find an example for n > 5 that the condition on x(0) in (a) is necessary but
not sufficient for convergence to consensus.

(c) Verify thatforn = 6,¢ = 1 and x(0) = (0, 1, 2, 3, 4, 5) the dynamics reaches for
t = 6 a stable configuration which is not a consensus. (Cf. [41] for the general
case of equally spaced agents.)

Apply Theorem 8.5.3 to the following nonlinear and non-autonomous system
x(t + 1) = Tx(t), Tox = A(t, X)x, A(t, x) stochastic n x n-matrix

fort € N,x € S", S c R? convex.
Letform>1
Tiime1 o o Tx = By (6, X)x

and
n
8yt x) = min Y min{B,,(t, X) Byt X)ji}-
1<ij<n =1

(a) Show that tlirglo x(t) = €(x(0)) under the condition Y ;> 8,,(t, x(t)) = oo for some
m > 1and x(0) € S".
(b) Verify the condition in (a) in case of §,,(t, x) > 6,;,(t). 6,:1' (x) (for some m > 1)
wi’th00
- Yé,()=c0andé, (x) 28" >00nS"
£=0
or

- §,(t)>68">00onNand§, (x) >0 continuous on S".
(Cf. [54, Theorem 1], [65, Theorem 9.5.4].)
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Find an example of multiagent coordination of two agents for each of the follow-

ing cases.

(a) The assumptions for parts (i) and (ii) of Corollary 8.5.9 are satisfied but not
the ones of part (iii).

(b) The assumptions of Theorem 8.5.7 (and of Theorem 8.5.3) are satisfied but not
the assumptions of any of the three parts of Corollary 8.5.9.

(c) The assumptions of Theorem 8.5.7 can be fulfilled for sequences (t,) and (8;)
such that t,,; — t; tends to infinity and f3; tends to zero.

For the swarm model (8.6.5) given by

x(t+ 1) —x(t) =v(t)
vt + 1) = A(Ov(t) with x(0), v(0) € S"

let d(t) = max |x'(t) - X ()l p(t) = max |V'(6) -V (D)
1<ijsn 1<ij<n
where || - || is any norm on R,

Prove for the discrete energy functional

t
E(t)=p(t+ 1)+ Y (1-c(A(s))d(s + 1) - d(s)), teN,
s=0
that it decreases along the trajectory (d(t), p(t)).
(For a swarm model with an energy functional in continuous time see [38, 82].)
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Abelian series, 321
ascending

—domain, 147
—uniformly, 221
—uniformly weakly, 221
asymptotically

—equal, 218

—linked, 218

— proportional, 218

balanced growth, 55, 70
Banach lattice, 108

Banach’s fixed point theorem, 119
basic limit theorem, 152

Bear metric, 85, 88, 89
Beverton-Holt model, 246
—coupled populations, 254
—nonautonomous, 246, 249
biochemical control circuit, 209
Birkhoff-Jentzsch Theorem, 155
bobwhite quail population, 212
Borchardt’s example, 336

Cantor dust

—nonlinear, 252

chain, 200, 264, 271

- of confidence, 271

—of neighbors, 306

—of respect, 270

chaotic dynamics, 4
characteristic equation, 57, 166
Chen’s Theorem, 165

choice of techniques, 12
Coale—Lopez Theorem
—concave, 223

—linear, 217, 224
Cobb-Douglas technology, 69, 245
comparison principle, 58
component, 77

compromise map, 287

— proper, 299

conditional eigenvalue problem, 25
cone, 76

—archimedean, 78

—base, 90

- completely regular, 113
—convex, 76

—lineless, 78

—normal, 108

- pointed, 76

-regular, 113

- symmetrically bounded, 114
cone mapping, 137
confidence

-bounded, 18, 271
—chain, 271
—heterogeneous levels, 308
-level, 18, 271

-set, 18, 271

consensus, 269
—convergence to, 301
contraction, 118

- ¢ -contraction, 118

- property, 260
—generalized, 119
contractive

- (e, 8) -contractive, 119
contractive dynamics, 120
contractive sequence, 122
convex hull, 259, 273
convex set, 21
—complete, 113
cooperative, 205

cost operator, 15

cross ratio, 92
Cucker-Smale model, 328, 330

decomposition, 314, 317
difference equations
—concave, 57

difference equations
—nonlinear, 166
differential equations

- cooperative systems, 205
directed graph, 331
discrete energy functional, 339
Doeblin’s assertion, 304
dominance property, 49
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eigenvalue
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—second, 268, 334
equiproper, 294, 299
ergodic principle, 216
ergodicity

- coefficient, 303
—concave strong, 233
—linear strong, 233

- strong, 217, 220, 230
-weak, 217, 220
extraction, 76
extraction function, 77
extraction grade, 77

Fibonacci equation
—generalized nonlinear, 203
—multiplicative, 204
Fibonacci model
—nonlinear, 8

Fibonacci numbers, 7

fixed point

—globally asymptotically stable, 121
—rotating, 184

—stable, 121

formation

- cluster, 333

—line, 333

-V, 332

forward orbit, 118, 123
function

—cave, 164

- lower semicontinuous, 164
—quasiconcave, 164

Gauss soup, 283, 337
Gleason metric, 85, 88, 89
globally attractive, 129, 131
guided sequence, 101

Harnack inequality, 81, 88

Harnack metric, 85, 88

Hassell-May model
—nonautonomous, 250

Hilbert’s projective metric, 23, 85, 92
hyperbolic geometry, 87

hyperbolic length, 88

ice cream cone, 78, 83, 89, 114
inhomogeneous iteration, 122
insect populations, 199
intercommunication intervals, 309
Internal completeness theorem, 105
internal metric, 290

- balls, 96

—completeness, 101

internal topologies, 108

internally complete, 106

invariant (first integral), 288
invariant metric, 89

Japanese School of Economists, 55
Jentzsch’s Theorem

—classical, 170
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- generalized, 171

joint limit set, 123

Kamke condition, 205
Kobayashi metric, 86, 88-90
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Leontief model

—choice of techniques, 14
—concave, 68

—nonlinear, 163
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—concave, 62

—nonlinear and nonautonomous, 227
limit set, 118, 123

limit set trichotomy, 176

- difference equations, 199
-strong, 171

-weak, 177

local-global stability principle, 129, 130, 183

locally attractive, 129, 131
locally convex vector space, 108
lumped mappings, 123

Markov chain
—inhomogeneous, 216
Markov’s Theorem, 304



matrix

—coherent, 265, 313
—core of, 331

- cut-balanced, 310
—indecomposable, 36, 53
- Markov, 264

— Metzler, 205

—model, 269

- permutation, 279

— primitive, 36, 53

— Sarymsakov, 264
—scrambling, 258

-SIA, 300

- stochastic, 258

- strength of, 301
Maynard Smith model, 254
mean

—abstract, 273, 287
—arithmetic, 282
—arithmetic-geometric, 277
— geometric, 282

- Gini, 336

—harmonic, 282
—Lehmer, 282

—-map, 273

— power, 282

- process, 273
—structure, 273

mean process

- mutual, 316
—reciprocal, 316

metric space
—e-chainable, 130

- connected, 130
—metrically convex, 131
monotone dynamical systems, 210

neighborhood, 279

neighboring system, 279
neighbors, 279, 306
nonexpansive, 119

nonlinear eigenvalue problem, 10
nonlinear integral operators, 166
norm, 108

—monotone, 22,108

normalized mapping, 10
normalized/rescaled, 23

Index

operator

- (k, Ic() property, 141
—@a-concave, 141

—a-sublinear, 141
—e-monocave, 141

- e-positive, 138

- ug-concave, 139

- affine-linear, 138
-ascending, 137

—concave, 21, 153, 161

—cone mapping, 137
—homogeneous of degree d, 32
—homogenized, 33
—indecomposable, 34

- mixed monotone, 164

- monotone, 22, 135
—-normalized/rescaled, 146

- positively homogeneous, 32, 135

— 347

- positively homogeneous of degree d, 141

- primitive, 35

- primitivity index, 41

- proper, 146

—ray-preserving, 32

- stochastic, 152

— strictly monotone, 137

— strictly positive, 137

- strongly monotone, 142
—strongly subhomogeneous, 142
- subhomogeneous, 141
—sublinear/co-radiant, 141
—uniformly concave, 140

- uniformly positive linear, 139
- weakly ascending, 137

- weakly homogeneous, 142
—weakly indecomposable, 34
-zigzag, 139, 153, 161
opinion, 18, 271

—e-profile, 318

- formation under bounded confidence, 271

- fragmentation, 271
— profile, 271

opinion dynamics, 338
order function, 77

part, 84

part metric, 85, 88, 89

part relation, 84

partial order, 76

path stability, 124, 216, 220



348 =— Index

Perron Theorem

—first concave, 25

-second concave, 37
Perron—Frobenius Theorem
—classical, 53

—concave, 28

- concave, sharpened, 48
Perron—Frobenius theory
—concave, 21

Pielou equation, 212

Pituk’s Theorem, 235, 253
Poincaré’s difference system, 235
Poincaré’s Theorem, 235
—nonlinear, 238

population pressure, 1, 246
positive discrete dynamical system, 15
—non-autonomous, 10

power- lipschitzian, 129

price setting, 15

—technical change, 241

principle of the third agent (printh), 306

relative uniform convergence, 106
reproduction function, 2, 247
Riccati model, 253

root function, 141

saturated, 265, 313
scale, 146
sectional set, 143
semi-norm, 108
shrinking

—atx, 275
—atxfort, 275

—fort, 275
— property, 260
simple set, 293

soup
—based on 4, 283
- Gauss, 283
special metric, 90
stability

- absolute, 147, 157
—relative, 147, 153

stable, 121

strict order relation, 136
strongly isolated, 130
superconvex, 115
superposition principle, 212
swarm dynamics, 323
swarm model, 325, 339
symmetrically bounded, 83

Thompson metric or part metric, 85, 88
Thompson’s Theorem, 156

valuation, 319
Verhulst type, 22
Vicsek’s model, 322

weak ascending domain, 156

weak ergodicity, 124, 216

weakly ergodic, 217

Wolfowitz property (W-property), 296
Wolfowitz Theorem

- extension of, 300

- generalized, 297

—original, 300
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