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Preface

Positive dynamical systems come into playwhen relevant variables of a system take on
values which are nonnegative in a natural way. This is the case, for example, in fields
as biology, demography and economics, where the levels of populations or prices of
goods are positive. Positivity comes in also if the formation of averages by weighted
means is relevant since weights, for example probabilities, are not negative. This is
the case in quite diverse fields ranging from electrical engineering over physics and
computer science to sociology. Thereby averaging takes place with respect to signals
in a sensor network or in a swarm (of birds or robots) or with respect to velocities
of particles or the opinions of people. In the fields mentioned the dynamics is often
modeled by difference equations which means that time is treated as discrete. Thus,
in reality one meets a huge variety of positive dynamical systems in discrete time.

In many cases these systems can be captured by a linear mapping given by a non-
negative matrix. The dynamics (in discrete time) then is given by the powers of the
matrix or, equivalently, by the iterates of the linear mapping which maps the positive
orthant into itself. A powerful tool then is the Perron–Frobenius Theory of nonnega-
tive matrices (including the asymptotic behavior of powers of those matrices) which
has been successful since its inception by O. Perron and G. Frobenius over about hun-
dred years ago. Concerning theory as well as applications there are two insufficient
aspects of Perron–Frobenius Theory which later on drove this theory into new direc-
tions. The first aspect is that this theory is not just about nonnegative matrices but
applies happily also to certain matrices with negative entries. This means that the
theory should be understood as dealing with linear selfmappings of convex cones
in finite dimensions not just of the standard cone, the positive orthant. The second
aspect is that even simple positive dynamical systems are not linear. Thus, what is
needed is an extension of classical Perron–Frobenius Theory to nonlinear selfmap-
pings of convex cones in finite dimensions. Moreover, with respect to theory as well
as applications, such an extension is needed also in infinite dimensions. Since classi-
cal Perron–Frobenius Theory has already so many applications one can imagine the
great variety of applications such an extension to nonlinear selfmappings in infinite
dimensions will have.

It is the aim of the present book to provide a systematic, rigorous and self–
contained treatment of positive dynamical systems based on the analysis of the it-
erations of nonlinear selfmappings of a convex cone in some real vector space. To
pursue this task, help comes from a beautiful approach developed for the linear case
by G. Birkhoff considering Jentzsch’s Theorem in infinite dimensions and, indepen-
dently, by H. Samelson considering Perron–Frobenius Theory in finite dimensions.
The crucial point of this approach is the translation of a strong positivity property of
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Preface | vii

the linear mapping into a contractivity property with respect to some metric internal
to the convex cone. This metric has been used long before by D. Hilbert within the
completely different area of the foundations of geometry and is called Hilbert’s pro-
jective metric (a quasi–metric, actually). The extension of this approach, also called
the Birkhoff program, to nonlinear selfmappings of convex cones is a cornerstone of
the present book. As it turns out the investigation of the nonlinearity is made easier
by having it based on a convex cone and its analysis. Since the convex cone reflects
the positivity of the system one might say that positivity helps to tame nonlinearity.
Many beautiful results are available which are impossible without positivity.

The following paragraphs sketch briefly the content of each of the eight chapters
of the book.

Chapter 1motivates the study of positive dynamical systems (in discrete time) by
means of examples from biology and economics. As for biology a nonlinear exten-
sion of the classical Leslie model used in population dynamics and demography is
presented by taking population pressure into account. Considering economics, for
the likewise classical Leontief model of commodity production a nonlinear extension
is treated which captures the choice of techniques. There are much more examples
of nonlinear positive dynamical systems. The example of opinion dynamics under
bounded confidence has recently attracted much attention and will be investigated
in the last chapter of the book.

Chapter 2 on “Concave Perron–Frobenius Theory” presents an extension of classi-
cal Perron–Frobenius Theory from linear to concavemappings (including linear ones).
In theproofsHilbert’s projectivemetricmakes its first appearance. Thepoint thereby is
that for thismetric concavemappings are contractions and the interior of the standard
cone is complete. By this Perron–Frobenius theorems can be proved using Banach’s
contraction mapping principle. Though only a particular form of nonlinearity con-
cavity covers the nonlinearities in the models of Leslie and Leontief. Whereas in later
chaptersmore general nonlinearities will be tackled on, this chapter concentrates just
on concave mappings since for these a variety of results is possible comparable to
those of classical Perron–Frobenius Theory. It should be noted, however, that even
concave selfmappings of the standard cone in finite dimensions exhibit already spec-
tral properties in sharp contrast to the linear case in that there may be infinitely many
eigenvalues.

Whereas in the first two chapters positivity is restricted to the standard cone in
finite dimensions, theory aswell as applications in later chapters requiremore general
convex cones in infinite dimensions.

Chapter 3 on “Internal metrics on convex cones” treats general convex cones in
topological vector spaces with a focus on internal metrics. The latter are (quasi–) met-
rics solely determined by the cone’s convex structure. Hilbert’s projective metric and
the Thompson metric or part metric are the most relevant internal metrics but there
are muchmore. Besides certain geometrical properties of internal metrics the chapter
concentrates on criteria for a convex cone to be complete for an internal metric. For
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viii | Preface

later use the topology of the vector space is related to the one induced by an inter-
nal metric and criteria for internal completeness are obtained in terms of the vector
space topology. A particular case is the result obtained first by G. Birkhoff that the
positive cone of a Banach lattice – as well as its interior – are complete for Hilbert’s
projectivemetric. Extending themethod applied in Chapter 2 for finite dimensions, by
Chapter 3 selfmappings of a convex cone can be looked at as selfmappings of a com-
plete metric space. Since later on contractivity with respect to internal metrics will
play a role, Chapter 4 on “Contractive dynamics on metric spaces” investigates var-
ious types of contractivity in general metric spaces. Conditions are specified which
guarantee pointwise convergence of the iterates of a selfmapping to a fixed point. An
important principle states that this global property applies already if it holds locally
in case of power–lipschitzianmappings (including nonexpansivemappings). For later
applications to nonautonomous positive systems the composition of infinitely many
selfmappings and its asymptotic behaviour is analyzed.

Both, Chapter 3 and Chapter 4 supply in a general setting tools needed in subse-
quent chapters. Beside this, both chapters present known and new results which are
interesting in itself.

Chapter 5on“Ascendingdynamics in convex conesof infinitedimension”presents
a far–reaching extension of Chapter 2 to convex cones in infinite dimensions and cor-
responding selfmappings including concave ones. An ascending operator is, roughly
speaking, a selfmapping of a convex cone, the values ofwhich, on a subset of the cone,
increase with respect to the cone’s ordering on vectors as well as with respect to the
common order on positive scalars. It is an important feature of ascending operators
to be positive without being necessarily monotone.

In the linear case the uniformly positive linear operators introduced byG. Birkhoff
are examples. Nonlinear examples are the u0–concave operators studied by M. Kras-
noselskii and his collaborators. Whereas these mappings need to be monotone, this
is, however, not the case for ascending operators in general. Using Hilbert’s projective
metric for ascending operators relative stability is proven, meaning the iterates of the
normalized operators do converge to an eigenvector. Using the part metric for weakly
ascending operators, absolute stability is shown that is the iterates converge to a fixed
point. Applications concern nonlinear difference equations and a nonlinear version
of Jentzsch’s Theorem on integral operators, including an approximation algorithm to
compute the unique solution.

Chapter 6 on “Limit set trichotomy” investigates a fundamental phenomenon of
positive dynamical systems which means that either all orbits tend to infinity or all
orbits tend to zero or all orbits tend to a fixed point in the interior of the cone. Vari-
ous conditions for this phenomenon to happen are specified. Limit set trichotomy can
be used in many ways, it guarantees, for example, the existence of a globally stable
fixed point in the interior if there exists an orbit positively bounded from below and
above. For the case of differentiable selfmappings in finite dimensions easy to check
conditions for limit set trichotomy are given. An application is to nonlinear difference
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Preface | ix

equations including a generalized nonlinear Fibonacci equation. Another application
considers cooperative systems of differential equationswith a biochemical control cir-
cuit as a particular example.

Chapter 7on“Nonautonomouspositive systems”dealswith the asymptotic behav-
ior of compositions of infinitely many selfmappings of a convex cone. Various kinds
of behaviour as path stability, asymptotic proportionality, weak and strong ergodicity
are analyzed. The result on concaveweak ergodicity is an extension of the famous (lin-
ear) Coale–Lopez Theorem in demography. Another nonlinear extension concerns the
classical strong ergodicity theorem for nonnegativematrices. Furthermore, a beautiful
theorem of H. Poincaré on nonautonomous linear difference equations is extended to
include nonlinear difference equations. Also, the nonlinear versions of the models of
Leslie and Leontief introduced in the first chapter are investigated for survival reates
dependent on time and for time–dependent technical change, respectively. Finally,
for populations being under enforcement from the environment conditions on popu-
lation pressure are given which still yield path stability.

The last and longest chapter, Chapter 8, is on the “Dynamics of interaction: Opin-
ions,meanmaps,multi–agent coordination, and swarms”. It is the aim of this chapter
to develop a systematic and rigorous analysis for the dynamics of several fascinating
kinds of interaction. Such interactions have been addressed recently in a widespread
and fastly growing literature by researchers from quite different fields which range
from electrical engineering over physics and computer science to sociology and eco-
nomics. The leading question thereby asks under what conditions a group of agents,
being it roboters or humans or other kinds of animals, is able to coordinate themselve
to reach a consensus. Mathematically, the latter means for a dynamical system with
several components whether these converge all to the same state. In its most simple
case one considers a nonnegative matrix with all rows summing up to one and asks
for conditions under which the powers of the matrix converge to a matrix having all
its rows equal. The answer in this special case is that this happens precisely if the ma-
trix has a power which is scrambling. This is (a sharpened version of) the well–known
Basic Limit Theorem forMarkov Chains. Already simple cases of interaction, however,
are nonlinear (or time–variant) as for the model of opinion dynamics under bounded
confidence (also known as Hegselmann–Krausemodel in the literature) which has at-
tracted many researchers in recent years. A nonlinear analogue of a (row–) stochastic
matrix is ameanmap. Concerning time–variance one considers a sequence of stochas-
tic matrices. Both cases lead to positive dynamical systems as considered in previous
chapters. Facing the particular type of convergence to consensus tools adapted to that
are developed in Chapter 8. In case of time–variance these are tools to handle infinite
products of stochastic matrices. What is needed are conditions on the structure and
intensity of interaction which make the infinite product convergent to a matrix with
equal rows. An often used tool, the theorem of Wolfowitz, is generalized. The chapter
concludes with an application to the dynamics of swarms of birds. The recently much
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x | Preface

discussed Cucker–Smale model is treated and a newmodel of swarming is developed
where birds are forming swarms under some weaker conditions on interaction.

Each chapter is subdivided into sections thematerial of which is illustrated by ex-
amples and contains exercises ranging from simple verifications over additional top-
ics to open problems. Remarks comment on results obtained and provide links to the
literature. In each chapter results, examples, remarks are consecutively numbered by
a.b.c where a refers to the chapter, b to the section and c to the particular item. Each
chapter appended is a bibliography specific to it. A list of notations and an index con-
clude the book.

The book is directed to researchers from various disciplines and graduate stu-
dents, too, who are interested in positive dynamical systems.

The book is self–contained and organized in a manner such that its material can
also be used in courses and seminars. Chapters 1 and 2 require only a basic knowledge
in linear algebra and analysis and could be used for an introductory course in nonlin-
ear Perron–Frobenius Theory including applications. Chapters 3, 4, and 5 could serve
as material in a course or seminar for graduate students and require some familiar-
ity with fundamental concepts in topology and functional analysis. The same applies
to Chapters 6 and 7 which could be used as material in an advanced course. The last
Chapter 8 can be read independently of the previous ones and could serve as an intro-
duction into recent applications of positive dynamical systems. The fascinating topics
are suitable for graduate students to work on, analytically as well as by doing com-
puter simulations.

This book grew out of several courses and seminars I held over the years at the
University of Bremen. It was a great experience to share with the students the enthu-
siasm for a field which is just in the beginning. I like to thank all the students for their
contributions and I want to mention in particular Tim Nesemann and Jan Lorenz. The
reader will consult the references given in the book to their work and that of other stu-
dents as well as to the work of researchers I enjoyed to write joint papers with. Here I
like to thank Christian Bidard, Rainer Hegselmann, Diederich Hinrichsen, Takao Fu-
jimoto, Tim Nesemann, Roger Nussbaum, Mihály Pituk, Peter Ranft, Dietrich Weller.

Furthermore, I want to thank Birgit Feddersen from the Department of Mathemat-
ics for her experienced and nice translation of the manuscript into LaTex, including
the figures.

For many careful and helpful comments I have to thank the three anonymous re-
viewers of the manuscript.

Finally, I want to thank the publisher De Gruyter and in particular Friederike Ditt-
berner and Silke Hutt, who have been most helpful in the process of publication.

The book I dedicate tomywife Carola and to our sonDaniel who stayed so friendly
to someone who lived with a desk for days, months and years.

Bremen, November 2014 Ulrich Krause
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Notation
ℕ = {0, 1, 2, 3 . . .}ℝ field of real numbersℝ+ = {x ∈ ℝ|x ≥ 0}ℝn = {x = (x1, . . . , xn)|xi ∈ ℝ, 1 ≤ i ≤ n}ℝn
+ = {x = (x1, . . . , xn)|xi ∈ ℝ+, 1 ≤ i ≤ n} positive orthant

intℝn
+ = {x ∈ ℝn

+ | xi > 0, 1 ≤ i ≤ n}ℝ+x = {rx | r > 0} ray through x ∈ ℝn

|x| = (|x1|, |x2|, . . . , |xn|) absolute value of x = (x1, . . . , xn) ∈ ℝn

T̃x normalized/rescaled operator, 25
G(T), graph associated to T, 42, 151
λ (x, y) order function/extraction grade for cones, 77
μ(x, y), 77
xCy, x ∼ y component, part relation, 84
d(x, y) projective Hilbert metric, 85
p(x, y) Thompson metric or part metric, 85
h(x, y) Harnack metric, 85
g(x, y) Gleason metric, 85
b(x, y) Bear metric, 85
k(x, y) Kobayashi metric, 86
β (x, y) order function for convex sets, 91
α (x, y), 91[x, y] interval, 95
Bm(x, r) closed ball for internal metricm, 95
C(T) space of continuous functions on T, 99‖ | ⋅‖ | sup–inf norm, 99
ω (x) (omega) limit set, 118
ωs(x) nonautonomous (omega) limit set, 123

int K =
∘
K interior of cone K, 142

x < y strict order relation for y − x ∈ ∘
K, 142

D(T) ascending domain of T, 147
W(T) weak ascending domain of T, 156
N(P) set of nonexpansive selfmappings on part P, 179
c(T) contraction constant of T for part metric, 188
JT(x) Jacobian of T at x, 200
δ (T) 200
F(t, x) cooperative system of differential equations, 204
ΔM diameter ofM, 259
c(A) scrambling factor of matrix A, 259
s(M) 264
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Notation | xv

I(i, x) confidence set, 271
diagSn diagonal of Sn, 275
c̄(x) consensus, 275
Ṡn complement of diagonal, 275
N(i, t) neighbors of i at t, 279
U(i, t) neighborhood of i at t, 279
M(t, s)matrix product, 291
ρA(x) 293
B(I)matrix product, 294
Sk(M) 297
μ(A) strength of matrix A, 301
λ (A), δ (A), τ (A) coefficients of ergodicity, 303
M(i) smallest saturated set, 314
v valuation, 319
T set of all mean maps, 335
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1 How positive discrete dynamical systems do arise

1.1 Non-linear population dynamics in one dimension

Consider a population of individuals, which could be plants, animals or human be-
ings. living in a fixed environment. In the course of time the number of individuals
may increase or decrease or stay constant. Let p(t) denote the number of individuals
living at time t with t being measured in discrete steps like days, months or years that
is t ∈ ℕ: = {0, 1, 2, 3, . . . , }. The growth rate of the population at time t is by definition

g(t) = p(t + 1) − p(t)
p(t) . (1.1.1)

Of course, 0 ≤ p(t) and −1 ≤ g(t).
Let us first see what happens if we assume the growth rate to be constant over

time, i.e., g(t) = g for all t. The dynamics of the population is then given by

p(t + 1) = (1 + g)p(t), t ∈ ℕ, (1.1.2)

where p(t) ∈ ℕ and 0 ≤ 1 + g. The solution of the difference equation 1.1.2 is easily
obtained by iteration as

p(t) = (1 + g)tp(0) for all t ∈ ℕ. (1.1.3)

From this one concludes that the dynamic behavior of the population must be of one
of the following three types:
– If g > 0 (and p(0) > 0) then there holds exponential growth without limits, i.e.

lim
t→∞

p(t) =∞.
– If g < 0 then the population decreases to zero, i.e. lim

t→∞
p(t) = 0.

– If g = 0 then the population stays constant, i.e. p(t) = p(0) for all t.
In particular, it is impossible for the population to approach in the long run a finite
number which is (strictly) positive and different from the initial population level. Al-
though a population can show a behavior of the above types for a while it is very un-
realistic that one single type will last forever. The unrealistic dynamic behavior in this
model stems, of course, from the assumption that the growth rate is the same all of
the time. (By the way, the same thing happens if we choose to model in continuous
time instead in discrete time, obtaining a differential equation instead of difference
equation (1.1.2). There are many reasons, discussed in detail in the biological litera-
ture for the growth rate not being constant (Edelstein–Keshet [7], Hoppensteadt [14],
Murray [24], Pielou [27], Pollard [28]). Among others, the growth rate will depend on
the actual level of population p(t) due to population pressure. The latter means that
by limitations in food and living space the growth rate will decrease if the population
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2 | 1 How positive discrete dynamical systems do arise

level is increasing. Therefore our model (1.1.2) has to be replaced by a model of the
type

p(t + 1) = f (p(t)), t ∈ ℕ, (1.1.4)

where f : ℝ+ → ℝ+ is the so called reproduction function (or curve).
Since the growth rate is, according to (1.1.1), givenby f (p(t))

p(t) −1, populationpressure
means that

f (x)
x

is (strictly) decreasing in x (for x > 0). (1.1.5)

Equation (1.1.4) togetherwith condition (1.1.5) constitutes a positive discrete dynam-
ical system in one dimension. An equation as (1.1.4) is called a difference equation
of first order. (For difference equations see Elaydi [8], Kocic and Ladas [15].) The rele-
vant magnitude p(t) is not only a (real) number but a positive number (including 0).
Furthermore, the ’law of motion’ f maps positive numbers into positive numbers and
satisfies a condition (1.1.5) which also employs the ordering relation≤ of real numbers.
The dynamics of (1.1.4) is given by the iterates f t = f ∘ . . . ∘ f (t-times) of mapping f ,
namely

p(t) = f t(p(0)) for all t ∈ ℕ. (1.1.6)

In contrast to (1.1.3), however, it is not easy to find out what types of dynamic behavior
are concealed in equation (1.1.6). Actually, depending on the particular function f , it
might be very difficult to determine the dynamic behavior for (1.1.6) which even for
simple reproduction functions can be very complicated.

Let us discuss two examples on the extreme, whereas the general equation (1.1.4)
will be taken up again in a later chapter. Of course, our ealier equation (1.1.2) is a spe-
cial case of (1.1.4), namely the linear case f (x) = (1 + g)x. In taking care of population
pressure, however, we have to turn to non-linear selfmappings f ofℝ+. An example of
such a mapping is given by the reproduction function

f (x) = ρx
x + K

(1.1.7)

discussed by biologists and going back to the early mathematical biologist P.F. Ver-
hulst (Edelstein–Keshet [7], Pielou [27]). The function f , which obviously satisfies con-
dition (1.1.5), depends on two parameters, where ρ > 0 is the maximal possible size of
the population and where K > 0 is a measure for the strength of the populaton pres-
sure. Of special interest is a possible equilibrium population, measuring a population
level p∗ which does not change through time. In spite of (1.1.4) this amounts to

p∗ = f (p∗) = ρp∗

p∗ + K
,

which admits two solutions p∗ = 0 and p∗ = ρ −K, the latter being meaningful only if
ρ ≥ K. Themainquestion considering thedynamic behavior iswhether the systemwill
approach an equilibrium, provided there exists one. In one dimension often a graphic

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:17 PM



1.1 Non-linear population dynamics in one dimension | 3

procedure may help which is called graphic iteration or cobwebbing and which, in our
particular example, goes as follows:
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Fig. 1.1. Graphic iteration for f (x) = ρx
x+K .

This graphic iteration shows that in case of ρ > K the iterates f t(x), for x > 0, converge
to the equilibrium ρ − K for t → ∞. In case of ρ ≤ K, the reproduction curve is be-
low the 45∘ line and graphic iteration then shows that f t(x) converges to 0 for t →∞.
(Of course, for x = p(0) = 0 the population stays at 0 all the time.) In any case, the
population level p(t) approaches an equilibrium if t tends to infinity. Contrary to the
constant growth case we now observe the possiblity that the population approaches
a (strictly) positive equilibrium. Since such a graphical method is only heuristic and
not fully convincing (not to think of higher dimensions), one should be able to demon-
strate the above observations in an analytic manner. For the case ρ > K this can be
done as follows. Since f (x) = ρx(K + x)−1 = ρ(Kx + 1)−1 the function f is increasing.
Hence for p∗ = ρ − K :

0 ≤ x ≤ p∗ ⇒ ρ (K + x)−1 ≥ 1 ⇒ x ≤ f (x) ≤ f (p∗) = p∗.
By iterating we get f n(x) ≤ f n+1(x) ≤ p∗. As an increasing sequence which is

bounded from above the sequence (f n(x))n≥0 must converge to some q ∈ ℝ+. By conti-
nuity of f , f (q) = q and q = p∗ if x > 0. Thus,

lim
n→∞

f n(x) = p∗ for all 0 < x ≤ p∗.
Similarly,

p∗ ≤ x ⇒ ρ (K + x)−1 ≤ 1 ⇒ p∗ = f (p∗) ≤ f (x) ≤ x.
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4 | 1 How positive discrete dynamical systems do arise

By iteration p∗ ≤ f n+1(x) ≤ f n(x) and the sequence (f n(x))n≥0 is decreasing and
bounded from below. As above, this implies lim

n→∞
f n(x) = p∗ for all p∗ ≤ x. For the

population level, we, therefore, obtain by using (1.1.6)

lim
t→∞

p(t) = ρ − K
if there is any initial population at all, i.e. p(0) > 0.

The reproduction function (1.1.7) discussed is just one possibility to model population
pressure, there are many others. Another reproduction function proposed for popu-
lation pressure models the decreasing growth rate by “ subtraction”, that is f (x)

x =
ρ (P − x)+, where ρ > 0, P > 0 are parameters, P being a maximal possible population
level and where r+ = max{r, 0} for any real number r. Note that f (x)

x = ρ (K + x)−1 as in
(1.1.7) models the decreasing growth rate by “division”. In other words, consider the
model

p(t + 1) = f (p(t)) = ρp(t)(P − p(t))+. (1.1.8)

Introducing x(t) = p(t)
P we obtain

x(t + 1) = ax(t)(1 − x(t)), (1.1.9)

where a = ρP and x(t) is in the unit interval [0, 1] for all t provided 0 ≤ a ≤ 4. Equa-
tion (1.1.9) is the famous logistic difference equation which is known to generate for
certain values of parameter a very complicated dynamics dubbed chaotic dynamics
(May [22], Peitgen, Jürgens, and Saupe [26], Zaslavskǐı [35]). An impression of that dy-
namics can be obtained by doing graphic iteration:

0 x(0) 1
ℝ+

ℝ+

etc.

�
�

�
�

��

�
�

��

�
�

��

�
�

��

�
�

�
�

��

�
�

�

x∗

45∘

Fig. 1.2. Graphic iteration for the logistic difference equation.
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1.1 Non-linear population dynamics in one dimension | 5

For this model there exists a unique (strictly) positive equilibrium x∗ = a−1
a (for

a > 1) but x(t), and hence p(t) = Px(t), does for certain values of the parameter a
not approach the equilibrium x∗ or p∗ = Px∗, respectively. The population model un-
derlying the logistic difference equation has been sometimes also attributed to Ver-
hulst. It seems, however, that Verhulst used a logistic differential equation, namely
dp(t)
dt = ρp(t)(P − p(t)), the solution of which approaches P for t → ∞ for all possible

values ρ > 0, P > 0, in contrast to what happens for the logistic difference equation.
(See Exercises to 1.1, Problem 4.)

Although the models (1.1.7) and (1.1.8) both picture population pressure the resulting
dynamics are completely different – the kind of modeling does matter. (For various
dynamic models see Beltrami [1], Farina and Rinaldi [9], Krause and Nesemann [18],
Luenberger [21], Sandefur [30].) Equation (1.1.8) is a rather extreme case of modeling
negative growth rates. It has been argued by biologists that a reproduction function

f (x) = λ x(1 + ax)−b with parameters λ , a, b > 0 (1.1.10)

gives an empirical description of density limited population growth. (Edelstein–
Keshet [7]; Hassel [12]; see Cull [4] for a mathematical investigation of one dimen-
sional models admitting negative growth rates.) Consider as a special case of (1.1.10)
the function

f (x) = 5x(1 + x)−2. (1.1.11)

This function has a unique positive equilibrium x∗ = √5−1. In contrast to the logistic
model, this reproduction function tends smoothly to 0 for population levels above the
equilibrium level.

0 1 x∗

f

x

Fig. 1.3. Density limited population growth.

It turns out that for this model lim
t→∞

p(t) = √5 − 1 for all p(0) > 0. In case the repro-
duction function is differentiable the equation (1.1.5) expressing population pressure
amounts to

xf (x) < f (x) for all x > 0. (1.1.12)
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6 | 1 How positive discrete dynamical systems do arise

In a later section (Section 5.3, Exercise 7 (d)) wewill see that if there holds the stronger
condition

x | f (x) |< f (x) for all x > 0 (1.1.13)

and if there exists a (strictly) positive equilibrium p∗ then we must have lim
t→∞

p(t) = p∗

for all p(0) > 0. In example (1.1.11) we have that

x | f (x) |= 5x | 1 − x | (1 + x)−3 < 5x(1 + x)−2 = f (x) for all x > 0,
and, hence, condition (1.1.13) is satisfied. This condition is also satisfied for the func-
tion given by (1.1.7) but it is not satisfied for the logistic model (1.1.8). For the latter,
(1.1.12) does hold but not (1.1.13) (where, of course, x is restricted to 0 < x ≤ 1).

Althoughmuchmore can be said about population pressure in one dimensionwe stop
its discussion for turning to multidimensional situations which are more realistic by
taking the age structure of populations into account.

Exercises

1. Prove for the reproduction function given by equation (1.1.7) that

lim
t→∞

p(t) = 0 for all x ≥ 0,
provided 0 ≤ ρ ≤ K.

2. Show for the selfmapping of ℝ+ given by f (x) = √x
lim
t→∞

f t(x) = 1 for all x > 0.
3. Find for the logistic difference equation (1.1.9) with a = 4 a 2-cycle that is some

x ∈ [0, 1] such that f 2(x) = x but f (x) ̸= x.

4. Solve the logistic differential equation

dp(t)
dt

= ρp(t)(P − p(t)), 0 ≤ p(t) ≤ P

and show that lim
t→∞

p(t) = P for all p(0) > 0.

5. Find a direct argument showing for the reproduction function f (x) = 5x(1 + x)−2
that lim

t→∞
p(t) = √5 − 1 for all p(0) > 0.

6. By using condition (1.1.13) prove that for the logistic equation (1.1.9) lim
t→∞

x(t) exists
for all x(0) ∈ [0, 23 ] if the value of the parameter a lies between 0 and 8

3 .
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1.2 The density dependent Leslie model | 7

1.2 The density dependent Leslie model

The earliest population model at all is the one formulated by Leonardo di Pisa, better
known as Fibonacci, in the early 13th century about the reproduction of rabbits. Sup-
pose rabbits produce in pairs in such a way that any pair being at least two months
old produces each month a new pair without any rabbit dying. Measuring time t ∈ ℕ
in number of months and denoting by p(t) the number of pairs at time t we then have
that

p(t + 2) = p(t + 1) + p(t) for all t ∈ ℕ. (1.2.1)

Assuming p(0) = p(1) = 1, that is starting with one (newborn) pair of rabbits, this
linear difference equation of second order generates the famous Fibonacci numbers
1, 1, 2, 3, 5, 8, 13 etc. Setting x1(t) = p(t), x2(t) = p(t + 1) equation (1.2.1) may be
rewritten as x1(t + 1) = x2(t), x2(t + 1) = p(t + 2) = p(t + 1) + p(t) = x1(t) + x2(t) or,
in matrix notation,

x(t + 1) = [0 1
1 1

] x(t) for all t ≥ 0, (1.2.2)

where x(t) = (x1(t), x2(t)) ∈ ℝ2
+, x(0) = (1, 1) and F = [ 0 1

1 1 ] is the Fibonacci matrix.
(Vectors x ∈ ℝn will always be understood to be column vectors; a row vector will be
denoted by the transposed vector x. ℝn

+ is the positive orthant in ℝn, ℝn
+ = {x ∈ ℝn |

x = (x1, . . . , xn), 0 ≤ xi for 1 ≤ i ≤ n}.)
This two-dimensional representation reflects the underlying age structure, that

is, x1(t) is the number of young rabbits (in pairs) which are less than 2 months old
and x2(t) is the number of old rabbits (in pairs) which are at least 2 months old. The
equation x1(t + 1) = x2(t) reflects the assumption that every old pair produces a new
pair one month later and x2(t + 1) = x1(t) + x2(t) means that old pairs next month
stem from old or young pairs this month. By iteration, equation (1.2.2) has as solution

x(t) = Ftx(0), t ∈ ℕ,
which is uniquely determined by x(0). To know the solution for arbitrary x(0)means
to know all the matrix powers Ft. Though the model is linear a constant growth rate g
as in (1.1.2), i.e., p(t + 1) = (1 + g) p(t) for all t, is not always possible. For, this would
mean x(t + 1) = (1 + g)x(t) and, hence, Fx(0) = λ x(0) with λ = 1 + g. But x(0) =(1, 1) is not an eigenvector of the matrix F. By choosing, however, initial vectors x(0)
which are eigenvectors of F one obtains two possibilities for constant growth. Matrix
F has as its eigenvalues λ1 = 1+√5

2 and λ2 = 1−√5
2 with corresponding eigenvectors

x1 = (1, λ1) and x2 = (1, λ2), respectively. An arbitrary given initial vector x(0) = (a, b)
we can obtain as a linear combination of the two linearly independent vectors x1 and
x2, namely

x(0) = b − aλ2√5 x1 + aλ1 − b√5 x2.
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8 | 1 How positive discrete dynamical systems do arise

For the uniquely determined solution starting in x(0) this implies

x(t) = Ftx(0) = b − aλ2√5 Ftx1 + aλ1 − b√5 Ftx2

= b − aλ2√5 λ t
1x

1 + aλ1 − b√5 λ t
2x

2.
For the components of x(t) this means

x1(t) = (√5)−1(aλ1λ2 (λ t−1
2 − λ t−1

1 ) + b(λ t
1 − λ t

2))
x2(t) = (√5)−1(aλ1λ2 (λ t

2 − λ t
1) + b(λ t+1

1 − λ t+1
2 )).

On the other hand, x(t) = Ftx(0), and by using λ1λ2 = −1we conclude that for all t ≥ 1

Ft = (√5)−1 [[[
λ t−1
1 − λ t−1

2 λ t
1 − λ t

2

λ t
1 − λ t

2 λ t+1
1 − λ t+1

2

]]]
.

Thus, we have determined the powers of the Fibonacci matrix F in terms of the eigen-
values λ1, λ2 of F. Hence, we can compute the solution x(t) for any given x(0), which
in case of the Fibonacci numbers yields

p(t) = (√5)−1(λ t−1
1 + λ t

1 − (λ t−1
2 + λ t

2))
= (√5)−1(λ t+1

1 − λ t+1
2 )

that is the Binet formula

p(t) = (√5)−1((1 + √5
2

)t+1 − (1 − √5
2

)t+1) for t ∈ ℕ. (1.2.3)

This formula shows, as one would expect, that the number of rabbit pairs tends to
infinity for t → ∞ but it also shows that the ratio of old rabbits to young rabbits, i.e.,
x2(t)
x1(t)

= p(t+1)
p(t) stabilizes to the golden mean 1+√5

2 .
As has been argued in the previous section, population pressure should be taken

into account leading thereby to a non-linear model.
Hence instead of (1.2.1) we should better consider anon-linear Fibonaccimodel,

as, e.g.,
p(t + 2) = √p(t + 1) + √p(t) for t ∈ ℕ. (1.2.4)

In this model the survival rates are no longer constantly equal to 1 but decrease by
population pressurewith an increase in the population size. The non-linear difference
equation of second order (1.2.4) cannot easily be handled by graphic iteration. For the
corresponding two-dimensional system equation (1.2.2) has to be replaced by

x(t + 1) = [[[
0 1

(x1(t))− 1
2 (x2(t))− 1

2

]]]
x(t), (1.2.5)
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1.2 The density dependent Leslie model | 9

where the matrix now depends on the state x(t). The matrix analysis done for the Fi-
bonacci matrix is no longer applicable. In a later section we shall show that for the
abovemodel the size of the rabbit populationwill not tend to infinity butwill approach
a positive equilibrium. What has been said can be extended from two age classes to
an arbitrary number of age classes. This more realistic model is known as the Leslie
model and will be described in the following. (For the history and theory of classical
Lesliemodels see Leslie [20], Caswell [3], Hansen [11], Hoppensteadt [14], Pollard [28].)

Consider a population for which n ≥ 1 age classes are to be distinguished and denote
by xi(t) the number of individuals in age class i at period t ∈ ℕ. (Being concerned
with individuals capable of reproduction, the individuals usually will be females or
will be taken in pairs.) All classes are assumed to contribute with certain birth rates to
class 1 representing the youngest group in the population. The members of class iwill
survive with a certain rate to become members of class i + 1 in the next period. Due
to population pressure birth rates bi and survival rates si ( = 1 −mi,mi mortality rate)
depend on the population levels of the various classes. Furthermore, those rates may
depend in addition explicitly on time t. Denoting by x(t) = (x1(t), . . . , xn(t)) ∈ ℝn

+ the
population vector at period t ∈ ℕ, the assumptions made amount to the equations

x1(t + 1) = n∑
i=1

bi(t, x(t))xi(t)
xi+1(t + 1) = si(t, x(t))xi(t) for all 1 ≤ i ≤ n − 2 (1.2.6)

xn(t + 1) = sn−1(t, x(t))xn−1(t) + sn(t, x(t))xn(t).
Here, of course, 0 ≤ bi, si ≤ 1. The last equation in (1.2.6)means thatwith a certain

rate sn members of the oldest group remain when becoming older in this group. If
sn = 1, as in the Fibonacci model, then members of class n will never die. If sn = 0,
as we shall often assume, members of class nwill die out in the next period. In matrix
notation (1.2.6) becomes

x(t + 1) = L(t, x(t))x(t) for t ∈ ℕ, (1.2.7)

where, for x ∈ ℝn
+

L(t, x) =
[[[[[[[[[[[[[[

b1(t, x) b2(t, x) . . . bn−1(t, x) bn(t, x)
s1(t, x) 0 . . . 0 0

0 s2(t, x) . . . 0 0
...

...
...

...

0 0 . . . 0 sn−1(t, x) sn(t, x)

]]]]]]]]]]]]]]

(1.2.8)

denotes the (generalized) Leslie matrix.
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10 | 1 How positive discrete dynamical systems do arise

In case the Leslie matrix L(t, x) does not explicitly depend on time t it is called the
density-dependent Leslie matrix L(x); in case L(t, x) does neither depend on t nor
on x, it is called the constant Leslie matrix

L =

[[[[[[[[[[[[

b1 b2 . . . bn−1 bn
s1 0 . . . 0 0

0 s2 . . . 0 0
...

...
...

...

0 0 . . . 0 sn−1 sn

]]]]]]]]]]]]

.

The Fibonacci matrix is a special case of a constant Leslie matrix, and the non-linear
Fibonacci matrix in (1.2.5) is a special case of a density-dependent Leslie matrix.
The model (1.2.7) is an example of a non-autonomous positive discrete dynamical
system

x(t + 1) = T(t)x(t) for all t ∈ ℕ, x(0) ∈ ℝn
+, (1.2.9)

where the selfmapping T(t) of ℝn
+ is given by the Leslie matrix, T(t)x = L(t, x)x. If

T(t) = T for all t, i.e. T is given by the Leslie matrix L(x), the system (1.2.9) is called au-
tonomous. The dynamical system (1.2.9) is non-linear for a density-dependent Leslie
matrix L(x) and it is linear for a constant Leslie matrix L. The most interesting ques-
tions considering the dynamical system (1.2.9) are if there exists an equilibrium and
whether this is stable or not; more generally, one wants to know the behavior of the
system (1.2.9) for t →∞. As for equilibria in the autonomous case one has to find the
non-trivial fixed points x∗ of T in ℝn

+, i.e. 0 ̸= x∗ ∈ ℝn
+ such that Tx∗ = x∗. As already

shown by the simple (linear) example of Fibonacci’s rabbits such a non-trivial equi-
librium need not exist. In this example, however, there exists for the matrix F = [ 0 1

1 1 ]
an eigenvalue λ1 = 1+√5

2 > 0 with eigenvector x1 = (1, λ1) ∈ ℝ2
+. By Fx

1 = λ1x1 it holds
x(t) = λ t

1x
1 for all t, that is a constant growth solution which may be considered a

generalization of a (stationary) equilibrium; the latter corresponds to an eigenvalue
equal to 1. Hence, it will be important also in the general case to find solutions to the
non-linear eigenvalue problem

Tx∗ = λ ∗x∗ with 0 ̸= x∗ ∈ ℝn
+ and λ

∗ > 0. (1.2.10)

Introducing the normalized mapping

T̃x = Tx‖Tx‖ , (1.2.11)

where ‖z‖ = |z1| + . . . + |zn| denotes the sum-norm on ℝn, the eigenvalue prob-
lem (1.2.10) with a normalized eigenvector, i.e. ‖x∗‖ = 1, can be formulated as
T̃x∗ = x∗, that is as a fixed point problem for the mapping T̃. This normalization
is related to the age structure in our population model. The age structure at time t
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1.2 The density dependent Leslie model | 11

may be described by comparing the number xi(t) of individuals in age class i to the
total population number ‖x(t)‖ = x1(t) + ⋅ ⋅ ⋅ + xn(t), i.e. by yi(t) = xi(t)

‖x(t)‖ . To know
the numbers yi(t) for 1 ≤ i ≤ n is, of course, equivalent to know the ratios xi(t)

xj(t)
for all

1 ≤ i, j ≤ n. As already remarked, in the Fibonacci case lim
t→∞

x2(t)
x1(t)

= λ1, and, hence, for

y(t) = (y1(t), y2(t)) one has that limt→∞
y(t) = y∗ with y∗ = ((1 + λ1)−1, λ1(1 + λ1)−1).

Since y∗ = x1
‖x1‖ it follows from Tx1 = λ1x1 that T̃y∗ = Tx1

‖Tx1‖ = x1
‖x1‖ = y∗. Thus, in the

Fibonacci case there exists a stable equilibrium age structure which, after normaliza-
tion, is the unique (non-trivial) fixed point of T̃. The above convergence to y∗ can be
expressed also by the normalized operator as

lim
t→∞

T̃ty(0) = y∗, y(0) being any initial age structure.
What has been said for the (linear) Fibonacci model can be extended to the Leslie
model with a constant Leslie matrix L. An elegant way of doing this is to employ the
so called Perron–Frobenius theory for non-negative matrices (see Gantmacher [10],
Seneta [32]). But how to handle the density-dependent Lesliemodel? In the next chap-
ter we will develop a concave Perron–Frobenius theory which generalizes many
results of the (linear) Perron–Frobenius theory and which will prove to be useful
in handling non-linear Leslie models. Since in that chapter we will obtain the most
important results of the standard Perron–Frobenius theory as a by-product it is not
required that the reader has some prior knowledge of that theory.

Exercises

1. Determine all eigenvalues and eigenvectors of the Fibonacci matrix [ 0 1
1 1 ].

2. Find by graphic iteration the dynamic behavior of the ratio p(t+1)
p(t) for the Fibonacci

numbers p(t), t ∈ ℕ.
3. Examine the behavior of the powers Lt for t →∞ for the following Leslie matrix

L =
[[[[[[

0 1 1

1 0 0

0 1 1

]]]]]]
.

4. How could themethod of graphic iteration be extended to illustrate the dynamics
of the following non-linear Fibonacci equation

p(t + 2) = 2√p(t + 1) + 4√p(t) ?
5. Find a direct proof showing for the non-linear Fibonacci equation of Exercise 4

that lim
t→∞

p(t) does exist for all p(0) ≥ 0.
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12 | 1 How positive discrete dynamical systems do arise

1.3 Non-linear price dynamics in one dimension

In economic theory sometimes pretty stylized models are analyzed which involve one
single good only. This method was already used by the classical economists in their
cornmodel (cf. Ricardo [29]) and it reappeared later on in theone sector growthmodels
involving one single capital good. Consider the production of one single good, say
corn, by using corn as seed together with labor. Assume the production of one bushel
of corn needs as inputs a bushels of corn and l hours of labor with 0 < a < 1 and 0 < l.
If p is the price per bushel corn and w is the wage for one hour of labor then the cost
of production for one bushel of corn is given by c(p) = ap + lw. Assume also that time
is measured in discrete steps t ∈ ℕ and that the price p(t + 1) for the next period t + 1
is given by the cost of the present period t, that is

p(t + 1) = c(p(t)) = ap(t) + lw. (1.3.1)

To simplify, we assume w to be constant over time and a possible profit to be in-
cluded in w. Starting with an arbitrary initial price p(0), the price p(t) then is given
by

p(t) = ( t−1∑
i=0

ai)lw + atp(0) for t ≥ 1. (1.3.2)

This immediately yields lim
t→∞

p(t) = p∗ with p∗ = (1 − a)−1lw. Thus, in this simple
(affine) linearmodel there exists a unique price equilibrium p∗, defined by p∗ = c(p∗),
and the prices set according to the positive discrete dynamical system (1.3.1) ap-
proach the equilibrium for t → ∞, irrespective of the initial price p(0) ≥ 0. In reality,
however, there is not just one single technique of production available but there are
often several possibilities. In our example, to grow corn one method may require less
corn for seed than anothermethod by doing seedingmore carefully, that is by employ-
ing more labor. A technique being described by a pair (a, l) of inputs, suppose a set of
techniques {(ai, li) | 1 ≤ i ≤ m} is available among which the producer can choose.
Of course, for a given price the producer will choose a technique whichminimizes the
cost of production Our little model, enriched by a choice of techniques then becomes

p(t + 1) = min{aip(t) + liwi | 1 ≤ i ≤ m} (1.3.3)

This model is no longer (affine) linear, but we may try graphic iteration as in Sec-
tion 1.1.
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Fig. 1.4. Choice of techniques.

In the above figure there are three techniques possible and the line starting in liwi rep-
resents the cost of technique i. As is obvious from the figure, depending on the price in-
deed different techniques will be choosen. It may happen that a technique with ai > 1
will be choosen provided thewage cost liwi is low enough. Analytically, since themin-
imum in (1.3.3) is concave in p(t) (the boldfaced curve in the above figure), there will
be a unique equilibrium price p∗ as long as ai < 1 for at least one technique i. Also by
concavity, a similar argument as in section 1.1 shows that lim

t→∞
p(t) = p∗ for all p(0) > 0.

(An explicit formula for p(t) like (1.3.2) is possible but not very transparent.) Concave
cost curves are quite common in economics and, different from the reproduction curve
in population dynamics, the cost c(p)must increase with p. Since the cost function in
(1.3.3) is not differentiable in all points the earlier criterion (1.1.13) cannot be applied
to check the behavior of prices in the long run. Next we turn to the more realistic situ-
ation where more than one good is involved.

Exercises

1. Suppose that a producer has the three techniques (2, 1), (0.8, 3.4) and (0.5, 4) at
his disposal for producing a single good.
(a) Determine forw = 1 the price intervals for each of the above techniques to be

choosen.
(b) Determine the equilibrium price p∗ and show by cobwebbing that lim

t→∞
p(t) =

p∗ for all p(0) ≥ 0.
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14 | 1 How positive discrete dynamical systems do arise

(c) Examine how the choice of techniques and the price equilibrium depend on
the wage rate w.

2. Show analytically for the model given by equation (1.3.3) that under the assump-
tion min

1≤i≤n
ai < 1aprice equilibriump∗ exists and that lim

t→∞
p(t) = p∗ for allp(0) ≥ 0.

3. Explore the generalization of themodel (1.3.3) where aminimumwagew0 is guar-
anteed and where for w ≥ w0 the real wage w

p , instead of the money wage w, is
held constant. That is, let w = w(p) = max{w0, cp} for w0 ≥ 0, c ≥ 0 fixed.
(a) Find the asymptotic behavior of prices p(t) for w0 = 1, c = 1 and techniques

given as in Exercise 1.
(b) Determine all values ofminimumwagew0 and realwage c forwhich theprices

p(t) are converging for t →∞.
(c) Is it possible that for certain values of w0 and c the prices behave periodic?

1.4 The Leontief model with choice of techniques

Consider finitely many producers who are interdependent in that each of them pro-
duces a specific good by means of the goods produced by all the other producers
and by employing (homogeneous) labor. Periodically each producer may set a new
price for his product according to his cost of production which depends possibly on
all prices set by the other producers one period before.

We want to know if there exist equilibrium prices on all markets and, even more
important, whether the process of price setting will lead the producers towards equi-
librium prices. More specifically, denote by {1, . . . , n} the set of producers where any
producer i can be identified with the specific good he is producing. Every producer
may choose a technique within a certain technology set. A technique is described by
a pair (a, l) where a is a vector in ℝn

+ with components aj, 1 ≤ j ≤ n, specifying the
input of good j used for producing one unit of the producers good and where l ≥ 0 is
the labor input required thereby, measured, say, in hours. Let Ai(t) denote the (non-
empty) set of techniques which producer i has at his disposal and which may depend
on time due to technological development. By pi(t) ≥ 0we denote the price of one unit
of good i in period t, by p(t) the price vector with components pi(t) for 1 ≤ i ≤ n and by
wi > 0 the constant money wage per hour paid by producer i. Forced by competition
each producer will produce for a given vector of prices p ∈ ℝn

+ atminimum cost which
is for producer i in period t ∈ ℕ given by

ci(p, t) = inf{pa + wil | (a, l) ∈ Ai(t)}, (1.4.1)

where pa : = ∑n
j=1 pjaj is the inner product.
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1.4 The Leontief model with choice of techniques | 15

From the various rules of price setting one could think of we shall adopt the clas-
sical economists rule of prices driven by cost, that is

pi(t + 1)
pj(t + 1) = ci(p(t), t)

cj(p(t), t) for 1 ≤ i, j ≤ n, t ∈ ℕ.
This rule does not require prices of the next period to be equal to cost of this period

but requires only proportionality, that is p(t + 1) = k(t)c(p(t), t) with a factor k(t) >
0 which may depend on time and where c(p(t), t) is the vector having components
ci(p(t), t). Introducing the cost operator T(t) : ℝn

+ → ℝn
+ by T(t)p = c(p, t)with ci(p, t)

given by (1.4.1) we arrive at the positive discrete dynamical system

p(t + 1) = k(t)T(t)p(t), t ∈ ℕ, p(0) ∈ ℝn
+. (1.4.2)

This system is non-autonomous and non-linear. If the technology sets Ai(t) do not
depend on t, that is if technological development is not taken into account, then there
is just one cost operator T : = T(t) for all t; if in addition k(t) is constant, in particular
if k(t) = 1 for all t, then the system (1.4.2) is autonomous. Disregarding technological
development, the non-linear operator T defined by Tp = c(p) (omitting now variable
t) is concave, namely for 0 ≤ α ≤ 1 and p, q ∈ ℝn

+ we have

ci(αp + (1 − α )q) = inf{α (pa) + (1 − α )(qa) + αwil + (1 − α )wil | (a, l) ∈ Ai}≥ α inf{pa + wil | (a, l) ∈ Ai} + (1 − α ) inf{qa + wil | (a, l) ∈ Ai}≥ αci(p) + (1 − α )ci(q),
and, hence, T(αp + (1 − α )q) ≥ αTp + (1 − α )Tq componentwise, that is T is concave.

Concavity comes in very naturally by taking a choice of techniques into account.
If no choice of techniques is admitted then (in the autonomous case) Ai must con-

sist of one technique (ai, li) only and, hence, the i-th component Ti of T is given by
Tip = ci(p) = pai + wili. Thus, T is an affine-linear mapping given by Tp = Ap + b
where A is the matrix having a1, . . . , an as its rows and b is a column vector with com-
ponents w1l1, . . . ,wnln. In this linear case, matrix A is called the Leontief matrix and
the model of production the Leontief model or the input-output model of produc-
tion. (For linear models of Leontief type or Sraffa type see Cassels [2], Nikaido [25],
Schwartz [31] and, taking choice of techniques into account, Kurz and Salvadori [19],
Woods [34].) A model as the above which combines a Leontief model of production
with a choice of techniques may be calledMorishima model because the dynamics of
such a model has been first analyzed in (Morishima [23]).

In economics it is often more meaningful to consider relative prices instead
of absolute prices. If ‖p‖ = p1 + ⋅ ⋅ ⋅ + pn for p ∈ ℝn

+ then the relative price in
period t is given by q(t) = p(t)‖p(t)‖−1. To know the vector q(t) is equivalent to
know all the ratios pi(t)(pj(t))−1 for 1 ≤ i, j ≤ n. Casting system (1.4.2) in rela-
tive prices amounts to q(t + 1) = k(t)T(t)q(t). Because of ‖q(t + 1)‖ = 1 this implies

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:17 PM



16 | 1 How positive discrete dynamical systems do arise

q(t + 1) = T(t)q(t)(‖T(t)q(t)‖−1). Introducing the normalized cost operator T̃(t) defined
by T̃(t)p : = T(t)p(‖T(t)p‖−1) (provided T(t)p ̸= 0), we obtain the new system

q(t + 1) = T̃(t)q(t), t ∈ ℕ, ‖q(0)‖ = 1. (1.4.3)

This equation describes a non-autonomous and non-linear positive discrete dy-
namical system on the positive unit sphere S = {p ∈ ℝn

+ | ‖p‖ = 1}. (For systems of this
type see Krause [16].) In general, the systems described by (1.4.2) and (1.4.3) respec-
tively, need not be equivalent. The equations, however, model the same system if we
assume a constant real wage instead of a constant money wage wi. Here, a constant
real wage is a basked of goods bi ∈ ℝn

+ such thatwi = pbi (inner product) for the ruling
price vector p. By this change the minimum cost becomes

ci(p, t) = inf{p(a + lbi) | (a, l) ∈ Ai(t)}
and, hence, ci(λ p, t) = λ ci(p, t) for arbitrary scalars λ > 0. This implies T(t)(λ p) =
λT(t)p for λ > 0 and equation (1.4.2) becomes

q(t + 1) = p(t + 1)(‖p(t + 1)‖−1) = k(t)T(t)p(t)(k(t)‖T(t)p(t)‖)−1
= T(t)(p(t)‖p(t)‖−1)(‖T(t)(p(t)‖p(t)‖−1)‖)−1
= T(t)q(t)(‖T(t)q(t)‖−1) = T̃(t)q(t),

which is equation (1.4.3).
From the concave Perron–Frobenius theory which we shall develop in the next

chapter itwill follow for the autonomous case that under certain assumptions, roughly
by assuming producers to be interdependent strongly enough, system (1.4.3) has a
unique equilibrium price vector q∗, i.e. q∗ = T̃q∗, such that lim

t→∞
q(t) = q∗ for all

q(0) ∈ S. This is an important finding because it means that the producers who self-
ishly minimize own costs without being guided by some external central agency are
nevertheless able to find a joint price equilibrium by setting prices according to costs.

Exercises

1. Consider two producers each equipped with two technologies. Suppose producer
1 (producing good 1) can use a technique with a = (0, 1) and l = 1 or a technique
with a = (0.5, 0.5) and l = 1. Similarly, producer 2 (producing good 2) can use a
technique a = (1, 0) and l = 2 or a = (0.1, 0) and l = 1.
Assume further for both producers a given real wage b = (1, 1), that isw = p1 + p2
for prices (p1, p2) given.
(a) Calculate the cost operator T : ℝ2

+ → ℝ2
+ and show that lim

t→∞
Ttp = ∞ for all

p ∈ ℝ2
+, p ̸= 0.
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1.4 The Leontief model with choice of techniques | 17

(b) Show there exists a unique positive equilibrium q∗ in relative prices, i.e. T̃q∗ =
q∗, ‖q∗‖ = 1 (take ‖x‖ = |x1| + |x2|).

(c) Develop an argument demonstrating that relative prices must converge to q∗,
i.e. lim

t→∞
T̃tq = q∗ for all q ∈ ℝ2

+, ‖q‖ = 1.

2. Consider twoproducers equippedwith techniques as in Exercise 1. Different, how-
ever, from 1. assume a variable real wage of the type b = (s, 0) with s ≥ 0, which
means that the real wage is measured in terms of good 1. That is to say, assume for
both producers a wage-price relationship of w = sp1.
(a) Determine the scalar λ > 0 for the equilibrium Tp = λ p in dependence on the

real wage s.
(b) Interprete the relationship between s and λ as a so called wage-profit curve,

that is as a relationship between s and rwhereby r is the uniform rate of profit
given by r = pi−ci(p)

ci(p)
for i = 1, 2.

Determine themaximal possible values for the rate of profit and the realwage,
respectively.

(c) Discuss (a) and (b) above for the case that the real wage is measured in terms
of good 2, that is w = sp2.

(d) What can be said for a varying real wage swith respect to the questions asked
in Exercise 1?

3. Let A be a non-negative n × n-matrix which is productive, i.e. there exists some
x ∈ ℝn

+ such that Ax < x (where < is with respect to all components). Prove that
(a) lim

n→∞
An = 0

and
(b) (I−A)−1 exists and is given by theNeumann series, (I−A)−1 = I + A + A2 + ⋅ ⋅ ⋅

(I the n × n-identity matrix).

4. Let T : ℝn
+ → ℝn

+ be concave and suppose that for some x ∈ ℝn
+ Tx < x and that

for all 0 < 𝜀 ≤ 1 T(𝜀x) ≤ 𝜀Tx. Prove that
(a) lim

t→∞
Tn = 0 (Tn the n-th iterate of T, 0 the zero mapping)

and
(b) S : = ∑∞

n=0 T
n, S : ℝn

+ → ℝn
+ exists and S − S ∘ T = I. (I the identity map onℝn

+.)

5. Find examples of non-(affine-)linear mappings T : ℝ2
+ → ℝ2

+ such that
(a) T satisfies the assumptions of Exercise 4

and

(b) T satisfies in addition S ∘ (I − T) = (I − T) ∘ S = I.
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18 | 1 How positive discrete dynamical systems do arise

1.5 Opinion dynamics under bounded confidence

Consider a group of n experts i = 1, . . . , n who have to assess a certain magnitude
like the world’s wheat production in the year 2030. Each of the experts has his own
expertise but is open to revise it by taking into account expertises by colleagues he
trusts in. This process of revision iterates and the question arises whether the experts
will oscillate in their assessments or run into disagreement or reach a consesus.

Let t ∈ ℕ denote a round of the discussion and let xi(t) the assessment of expert i
in round t. Considering trust among the experts let

{1 ≤ j ≤ n | |xi(t) − xj(t)| ≤ 𝜖}
denote those experts the expert i has trust in where 𝜖 > 0 is a certain confidence level.
Denote this confidence set by I(i, x(t))where x(t) = (x1(t)), . . . , xn(t)) is the collection of
the assessments in round t. Among the many ways to model the iterative formation of
assessments a rather simple one is given by

xi(t + 1) = |I(i, x(t))|−1 ∑
j∈I(i,x(t))

xj(t) for t ∈ ℕ, x(0) ∈ ℝn
+, (1.5.1)

that is, the revised assessment is made by taking the arithmetical mean of those one
trusts in. Instead of an assessment of some (positive) magnitude, xi(t) could be any
opinion as long as it can be measured by a real number.

System (1.5.1) describes opinion dynamics under bounded confidence as it has
been developed in [13] and [17]. This system is a positive dynamical system in dis-
crete time. The positivity lies not so much in the state variables xi(t), which could be
negative, but in the positivity of the weights given to other experts.

The system (1.5.1) is non-linear in the state variables and it is not easy to analyze.
Alternatively, one could put system (1.5.1) as a linear but non-autonomous system. To
see this define a n × n-matrix A(t) with entries aij(t) = |I(i, x(t))|−1 for j ∈ I(i, x(t)) and
aij(t) = 0, otherwise. Then system (1.5.1) is equivalent to

x(t + 1) = A(t)x(t), t ∈ ℕ, x(t) ∈ ℝn
+. (1.5.2)

In later chapters we shall develop methods to handle non-linear as well as non-
autonomous positive dynamical systems. System (1.5.2), however, has the advantage
that A(t) is a (row-) stochastic matrix, that is each row sums up to one. By this meth-
ods especially adapted to stochastic matrices can be used which will be done in full
detail in Chapter 8. Developing methods to treat infinite products of stochastic ma-
trices we will be able in Chapter 8 to answer in particular the questions raised above
considering consensus or disagreement.
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Exercises

1. Examine themodel of opinion dynamics under bounded confidence for n = 2 and
different confidence levels 𝜖1 and 𝜖2 of the two experts.
(a) Show that convergence to consensus holds if and only if |x1(0) − x2(0)| ≤

max{𝜖1, 𝜖2}.
(b) Show that in case of convergence to consensus the latter is reached for a

number of rounds which is given by the smallest natural number above
log2

|x1(0)−x2(0)|
min{𝜖1 ,𝜖2}

.

2. Investigate the system (1.5.1) for n = 3 by computer simulations.
(a) What can be said about the dependence of the dynamics on the initial condi-

tions x(0)?
(b) What can be said about the dependence of the dynamics on the confidence

level 𝜖?
3. Find an example of system (1.5.1) which converges to a consensus which is not the

arithmetic mean of x1(0), . . . , xn(0).
4. Investigate system (1.5.1) for initial conditions given by xi(0) = (i − 1)𝜖, 1 ≤ i ≤ n.

(a) Check small values of n.
(b) Try big values by computer simulations.
(See also Exercise 16 to Chapter 8.)
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2 Concave Perron–Frobenius theory
In this chapterwe develop an extension of the (linear) Perron–Frobenius theorywhich
is applicable to the concave operators encountered in Chapter 1. Nousewill bemade of
classical Perron–Frobenius theory, on the contrary, many results of the latter will turn
out to be special cases of our approach which at the same time provides new proofs
for some classical results.

Concave mappings are attractive in that on the one hand they represent a first
step in capturing non-linear phenomena and on the other hand they still admit some
systematic theory. There is, however, not such a strong tool as it is linear algebra for
linear mappings. Actually, whereas a linear mapping on a finite dimensional space
can be described by finitely many parameters in form of amatrix one needs in general
infinitely many parameters even in one dimension, to describe a concave mapping.
(See Exercise 8 of Section 2.1.)

2.1 Iteration of normalized concave operators

Let ℝn : = {x = (x1, . . . , xn) | xi ∈ ℝ for 1 ≤ i ≤ n} denote the n-dimensional Euclidean
space. For x, y ∈ ℝn we employ the following notations:

x ≤ y iff xi ≤ yi for all i,
x ≨ y iff x ≤ y but x ̸= y,
x < y iff xi < yi for all i.

Let K = ℝn
+ : = {x ∈ ℝn | 0 ≤ x} denote the cone of non-negative vectors in ℝn. For

simplicitywe denote the elements ofℝn by row vectors. A different use, aswith respect
to matrices, will be mentioned explicitly.

Definition 2.1.1. A subset D ⊂ ℝn is convex if for any x, y ∈ D and α ∈ [0, 1] it holds
that αx + (1−α )y ∈ D. For a convex subsetD ⊂ ℝn an operator (mapping) T : D → ℝm

is concave if for any x, y ∈ D and α ∈ [0, 1]
αTx + (1 − α )Ty ≤ T(αx + (1 − α )y).
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∙
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|
|
|
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Fig. 2.1. Concave mapping.
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22 | 2 Concave Perron–Frobenius theory

An operator T : D → ℝm is concave iff all its components Ti are concave, where
Ti : D → ℝ+ is defined by Tix = (Tx)i. Furthermore, Definition 2.1.1 yields immedi-
ately that for a concave operator

k∑
i=1

αiTx
i ≤ T( k∑

i=1
αix

i)
for arbitrary k ∈ ℕ, xi ∈ D, αi ≥ 0 with∑k

i=1 αi = 1.

Definition 2.1.2. An operator T : D → ℝm,D ⊂ ℝn, ismonotone if

x ≤ y implies Tx ≤ Ty.
Lemma 2.1.3. A concave operator T : K → K is monotone.

Proof. For x, y ∈ K with x ≤ y and k ∈ {1, 2, . . .} one has that x + k(y − x) ∈ K and
y = (1 − k−1)x + k−1(x + k(y − x)). Concavity of T implies Ty ≥ (1 − k−1)Tx + k−1T(x +
k(y − x)) for all k and, hence, Ty ≥ Tx.

Remark 2.1.4. A concave operator T : D → K for D convex in K, D ̸= K need not be
monotone.

Examples 2.1.5. (i) T affine-linear, i.e. T : K → K, Tx = Ax + awhere a ∈ K and A is
a non-negative n × n-matrix, i.e. aij ≥ 0 for all entries aij of A. (Here the elements of K
are to be understood as column vectors.)

(ii) T : K → K is of Verhulst type, i.e.

Tix =
n∑
j=1

rijxj(xj + sij)−1 for x ∈ K, i ∈ {1, . . . , n}
with constants rij ≥ 0, sij > 0.

(iii) T : K → K is the infimum of affine linear mappings, i.e.

Tix = inf {(A(j)x)i + ai(j) j ∈ J} for x ∈ K; i ∈ {1, . . . , n}
where for an arbitrary (non-empty) index set J and j ∈ J A(j) is a non-negative n × n-
matrix and a(j) ∈ K. (Elements of K are to be understood as column vectors.)
Since in all three cases T : K → K is concave it is also monotone by Lemma (2.1.3).

Definition 2.1.6. A (vector) norm ‖ ⋅ ‖ on ℝn ismonotone if

0 ≤ x ≤ y implies ‖x‖ ≤ ‖y‖.
Examples of monotone norms onℝn are themax-norm ‖x‖ = max{| xi | 1 ≤ i ≤ n}, the
sum-norm ‖x‖ = ∑n

i=1 | xi | and the Euclidian norm ‖x‖ = (∑n
i=1 x

2
i ) 12 .

For a monotone norm we rescale the operator T as we did already in Section 1.4.
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2.1 Iteration of normalized concave operators | 23

Definition 2.1.7. For an operator T : D → K,D ⊂ ℝn, and any monotone norm ‖ ⋅ ‖ onℝn the normalized or rescaled operator T̃ is given by

T̃x = (Tx)(‖Tx‖−1) for x ∈ D with Tx ̸= 0.
Geometrically, normalizing an operator means to project its images on the unit sphere
of the norm.
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Fig. 2.2. Normalized operator (Euclidean norm).

It is important, as indicated in Fig. 2.2, to distinguish between (T̃)k and (̃Tk). A simple
example where these two iterates are different is given by T : ℝ2

+ → ℝ2
+, Tx = (1 +

x1, 1) (see Exercises to 2.1, Problem 3).

To prove our main result in this section we need to define a special metric for which
we shall apply Banach’s contraction mapping principle.

Definition 2.1.8. On
∘
K = {x ∈ ℝn | 0 < x}Hilbert’s projective quasi-metric orHilbert’s

metric for short, is defined for x, y ∈ ∘
K by

d(x, y) = − log(min{xi
yi

1 ≤ i ≤ n} ⋅min{yi
xi

1 ≤ i ≤ n}) (2.1.1)

The following lemma confirms that by this definition d is a quasi-metric, where
d(x, y) = 0 for x ̸= ymay happen.

Lemma 2.1.9. d as defined by (2.1.1) has the following properties for x, y, z ∈ ∘
K:

(i) d(x, y) ∈ ℝ+;
(ii) d(x, y) = 0 iff x = ry for some r > 0;
(iii) d(x, y) = d(y, x);
(iv) d(x, z) ≤ d(x, y) + d(y, z);
(v) d(rx, sy) = d(x, y) for arbitrary scalars r, s > 0

and
d(z ⋅ x, z ⋅ y) = d(x, y) where z ⋅ x = (z1x1, . . . , znxn).

Proof. (i) Since the product of the two minima in (2.1.1) is strictly positive and must
be less than or equal to xi

yi
⋅ yixi = 1 we have that d(x, y) ∈ ℝ+.
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24 | 2 Concave Perron–Frobenius theory

(ii) If x = ry then d(x, y) = − log(r ⋅ r−1) = 0. Conversely, if d(x, y) = 0 and r =
min{ xiyi |1 ≤ i ≤ n} then r ⋅ min{ yixi |1 ≤ i ≤ n} = 1. Hence, r > 0 and min{ yixi |1 ≤ i ≤ n} =
r−1. This shows r ≤ xi

yi
as well as xi

yi
≤ r for all i, that is xi = ryi for all i.

(iii) Immediate from (2.1.1).
(iv) From

min{xi
yi

1 ≤ i ≤ n} ⋅min{yi
zi

1 ≤ i ≤ n} ≤ min{xi
zi

1 ≤ i ≤ n}
and

min{yi
xi

1 ≤ i ≤ n} ⋅min{ zi
yi

1 ≤ i ≤ n} ≤ min{ zi
xi

1 ≤ i ≤ n}
it follows by multiplying the two inequalities and applying the decreasing function− log to the result that d(x, y) + d(y, z) ≥ d(x, z).

(v) The first equation follows from

min{ rxi
syi

1 ≤ i ≤ n} ⋅min{syi
rxi

1 ≤ i ≤ n} = min{xi
yi

1 ≤ i ≤ n} ⋅min{yi
xi

1 ≤ i ≤ n} ;
the second equation follows from

min{zixi
ziyi

1 ≤ i ≤ n} = min{xi
yi

1 ≤ i ≤ n} .
To prove our first version of a concave Perron Theoremwe need the following Lemma.

Lemma 2.1.10. The set X = {x ∈ ∘
K| ‖x‖ = 1} equippedwithHilbert’smetric is a complete

metric space.

Proof. By Lemma 2.1.9 d is a metric on X. First we show for x, y ∈ X the inequality

‖x − y‖ ≤ 3(1 − exp(−d(x, y))). (2.1.2)

Let a = min { xiyi 1 ≤ i ≤ n}, b = min { yixi 1 ≤ i ≤ n} and c = d(x, y) = − log(ab). Since
ay ≤ x, bx ≤ y and ‖x‖ = ‖y‖ = 1 we must have 0 < a ≤ 1, 0 < b ≤ 1. This gives

exp(−c) = ab ≤ a and exp(c) = (ab)−1 ≥ b−1.
Therefore

exp(−c)y ≤ x ≤ exp(c)y (∗)
and

0 ≤ (x − y) + y(1 − exp(−c)) ≤ x(1 − exp(−c)) + y(1 − exp(−c)).
By the monotonicity of the norm

‖(x − y) + y(1 − exp(−c))‖ ≤ 2(1 − exp(−c)),
and applying the triangle inequality to the left hand side we arrive at (2.1.2). Now, if(xk)k is a Cauchy sequence for d in X then by inequality (2.1.2) (xk)k must be a Cauchy

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:17 PM



2.1 Iteration of normalized concave operators | 25

sequence for ‖ ⋅ ‖. Therefore, (xk)k converges for ‖ ⋅ ‖ to some x∗ ∈ ℝn
+ with ‖x∗‖ = 1.

Since (xk)k is a Cauchy sequence for d, to 𝜖 > 0 given there existsN ∈ ℕ such that with
the help of (∗)

exp(−𝜖)xk ≤ xl ≤ exp(𝜖)xk for all k, l ≥ N.
Taking l →∞ it follows that

exp(−𝜖)xk ≤ x∗ ≤ xk exp(𝜖) for all k ≥ N.
Therefore, x∗ > 0 that is x∗ ∈ X, and

d(xk, x∗) ≤ log ( exp(𝜖) ⋅ exp(𝜖)) = 2𝜖 for all k ≥ N.
This shows that (xk)k converges to x∗ also with respect to d. Hence, (X, d) is a complete
metric space.

Theorem 2.1.11 (First Concave Perron Theorem). For any concave operator T : K → K
such that Tx > 0 for all x ≩ 0 the following properties hold (‖ ⋅ ‖ being any monotone
norm on ℝn).
(i) The conditional eigenvalue problem

Tx = λ x with λ ∈ ℝ and x restricted to x ∈ K, ‖x‖ = 1 (2.1.3)

has a unique solution x = x∗, λ = λ ∗; moreover, x∗ > 0 and λ ∗ > 0.
(ii) For the iterates of the normalized operator one has (with respect to ‖ ⋅ ‖)

lim
k→∞

T̃kx = x∗ for all 0 ̸= x ∈ K. (2.1.4)

Proof. By Lemma 2.1.10 we have that (X, d) is a complete metric space where X = {x ∈
∘
K | ‖x‖ = 1}.

(i) In a first step we show that T̃ : X → X is a contraction for d. Choose for each
1 ≤ i ≤ n a vector ei ∈ K, ‖ei‖ = 1 and such that all the components other than the i-th
component are 0. Every x ∈ X̄ = {x ∈ K | ‖x‖ = 1} has a representation x = ∑n

i=1 xie
i

with xi ≥ 0, and by monotonicity of ‖ ⋅ ‖
0 ≤ xi = ‖xiei‖ ≤ ‖x‖ = 1.

This implies x ≤ e for e : = ∑n
i=1 e

i.
Also for x ∈ X̄,

1 = ‖x‖ ≤ n∑
i=1

xi‖ei‖ = n∑
i=1

xi

and, hence,

( n∑
j=1

xj)−1 n∑
i=1

xie
i ≤ x.
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26 | 2 Concave Perron–Frobenius theory

Since T is concave and, by Lemma 2.1.3, monotone it follows for all x ∈ X̄ that

min{Tei | 1 ≤ i ≤ n} ≤ ( n∑
j=1

xj)−1 n∑
i=1

xiTe
i ≤ Tx ≤ Te.

By assumption Tei > 0 for all 1 ≤ i ≤ n and there exists some 0 < r < 1 such that
rTe ≤ Tei for all 1 ≤ i ≤ n. For u, v ∈ X̄ arbitrary we must have, therefore,

rTu ≤ Tv. (∗)
Let x, y ∈ X and suppose λ = min{ yixi |1 ≤ i ≤ n} < 1. It follows that z = y − λ x ∈ K and
y = λ x + (1 − λ ) z

1−λ which, by concavity of T, implies

Ty ≥ λTx + (1 − λ )T ( z
1 − λ ) .

Inequality (∗) together with 1 = ‖y‖ ≤ λ + ‖z‖ implies that

rTx ≤ T z‖z‖ ≤ T z
1 − λ

and we arrive at

Ty ≥ λTx + (1 − λ )rTx = ((1 − r)λ + r)Tx. (∗∗)
In the case where λ = min{ yixi |1 ≤ i ≤ n} ≥ 1 we must have by ‖x‖ = ‖y‖ = 1 that λ = 1
and x ≤ y. Thus, for this case (∗∗) holds by monotonicity of T. The function log being
concave from (∗∗) it follows that

log(min{Tiy
Tix

1 ≤ i ≤ n}) ≥ log ((1 − r)λ + r ⋅ 1) ≥ (1 − r) log λ .
Since x, y ∈ X are arbitrary we may exchange the roles of x and y to obtain altogether

log(min{Tiy
Tix

1 ≤ i ≤ n} ⋅min{Tix
Tiy

 1 ≤ i ≤ n})
≥ (1 − r) log(min {yi

xi

1 ≤ i ≤ n} ⋅min {xi
yi

1 ≤ i ≤ n})
and, according to Definition 2.1.8, d(Tx, Ty) ≤ (1 − r)d(x, y) for all x, y ∈ X.

Lemma 2.1.9 (v) finally yields

d(T̃x, T̃y) ≤ (1 − r)d(x, y) for all x, y ∈ X (2.1.5)

that is, T̃ is a contraction for d, 0 < 1 − r < 1 being the contraction constant.
(ii) By step (1) and Lemma 2.1.10 we can apply Banach’s contraction mapping

principle (for this see, e.g., Deimling [9]) to the space (X, d) and the mapping T̃ : X →
X to obtain

lim
k→∞

T̃kx = x∗ for all x ∈ X,

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:17 PM



2.1 Iteration of normalized concave operators | 27

x∗ being the unique fixed point of T̃ in X. T̃x∗ = x∗ implies Tx∗ = λ ∗x∗ with λ ∗ =‖Tx∗‖ > 0. Conversely, Tx = λ x with x ∈ K, ‖x‖ = 1, λ ∈ ℝ implies that T̃x =
λ x(‖λ x‖−1) = x and, hence, x = x∗ and λ = ‖Tx‖ = ‖Tx∗‖ = λ ∗.

This shows part (i) of Theorem 2.1.11. Furthermore, by (2.1.2) the convergence of
T̃kx to x∗ for d implies convergence for ‖ ⋅ ‖. Finally, if 0 ̸= x ∈ K then by assumption
T̃x ∈ X and, hence,

lim
k→∞

T̃kx = lim
k→∞

T̃k(T̃x) = x∗ (for ‖ ⋅ ‖).
Remark 2.1.12. The first step in the proof of Theorem 2.1.11 yields by Banach’s con-
traction principle the estimate

d(T̃kx, x∗) ≤ ck

1 − cd(T̃x, x) for all x ∈ K ∖ {0}, all k ∈ ℕ,
where c = 1 −min{ TjeiTje

| 1 ≤ i, j ≤ n}. Inequality (2.1.2) yields the estimate ‖T̃kx − x∗‖ ≤
3 ck
1−cd(T̃x, x).
Also by the first step in the proof of Theorem 2.1.11, any concave operator T : K →

K is monotone and non-expansive for d, i.e. d(Tx, Ty) ≤ d(x, y) for all x, y ∈ K ∖ {0}.
Beside concavity, the assumption Tx > 0 for x ≩ 0 is crucial in Theorem 2.1.11. As it is
obvious from the identitymapTx = x, this assumption cannot be simply relaxed. From
Theorem 2.1.11, however, it follows that the existence statement of part (i) remains true
for any concave operator on T. To show this, we need the following well-known fact
about concave operators.

Lemma 2.1.13. Any concave operator T : D → ℝm is continuous on the interior
∘
D of

D ⊂ ℝn.

Proof. It suffices to show that a concave function f : D → ℝ is continuous on
∘
D ̸= 0.

To x ∈ ∘
D fixed there exists d > 0 such that

B = {z ∈ ℝn | ‖z − x‖ ≤ d} ⊂ D

for the max-norm ‖ ⋅ ‖. The cube B has finitely many vertices and every point of B is a
convex combination of these vertices. If m denotes the minimum of f on the vertices
we have f (z) ≥ m for all z ∈ B. For y ∈ B, y ̸= x let α = 1

d ‖x − y‖. Then 0 < α ≤ 1
and u = 1

α (y − x) + x ∈ B, v = 1
α (x − y) + x ∈ B. Therefore, y = (1 − α )x + αu and

x = 1
1+α y +

α
1+α v and, by concavity of f ,

f (y) ≥ (1 − α )f (x) + αf (u) ≥ (1 − α )f (x) + αm

and
f (x) ≥ 1

1 + α
f (y) + α

1 + α
f (v) ≥ 1

1 + α
f (y) + α

1 + α
m,

yielding
f (x) − f (y) ≤ α(f (x) −m)
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28 | 2 Concave Perron–Frobenius theory

and
f (y) − f (x) ≤ α(f (x) −m).

Putting together,

| f (x) − f (y) | ≤ 1
d
‖x − y‖(f (x) −m),

which proves the continuity of f in x ∈ ∘
D.

Now, we are ready to prove

Theorem 2.1.14 (Concave Perron–Frobenius Theorem). For any concave operator
T : K → K the eigenvalue problemTx = λ x has at least one solution x ∈ K∖{0}, λ ∈ ℝ+.

Proof. (1) We first prove that the inequality Tx ≤ λ x has a solution x ∈ K \ {0}, λ ∈ ℝ+
of a kind such that Tx = λ x in case of x > 0. Let e = (1, . . . , 1) ∈ K and

T(k)x = Tx + 1
k
e for k ∈ ℕ ∖ {0}, x ∈ K

The operator T(k) : K → K is concave with T(k)x ≥ 1
k e > 0 for all x ∈ K. Hence, by

Theorem 2.1.11 for every k the equation T(k)x = λ x has a solution x = x(k), ‖x(k)‖ =
1, λ = λ (k) ∈ ℝ+(‖ ⋅ ‖ the max-norm). By monotonicity of T and x(k) ≤ e we have
Tx(k) ≤ Te and, hence,

λ (k) = ‖T(k)x(k)‖ ≤ ‖Tx(k)‖ + 1 ≤ ‖Te‖ + 1,
i.e., the sequence (λ (k))k is bounded.

This together with ‖x(k)‖ = 1 for all k allows us to assume without loss of gener-
ality that

lim
k→∞

λ (k) = λ and lim
k→∞

x(k) = x, ‖x‖ = 1.
To 𝜖 > 0 given there existsN ∈ ℕ such that x ≤ (1 + 𝜖)x(k) for all k ≥ N. Concavity

of T yields for any λ ≥ 1, x ∈ K Tx = T( 1λ λ x + (1− 1
λ )0) ≥ 1

λ T(λ x), that is T(λ x) ≤ λTx.
Taking λ = 1 + 𝜖 this gives for all k ≥ N
Tx ≤ T((1 + 𝜖)x(k)) ≤ (1 + 𝜖)Tx(k) ≤ (1 + 𝜖)T(k)x(k) = (1 + 𝜖)λ (k)x(k). Letting
k → ∞ we arrive at Tx ≤ (1 + 𝜖)λ x and, hence, Tx ≤ λ x since 𝜖 > 0 was arbitrary.
Furthermore, suppose that x > 0. Since T is continuous on

∘
K by Lemma 2.1.13, we

obtain
lim
k→∞

T(k)x(k) = lim
k→∞

(Tx(k) + 1
k
e) = Tx

and, from T(k)x(k) = λ (k)x(k),
Tx = lim

k→∞
λ (k)x(k) = λ x.

(2) The assertion of the theorem we now prove by induction over the dimension
n of K = ℝn

+. For n = 1 the assertion holds trivially with, e.g., x = 1, λ = T1. Suppose
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2.1 Iteration of normalized concave operators | 29

the assertion holds for dimK ≤ n, n fixed, and let T : ℝn+1
+ → ℝn+1

+ be any concave
operator. By step (1) there exist x∗ ∈ ℝn+1

+ ∖{0}, λ ∗ ∈ ℝ+ such thatTx∗ ≤ λ ∗x∗. Consider
I = {1 ≤ i ≤ n + 1 | x∗i > 0}. Obviously, I ̸= 0 and, by step (1), the assertion holds true
for n + 1 if | I | = n + 1. Assume, therefore, 1 ≤ | I | ≤ n. If x ∈ ℝn+1

+ with xj = 0 for j ̸∈ I
then there exists λ ≥ 1 such that x ≤ λ x∗. Concavity of T implies Tx ≤ λTx∗ ≤ λλ ∗x∗

and, hence, (Tx)j = 0 for j ̸∈ I. This allows us to define an operator S : ℝI
+ → ℝI

+ by(Sy)i = (Tȳ)i for y ∈ ℝI
+, i ∈ I, where ȳ ∈ ℝn+1

+ is given by ȳi = yi for i ∈ I and ȳj = 0 for
j ̸∈ I. The operator S is concave since y → ȳ is linear. Because of | I |≤ n there exists
by assumption some y ∈ ℝI

+ ∖ {0} and λ ∈ ℝ+ such that Sy = λ y. From this we obtain

(Tȳ)i = (Sy)i = λ yi = λ ȳi for i ∈ I
and (Tȳ)j = 0 = λ ȳj for j ̸∈ I,
that is Tȳ = λ ȳ where ȳ ∈ ℝn+1

+ ∖ {0}, λ ≥ 0.

As remarked already, one has to distinguish (T̃)k, the iterates of the normalized op-
erator, from (T̃k), the normalization of the iterates. In Theorem 2.1.11 only the former
ones are relevant. It may happen that also (̃Tk) converges for k → ∞ but then not
necessarily to an eigenvector, as shown by the following example.

Example 2.1.15. The operator T : ℝ2
+ → ℝ2

+, Tx = (1 + x1, 1) is concave with Tx > 0
for x ≥ 0. By Theorem 2.1.11 therefore, lim

k→∞
T̃kx = x∗ for all x ≥ 0 and Tx∗ = λ ∗x∗ with

x∗ ≥ 0. Taking the sum-norm the unique solution is given by

x∗ = ( 2
1 + √5 , 2

3 + √5), λ ∗ = 3 + √5
2

.
On the other hand,

Tkx = (k + x1, 1) and (̃Tk)x = ( k + x1
1 + k + x1

, 1
1 + k + x1

).
The latter converges for k → ∞ to (1, 0), independently of x, which is different from
x∗ and which is not an eigenvector of T.

The next example illustrates the case where Theorem 2.1.14 is applicable but not
Theorem 2.1.11.

Example 2.1.16. Let T : ℝ3
+ → ℝ3

+ be given by

Tx = { (√x1x2, 1 + x2, x3) for x1 > 0, x2 > 0, x3 > 0(min{x1, x2}, 1,min{x2, x3}) for x1 = 0 or x2 = 0 or x3 = 0.
The operatorT is concave butwedonot haveTx > 0 for x ≩ 0. Thus, Theorem2.1.11

is not applicable. Indeed, Tx = λ x has no solution with x > 0 and λ ≥ 0. According
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30 | 2 Concave Perron–Frobenius theory

to Theorem 2.1.14, however, there must be at least one solution x ≩ 0, λ ≥ 0. Indeed,
there are three solutions of this kind namely (for the sum-norm)

λ = 1 with x = (0, 1, 0)
and

λ = 1 + √5
2

with x = ( 1
λ 2 , 1λ , 0) or (0, 1λ , 1λ 2 )

By Lemma 2.1.13 the operator T has to be continuous in the interior of ℝ3
+. T is, how-

ever, not continuous on the whole ofℝ3
+, e.g. in none of the above eigensolutions T is

continuous.

Remark 2.1.17. The concave Perron–Frobenius theorem applies in particular to linear
self-mappings given by non-negative matrices, yielding the existence of a (maximal)
non-negative eigenvalue (see also Section 2.4 below). This existence can be obtained
very easily also as a consequence of Brouwer’s fixedpoint theorem. (Another approach
is developed in [19, 66].) The latter theorem for arbitrary but continuousmappingswas
used also by the economists Solow and Samuelson and, later on, for a more general
model, by the economists Morishima, Nikaido to study what seems to be the first non-
linear version ever of the Perron–Frobenius Theorem ([43, 47, 62]; for an approach em-
ploying differentiability and the Kuhn–Tucker theorem see [44]). Observe, however,
that in Theorem 2.1.14 the self-mapping need not be continuous on the whole cone.
Indeed, Example 2.1.16 exhibits a case where the concave Perron–Frobenius theorem
guarantees the existence of a (maximal) non-negative eigenvaluewhich cannot be ob-
tained fromBrouwer’s fixedpoint theorem. (In addition, Theorem2.1.14 is constructive
in that it rests on induction and iteration.) In the recent monograph [37] selfmappings
are examined which are monotone with αTx ≤ T(αx) for α ∈ [0, 1] and, hence, are
more general than concave ones.

Exercises

1. Find a (vector) norm on ℝn which is not monotone and depict its unit ball.

2. Let d be Hilbert’s metric on
∘
K for K = ℝn

+.
(a) Show that

d(x, y) = − log(λ (x, y) ⋅ λ (y, x)),
where λ (x, y) = sup{λ ∈ ℝ+ | λ x ≤ y} for x, y ∈ ∘

K.
(b) Describe geometrically the balls for d.
(c) For the case n = 2 show that 1

2d(x, y) equals the area determined by the raysℝ+x, ℝ+y and the standard hyperbola u ⋅ v = 1.
3. Consider the operator T : ℝ2

+ → ℝ2
+ given by Tx = (1 + x1, 1).

(a) Compute all eigenvalues λ ∈ ℝ with Tx = λ x, x ≩ 0.
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2.1 Iteration of normalized concave operators | 31

(b) Show that for all k ∈ ℕ
T̃k ̸= T̃k.

(c) Compute the smallest contraction constant c ≥ 0 such that
d(Tx, Ty) ≤ cd(x, y) for all x, y in the interior ofℝ2

+.

4. Consider the operator T : ℝ2
+ → ℝ2

+ given by

Tx = { (x1 + x2, x2) for x1 > 0, x2 > 0
0 for x1 = 0 or x2 = 0.

(a) Show that T is concave.
(b) Determine all points in which T is not continuous.
(c) Find all solutions x∗ ∈ ℝ2

+ ∖ {0}, λ ∗ ≥ 0 of the eigen equation Tx = λ x.
(d) Check whether the unique solution (x(k), λ (k)) of the eigen equation T(k)x =

λ x for T(k)x = Tx + 1
k (1, . . . , 1), where x(k) ∈ ℝ2

+, ‖x(k)‖ = 1 (‖ ⋅ ‖max-norm),
λ (k) ≥ 0, converges to a solution (x∗, λ ∗) of Tx = λ x.

5. Let T : ℝ2
+ → ℝ2

+ be given by Tx = (x1 + x2, x1).
(a) Show that T2x > 0 for all x ≩ 0 and T̃k = T̃k for all k ∈ ℕ.
(b) Show that lim

n→∞
‖Tnx‖−1Tnx = x∗ for all x ≩ 0, where ‖ ⋅ ‖ is any monotone

normand x∗ uniquely determinedby the conditional eigenvalueproblemTx =
λ x, x ≩ 0, ‖x‖ = 1, λ ≥ 0.

(c) Obtain from (b) that for the Fibonacci sequence (fn)n given by fn+2 = fn+1 + fn
for n ∈ ℕ with f0 = f1 = 1 it holds that

lim
n→∞

fn+1
fn

= 1 + √5
2

.
6. Let T : ℝ2

+ → ℝ2
+ be given by Tx = (√x1 + √x2, √x1).

(a) Show that T2x > 0 for all x ≩ 0 and T̃k = T̃k for all k ∈ ℕ.
(b) Show that

lim
n→∞

‖Tnx‖−1Tnx = x∗ for all x ≩ 0,
where ‖ ⋅ ‖ is any monotone norm and x∗ uniquely determined by the condi-
tional eigenvalue problem Tx = λ x, x ≩ 0, ‖x‖ = 1, λ ≥ 0.

(c) Derive from (b) that
lim
n→∞

Tnx = x̄ for all x ≩ 0,
where x̄ is the unique solution of Tx = x, ‖x‖ = 1 for some suitable monotone
norm ‖ ⋅ ‖.

(d) Obtain from (c) that the root Fibonacci sequence (rn)n given by rn+2 = √rn+1 +√√rn converges for arbitrary (r0, r1) ≩ 0 to the same limit ̄r and compute ̄r.
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32 | 2 Concave Perron–Frobenius theory

7. Let T be a selfmapping of ℝn
+ given by

Tix =
n∑
j=1
aijϕ (xj), 1 ≤ i ≤ n

where A = (aij) > 0 and ϕ is a continuous selfmapping of ℝ+ with ϕ (r) > 0 for
r > 0.
(a) Show that for each a > 0 the conditional eigenvalue problem

Tx = λ x, λ > 0, x ∈ ℝn
+, ‖x‖ = a (‖ ⋅ ‖ any norm)

has at least one solution.
(b) Show that for ϕ concave the solution of the conditional eigenvalue problem

in (a) is unique (for each a > 0).
(c) Find a function ϕ and a > 0 such that the conditional eigenvalue problem in

(a) has two solutions (λ , x), (μ , y) with λ ̸= μ , x ̸= y.

8. Let C be the convex cone of all concave selfmappings ofℝ+ and let D be the set of
differences from C restricted on the fixed interval [a, b] for 0 < a < b.
(a) Show that D is a linear subspace of the space C[a, b] of all real valued contin-

uous functions on [a, b]which separates the points of [a, b] and contains the
constant functions.

(b) Show that for f in D the function |f | defined by |f |(x) = |f (x)| belongs to D.
(c) Apply the Stone–Weierstraß theorem to obtain that D is dense in C[a, b] with

respect to the supremum norm.
(d) Conclude that the convex cone C is not finitely generated whereas the convex

cone of all linear selfmappings of ℝ+ has just one generator.

2.2 Indecomposability and primitivity for ray-preserving concave
operators

The two kinds of iterates T̃k and T̃k which are different in general turn out to be equal
if the operator T maps rays into rays. As before by K we denote the coneℝn

+.

Definition 2.2.1. The operator T : K → K is homogeneous of degree d for d ∈ ℝ if

T(λ x) = λ dTx for all x ∈ K, all λ > 0 and T0 = 0.
T is positively homogeneous if it is of degree d = 1.

T is ray-preserving if for every x ∈ K and λ > 0 there exists some λ  = λ (x, λ ) > 0
such that

T(λ x) = λ Tx and T0 = 0.
Geometrically, T ray-preserving means that T maps a ray ℝ+x : = {λ x | λ ∈ ℝ+} into a
ray again, namely into the ray ℝ+Tx.
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2.2 Indecomposability and primitivity for ray-preserving concave operators | 33

Examples 2.2.2. (i) T : K → K, K = ℝn
+, Tx = Ax, A a non-negative n × n-matrix. T is

positively homogeneous.
(ii) T : ℝ2

+ → ℝ2
+, Tx = (√x1x2, x2), is not linear, (i.e., not of the type in (i)) but it

is still positively homogeneous.
(iii) T : ℝ2

+ → ℝ2
+, Tx = (√x1, √x2) is ray-preserving with λ (x, λ ) = √λ but it is

not positively homogeneous.

(iv) T : ℝ2
+ → ℝ2

+, Tx = { (x1, x2), x1 ≤ x2(√x1, √x2, ) x1 > x2.
T(λ x) = λ (x, λ )Tx where λ (x, λ ) = { λ , x1 ≤ x2√λ , x1 > x2

does depend on both, λ and x.
(v) T : ℝ2

+ → ℝ2
+, Tx = (√x1, x2) is not ray-preserving; it maps the rays ℝ+(1, 0)

andℝ+(0, 1) into itself but destroys all other rays. The mapping T : ℝ2
+ → ℝ2

+
Tx = (1 + x1, 1) does not map any ray at all ( ̸= {0}) into a ray again.
Definition 2.2.3. For T : K → K and ‖ ⋅ ‖ a norm on ℝn the operator T‖⋅‖ defined by

T‖⋅‖x = ‖x‖T x‖x‖ for x ̸= 0 and T‖⋅‖0 = 0

is the homogenized operator for T.

It follows directly from the definition that T‖⋅‖(λ x) = λT‖⋅‖x for all x ∈ K, λ ∈ ℝ+ and,
hence, the homogenized operator is always positively homogeneous. E.g., for the self-
mapping ofℝ2

+ given byTx = (1 + x1, 1) the homogenized operator for the sumnorm is

T‖⋅‖x = (x1 + x2)T x
x1 + x2

= (2x1 + x2, x1 + x2) = [ 2 1
1 1

] x (x a column vector),
which is even linear. (See also Exercise 1.) It may happen, however, that a concave
operator when homogenized remains no longer concave whatever norm is choosen.
(See Exercise 2.) Because of

T‖⋅‖x = λ x if and only if T x‖x‖ = λ x‖x‖
the eigenvalue problems for T and T‖⋅‖ correspond to each other. In the next lemma
also the dynamics of T and T‖⋅‖ will be related.

Lemma 2.2.4. Let T : K → K and ‖ ⋅ ‖ be a norm on ℝn.
(i) If T is ray-preserving and x ∈ K such that Tkx ̸= 0 for all k ∈ ℕ then

(T̃)kx = (T̃k)x for all k ∈ ℕ.
(ii) If Tx ̸= 0 for all x ̸= 0 then

(̃T‖⋅‖)kx = T̃kx for all x ∈ K with ‖x‖ = 1.
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34 | 2 Concave Perron–Frobenius theory

Proof. (i) For x fixed we prove the equality by induction over k.
For k = 1, the assertion is trivial. Suppose (T̃)kx = (T̃k)x for some k ≥ 1.
Since (T̃k)x = Tkx

‖Tkx‖ ̸= 0 we have that (T̃)kx ̸= 0. Therefore (T̃)k+1x is defined and
by induction hypothesis

(T̃)k+1x = T̃((T̃)kx) = T((T̃)kx)‖T((T̃)kx)‖ =
T( Tkx

‖Tkx‖ )‖T( Tkx
‖Tkx‖ )‖ .

For T ray-preserving there exists some λ  > 0 (possibly dependent on k and x) such
that T( Tkx

‖Tkx‖ ) = λ T(Tkx) = λ Tk+1x. Thus

(T̃)k+1x = λ Tk+1x‖λ Tk+1x‖ = Tk+1x‖Tk+1x‖ = (T̃k+1)x.
(ii) We have that T‖⋅‖x ̸= 0 for all x ̸= 0 because of Tx ̸= 0 for all x ̸= 0. Therefore(T‖⋅‖)kx ̸= 0 for all x ̸= 0 and by positive homogeneity of T‖⋅‖ if follows from (i) that

(T̃‖⋅‖)kx = (̃T‖⋅‖)kx for x ∈ K \ {0}.
By definition of T‖⋅‖, T‖⋅‖x = Tx for ‖x‖ = 1. Therefore, T̃‖⋅‖ and T̃ coincide on {x ∈ K |‖x‖ = 1} which implies the equality of (T̃‖⋅‖)k and T̃k on {x ∈ K | ‖x‖ = 1}.

Putting together we obtain the equality of (̃T‖⋅‖)k and T̃k on {x ∈ K | ‖x‖ = 1}.
Remark 2.2.5. Using Lemma 2.1.9 (ii) we may reformulate the convergence statement
(2.1.4) of Theorem 2.1.11 also as

lim
k→∞

(T‖⋅‖)kx‖(T‖⋅‖)kx‖ = x∗ for all x ∈ K \ {0}.
This statement does not hold in general given the assumptions of Theorem 2.1.11, if T‖⋅‖
is replaced by T as we have seen from the example Tx = (1 + x1, 1). If T is assumed to
be ray-preserving, however, by Lemma 2.2.4 (i) T‖⋅‖ may be replaced by T in the above
convergence statement.

Definition 2.2.6. T : K → K is indecomposable if for any index set 0 ⫋ I ⫋ {1, . . . , n}(n ≥ 2 given) there exist indices i ∈ I, j ̸∈ I such that Tiej > 0. (Ti the i-th component
map of T, ej ∈ K the j-th unit vector.)

T : K → K isweakly indecomposable if for any indices 1 ≤ i, j ≤ n there exists
some p = p(i, j) ∈ ℕ such that Tp

i ej : = (Tp)iej > 0.

Lemma 2.2.7. Let T : K → K be ray-preserving and monotone. If T is indecomposable
then T is weakly indecomposable.

Proof. (1) For 1 ≤ j ≤ n let Ij = {1 ≤ i ≤ n | Tp
i ej > 0 for some p ∈ ℕ}. We show that for

T ray-preserving and monotone we must have that for arbitrary indices i, j, k
i ∈ Ij and j ∈ Ik imply i ∈ Ik. (∗)
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2.2 Indecomposability and primitivity for ray-preserving concave operators | 35

For this, suppose Tp
i ej > 0 and Tq

j ek > 0 for some p, q ∈ ℕ. Tq
j ek > 0 implies

Tqek ≥ cej for some c > 0 and, hence, Tp+qek ≥ Tp(cej). Since T is ray-preserving it
follows by iteration thatTp(cej) = c(p)Tpejwith some c(p) > 0. Thus,Tp+qek ≥ c(p)Tpej
and by assumption Tp+q

i ek ≥ c(p)Tp
i ej > 0. This proves (∗).

(2) Suppose T is indecomposable and i and j are given indices. Because of n ≥ 2
we have that Ij ̸= 0. Suppose that Ij ̸= {1, . . . , n}. Applying the definition of indecom-
posability to I = {1, . . . , n} \ Ij there exist k ∈ I, l ̸∈ I such that Tkel > 0 and, hence,
k ∈ Il. Since k ∈ Il and l ∈ Ij it follows from (∗) of step (1) that k ∈ Ij –which contradicts
k ∈ I. Therefore, we must have Ij = {1, . . . , n} and i ∈ Ij.
Remarks 2.2.8. (1) Lemma 2.2.7 fails if T is not monotone or not ray-preserving (see
Exercise 3).

(2) In contrast to the linear case (see below) it may occur that an operator T, even
if it is positively homogeneous and concave, is weakly indecomposable but not inde-
composable. Consider T : ℝ3

+ → ℝ3
+ Tx = (√x2x3, x1 + x2 + x3, x1 + x2 + x3). T

is positively homogeneous and concave (and, a fortiori, monotone). T is weakly inde-
composable because Tiej > 0 for 2 ≤ i ≤ 3 and 1 ≤ j ≤ 3 and, since T2

1x = x1 + x2 +
x3, T2

1ej > 0 for 1 ≤ j ≤ 3. T is, however, not indecomposable because T1x = √x2x3
implies T1ej = 0 for 2 ≤ j ≤ 3.

Definition 2.2.9. T : K → K is primitive if there exists p ∈ ℕ such that Tmx > 0 for
allm ≥ p and all x ∈ K \ {0}.
Lemma 2.2.10. Let T : K → K be ray-preserving and monotone. If T is weakly inde-
composable and there exists some h such that Theh > 0 then T is primitive.

Proof. SinceT isweakly indecomposable there existspij ∈ ℕ such thatTpij
i ej > 0 for all

1 ≤ i, j ≤ n. Let p = 2qwith q = max{pij | 1 ≤ i, j ≤ n}. For c = Theh obviously Teh ≥ ceh.
Since T is ray-preserving for any given r, s ∈ ℕ there exist constants c, c, c > 0 such
that

Tr+s(ceh) = Tr(Ts(ceh)) = Tr(cTseh) ≥ Tr(ceh) = cTreh,
and, hence,

Tr+s(eh) ≥ c̃Treh with c̃ > 0.
If m ≥ q it follows with r = pih and s = m − pih that Tm(eh) ≥ c̃Tpiheh and, hence,
Tm
i (eh) ≥ c̃Tpih

i eh > 0.
Thus we obtain

Tmeh > 0 for all m ≥ q. (∗)
On the other hand, Tphj

h ej > 0 implies Tphj ej ≥ c(j)eh with c(j) > 0. For m ≥ p =
2q,m = m − phj it follows that

Tmej = Tm (Tphjej) ≥ Tm(c(j)eh) ≥ c(j)Tm

eh with c(j) > 0.
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36 | 2 Concave Perron–Frobenius theory

Sincem = m − phj ≥ m − q ≥ q by (∗) we have
Tmej > 0 for all 1 ≤ j ≤ n.

If x ∈ K \ {0} then there exists an index j such that x ≥ xjej with xj > 0. The above then
implies Tmx ≥ xj T

mej > 0 for allm ≥ p, i.e., T is primitive.

The above Lemmas and the concepts involved are extensions from the linear case
of non-negative matrices to certain non-linear situations. A non-negative matrix A =(aij)1≤i,j≤n, aij ≥ 0 for all 1 ≤ i, j ≤ n is called indecomposable (or irreducible) if for
any index set 0 ⫋ I ⫋ {1, . . . , n} there exist i ∈ I, j ̸∈ I such that aij > 0. It is well-
known (cf. [61]) that a non-negative matrix is indecomposable iff for any two indices i
and j there exists a p = p(i, j) such that the (i, j)-entry of the matrix power Ap is strictly
positive. Therefore, for linear operators Tx = A ⋅ x, x being a column vector, it is not
necessary to introduce the notion of weak indecomposability.We have seen, however,
that for non-linear operators the two notions do not coincide. A non-negativematrixA
is called primitive if some power of A is a strictly positive matrix. Thus, in the matrix
case Lemma 2.2.10 states that a non-negative and indecomposable matrix is primitive
provided that there is at least one strictly positive element on the diagonal of A. The
latter condition cannot be omitted as can be seen from the simple example A = [ 0 1

1 0 ].
In the literature concerning non-linear extensions of the Perron–Frobenius the-

ory there occur several different notions extending those of indecomposability and
primitivity of matrices (cf. [28, 32, 42–44, 46, 47, 50, 51]). Dealing with continuous
selfmappings T : K → K which are monotone and positively homogeneous, M. Mor-
ishima and H. Nikaido introduced the following notions [42, 43, 46, 47]. Call T MN-
indecomposable (indecomposable in the sense of Morishima and Nikaido) if for any
index set 0 ⫋ I ⫋ {1, . . . , n} and any x, y ∈ K with xi = yi for all i ∈ I and xj < yj for all
j ̸∈ I it follows for some k ∈ I that Tkx ̸= Tky. Furthermore, T is globally primitive if for
every x ∈ K there exists s = s(x) ≥ 1 such that x ≨ y for y ∈ K implies that Tsx < Tsy.

If T is linear then T is MN-indecomposable iff T is indecomposable, and T is glob-
ally primitive iff T is primitive and, hence, the notions coincide with the ones above
for the linear case. In general, however, the notions are quite different. In particular,
it is easy to give examples, even for T continuous, monotone and positively homoge-
neous, where T is indecomposable and primitive but neither MN-indecomposable nor
globally primitive (see Exercise 8).

Another extension of the concept of an indecomposable matrix to monotone and
homogeneous (of degree 1) mappings is made by S. Gaubert and J. Gunawardena in
[18]; see also [37]. (A monotone homogeneous mapping need not be concave and the
latter need not be homogeneous.) In [18] and [37] a graph G(T) associated to T is re-
quired to be strongly connected which, in case of a matrix, is equivalent to indecom-
posability. If T is indecomposable in the sense of Definition 2.2.6 then G(T) is strongly
connected but not the other way round (see Exercise 9). In [18] and [37] a generalized
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2.2 Indecomposability and primitivity for ray-preserving concave operators | 37

Perron–Frobenius Theorem is proven for monotone and homogeneous mappings un-
der the assumption that G(T) is strongly connected. This theorem provides even an
eigenvector in the interior ofℝn

+. Later on, when dealingwith ascending operators, we
will obtain as a particular case an extension of the above theorem to monotone and
subhomogeneous mappings (see Corollary 5.2.5 part (ii)(b)).

Now we are ready to prove a refined version of the Concave Perron Theorem in
which for a ray-preserving operator the positivity assumption is weakened and the
conclusions are strengthened at the same time.

Theorem 2.2.11 (Second Concave Perron Theorem). Forany concaveoperator T : K →
K which is ray-preserving, weakly indecomposable with Theh > 0 for some 1 ≤ h ≤ n the
following properties hold (‖ ⋅ ‖ being an arbitrary monotone norm onℝn):
(i) The eigenvalue problemTx = λ x with λ ∈ ℝ and x ∈ K\{0} has a solution x = x∗ > 0

with ‖x∗‖ = 1 and λ = λ ∗ > 0. Moreover, for any solution (x, λ ) ∈ K \ {0} ×ℝ x = rx∗

for some r > 0 and λ > 0. If, in addition, T is positively homogeneous then λ = λ ∗.
(ii)

lim
k→∞

Tkx‖Tkx‖ = x∗ for all x ∈ K ∖ {0}
(Convergence with respect to ‖ ⋅ ‖ ). This statement is equivalent to

lim
k→∞

(Tk)ix(Tk)jx =
x∗i
x∗j

for all x ∈ K ∖ {0}, all 1 ≤ i, j ≤ n.
Proof. We first prove the second part of the Theorem.

(ii) By Lemma 2.2.10 T is primitive (as already remarked, a concave operator has
to be monotone). Hence, there exists p ∈ ℕ such that for S = Tp we have Sx > 0 for
all x ∈ K \ {0}. Since any iterate of a concave operator is concave again we can apply
Theorem 2.1.11 to S to obtain

lim
k→∞

S̃kx = x∗ for all x ∈ K ∖ {0},
where x∗ > 0, ‖x∗‖ = 1. Since any iterate of a ray-preserving operator is ray-preserving
too, by Lemma 2.2.4 we have that

S̃k = S̃k = T̃kp for all k ∈ ℕ.
Therefore,

lim
k→∞

Tkpx‖Tkpx‖ = x∗ for all x ∈ K ∖ {0}. (∗)
Consider x = Tiy for y ∈ K∖{0} and 1 ≤ i < p. If x = 0 then Tpy = Tp−ix = Tp−i0 = 0

since T is ray-preserving; this, however, contradicts the primitivity of T and we must
have x = Tiy ̸= 0. Applying (∗) to starting points x = Tiy yields

lim
m→∞

Tmx‖Tmx‖ = x∗ for all x ∈ K ∖ {0}.
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38 | 2 Concave Perron–Frobenius theory

Obviously, this implies

lim
m→∞

(Tm)ix(Tm)jx =
x∗i
x∗j
.

Conversely, the latter, for some x∗ > 0 with ‖x∗‖ = 1, implies

lim
m→∞

(Tm)ix
n∑
j=1
(Tm)jx =

x∗i
n∑
j=1

x∗j

or, | ⋅ | denoting the sum-norm,

lim
m→∞

Tmx|Tmx| = x∗|x∗| .
Since ‖ ⋅ ‖ is continuous it follows

lim
m→∞

‖Tmx‖|Tmx| = 1|x∗| ,
and, hence,

lim
m→∞

Tmx‖Tmx‖ = x∗.
This proves part (ii) of the theorem.

(i) From Theorem 2.1.11, part (i), we also have that Sx = μxwith x ∈ K, ‖x‖ = 1, μ ∈ℝ iff x = x∗. Since T is ray-preserving and Tx∗ ̸= 0 we have that

S( Tx∗‖Tx∗‖) = ρTp+1x∗ = ρT(Sx∗) = ρT(μx∗) = κ Tx∗‖Tx∗‖
where ρ > 0, κ > 0.

It follows that Tx∗
‖Tx∗‖ = x∗ and, therefore,Tx = λ xhas the solution x = x∗ > 0, ‖x∗‖ =

1, λ = λ ∗ = ‖Tx∗‖ > 0.
Suppose Tx = λ x with x ∈ K ∖ {0}, λ ∈ ℝ. By the primitivity of T we have λ =‖x‖−1‖Tx‖ > 0 and, therefore, S x

‖x‖ = Tp x
‖x‖ = ρTpx = κ x

‖x‖ with ρ > 0, κ > 0, which
implies x

‖x‖ = x∗.
If, in addition, T is positively homogeneous then Tx = λ x implies

λ (‖x‖x∗) = T(‖x‖x∗) = ‖x‖Tx∗
and λ = λ ∗ = ‖Tx∗‖.
The following remarks will illustrate that none of the assumptions in Theorem 2.2.11
can simply be omitted.

Remarks 2.2.12. (1) It is clear from part (ii) of the proof of the Theorem that weak
indecomposability and Theh > 0 for some h was used to get the primitivity of T by
Lemma 2.2.10. Hence the Theorem remains true if these conditions are replaced by
that of primitivity.
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2.2 Indecomposability and primitivity for ray-preserving concave operators | 39

(2) The identity map T : K → K satisfies all assumptions of Theorem 2.2.11 with
the exception of weak indecomposability. Since none of the conclusions of Theo-
rem 2.2.11 does hold for the identity map the assumption of weak indecomposability
cannot simply be omitted.

(3) The map T : ℝ2
+ → ℝ2

+, T(x1, x2) = (x2, x1) satisfies all assumptions of the
Theorem with the exception that Theh = 0 for all h. Whereas conclusion (i) of the The-
orem holds for this map, conclusion (ii) does not hold. Thus, the assumption Theh > 0
for some h cannot simply be omitted.

(4) For the map T : ℝ2
+ → ℝ2

+, T(x1, x2) = (1 + x1, 1) it holds that Tiej > 0 for
all i, j. Therefore, T satisfies all assumptions of the Theorem except that T is not ray-
preserving. Considering conclusion (i), Tx = λ x for (x, λ ) ∈ (K \ {0}) × ℝ is equivalent
to x = x(λ ) = ((λ − 1)−1, λ −1) for arbitrary λ > 1. Hence, all solutions belong to
different rays, in contrast to (i). In Example 2.1.15 we have already seen that for all
x ∈ K the sequence of ‖Tkx‖−1Tkx converges to (1, 0) for k →∞which is not a solution
of the eigenvalue problem. Thus, conclusion (ii) of the Theorem does not hold in this
case. Thus, none of the conclusions (i) and (ii) holds in this case, showing that the
assumption of T being ray-preserving cannot simply be omitted.

(5) The map T : ℝ2
+ → ℝ2

+, T(x1, x2) = (√x1 + √x2, √x1 + √x2) does satisfy all
assumptions of Theorem 2.2.11. Hence, for any solution (x, λ ) ∈ (K \ {0}) ×ℝ of Tx = λ x
it holds that x = rx∗ for some r > 0 and λ > 0; for the sum-norm one has x∗ = ( 12 , 12 ).
The value of λ , however, is not uniquely determined. Indeed, for any λ > 0 one has
Tx(λ ) = λ x(λ ) with x(λ ) = 8

λ 2 x
∗.

Thus, in contrast to the linear case, anon-linear self-mappingof the standard cone
in n dimensions may have more than n eigenvalues – it may even be a continuum. In
case the self-mapping is monotone and positively homogeneous, however, there are
only finitely many non-negative eigenvalues. (Cf. Exercise 7.)

The following example meets all the conditions appearing in Theorem 2.2.11.

Example 2.2.13. Let T : ℝ2
+ → ℝ2

+ be defined by T(x1, x2) = (4x1 + 2x2 +√x1x2,min{x1 + x2, 2x1}). Obviously T is concave and even positively homogeneous.
Furthermore, Te1 = (4, 1) and Te2 = (2, 0). To check weak indecomposability we cal-
culate T2e2 = T(2, 0) = (8, 2). Thus, T is weakly indecomposable and Theh > 0 for
h = 1. Solving the eigenvalue problem means to find x ∈ ℝ2

+ \ {0} and λ such that

4x1 + 2x2 + √x1x2 = λ x1 and min{x1 + x2, 2x1} = λ x2. (∗)
Obviously, we must have x1 > 0 and x2 > 0.

Suppose first that 2x1 ≤ x1 + x2, i.e., x1 ≤ x2. The second equation then becomes
x1 = λ

2 x2 and putting this into the first equation we obtain 2λ + 2 + √ λ
2 = λ 2

2 and,
hence, in particular 2 < λ 2

2 , that is λ > 2. This, however, contradicts x1 ≤ x2. Thus,
this case is impossible and we must have that 2x1 > x1 + x2, i.e., x1 > x2. From (∗)
we obtain x1 + x2 = λ x2, i.e., x1 = (λ − 1)x2, and 4(λ − 1) + 2 + √λ − 1 = λ (λ − 1)
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40 | 2 Concave Perron–Frobenius theory

which equation we have to solve for λ . Putting μ = √λ − 1 the equation becomes
μ4 − 3μ2 − μ − 2 = 0. By inspection we find a root μ∗ = 2 and conclude that all
other roots must satisfy μ3 + 2μ2 + μ + 1 = 0. That is, μ∗ = 2 is the only positive
root and hence we must have that λ ∗ = 1 + μ∗

2
= 5. Employing the sum-norm, from

x1 = (λ ∗−1)x2 = 4x2 we obtain x∗ = ( 45 , 15 ). The Theorem yields the stability statement
(ii) which is not easy to verify directly due to the non-linear character of T.

The above Theorem 2.2.11 holds also for certain operators which are not necessarily
concave, provided that the relative magnitudes behave like those of a concave opera-
tor. More precisely, we have the following consequence of Theorem 2.2.11.

Corollary 2.2.14. Suppose T : K → K is an operator as in Theorem 2.2.11 and define
Rx = r(x)Tx where r : K → ℝ+ with r(x) > 0 for x ̸= 0. Then statements (i) and (ii) of
Theorem 2.2.11 hold also for R with a solution (y∗, μ∗) linked to that of T by y∗ = x∗ and
μ∗ = r(x∗)λ ∗.
Proof. For the rescaled operators we have that R̃x = Rx

‖Rx‖ = Tx
‖Tx‖ = T̃x for x ̸= 0. Fur-

thermore, for λ ≥ 0 we have

R(λ x) = r(λ x)T(λ x) = r(λ x)λ Tx = r(λ x)λ 
r(x) Rx,

that is, R is also ray-preserving. By Lemma 2.2.4

Rkx‖Rkx‖ = R̃kx = R̃kx = T̃kx = T̃kx = Tkx‖Tkx‖
and part (ii) of Theorem 2.2.11 gives lim

k→∞

Rkx
‖Rkx‖ = x∗ for all x ∈ K ∖ {0}. Furthermore,

Rx∗ = r(x∗)Tx∗ = r(x∗)λ ∗x∗ = μ∗x∗ with μ∗ = r(x∗)λ ∗. If Ry = μy with y ∈ K ∖ {0} and
μ ∈ ℝ then Ty = r(y)−1μy and y = rx∗ for some r > 0 by part (i).

Simple examples of non-concave operators of the type admitted in Corollary 2.2.14 can
be obtained from linear operators by choosing

r(x) = ( n∑
i=1

aixi)−1( n∑
i=1

bixi)
with certain positive weights ai, bi. It is, however, easy to construct non-concave op-
erators which are not of the type considered in Corollary 2.2.14 but satisfy all other
assumptions appearing in Theorem 2.2.11 and for which none of the conclusions of
Theorem 2.2.11 does apply. (Cf. Exercise 6.)
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2.2 Indecomposability and primitivity for ray-preserving concave operators | 41

Exercises

1. Let T : K → K, Tx = Ax + a be affine-linear (cf. Example 2.1.5, K = ℝn
+).

(a) Find a norm ‖ ⋅ ‖ such that the homogenized operator for T is linear.
(b) Use (a) to describe the unique solution (x∗, λ ∗) of Tx = λ x, x ∈ K, ‖x‖ = 1, λ ∈ℝ in terms of matrices.
(c) Illustrate (a) and (b) for the special case T : ℝ2

+ → ℝ2
+, Tx = (1 + x1, 1).

2. Find a concave operator T : K → K such that for all norms ‖ ⋅ ‖ the homogenized
operator T‖⋅‖ is not concave.

3. Find for each of the following cases an operator T which is indecomposable but
not weakly indecomposable.
(a) T is monotone but not ray-preserving.
(b) T is positively homogeneous but not monotone.

4. Let T : ℝn
+ → ℝn

+ be defined by

Tx = ( n∑
i=1

xi, x1, x2, . . . , xn−1).
(a) Show that T is primitive.
(b) Calculate the primitivity index of T that is the smallest p ∈ ℕ such that Tpx > 0

for all x ∈ ℝn
+ \ {0}.

5. Let T : ℝ2
+ → ℝ2

+ be defined by

Tx = { (2x1 + x2, 3x1 + x2) for x1 ≤ x2(x1 + 2x2, x1 + 3x2) for x1 > x2.
(a) Show that T is concave, positively homogeneous andweakly indecomposable

with Theh > 0 for some h.
(b) Use Theorem 2.2.11 to calculate a solution (x∗, λ ∗) of Tx = λ x, x ∈ ℝ2

+, ‖x‖ =
1, λ ∈ ℝ (‖ ⋅ ‖ being the sum-norm) and show that it is unique.

(c) Illustrate the statement lim
k→∞

Tkx
‖Tkx‖ = x∗ by means of computer simulations for

some particular values of x ∈ ℝ2
+ ∖ {0}.

6. Construct an example of an operator S : ℝ2
+ → ℝ2

+ which is positively homoge-
neous with Sx > 0 for x ∈ ℝ2

+ ∖ {0} and which is not of the form Sx = s(x)Tx for T
concave and for which none of the conlusions (i), (ii) of Theorem 2.2.11 holds true.

7. [43] Let T be a self-mapping ofℝn
+ that is monotone and positively homogeneous.

Show that T has only finitely many non-negative eigenvalues (with non-negative
eigenvectors).

8. Let T be a selfmapping of K.
(a) Show that for T with T0 = 0

– globally primitive implies primitive,
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42 | 2 Concave Perron–Frobenius theory

– MN-indecomposable, positively homogeneous and convex implies inde-
composable.

(b) Show that for T positively homogeneous and concave
– primitive implies globally primitive,
– indecomposable implies MN-indecomposable and this implication can-

not be reversed.
(c) Find a continuous,monotone andpositively homogeneous selfmapping ofℝ2

+
which is indecomposable and primitive but neither MN-indecomposable nor
globally primitive.

9. Let K = ℝn
+ and T : ∘

K → ∘
K. For u > 0, 1 ≤ j ≤ n, define u(j) ∈ ∘

K by u(j)i = u if
i = j and u(j)i = 1, otherwise. Let G(T) the graph with vertices 1, 2, . . . , n and an
arc from i to j if lim

u→∞
Tiu(j) = ∞. G(T) is strongly connected if there is a directed

path between any two distinct vertices. (Cf. [18, p. 4932] and [37, p. 131].)
(a) Let T be a monotone and homogeneous (of degree 1) selfmapping of K which

is indecomposable ( Definition 2.2.6). Show that T maps
∘
K into itself and that

G(T) is strongly connected. Find a monotone and homogeneous selfmapping
T ofK, mapping

∘
K into itself, for whichG(T) is strongly connected but T is not

indecomposable.
(b) Let T be a selfmapping of

∘
K for which G(T) is strongly connected. Suppose

λ x ≤ y implies λTx ≤ Ty, where λ ∈ [0, 1], x, y ∈ ∘
K. Prove the following

property forT : To c > 0given there exists c̃ > 0 such that for e = (1, . . . , 1) ∈ ∘
K

and each x ∈ ∘
K with ‖x‖ = 1 for the l1-norm ‖ ⋅ ‖

Tx ≤ cx implies x ≤ c̃λ (e, x)e. (∗)
(Cf. [18] for arguments in a topical framework and [37, pp. 131/132].)

(c) Let T be a continuous selfmapping of K mapping
∘
K into itself and such that

λ x ≤ y implies λTx ≤ Ty(λ ∈ [0, 1], x, y ∈ ∘
K). Show that property (∗) in (b)

implies that for each c > 0 the set {x ∈ ∘
K | ‖x‖ = 1, Tx ≤ cx} is closed for the

l1-norm ‖ ⋅ ‖.
2.3 Concave operators which are positively homogeneous

Dealing with concave operators T : K → K for K = ℝn
+ in this chapter, until now we

obtained two concave versions of Perrons theorem. In the first version, Theorem 2.1.11,
we obtained a convergence result for the iterates of the normalized operator T by
assuming a strong positivity assumption, viz. Tx > 0 for x ≩ 0. This assumption
was weakened in the second version, Theorem 2.2.11, which gave us the convergence
of Tkx

‖Tkx‖ by assuming that T is ray-preserving. Now we will strengthen the latter as-
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2.3 Concave operators which are positively homogeneous | 43

sumption to positive homogeneity to obtain convergence results which aremuchmore
pleasant.

Theorem 2.3.1. Let T : K → K be concave, primitive andpositively homogeneous. Then
there exist λ ∗ > 0 and x∗ > 0, ‖x∗‖ = 1 such that the solutions (x, λ ) ∈ K × ℝ of the
eigenvalue problem Tx = λ x are given precisely by x = rx∗ for some r ≥ 0 and λ = λ ∗.
The solution (x∗, λ ∗) has the following properties:
(i) For each x ∈ K the limit Sx : = lim

k→∞

Tkx
λ ∗k exists (with respect to ‖ ⋅ ‖) and defines a

mapping S : K → ℝ+x∗ which is concave and positively homogeneous with Sx > 0
for x ≩ 0. Furthermore, the mapping S satisfies the equations ST = TS = λ ∗S and
SS = S on K.

(ii) For any x ≩ 0 there holds

lim
k→∞

‖Tk+1x‖‖Tkx‖ = lim
k→∞

‖Tkx‖ 1
k = λ ∗.

Proof. We will apply Theorem 2.2.11 (cf. Remark 2.2.12 (1)). From this we get x∗ and
λ ∗, where by positive homogeneity λ is uniquely determined because Tx = λ x implies
that rTx∗ = T(rx∗) = λ (rx∗) and, hence, λ = ‖Tx∗‖ = λ ∗.

(i) From Theorem 2.2.11 we have for fixed x ≩ 0 that lim
k→∞

Tkx
‖Tkx‖ = x∗. Since x∗ > 0

to 𝜀 > 0 given, there exists N(𝜀) such that
(1 − 𝜀)‖Tkx‖x∗ ≤ Tkx ≤ (1 + 𝜀)‖Tkx‖x∗ for all k ≥ N(𝜀).

Applying T to these inequalities, yields by monotonicity and positive homogeneity of
T that

(1 − 𝜀)‖Tkx‖λ ∗lx∗ ≤ Tk+lx ≤ (1 + 𝜀)‖Tkx‖λ ∗lx∗ for all k ≥ N(𝜀), all l ∈ ℕ.
Combining these two sets of inequalities, yields

( 1 − 𝜀
1 + 𝜀) T

kx
λ ∗k

≤ Tk+lx
λ ∗(k+l)

≤ (1 + 𝜀
1 − 𝜀 ) T

kx
λ ∗k

for all k ≥ N(𝜀), all l ∈ ℕ. (∗)
Setting xk = Tkx

λ ∗k , (∗)means that

1 − 𝜀
1 + 𝜀xk ≤ xk+l ≤ 1 + 𝜀

1 − 𝜀 xk
and by the monotonicity of ‖ ⋅ ‖ it follows that

‖xk+l − xk‖ ≤ ‖xk+l − 1 − 𝜀
1 + 𝜀xk‖ + 2𝜀

1 + 𝜀 ‖xk‖
≤ (1 + 𝜀

1 − 𝜀 − 1 − 𝜀
1 + 𝜀) ‖xk‖ + 2𝜀

1+𝜀 ‖xk‖.
≤ 6𝜀

1 − 𝜀2 ‖xk‖ for all k ≥ N(𝜀), all l ∈ ℕ.
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44 | 2 Concave Perron–Frobenius theory

This shows, in particular, that the sequence (xk)k is bounded inK for ‖ ⋅‖ and, hence, it
must be a Cauchy sequence for all ‖⋅‖. Thus, (xk)k converges to some element ofK, that
is Sx : = lim

k→∞

Tkx
λ ∗k ∈ K for x ≩ 0 and, trivially, S0 = 0. If Sx ≩ 0 then Sx

‖Sx‖ = lim
k→∞

Tkx
‖Tkx‖ = x∗

and, therefore, S : K → ℝ+x∗. By definition S is concave, positively homogeneous,
and by primitivity of T, it follows from (∗) that Sx > 0 for x ≩ 0. Furthermore, S(Tx) =
λ ∗ lim

k→∞

Tk+1x
λ ∗(k+1) = λ ∗Sx and, becauseT is continuous on the interior ofK by Lemma 2.1.13

we have for x ≩ 0 that T(Sx) = lim
k→∞

Tk+1x
λ ∗k = S(Tx). Thus, ST = TS = λ ∗S. From Sx∗ = x∗

and S : K → ℝ+x∗ it follows that SS = S on K.
(ii) From (i) we have for x ≩ 0 that Sx = lim

k→∞

Tkx
λ ∗k and λ ∗Sx = lim

k→∞

Tk+1x
λ ∗k which

implies lim
k→∞

‖Tk+1x‖
‖Tkx‖ = λ ∗‖Sx‖

‖Sx‖ = λ ∗.

Finally, ‖Sx‖ = lim
k→∞

‖Tkx‖
λ ∗k for x ≩ 0 implies lim

k→∞
( ‖Tkx‖λ ∗k ) 1k = 1, that is lim

k→∞
‖Tkx‖ 1

k =
λ ∗.

Remarks 2.3.2. (1) Without primitivity it may happen that for all x ≩ 0 lim
k→∞

‖Tk+1x‖
‖Tkx‖

and lim
k→∞

‖Tk‖ 1
k exist and are equal but different from λ ∗ and that Sx = lim

k→∞

Tkx
λ ∗k also

exists for all x ≥ 0 but S does not project on the one dimensional rayℝ+x∗. This is the
case, e.g., for T being the identity map.

(2) Without primitivity it may also happen that conclusion (ii) of the Theorem
holds true but not conclusion (i). This is the case, e.g., for the mapping T : ℝ2

+ → ℝ2
+

defined by T(x1, x2) = (x2, x1). This mapping is concave, positively homogeneous and
indecomposable but not primitive.Tx = λ xhas theunique solution λ ∗ = 1, x∗ = ( 12 , 12 )
(up to a positive multiple for x∗) and for any x ≩ 0 lim

k→∞

‖Tk+1x‖
‖Tkx‖ = 1 and lim

k→∞
‖Tkx‖ 1

k = 1.
The first statement, however, does not hold for all monotone norms, in contrast to the
second statement. The sequence ( Tkxλ ∗k )k does not converge for x = (x1, x2)with x1 ̸= x2.

(3) Without positive homogeneity it may happen that none of the conclusions (i)
and (ii) holds true, although all the limits do exist. For T(x1, x2) = (1 + x1, 1), which is
primitive but not even ray-preserving, lim

k→∞

‖Tk+1x‖
‖Tkx‖ = lim

k→∞
‖Tkx‖ 1

k = 1 ̸= λ ∗ (for the

sum-norm) for all x ≩ 0 and lim
k→∞

Tkx
λ ∗k = 0 for all x ≥ 0. Similar for the mapping

T(x1, x2) = (√x1 + √x2, √x1 + √x2) which is primitive and ray-preserving but not
positively homogeneous. (Cf. Exercise 1 below.)

Example 2.3.3. Let us look again at Example 2.2.13 with T(x1, x2) = (4x1 + 2x2 +√x1x2, min{x1 + x2, 2x1}). As we have seen already T is concave, primitive and posi-
tively homogeneous with λ ∗ = 5 and x∗ = ( 15 , 45 ). In addition to what we obtained by
Theorem 2.2.11 we now ave by Theorem 2.3.1 that Sx = lim

k→∞

Tkx
5k = c(x) ( 15 , 45 ) for x ≩ 0

and some c(x) > 0. That is, for every starting point x ≩ 0 the path k → Tkx grows
with the factor 5. In particular, the only bounded path is the trivial one staying at 0.
To determine the mapping S one has to calculate c(x) which, however, is not an easy
task. By Theorem 2.3.1 the mapping c(⋅) : ℝ2

+ → ℝ+ is concave and positively homo-
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2.3 Concave operators which are positively homogeneous | 45

geneous. To determine c(⋅) we also have the useful property that c(Tx) = 5c(x), for all
x ≥ 0,which follows immediately from STx = λ ∗Sx. ForT linear c(⋅) alsomust be linear
and can easily be computed from T as we shall see in the next section. (Cf. also Exer-
cise 4 below.) In the above example, however, c(⋅) cannot be linear as the following
considerations show. From Te2 = 2e1 we get 2c(e1) = c(2e1) = c(Te2) = 5c(e2). Linear-
ity of c(⋅)would imply that c(re1 + se2) = rc(e1) + sc(e2) = (r + 2

5s)c(e1) for all r, s ≥ 0.
But we have for r = 4 and s = 1 that c(4e1 + e2) = c(Te1) = 5c(e1) ̸= (4 + 2

5 )c(e1).
As remarked already, Theorem 2.3.1 ceases to hold if the assumption of positive ho-
mogeneity is omitted. Also, it is not enough to replace the latter assumption by homo-
geneity of degree d for d ̸= 1. It follows easily, however, that for 0 ≤ d < 1 the iterates
of T itself converge as the following Corollary shows.

Corollary 2.3.4. Let T : K → K be concave, primitive and homogeneous of degree d
with 0 ≤ d < 1. Then the fixed point equation Tx = x has a unique solution x∗ in
K ∖ {0}. Moreover, x∗ > 0 and lim

k→∞
Tkx = x∗ for all x ∈ K ∖ {0}.

Proof. Obviously, T is ray preserving and by Theorem 2.2.11 (cf. Remarks 2.2.12 (1))
there exist x̄ > 0, ‖x̄‖ = 1, ̄λ > 0 such that Tx̄ = ̄λ x̄. Furthermore, Tx = λ x for
x ≩ 0 implies x = rx̄ with r > 0 and λ > 0. For x∗ = ̄λ 1

1−d x̄ it holds that x∗ > 0 and
Tx∗ = ̄λ d

1−d Tx̄ = ̄λ d
1−d ̄λ x̄ = x∗.

Concerning uniqueness, suppose Tx = x for x ≩ 0. It follows that x = rx̄with r > 0
and, hence, rd ̄λ x̄ = rx̄. Therefore, r = ̄λ 1

1−d and x = x∗. Moreover, by Theorem 2.2.11 (ii)
it holds for x ≩ 0 given that lim

k→∞

Tkx
‖Tkx‖ = x̄ and, hence, to 𝜖 > 0 there exists N(𝜖) such

that (1 − 𝜖)‖Tkx‖x̄ ≤ Tkx ≤ (1 + 𝜖)‖Tkx‖x̄ for all k ≥ N(𝜖).
Applying the monotone mapping T to this inequality l times gives

Tl((1 − 𝜖)‖Tkx‖x̄) ≤ Tk+lx ≤ Tl((1 + 𝜖)‖Tkx‖x̄) for all k ≥ N(𝜖).
For any given λ > 0 induction over l yields

Tl(λ x̄) = λ dl ̄λ s(l)x̄ with s(l) = l−1∑
i=0

di for l ≥ 1.
By assumption 0 ≤ d < 1 and we obtain lim

l→∞
Tl(λ x̄) = ̄λ 1

1−d x̄ = x∗ for arbitrary λ > 0.

Thus, from the inequalities we obtain x∗ ≤ lim
l→∞

Tk+lx ≤ x∗ for all k ≥ N(𝜖) and, hence,
lim
k→∞

Tkx = x∗.

Example 2.3.5. Let T : ℝ2
+ → ℝ2

+ be given by T(x1, x2) = (min{ 15√x1 + √x2, 1
2√x1 +

1
4√x2}, 2√x1 + √x2). Obviously, T is concave and Tx > 0 for x ≩ 0, i.e., T is primitive.
Furthermore, T(λ (x1, x2)) = λ

1
2 T(x1, x2) and T is homogeneous of degree d = 1

2 . By
Corollary 2.3.4, therefore, lim

k→∞
Tkx = x∗ for any x ≩ 0. To compute the unique fixed
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46 | 2 Concave Perron–Frobenius theory

point x∗ of T consider for x ≩ 0 the equation Tx = x, that is min{ 15√x1 + √x2, 1
2√x1 +

1
4√x2} = x1 and 2√x1 + √x2 = x2. Suppose x1 ≤ x2. It follows that 1

2√x1 + 1
4√x2 ≤

3
4√x2 ≤ 1

5√x1 + √x2 and 1
2√x1 + 1

4√x2 = x1. This implies x2 = 2√x1 + √x2 = 4x1
and 4x1 = 2√x1 + √4x1 = 4√x1. Thus, x1 = 1 and x2 = 4, that is x∗ = (1, 4). (This we
infer from the uniqueness of the fixed point but one could argue also that Tx = x has
no solution for x1 > x2.) Thus, we obtain lim

k→∞
Tkx = (1, 4) for all x ≩ 0.

Similarly as in the previous section, from Theorem 2.3.1 we obtain the following result
considering operators which are not necessarily concave.

Corollary 2.3.6. Suppose T : K → K is an operator as in Theorem 2.3.1 and define
Rx = r(x)Tx where r : K → ℝ+ with r(x) > 0 for x ≩ 0. Then the solutions (y, μ) ∈(K \ {0}) × ℝ of the eigenvalue problem Ry = μy are given by y = rx∗ with r > 0 and
μ = r(x∗)λ ∗, where (x∗, λ ∗) is the solution of the eigenvalue problem for T according
to Theorem 2.3.1. Moreover, the following statements hold.
(i) If r : K → ℝ+ is continuous on the interior of K with r(cx) = r(x) for all c > 0, all

x ∈ K then for all x ≩ 0

lim
k→∞

‖Rk+1x‖‖Rkx‖ = lim
k→∞

‖Rkx‖ 1
k = r(x∗)λ ∗.

(ii) If, in addition to the assumptions of (i), r(Tx) ≥ r(x) for all x ∈ K then for all x ∈ K
Sx : = lim

k→∞

Rkx(r(x∗)λ ∗)k
exists and defines a mapping S : K → ℝ+x∗ with SR = RS = r(x∗)λ ∗id and SS = S.

(iii) If, in addition to the assumptions of (ii), the non-negative sum∑∞
k=0 r(x∗) − r(Tkx)

is finite then S(x) > 0.

Proof. The statement about the solutions (y, μ) is immediate from Theorem 2.3.1.
(i) FromRx = r(x)Tx it follows by induction, using positive homogeneity ofT, that

Rkx = r(Rk−1x) . . . r(Rx)r(x)Tkx for k ≥ 1, x ∈ K. (2.3.1)

By the assumptions on r(⋅) and Corollary 2.2.14 one has
lim
k→∞

r(Rkx) = lim
k→∞

r( Rkx‖Rkx‖) = r( lim
k→∞

Rkx‖Rkx‖) = r(x∗).
Hence,

lim
k→∞

‖Rk+1x‖‖Rkx‖ = lim
k→∞

r(Rkx) ⋅ lim
k→∞

‖Tk+1x‖‖Tkx‖ = r(x∗)λ ∗.
Furthermore,

‖Rkx‖ 1
k = (r(Rk−1x) ⋅ ⋅ ⋅ r(Rx)r(x)) 1

k ‖Tkx‖ 1
k . (2.3.2)

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:17 PM



2.3 Concave operators which are positively homogeneous | 47

For ak = r(Rkx)we just proved that lim
k→∞

ak = r(x∗) and, hence, to 𝜀 > 0 given there
exists N = N(𝜀) ∈ ℕ such that r(x∗) − 𝜀 ≤ ak ≤ r(x∗) + 𝜀 for all k ≥ N. Thus, for k ≥ N

(r(x∗) − 𝜀)1− N
k (N−1∏

i=0
ai)

1
k ≤ (k−1∏

i=0
ai)

1
k ≤ (N−1∏

i=0
ai)

1
k (r(x∗) + 𝜀)1− N

k ,
which implies

r(x∗) − 𝜀 ≤ lim inf
k→∞

(k−1∏
i=0

ai)
1
k ≤ lim sup

k→∞
( k−1∏

i=0
ai)

1
k ≤ r(x∗) + 𝜀.

Since 𝜀 > 0 was arbitrary chosen it follows that limk→∞(∏k−1
i=0 ai) 1k = r(x∗) and by

(2.3.2) therefore

lim
k→∞

‖Rkx‖ 1
k = lim

k→∞
(k−1∏

i=0
ai)

1
k ⋅ lim

k→∞
‖Tkx‖ 1

k = r(x∗)λ ∗,
using the result for T from Theorem 2.3.1.

(ii) For ak = r(Rkx)wehave by (2.3.1) that ak = r(Tkx). The assumption r(Tx) ≥ r(x)
for all x ∈ K implies that ak ≤ ak+1 for all k and, using lim

k→∞
ak = r(x∗) from step (i), we

obtain that ak ≤ r(x∗) for all k. This shows that
u(x) : = lim

k→∞

∏k−1
i=0 ai

r(x∗)k (2.3.3)

exists for all x ∈ K. Putting together we obtain
Sx : = lim

k→∞

Rkx
r(x∗)kλ ∗k = lim

k→∞
(∏k−1

i=0 ai
r(x∗)k ⋅ Tkx

λ ∗k
) = u(x) lim

k→∞

Tkx
λ ∗k

= u(x)c(x)x∗
by using Theorem 2.3.1 for T with c(x) > 0 for x ≩ 0. The remaining properties for S
follow as in Theorem 2.3.1.

(iii) We have to show that u(x) > 0 for x ≩ 0 where u(⋅) is defined by (2.3.3). If∑∞
k=0 r(x∗) − r(Tkx) is finite the same is true for ∑∞

k=0
r(x∗)−r(Tkx)

r(x) and, because of r(x) ≤
r(Tkx) for all k, we must have that∑∞

k=0
r(x∗)−r(Tkx)

r(Tkx) is finite. Since r(Tkx) ≤ r(x∗) for all k
and log(1 + t) ≤ t for non-negative real numbers t we obtain

log
∞∏
k=0

r(x∗)
r(Tkx) =

∞∑
k=0

log r(x∗)
r(Tkx) ≤

∞∑
k=0

r(x∗) − r(Tkx)
r(Tkx)

and, hence,∏∞
k=0

r(x∗)
r(Tkx) must be finite. By the definition of u(⋅) therefore u(x) cannot be

zero, i.e., u(x) > 0.

Example 2.3.7. Let T : ℝ2
+ → ℝ2

+ be the linear operator defined by T(x1, x2) = ( 13x1 +
2
3x2, 2

3x1 + 1
3x2) and r : ℝ2

+ → ℝ+ be given by r(x1, x2) = x1+x2
max{x1 ,x2}

for x ≩ 0 and
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48 | 2 Concave Perron–Frobenius theory

r(0) = 0. The solution of the eigenvalue problem Tx = λ x is given by x∗ = ( 12 , 12 )
(normed with respect to the sum norm) and λ ∗ = 1. Therefore, the solution of the
eigenvalue problem for Rx = r(x)Tx is given by y = rx∗, r > 0, and μ = r(x∗)λ ∗ = 2.
Furthermore, r(⋅) is continuous on the interior of ℝ2

+, r(cx) = r(x) for c > 0 and

r(Tx) = x1 + x2
max{ 12x1 + 2

3x2, 2
3x1 +

1
3x1} ≥

x1 + x2
max{x1, x2} = r(x).

Thus, the conclusions of Corollary 2.3.6, parts (i) and (ii), hold. Obviously, the oper-
ator R is not concave; actually, none of the components of R is concave in any of the
variables. Considering part (iii) of the Corollary we have for x ∈ ℝ2

+ with x1 + x2 = 1
that max{T1x, T2x} = 1

3 + 1
3 max{x1, x2}. By induction this implies

max{Tk
1x, Tk

2x} = 1 − 1
3k

2
+ 1
3k

max{x1, x2} (2.3.4)

for all x ∈ ℝ2
+, x1 + x2 = 1 and k ∈ ℕ. Since

r(x∗) = 1
2 + 1

2

max{ 12 , 12 } = 2,
this implies

r(x∗) − r(Tkx) = 2 − 2
1 + 1

3k m(x) = 2 3
1
k m(x)

1 + 1
3k m(x)

where m(x) = 2max{ x1
x1+x2

, x2
x1+x2

} − 1 ≥ 0 for x ≩ 0. Since m(x) ≤ 1 it follows that
r(x∗) − r(Tkx) ≤ 2

3k for all x ≩ 0 and k ∈ ℕ. Thus∑∞
k=0 r(x∗) − r(Tkx) is finite for all x ≩ 0

and, by part (iii) of the corollary, it holds that Sx > 0 for all x ≩ 0. Actually, in this
Example the iterates Tkx can be computed explicitly and, hence, the iterates Rkx =
r(Tk−1x) . . . r(Tx)r(x)Tkx and the operator Sx = lim

k→∞

Rkx
2k , too. (Cf. Exercise 3 below.)

The results of Theorem 2.3.1 and Corollary 2.3.6 provide quite strong properties for
positively homogeneous concave operators in case these operators are primitive. As
mentioned already, convergence for the iterates of the operator cannot be expected if
the operator is only assumed to be indecomposable instead of being primitive. There
are, however, some interesting properties as, in particular, certain dominance prop-
erties for the eigenvalue λ ∗ which apply already to indecomposable operators. For
these operators the statement made by the Concave Perron–Frobenius Theorem (The-
orem 2.1.14) on the existence of a (non-trivial) solution of the eigenvalue problem can
be considerably sharpened as shown in the following theorem.

Theorem 2.3.8. Let T : K → K be concave and indecomposable, where K = ℝn
+.

(i) The eigenvalue problem Tx = λ x has a strictly positive solution (x, λ ), i.e., x > 0 and
λ > 0, and any solution (x, λ ) with x ≩ 0must be strictly positive.

(ii) If T is positively homogeneous then the eigenvalue problem Tx = λ x has a solution(x∗, λ ∗) with x∗ > 0 and λ ∗ > 0 and such that the following properties hold.
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2.3 Concave operators which are positively homogeneous | 49

(a) If λ x ≤ Tx holds for some x ≩ 0 then λ ≤ λ ∗.
(b) If λ ∗x ≤ Tx holds for some x ≩ 0 then x = rx∗ with r > 0.
(c) The solution of the non-negative eigenvalue problem is essentially unique, i.e.,

the solutions of Tx = λ x with x ≩ 0 and λ ≥ 0 are given by λ = λ ∗ and x = rx∗

with r > 0.
(iii) Suppose T is positively homogeneous and can be extended to ℝn, T : ℝn → ℝn.

Consider the eigenvalue problem Tx = λ x for arbitrary x ∈ ℝn, x ̸= 0 and λ ∈ ℝ.
The eigenvalue λ ∗ possesses the following dominance property:
If |Tx| ≤ T|x| for all x ∈ ℝn then |λ | ≤ λ ∗ and if, moreover, |Tpx| < Tp|x| for some
p ∈ ℕ and all x ∈ ℝn with x ̸= |x| then λ = λ ∗ or |λ | < λ ∗.
(Here |x| is understood to be componentwise, i.e., |x| = (|x1|, |x2|, . . . , |xn|) for x =(x1, x2 . . . , xn).)

Proof. (1) Let Tx = λ x with x ≩ 0. Suppose the set I = {1 ≤ k ≤ n | xk = 0} is non-
empty. Then 0 ⫋ I ⫋ {1, . . . , n} and by indecomposability of T there exist i ∈ I and
j ̸∈ I such that Tiej > 0. For α = min{xj, 1} we have that 0 < α ≤ 1 because of j ̸∈ I,
and x = αej + (1 − α )y with y ∈ K. Concavity of T implies that Tix ≥ αTiej > 0 which
contradicts Tix = λ xi = 0. Therefore, we must have that I = 0 and, hence, x > 0.
Similarly, we must have λ > 0. Otherwise Tx = 0 and indecomposability of T would
imply for I = {1} that T1x ≥ αT1ej > 0 for some j ̸= 1 which is a contradiction. Finally,
by Theorem 2.1.14 there exist x ≩ 0 and λ ≥ 0 such that Tx = λ x.

(ii) Suppose first that T is even primitive and let (x∗, λ ∗) be a solution of the eigen-
value problem according to Theorem 2.3.1. If λ x ≤ Tx for some x ≩ 0 and λ ≥ 0
then λ k‖x‖ ≤ ‖Tkx‖ for all k ∈ ℕ. Theorem 2.3.1 implies that λ ∗ = lim

k→∞
‖Tkx‖ 1

k ≥
λ lim

k→∞
‖x‖ 1

k = λ . This proves property (a). Property (c) follows immediately from The-
orem 2.3.1. To show property (b) let λ ∗x ≤ Tx for some x ≩ 0 and u = Tx − λ ∗x. By
Theorem 2.3.1 it suffices to show that u = 0. Assume this is not the case, i.e., u ≩ 0.
Primitivity of T implies Tpu > 0 for some p ∈ ℕ. Since Tp is concave and positively
homogeneous we obtain that

Tp+1x = Tp(u + λ ∗x) ≥ Tpu + λ ∗Tpx > λ ∗(p+1)x.
Hence, there exists μ > λ ∗(p+1) with Tp+1x ≥ μx. This implies, as in the proof of prop-
erty (a), that μ ≤ λ ∗(p+1) – a contradiction. Thus, we must have that u = 0.

Now we shall relax the primitivity assumption on T. For this let T be concave,
indecomposable and positively homogeneous and consider the operator S : K → K
defined by Sx = x + Tx. This operator also is concave, indecomposable and posi-
tively homogeneous. Moreover, S is primitive by Lemma 2.2.7 and Lemma 2.2.10 be-
cause Sheh = 1 + Theh > 0 for each h ∈ {1, . . . , n}. Thus, by the above there is a
solution (x∗, μ∗) of Sx = μx with x∗ > 0, μ∗ > 0 and such that properties (a) - (c) hold
with respect to this solution. Obviously, Tx∗ = λ ∗x∗ for λ ∗ = μ∗ − 1 and λ ∗ > 0. This
shows property (a) for T. If λ ∗x ≤ Tx for x ≩ 0 then μ∗x = (λ ∗ + 1)x ≤ Sx and we
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50 | 2 Concave Perron–Frobenius theory

obtain x = rx∗ for some r > 0. This shows property (b) for T. In the same way property
(c) does follow for T.

(iii) If Tx = λ x with x ∈ ℝn ∖ {0}, λ ∈ ℝ then by assumption

|λ ||x| = |λ x| = |Tx| ≤ T|x|.
Property (a) of part (ii) implies that |λ | ≤ λ ∗. Suppose now |Tpx| < Tp|x| for some p
and all x ̸= |x| and let Tx = λ x with x ∈ ℝn ∖ {0} and λ ∈ ℝ such that |λ | = λ ∗. Then
λ ∗|x| = |Tx| ≤ T|x| and by property (b) of part (ii) we have that |x| = rx∗ for some
r > 0. If x ̸= |x| then rλ ∗px∗ = λ ∗p|x| = |λ px| = |Tpx| < Tp|x| = rTpx∗ = rλ ∗px∗ – a
contradiction. Thus, we must have x = |x| which implies λ x = Tx = T|x| = λ ∗|x| = λ ∗x
and, hence, λ = λ ∗.

By the following exampleswe shall illustrate some of the assumptions and statements
made in Theorem 2.3.8.

Examples 2.3.9. (i) Consider the mapping T : ℝ2 → ℝ2 defined by Tx = (min{2x1 +
x2, x1 + 2x2}, x1 + x2). T maps ℝ2

+ into itself and restricted to ℝ2
+ the mapping is con-

cave, positively homogeneous, indecomposable and even primitive. The eigenvalue
problem Tx = λ xmeans min{2x1 + x2, x1 + 2x2} = λ x1 and x1 + x2 = λ x2.

For x1 ≤ x2 this means 2x1 + x2 = λ x1 and x1 + x2 = λ x2. As eigenvalues and
related eigenvectors inℝ2 one obtains in this case (up to a scalar for eigenvectors)
λ1 = 1

2 (3 + √5)with x1 = −( 12 (1 + √5), 1) and λ2 = 1
2 (3−√5)with x2 = ( 12 (1−√5), 1).

For x1 > x2 the eigenvalue problem amounts to x1 + 2x2 = λ x1 and x1 + x2 = λ x2,
that is λ3 = 1 + √2 with x3 = (√2, 1) and λ4 = 1 − √2 with x4 = (√2, −1).

The (essentially) unique positive solution of the eigenvalue problem according to
Theorem 2.3.8 is given by λ ∗ = 1 + √2 with x∗ = (√2, 1). It holds that |λ2| ≤ λ ∗ and|λ4| ≤ λ ∗ but |λ1| > λ ∗. Indeed, the corresponding assumption in (iii), viz. |Tx| ≤ T|x|,
is not fulfilled since, e.g., for x = (−1, 0) one has Tx = (−2, −1) but T|x| = (1, 1).

(ii) The next example addresses the strict dominance of λ ∗ according to part (iii)
of the Theorem. Let T : ℝ2 → ℝ2 be defined by

Tx = { (x1 + x2)(1, 1) for x ∈ ℝ2
+(x1 − x2)(−1, 1) for x ̸∈ ℝ2
+.

Obviously, T : ℝ2
+ → ℝ2

+ is concave, positively homogeneous, indecomposable and
even primitive. The eigenvalue problem Tx = λ x amounts for x ∈ ℝ2

+ to x1 + x2 = λ x1
and x1 + x2 = λ x2 and, hence, λ1 = 2 with x1 = (1, 1). For x ̸∈ ℝ2

+ the eigenvalue
problem amounts to x1 − x2 = −λ x1 and x1 − x2 = λ x2 and, hence, λ2 = 0 with
x2 = (1, 1) and λ3 = −2 with x3 = (1, −1). The unique positive solution according
to the Theorem is given by λ ∗ = 2 and x∗ = (1, 1) (up to a positive scalar). It holds
that |λ2| ≤ λ ∗ and |λ3| ≤ λ ∗ and, indeed, the corresponding assumption of part (iii)
is fulfilled because for x ̸∈ ℝ2

+, |Tx| = |x1 − x2|(1, 1) ≤ (|x1| + |x2|)(1, 1) = T|x|.
Strict dominance, however, does not hold for λ ∗ since λ3 ̸= λ ∗ and |λ3| = λ ∗. The

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:17 PM



2.3 Concave operators which are positively homogeneous | 51

corresponding assumption of part (iii) is not fulfilled because, e.g., for x = (1, −1) one
has x ̸= |x| but |Tx| = (2, 2) = T|x|.

(iii) A non-linear operator T : ℝ2 → ℝ2 for which all assumptions of the Theo-
rem are satisfied is given by

Tx = { (x1 + x2)(1, 1) for x ∈ ℝ2
+

1
2 (x1 + x2)(1, 1) for x ̸∈ ℝ2

+.
T is not linear because, for x ∈ ℝ2

+ ∖ {0}, T(−x) = 1
2 (x1 + x2)(1, 1) = 1

2Tx ̸= −Tx.
Obviously, T : ℝ2

+ → ℝ2
+ is concave, positively homogeneous, indecomposable and

even primitive. For x ̸∈ ℝ2
+ one has |Tx| = 1

2 (|x1 + x2|)(1, 1) < (|x1| + |x2|)(1, 1) = T|x|
and, obviously, |Tx| ≤ T|x| for x ∈ ℝ2

+. For eigenvalues and eigenvectors, respectively,
one obtains for x ∈ ℝ2

+ λ1 = 2 with x1 = (1, 1) and for x ̸∈ ℝ2
+ λ2 = 0 with x2 = (1, −1)

and λ3 = 1 with x3 = (−1, −1). Thus, λ ∗ = 2 and x∗ = (1, 1) (up to a positive scalar)
and |λi| ≤ λ ∗ with |λi| < λ ∗ for λi ̸= λ ∗, according to the Theorem.

Remarks 2.3.10. Hilbert’s metric (cf. Definition 2.1.8) was initially introduced by
Hilbert [23] in his investigations on the foundations of geometry for convex bodies
in finite dimensional space. Sometimes this metric has been also associated with
the names of A. Cayley and F. Klein. Birkhoff [5] applied this metric to cones in
infinite dimensions and to linear operators mapping a cone into itself. (See also
Ostrowski [52].) About the same time Samelson [57] used the Cayley–Hilbert met-
ric to give a short proof of Perron’s theorem on positive matrices. Hilbert’s metric
then became a useful tool to investigate, in finite as well as in infinite dimensions,
linear operators as well as non-linear ones which leave a cone invariant. See, e.g.,
[6, 14, 28–30, 34, 63, 65] and, in particular, in [48] and [49]. For the extension of var-
ious parts of classical Perron–Frobenius theory to certain non-linear mappings see
[13, 26, 37, 42, 44, 47, 48, 50, 51, 63]. The concave version of Perron–Frobenius theory
as presented in this chapter has its roots in [29, 30, 35]. In Chapter 3 wewill come back
in a more general setting to Hilbert’s metric and other metrics intrinsic to a cone.

In the next section we shall see how many statements of the common linear Perron–
Frobenius Theory appear as special cases of the results we obtained for concave oper-
ators.

Exercises

1. Demonstrate for the mapping T : ℝ2
+ → ℝ2

+, T(x1, x2) = (√x1 + √x2, √x1 + √x2)
the following properties.
(a) T is concave, primitive but not positively homogeneous and the conditional

eigenvalue problem Tx = λ x, λ ≥ 0, ‖x‖ = 1 (‖ ⋅ ‖ the sum-norm) has a unique
solution λ ∗ > 0, x∗ > 0.

(b) The limit Sx = lim
k→∞

Tkx
λ ∗k exists and Sx = 0 for all x ∈ ℝ2

+.
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52 | 2 Concave Perron–Frobenius theory

(c) Statement (ii) of Theorem 2.3.1 does not apply to T.
2. Let T : ℝ2

+ → ℝ2
+ be defined by

T(x1, x2) = [[
1
4

3
4

3
4

1
4

]] [ x1
x2

] .
(a) Compute the unique solution λ ∗ > 0, x∗ > 0 (‖x∗‖ = 1 for the sum-norm)

for T.
(b) Compute Sx = lim

k→∞

Tkx
λ ∗k directly from the iterates Tk.

(c) Verify statement (ii) of Theorem 2.3.1 directly by computing the iterates Tk.
3. LetT : ℝ2

+ → ℝ2
+, T(x1, x2) = ( 13x1 + 2

3x2, 2
3x1 +

1
3x2) and r : ℝ2

+ → ℝ2
+, r(x1, x2)=

x1+x2
max{x1 ,x2}

for x ≩ 0, r(0) = 0. (See Example 2.3.7).
(a) Calculate explicitly the iterates Tk.
(b) Use (a) to calculate the iterates Rkx = r(Tk−1x) . . . r(Tx)r(x)Tkx.
(c) Determine the limit Sx = lim

k→∞

Rkx
2k .

4. Consider a concave operator T : ℝn
+ → ℝn

+ which is primitive and positively ho-
mogeneous and such that there exists some concave operator T : ℝn

+ → ℝn
+ with

the property that ⟨Ty, x⟩ = ⟨y, Tx⟩holds for all x, y ∈ ℝn
+. (⟨u, v⟩ = ∑n

i=1 uivi denotes
the inner product inℝn.) Show that the operator Sx = lim

k→∞

Tkx
λ ∗k can be computed as

Sx = ⟨x̄,x⟩
⟨x̄,x∗⟩x

∗ for all x ∈ ℝn
+ with a fixed vector x̄ ∈ ℝn

+ ∖{0} and (x∗, λ ∗) the solution
according to Theorem 2.3.1.

5. For finitely many non-negative matrices A(k) = (aij(k))1≤i,j≤n, 1 ≤ k ≤ m consider
the operator T : ℝn

+ → ℝn
+ defined by

Tix = min
1≤k≤m

n∑
j=1

aij(k)xj for 1 ≤ i ≤ n.
(a) Show that T is concave and positively homogeneous.
(b) Find conditions on the matrices such that T is primitive.
(c) Apply Theorem 2.3.1 to the special case where A(1) = [ 2 1

1 0 ],
A(2) = [ 1 2

3 0 ].
Calculate the solution (x∗, λ ∗) (for the sum-norm) and check whether the op-
erators are linear.

6. Find an operator T : ℝ2
+ → ℝ2

+ which is concave, ray preserving and primitive
and for which, however, part (ii) of Theorem 2.3.8 does not hold.

7. Checkassumptions and statements of Theorem2.3.8 for the operatorT : ℝn → ℝn

given by Tx = A|x| where A is a (strictly) positive n × n-matrix.
8. Let T be a continuous and monotone selfmapping of ℝn

+ which maps ℝn
+ into its

interior and for which it holds that T(λ x) > λTx for 0 < λ < 1 and x ∈ intℝn
+.
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2.4 A special case: Linear Perron–Frobenius theory | 53

(a) Show that T has a unique fixed point x∗ ∈ int ℝn
+ with lim

k→∞
Tkx0 = x∗ if x0 ∈

intℝn
+ with Tx

0 ≤ x0.
(b) Find an example which satisfies the general assumptions and for which con-

dition and conclusion in (a) do not hold. (Cf. [25, Appendix B].)

2.4 A special case: Linear Perron–Frobenius theory

LetA ∈ ℝn×n
+ orA ≥ 0 denote a real n×n-matrixwhich is non-negative, i.e. all entries aij

of A are non-negative. The mapping T : ℝn
+ → ℝn

+ defined by Tx = Ax, where x is un-
derstood to be a column vector, is concave, positively homogeneous and continuous.
Because of Tiej = aij the operator T is indecomposable in the sense of Definition 2.2.6
iff for any index set 0 ⫋ I ⫋ {1, . . . , n} there exist indices i ∈ I and j ̸∈ I such that aij > 0.
A non-negative matrix enjoying the latter property is called indecomposable or irre-
ducible. Also, T is weakly indecomposable in the sense of Definition 2.2.6 if for any
two indices 1 ≤ i, j ≤ n there exists some p = p(i, j) ∈ ℕ such that the (i, j)-entry of the
matrix power Ap is strictly positive. As already remarked (see also Exercises below),
this property is equivalent to the indecomposability of A. Furthermore, T is primitive
in the sense of Definition 2.2.9 if there exist some p ∈ ℕ such that Am > 0 for allm ≥ p
or, equivalently, Ap > 0. Such a matrix is called primitive. Here B > 0 for a matrix B
means that all entries of B are strictly positive.

By specializing results of the previous section we arrive at the following state-
ments of classical Perron–Frobenius Theory involving the dominant eigenvalue λ ∗

of a non-negative matrix.

Theorem 2.4.1 (Classical Perron–Frobenius Theorem). Let A be a non-negative n × n-
matrix.
(i) A has a maximal non-negative eigenvalue λ ∗ and there exists x∗ ≩ 0 such that

Ax∗ = λ ∗x∗.
(ii) For A indecomposable the following statements hold.

(a) For λ ∗ as in (i) one has λ ∗ > 0 and there exists x∗ > 0 such that Ax∗ = λ ∗x∗.
Furthermore, if Ax = λ x for some x ≩ 0 then λ = λ ∗ and x = rx∗ with r > 0.

(b) If λ x ≤ Ax for some x ≩ 0 then λ ≤ λ ∗.
If λ ∗x ≤ Ax for some x ≩ 0 then x = rx∗ with r > 0.

(c) If λ is a real eigenvalue of A then |λ | ≤ λ ∗.
(iii) For A primitive the following statements hold.

(a) If λ is a real eigenvalue of A different from λ ∗ then |λ | < λ ∗.
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54 | 2 Concave Perron–Frobenius theory

(b) The dominant eigenvalue λ ∗ and its eigenvector x∗ with ‖x∗‖ = 1 can be ob-
tained as limits of the iterates by

lim
k→∞

Akx‖Akx‖ = x∗ and lim
k→∞

‖Ak+1x‖‖Akx‖ = lim
k→∞

‖Akx‖ 1
k = λ ∗

for arbitrary x ≩ 0 and any monotone norm ofℝn.
(c) Let B be the matrix with entries bij = x∗i x̄j where x

∗ and x̄ are positive vectors
such that Ax∗ = λ ∗x∗, Ax̄ = λ ∗x̄ and ∑n

i=1 x
∗
i x̄i = 1 (A being the transposed

matrix of A). Then there holds

lim
k→∞

Ak

(λ ∗)k = B.
Proof. (i) follows fromTheorem2.1.14. Statements (a) and (b) of (ii) follow frompart (ii)
of Theorem 2.3.8; statement (c) of (ii) follows from part (iii) of Theorem 2.3.8. The latter
also yields statement (a) of part (iii) because Ap > 0 for some p by assumption and,
hence, Apx < Ap|x| for all x ∈ ℝn with x ̸= |x|. Statement (b) of part (iii) follows from
Theorem 2.3.1 part (ii). Part (i) of Theorem 2.3.1 yields lim

k→∞

Ak

λ ∗k = Bwith a non-negative
matrix B such that BA = AB = λ ∗B and BB = B. From AB = λ ∗B it follows that the j-th
column of Bmust be rjx∗ for some rj > 0. For the column vector x̄ with components rj
equation BA = λ ∗B implies that Ax̄ = λ ∗x̄ and BB = B implies that∑n

i=1 x
∗
i x̄i = 1. This

proves statement (c) in part (iii) of Theorem 2.4.1.

In addition to the statements given by Theorem 2.4.1 there are many more results con-
sidering eigenvalue problems for non-negative matrices. In particular, interesting re-
sults are available concerning complex eigenvalues and thedecomposability structure
of thematrix (cf. [2, 19, 41, 66]). Since these issues, however, are less closely related to
our concave framework we will not consider it here. Instead we like to point out some
features of Linear Perron–Frobenius Theory connectedwith Theorem2.4.1which seem
to have received less attention in the linterature.

Usually the assumption of indecomposability for a non-negative matrix is made
to guarantee that Ax = λ x has a unique (up to a scalar) strictly positive solution
x∗ > 0, λ ∗ > 0. To get this property, however, indecomposability is by no means
necessary (see Exercise 2 below) . Actually, many properties derived usually for inde-
composablematrices can be otained underweaker conditions (Exercise 1). By employ-
ing the Gantmacher or Frobenius normal form of a non-negative matrix (cf. [1, 19]) it
can be shown that the eigenvalue problem has a unique strictly positive solution iff
the matrix is what is called a Sraffa matrix (cf. [36]).

Furthermore, primitivity is commonly assumed to obtain the results on limits of
the iterates as in part (iii) of Theorem 2.4.1. Again, for these results primitivity is a suf-
ficient but not a necessary condition (see Exercises 1 and 2). In case A is assumed to be
indecomposable, however, it can be easily shown that lim

k→∞

Ak

λ ∗k exists iff A is primitive.
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Linear Perron–Frobenius Theory is commonly thought to be a theory aboutmatri-
ces which are non-negative. There are, however, many matrices having some entries
negative to which many statements of this theory also apply. For example, to the ma-
trix A = [ 2 2

2 −1 ] all the statements of Theorem 2.4.1 do apply (Exercise 3; see also [14]).
That thismatrix has a negative entrymeans that the linearmapping defined by it does
notmap the convex coneℝ2

+ into itself. There are, however, other convex cones as, e.g.,
K = {(x1, x2) ∈ ℝ2

+ | x2 ≤ 2x1}, which this mapping leaves invariant. By developing a
linear Perron–Frobenius Theory for mappings leaving other cones than ℝn

+ invariant
the realm of applicability of this theory can be considerably extended (cf. [1, 14, 59]).
This point of view we will adopt in the chapters which follow where non-linear map-
pingswill be consideredwhich leave invariant some convex conewithin a real Banach
space.

Concerning our method of proof, the main idea was to show for the operator in
question that it is contractive or a contraction with respect to Hilbert’s projective met-
ric on the convex cone ℝn

+. This idea we shall pursue also in the following chapters
with respect to certain non-linear operators on a convex conewithin aBanach space. It
seems remarkable that this goal cannot be achieved by employing instead of Hilbert’s
projective metric a metric induced by a norm on the vector space under considera-
tion. This is already the case in very simple situations. Consider, e.g., the linear op-
erator T : ℝ2

+ → ℝ2
+ defined by the matrix A = [ 1 1

1 6 ] (cf. [16]). As it is clear from
Remark 2.1.12 the operator given by T̃x = Ax

‖Ax‖ for x ≩ 0 and ‖ ⋅ ‖ being the sum norm is
a contraction for Hilbert’s metric d, i.e., d(T̃x, T̃y) ≤ cd(x, y), with a contraction factor
c = 1 − min{ TjeiTje

| ≤ i, j ≤ n} = 1 − min{ 12 , 17 , 67 } = 6
7 < 1. Considering, however,

any (semi-) norm ||| ⋅ ||| on ℝ2 and the metric m induced by it one finds for the points
x = (1, 0) and y = (0.99, 0.01) inℝ2

+ that

m(T̃x, T̃y) = |||T̃x − T̃y||| = 5
4.01 |||(0.01, −0.01)||| = 5

4.01m(x, y) > m(x, y).
Thus, there is no norm induced metric on ℝ2

+ for which the operator is T̃ is a con-
traction.

In concluding this sectionwe shall shortly discusswhat seems tobe thefirst exten-
sion of the Perron–Frobenius theory to non-linear mappings (cf. Remark 2.1.17). Con-
cerning balanced growth of an economy the economists P. A. Samuelson andM. Solow
prove in [62] relative stability for a selfmapping T of K = ℝn

+ which is continuous,
positively homogeneous and strictly increasing, i.e., x ≨ y implies Tx < Ty. Rela-
tive stability means that lim

t→∞
xi(t)
ui(t)

= c(x(0)) for all 1 ≤ i ≤ n where u(t) = (λ ∗)tx∗ is
the balanced growth path and x(t) = Ttx(0) is any actual growth path. This nice re-
sult has been generalized by a “Japanese School” of economists. M. Morishima [43,
Theorem 10, p. 206]and H. Nikaido [47, Theorem 10.7, p. 160] show that relative stabil-
ity holds for T continuous, positively homogeneous, monotone, MN-indecomposable
and primitive in 0 and x∗. If, moreover, T is globally primitive then x(0) ≨ x(0) im-
plies c(x(0)) < c(x(0)) ([43, Theorem 11, p. 207]). (See also Section 2.2 and Exercise 8
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56 | 2 Concave Perron–Frobenius theory

there.) Further interesting contributions in this direction are by T. Fujimoto and Y. Os-
hime [13, 44, 50]. Relative stability in the sense of lim

t→∞
x(t)
‖x(t)‖ = x∗ for all x(0) ∈ K ∖ {0} is

shown in [14] (see also [28, 29, 32]) for T strictly increasing and satisfying some weak
from of homogeneity and in [51] for T continuous, positively homogeneous, mono-
tone, primitive and (power) real analytic. All these results do not employ concavity but
continuity (to apply Brouwer’s fixed point theorem) and homogeneity which excludes
affin-linear maps (which are covered by the first concave Perron–Frobenius theorem).
The methods used to develop concave Perron–Frobenius theory we will extend later
on in Chapter 5 to ascending selfmappings in infinite dimensions which need not be
concave and not even monotone.

Exercises

1. Examine the non-negative matrix A = [ a 0
a 1 ], where 0 ≤ a < 1, with respect to the

statements of Theorem 2.4.1
(a) Show that all three statements of part (ii) hold for the decomposable matrix

Awith the exception of x∗ > 0.
(b) Show that all three statements of part (iii) hold forA, thoughA is not primitive.

(Take ‖ ⋅ ‖ to be the sum norm.)
(c) Show that the linear mapping defined by A is not a contraction for Hilbert’s

metric.
(d) Find a non-negative matrix P such that PAP−1 is a strictly positive matrix.

2. Let A = [ a 0
b c ] be such that a, c ≥ 0 and b > 0.

(a) Show that Ax = λ x possesses a unique positive solution x∗ > 0, λ ∗ > 0 (up to
a scalar for x∗) if and only if c < a.

(b) Examine Awith respect to the statements of Theorem 2.4.1 (Take ‖ ⋅ ‖ to be the
sum norm.)

3. Consider the matrix A = [ 2 2
2 −1 ] which is not non-negative.

(a) Show that all three statements of part (ii) of Theorem 2.4.1 hold true for A.
(b) Verify that An = 3nB + (−2)nC with B = 1

5 [ 4 2
2 1 ] and C = 1

5 [ 1 −2
−2 4 ].

(c) Use (b) to show that all three statements of part (iii) of Theorem 2.4.1 hold true
for A. (Take ‖ ⋅ ‖ to be the sum norm.)

4. Show that for any A ∈ ℝn×n
+ the dominant eigenvalue λ ∗ satisfies the inequalities

min
1≤i≤n

n∑
j=1

aij ≤ λ ∗ ≤ max
1≤i≤n

n∑
j=1

aij

and that these inequalities are strict if A is indecomposable with row sums not all
equal.

5. Show that a matrix A ∈ ℝn×x is indecomposable if and only if it is weakly inde-
composable.
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2.5 Applications to difference equations of concave type | 57

6. Work out a direct proof for part (iii) of Theorem 2.4.1 by employing Hilbert’s pro-
jective metric similar to the proof of Theorem 2.1.11.

2.5 Applications to difference equations of concave type

Consider the difference equation

u(t + n) = f (u(t), u(t + 1), . . . , u(t + n − 1)) (2.5.1)

of order n ≥ 1 where t ∈ ℕ, u(t) ∈ ℝ+ and f : ℝn
+ → ℝ+.

The function f defines in a canonical way a particular discrete dynamical system
T : ℝn

+ → ℝn
+ by Tx = (x2, . . . , xn, f (x)) for x = (x1, . . . , xn). To apply results of the

previous sections to this system we need to find conditions on f which guarantee that
T is indecomposable and primitive, respectively.

Lemma 2.5.1. For an arbitrary function f : ℝn
+ → ℝ+, n ≥ 2, the discrete dynamical

system T defined by f is indecomposable iff f (e1) > 0, where ei denotes the i-th unit
vector.

Proof. Suppose first that T is indecomposable and let I = {2, . . . , n}. By Definition 2.2.6
there exists some i ∈ I such that Tie1 > 0, Ti being the i-th component function of T.
Since Tie1 = 0 for 1 ≤ i ≤ n − 1 we must have that f (e1) = Tne1 > 0. Conversely,
suppose that f (e1) > 0 and consider 0 ⫋ I ⫋ {1, . . . , n}. Let k be the smallest number
in I. For k = n we have Tke1 = f (e1) > 0 where k ∈ I and 1 ̸∈ I. If k < n and there
exists some i ∈ I with k ≤ i < n such that i + 1 ̸∈ I then Tiej = 1 > 0 where i ∈ I and
j = i + 1 ̸∈ I. As the remaining case we have to consider k < n where for any i ∈ I with
k ≤ i < n it holds that i + 1 ∈ I. In other words, I = {k, k + 1, k + 2, . . . , n} where k ≥ 2.
In this case Tne1 = f (e1) > 0 where n ∈ I, 1 ̸∈ I.
FromTheorem2.3.8weobtain the following consequence fordifference equation (2.5.1)
with characteristic equation

λ n = f (1, λ , λ 2, . . . , λ n−1) for λ ∈ ℝ+.
Theorem 2.5.2. Assume that f : ℝn

+ → ℝ+ is concave and positively homogeneous with
f (e1) > 0.
(i) The characteristic equation has a unique strictly positive solution λ ∗.
(ii) For any given u(0) > 0 the function u(t) = λ tu(0), t ∈ ℕ, is a solution of the differ-

ence equation (2.5.1) iff λ = λ ∗.

Proof. Since statements (i) and (ii) hold trivially for n = 1 we assume n ≥ 2. (i) The
operator T : ℝn

+ → ℝn
+ defined by Tx = (x2, . . . , xn, f (x)) is concave, positively homo-

geneous and indecomposable by Lemma 2.5.1. By Theorem 2.3.8 there exist x∗ > 0 and
λ ∗ > 0 such that Tx = λ x holds for x ≩ 0 and λ ≥ 0 iff λ = λ ∗ and x = rx∗ with r > 0.
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58 | 2 Concave Perron–Frobenius theory

Equation Tx = λ x is equivalent to x2 = λ x1, x3 = λ x2, . . . , xn = λ xn−1 and f (x) = λ xn.
Positive homogeneity of f implies that λ = λ ∗ > 0 is a solution of the characteristic
equation f (1, λ , λ 2, . . . , λ n−1) = λ n. Conversely, for any solution λ ≥ 0 of this equation
by setting x = (1, λ , λ 2, . . . , λ n−1) we have that Tx = λ x and, therefore, λ = λ ∗.

(ii) By positive homogeneity of f the function u(t) = λ tu(0) is a solution of (2.5.1)
iff f (1, λ , λ 2, . . . , λ n−1) = λ n which by (i) means that λ = λ ∗.

Example 2.5.3. Consider the difference equation of second order given by

u(t + 2) = u(t) + √u(t)u(t + 1).
The function f : ℝ2

+ → ℝ+, f (x) = x1 + √x1x2 is concave, positively homogeneous
with f (e1) > 0. By Theorem 2.5.2 the characteristic equation 1 + √λ = λ 2 has a
unique solution λ ∗ > 0. Furthermore, for given initial conditions u(0), u(1) ≥ 0 the
resulting solution is of type u(t) = λ tu(0) with λ ≥ 0 if it is either constant zero or if
u(1) = λ ∗u(0). Thus, non-trivial solutions with constant growth rate must have initial
conditions u(0) > 0, u(1) = λ ∗u(0).
To handle the primitivity of T we employ the following comparison principle for so-
lutions of the difference equation.

Lemma 2.5.4. Let f : ℝn
+ → ℝ+ be monotone, i.e. 0 ≤ x ≤ y implies f (x) ≤ f (y), and

suppose there exist n1, . . . , nr ∈ {1, . . . , n} with r ≥ 2, n1 = 1 and gcd{n − n1 + 1, . . . , n −
nr + 1} = 1 such that the following strict monotonicity property holds:

0 ≤ x ≤ y and xni < yni for some 1 ≤ i ≤ r implies that f (x) < f (y) (2.5.2)

If u(⋅) and v(⋅) are two solutions of the difference equation (2.5.1) satisfying(u(0), . . . , u(n − 1)) ≨ (v(0), . . . , v(n − 1)) then u(t) ≤ v(t) for all t ∈ ℕ and there ex-
ists some t0 ∈ ℕ, independently of u, v, such that u(t) < v(t) for all t ≥ t0.

Proof. Obviously, by induction equation (2.5.1) yields u(t) ≤ v(t) for all t ∈ ℕ.
(i) that u(k) < v(k) for some k ≥ ni − 1 implies that u(k + qmi) < v(k + qmi) for all

q ∈ ℕ. For k = ni − 1 + l, l ∈ ℕ, we have that u(k + mi) = u(l + n) = f (u(l), . . . , u(l +
n − 1)). For u(l + ni − 1) < v(l + ni − 1) the strong monotonicity property (2.5.2) yields

f (u(l), . . . , u(l + n − 1)) < f (v(l), . . . , v(l + n − 1)),
that is, u(k + mi) < v(k + mi). By iterating this argument we arrive at

u(k + qmi) < v(k + qmi) for all q ∈ ℕ.
(ii) By assumption there exists some 0 ≤ j ≤ n − 1 with u(j) < v(j). Since j ≥ 0 =

n1 − 1 step (i) yields
u(j + q1m1) < v(j + q1m1) for all q1 ∈ ℕ.
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2.5 Applications to difference equations of concave type | 59

For q1 ≥ 1 we have k = j + q1m1 ≥ m1 = n ≥ n2 − 1 and applying step (i) again yields
u(j + q1m1 + q2m2) < v(j + q1m1 + q2m2) for all q1 ≥ 1, q2 ∈ ℕ.

By iterating step (i) in this way we obtain

u(j + q1m1 + ⋅ ⋅ ⋅ + qrmr) < v(j + q1m1 + ⋅ ⋅ ⋅ + qrmr) for all q1 ≥ 1, qi ∈ ℕ. (∗)
Now, by assumption gcd{m1, . . . ,mr} = 1 and, therefore, 1 = ∑r

i=1 limi with li ∈ ℤ.
Define d = ∑r

i=1 |li|mi and t0 = j + n + d2. For t ≥ t0 we have that d2 ≤ t − j − n = qd + s
with q ∈ ℕ, 0 ≤ s < d and, hence, d < q + 1. It follows that

t − j − n = qd + s ⋅ 1 =
r∑
i=1
(q|li| + sli)mi

where q|li| + sli ∈ ℕ because of q > d − 1 ≥ s. Thus, t = j + q1m1 + ⋅ ⋅ ⋅ + qrmr with
q1 ≥ 1, qi ∈ ℕ and from (∗) we obtain u(t) < v(t) for t ≥ t0. Since d does not depend
on u and v, t0 can be chosen independent of u, v as n − 1 + n + d2.

Remark 2.5.5. For the comparison principle to hold it is not sufficient to require f to
bemonotone and strictly increasing in just one component as can be seen from Exam-
ple 2.5.3 (see also Exercise 1).

Using Lemma 2.5.4 from Theorem 2.3.1 the following result for difference equations
follows.

Theorem 2.5.6. Let f : ℝn
+ → ℝ+ be concave, positively homogeneous and suppose

there exist n1, . . . , nr ∈ {1, . . . , n} with r ≥ 2, n1 = 1 and gcd{n − n1 + 1, . . . , n − nr +
1} = 1 such that 0 ≤ x and 0 < xni for some 1 ≤ i ≤ r implies 0 < f (x). Then the
characteristic equation of difference equation (2.5.1) has a unique strictly positive root
λ ∗ and the following statements hold.
(i) Every solution u(⋅) of equation (2.5.1) with initial conditions ū = (u(0), . . . , u(n − 1))

is relatively stable, i.e.,
lim
t→∞

u(t)
λ ∗t

= s(ū)
where the function s : ℝn

+ → ℝ+ is concave, positively homogeneous and satisfies
s(x) > 0 for x ≩ 0, s(x2, . . . , xn, f (x)) = λ ∗s(x) for x ∈ ℝn

+ and s(1, λ ∗, . . . , λ ∗(n−1)) = 1.
(ii) Every solution u(⋅) of equation (2.5.1) which is not constant zero grows asymptoti-

cally with the same factor λ ∗, i.e.,

lim
t→∞

u(t + 1)
u(t) = lim

t→∞
u(t) 1t = λ ∗.

Proof. By assumption in particular f (e1) > 0 and, hence, by Theorem 2.5.2 the char-
acteristic equation has a unique strictly positive root λ ∗. Furthermore, the operator
T : ℝn

+ → ℝn
+ defined by Tx = (x2, . . . , xn, f (x)) is concave and positively homoge-

neous. Concavity of f together with positive homogeneity imply for 0 ≤ x ≤ y that
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60 | 2 Concave Perron–Frobenius theory

f (y) = f ( 12 (2x) + 1
2 (2(x−y))) ≥ f (x) + f (y−x). Thus, the positivity assumptionmade for

f implies the strong monotonicity property (2.5.2) for f . For x = (u(0), . . . , u(n−1)) ≥ 0
we have by induction that Ttx = (u(t), . . . , u(t + n−1)) for all t ∈ ℕwhere u(⋅) is a solu-
tion of (2.5.1). For y = (v(0), . . . , v(n−1)) and x ≨ ywe, therefore, obtain by Lemma 2.5.4
that there exists some t0 ∈ ℕ such that Ttx < Tty for all t ≥ t0. In particular, T is prim-
itive and we may apply Theorem 2.3.1. For any solution u(⋅) of equation (2.5.1) with
initial conditions we obtain

Sū = lim
t→∞

(u(t)
λ ∗t

, u(t + 1)
λ ∗(t+1)

λ ∗, . . . , u(t + n − 1)
λ ∗(t+n−1)

λ ∗(n−1))
= s(ū)(1, λ ∗, . . . , λ ∗(n−1))

with s(ū) = lim
t→∞

u(t)
λ ∗t

.
This proves part (i) since the properties stated for S in Theorem 2.3.1 imply those for
s : ℝn

+ → ℝ+. Finally, part (ii) follows immediately from lim
t→∞

u(t)
λ ∗t = s(ū).

Examples 2.5.7. (i) Consider thedifference equation (2.5.1)where f is given as themin-
imum of finitely many linear functions by

f (x) = min
1≤i≤m

(ai1x1 + ⋅ ⋅ ⋅ + ainxn),
where the m × n-matrix A = (aij) is non-negative with a set J of at least two strictly
positive columns including the first one and gcd{n− j + 1 | j ∈ J} = 1. The assumptions
of Theorem 2.5.6 being satisfied it follows for any solution u(⋅) with initial conditions
ū that lim

t→∞
u(t)
λ ∗t = s(ū) where λ ∗ > 0 is the unique root of the characteristic equation

min
1≤i≤m

(ai1 + ai2λ + ⋅ ⋅ ⋅ + ainλ n−1) = λ n.
(ii) A special case of Example (i) is given by linear difference equations as, e.g.,

the Fibonacci difference equation

u(t + n) =∑
i∈I

u(t + i)
with a subset I of {0, . . . , n − 1} containing 0 and such that the set of numbers n − i
for i ∈ I is relatively prime. λ ∗ is given as the unique positive root of ∑i∈I λ

i = λ n.
The common Fibonacci difference equation u(t + 2) = u(t) + u(t + 1) represents the
special case where n = 2, I = {0, 1} and λ ∗ is the unique positive root of 1 + λ = λ 2. In
this particular case, the asymptotic statementsmadebyTheorem2.5.6 canbeobtained
also directly from Binet’s formula (see Chapter 1.2).
Consider the difference equation given by the sum of arithmetic and geometric mean
as follows

u(t + n) = 1
n

n∑
i=1

u(t + i − 1) + ( n∏
i=1

u(t + i − 1)) 1
n .

The corresponding function f is concave and positively homogeneous with f (x) > 0
for x ≩ 0. For the unique positive root λ ∗ of the characteristic equation 1

n ∑n
i=1 λ

i−1 +
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2.5 Applications to difference equations of concave type | 61

λ
n−1
2 = λ n one has λ ∗ > 1 which implies in particular that all solutions different from

the zero-solution are unbounded.
(iii) The particular positivity assumption made in Theorem 2.5.6 for f is crucial

as can be seen from Example 2.5.3 or from the simple difference equation u(t + 4) =
1
2 (u(t) + u(t + 2)). In the latter case f (x1, x2, x3, x4) = 1

2 (x1 + x3) and gcd{4 − 1 +
1, 4 − 3 + 1} = 2 ̸= 1. The positive root of the characteristic equation 1

2 (1 + λ 2) = λ 4

is λ ∗ = 1. The solution for the initial conditions ū = (1, 2, 1, 2) is given by
u(t) = { 1, t even

2, t odd

and, hence, u(t)
λ ∗t does not converge for t →∞. Also, u(t+1)

u(t) does not converge, whereas
lim
t→∞

u(t) 1t = 1 = λ ∗.

Exercises

1. Show that the conclusion of the comparison principle (Lemma 2.5.4) does not hold
for u(t + 2) = u(t) + √u(t)u(t + 1), t ∈ ℕ, u(t) ∈ ℝ+.

2. Compute for the difference equation

u(t + 2) = u(t) + u(t + 1)
2

+ 27
4
√u(t)u(t + 1), t ∈ ℕ, u(t) ∈ ℝ+,

the unique positive root of the characteristic equation, and show that any solution
u(⋅) is either identically zero or unbounded.

3. Compute for the difference equation

u(t + 2) = min {1
8
u(t) + 1

4
u(t + 1), 1

10
u(t) + 2

5
u(t + 1)} , t ∈ ℕ, u(t) ∈ ℝ+,

the unique positive root of the characteristic equation, and show that all solutions
u(⋅) converge to 0.

4. Determine for the difference equation

u(t + 2) = u(t) + u(t + 1)
3

+ amin{u(t), u(t + 1)}, t ∈ ℕ, u(t) ∈ ℝ+,
the values of the parameter a ≥ 0 forwhich all solutions tend to 0 and all solutions
(except the zero-solution) are unbounded, respectively.

5. Check for the difference equation of Exercise 1 if any of the following statements
holds true for all positive solutions (λ ∗ being the unique positive root of the char-
acteristic equation):

– lim
t→∞

u(t)
λ ∗t

exists;
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62 | 2 Concave Perron–Frobenius theory

– lim
t→∞

u(t + 1)
u(t) = λ ∗;

– lim
t→∞

u(t) 1t = λ ∗.

6. Compute for the Fibonacci difference equation u(t + 2) = u(t) + u(t + 1), t ∈ℕ, u(t) ∈ ℝ+ the function s : ℝ2
+ → ℝ+ of Theorem 2.5.6.

2.6 Relative stability in the concave Leslie model

As an application of concave Perron–Frobenius Theory we consider a concave version
of the density dependent Leslie model discussed in Section 1.2. According to equa-
tion (1.2.7) the model is in the autonomous case given by

x(t + 1) = T(x(t)) for t ∈ ℕ, (2.6.1)

where for x ∈ ℝn
+,

Tx = L(x)x and L(x) =
[[[[[[[[[

b1(x) b2(x) . . . bn−1(x) bn(x)
s1(x) 0 . . . 0 0
0 s2(x) 0 0
...

...
. . .

...
...

0 0 . . . 0 sn−1(x) sn(x)

]]]]]]]]]
For the concave Leslie model we make the following assumptions:

(a) The mappings x → bi(x)xi and x → si(x)xi of ℝn
+ into ℝ+ are concave for all

1 ≤ i ≤ n.
(b) There exists k1, . . . , kr ∈ {1, . . . , n}, r ≥ 2, kr = n with gcd{k1, . . . , kr} = 1 such that

for all 1 ≤ i ≤ r
bki (x) > 0 for x ∈ ℝn

+ with xki > 0.
Furthermore, for all 1 ≤ i ≤ n − 1 suppose si(x) > 0 for x ∈ ℝn

+ with xi > 0.
(c) For any x ∈ ℝn

+ and any λ > 0 there exists a number c(x, λ ) such that bi(λ x) =
c(x, λ )bi(x) and si(λ x) = c(x, λ )si(x) for all 1 ≤ i ≤ n with xi > 0.

Assumption (a)means that for each age class thenumber of newborn and surviving in-
dividuals, respectively, grows with a non-increasing rate due to population pressure.
According to assumption (b), for non-empty age classes all survival rates are positive
(with thepossible exception of the last class) andbirth rates are positive for some spec-
ified selection of classes. Assumption (c) requires that a uniform population pressure
where each age class grows with the same factor does not affect the ratio of birth and
survival rates. It is clear that this concave Leslie model contains as a special case the
classical (linear) Leslie model.

From assumption (b) we will conclude later on that themapping T must be primi-
tive.Without primitivity results like Theorem 2.6.1 below cannot be expected, not even
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2.6 Relative stability in the concave Leslie model | 63

in the linear case as can be seen from the following example discussed already in [3].
Let Tx = Lx be given by the Leslie matrix

L =
[[[[
0 0 6
1
2 0 0
0 1

3 0

]]]]
.

Obviously, assumptions (a) and (c) are satisfied but not assumption (b). One has that
Tx∗ = λ ∗x∗ with x∗ ≩ 0, ‖x∗‖ = 1, λ ∗ ≥ 0 has a unique solution, namely x∗ =( 6
10 , 3

10 , 1
10 ) and λ ∗ = 1, but age structures do not approach x∗ as in Theorem 2.6.1.

Indeed, L3 is the identitymatrix, therefore L is not primitive, and there are population
waves as already observed by H. Bernardelli, that is every population path repeats
itself after three periods.

A solution t → x(t) of equation (2.6.1) is called a population path and it is normal-
ized if ∑n

i=1 xi(t) = 1 for all t ∈ ℕ. Any (non-zero) population path can be normalized
by x(t)

‖x(t)‖ which is called the age structure of the population path (where ‖x‖ = ∑n
i=1 |xi|

for x ∈ ℝn).
A population path has the uniform growth rate g if xi(t+1)−xi(t)

xi(t)
= g for all 1 ≤ i ≤ n,

all t ∈ ℕ with xi(t) > 0.
The following Theorem collects ourmain results for the concave Lesliemodel. The

properties 2.6.2 and 2.6.3 are sometimes referred to as relative stability.

Theorem 2.6.1. (i) There exists precisely one stationary age structure x∗ > 0 and for
every population path with x(0) ≩ 0 the age structure converges to x∗, that is

lim
t→∞

x(t)‖x(t)‖ = x∗. (2.6.2)

(ii) Suppose for the concave Leslie model that the vital rates do not increase with the
population level in the sense that for some 0 ≤ d ≤ 1 it holds for each 1 ≤ i ≤ n that
bi(λ x) = 1

λ 1−d bi(x) and si(λ x) = 1
λ 1−d si(x) for all λ > 0, all x ≥ 0 with xi > 0.

Then there exists a uniquely (up to a positive factor) determined population path x̂(t) =
x̂(0)(1 + g)t with uniform growth rate g and each population path x with x(0) ≩ 0 grows
finally uniformly with g, more precisely

lim
t→∞

xi(t)
x̂i(t) = c(x(0)) > 0 for all 1 ≤ i ≤ n. (2.6.3)

In particular,
lim
t→∞

‖x(t + 1)‖‖x(t)‖ = lim
t→∞

‖x(t)‖ 1
t = 1 + g. (2.6.4)

For d = 1 the path x̂ is determined by g = g∗ and x̂(0) = cx∗ for some c > 0
where x∗ and g∗ are uniquely determined by the eigenvalue problem Tx∗ = (1 + g∗)x∗,
x∗ ≥ 0, ‖x∗‖ = 1.

For 0 ≤ d < 1 the path x̂ is determined by g = 0, x̂(0) the unique non-zero fixed
point of T and in (2.6.3) holds c(x(0)) = 1 for all x(0) ≩ 0.
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64 | 2 Concave Perron–Frobenius theory

Proof. From assumption (a) for the concave Leslie model it follows that the mapping
T : ℝn

+ → ℝn
+, Tx = L(x)x is concave. Assumption (c) implies T(λ x) = λ c(x, λ )Tx for

all x ≥ 0, λ > 0 and, hence, T is ray preserving. By assumption (b) T is primitive as
will be shown towards the end of this proof.

(i) A stationary age structure is defined by x(t)
‖x(t)‖ = x∗ for all t ∈ ℕ for some x∗ ≩ 0

with ‖x∗‖ = 1. (Assuming without loss that x(t) ̸= 0 for all t ∈ ℕ.) Since T is ray
preserving it follows

‖x(1)‖x∗ = x(1) = Tx(0) = T(‖x(0)‖x∗) = λ Tx∗ for some λ  > 0.
Thus, Tx∗ = λ x∗ for some λ > 0.

Conversely, from Tx∗ = λ x∗ for some λ > 0 and some x∗ ≩ 0, ‖x∗‖ = 1 it follows
that x(t) = Ttx∗ = λ (t)x∗ for λ (t) > 0, all t ∈ ℕ. This implies x(t)

‖x(t)‖ = x∗ for all t ∈ ℕ.
Therefore, the stationary age structures correspond to the solutions x∗ of Tx∗ = λ x∗

with x∗ ≩ 0, ‖x∗‖ = 1 and λ > 0. Theorem 2.2.11 (and Remarks 2.2.12 (1)) yields that x∗

is uniquely determined, x∗ > 0 and lim
t→∞

x(t)
‖x(t)‖ = x∗ for all x(0) ≩ 0.

(ii) The assumptions made imply that c(x, λ ) = 1
λ 1−d independently of x and,

hence, T(λ x) = λ dTx, that is T is homogeneous of degree d. Consider first the case
d = 1. Then for any population path x Theorem 2.3.1 yields lim

t→∞
x(t)
λ ∗t = c(x(0))x∗ with

constant c(x(0)) > 0 for x(0) ≩ 0 and, in particular, lim
t→∞

‖x(t+1)‖
‖x(t)‖ = lim

t→∞
‖x(t)‖ 1

t = λ ∗.
Thereby, x∗ ≩ 0, ‖x∗‖ = 1, λ ∗ > 0 and Tx∗ = λ ∗x∗. Furthermore, Tx = λ x for
some x ≩ 0 and λ ≥ 0 implies x = rx∗ with r > 0 and λ = λ ∗. Obviously,
any path x̂ with uniform growth rate g satisfies x̂(t) = x̂(0)(1 + g)t. For such a
path lim

t→∞
x̂(0)(1+g)t

λ ∗t = c(x̂(0))x∗ and for x̂(0) ≩ 0 we must have 1 + g = λ ∗ and
x̂(0) = c(x̂(0))x∗. Putting g∗ = λ ∗ − 1 we have that g = g∗ and Tx∗ = (1 + g∗)x∗. This
also shows that, conversely, x̂(t) = cx∗(1 + g∗)t defines a path with uniform growth
rate for any c > 0. Finally, for any path x with x(0) ≩ 0 it holds that

lim
t→∞

xi(t)
x̂i(t) = lim

t→∞

xi(t)
cx∗i (1 + g∗)t = c(x(0))

c
= c(x(0)).

Consider now the case 0 ≤ d < 1. Then for any population path x with x(0) ≩ 0
Corollary 2.3.4 yields lim

t→∞
x(t) = x̄ where x̄ is the unique non-zero fixed point of T.

Thus, for a path x̂(t) = x̂(0)(1 + g)t with uniform growth rate and x̂(0) ≩ 0 we must
have g = 0 and x̂(0) = x̄. Conversely, x̂(t) = x̄ for all t ∈ ℕ defines a path with uniform
growth rate 0 because of Tx̄ = x̄. Furthermore, for any path x with x(0) ≩ 0 it holds
that

lim
t→∞

xi(t)
x̂i(t) = 1

x̄i
lim
t→∞

xi(t) = c(x(0)) for all i,
where c(x(0)) = 1. In particular, for any path x with x(0) ≩ 0

lim
t→∞

‖x(t + 1)‖‖x(t)‖ = lim
t→∞

‖x(t)‖ 1
t = 1 = 1 + g.
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Finally, it remains to show that T is primitive. For x ∈ ℝn
+ let m(x) be the minimum of

the numbers bki (x) with xki > 0, 1 ≤ i ≤ r and sj(x) with xj > 0, 1 ≤ j ≤ n − 1.
Let

L =

[[[[[[[[[[

a1 a2 . . . an
1 0 . . . 0

0
. . .

...
...
0 . . . 01 0

]]]]]]]]]]
,

where aj = 1 for j = ki with 1 ≤ i ≤ r and aj = 0 otherwise.
First we show by induction that for all k ≥ 1, x ≩ 0,

Tkx ≥ m(Tk−1x)m(Tk−2x) ⋅ ⋅ ⋅m(x)Lkx ≩ 0. (∗)
From the definition of T it follows Tx ≥ m(x)Lx andm(x)Lx ≩ 0 because ofm(x) >

0. Thus, (∗) holds for k = 1. If (∗) holds for k then
Tk+1x = Tk(Tx) ≥ m(Tkx)m(Tk−1x) . . .m(Tx)LkTx,

and using Tx ≥ m(x)Lx it follows that (∗) holds for k + 1.
Next we show that themapping induced by L is primitive which by (∗) implies the

wanted primitivity for T. Let ρ (x1, . . . , xn) = (xn, xn−1, . . . , x2, x1) andM the selfmapping
of ℝn

+ defined by Mx = (ρLρ )x. For f (x) = anx1 + an−1x2 + ⋅ ⋅ ⋅ + a1xn we have that
Mx = (x2, . . . , xn, f (x)). By assumption (b) of the concave Leslie model f satisfies the
assumptions of Lemma 2.5.4 if we set ni = n−kr+1−i + 1 for 1 ≤ i ≤ r. This Lemma yields
that for some t0 ∈ ℕ and x = (u(0), . . . , u(u − 1)) ≩ 0 it holds thatMtx = (u(t), . . . u(t +
n − 1)) > 0 for all t ≥ t0. Therefore, M is primitive and because of Lx = (ρMρ )x the
mapping for L is primitive, too.

The following example illustrates the various conclusions in Theorem 2.6.1, in partic-
ular part (ii), and makes a connection to what has been said previously in Section 1.2
about the Leslie model.

Example 2.6.2. Consider vital rates given for 1 ≤ i ≤ n, x ∈ ℝn
+ by

bi(x) = bix
d−1
i and si(x) = six

d−1
i if xi > 0

and bi(x) = bi, si(x) = si if xi = 0. Suppose 0 ≤ d ≤ 1, 0 < si for all 1 ≤ i ≤ n − 1, 0 ≤ sn
and 0 ≤ bi, 1 ≤ i ≤ n, such that there exist k1, . . . , kr ∈ {1, . . . , n}, r ≥ 2, kr = n with
gcd{k1, . . . , kr} = 1 and bki > 0 for 1 ≤ i ≤ r.

The functionsbi(x)xi = bixdi and si(x)xi = sixdi are concave in x onℝn
+. Furthermore,

bi(λ x) = c(x, λ )bi(x) and si(λ x) = c(x, λ )si(x)with c(λ , x) = 1
λ 1−d for all x ∈ ℝn

+, 1 ≤ i ≤ n
and λ > 0. Thus, the dynamical system given by (2.6.1) satisfies assumptions (a), (b),
(c) for the concave Leslie model. By Theorem 2.6.1 (i) the age structure of each popu-
lation path x with x(0) ≩ 0 converges to the unique stationary age structure x∗ > 0.
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66 | 2 Concave Perron–Frobenius theory

Evenmore can be said since for this example the assumptions of Theorem 2.6.1 (ii) are
satisfied.

Consider first the case d = 1. In that case bi(x) = bi and si(x) = si for 1 ≤ i ≤ n
and for any x one has L(x) = L where L is the classical (constant) Leslie matrix (cf.
Section 1.2). By Theorem 2.6.1 (ii) the matrix L has the dominant root λ ∗ = 1 + g∗ with
unique eigenvector x∗ > 0, ‖x∗‖ = 1. The reference path x̂ is (up to a positive factor)
given by x̂(t) = x∗(1 + g∗)t and for each population path x with x(0) ≩ 0 one has

lim
t→∞

xi(t)
x∗i (1 + g∗)t = c((x(0)) for all 1 ≤ i ≤ n

and

lim
t→∞

‖x(t + 1)‖‖x(t)‖ = lim
t→∞

‖x(t)‖ 1
t = 1 + g∗.

A special case is given by the Fibonacci model (1.2.1) of Section 1.2 which by inter-
changing the indices for the age classes we may represent also by the Leslie matrix
L = [ 1 1

1 0 ] instead of the Fibonacci matrix F = [ 0 1
1 1 ].

The assumptions of the concave Leslie model are satisfied for L(x) = L and we
obtain

λ ∗ = 1 + √5
2

, g∗ = √5 − 1
2

and x∗ = (1 + √5
3 + √5 , 2

3 + √5)
and for any population path x

lim
t→∞

x1(t)( 1+√52 )t+1 = lim
t→∞

x2(t)( 1+√52 )t =
2

3 + √5 c(x(0)).
In particular, lim

t→∞
x1(t)
x2(t)

= 1+√5
2 , which we now obtain without knowing the explicit

solution given by the Binet formula (1.2.3).
Consider next the case 0 ≤ d < 1. From Theorem 2.6.1 (ii) we obtain that each

population path must converge and lim
t→∞

x(t) = x̂ for x(0) ≩ 0. Thus, one only has to
find the unique non-zero fixed point x̂ of T. The condition Tx = L(x)x = xmeans that

n∑
i=1

bix
d
i = x1 and six

d
i = xi+1 for 1 ≤ i ≤ n − 2, sn−1xdn−1 + snx

d
n = xn.

The problem to determine x̂ can be reduced to determine x̂1 as the (strictly) positive
solution of the equation a1xd1 + a2xd

2

1 + ⋅ ⋅ ⋅ + anxd
n

1 = x1 with coefficients ai > 0
computable from the given coefficients bj and sj. With the exception of d = 0 this is,
however, a quite difficult task.

For 0 < d < 1 we illustrate the procedure in the special case given by n = 2, b1 = b2 =
1, s1 = 1, s2 = 0. Then Tx = x amounts to xd1 + xd2 = x1 and xd1 = x2. Eliminating x2
we obtain xd1 + xd

2

1 = x1 and xd
2−1

1 + xd−11 − 1 = 0 since we solve for a non-zero fixed
point. Putting y = xd(1−d)1 we obtain the non-linear equation y(1+

1
d ) − y − 1 = 0. This

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:17 PM
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equation has exactly one positive solution ŷ aswe knowon general grounds butwhich
also can be confirmed easily by direct computation. The dynamics x(t + 1) = Tx(t) in
this special case is given by x1(t + 1) = x1(t)d + x2(t)d and x2(t + 1) = x1(t)d or,
equivalently, by putting p(t) = x1(t), by the non-linear Fibonacci equation

p(t + 2) = p(t + 1)d + p(t)d2 for t ∈ ℕ, p(t) ≥ 0.
Obviously, for p(0), p(1) given this equation has a unique solution t → p(t) and by
the above we have that lim

t→∞
p(t) = p̂ with p̂ = x̂1 = ŷ

1
d(1−d) .

Remark 2.6.3. Aparticular kind of population pressure has been already analyzed by
P.H. Leslie in [38]; cf. also [21, 22, 24, 64]. The model amounts to Rx = r(x)Lx where L
is a (constant) Leslie matrix and r(x) = U

U+(r−1)‖x‖ .
Thereby, U measures environmental capacity, r is the dominant eigenvalue of L

and ‖x‖ = ∑n
i=1 xi for x ∈ ℝn

+. The mapping R is not concave but satisfies the assump-
tions of Corollary 2.2.14 which implies that for any non-zero path the age structure
converges to the unique stationary age structure. Non-concave Leslie models of the
type Rx = r(x)Tx, where Tx = L(x)x is a concave Leslie model but the scalar r(x)mea-
sures in addition some uniform population pressure, may be analyzed also with the
help of Corollary 2.3.4.

Other non-linear Leslie models Tx = L(x)x which are not concave have been stud-
ied in the literature, especially for vital rates of the type bi(x) = bi exp(−∑n

j=1 cjxj) and
si(x) = si exp(−∑n

j=1 djxj) with certain coefficients cj, dj ≥ 0. In contrast to the concave
model global properties as relative stability canno longer be expected, on the contrary,
chaotic behavior may occur as shown by computer simulations. Cf. [10, 20, 39, 53].

Exercises

1. Demonstrate for the concave Leslie model given by Tx = (√x1 + √x2, √x1) the
following properties.
(a) The eigenvalueproblemTx = λ xhas for every λ > 0auniquepositive solution

x = x(λ ).
(b) For every λ > 0

lim
t→∞

Ttx(λ ) = λ 2x(λ ).
(c) Explain why property (b) does not contradict Theorem 2.6.1 (ii) for d = 1

2 .

2. Consider the Leslie model given for n = 2 by the vital rates b1(x) = b1 + ( x2x1 )α
for x1 > 0 and b1(x) = b1 for x1 = 0, b2(x) = b2, s1(x) = s1, s2(x) = 0. Thereby,
b1, b2, s1 > 0 and 0 ≤ α ≤ 1.
(a) Show that by the above a concave Leslie model is defined.
(b) Compute for α = 1

2 the stationary age structure x∗ and the growth rate g∗

according to Theorem 2.6.1.
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68 | 2 Concave Perron–Frobenius theory

(c) Given a non-zero population path x derive a difference equation for y(t) = x1(t)
x2(t)

and show that y oscillates in approaching x∗1
x∗2
.

3. Consider for 0 < d < 1 the non-linear equation y1+
1
d − y − 1 = 0 in one real

variable y.
(a) Show that the equation has a unique positive root.
(b) Compute the root for d = 1

2 by Cardano’s formula.
(c) Determine for the non-linear Fibonacci equation

p(t + 2) = 1
2√p(t + 1) + 1

4√p(t), t ∈ ℕ, p(t) ≥ 0

the limit p̂ = lim
t→∞

p(t).

2.7 Price setting and balanced growth in a concave Leontief
model

As mentioned at the end of Section 1.4, concave Perron–Frobenius theory is useful
to handle price setting in a Leontief model with choice of techniques. As discussed
already in Section 1.4 the price settingmodeled by equation (1.4.2) specializes for time-
invariant technology sets Ai and constant real wages bi to

p(t + 1) = k(t)Tp(t), (2.7.1)

where T is a selfmapping of the coneℝn
+ given by Tp = c(p) with

ci(p) = inf{p(a + lbi) | (a, l) ∈ Ai} for 1 ≤ i ≤ n. (2.7.2)

Since ri(t) = pi(t+1)−ci(p(t))
ci(p(t))

is the rate of profit for producer i at time t equation 2.7.1
amounts to p(t + 1) = (1 + r(t))Tp(t) with r(t) = k(t) − 1 the uniform rate of profit
for all producers at time t. Obviously, the cost operator T is concave and positively
homogeneous and, as shown already in Section 1.4, by introducing relative prices
q(t) = p(t)‖p(t)‖−1, the positive discrete dynamical system (2.7.1) can be written as

q(t + 1) = T̃q(t), t ∈ ℕ, ‖q(0)‖ = 1, (2.7.3)

where the normalized cost operator T̃ is given by T̃q = Tq‖Tq‖−1 for Tq ̸= 0.
Using knowledge from concave Perron–Frobenius theory we obtain the following

results concerning the above price setting process.

Theorem 2.7.1. For the price setting process (2.7.1) with cost function (2.7.2) denote by
dij = inf{ai + lbji | (a, l) ∈ Aj} the minimal overall expenditure of good i in the production
of one unit of good j for 1 ≤ i, j ≤ n. If the matrix D = (dij) is indecomposable then the
following statements hold.

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:17 PM
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(i) There exists an equilibrium rate of profit r∗ > −1 with equilibrium prices p∗ > 0,‖p∗‖ = 1 such that p∗ = (1 + r∗)c(p∗). The equilibrium is unique, i.e., p = (1 + r)c(p)
for r ≥ −1 and p ≩ 0 implies r = r∗ and p = sp∗ for some s > 0.
Moreover

r∗ = min
p≩o

max
1≤i≤n

{pi − ci(p)
ci(p) ci(p) > 0} .

(ii) Assume in addition that for at least one good its overall expenditure is strictly posi-
tive. Then for any given initial prices p(0) ≩ 0 it holds that lim

t→∞
q(t) = p∗ for relative

prices q(t) = p(t)‖p(t)‖−1. Moreover,
lim
t→∞

((1 + r(t)) ‖p(t)‖‖p(t + 1)‖) = 1 + r∗,
in particular, lim

t→∞
r(t) = r∗ if absolute prices p(t) have a non-zero limit.

Proof. (i) From (2.7.2) we have that ci(ej) = inf{aj + lbij | (a, l) ∈ Ai} = dji. Therefore,
the mapping Tp = c(p) is indecomposable and parts (i) and (ii)(c) of Theorem 2.3.8
imply existence and uniqueness of r∗, p∗. Let s(p) = max

1≤i≤n
{ pi−ci(p)ci(p)

| ci(p) > 0} for p ≩ 0
and r = inf{s(p) | p ≩ 0}. From p∗ = (1 + r∗)c(p∗) it follows that s(p∗) = r∗ and
r ≤ r∗. Since (1 + s(p))c(p) ≧ p ≩ 0 from part (ii) (a) of Theorem 2.3.8 it follows that(1 + s(p))−1 ≤ (1 + r∗)−1 and, hence, r∗ ≤ s(p). This shows r∗ ≤ r and r∗ = r =
min{s(p) | p ≩ 0} because of s(p∗) = r∗.

(ii) Since T is positively homogeneous, concave, weakly indecomposable by
Lemma 2.2.7 and Theh = ch(eh) = dhh > 0 for some h, Theorem 2.2.11 yields that

q(t) = T̃tq(0) = T̃tq(0) = Ttq(0)‖Ttq(0)‖−1
converges to p∗ for t → ∞. Furthermore, p(t + 1) = (1 + r(t))c(p(t)) implies that
q(t + 1) = (1 + r(t)) ‖p(t)‖

‖p(t+1)‖c(q(t)) and, hence,
lim
t→∞

(1 + r(t) ‖p(t)‖‖p(t + 1)‖) c(p∗) = p∗ = (1 + r∗)c(p∗).
Remark 2.7.2. Concave Perron–Frobenius theory is applicable also in caseswhere the
cost function is different from the one considered in equation (2.7.2). For example, if
the (unit) cost function is given by a Cobb–Douglas technology, that is

ci(p) = ki
n∏
j=1

pαijj + liwi, 1 ≤ i ≤ n,
with constants ki > 0, αij ≥ 0 with ∑n

j=1 αij = 1, li > 0 and wi = pbi, bi > 0. The self-
mapping T of ℝn

+ given by Tp = c(p) is concave, positively homogeneous with Tp > 0
for p ≩ 0. Therefore, Theorem 2.2.11 applies and yields conclusions as those in Theo-
rem 2.7.1. (See Exercises 2 and 3 below.) For models of price setting similar to the one
considered the reader is referred to the references [15, 28, 29, 31, 33, 43] and the liter-
ature given therein.
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Concave Perron–Frobenius theory can be applied also to analyze balanced growth in
a non-linear closed model of production. (Such a model was first investigated in [62]
and in full detail subsequently in [43] and [47].)

A closed model of production is given by a mapping T ≡| 0 which transforms a
given input of goods into an output of the same goods. If x(t) ∈ ℝn

+ is the input in
period t then one period later output x(t + 1) ∈ ℝn

+ is produced and

x(t + 1) = Tx(t), for all t ∈ ℕ. (2.7.4)

A solution of (2.7.4) is called a balanced growth path x(⋅) if for all goods 1 ≤ i, j ≤ n
the ratio xi(t)

xj(t)
is constant over time. Equivalently, there exists a time dependent scalar

σ (t) > 0 such that x(t) = σ (t)x(0) for all t ∈ ℕ and σ (0) = 1.
Suppose the selfmapping T of ℝn

+ satisfies the homogeneity condition T(λ x) =
f (λ )Txwith some function f : ℝ+ → ℝ+. For a balanced growth path x(⋅)with x(0) ≩ 0
it follows that

σ (t + 1)x(0) = x(t + 1) = Tx(t) = T(σ (t)x(0)) = f (σ (t))Tx(0)
and, hence,

Tx(0) = λ ∗x(0) and σ (t + 1) = f (σ (t))λ ∗
for some λ ∗ > 0. Conversely, these conditions determine a balanced growth path and,
therefore, x(⋅) with x(0) ≩ 0 is a balanced growth path iff

x(t) = ht(1)x(0) for all t ∈ ℕ, and Tx(0) = λ ∗x(0), (2.7.5)

where h(λ ) = f (λ )λ ∗ and ht is the t-th iterate of the mapping h.

Theorem 2.7.3. For the growth model (2.7.4) let T be concave with T(λ x) = f (λ )Tx for
all λ ∈ ℝ+, x ∈ ℝn

+ and some function f : ℝ+ → ℝ+. Then there exists 0 ≤ d ≤ 1 with
f (λ ) = λ d, i.e., T is homogeneous of degree d, and the following statements hold.
(i) Let T be indecomposable. For d = 1 there exists a unique (up to a positive scalar)

non-zero balanced growth path, namely u(t) = (λ ∗)tu(0)where λ ∗ > 0 and u(0) > 0
satisfy Tu(0) = λ ∗u(0).
For 0 ≤ d < 1 there exists a unique non-zero fixed point x∗ of T, x∗ > 0 and u(⋅) is a
balanced growth path iff u(t) = λ −

dt
1−d x∗ for some λ > 0.

(ii) If, in addition, Theh > 0 for some h then any non-zero solution x(⋅) of (2.7.4) is rela-
tively stable, that is

lim
t→∞

xi(t)
ui(t) = c(x(0)) > 0 for all 1 ≤ i ≤ n

where u(⋅) is any non-zero balanced growth path.
Proof. From T(λμx) = f (λμ)Tx and T(λμx) = f (λ )T(μx) = f (λ )f (μ)Tx it follows that
f (λμ) = f (λ )f (μ) for all λ , μ ∈ ℝ+ because of T ≡| 0. Concavity of T implies concavity
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and, hence, monotonicity of f . It is well-known that a monotone mapping satisfying
f (λμ) = f (λ )f (μ)must be of the form f (λ ) = λ d for some d ≥ 0. Concavity of f implies
d ≤ 1.

(i) Let T be indecomposable and assume first that d = 1. T is positively homo-
geneous and Theorem 2.3.8 assures that Tu(0) = λ ∗u(0) has a unique solution λ ∗ >
0, u(0) > 0 (up to a positive scalar). According to (2.7.5) there exists a unique (up to
a positive scalar) non-zero balanced growth path, namely u(t) = (λ ∗)tu(0). Consider
now the case 0 ≤ d < 1. By Theorem 2.3.8 there exist ̄λ > 0 and x̄ > 0 such that
Tx̄ = ̄λ x̄.

For x∗ = ̄λ 1
1−d x̄ > 0 one has that

Tx∗ = ̄λ d
1−d Tx̄ = ̄λ d

1−d ̄λ x̄ = x∗.
If x̂ ≩ 0 is anyfixedpoint ofT then x̂ > 0byTheorem2.3.8. There exist α > 0, β > 0

with αx̂ ≦ x∗ ≦ β x̂ and applying Tt yields αdt x̂ ≦ x∗ ≦ β dt x̂ for all t ∈ ℕ.
For t → ∞ it follows that x̂ ≦ x∗ ≦ x̂. This shows that x∗ is the unique (non-

zero) fixed point of T. By (2.7.5) any balanced growth path is given by u(t) = ht(1)u(0)
where for some λ > 0 one has Tu(0) = λ u(0) and h(μ) = μdλ . Induction over t yields
ht(1) = λ

1−dt
1−d . From Tu(0) = λ u(0) it follows that u(0)λ d

1−d is a fixed point of T and, by
the uniqueness of the fixed point, u(0)λ 1

1−d = x∗. Therefore, u(t) = ht(1)u(0) = λ −
dt
1−d x∗.

Obviously, such a path is a balanced growth path for arbitrary λ > 0.
(ii) If T is indecomposable and Theh > 0 for some h then T is primitive by Lem-

mas 2.2.7 and 2.2.10. For d = 1 relative stability of x(⋅) follows from Theorem 2.3.1 (i).
For d < 1 Corollary 2.3.4 yields lim

t→∞
x(t) = x∗. For any non-zero balanced growth path

u(⋅) it follows that lim
t→∞

xi(t)
ui(t)

= 1 for all 1 ≤ i ≤ n and arbitrary x(0) ≩ 0.

Remarks 2.7.4. Theorem 2.7.3 is conceived to illustrate concave Perron–Frobenius
theory. It is possible, however, to prove similar results for the growth model (2.7.4) by
weakening the assumption of concavity to that of monotonicity, see [43, 47, 62].

Exercises

1. Consider three producers each equipped with two technologies. Suppose pro-
ducer 1 (producing good 1) can use a technique (a, l)with a = (0, 25 , 18 ) and l = 1 or
with a = (0, 15 , 1

10 ) and l = 3, producer 2 (producing good 2) can use a technique(a, l) with a = ( 12 , 0, 15 ) and l = 2 or with a = ( 34 , 0, 15 ) and l = 1; producer 3
(producing good 3) can use a technique (a, l) with a = ( 13 , 16 , 0) and l = 1 or with
a = ( 14 , 15 , 0) with l = 2. Suppose further the real wage for all producers is given
by b = 1

10 ( 14 , 1, 1).

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:17 PM



72 | 2 Concave Perron–Frobenius theory

(a) Compute the equilibrium (p∗, r∗) (‖p∗‖ = p∗1 + p∗2 + p∗3 = 1) analytically and
by simulation on the computer.

(b) Determine the techniques applied by the producers at equilibrium prices.

2. Analyze the price setting model (2.7.1) for a Cobb–Douglas technology, i.e., Tp =
c(p)with ci(p) = ki∏n

j=1 p
αij
j + liwi with constants ki > 0, αij ≥ 0,∑n

j=1 αij = 1, li > 0
and wi = pbi, bi > 0.
(a) Verify that T is concave, positively homogeneous and primitive.
(b) Prove that there exists a unique equilibrium

p∗ = (1 + r∗)c(p∗), p∗ > 0, ‖p∗‖ = n∑
i=1

p∗i = 1, r∗ > −1.
(c) Prove that relative prices converge to p∗ and find conditions on the constants

such that absolute prices converge, too.

3. Let for two producers a Cobb–Douglas technology given as in Exercise 2 with k1 =
1
4 , k2 = 1

5 , l1 = l2 = 1 and

(αij) = [[
1
2

1
2

1
3

2
3

]] , b1 = 1
8
[ 1
1
] , b2 = 1

10
[ 2
1
] .

(a) Compute the equilibrium (p∗, r∗).
(b) Simulate on the computer the convergence of relative prices to p∗.
(c) Check convergence of absolute prices analytically and by doing iterations on

the computer.

4. Consider the growth model given by

T(x1, x2) = ((ax1 + bx2)α (cx1 + dx2)β , xα+β1 )
where a, b, c, d are strictly positive constants and α , β are non-negative constants
with α + β ≤ 1.
(a) Verify that T is concave, homogeneous of degree α + β and primitive.
(b) Discuss the dependence of balanced growth paths on α and β for a = b = c =

d = 1.
(c) Compute the balanced growth paths in (b) for α = β = 1

4 .
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3 Internal metrics on convex cones
In the previous chapter we have seen how to deal with concave mappings that leave
invariant the standard coneℝn

+ (or its interior). For many applications a finite dimen-
sional space is not sufficient because the states of the model are no longer points in
the usual sense but real valued functions which in general constitute an infinite di-
mensional space. For positive systems this means to consider as state space a cone
in an infinite dimensional space and non-linear operators leaving this cone invariant.
In the present chapter we will carry out the analysis of convex cones which will be
needed later to treat particular kinds of non-linear selfmappings of convex cones, in-
cluding concave operators. A cornerstone for the analysis of a selfmapping T of the
cone K = ℝn

+ in the previous chapter was Hilbert’s projective metric on the interior
∘
K

(see Definition 2.1.8). Thus, in this chapter we will study Hilbert’s projective metric on
cones in infinite dimensional spaces. This can be done, actually, not only for standard
cones but for quite general convex cones, which provides more flexibility for applica-
tions. Already in finite dimensions are convex cones other than the standard cone of
interest, in applications as well as theoretically. The general notion of a convex cone
is so important because it allows for a concept of positivity which is coordinate-free.
Moreover, we will study besides Hilbert’s projective metric also other metrics which
are called internal metrics because they are derived from the structure of the convex
cone, too. This again provides more flexibility for applications because a selfmapping
of a cone might be contractive for one internal metric but not for another one.

3.1 Extraction within convex cones

Themost convenient way to introduce the various kinds of internalmetrics is by using
extractionwithin convex cones, in particular by using the order function as a building
block, as explained in the following.

Let V be an arbitrary vector space over ℝ. A (non-empty) subset K ⊂ V is called
a cone if K contains for every x ∈ K the ray through x, i.e. {λ x | λ > 0}. A cone K is
called convex if it is closed for addition, i.e. K + K ⊂ K. According to this definition,
any linear subspace of V is a convex cone, e.g.V and {0} are convex cones. The convex
cones we are interested in, however, will be pointed, i.e., K ∩ (−K) ⊂ {0}, or pointed
with 0, i.e., K ∩ (−K) = {0}(−K = {−x | x ∈ K}). Any convex cone K induces a transitive
relation ≤ on V by

x ≤ y iff y − x ∈ K, for any x, y ∈ V .
This relation is a partial order on V, i.e., ≤ is reflexive, antisymmetric and transitive
iff the convex cone K is pointed with 0.
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3.1 Extraction within convex cones | 77

Definition 3.1.1. The function λ (⋅, ⋅) : K × K → [0,∞] defined by
λ (x, y) = sup{λ ≥ 0 | y − λ x ∈ K}

is called theorder function or the extraction grade onK. μ(x, y) = min{λ (x, y), λ (y, x)}
is the symmetric order function (extraction grade).

The mapping e : K × K → K defined by

e(x, y) = y − λ (x, y)x (with∞ ⋅ 0 = 0)
is called the extraction function on K.

For x, y ∈ K∖{0} the element x is called a component of y if λ (x, y) > 0, and e(x, y)
is called the rest after extracting x from y.

The idea of extraction is, for any two given elements x and y to extract from y as much
as possible of the element x contained in y (see Figure 3.1). The maximal amount of x
contained in y is measured by the order function λ . The rest that remains after extract-
ing x from y is given by the extraction function e.
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Fig. 3.1. Order function and extraction
function.

Remark 3.1.2. In a way similar to the above, extraction can be defined also for arbi-
trary convex sets or for abstract monoids, in particular for the multiplicative monoid
of an integral domain. Though we will stick here solely to convex cones, the pro-
cess of extraction turns out to be a quite fundamental operation in many areas (see
[24, 25, 37, 41]).

Examples 3.1.3. (1) K = ℝn
+ the standard cone in V = ℝn. Obviously, K is a convex

cone pointed with 0. For x, y ∈ K, x ̸= 0 one has λ (x, y) = min { yixi | xi > 0, 1 ≤ i ≤ n} =
yi0
xi0

and e(x, y)i = 1
xi0
(yixi0 − yi0xi).
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Furthermore, if y ̸= 0 and xi1
yi1

is the minimum of all the values xi
yi
for yi > 0 then

μ(x, y) = min{yi0
xi0
, xi1
yi1
} .

Obviously, one has λ (x, y) =∞ iff x = 0.
(2) A little bit more involved is the computation of λ for the ice cream cone K,

i.e., K = {(u, r) | u ∈ ℝn, r ∈ ℝ+, ‖u‖ ≤ r}, where ‖u‖2 = ⟨u, u⟩ and ⟨⋅, ⋅⟩ the standard
scalar product inℝn. The double cone K ∪ (−K) is called the light cone or Lorentz cone
since for u ∈ ℝ3 the coordinates in space and r the time, the double cone is just the
light cone of special relativity theory (cf. [57], [58]).

One finds (see Exercise 4) for x = (u, r) and y = (v, s) in K that

λ (x, y) = s2 − ‖v‖2
2(rs − ⟨u, v⟩) for ‖u‖ = r

and

λ (x, y) = rs − ⟨u, v⟩ − √(rs − ⟨u, v⟩)2 − (r2 − ‖u‖2)(s2 − ‖v‖2)
r2 − ‖u‖2 for ‖u‖ < r.

For what follows we need various properties of the order function dependent on prop-
erties ofK. Concerning the latter,K is said to be lineless ifK does not contain an affine
line. K is said to be archimedean for a linear subspace U with K ⊂ U (or integrally
closed in U) if x, y ∈ U and y + nx ∈ K for all n ∈ ℕ imply x ∈ K.
Lemma 3.1.4. Let K be a convex cone in the real vector space V and let x, y, z ∈ K ∖ {0}.
(i) If K is lineless then K is pointed and λ (x, y) ∈ ℝ+.
(ii) λ (αx, β y) = β

α λ (x, y) for all α , β > 0.
(iii) λ (x, y) ⋅ λ (y, z) ≤ λ (x, z).
(iv) λ (x, y) + λ (x, z) ≤ λ (x, y + z).
(v) (λ (x, z)−1 + λ (y, z)−1)−1 ≤ λ (x + y, z) ≤ min{λ (x, z), λ (y, z)}.
(vi) min{λ (x, y), λ (y, x)} = sup{λ > 0 | λ x ≤ y ≤ 1

λ x}
(≤ induced by K, sup 0 = 0).

(vii) λ (x, y) ⋅ λ (y, x) = sup{λμ | λ , μ > 0, λ x ≤ y ≤ 1
μ x}.

(viii) min{λ (x, y), 1} = sup{α ∈ [0, 1] | y = αx + (1 − α )z for some z ∈ K}.
(ix) K is pointed iffmin{λ (x, y), λ (y, x)} ≤ 1 for all x, y ∈ K ∖ {0} iff λ (x, y) ⋅ λ (y, x) ≤ 1

for all x, y ∈ K ∖ {0}.
(x) For K pointed and μ(x, y) = min{λ (x, y), λ (y, x)}

μ(x, y) + μ(y, z) ≤ 1 + μ(x, z).
(xi) If K is pointed and archimedean in K − K then K is lineless.
(xii) If K is archimedean in K − K and λ (x, y) < ∞ then λ (x, y)x ≤ y.
(xiii) K is lineless iff μ(x, y) < 1 for all x, y ∈ K ∖ {0}, x ̸= y.
(xiv) Suppose K is given by

K = {x ∈ V | f (x) ≥ 0 for all f ∈ F},
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whereF is a non-empty family of linear functionals f : V → ℝ. Then K is a convex
cone which is archimedean in V with 0 ∈ K and one has that

λ (x, y) = inf { f (y)
f (x) | f ∈ F, f (x) > 0} .

(xv) Let u, v ∈ V such that x ± u ∈ K and y ± v ∈ K and let x = x + αu ∈ K, y = y +
β v ∈ K with 0 < α , β < 1. Then

1 − β
1 + α

λ (x, y) ≤ λ (x, y) ≤ 1 + β
1 − α λ (x, y).

Proof. (i) If x ∈ K ∩ (−K) then ℝx ⊂ K. If K is lineless then the line given by ℝxmust
be a point that is x = 0, and K is pointed. Suppose now λ (x, y) is not finite, that is
λ (x, y) > λ for all λ > 0. If follows that y − λ x ∈ K and, because of y + λ x ∈ K,
that y + λ x ∈ K for all λ ∈ ℝ. Therefore the affine line determined by y and y + x is
contained in K.

(ii) β y − λ (αx) ∈ K is equivalent to y − λ ( αβ )x ∈ K for any λ ≥ 0.

(iii) If λ x ≤ y and λ y ≤ z for λ , λ  ≥ 0 (≤ induced by K) then λλ x ≤ z.
(iv) If λ x ≤ y and λ x ≤ z for λ , λ  ≥ 0 then λ x + λ x ≤ y + z.
(v) Consider the first inequality. It is trivial for λ (x, z) = 0or λ (y, z) = 0.Otherwise,

let λ , λ  > 0 and λ x ≤ z, λ y ≤ z. It follows that x ≤ z
λ , y ≤ z

λ  , and, hence x + y ≤
z( 1λ + 1

λ  ).
This proves the first inequality. For the second inequality let λ (x + z) ≤ z for λ ≥ 0.

Obviously, λ x ≤ λ (x + y) ≤ z, λ y ≤ λ (x + y) ≤ z which proves the second inequality.
(vi) We may assume that λ (x, y) ≤ λ (y, x) and λ (x, y) > 0. For 0 < λ < λ (x, y) we

must have that λ x ≤ y and, because of λ < λ (y, x), also that λ y ≤ x.
This proves that min{λ (x, y), λ (y, x)} ≤ sup{λ > 0 | λ x ≤ y ≤ 1

λ x}. Conversely, if
λ x ≤ y ≤ 1

λ x then λ (x, y) ≥ λ and λ (y, x) ≥ λ .
(vii) For λ (x, y) = 0 or λ (y, x) = 0 the asserted equation holds trivially (sup 0 = 0).

For λ (x, y) > 0 and λ (y, x) > 0 one has that

λ (x, y) ⋅ λ (y, x) = sup{λμ | λ , μ > 0, λ x ≤ y and μy ≤ x}.
(viii) Suppose λ (x, y) ≤ 1. Then λ x ≤ y is equivalent to y = λ x + (1 − λ ) z

1−λ for
z = y − λ x, 0 ≤ λ < 1. Suppose λ (x, y) > 1. Then λ x ≤ y for some λ > 1 and, hence,
for any 0 < 𝜖 < 1

y = (1 − 𝜖)x + 𝜖z
with z = y−(1−𝜖)x

𝜖 ∈ K.
This shows, by taking 𝜖 → 0, that the right hand side of (viii) is equal to 1.
(ix) Assume first that K is not pointed, i.e., there exists x ∈ K ∩ (−K), x ̸= 0.

For y = −x ∈ K one has that y − 2x = −3x ∈ K and x − 2y = 3x ∈ K and, hence,
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80 | 3 Internal metrics on convex cones

λ (x, y) ≥ 2, λ (y, x) ≥ 2. Conversely, assume that for some x, y ∈ K ∖ {0} one has
min{λ (x, y), λ (y, x)} > 1, which, obviously, is equivalent to λ (x, y) ⋅ λ (y, x) > 1. By (vi)
there exists λ > 1 such that λ x ≤ y ≤ 1

λ x and, hence, λ
2x ≤ x. This implies x(1−λ 2) ∈ K

and because of 1 − λ 2 < 0 it follows that 0 ̸= x ∈ K ∩ −K. Thus, K is not pointed.
(x) Let λ x ≤ y ≤ 1

λ x and λ y ≤ z ≤ 1
λ  y for λ , λ  > 0. Then λλ x ≤ z ≤ 1

λλ  x and
by (vi)

λλ  ≤ min{λ (x, z), λ (z, x)} = μ(x, z).
By (ix) one has that λ ≤ μ(x, y) ≤ 1, λ  ≤ μ(y, z) ≤ 1 and, hence, λ + λ  − λλ  =
λ (1 − λ ) + λ  ≤ 1.

Thus, λ + λ  ≤ 1 + λλ  ≤ 1 + μ(x, z) which, by (vi), proves (x).
(xi) Suppose x + λ (y − x) ∈ K for all λ ∈ ℝ. In particular, x + n(y − x) ∈ K and

x + n(x − y) ∈ K for all n ∈ ℕ. Since K is archimedean in K − K we must have that
y− x ∈ K and x− y ∈ K. Since K is pointed wemust have that x = y, that is K is lineless.

(xii) Let λ = λ (x, y) < ∞. It follows that (λ − 1
n )x ≤ y for all n ∈ ℕ and, hence,

x + n(y − λ x) ∈ K for all n ∈ ℕ. Since y − λ x ∈ K − K and K is archimedean one has
that y − λ x ∈ K.

(xiii) Suppose first thatK contains an affine line, i.e., x + λ (y−x) ∈ K for all λ ∈ ℝ,
where x, y ∈ K∖{0}, x ̸= y. For λ > 1oneobtains λ y ≥ (λ−1)x and, hence, λ (x, y) ≥ λ−1

λ .
For λ → ∞ this yields λ (x, y) ≥ 1. For λ < 0 one obtains (1− λ )x ≥ (−λ )y and, hence,
λ (y, x) ≥ −λ

1−λ . For λ → ∞ this yields λ (y, x) ≥ 1. Thus, μ(x, y) ≥ 1. Conversely,
suppose that μ(x, y) ≥ 1 for some x, y ∈ K ∖ {0}, x ̸= y. This implies for any 0 < 𝜖 ≤ 1
that (1 − 𝜖)x ≤ y and (1 − 𝜖)y ≤ x and, hence y − x + 𝜖x ∈ K, x − y + 𝜖y ∈ K for all
0 < 𝜖 ≤ 1. Consider the affine line given by x + λ (y − x) for λ ∈ ℝ. For λ > 0 we have
that

x + λ (y − x) = λ((y − x) + 𝜖x + (1
λ
− 𝜖) x) ∈ K,

provided that 0 < 𝜖 ≤ 1 is small enough such that 1
λ − 𝜖 ≥ 0. For λ < 0 we have that

x + λ (y − x) = y + (1 − λ )(x − y) = (1 − λ )(x − y + 𝜖y + ( 1
1 − λ − 𝜖)y) ∈ K,

provided that 0 < 𝜖 ≤ 1 is small enough that 1
1−λ − 𝜖 ≥ 0. Thus, the affine line consid-

ered is contained in K.
(xiv) Obviously, K is a convex cone with 0 ∈ K. Let x, y ∈ V such that y + nx ∈ K

for all n ∈ ℕ. It follows that f (y) + nf (x) = f (y + nx) ≥ 0 and, hence, f (x) ≥ − 1
n f (y)

for all n ∈ ℕ. Thus, f (x) ≥ 0 and, since this holds for every f ∈ F, we must have that
x ∈ K. This shows that K is archimedean in V. Finally, let λ x ≤ y for x, y ∈ K and
λ ≥ 0. It follows that λ f (x) ≤ f (y) and, hence, λ ≤ f (y)

f (x) for all f ∈ F with f (x) > 0.
This shows that λ (x, y) ≤ inf { f (y)f (x) | f ∈ F, f (x) > 0}. Conversely, for x, y ∈ K and
r = inf { f (y)f (x) | f ∈ F, f (x) > 0} we have that f (y − rx) = f (y) − rf (x) ≥ 0 for all f ∈ F. By
definition of K, therefore, y − rx ∈ K which implies that λ (x, y) ≥ r.
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3.1 Extraction within convex cones | 81

(xv) From the identities x = 1
1+α (x + αu) + α

1+α (x−u) and x + αu = (1−α )x + α (x +
u) together with the assumptions it follows that λ (x, x) ≥ 1

1+α and λ (x, x) ≥ 1 − α ,
respectively. Similarly, λ (y, y) ≥ 1

1+β and λ (y, y) ≥ 1 − β . Together with property (iii)
we obtain

(1 − λ )λ (x, y) 1
1 + β

≤ λ (x, x)λ (x, y)λ (y, y) ≤ λ (x, y) and

1
1 + α

λ (x, y)(1 − β ) ≤ λ (x, x)λ (x, y)λ (y, y) ≤ λ (x, y)
from which the assertion follows.

The property (xiv) in the Lemma admits a dual computation of the order function in
case one has a description of the cone in terms of the dual space of V. Since K = ℝn

+
in V = ℝn is given by the projections fi(x) = xi from property (xiv) one gets immedi-
ately that λ (x, y) = min{ yixi | xi > 0, 1 ≤ i ≤ n} in this case (cf. Example 3.1.3 (i)).
Since any convex cone inℝ2 which is closed can be described just by two linear func-
tionals, the order function in this case can be easily obtained by the two functionals
according to property (xiv). This, actually, is no longer true in ℝ3, where for example
ice cream cones cannot be described by finitely many but by infinitely many linear
functionals (cf. Example 3.1.3 (ii)). More generally, property (xiv) applies to convex
cones K in an arbitrary vector space V which are closed with respect to a locally con-
vex Hausdorff topology on V (e.g., to closed convex cones in a Banach space). From
the Hahn–Banach Theorem it follows that K = {x ∈ V | f (x) ≥ 0, f ∈ F} where F is a
set of continuous linear functionals on V.

Though the above description by linear functionals is not available in general one can,
however, describe the order function of any lineless convex cone by concave func-
tionals similar to property (xiv). Denote for a convex cone K by Kc the set of all con-
cave functions f : K → ℝ+ which are positively homogeneous. Any f ∈ Kc must be
monoton with respect to ≤ induced by K. (See Lemma 2.1.3 and the definitions given
in Section 2.1) Obviously, a function f : K → ℝ+ is in Kc iff f is superadditive, i.e.,
f (x + y) ≥ f (x) + f (y), and positively homogeneous. The set Kc is itself a convex cone
within the vector space of real valued functions.

Two subsetsA,B ofK are said to satisfy a (both sided)Harnack inequality if there
exists a constant c > 0 such that

cf (x) ≤ f (y) ≤ 1
c
f (x)

for all f ∈ Kc, all x ∈ A, all y ∈ B.
Lemma 3.1.5. Let K be a lineless convex cone.
(i) For any x ∈ K∖{0} the function y → λ (x, y) is concave and positively homogeneous.
(ii) for any y ∈ K ∖ {0} the function x → (λ (x, y))−1 is convex and positively homoge-

neous (value +∞ admitted).
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82 | 3 Internal metrics on convex cones

(iii) For any x ∈ K ∖ {0} it holds that
λ (x, y) = inf { f (y)

f (x) | f ∈ Kc, f (x) > 0}
= inf{f (y) | f ∈ Kc, f (x) = 1}.

(iv) Two subsets A,B of K satisfy a Harnack inequality iff inf μ(x, y)
x∈A,y∈B

is not zero which, in
this case, is the smallest possible constant c.

Proof. (i) Follows from Lemma 3.1.4, properties (i), (ii), (iv).
(ii) Follows from Lemma 3.1.4, properties (ii), (v).
(iii) For f ∈ Kc and λ x ≤ y one has that λ f (x) ≤ f (y) and, hence,

λ (x, y) ≤ inf{ f (y)f (x) | f ∈ Kc, f (x) > 0}. For x ∈ K∖{0} the functiondefinedby g(y) = λ (x, y)
is in Kc by (i) and, hence, λ (x, y) = g(y)

g(x) ≥ inf{ f (y)f (x) | f ∈ Kc, f (x) > 0}.
(iv) Suppose cf (x) ≤ f (y) ≤ 1

c f (x) for all f ∈ Kc, all x ∈ A, all y ∈ B. From (iii) it
follows that

c ≤ inf { f (y)
f (x)  f ∈ Kc, f (x) > 0} = λ (x, y)

and
c ≤ inf { f (x)

f (y)  f ∈ Kc, f (y) > 0} = λ (y, x).
Therefore, 0 < c ≤ min{λ (x, y), λ (y, x)} = μ(x, y) all x ∈ A, y ∈ B. Conversely, if
c = inf μ(x, y)

x∈A,y∈B
> 0 then A,B satisfy a Harnack inequality with c.

Remark 3.1.6. It is possible to define an order function like λ for arbitrary convex sets
C by β (x, y) = sup{β ∈ [0, 1] | y = β x + (1 − β )x for some x ∈ C}. For β similar prop-
erties as those in Lemmas 3.1.4 and 3.1.5 can be proven. (Cf. [37, Sections 2 and 3]; for
convex sets and an abstract version of Harnacks inequality see also [4], [5]). The order
function λ or some equivalent concept appear in almost all approaches to Hilbert’s
projective metric and the part metric, respectively and are studiedmore or less explic-
itly. (See [57] and also the references in the next section.)

Exercises

1. Consider for r, s ∈ ℝ the convex cone in ℝ2 given by

K = {x ∈ ℝ2 | rx1 ≤ x2, sx1 ≤ x2}.
(a) Show that K is archimedean inℝ2.
(b) For which values of r and s is K pointed and lineless, respectively?
(c) Compute the order function for K.
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3.1 Extraction within convex cones | 83

2. Let K = ℝn
+ be the standard cone in ℝn.

(a) Compare the order functions for the cones K and
∘
K (interior of K).

(b) For which x ∈ K ∖ {0} is the mapping y → λ (x, y) linear on K?
(c) Show that the standard representation x = ∑n

i=1 xiei of x ∈ K by the standard
basis (e1, . . . , en) can be obtained by extracting successively from x the vectors
of the standard basis. Does the ordering in which the ei are extracted play any
role for the representation?

3. Let K = {f ∈ C[0, 1] | f (x) ≥ 0 for all x ∈ [0, 1]} be the standard cone in the vector
space of all real continuous functions on the interval [0, 1].
(a) Show that K is a convex cone that is lineless and archimedean.
(b) Compute λ (f , g) for f , g ∈ K and show that for f ∈ C[0, 1] the supremum norm

is given by ‖f ‖ = λ (|f |,1)−1.
(c) Show that for no f ∈ K the mapping g → λ (f , g) is linear on K.

4. Consider the ice cream cone

K = {x = (u, r) ∈ ℝn × ℝ+ | ‖u‖ ≤ r}
where ‖u‖2 = ⟨u, u⟩, ⟨⋅, ⋅⟩ standard scalar product.
(a) Proof that for ‖u‖ < r

λ (x, y) = rs − ⟨u, v⟩ − √(rs − ⟨u, v⟩)2 − (r2 − ‖u‖2)(s2 − ‖v‖2)
r2 − ‖u‖2

where x = (u, r), y = (v, s).
(b) For cos hϕ = 1

2 (eϕ + e−ϕ ) defineΦ = Φ(x, y) by
cos hΦ = rs − ⟨u, v⟩√(r2 − ‖u‖2)(s2 − ‖v‖2) .

Show that − log(λ (x, y) ⋅ λ (y, x)) = 2Φ.

(c) Demonstrate (a) and (b) for the infinite dimensional ice cream cone

K =
{{{x = (u, r) ∈ ℝ

ℕ × ℝ+ | √∞∑
i=1
u2i ≤ r

}}} .
5. A subsetM of a normed vector space is symmetrically bounded if every symmet-

ric subset ofM is bounded. (A subset S of a real vector space is symmetric if there
exists some c ∈ S, called a center of S, such that 2c − S ⊂ S.)
(a) Show that every symmetrically bounded setM is lineless.
(b) Find a convex set in a normed space that is lineless but not symmetrically

bounded.
(c) Find a convex cone in a normed space that is pointed with 0 but not lineless.

(By Lemma 3.1.4 every lineless convex cone is pointed.)

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:19 PM



84 | 3 Internal metrics on convex cones

3.2 Internal metrics

From the order function λ and using its properties (Lemma 3.1.4) we can construct
variousmetrics on a convex cone. Because λ (x, y) = 0may happen some of themetrics
may be extended, i.e., can have the value + ∞. This does not happen on parts of the
cone defined as follows.

Definition 3.2.1. Let K be a convex cone in some real vector space with order function
λ . For x, y ∈ K ∖ {0} let xCy if x is a component of y, i.e., λ (x, y) > 0, and let x ∼ y if
xCy and yCx. A non-empty subset 0 ̸∈ P ⊂ K is called a part of K if y ∼ x for x ∈ P is
equivalent to y ∈ P. If 0 ∈ K then {0} is called the zero-part.
Lemma 3.2.2. Let K be a convex cone.
(i) C is a reflexive and transitive relation and ∼ is an equivalence relation on K ∖ {0}.
(ii) The parts of K are convex cones.
(iii) K is the disjunctive union of its parts.
(iv) If P ̸= {0} is a part of K, λK and λP are the order function of K and P, respectively,

then λP and λK coincide on P × P.
(v) For x, y ∈ K ∖ {0} it holds that x ∼ y iff x + r(y − x) ∈ K for some r < 0 and some

1 < r.

Proof. (i) C is reflexive and transitive by Lemma 3.1.4 (iii). Thus, ∼ is an equivalence
relation.

(ii) Obviously, the zero-part is a convex cone. Let P be a part, P = [x] the equiv-
alence class for some 0 ̸= x ∈ P. If y ∈ P, i.e., λ (x, y) > 0 and λ (y, x) > 0, then
by property (ii) of Lemma 3.1.4 it holds that λ (x, β y) > 0 and λ (β y, x) > 0 for all
β > 0. Therefore, β y ∈ P and P is cone. Furthermore, if y ∈ P and z ∈ P then
λ (x, y + z) ≥ λ (x, y) + λ (x, z) > 0 by Lemma 3.1.4 (iv). From property (v) we obtain
λ (y + z, x) ≥ (λ (y, x)−1 + λ (z, x)−1)−1 > 0 and, hence, y + z ∈ P. Thus, P is a convex
cone.

(iii) Obvious, since the parts are the equivalence classes for ∼.
(iv) For x, y ∈ P it holds λP(x, y) ≤ λK(x, y) because of P ⊂ K. Without loss suppose

that λK(x, y) > 0 and y − λ x ∈ K for some λ > 0. For any 0 < 𝜖 < λ one has that
z = y − λ x + 𝜖x ∈ K and xCz. Furthermore, zC(y + 𝜖x) and, by y + 𝜖x ∈ P, (y + 𝜖x)Cx.
Therefore, zCx which shows that z ∈ P. Thus, y − (λ − 𝜖)x = z ∈ P and λP(x, y) ≥ λ − 𝜖.
Since 0 < 𝜖 < λ is arbitrary it follows that λP(x, y) ≥ λ and, hence, λP(x, y) ≥ λK(x, y).

(v) By definition, x ∼ y iff there exist 0 < λ , μ such that y− λ x ∈ K and x − μy ∈ K.
We may assume that λ , μ < 1. Now, y − λ x ∈ K is equivalent to x + r(y − x) ∈ K for
r = 1

1−λ and x − μy ∈ K is equivalent to x + r(y − x) ∈ K for r = − μ
1−μ .

Property (v) of Lemma 3.2.2 presents a particular simple description of the part rela-
tion ∼, as illustrated in the following figure.

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:19 PM



3.2 Internal metrics | 85

∙�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�












∙

∙
x

y

�

�

0
K

r < 0

r > 1

Fig. 3.2. Part relation x ∼ y.

This description of ∼ by extending the segment [x, y] a little bit to the right and to the
left is used in [2–6] to study parts and the part metric within arbitrary convex sets.

The following figure illustrates the concept of parts for the coneℝ3
+.

∙
�

�
�
��

P0

P3
P4

P1

P7P2

P6

P5

Fig. 3.3. Parts of cone ℝ3
+.

P0 is the zero part; the halflines (without 0) P1, P2, P3 are the 1-dimensional parts; the
cones (without boundary) P4, P5, P6 are the 2-dimensional parts; the interior P7 ofℝ3

+
is the 3-dimensional part. All parts are convex cones and ℝ3

+ is the disjunctive union
of the Pi, 0 ≤ i ≤ 7.

For an arbitrary convex cone K in some real vector space we define the following
entities which will turn out to be metrics under certain conditions specified in Theo-
rem 3.2.3.

For x, y ∈ K ∖ {0}, λ (x, y) the order function and μ(x, y) = min{λ (x, y), λ (y, x)} the
symmetrized order function consider
– the projective Hilbert metric: d(x, y) = − log[λ (x, y) ⋅ λ (y, x)];
– the Thompsonmetric or part metric: p(x, y) = − log μ(x, y);
– theHarnack metric: h(x, y) = 1 − μ(x, y);
– the Gleason metric: g(x, y) = 21−√μ(x,y)

1+√μ(x,y) ;

– the Bear metric: b(x, y) = 1−μ(x,y)
1+μ(x,y) ;
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86 | 3 Internal metrics on convex cones

– the Kobayashi metric: k(x, y) = − log ν (x, y), where
ν (x, y) = { μ(x, y) if max{λ (x, y), λ (y, x)} ≥ 1

λ (x, y) ⋅ λ (y, x) if max{λ (x, y), λ (y, x)} < 1.
The following result shows that all these “metrics” are just “ecarts” m in the sense
of Bourbaki [13] which means that m is symmetric, satisfies the triangle inequality
and m(x, x) = 0 for x ̸= 0 (see also Remark 3.2.4). By this result also, on a lineless
part of the cone the definitions of p, h, g, b, k give neat metrics, whereas d gives only
a quasi-metric. In what follows we will, however, simply speak of metrics. Since all
these metrics are built up from the order function we call them internal metrics on
the cone.

Theorem 3.2.3. Let K be a convex cone and let P be a non-zero part of K.
(i) On P×P the expressions for d, p, h, g, b, k are well-defined, real-valued and symmet-

ric.
(ii) If P is pointed then d, p, h, g, b, k are all non-negative.
(iii) d, p and k satisfy the triangle inequality on P × P. If P is pointed then h, g, b satisfy

the triangle inequality on P × P.
(iv) If P is lineless then p, h, g, b, k are0 for (x, y) ∈ P×P iff x = y. Furthermore, d(x, y) = 0

iff y = λ x for some λ > 0.
(v) If P is lineless then p, h, g, b, k aremetrics on P and d is a quasi-metric (with d(x, y) =

0 iff x and y are on the same rag).

Proof. (i) Obvious, because of x ∼ y iff λ (x, y) > 0 and λ (y, x) > 0.
(ii) This follows from Lemma 3.1.4 (ix).
(iii) From property (iii) of Lemma 3.1.4 one has that

[λ (x, y) ⋅ λ (y, x)] ⋅ [λ (y, z) ⋅ λ (z, y)] ≤ [λ (x, y) ⋅ λ (z, x)],
which proves the triangle inequality for d on P × P.

Also by property (iii)

μ(x, y) ⋅ μ(y, z) ≤ λ (x, y), λ (z, x) and, hence, μ(x, y) ⋅ μ(y, z) ≤ μ(x, z),
which proves the triangle inequality for p. Also, these inequalities imply the triangle
inequality for k.

Furthermore, for h

h(x, z) = 1 − μ(x, z) ≤ 1 − μ(x, y) ⋅ μ(y, z)
= (1 − μ(x, y)) + (1 − μ(y, z)) − (1 − μ(x, y))(1 − μ(y, z))
= h(x, y) + h(y, z) − h(x, y)h(y, z).

If P is pointed then h(x, y)h(y, z) ≥ 0 by (ii) and, hence, h(x, z) ≤ h(x, y) + h(y, z). To ob-
tain the triangle inequality for b and g, respectively, observe the following inequality
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for non-negative numbers α , β , 𝛾with αβ ≤ 𝛾
1 − 𝛾
1 + 𝛾 ≤

1−α
1+α + 1−β

1+β

1 + 1−α
1+α ⋅ 1−β1+β

. (∗)
Put in (∗) α = μ(x, y), β = μ(y, z), 𝛾 = μ(x, z).

The definition of b gives

b(x, z) ≤ b(x, y) + b(y, z)
1 + b(x, y) ⋅ b(y, z) ≤ b(x, y) + b(y, z).

because b ≥ 0 by (ii).
Similarly, putting in (∗) α = √μ(x, y), β = √μ(y, z), 𝛾 = √μ(x, z) one obtains

g(x, z) ≤ g(x, y) + g(y, z)
1 + 1

4g(x, y) ⋅ g(y, z) ≤ g(x, y) + g(y, z).
(iv) The statement concerning p, h, g, b, k follows from Lemma 3.1.4 (xiii). Con-

cerning d suppose that d(x, y) = 0, that is λ (x, y) ⋅ λ (y, x) = 1. For α = λ (x, y) > 0
property (ii) of Lemma 3.1.4 yields

λ (αx, y) = 1
α
λ (x, y) = 1 and λ (y, αx) = αλ (y, x) = 1.

Therefore μ(αx, y) = 1 and, by Lemma 3.1.4 (xiii), we must have y = αx. Conversely, if
y = λ x with λ > 0 then, by Lemma 3.1.4 (ii), we must have d(x, y) = − log[λ ⋅ 1λ ] = 0.
Also, k can be extended on K with +∞ as a possible value.

(v) Follows from (i)–(iv) since a lineless convex cone is pointed.

Remark 3.2.4. If K is any lineless convex cone then Theorem 3.2.3 (v) applies to all
non-zero parts of K. The metrics p, h, g, b can easily be extended to a metric on the
whole K since for x, y ∈ K in different parts μ(x, y) = 0 and by setting μ(0, 0) = 1.
For p, however, it may happen that p(x, y) =+ ∞. Since λ (x, y) ⋅ λ (y, x) = 0 for x and
y in different parts, also d can be extended to K with d(x, y) =+ ∞ in this case and by
setting d(0, 0) = 0. Also, k can be extended on K with +∞ as a possible value.

The metrics just defined play important roles in such different disciplines as poten-
tial theory, complex functions, function algebras, (non-Euclidean) geometry, and in
various parts of functional analysis as positive operators, convexity, Dirichlet forms.
Since thesemetrics alsohave a longand interestinghistory someadditional comments
may be in order. What today is called the projective Hilbert metric was considered by
Hilbert in his investigations on the foundations of geometry for general convex bodies
in ℝn (see [23] and the discussion in the next Section 3.3). Actually, this metric has
been already investigated by A. Cayley [19] and F. Klein [29] in their models of hyper-
bolic geometry where the metric is given as the logarithm of the cross ratio for two
points in the open unit disc. For that reason, what we call the projective Hilbert met-
ric is sometimes called the Cayley–Hilbert metric (e.g. in [18, 50]) or the Klein–Hilbert
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metric (e.g. in [6, 49]) or simply hyperbolic length.(G. Birkhoff in a letter from 1984 to
the author remarked with respect to this metric: “. . . which Felix Klein says goes back
to Legendre.”) For the role of Hilbert’s projective metric in geometry see [15, 16]. In a
complete different setting, namely for positive linear operators on infinite dimensional
spaces, Hilbert’s projective metric was first introduced by G. Birkhoff into functional
analysis. (See [10] and,with improvements, [12]. See also [38].) About the same timeH.
Samelson [50] used thismetric in finite dimensions to give a rather elementary proof of
the Perron–Frobenius Theorem (see also [8]). The first use of thismetric for non-linear
operators was made by P. Bushell [17], A. J. B. Potter [48], and M.A. Krasnoselski et al.
[36]. Amodernmonographywith applications to non-linear operators is by R. D. Nuss-
baum [44, 45] and one of the few textbooks treating this metric is V.I. Istratescu [27].

The Thompson metric was first introduced by A. C. Thompson in his Ph.D. thesis
[53] (see [54] for major results) in dealing with non-linear positive operators. There
Thompson refers to the use of Hilbert’s projective metric made by Birkhoff and Samel-
son. There is another, quite interesting source, for Thompson’s metric and this is the
reason why it is called the part metric. For the maximal ideal space of a function al-
gebra A.M. Gleason studied in 1957 an equivalence relation, the equivalence classes
of which were later on called Gleason parts. The equivalence x ∼ y can be described
by G(x, y) < 2 for a certain metric called later on Gleason metric (see [4, 5] and [32, 33]
for details). Related to G two other metrics were investigated (which we called in the
context of cones part metric and Bear metric) and non-trivial relations between them
were established which are reflected in the definitions of part metric, Gleason metric,
and Bear metric we gave here within the framework of convex cones, namely

p(x, y) = log 1 + b(x, y)
1 − b(x, y) = 2 log 2 + g(x, y)

2 − g(x, y)
(for function algebras see [33, p. 100] and [5, p. 3]). Bear, Weiss, and Bauer then made
stepwise the important and beautiful finding that the concepts of parts and corre-
sponding metrics are linked essentially, to convex sets [3, 4, 7].

What is here called the Harnack metric has been less well considered in the liter-
ature though this metric occurs already in [53]. Though almost the same as the part
metric, the Harnack metric is much simpler defined and has the advantage of being
finite also across parts. Metric h is called the Harnack metric because it is strongly
connected to Harnack inequalities, e.g., 1 − h(x, y) = μ(x, y) is the smallest constant
c for which {x} and {y} satisfy a Harnack inequality (see Lemma 3.1.5 (iv); for the Har-
nack metric with respect to harmonic functions see [31]). Concerning the naming of
the various metrics one has to pay attention, e.g., is the part metric also called Har-
nackmetric in [33] and Birkhoffmetric in [35] (though themetric employed by Birkhoff
was the projective Hilbert metric).

The Kobayashi metric has its background in the search for invariant metrics in
complex analysis. Another, very well studied invariant metric goes back to Carathéo-
dory. Invariantmeans that distances do not increasewhen holomorphicmappings are
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3.2 Internal metrics | 89

applied. Both metrics have been considered also on convex cones as the Kobayashi-
type pseudo-distance and the Carathéodory-type pseudo-distance (see [20]). Invari-
ance here means that distances do not increase when linear selfmappings of the cone
are applied or, equivalently, all linear self-mappings of the cone are non-expansive for
the metric considered. Actually, the latter turns out to be equal to the part metric and
the former equal to the Kobayashi metric as defined here (see also Exercise 4 (a)). This
follows from two results in [20, pp. 22 and 26] which together characterize invariant
metrics on a one-part lineless cone of dimension greater than one as the metrics of
the form m(x, y) = f (log λ (x, y), − log λ (y, x)) where f is a so-called special function, a
function f : ℝ2 → ℝ+ defined by certain properties. (See also Exercise 5.) This nice
result describes invariant metrics by λ (x, y) and, hence, as internal metrics. In later
chapters it will be a major concern for which non-linear selfmappings of the cone the
metrics under consideration are invariant, too. From a view-point completely differ-
ent from the one in [20], a characterization of Hilbert’s projective metric was given in
[30]. Let K be a closed convex cone inℝn which is pointed and has non-empty interior
∘
K. Then Hilbert’s projective metric is the only projective metric on K, up to a strictly
increasing scaling, for which every linear mapping of K ∖ {0} into ∘

K is a contraction
[30, p. 204].

Exercises

1. Show that for any convex lineless cone K in a real vector space V the following
properties hold. (See [3]).
(a) For any concave function u : K → ℝ+ and any part P of K one has the follow-

ing alternative:
Either u(x) > 0 for all x ∈ P or u(x) = 0 for all x ∈ P.

(b) Parts are connected sets (with respect to the part metric).
(c) LetV be a normed space and x ∈ intK. For y ∈ K one has that y ∼ x iff y ∈ intK.

2. Let K = {(u, r) | u ∈ ℝn, r ∈ ℝ+, ‖u‖ ≤ r} be the ice cream cone (see Exercise 4
to 3.1).
(a) Describe all parts of K.
(b) Compute the projective Hilbert metric on K.
(c) Compute the part metric and the Kobayashi–metric on K.

3. Let p, g, b part metric, Gleason metric and Bear metric, respectively as defined in
Section 3.2.
(a) Prove for any part ̸= {0} the equations

p(x, y) = 1 + b(x, y)
1 − b(x, y) = 21 + g(x, y)

1 − g(x, y) .
(b) Compute explicitly p, g, b for K = intℝ2

+.
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90 | 3 Internal metrics on convex cones

(c) Prove that every linear selfmapping f of a lineless convex cone is non-
expansive for the metricsm = p, g, b, i.e.,m(f (x), f (x)) ≤ m(x, y) for all x, y.

4. Let k be the Kobayashi metric on K.
(a) Show that k(x, y) = max{p(x, y), d(x, y)}.
(b) By using (a) show that k is a metric on each non-zero part of K.
(c) Compute explicitly the Kobayashi metric on K = intℝ2

+.

5. Let K be a convex cone in some real vector space V. A metric m on K is called
special if all linear mappings f : V → V with f (K) ⊂ K are non-expansive for m.
A function g : ℝ2 → ℝ+ is called special if it stems from a special metric in the
sense that
g(a, b) = m((1, 1), (ea, eb)) for all (a, b) ∈ ℝ2 for some special metric m on intℝ2

+.
(See [20].)
(a) Prove that for {0} ̸= K lineless and consisting of one part only and for any

special function g

mg(x, y) = g(log λ (x, y), − log λ (y, x))
defines a special metric on K.

(b) Show that for any special metric m on intℝ2
+ one has that m = mg where

g(a, b) = m((1, 1), (ea, eb)).
(c) Consider for x, y ∈ intℝ2

+ and any special function h

m(x, y) = mh(x, y) + arctan x2
x1
− arctan y2

y1

 .
Show thatm is a metric on intℝ2

+ which is not special.

3.3 Geometrical properties

It is often convenient to visualize or analyse a convex cone by a cone base, in the case
the latter exists.

Definition 3.3.1. Let K be a convex cone in a real vector space V and f : V → ℝ a
linear functional with f (x) > 0 for x ∈ K ∖ {0}. The set B = {x ∈ K | f (x) = 1} is called a
base of K. For x ∈ K ∖ {0} the point x̄ = x

f (x) ∈ B is called base point of x.

Obviously, a base need not exist and, if it exists, it is a convex set that is not
uniquely determined. Furthermore, every x ∈ K ∖ {0} has a unique representation
x = λ x̄ with λ > 0 and x̄ ∈ B; thereby, x̄ is the base point of x and λ = f (x). (See
Exercise 1.)

Any convex set C can be viewed as a base of some convex cone. Namely, define for
a (non-empty) convex subset of a real vector space W the cone K = ℝ+(C × {1}) ={(λ u, λ ) | λ ≥ 0, u ∈ C} in the real vector space V = W × ℝ.
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3.3 Geometrical properties | 91

Obviously, K is a convex cone in V and f (λ u, λ ) = λ defines a linear functional
f : W → ℝwith f (λ u, λ ) > 0 for (λ u, λ ) ∈ K∖{0}. Furthermore, C×{1} = {(λ u, λ ) ∈ K |
f (λ u, λ ) = 1} is a base of K. Therefore, though convex cones are special convex sets,
there are “no more” convex sets than there are convex cones because the former can
serve as basis of the latter.

The above correspondence between convex cones and general convex sets can be
used to relate the order functions, where for an arbitrary convex set C in a real vector
space its order function is given for x, y ∈ C by

β (x, y) = sup{α ∈ [0, 1] | y = αx + (1 − α )z, z ∈ C}
(cf. [25, 37]).

Employing the function α (x, y) = min{β (x, y), β (y, x)} instead of μ(x, y) one can
define themetrics considered for convex cones in the samemanner for general convex
sets.

Lemma 3.3.2. Let K be a convex cone with base B = {x ∈ K | f (x) = 1}. For x, y ∈ K∖{0}
with base points x̄, ȳ ∈ B one has the following relationships
(i) λ (x, y) = f (y)

f (x)β (x̄, ȳ).
(ii) d(x, y) = d̄(x̄, ȳ), where d̄(u, v) = − log[β (u, v)⋅β (v, u)] is the projectiveHilbertmetric

on B.
(iii) p(x, y) = − logmin{ f (y)f (x)β (x̄, ȳ), f (x)

f (y)β (ȳ, x̄).
Proof. (i) Let λ x ≤ y for λ ≥ 0, that is y = λ x + z with z ∈ K. It follows that

ȳ = y
f (y) = λ f (x)

f (y) x̄ + 1
f (y)z.

If z = 0 then f (y) = λ f (x) and ȳ = 1 ⋅ x̄ + 0 ⋅ x̄ which imply that λ = f (y)
f (x) =

f (y)
f (x)β (x̄, ȳ).

If z ̸= 0 then
ȳ = λ f (x)

f (y) x̄ + f (z)
f (y) ̄z

which implies that λ f (x)
f (y) ≤ β (x̄, ȳ). In both cases we obtain λ (x, y) ≤ f (y)

f (x)β (x, y). Con-
versely, let ȳ = β x̄ + (1 − β ) ̄z for some ̄z ∈ B. It follows that

y = f (y)ȳ = β f (y)
f (x) x + (1 − β )f (y) ̄z

and, hence, λ (x, y) ≥ β f (y)
f (x) which implies λ (x, y) ≥ f (y)

f (x)β (x̄, ȳ).
(ii) By (i)

λ (x, y) ⋅ λ (y, x) = f (y)
f (x)β (x̄, ȳ) ⋅ f (x)f (y) ⋅ β (ȳ, x̄).

(iii) Immediate from (i).

The above Lemma says in particular that for a convex cone with base the projective
Hilbert metric for the cone can be as well computed from the corresponding metric
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92 | 3 Internal metrics on convex cones

of any base. Thus, e.g., the projective Hilbert metric for an ice cream cone in three
dimensions can be computed from the corresponding metric of a circle (or ellipse)
in two dimensions. Generalizing considerations of Klein [29] for ellipses, Hilbert [23]
defined an internal length within arbitrary convex bodies (cf. also [15, Section 18]).
The points of his general geometry Hilbert mapped into a nowhere concave body in
Euclidean space. Thus, let C be a convex subset of ℝn which is closed and bounded
and consider two points A,B ∈ C which intersect the boundary of C in X,Y as in the
following figure.












∙
∙

A
B

X

Y

∙

∙

Fig. 3.4. Projective Hilbert metric in a
convex set.

As distance of A and B in the general geometry Hilbert defined

⌣
AB = log{YA

YB
⋅ XB
XA
} .

Here YA
YB
⋅ XB
XA

= ( YA
YB
) (XA

XB
)−1 is the cross ratio of the four points A,B,X,Y where PQ

is the Euclidean distance between two points P,Q given by the Euclidean norm onℝn,
that is PQ = ‖P − Q‖. As is obvious from Figure 3.4,

A = β1B + (1 − β1)X, β1 = β (B,A)
B = β2A + (1 − β2)Y , β2 = β (A,B).

Therefore,
YB = ‖B − Y‖ = β2‖A − Y‖ = β2YA
XA = ‖A − X‖ = β1‖B − X‖ = β1XB

and, hence,
⌣
AB = log 1

β1β2
= − log[β (A,B)β (B,A)].

This shows that the distance defined by Hilbert for points of the general geome-
try is exactly what was called the projective Hilbert metric with respect to the order
function of a convex body.

The following proposition collects various useful inequalities considering inter-
nal metrics and semi-norms. Thereby, q : V → ℝ+ is a semi-norm on the real vector
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3.3 Geometrical properties | 93

space V if q(λ x) = |λ |q(x) for λ ∈ ℝ, x ∈ V and q(x + y) ≤ q(x) + q(y) for x, y ∈ V.
(Locally convex topologies onV are defined by those semi-norms; see the next section
for related results.)

Proposition 3.3.3. Let K be a lineless convex cone and let x, y ∈ K ∖ {0}. The following
inequalities hold.
(i) d(x, y) ≤ 2p(x, y).
(ii) h(x, y) ≤ p(x, y) ≤ h(x,y)

1−h(x,y) for x ∼ y.
(iii) 1

2h(x, y) ≤ g(x, y) ≤ 2b(x, y) ≤ 2h(x, y).
(iv) p(x, y) ≤ k(x, y) ≤ 2p(x, y).
(v) For every monotone semi-norm q on V it holds that

q(x − y) ≤ [3 − (a + b + max{a, b})]max{q(x), q(y)}
where a = min{λ (x, y), 1}, b = min{λ (y, x), 1}.

(vi) For every monotone semi-norm q on V it holds that

q(x − y) ≤ 3h(x, y)max{q(x), q(y)}
and for q(x) = q(y) = 1

q(x − y) ≤ 3(1 − exp(−d(x, y))).
(vii) For every monotone semi-norm q on V it holds that

p(x, y) ≤ d(x, y) + | log q(x) − log q(y)| for q(x), q(y) > 0

and for q(x) = q(y) > 0
p(x, y) ≤ d(x, y).

Proof. (i) Follows immediately from min{λ (x, y), λ (y, x)}2 ≤ λ (x, y) ⋅ λ (y, x).
(ii) For r = p(x, y) one has h(x, y) = 1 − e−r. If x ∼ y then r > 0 and the mean value

theorem applied to 1 − e−r yields
re−r ≤ 1 − e−r ≤ r,

that is
p(x, y)(1 − h(x, y)) ≤ h(x, y) ≤ p(x, y).

(iii) By definition of the metrics one has to show that for 0 ≤ μ = μ(x, y) ≤ 1

1
2
(1 − μ) ≤ 2

1 − √μ
1 + √μ ≤ 2 1 − μ

1 + μ
≤ 2(1 − μ).

The first inequality holds because of

1
2
(1 − μ)(1 + √μ) = 1

2
(1 − √μ )(1 + √μ )2 ≤ 2 1 − μ

1 + μ
2(1 − √μ ).
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94 | 3 Internal metrics on convex cones

The second inequality follows from μ ≤ √μ and the third inequality is obvious.
(iv) Follows from k(x, y) = max{d(x, y), p(x, y)} (see Exercise 4 (a) of Section 3.2)

by (i).
(v) Let x, y ∈ K with λ x ≤ y and μy ≤ x for 0 ≤ λ , μ ≤ 1.
It follows that −y(1 − μ) ≤ x − y ≤ x(1 − λ )

and, hence,
0 ≤ x − y + y(1 − μ) ≤ x(1 − λ ) + y(1 − μ).

Since q is a monotone semi-norm, one obtains

q(x − y) − q(y(1 − μ)) ≤ q(x − y + y(1 − μ)) ≤ q(x(1 − λ )) + q(y(1 − μ))
and, hence,

q(x − y) ≤ ((1 − λ ) + 2(1 − μ))max{q(x), q(y)}.
Exchanging the roles of x and y one obtains

q(y − x) ≤ ((1 − μ) + 2(1 − λ ))max{q(y), q(x)}.
This yields altogether

q(x − y) ≤ (3 − (λ + μ + max{λ , μ}))max{q(x), q(y)}.
Taking suprema over λ and μ this proves the required inequality.

(vi) From (v) one obtains

μ(x, y) = min{λ (x, y), λ (y, x)} ≤ a, b
and

q(x − y) ≤ [3 − 3μ(x, y)]max{q(x), q(y)},
which shows the first inequality.

For q(x) = q(y) = 1 one must have that λ (x, y) ≤ 1 and λ (y, x) ≤ 1 and (v) yields

q(x − y) ≤ [3 − (λ (x, y) + λ (y, x) + max{λ (x, y), λ (y, x)})]≤ [3 − 3λ (x, y) ⋅ λ (y, x)] .
Since λ (x, y) ⋅ λ (y, x) = exp(−d(x, y)) this yields the required inequality.

(vii) λ x ≤ y implies λ ≤ q(y)
q(x) and, hence, λ (x, y) q(x)q(y) ≤ 1. Similarly, λ (y, x) q(y)q(x) ≤ 1

and, therefore,

λ (x, y) ⋅ λ (y, x) = λ (x, y) q(x)q(y) ⋅ λ (y, x) q(y)q(x) ≤ min {λ (x, y) q(x)q(y) , λ (y, x) q(y)q(x)}≤ min{λ (x, y), λ (y, x)} ⋅max { q(x)q(y) , q(y)
q(x)}

.
The assertion follows by taking the logarithm in this inequality and taking the defini-
tions of d and p into account.
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Remark 3.3.4. The statements (i)–(iv) of Proposition 3.3.3 show that for any of the
metrics p, h, g, b, k the distance between two points is small iff this holds for any of
the other metrics. This does not apply to the projective Hilbert metric d. By (i) one has
that d(x, y) ≤ 2p(x, y) but, e.g., if y = λ x for λ > 0 arbitrary then d(x, y) = 0 and
p(x, y) = − logmin{λ , 1λ } = | log λ |. Proposition 3.3.3 implies inequalities obtained in
the literature. Property (vi) implies that q(x − y) ≤ 3max{q(x), q(y)}( 1

μ(x,y) − 1) (see [54,
pp. 438/39]). Since er − 1 ≥ 1 − e−r for r ∈ ℝ property (vi) implies that

q(x − y) ≤ 3max{q(x), q(y)}(exp p(x, y) − 1)
and that

q(x − y) ≤ 3(exp d(x, y) − 1)
for q(x) = q(y) = 1 (see [44, pp. 14, 15]).

Employing the notation [x, y] = {z ∈ K | x ≤ z ≤ y} for intervals and Bm(x, r) = {y ∈
K | m(x, y) ≤ r} for a closed ball with center x and radius r for the internal metricmwe
can describe balls for internal metrics as follows:

Lemma 3.3.5. Let K be a lineless convex cone which is archimedean in K − K.
For x ∈ K ∖ {0} and r > 0 one has

(i) Bd(x, r) = ℝ+[x, erx], a convex cone
(ii) Bp(x, r) = [e−rx, erx]
(iii) Bh(x, r) = [(1 − r)x, 1

1−r x] for r < 1
(iv) Bk(x, r) = ℝ+[x, erx] ∩ [e−rx, erx].
Proof. (i) By definition

d(x, y) ≤ r iff e−r ≤ λ (x, y) ⋅ λ (y, x).
If y ∈ ℝ+[x, erx] then λ x ≤ y ≤ λ erx for some λ > 0 and, hence, λ (x, y) ⋅ λ (y, x) ≥

λ
λ er = e−r. Conversely, since K is archimedean, Lemma 3.1.4 (xii) implies that

λ (x, y)x ≤ y 1
λ (y, x)x ≤ λ (x, y)erx

and, hence, y
λ (x,y) ∈ [x, erx].

(ii) Because K is archimedean the following equivalences hold

μ(x, y) ≥ μ > 0 ⇔ λ (x, y) ≥ μ and
λ (y, x) ≥ μ ⇔ μx ≤ y and

μy ≤ x ⇔ y ∈ [μx, 1
μ
x] .

Since p(x, y) ≤ r ⇔ e−r ≤ μ this proves (ii).
(iii) Follows from the equivalences in (ii).
(iv) Follows from k(x, y) = max{d(x, y), p(x, y)} (see Exercise 4 (a) to Section 3.2)

and (i) and (ii).
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96 | 3 Internal metrics on convex cones

From property (iii) one obtains in an obvious way also a description of the balls for
the Gleason metric and the Bear metric. The following figure depicts balls for some
internal metrics.

Hilbert’s projective metric
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Fig. 3.5. Closed balls with center x and radius r for some internal metrics.

In case the convex cone is given by a family of linear functionals, internalmetrics have
a dual description in terms of these functionals. The following lemma gives a descrip-
tion for d, p and h; similar descriptions can be obtained for other internal metrics.

Lemma 3.3.6. Let K be a lineless convex cone such that for some familyF of linear func-
tionals on V

K = {x ∈ V | f (x) ≥ 0 for all f ∈ F}.
The following formulas hold for x, y ∈ K ∖ {0}:

d(x, y) = sup{log f (x) − log f (y) | f ∈ F, f (x) > 0}− inf{log f (x) − log f (y) | f ∈ F, f (y) > 0}
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3.3 Geometrical properties | 97

p(x, y) = sup{| log f (y) − log f (x)|f ∈ F, f (x) > 0, f (y) > 0}
h(x, y) = sup{ |f (x) − f (y)|

max{f (x), f (y)} f ∈ F, f (x) > 0, f (y) > 0} .
Proof. By Lemma 3.1.4 (xiv)

λ (x, y) = inf { f (y)
f (x) | f ∈ F, f (x) > 0} .

Therefore,
d(x, y) = log 1

λ (x,y) − log λ (y, x)
= sup{log f (x) − log f (y) | f ∈ F, f (x) > 0}
= inf{log f (x) − log f (y) | f ∈ F, f (y) > 0}.

Furthermore,

min{λ (x, y), λ (y, x)} = inf {min{ f (y)
f (x) , f (x)f (y)} f ∈ F, f (x) > 0, f (y) > 0}

and, hence,

p(x, y) = − logmin{λ (x, y), λ (y, x)}
= sup{− logmin{ f (y)

f (x) , f (x)f (y)} f ∈ F, f (x) > 0, f (y) > 0}
= sup {| log f (y) − log f (x)| f ∈ F, f (x) > 0, f (y) > 0}

because of

− logmin{ f (y)
f (x) , f (x)f (y)} = max{log f (x) − log f (y), log f (y) − log f (x)}.

Finally,

1 − λ (x, y) = 1 + sup{− f (y)
f (x) f ∈ F, f (x) > 0}

= sup{ f (x) − f (y)
f (x) f ∈ F, f (x) > 0}

and, hence,

h(x, y) = 1 −min{λ (x, y), λ (y, x)} = max{1 − λ (x, y), 1 − λ (y, x)}
= sup{max{ f (x) − f (y)

f (x) , f (y) − f (x)
f (y) } f ∈ F, f (x) > 0, f (y) > 0}

= sup{ |f (x) − f (y)|
max{f (x), f (y)} f ∈ F, f (x) > 0, f (y) > 0} .

Remark 3.3.7. In case of the standard cone in ℝn one can choose as family F the
finitely many projections f (x) = xi for 1 ≤ i ≤ n. Lemma 3.3.6 shows that

d(x, y) = max{log xi − log yi | xi > 0} −min{log xi − log yi | yi > 0},
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98 | 3 Internal metrics on convex cones

which coincides with definition given in Chapter 2 (see Definition 2.1.8), and

p(x, y) = max{| log xi − log yi| | xi > 0, yi > 0}
h(x, y) = max{ |xi − yi|

max{xi, yi} xi > 0, yi > 0} .
In particular, for n = 1 and x > 0, y > 0

d(x, y) = log x − log y − (log x − log y) = 0
p(x, y) = | log x − log y|
h(x, y) = |x − y|

max{x, y} .
From Lemma 3.3.6 one easily obtains the following result which demonstrates that a
part of a convex cone when equipped with the projective Hilbert metric and the part
metric, respectively, is isomorphic as a metric space to a subset of a normed vector
space.

Proposition 3.3.8. Let K be a lineless convex cone in a real vector space V such that
K = {x ∈ V | f (x) ≥ 0, f ∈ F} for some family F of linear functionals on V.

Define
∘
K = {x ∈ K | f (x) > 0, f ∈ F} and suppose there exist functions c, d : ∘

K → ℝ
such that 0 < c(x) ≤ f (x) ≤ d(x) for all f ∈ F, all x ∈ ∘

K.
Let W be the real vector space of all bounded real valued functions on the set F,

equipped with the supremums norm ‖ ⋅ ‖.
(i) Setting ψ (x)(f ) = log f (x) defines an injective mapping ψ : ∘

K → W with p(x, y) =
‖ψ (x) − ψ (y)‖ for all x, y ∈ ∘

K.
(ii) Pick some f0 ∈ F and let W0 = {F ∈ W | F(f0) = 0}. The mapping ψ defined in (i)

maps {x ∈ ∘
K | f0(x) = 1} into W0 and it holds

d(x, y) = ‖ | ψ (x) − ψ (y)‖ |
for all x, y ∈ ∘

K, where ‖ | ⋅‖ | is a norm on W0 defined by ‖ | F‖ |= sup{F(f ) | f ∈
F} − inf{F(f ) | f ∈ F}.

Proof. (i) For x ∈ ∘
K and f ∈ F one has that f (x) > 0 and, hence, ψ (x)(f ) is defined.

Furthermore, c(x) ≤ sup{ψ (x)(f ) | f ∈ F} ≤ d(x), for x ∈ ∘
K and, hence, ψ maps

∘
K into

W. From Lemma 3.3.6 for x, y ∈ ∘
K one has

p(x, y)= sup{|ψ (x)(f ) − ψ (y)(f )| | f ∈ F}
= ‖ψ (x) − ψ (y)‖ .

(ii) If x ∈ ∘
K with f0(x) = 1 then ψ (x)(f0) = log f0(x) = 0 and, hence, ψ maps

{x ∈ ∘
K | f0(x) = 1} intoW0.
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3.3 Geometrical properties | 99

From Lemma 3.3.6 for x, y ∈ ∘
K one has

d(x, y) = sup{ψ (x)(f ) − ψ (y)(f ) | f ∈ F} − inf{ψ (x)(f ) − ψ (y)(f ) | f ∈ F}
= ‖ | ψ (x) − ψ (y)‖ |

with ‖ | ⋅‖ | as defined in (ii).
Obviously, ‖ | F‖ |∈ ℝ+ for all f ∈ W. If ‖ | F‖ |= 0 for F ∈ W0 then F must

be constant on F and, because of F(f0) = 0, one must have that F = 0. Finally, for
F, G ∈ F,

sup{(F + G)(f ) | f ∈ F} ≤ sup{F(f ) | f ∈ F} + sup{G(f ) | f ∈ F}
and

inf{F(f ) | f ∈ F} + inf{G(f ) | f ∈ F} ≤ inf{(F + G)(f ) | f ∈ F},
and, hence, ‖ | F + G‖ | ≤ ‖ | F‖ |+ ‖ | G‖ |
Proposition 3.3.8 applies in particular to a lineless convex cone which is closed in a
normed vector space. In this case F can be taken to be the dual cone of K and it holds
intK =

∘
K, where intK is the interior of K with respect to the norm topology. This is

illustrated in the following example for the normed space of all continuous functions
on a compact space.

Example 3.3.9. (Cf. [44, pp. 20, 22], [58, pp. 29, 30].) Let T be a (non-empty) compact
space, V = C(T) the real vector space of all real continuous functions on T and K ={x ∈ C(T) | x(t) ≥ 0, all t ∈ T} the standard cone in C(T). Obviously, K = {x ∈ V |𝜖t(x) ≥ 0, 𝜖t ∈ F}where F is the set of all evaluation functionals 𝜖t, t ∈ T, on C(t), i.e.,𝜖t(x) = x(t) for x ∈ C(T). It is easily seen that

∘
K = {x ∈ C(T) | x(t) > 0, all t ∈ T} is

the interior intK of K with respect to the supremums norm ‖ ⋅ ‖ on C(T). The functions
c, d : ∘

K → ℝ can be taken to be c(x) = inf{x(t) | t ∈ T} and d(x) = sup{x(t) | t ∈ T}.
By identifying F with T we have that ψ (x)(t) = log x(t) defines an injective mapping

ψ : ∘
K → C(T). Moreover, ψ is surjective because of ψ (exp y) = y for y ∈ C(T). Thus

we obtain thatψ yields an isometry of the metric spaces (intK, p) and (C(T), ‖ ⋅ ‖). This
isometry, however, is not an isomorphism with respect to the cone structure of

∘
K.

In a similar way, from part (ii) of Lemma 3.3.6 it follows thatψ yields for any given
point t0 ∈ T an isometry between the metric space given by intK ∩ {x ∈ K | x(t0) = 1}
equipped with Hilbert’s projective metric and the vector space {f ∈ C(T) | f (t0) = 0}
equipped with the norm

‖ | x‖ |= sup{x(t) | t ∈ T} − inf{x(t) | t ∈ T}.
By choosing for T the discrete space T = {1, . . . , n} the results obtained specialize to
V = ℝn andK = ℝn

+ the standard cone. It follows that intℝn
+ equippedwith thepartmet-

ric is isometric toℝn with max-norm and that intℝn−1
+ equipped with Hilbert’s projec-
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100 | 3 Internal metrics on convex cones

tive (pseudo-)metric is isometric toℝn−1 with a pseudo-normgiven by ‖ | x‖ |= max
i
xi−

min
i
xi. As already pointed out, this isometries do not respect the cone-structure.

Exercises

1. a) Let K be a convex cone with base B in some real vector space V. Show that B
is a convex set such that every x ∈ K ∖ {0} has a unique representation x = λ x̄
with λ > 0 and x̄ ∈ B.

b) Find a base of the ice cream cone

K = {x = (u, r) ∈ ℝn × ℝ+ | ‖u‖ ≤ r},
where ‖u‖2 = ⟨u, u⟩; ⟨⋅, ⋅⟩ standard scalar product.

c) Find an archimedean and lineless convex cone which possesses no base.

2. Sketch the unit ball with center x for
a) the Gleason metric on ℝ2

+,
b) the Bear metric on ℝ2

+,
c) the projective Hilbert metric on the ice cream cone

{(x, r) ∈ ℝ2 × ℝ+ | x21 + x22 ≤ r2}.
3. Let K be a lineless convex cone in a real vector space V such that K = {x ∈ V |

f (x) ≥ 0 for all f ∈ F} for some family F of linear functionals on V.
a) Describe the Gleason metric on K in terms of F (cf. Lemma 3.3.6).
b) Describe the Kobayashi metric on K in terms of F.
c) Find for the ice cream cone {(x, r) ∈ ℝ2 × ℝ+ | x21 + x22 ≤ r2} a representation

by a family F and describe the projective Hilbert metric in terms of F.
d) Characterize for K all its parts in terms of F. Find the number of parts for F

finite, in particular for K = ℝn
+.

4. Let l1 = {x ∈ ℝℕ | ∑∞
i=1 |xi| <+ ∞} with norm ‖x‖ = ∑∞

i=1 |xi| <+ ∞ and K the
convex cone K = {x ∈ l1 | xi ≥ 0 for all i ∈ ℕ}.
a) Find a representation ofK by a familyF of continuous linear functionals on l1.

b) Compare
∘
K = {x ∈ K | f (x) > 0, f ∈ F} with intK with respect to ‖ ⋅ ‖.

c) Describe the metric space ( ∘K, p) isometrically by a subset of a normed space.

5. Let K be a convex cone in a normed vector space V.
a) Show that K is symmetrically bounded (cf. Exercise 5 to 3.1) iff every subset of

K open for the restriction of the norm topology on K is open also for the part
metric.

b) Show that if intK ̸= 0 and K is symmetrically bounded it is normal, i.e., there
exists a constant c > 0 such that ‖x‖ ≤ c‖x + y‖ for all x, y ∈ K.
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3.4 Completeness for internal metrics | 101

c) Let K be the convex cone of all sequences x = (x1, x2, . . . , ) ∈ ℝℕ with xi ̸= 0
only for finitely many i ∈ ℕ and ∑n

i=1 xi ≥ 0 for all n ≥ 1. Consider V = K − K
with the norm ‖x‖ = max

i
|xi|. Show that intK = 0, K is symmetrically bounded

but not normal.

3.4 Completeness for internal metrics

An important step in the analysis of concave Perron–Frobenius theory was the fact
that the interior of the standard cone in ℝn (or a certain subset of it) is complete for
Hilbert’s projective metric. This fact was easily established by an adhoc-argument
(Lemma 2.1.10). To get completeness for general cones in infinite dimensions a more
detailed investigation is needed. Themain stepwill be the characterization of internal
completeness, i.e., completeness of a cone with respect to any of the internal metrics,
in terms of so called guided sequences of elements in the cone. This then will lead to
various criteria which assure internal completeness provided the cone meets certain
topological requirements. As remarked already, in general the internalmetrics are just
“écarts” and topological notions as well as uniform structures will be understood in
the sense of Bourbaki [13].

The following lemmawill allowus to concentratewithout loss on cones consisting
of one part only and on the internal metrics d and h only.

Lemma 3.4.1. Let K ̸= {0} be a lineless convex cone in some real vector space.
(i) For m any of the internal metrics d, p, h, g, b and k on K, the cone K is complete for

m if and only if every part of K is complete for m.
(ii) For m any of the internal metrics p, g, b and k, the completeness of K for m is equiv-

alent to the completeness of K for h.

Proof. (i) By Lemma3.2.2 the order functions λK and λP ofK andof a partP ofK, respec-
tively, coincide on P × P. Since all internal metrics are defined by the order function it
follows that the internalmetricsmK andmP coincide on P×P. Two points x, y ∈ K∖{0}
are in the same part iff λK(x, y) > 0 and λK(y, x) > 0 or, equivalently, iffm(x, y) < ∞ for
m = d, p, k, m(x, y) < 1 form = h, b and g(x, y) < 2. This proves (i).

(ii) From the inequalities (ii)–(iv) of Proposition 3.3.3 it follows that K is complete
for h iff K is complete for one of the metricsm = p, g, b, k.
Later on we will see that completeness for d, too, is equivalent to completeness for h.
The following concept of a guided sequence will be useful later on to describe more
explicitly Cauchy sequences for internal metrics.

Definition 3.4.2. A sequence (xn) ⊂ K is a sequence guided by e, or shortly, a guided
sequence if there exist e ∈ K and a sequence (𝜖n) of non-negative real numbers con-
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102 | 3 Internal metrics on convex cones

verging to 0 such that

e ≤ xn ≤ xm+n ≤ xn + 𝜖ne for all m, n ∈ ℕ.
(≤ is the order relation induced by the convex cone K.)
Obviously, a sequence (xn) in K is guided by e iff it is an increasing sequence of ele-
ments above e such that xm+n ∈ xn + [0, 𝜖ne] where [a, b] = {x ∈ K | a ≤ x ≤ b}
denotes an interval with respect to K. In particular, a guided sequence is increasing
and order-bounded, i.e., contained in some order interval. The converse implication
may hold or not as explained by the following examples.

Examples 3.4.3. (a) Consider the standard cone K = ℝN
+ . For this cone one has that

any increasing order-bounded sequence is also a guided sequence. If (xn) is increasing
and order-bounded then there exists x = (x1, . . . , xN) ∈ K such that xi = sup

n
xin for

all i. Let I be the set of all 1 ≤ i ≤ N such that xin > 0 for at least one n and define
ei = min{xin | xin > 0} for i ∈ I and ei = 0 for i ̸∈ I. Obviously, e ∈ K and e ≤ xn ≤ xm+n
for all m, n ∈ ℕ. By 𝜖n = max{ xi−xinei | i ∈ I} and 𝜖n = 0 in case of I = 0 a sequence of
non-negative numbers is defined which convergers to 0. It follows that xi ≤ xin + 𝜖nei
for i ∈ I and, trivially, for i ̸∈ I and, hence,

xm+n ≤ x ≤ xn + 𝜖ne.
Thus (xn) is a sequence guided by e.

(b) Consider the standard cone K = C+([0, 1]) in the infinite dimensional vector
space of all continuous functions on the unit interval.

We construct an increasing and order-bounded sequence in the cone K which not
even possesses a guided subsequence. Let fn ∈ K be defined by

fn(t) = { 2nt, 0 ≤ t ≤ 1
2n

1, 1
2n ≤ t ≤ 1.

Obviously, fn ≤ fn+1 and 0 ≤ fn ≤ 1 on [0, 1] for all n. One has that for the supremums
norm ‖ ⋅ ‖ ‖fm+n − fn‖ ≥ ‖fn+1 − fn‖ ≥ 1

2
for all m ≥ 1. Suppose (fn ) is a subsequence of (fn) that is guided by some e ∈ K. In
particular, 0 ≤ fm+n − fn ≤ 𝜖ne and, hence,

1
2
≤ ‖fm+n − fn‖ ≤ 𝜖n‖e‖

with 𝜖n converging to 0. This, however, is not possible.
The following lemma establishes a connection between Cauchy sequences for any of
the internal metrics and guided sequences.
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3.4 Completeness for internal metrics | 103

Lemma 3.4.4. Let K be a lineless convex cone and m an internal metric on K.
(i) Every guided sequence is a Cauchy sequence for m.
(ii) If (xn)n is a Cauchy sequence in K form then there exists a subsequence (xn(k))k and a

sequence of real numbers λk > 0 such that (zk)k for zk = λkxn(k) is a guided sequence.

Proof. Without restriction we consider sequences in K ∖ {0}.
(i) By Proposition 3.3.3 it suffices to considerm = h. Let (xn) be a sequence guided

by e ∈ K. Then λ (xn, xm+n) ≥ 1. Furthermore,

xm+n ≤ xn + 𝜖ne ≤ xn + 𝜖nxn = (1 + 𝜖n)xn
yields that λ (xm+n, xn) ≥ 1

1+𝜖n
.

Therefore,
h(xn, xm+n) = 1 −min{λ (xn, xm+n), λ (xm+n, xn)}

≤ 1 − 1
1 + 𝜖n = 𝜖n

1 + 𝜖n ≤ 𝜖n
for allm, n. Since (𝜖n) converges to 0 forn→∞ it follows that (xn) is a Cauchy sequence
for h.

(ii) By Proposition 3.3.3 it suffices to prove the assertion for m = d. Let (xn)
be a Cauchy sequence for d. For 𝜖k = (1 + 4−k)−1 there exists a subsequence
yk = xn(k), n(⋅) : ℕ → ℕ strictly increasing, such that d(yk+1, yk) < − log 𝜖k for all
k ∈ ℕ.

Therefore,
λ (yk+1, yk) ⋅ λ (yk, yk+1) > 𝜖k

which implies that for every k ∈ ℕ there exist αk > 0, βk > 0 with αkβk > 𝜖k and
αkyk ≤ yk+1, βkyk+1 ≤ yk.

Define recursively λk > 0 by λ1 = 1, λk+1 = λkα−1k and zk = λkyk for k ∈ ℕ.
We shall show that (zk) is a guided sequence with e = z1.
It holds that

zk = λkyk ≤ λk
αk
yk+1 = λk+1yk+1 = zk+1

and
zk+1 = λk+1yk+1 ≤ λk+1

βk
yk =

1
αkβk

λkyk ≤ 1𝜖k zk.
This yields for n ∈ ℕ

0 ≤ zn+1 − z1 = n∑
k=1
(zk+1 − zk) ≤ n∑

k=1
( 1𝜖k − 1) zk ≤ 1

3
zn ≤ 1

3
zn+1

and, hence,
zn+1 ≤ 3

2
z1 for all n ∈ ℕ.
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104 | 3 Internal metrics on convex cones

From this we obtain form, n ∈ ℕ
zm+n − zn = m+n−1∑

k=n
(zk+1 − zk) ≤ m+n−1∑

k=n
4−kzk ≤ 3

2
(m+n−1∑

k=n
4−k) z1 ≤ 2 ⋅ 4−nz1.

Therefore, for e = z1, 𝜖n = 2 ⋅ 4−n we obtain that for allm, n ∈ ℕ
e ≤ zn ≤ zm+n ≤ zn + 𝜖ne.

ByLemma3.4.4 guided sequences are a special kindof internal Cauchy sequences and,
of course, the latter are not guided in general. The next lemma describes the special
kind of internal convergence for guided sequences.

Since the cones we are considering are not necessarily archimedean, we consider
for a lineless convex cone K in a real vector space V beside the order-relation ≤ the
following order-relation <, also induced by K. For x, y ∈ V let x < y if and only if x ≤ ry
for all r > 1.

The relation < is reflexive and transitive and x ≤ y implies x < y. In general, x < y
does not imply x ≤ y. The latter implication holds iff K is archimedean.

Lemma 3.4.5. Let K be a lineless convex cone and m an internal metric on K. A guided
sequence (xn) in K converges for m if and only if (xn) has a supremum in K with respect
to the order relation <.
Proof. (i) Let (xn) be a guided sequence that converges for m. We shall show that (xn)
has a supremum in K for <. By Proposition 3.3.3 we can assume that m = d. If (xn)
converges for d to x ∈ K, without loss x ̸= 0, then λ (xn, x) ⋅ λ (x, xn) converges to 1 for
n → ∞. We show that the limits lim

n→∞
λ (xn, x) = s and lim

n→∞
λ (x, xn) = S do exist and,

hence, s ⋅ S = 1. As a guided sequence (xn) is increasing and, therefore, λ (xn, x) ≤
λ (xm, x) for m ≤ n. Thus (λ (xn, x)) is decreasing and, hence, s = lim

n→∞
λ (xn, x) exists.

Similarly, λ (x, xm) ≤ λ (x, xn) form ≤ n and the sequence (λ (x, xn)) is increasing. Since(xn) is guided one has that xn ≤ xn+1 ≤ (1 + 𝜖)x1 and, hence,
λ (x, xn) ≤ λ (x, (1 + 𝜖1)x1) = (1 + 𝜖1)λ (x, x1) for all n.

By Lemma 3.1.4 (i) and x ̸= 0 one has that λ (x, x1) < ∞ and, therefore, (λ (x, xn)) is
bounded from above. Thus, S = lim

n→∞
λ (x, xn) exists.

Next we show that Sx is a supremum of (xn) for <. Obviously, λ (xn, x)xn ≤ rx for all
r > 1 and n ∈ ℕ. Togetherwith s ≤ λ (xn, x)weobtain sxn ≤ rx and, hence, xn < 1

s x = Sx
for alln. Furthermore, let xn < y for some y ∈ K andalln ∈ ℕ. Obviously, λ (x, xn)x ≤ rxn
for all r > 1 and n ∈ ℕ, and we conclude that λ (x, xn)x ≤ r2y for all r > 1, all n ∈ ℕ. By
definition of S, to r > 1 there exists n0 ∈ ℕ with S ≤ λ (x, xn0 )r. Altogether we obtain
that

Sx ≤ λ (x, xn0 )rx ≤ rr2y.
Since r > 1 arbitrary this implies that Sx < y. This shows that Sx is a supremumof (xn).
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3.4 Completeness for internal metrics | 105

(ii) Let (xn) be a guided sequence with a supremum x for <. By Proposition 3.3.3
it suffices to show that lim

n→∞
h(xn, x) = 0. Since xn < x for all n one has that xn ≤ rx for

all n and all r > 1 and, therefore, λ (xn, x) ≥ 1 for all n. Furthermore, because (xn) is
guided we have that xk ≤ xn for k ≤ n and xm+n ≤ xn + 𝜖ne ≤ (1 + 𝜖n)en and, therefore,
xk ≤ (1 + 𝜖n)xn and all k, n ∈ ℕ. Since x is a supremum of (xn) for < it follows that
x < (1 + 𝜖n)xn for all n ∈ ℕ. This implies that λ (x, xn) ≥ 1

1+𝜖n
≥ 1 − 𝜖n and, hence,

1 − λ (x, xn) ≤ 𝜖n for all n. Altogether we obtain
h(x, xn) = max{1 − λ (xn, x), 1 − λ (x, xn)}≤ max{0, 𝜖n} = 𝜖n

and, hence, 0 ≤ lim
n→∞

h(x, xn) ≤ lim
n→∞

𝜖n = 0.

From the two lemmata we obtain immediately the following main result on internal
completeness of cones.

Theorem 3.4.6 (Internal completeness theorem). Let K be a lineless convex cone in
some real vector space and let m be an internal metric on K (i.e., m is one of the metrics
d, p, h, g, b, and k). K is complete for m if and only if every guided sequence in K has a
supremum in K with respect to <.
Proof. (i) Suppose, K is complete for m. If (xn) is a guided sequence in K then by
Lemma 3.4.4 (i) it is a Cauchy sequence for m. Therefore, (xn) converges for m and,
by Lemma 3.4.5, has a supremum in K for <.

(ii) Suppose, every guided sequence in K has a supremum in K for <. If (xn) is a
Cauchy sequence in K for m then, by Lemma 3.4.4 (ii), there exists a sequence in K
given by zk = λkxn(k), λk > 0, which is guided. By assumption, this guided sequence
has a supremum in K for < and, by Lemma 3.4.5, it must converge to some z ∈ K form.
Suppose, thatm = d. From Lemma 3.1.4 (ii) we have that

d(xn(k), z) = − log[λ (xn(k), z) ⋅ λ (z, xn(k)]
= − log[λkλ (zk, z) ⋅ 1

λk
λ (z, zk)]

= d(zk, z).
Therefore, (xn(k)) converges to z and, since (xn) is a Cauchy sequence for d, (xn)

must converge to z for d. Thus, K is complete for d.
Suppose, now, thatm ̸= d.
By Proposition 3.3.3 we may assume that m = h. Since (xn) is a Cauchy sequence

for h, there exists n0 ∈ ℕ such that λ (xn0 , xn) ≥ 1
2 for all n ≥ n0. Since (zk) is a guided

sequence, there exists v ∈ K such that zk ≤ v for all k, and, therefore, λ (xn(k), v) ≥ λk
for all k. From Lemma 3.1.4 (iii) it follows for k0 ∈ ℕ with n(k0) ≥ n0 that

λ (xn0 , v) ≥ λ (xn0 , xn(k)) ⋅ λ (xn(k), v) ≥ 1
2
⋅ λk

for all k ≥ k0.
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106 | 3 Internal metrics on convex cones

Therefore, sup
k
λk is finite and there exists an increasing subsequence (λl) converg-

ing to some λ > 0.
Using Lemma 3.1.4 (ii) we obtain that

min {λ (xn(l), zλ ), λ ( zλ , xn(l))} ≥ min{λl
λ
, λ
λl
} ⋅min{(λ (zl, z), λ (z, zl)}.

Since min{ λlλ , λλl } and min{λ (zl, z), λ (z, zl)} converge to 1 for l →∞, we must have
that lim

l→∞
h(xn(l), zλ ) = 0. By assumption (xn) is a Cauchy sequence for h and, hence, (xn)

must converge to z
λ for h. Thus, K is complete for h.

The internal completeness theorem implies in particular that a conewhich is complete
for one internal metric must be complete for any other internal metric. Therefore, we
call a lineless convex cone simply internally complete if it is complete for any internal
metric.

Remark 3.4.7. For an earlier version of the internal completeness theorem see [38,
p. 554]. Theorem 3.4.6 (together with Lemma 3.4.1) implies in particular the following
criterion of [21, p. 20]:

A lineless convex cone is complete for the part metric if for every part P it holds
that any increasing and order-bounded sequence (for P) has a supremum in P with
respect to < (for P). The conditions of this criterion are sufficient but not necessary,
as can be seen from the example of all non-negative continuous functions on the unit
interval (cf. Examples 3.4.3 b).

From the internal completeness theoremwe can derive a characterization of inter-
nal completeness in terms of relative uniform convergence, a concept which is mainly
used in vector lattices (see also Remark 3.4.10).

Definition 3.4.8. Let K be a convex cone in a real vector space V and let ≤ be the or-
dering relation induced by K. A sequence (xn) in V converges to x in V for relative
uniform convergence (r.u. convergence) if there exist u ∈ K and a null-sequence(δn) such that −δnu ≤ x − xn ≤ δnu for all n ∈ ℕ.
A sequence (xn) in V is a Cauchy sequence for r.u. convergence, if there exist u ∈ K
and a null-sequence (𝜖n) such that

−𝜖nu ≤ xm+n − xn ≤ 𝜖nu for all m, n ∈ ℕ.
A subsetM of V is complete for r.u. convergence if every r.u. Cauchy sequence inM
converges for r.u. convergence inM (with the same u).

Corollary 3.4.9. A lineless convex cone K in the vector space V is internally complete
if and only if with respect to relative uniform convergence every increasing Cauchy se-
quence in K converges in V (with the same u). In particular, K is internally complete if it
is complete for relative uniform convergence.
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3.4 Completeness for internal metrics | 107

Proof. It suffices to prove the first statement.
(i) Let K be internally complete. If (xn) is an increasing Cauchy sequence for r.u.

convergence then
0 ≤ xm+n − xn ≤ 𝜖nu for all m, n ∈ ℕ.

Let yn = xn − x1 + u ∈ V. Obviously, yn ∈ K and
u ≤ yn ≤ ym+n ≤ yn + 𝜖nu,

that is, (yn) is a sequence guided by u. By Theorem 3.4.6 (yn) has a supremum y for <
in K. From ym+n ≤ yn + 𝜖nu it follows that yk ≤ yn + 𝜖nu for fixed n and all k ∈ ℕ and,
hence, yk < yn + 𝜖nu.

The latter implies y ≤ (1 + 1
n )yn + 2𝜖nu for all n ∈ ℕ and, hence,

y − yn ≤ 1
n
yn + 2𝜖nu ≤ 1

n
(𝜖1u + u) + 2𝜖nu

≤ δnuwith δn =
1 + 𝜖1
n

+ 2𝜖n.
On the other hand, from yn < y it follows that yn ≤ (1 + 1

n )y and because of yn ≤(1 + 𝜖1)u, we obtain −δnu ≤ −1 + 𝜖1
n

u ≤ − yn
n + 1

≤ y − yn.
Putting together, we obtain

−δnu ≤ (y + x1 − e) − xn ≤ δnu

with a null-sequence (δn).
Thus, the sequence (xn) converges for r.u. convergence to y + x1 − e ∈ V.
(ii) Suppose, every increasing Cauchy sequence in K converges for r.u. conver-

gence in V. Let (xn) be a guided sequence in K, i.e., e ≤ xn ≤ xm+n ≤ xn + 𝜖ne.
Obviously, (xn) is an increasing Cauchy sequence for r.u. convergence and, by as-

sumption, (xn) is r.u. convergent to x ∈ V with u = e, that is −δne ≤ x − xn ≤ δne for all
n, where (δn) is a null-sequence.

In particular, for n big enough 0 ≤ (1 − δn)e ≤ xn − δne ≤ x and, hence, x ∈ K.
Furthermore, xn ≤ x + δne ≤ x + δnxn and, hence, (1 − δn)xn ≤ x.
For r > 1 given there exists n0 ∈ ℕ such that δn ≤ 1 − 1

r for n ≥ n0, and we obtain
xn ≤ 1

1−δn
x ≤ rx for n ≥ n0.

Since (xn) is increasing, this implies that xn ≤ rx for all n ∈ ℕ and, hence, xn < x
for all n ∈ ℕ.

Finally, let xn < y ∈ K for all n ∈ ℕ. From x ≤ xn + δne ≤ (1 + δn)xn we obtain that
x ≤ (1 + δn)ry for all r > 1, all n ∈ ℕ. Since this implies that x < ywe conclude that (xn)
has for < the supremum x ∈ K. By Theorem 3.4.6 the coneK is internally complete.

Remarks 3.4.10. (i) For thenotion of relative uniformconvergence and related results
see in particular [10, 11, 43, 47, 51, 56] (where it is called convergence with respect to
a regulator).
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108 | 3 Internal metrics on convex cones

(ii) Corollary 3.4.9 contains the following criterion due to G. Birkhoff ([11, p. 49],
[12, p. 387]):

If K is a pointed and archimedean convex cone in a real vector space V = K − K
which is complete for r.u. convergence then K is complete with respect to Hilbert’s
projective metric.
For a pointed convex cone that is archimedean (in K − K) the internal completeness
theorem can be rephrased as follows: K is internally complete if and only if every in-
creasing Cauchy sequence for r.u. convergence has a supremum in K (for ≤).

If in addition V = K − K is a vector lattice for ≤, Corollary 3.4.9 simplifies to the
following characterization: K is internally complete if and only if K is complete for r.u.
convergence.

Since a Banach lattice(or, more general, a complete vector lattice) is complete for r.u.
convergence, it follows that the positive cone of a Banach lattice is internally complete
(cf. [10, p. 227], [11, p. 50]).

Next we will derive criteria for internal completeness which employ topological
assumptions. First we recall some related notions.

A semi-norm on a real vector space V is a mapping q : V → ℝ+ such that q(x +
y) ≤ q(x) + q(y) and q(λ x) = |λ |q(x) for x, y ∈ V and λ ∈ ℝ. A semi-norm q is a norm
if in addition q(x) = 0 implies x = 0. If K is a convex cone in V with order relation≤ a semi-norm or norm q is calledmonotone or increasing if 0 ≤ x ≤ y implies that
q(x) ≤ q(y).

A locally convex topology on a vector space V is the coarsest topology on V for
which all semi-norms q from a given family Q are continuous. A locally convex topol-
ogy can be described by the following base for the neighborhood system of 0

{x ∈ V | q(x) < 𝜖 for all q ∈ F}
where 𝜖 > 0 and F is a finite subset of Q. By translation one obtains a base for any
y ∈ V. The locally convex topology is separated or Hausdorff iff q(x) = 0 for all q ∈ Q
implies that x = 0. In the following a locally convex topology is always assumed to be
Hausdorff.

A vector space V equipped with such a topology τ is called a locally convex vec-
tor space, denoted by (V , τ ).
Definition 3.4.11. Aconvex coneK in a locally convex vector space (V , τ ) is callednor-
mal if there exists a family Q of monotone semi-norms on V that defines τ .

For the special case of a normed space (V , ‖ ⋅ ‖) a convex cone K in V is normal
iff there exists a constant c > 0 such that 0 ≤ x ≤ y implies ‖x‖ ≤ c‖y‖. (See [47] for
normal cones.)

Before turning to topological criteria for internal completeness we will explore the
relationship between the vector space topology τ and the internal topologies, that is
the topologies belonging to internal metrics h, p, d, g, b, k (see also Exercises 2 to 5).
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3.4 Completeness for internal metrics | 109

Proposition 3.4.12. Let K be a lineless convex cone in a locally convex vector space(V , τ ). Let P ̸= {0} be a part of K and let (L, τ ) be the smallest subspace L of V containing
P equipped with the restriction of τ on L.
(i) Let x, y ∈ P and suppose x + U ⊆ P and y + U ⊆ P for some U from the base of the

neighborhood system of 0 in (L, τ ). For x ∈ x + αU, y ∈ y + βU with 0 < α , β < 1
it holds that

1 − β
1 + α

λ (x, y) ≤ λ (x, y) ≤ 1 + β
1 − α λ (x, y). (3.4.1)

(ii) Let x ∈ P with x + U ⊂ K where U = {u ∈ L | q(u) ≤ r, q ∈ F} for a finite subset F of
Q. For x ∈ x + U it holds that

h(x, x) ≤ q(x − x)
r

for all q ∈ F with q(x − x) ̸= 0. (3.4.2)

(iii) If P has non-empty interior
∘
P in (L, τ ) then P =

∘
P and the order function λ (⋅, ⋅) and

all internal metrics are τ-continuous on P × P.
(iv) Internal open subsets of

∘
P are open in (L, τ ).

(v) If P is normal in (L, τ ) then the topologies for the internal metrics with the exception
of Hilbert’s metric coincide on

∘
P with the topology induced on

∘
P by τ. The topology

of Hilbert’s metric coincides with the topology induced by τ on τ-bounded subsets
S of

∘
P with the property that for x, y ∈ S neither x < y nor y < x (“<” the partial order

defined by
∘
P).

(vi) Suppose τ is given by a monotone norm ‖ ⋅ ‖ on K such that
∘
K ̸= 0.

(a) Let x, y ∈ ∘
K with B(x, r),B(y, r) ⊆ K, where B(x, r) is the open ball {z ∈ K |‖z − x‖ < r}. Then

h(x, y) ≤ ‖x − y‖
r + ‖x − y‖ , p(x, y) ≤ ‖x − y‖

r
, d(x, y) ≤ 2‖x − y‖

r
.

(b) For each set M = u + K with u ∈ ∘
K and each internal metric m there exists a

positive constant Km such that

m(x, y) ≤ Km‖x − y‖ for all x, y ∈ M.
On each norm-compact subset C of

∘
K each internal metric m ̸= d is equivalent to the

metric induced by the norm, that is with positive constants km,Km
km‖x − y‖ ≤ m(x, y) ≤ Km‖x − y‖ for all x, y ∈ C.

For m = d such an equivalence holds on C ∩ {z ∈ K | ‖z‖ = 1}.
Proof. (i) There exist u, v ∈ U with x = x + αu, y = y + β v and x ± u ∈ P, y ± v ∈ P.
By Lemma 3.2.2 (ii) part P is a convex cone and λ (⋅, ⋅) = λP(⋅, ⋅). Applied to the convex
cone P, Lemma 3.1.4 (xv) yields formula (3.4.1).
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110 | 3 Internal metrics on convex cones

(ii) Fix a q ∈ F with q(x − x) ̸= 0. For λ = q(x−x)
r and u = r x−x

q(x−x) one has that

x = 1
1 + λ

x + λ
1 + λ

(x − u) and x = (1 − λ )x + λ (x + u).
Therefore, λ (x, x) ≥ 1

1+λ , λ (x, x) ≥ 1 − λ and h(x, x) = 1 −min{λ (x, x), λ (x, x)} ≤ λ .

(iii) Let x0 ∈ ∘
P and x0 + U ⊆ P with U from the base of 0 in (L, τ ). Since P is a part,

x ∼ x0 for x ∈ P and, therefore, x = λ x0 + y with 0 < λ and y ∈ P. For u ∈ U it follows

that x + λ u = λ x0 + λ u + y = λ (x0 + u) + y ∈ λP + P ⊆ P. Therefore, x ∈ ∘
P which

proves P =
∘
P.

From step (i) it follows that the order function is τ -continuous on
∘
P = P. The

assertion on the internal metrics then follows according to their definitions by the
order function.

(iv) From (ii) it follows that each h-open subset of
∘
P is open in (L, τ ). From Propo-

sition 3.3.3 it follows that a subset of
∘
P which is open for one of the internal metrics

must be open for h.
(v) Becauseof statement (iv) andProposition 3.3.3 it suffices to show that a τ -open

subset O ⊆ ∘
P is open for h. Let x ∈ O and x + U ⊆ O for U = {u ∈ L | q(u) < 𝜖, q ∈ F},

F finite. Let δ = 𝜖
𝜖+3max{q(x)|q∈F} and consider y ∈ P with h(x, y) < δ . Since P is normal

we may assume that the seminorms q defining τ are all monotone. Proposition 3.3.3
(vi) implies that q(x − y) ≤ 3h(x, y)max{q(x), q(y} for q ∈ F. Furthermore, h(x, y) < δ
implies that λ (y, x) > 1 − δ and, hence, (1 − δ )y ≤ x. Therefore, (1 − δ )q(y) ≤ q(x) for
q ∈ F and

max {q(x − y) | q ∈ F} ≤ h(x, y) ⋅ 3
1 − δ max {q(x) | q ∈ F}

< 3δ
1 − δ max {q(x) | q ∈ F} = 𝜖

by the definition of 𝜖. This shows that y − x ∈ U and, hence, y = x + y − x ∈ O.
Concerning the topology for Hilbert’s metric d, let S be a subset of

∘
P as in (v) and

x, y ∈ S. If λ (x, y) > 1 then y−(1 + 𝜖)x ∈ P and, hence, y−x ∈ P + 𝜖x. This implies y > x
which is impossible by assumption. Therefore,wemust have λ (x, y) ≤ 1and, similarly,
λ (y, x) ≤ 1. From Proposition 3.3.3 (v) it follows for every monotone seminorm q that

q(x − y) ≤ 3(1 − λ (x, y) ⋅ λ (y, x))max{q(x), q(y)}.
By assumption, S is τ -bounded and, therefore, for any finite set F of monotone semi-
norms

max{q(x − y) | q ∈ F} ≤ 3cF(1 − e−d(x,y)) for all x, y ∈ S
for some constant cF > 0. The assertion for d follows then as for h above.

(vi) (a) Let, without loss, x ̸= y. From B(x, r) ⊆ K it follows for α = r
‖x−y‖

αx + x − αy = x + α (x − y) ∈ B(x, r) ⊆ K
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3.4 Completeness for internal metrics | 111

and, hence, αy ≤ (1 + α )x. This gives λ (y, x) ≥ α
1+α = r

r+‖x−y‖ . In the same way B(y, r) ⊆
K implies λ (x, y) ≥ r

r+‖x−y‖ . Thus, min{λ (x, y), λ (y, x)} ≥ r
r+‖x−y‖ and, hence,

h(x, y) = 1 −min{λ (x, y), λ (y, x)} ≤ 1 − r
r + ‖x − y‖ = ‖x − y‖

r + ‖x − y‖ .
Furthermore, by Proposition 3.3.3 (i) and (ii)

p(x, y) ≤ h(x, y)
1 − h(x, y) ≤ ‖x − y‖r

and d(x, y) ≤ 2p(x, y) ≤ 2‖x−y‖
r .

(b) Let M = u + K, u ∈ ∘
K and B(u, r) ⊆ K. If x ∈ M and ‖x − z‖ ≤ r for z ∈ L then

u + z − x ∈ B(u, r). Therefore, u + z − x = v ∈ K and z = v + x − u ∈ K. This shows
B(x, r) ⊆ K. Thus, for x, y ∈ M from (a) it follows that

h(x, y) ≤ Kh‖x − y‖, p(x, y) ≤ Kp‖x − y‖, d(x, y) ≤ Kd‖x − y‖,
with Kh = Kp = 1

r ,Kd = 2
r . By Proposition 3.3.3 (iii), (iv) similar inequalities follow for

m = b, g, k.
Consider now a norm-compact subset C of

∘
K. We shall show that C ⊆ u + K for

some u ∈ ∘
K. For x ∈ C,U(x) = 1

2x +
∘
K is an open set for ‖ ⋅ ‖ and x ∈ U(x). Compactness

of C for ‖ ⋅ ‖ implies a finite covering C ⊆ ⋃n
i=1 U(xi). Since xi ∈ ∘

K, 1 ≤ i ≤ n, λ =

min
1≤i≤n

λ (x1, xi) > 0 and λ x1 ≤ xi for 1 ≤ i ≤ n. Define u = λ
2 x1. Obviously, u ∈ ∘

K and

U(xi) = 1
2xi +

∘
K = u + ( 12xi − u) + ∘

K ⊆ u + K. Thus, C ⊆ u + K.
By the above, therefore, for each internal metric m there exist Km such that

m(x, y) ≤ Km‖x − y‖ for all x, y ∈ C. From Proposition 3.3.3 (vi) it follows by com-
pactness of C that kh‖x − y‖ ≤ h(x, y) for some positive constant kh and all x, y ∈ C.
From Proposition 3.3.3 (ii), (iii), (iv) similar inequalities follow for allm ̸= d. Form = d
such an inequality follows on C ∩ {z ∈ K | ‖z‖ = 1} by Proposition 3.3.3 (vii).
Theorem 3.4.13. Let K be a convex cone which is sequentially complete in a locally con-
vex vector space (V , τ ). Every part P of K for which the order intervals {x ∈ P | u− x ∈ P}
with u ∈ P are τ-bounded is lineless and internally complete.
Proof. Let ≤ be the ordering relation induced by K and ≤P the ordering relation in-
duced by P ⊂ K. First we show that P is lineless. Suppose that x + λ (y − x) ∈ P for all
λ ∈ ℝ. Obviously, u = 2x ∈ P and u − (x + λ (y − x)) = x + (−λ )(y − x) ∈ P for all λ ∈ ℝ.

Since the order interval [0, u] ⊂ P is τ -bounded, it follows that for every q of a
defining family Q of semi-norms for τ there exists a constant cq > 0 such that q(x +
λ (y − x)) ≤ cq for all λ ∈ ℝ.

This yields for all λ ∈ ℝ
|λ |q(y − x) = q(λ (y − x)) ≤ q(x + λ (y − x)) + q(−x) ≤ cq + q(−x)
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112 | 3 Internal metrics on convex cones

and, hence,
q(y − x) = 0 for all q ∈ Q, that is y = x.

This shows that P is a lineless cone.
Next, we show that any guided sequence (xn) in P has a supremum in P for <P.

Theorem 3.4.6 then yields internal completeness for P. From
e ≤P xn ≤P xm+n ≤P xn + 𝜖ne where e ∈ P and (𝜖n) a null sequence, it follows

that 1
𝜖n
(xm+n − xn) is contained in the order interval [0, e] of P and, hence, τ -bounded.

Therefore, (xn) is a Cauchy sequence for τ inK and, by assumption, (xn) converges for τ
to some x ∈ K. Obviously, e ≤ xn ≤ xm+n ≤ xn + 𝜖ne and, therefore, xn ≤ x ≤ xn + 𝜖ne for
all n. Togetherwith xn ∈ P, e ∈ P this implies that x ∈ P. We show that x is a supremum
of (xn) for <P. Let r > 1 and y = rx − xn. From 0 ≤ xn ≤ x we obtain (r − 1)x ≤ y ≤ rx
and , hence, y ∈ P. This shows that xn ≤P rx for all n, all r > 1, that is, xn <P x for
all n. Finally, suppose that xn ≤P sz for some z ∈ P, all n, all s > 1. For any r > 1
and any 0 < 𝜖 < r − 1 one has that s = r − 𝜖 > 1 and, hence, xn <P (r − 𝜖)z. Thus,(r − 𝜖)z − xn ∈ P ⊂ K for all n, which implies (r − 𝜖)z − x ∈ K. Therefore,

𝜖z ≤ 𝜖z + (r − 𝜖)z − x = rz − x ≤ rz,
which shows that rz − x ∈ P for all r > 1, that is x <P z. We conclude that x is a
supremum of (xn) for <P.
Corollary 3.4.14. Let K be a convex cone which is sequentially complete and normal
in a locally convex vector space (V , τ ). Then K is lineless and internally complete and,
in particular, the interior

∘
K with respect to τ is internally complete. Furthermore, {x ∈

∘
K | p(x) = 1} is an internally complete metric space for any functional p on V that is
non-negative on K, positively homogeneous with p(x) = 0 only for x = 0.

Proof. SinceK is normal there exists for τ adefining familyQofmonotone semi-norms
onV. For x, y ∈ K given and z ∈ [x, y], that is x ≤ z ≤ y, it follows that q(x) ≤ q(z) ≤ q(y)
for all q ∈ Q. Therefore, order intervals [x, y] of K are τ -bounded. In particular, K is
lineless (cf. proof of Theorem 3.4.13) and for every part P of K the order intervals [0, u]
in P are τ -bounded. From Theorem 3.4.13 it follows that every part P of K is internally
complete and, by Lemma 3.4.1, K is internally complete. Being a part of K, P =

∘
K is

internally complete. Finally, let (xn)n be a Cauchy sequence in ∘
K for d with p(xn) = 1

for all n. This sequence converges to y ∈ ∘
P and there exist λ > 0, z ∈ K such that for

some n it holds that y = λ xn + z ∈ ∘
K + K ⊂ ∘

K. Therefore p(y) > 0 and (xn)n converges
for d to x = y

p(y) .

Example 3.4.15. Let (V , ‖ ⋅ ‖) be a Banach lattice with positive cone K. The cone K is
closed and normal [51, p. 235]. By Corollary 3.4.14,K and, in particular,

∘
K are internally

complete. Furthermore, X = {x ∈ K | ‖x‖ = 1} and X = {x ∈ ∘
K | ‖x‖ = 1} are internally

complete.
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3.4 Completeness for internal metrics | 113

This applies in particular to the Banach lattice V = C(T) of all continuous func-
tions on a compact spacewith positive coneK = {f ∈ C(T) | f (t) ≥ 0 for all t ∈ T}. Espe-
cially, for T = {1, . . . , n} one obtains that for V = ℝn the standard cone K = ℝn

+, as well
as its interior, is internally complete. Also, the completeness of X = {x ∈ ∘

K | ‖x‖ = 1}
with respect to Hilbert’s projective metric which we proved in Lemma 2.1.10 directly is
a special case. The case of

∘
K also makes clear that in the internal completeness theo-

rem < cannot be replaced by ≤ in general.
Remarks 3.4.16. (i) The first result on internal completeness was established by
G. Birkhoff ([10, 11]; see also [50]) in 1957 when he showed that the positive cone of a
Banach lattice is complete for Hilbert’s projective metric (see Remarks 3.4.10).

The first result on internal completeness for more general spaces was established
by A. C. Thompson ([53, p. 69], [54]) in 1963 when he showed the statement of Corol-
lary 3.4.14 for the part metric. From a different point of view M.A. Krasnoselskii and
his group ([59]; see also [35, 36]) showed for a closed and pointed convex cone in a Ba-
nach space that a part is complete for the part metric if and only if all order intervals[0, x] of the part are (norm) bounded. Thus, in the particular case of Banach spaces
the condition in Theorem 3.4.13 is not only sufficient but also necessary. For results on
completeness of cones for the part metric and Hilbert’s projective metric, respectively,
see also [17, 21, 22, 38, 44, 58].

(ii) As mentioned already (cf. Remarks 3.1.6 and Section 3.3) the part metric and
Hilbert’s projectivemetric have been studied also for general convex sets. Thompson’s
result for convex cones has been extended by H. Bauer [2] to (sequentially) complete
convex sets in a locally convex vector space which are normal in a sense that gen-
eralizes normality of cones. H. S. Bear [5] and Bauer and Bear [3] also showed that a
complete lineless convex set in a weak space is complete for the part metric. It has
been observed (cf. [9], see also Section 3.3) that a convex set can be interpreted also as
the base of a certain convex cone by which results on cones may be transformed into
results on general convex sets. Furthermore, there is a strong relationship for con-
vex sets between completeness for the part metric and superconvexity or σ -convexity
(cf. [40]).

The results obtained, in particular the internal completeness theorem, indicate that
internal completeness of a convex cone is strongly related to a principle of monotone
convergence to hold for the order relation induced by the cone. Such a principle is of
interest in its own and is exemplified in the context of normed spaces by the following
concept of regularity due to M.A. Krasnolselskii et al. [35, 36].

Let K be a closed and pointed convex cone in a real normed space (V , ‖ ⋅ ‖) and let≤ be the order relation induced by K on V. The cone K is regular if every increasing
sequence (xn) in K with xn ≤ y for all n converges for ‖ ⋅ ‖ to some x ∈ K. The cone is
called completely regular if every increasing sequence in K which is norm-bounded
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114 | 3 Internal metrics on convex cones

converges in K [36, p. 47]. The following implications hold:

completely regular ⇒ regular ⇒ normal,

but no one can be reversed in general [36, p. 48]. Furthermore, if K is normal then K is
symmetrically bounded but not vice versa in general (see Exercise 5 to Section 3.1 and
Exercise 5 to Section 3.3). In case the interior of K is not empty it can be shown that
K is symmetrically bounded if and only if every continuous linear functional on V is
the difference of two continuous linear functionals on V which are non-negative on K.
This property, in turn, is equivalent to the normality of K. In case the space (V , ‖ ⋅ ‖)
is complete it follows from Corollary 3.4.14 that K is internally complete. Therefore, a
closed, pointed convex cone K with non-empty interior in a Banach space V which is
completely regular is internally complete. If V is finite dimensional then every closed,
pointed convex cone K and, without loss, with non-empty interior, is completely reg-
ular (cf. [35, p. 51]) and, therefore, regular, normal, symmetrically bounded and in-
ternally complete. Moreover, it has been shown for the finite dimensional case that
even any convex cone which is lineless possesses the properties just mentioned [42,
p. 547]. Thereby it turns out that for every lineless convex cone in finite dimensions any
bounded increasing sequence is guided (see Examples 3.4.3 (a) for the special case of
the standard cone) and that any guided sequence converges for the norm.

Exercises

1. Consider the ice cream cone

K = {(u, r) | u ∈ ℝn, r ∈ ℝ+, ‖u‖ ≤ r}.
(a) Show that K is a normal cone for ‖ ⋅ ‖.
(b) Show that K is internally complete.
(c) Examine if every increasing sequence in K which is bounded from above is a

guided sequence.

2. LetK be a convex cone in a locally convex vector space (V , τ ).K is called symmet-
rically bounded if every symmetric subset of K is bounded for τ . (Cf. Exercises 5
of Section 3.1)
(a) Show that K is symmetrically bounded iff the topology generated by the part

metric on K is finer than the restriction of τ to K.
(b) Assume there exists x0 ∈ K such that λ (x, x0) > 0 for all x ∈ K. Demonstrate

thatK is symmetrically bounded iff for every continuous functional f on (V , τ )
there exists two functionals f1 and f2 on V which are non-negative on K and
such that f = f1 − f2.

(c) Consider the convex cone K of all sequences x = (x1, x2 . . .) ∈ ℝℕ with xi ̸= 0
only for finitely many i ∈ ℕ and∑n

i=1 xi ≥ 0 for all n ≥ 1. In the normed space
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given byV = K−K, ‖x‖ = max
i
|xi| the coneK is symmetrically boundedbut not

normal (see Exercise 5 (c) to Section 3.3). Show that f (x) = ∑∞
n=1

(−1)n
n2 xn, x =(x1, x2, . . .) defines a continuous functional on (V , ‖ ⋅ ‖) which cannot have a

decomposition as in (b) with f1 and f2 both continuous on (V , ‖ ⋅ ‖).
3. (Cf. [1–3]) Let C be a convex set in a real vector space which has one part only and

with 0 ∈ C Let V = {λ x | λ ≥ 0, x ∈ C} and q the Minkowski-norm for C, i.e., for
x ∈ V

q(x) = max{p(x), p(−x)}, p(x) = inf{λ ≥ 0 | x ∈ λC}.
(a) Show that q is a semi-norm on V which is a norm iff C is lineless.
(b) Show that a lineless C is complete for the part metric iff (V , q) is a Banach

space.
(c) Show that every lineless and finite dimensional convex set is complete for the

part metric.
(d) Find a bounded convex subset of a Banach space which has one part only but

which is not complete for the part metric.

4. (Cf. [40]). A subset C of a locally convex space (V , τ ) is called superconvex or σ -
convex if for any sequence (xn) in C and any sequence (αn) in [0, 1]with∑∞

n=1 αn =
1 the sequence of sums ∑N

n=1 αnxn converges for N → ∞ and belongs to C. Con-
sider a convex set C, V and q as in Exercise 3 above, and let τ be a locally convex
topology on V.
(a) Show that every τ -open set is open also for q, provided that C is τ -bounded

and that the converse holds, provided that C has non-empty interior for τ .
(b) Suppose that C is superconvex in (V , τ ) and has non-empty interior for τ .

Show that C is complete for the part metric.
(c) Suppose thatC is complete for the partmetric, τ -bounded andhas non-empty

interior for τ . Show that C is superconvex.

5. Prove the following characterization: A convex set is lineless, complete for the
part metric and consists of one part only if it can be embedded as an open and
symmetrically bounded subset into some complete locally vector space. (Compare
Exercises 3 and 4 above.)
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4 Contractive dynamics on metric spaces
The previous chapter has shown how a convex cone can bemade into a completemet-
ric space by employing one of the several internal metrics of the cone. Thus, a self-
mapping of a cone becomes a selfmapping of a complete metric space. The crucial
point then is that this induced selfmapping of a metric space is contractive or at least
non-expansive for a great variety of non-linear selfmappings of the cone. As an exam-
ple we have already seen the First Concave Perron Theorem (Theorem 2.1.11) where a
concave selfmapping of the standard cone in finite dimensions became a contraction
of an appropriate complete metric space for Hilbert’s projective metric.

In the present chapter we now study systematically the contractive dynamics on
metric spaces, that is the asymptotic behavior of the iterates of a selfmapping of a
metric space which does contract in one way or another distances. In particular, we
treat (𝜖, δ )-contractivemappings and contractive sequences of selfmappings and non-
expansive or, more generally, power-lipschitzian selfmappings for which we prove a
very useful local-global stability principle. Metric fixed point theory is a wide field
and we shall concentrate on those questions which are relevant for the non-linear
selfmappings of convex cones to be dealt with in the next chapter.

4.1 Iteration of contractive selfmappings

Let (X, d) be ametric space and let f : X → X be a selfmapping of X. The forward orbit
O(x) of a point x ∈ X with respect to f is O(x) = {f n(x) | n = 0, 1, 2, . . .}, where f n
is the n-th iterate of f . The (omega) limit set ω (x) of a point x ∈ X with respect to f
is ω (x) = ⋂∞

k=0 {f n(x) | n ≥ k}, where Ā is the closure of a subset A of (X, d). It is well
known that y ∈ ω (x) iff y = lim

i→∞
f ni (x) for a sequence ni →∞. Obviously, limit sets are

closed and invariant under f , i.e., f (ω (x)) ⊂ ω (x). Limit sets may be empty and it will
be an interesting point below when they are not.

Already in Section 2.1 we made use of contractivity properties of certain selfmap-
pings of cones. Now we will study contractivity properties more systematically and
in detail. The following definition collects some interesting contractivity properties,
roughly in increasing generality.

Definition 4.1.1. A selfmapping f of a metric space (X, d) is called a
(i) contraction if there exists a constant 0 ≤ c < 1 such that d(f (x), f (y)) ≤ cd(x, y)

for all x, y ∈ X;
(ii) ϕ -contraction if there exists a functionϕ : ℝ+ → ℝ+ withϕ (0) = 0 and ϕ (t) < t

for t > 0 such that d(f (x), f (y)) ≤ ϕ (d(x, y)) for all x, y ∈ X;
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4.1 Iteration of contractive selfmappings | 119

(iii) generalized contraction if for any given pair 0 < α ≤ β < ∞ there exists a
constant 0 ≤ L(α , β ) < 1 such that α ≤ d(x, y) ≤ β implies d(f (x), f (y)) ≤
L(α , β )d(x, y);

(iv) (𝜖, δ )-contractive if for any given 𝜖 > 0 there exists δ > 0 such that for all x, y ∈ X𝜖 ≤ d(x, y) < 𝜖 + δ implies d(f (x), f (y)) < 𝜖;
(v) contractive if d(f (x), f (y)) < d(x, y) for all x, y ∈ X with x ̸= y;
(vi) non-expansive if d(f (x), f (y)) ≤ d(x, y) for all x, y ∈ X.
All these notions make sense when restricted in an obvious way to points x, y ∈ A for
a non-empty subset A of X.

Having stated these properties we like to add some comments, in particular with re-
spect to the widespread literature on contractivity and fixed points. Property (i), of
course, is the one which is used in Banach’s fixed point theorem or the contraction
mapping principle to guarantee, together with completeness of (X, d), for arbitrary
initial x ∈ X the convergence of the iterates f k(x) to the unique fixed point x∗ of
f . A contraction is, of course, a ϕ -contraction. The reverse implication, however, is
not true. ϕ -contractions have been considered by several authors, as, e.g., in [20] for
ϕ (t) = α (t)t with α (t) decreasing, in [2] for ϕ increasing and continuous from the
right, in [1] for ϕ upper semicontinuous from the right, in [16] for ϕ increasing with
lim
n→∞

ϕn(t) = 0. In all these cases it was proved by the authors for (X, d) complete that
for every initial value the iterates of a ϕ -contraction f converge to the unique fixed
point of f . This conclusion, however, is not possible for an arbitrary ϕ -contraction
(see Exercise 2). For ϕ (t) = α (t)t with α (t) decreasing or for ϕ upper semicontin-
uous from the right, a ϕ -contraction needs to be a generalized contraction (see Ex-
ercise 1 a), b)). A generalized contraction is necessarily (𝜖, δ )-contractive but the re-
verse implication does not hold (see Exercises 3 and 4). Obviously, property (iv) im-
plies property (v), which in turn implies property (vi) and none of these implications
can be reversed. It is easily be seen that the conclusion of Banach’s fixed point theo-
rem no longer holds in general if f is assumed to be contractive only instead of being
a contraction. Below we will see, however, that for (X, d) complete the conclusion of
Banach’s fixed point theorem holds already for (𝜖, δ )-contractive selfmappings and,
a fortiori, for selfmappings which are a ϕ -contraction (with ϕ satisfying additional
properties as above) or a generalized contraction. (See [12] for generalized contrac-
tions and [17] for (𝜖, δ )-contractive mappings which are called there weakly uniformly
strict contractions.) Further generalizations of Banach’s fixed point theorem can be
found in [5] and [9]. In the following we shall show that contractivity together with
non-empty limit sets is sufficient for the conclusion of Banach’s fixed point theorem
to hold (cf. [6, 14]).

Lemma 4.1.2. Let (X, d) be a metric space, let f : X → X be non-expansive and let
x ∈ X.
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(a) If ω (x) is not a singleton then for each y ∈ ω (x) there exists c(y) > 0 such that

d(fm(y), f m+1(y)) = c(y) for all m ≥ 0.
(b) If ω (x) ̸= 0 and f is contractive on ω (x) then f has a fixed point x∗ with lim

n→∞
f n(x) =

x∗.

Proof. Since f is non-expansive the two sequences defined by

an = d(f n(x), f n+1(x)) and bn = d(f n(x), f n(y)) for y ∈ X
are monotone decreasing. Therefore, the limits a = lim an and b = lim bn exist.

(a) If y ∈ ω (x), y = lim
k→∞

f nk (x), then for c(y) = d(y, f (y)) by the above
c(y) = lim

k→∞
d(f nk (x), f nk+1(x)) = lim

k→∞
ank = a = lim

k→∞
ank+m

= lim
k→∞

d(f nk+m(x), f nk+m+1(x)) = d(f m(y), f m+1(y)
for all m ≥ 0. Suppose c(y) = 0, that is f (y) = y. Therefore, for the second sequence(bn)n

lim
n→∞

d(f n(x), y) = lim
n→∞

bn = b = lim
k→∞

bnk = lim
k→∞

d(f nk (x), y) = 0.
This yields lim

n→∞
f n(x) = y. Thus ω (x) ⊆ {y} and ω (x) = {y} is a singleton.

(b) Since f is contractive on ω (x) it is impossible for y ∈ ω (x) to have that 0 <
d(y, f (y)) = d(f (y), f 2(y)). Therefore, (a) implies ω (x) = {x∗}. It follows f (x∗) = x∗ and,
as in (a), for x∗ = lim

k→∞
f nk (x)
lim
n→∞

d(f n(x), x∗) = lim
k→∞

(f nk (x), x∗) = 0.
Thus, lim

n→∞
f n(x) = x∗.

As an immediate consequence of this lemmawe obtain the following characterization
in case of contractive selfmappings.

Theorem 4.1.3. Let (X, d) be a metric space and let f : X → X be contractive. There
exists a unique fixed point x∗ of f with lim

n→∞
f n(x) = x∗ for all x ∈ X if and only if all limit

sets of points of X are non-empty.

Proof. Suppose ω (x) ̸= 0 for all x ∈ X. Lemma 4.1.2 (b) yields that lim
n→∞

f n(x) = x∗

where x∗, by contractivity of f onX, is the unique fixed point of f . The latter, obviously,
implies ω (x) ̸= 0 for all x ∈ X.
As a useful criterion we obtain the following generalization of Banach’s fixed point
theorem.

Theorem 4.1.4. Let (X, d) be a complete metric space and let f be a selfmapping of X
for which some iterate f k is (𝜖, δ )-contractive. Then f has a unique fixed point x∗ and
lim
n→∞

f n(x) = x∗ for all x ∈ X.
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Proof. For x ∈ X and xn = f n(x) for n ≥ 1 we will show that for ni = ki the subsequence(xni ) of (xn) is a Cauchy sequence. This then impliesω (x) ̸= 0 andTheorem4.1.4 follows
from Theorem 4.1.3

To simplify notation let g = f k and yn = gn(x) = xnk. Since g is, in particular,
contractive it follows that the sequence given by an = d(yn, yn+1) is non-increasing
and, hence, a = lim

n→∞
an ≥ 0 exists. Suppose that a > 0.

For 𝜖 = a choose δ > 0 according to the (𝜖, δ )-contractivity of g. Since there exists
m ∈ ℕ with 𝜖 ≤ am < 𝜖 + δ we obtain that d(g(ym), g(ym+1)) < 𝜖. This yields am+1 =
d(ym+1, ym+2) < a, which is a contradiction. Therefore, we must have that a = 0, that
is lim

n→∞
an = 0.

Now, let 𝜖 > 0 be arbtrarily given and choose δ > 0 according to the (𝜖, δ )-
contractivity of g, where we may assume that δ ≤ 𝜖. Choose N ∈ ℕ such that aN < δ .
Consider j ∈ ℕ for which it holds that d(yN , yj) < 𝜖 + δ . Obviously,

d(yN , yj+1) ≤ d(yN , yN+1) + d(g(yN), g(yj)).
If d(yN , yj) < 𝜖 then

d(g(yN), g(yj)) ≤ d(yN , yj) < 𝜖
and, hence,

d(yN , yj+1) < δ + 𝜖.
If, on the other hand, d(yN , yj) ≥ 𝜖 then 𝜖 ≤ d(yN , yj) < 𝜖 + δ and by the (𝜖, δ )-

contractivity of g we obtain d(yN , yj+1) < δ + 𝜖.
Thus, in any case we have that d(yN , yj+1) < 𝜖 + δ . By choice of N we have that

d(yN , yN+1) < δ < 2𝜖 and, therefore, we obtain that
d(yN , yN+p) < 2𝜖 for all p ∈ ℕ.
This proves that the sequence givenby yn = xnk forn ≥ 1 is aCauchy sequence.

Remarks 4.1.5. (i) If (X, d) is complete and f is a contractive selfmapping of X for
which all orbits are relatively compact then Theorem 4.1.3 yields lim

n→∞
f n(x) = x∗, x∗

being the unique fixed point of f . (Cf. [6] and [13]). In particular, the latter conclusion
holds for any contractive selfmapping of a compact metric space.

(ii) For k = 1 Theorem 4.1.4 is obtained in [17]. The proof given here is a sim-
plified version of the one given in [17]. By the comments made following Definition
4.1.1, various generalizations of Banach’s fixed point theorem as the one for general-
ized contractions in [12] and the ones for ϕ -contractions in [1, 2, 16, 20] follow from
Theorem 4.1.4.

(iii) Since the selfmappings f of (X, d) considered above are all non-expansive, a
fixed point x∗ of f is automatically stable in the sense that for 𝜖 > 0 given there exists
δ > 0 such that for all x ∈ X from d(x, x∗) < δ it follows that d(f n(x), x∗) < 𝜖 for all
n ≥ 0. Hence, lim

n→∞
f n(x) = x∗ for all x ∈ X means that x∗ is globally asymptotically

stable.
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Exercises

1. Let f be a selfmapping of a metric space (X, d)which is a ϕ -contraction (see Defi-
nition 4.1.1 (ii)).
(a) Show that f is a generalized contraction if ϕ is upper semicontinuous from

the right.
(b) Show that f is a generalized contraction if ϕ (t) = α (t)t with α (t) decreasing.

2. [17] Let X = {∑n
k=1(1 + 1

k ) | n ≥ 1} be equipped with the Euclidean distance d.
(a) Show that (X, d) is complete.
(b) Let f : X → X be defined by

f ( n∑
k=1
(1 + 1

k
)) =

n+1∑
k=1
(1 + 1

k
).

Show that f is a ϕ -contraction for an appropriate ϕ .
(c) Show that f has no fixed point.

3. Prove that a generalized contraction is always (𝜖, δ )-contractive.
4. [17] Let

X = [0, 1] ∪ {3n | n ≥ 1} ∪ {3n + 1 | n ≥ 1}
be equipped with Euclidean distance d and let f : X → X be defined by

f (x) = {{{{{
x
2 , 0 ≤ x ≤ 1
0, x = 3n

1 − 1
n+2 , x = 3n + 1.

(a) Show that f is (𝜖, δ )-contractive.
(b) Show that f is not a generalized contraction.

4.2 Non-autonomous discrete systems

Whereas the previous section was about just one single selfmapping of a metric space(X, d)we now consider a whole sequence (fn)n of those mappings. In terms of dynam-
ical systems, whereas f defines an autonomous system by xn+1 = f (xn), a sequence
defines a non-autonomous system by xn+1 = fn(xn), x1 = x ∈ X. Sometimes the term
inhomogenous iteration is used for such a system.

Definition 4.2.1. A sequence (fn)n of selfmappings of a metric space (X, d) is called an
(asymptotically) contractive sequence on a subsetA ⊂ X if there exists a continuous
mapping c : A × A → ℝ such that the following two conditions are satisfied
(i) c(x, y) < d(x, y) for all x, y ∈ A with x ̸= y
(ii) To every 𝜖 > 0 there exists a N(𝜖) ∈ ℕ such that

d(fn(x), fn(y)) ≤ c(x, y) + 𝜖 for all n ≥ N(𝜖), all x, y ∈ A.
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4.2 Non-autonomous discrete systems | 123

For an autonomous system, that is fn = f for all n, this definition reduces to that of a
contractive mapping f as studied in the previous section.

Let (X, d) be a metric space and let fn : X → X for n ≥ 1 define a sequence of
selfmappings of X.

The (forward) orbit Os(s) of a point x ∈ X with respect to this sequence is

Os(x) = {fn ∘ fn−1 ∘ . . . ∘ f1(x) | n = 0, 1, 2, . . .},
where the inhomogeneous iteration fn ∘ . . . ∘ f1 for n = 0 is the identity. For a given point
x1 = x ∈ X we will also consider the sequence defined by xn+1 = fn(xn) for n ≥ 1, that
is xn+1 = fn ∘ . . . ∘ f1(x) and, hence, Os(x) = {xn+1 | n ≥ O}.

The (omega) limit setωs(x) of a point x ∈ X with respect to (fn)n is
ωs(x) = ∞∩

k=0
{fn ∘ fn−1 ∘ . . . ∘ f1(x) | n ≥ k},

or, equivalently, ωs(x) consists of all points y = lim
i→∞

xni for a sequence ni →∞.
Occasionally we will consider the joint limit set ωs(x, y) for two points x, y ∈ X,

which consists of all pairs ( lim
i→∞

xni , limi→∞
yni) for the same sequence ni →∞.

In what follows we will also consider for a sequence (fn)n of selfmappings of X the
sequence of lumpedmappings (Fm)m, defined for a given r ≥ 1 by

Fm = fm+r−1 ∘ . . . ∘ fm+1 ∘ fm for m ≥ 1.
Even under strong contractivity assumptions one cannot expect orbits of a non-

autonomous system to converge. The following theorem shows, however, that under
assumptions similar to those for the autonomous case in Theorem 4.1.3, orbits become
independent of their starting point, a property sometimes called path stability orweak
ergodicity.

Theorem 4.2.2. Let (fn)n be a sequence of selfmappings of the metric space (X, d) such
that the sequence (Fm)m of lumped mappings for some r ≥ 1 is a contractive sequence
consisting of non-expansivemappings. For any two orbits xn+1 = fn(xn) and yn+1 = fn(yn)
with x1, y1 ∈ X, respectively, the following statements hold.
(i) lim

n→∞
d(xn, yn) and lim

n→∞
c(xn, yn) exist and coincide.

(ii) If ωs(x1, y1) ̸= 0 then lim
n→∞

d(xn, yn) = 0.

Proof. (i) Let for 0 ≤ 1 < r fixed gm = F(m−1)r+i form ≥ 1. First, we show by induction
overm that

gm ∘ ⋅ ⋅ ⋅ ∘ g1(xi) = xmr+i. (∗)
Form = 1

g1(xi) = Fi(xi) = fi+r−1 ∘ ⋅ ⋅ ⋅ ∘ fi(xi) = xr+i.
If (∗) is true for somem ≥ 1, then

gm+1(gm ∘ ⋅ ⋅ ⋅ g1(xi)) = Fmr+i(xmr+i) = fmr+i+r−1 ∘ ⋅ ⋅ ⋅ ∘ fmr+i(xmr+i) = x(m+1)r+i,
which proves formula (∗).
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124 | 4 Contractive dynamics on metric spaces

Obviously, the sequence (gm)m is a contractive sequence consisting of non-
expansive mappings. In particular, for the orbits given by (gm)m, that is x̄m+1 =
gm ∘ ⋅ ⋅ ⋅ ∘ g1(xi) and ȳm+1 = gm ∘ ⋅ ⋅ ⋅ ∘ g1(yi), and am = d(x̄m, ȳm)we have that am+1 ≤ am.
Therefore, a = lim

m→∞
am exists. Furthermore, for 𝜖 > 0 there existsM(𝜖) such that for all

m ≥ M(𝜖)
c(x̄m, ȳm) ≤ d(x̄m, ȳm) ≤ a + 𝜖 and
a ≤ d(x̄m+1, ȳm+1) ≤ c(x̄m, ȳm) + 𝜖.

Therefore, −𝜖 ≤ c(x̄m, ȳm) − a ≤ 𝜖 for allm ≥ M(𝜖). This shows lim
m→∞

c(x̄m, ȳm) = a =
lim
m→∞

d(x̄m, ȳm).
Next we show that this equality holds also for sequences (xn)n and (yn)n. By prop-

erty (∗)
x̄m+1 = xmr+i and, similarly, ȳm+1 = ymr+i.

Therefore,
lim
m→∞

d(xmr+i, ymr+i) = lim
m→∞

c(xmr+i, ymr+i).
Let sm,i = d(xmr+i, ymr+i) − c(xmr+i, ymr+i) ≥ 0. Since 0 ≤ i < r was arbitrary we have

that lim
m→∞

sm,i = 0 for all 0 ≤ i < r. That is, for 𝜖 > 0 given there existsM(𝜖) such that
sm,i ≤ 𝜖 for allm ≥ M(𝜖). Choose N(𝜖) = (M(𝜖) + 1)r and let n ≥ N(𝜖). Since n = mr + i
withm ≥ 1, 0 ≤ i < r it follows thatmr + i ≥ (M(𝜖) + 1)r and, hence,m ≥ M(𝜖). Thus,

0 ≤ d(xn, yn) − c(xn, yn) = sm,i ≤ 𝜖 for n ≥ N(𝜖),
which proves lim

n→∞
d(xn, yn) = lim

n→∞
c(xn, yn).

(ii) By assumption there exists (x∗, y∗) ∈ ωs(x1, y1), that is x∗ = lim
k→∞

xnk , y∗ =
lim
k→∞

ynk . From step (i) it follows

d(x∗, y∗) = lim
k→∞

d(xnk , ynk ) = lim
n→∞

d(xn, yn) and

c(x∗, y∗) = lim
k→∞

c(xnk , ynk ) = lim
n→∞

c(xn, yn).
Therefore, d(x∗, y∗) = c(x∗, y∗) and since, by assumption, c(u, v) < d(u, v) for u ̸= v we
must have x∗ = y∗.

Thus, lim
n→∞

d(xn, yn) = d(x∗, y∗) = 0.

Later in Section 7.2, Theorem4.2.2will prove to beuseful in the analysis ofweak ergodi-
city for ascending operators. Then the metric setting is specialized to the part metric
and the Hilbert metric, respectively. Originally, the notion of weak ergodicity stems
from the theory of inhomogeneousMarkov chains and its applications to demography
(see Section 7.1 for this background). There also the notion of strong ergodicity arose
which says that, different from weak ergodicity, the sequence given by xn+1 = fn(xn)
does converge in case the mappings fn converge to some f . This question will be pur-
sued in the following. The first result, Theorem 4.2.3, states that strong ergodicity does
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hold in two cases, (i) and (ii). Whereas case (i) requires some compactness and is use-
ful in finite dimensions, case (ii) assumes instead a stronger contraction propertymak-
ing it useful in infinite dimensions. This tradeoff between compactness and contrac-
tiveness is already visible for the autonomous systems of the previous section.

Theorem 4.2.3. Let (X, d) be ametric space and let (fn)n be a sequence of selfmappings
which converges to some selfmapping f . For the orbit given by xn+1 = fn(xn), x1 = x sup-
pose that (fn)n converges uniformly to f on the orbit. Then (xn)n converges to the unique
fixed point x∗ of f in each of the following cases.

Case (i). f is contractive and the orbit is relatively compact.
Case (ii). f is a generalized contraction, (X, d) is complete and the orbit is bounded.
Proof. Case (i). We show for the limit set ω (x) of the sequence (xn)n that ω (x) con-
sists of the unique fixed point x∗ of f . This then proves case (i). Pick y ∈ ω (x), that is
y = lim

i→∞
xni for some sequence ni →∞. Since (xn)n is relatively compact there exist sub-

sequences nj → ∞ and nk → ∞ of ni → ∞ such that lim
j→∞

xnj−1 = u and lim
k→∞

xnk+1 = v

exist. Obviously,

d(y, f (u)) ≤ d(y, xnj ) + d(fnj−1(xnj−1), f (xnj−1)) + d(f (xnj−1), f (u))
and

d(f (y), v) ≤ d(f (y), f (xnk )) + d(f (xnk ), fnk (xnk )) + d(xnk+1, v)
for all j and k, respectively.

Since (fn)n converges uniformly to f on the orbit, we obtain

d(y, f (u)) = 0 and d(f (y), v) = 0,
respectively.

Therefore, we must have that y = f (u) and f (y) = v, where u, v ∈ ω (x). Thus, we
have shown that f (ω (x)) = ω (x). In particular, f is a contractive selfmapping of the
compact metric space (ω (x), d). Furthermore, by iteration we obtain for every n ≥ 1
and given y ∈ ω (x) an element un ∈ ω (x) such that y = f n(un). Since ω (x) is compact
there exists some sequence nl →∞ such that lim

l→∞
unl = u∗ ∈ ω (x) exists.

By a well-known version of Banach’s fixed point theorem (see Remarks 4.1.5(i)) it
follows that lim

n→∞
f n(u∗) = x∗ is the unique fixed point of f in ω (x) and, hence in X.

Finally from
d(y, x∗) ≤ d(f nl (unl), f nl (u∗)) + d(f nl (u∗), x∗)≤ d(unl , u∗) + d(f nl(u∗), x∗) for all l

it follows that d(y, x∗) = 0, i.e., y = x∗. Since y ∈ ω (x) was arbitrary this shows that
ω (x) = x∗ as required.

Case (ii). Since a generalized contraction is in particular (𝜖, δ )-contractive, from
Theorem 4.1.4 it follows that f has a unique fixed point x∗ for which lim

n→∞
f n(x) = x∗

holds for all x ∈ X. Let 𝜖 > 0 be given and rn = d(xn, x∗). By uniform convergence of fn
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126 | 4 Contractive dynamics on metric spaces

to f on the orbit there exists N(𝜖) such that d(f (xn), fn(xn)) ≤ 𝜖 for n ≥ N(𝜖) and, hence,
rn+1 = d(xn+1, x∗) ≤ d(fn(xn), f (xn)) + d(f (xn), x∗) ≤ 𝜖 + rn.

By assumption, ̄r = sup
n

rn < ∞. Let r = inf
n
rn and assume first r > 0. Since 0 < r ≤

d(xn, x∗) ≤ ̄r from the definition of a generalized contraction (Definition 4.1.1 (iii)) we
obtain for all n

d(f (x∗), f (xn)) ≤ ρd(x∗, xn),
where ρ = L(r, ̄r) < 1.

Therefore, for n ≥ N(𝜖)
rn+1 ≤ 𝜖 + d(f (xn), f (x∗)) ≤ 𝜖 + ρrn.

By iteration this implies for every k ≥ 1 and n ≥ N(𝜖)
rn+k ≤ ρkrn + 𝜖k−1∑

i=0
ρ i ≤ ρk ̄r + 𝜖

1 − ρ .
For K(𝜖) such that ρK(𝜖) ̄r ≤ 𝜖 we arrive at rm ≤ 𝜖 2−ρ1−ρ for m ≥ K(𝜖) + N(𝜖). Since𝜖 > 0 was arbitrary we arrive at lim

n→∞
rn = 0, provided r > 0. Consider now the case

that r = 0. Choose for 𝜖 > 0 given N(𝜖) such that d(f (xn), fn(xn)) ≤ 𝜖
2 for n ≥ N(𝜖). We

show, rn ≤ 𝜖 for some n ≥ N(𝜖) implies rn+1 ≤ 𝜖. For, if not,𝜖 < rn+1 ≤ rn +
𝜖
2

and, hence, 𝜖
2 ≤ rn ≤ 𝜖.

Since f is a generalized contraction, this gives

𝜖 < rn+1 ≤ L( 𝜖
2
, 𝜖)rn < rn ≤ 𝜖,

which is a contradiction. By iteration we obtain rn ≤ 𝜖 for some n ≥ N(𝜖) implies
rn+k ≤ 𝜖 for all k ≥ 1. By assumption inf

n
rn = r = 0 and there exists n0 ≥ N(𝜖) such

that rn0 ≤ 𝜖. Thus rn0+k ≤ 𝜖 for all k ≥ 1 which proves lim
n→∞

rn = 0 in case of r = 0. This
proves case (ii) and, hence, Theorem 4.2.3.

The following consequence of Theorem 4.2.3 weakens assumptions made to certain
assumptions on the lumped operators.

Corollary 4.2.4. Let (X, d) be ametric space and let (fn)n be a sequence of selfmappings
such that for some r ≥ 1 the sequence (Fm)m of lumped mappings converges uniformly
on X to some selfmapping F. For x ∈ X the orbit given by xn+1 = fn(xn), x1 = x converges
to the unique fixed point x∗ of F in each of the following cases.

Case (i). F is contractive, in particular (Fm)m is a contractive sequence of non-expansive
mappings, and the orbit (xn)n is relatively compact.
Case (ii). F is a generalized contraction, (X, d) is complete and the orbit (xn)n is bounded.
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Proof. Consider for i fixed, 0 ≤ i < r, the selfmapping gm = F(m−1)r+i+1 for m ≥ 1.
The sequence (gm)m converges uniformly on X to F. If (Fm) is a contractive sequence of
non-expansive mappings this holds for (gm), too. Therefore, by uniform convergence
to 𝜖 > 0 existsM(𝜖) such that

d(F(x), F(y)) ≤ d(F(x), gm(x)) + d(gm(x), gm(y)) + d(gm(y), F(y))≤ 𝜖 + c(x, y) + 𝜖 + 𝜖 for all m ≥ M(𝜖),
where c(x, y) < d(x, y) for x ̸= y. Thus, in case (i) F is contractive. Let (ym)m be a se-
quence defined by ym+1 = gm(ym), y1 = xi+1. By the definition of lumped mappings

gm ∘ gm−1 ∘ ⋅ ⋅ ⋅ ∘ g1 = fmr+i ∘ fmr+i−1 ∘ ⋅ ⋅ ⋅ ∘ fi+1
and, hence, ym+1 = xmr+i+1. If (xn)n is relatively compact or bounded, respectively, the
same applies to (ym)m. Theorem 4.2.3 implies in both cases, (i) and (ii), that lim

m→∞
ym =

x∗ with x∗ the unique fixed point of F. Let n = mr + i where m = m(n) ≥ 0 and
0 ≤ i = i(n) < r. By the above for 0 ≤ i < r we have that lim

m→∞
xmr+i+1 = x∗ and, hence,

lim
n→∞

xn = x∗.

For the next Corollary from Theorem 4.2.3 we need the following

Lemma 4.2.5. Let (X, d) be a metric space and let (fn)n be a sequence of selfmappings
which converges uniformly on X to some uniformly continuous selfmapping f . Then to
every 𝜖 > 0 and every k ≥ 1 there exists N(𝜖, k) such that

d(f k(x), fn1 ∘ fn2 ∘ ⋅ ⋅ ⋅ ∘ fnk(x)) ≤ 𝜖 for ni ≥ N(𝜖, k) and all x ∈ X.
Proof. By assumption, to 𝜖 > 0 there exist δ (𝜖) > 0, N(𝜖) such that

d(f (x), fn(y)) ≤ d(f (x), f (y)) + d(f (y), fn(y)) ≤ 𝜖
2
+ 𝜖
2
= 𝜖

provided that d(x, y) ≤ δ (𝜖) and n ≥ N(𝜖).
This shows the above assertion for k = 1, N(𝜖, 1) = N(𝜖). Suppose, the assertion

holds for some k ≥ 1. Then

d(f k(x), fn2 ∘ . . . ∘ fnk+1 (x)) ≤ δ (𝜖) for n2, . . . , nk+1 ≥ N(δ (𝜖), k), all x ∈ X.
Setting N(𝜖, k + 1) = max{N(𝜖), N(δ (𝜖), k)} we obtain

d(f k+1(x), fn1 ∘ fn2 ∘ . . . ∘ fnk+1 (x)) = d(f (f k(x)), fn1 (fn2 ∘ . . . ∘ fnk+1 (x))) ≤ 𝜖
for n1, n2 . . . , nk+1 ≥ N(𝜖, k + 1).

By induction, this proves the above assertion.

Corollary 4.2.6. Let (X, d))beametric spaceand let (fn)n bea sequence of selfmappings
which converges uniformly on X to some uniformly continuous selfmapping f . For x ∈ X
the orbit given by xn+1 = fn(xn), x1 = x converges to the unique fixed point x∗ of f in each
of the following cases.
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Case (i). f r is contractive, in particular (Fm)m is a contractive sequence of non-expansive
mappings, and (xn)n is relatively compact.
Case (ii). f r is a generalized contraction, (X, d) is complete and (xn)n is bounded.
Proof. By Lemma 4.2.5 to 𝜖 > 0 there exists N(𝜖, r) such that for all x ∈ X

d(f r(x), Fm(x)) = d(f r(x), fm+r−1 ∘ ⋅ ⋅ ⋅ ∘ fm(x)) ≤ 𝜖 for m ≥ N(𝜖, r).
Therefore, (Fm)m converges uniformly on X to F = f r.

Corollary 4.2.4 yields lim
n→∞

xn = x∗, x∗ the unique fixed point of f r. Finally,
d(f (x∗), x∗) ≤ d(f (x∗), f (xn)) + d(f (xn), fn(xn)) + d(xn+1, x∗).

For n→∞ this implies d(f (x∗), x∗) = 0, that is f (x∗) = x∗. Thus x∗ is a fixed point of f
and it is the unique fixed point of f because it is the unique fixed point of f r.

Remark 4.2.7. For the results of this section see [7, Section 2]. There, however, it is
assumed that the fn and Fm, respectively, map X into a compact subset Y ⊂ X whereas
here orbits are assumed to be relatively compact. The latter assumption is employed
in [18, Section 4.1] to obtain similar results; the proofs, however, are different from the
proofs given here.(See Exercises 2, 3.) For non-autonomous systems on metric spaces
see also [3] and [4]. In [4, Theorem 2.2] case (ii) of Theorem 4.2.3 is shown, with a
different proof, under the weaker assumption that (fn)n converges uniformly to f on
any bounded subset of X. From a different point of view sequences of selfmappings of
a metric space are considered in [9, Section 7.1]. There, the main interest is, however,
in the behavior of fixed points x∗n of fn (see Exercise 4).

Exercises

1. Let (fn)n be a sequence of selfmappings of themetric space (X, d)which converges
uniformly on X to a selfmappings f .
(a) Show that f is a contractive mapping if (fn)n is a contractive sequence.
(b) Show that (fn)n is a contractive sequence if f is a contractive mapping.
(c) Find an example where (fn)n is a contractive sequence but none of the map-

pings fn is non-expansive.

2. [18] Let (fn)n be a sequence of selfmappings of the metric space (X, d) and let (xn)n
and (yn)n be defined by xn+1 = fn(xn), x1 = x and yn+1 = fn(yn), y1 = y, respectively.
(a) Show that lim

n→∞
d(xn, yn) = 0 implies that the limit sets of (xn)n and (yn)n coin-

cide.
(b) Find an example for which the implication in (a) cannot be reversed.

3. [18] Let (X, d) be a (non-empty) compact metric space and let f be a continuous
selfmapping that is surjective and has a contractive iterate. Show that X consists
solely of the fixed point of f .
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4. [9] Let (X, d)be a completemetric space and let (fn)n bea sequence of selfmappings
of X which converges uniformly on X to a selfmapping f . Suppose each fn has at
least one fixed point x∗n , n ≥ 1.
(a) Suppose f is a contraction. Show that lim

n→∞
x∗n = x∗ where x∗ is the unique fixed

point of f .
(b) Suppose some iterate of f is a contraction. Show that lim

n→∞
x∗n = x∗ where x∗ is

the unique fixed point of f .

4.3 A local-global stability principle for power-lipschitzian
mappings

In the previous two sections we were concerned with proper contraction dynamics
for selfmappings in the sense that distances are strictly contracted. Under additional
assumptions we obtained the existence of a globally attractive fixed point x∗ of f ,
that is lim

n→∞
f n(x) = x∗ for all x ∈ X. In this section we want to find out conditions under

which we may infer global attractivity from local attractivity of a fixed point x∗ of
f , that is lim

n→∞
f n(x) = x∗ for all x in some neighborhood U of x∗. As we will see this

is quite possible for selfmappings which do not increase distances on certain metric
spaces. More general, we shall show such a local-global principle for mappingswhich
are power-lipschitzian in the following sense.

Definition 4.3.1. A selfmapping f of ametric space (X, d) is calledpower-lipschitzian
if there exists a constant c > 0 such that for every two points x, y ∈ X there exists
N(x, y) ∈ ℕ such that

d(f n(x), f n(y)) ≤ cd(x, y) for all n ≥ N(x, y).
Obviously, if f is nonexpansive (cf. Definition 4.1.1 (vi)) then f is power-lipschitzian
with constant c = 1. There exist, however, power-lipschitzian mappings that are not
non-expansive (see Exercise 1). The concept of a power-lipschitzian selfmapping is
invariant with respect to equivalence among metrics, that is for two equivalent met-
rics d and d it holds for d iff it holds for d (see Exercise 2(a)). In contrast, the con-
cept of a non-expansive selfmapping is not invariant, that is a selfmapping which is
non-expansive formetric d need not be non-expansive for an equivalentmetric d (see
Exercise 2(b)).

To infer for a fixed point global attractivity from local attractivity, we need beside an
assumption on the selfmapping also an assumption on the underlying metric space.
Obviously, if the fixed point is an isolated point then the pass from the local to the
global will fail. Actually, we will characterize global attractivity of a fixed point x∗ of
a selfmapping f by its local attractivity together with the power-lipschitzian property
for f and the condition that x∗ is not isolated in the following sense.
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Definition 4.3.2. Let f be a selfmapping of a metric space (X, d). A point x0 ∈ X is
strongly isolated for f if there exists a neighborhoodU of x0 which as well as its non-
empty complement is invariant for f and such that

inf{d(x, y) | x ∈ U, y ̸∈ U} > 0.
Obviously, if x0 is strongly isolated for f then x0 must be isolated in the topological
sense. Therefore, if (X, d) is connected then there are no strongly isolated points what-
ever f may be (see Lemma 4.3.4 below).

Theorem 4.3.3 (Local-global stability principle). Let f be a selfmapping of the metric
space (X, d). A fixed point x∗ ∈ X of f is globally attractive if and only if x∗ is locally
attractive and not strongly isolated for f and that f is power-lipschitzian.

Proof. (1) Let x∗ be a globally attractive fixed point of f . Obviously, f is locally attrac-
tive aswell as not strongly isolated for f . Furthermore, for x, y ∈ X given, x ̸= y, there ex-
ist N(x),N(y) ∈ ℕ such that d(f n(x), x∗) ≤ d(x, y) for n ≥ N(x) and d(f n(y), x∗) ≤ d(x, y)
for n ≥ N(y). It follows that

d(f n(x), f n(y)) ≤ d(f n(x), x∗) + d(x∗, f n(y)) ≤ 2d(x, y)
for all n ≥ N(x, y) = max{N(x),N(y)}. Therefore, f is power-lipschitzian.

(2) Suppose the fixed point x∗ is locally attractive and not strongly isolated for f
and that f is power-lipschitzian. To show global attractivity for x∗ we show that the set

U = {x ∈ X | lim
n→∞

d(f n(x), x∗) = 0}
coincides with X. Suppose that not, that is U ̸= X. The set U as well as its complement
are non-empty and invariant for f . Since x∗ is locally attractive there exists 𝜖 > 0 such
that B(x∗, 𝜖) = {z ∈ X | d(x∗, z) < 𝜖} ⊂ U.

In particular,U is a neighborhood of x∗ and inf{d(x, y) | x ∈ U, y ̸∈ U} = 0 because
x∗ is not strongly isolated for f . Select x0 ∈ U and y0 ̸∈ U such that d(x0, y0) < 𝜖

2c where
c > 0 is a constant for which f is power-lipschitzian. There exists N(x0) ∈ ℕ such that
d(f n(x0), x∗) < 𝜖

2 for all n ≥ N(x0). Since f is power-lipschitzian we have that
d(f n(y0), x∗) ≤ d(f n(y0), f n(x0)) + d(f n(x0), x∗)≤ cd(x0, y0) + 𝜖

2 < 𝜖
for all n ≥ N(x0). Therefore, f n(y0) ∈ B(x∗, 𝜖) ⊂ U for n big enough and, hence, y0 ∈ U.
But this contradicts y0 ̸∈ U and, therefore, U = X which proves the theorem.

The next lemma supplies conditions on the metric space which guarantee that there
are no strongly isolated points whatever f may be.

Lemma 4.3.4. Let (X, d) be a metric space which is
(i) connected, i.e., there is no subset 0 ⫋ U ⫋ X which is open and closed.

or
(ii) 𝜖-chainable for every 𝜖 > 0, i.e., for x, y ∈ X and 𝜖 > 0 arbitrarily given there exist

zi ∈ X such that d(zi, zi−1) < 𝜖 for 1 ≤ i ≤ n = n(x, y, 𝜖) and z0 = x, zn = y.
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or
(iii) complete andmetrically convex, i.e., for any two distincs points x, y ∈ X there exists

z ∈ X distinct from x and y such that d(x, z) + d(z, y) = d(x, y).
Then for every x0 ∈ X and every neighborhood U of x0 with non-empty complement it
holds that inf{d(x, y) | x ∈ U, y ̸∈ U} = 0.

Proof. Let U be a neighborhood of x0 ∈ X with non-empty complement and let α =
inf{d(x, y) | x ∈ U, y ̸∈ U} > 0. We shall show that this leads in each case to a
contradiction.

(i) It follows that B(x, α ) ⊂ U for any x ∈ U and, hence, U contains all its limit
points. Therefore, U is open and closed, 0 ⫋ U ⫋ X, which contradicts connectedness.

(ii) Let x ∈ U, y ̸∈ U. For 𝜖 = α there exist zi ∈ X such that d(zi, zi−1) < α . Since
z0 = x ∈ U it follows that z1 ∈ U which in turn implies z2 ∈ U etc. Thus, y = zn ∈ U
which is a contradiction.

(iii) There exist x ∈ U, y ̸∈ U such that α ≤ d(x, y) < 2α . If (X, d) is complete and
metrically convex then by a theoremofMenger (see [19, p. 24]) there exists an isometry
ϕ : [0, r] → X with ϕ (0) = x and ϕ (r) = y, where r = d(x, y). Since 0 ≤ r − α < α there
exists swith r − α < s < α . For z = ϕ (s) it follows that

d(x, z) = d(ϕ (0), ϕ (s)) = s < α and
d(z, y) = d(ϕ (s), ϕ (r)) = r − s < α .

Since x ∈ U we must have that z ∈ U which in turn implies that y ∈ U - a contradic-
tion.

Remark 4.3.5. For power-lipschitzian mappings in normed spaces see also [8] where
they are called uniformly lipschitzian mappings. The property in Lemma 4.3.4 (ii) can
be considered also for uniform spaces where it is called uniform connectedness [11].
For the property of 𝜖-chainable in case of a fixed 𝜖 > 0 see [6] and [9]. Property (i)
in Lemma 4.3.4 implies property (ii) whereas the reverse implication is not true (see
Exercise 3).

With the help of Lemma 4.3.4 from Theorem 4.3.3 we immediately obtain the following
result.

Corollary 4.3.6. Let (X, d) be a metric space which is 𝜖-chainable for every 𝜖 > 0 (in
particular, (X, d) is connected) or which is complete and metrically convex. Then a fixed
point x∗ of a selfmapping is globally attractive if and only if it is locally attractive and f
is power-lipschitzian.

The following useful extension of Theorem 4.3.3 is obtained by employing almost the
same proof.

Theorem 4.3.7. Let f be a selfmapping of the metric space (X, d) which is power-
lipschitzian. Let F be a non-empty subset of fixed points of f such that F is locally
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132 | 4 Contractive dynamics on metric spaces

attractive in the sense there exists 𝜖 > 0 such that

lim
n→∞

f n(x) ∈ F for all x with d(x, y) ≤ 𝜖 for some y ∈ F.
Then F is globally attractive, that is

lim
n→∞

f n(x) ∈ F for all x ∈ X,
provided F is not strongly isolated (that is, for any neighborhood U of F with X ∖ U ̸= 0
and both U and X ∖ U invariant for f it holds inf{d(x, y) | x ∈ U, y ̸∈ U} = 0).

Proof. Consider U = {x ∈ X | lim
n
f n(x) ∈ F}. Obviously, U ̸= 0, f (U) ⊆ U. By assump-

tion, F ⊆ ⋃y∈F B(y, 𝜖) ⊆ U where B(y, 𝜖) = {x ∈ X | d(x, y) < 𝜖} and, hence, U is a
neighborhood of F. SupposeU ⫋ X. By definition f (X ∖U) ⊆ X ∖U. By assumption F is
not strongly isolated and we must have x0 ∈ U, y0 ̸∈ U such that d(x0, y0) < 𝜖

2c , where
c > 0 is a constant for which f is power-lipschitzian. Furthermore, d(f n(x0), y) < 𝜖

2 for
some y ∈ F, n ≥ N(x0, y). Since f is power-lipschitzian we have that

d(f n(y0), y) ≤ d(f n(y0), f n(x0)) + d(f n(x0), y)≤ cd(y0, x0) + 𝜖
2 < 𝜖 for n ≥ N(x0, y0),N(x0, y).

Thus, f n(y0) ∈ ⋃y∈F B(y, 𝜖) ⊆ U for n ≥ N(x0, y0),N(x0, y). This, however, is a contra-
diction to f (X ∖ U) ⊆ X ∖ U. Therefore, U = X, that is lim

n
f n(x) ∈ F for all x ∈ X.

To the setting of Theorem 4.3.7 the Corollary 4.3.6 applies analogously, in particular F
is not strongly isolated if the topological space (X, d) is connected.
Remarks 4.3.8. (i) For the case of a connected metric space with a non-expansive
selfmapping, Corollary 4.3.6 follows from [19, Lemma 2.3].

(ii) For the case of a complete and metrically convex metric space with a power-
lipschitzian selfmapping, Corollary 4.3.6 is contained in [13, Theorem 2.1]. See also [15,
Proposition 3.2.3].

(iii) Since a fixed point of a power-lipschitzian selfmapping is automatically sta-
ble (see Exercise 4) the term “globally attractive” in Corollary 4.3.6 can be replaced by
the term “globally asymptotically stable”.

Exercises

1. Let X = {x ∈ ℝ | x ≥ 0} be equipped with the Euclidean distance. Find a selfmap-
ping ofXwhich is power-lipschitzian (with c = 1) butwhich is not non-expansive.

2. Let X be a non-empty set which carries two equivalent metrics d and d, i.e., there
exist constants a > 0, b > 0 such that

ad(x, y) ≤ d(x, y) ≤ bd(x, y) for all x, y ∈ X.
(a) Show that a selfmapping f of X is power-lipschitzian for d if and only if f is

power-lipschitzian for d.
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(b) Find an example such that f is a selfmapping of X which is non-expansive for
d but not for d.

3. Let (X, d) be a metric space.
(a) Show that (X, d) is 𝜖-chainable for every 𝜖 > 0 if (X, d) is connected.
(b) Find an example of a metric space for which the reverse statement of a) is not

true.

4. Let (X, d) be a metric space and let f be a power-lipschitzian self-mapping of X
with fixed point x∗. Show that x∗ is stable, i.e., to 𝜖 > 0 there exists δ > 0 such
that d(x, x∗) < δ implies d(f n(x), x∗) < 𝜖 for all n ≥ 0.
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5 Ascending dynamics in convex cones of infinite
dimension

In this chapter we continue the investigation of non-linear selfmappings of cones we
started in Chapter 2 for finite dimensions. Now we will consider arbitrary dimensions
and for this we will make use of the instruments developed in Chapters 3 and 4. In the
center of interest is the asymptotic behavior of the iterates of an ascending selfmap-
ping of a convex cone in arbitrary dimensions. The notion of an ascending operator
comprises the strictly positive and concave operators in finite dimensions of Chap-
ter 2 as well as various well-known concepts of strong monotonicity for operators in
arbitrary Banach spaces.

The advantage in considering ascending operators – which contrary to concave
mappings need not be monotone – is that they lead to contractions with respect to
internalmetrics of the cone. Therefore, in this chapter wemake use of internalmetrics
and their properties fromChapter 3 as well as of contraction dynamics from Chapter 4.

Historically, the first extension of the Perron–Frobenius theorem to infinite di-
mensions was made in 1912 by R. Jentzsch who considered instead of non-negative
matrices integral operators with a positive kernel on function spaces. Since then the
analysis of positive operators developed into a field of its own. Considering even only
those contributions that use methods based on internal metrics of convex cones, one
observes several schools as, e.g., an Anglo-American school, a Russian school and a
Japanese school.

5.1 Definition and examples of ascending operators

In the following letK be a convex cone in some real vector space and let “≤” the partial
order defined by K (see Section 3.1 for the definitions). Throughout K is assumed to be
non-empty and non-trivial, that is not {0}. But otherwise K can be arbitrary, it can be
closed or open or just one part etc.

Definition 5.1.1. A mapping or operator T : K → K is called monotone increasing or
monotone for short if 0 ≤ x ≤ y implies Tx ≤ Ty.

T is calledpositively homogeneous if T(λ x) = λTx for all x ∈ K, all scalars λ ≥ 0.

The following simple lemmagives somegeneral information about thenumber of non-
negative eigenvalues of mappings as above.

Lemma 5.1.2. Let K be a convex cone in some real vector space that is pointed and
archimedean (in K − K). Every selfmapping T of K that is monotone and positively ho-
mogeneous has the following properties.
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136 | 5 Ascending dynamics in convex cones of infinite dimension

(i) T possesses no more than one non-negative eigenvalue for eigenvectors in the same
part of K. In particular, T has finitely (including 0) many non-negative eigenvalues
if K consists of finitely many parts.

(ii) For K = ℝn
+ the number of non-negative eigenvalues of T is at most 2n − 1.

Proof. (i) Let Tx = λ x, Ty = μywith x, y ∈ K ∖ {0} and λ , μ ≥ 0. We suppose x ∼ y and
show that λ = μ . From Lemma 3.1.4 it follows for the order function that 0 < λ (x, y) <∞ and λ (x, y)x ≤ y. The assumptions on T imply that λ (x, y)Tx ≤ Ty and, hence,
λ (x, y)λ x ≤ μy. By definition of λ (x, y) it follows that λ (x, y) λμ ≤ λ (x, y) for μ > 0.
Therefore, λ ≤ μ for μ > 0. If μ = 0 then λ = 0 because of λ (x, y) > 0. Exchanging the
roles of x and y we obtain in addition μ ≤ λ .

(ii) The parts ofK have dimension k ranging from 0 to n. There are (nk) possibilities
of forming a part of dimension k. Therefore, K possesses at most ∑n

k=0 (nk) = 2n parts.
Since 0 is not an eigenvector, the assertion follows from (i).

Remark 5.1.3. In contrast to linear mappings, the maximal possible number 2n − 1
in part (ii) of Lemma 5.1.2 can actually occur (see Exercise 1). Lemma 5.1.2 implies in
particular the result about finitely many eigenvalues in [32] (compare also Exercise 7
to Section 2.2). In [29, Theorem 5.2.3] it is shown for any solid polyhedral cone K in fi-
nite dimensions, which includes K = ℝn

+, any monotone and positively homogeneous
selfmapping of K has at most m − 1 non-negative (distinct) eigenvalues, where m is
the number of faces of K. Moreover, there exists a selfmapping as above which is con-
tinuous and has preciselym − 1 non-negative eigenvalues. (See also Exercise 1.)
Let us have a first look at the connection between order properties and metric prop-
erties for a selfmapping T of a convex cone K which we assume to be lineless. Ob-
viously, if T is monotone and positively homogeneous, then for x, y ∈ K and λ ≥ 0
from λ x ≤ y it follows that λTx ≤ Ty. Since the extraction process is monotone (see
Section 3.1) it follows that λ (x, y) ≤ λ (Tx, Ty). Since internal metrics on the cone K
are defined via the order function λ (⋅, ⋅) it follows, e.g., for Hilbert’s projective metric
d(x, y) = − log[λ (x, y) ⋅ λ (y, x)] that d(Tx, Ty) ≤ d(x, y). Thus, every monotone and pos-
itively homogeneous mapping is non-expansive with respect to d. Furthermore, the
internal completeness theorem (Theorem 3.4.6) and related results supply conditions
under which K is a complete metric space. This brings us into the area of contractive
dynamics on metric spaces. To apply, however, the results of the previous chapter we
need to make some more assumptions on T.

For this letK be a convex cone in a locally convex vector spaceV and suppose that
the interior int K of K, or

∘
K for short, is non-empty. The interior of K is again a convex

cone and the corresponding strict order relation for x, y ∈ V is defined by

x < y if and only if y − x ∈ ∘
K.

The relation “< ” is transitive and antisymmetric if
∘
K is pointed.
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5.1 Definition and examples of ascending operators | 137

A selfmapping T of K is called strictly monotone if x ≨ y implies that Tx < Ty. A
selfmapping T of K (also called a positive mapping) is called strictly positive if 0 ≨ x
implies that 0 < Tx, or equivalently, T(K ∖ {0}) ⊂ ∘

K.
Obviously, in the particular case of K = ℝn

+ the notion x < y coincides with the
earlier definition as xi < yi for all 1 ≤ i ≤ n (see Section 2.1; there x ≨ y means x ≤ y
and x ̸= y which carries over to arbitrary cones).

If the selfmapping T of K is positively homogeneous and strictly monotone then
λ x ≨ y implies λTx < Ty and, by the definition of an interior point, there exists some
λ  > λ such that λ Tx ≤ Ty. This implies for x, y ∈ K ∖ {0} which are not on the
same ray that λ (x, y) < λ (Tx, Ty) and, hence, d(Tx, Ty) < d(x, y) (assuming that K
is archimedean). Thus, T is contractive (across rays) with respect to Hilbert’s metric.
This step to ascend from λ to λ  > λ is the point of the following definition which,
however, neither assumes T to be monotone nor positively homogeneous.

Definition 5.1.4. LetT be a selfmapping of the convex coneK and letDbe anon-empty
subset of K.

T is ascending on D (with ϕ ) if there exists a selfmapping ϕ of the open unit
interval ]0, 1[ with λ < ϕ (λ ) and such that for every 0 < λ < 1 and every x, y ∈ D

λx ≨ y implies ϕ (λ )Tx ≤ Ty. (5.1.1)

T is weakly ascending on D (with ϕ ) if there exists a ϕ as above such that for
every 0 < λ < 1 and every x, y ∈ D

λx ≨ y ≨ 1
λ
x implies ϕ (λ )Tx ≤ Ty ≤ 1

ϕ (λ )Tx. (5.1.2)

T is a cone mapping on D if for every 0 < λ < 1 and every x, y ∈ D
λx ≨ y ≨ 1

λ
x implies λTx ≤ Ty ≤ 1

λ
Tx. (5.1.3)

Remark 5.1.5. (i) The above notion “ascending onD” originates from the special case
of a “p-ascending” operator in [22] where D is given by a functional p on V as D = {x ∈
K | p(x) = 1} (the definition given above follows [26]; see also [24, 25]).

(ii) Obviously, if T is ascending on D it is weakly ascending on D (with the same
ϕ ) which latter is always a cone mapping on D. None of these implications can be
reversed (see Exercise 2). For the notion of a cone mapping on D = K see [26].

(iii) For K archimedean, T ascending on D implies that T is monoton on D. This
implication does not hold for weakly ascending operators or cone mappings (see Ex-
ercise 2). Furthermore, that an operator T is ascending on D ⊂ K does in general not
imply that T is monotone on K (see Exercise 3).

The next lemma enables one to build up complex ascending operators from simple
ones.
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138 | 5 Ascending dynamics in convex cones of infinite dimension

Lemma 5.1.6. (i) Let K be archimedean (in K − K) and let D be a non-empty subset
of K such that for x, y ∈ D, 0 < λ < 1 with λ x ≨ y there exists z ∈ D such that
λ x + (1 − λ )z ≤ y. If T is a concave selfmapping of K such that for some e ∈ K and
scalars 0 < r ≤ s it holds that

re ≤ Tx ≤ se for all x ∈ D (5.1.4)

then T is ascending on D with ϕ (λ ) = λ + (1 − λ ) rs .
(ii) Let S and T be selfmappings of K which are ascending on D ⊂ K. Then the pointwise

sum S + T and multiple cT for c > 0 are ascending on D, that is, those selfmappings
of K which are ascending on D form a convex cone. Moreover, if the pointwise mini-
mummin{S, T} or maximummax{S, T} of S and T exist with respect to the ordering≤ induced by K, thenmin{S, T} andmax{S, T} are ascending on D. The above state-
ments remain true if “ascending” is replaced by “weakly ascending” or by “cone
mapping”.

(iii) Let K and D be as in (i) and let {Ti}i∈I be a family of concave selfmappings of K
such that for every i ∈ I there exists ei ∈ K together with scalars 0 < ri ≤ si with
riei ≤ Tix ≤ siei for all i ∈ I and x ∈ D. If Tx = inf{Tix | i ∈ I} (or Tx = sup{Tix | i ∈ I})
exists for every x ∈ K (with respect to ≤) and if c = inf{ risi | i ∈ I} > 0 then T is
ascending on D for ϕ (λ ) = λ + (1 − λ )c.

Proof. (i) Since K is archimedean and T concave it follows as in Lemma 2.1.3 that T
is monotone. Suppose x, y ∈ D with λ x ≨ y for 0 < λ < 1. By assumption there exists
z ∈ D such that by concavity of T

Ty ≥ T(λ x + (1 − λ )z) ≥ λTx + (1 − λ )Tz.
Furthermore, by (5.1.4) Tz ≥ re ≥ r

sTx and, hence, Ty ≥ λTx + (1−λ ) rsTx = ϕ (λ )Tx
with ϕ (λ ) = λ + (1 − λ ) rs . Obviously, λ < ϕ (λ ) for 0 < λ < 1.

(ii) By assumption, there exist selfmappingsϕ andψ of ]0, 1[ such that λ < ϕ (λ )
and λ < ψ (λ ) and such that for x, y ∈ D, 0 < λ < 1
λ x ≨ y implies ϕ (λ )Sx ≤ Sy and ψ (λ )Tx ≤ Ty.
Defining χ (λ ) = min{ϕ (λ ),ψ (λ )}, χ is a selfmapping of ]0, 1[ with λ < χ (λ ). Further-
more, one has that for λ x ≨ y

χ (λ )(S + T)(x) ≤ (S + T)(x), χ (λ )(cT) ≤ cTy and
χ (λ )min{S, T}(x) ≤ min{S, T}, χ (λ )max{S, T}(x) ≤ max{S, T}(x),

provided that min and max exist.
The same reasoning applies toweakly ascending operators and to conemappings.
(iii) By (i) eachmappingTi is ascendingwithϕi(λ ) = λ + (1−λ ) risi ≥ λ + (1−λ )c =

ϕ (λ ). ϕ is a selfmapping of ]0, 1[ with λ < ϕ (λ ). For x, y ∈ D, 0 < λ < 1
λ x ≨ y implies ϕ (λ )Tix ≤ Tiy for all i ∈ I which proves (iii).
Now we relate the concept of an ascending operator to some other useful concepts
applied in the literature on positive operators.
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Example 5.1.7 (Uniformly positive linear operators). This concept was introduced by
G. Birkhoff [2, 3] in 1957 in extending a Theorem by Jentzsch (see below Section 5.4)
to linear operators on general vector spaces. Let V be a real vector space, K an
archimedean convex cone in V inducing the partial order ≤ and let e ∈ K ∖ {0}, k > 0.
A linear operator T on V which leaves K invariant is uniformly positive if for all
x ∈ K ∖ {0}

λ e ≤ Tx ≤ kλ e with λ = λ (x) > 0. (5.1.5)

Obviously, as a linear operator Tmust bemonotone and condition (5.1.5) looks similar
to condition (5.1.4). Tomake the connectionwith the concept of an ascending operator
precise (cf. [22]) let p be a monotone norm on V. It follows from (5.1.5) that λ (x)p(e) ≤
p(Tx) ≤ kλ (x)p(e) and for p(Tx) = 1 that 1

kp(e)e ≤ Tx ≤ k
p(e) .

Taking D = {x ∈ K | p(Tx) = 1} and choosing for x, y ∈ D, 0 < λ < 1 with
λ x ≨ y and the element z = y−λ x

p(Ty−λTx) , all assumptions of Lemma 5.1.6 (i) are satisfied.
Therefore, by this lemma, T is ascending on Dwith ϕ (λ ) = λ + (1 − λ ) ⋅ 1

k2 . (In [3] it is
allowed that λ (x) = 0which requires a separate consideration of nilpotent operators.)

A concept very close to that of a uniformly positive operator is that of an e-positive
operator [50, 51]. An arbitrary selfmapping of K is called e-positive with respect to
some e ∈ K ∖ {0} if for all x ∈ K ∖ {0}

α (x)e ≤ Tx ≤ β (x)e with α (x) > 0, β (x) > 0. (5.1.6)

Obviously, a uniformly positive operator is the special case of an e-positive operator
for which β (x)

α (x) is independent of x.

Example 5.1.8 (Zigzag operators). An example of an e-positive operator is given by
the affine-linear operator Sx = Tx + b where T is a linear selfmapping of K and
b in the non-empty interior

∘
K of K (with respect to a locally convex topology on V).

Since b ∈ ∘
K there exists for every x ∈ K some r(x) > 0 such that x ≤ r(x)b. Therefore,

for all x ∈ K ∖ {0}
b ≤ Sx ≤ r(x)Tb ≤ r(x)r(Tb)b

and (5.1.6) is satisfied for e = b, α (x) = 1, β (x) = r(x)r(Tb). In particular, if r(⋅) is
bounded on a set D ⊂ K, consider, e.g., D = {x ∈ K | x ≤ kb} for some k > 0,
then S is by Lemma 5.1.6 (i) ascending on D – but S need not be uniformly positive in
the sense of (5.1.5). Furthermore, from Lemma 5.1.6 (ii) we may conclude that zigzag-
operators, that is finitely many successive maxima or minima (taken in any order) of
affine operators Tx + b as above, are ascending on a set of type D = {x ∈ K | x ≤ k∗b}
for some k∗ > 0. A zigzag-operator need neither be concave nor convex normonotone
increasing nor monotone decreasing as the following example shows.

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:19 PM



140 | 5 Ascending dynamics in convex cones of infinite dimension

Consider the selfmapping T of ℝ2
+ which is given as the pointwise maximum of

the following selfmappings (see [23])

T1x = (min {2x1 + x2, 12x1 + 3
2
x2} , min{x1 + 2x2, 1})

T2x = (min {2x1 + 1
4
, x1 + 4x2} , min{x1 + 2x2, 1}) .

For D = {x ∈ ℝ2
+ | x1 + x2 = 1}, x ∈ D one finds r1e1 ≤ T1x ≤ s1e1 and r2e2 ≤ T2x ≤

s2e1 with e1 = e2 = (1, 1), r1 = 1
2 , s1 = 5

4 , r2 = 1
4 , s2 = 7

4 .
Thus, T is ascending on D by Lemma 5.1.6 (ii) but T is neither concave nor convex

and neither monotone increasing nor decreasing.

Example 5.1.9 (u0-concave operators). This concept has been introduced in 1964 by
M.A. Krasnoselskii and his collaborators [17–21] for monotone selfmappings T of the
positive cone K of an ordered Banach space V without assuming that T is linear on V.
For u0 ∈ K ∖ {0} the monotone operator T is called u0-concave if for all x ∈ K ∖ {0}
condition (5.1.6) is satisfied with e = u0 and if the following condition holds.
For x ∈ K ∖ {0} satisfying α1(x)u0 ≤ x ≤ β1(x)u0 with α1(x) > 0, β1(x) > 0 and for
0 < t0 < 1 there exists η = η (x, t0) > 0 such that

T(t0x) ≥ (1 + η )t0Tx. (5.1.7)

Equivalently, for T monotone T is u0-concave iff T is u0-positive and for each x in the
part of u0 and each 0 < t0 < 1 there exists ψ (t0, x) > t0 such that
t0x ≤ y for y ∈ K implies ψ (t0, x)Tx ≤ Ty. This property reminds of the defining prop-
erty (5.1.1) for an ascending operator. Indeed, a monotone u0-concave operator is as-
cending on each subset ofK∖{0}. Concerning the reverse implication, linear operators
can be ascending on subsets of K but being positively homogeneous they cannot be
u0-concave for any u0 ∈ K ∖ {0}. (See Exercises 4, 5 and Corollary 5.1.14 below.)
A weakened form of a u0-concave operator was considered by M.A. Krasnoselskii and
his collaborators in [18, 20]. A selfmappingT of the positive coneKwith non-empty in-
terior of a Banach space V is called uniformly concave on the conic interval [u, v] if
– u, v ∈ ∘

K, [u, v] = {x ∈ K | u ≤ x ≤ v} for u ≤ v,
– T is monotone on [0, v] and Tu ∈ ∘

K,
– for any two real numbers 0 < a < b < 1 there exists η = η (a, b) > 0 such that for

all x ∈ [u, v] and all λ ∈ [a, b]
(1 + η )λTx ≤ T(λ x). (5.1.8)

Obviously, a uniformly concave operator T is ascending on the conic interval [u, v].
Conversely, let T be ascending with ϕ on the conic interval [u, v] and define η (a, b) =
inf{ϕ (λ )λ | λ ∈ [a, b]} − 1. If ϕ is continuous then it follows that η = η (a, b) > 0.
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5.1 Definition and examples of ascending operators | 141

Because of ϕ (λ ) ≥ (1 + η )λ for λ ∈ [a, b] it follows that
(1 + η )λTx ≤ ϕ (λ )Tx ≤ T(λ x).

Even forϕ continuous, however, T need not be uniformly concave. Indeed a positively
homogeneousoperator canbeweakly ascendingbut it cannever beuniformly concave
(compare Corollary 5.1.14). A similar but weaker concept is that of an e-monocave
mapping introduced in [50] and which is defined by the following properties for a
selfmapping T of a cone K:
– T maps the part Ke generated by e ∈ K into itself.
– For u, v ∈ Ke, 0 < r < 1 there existsM = M(r, u, v) ≥ 0 withM > 0 for ru ̸= v such

that ru ≤ v and rv ≤ u imply (r + M)Tu ≤ Tv and (r + M)Tv ≤ Tu.
Obviously, an e-monocavemapping is weakly ascending on Ke withϕ (λ ) = λ + M(λ ),
providedM(r) = M(r, u, v) is independent of u, v.
Example 5.1.10 (Subhomogeneous operators). Operators of this type were consid-
ered by various authors and first introduced by A. C. Thompson [47, 48]. All types are
selfmappings of the convex cone of the form that for each x ∈ K and 0 ≤ λ (≤ 1)
there exists 0 ≤ λ  such that T(λ x) ≥ λ Tx. In the extreme case for “≤” equal to
“=” and λ  = λ the operator is positively homogeneous. For “≤” equal to “=” and
λ  = λ d, d ≥ 0, the operator is positively homogeneous of degree d (see Defini-
tion 2.2.1). For d < 1 those operators play a role in [5]. If λ  = λ for 0 ≤ λ ≤ 1 then T is
commonly called subhomogeneous or sublinear [45] or co-radiant [15]. For λ  = λ α

with α ∈ ℝ and x ∈ ∘
K, 0 < λ ≤ 1 the operator is called α -concave ([39], where for “≤”

instead of “≥”, T is called α -convex; see also the power non-linearities in [20]). For
λ  = λ α (a,b) with 0 < α (a, b) < 1, x ∈ ∘

K and λ ∈ [a, b] for some fixed numbers a, b the
operator T is called α -sublinear, provided T is monotone in addition ([8]). Obviously,
a monotone operator which is α -concave (including positively homogeneous opera-
tors of degree d < 1) is ascending on the whole cone. Also, α -sublinear operators are
closely linked to ascending operators. More generally, call a selfmapping ϕ of ]0, 1[ a
root function if there exsits another selfmapping r of ]0, 1[ such that

ϕ (λ ) = λ r(λ ) with sup r(I) < 1 on compact intervals I ⊂]0, 1[. (5.1.9)

In case of an α -sublinear operator the function r(λ ) can be obtained from the values
α (a, b) as a piecewise constant function.
Thompson introduced the following weak form of subhomogeneity for a selfmapping
T of a convex cone K [48]: There exists p with 0 ≤ p < 1 such that for all x, y ∈ K

x ≤ αy and y ≤ β x imply Tx ≤ α Ty and Ty ≤ β Tx (5.1.10)

with max{α , β } ≤ max{αp, β p}.
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142 | 5 Ascending dynamics in convex cones of infinite dimension

If T is monotone and positively homogeneous of degree d or α -concave with 0 <
d, α < 1 or α -linear, then T is ascending on K or

∘
K with a root functionϕ . If T satisfies

(5.1.10) then T is weakly ascending on K with a root function ϕ .

Example 5.1.11 (Strongly monotone operators with homogeneity properties). Let V
be a locally convex vector space andK a closed convex conewith non-empty interior

∘
K.

The convex cone
∘
K induces a relation “<” by x < y iff y− x ∈ ∘

K. A selfmapping T of K is
– strongly monotone or strictly increasing if for all x, y ∈ K, x ≨ y implies Tx < Ty;
– strongly subhomogeneous [45] if for all x ∈ K ∖ {0}, all 0 < λ < 1, λTx < T(λ x);
– with (k, ∘K) property [27] if for all x ∈ ∘

K, all 0 < λ < 1, λTkx < Tk(λ x) (k ∈ ℕ);
– weakly homogeneous [11] if for all x ∈ K, λ ≥ 0, T(λ x) = c(λ )Tx, where c : ℝ+ →ℝ+ with c(0) = 0 and c(λ )

λ non-increasing.

If T is strongly monotone and subhomogeneous and 0 < λ < 1, then

0 ≤ λ x ≨ y ⇒ T(λ x) < Ty ⇒ λTx < Ty,
and if T is monotone and strongly subhomogeneous, then

0 ≨ λ x ≤ y ⇒ T(λ x) ≤ Ty ⇒ λTx < Ty.
Despite the similarity of the properties “strongly monotone and subhomoge-

neous” and “monotone and strongly subhomogeneous”, none implies the other one
(see Exercise 5). Both properties imply λTx < Ty which, under additional assump-
tions, yields an ascending T as in the following result.

Proposition 5.1.12. Let (V , τ ) be a locally convex vector space and K ⊂ V a convex cone
with non-empty interior

∘
K (for τ). Let T be a selfmapping of K and 0 ̸= D ⊂ K such that

T is continuous on D and for x, y ∈ D, λ ∈]0, 1[ it holds that
λ x ≤ y implies λ Tx < Ty. (5.1.11)

If D is compact then T is ascending on D.
If D is convex in addition then T is ascending on D with ϕ upper semicontinuous.

Proof. (i) First we show that T is ascending on Dwith ϕ defined for 0 < λ < 1 by

ϕ (λ ) = inf{λ (Tx, Ty) | λ x ≤ y, x, y ∈ D}. (5.1.12)

By Proposition 3.4.12 (iii) the order function λ (⋅, ⋅) is continuous on ∘
K × ∘

K in (V , τ ) ×(V , τ ). From condition (5.1.11) it follows for x ∈ D, λ = 1
2 that 1

2Tx < Tx and, hence,
Tx ∈ ∘

K. Therefore, λ (T⋅, T⋅) is continuous on D × D by the continuity of T on D. Since
Cλ = {(x, y) ∈ D × D | λ x ≤ y} is compact there exist xλ , yλ ∈ D with λ xλ ≤ yλ such that
ϕ (λ ) = λ (Txλ , Tyλ ). Condition (5.1.11) yields λ (Txλ , Tyλ ) > λ and, hence, ϕ (λ ) > λ .

By the definition of ϕ , for x, y ∈ D and 0 < λ < 1, λ x ≤ y implies ϕ (λ )Tx ≤ Ty
which proves that T is ascending on D with ϕ .
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5.1 Definition and examples of ascending operators | 143

(ii) Next we consider any selfmapping T of an arbitrary convex cone K in some
vector space which has the property that for a convex set D ⊂ K
λ x ≤ y implies λTx ≤ Ty, for any 0 < λ < 1, any x, y ∈ D.
Then it is an easy exercise in extraction analysis to verify the following formula for
x, y ∈ D and 0 < 𝛾 ≤ 1

λ (Tx, T(𝛾x + (1 − 𝛾)y)) ⋅ λ (x, y) ≤ λ (Tx, Ty)(𝛾 + (1 − 𝛾)λ (x, y)). (5.1.13)

Namely, λ x ≤ y implies that λ (𝛾x + (1 − 𝛾)y) ≤ (𝛾 + (1 − 𝛾)λ )y and, by convexity of D,
one has that

λT(𝛾x + (1 − 𝛾)y) ≤ (𝛾 + (1 − 𝛾)λ )Ty
and, by taking supremum over λ , λ (T(𝛾x + (1 − 𝛾)y), Ty)(𝛾 + (1 − 𝛾)λ (x, y)) ≥ λ (x, y).
Therefore,

λ (Tx, T(𝛾x + (1 − 𝛾)y)) ⋅ λ (x, y)≤ λ (Tx, T(𝛾x + (1 − 𝛾)y)) ⋅ λ (T(𝛾x + (1 − 𝛾)y), Ty)(𝛾 + (1 − 𝛾)λ (x, y))≤ λ (Tx, Ty)(𝛾 + (1 − 𝛾)λ (x, y)).
(iii) Now we show that the function ϕ defined by equation (5.1.12) is upper semi-

continuous. Let ϕ (λ0] < α for some λ0 ∈]0, 1[. We show that there exists 𝜖 > 0 such
that ϕ (λ ) < α for λ ∈]λ0 − 𝜖, λ0 + 𝜖[. From the definition of ϕ it is obvious that ϕ
is increasing and, hence, it satisfies to show that ϕ (λ0 + 𝜖) < α . Since ϕ (λ0) < α ,
there exist x, y ∈ D with λ0x ≤ y and 0 < λ (Tx, Ty) < α . Choose 𝜖 > 0 such that𝜖 < min{λ0( α

λ (Tx,Ty) − 1), 1 − λ0, λ0} and 𝛾 = 𝜖
1−λ0

. Since D is convex, x = x and
y = 𝛾x + (1 − 𝛾)y are in D and (λ0 + 𝜖)x = (λ0 + 𝜖)x ≤ 𝛾x + (1 − 𝛾)y = y by
choice of 𝛾. Furthermore, by step (ii)

λ (Tx, Ty) = λ (Tx, T(𝛾x + (1 − 𝛾)y)) ≤ λ (Tx, Ty)𝛾 + (1 − 𝛾)λ (x, y)
λ (x, y) .

Now, 𝛾+(1−𝛾)λ (x,y)λ (x,y) ≤ ( 𝛾λ0 + (1−𝛾)) ≤ 1 + 𝜖
λ0
and by choice of 𝜖wearrive at λ (Tx, Ty) < α .

Since (λ0 + 𝜖)x ≤ y it follows that ϕ (λ0 + 𝜖) < α .

It should not be overlooked that condition (5.1.11) in Proposition 5.1.12 may hold also
for linear operators on subsets which are sectional in the following sense.

Definition 5.1.13. A non-empty subset D of a convex cone is called sectional if each
ray of K meets D in at most one point, i.e., if

λ x = y for x, y ∈ D, λ > 0 implies that λ = 1 and x = y.
An example of a sectional set is given by any base of a convex cone (see Defini-
tion 3.3.1).

Corollary 5.1.14. Let (V , τ ) be a locally convex vector space and K ⊂ V a convex cone
with non-empty interior

∘
K. Let T be a concave (in particular, a linear) selfmapping of

K which is strictly positive. Then the following statements hold.
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144 | 5 Ascending dynamics in convex cones of infinite dimension

(i) T is ascending on every sectional compact subset of K and it is ascending with an
upper semi-continuous function ϕ on every compact subset of a base of K.

(ii) If T is a compact operator and M is a bounded subset of V mapped by T into a
closed base of K then T is ascending on D = T(M) (for τ ) with ϕ upper semicon-
tinuous.

Proof. (i) LetD ⊂ K be sectional and compact. By Proposition 5.1.12 it suffices to show
condition (5.1.11). Let λ x ≤ y for x, y ∈ D and 0 < λ < 1. Since D is sectional we must
have λ x ≨ y and y = λ x + z with z ∈ K ∖ {0}. Since T is concave and strictly positive
(i.e., T(K ∖ {0}) ⊂ ∘

K) it follows that

Ty = T (λ x + (1 − λ ) z
1 − λ ) ≥ λTx + (1 − λ )T ( z

1 − λ ) > λTx.
Consider an arbitrary base B of K, B = {x ∈ K | f (x) = 1} where f is a linear functional
with f (x) > 0 for x ∈ K ∖ {0}. Let C ⊂ B be compact. By the continuity of the vector
space operations it follows that the convex hull convC is compact, too. Because of
convC ⊂ B, the set convC is sectional and the remaining assertion of (i) follows from
Proposition 5.1.12.

(ii) SinceD = T(M) is a compact subset of a closed base of K the assertion follows
from (i).

Remark 5.1.15. For finite dimensions, condition (5.1.11) plays an essential role in [23].
For V = ℝn, K = ℝn

+ and ‖ ⋅ ‖ the l1-norm on ℝn the set D = {x ∈| K‖x‖ = 1} is a sec-
tional set which is compact and convex. From Corollary 5.1.14 it follows that a concave
operator on K with Tx > 0 for x ≩ 0 is ascending on D with an upper semicontinu-
ous function ϕ . Concerning the Concave Perron Theorem (Theorem 2.1.11), it was an
essential step in its proof to get by direct calculation that T is ascending on D.

In [27] a property like (5.1.11) results from monotonicity and the (k, ∘K)-property for T.
There a functin ϕ is constructed like the one in the proof of Proposition 5.1.12, but
simpler due to finite dimensions. In [11, 24] strongly monotone self-mappings T are
considered which are weakly homogeneous. If T possesses these properties on a sub-
set D which is sectional then T must be ascending on D.

A concept close to that of an ascending operator is the property of “strong contrac-
tivity” for selfmappings of ℝn

+ in [38]. Concepts close to those of a weakly ascending
operator and a conemapping, respectively, are the various forms of order contractivity
in [46]. The main difference between these concepts and the ones introduced here, is
that the former are required globally for the whole cone (or its interior) whereas the
latter are required only locally on a subset D of K. It is only in the local sense that the
concept of an ascending operator or an operator satisfying condition (5.1.11) applies
to linear operators.

A locally ascending (weakly ascending) operator need not to be globally ascend-
ing (weakly ascending) (see Exercise 4). Furthermore, global concepts, as the one in
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5.1 Definition and examples of ascending operators | 145

[38], often imply monotonicity on the whole cone, which is not necessary for ascend-
ing operators (see Exercise 3, Exercise 4 (a)). Actually, it is an important feature of pos-
itive dynamical systems, in contrast to monotone dynamical systems, that non-linear
operators may fail to be monotone.

Exercises

1. A selfmapping T as in Lemma 5.1.2 (ii) may have indeed the maximal number of
non-negative eigenvalues.
(a) Show that the following selfmapping T of ℝ2

+ has 3 different non-negative
eigenvalues,

T(x1, x2) = (min{x1 + 2x2, 3x1}, min{3x2, x1 + 2x2}).
(b) Find a selfmapping of ℝ3

+ which has 7 different non-negative eigenvalues.
(c) Find a continuous, monotone, and positively homogeneous selfmapping ofℝn

+ which has 2
n − 1 different non-negative eigenvalues.

2. Prove the following statements.
(a) Every ascending mapping is weakly ascending (for the same D and ϕ ).
(b) Every weakly ascending mapping is a cone mapping.
(c) Amappingwhich is ascending on a subsetD of an archimedean cone ismono-

tone on D.
(d) The statement (c) fails if “ascending” is replaced by “weakly ascending” or

by “cone mapping”.
(e) The implications in (a) and (b) cannot be reversed.

3. Let T be the selfmapping of ℝ2
+ given by T0 = 0 and

T(x1, x2) = (√ x21 + x22
x1 + x2

, √x1 + x2) for (x1, x2) ̸= (0, 0).
Show that
(a) T is neither increasing nor decreasing (with respect to the ordering given byℝn

+).
(b) T is ascending on D = {x ∈ ℝ2

+ | x1 + x2 = 1}.
4. (cf. [22]) Consider the selfmapping T of K = ℝ2

+ given by

T(x1, x2) = { (x1 + x2, 1) for 0 ≤ x1 + x2 ≤ 1(1, 1
x1+x2

) for x1 + x2 ≥ 1.
(a) Find a subset of K on which T is ascending and show that T is neither mono-

tone nor u0-concave for any u0 ∈ K0 ∖ {0}.
(b) Show that T is not weakly ascending on the whole cone K.
(c) Show that T is a cone mapping on the whole cone K.
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146 | 5 Ascending dynamics in convex cones of infinite dimension

(d) If S is the selfmapping of K defined by S(x1, x2) = (x1 + x2, 1) and ‖ ⋅ ‖ is the
max-norm on ℝ2, then

Tx = Sx‖Sx‖ for x ∈ K ∖ {0}.
Show that S is neither α -concave nor α -convex.

(e) Show that neither S nor T are superadditive.

5. Find examples of selfmappings of a cone which show that of the properties
“strongly monotone and subhomogeneous” and “monotone and strongly sub-
homogeneous” none implies the other one.

5.2 Relative stability for ascending operators by Hilbert’s
projective metric

As for operators in finite dimensions (Section 2.1) we need to consider for general vec-
tor spaces the normalized or rescaled operator. This will be done more general for a
scale in the following sense of which a monotone norm is a special case.

Definition 5.2.1. For a convex coneK in a real vector space a scale sonK is amapping
s : K → ℝ+ that is not identically 0 and such that s is positively homogeneous and
monotone, i.e., for all x, y ∈ K, λ ∈ ℝ+

s(λ x) = λ s(x) and s(x) ≤ s(y),
provided x ≤ y.
The set U = {x ∈ K | s(x) = 1} is non-empty and called the unit set for s.

A selfmapping T of K is proper for a scale s if

s(Tx) ̸= 0 for s(x) = 1.
For an operator T : D → K, D ⊂ K, and a scale s on K the normalized or rescaled
operator T̃ is defined by T̃x = (Tx)(s(Tx))−1 for x ∈ D with s(Tx) ̸= 0. In the following
it will often be used that for a selfmapping T of K which is proper for a scale on K the
normalized operator T̃ is defined and maps the unit set U into itself. Note the caveat
that in general (T̃)k and (T̃k) have to be distinguished (compare Figure 2.2).

As observed earlier, Hilbert’s metric d gives distance zero for points on the same ray
but by scaling elements we can obtain a metric space as follows.

Lemma 5.2.2. If K is a lineless and internally complete convex cone then (P ∩ U, d) is a
complete metric space for every non-zero part P of K.

Proof. (P∩U, d) is a metric space by Theorem 3.2.3 (v). Let (xn)n be a Cauchy sequence
for d in P ∩ U. Since K is internally complete there exists x ∈ P with lim

n→∞
d(xn, x) = 0.

In particlar, there existsm ∈ ℕ with λ (xm, x) > 0 and, hence, λ xm ≤ x for some λ > 0.
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For the scale s it follows that λ s(xm) ≤ s(x)which implies 0 < λ = λ s(xm) ≤ s(x). Thus,
y = x

s(x) ∈ P ∩ U and lim
n→∞

d(xn, y) = lim
n→∞

d(xn, x) = 0.

The next definition describes, roughly speaking, the set of all points of the cone for
which the selfmapping T is ascending on a tail of the T̃-orbit which is required to be-
long to a part of the cone.

Definition 5.2.3. Let K be a convex cone in a real vector space with scale s and let T
be a proper selfmapping of K. The ascending domain D(T) of T consists of all points
x ∈ K such that
– there exists a non-zero part Px of K;
– there exists a non-empty subset Dx ⊂ K on which T is ascending with some ϕx;
– s(Tx) > 0and there exists for the normalization T̃ (with respect to s) some n(x) ∈ ℕ

such that forM = {T̃nx | n ≥ n(x)} it holds thatM ⊂ Px andM ⊂ Dx whereM is the
closure ofM in the metric space (Px ∩ U, d).

The main results of this section and the next section state that under certain condi-
tions for every point in the ascending domain of T the iterates of the normalized oper-
ator T̃ (or of T itself) converge to an eigenvector of T with strictly positive eigenvalue.
We shall refer to the convergence of the iterates of T̃ as relative stability (for this term
see [32]). If, in contrast, the iterates of T itself converge to a fixed point of T we em-
ploy, for short, the termabsolute stability. Note that by ourmethodof non-expanding
maps, a fixed point of T̃, or of T, is automatically stable in the usual sense (compare
Remark 4.1.5 (iii)).

Theorem 5.2.4 (Relative stability for ascending operators). Let K be a convex cone in
a real vector space V with scale s and let T be a proper selfmapping of K with non-empty
ascending domain D(T).
A. Suppose that K is lineless and internally complete.

(i) For every x ∈ D(T) for which ϕx is upper semicontinuous on ]0, 1[ the orbit(T̃nx)n∈ℕ converges with respect to Hilbert’s projective metric d to an eigenvec-
tor x∗ = x∗(x) of T with s(x∗) = 1 with eigenvalue λ ∗ > 0.

(ii) Let x, y ∈ D(T) such that for some k ≥ 1both T̃nx and T̃ny belong for n ≥ k jointly
to some part and their d-closures belong to a subset on which T is ascending
with an upper semicontinuous function ϕ . Then it holds in (i) that x∗ = y∗.

(iii) For every subset D of K, on which T is ascending with an upper semicontinuous
ϕ and for every part P of K, there is at most one eigenvector of T with scale 1
contained in D ∩ P.

B. Let τ be a locally convex topology on the vector space V for which K is sequentially
complete and normal.
(iv) Theabove statements (i) to (iii) do holdwhere in (i) the orbit (T̃nx)n∈ℕ converges

to x∗ also with respect to τ .

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:19 PM



148 | 5 Ascending dynamics in convex cones of infinite dimension

(v) If T is ray preserving then for each x as in (i)

lim
n→∞

Tnx
s(Tnx) = x∗ for τ .

If T is positively homogeneous and monotone then lim
n→∞

Tnx
λ ∗n = c(x)x∗, c(x) ≥ 0.

Proof. Suppose that K is lineless and internally complete.
(i) Fix x0 ∈ D(T) as well as a non-zero part P of K and a non-empty subset D ⊂

K, according to Definition 5.2.3. Let X be the closure of M = {T̃nx0 | n ≥ n(x0)} in
the complete metric space (P ∩ U, d), where U is the unit set of s (see Lemma 5.2.2).
Obviously, (X, d) is a complete metric space contained in D.

We show that T̃ is a selfmapping of the metric space (X, d) which is a generalized
contraction in the sense of Definition 4.1.1(iii).

Let 0 < α ≤ β < ∞ and consider x, y ∈ X with α ≤ d(x, y) ≤ β . Therefore,
e−β ≤ λ (x, y) ⋅ λ (y, x) ≤ e−α and, because of x, y ∈ X ⊂ U, we must have that 0 <
λ (x, y), λ (y, x) ≤ 1. Considering 0 < λ , μ < 1 with λ x ≤ y, μy ≤ x we have that λ (x, y)
and λ (y, x) is the supremum of those λ and μ respectively. Because of x, y ∈ U, neither
λ x = y nor μy = x is possible and we must have that λ x ≨ y and μy ≨ x. Since T is
ascending on D with ϕ we obtain ϕ (λ )Tx ≤ Ty and ϕ (μ)Ty ≤ Tx. This implies that
λ (Tx, Ty) ≥ ϕ (λ ) and λ (Ty, Tx) ≥ ϕ (μ) from which it follows that

λ (T̃x, T̃y) ⋅ λ (T̃y, T̃x) = λ (Tx, Ty) ⋅ λ (Ty, Tx) ≥ ϕ (λ ) ⋅ ϕ (μ).
Thus, we obtain for x, y ∈ X with α ≤ d(x, y) ≤ β that

d(T̃x, T̃y) ≤ − log[ϕ (λ ) ⋅ ϕ (μ)]. (5.2.1)

for all 0 < λ , μ < 1 with λ x ≨ y, μy ≨ x.
Now consider the compact set I = {(r1, r2) | r1, r2 ∈ [0, 1], e−β ≤ r1. r2 ≤ e−α }, inℝ2. By assumption ϕ is upper semicontinuous on ]0, 1[ and ϕ becomes upper semi-

continuous on ]0, 1] by setting ϕ (1) = 1.
Since for (r1, r2) ∈ I wemust have that r1, r2 > 0 and that both r1 and r2 cannot be

1 we have that ϕ (r1)ϕ (r2) > r1r2 for (r1, r2) ∈ I. Therefore, − log(r1r2) > − log(ϕ (r1) ⋅
ϕ (r2)) ≥ 0 for (r1, r2) ∈ I. Thus the function f defined on I by

f (r1, r2) = logϕ (r1)ϕ (r2)
log(r1r2)

is upper semicontinuous on I (see Exercise 2) and attains therefore its supremum σ (I)
on the compact set I,

σ (I) = sup{f (r1, r2) | (r1, r2) ∈ I} = logϕ (r1)ϕ (r2)
log(r1r2) < 1.

Since (λ , μ) ∈ I from (5.2.1) we obtain that

d(T̃x, T̃y) ≤ − log[ϕ (λ ) ⋅ ϕ (μ)] ≤ σ (I)(− log(λμ)).
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5.2 Relative stability for ascending operators by Hilbert’s projective metric | 149

By taking the infimum over λ , μ and by setting L(α , β ) = σ (I) we obtain finally
that for x, y ∈ X and α ≤ d(x, y) ≤ β it holds that

d(T̃x, T̃y) ≤ L(α , β )d(x, y) with L(α , β ) < 1. (5.2.2)

In particular, T̃ is d-continuous on X. Therefore, for x ∈ X, x = lim
t→∞

xn, xn ∈ M (for d)

it follows that T̃x = lim
n→∞

T̃xn. This implies, because of T̃x ∈ P ∩ U that T̃x ∈ X. Thus
we obtain that T̃ is a selfmapping of X which by (5.2.2) is a generalized contraction on(X, d).

Since a generalized contradiction is always (𝜖, δ )-contractive (cf. Exercise 3 to 4.1)
from Theorem 4.1.4 it follows that T̃ has a (unique) fixed point x∗0 ∈ X and lim

m→∞
T̃mx =

x∗0 for all x ∈ X with respect to d. For x = T̃nx0, n = n(x0) it follows in particular
that lim

m→∞
T̃mx0 = x∗0. Obviously, s(x∗0) = 1 and T̃x∗0 = x∗0 implies Tx∗0 = λ ∗x∗0 with

λ ∗ = s(Tx∗0) > 0. This proves statement (i) of part A of the theorem.
(ii) Let x, y ∈ D(T) and M = {T̃nx | n ≥ k} ∪ {T̃ny | n ≥ k} with X = M ⊂ D ∩ P,

where D and P are joint ascending set and joint part, respectively. As in the proof of
statement (i) it follows that T̃ has a unique fixed point z∗ in X such that lim

m→∞
T̃mz = z∗

for all z ∈ X. In particular, lim
m→∞

T̃mx = z∗ = lim
m→∞

T̃my.
(iii) Let x ∈ D ∩ P be an eigenvector of T with s(x) = 1. If in Tx = λ x one would

have that λ < 0 then x ∈ K ∩ (−K) ⊂ {0} because K is lineless. Therefore, λ ≥ 0 and
λ = s(λ x) = s(Tx) > 0 because T is proper. It follows that T̃x = λ x

s(λ x) =
x

s(x) = x and,
hence, x ∈ D(T). Similarly y ∈ D(T) for an eigenvector y ∈ D ∩ P with s(y) = 1. From
statement (ii) it follows that x = lim

n→∞
T̃nx = lim

n→∞
T̃ny = y. Therefore, there is at most

one eigenvector of T with scale 1 in D ∩ P.
(iv) Nowwe turn to part B of the theorem. From Corollary 3.4.14 it follows thatK is

lineless and internally complete. Therefore, statements (i) to (iii) of part Adohold. Fur-
thermore, for x, y ∈ U, that is s(x) = s(y) = 1 it follows that λ (x, y) ≤ 1 and λ (y, x) ≤ 1.
From Proposition 3.3.3 (v) for each of the monotone semi-norms q which define τ it
follows that

q(x − y) ≤ [3 − (λ (x, y) + λ (y, x) + max{λ (x, y), λ (y, x)})]max{q(x), q(y)}≤ 3(1 − exp(−d(x, y)))max{q(x), q(y)}.
By statement (i), lim

n→∞
xn = x∗ holds for d with xn = T̃nx. In particular, there exists N

such that d(xn, x∗) < 1
2 and, because of xn, x∗ ∈ U, e− 1

2 xn ≤ x∗ for all n ≥ N. Thus, we
obtain for all n ≥ N

q(xn − x∗) ≤ 3(1 − exp(−d(xn, x∗))) ⋅ e 1
2 q(x∗).

Since lim
n→∞

d(xn, x∗) = 0 it follows that lim
n→∞

q(xn − x∗) = 0 for all q defining τ that is
lim
n→∞

xn = x∗ holds for τ .

(v) If T is ray preserving, x ∈ D(T) then it follows that T̃nx = Tnx
s(Tnx) since s(Tx) > 0

and T is proper (cf. Lemma 2.2.4 (i)). Suppose now that T is positively homogeneous
and monotone. Denote xn = Tnx

λ ∗n and let λn = λ (x∗, xn), μn = λ (xn, x∗). From λnx∗ ≤ xn
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150 | 5 Ascending dynamics in convex cones of infinite dimension

and μnxn ≤ x∗ it follows that λnTx∗ ≤ Txn and μnTxn ≤ Tx∗ by the assumptions made.
Since Tx∗ = λ ∗x∗ by (i) we get λnx∗ ≤ xn+1 and μnxn+1 ≤ x∗. Thus, λn ≤ λn+1 and
μn ≤ μn+1 for all n. Since λnμn ≤ 1 and μ1 > 0 the sequence (λn)n is bounded and,
hence, converges to some c = c(x) ≥ 0. By (i) we have that lim

n→∞
d(T̃nx, x∗) = 0which by

the properties of Hilbert’s metric implies that lim
n→∞

d(xn, x∗) = 0, that is lim
n→∞

λnμn = 1.
Thus, we must have c > 0 and lim

n→∞
μn = 1

c . From

(λn − c)x∗ ≤ xn − cx∗ ≤ ( 1
μn
− c)x∗

we obtain for each of the monotone semi-norms q defining τ that

|λn − c|q(x∗) ≤ q(xn − cx∗) ≤ | 1μn − c|q(x∗) for all n.
Therefore, with respect to τ lim

n→∞
Tnx
λ ∗n = lim

n→∞
xn = c(x)x∗.

From Theorem 5.2.4 we obtain the following conclusions.

Corollary 5.2.5. Let (V , τ ) be a locally convex vector space with a convex cone K which
is sequentially complete and normal. Assume further that

∘
K ̸= 0 and that K has a base

B = {x ∈ K | f (x) = 1} with a scale f continuous for τ . Define for 0 < λ < 1 the set
Cλ = {(x, y) | x, y ∈ B, λ x ≤ y}.
(i) Let T be a selfmapping of K, continuous on B and such that the set {(Tx, Ty) | (x, y) ∈

Cλ } is compact for the product topology and(x, y) ∈ Cλ for 0 < λ < 1 implies λ Tx < Ty. (∗)
Then the conditional eigenvalue problem

Tx = λ x with λ ∈ ℝ, x ∈ K, f (x) = 1

has a unique solution x = x∗ ∈ ∘
K, λ = λ ∗ > 0 and it holds for f as scale and with

respect to τ that
lim
n→∞

T̃nx = x∗ for all x ∈ K with f (Tx) > 0.
If, in addition, T is positively homogeneous then lim

n→∞
Tnx
λ ∗n = c(x)x∗ with respect to

τ, where c : {x ∈ K | f (Tx) > 0} → ℝ+ is positively homogeneous and strictly
monotone.

(ii) Let V = ℝn with Euclidean topology, K ⊆ V a closed convex cone with
∘
K ̸= 0 and

base B = {x ∈ K | ‖x‖ = 1} with norm ‖x‖ = ∑n
i=1 |xi| on V. Let T be a continuous

selfmapping of K.
(a) If T has property (∗) of (i) then the conclusions stated in (i) do hold for T with

f (x) = x1 + ⋅ ⋅ ⋅ + xn.
(b) For K = ℝn

+, T has an eigenvector in
∘
K with positive eigenvalue if

λ x ≤ y implies λ Tx ≤ Ty for x, y ∈ ∘
K, 0 ≤ λ ≤ 1 (∗∗)

and T maps
∘
K into itself with a strong connected graph G(T).
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5.2 Relative stability for ascending operators by Hilbert’s projective metric | 151

Proof. (i) Let ϕ (λ ) = inf{λ (Tx, Ty) | (x, y) ∈ Cλ }. Since {(Tx, Ty) | (x, y) ∈ Cλ } is
assumed to be compact it follows from Proposition 5.1.12 and its proof that T is as-
cending on B with ϕ upper semicontinuous. For x ∈ B by (∗) it follows from 1

2x ≨ x
that 0 ≤ 1

2Tx < Tx, that is T(B) ⊂ ∘
K. This shows in particular that T is proper for the

scale s = f . Furthermore, for T̃x = Tx
f (Tx) one has that T̃(B) ⊂ ∘

K. For x ∈ K with f (Tx) > 0
choose Px =

∘
K and Dx = B. Since M = {T̃nx | n ≥ 2} ⊂ ∘

K and M ⊂ B for the clo-
sure of M in the metric space ( ∘K ∩ B, d), from the definition of the ascending domain
it follows that D(T) = {x ∈ K | f (Tx) > 0}. From Theorem 5.2.4 B (iv) it follows that
lim
n→∞

T̃nx = x∗ (for τ ) where (by statements (ii) and (iii)) (x∗, λ ∗)with λ ∗ = f (Tx∗) is the
unique solution of Tx = λ x, x ∈ K, f (x) = 1.

Suppose now that T is positively homogeneous. According to Theorem 5.2.4 B (v)
it suffices to show that T is monotone. For 0 ≨ x ≨ y we must have 0 < f (x) < f (y).
Setting λ = f (x)

f (y) < 1 we have that λ x
f (x) ≤ y

f (y) and, by condition (∗), λT( x
f (x) ) < T( y

f (y) ).
Thus Tx < Ty. Therefore, T is monotone and c(x) < c(y). Obviously, 0 < c(y) for 0 ≨ y.

(ii) Obviously,K is sequentially complete andnormal for the Euclidean topology
τ . Since B is compact and T is continuous the set {(Tx, Ty) | (x, y) ∈ Cλ } is compact for
theproduct topology. Thus, part (a) follows from (i). Concerningpart (b)we shall apply
an approximation of T as used already in the proof of Theorem 2.1.14. Namely, define
T(k)x = Tx + 1

k e for x ∈ K, k ≥ 1, e = (1, . . . , 1) ∈ ∘
K. Obviously, T(k) is a continuous

selfmapping of K. Furthermore, if λ x ≤ y for x, y ∈ K and 0 < λ < 1 from (∗∗) we
obtain by continuity of T that

λT(k)x = λTx + λ
k
e < y + 1

k
e.

Thus, T(k) has property (∗) of (i) and part (a) implies in particular the existence of
x(k) ∈ B ∩ ∘

K and λ (k) > 0 such that T(k)x(k) = λ (k)x(k) for all k ≥ 1. By compactness
ofBwemay assumewithout loss that lim

k→∞
x(k) = x. From λ (k)x(k) = T(k)x(k) = Tx(k) +

1
k e we obtain lim

k→∞
λ (k)x(k) = Tx and, hence, ‖Tx‖ = lim

k→∞
λ (k). This yields Tx = λ x with

λ = ‖Tx‖, ‖x‖ = 1. It remains to show that x ∈ ∘
K. By assumption T maps

∘
K into itself,

G(T) is strongly connected and fromparts (b) and (c) of Exercise 9 to Chapter 2we have
that for each c > 0 the set {x ∈ ∘

K | ‖x‖ = 1, Tx ≤ cx} is closed for ‖ ⋅ ‖. Since x(k) ∈ B∩ ∘
K

and
Tx(k) ≤ T(k)x(k) = λ (k)x(k) ≤ (‖Tx‖ + 1)x(k)

for k big enough we arrive at x ∈ ∘
K. This proves part (b) of (ii).

Remark 5.2.6. Condition (∗) in Corollary 5.2.5 is related to mappings T discussed un-
der Example 5.1.10 and Example 5.1.11, respectively. For example, if T is monotone and
positively homogeneous of degree d < 1 or α -sublinear for 0 ≤ α < 1 then T satisfies
condition (∗) (provided T(B) ⊂ ∘

K). It is not difficult to see that adding operators satis-
fying (∗) to monotone operators which are subhomogeneous yields operators which
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152 | 5 Ascending dynamics in convex cones of infinite dimension

again satisfy condition (∗). (See [36] for this type of operators.) For mappings satisfy-
ing condition (∗) see [11, 23, 27, 45]. As a combination of homogeneity andmonotonic-
ity condition (∗) appears in the early approach [32] to non-linear Perron–Frobenius
theory in finite dimensions by the economist M. Morishima.

A particularly interesting consequence of condition (∗) is the existence of an eigenvec-
tor in the interior of the cone. The special case given in part (ii) (b) of Corollary 5.2.5 ex-
tends the Generalized Perron–Frobenius Theorem of Gaubert and Gunawardena (see
[12, 29]) to mappings which are not homogeneous but subhomogeneous.

The next consequence of Theorem 5.2.4 concerns stochastic operators which can
be viewed as infinite generalizations of column stochastic matrices. (See [41] for this
and the dual concept of a Markov operator which is defined there more special for
linear operators on Banach lattices.)

Definition 5.2.7. Let (V , ‖ ⋅ ‖) be a normed vector space with a convex cone K onwhich‖ ⋅ ‖ is additive. A selfmapping T of K is called a stochastic operator if ‖Tx‖ = 1 for all
x ∈ K with ‖x‖ = 1.

The following result can be viewed as an infinite generalization of the Basic Limit The-
orem for Markov chains (see [30]).

Corollary 5.2.8 (Basic limit theorem for stochastic operators). Let (V , ‖ ⋅ ‖) be a Ba-
nach spacewith a closed normal cone K with

∘
K ̸= 0. Let T be a stochastic operator (on K)

which is compact, concave, and primitive, i.e., there exists p ∈ ℕ such that Tmx > 0 for
all m ≥ p, all x ∈ K ∖ {0}. Then T has a unique fixed point x∗ ∈ K with ‖x∗‖ = 1 and it
holds that

lim
n→∞

Tnx = x∗ > 0 for all x ∈ K, ‖x‖ = 1.
Proof. The set B = {x ∈ K | ‖x‖ = 1} is a closed base for K. By Corollary 5.1.14 (ii) the
operator S = Tp is ascending on D = S(B) with ϕ upper semicontinuous.

Obviously, Sx ∈ B ∩ ∘
K for x ∈ B. For fixed x0 ∈ B it holds that M = {S̃nx0 |≥ 2} =

{Snx0 | n ≥ 2} ⊂ B ∩ ∘
K. Let x ∈ M, the closureM taken in (B ∩ ∘

K, d), and x = lim
n→∞

xn for
d. Since ‖x‖ = 1 = ‖xn‖, from Proposition 3.3.3 (vi) it follows that x = lim

n→∞
xn for ‖ ⋅ ‖.

Therefore,M(for d) ⊂ M(for‖ ⋅ ‖) ⊂ S(B)(for ‖ ⋅ ‖) = D.
Obviously, M (for d) ⊂ ∘

K. Therefore, by the definition of the ascending domain, we
have that x0 ∈ D(T). Since x0 ∈ B was arbitrarily chosen, the corresponding setM for

any x ∈ B is contained in D ∩ ∘
K. Thus, by Theorem 5.2.4, part B, it follows for some

x∗ with ‖x∗‖ = 1 that lim
n→∞

S̃nx = x∗ (for ‖ ⋅ ‖) for all x ∈ B. Since S̃x = Sx for x ∈ B it
follows that lim

n→∞
Tnpx = x∗ for all x ∈ B. For x ∈ B one has that Tix ∈ B and, hence,

lim
n→∞

Tnp+ix = x∗. This implies that lim
n→∞

Tnx = x∗ for all x ∈ B and, by continuity of T, x∗
is a fixed point of T. Obviously, x∗ is the unique fixed point of T in B.
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From Theorem 5.2.4 we obtain the following extension to infinite dimensions of the
First Concave Perron Theorem (Theorem 2.1.11) and the Second Concave Perron Theo-
rem (Theorem 2.2.11).

Theorem 5.2.9 (Relative stability for concave and zigzag-operators). Let (V , τ ) be a
locally convex vector space with a convex cone K which is sequentially complete and
normal. Let q be an arbitrary seminorm on K with unit set U and let T be a concave
selfmapping of K.
(i) Assume there are numbers 0 < r ≤ s and e ∈ K with q(e) > 0 such that

re ≤ Tx ≤ se for all x ∈ U. (∗)
Then the conditional eigenvalue problem

Tx = λ x with λ ∈ ℝ, x ∈ K, q(x) = 1

has a unique solution x = x∗, λ = λ ∗ > 0 and it holds with respect to τ that

lim
n→∞

T̃nx = x∗ for all x ∈ K with q(Tx) > 0.
If, in addition, T is ray-preserving or positively homogeneous, respectively, then for
τ and q(Tx) > 0, lim

n→∞
Tnx

q(Tnx) = x∗ or lim
n→∞

Tnx
λ ∗n = c(x)x∗, respectively. Thereby, c(⋅) is

concave and positively homogeneous.
(ii) Suppose

∘
K ̸= 0 and let q be a norm on V. Assume T is continuous, ray-preserving,

primitive, and for some k the closure of Tk(U) (for τ)is a compact subset of K which
does not contain zero.
Then the eigenvalue problem

Tx = λ x with λ ∈ ℝ, x ∈ K ∖ {0}
has a solution x∗ > 0with q(x∗) = 1 and λ ∗ > 0. For any solution x ∈ K ∖{0}, λ ∈ ℝ
it holds that x = rx∗ for some r > 0 and λ > 0. Moreover, with respect to τ and
x ∈ K ∖ {0}

lim
n→∞

Tnx
q(Tnx) = x∗ and lim

n→∞

Tnx
λ ∗n

= c(x)x∗.
if T is positively homogeneous.

(iii) Let {Ti}i∈I be a family of concave operators as in (i) with 0 < ri ≤ si and ei ∈ K
with q(ei) > 0 and such that inf{ risi | i ∈ I} > 0. If Tx = inf{Tix | i ∈ I} (or
Tx = sup{Tix | i ∈ I}) exists for every x ∈ K then the conclusion of (i) applies to T.

Proof. (i) Lemma 5.1.6 (i) yields for D = U = {x ∈ K | q(x) = 1} that T is ascending on
D with ϕ (λ ) = λ + (1 − λ ) rs . From (∗) it follows for x ∈ U that q(Tx) > 0 and, hence,
T is proper for scale q. Fix x0 ∈ K with q(Tx0) > 0 and let P0 the part generated by
u0 = T̃x0. For u ∈ U from (∗) it follows that

Tu ≤ se ≤ s
r
Tu0 and Tu0 ≤ se ≤ s

r
Tu.
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154 | 5 Ascending dynamics in convex cones of infinite dimension

Therefore, M = {T̃nx0 | n ≥ 2} ⊂ P0 and the closure M taken in the complete metric
space (P0 ∩ U, d) (see Lemma 5.2.2) is contained in D. Thus, D(T) = {x ∈ K | q(Tx) > 0}
for the ascending domain of T and the conclusion of (i) follows from Theorem 5.2.4.

(ii) By assumption Tk(U) is compact in K (for τ ) and does not contain 0. Since
T is primitive and continuous, Tp (Tk(U)) , and hence, C = Tp+k(U) is compact and
contained in

∘
K. By Proposition 3.4.12 (iii), λ (⋅, ⋅) is τ -continuous and strictly positive

on
∘
K. For e ∈ C arbitrary but fixed this implies that

r = inf{λ (e, x) | x ∈ C} > 0 and s = sup{ 1
λ (x, e) | x ∈ C} < ∞.

Therefore, re ≤ x ≤ se for all x ∈ C and re ≤ Tp+ku ≤ se for all u ∈ U. For
S = Tm, m = p + k, from part (i) it follows that Sx = λ x, λ ∈ ℝ, x ∈ K, q(x) = 1
has a unique solution x = x∗, λ > 0 and lim

n→∞
Snu

q(Snu) = x∗ > 0 for all u ∈ U. To confer
these results from S to T, consider y = Tix for x ∈ K ∖ {0}. For 1 ≤ i < p one has that
0 < Tpx = Tp−i(Tix) = Tp−iy. Since T is ray-preserving, T0 = 0, and, hence, y ̸= 0.
Therefore, y = Tix ̸= 0 for x ∈ K ∖ {0}, i ∈ ℕ. Applying

lim
n→∞

Tnmu
q(Tnmu) = x∗ for all u ∈ U

to u = Tix
q(Tix) , 0 ≤ i < m, x ∈ K ∖ {0} yields

lim
n→∞

Tnx
q(Tnx) = x∗.

Similarly the assertion for T positively homogeneous is obtained from part (i). Finally,
from Sx∗ = λ x∗ we obtain that

S( Tx∗

q(Tx∗)) = ρTm+1x∗ = ρT(Sx∗) = ρT(λ x∗) = μ Tx∗

q(Tx∗) ,
where ρ > 0, μ > 0. By uniqueness, Tx∗

q(Tx∗) = x∗ and, hence, Tx = λ x has the solution
x = x∗ > 0, λ ∗ = q(Tx∗) > 0. Finally, suppose Tx = λ x with x ∈ K ∖ {0}, λ ∈ ℝ. Since
Tx ∈ K ∖ {0} it follows that λ = q(Tx)

q(x) > 0. Therefore, S x
q(x) = αTpx = β x

q(x) with α , β > 0,
which implies x

q(x) = x∗, that is, x = rx∗ with r = q(x) > 0.
(iii) From Lemma 5.1.6 (iii) it follows that T is ascending on D = U with ϕ (λ ) =

λ + (1 − λ )c with c = inf{ risi | i ∈ I} > 0. As in the proof of (i) it follows that the
conclusion of (i) applies to T.

A common extension of the Perron–Frobenius theorem as well as of Jentzsch’s theo-
rem on integral operators to linear operators in infinite dimensions is the well-known
Krein–Rutman theorem (see [28, 51]; for an elegant proof see [44]). This extension
treats existence andproperties of the dominant eigenvalue but it is not concernedwith
the “dynamical aspect”, that is the convergence of the normalized iterates. The results
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5.2 Relative stability for ascending operators by Hilbert’s projective metric | 155

presented above, although mainly directed towards dynamical features of operators,
yield also variants of Jentzsch’s theorem as well as of the Krein Rutman theorem (see
Exercises 4 and 6 and Section 5.4); for a generalization of parts of the Krein–Rutman
theorem to non-linear operators see [4, 35]).

Exercises

1. Consider the selfmapping T ofℝ2
+ with component mappings given by (see Exam-

ple 5.1.9 and [23])

T1x = max {min {2x1 + x2, 12x1 + 3
2
x2} , min {2x1 + 1

4
, x1 + 4x2}}

T2x = min{x1 + 2x2, 1}.
(a) Obtain from Corollary 5.2.5 that the conditional eigenvalue problem

Tx = λ x, λ ∈ ℝ, x ∈ ℝ2
+, ‖x‖ = |x1| + |x2| = 1

has a unique solution x = x∗, λ = λ ∗ > 0 and that for scale ‖ ⋅ ‖
lim
n→∞

T̃nx = x∗ for all x ∈ K ∖ {0}.
(b) Compute x∗ and λ ∗.
(c) What can be said about the asymptotic behavior of Tnx

‖Tnx‖?

2. A function f : X → ℝ on a topological space X is called upper semicontinuous
if for every a ∈ ℝ and r ∈ ℝ with f (a) < r there exists a neighborhood U(a) of
a such that f (x) < r for all x ∈ U(a). (f is lower semicontinuous if −f is upper
semicontinuous.)
(a) Show that every upper semicontinuous function on a compact topological

space attains its supremum on X.
(b) Show that for two upper semicontinuous functions f and g on X with non-

negative values the function (x, y) → f (x)g(y) is upper semicontinuous on
X × X (with the product topology).

(c) Find two upper semicontinous functions on X for which the conclusion of (b)
does not hold.

3. Consider a lineless convex cone K in some real vector space and a part P ̸= {0} of
K with V = P − P.
(a) Show that there exists a norm on Vwith respect to which each point of P is an

interior point in V.
(b) Find an example of a closed, convex, normal cone K in some normed real

vector space and a part P ̸= {0} of K such that P has empty interior in V.

4. Obtain as a special case of the Theorem on relative stability for concave operators
(Theorem 5.2.9 (i)) the following Birkhoff–Jentzsch Theorem (see [2, Theorem 3,
p. 224], cf. also [22] and Example 5.1.7):
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156 | 5 Ascending dynamics in convex cones of infinite dimension

Let (V , ‖ ⋅ ‖) be a Banach lattice with K = V+ the cone of positive elements. Let T be
a linear, bounded operator on V which maps K into itself and which is uniformly
positive. Then the eigenvalue problem Tx = λ x has a unique solution (x∗, λ ∗)with
x∗ ∈ K, ‖x∗‖ = 1, λ ∗ > 0 and for every x ∈ K ∖ {0} it holds that lim

n→∞
Tnx
‖Tnx‖ = x∗.

5. Obtain as a special case of Theorem 5.2.9 (i) Thompson’s theorem (see [47, The-
orem 4.3.4, p. 83]; cf. also Example 5.1.7):
Let (V , τ ) be a locally convex vector space, K a convex cone which is normal and
sequentially complete. Let T be a linear operator on V which maps K into itself
and which is uniformly positive with e such that s(e) = 1 for a linear functional
s : K → ℝ+, s(x) > 0 for x ̸= 0. Then the eigenvalue problem Tx = λ x has a unique
solution (x∗, λ ∗) with x∗ ∈ K, s(x∗) = 1, λ ∗ > 0 and for every x ∈ K ∖ {0} it holds
that lim

n→∞
Tnx

s(Tnx) = x∗.

6. Obtain fromTheorem 5.2.9 (ii) the following variation of theKrein–Rutman the-
orem (see also [51, Theorem 7.C, p. 290]):
Let (V , ‖⋅‖)be a real Banach spacewith a closed, convex, pointed conewith intK ̸=0. Let T be a linear, compact operator on V which maps K into itself. Suppose
that T is primitive and strictly positive in the following sense (see [4, p. 51]), for
xn ∈ K, limn→∞

Txn = 0 implies that lim
n→∞

xn = 0.
Then T has exactly one eigenvector x∗ ∈ K with ‖x∗‖ = 1. The corresponding
eigenvalue is λ ∗ > 0 and x∗ > 0. Furthermore, for all x ∈ K ∖ {0} it holds that
lim
n→∞

Tnx
‖Tnx‖ = x∗.

5.3 Absolute stability for weakly ascending operators by the part
metric

Whereas in the last sectionwe treated the relative stability for ascending operators we
now turn to the absolute stability for weakly ascending operators. The latter means
that, on a subset of the cone, the iterates of the mapping itself converge to a unique
fixed point in this subset. Whereas in the previous section Hilbert’s projective metric
was the main tool, it is now the part metric we shall employ. Despite this difference
we can proceed in what follows in many respects similarly to the previous section.

Definition 5.3.1. Let K be a convex cone in a real vector space and let T be a selfmap-
ping of K. The weak ascending domainW(T) of T consists of all points x ∈ K such
that
– there exists a non-zero part Px of K;
– there exists a non-empty subset Wx ⊂ K on which T is weakly ascending with

some ϕx;
– there exists n(x) ∈ ℕ such that forM = {Tnx | n ≥ n(x)} it holds thatM ⊂ Px and

M ⊂ Wx whereM is the closure ofM in the metric space (Px, p), p the part metric.
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The following result is similar in spirit to Theorem 5.2.4 on relative stability.

Theorem 5.3.2 (Absolute stability for weakly ascending operators). Let K be a convex
cone in a real vector space V and let T be a selfmapping of K with non-empty weak
ascending domain W(T).
A. Suppose that K is lineless and internally complete.

(i) Let x ∈ W(T) for which ϕx has the property (P) to be upper semicontinuous or
lower semicontinuous from the left on ]0, 1[ or to be a root function.
Then the orbit (Tnx)n∈ℕ converges with respect to the part metric p to a unique
fixed point x∗ = x∗(x) of T.

(ii) Let x, y ∈ W(T) such that for some k ≥ 1 both Tnx and Tny belong for n ≥ k
jointly to some part and their p-closures belong to a subset onwhich T is weakly
ascending with a function ϕx which has property (P). Then it holds in (i) that
x∗ = y∗.

(iii) For every subsetW of K on which T is weakly ascending with a ϕ that has prop-
erty (P) and for every part P of K there exists at most one fixed point of T in
W ∩ P.

B. Let τ be a locally convex topology on the vector space V for which K is sequentially
complete and normal. Then the above statements (i) to (iii) do hold where in (i) the
orbit (Tnx)n∈ℕ converges to x∗ also with respect to τ .

Proof. Suppose that K is lineless and internally complete.
(i) Fix x0 ∈ W(T) as well as a non-zero part P of K and a non-empty subsetW ⊂ K

and a mapping ϕ according to Definition 5.3.1. Let X be the closure of M = {Tnx0 |
n ≥ n(x0)} in the complete metric space (P, p) (Theorem 3.2.3 (v)). Obviously, (X, p) is
a comlete metric space contained inW. We shall show that T is a selfmapping of the
metric space (X, p)which is a generalized contraction or (𝜖, δ )-contractive in the sense
of Definition 4.1.1.

Suppose first that ϕ is upper semicontinuous. In this case we proceed similarly
to the proof of Theorem 5.2.4. Let 0 < α ≤ β < ∞ and consider x, y ∈ X with α ≤
p(x, y) ≤ β . Therefore, e−β ≤ min{λ (x, y), λ (y, x)} ≤ e−α . Consider λ satisfying e−β ≤
λ ≤ e−α . By Lemma 3.1.4 (vi) we conclude that min{λ (x, y), λ (y, x)} = sup{λ > 0 | λ x ≨
y ≨ 1

λ x}. SinceT isweakly ascending onW withϕ it follows thatϕ (λ )Tx ≤ Ty ≤ 1
ϕ (λ )Tx

and, hence,
p(Tx, Ty) ≤ − logϕ (λ ). (5.3.1)

From ϕ upper semicontinuous on I = {r | e−β ≤ r ≤ e−α } ⊂ ]0, 1[ and ϕ (r) > r for r ∈ I
we obtain that

σ (I) = sup{ logϕ (r)
log r

| r ∈ I} < 1.
Obviously, this is true also for a root function ϕ (see Example 5.1.10). From (5.3.1) we
have that

p(Tx, Ty) ≤ − logϕ (λ ) ≤ (− log λ )σ (I)
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158 | 5 Ascending dynamics in convex cones of infinite dimension

and, by taking the infimum over λ , we arrive with L(α , β ) = σ (I) at
p(Tx, Ty) ≤ L(α , β )p(x, y). (5.3.2)

In particular, T is p-continuous on X and, hence, T(X) ⊂ X. This shows that T is a
generalized contraction on (X, p).

Next, consider the case that ϕ is lower semicontinuous from the left. For 𝜖 > 0
given and λ0 = e−𝜖, ϕ (λ0) > λ0 and, hence, there exists δ > 0 such that

λ0e
−δ < λ ≤ λ0 implies that ϕ (λ ) > λ0.

Consider x, y ∈ X with 𝜖 ≤ p(x, y) < 𝜖 + δ or, equivalently,

e−𝜖e−δ < sup {λ > 0 | λ x ≤ y ≤ 1
λ
x} ≤ e−𝜖.

Therefore, there exists λ such that

λ0e
−δ < λ ≤ λ0 and λ x ≨ y ≨ 1

λ
x.

Since T is weakly ascending with ϕ we obtain that

ϕ (λ )Tx ≤ Ty ≤ 1
ϕ (λ )Tx.

Putting together, we get

min{λ (Tx, Ty), λ (Ty, Tx)} ≥ ϕ (λ ) > λ0 = e−𝜖

and, hence, p(Tx, Ty) < 𝜖. Thus, to any 𝜖 > 0 given there exists δ > 0 such that for all
x, y ∈ X 𝜖 ≤ p(x, y) < 𝜖 + δ implies that p(Tx, Ty) < 𝜖. (5.3.3)

In particular, T is contractive and, hence, T is p-continuous. Therefore, T is a selfmap-
ping of (X, p) which is (𝜖, δ )-contractive.

In any case, from Theorem 4.1.4 we obtain that T has a unique fixed point x∗0 in X
and lim

n→∞
Tnx = x∗0 for all x ∈ X.

(ii) Let x, y ∈ W(T) andM = {Tnx | n ≥ k}∪{Tny | n ≥ k}withX = M ⊂ W∩Pwhere
W and P are joint weak ascending set and joint part, respectively. As in (i) above, T has
a unique fixed point z∗ in X and lim

n→∞
Tmz = z∗ for all z ∈ X. In particular, lim

m→∞
Tmx =

z∗ = lim
n→∞

Tmy.
(iii) This follows directly from (ii).
(iv) Part B follows similarly as for Theorem 5.2.4. From Corollary 3.4.14 it follows

that K is lineless and internally complete. Therefore, statements (i) to (iii) of part A do
hold. It remains to show that in (i) for a sequence given by xn = Tnx convergence to
x∗ for p implies convergence for τ . From Proposition 3.3.3 (vi) (together with (ii)), for
each of the monotone seminorms qwhich define τ it follows that

q(x − y) ≤ 3p(x, y)max{q(x), q(y)} for x, y ∈ K ∖ {0}.
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From lim
n→∞

p(xn, x∗) = 0 it follows in particular that p(xn, x∗) < 1
2 for n ≥ N and, hence,

e−
1
2 xn ≤ x∗. Therefore,

q(xn − x∗) ≤ 3p(xn, x∗)e 1
2 q(x∗),

which implies that lim
n→∞

xn = x∗ for τ .

From Theorem 5.3.2 we easily obtain the following bundle of consequences.

Corollary 5.3.3. Let (V , τ ) be a locally convex vector space with a convex cone K that is
sequentially complete and normal and let T be a selfmapping of K.
(i) Let W be an internally closed subset of a part of K and let T be weakly ascending

on W with a ϕ that has property (P). Then each orbit of T which stays finally within
W converges for τ to the unique fixed point of T in W.

(ii) Let P be a non-zero part of K and let T be weakly ascending on P with a ϕ that has
property (P). Then T has a fixed point in P if and only if T sends some point of P into
P. Furthermore, each fixed point of T in P is absolutely stable in P. In particular, if T
is weakly ascending on K with a ϕ as above then each fixed point of T is absolutely
stable in the part generated by it.

(iii) Let [u, v]be a conical interval in a non-zero part of K onwhich T is uniformly concave
with η (a, b) depending continuously on a, b. Then each orbit of T which stays finally
within [u, v] converges for τ to the unique fixed point of T in [u, v].

(iv) Let Ke be the part generated by e ∈ K ∖ {0} and let T be e-monocave on Ke with
M(r, u, v) independent of u, v and continuous in r. Then Ke contains exactly one fixed
point of T which is absolutely stable in Ke.

(v) Suppose there exists 0 ≤ p < 1 such that for all x, y ∈ K
x ≤ αy and y ≤ β x imply Tx ≤ α Ty and Ty ≤ β Tx (5.3.4)

where α , β , α , β  are non-negative numbers withmax{α , β } ≤ max{αp, β p}.
Then each non-zero part of P for which T sends some point of P into P contains ex-
actly onefixedpoint of T and this fixedpoint is absolutely stable in P. This conclusion
holds in particular for T monotone and p-concave or T concave and homogeneous
of degree p on K.

Proof. (i) Consider x0 ∈ K, x0 ̸= 0 without loss, such that its orbit stays finally inW,
i.e.,M = {Tnx0 | n ≥ n(x0)} ⊂ W for some n(x0). By assumption on T the assertion of
(i) follows from Theorem 5.3.2.

(ii) Let W = P in (i). If x∗ ∈ P is a fixed point of T and x ∈ P then x ∼ x∗ which
yields Tx ∼ Tx∗ = x∗ since T is weakly ascending. Therefore, the orbit of x belongs to
P. The same holds for a point x ∈ Pwith Tx ∈ P. Therefore, the assertion of (ii) follows
from (i).

(iii) Follows forW = [u, v] from (i) together with Example 5.1.9.
(iv) Since an e-monocave mapping leaves Ke invariant, the assertion follows for

W = Ke from (i) together with Example 5.1.9.
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160 | 5 Ascending dynamics in convex cones of infinite dimension

(v) Conditions (5.3.4) imply that T is weakly ascending on K with ϕ (λ ) = λ p.
Therefore, the assertions of (v) follow from (ii).

Remarks 5.3.4. (i) In Corollary 5.3.3, setW in (i) and part P in (ii) need not contain a
fixed point of T in case no orbit stays finally within W and no point of P is sent into
P, respectively (see Exercise 2 (d)) For T ascending with a particular root function and
T given by a mixed monotone operator, part (ii) can be found in [7, Theorem 3.1] (see
Example 5.1.11 and Exercise 3).

(ii) For (V , τ ) a Banach space, K a normal cone with
∘
K ̸= 0 and a conical interval

in
∘
K that is mapped by T into itself, part (iii) of the above Corollary can be found in

[18, Theorem 10.3] and [20, Theorem 3.7], where however, a continuity assumption on
η is missing.

(iii) Part (iv) of the above Corollary can be found essentially in [50, Theorem 5.7].
(iv) For normed vector spaces and mappings with (5.3.4) part (v) of the above

Corollary can be found in [49, Theorem] (compare Example 5.1.10).

The conclusion in (v) concerning concave operators generalizeswhatwe obtained ear-
lier in Corollary 2.3.6 for finite dimensions. It also has the following consequence: If
T sends some point of P into P then for every λ > 0 there exists a unique eigenvalue
xλ ∈ P, that is Txλ = λ xλ . (For such a property concerning monotone and p-concave
operators see [39, Theorem 3.5].)

From Corollary 5.3.3 together with a criterion for T to be weakly ascending we ob-
tain the following result:

Corollary 5.3.5. Let (V , τ ) be a locally convex vector space with a convex cone K that
is sequentially complete, normal, and with

∘
K ̸= 0. Let T be a selfmapping of K that

is continuous on a convex and compact subset W of
∘
K (for τ) such that for x, y ∈ W,

0 < λ < 1,
λ x ≤ y ≤ 1

λ
x implies λ Tx < Ty < 1

λ
Tx. (5.3.5)

Then each orbit of T that stays finally within W converges for τ to the unique fixed point
of T in W.

Proof. We show that T is weakly ascending onW withϕ upper semicontinuous. Since
W is internally closed by Proposition 3.4.12 (v), the result then follows from Corol-
lary 5.3.3 (i). For the function ϕ defined for 0 < λ < 1 by

ϕ (λ ) = inf{min{λ (Tx, Ty), λ (Ty, Tx)} | λ x ≤ y ≤ 1
λ
x for x, y ∈ W}

we proceed similar to the proof of Proposition 5.1.12. By Proposition 3.4.12 (iii), the
order function λ (⋅, ⋅) is τ -continuous on ∘

K × ∘
K in (V , τ ) × (V , τ ). By the τ -continuity

of T onW the mapping λ (T⋅, T⋅) is τ -continuous onW ×W. SinceWλ = {(x, y) ∈ W ×
W | λ x ≤ y ≤ 1

λ x} is compact there exist xλ , yλ ∈ W with λ xλ ≤ yλ ≤ 1
λ xλ and

ϕ (λ ) = min{λ (Txλ , Tyλ ), λ (Tyλ , Txλ )}. Condition (5.3.5) yields λ (Txλ , Tyλ ) > λ and
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5.3 Absolute stability for weakly ascending operators by the part metric | 161

λ (Tyλ , Txλ ) > λ and, hence, ϕ (λ ) > λ . Obviously, ϕ (λ )Tx ≤ Ty ≤ 1
ϕ (λ )Tx for x, y ∈

W , 0 < λ < 1 with λ x ≤ y ≤ 1
λ x. Thus, T is weakly ascending onW with ϕ .

To see thatϕ is upper semicontinuous letϕ (λ0) < α for some λ0 ∈]0, 1[. We show
that there exists 𝜖 > 0 such that ϕ (λ ) < α for λ ∈]λ0 − 𝜖, λ0 + 𝜖[. Obviously, ϕ is
increasing and it suffices to show that ϕ (λ0 + 𝜖) < α .

Since ϕ (λ0) < α , there exist x, y ∈ W with λ0x ≤ y ≤ 1
λ0
x and

−p(Tx, Ty) = logmin{λ (Tx, Ty), λ (Ty, Tx)} < log α .
Choose 0 < 𝜖 < min{λ0(αep(x,y) − 1), 1 − λ0, λ0} and 𝛾 = 𝜖

1−λ0
. SinceW is convex, x = x

and y = 𝛾x + (1 − 𝛾)y are inW and (λ0 + 𝜖)x ≤ y. Now, similarly as in part (ii) of the
proof of Proposition 5.1.12 (see Exercise 5) one has that

p(Tx, Ty) ≥ p(Tx, Ty) − log(𝛾ep(x,y) + (1 − 𝛾)).
Since λ0x ≤ y ≤ 1

λ0
x it follows that ep(x,y) ≤ 1

λ0
and, hence,

𝛾ep(x,y) + (1 − 𝛾) ≤ 𝛾𝛾0 + (1 − 𝛾) ≤ 1 + 𝜖
λ0
.

This gives
p(Tx, Ty) ≥ p(Tx, Ty) − log(1 + 𝜖

λ0
)

and, because of 1 + 𝜖
λ0
< αep(Tx,Ty) it follows that p(Tx, Ty) > − log α . Since (λ0 +𝜖)x ≤ y this shows that ϕ (λ0 + 𝜖) < α

Specializing to concave and to zigzag operators (see Example 5.1.8) we obtain the fol-
lowing result.

Corollary 5.3.6 (Absolute stability for concave and for zigzag operators). Let(V , τ ) be a locally convex vector space with a convex cone K that is sequentially com-
plete, normal and with

∘
K ̸= 0.

(i) Let T be a concave selfmapping of K which maps K ∖ {0} into ∘
K and which maps

continuously a non-empty convex, sectional, and compact subset W ⊂ ∘
K into itself.

Then T has a unique fixed point in W that is absolutely stable in W.
(ii) Let T be a selfmapping of K given by Tx = Ax + a, where A is a cone mapping and

a ∈ K. Suppose there exists b ∈ K ∖ {0} such that Ab ≤ rb for some 0 < r < 1 and
that a is contained in the part generated by b − Ab. Then T has a unique fixed point
in the part P generated by b that is absolutely stable in P.

(iii) Let S be a zigzag operator on K, that is, S is obtained by taking finitely many suc-
cessive maxima or minima of finitely many affine operators Tx = ATx + aT with
AT a linear selfmapping of K, aT ∈ K. Suppose, there exists b ∈ K ∖ {0} such that
ATb ≤ rTb for some 0 < rT < 1 for all T and aT is contained in the part generated
by b − ATb. Then S has a unique fixed point in the part P generated by b that is
absolutely stable in P.
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162 | 5 Ascending dynamics in convex cones of infinite dimension

Proof. (i) For x, y ∈ W and 0 < λ < 1 we have for λ x ≤ y by assumption that λ x +(1 − λ )z = y with z ∈ K ∖ {0}. Since T is concave on K and Tz ∈ ∘
K it follows that

λTx < λTx + (1 − λ )Tz ≤ Ty. Thus T satisfies condition (5.3.4) of Corollary 5.3.3 and
each orbit of T that finally stayswithinW converges to the unique fixed point. Because
of T(W) ⊂ W, T has a unique fixed point which is absolute stable inW.

(ii) By assumption, there exists 1 < s with 1
s (b − Ab) ≤ a ≤ s(b − Ab). Fix such

an s and considerW = {x ∈ K | 1
s b ≤ x ≤ sb}. We show that T mapsW into itself and

is ascending on W with ϕ (λ ) = α + (1 − α )λ , where α = 1−r
1−r+s2r . Since A is a cone

mapping we have for x ∈ W by assumption that

1
s
b ≤ 1

s
Ab + a ≤ Ax + a ≤ sAb + a ≤ sb.

Therefore, Tx = Ax + a maps W into itself. Furthermore, from the assumptions we
have that

1 − r
rs

Ab = 1
s
(1
r
Ab − Ab) ≤ 1

s
(b − Ab) ≤ a

and, hence, for x ∈ W
Ax ≤ sAb ≤ rs2

1 − r a = 1 − α
α

a.
Let λ x ≤ y ≤ 1

λ x for x, y ∈ W and 0 < λ < 1. Since A is a cone mapping, we obtain

ϕ (λ )Ax − Ay ≤ ϕ (λ )Ax − λAx = (ϕ (λ ) − λ )Ax = α (1 − λ )Ax ≤ (1 − α )(1 − λ )a.
Putting together,

ϕ (λ )Tx = ϕ (λ )(Ax + a) ≤ Ay + (1 − α )(1 − λ )a + ϕ (λ )a = Ay + a = Ty.
Changing the roles of x and ywe arrive atϕ (λ )Tx ≤ Ty ≤ 1

ϕ (λ )Tx, that is, T is ascending
with ϕ onW.

Now, we can apply Corollary 5.3.3 (i). Let P be the part generated by b. Obviously,
W is an internally closed subset of P. As seen above, T is ascending on W with ϕ ,
where ϕ (λ ) > λ and ϕ is continuous. Since T(W) ⊂ W it follows that T has a unique
fixed point x∗ inW which is aboslutely stable inW. Finally, consider z ∈ P arbitrary
and choose s = s(z) big enough such that z ∈ {x ∈ K | 1

s b ≤ x ≤ sb} = W, x∗ ∈ W

and 1
s (b −Ab) ≤ a ≤ s(b−Ab). The above, when applied toW yields that the orbit of

z converges to x∗. Thus, x∗ is the (unique) absolutely stable fixed point of T in P.
(iii) By assumption, there exists 1 < s such that 1

s (b − ATb) ≤ aT ≤ s(b − ATb) for all
T. Fix such an s and letW = {x ∈ K | 1

s b ≤ x ≤ sb}. We show, SmapsW into itself and
is ascending onW with ϕ (λ ) = α + (1 − α )λ , where α = 1−r

1−r+s2r with r = max
T

rT < 1.
Since AT is linear, for x ∈ W we obtain

1
s
b ≤ 1

s
ATb + aT ≤ ATx + aT ≤ sATb + aT ≤ sb.

Therefore, 1s b ≤ Tx ≤ sb for all T and by performingmaxima or minima of the T’s with
respect to “≤” (provided, they exist) we obtain that S maps W into itself. Obviously,
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ATb ≤ rb for all T and we may continue for T fixed with AT , aT as in part (ii). First,
we obtain for x ∈ W that ATx ≤ 1−α

α aT . Furthermore, since AT is linear, it is a cone
mapping and for λ x ≤ y ≤ 1

λ x with x, y ∈ W , 0 < λ < 1 we obtain

ϕ (λ )AT − ATy ≤ (1 − λ )(1 − α )aT
and, hence,

ϕ (λ )Tx = ϕ (λ )(ATx + aT) ≤ ATy + aT = Ty.
Changing roles of x and y we arrive at ϕ (λ )Tx ≤ Ty ≤ 1

ϕ (λ )Tx and, taking maxima and
minima, we arrive at ϕ (λ )Sx ≤ Sy ≤ 1

ϕ (λ )Sx, that is, S is ascending with ϕ onW. For P
thepart generatedbyb,W is an integrally closed subset ofP and fromCorollary 5.3.3 (i)
we obtain that S has a unique fixed point x∗ in W. For z ∈ P arbitrary there exists
s = s(z) big enough such that z ∈ {x ∈ K | 1

s b ≤ x ≤ sb} = W and 1
s (b − ATb) ≤ aT ≤

s(b − ATb). As above forW, it follows forW, too, that the orbit of z converges to x∗.
Thus, x∗ is the (unique) absolutely stable fixed point of S in P.

Remarks 5.3.7. (i) Whereas Corollary 5.3.6 (i) yields an absolutely stable fixed point,
Theorem 5.2.9 (i) only yields a relatively stable eigenvector. For example, in constrast
to Theorem 5.2.9 (i) which covers arbitrary strictly positive matrices, Corollary 5.3.6 (i)
addresses more specifically strictly positive (column-) stochastic matrices. More gen-
erally, let (V , τ ) andK as in Corollary 5.3.6 and letT be a concave selfmapping ofK as in
Theorem 5.2.9 (i) with, in addition, e ∈ ∘

K, q a norm, T continuouswith T(U) ⊂ U. It fol-
lows that T(K ∖ {0}) ⊂ ∘

K. Consider now the convex and sectional setW = {x ∈ U | re ≤
x ≤ se}. T mapsW into itself and ifW is compact then Corollary 5.3.5 (i) implies that T
has an absolutely stable fixedpoint inW. Obviously,W is compact in finite dimensions
which case can be generalized to reflexive locally convex spaces (V , τ ) by considering
forW the weak topology σ (V ,V ) on V and requiring T to be weakly continuous. (For
reflexive spaces and weakly compact sets see [13, 41]; see also Corollary 5.2.8.)

(ii) A mapping Tx = Ax + a as in part (ii) of Corollary 5.3.6 appears in finite di-
mensions in connection with a non-linear Leontief model. There, a > 0 and it is
assumed that A is a monotone and subhomogeneous selfmapping of K which is pro-
ductive in the sense that Ax0 < x0 for some x0 ∈ K. Then T has a unique fixed point
which can be obtained by iteration (see [50, Section 6.3] and [34] for Leontief models
in general). Obviously, Corollary 5.3.6 (ii) applies with b = x0, butA is neither required
to be monotone nor subhomogeneous. Furthermore, the space may be infinite dimen-
sional, allowing non-linear Leontief models with infinitelymany commodities (see [9]
for those models). Moreover, part (iii) of Corollary 5.3.6 can be used to treat the choice
of techniques for non-linear Leontief models (see also Sections 1.3 and 1.4 as well as
Sections 2.6 and 2.7).

In proving themain result of this section, Theorem 5.3.2, it was essential that themap-
ping under consideration was a generalized contraction with respect to the part met-
ric. This property is interesting already in one dimension in that it is strongly related
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164 | 5 Ascending dynamics in convex cones of infinite dimension

to reproduction functions in population dynamics. More precisely, call a selfmapping
of ℝ+ with f (x) > 0 for x > 0 a cave function if f (x)

x is strictly decreasing and xf (x) is
strictly increasing for x > 0. The first condition means population pressure (see Sec-
tion 1.1). The second condition, which holds in particular for f increasing, means that
the population does not decrease too fast. Special cases of cave functions are con-
cave functions and quasiconcave functions, that is increasing functions for which
f (x)
x is strictly increasing (see [17, § 3] [18, § 46]). There are, however, relevant reproduc-
tion functions which are cave but neither concave nor quasiconcave (see the example
given by (1.1.11). It turns out that a reproduction function is cave on a compact interval
if and only if it is a generalized contraction for the part metric on that interval. (See
Exercises 7, 8, 9 for cave functions).

Exercises

1. A function f : O → ℝ on a non-empty open subset O of ℝ is lower semicontinu-
ous from the left (from the right) in a ∈ O if for every r ∈ ℝ with f (a) > r there
exists 𝜖 > 0 such that

f (x) > r for all x0 − 𝜖 < x ≤ x0 (x0 ≤ x < x0 + 𝜖).
(a) Find a selfmapping ϕ of the open interval ]0, 1[ with ϕ (r) > r which is lower

semicontinuous from the left but not from the right.
(b) Find an open set 0 ̸= O ⊂ ℝ, a function f : O → ℝ lower semicontinuous

from the left and a compact subset of O on which f does not attain its (finite)
infimum.

2. Let F be the Banach space of all bounded real valued functions on ℕ equipped
with norm ‖f ‖ = sup{|f (n)| | n ∈ ℕ}. Let K = {f ∈ F | f (n) ≥ 0 for all n ∈ ℕ} and let
T be the selfmapping of K given by (Tf )(n) = √f (n).
(a) Describe all parts of K by subsets ofℕ.
(b) Show that T is weakly ascending on the whole of K ∖ {0} with ϕ continuous.

Show that each part of K contains exactly one fixed point of T which is abso-
lutely stable in this part.

(c) Let τ : ℕ → ℕ, τ (n) = n + 1, and S = T ∘ τ . Show that S is weakly ascending
with the same ϕ as T and find the fixed points of S.

(d) Show that only the parts {0} and int K contain each an absolutely stable fixed
point of S and that no other part contains a point which is sent to it by S.

3. [7] Let V be a real Banach space containing a closed and normal convex cone K
and let P be a non-zero part of K. An operator A : P×P → P is amixedmonotone
operator if A(x, y) is monotone in x an antimonotone in y, i.e., y ≤ y implies
A(x, y) ≤ A(x, y). Let T be given by Tx = A(x, x).
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5.3 Absolute stability for weakly ascending operators by the part metric | 165

(a) Suppose that for each interval [a, b] ⊂ ]0, 1[ there exists α (a, b) ∈ ]0, 1[ such
that for all x ∈ P, t ∈ [a, b] it holds that

A (tx, 1
t
x) ≥ tα (a,b)A(x, x).

Show that T is a selfmapping of P which is (weakly) ascending on P with a
root function.

(b) Obtain from Corollary 5.3.3 (ii) Chen’s Theorem which states that T has a
unique fixed point in P that is absolutely stable in P ([7, Theorem 3.1]).

4. Let (V , τ )be a locally convex vector spacewith a convex coneK that is sequentially
complete, normal and with

∘
K ̸= 0. Let T be a selfmapping of K which maps con-

tinuously a non-empty convex, sectional and compact subset W ⊂ ∘
K into itself.

Show for T strongly monotone (monotone) onW and subhomogeneous (strongly
subhomogeneous) onK∖{0} thatT has a unique fixedpoint inW that is absolutely
stable inW.

5. Let T be a selfmapping of an arbitrary convex cone K in some vector space which
has the property that for a convex subset D ⊂ K it holds that λ x ≤ y implies
λTx ≤ Ty for any 0 < λ < 1, any x, y ∈ D. Then for x, y ∈ D and 0 < 𝛾 ≤ 1 the
following formula holds for the part metric

p(Tx, T(𝛾x + (1 − 𝛾)y)) ≥ p(Tx, Ty) − log(𝛾ep(x,y) + (1 − 𝛾))
(compare Proposition 5.1.12).

6. (a) Find a selfmapping T of K as in Corollary 5.3.5 (ii), except that a is not con-
tained in the part generated by b−Ab, and show that the conclusion of Corol-
lary 5.3.5 (ii) does not hold.

(b) Let Tx = cx + d be a selfmapping ofℝ+ with 0 < c < 1 and 0 < d. Compute for
T the setW and the function ϕ as in the proof of Corollary 5.3.5 (ii).

7. LetK = ℝ+, P = {x ∈ K | x > 0} the non-zero part of K, f a continuous selfmapping
of K which maps P into itself and I a non-empty compact interval in P.
(a) Show that the following conditions are equivalent

– f is a generalized contraction for thepartmetricP on I (i.e., Definition4.1.1
(iii) applies to points in I).

– f is cave on I, that is on I is f (x)
x strictly decreasing and xf (x) strictly in-

creasing.
(b) Show for f differentiable on P that f is cave if and only if the following condi-

tion holds for all x ∈ I |x ⋅ f (x)
f (x) | < 1.

(c) Show that f is ascending on I if and only if f is cave and increasing on I.
(d) Let f differentiable with |x ⋅ f (x)f (x) | < 1 on P and let x∗ ∈ P be a fixed point of f .

Prove lim
n→∞

f n(x) = x∗ for all x ∈ P.
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166 | 5 Ascending dynamics in convex cones of infinite dimension

8. For the set C of all cave functions show that
(a) C is a convex cone.
(b) C contains with two functions their pointwise maximum and minimum.
(c) C contains all zigzag operators in one dimension.

9. (a) Determine the combinations of parameters λ , a, b > 0 for which f (x) = λ x(1 +
ax)−b defines a cave function that is neither concave nor quasiconcave (see
also Section 1.1).

(b) Determine the combinations of parameters a, b ≥ 0 with a + b > 0 and c, d >
0 for which f (x) = a+bxr

c+dxs with r, s ≥ 0 given defines a cave function.
(c) Discuss, analytically and by computer simulations, the asymptotic behavior

of the iterates of cave functions that are increasing, like f (x) = 3+5x2
4+4x2 , and of

those that are not, like f (x) = 5x
(1+x)2 .

5.4 Applications to non-linear difference equations and to
non-linear integral operators

The results obtained on ascending operators enable us to go beyond the concave op-
erators in finite dimensions as studied in Chapter 2. On the one handwemay consider
in finite dimensions operators which are not necessarily concave. This we will illus-
trate by an application to difference equations which are not of the concave type as
considered in Section 2.5. On the other hand we may consider concave operators in
infinite dimensional function spaces. This we will illustrate by an application to in-
tegral operators of concave type. This yields at the same time a sharpening and an
extension of Jentzsch’s theorem on linear integral operators which itself carries over
some of Perron–Frobenius theory to infinite dimensions.

First consider the difference equation

u(t + n) = f (u(t), u(t + 1), . . . , u(t + n − 1))
of order n ≥ 1 with u(t) ∈ ℝ+ for t ∈ ℕ and f : ℝn

+ → ℝ+ with the associated charac-
teristic equation

λ n = f (1, λ , λ 2, . . . , λ n−1) for λ ∈ ℝ+.
Call f increasing in component i if 0 ≤ x ≤ y and xi < yi implies f (x) < f (y). From
Corollary 5.2.5 we obtain the following

Theorem 5.4.1. Suppose f : ℝn
+ → ℝ+ is continuous, positively homogeneous and there

exists a set J of at least two increasing components such that 1 ∈ J and the numbers
n + 1−j, j ∈ J, are relatively prime. Then the characteristic equation has a unique strictly
positive root λ ∗ and every solution u(⋅) of the difference equation with initial conditions
ū(u(0), . . . , u(n − 1)) is relatively stable, i.e.,

lim
t→∞

u(t)
λ ∗t

= c(ū),
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5.4 Applications to non-linear difference equations | 167

where the function c : ℝn
+ → ℝ+ is positively homogeneous and satisfies c(x) < c(y) for

x ≨ y, c(x2, . . . , xn, f (x)) = λ ∗c(x) and c(1, λ ∗, . . . , λ ∗(n−1)) = 1.

Proof. Apply Corollary 5.2.5 to the Euclidean vector space V = ℝn with cone K = ℝn
+.

Obviously,
∘
K ̸= 0 and taking f the l1-norm K has the compact base B = {x ∈ K |

f (x) = 1}. Define Tx = (x2, . . . , xn, f (x)). T is a continuous selfmapping of K which is
positively homogeneous. For ū = (u(0), . . . , u(n−1)) andu(⋅) a solutionof thedifference
equation we have that Ttū = (u(t), . . . , u(t + n − 1)). By Lemma 2.5.4 from ū ≨ v̄ we
obtain that u(t) ≤ v(t) for all t and u(t) < v(t) for t ≥ t0. Therefore, for any two vectors
0 ≤ x ≨ y we have that Ttx < Tty for all t ≥ t0. This shows that Tt0 satisfies condition(∗) of Corollary 5.2.5. Since Tt0 is positively homogeneous we get that Tt0x = λ x, λ ≥
0, f (x) = 1 has a unique solution x = x∗ ∈ ∘

K, λ = μ and lim
n→∞

Tt0n
μn = c(x)x∗ for Tx ̸= 0.

Denote λ ∗ = μ
1
t0 .

Applying Ti we obtain

lim
n→∞

Tt0n+i

λ ∗(t0n+i)
λ ∗i = c(x)Tix∗ = c(x)λ ∗ix∗,

and, hence, lim
m→∞

Tmx
λ ∗m = c(x)x∗. For this note that

Tt0( Tx∗

f (Tx∗)) = ρTt0+1x∗ = ρT(Tt0x∗) = ρT(μx∗) = σ Tx∗

f (Tx∗)
with certain scalars ρ and σ and, by uniqueness, Tx∗

f (Tx∗) = x∗. Actually, we must
have λ ∗ = f (Tx∗) and λ ∗ is unique. Finally, Tx = λ x is equivalent to x2 = λ x1, x3 =
λ x2, . . . , xn = λ xn−1, f (x) = λ xn which by positive homogeneity of f implies that
f (1, λ , . . . , λ n−1) = λ n. Conversely, if this equation holds then Tx = λ x for x =(1, λ , . . . , λ n−1). Therefore, λ ∗ is the positive unique solution of the characteristic
equation of f . The properties of c(⋅) carry over from those of T and the definition
of T.

The following examples illustrate the theorem and, different from the earlier Exam-
ples 2.5.7 none of them needs to be concave.

Examples 5.4.2. (i) Consider a difference equation with a right hand side f given as
the maximum of finitely many linear functions

f (x) = max
1≤i≤m

(ai1x1 + ⋅ ⋅ ⋅ + ainxn),
where the m × n-matrix A = (aij) is non-negative with a set J of at least two strictly
positive columns including the first one and such that the numbers n + 1 − j, j ∈ J,
are relatively prime.Whereas Example 2.5.7 (i), given as theminimum of finitelymany
linear functions, exhibits a concave f , the f above is convex. Obviously, Theorem 5.4.1
does apply to this convex f and yields lim

t→∞
u(t)
λ ∗t = c(ū), where λ ∗ > 0 is the unique root

of the characteristic equation max
1≤i≤m

(ai1 + ai2λ + ⋅ ⋅ ⋅ + ainλ n−1) = λ n.
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168 | 5 Ascending dynamics in convex cones of infinite dimension

If A is row-stochastic λ = 1 is a root and, hence, we must have that λ ∗ = 1. Thus
all solutions with initial condition ū ̸= 0 converge to a positive value.

(ii) Consider

f (x1, . . . , xn) = (∑
i∈J
xpi )

1
p ,

for 0 ̸= J ⊆ {1, . . . , n} and p ̸= 0. For J = {1, . . . , n} the value 1
n
1
p
f (x1, . . . , xn) is sometimes

called a power mean or a Hölder mean. For the same J but p ≥ 1 f (x) coincides on ℝn
+

with lp-norm ‖x‖p. Therefore, f is convex on ℝn
+. For p ≥ 1 but J ̸= {1, . . . , n} f is still

convex but corresponds only to a semi-norm. For p > 0, 1 ∈ J, |J| ≥ 2 and such
that the numbers n + 1 − j, j ∈ J, are relatively prime, f satisfies the assumptions
of Theorem 5.4.1. Therefore, lim

t→∞
u(t)
λ ∗t = c(ū) where λ ∗ > 0 is the unique root of the

characteristic equation ∑j∈J λ
p(j−1) = λ pn. Equivalently, ∑j∈J λ

−p(n+1−j) = 1. Therefore,
we cannot have that λ ∗ < 1 and, since |J| ≥ 2, we cannot have that λ ∗ = 1. Thus,
λ ∗ > 1 and all non-zero solutions must tend exponentially to infinity.

(iii) The above two examples are special cases of the following “zigzag”-mapping

f (x) = min
p∈P

max
1≤i≤m

( n∑
j=1
aij(p)xpj )

1
p .

Thereby, P is a finite set of values p > 0 and A(p) is a non-negativem × n-matrix with
a set Jp of at least two strictly positive columns, including the first one and such that
the numbers n + 1 − j, j ∈ Jp are relatively prime.

If the intersection of the Jp, p ∈ P, contains at least two elements then f satisfies
the assumptions of Theorem 5.4.1. The study of solutions for these examples seems
hopeless but Theorem 5.4.1 enables one to judge the asymptotic behavior by examin-
ing the characteristic equation whether λ ∗ = 1, λ ∗ > 1, λ ∗ < 1. Consider the special
case P = {1, 2}, m = n = 2 and strictly positive 2 × 2-matrices A(1) = (aij(1)) and
A(2) = (aij(2)). The characteristic equation then becomes

min (r(λ ), s(λ )) = λ 2

where
r(λ ) = max(a11(1) + a12(1)λ , a21(1) + a22(1)λ ) and

s(λ ) = max ((a11(2) + a12(2)λ 2) 12 , (a21(2) + a22(2)λ 2) 12 ).
Depending on thematrices A(1),A(2) all three cases for λ ∗ are possible (see Exer-

cise 1 (c)).
Qualitatively, Theorem 5.4.1 provides conditions under which the asymptotic

behavior of non-zero solution of the difference equation exhibits the following tri-
chotomy: Either all solutions tend to infinity or all solutions converge to a positive
value or all solutions converge to zero. As the Examples 5.4.2 illustrate one has to
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5.4 Applications to non-linear difference equations | 169

check whether the unique root of the characteristic equation is 1, above 1 or below 1.
The characteristic equation may be given by a combination of minima andmaxima of
certain polynomials. In the next chapter we will investigate the phenomenon of limit
set trichotomy for positive discrete dynamical systems in a more general way.

Next we consider eigenvalue problems for non-linear integral operators. Let X be a
non-empty compact subset ofℝm, let V be the vector space C(X) of all real continuous
functions f onX, equippedwithnorm ‖f ‖ = sup{|f (x)| |x ∈ X}. (V , ‖⋅‖) is aBanach space
and the convex cone K of all non-negative functions in V is sequentially complete and
normal. Consider the following integral operator T : V → V given by

(Tf )(u) = ∫
X

k(u, v)ϕ (f (v))dv, for f ∈ V ; u, v ∈ X (∗)
where k : X × X → ℝ+ is a continuous and strictly positive kernel, ϕ : ℝ+ → ℝ+ a
continuous function and dv is the normalized Lebesgue measure on X, ∫X dv = 1.

A classical theorem by Jentzsch [14] states that for ϕ = identity the eigenvalue
problem Tf = λ f has a unique solution f = f ∗ ∈ K, ‖f ∗‖ = 1, λ = λ ∗ ≥ 0. Furthermore,
f∗ and λ ∗ are strictly positive and |λ | < λ ∗ for every real eigenvalue λ ̸= λ ∗. As far as
these statements are considered there are various generalizations of Jentzsch’s Theo-
rem to non-linear integral operators with ϕ a non-linear function. (See, e.g., [51] and
the references given there.)

Since we want to obtain a non-linear version of Jentzsch’s Theorem which gives
also an iterative approximation of the unique eigenvector we have to make more re-
strictive assumptions on the non-linearity ϕ . The following result will be an applica-
tion of Theorem 5.2.9.

Theorem 5.4.3 (Concave Jentzsch Theorem). (i) Suppose for the integral operator T
given by (∗) the function ϕ : ℝ+ → ℝ+ is concave and satisfies for nonnegative
numbers a and b with a + b > 0 the inequality ar + b ≤ ϕ (r) for all r ∈ ℝ+.
Then the following conclusions hold for the conditional eigenvalue problem

Tf = λ f with λ ∈ ℝ, f ∈ K, ∫ f (v)dv = 1.
It has a unique solution f = f ∗, λ = λ ∗ ≥ 0; f ∗ and λ ∗ are strictly positive.
Furthermore, for T̃f = Tf

∫ f (v)dv , f ∈ K ∖ {0}, it holds that
lim
n→∞

T̃nf = f ∗.
(ii) Let {Ti}i∈I be a family of integral operators given on K by

(Tif )(u) = ∫
X

k(u, v)(aif (v) + bi)dv
with ai, bi non-negative and ai + bi > 0.
Then the conclusions of (i) hold for the operators given by (Tf )(u) = inf{(Tif )(u) |
i ∈ I} and, provided it exists, (Tf )(u) = sup{(Tif )(u) | i ∈ I}.
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170 | 5 Ascending dynamics in convex cones of infinite dimension

Proof. (i) To apply Theorem 5.2.9 we choose as seminorm on V q(f ) = ∫X |f (v)|dv and
e ≡ 1 on X. To show the required inequalities observe that the concavity of ϕ implies
for r ∈ ℝ+ that ϕ (1) ≥ 1

1+rϕ (r) + (1 − 1
1+r )ϕ (1) ≥ 1

1+rϕ (r). Therefore, ϕ (r) ≤ (1 +
r)ϕ (1) and ∫ϕ (f (v))dv ≤ ϕ (1) ∫(1 + f (v))dv = ϕ (1)(1 + q(f )).
From this we obtain according to the definition of T by (∗)

(Tf )(u) = ∫ k(u, v)ϕ (f (v))dv ≤ max k(u, v)
u,v∈X

⋅ 2ϕ (1) for q(f ) = 1.
Thus Tf ≤ se with s = 2ϕ (1)max k(u, v)

u,v∈X
.

The other inequality follows from ϕ (r) ≥ ar + b,

(Tf )(u) ≥ min k(u, v)
u,v∈X

∫ϕ (f (v))dv ≥ min k(u, v)
u,v∈X

(a + b) for q(f ) = 1.
That is, for r = min k(u, v)

u,v∈X
(a + b), we have that re ≤ Tf ≤ se for q(f ) = 1 with 0 < r ≤ s.

Thus the conclusions follow from part (i) of Theorem 5.2.9; observe that ϕ must be
continuous on the interior of ℝ+ and, hence, Tf > 0 for f ∈ K ∖ {0}.
(ii) The operator (Tf )(u) = ∫ k(u, v)(af (v) + b)dvwith a + b > 0 satisfies the assump-
tions in part (i). Actually, re ≤ Tf ≤ se for q(f ) = 1 with r = (a + b)min k(u, v)

u,v∈X
and

s = (a + b)max k(u, v)
u,v∈X

. Setting a = ai, b = bi, r = ri, s = si it follows that

inf{ ri
si
| i ∈ I} = min k(u, v)

max k(u, v) > 0

and the conclusion follows from part (iii) of Theorem 5.2.9.

The following examples illustrate the theorem and connect it to other results.

Examples 5.4.4. (i) The classical Jentzsch Theorem. This is the special case of
part (i) of Theorem 5.4.3 where ϕ (r) = r. Since in this case T is positively homoge-
neous, properties additional to those of Theorem 5.4.3 are available. According to
Theorem 5.2.9 it follows that

lim
n→∞

Tnf
λ ∗n

= c(f )f ∗ for f ∈ K ∖ {0} with c(f ) > 0.
For f = f+ − f− with f+, f− ≡| 0 one obtains that

lim
n→∞

Tnf
λ ∗n

= lim
n→∞

Tnf+
λ ∗n

− lim
n→∞

Tnf−
λ ∗n

= c(f+)f ∗ − c(f−)f ∗ = c(f )f ∗.
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From this for any norm | ⋅ | on V one has that

lim
n→∞

Tnf|Tnf | = σ (f )f ∗ for all f ∈ V ∖ {0},
where σ (f ) ∈ {0, + 1, −1} depending on c(f+) − c(f−) = 0 or > 0 or < 0.

These approximation properties are commonly not stated as part of Jentzsch’s
Theorem. From the approximation it follows in particular forTf = λ f , λ ∈ ℝ, f ∈ V∖{0}

lim
n→∞

( λ
λ ∗
)nf = c(f )f ∗.

Therefore, we must have that λ = λ ∗, and f proportional to f∗, or |λ | < λ ∗.
An extension of Jentzsch’s Theorem to linear operators on vector spaces has been

developed by G. Birkhoff ([2]; see also [22]).
A “Generalized Jentzsch’s Theorem” is proven in [51, Proposition 7.2.3, p. 289]

which yields for certain non-linear functionsϕ , not necessarily concave, the existence
of a solution of the conditional eigenvalue problem, without, however, an approxima-
tion property as in Theorem 5.4.3 (Cf. also Exercise 7 to Section 2.1.)

(ii) A particular case of part (i) of Theorem 5.4.3 is an affine version of Jentzsch’s
Theorem, that is ϕ (r) = ar + b with a + b > 0. Moreover, ϕ can be taken to be
an infimum of affine functions, ϕ (r) = inf{air + bi | i ∈ I} where ai, bi ≥ 0 and
inf ai
i∈I

+ inf bi
i∈I

> 0. Indeed, any concave function ϕ : ℝ+ → ℝ+,ϕ (r) ≥ ar + b and

a + b > 0, can be obtained in this way. In general, the operator T defined according
to part (i) for such aϕ is different from the infimum of operators according to part (ii).
(See Exercise 4.)

Thus, parts (i) and (ii) represent two different kinds of a non-linear extension of
Jentzsch’s Theorem.

Exercises

1. Consider the zigzag-difference equation u(t + 1) = f (u(t), u(t + 1)), t ∈ ℕ, u(t) ∈ℝ+, where f is given by the (pointwise) minimum of the functions

f1(x1, x2) = max{a11(1)x1 + a12(1)x2, a21(1)x1 + a22(1)x2}
f2(x1, x2) = max{[a11(2)x21 + a12(2)x22] 12 , [a21(2)x21 + a22(2)x22] 12 }

with all aij(k) > 0.
(a) Verify the assumptions of Theorem 5.4.1 for the above difference equation.
(b) Show that the following dichotomy holds:

“Either all non-zero solutions u(⋅) are unbounded”
or
“ lim
t→∞

u(t) exists for all solutions”.
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172 | 5 Ascending dynamics in convex cones of infinite dimension

(c) Discuss the possible roots of the characteristic equation λ 2 = f (1, λ ). Supply
a numerical example for each of the cases λ ∗ = 1, λ ∗ > 1, λ ∗ < 1.

2. Prove your own zigzag-version of Jentzsch’s Theorem by showing that the conclu-
sions of Theorem 5.4.3 hold for the (pointwise) maximum of the operators

(Tif )(u) = min{∫
X

k(u, v)(a11(i)f (v) + a12(i))dv, ∫
X

k(u, v)(a21(i)f (v) + a22(i))dv}
for i = 1, 2 and all ars(i) > 0.

3. Prove for any concave function ϕ : ℝ+ → ℝ+:
(a) ϕ is continuous on the interior of ℝ+.
(b) For each ̄r > 0 it holds that inf

0<r≤ ̄r
ϕ (r)
r > 0.

(c) The following conditions are equivalent:(α ) There exist a, b ∈ ℝ+ with a + b > 0 such thatϕ (r) ≥ ar + b for all r ∈ ℝ+.
(β ) ϕ (0) > 0 or there exists ̄r > 0 such that inf

r≥ ̄r
ϕ (r)
r > 0.

4. FindX, k(⋅, ⋅), and positive numbers a1, a2, b1, b2 such that the operator defined by
(Tf )(u) = ∫

X

k(u, v)min{a1f (v) + b1, a2f (v) + b2}dv
is different from the operator defined by

(Tf )(u) = min{∫
X

k(u, v)(a1f (v) + b1)dv, ∫
X

k(u, v)(a2f (v) + b2)dv}.
5. Let k : [0, 1] × [0, 1] → ℝ+ be a continuous and strictly positive kernel and let

ϕ : ℝ+ → ℝ+ be a continuous function.
(a) Prove the following special case of the “Generalized Jentzsch’s Theorem” (see

[51, Proposition 7.23, p.289]). Suppose there exist r > 0 and μ > 0 such that
ϕ (x) ≥ μx for all 0 ≤ x ≤ r. Then

1∫
0

k(u, v)ϕ (f (v))dv = λ f (u) for all u ∈ [0, 1] (∗)
has a solution λ > 0 and f ∈ C+[0, 1] with ‖f ‖ = ρ , for any given 0 < ρ ≤ r.

(b) Show that (a) applies for ϕ concave.
(c) Find a kernel k(⋅, ⋅) and a function ϕ with ϕ (x) ≥ ax + b for x ∈ ℝ+ (0 ≤

a, b and a + b > 0) such that the problem (∗) has a solution, which, however,
is not unique. (According to Theorem 5.4.3, ϕ cannot be concave.) Conclude
that the approximation property in Theorem 5.4.3 does not hold in this case.

(d) Find a kernel k(⋅, ⋅) and positive numbers a1, a2, b1, b2 such that the conclu-
sions of part (i) of Theorem 5.4.3 hold for

(Tf )(u) = max{ 1∫
0

k(u, v)(a1f (v) + b1)dv,
1∫
0

k(u, v)(a2f (v) + b2)dv}
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but not for

(Tf )(u) = 1∫
0

k(u, v)max{a1f (v) + b1, a2f (v) + b2}dv.
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6 Limit set trichotomy
For apositive system the orbits of different starting points show in general a very differ-
ent convergence behavior. For example, one orbitmay tend to infinitywhereas another
one tends to zero or still another one converges to a point in the interior of the under-
lying cone. This is true even in one dimension as exemplified by the mapping Tx = x2.
The situation is, however, completely different if the positive system is linear. In finite
dimensions, the positive system defined by a primitivematrix shows a uniform behav-
ior for all starting points inℝn

+ ∖ {0} that is either all orbits tend to infinity or all orbits
tend to zero, or all orbits converge to a fixed point in the interior of ℝn

+. This property
is called limit set trichotomy. (For the precise definition see Section 6.1) For a sys-
tem given by a primitivematrix this property follows from classical Perron–Frobenius
Theory, where the trichotomy is due to the three cases whether the dominant eigen-
value is greater or smaller or equal to 1 (see Theorem 2.4.1 (iii) (c)). More general, from
concave Perron–Frobenius Theory a limit set trichotomy follows from the trichotomy
of the dominant eigenvalue as above, provided that the concave selfmapping of ℝn

+
is primitive and positively homogeneous (see Theorem 2.3.1 (i)). For positive systems
in infinite dimensions a limit set trichotomy can be inferred in a similar manner for
concave and positively homogeneous operators which satisfy a certain boundedness
condition (see Theorem 5.2.9 (i)).

In this chapter limit set trichotomy will be investigated for more general positive
systems. As it turns out it plays a role whether, with respect to the part metric, the op-
erator of the system is contractive, or – for a weaker form of limit set trichotomy – is
non-expansive. A stylized picture of limit set trichotomy gives the following illustra-
tion in one dimension:

K ∙f1

f3

f2

∙
K0

������������������

����������������

Fig. 6.1. Limit set trichotomy.

∙

Mapping f1 stands for the case that for all points in the interior the orbit tends to in-
finity; for example, f1(x) = x + √x. For mapping f2 all orbits converge to 0, as is the
case with f2(x) = x

1+x . For f3 all orbits starting in the interior of K converge to a unique
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fixed point in the interior, as for f3(x) = √x. It is easily seen, that in all three cases, the
mapping is contractive for the part metric on the interior of K = ℝ+.

The next section presents our main results on weak and strong versions of limit
set trichotomy in Banach spaces. Limit set trichotomy made its first appearance in a
paper by H. Smith [23] on cooperative systems of differential equations. Generaliza-
tions to non-linear positive systems were obtained in [15] for finite dimensions, in [16]
for Banach spaces and in [26] for ordered topological cones. Further results including
various extensions, have been obtained in [1, 20, 22]. Subsequently differentiability
criteria will be developed to check whether a positive operator is contractive or non-
expansive with respect to the part metric. These criteria will be useful when dealing
with various applications to difference – and differential equations and models from
biology.

6.1 Weak and strong forms of limit set trichotomy in Banach
spaces

The first result on limit set trichotomy will be a weak form, which by strengthening
the assumptions will lead us to a strong form as well as to other conclusions.

Theorem 6.1.1. Let K be a closed convex cone in a Banach space (E, ‖ ⋅ ‖) such that K is
normal with non-empty interior

∘
K. Let T be a norm continuous selfmapping of K which

maps
∘
K into itself and which is non-expansive for the part metric p on

∘
K.

A. The followingweak limit set trichotomy holds for T. Either
(i) for all x ∈ ∘

K the orbit O(x) is unbounded (for ‖ ⋅ ‖),
or
(ii) for all x ∈ ∘

K the orbit O(x) is boundedand the limit setω (x) (for ‖⋅‖) is contained
in the boundary of K,

or
(iii) for all x ∈ ∘

K the orbit O(x) is bounded and the following alternative applies:
ω (x) is a singleton in ∘

K or for each y ∈ ω (x) ∩ ∘
K there exists c(y) > 0 such that

p(Tk+1y, Tky) = c(y) for all k ≥ 0. (6.1.1)

Furthermore, ω (xo) ∩ ∘
K ̸= 0 for at least one xo ∈ ∘

K.

B. If some iterate of T maps K ∖ {0} into ∘
K then case (i) above can be sharpened to

(i) for all x ∈ K ∖ {0} the orbit O(x) is unbounded
and case (ii) can be sharpened to

(ii) for all x ∈ K ∖ {0} the orbit O(x) is bounded and ω (x) = 0 or ω (x) = {0}.
If some iterate of T is contractive on

∘
K for p then (iii) can be sharpened to

(iii) T has a fixed point x∗ ∈ ∘
K and ω (x) = 0 or ω (x) = {x∗} for all x ∈ ∘

K.
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178 | 6 Limit set trichotomy

Proof. (1) Since T is non-expansive on ( ∘K, p), p(Tnx, Tny) ≤ p(x, y) for all n ≥ 0, x, y ∈
∘
K. By definition of p,

λ −1Tnx ≤ Tny ≤ λTny for λ ≥ exp p(x, y). (∗)
Since K is normal we may assume ‖ ⋅ ‖ to be monotone which yields

λ −1‖Tnx‖ ≤ ‖Tny‖ ≤ λ ‖Tnx‖.
Therefore, either all orbits O(x) for x ∈ ∘

K are bounded or they are all unbounded.
(2) Assume that neither (i) nor (ii) hold. Then O(x) is bounded for all x ∈ ∘

K and
there exists x0 ∈ ∘

K with ω (x0) ∩ ∘
K ̸= 0. We shall show that for x ∈ ∘

K the limit set

ω (x) of x in the metric space ( ∘K, p) coincides with ω (x) ∩ ∘
K. For, if y ∈ ω (x) ∩ ∘

K then
y = lim

k→∞
Tnkx (for ‖ ⋅ ‖). Since y ∈ ∘

K and by Proposition 3.4.12 the topologies induced by

‖ ⋅ ‖ and p do coincide on ∘
K, it follows that y ∈ ω (x). For the same reason, y ∈ ω (x)

implies y ∈ ω (x) ∩ ∘
K. Since T is non-expansive on ( ∘K, p) from Lemma 4.1.2 (a) we

obtain that ω (x) is a singleton or for each y ∈ ω (x) there exists c(y) > 0 such that
p(Tk+1y, Tky) = c(y) for all k ≥ 0. This proves part A of the theorem.

(3) Considering part B, let S be an iterate of T with S(K ∖ {0}) ⊆ ∘
K. Case (i’) is

obvious. For case (ii’) let x ∈ K ∖ {0} and y ∈ ω (x), y = lim
k→∞

Tnkx. It follows Sy =
lim
k→∞

TnkSx ∈ ω (Sx) and, by (ii), Sy must be contained in the boundary of K. Thus,
y ̸∈ K ∖ {0}, that is ω (x) = 0 or ω (x) = {0}.

Considering case (iii’) assume an iterate S = Tm is contractive for p on
∘
K. First we

show that for x ∈ ∘
K with ω (x) ∩ ∘

K ̸= 0 we must have that ω (x) is a singleton in
∘
K.

Otherwise, by (iii) we would have that p(Tk+1y, Tky) = c(y) > 0 for all y ∈ ω (x) ∩ ∘
K and

k ≥ 0. It follows that Ty ∈ ω (x) ∩ ∘
K and

p(S(Ty), Sy) = p(Tm+1y, Tmy) = p(Ty, y) > 0.
But this contradicts the contractivity of S and we must have that ω (x) is singleton in
∘
K. By (iii),ω (x0) ∩ ∘

K ̸= 0 for some x0 ∈ ∘
K and by the aboveω (x) = {x∗} and x∗ is a fixed

point of T. For x ∈ ∘
K arbitrary from (∗) in step (1) we have λ −1x∗ ≤ Tnx ≤ λ x∗ for some

scalar λ and all n.
Therefore,ω (x) ⊆ ∘

K. Ifω (x) ̸= 0 thenω (x) is a fixedpoint ofT in ∘
K. By contractivity

of S, x∗ is the unique fixed point of T in
∘
K and, hence, ω (x) = {x∗}.

This theorem yields immediately the following strong form

Corollary 6.1.2. In the general setting of Theorem 6.1.1 assume that some iterate of T
maps K∖{0} into ∘

K and some iterate of T is contractive on
∘
K for the part metric. Suppose
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6.1 Weak and strong forms of limit set trichotomy in Banach spaces | 179

further that norm bounded orbits O(x) for T and x ∈ ∘
K have compact closure in the norm

topology.
Then the following strong limit set trichotomy holds.
Either

(i) for all x ∈ K ∖ {0} the orbit is unbounded (for ‖ ⋅ ‖),
or
(ii) for all x ∈ K, lim

n→∞
Tnx = 0 (for ‖ ⋅ ‖),

or
(iii) for all x ∈ K ∖ {0}, lim

n→∞
Tnx = x∗ (for ‖ ⋅ ‖), where x∗ ∈ ∘

K is the unique fixed point of
T in K ∖ {0}.

Proof. Since norm bounded orbits have compact closure it holds ω (x) ̸= 0 for x ∈ ∘
K.

Since S(K ∖ {0}) ⊆ ∘
K for some iterate S of T it follows that ω (x) ̸= 0 for all x ∈ K ∖ {0}.

The strong limit set trichotomy then follows from the weak form together with part B
of Theorem 6.1.1.

Concerning the threefold alternative in a limit set trichotomy, in many examples and
applications all three cases appear, depending on the values of parameters. (See Ex-
ercises 1, 7, 12.)

The following lemma collects some useful properties of mappings which are non-
expansive with respect to the part metric.

Lemma 6.1.3. Let K be a lineless and archimedean convex cone in some real vector
space. Denote by ≤ the ordering induced by K and by N(P) the set of all non-expansive
selfmappings on a part P ̸= {0} of K.
(i) T ∈ N(P) if and only if for any x, y ∈ P, λ ≥ 1

λ −1x ≤ y ≤ λ x implies λ −1Tx ≤ Ty ≤ λTx

or, equivalently, T maps intervals [λ −1x, λ x] into [λ −1Tx, λTx].
(ii) p(Tx, Ty) < p(x, y) holds for x, y ∈ P, x ̸= y if and only if for λ ≥ 1 there exists

1 ≤ μ < λ such that

λ −1x ≤ y ≤ λ x implies μ−1Tx ≤ Ty ≤ μTx.
(iii) N(P) is a convex cone and the composition of twomappings in N(P) is in N(P) again.

If T is a selfmapping of P, which is the restriction of a concave selfmapping of K,
then T ∈ N(P).

(iv) If T ∈ N(P) then T is subhomogeneous on P, i.e., T(λ x) ≥ λTx for x ∈ P, 0 ≤ λ ≤ 1.
If T is subhomogeneous on P and T is monotone on P, then T ∈ N(P).

(v) Suppose T has the following property, where ≤P denotes the ordering induced by the
cone P:
For x, y ∈ P, λ −1x ≨ y ≨ λ x implies λ −1Tx ≤P Ty ≤P λ Tx. Then T ∈ N(P) and
p(Tu, Tv) < p(u, v), provided u ̸= λ v for all λ > 0.
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180 | 6 Limit set trichotomy

Proof. For x, y ∈ P we have that p(x, y) = inf{log λ | λ −1x ≤ y ≤ λ x, 1 ≤ λ } and
p(x, y) = log λ0 is a non-negative real number and λ −10 x ≤ y ≤ λ0x. (See Lemma 3.1.4,
(vi), (xii).)

(i) Let p(Tx, Ty) = μ0. Suppose μ0 ≤ λ0. If λ −1x ≤ y ≤ λ x then μ0 ≤ λ0 ≤ λ and
μ−10 Tx ≤ Ty ≤ μ0Tx implies λ −1Tx ≤ Ty ≤ λTx. Conversely, λ −10 x ≤ y ≤ λ0x implies
λ −10 Tx ≤ Ty ≤ λ0Tx and, hence, μ0 ≤ λ0.

(ii) Similarly as above, let μ0 < λ0 and 𝜖 = λ0 − μ0. If λ −1x ≤ y ≤ λ x then μ =
λ0 − 𝜖 < λ and μ−1Tx ≤ Ty ≤ μTx. Conversely, the implication in (ii) yields for λ = λ0
some 1 ≤ μ < λ such that μ−1Tx ≤ Ty ≤ μTx. Therefore, p(Tx, Ty) ≤ μ < λ0 = p(x, y).

(iii) For S, T ∈ N(P) and α , β ∈ ℝ+ from λ −1x ≤ y ≤ λ x it follows by (i) that
λ −1(αSx + βTx) ≤ αSy + βTy ≤ λ (αSx + βTx).
Therefore, by (i), αS + βT ∈ N(P). If S, T ∈ N(P) then λ −1x ≤ y ≤ λ x implies that
λ −1Tx ≤ Ty ≤ λTxwhich in turn implies λ −1S(Tx) ≤ S(Ty) ≤ λ S(Tx). Thus, S∘T ∈ N(P).

Finally, λ −1x ≤ y ≤ λ x implies for λ > 1 that y = λ −1x + (1 − λ −1)u and x =
λ −1y + (1 − λ −1)v with u, v ∈ K. If T is a concave selfmapping of K then Ty ≥ λ −1Tx
and Tx ≥ λ −1Ty. This holds also for λ = 1, in which case x = y and Tx = Ty. Thus,
T ∈ N(P).

(iv) Obviously, λ −1x ≤ y ≤ λ x holds for y = λ −1x, 1 ≤ λ . Then for T ∈
N(P), λ −1Tx ≤ Ty ≤ T(λ −1x). Therefore, T is subhomogeneous. Conversely, for T
subhomogeneous and monotone, λ −1x ≤ y ≤ λ x implies that
λ −1Tx ≤ T(λ −1x) ≤ Ty ≤ T(λ x) for λ ≥ 1.
Since λ −1Tx ≤ T(λ −1λ x) = Tx one obtains λ −1Tx ≤ Ty ≤ T(λ x) ≤ λTx. Thus, T ∈ N(P).

(v) From λ −1x ≤ y ≤ λ x it follows for 𝜖 > 0 that (λ + 𝜖)−1x ≨ y ≨ (λ + 𝜖)x and, by
assumption, (λ + 𝜖)−1Tx ≤ Ty ≤ (λ + 𝜖)Tx. For 𝜖 converging to 0 this shows that T ∈
N(P). Furthermore, let p(u, v) = log λ0 and λ −10 u ≤ v ≤ λ0u for u, v, ∈ P. Assuming u and
v not proportional, we must have λ −10 u ≨ v ≨ λ0u and, hence, λ −10 Tu ≤P Tv ≤P λ0Tu.
That is, λ0Tu = Tv + p1, λ0Tv = Tu + p2 with p1, p2 ∈ P. Since Tu, Tv, pi are all in the
same part P, there exists some 0 < 𝜖 < λ0 such that 𝜖Tu ≤ p1 and 𝜖Tv ≤ p2. Therefore,

(λ0 − 𝜖)Tu = Tv + p1 − 𝜖Tu ≥ Tv and (λ0 − 𝜖)Tv = Tu + p2 − 𝜖Tv ≥ Tu.
It follows that p(Tu, Tv) ≤ log(λ0 − 𝜖) < log λ0 = p(u, v). This proves (v) and the
lemma.

Remark 6.1.4. From Lemma 6.1.3 (i) it follows that for a selfmapping T of P that T is
non-expansive if and only if T is a cone mapping on P in the sense of Definition 5.1.4.
From (iii) and (iv) it follows in particular that a selfmapping of K which is concave or
which is monotone and subhomogeneous is non-expansive on ( ∘K, P) for ∘

K ̸= 0 and
T( ∘K) ⊆ ∘

K. In general, however, T ∈ N( ∘K) need not possess these properties. This is
true even in the most simple case of one dimension as the selfmapping Tx = x + 1

1+x
of K = ℝ+ shows. (See Exercise 4.) For further examples see the population model
(1.1.11) in Section 1.1, the Exercises 7 and 9 to Section 5.3 and the populationmodels in
Section 7.6 including Exercise 11 to Chapter 7.
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Using Lemma 6.1.3 we obtain from Theorem 6.1.1 the following form of the limit set
trichotomy which is not covered by Corollary 6.1.2.

Theorem 6.1.5. Let K be a closed convex cone in aBanach space (E, ‖⋅‖)which is normal
with non-empty interior

∘
K. Let T be a continuous selfmapping of K which maps

∘
K into

itself and for which bounded orbits O(x), x ∈ ∘
K, have compact closure (for ‖ ⋅ ‖). Suppose

T has the following property for any x, y ∈ ∘
K, λ ≥ 1

λ −1x ≤ y ≤ λ x implies λ −1Tx ≤ Ty ≤ λTx (6.1.2)

and for some iterate S of T

λ −1x ≨ y ≨ λ x implies λ −1Sx < Sy < λ Sx

(≤, < the orderings induced by K and
∘
K, respectively).

Assume further, T is monotone on rays, i.e., T(rx) ≤ T(sx) for 0 ≤ r ≤ s, x ∈ ∘
K.

The following limit set trichotomy does hold (with respect to ‖ ⋅ ‖).
Either

(i) for all x ∈ ∘
K the orbit is unbounded,

or
(ii) for all x ∈ ∘

K the orbit is bounded and ω (x) ̸= 0 is contained in the boundary of K,
or
(iii) for all x ∈ ∘

K the orbit is bounded and lim
n→∞

Tnx = c(x)x∗
where x∗ ∈ ∘

K is a fixed point of T and c(x) > 0 a scalar.
If in addition S(K ∖ {0}) ⊆ ∘

K then (i) and (iii) of the limit set trichotomy hold for
x ∈ K ∖ {0} and (ii) becomes
(ii) for all x ∈ K, lim

n→∞
Tnx = 0.

Proof. The Theorem we obtain from Theorem 6.1.1, part A. To apply this theorem we
need that T is non-expansive for the partmetric which follows from Lemma 6.1.3 (i)
and the property (6.1.2). Thus, from Theorem 6.1.1 we have weak limit set trichotomy
with cases (i) and (ii) as wanted. Concerning case (iii) of Theorem 6.1.1 suppose we
have for some y ∈ ∘

K that

p(Tk+1y, Tky) = c(y) for all k ≥ 0.
It follows with S = Tm for all k

p(Tk+1y, Tky) ≤ p(Ty, y) = p(Tm+k+1y, Tm+ky) = p(S(Tk+1y), S(Tky)) ≤ p(Tk+1y, Tky),
which implies p(S(Tk+1y), S(Tky)) = p(Tk+1y, Tky).

Lemma 6.1.3 (v) applied to S and P =
∘
K yields, due to property (6.1.2), that Tk+1y =

λkTky with λk > 0. It follows Tky = μky with μk > 0 for k ≥ 0.
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182 | 6 Limit set trichotomy

In case of μk ≤ μk+1 monotonicity of T on the ray ℝ+y implies

μk+1y = Tk+1y = T(Tky) = T(μky) ≤ T(μk+1y) = T(Tk+1y) = μk+2y

and, hence, μk+1 ≤ μk+2. Similarly, μk ≥ μk+1 implies μk+1 ≥ μk+2. That is, the μk form
a sequence in ℝ+ which is increasing or decreasing. Since the orbit of y is bounded,
the sequence (μk)k must converge and, hence, (Tky)k converges in the part topology to
some x̄ ∈ ∘

K. Thus,
c(y) = lim

k→∞
p(Tk+1y, Tky) = p(x̄, x̄) = 0.

From Theorem 6.1.1, part A. (iii) we obtain for x ∈ ∘
K that ω (x) is a singleton or ω (x) ∩

∘
K = 0. Furthermore,ω (x0)∩ ∘

K ̸= 0 for some x0 ∈ ∘
K and, hence,ω (x0) = {x∗}with x∗ ∈ ∘

K
being a fixed point of T. For x ∈ ∘

K arbitrary it holds that (see part (3) of the proof for
Theorem 6.1.1) λ −1x∗ ≤ Tnx ≤ λ x∗ for some scalar λ and all n. Therefore,ω (x) ⊆ ∘

K and
sinceω (x) ̸= 0we conclude thatω (x) is a fixed point of T. If x1, x2 are two fixed points
of T then p(Sx1, Sx2) = p(x1, x2) and, by Lemma 6.1.3 (v), x2 = λ x1 with some scalar
λ > 0. Putting together, ω (x) = {c(x)x∗} for x ∈ ∘

K and,hence, lim
n→∞

Tnx = c(x)x∗ for all
x ∈ ∘

K with c(x) > 0 a scalar.
Finally, assume in addition S(K ∖ {0}) ⊆ ∘

K. The assertions made concerning (i)
and (ii) hold trivially. Consider (iii), that is, for x ∈ ∘

K,ω (x) ̸= 0 is contained in the
boundary of K. If 0 ≨ y ∈ ω (x) then Sy ∈ ∘

K ∩ω (x)which is a contradiction. Therefore,
ω (x) = {0} which implies lim

n→∞
Tnx = {0} for x ∈ ∘

K. Since T0 = 0 and S(K ∖ {0}) ⊆ ∘
K it

follows that all orbits must converge to 0.

Finally,we comeback to the limit set trichotomy for concave (in particular linear)map-
pings as discussed earlier in the introduction and illustrated by the stylized picture.
This time we do not require positive homogeneity and we do not need to assume finite
dimensions. Moreover, we obtain a limit set trichotomy for monotone and subhomo-
geneous mappings.

Corollary 6.1.6. With general assumption as in Theorem 6.1.5 let S be some iterate of T.
(a) Suppose T is monotone and subhomogeneous. The limit set trichotomy of Theo-

rem 6.1.5 holds provided S is strictly monotone on
∘
K (for x, y ∈ ∘

K, x ≨ y implies
Sx < Sy) or S is strictly subhomogeneous on

∘
K (αSx < S(αx) for x ∈ ∘

K, 0 < α < 1).
In the latter case, (iii) holds with c(x) = 1. If in addition S(K ∖ {0}) ⊆ ∘

K then the
following limit set trichotomy does hold.
Either
(i) for all x ∈ K ∖ {0} the orbit is unbounded
or
(ii) for all x ∈ K, lim

n→∞
Tnx = 0

or
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(a) for all x ∈ K ∖ {0}, lim
n→∞

Tnx = c(x)x∗
where x∗ ∈ ∘

K is a fixed point of T and c(x) > 0 a scalar (with c(x) = 1 if T is strictly
subhomogeneous).

(b) If T is concave, in particular T is linear, and S(K ∖ {0}) ⊆ ∘
K then the above limit set

trichotomy holds for T.

Proof. (a)We show that property 6.1.2 is satisfied. The part forT holds sinceT ismono-
tone and subhomogeneous. If S is strictly monotone on

∘
K then λ −1x ≨ y ≨ λ x for

x, y ∈ ∘
K, λ ≥ 1 implies that λ −1Sx ≤ S(λ −1x) < Sy < S(λ x) ≤ λ Sx. If S is strictly

subhomogeneous we obtain λ −1Sx < S(λ −1x) ≤ Sy ≤ S(λ x) < λ Sx. In both cases prop-
erty (6.1.2) does hold. In the latter case, for (iii) we have Sx∗ = x∗, S(c(x)x∗) = c(x)x∗
and for c(x) < 1 S(c(x)x∗ > c(x)Sx∗ = c(x)x∗ which is a contradiction. Similarly for
c(x) > 1. Thus we must have c(x) = 1 if S is strictly subhomogeneous. This shows that
(a) follows from Theorem 6.1.5.

(b) We show that property 6.1.2 is satisfied. The part for T holds since a concave
selfmapping T of K is monotone and subhomogeneous.

If λ −1x ≨ y for x, y ∈ ∘
K and λ > 1 then y = λ −1x + (1 − λ −1) z

1−λ −1 with z ∈ K ∖ {0}.
Concavity of S gives

Sy ≥ λ −1Sx + (1 − λ −1S) ( z
1 − λ −1 ) > λ −1Sx

because of S(K ∖ {0}) ⊆ ∘
K. Similarly, from y ≨ λ x it follows Sy < λ Sx. The assumptions

of Theorem 6.1.5 being satisfied this proves (b).

As the stylized picture in the introduction illustrates, all three cases of a limit set tri-
chotomy can occur even if themapping is contractive or strongly concave. If, however,
the mapping has a fixed point in the interior then only the third case survives and the
fixed point is globally attractive.

This is a general feature as the following theorem will show. Furthermore, in the
stylized picture the fixed point x∗ = 1 of f3(x) = √x is locally attractive. By the local-
global stability principle (Section 4.3) it is a general feature, too, that a locally attrac-
tive fixed point of a non-expansive mapping (for p) must be globally attractive.

Theorem 6.1.7. Let K be a closed convex cone in a Banach space such that K is normal
with non-empty interior

∘
K. Let T be a norm continuous selfmapping of K which maps

∘
K into itself and the norm bounded orbits of which have compact closure in the norm
topology. If T has a fixed point x∗ ∈ ∘

K then x∗ is unique and globally attractive (within
∘
K and with respect to the norm) in each of the following cases:
(a) T is non-expansive for the part metric on

∘
K and x∗ is locally attractive (for the norm

on
∘
K).
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184 | 6 Limit set trichotomy

(b) T is non-expansive and some iterate of T is contractive for the part metric on
∘
K.

(c) T is concave and some iterate of T is strongly concave on
∘
K.

Proof. (a) By Proposition 3.4.12 the topologies induced by the norm ‖ ⋅ ‖ and the part
metric p coincide on

∘
K. Therefore, themetric space ( ∘K, p) is connected. Since T is non-

expansive on ( ∘K, p) it follows for this space fromCorollary 4.3.6 that a locally attractive
fixedpointmust be globally attractive. ByProposition 3.4.12 again the same is truewith
respect to the norm topology.

(b) Since Tx∗ = x∗ only case (iii) in the weak limit set trichotomy of Theorem 6.1.1
survives. Since an iterate ofT is contractive, case (iii’) of part B of that theoremapplies.
Finally, ω (x) ̸= 0 by the general assumptions made.

(c) The assertion follows from part B of Theorem 6.1.5.

If in the setting of Theorem 6.1.5 the mapping T has a fixed point x∗ in
∘
K then only

case (iii) survives and lim
n→∞

Tnx = c(x)x∗, c(x) > 0, for all x ∈ ∘
K. Also, if in the setting of

Theorem 6.1.7 T has a fixed point x∗ which is locally attractive then lim
n→∞

Tnx = x∗ for all
x ∈ ∘

K. In what follows we shall more general place local conditions on the fixed point
set of T to obtain global convergence of the iterates Tn to the fixed point set. For thiswe
need the following lemma which uses an argument from the proof of Theorem 6.1.5.

Lemma 6.1.8. Let K be a closed convex cone in a Banach space (E, ‖ ⋅ ‖)which is normal
with non-empty interior

∘
K. Let T be a non-expansive selfmapping of ( ∘K, p), p the part

metric. Suppose T is monotone on the ray R(y) = {ry|r > 0} for a fixed point y of T. Then
lim
n→∞

Tnx exists in R(y) for each x ∈ ∘
K which has a non-empty and bounded limit set ω (x)

in ( ∘K, p) with ω (x) ⊆ R(y).
Proof. For z ∈ ω (x) we have Tkz ∈ ω (x) and by assumption Tkz = μky with 0 < r ≤
μk ≤ s for all k ≥ 0. Suppose μk ≤ μk+1 for some k. Since T is monotone on R(y) it
follows μk+1y = T(Tkz) = T(μky) ≤ T(μk+1y) = Tk+2z = μk+2y and, hence, μk+1 ≤ μk+2.
Therefore, (μk) is increasing in case of μ0 ≤ μ1. Similarly, (μk) is decreasing in case of
μ0 ≥ μ1. Since 0 < r ≤ μk ≤ s, μ = lim

k
μk exists and μ > 0. It follows lim

k
Tkz = μy and,

hence, lim
k

p(Tkz, Tk+1z) = 0. By Lemma 4.1.2 ω (x) must be a singleton and lim
n
Tnx

exists and belongs to R(y).
A fixed point of a non-expansivemapping need not be attractive as, for example, there
might be points “rotating” around the fixed point. The result below provides a local
condition on such rotating points which guarantees a globally attractive fixed point
ray.

Definition 6.1.9. For a selfmapping f of a metric space (X, d) a point x is said to be
rotating around y for a fixed point y of f if d(f m(x), y) = a > 0 for allm ≥ 0.

Theorem 6.1.10. Let K be a closed convex cone in a Banach space (E, ‖ ⋅ ‖) which is
normal with non-empty interior

∘
K. Let T be a non-expansive selfmapping of ( ∘K, p) with

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:19 PM
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a fixed point x∗ ∈ ∘
K such that T is monotone on the ray R(x∗). Supppose, there exists𝜖 > 0 such that for each fixed point y of T with y ∈ R(x∗) and each x ∈ ∘

K with p(x, y) ≤ 𝜖
the limit set ω (x) (for ‖ ⋅ ‖) is non-empty and has points rotating around y only in R(y).
Then lim

n→∞
Tnx = c(x)x∗ with c(x) > 0 for all x ∈ ∘

K.

Proof. We shall show that the set F of all fixed points y ∈ R(x∗) is locally attractive,
that is

lim
n→∞

Tnx ∈ F for all x ∈ ∘
K with p(x, y) ≤ 𝜖 for some y ∈ F. (∗)

Then the conclusion of the theorem follows from Theorem 4.3.7 since ( ∘K, p) is con-
nected and, hence, F is not strongly isolated.

To prove (∗) fix ȳ ∈ F and x̄ ∈ B = {x ∈ ∘
K | p(x, ȳ) ≤ 𝜖}. Since T is non-expansive

and Tȳ = ȳ, T maps B into itself. Therefore, 0 ̸= ω (x̄) ⊆ B. In what follows we will use
that the topologies for ‖ ⋅ ‖ and p coincide on ∘

K (Proposition 3.4.12 (v)).
1. First we show that p(Tmx, ȳ) = a for all x ∈ ω (x̄) and all m ≥ 0. For an = p(Tnx̄, ȳ)

we have an+1 = p(T(Tnx̄), Tȳ) ≤ p(Tnx̄, ȳ) = an and, hence a = lim
k
an exists. If

x ∈ ω (x̄) then x = lim
k
Tnk x̄ (for ‖ ⋅ ‖ and p, too). Thus, for m ≥ 0 p(Tmx, ȳ) =

lim
k
p(Tm+nk x̄, ȳ) = lim

k
am+nk = a.

2. By the above, a = 0 implies x = ȳ for all x ∈ ω (x̄). If a > 0 then all points of
ω (x̄) are rotating around ȳ. By the assumption made in the theoremwemust then
have that ω (x̄) ⊆ R(ȳ). Since T is monotone on R(x∗) and, hence, on R(ȳ) it fol-
lows from Lemma 6.1.8 that lim

n
Tnx̄ exists in R(ȳ). Since ȳ ∈ F and x̄ ∈ B where

chosen arbitrarily this demonstrates (∗) and the conclusion of the theorem does
follows.

From this result we obtain the following corollary where the condition on rotating
points is guaranteed by monotonicity assumptions on T.

Corollary 6.1.11. Let K be a closed convex cone in a Banach space (E, ‖ ⋅ ‖) which is
normal with non-empty interior

∘
K. Let T be a selfmapping of

∘
K which is compact for ‖ ⋅ ‖

and non-expansive for p with Tx∗ = λ ∗x∗ for some x∗ ∈ ∘
K and λ ∗ > 0. Consider for a

selfmapping f of
∘
K the following dual properties where x, y ∈ ∘

K,m = m(x, y) and 𝜖 > 0

P1(y, 𝜖) : p(x, y) ≤ 𝜖 and x ≨ y imply f m(x) < f m(y)
P2(y, 𝜖) : p(x, y) ≤ 𝜖 and y ≨ x imply f m(y) < f m(x).

(a) Assume T is monotone on R(x∗) and subhomogeneous on ∘
K and let T̂x = 1

λ ∗ Tx on
∘
K.Suppose there exists 𝜖 > 0 such that for all fixed points y of T̂ in R(x∗) both prop-
erties P1(y, 𝜖) and P2(y, 𝜖) hold for f = T̂.

Then lim
n→∞

T̂nx = c(x)x∗ with c(x) > 0 for all x ∈ ∘
K.
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(b) AssumeT ismonotone onR(x∗)andpositively homogeneous on ∘
K. Suppose for some𝜖 > 0 properties P1(x∗, 𝜖) and P2(x∗, 𝜖) hold for f = T. Then

lim
n→∞

Tnx
s(Tnx) = x∗ for all x ∈ ∘

K

where s : ∘
K → ℝ is any continuous, positively homogeneous mapping with s(x) > 0

on
∘
K and s(x∗) = 1.

(c) Assume T is monotone and positively homogeneous on
∘
K. Then the conclusion in

(b) holds provided at least one of the properties P1(x∗, 𝜖) and P2(x∗, 𝜖) does hold for
some 𝜖 > 0 and f = T.

Proof. (1) It is easily verified that for the part metric p and for any λ > 0 and u, v ∈ ∘
K it

holds that
p(λ u, v) ≤ − logmin {λ , 1

λ
} + p(u, v). (∗)

This inequality implies for p(u, v) ≤ δ , δ > 0, and e−δ ≤ λ ≤ eδ that p(λ u, v) ≤ 2δ .
Letting λ any of the values α = λ (u, v), β = λ (v, u), μ = min{α , β } we obtain that
p(u, v) ≤ δ implies p(λ u, v) ≤ 2δ and p(λ −1u, v) ≤ 2δ .

(2) Concerning (a) we have that T̂x∗ = x∗, T̂ is a non-expansive selfmapping of( ∘K, p), T̂ is monotone on R(x∗) and T̂ is a compact map. Let 𝜖 > 0 according to prop-
erties P1(y, 𝜖), P2(y, 𝜖). Fix ȳ ∈ R(x∗) with T̂ȳ = ȳ and x̄ ∈ ∘

K with p(x̄, ȳ) ≤ 𝜖
2 . Since

p(T̂nx̄, ȳ) ≤ 𝜖
2 for all n and T̂ is compact it follows that ω (x̄) ̸= 0 for T̂ keeping in

mind that norm topology and part topology coincide on
∘
K. To apply Theorem 6.1.10 to

T̂ we shall show that for x ∈ ω (x̄) rotating around ȳ we must have that x ∈ R(ȳ). By
(1) we have for μ = min{λ (x, ȳ), λ (ȳ, x)} because of p(x, ȳ) ≤ 𝜖

2 that p(μx, ȳ) ≤ 𝜖 and
p(μ−1x, ȳ) ≤ 𝜖. Obviously, μx ≤ ȳ ≤ μ−1x and suppose none of these inequalities is an
equality. From properties P1(ȳ, 𝜖) and P2(ȳ, 𝜖) we obtain for f = T̂

f m(μx) < fm(ȳ) < f m(μ−1x) and, since T̂ is subhomogeneous, μfm(x) < f m(ȳ) <
μ−1f m(x). Therefore, λ (f m(x), f m(ȳ)) > μ and λ (f m(ȳ), f m(x)) > μ which implies that
p(f m(x), f m(ȳ)) < p(x̄, ȳ). Thus, if x ∈ ω (x̄) is rotating around ȳ (for T̂), that isp(T̂mx, ȳ) =
a > 0 for all m ≥ 0, we must have that μx = ȳ or ȳ = μ−1x and, hence, x ∈ R(ȳ). From
Theorem 6.1.10 we conclude that

lim
n

T̂nx = c(x)x∗, c(x) > 0, for all x ∈ ∘
K.

(3) Concerning (b), observe that P1(x∗, 𝜖), P2(x∗, 𝜖) imply P1(y, 𝜖), P2(y, 𝜖) for all
y ∈ R(x∗). Considering P1(x∗, 𝜖) note that p(x, rx∗) ≤ 𝜖 and x ≨ rx∗ imply p( 1r x, x∗) =
p(x, rx∗) ≤ 𝜖 and 1

r x ≨ x∗ as well as

f m (1
r
x) < fm(x∗) implies f m(x) < f m(rx∗)

due to homogeneity of f = T. Similarly for P2(x∗, 𝜖). From part (a) we obtain lim
n
T̂nx =
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c(x)x∗, c(x) > 0, for all x ∈ ∘
K. Since T is positively homogeneous we have that lim

n
Tnx
λ ∗n =

c(x)x∗ as well as lim
n
s( Tnxλ ∗n ) = c(x) which imply that

lim
n

Tnx
s(Tnx) = x∗ for all x ∈ ∘

K.
(4) Concerning (c), we go back to the proof of Theorem 6.1.10, considering λ (⋅, ⋅)

instead of p(⋅, ⋅). Let 𝜖 > 0 as in property P1(x∗, 𝜖) or P2(x∗, 𝜖)with respect to f = T̂. Fix

x̄ ∈ ∘
K with p(x̄, x∗) ≤ 𝜖

2 .
Let an = λ (f ∗(x̄), x∗). Since T is monotone and f , too, it follows an+1 =

λ (f (f n(x̄), x∗) ≥ λ (f n(x̄), x∗) = an. Therefore, (an) is increasing and because of an ≤ e𝜖

we have that α = lim
n
an exists. As in step (1) of the proof for Theorem 6.1.10 we con-

clude that λ (f mx, x∗) = α for all x ∈ ω (x̄), allm ≥ 0. Similarly, for bn = λ (x∗, f n(x̄)) we
conclude that λ (x∗, f m(x)) = β for all x ∈ ω (x̄),m ≥ 0. In particular, α = λ (x, x∗) and
αx ≤ x∗ as well as β = λ (x∗, x) and β x∗ ≤ x. Since p(x̄, x∗) ≤ 𝜖

2 we have p(x, x∗) ≤ 𝜖
2

for all x ∈ ω (x̄). From step (1) we obtain p(αx, x∗) ≤ 𝜖 and p(β −1x, x∗) ≤ 𝜖. Suppose
property P1(x∗, 𝜖) applies. If αx ≨ x∗ then αfm(x) = f m(αx) < x∗ which yields that
λ (f mx, x∗) > α = λ (x, x∗) – a contradiction. Therefore, we must have αx = x∗. In case
property P2(x∗, 𝜖) applies and β x∗ ≨ x it follows

cx∗ < f m(β −1x) = β −1f m(x) which yields that
λ (x∗, f m(x)) > β = λ (x∗, x), a contradiction again,

andwemust have β x∗ = x. Thus, in any case x ∈ ℝ(x∗) and, hence,ω (x̄) ⊆ R(x∗). Since
T and, hence, f = T̂ is monotone on

∘
K from Lemma 6.1.8 it follows lim

n
f n(x̄) ∈ R(x∗) for

p(x̄, x∗) ≤ 𝜖
2 . Finally, let F = R(x∗) and y ∈ F, x ∈ ∘

K with p(x, y) ≤ 𝜖
2 .Since y = rx∗ it

follows for x̄ = 1
r x that p(x̄, x∗) = p(x, rx∗) ≤ 𝜖

2 and by the above limn f n(x) = rlim
n
f n(x̄) ∈

R(x∗) = F. This shows that F is locally attractive for f = T̂. Theorem 4.3.7 yields that F
is globally attractive and lim

n
T̂n = c(x)x∗, c(x) > 0, for all x ∈ ∘

K. The conclusion follows
as in step (3) for (b). This proves parts (a), (b), (c) of the corollary.

Remarks 6.1.12. The strong version of limit set trichotomy as in Corollary 6.1.2 was
first obtained in [16, Theorem 3.1]. The first strong limit set trichotomy, in finite di-
mensions and for monotone mappings with a strongly subhomogeneous iterate (as
in part B of Theorem 6.1.5), appears in [15, Corollary 1]. An extension of this result to
Banach spaces canbe found in [9, Theorem5.20]. The case of a subhomogeneousmap-
ping with a strongly monotone iterate (as in part B of Theorem 6.1.5) has been dealt
with in [25, Theorem 1.1]; in a later paper the same author obtains a rather general tri-
chotomy [26, Theorem3.1],which admits also for 2-periodic points. This result requires
an iterate to be ray-contractive, a condition which is connected to condition (6.1.1) of
Theorem6.1.1 andwhich, forT itself, is defined as follows:T is non-expansive on ( ∘K, p)
and p(Tkx, Tky) = p(x, y) does hold only for all k ≥ 1 if y = λ x for some λ > 0. See also
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[3, Theorem 3.3] for a different proof of the above trichotomy. Independently, a similar
result for ray-preserving mappings has been obtained in [27, Theorem 2.1]. Concern-
ing Corollary 6.1.11 see also [17, Section 6.5, in particular Theorem6.5.1, Theorem6.5.6].
Various interesting extensions of a limit set trichotomy within different settings have
beenmade in [20] to non-autonomous systems (see the next chapter), in [1] to random
dynamical systems and in [22] to two-parameter semiflows on time scales.

6.2 Differentiability criteria for non-expansiveness and
contractivity

For limit set trichotomy as in the last section the assumptions of non-expansiveness
and contractivity, respectively were crucial. Concerning applications, as in the next
two sections, it is very useful to check these assumptions by criteria in terms of dif-
ferentiability. Throughout this section let the Banach space be ℝn with a norm ‖ ⋅ ‖
which is monotone for the standard cone K = ℝn

+. For a self-mapping T of ℝn denote
by 𝜕Ti

𝜕xj
(x) the partial derivatives for 1 ≤ i, j ≤ n and by JT(x) the Jacobian, the n × n-

matrix of all partial derivatives. The following theorem describes non-expansiveness
and contractivity in terms of the partial derivatives of T.

Theorem 6.2.1. For K = ℝn
+ let D ⊆ ∘

K be open and log-convex, that is xty1−t ∈ D (com-
ponentwise) for x, y ∈ D, 0 ≤ t ≤ 1. For T a continuously differentiable selfmapping of D
let

c(T) = sup
x∈D

max
1≤i≤n

n∑
j=1

xj
Tix

 𝜕Ti𝜕xj (x)
 . (6.2.1)

(i) If c(T) is finite, then it is the contraction constant of T on D for the part metric p, that
is c(T) is the smallest constant c such that p(Tx, Ty) ≤ cp(x, y) for all x, y ∈ D.

(ii) If
n∑
j=1

xj
Tix

 𝜕Ti𝜕xj (x)
 < c

for all 1 ≤ i ≤ n and x ∈ D then p(Tx, Ty) < cp(x, y) for all x, y ∈ D, x ̸= y.

Proof. (1) Fix i ∈ {1, . . . , n} and consider the real function f defined by f (u) =
log Ti(exp u), where exp u is taken componentwise, exp u = (exp u1, . . . exp un) and
u ∈ E = {log x|x ∈ D}, log x componentwise, too. f is continuously differentiable on
the open set E with 𝜕f𝜕uj (u) =

exp uj
Ti(exp u) 𝜕Ti𝜕xj (exp u).
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6.2 Differentiability criteria for non-expansiveness and contractivity | 189

The mean value theorem yields on E which is convex since D is log-convex,

f (v) − f (u) = 1∫
0

( n∑
j=1

𝜕f𝜕uj (u(t))hj)dt (6.2.2)

where u, v ∈ E, h = v − u, u(t) = u + th, 0 ≤ t ≤ 1.
(2) Since exp u ∈ D from the definition of c(T) we have that ∑n

j=1 | 𝜕f𝜕uj (u)| ≤ c(T)
and, hence,

|f (v) − f (u)| ≤ 1∫
0

( n∑
j=1

 𝜕f𝜕uj (u(t))
 |hj|)dt ≤ c(T)max

j
|vj − uj|.

For x, y ∈ D given there exist u, v ∈ E with x = exp u, y = exp v and, hence, f (u) =
log Tix, f (v) = log Tiy. This yields | log Tiy − log Tix| ≤ c(T)max

j
| log yj − log xj|. Since i

was arbitrary chosen we arrive at p(Tx, Ty) = max
i
| log Tix − log Tiy| ≤ c(T)p(x, y) for

all x, y ∈ D.
(3) Next we prove the existence of x, y ∈ D, x ̸= y with p(Tx, Ty) ≥ c(T)p(x, y). By

definition of c(T), to 0 < 𝜖 < c(T) there exists some x ∈ D and some 1 ≤ i ≤ n such that

c(T) − 𝜖 < n∑
j=1

xj
Tix

 𝜕Ti𝜕xj (x)
 .

Since T is continuously differentiable we may choose a neighbourhood U = {y ∈ D |‖ log y − log x‖ ≤ r} of x such that the above inequality holds still in U and 𝜕Ti
𝜕xj
(z) does

not change its sign for z ∈ U.
Define h ∈ ℝn by

hj =
{{{

r if 𝜕Ti
𝜕xj
(x) ≥ 0

−r if 𝜕Ti
𝜕xj
(x) < 0.

For f (u) = log Ti(exp u) as in step (1) we have for u = log x that 𝜕f
𝜕uj
(u)hj =

xj
Tix
 𝜕Ti𝜕xj

(x) ⋅ r. For u(t) = u + th and x(t) = eu(t) = xeth we have that ‖ log x(t) − log x‖ =
t‖h‖ ≤ r and, hence, x(t) ∈ U. Therefore,

n∑
j=1

𝜕f𝜕uj (u(t))hj =
n∑
j=1

x(t)j
Tix(t)

 𝜕Ti𝜕xj (x(t))
 ⋅ r > (c(T) − 𝜖)r

by the choice of U. The mean value theorem gives

f (u(1)) − f (u(0)) = 1∫
0

( n∑
j=1

𝜕f𝜕uj (u(t))hj)dt ≥ (c(T) − 𝜖)max
k
|hk|.

For x = exp u(0), y = exp u(1) we obtain
log Tiy − log Tix = f (u(1)) − f (u(0)) ≥ (c(T) − 𝜖)max

j
|uj(1) − uj(0)|.
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190 | 6 Limit set trichotomy

Since 𝜖 > 0 was arbitrary chosen we arrive at

p(Tx, Ty) ≥ log Tiy − log Tix ≥ c(T)p(x, y).
This proves part (i) of the theorem.

(4) For part (ii) of the theorem suppose that
n∑
j=1

xj
Tix

 𝜕Ti𝜕xj (x)
 < c

for all i and all x ∈ D. Let for i fixed f (u) = log Ti(exp u), u ∈ E. Since 𝜕f
𝜕uj
(u) =

exp uj
Ti(exp u)

𝜕Ti
𝜕xj
(exp u) it follows that

n∑
j=1

 𝜕f𝜕uj (u)
 < c

for all u ∈ E. By the mean value theorem, therefore, as in step (2),

|f (v) − f (u)| ≤ 1∫
0

( n∑
j=1

 𝜕f𝜕uj (u(t))
 |hj|) dt < cmax

j
|vj − uj|

and, for x = exp u, v = exp y,

| log Tiy − log Tix| < cmax
j
| log yj − log xj|.

Thus p(Tx, Ty) < cp(x, y) which proves part (ii).
A first consequence of this Theorem is the following version of Corollary 6.1.2 in terms
of differentiability.

Corollary 6.2.2. Let K = ℝn
+ and T a continuous selfmapping of K which is a continu-

ously differentiable selfmapping of
∘
K such that

n∑
j=1
xj
 𝜕Ti𝜕xj (x)

 ≤ Tix

for all 1 ≤ i ≤ n and x ∈ ∘
K.

Suppose further that some iterate of T maps K ∖ {0} into ∘
K and that some iterate S

of T satisfies
n∑
j=1
xj
 𝜕Si𝜕xj (x)

 < Six

for all 1 ≤ i ≤ n and x ∈ ∘
K.

Then strong limit set trichotomy (as in Corollary 6.1.2) holds.
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6.2 Differentiability criteria for non-expansiveness and contractivity | 191

Proof. Theorem 6.2.1 yields for D =
∘
K that, both, T is non-expansive and S is contrac-

tive on ( ∘K, p). Since in K norm bounded orbits have compact closure, the conclusion
follows from Corollary 6.1.2.

It should be noted that the assumptions in the above corollary do not imply mono-
tonicity. This is relevant even in one dimension. The following figure illustrates for
this case the conditions in the above corollary.
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 f (x)
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Fig. 6.2. Cave function.

At any point P the tangent must be contained in the convex cone (or its interior)
spanned by u and v. At P, f (x) ≥ 0 and f (x) ≤ f (x)

x ; at Q, f (x) ≤ 0 and −f (x)
x ≤ f (x).

One might say that, when increasing (decreasing), f must not increase (decrease)
too much. The condition x|f (x)| < f (x) for all x > 0 is equivalent to f being a cave
function, that is, f (x)

x is strictly decreasing and xf (x) is strictly increasing. (See the
last paragraph of Section 5.3 and Exercise 7 (b). See also Figure 1.3 and the example
discussed there.) The above geometric interpretation applies similarly in higher di-
mensions. The (positive) tangent space must be contained for P = (x, Tx) ∈ ℝ2n

+ in
P + C where

C = {(u, v) ∈ ℝn
+ × ℝn | max

1≤i≤n
|vi| ≤ c

n∑
i=1
ui}

is a convex polyhedral cone with c = max
1≤i,j≤n

Tix
xj
(see Exercise 5).

Though Corollary 6.2.2 is useful inmany cases, it is not applicable inmany others.
For example, if T is linear, Tix = ∑n

j=1 aijxj with A = (aij) ≥ 0, one hase that for each
iterate Sx = Amx equality∑n

j=1 xj| 𝜕Si𝜕xj
(x)| = Six holds for all i. From Theorem 6.1.5 part B,

however, we conclude that limit set trichotomy holds in this case if A is primitive. In
what follows, therefore, we will improve the criterion given by Corollary 6.2.2. This
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192 | 6 Limit set trichotomy

will be achieved by examining more closely the condition (6.1.1) for the weak limit set
trichotomy in Theorem 6.1.1. To do so the following lemma proves to be crucial.

Lemma 6.2.3. For K = ℝn
+ let f : ∘

K → intℝ+ be continuously differentiable and let, for
x, y ∈ ∘

K, ⟨x, y⟩ = {z ∈ ∘
K | zj = xtj ⋅ y1−tj , t ∈ [0, 1], 1 ≤ j ≤ n}. Assume for all z ∈ ∘

K

n∑
j=1
zj
 𝜕f𝜕xj (z)

 ≤ f (z), (6.2.3)

and let for z ∈ ∘
K

J+(z) = {j  𝜕f𝜕xj (z) > 0} , J−(z) = {j  𝜕f𝜕xj (z) < 0} .
If for x ̸= y given it holds that

| log f (x) − log f (y)| ≤ p(x, y), (6.2.4)

then in (6.2.3) equality holds for all z ∈ ⟨x, y⟩ and there exists some λ > 0 such that for
each z ∈ ⟨x, y⟩

xj = λ yj for j ∈ J+(z) and xj = λ −1yj for j ∈ J−(z)
or

xj = λ −1yj for j ∈ J+(z) and xj = λ yj for j ∈ J−(z).
Proof. As in step (1)for the proof of Theorem6.2.1 consider g(u) = log f (exp u) forD =

∘
K

and u ∈ ℝn, where exp u is taken componentwise. For x, y there exist v,w ∈ ℝn such
that x = exp v, y = expw. By the mean value theorem

g(v) − g(w) = 1∫
0

( n∑
j=1

𝜕g𝜕uj (v(t))hj) dt,
where h = v − w, v(t) = w + th, t ∈ [0, 1]. For z(t) = exp v(t) we have that zj(t) =(exp vj)t ⋅ (expwj)1−t = xtj ⋅ y1−tj and, hence, z(t) ∈ ⟨x, y⟩. For aj(t) = 𝜕g

𝜕uj
(v(t)) we have

that aj(t) = zj(t)
f (z(t))

𝜕f
𝜕xj
(z(t)). From assumption 6.2.3 if follows that ∑n

j=1 |aj(t)| ≤ 1 for all
t ∈ [0, 1]. Form = max

j
|hj| > 0 we have that

m = max
j
|vj − wj| = max

j
| log xj − log yj| = p(x, y).

From the assumption 6.2.4 together with the mean value theorem we obtain

m ≤ | log f (x) − log f (y)| = |g(v) − g(u)| ≤ 1∫
0

∑j aj(t)hj
dt.
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Since
1∫
0

∑j aj(t)hj
dt ≤

1∫
0

(∑
j
|aj(t)| ⋅ |hj|)dt ≤ m,

we conclude by the continuity of aj(t) that
∑
j
|aj(t)| = 1 and

∑j aj(t)hj
 = m∑

j
|aj(t)| for all t ∈ [0, 1].

The first formula means that in 6.2.3 wemust have equality for all z ∈ ⟨x, y⟩. As for the
second formula suppose first that∑j aj(t)hj ≥ 0 for some t ∈ [0, 1]. Then

∑
j
(|aj(t)|m − aj(t)hj) = 0 and, hence, |aj(t)|m = aj(t)hj for all j.

That means hj = m for aj(t) > 0 and hj = −m for aj(t) < 0. Equivalently, for λ = expm
we have that

xj = exp vj = expwj ⋅ exp hj = λ yj for aj(t) > 0

and, similarly, xj = λ −1yj for aj(t) < 0.
In the same manner,∑j aj(t)hj ≤ 0 for some t ∈ [0, 1] implies

xj = λ −1yj for aj(t) > 0 and xj = λ yj for aj(t) < 0.
Finally, for z ∈ ⟨x, y⟩ there exists t ∈ [0, 1] with z = z(t) and by definition of aj(t)

aj(t) > 0(< 0) iff 𝜕f𝜕xj (z) > 0(< 0) iff j ∈ J+(z)(J−(z)).
This proves the lemma.

Theorem 6.2.4. Let K = ℝn
+ and T a continuous selfmapping of K some iterate of which

maps K ∖ {0} into ∘
K. Assume T is a continuously differentiable selfmapping of

∘
K which

satisfies for all 1 ≤ i ≤ n, x ∈ ∘
K

n∑
j=1
xj
 𝜕Ti𝜕xj (x)

 ≤ Tix. (6.2.5)

Suppose further each orbit O(z), z ∈ ∘
K, satisfies the following conditions:

(a) There exists a partition J1 ∪ J2 = {1, . . . , n} (J1 or J2 may be empty) such that in case
of equality in (6.2.5) for i and x ∈ O(z) it holds that 𝜕Ti

𝜕xj
(x) > 0 for all j ∈ J1 and

𝜕Ti
𝜕xj
(x) < 0 for all j ∈ J2.

(b) In case of equality in (6.2.5) for i and z it holds that 𝜕Ti
𝜕xj
(u) ≥ 0 for all j ∈ J1 and

𝜕Ti
𝜕xj
(u) ≤ 0 for all j ∈ J2 for all u ∈ ∘

K with uj = rzj, j ∈ J1 and uj = s−1zj, j ∈ J2 for
some r > 0, s > 0.
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194 | 6 Limit set trichotomy

Then the following limit set trichotomy holds. Either
(i) for all x ∈ K ∖ {0}, O(x) is unbounded

or
(ii) for all x ∈ K, lim

n→∞
Tnx = 0

or
(iii) for each x ∈ K ∖ {0}, lim

n→∞
Tnx = x̄ is a fixed point of T with

x̄j = { c(x)x∗j , j ∈ I1
c(x)−1x∗j , j ∈ I2,

where x∗ ∈ ∘
K is some fixed point of T, c(x) > 0 a scalar and I1 ∪ I2 = {1, . . . , n} a

partition (belonging to x∗).

Proof. By Theorem 6.2.1 assumption (6.2.5) implies that T is non-expansive on ( ∘K, p).
The assumptions of Theorem 6.1.1 being satisfied, part B (i) yields (i) of the trichotomy
stated in Theorem 6.2.4. Since bounded orbits have compact closure, part B (ii)
yields (ii).

(1) Considering case (iii) we shall show first that condition 6.1.1 of Theorem 6.1.1
cannot hold. For this, suppose there exists y ∈ ω (x) ∩ ∘

K such that

p(Tk+1y, Tky) = c(y) > 0 for all k ≥ 0.
Then for each k there exists some i = i(k) ∈ {1, . . . , n} such that for f (z) = Tiz, z ∈ ∘

K we
have | log f (Tk+1y) − log f (Tky)| ≥ p(Tk+1y, Tky) > 0.
From Lemma 6.2.3, condition (6.2.4) being satisfied, we conclude that in (6.2.5) holds
equality for i = i(k) and yk = Tky. Applying the assumptions made in (a) on the orbits
to orbit O(y) and by Lemma 6.2.3 again there exists λk > 0 such that

yk+1j = λky
k
j for j ∈ J1 and yk+1j = λ −1k ykj for j ∈ J2.

For any two vectors u, v ∈ ∘
K and λ > 0 we shall write u = λ ∗ v if uj = λ vj for j ∈ J1

and uj = λ −1vj for j ∈ J2. In this notation we have that yk+1 = λk ∗ yk for all k and, by
iteration, yk = μk ∗ ywhere μk = ∏k−1

i=0 λi for k ≥ 1. Furthermore, since in 6.2.5 equality
holds for i = i(0) and y0 = T0y = y we may apply part (b) of the assumptions. For
0 < α ≤ β the mean value theorem yields

Ti(β ∗ y) − Ti(α ∗ y) =
1∫
0

( n∑
j=1

𝜕Ti𝜕xj (u(t))hj)dt
with h = β ∗ y − α ∗ y and u(t) = α ∗ y + th.
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We have that hj = (βj − αj)yj for j ∈ J1 and hj = (β −1
j − α−1j )yj for j ∈ J2 as well as

u(t)j = ryj for j ∈ J1 and u(t)j = syj for j ∈ J2 with r = tβ + (1 − t)α and s = tβ −1 +(1 − t)α−1. By part (b) of the assumptions on orbit O(y) we have for t ∈ [0, 1]
𝜕Ti𝜕xj (u(t)) ≥ 0 for j ∈ J1 and 𝜕Ti𝜕xj (u(t)) ≤ 0 for j ∈ J2,

and, hence,
n∑
j=1

𝜕Ti𝜕xj (u(t))hj = ∑j∈J1
𝜕Ti𝜕xj (u(t))(βj − αj)yj + ∑j∈J2

𝜕Ti𝜕xj (u(t))(β −1 − α−1)yj.
Since for every t each of the two terms on the right hand is non-negative, we conclude
that for i = i(0)

Ti(α ∗ y) ≤ Ti(β ∗ y) for α ≤ β .
Suppose now, we have for some k that μk ≤ μk+1. It follows that

yk+1i = Tiy
k = Ti(μk ∗ y) ≤ Ti(μk+1 ∗ y) = Tiy

k+1 = yk+2i

and, hence, μk+1 yi ≤ μk+2 yi, that is μk+1 ≤ μk+2. Similarly, μk ≥ μk+1 implies μk+1 ≥
μk+2. Thus, the sequence (μk)k is either increasing or decreasing. Since in case (iii)
all orbits are bounded lim

k→∞
μk = μ ≥ 0 exists. Since in case (iii) ω (x0) ∩ ∘

K ̸= 0 for
some x0 ∈ ∘

K we must have for some λ > 0 that λ −1Tnx0 ≤ Tny ≤ λTnx0 for n big

enough as well as lim
l→∞

Tnlx0 = u ∈ ∘
K. Therefore,λ −1u ≤ μy ≤ λ u which implies μ > 0.

Thus, we conclude that lim
k→∞

yk = μy holds with respect to p. Finally, from 0 < c(y) =
p(Tk+1y, Tky) for all k ≥ 0 we obtain 0 < c(y) = lim

k→∞
p(Tk+1y, Tky) = p(μy, μy) = 0 –

which is a contradiction.
(2) By step (1), in case (iii) we must have that for each x ∈ ∘

K either ω (x) is a sin-
gleton in

∘
K or ω (x) ∩ ∘

K = 0. From ω (x0) ∩ ∘
K ̸= 0 for some x0 ∈ ∘

K we conclude that
ω (x0) = {x∗} with x∗ ∈ ∘

K being a fixed point of T. For x ∈ ∘
K arbitrary λ −1Tnx0 ≤

Tnx ≤ λTnx0 for some λ > 0 and n big enough. Since lim
n→∞

Tnx0 = x∗ it follows that

ω (x) ⊆ [λ −1x∗, λ x∗] ⊆ ∘
K andω (x) is a singleton, too. Thus, for x ∈ K ∖ {0}, lim

n→∞
Tnx = x̄

and x̄ a fixed point of T in
∘
K. Suppose x̄ ̸= x∗. Then p(Tx̄, Tx∗) ≥ p(x̄, x∗) and there ex-

ists i such that for f = Ti we have | log f (x̄)− log f (x∗) |≥ p(x̄, x∗) > 0. From Lemma 6.2.3
it follows that in (6.2.5) holds equality for i and all x ∈ ⟨x̄, x∗⟩ and for some λ > 0

x̄j = λ x∗j for j ∈ J+(x∗) and x̄j = λ −1x∗j for j ∈ J−(x∗).
The orbit assumption for O(x∗) = {x∗} yields a partition I1 ∪ I2 = {1, . . . , n}, belonging
to x∗, such that 𝜕f

𝜕xj
(x∗) > 0 for all j ∈ I1 and 𝜕f

𝜕xj
(x∗) < 0 for all j ∈ I2, Therefore,

x̄j = λ x∗j for all j ∈ I1 and x̄j = λ −1x∗j for all j ∈ I2.
This proves the theorem.
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In view of the applications in the next two sections the following consequences of
Theorem 6.2.4 prove to be very useful.

Corollary 6.2.5. Let K = ℝn
+ and T a continuous selfmapping of K which is a continu-

ously differentiable selfmapping of
∘
K. For an iterate S = Tm assume it maps K ∖ {0} into

∘
K and satisfies for all 1 ≤ i ≤ n, x ∈ ∘

K
n∑
j=1
xj
 𝜕Si𝜕xj (x)

 ≤ Six. (6.2.6)

A. If for every z ∈ ∘
K there exists some k = k(z) such that in (6.2.6) strict inequality

holds for x = Skz and all 1 ≤ i ≤ n then strong limit set trichotomy applies to T:
Either
(i) for all x ∈ K ∖ {0}, O(x) is unbounded
or
(ii) for all x ∈ K, lim

n→∞
Tnx = 0

or
(iii) for all x ∈ K ∖ {0}, lim

n→∞
Tnx = x∗

where x∗ ∈ ∘
K is the unique fixed point of T in K ∖ {0}.

B. Suppose there exists a partition J1 ∪ J2 = {1, . . . , n} such that for all x ∈ ∘
K and all

1 ≤ i ≤ n 𝜕Si𝜕xj (x) > 0 for all j ∈ J1 and 𝜕Si𝜕xj (x) < 0 for all j ∈ J2.
Then a limit set trichotomy holds for T with (i) and (ii) as in A and where (iii) is
replaced by
(iii) for all x ∈ K ∖ {0} and all 0 ≤ i ≤ m − 1

lim
n→∞

Tmn+ix = x̄i where x̄ij = { ci(x)x∗j , j ∈ J1
ci(x)−1x∗j , j ∈ J2

with ci(x) > 0 and x∗ a fixed point of Tm in
∘
K. In particular, if J1 = 0 or J2 = 0 and T

is positively homogeneous then with a scalar c(x) > 0

lim
n→∞

Tnx = c(x)x∗ for all x ∈ K ∖ {0}
where x∗ is a fixed point of T in

∘
K, unique up to a positive scalar.

Proof. (1) Consider first the case S = T. Parts (i) and (ii) of the trichotomy follow as in
the proof of Theorem 6.2.4. For parts (iii) and (iii’), respectively, conclusions A and B
will be treated separately. For A we refer to arguments in the proof of Theorem 6.2.4.
As there in part (1) it follows from the assumptions in A that condition (6.1.1) of The-
orem 6.1.1 cannot apply. As in part (2) it follows for each x ∈ K ∖ {0} that lim

n→∞
Tnx is a
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fixed point of T in
∘
K. The assumptions applied to a fixed point yield its uniqueness.

Thus, the strong limit set trichotomy does hold.
For B, Theorem 6.2.4 yields (iii) form = 1.
(2) Suppose now S = Tm withm ≥ 2. For A, part (1) above for S instead of T yields

the strong limit set trichotomy for S. If an orbit is unbounded for S it is unbounded for
T, too. If lim

n→∞
Snx = 0 for all x ∈ K then

lim
n→∞

Tmn+ix = lim
n→∞

Sn(Tix) = 0 for all x ∈ K, all i ∈ ℕ,
and, hence, lim

n→∞
Tnx = 0. Considering (iii) we have lim

n→∞
Snx = x∗ for x ∈ K ∖ {0}, x∗

the unique fixed point of S. Since S(Tx∗) = T(Sx∗) = Tx∗ it follows that Tx∗ = x∗ and,
hence,

lim
n→∞

Tmn+ix = Ti ( lim
n→∞

Tmnx) = Tix∗ = x∗.
Thus, lim

n→∞
Tnx = x∗ for all x ∈ K ∖ {0}, x∗ the unique fixed point of T in K ∖ {0}.

(3) For S = Tm, m ≥ 2, and B it remains to show (iii). By part (1) above for S we
have lim

n→∞
Snx = x̄0 for x ∈ ∘

K where, with a scalar c0(x) > 0,

x̄0 = { c0(x)x∗j , j ∈ J1
c0(x)−1x∗j , j ∈ J2,

and x∗ is a fixed point of S. Since T( ∘K) ⊆ ∘
K it follows for 0 ≤ i ≤ m − 1 that

lim
n→∞

Sn(Tix) = x̄i where x̄i = Tix0.
Setting ci(x) = c0(Tix) this yields (iii).
Finally, suppose J2 = 0 and T to be positively homogeneous. In that case

lim
n→∞

Tmn+ix = Ti ( lim
n→∞

Snx) = Ti(c0(x)x∗) = c0(x)Tix∗.
Furthermore,

Tx∗ = lim
n→∞

Sn(Tx∗) = Tx∗0 = c0(Tx∗)x∗,
which implies x∗ = Tmx∗ = c0(Tx∗)mx∗. Therefore, c0(Tx∗) = 1 and, hence, Tx∗ = x∗.
Thus, we obtain for all i ∈ ℕ

lim
n→∞

Tmn+ix = c0(x)Tix∗ = c0(x)x∗.
This shows lim

n→∞
Tnx = c(x)x∗ with c(x) = c0(x) – in case of J2 = 0 – and c(x) = c0(x)−1

in case of J1 = 0.
For all the forms of limit set trichotomy considered, the existence of a fixed point in
∘
K implies that neither of the alternatives (i) and (ii) can hold and, hence, alternative
(iii) applies. In case of the strong limit set trichotomy, (iii) means that the assumed
fixed point must be globally attractive. The latter can be obtained also, by weaken-
ing the assumptions for strong limit set trichotomy to that of a non-expansive T, but
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198 | 6 Limit set trichotomy

assuming in addition that inequality (6.2.6) holds strictly for the fixed point. This is
a consequence of the local-global stability principle, Theorem 4.3.3, as the following
result demonstrates.

Theorem 6.2.6. Let K = ℝn
+ and T a selfmapping of

∘
K which is continuously differen-

tiable. Suppose for an iterate S = Tm it holds for all 1 ≤ i ≤ n, x ∈ ∘
K

n∑
j=1
xj
 𝜕Si𝜕xj (x)

 ≤ Six and
n∑
j=1
x∗j
 𝜕Si𝜕xj (x∗)

 < Six
∗ (6.2.7)

for a fixed point x∗ of S. Then x∗ is the unique fixed point of T in
∘
K and it is globally

attractive, that is lim
n→∞

Tnx = x∗ for all x ∈ ∘
K.

Proof. (1) It suffices to prove the theorem form = 1. If the theoremholds in this case its
application to S = Tm yields lim

n→∞
Tnmx = x∗ for all x ∈ ∘

K. Therefore, lim
n→∞

Tmn(Tix) = x∗

for all i ∈ ℕ, all x ∈ ∘
K, which implies lim

n→∞
Tnx = x∗ for all x ∈ ∘

K.
(2) Assume m = 1, S = T. By assumption 6.2.7 Theorem 6.2.1 implies that T is

a non-expansive selfmapping of the metric space ( ∘K, p), p the part metric. Since by
Proposition 3.4.12 on

∘
K the part topology coincides with the Euclidean topology the

space ( ∘K, p) is connected. To obtain the conclusion of the theorem from Corollary 4.3.6
it suffices to show that the fixed point x∗ of T is locally attractive in ( ∘K, p). From the
second part of assumption 6.2.7 we get that

n∑
j=1
zj
 𝜕Ti𝜕xj (z)

 < Tiz (∗)
holds for all 1 ≤ i ≤ n and all z in some Euclidean neighbourhood U of x∗. By the
coincidence of the two topologies we can assume that U = {z ∈ ∘

K | p(z, x∗) ≤ 𝜖} for
some 𝜖 > 0. Let for x, y ∈ U, x ̸= y,

⟨x, y⟩ = {z ∈ ∘
K | zj = xtj ⋅ y1−tj , t ∈ [0, 1], 1 ≤ j ≤ n}.

For z ∈ ⟨x, y⟩
log zj − log x∗j = t log xj + (1 − t) log yj − log x∗j

= t(log xj − log x∗j ) + (1 − t)(log yj − x∗j ),
and, hence, p(z.x∗) ≤ tp(x, x∗) + (1 − t)p(y, x∗).

Therefore, ⟨x, y⟩ ⊆ U and (∗) holds for all z ∈ ⟨x, y⟩. Lemma 6.2.3 applied to f = Ti
yields that | log Tix − log Tiy| < p(x, y). Therefore, p(Tx, Ty) < p(x, y) for x, y ∈ U, x ̸= y.
It follows for x ∈ U,

p(Tx, x∗) = p(Tx, Tx∗) ≤ p(x, x∗) ≤ 𝜖 and, hence, Tx ∈ U.
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6.3 Applications to non-linear difference equations | 199

Thus T is a contractive selfmapping of the metric space (U, p). Since U is compact in( ∘K, p), we obtain that lim
n→∞

Tnx = x∗ in ( ∘K, p) for all x ∈ U (cf. Remarks 4.1.5 (i)). That is,

x∗ is locally attractive in ( ∘K, p). By Proposition 3.4.12 again we finally arrive for x ∈ ∘
K

at lim
n→∞

Tnx = x∗ with respect to the Euclidean topology.

The following example taken from the study of insect populations illustrates how the
above theorem may be useful even in one dimension (cf. [14, 19]).

Example 6.2.7. For K = ℝ+ let f be a selfmapping of
∘
K given by f (x) = λ x(1 + x)−β

with parameters λ > 1, β > 0. f has the unique fixed point x∗ = λ
1
β − 1 in ∘

K. One has
that x|f (x)| ≤ f (x) for all x ∈ ∘

K, all λ > 1 and β ≤ 2. Also, for this range of parameters,|f (x∗)| < 1. Therefore, by the above theorem, x∗ is globally attractive. It is easily seen
that x∗ is globally attractive for all λ > 1 if and only if β ≤ 2. There are, however,
values of the parameters for which x∗ is locally but not globally attractive.

Indeed, for values of the parameters big enough the dynamics of this example are
very complicated (see [19]; see also [6] and Exercise 7).

6.3 Applications to non-linear difference equations and
cooperative systems of differential equations

Consider the difference equation

u(t + n) = f (u(t), u(t + 1), . . . , u(t + n − 1)) (6.3.1)

of order n ≥ 1 with u(t) ∈ ℝ+ for t ∈ ℕ, f : ℝn
+ → ℝ+ and with initial conditions

ū = (u(0), . . . , u(n − 1)) ∈ ℝn
+.

From results in the previous section we shall obtain the following limit set tri-
chotomy for difference equations:

For solutions u of (6.3.1) either
(i) for all 0 ≤ ū ̸= 0, u is unbounded,
or
(ii) for all 0 ≤ ū, lim

t→∞
u(t) = 0,

or
(iii) for all 0 ≤ ū ̸= 0, lim

t→∞
u(t) = c(ū)r∗ where c(ū) > 0 and r∗ is the unique positive

solution of f (r, . . . , r) = r.

As in earlier Sections 2.5, 5.4 to the difference equation we associate the selfmapping
T of ℝn

+ given by T(x1, . . . , xn) = (x2, . . . , xn, f (x).
To apply differentiability criteria from the previous section, we have to deal with

inequalities like ∑n
j=1 xj| 𝜕Ti𝜕xj

(x)| ≤ Tix for 1 ≤ i ≤ n. To this extent we introduce for

a selfmapping T of K = ℝn
+ which maps continuously differentiable

∘
K into itself the
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200 | 6 Limit set trichotomy

mapping δ (T), defined by
δ (T)(x) = Tx − |J(x)|x for x ∈ ∘

K,
where J(x) = JT(x) is the Jacobian of T and |J(x)| is the matrix of the absolute values
of J(x). The following lemma provides conditions under which δ (Tm)(x) ≥ 0 or > 0,
which will be very useful in dealing with difference equations as well as with differ-
ential equations.

Lemma 6.3.1. (i) For m ≥ 1 it holds

δ (Tm)(x) ≥ m−1∑
k=0

|J(Tm−1x)| ⋅ |J(Tm−2x)| ⋅ ⋅ ⋅ |J(Tm−kx)|δ (T)(Tm−k−1x). (6.3.2)

(ii) Suppose δ (T)(x) ≥ 0 for all x ∈ ∘
K and let m ≥ 1. Assume further, for y ∈ ∘

K there
exists some p = p(y) such that there exists from each i a chain to p in the following
sense: For aij(x) = 𝜕Ti

𝜕xj
(x) and certain indices i = i1, . . . , ik

ai1i2(Tm−1y) ̸= 0, ai2i3(Tm−2y) ̸= 0, . . . , aik ,p(Tm−ky) ̸= 0, δ (T)(Tm−k−1y)p > 0

(where for k = 0 the condition on the aij is empty).
Then δ (Tm)(y) > 0 for all y ∈ ∘

K.
(iii) If T is monotone and

0 < J(x) ≨ J(tx) for all x ∈ ∘
K, all 0 < t < 1,

then δ (T2)(x) > 0 for all x ∈ ∘
K.

Proof. (i) First, we prove

δ (T ∘ S)(x) ≥ δ (T)(Sx) + |JT(Sx)|δ (S)(x), (6.3.3)

where S is another selfmapping ofK,mapping
∘
K continuously differentiable into itself.

By definition, δ (T ∘ S)(x) = (T ∘ S)(x) − |JT∘S(x)|x.
Using the chain rule we obtain

δ (T ∘ S)(x) = (T ∘ S)(x) − |JT(Sx) ⋅ JS(x)|x≥ (T ∘ S)(x) − |JT(Sx)| ⋅ |JS(x)|x.
Expanding the right hand side as

(T ∘ S)(x) − |JT(Sx)| Sx + |JT(Sx)| Sx − |JT(Sx) | ⋅ |JS(x)| x
and collecting the terms

δ (T)(Sx) + |JT(Sx)| (Sx − |JS(x)| x)
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6.3 Applications to non-linear difference equations | 201

yields inequality (6.3.3). Now we prove inequality (6.3.2) by induction on m. The case
m = 1 is trivial. Suppose (6.3.2) holds for m. From inequality (6.3.3) we obtain for
S = Tm

δ (Tm+1)(x) ≥ δ (T)(Tmx) + |J(Tmx)| δ (Tm)(x), where J = JT ,
and by induction hypothesis for the right hand side

δ (T)(Tmx) + m−1∑
k=0
|J(Tmx)| |J(Tm−1x)| ⋅ ⋅ ⋅ |J(Tm−kx)|δ (T)(Tm−k−1x).

This expression is just the right hand side of inequality (6.3.2) withm replaced bym +
1. This proves inequality (6.3.2).

(ii) Let y, p = p(y), i be given.
From inequality (6.3.2) and δ (T)(⋅) ≥ 0, it follows

δ (Tm)(y)i ≥ |ai1i2(Tm−1y)| ⋅ |ai2i3(Tm−2x)| ⋅ ⋅ ⋅ |aik,p (Tm−ky)|δ (T)(Tm−k−1y)p,
and by the chain assumption δ (Tm)(y)i > 0. Since i was arbitrary this proves part (ii).

(iii) By the mean value theorem for x ∈ ∘
K given

Tix =
n∑
j=1
aij(tix)xj + Ti0 ≥ n∑

j=1
aij(tix)xj, where 0 < ti < 1.

For 1 > s > max{ti | 1 ≤ i ≤ n} by assumptions aij(tix) = aij( tis sx) ≥ aij(sx) and, hence,
δ (T)(x) = Tx − J(x)x ≥ J(sx)x − J(x)x = (J(sx) − J(x))x.

Since J(sx) ≩ J(x) there exists for x ∈ ∘
K a p = p(x) such that δ (T)(x)p > 0. Since

J(Tx) > 0, for any i we have that aip(Tx) > 0. Therefore, for m = 2 there exists a chain
from i to p and from part (ii) it follows δ (T2)(x) > 0.

With the help from Lemma 6.3.1 we obtain the following result.

Theorem 6.3.2. Let K = ℝn
+ and T a continuous selfmapping of K some iterate of which

maps K ∖ {0} into ∘
K. Assume T to be a continuously differentiable selfmapping of

∘
K and

n∑
j=1
xj
 𝜕Ti𝜕xj (x)

 ≤ Tix

for all 1 ≤ i ≤ n and all x ∈ ∘
K.

(i) Assume for each x ∈ ∘
K given there exists i = p(x) such that the inequality holds

strictly. Suppose further there is some m ≥ 1 such that for each x ∈ ∘
K and 1 ≤ i ≤ n

there exist indices i = i1, . . . , ik with𝜕Tir𝜕xir+1 (Tm−rx) ̸= 0, 1 ≤ r ≤ k, ik+1 = p(x).
Then strong limit set trichotomy holds for T.
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202 | 6 Limit set trichotomy

(ii) If T is monotone and for some iterate S of T it holds that

0 < JS(x) ≨ JS(tx) for all x ∈ ∘
K, all 0 < t < 1

then strong limit trichotomy holds for T.

Proof. (i) For x ∈ ∘
K by assumption δ (T)(x) = Tx − |JT(x)|x ≥ 0 and δ (T)(x)p > 0 for

p = p(x). The additional assumptions made imply there exists from each i a chain to p
which by Lemma 6.3.1 (i) implies for the iterate S = Tm that δ (S)(x) > 0 for all x ∈ ∘

K.
By Corollary 6.2.2 limit set trichotomy holds for T.

(ii) By Lemma 6.3.1 (ii), δ (S2)(x) > 0 for all x ∈ ∘
K. Again, Corollary 6.2.2 implies

limit set trichotomy for T.

A first consequence of Theorem 6.3.2 is the following result on difference equations.

Theorem 6.3.3. Let K = ℝn
+ and f : K → ℝ+, f (x) > 0 for x > 0.

(i) Assume f is monotone and subhomogeneous. If f is strongly monotone then for the
difference equation (6.3.1) limit set trichotmy holds and if f is strongly subhomoge-
neous then limit set trichotomy holds with c(ū) = 1 for all 0 ≤ ū ̸= 0.

(ii) If f is continuously differentiable on
∘
K, f (x) > 0 for x ≩ 0 and ∑n

j=1 xj| 𝜕f𝜕xj (x)| < f (x)
for all x ∈ ∘

K then for the difference equation (6.3.1) limit set trichotomy holds with
c(ū) = 1 for all 0 ≤ ū ̸= 0.

(iii) Assume f continuously differentiable on
∘
K and ∑n

j=1 xj
 𝜕f𝜕xj (x) ≤ f (x) for all x ∈ ∘

K

and ∑n
j=1
 𝜕f𝜕xj ( ̄r)| < 1 for ̄r = (r, . . . , r) where r > 0 with f ( ̄r) = r. Then lim

t→∞
u(t) = r for

all solutions u(⋅) of the difference equation (6.3.1) with 0 ≨ ū. r is the unique positive
solution of the equation f (s, . . . , s) = s.

Proof. Let Tx = (x2, . . . , xn, f (x)), x ∈ K.
(i) T maps

∘
K into itself, T is monotone and subhomogeneous. By iteration, Tnx =(f (x), f (Tx), . . . , f (Tn−1x)).

If f is strongly monotone, x ≨ y implies f (x) < f (y) and, hence, Tx ≨ Ty. This
in turn implies f (Tx) < f (Ty). By iteration it follows that Tnx < Tny. That is, Tn is
strongly monotone. In the same way, f strongly subhomogeneous implies the same
for Tn. Theorem 6.1.5 B implies limit set trichotomy, with c(x) = 1 in case f is strongly
subhomogeneous.

From the difference equation u(t + n) = f (u(t), . . . , u(t + n − 1)) it follows
T(u(t), . . . , (u(t + n − 1)) = (u(t + 1), . . . , u(t + n)). By iteration Ttū = (u(t), . . . , u(t +
n−1)). Thus, the limit set trichotomy for T implies the limit set richotomy for the differ-
ence equation (6.3.1). Thereby, a fixed point x∗ ∈ ∘

K of T becomes x∗ = (r∗, . . . , r∗), r∗ >
0, f (r∗, . . . , r∗) = r∗.
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6.3 Applications to non-linear difference equations | 203

(ii) T is continuous and Tn maps K ∖ {0} into ∘
K by step (i). Since f is continuously

differentiable on
∘
K, T is a continuously differentiable selfmapping of

∘
K. Because of

Tx = (x2, . . . , xn, f (x)) we have
𝜕Ti𝜕xj (x) = δi+1,j for 1 ≤ i ≤ n − 1 and 𝜕Tn𝜕xj (x) = 𝜕f𝜕xj (x).

Limit set trichotomy for the difference equation follows from Theorem6.3.2 (i). For
this take p(x) = n for all x ∈ ∘

K. Obviously, ∑n
j=1 xj| 𝜕Ti𝜕xj

(x)| = xi+1 = Tix if 1 ≤ i ≤ n − 1,
and, by assumption

n∑
j=1
xj
 𝜕Tn𝜕xj (x)

 =
n∑
j=1
xj
 𝜕f𝜕xj (x)

 < f (x) = Tnx.
Letm = n and choose for i ̸= n as indices i, i + 1, i + 2, . . . , n − 1. For i = n choose just
i = i1 = n. For this choice the required assumptions are satisfied.

(iii) This part follows from Theorem 6.2.6. T is a continuously differentiable self-
mapping of

∘
K. x∗ = ̄r = (r, . . . , r) is a fixed point of Tx = (x2, . . . , xn, f (x)). Assumption∑n

j=1
 𝜕f𝜕xj ( ̄r) < 1 implies

n∑
j=1
x∗j
 𝜕f𝜕xj (x∗)

 < r = f (x∗).
As in the proof of part (i) it follows ∑n j = 1xj

 𝜕Ti𝜕xj
(x) ≤ Tix for all 1 ≤ i ≤ n, all x ∈ ∘

K.

That is, δ (T)(x) ≥ 0, and, by Lemma 6.3.1 (i), δ (S)(x) ≥ 0, for S = Tn, all x ∈ ∘
K.

Furthermore, ∑n
j=1 x

∗
j
 𝜕f𝜕xj (x∗) < f (x∗) by putting y = x∗ in Lemma 6.3.1 (ii) implies

δ (S)(x∗) > 0. From Theorem 6.2.6 it follows that lim
t→∞

Ttx = x∗ for all x ∈ ∘
K. Since

Ttū = (u(t), . . . , u(t + n − 1)) for a solution u(⋅) and f (ū) > 0 for ū ≩ 0 this proves
part (iii).

Examples 6.3.4. of difference equation (6.3.1)

u(t + n) = f (u(t), u(t + 1), . . . , u(t + n − 1)), for n ≥ 2.
(i) Let f (x1, x2, . . . , xn) = ∑n

j=1 x
pj
j , pj ∈ [0, 1], 1 ≤ j ≤ n. For n = 2, p1 = p2 = 1 the

difference equations generates for ū = (1, 1) the famous Fibonacci numbers whence
one may consider the above setting a generalized non-linear Fibonacci equation.
Obviously, f is monotone (increasing) and subhomogeneous. If a = min{pj | 1 ≤ j ≤
n} > 0 then f is strongly monotone and by Theorem 6.3.3 (i) limit set trichotomy holds
for f . If, otherwise, a = 0 then f is strongly subhomogeneous and by Theorem 6.3.3 (i)
again, limit set trichotomy holds (with c(ū) = 1). It is interesting to know which of the
three alternatives actually applies. Since f (1, 1, . . . , 1) ≥ 1 case (ii) is impossible. It is
easy to verify that the equation ∑n

j=1 r
pj = r has a solution if and only if b = max{pj |
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204 | 6 Limit set trichotomy

1 ≤ j ≤ n} < 1. This shows, case (iii) holds if and only if b < 1. Consequently, case (i)
holds if and only if b = 1 (as for the Fibonacci numbers).

(ii) Consider the following “multiplicative version” of the generalized Fibonacci
equation, that is,

f (x1, x2, . . . , xn) = n∏
j=1

xpjj , pj ∈ [0, 1], 1 ≤ j ≤ n.
(For ∑n

j=1 pj = 1 this is the so called Cobb–Douglas production function employed in
economics.)

Obviously, f (x) > 0 for x > 0 and the general assumptions of Theorem 6.3.3 are
satisfied. Because of 𝜕f𝜕xj (x) = pjx

pj−1
j ∏

i ̸=j
xpii ,

one has for∑n
j=1 pj ≤ 1 that

n∑
j=1
xj
 𝜕f𝜕xj (x)

 = (
n∑
j=1
pj)f (x) ≤ f (x).

Assume ∑n
j=1 pj < 1. Part (i) of Theorem 6.3.3 is not applicable because on ℝn

+ f is
neither strictlymonotone nor strictly subhomogeneous. Part (ii), too, is not applicable
because f (x) = 0 is possible for x ≩ 0. Part (iii), however, is applicable because for
r = 1, f ( ̄r) = ̄r and

n∑
j=1

 𝜕f𝜕xj ( ̄r)
 =

n∑
j=1
pj < 1.

Thus, by Theorem 6.3.3, lim
t→∞

u(t) = 1 for all solutions of the difference equation
(6.3.1) with ū ≩ 0. In case of ∑n

j=1 pj = 1, however, none of the three parts of The-
orem 6.3.3 does apply. Indeed, limit set trichotomy does not hold in this case since
for ū = (1, . . . , 1) the solution u is constant 1, excluding cases (i) and (ii), and for
ū = (1, 0, . . . , 0) the solution u is constant 0 which excludes case (iii). On the other
hand, one verifies, nevertheless, by direct calculation that lim

t→∞
u(t) = 1 holds true for

ū > 0. Later on we shall examine the reasons for this phenomenon. (See the dynamics
of means in Chapter 8.)

A further application of our results on limit set trichotomy is to the theory of coop-
erative systems of differential equations as developed by M. Hirsch and H. Smith [6,
7, 9, 23, 24]. This beautiful theory has many applications, in particular to biology. We
will improve a main result in this area and illustrate it by the example of biochemical
control circuits.

Consider a dynamical system in continuous time given by differential equations

x(t) = F(t, x(t)), x(t) ∈ ℝn
+, t ∈ ℝ, (6.3.4)

where F : ℝ × ℝn
+ → ℝn is continuous and x → F(t, x) continuously differentiable.
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6.3 Applications to non-linear difference equations | 205

(As always, for x, y ∈ ℝn we write x ≤ y if xi ≤ yi for all i, x ≨ y if x ≤ y but x ̸= y
and x < y if xi < yi for all i.)

That (6.3.4) is a dynamical system means in particular that for each x ≥ 0 there
exists a unique solution x(t) = ϕ (t, x) with x(0) = ϕ (t, 0) = x. Furthermore, the map-
ping on int ℝn

+ given for t fixed by x → ϕ (t, x), as well as its inverse, is continuously
differentiable. (See [4, 5, 8] where conditions are specified for the property to hold.)

Definition 6.3.5. The system (6.3.3) is called cooperative if for 1 ≤ i, j ≤ n

𝜕Fi𝜕xj (t, x) ≥ 0 for i ̸= j, all t ≥ 0, all x > 0. (6.3.5)

Equivalently, if the Jacobian JF(t, x) is a Metzler matrix for all t ≥ 0, x > 0. Thereby,
a square matrix is a Metzler matrix if all non-diagonal entries are nonnegative. A
Metzler matrix is irreducible if for some c > 0 the matrix cI + M is irreducible as a
nonnegative matrix (cf. Section 2.4).

In what follows we shall derive a limit set trichotomy for the solutions ϕ of sys-
tem (6.3.3) from Theorem 6.3.2 part (ii) by setting Tx = ϕ (τ , x) for some fixed τ . For
this we have to translate assumptions on F into properties of T. For the required
translation the following lemma will be crucial.

Lemma 6.3.6. (i) Suppose F as in system (6.3.3) satisfies the Kamke condition, that
is, for each 1 ≤ i ≤ n, each t ≥ 0, 0 ≤ x and 0 = xi implies 0 ≤ Fi(t, x).
Then for each solution x(⋅) of system (6.3.3) x(0) ≥ 0 implies x(t) ≥ 0 for all t ≥ 0.

(ii) Let for a solution ϕ (⋅, x), x > 0, of system (6.3.3) and 1 ≤ i, j ≤ n, t ≥ 0

aij(t, x) = 𝜕Fi𝜕xj (t,ϕ (t, x)) and uij(t, x) = 𝜕ϕi𝜕xj (t, x). (6.3.6)

If the matrix A(t, x) of the aij(t, x) is a Metzler matrix for all t ≥ 0 then U(t, x) ≥ 0 for
all t ≥ 0, U(t, x) being the matrix of the uij(t, x).

(iii) Suppose A(t, x) is a Metzler matrix for x > 0, t > 0 such that for 1 ≤ i ̸= j ≤ n there
exist i1, . . . , ir, pairwise different and different from i, j with

ai,i1(t, x) > 0, ai1 ,i2(t, x) > 0, . . . , air ,j(t, x) > 0.
Then uij(t, x) > 0 and uh,h(t, x) > 0 for all h.

Proof. (i) Let x(t) = F(t, x(t)), x(0) ≥ 0. Consider for n ∈ ℕ the system x(t, n) =
F(t, x(t, n)) + e(n), x(0, n) = x(0) + e(n), where the vector e(n) has all components
equal to 1

n . We shall show that x(t, n) > 0 for all t ≥ 0. If this does not hold then there
exist i and s > 0 such that x(t, n) > 0 for 0 ≤ t < s by continuity but x(s, n)i = 0.
Therefore, x(s, n)i ≤ 0 and 0 ≥ x(s, n)i = Fi(s, x(s, n)) + 1

n . Since x(s, n) ≥ 0 by
continuity and xi(s, n) = 0 it follows from the Kamke condition that Fi(s, x(s, n)) ≥ 0.
This implies 0 ≥ 1

n – a contradiction. Thus, we must have x(t, n) > 0 for all n ∈ ℕ,
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206 | 6 Limit set trichotomy

all t ≥ 0. For n → ∞, x(0, n) approaches x(0) and x(t, n) approaches x(t). This shows
x(t) ≥ 0 for all t ≥ 0.

(ii) By the chain rule we obtain from (6.3.3) for 1 ≤ i, j ≤ n

uij(t, x) = n∑
k=1

𝜕Fi𝜕xk (t,ϕ (t, x))𝜕ϕk𝜕xj (t, x),
and, hence,

uij(t, x) = n∑
k=1

aik(t, x)ukj(t, x). (6.3.7)

For j and x given let vi(t) = uij(t, x) for all i. Equation (6.3.7) gives for the vector v(t)
v(t) = G(t, v(t)) with G(t, v) = A(t, x)v, t ≥ 0.

If v ≥ 0 with vi = 0 then by assumptio- A(t, x), Gi(t, v) = aii(t, x)vi + ∑k ̸=i aik(t, x)vk ≥ 0.
Thus, G satisfies the Kamke condition and (ii) folllows from (i) because of vi(0) =

δij ≥ 0.
(iii) Fix x > 0 and t > 0 and let A = A(t, x),U = U(t, x). First we show for any h, k, l

with k ̸= l that
ukh = 0 and akl > 0 imply ulh = 0 (∗)

From (ii) we have for U(s) = U(s, x) that U(s) ≥ 0 for all s ≥ 0. Equation (6.3.7)
therefore implies uph(s) ≥ app(s)uph(s) for all p, h, s. By integration we obtain for 0 ≤
s < t
uph(t) ≥ uph exp(∫ts app(r)dr). Since uhh(0) = 1 it follows that uhh > 0 for all h. Further-
more, ukh(t) = 0 implies ukh(s) = 0 for 0 ≤ s ≤ t and, hence, ukh(s) = 0. From equation
(6.3.7) it follows that∑n

k=1 akl(s)ulh(s) = ukh(s) = 0 for 0 ≤ s ≤ t. Thus
ukh = 0 and akl > 0 for k ̸= l implies ulh = 0, which proves (∗).

Next, we show for i ̸= j as in (iii) and any h that

uih = 0 implies ujh = 0 (∗∗)
Together with ujj > 0 this shows uij > 0, the conclusion wanted in (iii). To show (∗∗)
let uih = 0. By assumption there exists i1 ̸= i, j such that ai,i1 > 0. Property (∗) for
k = i, l = i1 yields ui1 ,h = 0. This together with ai1 ,i2 > 0 implies in the same way that
ui2 ,h = 0. By iteration we arrive at uir ,h = 0 and air ,j > 0. By (∗) again this gives ujh = 0.
This proves (∗∗) and, hence, part (iii) of the lemma.

With the help of this lemma we will obtain the following limit set trichotomy for the
solutions of a cooperative system of differential equations.

Theorem 6.3.7. Assume the system (6.3.3) satisfies the following conditions where
JF(t, x) denotes the Jacobian of F(t, ⋅) at (t, x) for t ≥ 0, x > 0.
(a) F is periodic with period τ > 0, that is F(t + τ , x) = F(t, x) for all t ≥ 0, x ≥ 0.
(b) F satisfies the Kamke condition.
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6.3 Applications to non-linear difference equations | 207

(c) JF(t, x) is an irreducible Metzler matrix for each t > 0, x > 0.
(d) If 0 < x < y and t > 0 then JF(t, y) ≨ JF(t, x).

Then the following limit set trichotomy holds for the solutions ϕ (t, x), x ≩ 0.
Either
– all solutions are unbounded,
or
– all solutions converge to 0,
or
– all solutions converge to x∗ > 0. For x = 0 the solution ϕ (⋅, 0) is either identically 0

or it converges to x∗, too.

Proof. (i) Let ϕ (t, x) a solution with ϕ (0, x) = x ≥ 0. From Lemma 6.3.6 (i) we have
that ϕ (t, x) ≥ 0 for all t. For 0 ≤ x < y by the mean value theorem for t > 0, 1 ≤ i ≤ n,

ϕi(t, y) − ϕi(t, x) = [U(t, z)(y − x)]i, z = x + ⊖(y − x),
for some 0 < ⊖ < 1. Since z > 0, assumption (c) and Lemma 6.3.6 (iii) imply that
U(t, z) > 0. Therefore, 0 ≤ ϕ (t, x) < ϕ (t, y). In particular, ϕ (t, y) > 0 for y > 0 and
0 ≤ ϕ (t, x) ≤ ϕ (t, y) for 0 ≤ x ≤ y by continuity.

Now define for a solution ϕ (t, x), x ≥ 0, Tx = ϕ (τ , x). By the above, T is a continu-
ous selfmapping ofℝn

+ which is monotone and maps int ℝn
+ into itself. We will obtain

the limit set trichotomy wanted from Theorem 6.3.2 (ii) for S = T.
(ii) Next we show 0 < JT(y) ≨ JT(x) for 0 < x < y. Obviously, 𝜕Ti𝜕xj

(x) = 𝜕ϕi
𝜕xj
(τ , x) and

T is a continuously differentiable selfmapping of int ℝn
+. From assumption (c) and

Lemma 6.3.6 (iii) it follows that 𝜕Ti
𝜕xj
(y) = 𝜕ϕi

𝜕xj
(τ , y) = uij(τ , y) > 0 and, hence, JT(y) > 0.

Consider Q(t) = U(t, x) − U(t, y). The chain rule gives
Q(t) = A(t, x)U(t, x) − A(t, y)U(t, y)

= A(t, x)(U(t, x) − U(t, y)) + (A(t, x) − A(t, y))U(t, y).
With B(t, x, y) = (A(t, x) − A(t, y))U(t, y) we have that

Q(t) = A(t, x)Q(t) + B(t, x, y). (∗)
Since Q(0) = U(0, y) − U(0, x) = I − I = 0, the solution of the system (∗) is given by

Q(t) = t∫
0

X(t, s)B(s, x, y)ds, (∗∗)
where X(t, s), t ≥ s is the fundamental solution of the homogeneous system to (∗).
Since the latter coincides with equation (6.3.7) we have that

X(t, s) = U(t, x)U(s, x)−1 = U(t − s,ϕ (s, x)).
By Lemma 6.3.6 (iii) U(r, z) and, hence, X(t, s) is strictly positive. From (i) we have

for u = ϕ (t, x) and v = ϕ (t, y) that u < v and, by assumption (d), JF(t, v) ≨ JF(t, u).
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From JF(t, u) = A(t, x), JF(t, v) = A(t, y)we conclude from the definition of B(t, x, y) that
B(t, x, y) ≩ 0. From equation (∗∗) we obtain Q(t) ≩ 0 for all t > 0. Finally from the
definition of Q(t) it follows that JT(x) − JT(y) = U(τ , x) − U(τ , y) = Q(τ ) ≩ 0. This
proves (ii).

(iii) To apply Theorem 6.3.2 (ii) it remains to show that ∑n
j=1 xj

 𝜕Ti𝜕xj
(x) ≤ Tix for

x > 0, all i and that Ty > 0 for y ≩ 0. By the mean value theorem and step (ii),

Tix =
n∑
j=1
xj
𝜕Ti𝜕xj (⊖x) ≥

n∑
j=1
xj
𝜕Ti𝜕xj (x) for x > 0,

which together with JT(x) ≥ 0 yields the first required condition. Furthermore, to y ≩ 0
there exists z > 0 with y ≤ z. For 0 < 𝜖 < 1 arbitrary and x = y + 𝜖z it holds 0 < x < 2z.
Therefore, using step (ii)

Tix ≥ n∑
j=1
xj
𝜕Ti𝜕xj (x) ≥

n∑
j=1
xj
𝜕Ti𝜕xj (2z) ≥

n∑
j=1
yj
𝜕Ti𝜕xj (2z).

Letting 𝜖 → 0 this yields, because of JT(2z) > 0, Tiy ≥ ∑n
j=1 yj

𝜕Ti
𝜕xj
(2z) > 0. This proves

Ty > 0.
(iv) By (i) to (iii) all the assumptions of Theorem 6.3.2 (ii) are satisfied and the

strong limit set trichotomy applies to T. Since Tx = ϕ (τ , x) we have for the iterates
Tkx = ϕ (kτ , x). If t ≥ 0, t = kτ + s, 0 ≤ s < τ , then

ϕ (t, x) = ϕ (kτ + s, x) = ϕ (kτ ,ϕ (s, x)) = Tkϕ (s, x).
If (Tkx)k is unbounded for all x ≩ 0 then the solutionϕ (t, x) is unbounded for all x ≩ 0.
If lim

k→∞
Tkx = 0 for all x ≥ 0 then lim

t→∞
ϕ (t, x) = 0 for all x ≥ 0. Finally, consider the case

lim
k→∞

Tkx = x∗ for all x ≩ 0 where x∗ > 0 is the unique non-zero fixed point of T. For
x ≩ 0, s ≥ 0, k ≥ 1

ϕ (kτ + s, x) = ϕ ((k − 1)τ ,ϕ (s,ϕ (τ , x))) = Tk−1ϕ (s,ϕ (τ , x)).
From (iii) ϕ (τ , x) = Tx > 0 and by (i), ϕ (s,ϕ (τ , x)) > 0. Therefore, lim

k→∞
ϕ (kτ +

s, x) = x∗ and for any neighborhood U of x∗ there exists k(s) ≥ 1 such that ϕ (kτ +
s, x) ∈ U for k ≥ k(s). By continuity of ϕ (⋅, x) there exists a neighborhood V of s such
that ϕ (kτ + s, x) ∈ U for s ∈ V and k ≥ k(s). Since [0, τ ] is compact there exists K
such that ϕ (kτ + s, x) ∈ U for all k ≥ K, all 0 ≤ s ≤ τ . From this we conclude that
lim
t→∞

ϕ (t, x) = x∗ for x ≩ 0. Finally, let x = 0 and suppose ϕ (s, 0) ≩ 0 for some s > 0.
Thenϕ (t, 0) = ϕ (t−s,ϕ (s, 0)) for t ≥ s and, hence, lim

t→∞
ϕ (t, 0) = lim

t→∞
ϕ (t−s,ϕ (s, 0)) =

x∗. This completes the limit set trichotomy for the solutions ϕ (⋅, x).
In terms of solutions wemay view the limit set trichotomy of Theorem 6.3.7 as follows.
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Corollary 6.3.8. Assume in addition to conditions (a)–(d) of Theorem 6.3.7 that there
exists at least one non-zero bounded solution. Then there exists a unique constant and
global attractive solution. This solution is either the zero solution or, if F(⋅, 0) is not iden-
tically 0, a strict positive solution.

Proof. By the additional assumption only cases (ii) and (iii) in the limit set trichotomy
of Theorem 6.3.7 are possible. In case (ii) we have lim

t→∞
ϕ (t, x) = 0 for all x ≥ 0. By

continuity, for any s ≥ 0

ϕ (s, 0) = ϕ (0, lim
t→∞

ϕ (t, x)) = lim
t→∞

ϕ (s,ϕ (t, x)) = lim
t→∞

ϕ (s + t, x) = 0.
That is, ϕ (⋅, 0) is the zero solution and, since lim

t→∞
(ϕ (t, x) − ϕ (t, 0))= lim

t→∞
ϕ (t, x) = 0,

it is globally (for x ≥ 0) attractive. There is, of course, in case (ii) no other constant
solution globally attractive. Furthermore, since ϕ (⋅, 0) is a solution of x(t) = F(t, x(t))
we must have that F(t, 0) = 0 for all t ≥ 0. For case (iii) we have lim

t→∞
ϕ (t, x) = x∗ for all

x ≩ 0. By continuity, as above,ϕ (s, x∗) = x∗ for all s ≥ 0, that is the solution ϕ (⋅, x∗) is
constant to x∗ > 0. It is globally attractive (for x ≩ 0) since lim

t→∞
(ϕ (t, x) −ϕ (t, x∗)) = 0.

No other constant solution is, in case (iii), globally attractive. Finally, if F(⋅, 0) is not
identically zero, case (ii) is not possible by the above. Thus, we must have case (iii)
and the solution under consideration must be strictly positive.

The last Theorem as well as its Corollary will be illustrated by the following example
from biology.

Example 6.3.9 (Biochemical control circuit (cf. [7, 23, 24]). A biochemical control cir-
cuit (or a single loop positive feedback system), whichmodels for example the control
of protein synthesis in the cell (cf. [24, p. 58]), is given by the system of equations

x1(t) = f (t, xn(t)) − α1(t)x1(t)
xi (t) = xi−1(t) − αi(t)xi(t) for 2 ≤ i ≤ n. (6.3.8)

where f : ℝ×ℝ+ → ℝ+ and f (t, ⋅) is continuously differentiable on intℝn
+. Assume the

following concavity condition for f
0 < v < w implies 0 < 𝜕f

𝜕u (t,w) < 𝜕f
𝜕u (t, v) for t ≥ 0. Furthermore, we assume for some

τ > 0 that αi(⋅) and f (⋅, u) are τ -periodic in t. We write system (6.3.8) as

x(t) = F(t, (x)) with
F1(t, x) = f (t, xn) − α1(t)x1, Fi(t, x) = xi−1 − αi(t)xi, 2 ≤ i ≤ n. (6.3.9)
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210 | 6 Limit set trichotomy

This system, obviously, is of the type 6.3.3 considered earlier, it is τ -periodic and it
satisfies the Kamke condition. Furthermore, for x > 0 the Jacobian of F(t, ⋅) is

JF(t, x) =
[[[[[[[[[

−α1(t) 0 ⋅ ⋅ ⋅ 0 𝜕f
𝜕u (t, xn)

1 −α2(t) 0 ⋅ ⋅ ⋅ 0
0 1 −α3(t) ⋅ ⋅ ⋅ 0
...

...
0 ⋅ ⋅ ⋅ 01 −αn(t)

]]]]]]]]]
.

Therefore, JF(t, x) is a Metzler matrix which is irreducible for t > 0, x > 0. The concav-
ity condition implies JF(t, y) ≨ JF(t, x) for 0 < x < y. Thus, all assumptions of Theo-
rem 6.3.7 are satisfied and the limit set trichotomy obtained holds for system (6.3.8).
According to Corollary 6.3.8, if there exists a bounded orbit and F(t, 0) ̸= 0 for some t
then there exists a unique strictly positive solution which is constant and attracts all
solutions not beginning in 0. (This may be, however, also the case if F(t, 0) = 0 for all
t. For a particular example of a biochemical control circuit see Exercise 12.)

We shall conclude with some further remarks concerning the literature.

Remarks 6.3.10. (i) Theorem 6.3.2, part (ii) generalizes results in [15, Theorem 2] and
[25, Theorem 2.1]. (See Exercise 8.) The condition JS(x) ≨ JS(tx) in part (ii) is a strong
concavity condition which, however, is weaker than the condition JS(y) ≨ JS(x) for
0 < x < y in [23] which in turn is weaker than a similar condition in [6] (see [23,
p. 1038]).

(ii) With a different proof, Theorem 6.3.3 (ii) was obtained in [14, Theorem 2(ii)].
Example 6.3.4 (ii) can be found there, too [14, Example 1].

(iii) More on the Kamke condition (Lemma 6.3.6), sometimes also called Müller–
Kamke condition, can be found in [4], [9], [24]. Part (iii) of Lemma 6.3.6 refines results
in [7, Theorem1.1] and [24, Theorem1.1], respectively,where it is proven thatU(t, x) > 0
for A(t, x) irreducible.

(iv) Though not in terms of a limit set trichotomy Theorem 6.3.7 can be found es-
sentially in [23, Theorem 3.1]. Example 6.3.9 can be found there, too [23, p. 1049].

(v) The theory of monotone dynamical systems developed in [6, 7, 9, 23, 24] is
about semiflows on a partially ordered metric space. When applied to selfmappings
of a convex cone this theory requires the selfmapping to bemonotone. This is different
from positive dynamical systems as treated in this book. For linear selfmappings, of
course, positivity is equivalent to monotonicity, for non-linear selfmappings of a con-
vex cone, however, this need not necessarily be the case. As remarked already, cone
mappings (or mappings non-expansive for the part metric) as considered for limit set
trichotomy need not be monotone (see Remark 6.1.4).
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Exercises

1. For Theorem 6.1.1 A find examples which show that each of the three cases of the
weak limit set trichotomy is possible.

2. Let T be a selfmapping of a cone K which satisfies the general assumptions of
Theorem 6.1.1 and which maps K ∖ {0} into itself. Show that the (strong) limit set
trichotomy holds for T if it holds for an iterate of T.

3. Find an example of a concave selfmapping T of ℝn
+ such that the strong limit set

trichotomy holds for T but does not follow from the trichotomy for the dominant
eigenvalue (in the sense of Theorem 2.3.1 (i)).

4. Show for the selfmapping of ℝ+ given by Tx = x + 1
1+x .

(a) T is neither monotone nor antimonotone nor subhomogeneous.
(b) T is non-expansive for the part metric.

5. Let K be a closed convex cone in a Banach space (E, ‖ ⋅ ‖) which is normal with
non-empty interior

∘
K. Let T be a selfmapping of

∘
K which is compact for ‖ ⋅ ‖, non-

expansive for p and monotone (for K). Suppose T has a fixed point x∗ ∈ ∘
K such

that
αx∗ ≨ T(αx∗) and T(α−1x∗) ≨ α−1x∗

for all 0 < α < 1 and strict inequalities (< for ∘
K) if α0 ≤ α < 1 for some 0 < α0.

Obtain from Theorem 6.1.10 that lim
n→∞

Tnx = x∗ for all x ∈ ∘
K. (Cf. [10] where the

above conclusion is obtained for a monotone and subhomogeneous selfmapping
T of

∘
K for K = ℝn

+ and a fixed point x
∗ ∈ ∘

K of T which satisfies

αδ x∗ ≤ T(αx) and T(α−1x∗) ≤ α−δ x∗

for some 0 < δ < 1 and all 0 < α < 1.)

6. Prove the following geometric interpretation of
n∑
j=1
xj
 𝜕Ti𝜕xj (x)

 ≤ Tix, 1 ≤ i ≤ n, x ∈ ∘
K

whereT is a selfmapping ofK = ℝn
+ and a continuously differentiable selfmapping

of
∘
K.

If AT(x) = (x, Tx) + {(u, JT(x)u) | u ∈ K} is the (positive) affine tangent space at
P(x) = (x, Tx) then

AT(x) ⊆ P(x) + C(x)
where

C(x) = {(u, v) ∈ K × ℝn max
1≤i≤n

|vi| ≤ c
n∑
i=1
ui}

is a polyhedral convex cone with c = max
1≤i,j≤n

Tix
xj
.
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7. Let f be a selfmapping of ℝ+ given by f (x) = λ x(1 + x)−β with λ > 1, β > 0.
(a) Prove the statements made in Example 6.2.7.
(b) Show that the contraction constant c(f ) (see Theorem 6.2.1) is given by c(f ) =

max{|1 − β |, 1}.
(c) Find for the unique fixed point x∗ = λ

1
β − 1 a parameter value λ0 > 0 such

that x∗ is globally attractive for all 1 < λ < λ0 and all β > 0.
(d) Find values for parameters λ and β for which x∗ is locally but not globally

attractive.

8. Consider the following population models u(t + 1) = f (u(t)), u(0) ∈ ℝ+, f : ℝ+ →ℝ+:
(i) The generalized Pielou equation with

f (x) = λ x(1 + ax)−b + cx + d with λ > 0, a > 0, b > 0; c, d ≥ 0.
(ii) The bobwhite quail population with

f (x) = λ x(1 + xk)−1 + cx + d with λ , k > 0 and c, d ≥ 0.
(a) Show that the limit set trichotomy holds for i) if b ≤ max{2, cλ + 1}.
(b) Show that limit set trichotomy holds for ii) if k ≤ 2 + 3 c

λ .
(c) Find for both models parameter values for the three cases of the limit set tri-

chotomy to hold.

9. Deduce the following result from Theorem 6.3.2 (ii) [15, Theorem 2].
Let K = ℝn

+ and T a continuous selfmapping of K which is a continuously differ-
entiable selfmapping of

∘
K satisfying the following assumptions

(a) 0 < x ≤ y implies 0 ≤ JT(y) ≤ JT(x),
(b) for some iterate S of T it holds that

0 < JS(x) ≨ JS(tx) for all x ∈ ∘
K, all 0 < t < 1.

Then T has strong limit set trichotomy.

10. Findanexample of anon-constantmappingTwhich satisfies the general assump-
tions of Theorem 6.3.2 and to which part (i) applies but not part (ii).

11. Find an example of a concave mapping f : ℝ+ → ℝ+, f (x) > 0, f not constant to
which part (iii) of Theorem 6.3.3 applies but not part (ii).

12. Prove the following superposition principle for difference equations [12, p. 333].
Let, for K = ℝn

+, f : K → ℝ+, f (x) > 0 for x ≩ 0
and f = ∑m

i=1 f
i where for each 1 ≤ i ≤ m the mapping f i : K → ℝ+ is continuously

differentiable on
∘
K with

n∑
j=1
xj
 𝜕f

i

𝜕xj (x)
 ≤ f i(x). (∗)

Then for the difference equation of order n defined by f (equation (6.3.1)) the limit
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set trichotomy does hold provided that for each x ∈ ∘
K one of the two following

conditions is met:
(i) there exists an index k = k(x) for which strict inquality holds in (∗) for i = k,
or
(ii) there exist indices h, k, l (depending possibly on x) such that

𝜕f h𝜕xl (x) ⋅ 𝜕f
k

𝜕xl (x) < 0.
13. Consider the following biochemical control circuit with parameter α1, α2 ≥ 0

x1(t) = √x2(t) − α1x1(t)
x2(t) = x1(t) − α2x2(t).

(a) Prove that the assumptions of Theorem 6.3.7 are satisfied (for any τ given).
(b) Show that each of the three cases of the limit set trichotomy in Theorem 6.3.7

can occur for appropriate values of the parameters α1, α2.
(c) Show that the zero solution as well as a constant strictly positive solution oc-

curs as the unique constant globally attractive solution for certain values of
the parameter α1, α2. Illustrate by computer simulations the behavior of the
solutions for such values of the parameters.

14. (a) Obtain from the weak limit set trichotomy in case of linear operators the fol-
lowing result [18, Theorem 3].
Let T be a linear and continuous operator on the Banach space (E, ‖ ⋅ ‖)which
leaves a closed convex and normal cone K in E as well as its interior

∘
K invari-

ant. Suppose
∘
K ̸= 0, T has a bounded orbit for some x ∈ ∘

K and T satisfies the
following positivity condition:

for each x ∈ K ∖ {0} there exists n(x) ∈ ℕ such that Tn(x)x ∈ ∘
K. (∗)

Then all orbits of T are bounded and either lim
n→∞

Tnx = 0 for all x ∈ K with
ω (x) ̸= 0
or

lim
n→∞

Tnx = c(x)x∗ for all x ∈ K ∖ {0} with ω (x) ̸= 0,
where x∗ ∈ ∘

K is a fixed point of T and c(x) > 0.

(b) (Cf. [18, Example 2].) Let E be the vector space of all converging real sequences
equippedwith the sup-normwithK consisting of all non-negative sequences.
Let T the linear operator on E defined for x = (xn)n by Tnx = ∑n

i=1
1
2i xi +

1
2n xn+1.

Show that all assumptions in (a) are satisfied and that lim
n→∞

Tnx = c(x)x∗
where x∗ is the sequence consisting of 1 and c(x) = ∑∞

n=1(cn − cn−1)xn with
cn = 2−

(n−1)n
2 .

(c) Use the example in (b) to show that property (∗) does not necessarily imply
S(K ∖ {0}) ⊆ ∘

K for some iterate S of T.
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7 Non-autonomous positive systems
Already in Chapter 1 “How positive discrete dynamical systems do arise” we met non-
autonomous systems, that is systems where the law governing the dynamics does ex-
plicitly depend on time. For the Lesliemodel in population dynamics as well as for the
Leontief model in economic production the dynamics were modelled as

x(t + 1) = T(t)x(t), t ∈ ℕ, x(0) ∈ ℝn
+

(see equations (1.2.9) and (1.4.2)).
The reason for considering the “law”T(t) as dependent on time twas in the case of

populationdynamics thedependenceof birth- and survival rates on time, duepossibly
to changes in the environment. In the case of economic production the cost function
depends on time due to changes in the technology of production. From Chapter 1 up
to Chapter 6 our focus was on the non-linearity of the selfmapping T and the asymp-
totic behavior of its iterates. To analyse the asymptotic behavior of a non-autonomous
system one has to consider the iteration of time-dependent operators T(t), also called
inhomogeneous or nonhomogeneous iteration. In the particular case where T(t) con-
verges for t → ∞ to some operator T one has – under certain assumptions – conver-
gence of the inhomogeneous iterates T(t) ∘ T(t − 1) ∘ ⋅ ⋅ ⋅ ∘ T(1) ∘ T(0) in which case
one speaks of strong ergodicity. In general, however, such a convergence cannot be
expected (see Exercise 8). A new kind of stability comes into play which we call path
stability. Roughly speaking, this means that a path given by x(t + 1) = T(t)x(t) for
t ≥ 0, when disturbed suddenly at some t0 comes asymptotically back to its original
behavior. A strongly related notion is that of weak ergodicity. (The precise definitions
are given below in Section 7.1.)

The concepts of weak and strong ergodicity were developed within the fields of
demography and Markov chains and do have an interesting history which we shortly
sketch. (The reader can find more details in the informative articles [5, 42, 43] and
in Seneta’s book [44]). As early as 1931 the concept of weak ergodicity was conceived
of by A. N. Kolmogoroff who called it “das Ergodenprinzip”, the ergodic principle [26,
p. 424]. For an inhomogeneousMarkovchain, i.e., a sequence (Pk)k≥1 of row stochas-
tic non-negative matrices consider the forward product

Tr,k = Pr+1Pr+2 . . . Pr+k with entries t(r,k)is .
Following [42, p. 507] the sequence (Pk)k≥1 is weakly ergodic in the sense of Kol-
mogoroff if for all i, j, s = 1, . . . , n and r ≥ 0

lim
k→∞

(t(r,k)is − t(r,k)js ) = 0.
Subsequently, conditions for weak ergodicity to hold have been obtained by W. Doe-
blin in 1937, S. N. Bernstein in 1946, T. A. Sarymsakov in 1956. Independently of this
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7.1 The concepts of path stability | 217

“Russian School”, work by J. Hajnal from 1958 on became very influential. In partic-
ular, his work was employed by A. Lopez in 1961 to prove an empirically based con-
jecture by the demographer A. J. Coale in 1957. This conjecture, now famous as the
Coale–Lopez Theorem in demography, states that the age structure in a population is
determined by the vital rates and not by the age structure years ago. Demographers
had observed earlier the phenomenon that the age structure when disturbed by a war
approaches the one prior to the war. One might say, equivalently, that weak ergodic-
ity amounts to path stability with respect to the structure under consideration. Inter-
estingly enough, considering time-continuous population dynamics, weak ergodicity
has been already recognized by H. T. J. Norton in 1928, wherefore sometimes the name
Norton–Coale–Lopez Theorem is used. For time-continuous population dynamics see
[22, 23] where a rigorous proof of this theorem in this setting is given. Kolmogoroff in
his fundamental paper [26], too, treats mainly time-continuous processes.

In what follows, Section 7.1 supplies precise definitions as well as relationships
between the concepts involved.

Sections 7.2 and 7.3, the central part of this chapter, are devoted to an analysis of
weak and strong ergodicity for time dependent and non-linear operators on Banach
spaces which are ascending for a convex cone. In particular, a concave extension of
the Coale–Lopez Theorem for Banach spaces is proven. Also, the classical results on
weak and strong ergodicity of inhomogeneous Markov chains are obtained as special
cases.

Section 7.4 then applies the general results to obtain a non-linear extension of a
classical result of H. Poincaré on non-autonomous linear difference equations.

Sections 7.5 and 7.6 present applications to the already mentioned non-autono-
mous systems in population dynamics and economic production, respectively.

7.1 The concepts of path stability, asymptotic proportionality,
weak and strong ergodicity

The notion of weak ergodicity for Markov chains has been extended to sequences
of non-negative matrices [44, p. 85]. A sequence (Pk)k≥1 of non-negative matrices is
weakly ergodic if for the entries t(r,k)is of the forward product Tr,k = Pr+1 ⋅ ⋅ ⋅ Pr+k it holds
for all i, j, s and r that

lim
k→∞

t(r,k)is

t(r,k)js

= v(r)ij (7.1.1)

exists and is independent of s. In other words, any two rows i and j of Tr,k become
propotional for k approaching infinity. In the homogeneous case, that is Pk = P for all
k, weak ergodicity means that any two rows of the power Pk become proportional for
k approaching infinity. Actually, this is part of the classical Perron–Frobenius theory
as described earlier for a primitivematrix P (Theorem 2.4.1, part (iii) (c)). In the special
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218 | 7 Non-autonomous positive systems

case of a stochasticmatrixP this is the so called basic limit theorem forMarkov chains.
It is easily seen that equation (7.1.1) implies in the case of stochastic matrices the weak
ergodicity in the sense of Kolmogoroff. Obviously, more demanding than (7.1.1) is for a
sequence (Pk)k≥1 the following notion of strong ergodicity ([44, p.92])

lim
k→∞

t(r,k)ij
n∑
s=1
t(r,k)is

= v(r)j . (7.1.2)

In other words, the sum-normed rows of Tr,k become equal for k approaching in-
finity. In the homogeneous case, Pk = P for all k, the two notions of weak and strong
ergodicity do coincide.

In the following we shall extend the concepts of weak and strong ergodicity, as
well as the related results, to non-linear and non-autonomous systems in normed
spaces. For doing so, we formalize the proportionality properties in equations (7.1.1)
and (7.1.2) in a way which will allow us to make a connection to the part metric and
the Hilbert metric, respectively. This in turn will allow us to apply our results on non-
autonomous systems in metric spaces from Section 4.2.

The following definition distinguishes three different kinds of a generalized pro-
portionality, where the last two are taken from [45, p. 242].

Definition 7.1.1. Let K be a convex cone in a real vector space V. Two sequences (xn)
and (yn) in K are called
(a) asymptotically linked if there exist two sequences of positive real numbers (𝛾n)

and ( ̄𝛾n) such that 𝛾nxn ≤ yn ≤ ̄𝛾nxn for finally all n and lim
n→∞

𝛾n
̄𝛾n
= 1 (≤ order relation

induced by K).
(b) asymptotically proportional if, in addition to (a), lim

n→∞
𝛾n and lim

n→∞
̄𝛾n exist and

are (strictly) positive.
(c) asymptotically equal if, in addition to (b), lim

n→∞
𝛾n = 1.

These notions are connected to part metric p and Hilbert metric d, as well as to a given
norm as follows. (See also Exercise 1.)

Lemma 7.1.2. Let K be a lineless, archimedean, convex cone in a real vector space V
and let ‖ ⋅ ‖ be a monotone norm on V. For two sequences (xn), (yn) contained in K ∖ {0}
the following properties do hold.
(i) (xn) and (yn) are asymptotically equal if and only if

lim
n→∞

p(xn, yn) = 0.
(ii) (xn) and (yn) are asymptotically linked if and only if

lim
n→∞

d(xn, yn) = 0.
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7.1 The concepts of path stability | 219

(iii) If lim
n→∞

p(xn, yn) = 0 and at least one of the sequences is bounded for ‖ ⋅ ‖ then
lim
n→∞

‖ xn − yn ‖= 0.
(iv) If lim

n→∞
d(xn, yn) = 0 then

lim
n→∞

 xn‖ xn ‖ − yn‖ yn ‖
 = 0.

(v) If ‖ xn ‖ = ‖ yn ‖= 1 for finally all n then the properties lim
n→∞

p(xn, yn) = 0 and
lim
n→∞

d(xn, yn) = 0 as well as all three types in Definition 7.1.1 are equivalent to each
other.
These equivalent statements are all equivalent to lim

n→∞
‖ xn − yn ‖= 0 if, in addition,

one of the sequences is contained in z + K for some z ∈ ∘
K.

Proof. (1) Let 𝛾nxn ≤ yn ≤ ̄𝛾nxn with 𝛾n, ̄𝛾n > 0 for, without loss, n ≥ 1. It follows

λ (xn, yn) ≥ 𝛾n and λ (xn, yn)xn ≤ ̄𝛾nxn
and, hence, 𝛾n ≤ λ (xn, yn) ≤ ̄𝛾n. Similarly,

̄𝛾−1n yn ≤ xn ≤ 𝛾−1n yn implies ̄𝛾−1n ≤ λ (yn, xn) ≤ 𝛾−1n .
Therefore, ̄𝛾−1n 𝛾n ≤ λ (xn, yn) ⋅ λ (yn, xn) ≤ 𝛾n ̄𝛾−1n .
If the two sequences are asymptotically linked then

lim
n→∞

d(xn, yn) = − limn→∞
log[λ (xn, yn)λ (yn, xn)] = 0.

In case, the sequences are asymptotically equal it follows that lim
n→∞

λ (xn, yn) =
lim
n→∞

λ (yn, xn) = 1 and, hence, lim
n→∞

p(xn, yn) = − limn→∞
logmin{λ (xn, yn), λ (yn, xn)} = 0.

(2) Conversely, if lim
n→∞

p(xn, yn) = 0 or lim
n→∞

d(xn, yn) = 0 we may assume that 𝛾n =
λ (xn, yn) > 0 and ̄𝛾−1n = λ (yn, xn) > 0. By definition of λ (⋅, ⋅) we have that 𝛾nxn ≤ yn ≤̄𝛾nxn. If limn→∞

d(xn, yn) = 0 then lim
n→∞

𝛾n ̄𝛾−1n = 1 and the two sequences are asymptotically
linked.

If lim
n→∞

p(xn, yn) = 0 then lim
n→∞

min{𝛾n, ̄𝛾−1n } = 1. To 𝜖 > 0 there exists N such that
1 − 𝜖 ≤ min{𝛾n, ̄𝛾−1n } and, hence, 1 − 𝜖 ≤ 𝛾n ≤ ̄𝛾n ≤ (1 − 𝜖)−1 for all n ≥ N.

This shows lim
n→∞

𝛾n = lim
n→∞

̄𝛾n = 1.
Steps (1) and (2) together proof the two equivalences (i) and (ii).
(3) Considering property (iii) let lim

n→∞
p(xn, yn) = 0 and at least one of the se-

quencesbounded for ‖⋅‖. By (i) the two sequences are asymptotically equal and, hence,
both sequences are bounded for ‖ ⋅ ‖. Proposition 3.3.3 (vi) implies lim

n→∞
‖ xn − yn ‖= 0.

Furthermore, this proposition implies property (iv), too.
(4) As for property (v), from Proposition 3.3.3 (i) we have d(x, y) ≤ 2p(x, y) and,

hence, lim
n→∞

p(xn, yn) = 0 implies lim
n→∞

d(xn, yn) = 0. If ‖ xn ‖ = ‖ yn ‖ = 1 then
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220 | 7 Non-autonomous positive systems

p(xn, yn) ≤ d(xn, yn) by Proposition 3.3.3 (vii) and, hence, lim
n→∞

p(xn, yn) = 0 is equiv-
alent to lim

n→∞
d(xn, yn) = 0. By properties (i) and (ii), parts (a) and (c) in Definition 7.1.1

are equivalent and, hence, all three parts in this definition are equivalent. Finally, let(xn) ⊆ z + K for some z ∈ ∘
K. By property (iii), lim

n→∞
‖ xn − yn ‖= 0. From Proposi-

tion 3.4.12 (ii) it follows for P =
∘
K, F consisting of ‖ ⋅ ‖ that

h(x, x) ≤ ‖ x − x ‖
r

for ‖ x − x ‖≤ r,
where h(x, y) = 1−min{λ (x, y), λ (y, x)} is the Harnack metric. Thus, lim

n→∞
‖ xn − yn ‖= 0

implies lim
n→∞

h(xn, yn) = 0 and a fortiori lim
n→∞

p(xn, yn) = 0. This proves property (v) and
the lemma altogether.

In concluding this section we give the following precise definitions for path stability
and the ergodic properties.

Definition 7.1.3. Let (X, ρ ) be a metric space and a non-autonomous discrete dynami-
cal system given by a sequence (Tn)n of selfmappings of X, that is

xn+1 = Tnxn, n ≥ 1, x1 ∈ X.
This system has path stability for the metric on D ⊆ X if lim

n→∞
ρ (xn, yn) = 0 for all

x1, y1 ∈ D. In particular, if (V , ‖ ⋅ ‖) is a normed space with a metric given by ‖ ⋅ ‖ then
the system has path stability for the norm on D ⊆ V if lim

n→∞
‖ xn − yn ‖= 0 for all

x1, y1 ∈ D. The system hasweak ergodicity on D ⊆ V ∖ {0} if lim
n→∞

 xn
‖xn‖

− yn
‖yn‖
 = 0 for

all x1, y1 ∈ D. It has strong ergodicity on D ⊆ V ∖ {0} if there exists x∗ ∈ D such that
lim
n→∞

 xn
‖xn‖

− x∗ = 0 for all x1 ∈ D.
In the light of Lemma 7.1.2 we can describe the above concepts also in the following
way. Let (V , ‖ ⋅ ‖) be a normed space with a normal, closed, pointed, convex cone K.
Let D ⊆ ∘

K ̸= 0 and a non-autonomous system on D given by a sequence of selfmap-
pings (Tn)n of D. For the part metric p on

∘
K the path stability on D is equivalent to

asymptotic equality of any two paths starting in D. For the Hilbert metric d on
∘
K the

path stability on D is equivalent to asymptotic linkedness of any two paths starting in
D. Furthermore, in this case path statility for d implies weak ergodicity. It also fol-
lows from Lemma 7.1.2 that lim

n→∞
d(xn, yn) = 0 is equivalent to lim

n→∞
p(xn, yn) = 0 on

D ∩ {x ∈ V | ‖ x ‖= 1}. Moreover, in this case these properties are equivalent to
weak ergodicity provided for one sequence, say (xn), one has xn ≥ ‖ xn ‖ z for all n
and some z ∈ ∘

K. This yields in particular that strong ergodicity with x∗ ∈ ∘
K, ‖ x∗ ‖= 1

is equivalent to lim
n→∞

d(xn, x∗) = 0 or lim
n→∞

p( xn
‖xn‖
, x∗) = 0, respectively. Strong ergodic-

ity is, of course, stronger than weak ergodicity and, as remarked earlier, the former
cannot be expected for a non-autonomous system in general. Weak ergodicity or path
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7.2 Path stability and weak ergodicity for ascending operators | 221

stability, however, play an important role in applications, especially to population dy-
namics. The name “path stability” is due to the following interpretation. Suppose a
path (xn) of a non-autonomous system in a metric space (X, ρ ) is at a certain point of
time n0 pushed from xn0 to a different value y ∈ D. If (yn) is the path which starts in
y then path stability on D gives lim

n→∞
ρ (xn, yn) = 0. Thus, path stability means that a

path when disturbed (within D) comes finally back to its original behavior. Further-
more, consider two paths (xn) and (yn) and let x̄ = lim

k→∞
xnk a limit point of (xn). Then

ρ (ynk , x̄) ≤ ρ (ynk , xnk ) + ρ (xnk , x̄) and, in case of path stability, limk→∞
ynk = x̄. Thus, an im-

portant consequence of path stability is that all possible paths have the same limit set.

7.2 Path stability and weak ergodicity for ascending operators

Dealingwith non-autonomous systemswe extend the notion of an ascending selfmap-
ping (operator) to a sequence (Tn) of operators. (For simplicity, ϕ is assumed to be
continuous.)

Definition 7.2.1. Let K be a convex cone (not 0, {0}) in a real vector space V and let “≤”
be the partial order definedbyK. A sequence (Tn)n≥1 of selfmappings ofK isuniformly
ascending on D ⊆ K (with ϕ ) if there exists a continuous selfmapping ϕ of the open
interval ]0, 1[ with λ < ϕ (λ ) such that for every 0 < λ < 1 and every x, y ∈ D

λx ≨ y implies ϕ (λ )Tnx ≤ Tny for all n ≥ 1.
A sequence (Tn)n≥1 is called uniformlyweakly ascending onD ⊆ K (withϕ ) if there
exists a ϕ as above such that for every 0 < λ < 1 and every x, y ∈ D

λx ≨ y ≨ 1
λ
x implies ϕ (λ )Tnx ≤ Tny ≤ 1

ϕ (λ )Tnx for all n ≥ 1.
For the following result whichwill be fundamental forwhat followswedrawon earlier
results on non-autonomous systems on metric spaces (Section 4.2).

Theorem 7.2.2. Let (V , ‖ ⋅ ‖) be a normed real vector space and let K ⊆ V be a convex
cone which is closed and normal with non-empty interior

∘
K. Let (Tn)n≥1 be a sequence of

selfmappings of 0 ⫋ D ⊆ ∘
K and let, for some r ≥ 1, Sm = Tm+r−1 ∘ ⋅ ⋅ ⋅ ∘ Tm be a sequence

of lumped operators for m ≥ 1. Consider the system on D, defined by

xn+1 = Tnxn for n ≥ 1 and x1 ∈ D (7.2.1)

(i) If (Sm)m is uniformly weakly ascending on D then for the system (7.2.1) path stability
holds for the part metric on D and any two sequences (xn) and (yn) are asymptoti-
cally equal. In particular, for (7.2.1) weak ergodicity does apply.
If one of these sequences is norm-bounded then path stability holds for the norm
on D.
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222 | 7 Non-autonomous positive systems

(ii) Let U = D ∩ {x ∈ V | ‖x‖ = 1} and assume x
‖x‖ ∈ D for x ∈ D. If (Tn)n is uniformly

ascending on U, then for the rescaled system given by the rescaled operators (T̃n)n,
path stability holds for the Hilbert metric and the part metric as well as for the norm
on U. In case only (Sm)m is assumed to be uniformly ascending on U but the Tn are
ray-preserving on D, then for the system (7.2.1) path stability holds for the Hilbert
metric on D and weak ergodicity for the norm on D.

Proof. (i) Let μ(x, y) = sup{λ > 0 | λ x ≤ y ≤ 1
λ x} for x, y ∈ D. Since (Sm) is uniformly

weakly ascending on D with ϕ continuous we obtain for all n that

λ x ≤ y ≤ 1
λ
x implies ϕ (λ )Smx ≤ Smy ≤ 1

ϕ (λ )Smx for x, y ∈ D, 0 < λ < 1.
Therefore, μ(Smx, Smy) ≥ ϕ (μ(x, y)) and, hence, for the part metric p(Smx, Smy) ≤− log [ϕ (μ(x, y))].

Let c(x, y) = − log [ϕ (μ(x, y))]. If μ(x, y) = 1 then x = y because K is normal.
Therefore, for x ̸= y we have that c(x, y) < − log μ(x, y) = p(x, y). (D, p) is a metric
space with selfmappings Tn and lumped operators Sm for which p(Smx, Smy) ≤ c(x, y).
Thus, (Sm) is a contractive sequence consisting of non-expansive mappings. For any
two orbits given by xn+1 = Tnxn, yn+1 = Tnyn and x1, y1 ∈ D we obtain from The-
orem 4.2.2 (i) that lim

n→∞
p(xn, yn) = lim

n→∞
c(xn, yn). By definitions of p and c therefore,

lim
n→∞

μ(xn, yn) = lim
n→∞

[ϕ (μ(xn, yn))].
By continuity of ϕ this means for a = lim

n→∞
μ(xn, yn) that ϕ (a) = a. Since λ < ϕ (λ )

for 0 < λ < 1 we must have that a = 0 or a = 1. The former is impossible since
lim
n→∞

p(xn, yn) = − log a exists.
Thus, we arrive at lim

n→∞
p(xn, yn) = − log 1 = 0 showing that path stability holds for

the part metric on D. The remaining statements follow from Lemma 7.1.2.
(ii) Let ν (x, y) = sup{λμ | λ , μ > 0, λ x ≤ y ≤ 1

μ x} for x, y ∈ D.
(1) Consider first the case that (Tn)n is uniformly ascending onU. By continuity of

ϕ we have that λ x ≤ y ≤ 1
μ x implies ϕ (λ )Tnx ≤ Tny ≤ 1

ϕ (μ)Tnx and, hence,

ν (Tnx, Tny) ≥ sup{ϕ (λ )ϕ (μ) | λ , μ > 0, λ x ≤ y ≤ 1
μ
x} .

This shows ν (Tnx, Tny) ≥ ϕ (λ (x, y)) ⋅ϕ (λ (y, x)) for all n ≤ 1 and, hence, for the Hilbert
metric d on U

d(T̃nx, T̃ny) = d(Tnx, Tny) ≤ c(x, y) for x, y ∈ U,
where c(x, y) = − log[ϕ (λ (x, y)) ⋅ ϕ (λ (y, x))].

For x, y ∈ U we have 0 < λ (x, y), λ (y, x) ≤ 1. If λ (x, y) = 1 or λ (y, x) = 1 then x = y
because K is normal. Thus, for x ̸= y we must have that λ (x, y)λ (y, x) < ϕ (λ (x, y)) ⋅
ϕ (λ (y, x)) and, hence, c(x, y) < − log[λ (x, y)⋅λ (y, x)] = d(x, y). Thus, the sequence (T̃n)n
of rescaled operators is on the metric space (U, d) a contractive sequence consisting
of non-expansive mappings. For any two orbits given by x̃n+1 = T̃nx̃n, ỹn+1 = T̃nỹn with
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7.2 Path stability and weak ergodicity for ascending operators | 223

x̃1 = x1, ỹ1 = y1 inU we obtain from Theorem 4.2.2 (i) that lim
n→∞

d(x̃n, ỹn) = lim
n→∞

c(x̃n, ỹn).
By definitions of d and c, therefore,

lim
n→∞

[λ (x̃n, ỹn)λ (ỹn, x̃n)] = lim
n→∞

[ϕ (λ (x̃n, ỹn))ϕ (λ (ỹn, x̃n))].
Since 0 ≤ λ (u, v) ≤ 1 for ‖ u ‖ = ‖ v ‖ = 1 there exists a sequence of natural num-
bers (nk)k such that lim

k→∞
λ (x̃nk , ỹnk ) = λ , lim

k→∞
λ (ỹnk , x̃nk ) = μ . By continuity of ϕ we

arrive at λμ = ϕ (λ )ϕ (μ). Because lim
n→∞

d(x̃n, ỹn) exists we cannot have λμ = 0, that
is λ > 0 and μ > 0. If λ < 1 or μ < 1 then λ < ϕ (λ ) or μ < ϕ (μ) which implies
λμ < ϕ (λ )ϕ (μ) – a contradiction. Thus, λ = μ = 1 which yields lim

n→∞
d(x̃n, ỹn) =

lim
k→∞

d(x̃nk , ỹnk ) = − log(λμ) = 0, that is, for the rescaled system path stability holds for
Hilbert’s metric on U. Path stability holds for the part metric as well as for the norm
on U by Lemma 7.1.2, (iv) and (v).

(2) Consider now the case where (Sm) is uniformly ascending on U and the Tn
are ray-preserving on D. As in step (1) it follows for x, y ∈ U that d(Smx, Smy) ≤
c(x, y), c(x, y) < d(x, y) for x ̸= y where c(x, y) = − log[ϕ (λ (x, y))ϕ (λ (y, x))]. Now,
for the rescaled operators of ray-preserving mappings S, T : D → D it holds with some
α > 0

(S̃ ∘ S̃)x = S(T̃x)‖ S(T̃x) ‖ = αS(Tx)‖ αS(Tx) ‖ = (S ∘ T)x‖ (S ∘ T)x ‖ = (S̃ ∘ T)x.
Therefore, by iteration S̃m = T̃mr ∘ ⋅ ⋅ ⋅ ∘ T̃(m−1)r+1 and for the lumped operators
we have d(S̃mx, S̃my) = d(Smx, Smy) ≤ c(x, y). From Theorem 4.2.2 (i) we obtain
lim
n→∞

d(x̃n, ỹn) = lim
n→∞

c(x̃n, ỹn). As in step (1) this yields lim
n→∞

d(x̃n, ỹn) = 0. Since the
Tn are ray-preserving, x̃n is obtained by applying the rescaled operator of Tn−1 ∘ ⋅ ⋅ ⋅ ∘T1
to x1, that is x̃n = xn

‖xn‖
. Therefore, lim

n→∞
d(xn, yn) = 0 and for the original system holds

path stability for the Hilbert metric on D. Finally, weak ergodicity for the norm on D
follows from Lemma 7.1.2 (iv).

Theorem 7.2.2 has interesting consequences. (For an example see Exercise 2.) It yields
in particular the following extension of the Coale–Lopez theorem mentioned earlier
to non-linear operators in infinite dimensions.

Corollary 7.2.3 (Concave weak ergodicity/concave Coale–Lopez theorem). Let K be a
convex cone in the normed space (V , ‖ ⋅ ‖) as in Theorem 7.2.2. Let (Tn) be a sequence of
concave selfmappings of

∘
K and let Sm = Tm+r−1 ∘ ⋅ ⋅ ⋅ ∘Tm,m ≥ 1 be a sequence of lumped

operators. Consider the system on
∘
K given by xn+1 = Tnxn for n ≥ 1, x1 ∈ ∘

K.

(i) If, for some e ∈ ∘
K and real numbers 0 < r ≤ s,

re ≤ Tnx ≤ se for all n ≥ 1, all x ∈ U = {x ∈ ∘
K | ‖x‖ = 1}, (7.2.2)

then for the rescaled system given by (T̃n)n path stability holds on U for the Hilbert
metric, the part metric as well as for the norm.
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224 | 7 Non-autonomous positive systems

(ii) If re ≤ Smx ≤ se for all m ≥ 1, all x ∈ U and the Tn are ray-preserving on
∘
K then for

the original system xn+1 = Tnxn path stability holds for the Hilbert metric and weak

ergodicity for the norm on
∘
K. If the Tn are even positively homogeneous, then any

two orbits of the original system are asymtotically proportional.

Proof. (i) Let λ x ≨ y for x, y ∈ U and 0 < λ < 1. If 0 < λ  < λ then y − λ x = (y − λ x) +(λ − λ )x ∈ ∘
K and, hence, z = y−λ x

‖y−λ x‖ ∈ U. Since 1 = ‖y‖ ≤ ‖ y − λ x ‖+‖ λ x ‖ it
follows that ‖ y − λ x ‖≥ 1 − λ  and, hence, y = λ x +‖ y − λ x ‖ z ≥ λ x + (1 − λ )z.
Condition (7.2.2) and concavity of Tn imply that

Tny ≥ λ Tnx + (1 − λ ) rsTnx = (λ  + (1 − λ ) rs )Tnx for all n.
Since 0 < λ  < λ is arbitrary it follows

Tny ≥ ϕ (λ )Tnx for all n with ϕ (λ ) = λ + (1 − λ ) r
s
.

Thus, the sequence (Tn) is uniformly ascending on U withϕ and (i) follows from The-
orem 7.2.2 (ii).

(ii) Obviously, each Sm is concave and therefore from the assumptionmade on Sm
it follows as under (i) that (Sm) is uniformly ascending on U withϕ (λ ) = λ + (1− λ ) rs .
By Theorem 7.2.2 (ii) the original system has on

∘
K path stability for the Hilbert met-

ric and weak ergodicity for the norm. Suppose now the Tn are positively homoge-

neous. Being concave, Tn is monotone on
∘
K and, hence, λ (xn, yn)xn ≤ yn implies

λ (xn, yn)Tnxn ≤ Tnyn for any wo orbits (xn), (yn) of the original system. It follows
λ (xn+1, yn+1) ≥ λ (xn, yn) and, similarly, λ (yn+1, xn+1) ≥ λ (yn, xn).

Since λ (xn, yn)λ (yn, xn) ≤ 1 for all n it follows λ (xn, yn)λ (y1, x1) ≤ 1 for all n. Thus,(λ (xn, yn))n is a monotone bounded sequence and converges to some λ . Similarly,
λ (yn, xn) converges to some μ . From lim

n→∞
d(xn, yn) = 0we have lim

n→∞
[λ (xn, yn)λ (yn, xn)] =

1 and, hence λμ = 1.
Thus, for 𝛾n = λ (xn, yn) and ̄𝛾n = λ (yn, xn)−1 we have that 𝛾nxn ≤ yn ≤ ̄𝛾nxn with

lim
n→∞

𝛾n = λ , lim
n→∞

̄𝛾n = μ−1. Because of λ = μ−1 the two orbits are asymptotically propor-
tional which proves (ii).

Corollary 7.2.3 applies especially to linear operators and we obtain in particular the
classical weak ergodicity result or common Coale–Lopez theorem for non-negative
matrices as discussed in Section 7.1.

Corollary 7.2.4 (Linear weak ergodicity/linear Coale–Lopez theorem). (i) Let K be a
convex cone in the normed space (V , ‖ ⋅ ‖) as in Theorem 7.2.2. Let (Tn) be a sequence
of linear selfmappigs of

∘
K such that for some e ∈ ∘

K and 0 < r ≤ s for the lumped
operators Sm it holds

re ≤ Smx ≤ se for all m ≥ 1, all x ∈ U.
Then any two orbits of the sytem xn+1 = Tnxn on

∘
K are asymptotically proportional.
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(ii) Let (Pn)n be a sequence of non-negative d × d-matrices such that uniformly for all
n ≥ 1 the maximal entry of Pn is bounded from above and the minimal strictly pos-
itive entry is bounded from below. If for some r ≥ 1 the products Pm+r−1 ⋅ ⋅ ⋅ Pm are
strictly positive for all m ≥ 1 then for all 1 ≤ i, j, k ≤ d

lim
n→∞

(Pn ⋅ ⋅ ⋅ P1)ik(Pn ⋅ ⋅ ⋅ P1)ij = vkj,
that is the columns of the matrix Pn ⋅ ⋅ ⋅ P1 tend to be proportional as n tends to∞.

Proof. (i) is a special case of Corollary 7.2.3 (ii).
(ii) By assumption, for the entries pij(n) of Pn

pij(n) ≤ β , pij(n) = 0 or α ≤ pij(n)
for all i, j, n and some real numbers 0 < α ≤ β . For Sm = Pm+r−1 ⋅ ⋅ ⋅ Pm and x ∈ ℝd

+ ∖ {0}(Smx)i = ∑(i1 ,...,ir−1,j) pii1(m + r − 1, j) ⋅ ⋅ ⋅ pir−1,j(m)xj and, hence,
αr

d∑
j=1
xj ≤ (Smx)i ≤ β r

d∑
j=1
xj for all m, all i.

For K = ℝn
+, e = (1, . . . , 1) ∈ ∘

K and ‖x‖ = ∑d
i=1 |xi| from part (i) it follows for any two

orbits (xn), (yn) of xn+1 = Pnxn on
∘
K

𝛾nxn ≤ yn ≤ ̄𝛾nxn for all n and lim
n→∞

𝛾n = lim
n→∞

̄𝛾n = 𝛾 > 0.
Since Sm is strictly positive we can choose as starting points x1 = ej, y1 = ek (ei the i-th
unit vector) to obtain

(xn+1)i = (Pn . . . P1)ij and (yn+1)i = (Pn . . . P1)ik for all i.
Therefore,

lim
n→∞

(Pn . . . P1)ik(Pn . . . P1)ij = lim
n→∞

(yn+1)i(xn+1)i = 𝛾 for all i,
where 𝛾 does depend on k and j only.
Another consequence of Theorem 7.2.2 is the following differentiability criterion in fi-
nite dimensions which will be useful later on for an application to non-autonomous
population dynamics (see Section 7.4, for examples see Exercises 4, 5, 6). This criterion
is complementary to Corollary 7.2.3.Whereas the latter assumes concavity and positive
homogeneity (for the original system) none of these assumptions is required for this
criterion. On the other hand, the criterion does not apply to positive homogeneous,
especially linear, operators (see Example 7.2.7 below).
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226 | 7 Non-autonomous positive systems

Corollary 7.2.5. Let V = ℝd,K = ℝd
+, ‖ ⋅ ‖ any monotone norm on ℝd. For a log-convex

subset D ⊆ ∘
K let (Tn) be a sequence of selfmappings of D differentiable on

∘
K and let for

lumped operators Sm and x ∈ ∘
K

A(x) = sup
m≥1

max
1≤i≤d

d∑
j=1

xj(Smx)i)
 𝜕(Sm)i𝜕xj (x).

Consider for the system xn+1 = Tnxn, x1 ∈ D, the following two cases:
Case (a). A(x) ≤ c < 1 for all x ∈ D.

Then all orbits of the system are asymptotically equal and weak ergodicity does apply.
If at least one orbit is norm-bounded then path stability for the norm holds on D.

Case (b). A(x) < 1 for all x ∈ D.
Then any two orbits contained in a bounded and closed subset of D are asymptotically
equal. Path stability for the norm holds for all orbits contained in a bounded and closed
subset of D.

Proof. For 1 ≤ i ≤ d fixed let fm : E → ℝ where E = logD, be defined by fm(u) =
log(Sm)i(exp u). The mean value theorem yields

fm(u) − fm(v) ≤
1∫
0

d∑
j=1

 𝜕fm𝜕uj (u(t))
 vj − ujdt,

where u(t) = u + t(v − u) and u, v ∈ E. By the chain rule𝜕fm𝜕uj (u) =
exp uj(Sm)i(exp u) 𝜕(Sm)i𝜕xj (exp u).

For x, y ∈ D given and u = log x, v = log y (componentwise),

u(t) = log x + t(log y − log x) = log(x (y
x
)t) = log(x1−tyt).

Since exp u(t) = x1−tyt ∈ D it follows by definition of A(x)
d∑
j=1

 𝜕fm𝜕uj (u(t))
 ≤ A(x1−tyt).

It follows that

in case (a): sup
m
|fm(u) − fm(v)| ≤ cmax

j
|vj − uj| = cmax

j
| log xj − log yj| (∗)

in case (b): sup
m
|fm(u) − fm(v)| < max

j
| log xj − log yj|for x ̸= y. (∗∗)

Considering case (a) from (∗) it follows that λ x ≤ y ≤ 1
λ x implies λ c(Sm)i(x) ≤(Sm)i(y) ≤ 1

λ c (Sm)i(x).
Since iwas arbitrary choosen this means that (Sm) is uniformly weakly ascending

on D with ϕ (λ ) = λ c.
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Thus, for case (a) it follows from Theorem 7.2.2 (i) that any two orbits are asymp-
totically equal, weak ergodicity applies and path stability holds for the norm provided
that one bounded orbit exists.

Considering case (b), (∗∗)means that for the part metric sup
m

p(Smx, Smy) < p(x, y)
for x ̸= y.

Thus, (Sm) is a contractive sequence of non-expansive mappings on (D, p). Let(xn), (yn) orbits contained in a bounded and closed subset of D. Since bounded sub-
sets are relatively compact in (ℝd, ‖ ⋅ ‖) there exist subsequences (xnk ), (ynk ) converg-
ing in norm to x∗ ∈ D and y∗ ∈ D, respectively. Norm topology and part topology
coincide on

∘
K by Proposition 3.4.12 (v) and the convergence holds also for p. There-

fore, the joint limit set ws(x1, y1) in (D, p) is non-empty and Theorem 4.2.2 (ii) implies
lim
n→∞

p(xn, yn) = 0. Finally, from Lemma 7.1.2 parts (i) and (iii) we obtain for case (b) that(xn) and (yn) are asymptotically equal as well as lim
n→∞

‖ xn − yn ‖= 0.

Remarks 7.2.6. Particular cases of Theorem 7.2.2 can be found in [16, 36]. For the con-
cave Coale–Lopez Theorem see [16, 35]. For Corollary 7.2.4 in finite dimensions, the
classical linear weak ergodicity see [44], where the dual result for “forward products”
of matrices is proven. See also [21]. For other results on non-linear weak ergodicity see
[2, 3, 34, 37, 45]. For a general approach to non-autonomous systems in discrete time
which is based on 2-parameter semigroups see [40].

The results obtained we shall illustrate by non-linear Leslie models as considered al-
ready in Sections 1.2 and 2.6 for which we now admit the birth rates and survival rates
to depend on time. (See also [16].

Example 7.2.7 (Nonlinear and non-autonomous Leslie models). (1) Consider first a
concave and non-autonomous Leslie model given by x(t + 1) = Ttx(t) for t = 0, 1, . . .
and x(0) ∈ ℝn

+ where Ttx = L(t, x)x for x ∈ ℝn
+ and

L(t, x) =
[[[[[[[[[

b1(t, x) b2(t, x) ⋅ ⋅ ⋅ bn−1(t, x) bn(t, x)
s1(t, x) 0 ⋅ ⋅ ⋅ 0 0

0 s2(t, x) ⋅ ⋅ ⋅ 0 0
...

...
...

...
0 0 ⋅ ⋅ ⋅ 0 sn−1(t, x) sn(t, x)

]]]]]]]]]
is the (generalized) Leslie matrix (see Section 1.2). On the vital rates we make similar
assumptions as for the concave Leslie model in Section 2.6 taking care, however, of
the time dependence:
(a) The mappings x → bi(t, x)xi and x → si(t, x)xi of ℝn

+ into ℝ+ are concave for each
1 ≤ i ≤ n and each t = 0, 1, 2 . . ..

(b) There exist functions μ and ν from ℝn
+ ∖ {0} intoℝ+ ∖ {0} such that for all i, t, x

μ(x) ≤ bi(t, x), si(t, x) and bi(t, x)xi, si(t, x)xi ≤ ν (x).
Assume further for 0 ≨ x ≤ y that μ(y) ≤ μ(x) and ν (x) ≤ ν (y).
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228 | 7 Non-autonomous positive systems

(c) For any x ∈ ℝn
+, t ∈ ℕ and λ > 0 there exists a number ct(x, λ ) such that bi(t, λ x) =

ct(x, λ )bi(t, x) and si(t, λ x) = ct(x, λ )si(t, x) for all 1 ≤ i ≤ n with xi > 0.

As in Section 2.6, (a) models population pressure and implies that Tt is a concave self-
mapping of ℝn

+ for each t.
Similarly, assumption (c) means that a population pressure uniform over age

classes does not affect the ratio of birth and survival rates. By this assumption,
Tt(λ x) = λ ct(x, λ )Ttx and, hence, the operators Tt are ray-preserving. We want to
apply part (ii) of Corollary 7.2.3 for the norm ‖x‖ = ∑n

i=1 |xi| on K = ℝn
+. For this it

remains to show for some 0 < α ≤ β and e ∈ ∘
K

αe ≤ Smx ≤ β e for all m ≥ 1, x ∈ ∘
K, ‖x‖ = 1.

For Sm,r = Tm+r−1 ∘ ⋅ ⋅ ⋅ ∘ Tm we show by induction over r

u(r, x) ≤ Sm,rx ≤ v(r)(x) for x ∈ ℝn
+ ∖ {0} (∗)

where u(r, x) = ∏r−1
i=0 μ(v(i)(x))Lrx, v(i)(x) the i-th iterate of v(x) = (nν (x), . . . , ν (x) and

L =

[[[[[[[[[

1 1 ⋅ ⋅ ⋅ 1
1 0 ⋅ ⋅ ⋅ 0
0 1 ⋅ ⋅ ⋅ 0
...
0 0 ⋅ ⋅ 1 0

]]]]]]]]]
.

Assertion (∗) for r = 1 means that μ(x)Lx ≤ Tmx ≤ v(x) which is true by assumption
(b). If (∗) holds for r then

μ(Sm,rx)LSm,rx ≤ Sm,r+1x = Tm,r(Sm,rx) ≤ v(Sm,rx).
From Sm,rx ≤ v(r)(x) it follows by assumption on ν that v(Sm,rx) ≤ v(v(r)(x)) = v(r+1)(x).
From Sm,rx ≤ v(r)(x) and the assumption on μ it follows that

μ(Sm,rx)LSm,rx ≥ μ(v(r)(x))Lu(r, x) = μ(v(r)(x))r−1∏
i=0

μ(v(i)(x))Lr+1x.
Thus

r∏
i=0

μ(v(i)(x))Lr+1x ≤ Sm,r+1x ≤ v(r+1)(x),
which proves property (∗). Now, since Ln > 0 it follows for r = n and Sm = Sm,n from(∗) that

0 < u(n, ei) ≤ Smei ≤ v(n)ei for 1 ≤ i ≤ n and all m,
where ei is the i-th unit vector.
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7.3 Strong ergodicity for ascending operators | 229

Since Sm is concave it follows for x = ∑n
i=1 xiei with ∑n

i=1 xi = 1 that Smx ≥∑n
i=1 xiSmei ≥ αe where α = min

1≤i,j≤n
u(n, ei))j > 0 and e the vector with all entries

equal to 1. Finally, as a concave mapping Sm is monotone and x ≤ e implies that
Smx ≤ Sme ≤ v(n)(e) by property (∗). Since vn(e) > 0 we have vn(e) ≤ β e for some
β > 0 and arrive at αe ≤ Smx ≤ β e for allm and x ∈ ∘

K, ‖x‖ = 1. All assumptions being
satisfied, from Corollary 7.2.3 (ii) we conclude that weak ergodicity for the norm ‖ ⋅ ‖
holds on

∘
K and, hence, on ℝn

+ ∖ {0}.
By the way, for Tt = T for all t from weak ergodicity we get back earlier results.

Since by the Concave Perron–Frobenius Theorem (Theorem 2.1.14) the eigenvalue
problem Tx = λ x has a solution 0 ≨ x∗, 0 < λ ∗ (by assumption (b)) it follows Tnx∗

‖Tnx∗‖ =
x∗
‖x∗‖ since T is ray-preserving. Thus, weak ergodicity yields lim

n→∞
 Tnx
‖Tnx‖ − x∗

‖x∗‖
 = 0. that

is lim
n→∞

Tnx
‖Tnx‖ =

x∗
‖x∗‖ for all x ≩ 0.

(2) Consider now the special case of a linear and non-autonomous Leslie model
where Ttx = L(t)x with

L(t) =
[[[[[[[[[

b1(t) b2(t) ⋅ ⋅ ⋅ bn−1(t) bn(t)
s1(t) 0 ⋅ ⋅ ⋅ 0 0
0 s2(t) ⋅ ⋅ ⋅ 0 0
...

...
...

...
0 0 ⋅ ⋅ ⋅ 0 sn−1(t) sn(t)

]]]]]]]]]
.

Concerning the assumptions made for (1), (a) holds trivially and (c) holds with
ct(x, λ ) = 1 for all t, x, λ . Assumption (b) means that uniformly for all t the maximal
entry of L(t) is bounded from above and theminimal strictly positive entry is bounded
frombelow. Being a special case of (1) under these assumptionswe obtainweak ergod-
icity. Actually, since Tt is not only ray-preserving but positively homogeneous we have
that any two orbits are asymptotically proportional. This illustrates Corollary 7.2.3 part
(i) aswell as part (ii) since lumpedproducts L(m + n−1) ⋅ ⋅ ⋅ L(m) are strictly positive for
allm by the very structure of L(t).(For non-linear and non-autonomous Leslie models
see also Exercises 3, 4, 7.)

7.3 Strong ergodicity for ascending operators

In this sectionwe extend the strong ergodicity property as it is known from inhomoge-
neous Markov chains, population dynamics and demography to non-linear mappings
in not necessarily finite dimensional vector spaces.

Consider for a (non-empty) subset D ⊆ V ∖ {0} of a normed vector space (V , ‖ ⋅ ‖)
a sequence (Tn)n of selfmappings of D defining a non-autonomous system by

xn+1 = Tnxn, n ≥ 1, x1 ∈ D. (7.3.1)
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230 | 7 Non-autonomous positive systems

According toDefinition 7.1.3 this systemhas strong ergodicity onD if there exists x∗ ∈
D such that lim

n→∞
 xn
‖xn‖

− x∗ = 0 for all x1 ∈ D. As in the case of inhomogeneous Markov
chainswe shall assume that themappings Tn converge to a selfmapping T ofD. If T, or
some iterate of T, has a contraction property for an internal metric, we will be able to
obtain strong ergodicity from results for non-autonomous systems onmetric spaces in
Section 4.2. To ensure the contraction property we assume T to be ascending – where
throughout this section the functionϕ in Definition 5.1.4 is assumed to be continuous.
For the particular case that Tn = T for all n, we are back to the case of an autonomous
system defined by an ascending operator T as it has been studied in Chapter 5.

The main result in this section is the following theorem.

Theorem 7.3.1. Let (V , ‖⋅‖)beanormed real vector space and let K ⊆ V bea convex cone
which is closed and normal with non-empty interior

∘
K. Let (Tn)n and T be selfmappings

of 0 ̸= D ⊆ ∘
K.

(i) Suppose (Tn)n converges uniformly to T and T is uniformly continuous (for the
norm). Suppose, furthermore, an iterate Tk is weakly ascending on D and for some
u ∈ ∘

K it holds that u ≤ Tkx for all x ∈ D.
Then for each orbit (xn)n of system (7.3.1) with compact closure (for the norm) in D
it holds that

lim
n→∞

‖xn − x∗‖ = 0 where x∗ is the unique fixed point of T in D.
(ii) Let (V , ‖ ⋅ ‖) be a Banach space, U = {x ∈ D | ‖x‖ = 1}, D internally closed in

∘
K and

assume x
‖x‖ ∈ D for x ∈ D. Suppose on U the sequence (Tn)n converges uniformly to

T, T is uniformly continuous and a ≤ ‖Tx‖ for some a > 0 and all x ∈ U. Suppose,
further for some k ≥ 1, Tk is ascending and norm-bounded on U and for some u ∈ ∘

K
it holds that u ≤ Tkx for all x ∈ U. Then for each orbit of the rescaled system given
by

x̃n+1 = T̃nx̃n, n ≥ 1, x̃1 = x1 ∈ D (7.3.2)

one has for k = 1 or T ray-preserving that lim
n→∞

‖x̃n − x∗‖ = 0 where x∗ is the unique
solution of Tx = λ x in U with λ > 0. Moreover, in case T and Tn, n ≥ 1, are ray-
preserving it holds for k arbitrary lim

n→∞
‖ xn
‖xn‖

− x∗‖ = 0 with x∗ as above.

Proof. (i) The result will be obtained from Corollary 4.2.4 for themetric space (D, p), p
the part metric on

∘
K. For the lumpedmappings Sm = Tm+k−1 ∘ . . . ∘Tm from Lemma 4.2.5

it follows for the metric space (D, ‖ ⋅ ‖) that (Sm)m converges uniformly to S = Tk. Next
we show this holds true in (D, p), too. For u ∈ ∘

K we have that for some r > 0 the open
ball B( 12u, r) is contained in K. Since ‖Smx − Sx‖ ≤ r form ≥ N(r) and all x ∈ Dwe have
that 1

2u + Smx − Sx ∈ B( 12u, r) ⊆ K and, hence,

Smx ≥ Sx − 1
2
u ≥ u − 1

2
u = 1

2
u for all m ≥ N(r), all x ∈ D.

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:20 PM



7.3 Strong ergodicity for ascending operators | 231

From Proposition 3.4.12, part (vi)(b), it follows

p(Smx, Sx) ≤ Kp‖Smx − Sx‖ for all m ≥ N(r), all x ∈ D.
Similarly, p(Sx, Sy) ≤ Kp‖Sx − Sy‖ for all x, y ∈ D, where Kp > 0 is a constant. To apply
Corollary 4.2.4 (i) we show that S = Tk is contractive on (D, p). By assumption, S is
weakly ascending, therefore (see Proof (i) for Theorem 7.2.2)

λ x ≤ y ≤ 1
λ
x implies ϕ (λ )Sx ≤ Sy ≤ 1

ϕ (λ )Sx,
with μ(x, y) = sup{λ > 0 | λ x ≤ y ≤ 1

λ x}, therefore,
μ(Sx, Sy) ≥ ϕ (μ(x, y)) and p(Sx, Sy) ≤ − log[ϕ (μ(x, y))].

Since 0 < μ(x, y) < 1, for x ̸= y, it follows ϕ (μ(x, y)) > μ(x, y). Thus, p(Sx, Sy) < p(x, y)
for x ̸= y, that is, S is contractive on (D, p). If (xn)n has compact closure (for ‖ ⋅ ‖) in D
then, by Proposition 3.4.12 (v), (xn)n has compact closure in (D, p). Thus, Corollary 4.2.4
yields lim

n→∞
p(xn, x∗) = 0 and, hence, lim

n→∞
‖xn − x∗‖ = 0. Thereby, x∗ is the unique fixed

point of S = Tk in D. Now,

‖Tx∗ − x∗‖ ≤ ‖Tx∗ − Txn‖ + ‖Txn − Tnxn‖ + ‖xn+1 − x∗‖,
and the assumptions made imply Tx∗ = x∗. This proves part (i) of the theorem.

(ii) The result will be obtained from Corollary 4.2.4 for the metric space (U, d), d
the Hilbert metric on U. Consider the rescaled operators T̃n and T̃ which are selfmap-
pings of U. For any two z,w ∈ V ∖ {0} it holds that  z

‖z‖ − w
‖w‖
 ≤ 2

‖z‖ ‖z − w‖. Therefore,‖T̃x− T̃nx‖ ≤ 2
‖Tx‖ ‖Tx−Tnx‖ and by assumption it follows that ‖T̃x− T̃nx‖ ≤ 2

a ‖Tx−Tnx‖
for x ∈ U. Thus, T̃n converges uniformly to T̃ on (U, ‖ ⋅ ‖). Similarly, T̃ is uniformly con-
tinuous on (U, ‖ ⋅ ‖). From Lemma 4.2.5 it follows for the metric space (U, ‖ ⋅ ‖) that the
lumped operators Fm = T̃m+k−1 ∘ . . . ∘ T̃m converge uniformly to F = T̃k. From u ≤ Tkx
for x ∈ U it follows u

‖Tkx‖ ≤ Tkx
‖Tkx‖ = T̃kx and, since ‖Tkx‖ ≤ b for some b > 0 and for

x ∈ U, we have that v = u
b ≤ T̃kx for x ∈ U.

Let us assume that T̃k = T̃k. This assumption is satisfied if k = 1 or if T is ray-
preserving. Then we have that v ≤ Fx for all x ∈ U where v ∈ ∘

K. The uniform con-
vergence of Fm to F implies, as in step (i), Fmx ≥ 1

2v for all x ∈ U, all m ≥ N. By
Proposition 3.4.12, part (vi)(b), therefore d(Fmx, Fx) ≤ Kd‖Fmx − Fx‖ for all x ∈ U, all
m ≥ N. Furthermore, d(Fx, Fy) ≤ Kd‖Fx − Fy‖ for all x, y ∈ U. To apply Corollary 4.2.4
(ii), we shall show that (x̃n) is bounded in (U, d) and F is a generalized contraction on(U, d). For the former observe that x̃m+k = Fmx̃m and Fmx ≥ 1

2v for all x ∈ U, allm ≥ N.
Therefore d(x̃m+k, x̃N+k) ≤ Kd‖x̃m+k − x̃N+k‖ ≤ 2Kd form ≥ N.

This shows boundedness of (x̃n) in (U, d). To see that F is a generalized contraction
we proceed as in part (i) in the proof of Theorem 7.2.2. Since S = Tk is ascending on U,
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232 | 7 Non-autonomous positive systems

it follows for x, y ∈ U, 0 < λ , μ ≤ 1 and λ x ≤ y, μy ≤ x that ϕ (λ )Sx ≤ Sy,ϕ (μ)Sy ≤ Sx.
Consider for 0 < α ≤ β given the compact set I = {(λ , μ) ∈ [0, 1]2 | e−β ≤ λμ ≤ e−α }
and the function l(λ , μ) = log(ϕ (λ )ϕ (μ))

log(λμ) well-defined on I. Since 0 < λμ < 1 for (λ , μ) ∈ I
andϕ is a strictly increasing selfmapping of ]0, 1[ it follows thatϕ (λ )ϕ (μ) > λμ and,
hence, l(λ , μ) < 1. Since ϕ is continuous, l is continuous, too, and sup l(I) = σ < 1.
Thus, we have

d(Fx, Fy) = d(S̃x, S̃y) = d(Sx, Sy) ≤ − log(ϕ (λ )ϕ (μ)) ≤ σ (− log(λμ))
and arrive for α ≤ d(x, y) ≤ β at d(Fx, Fy) ≤ σd(x, y), which means F is a generalized
contraction on (U, d). Since D is internally closed, the metric space (U, d) is complete
by Corollary 3.4.14.

Thus, Corollary 4.2.4 yields lim
n→∞

d(x̃n, x∗) = 0, and, hence, lim
n→∞

‖x̃n−x∗‖ = 0, where
x∗ is the unique fixed-point of F in U. Furthermore,

‖T̃x∗ − x∗‖ ≤ ‖T̃x∗ − T̃x̃n‖ + ‖T̃x̃n − T̃nx̃n‖ + ‖x̃n+1 − x∗‖,
which implies T̃x∗ = x∗. Since x∗ is the unique fixed point of F in U, it is the unique
fixed point of T̃ in U, too. Equivalently, x∗ is the unique solution of Tx = λ x in U with
λ > 0. Moreover, if Tn is ray-preserving,

x̃n+1 = T̃n ∘ ⋅ ⋅ ⋅ ∘ T̃1x1 = Tn ∘ ⋅ ⋅ ⋅ ∘ T1x1‖Tn ∘ ⋅ ⋅ ⋅ ∘ T1x1‖ = xn+1‖xn+1‖ ,
and we arrive at lim

n→∞
 xn
‖xn‖

− x∗ = 0.

Corollary 7.3.2. For D =
∘
K the conclusion lim

n→∞
‖ xn
‖xn‖

− x∗‖ = 0 of Theorem 7.3.1, part (ii),
holds true if the norm closure B = {x ∈ K | ‖x‖ = 1} of U is assumed to be norm-compact
and the requirement on Tk to be ascending on U is replaced by the weaker one (all other
assumptions being unchanged)

x, y ∈ U, 0 < λ < 1, λ x ≨ y implies λ Tkx < Tky.
Proof. Theabove followsas in theproof of Theorem7.3.1, part (ii), by employingpart (i)
of Corollary 4.2.4 instead of part (ii). Namely, the assumption made implies for S = Tk

that ν (Sx, Sy) > ν (x, y) for x, y ∈ U, x ̸= y. Therefore, with F = S̃

d(Fx, Fy) < d(x, y) for x, y ∈ U, x ̸= y.
Furthermore, since x̃m+k = Fmx̃m ≥ 1

2v for m ≥ N we have that x̃n ∈ C = {x ∈ B | x ≥
1
2v} ⊆ U for n ≥ N + k. C is norm-compact by assumption and from Proposition 3.4.12
(vi) (b) it follows that C is compact in (U, d). Thus (x̃n) is relatively compact in (U, d)
and by Corollary 4.2.4 (i) we arrive at lim

n→∞
d(x̃n, x∗) = 0, x∗ being the unique fixed point

of F inU. As in the proof of Theorem 7.3.1, part (ii), this implies lim
n→∞

‖ xn
‖xn‖

− x∗‖ = 0.

Similarly to the case of weak ergodicity as a corollary we obtain the following special-
ization to concave operators.
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7.3 Strong ergodicity for ascending operators | 233

Corollary 7.3.3 (Concave strong ergodicity). Let (V , ‖ ⋅ ‖) be a Banach space containing
a convex cone K which is closed and normal with

∘
K ̸= 0. Let (Tn)n be a sequence of

selfmappings of
∘
K which converges on U = {x ∈ ∘

K | ‖x‖ = 1} uniformly to a concave
selfmapping T of

∘
K which is uniformly continuous on U (for ‖ ⋅ ‖).

(i) If for some u, v ∈ ∘
K it holds u ≤ Tx ≤ v for all x ∈ U then the orbit (x̃n)n of the

rescaled system
x̃n+1 = T̃nx̃n, n ≥ 1, x̃1 = x1 ∈ ∘

K

converges in norm to the unique solution x∗ of Tx = λ x in U with λ > 0.
(ii) If for some u, v ∈ ∘

K, k ≥ 1 it holds u ≤ Tkx, Tx ≤ v, a ≤ ‖Tx‖ for some a > 0
for all x ∈ U and T, Tn, n ≥ 1, are ray-preserving then for the orbit (xn)n given by
xn+1 = Tnxn, x1 ∈ ∘

K the sequence ( xn
‖xn‖
)n converges in norm to the unique solution x∗

of Tx = λ x in U with λ > 0.

Proof. (i) For D =
∘
K, concavity of T together with u ≤ Tx ≤ v for x ∈ U implies,

as in the proof for part (i) of Corollary 7.2.3, that T is ascending on U. Furthermore,
0 < ‖u‖ ≤ ‖Tx‖ ≤ ‖v‖ for x ∈ U. From Theorem 7.3.1 (ii) the assertion follows for k = 1.

(ii) Tk is concave and Tkx ≤ Tk(v) ∈ ∘
K. By step (i) Tk is ascending onU. Again, the

assertion follows from Theorem 7.3.1 (ii)

Specializing further to linear operators we obtain in particular the classical strong
ergodicity result for non-negative matrices as discussed in Section 7.1.

Corollary 7.3.4 (Linear strong ergodicity). (i) Let (V , ‖ ⋅ ‖) be a Banach space contain-
ing a convex cone K which is closed and normal with

∘
K ̸= 0. Let (Tn)n be a sequence

of ray-preserving selfmappings of
∘
K which converges on U = {x ∈ ∘

K | ‖x‖ = 1} uni-
formly to a uniformly continuous and linear selfmapping T of

∘
K. If for some u, v ∈

∘
K, k ≥ 1, it holds u ≤ Tkx, Tx ≤ v and a ≤ ‖Tx‖ with a > 0 for all x ∈ U then for the
orbit (xn)n given by xn+1 = Tnxn, x1 ∈ ∘

K the sequence ( xn
‖xn‖
)n converges in norm to

the unique solution x∗ of Tx = λ x in U with λ > 0.
(ii) Let (Pn)n be a sequence of non-negative dxd-matrices without zero row which con-

verges elementwise to a primitive matrix P then for all 1 ≤ i, j ≤ d

lim
n→∞

(Pn . . . P1)ij
d∑

h=1
(Pn . . . P1)hj

= x∗, Px∗ = ‖Px∗‖1x∗,

that is the sum-normed columns of the matrix Pn . . . P1 become equal, for n ap-
proaching infinity, to the unique sum-normed right eigenvector of P.

Proof. (i) The assertion follows immediately from Corollary 7.3.3 (ii).
(ii) Since Pn has a no zero row the linearmapping given by Tnx = Pnx is a selfmap-

ping of
∘
K for K = ℝd

+,V = (ℝd, ‖ ⋅ ‖1) (‖ ⋅ ‖1 the sum-norm). Since Ū is compact for ‖ ⋅ ‖,
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234 | 7 Non-autonomous positive systems

the mappings Tn converge uniformly to Tx = P ⋅ x. Primitivity of P implies Tkx > 0 for
x ∈ Ū and, hence, Tkx ≥ u > 0 for all x ∈ Ū. Furthermore, T is a uniformly continuous
selfmapping of

∘
K such that a ≤ ‖Tx‖with a > 0 and Tx ≤ v for some 0 < v and all x ∈ Ū.

From step (i) it follows for xn+1 = Pn ⋅ xn, x1 ∈ ∘
K that lim

n→∞
xn

‖xn‖1
= x∗, Px∗ = ‖Px∗‖1x∗.

This holds also for x1 the j-th unit vector ej and from (xn+1)i = (Pn . . . P1ej)i the assertion
follows.

A further consequence of Theorem 7.3.1 is the following differentiability criterion for
strong ergodicity in finite dimensions.

Corollary 7.3.5. Let V = ℝd,K = ℝd
+, ‖ ⋅ ‖ any monotone norm on ℝd. For a log-convex

subset D of
∘
K let (Tn)n be a sequence of selfmappings of D which converges uniformly to

a selfmapping T of D, which is uniformly continuous on D. Suppose 0 < u ≤ Tx for all
x ∈ D and T is differentiable on

∘
K such that for the Jacobian J of Tk it holds |J(x)|x < Tkx

for all x ∈ D. If the orbit defined by xn+1 = Tnxn, x1 ∈ D, is contained in a closed and
bounded (for the norm) subset of D then it converges in norm to the unique fixed point
of T in D.

Proof. From assumption |J(x)|x < Tkx, x ∈ D, we obtain by Theorem 6.2.1 (ii)
p(Tkx, Tky) < p(x, y), x ̸= y, that is, Tk is contractive on (D, p). Since bounded sets
have compact closure in (ℝd, ‖ ⋅ ‖) the assertion follows as in the proof of part (i) of
Theorem 7.3.1.

Remark 7.3.6. For particular cases of Theorem 7.3.1 see [15, 16]. For Corollary 7.3.2 see
[16]. For Corollaries 7.3.2 and 7.3.3 in finite dimensions see [15]. For Corollary 7.3.4 in
finite dimensions, the classical strong ergodicity, see [44], where the dual result for
“forward products” of matrices is proven.

The next section presents an application of strong ergodicity to a non-linear version
of a theorem of Poincaré on difference equations. (For examples of strong ergodicity
see also Exercises 7, 8, 10.)

7.4 A non-linear version of Poincaré’s theorem on
non-autonomous difference equations

Consider the following linear difference equation of order n with time-dependent co-
efficients

u(t + n) = p0(t)u(t) + p1(t)u(t + 1) + ⋅ ⋅ ⋅ + pn−1(t)u(t + n − 1), t ∈ ℕ. (7.4.1)

Assuming
lim
t→∞

pi(t) = pi for all 0 ≤ i ≤ n − 1 (7.4.2)
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7.4 A non-linear version of Poincaré’s theorem | 235

the question arises on how solutions of equation (7.4.1) are connected to solutions of
the corresponding autonomous equation given by

u(t + n) = p0u(t) + p1u(t + 1) + ⋅ ⋅ ⋅ + pn−1u(t + n − 1), t ∈ ℕ. (7.4.3)

Since the solutions of equation (7.4.3) are given by the roots of the characteristic equa-
tion

p0 + p1λ + p2λ
2 + ⋅ ⋅ ⋅ + pn−1λ

n−1 = λ n, (7.4.4)

and the multiplicities of these roots, the question above becomes on how solutions of
(7.4.1) are related to the roots of the characteristic equation (7.4.4).

In this respect Poincaré proved in 1885 the following result ([41]; see also [10]):

Poincaré’s Theorem. Assume for equation (7.4.1), with coefficients and solutions inℂ, that beside assumption (7.4.2) it holds for the roots λ1, . . . , λn of equation (7.4.4) that
|λi| ̸= |λj| for i ̸= j (7.4.5)

(| ⋅ | the absolute value of a complex number). Then for any solution u of (7.4.1) which
is not asymptotically zero there exists an λi such that

lim
t→∞

u(t + 1)
u(t) = λi. (7.4.6)

A natural question considering Poincaré’s theorem is what can be said if the addi-
tional assumption (7.4.5) is not being satisfied. Surprisingly, this question has been
answered only very recently by M. Pituk [39] with a nice result on Poincaré’s differ-
ence systems. The latter are discrete dynamical systems

x(t + 1) = (A + B(t))x(t), t ∈ ℕ (7.4.7)

where A and B(t) are complex n × n-matrices and

lim
t→∞

B(t) = 0 (with respect to some norm ‖ ⋅ ‖.)
Obviously, equation (7.4.1) is a special case of a Poincaré difference system where

equation (7.4.2) corresponds to equation (7.4.7).

Pituk’s Theorem. If x is a solution of (7.4.7)which is not asymptotically zero then there
exists an eigenvalue λ of A such that

lim
t→∞

‖x(t)‖ 1
t = |λ |.

(For an extension of Pituk’s Theorem to linear operators see Exercise 9.)
Both theoremsmay be interpreted as results on the behavior of solutions of a per-

turbed system in case the perturbation vanishes in the limit. The difference between
the two theorems lies in the two different “growth rates” considered for solutions. The
following lemma makes this more explicit.
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236 | 7 Non-autonomous positive systems

Lemma 7.4.1. Let (xn)n≥1 be a sequence in the (complex) vector space V with norm ‖ ⋅ ‖
such that there exists m such that xn ̸= 0 for all n ≥ m.

For the following types of a growth rate with value r > 0 for (xn)n≥1 does (a) imply
(b) and (b) imply (c):
(a) lim

n→∞
xn
rn exists in V ∖ {0},

(b) lim
n→∞

‖xn+1‖
‖xn‖

= r,

(c) lim
n→∞

‖xn‖ 1
n = r.

Proof. (a)⇒ (b). lim
n→∞

xn
rn = lim

n→∞
xn+1
rn+1 ̸= 0 implies

lim
n→∞

‖xn+1‖‖xn‖ = r lim
n→∞

( ‖xn+1‖
rn+1
‖xn‖
rn

) = r.
(b)⇒ (c). Let an =

‖xn+1‖
‖xn‖r

for n ≥ m.

By assumption, to 𝜖 > 0 exists n1 such that 1 − 𝜖 ≤ an ≤ 1 + 𝜖 for n ≥ n1. Since
‖xn‖
rn = ‖xn‖

‖xn−1‖r
⋅ ⋅ ⋅ ‖xn1+1‖‖xn1 ‖r

⋅ ‖xn1 ‖rn1 for n ≥ n1, it follows

‖xn‖ 1
n

r
= (an−1 ⋅ ⋅ ⋅ an1 ) 1n ⋅ bn with bn = (‖xn1‖rn1

) 1
n .

Obviously lim
n→∞

bn = 1. Furthermore (1 − 𝜖) ≤ (an−1 . . . an1 ) 1n ≤ (1 + 𝜖) for n ≥ n1 + 1.
Since 1 − 𝜖 ≤ bn ≤ 1 + 𝜖 for n ≥ n2 with some n2 ≥ n1 + 1 it follows

(1 − 𝜖)2 ≤ ‖xn‖ 1
n

rn
≤ (1 + 𝜖)2 for n ≥ n2.

This proves lim
n→∞

‖xn‖ 1
n = r.

None of the implications in Lemma 7.4.1 is reversible. This is so even in the particu-
lar case of equation (7.4.1) with real and non-negative coefficients, as the following
examples show. (For the implicatons in Lemma 7.4.1 see [1].)

Examples 7.4.2. (i) Consider the following particular case of (7.4.1)

u(t + 2) = t + 2
2t + 1

(u(t) + u(t + 1)), t ∈ ℕ.
For p0(t) = p1(t) = t+2

2t+1 , p0 = p1 =
1
2 , hence, the characteristic equation is

1
2 (1 + λ ) =

λ 2. The roots are λ1 = 1, λ2 = − 1
2 and have different absolute value whence Poincaré’s

theoremapplies. Especially, for u(0) = 1, u(1) = 2 it holds that lim
t→∞

u(t+1
u(t) = 1. Induction

shows, however, that u(t) ≥ t + 1 for all t and lim
t→∞

u(t) does not converge. Thus, for the
sequence xt = u(t) and r = 1, property (b) of Lemma 7.4.1 applies but not property (a).

(ii) Consider the following case of (7.4.1) where the coefficients are even all con-
stant

u(t + 4) = 1
2
(u(t) + u(t + 2)), t ∈ ℕ.
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For u(0) = 1, u(1) = 2, u(2) = 1, u(3) = 2 the solution is given by u(t) = 1 for t
even and u(t) = 2 for t odd. Obviously, for the sequence xt = u(t) and r = 1 property
(c) of Lemma 7.4.1 applies but not property (b). Actually, this example satisfies the
assumption of Pituk’s theorem but not those of Poincaré’s theorem because ±1 are
roots of the characteristic equation λ 4 = 1

2 (1 + λ 2).
From results of the previous section we will obtain a version of Poincaré’s theorem for
non-linear difference equations and non-linear Poincaré difference systems, respec-
tively. This will be done in the frame work of positive systems within Banach spaces.
Under certain assumptions on the unperturbed system it follows that the growth rate
as in Poincaré’s theorem (type (b)) is equal for all positive solutions to the dom-
inant eigenvalue. Contrary to Poincaré’s theorem this is true even if some different
eigenvalues have equal modulus. Furthermore, the growth rates as in Pituk’s theorem
(type (c)), too, are equal for all positive solutions to the dominant eigenvalue.

Theorem 7.4.3. Let (V , ‖ ⋅ ‖) be a real Banach space containing a convex cone K which
is closed and normal with non-empty interior

∘
K. Let Tt, t ≥ 0, and T be positively homo-

geneous selfmappings of K mapping
∘
K into itself. Let

x(t + 1) = Ttx(t), t ∈ ℕ (7.4.8)

be a Poincaré system, that is lim
t→∞

Ttx = Tx uniformly on B = {x ∈ K | ‖x‖ = 1} and T
is continuous on K. In each of the following cases it holds for every solution x of (7.4.8)
with x(0) ∈ K ∖ {0} that

lim
t→∞

x(t)‖x(t)‖ = x∗ and lim
t→∞

‖x(t + 1)‖‖x(t)‖ = lim
t→∞

‖x(t)‖ 1
t = λ ∗, (7.4.9)

where (x∗, λ ∗) is the unique solution of Tx = λ x with x ∈ B and λ > 0.
Case (i). T is concave, uniformly continuous on B and there exist 0 < a, 1 ≤ k and

u, v ∈ ∘
K such that

a ≤ ‖Tx‖, u ≤ Tkx, Tx ≤ v for all x ∈ B.
Case (ii). B is compact (for ‖ ⋅ ‖) and for some 1 ≤ k

x, y ∈ B, 0 < λ < 1, λ x ≨ y imply that λ Tkx < Tky.
Proof. (1) First we show that in both cases lim

t→∞
x(t)
‖x(t)‖ = x∗ for x(0) ∈ ∘

K. In case (i) this
follows from Corollary 7.3.3 (ii). In case (ii) the assertion will follow from Theorem 7.3.1
(ii) and Corollary 7.3.2. For this we show that, up to concavity, the assumptions of case
(i) are satisfied.

Obviously, T is uniformly continuous on B and C = Tk(B) ⊆ K is compact (for‖ ⋅ ‖). For x ∈ B, 12x ≨ x and by assumption 1
2T

kx < Tkx. Therefore, 0 < Tkx and
C ⊆ ∘

K. For z ∈ C the set U(z) = 1
2z +

∘
K is an open neighborhood of z in (V , ‖ ⋅ ‖). By
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238 | 7 Non-autonomous positive systems

compactness there exists a finite covering, C ⊆ ⋃m
i=1 U(zi). Since zi ∈ ∘

K it follows that

λ = min
1≤i≤m

λ (z1, zi) > 0 and, hence, u = λ
2 z1 ∈ ∘

K. To z ∈ C given there exist i and y ∈ ∘
K

such that z = 1
2zi + y and, hence, z ≥ 1

2zi ≥ λ
2 z1 = u. This shows u ≤ Tkx for all x ∈ B.

Furthermore, for y ∈ C = T(B) and any e ∈ ∘
K the set U(y) = y + e − ∘

K is an open
neighborhood of y in (V , ‖ ⋅ ‖). Again there exists a finite covering C ⊆ ⋃p

j=1 U(yj). To
y ∈ C given there exist i and w ∈ ∘

K such that y = yj + e − w ≤ ∑p
i=1 yi + e. This shows

for v = ∑p
i=1 yi + e ∈ ∘

K that Tx ≤ v for all x ∈ B.
Finally, T0 = 0 by positive homogeneity and Tx = 0 implies Tkx = Tk−10 = 0 and

x = 0. Therefore, 0 < ‖Tx‖ for all x ∈ B and by compactness a ≤ ‖Tx‖ for some 0 < a
and all x ∈ B.

(2) By (1) it holds in both cases, (i) and (ii)

0 < a ≤ ‖Tx‖, u ≤ Tkx, Tx ≤ v for all x ∈ B
and not only on U = {x ∈ ∘

K | ‖x‖ = 1}. Therefore, according to the proof of Theo-
rem 7.3.1 (ii) and Corollary 7.3.2, we have lim

t→∞
x(t)
‖x(t)‖ = xk not only for x(0) ∈ U but for

x(0) ∈ B and, hence, for x(0) ∈ K ∖ {0}. It follows
x(t + 1)‖x(t)‖ − Tx∗ ≤ Tt x(t)‖x(t)‖ − T x(t)‖x(t)‖  + T x(t)‖x(t)‖ − Tx∗.

By assumptions on Tt, T it follows

lim
t→∞

x(t + 1)‖x(t)‖ = Tx∗ = λ ∗x∗,
and, hence, lim

t→∞
‖x(t+1)‖
‖x(t)‖ = λ ∗. Since x(t) ∈ K ∖ {0} for x(0) ∈ K ∖ {0} from Lemma 7.4.1 it

follows that lim
t→∞

‖x(t)‖ 1
2 = λ ∗.

Taking up Poincaré’s theorem for the linear difference equation (7.4.1) we obtain the
following non-linear version within the framework of positivity.

Corollary 7.4.4 (Non-linear Poincaré Theorem). Let

u(t + n) = ft(u(t), u(t + 1), . . . , u(t + n − 1)), t ∈ ℕ (7.4.10)

be a non-autonomous difference equation of order n. Assume ft : ℝn
+ → ℝ+, ft(x) > 0

for x > 0, ft positively homogeneous. Suppose lim
t→∞

ft(x) = f (x) uniformly on B = {x ∈ℝn
+| ‖x‖ = 1}. (‖ ⋅ ‖ a monotone norm) where f : ℝn

+ → ℝ+ with f (x) > 0 for x > 0 is a
continuous, positively homogeneous mapping which satisfies the following property

0 ≤ x ≤ y implies f (x) ≤ f (y)
and there exist 1 ≤ n1, n2, . . . , nr, n1 = 1, r ≥ 2 with gcd{n − n1 + 1, . . . , n − nr + 1} = 1
such that

0 ≤ x ≤ y and xni < yni for some i imply f (x) < f (y).
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7.4 A non-linear version of Poincaré’s theorem | 239

Then for every solution u of (7.4.10) with (u(0), . . . , u(n − 1) ≩ 0 it holds

lim
t→∞

u(t + 1)
u(t) = lim

t→∞
u(t) 1t = λ ∗

where λ ∗ is the unique positive root of the “characteristic equation” f (1, λ , λ 2, . . . , λ n−1)
= λ n.

Proof. Let Ttx = (x2, . . . , xn, f (x)), Tx = (x2, . . . , xn, f (x)) for x ∈ ℝn
+. By assumption,

Tt and T are positively homogeneous and map the interior of ℝn
+ into itself. Further-

more, lim
t→∞

Ttx = Tx uniformly on B, B is compact and T continuous on B. To apply

case (ii) of Theorem 7.4.3 we show that for some k ≥ 1 Tk is strictly increasing that is,
0 ≤ x ≨ y implies Tx < Ty. Consider solutions u, v of (7.4.10) with initial conditions(u(0), . . . , u(n − 1)) = x and (v(0), . . . , v(n − 1)) = y. By Lemma 2.5.4 there exists k ≥ 1
such that u(t) < v(t) for all k ≤ t. From the definitions of Tt and T it follows by iteration
for t ≥ 0

Tt ∘ ⋅ ⋅ ⋅ ∘ T0x = (u(t + 1), . . . , u(t + n)) and Ttx = (u(t), . . . , u(t + n − 1)).
Therefore, Tkx < Tky and all assumptions for case (ii) of Theorem 7.4.3 are satisfied.
The eigenequation Tx = λ x is equivalent to

xi+1 = λ xi, 1 ≤ i ≤ n − 1 and f (x) = xn

which in turn is equivalent to

xi+1 = λ ix1, 1 ≤ i ≤ n − 1 and f (1, λ , λ 2, . . . , λ n−1) = λ n.
Therefore, λ ∗ is the unique positive root of the ’characteristic equation’ and x∗ =
r(1, λ ∗, λ ∗2, . . . , λ ∗(n−1)) for some r > 0. Furthermore, for x = (u(0), . . . , u(n − 1)) ≩ 0 it
follows lim

t→∞
x(t)
‖x(t)‖ = x∗ and , hence,

lim
t→∞

u(t + 1)
u(t) = lim

t→∞

x(t)2
x(t)1 =

x∗2
x∗1

= rλ ∗

r
= λ ∗.

Finally, from Lemma 7.4.1 it follows lim
t→∞

u(t) 1t = λ ∗.

The corollary applies in particular to minima and maxima of linear equations as the
following example shows.

Example 7.4.5. Consider the difference equation u(t + n) = ft(u(t), . . . , u(t + n − 1))
with ft(x) = min

1≤i≤m
(ai1(t)x1 + ⋅ ⋅ ⋅ + ain(t)xn) for x ∈ ℝn

+ and aij(t) ≥ 0. Assume lim
t→∞

aij(t) =
aij and let f (x) = min

1≤i≤m
(ai1x1 + ⋅ ⋅ ⋅ + ainxn). It is easily seen that lim

t→∞
ft(x) = f (x) uni-

formly on B.
Assume the matrix A = (aij) is non-negative with strictly positive columns j ∈ J

where 1 ∈ J, |J| ≥ 2 and gcd{n − j + 1 | j ∈ J} = 1. All assumption of Corollary 7.4.4
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240 | 7 Non-autonomous positive systems

are satisfied. (Since f (x) > 0 for x > 0 we may assume ft(x) > 0 for x > 0.) Therefore
we obtain for (u(0), . . . , u(n − 1)) ≩ 0 that lim

t→∞
u(t+1)
u(t) = lim

t→∞
u(t) 1t = λ ∗ where λ ∗ is the

unique positive root of min
1≤i≤m

(ai1 + ai2λ + ⋅ ⋅ ⋅ + ainλ n−1) = λ n. A similar result holds
in case of ft(x) = max

1≤i≤m
(ai1(t)x1 + ⋅ ⋅ ⋅ + ain(t)xn). For m = 1 we are back to the linear

case of the Poincaré theorem, this time, however, within a positive framework. Thus,
letm = 2 and consider for simplicity the numerical example

a11(t) = t
t + 1

, a12(t) = 2 + 1
t
, a21(t) = 2 + 1

t2
, a22(t) = t + 1

t + 2
for t ≥ 1

for whichA = [ 1 2
2 1 ]. The characteristic equation for λ ∗ readsmin{1 + 2λ , 2 + λ } = λ 2.

In case of 1 + 2λ ≤ 2 + λ we have 1 + 2λ = λ 2 with roots λ1,2 = 1 ± √2. None
of these roots gives λ ∗ since 1 + √2 > 1 and 1 − √2 < 0. Therefore, we must have
1 + 2λ ≥ 2 + λ and 2 + λ = λ 2 with roots λ1,2 = 1

2 ± 3
2 . Since

1
2 − 3

2 < 0 we
concludewith λ ∗ = 2which indeed solves the characteristic equation. Thus, we arrive
at lim

t→∞
u(t+1)
u(t) = lim

t→∞
u(t) 1t = 2, provided (u(0), u(1)) ≩ 0.

Similarly one obtains for A = [ 1 2
2 1 ] and the case max{1 + 2λ , 2 + λ } = λ 2 as

unique solution λ ∗ = 1 + √2.
As the numerical example indicates to solve the characteristic equation for λ ∗ in

general one faces sets of inequalities of real polynomicals in one variable.

A single linear difference as it is considered in Poincaré’s theorem is a special case of
the above example, taken, however,within the framework of positive systems. Though
a rather simple case it allows some interesting observations as shown by the following
remarks.

Remarks 7.4.6. Consider the linear difference equation of order n with time-depen-
dent coefficients

u(t + n) = p1(t)u(t) + p2(t)u(t + 1) + ⋅ ⋅ ⋅ + pn(t)u(t + n − 1),
and assume lim

t→∞
pi(t) = pi for all 1 ≤ i ≤ n.

Assume further for n ≥ 2 all pj(t) ≥ 0 and pj > 0 for j ∈ J where 1 ∈ J, |J| ≥ 2 and
gcd{n− j + 1 | j ∈ J} = 1. Then by Example 7.4.5 we have for (u(0), . . . , u(n−1)) ≩ 0 that
lim
t→∞

u(t+1)
u(t) = lim

t→∞
u(t) 1t = λ ∗, where λ ∗ is the unique positive root of the characteristic

equation of p1 + p2λ + ⋅ ⋅ ⋅ + pnλ n−1 = λ n.
Thus, within the positive framework the conclusion (7.4.6) in Poincaré’s theorem

holds in the sharper form that the eigenvalue can be chosen the same for all solutions.
(a) As Examples 7.4.2 (i) show one cannot expect lim

t→∞
u(t)
λ ∗t to exist in Poincaré’s

theorem not even when coefficients are positive.
(b) Let n = 4, p1 = p2 = 1

2 , p2 = p4 = 0. Therefore, J = {3, 4} and by the above
lim
t→∞

u(t+1)
u(t) = lim

t→∞
u(t) 1t = 1, where λ ∗ = 1 is the unique positive root of 1

2 + 1
2λ = λ 4.

Therefore, the conclusion (7.4.6) of Poincaré’s theorem does hold, though the assump-
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7.5 Price setting in case of technical change | 241

tions of the theorem are not fulfilled since 1
2 + 1

2λ = λ 4 has two different conjugate
roots.

(c) Let n = 4, p1 = p3 = 1
2 , p2 = p4 = 0. Therefore J = {2, 4} and gcd{n − j +

1 | j ∈ J} = 2 ̸= 1, that is the monotonicity assumptions are not satisfied. Indeed,
as Examples 7.4.2 (ii) show, lim

t→∞
u(t+1)
u(t) = λ ∗ does not hold. Since 1

2 + 1
2λ

2 = λ 4 has
the roots ±1 this is in line with Poincaré’s theorem. Furthermore, lim

t→∞
u(t) 1t = λ ∗ does

hold for λ ∗ = 1which is in linewith Pituk’s theorem. This case shows also that even in
the restricted domain of positive systems the conclusion of Pituk’s theorem may hold
whereas the one of Poincaré’s theorem does not.

7.5 Price setting in case of technical change

The dynamics of price development in economics has been considered previously in
Chapters 1 and 2 (Sections 1.3, 1.4, 2.7). There it has been pointed out that by technical
change one arrives at a non-autonomous and non-linear discrete dynamical system
given by (see equation 1.4.2)

p(t + 1) = k(t)T(t)p(t), t ∈ ℕ, p(0) ∈ ℝn
+.

Thereby, p(t) is the price vector at t, k(t) > 0 a scalar factor and T(t) : ℝn
+ → ℝn

+ the
cost operator given by T(t)p = c(p, t) with a (unit) cost function c(p, t). As a function
of prices costs are often concave, for example if there is a choice of techniques. If the
technology changes with time then the cost function depends explicitly on time. The
latter has been modeled in the previous chapters but for the results obtained we had
to assume an autonomous system. With the tools developed in chapter 7 we are now
ready to treat technical change and to find out conditions under which the price dy-
namics is stable in the sense ofweak ergodicity. (One can ask, of course, for conditions
of strong ergodicity; this, however, is less likely in case of technical change.)

In what follows we shall simplify notation by integrating the scalar factor into the
cost function, that is we consider the dynamical system

p(t + 1) = T(t)p(t), T(t)p = c(p, t), t ∈ ℕ, p(0) ∈ ℝn
+, (7.5.1)

with T(t) a selfmapping of ℝn
+. It is quite natural to consider a norm for prices ‖p‖ =∑n

i=1 pi, p ∈ ℝn
+. If there is a choice of techniques, minimal costs of producer 1 ≤ i ≤ n

can be specified as (see equation 1.4.1)

ci(p, t) = inf{pa + wil|(a, l) ∈ Ai(t)}. (7.5.2)

Thereby, Ai(t) denotes the (non-empty) set of techniques which producer i has at his
disposal which consists of pairs (a, l) with a ∈ ℝn

+ being material inputs and l ≥ 0 the
labour input to produce one unit of good i. (pa is the inner product of vectors p and a.)
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242 | 7 Non-autonomous positive systems

Furthermore,wi is thewage paid per hour in the production of good i. Thewage can be
considered to be independent of prices as a “rigid wage” or to be varying with prices
as wi = pbi where bi ∈ ℝn

+ is the “real wage” corresponding to wi. In the latter case
equation (7.5.2) becomes (see also section 1.4)

ci(p, t) = inf{p(a + lbi)|(a, l) ∈ Ai(t)}. (7.5.3)

(For literature concerning these models as well as for the background in economics
see the relevant references given in chapters 1 and 2.) The following result is easily
obtained from part (ii) of Corollary 7.2.3.

Proposition 7.5.1. Consider a price dynamics given by equation (7.5.1).
(i) Let the cost function c(p, t) for each t be concave, positively homogeneous and such

that sup
t

ci(e, t) is finite for 1 ≤ i ≤ n(e = (1, . . . , 1)). Assume the matrix D = (dij)
of minimal expenditures dij = inf

t
ci(ej, t) (ej the j-th unit vector) is indecomposable

with dhh > 0 for some h.
Then there holds weak ergodicity (for ‖ ⋅ ‖) onℝn

+ ∖ {0} and any two non-zero orbits
are asymptotically proportional.

(ii) The above conclusion holds in particular for a cost function as in equation (7.5.3) sat-
isfying the assumptions onmatrix D and such that for each i the technology satisfies
Ai(t) ⊆ Ai(t + 1) for all t or sup

t
|Ai(t)| is finite.

Proof. (i) For p = p1e1 + ⋅ ⋅ ⋅ + pnen with pi > 0 for all i and ‖p‖ = ∑n
i=1 pi = 1 concavity

of costs implies

ci(p, t) ≥ n∑
j=1
pjci(ej, t) ≥ n∑

j=1
pjdij = (Dp)i,

that is c(p, t) ≥ Dp for all t. By Lemma 2.2.10 the assumptions made imply Dr > 0
for some r ≥ 1. For K = ℝn

+ the selfmapping given by T(t)p = c(p, t) is concave and
positively homogeneous with T(t)p ≥ Dp for all t. Therefore,

S(t)p = T(t + r − 1) ∘ ⋅ ⋅ ⋅ ∘ T(t)p ≥ Drp
and

(S(t)p)i ≥ (Drp)i = n∑
j=1
Dr
ijpj ≥ min

1≤j≤n
Dr
ij( n∑

j=1
pj).

For the vector u with ui = min
1≤j≤n

Dr
ij one has that u ∈ ∘

K and u ≤ S(t)p for all t all p ∈ K

with ‖p‖ = 1. Furthermore, (T(t)p)i = ci(p, t) ≤ ci(e, t) and, hence, for some scalar
k > 0 it holds T(t)p ≤ ku for p ∈ K with ‖p‖ = 1. In particular, for p = u

‖u‖ , one has that
T(t)u ≤ k‖u‖u for all t and, hence, u ≤ S(t)p ≤ k̃u with some scalar k̃ > 0 for all t, all
p ∈ K, ‖p‖ = 1. Since S(t) maps K ∖ {0} into ∘

K the conclusion in (i) follows from part
(ii) of Corollary 7.2.3.
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(ii) A cost function according to equation (7.5.3) obviously is concave and posi-
tively homogeneous. If Ai(t) ⊆ Ai(t + 1) then ci(p, t + 1) ≤ ci(p, t) and it follows that
sup
t

ci(e, t) is finite. The latter holds, too, in case sup
t
|Ai(t)| is finite. So, part (ii) follows

from part (i).

The following result considers the case of “rigid wages” and is easily obtained from
Corollary 7.2.5.

Proposition 7.5.2. Consider a price dynamics given by equation (7.5.1) with a cost func-
tion c(p, t) = cm(p, t) + cw(t) consisting of two parts, material costs cm and wage costs
cw (both non-negative). Suppose cm(p, t) > 0 is for p > 0 increasing, differentiable and
positively homogeneous of degree 0 ≤ r ≤ 1, that is cm(λ p, t) = λ rcm(p, t) for 0 ≤ λ .
Suppose further that sup

t
cmi (e, t) is finite for all i (e = (1, . . . , 1)).

(i) If r < 1 then there holds weak ergodicity (for ‖ ⋅ ‖) and any two orbits are asymptot-
ically equal (on strictly positive prices).

(ii) If r = 1 and inf
t
cwi (t) > 0 for all i then any two bounded (for ‖ ⋅ ‖) orbits are asymp-

totically equal and path stability (for ‖ ⋅ ‖) applies.
Proof. The price dynamics is driven by T(t)p = cm(p, t) + cw(t). For K = ℝn

+ differenti-
ation on

∘
K yields

n∑
j=1

pj
 𝜕(T(t)p)i𝜕pj  = n∑

j=1
pj
𝜕cmi (p, t)𝜕pj

by taking into account that cm(p, t) is increasing in p.
By Euler’s Theorem on homogeneous functions

n∑
j=1
pj
𝜕cmi (p, t)𝜕pj = rcmi (p, t),

and, hence,
n∑
j=1

pj(T(t)p)i  𝜕(T(t)p)i𝜕pj  = r
cmi (p, t)

cmi (p, t) + cwi (t) . (∗)
(i) If r < 1 then for c = r and D =

∘
K the assumptions in case (a) of Corollary 7.2.5

are satisfied and the conclusion in part (i) does follow.
(ii) Let r = 1 and, by assumption cw(t) ≥ u > 0 for all t. From the assumptions on

cm(p, t) it follows for p > 0

cm(p, t) = ‖p‖cm( p‖p‖ , t) ≤ ‖p‖cm(e, t) ≤ ‖p‖v for all t

where vi = sup
t
cmi (e, t). Since u ∈ ∘

K there exists s > 0with v ≤ su and, hence, cm(p, t) ≤
‖p‖scw(t) for all p > 0, all t. Thus, we arrive at

cmi (p, t)
cmi (p, t) + cwi (t) = 1

1 + cwi (t)
cmi (p,t)

≤ 1
1 + 1

‖p‖s

< 1.
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This inequality together with (∗) shows that the assumptions in case (b) of Corol-
lary 7.2.5 are satisfied for D =

∘
K and the conclusion in part (ii) does follow.

The results on price dynamics obtained we illustrate by some examples.

Examples 7.5.3. (i) Consider the following simple numerical example of two produc-
ers, each producing one single good by just one technique, this time, however, the
choice of technique depends on time. To make calculations simple assume for pro-
ducers 1 and 2, respectively, the following techniques:

A1(t) = {(a(t); l(t))} = { ((0, 1); 1), t even(( 12 , 12 ); 1), t odd
A2(t) = {a(t); l(t))} = { ((1, 0); 2), t even((2, 0); 1), t odd.

As real wages assume b1 = b2 = (1, 1).
Regarding the cost functions we obtain for ci(ej, t) = aj + lbij with (a, l) ∈ Ai(t) that

c1(e1, t) = { 1, t even
3
2 t odd,

c1(e2, t) = { 2, t even
3
2 , t odd,

c2(e1, t) = { 3, t even
3, t odd, c2(e2, t) = { 2, t even

1, t odd.
For the matrix D we obtain

d11 = min {1, 3
2
} = 1, d12 = min{3, 3} = 3

d21 = min {2, 3
2
} = 3

2
, d22 = min{2, 1} = 1.

Thus,D is a (strictly) positivematrix and the assumptions of part (ii) in Proposition 7.5.1
are met. Therefore, weak ergodicity as well as asymptotic proportionality do hold for
price orbits. We illustrate this result by examining directly the price formation as fol-
lows.

SinceA1(t) andA2(t) consist of one technique only, in this example c(p, t) is linear
in p and we have that T(t)p = c(p, t) = p1c(e1, t) + p2c(e2, t). Using the numbers we
obtain

T(t)p =

{{{{{{{{{{{
p1 [13] + p2 [22] , t even

p1 [ 3
2
3
] + p2 [ 3

2
1
] , t odd

or

T(t)p = { Ap, t even
Bp, t odd

with A = [1 2
3 2

] , B = [ 3
2

3
2

3 1
] .

From A,B ≥ [ 1 1
1 1 ] it follows that each price path for p(0) ≩ 0 tends to infinity. Further-

more, p(2t) = (BA)tp(0) and p(2t + 1) = A(BA)tp(0) for t ≥ 0.
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Since BA is a (strictly) positive matrix we obtain from the classical Frobenius the-
orem (Theorem 2.4.1) for p(0) ≩ 0 arbitrary that lim

t→∞
p(2t)
‖p(2t)‖ = x∗ where (x∗, λ ∗) is the

unique positive solution of (BA)x∗ = λ ∗x∗(‖x∗‖ = 1). From p(2t + 1) = Ap(2t) it fol-
lows p(2t+1)

‖p(2t+1)‖ =
A p(2t)

‖p(2t)‖

‖A p(2t)
‖p(2t)‖ ‖

and, hence, lim
t→∞

p(2t+1)
‖p(2t+1)‖ = Ax∗

‖Ax∗‖ . This shows that limt→∞

 p(t)
‖p(t)‖ −

q(t)
‖q(t)‖

 = 0 for arbitrary p(0), q(0) ≩ 0, that iswe haveweak ergodicity. By Theorem 2.4.1
again, lim

t→∞
p(2t)
λ ∗t = x∗ and, hence, lim

t→∞
p(2t+1)
λ ∗t = Ax∗. It follows, for p(0), q(0) ≩ 0 given

to 𝜖 > 0 there exists s(𝜖) such that for t ≥ s(𝜖)
λ ∗t(1 − 𝜖)x∗ ≤ p(2t), q(2t) ≤ λ ∗t(1 + 𝜖)x∗

and, hence
1 − 𝜖
1 + 𝜖q(t) ≤ p(t) ≤ 1 + 𝜖

1 − 𝜖 q(t)
for t ≥ 2s(𝜖) + 1.

These inequalities imply that orbits with p(0), q(0) ≩ 0 are asymptotically propor-
tional. Moreover, the inequalities show asymptotical equality. Possibly, does strong
ergodicity even hold in this example? If this would be the case we should have that
Ax∗
‖Ax∗‖ = x∗ and, hence, λ ∗x∗ = (BA)x∗ = ‖Ax∗‖Bx∗.

ThiswouldmeanA andBhave a commonpositive eigenvector. Any positive eigen-
vector of A must be x∗ = r[ 23 ] with r > 0 which, however, is not an eigenvector of B.
Thus, weak ergodicity does hold for this example but not strong ergodicity.

(ii) The second example addresses another kind of technology, so called Cobb–
Douglas technology (see Remark 2.7.2 for the autonomous case). Consider a cost func-
tion c(p, t) = cm(p, t) + cw(t) where

cmi (p, t) = ki(t) n∏
j=1

paij(t)j and cwi (t) = wi(t)li(t) ≥ 0

with 0 ≤ ki(t), sup
t

ki(t) finite for all i and 0 ≤ aij(t), ∑n
j=1 aij(t) = r ≤ 1 for all i. For

K = ℝn
+, c

m(p, t) is increasing, differentiable and positively homogeneous of degree r
in p on

∘
K.

For r < 1 by Proposition 7.5.2 (i) it holdsweak ergodicity and asymptotical equality
on

∘
K.
For r = 1 suppose inf

t
wi(t)li(t) > 0 for all i. Then by Proposition 7.5.2 (ii) any two

bounded orbits are asymptotically equal and path stability applies. The assumption
of boundedness cannot be simply omitted as the following calculation shows.

Let ki(t) = 1 and wi(t)li(t) = f (t) for all i and all t. The assumptions made in part

(ii) of Proosition 7.5.2 are satisfied. Since (T(t)p)i = n∏
j=1
paij(t)j + f (t) it follows for λ > 0

and e = (1, . . . , 1) that
T(t)(λ e) = (λ + f (t))e andT(s)T(t)e = (1 + f (t) + f (s))e.
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246 | 7 Non-autonomous positive systems

It follows by induction

p(t + 1) = (1 +
t∑
i=1
f (i))e and q(t + 1) = (λ +

t∑
i=1
f (i))e.

Consider two price orbits starting in p(0), q(0) > 0. Since inf
t
f (t) > 0 both orbits are

unbounded. For λ ̸= 1, however, ‖p(t + 1)−q(t + 1)‖ = |λ −1|‖e‖ andpath stability (for‖ ⋅ ‖) does not hold. Similarly, the two orbits are not asymptotically equal. (For strong
ergodicity in this model of price setting see Exercise 10.)

7.6 Populations under bounded and periodic enforcement

Consider the non-linear population dynamics in one dimension given by the Bever-
ton–Holt model ĥbox to 100pt

x(t + 1) = μKx(t)
K + (μ − 1)x(t) , x(0) ≥ 0, (7.6.1)

where μ > 1 is the so called inherent growth rate and K > 0 the so called carrying ca-
pacity. For the reproduction function f (x) = μKx

K+μ−1)x one has x
 f (x)f (x)

 = K
K+(μ−1)x < 1 for

x > 0. Equivalently, f is a cave function, that is, f (x)
x is strictly decreasing but xf (x) is

strictly increasing. This means, there is population pressure which, however, is mod-
est since the population decreases not too fast.(For cave functions see also Section 5.3
and the related Exercise 7).

We shall call for any reproduction function f the magnitude c(x) = x f (x)f (x)
 the

population pressure for f at state x. Since c(x) < 1 for the Beverton–Holt model
the reproduction function has a unique non-zero fixed point x∗ = K and lim

t→∞
x(t) = x∗

for each x(0) > 0. (This is easily verified and does follow also from Exercise 7 (d) to
Section 5.3).

The interaction of a population with its environment and changes in the envi-
ronment, like seasonal fluctuations, can enforce essential parameters of the popula-
tion like μ and K to change. To take this enforcement into account, we treat parame-
ters time dependent which for the example considered yields the non-autonomous
Beverton–Holt model

x(t + 1) = μ(t)K(t)x(t)
K(t) + (μ(t) − 1)x(t) , x(0) ≥ 0, (7.6.2)

with μ(t) > 1,K(t) > 0 for all t = 0, 1, . . .. An interesting question then is under what
conditions the population shows a stability behaviour in the sense of path stability or
weak ergodicity. Also interesting is the question of strong ergodicity in the less likely
case the time dependent parameters tend to certain values. Particularly relevant is
the question whether periodicity of the parameters due to seasonal fluctuations lead
to an asymptotically periodic behavior of the population. The latter question has been
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taken up in a sequence of papers by Cushing/Henson and Elaydi/Sacker, respectively
([7, 8, 11, 12]; see also [25, 31], and see [46] for more general for mathematical popu-
lation models). These questions are, of course, of interest also for many other kinds
of populations and their reproduction functions. It will turn out that for the questions
raised the population pressure plays a fundamental role.

In the following we shall consider the general situation of several populations
which depend on each other in their development within a changing environment.
The above non-autonomous Beverton–Holtmodel aswell as others constitute the spe-
cial case of just one population. Suppose there are n populations with xi(t) the level
of population i at time t which develop according to

xi(t + 1) = fi(t, x1(t), . . . , xn(t)), x(0) = (x1(0), . . . , xn(0)) > 0 (7.6.3)

for i = 1, . . . , n and t = 0, 1, . . . , where fi is the extended reproduction function
of population i which takes into account also the levels of populations other than i.
Suppose further for each i and t differentiability of fi(t, ⋅) in the interior ofℝn

+ and let D
be a subset of the interior such that x(0) ∈ D implies x(t) ∈ D for all t. We define

cij(t, x) = xj
fi(t, x)

 𝜕fi(t, x)𝜕xj
 (7.6.4)

to be the population pressure of population j on population i and

ci(t, x) = n∑
j=1
cij(t, x) (7.6.5)

the total population pressure on population i in state x at time t. (For an interpre-
tation similar to the one dimensional case see Figure 6.1 and Exercise 5 to Chapter 6.)

The following theorem provides answers to the three questions mentioned con-
sidering path stability, periodicity, and strong ergodicity.

Theorem 7.6.1. For the non-autonomous population system (7.6.3)withD log-convex the
following properties hold true.
(i) If for each population i the total population pressure ci(t, x) is bounded for t ≥ 0, x ∈

D by ci < 1 then all orbits (x(t)) starting in D are asymptotically equal. If at least
one orbit has compact closure in D (for the norm) then path stability holds (for the
norm).
For the weaker assumption ci(t, x) ≤ ci(x) < 1, t ≥ 0, x ∈ D, asymptotic equality
holds for bounded orbits and path stability holds for orbits with compact closure
in D.

(ii) Suppose D is internally closed and the population system (7.6.3) is periodic with
period k, that is fi(t + k, ⋅) = fi(t, ⋅) for t ≥ 0 and k ≥ 1 minimal. If ci(t, x) ≤ ci < 1
for t ≥ 0, x ∈ D then each orbit (x(t)) starting in D converges to a unique k-cycle(y0, y1, . . . , yk−1) in D given by yj+1i = fi(j, yj) for 0 ≤ j ≤ k − 1, 1 ≤ i ≤ n. For the
weaker assumption ci(t, x) ≤ ci(x) < 1, t ≥ 0, x ∈ D, the convergence to the cycle
holds for each orbit with compact closure in D.
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248 | 7 Non-autonomous positive systems

(iii) Suppose for each i there exists a differentiable function fi on
∘
K with bounded deriva-

tive on D such that fi(t, ⋅) converges in t uniformly on D to fi(⋅) and fi(⋅) has a strictly
positive lower bound on D. If for each i the total pressure for fi(⋅) satisfies ci(x) < 1
for each x ∈ D then each orbit with compact closure in D converges (in norm) to the
unique population equilibrium x∗ ∈ D defined by fi(x∗) = x∗i for 1 ≤ i ≤ n.

Proof. (i) Applying Corollary 7.2.5, case (a), to selfmappings Tt of int ℝn
+ defined by(Ttx)i = fi(t, x) and St = Tt one obtains for x ∈ D

A(x) = sup
t
max

i

n∑
j=1
cij(t, x) = sup

t
max

i
ci(t, x) ≤ max

i
ci < 1.

This proves the first part of property (i). The second part follows from case (b) of Corol-
lary 7.2.5.

(ii) By themeanvalue theorem it follows (as in theproof of Corollary 7.2.5 for cases
(a) and (b), respectively)

p(Ttx, Tty) ≤ cp(x, y) for x, y ∈ D and c = max
i
ci < 1

and, for the weaker assumption ci(x) < 1,

p(Ttx, Tty) < p(x, y) for x, y ∈ D, x ̸= y.
For Tx = Tk−1 ∘ . . . ∘ T0x for x ∈ D it follows that T is a contraction in the first case and
a contractive mapping in the second case. Since intℝn

+ is internally complete and, by
assumption, D internally closed the metric space (D, p) is complete. In the first case it
follows from Banach’s contraction principle that T has a fixed point x∗ ∈ D. For the
second case consider an orbit (x(t)) with compact closure (for the norm) in D. There
exists a subsequence (x(tk)) converging in norm to x∗ ∈ D and, since norm topology
and part topology coincide on

∘
K, this convergence holds for p, too. Thus, ω (x(0)) ̸= 0

in (D, p) and from Lemma 4.1.2 (b) it follows that T has a fixed point x∗ ∈ D.
Let yt+1 = Tt ∘ . . . ∘ T0x∗ the orbit starting in x∗ and y0 = x∗. By periodicity, for

t = nk + i, 0 ≤ i < k − 1
yt+1 = Tnk+i ∘ ⋅ ⋅ ⋅ ∘ TnkTnx∗ = Ti ∘ ⋅ ⋅ ⋅ ∘ T0x∗.

Since the orbit (yt) is finite, from (i) it follows for any orbit (x(t)) and any orbit with
compact closure in D, respectively, that lim

t→∞
‖x(t) − yt‖ = 0.

Thus, for the cycle C = (y0, y1, . . . , yk−1) we have that lim
t→∞

inf
c∈C
‖x(t) − c‖ = 0 which

proves (ii).
(iii) For (Ttx)i = fi(t, x) and (Tx)i = fi(x) it follows that (Tt) converges uniformly to

T on D. Since fi has bounded derivative on D one has that T is uniformly continuous
on D. Furthermore, Tx ≥ u for all x ∈ D and some u > 0. The total population pressure
of fi in x ∈ D is∑n

j=1
xj
fi(x)
 𝜕fi(x)𝜕xj

 < 1 and, hence,∑n
j=1
 𝜕(Tx)i𝜕xj

xj < (Tx)i. From Corollary 7.3.5
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follows for k = 1 the convergence of orbits to the unique fixed point x∗ of T in Dwhich
proves property (iii).

Theorem 7.6.1 we illustrate by two examples in one dimension.

Examples 7.6.2. (i) (Non-autonomous Beverton–Holt model). The extended repro-
duction function according to equation (7.6.2) is f (t, x) = μ(t)K(t)x

K(t)+(μ(t)−1)x for x > 0 with
μ(t) > 1,K(t) > 0 for t = 0, 1, . . .. For the (total) population pressure on the population
we obtain

c(t, x) = x
f (t, x)  𝜕f (t, x)𝜕x  = K(t)

K(t) + (μ(t) − 1)x .
Suppose

inf
t
K(t) > 0 and inf

t

μ(t) − 1
K(t) > 0. (7.6.6)

Choose 0 < a ≤ inf
t
K(t) and put D = [a,∞[.

For x ≥ a one has that

μ(t)K(t)x − K(t)a ≥ (μ(t) − 1)K(t)x ≥ (μ(t) − 1)ax,
and, hence,

f (t, x) = μ(t)K(t)x
K(t) + (μ(t) − 1)x ≥ a,

that is, f (t, ⋅) maps D into itself. Furthermore, from assumptions (7.6.6) it follows that
c(t, x) ≤ c < 1 for all t ≥ 0, all x ∈ D. Since D is log-convex it follows from property (i)
of Theorem 7.6.1 that all orbits starting in D are asymptotically equal. For x(0) > 0,
y(0) > 0 given choose a ≤ min{x(0), y(0)}, 0 < a ≤ inf

t
K(t) to obtain that all orbits(x(t)) with x(0) > 0 are asymptotically equal. This holds also in case all orbits are un-

bounded as for example μ(t) = t + 2,K(t) = t + 1 which satisfies assumptions (7.6.6).
Considering property (ii) suppose μ(t + k, ⋅) = μ(t, ⋅),K(t + k, ⋅) = K(t, ⋅) for all

t, some k ≥ 1. From Theorem 7.6.1 (ii) it follows that all orbits (x(t)) with x(0) ≥ a
converges to the same k-cycle. As above this follows also for any x(0) > 0.

Considering property (iii) suppose lim
t→∞

μ(t) = μ > 1 and lim
t→∞

K(t) = K > 0. For
α (t) = μ(t)−1

K(t) , α = μ−1
K and f (x) = lim

t→∞
f (t, x) = μx

1+αx it follows that

|f (x) − f (t, x)| ≤ |μ − μ(t)|x(1 + αx)(1 + α (t)x) + |μα (t) − μ(t)α |x2(1 + αx)(1 + α (t)x) ,
which yields uniform convergence of f (t, ⋅) to f (⋅) on D = [a,∞[, 0 < a ≤ inf

t
K(t).

Furthermore, inf
x∈D

f (x) > 0 and |f (x)| = μ
(1+αx)2 ≤ μ on

∘
K.

The population pressure of f at x ∈ D is given by 1
1+αx < 1 for x > 0. Thus, The-

orem 7.6.1 (iii) implies that each orbit with compact closure in D converges to x∗ = K
the unique fixed point of f in

∘
K. This holds, obviously, for every orbit with compact

closure in the positive reals.
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For the Beverton–Holt model orbits can be unbounded also if the assumptions
(7.6.6) aremet. If, however, in addition to assumptions (7.6.6) onehas that sup

t
μ(t) < ∞

then all orbits are bounded. For, x(t + 1) = μ(t)K(t)
K(t)
x(t) +(μ(t)−1)

≤ μ(t) K(t)
(μ(t)−1) and supt

K(t)
μ(t)−1 < ∞

by assumption. Therefore, the compact closure of an orbit is contained in D = [a,∞[
for some a > 0 and path stability holds for the norm. In case of periodicity, every
orbit then converges to a common cycle also in the case of the weak assumption on
population pressure. Furthermore, strong ergodicity holds under the augmented as-
sumptions for each orbit.

To illustrate the case of periodicity further, consider the simple case of two sea-
sons only, say spring and autumn with equal growth rates μ0 = μ1 = μ > 1 but
different positive capacities K0 ̸= K1. The assumptions (7.6.6) as well as sup

t
μ(t) < ∞

are satisfied, it follows that each orbit converges to a common cycle. This cycle is given
by {x∗, f0(x∗)} where x∗ is the unique fixed point of f1 ∘ f0. One obtains x∗ = (μ+1)K0K1

K1+K0μ
which depends not only on the two capacities but also on the common growth rate.
The fixed points of f0 and f1 are K0 and K1, respectively. Since K0 ̸= K1 we cannot have
f0(x∗) = x∗ which means that the cycle is a 2-cycle. This means in particular, we do
have path stability but not strong ergodicity.

(ii) (Non-autonomous Hassell–May Model). The extended reproduction function
is given by

f (t, x) = λ (t)x(1 + a(t)y)b(t) for x > 0

with λ (t), a(t), b(t) > 0 for t = 0, 1, . . .. For the (total) population pressure on the pop-
ulation one obtains

c(t, x) = x
f (t, x)  𝜕f (t, x)𝜕x  = |1 + a(t)(1 − b(t))x|

1 + a(t)x .
Suppose α = inf

t
a(t) > 0, β = inf

t
b(t) > 0,

𝛾 = sup
t

a(t) < ∞ and sup
t

b(t) ≤ 2 (7.6.7)

Then, for b(t) ≤ 1, or b(t) ≥ 1 and a(t)(1 − b(t))x ≤ 1

c(t, x) = 1 − a(t)b(t)x
1 + a(t)x ≤ 1 − αβ x

1 + αx
< 1 for x > 0

and, for b(t) ≥ 1 and a(t)(b(t) − 1) ≥ 1

c(t, x) = a(t)(b(t) − 1)x − 1
1 + a(t)x ≤ a(t)x − 1

1 + a(t)x ≤ 𝛾x − 1
1 + 𝛾x < 1 for x > 0.

Defining c(x) = max{1 − αβ x
1+αx , 𝛾x−11+𝛾x } we arrive at c(t, x) ≤ c(x) < 1 for x > 0. Since

D = int ℝ+ is log-convex, from Theorem 7.6.1, part (i), if follows that bounded orbits
are asymptotically equal and path stability (for the norm) holds for orbits with com-
pact closure in D. Considering periodicity, part (ii) of Theorem 7.6.1 implies that all
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orbits with compact closure in D converge to a common cycle. As for strong ergodic-
ity, property (iii) does not supply meaningful conditions on the parameters beside the
case b(⋅) = 1 which comes back to the Beverton–Holt model.

For further examples see Exercise 11. For an example of a coupled system of two
Beverton–Holt populations see Exercise 12.

Exercises

1. (a) Show for V = ℝn and K = ℝn
+ that none of the three asymptotic properties of

linkedness, proportionality and equality is equivalent to another one.
(b) Find two sequences (xk), (yk)with ‖xk‖ = ‖yk‖ = 1 for all k and lim

k→∞
‖xk−yk‖ = 0

for which none of the above asymptotic properties does hold (‖ ⋅ ‖ some norm
on ℝn).

2. Let C([0, 1]) be the space of all real valued continuous functions on the unit inter-
val and (Tnf )(u) = ∫

[0,1]

k(u, v)(f (v))lndv for u ∈ [0, 1].
Thereby, k : [0, 1] × [0, 1] → ℝ+ is a continuous strict positive kernel, f ∈
C+([0, 1]) and ln ∈ [0, 1], n ≥ 1, with l = sup

n
ln < 1. Consider the positive

dynamical system given by

fn+1 = Tnfn, f1 ∈ C+([0, 1]).
(a) Prove that any two paths (fn), (gn) are asymptotically equal.
(b) Find conditions on the kernel such that path stability holds for the sup-norm.

3. [36] Let a non-linear and non-autonomous Leslie model given by

Tt
[[[[

x1
...
xn

]]]]
=

[[[[[[[[

n∑
i=1
bi(t)(√xi + 1)
s1(x1 + 1)

...
sn−1(xn−1 + 1)

]]]]]]]]
with birth rates bi(t) ≥ b > 0 and survival rates si ≥ s > 0.
(a) Show that there exists a bounded orbit.
(b) Prove path stability (for any norm).
(c) Illustrate path stability for n = 3 by computer simulation for some chosen

example of birth and survival functions.

4. Let a Leslie model given by

Tt [x1x2] = [x1 + (1 − 1
t )√x2

1
2x1

] and let St = Tt+1 ∘ Tt.
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(a) Prove that case (b) of Corollary 7.2.5 does apply.
(b) Show that case (a) of this corollary is not applicable.
(c) Show that unbounded orbits do exist.

5. Consider a “reversed” continued fraction given by x(t + 1) = ft(x(t)), t = 0, 1, . . . ,
x(t) ∈ ℝ+ where

ft(x) = {{{{{
1
1+x , t even
2
2+x , t odd.

(a) Use Corollary 7.2.5 to prove path stability, that is lim
t→∞

|x(t) − y(t)| = 0 for any
x(0), y(0) ∈ ℝ+.

(b) Determine the limit set of (x(t)) for x(0) ∈ ℝ+.

6. (a) Consider the non-autonomous affine dynamical system x(t + 1) = ft(x(t)), t =
0, 1, . . . , x(t) ∈ ℝ+ where ft(x) = atx + bt with at, bt ∈ ℝ+ and sup

t
at < 1. Prove

path stability (for the absolute value on ℝ).
(b) Let ωs(x; (at), (bt)) denote the limit set for a path with x(0) = x. Show that

the “Cantor dust”, that is the union of all ωs(x; (at), (bt)) over all possible se-
quences with (at, bt) = ( 13 , 23 ) or (at, bt) = ( 13 , 0) is independent of x.

(c) Consider the system x(t + 1) = ft(x(t)), t = 0, 1, . . . , x(t) > 0 where ft(x) =
at√x + bt with at > 0, bt ≥ 0. Show that all orbits are asymptotically equal
and find sequences (at), (bt) for which path stability does not hold.

(d) Let for the system in (c) ωs(x; (at), (bt)) be the limit set for a path with x(0) =
x > 0. Show that the “non-linear Cantor dust” defined as in (b) (for the system
in (c)) is independent of x.

7. (a) Prove strong ergodicity for the non-linear and non-autonomous Leslie model
given by

Tt
[[[[

x1
...
xn

]]]]
=

[[[[[[[[

n∑
i=1
bi(t)xαi
s1(t)xα1

...
sn−1(t)xαn−1

]]]]]]]]
,

where 0 < α < 1 and bi = lim
t→∞

bi(t) > 0, si = lim
t→∞

si(t) > 0.
(b) Compute the equilibrium solution (λ ∗, x∗) in terms of bi, si(‖x∗‖ = 1 for the

l1-norm).

8. (a) Let At : ℝn
+ → ℝn

+, t = 0, 1, . . ., be a sequence of cone mappings which con-
verges, uniformly on bounded sets, to a continuousmapping A and let (at) be
a sequence in ℝn

+, which converges to some a > 0. If there exists b ∈ ℝn
+ such

that 0 < A(b) < b, then each orbit given by x(t + 1) = At(x(t)) + at with x(0) >
0 which is bounded, converges to the unique solution x∗ of A(x) + a = x.
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(b) Find a sequence of conemappingsAt : ℝn
+ → ℝn

+ which converges, uniformly
on bounded sets, to a continuous mapping A, and find a sequence (at)which
converges to some a > 0 such that no orbit converges to a solution of A(x) +
a = x.

9. Prove the following extension of Pituk’s Theorem to linear operators in a positive
setting. Let (V , ‖ ⋅ ‖) be a Banach space, K a closed and normal convex cone with
non-empty interior

∘
K. Consider the Poincaré difference system

x(t + 1) = (T + S(t))x(t), x(0) ∈ K
where T and S(t) are bounded linear operators on V which leave K invariant. Sup-
pose T(B) ⊆ [u, v] ⊆ ∘

K(B = {x ∈ K | ‖x‖ = 1}, [u, v] = {x ∈ K | u ≤ x ≤ v}) and
lim
t→∞

‖S(t)‖ = 0 for the pertubation S(t) of T.
Then

lim
t→∞

‖x(t)‖ 1
t = λ ∗ for all x(0) ̸= 0,

where λ ∗ > 0 is the unique positive eigenvalue of T (with eigenvector in K).

10. Consider a dynamical system of price setting given by

p(t + 1) = cm(p(t), t) + cw(t), t = 0, 1, . . . , p(t) ∈ ℝn
+

with material costs cm(p, t)i = k(t)∏n
j=1 p

aij(t)
j and labor costs cwi (t). Assume 0 ≤

aij(t), ∑n
j=1 aji(t) = r ∈]0, 1[, cwi (t) ≥ 0.

Assume further, lim
t→∞

aij(t) = aij, limt→∞
k(t) = k and lim

t→∞
cwi (t) = cwi > 0.

(a) Prove strong ergodicity, that is lim
t→∞

p(t) = p∗ for each bounded orbit with
p(0) > 0.

(b) Which price vectors p∗ can be asymptotically reached by controlling asymp-
totically the labor costs?

11. [31] Prove for the following non-autonomous population models f (t, ⋅) : D →
D,D = {x ∈ ℝ | x > 0}, path stability as well as the existence of a globally stable
cycle under the conditions specified.
(a) Riccati model:

f (t, x) = a(t) + b(t)x
c(t) + d(t)x .

Path stability if 0 < inf
t

a(t)d(t)
b(t)c(t) ≤ sup

t

a(t)d(t)
b(t)c(t) < ∞.

Existence of a stable k-cycle if f is k-periodic and the coefficients are strictly
positive.

(b) Power Riccati model:

f (t, x) = a(t) + b(t)xr(t)
c(t) + d(t)xs(t)

with non-negative coefficients, c(t) + d(t) > 0.
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Path stability if sup
t

r(t), sup
t

s(t) < 1.

Existence of a stable k-cycle if f is k-periodic and r(t), s(t) < 1 for all t.
(c) Maynard Smith model:

f (t, x) = λ (t)x
1 + (λ (t) − 1)xb(t) .

If inf
t
λ (t) > 1 then path stability holds and x∗ = 1 is a globally stable fixed

point.

12. Consider the following system of two coupled Beverton–Holt populations

f1(t, x) = √x2 μK(t)x1
K(t) + (μ − 1)x1

f2(t, x) = √x1 νL(t)x2
L(t) + (ν − 1)x2 , x1 > 0, x2 > 0.

Assume there are two seasons, K(t) = K0, L(t) = L0 for t even and K(t) = K1, L(t) =
L1 for t odd.
Suppose, K = min{K0,K1} ≥ 1, L = min{L0, L1} ≥ 1 and μ ≥ 2K + 1, ν ≥ 2L + 1.
(a) Prove for f (t, x) = (f1(t, x), f2(t, x)) that f (t, ⋅) maps for each t the set D = {x =(x1, x2) ∈ ℝ2 | 1 ≤ x1, 1 ≤ x2} into itself.
(b) Prove that each orbit given by x(t + 1) = f (t, x(t)), x(0) ∈ D is bounded.
(c) Show path stability for the system on D.
(d) Show that all paths (x(t)), x(0) ∈ D converge to a unique 2-cycle {x∗, f (0, x∗)}

and compute x∗.
(e) Explore by computer simulations the behavior of x(t)) for x1(0) < 1, x2(0) < 1.
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8 Dynamics of interaction: opinions, mean maps,
multi-agent coordination, and swarms

In previous chapters we met already applications of the theory of positive dynamical
systems to questions of interactionwithin groups of actors. For example, the price set-
ting of economic actors based on the prices set by other actors or cooperative systems
modeled by differential equations. In this chapter we investigate systematically the
dynamics of interaction as it has been addressed in recent years within quite diverse
fields. An essential feature thereby is that interaction takes place as the formation of
means or of averages or of convex combinations. For example, in themost simple case
of interaction given by a single matrix A, averaging means that A is nonnegative with
each row summing up to one. A fundamental result for such a (row)-stochastic ma-
trix states that the powers of A converge to a matrix B with equal rows if and only if
some power of A is scrambling. Thereby, a stochastic matrix is scrambling if any two
rows have a strictly positive entry in a common column. A special case of this result
is the famous Basic Limit Theorem for regular Markov chains. In that case a row of B
corresponds to the equilibrium distribution of the Markov chain. For linear interac-
tion Markov chains figure as the most prominent example. In Section 8.1, beside the
scrambling property, other andweaker structureswill be investigated as, for example,
coherent matrices and Sarymsakov matrices.

Section 8.2 exhibitsmodels of howagroupof individuals, called agents, can reach
a consensus by themselves, both for linear and for nonlinear interaction. In the linear
case consensus will be asymptotically reached precisely if some power of the under-
lying matrix is scrambling. In the more realistic nonlinear case interaction depends
on the state in that an agent takes only opinions into account which are not too dis-
tinct from his own. This model of opinion dynamics under bounded confidence
has during the last years found a lot of attention across the disciplines, ranging from
physics over electrical engineering and biology to economics and sociology (see the
references given).

A general form of nonlinear interaction is treated in Section 8.3 as ameanmap T
(or compromise map) which sends a collection x = (x1, . . . , xn) of points into another
collection whithin the convex hull of x1, . . . , xn. The interaction is only local in the
sense that Tix may depend only on a subset of “neighbors” of i in state x. It will be
shown that the iterates of T converge to consensus, a collection of points being equal,
if T satisfies a shrinking property. A particular example is a Gauss soup where each
component Ti is given by a weighted arithmetic or geometric mean (or other means,
too).

Time-dependent interaction in nonautonomous positive systems is the topic of
Section 8.4. Different from Chapter 7, however, the infinitely many matrices A(t) are
assumed to be stochastic and asymptotic behavior is with respect to consensus. It is
shown that the latter will be approached if the strength of interaction does not vanish
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258 | 8 Dynamics of interaction

“too fast” and the structure of interaction becomes not ”too loose” in the course of
time. For a tool often used, a theorem ofWolfowitz on infinite products of stochastic
matrices, an extended version will be presented and proved.

The results obtained in Section 8.4 are used in Section 8.5 for interactions called
broadly multiagent coordination. A fundamental condition on local interaction to get
consensus is the principle of the third agent (printh) which, roughly, says that the
neighbors of of any two agents have one agent in common. In case there is no (global)
consensus it is still possible that consensus holds locally within subgroups. This is
true in particular for reciprocal interaction. It is here where the results on opinion dy-
namics under bounded confidence as appearing in Section 8.2, as well as extensions,
will be proven.

In Section 8.6 previous results will be used to investigate swarm dynamics. The
motivating question in behind is how a group of birds is able to coordinate them-
selves flying in a swarm together. The latter means that the birds by local interaction
approach asymptotically the same velocity and their relative distances do converge.
The recently much discussed Cucker–Smale model of bird flocking in discrete time is
treated. Another model which requires less conditions on local interaction is devel-
oped. Actually, swarm dynamics is not confined to birds, fishes or other animals but
appears also in jams of people, distributed computing in networks or selforganizing
groups of robots.

8.1 Scrambling matrices

The notion of a scrambling matrix has been introduced by J. Hajnal in his analysis of
the weak ergodicity in non-homogeneous Markov chains, where he explains the term
as follows:

“A scrambling matrix is one in which the probabilities of transition from different
initially states are not all in distinct columns, but, as it were, scrambled.” ([39, p. 235].
For scrambling matrices and the history behind this concept see [40, 91, 93].)

Definition 8.1.1. A non-negative n × n-matrix A = (aij) is (row-)stochastic if all rows
sum up to 1. A, not necessarily stochastic, is scrambling if for any two rows i and j
there exists a column k = k(i, j) such that aik > 0 and ajk > 0. Equivalently, AA is a
strictly positive matrix (A being the transposed matrix of A).

Comparedwith two other important notions already dealt with in Section 2.4, that
of a primitive and indecomposablematrix, respectively, there is no direct relationship.
More precisely, a scrambling matrix need neither be indecomposable nor primitive as
the example A = [ 1 0

1
2

1
2
] shows; conversely, an indecomposable or primitive stochastic

matrix need not be scrambling as the examples A = [ 0 1
1 0 ] and A = [ 1

2 0 1
2

1
3

1
3

1
3

0 1 0
] show.
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8.1 Scrambling matrices | 259

In the following we shall characterize a stochastic and scrambling matrix by the
way it operates onℝd. Let A = (aij) be a stochastic n × n-matrix and let x = (x1, . . . , xn)
be a collection of points inℝd(d ≥ 1).

Define
fi(x) = n∑

k=1
aikx

k for 1 ≤ i ≤ n.
Obviously,

conv{f1(x), . . . , fn(x)} ⊆ conv{x1, . . . , xn}
where convM = {∑m∈M αmm | 0 ≤ αm, ∑m∈M αm = 1} denotes the convex hull of a
subsetM of ℝd.

Let ‖⋅‖denote an arbitrary but fixednormonℝd anddenote byΔM = sup{‖m−m‖ |
m,m ∈ M} the diameter of a subsetM of ℝd. Notice that

ΔconvM = ΔM for M ⊆ ℝd.
Obviously, ΔconvM ≥ ΔM. To see ΔconvM ≤ ΔM observe that

∑
m∈M

αmm − ∑
m∈M

βmm = ∑
m,m∈M

αmβm (m −m).
Using the Hilbert metric H on int ℝn

+ we shall characterize a scrambling matrix
also by the way it operates multiplicatively, that is we consider the selfmapping g of
intℝn

+ given by

gi(x) = n∏
j=1

xaijj , 1 ≤ i ≤ n, x = (x1, . . . , xn) ∈ intℝn
+.

Theorem 8.1.2. Let A = (aij) be a stochastic n × n-matrix.
A (i) The following equality does hold

1
2
max
1≤i,j≤n

n∑
k=1
|aik − ajk| = 1 − min

1≤i,j≤n

n∑
k=1

min{aik, ajk}. (8.1.1)

(ii) Let c(A) ∈ [0, 1] be the quantity defined by equation (8.1.1) and let fi(x) =∑n
k=1 aikx

k. Then c(A) is the smallest constant c such that
Δconv{f1(x), . . . , fn(x)} ≤ c ⋅ Δconv{x1, . . . , xn} (8.1.2)

for all collections x = (x1, . . . , xn) with xi ∈ ℝd.
(iii) Let g be the selfmapping of int ℝn

+ defined by gi(x) = ∏n
j=1 x

aij
j for 1 ≤ i ≤ n.

Then c(A) is the smallest constant c such that
H(g(x), g(y)) ≤ c ⋅ H(x, y) (8.1.3)

for all collections x = (x1, . . . , xn), y = (y1, . . . , yn) in intℝn
+.
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260 | 8 Dynamics of interaction

B The following statements are equivalent.
(a) A is scrambling.
(b) A has contraction property (8.1.2) for some c < 1.
(c) A has contraction property (8.1.3) for some c < 1.
(d) A has the following shrinking property

conv{f1(x), . . . , fn(x)} ⫋ conv{x1, . . . , xn} (8.1.4)

for all collections x = (x1, . . . , xn) with xi ∈ ℝd and not all xi being equal.

Proof. First we address part A.
(i) For a, b ∈ ℝ one has |a − b| + 2min{a, b} = a + b.
Since A = (aij) is stochastic this yields for 1 ≤ i, j ≤ n.

n∑
k=1
(|aik − ajk| + 2min{aik, ajk}) = 2

which proves equation (8.1.1).

(ii) First we show inequality (8.1.2) for c = c(A). Let λhk = ahk − min{aik, ajk} for
h = i, j. We have that λhk ≥ 0 and∑k λik = ∑k λjk = rij with rij = 1−∑k min{aik, ajk}. With
αhk =

λhk
rij
for rij > 0 it holds∑k αik = ∑k αjk = 1. Therefore,

‖fi(x) − fj(x)‖ = ‖∑
k
(aik − ajk)xk‖ = ‖∑

k
(λik − λjk)xk‖

= rij‖∑
k
αikx

k −∑
k
αjkx

k‖
which implies, for rij > 0,

‖fi(x) − fj(x)‖ ≤ rijΔconv{x1, . . . , xn} for all i, j.
For rij = 0 wemust have that aik = ajk for all k and the above inequality holds trivially.
Using ΔconvM = ΔM forM ⊆ ℝd we arrive at

Δconv{f1(x), . . . , fn(x)} ≤ max
1≤i,j≤n

rij ⋅ Δconv{x1, . . . , xn}
which proves (8.1.2) with c = c(A).

Conversely, suppose inequality (8.1.2) holds for some c and all x. For i, j fixed
choose x̄ defined by x̄k = 1

2e if aik ≥ ajk and x̄k = − 1
2e if aik < ajk for some e ∈ ℝd ∖ {0}.

It follows

‖fi(x̄) − fj(x̄)‖ ≤ Δconv{f1(x̄), . . . , fn(x̄)} ≤ cΔ{x̄1, . . . , x̄k} ≤ c‖e‖.
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Now, fi(x̄) − fj(x̄) = ∑k (aik − ajk)x̄k = 1
2 ∑k |aik − ajk|e and, hence

1
2
∑
k
|aik − ajk| ‖e‖ ≤ c‖e‖.

Since i, j were arbitrary chosen, it follows from inequality (8.1.1) that

c(A) = 1
2
max
1≤i,j≤n

n∑
k=1
|aik − ajk| ≤ c.

This proves (ii).
(iii) From Definition 2.1.8 of the Hilbert metric on intℝn

+ we have

H(x, y) = − log(min
i

xi
yi
⋅min

i
yi
xi
)

= − logmin
j

xj
yj

+ logmax
i

xi
yi

= max
1≤i,j≤n

(log xi
yi
− log xj

yj
).

From the definition of g we obtain log gi(x)
gi(y)

= ∑k aik log
xk
yk
and, hence,

H(g(x), g(y)) = max
1≤i,j≤n

∑
k
(aik − ajk) log xk

yk
.

Let z ∈ ℝn be defined by zk = log xk
yk
. For fi(z) = ∑k aikzk and x, y given the inequality

H(g(x), g(y)) ≤ cH(x, y) (∗)
is equivalent to

max
1≤i,j≤n

|fi(z) − fj(z)| ≤ cmax
1≤i,j,≤n

|zi − zj| (∗∗).
Since ΔconvM = ΔM, from part (ii), for d = 1 we see that (∗) holds for c = c(A).

Furthermore, if (∗) holds for all x, y ∈ intℝn
+ then (∗∗) holds for all z ∈ ℝn (choose, for

example, xk = ezk , yk = 1). By part (ii) again we get c(A) ≤ c.
Consider now part B of Theorem 8.1.2. By equation (8.1.1) we have that A is scram-

bling if and only if c(A) < 1. Therefore, part A (ii) yields the equivalence of (a) and (b).
Similarly, part A (iii) yields the equivalence of (a) and (c). Since Δconv{x1, . . . , xn} = 0
if and only if the xi are all equal we have that (b) implies (d).

To complete the proof of part B we show that (d) implies (a). Suppose A is not
scrambling. Then there exist i and j such that min{aik, ajk} = 0 for all k. Let I = {1 ≤
k ≤ n | aik = 0}. Since A is stochastic there exist h and l such that aih > 0 and ajl > 0
and, hence, ail = 0. Therefore, 0 ̸= I ⫋ {1, . . . , n}. Let a, b two different points inℝd and
define xk = a for k ̸∈ I and xk = b for k ∈ I. It follows

fi(x) =∑
k ̸∈I

aikx
k = a and fj(x) =∑

k∈I
ajkx

k = b.
Thus, conv{x1, . . . , xn} = conv{a, b} ⊆ conv{f1(x), . . . , fn(x)}. Since the xk are not all

equal the shrinking property does not hold. Therefore, (d) implies (a). This completes
the proof of Theorem 8.1.2.
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262 | 8 Dynamics of interaction

The above theorem characterizes a scrambling matrix by certain contraction and
shrinking properties, respectively. Notice thatwhereas the contraction property (8.1.3)
means a proper contraction property in the sense of metric spaces, this is not the case
with property (8.1.2) which states only that the diameter of certain sets is contracting.

From Theorem 8.1.2 we obtain some further useful properties for scrambling ma-
trices.

Corollary 8.1.3. Let A und B stochastic n × n-matrices.
(i) If A is scrambling then AB and BA are scrambling. Furthermore, any finite product

of stochastic n× n-matrices is scrambling whenever at least one of these matrices is
scrambling.

(ii) A is scrambling if and only if for any stochastic B and any x ∈ ℝn

BAx = x implies x = (r, . . . , r) for some r ∈ ℝ. (8.1.5)

Proof. (i) Let for a n × n-matrixM = (mij)
fM(x)i = n∑

j=1
mijxj, x = (x1, . . . , xn) ∈ ℝn.

For
fAB(x) = fA(y) with y = fB(x)
fBA(x) = fB(z) with z = fA(x)

it follows from Theorem 8.1.2 part A

Δconv{fAB(x)1, . . . , fAB(x)n} = Δconv{fA(y)1, . . . , fA(y)n}≤ c(A)Δconv{y1, . . . , yn} ≤ c(A)Δconv{x1, . . . , xn}
and

Δconv{fBA(x)1, . . . , fBA(x)n} = Δconv{fB(z)1, . . . , fB(z)n}≤ Δconv{z1, . . . , zn} ≤ c(A)Δconv{x1, . . . , xn}.
For A scrambling we have c(A) < 1 and, hence, by theorem 8.1.2 part B it fol-

lows that AB and BA are scrambling. Furthermore, a finite product of stochastic n × n-
matrices where, say,A is scrambling is of the formAB or BA or BAC. The above implies
that the finite product is scrambling.

(ii) First, we show for a scrambling matrix A that Ax = x implies x = (r, . . . , r).
If Ax = x then for f (y) = Ay it follows conv{f1(x), . . . , fn(x)} = conv{x1, . . . , xn} and, by
part B of Theorem 8.1.2, x = (r, . . . , r). For A scrambling and B stochastic by part (i)
BA is scrambling and, hence, BA has property (8.1.5). Conversely, assume property
(8.1.5) and suppose conv{x1, . . . , xn} ⊆ conv{f1(x), . . . , fn(x)}. Then there exist bij ≥ 0
with∑n

j=1 bij = 1 for all i such that for each 1 ≤ i ≤ n

xi =
n∑
j=1
bijfj(x) = n∑

j=1
bij( n∑

k=1
ajkxk) = n∑

k=1
( n∑
j=1
bijajk)xk,
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that is, x = BAx. B being stochastic from property (8.1.5) we must have x = (r, . . . , r).
Thus property (8.1.4) in part B of Theorem 8.1.2 is satisfied and A must be scram-
bling.

The next theorem presents a most important feature of scrambling matrices. This the-
orem generalizes also our earlier result from linear Perron–Frobenius theory, Theo-
rem 2.4.1 (iii) (c), which states, for the case of a stochastic matrix, primitivity of A im-
plies the existence of lim

k→∞
Ak with all rows being equal. This is a fundamental property

of Markov chains (A being stochastic), also referred to as ergodic theorem for primi-
tive Markov chains in [92] or basic limit theorem for regular Markov chains in [76]. See
also the infinite generalization of this theorem obtained previously in Corollary 5.2.8.

Theorem 8.1.4. For a stochastic matrix A it exists lim
k→∞

Ak = B with all rows of B being
equal if and only if a power of A is scrambling. In that case for the rowbdeterminingB the
transpose b is the unique normalized eigenvector for the eigenvalue 1 of the transposed
matrix A.

Proof. (i) Let a power Ap be scrambling. Let f (x) = Ax, x ∈ ℝn, and C(k) =
conv{f k(x)1, . . . , f k(x)n} for x fixed, k ≥ 0, f k the k-th iterate of f . Obviously, C(k + 1) ⊆
C(k) for all k and C = ∩

k≥0
C(k) ̸= 0 by compactness of C(k). From part A of Theorem 8.1.2

we have that
ΔC(k + p) ≤ c(Ap)ΔC(k) with c(Ap) < 1.

Therefore, lim
k→∞

ΔC(k) = 0 and for c = c(x) ∈ C it follows lim
k→∞

f k(x)i = c for all 1 ≤ i ≤ n

because of |c − f k(x)i| ≤ ΔC(k) for all k. In particular, for x the j-th unit vector ej we
obtain lim

k→∞
f k(ej)i = c(ej) for all 1 ≤ i, j ≤ n.

If B denotes the matrix with each row equal to b = (c(e1), . . . , c(en) it follows that
lim
k→∞

(Ak)ij = Bij for all 1 ≤ i, j ≤ n. Furthermore, since BA = lim
k→∞

Ak+1 = B it follows

that ∑n
k=1 bkakj = bj, that is, Ab = b and ∑n

j=1 bj = 1. If Ax = x with ∑n
k=1 xk = 1

then x = lim
k→∞

A
k = Bx, that is xj = bj ∑n

k=1 xk = bj. Thus, b is the unique normalized

eigenvector for the eigenvalue 1 of A.

(ii) Assume lim
k→∞

Ak = Bwhere B has all rows equal. If Ap is not scrambling for all

p ≥ 1 then for each p there exist i(p) and j(p) such that for the entries a(p)i(p),k and a
(p)
j(p),k

of Ap wemust have that min{a(p)i(p),k, a(p)j(p),k} = 0. Since i(p), j(p) ∈ {1, . . . , n} there exists a
sequence (pr)r such that i(pr) = i and j(pr) = j for all r ∈ ℕ. From lim

k→∞
Ak = B it follows

that lim
r→∞

Apr = B and, hence, lim
r→∞

a(pr)ik = bik and lim
r→∞

a(pr)jk = bjk for all k.

Thus, min{bik, bjk} = lim
r→∞

min{a(pr)ik , a(pr)jk } = 0.
Since all rowsofBare equalwemust have thatbik = bjk = 0 for all k. This, however,

is a contradiction since each row of B sums up to 1. Therefore, lim
k→∞

Ak = Bwhere B has
equal rows implies that Ap is scrambling for some p ≥ 1.
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264 | 8 Dynamics of interaction

Since for a primitive matrix some power is strictly positive and, hence, scrambling
the above theorem implies the mentioned fundamental theorem on Markov chains,
where b is also called the equilibrium or stationary distribution. As already seen, a
scrambling matrix need not be primitive and, hence, Theorem 8.1.4 sharpens the fun-
damental theorem on Markov chains.

In the following we analyze the relationship of scrambling matrices to related
kinds of matrices such as Markov matrices and Sarymsakov matrices of which the for-
mer notion is stronger than that of a scrambling matrix and the latter ia a weaker one.
For that reason we introduce a little calculus for the positivity structure of matrices.
Define for a stochastic n × n-matrix A = (aij) and a non-empty subsetM of {1, . . . , n}

s(M) = {j ∈ {1, . . . , n} | aij > 0 for some i ∈ M}. (8.1.6)

Since A is stochastic, smaps the set of non-empty subsets of {1, . . . , n} into itself and
we can define iterates of s forM ̸= 0 by

s0(M) = M, sk+1(M) = s(sk(M)) for k ≥ 0.
For M = {i} we abbreviate sk({i}) by sk(i). In the following we list some elementary
properties of the mapping s(⋅)which will be used later on.
Properties of s(⋅) 8.1.5. Let M,M be non-empty subsets of {1, . . . , n}.
(i) M ⊆ M implies s(M) ⊆ s(M)
(ii) s(M ∪M) = s(M) ∪ s(M)
(iii) s(M ∩M) ⊆ s(M) ∩ s(M)
(iv) M ∩M ̸= 0 implies s(M) ∩ s(M) ̸= 0
(v) For p ≥ 1, k ∈ sp(M) if and only if there exists a chain of length p from M to k,

that is there exist k1, . . . , kp in {1, . . . , n}, k1 ∈ M with

ak1 ,k2 > 0, ak2 ,k3 > 0, . . . , akp ,k > 0.
Equivalently, k ∈ sp(M) if and only if a(p)ik > 0 for some i ∈ M(Ap = (a(p)ij )).

Proof. Properties (i) to (iv) are obvious. For (v), k ∈ sp(M) is equivalent to akp ,k > 0
for some kp ∈ sp−1(M). In turn, kp ∈ sp−1(M) is equivalent to akp−1 ,kp > 0 for some
kp−1 ∈ sp−2(M). By iteration there exist kp−2, . . . , k2, k1 such that k2 ∈ s(M), ak1 ,k2 > 0
for some k1 ∈ M. Furthermore, a(p)ik > 0 for some i ∈ M is equivalent to the existence of
a sequence i = k1, . . . , kp such that ak1 ,k2 > 0, . . . , akp ,k > 0.

Definition 8.1.6. LetA be a stochasticmatrix.A is aMarkovmatrix ifAhas a (strictly)
positive column.

A is a Sarymsakovmatrix if for any two non-empty subsetsM andM of {1, . . . , n}
with s(M) ∩ S(M) = 0 it holds that

|M ∪M| < |s(M) ∪ s(M)|

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:21 PM



8.1 Scrambling matrices | 265

(|M| the number of elements in a finite set M). Call 0 ̸= M ⊆ {1, . . . , n} saturated if
s(M) ⊆ M. A is called coherent if any two saturated subsets have a non-empty inter-
section.

Proposition 8.1.7. Consider the following properties for a stochastic n × n-matrix A:
(1) Markov matrix;
(2) scrambling matrix;
(3) Sarymsakov matrix;
(4) An−1 is scrambling;
(5) coherent matrix.
(i) The following implications do hold:

(1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5).
Furthermore, if A is scrambling then An−1 is a Markov matrix.

(ii) None of the implications in (i) can be reversed in general.
(iii) Some power of A is scrambling if for any i, j ∈ {1, . . . , n} there exist k = k(i, j) ∈{1, . . . , n} and pi, pj ≥ 0 such that a(pi)ik > 0, a(pj)jk > 0 and akk > 0.

If A has a positive diagonal then properties (3), (4), (5) are equivalent.
Proof. (i) Obviously, a Markov matrix has to be scrambling. Let A be scrambling and
M,M two non-empty subsets of {1, . . . , n}. There exist i ∈ M, j ∈ M and, since A is
scrambling, it holds s(i) ∩ s(j) ̸= 0. Properties 8.1.5 (i) implies s(i) ∩ s(j) ⊆ s(M) ∩
s(M) and, hence, s(M) ∩ s(M) ̸= 0. Thus, A is a Sarymsakov matrix. Next, let A be a
Sarymsakov matrix. Let M,M non-emtpy subsets of {1, . . . , n} and assume sn−1(M) ∩
sn−1(M) = 0. The definition of a Sarymsakov matrix yields

|sn−2(M) ∪ sn−2(M)| + 1 ≤ |sn−1(M) ∪ sn−1(M)|.
By property (iv) of s(⋅) this step can be iterated and we arrive finally at

|s0(M) ∪ s0(M)| + n − 1 ≤ |sn−1(M) ∪ sn−1(M)|.
Since s0(M) ∪ s0(M) = M ∪ M,M ∩ M = 0 and M,M ̸= 0 we must have that 2 ≤|s0(M) ∪ s0(M)| and, hence,

n + 1 ≤ |sn−1(M) ∪ sn−1(M)|,
which, however, is impossible. This shows that

sn−1(M) ∩ sn−1(M) ̸= 0.
Especially, forM = {i},M = {j} we obtain k ∈ sn−1(i) and k ∈ sn−1(j). By property (v) of
s this means a(n−1)ik > 0 and a(n−1)jk > 0, that is, An−1 is scrambling.

Finally, let Ap be scrambling for some p ≥ 1. By property (v) of s we have for any
i, j that sp(i) ∩ sp(j) ̸= 0. Let M,M saturated sets with, say, i ∈ M, j ∈ M. M being
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266 | 8 Dynamics of interaction

saturated it follows s(i) ⊆ Mand, by iteration, sp(i) ⊆ M. Similarly, sp(j) ⊆ M and we
obtain 0 ̸= sp(i)∩sp(j) ⊆ M∩M. This shows thatA is coherent and the first part of (i) is
proven. For the second part of (i) wemust show that forA scrambling the powerAn−1 is
aMarkovmatrix. By induction over kwe show that for any collectionM1, . . . ,Mk, k ≥ 2
of non-empty subsets of {1, . . . , n} satisfying Mi ∩ Mi+1 ̸= 0 for 1 ≤ i ≤ k − 1 we must
have

sk−2(M1) ∩ sk−2(M2) ∩ . . . ∩ sk−2(Mk) ̸= 0. (∗)
For k = 2 assertion (∗) amounts toM1 ∩M2 ̸= 0which is true by assumption. Suppose(∗) holds for some k ≥ 2 and any collectionM1, . . . ,Mk satisfyingMi ∩Mi+1 ̸= 0. Then
there exist

i ∈ sk−2(M1) ∩ . . . ∩ sk−2(Mk) and j ∈ sk−2(M2) ∩ . . . ∩ sk−2(Mk) ∩ sk−2(Mk+1)
whereMk+1 satisfiesMk ∩Mk+1 ̸= 0. For A scrambling we have that s(i) ∩ s(j) ̸= 0. Using
property (i) of swe get

s(i) ∩ s(j) ⊆ sk−1(M1), sk−1(M2), . . . , sk−1(Mk)
as well as

s(i) ∩ s(j) ⊆ sk−1(M2), sk−1(M3), . . . , sk−1(Mk), sk−1(Mk+1),
which implies

0 ̸= s(i) ∩ s(j) ⊆ sk−1(M1) ∩ . . . ∩ sk−1(Mk) ∩ sk−1(Mk+1).
This proves assertion (∗).

Especially, forMi = s(i), 1 ≤ i ≤ n, k = nwe have thatMi ∩Mi+1 ̸= 0 for 1 ≤ i ≤ n−1
because A is scrambling. Thus, for this case, (∗) yields.

sn−1(1) ∩ sn−1(2) ∩ . . . ∩ sn−1(n) ̸= 0.
That is, there exists k ∈ sn−1(i) for all 1 ≤ i ≤ n, which, by property (v) of s, means that
a(n−1)ik > 0 for all i. Thus, the k-th column of An−1 is positive which proves part (i) of
Proposition 8.1.7.

(ii) For counter-examples proving (ii) see Examples 8.1.8 below.
(iii) By assumption k ∈ spi(i), k ∈ spj(j), k ∈ s(k). For p = max

1≤h≤n
ph it follows that k ∈

sp−pi(k) and, hence, k ∈ sp−pi (spi(i)) = sp(i) and, similarly, k ∈ sp(j). Thus, sp(i)∩sp(j) ̸= 0
for the p above and all i, j. Therefore, Ap is scrambling.

Suppose, finally, A has a positive diagonal. Then for any non-empty subset M of{1, . . . , n} it holds M ⊆ s(M). Therefore, M is saturated if and only if s(M) = M. Let
M,M two non-empty subsets of {1, . . . , n} such that s(M) ∩ s(M) = 0. By property (iv)
of s we must have thatM ∩M = 0. If A is a coherent matrix thenM andM cannot be
both saturated and, hence,M ∪M ⫋ s(M) ∪ s(M).

Therefore, |M ∪M| < |s(M) ∪ s(M)| and A is a Sarymsakov matrix. Together with
(i) it follows that (3), (4), (5) must be equivalent.
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The notions introduced we illustrate by some simple examples which also provide
counterexamples to the reversal of the implications asmentioned in part (ii) of Propo-
sition 8.1.7.

Examples 8.1.8. (a)

A =
[[[[

1
2

1
2 0

0 1
2

1
2

1
2 0 1

2

]]]]
is scrambling with a positive diagonal. A is not a Markov matrix, and, hence in
Proposition 8.1.7 property (2) does not imply (1).

(b)

A =
[[[[
1 0 0
1
2

1
2 0

0 1
2

1
2

]]]]
is not scrambling and has a positive diagonal. Since

A2 =
[[[[
1 0 0
3
4

1
4 0

1
4

1
2

1
4

]]]]
,

A2 is a Markov matrix and, hence, A2 is scrambling. Part (iii) of Proposition 8.1.7
shows that A is a Sarymsakov matrix. Thus property (3) does not imply (2).
Examples (a) and (b) also show that even in case of a positive diagonal neither (1)
nor (2) are equivalent to one of (3), (4), (5).

(c) For A = [ 1 0 0
1 0 0
0 1 0

] the power A2 = [ 1 0 0
1 0 0
1 0 0

] is a Markov matrix and, hence, a scram-

bling matrix. A is not a Sarymsakov matrix. ForM = {3},M = {1, 2} one has that
s(M) = {2}, s(M) = {1} and, therefore, s(M) ∩ s(M) = 0 but

|s(M) ∪ s(M)| = |{1, 2}| < |M ∪M|.
This shows, property (4) does not imply (3).

(d) For A = [ 0 1
1 0 ] no power is a scrambling matrix. A is a coherent matrix since M ={1, 2} is the only saturated set. Thus, property (5) does not imply (4).

(e) Examples (b) and (c) show that A2 may be a Markov matrix for A not scrambling.
Thus, the additional implication in part (i) of Proposition 8.1.7 cannot be reversed
and, as example (b) shows, this is true even in case of a positive diagonal.

(f) Considering part (iii) of Proposition 8.1.7, for the example

A = [[[
1 0 0
1 0 0
0 1

2
1
2

]]]
,
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268 | 8 Dynamics of interaction

it holds a11 > 0, a21 > 0 and a(2)31 > 0. Therefore, with k(i, j) = 1 for all i, j, a power
of A must be scrambling; indeed, A2 is scrambling. A is, however, not a Sarym-
sakov matrix. For this let M = {1, 2},M = {3}, in which case s(M) = {1}, s(M) ={2, 3} and |s(M) ∪ s(M)| = |{1,2, 3}| = |M ∪M|.
Thus, although (4) implies (3) if there is a positive diagonal, this need not be the
case if just one entry in the diagonal is not positive.

(g) Part (iii) of the proposition shows that positive entries in the diagonal of A play
its role. It is, however, by no means necessary for a scrambling matrix to have a
positive entry in the diagonal as the example

A =
[[[[
0 1

2
1
2

1
2 0 1

2
1
2

1
2 0

]]]]
shows.

Remarks 8.1.9. (1) The concept of a Sarymsakov matrix has been defined in [91] and
[40] for arbitrary nonnegative matrices, too.

(2) Scrambling matrices can be investigated also in terms of eigenvalues. In [34]
the following result is proven: For a stochastic matrix A it holds lim

k→∞
Ak = B with all

rows of B being equal if and only if
(a) A has beside 1 no other eigenvalue of absolute value 1,
(b) 1 is a simple root of the characteristic equation of A.

By Exercise 2 below this result does follow from Theorem 8.1.4. The formula in
Exercise 2 (a) provides a calculationby the entries ofA for the second eigenvaluewhich
plays an important role for the rapid mixing of Markov chains. (See for the latter [5,
Chapter 10].)

(3) As mentioned already, the contraction property (8.1.2) is different from a con-
traction with respect to the metric defined by a norm, that is ‖f (x) − f (y)‖ ≤ c‖x − y‖
for some c < 1, all collections x, y. For example, the matrix A in Examples 8.1.8(a) is
scrambling and, hence, contraction property (8.1.2) holds for any norm but for each
norm ‖Ae − A0‖ = ‖e − 0‖, where e = (1, . . . , 1).
The analysis of scramblingmatrices carried out in this section wewant to extend later
on (see Section 8.3) to certain nonlinearmappings. For this reasonwe did not consider
an analysis in terms of eigenvalues but put emphasis on the contraction and shrinking
properties of scrambling matrices. The latter turn out to be fruitful to handle “scram-
bling processes” tending to a “consensus” as in the cases of opinion dynamics and
swarm dynamics to be considered in the following sections.
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8.2 Consensus formation and opinion dynamics under bounded
confidence

Consider a group of experts who have to assess a certain magnitude like the world’s
wheat production in the year 2030. Each of the experts has his own expertise but is
open to some extent to revise it in case of opposing expertises by his colleagues. Know-
ing the revisions may lead to further revisions and the question occurs whether this
iterative process of opinion making will tend to a consensus among the experts con-
cerning the value of the magnitude under consideration.

Methods to deal with a problem like this were developed around 1960 as Opinion
Pool [97] and Delphi-method [25] and later on as a simple Matrix Model ([26, 69]; see
[36] for a survey).Within a time-dependentmatrixmodel an agreement algorithmwas
developed around 1980 – this time for the communication among electronic proces-
sors [8, 98, 99]. Denote by xi(t) ∈ ℝ the assessment made by expert i ∈ {1, . . . , n} at
time t ∈ {0, 1, 2, . . .} of the magnitude under consideration. Let xi(t + 1) be the revised
opinion of expert i by taking the assessments xj(t) of the previous period into account
with certain weights aij. If A = (aij) denotes the matrix of weights then the matrix
model is

x(t + 1) = Ax(t) for t = 0, 1, . . . , (8.2.1)

where the matrix A is stochastic since weights are nonnegative and add up to 1; x(⋅) is
the column-vector with components xi(⋅).

The main question is whether the experts will reach a consensus among them-
selves, that is

lim
t→∞

xi(t) = c for all i ∈ {1, . . . , n}, (8.2.2)

where the consensus c depends on initial opinions x(0).
From Theorems 8.1.2 and 8.1.4 of the previous section we obtain the following an-

swer.

Theorem 8.2.1. The following statements are equivalent.
(i) A consensus will be reached for each x(0) ∈ ℝn.
(ii) Some power of A is scrambling.
(iii) The map given by f (x) = Ax has an iterate f p such that for some c < 1

(max
1≤i≤n

f p(x)i − min
1≤i≤n

f p(x)i) ≤ c(max
1≤i≤n

xi − min
1≤i≤n

xi)
for all x = (x1, . . . , xn) ∈ ℝn.

(iv) There exists an iterate f q such that

[min
1≤i≤n

f q(x)i,max
1≤i≤n

f q(x)i] ⫋ [min
1≤i≤n

xi,max
1≤i≤n

xi]
for all x = (x1, . . . , xn) ∈ Rn, except for a consensus where the xi are all equal.
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270 | 8 Dynamics of interaction

Proof. Since x(t) = Atx(0), reaching a consensus means lim
t→∞

(Atx(0))i = c(x(0)) for all
i. This holds for all x(0) ∈ ℝn if and only if lim

t→∞
(At)ij = c(ej) for all 1 ≤ i, j ≤ n where ej

is the j-th unit vector. The matrix B = (bij) with bij = c(ej) is a stochastic matrix with
equal rows. From Theorem 8.1.4 it follows that a consensus is reached for all x(0) if
and only if a power Ap is scrambling. This proves the equivalence of (i) and (ii). The
equivalence of (ii), (iii) and (iv) follows from part B of Theorem 8.1.2. For this notice
that for d = 1 and y = (y1, . . . , yn) ∈ ℝn one has that

conv{y1, . . . , yn} is the interval [min
1≤i≤n

yi,max
1≤i≤n

yi]
and

Δconv{y1, . . . , yn} = max
1≤i≤n

yi − min
1≤i≤n

yi.
Using Proposition 8.1.7 we obtain the following sufficient condition for a consensus.

Corollary 8.2.2. A consensus will be reached for each x(0) ∈ ℝn if for any two experts
i and j there exists a third one k = k(i, j) and pi, pj ≥ 0 such that a(pi)ik > 0, a(pj)jk > 0 and
akk > 0.

Proof. By Proposition 8.1.7 (iii) a power of A must be scrambling which by Theo-
rem 8.2.1 yields the conclusion.

Whereas Theorem 8.1.2 provides equivalent conditions for reaching a consensus, in
the literature, e.g., in [26] and [69], mainly sufficient conditions are given. For the suf-
ficient condition supplied in Corollary 8.2.2 the assumption a(pi)ik > 0means that there
exists a chain of length pi from i to k, that is there exist k1, . . . , kpi in {1, . . . , n} with
k1 = i such that ak1k2 > 0, . . . , akpi ,k > 0 (see part (v) of Properties of s(⋅) 8.1.5). Us-
ing a formulation from [69] we can rephrase the sufficient condition in Corollary 8.2.2
by saying that for any two experts there exist chains of respect to a third one who
respects himself.

An interesting result in [69, Theorem 7.2] states that consensus will be reached if
there exists a chain of respect from every expert to a particular expert k who respects
himself. This result follows immediately from Corollary 8.2.2. The latter, however, ad-
mits an expert k with self-respect to depend on i and j. Without the assumption on
self-respect Corollary 8.2.2 may fail as Examples 8.1.8 (d) exhibits. Indeed, as Propo-
sition 8.1.7 (iii) shows positive entries on the diagonal of A and, hence, experts with
self-respect play an important role. On the other hand, as Examples 8.1.8 (g) shows, a
matrixAwith zero diagonal may be scrambling and, by Theorem 8.2.1, consensus will
be reached although none of the experts possesses self-respect.

Nowwewant to introduce anothermodel which is nonlinear andmore realistic in
that experts do not trust necessarily all the other experts – depending on the assess-
ment made by other experts. In the following we outline the model of bounded con-
fidence, which was introduced in 2000 ([54] and developed further in 2002 [43]) and
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8.2 Consensus formation and opinion dynamics under bounded confidence | 271

has found much attention since then. (In [43] also the history and background of the
model are considered and references to the literature are given. See also Remarks 8.2.6
below.)Wewill present somemajor results but without giving a proof since in the next
chapters we develop a general framework which yields these results as special cases.
(See Theorem 8.5.7 and the consequences drawn from it.)

Using the language ofmulti-agent systemswe consider n agents i = 1, . . . , nwhere
xi(t) ∈ ℝ+ for t = 0, 1, . . . denotes the opinion of agent i at time t. In making up his
opinion in the next period, agent i takes into account from the previous period the
opinions of those agents he is confident in. More precisely, depending on an opinion
profile x = (x1, . . . , xn) ∈ ℝn

+ the confidence set of agent i is given by

I(i, x) = {1 ≤ j ≤ n | |xi − xj| ≤ 𝜖}
where 𝜖 > 0 is a certain confidence level assumed to be equal for all agents. The
dynamics of opinion formation under bounded confidence is given by

xi(t + 1) = |I(i, x(t))|−1∑ xj(t)
j∈I(i,x(t))

(8.2.3)

for i = 1, . . . , n, t = 0, 1, . . . and given initial opinions x(0) ∈ ℝn
+.

It is easy to solve this system for n = 2 but for the general case no analytical so-
lution is available. Although there are still many questions open concerning the be-
havior of solutions of model (8.2.3) many results have been obtained. Thereby, the
following concept plays a major role. A chain of confidence of agent i to agent j from
period s to period t > s is a sequence of agents (i0, i1, . . . , it−s) such that i0 = i, it−s = j
and ir ∈ I(ir−1, x(t − r)) for all 1 ≤ r ≤ t − s.
Theorem 8.2.3. If for any two agents i and j there exists a third agent k = k(i, j) such
that a chain of confidence goes from i to k and from j to k, from s to s + h for some fixed
h ≥ 1 and all s, then consensus will be reached in finite time, that is for some T ∈ ℕ

xi(t) = c for all 1 ≤ i ≤ n and t ≥ T.
where the consensus c depends on initial conditions.

An immediate consequence of this theorem is the following result.

Corollary 8.2.4. Consensus will be reached in finite time if for all i, j and t ≥ T

I(i, x(t)) ∩ I(j, x(t)) ̸= 0.
Withoutmaking any assumptions onmodel (8.2.3) it canbe shown that always in finite
time a fragmentation of opinionswill be reached.

Theorem 8.2.5. For the model of bounded confidence an opinion fragmentation is
reached in finite time, that is there is a disjunctive decomposition of {1, . . . , n} into
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272 | 8 Dynamics of interaction

non-empty subsets Aj, 1 ≤ j ≤ k such that for some T

xi(t) = cj for all i ∈ Aj and t ≥ T

where the partial consensus cj of agents in group Aj depends on initial conditions.

For proofs of the results above see [28, 43, 44, 54, 71, 72].
As mentioned already there are still unsolved problems concerning the

model (8.2.3) of bounded confidence. One such problem considers the distance be-
tween two opinion clusters according to Theorem 8.2.5 which, backed by computer
simulations is conjectured to be roughly equal to 2𝜖 (see [9]).

Amajor question is, how, in case of reaching a consensus, this consensus depends
on intial condition x(0). For the linear model discussed above this question is easily
answered. From Theorem 8.1.4 it follows

c(x) = n∑
j=1
bjxj,

where b = (b1, . . . , bn) is the unique normalized eigenvector of A.
Opinion dynamics is since some years quite an expanding field in its own. We

give some further references with emphasis on the model of bounded confidence as
described above.

Remarks 8.2.6. Variousmodels of opinion dynamics are presented in [47], with appli-
cations to sociology in [51, Chapter 8]. Various aspects and applications of the model
of bounded confidence have been considered and explored further in [9, 10, 28, 31–
33, 44, 45, 47, 55–57, 61, 62, 71–75, 78, 87].

A model of bounded confidence which is driven randomly by pairwise interaction of
agents is developed in [27, 102]. Computer simulations have shown similarities in the
dynamics of this model and the one presented here (see, for example, [72, 74]).

Among recent contributions concerning the model (8.2.3) we mention [79] which
addresses the dynamics in case the agents have different confidence levels; see also
[74, 96] where the “phase transition” between consensus and fragmentation is inves-
tigated by computer simulations and [21] where, within a broader framework, an al-
gorithmic approach is pursued to get for the dynamics bounds on the convergence
rates.
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8.3 Mean processes, mean structures and the iteration of mean
maps

The action of a stochastic matrix A on a vector x can be viewed as formation of arith-
metic means (Ax)i = ∑n

j=1 aijxj with weights aij. It has the nice property that

min
1≤j≤n

xj ≤ (Ax)i ≤ max
1≤j≤n

xj for all 1 ≤ i ≤ n (8.3.1)

which is shared also by nonlinearmeans like the geometric mean given by (Gx)i =∏1≤j≤n x
aij
j or the power mean given by

(Px)i = ( n∑
j=1
aijx

r) 1
r

for r ̸= 0. (For more on those concrete means see below.) Actually, inequalities (8.3.1)
are precisely what one would expect of means – a value between the extremes. Map-
pings satisfying these inequalities are called abstract means in [12].

Since for x ∈ ℝn the closed interval [min
1≤j≤n

xj,max
1≤j≤n

xj] equals the convex hull of

x1, . . . , xn one might extend inequalities (8.3.1) to higher dimensions as (Ax)i ∈
conv{x1, . . . , xn}. This has been considered already in Section 8.1 for stochastic ma-
trices A. In this section the analysis will be extended to nonlinear mappings called
mean maps. Actually, the extension to nonlinear mappings in higher dimensions
(that is xi ∈ ℝd) is needed to treat opinion dynamics (for example, the model (8.2.3)
in Section 8.2) and other models of interaction dynamics.

Definition 8.3.1. Let S be a non-empty convex subset ofℝd(d ≥ 1) and Sn the cartesian
product of n copies of S. A sequence (x(t)), t ∈ {0, 1, . . .} with x(t) ∈ Sn(n ≥ 1) is called
amean process on Sn if xi(t + 1) ∈ conv{x1(t), . . . xn(t)} for all 1 ≤ i ≤ n, all t ≥ 0. Or,
in short,

conv{x(t + 1)} ⊆ conv{x(t)} for all t ≥ 0 (8.3.2)

where conv{x} = conv{x1, . . . , xn} for x = (x1, . . . , xn) ∈ Sn.
We speak of a mean structure M on Sn if for each x ∈ Sn a mean process (x(t))

with x(0) = x is specified. A selfmaping T of Sn is a mean map on Sn if its iterates
defined by x(t) = Ttx, x ∈ Sn is a mean structure on Sn.

Obviously, the composition ofmeanmaps is ameanmap, too. By this simple principle
a huge variety of mean maps can be generated from a given set of concrete means. If
T(t), t ∈ {0, 1, . . .} is an infinite sequence of mean maps then by x(t + 1) = T(t)x(t) a
mean process is defined which is not given by a mean map. A mean process, in par-
ticular a mean map, can be described by stochastic matrices as follows. By equation
(8.3.2) there exist a stochastic matrix A(t) such that x(t + 1) = A(t)x(t), and vice versa.
Thus, the asymptotic analysis of amean process amounts to that of an infinite product
of stochastic matrices. This point of view will be taken up in the next section.
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The main aim of this section is to find for a mean map T conditions which yield
the following property, which occurs already in Section 8.1 and as consensus in Sec-
tion 8.2: (P) lim

t→∞
Ttx = c̄(x)

for all x, where c̄(x) = (c(x), . . . , c(x)), c(x) ≥ 0.
The following lemma will be crucial to obtain such conditions.

Lemma 8.3.2. Let (x(t)) be a mean process on Sn and ω the limit set of (x(t)).
(i) For y ∈ ω it holds conv{y} = ⋂∞

t=0 conv{x(t)} ̸= 0.
(ii) For C = ⋂∞

t=0 conv{x(t)} and all 1 ≤ i ≤ n

lim
t→∞

inf
c∈C
‖xi(t) − c‖ = 0

(‖ ⋅ ‖ be any norm on ℝd.)

Proof. Let C(t) = conv{x(t)} for t ≥ 0. From the definition of a mean process we have
C(t + 1) ⊆ C(t) for all t ≥ 0. Since all the C(t) are non-empty and compact it follows
that C = ⋂t≥0 C(t) is non-empty and compact, too.

(i) Since x(t) is contained in the compact set C(0)n the limit set ω is non-empty.
Let y ∈ ω , yi = lim

s→∞
xi(ts) for 1 ≤ i ≤ n. Obviously, xi(ts) ∈ C(ts) ⊆ C(t) for t ≤ ts and,

hence, yi ∈ C(t) for all i, all t. Therefore, yi ∈ C and conv{y} ⊆ C. For the converse let
x ∈ C and δ > 0 be given. To y ∈ ω exist a sequence (ts) and s0 such that ‖xi(ts)−y‖ ≤ δ
for all s ≥ s0, all i. From x ∈ C ⊆ C(ts0 ) we have x = ∑n

i=1 αix
i(ts0 ) with αi = αi(x, ts0 ) ≥ 0

and∑n
i=1 αi = 1. Thus,

‖x − n∑
i=1
αiy

i‖ = ‖ n∑
i=1
αi(xi(ts0) − yi)‖ ≤ n∑

i=1
αi δ = δ .

Since δ > 0 is arbitrary and conv{y} is closed it follows x ∈ conv{y}which proves (i).
(ii) Let y ∈ ω and for δ > 0 given ‖xi(ts) − yi‖ ≤ δ for s ≥ s0, all i. For t ≥ ts0 it

holds xi(t) ∈ C(t) ⊆ C(ts0 ) and for a convex combination xi(t) = ∑n
j=1 αj(i, t)xj(ts0 ). Let

c(i, t) = ∑n=1
j=1 αj(i, t)yj.

By part (i) C = conv{y} and c(i, t) ∈ C for all i, t ≥ ts0 . This yields

‖xi(t) − c(i, t)‖ = ‖ n∑
j=1
αj(i, t)(xj(ts0) − yj)‖ ≤ n∑

j=1
αj(i, t)δ = δ .

Thus,
inf
c∈C
‖xi(t) − c‖ ≤ ‖xi(t) − c(i, t)‖ ≤ δ all i, all t ≥ ts0 .

This shows part (ii).

In Section 8.1, Theorem 8.1.2 part B, a scrambling matrix has been characterized by a
shrinking propertywith respect to convex hulls. Inspired by this we define a shrinking
property for the nonlinear case as follows.
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Definition 8.3.3. Amean process (x(t)) on Sn is said to be shrinking for t if conv{x(t)}⫋ conv{x(0)}.
The process is shrinking if it it is shrinking for some t.
A mean structureM on Sn is shrinking at x for t if the mean process specified for

x = x(0) is shrinking for t.
The mean structure is shrinking at x if it is shrinking at x for some t.

A mean map T is said to have a property as above if it holds for the mean structure
given by T.

Shrinking is not possible at x ∈ diagSn = {c̄ = (c, . . . , c)|c ∈ S}.
If Ṁ denotes forM ⊂ Sn the set Ṁ = M ∖ diagSn then shrinking is possible only at

points x ∈ Ṡn.
Using the language above our earlier result on stochastic matrices can be re-

phrased by saying that A is scrambling if and only if the linear mapping induced by
A is shrinking at each point of Ṡn(S = ℝd). Our main result on stochastic matrices,
Theorem 8.1.4, can be rephrased by saying that lim

t→∞
Atx = c̄(x) = (c(x), . . . , c(x)) for

each x if and only if themap induced byA is shrinking at each x ∈ Ṡn globally for some
common t0.

The following theorem presents an extension of this result to mean maps in general
and to mean structures, too.

Theorem 8.3.4. Let S be a non-empty convex subset of ℝd.
(i) For a mean process (x(t)) with x(0) = x ∈ Sn it holds lim

t→∞
x(t) = c̄(x) if and only if

ω (x) ∩ diagSn ̸= 0. In this case the process must be shrinking for x ∈ Ṡn.
(ii) For amean structure M on Sn lim

t→∞
x(t) = c̄(x) for all x ∈ Sn does hold if and only if for

each x ∈ Ṡn the structure M is shrinking at x and ω (x) is invariant, that is y ∈ ω (x)
implies y(t) ∈ ω (x) for all t.

(iii) For a continuous mean map T on Sn lim
t→∞

Ttx = c̄(x) for all x ∈ Sn does hold if and

only if T is shrinking at each x ∈ Ṡn.
Proof. (i) Obviously, if lim

t→∞
x(t) = c̄(x) then ω (x) = {c̄(x)} ⊆ diagSn. Conversely, if

y ∈ ω (x) ∩ diagSn then conv{y} is a singleton. From Lemma 8.3.2 it follows that C = {c}
and lim

t→∞
‖xi(t)−c‖ = 0 for all i, that is lim

t→∞
x(t) = c̄. It remains to show that lim

t→∞
x(t) = c̄(x)

implies (x(t)) is shrinking for x ∈ Ṡn. Suppose conv{x(t)} = conv{x} for all t. Then there
exist 0 ≤ αij(t), ∑n

j=1 αij(t) = 1 such that

xi =
n∑
j=1
αij(t)xj(t) for all i, all t.

Since t → (aij(t)1≤i,j≤n is a bounded sequence inℝn×n there exists a sequence (tk)k such
that lim

k→∞
αij(tk) = αij for all 1 ≤ i, j ≤ n. From lim

t→∞
x(t) = c̄(x) and, hence, lim

k→∞
x(tk) = c̄(x)
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276 | 8 Dynamics of interaction

we obtain for all i
xi = lim

k→∞

n∑
j=1
αij(tk)xj(tk) = n∑

j=1
αijc(x) = c(x).

Therefore, x ∈ diagSn which shows that (x(t)) is shrinking for x ∈ Ṡn.
(ii) Let lim

t→∞
x(t) = c̄(x) for all x ∈ Sn. By (i) the structureM is shrinking at each x ∈

Ṡn. Since, by assumption, ω (x) = {c̄(x)} and (x(t)) is a mean process ω (x) is invariant
for each x ∈ Sn. Conversely, suppose M is shrinking and ω (x) is invariant for each
x ∈ Ṡn. If y ∈ ω (x) then by Lemma 8.3.2 conv{y} = conv{y(t)} for all t. Therefore, y ̸∈ Ṡn
and, hence, y ∈ diagSn and we have ω (x) ⊆ diagSn. Part (i) implies lim

t→∞
x(t) = c̄(x) for

all x ∈ Sn.
(iii) For a continuous mean map on S it holds T(ω (x)) ⊆ ω (x) for all x ∈ Sn. For

the mean structure on Sn given by x(t) = Ttx, x ∈ Sn, part (ii) implies part (iii).

Later on applications of this theorem will be given to soups made of various well-
known means and to opinion dynamics (in Section 8.5). Before doing so some ex-
amples and counter-examples will shed some light on the assumptions used in the
theorem.

Examples and counter-examples 8.3.5. (1) Parts (i) and (ii) apply also to non-con-
tinuous maps as the following simple example will show. For S = ℝ, n = 2, let T
be the selfmapping of S2 given by

T(x1, x2) = { (x1, x1) if x1 < x2(x2, x2) otherwise,

for x = (x1, x2) ∈ S2.
Obviously, T is a mean map which is not continuous on S2. If x1 < x2 then Tx =(x1, x1) and Ttx = (x2, x2) for t ≥ 2. If x1 ≥ x2 then Ttx = (x2, x2) for all t ≥ 1. Therefore,

ω (x) = (x2, x2) for x ∈ S2. Part (i) of the theorem yields lim
t→∞

Ttx = c̄(x) for all x ∈ S2,
which is obvious in this simple example. The example shows also that the assumption
on ω (x) made in part (ii), though implied by continuity, is weaker than continuity.
Furthermore, it is easy to check that T is shrinking at each x ∈ Ṡ2 (for t = 1). This
shows that the equivalence stated in part (iii) may hold without continuity.

(2) In contrast to example (1) the following case of a non-continuous mean map
shows that the equivalence stated in part (iii) of the theorem can fail if T is not contin-
uous. For S = ℝ, n = 3, let T be the selfmapping of S3 given by

T(x1, x2, x3) = { (x1, x2, 12x3 + 1
2 min{x1, x2}) if x3 < min{x1, x2}(x1, x1, x1) otherwise.

Obviously, T is a non-continuousmeanmap. T is shrinking at each x ∈ Ṡ3 for t = 1
as the following calculation shows. Let min z = min{z1, . . . , zn} for short and similarly
for max z.
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In case of x3 < min{x1, x2} we have
min Tx = 1

2
x3 +

1
2
min{x1, x2},max Tx = max{x1, x2}

which implies

conv{Tx} = [1
2
x3 +

1
2
min{x1, x2},max{x1, x2}] ⫋ [x3,max{x1, x2}] = conv{x}.

Thus, T is shrinking at x for t = 1.
In case of x3 ≥ min{x1, x2} we have

min Tx = max Tx = {x1},
and, hence,

conv{Tx} = [x1, x1] ⫋ [min x,max x] = conv{x}
holds trivially for x ∈ Ṡ3. This demonstrates T is shrinking at each x ∈ Ṡ3 for t = 1.

It is easily checked that in case of x3 < min{x1, x2}
Ttx = (x1, x2, f (t)),

with f (t) = 1
2t x3 + (1 − 1

2t )min{x1, x2}). Therefore, in that case, lim
t→∞

Ttx =

(x1, x2,min{x1, x2}). This shows limt→∞
Ttx ̸∈ diagS3 for x3 < min{x1, x2}, x1 ̸= x2. There-

fore, the equivalence stated in part (iii) fails.
Furthermore, considering part (ii), the assumption of invariance is not satisfied.

Let x ∈ S3 with x3 < min{x1, x2}, x1 ̸= x2. By the aboveω (x) = {(x1, x2,min{x1, x2})} but
Tt(x1, x2,min{x1, x2}) = (x1, x1, x1) for all t ≥ 1 and (x1, x1, x1) ̸∈ ω (x) since x1 ̸= x2.

(3) As a simple example of a nonlinear mean map consider for S = ℝ+, n = 2, the
selfmapping of S2 definedbyT(x1, x2) = (αx1 + (1−α )x2, xβ1x(1−β )2 ) for 0 ≤ α , β ≤ 1. For
a more general setting see the Gauss soup later on. The particular case of α = β = 1

2
is that of the famous arithmetic-geometric mean. Since min x ≤ Tix ≤ max x for
i = 1, 2 we have conv{Tx} ⊆ conv{x} and T is a mean map. Whether T is shrinking or
not depends on parameters α and β . First, consider the case 0 < α , β < 1. If x1 ̸= x2
then αx1 + (1 − α )x2 < max x as well as xβ1x

1−β
2 < max x. Therefore, T is shrinking at

each x ∈ Ṡ2 for t = 1. Since T is continuous from part (iii) of Theorem 8.3.4 it follows
that lim

t→∞
Ttx = c̄(x) for each x ∈ S2.

Notice that T is a concave selfmapping of K = ℝ2
+ but none of the Concave Perron

Theorems (2.1.11, 2.2.11) does apply because neither Tx > 0 for all x ≩ 0 nor T is weakly
idecomposable.

Consider next the cases where α , β ∈ {0, 1}. Then Tx = (x1, x2) or Tx = (x2, x1) and
T is not shrinking at any x ∈ Ṡ2. The remaining cases to discuss are 0 < α < 1 and
β ∈ {0, 1} or 0 < β < 1 and α ∈ {0, 1}. In the first case T shrinks at each x ∈ Ṡ2. In the
second case, if α = 0, T shrinks at each x ∈ Ṡ2, except for x = (0, r)with 0 < r. If α = 1,
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T shrinks at x ∈ Ṡ2 with the exception of x = (r, 0) with r > 0. In this example, T may
shrink at some points but not on others (in Ṡ2).

To find the value of c̄(x), provided it exists, is not as easy. In the classical case
α = β = 1

2 it is well-known that c(x) is given by a complete elliptic integral of the first
kind

c(x) = π
2
[[[

π
2∫
0

dϕ

√x1(0)2 cos2 ϕ + x2(0)2 sin2 ϕ
]]]
−1

,
which shows in no way any similarity with the means initially given. For general 0 <
α , β < 1 I do not know of any such formula.

(4) Another simple example of a nonlinear mean map is for S = ℝ+, n = 3, given
by

T(x1, x2, x3) = (min{x1, x2}, x3, x1).
T is a concave selfmapping of ℝ3

+ which is positively homogeneous and seems there-
fore to be a candidate for concave Perron–Frobenius Theory as considered in Chap-
ter 2. It satisfies, however, not the conditions of the First or Second Concave Perron
Theorem (Theorems 2.1.11 and 2.2.11, respectively) because neither Tx > 0 for x ≩ 0
nor Theh > 0 for some 1 ≤ h ≤ 3. Nevertheless, from part (iii) of Theorem 8.3.4 it fol-
lows lim

t→∞
Ttx = c̄(x) for all x ∈ ℝ3

+ and x∗ = c̄(x) is a fixed point of T. To see this we

show that T is shrinking at each x ∈ Ṡ3 for t = 4. From the definition of T we obtain

T2x = (min{x1, x2, x3}, x1,min{x1, x2}).
Thus, for y = T2x

T4x = T2y = (min{y1, y2, y3}, y1,min{y1, y2})
= (min{x1, x2, x3},min{x1, x2, x3},min{x1, x2, x3}).

Therefore, conv{T4x} = {min{x1, x2, x3}} which equals conv{x} if and only if x ∈
diagℝ3

+. This shows that T is shrinking at each x ∈ Ṡ3 for t = 4. Actually, this does not
hold for t ≤ 3 since T is not shrinking at x = (1, 0, 0) for t = 2 and not shrinking at
x = (1, 1, 0) for t = 3.

(5) Examples 3 and 4 show in particular that a mean map can, for some t, shrink
at all points or shrink at some points but not at others. We examine in more detail the
linear case that is Tx = Ax, where x ∈ ℝn,A ∈ ℝn×n

+ stochastic. Let x be any point,
x ̸∈ diagℝn. conv{Ax} = conv{x} is equivalent to

min
i
∑
j
aijxj ≤ min x and max

i
∑
j
aijxj ≥ max x

which is equivalent to

min
i
∑
j
aij(xj −min x) ≤ 0 and max

i
∑
j
aij(xj −max x) ≥ 0.

Let I0(x) = {j | min x < xj} and I1(x) = {j | xj < max x}.

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:21 PM



8.3 Mean processes, mean structures and the iteration of mean maps | 279

Since x ̸∈ diagℝn these two sets are non-empty. Therefore, conv{Ax} = conv{x}
holds if and only if there exist i0, i1 such that ai0j = 0 for j ∈ I0(x) and ai1j = 0 for
j ∈ I1(x). This shows that in general a stochastic matrix will, for t = 1, be shrinking
at certain points and not shrinking at others. From Theorem 8.1.2 part B we know al-
ready that a stochastic matrix is, for some t, shrinking at all x ̸∈ diagℝn if and only if
At is scrambling. What are the matrices on the opposite side, that is those stochastic
matrices which are not shrinking at any x ̸∈ diagℝn? Suppose conv{Ax} = conv{x} for
all x ̸∈ diagℝn. For x = ek, the k-th unit vector inℝn, we obtain by the above I0(x) = {k}
and I1(x) = {1, . . . , n} ∖ {k} and there exist i0, i1 such that ai0k = 0, ai1j = 0 if j ̸= k. Since
A is stochastic we must have ai1k = 1. Defining σ (k) = i1 we have aσ(k)k = 1, aσ(k)j = 0
if j ̸= k. This defines a selfmapping σ of {1, . . . , n} for which k ̸= l implies σ (k) ̸= σ (l)
because of aσ(k)l = 0 and aσ(l)l = 1. In other words σ is a permutation of {1, . . . , n} for
which aσ(k)j = δkj for all 1 ≤ k, j ≤ n, δ being the Kronecker symbol. Therefore, Amust
be a permutation matrix, where for a permutation τ a permutation matrix A(τ ) is
defined by aij(τ ) = δτ (i)j. In the above A = A(τ ) for τ = σ−1.

Conversely, if A = A(τ ) then (Ax)i = ∑n
j=1 aij(τ )xj = xτ (i) and conv{Ax} = conv{x}

for all x ∈ ℝn. We conclude that a stochastic matrix is, for t = 1, not shrinking at any
x ̸∈ diagℝn if and only if A is a permutation matrix. It follows that A is not shrinking
at any x ̸∈ diagℝn if and only if A is a permutation matrix.

To draw conclusions from Theorem 8.3.4 we analyze in the following the crucial as-
sumption of a shrinking behaviour. For this we introduce the concepts of neighbor
and neighborhood. Let (x(t)) be a mean process on Sn where S is a non-empty convex
subset of ℝd. The defining property conv{x(t + 1)} ⊆ conv{x(t)} implies the existence
of a stochastic matrix A(t) such that x(t + 1) = A(t)x(t) for all t ≥ 0. Note that these
matrices are not uniquely determined. With respect to a fixed sequence of matrices
A(t)we call for i ∈ {1, . . . , n} and t ≥ 0

N(i, t) = {j ∈ {1, . . . , n} | aij(t) > 0},
a set of neighbors of i at t, and

U(i, t) = {xj(t) | j ∈ N(i, t)},
a neighborhood of i at t.

To the collection of all the setsN(i, t) andU(i, t)wewill refer also as aneighboring
system of x(t). Since A(t) is stochastic the sets N(i, t) and U(i, t) are non-empty. For
a sequence τ = (t1, . . . , tr) with ti ≥ 0 and the matrix B(τ ) = A(t1) ⋅ ⋅ ⋅A(tr) we define
more general

N(i, τ ) = {j | bij(τ ) > 0}
as neighbors of i via τ and

U(i, τ ) = {xj(tr) | j ∈ N(i, τ )}
as neighborhood of i via τ .
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The following lemma describes shrinking by neighborhoods and presents criteria
for shrinking.

Lemma 8.3.6. Let (x(t)) be a mean process with x(0) = x.
(i) The process is for none t ≥ 0 shrinking at x ∈ Ṡn if and only if for each extreme point

xi of conv{x} and each τ = (t + p, . . . , t + 1, t) there exists k = k(i, τ ) ∈ {1, . . . , n}
such that the neighborhood U(k, τ ) consists only of xi.

(ii) Consider for a neighboring system and a sequence τ0 = (t0 + p0, . . . , t0 + 1, t0) the
following properties
(a) N(i, τ0) ∩ N(j, τ0) ̸= 0 for all 1 ≤ i, j ≤ n.
(b) U(i, τ0) ∩ U(j, τ0) ̸= 0 for all 1 ≤ i, j ≤ n.
(c) For all 1 ≤ i, j ≤ n with U(i, τ0) ̸= U(j, τ0)

it holds |U(i, τ0)| ≥ 2 or |U(j, τ0)| ≥ 2.
Then (a) implies (b) and (b) implies (c) and the process (x(t)) is shrinking at x ∈ Ṡn
for some t if one of the above properties does hold.

Proof. (i) By definition (x(t)) is not shrinking at x for t if and only if conv{x(t)} =
conv{x}. If this is the case, then any extreme point xi of conv{x}must be equal to some
xk(t). If (x(t)) is for none t shrinking at x, then to τ and extreme point xi given, there
exists k = k(i, τ ) such that xi = xk(t + p + 1). Since

x(t + p + 1) = A(t + p) ⋅ ⋅ ⋅A(t + 1)A(t)x(t) = B(τ )x(t),
it follows

xi = xk(t + p + 1) = n∑
j=1
bkj(τ )xj(t).

Because of conv{x} = conv{x(t)} the point xi is an extreme point of conv{x(t)} and,
hence, xj(t) = xi if bkj(τ ) > 0. This proves U(k, τ ) ⊆ {xi} and U(k, τ ) = {xi} since
U(k, τ ) ̸= 0.

For the converse choose p = 0 and τ = (t) and for an extreme point xi of conv{x}
a k = k(i, τ ) such that U(k, τ ) = {xi}. It follows xi = xj(t) for some j ∈ N(k, τ ) and
xi ∈ conv{x(t)} because of τ = (t). This holds for all extreme points of conv{x} and,
hence, conv{x} ⊆ conv{x(t)}, that is conv{x(t)} = conv{x}, t being arbitrary.

(ii) (a) implies (b) by definition ofU(i, τ0). (b) implies (c) since forA = U(i, τ0),B =
U(j, τ0) such that A ∩ B ̸= 0 and A ∩ B ⫋ A it follows that

|A| = |A ∩ B| + |A ∖ (A ∩ B)| ≥ 2.
Furthermore, suppose the process is for none t ≥ 0 shrinking at x ∈ Ṡn. Then
conv{x}must have at least two different extreme points, say xi1 and xi2 . Part (i) yields
U(k1, τ0) = {xi1} and U(k2, τ0) = {xi2} with 1 ≤ k1, k2 ≤ n which contradicts property
(c). This proves part (ii).
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With the help of Lemma 8.3.6 fromTheorem8.3.4we obtain immediately the following
result.

Theorem 8.3.7. Let T be a mean map on Sn for a non-empty and convex subset S ofℝd.
It holds lim

t→∞
Ttx = c̄(x) for all x ∈ Sn if T is continuous and for each x ∈ Ṡn the mean

process given by x(t) = Ttx has a neighboring system with one of the properties (a), (b),
(c) of Lemma 8.3.6.

From this theorem we obtain the following result which demonstrates the role of
scrambling matrices also for general mean maps.

Corollary 8.3.8. Let Tx = A(x)x, x ∈ Sn, S a non-empty convex subset of ℝd and A(x) a
stochastic matrix the entries of which depend continuously on x. It holds

lim
t→∞

Ttx = c̄(x) for all x ∈ Sn
in each of the following cases.
(a) For each x ∈ Ṡn exist t = t(x) and p = p(x) such that on the orbit of x given by

x(t) = Ttx the product
A(x(t + p)) ⋅ ⋅ ⋅A(x(t)) is scrambling.

(b) For each x ∈ Ṡn at least one of the matrices A(x(t)) has a scrambling power and all
these matrices are of the same type , that is aij(x(t)) = 0 if and only if aij(x(0)) = 0
where 1 ≤ i, j ≤ n, t ≥ 0.

(c) All matrices A(x) are of the same type and A(x0) has a scrambling power for some
x0 ∈ Sn.

Proof. By assumption T is a continuous mean map on Sn to which we will apply The-
orem 8.3.7.

(a) Fix x(0) = x ∈ Ṡn. A neighboring system for the mean process given by x(t) =
Ttx is defined by taking A(x(t)) as A(t). For τ = (t + p, . . . , t) then B(τ ) = A(x(t +
p)) ⋅ ⋅ ⋅A(x(t)). By definition of N(i, τ ) the condition N(i, τ ) ∩ N(j, τ ) ̸= 0 for 1 ≤ i, j ≤ n
means that B(τ ) is scrambling. Thus, Theorem 8.3.7 implies the conclusion for (a).

(b) This follows from the above. Let A(x(t0)) be a matrix, the p-th power of which
is scrambling. Since all matrices A(x(t)) are of the same type the product A(x(t +
p)) ⋅ ⋅ ⋅A(x(t)) is scrambling for each t.

(c) is a special case of (b).

The following consequence of Corollary 8.3.8 provides a criterion in terms of the Jaco-
bian for differentiable mean maps.

Corollary 8.3.9. Let T be a mean map on int ℝn
+ which is positively homogeneous and

continuously differentiable. If there exist a p ≥ 1 such that for all x the Jacobian J(x) of T
is stochastic at x andproducts taking for anyppoints are scrambling, then lim

t→∞
Ttx = c̄(x)

for all x ∈ intℝn
+.
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Proof. Since T is positively homogeneous by Euler’s Theorem Tix = ∑n
j=1

𝜕Ti
𝜕xj
(x)xj for

all i, that is Tx = J(x)x. The assertion follows from Corollary 8.3.8 (a).

Particular examples of mean maps are given by the well-known means as arithmetic
mean, geometric mean, harmonic mean, power mean, Lehmer mean, and many oth-
ers. All these means we admit in a weighted version.

Definition 8.3.10. Let ak, 1 ≤ k ≤ n be any weights that is 0 ≤ ak and∑n
k=1 ak = 1.

A mapping f : intℝn
+ → ℝ+ is a weighted mean called

– arithmetic mean if

f (x) = n∑
k=1

akxk, x = (x1, . . . , xn) ∈ ℝn;
– geometric mean if

f (x) = n∏
k=1

xakk ;
– harmonic mean if

f (x) = ( n∑
k=1

akx
−1
k )−1;

– power mean if for some r ∈ ℝ ∖ {0}
f (x) = ( n∑

k=1
akx

r
k) 1

r

(also called Hölder mean);
– Lehmer mean if for some r ∈ ℝ

f (x) = ( n∑
k=1

akx
r+1
k )( n∑

k=1
akx

r
k)−1

(also called contraharmonic mean).

With the exception of the Lehmer mean all these means can be looked at as cases of a
power mean.

This is obvious for the arithmetic mean, taking r = 1. Similarly, the harmonic
mean is a power mean for r = −1. It is not difficult to see that

lim
r→0

(∑ akx
r
k) 1

r
=

n∏
k=1

xakk ,
and, hence, the geometric mean can be viewed as a power mean for r = 0. In the
followingwe consider selfmappings of intℝn

+ where each componentmapping is given
by one of the means above. Since for all these means we have that

min
1≤k≤n

xk ≤ f (x) ≤ max
1≤k≤n

xk, x ∈ ℝn
+
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the mixture T of these means is a mean map as defined earlier. Since such a mean
map stirs up various means, call it a soup. A particular case is a Gauss soup, where
only the arithmetic mean and geometric mean are involved. A special case, the fa-
mous arithmetic-geometric mean we discussed already as axample (3) in Examples
and counter-examples 8.3.5. More precisely, we have the following definition.

Definition 8.3.11. Let A ∈ ℝn×n
+ be a stochastic matrix. A selfmapping T of int ℝn

+ is a
soup based on A if for each 1 ≤ i ≤ n the component mapping Ti is one of the means
in Definition 8.3.10 with the i-th row of A as weights. T is aGauss soup if Ti is for each
i either an arithmetic or a geometric mean.

On soups we have the following fundamental result.

Theorem 8.3.12. Let T be a selfmapping of int ℝn
+.

(i) If T is a soup based on a scrambling matrix then lim
t→∞

Ttx = c̄(x) for all x ∈ intℝn
+.

(ii) If T is a soup based on a matrix which has a scrambling power, then lim
t→∞

Ttx = c̄(x)
for all x ∈ intℝn

+ provided the soup does not contain a Lehmer mean as component
as it is the case for a Gauss soup.

Proof. As already remarked T is a meanmap and T is obviously continuous on intℝn
+.

To apply Theorem 8.3.4 (iii) we show that T is shrinking, for t = 1, at each x ∈ intℝn
+.

(i) Letmin y = min
1≤i≤n

yi,max y = max
1≤i≤n

yi for y ∈ intℝn
+. By definitionT is shrinking for

t = 1 at x ∈ ℝn
+ if and only if [min Tx,max Tx] = conv{Tx} ⫋ conv{x} = [min x,max x]

that is, either min Tx ̸= min x or max Tx ̸= max x. To prove this we show that Tix =
min x together with Tjx = max x for any 1 ≤ i ̸= j ≤ n implies min x = max x. This will
follow from the properties of each of the means considered

f (x) = min x, ak > 0 for some k implies xk = min x and
f (x) = max x, al > 0 for some l implies xl = max x.

(∗)
Namely, assume properties (∗) to hold for each mean f . Since by assumption the ma-
trixA onwhichT is based is scrambling, for i ̸= j given there exists a k such that aik > 0
and ajk > 0 which together with Tix = min x and Tjx = max x yields xk = min x and
xk = max x, that is min x = max x.

It remains to show properties (∗) for each mean f as in Definition 8.3.10.
Consider first a power mean

f (x) = ( n∑
k=1

akx
r
k) 1

r , r ̸= 0.
If f (x) = min x then ∑k akx

r
k = (min x)r and ∑k ak(xrk − (min x)r) = 0. If ak > 0 then

xrk = (min x)r and xk = min x. The same reasoning applies in case of f (x) = max x.
This covers for r = and r = −1 the cases of an arithmetic mean and harmonic mean,
respectively. Consider next a geometric mean, f (x) = ∏n

k=1 x
ak
k . If f (x) = min x then
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∏k x
ak
k = ∏k(min x)ak . If ak > 0 then because of x ∈ int ℝn

+ we must have that xakk =(min x)ak that is xk = min x. Similar for f (x) = max x.
As the last case consider a Lehmer mean

f (x) = ( n∑
k=1

akx
r+1
k )( n∑

k=1
akx

r
k)−1.

If f (x) = min x, then ∑k akx
r+1
k = ∑k akx

r
k min x and ∑k akx

r
k(xk − min x) = 0. If ak > 0

then because of x ∈ int ℝn
+ we must have xk = min x. Similar for f (x) = max x. Thus,

properties (∗) hold for each mean considered which proves part (i).
(ii) Let T be a soup based on A and containing no Lehmer mean as a component.

We show that for all t ≥ 0 Tt is a soup based on At. Let Ti be a component given by a
power mean,

Tix = ( n∑
k=1

aikx
r
k) 1

r

for all x ∈ int ℝn
+. Suppose for some t we have that

Tt
i x = (∑

k
a(t)ik x

r
k) 1

r , a(t)ik
being the entries of At. Then

Tt+1
i = Tt

i (Tx) = (∑
k
a(t)ik (Tkx)r)

1
r
= [∑

k
a(t)ik (∑

h
akhx

r
h)] 1

r

= [∑
h
(∑

k
(a(t)ik akh))xrh]

1
r
= (∑

h
a(t+1)ih xrh) 1

r .
By induction this proves that Tt

i is a power mean with weights given by the i-th row of
At. This covers for r = 1 and r = −1 arithmetic and harmonic mean, respectively. The
remaining case to be considered is a geometric mean, Tix = ∏n

k=1 x
aik
k . Similarly as the

above we obtain

Tt+1
i x = Tt

i (Tx) =∏
k
(Tkx)a(t)ik =∏

k
(∏

h
xakhh )a(t)ik

=∏
h
∏
k
xa

(t)
ik akh

h =∏
h
x
(∑
k
a(t)ik akh)

h .
By induction Tt

i is a geometric mean with weights given by the i-th row of At. Thus, by
induction for each t the iterate Tt is a soup based on At. If Ap is scrambling for some
p from part (i) we obtain that lim

t→∞
Tptx = c̄(x), for all x ∈ int ℝn

+. Since T is continuous
we get lim

t→∞
Tpt+sx = Tsc̄(x) = c̄(x) which proves the desired result.

The conclusion in part (i) of Theorem 8.3.12 still holds if we stir up a soup even fur-
ther. To see this we use the following simple lemma which extends what we know by
Corollary 8.1.3 about scrambling matrices to shrinking mean maps.

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:21 PM



8.3 Mean processes, mean structures and the iteration of mean maps | 285

Lemma 8.3.13. Let R, T be mean maps on Sn.
(i) The compositions R ∘ T and T ∘ R are mean maps on Sn and are both shrinking, for

t = 1, at each x ∈ Ṡn if this is the case for T. Furthermore, any finite composition of
mean maps on Sn is shrinking, for t = 1, at each x ∈ Ṡn whenever this is true for one
of these mean maps.

(ii) T is shrinking, for t = 1, any x ∈ Ṡn if and only if for each mean map R and each x it
holds that (R ∘ T)x = x implies x = c̄ for some c ∈ S.

Proof. (i) Obviously, R ∘ T and T ∘ R are mean maps. If T is shrinking, for t = 1, at
x then conv{(R ∘ T)x} ⊆ conv{Tx} ⫋ conv{x}. If T is shrinking, for t = 1, at Rx then
conv{(T ∘ R)(x)} ⫋ conv{Rx} ⊆ conv{x}. If x ∈ Ṡn but Rx ̸∈ Ṡn, that is Rx = c̄ for some
c ∈ S, then (T ∘ R)x = Tc̄ = c̄ and, hence, conv{(T ∘ R)x} = {c} ⫋ {x}. Thus, T ∘ R is
shrinking on Ṡn. This proves the first statement in (i). The second statement follows
immediately.

(ii) IfT is shrinking, for t = 1, at all x ∈ Ṡn andR ameanmap such that (R∘T)x = x,
then conv{x} = conv{(R∘T)x} ⊆ conv{Tx} and, hence x ̸∈ Ṡn that is x = c̄ for some c ∈ S.
Conversely, suppose conv{Tx} = {x} for x ∈ Sn. Then xi ∈ conv{Tx} for all i and there
exists an n×n-stochastic matrix B such that for Ry = By it follows x = (R ∘T)x. R being
a mean map from the assumption it follows x = c̄ for some c ∈ S. This shows that T is
shrinking, for t = 1, at any x ∈ Ṡn.
Using this lemma Theorem 8.3.4 yields the following result.

Corollary 8.3.14. For a soup T on Sn and any stir up P, that is P is a composition of
continuous mean maps containing T, it holds lim lim

t→∞
Ptx = c̄(x) for all x ∈ Sn if the soup

is not too viscous, that is for each mean map R and each x ∈ Ṡn it holds (R ∘ T)x ̸= x.
The latter condition is equivalent for T to be shrinking, for t = 1, at each x ∈ Ṡn and is
satisfied if T is based on a scramling matrix.

Proof. If T is shrinking, for t = 1, on Ṡn then by Lemma 8.3.13 (i) this holds for the
composition P, too. From Theorem 8.3.4 (iii) it follows that lim

t→∞
Ptx = c̄(x) on Sn. By

Lemma 8.3.13 (ii) T is shrinking, for t = 1, on Ṡn if and only if for each mean map and
each x ∈ Ṡn (R ∘ T)x ̸= x. If T is based on a scrambling matrix then according to the
proof of Theorem 8.3.12 T is, for t = 1, shrinking on Ṡn.

Examples 8.3.15. (1) Anobvious consequence of Corollary 8.3.14 is that lim
t→∞

Ptx = c̄(x)
holds on Sn also for a weighted soup P, that is Pix = ∑n

j=1 bijTjx where B = (bij) is
a stochastic matrix and T based on a scrambling matrix. For T consisting of Lehmer
means only and A primitive this result can be found in [84, Proposition 3.4].

(2) Let T be a soup based on a scrambling matrix A. Consider a selfmapping R of
int ℝn

+ with Rix equals min{xj | j ∈ I(i)} or max{xj | j ∈ I(i)} where I(i) is a non-empty
subset of {1, . . . , n} for each i. By Lemma 8.3.13 each zigzagmapping P is shrinking, for
t = 1, on Ṡn, where P is defined to be a composition of T and finitelymanymappings R
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of the type as above. Corollary 8.3.14 yields that lim
t→∞

Ptx = c̄(x) on Sn. Particular cases
are Pix equals

min{ n∑
j=1
akj | k ∈ I(i)} or max{ n∑

j=1
akj | k ∈ I(i)} and Qix =

n∑
j=1
aijm(j)

where I(i) is a non-empty subset of {1, . . . , n} and m(j) = min{xk | k ∈ I(j)} or m(j) =
max{xk | k ∈ I(j)}. (See also the treatment of zigzagmappings in Corollary 5.3.6 (iii) and
Examples 5.4.2 (iii), where without assuming stochastic matrices just the existence of
(absolute) stable fixed points has been shown.)

(3) The following examplewhich stems frompopulationbiologywe take from [85,
equations 3.6.4] (see also [70, p. 160]). Let T be the following selfmapping of intℝn

+

Tx =
[[[[[

a1x1 + b1ϑ (x1, x2) + c1ϑ (x1, x4) + d1ϑ (x2, x3)
a2x2 + b2ϑ (x1, x2) + c2ϑ (x1, x4) + d2ϑ (x2, x3)
a3x3 + b3ϑ (x3, x4) + c3ϑ (x1, x4) + d3ϑ (x2, x3)
a4x3 + b4ϑ (x3, x4) + c4ϑ (x1, x4) + d4ϑ (x2, x3)

]]]]]
, (∗)

where aj, bj, cj, dj ≥ 0 for 1 ≤ j ≤ 4 and ϑ is one half of the harmonic mean, ϑ (s, t) =
1
2h(s, t) = st

s+t for s, t > 0. By detailed analysis in [85] complicated conditions are given
which determine exactly when T has an eigenvector in int ℝ4

+ (see [70]; actually the
analysis in [85] allows also aj to be negative). We shall prove that under certain as-
sumptions on the coefficients it will follow that lim

t→∞
Ttx = c̄(x) on int ℝn

+. To apply
Theorem 8.3.4 (iii) we first assume that aj + 1

2 (bj + cj + dj) = 1 for all 1 ≤ j ≤ 4, which
assures that T is a continuousmeanmap on Sn for S = intℝ+. It remains to show that T
is shrinking on Ṡn For this we proceed as in the proof for Theorem 8.3.12 (i) by showing
that Tix = min x together with Tjx = max x for 1 ≤ i ̸= j ≤ 4 implies min x = max x. The
i-th component of T has by (∗) the form

Tix = aixi +
1
2
bih(⋅, ⋅) + 1

2
cih(⋅, ⋅) + 1

2
dih(⋅, ⋅). (∗∗)

Thus, Tix, though not one of the means as in Definition 8.3.10 it is a combination of
two of them, of arithmetic and harmonic means. As with the latter we proceed with(∗∗) and obtain for Tix = min x, depending on which of the coefficients is positive,
that either xi = min x or h(s, t) = min x, in which case we must have that s = t = min x.
Similar for Tix = max x. Instead of carrying out the details we illustrate the method
by a numerical example. (See also Exercise 8.) Suppose the matrix M = [a b c d] is
given by

M =
[[[[[

0 1 0 1
0 1 1 0
1
2 0 1 0
0 0 1 1

]]]]]
and Tx =

[[[[[[[

1
2h(x1, x2) + 1

2h(x2, x3)
1
2h(x1, x2) + 1

2h(x1, x4)
1
2x3 + 1

2h(x1, x4)
1
2h(x1, x4) + 1

2h(x2, x3)
]]]]]]]
.
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The method described above for (∗∗) yields in this case if Tix = min x or Tix = max x
for i = 1 : x1 = x2 = x3, for i = 2 : x1 = x2 = x4, for i = 3 : x1 = x3 = x4 and for
i = 4 : x1 = x2 = x3 = x4.

This shows that Tix = min x and Tjx = max x must give min x = max x. Thus T is
shrinking, though thematrixM is not scrambling. This proves the conclusionwanted.
It should be pointed out, however, that the assumptions made are stronger than in
[85]; by the assumption aj + 1

2 (bj + cj + dj) = 1 for 1 ≤ j ≤ 4 the mere question for an
eigenvector in intℝn

+ becomes trivial.

In concluding this section we relate results obtained to those in the literature.

Remarks 8.3.16. (1) In [12] a continuousmapping f : intℝn
+ → ℝ is called an abstract

mean if min x ≤ f (x) ≤ max x (actual, the definition is given for n = 2). An abstract
mean is called strict, if f (x) = min x or f (x) = max x holds precisely if all components
of x are equal. In case of lim

t→∞
Ttx = c̄(x), T ameanmap, the common limit c̄(x) is called

the compound of the component mappings Ti (in case of n = 2). It is shown in [12,
Theorem 8.2], for n = 2 that a compound exists if one of the component mappings is
strict. This is, even for n = 2, just a special case of a shrinkingmap. (Actually, a further
assumption is made to establish monotonicity of the iterates.) In general strictness is
neither necessary nor sufficient for lim

t→∞
Ttx = c̄(x) to hold on intℝn

+ (see Exercise 4).
(2) Considering Definition 8.3.3, a mean map which is shrinking, for t = 1, at

each x ∈ Ṡn is called a compromise map in [59]. There part (ii) of Theorem 8.3.4 is
shown for suchmaps by using arguments similar to Lemma 8.3.2. See also [60], where
only an iterate of the mean map is required to be a compromise map. Maps similar to
meanmaps or compromise maps are considered in [81]. For the results obtained there
a condition of strict convexity is used which we do not assume. (See Examples and
counter-examples 8.3.5 (4) and Exercise 12.)

(3) Corollary 8.3.8 (c) is proven in [84, Proposition 3.3] under the stronger assump-
tion that A(x0) is primitive.

In [84, 85] as well as [70] the iteration of nonlinear means is analyzed where each
component of a selfmapping f of ℝn

+ is a positive linear combination of power means
on int ℝn

+, including the limit case of a geometric mean. Various conditions are given
which guarantee lim

t→∞
f t(x) = λ (x)u on int ℝn

+ with λ (x) > 0, u ∈ int ℝn
+ an eigenvector

of f . In [84, Proposition 3.4] such a result is proven if the components of f are convex
combinations of Lehmermeans (see Examples 8.3.15 (1)). Also themodel from biology
given inExamples 8.3.15 (3) is analyzed indetail in [85] for the existenceof eigenvectors
in intℝn

+.
(4) The area of means and their iterations is as old as it is fascinating and the lit-

erature on it is quite widespread. The book [12] is a beautiful account which presents
manyexamples andhints at the literature. Thearticle [2] is very illuminating and treats
also means in infinite dimensions. A classic is [15] which treats a lot of famous exam-
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ples in a systematicmanner. All these references address also the history of the subject
and give further references.

(5) For Gauss soups see [44, 59, 60]. Stated in the language used here it is proven
by different reasoning, in [29] and [37] that for a soup with geometric mean and power
mean as components it holds lim

t→∞
Ttx = c̄(x) provided the soup is based on a stochastic

matrix which has all its rows equal and strictly positive. This result is a special case of
Theorem 8.3.12, of part (i) as well as of part (ii).

(6) As already remarked, to determine for a mean map T the limit c̄(x), provided
it exists, can be very difficult and is known only in a few cases. It is easy for T given by
a scrambling stochastic matrix. For, by Theorem 8.1.4 lim

k→∞
Ak = B where all rows of B

are equal to vector b the transpose of which is the unique normalized eigenvector of
the transpose A. From this it follows c(x) = ∑n

j=1 bjxj for all x. In the most simple case
of a Gauss soup, n = 2 and based on

A = [ 1
2

1
2

1
2

1
2

] ,
c(x) is given by a complete elliptic integral of the first kind (see Examples and counter-
examples 8.3.5 (3); for a proof see [12]). Following Gauss, later on Borchardt [11] inves-
tigated the case n = 4 and the following selfmapping f of int ℝn

+ given by composing
arithmetic and geometric mean in the following manner:

f1(x) = 1
4
(x1 + x2 + x3 + x4), f2(x) = 1

2
(√x1x2 + √x3x4),

f3(x) = 1
2
(√x1x2 + √x2x4), f4(x) = 1

2
(√x1x4 + √x2x3).

This, of course, is a mean map and it is easily confirmed that f is, for t = 1, shrinking
at each x ∈ int ℝ4

+. (See a generalization in Exercise 9.) Therefore, by Theorem 8.3.4 it
holds lim

t→∞
Ttx = c̄(x) for all x. Borchardt proved that c(x) is given by an integral over a

Kummer’s quartic surface [2, 11].
(7) Considering thedeterminationof c(x) there is a close relationship to invariants

for T (first integrals), that is mappings H : int ℝn
+ → int ℝn

+ such that H(Tx) = H(x) for
all x ∈ int ℝn

+. If H is a continuous invariant for T and lim
t→∞

Ttx = c̄(x) then H(x) =
H(c̄(x)). Therefore, knowing an invariant H one possibly could calculate c(x) from it.
Conversely, in case of lim

t→∞
Ttx = c̄(x), H(x) = c̄(x) yields an invariant. Actually, the

latter is the only continuous mean map H which is invariant. For, H(Tx) = H(x) for all
x impliesH(x) = lim

t→∞
H(Ttx) = H(c̄(x)) = c̄(x). (This is called the “ Invariance Principle”

in [12].) For examples for the use of integrals see Exercises 12, 13.
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8.4 Infinite products of stochastic matrices: path stability,
convergence and a generalized theorem of Wolfowitz

A mean process (x(t)) on Sn, that is conv{x(t + 1)} ⊆ conv{x(t)} for all t ≥ 0 by defi-
nition, can be equivalently described by x(t + 1) = A(t)x(t) with stochastic matrices
A(t) for t ≥ 0. (See Definition 8.3.1 and the remarks thereafter.) Therefore, x(t + 1) =
A(t)A(t − 1) . . .A(1)A(0)x(0) and the question whether lim

t→∞
x(t) = c̄(x(0)) ∈ diagSn be-

comes one of the matrix products A(t) ⋅ ⋅ ⋅A(0) tending to a matrix with all rows equal.
To find conditions for the latter is the main aim of the present section. For the special
case A(t) = A for all t we know already from Theorem 8.1.4 as a necessary and suffi-
cient condition that a power of A has to be scrambling. One might expect, therefore,
as condition for A(t) ⋅ ⋅ ⋅A(0) to tend to a matrix with equal rows that products of the
matrices A(s) should be scrambling. Whereas such a condition is necessary it is by no
means sufficient. What is needed, moreover, is a structure of being scrambling which
is not weakened too fast for t tending to infinity. This phenomenon is illustrated by
the following simple examples which also foreshadows the general relationships as
set out in Theorem 8.4.2 and later results.

Examples 8.4.1. We consider two examples of sequences of 2 × 2-matrices A(t),
stochastic and acting on ℝ.

Example A. Let

A(t) = [1 0
1
t 1 − 1

t
]

for t ≥ 2. One confirms easily by induction that

P(t) = A(t)A(t − 1) . . .A(2) = [ 1 0
1 − 1

t
1
t
] for t ≥ 2.

Therefore, lim
t→∞

P(t) = [ 1 0
1 0 ] – a matrix with all rows equal.

Example B. Let

A(t) = [1 0
1
t2 (1 − 1

t2 )]
for t ≥ 2. One confirms easily by induction that

P(t) = A(t)A(t − 1) . . .A(2) = [ 1 0
1 − α (t) α (t)] with α (t) = t∏

i=2
(1 − 1

i2
) .

Also by induction follows α (t) = 1
2 (1 + 1

t ) and, hence,
lim
t→∞

P(t) = [1 0
1
2

1
2
] ,

a matrix with not all rows equal.
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290 | 8 Dynamics of interaction

In both examples thematricesA(t) are all scrambling as well as the limits lim
t→∞

P(t)
which, however, are quite different considering equality of rows. In the following we
analyze this phenomenon under various aspects. Roughly speaking, the point of dif-
ference is that the convergence in example B is “too fast”.

Let c(⋅) be the coefficient formatrices introduced in Theorem 8.1.2 A. For example Awe
have c(P(t)) = 1

t which converges to 0, whereas for example B we have c(P(t)) = α (t)
which does not converge to 0. This is related to ∑∞

t=2
1
t = ∞ versus ∑∞

t=2
1
t2 < ∞. (See

also Example 8.4.10 and Theorem 8.4.5 for the general case.)
The difference between examples A and B can also be recognized by checking for

path stability. Consider the mean process (x(t)) defined by x(t + 1) = A(t)x(t) and,
hence x(t + 1) = P(t)x(2). For example A we obtain x(t + 1) = (x1, (1 − 1

t )x1 + 1
t x2)

where x = x(2). Therefore, ‖x1(t + 1) − x2(t + 1)‖ = 1
t ‖x1 − x2‖ converges to 0 for

t → ∞. That is, path stability holds with respect to any norm on D = ℝ in the sense
of Definition 7.1.3. For example B, on the other hand, we obtain x(t + 1) = (x1, (1 −
α (t))x1 + α (t)x2) and, hence, ‖x1(t + 1) − x2(t + 1)‖ = α (t)‖x1 − x2‖ which shows
because of lim

t→∞
α (t) = 1

2 that path stability does not hold.
Path stability can also be considered for internalmetrics in the sense of Chapter 3.

For this we need a convex cone K in the interior of which the mean process can be
embedded. Let X = conv{x1, x2} ⊆ ℝ which we embed into int ℝ2

+ as follows. Define
x̃ = {(a + x, r) | x ∈ X}, with a such that a + x > 0 for all x ∈ X and r = sup{a + x | x ∈
X} > 0. For y = (y1, y2) ∈ ℝ2 by ‖y‖ = max{|y1|, |y2|} a normmonotone onℝ2

+ is defined.
Obviously, for x̃ = (a + x, r), x ∈ X it holds ‖x̃‖ = max{|a + x|, r} = r. To compute an
internal metric we consider the order function λ (⋅, ⋅) on ℝ2

+. If u, v ∈ X then

λ (ṽ, ũ) = min
1≤i≤2

ũi
ṽi

= min{a + u
a + v

, r
r
}.

This gives

min{λ (ṽ, ũ), λ (ũ, ṽ)} = min{a + u
a + v

, a + v
a + u

, 1} = a + min{u, v}
a + max{u, v} .

In case of example A we obtain for u = x1(t + 1), v = x2(t + 1)
min{λ (ṽ, ũ), λ (ũ, ṽ)} = a + min{x1, (1 − 1

t )x1 + 1
t x2}

a + max{x1, (1 − 1
t )x1 + 1

t x2} ,
which converges to 1 and, hence, for the part metric p lim

t→∞
p(x̃1(t), x̃2(t)) = 0. That is,

path stability for p on int ℝ2
+. In contrast, a similar calculation for example B yields

for u = x1(t + 1), v = x2(t + 1)
min{λ (ṽ, ũ), λ (ũ, ṽ)} = a + min{x1, (1 − α (t))x1 + α (t)x2}

a + max{x1, (1 − α (t))x1 + α (t)x2} ,
which converges because of lim

t→∞
α (t) = 1

2 to a limit different from 1 for x1 ̸= x2. There-
fore, lim

t→∞
p(x̃1(t), x̃2(t)) ̸= 0 for x1 ̸= x2 and path stability for p does not hold.
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For the Hilbert metric we obtain for u, v ∈ X
λ (ṽ, ũ) ⋅ λ (ũ, ṽ) = min {a + u

a + v
, 1} ⋅min { a + v

a + u
, 1}

= a + min{u, v}
a + max{u, v} .

Thus,Hilbertmetric andpartmetric are equal in this case and the samedistinction
as for the part metric applies.

Finally, we may check the two examples for assymptotic equality in the sense of
Definition 7.1.1.

In case of example A we have, for t ≥ 2, 𝛾(t)x̃1 ≤ x̃2(t + 1) ≤ ̃𝛾(t)x̃1 for 𝛾(t) =
1 − 1

t
|x1−x2|
a+x1

, ̃𝛾(t) = 1 + 1
t
|x1−x2|
a+x1

which proves that the sequences (x̃1(t)) and (x̃2(t)) are
assymptotically equal. This is not so for example B, since, for t ≥ 2, the existence of𝛾(t) and ̃𝛾(t) as above would require 𝛾(t)

̄𝛾(t) ≤ α < 1 for t big enough and, hence, (x̃1(t))
and (x̃2(t)) are not even asymptotically linked.

The next theoremprovides necessary and sufficient conditions for amean process
to converge to a point on the diagonal diagSn. The theorem shows in particular that
this convergence is equivalent to path stability, for a norm or for any of the internal
metrics taken with respect to an appropriate convex cone. The case of stochastic ma-
trices differs here greatly from the case of general nonnegative matrices. For the latter
weak ergodicity or path stability and strong ergodicity do not coincide. Compare in
particular the results in Chapter 7 (Corollaries 7.2.4 and 7.3.4) to part (iv) of the follow-
ing theorem.

Theorem 8.4.2. Let (A(t)) be a sequence of stochastic matrices, M(t, s) = A(t +
s) ⋅ ⋅ ⋅A(s) for s, t ≥ 0 and (x(t)) the mean process defined by x(t + 1) = A(t)x(t) for
t ≥ 0, x(0) = x ∈ Sn where S is a non-empty convex subset of ℝd.
(i) For s ≥ 0, x ∈ Sn fixed, lim

t→∞
x(t + s) ∈ diagSn holds if and only if

lim
t→∞

‖xi(t + s) − xj(t + s)‖ = 0 for all 1 ≤ i, j ≤ n

(‖ ⋅ ‖ any norm on ℝd, x(t) = (x1(t), . . . , xn(t)).
(ii) For s ≥ 0 fixed, lim

t→∞
M(t, s)x ∈ diagSn holds for all x ∈ ℝd if and only if

lim
t→∞

c(M(t, s)) = 0.

(iii) For s ≥ 0, x ∈ Sn fixed suppose there exists a lineless closed convex cone K in ℝd

which contains conv{x} in its interior and which admits a norm ‖ ⋅ ‖ onℝd monotone
forK. Then lim

t→∞
x(t + s) ∈ diagSn holds if and only if one of the following equivalent

properties applies.
(a) For any i, j ∈ {1, . . . , n} the sequences (xi(t + s)) and (xj(t + s)) are asymptoti-

cally equal (forK).
(b) For any i, j ∈ {1, . . . , n} and any internal metric m onK it holds

lim
t→∞

m(xi(t + s), xj(t + s)) = 0. In case of the Hilbert metric assume the norm
constant on conv{x}.
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292 | 8 Dynamics of interaction

(iv) For s ≥ 0 fixed, lim
t→∞

M(t, s)x = c̄(x) > 0 holds for all x ∈ ℝn
+ ∖ {0} if and only if one of

the following equivalent properties applies.
(a) lim

t→∞

M(t,s)ij
n
∑
k=1

M(t,s)ik
= v(s)j > 0 for all 1 ≤ i, j ≤ n,

(b) lim
t→∞

M(t,s)ik
M(t,s)jk

= 1 for all 1 ≤ i, j, k ≤ n.
(The entries of M(t, s) being finally positive.)

Proof. To simplify assume without loss s = 0.
(i) Obviously, lim

t→∞
x(t) ∈ diagSn implies lim

t→∞
‖xi(t) − xj(t)‖ = 0. For the converse

let C(t) = conv{x(t)} and C = ⋂t≥0 C(t). Since ΔC(t) = max
1≤i,j≤n

‖xi(t) − xj(t)‖ it follows
lim
t→∞

ΔC(t) = 0 and, hence, ΔC = 0. That is C = {c} and from Lemma 8.3.2 (ii) we obtain

lim
t→∞

xi(t) = c for all i.
(ii) For x(t + 1) = M(t, 0)x we obtain Δconv{x(t + 1)} ≤ c(M(t,0))Δconv{x} from

Theorem 8.1.2 A (ii). Therefore, lim
t→∞

c(M(t, 0)) = 0 implies lim
t→∞

Δconv{x(t + 1)} = 0 and
bypart (i) it follows lim

t→∞
M(t, 0)x ∈ diagSn. Conversely, if the latter holds for each x then

A = lim
t→∞

M(t, 0) exists and all rows ofA are equal. This shows lim
t→∞

c(M(t, 0)) = c(A) = 0.
(iii) Since conv{x} is compact in intK, fromProposition 3.4.12 (vi) if follows that all

internal metrics forK are on conv{x} equivalent to the metric given by ‖ ⋅ ‖. Therefore,
(b) holds for any internal metric if and only if lim

t→∞
‖xi(t)−xj(t)‖ = 0 for all i, j. By part (i)

the latter is equivalent to lim
t→∞

x(t) ∈ diagSn. By Lemma7.1.2 (i) property (a) is equivalent
to property (b) for the part metric.

(iv) Let e(k) ∈ ℝn
+ be the k-th unit vector. Obviously, lim

t→∞
∑n
k=1M(t, 0)ikxk = c(x)

for all x ∈ ℝn
+ is equivalent to lim

t→∞
M(t, 0)ik = ck for all 1 ≤ k ≤ n where ck = c(e(k)).

Therefore, lim
t→∞

M(t, 0)x = c̄(x) > 0 for all x ∈ ℝn
+∖{0} is equivalent to limt→∞

M(t, 0)ik = ck >
0 for all i, all k. Since M(t, 0) is stochastic, the latter is equivalent to lim

t→∞

M(t,0)ij
∑
k
M(t,0)ik

= cj

for all i, j. This proves the equivalence of property (a) and lim
t→∞

M(t, 0)x = c̄(x) > 0 for all
x ∈ ℝn

+ ∖ {0}. Obviously, property (a) implies property (b), with strictly positive entries
ofM(t,0) for t big enough. Finally, suppose property (b) and let 𝛾(t) = min

i,j,k
M(t,0)ik
M(t,0)jk

for t

big enough. It follows

1 − c(M(t, 0)) = min
i,j
∑
k
min{M(t, 0)ik,M(t, 0)jk} ≥ min

j
∑
k
M(t, 0)jk ⋅min{1, 𝛾(t)}

and, hence, 1 − c(M(t, 0)) ≥ min{1, 𝛾(t)}. Now, lim
t→∞

𝛾(t) = 1 implies lim
t→∞

c(M(t,0)) = 0.
Part (ii) yields lim

t→∞
M(t, 0)x = c̄(x) and due to the positive entries ofM(t, 0)wemust

have c̄(x) > 0. This proves part (i) to (iv) of the theorem.

By part (ii) of Theorem 8.4.2 we have that lim
t→∞

M(t, 0)x ∈ diagSn for all x is equivalent to
lim
t→∞

c(M(t, s)) = 0 for all s ≥ 0. Our next purpose is to find criteria for the latter to hold
which then, later on, can be usedwhen dealingwith opinion dynamics as well as with
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8.4 Infinite products of stochastic matrices | 293

swarms. Obviously, for c(A(t) ⋅ ⋅ ⋅A(s)) to converge to 0 the matrix A(t) ⋅ ⋅ ⋅A(s)must be
scrambling for t big enough. This, however, is not sufficient as shown already in Ex-
amples 8.4.1. Necessary and sufficient conditions will be presented in Theorem 8.4.5.
One condition is geometrical and employs the distance ρA(x) between conv{x} and its
subset conv{Ax} in connection with the notion of a simple set, a finite set most simple
next to that of the diagonal.

Definition 8.4.3. A non-empty set X ⊆ Ṡn is simple if for some e ∈ ℝd, ‖e‖ = 1

X = {x = (x1, . . . , xn)} | xi = ±e for each 1 ≤ i ≤ n}.
Obviously, a simple set must be finite. In Theorem 8.1.2 A we obtained a characteriza-
tion of c(A) as a contraction factor with respect to the diameters of all sets conv{x}. The
following lemma describes c(A) by the action of A on just one arbitrary chosen simple
set.

Lemma 8.4.4. For any stochastic matrix A and any simple set X it holds

c(A) = 1 − 1
2
min
x∈X

ρA(x), (8.4.1)

where
ρA(x) = sup

y∈conv{x}
inf

z∈conv{Ax}
‖y − z‖ (8.4.2)

for x ∈ Sn, ‖ ⋅ ‖ a norm on ℝd.

Proof. Let A and X be given. For x ∈ X the sets conv{x} and conv{Ax} are intervals
in ℝe and, therefore, ρA(x) = Δconv{x} − Δconv{Ax} (ΔM the diameter of a set M). By
definition x ∈ Ṡn and, hence, Δconv{x} = 2. Furthermore,

Δconv{Ax} = max
i,j

‖∑
k
aikx

k −∑
k
ajkx

k‖
≤ max

i,j
∑
k
|aik − ajk| ⋅max

k
‖xk‖

which yields Δconv{Ax} ≤ 2c(A) using Theorem 8.1.2 A. Thus, we obtain

ρA(x) = 2 − Δconv{Ax} ≥ 2 − 2c(A)
and

min
x∈A

ρA(x) ≥ 2(1 − c(A)).
For the reverse inequality consider indices i and j with different corresponding rows
of A and let I = {k | aik ≥ ajk}. Obviously, I ⫋ {1, . . . , n}. Define y ∈ X by yk = e for k ∈ I
and yk = −e for k ̸∈ I. We have that

n∑
k=1
(aik − ajk)yk = (∑

k∈I
(aik − ajk) − ∑

k ̸∈I
(aik − ajk))e = n∑

k=1
|aik − ajk|e,
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294 | 8 Dynamics of interaction

which implies

min
x∈X

ρA(x) ≤ ρA(y) = 2 − Δconv{Ay} ≤ 2 − ‖ n∑
k=1
(aik − ajk)yk‖ ≤ 2 − n∑

k=1
|aik − ajk|.

Since the latter inequality holds trivially in case the rows for iand j are equal,weobtain

min
x∈X

ρA(x) ≤ 2 −min
i,j

n∑
k=1
|aik − ajk| = 2(1 − c(A)).

This proves equation (8.4.1)

Theorem 8.4.5. Let (A(t)) be a sequence of stochastic matrices.
(i) lim

t→∞
c(A(t + s) . . .A(s)) = 0 holds for each s ≥ 0 if and only if there exists a set ℑ of

disjunct intervals I = [a, b], a ≤ b, inℕ such that for
B(I) = A(b)A(b − 1) . . .A(a + 1)A(a) it holds

∑
I∈ℑ
(1 − c(B(I))) =∞, (8.4.3)

or, equivalently, ∑
I∈ℑ
min
x∈X

ρB(I)(x) =∞ (8.4.4)

for some simple set X.
(ii) (a) Condition (8.4.2) is satisfied for each I = [a, b] ∈ ℑ if

B(I) = A(b) ⋅ ⋅ ⋅A(a) is scrambling, and∑
I∈ℑ
α (I) =∞ (8.4.5)

where α (I) = α (b) ⋅ ⋅ ⋅ α (a) with α (t) = min
i,j
{aij(t) | aij(t) > 0}.

(b) Condition (8.4.4) is satisfied if the set of matrices B(I) is equiproper on a sim-
ple set X that is, for each x ∈ X there exists δ (x) > 0 such that

ρB(I)(x) ≥ δ (x) for all I ∈ ℑ. (8.4.6)

Proof. (i) Suppose lim
t→∞

c(A(t + s) . . .A(s)) = 0 for each s ≥ 0 and let 0 < 𝜖 < 1 be
given. Define inductively a set of intervals Ik = [ak, bk] in ℕ as follows. For k = 1 let
a1 = 0 and b1 = t + a1 with a t such that c(A(t) . . .A(0)) ≤ 𝜖. If Ik = [ak, bk] for k ≥ 0
choose ak+1 = bk + 1, bk+1 = t + ak+1 with a t such that c(A(t + ak+1) . . .A(ak+1)) ≤ 𝜖.
Obviously, all the intervals Ik are disjunct. For B(Ik) = A(bk) . . .A(ak) one has that
c(B(Ik)) ≤ 𝜖 for all k ≥ 1. Therefore,∑∞

k=1(1− c(B(Ik))) ≥ ∑∞
k=1(1− 𝜖) =∞which proves

(8.4.2). Conversely, suppose condition (8.4.2) holds for a set ℑ of intervals I. Because of
c(AB) ≤ c(A)c(B) for any two stochastic matrices A,B (by Theorem 8.1.2 A(ii)) it holds
for s ≥ 0 that c(A(t) . . .A(s)) ≤ ∏I∈ℑ(t) c(B(I))where ℑ(t) ⊆ ℑ consits of all I ⊆ [s, t]. For
any finite subset ℑ of ℑ one has

∏
I∈ℑ

c(B(I)) ⋅ ∑
I∈ℑ

((1 − c(B(I))) ≤ ∏
I∈ℑ

c(B(I)) ⋅ ∏
I∈ℑ

(2 − c(B(I))) ≤ 1
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and, hence,

c(A(t) . . .A(s)) ≤ [ ∑
I∈ℑ(t)

(1 − c(B(I)))]−1.
Since only finitely many I ∈ ℑ can intersect [0, s] from (8.4.2) it follows that lim

t→∞
c(A(t) ⋅ ⋅ ⋅A(s)) = 0. This proves the case for condition (8.4.2). The equivalence of con-
ditions (8.4.2) and (8.4.4) follows immediately from Lemma 8.4.4.

(ii) This part will follow from part (i). For (a) let M̄ denote the incidence ma-
trix of a matrix M ∈ ℝn×n

+ , that is m̄ij = 1 if mij > 0 and m̄ij = 0 if mij = 0. Obvi-
ously, M ≥ α (M)M̄ where α (M) = min

i,j
{mij | mij > 0}. Therefore, B(I) ≥ α (B(I))B̄(I).

If α (I) = α (b) . . . α (a) then α (B(I)) ≥ α (I) and, hence, B(I) ≥ α (I)B̄(I). For β (I) =
min
i,j
∑n
k=1 min{b̄ik, b̄jk} it follows 1 − c(B(I)) ≥ α (I)β (I) for all I ∈ ℑ. Since B(I) is scram-

bling by assumption the same is true for B̄(I)which, however, need not be stochastic.
This shows β (I) > 0 for all I ∈ ℑ. Since for each I the incidence matrix B̄(I) consists of
0 and 1 there are only finitely many different matrices B̄(I) for I ∈ ℑ. Thus, because of
inf
I∈ℑ

β (I) = β > 0 we finally get

∑
I∈ℑ
(1 − c(B(I))) ≥ β∑

I∈ℑ
α (I) =∞.

As for case (b) condition (8.4.6) impliesmin
x∈X

ρB(I)(x) ≥ min
x∈X

δ (x) > 0 since a simple set is
finite. Therefore, condition (8.4.4) is satisfied. This proves part (ii) of the theorem.

Corollary 8.4.6. Let (A(t)) be a sequence of stochastic matrices such that for some p ∈ℕ each product of p consecutive matrices is scrambling. If for some t0 from aij(t) > 0 it
follows that aij(t) ≥ 1

t
1
p
for all t ≥ t0 and all i, j ∈ {1, . . . , n} then
lim
t→∞

c(A(t + s) . . .A(s)) = 0 for all s ≥ 0.
Proof. Let I = [a, b] an interval in ℕ with a = kp, b = (k + 1)p − 1. The set ℑ of
all the I for k ≥ 0 consists of disjunct intervals. We will apply Theorem 8.4.5 (ii). By
assumption B(I) = A(b) . . .A(a) is scrambling. Let α (t) = min

i,j
{aij(t) | aij(t) > 0} for

t ≥ t0 and α (t) = 0, otherwise. It follows for α (I) = α (b) . . . α (a)
α (I) ≥ 1

b
1
p
⋅ ⋅ ⋅ 1

a
1
p
≥ ( 1

b
1
p
)p

= 1
b

in case of a ≥ t0

and α (I) = 0, otherwise. If k ≥ k0 = max{t0, p} then
α (I) ≥ 1(k + 1)p − 1 ≥ ( 1

p + t0
) 1
k

and, hence,

∑
I∈ℑ
α (I) ≥ 1

p + t0
∑
k≥k0

1
k
=∞.

From Theorem 8.4.5 (ii) the assertion of the corollary follows.
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296 | 8 Dynamics of interaction

Examples 8.4.1 do illustrate the above corollary. In case of example A the corollary
yields convergence for p = 1. In case of example B, however, the corollary does not
apply for any p ≥ 1. Indeed, we know that in this case convergence does not hold.

The crucial condition in Corollary 8.4.6 requiring the existence of a p such that all
products of p matrices are scrambling is connected, as will be seen in the following,
to the following property.

Definition 8.4.7. A set M of matrices from ℝn×n
+ has the Wolfowitz property or

W-property for short if each finite product of matrices from M has a power which
is scrambling. This definition extends the fundamental property in Section 8.1 for a
stochastic matrix to possess a scrambling power to collections of several matrices.

Lemma 8.4.8. Let M be a set of stochastic n × n-matrices.
(i) There exists p(M) ∈ ℕ such that all products of p(M) matrices from M are scram-

bling if and only if M has the W-property. In that case p(M) can be chosen to be(2n − 1)n + 1.
(ii) If each A ∈ M is a Sarymsakov matrix then M has the W-property and p(M) accord-

ing to (i) can be chosen to be n − 1.
Proof. Call A = (aij),B = (bij) from ℝn×n

+ equivalent, A ∼ B if for any pair (i, j)aij = 0 is
equivalent to bij = 0. Obviously, “∼” is an equivalence relation onℝn×n

+ , indeed it coin-
cides with the equivalence relation introduced earlier in Section 3.2 (Definition 3.2.1)
for the convex cone K = ℝn×n

+ ; the equivalence classes coincide with the parts of K.
Obviously, in case of A ∼ Bmatrix A is scrambling if and only if this is true for B. Fur-
thermore, A ∼ B and C ∈ ℝn×n

+ implies AC ∼ BC. The number q of equivalence classes
(parts) of stochastic matrices in ℝn×n

+ is q = (2n − 1)n which can be seen as follows.
Face for a stochastic matrix a particular row and replace positive entries by 1. There
are 2n possibilities for a row consisting of 0s and 1s. Since the matrix is stochastic
we cannot have a zero-row which leaves 2n − 1 possibilities. For the n rows then we
get (2n − 1)1n possibilities.

(i) Suppose first,M has theW-property. Let p = q + 1 and P = A1 . . .Ap with Ai ∈
M. Of the q + 1 productsA1,A1A2, . . . ,A1A2 . . .Ap at least twomust be equivalent, that
is there exist 1 ≤ i < j ≤ p such that P1 = A1 . . .Ai andP2 = A1 . . .Aj are equivalent.This
means P1 ∼ P1P3 where P3 = Ai+1 . . .Aj. By assumption Pk3 is scrambling for some
k. By iteration from P1 ∼ P1P3 it follows that P1 ∼ P1Pk3. By Corollary 8.1.3, P1P

k
3 is

scrambling and, hence, P1 is scrambling. From P = P1Ai+1 . . .Ap it follows that P is
scrambling, too. This shows that anyproduct ofp(M) = p factors fromM is scrambling.

Conversely, suppose the latter for some p ∈ ℕ. Let P be a product of k factors from
M. In case of k ≥ pwe have P = P1P2 with P1 scrambling and, hence, P is scrambling,
too. In case of k < p there exists m ∈ ℕ such that mk = p + p, p ≥ 0. Therefore,
Pm = P1P2 where P1 and P2 are products of p and p factors from M, respectively. By
assumption P1 is scrambling and, hence, Pm is scrambling, too. This shows thatM has
theW-property.
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8.4 Infinite products of stochastic matrices | 297

(ii) We show that the product of n − 1 Sarymsakov matrices of order n is
scrambling. For this we proceed as in Proposition 8.1.7 to obtain (4) from (3). Let
A(1), . . . ,A(n − 1) be S-matrices and let for 0 ̸= M ⊆ {1, . . . , n}
sk(M) = {j ∈ {1, . . . , n} | aij(k) > 0 for some i ∈ M}.

Similarly, for A(1) . . . ,A(k) let
Sk(M) = {j ∈ {1, . . . , n} | (A(1) . . .A(k))ij > 0 for some i ∈ M}.

It is easily seen that Sk(M) = sk(Sk−1(M)) for 1 ≤ k ≤ n − 1 where S0(M) = M. We
show that Sn−1(M) ∩ Sn−1(M) ̸= 0 for any two non-empty disjoint subsets M and M

of {1, . . . , n}. Suppose on the contrary Sn−1(M) ∩ Sn−1(M) = 0 for some M,M. Since
A(n − 1) is an S-matrix we have that

|Sn−2(M) ∪ Sn−2(M)| < |sn−1(Sn−2(M)) ∪ sn−1(Sn−2(M))|
and Sn−2(M) ∩ Sn−2(M) = 0 by Properties 8.1.5 (iv). Thus,

|Sn−2(M) ∪ Sn−2(M)| + 1 ≤ |Sn−1(M) ∪ Sn−1(M)|,
and by iteration

|S0(M) ∪ S0(M)| + n − 1 ≤ |Sn−1(M) ∪ Sn−1(M)|.
The latter inequality implies

n + 1 = 2 + n − 1 ≤ |M ∪M| + n − 1 ≤ |Sn−1(M) ∪ Sn−1(M)| ≤ n

which is impossible. This proves Sn−1(M)∩Sn−1(M) ̸= 0.ChosingM = {i},M = {j} for i ̸=
j this shows there exists k ∈ Sn−1({i}) and k ∈ Sn−1({j}). Therefore, for A = A(1) . . .A(n−
1) we have Aik > 0 and Ajk > 0 for some k which proves that A is scrambling.

Using this lemma from Theorem 8.4.5 and Corollary 8.4.6, we obtain the following
generalized Wolfowitz Theorem of which the original Wolfowitz Theorem proven
in [103] is the special case of a finite set {A(t)}.
Theorem 8.4.9. Let (A(t)) be a sequence of stochastic n × n-matrices.
(i) If {A(t)} has the Wolfowitz property with p(M) as in Lemma 8.4.8 then lim

t→∞
c(A(t +

s) . . .A(s)) = 0 for all s ≥ 0 holds provided the following condition is satisfied. There
exists a set ℑ of disjoint intervals I = [a, b] in ℕ with b − a ≥ p(M) − 1 such that∑I∈ℑ α (I) =∞ where α (I) = ∑t∈I α (t), α (t) = min

i,j
{aij(t) | aij(t) > 0}.

(ii) The condition in (i) is especially satisfied in the following cases
(a) α (t) ≥ 1

t
1
p
for p = p(M), t ≥ t0 ∈ ℕ,

(b) α (t) ≥ α > 0 for t ≥ t0 ∈ ℕ,
(c) {A(t)} is finite.

(iii) If A(t) is a Sarymsakov matrix for each t ≥ t0 ∈ ℕ then lim
t→∞

c(A(t + s) . . .A(s)) = 0
holds for all s ≥ 0 if the condition in (i) (or in (ii) (a)) is satisfied for p(M) = n − 1.
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298 | 8 Dynamics of interaction

Proof. Each matrix B(I) = A(b) . . .A(a) consists of at least p(M) factors and is scram-
bling by Lemma 8.4.8. Therefore, parts (i) and (iii) follow from Theorem 8.4.5 together
with Lemma 8.4.8. Corollary 8.4.6 yields case (a) in (ii) which trivially implies cases (b)
and (c).

The following examples illustrate this theorem.

Examples 8.4.10. (a) WhereasWolfowitz’ theorem [103, p. 733] assumes a finite set of
matrices, Theorem 8.4.9 allows also for infinite sets. Consider the following example
which slightly extends Examples 8.4.1. For r > 0 given let

A(t) = [1 0
1
tr (1 − 1

tr )] for t ≥ 2.
Since all A(t) are scrambling (and Sarymsakovmatrices, too) the infinite set {A(t)} has
theWolfowitz propertywithp(M) = 1. For t ≥ t0 = 2

1
r wehave thatα (t) = 1

tr . Therefore,
from case (a) of Theorem 8.4.9 (ii) lim

t→∞
c(A(t) . . .A(2)) = 0 follows for r ≤ 1. To see that

this bound is sharp consider r > 1. By induction it follows

A(t) ⋅ ⋅ ⋅A(2) = [ 1 0
1 − q(t) q(t)] with q(t) = t∏

i=2
(1 − 1

ir
) .

Since the sequence (q(t)) is decreasing onℝ+ the limit q exists. It is not difficult to see
that q > 0 (cf. [53, p. 96/97]). Therefore,

lim
t→∞

A(t) ⋅ ⋅ ⋅A(2) = [ 1 0
1 − q q

] and

lim
t→∞

c(A(t) ⋅ ⋅ ⋅A(2)) = c( lim
t→∞

A(t) ⋅ ⋅ ⋅A(2)) = 1 − (1 − q)) = q > 0.
For case (b) of Theorem 8.4.9 (ii) see also [93, Theorem 4.19]. As the above example
shows lim

t→∞
c(A(t) . . .A(2)) = 0 may hold also in case α (t) is not positively bounded

from below.
(b) For the case of on single matrix A the Wolfowitz property means that a power

of A is scrambling. By Theorem 8.1.4 we have already seen that the latter is equivalent
to lim

k→∞
Ak being a matrix with equal rows which in turn is equivalent to lim

t→∞
c(At) = 0.

For the next simple case of two stochastic matrices A and B one might expect, there-
fore, that for a sequence (A(t)) consisting of A and B only lim

t→∞
c(A(t) . . .A(0)) = 0 holds

if both A and B have a scrambling power. This, however, is not true as the following
example demonstrates. Let

A = [[[
1 0 0
1 0 0
0 1 0

]]]
and B = [[[

0 1 0
0 0 1
0 0 1

]]]
.
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Neither A nor B is scrambling but

A2 = [[[
1 0 0
1 0 0
1 0 0

]]]
and B2 = [[[

0 0 1
0 0 1
0 0 1

]]]
both are scrambling. Furthermore,

AB = [[[
0 1 0
0 1 0
0 0 1

]]]
, (AB)2 = [[[

0 1 0
0 1 0
0 0 1

]]]
= AB and BAB = [[[

0 1 0
0 0 1
0 0 1

]]]
= B.

This shows that none of these matrices is scrambling. Define A(t) = A if t is odd and
A(t) = B if t is even. It follows that c(A(t) ⋅ ⋅ ⋅A(0)) = 1 for all t ≥ 0. The finite set {A,B}
does not possess the Wolfowitz property though A2 and B2 are scrambling. (See also
[39, p. 235] and [103, p. 734].)

According to part (ii) of Lemma 8.4.8 at least one of the two matrices cannot be a
Sarymsakov matrix; actually, neither A nor B is a Sarymsakov matrix (see also Exam-
ples 8.1.8 (c)).

To conclude this section we connect the results obtained to the literature.

Remarks 8.4.11. (1) Theorem 8.4.2 shows that for a mean process the convergence to
a point on the diagonal is equivalent to path stability. In part (i) with respect to a norm,
in part (iii) with respect to internal metrics. Part (iv) shows that for stochastic matri-
ces weak and strong ergodicity coincide. More precisely, this equivalence holds for
row-stochastic matrices A(t) and backward products of those, that is A(t) . . .A(s) for
t > s (see also [93, Theorem 4.17]). Such an equivalence does not hold for nonnegative
matrices in general as shown in part (i) of Examples 7.5.3. For nonnegative matrices
one might change from a backward product to a forward product, that is A(s) . . .A(t)
for t > s by taking the transpose of matrices. In case of row stochastic matrices this
means, however, to switch to column-stochastic matrices. (For the two kinds of prod-
ucts as well as weak and strong ergodicity see [93] and the earlier Corollaries 7.2.4(ii)
and 7.3.4 (ii).)

(2) The first result in Theorem 8.4.5(i) concerning condition (8.4.2) goes back to
[39, Theorem 3]. See also [93, Theorem 4.18] with references to the work of J. Hajnal
and W. Doeblin. Theorem 8.4.5 (ii) (a) generalizes [57, Theorem 2]. For a weaker ver-
sion see [93, Theorem 4.19]. In [59, p. 3] the term proper compromise mapping is
used for a meanmapwhich is shrinking at each point not on the diagonal. For a mean
mapgivenbya stochasticmatrix thismeans that thematrixmust be scrambling. In [75,
p. 94] a family F of meanmaps is called equiproper if for each x ∈ Ṡn the distance be-
tween conv{x} and conv{f (x)} is bounded from below by δ (x) > 0 for all f ∈ F. There it
is proved [75, Theorem 1] that for F equiproper and equicontinuous ft ∘ ft−1 ∘ . . . ∘ f1(x)
converges to a point on the diagonal, where ft ∈ F, x ∈ Sn. As part (ii)(b) of Theo-
rem 8.4.5 shows, in case of mean maps given by stochastic matrices the condition of
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300 | 8 Dynamics of interaction

equicontinuity can be omittted and the condition of being equiproper is required only
for products B(I) on just one simple, hence, finite subset.

(3) The proof that the product of (n − 1) Sarymsakov matrices of order n is scram-
bling (in the proof of Lemma 8.4.8 (ii)) follows [40, Theorem 4.8]. The original the-
orem of Wolfowitz [103, Theorem p. 733] states, in our language, that for a finite set{A(t)} having the Wolfowitz property it follows that lim

t→∞
c(A(t) . . .A(s)) = 0. The proof

of Lemma 8.4.8 (i) follows in part [103, Lemma 4].

In [103] a stochastic matrix A is called a SIA matrix if lim
k→∞

Ak is a matrix with equal
rows; other terms used sometimes are that of an ergodic or regular matrix. By Theo-
rem 8.1.4, these notions are equivalent to A having a power which is scrambling. Wol-
fowitz’ Theoremhasmany applications, see, for example [52, 90], which, however, are
restricted by the assumption of finitely many matrices. Considering mean processes
one faces in a natural way infinitely many matrices which requires an extension of
Wolfowitz’ Theorem. Themost simple form is given perhaps by part (ii) (b) of Theorem
8.4.9 which says that for a sequence (A(t)) of infinitely many matrices with the Wol-
fowitz property and min+ A(t) ≥ α > 0 for all t one has that lim

t→∞
c(A(t + s) . . .A(s) = 0

for all s ≥ 0 (∗).
A different extension of Wolfowitz’ Theorem to infinitely many matrices is ob-

tained in [46, Proposition 1] under the assumptions that all matrices are type-symme-
tric with positive diagonal and a connected graph associated to the sequence. It is re-
marked that such an extension can be useful in dealing with quite general nonlinear
systems. Using our terminology this remark states that a solution of a nonlinear dis-
crete system converges to consensus if it is amean process satisfying, for example, the
above extension (∗) of Wolfowitz’ Theorem. Actually, in Section 8.3 mean processes
have been used to handle nonlinear systems as the arithmetic-geometric mean amd,
more general, Gauss soups.

8.5 Multi-agent coordination and opinion dynamics

In this section we come back to the question of consensus formation in opinion dy-
namics as treated already in Section 8.2. Actually, we shall generalize the framework
and consider interaction and coordination of agents which, beside humans in a social
setting comprises swarms of birds, electronic networks of sensors or groups of robots
seeking for a rendezvous. Often the term “multi-agent coordination” is used to cover
these and other quite diverse areas. (See for example [8, 16, 21, 47, 51, 64, 79, 81, 98,
99].)

Let N = {1, . . . , n} be a finite set of agents with states in a multidimensional state
space S which is assumed to be a non-empty convex subset of ℝd. Denote by xi(t)
the state of agent i ∈ N at time t ∈ ℕ = {0, 1, 2, . . .}. By the column vector x(t) =(x1(t), . . . , xn(t)), t ∈ ℕ and x(0) ∈ Sn a dynamical system in discrete time is defined on
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8.5 Multi-agent coordination and opinion dynamics | 301

Sn which we assume to be amean process in the sense of Section 8.3 that is

xi(t + 1) ∈ conv{x1(t), . . . , xn(t)} for i ∈ N, t ∈ ℕ (8.5.1)

Our focus will be on the convergence to consensus, that is

lim
t→∞

xi(t) = c(x(0)) for all i ∈ N (8.5.2)

or, equivalently, lim
t→∞

x(t) ∈ diagSn, where diagSn is the diagonal of Sn defined by the
points c̄ = (c, . . . , c) for c ∈ S.

As examples we considered in Section 8.2 opinion formation according to thema-
trix model x(t + 1) = A(t) and opinion formation under bounded confidence given
by

xi(t + 1) = |I(i, x(t))|−1 ∑
j∈I(i,x(t))

xj(t), i ∈ N, t ∈ ℕ
where I(i, x) = {j ∈ N | |xi − xj| ≤ 𝜖} with 𝜖 > 0. In both examples the state space
is one-dimensional, S = ℝ and S = ℝ+, respectively, and the dynamics is given by a
mean process with initial opinion profile x(0).

The results obtained in the previous section we shall apply to multi-coordination
in general. A special case will be opinion formation in a generalized setting.

Considering the interaction of agents we introduce the following concept of the
strength or intensity of interaction based on the extraction of scrambling matrices
with entries 0 and 1 only.

Definition 8.5.1. Let λ (⋅, ⋅) be the order function on the convex cone ℝn×n
+ of nonneg-

ative matrices andM the subset of ℝn×n
+ consisting of all scrambling matrices with

entries 0 and 1. The scrambling strength of A ∈ ℝn×n
+ is

μ(A) = max {λ (M,A) | M ∈M} = max {μ ∈ ℝ+ | μM ≤ A,M ∈M}.
The following properties are useful when dealing with the strength of A(t), which

measures the strenght of interaction in multi-agent coordination.

Lemma 8.5.2. Let A = (aij) ∈ ℝn×n
+ .

(i)
μ(A) = min

i,j∈N
max
k∈N

min{aik, ajk}. (8.5.3)

(ii)
μ(A) ≤ 1 − c(A) ≤ nμ(A) for A stochastic. (8.5.4)

(iii) For B ∈ ℝn×n
+ , r ∈ ℝ+

(a) A ≤ B implies μ(A) ≤ μ(B)
(b) μ(rA) = rμ(A)
(c) μ(A)μ(B) ≤ μ(AB). (8.5.5)
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302 | 8 Dynamics of interaction

(iv) Define
μ+(A) = min

i,j∈N
max
k∈N

{min{aik, ajk} | min{aik, aij} > 0} (8.5.6)

(where μ+(A) = 0 in case ofmin{aik, ajk} = 0 for all i, j, k).
Then μ(A) ≤ μ+(A) and equality holds if A is scrambling; if A is not scrambling
μ(A) < μ+(A) is possible.

Proof. (i) Let ν = min
i,j∈N

max
k∈N

min{aik, ajk}. Suppose μM ≤ A for μ ∈ ℝ+,M ∈ M. Since

M is scrambling, for i, j ∈ N there exists k ∈ N such that mik = mjk = 1. Therefore,
μ ≤ min{aik, ajk} and, hence, μ ≤ ν which proves μ(A) ≤ ν . For the converse define
a matrix M with mij = 1 if aij ≥ ν and mij = 0, otherwise. Obviously, νM ≤ A. M is
scrambling since for i, j given, there exists k such that ν ≤ min{aik, ajk} and, hence,
mik = mjk = 1. Therefore, μ(A) ≥ ν which proves μ(A) = ν .

(ii) Using the definition of c(A) = 1 − min
i,j∈N

∑k∈N min{aik, ajk} (see equation (8.1.1)

in Theorem 8.1.2) one has from (i) that μ(A) ≤ min
i,j
∑k min{aik, ajk} = 1 − c(A).

Furthermore,

1 − c(A) = min
i,j
∑
k
min{aik, ajk} ≤ min

i,j
{nmax

k
min{aik, ajk}}

and, by (i), 1 − c(A) ≤ nμ(A).
(iii) The first two properties follow immediately from the definition of μ(A). For

property (c) let A,B ∈ ℝn×n
+ and μM ≤ A, νP ≤ B with μ , ν ∈ ℝ+,M, P ∈ M. It follows

μνMP ≤ AB where μν ∈ ℝ+ and MP is a scrambling matrix. Define C ∈ ℝn×n
+ with

cij = 1 if (MP)ij > 0 and cij = 0, otherwise. Since MP is scrambling C is scrambling,
too. If (MP)ij > 0 then (MP)ij ≥ 1 = cij and if (MP)ij = 0 then cij = 0 and (MP)ij ≥ cij.
Therefore, C ≤ MP and μνC ≤ μνMP ≤ AB. Therefore, μ(AB) ≥ μν which proves
μ(A)μ(B) ≤ μ(AB).

(iv) From the definition of μ+(A) and (i) it follows μ(A) ≤ μ+(A) and μ(A) = μ+(A)
if A is scrambling. For μ(A) < μ+(A) consider for example the stochastic matrix

A =
[[[[
1 0 0
1
2

1
2 0

0 1
2

1
2

]]]]
.

A is not scrambling and μ(A) = 0 whereas μ+(A) = 1
2 .

From the previous section we obtain the following result on the convergence to a con-
sensus for multi-agent coordination.

Theorem 8.5.3. Consider multi-agent coordination among n agents given by a mean
process (x(t)) on Sn and let x(t + 1) = A(t)x(t), x(0) ∈ Sn and A(t) a stochastic matrix
for t ∈ ℕ. It holds convergence to a consensus if there exists a set ℑ of disjoint intervals
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I = [a, b] ⊆ ℕ, a ≤ b such that for B(I) = A(b) . . .A(a)
∑
I∈ℑ
μ(B(I)) =∞, (8.5.7)

or, equivalently, for an infinite family ℑ+ in ℑ B(I) is scrambling for all I ∈ ℑ+ and∑I∈ℑ+ μ
+(B(I)) =∞.

Proof. The result will follow from Theorem 8.4.5 (i). Condition (8.4.4) of that Theorem
is by Lemma 8.5.2 (ii) equivalent to ∑I∈ℑ μ(B(I)) = ∞. Together with part (ii) of Theo-
rem 8.4.2 this shows that convergence to consensus is guaranteed by condition (8.5.7).

Let ℑ+ = {I ∈ ℑ | μ(B(I)) > 0}. From Lemma 8.5.2 it follows that Condition (8.5.7)
implies B(I) to be scrambling for I ∈ ℑ+ and ∑I∈ℑ+ μ

+(B(I)) = ∞. Obviously, the latter
two properties for some ℑ+ in ℑ implies condition (8.5.7).

As Theorem8.5.3 exhibits the condition (8.5.7) is crucial for convergence to consensus.
The condition means that in some sense the intensity of interaction should not be too
weak andwewill analyze the condition further in that direction. Before doing so, how-
ever, we shall in the following remarks mention and analyze some measures different
from μ(⋅) which were important in the history of inhomogeneous Markov chains. The
connection to the latter is seldom reflected in the recent literature on multi-agent co-
ordination.

Remarks 8.5.4. (1) For the asymptotic analysis of inhomogeneous Markov chains
so called coefficients of ergodicity τ (⋅) play an important role. Thereby τ (A) for a
stochastic matrix A is just a number in [0, 1] which depends continuously on A. It is
proper if τ (A) = 0 if and only if all rows of A are equal (see [93, Definition 4.6]).

Relevant examples are for A = (aij) ∈ ℝn×n
+

λ (A) = max
j∈N

min
i∈N

aij and δ (A) = ∑
j∈N

min
i∈N

aij. (8.5.8)

Also μ(A) just introduced and c(A), considered earlier, are coefficients of ergodicity.
From the definitions one obtains easily the following relationsships

λ (A) ≤ δ (A) ≤ 1 − c(A)
and λ (A) ≤ μ(A), δ (A) ≤ nλ (A). (8.5.9)

One does not have necessarily δ (A) ≤ μ(A) or μ(A) ≤ rδ (A) with r ≥ 0 as can be seen
from the examples

A = [[
1
2

1
2

1
2

1
2

]] and A =
[[[[[
0 1

2
1
2

1
2 0 1

2
1
2

1
2 0

]]]]]
,

respectively. Since for the second example λ (A) = 0 and δ (A) = 0 and μ(I) = 0 for the
identity matrix, the coefficients of ergodicity μ(⋅), λ (⋅), δ (⋅) are not proper. One verifies
easily that c(⋅) is proper, another proper coefficient would be 1 − δ (⋅).
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(2) According to E. Seneta ([93, p. 145], [91]) the coefficient λ (A) is related to the
work of A.A. Markov (and S.N. Bernstein), the coefficient 1 − δ (A) to the work of W.
Doeblin and the coefficient c(A) to that of R. L. Dobrushin. (In [91, p. 137] δ (A) is de-
noted by α (A), see also [93, p. 137]). Weak ergodicity (in the sense of Kolmogorov, see
Section 7) holds for a sequence of stochastic matrices (Pk) if ∑∞

k=1 λ (Pk) = ∞, a result
which is known also as Markov’s Theorem. (This result is with respect to forward
products but applies also to backward products, cf. [91, pp. 153].)

The little knownworkofW.Doeblin is addressed in [91] and related to theworkof J.
Hajnal. According to E. Seneta,W. Doeblin arrived at the conclusion,Doeblin’s asser-
tion, that weak ergodicity holds for (Pk) if and only if there exists a strictly increasing
sequence (ij), j = 1, 2, . . . inℕ such that ∑∞

j=1 δ (T(Ij)) = ∞ where Ij = [ij + 1, ij+1] and
T(I) = Pb . . . Pa for I = [a, b], a ≤ b.

(3) The results of 2. can be obtained from Theorem 8.4.5 (i) by using the inequal-
ities (8.5.9). (For simplicity we consider backward products.) For any collection ℑ of
disjunct intervals I = [a, b] inℕ and B(I) = Pb . . . Pa we have that ∑I∈ℑ λ (B(I)) = ∞ is
equivalent to∑I∈ℑ δ (B(I)) =∞.

Because of λ (A) ≤ 1−c(A) from∑I∈ℑ λ (B(I)) =∞ it follows that∑I∈ℑ(1−c(B(I))) =∞. The converse, however, is not true as can be seen from

Pk =
[[[[[
0 1

2
1
2

1
2 0 1

2
1
2

1
2 0

]]]]]
for all k.

To see this, let ℑ be the collection of intervals I = [a, a] for a ∈ ℕ. Obviously, c(Pk) = 1
2

and∑I∈ℑ(1−c(B(I))) =∞. On theotherhand, λ (B(I)) = λ (Pk) = 0and∑I∈ℑ λ (B(I)) = 0.
By selecting a different collection ℑ̃, however, from ∑I∈ℑ(1 − c(B(I))) = ∞ it follows∑I∈ℑ̃ λ (B(I)) = ∞. For, from ∑I∈ℑ(1 − c(B(I))) = ∞ we obtain, using Theorems 8.4.5
and 8.4.2, that lim

k
Pk+l . . . Pl = Ql for all l and Ql a stochastic matrix with equal rows.

Therefore, lim
k

δ (Pk+l . . . Pl) = δ (Ql) = 1 for all l. As in the proof of Theorem 8.4.5 (i) it

follows the existence of a collection ℑ̃ = {Ik} such that ∑I∈ℑ̃ δ (B(I)) = ∞ and, hence,∑I∈ℑ̃ λ (B(I)) =∞.Wearrive at the conclusion that lim
k
Pk+l . . . Pl is for each la stochastic

matrix with equal rows if and only if for some collection ℑ one has ∑I∈ℑ λ (B(I)) = ∞
or, equivalently, ∑I∈ℑ δ (B(I)) = ∞. Notice, however, concerning Markov’s Theorem
as well as Doeblin’s assertion, ∑∞

k=1 λ (Pk) = ∞, or ∑∞
k=1 δ (Pk) = ∞, is a sufficient

but not a necessary condition. As the above reasoning shows, to obtain a sufficient
and necessary condition the sum has to be taken over λ (B(I)), or δ (B(I)), that is by
lumping the Pk together.
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8.5 Multi-agent coordination and opinion dynamics | 305

(4) Considering the ergodic coefficients λ (A), δ (A), μ(A) it is a particular feature
of the scrambling strength μ(A) that it dominates the other two, that is λ (A), δ (A) ≤
rμ(A) for some r > 0andall stochasticmatricesA. Neither λ (A)nor δ (A)dominates the
other two. As a consequencewhenever for a collectionℑ the criterion∑I∈ℑ p(B(I)) =∞
is for p = λ or p = δ conclusive for convergence to consensus the same is true for
p = μ . The converse, however, does not hold in general, that is it may happen that∑I∈ℑ p(B(I)) =∞ for p = μ but neither for p = λ nor p = δ . An example is given by

Pk = P =
[[[[
0 1

2
1
2

1
2 0 1

2
1
2

1
2 0

]]]]
for all k and ℑ the collection of intervals I = [a, a], a ∈ ℕ. Of course, there must exist
a collection ℑ̃ such that ∑I∈ℑ̃ λ (B(I)) = ∞ and ∑I∈ℑ̃ δ (B(I)) = ∞. In this simple case
one has λ (P2) = 1

4 and δ (P2) = 3
4 and, hence, a possible choice for ℑ̃ is the set of all

intervals [2m, 2m + 1] form ∈ ℕ.
(5) Another often used coefficient of ergodicity is min+ A = min

i,j
{aij | aij > 0}. Ob-

viously, forA scramblingmin+ A ≤ μ+(A) andbyTheorem8.5.3 convergence to consen-
susholds if for some collectionℑonehas that (B(I)) is scrambling and∑I∈ℑmin+ B(I) =∞ (see also part (ii) of Theorem 8.4.5). It may happen, however, that all B(I) are scram-
bling but∑I∈ℑmin+ B(I) < ∞ and convergence to consensus does hold, nevertheless.
For example, consider the following slight variation of Examples 8.4.1 part B. Let

A(t) = [ 1 0
1 − 1

t2
1
t2
]

for t ≥ 2 and ℑ the collection of I = {m} for m ≥ 2. Obviously, B(I) = A(m) is scram-
bling, min+ B(I) = 1

m2 and ∑i I ∈ ℑmin+ B(I) < ∞. Considering scrambling strength,
however, we have μ+(B(I)) = μ(B(I)) = 1 − 1

m2 and∑I∈ℑ μ
+(B(I)) = ∑∞

m=2(1 − 1
m2 ) =∞.

Therefore, convergence to consensus holds by Theorem 8.5.3.

Asmentioned already the crucial condition (8.5.7) in Theorem 8.5.3 for reaching a con-
sensus may be interpreted as the intensity of interaction becoming not too weak. For
one part, the requirement of scramblingmatrices B(I)may be seen as letting the struc-
ture of interaction of agents becoming not too loose in the course of time. And as the
other part the condition ∑I∈ℑ μ

+(B(I)) = ∞ requires the intensity or strength of inter-
action vanishing not too fast. In somemodels, for example in the one of bounded con-
fidence, the latter requirement is fulfilled in that the intensity is positively bounded
frombelow, in particularmin+ A(t) ≥ α > 0 for all t. (See below for further examples of
this kind.) In those cases the condition for reaching a consensus reduces to assume all
matrices B(I) for I ∈ ℑ to be scrambling. It is this requirement which we shall examine
inmore detail in the following. Themulti-agent coordinationwewill describe by local
interaction in terms of neighbors as introduced already in Section 8.3.
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306 | 8 Dynamics of interaction

Let (x(t)) be a mean process on Sn given by x(t + 1) = A(t)x(t) with x(0) ∈ Sn

and stochastic matrices A(t) for t ∈ ℕ. For i ∈ N the set of neighbors of i at t is
N(i, t) = {j ∈ N | aij(t) > 0}. For a sequence τ = (t1, . . . , tr) inℕ andB(τ ) = A(t1) . . .A(tr)
the set of neighbors of i via τ is N(i, τ ) = {j ∈ N | bij(τ ) > 0}. We say there exists a
chain of neighbors of agent i to agent j via τ = (t1, . . . , tr) if j ∈ N(i, τ ), or explicitly,
if there exists a sequence of agents (i0, i1, . . . ir) with i0 = i, ir = j such that

ai0i1(t1) > 0, ai1i2 (t2) > 0, . . . , air−1 ,ir (tr) > 0.
In this language, for I = [a, b], τ = (b, b − 1, . . . , a + 1, a) the matrix product B(I) =
B(τ ) = A(b) . . .A(a) is scrambling if and only if for any two agents i, j ∈ N there exists
a third one k such that chains of neighbors via τ exist from i to k and from j to k. (See
also the chains of confidence in case of opinion dynamics under bounded confidence.)
This concept of the principle of the third agent we generalize as follows.

Definition 8.5.5. A sequence (A(t)) of stochastic matrices satisfies the principle of
the third agent or printh for short on a sequence τ inℕ if for any two i, j ∈ N there
exist finite subsequences τ (i, j) and σ (i, j) of τ such that

N(i, τ (i, j)) ∩ N(j, σ (i, j)) ̸= 0.
In case of τ = (b, b − 1, . . . , a + 1, a) for a ≤ b we will instead of printh on sequence τ
also speak of printh on [a, b].

Obviously, if A(t1) . . .A(tr) is scrambling then printh holds on τ = (t1, . . . , tr), for
this just take τ (i, j) = σ (i, j) = τ . The converse, however, is not true in general, as can
be seen already in simple cases as the following one. Taking up Examples 8.4.10, case
(b), let A = [ 1 0 0

1 0 0
0 1 0

], B = [ 0 1 0
0 0 1
0 0 1

] and define a sequence (A(t)) by A(t) = A if t is odd
and A(t) = B if t is even. This sequence satisfies printh on τ = (0, 1, 2) by chosing
τ (i, j) = σ (i, j) = (0, 2) for any 1 ≤ i, j ≤ 3 because B2 = [ 0 0 1

0 0 1
0 0 1

] is scrambling. The

product A(0)A(1)A(2) = BAB = [ 0 1 0
0 0 1
0 0 1

], however, is not scrambling.
In a similar manner one obtains that the sequence (A(t)) just defined satisfies

printh on all sequences (t, t + 1, t + 2) for t ∈ ℕ. Though this seems to be a structure
of interaction not too loose, we know from case (b) of Examples 8.4.10 that conver-
gence to consensus does not hold. The following lemma shows that the principle of
the third agent implies, other than in the example above, the scrambling property in
case of matrices with a positive diagonal.

Lemma 8.5.6. (i) Let A(1),A(2), . . . ,A(p) stochastic n × n-matrices with positive diag-
onal and let τ = (k1, k2, . . . , kq) a subsequence of (1, 2, . . . , p). Then for any i, j ∈ N ={1, . . . , n}

[A(k1)A(k2) . . .A(kq)]ij > 0 implies [A(1)A(2) . . .A(p)]ij > 0.
(ii) Let (A(t)) a sequence of stochastic n × n-matrices with positive diagonal and let

τ = (t1, . . . , tr) a sequence inℕ.
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8.5 Multi-agent coordination and opinion dynamics | 307

If printh holds on τ then the matrix A(t1) . . .A(tr) is scrambling.
Proof. (i) Suppose [A(k1) . . .A(kq)]ij > 0 for i, j ∈ N. Then there exists a sequence(i1, . . . , iq−1) such that aii1 (k1) > 0, ai1 ,i2(k2) > 0, . . . , aiq−1 ,j(kq) > 0. We augment this
sequence by terms arr(t) > 0 to obtain a sequence over 1, 2, . . . , p. Consider 1 ≤ l ≤ p.
If l < k1 choose aii(1) > 0, aii(2) > 0, . . . , aii(k1 − 1). If k1 < l < k2 then augment by
ai1i1(k1 + 1), ai1i1(k1 + 2), . . . ai1i1 (k2 − 1). Similar, for ks < l < ks+1, with 2 ≤ s ≤ q − 1.
If kq < l then augment by ajj(kq + 1) > 0, ajj(kq + 2) > 0, . . . , ajj(p) > 0. This gives a
sequence (j1, . . . , jp−1) such that aij1 (1) > 0, aj1j2 (2) > 0, . . . , ajp−1 ,j(p) > 0 and, hence,[A(1)A(2) . . .A(p)]ij > 0.

(ii) If printh holds on τ then for i, j given there exist subsequences τ (i, j), σ (i, j)
of τ and k ∈ N such that k ∈ N(i, τ (i, j)) and k ∈ N(j, σ (i, j)). If τ (i, j) = (k1, . . . , kq)
then [A(k1) . . .A(kq)]ik > 0 and part (i) implies [A(t1)A(t2) . . .A(tr)]ik > 0. Similarly,
from k ∈ N(j, σ (i, j)) it follows that [A(t1)A(t2) . . .A(tr)]jk > 0. Thus, A(t1)A(t2) . . .A(tr)
is scrambling.

With the help of this lemma from Theorem 8.5.3 we obtain the following result.

Theorem 8.5.7. Consider multi-agent coordination among n agents given by a mean
process (x(t)) on Sn and let x(t + 1) = A(t)x(t), x(0) ∈ Sn and A(t) a stochastic matrix for
t ∈ ℕ. There holds convergence to consensus provided the following assumptions are
met:
(a) A(t) has a positive diagonal for t ≥ t for some t ∈ ℕ.
(b) There exists a sequence t1 < t2 < t3 < ⋅ ⋅ ⋅ inℕ such that the principle of the third

agent holds on [tk + 1, tk+1] for k ≥ k for some k ∈ ℕ.
(c) ∑

k≥k
β (tk+1−tk)
k =∞, (8.5.10)

where βk is the smallest positive entry in all the matrices A(t) for t ∈ [tk + 1, tk+1]
Proof. Let Ik = [tk + 1, tk+1] for k ≥ k such that tk ≥ k. Obviously, the collectionℑ of the Ik consists of disjoint intervals in ℕ. From Lemma 8.5.6 (ii) we obtain that
B(Ik) = A(tk+1) . . .A(tk + 1) is scrambling for Ik ∈ ℑ. Furthermore,

μ+(B(Ik)) ≥ min
i,j
{bij(Ik) | bij(Ik) > 0} ≥ β |Ik |

k ,
and, since |Ik| = tk+1 − tk, we obtain by assumption ∑Ik∈ℑ μ

+(B(Ik)) = ∞. From Theo-
rem 8.5.3 convergence to consensus does follow.

In what follows we draw several interesting consequences from Theorem 8.5.7. The
first one presents an extension of Theorem 8.2.3 on opinion dynamics under bounded
confidence.

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:21 PM



308 | 8 Dynamics of interaction

Corollary 8.5.8. Let for a convex subset S of ℝd a mean process on Sn given by

xi(t + 1) = |I(i, x(t))|−1 ∑
j∈I(i,x(t))

xj(t) (8.5.11)

for i ∈ N = {1, . . . , n}, t ∈ ℕ, x(0) ∈ Sn and I(i, x) ⊆ N for x ∈ Sn such that i ∈ I(i, x).
(i) Convergence to consensus holds provided for any i, j ∈ N there exists k = k(i, j) ∈ N

such that chains of confidence go from i to k and from j to k from s to s + h(s) with
1 ≤ h(s) ≤ h ∈ ℕ for all s ∈ ℕ.

(ii) Assume in addition there exists δ > 0 such that

‖xi − xj‖ ≤ δ implies j ∈ I(i, x) (8.5.12)

for each x ∈ Sn, i, j ∈ N.
Then consensus will be reached in finite time, that is for some T ∈ ℕ xi(t) = c for all
i ∈ N and t ≥ T.

Proof. (i) The process defined by (8.5.11) we write as x(t + 1) = A(t)x(t) with aij(t) =|I(i, x(t))|−1 for j ∈ I(i, x(t)) and aij(t) = 0, otherwise. Since i ∈ I(i, x) each A(t) has a
positive diagonal. Let tl = (l − 1)h for l ≥ 1. A chain of confidence of agent i to agent j
from period s to t > smeans a chain of neighbors of i to j via τ = (t − 1, . . . , s), that is
j ∈ N(i, τ ). By assumption k ∈ N(i, τ ) ∩N(j, τ ) for τ = (h(s) + s− 1, . . . , s). For s = tl + 1
the sequence τ is contained in [tl + 1, tl+1]and thereforeprinthholds on [tl + 1, tl+1] for
each l. To apply Theorem 8.5.7 it remains to show that∑l∈ℕ β (tl+1−tl)

l =∞. This follows,
since tl+1− tl = h and βl ≥ 1

n for all l by the definitions of tl and aij(t), respectively. Thus,
convergence to consensus follows from Theorem 8.5.7.

(ii) By part (i) for δ > 0according to (ii) there existsT ∈ ℕ such that ‖xi(t)−xj(t)‖ ≤
δ for all i, j ∈ N, t ≥ T. By assumption (8.5.12) j ∈ I(i, x(t)) for all i, j ∈ N, t ≥ T and,
hence, I(i, x(t)) = N for all i ∈ N, t ≥ T. Therefore

xi(t + 1) = 1
n

n∑
j=1
xj(t) for all i ∈ N, t ≥ T.

With c = 1
n ∑n

j=1 x
j(T) it follows by induction over s that xi(T + s) = c for all

i ∈ N, s ≥ 0.

This corollary contains Theorem 8.2.3 for the special case d = 1, I(i, x) = {j ∈ N |‖xi − xj‖ ≤ 𝜖} and h(s) constant for all s. In this case I(i, x) is symmetric in that j ∈
I(i, x) is equivalent to i ∈ I(j, x). This symmetry is not required in Corollary 8.5.8 which
therefore allows for heterogeneous levels of confidence that is I(i, x) = {j ∈ N |‖xi − xj‖ ≤ 𝜖i} with different 𝜖i > 0. In this more general case condition (8.5.12) is
satisfied, too, by taking δ = min

i∈N
𝜖i. (For a detailed analysis of this case, called “the

heterogeneous HK model”, see [79].)
In Corollary 8.5.8 the condition (8.5.10) of Theorem 8.5.7 is fulfilled in a simple

matter in that tk+1 − tk is bounded from above by a constant and βk is bounded from
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8.5 Multi-agent coordination and opinion dynamics | 309

below by a positive constant. The same applies to the following consequences of The-
orem 8.5.7 which were obtained in the literature by different proofs and which we col-
lect in the following corollary. (Different from the other parts, part (i), however, allows
for βk tending to 0.)

Corollary 8.5.9. For a sequence of stochastic matrices A(t), t ∈ ℕ, with positive diag-
onal for t ≥ t, t ∈ ℕ, the mean process on Sn given by x(t + 1) = A(t)x(t), x(0) ∈ Sn

converges to consensus in each of the following cases.
(i) There exists a sequence (rk) in ℕ with 1 ≤ rk+1 − rk ≤ r for all k and some p ∈ ℕ

such that
– A(rk+p) . . .A(rk+1) is scrambling for k ≥ k ∈ ℕ,

and
– ∑k≥k β

pr
k =∞ where βk is the smallest positive entry in all the matrices A(t) for

kpr + 1 ≤ t ≤ (k + 1)pr.
(ii) There exists B ∈ ℕ and for each t ∈ ℕ an agent m(t) such that

– for each i a chain of neighbors leads from i to m(t) via a sequence in [t, t + B],
and

– min+ A(t) ≥ α > 0 for all t ∈ ℕ.
(iii) Following an arbitrary time there is a chain of neighbors fromany agent to any other

via a sequence inℕ and
– min+ A(t) ≥ α > 0 for all t ∈ ℕ,

and
– there exists B ∈ ℕ such that for any two agents i, j with aij(s) > 0 for infinitely

many s ∈ ℕ and for any t ∈ ℕ there exists v = v(i, j, t), 0 ≤ v ≤ B with
aij(t + v) > 0 (condition of “bounded intercommunication intervals”).

Proof. (i) Let tk = kpr. Since ri+1 − ri ≤ r there exist points rq+p, . . . , rq+1 in [tk, tk+1]. By
assumption A(rq+p) . . .A(rq+1) is scrambling for q ≥ k and printh holds on [tk + 1, tk+1]
for k ≥ k. Since tk+1 − tk = pr and ∑k≥k β pr

k = ∞ it follows ∑k≥k β tk+1−tk
k = ∞ and

convergence to consensus follows from Theorem 8.5.7.
(ii) Let tk = k(B + 1). The assumptions imply in particular that printh holds on[t, t + B] for each t ∈ ℕ. Especially, for t = tk + 1, printh holds on[tk + 1, tk + 1 + B] =[tk + 1, tk+1]. Since tk+1 − tk = B + 1 and βk ≥ α for all k it follows ∑k∈ℕ β tk+1−tk

k = ∞.
Thus, the assertion follows from Theorem 8.5.7.

(iii) Let E be the set of all pairs (i, j) for which aij(s) > 0 holds for infinitely many
s ∈ ℕ. There exists t ∈ ℕ such that aij(t) = 0 for i, j ̸∈ E, t ≥ t. By assumption for any
two agents i and j there is a chain of neighbors aii1 (s1) > 0, . . . , air,j (sr+1) > 0 for si ≥ t.
Furthermore, by the condition of bounded intercommunication intervals, for each t
exists si ∈ [t, t + B] such that aii1(s1) > 0, . . . , air,j (sr+1) > 0. Therefore, printh holds on[t, t + B] for each t. In particular, for tk = k(B + 1) printh holds on [tk + 1, tk+1] for all
k. Because of tk+1 − tk = B + 1 and βk ≥ α for all t it follows∑k∈ℕ β tk+1−tk

k =∞ and the
assertion follows from Theorem 8.5.7.
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310 | 8 Dynamics of interaction

In contrast to the assumptionsmade for the last two corollaries, Theorem8.5.7 does al-
low also βk to tend to 0 and tk+1 − tk to tend to infinity. Actually, what condition (8.5.10)
in Theorem 8.5.7 requires is some interplay of the intensity of interaction, modeled
byβk, and the structure of interaction,modeledby chains of neighbors on [tk + 1, tk+1].
Condition (8.5.10) can be satisfied for an intensity decreasing to 0 as long as tk+1 − tk
increases not too much, as for example in case of tk+1 − tk ≤ c. (As in case A of Exam-
ples 8.4.1 with tk+1 − tk = 1.) Considering the structure of interaction, tk+1 − tk may tend
to infinity for βk decreasing not too fast, in particular for βk ≥ α > 0 for all k. Moreover,
condition (8.5.10) allows βk tending to 0 – if this is not too fast – and, tk+1 − tk tending
to infinity – if this is slow enough (see Example 8.5.14 below and Exercise 15). Roughly
speaking, condition (8.5.10) holds if the intensity of interaction does not decrease too
fast and the structure of interaction does not become too loose.

In what follows we derive two more results from Theorem 8.5.7 which allow the
intensity of interaction to decrease to zero. Thereby, wemake assumptions on the sat-
urated subsets in the sense of Definition 8.1.6 with respect to the matrices A(t). For
the first result we assume that each matrix A(t) is coherent, that is any two saturated
subsets for A(t) have a non-empty intersection.

Corollary 8.5.10. For a sequence of stochastic matrices A(t), t ∈ ℕ, which are coher-
ent and possess a positive diagonal for t ≥ t, t ∈ ℕ the mean process on Sn given by
x(t + 1) = A(t)x(t), x(0) ∈ Sn does converge to consensus, provided for some k0 ∈ ℕ

∑
k≥k0

β n−1
k =∞,

where βk is the smallest positive entry in all the matrices A(t) for k(n − 1) ≤ t ≤ (k + 1)(n − 1).
Proof. Let tk = k(n − 1), k ∈ ℕ. By Proposition 8.1.7 (iii) for t ≥ t each matrix A(t) is a
Sarymsakovmatrix. Lemma 8.4.8 yields that any product of n−1matricesA(t), t ≥ t, is
scrambling. Therefore,A(tk+1) . . .A(tk + 1) is scrambling for k ≥ kwith k(n−1) ≥ t and
printh holds on [tk + 1, tk+1] for k ≥ k. By the assumptionsmade on the βk convergence
to consensus follows from Theorem 8.5.7.

The earlier Examples 8.4.1 illustrate this result for n = 2.
In both cases A and B all matrices A(t), t ≥ 2, are coherent with positive diagonal.

In case A one has βk = 1
(k+1)(n−1) and, hence, the condition on the βk in the corollary

is satisfied. In case B one has βk = [ 1
(k+1)(n−1) ]2 and the condition on the βk is not

satisfied – in accordance with the fact that convergence to consensus does not hold.
For the second result we employ a new condition introduced by J.M. Hendrickx

and J. N. Tsitsiklis in [49].

Definition 8.5.11. A stochastic matrix n× n-matrix A is cut-balanced if for any subset0 ̸= M ⫋ N = {1, . . . , n} there exist i ∈ M, j ̸∈ M with aij > 0 if any only if there exist
i ∈ M, j ̸∈ M with aji > 0.
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8.5 Multi-agent coordination and opinion dynamics | 311

This conditionmeans that a groupM of agents being influenced by the other ones does
also influence the other ones. Obviously, a type-symmetric matrix A, that is aij > 0 is
equivalent to aji > 0, and, in particular, a symmetric matrix is cut-balanced. More
general, A is cut-balanced if there exists a strictly positive vector w such that wA =
wA (A being the transpose of A), which includes double stochastic matrices (see [49,
Proposition 1]).

We need the following lemma which in part (i) describes cut-balance in terms of
saturated sets and which in part (ii) yields that for cut-balanced matrices the min+ of
arbitrary long products can be bounded from below by finitely many products.

Lemma 8.5.12. (i) A stochastic matrix A is cut-balanced if and only if A and its trans-
pose A have the same saturated sets, or, equivalently, for each saturated set of A, the
complement (if ̸= 0) is saturated, too.

(ii) Let A(1), . . . ,A(p) stochastic n × n matrices with positive diagonal which are
cut-balanced. Then there exist 1 ≤ ki ≤ p, 1 ≤ i ≤ q, such that

min+(A(p) . . .A(1)) ≥ min+A(kq) . . .min+A(k1), (8.5.13)

with q ≤ n2 − n + 1.

Proof. (i) By Definition 8.1.6 a set 0 ̸= M ⫋ N is saturated for A if i ∈ M and aij > 0
implies j ∈ M. Therefore, M is not saturated precisely if aij > 0 for some i ∈ M and
j ̸∈ M. It follows that the cut-balance condition is equivalent to the condition thatM is
not saturated for A if and only ifM is not saturated for A. Furthermore,M is saturated
for A precisely if N ∖M is saturated for A. This shows part (i).

(ii) Let for a stochastic matrix P(A) = {(i, j) ∈ N × N | aij > 0}. For A(k, 1) =
A(k) . . .A(1) Lemma 8.5.6 implies P(A(k, 1)) ⊆ P(A(k + 1, 1)). Let

q(k) = |{1 ≤ j ≤ k|P(A(j, 1)) ⫋ P(A(j + 1, 1))}| for 1 ≤ k ≤ p − 1.
SinceA(1, 1) has at most n2−n zeros and for each j in the definition of q(k) at least one
zero of A(j,1) turns into a positive entry of A(j + 1, 1) we must have q(k) ≤ n2 − n for
each k. Nowwe show by induction over p the inequality (8.5.13) holds for q = q(p) + 1.
The assertion is trivial for p = 1. For the step from p to p + 1 we distinguish two cases.

First case: Assume P(A(p, 1)) ⫋ P(A(p + 1, 1)).
Obviously, min+(A(p + 1, 1)) ≥ min+ A(p + 1) ⋅min+ A(p, 1) and q(p + 1) = q(p) +

1. By induction hypothesis we have 1 ≤ ki ≤ p, 1 ≤ i ≤ q = q(p + 1) such that
min+ A(p, 1) ≥ min+ A(kq) . . .min+ A(k1). Putting kq+1 = p + 1 we obtain inequality
(8.5.13) for p + 1 with q + 1 = q(p) + 1 + 1 = q(p + 1) + 1 ≤ n2 − n + 1.

Second case: Assume P(A(p, 1)) = P(A(p + 1), 1)). Let A = A(p + 1),B = A(p, 1).
Then P(AB) = P(B). We shall show that

min+(AB) ≥ min+B, (∗)
which by induction hypothesis proves inequality (8.5.13) for p + 1. Up to nowwe have
not yet used the cut-balanced condition which will be done now to prove (∗).
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Suppose (AB)ik > 0 for some (i, k) ∈ N × N. From P(AB) = P(B) we get bik > 0. If
M = {j ∈ N | bjk = 0} then

(AB)ik = ∑
j ̸∈M

aijbjk ≥ min+B∑
j ̸∈M

aij.
We show that ∑j ̸∈M aij = 1 for i ̸∈ M which will prove (∗). Because of bik > 0 we have
M ̸= N and, without loss, M ̸= 0. M is saturated for A because from ajh > 0 for j ∈ M
we have bjk = 0 and, hence, (AB)jk = 0 which implies bhk = 0, that is h ∈ M. For A cut-
balanced from part (i) we obtain that M is saturated for A, too. Therefore, j ∈ Mand
aij > 0 imply i ∈ M, that is aij = 0 for i ̸∈ M, j ∈ M.Thus, ∑j∈M aij = 0 for i ̸∈ M, and,
hence,∑j ̸∈M aij = 1 for i ̸∈ M. This finishes the proof of the lemma.

With the help of this lemma, from Theorem 8.5.7 we obtain the following corollary.

Corollary 8.5.13. For a sequence of stochastic matrices A(t), t ∈ ℕ, which are cut-
balanced and possess a positive diagonal for t ≥ t, t ∈ ℕ the mean process on Sn given
by x(t + 1) = A(t)x(t), x(0) ∈ Sn does converge to consensus, provided the following
conditions are met,
– there exists a sequence t1 < t2 < ⋅ ⋅ ⋅ inℕ such that the principle of the third agent

holds on [tk + 1, tk+1] for k ≥ k0 ∈ ℕ,
– it holds ∑

k≥k0

β n(n−1)+1
k =∞,

where βk is the smallest positive entry in all the matrices A(t) for tk + 1 ≤ t ≤ tk+1.

Proof. Similarly as in the proof of Theorem 8.5.7 the assertion follows from Theo-
rem 8.5.3. Let Ik = [tk + 1, tk+1] and B(Ik) = A(tk+1) . . .A(tk + 1) for k ≥ k0 and tk ≥ t.
B(Ik) is scrambling by Lemma 8.5.6 (ii) and from Lemma 8.5.12 (ii) we have that

min+B(Ik) ≥ min+A(kq) . . .min+A(k1),
with tk + 1 ≤ ki ≤ tk+1, 1 ≤ i ≤ q ≤ n(n − 1) + 1. Therefore, min+ B(Ik) ≥ β n(n−1)+1

k
and, hence, ∑k≥k min+ B(Ik) = ∞ with k ≥ k0, tk ≥ t. Since for any stochastic matrix
μ+(A) ≥ min+ A all assumptions of Theorem 8.5.3 are satisfied.

The printh assumptions in the above corollary cannot simply be omitted as the case,
where all A(t) are equal to the identity matrix, shows for which all assumptions of
Corollary 8.5.13 with the exception of the printh assumption are satisfied. The con-
ditions of coherence and cut-balance assumed in Corollaries 8.5.10 and 8.5.13 are in
some sense opposite to each other.Whereas coherence requires any two saturated sets
to have a non-empty intersection, cut-balance requires saturated sets to have a satu-
rated complement. Of course, both assumptions may hold together which, however,
happens precisely if the respective matrix has N as the only saturated set.

The following example illustrates Corollary 8.5.13 and presents the case already
mentioned of convergence to consensus though min+ A(t) decreases to 0 and tk+1 − tk
increases to∞.

Brought to you by | University of California
Authenticated

Download Date | 12/3/15 6:21 PM



8.5 Multi-agent coordination and opinion dynamics | 313

Example 8.5.14. Let t1 < t2 < t3 < ⋅ ⋅ ⋅ an arbitrary sequence inℕ and define for n = 3

A(t) = [[[
α (t) 1 − α (t) 0
0 α (t) 1 − α (t)

1 − α (t) 0 α (t)
]]]

for t = tk

and

A(t) = [[[
α (t) 1 − α (t) 0
α (t) 1 − α (t) 0
0 0 1

]]]
for t ̸= tk

with 0 < α (t) < 1 for all t ∈ ℕ.
A(t) has a positive diagonal for t ∈ ℕ. For t = tk the matrix A(t) is cut-balanced

because it is double stochastic. (A(t) is neither symmetric nor type-symmetric.) For
t ̸= tk the matrix A(t) is cut-balanced, too, though not necessarily double stochastic,
since the saturated sets are (beside N = {1, 2, 3}) the sets {1, 2} and {3} which are
complements of each other. Since A(t) is for t = tk scrambling, printh holds on [tk +
1, tk+1]. Printh does, however, not hold on proper sub-intervals.

Suppose now tk = k2 and α (t) = t−
1
14 for t ≥ 1. Obviously, tk+1 − tk = 2k + 1

increases to∞ for increasing k. For βk we have that βk ≥ (tk+1)− 1
14 = (k + 1)− 1

7 and
since n(n − 1) + 1 = 7 for n = 3 we obtain∑k β n(n−1)+1

k ≥ ∑k
1
k+1 =∞.

All assumptions of Corollary 8.5.12 being satisfied convergence to consensus does
hold. Thus, in this case consensus is approached though intensity min+ A(t) of inter-
action tends to 0 and the structure of interaction weakens steadily since tk+1 − tk tends
to infinity.

In the results so far we addressed the question of convergence to consensus. Now we
turn to the more general question if by relaxing conditions convergence can still be
obtained, in particular with a consensus on certain subgroups. Actually, considering
opinion dynamics under bounded confidence this is what Theorem 8.2.5 states in this
case without any further assumptions. For the more general model of multi-agent co-
ordination we need some assumptions and additional concepts. The concepts of sat-
urating sets and coherence introduced in Section 8.1 for a single matrix we extend to
sequences of matrices as follows.

Definition 8.5.15. For a sequence (A(t)) of stochastic n× n-matrices a non-empty sub-
setM of N = {1, . . . , n} is called saturated if for any i ∈ M and j ∈ N such that for each
t ∈ ℕ exists t ≥ twith aij(t) > 0 it follows that j ∈ M. The sequence (A(t)) is coherent
if any two saturated sets for (A(t)) have a non-empty intersection.

The following lemma helps in dealing with these concepts.

Lemma 8.5.16. Let (A(t)) be sequence of stochastic matrices.
(i) There exists t∗ ∈ ℕ such that M is saturated for the sequence (A(t)) if and only if M

is saturated for each A(t), t ≥ t∗, or equivalently aij(t) = 0 for all i ∈ M, j ̸∈ M, t ≥ t∗.
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(ii) Assume all A(t) possess a positive diagonal for t ≥ t, t ∈ ℕ. Given i ∈ N there exists
a smallest for (A(t)) saturated set M(i) containing i and

M(i) =⋂
t≥0
⋃
t≺τ
N(i, τ ), (8.5.14)

where for τ = (t1, . . . , tr) t ≺ τ means that t ≤ tj, 1 ≤ j ≤ r.

Proof. (i) Let M be saturated for (A(t)). If i ∈ M, j ̸∈ M then by definition there exists
t∗(i, j) such that aij(t) = 0 for t ≥ t∗(i, j). For t∗(M) = max

i,j
t∗(i, j) and t∗ = max{t∗(M) | M

saturated for (A(t))} it follows aij(t) = 0 for i ∈ M, j ̸∈ M, t ≥ t∗. Conversely, let the
latter hold for some t∗ ∈ ℕ. Assume i ∈ M, j ∈ N such that for each t exists t ≥ t with
aij(t) > 0. By assumption for t = t∗ we cannot have j ̸∈ M, that is j ∈ M. Furthermore,
for a matrix A a setM ̸= 0 is saturated precisely if aij = 0 for i ∈ M, j ̸∈ M.

(ii) Let M saturated for (A(t)) with i ∈ M. By definition for t given exists t ≥ t
such that N(i, t) ⊆ M. By iteration for t exists t ≺ τ such that N(i, τ ) ⊆ M. Therefore,
for M(i) given by equation (8.5.14) it follows M(i) ⊆ M. It remains to show that M(i)
is saturated for (A(t)) and contains i. Since A(t) has a positive diagonal we must have
i ∈ M(i). Furthermore, let j ∈ M(i) and k ∈ N such that for each t exists t ≥ t with
ajk(t) > 0. For t given j ∈ N(i, τ ) for some t ≺ τ . Since ajk(t) > 0 for some t ≥ t
it follows for the sequence τ  = (τ , t) that k ∈ N(i, τ ) with t ≺ τ . This shows that
k ∈ M(i) and, hence,M(i) is saturated for (A(t)).
By using this lemma we prove the following result.

Theorem 8.5.17. Let (A(t)) be a sequence of stochastic matrices which are cut-bal-
anced, possess a positive diagonal for t ≥ t, t ∈ ℕ withmin+ A(t) ≥ α > 0 for all t ≥ t.
Then for the mean process on Sn given by x(t + 1) = A(t)x(t), x(0) ∈ Sn there exists a
decomposition

N = M1
⋅∪ ⋅ ⋅ ⋅ ⋅∪Mr (8.5.15)

of N into disjoint non-empty subsets Misuch that

lim
t→∞

xj(t) = ci(x(0)) for all j ∈ Mi, 1 ≤ i ≤ r (8.5.16)

Proof. (i) In a first step we derive the decomposition (8.5.15). Let 0 ̸= M ⫋ N be satu-
rated for (A(t)). Since all A(t) are cut-balanced for t ≥ t it follows from Lemma 8.5.12 (i)
and Lemma 8.5.16 that N ∖ M is saturated for (A(t) and t ≥ max{t, t∗}. From this we
obtain for i, j ∈ N andM(i),M(j) as in Lemma 8.5.16 (ii)

i ∈ M(j) implies j ∈ M(i) (∗)
for i ∈ M(j) and j ̸∈ M(i) imply M(j) ⊆ N ∖ M(i) since N ∖ M(i) is saturated for (A(t))
which, however, contradicts i ∈ M(j).

Now, suppose M(i) ∩ M(j) ̸= 0 for i, j ∈ N. For k ∈ M(i), k ∈ M(j) from (∗) we
obtain i ∈ M(k), j ∈ M(k) and, hence,M(i) = M(k) = M(j). LetM1, . . . ,Mr the pairwise
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different sets among the setsM(i), i ∈ N. Fromwhat we have just shown, wemust have
Mp∩Mq = 0 forp ̸= q and sinceN is the union of theM(i)wearrive at the decomposition
N = M1

⋅∪ . . . ⋅∪Mr as wanted.
(ii) Let for i ∈ N fixedM = M(i), ̄t = max{t, t∗} and AM(t) the matrix with entries

aij(t) for i, j ∈ M. Since M is saturated by Lemma 8.5.16 (i) we have that aij(t) = 0 for
i ∈ M, j ̸∈ M, t ≥ ̄t. Therefore, ∑j∈M aij(t) = 1 for i ∈ M, t ≥ ̄t and the matrices AM(t) are
stochastic for t ≥ ̄t. Furthermore, for i ∈ M, t ≥ ̄t

xi(t + 1) = n∑
j=1
aij(t)xj(t) = ∑

j∈M
aij(t)xj(t).

Thus, the sequence (AM(t)) of stochastic matrices defines a mean process on Sm,m =|M|, by
y(t + 1) = AM(t)y(t) with y(t) = (yi(t)) ∈ Sm (8.5.17)

for t ≥ ̄t, y( ̄t) ∈ Sm.
We shall apply to this mean process Corollary 8.5.13. Concerning the assumptions

AM(t)with t ≥ ̄t obviously has a positive diagonal. Also, AM(t) is cut-balanced for t ≥ ̄t
which can be seen as follows. Let 0 ̸= U ⫋ M be saturated for matrix AM(t), t ≥ ̄t that
is aij(t) = 0 for i ∈ U, j ∈ M ∖ U. Since A(t) is cut-balanced for t ≥ ̄t and aij(t) = 0 for
i ∈ M, j ∈ N ∖ M we obtain aij(t) = 0 for i ∈ U, j ∈ N ∖ U and, hence, aij(t) = 0 for
i ∈ N ∖ U, j ∈ U. Thus AM(t) is cut-balanced for t ≥ ̄t.

(iii) Next we show that for the mean process given by (8.5.17) printh holds on [tk +
1, tk+1] for some sequence (tk) inℕ. From Lemma 8.5.16 (ii) we have that, i ∈ N fixed,
M = M(i) = ⋂t≥0 ⋃t≺ τ N(i, τ ), where neighborhoods N(i, τ ) are defined for (A(t)).
Therefore, for j ∈ M and t ≥ 0 given there exists t ≺ τ (t, j) such that j ∈ N(i, τ (t, j)).
Since N is finite there existsm(t) ≥ t such that τ (t, j) ⊆ [t,m(t)] for all j ∈ N, t ≥ 0.

Let tk+1 = m(tk + 1) + 1 for k ≥ 1, t1 = 0. Obviously, tk < tk+1, [tk + 1,m(tk + 1)] ⊆[tk + 1, tk+1]. This shows that for (AM(t)), t ≥ ̄t, printh holds on [tk + 1, tk+1].
(iv) Since by assumption min+ A(t) ≥ α > 0 for all t ≥ ̄t also the last assumption

of Corollary 8.5.13 is satisfied for the mean process given by (8.5.16). Thus we obtain
lim
t→∞

xj(t) = lim
t→∞

yj(t) = c for all j ∈ M. If applied to each M = M(i) = Mk we obtain
assertion (8.5.16) which proves the theorem.

The following lemma gives a description of the cut-balanced property which enables
an interpretation of Theorem 8.5.17 and of its consequences.

Lemma 8.5.18. Let A be a stochastic n × n-matrix and s(M) = {j ∈ N | aij > 0 for some
i ∈ M} for 0 ̸= M ⊆ N. A is cut-balanced if and only if for any i, j ∈ N and iterations sk of
s

i ∈ sk(j) for some k ∈ ℕ implies j ∈ sl(i) for some l ∈ N (8.5.18)

Proof. The set M(j) = ⋃k≥0 s
k(j) is the smallest saturated set (for A) which contains i

(cf. Definition 8.1.6).
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(1) Suppose A is cut-balanced and let i ∈ sk(j). If j ∈ N ∖M(i) thenM(j) ⊆ N ∖M(i)
by Lemma8.5.12 (i). This is a contradiction to i ∈ M(j), and hence, j ∈ M(i), that is
j ∈ sl(i) for some l.

(2) Suppose condition 8.5.18 and let M ⫋ N be saturated. If i ∈ s(N ∖ M) then
i ∈ s(j) for some j ∈ N ∖M and by (8.5.18) j ∈ sl(i) for some l. Since j ∈ N ∖M we must
have i ∈ N ∖M. This shows s(N ∖M) ⊆ N ∖M and N ∖M is saturated. Lemma 8.5.12 (i)
yields that A is cut-balanced.

The above descritpion of cut-balanced suggests the following definition.

Definition 8.5.19. A mean process x(t + 1) = A(t)x(t) on Sn is reciprocal at t ∈ ℕ if
the stochastic matrices A(⋅) satisfy the following conditions
– i ∈ N(i, s) for all i ∈ N, all s,

and
– i ∈ N(j, τ ) for some τ implies j ∈ N(i, σ ) for some σ ,
where τ , σ are finite sequences in N consisting of t only.

In the special case of τ = σ = (t), that is i ∈ N(j, t) implies j ∈ N(i, t) the process is
said to bemutual at t.

From Theorem 8.5.17 and Lemma 8.5.18 we obtain the following result.

Theorem 8.5.20. Let x(t + 1) = A(t)x(t), x(0) ∈ Sn be a mean process which is recipro-
cal at each t ≥ t ∈ ℕ and such thatmin+ A(t) ≥ α > 0 for t ≥ t.
(i) The formulas (8.5.15) and (8.5.16) of Theorem 8.5.17 do hold.
(ii) Convergence to consensus (on N) does hold for each x(0) ∈ Sn where S = ℝd if and

only if for all i, j ∈ N, t ∈ ℕ a chain of neighbors from i to j exists via τ = (t1, . . . , tr)
with ti ≥ t for 1 ≤ i ≤ r.

Proof. (i) For a sequence τ = (t, . . . , t) of length k one has i ∈ N(j, τ ) if and only if
i ∈ sk(j)where s = s(t) is definedwith respect toA(t). For a reciprocal process therefore
A(t) has a positive diagonal and i ∈ sk(j) implies j ∈ sl(i). By Lemma 8.5.18, A(t) is cut-
balanced for t ≥ t. Thus (i) follows from Theorem 8.5.17.

(ii) For M(i) = ⋂t≥0 ⋃t≺τ N(i, τ ) the condition in (ii) means that j ∈ M(i) for all
i, j ∈ N. Therefore, this condition is equivalent to M(i) = M(j) for all i, j ∈ N and, by
part (i), equivalent for N = M(i) for all i ∈ N. Since the decomposition (8.5.14) does
depend only on (A(t)) and not on x(0), the condition in (ii) implies convergence to
consensus for each x(0) ∈ Sn with S = ℝd. Conversely, suppose the latter. LetM = M(i)
for some i ∈ N and choose x(0) ∈ Sn with x(0)j = 1 for j ∈ M and x(0)j = 0 for
j ̸∈ M. Let y(t + 1) = AM(t)y(t) be the mean process defined on M as in the proof for
Theorem 8.5.17, part (2). Since y(0) = 1M onM it follows that onMy(t) and, hence, x(t),
converges to a consensus of value 1. Since M ⫋ N part (i) implies a M(j) ⊆ N ∖ M.
Since x(0)j = 0 for j ̸∈ M we must have that x(t) converges to 0 on M(j). This is a
contradiction and we must have, therefore, N = M(i) for all i ∈ N. By the above this
implies the condition given in (ii).
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Since in case of opinion dynamics under bounded confidence N(i, t) = {j ∈ N |‖xi(t)−xj(t)‖ ≤ 𝜖} the corresponding process is mutual. Theorem 8.5.20 is applicable to
this case and yields, for example, Theorem 8.2.5 presented earlier without proof. The
following result covers even more general cases of bounded confidence.

Theorem 8.5.21. Let for a convex subset S of ℝd a mean process on Sn given by

xi(t + 1) = |I(i, x(t))|−1 ∑ xj(t)
j∈I(i,x(t))

(8.5.19)

for i ∈ N, t ∈ ℕ, x(0) ∈ Sn and I(i, x) ⊆ N for x ∈ Sn.
(i) If this process is reciprocal then there exists a decomposition N = M1∪̇ . . . ∪̇Mr into

disjoint non-empty subsets Mi such that

lim
t→∞

xj(t) = ci(x(0)) for all j ∈ Mi, 1 ≤ i ≤ r. (8.5.20)

Assume in addition there exists δ > 0 such that

‖xh − xj‖ ≤ δ implies j ∈ I(h, x) (8.5.21)

for each x ∈ Sn and all h, j ∈ Mi, 1 ≤ i ≤ r. Then consensus on each Mi will be
reached in finite time, that is for some T ∈ ℕ

xj(t) = ci for all j ∈ Mi, 1 ≤ i ≤ r, t ≥ T.
(ii) Assume i ∈ I(i, x(t)) for all i ∈ N, t ∈ ℕ. Consider the following properties of process

(8.5.19) for some t ∈ ℕ
(a) for each t ≥ t exists a numbering N = {i1, . . . , in} (dependent on t) such that

i1 ∈ I(i2, x(t)), i2 ∈ I(i3, x(t)), . . . , in−1 ∈ I(in, x(t)),
(b) for each t ≥ t and i, j ∈ N given there exists a chain from i to j or from j to i where

the latter means there exist i1, . . . ip (dependent on t, i, j) such that
i ∈ I(i1, x(t)), . . . , ip ∈ I(j, x(t)),

(c) for each t ≥ t and i, j ∈ N given exist k ∈ N and chains from i to k and from j to
k as in (b) (dependent on t, i, j).

Then property (a) implies (b), (b) implies (c) and property (c) implies for process (8.5.19)
and x(0) given convergence to consensus (onN). Properties (a), (b), (c) are all equivalent
to convergence to consensus, provided the condition (8.5.21) holds for each x ∈ Sn and
all h, j ∈ N. In this case convergence holds in finite time.
Proof. Let x(t + 1) = A(t)x(t) with aij(t) = |I(i, x(t))|−1 for j ∈ I(i, x(t)) and aij(t) = 0
otherwise.

(i) It holds min+ A(t) ≥ 1
n for all t and for neighborhoods N(i, t) = I(i, x(t)) the

decompositionwith statement (8.5.20) follows from Theorem 8.5.20 (i). The statement
on finite time follows from condition (8.5.21) as in Corollary 8.5.8 (ii).
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(ii) First, assume property (a) and let i, j ∈ N. Given a numbering N = {i1, . . . , in}
we must have i = ir, j = iq and, without loss, r < q. Then ir+1, . . . , iq yield a chain
as required in (b). Property (b) implies, obviously, property (c). To see that property
(c) implies convergence to consensus we show that property (c) forces each matrix
A(t), t ≥ t, to be coherent. For this let M,M be non-empty subsets of N which are
saturated for A(t)with t ≥ t fixed. If i ∈ M, j ∈ M then by property (c) there exist k ∈ N
and chains from i to k and from j to k. SinceM,M are saturated we obtain k ∈ M ∩M.
Thus, A(t) is coherent for each t ≥ t. Because of i ∈ I(i, x(t)), t ∈ ℕ, A(t) has a positive
diagonal. From Corollary 8.5.10 convergence to consensus follows.

Finally, suppose (8.5.21) holds for each x ∈ Sn and h, j ∈ N. If convergence to
consensus holds then for δ > 0 given ‖xh(t) − xj(t)‖ ≤ δ for all h, j ∈ N and t ≥ T for
some T ∈ ℕ. Condition (8.5.21) implies j ∈ I(h, x(t)) for all h, j ∈ N, t ≥ T which yields
(a) with t = T. Convergence holds in finite time as for Corollary 8.5.8 (ii).

Theorem 8.5.21 admits also for heterogeneous confidence levels 𝜖i as well as for other
asymmetric confidence intervals I(i, x). This aswell as some other aspectswe illustrate
by the following examples.

Examples 8.5.22. (1) As mentioned already, Theorem 8.5.21 yields in particular The-
orem 8.2.5 which was presented for motivation but without a proof. Theorem 8.5.21
admits, moreover, a generalization to different confidence levels 𝜖i (and to multidi-
mensional opinions as well). Let in Theorem 8.5.21 I(i, x) = {j ∈ N | ‖xi − xj‖ ≤ 𝜖i}
for 𝜖i > 0, 1 ≤ i ≤ n, given. Obviously, i ∈ I(i, x) and condition (8.5.21) is met for
δ = min

i∈N
𝜖i. By part (i) a result as in Theorem 8.2.5 does hold (including convergence in

finite time) provided the process is reciprocal with neighborhoods N(i, t) = I(i, x(t)).
(For a particular case see (2) below.)

Of course, in Theorem 8.2.5 the process is automaticallymutual and no additional
assumption is needed. Without requiring the process to be reciprocal, part (ii) of The-
orem 8.5.21 provides a characterization of convergence for heterogeneous confidence
levels. In the particular case of one dimension and 𝜖i = 𝜖 property (a) of part (ii) is
well-known. It amounts to an 𝜖-profile or 𝜖-chain, that is for x = x(t) exists a number-
ing N = {i1, . . . , in} such that xi1 ≤ xi2 ≤ ⋅ ⋅ ⋅ ≤ xin and xik+1 − xik ≤ 𝜖 for 1 ≤ k ≤ n − 1.
Therefore, in this special case the equivalence of property (a) and convergence to con-
sensus means that the latter holds if and only if for t big enough x(t) is an 𝜖-profile
(see [28, 43, 54]). Actually, if x(t) is an 𝜖-profile for all t ≥ t it must be an 𝜖-profile for all
t ∈ ℕ. In particular, for convergence to consensus x(0) has to be an 𝜖-profile. In case
of 2 ≤ n ≤ 4 this condition is sufficient, too. For n ≥ 5 this is no longer true (see [54]
and Exercise 14).

(1) Consider themean process (8.5.19) in Theorem8.5.21 for S = ℝ and I(i, x) = {j ∈
N | |xi − xj| ≤ 𝜖i}, i ∈ N. Assume for the confidence levels that 𝜖1 > 𝜖2 > ⋅ ⋅ ⋅ > 𝜖n−1 and𝜖1 + 𝜖2 + ⋅ ⋅ ⋅ + en−1 ≤ 𝜖n. Let x ∈ ℝn be given by xi = ∑i−1

j=1 𝜖j for 2 ≤ i ≤ n and x1 = 0.
One finds that I(i, x) = {i, i + 1} for 1 ≤ i ≤ n − 1 and I(n, x) = {1, . . . , n}. Therefore, if
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8.5 Multi-agent coordination and opinion dynamics | 319

x(t) = x the transition matrix to x(t + 1) is given by

A =

[[[[[[[[[[[[

1
2

1
2 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 1
2

1
2 0 ⋅ ⋅ ⋅ 0

...
...

0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
2

1
2

1
n

1
n ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

n
1
n

]]]]]]]]]]]]

.

This shows that the process is reciprocal at t (but not mutual).
(2) Beside its application to bounded confidence, Theorem 8.5.20 covers also

opinion dynamics for the simple matrix model (8.2.1). For A(t) = A all t ∈ ℕ the
corresponding mean process is reciprocal precisely if A has a positive diagonal and(Ap)ij > 0 for some p = p(i, j) implies (Aq)ji > 0 for some q = q(i, j). By part (i)
of Theorem 8.5.20 for any such matrix N has a decomposition into subsets on which
convergence to consensusholds. This applies especially to a type-symmetric or double
stochastic matrix. By part (ii), if the process given byA is reciprocal, then convergence
to consesus holds for all x(0) ∈ ℝd precisely if a power of A is irreducible. Since in this
case A has a positive diagonal, the latter is equivalent to A being primitive. From an
earlier result (Theorem 8.1.4) we know for any stochastic matrix that powers converge
to a consensus if and only if the matrix has a scrambling power. Indeed, one easily
verifies directly that a matrix is primitive with positive diagonal if and only if it has a
scrambling power and the corresponding mean process is reciprocal. For this equiva-
lence the latter condition cannot be omitted. Of course, a primitive matrix must have
a scrambling power, the converse, however, is not true, not even in case of a positive
diagonal as the example

A =
[[[[
1 0 0
3
4

1
4 0

1
4

1
2

1
4

]]]]
shows. Indeed, the mean process for this matrix is not reciprocal since A21 > 0 but(Aq)12 = 0 for all q ∈ ℕ. This again shows that assuming a stochastic matrix to be
primitive is stronger than requiring a power to be scrambling.

(3) Theorem 8.5.21 allows beside neighborhoods given by a norm, as discussed
in example (1), also more general neighborhoods. Consider on the state space S ⊆ ℝd

instead of a metric given by a norm some valuation v : S × S → V and let I(i, x) ={j ∈ N | v(xi, xj) ∈ V0}, where V0 is a non-empty subset of the abstract valuation set
V serving as a measure of confidence. Such an abstract framework can be attacked
by Theorem 8.5.21. To illustrate this we treat the particular case where V = ℝm and
v(x, y) = f (x)−f (y)with f : S → ℝm, 0 ̸= V0 ⊆ ℝm. Thus I(i, x) = {j ∈ N | f (xi)−f (xj) ∈ V0}
for i ∈ N, x ∈ Sn. A natural candidate for V0 to consider is a closed convex cone K inℝm. Since 0 ∈ K we have that i ∈ I(i, x). Suppose for the ordering induced by K that for
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320 | 8 Dynamics of interaction

each t ≥ t a numbering exists such that f (xi1 ) ≤ f (xi2) ≤ ⋅ ⋅ ⋅ ≤ f (xin) for x = x(t). Part
(ii) of Theorem 8.5.21 then yields convergence to consensus . For V0 = K the process is
reciprocal precisely if for each monotone chain f (xi) ≤ f (xi1 ) ≤ ⋅ ⋅ ⋅ ≤ f (xj)with x = x(t)
there exists a monotone chain from j to i, too.

Another choice ofV0 would be a subsetV0 of Rm containing 0 and symmetric with
respect to 0, that is V0 ⊆ −V0. Such a set needs not to be convex in which case it
cannot be given by a norm. Nevertheless, the process is mutual and Theorem 8.5.21 is
applicable.

Still another choice of V0 is an interval [a, b] for a, b ∈ ℝm that is V0 = {y ∈ ℝm |
ai ≤ yi ≤ bi for 1 ≤ i ≤ m}. Suppose f is continuous and ai < 0 < bi for 1 ≤ i ≤ m.
Then i ∈ I(i, x) and there exists δ > 0 such that for x ∈ Sn from ‖xi − xj‖ ≤ δ it follows
f (xi)− f (xj) ∈ V0. Thus, in this setting part (i) of Theorem 8.5.21 yields a decomposition
of N into subsets on which convergence to consensus does hold, provided the process
is reciprocal for V0. By Theorem 8.5.21 convergence to consensus on N does hold for
such a V0 precisely if for each x = x(t), t ≥ t, a numbering N = {i1, . . . , in} exists such
that

a ≤ f (xik+1 ) − f (xik ) ≤ b for 1 ≤ k ≤ n − 1. (∗)
Very special but still interesting cases of (∗) are the following ones. Consider first
f : S → ℝ and the cone V0 = {r ∈ ℝ | r ≤ 0}. One might think of f as attach-
ing a reward to state x or as giving the number of all agents being in state x. Then
I(i, x) = {j ∈ N | f (xi) ≤ f (xj)} and for the mean process given by equation (8.5.19)
an agent takes all agents with a higher reward than his own into account or all agents
havingmore followers thanhehas. Since f (xi(t)) is a real number there exists for each t
a numbering as required by property (a) in Theorem 8.5.21. Thus, the agents’ opinions
will converge to a consensus.

As the second special case consider S = ℝ, f the identity on ℝ and V0 = {y ∈ℝ | −𝜖l ≤ y ≤ 𝜖r} with 0 < 𝜖l, 𝜖r. V0 is an asymmetric confidence interval when the
confidence level 𝜖l to the left differs from the confidence level 𝜖r to the right. Being a
special case of (∗) convergence to consensus holds precisely if for each t ≥ t a num-
bering N = {i1, . . . , in} exists such that −𝜖l ≤ xik+1 (t) − xik (t) ≤ 𝜖r. Opinion dynamics
under bounded confidence in this asymmetric case has been extensively explored by
computer simulations in [43].

To conclude, we add further remarks connecting the results of this sectin to those ob-
tained in the literature.

Remarks 8.5.23. (1) As remarked already, it is difficult in general to compute the con-
sensus c̃(x(0)) in dependence of initial conditions x(0) ∈ Sn. One has, however, the fol-
lowing sensitivity property for x(0), y(0) ∈ Sn and c̃(x(0)), c̃(y(0)) provided the latter
exist ‖c̃(x(0)) − c̃(y(0))‖ ≤ max

1≤i,j≤n
‖xi(0) − yj(0)‖.
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8.5 Multi-agent coordination and opinion dynamics | 321

This follows immediately from

c̃(x(0)) ∈ conv{x1(0), . . . , xn(0)}, c̃(y(0)) ∈ conv{y1(0), . . . , yn(0)}
and, hence, c̃(x(0)) − c̃(y(0)) ∈ conv{xi(0) − yj(0) | 1 ≤ i, j ≤ n}.

(2) To link the results on convergence to consensus of this section to those ob-
tained in the literature, we collect some criteria which arise immediately from our re-
sults. (Only multi-agent coordination in discrete time will be addressed.)

For a sequence (A(t)) of stochastic matrices let a mean process given on Sn for a
convex subset S of ℝd by x(t + 1) = A(t)x(t), x(0) ∈ Sn. In the literature mainly the
one dimensional case is treated, that is S ⊆ ℝ. As it is often assumed in the literature
suppose min+ A(t) ≥ α > 0 for all t ∈ ℕ. Then each of the following criteria does
assure convergence of x(t) to consensus.
(a) There exists a collectionℑof disjoint intervals I = [a, b] ⊆ ℕ such thatA(b) . . .A(a)

is scrambling and∑I∈ℑ α |I| =∞.
(b) {A(t)} has the Wolfowitz property.

Another oftenmade assumption is that allA(t)have apositive diagonal. Assuming this
together withmin+ A(t) ≥ α > 0 the following criteria yield convergence to consensus.
(c) The principle of the third agent (printh) holds on an infinite collectionℑof disjoint

intervals I ⊆ ℕ with |I| ≤ p for some p ∈ ℕ.
(d) All A(t) are cut-balanced and printh holds on an infinite collection of disjoint in-

tervals inℕ.
(e) The process is reciprocal and connectivity holds in the sense that a chain of neigh-

bors exists for any two agents across infinitely many intervals inℕ.
Criterion (a) follows from Theorem 8.5.3, (b) follows from Theorem 8.4.9, (c) follows
from Theorem 8.5.7, (d) follows from Corollary 8.5.13 and (e) follows from Theo-
rem 8.5.20.

(3) In [72, Theorem 3.2.37] various conditions are considered which yield conver-
gence to consensus if min+ A(t) ≥ α > 0. Criterion (a) settles one of the cases where a
collection of intervals Is inℕ is assumed with |Is| ≤ T log(log s) for some T ∈ ℕ and
all s ∈ ℕ, s ≥ 2. Actually, criterion (a) allows to weaken this condition to

|Is| ≤ T(log s + log2 s + ⋅ ⋅ ⋅ + logp+1 s),
where logk s is the iterated logarithm given by logk+1 s = log(logk s) and log0 s = s
(s ≥ s0 ∈ ℕ.) This follows easily from the divergence of the so called Abelian series
[53, p. 63] ∑

s≥2
(s log s log2 s log3 s . . . logp s)−1

by putting T = −(log α )−1. The cases 3 and 4 in [72, Theorem 3.2.37] do follow from
criteria (b) and (c), respectively.
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322 | 8 Dynamics of interaction

(4) Amajor impact in the area of multi-agent coordination had the article [100] in
which a simple but intricate model was explored by means of computer simulations.
This article, however, does not supply an analytical explanation of the quite surpris-
ing phenomenon of consensus. Such an explanation was undertaken in [52] for the
Vicsek’s model as the model in [100] has been named afterwards. The main result in
[52, Theorem 2] can be obtained from criterion (c). In [52] it is assumed in addition that
A(t) is type-symmetric and there are only finitely many A(t). The latter assumption is
made in order to apply the (original) Theorem of Wolfowitz. Actually [52] analyses a
simplified version of Vicsek’s model (see [46, 47, 81]) which is equivalent to themodel
of bounded confidence as in [54]. Therefore, the main result in [52] can be obtained
from Corollary 8.5.8, too. The result in [52] has been extended in [88] by not requiring
type-symmetric and allowing for more general matrices A(t). It is assumed, however,
that the entries of A(t) are taken from a fixed finite set. To apply Wolfowitz’ Theorem
it is, moreover, assumed there are only finitely many A(t). The main result in [88, The-
orem 3.10] for discrete time can be obtained also from criterion (c). Another extension
of [52] can be found in [46] where, to cover a proper infinite sequence (A(t)), an infi-
nite version of Wolfowitz’s theorem is developed. For the latter in [46, Proposition 1]
the matrices A(t) are assumed to be type-symmetric which makes criteria (d) and (e)
applicable (see also Remarks 8.4.11 (3)). Various extensions of Viscek’s model can be
found in [13].

(5) Much earlier to the Vicsek model and its analysis later on is the pioneering
work of J.N. Tsitsiklis [98, 99]. Actually, the results obtained there are more general
than the ones obtained in [52]. (Cf. [6, 8, 47]). Furthermore, the “agreement algorithm”
obtained allows also for delays. Corollary 8.5.9 (iii) is proven invoking an assumption
called “bounded intercommunication intervals”. Corollary 8.5.9 (ii) can be found in
[47, Corollary 9.1]. There it follows from [47, Theorem 9.2] which itself can be obtained
fromcriterion (a) in (2).Whereasparts (ii) and (iii) of Corollary 8.5.9 requiremin+ A(t) ≥
α > 0, part (i) admits also for min+ A(t) approaching 0 [57].

The notion of a cut-balancedmatrix is introduced in [49]. Theorem 8.5.17 is proved
in [49, Theorem 2] for the onedimensional case S = R. For type-symmetric matrices, a
particular case of cut-balancedmatrices, Theorem8.5.17wasproven in [71, Theorem2],
[72, Theorem 3.2.39], and [46, Theorem 1].

Concerning the crucial Lemma 8.5.12 (ii) an optimal lower bound of n − 1 in case
of type-symmetric matrices has been obtained in [21, Theorem 2.5]. [46] discusses also
the question of necessary conditions in case of type-symmetric matrices with positive
diagonal. (See part (ii) of Theorem 8.5.20 for such conditions.) Theorem 8.5.21 pro-
vides sufficient and necessary conditions in case of bounded confidence which cover
in particular the well-known characterization of convergence to consensus in one di-
mension by 𝜖-chains or the lacking of a “split” [28, 54, 72]). See similarly [95, Theorem
1] and the neat concept of condensation introduced therein. See also [104].

A major question in opinion dynamics under bounded confidence is what hap-
pens if confidence levels are different. Theorem 8.5.21 admits for those but does not
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8.6 Swarm dynamics | 323

give a conclusive answer. The question has been extensively investigated by computer
simulations in [79] leading to the conjecture that every trajectory converges to a limit-
ing opinion vector [79, Conjecture 2.1 and 2.2].

(6) The field of multi-agent coordination and opinion dynamics has been rapidly
developed during the last years. Surveys can be found in [16, 47, 73, 86]. Topics not
considered in this section are, among others, the cases of differentiable system [86],
systems with delays [8], infinitely many agents [10], random variables [22], conver-
gence rates and speed of algorithms [13, 21], non-convex domains [1, 90].

8.6 Swarm dynamics

In this last section we shall use results obtained to analyse the dynamics of swarms
of birds and other animals. Doing so we need first to examine for the convergence to
consensus inmulti-agent coordination the rate of convergence,whatwehavenot done
yet. In case the intensity of interaction is bounded from below by a positive constant
one expects convergence to be exponential. This is not true in general where conver-
gence can be rather slow. More precisely we prove the following theorem which sup-
plements Theorem 8.5.3 with respect to the rate of convergence.

Theorem 8.6.1. Let (A(t)) be a sequence of n × n-stochastic matrices and let ℑ a se-
quence of disjoint intervals Ik ⊆ ℕ, k ≥ 1, with t1 < t2 < ⋅ ⋅ ⋅ for tk = max{t ∈ ℕ | t ∈ Ik}.
(i) Let for I ∈ ℑ, I = [a, b],B(I) = A(b) . . .A(a) and ρi = c(B(Ii)) . . . c(B(I1)). Then

tk−1∑
s=0

c(A(s) . . .A(0)) ≤ k−1∑
i=0
(ti+1 − ti)ρi, (8.6.1)

where t0 = 0, ρ0 = 1.
(ii) Let x(t + 1) = A(t)x(t), t ∈ ℕ, x(0) ∈ Sn where S is a non-empty convex subset ofℝd.

If∑∞
k=1 μ(B(Ik)) =∞ then lim

t→∞
xi(t) = c for all i ∈ N with c = c(x(0)) ∈ S and

max
i∈N

‖xi(t) − c‖ ≤ ρkmax
i,j∈N

‖xi(0) − xj(0)‖ (8.6.2)

for t ≥ tk, k ≥ 1.
(iii) If for some k ∈ ℕ, α > 1

μ(B(Ik)) ≥ α
k

for k ≥ k, (8.6.3)

then∑∞
k=1 ρk < ∞.

Especially, if μ(B(Ik)) ≥ β > 0 for k ≥ k then the convergence to consensus is exponential
in the sense that

max
i∈N

‖xi(t) − c‖ ≤ (1 − β )k−k max
i,j∈N

‖xi(0) − xj(0)‖ (8.6.4)

for t ≥ tk, k ≥ k.
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324 | 8 Dynamics of interaction

Proof. (i) Let a(s) = c(A(s) . . .A(0)), s ∈ ℕ. If s ≥ ti then a(s) ≤ c(B(Ii)) ⋅
c(B(Ii−1)) . . . c(B(I1)) = ρi because of c(AB) ≤ c(A)c(B) and c(A) ∈ [0, 1]. Therefore,
in case of t ≥ tk

tk−1∑
s=0

a(s) = t1−1∑
s=0

a(s) + t2−1∑
s=t1

a(s) + ⋅ ⋅ ⋅ + tk−1∑
s=tk−1

a(s)
≤ t1 + (t2 − t1)ρ1 + ⋅ ⋅ ⋅ + (tk − tk−1)ρk−1.

This proves inequality (8.6.1).
(ii) Theorem 8.5.3 yields lim

t→∞
xi(t) = c for all i ∈ N. Furthermore, since x(t +

1) = A(t) . . .A(0)x(0) from Theorem 8.1.2 A (ii) it follows that Δx(t + 1) ≤
c(A(t) . . .A(0))Δx(0). (Thereby, for y ∈ Sn one has Δy = Δ{y1, . . . , yn} = Δconv{y} =
max
i,j∈N

‖yi − yj‖.) From xi(t + 1 + s) ∈ conv{x(t + 1)} for s ≥ 0 it follows that

c ∈ conv{x(t + 1)} for all t ∈ ℕ. Thus

max
i∈N

‖xi(t + 1) − c‖ ≤ Δconv{x(t + 1)} ≤ c(A(t) . . .A(0))Δx(0).
Since by step (i) a(t) ≤ ρk for t ≥ tk this proves inequality (8.6.2).

(iii) By definition of ρi and Lemma 8.5.2 (ii) we have

ρk+1 = c(B(Ik+1))ρk ≤ (1 − μ(B(Ik+1))ρk,
and, hence, by assumption ρk+1 ≤ (1 − α

k+1 )ρk for k ≥ k. Since α > 1 from Raabe’s Test
[53, p. 136] we obtain ∑∞

k=1 ρk < ∞. Especially, if μ(B(Ik)) ≥ β > 0 for k ≥ k we have
ρk+1 ≤ (1 − β )ρk for k ≥ k. Therefore,

ρk+1 ≤ (1 − β )k+1−kρk ≤ (1 − β )k+1−k for k ≥ k.
From step (ii) we obtain for t ≥ tk, k ≥ k

max
i∈N

‖xi(t) − c‖ ≤ (1 − β )k−kmax
i,j∈N

‖xi(0) − xj(0)‖,
that is, inequality (8.6.4).

Considering now swarms of birds or other self-organized groups of animals, the main
assumption we shall make on the movement of the animals is that they “match ve-
locity with nearby neighbors”. Many observations and experiments with real animals
suggest such a behavior. (See the instructive review [68] for experiments, biological
roots and principles concerning the organized flight of birds.) Further, in computer
simulations such an assumption is usual since the pioneeringwork of C. Reynolds [89]
on “boids” (artificial birds). By the assumption of velocity matching, the averaging of
velocities, the framework developed in the previous section provides useful tools to
investigate swarms. Of course, swarms thereby function as an abstract concept, like
the concept of an ideal gas, and should not be confounded with swarms outside in
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nature. Nevertheless, it is the aim of such a model to point out essential features of
real swarms.

Consider a number n of birds in ℝ3, or without much more effort, in a convex
region S in someℝd. Assuming discrete time t ∈ ℕ let xi(t) in S denote the position of
bird i at time t. The velocity vi(t) of bird i at time t is given by vi(t) = xi(t + 1) − xi(t).
The velocitymatching or, according to [89], the “alignment”which “steers towards the
average heading of local flockmates” wemodel by a convex combination of velocities,
that is vi(t + 1) ∈ conv{v1(t), . . . , vn(t)} for each bird i ∈ N, each t ∈ ℕ. Thus the
velocity vectors v(t) form amean process in the sense of Definition 8.3.1. Equivalently,
there exists a sequence of stochastic matrices A(t) such that v(t + 1) = A(t)v(t) for
the vectors v(t) of velocities vi(t). Thus we arrive at the following swarm model for
x(t), v(t) ∈ Sn

x(t + 1) − x(t) = v(t)
v(t + 1) = A(t)v(t), (8.6.5)

with t ∈ ℕ and initial conditions x(0), v(0) ∈ Sd.
What makes the birds a swarm is that all birds tend asymptotically to the same

velocity, in other words, a consensus in terms of velocities. Considering the positions
one would not speak of a swarm if the relative position xi(t) − xj(t) of any two birds
would tend to infinity. Stronger than this boundedness of relative positionswe require
for a swarm relative positions to converge asymptotically. It is this property for which
we will need Theorem 8.6.1 on the speed of convergence because the position xi(t) is
an accumulation of all the velocities vi(s) from 0 up to t. For the swarm model (8.6.5)
“local flockmates” or “nearby neighbors” play a role which refers to structure and
intensity of interaction. The followingmain result of the present section states that the
birds will form a swarm if the interaction among birds is coherent often enough and
the intensity of interaction within certain intervals does not approach zero too fast. It
is remarkable that to form a swarm birds need not follow always definite rules, except
the one ofmatching velocities. In otherwords, the birds can form a swarm even in case
of interruptions or pertubations. Later onwewill interprete the result below and show
how coherence corresponds to certain flight regimes as line formations, especially V
or J formations. Also, the result below generalizes Corollary 8.5.10 in that coherence
is required only for certain periods.

Theorem 8.6.2. For the swarm model (8.6.5) let (A(t)) be a sequence of stochastic ma-
trices with positive diagonal and such that for a sequence r0 = 0 ≤ r1 < r2 < . . . of time
periods A(rk) is coherent for k = 1, 2, . . ..

Let for k = 1, 2, . . . Ik = [r(k−1)(n−1)+1, rk(n−1)] an interval in ℕ, pk = |Ik| and mk =
min{min+ A(t)|t ∈ Ik}.

Then for arbitrary initial conditions x(0), v(0) ∈ Sd the following properties do hold.
(i) If∑k≥1 mpk

k =∞ then lim
t→∞

vi(t) = v∗(v(0)) for all i ∈ N.
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(ii) (a) For any i, j ∈ N and t ∈ ℕ,
‖xi(t) − xj(t)‖ ≤ ‖xi(0) − xj(0)‖ + tmax

h,l∈N
‖vh(0) − vl(0)‖. (8.6.6)

(ii) (b) If r = sup
k
(rk+1 − rk) < ∞ and for some k and α > 1 it holds mpk

k ≥ α
k for k ≥ k

then
lim
t→∞

(xi(t) − xj(t)) = x∗(i, j, x(0), v(0)) for i, j ∈ N. (8.6.7)

Proof. (i) To apply Theorem 8.5.3 we show that B(I) = A(b) . . .A(a) is scrambling for
I = [a, b] and, for k fixed, a = r(k−1)(n−1)+1, b = rk(n−1). The interval I in ℕ contains
the (n − 1) values ti = r(k−1)(n−1)+i for 1 ≤ i ≤ n − 1. By assumption the matrices
A(ti), 1 ≤ i ≤ n − 1 are coherent. Since these matrices have a positive diagonal they
are Sarymsakov matrices by Proposition 8.1.7 (iii). By Lemma 8.4.8 (ii) the product
A(tn−1) . . .A(t1) is scrambling. The sequence σ = (ti) for 1 ≤ i ≤ n − 1 is contained in
τ = [a, b] and we have for i, j ∈ N and τ (i, j) = σ (i, j) = σ that

N(i, τ (i, j)) ∩ N(j, σ (i, j)) ̸= 0 where N(h, σ ) = {l|[A(tn−1) . . .A(t1)]hl > 0}.
Thus, the principle of the third agent holds on τ and A(b) . . .A(a) is scrambling by
Lemma 8.5.6 (ii). Since B(I) is scrambling we have that

μ+(B(I)) ≥ min+(B(I)) ≥ min+A(b) . . .min+A(a),
and, hence, μ+(B(Ik)) ≥ m|Ik |

k = mpk
k . Theorem 8.5.3 yields property (i).

(ii) (a) For any t ≥ 1 we have from model (8.6.5)

xi(t) − xj(t) = xi(0) − xj(0) + t−1∑
s=0
(vi(s) − vj(s)).

Also from the model

v(t + 1) = A(t) . . .A(0)v(0) and, by Theorem 8.1.2 (ii),
Δv(t + 1) ≤ c(A(t) . . .A(0))Δv(0) ≤ Δv(0) = max

h,l∈N
‖vh(0) − vl(0)‖.

This shows (ii) (a).
(ii) (b) This property follows from Theorem 8.6.1 applied to v(t + 1) = A(t)v(t). By

assumption we have for 1 ≤ i < j

rj − ri = rj − rj−1 + ⋅ ⋅ ⋅ + ri+1 − ri ≤ (j − i)r.
By definition of Ik we have for tk = max{t ∈ ℕ|t ∈ Ik} = rk(n−1) and, hence, ti+1 − ti ≤(n − 1)r. Part (i) of Theorem 8.6.1 yields

tk−1∑
s=0

c(A(s) . . .A(0)) ≤ (n − 1)rk−1∑
i=0
ρi.
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From v(s + 1) = A(s) . . .A(0)v(0) we have for i, j ∈ N
‖vi(s + 1) − vj(s + 1)‖ ≤ Δv(s + 1) ≤ c(A(s) . . .A(0))Δv(0).

Putting together, with w(s) = vi(s) − vj(s) for i, j fixed
tk−1∑
s=0
‖w(s + 1)‖ ≤ [tk−1∑

s=0
c(A(s) . . .A(0))]Δv(0) ≤ (n − 1)rΔv(0)k−1∑

i=0
ρi.

Frompart (iii) of Theorem 8.6.1 we obtain by assumption that∑∞
i=0 ρi < ∞ and because

of t1 < t2 < . . . we must have that ∑∞
s=0 ‖w(s)‖ < ∞. Therefore, lim

t→∞
∑t
s=0 w(s) exists

and the conclusion in (ii) (b) follows from xi(t) − xj(t) = xi(0) − xj(0) + ∑t−1
s=0 w(s).

For the particular case where all matrices A(t) are scrambling the proof of Theo-
rem 8.6.2 yields the following simpler variant of Theorem 8.6.2.

Corollary 8.6.3. For the swarmmodel (8.6.5) let (A(t)) be a sequence of scramblingma-
trices.
(i) If∑t∈ℕmin+ A(t) =∞ then lim

t→∞
vi(t) = v∗(v(0)) for all i ∈ N.

(ii) (a) For any i, j ∈ N and t ∈ ℕ,
‖xi(t) − xj(t)‖ ≤ ‖xi(0) − xj(0)‖ + tmax

h,l∈N
‖vh(0) − vl(0)‖.

(ii) (b) If for some t and α > 1 it holdsmin+ A(t) ≥ α
t for t ≥ t then

lim
t→∞

(xi(t) − xj(t)) = x∗(i, j, x(0), v(0)) for i, j ∈ N.
Proof. SinceA(t) is scramblingwe can apply directly Theorem 8.5.3 with It = {t}. Since
μ+(B(It)) ≥ min+ A(t) Theorem 8.5.3 yields (i). Parts (ii)(a) and (ii)(b) follow as in The-
orem 8.6.2.

The following examples show that swarm formation is possible also if the intensity of
interaction goes to zero and they demonstrate also the importance of the assumption
α > 1 for the convergence of the relative positions.

Examples 8.6.4. (a) Consider a swarm model as in Theorem 8.6.2 and assume r =
sup
k
(rk+1 − rk) < ∞ and min+ A(t) ≥ α[ (n−1)rt ]p for t ≥ t with p = 1

(n−2)r+1 , α > 0. If t ∈ Ik
then 1

t ≥ 1
rk(n−1)

. From rj − ri ≤ (j− i)r for 1 ≤ i < jwe obtain rj ≤ jr. Therefore, 1
t ≥ 1

k(n−1)r

for t ∈ Ik andmk ≥ α[ (n−1)rk(n−1)r ]p = α
kp . Furthermore,

pk = |Ik| = rk(n−1) − r(k−1)(n−1)+1 + 1 ≤ (n − 2)r + 1 = 1
p
.

It follows thatmpk
k ≥ αpk ⋅ 1k ≥ α

k . From Theorem 8.6.2 it follows lim
t→∞

vi(t) = v∗ for α > 0

and lim
t→∞

(xi(t) − xj(t)) = x∗(i, j) for α > 1. Obviously, min+ A(t) goes to zero for t tending
to infinity.
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(b) Consider the following special case of the example above. Let rk = k, k ≥ 1.
Then r = 1, Ik = [(k − 1)(n − 1) + 1, k(n − 1)] and pk = n − 1. The assumption in (a) be-
comes min+ A(t) ≥ α( n−1t ) 1

n−1 . In this case all matrices A(t) are coherent and min+ A(t)
goes to zero as ( 1t )n−1 for α > 0. Again, swarm formation takes place. Actually, in case
of rk = k part (i) of Theorem 8.6.2 gives back Corollary 8.5.10.

(c) Consider the following variation of Examples 8.4.1 A: A(t) = [ 1 0
α
t (1− α

t )
] for

α > 0, t > α . These matrices are of the kind considered above and we could apply
Theorem 8.6.2. Since thesematrices are scrambling it is easier to apply Corollary 8.6.3.
From part (i) we obtain for the swarm model (8.6.5) that lim

t→∞
vi(t) = v∗ for α > 0. Actu-

ally, from Examples 8.4.1 A we know this convergence already for α = 1. In this case
we calculate directly v1(t + 1) − v2(t + 1) = 1

t (v1(2) − v2(2)) for t ≥ 2. Therefore, for
t ≥ 2

x1(t + 1) − x2(t + 1) = x1(2) − x2(2) + ( t∑
s=2

1
s − 1)(v1(2) − v2(2)).

This is in accordance with part (ii) (a), however, the relative position of the two birds
does not converge for v1(2) ̸= v2(2). According to part (ii) (b) of Corollary 8.6.3 the
relative position does converge for α > 1. Let us check this directly for α = 2. Similar
as in Examples 8.4.1 A we obtain by induction A(t) . . .A(3) = [ 1 0

1−a(t) a(t) ] where a(t) =(1 − 2
t ) . . . (1 − 2

3 ) for t ≥ 3. One finds

t∑
s=3
(v1(s) − v2(s)) = ( t∑

s=3
a(s − 1))(v1(0) − v2(0)).

Since∑t
s=3 a(s − 1) converges to some w we obtain lim

t→∞
(x1(t) − x2(t)) = x1(0) − x2(0) +

w(v1(0) − v2(0)).
(d) Different from example (c) the next example shows that swarm formation can

happen also for α ≤ 1. Let A(t) = [ 1
t (1− 1

t )
1 0

] for t ≥ 2. Since A(t) is scrambling and
min+ A(t) = 1

t from Corollary 8.6.3 it follows that velocities converge to a common
value. (Notice, A(t) has no positive diagonal which is admitted in Corollary 8.6.3.) For
w(t) = v1(t)−v2(t) one findsw(t + 1) = −(1− 1

t )w(t) and, hence,w(t + 1) = (−1)t−1
t w(2).

Therefore, x1(t) − x2(t) = x1(2) − x2(2) + ∑t−1
s=2 w(s) does converge for t →∞. Thus

swarm formation takes place although the assumption in part (ii)(b) of Corollary 8.6.3
that min+ A(t) ≥ α

t for some α > 1 is not satisfied. This example also shows that the
convergence of velocities need not be monotone.

For the swarm model (8.6.5) the assumptions made in Theorem 8.6.2 and Corol-
lary 8.6.3 do not stipulate any cause for the change of intensity or structure in the
interaction. In particular there is no assumption on how the latter are connected to
the positions of the birds. Such a connection is not unplausible and it is assumed
often in the literature on swarms that the intensities aij(t) depend on the distance‖xi(t) − xj(t)‖ between the birds. An example are the famous Cucker–Smale model
of bird flocking and variations of it. The original articles of F. Cucker and S. Smale
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are [23] and [24]. Related contributions are [14, 19, 21, 38, 82, 94]. From Theorem 8.6.2
and Corollary 8.6.3, respectively, we obtain the following result which admits a rather
general dependence of intensities on distances among birds and which, moreover,
admits a structure of interaction much weaker than the one considered in the litera-
ture mentioned above. (All this, however, for discrete time only. See also the remarks
at the end of this section.)

Theorem 8.6.5. For the swarm model (8.6.5) let (A(t)) be a sequence of stochastic ma-
trices such that

aij(t) = f (‖xi(t) − xj(t)‖) in case of aij(t) > 0 and i ̸= j, (8.6.8)

where f is an antitone selfmapping ofℝ+ with f (0) < 1
n−1 .

(i) Suppose there is a sequence r0 = 0 ≤ r1 < r2 < ⋅ ⋅ ⋅ with r = sup
k
(rk+1 − rk) < ∞ and

such that A(rk) is coherent for k = 1, 2, . . . and let
pk = |Ik| for Ik = [r(k−1)(n−1)+1, rk(n−1)](inℕ).

(a) If zf pk (z) ≥ c > 0 for all z ≥ z ∈ ℝ+, all k ≥ k ∈ ℕ,
then lim

t→∞
vi(t) = v∗(v(0)) for all i ∈ N.

(Thereby, f p the p-fold product f . . . f .)
(b) If zf pk (z) ≥ c > (n − 1)rΔv(0) for z ≥ z, k ≥ k,

then lim
t→∞

(xi(t) − xj(t)) = x∗(i, j, x(0), v(0)) for i, j ∈ N.
(ii) Suppose all matrices A(t) are scrambling.

(a) If zf (z) ≥ c > 0 for all z ≥ z ∈ ℝ+
then lim

t→∞
vi(t) = v∗(v(0)) for all i ∈ N.

(b) If zf (z) ≥ c > (n − 1)Δv(0) for all z ≥ z ∈ ℝ+
then lim

t→∞
(xi(t) − xj(t)) = x∗(i, j, x(0), v(0)) for i, j ∈ N.

Proof. (i) Frompart (ii) (a) of Theorem 8.6.2 we have ‖xi(t)−xj(t)‖ ≤ c1 + c2t for i, j ∈ N
where c1 = Δx(0), c2 = Δv(0). Fix i ̸= j ∈ N with aij(t) > 0. Since f is antitone, we obtain
aij(t) = f (‖xi(t) − xj(t)‖) ≥ f (c1 + c2t) and, using the assumption made in (a) and (b),
respectively,

aij(t)pk ≥ f (c1 + c2t)pk ≥ c
c1 + c2t

for t ≥ t, k ≥ k (∗).
Choose α such that 0 < α < c(n − 1)rc2 . (∗∗)

In case of (b) we have that c
(n−1)rc2

> 1 and, hence, in that case α > 1 can be chosen.
Because of (∗∗) we can choose k̃ ≥ k such that c1 ≤ k( cα − (n − 1)rc2) for k ≥ k̃. For
t ∈ Ik we have that t ≤ rk(n−1) ≤ k(n − 1)r and, hence, t ≤ k(n − 1)r ≤ c

α k−c1
c2

for k ≥ k̃.
Thus, c1 + c2t ≤ c

α k for t ∈ Ik, k ≥ k̃. Choosing k̃ big enough we can assume that t ≥ t
for t ∈ Ik, k ≥ k̃ and obtain from (∗)

aij(t)pk ≥ c
c1 + c2t

≥ α
k

for t ∈ Ik, k ≥ k̃.
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330 | 8 Dynamics of interaction

Since for j ̸= i we have aij(t) ≤ f (0) we obtain
aii(t) = 1 −∑

j ̸=i
aij(t) ≥ c3 with c3 = 1 − (n − 1)f (0) > 0.

Furthermore, pk = rk(n−1) − r(k−1)(n−1)+1 + 1 ≤ (n − 2)r + 1 and, hence,

aii(t)pk ≥ aii(t)(n−2)r+1 ≥ c(n−2)r+13 ≥ α
k

where k ≥ k ∈ ℕ.
Thus, we arrive at mpk

k ≥ α
k for all k ≥ k̃, k. Therefore, statements (a) and (b) follow

from parts (i) and (ii) (b) of Theorem 8.6.2.
(ii) This part follows from Corollary 8.6.3 in the samemanner as in part (i) above.

Now It = {t}, pt = 1 and r = 1. As in (∗∗) choose α such that 0 < α < c
(n−1)c2

. In case of
(b) we can choose α > 1 since by assumption c

(n−1)c2
> 1.

Theorem 8.6.5 we illustrate by discussing in some detail the Cucker–Smalemodel of
bird flocking in discrete time. In this model x(t), v(t) ∈ (ℝ3)n and

x(t + 1) − x(t) = v(t)
vi(t + 1) − vi(t) = n∑

i ̸=j=1
fij(x(t))(vj(t) − vi(t))

with fij(x) = H
(1+‖xi−xj‖2)β ,H > 0, β ≥ 0 and i ̸= j ∈ N.

(8.6.9)

This model is of the form of our swarm model (8.6.5) but not exactly, since the in-
tensities fij, though nonnegative, do not give a stochastic matrix. Since there are no
fii in this model we will define those to obtain a stochastic matrix – for this, how-
ever, we shall assume that H ≤ 1

n . Let for i ̸= j, t ∈ ℕ aij(t) = fij(x(t)) or aij(t) = 0
and aii(t) = 1 − ∑n

i ̸=j=1 aij(t). Since fij(x(t)) ≤ H ≤ 1
n we have that ∑n

i ̸=j=1 aij(t) ≤∑n
i ̸=j=1 fij(x(t)) ≤ (n − 1)H < 1. Thus, the matrix A(t) of the aij(t) is stochastic and has a

positive diagonal. In case of aij(t) > 0 for i ̸= jwe have aij(t) = fij(x(t)) = f (‖xi(t)−xj(t)‖)
where f (z) = H

(1+z2)β is an antitone selfmapping of ℝ+ with f (0) = H < 1
n−1 . Thus, The-

orem 8.6.5 is applicable to discrete Cucker–Smale flocking for H ≤ 1
n . Part (i) of Theo-

rem 8.6.2 generalizes the latter in that A(t) is required to be coherent only for certain
points in time. In themodel (8.6.9) intensities are required to be strictly positive at each
point in time and A(t) is strictly positive for each t ∈ ℕ. To this quite strong structure
of interaction part (ii) of Theorem 8.6.5 applies.The assumption in (ii) (a) means that

Hz
(1+z2)β ≥ c > 0 for z ≥ z ∈ ℝ+, or equivalently, β ≤ 1

2 . Thus, for β ≤ 1
2 (and H ≤ 1

n ) in
the model (8.6.9) velocities converge to v∗(v(0)) for any given v(0). The assumption in
(ii) (b) means that Hz

(1+z2)β ≥ c > (n − 1)Δv(0) for z ≥ z, or, equivalently, β < 1
2 or β = 1

2
and H > (n − 1)Δv(0). Therefore, for model (8.6.9) we have in case of β < 1

2 conver-
gence of velocities to a common value as well as convergence of the relative positions
xi(t)−xj(t) and this holds for any initial conditions. In case of β = 1

2 convergence of rel-
ative positions does, according to part (ii) (b) of Theorem 8.6.4, hold if relative initial
velocities are not too big. In [23, 24] also for the case of β > 1

2 conditions on the initial
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8.6 Swarm dynamics | 331

conditions are specifiedwhich guarantee convergence of velocities to a common value
and convergence of relative positions.

In concluding this section we like to link it to the biological literature and to in-
terprete the main result Theorem 8.6.2 and the consequences drawn from it. Thereby
we concentrate on the “how” of organized flights and leave the “why” aside. A cru-
cial assumption made in Theorem 8.6.2 is the one that the matrices A(t) are coherent
at certain points in time. According to Definition 8.1.6 a stochastic matrix A is coher-
ent if any two saturated subsets of the set of agents N have a non-empty intersection.
Equivalently, the intersection of all saturated subsets is non-empty. Calling the lat-
ter set the core C for A one verifies easily that C = ⋂i∈N c(i) where c(i) is the small-
est saturated set containing i. Using the map s(⋅) defined for a subset 0 ̸= M ⊆ N
by s(M) = {j ∈ N | aij > 0 for some i ∈ M} (see equation (8.1.6)) one finds that
c(i) = ⋃k∈ℕ sk(i) (where s(i) = s({i}) and sk(⋅) is the k-th iterate of s(⋅)). Thus, we obtain
the following description of the core

C = ⋂
i∈N

⋃
k∈ℕ

sk(i). (8.6.10)

Therefore, j ∈ C if and only if for each i ∈ N there exists k ∈ ℕ such that j ∈ sk(i). Let G
be the directed graph defined by AwhereN is the set of nodes and (i, j) is a (directed)
edge for i, j ∈ N precisely for aij > 0 or, equivalently, j ∈ s(i). In the language of graph
theory j ∈ sk(i) means there is a (directed) path of length k from i to j, especially j is
reachable from i. In this language, j ∈ N is in the core C if and only if it is reachable
from each i ∈ N. The following picture depicts a typical case of a core for a coherent
matrix A in the most simple case where C is a singleton.

C
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∙ ∙ Fig. 8.1. Swarm formation.
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In the picture the dots are the elements ofN and an edge is represented by a dash,
directed from bottom to top. The dot at the top of the figure is the core since it is reach-
able from any other dot and no other dot does have this property. Of course, Figure 8.1
is just a pictorial presentation of graphG for a coherentmatrixAwith C being a single-
ton. Thinking of swarms, however, one is tempted to look at this figure as a formation
of birds called an echelon in biology [68]. The famousV-formation of birds and the J-
formation as its asymmetric variant are cases of such an echelon. To substantiate this
impression remember that a dash from i to jmeans an edge (i, j) that is aij > 0.With re-
spect to the swarmmodel (8.6.5) this means that bird imatches its velocity with bird j.
This requires a communication between the birds, say that “bird i sees bird j”. Vision
is considered to be an important communication channel among birds, sometimes as
the appropriate one compatible with experimental data [4] Therefore, we interprete
the neighborhood Ni = {j ∈ N | aij > 0} of bird i as the birds seen by i. Since “seeing”
refers to the positions of birds, Figure 8.1 can be interpreted as showing the positions
of birds and a dash (i, j) means bird i sees bird j. The “wavy lines” in Figure 8.1 then
are due to the conical field of vision of birds.

In case the core is a singleton as in Figure 8.1 one might think of this single bird
as a leader. This applies in particular to the special cases of V- or J-formations. For a
general line formation with many birds, however, such a leadership is rather indirect
and mediated possibly by a lot of birds between leader and followers. Even less pro-
nounced is leadership if the core consists of several birds. Of course, any two birds in
the core do interact, either directly or indirectly. Therefore, two or more independent
leaders are not possible. It has been observed, however, that big swarms of migratory
birds are sometimes lead by a spherical sub-formation of birds. The opposite extreme
to a core as in Figure 8.1 would be a core consisting of the whole swarm. (This is the
case for the Cucker–Smalemodel (8.6.9).) In itsmost simple form this amounts to a cy-
cle, where each bird is followed by just another one. For migrating birds such a cyclic
formation would not make much sense, possibly with the exception of processes of
starting and landing. Below we will argue that big cores and cycles in particular play
a role for cluster formations.

Up to now a single matrix A and the formation of birds induced by interaction
have been considered. In Theorem 8.6.2 a swarm is described by a sequence (A(t))
of matrices with A(rk) coherent at certain points in time rk. Thus at each rk there is a
flight regime as discussed above. These regimes can differ and exhibit different cores.
Even if the core is a singleton at each rk, k ∈ ℕ, leaders (and followers) can change
from time to time. Moreover, during flight different types of leadership according to
cores of different size can occur. The change in leader and leadership enables the
swarm to change the direction of flight, make even a turn. It is an important feature of
Theorem 8.6.2 that the points in time rk need not follow a specific rule and that, more-
over, during the rest of time no particular flight formation is required. That means the
swarm can change flight freely with irregular patterns of re-organization in between.
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A major distinction concerning swarms is made in biology between line forma-
tions and cluster formation [68]. The interpretation put forward above was directed
to line formations which are observed usually for migrating birds as various kinds
of geese which fly in groups not too large. The above analysis of the core applies,
however, also to huge groups of small birds as the European starling. The spectac-
ular dynamics of the latter over a roost (as in Rome) has been empirically investigated
recently employing modern stereo photography ([4], see also [50]). An important con-
clusion drawn in [4] is the one that interaction among the starlings does depend on
the “topological distance” and not on themetric distance. This means that “each
bird interacts on average with a fixed number of neighbors (six to seven), rather than
with all neighbors within a fixed metric distance.” [4, p. 1232]. Interaction as modeld
in Theorem 8.6.2 does not presume any particular kind of concrete neighborhood as
topological or metric distance or any other. (In the empirical study [77] on large flocks
of surf scoters metric distance has found to be an appropriate tool.) In Theorem 8.6.5,
as well as in the Cucker–Smale model, the intensity of interaction depends on met-
ric distance without, however, specifying fixed distance neighborhoods. (A kind of
neighborhood beyond topological or metric distance is discussed in Examples 8.5.22
(4) under the heading of “valuation”.) In Theorem 8.6.2 as well as in Corollary 8.6.3
coherence of matrices may rest on topological distance (actually, maybe combinato-
rial distance would be a better name). Indeed, a stochastic matrix A(t) is coherent if
for each i ∈ N the number of j ∈ N such that aij(t) > 0 exceeds a fixed numbermwhich
depends on n.

Concerning the “turn and wheeling together” which is characteristic for huge
swarms of the European starling over a roost, this is possibly due to a large core
within the centre of a swarm. Actually, in 3 dimensions the interior of the polytope
spanned by the swarm admits movements not only from the outside to the inside, but
also in reverse directions, allowing for various kinds of spiraling and swirling. In con-
trast to a line formation the birds in a cluster formation are smaller and more swiftly,
larger in number and more densely packed. Whereas in a line formation which is es-
sentially 2-dimensional, cylces do not make sense, in 3 dimensions cycles of different
orientation are to be expected. Furthermore, at times different from the rk irregular
patterns of re-organization, present also in line formations, becomemore dramatic in
cluster formations due to small and swift birds densely packed in three dimensions.
The cohesion of the swarm rests on the interaction according to coherent matrices
which iteratively take hold at times rk. Possible perturbations or re-organizations in
between can be looked at as changes in “initial” conditions which after a while lead
qualitatively to the same dynamics as before. In this view the point of Theorem 8.6.2
is that the tendency to common velocities and definite relative positions provides the
law which governs the “reelin’ and rockin” of the swarm.

Finally we add some more remarks concerning the literature.
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Remarks 8.6.6. (1) For scalar opinion dynamics under bounded confidence an upper
bound for convergence ofO(n3)) is given in [80] and in [7]. Lower bounds are obtained
in [7, 66, 101]. A general framework to bound the time of convergence for a class of
bidirectional multi-agreement systems, including opinion dynamics as well as bird
flocking, has beendeveloped in [19–21]. Surprisingly, the bound to reach a steady state
is in general very high, a “tower-of-twos of hight linear in the number of birds”. The
framework developed is directed to a general study of “Natural Algorithms” [19].

(2) For the swarm model (8.6.5) and the role of coherent matrices in swarm dy-
namics see [64]. There [64, Theorem 3] a special version of Thorem 8.6.2 is proven.

(3) The Cucker–Smale model of bird flocking, for discrete time as well as for con-
tinuous time, has been developed in [23, 24]. Thismodel and variants of it were further
investigated in [14, 20, 38, 64, 82, 94]. Hierarchical leadership in the dicrete as well
as in the continuous Cucker–Smale model is investigated in [94], where convergence
rates for flocking are established. Results on flocking in the continuous Cucker–Smale
model are obtained in [38] via a system of dissipative differential inequalities and in
[14] by relating it to a Boltzmann-type equation. In [82] the continuous Cucker–Smale
model is generalized by admitting non-symmetric interaction matrices based on rel-
ative distances. The proof makes use of an ineresting “energy functional” introduced
in [38]. (For such a functional in the discrete case see Exercise 16.)

(4) The interpretation of Theorem 8.6.2 draws on the review of organized flight in
birds [68] and the empirical studies [4, 77]. A model addressing the empirical data in
[4] can be found in [50]. An informative general review of pattern formation in swarms
as well as in other group-living species as ants, fishes, and humans is [83].

Exercises

1. Consider for a stochastic matrix A ∈ ℝn×n
+ the property

Ax = x, x ∈ ℝn implies x = (r, . . . , r) for some r ∈ ℝ.
(a) Show that the above property holds if A is indecomposable or has a scram-

bling power.
(b) Find an example A for which the above property holds though the condition

in (a) is not satisfied.

2. Let A ∈ ℝn×n
+ a stochastic matrix and ̄λ a second eigenvalue of absolute value,

that is ̄λ is an eigenvalue of A for which | ̄λ | is the maximal absolute value of all
eigenvalues different from 1.
(a) Obtain from Theorem 8.1.2 A that

| ̄λ | = lim
k→∞

c(Ak) 1k
if 1 is a simple eigenvalue.
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(b) Show that for 1 not simple c(Ak) = 1 for all k. Find an exampleA for which the
reverse implication does not hold.

(c) Derive from (a) and (b) that A has a scrambling power if and only if 1 is a
simple eigenvalue and the only eigenvalue with absolute value 1.

3. Prove for a stochastic matrix A ∈ ℝn×n
+ the following properties.

(a) A is coherent if and only if for any two i, j ∈ {1, . . . , n} exist pi, pj ≥ 0 such that
s(i)pi ∩ s(j)pj ̸= 0.

(b) A has a power which is a Markov matrix if there exists j ∈ sp1 (1) ∩ . . . ∩
spn(n), pi ≥ 0, with ajj > 0.

4. (a) Prove that a (weighted) arithmetic mean f (x1, . . . , xn) = ∑n
i=1 aixi is a strict

abstract mean on intℝn
+ if and only if ai > 0 for all i.

(b) Let Tx = Ax for a stochastic matrix A ∈ ℝn×n
+ and x ∈ int ℝn

+. Show by way of
examples that for lim

t→∞
Ttx = c̄(x) to hold on int ℝn

+ it is neither necessary nor
sufficient Ti is a strict abstract mean for some i.

5. Consider a ring of agentswhere each agent spends a fixedpercentage of hismoney
to his next neighbor and retains the rest, that is for xi(t) ∈ ℝ+ the amount ofmoney
of agent i at time t ∈ ℕ one has xi(t + 1) = aiixi(t) + (1 − ai−1,i−1)xi−1(t) where
aii ∈ [0, 1], 1 ≤ i ≤ n, a00 = ann, x0(t) = xn(t).
(a) Show that lim

t→∞
x(t) exists for each x(0) ∈ ℝn

+ if 0 < aii < 1 for all i.
(b) What can be said in (a) if one or more agents do not share their money with

others, that is aii = 1?
(c) Underwhat conditionswill in (a) themoney be equally distributed in the limit

among the agents?
(For the special case of the exercisewhere aii = 1

2 for all i see [17, Theorem 7.1].)

6. Prove that the product of finitelymany Sarymsakov n×n-matrices is a Sarymsakov
matrix again.

7. Let T be the set of all mean maps on Sn for a non-empty convex subset S of ℝd.
Prove the following properties of T.
(a) T is a convex subset of the setF of all selfmappings of Sn (for pointwise convex

combination).
(b) T is closed for the composition of maps.
(c) For d = 1, T is closed for componentwise minima and maxima.
(d) If S is compact inℝd then T is compact in Fwith respect to the product topol-

ogy.

8. Consider the selfmapping Tx = A(x)x on Sn, S ⊆ ℝd convex, with A(x) = (aij(x)) ∈ℝn×n
+ given by

aij(x) = {{{
cijf (‖xi − xj‖) if i ̸= j
1 − ∑

k ̸=i
cikf (‖xi − xk‖) if i = j
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where f : ℝ+ → [0, 1] and C = (cij) is a stochastic n × n-matrix (‖ ⋅ ‖ any norm onℝd).
(a) Find conditions on f and C for which

lim
t→∞

Ttx = c̄(x) for all x ∈ Sn.
(b) Investigate the case of f (r) = e−𝛾r, 𝛾 > 0. (Cf. the ENDA Model in [78, pp. 125–

128].)

9. Consider theweighted Gini mean on intℝn
+ defined by

f (x) = [[[[[

n∑
k=1

akxrk
n∑

k=1
akxsk

]]]]]

1
r−s

for r, s ∈ ℝ, r ̸= s and weights 0 ≤ ak, ∑n
k=1 ak = 1.

(a) Prove min
k

xk ≤ f (x) ≤ max
k

xk on intℝn
+.

(b) Prove that ai > 0 for some i and f (x) = min
k

xk(f (x) = max
k

xk) implies xi =
min
k

xk(xi = max
k

xk).
(c) Argue that part (i) of Theorem 8.3.12 holds true in case the soup has compo-

nents given by weighted Gini means.

10. For the model from population biology considered in Examples 8.3.15 (3) let

M =
[[[[[

a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

]]]]]
with aj, bj, dj ≥ 0
and aj +

1
2 (bj + cj + dj) = 1 for 1 ≤ j ≤ 4.

(a) Find further cases ofM, besides the one given in Examples 8.3.15 (3) for which
the mapping T : ℝ4

+ → ℝ4
+ defined byM satisfies

lim
t→∞

Ttx = c̄(x) on intℝ4
+.

(b) Find cases ofM for which the above conclusion does not hold.

11. Consider the following generalization of Borchardt’s example (cf. Re-
marks 8.3.16 (6)) where T is a selfmapping of ℝn

+ given by

Tix =
n∑
j=1

aij ∏
k∈I(i,j)

xαk(i,j)k , 1 ≤ i ≤ n

with A = (aij) a stochastic matrix, 0 ≤ αk(i, j) and ∑ αk(i, j)
k∈I(i,j)

= 1, 0 ⫋ I(i, j) ⊆{1, . . . , n} for all 1 ≤ i, j ≤ n.
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(a) Show that T is a mean map onℝn
+.

(b) Prove lim
t→∞

Ttx = c̄(x) on int ℝn
+, provided 0 < αk(i, j) for k ∈ I(i, j), 1 ≤ i, j ≤ n

and the sets I(i) = ⋃aij>0 I(i, j) satisfy I(i) ∩ I(i) ̸= 0 for any i ̸= i.
(c) Do you have any idea for a closed formula of the value c(x)?

12. Let a Gauss soup T on intℝn
+ given by

Tix =
n∏
j=1

xaijj , 1 ≤ i ≤ n

for a stochastic matrix A = (aij).
(a) Show that H(x) = ∏n

j=1 x
vj
j on int ℝn

+ is an invariant for T, where v ∈ ℝn
+ is an

eigenvector of the transpose A for the eigenvalue 1.

(b) Show that for A scrambling lim
t→∞

Ttx = c̄(x) on int ℝn
+ and compute c(x) using

the invariant H (cf. Remarks 8.3.16 (7)).

13. [35, 63] Consider the variation of the arithmetic-geometricmeangiven for (x1, x2) ∈
intℝ2

+ by

T1(x1, x2) = √x1 x1 + x2
2

, T2(x1, x2) = √x2 x1 + x2
2

.
(a) Verify that H(x1, x2) = x22−x

2
1

log x2−log x1
, x1 ̸= x2 is an invariant for T.

(b) Prove lim
t→∞

Ttx = c̄(x) on intℝ2
+ and compute c(x) using the invariant H.

14. Let T be the selfmapping of intℝ3
+ given by

Tx = (x2 + x3
2

, √x1x3, √ x21 + x22
2

) .
(a) Show that the iterates of T converge for each x ∈ intℝ3

+ to a value c̄(x).
(b) What can you say about the value c(x)?
(c) Check if T is strict, that is

min
j

xj < Tix < max
j

xj

for i = 1, 2, 3 and not all components of x ∈ intℝ3
+ being equal.

15. Let K be the convex cone ℝn×n
+ and λ (⋅, ⋅) be the order function of K (see Defini-

tion 3.1.1).
(a) Verify that the part [A] in K generated by A ∈ K (see Definition 3.2.1) is given

by [A] = {B ∈ K | Bij = 0 equivalent to Aij = 0 for all 1 ≤ i, j ≤ n}.
(b) Let Ā ∈ [A] be a representative with Āij = 1 for Aij > 0. Show for a stochastic

scrambling matrix A that

1 − nλ (Ā,A) ≤ c(A) ≤ 1 − λ (Ā,A).
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(c) Prove that condition (8.4.2) in Theorem 8.4.5 is equivalent to

∑
I∈ℑ+

λ (B̄(I),B(I)) =∞,
where ℑ+ is the set of I ∈ ℑ with B(I) scrambling.

16. [54] Let (x(t))be themeanprocess of opiniondynamicsunder bounded confidence
in one dimension, that is

xi(t + 1) = |I(i, x(t))|−1∑ xj(t)
j∈I(i,x(t))

for 1 ≤ i ≤ n, t ∈ ℕ, x(0) ∈ ℝn, I(i, x) = {1 ≤ j ≤ n | |xi−xj| ≤ 𝜖} for x = (x1, . . . , xn) ∈ℝn, 𝜖 > 0.
(a) Prove for 2 ≤ n ≤ 4 that convergence to consensus holds if and only if x(0) is

an 𝜖-profile, that is for some numbering (i1, . . . , in) of (1, . . . , n)
xi1 (0) ≤ ⋅ ⋅ ⋅ ≤ xin(0) and xik+1 (0) − xik (0) ≤ 𝜖 for 1 ≤ k ≤ n − 1.

(b) Find an example for n ≥ 5 that the condition on x(0) in (a) is necessary but
not sufficient for convergence to consensus.

(c) Verify that for n = 6, 𝜖 = 1 and x(0) = (0, 1, 2, 3, 4, 5) the dynamics reaches for
t = 6 a stable configuration which is not a consensus. (Cf. [41] for the general
case of equally spaced agents.)

17. Apply Theorem 8.5.3 to the following nonlinear and non-autonomous system

x(t + 1) = Ttx(t), Ttx = A(t, x)x,A(t, x) stochastic n × n-matrix

for t ∈ ℕ, x ∈ Sn, S ⊆ ℝd convex.
Let form ≥ 1

Tt+m−1 ∘ ⋅ ⋅ ⋅ ∘ Ttx = Bm(t, x)x
and

δm(t, x) = min
1≤i,j≤n

n∑
k=1

min{Bm(t, x)ik,Bm(t, x)jk}.
(a) Show that lim

t→∞
x(t) = c̄(x(0)) under the condition∑∞

t=0 δm(t, x(t)) =∞ for some
m ≥ 1 and x(0) ∈ Sn.

(b) Verify the condition in (a) in case of δm(t, x) ≥ δ m(t). δ m (x) (for some m ≥ 1)
with
–

∞∑
t=0
δ m(t) =∞ and δ m (x) ≥ δ  > 0 on Sn

or
– δ m(t) ≥ δ  > 0 onℕ and δ m (x) > 0 continuous on Sn.
(Cf. [54, Theorem 1], [65, Theorem 9.5.4].)
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18. Find an example of multiagent coordination of two agents for each of the follow-
ing cases.
(a) The assumptions for parts (i) and (ii) of Corollary 8.5.9 are satisfied but not

the ones of part (iii).
(b) The assumptions of Theorem 8.5.7 (and of Theorem 8.5.3) are satisfied but not

the assumptions of any of the three parts of Corollary 8.5.9.
(c) The assumptions of Theorem 8.5.7 can be fulfilled for sequences (tk) and (βk)

such that tk+1 − tk tends to infinity and βk tends to zero.
19. For the swarm model (8.6.5) given by

x(t + 1) − x(t) = v(t)
v(t + 1) = A(t)v(t) with x(0), v(0) ∈ Sn

let d(t) = max
1≤i,j≤n

‖xi(t) − xj(t)‖, p(t) = max
1≤i,j≤n

‖vi(t) − vj(t)‖
where ‖ ⋅ ‖ is any norm onℝd.
Prove for the discrete energy functional

E(t) = p(t + 1) + t∑
s=0
(1 − c(A(s)))(d(s + 1) − d(s)), t ∈ ℕ,

that it decreases along the trajectory (d(t), p(t)).
(For a swarm model with an energy functional in continuous time see [38, 82].)
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– strong, 217, 220, 230
–weak, 217, 220
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–density-dependent, 9
–generalized, 9
Leslie model
– concave, 62
–nonlinear and nonautonomous, 227
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Markov’s Theorem, 304
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– indecomposable, 36, 53
–Markov, 264
–Metzler, 205
–model, 269
–permutation, 279
–primitive, 36, 53
–Sarymsakov, 264
– scrambling, 258
–SIA, 300
– stochastic, 258
– strength of, 301
Maynard Smith model, 254
mean
–abstract, 273, 287
–arithmetic, 282
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mean process
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nonlinear eigenvalue problem, 10
nonlinear integral operators, 166
norm, 108
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normalized mapping, 10
normalized/rescaled, 23

operator

– (k,
∘
K) property, 141
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–α -sublinear, 141
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–affine-linear, 138
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– cone mapping, 137
–homogeneous of degree d, 32
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– indecomposable, 34
–mixed monotone, 164
–monotone, 22, 135
–normalized/rescaled, 146
–positively homogeneous, 32, 135
–positively homogeneous of degree d, 141
–primitive, 35
–primitivity index, 41
–proper, 146
– ray-preserving, 32
– stochastic, 152
– strictly monotone, 137
– strictly positive, 137
– strongly monotone, 142
– strongly subhomogeneous, 142
– subhomogeneous, 141
– sublinear/co-radiant, 141
–uniformly concave, 140
–uniformly positive linear, 139
–weakly ascending, 137
–weakly homogeneous, 142
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opinion, 18, 271
– 𝜖-profile, 318
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opinion dynamics, 338
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Perron–Frobenius Theorem
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– concave, 28
– concave, sharpened, 48
Perron–Frobenius theory
– concave, 21
Pielou equation, 212
Pituk’s Theorem, 235, 253
Poincaré’s difference system, 235
Poincaré’s Theorem, 235
–nonlinear, 238
population pressure, 1, 246
positive discrete dynamical system, 15
–non-autonomous, 10
power- lipschitzian, 129
price setting, 15
– technical change, 241
principle of the third agent (printh), 306

relative uniform convergence, 106
reproduction function, 2, 247
Riccati model, 253
root function, 141

saturated, 265, 313
scale, 146
sectional set, 143
semi-norm, 108
shrinking
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– for t, 275
–property, 260
simple set, 293
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–based on A, 283
–Gauss, 283
special metric, 90
stability
– absolute, 147, 157
– relative, 147, 153
stable, 121
strict order relation, 136
strongly isolated, 130
superconvex, 115
superposition principle, 212
swarm dynamics, 323
swarm model, 325, 339
symmetrically bounded, 83

Thompson metric or part metric, 85, 88
Thompson’s Theorem, 156

valuation, 319
Verhulst type, 22
Vicsek’s model, 322

weak ascending domain, 156
weak ergodicity, 124, 216
weakly ergodic, 217
Wolfowitz property (W-property), 296
Wolfowitz Theorem
–extension of, 300
–generalized, 297
–original, 300
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