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Themain purpose of this work is to show that the Perron-Frobenius eigenstructure of a positive linear system is involved not only in
the characterization of long-termbehavior (forwhichwell-known results are available) but also in the characterization of short-term
or transient behavior. We address the analysis of the short-term behavior by the help of the “(𝑀, 𝛽)-stability” concept introduced
in literature for general classes of dynamics. Our paper exploits this concept relative to Hölder vector 𝑝-norms, 1 ≤ 𝑝 ≤ ∞,
adequately weighted by scaling operators, focusing on positive linear systems. Given an asymptotically stable positive linear system,
for each 1 ≤ 𝑝 ≤ ∞, we prove the existence of a scaling operator (built from the right and left Perron-Frobenius eigenvectors, with
concrete expressions depending on 𝑝) that ensures the best possible values for the parameters𝑀 and 𝛽, corresponding to an “ideal”
short-term (transient) behavior. We provide results that cover both discrete- and continuous-time dynamics. Our analysis also
captures the differences between the cases where the system dynamics is defined bymatrices irreducible and reducible, respectively.
The theoretical developments are applied to the practical study of the short-term behavior for two positive linear systems already
discussed in literature by other authors.

1. Introduction

1.1. Notation. Let x = [𝑥
1
⋅ ⋅ ⋅ 𝑥
𝑛
]⊤ ∈ R𝑛 be a vector. The

Hölder vector 𝑝-norm is defined as ‖x‖
𝑝

= [|𝑥
1
|𝑝 + ⋅ ⋅ ⋅ +

|𝑥
𝑛
|𝑝]1/𝑝 for 1 ≤ 𝑝 < ∞, and ‖x‖

∞
= max

𝑖=1,...,𝑛
|𝑥
𝑖
| for

𝑝 = ∞.
Let A = [𝑎

𝑖𝑗
] ∈ R𝑛×𝑛 be a square matrix. Let 𝜎(A) be

the spectrum of matrix A; the eigenvalues of A are denoted
by 𝜆
𝑖
(A) ∈ 𝜎(A), 𝑖 = 1, 𝑛. The norm of matrix A induced

by a vector norm ‖ ‖ (not necessarily a Hölder 𝑝-norm) is
defined as ‖A‖ = maxx∈R𝑛,‖x‖=1‖Ax‖. The matrix measure of
A with respect to a matrix norm ‖ ‖ is given by 𝜇

‖ ‖
(A) =

lim
ℎ↘0

(1/ℎ)[‖I + ℎA‖ − 1], where I stands for the unit matrix
of order 𝑛. In the particular case of Hölder 𝑝-norms 𝑝 ∈

{1, 2,∞}, the expressions of the induced matrix norms are
‖A‖
1
= max

𝑗=1,...,𝑛
∑
𝑛

𝑖=1
|𝑎
𝑖𝑗
|, ‖A‖

2
= (𝜆max(A𝑇A))1/2, ‖A‖

∞
=

max
𝑖=1,...,𝑛

∑
𝑛

𝑗=1
|𝑎
𝑖𝑗
|, and the corresponding matrix measures

are 𝜇
‖ ‖
1

(A) = max
𝑗=1,...,𝑛

{𝑎
𝑗𝑗

+ ∑
𝑛

𝑖=1,𝑖 ̸=𝑗
|𝑎
𝑖𝑗
|}, 𝜇
‖ ‖
2

(A) =

1/2𝜆max(A + A𝑇), 𝜇
‖ ‖
∞

(A) = max
𝑖=1,...,𝑛

{𝑎
𝑖𝑖
+ ∑
𝑛

𝑗=1,𝑗 ̸=𝑖
|𝑎
𝑖𝑗
|},

as per Fact 11.15.7 from [1].

1.2. Concept of (𝑀, 𝛽)-Stability. The concept of (𝑀, 𝛽)-
stability has been developed by the monographic work in [2],
aiming to offer a refined characterization of the short-term
behavior (also called transient behavior) of the exponentially
stable systems, in the sense of the dynamics properties
exhibited by the free response.

In particular, the cited work provides adequate instru-
ments for the analysis of both long-term and short-term
behavior of linear systems with discrete-time (abbreviated
DT) dynamics,

x (𝑡 + 1) = Ax (𝑡) , A ∈ R
𝑛×𝑛

,

x (0) = x
0
, 𝑡 ∈ Z

+
,

(1-DT)

and continuous-time (abbreviated CT) dynamics,

ẋ (𝑡) = Ax (𝑡) , A ∈ R
𝑛×𝑛

, x (0) = x
0
, 𝑡 ∈ R

+
. (1-CT)

Throughout the text, we intend to develop a parallel analysis
of the DT and CT cases, reason for which the equation num-
bering includes the extensions -DT and -CT, respectively,
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2 Mathematical Problems in Engineering

as above. We are going to refer concomitantly to equations
numbered as (#-DT) and (#-CT) by using the formulation
“(#-DT) (resp., (#-CT))”. This type of parallel approach
will also have a more general formulation, in the sense of
“property of DT system (resp., property of CT system)”.

The analysis of the long-term behavior of system (1-DT)
(resp., (1-CT)) relies on the notion of growth rate, denoted by
𝛼(A), which is defined as in Subsection 3.3.2 of [2], by

𝛼 (A) = lim
𝑡→∞

(

A𝑡)
1/𝑡

= max
𝑖=1,...,𝑛

𝜆𝑖 (A)
 , (2-DT)

for the DT case, and, respectively,

𝛼 (A) = lim
𝑡→∞

ln (

𝑒
A𝑡)
1/𝑡

= max
𝑖=1,...,𝑛

Re {𝜆
𝑖
(A)} , (2-CT)

for the CT case. In algebraic terms, the growth rate equals the
spectral radius of A for system (1-DT) and, respectively, the
spectral abscissa of A for system (1-CT).

The analysis of the transient (short-term) behavior of
system (1-DT) (resp., (1-CT)) relies on the notion of (𝑀, 𝛽)-
stability which is defined as follows.

Definition 1 (Definition 5.5.1 [2]). Let 1 ≤ 𝑀 and 𝛼(A) ≤ 𝛽,
with 0 < 𝛽 < 1 in the DT case, and, respectively, 𝛽 < 0

in the CT case. Consider an absolute vector norm ‖ ‖ in the
state-space R𝑛. System (1-DT) (resp., (1-CT)) is said to be
(𝑀, 𝛽)-stable relative to the norm ‖ ‖, if its trajectories satisfy
the inequality

x (𝑡; 0, x0)
 ≤ 𝑀𝛽

𝑡 x0
 , ∀x

0
∈ R
𝑛
, ∀𝑡 ∈ Z

+
, (3-DT)

in the DT case, and, respectively,

x (𝑡; 0, x0)
 ≤ 𝑀𝑒

𝛽𝑡 x0
 , ∀x

0
∈ R
𝑛
, ∀𝑡 ∈ R

+
, (3-CT)

in the CT case.The scalar𝑀 is called the transient bound and
the scalar 𝛽 is called the exponential rate.

In colloquial terms, a “good” transient behavior relative to
norm ‖ ‖means𝑀 close to 1 and 𝛽 close to 𝛼(A). The “ideal”
transient behavior relative to norm ‖ ‖ can be introduced
by formal specifications, namely, 𝑀 = 1 and 𝛽 = 𝛼(A)

(i.e., both minimal exponential rate and minimal transient
bound). Obviously, for these particular values of 𝑀 and 𝛽,
inequality (3-DT) (resp., (3-CT)) becomes inequality

x (𝑡; 0, x0)
 ≤ (𝛼 (A))

𝑡 x0
 ,

∀x
0
∈ R
𝑛
, ∀𝑡 ∈ Z

+
,

(4-DT)

in the case of system (1-DT), and, respectively,

x (𝑡; 0, x0)
 ≤ 𝑒
𝛼(A)𝑡 x0

 , ∀x
0
∈ R
𝑛
, ∀𝑡 ∈ R

+
, (4-CT)

in the case of system (1-CT).
Both growth rate and (𝑀, 𝛽)-stability are rigorously

related to the properties of the semigroup of operators
generated by A (discrete- or continuous-time), for example,
[3]. Consider the semigroup of linear operators generated

by matrix A. Then, by using the operator norm induced by
the vector norm ‖ ‖, inequality (3-DT) can be equivalently
written for operators A𝑡, 𝑡 ∈ Z

+
, in the form


A𝑡 ≤ 𝑀𝛽

𝑡
, ∀𝑡 ∈ Z

+
, (5-DT)

and inequality (3-CT) can be equivalently written for opera-
tors 𝑒A𝑡, 𝑡 ∈ R

+
, in the form

𝑒
A𝑡 ≤ 𝑀𝑒

𝛽𝑡
, ∀𝑡 ∈ R

+
. (5-CT)

If we take𝑀 = 1 in inequality (5-DT) (resp., (5-CT)), then the
initial growth rate relative to the norm ‖ ‖ (see Definition 5.5.7

and Proposition 5.5.8 in [2]), denoted by 𝛼
‖ ‖
(A), is defined as

𝛼
‖ ‖

(A) = min {𝛽 ∈ R |

A𝑡 ≤ 𝛽

𝑡
, ∀𝑡 ∈ Z

+
}

= ‖A‖ ,

(6-DT)

for the DT case, and, respectively, as

𝛼
‖ ‖

(A) = min {𝛽 ∈ R |

𝑒
A𝑡 ≤ 𝑒

𝛽𝑡
, ∀𝑡 ∈ R

+
}

= lim
ℎ↓0


𝑒
Aℎ − 1

ℎ
= lim
ℎ↓0

‖I + Aℎ‖ − 1

ℎ

= 𝜇
‖ ‖

(A) ,

(6-CT)

for the CT case.
By comparing (2-DT) with (6-DT) (resp., (2-CT) with

(6-CT)), one can simply notice that the inequality 𝛼(A) ≤

𝛼
‖ ‖
(A) holds true regardless of the considered norm. (In

algebraic terms, the spectral radius is less than or equal to
any matrix norm, and, respectively, the spectral abscissa is
less than or equal to any matrix measure.) This fact makes
completely clear the difference between the global sense of
the growth rate and the local sense of the initial growth rate.
Subsequently, the “ideal” transient behavior relative to norm
‖ ‖ is characterized by the equality 𝛼(A) = 𝛼

‖ ‖
(A).

Obviously, inequality (4-DT) (resp., (4-CT)) is satisfied
by the trajectories of any system (1-DT) (resp., (1-CT))
whose matrixA is diagonalizable, once the considered vector
norm ‖ ‖ is defined as an absolute norm, weighted by the
diagonalizing matrix. This represents a trivial example of
the “ideal” transient behavior, with low practical interest,
since the state variables of the diagonalized system are linear
combinations of the original state variables, and the transient
bounds of the former may seldom have a useful meaning for
the latter. Therefore, the study of (𝑀, 𝛽)-stability provides
relevant information only when the considered norm ‖ ‖ is
able to preserve the key role played by the original state-space
vector.

In work [2], the “ideal” transient behavior is illustrated by
a single class of linear systems, namely, those where matrixA
in equality (1-DT) (resp., (1-CT)) is a normal matrix, and the
norm ‖ ‖ considered in inequality (4-DT) (resp., (4-CT)) is
the 2-norm.

1.3. Paper Objective and Organization. Themain objective of
our paper is to expand the analysis framework of (𝑀, 𝛽)-
stability and “ideal” transient behavior by focusing on the
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class of positive linear systems, whose dynamics are generated
by matrices A nonnegative in equality (1-DT), and essentially
nonnegative in equality (1-CT). Literature includes several
remarkable monographs on positive systems, among which
wemention [4–6], that cover both analysis and design topics,
by creating awide perspective on the structure and behavioral
particularities of various types of systems (social, economic,
biological, and technical).The connections between the alge-
braic characterization of (essentially) nonnegative matrices
and the dynamical properties of positive linear systems are
deeply explored by [7, 8].

Our paper shows that positive linear system exhibits
an “ideal” transient behavior relative to any vector 𝑝-norm
(1 ≤ 𝑝 ≤ ∞) considered in inequality (4-DT) (resp.,
(4-CT)), if the state-space variables are individually scaled by
appropriate values. Concisely speaking, these scaling values
are intimately related to the elements of the left and right
Perron-Frobenius eigenvectors of matrix A. In norm terms,
the use of the scaled state-space variables represents a simple
weighting of the standard vector 𝑝-norms by positive definite
diagonal matrices, fact which does not alter the meaning of
the state-space vector components. Our approach includes,
as particular cases corresponding to 𝑝 ∈ {1, 2,∞}, the
properties of scaled positive systems presented by the recent
paper [9] in Propositions 1 and 2 and Remark 1.

Thus, as an overall comment on the contribution brought
by this paper, we notice that, besides the extension of the
investigation for (𝑀, 𝛽)-stability along the lines proposed by
[2], it also reveals deeper connections between the Perron-
Frobenius eigenstructure and the dynamics of positive linear
systems. Connections of this type are mentioned by many
works devoted to positive linear systems, such as [4–14].
Nevertheless, the cited works do not explore the role of the
Perron-Frobenius eigenstructure in the characterization of
the short-term behavior of positive linear systems.

The remainder of the text is organized as follows. The
main results are presented by Section 2, for positive systems

defined by irreducible matrices, and by Section 3, for positive
systems defined by reducible matrices. Section 4 illustrates
the applicability of the theoretical results in studying the
short-term dynamics of two positive linear systems previ-
ously discussed by other works. Section 5 formulates some
concluding remarks on the importance of our research.

2. Results for Positive Systems Defined by
Irreducible Matrices

Throughout this section, matrix A that defines the dynamics
of system (1-DT) (resp., (1-CT)) is irreducible (e.g., [8,
Chapter 2, Definition 1.2]). Matrix A is irreducible if and
only if the oriented graph 𝐺(A) associated with A is strongly
connected (e.g., [8, Chapter 2, Theorem 2.7]). In the DT case
matrix A is nonnegative (i.e., all its entries are nonnegative).
In the CT case matrix A is essentially nonnegative or Metzler
(i.e., all its off-diagonal entries are nonnegative).

The meanings of the Perron-Frobenius eigenstructure
agree forA nonnegative andA essentially nonnegative, in the
sense of the following properties:

(i) Matrix A has a simple real eigenvalue, called the
Perron-Frobenius eigenvalue and denoted by 𝜆max(A),
which satisfies |𝜆

𝑖
(A)| ≤ 𝜆max(A), 𝑖 = 1, . . . , 𝑛, in the

DT case, and Re {𝜆
𝑖
(A)} ≤ 𝜆max(A), 𝑖 = 1, . . . , 𝑛, in

the CT case.
(ii) In both DT and CT cases, matrix A has right and

left positive eigenvectors k = [V
1
⋅ ⋅ ⋅ V
𝑛
]
𝑇

≫ 0, w =

[𝑤
1
⋅ ⋅ ⋅ 𝑤
𝑛
]
𝑇
≫ 0 associated with 𝜆max(A), which are

called the right and left Perron-Frobenius eigenvectors
and satisfy Ak = 𝜆max(A)k and A𝑇w = 𝜆max(A)w.

Given the irreducible matrixA, for any 𝑝, 1 ≤ 𝑝 ≤ ∞, we
define the 𝑝-type Perron-Frobenius scaling operator

D
𝑝
=

{{{

{{{

{

diag {[(𝑤
1
) ⋅ ⋅ ⋅ (𝑤

𝑛
)]} , if 𝑝 = 1,

diag {[(𝑤
1
)
1/𝑝

(V
1
)
(−𝑝+1)/𝑝

⋅ ⋅ ⋅ (𝑤
𝑛
)
1/𝑝

(V
𝑛
)
(−𝑝+1)/𝑝

]} , if 1 < 𝑝 < ∞,

diag {[(V
1
)
−1

⋅ ⋅ ⋅ (V
𝑛
)
−1

]} , if 𝑝 = ∞,

(7-DT//CT)

built from the positive eigenvectors k ≫ 0, w ≫ 0, of A,
which satisfy ‖k‖

∞
= 1, ‖w‖

∞
= 1.

Theorem 2. Let 1 ≤ 𝑝 ≤ ∞. Consider an asymptotically
stable, positive linear system of form (1-DT) (resp., (1-CT)),
with matrix A irreducible.

Then, system (1-DT) (resp., (1-CT)) is (1, 𝛼(A))-stable
relative to the normV

𝑝
(x) = ‖D

𝑝
x‖
𝑝
, where D

𝑝
is the scaling

operator defined by (7-DT//CT).

Proof. For any 1 ≤ 𝑝 ≤ ∞, V
𝑝
(x) is a vector norm, defined

by the standard 𝑝-norm, weighted by the scaling operator
D
𝑝
(7-DT//CT).

(a) In the DT case, for any 1 ≤ 𝑝 ≤ ∞, for an arbitrary
trajectory we can write

V
𝑝
(x (𝑡 + 1)) =


D
𝑝
x (𝑡 + 1)

𝑝
=

D
𝑝
Ax (𝑡)𝑝

=

D
𝑝
AD−1
𝑝
D
𝑝
x (𝑡)𝑝

≤

D
𝑝
AD−1
𝑝

𝑝


D
𝑝
x (𝑡)𝑝

=

D
𝑝
AD−1
𝑝

𝑝
V
𝑝
(x (𝑡)) .

(8-DT)
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On the other hand, we have


D
𝑝
AD−1
𝑝

𝑝
= 𝜆max (A) = 𝛼 (A) (9-DT)

as resulting from the proof of the theorem presented by paper
[15].

Thus, from (8-DT) and (9-DT) we get the inequality

V
𝑝
(x (𝑡 + 1)) ≤ 𝛼 (A)V

𝑝
(x (𝑡)) , ∀𝑡 ∈ Z

+
, (10-DT)

and, eventually,

V
𝑝
(x (𝑡; 0, x

0
)) ≤ (𝛼 (A))

𝑡
V
𝑝
(x
0
) ,

∀x
0
∈ R
𝑛
, ∀𝑡 ∈ Z

+
,

(11-DT)

proving that system (1-DT) is (𝑀, 𝛽)-stable, with𝑀 = 1 and
𝛽 = 𝛼(A), in accordance with (3-DT).

(b) For the CT case, for any 1 ≤ 𝑝 ≤ ∞, we can write

D
+

𝑡
V
𝑝
(x (𝑡))

= lim
ℎ↓0

1

ℎ
[V
𝑝
(x (𝑡 + ℎ)) −V

𝑝
(x (𝑡))]

= lim
ℎ↓0

1

ℎ
[

D
𝑝
x (𝑡 + ℎ)

𝑝
−

D
𝑝
x (𝑡)𝑝]

= lim
ℎ↓0

1

ℎ
[

D
𝑝
𝑒
AℎD−1
𝑝
D
𝑝
x (𝑡)𝑝 −


D
𝑝
x (𝑡)𝑝]

≤ (lim
ℎ↓0

1

ℎ
[

D
𝑝
𝑒
AℎD−1
𝑝

𝑝
− 1])


D
𝑝
x (𝑡)𝑝

= (D
+

𝑡


𝑒
D
𝑝
AD−1
𝑝
𝑡
𝑝

𝑡=0
)V
𝑝
(x (𝑡)) .

(8-CT)

On the other hand, we have

D
+

𝑡


𝑒
D
𝑝
AD−1
𝑝
𝑡
𝑝

𝑡=0

= lim
ℎ↓0

1

ℎ
[

I + ℎD

𝑝
AD−1
𝑝

𝑝
− 1] = 𝜆max (A)

= 𝛼 (A) .

(9-CT)

Indeed, the first equality in (9-CT) results from Fact 11.15.7
[1]. For the second equality, let us pick an 𝑠 > 0 such that
𝑠I + A is nonnegative. Since matrices 𝑠I + A and A have the
same left and right Perron-Frobenius eigenvectors, by using
part (a) of our proof, for any 1 ≤ 𝑝 ≤ ∞, we get 𝑠+𝜆max(A) =

𝜆max(𝑠I + A) = ‖D
𝑝
(𝑠I + A)D−1

𝑝
‖
𝑝
= ‖𝑠I +D

𝑝
AD−1
𝑝
‖
𝑝
, which

yields 𝜆max(A) = ‖𝑠I + D
𝑝
AD−1
𝑝
‖
𝑝
− 𝑠. By taking 𝑠 = 1/ℎ, for

ℎ ↓ 0, we obtain (9-CT).

Thus, from (8-CT) and (9-CT) we get the inequality

D
+

𝑡
V
𝑝
(x (𝑡)) ≤ 𝛼 (A)V

𝑝
(x (𝑡)) , ∀𝑡 ∈ R

+
. (10-CT)

Now, if (10-CT) holds for x(𝑡) = x(𝑡; 0, x
0
), let us consider

the differential equation ẏ(𝑡) ≤ 𝛼(A)y(𝑡) with the initial
condition y(0) = V

𝑝
(x(0)) = V

𝑝
(x
0
). According to Theo-

rem 4.2.11 in [3], we have

V
𝑝
(x (𝑡; 0, x

0
)) ≤ y (𝑡) = 𝑒

𝛼(A)𝑡y (0)

= 𝑒
𝛼(A)𝑡

V
𝑝
(x
0
) ,

∀x
0
∈ R
𝑛
, ∀𝑡 ∈ R

+
,

(11-CT)

proving that system (1-CT) is (𝑀, 𝛽)-stable, with𝑀 = 1 and
𝛽 = 𝛼(A), in accordance with (3-CT).

Remark 3. Theorem 2 reveals new connections between the
Perron-Frobenius eigenstructure and the dynamics of asymp-
totically stable positive linear systems.

(i) Besides the information on the long-term behavior
referring to the role of the right eigenvector in guiding
(as asymptote) any trajectory x(𝑡) for 𝑡 → ∞ (e.g.,
[16]), we show that the system dynamics exhibit set-
invariance properties for sets defined by both right
and left eigenvectors. Indeed, for any 𝑝, 1 ≤ 𝑝 ≤

∞, the existence of the “ideal” transient behavior
relative to the norm V

𝑝
(x) (proven by Theorem 2)

is equivalent to the invariance of the exponentially
contractive sets

X
𝑐

𝑝
(𝑡) = {x ∈ R

𝑛
|

D
𝑝
x𝑝 ≤ 𝑐 (𝛼 (A))

𝑡
} ,

𝑡 ∈ Z
+
, 𝑐 > 0,

(12-DT)

and, respectively,

X
𝑐

𝑝
(𝑡) = {x ∈ R

𝑛
|

D
𝑝
x𝑝 ≤ 𝑐𝑒

𝛼(A)𝑡
} ,

𝑡 ∈ R
+
, 𝑐 > 0,

(12-CT)

with respect to system (1-DT) (resp., (1-CT)). In
particular, for an arbitrary (but fixed) time 𝑡 ∈ Z

+

(resp., 𝑡 ∈ R
+
) and an arbitrary (but fixed) constant

𝑐 > 0, the Minkowski functional of the constant
setX𝑐
𝑝
(𝑡) defined by (12-DT) (resp., (12-CT)) equals

V
𝑝
(𝑥) multiplied by a positive scalar. It is worth

saying that the invariance of the sets of form (12-DT)
(resp., (12-CT)) has already been mentioned by our
previous works [17, 18]. The invariance analysis for
sets of form (12-DT) (resp., (12-CT)) can be extended
to positive interval systems, by using Corollary 3 and
Theorem 4 in our paper [19], dealing with dynamics
defined by interval matrices.

(ii) The existence of the invariant contractive sets of
form (12-DT) (resp., (12-CT)) defined for all 𝑝, 1 ≤

𝑝 ≤ ∞, allows a deeper insight into the dynamics
of positive linear systems, for which the classical
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property presented in literature (e.g., [4]) is the
invariance of the nonnegative orthant R𝑛

+
. In fact, all

the nonnegative sets X
𝑐

𝑝
(𝑡) = X𝑐

𝑝
(𝑡) ∩ R𝑛

+
, 𝑡 ∈ Z

+
,

𝑐 > 0, with X𝑐
𝑝
(𝑡) defined by (12-DT) are invariant

with respect to positive system (1-DT), and all the
nonnegative sets X

𝑐

𝑝
(𝑡) = X𝑐

𝑝
(𝑡) ∩ R𝑛

+
, 𝑡 ∈ R

+
,

𝑐 > 0, with X𝑐
𝑝
(𝑡) defined by (12-CT) are invariant

with respect to positive system (1-CT).

Remark 4. The proof of Theorem 2 also highlights the fol-
lowing dynamical properties of system (1-DT) (resp., (1-CT))
typical to the “ideal” transient behavior:

(i) For any 𝑝, 1 ≤ 𝑝 ≤ ∞, V
𝑝
(x) can serve for

system (1-DT) (resp., (1-CT)), as a Lyapunov func-
tion (in a form called “norm Lyapunov function”),
which decreases with the fastest possible rate, namely,
𝛼(A), along the trajectories of system (1-DT) (resp.,
(1-CT)).

(ii) Propositions 1 and 2 and Remark 1 in [9] refer to the
existence of norm Lyapunov functions corresponding
to 𝑝 ∈ {1, 2,∞}, but the possibility of ensuring
the fastest decreasing rate 𝛼(A) (when the Perron-
Frobenius eigenvectors are used) is not investigated.

(iii) The semigroup of operators A𝑡, 𝑡 ∈ Z
+
(resp., 𝑒A𝑡,

𝑡 ∈ R
+
) is contractive relative to any operator norm

subordinated to a vector norm of form V
𝑝
(x), 1 ≤

𝑝 ≤ ∞. For all 1 ≤ 𝑝 ≤ ∞, the contraction rate is
precisely 𝛼(A).

(iv) Form (7-DT//CT) of the scaling operator D
𝑝
uses

the right and left eigenvectors of A, uniquely defined
by the norm equalities ‖k‖

∞
= 1, ‖w‖

∞
= 1.

Obviously, Theorem 2 holds true if D
𝑝
is replaced by

any diagonal matrix 𝑘D
𝑝
, 𝑘 > 0, fact showing that the

essential information is offered by the directions of the
right and left Perron-Frobenius eigenvectors (i.e., the
fulfillment of the conditions ‖k‖

∞
= 1, ‖w‖

∞
= 1 is

not compulsory).

Remark 5. Paper [13] addresses the transient behavior of
positive linear systems and considers state-space transforms
defined as in (7-DT//CT) by matrix D

𝑝
. However, these

transforms of type (7-DT//CT) are not regarded as indi-
vidual scalings of the state-space variables (as illustrated by
Theorem 2). TheD

𝑝
-weighted norms are used in the (𝑀, 𝛽)-

stability analysis in the sense of eccentricity with respect to
the nonweighted norms, and, therefore, the approach misses
the sharp interpretation of “ideal” transient behavior for
the scaled variables. This is because the eccentricity caused

by the D
𝑝
-scaling can be produced by various nondiagonal

weighting matrices, where the practical meaning of the state-
space variables differs drastically from the original form to
the weighted form. Moreover, all the results presented by the
cited paper are limited to the particular cases 𝑝 ∈ {1, 2,∞}.

3. Results for Positive Systems Defined by
Reducible Matrices

Throughout this section, matrix A that defines the dynamics
of system (1-DT) (resp., (1-CT)) is reducible (i.e., the oriented
graph 𝐺(A) associated with A is not strongly connected).
Matrix A is nonnegative (resp., essentially nonnegative). To
deal with the reducibility of matrix A, we consider two dis-
tinct cases, specified by the structure of the communication
classes of matrix A, for example, Section 3, Chapter 2 in [8].

3.1. All Communication Classes of Matrix A Are Basic and
Final. Theorem 2 can still be used if all the communication
classes are basic and final. Indeed Theorem 3.14, Chapter
2, from [8] guarantees the existence of positive right and
left eigenvectors k ≫ 0, w ≫ 0, associated with the
multiple eigenvalue 𝜆max(A). (In other words, we are able
to generalize the “A irreducible” case, where the eigenvalue
𝜆max(A) is unique.) By a proof similar to the proof of the
Theorempresented in [15], one can show that equality (9-DT)
(resp., equality (9-CT)) holds true for A nonnegative (resp.,
essentially nonnegative).

3.2. Structure of Communication Classes of Matrix A Is
Different from Section 3.1. There exists nonnegative right and
left eigenvectors associated with the eigenvalue 𝜆max(A), but
at least one of them contains 0 elements, in accordance with
Theorems 3.10 and 3.14, Chapter 2, from [8]. Hence, the
diagonal operatorD

𝑝
defined by (7-DT//CT) cannot be used

any longer.
However, the same type of information becomes avail-

able, if instead of A we consider the slightly modified matrix:

A (𝛿) = A + 𝛿U, 𝛿 > 0,

U = [𝑢
𝑖𝑗
] ,

𝑖, 𝑗 = 1, . . . , 𝑛, 𝑢
𝑖𝑗
=
{

{

{

1, if 𝑎
𝑖𝑗
= 0, 𝑖 ̸= 𝑗,

0, otherwise,

(13-DT//CT)

where 𝛿 is small enough. Matrix A(𝛿) is irreducible, so that
the 𝑝-type Perron-Frobenius scaling operator D

𝑝
(𝛿) is well

defined in accordance with (7-DT//CT) applied to A(𝛿) as
follows:

D
𝑝
(𝛿) =

{{{{{{

{{{{{{

{

diag {[(𝑤
1
(𝛿)) ⋅ ⋅ ⋅ (𝑤

𝑛
(𝛿))]} , if 𝑝 = 1,

diag {[(𝑤
1
(𝛿))
1/𝑝

(V
1
(𝛿))
(−𝑝+1)/𝑝

⋅ ⋅ ⋅ (𝑤
𝑛
(𝛿))
1/𝑝

(V
𝑛
(𝛿))
(−𝑝+1)/𝑝

]} , if 1 < 𝑝 < ∞,

diag {[(V
1
(𝛿))
−1

⋅ ⋅ ⋅ (V
𝑛
(𝛿))
−1

]} , if 𝑝 = ∞,

(14-DT//CT)
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where k(𝛿) ≫ 0, w(𝛿) ≫ 0 are the Perron-Frobenius
eigenvectors of A(𝛿), which satisfy ‖k(𝛿)‖

∞
= 1, ‖w(𝛿)‖

∞
=

1.
Note that, for simplicity, in (13-DT//CT) one can use a

matrix U = [𝑢
𝑖𝑗
] with 𝑢

𝑖𝑗
= 1, 𝑖, 𝑗 = 1, . . . , 𝑛, and the results

of the current section preserve their validity.

Theorem 6. Let 1 ≤ 𝑝 ≤ ∞. Consider an asymptotically
stable, positive linear system of form (1-DT) (resp., (1-CT)),
with matrix A reducible. Let matrix D

𝑝
(𝛿) be defined by

(14-DT//CT).
Then, for any 𝜀 > 0 arbitrarily small, there exists 𝛿(𝜀) > 0

such that, for each 𝛿 ∈ (0, 𝛿(𝜀)], system (1-DT) (resp., (1-CT))
is (1, 𝛼(A)+𝜀)-stable relative to the normV𝛿

𝑝
(𝑥) = ‖D

𝑝
(𝛿)x‖
𝑝
,

whereD
𝑝
(𝛿) is the scaling operator defined by (14-DT//CT).

Proof. For any 1 ≤ 𝑝 ≤ ∞, V𝛿
𝑝
(x) is a vector norm, defined

by the standard 𝑝-norm, weighted by the scaling operator
D
𝑝
(𝛿) (14-DT//CT).
(a) In the DT case, for any 1 ≤ 𝑝 ≤ ∞, we first prove that

𝜆max (A) ≤

D
𝑝
(𝛿)A (D

𝑝
(𝛿))
−1𝑝

≤ 𝜆max (A (𝛿)) < 𝜆max (A) + 𝜀

∀𝜀 > 0, ∃𝛿 (𝜀) > 0 : ∀𝛿 ∈ (0, 𝛿 (𝜀)] .

(15-DT)

This proof relies on the following steps:
(i) The inequality 𝜆max(A) ≤ ‖D

𝑝
(𝛿)A(D

𝑝
(𝛿))−1‖

𝑝
is

obvious.
(ii) For any y ∈ R𝑛, we can write the compo-

nentwise inequalities |(D
𝑝
(𝛿)A(D

𝑝
(𝛿))−1)y| ≤

|(D
𝑝
(𝛿)A(D

𝑝
(𝛿))
−1
)|y|| ≤ |(D

𝑝
(𝛿)A(𝛿)(D

𝑝
(𝛿))
−1
)|y||

and the monotonicity of the vector 𝑝-
norms implies ‖(D

𝑝
(𝛿)A(D

𝑝
(𝛿))
−1
)y‖
𝑝

≤

‖(D
𝑝
(𝛿)A(D

𝑝
(𝛿))
−1
‖
𝑝
‖y‖
𝑝
.

(iii) The matrix norm means ‖D
𝑝
(𝛿)A(D

𝑝
(𝛿))
−1
‖
𝑝

=

max
‖y‖
𝑝
=1
‖(D
𝑝
(𝛿)A(D

𝑝
(𝛿))
−1
)y‖
𝑝

≤

‖D
𝑝
(𝛿)A(𝛿)(D

𝑝
(𝛿))
−1
‖
𝑝
.

(iv) Equality (9-DT) written for A(𝛿) and the diagonal
operator D

𝑝
(𝛿) ensures ‖D

𝑝
(𝛿)A(𝛿)(D

𝑝
(𝛿))
−1
‖
𝑝

=

𝜆max(A(𝛿)).
(v) Since the Perron-Frobenius eigenvalue 𝜆max(A(𝛿)) =

𝜆max(A + 𝛿U) is continuous and strictly increasing
with respect to 𝛿 > 0 (Theorem 8.1.18 in [20])), we
also have ∀𝜀 > 0, ∃𝛿(𝜀) > 0 : ∀𝛿 ∈ (0, 𝛿(𝜀)],
𝜆max(A(𝛿)) < 𝜆max(A) + 𝜀.

Thus, the proof of (15-DT) is completed and we can use it for
an arbitrary trajectory of system (1-DT). In accordance with
(8-DT), whereV𝛿

𝑝
(x) = ‖D

𝑝
(𝛿)x‖
𝑝
, we can write

V
𝛿

𝑝
(x (𝑡 + 1))

≤

D
𝑝
(𝛿)A (D

𝑝
(𝛿))
−1𝑝

V
𝛿

𝑝
(x (𝑡))

< (𝜆max (A) + 𝜀)V
𝛿

𝑝
(x (𝑡)) .

(16-DT)

Since 𝜆max(A) = 𝛼(A), we get

V
𝛿

𝑝
(x (𝑡; 0, x

0
)) < (𝛼 (A) + 𝜀)

𝑡
V
𝛿

𝑝
(x
0
) ,

∀x
0
∈ R
𝑛
, ∀𝑡 ∈ Z

+
,

(17-DT)

proving that system (1-DT) is (𝑀, 𝛽)-stable, with𝑀 = 1 and
𝛽 = 𝛼(A) + 𝜀, in accordance with (3-DT).

(b) In the CT case, for any 1 ≤ 𝑝 ≤ ∞, we first prove that

𝜆max (A)

≤ lim
ℎ↓0

1

ℎ
[

I + ℎD

𝑝
(𝛿)A (D

𝑝
(𝛿))
−1𝑝

− 1]

≤ 𝜆max (A (𝛿)) < 𝜆max (A) + 𝜀,

∀𝜀 > 0, ∃𝛿 (𝜀) > 0 : ∀𝛿 ∈ (0, 𝛿 (𝜀)] .

(15-CT)

This proof relies on the following steps:

(i) The inequality 𝜆max(A) ≤ lim
ℎ↓0

(1/ℎ)[‖I +

ℎD
𝑝
(𝛿)A(D

𝑝
(𝛿))−1‖

𝑝
− 1] is ensured by Fact 11.15.7

in [1].
(ii) For small ℎ > 0 we can write 0 ≤ I +

ℎD
𝑝
(𝛿)A(D

𝑝
(𝛿))
−1

≤ I + ℎD
𝑝
(𝛿)A(𝛿)(D

𝑝
(𝛿))
−1 and,

subsequently, ‖I + ℎD
𝑝
(𝛿)A(D

𝑝
(𝛿))
−1
‖
𝑝

≤ ‖I +

ℎD
𝑝
(𝛿)A(𝛿)(D

𝑝
(𝛿))
−1
‖
𝑝
that yields lim

ℎ↓0
(1/ℎ)[‖I +

ℎD
𝑝
(𝛿)A(D

𝑝
(𝛿))
−1
‖
𝑝

− 1] ≤ lim
ℎ↓0

(1/ℎ)[‖I +

ℎD
𝑝
(𝛿)A(𝛿)(D

𝑝
(𝛿))
−1
‖
𝑝
− 1].

(iii) The second equality in (9-CT) written for A(𝛿) and
the diagonal operatorD

𝑝
(𝛿) ensures lim

ℎ↓0
(1/ℎ)[‖I +

ℎD
𝑝
(𝛿)A(𝛿)(D

𝑝
(𝛿))
−1
‖
𝑝
− 1] = 𝜆max(A(𝛿)).

(iv) To complete the proof of (15-CT), we use the equal-
ities 𝜆max(𝑠I + A) = 𝑠 + 𝜆max(A), 𝜆max(𝑠I + A(𝛿)) =

𝑠 + 𝜆max(A(𝛿)) and the same approach as in the proof
of part (a).

For an arbitrary trajectory of system (1-CT), in accordance
with (8-CT) whereV𝛿

𝑝
(x) = ‖D

𝑝
(𝛿)x‖
𝑝
, we can write

D
+

𝑡
V
𝛿

𝑝
(x (𝑡))

≤ (D
+

𝑡


𝑒
D
𝑝
(𝛿)A(D

𝑝
(𝛿))
−1

𝑡
𝑝

𝑡=0
)V
𝛿

𝑝
(x (𝑡))

< (𝜆max (A) + 𝜀)V
𝛿

𝑝
(x (𝑡)) , ∀𝑡 ∈ R

+
,

(16-CT)

since D+
𝑡
‖𝑒D𝑝(𝛿)A(D𝑝(𝛿))

−1

𝑡‖
𝑝
|
𝑡=0

= lim
ℎ↓0

(1/ℎ)[‖I +

ℎD
𝑝
(𝛿)A(D

𝑝
(𝛿))
−1
)‖
𝑝
− 1] as per Fact 11.15.7 in [1].

By using the same proof as for implication (10-CT) ⇒

(11-CT), as well as the equality 𝜆max(A) = 𝛼(A), we get

V
𝛿

𝑝
(x (𝑡; 0, x

0
)) < 𝑒

(𝛼(A)+𝜀)𝑡
V
𝛿

𝑝
(x
0
) ,

∀x
0
∈ R
𝑛
, ∀𝑡 ∈ R

+
,

(17-CT)

proving that system (1-CT) is (𝑀, 𝛽)-stable, with𝑀 = 1 and
𝛽 = 𝛼(A) + 𝜀, in accordance with (3-CT).

https://www.researchgate.net/publication/229439297_Matrix_Mathematics_Theory_Facts_and_Formulas_Second_Edition?el=1_x_8&enrichId=rgreq-d194bf6ffee0dd67f2983a108bcc6a38-XXX&enrichSource=Y292ZXJQYWdlOzI5NTgzMjg0MztBUzozMzMwMDg5OTAxNjI5NDhAMTQ1NjQwNjkzODY2Mg==
https://www.researchgate.net/publication/229439297_Matrix_Mathematics_Theory_Facts_and_Formulas_Second_Edition?el=1_x_8&enrichId=rgreq-d194bf6ffee0dd67f2983a108bcc6a38-XXX&enrichSource=Y292ZXJQYWdlOzI5NTgzMjg0MztBUzozMzMwMDg5OTAxNjI5NDhAMTQ1NjQwNjkzODY2Mg==
https://www.researchgate.net/publication/221932985_Matrix_Analysis?el=1_x_8&enrichId=rgreq-d194bf6ffee0dd67f2983a108bcc6a38-XXX&enrichSource=Y292ZXJQYWdlOzI5NTgzMjg0MztBUzozMzMwMDg5OTAxNjI5NDhAMTQ1NjQwNjkzODY2Mg==
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Remark 7. If system (1-DT) (resp., (1-CT)) is asymptotically
stable, for the concrete use of Theorem 6, we chose 𝜀 > 0

such that 𝜆max(A) + 𝜀 < 1 (resp., 𝜆max(A) + 𝜀 < 0) and then
we search for a 𝛿∗ > 0 such that 𝜆max(A) < 𝜆max(A(𝛿∗)) <

𝜆max(A)+𝜀, for bothDT andCT case.This search requires the
computation of 𝜆max(A(𝛿)) for some 𝛿 > 0 and relies on the
fact that𝜆max(A(𝛿)) is continuous and strictly increasingwith
respect to 𝛿 > 0 (as mentioned in the proof of Theorem 6).
Once such 𝛿

∗ > 0 is found, the diagonal operator D
𝑝
(𝛿∗) is

built in accordance with (14-DT//CT).

Remark 8. If system (1-DT) (resp., (1-CT)) is asymptotically
stable and matrix A has the structure of the communication
classes considered by the current subsection, Theorem 2 can
be used in the following particular cases:

(i) For 𝑝 = 1, if the basic and final classes of A𝑇
coincide, then the diagonal operator D

1
can be built

in accordance with (7-DT//CT), since there exists a
positive left eigenvector w ≫ 0 (as per Theorem 3.10,
Chapter 2, from [8]).

(ii) For 𝑝 = ∞, if the basic and final classes of A
coincide, then the diagonal operator D

∞
can be built

in accordance with (7-DT//CT), since there exists a
positive right eigenvector k ≫ 0 (as perTheorem 3.10,
Chapter 2, from [8]).

4. Case Studies

Example 1. Consider the electric circuit in Figure 1 that was
also used in [21], where the following state-space model is
given:

[
�̇�
1

�̇�
2

] = A[
𝑢
1

𝑢
2

] + B𝑒 (𝑡) ,

A =
1

𝑅
1
(𝑅
2
+ 𝑅
3
) + 𝑅
2
𝑅
3

⋅

[
[
[
[
[

[

− (𝑅
2
+ 𝑅
3
)

𝐶
1

𝑅
3

𝐶
1

𝑅
3

𝐶
2

− (𝑅
1
+ 𝑅
3
)

𝐶
2

]
]
]
]
]

]

,

B =
1

𝑅
1
(𝑅
2
+ 𝑅
3
) + 𝑅
2
𝑅
3

[
[
[
[

[

𝑅
2

𝐶
1

𝑅
1

𝐶
2

]
]
]
]

]

.

(18-CT)

For 𝑒(𝑡) ≡ 0 and 𝑅
1

= 106Ω, 𝑅
2

= 1.5 ⋅ 106Ω, 𝑅
3

= 2 ⋅

106Ω, 𝐶
1
= 3 ⋅ 10−8 F, 𝐶

2
= 10−8 F, the circuit dynamics are

described by

[
�̇�
1

�̇�
2

] = A[
𝑢
1

𝑢
2

] ,

A = [
−17.9487 10.2564

30.7692 −46.1538
] .

(19-CT)

u1 u2

C1 C2

R1 R2

R3

e

Figure 1: Electrical circuit used in Example 1.

Matrix A is irreducible. For the numerical values of the
entries presented above, it has the Perron-Frobenius eigen-
value 𝛼(A) = −9.3695, with the associated right eigen-
vector k = [1.0000 0.8365]

𝑇 and left eigenvector w =

[1.0000 0.2788]
𝑇.

For the vector 𝑝-norms defined by 𝑝 ∈ {2,∞}, this
example is able to offer nice illustrations of the differences
between the concepts of (1, 𝛼(A))-stability and (1, 𝛼

‖ ‖
(A))-

stability.
Thus, the short-term behavior fulfills the condition of

(1, −7.1583)-stability relative to the vector norm ‖ ⋅ ‖
2
,

meaning that



[
𝑢
1
(𝑡)

𝑢
2
(𝑡)

]

2

≤



[
𝑢
1
(0)

𝑢
2
(0)

]

2

𝑒
𝛼
‖ ‖
2

(A)𝑡

=



[
𝑢
1
(0)

𝑢
2
(0)

]

2

𝑒
−7.1583𝑡

,

(20-CT)

whereas the condition of (1, −9.3695)-stability is fulfilled
relative to the vector norm V

2
(⋅) = ‖D

2
⋅ ‖
2
, D
2

=

diag{√𝑤
1
/√V
1
, √𝑤
2
/√V
2
} = diag{1, 0.5773}, meaning that



[
𝑢
1
(𝑡)

0.5773𝑢
2
(𝑡)

]

2

≤



[
𝑢
1
(0)

0.5773𝑢
2
(0)

]

2

𝑒
𝛼(A)𝑡

=



[
𝑢
1
(0)

0.5773𝑢
2
(0)

]

2

𝑒
−9.3695𝑡

.

(21-CT)

Similarly, the short-term behavior fulfills the condition of
(1, −7.6923)-stability relative to the vector norm ‖ ⋅ ‖

∞
,

meaning that



[
𝑢
1
(𝑡)

𝑢
2
(𝑡)

]

∞

≤



[
𝑢
1
(0)

𝑢
2
(0)

]

∞

𝑒
𝛼
‖ ‖∞
(A)𝑡

=



[
𝑢
1
(0)

𝑢
2
(0)

]

∞

𝑒
−7.6923𝑡

,

(22-CT)
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whereas the condition of (1, −9.3695)-stability is fulfilled
relative to the vector norm V

∞
(⋅) = ‖D

∞
⋅ ‖
∞
, D
∞

=

diag{1/V
1
, 1/V
2
} = diag{1, 1.1955}, meaning that



[
𝑢
1
(𝑡)

1.1955𝑢
2
(𝑡)

]

∞

≤



[
𝑢
1
(0)

1.1955𝑢
2
(0)

]

∞

𝑒
𝛼(A)𝑡

=



[
𝑢
1
(0)

1.1955𝑢
2
(0)

]

∞

𝑒
−9.3695𝑡

.

(23-CT)

Both cases discussed above emphasize the role played by the
scaling operator D

𝑝
defined by (7-DT//CT) for 𝑝 ∈ {2,∞},

when we are interested in describing the short-term behavior
with the best decreasing rate (i.e., 𝛼(A) = −9.3695).

Note that the decreasing rate 𝛼(A) = −9.3695 can also
be obtained by using ‖ ⋅ ‖

1
and the scaling operator D

1
=

diag{[𝑤
1
, 𝑤
2
]} = diag{[1.0000, 0.2788]}, meaning that



[
𝑢
1
(𝑡)

0.2788𝑢
2
(𝑡)

]

1

≤



[
𝑢
1
(0)

0.2788𝑢
2
(0)

]

1

𝑒
𝛼(A)𝑡

=



[
𝑢
1
(0)

0.2788𝑢
2
(0)

]

1

𝑒
−9.3695𝑡

.

(24-CT)

In other words, the condition of (1, 𝛼(A))-stability is also
fulfilled relative to the vector norm V

1
(⋅) = ‖𝐷

1
⋅ ‖
1
, but we

cannot talk about (1, 𝛼
‖ ‖
1

(A))-stability relative to the vector
norm ‖ ⋅ ‖

1
, since 𝛼

‖ ‖
1

(A) = 12.8205 > 0.

Example 2. Consider the three-compartment mammillary
CPB (cardiopulmonary bypass) model used in pharmacoki-
netics and discussed in Subsection 4.3 of [6]. The model has
form (1-CT) with

A =
[
[

[

− (𝑘
11

+ 𝑘
21

+ 𝑘
31
) 𝑘
12

𝑘
13

𝑘
21

−𝑘
12

0

𝑘
31

0 −𝑘
13

]
]

]

, (25-CT)

where 𝑘
11

= 0.001, 𝑘
21

= 0.2, 𝑘
12

= 0.2, 𝑘
31

= 0.01, 𝑘
13

= 0.02

are the values used in the simulation example at page 122 in
[6]. The mentioned example rules out partial monotonicity
with respect to any compartment. Despite the lack of this
property, our Theorem 2 is able to prove the existence of
scaled 𝑝-norms relative to which the considered system has
an “ideal” transient behavior; that is, it is (1, 𝛼(A))-stable.

Matrix A is irreducible. For the numerical values of the
entries presented above, it has the Perron-Frobenius eigen-
value 𝛼(A) = −0.0004, with the associated right eigenvector
k = [0.9980 1.0000 0.5091]

𝑇 and left eigenvector w =

[0.9801 0.9821 1.0000]
𝑇. Thus, for any 1 ≤ 𝑝 ≤ ∞,

Theorem 2 ensures the (1, 𝛼(A))-stability, relative to vector
norm V

𝑝
(x) = ‖D

𝑝
x‖
𝑝
, where D

𝑝
is the scaling operator

defined by (7-DT//CT).
Our example provides graphical plots that support the

intuitive understanding of the theoretical result stated by
Theorem 2, for the frequently used vector 𝑝-norms.Thus, for
each 𝑝 ∈ {1, 2,∞}, we simulate the system evolution for

two initial conditions; namely, x
0
= [0.5 1 1]

𝑇 (studied at
page 122 in [6]) and x̃

0(𝑝)
̸= x
0
with V

𝑝
(x̃
0(𝑝)

) = V
𝑝
(x
0
),

and the simulation results are given in two distinct figures.
Each figure displays the time dependence of the following
functions:

(i) the three state variables plotted in black (by using line-
types similar to Figure 4.2 in [6], i.e., solid line for
𝑥
1
(𝑡), dashdot line for 𝑥

2
(𝑡), dashed line for 𝑥

3
(𝑡)),

(ii) the left-hand side of inequality (3-CT) in Definition 1
plotted in red,

(iii) the right-hand side of inequality (3-CT) inDefinition 1
plotted in blue.

These figures offer a nice graphical illustration for the
fulfillment of the (1, 𝛼(A))-stability condition, expressed by
Definition 1 and tested by Theorem 2. For all plots, the
simulation horizon was selected 𝑡 ∈ [0, 300], as correspond-
ing to a characterization of the short-term dynamics and
also permitting direct comparisons to the simulation results
presented in Figure 4.2 in [6].

The results corresponding to the use of Theorem 2 with
𝑝 = 1 are presented in Figure 2. Figure 2(a) considers the
dynamics started from the initial condition x

0
= [0.5 1 1]

𝑇,
and Figure 2(b) refers to dynamics started from the initial
condition x̃

0(1)
= [0.5 0.5 1.4910]

𝑇, for which we have the
equality V

1
(x̃
0(1)

) = V
1
(x
0
) = 2.4721, where V

1
(x) =

‖D
1
x‖
1
, D
1

= diag{0.9801, 0.9821, 1.0000}. In both figures,
the blue line is identical and depicts the exponentially
decreasing function V

1
(x̃
0(1)

)𝑒𝛼(A)𝑡 = V
1
(x
0
)𝑒𝛼(A)𝑡 meaning

the right-hand side of inequality (3-CT) in Definition 1. The
red line depicts the function V

1
(x(𝑡; 0, x

0
)) in Figure 2(a)

and the functionV
1
(x(𝑡; 0, x̃

0(1)
)) in Figure 2(b),meaning the

left-hand side of inequality (3-CT) in Definition 1 for the two
discussed cases. Figures 2(a) and 2(b) graphically illustrate
the inequality V

1
(x(𝑡; 0, x

0
)) ≤ V

1
(x
0
)𝑒𝛼(A)𝑡 and, respec-

tively, the inequality V
1
(x(𝑡; 0, x̃

0(1)
)) ≤ V

1
(x̃
0(1)

)𝑒𝛼(A)𝑡, for
𝑡 ∈ [0, 300], which, for this numerical example, are satisfied
as equalities (and, consequently, the plots coincide for the left-
hand sides (in red) and right-hand sides (in blue)).

The results corresponding to the use of Theorem 2 with
𝑝 = 2 are presented in Figure 3. Figure 3(a) considers the
dynamics started from the initial condition x

0
= [0.5 1 1]

𝑇,
and Figure 3(b) refers to dynamics started from the initial
condition x̃

0(2)
= [0.5 0.5 1.1726]

𝑇, for which we have the
equality V

2
(x̃
0(2)

) = V
2
(x
0
) = 1.7865, where V

2
(x) =

‖D
2
x‖
2
, D
2

= diag{0.9910, 0.9910, 1.4015}. In both figures,
the blue line is identical and depicts the exponentially
decreasing function V

2
(x̃
0(2)

)𝑒𝛼(A)𝑡 = V
2
(x
0
)𝑒𝛼(A)𝑡 meaning

the right-hand side of inequality (3-CT) in Definition 1. The
red line depicts the function V

2
(x(𝑡; 0, x

0
)) in Figure 3(a),

and the functionV
2
(x(𝑡; 0, x̃

0(2)
)) in Figure 3(b),meaning the

left-hand side of inequality (3-CT) in Definition 1 for the two
discussed cases. Figures 3(a) and 3(b) graphically illustrate
the inequality V

2
(x(𝑡; 0, x

0
)) ≤ V

2
(x
0
)𝑒𝛼(A)𝑡, and, respec-

tively, the inequality V
2
(x(𝑡; 0, x̃

0(2)
)) ≤ V

2
(x̃
0(2)

)𝑒𝛼(A)𝑡, for
𝑡 ∈ [0, 300].
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Time
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0
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1
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2

2.5

x1(t)

x2(t)

x3(t)

𝒱1(x(t; 0, x0))
𝒱1(x0)e𝛼(A)t

(a)

Time
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0

0.5

1

1.5

2

2.5

x1(t)

x2(t)

x3(t)

𝒱1(x(t; 0, x0(1)))
𝒱1(x0(1))e𝛼(A)t

(b)

Figure 2: Results provided by Theorem 2 for Example 2 with 𝑝 = 1 and initial condition (a) x
0

= [0.5 1 1]
𝑇 and (b) x̃

0(1)
=

[0.5 0.5 1.4910]
𝑇.

Time
100500 150 200 250 300

0

0.6

0.8

0.4

0.2

1

1.6

1.4

1.2

1.8

2

x1(t)

x2(t)

x3(t)

𝒱2(x(t; 0, x0))
𝒱2(x0)e𝛼(A)t

(a)

Time
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0

0.6

0.8

0.4

0.2

1

1.6

1.4

1.2

1.8

2

x1(t)

x2(t)

x3(t)

𝒱2(x(t; 0, x0(2)))
𝒱2(x0(2))e𝛼(A)t

(b)

Figure 3: Results provided by Theorem 2 for Example 2 with 𝑝 = 2 and initial condition (a) x
0

= [0.5 1 1]
𝑇 and (b) x̃

0(2)
=

[0.5 0.5 1.1726]
𝑇.

The results corresponding to the use of Theorem 2 with
𝑝 = ∞ are presented in Figure 4. Figure 4(a) considers the
dynamics started from the initial condition x

0
= [0.5 1 1]

𝑇,
and Figure 4(b) refers to dynamics started from the initial
condition x̃

0(∞)
= [1.5 1 1]

𝑇, for whichwe have the equality
V
∞
(x̃
0(∞)

) = V
∞
(x
0
) = 1.9641, whereV

∞
(x) = ‖D

∞
x‖
∞
,

D
∞

= diag{1.0020, 1.0000, 1.9641}. In both figures, the blue

line is identical and depicts the exponentially decreasing
function V

∞
(x̃
0(∞)

)𝑒𝛼(A)𝑡 = V
∞
(x
0
)𝑒𝛼(A)𝑡 meaning the

right-hand side of inequality (3-CT) in Definition 1. The red
line depicts the function V

∞
(x(𝑡; 0, x

0
)) in Figure 4(a), and

the function V
∞
(x(𝑡; 0, x̃

0(∞)
)) in Figure 4(b), meaning the

left-hand side of inequality (3-CT) in Definition 1 for the two
discussed cases. Figures 4(a) and 4(b) graphically illustrate
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Figure 4: Results provided byTheorem 2 for Example 2 with 𝑝 = ∞ and initial condition (a) x
0
= [0.5 1 1]

𝑇 and (b) x̃
0(∞)

= [1.5 1 1]
𝑇.

the inequality V
∞
(x(𝑡; 0, x

0
)) ≤ V

∞
(x
0
)𝑒𝛼(A)𝑡, and, respec-

tively, the inequality V
∞
(x(𝑡; 0, x̃

0(∞)
)) ≤ V

2
(x̃
0(∞)

)𝑒𝛼(A)𝑡,
for 𝑡 ∈ [0, 300].

5. Conclusions

The paper proves the existence of important connections
between the Perron-Frobenius eigenstructure of a positive
linear system and the short-term evolution of its state-space
trajectories. These connections are explored by the help of
the concept of (𝑀, 𝛽)-stability relative to scaled vector 𝑝-
norms, 1 ≤ 𝑝 ≤ ∞. If the time evolution of the trajectories
is monitored by such a norm, then there exists a scaling
operator built from the right and left Perron-Frobenius
eigenvectors, which ensures an “ideal” transient behavior,
meaning the least transient bound (i.e., 𝑀 = 1), as well
as the fastest exponential rate (i.e., 𝛽 as close to 𝛼(A) as
we want). The concrete expression of the scaling operator
depends on 1 ≤ 𝑝 ≤ ∞, in the sense that for 𝑝

1
̸= 𝑝
2

the contributions of the Perron-Frobenius eigenvectors are
different to the construction of the two scaling operators.

Our results cover both discrete- and continuous-time
dynamics of positive linear systems.The analysis is organized
so as to capture the differences between the cases where
the system dynamics is defined by matrices irreducible and
reducible, respectively. For the case of irreduciblematrices we
show that the fastest exponential rate in the “ideal” transient
behavior means a unique value for 𝛽, namely, the fulfillment
of the equality 𝛽 = 𝛼(A).

We use our theoretical developments in two numerical
case studies, both already discussed in literature by previous
works. The first case study illustrates the differences between
the concepts of (1, 𝛼(A))-stability and (1, 𝛼

‖ ‖
(A))-stability

associated with the operation of an electrical circuit. The

second one constructs the scaling operators corresponding to
𝑝 ∈ {1, 2,∞} for a mammillary compartmental system and
proves their role in ensuring the “ideal” short-term behavior.
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